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ABSTRACT. Bimonoidal categories are categorical analogues of rings without ad-
ditive inverses. They have been actively studied in category theory, homotopy
theory, and algebraic K-theory since around 1970. There is an abundance of new
applications and questions of bimonoidal categories in mathematics and other sci-
ences. This work provides a unified treatment of bimonoidal and higher ring-like
categories, their connection with algebraic K-theory and homotopy theory, and
applications to quantum groups and topological quantum computation. With am-
ple background material, extensive coverage, detailed presentation of both well-
known and new theorems, and a list of open questions, this work is a user-friendly
resource for beginners and experts alike.

Part I.1 proves in detail Laplaza’s two coherence theorems and May’s stricti-
fication theorem of symmetric bimonoidal categories, as well as their bimonoidal
analogues. This part includes detailed corrections to several inaccurate statements
and proofs found in the literature. Part I.2 proves Baez’s Conjecture on the exis-
tence of a bi-initial object in a 2-category of symmetric bimonoidal categories. The
next main theorem states that a matrix construction, involving the matrix prod-
uct and the matrix tensor product, sends a symmetric bimonoidal category with
invertible distributivity morphisms to a symmetric monoidal bicategory, with no
strict structure morphisms in general.

Part II.1 studies braided bimonoidal categories, with applications to quan-
tum groups and topological quantum computation. It is proved that the categor-
ies of modules over a braided bialgebra, of Fibonacci anyons, and of Ising anyons
form braided bimonoidal categories. Two coherence theorems for braided bimon-
oidal categories are proved, confirming the Blass-Gurevich conjecture. The rest
of this part discusses braided analogues of Baez’s Conjecture and the monoidal
bicategorical matrix construction in Part I.2. Part II.2 studies ring and bipermu-
tative categories in the sense of Elmendorf-Mandell, braided ring categories, and
En-monoidal categories, which combine n-fold monoidal categories with ring cat-
egories.

Part III.1 is a detailed study of enriched monoidal categories, pointed dia-
gram categories, and enriched multicategories. Using the machinery in Part III.1,
Part III.2 discusses the rich interconnection between the higher ring-like categor-
ies in Part II.2, homotopy theory, and algebraic K-theory. Starting with a chapter
on homotopy theory background, the first half of this part constructs the Segal K-
theory functor and the Elmendorf-Mandell K-theory multifunctor from permuta-
tive categories to symmetric spectra. For the latter, the detailed treatment here in-
cludes identification and correction of some subtle errors concerning its extended
domain. The second half applies the K-theory multifunctor to small ring, biper-
mutative, braided ring, and En-monoidal categories to obtain, respectively, strict
ring, E∞-, E2-, and En-symmetric spectra. Appendix III.A discusses open ques-
tions related to the topics of this work.
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Preface

Bimonoidal categories are categorical analogues of rings without additive in-
verses. They have been actively studied in category theory, homotopy theory, and
algebraic K-theory since around 1970. There is an abundance of new applications
and questions of bimonoidal categories in mathematics and other sciences. This
work provides the first unified treatment of bimonoidal and higher ring-like cat-
egories, their connection with algebraic K-theory and homotopy theory, and ap-
plications to quantum groups and topological quantum computation. With am-
ple background material, extensive coverage, detailed presentation of both well-
known and new theorems, and a list of open questions, this work is a user-friendly
resource for beginners and experts alike.

Bimonoidal and En-Monoidal Categories

A bimonoidal category C is a categorical analogue of a rig, which is a ring with-
out additive inverses. In this categorification, the addition, multiplication, 0, and
1 of a rig are replaced by functors and objects in a bimonoidal category. Rig ax-
ioms are replaced by natural structure morphisms, along with suitable coherence
axioms of their own.

More specifically, in place of the rig addition and multiplication, C has two
monoidal structures

(C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) and (C,⊗,1, α⊗, λ⊗, ρ⊗).

The first is symmetric monoidal, and called the additive structure. The second is
plain monoidal, and called the multiplicative structure. As with plain monoidal cat-
egories, there are variants with braided or symmetric multiplicative structure, and
a variety of intermediate multiplicative structures parametrized by En-operads.

In place of distributivity relations in a rig, a bimonoidal category has natural
distributivity monomorphisms for objects A, B, and C:

A⊗ (B⊕C) (A⊗ B)⊕ (A⊗C)

(A⊕ B)⊗C (A⊗C)⊕ (B⊗C).

δl
A,B,C

δr
A,B,C

These data are required to satisfy a finite list of axioms that (i) are checkable
in practice and (ii) ensure that (symmetric/braided) bimonoidal categories have
good coherence and other categorical properties. An important special case is a
tight bimonoidal category, in which the distributivity monomorphisms δl and δr

are isomorphisms.

xi
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A number of examples, arising in both algebraic and homotopical contexts, are
discussed throughout the text. Here, we summarize three important ones. More
examples are discussed in the next section about quantum science.

(1) The category of finite dimensional complex vector spaces, VectC, is a
tight symmetric bimonoidal category with its additive and multiplica-
tive structures given by the usual direct sum and tensor product of vector
spaces. More generally, each distributive symmetric monoidal category
is a tight symmetric bimonoidal category.

(2) The nonnegative integers and permutations form the objects and the mor-
phisms of a tight symmetric bimonoidal category Σ, called the finite or-
dinal category.

(3) May’s bipermutative categories, with the additional axiom ξ⊗−,0 = Id, are
tight symmetric bimonoidal categories.

The definition and coherence theorems for symmetric bimonoidal categories
are due to Laplaza [Lap72a, Lap72b]. These theorems and their plain bimonoidal
analogues are discussed in detail in Part I.1. In addition to providing completely
detailed proofs, we also correct some subtle and nontrivial inaccuracies in the orig-
inal statements and proofs. See Sections I.3.11 and I.4.7 for related discussion. Just
as applications of monoidal categories heavily depend on Mac Lane’s coherence
theorem, Laplaza’s two coherence theorems for symmetric bimonoidal categories,
as well as their plain and braided analogues, are crucial to their applications.

Part I.2 applies Laplaza’s coherence theorems to prove a number of theorems
about bimonoidal categories in the context of 2-dimensional categories. These in-
clude existence of a bi-initial object, confirming a conjecture of Baez [Bae18], and
a symmetric monoidal bicategory of matrices, MatC, constructed from a tight sym-
metric bimonoidal category C. (Note the unfortunately subtle confluence of ter-
minology that “symmetric monoidal bicategory” and “symmetric bimonoidal cate-
gory” refer to wildly distinct algebraic structures.) In the case C = VectC, MatC is
the symmetric monoidal bicategory of coordinatized 2-vector spaces, one version of
the 2-vector spaces introduced by Kapranov and Voevodsky in [KV94].

Braided bimonoidal categories, along with their corresponding coherence and
strictification theorems, are discussed in Part II.1. These structures are of inter-
est for applications in quantum science, discussed below. The relevant coherence
results are new, confirming a conjecture of Blass and Gurevich [BG20a].

Part II.2 introduces a similar but distinct categorification of rigs, called En-
monoidal categories. These have factorization morphisms in place of distributivity
monomorphisms, and are significant for the K-theoretic applications in Part III.2.
The En-monoidal structure is a generalization of n-fold monoidal structure due
to Balteanu, Fiedorowicz, Schwänzel, and Vogt [BFSV03]. Special cases of En-
monoidal categories include, or are closely related to, the bipermutative categories
of May [May77], the ring categories of Elmendorf and Mandell [EM06], and the
braided bimonoidal categories of Richter [Ric10].

Applications in Quantum Science

Due to the ubiquity of ring-like structures and categories, bimonoidal categor-
ies are increasingly applied in a variety of disciplines in mathematics and other
formal sciences related to quantum algebra. To support readers with a variety of
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interests, this work includes summary and introduction to several such applica-
tions.

Quantum Groups. The first part of Chapter II.3 extends a well-known fact
in quantum group theory. We observe that the category of left modules over a
braided bialgebra, which is also known as a quasitriangular bialgebra in the liter-
ature, is a tight braided bimonoidal category.

Topologial Quantum Computation. The second part of Chapter II.3 dis-
cusses applications of braided bimonoidal categories to topological quantum
computation (TQC). We prove that the Fibonacci anyons and the Ising anyons,
which are two of the most important models in TQC, are both tight braided
bimonoidal categories.

Centers. Monoidal, braided monoidal, and symmetric monoidal categories
are connected by the Drinfeld center and the symmetric center. Kassel [Kas95] and
Majid [Maj91] explain the relationship between the Drinfeld center construction,
due to Drinfeld in unpublished work, and modules over the Drinfeld double of a
a finite dimensional Hopf algebra. (See Note II.1.7.2 for further explanation and
context.) Bimonoidal and ring categorical analogues of these center constructions
are discussed in Chapters II.4 and II.9.

Reversible Programming. Section I.2.6 is a brief illustration that symmetric
bimonoidal categories naturally arise in reversible programming of finite types.
We observe that there is a symmetric bimonoidal groupoid whose objects are syn-
tax of finite types. Note I.2.7.5 directs the reader to further applications in the sheet
diagrams of [CDH∞] and the work of [Hin13] on quantum circuits.

Applications in Algebraic K-Theory

Uses of additive and multiplicative categorical structure in homotopy theory
are among the earliest and most well-developed applications of the material from
Volumes I and II of this work. Volume III focuses on those applications, beginning
with the work of Segal [Seg74] that assembles structured ring spectra from permu-
tative categories. Under the Segal K-theory functor KSe, the symmetric monoidal
structure of a permutative category C results in the additive structure in the coho-
mology theory represented by the spectrum KSe(C).

The computational importance of multiplicative structure in cohomology
motivates significant interest in multiplicative structure for the representing
spectra, leading to the highly-structured spectra that are presaged in work of
Adams [Ada95] and realized in the S-modules of Elmendorf-Kriz-Mandell-May
[EKMM97], the symmetric spectra of Hovey-Shipley-Smith [HSS00], and the
orthogonal spectra of Mandell-May-Schwede-Shipley [MMSS01], among other
equivalent models. Thus, there is corresponding interest in bimonoidal structures
for the input categories.

One difficulty, however, is that Segal K-theory does not preserve the multi-
plicative aspect of such structures. As a resolution, the work of Elmendorf and
Mandell [EM06, EM09] introduces an alternative construction that (a) is suitably
equivalent to Segal’s construction and (b) preserves multiplicative structure. This
is known as Elmendorf-Mandell K-theory, KEM.
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The formalism in which these statements can be made precise is that of multi-
categories, where multilinear functors between permutative categories encode the
relevant multiplicative structure. In these terms, the essential difference between
the Segal and Elmendorf-Mandell constructions is that the latter is multifunctorial,
while the former is merely functorial.

Part III.1 develops the necessary supporting theory of enriched monoidal cat-
egories and multicategories, but is also of independent interest. Part III.2 con-
tains the applications to algebraic K-theory, including a review of the relevant
background in homotopy theory and detailed treatments of both the Segal and
Elmendorf-Mandell constructions.

The second half of Part III.2 applies the Elmendorf-Mandell K-theory multi-
functor KEM to the En-monoidal categories in Part II.2 to produce structured ring
spectra. We prove in detail that KEM sends

● small ring categories to strict ring symmetric spectra,
● small bipermutative categories to E∞-symmetric spectra,
● small braided ring categories to E2-symmetric spectra, and
● small En-monoidal categories to En-symmetric spectra for 2 ≤ n <∞.

The strict ring and E∞ cases are from [EM06, EM09]. The 1 < n <∞ cases are new
results.

Audience and Features

This work is aimed at graduate students and advanced researchers with an
interest in category theory, homotopy theory, algebraic K-theory, and their appli-
cations. Below are some features that make this work a unique and user-friendly
resource.
Unified Presentation: The literature on bimonoidal categories, higher ring-like

categories, enriched monoidal categories, multicategories, and their con-
nection with algebraic K-theory, homotopy theory, and the sciences is
scattered across many journal articles over several decades, with varying
definitions, notations, and terminology. This work presents these topics
in a unified manner, with both well-known and new theorems.

Background Material: To make this work self-contained and to bring the reader
quickly up to speed, there is extensive background material on
● basic category theory (Chapter I.1),
● 2-dimensional categories (Chapter I.6),
● braided structures (Chapter II.1),
● abelian categories (Section II.2.3),
● braided, also known as quasitriangular, bialgebras (Section II.3.1),
● enriched monoidal categories (Chapters III.1, III.2, and III.3),
● pointed objects and pointed diagram categories (Chapter III.4),
● enriched multicategories (Chapters III.5 and III.6), and
● homotopy theory (Chapter III.7).

These chapters and sections form a substantial portion of this work.
Open Questions: Appendix III.A discusses open questions related to the topics

of this work. The reader is encouraged to take advantage of these open
questions and use them as a springboard to read the main text.

Detailed Discussion: This work contains many highly detailed and carefully
structured proofs for both known and new theorems. For each major
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result, our discussion has much more detail than one would normally
find in the literature. Our detailed discussion has several purposes.

Exercises with Solutions. Our detailed presentation makes the material
accessible to a diverse audience, including those who are new to bimon-
oidal and higher ring-like categories and algebraic K-theory. Students
are encouraged to regard the numerous detailed proofs as exercises with
full solutions. Each result whose proof has many different parts has been
carefully structured to make it easy for the reader to jump forward and
backward.

Axioms. Symmetric bimonoidal categories are defined by 24 axioms,
and the list of axioms for (braided) bimonoidal categories is similarly sub-
stantial. Our detailed discussion helps the reader see exactly where these
axioms are used and why they are needed.

Laplaza’s Theorems. The Coherence Theorems I.3.9.1 and I.4.4.3 for
symmetric bimonoidal categories are central results in this subject that
have been cited and used numerous times in the literature. Their origi-
nal proofs given by Laplaza in [Lap72a, Lap72b] were written in outline
form, with much detail and some cases in the proofs completely omit-
ted. Moreover, Laplaza’s original proofs and statements of these theo-
rems have several subtle and nontrivial inaccuracies that have never been
made explicit before and are not easy to spot. For both archival and ed-
ucational purposes, we present fully detailed proofs of these theorems
and correct the inaccuracies. Sections I.3.11 and I.4.7 have more related
discussion.

K-Theory Multifunctors. The K-theory multifunctors in Chapters III.9
and III.10, due to Elmendorf-Mandell [EM06, EM09], are fundamental
constructions for multiplicative structure of algebraic K-theory spectra.
They are essential for our development of En-monoidal symmetric spec-
tra from corresponding structure on small permutative categories. We
use the theory of enriched monoidal categories and enriched multicate-
gories from Part III.1 to give complete explanations of the constructions
and their properties. This treatment corrects an inaccuracy in the state-
ment of [EM09, Theorem 1.3] and some other statements about expand-
ing the domain of the K-theory multifunctor. The basic issue has to do
with monoidal units and, to the authors’ knowledge, has not been previ-
ously explained. See Note III.10.8.2 for further discussion.

Reading Guides: In addition to a detailed introduction, almost every chapter has
a brief Reading Guide that provides an alternative to reading that chapter
linearly. Our presentation in the main text follows a straightly logical or-
der and has a lot of detail. By following the reading guide, it is possible
to first obtain a bird’s-eye view of that chapter before digesting all the de-
tail. The end of this Preface also includes several thematic reading guides
for salient topics that span multiple chapters.

Motivation and Explanation: Main definitions and results are often preceded by
discussion that motivates the upcoming definitions and proofs. When-
ever useful, definitions and results are followed by a detailed explanation
that interprets and unpacks the various components. In the text, these are
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clearly marked as Motivation and Explanation, respectively. Examples in-
clude Motivation I.2.1.1, Explanation I.2.4.7, and Section I.4.1.

Organization: There are extensive cross-references throughout the text. In addi-
tion to a detailed index, there are lists of main facts and notations, each
organized by chapters. While the text follows a strictly logical order, it is
not necessary to read the chapters in a linear order. The reader can jump
straight to a section and use the extensive cross-references to fill in the
necessary definitions and facts.

Part and Chapter Summaries

Part I.1: Symmetric Bimonoidal Categories
This part studies symmetric bimonoidal categories and bimonoidal categories

(Chapter I.2). It presents highly detailed proofs of Laplaza’s Coherence Theorems
for symmetric bimonoidal categories (Chapters I.3 and I.4), May’s Strictification
Theorem for tight symmetric bimonoidal categories (Chapter I.5), and their non-
symmetric analogues for bimonoidal categories. The only prerequisite for this part
is some basic knowledge of category theory, which is summarized in Chapter I.1.

Part I.2: Bicategorical Aspects of Symmetric Bimonoidal Categories
Applying Laplaza’s Coherence Theorems, this part proves several new theo-

rems on the connection between symmetric bimonoidal categories and bicategor-
ies. All the necessary definitions of 2-dimensional category theory are summa-
rized in Chapter I.6. The first main result is a confirmation of Baez’s Conjecture
(Chapter I.7) that proves the existence of a bi-initial object in a 2-category of sym-
metric bimonoidal categories. Chapter I.8 proves that a matrix construction MatC

sends each tight symmetric bimonoidal category to a symmetric monoidal bicate-
gory.

Part II.1: Braided Bimonoidal Categories
Starting with a preliminary chapter on the braid groups and braided mon-

oidal categories, this part is a detailed study of braided bimonoidal categories
(Chapter II.2), which are strictly more general than Richter’s [Ric10] and the BD
categories of Blass-Gurevich [BG20a]. This part discusses applications to quan-
tum groups and topological quantum computation (Chapter II.3), bimonoidal cen-
ters (Chapter II.4), coherence and strictification of braided bimonoidal categories
(Chapters II.5 and II.6), and the braided versions of Baez’s Conjecture and the ma-
trix construction (Chapters II.7 and II.8). Our coherence and strictification the-
orems confirm the Blass-Gurevich Conjecture. The main theorems in Parts I.1
and I.2 are used in this part.

Part II.2: En-Monoidal Categories
This part studies a closely related variant of bimonoidal categories, called

ring categories, and their bipermutative, braided, and higher analogues, called
En-monoidal categories. Ring and bipermutative categories are due to Elmendorf-
Mandell [EM06, EM09]. An En-monoidal category combines n ring categor-
ies with a common additive structure and an n-fold monoidal category as in
[BFSV03]. The categories in this part are applied in Part III.2 to obtain En-
symmetric spectra via algebraic K-theory. This part is independent of the earlier
parts, except for some definitions and statements of theorems.

Part III.1: Enriched Monoidal Categories and Multicategories
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To prepare for Part III.2, this part lays the groundwork on enriched monoi-
dal categories (Chapters III.1, III.2, and III.3), smash products (Chapter III.4), and
multicategories (Chapters III.5 and III.6). In addition to their roles in the Segal
K-theory functor and the Elmendorf-Mandell K-theory multifunctor, the detailed
discussion of enriched monoidal categories—including change of enrichment, co-
herence, self-enrichment, and the Enriched Yoneda Lemma—and multicategories
is also of independent interest. These chapters assume only a basic knowledge of
monoidal categories, as summarized in Section III.1.1.

Part III.2: Algebraic K-Theory

This part studies the interconnection between En-monoidal categories (Part II.2),
homotopy theory (Chapter III.7), and algebraic K-theory. The first half discusses
in detail the Segal K-theory functor (Chapter III.8) and the Elmendorf-Mandell
K-theory multifunctor (Chapters III.9 and III.10) from small permutative cate-
gories to symmetric spectra. The second half (Chapters III.11, III.12, and III.13)
applies the K-theory multifunctor to small ring, bipermutative, braided ring,
and En-monoidal categories to obtain, respectively, strict ring, E∞-, E2-, and
En-symmetric spectra. These structured ring spectra are fundamental objects
in homotopy theory. Our discussion shows how they arise from En-monoidal
categories via algebraic K-theory.

In the main text, each chapter starts with a detailed introduction. A summary
of each chapter follows.

Part I.1: Symmetric Bimonoidal Categories

Chapter I.1: Basic Category Theory

To make this book self-contained, this chapter reviews the basics of category
theory, starting from the definitions of categories, functors, and natural trans-
formations. Then it discusses adjunctions, equivalences of categories, (co)limits,
(co)ends, and Kan extensions. The remaining sections review (symmetric) monoi-
dal categories, (symmetric) monoidal functors, monoidal natural transformations,
and their coherence theorems.

Chapter I.2: Symmetric Bimonoidal Categories

This chapter introduces symmetric bimonoidal categories and bimonoidal cat-
egories. Then we prove Laplaza’s Theorem I.2.2.13 that says that half of the 24
symmetric bimonoidal category axioms are formal consequences of the other 12
axioms. The weaker bimonoidal analogue is Proposition I.2.2.14. The remaining
sections discuss examples of symmetric bimonoidal categories, including distribu-
tive symmetric monoidal categories, the finite ordinal category Σ, a variant Σ′, and
left and right bipermutative categories. The finite ordinal category Σ is an impor-
tant part of (i) the distortion categoryD (Chapter I.4) used in Laplaza’s Second Co-
herence Theorem I.4.4.3, (ii) Baez’s Conjecture (Chapter I.7), and (iii) the braided
version of Baez’s Conjecture (Chapter II.7). Section I.2.6 contains an application of
symmetric bimonoidal categories to reversible programming of finite types.

Chapter I.3: Coherence of Symmetric Bimonoidal Categories

This chapter proves Laplaza’s First Coherence Theorem I.3.9.1 for symmetric
bimonoidal categories that satisfy a monomorphism assumption. This assumption
is automatically satisfied if tightness—that is, the invertibility of the distributivity
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morphisms δl and δr—is assumed, but the general form of this theorem only re-
quires that the distributivity morphisms be natural monomorphisms. The ana-
logue of this coherence theorem for bimonoidal categories is Theorem I.3.10.7.
Section I.3.11 discusses the main differences between this chapter and Laplaza’s
original work in [Lap72a].

Chapter I.4: Coherence of Symmetric Bimonoidal Categories II
This chapter proves Laplaza’s Second Coherence Theorem I.4.4.3 for symmet-

ric bimonoidal categories that satisfy the same monomorphism assumption as in
Theorem I.3.9.1. The analogue of this coherence theorem for bimonoidal categories
is Theorem I.4.5.8. Section I.4.7 discusses the main differences between this chap-
ter and Laplaza’s original work in [Lap72b]. Both Coherence Theorems I.3.9.1
and I.4.4.3 say that some formal diagrams in certain symmetric bimonoidal cat-
egories commute. The first theorem has an assumption called regularity on the
common domain of the two paths involved, which is analogous to Mac Lane’s Co-
herence Theorem I.1.3.3 for monoidal categories. The second theorem has an as-
sumption about the two paths themselves, which is reminiscent of the Joyal-Street
Coherence Theorem II.1.6.3 for braided monoidal categories. In Chapter II.5, we
observe that the second, but not the first, theorem has a braided analogue.

Chapter I.5: Strictification of Tight Symmetric Bimonoidal Categories
This chapter proves May’s Strictification Theorem I.5.4.6 of tight symmetric

bimonoidal categories to right bipermutative categories. The latter are tight sym-
metric bimonoidal categories whose additive structures and multiplicative struc-
tures are both permutative categories, and whose structure morphisms λ ●, ρ ●, δr,
and ξ⊗−,0 are identities. Unlike the Coherence Theorems I.3.9.1 and I.4.4.3, the stric-
tification theorem requires the tightness assumption. Our detailed proofs show
exactly where the invertibility of δl and δr is used. Theorem I.5.4.7 is another
version of the strictification theorem involving left bipermutative categories, in
which δl , instead of δr, is the identity. Theorems I.5.5.11 and I.5.5.12 are the corre-
sponding strictification results for tight bimonoidal categories. Section I.5.6 briefly
discusses the history of related strictification theorems and claims. The proofs in
this chapter are repurposed in Chapter II.6 to prove the strictification form of the
Blass-Gurevich conjecture for braided bimonoidal categories.
Part I.2: Bicategorical Aspects of Symmetric Bimonoidal Categories

Chapter I.6: Definitions from Bicategory Theory
Without assuming any knowledge of 2-dimensional categories, in this chap-

ter we review the basics of 2-/bicategories, pasting diagrams, lax functors, lax
transformations, modifications, and adjunctions in bicategories. Then it reviews
multiplicative structures, including monoidal bicategories, their braided, sylleptic,
and symmetric analogues, the Gray tensor product for 2-categories, (permutative)
Gray monoids, and permutative 2-categories. Most of these topics are discussed
in detail in the book [JY21].

Chapter I.7: Baez’s Conjecture
This chapter proves Baez’s Conjecture (Theorems I.7.8.1 and I.7.8.3). Sec-

tion I.7.1 defines a 2-category Bifsyr with flat small symmetric bimonoidal categor-
ies as objects. Flatness (Definition I.3.9.9) is much weaker than tightness, and it
guarantees that the Coherence Theorems I.3.9.1 and I.4.4.3 are applicable. The first
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version of Baez’s Conjecture (Theorem I.7.8.1) says that the finite ordinal category
Σ is a lax bicolimit of the 2-functor ∅ Bifsyr . Another version is Theorem I.7.8.3,
which says that the variant Σ′ of Σ is also such a lax bicolimit. We emphasize that
our proof of Baez’s Conjecture does not use the Strictification Theorems I.5.4.6
and I.5.4.7. This allows us to use flat small symmetric bimonoidal categories in
the 2-category Bifsyr , instead of the smaller class of tight ones. Section I.7.9 dis-
cusses the relationship between our version of Baez’s Conjecture and the more
restricted version in [CDH∞, Elg21] for rig categories, which are multiplicatively
nonsymmetric and tight.

Chapter I.8: Symmetric Monoidal Bicategorification

This chapter proves Theorem I.8.15.4. It says that, for each tight symmetric
bimonoidal category C, a matrix construction MatC is a symmetric monoidal bicat-
egory, with no strict structure morphisms in general. Therefore, the construction
MatC is a direct connection between tight symmetric bimonoidal categories and
symmetric monoidal bicategories. The objects in MatC are nonnegative integers.
Its 1-/2-cells are matrices whose entries are objects/morphisms in C. The horizon-
tal composition in the bicategory MatC uses the usual matrix product. The monoi-
dal composition in its monoidal bicategory structure uses the matrix tensor prod-
uct, which is also known as the Kronecker product. The category of coordinatized
2-vector spaces, which is MatC with C = VectC, is such a symmetric monoidal bicat-
egory. This chapter uses the Coherence Theorems I.3.9.1 and I.3.10.7 and the graph
theoretic machinery in Chapter I.3, but neither the Coherence Theorem I.4.4.3 nor
the Strictification Theorems I.5.4.6 and I.5.4.7.

Part II.1: Braided Bimonoidal Categories

Chapter II.1: Preliminaries on Braided Structures

To prepare for the rest of Part II.1, this chapter discusses the braid groups and
braided monoidal categories. First it defines the braid groups and proves some
useful properties for sum braids and block braids. Then it reviews braided monoi-
dal categories and proves some basic properties, including two manifestations of
the third Reidemeister move. Next it proves in detail that the Drinfeld center of a
monoidal category is a braided monoidal category and that the symmetric center
of a braided monoidal category is a symmetric monoidal category. Then it recalls
the Joyal-Street Coherence Theorem II.1.6.3 for braided monoidal categories.

Chapter II.2: Braided Bimonoidal Categories

This chapter defines braided bimonoidal categories. They are defined using 12
of the 24 Laplaza axioms of a symmetric bimonoidal category, together with two
additional axioms that are variants of the only two Laplaza axioms involving the
braiding ξ⊗. In a symmetric bimonoidal category, each of these two variant axioms
is equivalent to the original Laplaza axiom. This is reminiscent of the fact that a
braided monoidal category has two hexagon axioms, which are equivalent to each
other in a symmetric monoidal category. A tight braided bimonoidal category—
that is, one with invertible distributivity morphisms δl and δr—is equivalent to a
BD category in the sense of Blass and Gurevich [BG20a]. The first main observa-
tion in this chapter is Theorem II.2.2.1, which says that each braided bimonoidal
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category satisfies all 24 Laplaza axioms. Therefore, a symmetric bimonoidal cate-
gory is precisely a braided bimonoidal category whose braiding satisfies the sym-
metry axiom. The second main result in this chapter says that an abelian category
with a compatible (symmetric/braided) monoidal structure is a tight (symmet-
ric/braided) bimonoidal category. The additive structure comes from the abelian
structure, and the multiplicative structure comes from the monoidal structure. The
braided case of this result is due to Blass and Gurevich [BG20a].

Chapter II.3: Applications to Quantum Groups and Topological Quantum
Computation

This chapter shows that braided bimonoidal categories arise naturally in
quantum groups and topological quantum computation (TQC). The first main
observation is Theorem II.3.2.19. It says that for a (symmetric/braided) bialgebra
A, the category Mod(A) of left A-modules, equipped with the usual direct sum
and tensor product, is a tight (symmetric/braided) bimonoidal category. This is
an extension of the important fact in quantum group theory that, for a braided
bialgebra A, Mod(A) is a braided monoidal category. Next we prove in detail
that Fibonacci anyons and Ising anyons, which are two central models in TQC,
are both tight braided bimonoidal categories. In each case, the additive structure
comes from an abelian category structure, and the multiplicative structure comes
from the fusion rules of anyons.

Chapter II.4: Bimonoidal Centers

This chapter generalizes the Drinfeld center of a monoidal category and the
symmetric center of a braided monoidal category (Sections II.1.4 and II.1.5) to the
bimonoidal setting. Generalizing the Drinfeld center, Theorem II.4.4.3 says that,
for each tight bimonoidal category C, the bimonoidal Drinfeld center C

bi
is a tight

braided bimonoidal category. Tightness is required for this theorem because the
invertibility of δl and δr is used in the construction of C

bi
. The proof of this theorem

is another good illustration of the axioms of a braided bimonoidal category, since
we will use all 24 Laplaza axioms and the two variant axioms in the braided case.
Generalizing the symmetric center, Theorem II.4.5.3 says that, for each braided
bimonoidal category C, the bimonoidal symmetric center Csym is a symmetric bi-
monoidal category.

Chapter II.5: Coherence of Braided Bimonoidal Categories

This chapter proves the Coherence Theorem II.5.4.4 for braided bimonoidal
categories that satisfy a monomorphism assumption. As in the symmetric case
(Theorems I.3.9.1 and I.4.4.3), the monomorphism assumption in Theorem II.5.4.4
is automatically satisfied if tightness is assumed. This theorem is the braided ana-
logue of Laplaza’s Second Coherence Theorem I.4.4.3. It uses a braided version
Dbr of the distortion category that involves the symmetric groups and the braid
groups to keep track of, respectively, the additive symmetry ξ⊕ and the braiding
ξ⊗. Reminiscent of the Joyal-Street Coherence Theorem II.1.6.3 for braided mon-
oidal categories, Theorem II.5.4.4 says that, if two paths have the same image in
the braided distortion category Dbr, then they have the same value in the braided
bimonoidal category in question. This condition of having the same image in Dbr

is very much checkable in practice. In fact, the proofs of the main results in Chap-
ters II.6, II.7, and II.8 all use Theorem II.5.4.4 and involve checking this condition
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many times. In [BG20a], Blass and Gurevich conjectured the existence of a coher-
ence theorem for their BD categories, which are equivalent to our tight braided
bimonoidal categories. Theorem II.5.4.4 confirms the Blass-Gurevich Conjecture
in the form of commutative formal diagrams.

Chapter II.6: Strictification of Tight Braided Bimonoidal Categories

This chapter proves two Strictification Theorems II.6.3.6 and II.6.3.7 for tight
braided bimonoidal categories. As in the symmetric case (Theorems I.5.4.6
and I.5.4.7), strictification requires the tightness assumption because the con-
struction of the strictification uses the invertibility of the distributivity morphisms
δl and δr. A right permbraided category is a tight braided bimonoidal category
with both the additive and the multiplicative structures strict monoidal, and with
identities for the structure morphisms λ ●, ρ ●, δr, ξ⊗−,0, and ξ⊗0,−. Theorem II.6.3.6
says that each tight braided bimonoidal category is adjoint equivalent to a right
permbraided category via strong braided bimonoidal functors. Theorem II.6.3.7
is the analogue that strictifies each tight braided bimonoidal category to a left
permbraided category, in which δl , instead of δr, is the identity. Theorems II.6.3.6
and II.6.3.7 are two further positive answers to the Blass-Gurevich Conjecture
[BG20a] in the form of strictification.

Chapter II.7: The Braided Baez Conjecture

This chapter proves the braided version of Baez’s Conjecture. Section II.7.1 de-
fines the 2-category Bifbrr with flat small braided bimonoidal categories as objects.
As in the symmetric case, flatness (Definition II.5.4.5) is much weaker than tight-
ness, and it guarantees that the Braided Bimonoidal Coherence Theorem II.5.4.4
is applicable. The first version of the Braided Baez Conjecture (Theorem II.7.3.4)
says that the finite ordinal category Σ is a lax bicolimit of the 2-functor ∅ Bifbrr .
Another version is Theorem II.7.3.6, which says that the variant Σ′ of Σ is also such
a lax bicolimit. Also like the symmetric case, the proofs of the Braided Baez Con-
jecture do not use the Strictification Theorems II.6.3.6 and II.6.3.7. This allows us
to use flat small braided bimonoidal categories in the 2-category Bifbrr , instead of
the smaller class of tight ones. The reader may wonder why the finite ordinal cate-
gory Σ and its variant Σ′ are bi-initial in both the symmetric case (Theorems I.7.8.1
and I.7.8.3) and the braided case. This is analogous to the fact that the ring of
integers is initial in both the category of rings and the category of commutative
rings.

Chapter II.8: Monoidal Bicategorification

The main Theorem II.8.4.7 in this chapter says that, for each tight braided
bimonoidal category C, the matrix construction MatC is a monoidal bicategory.
While most of the definitions for MatC are the same as in the symmetric case in
Chapter I.8, there are two subtleties. First, in the current braided case, the lax
functoriality constraint ⊠2 of the monoidal composition ⊠ in MatC has two ad-
ditional conditions about the braided distortions of the two paths involved; see
(II.8.2.15) and (II.8.2.16). These conditions about the braided distortions are nec-
essary because a braid is not determined by its underlying permutation, and the
braided distortion categoryDbr involves the braid groups. The second subtle point
is that, even if C is a tight braided bimonoidal category, the monoidal bicategory
MatC does not seem to have any reasonable braided monoidal bicategory structure
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in general. We will explain this point in more detail near the end of Section II.8.4.
The difficulty once again comes from the fact that the braided distortion category
Dbr involves the braid groups, and a braid with an identity underlying permuta-
tion is usually not the identity braid.
Part II.2: En-Monoidal Categories

Chapter II.9: Ring, Bipermutative, and Braided Ring Categories
This chapter discusses ring and bipermutative categories in the sense of

Elmendorf-Mandell and the braided version. The main difference between these
categorical notions and their bimonoidal counterparts in Parts I.1 and II.1 is that
ring categories have generally non-invertible factorization morphisms

(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

(A⊗ B)⊕ (A⊗C) A⊗ (B⊕C)

∂l
A,B,C

∂r
A,B,C

that go in the opposite direction as the distributivity morphisms δr and δl . Ring
categories with invertible factorization morphisms are special cases of tight bi-
monoidal categories, so the latter’s strictification theorems in Chapter I.5 also ap-
ply to such ring categories. The bipermutative and braided analogues are also
true. Similar to the endomorphism rig of a commutative monoid, each small per-
mutative category C yields an endomorphism ring category Permsu(C;C). Sim-
ilar to the reduction of Laplaza’s axioms in symmetric bimonoidal categories in
Section I.2.2 and the braided version in Theorem II.2.2.1, about half of the ring
category axioms are redundant in a bipermutative category and a braided ring
category. This is an extension of an observation in [EM06, Fig. 1]. Moreover, the
Drinfeld center and the symmetric center have natural analogues for these ring-
like categories. As we will discuss in Chapters III.11 and III.12, the Elmendorf-
Mandell K-theory multifunctor sends small ring, braided ring, and bipermutative
categories to, respectively, strict ring, E2-, and E∞-symmetric spectra. The strict
ring and E∞ cases are due to Elmendorf-Mandell [EM06, EM09], and the E2 case
is new.

Chapter II.10: Iterated and En-Monoidal Categories
Keeping in mind that the ring-like categories in Chapter II.9 correspond to En-

symmetric spectra for n ∈ {1, 2,∞} via algebriac K-theory, this chapter discusses
the categorical structure for the general En cases. An n-fold monoidal category in
the sense of [BFSV03] has n monoidal structures ⊗1, . . . ,⊗n that are strictly asso-
ciative and unital and interact via the exchange natural transformations

(A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)
η

i,j
A,B,C,D

for 1 ≤ i < j ≤ n. Monoids in the monoidal category of small n-fold monoidal
categories are precisely small (n + 1)-fold monoidal categories. We introduce the
notion of an En-monoidal category as a permutative category (C,⊕) equipped with
an n-fold monoidal structure {⊗i, ηi,j} and factorization morphisms {∂l,i, ∂r,i} for
each monoidal structure ⊗i, such that (i) each (⊕,⊗i, ∂l,i, ∂r,i) is a ring category and
(ii) several axioms relating ηi,j, ∂l,i, and ∂r,i hold. Ring categories are E1-monoidal
categories. Braided ring categories and bipermutative categories are special cases
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of, respectively, E2- and En-monoidal categories for n ≥ 2. Moreover, each small
category generates a free En-monoidal category. In Chapter III.13, we will show
that the Elmendorf-Mandell K-theory of a small En-monoidal category is an En-
symmetric spectrum for n ≥ 1.
Part III.1: Enriched Monoidal Categories and Multicategories

Chapter III.1: Enriched Monoidal Categories
This chapter gives the basic definitions and properties for enriched monoidal

categories, including plain, braided, and symmetric variants. Definition III.1.4.25
describes 2-categories of each, with 1- and 2-cells given by appropriately monoidal
enriched functors and natural transformations, respectively. For our applications
to K-theory in Part III.2, the enriching category V is symmetric monoidal closed.
However, our treatment in this chapter addresses the more general case that V is
merely monoidal, with additional assumptions about braided or symmetric mon-
oidal structure stated as necessary.

Section III.1.5 discusses the important special case V = Cat, the category of
small categories with its Cartesian product. Explanation III.1.5.3 describes how
the monoidal V-categories in this case are strict versions of monoidal bicategories.
The braided and symmetric cases are similarly compared.

Chapter III.2: Change of Enrichment
This chapter describes change of enriching category induced by a symmetric

monoidal functor, showing that monoidal structures are preserved. Sections III.2.1
through III.2.4 give a thorough treatment of 2-functoriality results. As an ap-
plication, Corollary III.2.4.17 shows that taking underlying categories gives a 2-
functor from small monoidal V-categories, V-functors, and V-natural transforma-
tions to ordinary monoidal categories, functors, and natural transformations. Sim-
ilar statements hold for the braided and symmetric cases.

A partial reverse of Corollary III.2.4.17 is given in Theorem III.2.5.1. The theo-
rem shows that, for given V-enriched data, various enriched monoidal axioms are
satisfied if and only if the corresponding monoidal axioms for the underlying data
are satisfied. This provides a mechanism to lift ordinary monoidal structures to
enriched monoidal structures.

Sections III.2.5 and III.2.6 apply Theorem III.2.5.1 to lift coherence and stric-
tification results for ordinary monoidal, braided, and symmetric monoidal cate-
gories to their enriched counterparts. The Enriched Monoidal Coherence Theo-
rem III.2.5.6 and Enriched Epstein’s Coherence Theorem III.2.5.8 play a significant
role in subsequent chapters.

Chapter III.3: Self-Enrichment and Enriched Yoneda
This chapter restricts to the case that V is a symmetric monoidal closed cat-

egory. Theorem III.3.3.2 shows, via Theorem III.2.5.1, that the canonical enrich-
ment of V over itself is symmetric monoidal as a V-category. The next several sec-
tions develop the theory of V-enriched co/ends followed by the V-Yoneda Lemma
(Theorem III.3.6.9) and an equivalent form called the V-Yoneda Density Theo-
rem III.3.7.8. These are applied to develop the Day convolution and internal hom
for enriched diagram categories (Theorem III.3.7.22). The remainder of the chapter
discusses additional theory of enriched diagram categories and tensor/cotensor
structures that will be important for the development of enriched K-theory func-
tors in Part III.2.
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Chapter III.4: Pointed Objects, Smash Products, and Pointed Homs
This chapter gives the definitions and properties of smash products and

pointed homs. These will be used throughout Part III.2, and the smash prod-
uct of pointed multicategories, developed in Chapter III.5, will be particularly
important.

Section III.4.3 uses the Day convolution and internal hom to develop sym-
metric monoidal closed structure for pointed diagram categories. The results are
summarized in Theorem III.4.3.37. Applications of this material appear in Chap-
ters III.8, III.9, and III.10, where the Segal and Elmendorf-Mandell K-theory con-
structions are given via certain pointed diagram categories.

Chapter III.5: Multicategories
This chapter gives relevant background on multicategories, multifunctors,

and multinatural transformations. Theorem III.5.5.14 shows that the category of
small multicategories is complete and cocomplete. The Boardman-Vogt tensor
product of multicategories, and the associated smash product for pointed multi-
categories, are developed in Section III.5.6. The corresponding internal hom and
its pointed variant are developed in Section III.5.7.

Chapter III.6: Enriched Multicategories
This chapter develops basic definitions and properties for enriched multicat-

egories. One of our important applications, developed in Section III.6.3, is the
enriched multicategory associated to an enriched symmetric monoidal category.
Our first use of this is in Section III.6.4 where we describe the Cat-enriched mul-
ticategory structure on Multicat, the category of small multicategories. It is in-
duced by showing that the tensor product makes Multicat symmetric monoidal as
a Cat-enriched category (Theorem III.6.4.3). The pointed variant, with the smash
product of small pointed multicategories, is given in Theorem III.6.4.4 and will be
essential for Part III.2.

Sections III.6.5 and III.6.6 cover our second important application of enriched
multicategories. The category PermCatsu, consisting of small permutative categor-
ies and strictly unital symmetric monoidal functors, has a Cat-enriched multicate-
gory structure given by multilinear functors and multilinear transformations (Def-
initions III.6.5.4 and III.6.5.11). Propositions III.6.5.10 and III.6.5.13 show that this
Cat-enriched multicategory structure is induced from that of small pointed multi-
categories and their smash product. Section III.6.6 gives a second, direct proof of
the Cat-enriched multicategory axioms.
Part III.2: Algebraic K-Theory

Chapter III.7: Homotopy Theory Background
This chapter gives relevant background from homotopy theory. Sections III.7.1

and III.7.2 introduce simplicial sets and simplicial homotopy, along with the
nerve and geometric realization functors. The category of symmetric spectra,
with its symmetric monoidal closed structure, is presented in Sections III.7.3
through III.7.6. Then, Sections III.7.7 and III.7.8 give a short review of Quillen
model categories and a number of key examples.

Chapter III.8: Segal K-Theory of Permutative Categories
This chapter presents the K-theory functor KSe due to Segal [Seg74]. Its in-

puts are small permutative categories and its outputs are symmetric spectra.
Section III.8.3 describes the key construction as given by Segal. Sections III.8.4
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and III.8.5 describe an equivalent construction that compares more readily with
the K-theory multifunctor of Elmendorf-Mandell, KEM.

Chapter III.9: Categories of G∗-Objects
This chapter is the first of two that replace the Segal K-theory functor with

a simplicially-enriched multifunctor due to Elmendorf-Mandell [EM06, EM09].
This chapter focuses on the replacement of Γ-categories and Γ-simplicial sets with
pointed diagrams out of a larger indexing category G. The construction of symmet-
ric spectra from such diagram categories is given in Section III.9.3 and is denoted
KG . Sections III.9.2 and III.9.4 use the material from Part III.1 to explain that the
new diagram categories and the new functor KG are symmetric monoidal, in the
enriched sense of Chapter III.1, over the category of pointed simplicial sets.

Chapter III.10: Elmendorf-Mandell K-Theory of Permutative Categories
This chapter is the second of two that replace the Segal K-theory functor with

a simplicially enriched multifunctor due to Elmendorf-Mandell [EM06, EM09].
This chapter focuses on the construction of G∗-categories from small permutative
categories, replacing Segal’s construction of Γ-categories from the same. Addi-
tional material from Part III.1 is used throughout the chapter to explain that the
multi/categories and multi/functors are enriched either in the symmetric mon-
oidal sense of Chapter III.1 or in the multicategorical and multifunctorial sense
of Chapter III.6. Section III.10.6 contains the proof that the Segal and Elmendorf-
Mandell K-theory symmetric spectra associated to a small permutative category C
are level equivalent (Theorem III.10.6.10). Because KEM is an enriched multifunc-
tor, it preserves operad actions. We state this result as Theorem III.10.3.33 and
apply it in Chapters III.11, III.12, and III.13.

Chapter III.11: K-Theory of Ring and Bipermutative Categories
This is the first of three chapters that contain algebraic K-theory applications

of the ring-like categories in Part II.2. The main K-theory results in this chapter,
Corollaries III.11.3.16 and III.11.6.12, are from [EM06, EM09], and they are the E1
and the E∞ cases. These results state that the Elmendorf-Mandell K-theory mul-
tifunctor KEM sends (i) small ring categories to strict ring symmetric spectra and
(ii) small bipermutative categories to E∞-symmetric spectra. They are obtained
by combining the multifunctor KEM and the fact that the associative operad and
the Barratt-Eccles operad parametrize, respectively, ring and bipermutative cate-
gory structures on small permutative categories. Since the associative operad has
monoids as algebras and the Barratt-Eccles operad is an E∞-operad, the K-theory
results follow.

Chapter III.12: K-Theory of Braided Ring Categories
This chapter contains the E2 analogues of the results in Chapter III.11. The first

part of this chapter discusses the braid operad Br, which generalizes the Barratt-
Eccles operad. This is a categorical E2-operad (Theorem III.12.2.4) whose algebras
in Cat are small braided strict monoidal categories (Proposition III.12.3.22). The
main categorical input is Theorem III.12.4.5, which says that Br parametrizes
braided ring category structures, as in Chapter II.9, on small permutative cate-
gories. Applying the K-theory multifunctor KEM, it follows that KEM sends small
braided ring categories to E2-symmetric spectra (Corollary III.12.5.3). The K-
theory result, Corollary III.12.5.3, and the main categorical input, Theorem III.12.4.5,
are new results.
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Chapter III.13: K-Theory of En-Monoidal Categories

This chapter contains the general En analogues for n ≥ 1 of the categorical and
K-theory results in Chapters III.11 and III.12. The first part of this chapter dis-
cusses the n-fold monoidal category operad Monn. This is a categorical En-operad
(Theorem III.13.2.1) whose algebras in Cat are small n-fold monoidal categories
(Proposition III.13.3.18) as in Chapter II.10. The main categorical input is Theo-
rem III.13.4.12, which says that Monn parametrizes En-monoidal category struc-
tures on small permutative categories. Applying the K-theory multifunctor KEM,
it follows that KEM sends small En-monoidal categories to En-symmetric spectra
for n ≥ 1 (Corollary III.13.5.2). As in Chapter III.12, the K-theory result, Corol-
lary III.13.5.2, and the main categorical input, Theorem III.13.4.12, are new results.

Appendix III.A: Open Questions

This chapter discusses open questions related to the topics of this work. We
encourage the reader to read these open questions at any time and use them as
additional motivation for the main text.

Reading Guides

Supplementing the chapter introductions and individual reading guides
therein, the following guides describe themes that span multiple chapters. For
especially broad topics, we include a selection of general references for back-
ground or further reading. The Notes section at the end of each chapter provides
additional references relevant to the content of that chapter.

Category Theory. For a refresher of basic category theory, including braided
and symmetric monoidal categories, read Chapters I.1 and II.1. For bicategories
and 2-categories, read Chapter I.6. For abelian categories, read Section II.2.3. For
enriched category theory, read Section III.1.2 and Chapter III.3. Bimonoidal cat-
egories are built upon monoidal categories. Thus, a thorough understanding of
the definitions and coherence of monoidal categories is necessary to understand
bimonoidal categories and their coherence.

References for basic category theory include [Awo10, BK00, Gra18, Lei14,
Rie16, Rom17, Sim11]. References for more advanced category theory include
[Bor94a, Bor94b, Bor94c, ML98, Mit65, Sch72]. References for Abelian categor-
ies include [EGNO15, Fre03, Mit65]. References for enriched categories include
[Bor94b, Cru09, For04, Kel05]. References for ends and coends include [Day70,
DK69, Lor21]. For further reference on 2-dimensional categories, we highly rec-
ommend [JY21].

Symmetric Bimonoidal Categories. To review the axioms of a symmetric bi-
monoidal category, read Sections I.2.1 and I.2.2. For Laplaza’s Coherence Theo-
rems for symmetric bimonoidal categories, read Theorems I.3.9.1 and I.4.4.3. For
strictification theorems, read Theorems I.5.4.6, I.5.4.7, I.5.5.11, and I.5.5.12. For
their bimonoidal analogues, read Theorems I.3.10.7 and I.4.5.8. For Baez’s Conjec-
ture, read Definition I.7.1.8 and Theorem I.7.8.1. The introductions of Chapters I.3,
I.4, I.5, and I.7 have more detailed description and reading suggestions. This ma-
terial on (symmetric) bimonoidal categories is used extensively in Volume II in the
discussion of braided bimonoidal categories.



READING GUIDES xxvii

Braided Bimonoidal Categories. To review the axioms of a braided bimonoi-
dal category, read Definition II.2.1.29 and Theorem II.2.2.1. For their coherence and
strictification (i.e., the Blass-Gurevich Conjecture), read Theorems II.5.4.4, II.6.3.6,
and II.6.3.7. For the braided version of Baez’s Conjecture, read Definition II.7.1.5
and Theorem II.7.3.4. The introductions of these chapters have more detailed dis-
cussion and reading guides. This material on braided bimonoidal categories is not
heavily used in Volume III in our discussion of algebraic K-theory. Instead, these
braided structures provide a great illustration of the coherence theory in Volume
I and have many applications in the sciences, some of which are discussed in this
work.

Applications to Quantum Groups, TQC, and Programming. For applica-
tions to quantum group theory, read Sections II.3.1 and II.3.2. For applications
to topological quantum computation, read Theorem II.2.4.22 and Sections II.3.3
through II.3.6. For applications to reversible programming, read Section I.2.6. Our
treatment is self-contained and assumes no prior knowledge of these topics. These
applications are not used in Volume III. Instead, they illustrate the much larger sci-
entific context where categorical structures discussed in this text are applied.

Enriched Monoidal Categories. To review enriched monoidal categories,
read Sections III.1.3 through III.1.5. For their coherence theory, read Sections III.2.5
and III.2.6. For change of enrichment, read Proposition III.2.1.2, Theorems III.2.2.7,
III.2.3.7, and III.2.4.10, and Corollary III.2.4.17. For symmetric monoidal closed
structures in the pointed context, read Theorems III.4.1.8, III.4.2.3, III.4.3.19,
and III.4.3.37. Much of this material is known to experts, but it is not easily
accessible in the literature in a unified format. Our discussion is self-contained
and highly detailed, so the reader can thoroughly learn these topics just from
our text. This material is necessary to understand the intricate multicategorical
properties of Elmendorf-Mandell K-theory discussed in later chapters.

Multicategories and Operads. To review enriched multicategories, read Sec-
tion III.6.1. The Boardman-Vogt tensor product of multicategories and its pointed
variant are discussed in Sections III.5.6 and III.6.4. For the passage from en-
riched symmetric monoidal categories to enriched multicategories, read Sec-
tions III.5.3 and III.6.3. For the categorically-enriched multicategory of small
permutative categories, read Sections III.6.5 and III.6.6. For the associative op-
erad, the Barratt-Eccles operad, the braid operad, and the n-fold monoidal cat-
egory operad, read Definitions III.11.1.1, III.11.4.10, III.12.1.2, and III.13.1.12.
Elmendorf-Mandell K-theory is an enriched multifunctor, which can transport
operadic algebras in small permutative categories to the same type of operadic
algebras in symmetric spectra. This material is necessary to describe the en-
riched multifunctoriality of Elmendorf-Mandell K-theory and its applications to
highly structured ring spectra. References for multicategories and operads include
[Fre17, MSS02, May72, Yau16].

Ring, Bipermutative, Braided Ring, and En-Monoidal Categories. For the
definitions of ring, bipermutative, braided ring, and En-monoidal categories, read
Definitions II.9.1.2, II.9.3.2, II.9.5.1, II.10.1.1, and II.10.7.2. For their coherence the-
ory, read Corollaries II.9.1.19, II.9.1.20, II.9.3.12, and II.9.3.13, Theorem II.10.6.8,
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and Question III.A.2.1. For their description in terms of operads, read Theo-
rems III.11.2.16, III.11.5.5, III.12.4.5, and III.13.4.12. The fact that these monoidal
categories with extra structures are algebras over operads is the precise reason
why they are sent by Elmendorf-Mandell K-theory to structured ring spectra of
the corresponding types.

Basic Homotopy Theory. For a brief review of simplicial objects and the nerve
construction, read Sections III.7.1 and III.7.2. To review symmetric spectra, read
Sections III.7.3 and III.7.4. For the smash product of symmetric spectra, read
Sections III.7.5 and III.7.6. Model category theory is reviewed in Sections III.7.7
and III.7.8, but later chapters do not use model categories in any way. While we
assume some basic homotopy theory, we do not assume any prior knowledge of
symmetric spectra. Our discussion of symmetric spectra is very gentle and con-
tains a lot of details that are not explicitly available elsewhere in the literature.
The main point of both Segal K-theory and Elmendorf-Mandell K-theory is the
construction of symmetric spectra from purely categorical data. A detailed un-
derstanding of symmetric spectra and their smash product is necessary to fully
appreciate the K-theory constructions of Segal and Elmendorf-Mandell.

References for homotopy theory include [BR20, May99, MP12, Mil20, Ric20,
Rie14]. References for simplicial homotopy theory include [Cur71, GZ67, GJ09,
May92]. References for further background and a broader perspective on algebraic
K-theory include [Mil71, Qui73, Ros95, Wal85, Wei13].

Segal K-Theory. To review the passage from Γ-simplicial sets to symmetric
spectra, read Definitions III.7.4.5, III.8.1.8, and III.8.2.5. For the passage from small
permutative categories to Γ-categories, read Definitions III.8.1.17, III.8.3.1, III.8.3.6,
III.8.3.9, and III.8.3.12 and Proposition III.8.4.8. To review Segal’s K-theory con-
struction, from small permutative categories to symmetric spectra via Γ-categories,
read Definitions III.8.4.10 and III.8.5.1 and Theorem III.8.5.2. Although Segal K-
theory does not generally preserve multiplicative structures, it is a fundamental
tool in this subject and the main motivation for Elmendorf-Mandell K-theory.

Elmendorf-Mandell K-Theory. To review the passage from G∗-simplicial sets
to symmetric spectra, read Sections III.9.1 through III.9.3. Its symmetric monoidal-
ity is discussed in Theorem III.9.4.9. For the passage from small permutative cat-
egories to G∗-categories, read Section III.10.4. For Elmendorf-Mandell K-theory,
from small permutative categories to symmetric spectra via G∗-categories, read
Lemma III.10.2.14 and Corollary III.10.3.24. For the comparison between Segal
K-theory and Elmendorf-Mandell K-theory, read Theorem III.10.6.10. For the
passage from categorical data to highly structured ring spectra via Elmendorf-
Mandell K-theory, read Theorem III.10.3.33 and Corollaries III.11.3.16, III.12.5.3,
and III.13.5.2. This material is the main point of Volume III; all preceding chapters
of Volume III are preparation for it.
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CHAPTER 1

Basic Category Theory

In this preliminary chapter, we review basic concepts and results about cate-
gories and monoidal categories. This chapter contains only definitions, examples,
and statements of facts. For proofs and more detailed discussion of basic category
theory, the reader may consult the references in Section 1.4. In Section 1.1, we
recall the definitions of categories, functors, natural transformations, adjunctions,
equivalences, (co)limits, (co)ends, and Kan extensions.

In Section 1.2, we recall (symmetric) monoidal categories, (symmetric) mon-
oidal functors, and monoidal natural transformations. Monoidal categories are
important for this work because essentially all subsequent chapters are based on
the concept of a monoidal structure. There will be more discussion of category
theory later in this work, including

● Chapter 6 on bicategories and 2-categories,
● Chapter II.1 on braided monoidal categories,
● Section II.2.3 on abelian categories, and
● Part III.1 on enriched monoidal categories and multicategories.

In Section 1.3, we recall several coherence theorems for (symmetric) monoidal
categories and functors. The Coherence Theorems 1.3.3 and 1.3.8 for (symmetric)
monoidal categories will be used in Chapters 3, 4, II.5, and III.2 to prove

● the Coherence Theorems 3.10.7 and 4.5.8 for bimonoidal categories,
● the Coherence Theorems 3.9.1 and 4.4.3 for symmetric bimonoidal cate-

gories,
● the Coherence Theorem II.5.4.4 for braided bimonoidal categories, and
● coherence theorems for enriched monoidal categories.

Epstein’s Coherence Theorem 1.3.12 will be used in
● Chapter 7 in the proof of Baez’s Conjecture and
● Chapter III.3 in the discussion of the standard enrichment of a symmetric

monoidal functor.
An enriched version of this theorem is Theorem III.2.5.8. Sections III.2.2 and III.2.3
contain coherence theorems for change of enrichment.

1.1. Categories

In this section, we fix some notations for categories, functors, natural transfor-
mations, adjunctions, equivalences, (co)limits, (co)ends, and Kan extensions.

Categories, Functors, and Natural Transformations.
Definition 1.1.1. A category C consists of

● a class of objects Ob(C);
I.7
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● for each pair of objects X and Y in C, a set of morphisms C(X, Y), which is
also denoted by C(X; Y), with domain X and codomain Y;
● for each object X in C, an identity morphism 1X ∈ C(X, X), which is also

denoted by idX ; and
● a function

C(Y, Z)×C(X, Y) C(X, Z)
(g, f ) g ○ f = g f ,

which is called the composition, for objects X, Y, and Z.
These data are required to satisfy the following two conditions.
Unity: 1Y f = f = f 1X for morphisms f ∈ C(X, Y).
Associativity: (hg) f = h(g f ) for (h, g, f ) ∈ C(Z, W)×C(Y, Z)×C(X, Y).
Moreover, we define the following.

● A category is also called a 1-category.
● A category is small if it has a set of objects.
● A category is finite if it has only finitely many objects and morphisms.
● We usually abbreviate X ∈ Ob(C) to X ∈ C, and denote a morphism f ∈
C(X, Y) by f ∶ X Y.
● If g f is defined for two morphisms f and g, then it is called the composite.

◇
Definition 1.1.2. For a category C, a subcategory D is a category consisting of

● a subcalss Ob(D) ⊆ Ob(C) of objects, and
● a subset D(X, Y) ⊆ C(X, Y) of morphisms for objects X, Y ∈ D

such that the identity morphisms and composition in D are restricted from those
in C. A subcategory D of C is full if each subset inclusion D(X, Y) ⊆ C(X, Y) is an
equality. ◇
Definition 1.1.3. Suppose f ∶ X Y is a morphism in a category C.

● f is called an isomorphism if there exists a morphism g ∶ Y X such
that g f = 1X and f g = 1Y. An isomorphism is sometimes denoted by
X Y.≅ A category in which every morphism is an isomorphism is

called a groupoid.
● f is called a monomorphism if for any pair of morphisms g, h ∶ W X

with codomain X and a common domain,

f g = f h implies g = h.

In other words, f is cancellable on the left.
● f is called an epimorphism if for any pair of morphisms g′, h′ ∶ Y Z

with domain Y and a common codomain,

g′ f = h′ f implies g′ = h′.

In other words, f is cancellable on the right. ◇
Definition 1.1.4. For categories C and D, a functor F ∶ C D consists of

● an assignment on objects

Ob(C) Ob(D)
X FX
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and
● an assignment on morphisms

C(X, Y) D(FX, FY)
f F f .

These data are required to satisfy the following two conditions.
Composition: F(g f ) = (Fg)(F f ), provided that the composite g f is defined.
Identities: F1X = 1FX for each object X ∈ C.
Moreover, we define the following.

● Functors are composed by composing the assignments on objects and on
morphisms.
● The identity functor of a category C is determined by the identity assign-

ments on objects and morphisms, and is written as either IdC or 1C. ◇
Example 1.1.5. We let 1 denote the terminal category; it has a unique object ∗ and
unique morphism 1∗. ◇
Example 1.1.6. We write Cat for the category with small categories as objects, func-
tors as morphisms, identity functors as identity morphisms, and composition of
functors as composition. ◇
Definition 1.1.7. Suppose F, G ∶ C D are functors. A natural transformation
θ ∶ F G consists of a morphism θX ∶ FX GX in D for each object X ∈ C
such that the diagram

FX GX

FY GY

F f

θX

G f
θY

in D is commutative for each morphism f ∶ X Y in C.
Moreover, we define the following.
● Each morphism θX is called a component of θ.
● The identity natural transformation 1F ∶ F F of a functor F has each

component an identity morphism.
● A natural isomorphism is a natural transformation in which every compo-

nent is an isomorphism.
● A natural monomorphism is a natural transformation in which every com-

ponent is a monomorphism. ◇
Definition 1.1.8. Suppose θ ∶ F G is a natural transformation for functors
F, G ∶ C D.

● Suppose ϕ ∶ G H is a natural transformation for another functor H ∶
C D. The vertical composition

ϕθ ∶ F H

is the natural transformation with components

(ϕθ)X = ϕX ○ θX ∶ FX HX for X ∈ C.

● Suppose θ′ ∶ F′ G′ is a natural transformation for functors F′, G′ ∶
D E. The horizontal composition

θ′ ∗ θ ∶ F′F G′G
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is the natural transformation whose component (θ′ ∗ θ)X for an object
X ∈ C is defined as either composite in the commutative diagram

F′FX G′FX

F′GX G′GX

θ′FX

F′θX G′θX
θ′GX

in D. ◇

Adjunctions and Equivalences.
Definition 1.1.9. For categories C and D, an adjunction from C to D is a triple
(L, R, ϕ) consisting of

● a pair of functors

C D
L

R

and
● a bijection

D(LX, Y) C(X, RY)
ϕX,Y

≅

that is natural in the objects X ∈ C and Y ∈ D.
Such an adjunction is also called an adjoint pair, with L the left adjoint and R the
right adjoint. We also denote such an adjunction by L ⊣ R. ◇

Unless otherwise specified, we always display the left adjoint on top, pointing
to the right. In an adjunction L ⊣ R as above, setting Y = LX or X = RY, the natural
bijection ϕ yields natural transformations

(1.1.10) 1C RL

LR 1D,

η

ε

which are called, respectively, the unit and the counit. The vertically composed
natural transformations

(1.1.11)
R RLR R

L LRL L

ηR Rε

Lη εL

are equal to 1R and 1L, respectively. Here

ηR = η ∗ 1R

Rε = 1R ∗ ε

and similarly for Lη and εL. The identities in (1.1.11) are called the triangle iden-
tities. Conversely, an adjunction is completely determined by functors (L, R) and
natural transformations (η, ε) that satisfy the triangle identities.
Definition 1.1.12. A functor F ∶ C D is called an equivalence if there exist

● a functor G ∶ D C and
● natural isomorphisms

1C GF
η

≅ and FG 1D.ε
≅
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If, in addition, F is left adjoint to G with unit η and counit ε, then (F, G, η, ε) is
called an adjoint equivalence. ◇

A functor F is an equivalence if and only if it is both
● fully faithful, which means that each function C(X, Y) D(FX, FY) on

morphism sets is a bijection, and
● essentially surjective, which means that for each object Y ∈ D, there exists

an isomorphism FX Y≅ for some object X ∈ C.

Colimits and Limits.
Definition 1.1.13. Suppose F ∶ D C is a functor. A colimit of F, if it exists, is a
pair (colim F, δ) consisting of

● an object colim F ∈ C and
● a morphism δd ∶ Fd colim F in C for each object d ∈ D

such that the following two conditions are satisfied.
Naturality: For each morphism f ∶ d d′ in D, the diagram

Fd colim F

Fd′ colim F

F f

δd

δd′

in C is commutative. A pair (colim F, δ) with this property is called a
cocone of F.

Universality: The pair (colim F, δ) is universal among cocones of F. This means
that if (X, δ′) is another cocone of F, then there exists a unique morphism
h ∶ colim F X in C such that the diagram

Fd colim F

Fd X

δd

h
δ′d

is commutative for each object d ∈ D. ◇
A limit of F, which is denoted by (lim F, δ) if it exists, is defined dually by

turning the morphisms δd for d ∈ D and h backward.
● For a functor F ∶ D C, its colimit, if it exists, is also denoted by
colimx∈D Fx and colimD F, and similarly for limits.
● A small (co)limit is a (co)limit of a functor whose domain category is a

small category.
● A finite (co)limit is a (co)limit of a functor whose domain category is a

finite category.
● A category C is (co)complete if it has all small (co)limits.

A left adjoint F ∶ C D preserves all the colimits that exist in C. In other
words, if H ∶ E C has a colimit, then FH ∶ E D also has a colimit, and the
natural morphism

(1.1.14) colim
e ∈ E

FHe F(colim
e ∈ E

He)
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is an isomorphism. Similarly, a right adjoint G ∶ D C preserves all the limits
that exist in D.

Example 1.1.15. Here are some special types of colimits in a category C.

(1) An initial object ∅C in C is a colimit of the functor ∅ C, where ∅ is the
empty category with no objects and no morphisms. It is characterized
by the universal property that for each object X in C, there is a unique
morphism ∅C X in C.

(2) A coproduct is a colimit of a functor whose domain category is a discrete
category, that is, a category with only identity morphisms. We use the
symbols∐ and ∐ to denote coproducts.

(3) A pushout is a colimit of a functor whose domain category has the form

● ● ●

with three objects and two nonidentity morphisms.
(4) A coequalizer is a colimit of a functor whose domain category has the form

● ●

with two objects and two nonidentity morphisms.
Terminal objects, products, pullbacks, and equalizers are the corresponding limit
concepts. A zero object is an object that is both initial and terminal. ◇

Coends and Ends. For a category C, its opposite category Cop is the category
with the same objects as C and with morphism sets

Cop(A, B) = C(B, A).

The identity morphisms and composites in Cop are defined by those in C.

Definition 1.1.16. Suppose F ∶ Cop ×C D is a functor.
(1) A cowedge of F is a pair (X, ζ) consisting of

● an object X ∈ D and
● morphisms

ζc ∶ F(c, c) X for c ∈ C

such that the diagram

F(d, c) F(d, d)

F(c, c) X

F(g,1c)

F(1d ,g)

ζd

ζc

is commutative for each morphism g ∶ c d ∈ C.
(2) A coend of F is an initial cowedge (∫

c∈C F(c, c), ω). ◇

More explicitly, a coend of F is a cowedge (∫
c∈C F(c, c), ω) such that, given

any cowedge (X, ζ) of F, there exists a unique morphism

∫
c∈C

F(c, c) X ∈ Dh
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that renders the diagram

F(c, c) ∫
c∈C

F(c, c)

X
ζc

ωc

h

commutative for each object c ∈ C. Dual to a coend is the notion of an end, which
is originally due to Yoneda [Yon60]. The following observation follows from the
definitions of a coend and a coequalizer.
Proposition 1.1.17. Suppose F ∶ Cop ×C D is a functor with C small and D cocom-
plete. Then a coend of F exists and is given by a coequalizer

∫
c∈C

F(c, c) = coeq( ∐
g∈Mor(C)

F(d, c) ∐
c∈C

F(c, c)
id○F(1d ,g)

ic○F(g,1c)
)

in which g ∶ c d runs through all the morphisms in C. The natural morphism ωc is
the composite

F(c, c) ∫
c∈C

F(c, c)

∐
c∈C

F(c, c)
ic

ωc

natural

for each object c ∈ C, with ic the natural inclusion.
In the above setting, a coend is a colimit.

Kan Extensions.

Definition 1.1.18. Suppose

F ∶ C D and G ∶ C E

are functors. A left Kan extension of F along G is a pair

(LanG F, θ)

consisting of
● a functor

LanG F ∶ E D

and
● a natural transformation

θ ∶ F (LanG F)G

that is initial among such pairs. ◇
Explanation 1.1.19. The universal property that defines a left Kan extension in
Definition 1.1.18 is that for each

● functor H ∶ E D and
● natural transformation ε ∶ F HG,
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there exists a unique natural transformation

ϕ ∶ LanG F H

such that ε factors as
ε = (ϕ ∗ 1G)θ.

This equality means that ε is equal to the following pasting of natural transforma-
tions, where L = LanG F:

C

D

E

F

G

L H

⇒

θ ⇒
∃! ϕ

A left Kan extension is given by the coend

LanG F = ∫
c∈C

E(Gc,−) ⋅ Fc,

assuming that this coend and the coproduct

E(Gc,−) ⋅ Fc = ∐
E(Gc,−)

Fc

exist in D. This is [ML98, X.4 Theorem 1]. ◇
The dual concept of a right Kan extension of F along G is a pair (RanG F, θ) con-

sisting of
● a functor

RanG F ∶ E D

and
● a natural transformation

θ ∶ (RanG F)G F

that is terminal among such pairs.

1.2. Monoidal Categories

In this section, we recall the definitions of a (symmetric) monoidal category, a
(symmetric) monoidal functor, and a monoidal natural transformation.

Monoidal Categories and Functors.
Definition 1.2.1. A monoidal category is a tuple

(C,⊗,1, α, λ, ρ)
consisting of

● a category C;
● a functor ⊗ ∶ C×C C, which is called the monoidal product;
● an object 1 ∈ C, which is called the monoidal unit;
● a natural isomorphism

(X⊗Y)⊗ Z X⊗ (Y⊗ Z)
αX,Y,Z

≅

for all objects X, Y, Z ∈ C, which is called the associativity isomorphism; and
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● natural isomorphisms

1⊗X X
λX
≅ and X⊗1 X

ρX

≅

for all objects X ∈ C, which are called the left unit isomorphism and the right
unit isomorphism, respectively.

These data are required to satisfy the following two axioms.
The Unity Axiom: The middle unity diagram

(1.2.2)
(X⊗1)⊗Y X⊗ (1⊗Y)

X⊗Y X⊗Y

ρX⊗1Y

αX,1,Y

1X⊗λY

is commutative for all objects X, Y ∈ C.
The Pentagon Axiom: The pentagon

(1.2.3)

(W ⊗X)⊗ (Y⊗ Z)

((W ⊗X)⊗Y)⊗ Z

(W ⊗ (X⊗Y))⊗ Z W ⊗ ((X⊗Y)⊗ Z)

W ⊗ (X⊗ (Y⊗ Z))

αW,X,Y⊗ZαW⊗X,Y,Z

αW,X,Y⊗1Z

αW,X⊗Y,Z

1W⊗αX,Y,Z

is commutative for all objects W, X, Y, Z ∈ C.
A strict monoidal category is a monoidal category in which the components of α, λ,
and ρ are all identity morphisms. ◇
Convention 1.2.4. In a monoidal category, we sometimes use concatenation as an
abbreviation for the monoidal product. For example,

XY = X⊗Y, (XY)Z = (X⊗Y)⊗ Z,

and similarly for morphisms. We sometimes denote a monoidal category by
(C,⊗,1) or C. On the other hand, to emphasize the monoidal category C, we
decorate the monoidal structure accordingly as ⊗C, 1C, αC, λC, and ρC. ◇
Remark 1.2.5. By the results in [Kel64], in a monoidal category the equality

(1.2.6) λ1 = ρ1 ∶ 1⊗1 1

holds, and the diagrams
(1.2.7)

(1⊗X)⊗Y 1⊗ (X⊗Y)

X⊗Y X⊗Y

λX⊗1Y

α1,X,Y

λX⊗Y

(X⊗Y)⊗1 X⊗ (Y⊗1)

X⊗Y X⊗Y

ρX⊗Y

αX,Y,1

1X⊗ρY

are commutative. They are called the left unity diagram and the right unity diagram,
respectively. Proofs of these unity properties in the more general setting of bicate-
gories can be found in [JY21, Section 2.2]. ◇
Definition 1.2.8. A monoid in a monoidal category C is a triple (X, µ, η)with

● X an object in C;



I.16 1. BASIC CATEGORY THEORY

● µ ∶ X⊗X X a morphism, which is called the multiplication; and
● η ∶ 1 X a morphism, which is called the unit.

These data are required to make the following associativity and unity diagrams
commutative.

(X⊗X)⊗X X⊗ (X⊗X)

X⊗X

X⊗X X

µ⊗1X

α

1X⊗µ

µ

µ

1⊗X X

X⊗X X

X⊗1 X

η⊗1X

λX

µ

1X⊗η

ρX

A morphism of monoids

f ∶ (X, µX , ηX) (Y, µY, ηY)
is a morphism f ∶ X Y in C that preserves the multiplications and the units in
the sense that the diagrams

X⊗X Y⊗Y

X Y

µX

f⊗ f

µY

f

1 X

1 Y

ηX

f
ηY

are commutative. ◇
Definition 1.2.9. A comonoid in a monoidal category C is a triple (Y, ∆, ε)with

● Y an object in C;
● ∆ ∶ Y Y⊗Y a morphism, which is called the comultiplication; and
● ε ∶ Y 1 a morphism, which is called the counit.

These data are required to make the following coassociativity and counity dia-
grams commutative.

(1.2.10)

Y Y⊗Y

(Y⊗Y)⊗Y

Y⊗Y Y⊗ (Y⊗Y)

∆

∆

∆⊗1Y

α

1Y⊗∆

1⊗Y Y

Y⊗Y Y

Y⊗1 Y

λY

ε⊗1Y

1Y⊗ε

∆

ρ

A morphism of comonoids is a morphism of the underlying objects that preserves
the comultiplications and the counits. ◇
Definition 1.2.11. For monoidal categories C and D, a monoidal functor

(F, F2, F0) ∶ C D

consists of
● a functor F ∶ C D;
● a natural transformation

(1.2.12) FX⊗ FY F(X⊗Y) ∈ D
F2

X,Y



1.2. MONOIDAL CATEGORIES I.17

for objects X and Y in C, which is called the monoidal constraint; and
● a morphism

(1.2.13) 1D F1C ∈ D,F0

which is called the unit constraint.
These data are required to satisfy the following associativity and unity axioms.
Associativity: The diagram

(1.2.14)

(FX⊗ FY)⊗ FZ FX⊗ (FY⊗ FZ)

F(X⊗Y)⊗ FZ FX⊗ F(Y⊗ Z)

F((X⊗Y)⊗ Z) F(X⊗ (Y⊗ Z))

αD

F2⊗1FZ 1FX⊗F2

F2 F2

FαC

is commutative for all objects X, Y, Z ∈ C.
Unity: The diagrams

(1.2.15)
1D ⊗ FX FX

F1C ⊗ FX F(1C ⊗X)

F0⊗1FX

λD
FX

F2

FλC
X

FX⊗1D FX

FX⊗ F1C F(X⊗1C)

1FX⊗F0

ρDFX

F2

FρCX

are commutative for all objects X ∈ C. They are called the left unity diagram
and the right unity diagram, respectively.

A monoidal functor (F, F2, F0) is sometimes abbreviated to F.
Moreover, a monoidal functor (F, F2, F0) is said to be
● unital if F0 is an isomorphism;
● strictly unital if F0 is the identity morphism;
● strong if F0 and the components of F2 are isomorphisms; and
● strict if F0 and the components of F2 are identity morphisms. ◇

Definition 1.2.16. For monoidal functors F, G ∶ C D, a monoidal natural trans-
formation θ ∶ F G is a natural transformation between the underlying functors
such that the diagrams

(1.2.17)
FX⊗ FY GX⊗GY

F(X⊗Y) G(X⊗Y)
F2

θX⊗θY

G2

θX⊗Y

1D F1C

1D G1C

F0

θ
1C

G0

are commutative for all objects X, Y ∈ C. ◇

Symmetric Monoidal Categories and Functors. Next we consider symmetric
analogues of the above concepts.
Definition 1.2.18. A symmetric monoidal category is a pair (C, ξ) consisting of the
following data.

● C = (C,⊗,1, α, λ, ρ) is a monoidal category as in Definition 1.2.1.
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● ξ is a natural isomorphism

(1.2.19) X⊗Y Y⊗X
ξX,Y

≅

for objects X, Y ∈ C, which is called the symmetry isomorphism or the braid-
ing.

These data are required to satisfy the following three axioms.

The Symmetry Axiom: The diagram

(1.2.20)
X⊗Y Y⊗X

X⊗Y

ξX,Y

ξY,X

is commutative for all objects X, Y ∈ C.
The Unit Axiom: The diagram

(1.2.21)
X⊗1 1⊗X

X X

ρX

ξX,1

λX

is commutative for all objects X ∈ C.
The Hexagon Axiom: The diagram

(1.2.22) (X⊗Y)⊗ Z

X⊗ (Y⊗ Z)X⊗ (Z⊗Y)

(X⊗ Z)⊗Y

Y⊗ (X⊗ Z) (Y⊗X)⊗ Z

α

1X⊗ξZ,Y

α−1

ξX⊗Z,Y

α−1

ξY,X⊗1Z

is commutative for all objects X, Y, Z ∈ C.

A symmetric monoidal category is said to be strict if the underlying monoidal
category is strict. A symmetric strict monoidal category is also called a permutative
category. ◇
Definition 1.2.23. Suppose (C, ξ) is a symmetric monoidal category.

● A commutative monoid is a monoid (X, µ, η) such that the diagram

X⊗X X⊗X

X X

µ

ξX,X

µ

is commutative.
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● A cocommutative comonoid is a comonoid (Y, ∆, ε) such that the diagram

(1.2.24)
Y Y

Y⊗Y Y⊗Y

∆ ∆
ξY,Y

is commutative.
A morphism of (co)commutative (co)monoids is a morphism of the underlying
(co)monoids. ◇
Definition 1.2.25. For symmetric monoidal categories C and D, a symmetric mon-
oidal functor (F, F2, F0) ∶ C D is a monoidal functor between the underlying
monoidal categories such that the diagram

(1.2.26)
FX⊗ FY FY⊗ FX

F(X⊗Y) F(Y⊗X)
F2

ξFX,FY

≅

F2

FξX,Y

≅

is commutative for all objects X, Y ∈ C. A symmetric monoidal functor is said to
be strong (respectively, strict, unital, or strictly unital) if the underlying monoidal
functor is so. ◇
Example 1.2.27. Here are some examples of symmetric monoidal categories.

● (Set,×,∗) is the category of sets and functions. A monoid in Set is a
monoid in the usual sense.
● (Cat,×, 1) is the category of small categories and functors.
● (Vectk,⊗,k) is the category of k-vector spaces and k-linear maps over a

field k, with ⊗ the tensor product of k-vector spaces. ◇
Definition 1.2.28. A symmetric monoidal category C is closed if, for each object X,
the functor

−⊗X ∶ C C

admits a right adjoint, which is denoted by [X,−] and is called the internal hom. ◇

1.3. Coherence

In this section, we recall several coherence results for monoidal categories,
symmetric monoidal categories, and symmetric monoidal functors. Each of them
states either that some formal diagrams commute, or that a monoidal structure
can be strictified. See the references in Notes 1.4.4 and 1.4.5 for detailed discussion
of these topics.

Monoidal Categories. To state the first type of coherence result, we use the
next two definitions.
Definition 1.3.1. A word of length n ≥ 0 is defined inductively as follows.

● The only word of length 0 is the symbol e.
● The only word of length 1 is the symbol −.
● If u and v are words of lengths m and n, respectively, then u◻ v is a word

of length m + n.
Moreover, we define the following.
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● A left normalized word is the word e, −, u◻ e, or u◻−, with u a left normal-
ized word.
● A right normalized word is the word e, −, e ◻ u, or − ◻ u, with u a right

normalized word.
● For a monoidal category C, each word w of length n determines a functor

w ∶ Cn C by interpreting
– the length 0 word e as the constant functor at 1;
– the length 1 word − as the identity functor 1C; and
– ◻ as the monoidal product in C.

We also call this functor a word. ◇
Definition 1.3.2. For a monoidal category (C,⊗,1, α, λ, ρ), canonical maps are nat-
ural isomorphisms between words of the same length, defined inductively by the
following four conditions.

● The identity morphism of 1 is a canonical map.
● The identity natural transformation of 1C is a canonical map.
● α, λ, ρ, and their inverses are canonical maps.
● Canonical maps are closed under ⊗ and vertical composites. ◇

Theorem 1.3.3 (Mac Lane’s Coherence). Suppose u and v are words Cn C of the
same length in a monoidal category C. Then there exists a unique canonical map u v.
Example 1.3.4. The word

u = ((−◻−)◻−)◻−
is left normalized, and the word

v = −◻ (−◻(−◻−))
is right normalized, both of length 4. Regarding the words u and v as functors
C4 C, they are given by

u(x1, x2, x3, x4) = ((x1 ⊗ x2)⊗ x3)⊗ x4 and

v(x1, x2, x3, x4) = x1 ⊗ (x2 ⊗ (x3 ⊗ x4)).
Each of the two paths in the pentagon axiom (1.2.3) is a canonical map from u to
v. Mac Lane’s Coherence Theorem 1.3.3 extends the unity axiom (1.2.2) and the
pentagon axiom (1.2.3). ◇
Theorem 1.3.5 (Mac Lane’s Strictification). For each monoidal category C, there exist
a strict monoidal category Cst and an adjoint equivalence

Cst C
L

R

with (i) both L and R strong monoidal functors, and (ii) LR = 1C.

Symmetric Monoidal Categories. The symmetric versions of the above co-
herence results involve the following concepts.
Definition 1.3.6. The symmetric group on n letters is denoted by Σn. Suppose C is
a monoidal category.

● For a word w of length n and a permutation σ ∈ Σn, the permuted word
wσ ∶ Cn C is the composite functor w ○ σ, where σ ∶ Cn Cn is
given by

σ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n))
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with the xi’s all objects, or all morphisms, in C.
● For a symmetric monoidal category (C, ξ), a permuted canonical map is a

natural isomorphism between permuted words of the same length, de-
fined as in Definition 1.3.2 by also allowing the symmetry isomorphism
ξ. ◇

Example 1.3.7. For the left normalized word

u = ((−◻−)◻−)◻−
and the cycle

σ = (1, 4, 2, 3) ∈ Σ4,

the permuted word uσ ∶ C4 C is the functor given by

(uσ)(x1, x2, x3, x4) = ((x3 ⊗ x4)⊗ x2)⊗ x1. ◇
Theorem 1.3.8 (Symmetric Coherence). Suppose uσ and vτ are two permuted words of
the same length in a symmetric monoidal category C. Then there exists a unique permuted
canonical map uσ vτ.
Example 1.3.9. The Symmetric Coherence Theorem 1.3.8 extends the symmetry
axiom (1.2.20), the unit axiom (1.2.21), and the hexagon axiom (1.2.22). ◇
Theorem 1.3.10 (Symmetric Strictification). For each symmetric monoidal category C,
there exist a permutative category Cst and an adjoint equivalence

Cst C
L

R

with (i) both L and R strong symmetric monoidal functors, and (ii) LR = 1C.

Monoidal Functors. Next we recall a coherence theorem for (symmetric)
monoidal functors. The following definition and theorem have a plain monoidal
version and a symmetric monoidal version. We will state them together using
Definitions 1.3.1, 1.3.2, and 1.3.6.
Definition 1.3.11. Suppose (F, F2, F0) ∶ C D is a (symmetric) monoidal functor
between (symmetric) monoidal categories.

(1) The set of F-iterates is the set of functors Cn D for n ≥ 1 defined in-
ductively by the following two conditions.
● Fw ∶ Cn D is an F-iterate for each (permuted) word w ∶ Cn C

of length n.
● If G ∶ Cm D and H ∶ Cn D are F-iterates, then so is the com-

posite

Cm+n = Cm ×Cn D×D D.G×H ⊗

(2) The set of F-coherent maps is the set of natural transformations between
F-iterates defined inductively as follows.
● Suppose θ is a (permuted) canonical map in C that does not involve
1C, λC, or ρC. Then 1F ∗ θ is an F-coherent map.
● The identity natural transformation, αD, their inverses, and ξD in the

symmetric case, applied to F-iterates are F-coherent maps.
● F2 is an F-coherent map.
● F-coherent maps are closed under vertical composites and ⊗D. ◇
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Theorem 1.3.12 (Epstein’s Coherence). Suppose F ∶ C D is a (symmetric) monoi-
dal functor between (symmetric) monoidal categories, and G, H ∶ Cn D are F-iterates.
Then there exists at most one F-coherent map from G to H.
Example 1.3.13. Consider the associativity axiom (1.2.14) for a monoidal func-
tor F ∶ C D. All six functors C3 D defined by the vertices in (1.2.14) are
F-iterates. Each path along the boundary of that diagram is a component of an
F-coherent map. Epstein’s Coherence Theorem 1.3.12 extends the associativity ax-
iom (1.2.14) and the compatibility axiom (1.2.26) in the symmetric case. ◇

1.4. Notes

1.4.1 (Categories). For more detailed discussion of basic category theory, we refer
the reader to the books [Awo10, BK00, Gra18, Lei14, Rie16, Rom17, Sim11]. For
higher level discussion of categories, the reader may consult the books [Bor94a,
Bor94b, Bor94c, Ehr65, ML98, Mit65, Sch72]. The founding paper [EML45] of
category theory is very readable and contains applications to topology. ◇
1.4.2 (Ends and Coends). More discussion about (co)ends and enriched diagram
categories is in [Day70, DK69] and Chapter III.3. A systematic discussion about
(co)ends is in [Lor21] and [ML98, IX.5–8]. ◇
1.4.3 (Terminology). What we call a (symmetric) monoidal category is what Joyal
and Street [JS93] called a (symmetric) tensor category. A monoidal functor is some-
times called a lax monoidal functor in the literature to emphasize the fact that the
structure morphisms F2 and F0 are not necessarily invertible. A strong monoidal
functor is also known as a tensor functor. ◇
1.4.4 (Coherence). Mac Lane’s Coherence Theorem 1.3.3 is [ML63, Th. 5.2]; see
also [ML98, VII.2 Cor.]. Mac Lane’s Strictification Theorem 1.3.5 is [ML98, XI.3 Th.
1], which is a consequence of the coherence theorem. The Symmetric Coherence
Theorem 1.3.8 is [ML98, XI.1 Th. 1]. The Symmetric Strictification Theorem 1.3.10
is proved by adapting the proof of Theorem 1.3.5 in the nonsymmetric case, by
incorporating the symmetry and using Theorem 1.3.8. ◇
1.4.5 (Coherence of Monoidal Functors). Theorem 1.3.12 is [Eps66, Th. 1.6]. The
proof of the plain monoidal version of Theorem 1.3.12 is obtained from Epstein’s
proof by systematically removing all instances of the symmetry isomorphism. An-
other coherence result for monoidal functors is [JS93, Th. 1.7]. ◇



CHAPTER 2

Symmetric Bimonoidal Categories

In this chapter, we introduce symmetric bimonoidal categories in the sense of
Laplaza and discuss some examples and one application to computer science. The
definition is given in Section 2.1. A symmetric bimonoidal category is a categorical
analogue of a commutative rig, in which one can add, multiply, and distribute
products over sums. A symmetric bimonoidal category is a category equipped
with

● two symmetric monoidal structures, one additive and one multiplicative,
● two multiplicative zero natural isomorphisms, and
● two distributivity natural monomorphisms,

along with a list of carefully chosen axioms. A symmetric bimonoidal category
is called tight if the distributivity morphisms are natural isomorphisms. We also
define bimonoidal categories, which do not have a multiplicative symmetry.

In Section 2.2, we prove Laplaza’s theorem, with one improvement as dis-
cussed in Note 2.7.1, that half of the 24 axioms of a symmetric bimonoidal cate-
gory are formal consequences of the others. Therefore, in practice, to check that
one has a symmetric bimonoidal category, one has to check 12 axioms instead of
24. This reduction Theorem 2.2.13 does not apply to bimonoidal categories be-
cause its proof heavily uses the multiplicative symmetry. The only reduction of
the list of axioms in the nonsymmetric case is in Proposition 2.2.14.

The next few sections contain examples of symmetric bimonoidal categories.
In Section 2.3, we observe that distributive symmetric monoidal categories are
symmetric bimonoidal categories whose sums are coproducts. In particular, dis-
tributive categories and the category of modules over a commutative ring are sym-
metric bimonoidal categories.

Section 2.4 contains an important example of a symmetric bimonoidal cate-
gory Σ with finite ordinals as objects and their bijections as morphisms.

● In Section 4.2, we will construct a symmetric bimonoidal category, called
the distortion category, that extends Σ. The distortion category is an es-
sential ingredient in the formulation of the Coherence Theorem 4.4.3.
● In Chapter 7, we will show that Σ is bicategorically an initial object in a

2-category of small symmetric bimonoidal categories.
● In Chapter II.7, we will show that Σ is bicategorically an initial object in

a 2-category of small braided bimonoidal categories.

This section also contains a variant of Σ denoted by Σ′.
In Section 2.5, we observe that right bipermutative categories, with Σ′ being

one example, are tight symmetric bimonoidal categories. A right bipermutative
category has two permutative structures, one additive ⊕ and one multiplicative
⊗, with identities for both multiplicative zeros, the right distributivity, and ξ⊗−,0,

I.23
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along with several carefully chosen axioms. In Section 5.4, we will show that tight
symmetric bimonoidal categories can be strictified to equivalent right bipermuta-
tive categories. In the second half of this section, we discuss left bipermutative
categories, in which the left distributivity is the identity. The symmetric bimonoi-
dal category Σ is an example of a left bipermutative category.

In Section 2.6, we discuss an application of symmetric bimonoidal categories
to computer science from [CS16]. The main observation is that there is a symmet-
ric bimonoidal groupoid Π with syntax of finite types as objects. The symmetric
bimonoidal groupoid Π provides a variant of the Curry-Howard-Lambek corre-
spondence for reversible programming of finite types with sums and products.
Applications of braided bimonoidal categories to quantum group theory and topo-
logical quantum computation are discussed in Chapter II.3.

The following table summarizes basic properties of (symmetric) bimonoidal
categories, along with their coherence theorems, strictification theorems, and bi-
categorical properties.

bimonoidal categories symmetric bimonoidal categories

axioms 22 24

reduced axioms 21 (2.2.14) 12 (2.2.13)

coherence 3.10.7, 4.5.8 3.9.1, 4.4.3

strictification 5.5.11, 5.5.12 5.4.6, 5.4.7

Baez’s Conjecture 7.8.1, 7.8.3

bicategorification 8.4.12 8.15.4

Braided bimonoidal categories will be discussed in Part II.1. For open questions
related to bimonoidal categories, see Appendix III.A.1.

2.1. Definitions

In this section, we define symmetric bimonoidal categories and bimonoidal
categories, and provide some basic examples. Many more examples will be given
in the coming sections.

Motivation 2.1.1. To motivate the definition of a symmetric bimonoidal category,
consider a commutative rig (R,+, 0,×, 1), which is a commutative ring without
additive inverses, such as the ring Z of integers. Both the addition + and the mul-
tiplication × are associative and commutative. They are 2-sided unital with respect
to 0 and 1, respectively. For elements x, y, z ∈ R, the following multiplicative zero
and distributivity properties hold:

0x = 0 = x0

x(y + z) = xy + xz

(x + y)z = xz + yz

A symmetric bimonoidal category is a categorified version of a commutative rig,
with the commutative monoids (R,+, 0) and (R,×, 1) replaced by two symmetric
monoidal structures. The above four rig axioms are replaced by natural trans-
formations that satisfy a list of coherence axioms. In the next several chapters, we
will see that these coherence axioms yield good coherence properties of symmetric
bimonoidal categories. ◇
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Definition 1.2.18 of a symmetric monoidal category is used in the next defini-
tion. In Theorem 2.2.13, we show that in each of the following twelve groups of
axioms, only the first axiom is needed. However, for later reference and usage, it
is more convenient to have all of them in one place.

Definition 2.1.2. A symmetric bimonoidal category is a tuple

(C, (⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕), (⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗), (λ ●, ρ
●), (δl , δr))

consisting of the following data.

● (C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) is a symmetric monoidal category, which is called
the additive structure.
● (C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗) is a symmetric monoidal category, which is called

the multiplicative structure.
● λ ● and ρ ● are natural isomorphisms

(2.1.3) 0⊗ A 0 A⊗ 0
λ
●
A
≅ ≅

ρ
●
A for A ∈ C,

which are called the left multiplicative zero and the right multiplicative zero,
respectively.
● δl and δr are natural monomorphisms

(2.1.4)
A⊗ (B⊕C) (A⊗ B)⊕ (A⊗C)

(A⊕ B)⊗C (A⊗C)⊕ (B⊗C)

δl
A,B,C

δr
A,B,C

for objects A, B, C ∈ C, which are called the left distributivity morphism and
the right distributivity morphism, respectively.

To simplify the presentation, we often abbreviate ⊗ using concatenation. In the
absence of parentheses, ⊗ always takes precedence over ⊕. For example, the left
distributivity morphism is abbreviated to A(B⊕C) AB⊕ AC.

The above data are required to make the following 24 diagrams in C commu-
tative for all objects A, B, C, and D in C. They are collectively known as Laplaza’s
Axioms.

Distributivity and Multiplicative Symmetry:

(2.1.5)

(A⊕ B)C AC⊕ BC

C(A⊕ B) CA⊕CB

ξ⊗A⊕B,C

δr
A,B,C

ξ⊗A,C⊕ξ⊗B,C
δl

C,A,B

Distributivity and Additive Symmetry:

(2.1.6)

A(B⊕C) AB⊕ AC

A(C⊕ B) AC⊕ AB

1Aξ⊕B,C

δl
A,B,C

ξ⊕AB,AC
δl

A,C,B
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(2.1.7)

(A⊕ B)C AC⊕ BC

(B⊕ A)C BC⊕ AC

ξ⊕A,B1C

δr
A,B,C

ξ⊕AC,BC
δr

B,A,C

Distributivity and Additive Associativity:

(2.1.8)
[(A⊕ B)⊕C]D (A⊕ B)D⊕CD (AD⊕ BD)⊕CD

[A⊕ (B⊕C)]D AD⊕ (B⊕C)D AD⊕ (BD⊕CD)

α⊕A,B,C1D

δr
A⊕B,C,D δr

A,B,D⊕1CD

α⊕AD,BD,CD
δr

A,B⊕C,D 1AD⊕δr
B,C,D

(2.1.9)
A[(B⊕C)⊕D] A(B⊕C)⊕ AD (AB⊕ AC)⊕ AD

A[B⊕ (C⊕D)] AB⊕ A(C⊕D) AB⊕ (AC⊕ AD)

1Aα⊕B,C,D

δl
A,B⊕C,D δl

A,B,C⊕1AD

α⊕AB,AC,AD
δl

A,B,C⊕D 1AB⊕δl
A,C,D

Distributivity and Multiplicative Associativity:

(2.1.10)
(AB)(C⊕D) (AB)C⊕ (AB)D

A[B(C⊕D)] A(BC⊕ BD) A(BC)⊕ A(BD)

α⊗A,B,C⊕D

δl
AB,C,D

α⊗A,B,C⊕α⊗A,B,D
1Aδl

B,C,D δl
A,BC,BD

(2.1.11)
[(A⊕ B)C]D (AC⊕ BC)D (AC)D⊕ (BC)D

(A⊕ B)(CD) A(CD)⊕ B(CD)

α⊗A⊕B,C,D

δr
A,B,C1D δr

AC,BC,D

α⊗A,C,D⊕α⊗B,C,D
δr

A,B,CD

(2.1.12)
[A(B⊕C)]D (AB⊕ AC)D (AB)D⊕ (AC)D

A[(B⊕C)D] A(BD⊕CD) A(BD)⊕ A(CD)

α⊗A,B⊕C,D

δl
A,B,C1D δr

AB,AC,D

α⊗A,B,D⊕α⊗A,C,D
1Aδr

B,C,D δl
A,BD,CD

2-By-2 Distributivity:

(2.1.13)

(A⊕ B)(C⊕D) A(C⊕D)⊕ B(C⊕D)

(A⊕ B)C⊕ (A⊕ B)D (AC⊕ AD)⊕ (BC⊕ BD)

(AC⊕ BC)⊕ (AD⊕ BD) AC⊕ [AD⊕ (BC⊕ BD)]

AC⊕ [BC⊕ (AD⊕ BD)] AC⊕ [(AD⊕ BC)⊕ BD]

AC⊕ [(BC⊕ AD)⊕ BD] AC⊕ [(BC⊕ AD)⊕ BD]

δl
A⊕B,C,D

δr
A,B,C⊕D

δl
A,C,D⊕δl

B,C,D

δr
A,B,C⊕δr

A,B,D α⊕AC,AD,BC⊕BD

α⊕AC,BC,AD⊕BD 1AC⊕(α⊕)−1

1AC⊕(α⊕)−1 1AC⊕(ξ⊕AD,BC⊕1BD)
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Multiplicative Zero of 0:

(2.1.14) 0⊗ 0 0
λ
●
0

ρ
●
0

Multiplicative Zero of a Sum:

(2.1.15)
0(A⊕ B) 0A⊕ 0B

0 0⊕ 0

λ
●
A⊕B

δl
0,A,B

λ
●
A⊕λ

●
B

λ⊕0

(2.1.16)
(A⊕ B)0 A0⊕ B0

0 0⊕ 0

ρ
●
A⊕B

δr
A,B,0

ρ
●
A⊕ρ

●
B

λ⊕0

Multiplicative Zero and Multiplicative Unit:

(2.1.17) 0⊗1 0
λ
●
1

ρ⊗0

(2.1.18) 1⊗ 0 0
ρ
●
1

λ⊗0

Symmetry of Multiplicative Zero:

(2.1.19)
A⊗ 0 0⊗ A

0
ρ
●
A

ξ⊗A,0

λ
●
A

Multiplicative Zero and Multiplicative Associativity:

(2.1.20)
(AB)0 A(B0)

0 A0

ρ
●
AB

α⊗A,B,0

1Aρ
●
B

ρ
●
A

(2.1.21)

(A0)B A(0B)

0B A0

0

ρ
●
A1B

α⊗A,0,B

1Aλ
●
B

λ
●
B ρ

●
A
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(2.1.22)

(0A)B 0B

0(AB) 0

α⊗0,A,B

λ
●
A1B

λ
●
B

λ
●
AB

Additive and Multiplicative Zero:

(2.1.23)
A(0⊕ B) A0⊕ AB

AB 0⊕ AB

1Aλ⊕B

δl
A,0,B

ρ
●
A⊕1AB

λ⊕AB

(2.1.24)
(0⊕ B)A 0A⊕ BA

BA 0⊕ BA

λ⊕B 1A

δr
0,B,A

λ
●
A⊕1BA

λ⊕BA

(2.1.25)
A(B⊕ 0) AB⊕ A0

AB AB⊕ 0

1Aρ⊕B

δl
A,B,0

1AB⊕ρ
●
A

ρ⊕AB

(2.1.26)
(B⊕ 0)A BA⊕ 0A

BA BA⊕ 0

ρ⊕B 1A

δr
B,0,A

1BA⊕λ
●
A

ρ⊕BA

Distributivity and Multiplicative Unit:

(2.1.27)
1(A⊕ B) 1A⊕1B

A⊕ B
λ⊗A⊕B

δl
1,A,B

λ⊗A⊕λ⊗B

(2.1.28)
(A⊕ B)1 A1⊕ B1

A⊕ B
ρ⊗A⊕B

δr
A,B,1

ρ⊗A⊕ρ⊗B

This finishes the definition of a symmetric bimonoidal category.
A bimonoidal category has the same definition as a symmetric bimonoidal cate-

gory except for the following two conditions.
● The multiplicative symmetry ξ⊗ is omitted, and (C,⊗,1, α⊗, λ⊗, ρ⊗) is a

monoidal category.
● The axioms (2.1.5) and (2.1.19) are omitted.

Moreover, we define the following.
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● A (symmetric) bimonoidal category is small if its class of objects is a set.
● A (symmetric) bimonoidal category is tight if both δl and δr are natural

isomorphisms.
● A (symmetric) bimonoidal groupoid is a (symmetric) bimonoidal category in

which each morphism is an isomorphism.
● The objects 0 and 1 are called the additive zero and the multiplicative unit,

respectively.
● ⊕ and ⊗ are called the sum and the product, respectively.
● α⊕, λ⊕, ρ⊕, and ξ⊕ are called the additive associativity isomorphism, the left

additive zero, the right additive zero, and the additive symmetry isomorphism,
respectively.
● α⊗, λ⊗, ρ⊗, and ξ⊗ are called the multiplicative associativity isomorphism,

the left multiplicative unit, the right multiplicative unit, and the multiplicative
symmetry isomorphism, respectively. ◇

Explanation 2.1.29. Consider the definition of a symmetric bimonoidal category.
(1) The 24 axioms are purposely divided into 12 groups. We will see in Sec-

tion 2.2 that in each group, only the first axiom is actually needed. There-
fore, a symmetric bimonoidal category is defined by 12 axioms. See The-
orem 2.2.13.

(2) The left distributivity and the right distributivity (2.1.4) are only required
to be natural monomorphisms. Laplaza’s coherence results in Chapters 3
and 4 do not need the invertibility of the distributivity morphisms.

(3) The 2-by-2 distributivity axiom (2.1.13) is the only axiom that involves
the inverse of a structure morphism, namely (α⊕)−1. ◇

Explanation 2.1.30. Consider the definition of a bimonoidal category.
(1) The additive structure (C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) is still a symmetric monoi-

dal category.
(2) The axioms

● (2.1.5) relating δl and δr, and
● (2.1.19) relating λ ● and ρ ●

are omitted because they are the only ones among Laplaza’s 24 axioms
that involve the multiplicative symmetry ξ⊗.

Due to the absence of ξ⊗, the reduction of Laplaza’s axioms in Theorem 2.2.13
from 24 to 12 does not apply to bimonoidal categories. The only exception is in
Proposition 2.2.14. Therefore, a bimonoidal category is defined by 21 Laplaza ax-
ioms. ◇
Example 2.1.31 (Commutative Rigs). Suppose

(R,+,×, 0R, 1R)
is a commutative rig, that is, a commutative ring without additive inverses. Then
R becomes a small and tight symmetric bimonoidal category with only identity
morphisms and

(+,×, 0R, 1R) = (⊕,⊗, 0,1).
In particular, the structure morphisms α⊕, λ⊕, ρ⊕, ξ⊕, α⊗, λ⊗, ρ⊗, ξ⊗, λ ●, ρ ●, δl ,
and δr are all identities.

Similarly, if R is a rig, that is, a ring without additive inverses, then R becomes
a small and tight bimonoidal category as above with only identity morphisms.
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Therefore, a (symmetric) bimonoidal category is a categorification of a (commuta-
tive) rig. ◇
Example 2.1.32 (Vector Spaces). The category VectC of finite dimensional complex
vector spaces is a tight symmetric bimonoidal category with

● the usual direct sum ⊕ and tensor product ⊗ of finite dimensional com-
plex vector spaces;
● 0 the 0 vector space; and
● 1 =C as a 1-dimensional complex vector space.

The structure morphisms α⊕, λ⊕, ρ⊕, ξ⊕, α⊗, λ⊗, ρ⊗, ξ⊗, λ ●, ρ ●, δl , and δr are the
canonical isomorphisms. The axioms in Definition 2.1.2 are satisfied because, in
each case, the two composites are both given by the canonical isomorphism. ◇

2.2. Reduction of Axioms

In this section, we observe that in a symmetric bimonoidal category, only 12
of the 24 axioms are necessary; the other 12 axioms are formal consequences. We
emphasize that this reduction of the list of axioms applies only to symmetric bi-
monoidal categories and not bimonoidal categories. The reason is that the proofs
in this section use the multiplicative symmetry ξ⊗, with only one exception as in
Proposition 2.2.14. The braided analogue of the reduction Theorem 2.2.13 is Theo-
rem II.2.2.1.

Motivation 2.2.1. To motivate these reductions, recall that there are 12 groups of
axioms in Definition 2.1.2, four of which have only one axiom each. In the other
eight groups of axioms, we will show that only the first axiom is necessary. The
axiom (2.1.5) describes how the left distributivity δl and the right distributivity
δr determine each other. Once this axiom is assumed, axioms involving δl have
analogues for δr. Moreover, the axiom (2.1.19) states that the left multiplicative
zero λ ● and the right multiplicative zero ρ ● determine each other. Once this axiom
is assumed, axioms involving λ ● have analogues for ρ ●. ◇
Convention 2.2.2. The following list of conventions is used throughout the rest of
this book.

(1) The subscripts of a natural transformation are omitted if there is no dan-
ger of confusion. For example, we often write δl

A,B,C as δl .
(2) The inverse of α⊕ is abbreviated to α−⊕, and similarly for other invertible

structure morphisms.
(3) In each diagram, if an isomorphism, such as ξ⊗ or α⊗, is replaced by

its inverse, then we denote the resulting equivalent version by the same
reference without further comment.

(4) If a diagram is commutative because of the naturality of some structure,
such as δl , ξ⊕, ξ⊗, or ⊕, then it is denoted by nat.

(5) If a diagram is commutative because of naturality and some other prop-
erty P, then only P is displayed. ◇

To simplify the presentation, we adopt the following in most of this section.

Convention 2.2.3. Suppose

(C, (⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕), (⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗), (λ ●, ρ
●), (δl , δr))
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consists of the same data as in Definition 2.1.2, in which Laplaza’s axioms are not
assumed, with A, B, C, and D objects in C. ◇
Lemma 2.2.4. Under Convention 2.2.3, if (2.1.5) is satisfied, then (2.1.6) is equivalent to
(2.1.7).

Proof. The outer diagram below is (2.1.6), and the inner rectangle is (2.1.7).

A(B⊕C) AB⊕ AC

(B⊕C)A BA⊕CA

(C⊕ B)A CA⊕ BA

A(C⊕ B) AC⊕ AB

(2.1.5)

(2.1.7)

(2.1.5)

nat nat

δl

ξ⊕1ξ⊕

δl

δr

ξ⊕ξ⊕1

δr

ξ⊗ ξ⊗ ⊕ ξ⊗

ξ⊗ ξ⊗ ⊕ ξ⊗

Since ξ⊗ is a natural isomorphism, the outer diagram is commutative if and only
if the inner rectangle is commutative. □

Lemma 2.2.5. Under Convention 2.2.3, if (2.1.5) is satisfied, then (2.1.8) is equivalent to
(2.1.9).

Proof. The outer diagram below is (2.1.9), and the middle rectangle is (2.1.8).

A[(B⊕C)⊕D] A(B⊕C)⊕ AD (AB⊕ AC)⊕ AD

A(B⊕C)⊕DA (AB⊕ AC)⊕DA

[(B⊕C)⊕D]A (B⊕C)A⊕DA (BA⊕CA)⊕DA

[B⊕ (C⊕D)]A BA⊕ (C⊕D)A BA⊕ (CA⊕DA)

AB⊕ (C⊕D)A AB⊕ (CA⊕DA)

A[B⊕ (C⊕D)] AB⊕ A(C⊕D) AB⊕ (AC⊕ AD)

nat nat

nat

nat

nat

nat

(2.1.5)

(2.1.5)

(2.1.5)

(2.1.5)

(2.1.8)

δl δl ⊕ 1

α⊕1α⊕

δl 1⊕ δl

δr δr ⊕ 1

α⊕α⊕1

δr 1⊕ δr

ξ⊗

ξ⊗ ⊕ ξ⊗

1⊕ ξ⊗

ξ⊗ ⊕ 1

δl ⊕ 1

1⊕ ξ⊗

(ξ⊗ ⊕ ξ⊗)⊕ 1

ξ⊗
ξ⊗ ⊕ ξ⊗

1⊕ ξ⊗

ξ⊗ ⊕ 1

1⊕ δr

1⊕ (ξ⊗ ⊕ ξ⊗)

ξ⊗ ⊕ 1

Since ξ⊗ is a natural isomorphism, the outer diagram is commutative if and only
if the middle rectangle is commutative. □
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Lemma 2.2.6. Under Convention 2.2.3, if (2.1.5) is satisfied, then (2.1.10) is equivalent
to (2.1.11).

Proof. The outer diagram below is (2.1.10), and the middle rectangle is (2.1.11).

(AB)(C⊕D) (AB)C⊕ (AB)D

(C⊕D)(AB) C(AB)⊕D(AB)

(C⊕D)(BA) C(BA)⊕D(BA)

[(C⊕D)B]A (CB⊕DB)A (CB)A⊕ (DB)A

[B(C⊕D)]A (BC⊕ BD)A (BC)A⊕ (BD)A

A[B(C⊕D)] A(BC⊕ BD) A(BC)⊕ A(BD)

nat

nat

nat

(2.1.5)

(2.1.5)

(2.1.5)

(2.1.11)
1.3.8 1.3.8

δl

α⊗ ⊕ α⊗α⊗

1δl δl

ξ⊗

1ξ⊗

ξ⊗

ξ⊗1

α⊗

ξ⊗ ⊕ ξ⊗

1ξ⊗ ⊕ 1ξ⊗

ξ⊗ ⊕ ξ⊗

ξ⊗1⊕ ξ⊗1

α⊗ ⊕ α⊗

ξ⊗

(ξ⊗ ⊕ ξ⊗)1

δr

δr

δr1 δr

δl1 δr

The left and the right trapezoids are commutative by Theorem 1.3.8. Since α⊗ and
ξ⊗ are natural isomorphisms, the outer diagram (2.1.10) is commutative if and
only if the middle rectangle (2.1.11) is commutative. □

Lemma 2.2.7. Under Convention 2.2.3, if (2.1.5) and (2.1.10) are satisfied, then so is
(2.1.12).
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Proof. The outer diagram below is (2.1.12).

[A(B⊕C)]D (AB⊕ AC)D (AB)D⊕ (AC)D

D[A(B⊕C)] D[AB⊕ AC] D(AB)⊕D(AC)

(DA)(B⊕C) (DA)B⊕ (DA)C

(AD)(B⊕C) (AD)B⊕ (AD)C

A[D(B⊕C)] A(DB⊕DC) A(DB)⊕ A(DC)

A[(B⊕C)D] A(BD⊕CD) A(BD)⊕ A(CD)

nat

nat

nat

(2.1.5)

(2.1.5)

(2.1.10)

(2.1.10)

1.3.8 1.3.8

δl1 δr

α⊗ ⊕ α⊗α⊗

1δr
δl

ξ⊗

α⊗

ξ⊗1

α⊗

1ξ⊗

ξ⊗ ⊕ ξ⊗

α⊗ ⊕ α⊗

ξ⊗1⊕ ξ⊗1

α⊗ ⊕ α⊗

1ξ⊗ ⊕ 1ξ⊗

ξ⊗

1(ξ⊗ ⊕ ξ⊗)

1δl δl

δl

δl

1δl δl

The left and the right trapezoids are commutative by Theorem 1.3.8. Since α⊗ and
ξ⊗ are invertible, if (2.1.10) is commutative, then so is the outer diagram (2.1.12).

□

Lemma 2.2.8. Under Convention 2.2.3, if (2.1.5) and (2.1.19) are satisfied, then (2.1.15)
is equivalent to (2.1.16).

Proof. Consider the following diagram.

0(A⊕ B) 0A⊕ 0B

0 0⊕ 0

(A⊕ B)0 A0⊕ B0

(2.1.15)

(2.1.16)

(2.1.19) (2.1.19)

δl

ξ⊗ ⊕ ξ⊗ξ⊗

δr

λ⊕

λ
●

λ
● ⊕ λ

●

ρ
●

ρ
● ⊕ ρ

●

The outer diagram is commutative by (2.1.5). Since ξ⊗, λ⊕, and ρ ● are natural iso-
morphisms, the top trapezoid is commutative if and only if the bottom trapezoid
is commutative. □

Lemma 2.2.9. Under Convention 2.2.3, if (2.1.19) is satisfied, then (2.1.17) is equivalent
to (2.1.18).
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Proof. Consider the following diagram.

10 01

0

(2.1.19)

(2.1.18) (2.1.17)

ξ⊗1,0

ρ⊗0λ⊗0

ρ
●
1 λ

●
1

The outer diagram is commutative by the axioms (1.2.20) and (1.2.21) in the sym-
metric monoidal category (C, ξ⊗). Since ξ⊗ is invertible, the left triangle is com-
mutative if and only if the right triangle is commutative. □

Lemma 2.2.10. Under Convention 2.2.3, if (2.1.19) is satisfied, then (2.1.20) implies both
(2.1.21) and (2.1.22).

Proof. The outer diagram below is (2.1.21).

(A0)B A(0B)

B(A0) (BA)0 (AB)0 A(B0)

B0

0B 0 A0

1.3.8

nat nat

(2.1.19)

(2.1.19)(2.1.20) (2.1.20)

α⊗

1λ
●ρ

●
1

λ
● ρ

●

ξ⊗

1ρ
●

ξ⊗

1ξ⊗

1ρ
●

ρ
● ρ

●
ρ
●

α−⊗ ξ⊗1 α−⊗

The top trapezoid is commutative by Theorem 1.3.8. Therefore, assuming (2.1.19),
(2.1.20) implies (2.1.21).

For the other assertion, consider the following diagram.

(0A)B 0(AB) (AB)0

0B 0

A0

(A0)B A(0B) A(B0)

(2.1.19)

(2.1.19)

(2.1.19)

(2.1.22)

(2.1.21)

(2.1.20)

α⊗ ξ⊗

α⊗ξ⊗1

α⊗ 1ξ⊗

λ
●
1

ρ
●
1

λ
●

1λ
●

ρ
●

ρ
●

1ρ
●

λ
●

The outer diagram is commutative by Theorem 1.3.8. In the previous paragraph,
we showed that assuming (2.1.19), (2.1.20) implies (2.1.21). Since λ ●, ρ ●, and ξ⊗
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are natural isomorphisms, we infer that (2.1.20) also implies (2.1.22), which is the
upper left trapezoid. □

Lemma 2.2.11. Under Convention 2.2.3, if (2.1.5), (2.1.6), and (2.1.19) are satisfied, then
the four axioms (2.1.23), (2.1.24), (2.1.25), and (2.1.26) are equivalent to each other.

Proof. The outer diagram below is commutative by (2.1.5).

A(0⊕ B) A0⊕ AB

AB 0⊕ AB

BA 0⊕ BA

(0⊕ B)A 0A⊕ BA

(2.1.23)

(2.1.19)

(2.1.24)

nat nat

δl

ξ⊗ ⊕ ξ⊗ξ⊗

δr

λ⊕

ξ⊗ 1⊕ ξ⊗

λ⊕

1λ⊕ ρ
● ⊕ 1

λ⊕1 λ
● ⊕ 1

Since λ⊕, λ ●, and ξ⊗ are natural isomorphisms, the above diagram shows the
equivalence between (2.1.23) and (2.1.24).

The outer diagram below is commutative by (2.1.6).

A(0⊕ B) A0⊕ AB

AB 0⊕ AB

AB AB⊕ 0

A(B⊕ 0) AB⊕ A0

(2.1.23)

(2.1.25)

nat(1.2.20)
(1.2.21)

(1.2.20)+ (1.2.21)

δl

ξ⊕1ξ⊕

δl

λ⊕

1 ξ⊕

ρ⊕

1λ⊕ ρ
● ⊕ 1

1ρ⊕ 1⊕ ρ
●

Since λ⊕, ρ⊕, ξ⊕, and ρ ● are natural isomorphisms, the above diagram shows the
equivalence between (2.1.23) and (2.1.25). Note that this diagram is valid even
without assuming (2.1.5), (2.1.19), and the existence of ξ⊗.
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The outer diagram below is commutative by (2.1.5).

A(B⊕ 0) AB⊕ A0

AB AB⊕ 0

BA BA⊕ 0

(B⊕ 0)A BA⊕ 0A

(2.1.25)

(2.1.19)

(2.1.26)

nat nat

δl

ξ⊗ ⊕ ξ⊗ξ⊗

δr

ρ⊕

ξ⊗ ξ⊗ ⊕ 1

ρ⊕

1ρ⊕ 1⊕ ρ
●

ρ⊕1 1⊕ λ
●

Since ρ⊕, λ ●, and ξ⊗ are natural isomorphisms, the above diagram shows the
equivalence between (2.1.25) and (2.1.26). □

Lemma 2.2.12. Under Convention 2.2.3, if (2.1.5) is satisfied, then (2.1.27) is equivalent
to (2.1.28).

Proof. The outer diagram below is commutative by (2.1.5).

1(A⊕ B) 1A⊕1B

A⊕ B

(A⊕ B)1 A1⊕ B1

(2.1.27)

(2.1.28)

δl

ξ⊗ ⊕ ξ⊗ξ⊗

δr

λ⊗ λ⊗ ⊕ λ⊗

ρ⊗ ρ⊗ ⊕ ρ⊗

The left and right triangles are commutative by the axioms (1.2.20) and (1.2.21) in
the symmetric monoidal category (C, ξ⊗). Since λ⊗ and ρ⊗ are natural isomor-
phisms, the above diagram shows the equivalence between (2.1.27) and (2.1.28).

□

Combining Lemmas 2.2.4 through 2.2.12, we obtain the following main obser-
vation of this section.

Theorem 2.2.13. In Definition 2.1.2 of a symmetric bimonoidal category, it is suffi-
cient to assume the first axiom in each of the twelve groups of axioms, namely, (2.1.5),
(2.1.6), (2.1.8), (2.1.10), (2.1.13), (2.1.14), (2.1.15), (2.1.17), (2.1.19), (2.1.20), (2.1.23),
and (2.1.27).

As noted at the beginning of this section, Theorem 2.2.13 does not apply to bi-
monoidal categories because its proof uses the multiplicative symmetry ξ⊗. There
is only one exception as follows.

Proposition 2.2.14. In a bimonoidal category, the two axioms (2.1.23) and (2.1.25) are
equivalent, so only one of them is necessary.
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Proof. The second diagram in the proof of Lemma 2.2.11, which establishes the
equivalence between (2.1.23) and (2.1.25), is valid in a bimonoidal category be-
cause it does not involve the multiplicative symmetry. □

2.3. Distributive Symmetric Monoidal Categories

In this section, we discuss a class of examples of symmetric bimonoidal cate-
gories whose sums are coproducts.

Definition 2.3.1. A symmetric monoidal category C is said to be distributive if the
following two conditions hold.

(1) C has finite coproducts. Fix an initial object ∅ ∈ C.
(2) The natural morphisms

∐n
i=1(A⊗ Bi) A⊗ (∐n

i=1 Bi)

∐n
i=1(Bi ⊗ A) (∐n

i=1 Bi)⊗ A

dl

dr

are isomorphisms for n = 0, 2 and for objects A, Bi ∈ C, with ∐ denoting
coproduct, and with an empty coproduct denoting ∅. ◇

Recall that a symmetric bimonoidal category is tight if both distributivity δl

and δr are natural isomorphisms.
Proposition 2.3.2. Suppose C is a distributive symmetric monoidal category. Then C
yields a tight symmetric bimonoidal category with the following data.
The Multiplicative Structure: It is the given symmetric monoidal structure on C.
The Additive Structure: It is (C,∐,∅), with α⊕, λ⊕, ρ⊕, and ξ⊕ given by the universal

properties of coproducts and ∅.
The Multiplicative Zeros: λ ● = d−1

r and ρ ● = d−1
l in the case n = 0.

The Distributivity Morphisms: δl = d−1
l and δr = d−1

r in the case n = 2.

Proof. The universal properties of coproducts and ∅ imply that (C,∐,∅) is a sym-
metric monoidal category. By definition, δl and δr are natural isomorphisms. The
twelve axioms in Theorem 2.2.13 all follow from the university properties of co-
products and ∅, and the naturality of the multiplicative structure. □

Below are some examples of distributive symmetric monoidal categories, to
which Proposition 2.3.2 applies to yield tight symmetric bimonoidal categories.

Example 2.3.3 (Symmetric Monoidal Closed Categories). If C is a symmetric mon-
oidal closed category as in Definition 1.2.28 with finite coproducts, then the natural
morphisms dl and dr are isomorphisms. Therefore, C is a distributive symmetric
monoidal category. ◇
Example 2.3.4 (Modules). For each commutative ring R, the category Mod(R) of
R-modules is symmetric monoidal with

● the usual tensor product of R-modules;
● coproducts given by direct sums ⊕ of R-modules; and
● internal hom given by R-linear maps.

As a special case of Example 2.3.3, Mod(R) is a distributive symmetric monoidal
category, hence also a symmetric bimonoidal category with (∐,∅) = (⊕, 0). ◇
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Example 2.3.5 (Distributive Categories). A distributive category is a category with
finite products × and finite coproducts such that the natural morphism dl is an
isomorphism for n = 0, 2 and ⊗ = ×. The symmetry isomorphism of × implies
that dr is also an isomorphism for n = 0, 2. Therefore, a distributive category is
a distributive symmetric monoidal category, hence also a symmetric bimonoidal
category with ⊗ = ×, 1 = ∗ (a chosen terminal object), ⊕ = ∐, and 0 = ∅ (a chosen
initial object). ◇

The symmetric bimonoidal categories in Proposition 2.3.2 and Examples 2.3.3
through 2.3.5 all have (⊕, 0) = (∐,∅). In other words, the additive structure is
given by coproducts. For the symmetric bimonoidal categories Σ and Σ′ in Sec-
tion 2.4, their sums are not given by coproducts.

2.4. Finite Ordinal Category

In this section, we discuss a symmetric bimonoidal category Σ that will play
an important role in Chapters 4, 7, and II.7.

(1) In Chapter 4, Σ is extended to the distortion category D that is a crucial
ingredient in formulating and proving the Coherence Theorem 4.4.3.

(2) In Chapter 7, we show that Σ is bicategorically an initial object in a suit-
able 2-category of small symmetric bimonoidal categories.

(3) In Chapter II.7, we show that Σ is bicategorically an initial object in a
suitable 2-category of small braided bimonoidal categories.

A variation of Σ is discussed in the second half of this section. Further explanation
of the formulas in the next definition is given in Explanation 2.4.7.
Definition 2.4.1. Define Σ by the following data.
Category: As a category, Σ is defined as follows.

Objects: They are nonnegative integers n ≥ 0.
Morphisms: For objects m and n, the morphism set is

Σ(m, n) =
⎧⎪⎪⎨⎪⎪⎩

Σn if m = n, and
∅ if m /= n.

Here Σn is the symmetric group on n letters.
Composition is that of bijections, and idn ∈ Σn is the identity morphism
on n.

The Additive Structure: The functor

Σ ×Σ Σ⊕

is defined on objects by

m⊕ n = m + n,

and on morphisms

Σm ×Σn Σm+n
⊕

by the block sum

(2.4.2) (σ⊕ τ)(i) =
⎧⎪⎪⎨⎪⎪⎩

σ(i) if 1 ≤ i ≤ m, and
τ(i −m)+m if m + 1 ≤ i ≤ m + n

for (σ, τ) ∈ Σm ×Σn.
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The additive zero 0 is the object 0, which is a strict two-sided unit
for ⊕. The additive structure isomorphisms α⊕, λ⊕, and ρ⊕ are identities.
The additive symmetry isomorphism

m⊕ n = m + n n +m = n⊕m
ξ⊕m,n

is the bijection defined by

(2.4.3) ξ⊕m,n(j) =
⎧⎪⎪⎨⎪⎪⎩

j + n if 1 ≤ j ≤ m, and
j −m if m + 1 ≤ j ≤ m + n.

The Multiplicative Structure: The functor

Σ ×Σ Σ⊗

is defined on objects by

m⊗ n = mn,

and on morphisms

Σm ×Σn Σmn
⊗

by

(2.4.4) (σ⊗ τ)(i + (j − 1)m) = σ(i)+ (τ(j)− 1)m

for (σ, τ) ∈ Σm ×Σn, 1 ≤ i ≤ m, and 1 ≤ j ≤ n.
The multiplicative unit 1 is the object 1, which is a strict two-sided

unit for ⊗. The multiplicative structure isomorphisms α⊗, λ⊗, and ρ⊗ are
identities.

The multiplicative symmetry isomorphism

m⊗ n = mn nm = n⊗m
ξ⊗m,n

is the bijection defined by

(2.4.5) ξ⊗m,n(i + (j − 1)m) = j + (i − 1)n

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
The Multiplicative Zeros: The left multiplicative zero λ ● and the right multiplica-

tive zero ρ ● are both identity natural transformations. This is well defined
because

m⊗ 0 = 0 = 0⊗m.

Distributivity: The left distributivity morphism

m⊗ (n⊕ p) (m⊗ n)⊕ (m⊗ p)
δl

m,n,p

is the identity permutation in Σm(n+p). The right distributivity morphism

(m⊕ n)⊗ p (m⊗ p)⊕ (n⊗ p)
δr

m,n,p
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is the permutation in Σ(m+n)p defined by

δr(i + (k − 1)(m + n)) = i + (k − 1)m
δr(j +m + (k − 1)(m + n)) = j + (k − 1)n + pm

(2.4.6)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ p.
This finishes the definition of Σ. ◇
Explanation 2.4.7. Here we provide geometric intuition of the constructions in
Definition 2.4.1.
Objects and morphisms: The object m ∈ Σ is regarded as an interval with m ob-

jects, arranged from left to right. A morphism in Σ permutes the objects
within such an interval.

Sums: The object m⊕ n = m + n is the combined interval with m on the left and n
on the right.

Block sums: In the block sum σ⊕ τ in (2.4.2), σ acts on the interval on the left, and
τ acts on the interval on the right.

Additive symmetry: ξ⊕m,n in (2.4.3) interchanges the two intervals and leaves the
order within each interval unchanged.

Products: The object m⊗ n = mn consists of n intervals, each with m objects. The
elements in n are now used as indices for these n intervals. Alternatively,
it is an n×m matrix with each row a copy of m and with the rows indexed
by n.

Product of morphisms: In the bijection σ ⊗ τ ∈ Σmn in (2.4.4), τ ∈ Σn permutes
the n intervals, and σ ∈ Σm permutes within each interval. In the matrix
description, τ permutes the n rows, and σ permutes the m columns.

Multiplicative symmetry: ξ⊗m,n in (2.4.5) redistributes n intervals of m objects each
to m intervals of n objects each. Specifically, it sends the ith object in
the jth interval in the domain to the jth object in the ith interval in the
codomain. In the matrix description, this corresponds to taking the trans-
pose of an n ×m matrix.

Left distributivity: δl
m,n,p is the identity because (n+ p) intervals of m objects each

is already equal to n intervals of m objects each followed by p intervals of
m objects each.

Right distributivity: δr
m,n,p in (2.4.6) redistributes p intervals of (m + n) objects

each to p intervals of m objects each followed by p intervals of n objects
each. Alternatively, in the matrix description, we first arrange (m + n)p
objects into a p × (m + n)matrix of the form [A∣B]with
● A the p ×m matrix consisting of the first m columns and
● B the p × n matrix consisting of the last n columns.

Then this component of δr rearranges the matrix [A∣B] to the array [ A
B ],

leaving the order of the entries in each of A and B unchanged. The two
rows in (2.4.6) correspond to the action of δr on, respectively, the (k, i)-
entry in A and the (k, j)-entry in B. ◇

Recall from Definitions 1.2.1 and 1.2.18 that a permutative category is a symmet-
ric strict monoidal category.
Proposition 2.4.8. Σ in Definition 2.4.1 is a small and tight symmetric bimonoidal cat-
egory whose additive structure and multiplicative structure are both permutative categor-
ies.
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Proof. That the additive structure is a strict monoidal category follows from the
fact that α⊕, λ⊕, and ρ⊕ are identities. The unit axiom (1.2.21) holds because ξ⊕m,0
is the identity map. The symmetry axiom (1.2.20) and the hexagon axiom (1.2.22)
both follow from the description in Explanation 2.4.7 of ξ⊕m,n as interchanging two
consecutive intervals. So the additive structure is a symmetric strict monoidal
category.

To see that the multiplicative associativity can be defined as the identity, sup-
pose σ ∈ Σm, τ ∈ Σn, and π ∈ Σp. Then both (σ⊗ τ)⊗π and σ⊗ (τ⊗π) in Σmnp are
given by the bijection

(2.4.9) i + (j − 1)m + (k − 1)(mn) σ(i)+ (τ(j)− 1))m + (π(k)− 1)(mn)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ p. See Explanation 2.4.14. Therefore, the identity
natural transformation α⊗ is well defined. Both identity natural transformations
λ⊗ and ρ⊗ are well defined by (2.4.4) and that 1 = 1 is a strict two-sided unit for
⊗. That the multiplicative structure is a strict monoidal category follows from the
fact that α⊗, λ⊗, and ρ⊗ are identities.

Next we check the symmetric monoidal category axioms.

● The unit axiom (1.2.21) holds because ξ⊗m,1 is the identity map.
● The symmetry axiom (1.2.20) holds by the description of ξ⊗m,n as redis-

tributing n intervals of m objects each to m intervals of n objects each.
Alternatively, regarding ξ⊗m,n as taking the transpose of an n ×m matrix,
its inverse is the transpose given by ξ⊗n,m.
● The hexagon axiom (1.2.22) is equivalent to the commutativity of the fol-

lowing diagram for m, n, p ≥ 0.

m⊗ n⊗ p m⊗ p⊗ n

p⊗m⊗ n

1m ⊗ ξ⊗n,p

ξ⊗m,p ⊗ 1nξ⊗mn,p

This diagram is commutative because both composites are given by the
bijection

(2.4.10) i + (j − 1)m + (k − 1)(mn) k + [i − 1+ (j − 1)m] p

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ p. See Explanation 2.4.14.

Therefore, the multiplicative structure is a symmetric strict monoidal category.
For each of the twelve axioms listed in Theorem 2.2.13 for Σ, we check that the

two relevant permutations are equal. First, for the axiom (2.1.6) with A = m, B = n,
and C = p, each of the two composites is the permutation in Σm(n+p) given by

(2.4.11) {
i + (j − 1)m i + (p + j − 1)m

i + (n + k − 1)m i + (k − 1)m

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ p. See Explanation 2.4.15.
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For the axiom (2.1.5), with the same notation as above, each of the two com-
posites is the permutation in Σ(m+n)p given by

(2.4.12) {
i + (k − 1)(m + n) k + (i − 1)p

j +m + (k − 1)(m + n) k + (m + j − 1)p
for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ p. See Explanation 2.4.16.

For the 2-by-2 distributivity axiom (2.1.13) with D = q, each of the two com-
posites is the permutation in Σ(m+n)(p+q) given by

(2.4.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

i + (k − 1)(m + n) i + (k − 1)m
j +m + (k − 1)(m + n) j + (k − 1)n +mp

i + (m + n)(p + l − 1) i + (l − 1)m + (m + n)p
j +m + (m + n)(p + l − 1) j + (l − 1)n + (m + n)p +mq

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p, and 1 ≤ l ≤ q. See Explanation 2.4.17.
The other nine axioms—(2.1.9), which is equivalent to (2.1.8) by Lemma 2.2.5,

(2.1.10), (2.1.14), (2.1.15), (2.1.17), (2.1.19), (2.1.20), (2.1.23), and (2.1.27)—hold be-
cause each permutation involved is the identity. □

We now provide geometric description of the bijections that appeared in the
proof of Proposition 2.4.8.
Explanation 2.4.14. For the bijection in (2.4.10), suppose

A = [●, . . . , ●]
is a 1×m matrix with m objects, and M is the p ×mn matrix

M =
⎡⎢⎢⎢⎢⎢⎣

A11 ⋯ A1n
⋮ ⋱ ⋮

Ap1 ⋯ Apn

⎤⎥⎥⎥⎥⎥⎦
with each Akj a copy of A for 1 ≤ j ≤ n and 1 ≤ k ≤ p. Then the bijection in (2.4.10),
namely ξ⊗mn,p, sends M to its transpose

MT =
⎡⎢⎢⎢⎢⎢⎣

AT
11 ⋯ AT

p1
⋮ ⋱ ⋮

AT
1n ⋯ AT

pn

⎤⎥⎥⎥⎥⎥⎦
with the superscript T denoting transpose. The formula (2.4.10) is the action of
this bijection on the ith object in Akj.

For the bijection in (2.4.9), namely

(σ⊗ τ)⊗π = σ⊗ (τ ⊗π) ∈ Σmnp,

regard M as a p × n matrix with (k, j)-entry Akj. Then each of these two bijections
permutes

● the p rows of M via π ∈ Σp;
● the n columns of M via τ ∈ Σn; and
● the objects in each 1×m matrix Akj = A via σ ∈ Σm. ◇

Explanation 2.4.15. For the bijection in (2.4.11), first arrange m(n + p) objects into
an (n + p)×m matrix of the form M = [ A

B ]with
● A the n ×m matrix consisting of the top n rows and
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● B the p ×m matrix consisting of the bottom p rows.

Then the bijection in (2.4.11) rearranges the matrix [ A
B ] to [ B

A ] by swapping the
blocks A and B. The two rows in (2.4.11) correspond to the action of this bijection
on, respectively,

● the (j, i)-entry in A in M and
● the (k, i)-entry in B in M. ◇

Explanation 2.4.16. For the bijection in (2.4.12), first arrange (m + n)p objects into
a p × (m + n)matrix of the form M = [A∣B]with

● A the p ×m matrix consisting of the first m columns and
● B the p × n matrix consisting of the last n columns.

Then the bijection in (2.4.12) sends the matrix [A∣B] to its transpose [ AT

BT ], with AT

and BT denoting the transposes of, respectively, A and B. The two rows in (2.4.12)
correspond to the action of this bijection on, respectively,

● the (k, i)-entry in A in M and
● the (k, j)-entry in B in M. ◇

Explanation 2.4.17. For the bijection in (2.4.13), first arrange (m+ n)(p+ q) objects
into a (p + q)× (m + n)matrix M of the form

M = [ A B
C D ]

with
● A a p ×m matrix,
● B a p × n matrix,
● C a q ×m matrix, and
● D a q × n matrix.

Then the bijection in (2.4.13) rearranges M to the array
⎡⎢⎢⎢⎢⎢⎢⎢⎣

A
B
C
D

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The four rows in (2.4.13) correspond to the action of this bijection on, respectively,
● the (k, i)-entry in A in M,
● the (k, j)-entry in B in M,
● the (l, i)-entry in C in M, and
● the (l, j)-entry in D in M. ◇

Next we describe a variant of Σ in which the right distributivity is an identity.

Definition 2.4.18. Define Σ′ by the following data.
The Additive Structure: The additive structure

(Σ′,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
is the same as that of Σ in Definition 2.4.1.

The Multiplicative Structure: The functor

Σ′ ×Σ′ Σ′⊗
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is again defined by m⊗ n = mn on objects, and by

(2.4.19) (σ⊗ τ)(j + (i − 1)n) = τ(j)+ (σ(i)− 1)n
on morphisms for (σ, τ) ∈ Σm ×Σn, 1 ≤ i ≤ m, and 1 ≤ j ≤ n.

The multiplicative unit 1 is the object 1, which is a strict two-sided
unit for ⊗. The multiplicative structure isomorphisms α⊗, λ⊗, and ρ⊗ are
identities.

The multiplicative symmetry isomorphism

mn mn
ξ′
⊗

m,n

is defined by

(2.4.20) ξ′
⊗
m,n(j + (i − 1)n) = i + (j − 1)m

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
The Multiplicative Zeros: Both λ ● and ρ ● are identity natural transformations.
Distributivity: The right distributivity morphism δr is the identity natural trans-

formation. The left distributivity morphism

m⊗ (n⊕ p) (m⊗ n)⊕ (m⊗ p)
δl

m,n,p

is the permutation in Σm(n+p) defined by

δl(j + (i − 1)(n + p)) = j + (i − 1)n
δl(k + n + (i − 1)(n + p)) = k + (i − 1)p +mn

(2.4.21)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ p.
This finishes the definition of Σ′. ◇
Explanation 2.4.22. The additive structure of Σ′ has the same geometric interpre-
tation as that of Σ in Explanation 2.4.7. Consider the rest of Σ′ in Definition 2.4.18.
Products: The object m⊗n = mn is now regarded as consisting of m intervals, each

with n objects. Alternatively, it is an m × n matrix with each row a copy
of n and with the rows indexed by m.

Product of morphisms: In the bijection σ ⊗ τ ∈ Σmn in (2.4.19), σ ∈ Σm permutes
the m intervals, and τ ∈ Σn permutes within each interval. In the matrix
description, σ permutes the m rows, and τ permutes the n columns.

Multiplicative symmetry: ξ′
⊗
m,n in (2.4.20) redistributes m intervals of n objects

each to n intervals of m objects each by sending the jth object in the ith
interval in the domain to the ith object in the jth interval in the codomain.
In the matrix description, this corresponds to taking the transpose of an
m × n matrix.

Right distributivity: δr
m,n,p is the identity because (m + n) intervals of p objects

each is already equal to m intervals of p objects each followed by n inter-
vals of p objects each.

Left distributivity: δl
m,n,p in (2.4.21) redistributes m intervals of (n + p) objects

each to m intervals of n objects each followed by m intervals of p objects
each. Alternatively, in the matrix description, we first arrange m(n + p)
objects into an m × (n + p)matrix of the form [A∣B]with
● A the m × n matrix consisting of the first n columns and
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● B the m × p matrix consisting of the last p columns.
Then this component of δl rearranges the matrix [A∣B] to the array [ A

B ],
leaving the order of the entries in each of A and B unchanged. The two
rows in (2.4.21) correspond to the action of δl on, respectively, the (i, j)-
entry in A and the (i, k)-entry in B. ◇

A minor modification of the proof of Proposition 2.4.8 yields the following.

Proposition 2.4.23. Σ′ in Definition 2.4.18 is a small and tight symmetric bimonoidal
category whose additive structure and multiplicative structure are both permutative cate-
gories.

2.5. Bipermutative Categories

In this section, we introduce strict analogues of a symmetric bimonoidal cat-
egory, which are called a right, respectively left, bipermutative category. We ob-
serve that right and left bipermutative categories are tight symmetric bimonoidal
categories. In Chapter 5, we will show that tight symmetric bimonoidal categories
can be strictified to right and left bipermutative categories. First we define right
bipermutative categories.

Right Bipermutative Categories.

Motivation 2.5.1. To motivate the definition of a right bipermutative category, re-
call from Section 2.4 the two symmetric bimonoidal categories, Σ and Σ′, whose
additive and multiplicative structures are both permutative categories, that is,
symmetric strict monoidal categories. Their left and right multiplicative zeros, λ ●

and ρ ●, are both identities. However, only one of the two distributivity morphisms
is an identity: δl in Σ and δr in Σ′. These two examples suggest that, in defining
a strict analogue of a symmetric bimonoidal category, we should demand that the
multiplicative zeros and only one of the two distributivity morphisms be the iden-
tities. In a right bipermutative category, the right distributivity morphism δr is the
identity. ◇
Definition 2.5.2. A right bipermutative category is a tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (λ ●, ρ
●), (δl , δr))

consisting of the following data.

● (C,⊕, 0, ξ⊕) and (C,⊗,1, ξ⊗) are permutative categories.
● λ ●, ρ ●, δl , and δr are natural transformations as in (2.1.3) and (2.1.4).

The above data are required to satisfy the following four conditions.

(1) λ ● and ρ ● are both equal to the identity natural transformation of the
constant functor C C at 0.

(2) δr is an identity natural transformation.
(3) ξ⊗A,0 ∶ A⊗ 0 0⊗ A is the identity morphism of 0 for each object A.
(4) The axioms (2.1.5), (2.1.7), and (2.1.13) are satisfied.

This finishes the definition of a right bipermutative category. ◇
Explanation 2.5.3. Consider Definition 2.5.2.



I.46 2. SYMMETRIC BIMONOIDAL CATEGORIES

● The axiom (2.1.5) is equivalent to the following commutative diagram.

(2.5.4)

A(B⊕C) AB⊕ AC

(B⊕C)A BA⊕CA

δl

ξ⊗

δr

=

ξ⊗⊕ξ⊗

In particular, the left distributivity morphism δl is a natural isomorphism.
● The axiom (2.1.7) means the commutativity of the following diagram.

(2.5.5)

(A⊕ B)C AC⊕ BC

(B⊕ A)C BC⊕ AC

ξ⊕1

δr

=

ξ⊕

δr

=

● The axiom (2.1.13) means the commutativity of the following diagram.

(2.5.6)

(A⊕ B)(C⊕D) A(C⊕D)⊕ B(C⊕D)

(A⊕ B)C⊕ (A⊕ B)D AC⊕ AD⊕ BC⊕ BD

AC⊕ BC⊕ AD⊕ BD

δr

=

δl ⊕ δl

1⊕ ξ⊕ ⊕ 1

δl

=
δr ⊕ δr

◇
Recall from Definition 2.1.2 that a symmetric bimonoidal category is tight if

both δl and δr are natural isomorphisms.
Proposition 2.5.7. Each right bipermutative category is a tight symmetric bimonoidal
category.

Proof. The right distributivity morphism δr is the identity by definition. The left
distributivity morphism δl is a natural isomorphism by (2.5.4). Consider the 24
axioms in Definition 2.1.2 for a right bipermutative category.

● The axioms (2.1.5), (2.1.7), and (2.1.13) hold by assumption.
● The axiom (2.1.6) holds by Lemma 2.2.4.
● The axiom (2.1.19) holds by the identity assumptions on λ ●, ρ ●, and ξ⊗−,0.
● The axioms (2.1.8), (2.1.11), (2.1.14), (2.1.16), (2.1.17), (2.1.20), (2.1.24), and

(2.1.28) hold by the assumption that λ ●, ρ ●, and δr are identities.
We finish the proof by applying Lemmas 2.2.5 through 2.2.12 to obtain all 24 ax-
ioms of a symmetric bimonoidal category. □

Example 2.5.8. The symmetric bimonoidal category Σ′ in Proposition 2.4.23 is a
right bipermutative category. ◇
Example 2.5.9 (Coordinatized Vector Spaces). A variation of the tight symmetric
bimonoidal category VectC in Example 2.1.32 is the right bipermutative category
VectCc of coordinatized finite dimensional complex vector spaces defined as follows.

● Its objects are nonnegative integers.
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● A morphism m n is an n ×m complex matrix.
● Categorical composition is given by matrix multiplication.
● The identity morphism 1n ∶ n n is the n × n identity matrix.

It becomes a right bipermutative category with the following data.

● m⊕ n = m + n on objects, with 0 as the additive zero.
● For complex matrices A and B, A⊕ B is the matrix direct sum

A⊕ B = [ A 0
0 B ]

with each 0 representing a 0 matrix of appropriate size.
● ξ⊕m,n ∶ m + n n +m is the permutation matrix

ξ⊕m,n = [
0 1n

1m 0 ]

This permutation matrix is obtained from the identity matrix 1m+n by
permuting its m + n rows using the block permutation in (2.4.3).

– For a matrix C with n + m columns, Cξ⊕m,n is obtained from C by
swapping the first n columns with the last m columns.

– For a matrix D with m + n rows, ξ⊕m,nD is obtained from D by swap-
ping the first m rows with the last n rows.

● m⊗ n = mn on objects, with 1 as the multiplicative unit.
● For complex matrices

– A = (Aji) ∶ m n and
– B = (Blk) ∶ p q,

A⊗ B ∶ mp nq is the following matrix tensor product.

A⊗ B =
⎡⎢⎢⎢⎢⎢⎣

A11B ⋯ A1mB
⋮ ⋱ ⋮

An1B ⋯ AnmB

⎤⎥⎥⎥⎥⎥⎦
Each AjiB = (AjiBlk)l,k is the scalar product.
● ξ⊗m,n ∶ mn nm is the permutation matrix obtained from the identity

matrix 1mn by permuting its mn rows using the permutation in (2.4.20).
– For a matrix C with mn columns, Cξ⊗m,n is obtained from C by per-

muting its columns using the permutation in (2.4.5).
– For a matrix D with mn rows, ξ⊗m,nD is obtained from D by permut-

ing its rows using the permutation in (2.4.20).
● The structure morphisms λ ●, ρ ●, and δr are identities.
● δl is defined as the composite in (2.5.4).

This finishes the right bipermutative categorical data of VectCc .
The naturality of ξ⊕ follows from the matrix equalities

[B 0
0 A] [

0 1n
1m 0 ] = [

0 B
A 0] = [

0 1n′

1m′ 0 ] [
A 0
0 B]

for A ∶ m m′ and B ∶ n n′. The naturality of ξ⊗ means the equality

ξ⊗m′,n′(A⊗ B) = (B⊗ A)ξ⊗m,n
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that expresses B⊗ A as a row and column permutation of A⊗ B. The naturality of
δr follows from the following matrix equalities.

(A⊕ B)⊗C = [ A⊗C 0
0 B⊗C ] = (A⊗C)⊕ (B⊗C)

On the other hand, δl is not the identity because

C⊗ (A⊕ B) /= (C⊗ A)⊕ (C⊗ B)

for general matrices A, B, and C. For example, if

(2.5.10) C = [0 1
1 0] and A = B = (1),

then

C⊗ ((1)⊕ (1)) = C⊗ 12 = [
0 12
12 0 ] ,

while

(C⊗ (1))⊕ (C⊗ (1)) = C⊕C = [C 0
0 C] .

Next we check the right bipermutative category axioms.

● The diagram (2.5.4) is commutative by the definition of δl in terms of δr

and ξ⊗.
● The diagram (2.5.5) is commutative because

ξ⊕m,n ⊗ 1p = [
0 1np

1mp 0 ] = ξ⊕mp,np

for m, n, p ≥ 0.
● The diagram (2.5.6) is commutative for the following reasons:

– The axiom (2.1.13) holds in Σ′, which is equivalent to (2.5.6).
– The two composites in (2.5.6) for VectCc are the two permutation ma-

trices obtained from 1(m+n)(p+q) by permuting its rows using the two
corresponding permutations in (2.5.6) for Σ′.

A more conceptual way to think about VectCc is to regard each object m as the
complex vector space Cm equipped with the standard Kronecker basis. A mor-
phism m n is then a C-linear map Cm Cn, regarded as a complex n ×m
matrix via the standard bases. Composition of C-linear maps

Cm Cn Cp

corresponds to matrix multiplication. The identity matrix 1n corresponds to the
identity map onCn. The rest of the structures in VectCc are similarly interpreted as
in VectC for the vector spaces Cn with the standard bases.

We remark that there is an incorrect claim in [KV94, Ex. 5.6] that says that in
VectCc both distributivity morphisms are the identities. As we illustrated with a
simple example (2.5.10) above, δl in VectCc is not the identity. ◇
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Left Bipermutative Categories. Next we define left bipermutative categories,
in which the left distributivity morphism δl is the identity.

Definition 2.5.11. A left bipermutative category is a tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (λ ●, ρ
●), (δl , δr))

consisting of the following data.

● (C,⊕, 0, ξ⊕) and (C,⊗,1, ξ⊗) are permutative categories.
● λ ●, ρ ●, δl , and δr are natural transformations as in (2.1.3) and (2.1.4).

The above data are required to satisfy the following four conditions.

(1) λ ● and ρ ● are both equal to the identity natural transformation of the
constant functor C C at 0.

(2) δl is an identity natural transformation.
(3) ξ⊗A,0 ∶ A⊗ 0 0⊗ A is the identity morphism of 0 for each object A.
(4) The axioms (2.1.5), (2.1.6), and (2.1.13) are satisfied.

This finishes the definition of a left bipermutative category. ◇
Explanation 2.5.12. Consider Definition 2.5.11.

● The axiom (2.1.5) is equivalent to the following commutative diagram.

(2.5.13)

(A⊕ B)C AC⊕ BC

C(A⊕ B) CA⊕CB

δr

ξ⊗

δl

=

ξ⊗⊕ξ⊗

In particular, the right distributivity morphism δr is a natural isomor-
phism.
● The axiom (2.1.6) means the commutativity of the following diagram.

(2.5.14)

A(B⊕C) AB⊕ AC

A(C⊕ B) AC⊕ AB

1ξ⊕

δl

=

ξ⊕

δl

=

● The axiom (2.1.13) means the commutativity of the following diagram.

(2.5.15)

(A⊕ B)(C⊕D) A(C⊕D)⊕ B(C⊕D)

(A⊕ B)C⊕ (A⊕ B)D AC⊕ AD⊕ BC⊕ BD

AC⊕ BC⊕ AD⊕ BD

δr

= δl ⊕ δl

1⊕ ξ⊕ ⊕ 1

δl =

δr ⊕ δr

◇
Proposition 2.5.16. Each left bipermutative category is a tight symmetric bimonoidal
category.
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Proof. The left distributivity morphism δl is the identity by definition. The right
distributivity morphism δr is a natural isomorphism by (2.5.13). Consider the 24
axioms in Definition 2.1.2 for a left bipermutative category.

● The axioms (2.1.5), (2.1.6), and (2.1.13) hold by assumption.
● The axiom (2.1.19) holds by the identity assumptions on λ ●, ρ ●, and ξ⊗−,0.
● The axioms (2.1.9), (2.1.10), (2.1.14), (2.1.15), (2.1.17), (2.1.20), (2.1.23), and

(2.1.27) hold by the assumption that λ ●, ρ ●, and δr are identities.
We finish the proof by applying Lemmas 2.2.4 through 2.2.12 to obtain all 24 ax-
ioms of a symmetric bimonoidal category. □

Example 2.5.17. The symmetric bimonoidal category Σ in Proposition 2.4.8 is a left
bipermutative category. ◇

2.6. Application: Reversible Programming of Finite Types

In this section, we discuss an application of symmetric bimonoidal categories
to reversible programming of finite types with sums and products. This section is
based on the paper [CS16]. The main observation [CS16, Th. 3] is Theorem 2.6.2,
which asserts the existence of a symmetric bimonoidal groupoid Π with syntax of
finite types as objects. This is actually true by the construction of Π. Theorem 2.6.2
is a bimonoidal manifestation of the theme of the paper [BS11], in which the close
connection between category theory, physics, and computation is described. Here
the categorical concept is a symmetric bimonoidal groupoid. Sums and products
of objects in such a category model syntax of finite types. Near the end of this
section, we point out a slight improvement of Π. More discussion about [CS16]
and Π is in Note 2.7.3 and Examples 3.9.10 and 4.4.5. In particular, Laplaza’s
Coherence Theorems 3.9.1 and 4.4.3 apply to Π.

Motivation 2.6.1. The Curry-Howard-Lambek correspondence relates the follow-
ing concepts:
Type theory: types, programs (or type equivalences), and program transforma-

tions (or equivalences of type equivalences);
Propositional logic: propositions, proofs, and transformations of proofs; and
Cartesian closed categories: objects, morphisms, and commutative diagrams.
Extending the work of [BJS11, JS12], in [CS16] a variant of the Curry-Howard-
Lambek correspondence is proposed for finite type reversible programming. In
categorical language, finite type means that there are functors representing sums
and products, along with appropriate distributivity and units. Therefore, the con-
cept of finite type is naturally associated with bimonoidal categories.

Reversibility can be interpreted in several ways.
Category theory: In a category, reversibility means that each morphism is invert-

ible, so we are dealing with groupoids.
Physics: The conservation of information in physics is another motivation for re-

versibility. The No-Hiding Theorem [BP07, KGB+19, SPK11] states es-
sentially that no physical processes can destroy quantum information. If
computation is regarded as a physical process, then it makes sense that
this process can be reversed.

Homotopy type theory: A type isomorphism is a fundamental concept in homo-
topy type theory [Pro13], where a proof of an equality between two terms
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is thought of as a path between two points in a topological space. Since
each path has an inverse, so should a proof.

In summary, bimonoidal groupoids form the appropriate framework for finite
type reversible programming. ◇

Recall from Definition 2.1.2 that a symmetric bimonoidal groupoid is a symmetric
bimonoidal category in which each morphism is invertible.
Theorem 2.6.2. There is a symmetric bimonoidal groupoid Π with

● syntax of finite types as objects and
● Π-terms and Π-combinators as morphisms.

In the rest of this section, we explain the category Π as defined in [CS16] and
point out one improvement.

Syntax of Finite Types as Objects. The objects in the groupoid Π are defined
inductively as follows.

● Each Agda type is an object in Π. Agda is the dependently typed
functional programming language available at https://wiki.portal.

chalmers.se/agda/pmwiki.php. It is an extension of Martin-Löf type
theory.
● Π is equipped with two distinguished objects 0 and 1.
● Inductively, if A and B are objects in Π, then so are their sum A⊕ B and

product A⊗ B.
In the language of type theory and propositional logic:

● 0 is the empty type ⊥, which corresponds to inconsistency.
● 1 is the unit type ⊤, which corresponds to the trivially true proposition.
● ⊕ is the sum type ⊎, which corresponds to the disjunction of propositions.
● ⊗ is the product type ×, which corresponds to the conjunction of propo-

sitions.
In [CS16], the objects A⊕B and A⊗B are denoted by, respectively, A+B and A∗B.
Instead of starting with Agda types, we can, in fact, start with any class of objects
in the above definition, and the construction below is still valid.

Π-Terms. There are two kinds of morphisms in Π. Morphisms of the first
kind are called Π-terms in [CS16, Fig. 1 and Section 6.1]. Using the notation in
Definition 2.1.2, Π-terms include the following isomorphisms for objects A, B, and
C in Π.
Identity Morphisms:

A A
1A

The Additive Structure:

(A⊕ B)⊕C A⊕ (B⊕C) A⊕ B B⊕ A
α⊕A,B,C

α−⊕A,B,C

ξ⊕A,B

ξ−⊕A,B

0⊕ A A A⊕ 0
λ⊕A

λ−⊕A ρ−⊕A

ρ⊕A

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
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The Multiplicative Structure:

(A⊗ B)⊗C A⊗ (B⊗C) A⊗ B B⊗ A
α⊗A,B,C

α−⊗A,B,C

ξ⊗A,B

ξ−⊗A,B

1⊗ A A A⊗1
λ⊗A

λ−⊗A ρ−⊗A

ρ⊗A

The Multiplicative Zeros:

0⊗ A 0 A⊗ 0
λ
●
A

λ−
●

A ρ−
●

A

ρ
●
A

Distributivity:

A⊗ (B⊕C) (A⊗ B)⊕ (A⊗C)

(A⊕ B)⊗C (A⊗C)⊕ (B⊗C)

δl
A,B,C

δ−l
A,B,C

δr
A,B,C

δ−r
A,B,C

The distributivity morphisms δl and δr are also equipped with inverses because Π
is a groupoid. These isomorphisms are denoted by different symbols in [CS16].
For example, λ⊕, α⊗, λ ●, and δr are denoted by, respectively, unite+l, assocr∗,
absorbr, and dist in [CS16, Fig. 1].

Π-Combinators. Suppose f ∶ A B, g ∶ B C, and h ∶ A′ B′ are
morphisms in Π. Then, inductively, so are the following.

Composition: g f ∶ A C, whose inverse is f−1g−1.
Sum: f ⊕ h ∶ A⊕ A′ B⊕ B′, whose inverse is f−1 ⊕ h−1.
Product: f ⊗ h ∶ A⊗ A′ B⊗ B′, whose inverse is f−1 ⊗ h−1.

In [CS16, Fig. 2], composition, sum, and product are denoted by, respectively, ⊙,
⊕, and ⊗, and are called Π-combinators. The above data are subject to the relations
that Π is a symmetric bimonoidal groupoid as in Definition 2.1.2. To be more
explicit, the relations ensure the following.

● Π with its identity morphisms, composition, and inverses is a groupoid.
● The additive structure (Π,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) is a symmetric monoidal

category.
● The multiplicative structure (Π,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗) is a symmetric mon-

oidal category.
● λ ●, ρ ●, δl , and δr are natural isomorphisms.
● The Laplaza axioms (2.1.5)–(2.1.28) are satisfied.

This finishes the construction of Π.
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An Improvement of Π. The relations above are stated in [CS16, Fig. 3–12]
with the following 13 Laplaza axioms, where Fig. N refers to that figure in [CS16].

● (2.1.5) and (2.1.6) in Fig. 12;
● (2.1.8), (2.1.10), and (2.1.13) in Fig. 11;
● (2.1.14), (2.1.15), (2.1.17), (2.1.19), (2.1.21), (2.1.22), and (2.1.23) in Fig. 10;

and
● (2.1.27) in Fig. 6.

It is possible to shorten the above list as follows. By Lemma 2.2.10, the axiom
(2.1.20) implies both (2.1.21) and (2.1.22), as long as (2.1.19) is assumed. Therefore,
in [CS16, Fig. 10], the two relations (2.1.21) and (2.1.22) may be replaced by the
single relation (2.1.20). Using the notation in [CS16], the relation (2.1.20) is stated
as follows.

absorbl ⇔ (assocr∗)⊙ (id ⊗ absorbl)⊙ absorbl

By Theorem 2.2.13, this shortened list of relations defines a symmetric bimonoidal
groupoid.

2.7. Notes

2.7.1 (Symmetric Bimonoidal Categories). The 24 axioms in Definition 2.1.2 of a
symmetric bimonoidal category are due to Laplaza [Lap72a]. The only differences
between our definition and Laplaza’s is that his associativity isomorphisms α⊕

and α⊗, which he denoted by α′ and α, move parentheses from right to left, in-
stead of left to right. Since these are natural isomorphisms, these differences are
only cosmetic. All the lemmas in Section 2.2 are also due to Laplaza, with one ex-
ception. In Lemma 2.2.10, the assertion that (2.1.20) implies (2.1.21) is not included
in [Lap72a]. ◇
2.7.2 (Terminology). The name symmetric bimonoidal category goes back to at least
[May77], but the literature contains several different names for this concept.

● In [Lap72a, Lap72b] Laplaza called such a category coherent.
● They are also called symmetric ring categories or symmetric rig categories

elsewhere, including [CS16, Elg21].
● In other places, including [BG20a, Hin13], the word distributive is used

instead of bimonoidal, ring, or rig.
One main reason we use the word bimonoidal is that it aligns better with bipermu-
tative categories, including those in Section 2.5 and those of Elmendorf-Mandell
in Chapters II.9 and III.11.

The word bimonoidal in categorical probability theory [FP18] means something
different. In that paper, a bimonoidal monad is a monad on a monoidal category
equipped with both a monoidal functor structure and an opmonoidal functor
structure that are compatible in an appropriate sense. ◇
2.7.3 (Symmetric Rig Categories). There are two remarks concerning some defini-
tions in [CS16], on which Section 2.6 is based.

● [CS16, Def. 8] of a braided monoidal category includes only the left
hexagon axiom and omits the right hexagon axiom in (II.1.3.17). In a sym-
metric monoidal category, these two hexagon axioms are equivalent to
each other by the symmetry axiom (1.2.20), so only one of them is needed.
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However, in a general braided monoidal category, the two hexagon ax-
ioms are not equivalent to each other, so both of them are needed.
● In [CS16, Def. 10], a symmetric rig (= tight bimonoidal) category is de-

fined as a rig (= tight bimonoidal) category in which the multiplicative
structure is symmetric. This is not correct because a bimonoidal cate-
gory is not equipped with a multiplicative symmetry ξ⊗, so the Laplaza
axioms (2.1.5) and (2.1.19) are not included. A symmetric bimonoidal
category is a bimonoidal category in which

– the multiplicative structure is symmetric, and
– the axioms (2.1.5) and (2.1.19) are satisfied. ◇

2.7.4 (Bipermutative Categories). Our right bipermutative category is almost the
same as May’s bipermutative category [May77], except that May did not include
the axiom that ξ⊗−,0 be the identity. The material in Section 2.5 on right bipermu-
tative categories is due to May [May77, Section 6.3]. The symmetric bimonoidal
category Σ′ in Proposition 2.4.23 appeared in [May77, Example 6.5.1]. In Chapter 5
we will show that tight symmetric bimonoidal categories can be strictified to right
bipermutative categories. In the literature, the name bipermutative category refers
to either May’s version or a different version due to Elmendorf-Mandell [EM06],
which we will discuss in Chapters II.9 and III.11. See also Note 5.6.3. ◇
2.7.5 (Applications to Diagrammatic Calculus). In addition to Section 2.6 on re-
versible programming of finite types, bimonoidal categories have other applica-
tions in computer science. Sheet diagrams for tight bimonoidal categories that
generalize string diagrams for monoidal categories [JS91a, Sel11] are discussed
in [CDH∞]; see also Example 3.10.9 and Note 7.9.2. Sheet diagrams are three-
dimensional, two for the additive structure ⊕ and an additional one for the multi-
plicative structure ⊗.

● Precursors of sheet diagrams appeared in [Sta15] to diagrammatically
separate the quantum parts of quantum circuits from the classical wires.
● Sheet diagrams in [Del20] provide a diagrammatic calculus for faceted

dataflow in OpenRefine (https://openrefine.org), which is a popular
data wrangling software.

For open questions related to sheet diagrams, see Questions III.A.1.6 and III.A.2.8.
Moreover, in [Hin13], tight symmetric bimonoidal categories are used to provide
a categorical proof of the operational equivalence of two quantum circuits. Chap-
ter II.3 discusses applications of braided bimonoidal categories to quantum groups
and topological quantum computation. ◇

https://openrefine.org


CHAPTER 3

Coherence of Symmetric Bimonoidal Categories

The purpose of this chapter is to prove the Coherence Theorem 3.9.1 for sym-
metric bimonoidal categories, which is due to Laplaza [Lap72a]. This coherence
result says that certain formal diagrams in symmetric bimonoidal categories com-
mute, provided that a condition about monomorphisms is satisfied. We emphasize
that this coherence theorem, like Definition 2.1.2, only requires the distributivity
morphisms δl and δr in (2.1.4) to be natural monomorphisms, instead of natural
isomorphisms. The end of Section 3.9 contains examples where Theorem 3.9.1 is
applicable. Theorem 3.10.7 is the multiplicatively nonsymmetric analogue of The-
orem 3.9.1 for bimonoidal categories. For open questions related to coherence of
symmetric bimonoidal categories, see Question III.A.1.6.

Outline of the Coherence Theorem. The proof of Theorem 3.9.1 involves a
series of reductions until the Symmetric Coherence Theorem 1.3.8, for both the
additive structure ⊕ and the multiplicative structure ⊗, can be applied to finish
the proof. The reduction steps for Theorem 3.9.1 are roughly analogous to the
proof of Mac Lane’s Coherence Theorem 1.3.3 as given in [ML63, Theorem 5.2]
and [ML98, VII.2 Corollary]. For coherence of monoidal categories, one first re-
duces to the situation where the monoidal unit, the left unit isomorphism, and the
right unit isomorphism are not involved. One is then left with the associativity
isomorphisms. A further argument reduces the proof to applying the monoidal
category axioms and the naturality of some structure morphisms.

Since a symmetric bimonoidal category has more structure and many more
axioms than a monoidal category, the proof of Theorem 3.9.1 has many more steps
and cases than that of Theorem 1.3.3. Here is a brief outline of the reduction steps
for the Coherence Theorem 3.9.1 for symmetric bimonoidal categories.

(1) Reduce away the additive zeros λ⊕ and ρ⊕, and the multiplicative zeros
λ ● and ρ ●.
● In Section 3.3, we first prove the existence and the uniqueness of

such reductions for objects.
● In Sections 3.4 and 3.5, we show the existence of such reductions for

paths.
Section 3.5 ends with a special case of the Coherence Theorem 3.9.1; see
Proposition 3.5.33.

(2) Reduce away the distributivity morphisms δl and δr.
● The existence of such reductions for objects is proved in Section 3.6.
● The existence of such reductions for paths is proved in Lemma 3.6.12

and Section 3.7.
(3) Reduce away the multiplicative units λ⊗ and ρ⊗ in Section 3.8.

I.55
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(4) In Section 3.9, we assemble the results in the previous sections to reduce
the proof of Theorem 3.9.1 to the situation where only the structure mor-
phisms α⊕, ξ⊕, α⊗, ξ⊗, and their inverses (that is, the additive and the
multiplicative associativity and symmetry) are left. Then we apply the
Symmetric Coherence Theorem 1.3.8 both additively and multiplicatively
to finish the proof of Theorem 3.9.1.

The proof of the Coherence Theorem 3.10.7 for bimonoidal categories is obtained
from that of Theorem 3.9.1 by removing ξ±⊗, and by using Theorem 1.3.3 instead
of Theorem 1.3.8 for the multiplicative structure.

Mac Lane’s Coherence Theorems 1.3.3 and 1.3.8 are stated in terms of words,
canonical maps, and their symmetric variants. Section 3.1 contains the symmetric
bimonoidal analogues of these concepts. Many proofs in this chapter involve in-
ductions on formal words. Section 3.2 contains several concepts on formal words
that will be used in later sections to perform inductions.

As we mentioned above, the Coherence Theorem 3.9.1 is due to Laplaza, and
we generally follow the broad outline of his original proof. However, there are
some nontrivial differences between this chapter and Laplaza’s original proof,
which will be discussed in Section 3.11. The relation to a 2-monad approach is
discussed in Note 3.11.7.

Reading Guide. The proof of Theorem 3.9.1 is presented straightly linearly in
this chapter. Since this proof has many steps and cases, as a possible alternative to
reading this chapter linearly, we suggest the following.

● First read Theorem 3.9.1, whose proof is only about three pages long by
that point, without worrying about the terms and results from earlier
sections. The point is to first obtain a bird’s-eye view of the structure of
the proof.
● Then read the earlier sections, but skip all the proofs, or at least the longer

ones.
● With all the necessary concepts and statements of preliminary results in

mind, read Theorem 3.9.1 again. The outlined proof above should now
make sense.
● After enough rest and some mental preparation, read the proofs in the

earlier sections.
We deliberately divided the proof of Theorem 3.9.1 into many lemmas and cases
to clarify the overall structure of the proof, and to make jumping forward and
backward easier. Students are encouraged to regard the lemmas, the cases within
each lemma, and their detailed proofs as exercises with full solutions.

Detail. In addition to proving Theorem 3.9.1, the many detailed proofs in this
chapter have several additional purposes.
Axioms: Some of the proofs in this chapter are where the axioms of a symmet-

ric bimonoidal category in Definition 2.1.2 are used. For example, Lem-
mas 3.4.12, 3.5.9, and 3.6.12 use, respectively, 2, 3, and 11 symmetric bi-
monoidal category axioms. Seeing these axioms arising naturally in these
proofs helps demystify them.

Corrections: Laplaza’s original proof contains some inaccuracies that have never
been made explicit before. For both educational and archival purposes,
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it is important to rectify these issues. However, without going into de-
tail, it would be difficult to (i) pinpoint these subtle issues, and (ii) dis-
cuss the corrections and where they fit in the big picture. Section 3.11
contains more detailed discussion of the differences between this chapter
and Laplaza’s original proof, and the necessary corrections for the latter.

Other Theorems: Several other main theorems in this book use the preliminary
results in this chapter and Theorem 3.9.1.
● The proof of the Coherence Theorem 4.4.3 uses the same reduction

steps as in the proof of Theorem 3.9.1. So it uses essentially all the
preliminary results in this chapter before Section 3.9.
● The proof of the Strictification Theorem 5.4.6 of tight symmetric bi-

monoidal categories to equivalent right bipermutative categories in-
volves Theorem 3.9.1 many times. In fact, both the definition of the
associated right bipermutative category and the proofs of its proper-
ties use coherence. See Explanation 5.2.31, Lemmas 5.3.1, 5.3.4, 5.3.8,
and 5.4.4, and Note 5.6.2.
● The proofs of Baez’s Conjecture (Theorem 7.8.1) and the Bicategori-

fication Theorem 8.15.4 use Theorem 3.9.1.
● The proof of the Coherence Theorem II.5.4.4 of braided bimonoidal

categories uses many of the proofs in this chapter. A detailed treat-
ment here will allow us to be both precise and concise at the same
time in the braided case.

Throughout this chapter, as in Definition 2.1.2, we often abbreviate ⊗ using
concatenation, with ⊗ taking precedence over ⊕ in the absence of parentheses. For
example,

(ab)c⊕ a′(b′c′) = ((a⊗ b)⊗ c)⊕ (a′ ⊗ (b′ ⊗ c′)).

3.1. Regularity

The main objective of this section is to introduce the language and notation
that are needed to state and prove the first coherence theorem for symmetric bi-
monoidal categories.

Motivation 3.1.1. In the Coherence Theorems 1.3.3 and 1.3.8 for (symmetric) mon-
oidal categories, the assertions are stated in terms of

● formal variables in the forms of (permuted) words in Definitions 1.3.1
and 1.3.6; and
● natural isomorphisms in the forms of (permuted) canonical maps in Def-

initions 1.3.2 and 1.3.6.

To state and prove the first Coherence Theorem 3.9.1 for symmetric bimonoidal
categories, we first need to develop symmetric bimonoidal analogues of words
and canonical maps.

The formal alphabets are taken from a set X with two distinguished elements
0X and 1X. The analogues of words are elements in the free {⊕,⊗}-algebra Xfr in
Definition 3.1.2. The analogues of morphisms between words are paths consist-
ing of prime edges in Definition 3.1.8. These two concepts together constitute the
graph of X, which is denoted by Gr(X), in Definition 3.1.9. The first half of this
section contains all the definitions necessary to define the graph of X.
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To apply these concepts to symmetric bimonoidal categories C, we use a cer-
tain graph morphism φ ∶ Gr(X) C in Definition 3.1.14. This is analogous to
interpreting a word as a functor in Definition 1.3.1. With this graph morphism,
we can define the value of a path in Gr(X) as the corresponding composite mor-
phism in C. The first coherence theorem of symmetric bimonoidal categories then
takes on a familiar form: two paths from a to b in Gr(X) have the same value in C,
provided a satisfies a regularity condition.

The regularity condition ensures that we do not assert generally false state-
ments such as this: 1x⊕x and ξ⊕x,x ∶ x⊕ x x⊕ x are equal for all objects x. The
second half of this section is devoted to the concept of regularity. ◇

Elementary Graph. To define the graph of X in Definition 3.1.9, we first define
its vertices in the next definition.
Definition 3.1.2. Suppose S is a set. The free {⊕,⊗}-algebra of S is the set Sfr defined
inductively by the following two conditions.

● S ⊂ Sfr.
● If a, b ∈ Sfr, then the symbols

a⊕ b and a⊗ b

also belong to Sfr. They are called, respectively, the sum and the product
of a and b.

To simplify the presentation, we sometimes abbreviate a⊗ b to ab. In the absence
of clarifying parentheses, ⊗ takes precedence over ⊕. ◇
Example 3.1.3. For a, . . . , f ∈ S,

(ab⊕ cd)e⊕ f = [((a⊗ b)⊕ (c⊗ d))⊗ e]⊕ f

in Sfr. ◇
We also need the following concept of a graph.

Definition 3.1.4. A graph G = (V, E) is a pair consisting of the following data.
● V is a class. An element in V is called a vertex in G.
● E assigns to each ordered pair (u, v), with u, v ∈ V, a set E(u, v), an ele-

ment of which is called an edge with domain u and codomain v. We also
denote such an edge by

u v, e ∶ u v, or u ve

if e is the name of the edge.
A path in such a graph is a nonempty finite sequence of edges (en, . . . , e1) as in

v0 v1 ⋯ vn.
e1 e2 en

Such a path is denoted by v0 vn and is said to have length n, domain v0, and
codomain vn. ◇
Example 3.1.5. Each category C has an associated graph (V, E), with V the class of
objects in C, and E(u, v) = C(u, v) for objects u, v ∈ C. A nonempty finite sequence
of composable morphisms in C yields a path in the associated graph. ◇

The edges in the graph of X in Definition 3.1.9 are built from the elementary
edges in the next definition.
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Definition 3.1.6. Suppose X is a set with two distinguished elements 0X and 1X,
called the additive zero and the multiplicative unit, respectively. The elementary graph
of X, denoted by Grel(X), is the graph defined as follows.

Vertices: The set of vertices in Grel(X) is the free {⊕,⊗}-algebra Xfr of X.
Edges: Edges in Grel(X) are of the following types for all x, y, z ∈ Xfr.

The Additive Structure:

(x⊕ y)⊕ z x⊕ (y⊕ z) x⊕ y y⊕ x
α⊕x,y,z

α−⊕x,y,z

ξ⊕x,y

ξ−⊕x,y

0X ⊕ x x x⊕ 0X
λ⊕x

λ−⊕x ρ−⊕x

ρ⊕x

The Multiplicative Structure:

(x⊗ y)⊗ z x⊗ (y⊗ z) x⊗ y y⊗ x
α⊗x,y,z

α−⊗x,y,z

ξ⊗x,y

ξ−⊗x,y

1X ⊗ x x x⊗ 1X
λ⊗x

λ−⊗x ρ−⊗x

ρ⊗x

The Multiplicative Zeros:

0X ⊗ x 0X x⊗ 0X
λ
●
x

λ−
●

x ρ−
●

x

ρ
●
x

Distributivity:

x⊗ (y⊕ z) (x⊗ y)⊕ (x⊗ z)

(x⊕ y)⊗ z (x⊗ z)⊕ (y⊗ z)

δl
x,y,z

δr
x,y,z

Identity:

x x
1x

This finishes the definition of Grel(X).
Moreover, we define the following.

● The set of edges in Grel(X) is denoted by Eel(X), the elements of which
are called elementary edges.
● α⊕ and α−⊕ are formal inverses of each other, and similarly for the other 9

pairs of elementary edges in the first three groups above.
● 1x is called the identity of x.
● The names in Definition 2.1.2 are reused for elementary edges. For ex-

ample, λ ● is called the left multiplicative zero, and δr is called the right
distributivity. ◇
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Graph. The next two definitions will be combined to yield the graph of X in
Definition 3.1.9.

Definition 3.1.7. With (X, 0X, 1X) as in Definition 3.1.6, consider the free {⊕,⊗}-
algebra Efrel(X) of the set Eel(X) of elementary edges. The domain and codomain of
an element f ∈ Efrel(X) are elements in Xfr defined inductively as follows.

● For an elementary edge f ∈ Eel(X), its (co)domain are those of f in the
elementary graph Grel(X).
● Suppose f1, f2 ∈ Efrel(X)with

– ui ∈ Xfr the domain of fi and
– vi ∈ Xfr the codomain of fi

already defined for i = 1, 2. Then:
– f1 ⊕ f2 has domain u1 ⊕ u2 and codomain v1 ⊕ v2.
– f1 ⊗ f2 has domain u1 ⊗ u2 and codomain v1 ⊗ v2. ◇

Definition 3.1.8. Continuing Definition 3.1.7, identity prime edges and nonidentity
prime edges are elements in Efrel(X) defined inductively by the following four con-
ditions.

● Elementary edges of the type 1x for x ∈ Xfr are identity prime edges.
● Elementary edges not of the type 1x for x ∈ Xfr are nonidentity prime

edges.
● If e1, e2 ∈ Efrel(X) are identity prime edges, then so are e1 ⊕ e2 and e1 ⊗ e2.
● If f is a nonidentity prime edge, and if e is an identity prime edge, then

f ⊕ e, e⊕ f , f ⊗ e, and e⊗ f

are nonidentity prime edges.

A prime edge means either an identity prime edge or a nonidentity prime edge. The
set of prime edges is denoted by Epr(X). An identity prime edge is also called an
identity. ◇
Definition 3.1.9. With (X, 0X, 1X) as in Definition 3.1.6, the graph of X, which is
denoted by Gr(X), is the graph defined as follows.

Vertices: The set of vertices in Gr(X) is the free {⊕,⊗}-algebra Xfr of X.
Edges: The set of edges in Gr(X) is the set Epr(X) of prime edges as in Defini-

tion 3.1.8, with (co)domain as in Definition 3.1.7. ◇
Definition 3.1.10. Consider Gr(X).

● Suppose f ∶ a b is a prime edge that does not involve δl and δr. Its
formal inverse g ∶ b a is the prime edge obtained from f as follows.

– Each identity 1x for x ∈ Xfr in f is replaced by 1x in the opposite
direction.

– If f involves an elementary edge ϵ that is not an identity, then replace
ϵ by its formal inverse.

● Suppose P ∶ a b is a path in which each prime edge does not involve
δl and δr. Its formal inverse Q ∶ b a is the path obtained from P by
replacing each of its prime edges by its formal inverse. ◇
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Example 3.1.11. Suppose x, y, z ∈ Xfr. With ⊗ abbreviated to concatenation, below
are two paths in Gr(X).

x(y⊕ z)⊕ 0X x(1Xy)⊕ xz

x(y⊕ z) x(1Xy⊕ z)

(xy⊕ xz)⊕ 0X xy⊕ (xz⊕ 0X) xy⊕ xz

ρ⊕x(y⊕z)

1x(λ−⊗y ⊕ 1z)

δl
x,1Xy,z

δl
x,y,z ⊕ 10X

α⊕xy,xz,0X 1xy ⊕ ρ⊕xz

(1xλ−⊗y )⊕ 1xz

The top path has length 3, with the outer edges elementary edges, and the middle
one a nonidentity prime edge. The bottom path has length 4, with α⊕ an elemen-
tary edge, and the other three edges nonidentity prime edges. ◇
Example 3.1.12. For elements w, x, y, z ∈ Xfr,

w⊕ x(y⊕ z) w⊕ x(y⊕ z)
1w⊕1x1y⊕z

is an identity. The formal inverse of the prime edge

w⊕ x(y⊕ z) w⊕ (1X x)(y⊕ z)
1w⊕λ−⊗x 1y⊕z

is the prime edge

w⊕ (1X x)(y⊕ z) w⊕ x(y⊕ z),
1w⊕λ⊗x 1y⊕z

and vice versa. ◇

The Value of a Path. The graph of X is interpreted in a symmetric bimonoidal
category via the following concept.

Definition 3.1.13. Suppose G1 = (V1, E1) and G2 = (V2, E2) are graphs. A graph
morphism f ∶ G1 G2 consists of functions

● fV ∶ V1 V2 and
● fE ∶ E1(u, v) E2( fVu, fVv) for u, v ∈ V1.

To simplify the notation, both fV and fE are denoted by f below. ◇
Definition 3.1.14. Suppose given the data (X,C, φ) as follows.

● X is a set with two distinguished elements 0X and 1X as in Definition 3.1.6.
● C is an arbitrary symmetric bimonoidal category as in Definition 2.1.2,

equipped with the graph structure in Example 3.1.5.
● φ ∶ X Ob(C) is any function such that

(3.1.15) φ(0X) = 0 and φ(1X) = 1.

Extend φ to a graph morphism

Gr(X) C
φ

as follows.
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Vertices: For x, y ∈ Xfr such that φx, φy ∈ Ob(C) are already defined, we define

φ(x⊕ y) = φx⊕ φy and

φ(x⊗ y) = φx⊗ φy.
(3.1.16)

Elementary Edges: φ sends each elementary edge to the structure morphism in
C with the same name, and with the subscripts replaced by their images
under φ.

Prime Edges: If f1, f2 ∈ Epr(X) are prime edges with at most one of them noniden-
tity, and with φ( f1) and φ( f2) already defined, then we define

φ( f1 ⊕ f2) = φ( f1)⊕ φ( f2) and

φ( f1 ⊗ f2) = φ( f1)⊗ φ( f2).
(3.1.17)

This finishes the definition of the graph morphism φ.
Moreover, we define the following.
● For a path P = ( fn, . . . , f1) in Gr(X) with domain u and codomain v, its

value in C is the composite

(3.1.18) φP = φ( fn) ○⋯ ○ φ( f1) ∈ C(φu; φv).
● A diagram with vertices and edges in Gr(X) is commutative in C if its

image under the graph morphism φ is a commutative diagram in C.
● A diagram with vertices and edges in Gr(X) is commutative if it is com-

mutative in each symmetric bimonoidal category C and for each function
φ ∶ X Ob(C) satisfying (3.1.15). ◇

Remark 3.1.19. In Definition 3.1.14, the 24 symmetric bimonoidal category axioms
are not needed. Therefore, the definition still makes sense if C only has the data
portion of a symmetric bimonoidal category. ◇
Example 3.1.20. The graph morphism φ sends elementary edges to structure mor-
phisms in C. Below are two examples.

φ(α⊕x,y,z) = α⊕φx,φy,φz ∶ (φx⊕ φy)⊕ (φz) φx⊕ (φy⊕ φz)
φ(λ ●x) = λ

●
φx ∶ 0⊗ φx 0.

◇
Example 3.1.21. The image under φ of an identity prime edge is an identity mor-
phism by the functoriality of ⊕ and ⊗ in C. If f is a prime edge with formal inverse
g, then

φ( f )−1 = φ(g),
and similarly for a path with a formal inverse. ◇
Example 3.1.22. For elements x, y, z ∈ Xfr, the diagram

(x⊕ y)z xz⊕ yz xz⊕ zy

z(x⊕ y) zx⊕ zy

ξ⊗x⊕y,z

δr
x,y,z 1xz⊕ξ⊗y,z

ξ⊗x,z⊕1zy
δl

z,x,y

in Gr(X) is commutative. This is true because its image under the graph morphism
φ ∶ Gr(X) C is commutative by

● the axiom (2.1.5) in C applied to the objects φx, φy, and φz; and
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● the functoriality of ⊕ in C, which implies

(ξ⊗x,z ⊕ 1zy)(1xz ⊕ ξ⊗y,z) = ξ⊗x,z ⊕ ξ⊗y,z.

Similarly, each of the other 23 symmetric bimonoidal category axioms in C gives a
commutative diagram in Gr(X). ◇

Regularity. Next we introduce a restriction, called regularity, on the elements
in Xfr for the first coherence theorem of symmetric bimonoidal categories. As dis-
cussed in Motivation 3.1.1, this restriction is needed to avoid incoherent situations.
Regularity is defined in terms of the following concept.
Definition 3.1.23. Suppose (X, 0X, 1X) is as in Definition 3.1.6. Define its strict
{⊕,⊗}-algebra Xst as the quotient set of Xfr in Definition 3.1.2 by the smallest rela-
tion that contains the following identifications for all elements x, y, z ∈ Xfr.
The Additive Structure:

(x⊕ y)⊕ z = x⊕ (y⊕ z)
0X ⊕ x = x = x⊕ 0X

x⊕ y = y⊕ x

The Multiplicative Structure:

(x⊗ y)⊗ z = x⊗ (y⊗ z)
1X ⊗ x = x = x⊗ 1X

x⊗ y = y⊗ x

The Multiplicative Zeros:

0X ⊗ x = 0X = x⊗ 0X

Distributivity:

x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z)
(x⊕ y)⊗ z = (x⊗ z)⊕ (y⊗ z)

This finishes the definition of Xst.
Moreover, denote by

(3.1.24) Xfr Xstsupp

the quotient map, called the support. ◇
Definition 3.1.25. An element x ∈ Xfr is regular if there exist elements xi

j ∈ X for
1 ≤ i ≤ m and 1 ≤ j ≤ ki for each i with m, k1, . . . , km > 0, such that the following
three conditions hold.

(i) The equality

(3.1.26) supp(x) = supp(
m
⊕
i=1
(xi

1 ⊗⋯⊗ xi
ki
))

holds in Xst. The iterated sum ⊕m
i=1 and each of the m iterated products

xi
1 ⊗⋯⊗ xi

ki
have some bracketings. By the definition of Xst, different

bracketings yield the same support.
(ii) For each 1 ≤ i ≤ m, the elements xi

1, . . . , xi
ki
∈ X are distinct.
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(iii) The m elements

supp(xi
1 ⊗⋯⊗ xi

ki
) ∈ Xst

for 1 ≤ i ≤ m are distinct. ◇
The rest of this section contains basic observations and examples about sup-

port and regular elements.

Example 3.1.27. For elements a, . . . , f ∈ X,

supp((ab⊕ cd)e⊕ f ) = supp( [(ab)e⊕ (cd)e]⊕ f )
= supp(a(be)⊕ [c(de)⊕ f ] ).

In general, because of the relations that define Xst, when computing the support
of an element in Xfr, we may

● distributive ⊗ over ⊕ as much as possible and
● ignore the additive bracketings of the summands and the multiplicative

bracketings within each summand. ◇
Example 3.1.28. Elements in X are regular. If x1, . . . , xm are distinct elements in X,
then the elements

x1 ⊕⋯⊕ xm and x1 ⊗⋯⊗ xm ∈ Xfr

with any bracketings are regular. On the other hand, x1 ⊕ x1 and x1 ⊗ x1 are not
regular. ◇
Lemma 3.1.29. The following statements hold.

(1) If two elements in Xfr have the same support, then one of them is regular if and
only if the other one is regular.

(2) If x y is a path in Gr(X) as in Definition 3.1.9, then

supp(x) = supp(y).

Proof. The first assertion holds because regularity depends only on the support of
an element in Xfr.

If x y is an elementary edge as in Definition 3.1.6, then x and y are con-
nected by one of the relations that define Xst as a quotient set of Xfr. So they have
the same support. This implies that if x y is a prime edge as in Definition 3.1.8,
then x and y have the same support. The second assertion now follows from an in-
duction on the length of a path in Gr(X), with the initial case being a single prime
edge. □

For the next observation, consider the 24 axioms (2.1.5)–(2.1.28) of a symmetric
bimonoidal category with

● A, B, C, and D taken to be distinct elements in X;
● 0 and 1 interpreted as 0X and 1X, respectively; and
● each vertex in each diagram regarded as an element in Xfr.

The next observation provides many examples of regular elements.
Proposition 3.1.30. In each of the 24 axioms in the setting of the previous paragraph:

(1) All the vertices have the same support.
(2) All the vertices are regular.
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Proof. All the vertices in each axiom have the same support because they are all
connected by the relations that define Xst as a quotient set of Xfr.

For the second assertion, it suffices to show that in each axiom, one vertex is
regular. Together with the first assertion and Lemma 3.1.29(1), one vertex being
regular would imply that all the vertices are regular.

For the first axiom (2.1.5) consider the vertex AC⊕ BC and the following four
cases.

(1) If A, B, C ∈ X ∖ {0X} then

supp(AC) /= supp(BC).
(2) If A = 0X, then B, C /= 0X, and

supp(AC⊕ BC) = supp(BC).
(3) If B = 0X, then A, C /= 0X, and

supp(AC⊕ BC) = supp(AC).
(4) If C = 0X, then

supp(AC⊕ BC) = supp(0X ⊕ 0X) = supp(0X).
In each of the four cases, we conclude that AC ⊕ BC is regular because A, B, and
C are distinct in X. The same kind of case-by-case analysis applies to the next 8
axioms (2.1.6)–(2.1.13).

Each of the axioms (2.1.14)–(2.1.22) has a vertex equal to 0X, which is regular.
Each of the axioms (2.1.23)–(2.1.26) has a vertex equal to AB or BA, which are both
regular. Each of the axioms (2.1.27) and (2.1.28) has a vertex equal to A⊕ B, which
is regular. □

Example 3.1.31. In Example 3.1.11, the seven vertices in Xfr have the same sup-
port, which is that of xy⊕ xz. If x, y, and z are distinct elements in X, then xy⊕ xz
is regular by the same kind of case-by-case proof in Proposition 3.1.30. ◇
Example 3.1.32. The three elements in Xfr appearing in Example 3.1.27 have the
same support. If a, . . . , f ∈ X are distinct, then these three elements in Xfr are all
regular by the same kind of case-by-case proof in Proposition 3.1.30. ◇

3.2. Induction Devices

The purpose of this section is to introduce some tools for performing induc-
tion arguments in the graph of X as in Definition 3.1.9. These concepts will be
used in subsequent sections to prove the Coherence Theorem 3.9.1 for symmetric
bimonoidal categories. We will need the following three concepts for induction
arguments.
Definition 3.2.1. Denote by Z+ the set of positive integers. Suppose (X, 0X, 1X)
is a set with two distinguished elements as in Definition 3.1.6, and with Xfr as in
Definition 3.1.2.

(1) The norm

(3.2.2) Xfr Z+
norm

is the function defined inductively by the following two conditions:
● norm(x) = 1 for x ∈ X.
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● For a, b ∈ Xfr with norm(a) and norm(b) already defined, define

norm(a⊕ b) = norm(a⊗ b) = norm(a)+ norm(b).
(2) The rank

(3.2.3) Xfr Z+
rank

is the function defined by

rank(a) = 2 ⋅ norm(a) for a ∈ Xfr.

(3) The size

(3.2.4) Xfr Z+
size

is the function defined inductively by the following two conditions:
● size(x) = 2 for x ∈ X.
● For a, b ∈ Xfr with size(a) and size(b) already defined, define

size(a⊕ b) = size(a)+ size(b) and

size(a⊗ b) = size(a) ⋅ size(b).
We call norm(a), rank(a), and size(a), respectively, the norm of a, the rank of a, and
the size of a. ◇
Explanation 3.2.5. The norm of a ∈ Xfr is computed by counting the number of
elements in X appearing in the expression of a, counting multiplicity. So if an
element x ∈ X appears n times in a, then it is counted as n in the norm of a.

The size of a is computed by replacing
● each element of X appearing in a by the number 2 and
● {⊕,⊗} in Xfr by {+,×} of integers. ◇

Example 3.2.6. Suppose xi
j ∈ X for 1 ≤ i ≤ m and 1 ≤ j ≤ ki for each i with

m, k1, . . . , km > 0. Consider the element

(3.2.7) a =
m
⊕
i=1
(xi

1⋯xi
ki
) ∈ Xfr

appearing in (3.1.26), in which the iterated sum ⊕m
i=1 and each of the m iterated

products xi
1⋯xi

ki
have some bracketings. Then its norm, rank, and size are as fol-

lows.
norm(a) = k1 +⋯+ km

rank(a) = 2(k1 +⋯+ km)
size(a) = 2k1 +⋯+ 2km

Furthermore, the equality
size(a) = rank(a)

holds if and only if ki ≤ 2 for each 1 ≤ i ≤ m. ◇
Example 3.2.8. For the element

b = (x1 ⊕ x2)(x3 ⊕ x4) ∈ Xfr

with x1, x2, x3, x4 ∈ X, we have

norm(b) = 4, rank(b) = 8, and size(b) = 16. ◇
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Below are some basic observations that we will later use for induction argu-
ments.

Lemma 3.2.9. The following statements hold for elements a ∈ Xfr.

(1) norm(a) = 1 if and only if a ∈ X.
(2) size(a)− rank(a) ≥ 0.

Proof. For assertion (1), if a ∈ X, then norm(a) = 1 by definition. If a does not lie in
X, then a has the form a1 ⊕ a2 or a1 ⊗ a2 for some a1, a2 ∈ Xfr. So norm(a) ≥ 2.

For assertion (2), first observe that the rank can be equivalently defined as
follows.

● rank(x) = 2 for x ∈ X.
● For a, b ∈ Xfr with rank(a) and rank(b) already defined, define

rank(a⊕ b) = rank(a⊗ b) = rank(a)+ rank(b).

Now we prove the second assertion by induction on the norm. For norm 1, that is,
for an element x ∈ X, there are equalities

size(x) = rank(x) = 2.

The induction step follows from the inequalities for a, b ∈ Xfr:

rank(a⊕ b) = rank(a)+ rank(b)
≤ size(a)+ size(b) (since norm(a),norm(b) < norm(a⊕ b))
= size(a⊕ b);

rank(a⊗ b) = rank(a)+ rank(b)
≤ rank(a) ⋅ rank(b) (since rank(a), rank(b) ≥ 2)
≤ size(a) ⋅ size(b) (since norm(a),norm(b) < norm(a⊕ b))
= size(a⊗ b).

This proves assertion (2). □

Lemma 3.2.10. Suppose f ∶ a b is a prime edge that is either an identity or involves
a single instance of α±⊕, ξ±⊕, α±⊗, or ξ±⊗. Then the following statements hold.

(1) norm(a) = norm(b).
(2) rank(a) = rank(b).
(3) size(a) = size(b).

Proof. If f is an identity, then a = b, which implies the desired equalities.
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For x, y, z ∈ Xfr and each ⊙ ∈ {⊕,⊗}, there are equalities as follows.

norm((x⊙ y)⊙ z) = norm(x)+ norm(y)+ norm(z)
= norm(x⊙ (y⊙ z))

norm(x⊙ y) = norm(x)+ norm(y)
= norm(y⊙ x)

size((x⊕ y)⊕ z) = size(x)+ size(y)+ size(z)
= size(x⊕ (y⊕ z))

size((x⊗ y)⊗ z) = size(x) ⋅ size(y) ⋅ size(z)
= size(x⊗ (y⊗ z))

size(x⊕ y) = size(x)+ size(y)
= size(y⊕ x)

size(x⊗ y) = size(x) ⋅ size(y)
= size(y⊗ x)

They imply the assertions for norm and size. The assertion for rank follows from
the definition rank = 2 ⋅ norm. □

The next few assertions are about the quantity size− rank.

Lemma 3.2.11. For elements a, b ∈ Xfr and each ⊙ ∈ {⊕,⊗}, the inequality

size(a⊙ b)− rank(a⊙ b) ≥ size(c)− rank(c)
holds for each c ∈ {a, b}.

Proof. The inequality for ⊕ follows from Lemma 3.2.9 (2) and the following com-
putation.

size(a⊕ b)− rank(a⊕ b)
= size(a)+ size(b)− rank(a)− rank(b)
= (size(a)− rank(a))+ (size(b)− rank(b))

Similarly, the inequality for ⊗ follows from the last equality above and the follow-
ing computation.

size(a⊗ b)− rank(a⊗ b)
= size(a) ⋅ size(b)− rank(a)− rank(b)
≥ size(a)+ size(b)− rank(a)− rank(b)

The inequality uses the fact that size(a), size(b) ≥ 2. □

Next we want to describe elements in Xfr that satisfy size(a) = rank(a). The
following are two preliminary observations in this direction, and use the concept
of a prime edge in Definition 3.1.8.

Lemma 3.2.12. Suppose a b is a prime edge that involves either δl or δr. Then the
inequality

size(a)− rank(a) > size(b)− rank(b)
holds.
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Proof. For x, y, z ∈ Xfr, there are (in)equalities as follows.

size(x(y⊕ z)) = size(x) ⋅ (size(y)+ size(z))
= size(xy⊕ xz)

rank(x(y⊕ z)) = rank(x)+ rank(y)+ rank(z)
< rank(x)+ rank(y)+ rank(x)+ rank(z)
= rank(xy⊕ xz)

These (in)equalities imply that in going from the domain to the codomain of the
elementary edge

x(y⊕ z) xy⊕ xz,
δl

x,y,z

and similarly any prime edge involving δl , the quantity (size − rank) strictly de-
creases. An almost identical computation proves the case for δr. □

Lemma 3.2.13. If an element a ∈ Xfr satisfies

size(a) = rank(a),
then a is not the domain of any prime edge that involves either δl or δr.

Proof. Suppose to the contrary that there exists a prime edge a b involving δl

or δr. Then the hypothesis on a and Lemma 3.2.12 imply that

0 = size(a)− rank(a) > size(b)− rank(b).
This cannot happen by Lemma 3.2.9(2). □

Example 3.2.14. The converse of Lemma 3.2.13 is not true. For example, for ele-
ments x, y, z ∈ X, the product (x⊗ y)⊗ z is not the domain of any prime edge that
involves either δl or δr. However, it has rank 6 and size 8. In other words, in order
for an element a ∈ Xfr to not be the domain of any prime edge involving either δl

or δr, the property
size(a) = rank(a)

is sufficient but not necessary. ◇
The following observation characterizes elements in Xfr with size equal to

rank.
Proposition 3.2.15. For elements a ∈ Xfr, the equality

size(a) = rank(a)
holds if and only if a has the form

a = a1 ⊕⋯⊕ am

for some additive bracketing and some m ≥ 1 such that for each 1 ≤ i ≤ m, either
● ai ∈ X, or
● ai = a1

i ⊗ a2
i for some elements a1

i , a2
i ∈ X.

Proof. First suppose a = a1 ⊕⋯⊕ am with some additive bracketing and with each
ai either in X or the product of two elements in X. Then size(a) = rank(a) by
Example 3.2.6.

Conversely, suppose size(a) = rank(a). To show that a has the desired form,
consider the three possible cases.



I.70 3. COHERENCE OF SYMMETRIC BIMONOIDAL CATEGORIES

(i) If a ∈ X then we are done.
(ii) Next suppose

a = a1 ⊗⋯⊗ an

for some n ≥ 2 and some multiplicative bracketing, and with each ai ∈ Xfr

not of the form a1
i ⊗ a2

i for any a1
i , a2

i ∈ Xfr. So each ai is either in X or has
the form a1

i ⊕ a2
i . Lemma 3.2.13 implies that each ai ∈ X. Since

rank(a) = 2n ≤ 2n = size(a),
the assumption size(a) = rank(a) implies n = 2. So a is a product of two
elements in X, which is of the desired form.

(iii) For the remaining case, we may assume that a has the form

a = a1 ⊕⋯⊕ am

for some m ≥ 2 and some additive bracketing, and with each ai ∈ Xfr not
of the form a1

i ⊕ a2
i for any a1

i , a2
i ∈ Xfr. For each 1 ≤ i ≤ m, either

● ai ∈ X, or
● by Lemma 3.2.13 ai is a finite product of elements in X.

Therefore, a has the form (3.2.7), which is a finite sum of finite products
of elements in X. By Example 3.2.6, there are equalities

rank(a) = 2(k1 +⋯+ km) and

size(a) = 2k1 +⋯+ 2km .

The assumption size(a) = rank(a) implies ki ≤ 2 for 1 ≤ i ≤ m. So a is a finite
sum with each summand either in X, or is a product of two elements in
X.

This finishes the proof of the other direction. □

Lemma 3.2.16. Suppose f ∶ a b is a prime edge that involves either λ⊗ or ρ⊗.
(1) The following inequality holds.

(3.2.17) size(a)− rank(a) ≥ size(b)− rank(b).
(2) (3.2.17) is an equality if and only if f is a sum of identities and an elementary

edge λ⊗x or ρ⊗x with x ∈ X.

Proof. Suppose f involves λ⊗; the proof for ρ⊗ is almost identical.
For assertion (1), first consider the following (in)equalities for c ∈ Xfr.

size(1X ⊗ c)− rank(1X ⊗ c)
= size(1X) ⋅ size(c)− rank(1X)− rank(c)
= (size(c)− rank(c))+ (size(c)− 2)
≥ size(c)− rank(c)

(3.2.18)

This is an equality if and only if size(c) = 2, that is, if c ∈ X. Since the prime edge f
must involve one elementary edge of the form λ⊗c for some c ∈ Xfr and identities,
a computation similar to (3.2.18) proves the inequality (3.2.17).

For assertion (2), (3.2.18) with c ∈ X proves the “if” direction. Conversely, if
(3.2.17) is an equality, then the elementary edge in f has the form λ⊗x for some
x ∈ X by (3.2.18). Moreover, this λ⊗x is a summand of f , with all other summands
identities. This is true because, by a computation similar to (3.2.18), for a product
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of 1X ⊗ x with some other elements in Xfr, the quantity size− rank strictly decreases
when 1X is removed. □

3.3. Reduction of Additive and Multiplicative Zeros

As the first reduction step for the Coherence Theorem 3.9.1, in this section we
show that each element in the free {⊕,⊗}-algebra Xfr has a unique 0X-reduction,
in which all instances of 0X that can be added or multiplied have been eliminated.
Although a path from an element to its 0X-reduction is not unique, we observe that
its value in C is unique.
Convention 3.3.1. For the rest of this chapter, the following conventions are in
effect.

(1) (X, 0X, 1X) is as in Definition 3.1.6, so X is a set with two distinguished el-
ements 0X and 1X. The free {⊕,⊗}-algebra Xfr of X is as in Definition 3.1.2.

(2) C is an arbitrary symmetric bimonoidal category as in Definition 2.1.2.
(3) φ ∶ X Ob(C) is an arbitrary function such that

φ(0X) = 0 and φ(1X) = 1,

and

Gr(X) C
φ

is the associated graph morphism in Definition 3.1.14. The value in C of a
path (3.1.18) and the commutativity of a diagram in Gr(X) are defined in
that definition. ◇

Definition 3.3.2. A 0X-prime edge is a nonidentity prime edge in the sense of Defi-
nition 3.1.8 that involves λ⊕, ρ⊕, λ ●, or ρ ●. ◇
Example 3.3.3. In Example 3.1.11, there are two 0X-prime edges, namely, ρ⊕x(y⊕z)
and 1xy ⊕ ρ⊕xz. ◇
Definition 3.3.4. Suppose a ∈ Xfr.

(1) The element a is 0X-reduced if either
● a = 0X, or
● the expression of a in terms of elements of X does not involve 0X.

(2) A 0X-reduction of a is a path P ∶ a b in Gr(X) such that the following
two statements hold.
● b is 0X-reduced.
● Each edge in P is either an identity or a 0X-prime edge. ◇

The following is basically the definition, but it is useful to state it precisely for
later usage.
Lemma 3.3.5. The following statements hold.

(1) Each element in X is 0X-reduced.
(2) An element a ∈ Xfr is 0X-reduced if and only if a is not the domain of any 0X-

prime edges.

Proof. An element in X is either 0X or in X ∖ {0X}. In either case, it is 0X-reduced.
For the second assertion, the domain of each 0X-prime edge contains 0X and

at least one other element in Xfr, which may also be 0X. Such an element is not
0X-reduced.
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Conversely, if a ∈ Xfr is not 0X-reduced, then, by assertion (1), its expression in
terms of elements of X involves at least two elements, and 0X is among them. So a
is the domain of some 0X-prime edge. □

Next we show the existence of 0X-reductions.

Lemma 3.3.6. Each element in Xfr has a 0X-reduction.

Proof. Suppose a ∈ Xfr. The proof is by induction on the number n of instances of
0X in the expression of a in terms of elements of X. If n = 0, then a is 0X-reduced,
and the identity 1a is a 0X-reduction of a.

Inductively, suppose n > 0. If a = 0X, then it is 0X-reduced, and 1a is again a
0X-reduction.

If a /= 0X, then a is not 0X-reduced. By Lemma 3.3.5 (2), a is the domain of
some 0X-prime edge f ∶ a a′. The number of 0X in the expression of a′ in
terms of elements of X is n − 1. By the induction hypothesis, a′ has a 0X-reduction
P′ ∶ a′ b. The path

a a′ b
f P′

in Gr(X) is a 0X-reduction of a. □

Lemma 3.3.7. Suppose P ∶ a b is a 0X-reduction of an element a ∈ Xfr. Then

supp(a) = supp(0X) if and only if b = 0X.

Proof. By Lemma 3.1.29 (2), there is an equality

supp(a) = supp(b).

So if b = 0X, then

(3.3.8) supp(a) = supp(b) = supp(0X).

Conversely, since b is 0X-reduced, it is either 0X or contains no 0X. Therefore, if
(3.3.8) holds, then b = 0X, since otherwise its support cannot be the support of
0X. □

Motivation 3.3.9. Uniqueness of 0X-reductions requires more care than existence.
For example, the diagram

x⊗ 0X

0X ⊕ (x⊗ 0X) 0X

0X ⊕ 0X

ρ
●
x

λ⊕x⊗0X

10X⊕ρ
●
x

λ⊕0X

ρ⊕0X

contains three different 0X-reductions of 0X ⊕ (x⊗ 0X) ∈ Xfr. Therefore, uniqueness
should not refer to the paths themselves, but rather (i) the codomain and (ii) the
values of the paths in the symmetric bimonoidal category C. Uniqueness of 0X-
reductions in these two senses are proved in the next two results. ◇
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Notation 3.3.10. For a path P ∶ a b in Gr(X) and an element c ∈ Xfr, the path

a⊕ c b⊕ c
P⊕1c

in Gr(X) is obtained from P by replacing each of its edges h by h⊕ 1c. The paths

● 1c ⊕ P ∶ c⊕ a c⊕ b,
● P⊗ 1c ∶ a⊗ c b⊗ c, and
● 1c ⊗ P ∶ c⊗ a c⊗ b

are defined analogously by replacing each edge h in P by 1c ⊕ h, h⊗ 1c, and 1c ⊗ h,
respectively. ◇
Lemma 3.3.11. For any two 0X-reductions

a
b1

b2

P1

P2

of an element a ∈ Xfr, the equality b1 = b2 holds.

Proof. The proof is by induction on the norm of a. If norm(a) = 1, then a ∈ X. By
Lemma 3.3.5, the only possible 0X-reductions of a are paths consisting of identity
prime edges. They all have codomains equal to a.

For the induction step, suppose norm(a) > 1. So a has the form a1⊕ a2 or a1⊗ a2
for some a1, a2 ∈ Xfr with strictly lower norms than a.

If a contains no 0X in its expression, then the only possible 0X-reductions of a
are paths consisting of identity prime edges. They all have codomains equal to a.

We now assume that a contains at least one 0X in its expression in terms of
elements of X. Adding or removing an identity in a path do not change the
(co)domain. Therefore, to show that b1 = b2, we may assume that for i = 1, 2, Pi
has the form

a ci bi
fi P′i

with

● the first edge fi a 0X-prime edge and
● P′i ∶ ci bi a 0X-reduction of ci, whose norm is strictly less than that

of a.

The induction hypothesis applied to ci implies that the codomains of any two 0X-
reductions of ci are equal. To show that b1 = b2, we consider the two possible
cases.

First, if f1 = f2, then c1 = c2. This implies that b1 = b2.
If f1 /= f2, then up to renaming them, they fall into one of the following cases.
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(1) f1 and f2 act on different summands of a, as in the following diagram.

a = a1 ⊕ a2 d = a′1 ⊕ a′2 d′

c1 = a′1 ⊕ a2

c2 = a1 ⊕ a′2

f1 = f ′1 ⊕ ea2 1a′1
⊕ f ′2

Q

f2 = ea1 ⊕ f ′2
f ′1 ⊕ 1a′2

Q1

Q2

Here:
● eai ∶ ai ai is an identity prime edge for i = 1, 2.
● f1 = f ′1 ⊕ ea2 for some 0X-prime edge f ′1 ∶ a1 a′1.
● f2 = ea1 ⊕ f ′2 for some 0X-prime edge f ′2 ∶ a2 a′2.
● By Lemma 3.3.6, d = a′1 ⊕ a′2 has a 0X-reduction Q ∶ d d′.

Define the paths

Q1 = (Q, 1a′1
⊕ f ′2) ∶ c1 d′

Q2 = (Q, f ′1 ⊕ 1a′2
) ∶ c2 d′

in Gr(X) as displayed above. Since these are 0X-reductions of c1 and c2,
respectively, the induction hypothesis implies that b1 = d′ = b2.

(2) Case (1) has an analogue involving ⊗ instead of ⊕ in the diamond in the
previous diagram. The proof for b1 = b2 in this case is the same as above
after replacing ⊕with ⊗.

(3) f1 and f2 act on the same summand of a, as in the following diagram.

a = a1 ⊕ a2 d = b′ ⊕ a2 d′

c1 = a′1 ⊕ a2

c2 = a′′1 ⊕ a2

f1 = f ′1 ⊕ ea2 R1 ⊕ 1a2

Q

f2 = f ′2 ⊕ e′a2

R2 ⊕ 1a2

Q1

Q2

Here:
● f1 is as in case (1).
● e′a2

∶ a2 a2 is an identity prime edge.
● f2 = f ′2 ⊕ e′a2

for some 0X-prime edge f ′2 ∶ a1 a′′1 .
● Since

norm(a1) < norm(a),
the induction hypothesis applied to a1, and Lemma 3.3.6 applied to
a′1 and a′′1 , together imply that there exist 0X-reductions

b′
a′1

a′′1

R1

R2
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with a common codomain b′.
● By Lemma 3.3.6, d = b′ ⊕ a2 has a 0X-reduction Q ∶ d d′.
● Each path Ri ⊕ 1a2 ∶ ci d is defined in Notation 3.3.10.

Define the paths

Q1 = (Q, R1 ⊕ 1a2) ∶ c1 d′

Q2 = (Q, R2 ⊕ 1a2) ∶ c2 d′

in Gr(X) as displayed above. Since these are 0X-reductions of c1 and c2,
respectively, the induction hypothesis implies that b1 = d′ = b2.

(4) There are three variants of case (3) obtained by the following modifica-
tions in the diamond in the previous diagram.
● Permute the two summands in each vertex and each edge or path.
● Replace ⊕with ⊗.
● Permute the two summands in each vertex and each edge or path,

and replace ⊕with ⊗.
In each of these three cases, after the modifications, the proof is the same
as in case (3).

(5) f1 acts on a summand, and f2 acts on all of a, as in the following diagram.

a = a1 ⊕ 0X d d′

c1 = d⊕ 0X

c2 = a1

f1 = f ′1 ⊕ 10X

ρ⊕d
Q

f2 = ρ⊕a1

f ′1

Q1

Q2

Here:
● f1 = f ′1 ⊕ 10X for some 0X-prime edge f ′1 ∶ a1 d.
● By Lemma 3.3.6, there exists a 0X-reduction Q ∶ d d′.

Define the paths

Q1 = (Q, ρ⊕d ) ∶ c1 d′

Q2 = (Q, f ′1) ∶ c2 d′

in Gr(X) as displayed above. Since these are 0X-reductions of c1 and c2,
respectively, the induction hypothesis implies that b1 = d′ = b2.

(6) Case (5) has a variant with a = 0X ⊕ a1. The proof for this case is obtained
from that of case (5) by replacing (ρ⊕, f ′1 ⊕ 10X)with (λ⊕, 10X ⊕ f ′1).
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(7) f1 acts on a factor, and f2 acts on all of a, as in the following diagram.

a = a1 ⊗ 0X 0X

c1 = a′1 ⊗ 0X

c2 = 0X

f1 = f ′1 ⊗ 10X ρ
●
a′1

f2 = ρ
●
a1

10X

Since ρ ●a′1
and 10X are 0X-reductions of c1 and c2, respectively, the induc-

tion hypothesis implies that b1 = 0X = b2.
(8) Case (7) has a variant with a = 0X ⊗ a1. The proof for this case is obtained

from that of case (7) by replacing (ρ ●, f ′1 ⊗ 10X)with (λ ●, 10X ⊗ f ′1).
(9) Both f1 and f2 act on all of a, as in the following diagram.

a = 0X ⊕ 0X 0X

c1 = 0X

c2 = 0X

f1 = λ⊕0X 10X

f2 = ρ⊕0X
10X

Since 10X is a 0X-reduction of each of c1 and c2, the induction hypothesis
implies that b1 = 0X = b2.

(10) Case (9) has a variant with (⊕, λ⊕
0X , ρ⊕

0X) replaced by (⊗, λ ●0X , ρ ●0X). Again
the induction hypothesis implies that b1 = 0X = b2.

This finishes the proof of the induction step. □

Lemma 3.3.12. Any two 0X-reductions

a b
P1

P2

of an element a ∈ Xfr have the same value in C.

Proof. We use Lemma 3.3.11 and its inductive proof. If either norm(a) = 1, or in-
ductively norm(a) > 1 with a containing no 0X, then a 0X-reduction of a consists of
identities. So its value in C must be the identity morphism.

Following the proof of Lemma 3.3.11, we may assume that each Pi takes the
form

a ci b
fi P′i

with
● fi a 0X-prime edge and
● P′i ∶ ci b a 0X-reduction of ci.
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The induction hypothesis applied to ci says that every 0X-reduction of ci has the
same value in C as P′i .

If f1 = f2, then c1 = c2. The induction hypothesis implies that P′1 and P′2, and
therefore also P1 and P2, have the same value in C.

If f1 /= f2, then we follow the proof of Lemma 3.3.11 and reuse the diagrams
there with d′ = b.

● In cases (1) and (2), the diamond is commutative by, respectively, the
functoriality of ⊕ and ⊗ in C.
● In cases (3) and (4), the diamond is commutative by functoriality and the

induction hypothesis applied to a1.
● In cases (5)–(8), the diamond is commutative by, respectively, the natu-

rality of ρ⊕, λ⊕, ρ ●, and λ ●.
● In case (9), the diamond is commutative by the unity property (1.2.6), that

is, λ⊕0 = ρ⊕0 in the symmetric monoidal category (C,⊕, 0).
● In case (10), the diamond is commutative by the axiom (2.1.14), that is,

λ ●0 = ρ ●0 in C.
Now we observe that P1 and P2 have the same value in C in each case. In each

of cases (1)–(6), the other two subdiagrams are commutative by the definitions of
the paths Q1 and Q2. The induction hypothesis applied to each ci implies that P′i
and Qi have the same value in C. The commutativity of the diagram in C then
implies that P1 and P2 have the same value in C.

In each of cases (7)–(10), the diagram is the diamond with b = 0X.
● In case (7), the induction hypothesis implies that the values of P′1 and P′2

in C are, respectively, ρ ●ga′1
and 10. The commutative diamond in C implies

that P1 and P2 have the same value in C.
● The proof for case (8) is obtained from that of case (7) by replacing ρ ●ga′1

with λ ●ga′1
.

● In cases (9) and (10), the value in C of any 0X-reduction of c1 = c2 = 0X is
10. Therefore, P1 and P2 have values, respectively,

– λ⊕0 and ρ⊕0 in case (9) and
– λ ●0 and ρ ●0 in case (10).

They are equal by, respectively, (1.2.6) and (2.1.14), as explained above.
This finishes the induction step. □

Example 3.3.13. In Motivation 3.3.9, the three 0X-reductions of 0X ⊕ (x⊗ 0X) ∈ Xfr

have the same value in C for the following reasons.
● The upper left sub-diagram is commutative by the naturality of λ⊕ in C.
● The lower right sub-diagram is commutative by axiom (1.2.6) in the sym-

metric monoidal category (C,⊕, 0), which says that λ⊕0 = ρ⊕0 . ◇

3.4. Zero Reduction of Paths

A reduction step in the proof of the Coherence Theorem 3.9.1 involves elim-
inating additive zeros, multiplicative zeros, and their inverses in paths. In this
section, we first give a precise definition of such a reduction; see Definition 3.4.5.
In such a reduction, the (co)domain is a 0X-reduction of the (co)domain of the
original path. Then we prove several basic properties about them. The proof of
the existence of such a reduction is given in Section 3.5. Recall elementary edges,
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prime edges, and 0X-prime edges in Definitions 3.1.6, 3.1.8, and 3.3.2. Recall that
Convention 3.3.1 is in effect.

Definition 3.4.1. Consider the graph Gr(X) of X in Definition 3.1.9.
● An inverse 0X-prime edge is a nonidentity prime edge that involves λ−⊕,

ρ−⊕, λ− ●, or ρ− ●.
● A 0X-free path is a path that does not contain any 0X-prime edges and

inverse 0X-prime edges.
● A 0X-free edge is a 0X-free path of length 1. ◇

Explanation 3.4.2. In a 0X-free path, every prime edge is either an identity or in-
volves a single instance of α±⊕, ξ±⊕, α±⊗, ξ±⊗, λ±⊗, ρ±⊗, δl , or δr. ◇
Example 3.4.3. For elements a, b ∈ Xfr, the prime edges

a 0X ⊕ a (b⊗ 0X)⊕ a
λ−⊕a ρ−

●

b ⊕1a

are inverse 0X-prime edges. ◇
Example 3.4.4. Suppose P ∶ a b is a 0X-free path. Then the paths

● P⊕ 1c ∶ a⊕ c b⊕ c,
● 1c ⊕ P ∶ c⊕ a c⊕ b,
● P⊗ 1c ∶ a⊗ c b⊗ c, and
● 1c ⊗ P ∶ c⊗ a c⊗ b

in Notation 3.3.10 are 0X-free paths for each element c ∈ Xfr. ◇
The next definition uses the concepts of commutativity near the end of Defini-

tion 3.1.14, and 0X-reductions of an element in Xfr in Definition 3.3.4.

Definition 3.4.5. Suppose P ∶ a b is a path in Gr(X). A 0X-reduction of P is a
0X-free path R ∶ a′ b′ such that for any 0X-reductions

● Qa ∶ a a′ of a and
● Qb ∶ b b′ of b,

the diagram

(3.4.6)
a b

a′ b′
Qa

P

Qb

R

is commutative in the sense of Definition 3.1.14. ◇
The goal of this section and Section 3.5 is to show that each path in Gr(X) has

a 0X-reduction; see Proposition 3.5.32.

Explanation 3.4.7. Consider Definition 3.4.5.
(1) The domain a′ of R must be the codomain of a 0X-reduction of a, and the

codomain b′ of R must be the codomain of a 0X-reduction of b. The ele-
ments a′ and b′ are well defined, that is, uniquely determined by a and b,
by Lemmas 3.3.6 and 3.3.11. In particular, R is a 0X-free path whose do-
main and codomain are both 0X-reduced in the sense of Definition 3.3.4.

(2) For the commutativity of the diagram (3.4.6), the equality

(R, Qa) = (Qb, P)
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of paths in Gr(X) is sufficient but not necessary. The definition only
requires that the image of the diagram under the graph morphism φ ∶
Gr(X) C in Definition 3.1.14 be a commutative diagram in C for arbi-
trary C and φ.

The following observation says that for a 0X-free path to be a 0X-
reduction of a given path, it suffices to check the commutativity of the
diagram (3.4.6) for one pair of 0X-reductions (Qa, Qb). ◇

Lemma 3.4.8. Suppose the following statements hold:
● P ∶ a b is a path in Gr(X).
● Qa ∶ a a′ is a 0X-reduction of a.
● Qb ∶ b b′ is a 0X-reduction of b.
● R ∶ a′ b′ is a 0X-free path.
● The diagram

a b

a′ b′
Qa

P

Qb

R

is commutative.
Then R is a 0X-reduction of P.

Proof. By Lemmas 3.3.11 and 3.3.12, for each element in Xfr, the codomain and the
value in C of a 0X-reduction are unique. Therefore, in the given diagram, if Qa
and Qb are replaced by any other 0X-reductions of a and b, respectively, then the
resulting diagram is still commutative. □

Lemma 3.4.8 will be used below to check that a given path has a 0X-reduction.
Recall from Definition 3.3.4 the concept of an element in Xfr being 0X-reduced.
Lemma 3.4.9. Suppose P ∶ a b is a 0X-free path.

(1) If a contains no 0X, then every vertex in P contains no 0X and is 0X-reduced.
(2) If a = 0X, then the following statements hold.

(i) Each edge in P is either an identity or a prime edge involving a single
instance of α±⊗, ξ±⊗, λ±⊗, or ρ±⊗.

(ii) Each vertex in P is a finite product with precisely one 0X and all other
factors 1X.

Proof. If the expression of a in terms of elements of X contains no 0X, then the
same is true for all other vertices in P because edges in P, as described in Explana-
tion 3.4.2, do not introduce any 0X from the domain to the codomain.

For assertion (2), consider the subset S ⊂ Xfr in which each element is a finite
product with precisely one 0X and all other factors 1X. Then a = 0X is in S as the
special case with no factors of 1X. Consider an edge

c b
f

in Gr(X)with
● c ∈ S and
● f a prime edge that is also a 0X-free path.

See Explanation 3.4.2 for the possibilities of f . We consider all possible cases below.
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● If f is an identity, then b = c ∈ S.
● Suppose f is not an identity, and c = 0X. Then f must be either

0X 1X ⊗ 0X
λ−⊗0X

or 0X 0X ⊗ 1X.
ρ−⊗0X

Moreover, its codomain is also in S.
● Suppose f is not an identity, and c /= 0X. Since c ∈ S, the prime edge f can

only involve a single instance of α±⊗ (if norm(c) ≥ 3), ξ±⊗, λ±⊗, or ρ±⊗.
Moreover, its codomain is also in S.

Therefore, an induction on the length of P proves assertion (2), with the previous
paragraph proving both the initial case and the first edge of the induction step. □

Example 3.4.10. In the context of Lemma 3.4.9 (2), for a 0X-free path P ∶ 0X b,
it does not follow that the vertices in P other than the domain are 0X-reduced. For
example, in the 0X-free path

0X (1X ⊗ 1X)⊗ (0X ⊗ 1X)

1X ⊗ 0X (1X ⊗ 0X)⊗ 1X 1X ⊗ (0X ⊗ 1X)

λ−⊗0X

ρ−⊗1X⊗0X α⊗1X ,0X ,1X

λ−⊗1X ⊗10X⊗1X

all the vertices except 0X are not 0X-reduced. ◇
Recall from (3.1.18) the value in C of a path in Gr(X). The next two obser-

vations are about the values in C of paths with 0X as the domain. They provide
further information in the setting of Lemma 3.4.9 (2).
Lemma 3.4.11. Suppose P ∶ 0X 0X is a 0X-free path. Then the value of P in C is 10.

Proof. This follows from Lemma 3.4.9 (2) and the uniqueness part of Theorem 1.3.8
for the symmetric monoidal category (C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗). □

The next observation will be needed in the proof of Lemma 3.4.14.
Lemma 3.4.12. Suppose

● P ∶ 0X b is a 0X-free path, and
● Qb ∶ b 0X is a 0X-reduction of b.

Then the value in C of the path

(3.4.13) 0X b 0XP Qb

is the identity morphism 10.

Proof. By Lemma 3.4.9 (2), b is a finite product with precisely one 0X and all other
factors 1X. An induction on norm(b), starting with norm(b) = 1 and b = 0X, implies
that there is a 0X-reduction

b 0XQb

of b such that the following statements hold.
● Qb = 10X if b = 0X.
● If b /= 0X, then Qb consists of prime edges, each involving λ ● or ρ ● with

subscript a finite product of copies of 1X.
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One example of Qb is the path below.

b = 1X ⊗ (0X ⊗ (1X ⊗ 1X)) 1X ⊗ 0X

0X

11X⊗λ
●

1X⊗1X

ρ
●

1X

In general, the value in C of each prime edge in Qb is one of the following:

● 10 if Qb = 10X ;
● a canonical map as in Definition 1.3.2 involving a single instance of λ ●

1
=

ρ⊗0 (2.1.17) and identities, if f has a copy of λ ●1X ;
● a canonical map involving a single instance of ρ ●

1
= λ⊗0 (2.1.18) and iden-

tities, if f has a copy of ρ ●1X ; or
● a canonical map involving identities, λ⊗, and ρ⊗, if f has a copy of λ ● or

ρ ● whose subscript is a product of at least two copies of 1X.

For an example of the last case, consider the prime edge

1X ⊗ (0X ⊗ (1X ⊗ 1X)) 1X ⊗ 0X
11X⊗λ

●

1X⊗1X

with an instance of λ ●1X⊗1X . Its value in C factors as the composite below by the
naturality of λ ● in C.

1⊗ (0⊗ (1⊗1)) 1⊗ 0

1⊗ (0⊗1)

11⊗λ
●
1⊗1

11⊗(10⊗λ⊗
1
) 11⊗λ

●
1
= 11⊗ρ⊗0

The axiom (2.1.17) in C, which says that λ ●
1
= ρ⊗0 , implies that the above composite

is a canonical map involving identities, λ⊗, and ρ⊗.
For a general finite product I of at least two copies of 1, there is a finite com-

posite I 1 consisting of identities, λ⊗, and ρ⊗. In this case:

● The left slanted morphism in the previous diagram is a canonical map
involving identities, λ⊗, and ρ⊗.
● The right slanted morphism uses either

– λ ●
1
= ρ⊗0 as above, if the prime edge involves λ ●; or

– the axiom (2.1.18), which says that ρ ●
1
= λ⊗0 , if the prime edge in-

volves ρ ●.

Therefore, in general the value of Qb in C is the 0-component of a canonical map
involving identities, λ⊗, and ρ⊗.

By Lemma 3.4.9 (2), every edge in P is either an identity or a prime edge in-
volving a single instance of α±⊗, ξ±⊗, λ±⊗, or ρ±⊗. Therefore, the value of the
path (3.4.13) in C is the 0-component of a permuted canonical map − −. It
is the identity morphism 10 by the uniqueness part of the Symmetric Coherence
Theorem 1.3.8 for the symmetric monoidal category (C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗).

We have proved the assertion for one choice of a 0X-reduction of b. Therefore,
by Lemma 3.3.12, the assertion remains true for any other 0X-reduction of b. □
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The next observation will be used in the proofs of several lemmas in Sec-
tion 3.5.
Lemma 3.4.14. Suppose

● P ∶ a b is a 0X-free path with a and b both 0X-reduced, and
● c ∈ Xfr is 0X-reduced.

Then the paths
P⊕ 1c, 1c ⊕ P, P⊗ 1c, and 1c ⊗ P

in Notation 3.3.10 have 0X-reductions.

Proof. Each of a and c has two possibilities. It is either 0X, or its expression in terms
of elements of X contains no 0X. We consider the possible cases separately.

First, if a contains no 0X, then b also contains no 0X by Lemma 3.4.9 (1). There
are now two sub-cases depending on the form of c.

(1) If c also contains no 0X, then a ⊕ c and b ⊕ c contain no 0X, and are 0X-
reduced. Since P⊕ 1c is a 0X-free path, it is a 0X-reduction of itself. Essen-
tially the same argument works for the other three types of paths.

(2) If c = 0X, then the diagram

a⊕ 0X b⊕ 0X

a b

ρ⊕a

P⊕10X

ρ⊕b

P

is commutative by the naturality of ρ⊕ in C. The left and the right vertical
edges are 0X-reductions of a ⊕ 0X and b ⊕ 0X, respectively. Since P is a
0X-free path, it is a 0X-reduction of P⊕ 1c.

Similarly, for the paths 1c ⊕ P, P⊗ 1c, and 1c ⊗ P, the diagrams below
are commutative by the naturality of, respectively, λ⊕, ρ ●, and λ ● in C.

0X ⊕ a 0X ⊕ b

a b

λ⊕a

10X⊕P

λ⊕b
P

a⊗ 0X b⊗ 0X

0X 0X

ρ
●
a

P⊗10X

ρ
●

b
10X

0X ⊗ a 0X ⊗ b

0X 0X

λ
●
a

10X⊗P

λ
●

b
10X

They show that P, 10X , and 10X , respectively, are the corresponding 0X-
reductions.

Next if a = 0X, then b is a finite product with precisely one 0X and all other
factors 1X by Lemma 3.4.9 (2). We consider the following diagram with Qb ∶
b 0X any 0X-reduction of b.

0X ⊕ c b⊕ c

0X ⊕ c 0X ⊕ c

c c

10X⊕1c

P⊕1c

Qb⊕1c

10X⊕1c

λ⊕c λ⊕c
1c

The bottom rectangle is commutative by the functoriality of ⊕ in C. The top rec-
tangle is commutative by the functoriality of ⊕ in C and Lemma 3.4.12. Since c
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is 0X-reduced, the left and the right vertical paths are 0X-reductions of 0X ⊕ c and
b⊕ c, respectively. Therefore, 1c is a 0X-reduction of P⊕ 1c.

For 1c ⊕ P, we modify the previous diagram by (i) switching the two sum-
mands in each vertex, each edge, and each path in the top rectangle, and (ii) re-
placing λ⊕c with ρ⊕c .

For P⊗ 1c, we modify the previous diagram by replacing (i) ⊕ with ⊗, and (ii)
the bottom rectangle with the rectangle below.

0X ⊗ c 0X ⊗ c

0X 0X

10X⊗1c

λ
●
c λ

●
c

10X

This is commutative by the functoriality of⊗ in C. In this case, 10X is a 0X-reduction
of P⊗ 1c.

For 1c ⊗ P, we modify the proof for P⊗ 1c by (i) switching the two factors in
each vertex, each edge, and each path in the top rectangle, and (ii) replacing λ ●c
with ρ ●c . □

3.5. Existence of Zero Reduction of Paths

In this section, we give a detailed proof that every path in Gr(X) as in Defini-
tion 3.1.9 has a 0X-reduction in the sense of Definition 3.4.5; see Proposition 3.5.32.
A path in Gr(X) consists of prime edges as in Definition 3.1.8, and prime edges are
built from elementary edges as in Definition 3.1.6. The proof of Proposition 3.5.32
is broken down into a series of lemmas covering the various types of prime edges.
This section ends with a preliminary version of the Coherence Theorem 3.9.1 for
paths whose domains have the same support as 0X; see Proposition 3.5.33. Recall
that Convention 3.3.1 is in effect.

Lemma 3.5.1. Suppose f ∶ a b is a prime edge of one of the following types:

● an identity,
● a 0X-prime edge as in Definition 3.3.2, or
● an inverse 0X-prime edge as in Definition 3.4.1.

Then f has a 0X-reduction.

Proof. Recall from Lemma 3.3.6 that each element in Xfr has a 0X-reduction.

● If f is an identity, then its value in C is an identity morphism. If Qa ∶
a a′ is a 0X-reduction of a, then the diagram

a a

a′ a′
Qa

f

Qa

1a′

is commutative. So the identity 1a′ is a 0X-reduction of f .



I.84 3. COHERENCE OF SYMMETRIC BIMONOIDAL CATEGORIES

● If f is a 0X-prime edge, and if Qb ∶ b b′ is a 0X-reduction of b, then
(Qb, f ) ∶ a b′ is a 0X-reduction of a. Since the diagram

a b

b′ b′
(Qb , f)

f

Qb

1b′

is commutative, the identity 1b′ is a 0X-reduction of f .
● If f is an inverse 0X-prime edge, denote by f−1 ∶ b a the 0X-prime

edge obtained from f by replacing its unique copy of λ−⊕, ρ−⊕, λ− ●, or
ρ− ● with its formal inverse. If Qa ∶ a a′ is a 0X-reduction of a, then
(Qa, f−1) ∶ b a′ is a 0X-reduction of b. Since the diagram

a b

a′ a′
Qa

f

(Qa , f−1)
1a′

is commutative, the identity 1a′ is a 0X-reduction of f .
Therefore, by Lemma 3.4.8, f has a 0X-reduction. □

Lemma 3.5.2. Suppose f ∶ a b is a prime edge whose domain is 0X-reduced in the
sense of Definition 3.3.4. Then f has a 0X-reduction.

Proof. If f satisfies the hypothesis of Lemma 3.5.1, then we are done. Otherwise, f
is a 0X-free path. There are two cases.

First suppose that the expression of a in terms of elements of X contains no 0X.
By Lemma 3.4.9(1), the codomain b is also 0X-reduced. The identities 1a ∶ a a
and 1b ∶ b b are 0X-reductions of a and b, respectively, and the diagram

a b

a b

1a

f

1b

f

is commutative. Therefore, f is a 0X-free path, and is a 0X-reduction of f .
Next suppose a = 0X. This implies that 1a is a 0X-reduction of a, and that f is

either

a = 0X 1X ⊗ 0X = b
λ−⊗0X

or a = 0X 0X ⊗ 1X = b.
ρ−⊗0X

In these two cases, a 0X-reduction of b is ρ ●1X on the left and λ ●1X on the right. The
diagrams

0X 1X ⊗ 0X

0X 0X

10X

λ−⊗0X

ρ
●

1X

10X

and
0X 0X ⊗ 1X

0X 0X

10X

ρ−⊗0X

λ
●

1X

10X

are commutative by the axioms (2.1.18) and (2.1.17), which state that ρ ●
1
= λ⊗0 and

λ ●
1
= ρ⊗0 , respectively. Therefore, 10X is a 0X-reduction of f . □



3.5. EXISTENCE OF ZERO REDUCTION OF PATHS I.85

Lemma 3.5.3. Suppose f ∶ a b is a prime edge such that

● a is not 0X-reduced, and
● f involves an instance of α±⊕.

Then f has a 0X-reduction.

Proof. By assumption, norm(a) ≥ 3, and a contains at least one 0X in its expression
in terms of elements of X. First assume that f involves an instance of α⊕. We
proceed by induction on norm(a).

If norm(a) = 3, then

(3.5.4) a = (x⊕ y)⊕ z x⊕ (y⊕ z) = b
f = α⊕x,y,z

with x, y, z ∈ X, at least one of which is 0X. Depending on whether each of x, y, and
z is 0X, there are seven cases. Consider, for example, the case x = z = 0X /= y, as in
the following diagram.

(3.5.5)

a = (0X ⊕ y)⊕ 0X 0X ⊕ (y⊕ 0X) = b

y⊕ 0X y⊕ 0X

y y

α⊕0X ,y,0X

λ⊕y ⊕10X λ⊕y⊕0X

ρ⊕y

1y⊕0X

ρ⊕y
1y

● The top rectangle is commutative by the left unity property (1.2.7) in the
monoidal category (C,⊕, 0X, α⊕, λ⊕, ρ⊕).
● The bottom rectangle is commutative by definition.
● The left and the right vertical paths are, respectively, 0X-reductions of a

and b.
● 1y is a 0X-free path with y ∈ X 0X-reduced by Lemma 3.3.5 (1).

Therefore, 1y is a 0X-reduction of f in this case. The other six cases are proved in
the same way, using either the unity axiom (1.2.2) or the unity properties (1.2.7) in
the monoidal category (C,⊕). In each case, an identity is a 0X-reduction of f .

For the induction step, suppose norm(a) > 3. Either

a = a1 ⊕ a2 or a = a1 ⊗ a2

for some a1, a2 ∈ Xfr. We consider these two cases separately below.
First suppose a is a sum a = a1 ⊕ a2, and f = f1 ⊕ e splits as a sum for some

● prime edge f1 ∶ a1 b1 involving an instance of α⊕ and
● identity e ∶ a2 a2.

There are two sub-cases depending on a1.

● If a1 is 0X-reduced, then by Lemma 3.5.2, f1 has a 0X-reduction R1.
● If a1 is not 0X-reduced, then, since norm(a1) < norm(a), the induction hy-

pothesis implies that f1 has a 0X-reduction R1.
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In either case, there is a diagram

(3.5.6)

a1 b1

a′1 b′1

Qa1

f1

Qb1

R1

that is commutative, with Qa1 and Qb1
any 0X-reductions of a1 and b1, respectively,

and with R1 a 0X-reduction of f1, hence in particular a 0X-free path.
Consider the following diagram.

(3.5.7)

a = a1 ⊕ a2 b1 ⊕ a2 = b

a′1 ⊕ a2 b′1 ⊕ a2

a′1 ⊕ a′2 b′1 ⊕ a′2

a′ b′

Qa1⊕1a2

f = f1⊕e

Qb1
⊕1a2

R1⊕1a2

1a′1
⊕Qa2 1b′1

⊕Qa2
R1⊕1a′2

Q1 Q2

R

● Qa2 ∶ a2 a′2 is any 0X-reduction of a2.
● The top two rectangles are commutative by the functoriality of ⊕ in C.
● Q1 ∶ a′1 ⊕ a′2 a′ is any 0X-reduction of a′1 ⊕ a′2.
● Q2 ∶ b′1 ⊕ a′2 b′ is any 0X-reduction of b′1 ⊕ a′2.
● R is a 0X-reduction of R1 ⊕ 1a′2

, which exists by Lemma 3.4.14. So R is a
0X-free path, and the bottom rectangle is commutative.
● The left and the right vertical paths are 0X-reductions of a and b, respec-

tively.

Therefore, by Lemma 3.4.8, R is a 0X-reduction of f .
If f has the form e ⊕ f1, then we slightly modify the argument in the previ-

ous two paragraphs by switching the two summands in the top two rectangles in
(3.5.7).

If f does not split as a sum, then f = α⊕x,y,z as in (3.5.4) for some x, y, z ∈ Xfr. For
each w ∈ {x, y, z}, suppose Qw ∶ w w′ is a 0X-reduction of w. The diagram

(3.5.8)

a = (x⊕ y)⊕ z x⊕ (y⊕ z) = b

(x′ ⊕ y)⊕ z x′ ⊕ (y⊕ z)

(x′ ⊕ y′)⊕ z x′ ⊕ (y′ ⊕ z)

a′ = (x′ ⊕ y′)⊕ z′ x′ ⊕ (y′ ⊕ z′) = b′

f = α⊕x,y,z

(Qx⊕1y)⊕1z Qx⊕(1y⊕1z)

(1x′⊕Qy)⊕1z

α⊕x′ ,y,z

1x′⊕(Qy⊕1z)

(1x′⊕1y′)⊕Qz

α⊕x′ ,y′ ,z

1x′⊕(1y′⊕Qz)
α⊕x′ ,y′ ,z′
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is commutative by the naturality of α⊕ in C. Each w′ is 0X-reduced, so it is either
0X or contains no 0X.

● If x′, y′, and z′ all contain no 0X, then a′ and b′ also contain no 0X, and
are 0X-reduced. The left and the right vertical paths in (3.5.8) are 0X-
reductions of a and b, respectively. Therefore, α⊕x′,y′,z′ is a 0X-reduction
of f in this case.
● Otherwise, at least one of x′, y′, and z′ is 0X. We reuse the argument in

(3.5.5) applied to α⊕x′,y′,z′ , and append the resulting diagram to the bottom
of (3.5.8), and similarly for the other six cases. For each w ∈ {x, y, z}, the
condition “w /= 0X” is replaced by “w′ contains no 0X.” In each case, the
combined diagram is commutative, and shows that an identity is a 0X-
reduction of f .

So far we have proved the induction step when a is a sum.
Next suppose a = a1 ⊗ a2. Then f , being a prime edge involving α⊕, must split

as a product, say f1 ⊗ e with
● f1 ∶ a1 b1 a prime edge involving α⊕ and
● e ∶ a2 a2 an identity.

The diagram (3.5.6) still applies. We reuse the argument in (3.5.7) by replacing ⊕
with ⊗ to conclude that f has a 0X-reduction. If f has the form e ⊗ f1, then we
modify the argument further by switching the two factors in the top two rectan-
gles. This finishes the induction and the case with f involving an instance of α⊕.

If f involves an instance of α−⊕, then we reuse the above argument by replac-
ing α⊕ with α−⊕. □

Lemma 3.5.9. Suppose f ∶ a b is a prime edge such that
● a is not 0X-reduced, and
● f involves an instance of α±⊗.

Then f has a 0X-reduction.

Proof. First suppose that f involves an instance of α⊗. We proceed by induction
on norm(a) ≥ 3 as in the proof of Lemma 3.5.3, most of which is reused here by
replacing ⊕with ⊗.

In the initial case of the induction with norm(a) = 3 and f = α⊗x,y,z, the diagram
(3.5.5) becomes the following diagram.

(3.5.10)

a = (0X ⊗ y)⊗ 0X 0X ⊗ (y⊗ 0X) = b

0X ⊗ 0X

0X 0X

f = α⊗0X ,y,0X

λ
●
y⊗10X

λ
●

y⊗0X

λ
●

0X

10X

This diagram is commutative by the axiom (2.1.22), so 10X is a 0X-reduction of f .
The other six cases follow similarly by the axioms (2.1.20)–(2.1.22).

For the induction step, we first consider the case with a = a1 ⊗ a2 and f = f1 ⊗ e
for some

● prime edge f1 ∶ a1 b1 involving an instance of α⊗ and
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● identity e ∶ a2 a2.
We reuse the argument in the two paragraphs containing (3.5.6) and (3.5.7) by
changing ⊕ to ⊗. The case with f = e⊗ f1 is similar, with the two factors switched.

If f does not split as a product, then f = α⊗x,y,z for some x, y, z ∈ Xfr. We reuse
the paragraph containing (3.5.8) by changing ⊕ to ⊗, (3.5.5) to (3.5.10), and simi-
larly for the other six cases. So far we have proved the induction step when a is a
product.

Next suppose a = a1 ⊕ a2. Then f , being a prime edge involving α⊗, must split
as a sum, say f1 ⊕ e with f1 and e as above. We reuse the argument in (3.5.7), and
conclude that f has a 0X-reduction. If f has the form e⊕ f1, then we modify the
argument by switching the two summands in the top two rectangles. This finishes
the induction and the case with f involving an instance of α⊗.

If f involves an instance of α−⊗, then we reuse the above argument by replac-
ing α⊗ with α−⊗. □

Lemma 3.5.11. Suppose f ∶ a b is a prime edge such that
● a is not 0X-reduced, and
● f involves an instance of ξ±⊕.

Then f has a 0X-reduction.

Proof. By assumption, norm(a) ≥ 2, and a contains at least one 0X in its expression
in terms of elements of X. First assume that f involves an instance of ξ⊕. We
proceed by induction on norm(a).

If norm(a) = 2, then

a = x⊕ y y⊕ x = b
f = ξ⊕x,y

with x, y ∈ X, at least one of which is 0X. Depending on whether each of x and y is
0X, there are three cases corresponding to the following three diagrams.

(3.5.12)
0X ⊕ y y⊕ 0X

y y

ξ⊕0X ,y

λ⊕y ρ⊕y
1y

x⊕ 0X 0X ⊕ x

x x

ξ⊕x,0X

ρ⊕x λ⊕x
1x

0X ⊕ 0X 0X ⊕ 0X

0X 0X

ξ⊕0X ,0X

ρ⊕0X λ⊕0X

10X

Each of these diagrams is commutative by the symmetry axiom (1.2.20) and the
unit axiom (1.2.21) in the symmetric monoidal category (C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕). In
each case, an identity is a 0X-reduction of f .

For the induction step, suppose norm(a) > 2. Either

a = a1 ⊕ a2 or a = a1 ⊗ a2

for some a1, a2 ∈ Xfr. We consider these two cases separately below.
First suppose a is a sum a = a1 ⊕ a2, and f = f1 ⊕ e splits as a sum for some

● prime edge f1 ∶ a1 b1 involving an instance of ξ⊕ and
● identity e ∶ a2 a2.

We obtain a 0X-reduction of f by reusing the two paragraphs containing (3.5.6) and
(3.5.7). If f has the form e⊕ f1, then we slightly modify the argument by switching
the two summands in the top two rectangles in (3.5.7).
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If f does not split as a sum, then f = ξ⊕a1,a2
. For each w ∈ {a1, a2}, suppose

Qw ∶ w w′ is a 0X-reduction of w. The diagram

(3.5.13)

a = a1 ⊕ a2 a2 ⊕ a1 = b

a′1 ⊕ a2 a2 ⊕ a′1

a′ = a′1 ⊕ a′2 a′2 ⊕ a′1 = b′

f = ξ⊕a1,a2

Qa1⊕1a2 1a2⊕Qa1

1a′1
⊕Qa2

ξ⊕
a′1,a2

Qa2⊕1a′1ξ⊕
a′1,a′2

is commutative by the naturality of ξ⊕ in C. Each w′ is 0X-reduced, so it is either
0X or contains no 0X.

● If a′1 and a′2 contain no 0X, then a′ and b′ also contain no 0X, and are 0X-
reduced. The left and the right vertical paths are 0X-reductions of a and
b, respectively. Therefore, ξ⊕a′1,a′2

is a 0X-reduction of f in this case.

● Otherwise, at least one of a′1 and a′2 is 0X. We reuse the argument in
(3.5.12) applied to ξ⊕a′1,a′2

, and append the resulting diagram to the bot-

tom of (3.5.13). In each case, the combined diagram is commutative, and
shows that an identity is a 0X-reduction of f .

So far we have proved the induction step when a is a sum.
Next suppose a = a1 ⊗ a2. Then f , being a prime edge involving ξ⊕, must split

as a product, say f1 ⊗ e with
● f1 ∶ a1 b1 a prime edge involving ξ⊕ and
● e ∶ a2 a2 an identity.

We reuse (3.5.6) and the argument in (3.5.7) by replacing ⊕with ⊗ to conclude that
f has a 0X-reduction. If f has the form e⊗ f1, then we modify the argument further
by switching the two factors in the top two rectangles. This finishes the induction
and the case with f involving an instance of ξ⊕.

If f involves an instance of ξ−⊕, then we reuse the above argument by replac-
ing ξ⊕ with ξ−⊕. □

Lemma 3.5.14. Suppose f ∶ a b is a prime edge such that
● a is not 0X-reduced, and
● f involves an instance of ξ±⊗.

Then f has a 0X-reduction.

Proof. First suppose that f involves an instance of ξ⊗. We proceed by induction
on norm(a) ≥ 2 as in the proof of Lemma 3.5.11, most of which is reused here by
replacing ⊕with ⊗.

In the initial case of the induction with norm(a) = 2 and f = ξ⊗x,y, the diagrams
in (3.5.12) become the following diagrams.

(3.5.15)
0X ⊗ y y⊗ 0X

0X 0X

ξ⊗0X ,y

λ
●
y ρ

●
y

10X

x⊗ 0X 0X ⊗ x

0X 0X

ξ⊗x,0X

ρ
●
x λ

●
x

10X

0X ⊗ 0X 0X ⊗ 0X

0X 0X

ξ⊗0X ,0X

ρ
●

0X λ
●

0X

10X
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Each of these diagrams is commutative by the axiom (2.1.19), and also the sym-
metry axiom (1.2.20) in (C,⊗) for the leftmost diagram. In each case, 10X is a 0X-
reduction of f .

For the induction step, we first consider the case with a = a1⊗ a2, and f = f1⊗ e
for some

● prime edge f1 ∶ a1 b1 involving an instance of ξ⊗ and
● identity e ∶ a2 a2.

We reuse the argument in the two paragraphs containing (3.5.6) and (3.5.7) by
changing ⊕ to ⊗. The case with f = e⊗ f1 is similar, with the two factors switched.

If f does not split as a product, then f = ξ⊗a1,a2
for some a1, a2 ∈ Xfr. We reuse

the paragraph containing (3.5.13) by changing ⊕ to ⊗ and (3.5.12) to (3.5.15). So far
we have proved the induction step when a is a product.

Next suppose a = a1 ⊕ a2. Then f , being a prime edge involving ξ⊗, must split
as a sum, say f1 ⊕ e with f1 and e as above. We reuse the argument in (3.5.7), and
conclude that f has a 0X-reduction. If f has the form e⊕ f1, then we modify the
argument by switching the two summands in the top two rectangles. This finishes
the induction and the case with f involving an instance of ξ⊗.

If f involves an instance of ξ−⊗, then we reuse the above argument by replac-
ing ξ⊗ with ξ−⊗. □

Lemma 3.5.16. Suppose f ∶ a b is a prime edge such that
● a is not 0X-reduced, and
● f involves an instance of λ⊗.

Then f has a 0X-reduction.

Proof. By assumption, norm(a) ≥ 2, and a contains at least one of each of 0X and 1X

in its expression in terms of elements of X. We proceed by induction on norm(a).
If norm(a) = 2, then

a = 1X ⊗ 0X 0X = b.
f =λ⊗0X

The diagram

(3.5.17)
1X ⊗ 0X 0X

0X 0X

λ⊗0X

ρ
●

1X 10X

10X

is commutative by the axiom (2.1.18), which says that λ⊗0 = ρ ●
1

. Therefore, 10X is a
0X-reduction of f .

For the induction step, suppose norm(a) > 2. Either

a = a1 ⊕ a2 or a = a1 ⊗ a2

for some a1, a2 ∈ Xfr. We consider these two cases separately below.
First suppose a = a1 ⊕ a2. Then f , being a prime edge with an instance of λ⊗,

must split as a sum, say f = f1 ⊕ e for some
● prime edge f1 ∶ a1 b1 involving an instance of λ⊗ and
● identity e ∶ a2 a2.
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We reuse the argument in the two paragraphs containing (3.5.6) and (3.5.7) to con-
clude that f has a 0X-reduction. If f has the form e⊕ f1, then we slightly modify
the argument by switching the two summands in the top two rectangles in (3.5.7).

Next suppose a = a1 ⊗ a2. If f splits as a product f1 ⊗ e with f1 and e as above,
then we reuse the argument in the two paragraphs containing (3.5.6) and (3.5.7) by
changing ⊕ to ⊗. If f = e⊗ f1, then we modify the argument further by switching
the two factors in the top two rectangles in (3.5.7).

If f does not split as a product, then

a = 1X ⊗ x x = b
f =λ⊗x

with x = a2 ∈ Xfr having at least one 0X. Suppose Qx ∶ x x′ is any 0X-
reduction of x. The diagram

a = 1X ⊗ x x = b

1X ⊗ x′ x′

f =λ⊗x

11X⊗Qx Qx
λ⊗x′

is commutative by the naturality of λ⊗ in C. The element x′ is 0X-reduced, so it is
either 0X or contains no 0X.

● If x′ contains no 0X, then 1X ⊗ x′ contains no 0X, and is 0X-reduced. Since
the left vertical path is a 0X-reduction of a, the 0X-free path λ⊗x′ is a 0X-
reduction of f in this case.
● If x′ = 0X, then we append the diagram (3.5.17) to the bottom of the pre-

vious diagram to conclude that 10X is a 0X-reduction of f .

This finishes the induction. □

Lemma 3.5.18. Suppose f ∶ a b is a prime edge such that

● a is not 0X-reduced, and
● f involves an instance of λ−⊗.

Then f has a 0X-reduction.

Proof. By assumption, norm(a) ≥ 2, and a contains at least one 0X in its expression
in terms of elements of X. We proceed by induction on norm(a).

If norm(a) = 2, then a = a1 ⊕ a2 or a1 ⊗ a2 for some a1, a2 ∈ X, at least one of
which is 0X. The prime edge f has one of the following six forms.

(3.5.19)

a1 ⊕ a2 (1X ⊗ a1)⊕ a2

a1 ⊕ a2 a1 ⊕ (1X ⊗ a2)

a1 ⊕ a2 1X ⊗ (a1 ⊕ a2)

λ−⊗a1
⊕1a2

1a1⊕λ−⊗a2

λ−⊗a1⊕a2

a1 ⊗ a2 (1X ⊗ a1)⊗ a2

a1 ⊗ a2 a1 ⊗ (1X ⊗ a2)

a1 ⊗ a2 1X ⊗ (a1 ⊗ a2)

λ−⊗a1
⊗1a2

1a1⊗λ−⊗a2

λ−⊗a1⊗a2

First consider the upper left case in (3.5.19). There are two subcases as follows.
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● Suppose a1 = 0X. The diagram

(3.5.20)

a = 0X ⊕ a2 (1X ⊗ 0X)⊕ a2 = b

0X ⊕ a2 0X ⊕ a2

a2 a2

λ−⊗0X ⊕1a2

10X⊕a2 ρ
●

1X⊕1a2
10X⊕a2

λ⊕a2
λ⊕a21a2

is commutative by the axiom (2.1.18), which says that λ⊗0 = ρ ●
1

. The left
and the right vertical paths are 0X-reductions of a and b, respectively.
Therefore, 1a2 is a 0X-reduction of f .
● Suppose a2 = 0X /= a1. The diagram

a = a1 ⊕ 0X (1X ⊗ a1)⊕ 0X = b

a1 1X ⊗ a1

λ−⊗a1
⊕10X

ρ⊕a1
ρ⊕1X⊗a1

λ−⊗a1

is commutative by the naturality of ρ⊕ in C. The left and the right vertical
edges are 0X-reductions of a and b, respectively. Therefore, λ−⊗a1

is a 0X-
reduction of f .

The left middle case in (3.5.19) is proved by almost the same argument.
Consider the left bottom case in (3.5.19). There are three sub-cases as follows.

● If a1 = 0X /= a2, then the diagram

(3.5.21)
0X ⊕ a2 1X ⊗ (0X ⊕ a2)

a2 1X ⊗ a2

λ−⊗0X⊕a2

λ⊕a2
11X⊗λ⊕a2

λ−⊗a2

is commutative by the naturality of λ⊗ in C. Therefore, λ−⊗a2
is a 0X-

reduction of f .
● Similarly, if a1 /= 0X = a2, then the diagram

(3.5.22)
a1 ⊕ 0X 1X ⊗ (a1 ⊕ 0X)

a1 1X ⊗ a1

λ−⊗a1⊕0X

ρ⊕a1
11X⊗ρ⊕a1

λ−⊗a1

is commutative by the naturality of λ⊗ in C. It shows that λ−⊗a1
is a 0X-

reduction of f .
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● If a1 = a2 = 0X, then the diagram

(3.5.23)

0X ⊕ 0X 1X ⊗ (0X ⊕ 0X)

0X 1X ⊗ 0X

0X 0X

λ−⊗0X⊕0X

λ⊕0X 11X⊗λ⊕0X

λ−⊗0X

10X ρ
●

1X

10X

is commutative by the naturality of λ⊗ for the top rectangle, and the ax-
iom (2.1.18) in C for the bottom rectangle. Therefore, 10X is a 0X-reduction
of f .

The three right cases in (3.5.19) are proved by almost the same argument. This
finishes the proof for the initial case.

For the induction step, suppose norm(a) > 2. Then a = a1 ⊕ a2 or a1 ⊗ a2 for
some a1, a2 ∈ Xfr, at least one of which contains 0X. The prime edge f has one of
the six forms in (3.5.19).

First consider the upper left case in (3.5.19). There are two subcases as follows.
● Suppose a1 contains 0X. If, furthermore, a1 is 0X-reduced, then a1 = 0X.

The diagram

a = 0X ⊕ a2 (1X ⊗ 0X)⊕ a2 = b

0X ⊕ a2 0X ⊕ a2

a′ a′

λ−⊗0X ⊕1a2

10X⊕a2 ρ
●

1X⊕1a2

Q

10X⊕a2

Q
1a′

is commutative by the axiom (2.1.18), where Q is any 0X-reduction of
0X ⊕ a2. Since the left and the right vertical paths are 0X-reductions of a
and b, respectively, 1a′ is a 0X-reduction of f .

Next suppose a1 is not 0X-reduced. Since norm(a1) < norm(a), the
induction hypothesis implies that the prime edge λ−⊗a1

has a 0X-reduction
R1 ∶ a′1 b′1. The diagram

(3.5.24)

a1 1X ⊗ a1

a′1 b′1

Qa1

λ−⊗a1

Qb1

R1

is commutative, with Qa1 and Qb1
any 0X-reductions of, respectively, a1

and b1 = 1X ⊗ a1. With f = λ−⊗a1
⊕ 1a2 , we now reuse the argument in the

paragraph containing (3.5.7) to conclude that f has a 0X-reduction.
● Suppose a1 does not contain 0X. Since a1 is 0X-reduced, the prime edge

λ−⊗a1
has a 0X-reduction R1 ∶ a′1 b′1 by Lemma 3.5.2 (whose proof

shows that R1 = λ−⊗a1
). The diagram (3.5.24) exists in this case, so again
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the argument in the paragraph containing (3.5.7) shows that f has a 0X-
reduction.

The left middle case in (3.5.19) is proved by almost the same argument.
For the left bottom case in (3.5.19) consider the following diagram, where Qi ∶

ai a′i is a 0X-reduction of ai for i = 1, 2.

(3.5.25)

a = a1 ⊕ a2 1X ⊗ (a1 ⊕ a2) = b

a′1 ⊕ a2 1X ⊗ (a′1 ⊕ a2)

a′1 ⊕ a′2 1X ⊗ (a′1 ⊕ a′2)

λ−⊗a1⊕a2

Q1⊕1a2 11X⊗(Q1⊕1a2)
λ−⊗

a′1⊕a2

1a′1
⊕Q2 11X⊗(1a′1

⊕Q2)
λ−⊗

a′1⊕a′2

This diagram is commutative by the naturality of λ⊗ in C. Each a′i is 0X-reduced,
so it is either 0X or contains no 0X. There are four subcases as follows.

● If both a′1 and a′2 contain no 0X, then a′1 ⊕ a′2 and 1X ⊗ (a′1 ⊕ a′2) contain
no 0X, and are 0X-reduced. Since the left and the right vertical paths
are 0X-reductions of a and b, respectively, the 0X-free path λ−⊗a′1⊕a′2

is a 0X-

reduction of f .
● If a′1 = 0X, and if a′2 contains no 0X, then we append the diagram (3.5.21)

with a′2 in place of a2 to the bottom of the diagram (3.5.25). The combined
diagram shows that λ−⊗a′2

is a 0X-reduction of f .

● If a′1 contains no 0X, and if a′2 = 0X, then we append the diagram (3.5.22)
with a′1 in place of a1 to the bottom of the diagram (3.5.25). The combined
diagram shows that λ−⊗a′1

is a 0X-reduction of f .

● If a′1 = a′2 = 0X, then we append the diagram (3.5.23) to the bottom of the
diagram (3.5.25). The combined diagram shows that 10X is a 0X-reduction
of f .

The three right cases in (3.5.19) are proved by almost the same argument.
This finishes the induction. □

Lemma 3.5.26. Suppose f ∶ a b is a prime edge such that

● a is not 0X-reduced, and
● f involves an instance of ρ±⊗.

Then f has a 0X-reduction.

Proof. The proofs are obtained from those of Lemmas 3.5.16 and 3.5.18 by replac-
ing (λ⊗, λ−⊗) with (ρ⊗, ρ−⊗), and the axiom (2.1.18) by the axiom (2.1.17), which
states that ρ⊗0 = λ ●

1
. □

Lemma 3.5.27. Suppose f ∶ a b is a prime edge such that

● a is not 0X-reduced, and
● f involves an instance of δl or δr.

Then f has a 0X-reduction.
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Proof. By assumption, norm(a) ≥ 3, and a contains at least one 0X in its expression
in terms of elements of X. First assume that f involves an instance of δl . We
proceed by induction on norm(a). For the rest of this proof, we abbreviate ⊗ to
concatenation.

If norm(a) = 3, then

(3.5.28) a = x(y⊕ z) xy⊕ xz = b
f = δl

x,y,z

for some x, y, z ∈ X, at least one of which is 0X. Depending on whether each of x, y,
and z is 0X, there are seven cases as follows.

(1) If y = 0X, then the diagram

(3.5.29)

a = x(0X ⊕ z) x0X ⊕ xz = b

0X ⊕ xz

xz xz

1xλ⊕z

f = δl
x,0X ,z

ρ
●
x⊕1xz

λ⊕xz
1xz

is commutative by the axiom (2.1.23).
(i) If x, z /= 0X, then xz is 0X-reduced. Therefore, 1xz is a 0X-reduction of

f in this case.
(ii) If either x = 0X or z = 0X, then we append the diagram

0Xz 0Xz

0X 0X

λ
●
z

10X z

λ
●
z

10X

or
x0X x0X

0X 0X

ρ
●
x

1x0X

ρ
●
x

10X

to the bottom of the diagram (3.5.29). In each case, the combined
diagram is commutative, and shows that 10X is a 0X-reduction of f .
If x = z = 0X, then we can use either one of these two diagrams.

(2) If y /= 0X, then at least one of x and z is 0X.
(i) If z = 0X, then the diagram

(3.5.30)

a = x(y⊕ 0X) xy⊕ x0X = b

xy⊕ 0X

xy xy

1xρ⊕y

f = δl
x,y,0X

1xy⊕ρ
●
x

ρ⊕xy
1xy

is commutative by the axiom (2.1.25).
● If x /= 0X, then xy is 0X-reduced. The diagram (3.5.30) shows

that 1xy is a 0X-reduction of f .
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● If x = 0X, then we append the diagram

0Xy 0Xy

0X 0X

λ
●
y

10X y

λ
●
y

10X

to the bottom of the diagram (3.5.30). The combined diagram
is commutative, and shows that 10X is a 0X-reduction of f .

(ii) If z /= 0X, then x = 0X. The diagram

0X(y⊕ z) 0Xy⊕ 0Xz

0X ⊕ 0Xz

0X ⊕ 0X

0X 0X

λ
●
y⊕z

f = δl
0X ,y,z

λ
●
y⊕10X z

10X⊕λ
●
z

λ⊕0X

10X

is commutative by the axiom (2.1.15) and the functoriality of ⊕ in C.
Therefore, 10X is a 0X-reduction of f .

This finishes the proof of the initial case.
For the induction step, suppose norm(a) > 3. Either a = a1 ⊕ a2 or a = a1 ⊗ a2

for some a1, a2 ∈ Xfr, at least one of which contains 0X. We consider these cases
separately below.

If a = a1 ⊕ a2, then f , being a prime edge involving an instance of δl , must split
as a sum, say f = f1 ⊕ e for some

● prime edge f1 ∶ a1 b1 involving an instance of δl and
● identity e ∶ a2 a2.

We reuse the argument in the two paragraphs containing (3.5.6) and (3.5.7) to con-
clude that f has a 0X-reduction. If f has the form e⊕ f1, then we slightly modify
the argument by switching the two summands in the top two rectangles in (3.5.7).

Next suppose a = a1⊗ a2. If f = f1⊗ e with f1 and e as above, then we reuse the
argument in the two paragraphs containing (3.5.6) and (3.5.7) by changing ⊕ to ⊗.
If f = e⊗ f1, then we modify the argument further by switching the two factors in
the top two rectangles in (3.5.7).

If f does not split as a product, then f = δl
x,y,z as in (3.5.28) for some x, y, z ∈ Xfr,

at least one of which contains 0X. For each w ∈ {x, y, z}, suppose Qw ∶ w w′
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is a 0X-reduction of w. Consider the following diagram.

(3.5.31)

a = x(y⊕ z) xy⊕ xz = b

x′y⊕ xz

x′(y⊕ z) x′y⊕ x′z

x′(y′ ⊕ z) x′y′ ⊕ x′z

x′(y′ ⊕ z′) x′y′ ⊕ x′z′

Qx1y⊕z

f = δl
x,y,z

Qx1y⊕1xz

1x′y⊕Qx1z

1′x(Qy⊕1z)

δl
x′ ,y,z

1x′Qy⊕1x′z

1x′(1y′⊕Qz)

δl
x′ ,y′ ,z

1x′y′⊕1x′Qz
δl

x′ ,y′ ,z′

This diagram is commutative by the naturality of δl in C. Each w′ is 0X-reduced,
so it is either 0X or contains no 0X.

● If x′, y′, and z′ all contain no 0X, then x′(y′ ⊕ z′) and x′y′ ⊕ x′z′ also
contain no 0X, and are 0X-reduced. Since the left and the right vertical
paths in (3.5.31) are 0X-reductions of a and b, respectively, the 0X-free path
δl

x′,y′,z′ is a 0X-reduction of f in this case.
● Otherwise, at least one of x′, y′, and z′ is 0X. In each of the seven sub-

cases, we (i) reuse the argument for the initial case above applied to
δl

x′,y′,z′ , and (ii) append the resulting diagram to the bottom of (3.5.31).
For each w ∈ {x, y, z}, the condition “w /= 0X” is replaced by “w′ contains
no 0X.” In each case, we conclude that an identity is a 0X-reduction of f .

This finishes the induction and the case with f containing an instance of δl .
The proof for the case with f containing an instance of δr is obtained from the

above proof by replacing

● δl
x,y,z with δr

y,z,x ∶ (y⊕ z)x yx⊕ zx and
● the axioms (2.1.23), (2.1.25), and (2.1.15) in C with, respectively, the ax-

ioms (2.1.24), (2.1.26), and (2.1.16).
This finishes the proof. □

Now we combine the preliminary lemmas above to prove the following main
result of this section.
Proposition 3.5.32. Each path in Gr(X) has a 0X-reduction.

Proof. Suppose P = ( fn, . . . , f1) is a path in Gr(X) for some n ≥ 1 as displayed
below.

a0 a1 ⋯ an
f1 f2 fn

● For each 0 ≤ j ≤ n, suppose Qj ∶ aj a′j is any 0X-reduction of aj,
which exists by Lemma 3.3.6. Moreover, a′j is uniquely determined by aj
by Lemma 3.3.11.
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● For each 1 ≤ i ≤ n, the prime edge fi ∶ ai−1 ai has a 0X-reduction Ri ∶
a′i−1 a′i by one of Lemmas 3.5.1 through 3.5.3, 3.5.9, 3.5.11, 3.5.14,
3.5.16, 3.5.18, 3.5.26, and 3.5.27.

Each square in the diagram

a0 a1 ⋯ an

a′0 a′1 ⋯ a′n

Q0

f1

Q1

f2 fn

Qn

R1 R2 Rn

is commutative by Definition 3.4.5. Therefore, the 0X-free path

a′0 a′n
(Rn ,...,R1)

is a 0X-reduction of P by Lemma 3.4.8. □

Recall from (3.1.24) the support of an element in Xfr. Next is a preliminary
form of the Coherence Theorem 3.9.1.

Proposition 3.5.33. Suppose

a b
P1

P2

are two paths in Gr(X) such that

supp(a) = supp(0X).

Then the values of P1 and P2 in C are equal.

Proof. By Lemma 3.1.29 (2),

supp(a) = supp(b) = supp(0X).

By Lemmas 3.3.6 and 3.3.7 and Proposition 3.5.32, there exist 0X-reductions

● Qa ∶ a 0X of a,
● Qb ∶ b 0X of b, and
● Ri ∶ 0X 0X of Pi for each i = 1, 2.

For each i = 1, 2, the diagram

a b

0X 0X

Qa

Pi

Qb

Ri

is commutative by Definition 3.4.5. By Lemma 3.4.11, the value of Ri in C is the
identity morphism 10. Therefore, the value of Pi in C is the value of Qa in C fol-
lowed by the inverse of the value of Qb in C. □
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3.6. Reduction of Distributivity

The main observation in this and the next sections is Proposition 3.7.19. It says
that each path whose vertices do not involve 0X can be replaced by a 0X-free path
that does not involve the distributivity edges δl and δr. This will constitute another
reduction step in the Coherence Theorem 3.9.1, where we eliminate δl and δr. In
this section, we first define the preliminary concept of a δ-reduction of an element
in Xfr, and show its existence in Lemma 3.6.9. The main technical result of this
section is Lemma 3.6.12, which says that, under some conditions, a 0X-free edge
may be replaced by a 0X-free path that contains no δl and δr. This observation is
used repeatedly in the proof of Proposition 3.7.19.

Some of the definitions and results in this section are distributivity analogues
of those in Sections 3.3 through 3.5. Recall that Convention 3.3.1 is in effect.
Motivation 3.6.1. The next definition contains the distributivity analogues of 0X-
prime edges, 0X-reduced, and 0X-reductions in Definitions 3.3.2 and 3.3.4. We
observed in Lemma 3.3.5 that an element in Xfr is 0X-reduced if and only if it
is not the domain of any 0X-prime edges. The distributivity analogue of a 0X-
reduced element in Xfr, which is called δ-reduced, is modeled after this lemma.
In Lemma 3.6.5, we will provide a more intrinsic characterization of δ-reduced
elements. ◇
Definition 3.6.2. Consider the graph Gr(X) of X in Definition 3.1.9.

● A δ-prime edge is a prime edge that involves either δl or δr.
● An element a ∈ Xfr is δ-reduced if it is not the domain of any δ-prime

edges.
● A δ-reduction of a ∈ Xfr is a path P ∶ a b such that the following two

statements hold.
– b is δ-reduced.
– Each edge in P is either an identity or a δ-prime edge. ◇

To characterize δ-reduced elements, we use the following concepts.

Definition 3.6.3. Suppose a ∈ Xfr.
● The element a is a monomial if either

– a ∈ X, or
– a = a1⊗⋯⊗ ak for some multiplicative bracketing and some elements

aj ∈ X for 1 ≤ j ≤ k with k ≥ 2. Each aj is called a factor of the monomial
a.

● The element a is a polynomial if either
– a is a monomial, or
– a = a1 ⊕⋯⊕ am for some additive bracketing and some monomials

ai ∈ Xfr for 1 ≤ i ≤ m with m ≥ 2. Each ai is called a monomial in the
polynomial a. ◇

Explanation 3.6.4. A polynomial is a nonempty sum in which each summand is
either an element in X or a product of several elements in X. ◇
Lemma 3.6.5. For an element a ∈ Xfr, the following statements are equivalent.

(1) a is a polynomial
(2) 1a ∶ a a is a δ-reduction of a.
(3) a is δ-reduced.



I.100 3. COHERENCE OF SYMMETRIC BIMONOIDAL CATEGORIES

Proof. First observe that the domain of a δ-prime edge must involve an expression
of the form

● x⊗ (y⊕ z) for δl or
● (y⊕ z)⊗ x for δr

for some x, y, z ∈ Xfr. A polynomial does not contain these expressions, so it is
δ-reduced. Therefore, if a is a polynomial, then the identity 1a is a δ-reduction of
a, proving (1)⇒ (2).

If 1a is a δ-reduction of a, then its codomain a is δ-reduced by definition, prov-
ing (2)⇒ (3).

For (3)⇒ (1), suppose a is δ-reduced. A general element a ∈ Xfr can always be
expressed in the form

a = a1 ⊕⋯⊕ am

for some additive bracketing and m ≥ 1 such that each ai is not a sum. In other
words, each ai is either in X or has the form ai

1 ⊗ ai
2. Since a is δ-reduced, expres-

sions of the forms x ⊗ (y ⊕ z) and (y ⊕ z)⊗ x do not appear in a. So each ai is a
monomial, and a is a polynomial. □

Example 3.6.6. For elements a1, . . . , an ∈ X for n ≥ 1, the elements

a1 ⊕⋯⊕ an and a1 ⊗⋯⊗ an ∈ Xfr

with any additive, respectively multiplicative, bracketing are δ-reduced. ◇
Example 3.6.7. In Definition 2.1.2 of a symmetric bimonoidal category, consider
the 24 axioms, and interpret A, B, C, and D as elements in X, 0 as 0X, and 1 as 1X.

● In each of (2.1.5)–(2.1.13), (2.1.15)–(2.1.16), and (2.1.23)–(2.1.28), the com-
mon domain is not δ-reduced, and the common codomain is δ-reduced.
● In each of (2.1.14) and (2.1.17)–(2.1.22), each vertex is δ-reduced. ◇

Example 3.6.8. Consider elements a, b, c, d ∈ X.

● δl
a,b,c ∶ a(b⊕ c) ab⊕ ac is a δ-reduction of a(b⊕ c).

● δr
a,b,c ∶ (a⊕ b)c ac⊕ bc is a δ-reduction of (a⊕ b)c.

● The following two paths are two δ-reductions of (a⊕ b)(c⊕ d).

(a⊕ b)(c⊕ d)

(a⊕ b)c⊕ (a⊕ b)d a(c⊕ d)⊕ b(c⊕ d)

(ac⊕ bc)⊕ (a⊕ b)d (ac⊕ ad)⊕ b(c⊕ d)

(ac⊕ bc)⊕ (ad⊕ bd) (ac⊕ ad)⊕ (bc⊕ bd)

δl
a⊕b,c,d

δr
a,b,c ⊕ 1(a⊕b)d

1ac⊕bc ⊕ δr
a,b,d

δr
a,b,c⊕d

δl
a,c,d ⊕ 1b(c⊕d)

1ac⊕ad ⊕ δl
b,c,d

This example shows that the codomain of a δ-reduction of a given element in Xfr is
not unique in general. This is different from the situation for 0X-reductions, where
the codomain is uniquely determined, as shown in Lemma 3.3.11. ◇
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In Lemma 3.3.6, we observed that each element in Xfr has a 0X-reduction. Next
is the distributivity analogue of that assertion. Recall rank and size in Defini-
tion 3.2.1.
Lemma 3.6.9. Each element in Xfr has a δ-reduction.

Proof. We proceed by induction on size(a)− rank(a) for elements a ∈ Xfr. If

size(a)− rank(a) = 0,

then by Proposition 3.2.15, a is a polynomial in the sense of Definition 3.6.3, in
which each monomial is either an element in X or a product of two elements in X.
Therefore, by Lemma 3.6.5, the identity 1a is a δ-reduction of a.

For the induction step, suppose size(a)− rank(a) > 0. If a is δ-reduced, then by
Lemma 3.6.5 again, 1a is a δ-reduction of a.

If a is not δ-reduced, then there exists a δ-prime edge f ∶ a b with domain
a. The induction hypothesis applies to b by Lemma 3.2.12, so there exists a δ-
reduction P ∶ b b′ of b. The combined path

a b b′
f P

is a δ-reduction of a. This finishes the induction. □

The next definition contains the distributivity analogue of a 0X-free path in
Definition 3.4.1.
Definition 3.6.10. Consider Gr(X).

● A δ-free path is a path that does not contain any δ-prime edges.
● A δ-free edge is a δ-free path of length 1.
● A (0X, δ)-free path is a path that is both a 0X-free path and a δ-free path.
● A (0X, δ)-free edge is a (0X, δ)-free path of length 1. ◇

Explanation 3.6.11. In a δ-free path, every prime edge is either an identity or in-
volves a single instance of α±⊕, ξ±⊕, λ±⊕, ρ±⊕, α±⊗, ξ±⊗, λ±⊗, ρ±⊗, λ± ●, or ρ± ●.

In a (0X, δ)-free path, every prime edge is either an identity or involves a single
instance of α±⊕, ξ±⊕, α±⊗, ξ±⊗, λ±⊗, or ρ±⊗. ◇

The goal for the rest of this section is to prove the following preliminary ver-
sion of Proposition 3.7.19. Recall from Definition 3.4.1 that a 0X-free edge is a prime
edge that does not involve λ⊕, ρ⊕, λ ●, ρ ●, and their formal inverses.
Lemma 3.6.12. In Gr(X), suppose

● f ∶ a b is a 0X-free edge, and
● g ∶ a c is a δ-prime edge.

Then there exists a diagram

(3.6.13)

a

c b

c′ b′

g

D2

R

f

D1

such that the following statements hold.
(1) The above diagram is commutative.
(2) Each path Di is either a single identity or consists of δ-prime edges.
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(3) R is a (0X, δ)-free path. Moreover, R involves only instances of λ±⊗ or ρ±⊗ if
and only if f involves an elementary edge of the same type.

Proof. Recall the possibilities of a 0X-free edge in Explanation 3.4.2.

● If f is an identity, then D1 = g, and each of D2 and R is a single identity.
● If f = g, then each of D1, D2, and R is a single identity.

In the rest of this proof, we may assume that f is not an identity, and that f /= g.
The proof proceeds by induction on norm(a) ≥ 3. If norm(a) = 3, then g is either

a = x(y⊕ z) xy⊕ xz = c
δl

x,y,z
or a = (y⊕ z)x yx⊕ zx = c

δr
y,z,x

for some x, y, z ∈ X. First suppose g = δl
x,y,z. Depending on what f is, there are the

following subcases. In what follows, functoriality means the functoriality of ⊕, ⊗,
or both in C.

(1) If f = λ⊗y⊕z with x = 1X, then D1, D2, and R in the diagram (3.6.13) are
defined as follows.

(3.6.14)

a = 1X(y⊕ z)

c = 1Xy⊕ 1Xz y⊕ z = b

c′ = 1Xy⊕ 1Xz y⊕ 1Xz y⊕ z = b′

g = δl
1X ,y,z

D2 = 1c

λ⊗y ⊕ 11Xz 1y ⊕ λ⊗z

λ⊗y⊕z = f

1b = D1

R

This diagram is commutative by the axiom (2.1.27) and functoriality.
(2) If f involves λ−⊗, then there are five subcases depending on whether λ−⊗

is applied to a, x, y, z, or y⊕ z.
(i) If f = λ−⊗a , then D1, D2, and R in (3.6.13) are defined as follows.

(3.6.15)

a = x(y⊕ z)

c = xy⊕ xz 1X [x(y⊕ z)] = b

c′ = xy⊕ xz 1X(xy⊕ xz) = b′

g = δl
x,y,z

D2 = 1c

R = λ−⊗xy⊕xz

λ−⊗a = f

11X δl
x,y,z = D1

This diagram is commutative by the naturality of λ⊗ in C.
(ii) If f involves λ−⊗x , then we consider the following diagram.

(3.6.16)

a = x(y⊕ z)

c = xy⊕ xz (1X x)(y⊕ z) = b

c′ = xy⊕ xz (1X x)y⊕ xz (1X x)y⊕ (1X x)z = b′

g = δl
x,y,z

D2 = 1c

λ−⊗x 1y ⊕ 1xz 1⊕ λ−⊗x 1z

λ−⊗x 1y⊕z = f

δl
1X x,y,z = D1

R
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In the lower right horizontal edge, 1 means 1(1X x)y. This diagram is

commutative by the naturality of δl and functoriality.
(iii) If f involves λ−⊗y or λ−⊗z , then there are two diagrams similar to the

one in case (ii) that are commutative for the same reasons.
(iv) If f involves λ−⊗y⊕z, then we consider the following diagram.

(3.6.17)

a = x(y⊕ z)

c = xy⊕ xz x [1X(y⊕ z)] = b

x(1Xy⊕ z) x(1Xy⊕ 1Xz)

c′ = xy⊕ xz x(1Xy)⊕ xz x(1Xy)⊕ x(1Xz) = b′

g = δl
x,y,z

D2 = 1c

1xλ−⊗y ⊕ 1xz 1⊕ 1xλ−⊗z

1xλ−⊗y⊕z = f

1xδl
1X ,y,z

δl
x,1Xy,1Xz

1x(λ−⊗y ⊕ 1z)

1x(11Xy ⊕ λ−⊗z )

R

D1

In the lower right horizontal edge, 1 means 1x(1Xy). The upper right
trapezoid is commutative by the axiom (2.1.27) and functoriality.
The left subdiagram is commutative by the naturality of δl and func-
toriality.

(3) If f involves ρ−⊗, then as in case (2), there are five further subcases de-
pending on whether ρ−⊗ is applied to a, x, y, z, or y⊕ z. The proofs for
these five subcases are obtained from those in case (2) by
● replacing λ−⊗ with ρ−⊗ throughout and
● replacing δl

1X ,y,z and (2.1.27) with, respectively, δr
y,z,1X and (2.1.28) in

the upper right trapezoid in the diagram (3.6.17).
(4) If f = ξ⊗x,y⊕z, then we consider the following diagram.

(3.6.18)

a = x(y⊕ z)

c = xy⊕ xz (y⊕ z)x = b

c′ = xy⊕ xz yx⊕ xz yx⊕ zx = b′

g = δl
x,y,z

D2 = 1c

ξ⊗x,y ⊕ 1xz 1yx ⊕ ξ⊗x,z

ξ⊗x,y⊕z = f

δr
y,z,x = D1

R

This diagram is commutative by functoriality, the axiom (2.1.5), and the
symmetry axiom (1.2.20) in (C,⊗).

(5) If f = ξ−⊗y⊕z,x, then we reuse the diagram in case (4) by replacing each ξ⊗x,?
with ξ−⊗?,x . The resulting diagram is commutative by functoriality and the
axiom (2.1.5).
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(6) If f = 1xξ⊕y,z, then we consider the following diagram.

(3.6.19)

a = x(y⊕ z)

c = xy⊕ xz x(z⊕ y) = b

c′ = xy⊕ xz xz⊕ xy

g = δl
x,y,z

D2 = 1c

R = ξ⊕xy,xz

1xξ⊕y,z = f

δl
x,z,y = D1

This diagram is commutative by the axiom (2.1.6).
(7) If f = 1xξ−⊕z,y , then we reuse the diagram in case (6) by replacing each ξ⊕∗,?

with ξ−⊕?,∗ . The resulting diagram is commutative by the axiom (2.1.6).

This finishes the initial case when g = δl
x,y,z.

The proof for the case g = δr
y,z,x is obtained by slightly modifying the diagrams

in cases (1)–(7) above, and using the symmetric bimonoidal category axioms
● (2.1.5), (2.1.27), (2.1.28), and
● (2.1.7) instead of (2.1.6) in the analogues of cases (6) and (7) if f = ξ⊕y,z1x

or ξ−⊕z,y 1x.

This finishes the initial case of the induction.
For the induction step, suppose norm(a) > 3. Either

a = a1 ⊕ a2 or a = a1 ⊗ a2

for some a1, a2 ∈ Xfr with norm(ai) < norm(a) for i = 1, 2. There are cases corre-
sponding to the following situations.

(1) f and g act on the same summand or factor of a. To say that f acts on
a summand, say a1 of a = a1 ⊕ a2, means that f = f1 ⊕ e2 for some prime
edge f1 ∶ a1 b1 and some identity e2 ∶ a2 a2. The meaning of f
acting on a factor of a is similar with ⊗ instead of ⊕.

(2) f and g act on different summands or factors of a.
(3) f acts on all of a, and g acts on a summand or factor of a. To say that f

acts on all of a means that f does not split as a sum or a product.
(4) f acts on a summand or factor of a, and g acts on all of a.
(5) f and g both act on all of a.

For the rest of this proof ⊙ denotes either ⊕ or ⊗, but not both in the same di-
agram. We automatically adjust the symbols to avoid too many subscripts and
superscripts.

(1) f and g act on the same ⊙-factor of a, as in the following diagram.

a = a1 ⊙ a2

c = c1 ⊙ a2 b1 ⊙ a2 = b

c′ = c′1 ⊙ a2 b′1 ⊙ a2 = b′

g = g1 ⊙ e′2

D2 = D1
2 ⊙ 1a2

R = R1 ⊙ 1a2

f1 ⊙ e2 = f

D1
1 ⊙ 1a2

= D1

● e2, e′2 ∶ a2 a2 are identities.
● f1 ∶ a1 b1 is a 0X-free edge.
● g1 ∶ a1 c1 is a δ-prime edge.
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● The paths
c1 b1

c′1 b′1

D1
2 D1

1

R1

as in (3.6.13) are obtained from the induction hypothesis applied to
a1.

● The above diagram is commutative by functoriality.
If f and g both act on a2 instead of a1, then there is a similar diagram
obtained from the induction hypothesis applied to a2 and functoriality.

(2) f and g act on different ⊙-factors of a.
(i) If f is a δ-prime edge, then we consider the following diagram.

a = a1 ⊙ a2

c = a1 ⊙ c2 b1 ⊙ a2 = b

c′ = b1 ⊙ c2 b1 ⊙ c2 = b′

g = e1 ⊙ g2

D2 = f1 ⊙ 1c2

R = 1c′

f1 ⊙ e2 = f

1b1
⊙ g2 = D1

● e1 ∶ a1 a1 and e2 ∶ a2 a2 are identities.
● f1 ∶ a1 b1 and g2 ∶ a2 c2 are δ-prime edges.

This diagram is commutative by functoriality.
(ii) If f is not a δ-prime edge, then we consider the following diagram.

a = a1 ⊙ a2

c = a1 ⊙ c2 b1 ⊙ a2 = b

c′ = a1 ⊙ c2 b1 ⊙ c2 = b′

g = e1 ⊙ g2

D2 = 1c

R = f1 ⊙ 1c2

f1 ⊙ e2 = f

1b1
⊙ g2 = D1

● e1, e2, and g2 are as in case (i).
● f1 ∶ a1 b1 is a (0X, δ)-free edge.

This diagram is commutative by functoriality.
(iii) If f and g act on a2 and a1, respectively, then there are two similar

diagrams obtained from those in cases (i) and (ii) by switching the
two ⊙-factors.

(3) f acts on all of a, and g acts on a ⊙-factor of a.
(i) If f = ξ⊙a1,a2

, then we consider the following diagram.

a = a1 ⊙ a2

c = c1 ⊙ a2 a2 ⊙ a1 = b

c′ = c1 ⊙ a2 a2 ⊙ c1 = b′

g = g1 ⊙ e2

D2 = 1c

R = ξ⊙c1,a2

ξ⊙a1,a2 = f

1a2 ⊙ g1 = D1

● e2 ∶ a2 a2 is an identity.
● g1 ∶ a1 c1 is a δ-prime edge.
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This diagram is commutative by the naturality of ξ⊙ in C. There is a
similar diagram if g acts on the ⊙-factor a2 instead of a1.

(ii) If f = ξ−⊙a2,a1
, then we reuse the two diagrams in case (i) by replacing

ξ⊙?,a2
with ξ−⊙a2,?. These diagrams are commutative by the naturality of

ξ⊙ in C.
(iii) If f = α⊙a1,a2,a3

, and if g acts on one of the three ⊙-factors of a, then we
consider the following diagram.

a = (a1 ⊙ a2)⊙ a3

c = (c1 ⊙ a2)⊙ a3 a1 ⊙ (a2 ⊙ a3) = b

c′ = (c1 ⊙ a2)⊙ a3 c1 ⊙ (a2 ⊙ a3) = b′

g = (g1 ⊙ e2)⊙ e3

D2 = 1c

R = α⊙c1,a2,a3

α⊙a1,a2,a3 = f

g1 ⊙ 1a2⊙a3 = D1

● e2 ∶ a2 a2 and e3 ∶ a3 a3 are identities.
● g1 ∶ a1 c1 is a δ-prime edge.

This diagram is commutative by the naturality of α⊙ in C. There are
two similar diagrams if g acts on a2 or a3 instead of a1.

(iv) If f = α−⊙a1,a2,a3
, and if g acts on one of the three ⊙-factors of a, then

we reuse the diagrams in case (iii) by replacing α⊙ with α−⊙. These
diagrams are commutative by the naturality of α⊙ in C.

(v) If f = α⊗a1,a2,a3
, and if g involves δl on the first two ⊗-factors of a with

a2 = x⊕ y, then we consider the following diagram.

a = [a1(x⊕ y)] a3

c = (a1x⊕ a1y)a3 a1 [(x⊕ y)a3] = b

a1(xa3 ⊕ ya3)

c′ = (a1x)a3 ⊕ (a1y)a3 a1(xa3)⊕ (a1y)a3 a1(xa3)⊕ a1(ya3) = b′

g = δl
a1,x,ye3

D2 = δr
a1x,a1y,a3

α⊗a1,x,a3 ⊕ 1(a1y)a3 1a1(xa3) ⊕ α⊗a1,y,a3

α⊗a1,x⊕y,a3 = f

1a1 δr
x,y,a3

δl
a1,xa3,ya3

D1

R

Here e3 ∶ a3 a3 is an identity. This diagram is commutative by
the axiom (2.1.12).

(vi) If f = α⊗a1,a2,a3
, and if g involves δr on the first two ⊗-factors of a with

a1 = x⊕ y, then there is a diagram similar to the one in case (v). This
diagram is commutative by the axiom (2.1.11).
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(vii) If f = α−⊗a1,a2,a3
, and if g involves δl on the last two ⊗-factors of a with

a3 = y⊕ z, then we consider the following diagram.

a = a1 [a2(y⊕ z)]

c = a1(a2y⊕ a2z) (a1a2)(y⊕ z) = b

c′ = a1(a2y)⊕ a1(a2z) (a1a2)y⊕ a1(a2z) (a1a2)y⊕ (a1a2)z = b′

g = e1δl
a2,y,z

D2 = δl
a1,a2y,a2z

α−⊗a1,a2,y ⊕ 1a1(a2z) 1(a1a2)y ⊕ α−⊗a1,a2,z

α−⊗a1,a2,y⊕z = f

δl
a1a2,y,z = D1

R

Here e1 ∶ a1 a1 is an identity. This diagram is commutative by
the axiom (2.1.10).

(viii) If f = α−⊗a1,a2,a3
, and if g involves δr on the last two ⊗-factors of a with

a2 = x⊕ y, then there is a diagram similar to the one in case (vii). This
diagram is commutative by the axiom (2.1.12).

(ix) If f = λ⊗a2
∶ 1X ⊗ a2 a2, then we consider the following diagram.

a = 1X ⊗ a2

c = 1X ⊗ c2 a2 = b

c′ = 1X ⊗ c2 c2 = b′

g = 11X ⊗ g2

D2 = 11X⊗c2

R = λ⊗c2

λ⊗a2 = f

g2 = D1

Here g2 ∶ a2 c2 is a δ-prime edge. This diagram is commutative
by the naturality of λ⊗ in C.

(x) If f = λ−⊗a , and if g acts on the ⊙-factor a1, then we consider the
following diagram.

a = a1 ⊙ a2

c = c1 ⊙ a2 1X(a1 ⊙ a2) = b

c′ = c1 ⊙ a2 1X(c1 ⊙ a2) = b′

g = g1 ⊙ e2

D2 = 1c1⊙a2

R = λ−⊗c1⊙a2

λ−⊗a = f

11X(g⊙ 1a2) = D1

● e2 ∶ a2 a2 is an identity.
● g1 ∶ a1 c1 is a δ-prime edge.

This diagram is commutative by the naturality of λ⊗ in C.
If g acts on the ⊙-factor a2, then we slightly modify the above dia-
gram by switching the two ⊙-factors of a.

(xi) If

a1 ⊗ 1X a1
f = ρ⊗a1 or a a⊗ 1X,

f = ρ−⊗a
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then we slightly modify the diagrams in cases (ix) and (x). The re-
sulting diagrams are commutative by the naturality of ρ⊗ in C.

(xii) If f = δl
a1,x,y with a2 = x⊕ y, and if g acts on a1, then we consider the

following diagram.

a = a1(x⊕ y)

c = c1(x⊕ y) a1x⊕ a1y = b

c1x⊕ a1y

c′ = c1x⊕ c1y c1x⊕ c1y = b′

g = g1e2

D2 = δl
c1,x,y

R = 1c′

δl
a1,x,y = f

g11x ⊕ 1a1y

1c1x ⊕ g11y

D1

● e2 ∶ a2 a2 is an identity.
● g1 ∶ a1 c1 is a δ-prime edge.

This diagram is commutative by functoriality and the naturality of
δl in C.
If g acts on x or y, then there are two diagrams similar to the one
above that are commutative for the same reasons.

(xiii) If

(w⊕ x)a2 wa2 ⊕ xa2
f = δr

w,x,a2

with a1 = w⊕ x, and if g acts on one of w, x, and a2, then we slightly
modify the diagrams in case (xii). The resulting diagrams are com-
mutative by functoriality and the naturality of δr in C.

(4) f acts on a ⊙-factor of a, and g acts on all of a.
First suppose g = δl

a1,y,z with a2 = y⊕ z. Then f may act on a1, y, z, or
a2, leading to the following cases.

(i) If f acts on a1, and if f is not a δ-prime edge, then we consider the
following diagram.

a = a1(y⊕ z)

c = a1y⊕ a1z b1(y⊕ z) = b

c′ = a1y⊕ a1z b1y⊕ a1z b1y⊕ b1z = b′

g = δl
a1,y,z

D2 = 1c

f11y ⊕ 1a1z 1b1y ⊕ f11z

f1 ⊕ e2 = f

δl
b1,y,z = D1

R

● e2 ∶ a2 a2 is an identity.
● f1 ∶ a1 b1 is a (0X, δ)-free edge.

This diagram is commutative by functoriality and the naturality of
δl in C.
If f acts on a1, and if f is a δ-prime edge, then we modify the previ-
ous diagram by defining
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● c′ = b′,
● D2 ∶ c c′ = b′ as the bottom composite in the previous

diagram, and
● R = 1c′ .

The resulting diagram is commutative for the same reasons.
(ii) If f acts on y or z, then there are diagrams similar to those in case (i)

that are commutative for the same reasons.
(iii) If

a1(y⊕ z) a1(z⊕ y)
f = e1ξ⊕y,z

for some identity e1 ∶ a1 a1, then we reuse the argument in the
paragraph containing (3.6.19) and the axiom (2.1.6).
Similarly, if f = e1ξ−⊕z,y , then we reuse the argument in case (7) in the
initial case.

(iv) If
● a = w [(x⊕ y)⊕ z]with a1 = w and a2 = (x⊕ y)⊕ z, and
● f = eα⊕x,y,z for some identity e ∶ w w,

then we consider the following diagram.

a = w [(x⊕ y)⊕ z]

c = w(x⊕ y)⊕wz w [x⊕ (y⊕ z)] = b

wx⊕w(y⊕ z)

c′ = (wx⊕wy)⊕wz wx⊕ (wy⊕wz) = b′

g = δl
w,x⊕y,z

D2 = δl
w,x,y ⊕ 1wz

R = α⊕wx,wy,wz

eα⊕x,y,z = f

δl
w,x,y⊕z

1wx ⊕ δl
w,y,z

D1

This diagram is commutative by the axiom (2.1.9).
(v) If

● a = w [x⊕ (y⊕ z)]with a1 = w and a2 = x⊕ (y⊕ z), and
● f = eα−⊕x,y,z for some identity e ∶ w w,

then we consider the following diagram.

a = w [x⊕ (y⊕ z)]

c = wx⊕w(y⊕ z) w [(x⊕ y)⊕ z)] = b

w(x⊕ y)⊕wz

c′ = wx⊕ (wy⊕wz) (wx⊕wy)⊕wz = b′

g = δl
w,x,y⊕z

D2 = 1wx ⊕ δl
w,y,z

R = α−⊕wx,wy,wz

eα−⊕x,y,z = f

δl
w,x⊕y,z

δl
w,x,y ⊕ 1wz

D1

This diagram is commutative by the axiom (2.1.9).
Cases (i)–(v) account for all the cases when g = δl .
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If a1 = x⊕ y, and if

(x⊕ y)a2 xa2 ⊕ ya2,
g= δr

x,y,a2

then f may act on a2, x, y, or a1, leading to analogues of cases (i)–(v)
above. We slightly modify the diagrams above using
● functoriality and the naturality of δr in the analogues of cases (i) and

(ii) when f acts on one of a2, x, and y;
● (2.1.7) instead of (2.1.6) in the analogue of case (iii) when f = ξ⊕x,ye2

or ξ−⊕y,x e2 for some identity e2 ∶ a2 a2; and
● (2.1.8) instead of (2.1.9) in the analogues of cases (iv) and (v) when

f = α⊕w,x,ye or f = α−⊕w,x,ye for some identity e ∶ z z.
(5) f and g both act on all of a.

First suppose g = δl . Depending on what f is, there are the following
cases.

(i) If f = α⊗, then we consider the following diagram.

a = (wx)(y⊕ z)

c = (wx)y⊕ (wx)z w [x(y⊕ z)] = b

w(xy⊕ xz)

c′ = (wx)y⊕ (wx)z w(xy)⊕ (wx)z w(xy)⊕w(xz) = b′

g = δl
wx,y,z

D2 = 1c

α⊗w,x,y ⊕ 1(wx)z 1w(xy) ⊕ α⊗w,x,z

α⊗w,x,y⊕z = f

1wδl
x,y,z

δl
w,xy,xz

D1

R

This diagram is commutative by functoriality and (2.1.10).
(ii) If f = ξ⊗x,y⊕z and g = δl

x,y,z, then we reuse the diagram (3.6.18).
(iii) If f = ξ−⊗y⊕z,x and g = δl

x,y,z, then we reuse case (5) in the initial case.
(iv) If f = λ⊗y⊕z and g = δl

1X ,y,z, then we reuse the diagram (3.6.14).

(v) If f = λ−⊗a , then we reuse the diagram (3.6.15).
(vi) If f = ρ−⊗a , then we reuse the diagram (3.6.15) by replacing λ−⊗ with

ρ−⊗, and using the naturality of ρ⊗ in C.
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(vii) If f = δr, then we consider the following diagram, where some sub-
scripts are omitted to save space.

(3.6.20)

a = (w⊕ x)(y⊕ z)

c = (w⊕ x)y⊕ (w⊕ x)z w(y⊕ z)⊕ x(y⊕ z) = b

(wy⊕ xy)⊕ (w⊕ x)z (wy⊕wz)⊕ x(y⊕ z)

c′ = (wy⊕ xy)⊕ (wz⊕ xz) (wy⊕wz)⊕ (xy⊕ xz) = b′

wy⊕ [xy⊕ (wz⊕ xz)] wy⊕ [wz⊕ (xy⊕ xz)]

wy⊕ [(xy⊕wz)⊕ xz] wy⊕ [(wz⊕ xy)⊕ xz]

g = δl
w⊕x,y,z

δr
w,x,y ⊕ 1

1⊕ δr
w,x,z

D2

δr
w,x,y⊕z = f

δl
w,y,z ⊕ 1

1⊕ δl
x,y,z

D1

R

α⊕

1⊕ α−⊕

1⊕ (ξ−⊕wz,xy ⊕ 1)

1⊕ α⊕

α−⊕

The bottom half of this diagram is the definition of the (0X, δ)-free
path R, which consists of five prime edges. This diagram is commu-
tative by the axiom (2.1.13).

Cases (i)–(vii) above account for all the cases when g = δl .
Similarly, if g = δr, then there are the following cases.

(i) If f = α−⊗, then there is a diagram similar to the one in case (i) above,
which is commutative by functoriality and (2.1.11).

(ii) If f = ξ⊗, then we use functoriality and (2.1.5).
(iii) If f = ξ−⊗, then we use functoriality, (2.1.5), and the symmetry axiom

(1.2.20) in (C,⊗).
(iv) If f = ρ⊗, then we use functoriality and (2.1.28).
(v) If f = λ−⊗, then we use the δr analogue of the diagram (3.6.15) and

the naturality of λ⊗ in C.
(vi) If f = ρ−⊗, then we use the (δr, ρ−⊗) analogue of the diagram (3.6.15)

and the naturality of ρ⊗ in C.
(vii) If f = δl , then we reuse the diagram in case (vii) above by

● switching ( f , D1)with (g, D2) and
● reversing R and every edge in it and replacing (α⊕, α−⊕, ξ−⊕)

with (α−⊕, α⊕, ξ⊕).
This finishes case (5) and the induction. The proof of Lemma 3.6.12 is now com-
plete. □

3.7. Zero and Delta Reduction of Paths

Recall from Definition 3.6.2 that a δ-reduction of an element a ∈ Xfr is a path
with domain a and codomain a δ-reduced element in which each edge is either
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an identity or a δ-prime edge. The next definition is the path analogue of a δ-
reduction. In Proposition 3.5.32, we showed that each path in Gr(X) has a 0X-
reduction. The goal of this section is to extend that observation by also eliminating
the distributivity morphisms; see Proposition 3.7.19. This will constitute another
reduction step in the proof of the Coherence Theorem 3.9.1. Recall that Conven-
tion 3.3.1 is in effect.

Definition 3.7.1. Suppose
● P ∶ a b is a path in Gr(X)whose vertices do not contain 0X, and
● for each x ∈ {a, b}, Dx ∶ x x′ is a δ-reduction of x.

A (0X, δ)-reduction of (P, Da, Db) is a (0X, δ)-free path R ∶ a′ b′ such that the
diagram

(3.7.2)
a b

a′ b′
Da

P

Db

R

is commutative in the sense of Definition 3.1.14. We also call R a (0X, δ)-reduction
of P, suppressing Da and Db from the notation. ◇

The main result of this section, Proposition 3.7.19, asserts the existence of a
(0X, δ)-reduction.

Explanation 3.7.3. Consider Definition 3.7.1.
(1) Since the vertices in P contain no 0X, P is a 0X-free path as in Defini-

tion 3.4.1. Its edges do not contain λ±⊕, ρ±⊕, λ± ●, and ρ± ●. In other words,
as described in Explanation 3.4.2, each prime edge in P is either an iden-
tity or contains a single instance of α±⊕, ξ±⊕, α±⊗, ξ±⊗, λ±⊗, ρ±⊗, δl , or
δr.

(2) The (co)domain of R is a δ-reduction of the (co)domain of the original
path P. Each element in Xfr has a δ-reduction by Lemma 3.6.9. How-
ever, neither its codomain nor its value in C is unique, as we explained in
Example 3.6.8.

(3) For the commutativity of the diagram (3.7.2), the equality

(R, Da) = (Db, P)
of paths in Gr(X) is sufficient but not necessary. The definition only
requires that the image of the diagram under the graph morphism φ ∶
Gr(X) C in Definition 3.1.14 be a commutative diagram in C for arbi-
trary C and φ. ◇

Example 3.7.4. Suppose P is the path

(w⊕ x)(y⊕ z) w(y⊕ z)⊕ x(y⊕ z)
P= δr

w,x,y⊕z

for some elements w, x, y, z ∈ X ∖ {0X}. Reusing the diagram (3.6.20):
● Da = (D2, g) ∶ a c′ is a δ-reduction of a.
● Db = D1 ∶ b b′ is a δ-reduction of b.
● R ∶ c′ b′ is a (0X, δ)-reduction of (P, Da, Db).

The commutativity of the diagram (3.7.2) follows from the axiom (2.1.13). ◇
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Lemma 3.7.5. Suppose P ∶ a b is a (0X, δ)-free path with a and b both δ-reduced.
Then P is a (0X, δ)-reduction of P for any choices of δ-reductions of a and b.

Proof. Since a and b are not the domains of any δ-prime edges, any δ-reduction
Dx ∶ x x′ of x ∈ {a, b}, which exists by Lemma 3.6.9, is a sequence of identities
with x′ = x. Therefore, the diagram (3.7.2) is commutative if R = P. □

The proof of the existence of a (0X, δ)-reduction is split into several cases, the
first of which uses the following two facts about symmetric bimonoidal categories.
Lemma 3.7.6. For objects Y1, . . . , Yn ∈ C with n ≥ 2, the diagram

(3.7.7)

1(Y1 ⊕⋯⊕Yn) =W

Y = Y1 ⊕⋯⊕Yn

1Y1 ⊕⋯⊕1Yn = Z

D

λ−⊗Y

L

defined as follows is commutative:
● Y has some additive bracketing, and W = 1Y.
● Z is obtained from Y by replacing each summand Yk with 1Yk.
● L = λ−⊗Y1

⊕⋯⊕ λ−⊗Yn
with the same additive bracketing as Y.

● D is a composite of morphisms, each being a sum of
– identity morphisms, for which there are zero of them for the first morphism

in D; and
– one δl

1,Y′,Y′′ with each of Y′ and Y′′ a sum of consecutive Yk’s with brack-
etings inherited from Y.

Proof. The proof is by induction on n. The n = 2 case of (3.7.7) is commutative by
the axiom (2.1.27).

For the induction step, suppose n > 2, and Y = Y1 ⊕Y2 with

● Y1 = Y1 ⊕⋯⊕Yk and
● Y2 = Yk+1 ⊕⋯⊕Yn

with bracketings inherited from Y and some 1 ≤ k ≤ n − 1. Moreover, L = L1 ⊕ L2

with
● L1 = λ−⊗Y1

⊕⋯⊕ λ−⊗Yk
and

● L2 = λ−⊗Yk+1
⊕⋯⊕ λ−⊗Yn

with bracketings inherited from Y.
The diagram (3.7.7) factors as follows.

1(Y1 ⊕Y2) =W

Y = Y1 ⊕Y2 1Y1 ⊕1Y2

(1Y1 ⊕⋯⊕1Yk)⊕ (1Yk+1 ⊕⋯⊕1Yn) = Z

D

δl
1,Y1,Y2

λ−⊗Y

L1⊕L2

λ−⊗
Y1 ⊕λ−⊗

Y2

D1⊕D2
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The top half is commutative by (2.1.27). Consider the bottom half.

● If k = 1, then Y1 = Y1, and D1 = 11Y1 . The induction hypothesis is applied
to Y2.
● If k = n − 1, then Y2 = Yn, and D2 = 11Yn . The induction hypothesis is

applied to Y1.
● If 1 < k < n − 1, then the induction hypothesis is applied to Y1 and Y2.

In each case, the bottom half of the previous diagram is commutative. □

Next is the ρ⊗ analogue of Lemma 3.7.6.
Lemma 3.7.8. For objects Y1, . . . , Yn ∈ C with n ≥ 2, the diagram

(Y1 ⊕⋯⊕Yn)1 =W

Y = Y1 ⊕⋯⊕Yn

Y11⊕⋯⊕Yn1 = Z

D

ρ−⊗Y

L

defined as follows is commutative:
● Y has some additive bracketing, and W = Y1.
● Z is obtained from Y by replacing each summand Yk with Yk1.
● L = ρ−⊗Y1

⊕⋯⊕ ρ−⊗Yn
with the same additive bracketing as Y.

● D is a composite of morphisms, each being a sum of
– identity morphisms, for which there are zero of them for the first morphism

in D; and
– one δr

Y′,Y′′,1 with each of Y′ and Y′′ a sum of consecutive Yk’s with brack-
etings inherited from Y.

Proof. This is a slight modification of the proof of Lemma 3.7.6, using the axiom
(2.1.28) instead of (2.1.27). □

Next is the first preliminary case of Proposition 3.7.19.
Lemma 3.7.9. Suppose f ∶ a b is a prime edge such that

● a and b do not contain 0X, and
● a is δ-reduced.

Then f has a (0X, δ)-reduction for any choices of δ-reductions of a and b.

Proof. For each x ∈ {a, b}, suppose Dx ∶ x x′ is a δ-reduction of x, which exists
by Lemma 3.6.9. First we make a few observations.

● By Lemma 3.6.5, a being δ-reduced means that it is a polynomial in the
sense of Definition 3.6.3.
● Since a, being δ-reduced, is not the domain of any δ-prime edge, the δ-

reduction Da is a sequence of identities of a, and a′ = a.
● The absence of 0X in a and b, and that a is δ-reduced, imply that f is a
(0X, δ)-free edge as in Definition 3.6.10.

The possibilities of the (0X, δ)-free edge f are listed in Explanation 3.6.11.
First suppose f is either an identity or involves an instance of
● α±⊕, ξ±⊕, α±⊗, ξ±⊗, λ⊗, ρ⊗, or
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● λ−⊗ or ρ−⊗ applied to either a monomial in a or some ⊗-factor of a mono-
mial in a.

Then b is also a polynomial, which means that it is δ-reduced. The δ-reduction Db
is a sequence of identities of b, and b′ = b. Therefore, R = f is a (0X, δ)-reduction of
f .

If f is not as in the previous paragraph, then f involves λ−⊗ or ρ−⊗ applied to
a sum of at least two monomials in a. Consider the λ−⊗ case first. In other words:

● a ∈ Xfr has the form

a = a1 ⊕⋯⊕ ai−1⊕
empty if i = 1

A⊕ aj+1 ⊕⋯⊕ am

empty if j = m

for some additive bracketing and some

A = ai ⊕⋯⊕ aj ∈ Xfr

with some additive bracketing, 1 ≤ i < j ≤ m with m ≥ 2, and each ak a
monomial as in Definition 3.6.3.
● b ∈ Xfr has the form

b = a1 ⊕⋯⊕ ai−1 ⊕ 1X A⊕ aj+1 ⊕⋯⊕ am

with the same additive bracketing as a.
● The prime edge f involves the elementary edge λ−⊗A ∶ A 1X A.

Note that b is not δ-reduced because δl can be applied to 1X A. Since Db ∶ b b′

is a δ-reduction of b, the codomain b′ has the form

b′ = a1 ⊕⋯⊕ ai−1 ⊕ A′ ⊕ aj+1 ⊕⋯⊕ am

with the same additive bracketing as a, where

A′ = 1Xai ⊕⋯⊕ 1Xaj

with the same additive bracketing as A. Moreover, each prime edge in Db is either
an identity or involves δl .

The desired path R ∶ a = a′ b′ is defined using the following objects and
edges.

● For 0 ≤ l ≤ j − i + 1, define Al ∈ Xfr as the element obtained from A by
replacing each of the l leftmost summands a? by 1Xa?. Here are some
examples.

A0 = ai ⊕⋯⊕ aj = A

A1 = 1Xai ⊕ ai+1 ⊕⋯⊕ aj

Aj−i = 1Xai ⊕⋯⊕ 1Xaj−1 ⊕ aj

Aj−i+1 = 1Xai ⊕⋯⊕ 1Xaj = A′

● For 0 ≤ l ≤ j − i + 1, define al ∈ Xfr as the element obtained from a by
replacing A with Al . Here are some examples.

a0 = a1 ⊕⋯⊕ ai−1 ⊕ A⊕ aj+1 ⊕⋯⊕ am = a

a1 = a1 ⊕⋯⊕ ai−1 ⊕ A1 ⊕ aj+1 ⊕⋯⊕ am

aj−i+1 = a1 ⊕⋯⊕ ai−1 ⊕ A′ ⊕ aj+1 ⊕⋯⊕ am = b′
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● For 1 ≤ l ≤ j − i + 1, define rl ∶ al−1 al as the prime edge involving the
elementary edge

ai+l−1 1Xai+l−1
λ−⊗

ai+l−1

and the identity elementary edge of every other summand in al−1. For
example, the prime edge

– r1 ∶ a = a0 a1 involves λ−⊗
ai ∶ ai 1Xai, and

– rj−i+1 ∶ aj−i aj−i+1 = b′ involves λ−⊗
aj ∶ aj 1Xaj.

Define the (0X, δ)-free path
R = (rj−i+1, . . . , r1)

in Gr(X), that is,

a = a0 a1 ⋯ aj−i+1 = b′.
r1 r2 rj−i+1

We aim to show that R is a δ-reduction of f .
To show that the diagram (3.7.2) is commutative, it suffices to concentrate on

the summands A in a, 1X A in b, and A′ in b′, since f , Db, and R in other summands
are identities. The relevant diagram is commutative by Lemma 3.7.6 applied as
follows:

● Yl = φai+l−1 for 1 ≤ l ≤ j − i + 1 = n, with φ the graph morphism in Defini-
tion 3.1.14. For example, Y1 = φai, and Yn = φaj.
● Y = Y1 ⊕⋯⊕Yn has the same additive bracketing as A, and Y = φA.
● W = 1Y = φ(1X A).
● Z = 1Y1 ⊕⋯⊕1Yn = φA′.
● λ−⊗Y ∶ Y 1Y is the nonidentity summand of φ f .
● L = λ−⊗Y1

⊕⋯⊕ λ−⊗Yn
is the nonidentity summand of the composite of φR.

● D is the nonidentity summand of the composite of φDb.
This shows that R is a δ-reduction of f when f involves λ−⊗.

If f involves ρ−⊗, then we slightly modify the argument above by replacing
● (λ−⊗, δl , 1X A, 1Xak)with (ρ−⊗, δr, A1X, ak1X) and
● Lemma 3.7.6 with Lemma 3.7.8.

All the possible cases of f , as in Explanation 3.6.11, have been considered. □

Next is the second preliminary case of Proposition 3.7.19.
Lemma 3.7.10. Under the hypotheses of Definition 3.7.1, suppose that each edge in the
path P ∶ a b is of one of the following types:

● an identity or
● a prime edge involving α±⊕, ξ±⊕, α±⊗, ξ±⊗, δl , or δr.

Then P has a (0X, δ)-reduction.

Proof. The proof is by induction on size(a)− rank(a), which is always nonnegative
by Lemma 3.2.9 (2). First suppose

size(a)− rank(a) = 0.

By Lemmas 3.2.9, 3.2.10, and 3.2.12, P does not contain δl and δr, and each vertex
in P satisfies size = rank. By Proposition 3.2.15, each vertex in P is a polynomial
in the sense of Definition 3.6.3, which is δ-reduced by Lemma 3.6.5. Since P is
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a (0X, δ)-free path with a and b both δ-reduced, P is a (0X, δ)-reduction of P by
Lemma 3.7.5.

For the induction step, suppose

size(a)− rank(a) > 0

and that the path P consists of the prime edges ( fn, . . . , f1) as in

(3.7.11) a = a0 a1 ⋯ an = b
f1 f2 fn

for some n ≥ 1. The δ-reductions Dx ∶ x x′ of x ∈ {a, b} are already chosen
in Definition 3.7.1. If n > 1, then for each 1 ≤ i ≤ n − 1, choose a δ-reduction
Di ∶ ai a′i of ai, which exists by Lemma 3.6.9. If for each 1 ≤ i ≤ n, the prime
edge fi has a (0X, δ)-reduction Ri ∶ a′i−1 a′i with respect to these δ-reductions,
then the concatenated path

R = (Rn, . . . , R1)
is a (0X, δ)-reduction of P, as in the following diagram.

a = a0 a1 ⋯ an = b

a′ = a′0 a′1 ⋯ a′n = b′

f1

Da

f2

D1

fn

Db

R1 R2 Rn

Therefore, to show that P has a (0X, δ)-reduction, it suffices to show that each
prime edge f ∶ a b of the form stated in the lemma, with a and b containing no
0X, has a (0X, δ)-reduction.

Moreover, if a is δ-reduced, then f has a (0X, δ)-reduction by Lemma 3.7.9.
Therefore, we may assume that a is not δ-reduced, which by Lemma 3.6.5 means
that a is not a polynomial. The rest of the induction step is divided into two cases
depending on f .

First suppose that the prime edge f ∶ a b does not involve δl and δr. In
other words, either

● f is an identity, or
● f involves α±⊕, ξ±⊕, α±⊗, or ξ±⊗.

Lemma 3.2.10 implies that there is an equality

(3.7.12) size(a)− rank(a) = size(b)− rank(b).

Moreover, that a is not a polynomial and the current hypothesis on f imply that b
is not a polynomial, so b is also not δ-reduced by Lemma 3.6.5. Since a and b are
not δ-reduced, each δ-reduction Dx ∶ x x′ of x ∈ {a, b} has at least one δ-prime
edge. We are concerned about constructing a diagram (3.7.2) that is commutative,
and identity prime edges are sent by the graph morphism φ ∶ Gr(X) C in
Definition 3.1.14 to identity morphisms. Therefore, we may assume that the first
edge in each δ-reduction Dx is a δ-prime edge. In the diagram (3.7.13) below, these
δ-prime edges are denoted by a a1 and b b1.

Using Lemma 3.6.12 and the induction hypothesis (IH), a (0X, δ)-reduction
R ∶ a′ b′ of f is obtained in the following diagram, which we will explain in
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detail.

(3.7.13)

a b b1 b′

b′1 e h

a1 c d

a′ c′ d′ e′ h′ b′

3.6.12

3.6.12

IH IH

IH IH IH

δ

δ

R1 R2 R3 R4 R5

f δ δ

1b′

(1, δ) (α, ξ)

δ

(1, δ)

(1, δ) (α, ξ)

(1, δ)

δ δ

δ δ

Da

Db

R

The following statements are about the diagram (3.7.13):
● Each subdiagram labeled by 3.6.12 is obtained by applying that lemma.
● Each subdiagram labeled by IH is obtained by applying the induction

hypothesis.
● Each subdiagram is commutative.
● Each edge labeled by δ is a δ-prime edge.
● Each path labeled by:

– δ is a δ-reduction.
– (1, δ) is either a single identity or consists of δ-prime edges.
– (α, ξ) consists of identities and prime edges involving α±⊕, ξ±⊕, α±⊗,

or ξ±⊗.
● The δ-reductions Da and Db are as displayed. The respective first edges

a a1 and b b1 are both δ-prime edges by the last sentence of the
previous paragraph.
● Each Ri is a (0X, δ)-reduction of the horizontal path above it. Their con-

catenation R is a (0X, δ)-reduction of f .
With more detail, we begin with the prime edge f , and the δ-reductions Da

and Db, and perform the following steps.
(1) Using the current hypothesis on f and that a a1 is a δ-prime edge,

we first apply Lemma 3.6.12 to obtain the upper left square in (3.7.13).
The resulting path b d has at least one δ-prime edge b b′1 by
the following (in)equalities.

size(d)− rank(d)
= size(c)− rank(c) (by Lemma 3.2.10)
≤ size(a1)− rank(a1) (by Lemma 3.2.12)
< size(a)− rank(a) (by Lemma 3.2.12)
= size(b)− rank(b) (by (3.7.12))

Therefore, b d cannot be a single identity, and must contain a δ-
prime edge b b′1.



3.7. ZERO AND DELTA REDUCTION OF PATHS I.119

(2) Next we apply Lemma 3.6.12 to the δ-prime edges b b1 and b b′1
to obtain the top middle rectangle in (3.7.13). Since a and b contain no
0X, all other vertices involved so far—namely, a1, a′, b1, b′, b′1, c, d, e, and
h—also contain no 0X.

(3) For each y ∈ {c, d, e, h}, choose a δ-reduction y y′, which exists by
Lemma 3.6.9. The concatenated paths

b′1 d d′

b1 h h′

are δ-reductions of b′1 and b1, respectively. Moreover, since b′ is δ-
reduced, the identity 1b′ is a δ-reduction.

(4) We observed in step (1) that a1 and c both have size − rank less than that
of a. Furthermore, by Lemma 3.2.12 and (3.7.12), b1, b′1, and e also have
size − rank less than that of a. The induction hypothesis is applied five
times as indicated by IH in (3.7.13) to obtain (0X, δ)-reductions
● R1 ∶ a′ c′ of a1 c;
● R2 ∶ c′ d′ of c d;
● R3 ∶ d′ e′ of b′1 e;
● R4 ∶ e′ h′ of e h; and
● R5 ∶ h′ b′ of b1 b′.

The concatenated path

R = (R5, R4, R3, R2, R1) ∶ a′ b′

is (0X, δ)-free, and the diagram (3.7.2) with P = f is commutative by (3.7.13). There-
fore, R is a (0X, δ)-reduction of f .

Next we consider the case when the prime edge f involves a single instance of
δl or δr. Using Lemma 3.6.12 and the induction hypothesis (IH), a (0X, δ)-reduction
R ∶ a′ b′ of f is obtained in the following diagram.

(3.7.14)

a b b′

a1 c d

a′ c′ d′ b′

3.6.12

IH IH

IH

δ

δ

R1 R2 R3

f Db

1b′
(1, δ) (α, ξ)

(1, δ)

δ δ

Da

R

The steps for obtaining this diagram are essentially those for (3.7.13). In more
detail:

(1) Using the fact that f and a a1 are δ-prime edges, we apply Lemma 3.6.12
to obtain the upper left rectangle in (3.7.14).

(2) For each y ∈ {c, d}, choose a δ-reduction y y′ using Lemma 3.6.9.
The path

b d d′

is a δ-reduction of b, and 1b′ is a δ-reduction of b′, since b′ is δ-reduced.
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(3) By Lemma 3.2.12, the elements a1, b, and c all have size − rank less than
that of a. The induction hypothesis is applied three times as indicated by
IH. Each Ri is a (0X, δ)-reduction of the horizontal path above it.

The bottom concatenated path

R = (R3, R2, R1) ∶ a′ b′

is a (0X, δ)-reduction of f . This finishes the induction. □

Next is the preliminary case of Proposition 3.7.19 involving λ⊗ and ρ⊗.
Lemma 3.7.15. Under the hypotheses of Definition 3.7.1, suppose that each prime edge
in P ∶ a b involves a single instance of λ⊗ or ρ⊗. Then P has a (0X, δ)-reduction.

Proof. The proof is by induction on size(a)− rank(a), which is always nonnegative
by Lemma 3.2.9 (2). First suppose

size(a)− rank(a) = 0.

By Lemma 3.2.16 (1), each vertex in P satisfies size = rank. By Proposition 3.2.15,
each vertex in P is a polynomial in the sense of Definition 3.6.3, which is δ-reduced
by Lemma 3.6.5. Since P is a (0X, δ)-free path with a and b both δ-reduced, P is a
(0X, δ)-reduction of P by Lemma 3.7.5.

For the induction step, suppose

size(a)− rank(a) > 0.

Reusing the reasoning in the second and the third paragraphs in the proof of
Lemma 3.7.10, it suffices to show that each prime edge f ∶ a b involving λ⊗ or
ρ⊗, with a and b containing no 0X and with a not δ-reduced, has a (0X, δ)-reduction.
Using Lemmas 3.6.12 and 3.7.10 and the induction hypothesis (IH), we modify the
diagram (3.7.14) as follows to obtain a (0X, δ)-reduction of f .

(3.7.16)

a b b′

a1 c d

a′ c′ d′ b′

3.6.12

3.7.10 IH

3.7.10

δ

δ

R1 R2 R3

f Db

1b′
(1, δ) (λ⊗, ρ⊗)

(1, δ)

δ δ

Da

R

The steps for obtaining this diagram are as follows.
(1) Since a is not δ-reduced, the δ-reduction Da has at least one δ-prime edge.

We may assume that it is the first edge in Da, as explained in the para-
graph containing (3.7.12). This δ-prime edge is a a1 in (3.7.16).

(2) Starting with the prime edge f , which involves either λ⊗ or ρ⊗, and the
δ-prime edge a a1, apply Lemma 3.6.12 to obtain the upper left rec-
tangle in (3.7.16). By that lemma, the path c d consists of only prime
edges involving either λ⊗ or ρ⊗, according to f .

(3) For each y ∈ {c, d}, choose a δ-reduction y y′ using Lemma 3.6.9.
The path

b d d′
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is a δ-reduction of b, and 1b′ is a δ-reduction of b′, since b′ is δ-reduced.
(4) Since the paths

a1 c

b b′
Db

consist of identities and δ-prime edges, we can apply Lemma 3.7.10 to
each of them to obtain the (0X, δ)-reductions R1 and R3, respectively.

(5) By Lemma 3.2.12, c has size − rank less than that of a. The induction hy-
pothesis applies to the path c d to yield the (0X, δ)-reduction R2.

The bottom concatenated path

R = (R3, R2, R1) ∶ a′ b′

is a (0X, δ)-reduction of f . This finishes the induction. □

Remark 3.7.17. The reason that Lemmas 3.7.10 and 3.7.15 are not proved by one
overall induction is that in the diagram (3.7.16), b may have the same size− rank as
a by Lemma 3.2.16. If the two inductions are combined into one, then we would
have to separately consider the case

size(a)− rank(a) = size(b)− rank(b)
with f as in Lemma 3.2.16 (2). The argument involved would be no easier than the
proof of Lemma 3.7.15. ◇

Next is the preliminary case of Proposition 3.7.19 involving λ−⊗ and ρ−⊗.
Lemma 3.7.18. Under the hypotheses of Definition 3.7.1, suppose that each prime edge
in P ∶ a b involves a single instance of λ−⊗ or ρ−⊗. Then P has a (0X, δ)-reduction.

Proof. Suppose Q ∶ b a is the formal inverse of P as in Definition 3.1.10. Each
prime edge in Q involves either λ⊗ or ρ⊗. By Lemma 3.7.15, Q has a (0X, δ)-
reduction S ∶ b′ a′, making the diagram

a b

a′ b′
Da

Q

Db

S

commutative. The formal inverse R ∶ a′ b′ of S is a (0X, δ)-reduction of P
because

φ(P) = φ(Q)−1 and φ(R) = φ(S)−1

for the graph morphism φ ∶ Gr(X) C in Definition 3.1.14. □

Next is the main result of this section.
Proposition 3.7.19. Under the hypotheses of Definition 3.7.1, the path P ∶ a b has
a (0X, δ)-reduction.

Proof. By the reasoning in the paragraph containing (3.7.11), it suffices to show
that each prime edge in P has a (0X, δ)-reduction. By assumption, each prime
edge f ∶ c d in P has the property that c and d contain no 0X. The possibilities
of these 0X-free edges are listed in Explanation 3.4.2. By Lemmas 3.7.10, 3.7.15,
and 3.7.18, each prime edge in P has a (0X, δ)-reduction. □
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3.8. Reduction of Multiplicative Units

In Proposition 3.7.19, we showed that each path whose vertices contain no 0X

has a (0X, δ)-reduction. In this section, we go one step further and eliminate the
multiplicative units; see Proposition 3.8.14. In the first half of this section, we de-
fine a 1X-reduction of an element in Xfr, and prove its existence and uniqueness
in a suitable sense. In the second half of this section, we define a 1X-reduction of
a path and establish its existence under suitable conditions. Recall that Conven-
tion 3.3.1 is in effect.

Next is the multiplicative unit analogue of a 0X-reduction and a δ-reduction in
Definitions 3.3.4 and 3.6.2.
Definition 3.8.1. Consider the graph Gr(X) of X in Definition 3.1.9.

● A 1X-prime edge is a prime edge that involves either λ⊗ or ρ⊗.
● An element a ∈ Xfr is 1X-reduced if it is not the domain of any 1X-prime

edge.
● A 1X-reduction of a ∈ Xfr is a path P ∶ a b such that the following two

statements hold.
– b is 1X-reduced.
– Each edge in P is either an identity or a 1X-prime edge. ◇

Example 3.8.2. Here are some examples of 1X-prime edges.
● In Example 3.1.12, 1w ⊕ λ⊗x 1y⊕z is a 1X-prime edge.
● In Lemma 3.6.12, if f is a 1X-prime edge, then every edge in the path R is

a 1X-prime edge.
● In the diagram (3.7.16), every edge in the path c d is a 1X-prime

edge. ◇
Example 3.8.3. The domain of a 1X-prime edge must contain at least one instance
of 1X. Therefore, each element in Xfr that contains no 1X is 1X-reduced. However,
the converse is not true. For example, if x, y ∈ X with y /= 1X, then the elements

1X ⊕ x and y⊗ (x⊕ 1X)
contain 1X and are 1X-reduced. ◇

Recall the concept of a polynomial in Definition 3.6.3. The following result
provides a characterization of a δ-reduced element in Xfr that is also 1X-reduced.

Lemma 3.8.4. Suppose a ∈ Xfr is δ-reduced. Then a is 1X-reduced if and only if it is a
polynomial with each monomial either equal to 1X or containing no instances of 1X.

Proof. By Lemma 3.6.5, being δ-reduced is equivalent to being a polynomial. If
each monomial in a is either 1X or contains no 1X, then a is 1X-reduced by the
following two facts:

● The domain of λ⊗ contains an expression of the form 1X⊗?.
● The domain of ρ⊗ contains an expression of the form ?⊗ 1X.

Conversely, suppose it is not the case that each monomial in a is either 1X or con-
tains no 1X. Then a contains a monomial with at least two elements in X that
contains 1X. Therefore, a is the domain of some 1X-prime edge. □

Next we establish the existence of 1X-reductions.
Lemma 3.8.5. Each element in Xfr has a 1X-reduction.
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Proof. We proceed by induction on norm(a) for elements a ∈ Xfr, where norm is as
in Definition 3.2.1. If norm(a) = 1, then a ∈ X. So a is 1X-reduced, and the identity
1a is a 1X-reduction of a.

For the induction step, suppose norm(a) > 0. If a is 1X-reduced, then the iden-
tity 1a is a 1X-reduction of a. If a is not 1X-reduced, then there exists a 1X-prime
edge f ∶ a b with domain a. Since an instance of 1X is removed when going
from a to b, the inequality

norm(a) > norm(b)
holds. So the induction hypothesis applies to b to yield a 1X-reduction P ∶
b b′ of b. The combined path

a b b′
f P

is a 1X-reduction of a. This finishes the induction. □

Next is the 1X-reduction analogue of Lemma 3.3.11. It says that for a δ-reduced
element in Xfr, the codomain of a 1X-reduction is uniquely determined.
Lemma 3.8.6. For any two 1X-reductions

a
b1

b2

P1

P2

of a δ-reduced element a ∈ Xfr, the equality b1 = b2 holds.

Proof. The element a, being δ-reduced, is a polynomial by Lemma 3.6.5. Each 1X-
prime edge in each Pi eliminates one copy of 1X in a monomial that contains at least
one other element in X. So both b1 and b2 are still polynomials, hence δ-reduced,
and 1X-reduced. By Lemma 3.8.4, the following statements hold.

● If a monomial in a is either a single copy of 1X or contains no 1X, then it is
still in bi.
● If a monomial in a contains at least two copies of 1X and no other elements

of X, then it becomes 1X in bi.
● If a monomial in a contains at least one copy of 1X and at least one element

in X ∖ {1X}, then the corresponding monomial in bi has all the copies of
1X removed.

Therefore, b1 = b2. □

Next is the 1X-reduction analogue of Lemma 3.3.12. Recall the graph mor-
phism φ ∶ Gr(X) C in Definition 3.1.14, with respect to which values in C are
defined.
Lemma 3.8.7. Any two 1X-reductions

a b
P1

P2

of a δ-reduced element a ∈ Xfr have the same value in C.
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Proof. The element a, being δ-reduced, is a polynomial by Lemma 3.6.5. Suppose
the polynomial a has the form

a = a1 ⊕⋯⊕ am

for some m ≥ 1, with each aj a monomial, and for some additive bracketing. The
polynomial b has the form

b = b1 ⊕⋯⊕ bm

with the same additive bracketing as a and with each monomial bj obtained from
aj as described in the proof of Lemma 3.8.6. In particular, each monomial bj is 1X

or contains no 1X.
By the functoriality of ⊕ in C, for each i = 1, 2, the 1X-reduction Pi has value in

C a sum
φPi = P1

i ⊕⋯⊕ Pm
i

with the same additive bracketing as a and with

φaj φbjPj
i

for 1 ≤ j ≤ m. To show that P1 and P2 have the same values in C, it suffices to show
the equality

Pj
1 = Pj

2 ∶ φaj φbj.

By the proof of Lemma 3.8.6, Pj
i is a composite of morphisms, each being a ⊗ of

identity morphisms and a component of either λ⊗ or ρ⊗. Mac Lane’s Coherence
Theorem 1.3.3 in the monoidal category (C,⊗,1, α⊗, λ⊗, ρ⊗) implies that Pj

1 = Pj
2

for each 1 ≤ j ≤ n. □

We now define the 1X analogue of a (0X, δ)-free path in Definition 3.6.10.

Definition 3.8.8. A 1X-free path is a (0X, δ)-free path that contains no λ±⊗ and ρ±⊗.
◇

Explanation 3.8.9. In a 1X-free path, every prime edge is either an identity or in-
volves a single instance of α±⊕, ξ±⊕, α±⊗, or ξ±⊗. ◇
Motivation 3.8.10. In the next definition, the (0X, δ)-free path P should be thought
of as a (0X, δ)-reduction of some other path as in Definition 3.7.1. The aim is to
further eliminate multiplicative units, thereby replacing P by a 1X-free path. ◇
Definition 3.8.11. Suppose

● P ∶ a b is a (0X, δ)-free path, and
● for each x ∈ {a, b}, Lx ∶ x x′ is a 1X-reduction of x.

A 1X-reduction of (P, La, Lb) is a 1X-free path R ∶ a′ b′ such that the diagram

(3.8.12)
a b

a′ b′
La

P

Lb

R

is commutative in the sense of Definition 3.1.14. We also call R a 1X-reduction of
P, suppressing La and Lb from the notation. ◇
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The main result of this section, Proposition 3.8.14, asserts the existence of a
1X-reduction when a and b are δ-reduced. First we need the following preliminary
observation.
Lemma 3.8.13. Suppose:

● f ∶ a b is a (0X, δ)-free edge whose domain a is δ-reduced.
● For each x ∈ {a, b}, Lx ∶ x x′ is a 1X-reduction of x.
● If f contains λ−⊗ or ρ−⊗, then its subscript is a monomial or a factor of a mono-

mial in a.
Then a 1X-reduction of f exists.

Proof. By Lemma 3.6.5, a is a polynomial as in Definition 3.6.3. The possibilities
of the (0X, δ)-free edge f in Explanation 3.6.11 and the last assumption on f im-
ply that b is also a polynomial and δ-reduced. By the proof of Lemma 3.8.6, the
following statements hold:

● There is a canonical bijection between the set of monomials in a and the
set of monomials in a′. Each monomial in a′ is either equal to one in a,
or is obtained from one in a by removing copies of 1X. If the monomial
started with some element in X ∖ {1X}, then all the copies of 1X are re-
moved. If the monomial only has copies of 1X, then all but one copies are
removed.
● The additive bracketing of a′ is equal to that of a.
● The analogous statements also hold for b and b′.

We now consider the possible cases of f .
(1) Suppose f is an identity or involves an instance of α±⊕ or ξ±⊕. By the

remarks above, the monomials in a and b are the same, and the mono-
mials in a′ and b′ are the same. There is a prime edge f ′ ∶ a′ b′ of
the same type as f whose subscripts are the corresponding monomials in
a′. The path R = f ′ is a 1X-reduction of f because the diagram (3.8.12) is
commutative by
● the naturality of α⊕ or ξ⊕ and
● Lemma 3.8.7 applied to each monomial in a.

(2) Suppose f involves an instance of α±⊗. Then a and b differ only by the
multiplicative bracketing within a single monomial, say ma in a and mb
in b. Denote by ma′ and mb′ the corresponding monomials in a′ and b′,
respectively. Then a′ and b′ differ by at most the multiplicative bracket-
ings in ma′ and mb′ . Define R ∶ a′ b′ as consisting of a single prime
edge that is either an identity or contains an instance of α±⊗ that moves
the multiplicative brackets from ma′ to mb′ in precisely the same way as f
with copies of 1X removed, as described earlier in this proof. The diagram
(3.8.12) is commutative by
● the functoriality of ⊕ and
● the uniqueness in Mac Lane’s Coherence Theorem 1.3.3 in (C,⊗) ap-

plied to each monomial in a.
(3) Suppose f involves an instance of ξ±⊗. Then a and b differ only by the

multiplicative bracketing, and the order of the factors within a single
monomial. We slightly modify the argument in the previous case, us-
ing instead the uniqueness in the Symmetric Coherence Theorem 1.3.8 in
the symmetric monoidal category (C,⊗). The path R ∶ a′ b′ consists
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of a single prime edge that is either an identity or contains an instance of
ξ±⊗.

(4) If f involves an instance of λ⊗ or ρ⊗, then the concatenated path

a b b′
f Lb

is a 1X-reduction of a. There is an equality a′ = b′, and the paths La and
(Lb, f ) have the same values in C by Lemmas 3.8.6 and 3.8.7. Therefore,
with R = 1a′ the diagram (3.8.12) is commutative.

(5) Suppose f involves an instance of λ−⊗ or ρ−⊗ with subscript a monomial
or a factor of a monomial in a. Then a and b only differ by an extra copy of
1X in a monomial in b. This implies that a′ = b′. With R = 1a′ the diagram
(3.8.12) is commutative by
● the functoriality of ⊕ and
● the uniqueness in Mac Lane’s Coherence Theorem 1.3.3 in (C,⊗) ap-

plied to each monomial in a.

The above cases account for all the possibilities of f . □

The following main result of this section is a 1X-reduction analogue of Propo-
sitions 3.5.32 and 3.7.19, which assert the existence of a 0X-reduction and a (0X, δ)-
reduction, respectively, under suitable conditions. Recall from Lemma 3.6.5 that
an element in Xfr is δ-reduced if and only if it is a polynomial.

Proposition 3.8.14. Suppose
● P ∶ a b is a (0X, δ)-free path with a and b both δ-reduced, and
● for each x ∈ {a, b}, Lx ∶ x x′ is a 1X-reduction of x.

Then a 1X-reduction of P exists.

Proof. Since P contains no δ-prime edges, and since a and b are δ-reduced,

● the naturality of α⊗, λ⊗, ρ⊗, and ξ⊗, and
● the Symmetric Coherence Theorem 1.3.8 for (C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗)

imply the following statement:

P has the same value in C as a (0X, δ)-free path Q ∶ a b that
does not contain λ−⊗ and ρ−⊗ with subscript a sum.

For example, for elements x, y ∈ Xfr, the two paths below have the same value in C
by naturality and coherence as stated above.

x⊕ y y⊕ x

1X(x⊕ y) 1X(y⊕ x)

1X(y⊕ x) (1X1X)(y⊕ x)

[1X(y⊕ x)]1X 1X [1X(y⊕ x)]

λ−⊗x⊕y

ξ⊕x,y

11X ξ⊕x,y

λ⊗y⊕x

ρ−⊗1X(y⊕x)

λ⊗1X 1y⊕x

ξ⊗1X(y⊕x),1X

α−⊗1X ,1X ,y⊕x
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Therefore, we may assume that P does not contain λ−⊗ and ρ−⊗ with subscript a
sum.

Suppose the path P consists of the prime edges ( fn, . . . , f1) as in

a = a0 a1 ⋯ an = b
f1 f2 fn

for some n ≥ 1. Observe the following:

● Since a is a polynomial, the reduction in the previous paragraph implies
that each vertex in P is a polynomial, that is, δ-reduced.
● If n > 1, then for each 1 ≤ i ≤ n− 1, choose a 1X-reduction Li ∶ ai a′i of

ai, which exists by Lemma 3.8.5. Then for each 1 ≤ i ≤ n, the prime edge
fi has a 1X-reduction Ri ∶ a′i−1 a′i by the reduction in the previous
paragraph and Lemma 3.8.13.

The concatenated path
R = (Rn, . . . , R1)

is a 1X-reduction of P because the diagram

a = a0 a1 ⋯ an = b

a′ = a′0 a′1 ⋯ a′n = b′

f1

La

f2

L1

fn

Lb

R1 R2 Rn

is commutative in the sense of Definition 3.1.14. □

3.9. The First Coherence Theorem

In this section, we use the results in the previous sections to prove the follow-
ing coherence theorem for symmetric bimonoidal categories. Some examples of
symmetric bimonoidal categories where this theorem can be applied are given af-
ter the proof. See Section 3.11 for further discussion about this theorem. The state-
ment of the following theorem uses Definitions 2.1.2, 3.1.9, 3.1.14, 3.1.25, and 3.6.2
and Convention 3.3.1.

Theorem 3.9.1 (Laplaza’s First Coherence). Suppose C is a symmetric bimonoidal cat-
egory in which the value of each δ-prime edge is a monomorphism. If

a b
P1

P2

are two paths in Gr(X) with a ∈ Xfr regular, then the values of P1 and P2 in C are equal.

Proof. This proof involves a series of reductions. Since a is regular, the existence of
a path from a to b implies that b is also regular by Lemma 3.1.29.

Reduction step 1

Choose 0X-reductions Qx ∶ x x′ of x ∈ {a, b}, which exist by Lemma 3.3.6.
The codomain x′ and the value of the path Qx in C are both uniquely determined
by x by Lemmas 3.3.11 and 3.3.12. Since each x ∈ {a, b} is regular, by Lemma 3.1.29
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each x′ is regular. By Proposition 3.5.32, each path Pi for i = 1, 2 has a 0X-reduction
Ri such that the diagram

a b

a′ b′
Qa

Pi

Qb

Ri

is commutative. Since λ⊕, ρ⊕, λ ●, and ρ ● are natural isomorphisms in C, the values
of Qa and Qb in C are isomorphisms. Therefore, to show that P1 and P2 have the
same value in C, it suffices to show that R1 and R2 have the same value in C. In
other words:

We may assume that each Pi ∶ a b is a 0X-free path with a and b
both 0X-reduced and regular.

Reduction step 2

If

supp(a) = supp(0X),
then Proposition 3.5.33 implies that P1 and P2 have the same value in C. If

supp(a) /= supp(0X),

then a being 0X-reduced as in Definition 3.3.4 implies that a contains no 0X. That
b is 0X-reduced and Lemma 3.1.29(2) imply that b also contains no 0X. In other
words:

We may assume that each Pi ∶ a b is a 0X-free path with a and b
containing no 0X and regular.

Reduction step 3

Next suppose Db ∶ b b′ is a δ-reduction of b, which exists by Lemma 3.6.9.
By Lemma 3.1.29, b′ is regular. Observe the following:

● In each category, monomorphisms are closed under composition.
● Each edge in the δ-reduction Db is either an identity or a δ-prime edge.
● The value of each δ-prime edge is a monomorphism in C by assumption.

These remarks imply that the value of Db in C is a monomorphism. Therefore, it
suffices to show that the two concatenated paths

(3.9.2) a b b′
P1

P2

Db

have the same value in C. In other words:

We may assume that each Pi ∶ a b is a 0X-free path with a and b
containing no 0X and regular, and with b δ-reduced.

In particular, the identity 1b is a δ-reduction of b.

Reduction step 4
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Suppose Da ∶ a a′ is a δ-reduction of a, which exists by Lemma 3.6.9. By
Lemma 3.1.29, a′ is regular. By Proposition 3.7.19, each Pi has a (0X, δ)-reduction
Ri such that the diagram

a b

a′ b

Da

Pi

1b

Ri

is commutative in the sense of Definition 3.1.14. To show that P1 and P2 have the
same value in C, it suffices to show that R1 and R2 have the same value in C. In
other words:

We may assume that each Pi ∶ a b is a (0X, δ)-free path with a
and b containing no 0X, δ-reduced, and regular.

Reduction step 5

Choose 1X-reductions Lx ∶ x x′ of x ∈ {a, b}, which exist by Lemma 3.8.5.
By Lemma 3.1.29, each x′ is regular. Since each x ∈ {a, b} is δ-reduced, by Lem-
mas 3.8.6 and 3.8.7 the codomain x′ and the value of Lx in C are uniquely deter-
mined by x. By Proposition 3.8.14, each Pi has a 1X-reduction Ri such that the
diagram

a b

a′ b′
La

Pi

Lb

Ri

is commutative in the sense of Definition 3.1.14. Since λ⊗ and ρ⊗ are natural iso-
morphisms in C, the values of La and Lb in C are isomorphisms. So it suffices to
show that R1 and R2 have the same value in C. In other words:

We may assume that each Pi ∶ a b is a 1X-free path with a and b
containing no 0X, δ-reduced, 1X-reduced, and regular.

Let us explain this reduction step more explicitly.
(1) By Definition 3.1.25 and Lemmas 3.6.5 and 3.8.4, the conditions on x ∈
{a, b}—namely, containing no 0X, δ-reduced, 1X-reduced, and regular—
mean that x is a polynomial as in Definition 3.6.3 such that the following
statements hold.

(i) Each monomial in x either
● is equal to 1X, or
● contains no 0X and 1X.

(ii) Different monomials in x have different supports as in (3.1.24).
(iii) Within each monomial in x, the factors are all distinct elements in X.
For example, for distinct elements p, q, r, s ∈ X ∖ {0X, 1X}, the polynomial

[1X ⊕ (pq)r]⊕ p(qs)
satisfies all three conditions stated above.

(2) As stated in Explanation 3.8.9, that each Pi is a 1X-free path means that
each of its prime edges is either an identity or involves an instance of α±⊕,
ξ±⊕, α±⊗, or ξ±⊗. It follows that each vertex in each Pi is a polynomial that
satisfies (i)–(iii) in (1) above.

When applied to a polynomial, prime edges involving:
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● α±⊕ move additive brackets, but do not change the monomials.
● ξ±⊕ permute monomials, but do not change the monomials.
● α±⊗ move multiplicative brackets within a monomial, but do not change

the additive bracketing and the order of the monomials.
● ξ±⊗ permute factors within a monomial, but do not change the additive

bracketing and the order of the monomials.
These remarks and the naturality of α⊕ and ξ⊕ in C imply that for each i = 1, 2,
there is a diagram in Gr(X)

(3.9.3)
a b

ci

Pi

P′i P′′i

that is commutative in the sense of Definition 3.1.14 such that the following two
statements hold.

● P′i ∶ a ci consists of identities and prime edges involving α±⊕ or ξ±⊕.
● P′′i ∶ ci b consists of identities and prime edges involving α±⊗ or

ξ±⊗.
Moreover, there is an equality

c1 = c2

in Xfr because of the following facts.
● P′1 and P′2 only move additive brackets and permute monomials.
● P′′1 and P′′2 only move multiplicative brackets and permute factors within

each monomial.
● Different monomials in a have different supports by condition (1)(ii).
● If there are paths p r and q r for elements p, q, r ∈ Xfr, then

supp(p) = supp(r) = supp(q)
by Lemma 3.1.29.

Finally, with c denoting c1 = c2, the following two statements hold.
● The Symmetric Coherence Theorem 1.3.8 for the additive structure

(C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
and condition (1)(ii) imply that the paths P′1 and P′2 ∶ a c have the
same value in C.
● The Symmetric Coherence Theorem 1.3.8 for the multiplicative structure

(C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗)
and condition (1)(iii), when applied to each monomial in c, imply that the
paths P′′1 and P′′2 ∶ c b have the same value in C.

Therefore, P1 = (P′′1 , P′1) and P2 = (P′′2 , P′2) have the same value in C. □

Explanation 3.9.4. In Theorem 3.9.1, there are two assumptions:
(i) The value of each δ-prime edge is a monomorphism in C.

(ii) a ∈ Xfr is regular.
These assumptions are only used in the following ways.
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(1) Assumption (i) is only used in the reduction step (3.9.2) to make sure that
the δ-reduction Db ∶ b b′, which consists of identities and δ-prime
edges, has value in C a monomorphism. By Definition 3.6.2, a δ-prime
edge is an iterated ⊕ and ⊗ of identities and one elementary edge δl or
δr as in Definition 3.1.6. Its value in C has the same description, with
identity morphisms instead of identities. However, even though δl

x,y,z
and δr

x,y,z are monomorphisms in C, without further assumptions on C, it
does not automatically follow that morphisms such as

(3.9.5) δl
x,y,z ⊕ 1w, δl

x,y,z ⊗ 1w, and (δl
x,y,z ⊕ 1w)⊗ 1v

are monomorphisms. Therefore, assumption (i) is imposed to ensure that
the value of the δ-reduction Db is a monomorphism in C.

(2) Even without the regularity assumption (ii), the diagrams (3.9.3) still ex-
ist, and each vertex in each path Pi still satisfies (1)(i) in the proof of The-
orem 3.9.1. The regularity assumption is used to obtain conditions (1)(ii)
and (1)(iii) in that proof. As explained there, these conditions then imply:
● c1 = c2.
● The paths P′1 and P′2 have the same value in C.
● The paths P′′1 and P′′2 have the same value in C. ◇

Example 3.9.6 (Tight Symmetric Bimonoidal Categories). If C is a tight symmetric
bimonoidal category, then Theorem 3.9.1 applies to C for each choice of a graph
morphism φ ∶ Gr(X) C as in Definition 3.1.14. Recall that tight means that
the distributivity morphisms δl and δr are natural isomorphisms, not just natural
monomorphisms. Therefore, the value of each δ-prime edge is an isomorphism,
hence a monomorphism, in C. In particular, Theorem 3.9.1 applies to the tight
symmetric bimonoidal categories Σ and Σ′ in Propositions 2.4.8 and 2.4.23. ◇
Example 3.9.7 (Distributive Symmetric Monoidal Categories). These are also tight
symmetric bimonoidal categories by Proposition 2.3.2. As explained in Exam-
ple 3.9.6, Theorem 3.9.1 applies to each distributive symmetric monoidal category.
In particular, it applies to

● symmetric monoidal closed categories with finite coproducts by Exam-
ple 2.3.3;
● the category of modules over a commutative ring by Example 2.3.4; and
● distributive categories by Example 2.3.5. ◇

Example 3.9.8 (Bipermutative Categories). Right and left bipermutative categor-
ies in Definitions 2.5.2 and 2.5.11 are tight symmetric bimonoidal categories by
Propositions 2.5.7 and 2.5.16, respectively. By Example 3.9.6, Theorem 3.9.1 ap-
plies to each right, respectively left, bipermutative category. ◇
Definition 3.9.9. A (symmetric) bimonoidal category C is called flat if each iter-
ated sum and product of a component of δl or δr with a finite number of identity
morphisms is a monomorphism. ◇
Example 3.9.10. Tight (symmetric) bimonoidal categories—that is, those with δl

and δr natural isomorphisms—are flat. In particular, all the symmetric bimonoi-
dal categories in Sections 2.3 through 2.6 are flat. Suppose C is a flat symmetric
bimonoidal category. Then the morphisms in (3.9.5) and the values of δ-prime
edges are monomorphisms. Therefore, Theorem 3.9.1 applies to C. ◇
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Example 3.9.11. Suppose x, y, z ∈ X are distinct elements, and that the value of
each δ-prime edge is a monomorphism in C. Then the two paths in Example 3.1.11
have the same value in C by Theorem 3.9.1 because the domain x(y ⊕ z)⊕ 0X is
regular, as we mentioned in Example 3.1.31. ◇
Example 3.9.12. The proof of Theorem 3.9.1 will be reused in Section 4.4 to prove
the second coherence theorem for symmetric bimonoidal categories. ◇
Example 3.9.13. Theorem 3.9.1 will be applied many times in Chapter 5 in the con-
struction of a right bipermutative category that is equivalent in a suitable sense
to a given tight symmetric bimonoidal category. See Explanation 5.2.31, Exam-
ple 5.2.32, and Lemmas 5.3.4, 5.3.7, 5.3.8, and 5.4.4. ◇

3.10. Coherence of Bimonoidal Categories

In this section, we discuss the multiplicatively nonsymmetric analogue of the
Coherence Theorem 3.9.1 that applies to bimonoidal categories instead of sym-
metric bimonoidal categories. It is also the bimonoidal analogue of Mac Lane’s
Coherence Theorem 1.3.3. As in the symmetric case, the Bimonoidal Coherence
Theorem 3.10.7 does not require the invertibility of the distributivity morphisms δl

and δr. Instead, it assumes a much weaker monomorphism condition.
The statement and the proof of Theorem 3.10.7 are obtained from those of

Theorem 3.9.1 by
● omitting the multiplicative symmetry ξ⊗ and its inverse and
● using Mac Lane’s Coherence Theorem 1.3.3 instead of Theorem 1.3.8 for

the multiplicative structure (C,⊗).
Below we will state the key definitions in the nonsymmetric context.
Convention 3.10.1. Throughout this section, suppose the triple (X,C, φ) consists
of the following data.

● X is a set of formal variables with two distinguished elements {0X, 1X} as
in Definition 3.1.6.
● C is a bimonoidal category as in Definition 2.1.2, equipped with the graph

structure in Example 3.1.5. In particular, its multiplicative structure

(C,⊗,1, α⊗, λ⊗, ρ⊗)
is a monoidal category, and C satisfies the 22 Laplaza axioms excluding
(2.1.5) and (2.1.19).
● φ ∶ X Ob(C) is a function that satisfies φ(0X) = 0 and φ(1X) = 1. ◇

Definition 3.10.2. Under Convention 3.10.1, define the following.

● In Definition 3.1.6, an elementary edge in Grel(X) is nonsymmetric if it is
not of the form ξ⊗x,y and ξ−⊗x,y for any x, y ∈ Xfr.
● In Definition 3.1.8, a prime edge is nonsymmetric if it only involves non-

symmetric elementary edges.
● The nonsymmetric graph of X, which is denoted by Grns(X), is obtained

from Definition 3.1.9 by restricting to nonsymmetric prime edges. An
edge or a path in Grns(X) is said to be nonsymmetric.
● The notions of

– the graph morphism φ ∶ Grns(X) C,
– the value in C of a path in Grns(X), and
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– commutativity in C
are obtained from those in Definition 3.1.14 by restricting to Grns(X).
● The nonsymmetric strict {⊕,⊗}-algebra Xns is obtained from Xst in Defini-

tion 3.1.23 by omitting the relation

x⊗ y = y⊗ x for x, y ∈ Xfr.

● The quotient map

Xfr Xnsnsupp

is called the nonsymmetric support.
● An element x ∈ Xfr is nonsymmetric regular if it satisfies the conditions (i)

and (iii) in Definition 3.1.25, but with
– the nonsymmetric support instead of the support and
– Xns instead of Xst. ◇

Lemma 3.10.3. The following statements hold.

(1) If two elements in Xfr have the same nonsymmetric support, then one of them is
nonsymmetric regular if and only if the other one is nonsymmetric regular.

(2) If x y is a nonsymmetric path in Grns(X), then

nsupp(x) = nsupp(y).

Proof. Reuse the proof for the symmetric case in Lemma 3.1.29 by replacing sup-
port, regularity, paths, and prime edges by their nonsymmetric counterparts in
Definition 3.10.2. □

Example 3.10.4.
● A path in Gr(X) that is

– a 0X-reduction as in Definition 3.3.4,
– a δ-reduction as in Definition 3.6.2, or
– a 1X-reduction as in Definition 3.8.1,

is nonsymmetric. In other words, it belongs to Grns(X).
● Each path in Examples 3.1.11, 3.1.12, and 3.6.7 and Motivation 3.3.9 is

nonsymmetric.
● Each path in (3.6.14)–(3.6.17), (3.6.19), and (3.6.20) is nonsymmetric.

On the other hand, each of the two paths in Example 3.1.22 is not nonsymmetric
because it involves ξ⊗. ◇
Example 3.10.5. Regularity implies nonsymmetric regularity. Indeed, the support
supp ∶ Xfr Xst in (3.1.24) factors into two projection maps

Xfr Xns Xst.
nsupp

Therefore, if an element w ∈ Xfr is regular as in Definition 3.1.25, then it is also
nonsymmetric regular as in Definition 3.10.2. The next example demonstrates the
difference between regularity and its nonsymmetric analogue. ◇
Example 3.10.6. Nonsymmetric regularity does not imply regularity. For example,
suppose x, y ∈ X ∖ {0X, 1X} are distinct elements, and

z = (x⊗ y)⊕ (y⊗ x) ∈ Xfr.
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Then the equality
supp(x⊗ y) = supp(y⊗ x) ∈ Xst

implies that z is not regular as in Definition 3.1.25. However, since

nsupp(x⊗ y) /= nsupp(y⊗ x) ∈ Xns,

z ∈ Xfr is nonsymmetric regular in the sense of Definition 3.10.2. ◇
For the statement of the following coherence theorem for bimonoidal categor-

ies, recall from Definition 3.6.2 that a δ-prime edge is a prime edge in Gr(X) that
involves either δl or δr. Since a prime edge has at most one nonidentity elemen-
tary edge, a δ-prime edge is nonsymmetric in the sense of Definition 3.10.2.
Theorem 3.10.7 (Bimonoidal Coherence). Under Convention 3.10.1, suppose that the
value of each δ-prime edge is a monomorphism. If

a b
P1

P2

are two paths in Grns(X) with a ∈ Xfr nonsymmetric regular, then the values of P1 and P2
in C are equal.

Proof. The proof of the current nonsymmetric case is obtained from the proofs of
Theorem 3.9.1 and the preliminary results in the earlier sections of this chapter by
the following procedure:

● We systematically remove all ξ±⊗ in Section 3.1–Section 3.9.
● We use the notions in Definition 3.10.2 in place of their counterparts in

Section 3.1.
● We use Mac Lane’s Coherence Theorem 1.3.3 instead of the Symmetric

Coherence Theorem 1.3.8 for the monoidal category (C,⊗) in
– Lemmas 3.4.11 and 3.4.12 and Proposition 3.8.14 and
– the second bullet item in the last paragraph in the proof of Theo-

rem 3.9.1.
In particular, in the diagram (3.9.3), each path P′′i ∶ c b consists of identities
and α±⊗, so it only moves multiplicative brackets within each monomial in c. This
is the reason why condition (ii) in Definition 3.1.25 is not included in the definition
of nonsymmetric regularity. □

Example 3.10.8. Recall from Definition 3.9.9 that a bimonoidal category C is flat
if each iterated sum and product of a component of δl or δr with a finite number
of identity morphisms is a monomorphism. Tight bimonoidal categories—that is,
those with δl and δr natural isomorphisms—are flat. If C is flat, then the value of
each δ-prime edge is a monomorphism, so Theorem 3.10.7 applies to C. ◇
Example 3.10.9 (Sheet Diagrams). We mentioned in Note 2.7.5 that sheet diagrams
for tight bimonoidal categories are discussed in [CDH∞]. Just as string diagrams
for monoidal categories [JS91a] use Mac Lane’s Coherence Theorem 1.3.3, sheet
diagrams in [CDH∞] use the Bimonoidal Coherence Theorem 3.10.7. In partic-
ular, regularity in [CDH∞, Def. 13] and the coherence theorem [CDH∞, Th. 4]
may be replaced by, respectively, nonsymmetric regularity in Definition 3.10.2 and
Theorem 3.10.7. See Note 7.9.2 for the use of strictification in [CDH∞]. ◇
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3.11. Notes

As we mentioned in the introduction of this chapter, the Coherence Theo-
rem 3.9.1 for symmetric bimonoidal categories is due to Laplaza [Lap72a, Propo-
sition 10], and the proof presented in this chapter follows the general outline of
Laplaza’s original proof. Here we point out some of the main differences between
Laplaza’s proof and this chapter, and explain how some inaccuracies in Laplaza’s
proof are fixed. In Note 3.11.7, we briefly discuss a possible 2-monad approach.

3.11.1 (Terminology and Notation). The table below shows the correspondence of
terminology and notation between this chapter and [Lap72a].

Definition Concept Laplaza [Lap72a]

3.1.6 0X, 1X, Xfr, Grel(X) n, u, A, G

3.1.7 Efrel(X) H
3.1.9 Gr(X) T
3.1.23 Xst A∗

3.1.6 elementary edge
3.1.9 path in Gr(X) ○
3.3.4 0X-reduction reduction
3.6.2 δ-reduction rappel
3.8.1 1X-reduction normalization

Moreover, the concept of a graph in Definition 3.1.4 is not explicitly defined in
[Lap72a]. ◇
3.11.2 (Level of Detail). Laplaza’s original proof is given partly in outline form,
and some of the cases and proofs are omitted entirely. In this chapter, we provided
all the detail and explained all the cases in full. For example:

● Section 3.5 and the main result Proposition 3.5.32, with about 15 pages to-
tal, correspond to [Lap72a, Prop. 5], which is condensed to about 2 pages
there. Some cases, such as the one in Lemma 3.5.11, are not explicitly
mentioned there.
● Lemma 3.6.12 corresponds to [Lap72a, Prop. 6], where the initial case of

the induction with norm(a) = 3 and some cases in the induction step are
not explicitly mentioned.
● The proofs of the assertions in Section 3.8 are omitted in [Lap72a]. ◇

In this chapter, we corrected a few inaccurate statements in [Lap72a]. These
are discussed in Notes 3.11.3 through 3.11.6 below.

3.11.3 (Zero-Reduction of Paths). In the proof of [Lap72a, Prop. 5, page 50, last
paragraph], it is stated that, in our terminology,

if P ∶ a b is a 0X-free path with a ∈ Xfr 0X-reduced, then
each vertex in P is 0X-reduced.

This statement is only partially correct because it does not account for the case
a = 0X, which is 0X-reduced. For example, the elementary edge

0X 1X ⊗ 0X
λ−⊗0X
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is a 0X-free path, since it does not involve λ±⊕, ρ±⊕, λ± ●, and ρ± ●. However, the
codomain 1X ⊗ 0X is not 0X-reduced. Example 3.4.10 has another example of a 0X-
free path whose vertices other than the domain are not 0X-reduced.

These nontrivial cases involving 0X-free paths with domain 0X must be taken
into account in the proofs of Propositions 3.5.32 and 3.5.33. An explicit character-
ization of 0X-free paths with domain 0X is given in Lemma 3.4.9(2). Subsequently,
Lemmas 3.4.11 and 3.4.12 deal with the relevant cases, which are used in the proofs
of Proposition 3.5.33 and Lemma 3.4.14, respectively. ◇
3.11.4 (Size and Rank). Just before [Lap72a, Prop. 6], it is stated that, in our termi-
nology, for an element a ∈ Xfr the following are equivalent.

(i) a is a polynomial.
(ii) The identity 1a is a δ-reduction of a.

(iii) rank(a) = size(a).
This is only partially correct. While (i) and (ii) are equivalent by Lemma 3.6.5,
(iii) is strictly stronger than (i) and (ii). Indeed, by Proposition 3.2.15, if rank(a) =
size(a), then a is a special kind of polynomial in which each monomial is either an
element in X or a product of two elements in X. On the other hand, for elements
x, y, z ∈ X, the monomial

a = (xy)z ∈ Xfr

has rank(a) = 6 and size(a) = 8. In other words, (iii) implies (i), but (i) does not
imply (iii). ◇
3.11.5 (Zero and Delta Reduction of Paths). The proof of [Lap72a, Prop. 7], which
corresponds to our Proposition 3.7.19, requires the following corrections.

(1) The incorrect identification of (ii) and (iii) discussed in Note 3.11.4 implies
that the proof of [Lap72a, Prop. 7] should have contained the case in
Lemma 3.7.9, which in turn uses Lemmas 3.7.6 and 3.7.8. As we explained
with the monomial a = (xy)z, even if size(a) > rank(a), the identity 1a
may still be a δ-reduction of a. In this case, there are no δ-prime edges
with domain a. The induction diagram in [Lap72a, page 58] relies on
the existence of such a δ-prime edge with domain a, which is denoted by
a a1 there.

(2) In the proof of [Lap72a, Prop. 7], Laplaza first reduced to the case
where the path P is a single prime edge, and then considered three
separate cases, each proved by an induction. However, in the diagrams
in [Lap72a, pages 58-59], the induction steps apply the induction hy-
pothesis for a general path. The correct proof uses Lemmas 3.7.10, 3.7.15,
and 3.7.18, each considering a path with some restrictions on its prime
edges. The induction diagrams are (3.7.13), (3.7.14), and (3.7.16). ◇

3.11.6 (Monomorphisms in Theorem 3.9.1). The statement of [Lap72a, Prop. 10],
which corresponds to Theorem 3.9.1, does not include the hypothesis that the
value of each δ-prime edge is a monomorphism in C. However, this condition is
actually used implicitly in the first sentence of the second paragraph in the proof
of [Lap72a, Prop. 10]. In the proof of Theorem 3.9.1, this hypothesis is used in the
reduction step in (3.9.2). This point was elaborated in Explanation 3.9.4(1). ◇
3.11.7 (2-Monads). For symmetric bimonoidal categories with δl and δr natural
isomorphisms (not just monomorphisms), that is, tight symmetric bimonoidal cat-
egories, we mentioned in Example 3.9.6 that Theorem 3.9.1 applies. This special
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case of Theorem 3.9.1 is also claimed to follow from the 2-monad coherence result
in [Kel74, pages 371–373]. This 2-monad approach has the advantage of being
more conceptual in the sense that it is part of a more general 2-monad coherence
result. On the other hand, there are additional issues to take into account.

First, this 2-monad approach relies on a substantial body of 2-category theory,
including [Kel74], a number of papers in its references, and the references in those
papers. Some basic 2-dimensional category theory is discussed at an elementary
level in the book [JY21]. Coherence theory of 2-monad algebras goes beyond that
book, and a systematic and highly detailed treatment comparable to that book
does not exist.

Furthermore, to show that the results in [Kel74] are applicable to tight sym-
metric bimonoidal categories is itself a coherence theorem that requires a careful
proof. Among other things, one has to (i) construct the relevant 2-monad and (ii)
show that its pseudo algebras are precisely tight symmetric bimonoidal categories.
Detailed proofs of these statements would be long and involved. An example of
such a detailed proof is in [JY21, Ch. 9], where the authors constructed a 2-monad
whose pseudo algebras are precisely cloven fibrations.

There is also a set-theoretic issue. In Theorem 3.9.1, there is no restriction on
the size of the underlying category C, as long as it is a category. On the other
hand, the 2-monad approach would involve the category Cat of all small categor-
ies, thereby restricting C to a small category. One may deal with this issue by
assuming Grothendieck’s Axiom of Universes, as in [JY21, Section 1.1]. Neverthe-
less, this is an extra set-theoretic axiom to deal with a nontrivial issue. ◇





CHAPTER 4

Coherence of Symmetric Bimonoidal Categories II

This chapter contains the second coherence theorem for symmetric bimonoi-
dal categories, which is also due to Laplaza [Lap72b]. As in Theorem 3.9.1, the
main Coherence Theorem 4.4.3 in this chapter states that some formal diagrams
commute in symmetric bimonoidal categories that satisfy a monomorphism con-
dition. In Theorem 3.9.1, the regularity condition is imposed on the common do-
main of the two paths. In Theorem 4.4.3, the regularity hypothesis is replaced by
an assumption about the paths themselves. Roughly speaking, this new hypothe-
sis says that the two paths permute the formal variables involved in the same way.
Theorem 4.5.8 is the multiplicatively nonsymmetric analogue of Theorem 4.4.3 for
bimonoidal categories. Moreover, Theorem II.5.4.4 is a braided version of this co-
herence result. For open questions related to this chapter, see Question III.A.5.6.

Organization. In Section 4.1, we explain the intuition and motivate the con-
structions and proofs in later sections.

The new hypothesis that replaces regularity involves a certain sequence of
permutations, called the distortion of a path. This notion is defined in two stages.
In Section 4.2, we define the distortion category D whose morphisms encode the
sequences of permutations. In Theorem 4.2.29, we carefully prove that the distor-
tion category is a left bipermutative category in the sense of Definition 2.5.11. By
Proposition 2.5.16, the distortion category is a tight symmetric bimonoidal cate-
gory. The distortion category extends the left bipermutative category Σ in Defini-
tion 2.4.1. Parts of the proof of Proposition 2.4.8 are reused in the proof of Theo-
rem 4.2.29.

In Section 4.3, we associate to each path in Gr(X) in Definition 3.1.9 a mor-
phism in the distortion category. By definition this morphism is the distortion of
the path; see Definition 4.3.1. The distortion is the value of a path in the sense of
(3.1.18), applied to the distortion category. The rest of this section contains obser-
vations and examples that illustrate the concept of distortion.

In Section 4.4, we prove the Coherence Theorem 4.4.3. This proof reuses much
of the proof of Theorem 3.9.1, in particular its five reduction steps without the
regularity condition. In the proof of Theorem 3.9.1, the last part after the five
reduction steps was dealt with using the regularity assumption. In the proof of
Theorem 4.4.3, the last part after the reduction steps is dealt with using the distor-
tion assumption on the paths; see Lemma 4.4.1. This section ends with examples
where Theorem 4.4.3 may be applied.

In Section 4.5, we discuss the multiplicatively nonsymmetric version of Theo-
rem 4.4.3. We first define the multiplicatively nonsymmetric analogue of the dis-
tortion category, which is called the additive distortion category and is denoted by

I.139
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Dad. Using Dad, we define the additive distortion of a nonsymmetric path in Defi-
nition 3.10.2. The main Coherence Theorem 4.5.8 of this section states that, if two
parallel nonsymmetric paths have the same additive distortion, then they have the
same value in the bimonoidal category under consideration. Its proof is obtained
from that of Theorem 4.4.3 by removing ξ±⊗ and using Theorem 1.3.3 instead of
Theorem 1.3.8 for the multiplicative structure.

Section 4.6 provides a conceptual description of the distortion category and
the additive distortion category as Grothendieck constructions over the finite or-
dinal category Σ. This observation is a repackaging of the definitions of D and Dad

that provides a better perspective about the relationship between D, Dad, and Σ.
The braided version for the braided distortion category is Proposition II.5.5.3.

Although we partly follow the outline of Laplaza’s original proof in Theo-
rem 4.4.3, there are some significant differences between this chapter and Laplaza’s
original proof. These issues are discussed in Section 4.7. In particular, we correct
some inaccuracies in Laplaza’s original proof; see Notes 4.7.3 and 4.7.4.

Reading Guide. As a possible alternative to reading this chapter linearly, we
offer the following suggestion.

● First read Section 4.1, which motivates the distortion category, the distor-
tion of a path, and their roles in the proof of Theorem 4.4.3.
● In Section 4.2, read Definitions 4.2.1, 4.2.7, 4.2.14, and 4.2.23, the expla-

nation after them, and the statement of Theorem 4.2.29. Together they
define the distortion category D. Save the proofs for a second reading.
● In Section 4.3, first read Definition 4.3.1, which defines the distortion of

a path. Then read Lemmas 4.3.5 and 4.3.6, which describe the images
of polynomials in the distortion category, and Examples 4.3.7 and 4.3.8.
Save the rest of this section for a second reading.
● In Section 4.4, first read Theorem 4.4.3, whose proof is only about half a

page long. Then read Lemma 4.4.1, which is the key step where distortion
replaces regularity.
● With a good grasp of the structure of the proof of Theorem 4.4.3, go back

and read the proofs in Section 4.2, which mainly consist of computation
involving permutations, and the second half of Section 4.3 starting with
Convention 4.3.9.

As in Chapter 3, we divided the proof of Theorem 4.4.3 into a number of lemmas
to clarify the overall structure of the proof and to make jumping forward and back-
ward easier. Students are encouraged to regard the detailed proofs in Section 4.2
as exercises with full solutions.

Detail. In addition to proving Theorem 4.4.3, the detailed proofs in this chap-
ter have the following additional purposes.

● As in Chapter 3, Laplaza’s original proof of Theorem 4.4.3 contains some
inaccuracies that have never been made explicit before. To pinpoint these
subtle issues and discuss the corrections, it is necessary to dive into the
detail. Section 4.7 contains more detailed discussion of the differences be-
tween this chapter and Laplaza’s original proof and necessary corrections
for the latter.
● The proof of Baez’s Conjecture (Theorem 7.8.1) uses Theorem 4.4.3 a num-

ber of times.
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● The proof of the Coherence Theorem II.5.4.4 of braided bimonoidal cat-
egories uses modified versions of the proofs in this chapter. A detailed
treatment here will allow us to be both precise and concise at the same
time in the braided case.

Concepts in Chapter 3 are also used in this chapter. Before Section 4.5, Con-
vention 3.3.1 is in effect. In particular, C is a symmetric bimonoidal category, and
X is a set with two distinguished elements 0X and 1X, with φ ∶ Gr(X) C the
graph morphism in Definition 3.1.14.

4.1. Motivation

In this section, we motivate
(i) the distortion category to be defined in Section 4.2,

(ii) the distortion of a path to be defined in Section 4.3, and
(iii) the proof of Theorem 4.4.3 in Section 4.4.

The distortion category is a crucial component in the formulation and proof of
Theorem 4.4.3, the main coherence result of this chapter.

The Coherence Theorem 3.9.1 says that two parallel paths in Gr(X) whose
domain is regular have the same value in the symmetric bimonoidal category C,
in which the values of δ-prime edges are assumed to be monomorphisms. The
assumption is imposed on the domain and not on the two paths. The regularity
assumption excludes domains such as x ⊕ x and x ⊗ x, which are not regular, for
any x ∈ X. However, there should be some coherence properties even for parallel
paths whose domains are not regular. For example, the composite

x⊗ x x⊗ x x⊗ x
ξ⊗x,x ξ⊗x,x

is equal to 1x⊗x. We seek an alternative coherence result that imposes a suitable
condition on the paths and not on the domain.

The Coherence Theorem 4.4.3 is a variant of Theorem 3.9.1 that replaces the
regularity assumption on the domain with an assumption about the two paths in
question. As we pointed out in Explanation 3.9.4 (2), even without the regular-
ity assumption, the diagrams (3.9.3) still exist along with condition (1)(i) in that
proof for each vertex in each path Pi. The regularity assumption is used to obtain
conditions (1)(ii) and (1)(iii) there. These conditions are used to conclude that the
component paths P′1 and P′2 have the same value in C, and similarly for P′′1 and P′′2 .

An alternative to regularity should be a concept such that the following state-
ments hold.

(1) The reduction steps, without the regularity condition, leading up to the
diagrams (3.9.3) are still valid.

(2) From the diagram (3.9.3), the new assumption on the paths P1 and P2
implies that they have the same value in C.

In the diagram (3.9.3), for either path P1 = (P′′1 , P′1) or P2 = (P′′2 , P′2), the following
statements hold.

● The elements a, b, and ci are polynomials as in Definition 3.6.3, with each
monomial either equal to 1X or containing no 0X and 1X.
● The first path P′i only moves additive brackets and permutes the set of

monomials.
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● The second path P′′i only moves multiplicative brackets and permutes the
factors within each monomial.

Assuming step (1) above is possible, to achieve step (2), we would want the paths
P1 and P2 to

(i) permute the set of monomials in the same way and
(ii) permute the factors in each monomial in the same way.

Suppose

a = a1 ⊕⋯⊕ am ∈ Xfr

is a polynomial with some additive bracketing and with m ≥ 1 monomials, and
each monomial

aj = aj
1 ⊗⋯⊗ aj

rj
∈ Xfr

for 1 ≤ j ≤ m has some multiplicative bracketing and rj ≥ 1 factors in X.

● To record the number of monomials in a and the number of factors in
each monomial, we use the finite sequence of nonnegative integers

r = (r1, . . . , rm).

● To achieve (i), we need to associate to each path Pi a permutation

σi ∈ Σm such that σ1 = σ2.

Here Σm denotes the symmetric group on m letters as in Definition 2.4.1.
The permutation σi permutes the m monomials a1, . . . , am in a, ignoring
its additive bracketing.
● To achieve (ii), we need to associate to each path Pi a permutation

τ
j
i ∈ Σrj such that τ

j
1 = τ

j
2

for each 1 ≤ j ≤ m. The permutation τ
j
i permutes the rj factors in the

monomial aj, ignoring its multiplicative bracketing.

Therefore:

● To each object a ∈ Xfr, we want to associate a finite sequence r of inte-
gers that, if a is a polynomial, records the number of monomials and the
number of factors in each monomial in a.
● To each path P ∶ a b in Gr(X), we want to associate a finite sequence

of permutations

(σ; τ1, . . . , τm)
that, if a and b are polynomials with the same number of monomials,
records

– how P permutes the monomials in a to those in b via σ and
– how P permutes the factors in each monomial in a to those in b via

the τ j.

This discussion suggests a category with

● finite sequences of nonnegative integers r = (r1, . . . , rm) as objects and
● finite sequences of permutations (σ; τ1, . . . , τm) as morphisms.



4.2. THE DISTORTION CATEGORY I.143

Furthermore, this should be a symmetric bimonoidal category whose sum ⊕ and
product ⊗ correspond to those in Xfr. This is the distortion category D to be de-
fined in Section 4.2 below. In Section 2.4, we already constructed a symmetric bi-
monoidal category Σ that corresponds to m and σ ∈ Σm above. By Definition 2.4.1
and Proposition 2.4.8, Σ is a left bipermutative category as in Definition 2.5.11.
In particular, its structure morphisms α⊕, λ⊕, ρ⊕, α⊗, λ⊗, ρ⊗, ξ⊗−,0, λ ●, ρ ●, and δl

are identities. We will show that the distortion category is a left bipermutative
category that extends Σ in Theorem 4.2.29.

The Coherence Theorem 4.4.3 states that if the paths P1 and P2 have the same
value in the distortion category, then they have the same value in the symmetric
bimonoidal category C, in which the value of each δ-prime edge is a monomor-
phism. The proof is a precise version of the discussion above involving steps (1)
and (2). Step (1) is in the proof of Theorem 4.4.3, and step (2) is in Lemma 4.4.1.

4.2. The Distortion Category

In this section, we construct the distortion category as motivated in Section 4.1,
and observe that it is a left bipermutative category as in Definition 2.5.11. In Sec-
tion 4.3, we will use the distortion category to define the distortion of a path in
Gr(X) in Definition 3.1.9. The notion of the distortion of a path is part of the state-
ment of the Coherence Theorem 4.4.3. Here is an outline of this section.

● The underlying category of the distortion category is defined in Defini-
tion 4.2.1 and verified in Lemma 4.2.5.
● The additive structure of the distortion category is defined in Defini-

tion 4.2.7 and verified in Lemma 4.2.12.
● The multiplicative structure of the distortion category is defined in Defi-

nition 4.2.14 and verified in Lemma 4.2.19.
● The rest of the left bipermutative category structure (λ ●, ρ ●, δl , δr) for the

distortion category is given in Definition 4.2.23 and shown to be well
defined in Lemma 4.2.25.
● Theorem 4.2.29 proves that the distortion category is a left bipermutative

category.

The Underlying Category. First we define the underlying category of the dis-
tortion category. Recall that Σm denotes the symmetric group on m letters. Its
identity permutation is denoted by idm.

Definition 4.2.1. Define the distortion category D as follows.
Objects: An object in D is a finite sequence

r = (r1, . . . , rm)
with m ≥ 0 and with each rj for 1 ≤ j ≤ m a nonnegative integer. We call m
the length of r, which is denoted by ∣r∣. The unique sequence with length
0 is denoted by ∅.

Morphisms: Suppose s = (s1, . . . , sn) is an object in D. With r as above, the mor-
phism set D(r; s) is defined as follows.
● If m /= n, then D(r; s) is empty.
● If m = n, then D(r; s) is the set of finite sequences of permutations

σ = (σ; σ1, . . . , σm) ∈ Σm ×Σr1 ×⋯×Σrm
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such that

(4.2.2) σr = (rσ−1(1), . . . , rσ−1(m)) = s.

The last equality means that

rσ−1(j) = sj for 1 ≤ j ≤ m.

Identities: The identity morphism of an object r as above is the sequence

(4.2.3) 1r = (idm; idr1 , . . . , idrm)
of identity permutations, with 1∅ = (id0; ).

Composition: Suppose given morphisms

r s t
σ τ

in D with σ as above and with

τ = (τ; τ1, . . . , τm) ∈ Σm ×Σr
σ−1(1)

×⋯×Σr
σ−1(m)

.

Their composite

( r t
τσ ) ∈ D(r; t)

is defined as

(4.2.4) τσ = (τσ; τσ(1)σ1, . . . , τσ(m)σm) ∈ Σm ×Σr1 ×⋯×Σrm .

This finishes the definition of the distortion category. ◇
Lemma 4.2.5. The distortion category D in Definition 4.2.1 is a groupoid.

Proof. The unity axiom of a category in Definition 1.1.1 holds because 1r is a se-
quence of identity permutations. For the associativity axiom, suppose σ and τ are
as in Definition 4.2.1, and π ∈ D(t; u) is given by

π = (π; π1, . . . , πm) ∈ Σm ×Σt1 ×⋯×Σtm

with each tj = r(τσ)−1(j). Then

π(τσ) = (πτσ; π(τσ)(1)τσ(1)σ1, . . . , π(τσ)(m)τσ(m)σm)
= (πτσ; πτ(σ(1))τσ(1)σ1, . . . , πτ(σ(m))τσ(m)σm)
= (πτ)σ.

Therefore, D is a category.
To see that D is a groupoid, suppose

σ = (σ; σ1, . . . , σm) ∈ D(r; s)
is a morphism. Then the morphism

σ−1 = (σ−1; (σσ−1(1))
−1, . . . , (σσ−1(m))

−1) ∈ D(s; r)

is the inverse of σ. □

Explanation 4.2.6. Consider the distortion category D.
(1) An object r = (r1, . . . , rm)may be thought of as consisting of m consecutive

intervals, with the jth interval having rj objects.
(2) A morphism σ = (σ; σ1, . . . , σm) ∈ D(r; s) consists of
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● a permutation σ ∈ Σm that permutes the m intervals and leaves the
order within each interval unchanged; and
● for each 1 ≤ j ≤ m, a permutation σj ∈ Σrj that permutes the rj objects

in the jth interval in r.
We think of s as the result of first applying the permutation σj to the
jth interval in r for each 1 ≤ j ≤ m, followed by the permutation σ that
permutes the m resulting intervals.

The identity morphisms and composition are then what one would expect using
the above geometric interpretation of objects and morphisms. ◇

The Additive Structure. Next we define the additive structure in the distor-
tion category. We continue to use the notations in Definition 4.2.1. In the next two
definitions, we reuse some of the structure in the left bipermutative category Σ in
Definition 2.4.1 and Explanation 2.4.7.
Definition 4.2.7. Define the additive structure

(⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
in the distortion category D as follows.
The Sum: The functor

D ×D D⊕

is defined as follows.
Objects: For objects r = (r1, . . . , rm) and r′ = (r′1, . . . , r′k) in D, define the

object

(4.2.8) r⊕ r′ = (r1, . . . , rm, r′1, . . . , r′k)

with length ∣r∣+ ∣r′∣.
Morphisms: For morphisms σ = (σ; σ1, . . . , σm) ∈ D(r; s) and

σ′ = (σ′; σ′1, . . . , σ′k) ∈ Σk ×Σr′1
×⋯×Σr′k

in D(r′; s′)with ∣r′∣ = ∣s′∣ = k, define the morphism

(4.2.9) σ⊕ σ′ = (σ⊕ σ′; σ1, . . . , σm, σ′1, . . . , σ′k) ∈ D(r⊕ r′; s⊕ s′).

Here σ⊕ σ′ ∈ Σm+k is their block sum in (2.4.2).
The Additive Zero: The object 0 is defined as the empty sequence ∅ ∈ D.
Associativity and Unity: The natural transformations α⊕, λ⊕, and ρ⊕, with com-

ponents, respectively,

(r⊕ r′)⊕ r′′ r⊕ (r′ ⊕ r′′)

∅⊕ r r

r⊕∅ r

α⊕r,r′ ,r′′

λ⊕r

ρ⊕r

are defined as the identities.
The Additive Symmetry: The natural transformation ξ⊕ has components

r⊕ r′ r′ ⊕ r
ξ⊕r,r′
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defined as

(4.2.10) ξ⊕r,r′ = (ξ
⊕
m,k; idr1 , . . . , idrm , idr′1

, . . . , idr′k
)

with ξ⊕m,k ∈ Σm+k the block permutation defined in (2.4.3).

This finishes the definition of (⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) in D. ◇
Explanation 4.2.11. We continue Explanation 4.2.6.

(1) The object r⊕ r′ in (4.2.8) is the concatenation of the m intervals in r with
the k intervals in r′.

(2) Consider the morphism σ⊕ σ′ in (4.2.9).
● The block sum σ⊕ σ′ permutes

– the m intervals in r via σ and
– the k intervals in r′ via σ′.

● The permutations σj for 1 ≤ j ≤ m and σ′l for 1 ≤ l ≤ k permute,
respectively,

– the rj objects in the jth interval in r and
– the r′l objects in the lth interval in r′.

Starting with r⊕ r′, applying all the permutations σj and σ′l , followed by
the block sum σ⊕ σ′, the result is s⊕ s′.

(3) Regarding each of r and r′ as a single block in r ⊕ r′, the additive sym-
metry ξ⊕r,r′ in (4.2.10) swaps these two blocks and leaves the order in each
block unchanged. ◇

Recall from Definitions 1.2.1 and 1.2.18 that a permutative category means a
symmetric strict monoidal category.
Lemma 4.2.12. With the additive structure in Definition 4.2.7, D is a permutative cate-
gory.

Proof. We already observed in Lemma 4.2.5 that D is a groupoid. To show that
⊕ is a functor, first observe that the sum in (4.2.9) of two identity morphisms as
in (4.2.3) is another identity morphism because the block sum preserves identity
morphisms.

The sum in (4.2.9) preserves composition as in (4.2.4) because for morphisms

τ = (τ; τ1, . . . , τm) ∈ D(s; t) and

τ′ = (τ′; τ′1, . . . , τ′k) ∈ D(s
′; t′),

there are equalities in D(r⊕ r′; t⊕ t′) as follows.

(τ ⊕ τ′)(σ⊕ σ′)

= (τ ⊕ τ′; τ1, . . . , τm, τ′1, . . . , τ′k)(σ⊕ σ′; σ1, . . . , σm, σ′1, . . . , σ′k)

= ((τ ⊕ τ′)(σ⊕ σ′); τσ(1)σ1, . . . , τσ(m)σm, τ′σ′(1)σ
′
1, . . . , τ′σ′(k)σ

′
k)

= ((τσ)⊕ (τ′σ′); τσ(1)σ1, . . . , τσ(m)σm, τ′σ′(1)σ
′
1, . . . , τ′σ′(k)σ

′
k)

= (τσ; τσ(1)σ1, . . . , τσ(m)σm)⊕ (τ′σ′; τ′σ′(1)σ
′
1, . . . , τ′σ′(k)σ

′
k)

= (τσ)⊕ (τ′σ′)

Therefore, ⊕ ∶ D ×D D is a functor.
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The identity natural transformations α⊕, λ⊕, and ρ⊕ are well defined, with
the last two by the definitions of the empty sequence ∅ and its identity morphism
1∅ = (id0; ). The unity axiom (1.2.2) and the pentagon axiom (1.2.3) are satisfied
because each morphism involved is an identity. Therefore, D is a strict monoidal
category.

The naturality of ξ⊕ in (4.2.10) means the commutativity of the following dia-
gram for morphisms σ ∈ D(r; s) and σ′ ∈ D(r′; s′).

r⊕ r′ r′ ⊕ r

s⊕ s′ s′ ⊕ s

σ⊕σ′

ξ⊕r,r′

σ′⊕σ
ξ⊕s,s′

● The respective first component of the two composites, namely

ξ⊕m,k(σ⊕ σ′) and (σ′ ⊕ σ)ξ⊕m,k ∈ Σm+k,

are both given by the permutation below for 1 ≤ j ≤ m and 1 ≤ l ≤ k.
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

j k + σ(j)

m + l σ′(l)

● In each of the two composites, the remaining components are given by
the permutations

(σ1, . . . , σm, σ′1, . . . , σ′k).

Therefore, ξ⊕ is a natural transformation.
Next we check the symmetric monoidal category axioms for D.
● The symmetry axiom (1.2.20) holds because the block permutation ξ⊕m,k ∈

Σm+k has inverse ξ⊕k,m.
● The unit axiom (1.2.21) holds because ξ⊕r,∅ is the identity morphism 1r.
● The hexagon axiom (1.2.22) is satisfied because, with α⊕ being the iden-

tity, block permutations (2.4.3) satisfy the same hexagon axiom, that is,

(4.2.13) ξ⊕m+k,p = (ξ
⊕
m,p ⊕ idk)(idm ⊕ ξ⊕k,p) ∈ Σm+k+p.

Therefore, D is a permutative category with the additive structure. □

The Multiplicative Structure. Next we define the multiplicative structure in
the distortion category. We continue to reuse the structure in the left bipermutative
category Σ in Definition 2.4.1 and Explanation 2.4.7.

Definition 4.2.14. Define the multiplicative structure

(⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗)

in the distortion category D as follows.
The Product: The functor

D ×D D⊗

is defined as follows.
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Objects: For objects r = (r1, . . . , rm) and r′ = (r′1, . . . , r′k) in D, define the
object

(4.2.15) r⊗ r′ = ({rj + r′1}
m
j=1, . . . ,{rj + r′k}

m
j=1)

with length ∣r∣ ⋅ ∣r′∣. In this object, the (j + (l − 1)m)th entry is rj + r′l
for each 1 ≤ j ≤ m and 1 ≤ l ≤ k.

Morphisms: For morphisms σ ∈ D(r; s) and σ′ ∈ D(r′; s′) as in Defini-
tion 4.2.7, define the morphism

(4.2.16) σ⊗ σ′ = (σ⊗ σ′;{σj ⊕ σ′1}
m
j=1, . . . ,{σj ⊕ σ′k}

m
j=1) ∈ D(r⊗ r′; s⊗ s′)

with
● σ⊗ σ′ ∈ Σmk the permutation defined in (2.4.4) and
● each σj ⊕ σ′l ∈ Σrj+r′l

a block sum (2.4.2).

In (4.2.16), after σ ⊗ σ′, the (j + (l − 1)m)th entry is σj ⊕ σ′l for each
1 ≤ j ≤ m and 1 ≤ l ≤ k.

The Multiplicative Unit: The object 1 is the sequence (0) ∈ D with length 1 and
entry 0.

Associativity and Unity: The natural transformations α⊗, λ⊗, and ρ⊗, with com-
ponents, respectively,

(r⊗ r′)⊗ r′′ r⊗ (r′ ⊗ r′′)

(0)⊗ r r

r⊗ (0) r

α⊗r,r′ ,r′′

λ⊗r

ρ⊗r

are defined as the identities.
The Multiplicative Symmetry: The natural transformation ξ⊗ has components

r⊗ r′ r′ ⊗ r
ξ⊗r,r′

defined as

(4.2.17) ξ⊗r,r′ = (ξ
⊗
m,k;{ξ⊕rj ,r′1

}m
j=1, . . . ,{ξ⊕rj ,r′k

}m
j=1)

with
● ξ⊗m,k ∈ Σmk the permutation defined in (2.4.5) and
● each ξ⊕rj ,r′l

∈ Σrj+r′l
a block permutation (2.4.3).

After ξ⊗m,k, the (j+ (l − 1)m)th entry is ξ⊕rj ,r′l
for each 1 ≤ j ≤ m and 1 ≤ l ≤ k.

This finishes the definition of (⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗) in D. ◇
Explanation 4.2.18. We continue Explanations 4.2.6 and 4.2.11.

(1) The object r⊗ r′ in (4.2.15) is a k ×m matrix, whose rows are indexed by
the k intervals in r′. For each 1 ≤ l ≤ k, the lth row {rj + r′l}

m
j=1 is obtained

from r by concatenating each of its m intervals with the lth interval in r′.
Therefore, for each 1 ≤ j ≤ m, the (l, j)-entry of this matrix is an interval
with rj + r′l objects.

(2) Consider the morphism σ⊗ σ′ ∈ D(r⊗ r′; s⊗ s′) in (4.2.16).
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● The first entry σ⊗ σ′ ∈ Σmk, which is defined in (2.4.4),
– permutes the k rows of the matrix r⊗ r′ via σ′ ∈ Σk and
– permutes the m columns of the matrix via σ ∈ Σm.

● The other entries form a k×m matrix of permutations. Its (l, j)-entry
is the block sum σj ⊕ σ′l ∈ Σrj+r′l

.
Starting with the k ×m matrix r⊗ r′, first applying the block sums σj ⊕ σ′l
to its entries, and then permuting the rows and columns via σ ⊗ σ′, the
resulting k ×m matrix is s⊗ s′.

(3) Consider the multiplicative symmetry ξ⊗r,r′ ∈ D(r⊗ r′; r′ ⊗ r) in (4.2.17).
● The first entry ξ⊗m,k ∈ Σmk, which is defined in (2.4.5), transposes the

k ×m matrix r⊗ r′.
● The other entries form a k×m matrix of permutations. Its (l, j)-entry

is the block permutation ξ⊕rj ,r′l
∈ Σrj+r′l

in (2.4.3).

Starting with the k×m matrix r⊗ r′, first applying the block permutations
ξ⊕rj ,r′l

to its entries, and then taking the transpose ξ⊗m,k, the resulting m × k

matrix is r′ ⊗ r. ◇
Lemma 4.2.19. With the multiplicative structure in Definition 4.2.14,D is a permutative
category.

Proof. We use the notations in Definitions 4.2.1, 4.2.7, and 4.2.14. We already ob-
served in Lemma 4.2.5 that D is a groupoid.

To show that ⊗ is a functor, first observe that the product in (4.2.16) of two
identity morphisms as in (4.2.3) is another identity morphism because

● the block sum preserves identity morphisms and
● idm ⊗ idk = idmk.

The product in (4.2.16) preserves composition as in (4.2.4) because for morphisms

τ = (τ; τ1, . . . , τm) ∈ D(s; t) and

τ′ = (τ′; τ′1, . . . , τ′k) ∈ D(s
′; t′),

there are equalities in D(r⊗ r′; t⊗ t′) as follows.

(τ ⊗ τ′)(σ⊗ σ′)
= (τ ⊗ τ′;{τj ⊕ τ′1}m

j=1, . . . ,{τj ⊕ τ′k}
m
j=1)(σ⊗ σ′;{σj ⊕ σ′1}m

j=1, . . . ,{σj ⊕ σ′k}
m
j=1)

= ((τ ⊗ τ′)(σ⊗ σ′);{(τσ(j) ⊕ τ′σ′(1))(σj ⊕ σ′1)}
m
j=1, . . . ,{(τσ(j) ⊕ τ′σ′(k))(σj ⊕ σ′k)}

m
j=1)

= ((τσ)⊗ (τ′σ′);{τσ(j)σj ⊕ τ′σ′(1)σ
′
1}

m
j=1, . . . ,{τσ(j)σj ⊕ τ′σ′(k)σ

′
k}

m
j=1)

= (τσ; τσ(1)σ1, . . . , τσ(m)σm)⊗ (τ′σ′; τ′σ′(1)σ
′
1, . . . , τ′σ′(k)σ

′
k)

= (τσ)⊗ (τ′σ′)
Therefore, ⊗ ∶ D ×D D is a functor.

To see that α⊗ is well defined, suppose r′′ = (r′′1 , . . . , r′′p ) is an object in D. Then
both (r⊗ r′)⊗ r′′ and r⊗ (r′ ⊗ r′′) are given by the sequence

({rj + r′1 + r′′1 }
m
j=1, . . . ,{rj + r′k + r′′1 }

m
j=1,

. . . ,{rj + r′1 + r′′p}
m
j=1, . . . ,{rj + r′k + r′′p}

m
j=1).

(4.2.20)
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In this sequence, the (j + (l − 1)m + (t − 1)mk)th entry is rj + r′l + r′′t for 1 ≤ j ≤ m,
1 ≤ l ≤ k, and 1 ≤ t ≤ p.

Next suppose
σ′′ = (σ′′; σ′′1 , . . . , σ′′p ) ∈ D(r′′; s′′)

is a morphism. Then there is an equality

(σ⊗ σ′)⊗ σ′′ = σ⊗ (σ′ ⊗ σ′′) ∈ Σmkp

by (2.4.9). So the first entry in (σ⊗σ′)⊗σ′′ is equal to the first entry in σ⊗(σ′⊗σ′′).
For the equality of their remaining entries, we

● reuse (4.2.20) by replacing (+, rj, r′l , r′′t ) with (⊕, σj, σ′l , σ′′t ) for 1 ≤ j ≤ m,
1 ≤ l ≤ k, and 1 ≤ t ≤ p; and
● use the fact that block sums of permutations is strictly associative.

Therefore, we can define α⊗ as the identity.
The identity natural transformations λ⊗ and ρ⊗ are well defined by the defi-

nitions of the sequence 1 = (0) and its identity morphism

1(0) = (id1; id0).
The unity axiom (1.2.2) and the pentagon axiom (1.2.3) are satisfied because each
morphism involved is an identity. Therefore, D is a strict monoidal category with
the multiplicative structure.

The naturality of ξ⊗ in (4.2.17) means the commutativity of the following dia-
gram for morphisms σ ∈ D(r; s) and σ′ ∈ D(r′; s′).

r⊗ r′ r′ ⊗ r

s⊗ s′ s′ ⊗ s

σ⊗σ′

ξ⊗r,r′

σ′⊗σ
ξ⊗s,s′

By (4.2.2), (4.2.16), and (4.2.17), the above diagram involves the following four
morphisms in D.

σ⊗ σ′ = (σ⊗ σ′;{σj ⊕ σ′1}m
j=1, . . . ,{σj ⊕ σ′k}

m
j=1)

σ′ ⊗ σ = (σ′ ⊗ σ;{σ′l ⊕ σ1}k
l=1, . . . ,{σ′l ⊕ σm}k

l=1)

ξ⊗r,r′ = (ξ
⊗
m,k;{ξ⊕rj ,r′1

}m
j=1, . . . ,{ξ⊕rj ,r′k

}m
j=1)

ξ⊗s,s′ = (ξ
⊗
m,k;{ξ⊕r

σ−1(j),r
′

σ′−1(1)
}m

j=1, . . . ,{ξ⊕r
σ−1(j),r

′

σ′−1(k)
}m

j=1)

Using (4.2.4) and interpreting ξ⊗m,k as taking the transpose of a matrix as in Expla-
nation 4.2.18, there are equalities as follows.

ξ⊗s,s′(σ⊗ σ′)

= (ξ⊗m,k(σ⊗ σ′);{ξ⊕rj ,r′1
(σj ⊕ σ′1)}

m
j=1, . . . ,{ξ⊕rj ,r′k

(σj ⊕ σ′k)}
m
j=1)

= ((σ′ ⊗ σ)ξ⊗m,k;{(σ′1 ⊕ σj)ξ⊕rj ,r′1
}m

j=1, . . . ,{(σ′k ⊕ σj)ξ⊕rj ,r′k
}m

j=1)

= (σ′ ⊗ σ)ξ⊗r,r′

Therefore, ξ⊗ is a natural transformation.
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Next we check the symmetric monoidal category axioms for D with the mul-
tiplicative structure.

● The symmetry axiom (1.2.20) holds because
– the permutation ξ⊗m,k ∈ Σmk in (2.4.5) has inverse ξ⊗k,m and
– the block permutation ξ⊕rj ,r′l

∈ Σrj+r′l
in (2.4.3) has inverse ξ⊕r′l ,rj

.

● The unit axiom (1.2.21) holds because ξ⊗r,(0) is the identity morphism 1r.

It remains to prove the hexagon axiom (1.2.22) for D with the multiplicative
structure. Since α⊗ is the identity, the hexagon axiom means the commutativity of
the following diagram for objects r, r′, r′′ ∈ D.

(4.2.21)

r⊗ r′ ⊗ r′′ r⊗ r′′ ⊗ r′

r′′ ⊗ r⊗ r′

1r⊗ξ⊗r′ ,r′′

ξ⊗r⊗r′ ,r′′ ξ⊗r,r′′⊗1r′

To check that this diagram is commutative, we first compute its three morphisms
using (4.2.3), (4.2.16), and (4.2.17) as follows, assuming ∣r∣ = m, ∣r′∣ = k, and ∣r′′∣ = p.

ξ⊗r⊗r′,r′′ = (ξ
⊗
mk,p;{ξ⊕rj+r′1,r′′1

}m
j=1, . . . ,{ξ⊕rj+r′k ,r′′1

}m
j=1, . . . ,

{ξ⊕rj+r′1,r′′p
}m

j=1, . . . ,{ξ⊕rj+r′k ,r′′p
}m

j=1)

1r ⊗ ξ⊗r′,r′′ = (idm; idr1 , . . . , idrm)⊗ (ξ⊗k,p;{ξ⊕r′l ,r′′1 }
k
l=1, . . . ,{ξ⊕r′l ,r′′p }

k
l=1)

= (idm ⊗ ξ⊗k,p;{idrj ⊕ ξ⊕r′1,r′′1
}m

j=1, . . . ,{idrj ⊕ ξ⊕r′k ,r′′1
}m

j=1, . . . ,

{idrj ⊕ ξ⊕r′1,r′′p
}m

j=1, . . . ,{idrj ⊕ ξ⊕r′k ,r′′p
}m

j=1)

ξ⊗r,r′′ ⊗ 1r′ = (ξ⊗m,p;{ξ⊕rj ,r′′1
}m

j=1, . . . ,{ξ⊕rj ,r′′p
}m

j=1)⊗ (idk; idr′1
, . . . , idr′k

)

= (ξ⊗m,p ⊗ idk;{ξ⊕rj ,r′′1
⊕ idr′1

}m
j=1, . . . ,{ξ⊕rj ,r′′p

⊕ idr′1
}m

j=1, . . . ,

{ξ⊕rj ,r′′1
⊕ idr′k

}m
j=1, . . . ,{ξ⊕rj ,r′′p

⊕ idr′k
}m

j=1)

(4.2.22)

Using (4.2.4) and (4.2.22), the composite in the diagram (4.2.21) is as follows.

(ξ⊗r,r′′ ⊗ 1r′)(1r ⊗ ξ⊗r′,r′′)

= ((ξ⊗m,p ⊗ idk)(idm ⊗ ξ⊗k,p);

{(ξ⊕rj ,r′′1
⊕ idr′1

)(idrj ⊕ ξ⊕r′1,r′′1
)}m

j=1, . . . ,{(ξ⊕rj ,r′′1
⊕ idr′k

)(idrj ⊕ ξ⊕r′k ,r′′1
)}m

j=1, . . .

{(ξ⊕rj ,r′′p
⊕ idr′1

)(idrj ⊕ ξ⊕r′1,r′′p
)}m

j=1, . . . ,{(ξ⊕rj ,r′′p
⊕ idr′k

)(idrj ⊕ ξ⊕r′k ,r′′p
)}m

j=1)

The hexagon axiom for

● the permutation ξ⊗mk,p in (2.4.10) and

● the block permutation ξ⊕m+k,p in (4.2.13)
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implies the following equalities for 1 ≤ j ≤ m, 1 ≤ l ≤ k, and 1 ≤ t ≤ p.

ξ⊗mk,p = (ξ
⊗
m,p ⊗ idk)(idm ⊗ ξ⊗k,p)

ξ⊕rj+r′l ,r
′′

t
= (ξ⊕rj ,r′′t

⊕ idr′l
)(idrj ⊕ ξ⊕r′l ,r

′′

t
)

It follows that the composite in the diagram (4.2.21) is equal to ξ⊗r⊗r′,r′′ as computed
in (4.2.22). This proves the hexagon axiom for D. Therefore, D is a permutative
category with the multiplicative structure. □

The Multiplicative Zeros and Distributivity. Next we define the rest of the
left bipermutative category structure for the distortion category. The following
definition and lemma use Definitions 4.2.1, 4.2.7, and 4.2.14.

Definition 4.2.23. Define the natural transformations

(λ ●, ρ
●, δl , δr)

for the distortion category D as follows.

The Multiplicative Zeros: λ ● and ρ ● are the identity natural transformations

0⊗ r 0 r⊗ 0
λ
●
r

= =
ρ
●
r

for objects r ∈ D.
The Left Distributivity: δl is the identity natural transformation

r⊗ (r′ ⊕ r′′) (r⊗ r′)⊕ (r⊗ r′′)
δl

r,r′ ,r′′

=

for objects r, r′, r′′ ∈ D.
The Right Distributivity: δr is the natural transformation with components the

composites

(4.2.24)

(r⊕ r′)⊗ r′′ (r⊗ r′′)⊕ (r′ ⊗ r′′)

r′′ ⊗ (r⊕ r′) (r′′ ⊗ r)⊕ (r′′ ⊗ r′)

δr
r,r′ ,r′′

ξ⊗r⊕r′ ,r′′
δl

r′′ ,r,r′

=

ξ⊗r′′ ,r⊕ξ⊗r′′ ,r′

for objects r, r′, r′′ ∈ D.

This finishes the definition of (λ ●, ρ ●, δl , δr) for D. ◇
Lemma 4.2.25. The natural transformations (λ ●, ρ ●, δl , δr) in Definition 4.2.23 are well
defined.

Proof. Since 0 is the empty sequence ∅ ∈ D, which has length 0, by (4.2.15) both
0⊗ r and r⊗0 are equal to ∅. The naturality of λ ● and ρ ● follows from (4.2.16) and
the fact that the identity morphism 1∅ is (id0; ).
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To check that the left distributivity δl is well defined, first observe that (4.2.8)
and (4.2.15) imply the following equalities.

r⊗ (r′ ⊕ r′′)
= (r1, . . . , rm)⊗ (r′1, . . . , r′k, r′′1 , . . . , r′′p )

= ({rj + r′1}
m
j=1, . . . ,{rj + r′k}

m
j=1,{rj + r′′1 }

m
j=1, . . . ,{rj + r′′p}

m
j=1)

= (r⊗ r′)⊕ (r⊗ r′′)

(4.2.26)

To prove the naturality of δl , consider morphisms σ ∈ D(r; s), σ′ ∈ D(r′; s′),
and σ′′ ∈ D(r′′; s′′). There is an equality of permutations

σ⊗ (σ′ ⊕ σ′′) = (σ⊗ σ′)⊕ (σ⊗ σ′′) ∈ Σm(k+p)

because, by (2.4.2) and (2.4.4), both sides are given by the following bijection for
1 ≤ j ≤ m, 1 ≤ l ≤ k, and 1 ≤ t ≤ p.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j + (l − 1)m σ(j)+ (σ′(l)− 1)m

j + [k + (t − 1)]m σ(j)+ [k + (σ′′(t)− 1)]m

So the first entry in σ⊗ (σ′ ⊕ σ′′) is equal to that in (σ⊗ σ′)⊕ (σ⊗ σ′′). To see that
their remaining entries are also equal, we use

● (4.2.9), (4.2.16), and
● (4.2.26) by replacing (+, rj, r′l , r′′t )with (⊕, σj, σ′l , σ′′t ) for 1 ≤ j ≤ m, 1 ≤ l ≤ k,

and 1 ≤ t ≤ p.

This proves that δl is a well-defined natural transformation.
Finally, the right distributivity δr in (4.2.24) is a well-defined natural transfor-

mation by

● the functoriality of ⊕ in Lemma 4.2.12,
● the fact that ξ⊗ is a natural transformation in Lemma 4.2.19, and
● the fact that δl = Id is a natural transformation.

Therefore, λ ●, ρ ●, δl , and δr in D are all well defined. □

Next we provide an explicit description of the right distributivity morphism
in the distortion category.

Lemma 4.2.27. For objects r, r′, r′′ ∈ D with lengths ∣r∣ = m, ∣r′∣ = k, and ∣r′′∣ = p, the
right distributivity morphism

(r⊕ r′)⊗ r′′ = ({rj + r′′1 }
m
j=1,{r′l + r′′1 }

k
l=1, . . . ,{rj + r′′p}

m
j=1,{r′l + r′′p}

k
l=1)

(r⊗ r′′)⊕ (r′ ⊗ r′′) = ({rj + r′′1 }
m
j=1, . . . ,{rj + r′′p}

m
j=1,{r′l + r′′1 }

k
l=1, . . . ,{r′l + r′′p}

k
l=1)

δr
r,r′ ,r′′

in (4.2.24) is given by

((ξ⊗p,m ⊕ ξ⊗p,k)ξ
⊗
m+k,p;{idrj+r′′1

}m
j=1,{idr′l+r′′1

}k
l=1, . . . ,{idrj+r′′p }

m
j=1,{idr′l+r′′p }

k
l=1).
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Proof. The domain and the codomain of δr
r,r′,r′′ are as stated by (4.2.8) and (4.2.15).

Using (4.2.8), (4.2.9), and (4.2.17), we compute the two vertical morphisms in
(4.2.24) as follows.

ξ⊗r⊕r′,r′′ = (ξ
⊗
m+k,p;{ξ⊕rj ,r′′1

}m
j=1,{ξ⊕r′l ,r′′1 }

k
l=1, . . . ,{ξ⊕rj ,r′′p

}m
j=1,{ξ⊕r′l ,r′′p }

k
l=1)

ξ⊗r′′,r ⊕ ξ⊗r′′,r′ = (ξ⊗p,m ⊕ ξ⊗p,k;{ξ⊕r′′t ,r1
}p

t=1, . . . ,{ξ⊕r′′t ,rm
}p

t=1,{ξ⊕r′′t ,r′1
}p

t=1, . . . ,{ξ⊕r′′t ,r′k
}p

t=1)

The stated formula for δr
r,r′,r′′ now follows from (4.2.4) and the fact that the inverse

of the block permutation ξ⊕u,v in (2.4.3) is ξ⊕v,u. □

Explanation 4.2.28. The permutation

(ξ⊗p,m ⊕ ξ⊗p,k)ξ
⊗
m+k,p ∈ Σ(m+k)p

in δr in Lemma 4.2.27 is given by the following bijection for 1 ≤ j ≤ m, 1 ≤ l ≤ k, and
1 ≤ t ≤ p.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

j + (t − 1)(m + k) j + (t − 1)m

l +m + (t − 1)(m + k) l + (t − 1)k +mp

This permutation rearranges p intervals of m + k objects each to p intervals of m
objects each followed by p intervals of k objects each. Except for a small nota-
tional difference (with n instead of k), this is the bijection in (2.4.6). A geometric
description was given in Explanation 2.4.7. ◇

The Main Result. Recall the notion of a left bipermutative category in Defini-
tion 2.5.11. Proposition 2.5.16 states that each left bipermutative category is a tight
symmetric bimonoidal category. By Proposition 2.4.8 and Example 2.5.17, Σ is a
left bipermutative category. The following result extends that observation to the
distortion category.
Theorem 4.2.29. With the data in Definitions 4.2.7, 4.2.14, and 4.2.23, the distortion
category D is a left bipermutative category.

Proof. By Lemmas 4.2.12 and 4.2.19, both the additive structure and the multi-
plicative structure of D are permutative categories. By Lemma 4.2.25, the natural
transformation δr and the identity natural transformations λ ●, ρ ●, and δl are well
defined.

Next, for an object r ∈ D, both ∅⊗ r and r⊗∅ are equal to ∅. It follows that

ξ⊗r,∅ = (id0; ) = 1∅ ∶ ∅ ∅.

The axiom (2.1.5) holds by the definition of δr in (4.2.24). It remains to check
the axioms (2.1.6) and (2.1.13).

The axiom (2.1.6) states that the following diagram is commutative for objects
r, r′, r′′ ∈ D.

r⊗ (r′ ⊕ r′′) (r⊗ r′)⊕ (r⊗ r′′)

r⊗ (r′′ ⊕ r′) (r⊗ r′′)⊕ (r⊗ r′)

1r⊗ξ⊕r′ ,r′′

δl
r,r′ ,r′′

=

ξ⊕r⊗r′ ,r⊗r′′
δl

r,r′′ ,r′

=



4.3. THE DISTORTION OF A PATH I.155

Using (2.4.3), (4.2.3), (4.2.10), and (4.2.15), the previous diagram is commutative
by the following equalities.

1r ⊗ ξ⊕r′,r′′

= (idm; idr1 , . . . , idrm)⊗ (ξ⊕k,p; idr′1
, . . . , idr′k

, idr′′1
, . . . , idr′′p )

= (idm ⊗ ξ⊕k,p;{idrj ⊕ idr′1
}m

j=1, . . . ,{idrj ⊕ idr′k
}m

j=1,{idrj ⊕ idr′′1
}m

j=1, . . . ,{idrj ⊕ idr′′p }
m
j=1)

= (ξ⊕mk,mp;{idrj+r′1
}m

j=1, . . . ,{idrj+r′k
}m

j=1,{idrj+r′′1
}m

j=1, . . . ,{idrj+r′′p }
m
j=1)

= ξ⊕r⊗r′,r⊗r′′

In the first component, the equality of permutations

idm ⊗ ξ⊕k,p = ξ⊕mk,mp ∈ Σm(k+p)

is the axiom (2.1.6) in Σ. We already checked this in (2.4.11) in the proof of Propo-
sition 2.4.8. Moreover, a geometric description was given in Explanation 2.4.15.

The axiom (2.1.13) states that the following diagram is commutative for objects
a, b, c, d ∈ D.

(4.2.30)

(a⊕ b)⊗ (c⊕ d) a⊗ (c⊕ d)⊕ b⊗ (c⊕ d)

(a⊕ b)⊗ c⊕ (a⊕ b)⊗ d (a⊗ c)⊕ (a⊗ d)⊕ (b⊗ c)⊕ (b⊗ d)

(a⊗ c)⊕ (b⊗ c)⊕ (a⊗ d)⊕ (b⊗ d)

δr
a,b,c⊕d

= δl
a,c,d ⊕ δl

b,c,d

1a⊗c ⊕ ξ⊕a⊗d,b⊗c ⊕ 1b⊗d

δl
a⊕b,c,d =

δr
a,b,c ⊕ δr

a,b,d

By (4.2.3), (4.2.4), (4.2.9), (4.2.10), and Lemma 4.2.27, in each of the two composites
in (4.2.30), each entry after the first one is an identity permutation. Therefore, it
suffices to check the commutativity of the diagram (4.2.30) in the first entry only.
In other words, by Lemma 4.2.27, it suffices to check the equality of permutations

[(ξ⊗p,m ⊕ ξ⊗p,n)ξ⊗m+n,p]⊕ [(ξ⊗q,m ⊕ ξ⊗q,n)ξ⊗m+n,q]
= [idmp ⊕ ξ⊕mq,np ⊕ idnq][(ξ⊗p+q,m ⊕ ξ⊗p+q,n)ξ⊗m+n,p+q]

in Σm+n,p+q if ∣a∣ = m, ∣b∣ = n, ∣c∣ = p, and ∣d∣ = q. This equality is the axiom (2.1.13) in
Σ. We already checked this in (2.4.13) in the proof of Proposition 2.4.8. Moreover,
a geometric description was given in Explanation 2.4.17. □

Corollary 4.2.31. The Coherence Theorem 3.9.1 applies to the distortion category.

Proof. The distortion category is a left bipermutative category, hence in particular
a tight symmetric bimonoidal category, by Theorem 4.2.29 and Proposition 2.5.16.
As explained in Example 3.9.6, Theorem 3.9.1 applies to D. □

4.3. The Distortion of a Path

In this section, we define the graph morphism from Gr(X) in Definition 3.1.9
to the distortion category D that defines the distortion of a path in Gr(X). Since
the distortion category D is a left bipermutative category by Theorem 4.2.29, it is
in particular a tight symmetric bimonoidal category by Proposition 2.5.16. Recall
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that Convention 3.3.1 still stands in this chapter. In particular, we assume that
X is a set with two distinguished elements 0X and 1X as in Definition 3.1.6, and
Xfr is the free {⊕,⊗}-algebra of X in Definition 3.1.2. After the definition of the
distortion of a path in Gr(X), we illustrate it with a series of observations and
examples. An important special case of Corollary 4.2.31 is Corollary 4.3.12. It says
that any two parallel paths in Gr(X) whose common domain is regular have the
same distortion.

The next definition uses the left bipermutative category structure of the dis-
tortion category D in Definitions 4.2.1, 4.2.7, 4.2.14, and 4.2.23.
Definition 4.3.1. Consider the distortion category D.

● Define the function ϑ ∶ X Ob(D) as follows.

(4.3.2) ϑ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1) if x ∈ X ∖ {0X, 1X},
∅ if x = 0X, and
(0) if x = 1X.

● Using the same symbol, define the associated graph morphism

(4.3.3) Gr(X) Dϑ

as in Definition 3.1.14, applied to the function in (4.3.2) and the symmetric
bimonoidal category D.
● For a path P in Gr(X), its value ϑP ∈ D in the sense of (3.1.18) is called the

distortion of P.
This finishes the definition. ◇
Explanation 4.3.4. By Definitions 4.2.7 and 4.2.14, in the distortion category D,
the empty sequence ∅ is the additive zero 0, and the sequence (0) of length 1 is
the multiplicative unit 1. Therefore, Definition 3.1.14 is indeed applicable to the
function ϑ in (4.3.2). Each object a ∈ Xfr is sent by ϑ to an object in D, which is
a finite sequence of nonnegative integers. The distortion of each path in Gr(X) is
a morphism in D as in Definition 4.2.1, which is in particular a nonempty finite
sequence of permutations. ◇

To understand the distortion of a path, first we describe the action of ϑ on
monomials and polynomials. Recall from Definition 3.6.3 that a monomial in Xfr is
either an element in X, or a finite product of at least two elements in X with some
multiplicative bracketing. A polynomial is either a monomial, or a finite sum of at
least two monomials with some additive bracketing.
Lemma 4.3.5. Suppose

a = a1 ⊗⋯⊗ ap ∈ Xfr

for some multiplicative bracketing and some elements aj ∈ Xfr for 1 ≤ j ≤ p with p ≥ 1.
(1) ϑ(a) = ϑ(a1)⊗⋯⊗ ϑ(ap) ∈ D.
(2) If aj = 0X for some 1 ≤ j ≤ p, then

ϑ(a) = ∅ ∈ D.

(3) If aj ∈ X ∖ {0X} for each 1 ≤ j ≤ p, then

ϑ(a) = (n) ∈ D,

where n ≥ 0 is the number of aj’s that belong to X ∖ {0X, 1X}.
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(4) The image of a monomial under ϑ has length either 0 or 1, depending on whether
it contains 0X or not.

Proof. The multiplicative associativity α⊗ in the distortion category D is the iden-
tity by Definition 4.2.14. Therefore, ϑ(a) ∈ D is independent of the choice of a
multiplicative bracketing of a. Assertion (1) follows from the definition (3.1.16) of
the graph morphism ϑ on objects in Xfr.

For assertion (2), by definition ϑ(0X) = ∅. Moreover, r⊗∅ and ∅⊗ r are both
∅ ∈ D for each object r ∈ D. It follows from assertion (1) that ϑ(a) = ∅ if aj = 0X for
some 1 ≤ j ≤ p.

For assertion (3), by definition each

ϑ(aj) = (ϵj) ∈ D with ϵj =
⎧⎪⎪⎨⎪⎪⎩

0 if aj = 1X, and
1 if aj ∈ X ∖ {0X, 1X}.

By assertion (1) and (4.2.15), it follows that ϑ(a) has length 1, and is given by

ϑ(a1)⊗⋯⊗ ϑ(ap) = (ϵ1)⊗⋯⊗ (ϵp)
= (ϵ1 +⋯+ ϵp).

In other words, its only entry is the number of aj’s that belong to X ∖ {0X, 1X}.
Assertion (4) follows from assertions (2) and (3). □

Lemma 4.3.6. Suppose

a = a1 ⊕⋯⊕ am ∈ Xfr

for some additive bracketing and some elements ai ∈ Xfr for 1 ≤ i ≤ m with m ≥ 1. Then:

(1) ϑ(a) = (ϑ(a1), . . . , ϑ(am)) ∈ D.
(2) If ai is a monomial for each 1 ≤ i ≤ m, then ϑ(a) has length k ≥ 0, where k is the

number of ai’s that contain no 0X.

Proof. The additive associativity α⊕ in the distortion category D is the identity by
Definition 4.2.7. Therefore, ϑ(a) ∈ D is independent of the choice of an additive
bracketing of a. Assertion (1) follows from (3.1.16) and (4.2.8). Assertion (2) fol-
lows from assertion (1) and Lemma 4.3.5 (4). □

In the following examples, the symbol ⊗ in Xfr is omitted.

Example 4.3.7. For objects u, v, w, x, y, z ∈ X ∖ {0X, 1X}, consider the polynomial

a = (uv1X)⊕ (1X1X1X)⊕ (w1X x1Xy)⊕ (z0X) ∈ Xfr

with any additive bracketing and any multiplicative bracketing within each mono-
mial. By Lemma 4.3.5 (2) and (3) and Lemma 4.3.6 (1),

ϑ(a) = (ϑ(uv1X), ϑ(1X1X1X), ϑ(w1X x1Xy), ϑ(z0X))
= (2, 0, 3) ∈ D,

which has length 3. ◇
Example 4.3.8. For objects r, s, t ∈ X ∖ {0X, 1X}, consider the polynomial

b = r⊕ (0X0X)⊕ (st) ∈ Xfr
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with any additive bracketing. With a ∈ Xfr the polynomial in Example 4.3.7, there
are the following objects in D.

ϑ(b) = (ϑ(r), ϑ(0X0X), ϑ(st))
= (1, 2)

ϑ(a⊕ b) = (ϑ(a), ϑ(b))
= (2, 0, 3, 1, 2)

ϑ(a⊗ b) = ϑ(a)⊗ ϑ(b)
= (2, 0, 3)⊗ (1, 2)
= (2+ 1, 0+ 1, 3+ 1, 2+ 2, 0+ 2, 3+ 2)
= (3, 1, 4, 4, 2, 5)

The second-to-last equality follows from the definition (4.2.15) of ⊗ in D. ◇
Next we provide examples of distortions of paths.

Convention 4.3.9. For Lemma 4.3.11, below we interpret the 24 diagrams (2.1.5)–
(2.1.28) in Definition 2.1.2 in Gr(X) as follows.

● We interpret each object there as an element in Xfr with A, B, C, D ∈ Xfr,
and with 0 and 1 interpreted as 0X and 1X, respectively.
● We interpret each morphism there as the corresponding prime edge in
Gr(X) as in Definition 3.1.8, with one kind of exceptions as stated next.
● If a morphism is the sum of two nonidentity structure morphisms, then

we interpret it as a path of length 2 in Gr(X) consisting of the two corre-
sponding prime edges.

In this way, we interpret each of those 24 diagrams as consisting of two paths in
Gr(X)with a common domain and a common codomain. ◇
Example 4.3.10. The morphism

AC⊕ BC CA⊕CB
ξ⊗A,C⊕ξ⊗B,C

in (2.1.5) is interpreted as the path

AC⊕ BC CA⊕ BC CA⊕CB
ξ⊗A,C⊕1BC 1CA⊕ξ⊗B,C

of length 2 in Gr(X). Besides (2.1.5), such a sum of two nonidentity structure
morphisms happens in (2.1.10)–(2.1.13), (2.1.15), (2.1.16), (2.1.27), and (2.1.28). ◇
Lemma 4.3.11. Under Convention 4.3.9, in each diagram in (2.1.5)–(2.1.28), the two
paths in Gr(X) have the same distortion.

Proof. The assertion means that if we apply the graph morphism ϑ ∶ Gr(X) D
in (4.3.3) to each of those 24 diagrams, then the result is a commutative diagram in
D. Therefore, the assertion follows from the fact that the distortion category D is a
left bipermutative category, hence in particular a symmetric bimonoidal category,
by Theorem 4.2.29 and Proposition 2.5.16. □

Next is Corollary 4.2.31 for the graph morphism ϑ ∶ Gr(X) D in (4.3.3)
that defines distortion. In other words, it is the special case of the Coherence The-
orem 3.9.1 for the distortion category D and ϑ. The following result is not used
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in the proof of the Coherence Theorem 4.4.3. Recall the notion of regularity from
Definition 3.1.25.
Corollary 4.3.12. If

a b
P1

P2

are two paths in Gr(X) with a ∈ Xfr regular, then P1 and P2 have the same distortion.
The next example is an illustration of Corollary 4.3.12.

Example 4.3.13. Consider
● distinct elements a1, a2, a3, b1, b2 ∈ X;
● polynomials

a = (a1 ⊕ a2)⊕ a3 and b = b1 ⊕ b2 ∈ Xfr;

and
● the following two paths in Gr(X) in which most of the ⊗ symbols are

omitted.

(4.3.14)

a⊗ b = ((a1 ⊕ a2)⊕ a3)(b1 ⊕ b2)

(a1 ⊕ a2)(b1 ⊕ b2)⊕ a3(b1 ⊕ b2)

((a1 ⊕ a2)⊕ a3)b1 ⊕ ((a1 ⊕ a2)⊕ a3)b2

(a1(b1 ⊕ b2)⊕ a2(b1 ⊕ b2))⊕ a3(b1 ⊕ b2)

((a1b1 ⊕ a2b1)⊕ a3b1)⊕ ((a1b2 ⊕ a2b2)⊕ a3b2)

((a1b1 ⊕ a1b2)⊕ (a2b1 ⊕ a2b2))⊕ (a3b1 ⊕ a3b2)

δl
a,b1,b2

Dr

Z

δr
a1⊕a2,a3,b

δr
a1,a2,b ⊕ 1a3(b1⊕b2)

Dl

Consider the diagram (4.3.14).

● The path Dl consists of three δ-prime edges as in Definition 3.6.2, each
containing one instance of δl

ai ,b1,b2
for 1 ≤ i ≤ 3. There are six possibilities

of Dl depending on the order of these δ-prime edges. The path Dl may
be chosen as any one of them.
● The path Dr consists of four δ-prime edges, each containing one instance

of δr
a1⊕a2,a3,bj

or δr
a1,a2,bj

for j = 1, 2. There are five possibilities of Dr de-

pending on the order of these δ-prime edges, where δr
a1⊕a2,a3,bj

must occur

before δr
a1,a2,bj

for each j = 1, 2. The path Dr may be chosen as any one of
them.
● Each prime edge in the path Z contains an instance of α⊕ or ξ⊕. These

prime edges move the additive brackets (for α⊕) and permute the six
monomials (for ξ⊕). There are infinitely many such paths with the pre-
scribed domain and codomain, and Z may be chosen as any one of them.
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Suppose

P1 = (Z, Dr, δl
a,b1,b2

) and

P2 = (Dl , δr
a1,a2,b ⊕ 1a3(b1⊕b2), δr

a1⊕a2,a3,b)
(4.3.15)

are, respectively, the left path and the right path in (4.3.14). Since the elements
a1, a2, a3, b1, and b2 are distinct, the common domain a ⊗ b ∈ Xfr of P1 and P2 is
regular as in Definition 3.1.25. Corollary 4.3.12 implies that the paths P1 and P2
have the same distortion. In other words,

ϑP1 = ϑP2

as morphisms in the distortion category D. ◇
The next two examples are variations of Example 4.3.13.

Example 4.3.16. In Example 4.3.13, suppose instead that the elements

a1, a2, a3, b1, b2 ∈ X ∖ {0X, 1X}
are not all distinct. This implies that a⊗ b ∈ Xfr is not regular, so Corollary 4.3.12
does not apply to the two paths in (4.3.14).

However, Corollary 4.3.12 will apply if we first replace the elements as follows.
● Define the set

X′ = X ∐ {a′1, a′2, a′3, b′1, b′2}.
It is obtained from X by

– adjoining five distinct symbols a′1, a′2, a′3, b′1, and b′2 not in X and
– keeping 0X and 1X as the additive zero and the multiplicative unit.

● Next we extend the function ϑ ∶ X Ob(D) in (4.3.2) to the function
ϑ′ ∶ X′ Ob(D) by defining

ϑ′(a′i) = ϑ′(b′j) = (1) for i = 1, 2, 3 and j = 1, 2.

This is well defined because a′i , b′j ∈ X′ ∖ {0X, 1X}.
● Using the associated graph morphism ϑ′ ∶ Gr(X′) D as in (4.3.3), we

consider the prime version of the diagram (4.3.14) in Gr(X′), in which ai
and bj are replaced by, respectively, a′i and b′j for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2.

The resulting left path P′1 and right path P′2 in Gr(X′) satisfy

(4.3.17) ϑPj = ϑ′P′j ∈ D for j = 1, 2

because ai, bj ∈ X ∖ {0X, 1X} implies

ϑ(ai) = (1) = ϑ′(a′i)
ϑ(bj) = (1) = ϑ′(b′j).

Moreover, the element

a′ ⊗ b′ = ((a′1 ⊕ a′2)⊕ a′3)⊗ (b′1 ⊕ b′2) ∈ X′fr

is regular because it has the same support (3.1.24) as

((a′1b′1 ⊕ a′1b′2)⊕ (a′2b′1 ⊕ a′2b′2))⊕ (a′3b′1 ⊕ a′3b′2) ∈ X′fr,

and the elements in {a′1, a′2, a′3, b′1, b′2} are all distinct. The paths P′1 and P′2 have the
same distortion by Corollary 4.3.12. By (4.3.17), the paths P1 and P2 also have the
same distortion. ◇
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Example 4.3.18. In Example 4.3.13, as an elementary alternative to applying Corol-
lary 4.3.12, in this example we explicitly compute the distortions of the two paths
in the diagram (4.3.14), starting with P1 in (4.3.15). For the following computation,
we assume that a1, a2, a3, b1, and b2 belong to X ∖ {0X, 1X}. Lemmas 4.3.5 and 4.3.6
imply that

ϑ(a⊗ b) = ϑ(a)⊗ ϑ(b)
= (1, 1, 1)⊗ (1, 1)
= (2, 2, 2, 2, 2, 2) ∈ D.

The common codomain of the two paths is also sent by ϑ to this object in D. If
some of the elements in {a1, a2, a3, b1, b2} are 0X or 1X, then the computation below
simplifies accordingly, since ϑ(0X) = ∅ and ϑ(1X) = (0).

The distortion category D is a left bipermutative category by Theorem 4.2.29.
Its only nonidentity structure isomorphisms are δr in (4.2.24), ξ⊕ in (4.2.10), and
ξ⊗ in (4.2.17), the last of which is not involved in the paths P1 and P2. Therefore,
we may ignore the additive bracketing, and each prime edge involving either α⊕

or δl has an identity morphism as its distortion.
Lemma 4.2.27 and Explanation 4.2.28 imply that each of the four δ-prime edges

in Dr has an identity morphism as its distortion, since ξ⊗?,1 and ξ⊗1,? are both iden-
tity permutations. Therefore, the distortion of the path Dr is also an identity mor-
phism.

For the path Z, we simply need to additively permute the middle four mono-
mials to the order in the codomain. We can accomplish this by additively permut-
ing two adjacent monomials at a time. For 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2,

ϑ(aibj) = (1)⊗ (1) = (2) ∈ D,

which has length 1, by Lemma 4.3.5(3). By definition (4.2.10),

ξ⊕(2),(2) = (ξ
⊕
1,1; id2, id2) ∶ (2, 2) (2, 2) ∈ D,

and ξ⊕1,1 ∈ Σ2 is the unique nonidentity permutation. We conclude that the distor-
tion of P1 is the morphism

(4.3.19) ϑP1 = ϑZ = (σ; id2, . . . , id2) ∶ (2, 2, 2, 2, 2, 2) (2, 2, 2, 2, 2, 2) ∈ D
with σ ∈ Σ6 the permutation

(4.3.20) σ = (1 2 3 4 5 6
1 3 5 2 4 6) .

Next, to compute the distortion of the path P2 in (4.3.15), we apply (4.2.4),
Lemma 4.2.27, and Explanation 4.2.28 to its first two prime edges. In the morphism

ϑ(δr
a1,a2,b ⊕ 1a3(b1⊕b2))ϑ(δ

r
a1⊕a2,a3,b)

= (δr
(1),(1),(1,1) ⊕ 1(2,2))δr

(1,1),(1),(1,1) ∈ D,
(4.3.21)

the first entry is the product permutation

(1 2 3 4 5 6
1 3 2 4 5 6)(

1 2 3 4 5 6
1 2 5 3 4 6) ∈ Σ6.

This is equal to σ in (4.3.20). The other entries of the morphism in (4.3.21) are
all identity permutations. So the distortion of the first two prime edges in P2 is
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equal to ϑP1 in (4.3.19). Since the path Dl consists of only prime edges involving
δl , whose distortions are identities, ϑDl is an identity morphism. Therefore, the
distortion of the path P2 is also given by (4.3.19). ◇

4.4. The Second Coherence Theorem

In this section, we prove the main coherence result of this chapter. See Sec-
tion 4.7 for more discussion of this theorem. We remind the reader that Conven-
tion 3.3.1 is still in effect, with C an arbitrary symmetric bimonoidal category. In
particular, for a path in Gr(X):

● Its value in C as in (3.1.18) is defined using the graph morphism φ ∶
Gr(X) C in Definition 3.1.14.
● Its distortion is defined in Definition 4.3.1 using the graph morphism ϑ ∶
Gr(X) D. The distortion of a path is a morphism in the distortion
category D.

Before we prove the Coherence Theorem 4.4.3, we consider the following prelimi-
nary version, in which Definitions 3.6.2, 3.8.1, and 3.8.8 are used.
Lemma 4.4.1. Suppose

a b
P1

P2

are two paths in Gr(X) such that the following two statements hold.
● P1 and P2 have the same distortion and are 1X-free paths.
● a and b contain no 0X and are δ-reduced and 1X-reduced.

Then P1 and P2 have the same value in C.

Proof. We reuse parts of the proof of Theorem 3.9.1. First we observe the following.
● By Lemmas 3.6.5 and 3.8.4, the assumptions on a and b mean that each

of them is a polynomial as in Definition 3.6.3, in which each monomial is
equal to 1X, or contains no 0X and 1X.
● By Explanation 3.8.9, the assumption that each path Pi for i = 1, 2 is a

1X-free path means that each of its prime edges is either an identity, or
involves an instance of

– α±⊕, which moves the additive brackets;
– ξ±⊕, which permutes the set of monomials;
– α±⊗, which moves the multiplicative brackets in a monomial; or
– ξ±⊗, which permutes the factors in a monomial.

Together with the previous remark, it follows that each vertex in each
path Pi is a polynomial in which each monomial is equal to 1X, or contains
no 0X and 1X.

These remarks, and the naturality of α⊕ and ξ⊕ in each symmetric bimonoidal
category, imply that for each i = 1, 2, there is a diagram in Gr(X)

a b

ci

Pi

P′i P′′i
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that is commutative in the sense of Definition 3.1.14, in particular in C andD, such
that the following two statements hold.

● P′i ∶ a ci consists of identities and prime edges involving α±⊕ or
ξ±⊕. In particular, P′i only moves additive brackets and permutes the set
of monomials.
● P′′i ∶ ci b consists of identities and prime edges involving α±⊗ or

ξ±⊗. In particular, P′′i only moves multiplicative brackets and permutes
the factors in each monomial.

Our next objective is to prove the following three equalities.
(i) ϑ(P′1) = ϑ(P′2).

(ii) ϑ(P′′1 ) = ϑ(P′′2 ).
(iii) c1 = c2.
Recall that the only nonidentity structure isomorphisms in the distortion cat-

egory D are δr in (4.2.24), ξ⊕ in (4.2.10), and ξ⊗ in (4.2.17). Suppose that P1 has
distortion

ϑ(P1) = (σ; σ1, . . . , σm) ∈ D(ϑa; ϑb).
The above description of P′1 and P′′1 , (4.2.4), Lemma 4.3.5 (3), and Lemma 4.3.6
imply the following equalities.

ϑ(P′1) = (σ; idr1 , . . . , idrm) ∈ D(ϑa; ϑc1)
ϑ(P′′1 ) = (idm; σσ−1(1), . . . , σσ−1(m)) ∈ D(ϑc1; ϑb)

● m is the common number of monomials in each vertex in P′i and P′′i .
● For each 1 ≤ i ≤ m, ri is the number of factors in X ∖ {1X} in the ith mono-

mial in a ∈ Xfr.
● σ ∈ Σm, and each σi ∈ Σri .

The same analysis also applies to P2. Since ϑ(P1) = ϑ(P2) by assumption, it
follows that there are equalities as follows.

ϑ(P′1) = ϑ(P′2) = (σ; idr1 , . . . , idrm)
ϑ(P′′1 ) = ϑ(P′′2 ) = (idm; σσ−1(1), . . . , σσ−1(m))

(4.4.2)

It follows from (4.2.2) and the first line in (4.4.2) that, ignoring additive brackets,
both P′1 ∶ a c1 and P′2 ∶ a c2 permute the set of monomials in a via
σ ∈ Σm. Moreover, since P′′1 ∶ c1 b and P′′2 ∶ c2 b neither move the
additive brackets nor permute the set of monomials, both c1 and c2 have the same
additive bracketing as b. It follows that

c1 = c2 ∈ Xfr.

Our final objective is to show that P′1 and P′2 have the same value in C, and similarly
for P′′1 and P′′2 .

Write c for the element c1 = c2. Since the paths P′1 and P′2 ∶ a c both per-
mute the set of monomials in a via σ ∈ Σm, the Symmetric Coherence Theorem 1.3.8
for the additive structure

(C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
implies that P′1 and P′2 have the same value in C.

It follows from the second line in (4.4.2) that, ignoring multiplicative brackets,
the paths P′′1 and P′′2 ∶ c b both permute the factors in the ith monomial
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in c via the permutation σσ−1(i) for each 1 ≤ i ≤ m. The Symmetric Coherence
Theorem 1.3.8 for the multiplicative structure

(C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗),
when applied to each monomial in c, implies that the paths P′′1 and P′′2 have the
same value in C. Therefore, P1 = (P′′1 , P′1) and P2 = (P′′2 , P′2) have the same value in
C. □

The following coherence theorem is the main result of this chapter. Recall the
concept of a δ-prime edge in Definition 3.6.2.
Theorem 4.4.3 (Laplaza’s Second Coherence). Suppose C is a symmetric bimonoidal
category in which the value of each δ-prime edge is a monomorphism. If

a b
P1

P2

are two paths in Gr(X) with the same distortion, then their values in C are equal.

Proof. We reuse the reduction steps in the proof of Theorem 3.9.1, along with the
following remarks.

(1) The distortion category D is a groupoid by Lemma 4.2.5. Therefore, if
two diagrams in Gr(X)

a b

a′ b′
Qa

P1

Qb

R1

and
a b

a′ b′
Qa

P2

Qb

R2

are commutative in the sense of Definition 3.1.14, in particular in C and
D, such that P1 and P2 have the same distortion (that is, ϑP1 = ϑP2 in D),
then R1 and R2 have the same distortion.

(2) As discussed in Explanation 3.9.4 (2), the five reduction steps in the proof
of Theorem 3.9.1 can be performed with the regularity condition omitted
everywhere. By the previous remark, if the two paths have the same
distortion to begin with, then after each of these reduction steps, the two
new paths also have the same distortion.

Therefore, by the five reduction steps in the proof of Theorem 3.9.1 with regularity
omitted, we reduce to the setting of Lemma 4.4.1, which finishes the proof. □

Remark 4.4.4. In Theorem 4.4.3, the monomorphism assumption on C is needed
because, as discussed in Explanation 3.9.4 (1), this condition is used in the reduc-
tion step involving the diagram (3.9.2). ◇
Example 4.4.5. As in Examples 3.9.6 through 3.9.8 and 3.9.10, Theorem 4.4.3 is
applicable in the following types of categories.

● Tight symmetric bimonoidal categories, that is, those with δl and δr (2.1.4)
natural isomorphisms, not just natural monomorphisms.
● Distributive symmetric monoidal categories in Definition 2.3.1.
● Symmetric monoidal closed categories with finite coproducts in Exam-

ple 2.3.3.
● The category of modules over a commutative ring in Example 2.3.4.
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● Distributive categories in Example 2.3.5.
● Right and left bipermutative categories in Definitions 2.5.2 and 2.5.11.
● The symmetric bimonoidal groupoid Π in Theorem 2.6.2.
● Flat symmetric bimonoidal categories in Definition 3.9.9. ◇

Example 4.4.6. Consider the diagram in Example 3.1.11 with x, y, z ∈ Xfr arbitrary.
Each of the two paths has the identity morphism as its distortion because α⊕, ρ⊕,
λ⊗, and δl are identities in the distortion category D by Definitions 4.2.7, 4.2.14,
and 4.2.23. By Theorem 4.4.3, these two paths have the same value in C, provided
that the value of each δ-prime edge is a monomorphism. This is an example where
Theorem 4.4.3 applies, but Theorem 3.9.1 does not apply immediately unless the
domain x(y⊕ z)⊕ 0X is regular. ◇

4.5. Coherence of Bimonoidal Categories II

Convention 3.10.1 is in effect throughout this section, so C is a bimonoidal
category as in Definition 2.1.2. In this section, we discuss the multiplicatively non-
symmetric analogue of the Coherence Theorem 4.4.3 that applies to bimonoidal
categories instead of symmetric bimonoidal categories. As in the symmetric case,
the main Coherence Theorem 4.5.8 in this section does not require the invertibil-
ity of the distributivity morphisms δl and δr. Instead, it assumes a much weaker
monomorphism condition.

Motivation 4.5.1. Just as Theorem 4.4.3 is phrased in terms of the distortion cate-
gory D in Definition 4.2.1, Theorem 4.5.8 is phrased in terms of a multiplicatively
nonsymmetric analogue of D, which we call the additive distortion category and
is denoted by Dad. As discussed in Section 4.1, in a morphism σ = (σ; σ1, . . . , σm) in
the distortion category D, we think of each σj ∈ Σrj as permuting the factors in an
rj-fold product

aj
1 ⊗⋯⊗ aj

rj

with some multiplicative bracketing. A bimonoidal category does not have a mul-
tiplicative symmetry, so permutations of ⊗-factors are no longer allowed. There-
fore, in the additive distortion category, each morphism is a permutation that takes
one sequence of nonnegative integers to another; see (4.5.3).

We observe in Lemma 4.5.6 that Dad is a tight bimonoidal category, and it em-
beds into the distortion category D. The additive distortion of a path in the non-
symmetric graph Grns(X) is defined as its value in Dad. Theorem 4.5.8 states that
any two parallel nonsymmetric paths with the same additive distortion also have
the same value in C. ◇

Now we define the multiplicatively nonsymmetric analogue of the distortion
category.

Definition 4.5.2. Define the additive distortion category

(Dad, (⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕), (⊗,1, α⊗, λ⊗, ρ⊗), (λ ●, ρ
●, δl , δr))

as follows.

Objects: An object in Dad is a finite sequence

r = (r1, . . . , rm)
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with m ≥ 0 and with each rj for 1 ≤ j ≤ m a nonnegative integer. We call m
the length of r, which is denoted by ∣r∣. The unique sequence with length
0 is denoted by ∅.

Morphisms: Suppose s = (s1, . . . , sn) is an object in Dad. With r as above, the
morphism set Dad(r; s) consists of permutations

(4.5.3) σ ∈ Σm such that σr = (rσ−1(1), . . . , rσ−1(m)) = s.

Other Structures: Except for δr, the other structures in Dad are defined as in Defi-
nitions 4.2.1, 4.2.7, 4.2.14, and 4.2.23 for objects, and by restricting to the
first entry for morphisms.

Right Distributivity: δr is the natural transformation

(r⊕ r′)⊗ r′′ (r⊗ r′′)⊕ (r′ ⊗ r′′)
δr

r,r′ ,r′′

for objects r, r′, r′′ ∈ Dad, that is given by the permutation

(4.5.4) δr
r,r′,r′′ = (ξ⊗p,m ⊕ ξ⊗p,k)ξ

⊗
m+k,p ∈ Σ(m+k)p

with ∣r∣ = m, ∣r′∣ = k, and ∣r′′∣ = p.
This finishes the definition of the additive distortion category. ◇
Explanation 4.5.5. Consider Definition 4.5.2.

● If Dad(r; s) /= ∅, then ∣r∣ = ∣s∣.
● Identity morphisms and composition are those of the symmetric groups.
● 0 = ∅ and 1 = (0).
● Consider objects r, r′ ∈ Dad.

– r⊕ r′ is their concatenation as in (4.2.8).
– r⊗ r′ is as in (4.2.15). Its (j + (l − 1)m)th entry is rj + r′l for 1 ≤ j ≤ ∣r∣

and 1 ≤ l ≤ ∣r′∣.
● Consider morphisms σ ∈ Dad(r; s) and σ′ ∈ Dad(r′; s′).

– σ⊕ σ′ ∈ Dad(r⊕ r′; s⊕ s′) is their block sum in (2.4.2).
– σ⊗ σ′ ∈ Dad(r⊗ r′; s⊗ s′) is the permutation in (2.4.4).

● The additive symmetry is given by

ξ⊕r,r′ = ξ⊕∣r∣,∣r′∣ ∈ Σ∣r∣+∣r′∣,

which is the block permutation in (2.4.3).
● α⊕, λ⊕, ρ⊕, α⊗, λ⊗, ρ⊗, λ ●, ρ ●, and δl are identity natural transformations.
● The permutation in (4.5.4) that defines δr in Dad is the first entry of the

corresponding component of δr in D. See Lemma 4.2.27 and Explana-
tion 4.2.28.

Note thatDad does not have a multiplicative symmetry. Instead of using (4.2.24) as
in D, we define δr in Dad by directly specifying the permutation (4.5.4). ◇
Lemma 4.5.6. The following statements hold.

(1) The underlying category of Dad is a groupoid.
(2) There is a faithful embedding

Dad Dι

that is defined as follows.
● It is the identity function on objects.
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● It sends each morphism σ as in (4.5.3) to (σ; idr1 , . . . , idrm).
(3) Dad is a tight bimonoidal category as in Definition 2.1.2.

Proof. For assertion (1),Dad is a groupoid because its identity morphisms and com-
position are defined using, respectively, identity permutations and composition of
permutations.

The functoriality of ι ∶ Dad D follows from (4.2.3) and (4.2.4). It is faithful—
that is, injective on morphism sets—by the definition of morphisms in Defini-
tion 4.2.1. This proves assertion (2).

For assertion (3), note that we have the following facts:
● Dad and D have the same objects. Structure morphisms in Dad are those

in D restricted to the first entry. For δr, this follows from Lemma 4.2.27.
● The distortion category D is a left bipermutative category and, therefore,

a tight symmetric bimonoidal category by Proposition 2.5.16 and Theo-
rem 4.2.29. In particular, D is a tight bimonoidal category.

The faithful embedding ι and these facts imply that Dad is also a tight bimonoidal
category. □

Recall from Definition 3.10.2 the nonsymmetric graph Grns(X).
● Its vertex set is the free {⊕,⊗}-algebra Xfr.
● Its edges are nonsymmetric prime edges, that is, prime edges that do not

involve ξ±⊗.
Next we define the multiplicatively nonsymmetric analogue of the distortion of a
path.

Definition 4.5.7. Consider the additive distortion category Dad in Definition 4.5.2.
● Define the function ϑ ∶ X Ob(Dad) = Ob(D) as in (4.3.2), that is,

ϑ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1) if x ∈ X ∖ {0X, 1X},
∅ if x = 0X, and
(0) if x = 1X.

● Using the same symbol, define the associated graph morphism

Grns(X) Dadϑ

as in Definition 3.10.2, applied to the function ϑ and the bimonoidal cate-
gory Dad.
● For a path P in Grns(X), its value ϑP ∈ Dad in the sense of Definition 3.10.2

is called the additive distortion of P.
This finishes the definition. ◇

We are now ready for the second coherence theorem for bimonoidal categor-
ies. It is the multiplicatively nonsymmetric analogue of Theorem 4.4.3.
Theorem 4.5.8 (Bimonoidal Coherence II). Under Convention 3.10.1, suppose that the
value of each δ-prime edge is a monomorphism. If

a b
P1

P2
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are two paths in Grns(X) with the same additive distortion, then their values in C are
equal.

Proof. This proof is obtained from that of Theorem 4.4.3 by the following proce-
dure:

● As in the proof of Theorem 3.10.7, we first adapt the five reduction steps
in the proof of Theorem 3.9.1 by

– removing all instances of ξ±⊗;
– using Definition 3.10.2 instead of their counterparts in Section 3.1;

and
– using Theorem 1.3.3 instead of Theorem 1.3.8 for the monoidal cate-

gory (C,⊗).
After these reduction steps, we are reduced to the setting of Lemma 4.4.1
with

– ξ±⊗ removed and
– Grns(X) and additive distortion instead of, respectively, Gr(X) and

distortion.
● Following the proof of Lemma 4.4.1 with ξ±⊗ removed, in place of (4.4.2),

we have the equalities

ϑ(P′1) = ϑ(P′2) = σ

ϑ(P′′1 ) = ϑ(P′′2 ) = idm.

The nonsymmetric paths P′′1 and P′′2 involve only identities and α±⊗, so
they only move multiplicative brackets within each monomial in c. In
the next-to-the-last paragraph, we use Theorem 1.3.3 instead of Theo-
rem 1.3.8 in (C,⊗).

With these adjustments, the proof of Theorem 4.4.3 is applicable in the current
nonsymmetric setting. □

Example 4.5.9. Theorem 4.5.8 applies to flat, in particular, tight, bimonoidal cate-
gories as in Definition 3.9.9. ◇

4.6. Distortion Categories as Grothendieck Constructions

In this section, we describe the distortion category D and the additive distor-
tion categoryDad as Grothendieck constructions over the finite ordinal category Σ.
We first recall from [JY21, 10.1.1] the relevant construction.

Definition 4.6.1. For a category C and a functor F ∶ Cop Cat, the Grothendieck
construction ∫C F is the category defined as follows.

● An object in ∫C F is a pair (A, X) consisting of objects A ∈ C and X ∈ FA.
● A morphism

( f , p) ∶ (A, X) (B, Y) ∈ ∫
C

F

consists of
– a morphism f ∶ A B in C and
– a morphism p ∶ X (F f )(Y) in FA.

● The identity morphism of an object (A, X) is the pair (1A, 1X) of identity
morphisms.
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● For another morphism

(g, q) ∶ (B, Y) (C, Z),
the composition with ( f , p) is defined as

(g, q) ○ ( f , p) = (g f , (F f )(q) ○ p) ∶ (A, X) (C, Z).
This finishes the definition of ∫C F. ◇
Explanation 4.6.2. The notation ∫C F is meant to suggest that it is the integration
of the categories FA for A ∈ C. The composite (g, q) ○ ( f , p) may be visualized as
follows, where we write f ∗, g∗, and (g f )∗ for, respectively, F f , Fg, and F(g f ).

FA FB FC

A B C

X

f ∗Y Y

(g f )∗Z = f ∗g∗Z g∗Z Z

p

f ∗q q

f g

g∗f ∗

Since f ∗g∗ = (g f )∗ by the functoriality of F, it follows that

( f ∗q)p ∶ X (g f )∗Z

is a well-defined morphism in FA. ◇

The Distortion Category. Recall from Definition 2.4.1 the finite ordinal cate-
gory Σ, with objects n ≥ 0 and morphism sets

Σ(m, n) =
⎧⎪⎪⎨⎪⎪⎩

Σm if m = n and
∅ if m /= n.

The n-fold Cartesian product of Σ is denoted by Σ×n, with Σ×0 = ∗. We will use the
following functor to relate the finite ordinal category and the distortion category.
Definition 4.6.3. Define a functor

F ∶ Σop Cat

by the following assignments on objects and morphisms.

n Σ×n

(Σ(n, n) = Σn ∋ σ) (σ−1 ∈ Cat(Σ×n, Σ×n))

Here σ−1 is the functor that permutes the factors via σ−1 ∈ Σn, that is,

(4.6.4) σ−1(x1, . . . , xn) = (xσ(1), . . . , xσ(n)).
This finishes the definition of the functor F. ◇

The following observation provides a conceptual explanation of the distortion
category D in terms of the finite ordinal category Σ.
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Proposition 4.6.5. There is a canonical isomorphism of categories

D ≅ ∫
Σ

F

with F ∶ Σop Cat the functor in Definition 4.6.3.

Proof. This follows from unpacking Definition 4.6.1 of the Grothendieck construc-
tion for the functor F. In more detail, an object in ∫Σ F is a pair (m, r) consisting
of

● an object m ≥ 0 in Σ and
● an object r ∈ F(m) = Σ×m, that is, a sequence (r1, . . . , rm)with each rj ≥ 0.

A morphism

σ ∶ (m, r) (n, s) ∈ ∫
Σ

F

consists of

● a morphism σ ∈ Σ(m, n), that is, a permutation σ ∈ Σm with m = n, and
● a morphism

(σ1, . . . , σm) ∶ r σ−1s = (sσ(1), . . . , sσ(m)) ∈ Σ×m,

that is, a permutation

σj ∈ Σ(rj, rj) = Σrj for each 1 ≤ j ≤ m

with rj = sσ(j).

So objects and morphisms in the Grothendieck construction ∫Σ F are the same as
those in the distortion category D (Definition 4.2.1). Similarly, the identity mor-
phisms and composition in ∫Σ F are the same as those in D. □

The Additive Distortion Category. There is a similar description for the ad-
ditive distortion categoryDad (Definition 4.5.2) that involves the following functor.
In the following definition, we regard the set N of nonnegative integers as a dis-
crete category with only identity morphisms.

Definition 4.6.6. Define a functor

Fad ∶ Σop Cat

by the following assignments on objects and morphisms.

n N×n

(Σ(n, n) = Σn ∋ σ) (σ−1 ∈ Cat(N×n,N×n))

Here σ−1 is the functor that permutes the factors via σ−1 ∈ Σn as in (4.6.4). This
finishes the definition of the functor Fad. ◇
Proposition 4.6.7. There is a canonical isomorphism of categories

Dad ≅ ∫
Σ

Fad

with Fad ∶ Σop Cat the functor in Definition 4.6.6.
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Proof. Reuse the proof of Proposition 4.6.5 by replacing the category

F(m) = Σ×m with Fad(m) =N×m.

SinceN is a discrete category, the categorical structure of ∫Σ Fad agrees with that of
Dad (Definition 4.5.2). □

The braided version for the braided distortion category is Proposition II.5.5.3.
See also Question III.A.5.6.

4.7. Notes

As we mentioned in the introduction of this chapter, the Coherence Theo-
rem 4.4.3 is due to Laplaza [Lap72b], and the proof presented in this chapter
partially follows the general outline of Laplaza’s original proof. Here we point
out the main differences between Laplaza’s proof and the one in this chapter. Be-
sides some cosmetic differences in notation and additional detail in this chapter,
Laplaza’s original proof contains some inaccuracies that we have corrected in this
chapter. See Notes 4.7.3 and 4.7.4. In Note 4.7.5, we briefly discuss a possible
2-monad approach.

4.7.1 (Notation). In addition to the differences in notation in Note 3.11.1, the table
below shows the correspondence between our notation and the ones in [Lap72b].

Definition Concept Laplaza [Lap72b]
4.2.1 distortion category D D
4.2.1 symmetric group Σm Pm

(4.2.10) block permutation ξ⊕m,k tm,k

(4.2.17) permutation ξ⊗m,k τm,k

4.3.1 distortion ϑP dist(P)
◇

4.7.2 (Level of Detail). In [Lap72b], Laplaza omitted most of the proofs of Lem-
mas 4.2.5, 4.2.12, 4.2.19, and 4.2.25 and Theorem 4.2.29, which together show that
the distortion category is a left bipermutative category. ◇
4.7.3 (Corrections for Laplaza’s Parts I–III and Monomorphisms). Laplaza’s orig-
inal proof of Theorem 4.4.3 in [Lap72b] is divided into what he called Parts I–V.
Parts I–III there correspond to the five reduction steps in the proof of Theorem 3.9.1
without regularity, as used in the proof of Theorem 4.4.3. As we saw in the proof of
Theorem 3.9.1, these five reduction steps use essentially all the results in Chapter 3
before Section 3.9. In particular, these include

● Proposition 3.5.32 in reduction step 1 and
● Proposition 3.7.19 in reduction step 4.

These preliminary results correspond to [Lap72a, Prop. 5 and 7]. Moreover, the
monomorphism assumption in the statement of Theorem 4.4.3, which is used in
reduction step 3, is not included in [Lap72b]. Therefore, the necessary corrections
discussed in Notes 3.11.3 through 3.11.6 still apply. ◇
4.7.4 (Corrections for Laplaza’s Parts IV and V). In the proof of Theorem 4.4.3,
after the five reduction steps, we finished the proof using Lemma 4.4.1. This is sig-
nificantly different from the way Laplaza finished his Parts IV and V in [Lap72b],
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which depend on [Lap72b, Lemma 3.1]. As we now explain, that lemma is incor-
rect.

The setting for that lemma is that, in addition to the function ϑ ∶ X Ob(D)
as in Definition 4.3.1, we are given the following data.

● Another set X′ equipped with two distinguished elements 0X′ and 1X′ .
● A function f ∶ X′ X such that f (0X′) = 0X and f (1X′) = 1X.

The assertion of [Lap72b, Lemma 3.1] is that for each path Q in Gr(X′), the dis-
tortion of Q is equal to the distortion of f (Q). Here f (Q) is the path in Gr(X)
obtained from Q by applying f to each element in X′ that appears in the vertices
in Q and in the subscripts of the prime edges. For example, if a, b, c, d ∈ X′, then

f (δl
a,b,c ⊕ 1d) = δl

f(a), f(b), f(c) ⊕ 1 f(d).

To see that [Lap72b, Lemma 3.1] is incorrect, consider the following data.
(i) The set X′ = X ∐ {x′} obtained from X by adjoining a new element x′,

with 0X′ = 0X and 1X′ = 1X.
(ii) The function f ∶ X′ X that extends the identity function on X by

f (x′) = 1X.
(iii) The identity path

x′ x′
Q= 1x′ in Gr(X′).

By Definition 4.3.1, since x′ ∈ X′ ∖ {0X′ , 1X′}, the distortion of Q is the identity
morphism

ϑ′(1x′) = 1ϑ′(x′) = 1(1) = (id1; id1) ∈ D((1); (1)).
On the other hand, if we first apply f , and then take the distortion, we obtain the
identity morphism

ϑ f (1x′) = 1ϑ f(x′) = 1ϑ(1X) = 1(0) = (id1; id0) ∈ D((0); (0)).

This is not equal to 1(1), since even their domains are different objects.
Another simple counterexample is the additive symmetry

x′ ⊕ x′ x′ ⊕ x′
ξ⊕x′ ,x′ in Gr(X′).

Using (4.2.10), its images under ϑ′ and ϑ f are as follows.

ϑ′(ξ⊕x′,x′) = ξ⊕(1),(1) = (ξ
⊕
1,1; id1, id1) ∈ D((1)⊕ (1); (1)⊕ (1))

ϑ f (ξ⊕x′,x′) = ξ⊕(0),(0) = (ξ
⊕
1,1; id0, id0) ∈ D((0)⊕ (0); (0)⊕ (0))

These are different morphisms in D.
The above setting of (i) and (ii), that is,

X′ = X ∐ {x′}, f ∣X = IdX , and f (x′) = 1X,

appeared in the proof of [Lap72b, Lemma 3.2], which is used in [Lap72b, Part IV,
page 233]. Therefore, the setting of (i) and (ii) cannot be ignored. The invalidity
of [Lap72b, Lemma 3.1] implies that Laplaza’s proof of [Lap72b, Parts IV and V],
which uses that lemma, is also invalid. In our proof of Theorem 4.4.3, we substi-
tuted Laplaza’s Parts IV and V with Lemma 4.4.1, which completely bypasses all
the lemmas in [Lap72b, Section 3].
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In Example 4.3.16, the assumption that ai, bj /∈ {0X, 1X} excludes the situations
similar to the counterexamples above. ◇
4.7.5 (2-Monads). By Example 4.4.5, Theorem 4.4.3 applies to tight symmetric bi-
monoidal categories, that is, those with δl and δr (2.1.4) natural isomorphisms.
This special case of Theorem 4.4.3 is also claimed to follow from the 2-monad co-
herence result in [Kel74, pages 371-373]. The discussion in Note 3.11.7 still applies
here. ◇





CHAPTER 5

Strictification of Tight Symmetric Bimonoidal
Categories

A right bipermutative category C as in Definition 2.5.2 has

● two permutative structures (⊕, 0, ξ⊕) and (⊗,1, ξ⊗) and
● identities for the right distributivity δr, the multiplicative zeros λ ● and ρ ●,

and ξ⊗−,0,

along with three carefully chosen symmetric bimonoidal category axioms. We ob-
served in Proposition 2.5.7 that each right bipermutative category is a tight sym-
metric bimonoidal category, where tight means that δl and δr are natural isomor-
phisms. In this chapter, we show that each tight symmetric bimonoidal category
is, in a suitable sense to be defined below, adjoint equivalent to a right bipermu-
tative category. This theorem is originally due to May [May77]. The Strictification
Theorem 5.4.6 is the bimonoidal analogue of Theorem 1.3.10. Moreover, a mul-
tiplicatively nonsymmetric analogue is the Strictification Theorem 5.5.11 for tight
bimonoidal categories. A braided version that strictifies tight braided bimonoidal
categories is Theorem II.6.3.6. Question III.A.1.6 is an open question related to
strictification of tight symmetric bimonoidal categories.

Organization. To discuss equivalences between symmetric bimonoidal cate-
gories, in Section 5.1, we define symmetric bimonoidal functors. Each symmetric
bimonoidal functor is a functor with two symmetric monoidal structures, one ad-
ditive and one multiplicative, that satisfy two compatibility axioms for the mul-
tiplicative zeros and the distributivity morphisms. While the axioms are stated
for the right multiplicative zeros and the right distributivity morphisms, they are
actually equivalent to the left variants. Symmetric bimonoidal functors compose
as expected, and they constitute the morphisms in a category Bisy with small sym-
metric bimonoidal categories as objects. The second half of this section contains
examples of symmetric bimonoidal functors and equivalences. This section does
not rely on the Coherence Theorems 3.9.1 and 4.4.3, and may be read immediately
after Chapter 2.

The proof of the Strictification Theorem 5.4.6 begins in Section 5.2. For a tight
symmetric bimonoidal category C, in this section, we construct an associated right
bipermutative category A whose objects are formal polynomials in the objects in
C. This section contains most of the data of the associated right bipermutative
category.

The proof that A is a right bipermutative category is given in Section 5.3. The
tightness assumption on C, that is, the invertibility of its distributivity morphisms,
is used to define the products of morphisms and the multiplicative symmetry in
A. See (5.2.29), (5.2.36), and the explanation following them.

I.175
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Section 5.4 contains the other half of the proof of the Strictification Theo-
rem 5.4.6. We define two functors between C and A in opposite directions and
observe that they (i) constitute an adjoint equivalence and (ii) are both symmetric
bimonoidal equivalences. It is in this sense that a given tight symmetric bimon-
oidal category C is equivalent to a right bipermutative category A. At the end
of this section, we record a variant of this strictification result that involves a left
bipermutative category; see Theorem 5.4.7.

For monoidal categories, the proof of the Strictification Theorem 1.3.5 relies
on the Coherence Theorem 1.3.3. The reason is that the construction of an associ-
ated strict monoidal category requires the commutativity of some formally defined
diagrams, which are guaranteed by coherence. In a similar manner, for tight sym-
metric bimonoidal categories, the proof of the Strictification Theorem 5.4.6 also re-
lies heavily on the Coherence Theorem 3.9.1. See, for example, Explanation 5.2.31
and Lemmas 5.3.1, 5.3.4, 5.3.8, and 5.4.4. Each time Theorem 3.9.1 is used to ensure
that a certain diagram in C is commutative.

Section 5.5 contains the Strictification Theorems 5.5.11 and 5.5.12 for tight bi-
monoidal categories. They are the multiplicatively nonsymmetric analogues of
Theorems 5.4.6 and 5.4.7. We define the nonsymmetric analogues of symmetric
bimonoidal functors and right (left) bipermutative categories, which are called,
respectively, bimonoidal functors and right (left) rigid bimonoidal categories. In
the nonsymmetric analogue of A in Definition 5.5.5, the left distributivity mor-
phism is defined in terms of δl in C, instead of using the diagram (5.3.6) and the
multiplicative symmetry. Therefore, the proof of Proposition 5.5.10 that the non-
symmetric analogue of A satisfies the 22 Laplaza axioms for a bimonoidal category
is also somewhat different from the symmetric case in Section 5.3.

For a brief history of strictification for tight symmetric bimonoidal categories,
the reader is referred to Section 5.6.

Reading Guide. The proof of the Strictification Theorem 5.4.6 is presented
with full detail straightly linearly in this chapter. As a possible alternative to read-
ing this chapter linearly, we offer the following suggestion.

(1) In Section 5.1, read Definition 5.1.1 of a symmetric bimonoidal functor.
(2) In Section 5.2, pay special attention to Explanations 5.2.25, 5.2.30, 5.2.31,

and 5.2.37. Skip Example 5.2.32 during the first reading.
(3) In Section 5.3, skip all the proofs during the first reading.
(4) In Section 5.4, first read Definitions 5.4.1 and 5.4.2 and the statements of

Lemmas 5.4.3 through 5.4.5 and Theorems 5.4.6 and 5.4.7.
(5) With a clear understanding of the structure of the proof of Theorem 5.4.6,

go back and read the parts skipped earlier.
As in Chapters 3 and 4, in this chapter we deliberately divided the proof of The-
orem 5.4.6 into many lemmas to clarify the overall structure of the proof and to
make jumping forward and backward easier. Students are encouraged to regard
the many lemmas and their detailed proofs as exercises with full solutions.

Detail. The detailed proof of Theorem 5.4.6 does more than proving this the-
orem.

(1) We emphasize that Theorem 5.4.6 only applies to tight symmetric bi-
monoidal categories, that is, those with δl and δr natural isomorphisms.
The detailed constructions and proofs in this chapter show precisely
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how the invertibility of the distributivity morphisms is used. See Ex-
planations 5.2.25, 5.2.31, and 5.2.37. This is related to an incorrect claim
in [EM06] that their bipermutative categories, whose factorization mor-
phisms are not invertible in general, are equivalent to right bipermutative
categories. The reader is referred to Note 5.6.3 for more discussion related
to this issue.

(2) May’s proof of Theorem 5.4.6 is given as an outline in [May77, 6.3.5],
where the Coherence Theorem 3.9.1 is not explicitly mentioned. Our de-
tailed constructions and proofs in this chapter show precisely where The-
orem 3.9.1 is used. The reader is referred to Note 5.6.2 for more discussion
related to this issue.

(3) The proof of the Strictification Theorem II.6.3.6 of tight braided bimonoi-
dal categories uses modified versions of many of the proofs in this chap-
ter. A detailed treatment here will allow us to be both precise and concise
at the same time in the braided case.

5.1. Symmetric Bimonoidal Functors

In this section, we define functors between symmetric bimonoidal categories
and observe that there is a category Bisy of small symmetric bimonoidal categories
and symmetric bimonoidal functors. Examples of symmetric bimonoidal functors
are discussed in the second half of this section.

Recall from Definitions 1.2.11 and 1.2.25 the concept of a symmetric monoidal
functor, and from Definition 2.1.2 the concept of a symmetric bimonoidal category.

Definition 5.1.1. Suppose C and D are symmetric bimonoidal categories. A sym-
metric bimonoidal functor from C to D is a tuple

(F, F2
⊕, F0

⊕, F2
⊗, F0

⊗) ∶ C D

consisting of the following data.

● (F, F2
⊕, F0

⊕) ∶ C D is a symmetric monoidal functor from the additive
structure of C to the additive structure of D.
● (F, F2

⊗, F0
⊗) ∶ C D is a symmetric monoidal functor from the multi-

plicative structure of C to the multiplicative structure of D.

These data are required to make the following two diagrams in D commutative for
all objects A, B, C ∈ C.

Multiplicative Zero:

(5.1.2)

(FA)0 (FA)(F0)

0 F(A0)

F0

ρ
●
FA

1FA F0
⊕

F2
⊗

F0
⊕

Fρ
●
A
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Distributivity:

(5.1.3)

(FA⊕ FB)(FC) (FA)(FC)⊕ (FB)(FC)

F(A⊕ B)(FC) F(AC)⊕ F(BC)

F((A⊕ B)C) F(AC⊕ BC)

F2
⊕

1FC

δr

F2
⊗
⊕F2
⊗

F2
⊗ F2

⊕

Fδr

This finishes the definition of a symmetric bimonoidal functor.
Moreover:

● A symmetric bimonoidal functor as above is sometimes abbreviated to F.
● We write

F⊕ = (F, F2
⊕, F0

⊕) and F⊗ = (F, F2
⊗, F0

⊗)

for the two symmetric monoidal functors, which are called the additive
structure and the multiplicative structure, respectively.
● A symmetric bimonoidal functor is

– robust if F2
⊕, F0

⊕, and F0
⊗ are isomorphisms;

– strong if both F⊕ and F⊗ are strong symmetric monoidal functors,
that is, if F2

⊕, F0
⊕, F2

⊗, and F0
⊗ are isomorphisms;

– unitary if it is strong, and if F0
⊕ and F0

⊗ are identities;
– strict if both F⊕ and F⊗ are strict symmetric monoidal functors, that

is, if F2
⊕, F0

⊕, F2
⊗, and F0

⊗ are identities; and
– a symmetric bimonoidal equivalence if it is also an equivalence of cate-

gories. ◇
The axioms (5.1.2) and (5.1.3) of a symmetric bimonoidal functor are stated

in terms of the right multiplicative zeros and the right distributivity morphisms.
The following observation says that they can also be stated in terms of the left
multiplicative zeros and the left distributivity morphisms.

Proposition 5.1.4. Suppose

(F, F2
⊕, F0

⊕, F2
⊗, F0

⊗) ∶ C D

consists of the same data as in Definition 5.1.1.

(1) The multiplicative zero axiom (5.1.2) is equivalent to the commutativity of the
following diagram for all objects A ∈ C.

(5.1.5)

0(FA) (F0)(FA)

0 F(0A)

F0

λ
●
FA

F0
⊕

1FA

F2
⊗

F0
⊕

Fλ
●
A
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(2) The distributivity axiom (5.1.3) is equivalent to the commutativity of the follow-
ing diagram for all objects A, B, C ∈ C.

(5.1.6)

(FA)(FB⊕ FC) (FA)(FB)⊕ (FA)(FC)

(FA)F(B⊕C) F(AB)⊕ F(AC)

F(A(B⊕C)) F(AB⊕ AC)

1FA F2
⊕

δl

F2
⊗
⊕F2
⊗

F2
⊗ F2

⊕

Fδl

Proof. For the first assertion, consider the following diagram.

0(FA) (F0)(FA)

(FA)0 (FA)(F0)

0 F(A0)

0 F0 F(0A)

nat

(2.1.19)
(1.2.20)

(5.1.2) (1.2.26)

(2.1.19)
(1.2.20)

F0
⊕1FA

F2
⊗

Fλ
●

λ
●

F0
⊕

1FAF0
⊕

F2
⊗

Fρ
●

ρ
●

F0
⊕

ξ⊗ ξ⊗

= Fξ⊗

The outer diagram is (5.1.5). Since ξ⊗ is a natural isomorphism, the outer diagram
is commutative if and only if the inside pentagon (5.1.2) is commutative.

For the second assertion, consider the following diagram.

(FA)(FB⊕ FC) (FA)(FB)⊕ (FA)(FC)

(FB⊕ FC)(FA) (FB)(FA)⊕ (FC)(FA)

(FA)F(B⊕C) F(B⊕C)(FA) F(BA)⊕ F(CA) F(AB)⊕ F(AC)

F((B⊕C)A) F(BA⊕CA)

F(A(B⊕C)) F(AB⊕ AC)

(5.1.3)

nat

nat

(2.1.5)

(2.1.5)

(1.2.26)

(1.2.26)

δl

F2
⊗ ⊕ F2

⊗

F2
⊕

1F2
⊕

F2
⊗

Fδl

δr

F2
⊗ ⊕ F2

⊗

F2
⊕

F2
⊕1

F2
⊗

Fδr

ξ⊗ ξ⊗ ⊕ ξ⊗

ξ⊗ Fξ⊗ ⊕ Fξ⊗

Fξ⊗ F(ξ⊗ ⊕ ξ⊗)

The outer diagram is (5.1.6). Since ξ⊗ is a natural isomorphism, the outer diagram
is commutative if and only if the inside rectangle (5.1.3) is commutative. □
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Composition.
Definition 5.1.7. Suppose

C D E
F G

are symmetric bimonoidal functors. The composite

(GF, (GF)2⊕, (GF)0⊕, (GF)2⊗, (GF)0⊗) ∶ C E

is defined by the composites

(GF, (GF)2⊕, (GF)0⊕) = G⊕ ○ F⊕ and

(GF, (GF)2⊗, (GF)0⊗) = G⊗ ○ F⊗
of symmetric monoidal functors. ◇
Explanation 5.1.8. In Definition 5.1.7, the underlying functor of the composite is
the composite functor GF ∶ C E. The additive structure (GF)⊕ = G⊕ ○ F⊕ of the
composite is defined by the following composites.

0 G0 GF0

GFA⊕GFB G(FA⊕ FB) GF(A⊕ B)

G0
⊕ G(F0

⊕)

(GF)0⊕

G2
⊕ G(F2

⊕)

(GF)2⊕

Two similar composites, with (⊕, 0) replaced by (⊗,1), define the multiplicative
structure (GF)⊗ = G⊗ ○ F⊗ of the composite. ◇
Lemma 5.1.9. In Definition 5.1.7, GF ∶ C E is a symmetric bimonoidal functor.
Moreover, if both F and G are robust (respectively, strong, unitary, or strict), then so is
GF.

Proof. Since the composite of two symmetric monoidal functors is a symmetric
monoidal functor, it remains to check the axioms (5.1.2) and (5.1.3) for GF. For
(5.1.2), consider the following diagram.

(GFA)0 (GFA)(G0) (GFA)(GF0)

0 G((FA)0) G((FA)(F0))

G0 GF0 GF(A0)

1G0
⊕ 1G(F0

⊕)

G2
⊗

G(F2
⊗)

ρ
●

G0
⊕

G(F0
⊕) GFρ

●

(GF)2⊗

G2
⊗

G(1F0
⊕)

Gρ
●

By the definitions of (GF)0⊕ and (GF)2⊗, the outer diagram is (5.1.2) for GF. The
top right rectangle is commutative by the naturality of G2

⊗. The left and the bottom
trapezoids are commutative by the axiom (5.1.2) for F and G.

A similar diagram using
● (5.1.3) for F and G,
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● the naturality of G2
⊕ and G2

⊗, and
● the definitions of (GF)2⊕ and (GF)2⊗,

proves the commutativity of (5.1.3) for GF. This shows that GF is a symmetric
bimonoidal functor.

The other assertion follows from the following facts:

● If both F0
⊕ and G0

⊕ are isomorphisms (respectively, identities), then so is
(GF)0⊕.
● If both F2

⊕ and G2
⊕ are isomorphisms (respectively, identities), then so is

(GF)2⊕.
● Similar statements for (F0

⊗, G0
⊗, (GF)0⊗) and (F2

⊗, G2
⊗, (GF)2⊗) hold.

These statements hold by the definitions of the additive and the multiplicative
structures of GF in Explanation 5.1.8. □

A subcategory is called wide if it contains all the objects in the larger category.

Proposition 5.1.10. There is a category Bisy defined by the following data.

● The objects are small symmetric bimonoidal categories as in Definition 2.1.2.
● The morphisms are symmetric bimonoidal functors as in Definition 5.1.1.
● Identity morphisms are identity functors with identity monoidal structures.
● Composition is as in Definition 5.1.7.

Moreover, Bisy has the following wide subcategories:

● Bisyr with robust symmetric bimonoidal functors as morphisms.
● Bisysg with strong symmetric bimonoidal functors as morphisms.
● Bisyu with unitary symmetric bimonoidal functors as morphisms.
● Bisyst with strict symmetric bimonoidal functors as morphisms.

Proof. Lemma 5.1.9 shows that composition of symmetric bimonoidal functors is
well defined. Associativity and unity of composition follow from those of sym-
metric monoidal functors. Therefore, Bisy is a category.

The other assertion about wide subcategories holds because each of the four
kinds of symmetric bimonoidal functors—robust, strong, unitary, and strict—is
closed under composition by Lemma 5.1.9. □

Examples. The rest of this section contains examples of symmetric bimonoi-
dal functors. Recall from Definition 2.3.1 that a distributive symmetric monoidal
category is a symmetric monoidal category with finite coproducts over which the
monoidal product distributes up to natural isomorphisms. By Proposition 2.3.2,
each distributive symmetric monoidal category is a tight symmetric bimonoidal
category with (⊕, 0) = (∐,∅).
Proposition 5.1.11. Suppose C and D are distributive symmetric monoidal categories,
and

(F, F2
⊗, F0

⊗) ∶ (C,⊗C,1C) (D,⊗D,1D)

is a symmetric monoidal functor. Then F induces a symmetric bimonoidal functor if C
and D are regarded as symmetric bimonoidal categories with additive structures given by
coproducts.
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Proof. The additive structure of F is defined by the morphisms

(5.1.12)
∅ F∅

FA ∐ FB F(A ∐ B)

F0
⊕

F2
⊕

for objects A, B ∈ C. The first morphism is the unique morphism from the chosen
initial object in D. The second morphism is determined by F applied to the natural
morphisms

A A ∐ B
B A ∐ B.

The universal properties of coproducts and initial objects imply that

(F, F2
⊕, F0

⊕) ∶ (C,∐,∅) (D,∐,∅)
is a symmetric monoidal functor. Moreover,

● the multiplicative zero axiom (5.1.2) holds by the universal property of
the initial object in D, and
● the distributivity axiom (5.1.3) holds by the naturality of F2

⊗ and the uni-
versal property of coproducts.

Therefore, F is a symmetric bimonoidal functor. □

Example 5.1.13 (Ring Morphisms). Suppose f ∶ R S is a morphism of com-
mutative rings. Then restriction of scalars via f defines a symmetric monoidal
functor

f ∗ ∶Mod(S) Mod(R)
from the category of S-modules to the category of R-modules. By Example 2.3.4
and Proposition 5.1.11, f ∗ is a symmetric bimonoidal functor when Mod(S) and
Mod(R) are regarded as symmetric bimonoidal categories with additive structures
given by direct sums. ◇
Example 5.1.14 (Distributive Categories). Suppose F ∶ C D is a functor be-
tween distributive categories as in Example 2.3.5, such that the natural morphisms

F∗ ∗
F(A × B) FA × FB

t

p

for objects A, B ∈ C, which are dual to those in (5.1.12), are isomorphisms. The
universal properties of products and terminal objects imply that

(F, p−1, t−1) ∶ (C,×,∗) (D,×,∗)
is a symmetric monoidal functor. By Example 2.3.5 and Proposition 5.1.11, F is a
symmetric bimonoidal functor when C and D are regarded as symmetric bimon-
oidal categories with (⊕, 0) = (∐,∅). ◇

Recall the small and tight symmetric bimonoidal categories Σ and Σ′ in Sec-
tion 2.4. Their underlying categories are given by finite ordinals and bijections,
and they have the same additive structure. In Σ the left distributivity δl is the
identity, and in Σ′ the right distributivity δr is the identity. Moreover, Σ′ is a right
bipermutative category as in Definition 2.5.2, and Σ is a left bipermutative cate-
gory as in Definition 2.5.11.
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Proposition 5.1.15. There is a symmetric bimonoidal equivalence

Σ Σ′F

that is defined by the following data.
● The additive structure (F, F2

⊕, F0
⊕) is the identity symmetric monoidal functor.

● F0
⊗ ∶ 0 0 is the identity permutation in Σ0.

● F2
⊗ ∶ mn mn is the multiplicative symmetry isomorphism ξ′

⊗
m,n in Σ′ in

(2.4.20).

Proof. To check that the multiplicative structure F⊗ = (F, F2
⊗, F0

⊗) is a symmetric
monoidal functor, first observe that the unity axioms (1.2.15) hold because each
morphism involved is an identity morphism.

Since the multiplicative associativity isomorphisms in both Σ and Σ′ are iden-
tities, the associativity axiom (1.2.14) becomes the following diagram in Σ′ for
m, n, p ≥ 0.

mnp mpn

nmp pnm
ξ′
⊗

m,n1p

1mξ′
⊗

n,p

ξ′
⊗

m,pn
ξ′
⊗

nm,p

This diagram commutes because both composites are given by the bijection

k + (j − 1)p + (i − 1)np i + (j − 1)m + (k − 1)mn

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ p.
The compatibility of F2

⊗ with the multiplicative symmetries (1.2.26) holds be-
cause each composite is the identity. This follows from the fact that the multiplica-
tive symmetry isomorphism ξ⊗m,n in Σ in (2.4.5) is the inverse of ξ′

⊗
m,n in Σ′. So the

multiplicative structure F⊗ is a symmetric monoidal functor.
The multiplicative zero axiom (5.1.2) holds because Σ′(0, 0) = Σ0 contains only

the identity morphism of 0.
Since F2

⊕ and δl in Σ are identities, the distributivity axiom, in the equivalent
form (5.1.6), is the following diagram in Σ′ for m, n, p ≥ 0.

m(n + p) mn +mp

(n + p)m nm + pm

ξ′
⊗

m,n+p

δl
m,n,p

ξ′
⊗

m,n⊕ξ′
⊗

m,p

=

This is equal to axiom (2.1.5) in the symmetric bimonoidal category Σ′ because δr

in Σ′ is the identity. Therefore, F is a symmetric bimonoidal functor.
Finally, F is a symmetric bimonoidal equivalence because its underlying func-

tor is the identity functor. □

Proposition 5.1.16. There is a symmetric bimonoidal equivalence

Σ′ ΣG

that is defined by the following data.
● The additive structure (G, G2

⊕, G0
⊕) is the identity symmetric monoidal functor.
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● G0
⊗ ∶ 0 0 is the identity permutation in Σ0.

● G2
⊗ ∶ mn mn is the multiplicative symmetry isomorphism ξ⊗m,n in Σ in

(2.4.5).
Furthermore, G and F in Proposition 5.1.15 are inverse isomorphisms in Bisy.

Proof. The first assertion, that G is a symmetric bimonoidal equivalence, is proved
by a slight modification of the proof of Proposition 5.1.15. The second assertion,
that GF = 1Σ and FG = 1Σ′ , follows from the equality

ξ⊗m,n = (ξ′
⊗
m,n)

−1

for all m and n. □

5.2. Associated Right Bipermutative Category: Definitions

As the first step of the strictification theorem, in this section, we give a detailed
construction of a right bipermutative category associated to a tight symmetric bi-
monoidal category. Recall that tight means that the distributivity morphisms δl

and δr are natural isomorphisms, not just natural monomorphisms. Most of the
data of the associated right bipermutative category are defined in this section. The
proof that it actually satisfies the axioms of a right bipermutative category is given
in Section 5.3. In Section 5.4, we will show that the associated right bipermutative
category is equivalent to the given tight symmetric bimonoidal category.
Convention 5.2.1. For the rest of this section, unless specified otherwise, assume
that C is a tight symmetric bimonoidal category as in Definition 2.1.2. ◇
Motivation 5.2.2. The objects of the right bipermutative category A associated to
C are formal polynomials as in

X =
r
∑
i=1

Xi
1⋯Xi

ki

with each Xi
j an object in C. In the actual construction, this is defined in (5.2.4),

with the ith monomial in (5.2.5). With a suitably defined product, which is (5.2.7)
below, the right distributivity is the identity. Similar to the proofs of the Strictifica-
tion Theorems 1.3.5 and 1.3.10, the proof that A is a right bipermutative category
involves using Laplaza’s First Coherence Theorem 3.9.1 multiple times. Choosing
a suitable convention for additive bracketing and multiplicative bracketing, the
object X can be interpreted in C using its tight symmetric bimonoidal structure.
This association is then extended to the desired equivalence of symmetric bimon-
oidal categories. The tightness assumption on C is essential to the constructions
of the product of morphisms (5.2.29) and the multiplicative symmetry (5.2.36) in
A. ◇

Since the definition of A involves many components, to improve readability
we split it into several parts. First we define its objects, the additive zero, the
multiplicative unit, the sum, and the product on objects. The following definition
only requires a class Ob(C).
Definition 5.2.3. Define the tuple

(Ob(A),⊕A, 0A,⊗A,1A)
as follows.
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Objects: Ob(A) is the class of finite sequences

(5.2.4) a = {a1, . . . , ar}

with additive length r ≥ 0, such that for each 1 ≤ i ≤ r, ai is a finite sequence

(5.2.5) ai = (ai
1, . . . , ai

mi
)

with multiplicative length mi ≥ 0 and each ai
j ∈ Ob(C). We call

● ai the ith monomial in a and
● ai

j the jth alphabet in ai.
The Additive Zero: Define

0A = ∅ ∈ Ob(A),
which is the unique object with additive length 0.

The Multiplicative Unit: Define

1A = {∅} ∈ Ob(A),

which has additive length 1 and whose only monomial has multiplicative
length 0.

The Sum: With a as above and b = {b1, . . . , bs}, define their sum by concatenation,

(5.2.6) a⊕A b = {a1, . . . , ar, b1, . . . , bs} ∈ Ob(A),

which has additive length r + s.
The Product: With a and b as above, define their product by

(5.2.7) a⊗A b = {(a1, b1), . . . , (a1, bs), . . . , (ar, b1), . . . , (ar, bs)} ∈ Ob(A),

which has additive length rs. For 1 ≤ i ≤ r and 1 ≤ j ≤ s, the (j + (i − 1)s)th
monomial in a⊗A b is the concatenation

(ai, bj) = (ai
1, . . . , ai

mi
, bj

1, . . . , bj
nj
)

if ai is as in (5.2.5) and

bj = (bj
1, . . . , bj

nj
).

Its multiplicative length is mi + nj. ◇
Lemma 5.2.8. In the context of Definition 5.2.3, the following statements hold.

(1) ⊕A is strictly associative, and 0A is a strict two-sided unit for ⊕A.
(2) ⊗A is strictly associative, and 1A is a strict two-sided unit for ⊗A.
(3) The following equalities hold for all objects a.

(5.2.9) a⊗A 0A = 0A = 0A ⊗A a.

(4) The right distributive law

(5.2.10) (a⊕A b)⊗A c = (a⊗A c)⊕A (b⊗A c)

holds for a, b, c ∈ Ob(A).

Proof. The first assertion follows from the definitions of ⊕A as concatenation and
0A as the object with additive length 0.
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For the second assertion, suppose c = {c1, . . . , ct}. Then both (a⊗A b)⊗A c and
a⊗A (b⊗A c) are equal to the object

{(a1, b1, c1), . . . , (a1, b1, ct), . . . , (a1, bs, c1), . . . , (a1, bs, ct),
. . . , (ar, b1, c1), . . . , (ar, b1, ct), . . . , (ar, bs, c1), . . . , (ar, bs, ct)}.

The object 1A is a strict two-sided unit for ⊗A because

(ai,∅) = ai = (∅, ai).
The third assertion holds because the objects a ⊗A 0A and 0A ⊗A a both have

additive length r ⋅ 0 = 0 ⋅ r = 0.
The right distributive law holds because both sides are equal to the object

{(a1, c1), . . . , (a1, ct), . . . , (ar, c1), . . . , (ar, ct),
(b1, c1), . . . , (b1, ct), . . . , (bs, c1), . . . , (bs, ct)}

in A. □

The morphisms in A are defined by first interpreting the objects in A as objects
in C using the following bracketing convention.
Definition 5.2.11. Suppose (D,⊙) is a monoidal category, and x1, x2, . . . are objects
in D.

● Define the right normalized bracketing inductively by

(5.2.12) (x1 ⊙⋯⊙ xk)rt =
⎧⎪⎪⎨⎪⎪⎩

x1 if k = 1 and
x1 ⊙ (x2 ⊙⋯⊙ xk)rt if k > 1.

● Define the left normalized bracketing inductively by

(5.2.13) (x1 ⊙⋯⊙ xk)lt =
⎧⎪⎪⎨⎪⎪⎩

x1 if k = 1 and
(x1 ⊙⋯⊙ xk−1)lt ⊙ xk if k > 1.

The subscripts rt and lt stand for right and left, respectively. ◇
In this chapter, we only use the right normalized bracketing. Left normalized

bracketing will be used in Chapter 7; see Definition 7.2.2.
Remark 5.2.14. Definition 5.2.11 requires a lot less than a monoidal category. In
particular, with ⊙ ∈ {⊕,⊗}, right and left normalized bracketings also make sense
for elements in the free {⊕,⊗}-algebra Xfr in Definition 3.1.2. ◇
Example 5.2.15. The first few right normalized bracketings are

x1, x1 ⊙ x2, x1 ⊙ (x2 ⊙ x3), and x1 ⊙ (x2 ⊙ (x3 ⊙ x4)).
The first few left normalized bracketings are

x1, x1 ⊙ x2, (x1 ⊙ x2)⊙ x3, and ((x1 ⊙ x2)⊙ x3)⊙ x4. ◇
We now interpret objects in A as objects in C. The following definition uses the

structure (⊕, 0,⊗,1) in the assumed symmetric bimonoidal category C.
Definition 5.2.16. Continuing Definition 5.2.3, define a function

(5.2.17) Ob(A) Ob(C)π

as follows.
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● For a finite sequence (a1, . . . , am) of objects in C, first define the object

(5.2.18) π(a1, . . . , am) =
⎧⎪⎪⎨⎪⎪⎩

1 ∈ C if m = 0 and
(a1 ⊗⋯⊗ am)rt ∈ C if m > 0,

with the right normalized bracketing (5.2.12) defined in (C,⊗).
● For an object a = {a1, . . . , ar} ∈ Ob(A) as in (5.2.4), define the object

(5.2.19) πa =
⎧⎪⎪⎨⎪⎪⎩

0 ∈ C if r = 0 and
(πa1 ⊕⋯⊕πar)

rt
∈ C if r > 0,

with the right normalized bracketing defined in (C,⊕) and each πai as in
(5.2.18).

This finishes the definition of the function π. ◇
Example 5.2.20. There are objects

π0A = 0

π1A = 1
π{(a1

1, a1
2), (1A), (a3

1, a3
2, a3

3)} = (a1
1 ⊗ a1

2)⊕ [1⊕ (a3
1 ⊗ (a3

2 ⊗ a3
3))]

π(a⊕A b) = (πa1 ⊕⋯⊕πar ⊕πb1 ⊕⋯⊕πbs)
rt

in C for objects a, b ∈ Ob(A)with additive lengths r, s > 0. ◇
Definition 5.2.21. Continuing Definition 5.2.16, define the following.

● For objects a, b ∈ Ob(A), define the morphism set

(5.2.22) A(a; b) = C(πa; πb)

with π the function in (5.2.17).
● Define the identity morphism 1a = 1πa ∈ A(a; a).
● Define the composition in A

A(b; c)×A(a; b) = C(πb; πc)×C(πa; πb) C(πa; πc) = A(a; c)

as the one in C. ◇
Since C is a category, we obtain the following.

Lemma 5.2.23. Under Definitions 5.2.3 and 5.2.21, A is a category.
To define the sum and the product of morphisms in A, the following notations

are used. Recall from Definitions 3.1.9 and 3.1.14 the graph of X and the value in
C of a path in Gr(X).
Definition 5.2.24.

(1) A Mac Lane coherence isomorphism in C, which is denoted by ≅⊕ML, is the
value φP ∶ φu φv in C of a path P ∶ u v in Gr(X) that satisfies the
following three conditions.

(i) P only involves identities, α±⊕, λ±⊕, ρ±⊕, and ξ±⊕.
(ii) In addition to the distinguished elements {0X, 1X}, the set X contains

a specific element xm for each monomial m in each object in A that
appears in φu.
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(iii) For each monomial m in (ii), the equality

φ(xm) = π(m) ∈ C

holds, with π(m) as in (5.2.18).
(2) A Laplaza coherence isomorphism in C, which is denoted by ≅Lap, is the value

φP ∶ φv φw in C of a path P ∶ v w in Gr(X) that satisfies the
following three conditions.

(i) P does not involve ξ±⊗.
(ii) In addition to the distinguished elements {0X, 1X}, the set X contains

a specific element xa for each alphabet a in each object in A that ap-
pears in φv.

(iii) For each alphabet a in (ii), the equality

φ(xa) = a ∈ C

holds.
(3) The inverse of a Laplaza coherence isomorphism is denoted by ≅−1

Lap. ◇
Explanation 5.2.25. Consider Definition 5.2.24.

(1) A Mac Lane coherence isomorphism is in particular a composite of iso-
morphisms, each being a ⊕ and ⊗ of identity morphisms and at most one
component of α±⊕, λ±⊕, ρ±⊕, and ξ±⊕.

(2) A Laplaza coherence isomorphism is in particular a composite of isomor-
phisms, each being a ⊕ and ⊗ of identity morphisms and at most one
component of α±⊕, λ±⊕, ρ±⊕, ξ±⊕, α±⊗, λ±⊗, ρ±⊗, λ± ●, ρ± ●, δl , and δr.
Laplaza coherence isomorphisms exclude ξ±⊗ because in each construc-
tion below involving ≅Lap, ξ±⊗ are never used.

(3) The inverse of a Laplaza coherence isomorphism has the same descrip-
tion as a Laplaza coherence isomorphism, but with δl and δr replaced by
their inverses. This only makes sense if the symmetric bimonoidal cat-
egory is tight. Moreover, a Mac Lane coherence isomorphism is also a
Laplaza coherence isomorphism. ◇

Next we extend the sum and the product in A, defined for objects in (5.2.6) and
(5.2.7), to morphisms. The product of two morphisms involves the inverse of a
Laplaza coherence isomorphism. This is where we first use the tightness assump-
tion on the given symmetric bimonoidal category C. Recall from Example 3.9.6
that Theorem 3.9.1 applies to each tight symmetric bimonoidal category.

Definition 5.2.26. Continuing Definition 5.2.21, suppose given two morphisms

(5.2.27)
a b ∈ A(a; b) = C(πa; πb)

c d ∈ A(c; d) = C(πc; πd)

f

g

with a, b, c, d ∈ Ob(A). Their sum and product are, respectively, the morphisms

(5.2.28)
a⊕A c b⊕A d ∈ A(a⊕A c; b⊕A d) = C(π(a⊕A c); π(b⊕A d))

a⊗A c b⊗A d ∈ A(a⊗A c; b⊗A d) = C(π(a⊗A c); π(b⊗A d))

f⊕Ag

f⊗Ag
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defined as the following composites in C.

(5.2.29)
π(a⊕A c) π(b⊕A d)

πa⊕πc πb⊕πd

≅⊕ML

f⊕Ag

f⊕g
≅⊕ML

π(a⊗A c) π(b⊗A d)

πa⊗πc πb⊗πd

≅−1
Lap

f⊗Ag

f⊗g

≅Lap

More detail of these two diagrams are given in Explanations 5.2.30 and 5.2.31 be-
low. ◇
Explanation 5.2.30. Consider the left diagram in (5.2.29) that defines f ⊕A g.

● If a = 0A, then the left vertical isomorphism is λ−⊕πc .
● If c = 0A, then the left vertical isomorphism is ρ−⊕πa .
● If b = 0A, then the right vertical isomorphism is λ⊕

πd.

● If d = 0A, then the right vertical isomorphism is ρ⊕
πb.

● If none of a, b, c, and d is 0A, then the vertical isomorphisms involve only
identity morphisms and α±⊕.

The existence and the uniqueness of the vertical isomorphisms are guaranteed by
Mac Lane’s Coherence Theorem 1.3.3. ◇
Explanation 5.2.31. Consider the right diagram in (5.2.29) that defines f ⊗A g.

● If a = 0A or 1A, then the left vertical isomorphism is λ− ●πc or λ−⊗πc , respec-
tively.
● If c = 0A or 1A, then the left vertical isomorphism is ρ− ●πa or ρ−⊗πa , respec-

tively.
● If b = 0A or 1A, then the right vertical isomorphism is λ ●πd or λ⊗

πd, respec-
tively.
● If d = 0A or 1A, then the right vertical isomorphism is ρ ●πb or ρ⊗

πb, respec-
tively.
● If none of a, b, c, and d is 0A or 1A, then the following statements hold.

– ≅−1
Lap involves only identity morphisms, α±⊕, ξ⊕, α−⊗, λ−⊗, ρ−⊗, δ−l ,

and δ−r.
– ≅Lap involves only identity morphisms, α±⊕, ξ⊕, α⊗, λ⊗, ρ⊗, δl , and

δr.
In ≅Lap, λ⊗ and ρ⊗ are involved if and only if, respectively, b and d contain
monomials with multiplicative length 0. Similarly, in ≅−1

Lap, λ−⊗ and ρ−⊗

are involved if and only if, respectively, a and c contain monomials with
multiplicative length 0.

The existence of the left vertical isomorphism follows from an induction on the
sum of the additive lengths of a and c. The existence of the right vertical iso-
morphism follows similarly from an induction on the sum of the additive lengths
of b and d. The uniqueness of the vertical isomorphisms is guaranteed by Theo-
rem 3.9.1. ◇
Example 5.2.32. Here is an example of ≅Lap in the right diagram in (5.2.29). Suppose

● b = {(b), (b1, b2)} and
● d = {(d1, d2), (d)}
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are objects in A with b, b1, b2, d1, d2, d ∈ C. To save space, we will abbreviate ⊗
in C using concatenation, with ⊗ taking precedence over ⊕. Then there are the
following objects.

πb = b⊕ b1b2 ∈ C
πd = d1d2 ⊕ d ∈ C

πb⊗πd = (b⊕ b1b2)(d1d2 ⊕ d)
b⊗A d = {(b, d1, d2), (b, d), (b1, b2, d1, d2), (b1, b2, d)} ∈ A

π(b⊗A d) = b(d1d2)⊕ {bd⊕ [b1(b2(d1d2))⊕ b1(b2d)]} ∈ C
To go from πb⊗ πd to π(b⊗A d), we regard b, b1, b2, d1, d2, and d as formal

distinct symbols, even if some of them may be the same object in C. Starting from
πb⊗ πd, we distribute using δl and δr as far as possible. By the constructions of
⊗A and π, the result matches π(b⊗A d), except possibly for

● the additive bracketing,
● the order of the monomials, and
● the multiplicative bracketing of each monomial.

To correct these discrepancies, we apply α±⊕, ξ⊕, and α±⊗.
The following composite in C is one example of a Laplaza coherence isomor-

phism ≅Lap. Subscripts in the morphisms are omitted to save space.

πb⊗πd π(b⊗A d)

b(d1d2 ⊕ d)⊕ (b1b2)(d1d2 ⊕ d) b(d1d2)⊕ {bd⊕ [b1(b2(d1d2))⊕ (b1b2)d]}

[b(d1d2)⊕ bd]⊕ (b1b2)(d1d2 ⊕ d) b(d1d2)⊕ {bd⊕ [(b1b2)(d1d2)⊕ (b1b2)d]}

[b(d1d2)⊕ bd]⊕ [(b1b2)(d1d2)⊕ (b1b2)d]

≅Lap

δr

δl ⊕ 1

1⊕ δl
α⊕

1⊕ {1⊕ [α⊗ ⊕ 1]}

1⊕ {1⊕ [1⊕ α⊗]}

Another Laplaza coherence isomorphism

πb⊗πd π(b⊗A d)≅Lap

starts with δl , followed by two morphisms involving δr, then followed by mor-
phisms involving ξ⊕, α±⊕, and α⊗. This composite involves an instance of ξ⊕ to
swap the middle two terms to match those in π(b ⊗A d). In each case, ξ⊗ is not
needed.

To see that these two Laplaza coherence isomorphisms are equal in C, we ap-
ply Theorem 3.9.1 as follows. Consider the set

X = {0X, 1X, b, b1, b2, d1, d2, d}
as in Definition 3.1.6, with b, b1, b2, d1, d2, and d regarded as formal distinct sym-
bols different from 0X and 1X. The element

(b⊕ (b1 ⊗ b2))⊗ ((d1 ⊗ d2)⊕ d) ∈ Xfr
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is regular as in Definition 3.1.25 because its support (3.1.24) is

bd1d2 ⊕ bd⊕ b1b2d1d2 ⊕ b1b2d ∈ Xst.

Here ⊗ is abbreviated to concatenation as above, and the support of an element is
denoted by the same symbol.

The graph morphism φ ∶ Gr(X) C in Definition 3.1.14 is defined as fol-
lows:

● φ(0X) = 0 and φ(1X) = 1.
● φ sends each of the formal symbols b, b1, b2, d1, d2, and d in X to the

corresponding object in C.
Each of the two Laplaza coherence isomorphisms above is the value in C, in the
sense of (3.1.18), of a path in Gr(X) that does not involve ξ±⊗. Theorem 3.9.1
implies that these two Laplaza coherence isomorphisms are equal. ◇

The following observation allows us to define the associativity isomorphisms
and the unit isomorphisms in A to be identities.
Lemma 5.2.33. For morphisms fi ∈ A(ai; bi) for 1 ≤ i ≤ 3, the following equalities hold.

( f1 ⊕A f2)⊕A f3 = f1 ⊕A ( f2 ⊕A f3)
( f1 ⊗A f2)⊗A f3 = f1 ⊗A ( f2 ⊗A f3)

10A ⊕A f1 = f1 = f1 ⊕A 10A

1
1A ⊗A f1 = f1 = f1 ⊗A 1

1A

Proof. In Lemma 5.2.8, we observed that ⊕A is strictly associative on objects with
0A as a strict two-sided unit, and similarly for (⊗A,1A).

For the first equality, consider the following diagram in C.

π((a1 ⊕A a2)⊕A a3) π(a1 ⊕A (a2 ⊕A a3))

(πa1 ⊕πa2)⊕πa3 πa1 ⊕ (πa2 ⊕πa3)

(πb1 ⊕πb2)⊕πb3 πb1 ⊕ (πb2 ⊕πb3)

π((b1 ⊕A b2)⊕A b3) π(b1 ⊕A (b2 ⊕A b3))

≅⊕ML

=

≅⊕ML

( f1⊕ f2)⊕ f3

α⊕

f1⊕( f2⊕ f3)

≅⊕ML

α⊕

≅⊕ML

=

The left vertical composite defines ( f1⊕A f2)⊕A f3, and the right vertical composite
defines f1 ⊕A ( f2 ⊕A f3). The middle rectangle is commutative by the naturality
of α⊕ in C. The top and the bottom rectangles are commutative by Mac Lane’s
Coherence Theorem 1.3.3. This proves the first equality.

The second equality is proved by modifying the above diagram by replacing
● (⊕A,⊕, α⊕)with (⊗A,⊗, α⊗),
● the top two ≅⊕ML with ≅−1

Lap, and
● the bottom two ≅⊕ML with ≅Lap.

The resulting diagram commutes by the naturality of α⊗ in C and Theorem 3.9.1.
Using Explanation 5.2.30, the equalities

10A ⊕A f1 = f1 = f1 ⊕A 10A
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follow from the naturality of λ⊕ and ρ⊕ in C.
Using Explanation 5.2.31, the equalities

1
1A ⊗A f1 = f1 = f1 ⊗A 1

1A

follow from the naturality of λ⊗ and ρ⊗ in C. □

Using the symmetry isomorphisms ξ⊕ and ξ⊗ in C, next we define the symme-
try isomorphisms in A. The multiplicative symmetry isomorphism in A requires
the inverse of a Laplaza coherence isomorphism and, therefore, uses the tightness
assumption on C.

Definition 5.2.34. Continuing Definition 5.2.26, for objects a, b ∈ Ob(A), define the
morphisms

(5.2.35)
a⊕A b b⊕A a ∈ A(a⊕A b; b⊕A a) = C(π(a⊕A b); π(b⊕A a))

a⊗A b b⊗A a ∈ A(a⊗A b; b⊗A a) = C(π(a⊗A b); π(b⊗A a))

ξ⊕A

a;b

ξ⊗A

a;b

as the following composites in C.

(5.2.36)
π(a⊕A b) π(b⊕A a)

πa⊕πb πb⊕πa

≅⊕ML

ξ⊕A

a;b

ξ⊕
πa;πb

≅⊕ML

π(a⊗A b) π(b⊗A a)

πa⊗πb πb⊗πa

≅−1
Lap

ξ⊗A

a;b

ξ⊗
πa;πb

≅Lap

◇
Explanation 5.2.37. The vertical isomorphisms in (5.2.36) are as in (5.2.29), which
are described explicitly in Explanations 5.2.30 and 5.2.31. Moreover, ξ⊕A is a Mac
Lane coherence isomorphism. ◇

5.3. Associated Right Bipermutative Category: Proofs

We now show in multiple steps that A is a right bipermutative category as in
Definition 2.5.2.
Lemma 5.3.1. Under Definitions 5.2.3, 5.2.21, 5.2.26, and 5.2.34,

● (A,⊕A, 0A, ξ⊕A) and
● (A,⊗A,1A, ξ⊗A)

are both permutative categories.

Proof. The functoriality of ⊕A ∶ A×A A follows from
● its construction in (5.2.29),
● the functoriality of ⊕ in C, and
● the uniqueness in Theorem 1.3.8.

We observed in Lemma 5.2.8 that ⊕A is strictly associative on objects, and 0A is a
strict two-sided unit. Using Lemma 5.2.33, we define

● the associativity isomorphism α⊕A,
● the left unit isomorphism λ⊕A, and
● the right unit isomorphism ρ⊕A
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in A to be the identity natural transformations. Then

(A,⊕A, 0A, α⊕A, λ⊕A, ρ⊕A)
is a strict monoidal category because the unity axiom (1.2.2) and the pentagon
axiom (1.2.3) are satisfied when each edge involved is an identity morphism.

Each component of ξ⊕A is by definition an isomorphism. Its naturality follows
from the naturality of ξ⊕ in C, the definition of f ⊕A g in (5.2.29), and the unique-
ness in Theorem 1.3.8. The symmetric monoidal category axioms (1.2.20), (1.2.21),
and (1.2.22) in (A,⊕A, 0A, ξ⊕A) follow from those in (C,⊕), the naturality of ξ⊕,
and the uniqueness in Theorem 1.3.8. Therefore, (A,⊕A, 0A, ξ⊕A) is a permutative
category.

The proof for (A,⊗A,1A, ξ⊗A) is essentially the same as above, with α⊗A, λ⊗A,
and ρ⊗A defined as the identity natural transformations using Lemma 5.2.33. For
the naturality of ξ⊗A and the symmetric monoidal category axioms in A, we use
the naturality of ξ⊗ in C, the definition of f ⊗A g in (5.2.29), Theorem 3.9.1, and the
symmetric monoidal category axioms in (C,⊗). □

Lemma 5.3.2. Suppose a ∈ A is an object.
(1) The morphisms

a⊕A 0A 0A ⊕A a
ξ⊕A

a;0A

ξ⊕A

0A ;a

are both equal to 1a.
(2) The morphisms

a⊗A 0A 0A ⊗A a
ξ⊗A

a;0A

ξ⊗A

0A ;a

are both equal to 10A .

Proof. For the first assertion, by the left diagram in (5.2.36) with b = 0A and Expla-
nation 5.2.30, ξ⊕A

a;0A is the following composite in C.

πa πa⊕ 0 0⊕πa πa
ρ−⊕πa ξ⊕πa;0 λ⊕πa

This composite is equal to 1πa = 1a by the unit axiom (1.2.21) in the additive struc-
ture in C. The other morphism ξ⊕A

0A;a is also equal to 1a by the symmetry axiom

(1.2.20) in the permutative category (A,⊕A, 0A, ξ⊕A).
For the second assertion, by the right diagram in (5.2.36) with b = 0A and

Explanation 5.2.31, ξ⊗A

a;0A is the following composite in C.

0 πa⊗ 0 0⊗πa 0
ρ−

●
πa ξ⊗πa;0 λ

●
πa

This composite is equal to 10 = 10A by axiom (2.1.19) in C. The other morphism
ξ⊗A

0A;a is also equal to 10A by the symmetry axiom (1.2.20) in the permutative cate-

gory (A,⊗A,1A, ξ⊗A). □
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The next observation allows us to define the multiplicative zeros in A to be the
identities.
Lemma 5.3.3. For each morphism f ∈ A(a; b), the equalities

f ⊗A 10A = 10A = 10A ⊗A f

hold in A(0A; 0A).
Proof. We observed in Lemma 5.2.8 that

a⊗A 0A = 0A = 0A ⊗A a

for each object a in A. By the right diagram in (5.2.29) with

g = 10A = 1π0A = 10

and Explanation 5.2.31, f ⊗A 10A is the following composite in C.

0 πa⊗ 0 πb⊗ 0 0
ρ−

●
πa f⊗10

ρ
●

πb

This composite is equal to 10 by the naturality of ρ ● in C. The equality

10A = 10A ⊗A f

follows similarly from the naturality of λ ● in C. □

The next observation allows us to define the right distributivity in A to be the
identity.
Lemma 5.3.4. For morphisms fi ∈ A(ai; bi) for 1 ≤ i ≤ 3, the equality

( f1 ⊕A f2)⊗A f3 = ( f1 ⊗A f3)⊕A ( f2 ⊗A f3)
holds in A((a1 ⊕A a2)⊗A a3; (b1 ⊕A b2)⊗A b3).

Proof. By (5.2.10), the right distributive law holds strictly for objects in A. For
the desired equality, consider the following diagram in C, with ⊗ abbreviated to
concatenation.

π((a1 ⊕A a2)⊗A a3) π((a1 ⊗A a3)⊕A (a2 ⊗A a3))

(πa1 ⊕πa2)(πa3) (πa1)(πa3)⊕ (πa2)(πa3)

(πb1 ⊕πb2)(πb3) (πb1)(πb3)⊕ (πb2)(πb3)

π((b1 ⊕A b2)⊗A b3) π((b1 ⊗A b3)⊕A (b2 ⊗A b3))

≅−1
Lap

=

≅−1
Lap

( f1⊕ f2) f3

δr

f1 f3⊕ f2 f3

≅Lap

δr

≅Lap

=

By definition (5.2.29), the left vertical composite is

( f1 ⊕A f2)⊗A f3,

and the right vertical composite is

( f1 ⊗A f3)⊕A ( f2 ⊗A f3).
The middle rectangle is commutative by the naturality of δr in C. The top and the
bottom rectangles are commutative by Theorem 3.9.1 in C. □

Definition 5.3.5. Consider the category A.
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● Define the right distributivity morphism

(a⊕A b)⊗A c (a⊗A c)⊕A (b⊗A c)
δrA

a;b;c

for objects a, b, c ∈ A as the identity natural transformation. This is well
defined by Lemma 5.3.4.
● Define the left distributivity δlA as the composite

(5.3.6)

a⊗A (b⊕A c) (a⊗A b)⊕A (a⊗A c)

(b⊕A c)⊗A a (b⊗A a)⊕A (c⊗A a)

ξ⊗A

a;b⊕Ac

δlA
a;b;c

δrA
b;c;a

=

ξ⊗A

b;a⊕
Aξ⊗A

c;a

for objects a, b, c ∈ A. Its naturality follows from the naturality of ξ⊗A and
the functoriality of ⊕A. ◇

Next we check axioms (2.1.7) and (2.1.13) in A.
Lemma 5.3.7. Axiom (2.1.7) holds in A.

Proof. Axiom (2.1.7) is the following diagram for objects a, b, c ∈ A.

(a⊕A b)⊗A c (a⊗A c)⊕A (b⊗A c)

(b⊕A a)⊗A c (b⊗A c)⊕A (a⊗A c)

ξ⊕A

a;b⊗
A1c

δrA

=

ξ⊕A

a⊗Ac;b⊗Ac

δrA

=

By (5.2.29) and (5.2.36), the above diagram is the outer diagram in C below.

π((a⊕A b)⊗A c) π((a⊗A c)⊕A (b⊗A c))

(πa)(πc)⊕ (πb)(πc)

(πa⊕πb)(πc) π(a⊗A c)⊕π(b⊗A c)

(πb⊕πa)(πc) π(b⊗A c)⊕π(a⊗A c)

(πb)(πc)⊕ (πa)(πc)

π((b⊕A a)⊗A c) π((b⊗A c)⊕A (a⊗A c))

=

≅⊕ML

ξ⊕

≅⊕ML

≅−1
Lap

ξ⊕1

≅Lap

=

δr ≅Lap ⊕ ≅Lap

ξ⊕

δr ≅Lap ⊕ ≅Lap

The top and the bottom subdiagrams are commutative by Theorem 3.9.1. The mid-
dle left trapezoid is commutative by axiom (2.1.7) in C. The middle right trapezoid
is commutative by the naturality of ξ⊕. □

Lemma 5.3.8. Axiom (2.1.13) holds in A.

Proof. By Lemma 5.3.1 and Definition 5.3.5, the additive associativity α⊕A and the
right distributivity δrA in A are both identity natural transformations, and the left
distributivity δlA is the composite in (5.3.6). By the definitions of ⊕A in (5.2.29)
and ξ⊗A in (5.2.36), axiom (2.1.13) in A is the outer diagram in C below for objects
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a, b, c, d ∈ A. To save space, we abbreviate ⊕A, ⊗A, and π(?) to, respectively, ⊕, ⊗,
and ?′.

((a⊕ b)⊗ (c⊕ d))′ (a⊗ (c⊕ d)⊕ b⊗ (c⊕ d))′

(a⊗ (c⊕ d))′ ⊕ (b⊗ (c⊕ d))′

(a⊕ b)′(c⊕ d)′ (a′ ⊕ b′)(c⊕ d)′ a′(c⊕ d)′ ⊕ b′(c⊕ d)′

(c⊕ d)′(a⊕ b)′ (c⊕ d)′a′ ⊕ (c⊕ d)′b′

((c⊕ d)⊗ (a⊕ b))′ ((c⊕ d)⊗ a)′ ⊕ ((c⊕ d)⊗ b)′

(c⊗ (a⊕ b)⊕ d⊗ (a⊕ b))′ ((c⊗ a)⊕ (d⊗ a))′ ⊕ ((c⊗ b)⊕ (d⊗ b))′

(c⊗ (a⊕ b))′ ⊕ (d⊗ (a⊕ b))′ ((c⊗ a)′ ⊕ (d⊗ a)′)⊕ ((c⊗ b)′ ⊕ (d⊗ b)′)

c′(a⊕ b)′ ⊕ d′(a⊕ b)′ Z (c′a′ ⊕ d′a′)⊕ (c′b′ ⊕ d′b′)

(a⊕ b)′c′ ⊕ (a⊕ b)′d′ (a′c′ ⊕ a′d′)⊕ (b′c′ ⊕ b′d′)

((a⊕ b)⊗ c⊕ (a⊕ b)⊗ d)′ ((a⊗ c)⊕ (a⊗ d)⊕ (b⊗ c)⊕ (b⊗ d))′

((a⊗ c)⊕ (b⊗ c)⊕ (a⊗ d)⊕ (b⊗ d))′

=

≅⊕ML

≅−1
Lap ⊕ ≅−1

Lap

ξ⊗ ⊕ ξ⊗

≅Lap ⊕ ≅Lap

=

≅⊕ML ⊕ ≅⊕ML

(≅−1
Lap ⊕ ≅−1

Lap)⊕ (≅−1
Lap ⊕ ≅−1

Lap)

(ξ⊗ ⊕ ξ⊗)⊕ (ξ⊗ ⊕ ξ⊗)

≅Lap

≅⊕ML

≅−1
Lap

ξ⊗

≅Lap

=

≅⊕ML

≅−1
Lap ⊕ ≅−1

Lap

ξ⊗ ⊕ ξ⊗

≅Lap

=

≅⊕ML δr

≅⊕ML

(δl ≅⊕ML)⊕ (δl ≅⊕ML) ≅⊕ML

In the above diagram, the object Z is

Z = [(πc)(πa)⊕ (πc)(πb)]⊕ [(πd)(πa)⊕ (πd)(πb)]
= (c′a′ ⊕ c′b′)⊕ (d′a′ ⊕ d′b′).

Each of the four subdiagrams is commutative by Theorem 3.9.1. □

Proposition 5.3.9. Associated to each tight symmetric bimonoidal category C, the tuple

(A, (⊕A, 0A, ξ⊕A), (⊗A,1A, ξ⊗A), (λ ●A = 1, ρ
●A = 1), (δrA = 1, δlA))

given by Lemmas 5.3.1 and 5.3.3 and Definition 5.3.5 is a right bipermutative category.

Proof. We check the four conditions in Definition 2.5.2.
● The first two conditions say that λ ●A, ρ ●A, and δrA are identity natural

transformations. They are true by definition.
● The third condition says that ξ⊗A

−,0A is 10A . This holds by Lemma 5.3.2 (2).
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● Axioms (2.1.7) and (2.1.13) hold by Lemmas 5.3.7 and 5.3.8, respectively.
Axiom (2.1.5) holds by the definition (5.3.6) of δlA.

Therefore, A is a right bipermutative category. □

5.4. Strictification

In this section, we finish the proof that each tight symmetric bimonoidal cate-
gory can be strictified to an equivalent right bipermutative category. There is also
a variant involving a left bipermutative category. Convention 5.2.1 is still in effect,
so C is a tight symmetric bimonoidal category. Moreover, A denotes the associated
right bipermutative category in Proposition 5.3.9. First we define the functors that
constitute an equivalence between them.
Definition 5.4.1. Define the functor π ∶ A C as follows.

● Its assignment on objects is the function in (5.2.17).
● For objects a, b ∈ A, its assignment on morphisms

A(a; b) C(πa; πb)π

is the identity function using (5.2.22).
That π is a functor is part of Definition 5.2.21. ◇
Definition 5.4.2. Define the functor ι ∶ C A as follows.

● Using the notations in (5.2.4) and (5.2.5), for each object X ∈ C, define the
object

ιX = {(X)} ∈ A.
It has additive length 1, and its only monomial has multiplicative length
1 consisting of X.
● On morphism sets, it is the identity function

C(X; Y) = C(πιX; πιY) = A(ιX; ιY).
That ι is a functor is part of Definition 5.2.21. ◇
Lemma 5.4.3. There is an adjoint equivalence

A C
π

ι

with counit ε ∶ πι 1C the identity natural transformation.

Proof. By construction, πι = 1C. For objects a ∈ A and Y ∈ C, the adjunction π ⊣ ι is
defined by the natural equalities

C(πa; Y) = C(πa; πιY) = A(a; ιY).
The counit of the adjunction is the identity by construction. The unit of the ad-
junction associates to each object a ∈ A the isomorphism

(a ιπa) = 1πa ∈ A(a; ιπa) = C(πa; πιπa) = C(πa; πa).
ηa

Therefore, the unit is a natural isomorphism. □

Next we observe that π and ι are symmetric bimonoidal functors. Recall from
Definition 5.1.1 that a symmetric bimonoidal functor F is unitary if F0

⊕ and F0
⊗ are

identities, and if F2
⊕ and F2

⊗ are natural isomorphisms.
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Lemma 5.4.4. There is a unitary symmetric bimonoidal equivalence A C with un-
derlying functor π.

Proof. Since π0A = 0 and π1A = 1, we define

0 π0A

1 π1A

π0
⊕

π0
⊗

as the identity morphisms of 0 and 1 in C, respectively. Next we define

πa⊕πb π(a⊕A b)

πa⊗πb π(a⊗A b)

π2
⊕

π2
⊗

for objects a, b ∈ A as, respectively, the Mac Lane coherence isomorphism ≅⊕ML and
the Laplaza coherence isomorphism ≅Lap in (5.2.29) as the right vertical isomor-
phisms. Their naturality follows from the definitions of ⊕A and ⊗A on morphisms
in (5.2.29), and the definition of π as the identity assignment on morphisms.

The triple (π, π2
⊕, π0

⊕) is a symmetric monoidal functor because each diagram
in Definitions 1.2.11 and 1.2.25 is commutative by Theorem 1.3.8. Similarly, the
triple (π, π2

⊗, π0
⊗) is a symmetric monoidal functor because each necessary dia-

gram is commutative by Theorem 3.9.1.
The multiplicative zero axiom (5.1.2) holds for π because
● π0

⊕ and ρ ●A are identity natural transformations, and
● there is an equality

π2
⊗ = ρ

●
πa ∶ (πa)⊗ (π0A) = (πa)⊗ 0 0 = π(a⊗A 0A).

The distributivity axiom (5.1.3) holds for π by Theorem 3.9.1. Therefore, the tuple

(π, π2
⊕, π0

⊕, π2
⊗, π0

⊗)
is a unitary symmetric bimonoidal functor. Finally, π is an equivalence of categor-
ies by Lemma 5.4.3. □

Recall from Definition 5.1.1 that a symmetric bimonoidal functor F is strong if
F2
⊕, F0

⊕, F2
⊗, and F0

⊗ are natural isomorphisms.
Lemma 5.4.5. There is a strong symmetric bimonoidal equivalence C A with under-
lying functor ι.

Proof. Define the following morphisms.

(0A = ∅ ι0 = {(0)}) = 10 ∈ A(0A; ι0) = C(0; 0)

(1A = {∅} ι1 = {(1)}) = 11 ∈ A(1A; ι1) = C(1;1)

ι0
⊕

ι0
⊗

These are isomorphisms, but not identity morphisms. Define the morphisms

ιX⊕A ιY = {(X), (Y)} ι(X⊕Y) ∈ A(ιX⊕A ιY; ι(X⊕Y)) = C(X⊕Y; X⊕Y)

ιX⊗A ιY = {(X, Y)} ι(X⊗Y) ∈ A(ιX⊗A ιY; ι(X⊗Y)) = C(X⊗Y; X⊗Y)

ι2
⊕

ι2
⊗
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for objects X, Y ∈ C as, respectively, 1X⊕Y and 1X⊗Y. These are natural isomor-
phisms, but not identity morphisms.

Consider the triple (ι, ι2⊕, ι0⊕).
● The associativity axiom (1.2.14) holds because each composite is

1X⊕(Y⊕Z) ∈ A((ιX⊕A ιY)⊕A ιZ; ι(X⊕ (Y⊕ Z)))
= C(X⊕ (Y⊕ Z); X⊕ (Y⊕ Z)).

● The left unity axiom (1.2.15) holds because each composite is

1X ∈ A(0A ⊕A ιX; ιX) = C(X; X).
● The right unity axiom (1.2.15) holds for the analogous reason.
● The axiom (1.2.26) holds because each composite is

ξ⊕X,Y = A(ιX⊕
A ιY; ι(Y⊕X)) = C(X⊕Y; Y⊕X).

Therefore, (ι, ι2⊕, ι0⊕) is a strong symmetric monoidal functor. The same reasoning,
applied to the multiplicative structures in C and A, shows that (ι, ι2⊗, ι0⊗) is a strong
symmetric monoidal functor.

The multiplicative zero axiom (5.1.2) holds for ι because each composite is

10 ∈ A(ιA⊗A 0A; ι0) = C(0; 0).
The distributivity axiom (5.1.3) holds for ι because each composite is

1AC⊕BC ∈ A((ιA⊕A ιB)⊗A ιC; ι(AC⊕ BC))
= C(AC⊕ BC; AC⊕ BC).

Therefore, the tuple
(ι, ι2⊕, ι0⊕, ι2⊗, ι0⊗)

is a strong symmetric bimonoidal functor. Finally, ι is an equivalence of categories
by Lemma 5.4.3. □

Combining Proposition 5.3.9 and Lemmas 5.4.3 through 5.4.5, we obtain the
following strictification result.
Theorem 5.4.6 (Right Bipermutative Strictification). Suppose C is a tight symmetric
bimonoidal category. Then there is an adjoint equivalence

A C
π

ι

with
● A the right bipermutative category in Proposition 5.3.9;
● counit ε ∶ πι 1C the identity natural transformation;
● π the unitary symmetric bimonoidal equivalence in Lemma 5.4.4; and
● ι the strong symmetric bimonoidal equivalence in Lemma 5.4.5.

A minor variation of the constructions in this chapter yields the following
strictification result to left bipermutative categories as in Definition 2.5.11.
Theorem 5.4.7 (Left Bipermutative Strictification). Suppose C is a tight symmetric
bimonoidal category. Then there is an adjoint equivalence

Al C
π

ι
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with
● Al a left bipermutative category;
● counit ε ∶ πι 1C the identity natural transformation;
● π a unitary symmetric bimonoidal equivalence; and
● ι a strong symmetric bimonoidal equivalence.

Proof. The proof is essentially the same as that of Theorem 5.4.6, with the following
modifications.

● In Al , the objects, the additive zero, the multiplicative unit, and the sum
are the same as those in A in Definition 5.2.3.
● The product in Al is redefined in such a way that the left distributive law

holds strictly, that is,

(5.4.8) a⊗Al b = {(a1, b1), . . . , (ar, b1), . . . , (a1, bs), . . . , (ar, bs)}

instead of (5.2.7).
● Lemma 5.3.4 is replaced by the left distributive law for morphisms.
● Axiom (2.1.5) is used to define δr in terms of δl , which is the identity in
Al .
● Lemma 5.3.7 is replaced by the assertion that (2.1.6) holds in Al .
● Proposition 5.3.9 is replaced by the assertion that Al is a left bipermutative

category.
Other structures are defined as in A, and all the proofs require minimal or no
changes. □

5.5. Strictification of Tight Bimonoidal Categories

In this section, we prove nonsymmetric analogues of Theorems 5.4.6 and 5.4.7.
To state these results, recall from Definition 2.1.2 that a bimonoidal category C has
the same definition as a symmetric bimonoidal category, except that

● the multiplicative structure is a monoidal category instead of a symmetric
one, and
● the axioms (2.1.5) and (2.1.19) are omitted.

A tight bimonoidal category—that is, one with δl and δr invertible—is called right
rigid if

● both the additive and the multiplicative structures are strict monoidal,
and
● λ ●, ρ ●, and δr are identity natural transformations.

Similarly, a tight bimonoidal category is left rigid if it satisfies these conditions but
with δl = 1 instead of δr = 1. The first main result of this section is Theorem 5.5.11.
It states that each tight bimonoidal category is adjoint equivalent, via suitable bi-
monoidal functors, to a right rigid bimonoidal category. Theorem 5.5.12 is the left
rigid analogue.

Here is an outline of this section.
● In Definition 5.5.1, we define bimonoidal functors. These are the nonsym-

metric analogues of symmetric bimonoidal functors in Definition 5.1.1.
The Strictification Theorems 5.5.11 and 5.5.12 are phrased in terms of
these functors.
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● In Definition 5.5.5, for a tight bimonoidal category C, we define the object
A as in Sections 5.2 and 5.3, except for its left distributivity morphism.
Proposition 5.5.10 shows that A is a right rigid bimonoidal category.
● Theorem 5.5.11 shows that C and A are adjoint equivalent via bimonoidal

functors, with one unitary and the other one strong.
● With a slight modification of the definition of A and the proofs, Theo-

rem 5.5.12 states that C is adjoint equivalent to a left rigid bimonoidal
category via bimonoidal functors, with one unitary and the other one
strong.

Bimonoidal Functors.

Definition 5.5.1. Suppose C and D are bimonoidal categories. A bimonoidal functor
from C to D is a tuple

(F, F2
⊕, F0

⊕, F2
⊗, F0

⊗) ∶ C D

consisting of the following data.

●
F⊕ = (F, F2

⊕, F0
⊕) ∶ (C,⊕) (D,⊕)

is a symmetric monoidal functor from the additive structure of C to the
additive structure of D.
●

F⊗ = (F, F2
⊗, F0

⊗) ∶ (C,⊗) (D,⊗)
is a monoidal functor from the multiplicative structure of C to the multi-
plicative structure of D.

These data are required to make the diagrams (5.1.2), (5.1.3), (5.1.5), and (5.1.6)
commutative. This finishes the definition of a bimonoidal functor.

Moreover, we define the following.

● Robust, strong, unitary, and strict bimonoidal functors are defined as in
Definition 5.1.1.
● A bimonoidal equivalence is a bimonoidal functor whose underlying func-

tor is an equivalence of categories.
● Composites of bimonoidal functors are defined as in Definition 5.1.7. ◇

Explanation 5.5.2. There are two differences between a bimonoidal functor and
a symmetric bimonoidal functor as in Definition 5.1.1. In a symmetric bimonoidal
functor F,

● F⊗ is a symmetric monoidal functor, and
● F is only assumed to satisfy the multiplicative zero axiom (5.1.2) and the

distributivity axiom (5.1.3).

In Proposition 5.1.4, using the multiplicative symmetry ξ⊗, we showed that (5.1.2)
and (5.1.3) are equivalent to, respectively, (5.1.5) and (5.1.6). However, in a bi-
monoidal category, the multiplicative structure is only assumed to be a monoidal
category. So there is no nonsymmetric analogue of Proposition 5.1.4. This is why,
in Definition 5.5.1 of a bimonoidal functor, all four axioms are included. ◇
Lemma 5.5.3. Suppose

C D E
F G
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are bimonoidal functors. Then the composite GF ∶ C E is also a bimonoidal functor.
Moreover, if both F and G are robust (respectively, strong, unitary, or strict), then so is
GF.

Proof. The proof of Lemma 5.1.9 shows that the composite GF satisfies the two
axioms (5.1.2) and (5.1.3). Two similar diagrams prove the other two axioms (5.1.5)
and (5.1.6). The key point is that the multiplicative symmetry ξ⊗ is not involved
in these diagrams. □

As in Proposition 5.1.10, Lemma 5.5.3 implies the existence of a category of
small bimonoidal categories.

Proposition 5.5.4. There is a category Bi defined by the following data.

● The objects are small bimonoidal categories as in Definition 2.1.2.
● The morphisms are bimonoidal functors as in Definition 5.5.1.
● Identity morphisms are identity functors with identity monoidal structures.
● Composition is as in Definition 5.5.1.

Moreover, Bi has the following wide subcategories:

● Bir with robust bimonoidal functors as morphisms.
● Bisg with strong bimonoidal functors as morphisms.
● Biu with unitary bimonoidal functors as morphisms.
● Bist with strict bimonoidal functors as morphisms.

Strictified Bimonoidal Categories. Next we define the object that will serve
as the strictification of a tight bimonoidal category C. In the following definition, A
does not have a multiplicative symmetry. Also note that the paths that define Mac
Lane coherence isomorphisms ≅⊕ML and Laplaza coherence isomorphisms ≅Lap in
Definition 5.2.24 are nonsymmetric paths in the sense of Definition 3.10.2. There-
fore, they make sense in a bimonoidal category.

Definition 5.5.5. Suppose C is a tight bimonoidal category as in Definition 2.1.2.
Define the data

(A, (⊕A, 0A, ξ⊕A), (⊗A,1A), (λ ●A = 1, ρ
●A = 1), (δrA = 1, δlA))

as follows.

● The category A and its structures ⊕A, 0A, ξ⊕A, ⊗A, 1A, λ ●A = 1, ρ ●A = 1,
and δrA = 1 are defined as in Definitions 5.2.3, 5.2.16, 5.2.21, 5.2.24, 5.2.26,
5.2.34, 5.3.5, and 5.4.1.
● Using the function π in (5.2.17), δlA is defined as the following composite

in C for objects a, b, c ∈ A.

(5.5.6)

π(a⊗A (b⊕A c)) π((a⊗A b)⊕A (a⊗A c))

πa⊗ (πb⊕πc) (πa⊗πb)⊕ (πa⊗πc)

≅−1
Lap

δlA
a;b;c

δl
πa;πb;πc

≅Lap

This finishes the definition of A. ◇
Explanation 5.5.7.
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● As in the symmetric case, morphisms in A are defined as morphisms in
C, as in the equality (5.2.22), using the function π in (5.2.17). It interprets
each object a ∈ A as the right normalized sum (5.2.19) of the right normal-
ized products (5.2.18) of the alphabets in each monomial in a.
● In the symmetric case, A has a multiplicative symmetry ξ⊗A as in (5.2.36),

which is defined using the multiplicative symmetry in the given tight
symmetric bimonoidal category. Since C is now a tight bimonoidal cat-
egory, which does not have a multiplicative symmetry, A also does not
have a multiplicative symmetry.
● For the same reason, instead of using the diagram (5.3.6), in the current

nonsymmetric setting, we define the left distributivity morphism δlA di-
rectly as in (5.5.6). ◇

We will show shortly that A in Definition 5.5.5 is right rigid in the sense of the
next definition.
Definition 5.5.8. A right rigid bimonoidal category is a tight bimonoidal category C
as in Definition 2.1.2 that satisfies the following three conditions.

● The additive structure (C,⊕) is a permutative category.
● The multiplicative structure (C,⊗) is a strict monoidal category.
● λ ●, ρ ●, and δr are the identity natural transformations.

A left rigid bimonoidal category is defined in the same way as a right rigid bimonoi-
dal category, but with δl = 1 instead of δr = 1. ◇
Example 5.5.9.

● By Proposition 2.5.7, each right bipermutative category is a right rigid
bimonoidal category after forgetting the multiplicative symmetry ξ⊗.
● By Proposition 2.5.16, each left bipermutative category is a left rigid bi-

monoidal category after forgetting the multiplicative symmetry ξ⊗. ◇
Next is the nonsymmetric analogue of Proposition 5.3.9.

Proposition 5.5.10. For each tight bimonoidal category C, the data

(A, (⊕A, 0A, ξ⊕A), (⊗A,1A), (λ ●A = 1, ρ
●A = 1), (δrA = 1, δlA))

in Definition 5.5.5 form a right rigid bimonoidal category.

Proof. The left distributivity morphism δlA defined in (5.5.6) is a natural transfor-
mation by

● the naturality of δl in C,
● the definitions of ⊕A and ⊗A on morphisms in (5.2.29),
● Definition 5.4.1 of π as the identity assignment on morphisms, and
● the Coherence Theorem 3.10.7 for bimonoidal categories.

Since C is tight, both δl and δr are natural isomorphisms in C. This implies that
each component of δlA is an isomorphism. Therefore, δlA is a natural isomorphism.

The rest of the proof is obtained from that of Proposition 5.3.9 as follows.
● We use the Coherence Theorem 3.10.7 for bimonoidal categories instead

of the Coherence Theorem 3.9.1 for symmetric bimonoidal categories.
● We reuse the proof of Lemma 5.3.1 to infer that

– the additive structure of A is a permutative category, and
– the multiplicative structure of A is a strict monoidal category.
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● We reuse the proofs of Lemmas 5.3.3 and 5.3.4 to infer that
– the left multiplicative zero λ ●A = 1,
– the right multiplicative zero ρ ●A = 1, and
– the right distributivity morphism δrA = 1

are well-defined natural transformations.
It remains to check that A satisfies the 22 Laplaza axioms in Definition 2.1.2,

excluding (2.1.5) and (2.1.19), for a bimonoidal category.
● Each of the following 12 Laplaza axioms holds in A because each edge in-

volved is an identity morphism: (2.1.8), (2.1.11), (2.1.14), (2.1.16)–(2.1.18),
(2.1.20)–(2.1.22), (2.1.24), (2.1.26), and (2.1.28).
● Consider the axioms (2.1.15), (2.1.23), (2.1.25), and (2.1.27).

– (2.1.15) is equivalent to the equality δlA
0A;−;− = 1.

– (2.1.23) is equivalent to the equality δlA
−;0A;− = 1.

– (2.1.25) is equivalent to the equality δlA
−;−;0A = 1.

– (2.1.27) is equivalent to the equality δlA
1A;−;− = 1.

Each of these four equalities follows from the definition (5.5.6) of δlA and
an application of the Coherence Theorem 3.10.7.
● (2.1.7) is proved by reusing the proof of Lemma 5.3.7 and using Theo-

rem 3.10.7 instead of Theorem 3.9.1.
There are five remaining axioms to check in A: (2.1.6), (2.1.9), (2.1.10), (2.1.12),

and (2.1.13). Each of these axioms is a consequence of the same axiom in C, along
with coherence, naturality, and functoriality properties. To prove these axioms
in detail, consider arbitrary objects a, b, c, d ∈ A. To save space in the following
diagrams, we abbreviate ⊕A to ⊕, and both ⊗ and ⊗A to concatenation. Moreover,
for an object e ∈ A, we write πe as e′. For example,

π(a⊗A (b⊕A c)) = [a(b⊕ c)]′,
πa⊗ (πb⊕πc) = a′(b′ ⊕ c′), and

π((a⊗A c)⊕A (a⊗A b)) = (ac⊕ ab)′.
With these conventions, the axiom (2.1.6) in A states the commutativity of the

outer diagram in C below.

[a(b⊕ c)]′ a′(b′ ⊕ c′) a′b′ ⊕ a′c′ (ab⊕ ac)′

a′(b′ ⊕ c′) (ab)′ ⊕ (ac)′

a′(c′ ⊕ b′) (ac)′ ⊕ (ab)′

[a(c⊕ b)]′ a′(c′ ⊕ b′) a′c′ ⊕ a′b′ (ac⊕ ab)′

(2.1.6) 3.10.7

≅−1
Lap δl ≅Lap

≅⊕ML

ξ⊕

≅⊕ML

≅−1
Lap

1ξ⊕

≅Lap
≅−1
Lap δl ≅Lap

1

1

ξ⊕

The middle subdiagram is commutative by the axiom (2.1.6) in C. The right sub-
diagram is commutative by the Coherence Theorem 3.10.7. The two unlabeled
triangles are commutative by definition. Similar notations are used in the remain-
ing diagrams in this proof.
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Using the strict associativity of ⊕A, the axiom (2.1.9) in A states the commuta-
tivity of the outer diagram in C below.

[a(b⊕ c⊕ d)]′ a′[(b⊕ c)′ ⊕ d′] a′(b⊕ c)′ ⊕ a′d′ [a(b⊕ c)⊕ ad]′

a′[b′ ⊕ (c⊕ d)′] a′[(b′ ⊕ c′)⊕ d′] a′(b′ ⊕ c′)⊕ a′d′ a′(b′ ⊕ c′)⊕ (ad)′

a′[b′ ⊕ (c′ ⊕ d′)] (a′b′ ⊕ a′c′)⊕ a′d′

a′b′ ⊕ a′(c⊕ d)′ a′b′ ⊕ a′(c′ ⊕ d′) a′b′ ⊕ (a′c′ ⊕ a′d′) (a′b′ ⊕ a′c′)⊕ (ad)′

[ab⊕ a(c⊕ d)]′ (ab)′ ⊕ a′(c′ ⊕ d′) (ab)′ ⊕ (a′c′ ⊕ a′d′) (ab⊕ ac⊕ ad)′

nat

(2.1.9)

fun

fun

≅−1
Lap δl ≅Lap

≅−1
Lap

δl ⊕ 1

≅Lap

≅−1
Lap

δl

≅Lap

≅−1
Lap 1⊕ δl ≅Lap

δl

δl ⊕ 1

α⊕

1α⊕

δl

1⊕ δl

≅Lap

≅Lap ≅Lap

1⊕ ≅Lap

1⊕ ≅Lap

≅Lap ⊕1≅Lap ⊕1

In the middle column, the top two subdiagrams are commutative by the natu-
rality of δl and the axiom (2.1.9) in C. The two subdiagrams labeled by fun are
commutative by the functoriality of ⊕ in C. Each of the other four subdiagrams is
commutative by Theorem 3.10.7.

Using the strict associativity of ⊗A, the axiom (2.1.10) in A states the commu-
tativity of the outer diagram in C below.

[ab(c⊕ d)]′ (ab)′(c′ ⊕ d′) (ab)′c′ ⊕ (ab)′d′ (abc⊕ abd)′

a′[b′(c′ ⊕ d′)] (a′b′)(c′ ⊕ d′) (a′b′)c′ ⊕ (a′b′)d′

a′(b′c′ ⊕ b′d′) a′(b′c′)⊕ a′(b′d′)

[a(bc⊕ bd)]′ a′[(bc)′ ⊕ (bd)′] a′(bc)′ ⊕ a′(bd)′

(2.1.10)

nat

≅−1
Lap δl ≅Lap

≅−1
Lap

1δl

≅Lap
≅−1
Lap δl

≅Lap

≅Lap

α⊗ δl

α⊗ ⊕ α⊗

≅Lap

δl

≅Lap

The middle rectangle is commutative by (2.1.10) in C. The bottom parallelogram
is commutative by the naturality of δl . Each of the other three subdiagrams is
commutative by Theorem 3.10.7.
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Using the strict associativity of ⊗A and that δrA = 1, the axiom (2.1.12) in A
states the commutativity of the outer diagram in C below.

[a(b⊕ c)d]′ [a′(b′ ⊕ c′)]d′ (a′b′ ⊕ a′c′)d′ [(ab⊕ ac)d]′

a′[(b′ ⊕ c′)d′] (a′b′)d′ ⊕ (a′c′)d′

a′(b′d′ ⊕ c′d′) a′(b′d′)⊕ a′(c′d′)

[a(bd⊕ cd)]′ a′[(bd)′ ⊕ (cd)′] a′(bd)′ ⊕ a′(cd)′ (abd⊕ acd)′

(2.1.12)

nat

≅−1
Lap δl1 ≅Lap

11

≅−1
Lap δl ≅Lap

α⊗

1δr

δl

δr

α⊗ ⊕ α⊗

≅Lap ≅Lap

In the middle column, the top and the bottom rectangles are commutative by, re-
spectively, (2.1.12) and the naturality of δl in C. Each of the other two rectangles is
commutative by Theorem 3.10.7.

When applied to a, b, and c⊕ d, δrA = 1 is the identity morphism

(a⊕ b)(c⊕ d) a(c⊕ d)⊕ b(c⊕ d).δrA

With this identity morphism and α⊕A = 1 taken into account, the axiom (2.1.13) in
A states the commutativity of the outer diagram in C below.

[(a⊕ b)(c⊕ d)]′ a′(c′ ⊕ d′)⊕ b′(c′ ⊕ d′) (a′c′ ⊕ a′d′)⊕ (b′c′ ⊕ b′d′) (ac⊕ ad⊕ bc⊕ bd)′

(a⊕ b)′(c′ ⊕ d′) (a′ ⊕ b′)(c′ ⊕ d′) a′c′ ⊕ [(a′d′ ⊕ b′c′)⊕ b′d′] (ac)′ ⊕ [((ad)′ ⊕ (bc)′)⊕ (bd)′]

(a⊕ b)′c′ ⊕ (a⊕ b)′d′ (a′c′ ⊕ b′c′)⊕ (a′d′ ⊕ b′d′) a′c′ ⊕ [(b′c′ ⊕ a′d′)⊕ b′d′] (ac)′ ⊕ [((bc)′ ⊕ (ad)′)⊕ (bd)′]

[(a⊕ b)c⊕ (a⊕ b)d]′ (ac⊕ bc⊕ ad⊕ bd)′

(2.1.13)

≅−1
Lap δl ⊕ δl ≅Lap

≅Lap

1⊕ (ξ⊕ ⊕ 1)

≅Lap

≅−1
Lap

δl

≅Lap

1

≅Lap

(δr ⊕ δr)δl

(1⊕ α−⊕)α⊕

δr (1⊕ α−⊕)α⊕

1⊕ (ξ⊕ ⊕ 1)

≅Lap

The middle subdiagram is commutative by (2.1.13) in C. Each of the other three
subdiagrams is commutative by Theorem 3.10.7. We have proved that A satisfies
the 22 Laplaza axioms for a bimonoidal category. □

Strictification Theorems. We are now ready for the main strictification results
of this section. The next theorem is the nonsymmetric analogue of Theorem 5.4.6.
Theorem 5.5.11 (Right Rigid Strictification). Suppose C is a tight bimonoidal category.
Then there is an adjoint equivalence

A C
π

ι

with
● A the right rigid bimonoidal category in Proposition 5.5.10;
● counit ε ∶ πι 1C the identity natural transformation;
● π the unitary bimonoidal equivalence as in Definition 5.4.1 and Lemma 5.4.4;

and
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● ι the strong bimonoidal equivalence as in Definition 5.4.2 and Lemma 5.4.5.

Proof. The proof of Lemma 5.4.3 shows that the pair (π, ι) is an adjoint equiva-
lence, and its counit is the identity.

Reusing the proof of Lemma 5.4.4, to show that π is a unitary bimonoidal
equivalence, it remains to prove the axioms (5.1.5) and (5.1.6) for π.

● The axiom (5.1.5) holds for π because
– π0

⊕ and λ ●A are identity natural transformations, and
– there is an equality

π2
⊗ = λ

●
πa ∶ (π0A)⊗ (πa) = 0⊗ (πa) 0 = π(0A ⊗A a).

● The axiom (5.1.6) holds by Theorem 3.10.7 and the definition (5.5.6) of δlA.

Reusing the proof of Lemma 5.4.5, to show that ι is a strong bimonoidal equiv-
alence, it remains to prove the axioms (5.1.5) and (5.1.6) for ι.

● The axiom (5.1.5) holds for ι because each of the two composites is 10.
● The axiom (5.1.6) holds by Theorem 3.10.7 and the fact that each of the

four vertical morphisms is an identity morphism in C.

This finishes the proof. □

As in the symmetric case, the previous theorem has a left rigid analogue. The
next theorem is the nonsymmetric analogue of Theorem 5.4.7.

Theorem 5.5.12 (Left Rigid Strictification). Suppose C is a tight bimonoidal category.
Then there is an adjoint equivalence

Al C
π

ι

with

● Al a left rigid bimonoidal category as in Definition 5.5.8;
● counit ε ∶ πι 1C the identity natural transformation;
● π a unitary bimonoidal equivalence; and
● ι a strong bimonoidal equivalence.

Proof. As in the symmetric case in Theorem 5.4.7, this proof is obtained from that
of Theorem 5.5.11 by redefining the product in A using (5.4.8), so the left distribu-
tive law holds strictly.

Moreover, similar to (5.5.6), the right distributivity morphism in Al is defined
as the composite

π((a⊕A b)⊗A c) π((a⊗A c)⊕A (b⊗A c))

(πa⊕πb)⊗πc (πa⊗πc)⊕ (πb⊗πc)

≅−1
Lap

δrAl

a;b;c

δr
πa;πb;πc

≅Lap

in C for objects a, b, c ∈ Al . Other structures are defined as in A in Definition 5.5.5,
and all the proofs require minimal or no changes. □



I.208 5. STRICTIFICATION OF TIGHT SYMMETRIC BIMONOIDAL CATEGORIES

5.6. Notes

5.6.1 (Symmetric Bimonoidal Functors). Our Definition 5.1.1 of a symmetric bi-
monoidal functor is more general than May’s in [May77, Def. 6.3.4], which corre-
sponds to our unitary symmetric bimonoidal functors. A homomorphism between
symmetric rig categories in [Elg21, Section 2] corresponds to our strong symmetric
bimonoidal functor. ◇
5.6.2 (Strictification Theorem). The proof of the Strictification Theorem 5.4.6 is out-
lined in [May77, Prop. 6.3.5]. We emphasize the necessity of the tightness assump-
tion, that is, the invertibility of the distributivity morphisms. As we saw in (5.2.29)
and (5.2.36), the products of morphisms and the symmetry isomorphism in the
associated right bipermutative category A use the inverse of a Laplaza coherence
isomorphism. By definition, ≅−1

Lap is only defined if the distributivity morphisms δl

and δr are natural isomorphisms.
Since May only gave an outline of the strictification theorem, it may not be

apparent that May’s proof actually uses the Coherence Theorem 3.9.1 many times.
In [May77, Prop. 6.3.5], May implicitly used Theorem 3.9.1 when he defined

● the bottom displayed morphism on page 156 there, and
● the second displayed morphism on page 157 there.

These correspond to, respectively, our f ⊗A g in (5.2.29) and ξ⊗A

a;b in (5.2.36). Fur-
thermore, showing that A has the desired property of a strictification of a tight
symmetric bimonoidal category also uses Theorem 3.9.1 multiple times. See Ex-
planation 5.2.31 and Lemmas 5.3.1, 5.3.4, 5.3.8, and 5.4.4. ◇
5.6.3 (Elmendorf-Mandell Bipermutative Categories). Elmendorf and Mandell in
[EM06, Def. 3.6] defined their version of bipermutative categories in which the
distributivity morphisms

● are not invertible in general, and
● point in the opposite direction as those in (2.1.4).

See Definition II.9.3.2 for the precise definition. Implicitly citing May’s result in
[May77, Prop. 6.3.5], it is stated in [EM06, page 178] that their bipermutative cat-
egories can be strictified to equivalent right bipermutative categories. As stated
in Note 5.6.2, strictification to equivalent right bipermutative categories only ap-
plies to tight symmetric bimonoidal categories because some constructions and
proofs in the strictification require the invertibility of the distributivity morphisms.
Therefore, the correct statement is that bipermutative categories in the sense of
[EM06, Def. 3.6] with invertible distributivity morphisms, which are examples
of tight symmetric bimonoidal categories, can be strictified to equivalent right
bipermutative categories. This is a special case of our Theorem 5.4.6. See Corol-
lary II.9.3.13. ◇
5.6.4 (Multi-Object Version of Strictification). Guillou proved a multi-object ver-
sion of Theorem 5.5.11 involving categories weakly enriched in symmetric mon-
oidal categories or in permutative categories in [Gui10, Theorem 1.2]. The setting
is that of bicategories enriched in the monoidal bicategory of symmetric monoidal
categories. Guillou gave two proofs of that theorem, one using (i) the strictifica-
tion of bicategories to biequivalent 2-categories, and the other using (ii) the Yoneda
embedding for bicategories. As we explained in detail in [JY21, Chapter 8], both
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(i) and (ii) depend on the Bicategorical Pasting Theorem 3.6.6 in that book, which
is itself a coherence theorem that requires a careful proof. ◇
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Bicategorical Aspects of Symmetric
Bimonoidal Categories





CHAPTER 6

Definitions from Bicategory Theory

Part 2 concerns 2-/bicategorical aspects of symmetric bimonoidal categories.

(1) In Chapter 7, we will define a suitable 2-category Bifsyr of flat small sym-
metric bimonoidal categories. The main goal of that chapter is to show
that the symmetric bimonoidal category Σ in Proposition 2.4.8 is a lax bi-
colimit of the 2-functor ∅ Bifsyr . In other words, Σ is a bicategorical
analogue of an initial object in the 2-category Bifsyr . This theorem confirms
a conjecture due to John Baez.

(2) In Chapter 8, we will show that for a tight symmetric bimonoidal cate-
gory C, the matrix construction MatC is a symmetric monoidal bicategory.
It has nonnegative integers as objects, and n×m matrices with entries ob-
jects/morphisms in C as 1-/2-cells m n. Horizontal composition is
defined by matrix multiplication with a suitable bracketing for addition.
The monoidal composition of the monoidal bicategory is given by matrix
tensor product. The braiding of the symmetric monoidal bicategory is
induced by permutation matrices in MatC. In general, the structure mor-
phisms in MatC are not identities. As an example, the category 2Vectc of
coordinatized 2-vector spaces in Examples 8.4.13 and 8.15.5 is a symmet-
ric monoidal bicategory.

(3) Concepts about 2-/bicategories are also used in
● Chapters II.7 and II.8, for the braided versions of Baez’s Conjecture

and the matrix construction MatC, and
● Parts III.1 and III.2, for enriched monoidal categories, multicate-

gories, and the Elmendorf-Mandell K-theory multifunctor.

Without assuming any prior knowledge of 2-dimensional categories, the purpose
of this chapter is to recall the relevant concepts that we will use in later chapters.
For open questions related to 2-categories and bicategories, see Questions III.A.1.1,
III.A.1.2, III.A.1.4, III.A.1.5, III.A.2.4, III.A.4.1, III.A.5.4, and III.A.5.5.

Organization. In Section 6.1, we define bicategories and 2-categories, which
are due to Bénabou [Bén67, Bén65], and provide some examples. In a bicategory,
in addition to objects and morphisms between objects, there are also morphisms
between morphisms called 2-cells. Just as a category may be regarded as a monoid
with multiple objects, a bicategory may be regarded as a monoidal category with
multiple objects. A 2-category is a particularly nice bicategory in which the as-
sociator and the unitors are identities. The main 2-category in Chapter 7 is the
2-category Bifsyr in Definition 7.1.8. The main bicategory in Chapter 8 is the matrix
bicategory MatC, whose horizontal composition is given by the matrix product.

I.213
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In Section 6.2, we define bicategorical analogues of functors and natural trans-
formations. Due to the presence of 2-cells, there are several versions of functors—
lax, pseudo, (strictly) unitary, and strict—between bicategories, depending on the
extent to which horizontal composites of 1-cells and identity 1-cells are preserved.
A strict functor between 2-categories is called a 2-functor. In Chapter 7, ∅ Bifsyr
is an example of a 2-functor. Similarly, transformations between lax functors can
be strong or lax, depending on whether the component 2-cells are invertible or not.
We also briefly discuss pasting diagrams in bicategories.

In Section 6.3, we define modifications, adjunctions, and adjoint equivalences
in bicategories. Modifications are morphisms between lax transformations. Here
is an analogy to keep track of the various concepts. If a bicategory is regarded
as a topological space, then lax functors, lax transformations, and modifications
are analogues of, respectively, continuous maps, homotopies between continuous
maps, and homotopies between homotopies between continuous maps. More-
over, the usual concepts of adjunctions and adjoint equivalences also make sense
inside a bicategory.

In Section 6.4, we define a monoidal bicategory, which is a one-object tricate-
gory. Since we do not discuss tricategories in this book, we will define a monoidal
bicategory with all of its structures explicitly spelled out. It involves the concepts
of pseudofunctors, modifications, and adjoint equivalences in a bicategory. A
monoidal bicategory has a base bicategory B and a pseudofunctor ⊠ ∶ B×B B
called the monoidal composition, along with other related structures. The mon-
oidal composition ⊠ in a monoidal bicategory is an extra level of composition on
top of the horizontal composition in the base bicategory. As an analogy, consider
complex matrices. There is a base level matrix multiplication AB, which is only
defined when the number of columns in A is equal to the number of rows in B. On
top of that, the matrix tensor product A⊗ B, which is also known as the Kronecker
product, is always defined regardless of the sizes of A and B.

In Section 6.5, we define braided, sylleptic, and symmetric monoidal bicate-
gories. Braided and symmetric monoidal bicategories are bicategorical analogues
of braided and symmetric monoidal categories. In the bicategorical setting, there
is the intermediate concept of a sylleptic monoidal bicategory. The symmetry ax-
iom ξY,XξX,Y = 1 is replaced by an invertible modification ν, called the syllepsis,
that connects the braiding-square to the identity, and that satisfies its own coher-
ence axioms. A symmetric monoidal bicategory is a sylleptic monoidal bicate-
gory whose syllepsis satisfies an additional coherence axiom. The main theorem
of Chapter 8 is that, for a tight symmetric bimonoidal category C, the matrix bi-
category MatC is a symmetric monoidal bicategory. Its monoidal composition is
given by the matrix tensor product for matrices in C. The braiding is given by
permutation matrices interpreted using 0 and 1 in C.

In Section 6.6, we define the Gray tensor product for 2-categories and Gray
monoids. The Gray tensor product is an interpolation between what we call the
box product and the Cartesian product for 2-categories. The 1-category 2Cat of
small 2-categories and 2-functors is a symmetric monoidal closed category when
equipped with the Gray tensor product. Its monoids are called Gray monoids.

In Section 6.7, we first define permutative Gray monoids and explain them
with complete detail. Permutative Gray monoids are to Gray monoids as per-
mutative categories are to strict monoidal categories. The last part of this section



6.1. BICATEGORIES AND 2-CATEGORIES I.215

contains a brief discussion of strictification related to symmetric monoidal bicate-
gories, permutative Gray monoids, and permutative 2-categories.

References. Most of the topics in this chapter are discussed in much greater
detail in the book [JY21], where we refer the reader for further discussion, proofs,
and examples. Here is a road map between this chapter and the book [JY21].

Topics This chapter Sections in [JY21]
Bicategories 6.1 2.1–2.2
2-categories 6.1 2.3

Pasting diagrams 6.2 Chapter 3
Lax functors 6.2 4.1

Lax transformations 6.2 4.2
Modifications 6.3 4.4
Adjunctions 6.3 6.1–6.2

Monoidal bicategories 6.4 11.1, 11.2, and 12.1
Mates 6.5 6.1

Braided, sylleptic, and
symmetric monoidal bicategories 6.5 12.1

The Gray tensor product
and Gray monoids 6.6 12.2

The definitions of permutative Gray monoids and permutative 2-categories are
from [GJO17b]. The articles [Lac10, Lei∞] are useful guides for 2-categories and
bicategories.

6.1. Bicategories and 2-Categories

In this section, we recall the definitions and some basic examples of bicategor-
ies and 2-categories.

Convention 6.1.1. 1 denotes the category with one object ∗ and only its identity
morphism. For a category C, we identify the categories C× 1 and 1×C with C, and
regard the canonical isomorphisms between them as 1C. ◇

A bicategory as defined next is a many-object version of a monoidal category
in Definition 1.2.1.

Definition 6.1.2. A bicategory is a tuple

(B, 1, c, a, ℓ, r)

consisting of the following data.

Objects: B is equipped with a class Ob(B), whose elements are called objects or
0-cells in B. If X ∈ Ob(B), we also write X ∈ B.

The Hom Categories: For each pair of objects X, Y ∈ B, B is equipped with a cate-
gory B(X, Y), which is called a hom category.
● Its objects are called 1-cells in B. Such a 1-cell f is denoted by either

f ∶ X Y or X Y.
f
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● Its morphisms are called 2-cells in B. For 1-cells f , f ′ ∈ B(X, Y), we
display each 2-cell α ∶ f f ′ in diagrams as

X Y

⇒

α

f

f ′

with a double arrow for the 2-cell.
● Composition and identity morphisms in the category B(X, Y) are

called vertical composition and identity 2-cells, respectively.
● An isomorphism in B(X, Y) is called an invertible 2-cell, and its in-

verse is called a vertical inverse.
● For a 1-cell f , its identity 2-cell is denoted by 1 f .

Identity 1-Cells: For each object X ∈ B,

1 B(X, X)1X

is a functor. We identify the functor 1X with the 1-cell 1X(∗) ∈ B(X, X),
which is called the identity 1-cell of X.

The Horizontal Composition: For each triple of objects X, Y, Z ∈ B,

B(Y, Z)×B(X, Y) B(X, Z)cXYZ

is a functor, which is called the horizontal composition. For 1-cells f ∈
B(X, Y) and g ∈ B(Y, Z), and 2-cells α ∈ B(X, Y) and β ∈ B(Y, Z), we
use the notations

cXYZ(g, f ) = g ○ f or g f , and

cXYZ(β, α) = β ∗ α.

The Associator: For objects W, X, Y, Z ∈ B,

cWXZ(cXYZ × IdB(W,X)) cWYZ(IdB(Y,Z) × cWXY)
aWXYZ

is a natural isomorphism, which is called the associator, between functors

B(Y, Z)×B(X, Y)×B(W, X) B(W, Z).

The Unitors: For each pair of objects X, Y ∈ B,

cXYY(1Y × IdB(X,Y)) IdB(X,Y) cXXY(IdB(X,Y) × 1X)
ℓXY rXY

are natural isomorphisms, which are called the left unitor and the right
unitor, respectively.

The subscripts in c will often be omitted. The subscripts in a, ℓ, and r will often
be used to denote their components. The above data are required to satisfy the
following two axioms for 1-cells f ∈ B(V, W), g ∈ B(W, X), h ∈ B(X, Y), and k ∈
B(Y, Z).
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The Unity Axiom: The middle unity diagram

(6.1.3)

(g1W) f g(1W f )

g f

ag,1W , f

rg∗1 f 1g∗ℓ f

in B(V, X) is commutative.
The Pentagon Axiom: The diagram

(6.1.4)

(kh)(g f )

((kh)g) f

(k(hg)) f k((hg) f )

k(h(g f ))

ak,h,g fakh,g, f

ak,h,g∗1 f
ak,hg, f

1k∗ah,g, f

in B(V, Z) is commutative.
This finishes the definition of a bicategory. We sometimes abbreviate a bicategory
as above to B. Moreover, a bicategory B is

● locally small if each hom category is a small category, and
● small if it is locally small and if Ob(B) is a set. ◇

Explanation 6.1.5. In a bicategory B, we assume that the hom categories B(X, Y)
for objects X, Y ∈ B are disjoint. If not, we tacitly replace them with their disjoint
union. ◇
Definition 6.1.6. A bicategory B′ is called a subbicategory of a bicategory B if the
following statements hold.

● Ob(B′) is a subclass of Ob(B).
● For objects X, Y ∈ B′, B′(X, Y) is a subcategory of B(X, Y).
● The identity 1-cell of X in B′ is equal to the identity 1-cell of X in B.
● For objects X, Y, Z in B′, the horizontal composition c′XYZ in B′ makes the

diagram

B′(Y, Z)×B′(X, Y) B′(X, Z)

B(Y, Z)×B(X, Y) B(X, Z)

c′XYZ

cXYZ

commutative, in which the unnamed arrows are subcategory inclusions.
● Each component of the associator in B′ is equal to the corresponding com-

ponent of the associator in B, and similarly for the left unitors and the
right unitors.

This finishes the definition of a subbicategory. Moreover, B′ is called a full subbi-
category of B if for each pair of objects X, Y ∈ B′, B′(X, Y) is a full subcategory of
B(X, Y). ◇
Explanation 6.1.7. A subbicategory B′ of a bicategory B is full if for each pair
of objects X, Y ∈ B′, and for each pair of 1-cells f , g ∈ B′(X, Y), the subcategory
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inclusion yields an equality

B′(X, Y)( f , g) = B(X, Y)( f , g)
of sets of 2-cells. ◇
Definition 6.1.8. A 2-category is a bicategory (B, 1, c, a, ℓ, r) in which the associator
a, the left unitor ℓ, and the right unitor r are identity natural transformations. ◇
Definition 6.1.9. Suppose B and B′ are 2-categories. Then B′ is called a (full) sub-
2-category of B if it is a (full) subbicategory of B in the sense of Definition 6.1.6. ◇

A 2-category can also be characterized explicitly as follows.
Proposition 6.1.10. A 2-category B contains precisely the following data:

● A class Ob(B) of objects.
● For objects X, Y ∈ B, a class B(X, Y) of 1-cells from X to Y.
● An identity 1-cell 1X ∈ B(X, X) for each object X.
● For 1-cells f , f ′ ∈ B(X, Y), a set B(X, Y)( f , f ′) of 2-cells from f to f ′.
● An identity 2-cell 1 f ∈ B(X, Y)( f , f ) for each 1-cell f ∈ B(X, Y) and each pair

of objects X, Y.
● For objects X and Y, and 1-cells f , f ′, f ′′ ∈ B(X, Y), an assignment

B(X, Y)( f ′, f ′′)×B(X, Y)( f , f ′) B(X, Y)( f , f ′′)

(α′, α) α′α,

v

which is called the vertical composition.
● For objects X, Y, and Z, an assignment

B(Y, Z)×B(X, Y) B(X, Z)

(g, f ) g f ,

c1

which is called the horizontal composition of 1-cells.
● For objects X, Y, and Z, and 1-cells f , f ′ ∈ B(X, Y) and g, g′ ∈ B(Y, Z), an

assignment

B(Y, Z)(g, g′)×B(X, Y)( f , f ′) B(X, Z)(g f , g′ f ′)

(β, α) β ∗ α,

c2

which is called the horizontal composition of 2-cells.
These data are required to satisfy the axioms (i)–(vi) below.

(i) The vertical composition is associative and unital with respect to the identity
2-cells.

(ii) The horizontal composition preserves identity 2-cells and vertical composition.
(iii) The horizontal composition of 1-cells is associative, in the sense that for 1-cells

f ∈ B(W, X), g ∈ B(X, Y), and h ∈ B(Y, Z), there is an equality

(hg) f = h(g f ) ∈ B(W, Z).
(iv) The horizontal composition of 2-cells is associative, in the sense that for 2-cells

α ∈ B(W, X)( f , f ′), β ∈ B(X, Y)(g, g′), and γ ∈ B(Y, Z)(h, h′), there is an
equality

(γ ∗ β) ∗ α = γ ∗ (β ∗ α)
in B(W, Z)((hg) f , h′(g′ f ′)).
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(v) The horizontal composition of 1-cells is unital with respect to the identity 1-cells,
in the sense that there are equalities

1Y f = f = f 1X

for each f ∈ B(X, Y).
(vi) The horizontal composition of 2-cells is unital with respect to the identity 2-cells

of the identity 1-cells, in the sense that there are equalities

11Y ∗ α = α = α ∗ 11X

for each α ∈ B(X, Y)( f , f ′).
This finishes the list of axioms of a 2-category.

For a 2-category B, its underlying 1-category is the category with
● objects Ob(B),
● morphisms the 1-cells in B,
● identity morphisms the identity 1-cells in B, and
● categorical composition the horizontal composition of 1-cells in B.

By a Cat-category we mean a category enriched in the symmetric monoidal
category (Cat,×,∗) of small categories with the Cartesian product as the monoidal
product. Discussion of enriched categories can be found in [Kel05], [JY21, 1.3],
and Section III.1.2.
Proposition 6.1.11. A locally small 2-category is precisely a Cat-category.
Example 6.1.12 (Categories). Each category C yields a 2-category when each mor-
phism set C(X, Y) is regarded as a category with only identity morphisms. In this
2-category, each 2-cell is an identity 2-cell. In particular, the terminal category 1 in
Convention 6.1.1 yields a 2-category with one object ∗, one 1-cell 1∗, and one 2-cell
11∗ . ◇
Example 6.1.13 (Small Categories). There is a 2-category Cat defined by the fol-
lowing data.

● It has small categories as objects, functors as 1-cells, and natural transfor-
mations as 2-cells.
● Composition of functors are horizontal composition of 1-cells.
● Vertical and horizontal composition of natural transformations are those

of 2-cells.
● Identity functors are identity 1-cells.
● Identity natural transformations are identity 2-cells.

From now on, the notation Cat denotes either this 2-category or its underlying
1-category of small categories and functors. ◇
Example 6.1.14 (Monoidal Categories). There is a 2-category MCat with

● small monoidal categories as objects,
● (identity) monoidal functors as (identity) 1-cells,
● monoidal natural transformations as 2-cells, and
● composition of monoidal functors as horizontal composition of 1-cells.

The rest of the structure is defined as in Cat. ◇
Example 6.1.15 (Symmetric Monoidal Categories). SMCat is the 2-category with

● small symmetric monoidal categories as objects,
● (identity) symmetric monoidal functors as (identity) 1-cells,
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● monoidal natural transformations as 2-cells, and
● composition of symmetric monoidal functors as horizontal composition

of 1-cells.
The rest of the structure is defined as in Cat. ◇
Example 6.1.16 (One-Object Bicategories). Each monoidal category

(C,⊗,1, α, λ, ρ)
yields a one-object bicategory ΣC. It has unique hom category ΣC(∗,∗) = C, iden-
tity 1-cell 1∗ = 1, horizontal composition ⊗, associator α, left unitor λ, and right
unitor ρ. Conversely, for each one-object bicategory, the unique hom category has
the structure of a monoidal category as in the previous sentence. ◇
Example 6.1.17 (Bimodules). There is a bicategory Bimod whose objects are unital
and associative rings. For two rings R and S, the hom category Bimod(R, S) has
(R, S)-bimodules as objects and (R, S)-bimodule homomorphisms as morphisms.

● For an (R, S)-bimodule M and an (S, T)-bimodule N, the horizontal com-
position of 1-cells is

cRST(N, M) = M⊗S N

as an (R, T)-bimodule.
● The horizontal composition of 2-cells is given by tensoring of bimodule

homomorphisms over a ring.
● Components of the associator, the left unitor, and the right unitor are the

usual isomorphisms:

M⊗S (N ⊗T P) ≅ (M⊗S N)⊗T P
M⊗S S ≅ M

R⊗R M ≅ M.

Note that the associator seemingly moves brackets from right to left. Moreover,
the left unitor has S on the right, and the right unitor has R on the left. This switch
of directions is due to the definition of the horizontal composition cRST . ◇

6.2. Lax Functors, Lax Transformations, and Pastings

In this section, we define lax functors between bicategories and lax transfor-
mations between lax functors, and briefly discuss pasting diagrams.

Lax Functors. The following definition of a lax functor is modeled after the
concept of a monoidal functor in Definition 1.2.11.

Definition 6.2.1. Suppose (B, 1, c, a, ℓ, r) and (B′, 1′, c′, a′, ℓ′, r′) are bicategories as
in Definition 6.1.2. A lax functor

(F, F2, F0) ∶ B B′

from B to B′ is a triple consisting of the following data.
Objects: F ∶ Ob(B) Ob(B′) is a function on objects.
The Local Functors: For each pair of objects X, Y in B, it is equipped with a local

functor
F ∶ B(X, Y) B′(FX, FY).
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The Laxity Constraints: For all objects X, Y, Z in B, it is equipped with natural
transformations

B(Y, Z)×B(X, Y) B(X, Z)

B′(FY, FZ)×B′(FX, FY) B′(FX, FZ)
⇒F2

c

FF × F

c′

1 B(X, X)

B′(FX, FX)
⇒F0

1X

F1′FX

with component 2-cells

Fg ○ F f F(g f )

1′FX F1X .

F2
g, f

F0
X

We call F2 the lax functoriality constraint and F0 the lax unity constraint.
The above data are required to make the following three diagrams commutative
for all 1-cells f ∈ B(W, X), g ∈ B(X, Y), and h ∈ B(Y, Z).
Lax Associativity:

(6.2.2)

(Fh ○ Fg) ○ F f Fh ○ (Fg ○ F f )

F(hg) ○ F f Fh ○ F(g f )

F((hg) f ) F(h(g f ))

a′

F2
h,g∗1F f 1Fh∗F2

g, f

F2
hg, f F2

h,g f

Fa

in B′(FW, FZ).
Lax Left and Right Unity:

(6.2.3)

1′FX ○ F f F f

F1X ○ F f F(1X ○ f )

ℓ′

F0
X∗1F f

F2
1X , f

Fℓ

F f ○ 1′FW F f

F f ○ F1W F( f ○ 1W)

r′

1F f∗F0
W

F2
f ,1W

Fr

in B′(FW, FX).
This finishes the definition of a lax functor.

Moreover, we define the following.
● A lax functor is unitary (respectively, strictly unitary) if each lax unity con-

straint F0
X is an invertible 2-cell (respectively, identity 2-cell).

● A pseudofunctor is a lax functor in which F2 and F0 are natural isomor-
phisms.
● A strict functor is a lax functor in which F2 and F0 are identity natural

transformations.
● A strict functor between two 2-categories is called a 2-functor. ◇

Explanation 6.2.4. The lax unity constraint F0 in a lax functor is completely de-
termined by the component 2-cells F0

X for objects X ∈ B. Its naturality condition is
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redundant because the terminal category 1 only has the identity morphism of ∗.
See [JY21, Explanation 4.1.5(3)]. ◇
Proposition 6.2.5. For 2-categories A and B, a 2-functor F ∶ A B consists of pre-
cisely the following data.

● A function F ∶ Ob(A) Ob(B) on objects.
● A functor F ∶ A(X, Y) B(FX, FY) for each pair of objects X, Y in A.

These data are subject to the following two conditions.
(1) F is a functor between the underlying 1-categories of A and B.
(2) F preserves horizontal compositions of 2-cells.

Next we define composites of lax functors.
Definition 6.2.6. Suppose

B C D
(F,F2,F0) (G,G2,G0)

are lax functors between bicategories. The composite

B D
(GF, (GF)2, (GF)0)

is defined as follows.
Objects: GF ∶ Ob(B) Ob(D) is the composite of the functions F and G on

objects.
The Local Functors: For objects X, Y in B, it is equipped with the composite func-

tor

B(X, Y) C(FX, FY) D(GFX, GFY).F G

GF

The Lax Unity Constraint: For each object X in B, it is equipped with the verti-
cally composed 2-cell

(6.2.7) 1GFX G1FX GF1X
G0

FX G(F0
X)

(GF)0X

in D(GFX, GFX).
The Lax Functoriality Constraint: For 1-cells (g, f ) ∈ B(Y, Z)×B(X, Y), it has the

vertically composed 2-cell

(6.2.8) GFg ○GF f G(Fg ○ F f ) GF(g f )
G2

Fg,F f G(F2
g, f )

(GF)2g, f

in D(GFX, GFZ).
The finishes the definition of the composite. ◇
Lemma 6.2.9. Suppose F ∶ B C and G ∶ C D are lax functors between bicate-
gories.

(1) The composite (GF, (GF)2, (GF)0) is a lax functor from B to D.
(2) If both F and G are pseudofunctors (respectively, strict, unitary, or strictly uni-

tary), then so is the composite GF.
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Example 6.2.10 (Identity Strict Functors). Each bicategory B has an identity strict
functor 1B ∶ B B.

● It is the identity function on the objects in B.
● It is the identity functor on B(X, Y) for objects X, Y in B.
● For composable 1-cells (g, f ), the component (1B)2g, f is the identity 2-cell

1g f = 1g ∗ 1 f .
● The component (1B)0X is the identity 2-cell 11X .

For 1B, the lax associativity diagram (6.2.2) follows from the naturality of the as-
sociator a, and both lax unity diagrams (6.2.3) are commutative by definition. ◇

Theorem 6.2.11. There is a category Bicat with

● small bicategories as objects,
● lax functors between them as morphisms,
● composites of lax functors as in Definition 6.2.6, and
● identity strict functors in Example 6.2.10 as identity morphisms.

Furthermore, Bicat contains the wide subcategories

(i) Bicatu with unitary lax functors as morphisms,
(ii) Bicatsu with strictly unitary lax functors as morphisms,

(iii) Bicatps with pseudofunctors as morphisms,
(iv) Bicatsup with strictly unitary pseudofunctors as morphisms, and
(v) Bicatst with strict functors as morphisms.

Pastings. Some of the upcoming definitions use the concept of a pasting di-
agram in a bicategory. This is an efficient and visual way to represent iterated
vertical composition of 2-cells, each being the horizontal composition of one 2-cell
and a finite number of identity 2-cells. This topic is discussed at length in [JY21,
Ch. 3], where we refer the reader for detailed discussion and many examples. In
particular, the Bicategorical Pasting Theorem 3.6.6 there states that each pasting
diagram in a bicategory has a unique composite, once a bracketing is chosen for
the (co)domain composite 1-cell.

Convention 6.2.12. Pasting diagrams use the left normalized bracketing (5.2.13)
for the iterated horizontal composition of (co)domain 1-cells, unless a different
bracketing is specified. ◇

Example 6.2.13. Consider the following data in a bicategory B.

● Objects A1, A2, A3, and A4.
● 1-cells f ∶ A1 A3, g1 ∶ A1 A2, g2 ∶ A2 A3, g3 ∶ A2 A3,

g4 ∶ A3 A4, and h ∶ A2 A4.
● 2-cells θ1 ∶ f g2g1, θ ∶ g2 g3, and θ2 ∶ g4g3 h.
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The pasting diagram

A1 A2 A3 A4

f

g1

g2

g3

g4

h

⇒

θ1

⇒

θ

⇒

θ2

represents the following vertical composite 2-cell.

(θ2 ∗ 1g1)(a
−1
g4,g3,g1

)(1g4 ∗ (θ ∗ 1g1))(1g4 ∗ θ1) ∶ g4 f hg1

Note that a component of the inverse of the associator is inserted because the
codomain of 1g4 ∗ (θ ∗ 1g1) is the 1-cell g4(g3g1), while the domain of θ2 ∗ 1g1 is
the 1-cell (g4g3)g1. ◇

Lax Transformations. The next definition is the bicategorical analogue of a
natural transformation in Definition 1.1.7.

Definition 6.2.14. Suppose (F, F2, F0) and (G, G2, G0) are lax functors B B′. A
lax transformation α ∶ F G consists of the following data.

Components: It is equipped with a component 1-cell αX ∈ B′(FX, GX) for each
object X in B.

The Lax Naturality Constraints: For each pair of objects X, Y in B, it is equipped
with a natural transformation

α ∶ α∗XG (αY)∗F ∶ B(X, Y) B′(FX, GY)

with a component 2-cell

α f ∶ (G f )αX αY(F f )

as in the following diagram for each 1-cell f ∈ B(X, Y).

FX FY

GX GY

F f

αX αY

G f

⇒
α f

The above data are required to satisfy the following two pasting diagram equali-
ties for all objects X, Y, Z, and 1-cells f ∈ B(X, Y) and g ∈ B(Y, Z).
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Lax Unity:

(6.2.15)

FX FX

GX GX

F1X

αX αX

1GX

G1X

⇒
α1X

⇒ G0

=

FX FX

GX GX

F1X

αX αX

1GX

αX

1FX

⇒ℓ
⇒r−1

⇒ F0

Lax Naturality:

(6.2.16)

FX FZ

GX

GY

GZ⇒G2

⇒
αg f

F(g f )

αZαX

G f Gg

G(g f )
=

FX

FY

FZ

GX

GY

GZ
⇒α f ⇒αg

⇒ F2

F(g f )

αZαX

G f Gg

F f Fg

αY

This finishes the definition of a lax transformation.
Moreover, we define the following.
● A strong transformation is a lax transformation in which each component

α f is an invertible 2-cell.
● A strict transformation is a lax transformation in which each component

α f is an identity 2-cell.
● A 2-natural transformation is a strict transformation between 2-functors

between 2-categories. ◇
Next is the bicategorical analogue of the identity natural transformation of a

functor.
Lemma 6.2.17. Suppose (F, F2, F0) ∶ B B′ is a lax functor between bicategories.
Then there is a strong transformation

1F ∶ F F

defined by the following data.
● For each object X in B, the component 1-cell (1F)X is the identity 1-cell 1FX ∈
B(FX, FX).
● For each 1-cell f ∈ B(X, Y), the component 2-cell is the vertical composite

(6.2.18) (F f )1FX F f 1FY(F f )
rF f ℓ−1

F f

(1F) f

in B′(FX, FY).
Definition 6.2.19. For a lax functor F, the strong transformation 1F ∶ F F in
Lemma 6.2.17 is called the identity transformation of F. ◇
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Note that if F is a 2-functor, then the identity transformation 1F is a 2-natural
transformation. For a general lax functor F, 1F is a strong transformation that is
not usually strict. Next we define composition of lax transformations.
Definition 6.2.20. Suppose α ∶ F G and β ∶ G H are lax transformations
for lax functors F, G, H ∶ B B′. The horizontal composite βα ∶ F H is defined
with the following data.
Component 1-Cells: For each object X in B, it is equipped with the horizontal

composite 1-cell

FX GX HX
αX βX

(βα)X

in B′(FX, HX).
Component 2-Cells: For each 1-cell f ∈ B(X, Y), (βα) f is the 2-cell

(6.2.21)

FX FY

GX GY

HX HY

F f
αX αY

G f
βX βY

H f

βXαX βYαY

⇒α f

⇒β f

whose vertical boundaries are bracketed as indicated. ◇
Lemma 6.2.22. In Definition 6.2.20, βα ∶ F H is a lax transformation, which is
strong if both α and β are strong.

The 2-Category of 2-Categories.
Proposition 6.2.23. For 2-functors F, G ∶ A B between 2-categories, a 2-natural
transformation α ∶ F G consists of exactly a component 1-cell αX ∈ B(FX, GX) for
each object X in A such that the following two conditions are satisfied.
1-Cell Naturality: For each 1-cell f ∈ A(X, Y), the two composite 1-cells

(6.2.24)
FX GX

FY GY

F f

αX

G f
αY

in B(FX, GY) are equal.
2-Cell Naturality: For each 2-cell θ ∶ f g in A(X, Y), the diagram

(6.2.25)

(G f )αX αY(F f )

(Gg)αX αY(Fg)

1

Gθ∗1αX 1αY∗Fθ

1

in B(FX, GY) is commutative.
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Definition 6.2.26. Denote by 2Cat the 2-category of small 2-categories, 2-functors,
and 2-natural transformations.

● Identity 1-cells are the identity strict functors in Example 6.2.10.
● Identity 2-cells are the identity transformations in Lemma 6.2.17.
● Horizontal composition of 2-functors is as in Definition 6.2.6.
● Horizontal and vertical compositions of 2-natural transformations are

those of Cat-categories.

A 2-natural transformation α ∶ F G is a 2-natural isomorphism if there exists a
2-natural transformation β ∶ G F such that the equalities

βα = 1F and αβ = 1G

hold. The notation 2Cat is also used for the 1-category of small 2-categories and
2-functors. ◇
Explanation 6.2.27.

(1) For 2-natural transformations α ∶ F G and β ∶ G H for 2-functors
F, G, H ∶ A B between 2-categories, the vertical composite

βα ∶ F H

is defined by the component 1-cells

(βα)X = βXαX ∈ B(FX, HX)

for objects X ∈ A.
For a 2-natural transformation α′ ∶ F′ G′ for 2-functors F′, G′ ∶

B C between 2-categories, the horizontal composite

α′ ∗ α ∶ F′F G′G

is defined by the component 1-cells

(α′ ∗ α)X = α′GX (F′αX) ∈ B(F′FX, G′GX)

for objects X ∈ A.
(2) If 2-natural transformations are regarded as lax transformations, then the

vertical composition of 2-natural transformations in Definition 6.2.26 is
the horizontal composition of lax transformations in Definition 6.2.20.

(3) A 2-natural transformation α is a 2-natural isomorphism if and only if
each component 1-cell αX ∶ FX GX is invertible. In other words,
there exists a 1-cell βX ∶ GX FX such that the equalities

βXαX = 1FX and αX βX = 1GX

hold. ◇

6.3. Modifications and Adjunctions

In this section, we first define morphisms between lax transformations called
modifications. Then we define adjunctions and adjoint equivalences in a bicate-
gory. These concepts will be used in the definition of a monoidal bicategory in
Section 6.4.
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Definition 6.3.1. Suppose α, β ∶ F G are lax transformations for lax functors
F, G ∶ B B′. A modification Γ ∶ α β consists of a component 2-cell

ΓX ∶ αX βX

in B′(FX, GX) for each object X in B, that satisfies the following modification axiom
for each 1-cell f ∈ B(X, Y).

(6.3.2)

FX FY

GX GY

⇒
α f

⇒
ΓY

F f

βYαX

G f

αY =

FX FY

GX GY

⇒
β f⇒

ΓX

F f

βYαX

G f

βX

A modification is invertible if each component ΓX is an invertible 2-cell. ◇
Definition 6.3.3. Suppose

● F, G, H ∶ B B′ are lax functors, and
● α, β, γ ∶ F G are lax transformations.

Identity Modifications: The identity modification of α, denoted by 1α ∶ α α,
consists of the identity 2-cell

(1α)X = 1αX ∶ αX αX

in B′(FX, GX) for each object X in B.
Vertical Composition: Suppose Γ ∶ α β and Ω ∶ β γ are modifications.

The vertical composite
ΩΓ ∶ α γ

consists of the vertical composite 2-cell

(6.3.4) αX βX γX
ΓX ΩX

(ΩΓ)X

in B′(FX, GX) for each object X in B.
Horizontal Composition: With Γ ∶ α β as above, suppose Γ′ ∶ α′ β′ is

a modification for lax transformations α′, β′ ∶ G H. The horizontal
composite

Γ′ ∗ Γ ∶ α′α β′β

consists of the horizontal composite 2-cell

(6.3.5) (Γ′ ∗ Γ)X = Γ′X ∗ ΓX ∶ (α′α)X (β′β)X
in B′(FX, HX) for each object X in B. Here α′α, β′β ∶ F H are the
horizontal composite lax transformations in Definition 6.2.20. ◇

For a small category C and a category D, there is a category with functors
C D as objects and natural transformations as morphisms. Next is the bicate-
gorical analogue of that fact.
Definition 6.3.6. Suppose B and B′ are bicategories with Ob(B) a set. Define

Bicat(B,B′)
with the following data.
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Objects: The objects in Bicat(B,B′) are lax functors B B′.
The Hom Categories: For lax functors F, G ∶ B B′, Bicat(B,B′)(F, G) is the

category with
● lax transformations F G as objects,
● modifications Γ ∶ α β between such lax transformations as mor-

phisms,
● vertical composition of modifications as composition, and
● identity modifications as identity morphisms.

In other words, in Bicat(B,B′) 1-cells are lax transformations between lax
functors from B to B′, and 2-cells are modifications between them.

Identity 1-Cells: For each lax functor F ∶ B B′, its identity 1-cell is the identity
transformation 1F ∶ F F in Definition 6.2.19.

Horizontal Composition: For lax functors F, G, H ∶ B B′, the horizontal com-
position

Bicat(B,B′)(G, H)×Bicat(B,B′)(F, G) Bicat(B,B′)(F, H)c

is given by
● the horizontal composition of lax transformations in Definition 6.2.20

for 1-cells and
● the horizontal composition of modifications in Definition 6.3.3 for

2-cells.
The Associator: For

● lax functors F, G, H, I ∶ B B′ and
● lax transformations α ∶ F G, β ∶ G H, and γ ∶ H I,

the component
aγ,β,α ∶ (γβ)α γ(βα)

of the associator a is the modification with, for each object X ∈ B, the
component 2-cell

aγX ,βX ,αX ∶ (γX βX)αX γX(βXαX) in B′(FX, IX),
which is a component of the associator in B′.

The Unitors: For each lax transformation α as above, the component

ℓα ∶ 1Gα α

of the left unitor ℓ is the modification with, for each object X ∈ B, the
component 2-cell

ℓαX ∶ 1GXαX αX in B′(FX, GX),
which is a component of the left unitor in B′. The right unitor r is defined
analogously using the right unitor in B′.

This finishes the definition of Bicat(B,B′). ◇
Theorem 6.3.7. Suppose B and B′ are bicategories such that B has a set of objects. Then
Bicat(B,B′) with the structure in Definition 6.3.6 is a bicategory, which is furthermore a
2-category if B′ is a 2-category.

Moreover, the bicategory Bicat(B,B′) contains a subbicategory Bicatps(B,B′) with
● pseudofunctors B B′ as objects,
● strong transformations between such pseudofunctors as 1-cells, and
● modifications between such strong transformations as 2-cells.
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This is a sub-2-category of Bicat(B,B′) if B′ is a 2-category.

Motivation 6.3.8. Next we define adjunction and adjoint equivalence in a bicat-
egory. In a category C, an isomorphism is a morphism that is strictly invertible.
A similar definition exists in a bicategory B. We call a 1-cell f ∶ X Y in B an
isomorphism if there exists a 1-cell g ∶ Y X such that the equalities

g f = 1X and f g = 1Y

of 1-cells hold. However, this notion of sameness is far too strong to hold in prac-
tice. A more reasonable concept of sameness should replace the above equalities
with invertible 2-cells that are compatible in some sense. The next definition of
an adjoint equivalence in a bicategory is modeled after the concept of an adjoint
equivalence in Definition 1.1.12. ◇
Definition 6.3.9. An internal adjunction, which is also called an adjunction, f ⊣ g in
a bicategory B is a quadruple ( f , g, η, ε) consisting of

● 1-cells f ∶ X Y and g ∶ Y X and
● 2-cells η ∶ 1X g f and ε ∶ f g 1Y.

These data are subject to the following two axioms, in the form of commutative
triangles. These are known as the triangle identities.

(6.3.10)

f 1X f (g f ) ( f g) f

1Y f

f

r f

1 f ∗ η a−1
f ,g, f

ε ∗ 1 f

ℓ f

1X g (g f )g g( f g)

g 1Y

g

ℓg

η ∗ 1g ag, f ,g

1g ∗ ε

rg

In (6.3.10) the left and the right axioms are called, respectively, the left triangle
identity and the right triangle identity. The 1-cell f is called the left adjoint, and g is
called the right adjoint. The 2-cell η, respectively ε, is called the unit, respectively
counit.

An adjunction ( f , g, η, ε) is called an internal equivalence or adjoint equivalence if
η and ε are isomorphisms. We say that f and g are members of an adjoint equiva-
lence in this case, and we let f ● denote an adjoint. ◇

6.4. Monoidal Bicategories

In this section, we define monoidal bicategories, which are one-object tricate-
gories. However, this compact definition depends on the concept of a tricategory,
which we do not discuss in this book. The following definition spells out explicitly
the structure of a monoidal bicategory.

Definition 6.4.1. A monoidal bicategory is a tuple

(B,⊠, 1⊠, a, ℓ, r, π, µ, λ, ρ)

consisting of the following data.
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The Base Bicategory: It has a bicategory B, which is called the base bicategory. To
avoid confusion, we may refer to the associator, the left unitor, and the
right unitor in this bicategory B as, respectively, the base associator, the
base left unitor, and the base right unitor. The n-fold product bicategory
B ×⋯ × B is written as Bn below, and 1 is the 2-category with only one
object ∗, the identity 1-cell 1∗, and the identity 2-cell 11∗ .

The Monoidal Composition: It has a pseudofunctor

B×B B,
(⊠,⊠2,⊠0)

which is called the monoidal composition.
The Monoidal Identity: It has a pseudofunctor

1 B,
(1⊠,12

⊠
,10
⊠
)

which is called the monoidal identity. The object 1⊠(∗) ∈ B is also denoted
by 1⊠, which is called the identity object.

The Monoidal Associator: It has an adjoint equivalence (a, a ●, ηa, εa)with left ad-
joint

B3 B2

B2 B

⊠× 1

1×⊠ ⊠

⊠

⇒a

in the bicategory Bicatps(B3,B), which is called the monoidal associator. Its
left and right adjoints have the following component 1-cells for objects
A, B, C ∈ B.

(C ⊠ B)⊠ A C ⊠ (B⊠ A) ∈ B
aC,B,A

a ●C,B,A

The Monoidal Unitors: It has adjoint equivalences (ℓ, ℓ ●, ηℓ, εℓ) and (r, r ●, ηr, εr)
with respective left adjoints

B B

B2

B B

B2

1

1⊠ × 1 ⊠

1

1× 1⊠ ⊠⇒

ℓ

⇒

r

in the bicategory Bicatps(B,B), which are called the left monoidal unitor
and the right monoidal unitor, respectively. Their left and right adjoints
have component 1-cells

1⊠ ⊠ A A A⊠ 1⊠ ∈ B.
ℓA

ℓ
●
A r ●A

rA
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The Pentagonator: It has an invertible modification π, which is called the pentag-
onator, with the following component 2-cells for objects A, B, C, D ∈ B.

((D ⊠C)⊠ B)⊠ A D ⊠ (C ⊠ (B⊠ A))

(D ⊠ (C ⊠ B))⊠ A D ⊠ ((C ⊠ B)⊠ A)

(D ⊠C)⊠ (B⊠ A)

aD,C,B ⊠ 1A

aD,C⊠B,A

1D ⊠ aC,B,A

aD⊠C,B,A aD,C,B⊠A

⇒

πD,C,B,A

The 2-Unitors: It has invertible modifications µ, λ, and ρ, which are called, re-
spectively, the middle 2-unitor, the left 2-unitor, and the right 2-unitor, with
the following component 2-cells in B.

B⊠ A B⊠ A

(B⊠ 1⊠)⊠ A B⊠ (1⊠ ⊠ A)
r ●B ⊠ 1A

aB,1⊠,A

1B ⊠ ℓA

1B⊠A

⇒
µB,A

(1⊠ ⊠ B)⊠ A B⊠ A

1⊠ ⊠ (B⊠ A)

ℓB ⊠ 1A

a1⊠,B,A ℓB⊠A
⇒

λB,A

B⊠ A B⊠ (A⊠ 1⊠)

(B⊠ A)⊠ 1⊠

1B ⊠ r ●A

r ●B⊠A aB,A,1⊠

⇒

ρB,A

The above data are required to satisfy the following three pasting diagram equal-
ities for objects A, B, C, D, E ∈ B, with ⊠ abbreviated to concatenation, and iterates
of ⊠ denoted by parentheses.
The Non-Abelian 4-Cocycle Condition:

(6.4.2) =

(E(D(CB)))A
(E((DC)B))A E((D(CB))A)

((E(DC))B)A E(D((CB)A))

(((ED)C)B)A E(D(C(BA)))

((ED)C)(BA) (ED)(C(BA))

(a1)1

a1

(1a)1 a

1a

1(1a)

a a a

E(((DC)B)A)

(E(DC))(BA) E((DC)(BA))

a 1(a1)

1aa

a

1a

a(1B1A) a1BA

⇒

a−1
1,a,1

⇒

1π

⇒

π

⇒

a−1
a,1,1

⇒
1a(⊠−0

B,A)

⇒

π

(E(D(CB)))A
(E((DC)B))A E((D(CB))A)

((E(DC))B)A E(D((CB)A))

(((ED)C)B)A E(D(C(BA)))

((ED)C)(BA) (ED)(C(BA))

(a1)1

a1

(1a)1 a

1a

1(1a)

a a a

((ED)(CB))A

(ED)((CB)A)
a1

a1

a a

(1E1D)a1EDa

⇒π1

⇒

π

⇒

a1,1,a

⇒(⊠−0
E,D)1a

⇒

π
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Left Normalization:

(6.4.3) =

(C(1⊠B))A

((C1⊠)B)A (CB)A

(CB)A C(BA)

C(BA)

(r ●1)1

a1 (1ℓ)1

a

a 1

C((1⊠B)A)

C(1⊠(BA))

(C1⊠)(BA)

a

1a 1(ℓ1)

a
1ℓ

a

r ●(1B1A)
r ●1BA

⇒

a−1
1,ℓ,1

⇒

1λ

⇒

π

⇒

a−1
r ●,1,1

⇒
1r ●⊠−0

B,A

⇒

µ

(C(1⊠B))A

((C1⊠)B)A (CB)A

(CB)A C(BA)

C(BA)

(r ●1)1

a1 (1ℓ)1

a

a 1

1CB1A

1(CB)A

a

⇒

µ1

⇒
⊠−0

CB,A

⇒

ra

⇒

ℓ−1
a

Right Normalization:

(6.4.4) =

C((B1⊠)A)

C(BA) C(B(1⊠A))

(CB)A C(BA)

(CB)A

a

1(r ●1) 1a

1(1ℓ)

1 a

(C(B1⊠))A

((CB)1⊠)A

(CB)(1⊠A)

a

(1r ●)1 a1

r ●1
a

a

(1C1B)ℓ
1CBℓ

⇒

a1,r ●,1

⇒
ρ1

⇒
π

⇒

a1,1,ℓ

⇒⊠−0
C,B1ℓ

⇒

µ

C((B1⊠)A)

C(BA) C(B(1⊠A))

(CB)A C(BA)

(CB)A

a

1(r ●1) 1a

1(1ℓ)

1 a

1C1BA

1C(BA)

a

⇒

1µ

⇒

⊠−0
C,BA

⇒

ℓa

⇒

r−1
a

This finishes the definition of a monoidal bicategory. ◇
Remark 6.4.5. The common notation 1⊠ ∶ 1 B for the identity, which is a pseu-
dofunctor, and for the identity object 1⊠ ∈ B is not to be confused with the identity
strong transformation of the pseudofunctor ⊠ ∶ B×B B. ◇
Explanation 6.4.6 (Data). The monoidal associator and the monoidal unitors in
Definition 6.4.1 refer to Bicatps(Bn,B) in Theorem 6.3.7, which assumes that B has
a set of objects. This reference to the bicategory Bicatps(Bn,B) is simply a matter
of convenience to enable us to use the concept of an adjoint equivalence in Defini-
tion 6.3.9. For the definition of a monoidal bicategory, this smallness assumption
is actually unnecessary.

Indeed, recall
● the composition of pseudofunctors in Definition 6.2.6;
● the identity strong transformation in Lemma 6.2.17;
● the horizontal composition of strong transformations in Definition 6.2.20;

and
● the two types of compositions of modifications in Definition 6.3.3.

Using these concepts, in the definition of the monoidal associator (a, a ●, ηa, εa), we
can equivalently require the following conditions.
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(i) a and a ● are strong transformations as follows.

⊠(⊠× 1) ⊠(1×⊠)
a

a ●

(ii) ηa and εa are invertible modifications as follows.

1⊠(⊠×1) a ●a

aa ● 1⊠(1×⊠)

ηa

εa

(iii) The triangle identities (6.3.10) hold. In those two diagrams, the modi-
fications denoted by a, ℓ, and r are defined componentwise in B using,
respectively, its associator, left unitor, and right unitor.

Similar remarks apply to the monoidal unitors (ℓ, ℓ ●, ηℓ, εℓ) and (r, r ●, ηr, εr). In
summary, with the interpretation above, in the definition of a monoidal bicategory,
it is not necessary to assume that B has a set of objects. ◇
Explanation 6.4.7 (Axioms). Consider the axioms in Definition 6.4.1.

● The non-abelian 4-cocycle condition (6.4.2) will be abbreviated to NB4
from now on.
● aa,1,1, a1,a,1, and a1,1,a in NB4 are component 2-cells of the monoidal asso-

ciator a, which is a strong transformation.
● ⊠−0

B,A is the inverse of the (B, A) component of ⊠0.
● In the left normalization axiom (6.4.3) and the right normalization axiom

(6.4.4), ℓa and ra are components of, respectively, the left unitor and the
right unitor in the base bicategory B.
● The 2-cell 1π in the top side of NB4 is not 1⊠π. To interpret it correctly,

first note that π has a component 2-cell

[(1D ⊠ aC,B,A)aD,C⊠B,A](aD,C,B ⊠ 1A) aD,C,B⊠AaD⊠C,B,A
πD,C,B,A

in B(((DC)B)A, D(C(BA))). Then 1π is defined as the following ver-
tical composite 2-cell in B(E(((DC)B)A), E(D(C(BA)))), with ⊠−2 the
inverse of ⊠2.

(6.4.8)

[(1E ⊠ (1D ⊠ aC,B,A))(1E ⊠ aD,C⊠B,A)][1E ⊠ (aD,C,B ⊠ 1A)]

[(1E1E)⊠ ((1D ⊠ aC,B,A)aD,C⊠B,A)][1E ⊠ (aD,C,B ⊠ 1A)]

[(1E1E)1E]⊠ [((1D ⊠ aC,B,A)aD,C⊠B,A)(aD,C,B ⊠ 1A)]

(1E1E)⊠ (aD,C,B⊠AaD⊠C,B,A)

(1E ⊠ aD,C,B⊠A)(1E ⊠ aD⊠C,B,A)

⊠2 ∗ 1

⊠2

(ℓ1E ∗ 1)⊠πD,C,B,A

⊠−2

1π
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● The 2-cells
– π1 in the bottom side of NB4 (6.4.2),
– 1λ and µ1 in the left normalization axiom (6.4.3), and
– ρ1 and 1µ in the right normalization axiom (6.4.4)

are interpreted in a similar way to (6.4.8). ◇

6.5. Symmetric Monoidal Bicategories

In this section, we define braided, sylleptic, and symmetric analogues of mon-
oidal bicategories.

● Braided monoidal bicategories are in Definition 6.5.3.
● Sylleptic monoidal bicategories are in Definition 6.5.7.
● Symmetric monoidal bicategories are in Definition 6.5.9.

Motivation 6.5.1. A braided monoidal category in Definition II.1.3.15 has an un-
derlying monoidal category and a natural isomorphism ξ ∶ X ⊗ Y Y ⊗ X,
which is called the braiding, that satisfies two hexagon axioms. In a similar
manner, a braided monoidal bicategory has

● an underlying monoidal bicategory;
● an adjoint equivalence β, which is called the braiding, that relates the

monoidal composition ⊠ and its opposite; and
● two invertible modifications, which are called the left and the right

hexagonators, that fill the diagrams in the hexagon axioms with invert-
ible 2-cells.

Moreover, there are four coherence axioms for the braiding and the hexagonators.
In the 1-categorical setting, a symmetric monoidal category is a braided mon-

oidal category whose braiding satisfies the symmetry axiom, ξY,XξX,Y = 1. In the
monoidal bicategorical setting, the symmetry axiom is replaced by an invertible
modification ν, which is called the syllepsis, that satisfies two coherence axioms.
This intermediate structure is called a sylleptic monoidal bicategory. A symmetric
monoidal bicategory is a sylleptic monoidal bicategory whose syllepsis satisfies
an additional axiom. ◇

The definition of a braided monoidal bicategory requires the theory of mates
discussed in detail in [JY21, Section 6.1]. Briefly, a mate of a 2-cell θ is obtained by
replacing some of the boundary 1-cells in θ by their adjoints as in Definition 6.3.9,
by pasting with the (co)units, their inverses, and the left and the right unitors. The
following preliminary observation contains examples of mates of the pentagonator
π that are used in the definition of a braided monoidal bicategory. The symbols ⊠
for the monoidal composition among the objects are omitted to save space.
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Lemma 6.5.2. In a monoidal bicategory B, the pentagonator π induces invertible 2-cells
πn for 1 ≤ n ≤ 10, with component 2-cells as displayed below.

((DC)B)A D(C(BA))

(D(CB))A D((CB)A)

(DC)(BA)

a ● ⊠ 1

a ●

1⊠ a ●

a ● a ●
⇒π1 ((DC)B)A D(C(BA))

(D(CB))A D((CB)A)

(DC)(BA)

a ● ⊠ 1

a ●

1⊠ a ●

a ● a

⇒π2

((DC)B)A D(C(BA))

(D(CB))A D((CB)A)

(DC)(BA)

a⊠ 1

a

1⊠ a ●

a ● a

⇒π3
((DC)B)A D(C(BA))

(D(CB))A D((CB)A)

(DC)(BA)

a ● ⊠ 1

a

1⊠ a

a ● a ●

⇒π4

((DC)B)A D(C(BA))

(D(CB))A D((CB)A)

(DC)(BA)

a⊠ 1

a ●

1⊠ a ●

a ● a

⇒
π5

((DC)B)A D(C(BA))

(D(CB))A D((CB)A)

(DC)(BA)

a ● ⊠ 1

a ●

1⊠ a

a a ●

⇒π6

((DC)B)A D(C(BA))

(D(CB))A D((CB)A)

(DC)(BA)

a ● ⊠ 1

a

1⊠ a

a a ●

⇒
π7

((DC)B)A D(C(BA))

(D(CB))A D((CB)A)

(DC)(BA)

a ● ⊠ 1

a

1⊠ a ●

a a

⇒π8

((DC)B)A D(C(BA))

(D(CB))A D((CB)A)

(DC)(BA)

a ● ⊠ 1

a ●

1⊠ a

a ● a ●

⇒π9

((DC)B)A D(C(BA))

(D(CB))A D((CB)A)

(DC)(BA)

a ● ⊠ 1

a

1⊠ a

a a

⇒
π10

Definition 6.5.3. A braided monoidal bicategory is a quadruple

(B, β, R−∣−−, R−−∣−)

consisting of the following data.

(1) B is a monoidal bicategory (B,⊠, 1⊠, a, ℓ, r, π, µ, λ, ρ) as in Definition 6.4.1.
(2) (β, β ●, ηβ, εβ) is an adjoint equivalence as in

B2 B

B2

⊠

τ ⊠

⇒

β
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in Bicatps(B2,B), which is called the braiding, in which τ switches the two
arguments. For objects A, B ∈ B, the component 1-cells of β and β ● are

A⊠ B B⊠ A.
βA,B

β
●
A,B

(3) R−∣−− is an invertible modification, which is called the left hexagonator. Its
components are invertible 2-cells

(A⊠ B)⊠C B⊠ (C ⊠ A)

(B⊠ A)⊠C B⊠ (A⊠C)

A⊠ (B⊠C) (B⊠C)⊠ A

βA,B ⊠ 1C

aB,A,C

1B ⊠ βA,C

aA,B,C
βA,B⊠C

aB,C,A

⇒
RA∣B,C

in B((A⊠ B)⊠C, B⊠ (C⊠ A))with the left normalized bracketings in the
(co)domain, for objects A, B, C ∈ B.

(4) R−−∣− is an invertible modification, which is called the right hexagonator.
Its components are invertible 2-cells

A⊠ (B⊠C) (C ⊠ A)⊠ B

A⊠ (C ⊠ B) (A⊠C)⊠ B

(A⊠ B)⊠C C ⊠ (A⊠ B)

1A ⊠ βB,C

a ●A,C,B

βA,C ⊠ 1B

a ●A,B,C
βA⊠B,C

a ●C,A,B

⇒

RA,B∣C

in B(A⊠ (B⊠C), (C⊠ A)⊠ B)with the left normalized bracketings in the
(co)domain.

The above data are required to satisfy the following four pasting diagram
equalities for objects A, B, C, D ∈ B, with ⊠ abbreviated to concatenation, and it-
erates of ⊠ denoted by parentheses. The 2-cells πn in Lemma 6.5.2 are used in the
axioms below.
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The (3,1)-Crossing Axiom:

A((BC)D)

A(B(CD))

A(B(DC))

(A(BC))D

D(A(BC))

A(D(BC))

A((DB)C)

A((BD)C)

(AD)(BC)

(DA)(BC)

(AB)(CD)

(AB)(DC) (A(BD))C

(A(DB))C

((AD)B)C

((DA)B)CD((AB)C)

((AB)C)D

((AB)D)C

(D(AB))C

1(1β)

1a ●

1(β1)

1a1a ●

1A βBC,D

a ●

βA,D1BC

a ●

β

a ●

1AB βCD

a ● a1

(1βB,D)1

a ●1

(βA,D1)1

a ●

β(AB)C,D

a ● a ●1

a

a a

a

a ●1

1a ● a ●

a ●

(11) β

β (11)

⇒
⊠0

A,B1β

⇒1β⊠
−0
B,C

⇒1R1
B,C∣D

⇒RA,BC∣D

⇒
π−1

3

⇒

π1

⇒π2 ⇒π−1
4

⇒a−1
1,β,1

⇒βa ●,1

⇒

a−1
1,1,β

⇒a ●β,1,1

=

(AB)(CD)

(AB)(DC) (A(BD))C

(A(DB))C

((AD)B)C

((DA)B)CD((AB)C)

((AB)C)D

((AB)D)C

(D(AB))C

1AB βC,D

a ● a1

(1βB,D)1

a ●1

(βA,D1)1

a ●

β(AB)C,D

a ● a ●1

βAB,D 1C

⇒RAB,C∣D ⇒R2
A,B∣D1

In the above pasting diagrams, R1
B,C∣D and R2

A,B∣D are mates of the in-

dicated components of the right hexagonator. The 2-cells 1R1
B,C∣D and

R2
A,B∣D1 are interpreted in a similar way to (6.4.8).
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The (1,3)-Crossing Axiom:

(A(BC))D

((AB)C)D

((BA)C)D

A((BC)D)

((BC)D)A

((BC)A)D

(B(CA))D

(B(AC))D

(BC)(AD)

(BC)(DA)

(AB)(CD)

(BA)(CD) B((AC)D)

B((CA)D)

B(C(AD))

B(C(DA))(B(CD))A

A(B(CD))

B(A(CD))

B((CD)A)

(β1)1

a1

(1β)1

a ●1a1
βA,BC 1D

a

1BCβA,D

a

β

a

βA,B 1CD

a 1a ●

1(βA,C1)

1a

1(1βA,D)

a

βA,B(CD)

a 1a

a ●

a ● a ●

a ●

1a ●

a ●1 a

a ●

β (11)

(11) β

⇒
1β⊠

0
C,D

⇒⊠
−0
B,C1β

⇒R2
A∣B,C1

⇒RA∣BC,D

⇒
π−1

5

⇒

π10

⇒π−1
3 ⇒π−1

6

⇒a ●−1
1,β,1

⇒

β−1
1,a ●

⇒

a ●−1
β,1,1

⇒
(a ●−1

1,1,β)
′

=

(AB)(CD)

(BA)(CD) B((AC)D)

B((CA)D)

B(C(AD))

B(C(DA))(B(CD))A

A(B(CD))

B(A(CD))

B((CD)A)

βA,B 1CD

a 1a ●

1(βA,C1)

1a

1(1βA,D)

a

βA,B(CD)

a 1a

1B βA,CD

⇒RA∣B,CD ⇒1R1
A∣C,D

In the above pasting diagrams, R1
A∣C,D and R2

A∣B,C are mates of the indi-

cated components of the left hexagonator. The 2-cells 1R1
A∣C,D and R2

A∣B,C1

are interpreted in a similar way to (6.4.8). The 2-cell (a ●−1
1,1,β)

′
is a mate of

a ●−1
1,1,β.
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The (2,2)-Crossing Axiom:

=
(A(BC))D

(A(CB))D

((AC)B)D

(AC)(BD)

C((DA)B)

C((AD)B)

C(A(DB))

(CA)(DB)(CA)(BD)

((AB)C)D C(D(AB))(AB)(CD) (CD)(AB)

(1βB,C)1

a ●1

a

βA,C(11) (11)βB,D

a

1a ●

1(βA,D1)

a ●1

a βAB,CD a

1a ●

(C(AB))D C((AB)D)

((CA)B)D C(A(BD))

β1

a

a ●1

(β1)1

a a

1(1β)

1a ●

1β

⇒aβ,1,1 ⇒a−1
1,1,β

⇒RA,B∣C1 ⇒1RA,B∣D

⇒

π8

⇒
RAB∣C,D

(A(BC))D

(A(CB))D

((AC)B)D

(AC)(BD)

C((DA)B)

C((AD)B)

C(A(DB))

(CA)(DB)(CA)(BD)

((AB)C)D C(D(AB))(AB)(CD) (CD)(AB)

(1βB,C)1

a ●1

a

βA,C(11) (11)βB,D

a

1a ●

1(βA,D1)

a ●1

a βAB,CD a

1a ●

(AC)(DB)A(C(BD))

A((CB)D) A(C(DB))

A((BC)D) A((CD)B)

A(B(CD))

((CA)D)B

((AC)D)B (C(AD))B

(A(CD))B (C(DA))B

((CD)A)B

(11)β β(11)

1(β1)

1a 1(1β)

1a 1β

1a

a

a

a ●

a ●

a ●

a ●

a ●1

(β1)1
a1

(1β)1

β1 a1

a ●

a ●

a

a

a ●

⇒

β1,1β−1
1,1

⇒π7 ⇒π3

⇒

a ●1,1,β

⇒

a ●−1
β,1,1

⇒
a−1

1,β,1 ⇒a1,β,1⇒
1RB∣C,D ⇒π9 ⇒

R1
A∣C,D1

⇒

RA,B∣CD⇒π−1
7 ⇒π−1

3

In the above pasting diagrams, R1
A∣C,D is a mate of the indicated compo-

nent of the left hexagonator. The 2-cells RA,B∣C1, 1RA,B∣D, 1RB∣C,D, and
R1

A∣C,D1 are interpreted in a similar way to (6.4.8).
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The Yang-Baxter Axiom:

=

(AB)C

(BA)C

B(AC)

B(CA)

(BC)A

(CB)A C(BA)

A(BC)

A(CB)

(AC)B

(CA)B

C(AB)

βA,B1

a

1βA,C

a ●

βB,C1

a

a

1βB,C

a ●

βA,C1

a

1βA,B

(BC)A

β

a

1
β1

β

⇒
RA∣B,C

⇒
η−a

⇒r

⇒
β1,β

⇒
(R1

A∣C,B)
−1

(AB)C

(BA)C

B(AC)

B(CA)

(BC)A

(CB)A C(BA)

A(BC)

A(CB)

(AC)B

(CA)B

C(AB)

βA,B1

a

1βA,C

a ●

βB,C1

a

a

1βB,C

a ●

βA,C1

a

1βA,B

(BA)C

β1
1

a ●

β

β

⇒
R1

B,A∣C

⇒
η−a

⇒ℓ

⇒
β−1

β,1

⇒
(R3

A,B∣C)
−1

● ℓ and r are, respectively, the left and the right unitors in the base
bicategory B.
● ηa ∶ 1 a ●a is the unit of the adjoint equivalence (a, a ●, ηa, εa),

whose inverse is denoted by η−a.
● R1

A∣C,B is a mate of the indicated component of the left hexagonator.

● R1
B,A∣C and R3

A,B∣C are mates of the indicated components of the right
hexagonator.

This finishes the definition of a braided monoidal bicategory. ◇
Explanation 6.5.4 (Mates). In the (3,1)-crossing axiom, R1

B,C∣D is the composite of
the following pasting diagram in B, with all the ⊠ symbols omitted to save space.

B(CD)

B(DC) (BD)C

(DB)C

(BC)D D(BC) D(BC)

1BβC,D

a ●

βB,D1C

aa ●

βBC,D

βBC,D

a ●

1

⇒

RB,C∣D

⇒

εa

⇒

ℓ

Other mates of components of the left or the right hexagonators are defined in a
similar way. ◇
Explanation 6.5.5 (Visualization). Consider Definition 6.5.3.
The Braiding: The braiding β may be visualized as the generating braid in the

braid group B2. However, in this case, the braiding does not admit a strict
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inverse. Instead, it is the left adjoint of an adjoint equivalence with right
adjoint β ●.

The Hexagonators: The left hexagonator R−∣−− may be visualized as the braid
with the last two strings crossing over the first string. The domain of
R−∣−− corresponds to first crossing the second string over the first string,
followed by crossing the last string over the first string. The codomain
corresponds to crossing the last two strings over the first string in one
step.

The right hexagonator R−−∣− admits a similar interpretation using the
braid . The domain corresponds to crossing one string over two strings
to its left, one string at a time. The codomain corresponds to crossing one
string over two strings in one step.

The Crossing Axioms: The (3,1)-crossing axiom may be visualized using the left-
most picture below.

(3,1)-crossing (1,3)-crossing (2,2)-crossing

The common domain of the two pasting diagrams in the (3,1)-crossing
axiom corresponds to crossing one string over three strings, one string at
a time. The common codomain corresponds to crossing one string over
three strings in one step. The two pasting diagrams correspond to two
ways to transform from the common domain to the common codomain
using the structures in a braided monoidal bicategory. The (1,3)-crossing
axiom and the (2,2)-crossing axiom admit similar interpretations, using
the middle and the right pictures above.

The Yang-Baxter Axiom: The Yang-Baxter axiom may be visualized using the fol-
lowing pictures.

domain codomain

The common domain of the two pasting diagrams in the Yang-Baxter ax-
iom corresponds to the left picture above, while the common codomain
corresponds to the right picture. The two pasting diagrams correspond
to two ways to transform from the domain to the codomain using the
structures in a braided monoidal bicategory. ◇

Explanation 6.5.6 (Braiding and Size). Similar to Explanation 6.4.6, the assump-
tion that the tuple (β, β ●, ηβ, εβ) be an adjoint equivalence is equivalent to the fol-
lowing three statements.

(i) β and β ● are strong transformations as follows.

⊠ ⊠τ
β

β
●
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(ii) ηβ and εβ are invertible modifications as follows.

1⊠ β ●β

ββ ● 1⊠τ

ηβ

εβ

(iii) The triangle identities (6.3.10) hold. In those two diagrams, the modi-
fications denoted by a, ℓ, and r are defined componentwise in B using,
respectively, its associator, left unitor, and right unitor.

In particular, in the definition of a braided monoidal bicategory, it is not necessary
to assume that B has a set of objects. ◇
Definition 6.5.7. A sylleptic monoidal bicategory is a quintuple

(B, β, R−∣−−, R−−∣−, ν)

consisting of the following data.

(1) (B, β, R−∣−−, R−−∣−) is a braided monoidal bicategory.
(2) ν is an invertible modification, which is called the syllepsis. Its compo-

nents are invertible 2-cells

A⊠ B A⊠ B

B⊠ A

1A⊠B

βA,B βB,A

⇒

νA,B

in B(A⊠ B, A⊠ B).

The following two pasting diagram equalities are required to hold for objects
A, B, C ∈ B, with the same conventions as in the axioms in Definition 6.5.3.

The (2,1)-Syllepsis Axiom:

=

A(BC)

A(CB)

(AC)B

(CA)B C(AB)

(AB)C

A(BC)

11βB,C

a ●

βA,C1

a

βC,AB

a
(AB)C

C(AB)

a ●

a

1β

β

a ● 1

⇒
RA,B∣C

⇒ε
a ⇒r

⇒ν

⇒r

⇒εa

A(BC)

A(CB)

(AC)B

(CA)B C(AB)

(AB)C

A(BC)

11βB,C

a ●

βA,C1

a

βC,AB

a

(AC)B

A(CB)

1β

1β1

a ●

1

β1

a

⇒

R−1
C∣A,B

⇒ν1

⇒ℓ

⇒εa

⇒ℓ ⇒ν2
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The (1,2)-Syllepsis Axiom:

=

B(AC)

(BA)C

(AB)C

(AB)C

A(BC)

(BC)A

B(CA)
1βC,A

βB,A1

a ●

1a

βA,BC

a

(BC)A

A(BC)

a ●

β

a ●

1

β
1

a

⇒RB,C∣A

⇒

η−a

⇒ℓ

⇒ν

⇒ℓ

⇒η−a

B(AC)

(BA)C

(AB)C

(AB)C

A(BC)

(BC)A

B(CA)
1βC,A

βB,A1

a ●

1a

βA,BC

a

(BA)C

B(AC)

1
1β

a ●

1

β1

β1

a⇒
R−1

A∣B,C

⇒ν1

⇒r

⇒

η−a

⇒r

⇒ν2

The 2-cells ν1 and ν2 are induced by the syllepsis ν, and are interpreted in a sim-
ilar way to (6.4.8) using ⊠2, ⊠−0, and ℓ. This finishes the definition of a sylleptic
monoidal bicategory. ◇
Explanation 6.5.8 (Visualization). Consider Definition 6.5.7.

The Braiding: Due to the existence of the syllepsis, the braiding β in a sylleptic
monoidal bicategory may be visualized as the virtual crossing .

The Syllepsis: It is the isomorphism ≅ that straightens its domain to the iden-
tity.

The Axioms: In the (2,1)-syllepsis axiom, the common domain is the left picture
below

(2,1)-syllepsis (1,2)-syllepsis

with common codomain the identity . The two pasting diagrams corre-
spond to two ways to transform from the domain to the codomain using
the structures in a sylleptic monoidal bicategory. The (1,2)-syllepsis ax-
iom admits a similar interpretation with common domain the right pic-
ture above. ◇

Definition 6.5.9. A symmetric monoidal bicategory is a sylleptic monoidal bicategory
as in Definition 6.5.7 that satisfies the triple braid axiom

(6.5.10) =
AB

BA AB

BA
β

β

β

β
1

⇒ν

⇒r
AB

BA AB

BA
β

β

β

β
1

⇒ν

⇒ℓ

for objects A and B in B. ◇
Explanation 6.5.11 (Visualization). The triple braid axiom (6.5.10) may be visual-
ized as the commutativity of the following diagram.
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In other words, given three consecutive virtual crossings, straightening the first
two virtual crossings is the same as straightening the last two virtual crossings. ◇

6.6. The Gray Tensor Product

In this section, we define the Gray tensor product for 2-categories and the
corresponding Gray monoids. The Gray tensor product is a weakening of the
Cartesian product for 2-categories. The 1-category 2Cat of small 2-categories and
2-functors becomes a symmetric monoidal closed category with the Gray tensor
product, and with the internal hom given by strict functors, strong transforma-
tions, and modifications of 2-categories. From now on, whenever a 2-category is
regarded as a Cat-category via Proposition 6.1.11, we automatically assume that
it is locally small without explicitly stating it. Similarly, whenever a 2-category
is regarded as an object in the 1-category 2Cat, it is automatically assumed to be
small. Whenever necessary, we use Grothendieck’s Axiom of Universes—that every
set belongs to some universe—to move to a bigger universe. More discussion of
universes may be found in [JY21, Section 1.1].

We begin by defining a simpler product that will be used in the definition of
the Gray tensor product.

The Box Product.
Definition 6.6.1. Suppose C and D are 2-categories. The box product C ◻D is the
Cat-enriched pushout induced by the inclusions ObC C and ObD D in
the following diagram.

(6.6.2)

ObC×ObD C× (ObD)

(ObC)×D C◻D

This finishes the definition of the box product. ◇
Explanation 6.6.3.

(1) The 1-cells of C×ObD are given by ( f , 1Y) for a 1-cell f ∈ C(X, X′) and an
object Y ∈ D, and the 2-cells of C ×ObD are given by (α, 11Y) for a 2-cell
α ∈ C(X, X′)( f1, f2) and an object Y ∈ D. We denote their images in C◻D
as f ◻Y and α ◻Y, respectively, and do likewise for 1-cells and 2-cells in
(ObC)×D.

(2) Unpacking Definition 6.6.1, we can describe C◻D as follows.
Objects: The objects are pairs (X, Y), written X◻Y, with X ∈ C and Y ∈ D.
1-Cells: The 1-cells are generated under composition by pairs consisting

of a 1-cell and an object, which are called basic 1-cells and written as
● f ◻Y ∶ X ◻Y X′ ◻Y, for f ∈ C(X, X′) and Y ∈ D; and
● X ◻ g ∶ X ◻Y X ◻Y′, for g ∈ D(Y, Y′) and X ∈ C.
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Because the arrows in (6.6.2) are 2-functors, these 1-cells are subject
to the following conditions.

(i) For X ∈ C and Y ∈ D, we have

1X ◻Y = 1X◻Y = X ◻ 1Y.

(ii) For f ∈ C(X, X′), f ′ ∈ C(X′, X′′), and Y ∈ D, we have

( f ′ ◻Y)( f ◻Y) = ( f ′ f )◻Y.

(iii) For g ∈ D(Y, Y′), g′ ∈ D(Y′, Y′′), and X ∈ C, we have

(X ◻ g′)(X ◻ g) = X ◻ (g′g).

2-Cells: The 2-cells are generated under horizontal and vertical compo-
sition by pairs consisting of a 2-cell and an object, which are called
basic 2-cells and written as
● α◻Y ∶ f1 ◻Y f2 ◻Y for α ∈ C(X, X′)( f1, f2) and Y ∈ D; and
● X ◻ β ∶ X ◻ g1 X ◻ g2 for β ∈ D(Y, Y′)(g1, g2) and X ∈ C.

Because the arrows in (6.6.2) are 2-functors, these 2-cells are subject
to the following conditions.

(i) For f ∈ C(X, X′) and g ∈ D(Y, Y′), we have

1 f ◻Y = 1 f◻Y and X ◻ 1g = 1X◻g.

(ii) For α ∈ C(X, X′)( f1, f2), α′ ∈ C(X′, X′′)( f ′1, f ′2), and Y ∈ D, we
have

(α′ ◻Y) ∗ (α◻Y) = (α′ ∗ α)◻Y.

(iii) For β ∈ D(Y, Y′)(g1, g2), β′ ∈ D(Y′, Y′′)(g′1, g′2), and X ∈ C, we
have

(X ◻ β′) ∗ (X ◻ β) = X ◻ (β′ ∗ β).

(iv) For α ∈ C(X, X′)( f1, f2) and α′ ∈ C(X, X′)( f2, f3), we have

(α′ ◻Y)(α◻Y) = (α′α)◻Y.

(v) For β ∈ D(Y, Y′)(g1, g2) and β′ ∈ D(Y, Y′)(g2, g3), we have

(X ◻ β′)(X ◻ β) = X ◻ (β′β).

This concludes the unpacking of Definition 6.6.1.
(3) By the universal property of the pushout, there is a 2-functor

j ∶ C◻D C×D

that is bijective on objects. It sends a 1-cell f ◻Y to f × 1Y, a 2-cell α◻Y to
α × 11Y , and similarly for X ◻ g or X ◻ β. The composites

( f ◻Y′)(X ◻ g) and (X′ ◻ g)( f ◻Y)

are distinct in C◻D, but both are mapped by j to f × g. This observation
is a basis for Motivation 6.6.4 below. ◇
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Defining the Gray Tensor Product.

Motivation 6.6.4. We now turn to the definition of the Gray tensor product. This
will have the same 0-cells and 1-cells as the box product, but additional 2-cells.
Recall that the two composites in the square below are unrelated in C ◻D, and
their images in C×D are equal.

X ◻Y X′ ◻Y

X ◻Y′ X′ ◻Y′

f ◻Y

f ◻Y′
X ◻ g X′ ◻ g

In the Gray tensor product, the corresponding square is filled by a generally non-
trivial isomorphism Σ f ,g. In this way, the Gray tensor product is an intermediary
between C◻D and C×D. ◇
Definition 6.6.5. For two 2-categories C and D, the Gray tensor product C⍟D is a 2-
category defined as follows. The objects and 1-cells of C⍟D are the same as those
of C◻D, now denoted with ⍟ instead of ◻.

The 2-cells are defined in two stages as follows. The proto-2-cells are generated
under horizontal composition by

● the basic 2-cells of C◻D, which are now denoted α⍟Y and X⍟ β; and
● the transition 2-cells

Σ f ,g ∶ ( f ⍟Y′)(X⍟ g) (X′ ⍟ g)( f ⍟Y) and

Σ−1
f ,g ∶ (X

′ ⍟ g)( f ⍟Y) ( f ⍟Y′)(X⍟ g)

for each pair of nonidentity 1-cells f ∈ C(X, X′) and g ∈ D(Y, Y′). If either
f or g is an identity 1-cell, then Σ f ,g is the respective identity 2-cell.

This horizontal composition is required to be associative and unital, satisfying the
relations induced by ◻, that is,

● (α′ ⍟Y) ∗ (α⍟Y) = (α′ ∗ α)⍟Y and
● (X⍟ β′) ∗ (X⍟ β) = X⍟ (β′ ∗ β)

for horizontally composable 2-cells α and α′ in C, respectively β and β′ in D.
The 2-cells of C⍟D are equivalence classes of vertical composites of proto-2-

cells, where the equivalence relation is the smallest one that includes the following.

(1) The vertical composites Σ f ,gΣ−1
f ,g and Σ−1

f ,gΣ f ,g are equivalent to the re-
spective identities.

(2) The basic 2-cells from C◻D satisfy the vertical composition relations in-
duced by ◻, namely,
● (α2 ⍟Y)(α1 ⍟Y) ∼ (α2α1)⍟Y and
● (X⍟ β2)(X⍟ β1) ∼ X⍟ (β2β1).

(3) For f ∈ C(X, X′), f ′ ∈ C(X′, X′′), and g ∈ D(Y, Y′), we have

(Σ f ′,g ∗ (1 f ⍟Y)) ((1 f ′ ⍟Y′) ∗Σ f ,g) ∼ Σ f ′ f ,g.

(4) For g ∈ D(Y, Y′), g′ ∈ D(Y′, Y′′), and f ∈ C(X, X′), we have

((X′ ⍟ 1g′) ∗Σ f ,g) (Σ f ,g′ ∗ (X⍟ 1g)) ∼ Σ f ,g′g.
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(5) For f , f ′, g, and g′ as above, we have

((X′′ ⍟ 1g′) ∗ (1 f ′ ⍟Y′) ∗Σ f ,g) (Σ f ′,g′ ∗ (1 f ⍟Y′) ∗ (X⍟ 1g)) ∼

(Σ f ′,g′ ∗ (X′ ⍟ 1g) ∗ (1 f ⍟Y)) ((1 f ′ ⍟Y′′) ∗ (X′ ⍟ 1g′) ∗Σ f ,g).
(6) For α ∈ C(X, X′)( f1, f2) and β ∈ D(Y, Y′)(g1, g2), we have

((X′ ⍟ β) ∗ (α⍟Y))Σ f1,g1
∼ Σ f2,g2

((α⍟Y′) ∗ (X⍟ β)).

(7) The equivalence relation is closed under vertical composition.
(8) For any horizontally composable proto-2-cells λ and λ′, we have

(1 ∗ λ)(λ′ ∗ 1) ∼ (λ′ ∗ λ) ∼ (λ′ ∗ 1)(1 ∗ λ).
Each 2-cell Λ is represented by a vertical composite of proto-2-cells, λ1⋯λn,

and thus the vertical composition of 2-cells is defined by concatenation. The hori-
zontal composition of 2-cells is defined by

(6.6.6) (λ′1λ′2) ∗ (λ1λ2) = (λ′1 ∗ λ1)(λ′2 ∗ λ2)
for appropriately composable proto-2-cells λ1, λ2, λ′1, and λ′2. This extends to
define horizontal composition of general vertical composites

(λ′1⋯λ′n) ∗ (λ1⋯λm)
with proto-2-cells

● λi in (C⍟D)(X⍟Y, X′ ⍟Y′) and
● λ′i in (C⍟D)(X′ ⍟Y′, X′′ ⍟Y′′)

by inserting appropriate identity 2-cells so that m = n, and then by induction on
(6.6.6).

Condition (8) implies that this definition is independent of how identities are
inserted and satisfies the middle four exchange property, that is, that the hori-
zontal composition preserves vertical composition of 2-cells. Preservation of units
follows from the corresponding properties of ◻, together with conditions (3) and
(4) with f ′ and g′ being identities. This finishes the definition of the Gray tensor
product C⍟D. ◇
Explanation 6.6.7 (The Transition 2-Cells). Since Σ f ,g is an identity 2-cell when-
ever f or g is an identity 1-cell, conditions (3), (4), and (5) are equivalent to the
requirement that all possible composites formed from the following pasting dia-
gram are equal to Σ f ′ f ,g′g for all f , f ′,g, and g′.

(6.6.8)

X⍟Y X′ ⍟Y X′′ ⍟Y

X⍟Y′ X′ ⍟Y′ X′′ ⍟Y′

X⍟Y′′ X′ ⍟Y′′ X′′ ⍟Y′′

f ⍟Y f ′ ⍟Y

f ⍟Y′ f ′ ⍟Y′

f ⍟Y′′ f ′ ⍟Y′′

X⍟ g

X⍟ g′

X′ ⍟ g

X′ ⍟ g′

X′′ ⍟ g

X′′ ⍟ g′

⇒Σ f ,g
⇒Σ f ′,g

⇒Σ f ,g′
⇒Σ f ′,g′
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In particular, condition (5) means that the two ways of forming a vertical compos-
ite from Σ f ′,g′ ∗Σ f ,g are equal. Furthermore, condition (6) means that the compos-
ites of the following pasting diagrams are equal in C⍟D.
(6.6.9)

X⍟Y X′ ⍟Y

X⍟Y′ X′ ⍟Y′

f2 ⍟Y

f1 ⍟Y′

X⍟ g1

X′ ⍟ g2

f1 ⍟Y

X′ ⍟ g1

⇒Σ f1,g1

⇒α⍟Y

⇒
X′ ⍟ β =

X⍟Y X′ ⍟Y

X⍟Y′ X′ ⍟Y′

f2 ⍟Y

f1 ⍟Y′

X⍟ g1

X′ ⍟ g2

X⍟ g2

f2 ⍟Y′

⇒
Σ f2,g2

⇒α⍟Y′

⇒
X⍟ β

◇
Proposition 6.6.10. For 2-categories C and D, the Gray tensor product C⍟D is a 2-
category.
Notation 6.6.11. For bicategories C and D, we let Hom(C,D) denote the full subbi-
category of Bicatps(C,D) consisting of strict functors, strong transformations, and
modifications. Recall from Theorem 6.3.7 that Hom(C,D) is a 2-category whenever
D is a 2-category. ◇

Recall from Definition 1.2.28 the concept of a symmetric monoidal closed cat-
egory.
Theorem 6.6.12. There is a symmetric monoidal closed category

Gray = (2Cat,⍟, 1, a, λ, ρ, ξ,Hom )

with the following data.
● The underlying category is 2Cat, the 1-category of small 2-categories and 2-

functors.
● The monoidal product is the Gray tensor product ⍟.
● The unit object is the terminal 2-category 1.
● The associativity isomorphism a, the left unit isomorphism λ, and the right unit

isomorphism ρ are induced by those of the Cartesian product.
● For 2-categories C and D, the (C,D)-component

C⍟D D⍟C
ξC,D

of the symmetry isomorphism ξ is defined on generating cells as follows for ob-
jects X ∈ C and Y ∈ D, 1-cells f ∈ C and g ∈ D, and 2-cells α ∈ C and β ∈ D.

ξ(X⍟Y) = Y⍟X

ξ( f ⍟Y) = Y⍟ f ξ(X⍟ g) = g⍟X

ξ(α⍟Y) = Y⍟ α ξ(X⍟ β) = β⍟X

ξΣ f ,g = Σ−1
g, f

● The internal hom is Hom in Notation 6.6.11.
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Gray Monoids. Recall from Definition 1.2.8 that a monoid in a monoidal cat-
egory consists of an object together with multiplication and unit morphisms satis-
fying axioms for associativity and unity.

Definition 6.6.13. A Gray monoid is a monoid (C,⊙, I) in Gray. ◇
Explanation 6.6.14 (Monoids in Gray). Rewriting Definition 1.2.8 in this context, a
Gray monoid is a triple (C,⊙, I) consisting of a 2-category C and 2-functors

⊙ ∶ C⍟C C

I ∶ 1 C

such that the following diagrams of 2-categories and 2-functors commute.

(6.6.15)

(C⍟C)⍟C C⍟ (C⍟C)

C⍟C

C⍟C C

⊙⍟1

a

1⍟⊙

⊙
⊙

1⍟C C⍟C C⍟ 1

C

I⍟1

λ
⊙

1⍟I

ρ

◇
Explanation 6.6.16 (Data and Axioms for Gray Monoids). We have an even more
explicit list of data and axioms by unpacking the definition of the Gray tensor
product ⍟. A Gray monoid

(C,⊙, I)
consists of a 2-category C together with the following data.
The Unit: A distinguished object I, which is called the Gray unit.
Objects: For each pair of objects W and X, an object W ⊙X.
1-Cells: For each object W and 1-cell f ∶ X X′, 1-cells

W ⊙ f ∶W ⊙X W ⊙X′ and

f ⊙W ∶ X⊙W X′ ⊙W.

2-Cells: For each object W and 2-cell α ∶ f1 f2 in C(X, X′), basic 2-cells

W ⊙ α ∶W ⊙ f1 W ⊙ f2 and

α⊙W ∶ f1 ⊙W f2 ⊙W.

For each 1-cell f ∶ X X′ and 1-cell g ∶ Y Y′, a 2-cell isomorphism

(6.6.17) Σ f ,g ∶ ( f ⊙Y′)(X⊙ g) ≅ (X′ ⊙ g)( f ⊙Y),

which is called a transition 2-cell.
These data are subject to the following axioms.

(1) For each object W, the assignments on cells

W ⊙− ∶ C C and
−⊙W ∶ C C

are 2-functors. By Proposition 6.2.5, 2-functoriality of W ⊙− is equivalent
to the following five equalities for each object X along with appropriately
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composable 1-cells f and g, and 2-cells α, α′, and γ.

W ⊙ 1X = 1W⊙X

W ⊙ 1 f = 1W⊙ f

W ⊙ (g f ) = (W ⊙ g)(W ⊙ f )
W ⊙ (αγ) = (W ⊙ α)(W ⊙ γ)

W ⊙ (α ∗ α′) = (W ⊙ α) ∗ (W ⊙ α′)
2-functoriality of −⊙W is equivalent to the following five equalities, pro-
vided that the compositions are defined.

1X ⊙W = 1X⊙W

1 f ⊙W = 1 f⊙W

(g f )⊙W = (g⊙W)( f ⊙W)
(αγ)⊙W = (α⊙W)(γ⊙W)

(α ∗ α′)⊙W = (α⊙W) ∗ (α′ ⊙W)
(2) The Gray unit I is strict. That is, for each object X, 1-cell f , and 2-cell α,

we have the following equalities.

I ⊙X = X = X⊙ I
I ⊙ f = f = f ⊙ I
I ⊙ α = α = α⊙ I

(3) The product ⊙ is strictly associative. That is, for objects Z, W, and X, we
have

(Z⊙W)⊙X = Z⊙ (W ⊙X).
For each 1-cell f and 2-cell α, we have the following equalities.

(Z⊙W)⊙ f = Z⊙ (W ⊙ f ) (Z⊙W)⊙ α = Z⊙ (W ⊙ α)
(Z⊙ f )⊙W = Z⊙ ( f ⊙W) (Z⊙ α)⊙W = Z⊙ (α⊙W)
( f ⊙ Z)⊙W = f ⊙ (Z⊙W) (α⊙ Z)⊙W = α⊙ (Z⊙W)

(4) For 1-cells f ∶ X X′, g ∶ Y Y′, and h ∶ Z Z′, we have the
following equalities.

Σ f ,g ⊙ Z = Σ f ,g⊙Z

Σ f⊙Y,h = Σ f ,Y⊙h

ΣX⊙g,h = X⊙Σg,h

(5) For f ∈ C(X, X′), f ′ ∈ C(X′, X′′), g ∈ C(Y, Y′), and g′ ∈ C(Y′, Y′′), we have
the following two equalities of pasting diagrams.

X⊙Y X′ ⊙Y X′′ ⊙Y

X⊙Y′ X′ ⊙Y′ X′′ ⊙Y′

f ⊙Y f ′ ⊙Y

f ⊙Y′ f ′ ⊙Y′

X⊙ g
X′ ⊙ g

X′′ ⊙ g
⇒Σ f ,g

⇒Σ f ′,g =

X⊙Y X′′ ⊙Y

X⊙Y′ X′′ ⊙Y′

( f ′ f )⊙Y

( f ′ f )⊙Y′

X⊙ g

X′′ ⊙ g
⇒Σ f ′ f ,g



I.252 6. DEFINITIONS FROM BICATEGORY THEORY

X⊙Y X′ ⊙Y

X⊙Y′ X′ ⊙Y′

X⊙Y′′ X′ ⊙Y′′

f ⊙Y

f ⊙Y′

f ⊙Y′′

X⊙ g

X⊙ g′

X′ ⊙ g

X′ ⊙ g′

⇒Σ f ,g

⇒Σ f ,g′

=

X⊙Y X′ ⊙Y

X⊙Y′′ X′ ⊙Y′′

f ⊙Y

f ⊙Y′′

X⊙ (g′g) X′ ⊙ (g′g)⇒Σ f ,g′g

(6) For α ∈ C(X, X′)( f1, f2) and β ∈ D(Y, Y′)(g1, g2), we have the following
equality of pasting diagrams.

X⊙Y X′ ⊙Y

X⊙Y′ X′ ⊙Y′

f2 ⊙Y

f1 ⊙Y′

X⊙ g1

X′ ⊙ g2

f1 ⊙Y

X′ ⊙ g1

⇒Σ f1,g1

⇒α⊙Y

⇒
X′ ⊙ β =

X⊙Y X′ ⊙Y

X⊙Y′ X′ ⊙Y′

f2 ⊙Y

f1 ⊙Y′

X⊙ g1

X′ ⊙ g2

X⊙ g2

f2 ⊙Y′

⇒
Σ f2,g2

⇒α⊙Y′

⇒
X⊙ β

This finishes the list of axioms of a Gray monoid. In particular, condition (5) toget-
her with the invertibility of Σ f ,g implies that Σ1,g and Σ f ,1 are identity 2-cells. ◇

6.7. Permutative Gray Monoids and 2-Categories

In this section, we recall from [GJO17b, Def. 3.28 and 3.45] the concepts of

● permutative Gray monoids in Definition 6.7.1 and
● permutative 2-categories in Definition 6.7.16.

This section ends with a brief discussion of strictification related to these struc-
tures.

Permutative Gray Monoids. Recall from Definition 1.2.18 that a permuta-
tive category is a symmetric monoidal category whose underlying monoidal cat-
egory is strict. Permutative Gray monoids are their analogues in the context of
2-categories with the Gray tensor product ⍟.

Definition 6.7.1. A permutative Gray monoid is a quadruple

(C,⊙, I, β)

consisting of the following data.

● (C,⊙, I) is a Gray monoid as in Definition 6.6.13.
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● β ∶ ⊙ ⊙ ξ is a 2-natural isomorphism, which is called the Gray symme-
try, as in

C⍟C C⍟C

C

ξ

⊙ ⊙⇒
β

with ξ the symmetry isomorphism in Gray in Theorem 6.6.12.

These data are subject to the following three pasting diagram axioms in 2Cat, in
which each unlabeled region is strictly commutative.

The Symmetry Axiom: The following pasting diagram is equal to 1⊙.

(6.7.2) C⍟C C⍟C C⍟C

C

1

ξ ξ

⊙
⊙

⊙
⇒
β

⇒
β

The Unit Axiom: The following pasting diagram is equal to 1λ, with λ and ρ the
left and the right unit isomorphisms in Gray.

(6.7.3) 1⍟C C⍟C C⍟C C⍟ 1

C

ξ

I ⍟ 1 ξ 1⍟ I

λ

⊙ ⊙
ρ

⇒
β
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The Hexagon Axiom:

(6.7.4) =

(C⍟C)⍟C

C⍟C

C

(C⍟C)⍟C C⍟ (C⍟C)

C⍟ (C⍟C)

(C⍟C)⍟C

C⍟C

⊙⍟ 1

⊙

ξ ⍟ 1

a

1⍟ ξ

a−1

⊙⍟ 1

⊙

C⍟ (C⍟C)

C⍟C

a

ξ

1⍟⊙

ξ⊙

⇒β

(C⍟C)⍟C

C⍟C

C

(C⍟C)⍟C C⍟ (C⍟C)

C⍟ (C⍟C)

(C⍟C)⍟C

C⍟C

⊙⍟ 1

⊙

ξ ⍟ 1

a

1⍟ ξ

a−1

⊙⍟ 1

⊙

C⍟C

⊙⍟ 1 1⍟⊙

1⍟⊙

⊙

⇒β⍟ 1

⇒1⍟ β

This finishes the definition of a permutative Gray monoid. ◇
Explanation 6.7.5 (Data). The Gray symmetry β ∶ ⊙ ⊙ ξ in a permutative Gray
monoid is a 2-natural isomorphism. By Proposition 6.2.23 and Explanation 6.6.16,
it consists of a component 1-cell

(6.7.6) X⊙Y Y⊙X
βX,Y ∈ C

for each pair of objects X, Y ∈ C such that the following invertibility and naturality
conditions are satisfied.

Invertibility: Each βX,Y is invertible. In other words, there exists a 1-cell

Y⊙X X⊙Y
β−1

X,Y ∈ C

such that

(6.7.7) β−1
X,Y βX,Y = 1X⊙Y and βX,Y β−1

X,Y = 1Y⊙X .

In fact, this inverse is given by

β−1
X,Y = βY,X

by the symmetry axiom as interpreted in (6.7.12) below.
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1-Cell Naturality: For each object W and 1-cell f ∶ X X′ in C, the following
diagram in C is commutative.

(6.7.8)
X⊙W W ⊙X X⊙W

X′ ⊙W W ⊙X′ X′ ⊙W

f⊙W

βX,W

W⊙ f

βW,X

f⊙W
βX′ ,W βW,X′

In fact, the commutativity of the right square follows from that of the left
square and the symmetry axiom (6.7.12). Therefore, only the left square
is necessary.

2-Cell Naturality: There are two types of 2-cell naturality conditions, one for basic
2-cells and one for transition 2-cells.
(1) For each object W and 2-cell α ∶ f1 f2 ∈ C(X, X′), the following

equality holds in C(X⊙W, W ⊙X′).
(6.7.9) (W ⊙ α) ∗ 1βX,W = 1βX′ ,W

∗ (α⊙W)
This is equivalent to the following pasting diagram equality, with
the unlabeled subregions commutative by (6.7.8).

=

X⊙W

W ⊙X X′ ⊙W

W ⊙X′

βX,W

W ⊙ f1

f2 ⊙W

βX′,W

W ⊙ f2

⇒W ⊙ α

X⊙W

W ⊙X X′ ⊙W

W ⊙X′

βX,W

W ⊙ f1

f2 ⊙W

βX′,W

f1 ⊙W ⇒α⊙W

(2) For each pair of 1-cells f ∶ X X′ and g ∶ Y Y′, the following
equality holds in C(X⊙Y, Y′ ⊙X′).

(6.7.10) Σ−1
g, f ∗ 1βX,Y = 1βX′ ,Y′

∗Σ f ,g.

This is equivalent to the following pasting diagram equality, with
the unlabeled subregions commutative by (6.7.8).

=

X⊙Y

X⊙Y′ X′ ⊙Y

Y′ ⊙X Y⊙X′

Y′ ⊙X′

X⊙ g

βX,Y′

Y′ ⊙ f

f ⊙Y

βX′,Y

g⊙X′

Y⊙X

βX,Y

g⊙X Y⊙ f

⇒
Σ−1

g, f

X⊙Y

X⊙Y′ X′ ⊙Y

Y′ ⊙X Y⊙X′

Y′ ⊙X′

X⊙ g

βX,Y′

Y′ ⊙ f

f ⊙Y

βX′,Y

g⊙X′

X′ ⊙Y′
f ⊙Y′ X′ ⊙ g

βX′,Y′

⇒
Σ f ,g

This completes the conditions for β ∶ ⊙ ⊙ ξ to be a 2-natural isomorphism. ◇
Explanation 6.7.11 (Axioms). Consider the axioms of a permutative Gray monoid
in Definition 6.7.1.
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The Symmetry Axiom: In (6.7.2), the equality ξξ = 1 follows from the symme-
try axiom (1.2.20) in Gray. In terms of component 1-cells, the symmetry
axiom means the commutativity of the diagram

(6.7.12)
X⊙Y X⊙Y

Y⊙X

1X⊙Y

βX,Y βY,X

for objects X, Y ∈ C. This is equivalent to the invertibility condition (6.7.7).
The Unit Axiom: Consider (6.7.3).

● The top subregion is commutative by the naturality of ξ.
● The left and the right subregions are commutative by the unity ax-

iom of the Gray monoid (C,⊙, I), that is, the right diagram in (6.6.15).
● The equality ρξ = λ follows from the symmetry axiom (1.2.20) and

the unit axiom (1.2.21) in Gray.
Since λ and ρ in Gray are induced by those of the Cartesian product, in
terms of component 1-cells the unit axiom means the commutativity of
the diagram

(6.7.13)
X X

I ⊙X X⊙ I

1X

β I,X

for each object X ∈ C, with I the Gray unit of C. It can be shown, using
an argument similar to the proof of Proposition II.1.3.21, which is the
corresponding fact for braided monoidal categories, that the unit axiom
follows from the symmetry axiom and the hexagon axiom.

The Hexagon Axiom: Consider (6.7.4).
● In the top pasting diagram, the top hexagon is commutative by the

symmetry axiom (1.2.20) and the hexagon axiom (1.2.22) in Gray. The
quadrilateral is commutative by the naturality of ξ.
● The other three unlabeled subregions in (6.7.4) are commutative by

the associativity axiom of the Gray monoid (C,⊙, I), that is, the left
diagram in (6.6.15).

In terms of component 1-cells, the hexagon axiom means that the diagram

(6.7.14) Y⊙ (Z⊙X)

Y⊙ (X⊙ Z)(Y⊙X)⊙ Z

(X⊙Y)⊙ Z

X⊙ (Y⊙ Z) (Y⊙ Z)⊙X

βX,Y⊙Z

1

Y⊙βX,Z

1
βX,Y⊙Z

1

is commutative for objects X, Y, Z ∈ C.

This finishes the explanation of the axioms of a permutative Gray monoid. ◇
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Permutative 2-Categories. The 1-category 2Cat has another symmetric mon-
oidal structure other than Gray in Theorem 6.6.12.

Definition 6.7.15. Denote by (2Cat,×) the symmetric monoidal category with the
following data.

● The underlying category is 2Cat.
● The monoidal product is the Cartesian product ×.
● The monoidal unit is the terminal 2-category 1.
● The associativity isomorphism a is the identity.
● The left and the right unit isomorphisms λ and ρ are defined by dropping

the 1 argument.
● The symmetry isomorphism ξ is given by swapping the two arguments.

This finishes the definition of (2Cat,×). ◇
Definition 6.7.16. A permutative 2-category is a quadruple

(C,⊡, I, β)
consisting of the following data.

● (C,⊡, I) is a monoid in (2Cat,×)with
– C a small 2-category,
– multiplication 2-functor −⊡− ∶ C×C C, and
– unit 2-functor I ∶ 1 C.

● β ∶ ⊡ ⊡ ξ is a 2-natural isomorphism as follows.

C×C C×C

C

ξ

⊡ ⊡⇒
β

These data are subject to the same three axioms as for permutative Gray monoids
in Definition 6.7.1 with (⍟,⊙) replaced by (×,⊡). This finishes the definition of a
permutative 2-category. ◇

Next is the analogue of Explanations 6.6.14 and 6.6.16 with the Cartesian prod-
uct instead of the Gray tensor product.

Explanation 6.7.17 (Monoid). A monoid

(C,⊡, I)
in (2Cat,×) consists of a small 2-category C together with the following data.
The Unit: A distinguished object I.
Objects: For each pair of objects W and X, an object W ⊡X.
1-Cells: For each pair of 1-cells f ∶ X X′ and g ∶ Y Y′, a 1-cell

f ⊡ g ∶ X ⊡Y X′ ⊡Y′.

2-Cells: For each pair of 2-cells α ∶ f1 f2 in C(X, X′) and γ ∶ g1 g2 in
C(Y, Y′), a 2-cell

α⊡ γ ∶ f1 ⊡ g1 f2 ⊡ g2.

These data are subject to the following 2-functoriality, unity, and associativity con-
ditions.
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The 2-Functoriality of the Multiplication:

−⊡− ∶ C×C C

is a 2-functor. This is equivalent to the following list of equalities when-
ever they are defined for objects W and X, 1-cells f , f ′, g, and g′, and
2-cells α, α′, α̃, γ, γ′, and γ̃.

1W ⊡ 1X = 1W⊡X

1 f ⊡ 1g = 1 f⊡g

( f ′ f )⊡ (g′g) = ( f ′ ⊡ g′)( f ⊡ g)
(α′α)⊡ (γ′γ) = (α′ ⊡ γ′)(α⊡ γ)

(α̃ ∗ α)⊡ (γ̃ ∗ γ) = (α̃⊡ γ̃) ∗ (α⊡ γ)

(6.7.18)

Unity: For each object X, 1-cell f , and 2-cell α, the following equalities hold.

I ⊡X = X = X ⊡ I
1I ⊡ f = f = f ⊡ 1I

11I ⊡ α = α = α⊡ 11I

(6.7.19)

Associativity: For objects X, Y, and Z, 1-cells f , g, and h, and 2-cells α, γ, and θ,
the following equalities hold.

(X ⊡Y)⊡ Z = X ⊡ (Y ⊡ Z)
( f ⊡ g)⊡ h = f ⊡ (g⊡ h)
(α⊡ γ)⊡ θ = α⊡ (γ⊡ θ)

(6.7.20)

This finishes the explicit description of a monoid in (2Cat,×). ◇
Next is the analogue of Explanations 6.7.5 and 6.7.11 with the Cartesian prod-

uct instead of the Gray tensor product.
Explanation 6.7.21 (Permutative 2-Category). For a monoid (C,⊡, I) in (2Cat,×)
as in Explanation 6.7.17, consider the 2-natural isomorphism β ∶ ⊡ ⊡ ξ of a
permutative 2-category in Definition 6.7.16. It consists of a component 1-cell

X ⊡Y Y ⊡X
βX,Y ∈ C

for each pair of objects X, Y ∈ C such that the following invertibility and naturality
conditions are satisfied.
Invertibility: The following diagram is commutative for objects X, Y ∈ C.

(6.7.22)
X ⊡Y X ⊡Y

Y ⊡X

1X⊡Y

βX,Y βY,X

1-Cell Naturality: For 1-cells f ∶ X X′ and g ∶ Y Y′ in C, the following
diagram in C(X ⊡Y, Y′ ⊡X′) is commutative.

(6.7.23)
X ⊡Y Y ⊡X

X′ ⊡Y′ Y′ ⊡X′
f⊡g

βX,Y

g⊡ f
βX′ ,Y′



6.7. PERMUTATIVE GRAY MONOIDS AND 2-CATEGORIES I.259

2-Cell Naturality: For 2-cells
● α ∶ f1 f2 in C(X, X′) and
● γ ∶ g1 g2 in C(Y, Y′),

the following equality holds in C(X ⊡Y, Y′ ⊡X′).
(6.7.24) (γ⊡ α) ∗ 1βX,Y = 1βX′ ,Y′

∗ (α⊡ γ)

This is equivalent to the following pasting diagram equality, with the
unlabeled subregions commutative by (6.7.23).

=

X ⊡Y

Y ⊡X X′ ⊡Y′

Y′ ⊡X′

βX,Y

g1 ⊡ f1

f2 ⊡ g2

βX′,Y′

g2 ⊡ f2

⇒γ⊡ α

X ⊡Y

Y ⊡X X′ ⊡Y′

Y′ ⊡X′

βX,Y

g1 ⊡ f1

f2 ⊡ g2

βX′,Y′

f1 ⊡ g1
⇒α⊡ γ

This completes the conditions for β ∶ ⊡ ⊡ ξ to be a 2-natural isomorphism.
The three axioms of a permutative 2-category are equivalent to, respectively,

the commutative diagrams (6.7.12), (6.7.13), and (6.7.14) with ⊙ replaced by ⊡.
Note that the symmetry axiom is the same as the invertibility condition (6.7.22). ◇

Strictification. We close this chapter with a brief discussion of strictification
related to symmetric monoidal bicategories, permutative Gray monoids, and per-
mutative 2-categories. Since we will not use these results in this book, we will
not provide detailed definitions and statements here. The reader is referred to the
cited references for detail.

A 2-functor F ∶ C D between permutative Gray monoids is a permutative
Gray functor if it strictly preserves the Gray unit, the multiplication⊙, and the Gray
symmetry β. There is a 1-category PGray, which is denoted by PermGrayMon in
[GJO17b], of permutative Gray monoids and permutative Gray functors.

A quasi-strict symmetric monoidal 2-category [SP∞, Def. 2.28] is a symmetric
monoidal bicategory B as in Definition 6.5.9 that satisfies the following conditions.

● The underlying monoidal bicategory of B is a Gray monoid as in Defini-
tion 6.6.13.
● The braided monoidal bicategory structure of B as in Definition 6.5.3 is a

semistrict braided monoidal 2-category in the sense of [Cra98, Def. 2.2].
● The left hexagonator R−∣−−, the right hexagonator R−−∣−, and the syllepsis

ν are all identities.
● The component 2-cells of the braiding β in Definition 6.5.3 of the forms

β f ,1 and β1,g are identities.
● Transition 2-cells (6.6.17) of the forms Σ f ,β and Σβ,g are identities for 1-

cells f and g, and for component 1-cells of the braiding β.
A quasi-strict symmetric monoidal 2-functor F ∶ C D between quasi-strict sym-
metric monoidal 2-categories is a 2-functor of the underlying 2-categories that
strictly preserves all the structures, with naturality constraints either the identity
(when this makes sense) or the unique coherence isomorphisms in D. There is
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a 1-category 2Catqst, which is denoted by qsSM2Cat in [GJO17b], of quasi-strict
symmetric monoidal 2-categories and quasi-strict symmetric monoidal 2-functors.

By [GJO17b, Theorem 3.43], there is an isomorphism

PGray ≅ 2Catqst

between the 1-categories of permutative Gray monoids and the 1-category of
quasi-strict symmetric monoidal 2-categories. Moreover, by [SP∞, Theorem 2.97]
every symmetric monoidal bicategory is connected to a quasi-strict symmetric
monoidal 2-category via a zigzag of symmetric monoidal strict functors. There-
fore, every symmetric monoidal bicategory is symmetric monoidal biequivalent
to a permutative Gray monoid.

On the other hand, not every permutative Gray monoid is symmetric monoi-
dal biequivalent to a permutative 2-category; see [SP∞, Ex. 2.30]. However, every
permutative Gray monoid is weakly equivalent to a permutative 2-category in a ho-
motopical sense; see [GJO17b, Theorem 1.1]. Therefore, permutative 2-categories
model all weak homotopy types, but not all categorical equivalence types, of per-
mutative Gray monoids.



CHAPTER 7

Baez’s Conjecture

The purpose of this chapter is to prove a conjecture due to John Baez on the
existence of an initial object, in a suitably weakened sense, in a suitable 2-category
of symmetric bimonoidal categories. We will prove two versions of Baez’s Conjec-
ture. Denote by Bifsyr the 2-category in Definition 7.1.8 with

● flat small symmetric bimonoidal categories as objects,
● robust symmetric bimonoidal functors as 1-cells, and
● bimonoidal natural transformations as 2-cells.

Denote by ∅ the empty 2-category with no objects, no 1-cells, and no 2-cells. The
first version of Baez’s Conjecture is Theorem 7.8.1. It states that the left bipermu-
tative category Σ in Proposition 2.4.8 is a lax bicolimit of the unique 2-functor

∅ Bifsyr .

The second version is Theorem 7.8.3. It states that the right bipermutative category
Σ′ in Proposition 2.4.23 is also a lax bicolimit of the unique 2-functor ∅ Bifsyr .
For an open question related to Baez’s Conjecture, see Question III.A.2.6.

Motivation. To motivate Baez’s Conjecture, recall that a rig is a ring without
additive inverses. Among rigs,N, consisting of the natural numbers with its usual
addition and multiplication, is an initial object. Indeed, given a rig R, a rig map
N R must send 0 and 1 in N to those in R. The image of each n ∈ N for n ≥ 2
must be the sum

1+⋯+ 1 ∈ R

of n copies of 1 ∈ R, since the rig map preserves addition.
Since symmetric bimonoidal categories are categorical analogues of multi-

plicatively commutative rigs, it is natural to ask whether there is an analogue of
N that is initial among symmetric bimonoidal categories. Using our terminology,
the following conjecture due to John Baez predicts the existence of a symmetric
bimonoidal analogue of N.

Baez’s Conjecture [Bae18]. The groupoid of finite sets and bi-
jections is an initial object, in a suitably weakened sense, in a
2-category of symmetric bimonoidal categories.

In this chapter, we will prove two precise versions of this conjecture.

Restrictions. Let us discuss some conditions that we need to impose on the
statement of Baez’s Conjecture.
Smallness: The 2-category Cat has small categories as objects. The smallness con-

dition ensures that for each pair of functors F, G ∶ C D with C and D

I.261
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small categories, there is a set of natural transformations F G. Simi-
larly, to discuss a 2-category of symmetric bimonoidal categories, as we
will see in Proposition 7.1.7, we need to restrict to small symmetric bi-
monoidal categories.

Finite Ordinals: The groupoid of finite sets and bijections is not small, since ev-
ery infinite set has infinitely many finite subsets. Therefore, for Baez’s
Conjecture we should consider a small version of this groupoid, that is,
a groupoid of representatives of finite sets and bijections. There are two
such candidates:
● the left bipermutative category Σ in Proposition 2.4.8 and
● the right bipermutative category Σ′ in Proposition 2.4.23.

Both of them have objects n ≥ 0, and the morphisms are given by the
symmetric groups. The main difference between them is that the object
m⊗ n = mn is interpreted as an n ×m matrix in Σ and as an m × n matrix
in Σ′. See Explanations 2.4.7 and 2.4.22. We will show that each of Σ and
Σ′ satisfies Baez’s Conjecture.

Flatness: The Coherence Theorems 3.9.1 and 4.4.3, which have a monomorphism
assumption, are used in the proof of Baez’s Conjecture. Therefore, we will
restrict to small symmetric bimonoidal categories that are flat in the sense
of Definition 3.9.9. The flatness assumption means that if we start with
a component of either distributivity morphism δl or δr, and take iterated
sums and products with a finite number of identity morphisms, then the
result is still a monomorphism. For example, tight symmetric bimonoidal
categories—that is, those with δl and δr natural isomorphisms—are flat.

Robustness: In the proof of Baez’s Conjecture, we need the symmetric bimon-
oidal functors in question to have some invertible structure morphisms.
To be specific, we want our symmetric bimonoidal functors to be robust
in the sense of Definition 5.1.1. This means that the following structure
morphisms are isomorphisms:
● the additive monoidal constraint

G2
⊕ ∶ GA⊕GB G(A⊕ B),

● the additive zero constraint

G0
⊕ ∶ 0 G(0),

and
● the multiplicative unit constraint

G0
⊗ ∶ 1 G(1).

A strong symmetric bimonoidal functor is automatically robust. How-
ever, Baez’s Conjecture does not need the invertibility of the multiplica-
tive monoidal constraint

G2
⊗ ∶ GA⊗GB G(A⊗ B).

Lax Bicolimit: There is the issue of which kind of weak colimits we should use.
For a general 2-functor F ∶ A B between 2-categories with Ob(A) a
set, there are five different kinds of colimits for F [JY21, Chapter 5]:
● lax bicolimits involving lax transformations between cones and

equivalences of categories;
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● lax colimits involving lax transformations between cones and isomor-
phisms of categories;
● pseudo bicolimits involving strong transformations between cones

and equivalences of categories;
● pseudo colimits involving strong transformations between cones and

isomorphisms of categories; and
● 2-colimits in terms of 2-natural transformations between cones and

isomorphisms of categories.
Since the structure morphisms G2

⊕, G0
⊕, and G0

⊗ are isomorphisms in-
stead of identity morphisms, we should use bicolimits instead of colimits.
Moreover, the domain being the empty 2-category ∅ implies that lax bi-
colimits and pseudo bicolimits are the same in the current setting. There-
fore, Baez’s Conjecture involves lax bicolimits.

Precise Formulation. With the discussion above in mind, the precise version
of Baez’s Conjecture, Theorem 7.8.1, states that the left bipermutative category Σ
is a lax bicolimit of the 2-functor ∅ Bifsyr . More concretely, this means that for
each flat small symmetric bimonoidal category C, the unique functor

(7.0.1) Bifsyr (Σ,C) 1T

to the terminal category 1 is an equivalence of categories, that is, fully faithful and
essentially surjective. The second version of Baez’s Conjecture, Theorem 7.8.3,
states the same thing for the right bipermutative category Σ′.

While the statement of Baez’s Conjecture requires the smallness assumption
for the 2-category Bifsyr , its proof only uses smallness at the end to make sure that
C is an object in Bifsyr . See Remark 7.8.2.

The validity of Baez’s Conjecture may seem obvious at first glance because of
the definitions (7.2.3) and (7.2.4). We stress that this is not the case, since it relies on
nontrivial coherence properties of symmetric bimonoidal categories and symmet-
ric bimonoidal functors. In fact, its proof involves both Coherence Theorems 3.9.1
and 4.4.3 for symmetric bimonoidal categories, although we do not need to use
the Strictification Theorem 5.4.6. See Note 7.9.1. The proof in this chapter also re-
quires a version of Epstein’s Coherence Theorem 1.3.12 for symmetric bimonoidal
functors in Theorem 7.5.8.

Outline. In Section 7.1, the category Bisy of small symmetric bimonoidal cat-
egories and symmetric bimonoidal functors in Proposition 5.1.10 is extended to
a 2-category. The 2-cells in this 2-category are bimonoidal natural transforma-
tions, which are monoidal natural transformations with respect to both the addi-
tive structures and the multiplicative structures. The wide subcategories Bisyr , Bisysg,
Bisyu , and Bisyst with, respectively, robust, strong, unitary, and strict symmetric bi-
monoidal functors extend to sub-2-categories of the 2-category Bisy. Furthermore,
the sub-2-category Bifsyr of Bisyr has flat small symmetric bimonoidal categories as
objects.

Now we provide an outline of the proof of Baez’s Conjecture, which is divided
into two parts:

(1) the essential surjectivity of the functor T in (7.0.1) and
(2) the fully faithfulness of the functor T.
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The first part begins in Section 7.2. For each symmetric bimonoidal category C, in
this section, we construct a strong symmetric monoidal functor

F⊕ = (F, F2
⊕, F0

⊕) ∶ Σ C

between the additive structures. The flatness of C is not needed in this section
because the Coherence Theorems 3.9.1 and 4.4.3 are not used yet. The functor F
sends

● 0 ∈ Σ to 0 ∈ C,
● 1 ∈ Σ to 1 ∈ C, and
● n ∈ Σ for n ≥ 2 to a sum of n copies of 1 ∈ C with some preselected

convention for additive bracketing.
Mac Lane’s Coherence Theorems 1.3.3 and 1.3.8 are used (i) to define the assign-
ment of F on morphisms and the additive monoidal constraint F2

⊕, and (ii) to prove
that F is a symmetric monoidal functor.

In Section 7.3, the strong symmetric monoidal functor F⊕ is extended to a sym-
metric monoidal functor

F⊗ = (F, F2
⊗, F0

⊗) ∶ Σ C

between the multiplicative structures, where C is now assumed to be flat. The
definition of the multiplicative monoidal constraint F2

⊗ involves both ⊕ and ⊗.
The Coherence Theorem 4.4.3 is used in the proofs of (i) the naturality of F2

⊗ and
(ii) the associativity axiom (1.2.14) of F⊗ in Lemmas 7.3.15, 7.3.24, and 7.3.25. The
Coherence Theorem 3.9.1 is used in the proof of Lemma 7.3.28 to show that F
satisfies the axiom (1.2.26) of a symmetric monoidal functor.

In Section 7.4, we show that

(F, F2
⊗, F0

⊗, F2
⊕, F0

⊕) ∶ Σ C

is a robust symmetric bimonoidal functor. The proof of the distributivity axiom
(5.1.3), in the equivalent form (5.1.6), for F requires the Coherence Theorem 3.9.1.
See Lemma 7.4.3, which is used at the end of the proof of Proposition 7.4.4. The
canonical robust symmetric bimonoidal functor F implies that the functor T in
(7.0.1) is essentially surjective.

The second part of the proof of Baez’s Conjecture begins in Section 7.5. To
show that the functor T in (7.0.1) is fully faithful, we will need to use a coherence
property of symmetric bimonoidal functors. In this section, we formulate and
prove this coherence property; see Theorem 7.5.8. When we actually apply this
result in the proof of Baez’s Conjecture, the domain of the symmetric bimonoidal
functor is Σ. Theorem 7.5.8 is stated and proved in the much more general case
of symmetric bimonoidal functors G ∶ C D with C and D flat. The Coherence
Theorem 4.4.3 is used to make sure that the diagram (7.5.2) is well defined; see
Explanation 7.5.5. Moreover, Epstein’s Coherence Theorem 1.3.12 is used near the
end of the proof of Theorem 7.5.8.

In Section 7.6, we show that for any symmetric bimonoidal category C and
any two robust symmetric bimonoidal functors G, H ∶ Σ C, there is at most
one bimonoidal natural transformation G H, which must be a bimonoidal
natural isomorphism. See Lemma 7.6.3. The main ingredient of this observation
is Lemma 7.6.2, where we give an explicit description of the components of such
a bimonoidal natural transformation. It is at this point that we need the robust
condition on symmetric bimonoidal functors. The statement of Lemma 7.6.2 states
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precisely where we need the invertibility of the structure morphisms G2
⊕, G0

⊕, and
G0
⊗.

In Section 7.7, we observe that the robust symmetric bimonoidal functor F ∶
Σ C with C flat is initial in a suitable sense. More precisely, in Lemma 7.7.9 we
show that for each robust symmetric bimonoidal functor G ∶ Σ C, there exists
a unique bimonoidal natural transformation θG ∶ F G, which is furthermore
an isomorphism. Epstein’s Coherence Theorem 1.3.12 is used in Lemmas 7.7.3
and 7.7.4 to prove (i) the naturality of θG and (ii) that θG is a monoidal natural
transformation for the additive structures. Theorem 7.5.8 is used in Lemma 7.7.6
to prove that θG is a monoidal natural transformation for the multiplicative struc-
tures.

In Section 7.8, we collect the results from earlier sections to finish the proof
of Baez’s Conjecture, which is Theorem 7.8.1. Another version using Σ′ is Theo-
rem 7.8.3. Elgueta [Elg21] has a more restricted version of Baez’s Conjecture for
bimonoidal categories without multiplicative symmetries. Its relationship to this
chapter is discussed in Section 7.9.

Reading Guide. As in Chapters 3, 4, and 5, we offer the following possible
alternative to reading this chapter strictly linearly.

(1) Read Definitions 7.2.2 and 7.3.12 of F ∶ Σ C.
(2) Read Definition 7.7.1 of θG ∶ F G.
(3) Read Section 7.8, which contains both versions of Baez’s Conjecture.
(4) Go back and read the parts skipped earlier.

7.1. The 2-Category of Symmetric Bimonoidal Categories

In this section, we define the 2-category of small symmetric bimonoidal cat-
egories and some of its sub-2-categories. The 2-category for Baez’s Conjecture is
in Definition 7.1.8. Proposition 5.1.10 contains the 1-categories of small symmetric
bimonoidal categories and different subclasses of symmetric bimonoidal functors.
Therefore, our task is to define the 2-cells, which are suitable natural transforma-
tions. For monoidal functors F, G ∶ C D, recall from Definition 1.2.16 that a
monoidal natural transformation θ ∶ F G is a natural transformation that is
also compatible with the structure morphisms (F2, F0) of F and (G2, G0) of G.
Convention 7.1.1. For the rest of this chapter, unless otherwise specified, C and D
are arbitrary symmetric bimonoidal categories as in Definition 2.1.2. Sometimes
they are required to be small or flat (as in Definition 3.9.9) as specified. To clarify
that some structure belongs to a particular category, we decorate it with the name
of the category. For example, 0C and 1C are, respectively, the additive zero and the
multiplicative unit in C. ◇

Recall from Definition 5.1.1 that a symmetric bimonoidal functor F ∶ C D
is a functor equipped with

● an additive symmetric monoidal functor structure

F⊕ = (F, F2
⊕, F0

⊕) ∶ (C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) (D,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
and
● a multiplicative symmetric monoidal functor structure

F⊗ = (F, F2
⊗, F0

⊗) ∶ (C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗) (D,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗)
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that are compatible with the multiplicative zeros (5.1.2) and the distributivity mor-
phisms (5.1.3).

Definition 7.1.2. Suppose F, G ∶ C D are two symmetric bimonoidal functors.

(1) A bimonoidal natural transformation θ ∶ F G is a natural transformation
of the underlying functors such that both
● θ ∶ F⊕ G⊕ and
● θ ∶ F⊗ G⊗

are monoidal natural transformations.
(2) A bimonoidal natural isomorphism is an invertible bimonoidal natural trans-

formation. ◇
Explanation 7.1.3. In Definition 7.1.2, the assumption that

F⊕ = (F, F2
⊕, F0

⊕) (G, G2
⊕, G0

⊕) = G⊕
θ

is a monoidal natural transformation means that the diagrams

(7.1.4)
FX⊕ FY GX⊕GY

F(X⊕Y) G(X⊕Y)
F2
⊕

θX⊕θY

G2
⊕

θX⊕Y

0D F0C

0D G0C

F0
⊕

θ0C

G0
⊕

are commutative in D for all objects X, Y ∈ C. Similarly, the assumption that

F⊗ = (F, F2
⊗, F0

⊗) (G, G2
⊗, G0

⊗) = G⊗
θ

is a monoidal natural transformation means that the diagrams

(7.1.5)
FX⊗ FY GX⊗GY

F(X⊗Y) G(X⊗Y)
F2
⊗

θX⊗θY

G2
⊗

θX⊗Y

1D F1C

1D G1C

F0
⊗

θ
1C

G0
⊗

are commutative in D. Moreover, a bimonoidal natural transformation θ ∶ F G
is a bimonoidal natural isomorphism if and only if each component of θ is an
isomorphism in D. ◇

Recall from Proposition 5.1.10 that Bisy is the 1-category of small symmetric
bimonoidal categories and symmetric bimonoidal functors. Also recall its wide
subcategories Bisyr , Bisysg, Bisyu , and Bisyst with, respectively, robust, strong, unitary,
and strict symmetric bimonoidal functors. Now we extend these 1-categories to
2-categories as follows.

Definition 7.1.6. Define the 2-categorical data for Bisy as follows.

Objects: Objects are small symmetric bimonoidal categories.
1-Cells: The 1-cells in Bisy(C,D) are the symmetric bimonoidal functors C D.
Identity 1-Cells: 1C ∈ Bisy(C,C) is the identity symmetric bimonoidal functor.
1-Cell Composition: Horizontal composition of 1-cells is as in Definition 5.1.7.
2-Cells: The 2-cells in Bisy(C,D)(F, G) are the bimonoidal natural transformations

F G in Definition 7.1.2.
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Identity 2-Cells: For each 1-cell F ∶ C D, the identity 2-cell

1F ∈ Bisy(C,D)(F, F)

is the identity natural transformation of F.
2-Cell Compositions: Vertical and horizontal compositions of 2-cells are those of

natural transformations in Definition 1.1.8.

This finishes the definition of the 2-categorical data for Bisy.
Moreover, similar definitions define the 2-categorical data for

● Bisyr with robust symmetric bimonoidal functors as 1-cells,
● Bisysg with strong symmetric bimonoidal functors as 1-cells,
● Bisyu with unitary symmetric bimonoidal functors as 1-cells, and
● Bisyst with strict symmetric bimonoidal functors as 1-cells. ◇

Proposition 7.1.7. With the data in Definition 7.1.6, Bisy is a 2-category that contains
the following full sub-2-categories:

Bisyst ⊂ Bi
sy
u ⊂ Bisysg ⊂ Bisyr ⊂ Bisy.

Proof. The smallness assumption on symmetric bimonoidal categories ensures
that for each pair of 1-cells F, G ∶ C D, there is a set of 2-cells in Bisy(C,D)(F, G).
By Proposition 5.1.10, the objects, 1-cells, identity 1-cells, and their horizontal com-
position in Bisy constitute a 1-category. Vertical and horizontal compositions of
2-cells are well defined because monoidal natural transformations are closed un-
der these compositions. Since symmetric monoidal functors and monoidal natural
transformations satisfy axioms (i)–(vi) in Proposition 6.1.10, so do the 1-cells and
2-cells in Bisy. Therefore, Bisy is a 2-category.

The existence of the four sub-2-categories follows from the fact that, in each
case, the 1-cells are closed under horizontal composition by Lemma 5.1.9. □

For Baez’s Conjecture, in addition to restricting the 1-cells to the robust ones,
we also need to restrict the objects as follows. Recall from Definition 3.9.9 that a
symmetric bimonoidal category is flat if each iterated sum and product of a com-
ponent of either δl or δr (2.1.4) with a finite number of identity morphisms is a
monomorphism. For example,

● flatness ensures that the morphisms in (3.9.5) are monomorphisms, and
● tight symmetric bimonoidal categories—that is, those with δl and δr nat-

ural isomorphisms—are flat.

The Coherence Theorems 3.9.1 and 4.4.3 apply to flat symmetric bimonoidal cat-
egories because the value of each δ-prime edge is of the type in the definition of
flatness. Also recall from Definition 5.1.1 that a robust symmetric bimonoidal func-
tor F has F2

⊕, F0
⊕, and F0

⊗ isomorphisms.

Definition 7.1.8. Denote by Bifsyr the full sub-2-category of Bisy with

● flat small symmetric bimonoidal categories as objects and
● robust symmetric bimonoidal functors as 1-cells. ◇

The rest of this section contains examples. By Proposition 2.3.2, each dis-
tributive symmetric monoidal category, whose monoidal product is denoted by
⊗, yields a tight symmetric bimonoidal category with additive structure given by
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coproducts, that is, (⊕, 0) = (∐,∅). Moreover, by Proposition 5.1.11, each symmet-
ric monoidal functor F ∶ C D between distributive symmetric monoidal cat-
egories canonically extends to a symmetric bimonoidal functor with the additive
structure (F2

⊕, F0
⊕) in (5.1.12). The next observation does not require the relevant

categories to be small.
Proposition 7.1.9. Suppose θ ∶ F G is a monoidal natural transformation between
symmetric monoidal functors F, G ∶ C D with C and D distributive symmetric mon-
oidal categories. Then θ is a bimonoidal natural transformation when F and G are regarded
as symmetric bimonoidal functors as in Proposition 5.1.11.

Proof. By assumption, θ ∶ F⊗ G⊗ is a monoidal natural transformation.
For θ ∶ F⊕ G⊕, we check the commutativity of the diagrams in (7.1.4).

(1) The right diagram in (7.1.4) is commutative by the universal property of
the initial object in D.

(2) The left diagram in (7.1.4) is commutative by
● the universal property of coproducts in D,
● the definitions of F2

⊕ and G2
⊕ in (5.1.12), and

● the naturality of θ.
Therefore, θ ∶ F⊕ G⊕ is a monoidal natural transformation. □

Example 7.1.10 (Distributive Categories). Suppose F, G ∶ C D are functors be-
tween distributive categories as in Example 2.3.5, such that the natural morphisms

F∗ ∗
F(A × B) FA × FB

t

p

for objects A, B ∈ C, which are dual to those in (5.1.12), are isomorphisms, and
similarly for G. As we mentioned in Example 5.1.14,

F⊗ = (F, p−1, t−1), G⊗ = (G, p−1, t−1) ∶ (C,×,∗) (D,×,∗)
are symmetric monoidal functors. If θ ∶ F G is a natural transformation, then it
is also a monoidal natural transformation θ ∶ F⊗ G⊗ for the following reasons.

(1) The right diagram in (7.1.5) is commutative by
● the universal property of the terminal object ∗ in D and
● the invertibility of t for both F and G.

(2) The left diagram in (7.1.5) is commutative by
● the universal property of products in D,
● the invertibility of p for both F and G, and
● the naturality of θ.

By Proposition 7.1.9, θ is a bimonoidal natural transformation when F and G are
regarded as symmetric bimonoidal functors as in Proposition 5.1.11. ◇

7.2. The Additive Structure

This section contains the first step of the proof of Baez’s Conjecture. For each
symmetric bimonoidal category C, we show that there exists a canonical strong
symmetric monoidal functor F⊕ ∶ Σ C between the additive structures of Σ
and C. Here Σ is the tight symmetric bimonoidal category in Definition 2.4.1
and Proposition 2.4.8. It is furthermore a left bipermutative category in the sense
of Definition 2.5.11. The flatness assumption on C is not needed until we define
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the multiplicative structure F⊗ in Section 7.3. The smallness of C is not needed
until Section 7.8.

Definition 7.2.1. For each integer n ≥ 0, define the following object in C.

n =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if n = 0,
1 if n = 1, and
(1⊕⋯⊕1)lt if n > 1.

In the last case, n is the left normalized sum (5.2.13) of n copies of the multiplicative
unit 1 in C. ◇

In the next definition and the rest of this chapter, a Mac Lane coherence iso-
morphism means a component of a permuted canonical map as in Definition 1.3.6,
applied to the additive structure

(C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕),

which is often abbreviated to (C,⊕, 0) or (C,⊕). This is an adaptation of Defini-
tion 5.2.24 to the current context.

Definition 7.2.2. Using the additive structures in Σ and C, define the data

F⊕ = (F, F2
⊕, F0

⊕) ∶ Σ C

of a symmetric monoidal functor as follows.

The Functor: The functor F ∶ Σ C is defined as follows.
Objects: For each n ≥ 0, define

(7.2.3) F(n) = n ∈ C

with n as in Definition 7.2.1.
Morphisms: For each morphism σ ∈ Σ(n, n) = Σn, define the morphism

(7.2.4) F(n) = n n = F(n) ∈ CF(σ)

as the unique Mac Lane coherence isomorphism in the symmetric
monoidal category (C,⊕, 0) that permutes the n copies of 1 in n as
σ ∈ Σn permutes n letters.

The Additive Zero Constraint: The morphism

(7.2.5) 0 F(0) = 0 ∈ C
F0
⊕

is the identity morphism 10.
The Additive Monoidal Constraint: For m, n ≥ 0, define the morphism

(7.2.6) m⊕ n = F(m)⊕ F(n) F(m + n) = m + n ∈ C
F2
⊕

as the unique Mac Lane coherence isomorphism in (C,⊕, 0) that does not
involve ξ±⊕.

This finishes the definition of F⊕. ◇
Explanation 7.2.7. Consider the definition (7.2.6) of F2

⊕.
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(1) If m = n = 0, then

0⊕ 0 0
F2
⊕

is the left additive zero λ⊕0 , which is also equal to the right additive zero
ρ⊕0 by (1.2.6).

(2) If m = 0 and n > 0, then

0⊕ n n
F2
⊕

is the left additive zero λ⊕n .
(3) If m > 0 and n = 0, then

m⊕ 0 m
F2
⊕

is the right additive zero ρ⊕m.
(4) If m, n > 0, then

(7.2.8) (
m
⊕
i=1
1)

lt
⊕ (

n
⊕
j=1
1)

lt
= m⊕ n m + n = (

m+n
⊕
i=1

1)
lt

F2
⊕

● is the identity morphism 1m+1 if n = 1, and
● involves α−⊕

m,k,1
if n > 1, with α−⊕ the inverse of α⊕ and 1 ≤ k ≤ n − 1.

For example, in the last case, if n = 3, then F2
⊕ is the following composite in C.

m⊕ ((1⊕1)⊕1)

(m⊕ (1⊕1))⊕1 ((m⊕1)⊕1)⊕1 = m + 3

α−⊕m,1⊕1,1
α−⊕m,1,1⊕11

We stress that F2
⊕ does not involve the additive symmetry ξ⊕ and its inverse. ◇

Lemma 7.2.9. For each symmetric bimonoidal category C,

F⊕ ∶ Σ C

in Definition 7.2.2 is a strong symmetric monoidal functor.

Proof. The functoriality of F ∶ Σ C follows from
● the definitions of identity morphisms and composition in Σ as those of

permutations and
● the uniqueness in Theorem 1.3.8 for the symmetric monoidal category
(C,⊕, 0).

By definition, F0
⊕ is the identity morphism 10, and F2

⊕ is componentwise an iso-
morphism.

The uniqueness in Theorem 1.3.8 for (C,⊕, 0) implies the following state-
ments.

● F2
⊕ is a natural isomorphism.

● The associativity axiom (1.2.14) holds for (F, F2
⊕).

● The compatibility axiom (1.2.26) holds for (F, F2
⊕)with the additive sym-

metries ξ⊕ in Σ and C.
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The unity axiom (1.2.15) for F⊕ follows from

● the definition F0
⊕ = 10,

● that λ⊕ and ρ⊕ in Σ are identities, and
● the first three cases in Explanation 7.2.7.

Therefore, F⊕ is a strong symmetric monoidal functor between the additive struc-
tures. □

7.3. The Multiplicative Structure

The purpose of this section is to extend the strong symmetric monoidal func-
tor F⊕ ∶ Σ C in Lemma 7.2.9 to a symmetric monoidal functor F⊗ ∶ Σ C
between the multiplicative structures of Σ and C.

Convention 7.3.1. For the rest of this chapter, unless otherwise specified, C de-
notes an arbitrary flat symmetric bimonoidal category as in Definition 3.9.9. ◇

Flatness implies that the monomorphism condition in the Coherence Theo-
rems 3.9.1 and 4.4.3 are satisfied. Here is a brief outline of this section.

● The multiplicative structure F⊗ is in Definition 7.3.12, after the prelimi-
nary Definition 7.3.3 and Lemmas 7.3.6 and 7.3.7.
● We verify that F2

⊗ is well defined in Lemma 7.3.15.
● We prove a factorization of F2

⊗ in Lemma 7.3.21.
● The associativity axiom (1.2.14) and the unity axioms (1.2.15) for a mon-

oidal functor are verified in Lemmas 7.3.25 and 7.3.27, respectively.
● We show that F⊗ is a symmetric monoidal functor in Lemma 7.3.28.

Recall from (5.2.13) that the subscript lt means left normalized bracketing.

Motivation 7.3.2. The definition of the multiplicative monoidal constraint F2
⊗ is

more complicated than that of F2
⊕ because it involves a mixture of ⊕ and ⊗. Here

we motivate its definition.
By definition, F2

⊗ involves a structure morphism

F(m)⊗ F(n) = m⊗ n mn = F(mn)

(
m
⊕
i=1
1)

lt
⊗ (

n
⊕
j=1
1)

lt
(

n
⊕
j=1

m
⊕
i=1
1)

lt

F2
⊗

in C for m, n > 0, in addition to the cases where either m or n is 0. A natural
way to define this morphism is to first distribute, using δl and δr, the product
in the domain all the way down to a sum of mn copies of 1⊗ 1. Applying the
multiplicative unit

1⊗1 1
λ⊗
1

in each summand results in the desired codomain mn.
In the first step of distributing the domain, we need to specify
● an order of the mn copies of 1⊗1 and
● an additive bracketing of their sum.

For each such choice, there exist multiple ways to distributive the domain to the
sum of mn copies of 1⊗1. In the second step, in addition to applying copies of λ⊗

1
,
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we also need to make sure that the additive bracketings match. One can certainly
choose a specific path that achieves these two steps.

However, in order to show that F is a symmetric bimonoidal functor and to
prove Baez’s Conjecture using F, we need to verify the commutativity of a num-
ber of diagrams. This involves applying the Coherence Theorems 3.9.1 and 4.4.3.
Therefore, we define F2

⊗ in terms of a coherence property, rather than as a specific
path, that will make it easier to apply those theorems. As we will see in Defini-
tions 7.3.3 and 7.3.12, F2

⊗ uses the distortion of a path in Definition 4.3.1, which is a
crucial ingredient of Theorem 4.4.3. This in turn uses

● the graph in Definition 3.1.9,
● the distortion category D in Section 4.2, and
● the left normalized bracketing (5.2.13) applied to elements in the free
{⊕,⊗}-algebra as in Remark 5.2.14.

The reader may want to review those definitions before proceeding. ◇
We will return to the definition of F2

⊗ after some preliminary definitions and
lemmas.

Definition 7.3.3. Suppose m, n ≥ 1.

(1) Define the set

B = {0B, 1B, b1, . . . , bn}

with n + 2 elements.
(2) With each 1B

i denoting a copy of 1B, define

(7.3.4) (
m
⊕
i=1

1B
i )

lt
⊗ (

n
⊕
j=1

bj)
lt

(
n
⊕
j=1

m
⊕
i=1

bj)
lt

P

as any path in Gr(B)whose distortion is the identity.
(3) Define the function φ ∶ B Ob(C) by

(7.3.5) φ(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x = 0B and
1 if x ∈ {1B, b1, . . . , bn}.

The value of the path P in C is defined as in Definition 3.1.14 via the
associated graph morphism φ ∶ Gr(B) C. ◇

First we check that the path P in (7.3.4) is well defined. Recall from Defini-
tion 4.2.1 that each object in the distortion categoryD is a sequence of nonnegative
integers. The next lemma uses the graph morphism

Gr(B) Dϑ

in Definition 4.3.1, applied to the set B in Definition 7.3.3 (1).

Lemma 7.3.6. The domain and the codomain of P in (7.3.4) are both sent by the graph
morphism ϑ to the object

(1, . . . , 1) ∈ D

with length mn and each entry equal to 1.
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Proof. The definitions (3.1.16), (4.2.8), and (4.3.2) imply the following equalities of
objects in D.

ϑ(
m
⊕
i=1

1B
i )

lt
= (

m

0, . . . , 0)

ϑ(
n
⊕
j=1

bj)
lt
= (

n

1, . . . , 1)

These equalities and (4.2.15) imply that the domain of P is sent by ϑ to the object

(
m

0, . . . , 0)⊗ (
n

1, . . . , 1) = (
mn

0+ 1, . . . , 0+ 1)

= (
mn

1, . . . , 1)

= ϑ(
n
⊕
j=1

m
⊕
i=1

bj)
lt

.

This proves the assertion. □

We also need to make sure that such a path P actually exists.
Lemma 7.3.7. There exists a path P as in (7.3.4) whose distortion is the identity.

Proof. Consider the path

(7.3.8) P = (P4, P3, P2, P1)
in Gr(B) defined below.

(
m
⊕
i=1

1B
i )

lt
⊗ (

n
⊕
j=1

bj)
lt

(
n
⊕
j=1

m
⊕
i=1

bj)
lt

(
n
⊕
j=1
(

m
⊕
i=1

1B
i )

lt
⊗ bj)

lt
(

n
⊕
j=1
(

m
⊕
i=1

bj)
lt
)
lt

(
n
⊕
j=1
(

m
⊕
i=1
(1B

i ⊗ bj))
lt
)
lt

P

P1

P2 P3

P4

(1) The path P1 is the identity if n = 1. If n > 1, then P1 has n − 1 prime edges,
each containing an instance of the left distributivity

(
m
⊕
i=1

1B
i )

lt
⊗ (

n−j+1

⊕
l=1

bl)
lt

[(
m
⊕
i=1

1B
i )

lt
⊗ (

n−j

⊕
l=1

bl)
lt
]⊕ [(

m
⊕
i=1

1B
i )

lt
⊗ bn−j+1]

δl

(⊕
m
i=11B

i )lt , (⊕
n−j
l=1

bl)lt , bn−j+1

for 1 ≤ j ≤ n − 1.
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(2) The path P2 is the identity if m = 1. If m > 1, then P2 has (m − 1)n prime
edges, each containing an instance of the right distributivity

(7.3.9)

(
m−i+1
⊕
k=1

1B
k)lt ⊗ bj

[(
m−i
⊕
k=1

1B
k)lt ⊗ bj]⊕ (1B

m−i+1 ⊗ bj)

δr
(⊕

m−i
k=1

1B
k)lt , 1B

m−i+1, bj

for 1 ≤ j ≤ n and 1 ≤ i ≤ m − 1.
(3) The path P3 has mn prime edges, each containing an instance of the left

multiplicative unit

1B
i ⊗ bj bj

λ⊗bj

for 1 ≤ j ≤ n and 1 ≤ i ≤ m.
(4) The path P4 is the identity if either m = 1 or n = 1. If m, n > 1, then P4 has
(m − 1)(n − 1) prime edges, each containing an instance of α−⊕.

Since this path P has the desired domain and codomain, it remains to show that its
distortion is the identity. We will show that each of P1, P2, P3, and P4 has identity
distortion.

The distortion category D is a left bipermutative category by Theorem 4.2.29.
Its only nonidentity structure isomorphisms are δr in (4.2.24), ξ⊕ in (4.2.10), and
ξ⊗ in (4.2.17). Therefore, the paths P1, P3, and P4 have identity distortions.

To see that the path P2 has identity distortion, recall that P2 is made up of prime
edges containing δr in (7.3.9). By Definition 3.1.14 and Lemma 4.2.27, it suffices to
show that the first entry of each distortion ϑδr is the identity permutation. By
Definition 3.1.14, (4.2.8), and (4.3.2), the distortion of δr in (7.3.9) is the following
morphism in D.

ϑδr
(⊕m−i

k=1 1B
k )lt, 1B

m−i+1, bj
= δr

ϑ(⊕m−i
k=1 1B

k )lt, ϑ1B
m−i+1, ϑbj

= δr
(0,...,0),(0),(1)

Here (0, . . . , 0) has length m − i. By Lemma 4.2.27, the first entry of this δr in D is
the permutation

(7.3.10) (ξ⊗1,m−i ⊕ ξ⊗1,1)ξ
⊗
m−i+1,1 ∈ Σm−i+1.

This is the identity permutation because both ξ⊗?,1 and ξ⊗1,? are identity permuta-
tions by definition (2.4.5). □
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Example 7.3.11. For the case m = n = 2, the path P in (7.3.8) has the following 8
prime edges.

(1B ⊕ 1B)⊗ (b1 ⊕ b2) [(b1 ⊕ b1)⊕ b2]⊕ b2

[(1B ⊕ 1B)⊗ b1]⊕ [(1B ⊕ 1B)⊗ b2] (b1 ⊕ b1)⊕ (b2 ⊕ b2)

[(1B ⊗ b1)⊕ (1B ⊗ b1)]⊕ [(1B ⊕ 1B)⊗ b2] (b1 ⊕ b1)⊕ [b2 ⊕ (1B ⊗ b2)]

[(1B ⊗ b1)⊕ (1B ⊗ b1)]⊕ [(1B ⊗ b2)⊕ (1B ⊗ b2)] (b1 ⊕ b1)⊕ [(1B ⊗ b2)⊕ (1B ⊗ b2)]

[b1 ⊕ (1B ⊗ b1)]⊕ [(1B ⊗ b2)⊕ (1B ⊗ b2)]

P

δl
1B⊕1B ,b1,b2

= P1

δr
1B ,1B ,b1

⊕ 1

1⊕ δr
1B ,1B ,b2

(λ⊗b1
⊕ 1)⊕ 1 (1⊕ λ⊗b1

)⊕ 1

1⊕ (λ⊗b2
⊕ 1)

1⊕ (1⊕ λ⊗b2
)

α−⊕b1⊕b1,b2,b2
P4 =

The path P2 has two prime edges, and the path P3 has four prime edges. ◇
Now we define the multiplicative structure of F.

Definition 7.3.12. For a flat symmetric bimonoidal category C, extend the functor
F in Definition 7.2.2 to the data

F⊗ = (F, F2
⊗, F0

⊗) ∶ (Σ,⊗, 1) (C,⊗,1)
of a symmetric monoidal functor as follows.
The Multiplicative Unit Constraint: The morphism

(7.3.13) 1 F(1) = 1 ∈ C
F0
⊗

is the identity morphism 11.
The Multiplicative Monoidal Constraint: For m, n ≥ 0, define the morphism

(7.3.14) m⊗ n = F(m)⊗ F(n) F(mn) = mn ∈ C
F2
⊗

as follows.
(1) If m = 0, then F2

⊗ is the left multiplicative zero

0⊗ n 0.
λ
●

n

(2) If n = 0, then F2
⊗ is the right multiplicative zero

m⊗ 0 0.
ρ
●

m

If m = n = 0, then λ ●0 = ρ ●0 by the axiom (2.1.14) in C.
(3) If m, n > 0, then

(
m
⊕
i=1
1)

lt
⊗ (

n
⊕
j=1
1)

lt
(

n
⊕
j=1

m
⊕
i=1
1)

lt

F2
⊗
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is the value in C of any path P as in (7.3.4).
This finishes the definition of F⊗. ◇
Lemma 7.3.15. For a flat symmetric bimonoidal category C, F2

⊗ in (7.3.14) is well defined
and is a natural transformation.

Proof. To see that F2
⊗ is well defined in the case m, n > 0, recall from Lemma 7.3.7

that such a path P in Gr(B) with identity distortion exists. In fact, we constructed
an explicit path (7.3.8) with identity distortion. Suppose P′ is any other path in
Gr(B) with the same (co)domain as P and with identity distortion. Since C is as-
sumed to be flat, the Coherence Theorem 4.4.3 implies that P and P′ have the same
value in C. Moreover, the value of P in C has the stated (co)domain of F2

⊗ by the
definition (7.3.5) of the function φ ∶ B Ob(C). Therefore, F2

⊗ is well defined.
To see that F2

⊗ is a natural transformation, first note that the cases with either
m = 0 or n = 0 follow from the naturality of λ ● and ρ ●.

For m, n > 0, by definition (7.2.4) to check the naturality of F2
⊗, we need to

show the commutativity of the following diagram in C for permutations σ ∈ Σm
and τ ∈ Σn.

(7.3.16)

(
m
⊕
i=1
1)

lt
⊗ (

n
⊕
j=1
1)

lt
(

n
⊕
j=1

m
⊕
i=1
1)

lt

(
m
⊕
i=1
1)

lt
⊗ (

n
⊕
j=1
1)

lt
(

n
⊕
j=1

m
⊕
i=1
1)

lt

≅σ
ML⊗≅

τ
ML

F2
⊗

≅σ⊗τ
ML

F2
⊗

Consider (7.3.16).
● ≅σ

ML∶ m m is the unique Mac Lane coherence isomorphism in the sym-
metric monoidal category (C,⊕, 0) that additively permutes the m copies
of 1 as σ ∈ Σm permutes m letters.
● ≅τ

ML∶ n n is interpreted in the same way using τ ∈ Σn.
● ≅σ⊗τ

ML ∶ mn mn is interpreted in the same way using the permutation
σ ⊗ τ ∈ Σmn in (2.4.4). From Explanation 2.4.7, if σ ⊗ τ is regarded as
acting on the entries of an n ×m matrix, then τ permutes the n rows, and
σ permutes the m columns.

To show the commutativity of the diagram (7.3.16), we first realize its four
morphisms as the values in C of the four corresponding sides in the following
diagram in Gr(B), with each bi

j a copy of bj ∈ B.

(7.3.17)

(
m
⊕
i=1

1B
i )

lt
⊗ (

n
⊕
j=1

bj)
lt

(
n
⊕
j=1

m
⊕
i=1

bi
j)lt

(
m
⊕
i=1

1B
σ−1(i))lt ⊗ (

n
⊕
j=1

bj)
lt

(
m
⊕
i=1

1B
σ−1(i))lt ⊗ (

n
⊕
j=1

bτ−1(j))
lt

(
n
⊕
j=1

m
⊕
i=1

bσ−1(i)
τ−1(j))lt

P

Pσ⊗1

Pσ⊗τ

P1⊗τ

P′
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Consider (7.3.17).
● Both paths P and P′ have identity distortion. They exist by Lemma 7.3.7.
● Pσ⊗1 is a path in which each prime edge has an instance of α±⊕ or ξ±⊕ ap-

plied to the 1B
i ’s. They are permuted as σ ∈ Σm permutes m letters. Such a

path exists because each symmetric group is generated by adjacent trans-
positions that swap two consecutive letters. The same remark applies in
the next two items.
● P1⊗τ is a path in which each prime edge has an instance of α±⊕ or ξ±⊕

applied to the bj’s. They are permuted as τ ∈ Σn permutes n letters.
● Pσ⊗τ is a path in which each prime edge has an instance of α±⊕ or ξ±⊕,

such that the bi
j’s are permuted by σ ⊗ τ ∈ Σmn as indicated by the sub-

script and superscript.
Now we check that the four morphisms in the diagram (7.3.16) are the values

in C of the four corresponding paths in (7.3.17).
● The values in C of the paths P and P′, which have identity distortion, are

both F2
⊗ by the latter’s definition.

● The value in C of the left vertical path (P1⊗τ , Pσ⊗1) is ≅σ
ML⊗ ≅τ

ML by
– the definitions of the paths Pσ⊗1 and P1⊗τ ,
– the functoriality of ⊗ in C, and
– the uniqueness part in the Symmetric Coherence Theorem 1.3.8.

● Similarly, the value in C of the right vertical path Pσ⊗τ is ≅σ⊗τ
ML by Theo-

rem 1.3.8.
Therefore, the values in C of the four sides in the diagram (7.3.17) are the four
corresponding morphisms in the diagram (7.3.16).

The Coherence Theorem 4.4.3 is applicable to C because it is assumed to be
flat. Together with the discussion in the previous paragraph, to show that the
diagram (7.3.16) is commutative, it suffices to show that the diagram (7.3.17) is
commutative in the distortion category D. Furthermore, since P and P′ have iden-
tity distortion, it suffices to show that the two vertical paths in (7.3.17) have the
same distortion.

By Lemma 7.3.6, all five vertices in (7.3.17) are sent by the graph morphism
ϑ ∶ Gr(B) D in Definitions 4.3.1 and 7.3.3 to the same object (1, . . . , 1) ∈ D.
Each entry of this object is 1, and the symmetric group Σ1 is the trivial group.
Therefore, it remains to show that the distortions

ϑ(P1⊗τ , Pσ⊗1) and ϑPσ⊗τ

have the same first entry. By (4.2.16),
● the first entry of ϑPσ⊗1 is σ⊗ idn, and
● the first entry of ϑP1⊗τ is idm ⊗ τ.

By (4.2.4), the first entry of ϑ(P1⊗τ , Pσ⊗1) is the permutation

(idm ⊗ τ)(σ⊗ idn) = (idmσ)⊗ (τidn)
= σ⊗ τ ∈ Σmn.

Since this is equal to the first entry of ϑPσ⊗τ , the two vertical paths in (7.3.17) have
the same distortion. □

To prove the rest of the properties of F2
⊗, we will factor F2

⊗ using the following
definition, which should be compared to Definition 7.3.3.
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Definition 7.3.18. Suppose C is a flat symmetric bimonoidal category, and m, n > 0.
● Define the set

B′ = {0B′ , 1B′ , a1, . . . , am, b1, . . . , bn}

with m + n + 2 elements.
● Define

(7.3.19) (
m
⊕
i=1

ai)
lt
⊗ (

n
⊕
j=1

bj)
lt

(
n
⊕
j=1

m
⊕
i=1
(ai ⊗ bj))

lt

Q

as any path in Gr(B′)with identity distortion.
● Define the function φ ∶ B′ Ob(C) by

(7.3.20) φ(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x = 0B′ and
1 if x ∈ B′ ∖ {0B′}.

● Define F′⊗ as the value in C of any path Q in (7.3.19), defined via the
associated graph morphism φ ∶ Gr(B′) C in Definition 3.1.14.
● Define F′′⊗ as the left normalized sum of mn copies of the left multiplica-

tive unit λ⊗
1
∶ 1⊗1 1. ◇

Lemma 7.3.21. For a flat symmetric bimonoidal category C and m, n > 0, the morphism

F2
⊗ ∶ m⊗ n mn

in (7.3.14) factors as follows, where F′⊗ and F′′⊗ are as in Definition 7.3.18.

(
m
⊕
i=1
1)

lt
⊗ (

n
⊕
j=1
1)

lt
(

n
⊕
j=1

m
⊕
i=1
1)

lt

(
n
⊕
j=1

m
⊕
i=1
(1⊗1))

lt

F2
⊗

F′⊗ F′′⊗

Proof. The existence of a path Q with identity distortion as in (7.3.19) is proved by
the construction (7.3.8) with only (P4, P2, P1) and with ai replacing 1B

i for 1 ≤ i ≤ m.
The Coherence Theorem 4.4.3 implies that F′⊗ is well defined. In other words, if
Q′ is any other path with the same (co)domain as Q and with identity distortion,
then Q and Q′ have the same value in C. In particular, we may choose the path Q
such that each of its prime edges contains an instance of δl , δr, or α−⊕.

The morphism F2
⊗ factors as F′′⊗F′⊗ by (i) the construction of the path (7.3.8),

whose value in C is F2
⊗, and (ii) the naturality of α⊕ in C. □

The next definition and lemma will be used to show that F2
⊗ satisfies the asso-

ciativity axiom (1.2.14).

Definition 7.3.22. Suppose m, n, p > 0.
● Define the set

B′′ = {0B′′ , 1B′′ , a1, . . . , am, b1, . . . , bn, c1, . . . , cp}

with m + n + p + 2 elements.
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● Define the following diagram in Gr(B′′).

(7.3.23)

[(
m
⊕
i=1

ai)
lt
⊗ (

n
⊕
j=1

bj)
lt
]⊗ (

p

⊕
k=1

ck)
lt

(
m
⊕
i=1

ai)
lt
⊗ [(

n
⊕
j=1

bj)
lt
⊗ (

p

⊕
k=1

ck)
lt
]

(
n
⊕
j=1

m
⊕
i=1
(ai ⊗ bj))

lt
⊗ (

p

⊕
k=1

ck)
lt

(
m
⊕
i=1

ai)
lt
⊗ (

p

⊕
k=1

n
⊕
j=1
(bj ⊗ ck))

lt

(
p

⊕
k=1

n
⊕
j=1

m
⊕
i=1
(ai ⊗ bj)⊗ ck)

lt
(

p

⊕
k=1

n
⊕
j=1

m
⊕
i=1

ai ⊗ (bj ⊗ ck))
lt

Q1 ⊗ 1

Q2

R

α⊗

1⊗Q3

Q4

– Up to a change of symbols, each of the paths Q1, Q2, Q3, and Q4 is
the path Q in (7.3.19).

– Q1 ⊗ 1 and 1⊗Q3 are defined in Notation 3.3.10.
– The path R has mnp prime edges, each containing one instance of

the multiplicative associativity

(ai ⊗ bj)⊗ ck ai ⊗ (bj ⊗ ck)
α⊗ai ,bj ,ck

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ p. ◇
The following lemma uses Definition 3.1.14.

Lemma 7.3.24. The diagram (7.3.23) is commutative in each flat symmetric bimonoidal
category C with respect to each function φ ∶ B′′ Ob(C) that satisfies

φ(0B′′) = 0 and φ(1B′′) = 1.

Proof. First we make two remarks.

● By Definition 7.3.18, Q has identity distortion. Therefore, each of the
paths Q1 ⊗ 1, Q2, 1⊗Q3, and Q4 has identity distortion.
● α⊗ in the distortion category is the identity by Definition 4.2.14. There-

fore, the path R has identity distortion.

It follows that both the left-bottom path and the top-right path in (7.3.23) have
identity distortion. Since C is assumed to be flat, the Coherence Theorem 4.4.3
implies that these two paths have the same value in C with respect to any choice
of the function φ satisfying the stated conditions.

Alternatively, we may also use the Coherence Theorem 3.9.1 by noting that the
lower right vertex in (7.3.23) is regular in the sense of Definition 3.1.25. Therefore,
the upper left vertex is also regular by Lemma 3.1.29. Theorem 3.9.1 now implies
that the two paths have the same value in C. □

Lemma 7.3.25. For a flat symmetric bimonoidal category C, F⊗ in Definition 7.3.12 sat-
isfies the associativity axiom (1.2.14).
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Proof. The axiom (1.2.14) for F⊗ means the commutativity of the diagram

(7.3.26)

(m⊗ n)⊗ p m⊗ (n⊗ p)

mn⊗ p m⊗ np

mnp mnp

α⊗

F2
⊗
⊗1 1⊗F2

⊗

F2
⊗

F2
⊗

1

in C for m, n, p ≥ 0. There are four cases.
(1) If m = 0, then (7.3.26) is commutative by the axiom (2.1.22) and the natu-

rality of λ ● in C.
(2) If n = 0, then (7.3.26) is commutative by the axiom (2.1.21) in C.
(3) If p = 0, then (7.3.26) is commutative by the axiom (2.1.20) and the natu-

rality of ρ ● in C.
For the case m, n, p > 0, first we make some remarks.

(i) The diagram

(1⊗1)⊗1 1⊗ (1⊗1)

1⊗1 1⊗1

1 1

λ⊗
1
⊗11

α⊗
1,1,1

11⊗λ⊗
1

λ⊗
1

11⊗1

λ⊗
1

11

in C is commutative. Indeed, the top square is commutative by the unity
axiom (1.2.2) and the equality λ⊗

1
= ρ⊗

1
in (1.2.6). The bottom square is

commutative by definition.
(ii) F2

⊗ factors as F′′⊗F′⊗ by Lemma 7.3.21, where F′⊗ (respectively, F′′⊗) only
involves δl , δr, and α−⊕ (respectively, λ⊗

1
).

(iii) α⊕, δl , and δr are natural transformations in C.
These remarks imply that, to prove the commutativity of the diagram (7.3.26)
when m, n, p > 0, it suffices to show that the diagram (7.3.23) is commutative in
C with respect to the function φ ∶ B′′ Ob(C) defined by

φ(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x = 0B′′ and
1 if x ∈ B′′ ∖ {0B′′}.

Therefore, Lemma 7.3.24 finishes the proof. □

Lemma 7.3.27. In the context of Definition 7.3.12, F⊗ satisfies the unity axioms (1.2.15).

Proof. Recall that F0
⊗ is the identity morphism 11, and λ⊗ in Σ is the identity by

Definition 2.4.1. Therefore, the left unity axiom in (1.2.15) for F⊗ means that the
two morphisms

1⊗ n n
λ⊗n

F2
⊗
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in C are equal for each n ≥ 0. There are two cases.

(1) If n = 0, then this F2
⊗ is ρ ●

1
, which is equal to λ⊗0 by the axiom (2.1.18) in C.

(2) If n > 0, then the equality λ⊗n = F2
⊗ follows from

● the definition of F2
⊗ (7.3.14) in the case m, n > 0 and

● the fact that λ⊗ in the distortion category is the identity by Defini-
tion 4.2.14.

This proves the left unity axiom in (1.2.15).
The right unity axiom in (1.2.15) is proved in the same way using

● the axiom (2.1.17) instead of (2.1.18) and
● the fact that ρ⊗ in the distortion category is the identity.

Therefore, F⊗ satisfies the unity axioms (1.2.15). □

Lemma 7.3.28. For a flat symmetric bimonoidal category C, F⊗ in Definition 7.3.12 is a
symmetric monoidal functor.

Proof. By Lemmas 7.3.15, 7.3.25, and 7.3.27, F⊗ is a monoidal functor. It remains to
check the axiom (1.2.26) of a symmetric monoidal functor. This axiom means that
the diagram

(7.3.29)
m⊗ n n⊗m

mn nm

F2
⊗

ξ⊗m,n

F2
⊗

Fξ⊗m,n

in C is commutative for m, n ≥ 0. In the bottom horizontal arrow, ξ⊗m,n ∈ Σmn is the
permutation in (2.4.5). It may be interpreted as taking the transpose of an n ×m
matrix as in Explanation 2.4.16. There are three cases.

(1) If m = 0, then (7.3.29) becomes the following diagram.

0⊗ n n⊗ 0

0 0

λ
●

n

ξ⊗
0,n

ρ
●

n

1

This diagram is commutative by
● the symmetry axiom ξ⊗ξ⊗ = 1 in (1.2.20) and
● the axiom ρ ● = λ ●ξ⊗−,0 in (2.1.19).

(2) Similarly, if n = 0, then (7.3.29) is commutative by the axiom (2.1.19).
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For the case m, n > 0, by Lemma 7.3.21, the diagram (7.3.29) is the outer dia-
gram below.

(7.3.30)

(
m
⊕
i=1
1)

lt
⊗ (

n
⊕
j=1
1)

lt
(

n
⊕
j=1
1)

lt
⊗ (

m
⊕
i=1
1)

lt

(
n
⊕
j=1

m
⊕
i=1
(1⊗1))

lt
(

m
⊕
i=1

n
⊕
j=1
(1⊗1))

lt

(
n
⊕
j=1

m
⊕
i=1
1)

lt
(

m
⊕
i=1

n
⊕
j=1
1)

lt

F′
⊗

ξ⊗m,n

F′
⊗

(⊕j⊕iλ
⊗

1
)
lt

ξ⊗m,n

(⊕i⊕jλ
⊗

1
)
lt

ξ⊗m,n

Consider (7.3.30).

● The upper left F′⊗ is the value in C of the path Q in (7.3.19) with identity
distortion.
● The upper right F′⊗ is the same, but with the roles of the ai’s and of the

bj’s switched.
● Each of the middle and the bottom horizontal arrows ξ⊗m,n is the unique

Mac Lane coherence isomorphism in (C,⊕, 0) that additively permutes
the mn summands as the transpose of an n ×m matrix.

The bottom square in (7.3.30) is commutative by the naturality of Mac Lane coher-
ence isomorphisms. It remains to show that the top square in (7.3.30) is commuta-
tive.

By Proposition II.1.3.26, ξ⊗
1,1 = 11⊗1. It follows that the top square in (7.3.30)

is the value in C of the following diagram in Gr(B′)with B′ as in Definition 7.3.18.

(7.3.31)

(
m
⊕
i=1

ai)
lt
⊗ (

n
⊕
j=1

bj)
lt

(
n
⊕
j=1

bj)
lt
⊗ (

m
⊕
i=1

ai)
lt

(
n
⊕
j=1

m
⊕
i=1
(ai ⊗ bj))

lt
(

m
⊕
i=1

n
⊕
j=1
(bj ⊗ ai))

lt

Q

ξ⊗

Q′

R

Consider (7.3.31).

● Q is the path in (7.3.19).
● Q′ is the same but with the roles of the ai’s and of the bj’s switched.
● Each prime edge in the path R contains an instance of one of the follow-

ing:
– α±⊕ or ξ⊕, which additively permute the mn summands as the trans-

pose of an n ×m matrix, or
– ξ⊗ai ,bj

∶ ai ⊗ bj bj ⊗ ai for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

● The lower right vertex is regular in the sense of Definition 3.1.25. By
Lemma 3.1.29, the upper left vertex is also regular.

Since C is assumed to be flat, the Coherence Theorem 3.9.1 implies that the diagram
(7.3.31) is commutative in C. So the top square in (7.3.30) is commutative. □
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7.4. Weakly Initial Symmetric Bimonoidal Category

The purpose of this section is to prove half of Baez’s Conjecture. For each flat
symmetric bimonoidal category C as in Definition 3.9.9, we prove that the data

(F, F2
⊕, F0

⊕, F2
⊗, F0

⊗) ∶ Σ C

in Definitions 7.2.2 and 7.3.12 constitute a robust symmetric bimonoidal functor
as in Definition 5.1.1. The next definition and lemma will be used to prove the
distributivity axiom (5.1.3) for F. Recall from (5.2.13) that the subscript lt means
left normalized bracketing.
Definition 7.4.1. Suppose m, n, p > 0.

● Define the set

B′ = {0B′ , 1B′ , a1, . . . , am, b1, . . . , bn+p}
with m+n+ p+ 2 elements. This is the set B′ in Definition 7.3.18, but with
n + p in place of n.
● Define the following diagram in Gr(B′).

(7.4.2)

(
m
⊕
i=1

ai)
lt
⊗ [(

n
⊕
j=1

bj)
lt
⊕ (

p

⊕
k=1

bn+k)
lt
] [(

m
⊕
i=1

ai)
lt
⊗ (

n
⊕
j=1

bj)
lt
]⊕ [(

m
⊕
i=1

ai)
lt
⊗ (

p

⊕
k=1

bn+k)
lt
]

(
m
⊕
i=1

ai)
lt
⊗ (

n+p

⊕
j=1

bj)
lt

(
n
⊕
j=1

m
⊕
i=1
(ai ⊗ bj))

lt
⊕ [(

m
⊕
i=1

ai)
lt
⊗ (

p

⊕
k=1

bn+k)
lt
]

(
n+p

⊕
j=1

m
⊕
i=1
(ai ⊗ bj))

lt
(

n
⊕
j=1

m
⊕
i=1
(ai ⊗ bj))

lt
⊕ (

p

⊕
k=1

m
⊕
i=1
(ai ⊗ bn+k))

lt

1⊗ R1

Q1

δl

Q2 ⊕ 1

1⊕Q3

R2

– Up to a change of symbols, each of the paths Q1, Q2, and Q3 is the
path Q in (7.3.19).

– Each prime edge in each of the paths R1 and R2 contains an instance
of α−⊕.

– The paths Q2 ⊕ 1, 1⊕Q3, and 1⊗ R1 are as in Notation 3.3.10. ◇
Lemma 7.4.3. The diagram (7.4.2) is commutative in each flat symmetric bimonoidal
category C with respect to each function φ ∶ B′ Ob(C) that satisfies

φ(0B′) = 0 and φ(1B′) = 1.

Proof. The existence of the paths Q1, Q2, and Q3 is proved by the construction
(7.3.8) with only (P4, P2, P1) and with ai replacing 1B

i for 1 ≤ i ≤ m. Each of the
paths R1 and R2 exists because, in each case, the domain and the codomain agree
up to additive bracketings.

The lower left vertex in (7.4.2) is regular in the sense of Definition 3.1.25.
Therefore, the upper left vertex is also regular by Lemma 3.1.29. Since C is as-
sumed to be flat, the Coherence Theorem 3.9.1 implies that the two paths have the
same value in C. □

Next is the main result of this section that establishes the first half of Baez’s
Conjecture.
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Proposition 7.4.4. For each flat symmetric bimonoidal category C, the data

(F, F2
⊕, F0

⊕, F2
⊗, F0

⊗) ∶ Σ C

in Definitions 7.2.2 and 7.3.12 constitute a robust symmetric bimonoidal functor.

Proof. First recall the following facts.

● Lemma 7.2.9 shows that F⊕ = (F, F2
⊕, F0

⊕) is a strong symmetric monoidal
functor.
● Lemma 7.3.28 shows that F⊗ = (F, F2

⊗, F0
⊗) is a symmetric monoidal func-

tor.
● F0
⊗ is the identity morphism 11 by definition.

Therefore, it remains to check the two axioms in Definition 5.1.1.
The multiplicative zero axiom (5.1.2) holds because

● F0
⊕ ∶ 0 0 is the identity morphism 10, and

● the right multiplicative zero ρ ● in Σ is the identity.

So each of the two composites in (5.1.2) is the same component of ρ ●.
By Proposition 5.1.4, the distributivity axiom (5.1.3) is equivalent to the com-

mutativity of the diagram (5.1.6). Since δl in Σ is the identity by Definition 2.4.1,
the diagram (5.1.6) is the following diagram in C for m, n, p ≥ 0.

(7.4.5)

m⊗ (n⊕ p) (m⊗ n)⊕ (m⊗ p)

m⊗ n + p mn⊕mp

m(n + p) mn +mp

1⊗F2
⊕

δl
m,n,p

F2
⊗
⊕F2
⊗

F2
⊗ F2

⊕

Fδl

=

To prove the commutativity of the diagram (7.4.5), consider the following four
cases.

(1) If m = 0, then (7.4.5) is commutative by
● the axiom (2.1.15) in C and
● the naturality of λ ●.

(2) If n = 0, then (7.4.5) factors as follows.

m⊗ (0⊕ p) (m⊗ 0)⊕ (m⊗ p)

m⊗ p 0⊕ (m⊗ p) 0⊕mp

mp mp

1⊗λ⊕p

δl
m,0,p

ρ
●

m⊕1
ρ
●

m⊕F2
⊗

F2
⊗

λ⊕m⊗p 1⊕F2
⊗

λ⊕mp

=

● The upper left trapezoid is commutative by the axiom (2.1.23) in C.
● The upper right triangle is commutative by the functoriality of ⊕.
● The bottom rectangle is commutative by the naturality of λ⊕.
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(3) If p = 0, then (7.4.5) factors as follows.

m⊗ (n⊕ 0) (m⊗ n)⊕ (m⊗ 0)

m⊗ n (m⊗ n)⊕ 0 mn⊕ 0

mn mn

1⊗ρ⊕n

δl
m,n,0

1⊕ρ
●

m
F2
⊗
⊕ρ

●

m

F2
⊗

ρ⊕m⊗n F2
⊗
⊕1

ρ⊕mn

=

● The upper left trapezoid is commutative by the axiom (2.1.25) in C.
● The upper right triangle is commutative by the functoriality of ⊕.
● The bottom rectangle is commutative by the naturality of ρ⊕.

For the case m, n, p > 0, we use

● the description of F2
⊕ in Explanation 7.2.7 and

● the factorization of F2
⊗ in Lemma 7.3.21.

They imply that the diagram (7.4.5) is the outer diagram below.

(7.4.6)

(
m
⊕
i=1
1)

lt
⊗ [(

n
⊕
j=1
1)

lt
⊕ (

p

⊕
k=1
1)

lt
] [(

m
⊕
i=1
1)

lt
⊗ (

n
⊕
j=1
1)

lt
]⊕ [(

m
⊕
i=1
1)

lt
⊗ (

p

⊕
k=1
1)

lt
]

(
m
⊕
i=1
1)

lt
⊗ (

n+p

⊕
j=1
1)

lt
(

n
⊕
j=1

m
⊕
i=1
(1⊗1))

lt
⊕ [(

m
⊕
i=1
1)

lt
⊗ (

p

⊕
k=1
1)

lt
]

(
n+p

⊕
j=1

m
⊕
i=1
(1⊗1))

lt
(

n
⊕
j=1

m
⊕
i=1
(1⊗1))

lt
⊕ (

p

⊕
k=1

m
⊕
i=1
(1⊗1))

lt

(
n+p

⊕
j=1

m
⊕
i=1
1)

lt
(

n
⊕
j=1

m
⊕
i=1
1)

lt
⊕ (

p

⊕
k=1

m
⊕
i=1
1)

lt

1⊗ F2
⊕

F′⊗

(⊕j ⊕i λ⊗1)lt

δl

F′⊗ ⊕ 1

1⊕ F′⊗

(⊕j ⊕i λ⊗1)lt⊕ (⊕k ⊕i λ⊗1)lt

F2
⊕

≅ML

In this diagram, each of the two F2
⊕ and ≅ML is the unique Mac Lane coherence

isomorphism involving only α−⊕ that moves the additive brackets. The naturality
of Mac Lane coherence isomorphisms implies that the bottom rectangle in (7.4.6)
is commutative.

It remains to show that the top square in (7.4.6) is commutative. In the context
of Definition 7.4.1, consider the function φ ∶ B′ Ob(C) defined as in (7.3.20)
and the associated graph morphism φ ∶ Gr(B′) C. Then the top square in
(7.4.6) is the value in C of the diagram (7.4.2) in Gr(B′). By Lemma 7.4.3, the top
square in (7.4.6) is commutative. □

7.5. Coherence of Symmetric Bimonoidal Functors

The purpose of this section is to prove a coherence property of symmetric bi-
monoidal functors. In Section 7.7, we will use this coherence property to prove
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that the canonical robust symmetric bimonoidal functor F ∶ Σ C in Proposi-
tion 7.4.4 is initial in a suitable sense. See Lemma 7.7.9 for the precise statement.

The desired coherence property is about the diagram (7.5.2) defined below. It
is used in the proof of Lemma 7.7.6. Recall from (5.2.13) that the subscript lt means
left normalized bracketing.

Definition 7.5.1. Suppose given the following data.

● C and D are flat symmetric bimonoidal categories, and

(G, G2
⊕, G0

⊕, G2
⊗, G0

⊗) ∶ C D

is a symmetric bimonoidal functor.
● Ai, Bj ∈ C are objects for 1 ≤ i ≤ m and 1 ≤ j ≤ n with m, n ≥ 1.

Define the following diagram in D.

(7.5.2)

(
m
⊕
i=1

GAi)
lt
⊗ (

n
⊕
j=1

GBj)
lt

(
n
⊕
j=1

m
⊕
i=1
(GAi ⊗GBj))

lt

G(
m
⊕
i=1

Ai)
lt
⊗G(

n
⊕
j=1

Bj)
lt

(
n
⊕
j=1

m
⊕
i=1

G(Ai ⊗ Bj))
lt

G[(
m
⊕
i=1

Ai)
lt
⊗ (

n
⊕
j=1

Bj)
lt
] G(

n
⊕
j=1

m
⊕
i=1
(Ai ⊗ Bj))

lt

G⊕ ⊗G⊕

G2
⊗

Gqm,n

pm,n

(⊕j ⊕i G2
⊗)lt

G⊕

Consider (7.5.2).

(1) Each of the three morphisms G⊕ is a composite of morphisms, each be-
ing the sum of identity morphisms and at most one component of the
additive monoidal constraint G2

⊕.
(2) The morphism

(7.5.3) (
m
⊕
i=1

GAi)
lt
⊗ (

n
⊕
j=1

GBj)
lt

(
n
⊕
j=1

m
⊕
i=1
(GAi ⊗GBj))

lt

pm,n

is the value in D of the path Q in (7.3.19), taken with respect to the func-
tion φp ∶ B′ Ob(D) defined by

φp(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0D if x = 0B′ ,
1D if x = 1B′ ,
GAi if x = ai for 1 ≤ i ≤ m, and
GBj if x = bj for 1 ≤ j ≤ n.

(3) The morphism

(7.5.4) (
m
⊕
i=1

Ai)
lt
⊗ (

n
⊕
j=1

Bj)
lt

(
n
⊕
j=1

m
⊕
i=1
(Ai ⊗ Bj))

lt

qm,n
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is the value in C of the path Q in (7.3.19), taken with respect to the func-
tion φq ∶ B′ Ob(C) defined by

φq(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0C if x = 0B′ ,
1C if x = 1B′ ,
Ai if x = ai for 1 ≤ i ≤ m, and
Bj if x = bj for 1 ≤ j ≤ n.

The finishes the definition of the diagram (7.5.2). ◇
Explanation 7.5.5. Consider Definition 7.5.1.

(1) Consider the morphism

(
m
⊕
i=1

GAi)
lt

G(
m
⊕
i=1

Ai)
lt
∈ DG⊕

in the diagram (7.5.2).
● If m = 1, then G⊕ is the identity morphism 1GA1 .
● Inductively, if m ≥ 2, then G⊕ is the composite below.

(7.5.6)

(
m
⊕
i=1

GAi)
lt

G(
m
⊕
i=1

Ai)
lt

(
m−1
⊕
i=1

GAi)
lt
⊕GAm G(

m−1
⊕
i=1

Ai)
lt
⊕GAm

G⊕⊕1

G2
⊕

For example, if m = 2, then G⊕ is the additive monoidal constraint

GA1 ⊕GA2 G(A1 ⊕ A2).
G2
⊕

The flatness of C and D are not needed to define the morphism G⊕. More-
over, if G2

⊕ is an isomorphism, then so is G⊕.
(2) We use the symbol G⊕ for both the additive structure (G, G2

⊕, G0
⊕) of G

and the morphism in the diagram (7.5.2). This should not cause any con-
fusion, since the morphism G⊕ is entirely made up of the additive mon-
oidal constraint G2

⊕ and identity morphisms.
(3) In the definitions of pm,n and qm,n, the existence of the path Q is explained

in the first paragraph of the proof of Lemma 7.3.21. The Coherence The-
orem 4.4.3, which is applicable by the flatness assumption of C and D,
ensures that the value of Q in each of C and D is unique regardless of
how Q is chosen. ◇

The objective of this section is to show that the diagram (7.5.2) is commutative.
First we consider the following preliminary case.
Lemma 7.5.7. If n = 1, then the diagram (7.5.2) is commutative.

Proof. We proceed by induction on m ≥ 1. If m = 1, then all three G⊕’s, q, and g are
identity morphisms. So both composites in the diagram (7.5.2) are the morphism

GA1 ⊗GB1 G(A1 ⊗ B1) ∈ D.
G2
⊗
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Inductively, suppose m ≥ 2. To save space below, we write B1 as B, G? as ?G,
and ⊗ as concatenation, with ⊗ taking precedence over ⊕. For example, the upper
left corner in (7.5.2) is written as

(
m
⊕
i=1

AG
i )lt(

n
⊕
j=1

BG
j )lt.

With these abbreviations, the diagram (7.5.2) with n = 1 is the outer diagram below.

(
m
⊕
i=1

AG
i )ltB

G (
m−1
⊕
i=1

AG
i )ltB

G ⊕ AG
mBG (

m−1
⊕
i=1

AG
i BG)

lt
⊕ AG

mBG

[(
m−1
⊕
i=1

Ai)
G

lt
⊕ AG

m]BG (
m−1
⊕
i=1

Ai)
G

lt
BG ⊕ AG

mBG (
m−1
⊕
i=1
(AiB)G)

lt
⊕ (AmB)G

(
m
⊕
i=1

Ai)
G

lt
BG [(

m−1
⊕
i=1

Ai)
lt

B]
G
⊕ AG

mBG (
m−1
⊕
i=1

AiB)
G

lt
⊕ (AmB)G

[(
m−1
⊕
i=1

Ai)
lt

B]
G
⊕ (AmB)G

[(
m
⊕
i=1

Ai)
lt

B]
G

[(
m−1
⊕
i=1

Ai)
lt

B⊕ AmB]
G

(
m
⊕
i=1

AiB)
G

lt

(G⊕ ⊕ 1)1

G2
⊕1

G2
⊗

Gδr [qm−1,1 ⊕ 1]G

δr pm−1,1 ⊕ 1

(⊕iG
2
⊗)lt ⊕G2

⊗

G⊕ ⊕ 1

G2
⊕

G⊕1⊕ 1

G2
⊗ ⊕ 1

1⊕G2
⊗

G2
⊕

δr

qG
m−1,1 ⊕G2

⊗

qG
m−1,1 ⊕ 1

Consider the previous diagram.

● The upper left rectangle is commutative by the naturality of δr.
● The lower left rectangle is commutative by the distributivity axiom (5.1.3)

for G and the functoriality of ⊕.
● The upper right square is commutative by the induction hypothesis and

the functoriality of ⊕.
● The middle right triangle is commutative by the functoriality of ⊕.
● The lower right trapezoid is commutative by the naturality of G2

⊕.

This finishes the induction step. □

Theorem 7.5.8. The diagram (7.5.2) is commutative for m, n ≥ 1.

Proof. We proceed by induction on n ≥ 1. The case n = 1 is proved in Lemma 7.5.7.
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Inductively, suppose n ≥ 2. Using the notation in the proof of Lemma 7.5.7, we
factor the diagram (7.5.2) into six subdiagrams as follows.

(
m
⊕
i=1

AG
i )lt[(

n−1
⊕
j=1

BG
j )lt ⊕ BG

n] ● ● (
n
⊕
j=1

m
⊕
i=1

AG
i BG

j )lt

(
m
⊕
i=1

Ai)
G

lt
[(

n−1
⊕
j=1

Bj)
G

lt
⊕ BG

n] ● ● (
n
⊕
j=1

m
⊕
i=1
(AiBj)G)

lt

(
m
⊕
i=1

Ai)
G

lt
(

n
⊕
j=1

Bj)
G

lt
● ●

[(
m
⊕
i=1

Ai)
lt
(

n
⊕
j=1

Bj)
lt
]

G

● ● (
n
⊕
j=1

m
⊕
i=1

AiBj)
G

lt

I

II

III

IV

V

VI

G⊕(G⊕ ⊕ 1)

1G2
⊕

G2
⊗

Gδl [qm,n−1 ⊕ qm,1]
G RG

2

δl pm,n−1 ⊕ pm,1 R1

(⊕j ⊕i G2
⊗)lt

G⊕

The subdiagrams I and II are as follows.

(
m
⊕
i=1

AG
i )lt[(

n−1
⊕
j=1

BG
j )lt ⊕ BG

n] (
m
⊕
i=1

AG
i )lt(

n−1
⊕
j=1

BG
j )lt ⊕ (

m
⊕
i=1

AG
i )ltB

G
n

(
m
⊕
i=1

Ai)
G

lt
[(

n−1
⊕
j=1

Bj)
G

lt
⊕ BG

n] (
m
⊕
i=1

Ai)
G

lt
(

n−1
⊕
j=1

Bj)
G

lt
⊕ (

m
⊕
i=1

Ai)
G

lt
BG

n

(
m
⊕
i=1

Ai)
G

lt
(

n
⊕
j=1

Bj)
G

lt
[(

m
⊕
i=1

Ai)
lt
(

n−1
⊕
j=1

Bj)
lt
]

G
⊕ [(

m
⊕
i=1

Ai)
lt

Bn]
G

[(
m
⊕
i=1

Ai)
lt
(

n
⊕
j=1

Bj)
lt
]

G

[(
m
⊕
i=1

Ai)
lt
(

n−1
⊕
j=1

Bj)
lt
⊕ (

m
⊕
i=1

Ai)
lt

Bn]
G

I

II

G⊕(G⊕ ⊕ 1)

1G2
⊕

G2
⊗

Gδl

δl

δl

G⊕G⊕ ⊕G⊕1

G2
⊗ ⊕G2

⊗

G2
⊕

The subdiagram I is commutative by the naturality of δl . The subdiagram II is
commutative by (5.1.6), which is equivalent to the distributivity axiom (5.1.3) for
G.
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The subdiagrams III and IV are as follows.

(
m
⊕
i=1

AG
i )lt(

n−1
⊕
j=1

BG
j )lt ⊕ (

m
⊕
i=1

AG
i )ltB

G
n (

n−1
⊕
j=1

m
⊕
i=1

AG
i BG

j )lt ⊕ (
m
⊕
i=1

AG
i BG

n)
lt

(
m
⊕
i=1

Ai)
G

lt
(

n−1
⊕
j=1

Bj)
G

lt
⊕ (

m
⊕
i=1

Ai)
G

lt
BG

n (
n−1
⊕
j=1

m
⊕
i=1
(AiBj)G)

lt
⊕ (

m
⊕
i=1
(AiBn)G)

lt

[(
m
⊕
i=1

Ai)
lt
(

n−1
⊕
j=1

Bj)
lt
]

G
⊕ [(

m
⊕
i=1

Ai)
lt

Bn]
G

(
n−1
⊕
j=1

m
⊕
i=1

AiBj)
G

lt
⊕ (

m
⊕
i=1

AiBn)
G

lt

[(
m
⊕
i=1

Ai)
lt
(

n−1
⊕
j=1

Bj)
lt
⊕ (

m
⊕
i=1

Ai)
lt

Bn]
G

[(
n−1
⊕
j=1

m
⊕
i=1

AiBj)
lt
⊕ (

m
⊕
i=1

AiBn)
lt
]

G

III

IV

G⊕G⊕ ⊕G⊕1

G2
⊗ ⊕G2

⊗

G2
⊕

[qm,n−1 ⊕ qm,1]
G

pm,n−1 ⊕ pm,1

(⊕j ⊕i G2
⊗)lt ⊕ (⊕iG

2
⊗)lt

G⊕ ⊕G⊕

G2
⊕

qG
m,n−1 ⊕ qG

m,1

The subdiagram III is commutative by

● the induction hypothesis for the summands involving pm,n−1 and qG
m,n−1;

● the case n = 1 in Lemma 7.5.7 for the summands involving pm,1 and qG
m,1;

and
● the functoriality of ⊕.

The subdiagram IV is commutative by the naturality of G2
⊕.

The subdiagrams V and VI are as follows.

(
n−1
⊕
j=1

m
⊕
i=1

AG
i BG

j )lt ⊕ (
m
⊕
i=1

AG
i BG

n)
lt

(
n
⊕
j=1

m
⊕
i=1

AG
i BG

j )lt

(
n−1
⊕
j=1

m
⊕
i=1
(AiBj)G)

lt
⊕ (

m
⊕
i=1
(AiBn)G)

lt
(

n
⊕
j=1

m
⊕
i=1
(AiBj)G)

lt

(
n−1
⊕
j=1

m
⊕
i=1

AiBj)
G

lt
⊕ (

m
⊕
i=1

AiBn)
G

lt

[(
n−1
⊕
j=1

m
⊕
i=1

AiBj)
lt
⊕ (

m
⊕
i=1

AiBn)
lt
]

G
(

n
⊕
j=1

m
⊕
i=1

AiBj)
G

lt

V

VI

(⊕j ⊕i G2
⊗)lt ⊕(⊕iG

2
⊗)lt

G⊕ ⊕G⊕

G2
⊕

RG
2

R1

(⊕j ⊕i G2
⊗)lt

G⊕

R

Each of R1, R, and R2 is a composite of morphisms, each being the sum of identity
morphisms and at most one component of α−⊕. Each of them exists because in
each case the domain and the codomain agree up to additive bracketings. The
subdiagram V is commutative by the naturality of α⊕. The subdiagram VI is
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commutative by Epstein’s Coherence Theorem 1.3.12 for the additive structure
(G, G2

⊕). This finishes the induction step. □

7.6. Uniqueness of 2-Cells

In this section, we show that for each symmetric bimonoidal category C and
robust symmetric bimonoidal functors G, H ∶ Σ C, there is at most one bi-
monoidal natural transformation G H. Moreover, such a bimonoidal natural
transformation must be an isomorphism. The main part is Lemma 7.6.2, where we
describe explicitly the components of such a bimonoidal natural transformation.
Notation 7.6.1. Recall from Definition 5.1.1 that a robust symmetric bimonoidal
functor G has invertible structure morphisms G2

⊕, G0
⊕, and G0

⊗.
● We write the inverses of G2

⊕, G0
⊕, and G0

⊗ as, respectively, G−2
⊕ , G−0

⊕ , and
G−0
⊗ .

● The inverse of the morphism G⊕ in Definition 7.5.1 and Explanation 7.5.5
is denoted by G−1

⊕ . ◇
Recall from Definition 2.4.18 that the objects in Σ are n ≥ 0.

Lemma 7.6.2. Suppose given the following data.
● C is a symmetric bimonoidal category as in Definition 2.1.2.
● G, H ∶ Σ C are symmetric bimonoidal functors with G robust.
● π ∶ G H is a bimonoidal natural transformation as in Definition 7.1.2.

Then the following statements hold.
(1) π0 is the following composite in C.

G(0) 0 H(0)G−0
⊕ H0

⊕

π0

(2) π1 is the following composite in C.

G(1) 1 H(1)G−0
⊗ H0

⊗

π1

(3) For each n ≥ 2, πn is the following composite in C.

G(n) H(n)

(
n
⊕
i=1

G(1))
lt

(
n
⊕
i=1

H(1))
lt

G−1
⊕

πn

(⊕iπ1)lt

H⊕

Proof. The first two assertions for π0 and π1 follow from
● the right diagrams in (7.1.4) and (7.1.5), respectively, for the monoidal

natural transformations π ∶ G⊕ H⊕ and π ∶ G⊗ H⊗; and
● the invertibility of G0

⊕ and G0
⊗.

The last assertion about πn is proved by induction on n ≥ 2. The case n = 2
follows from

● the left diagram in (7.1.4),
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● the invertibility of G2
⊕, and

● the fact that 2 = 1⊕ 1 in Σ.
Inductively, suppose n > 2. In Σ, n = (n − 1) ⊕ 1. Consider the following

diagram in C.

G(n) H(n)

G(n − 1)⊕G(1) H(n − 1)⊕H(1)

(
n−1
⊕
i=1

G(1))
lt
⊕G(1) (

n−1
⊕
i=1

H(1))
lt
⊕H(1)

(
n
⊕
i=1

G(1))
lt

(
n
⊕
i=1

H(1))
lt

G−2
⊕

G−1
⊕ ⊕ 1

1
(

n
⊕
i=1

π1)
lt

1

H⊕ ⊕ 1

H2
⊕

πn

πn−1 ⊕π1

(
n−1
⊕
i=1

π1)
lt
⊕π1

G−1
⊕ H⊕

Consider the previous diagram.
● The top rectangle is commutative by the left diagram in (7.1.4) and the

invertibility of G2
⊕.

● The middle rectangle is commutative by the induction hypothesis for the
summands involving πn−1 and the functoriality of ⊕.
● The bottom rectangle is commutative by the definition (5.2.13) of the left

normalized bracketing.
● By (7.5.6), the left and the right vertical composites are, respectively, G−1

⊕
and H⊕.

This finishes the induction step. □

Lemma 7.6.3. In the context of Lemma 7.6.2, the following statements hold.
(1) π is the only bimonoidal natural transformation G H.
(2) If H is also robust, then π is a bimonoidal natural isomorphism.

Proof. The first assertion follows from Lemma 7.6.2 because each component of
π is uniquely expressed in terms of the structure morphisms of G and H. The
second assertion holds because, if H is also robust, then each component of π is a
composite of isomorphisms. □

7.7. Initial 1-Cell

The purpose of this section is to establish the second half of Baez’s Conjecture.
In Lemma 7.7.9, we observe that the robust symmetric bimonoidal functor F ∶
Σ C in Definitions 7.2.2 and 7.3.12 and Proposition 7.4.4 is initial in a suitable
sense. To prove the initial property of F, first we define the components of the
expected unique bimonoidal natural transformation.

Definition 7.7.1. Suppose
● C is a flat symmetric bimonoidal category and
● G ∶ Σ C is a symmetric bimonoidal functor.
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Define θG ∶ F G with the component morphisms

F(n) = n G(n) ∈ C
θG

n

for n ≥ 0 as follows.

● θG
0 is the additive zero constraint

F(0) = 0 G(0).
G0
⊕

● θG
1 is the multiplicative unit constraint

F(1) = 1 G(1).
G0
⊗

● For each n ≥ 2, θG
n is the following composite in C, with G⊕ the morphism

in (7.5.6).

F(n) = n G(n)

(
n
⊕
j=1
1)

lt
(

n
⊕
j=1

G(1))
lt

θG
n

(⊕jG
0
⊗
)lt

G⊕

This finishes the definition of θG. ◇
Explanation 7.7.2. The components of θG in Definition 7.7.1 are the results of ap-
plying the three diagrams in Lemma 7.6.2 to F and G because of the following
statements.

(1) F0
⊕ is the identity morphism 10 by (7.2.5).

(2) F0
⊗ is the identity morphism 11 by (7.3.13).

(3) For each n ≥ 2, the morphism

(
n
⊕
j=1

F(1))
lt
= n n = F(n)F⊕

is the identity morphism 1n by (7.2.8) and Explanation 7.5.5. ◇
We now show that θG is a bimonoidal natural transformation. To clarify the

argument, we separate the proof into several lemmas. Recall from Definition 2.4.1
that morphisms in Σ are permutations.

Lemma 7.7.3. θG ∶ F G in Definition 7.7.1 is a natural transformation.

Proof. The naturality of θG with respect to morphisms in Σ(n, n) = Σn for n = 0, 1
holds because Σ0 and Σ1 are the trivial group.
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Suppose σ ∈ Σn is a permutation for some n ≥ 2. The naturality of θG with
respect to σ is the outer diagram below.

F(n) = (
n
⊕
j=1
1)

lt
(

n
⊕
j=1
1)

lt
= F(n)

(
n
⊕
j=1

G(1))
lt

(
n
⊕
j=1

G(1))
lt

G(n) G(n)

F(σ)

(⊕jG
0
⊗
)lt (⊕jG

0
⊗
)lt

G⊕

σ

G⊕
G(σ)

Consider the previous diagram.

● In the top square, each of F(σ) and σ is the unique Mac Lane coherence
isomorphism in (C,⊕) that additively permutes the n copies of 1, or of
G(1), as σ ∈ Σn permutes n letters. The top square is commutative by the
naturality of α⊕ and ξ⊕ in C.
● In the bottom square, since

n = (
n
⊕
j=1

1)
lt
∈ Σ,

by (7.5.6), each of the two composites is the same component of a G-
coherent map in the sense of Definition 1.3.11. Therefore, the bottom
square is commutative by Epstein’s Coherence Theorem 1.3.12 for the
symmetric monoidal functor (G, G2

⊕) ∶ Σ C.

Therefore, θG is a natural transformation. □

Lemma 7.7.4. In Definition 7.7.1,

θG ∶ (F, F2
⊕, F0

⊕) (G, G2
⊕, G0

⊕)

is a monoidal natural transformation.

Proof. By Lemma 7.7.3, it remains to check the two axioms in Definition 1.2.16
for the additive structures. The right diagram in (1.2.17) is commutative by the
definition of θG

0 = G0
⊕, since F0

⊕ ∶ 0 F(0) is the identity morphism 10.
The left diagram in (1.2.17) is the following diagram in C for m, n ≥ 0.

(7.7.5)

F(m)⊕ F(n) = m⊕ n G(m)⊕G(n)

F(m + n) = m + n G(m + n)

F2
⊕

θG
m+n

θG
m ⊕ θG

n

G2
⊕

To prove its commutativity, we consider all the possible cases.
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If m = 0, then (7.7.5) is the outer diagram below.

0⊕ n G(0)⊕G(n)

0⊕G(n)

n G(n)

λ⊕n

1⊕θG
n

G0
⊕
⊕θG

n

G2
⊕

G0
⊕
⊕1

λ⊕G(n)

θG
n

Starting from the top and going counterclockwise, the three triangles in the dia-
gram above are commutative by, respectively,

● the functoriality of ⊕,
● the naturality of λ⊕ in C, and
● the left unity axiom (1.2.15) for (G, G2

⊕, G0
⊕) and the fact that λ⊕ is the

identity in Σ.

If n = 0, then (7.7.5) decomposes analogously. The resulting diagram is commu-
tative by the functoriality of ⊕, the naturality of ρ⊕ in C, the right unity axiom
(1.2.15) for (G, G2

⊕, G0
⊕), and the fact that ρ⊕ is the identity in Σ.

If m, n ≥ 1, then (7.7.5) is the outer diagram below.

(
m
⊕
i=1
1)

lt
⊕ (

n
⊕
j=1
1)

lt
(

m
⊕
i=1

G(1))
lt
⊕ (

n
⊕
j=1

G(1))
lt

G(m)⊕G(n)

(
m+n
⊕
k=1

1)
lt

(
m+n
⊕
k=1

G(1))
lt

G(m + n)

F2
⊕

(⊕kG0
⊗)lt G⊕

(⊕iG
0
⊗)lt ⊕ (⊕jG

0
⊗)lt G⊕ ⊕G⊕

G2
⊕≅ML

Consider the previous diagram.

● Both F2
⊕ and ≅ML are the unique Mac Lane coherence isomorphism in

(C,⊕) that involve only α−⊕ and move the additive brackets in the same
way. The left square is commutative by the naturality of α⊕.
● In the right square, if m = 1, then the top left G⊕ is the identity morphism.

If n = 1, then the top right G⊕ is the identity morphism. This square is
commutative by Epstein’s Coherence Theorem 1.3.12 for the symmetric
monoidal functor (G, G2

⊕) ∶ Σ C.

This finishes the proof of the commutativity of (7.7.5). □

Lemma 7.7.6. In Definition 7.7.1,

θG ∶ (F, F2
⊗, F0

⊗) (G, G2
⊗, G0

⊗)

is a monoidal natural transformation.

Proof. By Lemma 7.7.3, it remains to check the two axioms in Definition 1.2.16 for
the multiplicative structures. The right diagram in (1.2.17) is commutative by the
definition of θG

1 = G0
⊗, since F0

⊗ ∶ 1 F(1) is the identity morphism 11.
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The left diagram in (1.2.17) is the following diagram in C for m, n ≥ 0.

(7.7.7)

F(m)⊗ F(n) = m⊗ n G(m)⊗G(n)

F(mn) = mn G(mn)

F2
⊗

θG
mn

θG
m ⊗ θG

n

G2
⊗

To prove its commutativity, we consider all the possible cases.
If m = 0, then (7.7.7) is the outer diagram below.

0⊗ n G(0)⊗G(n)

0⊗G(n)

0 G(0)

λ
●

n

1⊗θG
n

G0
⊕
⊗θG

n

G2
⊗

G0
⊕
⊗1

λ
●

G(n)

G0
⊕

Starting from the top and going counterclockwise, the three triangles in the dia-
gram above are commutative by, respectively,

● the functoriality of ⊗,
● the naturality of λ ● in C, and
● (5.1.5), which is equivalent to the multiplicative zero axiom (5.1.2) for G,

and the fact that λ ● is the identity in Σ.

If n = 0, then (7.7.7) decomposes analogously. The resulting diagram is commuta-
tive by the functoriality of ⊗, the naturality of ρ ● in C, the axiom (5.1.2) for G, and
the fact that ρ ● is the identity in Σ.

If m = n = 1, then (7.7.7) is the outer diagram below.

(7.7.8)

1⊗1 G(1)⊗G(1)

1⊗G(1)

1 G(1)

λ⊗
1

1⊗G0
⊗

G0
⊗
⊗G0
⊗

G2
⊗

G0
⊗
⊗1

λ⊗G(1)

G0
⊗

Starting from the top and going counterclockwise, the three triangles in the dia-
gram above are commutative by, respectively,

● the functoriality of ⊗,
● the naturality of λ⊗ in C, and
● the left unity axiom (1.2.15) for (G, G2

⊗, G0
⊗) and the fact that λ⊗ is the

identity in Σ.
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If m, n ≥ 1, then (7.7.7) is the outer diagram below.

m⊗ n (
m
⊕
i=1

G(1))
lt
⊗ (

n
⊕
j=1

G(1))
lt

G(m)⊗G(n)

(
n
⊕
j=1

m
⊕
i=1

1⊗1)
lt

(
n
⊕
j=1

m
⊕
i=1

G(1)⊗G(1))
lt

(
n
⊕
j=1

m
⊕
i=1
1)

lt
(

n
⊕
j=1

m
⊕
i=1

G(1))
lt

G(mn)

F′⊗

(⊕j ⊕i λ⊗1)lt

(⊕j ⊕i G0
⊗)lt G⊕

(⊕iG
0
⊗)lt ⊗ (⊕jG

0
⊗)lt G⊕ ⊗G⊕

G2
⊗

pm,n

(⊕j ⊕i G2
⊗)lt

(⊕j ⊕i G0
⊗ ⊗G0

⊗)lt

F2
⊗

θG
m ⊗ θG

n

Consider the previous diagram.

● The top rectangle is commutative by the functoriality of ⊗ and the defi-
nition of θG

n for n ≥ 1. In the top right horizontal morphism, the left G⊕ is
the identity morphism if m = 1, and the right G⊕ is the identity morphism
if n = 1.
● The left rectangle is the factorization of F2

⊗ in Lemma 7.3.21.
● The morphism pm,n is the one in (7.5.3) with

Ai = 1 = Bj for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Both F′⊗ and pm,n are defined using the path Q in (7.3.19), which may be
chosen as consisting of δl , δr, and α−⊕. The upper left square is commu-
tative by the naturality of δl , δr, and α⊕ in C.
● The lower left square is commutative by the case m = n = 1 in (7.7.8),

applied to each 1 ≤ i ≤ m and 1 ≤ j ≤ n.
● The right rectangle is the diagram (7.5.2) for G ∶ Σ C with each Ai and

each Bj equal to 1. This rectangle is commutative by Theorem 7.5.8. Note
that in this case, the morphism qm,n in (7.5.4), which is defined by the
path Q in (7.3.19), is the identity morphism. Indeed, the only nonidentity
structure morphisms in Σ are δr, ξ⊕, and ξ⊗, the last two of which are not
in Q. Each δr in qm,n is the identity permutation, as we showed in (7.3.10).

This finishes the proof of the commutativity of (7.7.7). □

Lemma 7.7.9. Suppose G ∶ Σ C is a robust symmetric bimonoidal functor with
C a flat symmetric bimonoidal category. Then there exists a unique bimonoidal natural
transformation

θ ∶ F G.

Moreover, θ is as in Definition 7.7.1, and is a bimonoidal natural isomorphism.

Proof. In Lemmas 7.7.3, 7.7.4, and 7.7.6, we showed that θG ∶ F G in Defini-
tion 7.7.1 is a bimonoidal natural transformation. The uniqueness and the invert-
ibility of θG are established in Lemma 7.6.3. □
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7.8. Bi-Initial Symmetric Bimonoidal Category

In this section, we assemble the results so far in this chapter to prove Baez’s
Conjecture. In fact, we prove two versions, one with Σ and the other with Σ′.

Recall the following.
● Σ is the small tight symmetric bimonoidal category in Proposition 2.4.8.
● ∅ is the empty 2-category, with no objects, no 1-cells, and no 2-cells.
● Bifsyr is the 2-category in Definition 7.1.8 with

– flat small symmetric bimonoidal categories in Definition 3.9.9 as ob-
jects,

– robust symmetric bimonoidal functors in Definition 5.1.1 as 1-cells,
and

– bimonoidal natural transformations in Definition 7.1.2 as 2-cells.
In the following assertion, the precise definition of a lax bicolimit can be found

in [JY21, Section 5.2]. Since we only need it for a special case, we will unpack the
following statement in the proof in terms of 1-categorical concepts.

Theorem 7.8.1 (Baez’s Conjecture). Σ is a lax bicolimit of the 2-functor ∅ Bifsyr .

Proof. Since ∅ is the empty 2-category, the assertion means that for each flat small
symmetric bimonoidal category C, the unique functor

Bifsyr (Σ,C) 1T

to the terminal category is an equivalence of categories, that is, fully faithful and
essentially surjective.

Since 1 is the terminal category, the essential surjectivity of T means the exis-
tence of a robust symmetric bimonoidal functor Σ C. Even without the small-
ness assumption on C, this is true by Proposition 7.4.4, where we constructed a
canonical robust symmetric bimonoidal functor F ∶ Σ C.

The fully faithfulness of T means that for each pair of robust symmetric bimon-
oidal functors G, H ∶ Σ C, there exists a unique bimonoidal natural transfor-
mation G H. Even without the smallness assumption on C, such a bimonoidal
natural transformation is given by the vertical composite

G F H
(θG)−1

θH

with θG and θH from Lemma 7.7.9. Its uniqueness follows from Lemma 7.6.3. The
proof of Baez’s Conjecture is now complete. □

Remark 7.8.2. We actually proved something stronger than the statement of The-
orem 7.8.1. In the proof of Baez’s Conjecture, the smallness of C is only used at the
very end to make sure that it is an object in the 2-category Bifsyr . The construction
of F starting in Section 7.2 and the proofs of its properties through Lemma 7.7.9 do
not require any smallness condition. ◇

Recall the small tight symmetric bimonoidal category Σ′ in Definition 2.4.18
and Proposition 2.4.23. It is, furthermore, a right bipermutative category in the
sense of Definition 2.5.2. In Proposition 5.1.16, we observed that Σ and Σ′ are
canonically isomorphic by exhibiting a pair of inverse isomorphisms. Therefore,
Theorem 7.8.1 also holds for Σ′.
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Theorem 7.8.3 (Baez’s Conjecture, Version 2). Σ′ is a lax bicolimit of the 2-functor
∅ Bifsyr . In other words, for each flat small symmetric bimonoidal category C, the
unique functor

Bifsyr (Σ′,C) 1

is an equivalence of categories.

7.9. Notes

7.9.1 (Nonsymmetric Version). In [Elg21, Theorem 4.3.3], Elgueta proved a version
of Baez’s Conjecture that is different from our Theorems 7.8.1 and 7.8.3 in several
aspects. Here we discuss these differences.

Objects. Elgueta’s version is about a 2-category RigCat whose objects are rig
categories. A rig category is different from a symmetric bimonoidal category in two
ways.

● A rig category does not have a multiplicative symmetry ξ⊗, so the multi-
plicative structure is a monoidal category, instead of a symmetric monoi-
dal category. The axioms (2.1.5) (relating δl and δr) and (2.1.19) (symme-
try of the multiplicative zeros) involving ξ⊗ are omitted.
● In a rig category, the distributivity morphisms δl and δr are natural iso-

morphisms, instead of monomorphisms as in (2.1.4).
Elgueta did not explicitly state that his rig categories should be small. However,
as discussed in the introduction of this chapter, to form the 2-category RigCat, its
objects should be small rig categories.

In our versions of Baez’s Conjecture, the objects in the 2-category Bifsyr are
flat small symmetric bimonoidal categories. In particular, δl and δr in (2.1.4) are
natural monomorphisms. Instead of asking for their invertibility, we require the
much weaker condition of flatness in Definition 3.9.9.

1-Cells. For 1-cells, Elgueta uses what he calls homomorphisms. These are func-
tors whose additive structure is a strong symmetric monoidal functor, and whose
multiplicative structure is a strong monoidal functor.

In contrast, our 1-cells in Bifsyr are robust symmetric bimonoidal functors in
Definition 5.1.1.

● The additive structure is a strong symmetric monoidal functor, just like
Elgueta’s homomorphism.
● The multiplicative structure is a symmetric monoidal functor whose mul-

tiplicative unit constraint

G0
⊗ ∶ 1 G(1)

is an isomorphism. However, the multiplicative monoidal constraint G2
⊗

is not required to be invertible. In particular, in Lemma 7.3.28, we need to
check the axiom (1.2.26) of a symmetric monoidal functor for F⊗, which
is the diagram (7.3.29).

2-Cells. Elgueta’s 2-cells are basically the same as our bimonoidal natural
transformations in Definition 7.1.2, which he calls rig transformations. The only
difference is that rig transformations go between his homomorphisms.

Proof Strategy. Elgueta’s proof [Elg21, start of Section 4] involves replacing
his rig category with an equivalent semistrict rig category, using a strictification
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theorem due to Guillou [Gui10]. See Note 5.6.4. This is closely related to the
restriction on the objects of RigCat. As we pointed out multiple times in Chap-
ter 5, in particular in Note 5.6.2, the Strictification Theorem 5.4.6 only applies to
tight symmetric bimonoidal categories, that is, those with δl and δr natural iso-
morphisms. The same is true for the multiplicatively nonsymmetric version in
[Gui10, Def. 2.1]. Therefore, using strictification means that one must insist on the
invertibility of the distributivity morphisms.

In contrast, our Theorems 7.8.1 and 7.8.3 do not use the Strictification Theo-
rem 5.4.6. Instead, we work directly with a flat small symmetric bimonoidal cate-
gory in the entire proof. Here are some advantages of this approach:

(1) It allows us to be very specific about where and how the Coherence The-
orems 3.9.1 and 4.4.3 and Epstein’s Coherence Theorem 1.3.12 are used.

(2) We can make precise all the relevant structure morphisms with respect
to the actual symmetric bimonoidal category in question, instead of an
equivalent one. See Definitions 7.2.2, 7.3.12, and 7.7.1.

(3) As we pointed out above, we only need our small symmetric bimonoi-
dal categories to be flat, which is a much weaker assumption than the
invertibility of the distributivity morphisms. ◇

7.9.2 (Nonsymmetric Version via Sheet Diagrams). The nonsymmetric version of
Baez’s Conjecture [Elg21] discussed in Note 7.9.1 also follows from the sheet di-
agram results in [CDH∞, Section 8]. Both papers [CDH∞, Elg21] use the stricti-
fication theorem in [Gui10]. For strictification of tight bimonoidal categories, our
Theorems 5.5.11 and 5.5.12 may also be used. ◇



CHAPTER 8

Symmetric Monoidal Bicategorification

The main theorem of this chapter, Theorem 8.15.4, says that a matrix construc-
tion

C MatC

sends each tight symmetric bimonoidal category C as in Definition 2.1.2 to a sym-
metric monoidal bicategory MatC as in Definition 6.5.9. This process is called
symmetric monoidal bicategorification because it starts with a 1-categorical structure,
namely a tight symmetric bimonoidal category C, and produces a symmetric mon-
oidal bicategory MatC. There is also a braided analogue in Theorem II.8.4.7.

The main tools for the constructions and proofs in this chapter are the Coher-
ence Theorems 3.9.1 and 3.10.7 and the definitions in Section 3.1. In fact, the many
constructions and proofs in this chapter provide a good illustration of the utility
of the graph theoretic framework introduced in Section 3.1. For open questions
related to the matrix construction, see Appendix III.A. In the rest of this introduc-
tion, we discuss aspects of Theorem 8.15.4 without going into too much detail and
provide an outline and a reading guide for this chapter.

Motivation. To motivate the Bicategorification Theorem 8.15.4, consider a rig
(R,+,×, 0R, 1R), that is, a ring without additive inverses, such as the set of natural
numbers N with its usual addition and multiplication. Matrices with entries in R
have two natural types of products.

● For an n ×m matrix A = (Aji) and a p × n matrix B = (Bkj), there is the
usual matrix product BA, which is a p ×m matrix, whose (k, i)-entry is
the sum

(BA)ki =
n
∑
j=1

Bkj Aji.

● For an n ×m matrix A and a q × p matrix B = (Blk), the matrix tensor
product, which is also called the Kronecker product,

A⊗ B =
⎡⎢⎢⎢⎢⎢⎣

A11B ⋯ A1mB
⋮ ⋱ ⋮

An1B ⋯ AnmB

⎤⎥⎥⎥⎥⎥⎦
is the nq ×mp block matrix obtained from A by replacing each entry Aji

with the scalar product AjiB = (AjiBlk)l,k.

These products satisfy some well-known properties, including the following as-
sociativity properties, where the first one assumes that the matrix products are
defined.

(AB)C = A(BC)
(A⊗ B)⊗C = A⊗ (B⊗C)(8.0.1)

I.301
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Moreover, if R is a multiplicatively commutative rig, such asN, then the mixed-
product property

(8.0.2) (B⊗ B′)(A⊗ A′) = BA⊗ B′A′

holds whenever the matrix products BA and B′A′ are defined. These properties
imply that for a commutative rig R, there is a permutative category

(MatR,⊗, 1, ξ)

as in Definition 1.2.18 with the following data.

● The objects in MatR are nonnegative integers.
● The morphisms m n are n ×m matrices with entries in R.
● The categorical composition sends (B, A) to the matrix product BA.
● The identity morphism on n is the n × n identity matrix 1n with the unit

1R along the diagonal and 0R in every other entry.
● The monoidal unit is the integer 1.
● The monoidal product ⊗ ∶ (MatR)2 MatR is defined by

– m⊗ n = mn on objects and
– the matrix tensor product on morphisms.

● The symmetry isomorphism ξm,n ∶ mn nm is the permutation matrix
obtained from the identity matrix 1mn by permuting its columns using
the permutation in (2.4.5).

For example, the mixed-product property (8.0.2) says that ⊗ preserves categorical
composition. The three symmetric monoidal category axioms for MatR are checked
in the proof of Proposition 2.4.8. In particular, the hexagon axiom (1.2.22) for MatR

corresponds to the permutation in (2.4.10).
Symmetric bimonoidal categories are categorical analogues of commutative

rigs. For a symmetric bimonoidal category C as in Definition 2.1.2, matrices whose
entries are all objects, or all morphisms, in C make sense. Using the sum ⊕ and
the product ⊗ in C, and fixing a convention for iterated sums, the matrix product
makes sense for matrices with objects or morphisms in C. Similarly, using ⊗ in
C, the matrix tensor product makes sense for matrices of objects or morphisms in
C. To avoid confusion with the product ⊗ in C, for matrices A and B of objects or
morphisms in C, their matrix tensor product is denoted by A⊠ B. The existence of
the permutative category MatR for a commutative rig R leads to a natural question.

For a symmetric bimonoidal category C, is there a symmetric
monoidal structure on the collection MatC of matrices whose en-
tries are objects or morphisms in C?

A commutative rig R is a set with an addition and a commutative multipli-
cation. The matrix construction MatR produces a permutative category, that is, a
category with a multiplication that is symmetric in a categorical sense. Heuristi-
cally, we should expect an analogous level-shifting if we start with a symmetric
bimonoidal category C. In other words, we expect MatC to be a bicategory with a
multiplication that is symmetric in a bicategorical sense. Since the two monoidal
structures in C are not strict in general, the associativity properties (8.0.1) and the
mixed-product property (8.0.2) should hold up to natural isomorphisms. The goal
of this chapter is to answer the above question positively: if C is a tight symmetric
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bimonoidal category, then MatC is a symmetric monoidal bicategory as in Defi-
nition 6.5.9. In general, all the structure morphisms in the symmetric monoidal
bicategory MatC are not identities.

Formulation. For each tight symmetric bimonoidal category C, the matrix
construction MatC is defined by the following data.

● The objects are nonnegative integers.
● A 1-cell m n is an n×m matrix A = (Aji)with each entry Aji an object

in C.
● For 1-cells A = (Aji), B = (Bji) ∶ m n, a 2-cell f = ( f ji) ∶ A B is an

n ×m matrix with each (j, i)-entry a morphism f ji ∶ Aji Bji in C.
● The horizontal composition

MatCn,p ×MatCm,n MatCm,p

is given by the usual matrix product (that is, multiplication of a p × n
matrix with an n ×m matrix to yield a p ×m matrix), defined via ⊕ and
⊗ in C, applied to matrices of objects or morphisms in C, with the left
normalized bracketing for iterated sums.
● The vertical composition of 2-cells is given by entrywise composition of

morphisms in C.
● The structure morphisms in C induce canonical associator a, left unitor ℓ,

and right unitor r in MatC, making it into a bicategory, called the matrix bi-
category. See Theorem 8.4.12, which holds more generally for tight bimon-
oidal categories because the multiplicative symmetry ξ⊗ is not needed up
to this point.
● For the monoidal bicategory structure, the monoidal composition

MatC ×MatC MatC
⊠

is given by
– m⊠ n = mn on objects and
– the matrix tensor product on 1-cells and 2-cells, defined via ⊗ in C.

● The structure morphisms in C induce the monoidal associator a⊠, the left
monoidal unitor ℓ⊠, the right monoidal unitor r⊠, the pentagonator π, the
middle 2-unitor µ, the left 2-unitor λ⊠, and the right 2-unitor ρ⊠. With
these structures, MatC is a monoidal bicategory; see Theorem 8.12.9.
● This monoidal bicategory is equipped with a braiding β induced by per-

mutation matrices, which are defined via the additive zero 0 and the mul-
tiplicative unit 1 in C. The structure morphisms in C induce canonical left
and right hexagonators, R−∣−− and R−−∣−, and a syllepsis ν.

Theorem 8.15.4 states that, with these structures, MatC is a symmetric monoidal
bicategory.

Connections. The constructions and results in this chapter have interesting
connections with algebraic K-theory and linear algebra.

For each object A in a bicategory B, the hom category B(A, A) inherits the
structure of a monoidal category. Its monoidal product is a restriction of the hor-
izontal composition in B. For the matrix bicategory MatC, this means that each
MatCn,n is a monoidal category; see Corollary 8.4.14. Its objects are n × n matrices
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with entries in C, and its morphisms are n×n matrices of morphisms in C between
corresponding objects. The monoidal product is given by the horizontal composi-
tion in MatC, that is, the matrix product. The existence of the monoidal category
MatCn,n is stated in [BDR04, Prop. 3.3] without proof. It is an important ingredient
in the algebraic K-theory of C as defined in [BDR04, Def. 3.12].

In the braided monoidal bicategory structure of MatC, the braiding β is a strong
transformation. Its component 1-cells βm,n (8.13.23) are permutation matrices in
MatC. In the usual setting of linear algebra, a column permutation of a matrix A is
equal to the matrix product AP for a suitable permutation matrix P. In the setting
of MatC, this equality is replaced by a natural isomorphism (8.13.13), and similarly
for row permutations as in (8.13.16). The component 2-cells βA,B of the braiding
involves connecting (B⊠ A)βm,n and βm′,n′(A⊠ B). This in turn involves connect-
ing a column permutation of B⊠A and a row permutation of A⊠ B. These column
and row permutations are generalizations to MatC of examples of the Khatri-Rao
product and the face product, which are both related to the Tracy-Singh product
in linear algebra. See Explanation 8.13.21.

Non-Strictness of Structures. The symmetric monoidal bicategory MatC is a
genuine symmetric monoidal bicategory in the following sense.

(i) The left unitor ℓ, the right unitor r, and especially the associator a are not
identities in general. This means that in general MatC is a genuine bicate-
gory and not a 2-category. In fact, the associator a, with entries in (8.3.5),
involves α±⊕, ξ⊕, α⊗, δr, and δ−l . It is rare for a symmetric bimonoidal cat-
egory, even a right or a left bipermutative category as in Definitions 2.5.2
and 2.5.11, to have all of these structure morphisms equal to the identity.

(ii) The monoidal composition ⊠ is a pseudofunctor, but not a strict functor
in general. Its lax functoriality constraint ⊠2, with entries in (8.6.20), in-
volves α⊕, α±⊗, ξ⊗, δ−r, and δ−l in most cases. Once again, it is rare to
have all of these structure morphisms equal to the identity at the same
time.

(iii) The symmetric monoidal bicategorical data a⊠, ℓ⊠, r⊠, π, µ, λ⊠, ρ⊠, β,
R−∣−−, R−−∣−, and ν are also far from strict in general.

For example, suppose C is the tight symmetric bimonoidal category VectC in Ex-
ample 2.1.32, with finite dimensional complex vector spaces as objects and C-
linear maps as morphisms. Then MatC is a genuine symmetric monoidal bicat-
egory as described above. The 1-cells in MatC are called coordinatized 2-vector
spaces. See Examples 8.4.13 and 8.15.5.

Symmetry and Tightness. Let us discuss why the multiplicative symmetry
ξ⊗ and the tightness assumption in C are needed to construct the symmetric mon-
oidal bicategory MatC.

(i) The lax functoriality constraint

(B⊠ B′)(A⊠ A′) BA⊠ B′A′ ∈MatCmm′,pp′
⊠2
(B,B′),(A,A′)

of the monoidal composition ⊠ is the analogue of the mixed-product
property (8.0.2) in MatC. The positions of the middle two matrices B′
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and A are switched. In a typical entry, this switch uses the multiplicative
symmetry ξ⊗ in (8.6.17).

(ii) The component 2-cells of the braiding β (8.13.24) involves an entrywise
application of ξ⊗.

(iii) Recall that a symmetric bimonoidal category is tight if the distributiv-
ity morphisms δr and δl are natural isomorphisms, instead of natural
monomorphisms. The Coherence Theorems 3.9.1 and 4.4.3 do not require
tightness, but only a condition about monomorphisms. For instance, flat-
ness as in Definition 3.9.9 is enough for the two coherence theorems.
However, as we mentioned above, in MatC,
● the associator a involves δ−l , and
● the lax functoriality constraint ⊠2 of the monoidal composition in-

volves both δ−r and δ−l .
Therefore, the distributivity morphisms in C must be invertible for these
constructions.

Constructions and Proofs. To define the many parts of the symmetric mon-
oidal bicategory MatC, in each case, we write down the matrices that we want to
connect. Then we use the most straightforward combination of structure mor-
phisms in C to connect those matrices. For example, for the left unitor this step
is performed in (8.2.3) and (8.2.4). The difficult part is in showing that the struc-
tures so defined have the required properties for MatC to be a symmetric monoidal
bicategory. We accomplish this by consistently reducing each such proof to an in-
stance of the Coherence Theorem 3.9.1 or the simpler case in Proposition 3.5.33.
These coherence results are formulated in terms of the graph theoretic framework
in Section 3.1, which we use throughout this chapter.

There is an additional subtlety in a number of proofs in this chapter that arises
from the following two facts.

● The associator a in MatC, with entries in (8.3.5), involves both δr and δ−l .
● The lax functoriality constraint ⊠2, with entries in (8.6.20), of the monoi-

dal composition ⊠ in MatC involves δ−r and δ−l in most cases.
The Coherence Theorem 3.9.1 and the simpler case in Proposition 3.5.33 are stated
in terms of paths in Gr(X) in Definition 3.1.9. By Definition 3.1.6, the elementary
edges δl and δr do not have formal inverses, so paths cannot have formal inverses
of δl and δr. As a result, in some of the proofs that involve the associator a or the
lax functoriality constraint ⊠2, we will need to subdivide the diagram in question
with additional morphisms in such a way that the coherence results can be applied
in each subdiagram.

Relatively simple examples of this subdivision process are the following sub-
divided diagrams:

● (8.4.5) for the unity axiom in MatC and
● the diagrams in cases (6)–(8) in the proof of Lemma 8.4.8 for the pentagon

axiom.
More involved and typical examples are the following subdivided diagrams:

● (8.4.10) for the general case of the pentagon axiom in MatC;
● (8.7.26) for the lax associativity axiom for the pseudofunctor ⊠;
● (8.8.28) for the lax naturality axiom for the monoidal associator a⊠;
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● (8.8.44) for the modification axiom for the unit ηa ∶ 1⊠(⊠×1) a⊠ ●a⊠; and
● (8.10.8) for the modification axiom for the pentagonator π.

Notation Guide. In Sections 8.1 through 8.5,

(C, (⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕), (⊗,1, α⊗, λ⊗, ρ⊗), (λ ●, ρ
●), (δl , δr))

denotes a bimonoidal category as in Definition 2.1.2. In the remaining sections, C
is a symmetric bimonoidal category with multiplicative symmetry ξ⊗. If we want
C to be flat as in Definition 3.9.9, or tight—that is, to have invertible distributivity
morphisms δl and δr—we will state so explicitly, sometimes at the beginning of a
section. In the absence of clarifying parentheses, ⊗ takes precedence over ⊕, and
⊗ is sometimes omitted to save space.

For the bicategory MatC, we sometimes add the adjective base before the asso-
ciator and the unitors. To avoid confusion with the two monoidal products {⊕,⊗}
in C, the monoidal composition in MatC is denoted by ⊠. Similarly, to avoid con-
fusion with the base associator and the base unitors, the monoidal associator a⊠

and the monoidal unitors ℓ⊠ and r⊠ are decorated with the superscript ⊠. More-
over, the left and the right 2-unitors λ⊠ an ρ⊠ are also decorated with ⊠ to avoid
confusion with the various λ and ρ in C.

Outline. In Section 8.1, we define the hom categories MatCm,n and the matrix
product, which will form the horizontal composition. We also discuss coherence
properties of the matrix product when one of the matrices is a 0 matrix. The left
unitor ℓ and the right unitor r in MatC are defined in Section 8.2. The associator a is
defined in Section 8.3. The unity axiom (6.1.3) and the pentagon axiom (6.1.4) are
verified in Section 8.4. By the end of this section, we will have proved that MatC is
a bicategory.

In the next few sections, we construct a monoidal bicategory structure on the
matrix bicategory MatC. The monoidal identity is constructed in Section 8.5. The
matrix tensor product and the monoidal composition ⊠ are defined in Section 8.6.
The lax associativity axiom (6.2.2) and the lax unity axiom (6.2.3) for the pseudo-
functor ⊠ are verified in Section 8.7. The monoidal associator a⊠ is constructed in
Section 8.8. The left monoidal unitor ℓ⊠ and the right monoidal unitor r⊠ are con-
structed in Section 8.9. The pentagonator is defined in Section 8.10. The middle
2-unitor µ, the left 2-unitor λ⊠, and the right 2-unitor ρ⊠ are defined in Section 8.11.
The fact that MatC is a monoidal bicategory is stated and verified in Section 8.12.

Permutation matrices, row and column permutations, and the braiding β are
defined in Section 8.13. In Section 8.14, we define the left and the right hexag-
onators, and verify that MatC is a braided monoidal bicategory. In Section 8.15,
we define the syllepsis ν, and conclude the proof of the Bicategorification Theo-
rem 8.15.4.

Conventions. The following conventions are in effect throughout this chapter.

● A Mac Lane coherence isomorphism, which is denoted by ≅⊕ML, means the
value in C of a path that only involves identities, α±⊕, λ±⊕, ρ±⊕, and ξ±⊕.
● A Laplaza coherence isomorphism, which is denoted by ≅Lap, means the value

in C of a path that does not involve ξ±⊗.
These are adaptations of the notions in Definition 5.2.24 to the current context.
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Reading Guide. Instead of reading this chapter linearly, the reader may first
read the key definitions and statements of results listed below to obtain a general
idea of the structure of MatC.

(1) The base bicategory.
● Definition 8.1.1: The hom categories MatCm,n.
● Definition 8.1.3: The matrix product and the identity matrices.
● Lemmas 8.2.1 and 8.2.7: The base unitors ℓ and r.
● Lemma 8.3.1: The base associator a.
● Definition 8.4.11: The matrix bicategory MatC.

(2) The monoidal bicategory.
● Definition 8.5.1: The monoidal identity 1⊠ ∶ 1 MatC.
● Definition 8.6.1: The matrix tensor product A⊠ B.
● Lemma 8.6.8: The lax unity constraint ⊠0.
● Definition 8.6.19: The monoidal composition ⊠.
● Definitions 8.8.33 and 8.8.37: The monoidal associator (a⊠, a⊠ ●, ηa, εa).
● Definitions 8.9.1, 8.9.5, and 8.9.8: The left monoidal unitor.
● Definitions 8.9.14, 8.9.17, and 8.9.20: The right monoidal unitor.
● Definition 8.10.1: The pentagonator π.
● Definitions 8.11.1, 8.11.6, and 8.11.11: The 2-unitors µ, λ⊠, and ρ⊠.

(3) The symmetric monoidal bicategory.
● Definition 8.13.3: Row/column permutations and permutation ma-

trices.
● Lemmas 8.13.12 and 8.13.15: Taking matrix products with permuta-

tion matrices and row/column permutations.
● Definitions 8.13.22, 8.13.30, 8.13.35, and 8.13.38: The braiding.
● Lemma 8.14.4 and Definition 8.14.9: The left hexagonator R−∣−−.
● Lemma 8.14.16 and Definition 8.14.21: The right hexagonator R−−∣−.
● Definition 8.15.1: The syllepsis ν.
● Theorem 8.15.4: The Bicategorification Theorem.
● Example 8.15.5: Applying the Bicategorification Theorem.

Before reading the proofs in the rest of this chapter, the reader may want to
review Section 3.1. As in Chapters 3, 4, 5, and 7, the reader may consider the many
detailed constructions and proofs in this chapter as exercises with full solutions.

8.1. Matrix Construction

To construct the bicategory MatC of matrices for a tight bimonoidal category C,
in this section, we first define its hom categories and the associated matrix prod-
uct. The latter will eventually be used to define the horizontal composition in the
bicategory MatC. In the second half of this section, we discuss coherence prop-
erties of multiplying by a 0 matrix. These coherence properties will be used in
Lemma 8.3.1 when we discuss associativity properties of the matrix product. Co-
herence properties of the matrix product with respect to the identity matrices and
associativity will be discussed in Sections 8.2 and 8.3.

The Matrix Product.

Definition 8.1.1. Suppose C is a category. For integers m, n ≥ 0, define a category
MatCm,n as follows.
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Objects: An object in MatCm,n is an n ×m matrix

A = (Aji)1≤j≤n, 1≤i≤m

with each Aji an object in C. We call A an n ×m matrix in C. When n and
m are understood, we will also write A as (Aji).

Morphisms: A morphism

f ∶ A = (Aji) (A′ji) = A′

is an n ×m matrix
f = ( f ji)1≤j≤n, 1≤i≤m

with each f ji ∶ Aji A′ji a morphism in C.
Identity Morphisms: For an object A = (Aji), its identity morphism is the n ×m

matrix
1A = (1Aji

)
of identity morphisms in C.

Composition: If f ∶ A A′ is a morphism as above and if f ′ ∶ A′ A′′ is
another morphism, then their composite f ′ f ∶ A A′′ is defined en-
trywise in C as

( f ′ f )ji = f ′ji f ji ∶ Aji A′′ji .

This finishes the definition of the category MatCm,n.
Moreover, we define the following.
● An object in MatCm,n is also called a matrix.
● Consider an n ×m matrix A = (Aji).

– Aji ∈ C is called the (j, i)-entry.
– For each 1 ≤ j ≤ n, the jth row is the 1×m matrix (Aji)1≤i≤m.
– For each 1 ≤ i ≤ m, the ith column is the n × 1 matrix (Aji)1≤j≤n.

● If C has a distinguished object 0, then the 0 matrix 0m,n ∈ MatCm,n is the
matrix with each entry 0 ∈ C if m, n > 0. If either m or n is 0, then 0m,n
denotes the empty matrix.
● An n × n matrix is also called a square matrix.
● Consider an n × n square matrix A = (Aji).

– Ajj is said to be on the diagonal, and is called the jth diagonal entry for
1 ≤ j ≤ n.

– Aji with j /= i is said to be off the diagonal, and is called an off-diagonal
entry.

– Aji with j > i is said to be below the diagonal, and is called a below-
diagonal entry.

– Aji with j < i is said to be above the diagonal, and is called an above-
diagonal entry.

Similar terminology applies to morphisms in MatCm,n. ◇
Explanation 8.1.2. Consider Definition 8.1.1.

● MatCm,n is indeed a category because everything is defined entrywise in C.
● If either m or n is 0, then MatCm,n is the terminal category with one object—

namely, the unique empty matrix—and its identity morphism.
● If m = n = 1, then MatC1,1 is canonically identified with C. ◇
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We now extend Definition 8.1.1 to include the matrix product and identity ma-
trices, which will be used to define, respectively, the horizontal composition and
the identity 1-cells in the bicategory MatC. Recall from (5.2.13) that the subscript lt
means left normalized bracketing.
Definition 8.1.3. Suppose C is a bimonoidal category, and m, n, p ≥ 0.

● For
– an n ×m matrix A = (Aji) ∈MatCm,n and
– a p × n matrix B = (Bkj) ∈MatCn,p,

define their matrix product BA ∈ MatCm,p whose (k, i)-entry, for 1 ≤ i ≤ m
and 1 ≤ k ≤ p, is the following object in C:

(8.1.4) (BA)ki =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
n
⊕
j=1
(Bkj ⊗ Aji))

lt
if n ≥ 1 and

0 if n = 0.

If either m or p is 0, then BA is the empty matrix.
● For morphisms

– f = ( f ji) ∈MatCm,n(A, A′) and
– g = (gkj) ∈MatCn,p(B, B′),

define their matrix product

g ★ f ∈MatCm,p(BA, B′A′)
as the p ×m matrix whose (k, i)-entry, for 1 ≤ i ≤ m and 1 ≤ k ≤ p, is the
following morphism in C:

(8.1.5) (g ★ f )ki =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
n
⊕
j=1
(gkj ⊗ f ji))

lt
∶ (BA)ki (B′A′)ki if n ≥ 1 and

10 ∶ 0 0 if n = 0.

If either m or p is 0, then g ★ f is the identity morphism of the empty
matrix.
● The n × n identity matrix is the square matrix 1n ∈MatCn,n with entries

(8.1.6) 1n
ji =
⎧⎪⎪⎨⎪⎪⎩

1 if i = j and
0 if i /= j.

If n = 0, then 10 is the unique empty matrix. ◇
Explanation 8.1.7. In Definition 8.1.3, suppose m, p > 0 and n = 0.

● Then A ∈ MatCm,n and B ∈ MatCn,p are both empty matrices. However, in
the matrix product (8.1.4), BA ∈MatCm,p is the 0 matrix 0m,p in which each
entry is the additive zero 0 ∈ C.
● f ∈ MatCm,n(A, A′) and g ∈ MatCn,p(B, B′) are both identity morphisms of

the empty matrix. In the matrix product (8.1.5), g ★ f is the identity mor-
phism of the 0 matrix 0m,p. ◇

Lemma 8.1.8. Suppose C is a bimonoidal category, and m, n, p ≥ 0. Then the matrix
product

MatCn,p ×MatCm,n MatCm,p

in Definition 8.1.3 is a functor.
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Proof. If one of m, n, or p is 0, then functoriality is true by definition.
If m, n, p > 0, then the matrix product preserves identity morphisms, that is,

1B ★ 1A = 1BA.

This is true because each of 1A, 1B, and 1BA is entrywise an identity morphism,
and ⊕ and ⊗ preserves identity morphisms.

For morphisms f ′ = ( f ′ji) ∈ MatCm,n(A′, A′′) and g′ = (g′kj) ∈ MatCn,p(B′, B′′), the
functoriality of ⊕ and ⊗ implies the following equalities for 1 ≤ i ≤ m and 1 ≤ k ≤ p.

[(g′ ★ f ′)(g ★ f )]ki = (
n
⊕
j=1
(g′kj ⊗ f ′ji))

lt
(

n
⊕
j=1
(gkj ⊗ f ji))

lt

= (
n
⊕
j=1
(g′kj ⊗ f ′ji)(gkj ⊗ f ji))

lt

= (
n
⊕
j=1
(g′kjgkj)⊗ ( f ′ji f ji))

lt

= [(g′g) ★ ( f ′ f )]ki

(8.1.9)

Therefore, the matrix product preserves composition. □

Multiplying with Zero Matrices. To show that MatC is a bicategory and a
symmetric monoidal bicategory later, we will need to understand the coherence
properties of the matrix product (8.1.4) with respect to the 0 matrices, the identity
matrices, and iterated products. As a warm up exercise, we first consider the ma-
trix product with a 0 matrix. The other coherence properties will be discussed in
subsequent sections. Recall that 0m,n denotes the n ×m matrix with each entry the
additive zero 0 ∈ C.

Lemma 8.1.10. Suppose C is a bimonoidal category, and m, n, p ≥ 0. Then there is a
natural isomorphism

(8.1.11) 0n,p A 0m,p
ζℓA
≅ ∈MatCm,p

for A ∈MatCm,n.

Proof. There are three cases.

● If either m or p is 0, then both 0n,p A and 0m,p are the empty matrix.
● If m, p > 0 and n = 0, then 0n,p and A are the empty matrix, but 0n,p A =

0m,p.

In each of these two cases, ζℓA is the identity morphism.
For m, n, p > 0, suppose A = (Aji). For 1 ≤ k ≤ p and 1 ≤ i ≤ m, 0n,p A has

(k, i)-entry

(8.1.12) (0n,p A)ki = (
n
⊕
j=1
(0⊗ Aji))

lt
.
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This object is isomorphic to the additive zero 0 via the following composite in C.

(8.1.13)

(0n,p A)ki

(
n
⊕
j=1

0)
lt

0

(λ ●A1i
⊕⋯⊕λ

●
Ani
)
lt

(ζℓA)ki

Z

● If n = 1, then Z = 10.
● If n > 1, then Z is a composite of n − 1 morphisms, each being the sum of

identity morphisms and one λ⊕0 ∶ 0⊕ 0 0.

The naturality of ζℓA with respect to A follows from the naturality of λ ● and the
functoriality of ⊕ in C. □

Next we interpret the natural isomorphism ζℓ in Lemma 8.1.10 in terms of
paths and coherence.

Example 8.1.14 (Left Zero via Paths). In (8.1.13), (ζℓA)ki is the unique value in C of
any 0X-reduction

(8.1.15) (
n
⊕
j=1
(0X ⊗ xj))

lt
0XZℓ

in the sense of (3.1.18) and Definition 3.3.4. Here we take the set

(8.1.16) Xℓ = {0X, 1X, x1, . . . , xn}

and the function φℓ ∶ Xℓ Ob(C) defined by

(8.1.17) φℓ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if x = 0X,
1 if x = 1X, and
Aji if x = xj for 1 ≤ j ≤ n.

The existence of a 0X-reduction Zℓ in (8.1.15) with the given (co)domain follows
from Lemmas 3.3.6 and 3.3.11. The uniqueness of its value in C follows from
Lemma 3.3.12. ◇

Next is the case with the 0 matrix on the right side.

Lemma 8.1.18. Suppose C is a bimonoidal category, and m, n, q ≥ 0. Then there is a
natural isomorphism

(8.1.19) A0q,m 0q,n
ζr

A
≅ ∈MatCq,n

for A ∈MatCm,n.

Proof. There are three cases.

● If either q or n is 0, then both A0q,m and 0q,n are the empty matrix.
● If q, n > 0 and m = 0, then both A and 0q,m are the empty matrix, but

A0q,m = 0q,n.
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In each of these two cases, ζr
A is the identity morphism.

For m, n, q > 0, suppose A = (Aji). For 1 ≤ j ≤ n and 1 ≤ l ≤ q, A0q,m has
(j, l)-entry

(8.1.20) (A0q,m)jl = (
m
⊕
i=1
(Aji ⊗ 0))

lt
.

This object is isomorphic to the additive zero 0 via the following composite in C.

(8.1.21)

(A0q,m)jl

(
m
⊕
i=1

0)
lt

0

(ρ ●Aj1
⊕⋯⊕ρ

●
Ajm
)
lt

(ζr
A)jl

Z

● If m = 1, then Z = 10.
● If m > 1, then Z is a composite of m− 1 morphisms, each being the sum of

identity morphisms and one λ⊕0 ∶ 0⊕ 0 0.

The naturality of ζr
A with respect to A follows from the naturality of ρ ● and the

functoriality of ⊕ in C. □

The following example interprets the natural isomorphism ζr in Lemma 8.1.18
in terms of paths and coherence.

Example 8.1.22 (Right Zero via Paths). The isomorphism (ζr
A)jl in (8.1.21) is the

unique value in C of any 0X-reduction

(8.1.23) (
m
⊕
i=1
(xi ⊗ 0X))

lt
0XZr

in the sense of (3.1.18) and Definition 3.3.4. Here we take the set

(8.1.24) Xr = {0X, 1X, x1, . . . , xm}

and the function φr ∶ Xr Ob(C) defined by

(8.1.25) φr(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if x = 0X,
1 if x = 1X, and
Aji if x = xi for 1 ≤ i ≤ m.

The existence and the uniqueness of its value in C of a 0X-reduction Zr in (8.1.23)
with the given (co)domain follow from Lemmas 3.3.6, 3.3.11, and 3.3.12. ◇

8.2. The Base Unitors

In this section, we discuss coherence properties of the matrix product (8.1.4)
with respect to the identity matrices (8.1.6). These coherence properties will be
used to define the left unitor and the right unitor in MatC. Recall from Defini-
tion 3.9.9 the notion of a flat bimonoidal category.
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The Base Left Unitor.
Lemma 8.2.1. Suppose C is a flat bimonoidal category, and m, n ≥ 0. Then there is a
natural isomorphism

(8.2.2) 1n A A
ℓA
≅

for A = (Aji) ∈MatCm,n.

Proof. If either m or n is 0, then both 1n A and A are the empty matrix, and ℓA is
the identity morphism of the empty matrix.

For m, n > 0, 1 ≤ k ≤ n, and 1 ≤ i ≤ m, 1n A has (k, i)-entry

(1n A)ki

= (
n
⊕
j=1
(1n

kj ⊗ Aji))
lt

= ( (0⊗ A1i)⊕⋯⊕ (0⊗ Ak−1,i)⊕
empty if k = 1

(1⊗ Aki)⊕ (0⊗ Ak+1,i)⊕⋯⊕ (0⊗ Ani)
empty if k = n

)
lt

.

(8.2.3)

This object is isomorphic to Aki via the following composite in C.

(8.2.4)

(1n A)ki

( 0⊕⋯⊕ 0⊕
k − 1 copies of 0

Aki ⊕0⊕⋯⊕ 0
n − k copies of 0

)
lt

Aki

(λ ●⊕⋯⊕λ
●⊕λ⊗⊕λ

●⊕⋯⊕λ
●)

lt

(ℓA)ki

Z

● If n = 1, then Z is the identity morphism.
● If n > 1, then Z is a composite of n − 1 morphisms, each being the sum of

identity morphisms and one of λ⊕0 , λ⊕Aki
, or ρ⊕Aki

.

The naturality of ℓA with respect to A follows from the naturality of λ ●, λ⊗, λ⊕,
and ρ⊕, and the functoriality of ⊕ in C. □

Next we interpret the natural isomorphism ℓ in Lemma 8.2.1 in terms of paths
and coherence.

Example 8.2.5 (The Left Unitor via Paths). In (8.2.4), (ℓA)ki is the unique value in
C of any path

(8.2.6)

( (0X ⊗ x1)⊕⋯⊕ (0X ⊗ xk−1)⊕
empty if k = 1

(1X ⊗ xk)⊕ (0X ⊗ xk+1)⊕⋯⊕ (0X ⊗ xn)
empty if k = n

)
lt

xk

Pℓ

in the sense of Definition 3.1.9 and (3.1.18). Here we take the set

Xℓ = {0X, 1X, x1, . . . , xn}

in (8.1.16) and the function φℓ ∶ Xℓ Ob(C) in (8.1.17). In such a path Pℓ in
Gr(Xℓ),
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● the domain is obtained from the last line in (8.2.3) by replacing (0,1, Aji)
with (0X, 1X, xj) for 1 ≤ j ≤ n, and
● the codomain is xk.

For example, if k = 2 and n = 3, then one such Pℓ is the following path.

[(0X ⊗ x1)⊕ (1X ⊗ x2)]⊕ (0X ⊗ x3) x2

[0X ⊕ (1X ⊗ x2)]⊕ (0X ⊗ x3) x2 ⊕ 0X

[0X ⊕ (1X ⊗ x2)]⊕ 0X [0X ⊕ x2]⊕ 0X

[λ ●x1
⊕1]⊕1

Pℓ

1⊕λ
●
x3

ρ⊕x2

[1⊕λ⊗x2
]⊕1

λ⊕x2
⊕1

There are other paths in Gr(Xℓ) with the same (co)domain as Pℓ. For instance,
after the first two prime edges, we can also use the prime edges involving λ⊕

1X⊗x2

and ρ⊕
1X⊗x2

before λ⊗x2
. As we will explain below, all such paths yield the same

morphism in C, so it does not matter which one we choose.
In general, one such path Pℓ whose value in C gives the morphisms in (8.2.4)

is as follows.
● Each of the first n − 1 prime edges in Pℓ contains an instance of the left

multiplicative zero

0X ⊗ xj 0X
λ
●
xj

for 1 ≤ j /= k ≤ n.

● The nth prime edge in Pℓ contains an instance of the left multiplicative
unit

1X ⊗ xk xk.
λ⊗xk

● Each of the last n − 1 prime edges in Pℓ contains an instance of the left
additive zero λ⊕ or the right additive zero ρ⊕. Together they remove the
n − 1 copies of 0X.

This construction ensures the existence of at least one path Pℓ with the given
(co)domain.

There are infinitely many different paths in Gr(Xℓ) with the same (co)domain
as Pℓ. The canonical isomorphism (ℓA)ki in (8.2.4) is the unique value in C of
any path in Gr(Xℓ) with the given (co)domain. Indeed, since the codomain xk
is nonsymmetric regular in the sense of Definition 3.10.2, so is the domain by
Lemma 3.10.3. The uniqueness of the value in C of any such path follows from
the Bimonoidal Coherence Theorem 3.10.7, which is applicable by the flatness as-
sumption on C. ◇

The Base Right Unitor. Next is the case with the identity matrix on the right.
It will be used to define the right unitor in MatC.
Lemma 8.2.7. Suppose C is a flat bimonoidal category, and m, n ≥ 0. Then there is a
natural isomorphism

(8.2.8) A1m A
rA
≅
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for A = (Aji) ∈MatCm,n.

Proof. If either m or n is 0, then both A1m and A are the empty matrix, and rA is
the identity morphism of the empty matrix.

For m, n > 0, 1 ≤ j ≤ n, and 1 ≤ h ≤ m, A1m has (j, h)-entry

(A1m)jh

= (
m
⊕
i=1
(Aji ⊗1m

ih))lt
= ( (Aj1 ⊗ 0)⊕⋯⊕ (Aj,h−1 ⊗ 0)⊕

empty if h = 1

(Ajh ⊗1)⊕ (Aj,h+1 ⊗ 0)⊕⋯⊕ (Ajm ⊗ 0)
empty if h = m

)
lt
.

(8.2.9)

This object is isomorphic to Ajh via the following composite in C.

(8.2.10)

(A1m)jh

( 0⊕⋯⊕ 0⊕
h − 1 copies of 0

Ajh ⊕0⊕⋯⊕ 0
m − h copies of 0

)
lt

Ajh

(ρ ●⊕⋯⊕ρ
●⊕ρ⊗⊕ρ

●⊕⋯⊕ρ
●)

lt

(rA)jh

Z

● If m = 1, then Z is the identity morphism.
● If m > 1, then Z is a composite of m− 1 morphisms, each being the sum of

identity morphisms and one of λ⊕0 , λ⊕Ajh
, or ρ⊕Ajh

.

The naturality of rA with respect to A follows from the naturality of ρ ●, ρ⊗, λ⊕,
and ρ⊕, and the functoriality of ⊕ in C. □

The following example interprets the natural isomorphism r in Lemma 8.2.7
in terms of paths and coherence.

Example 8.2.11 (The Right Unitor via Paths). The isomorphism (rA)jh in (8.2.10)
is the unique value in C of any path Pr as follows.

(8.2.12)

( (x1 ⊗ 0X)⊕⋯⊕ (xh−1 ⊗ 0X)⊕
empty if h = 1

(xh ⊗ 1X)⊕ (xh+1 ⊗ 0X)⊕⋯⊕ (xm ⊗ 0X)
empty if h = m

)
lt

xh

Pr

Here we take the set
Xr = {0X, 1X, x1, . . . , xm}

in (8.1.24) and the function φr ∶ Xr Ob(C) in (8.1.25). In such a path Pr in
Gr(Xr),

● the domain is obtained from the last line in (8.2.9) by replacing (0,1, Aji)
with (0X, 1X, xi) for 1 ≤ i ≤ m, and
● the codomain is xh.

One such path Pr whose value in C gives the morphisms in (8.2.10) is as fol-
lows.
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● Each of the first m − 1 prime edges in Pr contains an instance of the right
multiplicative zero

xi ⊗ 0X 0X
ρ
●
xi for 1 ≤ i /= h ≤ m.

● The mth prime edge in Pr contains an instance of the right multiplicative
unit

xh ⊗ 1X xh.
ρ⊗xh

● Each of the last m − 1 prime edges in Pr contains an instance of the left
additive zero λ⊕ or the right additive zero ρ⊕. Together they remove the
m − 1 copies of 0X.

This construction ensures the existence of at least one path Pr with the given
(co)domain.

There are infinitely many different paths in Gr(Xr) with the same (co)domain
as Pr. The canonical isomorphism (rA)jh in (8.2.10) is the unique value in C of
any path in Gr(Xr) with the given (co)domain. Indeed, since the codomain xh
is nonsymmetric regular in the sense of Definition 3.10.2, so is the domain by
Lemma 3.10.3. The uniqueness of the value in C of any such path follows from
the Bimonoidal Coherence Theorem 3.10.7, which is applicable by the flatness as-
sumption on C. ◇

8.3. The Base Associator

In this section, we discuss coherence properties of the matrix product (8.1.4)
with respect to associativity. The next lemma will be used to define the associa-
tor in MatC. Recall from Definition 2.1.2 that a tight bimonoidal category is one in
which the distributivity morphisms δl and δr are natural isomorphisms, not just
monomorphisms. Also recall from the introduction of this chapter our conven-
tions for Mac Lane coherence isomorphisms and Laplaza coherence isomorphisms.

Lemma 8.3.1. Suppose C is a tight bimonoidal category. For m, n, p, q ≥ 0, there is a
natural isomorphism

(8.3.2) (CB)A C(BA)
aC,B,A

≅ ∈MatCm,q

for (A, B, C) ∈MatCm,n ×MatCn,p ×MatCp,q.

Proof. There are five cases.

(1) If either m or q is 0, then both (CB)A and C(BA) are the empty matrix,
and aC,B,A is the identity morphism of the empty matrix.

(2) If m, q > 0 and n = p = 0, then both (CB)A and C(BA) are the 0 matrix
0m,q, and aC,B,A is the identity morphism.

(3) If m, p, q > 0 and n = 0, then aC,B,A is

(CB)A = 0m,q C0m,p = C(BA)
(ζr

C)
−1

≅

with ζr the natural isomorphism in (8.1.19).
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(4) If m, n, q > 0 and p = 0, then aC,B,A is

(CB)A = 0n,q A 0m,q = C(BA)
ζℓA
≅

with ζℓ the natural isomorphism in (8.1.11).

In each of the above cases, a is natural.
For the remaining case with m, n, p, q > 0, consider the following data.

● A = (Aji) ∈MatCm,n is an n ×m matrix.
● B = (Bkj) ∈MatCn,p is a p × n matrix.
● C = (Clk) ∈MatCp,q is a q × p matrix.

We first compute the entries of the matrix products (CB)A and C(BA) ∈ MatCm,q.
For 1 ≤ i ≤ m and 1 ≤ l ≤ q, the (l, i)-entry of (CB)A is the following object in C.

[(CB)A]li = (
n
⊕
j=1
(CB)l j ⊗ Aji)

lt

= (
n
⊕
j=1
(

p

⊕
k=1

Clk ⊗ Bkj)
lt
⊗ Aji)

lt

(8.3.3)

Similarly, the (l, i)-entry of C(BA) is the following object in C.

[C(BA)]li = (
p

⊕
k=1

Clk ⊗ (BA)ki)
lt

= (
p

⊕
k=1

Clk ⊗ (
n
⊕
j=1

Bkj ⊗ Aji)
lt
)
lt

(8.3.4)

The (l, i)-entry of aC,B,A is the following composite of isomorphisms in C.

(8.3.5)

[(CB)A]li [C(BA)]li

(
n
⊕
j=1
(

p

⊕
k=1

Clk ⊗ Bkj)
lt
⊗ Aji)

lt
(

p

⊕
k=1

Clk ⊗ (
n
⊕
j=1

Bkj ⊗ Aji)
lt
)
lt

(
n
⊕
j=1
(

p

⊕
k=1
(Clk ⊗ Bkj)⊗ Aji)

lt
)
lt

(
p

⊕
k=1
(

n
⊕
j=1

Clk ⊗ (Bkj ⊗ Aji))
lt
)
lt

(
n
⊕
j=1
(

p

⊕
k=1

Clk ⊗ (Bkj ⊗ Aji))
lt
)
lt

== ==

(aC,B,A)li

a1

a2 a3

a4

Consider the diagram (8.3.5).

(1) a1 is the identity morphism if p = 1. If p > 1, then a1 is a composite of
n(p − 1) morphisms, each being the sum of identity morphisms and one
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component of the right distributivity morphism

(8.3.6)

[(
p′−1

⊕
k=1

Clk ⊗ Bkj)
lt
⊕ (Clp′ ⊗ Bp′ j)]⊗ Aji

[(
p′−1

⊕
k=1

Clk ⊗ Bkj)
lt
⊗ Aji]⊕ [(Clp′ ⊗ Bp′ j)⊗ Aji]

δr

(⊕p′−1
k=1

Clk⊗Bkj)lt , (Clp′⊗Bp′ j), Aji

for 1 ≤ j ≤ n and 2 ≤ p′ ≤ p. This is an isomorphism because C is tight.
(2) a2 is a composite of np morphisms, each being the sum of identity mor-

phisms and one component of the multiplicative associativity

(8.3.7) (Clk ⊗ Bkj)⊗ Aji Clk ⊗ (Bkj ⊗ Aji)
α⊗Clk ,Bkj ,Aji

for 1 ≤ j ≤ n and 1 ≤ k ≤ p. Equivalently, by the functoriality of ⊕, a2 is the
sum

a2 = (
n
⊕
j=1
(

p

⊕
k=1

α⊗Clk ,Bkj ,Aji
)
lt
)
lt

.

(3) a3 is a Mac Lane coherence isomorphism ≅⊕ML in (C,⊕) that involves only
α±⊕ and ξ⊕. It regards the np objects Clk ⊗ (Bkj ⊗ Aji) as formal variables.
Its existence and uniqueness follow from Theorem 1.3.8.

(4) a4 is the identity morphism if n = 1. If n > 1, then a4 is a composite of
p(n − 1) morphisms, each being the sum of identity morphisms and one
instance of

(8.3.8)

[Clk ⊗ (
n′−1
⊕
j=1

Bkj ⊗ Aji)
lt
]⊕ [Clk ⊗ (Bkn′ ⊗ An′i)]

Clk ⊗ (
n′

⊕
j=1

Bkj ⊗ Aji)
lt

(δl)−1

Clk ,(⊕n′−1
j=1 Bkj⊗Aji)lt , (Bkn′⊗An′ i)

for 1 ≤ k ≤ p and 2 ≤ n′ ≤ n. The tightness assumption on C is used here to
make sure that the left distributivity morphism δl is invertible.

The naturality of aC,B,A follows from the naturality of α⊕, ξ⊕, α⊗, δl , and δr,
and the functoriality of ⊕ in C. □

Next we interpret the natural isomorphism a in Lemma 8.3.1 in terms of paths
and coherence.

Example 8.3.9 (The Associator via Paths). To realize (aC,B,A)li in (8.3.5) as the val-
ues in C of paths, for 1 ≤ i ≤ m and 1 ≤ l ≤ q, we consider the set

(8.3.10) Xa = {0X, 1X, aji, bkj, clk}1≤j≤n, 1≤k≤p
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with n + np + p + 2 elements and the function φa ∶ Xa Ob(C) defined as

(8.3.11) φa(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X,
1 if x = 1X,
Aji if x = aji for 1 ≤ j ≤ n,
Bkj if x = bkj for 1 ≤ j ≤ n and 1 ≤ k ≤ p, and
Clk if x = clk for 1 ≤ k ≤ p.

Define the following four paths in Gr(Xa), in which the direction of P4
a is not

an error.

(8.3.12)

(
n
⊕
j=1
(

p

⊕
k=1

clk ⊗ bkj)
lt
⊗ aji)

lt
(

p

⊕
k=1

clk ⊗ (
n
⊕
j=1

bkj ⊗ aji)
lt
)
lt

(
n
⊕
j=1
(

p

⊕
k=1
(clk ⊗ bkj)⊗ aji)

lt
)
lt

(
p

⊕
k=1
(

n
⊕
j=1

clk ⊗ (bkj ⊗ aji))
lt
)
lt

(
n
⊕
j=1
(

p

⊕
k=1

clk ⊗ (bkj ⊗ aji))
lt
)
lt

P1
a

P2
a P3

a

P4
a

Consider (8.3.12).

(1) For each 1 ≤ h ≤ 3, the path Ph
a is obtained from the corresponding iso-

morphism ah in (8.3.5) by replacing the objects (Aji, Bkj, Clk) in C with the
elements (aji, bkj, clk) in Xa.
● Each prime edge in P1

a is an identity or involves an instance of δr.
● Each prime edge in P2

a is an identity or involves an instance of α⊗.
● Each prime edge in P3

a is an identity or involves an instance of α±⊕

or ξ⊕.
The value of the path Ph

a in C is the isomorphism ah in (8.3.5). Since ξ±⊗

are not involved, the path (P3
a , P2

a , P1
a ) in Gr(Xa) realizes the composite

a3a2a1 in C as a Laplaza coherence isomorphism ≅Lap.
(2) The path P4

a is obtained from the isomorphism a4 in (8.3.5) by
● replacing the objects (Aji, Bkj, Clk) in C with the elements (aji, bkj, clk)

in Xa and
● reversing the direction of each (δl)−1 in (8.3.8) and replacing it with

δl in Gr(Xa).
The reason that P4

a is defined in this way is that the elementary edges δl

and δr do not have formal inverses; see Definitions 3.1.6 and 3.1.10. The
value of P4

a in C is (a4)−1. Since ξ±⊗ are not involved, the value of P4
a in C

is a Laplaza coherence isomorphism. Therefore, a4 is an inverse Laplaza
coherence isomorphism ≅−1

Lap.

In summary, using the paths Ph
a in Gr(Xa) for 1 ≤ h ≤ 4 in (8.3.12), the iso-

morphism (aC,B,A)li in (8.3.5) is the following composite of a Laplaza coherence
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isomorphism followed by an inverse Laplaza coherence isomorphism.

(8.3.13)

[(CB)A]li [C(BA)]li

(
n
⊕
j=1
(

p

⊕
k=1

Clk ⊗ Bkj)
lt
⊗ Aji)

lt
(

p

⊕
k=1

Clk ⊗ (
n
⊕
j=1

Bkj ⊗ Aji)
lt
)
lt

(
p

⊕
k=1
(

n
⊕
j=1

Clk ⊗ (Bkj ⊗ Aji))
lt
)
lt

== ==

(aC,B,A)li

≅Lapa3a2a1 ≅−1
Lap a4

The decomposition (8.3.13) has the following uniqueness property. Suppose given
a solid arrow diagram in C of the following form.

(8.3.14)

dom(a4)

[(CB)A]li [C(BA)]li

●

≅−1
Lap

a4

≅−1
Lap

≅Lap or

≅Lap

a3a2a1

≅Lap ≅−1
Lap

● The top composite is the factorization of (aC,B,A)li in (8.3.13).
● The bottom composite is some Laplaza coherence isomorphism followed

by some inverse Laplaza coherence isomorphism, defined using the same
set Xa in (8.3.10) and the same function φa in (8.3.11).

Suppose, furthermore, that there exists a dotted arrow as indicated that is either
a Laplaza coherence isomorphism or an inverse Laplaza coherence isomorphism,
defined with the same set Xa and function φa. Then the bottom composite in
(8.3.14) is also equal to (aC,B,A)li.

Indeed, first note that the codomain of P1
a is nonsymmetric regular in the sense

of Definition 3.10.2. Lemma 3.10.3 then implies that each vertex in (8.3.12) is non-
symmetric regular. By the tightness assumption on C, the Bimonoidal Coherence
Theorem 3.9.1 implies that each of the two subdiagrams in (8.3.14) is commutative
in C. This uniqueness property and similar technique will be used in later sections
to prove (monoidal) bicategory axioms related to a. ◇
Example 8.3.15 (Bipermutative Categories). Suppose C is a right or left bipermu-
tative category as in Definitions 2.5.2 and 2.5.11. Then 1 is a strict multiplica-
tive unit, and 0 is a strict additive zero and a strict multiplicative zero. It follows
from (8.1.13), (8.1.21), (8.2.4), and (8.2.10) that there are equalities as follows for
A ∈MatCm,n.

0n,p A = 0m,p ∈MatCm,p

A0q,m = 0q,n ∈MatCq,n

1n A = A = A1m ∈MatCm,n

Moreover, in the context of Lemma 8.3.1, the following statements hold.
● If one of m, n, p, q is 0 (the first four cases), then aC,B,A is the identity mor-

phism.
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● If m, n, p, q > 0, then aC,B,A in (8.3.5) is not the identity in general because
it involves both δr in (8.3.6) and δl in (8.3.8).

This means that even for a right or a left bipermutative category C, the bicate-
gory MatC in Definition 8.4.11 below is not in general a 2-category in the sense of
Definition 6.1.8. ◇

8.4. The Matrix Bicategory

In this section, we assemble the constructions in the previous sections to con-
struct the matrix bicategory MatC for a tight bimonoidal category C; see Theo-
rem 8.4.12. As an immediate consequence, we obtain a monoidal category MatCn,n
with objects n×n matrices in C and with the monoidal product given by the matrix
product; see Corollary 8.4.14. This result on MatCn,n is stated in [BDR04, Prop. 3.3],
with the additional assumption that C is symmetric.

Motivation 8.4.1. Recall from Definition 6.1.2 the notion of a bicategory, which
includes the unity axiom (6.1.3) and the pentagon axiom (6.1.4). Each of these ax-
ioms asserts that some diagram in some category MatCm,n is commutative. Since
morphisms in each MatCm,n are defined entrywise in C, checking those two axioms
amounts to checking some commutative diagrams in C. In each case, we will real-
ize the relevant diagram in C using paths in Gr(X) in the sense of Definition 3.1.14
for a suitable set X of formal variables. The Bimonoidal Coherence Theorem 3.10.7
then implies the commutativity of the diagram in C. ◇

The Unity Axiom. The unity axiom in MatC is proved in the next lemma. Re-
call the matrix product and the identity matrices in Definition 8.1.3 and Explana-
tion 8.1.7 and the natural isomorphisms ℓ, r, and a in, respectively, Lemmas 8.2.1,
8.2.7, and 8.3.1.

Lemma 8.4.2. For each tight bimonoidal category C, the diagram

(8.4.3)
(B1n)A B(1n A)

BA
rB★1A

aB,1n ,A

1B★ℓA

in MatCm,p is commutative for matrices A ∈MatCm,n and B ∈MatCn,p.

Proof. If one of m, n, or p is 0, then all three morphisms in (8.4.3) are identity
morphisms.

Suppose m, n, p > 0. It suffices to show that the (k, i)-entries of the two com-
posites in (8.4.3) are equal for 1 ≤ i ≤ m and 1 ≤ k ≤ p. Using (8.1.4), (8.1.5), (8.3.3),
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and (8.3.4), the (k, i)-entry of the diagram (8.4.3) is the following diagram in C.

(8.4.4)

[(B1n)A]ki [B(1n A)]ki

(
n
⊕
j=1
(

n
⊕
l=1

Bkl ⊗1n
lj)lt ⊗ Aji)

lt
(

n
⊕
l=1

Bkl ⊗ (
n
⊕
j=1

1n
lj ⊗ Aji)

lt
)
lt

(
n
⊕
j=1

Bkj ⊗ Aji)
lt

(BA)ki (
n
⊕
l=1

Bkl ⊗ Ali)
lt

== ==

(aB,1n ,A)ki

(
n
⊕
j=1
(rB)kj ⊗ 1Aji)lt

= =

(
n
⊕
l=1

1Bkl ⊗ (ℓA)li)
lt

To show that this diagram is commutative, we first realize its edges as the values
in C of paths, in the sense of (3.1.18), defined as follows.

Consider the set
X = {0X, 1X, a1, . . . , an, b1, . . . , bn}

and the function φ ∶ X Ob(C) defined by

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X,
1 if x = 1X,
Aji if x = aj for 1 ≤ j ≤ n, and
Bkj if x = bj for 1 ≤ j ≤ n.

There is a diagram

(8.4.5) (
n
⊕
j=1
(

n
⊕
l=1

bl ⊗ δX
l j)lt ⊗ aj)

lt
(

n
⊕
l=1

bl ⊗ (
n
⊕
j=1

δX
l j ⊗ aj)

lt
)
lt

(
n
⊕
l=1
(

n
⊕
j=1

bl ⊗ (δX
l j ⊗ aj))

lt
)
lt

(
n
⊕
j=1

bj ⊗ aj)
lt

(P3
a , P2

a , P1
a ) P4

a

R L

M

in Gr(X) defined as follows.

(1) The element δX
l j ∈ X is defined as

(8.4.6) δX
l j =
⎧⎪⎪⎨⎪⎪⎩

0X if l /= j and
1X if l = j.

(2) The component (aB,1n ,A)ki in (8.4.4) decomposes as a4a3a2a1 as in (8.3.5).
The paths Ph

a for 1 ≤ h ≤ 4 in (8.4.5) are the ones in (8.3.12) with the
symbols (k, p, l, clk, bkj, aji) replaced by (l, n, k, bl , δX

l j, aj). As we explained
in Example 8.3.9,
● the path (P3

a , P2
a , P1

a ) has value a3a2a1 in C, and
● the path P4

a has value (a4)−1 in C.



8.4. THE MATRIX BICATEGORY I.323

(3) For 1 ≤ j ≤ n, the component (rB)kj in (8.4.4) is the isomorphism in (8.2.10)
with the symbols (A, m, j, h) replaced by (B, n, k, j). By Example 8.2.11,
each (rB)kj is the value in C of a path Pj

r as in (8.2.12), defined with the
subset {0X, 1X, b1, . . . , bn}. The path R in (8.4.5) is defined using
● the paths Pj

r for 1 ≤ j ≤ n and
● the constructions in Notation 3.3.10

such that the value of R in C is the left edge in (8.4.4).
(4) For 1 ≤ l ≤ n, the component (ℓA)li in (8.4.4) is the isomorphism in (8.2.4)

with the symbol k replaced by l. By Example 8.2.5, each (ℓA)li is the value
in C of a path Pl

ℓ as in (8.2.6), defined with the subset {0X, 1X, a1, . . . , an}.
The path L in (8.4.5) is defined using the paths
● Pl

ℓ for 1 ≤ l ≤ n and
● the constructions in Notation 3.3.10

such that the value of L in C is the right edge in (8.4.4).
(5) Since δX

l j in (8.4.6) is either 0X or 1X, we define M in (8.4.5) as the path with
the following prime edges.
● For 1 ≤ l /= j ≤ n, M has prime edges containing

bl ⊗ (0X ⊗ aj) bl ⊗ 0X 0X.
1bl
⊗λ

●
aj ρ

●

bl

● For 1 ≤ l = j ≤ n, M has prime edges containing

bj ⊗ (1X ⊗ aj) bj ⊗ aj.
1bj
⊗λ⊗aj

● After the above prime edges, M has prime edges containing λ⊕ or
ρ⊕ that remove the n(n − 1) copies of 0X additively.

The bottom middle vertex in (8.4.5) is nonsymmetric regular in the sense of
Definition 3.10.2. By Lemma 3.10.3, the domain of R and the domain of L are
also nonsymmetric regular. Using the tightness assumption on C, Theorem 3.10.7
implies that the diagram (8.4.5) is commutative in C. This, in turn, implies that the
diagram (8.4.4) is commutative. □

The Pentagon Axiom. Next we prove the pentagon axiom (6.1.4) in MatC. To
clarify the cases, we separate the proof into two lemmas. For each tight bimonoidal
category C, consider the diagram

(8.4.7)

(DC)(BA)

((DC)B)A

(D(CB))A D((CB)A)

D(C(BA))

aD,C,BAaDC,B,A

aD,C,B★1A

aD,CB,A

1D★aC,B,A

in MatCm,t for
(A, B, C, D) ∈MatCm,n ×MatCn,p ×MatCp,q ×MatCq,t.

The following proof involves the natural isomorphisms ζℓ in (8.1.11) and ζr in
(8.1.19).
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Lemma 8.4.8. If at least one of m, n, p, q, and t is 0, then the pentagon (8.4.7) is commu-
tative.

Proof. We consider all the possible cases.

(1) If either m or t is 0, then each edge in (8.4.7) is the identity morphism of
the empty matrix.

(2) If m, t > 0 and n = p = q = 0, then each edge in (8.4.7) is the identity
morphism of the 0 matrix 0m,t.

(3) If m, n, t > 0 and p = q = 0, then the pentagon (8.4.7) is the following
diagram.

0m,t

0n,t A 0m,t

0n,t A 0m,t

ζℓA 1

10n,t ★ 1A
ζℓA

1

Since

10n,t ★ 1A = 10n,t A

by Lemma 8.1.8, the above pentagon is commutative.
(4) If m, q, t > 0 and n = p = 0, then the pentagon (8.4.7) is the following

diagram.

0m,t

0m,t D0m,q

0m,t D0m,q

1 (ζr
D)
−1

1
(ζr

D)
−1 1D ★ 10m,q

As in the previous case, this pentagon is commutative by Lemma 8.1.8.
(5) If m, p, t > 0 and n = q = 0, then the pentagon (8.4.7) is the following

diagram.

0m,t0m,t

0m,t 0m,t

0m,t 0m,t

(ζr
0m,t)

−1
ζℓ0m,t

1
1

1

Since

λ
●
0 = ρ

●
0 ∶ 0⊗ 0 0

by the axiom (2.1.14) in C, each entry of ζℓ0m,t
in (8.1.13) is equal to the

corresponding entry of ζr
0m,t

in (8.1.21). Therefore, the above pentagon is
commutative.
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(6) If m, p, q, t > 0 and n = 0, then the pentagon (8.4.7) is the left diagram
below.

(DC)0m,p

0m,t D(C0m,p)

0m,t D0m,q

(ζr
DC)

−1 aD,C,0m,p

1

(ζr
D)
−1

1D ★ (ζ
r
C)
−1

v1

0X v3

v2

0X v4

(Zr
DC)ki

(P3
a , P2

a , P1
a )

P4
a

1

(Zr
D)ki

(
q
⊕
l=1

1Dkl ⊗ (Z
r
C)li)

lt

It suffices to prove the commutativity of the left pentagon in the (k, i)-
entry for 1 ≤ i ≤ m and 1 ≤ k ≤ t. As in Example 8.1.22, the (k, i)-entry of
ζr

DC is the unique value in C of a 0X-reduction (Zr
DC)ki. Similarly, (Zr

D)ki
and (Zr

C)li are 0X-reductions whose values in C are, respectively, (ζr
D)ki

and (ζr
C)li.

As in Example 8.3.9, the entry (aD,C,0m,p)ki is the value in C of a zigzag
of paths (P4

a , (P3
a , P2

a , P1
a )). With the appropriate inverses taken into ac-

count, the (k, i)-entry of the left pentagon is the value in C of the right
pentagon for some elements v1, v2, v3, and v4. By Lemma 3.10.3, each
of the four vertices v? has the same support as 0X. By Lemmas 3.3.6
and 3.3.11, v2 has a 0X-reduction denoted by the dashed arrow. By Theo-
rem 3.10.7, the following two statements hold.
● The two paths from v1 to the lower left 0X have the same value in C.
● The two paths from v3 to the lower left 0X have the same value in C.

Therefore, the (k, i)-entry of the left pentagon is commutative.
(7) If m, n, q, t > 0 and p = 0, then the pentagon (8.4.7) is the diagram below.

0m,t

0n,t A D0m,q

(D0n,q)A D(0n,q A)

ζℓA (ζr
D)
−1

(ζr
D)
−1 ★ 1A

aD,0n,q ,A
1D ★ ζℓA

As in case (6), it suffices to show the commutativity of the pentagon above
in the (k, i)-entry, which is the value in C of the pentagon below with the
appropriate inverses taken into account.

0X

v1 v5

v2 v4v3

(Zℓ
A)ki (Zr

D)ki

(
n
⊕
j=1
(Zr

D)kj ⊗ 1Aji)lt
(P3

a , P2
a , P1

a ) P4
a

(
q
⊕
l=1

1Dkl ⊗ (Z
ℓ
A)li)

lt

Here (Zℓ
A)ki is any 0X-reduction as in (8.1.15) whose value in C is the (k, i)-

entry of ζℓA, and similarly for (Zℓ
A)li. Because of the top 0X, each of the

other five vertices has the same support as 0X, and v3 has a 0X-reduction
denoted by the dashed arrow. For each h ∈ {2, 4}, the two paths from vh
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to the top 0X have the same value in C by Theorem 3.10.7. Therefore, the
(k, i)-entry of the pentagon is commutative.

(8) If m, n, p, t > 0 and q = 0, then the pentagon (8.4.7) is the diagram below.

0p,t(BA)

(0p,tB)A 0m,t

0n,t A 0m,t

a0p,t ,B,A ζℓBA

ζℓB ★ 1A ζℓA

1

As in cases (6) and (7), it suffices to show the commutativity of the pen-
tagon above in the (k, i)-entry, which is the value in C of the pentagon
below with the appropriate inverses taken into account.

v1

v3

v2

0X

v4 0X

(P3
a , P2

a , P1
a )

P4
a (Zℓ

BA)ki

(
n
⊕
j=1
(Zℓ

B)kj ⊗ 1Aji)lt
(Zℓ

A)ki

1

Because of the right 0X, each of the four vertices v? has the same support
as 0X, and v2 has a 0X-reduction denoted by the dashed arrow. For each
h ∈ {1, 3}, the two paths from vh to the right 0X have the same value in C
by Theorem 3.10.7. Therefore, the (k, i)-entry of the pentagon is commu-
tative.

All the cases have been proved. □

Lemma 8.4.9. If m, n, p, q, t > 0, then the pentagon (8.4.7) is commutative.

Proof. It suffices to show that the (t′, m′)-entry of the pentagon (8.4.7) is commuta-
tive for 1 ≤ m′ ≤ m and 1 ≤ t′ ≤ t. First we realize the (t′, m′)-entry of the pentagon
(8.4.7) as the value in C of a diagram in Gr(X)with the following data.

● The set of formal variables is

X = {0X, 1X, ajm′ , bkj, clk, dt′l}

in which 1 ≤ j ≤ n, 1 ≤ k ≤ p, and 1 ≤ l ≤ q.
● The function φ ∶ X Ob(C) is defined by

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X,
1 if x = 1X,
Ajm′ if x = ajm′ for 1 ≤ j ≤ n,
Bkj if x = bkj for 1 ≤ k ≤ p and 1 ≤ j ≤ n,
Clk if x = clk for 1 ≤ l ≤ q and 1 ≤ k ≤ p, and
Dt′l if x = dt′l for 1 ≤ l ≤ q.
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By Example 8.3.9, the (t′, m′)-entry of the pentagon (8.4.7) is the value in C of the
outer pentagon in Gr(X) below with the appropriate inverses taken into account.

(8.4.10) w

w1

w2

w3 w4

w5

v1

v2

v3

v4

v5

The corner vertices in (8.4.10) and their images under φ are as follows.

w1 = [
p

⊕
k=1
(

q

⊕
l=1

dt′l ⊗ clk)
lt
⊗ (

n
⊕
j=1

bkj ⊗ ajm′)
lt
]
lt

φw1 = [(DC)(BA)]t′m′

w2 = [
n
⊕
j=1
{

p

⊕
k=1
(

q

⊕
l=1

dt′l ⊗ clk)
lt
⊗ bkj}

lt
⊗ ajm′]

lt
φw2 = [((DC)B)A]t′m′

w3 = [
n
⊕
j=1
{

q

⊕
l=1

dt′l ⊗ (
p

⊕
k=1

clk ⊗ bkj)
lt
}
lt
⊗ ajm′]

lt
φw3 = [(D(CB))A]t′m′

w4 = [
q

⊕
l=1

dt′l ⊗ {
n
⊕
j=1
(

p

⊕
k=1

clk ⊗ bkj)
lt
⊗ ajm′}

lt
]
lt

φw4 = [D((CB)A)]t′m′

w5 = [
q

⊕
l=1

dt′l ⊗ {
p

⊕
k=1

clk ⊗ (
n
⊕
j=1

bkj ⊗ ajm′)
lt
}
lt
]
lt

φw5 = [D(C(BA))]t′m′

The intermediate vertices in (8.4.10) are defined as follows.

v1 = [
p

⊕
k=1
{

n
⊕
j=1
(

q

⊕
l=1

dt′l ⊗ clk)
lt
⊗ (bkj ⊗ ajm′)}

lt
]
lt

v2 = [
n
⊕
j=1
{

q

⊕
l=1
(

p

⊕
k=1

dt′l ⊗ (clk ⊗ bkj))
lt
}
lt
⊗ ajm′]

lt

v3 = [
q

⊕
l=1
{

n
⊕
j=1

dt′l ⊗ [(
p

⊕
k=1

clk ⊗ bkj)
lt
⊗ ajm′]}

lt
]
lt

v4 = [
q

⊕
l=1

dt′l ⊗ {
p

⊕
k=1
(

n
⊕
j=1

clk ⊗ (bkj ⊗ ajm′))
lt
}
lt
]
lt

v5 = [
q

⊕
l=1
{

p

⊕
k=1

dt′l ⊗ [clk ⊗ (
n
⊕
j=1

bkj ⊗ ajm′)
lt
]}

lt
]
lt

The middle vertex in (8.4.10) is defined as follows.

w = [
q

⊕
l=1
{

p

⊕
k=1
(

n
⊕
j=1

dt′l ⊗ [clk ⊗ (bkj ⊗ ajm′)])
lt
}
lt
]
lt

For example, the (t′, m′)-entry

φw2 = [((DC)B)A]t′m′ [(DC)(BA)]t′m′ = φw1
(aDC,B,A)t′m′
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is the value in C of the zigzag of paths

w2 w1v1
(P3

a , P2
a , P1

a ) P4
a

as in (8.3.12), up to a change of symbols.
To show the commutativity of the outer pentagon in (8.4.10) in C, we join the

intermediate vertices v? at the center as follows. The middle vertex w is not the
domain of any distributivity morphism δl and δr. This fact implies that for each
1 ≤ s ≤ 5, there is a path vs w that is denoted by a dashed arrow in (8.4.10)
and is defined as follows.

(1) Consider the path v1 w.
(i) For 1 ≤ k ≤ p and 1 ≤ j ≤ n, it contains the following instances of δr,

[(
q′−1

⊕
l=1

dt′l ⊗ clk)
lt
⊕ (dt′q′ ⊗ cq′k)]⊗ (bkj ⊗ ajm′)

[(
q′−1

⊕
l=1

dt′l ⊗ clk)
lt
⊗ (bkj ⊗ ajm′)]⊕ [(dt′q′ ⊗ cq′k)⊗ (bkj ⊗ ajm′)]

δr

(⊕q′−1
l=1

dt′ l⊗clk)lt , (dt′q′⊗cq′k), (bkj⊗ajm′ )

for 2 ≤ q′ ≤ q if q > 1, or the identity if q = 1.
(ii) It contains the following npq instances of α⊗.

(dt′l ⊗ clk)⊗ (bkj ⊗ ajm′) dt′l ⊗ [clk ⊗ (bkj ⊗ ajm′)]
α⊗dt′ l , clk , (bkj⊗ajm′)

(iii) It contains α±⊕ and ξ⊕ that move brackets and permute additively.
(2) Consider the path v2 w.

(i) For 1 ≤ j ≤ n, it contains the following instances of δr,

[{
q′−1

⊕
l=1
(

p

⊕
k=1

dt′l ⊗ (clk ⊗ bkj))
lt
}
lt
⊕ (

p

⊕
k=1

dt′q′ ⊗ (cq′k ⊗ bkj))
lt
]⊗ ajm′

[{
q′−1

⊕
l=1
(

p

⊕
k=1

dt′l ⊗ (clk ⊗ bkj))
lt
}
lt
⊗ ajm′]⊕ [(

p

⊕
k=1

dt′q′ ⊗ (cq′k ⊗ bkj))
lt
⊗ ajm′]

δr
{⋯}lt , (⋯)lt , ajm′

for 2 ≤ q′ ≤ q if q > 1, or the identity if q = 1.
(ii) For 1 ≤ j ≤ n and 1 ≤ l ≤ q, it contains the following instances of δr,

[(
p′−1

⊕
k=1

dt′l ⊗ (clk ⊗ bkj))
lt
⊕ (dt′l ⊗ (clp′ ⊗ bp′ j))]⊗ ajm′

[(
p′−1

⊕
k=1

dt′l ⊗ (clk ⊗ bkj))
lt
⊗ ajm′]⊕ [(dt′l ⊗ (clp′ ⊗ bp′ j))⊗ ajm′]

δr
(⋯)lt , (⋯), ajm′
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for 2 ≤ p′ ≤ p if p > 1, or the identity if p = 1.
(iii) It contains the following 2npq instances of α⊗.

(dt′l ⊗ (clk ⊗ bkj))⊗ ajm′ dt′l ⊗ ((clk ⊗ bkj)⊗ ajm′)

(clk ⊗ bkj)⊗ ajm′ clk ⊗ (bkj ⊗ ajm′)

α⊗

α⊗

(iv) It contains α±⊕ and ξ⊕ that move brackets and permute additively.
(3) Consider the path v3 w.

(i) For 1 ≤ l ≤ q and 1 ≤ j ≤ n, it contains the following instances of δr,

[(
p′−1

⊕
k=1

clk ⊗ bkj)
lt
⊕ (clp′ ⊗ bp′ j)]⊗ ajm′

[(
p′−1

⊕
k=1

clk ⊗ bkj)
lt
⊗ ajm′]⊕ [(clp′ ⊗ bp′ j)⊗ ajm′]

δr
(⋯)lt , (clp′⊗bp′ j), ajm′

for 2 ≤ p′ ≤ p if p > 1, or the identity if p = 1.
(ii) For 1 ≤ l ≤ q and 1 ≤ j ≤ n, it contains the following instances of δl ,

dt′l ⊗ [(
p′−1

⊕
k=1
(clk ⊗ bkj)⊗ ajm′)

lt
⊕ ((clp′ ⊗ bp′ j)⊗ ajm′)]

[dt′l ⊗ (
p′−1

⊕
k=1
(clk ⊗ bkj)⊗ ajm′)

lt
]⊕ [dt′l ⊗ ((clp′ ⊗ bp′ j)⊗ ajm′)]

δl
dt′ l , (⋯)lt , ((clp′⊗bp′ j)⊗ajm′ )

for 2 ≤ p′ ≤ p if p > 1, or the identity if p = 1.
(iii) It contains the following npq instances of α⊗.

(clk ⊗ bkj)⊗ ajm′ clk ⊗ (bkj ⊗ ajm′)α⊗

(iv) It contains α±⊕ and ξ⊕ that move brackets and permute additively.
(4) Consider the path v4 w.

(i) For 1 ≤ l ≤ q, it contains the following instances of δl ,

dt′l ⊗ [{
p′−1

⊕
k=1
(

n
⊕
j=1

clk ⊗ (bkj ⊗ ajm′))
lt
}
lt
⊕ (

n
⊕
j=1

clp′ ⊗ (bp′ j ⊗ ajm′))
lt
]

[dt′l ⊗ {
p′−1

⊕
k=1
(

n
⊕
j=1

clk ⊗ (bkj ⊗ ajm′))
lt
}
lt
]⊕ [dt′l ⊗ (

n
⊕
j=1

clp′ ⊗ (bp′ j ⊗ ajm′))
lt
]

δl
dt′ l ,{⋯}lt , (⋯)lt

for 2 ≤ p′ ≤ p if p > 1, or the identity if p = 1.
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(ii) For 1 ≤ l ≤ q and 1 ≤ k ≤ p, it contains the following instances of δl ,

dt′l ⊗ [(
n′−1
⊕
j=1

clk ⊗ (bkj ⊗ ajm′))
lt
⊕ (clk ⊗ (bkn′ ⊗ an′m′))]

[dt′l ⊗ (
n′−1
⊕
j=1

clk ⊗ (bkj ⊗ ajm′))
lt
]⊕ [dt′l ⊗ (clk ⊗ (bkn′ ⊗ an′m′))]

δl
dt′ l , (⋯)lt , (⋯)

for 2 ≤ n′ ≤ n if n > 1, or the identity if n = 1.
(5) Consider the path v5 w.

(i) For 1 ≤ l ≤ q and 1 ≤ k ≤ p, it contains the following instances of δl ,

clk ⊗ [(
n′−1
⊕
j=1

bkj ⊗ ajm′)
lt
⊕ (bkn′ ⊗ an′m′)]

[clk ⊗ (
n′−1
⊕
j=1

bkj ⊗ ajm′)
lt
]⊕ [clk ⊗ (bkn′ ⊗ an′m′)]

δl
clk , (⋯)lt , (bkn′⊗an′m′ )

for 2 ≤ n′ ≤ n if n > 1, or the identity if n = 1.
(ii) For 1 ≤ l ≤ q and 1 ≤ k ≤ p, it contains the following instances of δl ,

dt′l ⊗ [(
n′−1
⊕
j=1

clk ⊗ (bkj ⊗ ajm′))
lt
⊕ (clk ⊗ (bkn′ ⊗ an′m′))]

[dt′l ⊗ (
n′−1
⊕
j=1

clk ⊗ (bkj ⊗ ajm′))
lt
]⊕ [dt′l ⊗ (clk ⊗ (bkn′ ⊗ an′m′))]

δl
dt′ l , (⋯)lt , (clk⊗(bkn′⊗an′m′ ))

for 2 ≤ n′ ≤ n if n > 1, or the identity if n = 1.
The vertex w is nonsymmetric regular in the sense of Definition 3.10.2. By

Lemma 3.10.3, each vertex ws for 1 ≤ s ≤ 5 is also nonsymmetric regular. By the
tightness assumption on C, Theorem 3.10.7 implies that each of the five subdia-
grams in (8.4.10) is commutative in C. Therefore, the (t′, m′)-entry of the pentagon
(8.4.7) is commutative. □

The Matrix Bicategory. Recall the concept of a bicategory in Definition 6.1.2.
Definition 8.4.11. Suppose C is a tight bimonoidal category. Define the matrix
bicategory

(MatC,1, c, a, ℓ, r)
as consisting of the following data.
Objects: The objects in MatC are nonnegative integers n ≥ 0.
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The Hom Categories: For m, n ≥ 0, the hom category MatC(m, n) is the category
MatCm,n in Definition 8.1.1.

The Identity 1-Cells: For each object n ≥ 0, its identity 1-cell 1n is the n×n identity
matrix 1n ∈MatCn,n defined entrywise in (8.1.6).

The Horizontal Composition: For objects m, n, p ≥ 0, the horizontal composition

MatCn,p ×MatCm,n MatCm,p
c

is given by the matrix product in Definition 8.1.3.
The Associator: For objects m, n, p, q ≥ 0, the associator is the natural isomorphism

a in Lemma 8.3.1.
The Unitors: For objects m, n ≥ 0, the left unitor ℓ and the right unitor r are the

natural isomorphisms in, respectively, Lemmas 8.2.1 and 8.2.7.
This finishes the definition of MatC. ◇
Theorem 8.4.12. In Definition 8.4.11, MatC is a bicategory.

Proof. The horizontal composition, which is given by the matrix product, is a func-
tor by Lemma 8.1.8. Lemmas 8.2.1, 8.2.7, and 8.3.1 establish the naturality of ℓ, r,
and a, respectively. The unity axiom (6.1.3) is proved in Lemma 8.4.2. The penta-
gon axiom (6.1.4) is proved in Lemmas 8.4.8 and 8.4.9. □

Example 8.4.13 (Coordinatized 2-Vector Spaces). Suppose C is the tight symmet-
ric bimonoidal category VectC of finite dimensional complex vector spaces in Ex-
ample 2.1.32. Then the matrix bicategory MatC is the bicategory of coordinatized
2-vector spaces in [JY21, Ex. 2.1.28], denoted by 2Vectc there. This is one incarna-
tion of 2-vector spaces [KV94, Def. 5.2]. We will revisit 2-vector spaces in Exam-
ple 8.15.5. ◇

If A is an object in a bicategory B, then the hom category B(A, A) becomes a
monoidal category with

● monoidal unit the identity 1-cell 1A,
● monoidal product the horizontal composition

B(A, A)×B(A, A) B(A, A),
and
● associativity isomorphism and left/right unit isomorphisms the restric-

tions of, respectively, the associator and the left/right unitors of B.
The unity axiom (1.2.2) and the pentagon axiom (1.2.3) for the monoidal category
B(A, A) are special cases of the corresponding axioms (6.1.3) and (6.1.4) for B.
When applied to the matrix bicategory MatC in Theorem 8.4.12, we obtain the
following result, which is stated in [BDR04, Prop. 3.3] without proof, under the
additional assumption that C is symmetric.
Corollary 8.4.14. For each tight bimonoidal category C and each n ≥ 1, the category
MatCn,n in Definition 8.1.1 is a monoidal category with

● monoidal unit the identity matrix 1n in (8.1.6),
● monoidal product the matrix product in (8.1.4) and (8.1.5),
● left unit isomorphism in (8.2.2),
● right unit isomorphism in (8.2.8), and
● associativity isomorphism in (8.3.2).
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In the rest of this chapter, we will extend the bicategory MatC in Theorem 8.4.12
to a symmetric monoidal bicategory.

8.5. The Monoidal Identity

For each tight bimonoidal category C as in Definition 2.1.2, we observed in
Theorem 8.4.12 that MatC in Definition 8.4.11 is a bicategory in the sense of Defi-
nition 6.1.2. The main goal for the rest of this chapter is to show that, if C is also
symmetric, then MatC has the structure of a symmetric monoidal bicategory as in
Definition 6.5.9. For the next several sections, we construct a monoidal bicategory
structure as in Definition 6.4.1 on MatC. In this section, we construct its monoidal
identity, which is a pseudofunctor in the sense of Definition 6.2.1.
Definition 8.5.1. For each tight bimonoidal category C, define the data of a lax
functor

1 MatC
(1⊠,12

⊠
,10
⊠
)

as follows.
Object: The identity object 1⊠(∗) is the integer 1 ∈MatC.
1-Cell: The identity 1-cell 1∗ ∈ 1(∗,∗) is sent by 1⊠ to the 1× 1 identity matrix

11 = (1) ∈MatC1,1

whose only entry is the multiplicative unit 1 ∈ C.
2-Cell: The identity 2-cell 11∗ ∈ 1(1∗, 1∗) is sent by 1⊠ to the 1× 1 matrix

(11) ∈MatC1,1(11,11)
whose only entry is the identity morphism 11 ∶ 1 1 in C.

The Lax Unity Constraint: Define

11⊠(∗) = 11 = 11 = (1) (1) = 11 = 1⊠(1∗)
10
⊠

as the identity 2-cell (11).
The Lax Functoriality Constraint: Using the matrix product (8.1.4), define

1⊠(1∗)1⊠(1∗) = (1)(1) = (1⊗1) (1) = 1⊠(1∗) = 1⊠(1∗1∗)
12
⊠

as the 1× 1 matrix whose only entry is the left multiplicative unit

λ⊗
1
∶ 1⊗1 1 ∈ C.

This finishes the definition of the tuple (1⊠, 12
⊠
, 10
⊠
). ◇

Lemma 8.5.2. The tuple (1⊠, 12
⊠
, 10
⊠
) in Definition 8.5.1 is a strictly unitary pseudofunc-

tor.

Proof. The assignment

1(∗,∗) MatC1,1
1⊠

sends the identity 2-cell 11∗ to the identity 2-cell (11), which is also equal to the
vertical composition

(11)(11) = (1111).
Therefore, 1⊠ is a functor.
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The lax functoriality constraint 12
⊠

is natural because the only 2-cell in 1 is the
identity 2-cell of 1∗. To show that 1⊠ is a lax functor, it remains to check the two
axioms (6.2.2) and (6.2.3).

Since
1⊠(1∗) = 11 = (1),

the lax associativity axiom (6.2.2) in the current setting is the left diagram below
in MatC1,1.

(8.5.3)

(1111)11 11(1111)

1111 1111

11 11

12
⊠
∗1

a

1∗12
⊠

12
⊠

12
⊠

1⊠(a)

(1⊗1)⊗1 1⊗ (1⊗1)

1⊗1 1⊗1

1 1

λ⊗
1
⊗11

α⊗
1,1,1

11⊗λ⊗
1

λ⊗
1

1

λ⊗
1

1

The associator in the matrix bicategory is defined in Lemma 8.3.1. Using its ex-
plicit construction in (8.3.5), the only entry of a in (8.5.3) is the multiplicative as-
sociativity α⊗

1,1,1, which corresponds to (8.3.7). Moreover, the associator in 1 is the
identity. Therefore, in (8.5.3) the commutativity of the left diagram is equivalent
to the commutativity of the outer diagram in C on the right.

In the right diagram in (8.5.3), the following statements hold.
● The bottom square is commutative by definition.
● The top square is commutative by

– the unity axiom (1.2.2) in (C,⊗,1) and
– the equality λ⊗

1
= ρ⊗

1
in (1.2.6), applied to the top left vertical mor-

phism.
This proves the lax associativity axiom (6.2.2).

In the current setting, the lax unity axiom (6.2.3) consists of the following two
diagrams in MatC1,1.

(8.5.4)
1111 11

1111 11

10
⊠
∗1

ℓ

12
⊠

1⊠(ℓ)

1111 11

1111 11

10
⊠
∗1

r

12
⊠

1⊠(r)

Both ℓ and r in 1 are the identity. The unitors ℓ and r in MatC are defined in Lem-
mas 8.2.1 and 8.2.7, respectively. Using their explicit constructions in (8.2.4) and
(8.2.10), the two diagrams in (8.5.4) are commutative if and only if the following
two diagrams in C are commutative.

1⊗1 1

1⊗1 1

1

λ⊗
1

λ⊗
1

1

1⊗1 1

1⊗1 1

1

ρ⊗
1

λ⊗
1

1

The left square is commutative by definition. The right square is commutative by
the equality λ⊗

1
= ρ⊗

1
in (1.2.6). This proves the lax unity axiom (6.2.3), so 1⊠ is a

lax functor.
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Since 10
⊠

is the identity 2-cell (11) and since 12
⊠
= (λ⊗

1
) is an isomorphism, 1⊠ is

a strictly unitary pseudofunctor. □

8.6. The Monoidal Composition

For the rest of this chapter, C denotes a tight symmetric bimonoidal category
as in Definition 2.1.2. We are in the process of constructing a monoidal bicate-
gory structure on the matrix bicategory MatC. In Section 8.5, we constructed its
monoidal identity. In this section, we construct the monoidal composition

(⊠,⊠2,⊠0) ∶MatC ×MatC MatC.

Here is an outline of this section.
● We define the matrix tensor product for matrices in C in Definition 8.6.1

and check that it is a functor in Lemma 8.6.7.
● Using the matrix tensor product, the lax unity constraint ⊠0 is constructed

in Lemma 8.6.8.
● The lax functoriality constraint ⊠2 is constructed in several steps in Lem-

mas 8.6.12, 8.6.13, 8.6.16, and 8.6.21.
● The data (⊠,⊠2,⊠0) are assembled in Definition 8.6.19.

To see that the triple (⊠,⊠2,⊠0) is a pseudofunctor in the sense of Definition 6.2.1,
we will check the lax associativity axiom (6.2.2) and the lax unity axiom (6.2.3) in
Section 8.7. The multiplicative symmetry ξ⊗ is first used in Lemma 8.6.16.

The Matrix Tensor Product. The construction uses the following generaliza-
tions of the scalar product and the tensor product of complex matrices.

Definition 8.6.1. Suppose A = (Aji) ∈ MatCm,n and B = (Blk) ∈ MatCp,q for some
m, n, p, q ≥ 0, and C is a tight symmetric bimonoidal category.

● For each object C ∈ C, define the scalar product

(8.6.2) C ⊠ A = (C⊗ Aji) ∈MatCm,n

as the n ×m matrix obtained from A by replacing each entry Aji by the
product C⊗ Aji.
● Define the matrix tensor product

(8.6.3) A⊠ B = (Aji ⊠ B)1≤j≤n, 1≤i≤m ∈MatCmp,nq

as the nq ×mp matrix obtained from A by replacing each entry Aji by the
scalar product Aji ⊠ B. In other words, it has entries

(8.6.4) (A⊠ B)(j−1)q+l, (i−1)p+k = Aji ⊗ Blk ∈ C

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p, and 1 ≤ l ≤ q.
The same notation and terminology apply if C, A, and B are morphisms in, respec-
tively, C, MatCm,n, and MatCp,q. ◇
Explanation 8.6.5. Suppose A = (Aji) ∈ MatCm,n is displayed using the following
matrix notation.

A =
⎡⎢⎢⎢⎢⎢⎣

A11 ⋯ A1m
⋮ ⋱ ⋮

An1 ⋯ Anm

⎤⎥⎥⎥⎥⎥⎦
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Then the scalar product in (8.6.2) and the matrix tensor product in (8.6.3) are dis-
played as follows.

C ⊠ A =
⎡⎢⎢⎢⎢⎢⎣

C⊗ A11 ⋯ C⊗ A1m
⋮ ⋱ ⋮

C⊗ An1 ⋯ C⊗ Anm

⎤⎥⎥⎥⎥⎥⎦
A⊠ B =

⎡⎢⎢⎢⎢⎢⎣

A11 ⊠ B ⋯ A1m ⊠ B
⋮ ⋱ ⋮

An1 ⊠ B ⋯ Anm ⊠ B

⎤⎥⎥⎥⎥⎥⎦

If either m or n is 0, then C ⊠ A ∈ MatCm,n is the empty matrix. If one of m, n, p, or q
is 0, then A⊠ B ∈MatCmp,nq is the empty matrix. ◇
Example 8.6.6. Suppose R is a commutative ring, regarded as a tight symmetric
bimonoidal category with its additive and multiplicative structures, and with only
identity morphisms. Then the scalar product (8.6.2) and the matrix tensor product
(8.6.3) in MatR are the usual ones for matrices with entries in R. For example,
if R = C, then the matrix tensor product in MatC is the usual tensor product of
complex matrices. ◇
Lemma 8.6.7. For m, n, p, q ≥ 0, the matrix tensor product

MatCm,n ×MatCp,q MatCmp,nq
⊠

in (8.6.3) is a functor.

Proof. Suppose f ∶ A A′ ∈ MatCm,n and g ∶ B B′ ∈ MatCp,q are morphisms.
Then for 1 ≤ j ≤ n, 1 ≤ i ≤ m, 1 ≤ l ≤ q, and 1 ≤ k ≤ p,

( f ⊠ g)(j−1)q+l, (i−1)p+k = f ji ⊗ glk ∶ Aji ⊗ Blk A′ji ⊗ B′lk ∈ C.

Therefore,

f ⊠ g ∶ A⊠ B A′ ⊠ B′ ∈MatCmp,nq

is a well-defined morphism. That ⊠ preserves identity morphisms and composi-
tion follows from (i) Definition 8.1.1 that these notions are defined entrywise in C
and (ii) the functoriality of ⊗. □

The Lax Unity Constraint. Recall from (8.1.6) the identity matrix 1m ∈MatCm,m
with m copies of the multiplicative unit 1 along the diagonal and the additive
zero 0 in every other entry. The next lemma will be used to define the lax unity
constraint of the monoidal composition in MatC.

Lemma 8.6.8. For m, p ≥ 0, there is a canonical isomorphism

(8.6.9) 1mp 1m ⊠1p ∈MatCmp,mp

⊠0
(m,p)

≅

with each entry λ−⊗
1

, ρ− ●
1

, λ− ●
1

, or λ− ●0 if m, p > 0.

Proof. If either m or p is 0, then 1mp and 1m ⊠1p are both the empty matrix. In this
case, ⊠0

(m,p) is the identity morphism.
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For m, p > 0, 1m ⊠1p is computed as follows, with each 1i a copy of 1.

1m ⊠1p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 ⊠
⎡⎢⎢⎢⎢⎢⎣

11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1p

⎤⎥⎥⎥⎥⎥⎦
⋯ 0⊠

⎡⎢⎢⎢⎢⎢⎣

11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1p

⎤⎥⎥⎥⎥⎥⎦
⋮ ⋱ ⋮

0⊠
⎡⎢⎢⎢⎢⎢⎣

11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1p

⎤⎥⎥⎥⎥⎥⎦
⋯ 1m ⊠

⎡⎢⎢⎢⎢⎢⎣

11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1p

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 ⊗11
⋱

11 ⊗1p
⋱

1m ⊗11
⋱

1m ⊗1p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.6.10)

In other words, 1m ⊠1p is an mp ×mp matrix with
● each diagonal entry 1⊗1; and
● each off-diagonal entry

– 1⊗ 0 (= each off-diagonal entry in each of the m diagonal blocks),
– 0⊗1 (= each diagonal entry in each off-diagonal block), or
– 0⊗ 0 (= each off-diagonal entry in each off-diagonal block).

The desired isomorphism ⊠0
(m,p) in (8.6.9) has

● each diagonal entry λ−⊗
1
∶ 1 1⊗1 and

● each off-diagonal entry

0 1⊗ 0,
ρ−

●
1 0 0⊗1,

λ−
●

1 or 0 0⊗ 0.
λ−

●
0

Here λ−⊗, λ− ●, and ρ− ● are the inverses of, respectively, the left multiplicative unit
λ⊗, the left multiplicative zero λ ●, and the right multiplicative zero ρ ● in C. □

The Lax Functoriality Constraint. To define the lax functoriality constraint ⊠2

of the monoidal composition in MatC, we first compute explicitly the entries of its
(co)domain. Suppose A, B, A′, and B′ are arbitrary 1-cells in MatC as follows.

(8.6.11)
m n p

m′ n′ p′

A B

A′ B′

In other words, they are matrices in C as follows.
● (B, A) = ((Bkj), (Aji)) ∈MatCn,p ×MatCm,n

● (B′, A′) = ((B′k′ j′), (A
′
j′i′)) ∈MatCn′,p′ ×MatCm′,n′

Using the matrix product (8.1.4) and the matrix tensor product (8.6.3), there are
the following matrices in C.

● (B⊠ B′, A⊠ A′) ∈MatCnn′,pp′ ×MatCmm′,nn′

● (B⊠ B′)(A⊠ A′) ∈MatCmm′,pp′

● (BA, B′A′) ∈MatCm,p ×MatCm′,p′

● BA⊠ B′A′ ∈MatCmm′,pp′

The next lemma describes the entries in (B ⊠ B′)(A ⊠ A′), which is the domain of
⊠2
(B,B′),(A,A′). Recall the left normalized bracketing in (5.2.13).
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Lemma 8.6.12. In the setting of (8.6.11), for 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ k ≤ p, and
1 ≤ k′ ≤ p′, the following equality of objects in C holds.

[(B⊠ B′)(A⊠ A′)](k−1)p′+k′, (i−1)m′+i′

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if n or n′ is 0, and

[
n
⊕
j=1

n′

⊕
j′=1
[(Bkj ⊗ B′k′ j′)⊗ (Aji ⊗ A′j′i′)]]

lt

if n, n′ > 0.

Proof. If one of m, m′, p, or p′ is 0, then (B ⊠ B′)(A ⊠ A′) is the empty matrix, in
which case there is nothing to prove. So we assume that m, m′, p, p′ > 0.

If either n or n′ is 0, then nn′ = 0, and (B⊠ B′)(A⊠ A′) is the 0 matrix 0mm′,pp′

by definition (8.1.4). So we furthermore assume that n, n′ > 0. By the definition
(8.1.4) of the matrix product, the entry of (B ⊠ B′)(A ⊠ A′) in the statement of the
lemma is the unique entry of the matrix product of

● the [(k − 1)p′ + k′]th row in B⊠ B′ and
● the [(i − 1)m′ + i′]th column in A⊠ A′.

In other words, it is the unique entry of the following matrix product, in which the
⊗ symbol in each entry is abbreviated to concatenation.

[
n′ entries

Bk1B′k′1 ⋯ Bk1B′k′n′ ⋯
n′ entries

BknB′k′1 ⋯ BknB′k′n′ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1i A′1i′
⋮

A1i A′n′i′
⋮

Ani A′1i′
⋮

Ani A′n′i′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The unique entry of this matrix product is the left normalized sum stated in the
lemma. □

The next lemma describes the entries in BA ⊠ B′A′, which is the codomain of
⊠2
(B,B′),(A,A′).

Lemma 8.6.13. In the setting of (8.6.11), for 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ k ≤ p, and
1 ≤ k′ ≤ p′, the following equality of objects in C holds.

(BA⊠ B′A′)(k−1)p′+k′, (i−1)m′+i′

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0⊗ 0 if n = n′ = 0,

0⊗ [
n′

⊕
j′=1
(B′k′ j′ ⊗ A′j′i′)]

lt

if n = 0 and n′ > 0,

[
n
⊕
j=1
(Bkj ⊗ Aji)]

lt

⊗ 0 if n > 0 and n′ = 0, and

[
n
⊕
j=1
(Bkj ⊗ Aji)]

lt

⊗ [
n′

⊕
j′=1
(B′k′ j′ ⊗ A′j′i′)]

lt

if n, n′ > 0.

Proof. If one of m, m′, p, or p′ is 0, then BA ⊠ B′A′ is the empty matrix, in which
case there is nothing to prove. So we assume that m, m′, p, p′ > 0.
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By the definition (8.6.4) of the matrix tensor product, the entry of BA⊠ B′A′ in
the lemma is the product

(BA)ki ⊗ (B′A′)k′i′ .

By definition (8.1.4) this product is as stated in the statement of the lemma. Note
that if n = 0, then BA is the 0 matrix 0m,p. If n′ = 0, then B′A′ is the 0 matrix
0m′,p′ . □

To define the lax functoriality constraint ⊠2
(B,B′),(A,A′), we connect the objects

in Lemmas 8.6.12 and 8.6.13 using paths in the sense of Definition 3.1.14 with the
following setting.

Definition 8.6.14. In the setting of (8.6.11), suppose m, n, p, m′, n′, p′ > 0.

● Define the set of formal variables

X⊠ = {0X, 1X, aji, bkj, a′j′i′ , b′k′ j′}

with 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p, 1 ≤ i′ ≤ m′, 1 ≤ j′ ≤ n′, and 1 ≤ k′ ≤ p′.
● Define the function φ⊠ ∶ X⊠ Ob(C) as follows.

φ⊠(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X.
1 if x = 1X.
Aji if x = aji.
Bkj if x = bkj.
A′j′i′ if x = a′j′i′ .
B′k′ j′ if x = b′k′ j′ .

Paths in Gr(X⊠) take values in C via the function φ⊠. ◇
Motivation 8.6.15. It is possible to define an explicit morphism in C from the object
in Lemma 8.6.12 to the object in Lemma 8.6.13. If m, n, p, m′, n′, p′ > 0, then this
involves

● permuting B′k′ j′ and Aji in each object

(Bkj ⊗ B′k′ j′)⊗ (Aji ⊗ A′j′i′)

via α±⊗ and ξ⊗ and
● factoring via the inverses of δl and δr.

However, to prove that ⊠2 has the desired properties of the lax functoriality con-
straint, we will need to use the Coherence Theorem 3.9.1. So we need to realize
such a morphism in C using paths in Gr(X⊠).

Recall from Definition 3.1.6 that the elementary edges δl and δr do not have
formal inverses in Gr(X⊠). Therefore, in general, it is not possible to have a single
path in Gr(X⊠) whose value in C has the object in Lemma 8.6.12 as its domain
and the object in Lemma 8.6.13 as its codomain. Instead, they are connected by a
zigzag of paths in Gr(X⊠) as follows. ◇
Lemma 8.6.16. In the setting of Definition 8.6.14, the following statements hold.
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(1) There exist paths

[
n
⊕
j=1

n′

⊕
j′=1
[(bkj ⊗ b′k′ j′)⊗ (aji ⊗ a′j′i′)]]

lt

[
n
⊕
j=1
[

n′

⊕
j′=1
(bkj ⊗ aji)⊗ (b′k′ j′ ⊗ a′j′i′)]

lt
]
lt

[
n
⊕
j=1
(bkj ⊗ aji)]

lt
⊗ [

n′

⊕
j′=1
(b′k′ j′ ⊗ a′j′i′)]

lt

P

Q

in Gr(X⊠).
(2) All the paths in Gr(X⊠) with the same (co)domain as P, respectively Q, have the

same value in C.

Proof. For the existence of the path P, first we use prime edges involving α±⊗ and
ξ⊗ to permute each monomial

(8.6.17) (bkj ⊗ b′k′ j′)⊗ (aji ⊗ a′j′i′) to (bkj ⊗ aji)⊗ (b′k′ j′ ⊗ a′j′i′).

After these prime edges, we use α⊕ to move the additive brackets to match with
the additive bracketing of the codomain of P.

The path Q = (Q2, Q1) is the following concatenated path in Gr(X⊠).

[
n
⊕
j=1
[

n′

⊕
j′=1
(bkj ⊗ aji)⊗ (b′k′ j′ ⊗ a′j′i′)]

lt
]
lt

[
n
⊕
j=1
(bkj ⊗ aji)⊗ [

n′

⊕
j′=1
(b′k′ j′ ⊗ a′j′i′)]

lt
]
lt

[
n
⊕
j=1
(bkj ⊗ aji)]

lt
⊗ [

n′

⊕
j′=1
(b′k′ j′ ⊗ a′j′i′)]

lt

Q1

Q2

● Q1 is the identity if n = 1. If n > 1, then each prime edge in Q1 contains an
instance of δr.
● Q2 is the identity if n′ = 1. If n′ > 1, then each prime edge in Q2 contains

an instance of δl .
This proves the existence of the paths P and Q.

For the second assertion, observe that the domain of P is regular in the sense of
Definition 3.1.25. By Lemma 3.1.29, the domain of Q is also regular. Since C is as-
sumed to be a tight symmetric bimonoidal category, the Coherence Theorem 3.9.1
implies the uniqueness of the value of the path P, respectively Q, in C provided
that it has the stated (co)domain. □

Remark 8.6.18. One of the reasons that we need C to be a tight symmetric bimon-
oidal category is the permutation in (8.6.17). It uses the multiplicative symmetric
monoidal structure (C,⊗, α⊗, ξ⊗). ◇

We are now ready to define the monoidal composition in MatC in the sense of
Definition 6.4.1.
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Definition 8.6.19. For a tight symmetric bimonoidal category C, define the data of
a lax functor

MatC ×MatC MatC
(⊠,⊠2,⊠0)

as follows.
Objects: For each pair of objects (m, p) ∈MatC ×MatC, define the object

⊠(m, p) = m⊠ p = mp ∈MatC.

The Local Functors: For m, n, p, q ≥ 0, the local functor

(MatC ×MatC)((m, p), (n, q)) =MatCm,n ×MatCp,q MatCmp,nq
⊠

is defined as the matrix tensor product (8.6.3) for matrices in C and for
their morphisms.

The Lax Unity Constraint: For each pair of objects (m, p) ∈ MatC ×MatC, define
the component 2-cell

1m⊠p = 1mp 1m ⊠1p = ⊠(1(m,p)) ∈MatCmp,mp

⊠0
(m,p)

as the canonical isomorphism in (8.6.9).
The Lax Functoriality Constraint: In the setting of (8.6.11), the component 2-cell

(B⊠ B′)(A⊠ A′) BA⊠ B′A′ ∈MatCmm′,pp′
⊠2
(B,B′),(A,A′)

is the identity morphism of the empty matrix if m, m′, p, or p′ is 0. If
m, m′, p, p′ > 0, then its ((k − 1)p′ + k′, (i − 1)m′ + i′)-entry is

(8.6.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ− ●0 if n = n′ = 0,
λ− ●(B′A′)k′ i′

if n = 0 and n′ > 0,

ρ− ●(BA)ki
if n > 0 and n′ = 0, and

(φ⊠Q)−1(φ⊠P) if n, n′ > 0.

In (8.6.20), the following statements hold.
● 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ k ≤ p, and 1 ≤ k′ ≤ p′.
● λ− ● and ρ− ● are the inverses of, respectively, λ ● and ρ ● in C.
● P and Q are the paths in Lemma 8.6.16, with φ⊠P and φ⊠Q their

values in C as in Definitions 3.1.14 and 8.6.14.
This finishes the definition of the triple (⊠,⊠2,⊠0). ◇

First we check the naturality of ⊠2.

Lemma 8.6.21. In Definition 8.6.19, ⊠2 is a natural isomorphism.

Proof. Each entry of ⊠2
(B,B′),(A,A′) is a well-defined isomorphism in C by Lem-

mas 8.6.12, 8.6.13, and 8.6.16. If m, m′, p, or p′ is 0, then MatCmm′,pp′ is the terminal
category. The naturality of ⊠2 holds in this case. So we assume that m, m′, p, p′ > 0.

The 2-cells in MatC are entrywise morphisms in C.

● If either n or n′ is 0, then the naturality of ⊠2 follows from the naturality
of λ ● and ρ ● in C.
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● If n, n′ > 0, then by the proof of Lemma 8.6.16, each entry of ⊠2 is a com-
posite of isomorphisms, each being the iterated sum and product of iden-
tity morphisms and one component of α⊕, α±⊗, ξ⊗, δ−l , or δ−r. The nat-
urality of ⊠2 follows from the naturality of these structure morphisms in
C.

Moreover, ⊠2 is a natural isomorphism because each of its components is an iso-
morphism or a composite of isomorphisms. □

8.7. The Pseudofunctoriality of the Monoidal Composition

For a tight symmetric bimonoidal category C, we are in the process of con-
structing a monoidal bicategory structure, in the sense of Definition 6.4.1, on the
matrix bicategory MatC. In Section 8.6, we defined the data (⊠,⊠2,⊠0) that are sup-
posed to constitute the monoidal composition in MatC. In this section, we check
that the triple (⊠,⊠2,⊠0) is indeed a pseudofunctor in the sense of Definition 6.2.1.
We check

● the lax associativity axiom (6.2.2) in Lemmas 8.7.3, 8.7.4, 8.7.13, and 8.7.23,
and
● the lax unity axiom (6.2.3) in Lemma 8.7.27.

The Lax Associativity Axiom. To check the lax associativity axiom (6.2.2) for
the triple (⊠,⊠2,⊠0), consider arbitrary composable 1-cells in MatC as follows.

(8.7.1)
m n p q

m′ n′ p′ q′

A B C

A′ B′ C′

Here A = (Aji), A′ = (A′j′i′), B = (Bkj), and B′ = (B′k′ j′) are as in (8.6.11), and

(C, C′) = ((Clk), (C′l′k′)) ∈MatCp,q ×MatCp′,q′ .

The lax associativity axiom (6.2.2) for these 1-cells is the commutativity of the fol-
lowing diagram in MatCmm′,qq′ , with a the associator in Lemma 8.3.1.

(8.7.2)

[(C ⊠C′)(B⊠ B′)](A⊠ A′) (C ⊠C′)[(B⊠ B′)(A⊠ A′)]

(CB⊠C′B′)(A⊠ A′) (C ⊠C′)(BA⊠ B′A′)

(CB)A⊠ (C′B′)A′ C(BA)⊠C′(B′A′)

⊠2★1

a

1★⊠2

⊠2 ⊠2

a⊠a

Since morphisms in MatCmm′,qq′ are entrywise morphisms in C, it suffices to
prove the commutativity of (8.7.2) in a typical entry. We use (8.6.20) to interpret
the entries of ⊠2. In some diagrams, some subscripts are omitted to save space.
When we restrict to a typical entry, the indices are

1 ≤ i ≤ m, 1 ≤ l ≤ q, 1 ≤ i′ ≤ m′, and 1 ≤ l′ ≤ q′.

To clarify the many cases, we split the proof of the commutativity of (8.7.2) into
several lemmas.
Lemma 8.7.3. In the setting of (8.7.1), suppose that either
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(1) at least one of m, m′, q, and q′ is 0, or
(2) m, m′, q, q′ > 0, and at most one of n, n′, p, and p′ is > 0.

Then the diagram (8.7.2) is commutative.

Proof. If at least one of m, m′, q, and q′ is 0, then MatCmm′,qq′ is the terminal category.
The diagram (8.7.2) is commutative in this case.

For the other case, suppose that m, m′, q, q′ > 0 and that at most one of n, n′, p,
and p′ is > 0. There are 5 subcases.

(1) If n = n′ = p = p′ = 0, then (8.7.2) is the following diagram.

0mm′,qq′ 0mm′,qq′

0mm′,qq′ 0mm′,qq′

0m,q ⊠ 0m′,q′ 0m,q ⊠ 0m′,q′

1

1

1

⊠2 ⊠2

1⊠1

This is commutative because 1⊠ 1 = 1 by Lemma 8.6.7.
(2) If n > 0 and n′ = p = p′ = 0, then (8.7.2) is the left diagram below, with ζℓ

the natural isomorphism in (8.1.11).

0mm′,qq′ 0mm′,qq′

0mm′,qq′ 0mm′,qq′

0n,q A⊠ 0m′,q′ 0m,q ⊠ 0m′,q′

1

1

1

⊠2 ⊠2

ζℓA⊠1

0 0

0 0

(0n,q A)li ⊗ 0 0⊗ 0

1

1

1

ρ−
●

(0n,q A)li λ−
●

0 = ρ−
●

0

(ζℓA)li⊗1

A typical entry of the left diagram above is the right diagram in C. The
right diagram is commutative by
● the equality λ ●0 = ρ ●0, which is the axiom (2.1.14) in C, and
● the naturality of ρ ●.

(3) If n′ > 0 and n = p = p′ = 0, then (8.7.2) is the left diagram below.

0mm′,qq′ 0mm′,qq′

0mm′,qq′ 0mm′,qq′

0m,q ⊠ 0n′,q′A′ 0m,q ⊠ 0m′,q′

1

1

1

⊠2 ⊠2

1⊠ζℓA′

0 0

0 0

0⊗ (0n′,q′A′)l′i′ 0⊗ 0

1

1

1

λ−
●

(0n′ ,q′ A′)l′ i′ λ−
●

0

1⊗(ζℓA′)l′ i′

A typical entry of the left diagram above is the right diagram in C, which
is commutative by the naturality of λ ●.
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(4) If p > 0 and n = n′ = p′ = 0, then (8.7.2) is the left diagram below, with ζr

the natural isomorphism in (8.1.19).

0mm′,qq′ 0mm′,qq′

0mm′,qq′ 0mm′,qq′

0m,q ⊠ 0m′,q′ C0m,p ⊠ 0m′,q′

1

1

1

⊠2 ⊠2

(ζr
C)
−1⊠1

0 0

0 0

0⊗ 0 (C0m,p)li ⊗ 0

1

1

1

λ−
●

0 = ρ−
●

0
ρ−

●

(C0m,p)li
(ζr

C)
−1
li ⊗1

As in case (2), a typical entry of the left diagram above is the right dia-
gram in C. It is commutative by the equality λ ●0 = ρ ●0 in (2.1.14) and the
naturality of ρ ●.

(5) If p′ > 0 and n = n′ = p = 0, then (8.7.2) is the left diagram below.

0mm′,qq′ 0mm′,qq′

0mm′,qq′ 0mm′,qq′

0m,q ⊠ 0m′,q′ 0m,q ⊠C′0m′,p′

1

1

1

⊠2 ⊠2

1⊠(ζr
C′)
−1

0 0

0 0

0⊗ 0 0⊗ (C′0m′,p′)l′i′

1

1

1

λ−
●

0
λ−

●

(C′0m′ ,p′ )l′ i′

1⊗(ζr
C′)
−1
l′ i′

A typical entry of the left diagram above is the right diagram in C, which
is commutative by the naturality of λ ●.

This finishes the proofs of all the subcases. □

Lemma 8.7.4. In the setting of (8.7.1), suppose that

● m, m′, q, q′ > 0 and
● precisely two of n, n′, p, and p′ are 0.

Then the diagram (8.7.2) is commutative.

Proof. There are six cases.

(1) If n, n′ > 0 and p = p′ = 0, then (8.7.2) is the diagram below.

(8.7.5)

0nn′,qq′(A⊠ A′) 0mm′,qq′

(0n,q ⊠ 0n′,q′)(A⊠ A′) 0mm′,qq′

0n,q A⊠ 0n′,q′A′ 0m,q ⊠ 0m′,q′

⊠2★1

ζℓA⊠A′

1

⊠2 ⊠2

ζℓA⊠ζℓA′
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Since ⊠21 = ⊠2, the ((l − 1)q′ + l′, (i − 1)m′ + i′)-entry of (8.7.5) is the dia-
gram in C below.

(8.7.6)

[
n
⊕
j=1

n′

⊕
j′=1

0⊗ (Aji ⊗ A′j′i′)]
lt

0

[
n
⊕
j=1

n′

⊕
j′=1
(0⊗ 0)⊗ (Aji ⊗ A′j′i′)]

lt

[
n
⊕
j=1
(

n′

⊕
j′=1
(0⊗ Aji)⊗ (0⊗ A′j′i′))

lt
]
lt

[
n
⊕
j=1
(0⊗ Aji)]

lt
⊗ [

n′

⊕
j′=1
(0⊗ A′j′i′)]

lt
0⊗ 0

[⊕j ⊕j′ (λ−
●

0 ⊗ 1)]
lt

(α⊕, α±⊗, ξ⊗)

(δ−r, δ−l)

(λ ●, λ⊕)

(λ ●, λ⊕)

λ−
●

0

Consider the diagram (8.7.6).
● By (8.1.13), each entry of each component of ζℓ is a composite of

morphisms, each being a sum of identity morphisms and one com-
ponent of λ ● or λ⊕. The notation (λ ●, λ⊕) denotes a composite of
morphisms, each being an iterated sum and product of identity mor-
phisms and at most one component of λ ● or λ⊕.
● The morphisms (α⊕, α±⊗, ξ⊗) and (δ−r, δ−l) are interpreted similarly,

with δ−r and δ−l the inverses of δr and δl , respectively. Each of them
is a composite of morphisms, each being an iterated sum and prod-
uct of identity morphisms and at most one component of one of the
indicated structure morphisms in C.
● In interpreting the lower left ⊠2 in (8.7.5), we use the paths P and Q

in the proof of Lemma 8.6.16.
To prove the commutativity of (8.7.6), we realize each morphism or

its inverse as the value in C of a path in Gr(X) using the set of formal
variables

X = {0X, 1X, aji, a′j′i′}1≤j≤n, 1≤j′≤n′

and the function φ ∶ X Ob(C) defined by

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X,
1 if x = 1X,
Aji if x = aji, and
A′j′i′ if x = a′j′i′ .
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By Notation 3.3.10, Example 8.1.14, and Lemma 8.6.16, there is a diagram
in Gr(X) as follows.

(8.7.7)

[
n
⊕
j=1

n′

⊕
j′=1

0X ⊗ (aji ⊗ a′j′i′)]
lt

0X

[
n
⊕
j=1

n′

⊕
j′=1
(0X ⊗ 0X)⊗ (aji ⊗ a′j′i′)]

lt

[
n
⊕
j=1
(

n′

⊕
j′=1
(0X ⊗ aji)⊗ (0X ⊗ a′j′i′))

lt
]
lt

[
n
⊕
j=1
(0X ⊗ aji)]

lt
⊗ [

n′

⊕
j′=1
(0X ⊗ a′j′i′)]

lt
0X ⊗ 0X

L3

P

Q

L1

L2

λ
●

0X

Consider the diagram (8.7.7).
● The paths P and Q are those in Lemma 8.6.16, with each bkj and each

b′k′ j′ replaced by 0X.
– Each prime edge in P is an identity or has an instance of α⊕,

α±⊗, or ξ⊗. Its value in C is the morphism (α⊕, α±⊗, ξ⊗) in
(8.7.6).

– Each prime edge in Q is an identity or has an instance of δl or
δr. Its value in C is the inverse of the morphism (δ−r, δ−l) in
(8.7.6).

● Each prime edge in L1 is an identity or has an instance of λ ● or λ⊕.
Its value in C is the bottom horizontal morphism in (8.7.6).
● Each prime edge in L2 is an identity or has an instance of λ− ● or λ−⊕.

Its value in C is the inverse of the top horizontal morphism in (8.7.6).
● Each prime edge in L3 is an identity or has an instance of λ− ●. Its

value in C is the top left vertical morphism in (8.7.6).
Since the upper right vertex in (8.7.7) is 0X, by Lemma 3.1.29, the

lower left vertex has the same support as 0X. By Proposition 3.5.33, the
two paths

Q and (P, L3, L2, λ
●
0X , L1)

have the same value in C. Since all the structure morphisms involved are
invertible (because C is assumed to be tight), this implies that (8.7.6) is
commutative.
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(2) If p, p′ > 0 and n = n′ = 0, then (8.7.2) is the diagram below, with ζ−r the
inverse of ζr in (8.1.19).

(8.7.8)

0mm′,qq′ (C ⊠C′)0mm′,pp′

0mm′,qq′ (C ⊠C′)(0m,p ⊠ 0m′,p′)

0m,q ⊠ 0m′,q′ C0m,p ⊠C′0m′,p′

1

ζ−r
C⊠C′

1★⊠2

⊠2 ⊠2

ζ−r
C ⊠ζ−r

C′

Composing the upper left 1 away and using the notation in (8.7.6), the
((l − 1)q′ + l′, (i − 1)m′ + i′)-entry of (8.7.8) is the diagram in C below.

(8.7.9)

0 [
p

⊕
k=1

p′

⊕
k′=1
(Clk ⊗C′l′k′)⊗ 0]

lt

[
p

⊕
k=1

p′

⊕
k′=1
(Clk ⊗C′l′k′)⊗ (0⊗ 0)]

lt

[
p

⊕
k=1
(

p′

⊕
k′=1
(Clk ⊗ 0)⊗ (C′l′k′ ⊗ 0))

lt
]
lt

0⊗ 0 [
p

⊕
k=1
(Clk ⊗ 0)]

lt
⊗ [

p′

⊕
k′=1
(C′l′k′ ⊗ 0)]

lt

λ−
●

0

(λ−⊕, ρ−
●)

(λ−⊕, ρ−
●)

[⊕k ⊕k′ (1⊗ λ−
●

0 )]lt

(α⊕, α±⊗, ξ⊗)

(δ−r, δ−l)

To prove the commutativity of (8.7.9), we realize each morphism or
its inverse as the value in C of a path in Gr(X) using the set of formal
variables

X = {0X, 1X, clk, c′l′k′}1≤k≤p, 1≤k′≤p′

and the function φ ∶ X Ob(C) defined by

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X,
1 if x = 1X,
Clk if x = clk, and
C′l′k′ if x = c′l′k′ .

Similar to (8.7.7), by Notation 3.3.10, Example 8.1.22, and Lemma 8.6.16,
there is a diagram in Gr(X) as follows in which each path has value in C
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the corresponding edge in (8.7.9) or its inverse.

(8.7.10)

0X [
p

⊕
k=1

p′

⊕
k′=1
(clk ⊗ c′l′k′)⊗ 0X]

lt

[
p

⊕
k=1

p′

⊕
k′=1
(clk ⊗ c′l′k′)⊗ (0

X ⊗ 0X)]
lt

[
p

⊕
k=1
(

p′

⊕
k′=1
(clk ⊗ 0X)⊗ (c′l′k′ ⊗ 0X))

lt
]
lt

0X ⊗ 0X [
p

⊕
k=1
(clk ⊗ 0X)]

lt
⊗ [

p′

⊕
k′=1
(c′l′k′ ⊗ 0X)]

lt

λ
●

0X

L1

L2

L3

P

Q

Consider the diagram (8.7.10).
● The paths P and Q are those in Lemma 8.6.16 up to a change of sym-

bols.
– The value of P in C is the morphism (α⊕, α±⊗, ξ⊗) in (8.7.9).
– The value of Q in C is the inverse of the morphism (δ−r, δ−l) in

(8.7.9).
● Each prime edge in L1 is an identity or has an instance of λ⊕ or ρ ●. Its

value in C is the inverse of the bottom horizontal morphism in (8.7.9).
● Each prime edge in L2 is an identity or has an instance of λ−⊕ or ρ− ●.

Its value in C is the top horizontal morphism in (8.7.9).
● Each prime edge in L3 is an identity or has an instance of λ− ●. Its

value in C is the top right vertical morphism in (8.7.9).
Since the upper left vertex in (8.7.10) is 0X, by Lemma 3.1.29, the

lower right vertex has the same support as 0X. By Proposition 3.5.33,
the two paths

Q and (P, L3, L2, λ
●
0X , L1)

have the same value in C. This implies that (8.7.9) is commutative.
(3) If n, p′ > 0 and n′ = p = 0, then (8.7.2) is the diagram below.

(8.7.11)

0mm′,qq′ 0mm′,qq′

0mm′,qq′ 0mm′,qq′

0n,q A⊠ 0m′,q′ 0m,q ⊠C′0m′,p′

1

1

1

⊠2 ⊠2

ζℓA⊠ζ−r
C′



I.348 8. SYMMETRIC MONOIDAL BICATEGORIFICATION

First composing away the three 1’s, the ((l − 1)q′ + l′, (i − 1)m′ + i′)-entry
of (8.7.11) becomes the outer diagram in C below.

0

0⊗ 0

[
n
⊕
j=1
(0⊗ Aji)]

lt
⊗ 0 0⊗ [

p′

⊕
k′=1
(C′l′k′ ⊗ 0)]

lt

ρ−
●

(ζℓA)li ⊗ (ζ
−r
C′ )l′i′

λ−
●λ−

●
0ρ−

●
0 =

(ζℓA)li ⊗ 1 1⊗ (ζ−r
C′ )l′i′

● The equality λ− ●0 = ρ− ●0 follows from the axiom (2.1.14).
● The bottom subdiagram is commutative by the functoriality of ⊗.
● The left and the right subdiagrams are commutative by the natural-

ity of ρ ● and λ ●, respectively.
(4) If n′, p > 0 and n = p′ = 0, then (8.7.2) is the diagram below.

(8.7.12)

0mm′,qq′ 0mm′,qq′

0mm′,qq′ 0mm′,qq′

0m,q ⊠ 0n′,q′A′ C0m,p ⊠ 0m′,q′

1

1

1

⊠2 ⊠2

ζ−r
C ⊠ζℓA′

First composing away the three 1’s, the ((l − 1)q′ + l′, (i − 1)m′ + i′)-entry
of (8.7.12) becomes the outer diagram in C below.

0

0⊗ 0

0⊗ [
n′

⊕
j′=1
(0⊗ A′j′i′)]

lt
[

p

⊕
k=1
(Clk ⊗ 0)]

lt
⊗ 0

λ−
●

(ζ−r
C )li ⊗ (ζ

ℓ
A′)l′i′

ρ−
●λ−

●
0 = ρ−

●
0

1⊗ (ζℓA′)l′i′ (ζ−r
C )li ⊗ 1

As in case (3), this diagram is commutative by the functoriality of ⊗ and
the naturality of λ ● and ρ ●.

(5) If n, p > 0 and n′ = p′ = 0, then (8.7.2) is the left diagram below.

0mm′,qq′ 0mm′,qq′

0mm′,qq′ 0mm′,qq′

(CB)A⊠ 0m′,q′ C(BA)⊠ 0m′,q′

1

1

1

⊠2 ⊠2

a⊠1

0

[(CB)A]li ⊗ 0 [C(BA)]li ⊗ 0

ρ−
●

ρ−
●

a⊗1
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First composing the three 1’s away, the ((l − 1)q′ + l′, (i − 1)m′ + i′)-entry
of the left diagram above is the right diagram in C. It is commutative by
the naturality of ρ ●.

(6) If n′, p′ > 0 and n = p = 0, then (8.7.2) is the left diagram below.

0mm′,qq′ 0mm′,qq′

0mm′,qq′ 0mm′,qq′

0m,q ⊠ (C′B′)A′ 0m,q ⊠C′(B′A′)

1

1

1

⊠2 ⊠2

1⊠a

0

0⊗ [(C′B′)A′]l′i′ 0⊗ [C′(B′A′)]l′i′

λ−
●

λ−
●

1⊗a

First composing the three 1’s away, the ((l − 1)q′ + l′, (i − 1)m′ + i′)-entry
of the left diagram above is the right diagram in C. It is commutative by
the naturality of λ ●.

This finishes the proofs of all six cases. □

Lemma 8.7.13. In the setting of (8.7.1), suppose that

● m, m′, q, q′ > 0 and
● precisely one of n, n′, p, and p′ is 0.

Then the diagram (8.7.2) is commutative.

Proof. There are four cases.

(1) If n = 0 and n′, p, p′ > 0, then (8.7.2) is the following diagram.

(8.7.14)

0mm′,qq′ (C ⊠C′)0mm′,pp′

0mm′,qq′ (C ⊠C′)(0m,p ⊠ B′A′)

0m,q ⊠ (C′B′)A′ C0m,p ⊠C′(B′A′)

1

ζ−r
C⊠C′

1★⊠2

⊠2 ⊠2

ζ−r
C ⊠aC′ ,B′ ,A′

Composing the top left 1 away, the ((l − 1)q′ + l′, (i − 1)m′ + i′)-entry of
(8.7.14) is the diagram in C below, with the notation in (8.7.6) and with ⊗
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abbreviated to concatenation.
(8.7.15)

0

0[
n′

⊕
j′=1
(

p′

⊕
k′=1

C′l′k′B
′
k′ j′)ltA′j′i′]

lt

[
p

⊕
k=1

Clk0]
lt

[
p′

⊕
k′=1
(

n′

⊕
j′=1

C′l′k′(B
′
k′ j′A

′
j′i′))

lt
]
lt

[
p

⊕
k=1

p′

⊕
k′=1
(ClkC′l′k′)0]

lt

[
p

⊕
k=1

p′

⊕
k′=1
(ClkC′l′k′){0(

n′

⊕
j′=1

B′k′ j′A
′
j′i′)

lt
}]

lt

[
p

⊕
k=1
[

p′

⊕
k′=1
(Clk0){C′l′k′(

n′

⊕
j′=1

B′k′ j′A
′
j′i′)

lt
}]

lt

]
lt

[
p

⊕
k=1

Clk0]
lt

[
p′

⊕
k′=1

C′l′k′(
n′

⊕
j′=1

B′k′ j′A
′
j′i′)

lt
]
lt

λ−
●

(λ−⊕, ρ−
●)(a3a2a1)

1a4

(λ−⊕, ρ−
●)

(⊕k ⊕k′ 1λ−
●)lt

(α⊕, α±⊗, ξ⊗)

(δ−r, δ−l)

In the diagram (8.7.15), the factorization

(aC′,B′,A′)l′i′ = a4a3a2a1

is from (8.3.5) up to a change of symbols.
● a1 is built from identity morphisms and δr.
● a2 is built from identity morphisms and α⊗.
● a3 is built from identity morphisms, α±⊕, and ξ⊕.
● a4 is built from identity morphisms and δ−l .

To prove that (8.7.15) is commutative, we realize each morphism or
its inverse as the value in C of a path in Gr(X) using the set of formal
variables

X = {0X, 1X, clk, a′j′i′ , b′k′ j′ , c′l′k′}1≤k≤p, 1≤j′≤n′, 1≤k′≤p′

and the function φ ∶ X Ob(C) defined as follows.

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X.
1 if x = 1X.
Clk if x = clk.
A′j′i′ if x = a′j′i′ .
B′k′ j′ if x = b′k′ j′ .

C′l′k′ if x = c′l′k′ .

By Notation 3.3.10 and Example 8.3.9, there is a diagram in Gr(X) as fol-
lows, in which the value in C of each path is the corresponding edge in
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(8.7.15) or its inverse. We continue to abbreviate ⊗ to concatenation.
(8.7.16)

0X

0X[
n′

⊕
j′=1
(

p′

⊕
k′=1

c′l′k′b
′
k′ j′)lta

′
j′i′]

lt

[
p

⊕
k=1

clk0X]
lt

[
p′

⊕
k′=1
(

n′

⊕
j′=1

c′l′k′(b
′
k′ j′a

′
j′i′))

lt
]
lt

[
p

⊕
k=1

p′

⊕
k′=1
(clkc′l′k′)0

X]
lt

[
p

⊕
k=1

p′

⊕
k′=1
(clkc′l′k′){0

X(
n′

⊕
j′=1

b′k′ j′a
′
j′i′)

lt
}]

lt

[
p

⊕
k=1
[

p′

⊕
k′=1
(clk0X){c′l′k′(

n′

⊕
j′=1

b′k′ j′a
′
j′i′)

lt
}]

lt

]
lt

[
p

⊕
k=1

clk0X]
lt

[
p′

⊕
k′=1

c′l′k′(
n′

⊕
j′=1

b′k′ j′a
′
j′i′)

lt
]
lt

λ−
●

L3

L

L2

L1

P−1

Q

Consider the diagram (8.7.16).
● Each prime edge in L is an identity or contains δl .
● P and Q are the paths in Lemma 8.6.16 up to a change of symbols,

and P−1 is the formal inverse of P in the sense of Definition 3.1.10.
– Each prime edge in Q is an identity or contains δr or δl .
– Each prime edge in P−1 is an identity or contains α−⊕, α±⊗, or

ξ−⊗.
● Each prime edge in L1 is an identity or contains λ ●.
● Each prime edge in L2 is an identity or contains λ⊕ or ρ ●.
● Each prime edge in L3 is an identity or contains α±⊕, ξ⊕, λ−⊕, α⊗,

ρ− ●, or δr.
Since the upper left vertex in (8.7.16) is 0X, by Lemma 3.1.29, the

lower right vertex has the same support as 0X. By Proposition 3.5.33,
the two paths

L and (L3, λ−
●, L2, L1, P−1, Q)

have the same value in C. This implies that (8.7.15) is commutative.
(2) If n′ = 0 and n, p, p′ > 0, then (8.7.2) is the following diagram.

(8.7.17)

0mm′,qq′ (C ⊠C′)0mm′,pp′

0mm′,qq′ (C ⊠C′)(BA⊠ 0m′,p′)

(CB)A⊠ 0m′,q′ C(BA)⊠C′0m′,p′

1

ζ−r
C⊠C′

1★⊠2

⊠2 ⊠2

aC,B,A⊠ζ−r
C′

With an argument almost identical to that of case (1), each entry of (8.7.17)
is a diagram in C similar to (8.7.15). Its commutativity is proved by re-
alizing each edge or its inverse as the value in C of a path in Gr(X),
similar to (8.7.16), for some set X of formal variables and function φ ∶
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X Ob(C). Since one of its vertices is 0X, this diagram is commutative
in C by Lemma 3.1.29 and Proposition 3.5.33.

(3) If p = 0 and n, n′, p′ > 0, then (8.7.2) is the following diagram.

(8.7.18)

0nn′,qq′(A⊠ A′) 0mm′,qq′

(0n,q ⊠C′B′)(A⊠ A′) 0mm′,qq′

(0n,q A)⊠ (C′B′)A′ 0m,q ⊠C′(B′A′)

⊠2★1

ζℓA⊠A′

1

⊠2 ⊠2

ζℓA⊠aC′ ,B′ ,A′

Composing the top right 1 away, the ((l − 1)q′ + l′, (i − 1)m′ + i′)-entry of
(8.7.18) is the diagram in C below, with the notation in (8.7.6) and with ⊗
abbreviated to concatenation.

(8.7.19)

[
n
⊕
j=1

n′

⊕
j′=1

0(Aji A
′
j′i′)]

lt

[
n
⊕
j=1

n′

⊕
j′=1
[0(

p′

⊕
k′=1

C′l′k′B
′
k′ j′)lt](Aji A

′
j′i′)]

lt

[
n
⊕
j=1
[

n′

⊕
j′=1
(0Aji){(

p′

⊕
k′=1

C′l′k′B
′
k′ j′)ltA′j′i′}]

lt

]
lt

[
n
⊕
j=1

0Aji]
lt

[
n′

⊕
j′=1
(

p′

⊕
k′=1

C′l′k′B
′
k′ j′)ltA′j′i′]

lt

0

0[
p′

⊕
k′=1

C′l′k′(
n′

⊕
j′=1

B′k′ j′A
′
j′i′)

lt
]
lt

0[
p′

⊕
k′=1
(

n′

⊕
j′=1

C′l′k′(B
′
k′ j′A

′
j′i′))

lt
]
lt

(⊕j ⊕j′ λ−
●
1)lt

(α⊕, α±⊗, ξ⊗)

(δ−r, δ−l)
(λ⊕, λ

●)(a3a2a1)

1a4

(λ⊕, λ
●)

λ−
●

As in (8.7.15), the factorization

(aC′,B′,A′)l′i′ = a4a3a2a1

in (8.7.19) is from (8.3.5) up to a change of symbols.
To prove that (8.7.19) is commutative, we realize each morphism or

its inverse as the value in C of a path in Gr(X) using the set of formal
variables

X = {0X, 1X, aji, a′j′i′ , b′k′ j′ , c′l′k′}1≤j≤n, 1≤j′≤n′, 1≤k′≤p′

and the function φ ∶ X Ob(C) defined as follows.

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X.
1 if x = 1X.
Aji if x = aji.
A′j′i′ if x = a′j′i′ .
B′k′ j′ if x = b′k′ j′ .

C′l′k′ if x = c′l′k′ .
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By Notation 3.3.10 and Example 8.3.9, there is a diagram in Gr(X) as fol-
lows, in which the value in C of each path is the corresponding edge in
(8.7.19) or its inverse. We continue to abbreviate ⊗ to concatenation.

(8.7.20)

[
n
⊕
j=1

n′

⊕
j′=1

0X(ajia
′
j′i′)]

lt

[
n
⊕
j=1

n′

⊕
j′=1
[0X(

p′

⊕
k′=1

c′l′k′b
′
k′ j′)lt](ajia

′
j′i′)]

lt

[
n
⊕
j=1
[

n′

⊕
j′=1
(0Xaji){(

p′

⊕
k′=1

c′l′k′b
′
k′ j′)lta

′
j′i′}]

lt

]
lt

[
n
⊕
j=1

0Xaji]
lt

[
n′

⊕
j′=1
(

p′

⊕
k′=1

c′l′k′b
′
k′ j′)lta

′
j′i′]

lt

0X

0X[
p′

⊕
k′=1

c′l′k′(
n′

⊕
j′=1

b′k′ j′a
′
j′i′)

lt
]
lt

0X[
p′

⊕
k′=1
(

n′

⊕
j′=1

c′l′k′(b
′
k′ j′a

′
j′i′))

lt
]
lt

L1

P−1

Q
L

L3

L2

λ−
●

Consider the diagram (8.7.20).
● Each prime edge in L is an identity or contains α±⊕, ξ⊕, λ⊕, α⊗, λ ●,

or δr.
● The paths Q, P−1, and L1 are interpreted as in (8.7.16).
● Each prime edge in L2 is an identity or contains λ⊕ or λ ●.
● Each prime edge in L3 is an identity or contains δl .

Since the upper right vertex in (8.7.20) is 0X, by Lemma 3.1.29, the
lower left vertex has the same support as 0X. By Proposition 3.5.33, the
two paths

L and (L3, λ−
●, L2, L1, P−1, Q)

have the same value in C. This implies that (8.7.19) is commutative.
(4) If p′ = 0 and n, n′, p > 0, then (8.7.2) is the following diagram.

(8.7.21)

0nn′,qq′(A⊠ A′) 0mm′,qq′

(CB⊠ 0n′,q′)(A⊠ A′) 0mm′,qq′

(CB)A⊠ (0n′,q′A′) C(BA)⊠ 0m′,q′

⊠2★1

ζℓA⊠A′

1

⊠2 ⊠2

aC,B,A⊠ζℓA′

With an argument almost identical to that of case (3), each entry of (8.7.21)
is a diagram in C similar to (8.7.19). Its commutativity is proved by re-
alizing each edge or its inverse as the value in C of a path in Gr(X),
similar to (8.7.20), for some set X of formal variables and function φ ∶
X Ob(C). Since one of its vertices is 0X, this diagram is commutative
in C by Lemma 3.1.29 and Proposition 3.5.33.

This finishes the proofs of all four cases. □
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The remaining case of the lax associativity axiom (6.2.2) for the triple (⊠,⊠2,⊠)
is the most involved. We first compute the entries of the six objects in (8.7.2).

Lemma 8.7.22. In the setting of (8.7.1), suppose that m, n, p, q, m′, n′, p′, q′ > 0. Then
the ((l − 1)q′ + l′, (i − 1)m′ + i′)-entries of the six objects in (8.7.2) are as follows.

(1)

[[(C ⊠C′)(B⊠ B′)](A⊠ A′)]
(l−1)q′+l′,(i−1)m′+i′

= [
n
⊕
j=1

n′

⊕
j′=1
[

p

⊕
k=1

p′

⊕
k′=1
(Clk ⊗C′l′k′)⊗ (Bkj ⊗ B′k′ j′)]

lt

⊗ (Aji ⊗ A′j′i′)]
lt

(2)

[(CB⊠C′B′)(A⊠ A′)](l−1)q′+l′,(i−1)m′+i′

= [
n
⊕
j=1

n′

⊕
j′=1
{(

p

⊕
k=1

Clk ⊗ Bkj)
lt
⊗ (

p′

⊕
k′=1

C′l′k′ ⊗ B′k′ j′)lt}⊗ (Aji ⊗ A′j′i′)]
lt

(3)

[(CB)A⊠ (C′B′)A′](l−1)q′+l′,(i−1)m′+i′

= [
n
⊕
j=1
(

p

⊕
k=1

Clk ⊗ Bkj)
lt
⊗ Aji]

lt

⊗ [
n′

⊕
j′=1
(

p′

⊕
k′=1

C′l′k′ ⊗ B′k′ j′)lt ⊗ A′j′i′]
lt

(4)

[(C ⊠C′)[(B⊠ B′)(A⊠ A′)]]
(l−1)q′+l′,(i−1)m′+i′

= [
p

⊕
k=1

p′

⊕
k′=1
(Clk ⊗C′l′k′)⊗ [

n
⊕
j=1

n′

⊕
j′=1
(Bkj ⊗ B′k′ j′)⊗ (Aji ⊗ A′j′i′)]

lt

]
lt

(5)

[(C ⊠C′)(BA⊠ B′A′)](l−1)q′+l′,(i−1)m′+i′

= [
p

⊕
k=1

p′

⊕
k′=1
(Clk ⊗C′l′k′)⊗{(

n
⊕
j=1

Bkj ⊗ Aji)
lt
⊗ (

n′

⊕
j′=1

B′k′ j′ ⊗ A′j′i′)
lt
}]

lt

(6)

[C(BA)⊠C′(B′A′)](l−1)q′+l′,(i−1)m′+i′

= [
p

⊕
k=1

Clk ⊗ (
n
⊕
j=1

Bkj ⊗ Aji)
lt
]
lt

⊗ [
p′

⊕
k′=1

C′l′k′ ⊗ (
n′

⊕
j′=1

B′k′ j′ ⊗ A′j′i′)
lt
]
lt

Proof. Each of these equalities is proved by applying the definitions of the matrix
product (8.1.4) and of the matrix tensor product (8.6.4). For example, the first
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equality is proved as follows.

[[(C ⊠C′)(B⊠ B′)](A⊠ A′)]
(l−1)q′+l′,(i−1)m′+i′

= [
n
⊕
j=1

n′

⊕
j′=1
[(C ⊠C′)(B⊠ B′)](l−1)q′+l′,(j−1)n′+j′ ⊗ (A⊠ A′)(j−1)n′+j′,(i−1)m′+i′]

lt

= [
n
⊕
j=1

n′

⊕
j′=1
[

p

⊕
k=1

p′

⊕
k′=1
(C ⊠C′)(l−1)q′+l′,(k−1)p′+k′ ⊗ (B⊠ B′)(k−1)p′+k′,(j−1)n′+j′]

lt

⊗ (A⊠ A′)(j−1)n′+j′,(i−1)m′+i′]
lt

Both of these equalities follow from the definition (8.1.4) of the matrix product.
The desired expression is obtained by applying (8.6.4) to each of the three entries
of the matrix tensor products. The other five equalities in the lemma are proved in
the same way. □

Next we prove the remaining case of the lax associativity axiom for (⊠,⊠2,⊠0).

Lemma 8.7.23. In the setting of (8.7.1), if m, n, p, q, m′, n′, p′, q′ > 0, then the diagram
(8.7.2) is commutative.

Proof. The ((l − 1)q′ + l′, (i − 1)m′ + i′)-entry of (8.7.2) is the following diagram in
C, with (1)–(6) denoting the six objects in Lemma 8.7.22.

(8.7.24)

(1)

(2)

(3)

(4)

(5)

(6)

⊠2 ★ 1

⊠2

aC,B,A ⊠ aC′,B′,A′

aC⊠C′,B⊠B′,A⊠A′

1 ★⊠2

⊠2

With

● ⊗ abbreviated to concatenation,
● the notation in (8.7.6),
● the factorization of the associator in (8.3.5), and
● the factorization of⊠2 represented by the zigzag of paths in Lemma 8.6.16,
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the diagram (8.7.24) factors as follows.
(8.7.25)

(1)

[
n
⊕
j=1

n′

⊕
j′=1
[

p

⊕
k=1
{

p′

⊕
k′=1
(ClkBkj)(C′l′k′B

′
k′ j′)}lt]lt

(Aji A
′
j′i′)]

lt

(2)

[
n
⊕
j=1
[

n′

⊕
j′=1
{(

p

⊕
k=1

ClkBkj)Aji}{(
p′

⊕
k′=1

C′l′k′B
′
k′ j′)ltA′j′i′}]

lt

]
lt

(3)

[
p

⊕
k=1
(

n
⊕
j=1

Clk(Bkj Aji))
lt
]
lt

[
p′

⊕
k′=1
(

n′

⊕
j′=1

C′l′k′(B
′
k′ j′A

′
j′i′))

lt
]
lt

[
p

⊕
k=1

p′

⊕
k′=1
[

n
⊕
j=1

n′

⊕
j′=1
(ClkC′l′k′)((BkjB

′
k′ j′)(Aji A

′
j′i′))]

lt

]
lt

(4)

[
p

⊕
k=1

p′

⊕
k′=1
(ClkC′l′k′)[

n
⊕
j=1
{

n′

⊕
j′=1
(Bkj Aji)(B′k′ j′A

′
j′i′)}

lt
]
lt

]
lt

(5)

[
p

⊕
k=1
[

p′

⊕
k′=1
{Clk(

n
⊕
j=1

Bkj Aji)
lt
}{C′l′k′(

n′

⊕
j′=1

B′k′ j′A
′
j′i′)

lt
}]

lt

]
lt

(6)

(α⊕, α±⊗, ξ⊗)

(δ−r, δ−l)

(α⊕, α±⊗, ξ⊗)

(δ−r, δ−l)

(α±⊕, ξ⊕, α⊗, δr)

(δ−l)

(α±⊕, ξ⊕, α⊗, δr)

(δ−l)

(α⊕, α±⊗, ξ⊗)

(δ−r, δ−l)

(α⊕, α±⊗, ξ⊗)

(δ−r, δ−l)

For example, (δ−l) denotes a composite of morphisms, each being an iterated sum
and product of identity morphisms and one component of δ−l .

To prove that (8.7.25) is commutative, we realize each morphism or its inverse
as the value in C of a path in Gr(X) using the set of formal variables

X = {0X, 1X, aji, bkj, clk, a′j′i′ , b′k′ j′ , c′l′k′}1≤j≤n, 1≤k≤p, 1≤j′≤n′, 1≤k′≤p′

and the function φ ∶ X Ob(C) defined as follows.

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X.
1 if x = 1X.
Aji if x = aji.
Bkj if x = bkj.
Clk if x = clk.
A′j′i′ if x = a′j′i′ .
B′k′ j′ if x = b′k′ j′ .

C′l′k′ if x = c′l′k′ .

There is a diagram in Gr(X) as follows, in which the value in C of each path in
the boundary is the corresponding edge in (8.7.25) or its inverse. We continue to
abbreviate ⊗ to concatenation. Moreover, to save space, we omit the subscripts in
the formal variables, so a, b, c, a′, b′, and c′ mean, respectively, aji, bkj, clk, a′j′i′ , b′k′ j′ ,
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and c′l′k′ .

(8.7.26)

[
n
⊕
j=1

n′

⊕
j′=1
[

p

⊕
k=1

p′

⊕
k′=1
(cc′)(bb′)]

lt

(aa′)]
lt

[
n
⊕
j=1

n′

⊕
j′=1
[

p

⊕
k=1
{

p′

⊕
k′=1
(cb)(c′b′)}

lt
]
lt

(aa′)]
lt

[
n
⊕
j=1

n′

⊕
j′=1
{(

p

⊕
k=1

cb)
lt
(

p′

⊕
k′=1

c′b′)
lt
}(aa′)]

lt

[
n
⊕
j=1
[

n′

⊕
j′=1
{(

p

⊕
k=1

cb)a}{(
p′

⊕
k′=1

c′b′)
lt

a′}]
lt

]
lt

[
n
⊕
j=1
(

p

⊕
k=1

cb)
lt

a]
lt

[
n′

⊕
j′=1
(

p′

⊕
k′=1

c′b′)
lt

a′]
lt

[
p

⊕
k=1
(

n
⊕
j=1

c(ba))
lt
]
lt

[
p′

⊕
k′=1
(

n′

⊕
j′=1

c′(b′a′))
lt
]
lt

[
p

⊕
k=1

p′

⊕
k′=1
[

n
⊕
j=1

n′

⊕
j′=1
(cc′)((bb′)(aa′))]

lt

]
lt

[
p

⊕
k=1

p′

⊕
k′=1
(cc′)[

n
⊕
j=1

n′

⊕
j′=1
(bb′)(aa′)]

lt

]
lt

[
p

⊕
k=1

p′

⊕
k′=1
(cc′)[

n
⊕
j=1
{

n′

⊕
j′=1
(ba)(b′a′)}

lt
]
lt

]
lt

[
p

⊕
k=1

p′

⊕
k′=1
(cc′){(

n
⊕
j=1

ba)
lt
(

n′

⊕
j′=1

b′a′)
lt
}]

lt

[
p

⊕
k=1
[

p′

⊕
k′=1
{c(

n
⊕
j=1

ba)
lt
}{c′(

n′

⊕
j′=1

b′a′)
lt
}]

lt

]
lt

[
p

⊕
k=1

c(
n
⊕
j=1

ba)
lt
]
lt

[
p′

⊕
k′=1

c′(
n′

⊕
j′=1

b′a′)
lt
]
lt

L4

L3

L2

L1

L6

L12

L5

L11

L10

L9

L8

L7

R

Consider the diagram (8.7.26).

● Each prime edge in L1, L3, L7, and L9 is an identity or contains δr or δl .
● Each prime edge in L2, L4, L8, and L10 is an identity or contains α−⊕, α±⊗,

or ξ−⊗.
● Each prime edge in L5 and L6 is an identity or contains α±⊕, ξ⊕, α⊗, or δr.
● Each prime edge in L11 and L12 is an identity or contains δl .
● Each prime edge in the path R is an identity or contains

– δr or δl to bring the four sums to the front;
– α±⊗ or ξ⊗ to permute the monomial

[clk(bkjaji)][c′l′k′(b
′
k′ j′a

′
j′i′)] to (clkc′l′k′)((bkjb

′
k′ j′)(ajia

′
j′i′));

or
– α±⊕ or ξ⊕ to move additive brackets and to permute additively to

match with the additive bracketing of the codomain of R.
In (8.7.26), the upper right vertex is regular in the sense of Definition 3.1.25,

so each vertex is regular by Lemma 3.1.29. Since C is assumed to be tight, the
Coherence Theorem 3.9.1 implies that each of the two subdiagrams is commutative
in C. This implies that (8.7.25) is commutative. □

The Lax Unity Axiom. To finish the proof that (⊠,⊠2,⊠0) is a pseudofunctor,
next we check the lax unity axiom. Recall the identity matrix in (8.1.6).

Lemma 8.7.27. The data (⊠,⊠2,⊠0) in Definition 8.6.19 satisfy the lax unity axiom
(6.2.3).
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Proof. We check the lax left unity axiom; the proof for the lax right unity axiom is
almost identical.

The lax left unity axiom (6.2.3) states the commutativity of the diagram

(8.7.28)

1nq(A⊠ B) A⊠ B

(1n ⊠1q)(A⊠ B) (1n A)⊠ (1qB)

⊠0
(n,q) ★ 1

⊠2
(1n ,1q),(A,B)

ℓA ⊠ ℓB

ℓA⊠B

in MatCmp,nq for (A, B) ∈ MatCm,n ×MatCp,q, with ℓ the natural isomorphism in (8.2.2).
If one of m, n, p, or q is 0, then MatCmp,nq is the terminal category, and (8.7.28) is
commutative. For the rest of this proof, we assume that m, n, p, q > 0.

For 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p, and 1 ≤ l ≤ q, it suffices to show that the
(J, I)-entry of (8.7.28) is commutative in C with

J = (j − 1)q + l and I = (i − 1)p + k.

By definitions (8.1.4), (8.1.5), (8.2.4), (8.6.4), (8.6.9), and (8.6.20), the (J, I)-entry of
(8.7.28) is the following diagram in C. We abbreviate ⊗ to concatenation and use
the notation in (8.7.6). Moreover, J′ = (j′ − 1)q + l′.

(8.7.29)

[
n
⊕
j′=1

q

⊕
l′=1

1
nq
(J,J′)(Aj′iBl′k)]

lt

AjiBlk

[
n
⊕
j′=1

q

⊕
l′=1
(1n

jj′1
q
ll′)(Aj′iBl′k)]

lt

[
n
⊕
j′=1

1n
jj′Aj′i]

lt

[
q

⊕
l′=1

1
q
ll′Bl′k]

lt

[
n
⊕
j′=1
{

q

⊕
l′=1
(1n

jj′Aj′i)(1
q
ll′Bl′k)}

lt

]
lt

(λ−⊗, λ−
●, ρ−

●)

(α⊕, α±⊗, ξ⊗) (δ−r, δ−l)

(λ⊕, ρ⊕, λ⊗, λ
●)

(λ⊕, ρ⊕, λ⊗, λ
●)

For example, (λ⊕, ρ⊕, λ⊗, λ ●) denotes a composite of morphisms, each being an
iterated sum and product of identity morphisms and one component of λ⊕, ρ⊕,
λ⊗, or λ ●.

To prove that (8.7.29) is commutative, we realize each morphism or its inverse
as the value in C of a path in Gr(X) using the set of formal variables

X = {0X, 1X, aj′i, bl′k}
1≤j′≤n, 1≤l′≤q

and the function φ ∶ X Ob(C) defined as follows.

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X.
1 if x = 1X.
Aj′i if x = aj′i.
Bl′k if x = bl′k.

Below we continue to abbreviate ⊗ to concatenation. The element δX
rs ∈ {0X, 1X} is

defined in (8.4.6). There is a diagram in Gr(X) as follows, in which the value in C
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of each path is the corresponding edge in (8.7.29) or its inverse.

(8.7.30)

[
n
⊕
j′=1

q

⊕
l′=1

δX
(J,J′)(aj′ibl′k)]

lt

ajiblk

[
n
⊕
j′=1

q

⊕
l′=1
(δX

jj′δ
X
ll′)(aj′ibl′k)]

lt

[
n
⊕
j′=1

δX
jj′aj′i]

lt

[
q

⊕
l′=1

δX
ll′bl′k]

lt

[
n
⊕
j′=1
{

q

⊕
l′=1
(δX

jj′aj′i)(δX
ll′bl′k)}

lt

]
lt

L3

L4 L

L1

L2

Consider the diagram (8.7.30).

● Each prime edge in L is an identity or contains δr or δl .
● Each prime edge in L1 is an identity or contains λ⊕, ρ⊕, λ⊗, or λ ●.
● Each prime edge in L2 is an identity or contains λ−⊕, ρ−⊕, λ−⊗, or λ− ●.
● Each prime edge in L3 is an identity or contains λ−⊗, λ− ●, or ρ− ●.
● Each prime edge in L4 is an identity or contains α⊕, α±⊗, or ξ⊗.

The vertex ajiblk in (8.7.30) is regular in the sense of Definition 3.1.25. By
Lemma 3.1.29, the middle right vertex is also regular. Since C is assumed to be
tight, the Coherence Theorem 3.9.1 implies that the two paths

L and (L4, L3, L2, L1)
have the same value in C. This implies that (8.7.29) is commutative. □

Lemma 8.7.31. The data (⊠,⊠2,⊠0) in Definition 8.6.19 is a pseudofunctor.

Proof. We already proved all the necessary statements.
● Lemma 8.6.7 shows that ⊠ defines local functors.
● Each component of ⊠0 is an isomorphism by Lemma 8.6.8.
● ⊠2 is a natural isomorphism by Lemma 8.6.21.
● Lemmas 8.7.3, 8.7.4, 8.7.13, and 8.7.23 prove the lax associativity axiom

(6.2.2).
● Lemma 8.7.27 proves the lax unity axiom (6.2.3).

Therefore, (⊠,⊠2,⊠0) is a pseudofunctor. □

8.8. The Monoidal Associator

Throughout this section, C denotes an arbitrary tight symmetric bimonoidal
category as in Definition 2.1.2. We are in the process of constructing a monoidal
bicategory structure on the matrix bicategory MatC. In this section, we define the
monoidal associator, in the sense of Definition 6.4.1, for the monoidal composition
⊠ on MatC. In Lemma 8.7.31, we proved that the triple

(⊠,⊠2,⊠0) ∶MatC ×MatC MatC

in Definition 8.6.19 is a pseudofunctor. This induces two pseudofunctors

MatC ×MatC ×MatC MatC.
⊠(⊠×1)

⊠(1×⊠)
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As discussed in Explanation 6.4.6, the monoidal associator (a⊠, a⊠ ●, ηa, εa) consists
of the following data.

(i) a⊠ and a⊠ ● are strong transformations as in Definition 6.2.14 as follows.

⊠(⊠× 1) ⊠(1×⊠)
a⊠

a⊠ ●

These strong transformations are decorated with ⊠ to avoid confusion
with the base associator (8.3.2) in MatC.

(ii) ηa and εa are invertible modifications as in Definition 6.3.1 as follows.

1⊠(⊠×1) a⊠ ●a⊠

a⊠a⊠ ● 1⊠(1×⊠)

ηa

εa

Moreover, these data are required to satisfy the triangle identities (6.3.10).
Here is an outline of this section.

● The left adjoint a⊠ is defined in Definition 8.8.1. Lemmas 8.8.5, 8.8.11,
8.8.17, and 8.8.26 show that a⊠ is a strong transformation.
● The right adjoint a⊠ ● is defined in Definition 8.8.33.
● The modifications ηa and εa are defined in Definition 8.8.37 and verified

in Lemma 8.8.39.
● The triangle identities (6.3.10) are proved in Lemma 8.8.45.

The Left Adjoint of the Monoidal Associator.

Definition 8.8.1. With respect to the pseudofunctor (⊠,⊠2,⊠0) in Definition 8.6.19
and Lemma 8.7.31, define the data of a lax transformation

⊠(⊠× 1) ⊠(1×⊠)a⊠

as follows.

Component 1-Cells: For each triple of objects (m, n, p) ∈ (MatC)3, define

(8.8.2) mnp = ((m⊠ n)⊠ p) (m⊠ (n⊠ p)) = mnp
a⊠m,n,p

as the identity matrix 1mnp ∈MatCmnp,mnp in (8.1.6).
Component 2-Cells: For each triple of 1-cells

(A = (Ai′i), B = (Bj′ j), C = (Ck′k)) ∈MatCm,m′ ×MatCn,n′ ×MatCp,p′ ,

define the component 2-cell

a⊠A,B,C ∈MatCmnp,m′n′p′([A⊠ (B⊠C)]a⊠m,n,p; a⊠m′,n′,p′[(A⊠ B)⊠C])
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as the following vertical composite.

(8.8.3)

mnp

mnp m′n′p′

m′n′p′

1
mnp A⊠ (B⊠C)

(A⊠ B)⊠C
1

m′n′p′

A⊠ (B⊠C)

(A⊠ B)⊠C

⇒

α−⊗

⇒

rA⊠ (B⊠C)

⇒

ℓ−1
(A⊠ B)⊠C

● ℓ is the base left unitor in MatC in (8.2.2).
● r is the base right unitor in MatC in (8.2.8).
● α−⊗ is the 2-cell with ((i′ − 1)n′p′ + (j′ − 1)p′ + k′, (i − 1)np + (j − 1)p + k)-entry

the structure morphism in C,

Ai′i ⊗ (Bj′ j ⊗Ck′k) (Ai′i ⊗ Bj′ j)⊗Ck′k

α−⊗Ai′ i ,Bj′ j ,Ck′k

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p, 1 ≤ i′ ≤ m′, 1 ≤ j′ ≤ n′, and 1 ≤ k′ ≤ p′.
This finishes the definition of a⊠. ◇
Explanation 8.8.4. By (8.2.4) and (8.2.10), each entry of the 2-cell a⊠A,B,C in (8.8.3) is
a composite of isomorphisms, each being an iterated sum of identity morphisms
and one component of λ±⊕, ρ±⊕, α−⊗, λ−⊗, ρ⊗, λ− ●, or ρ ● in C. ◇

Lemma 8.8.5. For each pair of objects (m, n, p) and (m′, n′, p′) in (MatC)3, a⊠ in (8.8.3)
is a natural isomorphism.

Proof. The naturality of a⊠ means that, for each triple of 2-cells

( f , g, h) ∈MatCm,m′(A, A′)×MatCn,n′(B, B′)×MatCp,p′(C, C′),

the diagram

(8.8.6)

[A⊠ (B⊠C)]1mnp 1m′n′p′ [(A⊠ B)⊠C]

[A′ ⊠ (B′ ⊠C′)]1mnp 1m′n′p′ [(A′ ⊠ B′)⊠C′]

[ f⊠(g⊠h)]★1

a⊠A,B,C

1★[( f⊠g)⊠h]
a⊠A′ ,B′ ,C′

in MatCmnp,m′n′p′ is commutative. Since 2-cells in MatC are entrywise morphisms
in C, it suffices to prove the commutativity of (8.8.6) in each entry. Restricted to
each entry, the commutativity of (8.8.6) follows from the naturality of the structure
morphisms λ⊕, ρ⊕, α⊗, λ⊗, ρ⊗, λ ●, and ρ ● in C. Moreover, since these are natural
isomorphisms in C, a⊠ is a natural isomorphism. □

The Lax Unity of the Left Adjoint. Before we show that a⊠ satisfies the lax
unity axiom (6.2.15), we first describe the entries of the relevant 1-cells. The next
few lemmas follow from the definitions of the matrix product (8.1.4) and of the
matrix tensor product (8.6.4), applied to the identity matrices (8.1.6). The next
lemma describes the entries in the domain 1-cell of the lax unity axiom.
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Lemma 8.8.7. For m, n, p > 0, each entry of the matrix product

1mnp1mnp ∈MatCmnp,mnp

is a left normalized sum of mnp objects as follows.
(1) For 1 ≤ s ≤ mnp, the sth diagonal entry is

[

empty if s = 1

[
s−1
⊕
i=1

0⊗ 0]⊕ (1⊗1)

empty if s = mnp

⊕ [
mnp

⊕
i=s+1

0⊗ 0] ]
lt

.

(2) The (s, t)-entry with s < t is

[

empty if s = 1

[
s−1
⊕
i=1

0⊗ 0]⊕ (1⊗ 0)

empty if s = t − 1

⊕ [
t−1
⊕

i=s+1
0⊗ 0]⊕ (0⊗1)

empty if t = mnp

⊕ [
mnp

⊕
i=t+1

0⊗ 0] ]
lt

.

(3) The (s, t)-entry with s > t is

[

empty if t = 1

[
t−1
⊕
i=1

0⊗ 0]⊕ (0⊗1)

empty if t = s − 1

⊕ [
s−1
⊕

i=t+1
0⊗ 0]⊕ (1⊗ 0)

empty if s = mnp

⊕ [
mnp

⊕
i=s+1

0⊗ 0] ]
lt

.

The lax unity axiom also involves the following matrices.
Lemma 8.8.8. Suppose m, n, p > 0.

(1) For the matrix

1m ⊠ (1n ⊠1p) ∈MatCmnp,mnp,

the following two statements hold.
● Each diagonal entry is 1⊗ (1⊗1).
● Each off-diagonal entry is 1⊗ (1⊗ 0), 1⊗ (0⊗1), 1⊗ (0⊗ 0), 0⊗ (1⊗
1), 0⊗ (1⊗ 0), 0⊗ (0⊗1), or 0⊗ (0⊗ 0).

(2) For the matrix

(1m ⊠1n)⊠1p ∈MatCmnp,mnp,

the following two statements hold.
● Each diagonal entry is (1⊗1)⊗1.
● Each off-diagonal entry is (1⊗1)⊗0, (1⊗0)⊗1, (1⊗0)⊗0, (0⊗1)⊗
1, (0⊗1)⊗ 0, (0⊗ 0)⊗1, or (0⊗ 0)⊗ 0.

The next lemma describes an intermediate 1-cell in the left-hand side of the
lax unity axiom.
Lemma 8.8.9. For m, n, p > 0, each entry of the matrix product

[1m ⊠ (1n ⊠1p)]1mnp ∈MatCmnp,mnp

is a left normalized sum of mnp objects as follows, with zj,i denoting the (j, i)-entry in
1m ⊠ (1n ⊠1p).

(1) For 1 ≤ s ≤ mnp, the sth diagonal entry is

[

empty if s = 1

[
s−1
⊕
i=1

zs,i ⊗ 0]⊕ [(1⊗ (1⊗1))⊗1]

empty if s = mnp

⊕ [
mnp

⊕
i=s+1

zs,i ⊗ 0] ]
lt

.
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(2) The (s, t)-entry with s < t is

[

empty if s = 1

[
s−1
⊕
i=1

zs,i ⊗ 0]⊕ [(1⊗ (1⊗1))⊗ 0]

empty if s = t − 1

⊕ [
t−1
⊕

i=s+1
zs,i ⊗ 0]⊕ (zs,t ⊗1)

empty if t = mnp

⊕ [
mnp

⊕
i=t+1

zs,i ⊗ 0] ]
lt

.

(3) The (s, t)-entry with s > t is

[

empty if t = 1

[
t−1
⊕
i=1

zs,i ⊗ 0]⊕ (zs,t ⊗1)

empty if t = s − 1

⊕ [
s−1
⊕

i=t+1
zs,i ⊗ 0]⊕ [(1⊗ (1⊗1))⊗ 0]

empty if s = mnp

⊕ [
mnp

⊕
i=s+1

zs,i ⊗ 0] ]
lt

.

The next lemma describes the entries in the codomain 1-cell of the lax unity
axiom.

Lemma 8.8.10. For m, n, p > 0, each entry of the matrix product

1mnp[(1m ⊠1n)⊠1p] ∈MatCmnp,mnp

is a left normalized sum of mnp objects as follows, with yi,j denoting the (i, j)-entry in
(1m ⊠1n)⊠1p.

(1) For 1 ≤ s ≤ mnp, the sth diagonal entry is

[

empty if s = 1

[
s−1
⊕
i=1

0⊗ yi,s]⊕ [1⊗ ((1⊗1)⊗1)]

empty if s = mnp

⊕ [
mnp

⊕
i=s+1

0⊗ yi,s] ]
lt

.

(2) The (s, t)-entry with s < t is

[

empty if s = 1

[
s−1
⊕
i=1

0⊗ yi,t]⊕ (1⊗ ys,t)

empty if s = t − 1

⊕ [
t−1
⊕

i=s+1
0⊗ yi,t]⊕ [0⊗ ((1⊗1)⊗1)]

empty if t = mnp

⊕ [
mnp

⊕
i=t+1

0⊗ yi,t] ]
lt

.

(3) The (s, t)-entry with s > t is

[

empty if t = 1

[
t−1
⊕
i=1

0⊗ yi,t]⊕ [0⊗ ((1⊗1)⊗1)]

empty if t = s − 1

⊕ [
s−1
⊕

i=t+1
0⊗ yi,t]⊕ (1⊗ ys,t)

empty if s = mnp

⊕ [
mnp

⊕
i=s+1

0⊗ yi,t] ]
lt

.

To see that a⊠ is a strong transformation, next we check the axioms in Defini-
tion 6.2.14, starting with the lax unity axiom.

Lemma 8.8.11. a⊠ in Definition 8.8.1 satisfies the lax unity axiom (6.2.15).
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Proof. By (6.2.7) and (8.8.2), the lax unity axiom for a⊠ states the following equality
of pasting diagrams in MatCmnp,mnp for m, n, p ≥ 0.

(8.8.12) =

mnp mnp

mnp mnp

1
mnp

1
mnp

(1m ⊠1n)⊠1p

1mnp

1
m ⊠1np

1m ⊠ (1n ⊠1p)
⇒⊠0

(m,np)

⇒1⊠⊠0
(n,p)

⇒a⊠1m ,1n ,1p mnp mnp

mnp mnp

1
mnp

1
mnp

(1m ⊠1n)⊠1p

1mnp

1
mn ⊠1p

1mnp

1mnp

⇒ℓ1mnp

⇒r−1
1mnp

⇒⊠0
(mn,p)

⇒⊠0
(m,n) ⊠ 1

If m, n, or p is 0, then MatCmnp,mnp is the terminal category, and the equality in
(8.8.12) holds. For the rest of this proof, we assume that m, n, p > 0.

Since 2-cells in MatC are entrywise morphisms in C, it suffices to prove the
equality in (8.8.12) in a typical entry. The entries of the 2-cells in (8.8.12) are inter-
preted using the definitions of

● the lax unity constraint ⊠0 in Lemma 8.6.8,
● the component 2-cell a⊠A,B,C in (8.8.3),
● the base left unitor ℓ in (8.2.4), and
● the base right unitor r in (8.2.10).

The entries of the 1-cells in (8.8.12) are described in Lemmas 8.8.7 through 8.8.10.
We will realize each 2-cell entry in (8.8.12) using paths in Gr(X)with

● the set X = {0X, 1X} and
● the function φ ∶ X Ob(C) defined by φ(0X) = 0 and φ(1X) = 1.

The rest of this proof is split into two cases, one for the diagonal entries and one
for the off-diagonal entries.

(1) For each 1 ≤ s ≤ mnp, there exists a diagram in Gr(X) as in (8.8.13) below,
whose left path (L2, L1), respectively right path (R3, R2, R1), has value in
C the sth diagonal entry of the left, respectively right, pasting diagram in
(8.8.12). We abbreviate ⊗ to concatenation.

(8.8.13)

[[
s−1
⊕
i=1

0X0X]⊕ (1X1X)⊕ [
mnp

⊕
i=s+1

0X0X]]
lt

[[
s−1
⊕
i=1

z0X]⊕ [(1X(1X1X))1X]⊕ [
mnp

⊕
i=s+1

z0X]]
lt

[[
s−1
⊕
i=1

0Xy]⊕ [1X((1X1X)1X)]⊕ [
mnp

⊕
i=s+1

0Xy]]
lt

1X

[[
s−1
⊕
i=1

0X0X]⊕ (1X1X)⊕ [
mnp

⊕
i=s+1

0X0X]]
lt

L1

L2

R1

R2

R3



8.8. THE MONOIDAL ASSOCIATOR I.365

Consider the diagram (8.8.13).
● In the upper left vertex, as in Lemma 8.8.7, the sequence of symbols

[
s−1
⊕
i=1

0X0X]⊕

is empty if s = 1, and the sum after (1X1X) is empty if s = mnp. Similar
interpretations apply to the sums in the other vertices.
● Each instance of z is an element δX

1 (δX
2 δX

3 ) ∈ Xfr with each δX
j ∈ X =

{0X, 1X}, at least one of which is 0X.
● Each instance of y is an element (δX

1 δX
2 )δX

3 ∈ Xfr with each δX
j ∈ X =

{0X, 1X}, at least one of which is 0X.
● The value of L1 in C is the morphism

φL1 = ([(1⊠⊠0
(n,p))⊠

0
(m,np) ] ★ 11mnp)

s,s
.

Each prime edge in L1 is an identity or contains λ−⊗, λ− ●, or ρ− ●.
● The value of L2 in C is the morphism

φL2 = (a⊠1m ,1n ,1p)s,s
.

Each prime edge in L2 is an identity or contains λ±⊕, ρ±⊕, α−⊗, λ−⊗,
ρ⊗, λ− ●, or ρ ●.
● The value of R1 in C is the morphism

φR1 = (ℓ1mnp)s,s .

Each prime edge in R1 is an identity or contains λ⊕, ρ⊕, λ⊗, or λ ●.
● The value of R2 in C is the morphism

φR2 = (r−1
1mnp)s,s .

Each prime edge in R2 is an identity or contains λ−⊕, ρ−⊕, ρ−⊗, or
ρ− ●.
● The value of R3 in C is the morphism

φR3 = (11mnp ★ [(⊠0
(m,n) ⊠ 1)⊠0

(mn,p) ])s,s
.

Each prime edge in R3 is an identity or contains λ−⊗, λ− ●, or ρ− ●.
Since the vertex 1X in (8.8.13) is regular as in Definition 3.1.25, the

common domain of L1 and R1 is also regular by Lemma 3.1.29. Since C
is assumed to be tight, the Coherence Theorem 3.9.1 implies that the two
paths (L2, L1) and (R3, R2, R1) have the same value in C. This implies
that the sth diagonal entries of the two pasting diagrams in (8.8.12) are
equal.
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(2) For 1 ≤ s < t ≤ mnp, there exists a diagram in Gr(X) as follows.
(8.8.14)

[[
s−1
⊕
i=1

0X0X]⊕ (1X0X)⊕ [
t−1
⊕

i=s+1
0X0X]⊕ (0X1X)⊕ [

mnp

⊕
i=t+1

0X0X]]
lt

[[
s−1
⊕
i=1

z0X]⊕ [(1X(1X1X))0X]⊕ [
t−1
⊕

i=s+1
z0X]⊕ (z1X)⊕ [

mnp

⊕
i=t+1

z0X]]
lt

[[
s−1
⊕
i=1

0Xy]⊕ (1Xy)⊕ [
t−1
⊕

i=s+1
0Xy]⊕ [0X((1X1X)1X)]⊕ [

mnp

⊕
i=t+1

0Xy]]
lt

0X

[[
s−1
⊕
i=1

0X0X]⊕ (1X0X)⊕ [
t−1
⊕

i=s+1
0X0X]⊕ (0X1X)⊕ [

mnp

⊕
i=t+1

0X0X]]
lt

L1

L2

R1

R2

R3

Consider the diagram (8.8.14).
● As in Lemma 8.8.7, the sums

s−1
⊕
i=1

,
t−1
⊕

i=s+1
, and

mnp

⊕
i=t+1

are empty if, respectively, s = 1, s = t − 1, and t = mnp.
● The elements y, z ∈ Xfr are interpreted as in case (1), and similarly

for the paths L1, L2, R1, R2, and R3 with the (s, t)-entry instead of
the (s, s)-entry.
Since one vertex in (8.8.14) is 0X, the common domain of L1 and R1

has the same support as 0X by Lemma 3.1.29. Proposition 3.5.33 implies
that the two paths (L2, L1) and (R3, R2, R1) have the same value in C. This
implies that the (s, t)-entries of the two pasting diagrams in (8.8.12) are
equal.

The case with s > t is proved in the same way, using the s > t cases in
Lemmas 8.8.7 through 8.8.10 to interpret the 1-cells.

This finishes the proof that a⊠ satisfies the lax unity axiom (6.2.15). □

The Lax Naturality of the Left Adjoint. The lax naturality axiom (6.2.16) for
a⊠ states that, for 1-cells

(8.8.15)

m m′ m′′

n n′ n′′

p p′ p′′

A A′ A′′

B B′ B′′
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in MatC, the following equality of pasting diagrams in MatCmm′m′′,pp′p′′ holds.

(8.8.16) =

m p

m p

n

1
m

1
p

(BA⊠ B′A′)⊠ B′′A′′

A⊠ (A′ ⊠ A′′) B⊠ (B′ ⊠ B′′)

BA⊠ [(B′ ⊠ B′′)(A′ ⊠ A′′)]

BA⊠ (B′A′ ⊠ B′′A′′)
⇒⊠2

⇒1⊠⊠2

⇒a⊠BA,B′A′,B′′A′′
m p

m p

n

1
m

1
p

(BA⊠ B′A′)⊠ B′′A′′

A⊠ (A′ ⊠ A′′) B⊠ (B′ ⊠ B′′)

n
(A⊠ A′)⊠ A′′ (B⊠ B′)⊠ B′′

1
n

[(B⊠ B′)(A⊠ A′)]⊠ B′′A′′

⇒
a⊠A,A′,A′′ ⇒

a⊠B,B′,B′′

⇒⊠2

⇒⊠2 ⊠ 1

Consider (8.8.16).

(1) m = mm′m′′, n = nn′n′′, and p = pp′p′′.
(2) (6.2.8) is used to obtain the following decompositions of lax functoriality

constraints for the composites, with ⊠2 as in Definition 8.6.19.

(⊠ (⊠× 1))2 = (⊠2 ⊠1)⊠2

(⊠ (1×⊠))2 = (1⊠⊠2)⊠2

(3) In the left pasting diagram, by (8.8.3),

a⊠BA,B′A′,B′′A′′ = ℓ
−1α−⊗r

with
● ℓ the base left unitor in (8.2.2),
● α−⊗ entrywise a component of α−⊗ in C, and
● r the base right unitor in (8.2.8).

(4) In the right pasting diagram, there are two instances of the base associ-
ator a in (8.3.2) and one instance of a−1 that are not explicitly displayed.
They are necessary because horizontal composition of 1-cells in MatC is
not strictly associative, but only up to the natural isomorphism a.

To clarify the argument of the various cases, we split the proof of the lax natu-
rality axiom for a⊠ into two lemmas.

Lemma 8.8.17. In the setting of (8.8.15), suppose that either

(1) at least one of m, m′, m′′, p, p′, or p′′ is 0, or
(2) m, m′, m′′, p, p′, p′′ > 0, and at least one of n, n′, or n′′ is 0.

Then the equality in (8.8.16) holds.

Proof. If at least one of m, m′, m′′, p, p′, or p′′ is 0, then MatCm,p is the terminal
category, and the equality in (8.8.16) holds.

For the second case, suppose that m, m′, m′′, p, p′, p′′ > 0, and that at least one
of n, n′, or n′′ is 0. Since n = 0, the two pasting diagrams in (8.8.16) become the
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following ones, where ∅ denotes the empty matrix.

(8.8.18)

m p

m p

0

1
m

1
p

(BA⊠ B′A′)⊠ B′′A′′

∅ ∅

BA⊠ [(B′ ⊠ B′′)(A′ ⊠ A′′)]

BA⊠ (B′A′ ⊠ B′′A′′)

⇒⊠2

⇒1⊠⊠2
⇒a⊠BA,B′A′,B′′A′′

m p

m p

0

1
m

1
p

(BA⊠ B′A′)⊠ B′′A′′

∅ ∅

0
∅ ∅

∅

[(B⊠ B′)(A⊠ A′)]⊠ B′′A′′

⇒a
⊠ = 1 ⇒a

⊠ = 1

⇒⊠2

⇒⊠2 ⊠ 1

Consider (8.8.18).

● By Convention 6.2.12 and (8.1.4), each domain 1-cell is the matrix product

(∅∅)1m = 0m,p1
m ∈MatCm,p.

● If n = 0, then BA and (B⊠ B′)(A⊠ A′) are 0 matrices.
● If n′ = 0, then B′A′, (B′ ⊠ B′′)(A′ ⊠ A′′), and (B⊠ B′)(A⊠ A′) are 0 matri-

ces.
● If n′′ = 0, then B′′A′′ and (B′ ⊠ B′′)(A′ ⊠ A′′) are 0 matrices.
● Each of the two 2-cells

∅∅ = 0m,p BA⊠ [(B′ ⊠ B′′)(A′ ⊠ A′′)]

∅∅ = 0m,p [(B⊠ B′)(A⊠ A′)]⊠ B′′A′′

⊠2

⊠2

is entrywise a component of λ− ● or ρ− ●.
● Each of the two 2-cells

(8.8.19)
(B′ ⊠ B′′)(A′ ⊠ A′′) B′A′ ⊠ B′′A′′

(B⊠ B′)(A⊠ A′) BA⊠ B′A′

⊠2

⊠2

is as in (8.6.20).

The left and the right pasting diagrams in (8.8.18) are, respectively, the left and
the right composites below in MatCm,p, with ζℓ and ζr the natural isomorphisms in
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(8.1.11) and (8.1.19).

(8.8.20)

(∅∅)1m = 0m,p1
m

[BA⊠ [(B′ ⊠ B′′)(A′ ⊠ A′′)]]1m

[BA⊠ (B′A′ ⊠ B′′A′′)]1m

BA⊠ (B′A′ ⊠ B′′A′′)

(BA⊠ B′A′)⊠ B′′A′′

∅(∅1m) = 0m,p

1p[(BA⊠ B′A′)⊠ B′′A′′]

∅(∅∅)

(∅∅)∅

(1p∅)∅ = 0m,p

1p(∅∅) = 1p0m,p

1p[[(B⊠ B′)(A⊠ A′)]⊠ B′′A′′]

⊠2 ★ 1

[1⊠⊠2] ★ 1

r

α−⊗

ℓ−1

a = ζℓ
1m 1 ★ a⊠ = 1

a−1 = 1

a⊠ ★ 1 = 1

a = ζ−r
1p

1 ★⊠2

1 ★ [⊠2 ⊠ 1]

Using the description above of the morphisms involved, similar to the proofs
in Section 8.7, the commutativity of (8.8.20) in each entry is proved by realizing
each edge or its inverse as the value in C of a path in Gr(X) for some set X of
formal variables and some function φ ∶ X Ob(C). The detailed argument is
given below.

(1) Suppose nn′ > 0 and n′′ = 0. First composing the three 1’s away, the
diagram (8.8.20) becomes the following diagram in MatCm,p.

(8.8.21)

0m,p1
m

[BA⊠ 0m′m′′,p′p′′]1m

[BA⊠ (B′A′ ⊠ 0m′′,p′′)]1m

BA⊠ (B′A′ ⊠ 0m′′,p′′)

(BA⊠ B′A′)⊠ 0m′′,p′′

0m,p

1p0m,p

1p[[(B⊠ B′)(A⊠ A′)]⊠ 0m′′,p′′]

1p[(BA⊠ B′A′)⊠ 0m′′,p′′]

⊠2 ★ 1

[1⊠⊠2] ★ 1

r

α−⊗

ℓ−1

ζℓ
1m

ζ−r
1p

1 ★⊠2

1 ★ [⊠2 ⊠ 1]

For indices

(8.8.22)
1 ≤ i, e ≤ m 1 ≤ i′, e′ ≤ m′ 1 ≤ i′′, e′′ ≤ m′′

1 ≤ k, c ≤ p 1 ≤ k′, c′ ≤ p′ 1 ≤ k′′, c′′ ≤ p′′
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we use the following abbreviations.

K = (k − 1)p′p′′ + (k′ − 1)p′′ + k′′

I = (i − 1)m′m′′ + (i′ − 1)m′′ + i′′

E = (e − 1)m′m′′ + (e′ − 1)m′′ + e′′

C = (c − 1)p′p′′ + (c′ − 1)p′′ + c′′

m
⊕
e=1
=

m
⊕
e=1

m′

⊕
e′=1

m′′

⊕
e′′=1

p

⊕
c=1
=

p

⊕
c=1

p′

⊕
c′=1

p′′

⊕
c′′=1

n,n′

⊕
j,j′=1,1

=
n
⊕
j=1

n′

⊕
j′=1

(8.8.23)

Using the notation in (8.7.6) for morphisms, the (K, I)-entry of (8.8.21) is
the following diagram in C, with ⊗ abbreviated to concatenation.

(8.8.24)

[(
I−1
⊕
e=1

00)⊕ (01)⊕ (
m
⊕

e=I+1
00)]

lt

[
m
⊕
e=1
[(

n
⊕
j=1

Bkj Aje)
lt

0]1m
E,I]

lt

[
m
⊕
e=1
[(

n
⊕
j=1

Bkj Aje)
lt
{(

n′

⊕
j′=1

B′k′ j′A
′
j′e′)

lt
0}]1m

E,I]
lt

(
n
⊕
j=1

Bkj Aji)
lt
[(

n′

⊕
j′=1

B′k′ j′A
′
j′i′)

lt
0]

[(
n
⊕
j=1

Bkj Aji)
lt
(

n′

⊕
j′=1

B′k′ j′A
′
j′i′)

lt
]0

0

[(
K−1
⊕
c=1

00)⊕ (10)⊕ (
p

⊕
c=K+1

00)]
lt

[
p

⊕
c=1

1
p
K,C[{

n,n′

⊕
j,j′=1,1

(BcjB
′
c′ j′)(Aji A

′
j′i′)}

lt

0]]
lt

[
p

⊕
c=1

1
p
K,C[{

n
⊕
j=1
(

n′

⊕
j′=1
(Bcj Aji)(B′c′ j′A′j′i′))

lt

}
lt

0]]
lt

[
p

⊕
c=1

1
p
K,C[{(

n
⊕
j=1

Bcj Aji)
lt
(

n′

⊕
j′=1

B′c′ j′A
′
j′i′)

lt
}0]]

lt

(ρ− ●)

(ρ− ●)

(λ⊕, ρ⊕, ρ⊗, ρ
●)

α−⊗

(λ−⊕, ρ−⊕, λ−⊗, λ−
●)

(λ⊕, λ
●)

(λ−⊕, ρ−
●)

(ρ− ●)

(α⊕, α±⊗, ξ⊗)

(δ−r, δ−l)

In the top left object, the symbols

(
I−1
⊕
e=1

00)⊕ and ⊕ (
m
⊕

e=I+1
00)

are empty if, respectively, I = 1 and I = m. Similar interpretations apply
to the sums in the second-to-top object in the right column.

To show that (8.8.24) is commutative, we use the set of formal vari-
ables

X = {0X, 1X, aje, bcj, a′j′e′ , b′c′ j′}1≤e≤m, 1≤j≤n, 1≤c≤p, 1≤e′≤m′, 1≤j′≤n′, 1≤c′≤p′
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and the function φ ∶ X Ob(C) defined as follows.

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X.
1 if x = 1X.
Aje if x = aje.
Bcj if x = bcj.
A′j′e′ if x = a′j′e′ .
B′c′ j′ if x = b′c′ j′ .

There is a diagram in Gr(X) as follows. Each path has value in C the
corresponding edge in (8.8.24) or its inverse, and δX

● ● is as in (8.4.6).

(8.8.25)

[(
I−1
⊕
e=1

0X0X)⊕ (0X1X)⊕ (
m
⊕

e=I+1
0X0X)]

lt

[
m
⊕
e=1
[(

n
⊕
j=1

bkjaje)
lt

0X]δX
E,I]

lt

[
m
⊕
e=1
[(

n
⊕
j=1

bkjaje)
lt
{(

n′

⊕
j′=1

b′k′ j′a
′
j′e′)

lt
0X}]δX

E,I]
lt

(
n
⊕
j=1

bkjaji)
lt
[(

n′

⊕
j′=1

b′k′ j′a
′
j′i′)

lt
0X]

[(
n
⊕
j=1

bkjaji)
lt
(

n′

⊕
j′=1

b′k′ j′a
′
j′i′)

lt
]0X

0X

[(
K−1
⊕
c=1

0X0X)⊕ (1X0X)⊕ (
p

⊕
c=K+1

0X0X)]
lt

[
p

⊕
c=1

δX
K,C[{

n,n′

⊕
j,j′=1,1

(bcjb
′
c′ j′)(ajia

′
j′i′)}

lt

0X]]
lt

[
p

⊕
c=1

δX
K,C[{

n
⊕
j=1
(

n′

⊕
j′=1
(bcjaji)(b′c′ j′a′j′i′))

lt

}
lt

0X]]
lt

[
p

⊕
c=1

δX
K,C[{(

n
⊕
j=1

bcjaji)
lt
(

n′

⊕
j′=1

b′c′ j′a
′
j′i′)

lt
}0X]]

lt

(δr, δl)

(λ⊕, ρ⊕, λ⊗, λ
●)

α⊗

(λ−⊕, ρ−⊕, ρ−⊗, ρ−
●)

(ρ ●)

(ρ ●)

(λ⊕, λ
●)

(λ−⊕, ρ−
●)

(ρ− ●)

(α⊕, α±⊗, ξ⊗)

In the lower right path (δr, δl), each prime edge is an identity or contains
δr or δl . Similar notation is used in the other paths.

Since the upper right vertex in (8.8.25) is 0X, the lower right vertex has
the same support as 0X by Lemma 3.1.29. Proposition 3.5.33 implies that
the long concatenated path and (δr, δl) in (8.8.25) have the same value in
C. This implies that (8.8.24) is commutative.

(2) Suppose n = 0 and n′n′′ > 0. This case is similar to case (1). Each en-
try of the diagram (8.8.20) is the value in C of some diagram in Gr(X),
similar to (8.8.25), for some set X of formal variables and some function
φ ∶ X Ob(C). There is one path of the form (δr, δl) that arises from
the 2-cell

(B′ ⊠ B′′)(A′ ⊠ A′′) B′A′ ⊠ B′′A′′⊠2

in (8.8.20) as part of the last case of (8.6.20).
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(3) The other cases have either (i) n′ = 0, or (ii) n′ > 0 and n = n′′ = 0. Each
of these cases is similar to case (1). In each case, each entry of (8.8.20) is
the value in C of some diagram in Gr(X), similar to (8.8.25), for some set
X of formal variables and some function φ ∶ X Ob(C). However, the
elementary edges δr and δl do not appear in this diagram because each
entry of each of the two 2-cells in (8.8.19) is a component of λ− ● or ρ− ●.

This finishes the proof of the lemma. □

Lemma 8.8.26. In the setting of (8.8.15), suppose that m, m′, m′′, n, n′, n′′, p, p′, p′′ > 0.
Then the equality in (8.8.16) holds.

Proof. The two pasting diagrams in (8.8.16) are the two composites below.

(8.8.27)

[(B⊠ (B′ ⊠ B′′))(A⊠ (A′ ⊠ A′′))]1m

[BA⊠ (B′ ⊠ B′′)(A′ ⊠ A′′)]1m

[BA⊠ (B′A′ ⊠ B′′A′′)]1m

1p[(BA⊠ B′A′)⊠ B′′A′′]

(B⊠ (B′ ⊠ B′′))[(A⊠ (A′ ⊠ A′′))1m]

1p[(B⊠ B′)(A⊠ A′)⊠ B′′A′′]

(B⊠ (B′ ⊠ B′′))[1n((A⊠ A′)⊠ A′′)]

[(B⊠ (B′ ⊠ B′′))1n]((A⊠ A′)⊠ A′′)

[1p((B⊠ B′)⊠ B′′)]((A⊠ A′)⊠ A′′)

1p[((B⊠ B′)⊠ B′′)((A⊠ A′)⊠ A′′)]

⊠2 ★ 1

[1⊠⊠2] ★ 1

a⊠

a 1 ★ a⊠

a−1

a⊠ ★ 1

a

1 ★⊠21 ★ [⊠2 ⊠ 1]

Consider the diagram (8.8.27).

● Each instance of a is entrywise a4a3a2a1 as in (8.3.5). It involves δr (8.3.6)
in a1 and δ−l (8.3.8) in a4, but neither δ−r nor δl .
● Each instance of a⊠ = ℓ−1α−⊗r is as in (8.8.3). It has neither δ±r nor δ±l .
● Each instance of ⊠2 is entrywise as in the last case in (8.6.20). As ex-

plained in Lemma 8.6.16, it involves δ−r and δ−l , but neither δr nor δl . In
particular, each entry of (⊠2)−1 involves δr and δl , but neither δ−r nor δ−l .

As a brief outline, similar to Section 8.7, we prove the commutativity of each
entry of the diagram (8.8.27) by

● expressing its morphisms using paths in Gr(X) for some set X of formal
variables and some function φ ∶ X Ob(C) and
● applying the Coherence Theorem 3.9.1.

Due to the presence of δ±r and δ±l in some of the morphisms as discussed in the
previous paragraph, we need to consider the inverses of a4 and ⊠2. This direction
reversal creates a zigzag of morphisms. To show that the resulting diagram is
commutative, we need to subdivide it in such a way that the additional morphisms
are also paths in Gr(X)with the same set X and function φ. The detailed argument
is given below.
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Using the notation in (8.8.23), consider the (K, I)-entry of the diagram (8.8.27).
Denote by

● R1 the codomain of r in a⊠ = ℓ−1α−⊗r along the left side;
● R2 the codomain of 1 ★ r in 1 ★ a⊠ in the upper right;
● R3 the codomain of r ★ 1 in a⊠ ★ 1 in the middle right;
● D1 the domain of a4 in a = a4a3a2a1 in the upper left;
● D2 the codomain of (a4)−1 in a−1 in the upper right; and
● D3 the domain of a4 in a in the lower right.

Using these notations and (8.8.23), the (K, I)-entry of the diagram (8.8.27) is equiv-
alent to the outer diagram in C below.

(8.8.28)

D1

R2

D2

R1

D3

R3

f1

g1

h1

g2 f2

h2 g3

f3

The objects and morphisms in the diagram (8.8.28) are described explicitly below.

● In addition to (8.8.23), we use the following indices and abbreviations.

1 ≤ j, l ≤ n 1 ≤ j′, l′ ≤ n′ 1 ≤ j′′, l′′ ≤ n′′

J = (j − 1)n′n′′ + (j′ − 1)n′′ + j′′

L = (l − 1)n′n′′ + (l′ − 1)n′′ + l′′

n
⊕
j=1

=
n
⊕
j=1

n′

⊕
j′=1

n′′

⊕
j′′=1

n
⊕
l=1

=
n
⊕
l=1

n′

⊕
l′=1

n′′

⊕
l′′=1

(8.8.29)
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● Abbreviating⊗ to concatenation, the objects R1, R2, and R3 are as follows.

R1 = [BA⊠ (B′A′ ⊠ B′′A′′)]K,I

= (BA)ki[(B′A′)k′i′(B′′A′′)k′′i′′]

= [
n
⊕
j=1

Bkj Aji]
lt

[{
n′

⊕
j′=1

B′k′ j′A
′
j′i′}

lt

{
n′′

⊕
j′′=1

B′′k′′ j′′A
′′
j′′i′′}

lt

]

R2 = [(B⊠ (B′ ⊠ B′′))(A⊠ (A′ ⊠ A′′))]
K,I

= [
n
⊕
j=1

(B⊠ (B′ ⊠ B′′))K,J(A⊠ (A
′ ⊠ A′′))J,I]

lt

= [
n
⊕
j=1

(Bkj(B′k′ j′B
′′
k′′ j′′))(Aji(A′j′i′A′′j′′i′′))]

lt

R3 = [(B⊠ (B′ ⊠ B′′))((A⊠ A′)⊠ A′′)]
K,I

= [
n
⊕
j=1

(B⊠ (B′ ⊠ B′′))K,J((A⊠ A′)⊠ A′′)J,I]
lt

= [
n
⊕
j=1

(Bkj(B′k′ j′B
′′
k′′ j′′))((Aji A

′
j′i′)A′′j′′i′′)]

lt

● The objects D1, D2, and D3 are as follows.

D1 = [
n
⊕
j=1

[
m
⊕
e=1
(B⊠ (B′ ⊠ B′′))

K,J
{(A⊠ (A′ ⊠ A′′))

J,E
1m

E,I}]
lt

]
lt

= [
n
⊕
j=1

[
m
⊕
e=1
(Bkj(B′k′ j′B

′′
k′′ j′′)){(Aje(A′j′e′A′′j′′e′′))1m

E,I}]
lt

]
lt

D2 = [
n
⊕
j=1

[
n
⊕
l=1

(B⊠ (B′ ⊠ B′′))
K,J
{1n

J,L((A⊠ A′)⊠ A′′)
L,I
}]

lt

]
lt

= [
n
⊕
j=1

[
n
⊕
l=1

(Bkj(B′k′ j′B
′′
k′′ j′′)){1

n
J,L((Ali A

′
l′i′)A

′′
l′′i′′)}]

lt

]
lt

D3 = [
p

⊕
c=1
[

n
⊕
j=1

1
p
K,C{((B⊠ B′)⊠ B′′)

C,J
((A⊠ A′)⊠ A′′)

J,I
}]

lt

]
lt

= [
p

⊕
c=1
[

n
⊕
j=1

1
p
K,C{((BcjB

′
c′ j′)B′′c′′ j′′)((Aji A

′
j′i′)A′′j′′i′′)}]

lt

]
lt
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● With ⊠−2 = (⊠2)−1 and a−4 = (a4)−1, the morphisms in the boundary are
as follows.

f1 = (a3a2a1)[(⊠−2 ★ 1)([1⊠⊠−2] ★ 1)r−1]
K,I

f2 = a−4[(1 ★ ℓ−1)(1 ★ α−⊗)]
K,I

f3 = (a3a2a1)[(ℓ−1 ★ 1)(α−⊗ ★ 1)]
K,I

g1 = a−4[(1 ★⊠−2)(1 ★ [⊠−2 ⊠ 1])ℓ−1α−⊗]
K,I

g2 = a−4[1 ★ r−1]K,I

g3 = (a3a2a1)[r−1 ★ 1]K,I

(8.8.30)

The composite

g−1
1 f3g−1

3 f2g−1
2 f1 ∶ R1 R1

in (8.8.28) is equal to going one round clockwise in the (K, I)-entry in
(8.8.27), starting and ending at R1.
● Using the notation in (8.7.6), the morphism

R1 = [
n
⊕
j=1

Bkj Aji]
lt

[{
n′

⊕
j′=1

B′k′ j′A
′
j′i′}

lt

{
n′′

⊕
j′′=1

B′′k′′ j′′A
′′
j′′i′′}

lt

]

R2 = [
n
⊕
j=1

(Bkj(B′k′ j′B
′′
k′′ j′′))(Aji(A′j′i′A′′j′′i′′))]

lt

h1

has the form (α−⊕, α±⊗, ξ⊗, δr, δl). In h1, the following statements hold.
– The morphisms involving δr and δl bring the three sums to the front.
– The morphisms involving α±⊗ and ξ⊗ permute

(Bkj Aji)(B′k′ j′A
′
j′i′)(B′′k′′ j′′A

′′
j′′i′′) to (Bkj(B′k′ j′B

′′
k′′ j′′))(Aji(A′j′i′A′′j′′i′′))

in each summand.
– The morphisms involving α−⊕ move the additive brackets to match

with those in R2.
● The morphism

R2 = [
n
⊕
j=1

(Bkj(B′k′ j′B
′′
k′′ j′′))(Aji(A′j′i′A′′j′′i′′))]

lt

R3 = [
n
⊕
j=1

(Bkj(B′k′ j′B
′′
k′′ j′′))((Aji A

′
j′i′)A′′j′′i′′)]

lt

h2

has the form (α−⊗)with one copy of

Aji(A′j′i′A′′j′′i′′) (Aji A′j′i′)A′′j′′i′′
α−⊗

in each summand.
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To show that the diagram (8.8.28) is commutative, we use the set

X = {0X, 1X, aje, a′j′e′ , a′′j′′e′′ , bcj, b′c′ j′ , b′′c′′ j′′}

of formal variables, with the indices as in (8.8.22) and (8.8.29), and the function
φ ∶ X Ob(C) defined as follows.

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X.
1 if x = 1X.
Aje if x = aje.
A′j′e′ if x = a′j′e′ .
A′′j′′e′′ if x = a′′j′′e′′ .
Bcj if x = bcj.
B′c′ j′ if x = b′c′ j′ .
B′′c′′ j′′ if x = b′′c′′ j′′ .

By the description above of the objects and morphisms in (8.8.28), there exists a
diagram in Gr(X) below in which the value in C of each path is the corresponding
edge in (8.8.28).

(8.8.31)

u1

v2

u2

v1

u3

v3

F1

G1

H1

G2 F2

H2 G3

F3

In the diagram (8.8.31), for 1 ≤ t ≤ 3, the following statements hold.
● The images of vt and ut under φ are, respectively, Rt and Dt in (8.8.28).

For example, the vertex

v2 = [
n
⊕
j=1

(bkj(b′k′ j′b
′′
k′′ j′′))(aji(a′j′i′a′′j′′i′′))]

lt

.

● The images of Ft and Gt under φ are, respectively, ft and gt.
● The images of H1 and H2 under φ are, respectively, h1 and h2.

Moreover, by (8.2.4), (8.2.10), (8.3.5), Lemma 8.6.16, and (8.8.30), the following
statements hold.

● Each prime edge in F1 is an identity or contains α±⊕, λ−⊕, ρ−⊕, ξ⊕, α±⊗,
ρ−⊗, ξ−⊗, ρ− ●, δl , or δr.
● Each prime edge in F2 is an identity or contains λ−⊕, ρ−⊕, α−⊗, λ−⊗, λ− ●,

or δl .
● Each prime edge in F3 is an identity or contains α±⊕, λ−⊕, ρ−⊕, ξ⊕, α±⊗,

λ−⊗, λ− ●, or δr.
● Each prime edge in G1 is an identity or contains α−⊕, λ−⊕, ρ−⊕, α±⊗, λ−⊗,

ξ−⊗, λ− ●, δl , or δr.
● Each prime edge in G2 is an identity or contains λ−⊕, ρ−⊕, ρ−⊗, ρ− ●, or δl .
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● Each prime edge in G3 is an identity or contains α±⊕, λ−⊕, ρ−⊕, ξ⊕, α⊗,
ρ−⊗, ρ− ●, or δr.
● Each prime edge in H1 is an identity or contains α−⊕, α±⊗, ξ⊗, δl , or δr.
● Each prime edge in H2 is an identity or contains α−⊗.

In (8.8.31), the vertex v2 is regular as in Definition 3.1.25, so the vertex v1 is
also regular by Lemma 3.1.29. Since C is assumed to be tight, the Coherence Theo-
rem 3.9.1 implies that in each of the following three cases, the two paths have the
same value in C.

● F1 and (G2, H1) ∶ v1 u1.
● G1 and (F3, H2, H1) ∶ v1 u3.
● F2 and (G3, H2) ∶ v2 u2.

This implies that the diagram (8.8.28) is commutative. This, in turn, implies that
the diagram (8.8.27) is commutative. □

Lemma 8.8.32. a⊠ in Definition 8.8.1 is a strong transformation.

Proof. We have proved all the necessary assertions.

● Lemma 8.8.5 shows that a⊠ in (8.8.3) is a natural isomorphism.
● Lemma 8.8.11 shows that a⊠ satisfies the lax unity axiom (6.2.15).
● Lemmas 8.8.17 and 8.8.26 show that a⊠ satisfies the lax naturality axiom

(6.2.16).

Therefore, a⊠ is a strong transformation. □

The Right Adjoint of the Monoidal Associator.

Definition 8.8.33. With respect to the pseudofunctor (⊠,⊠2,⊠0) in Definition 8.6.19
and Lemma 8.7.31, define the data of a lax transformation

⊠(1×⊠) ⊠(⊠× 1)a⊠ ●

as follows.

Component 1-Cells: For each triple of objects (m, n, p) ∈ (MatC)3, define

(8.8.34) (m⊠ (n⊠ p)) = mnp mnp = ((m⊠ n)⊠ p)
a⊠ ●m,n,p

as the identity matrix 1mnp ∈MatCmnp,mnp in (8.1.6).
Component 2-Cells: For each triple of 1-cells

(A = (Ai′i), B = (Bj′ j), C = (Ck′k)) ∈MatCm,m′ ×MatCn,n′ ×MatCp,p′ ,

define the component 2-cell

a⊠ ●A,B,C ∈MatCmnp,m′n′p′([(A⊠ B)⊠C]a⊠ ●m,n,p; a⊠ ●m′,n′,p′[A⊠ (B⊠C)])
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as the following vertical composite.

(8.8.35)

mnp

mnp m′n′p′

m′n′p′

1
mnp (A⊠ B)⊠C

A⊠ (B⊠C)
1

m′n′p′

(A⊠ B)⊠C

A⊠ (B⊠C)

⇒

α⊗

⇒

r(A⊠ B)⊠C

⇒

ℓ−1
A⊠ (B⊠C)

● ℓ is the base left unitor in MatC in (8.2.2).
● r is the base right unitor in MatC in (8.2.8).
● α⊗ is the 2-cell with ((i′ − 1)n′p′ + (j′ − 1)p′ + k′, (i − 1)np + (j − 1)p + k)-entry

the structure morphism in C,

(Ai′i ⊗ Bj′ j)⊗Ck′k Ai′i ⊗ (Bj′ j ⊗Ck′k)
α⊗Ai′ i ,Bj′ j ,Ck′k

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p, 1 ≤ i′ ≤ m′, 1 ≤ j′ ≤ n′, and 1 ≤ k′ ≤ p′.
This finishes the definition of a⊠ ●. ◇
Lemma 8.8.36. a⊠ ● in Definition 8.8.33 is a strong transformation.

Proof. The proofs of Lemmas 8.8.5, 8.8.11, 8.8.17, and 8.8.26 for a⊠ apply to a⊠ ● with
only cosmetic changes. □

The Unit and the Counit of the Monoidal Associator. Recall
● the identity strong transformation in Lemma 6.2.17,
● the horizontal composition of lax transformations in Definition 6.2.20,
● modification in Definition 6.3.1, and
● the base left unitor ℓ in (8.2.2).

Next we define the unit and the counit for (a⊠, a⊠ ●).
Definition 8.8.37. For the strong transformations

⊠(⊠× 1) ⊠(1×⊠)
a⊠

a⊠ ●

in Definitions 8.8.1 and 8.8.33, define the data

1⊠(⊠×1) a⊠ ●a⊠
ηa

a⊠a⊠ ● 1⊠(1×⊠)
εa

as consisting of the component 2-cells

(8.8.38)

(1⊠(⊠×1))(m,n,p) = 1
mnp (a⊠a⊠ ●)(m,n,p) = 1mnp1mnp

(a⊠ ●a⊠)(m,n,p) = 1mnp1mnp (1⊠(1×⊠))(m,n,p) = 1
mnp

ℓ−1
1

mnpηa
(m,n,p) = ℓ

1
mnpεa

(m,n,p) =

in MatCmnp,mnp for each triple of objects (m, n, p) ∈ (MatC)3. ◇
Lemma 8.8.39. ηa and εa in Definition 8.8.37 are invertible modifications.
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Proof. Each component 2-cell of each of ηa and εa is invertible by Lemma 8.2.1.
We will show that ηa is a modification; the proof for εa is obtained by a slight
adjustment.

By (6.2.18) applied to 1⊠(⊠×1) and (6.2.21) applied to a⊠ ●a⊠, the modification
axiom (6.3.2) for ηa ∶ 1⊠(⊠×1) a⊠ ●a⊠ states that, for each triple of 1-cells

(A, B, C) ∈MatCm,m′ ×MatCn,n′ ×MatCp,p′ ,

the following equality of pasting diagrams in MatCq,q′ holds, with q = mnp and
q′ = m′n′p′.

(8.8.40) =

q q′

q q′

q′

(A⊠ B)⊠C

(A⊠ B)⊠C

1q
1q′

1q′

(A⊠ B)⊠C

1q′

⇒r
⇒ℓ
−1

⇒η
a

q q′

q q′

q′

(A⊠ B)⊠C

(A⊠ B)⊠C

1q
1q′

1q′

q A⊠ (B⊠C)

1q

1q

⇒η
a

⇒
a⊠A,B,C

⇒
a⊠ ●A,B,C

On the right-hand side of (8.8.40), by Convention 6.2.12, there are

● one instance of the base associator a in (8.3.2) and
● two instances of a−1

that are not explicitly displayed. If qq′ = 0, then MatCq,q′ is the terminal category,
and the equality in (8.8.40) holds.

Suppose qq′ > 0. The proof for this case proceeds along the lines of the proof
of Lemma 8.8.26. Due to the presence of both the base associator a and its inverse,
a typical entry of (8.8.40) involves δ±r and δ±l . Therefore, when the entries of the
2-cells in (8.8.40) are realized as paths in Gr(X), the diagram will need to be fur-
ther subdivided before the Coherence Theorem 3.9.1 can be applied. The detailed
argument is given below.

The two pasting diagrams in (8.8.40) are the two composites in MatCq,q′ below.

(8.8.41)

((A⊠ B)⊠C)1q

(A⊠ B)⊠C

1q′((A⊠ B)⊠C)

(1q′1q′)((A⊠ B)⊠C)

((A⊠ B)⊠C)(1q1q)

[((A⊠ B)⊠C)1q]1q

[1q′(A⊠ (B⊠C))]1q

1q′[(A⊠ (B⊠C))1q]

1q′[1q′((A⊠ B)⊠C)]

r

ℓ−1

ηa ★ 1 = ℓ−1 ★ 1

1 ★ ηa = 1 ★ ℓ−1 a−1

a⊠ ● ★ 1

a

1 ★ a⊠

a−1
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To show that each entry of (8.8.41) is a commutative diagram in C, consider the
following indices and abbreviations.

(8.8.42)

1 ≤ i, s1, t1 ≤ m 1 ≤ i′, u1, v1 ≤ m′

1 ≤ j, s2, t2 ≤ n 1 ≤ j′, u2, v2 ≤ n′

1 ≤ k, s3, t3 ≤ p 1 ≤ k′, u3, v3 ≤ p′

Q = (i − 1)np + (j − 1)p + k Q′ = (i′ − 1)n′p′ + (j′ − 1)p′ + k′

S = (s1 − 1)np + (s2 − 1)p + s3 U = (u1 − 1)n′p′ + (u2 − 1)p′ + u3

T = (t1 − 1)np + (t2 − 1)p + t3 V = (v1 − 1)n′p′ + (v2 − 1)p′ + v3

q

⊕
s=1
=

m
⊕
s1=1

n
⊕
s2=1

p

⊕
s3=1

q′

⊕
u=1
=

m′

⊕
u1=1

n′

⊕
u2=1

p′

⊕
u3=1

q

⊕
t=1
=

m
⊕
t1=1

n
⊕
t2=1

p

⊕
t3=1

q′

⊕
v=1
=

m′

⊕
v1=1

n′

⊕
v2=1

p′

⊕
v3=1

We also use

● the entrywise decomposition a = a4a3a2a1 in (8.3.5),
● the definition of a⊠ = ℓ−1α−⊗r in (8.8.3),
● the definition of a⊠ ● = ℓ−1α⊗r in (8.8.35), and
● concatenation for ⊗ and the shorthand a−4 = (a4)−1.

The (Q′, Q)-entry of (8.8.41) is equivalent to the following diagram in C.

(8.8.43)

Y1 = [
q

⊕
t=1
((Ai′t1 Bj′t2)Ck′t3

)[
q

⊕
s=1

1
q
T,S1

q
S,Q]

lt

]
lt

Y2 = [
q

⊕
t=1
((Ai′t1 Bj′t2)Ck′t3

)1q
T,Q]

lt

Y3 = (Ai′iBj′ j)Ck′k

Y4 = [
q′

⊕
u=1

1
q′

Q′,U((Au1iBu2 j)Cu3k)]
lt

Y5 = [
q′

⊕
u=1
[

q′

⊕
v=1

1
q′

Q′,V1
q′

V,U]
lt

((Au1iBu2 j)Cu3k)]
lt

Y6 = [
q′

⊕
v=1
[

q′

⊕
u=1

1
q′

Q′,V{1
q′

V,U((Au1iBu2 j)Cu3k)}]
lt

]
lt

[
q

⊕
t=1
[

q

⊕
s=1
((Ai′t1 Bj′t2)Ck′t3

)(1q
T,S1

q
S,Q)]

lt

]
lt

= Z1

[
q

⊕
s=1
[

q

⊕
t=1
((Ai′t1 Bj′t2)Ck′t3

)1q
T,S]

lt

1
q
S,Q]

lt

= Z2

[
q

⊕
s=1
[

q′

⊕
v=1

1
q′

Q′,V(Av1s1(Bv2s2 Cv3s3))]
lt

1
q
S,Q]

lt

= Z3

[
q′

⊕
v=1
[

q

⊕
s=1

1
q′

Q′,V{(Av1s1(Bv2s2 Cv3s3))1
q
S,Q}]

lt

]
lt

= Z4

[
q′

⊕
v=1

1
q′

Q′,V[
q

⊕
s=1
(Av1s1(Bv2s2 Cv3s3))1

q
S,Q]

lt

]
lt

= Z5

[
q′

⊕
v=1

1
q′

Q′,V[
q′

⊕
u=1

1
q′

V,U((Au1iBu2 j)Cu3k)]
lt

]
lt

= Z6

1 ★ ℓ−1

r

ℓ−1

ℓ−1 ★ 1

a3a2a1

a−4

a3a2a1

(ℓ−1α⊗r) ★ 1

a3a2a1

a−4

1 ★ (ℓ−1α−⊗r)

a−4
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To show that the diagram (8.8.43) is commutative when suitably subdivided,
we use the set of formal variables

X = {0X, 1X, av1s1 , bv2s2 , cv3s3},

with the indices as in (8.8.42), and the function φ ∶ X Ob(C) defined as fol-
lows.

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X.
1 if x = 1X.
Av1s1 if x = av1s1 .
Bv2s2 if x = bv2s2 .
Cv3s3 if x = cv3s3 .

For 1 ≤ l ≤ 6,
● yl ∈ Xfr is obtained from Yl in (8.8.43) by replacing the symbols

(A, B, C,1q,1q′) with (a, b, c, δX, δX),
where δX is as in (8.4.6), and
● zl ∈ Xfr is obtained in a similar way from Zl in (8.8.43).

For example,

y1 = [
q

⊕
t=1
((ai′t1 bj′t2)ck′t3

)[
q

⊕
s=1

δX
T,SδX

S,Q]
lt

]
lt

.

Using (8.2.4), (8.2.10), (8.3.5), and the notation in (8.7.6), there is a diagram in
Gr(X) below in which the value in C of each boundary path is the corresponding
edge in (8.8.43).

(8.8.44)

y1

y2

y3

y4

y5

y6

z1

z2

z3

z4

z5

z6

ai′i (bj′ jck′k)

(λ−⊕, ρ−⊕, λ−⊗, λ−
●)

(λ⊕, ρ⊕, ρ⊗, ρ
●)

(λ−⊕, ρ−⊕, λ−⊗, λ−
●)

(λ−⊕, ρ−⊕, λ−⊗, λ−
●)

(α±⊕, ξ⊕, α⊗, δr)

(δl)

(α±⊕, ξ⊕, α⊗, δr)

(λ±⊕, ρ±⊕, α⊗, λ−⊗, ρ⊗, λ−
●, ρ

●)

(α±⊕, ξ⊕, α⊗, δr)

(δl)

(λ±⊕, ρ±⊕, α−⊗, λ−⊗, ρ⊗, λ−
●, ρ

●)
(δl)

(λ⊕, ρ⊕, ρ⊗, λ
●, ρ

●)

(λ⊕, ρ⊕, λ⊗, ρ⊗, λ
●, ρ

●)

α−⊗

Consider the diagram (8.8.44).
● As an example of the notation, in the lower left path y5 y6, each

prime edge is an identity or contains α±⊕, ξ⊕, α⊗, or δr.
● In the path z1 y3, the following statements hold.

(i) ρ⊗, λ ●, and ρ ● are used to reduce each summand

((ai′t1 bj′t2)ck′t3
)(δX

T,SδX
S,Q)
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in z1 to

⎧⎪⎪⎨⎪⎪⎩

0X if T /= S or S /= Q, and
y3 = (ai′ibj′ j) ck′k if T = S = Q.

(ii) λ⊕ and ρ⊕ are then used to remove all the 0X’s.
● The path

z4 ai′i (bj′ jck′k)

is defined similarly.

Since the vertex y3 is regular as in Definition 3.1.25, each vertex in (8.8.44) is
regular by Lemma 3.1.29. Since C is assumed to be tight, the Coherence Theo-
rem 3.9.1 implies that the image of (8.8.44) in C is a commutative diagram. This
implies that (8.8.43) is commutative. This in turn implies that (8.8.41) is commuta-
tive. □

The Triangle Identities of the Monoidal Associator.

Lemma 8.8.45. The quadruple (a⊠, a⊠ ●, ηa, εa) satisfies the triangle identities.

Proof. We will show the left triangle identity in (6.3.10). The proof for the right
triangle identity is obtained by a slight adjustment.

The left triangle identity states the commutativity of the left diagram below.

(8.8.46)

a⊠1⊠(⊠×1) a⊠

a⊠(a⊠ ●a⊠) 1⊠(1×⊠)a
⊠

(a⊠a⊠ ●)a⊠

ra⊠

1a⊠ ∗ ηa

a−1
a⊠,a⊠ ●,a⊠ εa ∗ 1a⊠

ℓa⊠

1q1q 1q

1q(1q1q) 1q1q

(1q1q)1q

r1q

1 ★ ℓ−1
1q

a−1
1q ,1q ,1q ℓ1q ★ 1

ℓ1q

Consider the left diagram in (8.8.46).

● 1a⊠ ∗ ηa and εa ∗ 1a⊠ are horizontal composites of modifications in (6.3.5).
● The component 2-cells of ℓa⊠ , ra⊠ , and a−1

a⊠,a⊠ ●,a⊠ are computed in the ma-
trix bicategory MatC using, respectively, the base left unitor in (8.2.2), the
base right unitor in (8.2.8), and the inverse of the base associator in (8.3.2).
● The composite of any two consecutive edges is the vertical composite of

modifications in (6.3.4).

To show that the left diagram in (8.8.46) is commutative, it suffices to show that
the two composites have the same component 2-cells.

In other words, it suffices to show that, for each triple of objects (m, n, p) ∈
(MatC)3, the right diagram in (8.8.46) is commutative in MatCq,q with q = mnp. This
is equivalent to showing that, for 1 ≤ s, t ≤ q, the (s, t)-entry of the right diagram
in (8.8.46) is commutative in C. Using the entrywise factorization a = a4a3a2a1 in
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(8.3.5) and with ⊗ abbreviated to concatenation, the (s, t)-entry of the right dia-
gram in (8.8.46) is equivalent to the following diagram in C.

(8.8.47)

[
q

⊕
i=1

1
q
si1

q
it]

lt
1

q
st

[
q

⊕
i=1

1
q
si[

q

⊕
j=1

1
q
ij1

q
jt]

lt

]
lt

[
q

⊕
j=1

1
q
sj1

q
jt]

lt

[
q

⊕
i=1
[

q

⊕
j=1

1
q
si (1

q
ij1

q
jt) ]

lt

]
lt

[
q

⊕
j=1
[

q

⊕
i=1

1
q
si1

q
ij]

lt

1
q
jt]

lt

(r−1
1q )st

(1 ★ ℓ−1
1q )st

a−4

(ℓ−1
1q )st

(ℓ−1
1q ★ 1)st

a3a2a1

To show that (8.8.47) is commutative, we use
● the set X = {0X, 1X} and
● the function φ ∶ X Ob(C) defined by φ(0X) = 0 and φ(1X) = 1.

By (8.2.4), (8.2.10), (8.3.5), and the notation in (8.4.6) and (8.7.6), there exists a
diagram in Gr(X) below in which the value in C of each path is the corresponding
edge in (8.8.47).

(8.8.48)

[
q

⊕
i=1

δX
siδ

X
it]

lt
δX

st

[
q

⊕
i=1

δX
si [

q

⊕
j=1

δX
ijδ

X
jt]

lt

]
lt

[
q

⊕
j=1

δX
sjδ

X
jt]

lt

[
q

⊕
i=1
[

q

⊕
j=1

δX
si (δX

ijδ
X
jt) ]

lt

]
lt

[
q

⊕
j=1
[

q

⊕
i=1

δX
siδ

X
ij]

lt

δX
jt]

lt

(λ−⊕, ρ−⊕, ρ−⊗, ρ−
●)

(λ−⊕, ρ−⊕, λ−⊗, λ−
●)

(δl)

(λ−⊕, ρ−⊕, λ−⊗, λ−
●)

(λ−⊕, ρ−⊕, λ−⊗, λ−
●)

(α±⊕, ξ⊕, α⊗, δr)

For example, in the bottom horizontal path, each prime edge is an identity or
contains α±⊕, ξ⊕, α⊗, or δr.

● If s /= t, then δX
st = 0X. Proposition 3.5.33 implies that the image of (8.8.48)

is a commutative diagram in C.
● If s = t, then δX

ss = 1X, which is regular in the sense of Definition 3.1.25.
Since C is assumed to be tight, the Coherence Theorem 3.9.1 implies that
the image of (8.8.48) is a commutative diagram in C.

Therefore, the right, hence also the left, diagram in (8.8.46) is commutative. □

Lemma 8.8.49. The quadruple (a⊠, a⊠ ●, ηa, εa) with
● a⊠ in Definition 8.8.1,
● a⊠ ● in Definition 8.8.33, and
● ηa and εa in Definition 8.8.37

is an adjoint equivalence.

Proof. We already proved the following statements.
● a⊠ is a strong transformation by Lemma 8.8.32.
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● a⊠ ● is a strong transformation by Lemma 8.8.36.
● ηa and εa are invertible modifications by Lemma 8.8.39.
● The triangle identities are satisfied by Lemma 8.8.45.

This is sufficient by Explanation 6.4.6. □

8.9. The Monoidal Unitors

We continue to assume that C is an arbitrary tight symmetric bimonoidal cat-
egory as in Definition 2.1.2. We are in the process of constructing a monoidal bi-
category structure, in the sense of Definition 6.4.1, on the matrix bicategory MatC.
In this section, we define the monoidal unitors (ℓ⊠, ℓ⊠ ●, ηℓ, εℓ) and (r⊠, r⊠ ●, ηr, εr).

Recall

● the identity strict functor 1B ∶ B B for each bicategory B in Exam-
ple 6.2.10;
● the strictly unitary pseudofunctor

(1⊠, 12
⊠
, 10
⊠
) ∶ 1 MatC

in Definition 8.5.1 and Lemma 8.5.2; and
● the pseudofunctor

(⊠,⊠2,⊠0) ∶MatC ×MatC MatC

in Definition 8.6.19 and Lemma 8.7.31.

With the composite of pseudofunctors in Definition 6.2.6, we consider the follow-
ing two composites.

MatC (MatC)2 MatC

1⊠ × 1MatC

1MatC × 1⊠

⊠

As discussed in Explanation 6.4.6, the left monoidal unitor (ℓ⊠, ℓ⊠ ●, ηℓ, εℓ) con-
sists of the following data.

(i) ℓ⊠ and ℓ⊠ ● are strong transformations as in Definition 6.2.14 as follows.

⊠(1⊠ × 1MatC) 1MatC
ℓ⊠

ℓ⊠
●

These strong transformations are decorated with ⊠ to avoid confusion
with the base left unitor (8.2.2) in MatC.

(ii) ηℓ and εℓ are invertible modifications as in Definition 6.3.1 as follows.

1⊠(1⊠×1
MatC

) ℓ⊠ ●ℓ⊠

ℓ⊠ℓ⊠ ● 11
MatC

ηℓ

εℓ

Moreover, these data are required to satisfy the triangle identities (6.3.10). The left
monoidal unitor is defined in Definitions 8.9.1, 8.9.5, and 8.9.8.

The right monoidal unitor (r⊠, r⊠ ●, ηr, εr) consists of the following data.
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(i) r⊠ and r⊠ ● are strong transformations as follows.

⊠(1MatC × 1⊠) 1MatC
r⊠

r⊠ ●

These strong transformations are decorated with ⊠ to avoid confusion
with the base right unitor (8.2.8) in MatC.

(ii) ηr and εr are invertible modifications as follows.

1⊠(1
MatC

×1⊠) r⊠ ●r⊠

r⊠r⊠ ● 11
MatC

ηr

εr

Moreover, these data are required to satisfy the triangle identities (6.3.10). The
right monoidal unitor is defined in Definitions 8.9.14, 8.9.17, and 8.9.20.

The Left Monoidal Unitor. First we define the left adjoint of the left monoidal
unitor.

Definition 8.9.1. Define the data of a lax transformation

⊠(1⊠ × 1MatC) 1MatC
ℓ⊠

as follows.
Component 1-Cells: For each object m ∈MatC, define

(8.9.2) m = 1⊠m (1MatC
)m = m

ℓ⊠m

as the identity matrix 1m ∈MatCm,m in (8.1.6).
Component 2-Cells: For each 1-cell A = (Aji) ∈MatCm,n, define

ℓ⊠A ∈MatCm,n( (1MatC A) ℓ⊠m; ℓ⊠n (⊠(1⊠ × 1MatC)) (A))

as the following vertical composite 2-cell.

(8.9.3)

m

m n

n

1
m A

1⊠ A 1
n

A

1⊠ A

⇒

λ−⊗

⇒

rA

⇒

ℓ−1
1⊠A

● 1 ⊠ A is the scalar product in (8.6.2). This makes sense because the
identity matrix 11 ∈MatC1,1 has the unique entry 1 ∈ C, and

(⊠(1⊠ × 1MatC)) (A) = 1
1 ⊠ A = 1⊠ A = (1⊗ Aji)

by the definition (8.6.3) of the matrix tensor product.
● ℓ is the base left unitor in MatC in (8.2.2).
● r is the base right unitor in MatC in (8.2.8).
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● λ−⊗ is the 2-cell with (j, i)-entry the structure morphism in C,

Aji 1⊗ Aji

λ−⊗Aji

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

This finishes the definition of ℓ⊠. ◇
Explanation 8.9.4. The matrix 1⊠ A ∈ MatCm,n is obtained from A by replacing the
(j, i)-entry Aji with the product 1⊗ Aji for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. ◇

Next we define the right adjoint of the left monoidal unitor.

Definition 8.9.5. Define the data of a lax transformation

1MatC ⊠(1⊠ × 1MatC)
ℓ⊠

●

as follows.

Component 1-Cells: For each object m ∈MatC, define

(8.9.6) m = (1MatC
)m 1⊠m = m

ℓ⊠
●

m

as the identity matrix 1m ∈MatCm,m in (8.1.6).
Component 2-Cells: For each 1-cell A = (Aji) ∈MatCm,n, define

ℓ⊠
●

A ∈MatCm,n( (⊠(1⊠ × 1MatC)) (A)ℓ
⊠ ●
m ; ℓ⊠ ●n (1MatC A) )

as the following vertical composite 2-cell.

(8.9.7)

m

m n

n

1
m

1⊠ A

A 1
n

1⊠ A

A

⇒

λ⊗

⇒

r1⊠A

⇒

ℓ−1
A

In this vertical composite, λ⊗ is the 2-cell with (j, i)-entry the structure
morphism in C,

1⊗ Aji Aji

λ⊗Aji

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

This finishes the definition of ℓ⊠ ●. ◇
Next we define the unit and the counit for (ℓ⊠, ℓ⊠ ●).

Definition 8.9.8. Define the data

1⊠(1⊠×1
MatC

) ℓ⊠ ●ℓ⊠
ηℓ

ℓ⊠ℓ⊠ ● 11
MatC

εℓ
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as consisting of the component 2-cells

(1⊠(1⊠×1
MatC

))m = 1
m (ℓ⊠ℓ⊠ ●)m = 1m1m

(ℓ⊠ ●ℓ⊠)m = 1m1m (11
MatC
)m = 1

m

ℓ−1
1mηℓm =

ℓ1mεℓm =

in MatCm,m for each object m ∈MatC. ◇
Lemma 8.9.9. The quadruple (ℓ⊠, ℓ⊠ ●, ηℓ, εℓ) in Definitions 8.9.1, 8.9.5, and 8.9.8 is an
adjoint equivalence.

Proof. The statement of the lemma means the following three assertions.
(1) ℓ⊠ and ℓ⊠ ● are strong transformations.
(2) ηℓ and εℓ are invertible modifications.
(3) The triangle identities (6.3.10) are satisfied.

The naturality of ℓ⊠A and ℓ⊠ ●A with respect to A follows from the naturality of λ⊕,
ρ⊕, λ⊗, ρ⊗, λ ●, and ρ ● in C.

Taking advantage of the similarity between (ℓ⊠, ℓ⊠ ●, ηℓ, εℓ) and (a⊠, a⊠ ●, ηa, εa)
in Definitions 8.8.1, 8.8.33, and 8.8.37, the above assertions are proved by simpler
versions of the proofs of Lemmas 8.8.5, 8.8.11, 8.8.17, 8.8.26, 8.8.39, and 8.8.45.
Since we already showed all the detailed argument in Section 8.8, below we only
state the equalities that one has to check. In marginal cases with MatCm,0 or MatC0,m,
which are both the terminal category, the equality holds automatically. In every
other case, one has to show that some diagram of 2-cells in MatC is commutative.
In each entry, the diagram is realized as paths in Gr(X) for some set X of formal
variables and some function φ ∶ X Ob(C). The desired commutativity in C
then follows from either

● Proposition 3.5.33, if one vertex has the same support as 0X, or
● the Coherence Theorem 3.9.1 in every other case, where the vertices are

regular.
Analogous to (8.8.12), the lax unity axiom (6.2.15) for ℓ⊠ states the following

equality of pasting diagrams in MatCm,m for m ≥ 0.

(8.9.10) =

m m

m m

1
m

1
m

1⊠1m

1m

1m

⇒11m

⇒ℓ⊠1m
m m

m m

1
m

1
m

1⊠1m

1m

1⊠1m

1m

1m

⇒ℓ1m

⇒r−1
1m

⇒⊠0
(1,m)

⇒11 ⊠ 11m

Consider (8.9.10).
● ℓ⊠

1m = ℓ−1
1⊠1m λ−⊗r1m .
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● Each diagonal entry of 1⊠1m is 1⊗1, and each off-diagonal entry is 1⊗0.
● ⊠0

(1,m) is
– λ−⊗

1
∶ 1 1⊗1 in each diagonal entry and

– ρ− ●
1
∶ 0 1⊗ 0 in each off-diagonal entry.

● 11 ⊠ 11m is entrywise an identity morphism in C.

The lax unity axiom for ℓ⊠ ● is analogous to (8.9.10).
Analogous to (8.8.16), the lax naturality axiom (6.2.16) for ℓ⊠ states the follow-

ing pasting diagram equality in MatCm,p for 1-cells (A, B) ∈MatCm,n ×MatCn,p.

(8.9.11) =

m p

m p

n

1
m

1
p

1⊠ BA

A B

BA

⇒1BA

⇒ℓ⊠BA m p

m p

n

1
m

1
p

1⊠ BA

A B

n
1⊠ A 1⊠ B

1
n

11⊠ BA

⇒
ℓ⊠A ⇒

ℓ⊠B

⇒⊠2

⇒λ⊗1 ⊠ 1BA

Consider (8.9.11).

● ℓ⊠BA = ℓ
−1
1⊠BAλ−⊗rBA, ℓ⊠A = ℓ

−1
1⊠Aλ−⊗rA, and ℓ⊠B = ℓ

−1
1⊠Bλ−⊗rB.

● ⊠2 is either an identity morphism or as in (8.6.20).
● For 1 ≤ i ≤ m and 1 ≤ k ≤ p, the (k, i)-entry of 11⊠ BA is

(11⊠ BA)ki = (1⊗1)⊗ (BA)ki ∈ C.

The lax naturality axiom for ℓ⊠ ● is analogous to (8.9.11).
Analogous to (8.8.40), the modification axiom (6.3.2) for ηℓ states that for each

1-cell A ∈MatCm,n, the following pasting diagram equality holds.

(8.9.12) =

m n

m n

n

1⊠ A

1⊠ A

1m
1n

1n

1⊠ A

1n

⇒r1⊠A

⇒
ℓ−1
1⊠A

⇒ℓ
−1
1n

m n

m n

n

1⊠ A

1⊠ A

1m
1n

1n

m A

1m

1m

⇒ℓ
−1
1m

⇒
ℓ⊠A

⇒
ℓ⊠
●

A

On the right-hand side, ℓ⊠ ●A = ℓ
−1
A λ⊗r1⊠A. The modification axiom for εℓ is analo-

gous to (8.9.12).
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Analogous to (8.8.46), the left triangle identity in (6.3.10) for (ℓ⊠, ℓ⊠ ●, ηℓ, εℓ)
states the commutativity of the left diagram below.

(8.9.13)

ℓ⊠1⊠(1⊠×1
MatC

) ℓ⊠

ℓ⊠(ℓ⊠ ●ℓ⊠) 11
MatC

ℓ⊠

(ℓ⊠ℓ⊠ ●)ℓ⊠

rℓ⊠

1ℓ⊠ ∗ ηℓ

a−1
ℓ⊠,ℓ⊠ ●,ℓ⊠ εℓ ∗ 1ℓ⊠

ℓℓ⊠

1m1m 1m

1m(1m1m) 1m1m

(1m1m)1m

r1m

1 ★ ℓ−1
1m

a−1
1m ,1m ,1m ℓ1m ★ 1

ℓ1m

At each object m ∈ MatC, the left diagram in (8.9.13) yields the right diagram in
MatCm,m. The right triangle identity in (6.3.10) is analogous to (8.9.13). □

The Right Monoidal Unitor. Next we define the right monoidal unitor in
MatC, which is similar to the left monoidal unitor.
Definition 8.9.14. Define the data of a lax transformation

⊠(1MatC × 1⊠) 1MatC
r⊠

as follows.
Component 1-Cells: For each object m ∈MatC, define

(8.9.15) m = m⊠ 1 (1MatC
)m = m

r⊠m

as the identity matrix 1m ∈MatCm,m in (8.1.6).
Component 2-Cells: For each 1-cell A = (Aji) ∈MatCm,n, define

r⊠A ∈MatCm,n( (1MatC A) r⊠m; r⊠n (⊠(1MatC × 1⊠)) (A))

as the following vertical composite 2-cell.

(8.9.16)

m

m n

n

1
m A

A⊠1 1
n

A

A⊠1

⇒

ρ−⊗

⇒

rA

⇒

ℓ−1
A⊠1

● A⊠1 is the matrix tensor product in (8.6.3) with

A⊠1 = (Aji ⊗1) = (⊠(1MatC × 1⊠)) (A).

Here and in what follows, the identity matrix 11 ∈ MatC1,1 is abbrevi-
ated to 1.
● ρ−⊗ is the 2-cell with (j, i)-entry the structure morphism in C,

Aji Aji ⊗1
ρ−⊗Aji

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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This finishes the definition of r⊠. ◇
Definition 8.9.17. Define the data of a lax transformation

1MatC ⊠(1MatC × 1⊠)r⊠ ●

as follows.
Component 1-Cells: For each object m ∈MatC, define

(8.9.18) m = (1MatC
)m m⊠ 1 = m

r⊠ ●m

as the identity matrix 1m ∈MatCm,m in (8.1.6).
Component 2-Cells: For each 1-cell A = (Aji) ∈MatCm,n, define

r⊠ ●A ∈MatCm,n( (⊠(1MatC × 1⊠)) (A)r⊠ ●m ; r⊠ ●n (1MatC A) )

as the following vertical composite 2-cell.

(8.9.19)

m

m n

n

1
m A⊠1

A 1
n

A⊠1

A

⇒

ρ⊗

⇒
rA⊠1

⇒

ℓ−1
A

In this vertical composite, ρ⊗ is the 2-cell with (j, i)-entry the structure
morphism in C,

Aji ⊗1 Aji

ρ⊗Aji

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
This finishes the definition of r⊠ ●. ◇
Definition 8.9.20. Define the data

1⊠(1
MatC

×1⊠) r⊠ ●r⊠
ηr

r⊠r⊠ ● 11
MatC

εr

as consisting of the component 2-cells

(1⊠(1
MatC

×1⊠))m = 1
m (r⊠r⊠ ●)m = 1m1m

(r⊠ ●r⊠)m = 1m1m (11
MatC
)m = 1

m

ℓ−1
1mηr

m = ℓ1mεr
m =

in MatCm,m for each object m ∈MatC. ◇
Lemma 8.9.21. The quadruple (r⊠, r⊠ ●, ηr, εr) in Definitions 8.9.14, 8.9.17, and 8.9.20 is
an adjoint equivalence.

Proof. The statement of the lemma means the following three assertions.
(1) r⊠ and r⊠ ● are strong transformations.
(2) ηr and εr are invertible modifications.
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(3) The triangle identities (6.3.10) are satisfied.
The naturality of r⊠A and r⊠ ●A with respect to A follows from the naturality of λ⊕,
ρ⊕, λ⊗, ρ⊗, λ ●, and ρ ● in C.

The rest of the proof is similar to those in Section 8.8, in particular Lem-
mas 8.8.5, 8.8.11, 8.8.17, 8.8.26, 8.8.39, and 8.8.45. As in Lemma 8.9.9, below we
only state the equalities that one has to check.

Analogous to (8.8.12) and (8.9.10), the lax unity axiom (6.2.15) for r⊠ states the
following pasting diagram equality in MatCm,m for m ≥ 0.

(8.9.22) =

m m

m m

1
m

1
m

1m ⊠1

1m

1m

⇒11m

⇒r⊠1m
m m

m m

1
m

1
m

1m ⊠1

1m

1
m ⊠1

1m

1m

⇒ℓ1m

⇒r−1
1m

⇒⊠0
(m,1)

⇒11m ⊠ 11

Consider (8.9.22).
● Each diagonal entry of 1m⊠1 is 1⊗1, and each off-diagonal entry is 0⊗1.
● ⊠0

(m,1) is
– λ−⊗

1
∶ 1 1⊗1 in each diagonal entry and

– λ− ●
1
∶ 0 0⊗1 in each off-diagonal entry.

● 11m ⊠ 11 is entrywise an identity morphism in C.
The lax unity axiom for r⊠ ● is analogous to (8.9.22).

Analogous to (8.8.16) and (8.9.11), the lax naturality axiom (6.2.16) for r⊠ states
the following pasting diagram equality in MatCm,p for 1-cells (A, B) ∈ MatCm,n ×
MatCn,p.

(8.9.23) =

m p

m p

n

1
m

1
p

BA⊠1

A B

BA

⇒1BA

⇒r⊠BA m p

m p

n

1
m

1
p

BA⊠1

A B

n
A⊠1 B⊠1

1
n

BA⊠11

⇒
r⊠A ⇒

r⊠B

⇒⊠2

⇒1BA ⊠ λ⊗
1

In (8.9.23), for 1 ≤ i ≤ m and 1 ≤ k ≤ p, the (k, i)-entry of BA⊠11 is

(BA⊠11)ki = (BA)ki ⊗ (1⊗1) ∈ C.

The lax naturality axiom for r⊠ ● is analogous to (8.9.23).
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Analogous to (8.8.40) and (8.9.12), the modification axiom (6.3.2) for ηr states
that for each 1-cell A ∈MatCm,n, the following pasting diagram equality holds.

(8.9.24) =

m n

m n

n

A⊠1

A⊠1

1m
1n

1n

A⊠1

1n

⇒rA⊠1

⇒
ℓ−1

A⊠1

⇒ℓ
−1
1n

m n

m n

n

A⊠1

A⊠1

1m
1n

1n

m A

1m

1m

⇒ℓ
−1
1m

⇒
r⊠A

⇒
r⊠ ●A

The modification axiom for εr is analogous to (8.9.24).
Analogous to (8.8.46) and (8.9.13), the left triangle identity in (6.3.10) for the

data (r⊠, r⊠ ●, ηr, εr) states the commutativity of the left diagram below.

(8.9.25)

r⊠1⊠(1
MatC

×1⊠) r⊠

r⊠(r⊠ ●r⊠) 11
MatC

r⊠

(r⊠r⊠ ●)r⊠

rr⊠

1r⊠ ∗ ηr

a−1
r⊠,r⊠ ●,r⊠ εr ∗ 1r⊠

ℓr⊠

1m1m 1m

1m(1m1m) 1m1m

(1m1m)1m

r1m

1 ★ ℓ−1
1m

a−1
1m ,1m ,1m ℓ1m ★ 1

ℓ1m

At each object m ∈ MatC, the left diagram in (8.9.25) yields the right diagram in
MatCm,m. The right triangle identity in (6.3.10) is analogous to (8.9.25). □

8.10. The Pentagonator

For a tight symmetric bimonoidal category C, we continue the construction
of a monoidal bicategory structure, in the sense of Definition 6.4.1, on the matrix
bicategory MatC in Theorem 8.4.12. In this section, we construct the pentagonator
in MatC.
Definition 8.10.1. Define π as consisting of the 2-cells

πm,n,p,q ∈MatCs,s with m, n, p, q ≥ 0 and s = mnpq

given by the composite of the following pasting diagram in MatCs,s.

(8.10.2)

((m⊠ n)⊠ p)⊠ q m⊠ (n⊠ (p⊠ q))

(m⊠ (n⊠ p))⊠ q m⊠ ((n⊠ p)⊠ q)

(m⊠ n)⊠ (p⊠ q)

a⊠m,n,p ⊠1q

a⊠m,np,q

1m ⊠ a⊠n,p,q

a⊠mn,p,q a⊠m,n,pq

1s
1s

1s

⇒
⊠−0

mnp,q

⇒

ℓ1s

⇒⊠−0
m,npq

⇒

11s1s

This finishes the definition of π. ◇
Explanation 8.10.3. Consider the pasting diagram in (8.10.2).
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(1) By Definition 8.6.19, each vertex is the object s ∈MatC.
(2) Each instance of a⊠ is a component 1-cell of the monoidal associator in

(8.8.2). In particular,

a⊠m,n,p = 1mnp, a⊠n,p,q = 1npq, and

a⊠mn,p,q = a⊠m,np,q = a⊠m,n,pq = 1s.

As in (8.6.10), each diagonal entry of the 1-cell 1mnp ⊠1q is 1⊗1, and each
off-diagonal entry is 1⊗ 0, 0⊗ 1, or 0⊗ 0. A similar description applies
to the 1-cell 1m ⊠1npq.

(3) By Convention 6.2.12, the domain 1-cell is the horizontal composite

((1m ⊠1npq)1s)(1mnp ⊠1q).

The codomain 1-cell is 1s1s.
(4) Each instance of ⊠0 is a component 2-cell of the lax unity constraint of the

monoidal composition in (8.6.9), with ⊠−0 = (⊠0)−1. If s > 0, then each
entry of each ⊠−0 is
● λ⊗

1
∶ 1⊗1 1 for a diagonal entry and

● ρ ●
1
∶ 1 ⊗ 0 0, λ ●

1
∶ 0 ⊗ 1 0, or λ ●0 ∶ 0 ⊗ 0 0 for an off-

diagonal entry.
(5) ℓ1s ∶ 1s1s 1s is the base left unitor in (8.2.2).
(6) 11s1s is the identity 2-cell of 1s1s.
(7) Each entry of each component 2-cell of π is a composite of morphisms

in C, each being an iterated sum and product of identity morphisms and
one component of λ⊕, ρ⊕, λ⊗, λ ●, or ρ ●.

Moreover, each πm,n,p,q ∈MatCs,s is a well-defined 2-cell by the Bicategorical Pasting
Theorem in [JY21, 3.6.6]. It states that each pasting diagram in a bicategory has a
unique composite, once a bracketing is chosen for the (co)domain composite 1-
cell. ◇
Lemma 8.10.4. In Definition 8.10.1, π is an invertible modification.

Proof. Each component 2-cell of π is a composite of invertible 2-cells by (8.2.2) and
(8.6.9). To verify the modification axiom (6.3.2) for π, consider arbitrary 1-cells

m n p q

m′ n′ p′ q′
B1 B2

B3 B4

in MatC with s = mnpq and s′ = m′n′p′q′. If either s = 0 or s′ = 0, then MatCs,s′ is the
terminal category, and the modification axiom holds automatically.

Suppose s, s′ > 0. We use the abbreviations

B12 = B1 ⊠ B2 B2(34) = B2 ⊠ (B3 ⊠ B4)
B[(12)3)]4 = [(B1 ⊠ B2)⊠ B3]⊠ B4 B(12)(34) = (B1 ⊠ B2)⊠ (B3 ⊠ B4)

a⊠2,3,4 = a⊠B2,B3,B4 a⊠1,23,4 = a⊠B1,B2⊠B3,B4

⊠−2 = (⊠2)−1
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and so forth. Using (6.2.18), (8.6.20), and (8.8.3), the modification axiom (6.3.2) for
the 1-cells (B1, B2, B3, B4) states the following pasting diagram equality in MatCs,s′ .

(8.10.5) =

s

s s′

s

s s′

s′

1
s

1
m ⊠1npq

1
s′

1mnp ⊠1q

B1[2(34)]

B[(12)3]4

1s′

s′

s′

1
s′

1
m′ ⊠1n′p′q′

B[1(23)]4
1m′n′p′ ⊠1q′

B1(23)1mnp ⊠ B41q 1m′n′p′B(12)3 ⊠1q′B4

B1[(23)4]

B11m ⊠ B2(34)1npq

1m′B1 ⊠1n′p′q′B(23)4

⇒⊠
2

⇒
ℓ−1r ⊠ a⊠2,3,4

⇒⊠
−2

⇒
a⊠1,23,4

⇒⊠
2

⇒
a⊠1,2,3 ⊠ ℓ

−1r ⇒⊠
−2

⇒
πm′,n′,p′,q′

s

s s′

s

s s′

s′

1
s

1
m ⊠1npq

1
s′

1mnp ⊠1q

B1[2(34)]

B[(12)3]4

1s′

s

1
s

1
s B(12)(34)

⇒πm,n,p,q

⇒
a⊠1,2,34

⇒
a⊠12,3,4

Consider (8.10.5).
● The common domain 1-cell is

(8.10.6) B1[2(34)][((1m ⊠1npq)1s)(1mnp ⊠1q)].

The common codomain 1-cell is

(8.10.7) (1s′1s′)B[(12)3]4.

● In the bottom pasting diagram, the following statements hold.
– There is one instance of a−1 after 1B1[2(34)] ∗ πm,n,p,q, with a the base

associator in (8.3.2).
– There is one instance of a after a⊠1,2,34 ∗ 11s .
– There is one instance of a−1 after 1

1s′ ∗ a⊠12,3,4.
These a and a−1 are not explicitly displayed in the pasting diagram.
● In the top pasting diagram, the following statements hold.

– There are multiple instances of the base associator and its inverse
that are not explicitly displayed.

– ℓ is the base left unitor in (8.2.2), and r is the base right unitor in
(8.2.8).
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It suffices to prove the equality (8.10.5) in each entry. As in the proofs in Sec-
tion 8.8, in each entry, each of the two composite 2-cells in (8.10.5) is a composite
of morphisms in C. The resulting diagram is the image in C of some diagram in
Gr(X). The main subtlety comes from

● ⊠2, which contains δ−r and δ−l by Lemma 8.6.16, and
● the base associator a = a4a3a2a1 in (8.3.5), which contains δr (8.3.6) in a1

and δ−l (8.3.8) in a4.
Since the elementary edges δl and δr do not have formal inverses as in Defini-
tion 3.1.6, only the inverses of ⊠2 and a4 are represented as paths in Gr(X), creating
a zigzag. Before the Coherence Theorem 3.9.1 can be applied, the diagram must
first be subdivided such that each subdiagram consists of two parallel paths. This
subdivision process is analogous to those in the proofs of Lemmas 8.4.9 and 8.8.26.
The detailed argument is given below.

Consider the following indices and abbreviations.

1 ≤ i ≤ m 1 ≤ j ≤ n 1 ≤ k ≤ p 1 ≤ l ≤ q

1 ≤ i′ ≤ m′ 1 ≤ j′ ≤ n′ 1 ≤ k′ ≤ p′ 1 ≤ l′ ≤ q′

I = (i − 1)npq + (j − 1)pq + (k − 1)q + l

I′ = (i′ − 1)n′p′q′ + (j′ − 1)p′q′ + (k′ − 1)q′ + l′

In the (I′, I)-entry, the two pasting diagrams in (8.10.5) yield the outer diagram in
C below, which we will explain in detail.

(8.10.8)

Z1 R4 S3 R5 S4

R1

S1

R2

S2

R3

Z2

R6

S5

R7

S6

R8S8 R9 S7

Y

2

2

2

2

3

2

3 2

f1

f2

f3

f4 f5

f6

f7

f8
f9

Consider the diagram (8.10.8).
● Z1 is the (I′, I)-entry of the common domain (8.10.6).
● Z2 is the (I′, I)-entry of the common codomain (8.10.7).
● Each arrow is an isomorphism built from the structure morphisms in C.

The number 2 or 3 decorating an arrow means that it is a composite of
that many morphisms.
● With the appropriate inverses taken into account, the left zigzag from Z1

to Z2 is the (I′, I)-entry of the bottom pasting diagram in (8.10.5).
● The top-right-bottom zigzag, from Z1 to S4 to R8 to Z2, is the (I′, I)-entry

of the top pasting diagram in (8.10.5).
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● Each Ri for 1 ≤ i ≤ 9 is the codomain of an instance of a−4 = (a4)−1 (8.3.5),
or of a morphism induced by a−4.
● The object Y is the (I′, I)-entry of B[(12)3]4, that is,

(8.10.9) Y = [(B1
i′i ⊗ B2

j′ j)⊗ B3
k′k]⊗ B4

l′l .

Next we describe explicitly the objects and the morphisms in (8.10.8). Then
we will explain how to realize the diagram using paths in Gr(X) such that, by
Theorem 3.9.1, each of the 9 subdiagrams is commutative in C. We will use the
following abbreviations.

(8.10.10)
1m,npq = 1m ⊠1npq 1m′,n′p′q′ = 1m′ ⊠1n′p′q′

1mnp,q = 1mnp ⊠1q 1m′n′p′,q′ = 1m′n′p′ ⊠1q′

Since we have specified the (I′, I)-entry in (8.10.5), to save space, we will omit the
subscript (I′, I) in most objects and also the subscripts in π and a⊠. In displaying
the objects Ri, we abbreviate ⊗ to concatenation. In the following diagrams, ★ is
the matrix product of morphisms in (8.1.5), and a = a4a3a2a1 refers to an entry of
the base associator in (8.3.5). As mentioned above, we will use ⊠−2 = (⊠2)−1 and
a−4 = (a4)−1.

The left zigzag in (8.10.8) from Z1 to Z2 is the following zigzag in C.

(8.10.11)

R1 = [
s
⊕
t=1
[

s
⊕
u=1

B1[2(34)]
I′t (1s

tu1
s
uI)]

lt

]
lt

B1[2(34)](1s1s)

B1[2(34)][(1m,npq1s)1mnp,q] = Z1S1 = (B1[2(34)]1s)1s

(1s′B(12)(34))1s

R2 = [
s′

⊕
t′=1
[

s
⊕
u=1

1s′
I′t′(B

(12)(34)
t′u 1s

uI)]
lt

]
lt

S2 = 1s′(B(12)(34)1s) 1s′(1s′B[(12)3]4)

[
s′

⊕
t′=1
[

s′

⊕
u′=1

1s′
I′t′(1s′

t′u′B
[(12)3]4
u′ I )]

lt

]
lt

= R3

(1s′1s′)B[(12)3]4 = Z2

1 ★π

a−4

a3a2a1

a⊠ ★ 1

a3a2a1

a−4

1 ★ a⊠
a−4

a3a2a1

As discussed in the bullet point following (8.10.7), the zigzag (8.10.11) is equivalent
to the (I′, I)-entry of the bottom pasting diagram in (8.10.5).
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The top zigzag in (8.10.8) from Z1 to S4 is the following zigzag in C.

(8.10.12)

R5 = [
s
⊕
v=1
{

s
⊕
t=1
[

s
⊕
u=1

B1[2(34)]
I′t (1m,npq

tu 1s
uv)]

lt

}
lt

1
mnp,q
vI ]

lt

S3 = [B1[2(34)](1m,npq1s)]1mnp,q [(B1[2(34)]1m,npq)1s]1mnp,q

R4 = [
s
⊕
t=1
[

s
⊕
u=1

B1[2(34)]
I′t ((1m,npq1s)tu1mnp,q

uI )]
lt

]
lt

Z1 = B1[2(34)][(1m,npq1s)1mnp,q] [(B11m ⊠ B2(34)1npq)1s]1mnp,q = S4

a−4

a3a2a1

[⊕v a−41]lt [⊕v (a3a2a1)1]lt

[⊠−2 ★ 1] ★ 1

In (8.10.12), ⊠−2 comes from the lower left ⊠2 in the top pasting diagram in (8.10.5).
The instances of a−1 before ⊠−2 are needed because of the bracketing of the domain
1-cell (8.10.6).

The right zigzag in (8.10.8) from S4 to R8 is the following zigzag in C.

(8.10.13)

[(1m′B1 ⊠1n′p′q′B(23)4)1s]1mnp,q

S4 = [(B11m ⊠ B2(34)1npq)1s]1mnp,q

[(1m′,n′p′q′B1[(23)4])1s]1mnp,q

[
s
⊕
v=1
{

s′

⊕
t′=1
[

s
⊕
t=1

1
m′,n′p′q′

I′t′ (B1[(23)4]
t′t 1s

tv)]
lt

}
lt

1
mnp,q
vI ]

lt

= R6

[1m′,n′p′q′(B1[(23)4]1s)]1mnp,q = S5

[1m′,n′p′q′(1s′B[1(23)]4)]1mnp,q

[
s
⊕
v=1
{

s′

⊕
t′=1
[

s′

⊕
u′=1

1
m′,n′p′q′

I′t′ (1s′
t′u′B

[1(23)]4
u′v )]

lt

}
lt

1
mnp,q
vI ]

lt

= R7

S6 = [(1m′,n′p′q′1s′)B[1(23)]4]1mnp,q

R8 = [
s′

⊕
t′=1
[

s
⊕
t=1
(1m′,n′p′q′1s′)I′t′(B

[1(23)]4
t′t 1

mnp,q
tI )]

lt

]
lt

[(ℓ−1r ⊠ a⊠) ★ 1] ★ 1

[⊠−2 ★ 1] ★ 1

[⊕v (a3a2a1)1]lt

[⊕v a−41]lt

[1 ★ a⊠] ★ 1

[⊕v a−41]lt

[⊕v (a3a2a1)1]lt

a3a2a1

In (8.10.13), ℓ−1r ⊠ a⊠, ⊠−2, and a⊠ are from the left side of the top pasting diagram
in (8.10.5).
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The bottom zigzag in (8.10.8) from R8 to Z2 is the following zigzag in C.

(8.10.14)

Z2 = (1s′1s′)B[(12)3]4

S8 = [(1m′,n′p′q′1s′)1m′n′p′,q′]B[(12)3]4

R9 = [
s′

⊕
t′=1
[

s′

⊕
u′=1
(1m′,n′p′q′1s′)I′t′(1

m′n′p′,q′

t′u′ B[(12)3]4
u′ I )]

lt

]
lt

(1m′,n′p′q′1s′)(1m′n′p′,q′B[(12)3]4)

[
s′

⊕
t′=1
[

s
⊕
t=1
(1m′,n′p′q′1s′)I′t′(B

[1(23)]4
t′t 1

mnp,q
tI )]

lt

]
lt

= R8

(1m′,n′p′q′1s′)(B[1(23)]41mnp,q)

(1m′,n′p′q′1s′)(B1(23)1mnp ⊠ B41q) = S7

(1m′,n′p′q′1s′)(1m′n′p′B(12)3 ⊠1q′B4)

π ★ 1

a3a2a1

a−4
1 ★⊠−2

1 ★ (a⊠ ⊠ ℓ−1r)

1 ★⊠−2

a−4

In (8.10.14), from R8 to Z2, the 2-cells ⊠−2, a⊠ ⊠ ℓ−1r, ⊠−2, and π are from the top
and the right parts of the top pasting diagram in (8.10.5).

The morphisms fi ∶ Ri Y for 1 ≤ i ≤ 9 in (8.10.8) are defined as follows. To
define the morphism

R2 = [
s′

⊕
t′=1
[

s
⊕
u=1

1s′
I′t′(B

(12)(34)
t′u 1s

uI)]
lt

]
lt

[(B1
i′iB

2
j′ j)B3

k′k]B
4
l′l = Y,

f2

first observe that the summands in R2 are as follows.

(8.10.15) 1s′
I′t′(B

(12)(34)
t′u 1s

uI) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0(B(12)(34)
t′u 0) if t′ /= I′ and u /= I.

1(B(12)(34)
t′u 0) if t′ = I′ and u /= I.

0(B(12)(34)
t′u 1) if t′ /= I′ and u = I.

1([(B1
i′iB

2
j′ j)(B3

k′kB4
l′l)]1) if t′ = I′ and u = I.

With the notation in (8.7.6) for morphisms, f2 is defined as the following compos-
ite.

R2 [(B1
i′iB

2
j′ j)B3

k′k]B
4
l′l = Y

(B1
i′iB

2
j′ j)(B3

k′kB4
l′l)

f2

(λ⊕, ρ⊕, λ⊗, ρ⊗, λ
●
, ρ
●)

α−⊗

In the morphism f2, the following statements hold.
● (λ⊕, ρ⊕, λ⊗, ρ⊗, λ ●, ρ ●) is a composite of morphisms, each being an iter-

ated sum and product of identity morphisms and one component of one
of the indicated structure morphisms in C.
● λ ● and ρ ● are applied in the first three cases of (8.10.15), when at least one

of 1s′
I′t′ and 1s

uI is 0, to reduce that summand to 0.
● λ⊗ and ρ⊗ are applied in the last case of (8.10.15), when both 1s′

I′t′ and 1s
uI

are 1, to reduce that summand to (B1
i′iB

2
j′ j)(B3

k′kB4
l′l).

● λ⊕ and ρ⊕ are applied to additively remove all the 0’s.
● α−⊗ moves the multiplicative brackets to match with those in Y.
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The other 8 morphisms fi ∶ Ri Y are defined in almost the same way as f2.
Each such fi is a composite consisting of

● a morphism of the form (λ⊕, ρ⊕, λ⊗, ρ⊗, λ ●, ρ ●) that reduces Ri to B1234
I′ I and

● a morphism of the form

(α−⊗) ∶ B1234
I′ I Y

that moves the multiplicative brackets to match with those in Y.
Here the superscript in B1234

I′ I has the bracketing as it appears in Ri. For example,
B1234

I′ I is B[(12)3]4
I′ I = Y in R3 and R9. This finishes the description of the diagram

(8.10.8).
To realize the diagram (8.10.8) using paths, we use the set of formal variables

(8.10.16) X = {0X, 1X, b1
c′c, b2

d′d, b3
e′e, b4

g′g}

with the indices as follows.

1 ≤ c ≤ m 1 ≤ d ≤ n 1 ≤ e ≤ p 1 ≤ g ≤ q

1 ≤ c′ ≤ m′ 1 ≤ d′ ≤ n′ 1 ≤ e′ ≤ p′ 1 ≤ g′ ≤ q′

Also define the function φ ∶ X Ob(C) as follows.

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X.
1 if x = 1X.
B1

c′c if x = b1
c′c.

B2
d′d if x = b2

d′d.
B3

e′e if x = b3
e′e.

B4
g′g if x = b4

g′g.

To define the desired paths in Gr(X), in each of (8.10.11), (8.10.12), (8.10.13), and
(8.10.14), we perform the following two steps.

(1) In each object, replace
● {B1

c′c, B2
d′d, B3

e′e, B4
g′g}with the variables {b1

c′c, b2
d′d, b3

e′e, b4
g′g} and

● {0,1} in each identity matrix with the variables {0X, 1X}.
(2) Replace each morphism by a corresponding path in Gr(X) using

● (8.3.12) for (a1, a2, a3, a−4),
● Examples 8.2.5 and 8.2.11 for ℓ, r, and a⊠ = ℓ−1α−⊗r (8.8.3),
● Lemma 8.6.16 for ⊠−2, and
● Example 8.2.5 and (8.6.9) for π in (8.10.2).

Moreover, perform the same procedure on the object Y to obtain the element

y = [(b1
i′i ⊗ b2

j′ j)⊗ b3
k′k]⊗ b4

l′l ∈ Xfr

and on the morphisms fi for 1 ≤ i ≤ 9 to obtain 9 corresponding paths in Gr(X).
After the procedure in the previous paragraph, the resulting diagram D in

Gr(X) has precisely the same shape as (8.10.8), with each edge replaced by a path
in Gr(X). Moreover, the image of D in C is the diagram (8.10.8). The vertex y
is regular in the sense of Definition 3.1.25. By Lemma 3.1.29, each vertex in D is
regular. Since C is assumed to be tight, the Coherence Theorem 3.9.1 implies that
the image of D in C, that is, the diagram (8.10.8), is commutative. This finishes the
proof of the equality (8.10.5). □
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8.11. The 2-Unitors

For a tight symmetric bimonoidal category C as in Definition 2.1.2, we are in
the process of constructing a monoidal bicategory structure as in Definition 6.4.1
on the matrix bicategory MatC. In Section 8.10, we constructed the pentagonator π
in MatC. In this section, we construct the 2-unitors in MatC.

● The middle 2-unitor µ is in Definition 8.11.1.
● The left 2-unitor λ⊠ is in Definition 8.11.6.
● The right 2-unitor ρ⊠ is in Definition 8.11.11.

The left and the right 2-unitors are decorated with ⊠ to avoid confusion with the
structure morphisms in the tight symmetric bimonoidal category C.

The Middle 2-Unitor.
Definition 8.11.1. Define µ as consisting of the 2-cells

µm,n ∈MatCmn,mn with m, n ≥ 0

given by the composite of the following pasting diagram in MatCmn,mn.

(8.11.2)

m⊠ n m⊠ n

(m⊠ 1)⊠ n m⊠ (1⊠ n)

r⊠ ●m ⊠1n 1mn

a⊠m,1,n

1m ⊠ ℓ⊠n

1m⊠n

1m ⊠1n

1mn

⇒⊠
−0
m,n

⇒

r1m⊠1n

⇒

⊠−0
m,n

⇒

ℓ1mn

This finishes the definition of µ. ◇
Explanation 8.11.3. Consider the pasting diagram in (8.11.2).

(1) By Definition 8.6.19, each vertex is the object mn ∈MatC.
(2) By Convention 6.2.12, (8.8.2), (8.9.2), and (8.9.18), the domain 1-cell is the

horizontal composite

((1m ⊠ ℓ⊠n)a⊠m,1,n)(r
⊠ ●
m ⊠1n) = ((1m ⊠1n)1mn)(1m ⊠1n).

The codomain 1-cell is 1m⊠n = 1mn.
(3) ⊠0 is as in (8.6.9), and ⊠−0 = (⊠0)−1.
(4) r1m⊠1n ∶ (1m ⊠1n)1mn 1m ⊠1n is the base right unitor in (8.2.8).
(5) ℓ1mn ∶ 1mn1mn 1mn is the base left unitor in (8.2.2).
(6) Each entry of µm,n is a composite of morphisms in C, each being an iter-

ated sum and product of identity morphisms and one component of λ⊕,
ρ⊕, λ⊗, ρ⊗, λ ●, or ρ ●. ◇

Lemma 8.11.4. In Definition 8.11.1, µ is an invertible modification.

Proof. Each component 2-cell µm,n ∈ MatCmn,mn is well defined by the Bicategorical
Pasting Theorem in [JY21, 3.6.6]. It is a composite of invertible 2-cells by (8.2.2),
(8.2.8), and (8.6.9).

To verify the modification axiom (6.3.2) for µ, consider arbitrary 1-cells

(A, B) ∈MatCm,m′ ×MatCn,n′ .
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If one of m, m′, n, and n′ is 0, then MatCmn,m′n′ is the terminal category, and the
modification axiom holds automatically.

Suppose m, m′, n, n′ > 0. We use the abbreviation

1m,n = 1m ⊠1n

in (8.10.10), ⊠2 (8.6.20), a⊠ (8.8.3), ℓ⊠ (8.9.3), and r⊠ ● (8.9.19). The modification ax-
iom (6.3.2) for µ for the 1-cells (A, B) states the following pasting diagram equality
in MatCmn,m′n′ .

(8.11.5) =

mn

mn m′n′

mn

mn

m′n′

1
mn

1
m,n

1
m′n′

1m,n

A⊠ B

A⊠ B

m′n′

m′n′

1
m′n′

1
m′,n′

(A⊠1)⊠ B 1m′,n′

(A⊠1)1m ⊠ B1n
1m′A⊠1n′B

A⊠ (1⊠ B)

A1m ⊠ B1n

1m′A⊠1n′(1⊠ B)

⇒⊠
2

⇒ℓ
−1
A rA ⊠ ℓ⊠B

⇒⊠
−2

⇒
a⊠A,1,B

⇒⊠
2

⇒r⊠ ●A ⊠ ℓ
−1
B rB ⇒⊠

−2

⇒µm′,n′

mn

mn m′n′

mn

mn

m′n′

1
mn

1
m,n

1
m′n′

1m,n

A⊠ B

A⊠ B

1
mn

A⊠ B

⇒µm,n

⇒rA⊠B

⇒ℓ
−1
A⊠B

Consider (8.11.5).
● The common domain 1-cell is

(A⊠ B)[((1m ⊠1n)1mn)(1m ⊠1n)].

The common codomain 1-cell is

1m′n′(A⊠ B).
● In the top pasting diagram, there are multiple instances of the base asso-

ciator (8.3.2) and its inverse that are not explicitly displayed.
The proof of the equality (8.11.5) is adapted from that of (8.10.5), which is the

modification axiom for the pentagonator π. Since we already showed all the detail
in the proof of Lemma 8.10.4, we safely skip the detail here and only outline the
remaining steps.
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(1) First restrict to a typical (I′, I)-entry with the following indices and ab-
breviations.

1 ≤ i ≤ m 1 ≤ j ≤ n 1 ≤ i′ ≤ m′ 1 ≤ j′ ≤ n′

I = (i − 1)n + j I′ = (i′ − 1)n′ + j′

In the (I′, I)-entry, the two pasting diagrams in (8.11.5) yield a zigzag di-
agram in C analogous to the diagram (8.10.8), with the object Y in (8.10.9)
replaced by the object

(A⊠ B)I′ I = Ai′i ⊗ Bj′ j ∈ C.

The reason that the outer diagram consists of zigzags is that instances of
⊠2 and a4 in (8.3.5) are expressed using their respective inverses, that is.,
⊠−2 and a−4.

(2) The set X of formal variables in (8.10.16) is replaced by

X = {0X, 1X, ac′c, bd′d}.

The function φ ∶ X Ob(C) is defined as follows.

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X.
1 if x = 1X.
Ac′c if x = ac′c.
Bd′d if x = bd′d.

(3) The procedure in the proof of Lemma 8.10.4 after (8.10.16) yields a dia-
gram D in Gr(X). Each subdiagram in D consists of two parallel paths
with common codomain

y = ai′i ⊗ bj′ j ∈ Xfr.

The image of D in C is the diagram in step (1).
(4) Since C is assumed to be tight, the Coherence Theorem 3.9.1 is applicable

in each subdiagram in D because the central vertex y is regular, which
implies that each vertex in D is regular.

The commutativity of D in C implies the equality (8.11.5) in the (I′, I)-entry. □

The Left 2-Unitor.
Definition 8.11.6. Define λ⊠ as consisting of the 2-cells

λ⊠m,n ∈MatCmn,mn with m, n ≥ 0

given by the composite of the following pasting diagram in MatCmn,mn.

(8.11.7)

(1⊠m)⊠ n m⊠ n

1⊠ (m⊠ n)

ℓ⊠m ⊠1n

1mn

a⊠1,m,n ℓ⊠mn

⇒

⊠−0
m,n

⇒

ℓ−1
1mn

This finishes the definition of λ⊠. ◇
Explanation 8.11.8. Consider the pasting diagram in (8.11.7).
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(1) By Definition 8.6.19, each vertex is the object mn ∈MatC.
(2) By (8.8.2) and (8.9.2), the domain 1-cell is

ℓ⊠m ⊠1n = 1m ⊠1n.

The codomain 1-cell is the horizontal composite

ℓ⊠mna⊠1,m,n = 1
mn1mn.

(3) ⊠0 is as in (8.6.9), and ⊠−0 = (⊠0)−1.
(4) ℓ1mn ∶ 1mn1mn 1mn is the base left unitor in (8.2.2).
(5) Each entry of λ⊠m,n is a composite of morphisms in C, each being an iter-

ated sum and product of identity morphisms and one component of λ−⊕,
ρ−⊕, λ±⊗, λ± ●, or ρ ●. ◇

Lemma 8.11.9. In Definition 8.11.6, λ⊠ is an invertible modification.

Proof. Each component 2-cell λ⊠m,n ∈ MatCmn,mn is well defined by the Bicategorical
Pasting Theorem in [JY21, 3.6.6]. It is a composite of invertible 2-cells by (8.2.2)
and (8.6.9).

To verify the modification axiom (6.3.2) for λ⊠, consider arbitrary 1-cells

(A, B) ∈MatCm,m′ ×MatCn,n′ .

If one of m, m′, n, and n′ is 0, then MatCmn,m′n′ is the terminal category, and the
modification axiom holds automatically.

Suppose m, m′, n, n′ > 0. With the notation in the proof of Lemma 8.11.4, the
modification axiom (6.3.2) for λ⊠ for the 1-cells (A, B) states the following pasting
diagram equality in MatCmn,m′n′ .

(8.11.10) =

mn m′n′

mn m′n′

m′n′

(1⊠ A)⊠ B

A⊠ B

1m,n 1m′n′

1m′n′A1m ⊠ B1n

1m′(1⊠A)⊠1n′B

1m′,n′

⇒⊠
2 ⇒ℓ

⊠

A ⊠ ℓ
−1r
⇒⊠
−2

⇒
λ⊠m′,n′

mn m′n′

mn m′n′

m′n′

(1⊠ A)⊠ B

A⊠ B

1m,n 1m′n′

1m′n′

mn
1⊠ (A⊠ B)

1mn

1mn

⇒λ
⊠

m,n

⇒
a⊠
1,A,B

⇒
ℓ⊠A⊠B

Consider (8.11.10).
● The common domain 1-cell is

(A⊠ B)(1m ⊠1n).

● The common codomain 1-cell is

(1m′n′1m′n′)[(1⊠ A)⊠ B].

● In the right pasting diagram, there are instances of the base associator
(8.3.2) and its inverse that are not explicitly displayed.

The proof of the equality (8.11.10) is adapted from that of (8.10.5), which is
the modification axiom for the pentagonator π, in the proof of Lemma 8.10.4. The
remaining steps are outlined in the proof of Lemma 8.11.4. □
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The Right 2-Unitor.
Definition 8.11.11. Define ρ⊠ as consisting of the 2-cells

ρ⊠m,n ∈MatCmn,mn with m, n ≥ 0

given by the composite of the following pasting diagram in MatCmn,mn.

(8.11.12)

m⊠ n m⊠ (n⊠ 1)

(m⊠ n)⊠ 1

1m ⊠ r⊠ ●n

1mn

r⊠ ●mn a⊠m,n,1

⇒

⊠−0
m,n

⇒

ℓ−1
1mn

This finishes the definition of ρ⊠. ◇
Explanation 8.11.13. Consider the pasting diagram in (8.11.12).

(1) By Definition 8.6.19, each vertex is the object mn ∈MatC.
(2) By (8.8.2) and (8.9.18), the domain 1-cell is

1m ⊠ r⊠ ●n = 1m ⊠1n.

The codomain 1-cell is the horizontal composite

a⊠m,n,1r⊠ ●mn = 1mn1mn.

(3) ρ⊠m,n = λ⊠m,n in (8.11.7). However, the modification axioms for ρ⊠ and λ⊠

are different because their (co)domain strong transformations are differ-
ent. ◇

Lemma 8.11.14. In Definition 8.11.11, ρ⊠ is an invertible modification.

Proof. This proof is almost identical to that of Lemma 8.11.9, so we only write
down the modification axiom (6.3.2) for ρ⊠ for the 1-cells (A, B) below.

(8.11.15) =

mn m′n′

mn m′n′

m′n′

A⊠ B

A⊠ (B⊠ 1)

1m,n 1m′n′

1m′n′A1m⊠(B⊠1)1n

1m′A⊠1n′B

1m′,n′

⇒⊠
2 ⇒ℓ−1r ⊠ r⊠ ●B

⇒⊠
−2

⇒
ρ⊠m′,n′

mn m′n′

mn m′n′

m′n′

A⊠ B

A⊠ (B⊠ 1)

1m,n 1m′n′

1m′n′

mn
(A⊠ B)⊠1

1mn

1mn

⇒ρ
⊠

m,n

⇒
r⊠ ●A⊠B

⇒
a⊠A,B,1

The proof of the equality (8.11.15) is adapted from that of (8.10.5) in the proof of
Lemma 8.10.4. The remaining steps are outlined in the proof of Lemma 8.11.4. □

8.12. The Matrix Monoidal Bicategory

For a tight symmetric bimonoidal category C, in this section, we show that
MatC is a monoidal bicategory. So far in this chapter, we have defined the following
data.

● The matrix bicategory MatC is in Definition 8.4.11 and Theorem 8.4.12.
● The monoidal identity (1⊠, 12

⊠
, 10
⊠
) is in Definition 8.5.1 and Lemma 8.5.2.
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● The monoidal composition (⊠,⊠2,⊠0) is in Definitions 8.6.1 and 8.6.19
and Lemma 8.7.31.
● The monoidal associator (a⊠, a⊠ ●, ηa, εa) is in Section 8.8.
● The left monoidal unitor (ℓ⊠, ℓ⊠ ●, ηℓ, εℓ) and the right monoidal unitor
(r⊠, r⊠ ●, ηr, εr) are in Section 8.9.
● The pentagonator π is in Section 8.10.
● The middle 2-unitor µ, the left 2-unitor λ⊠, and the right 2-unitor ρ⊠ are

in Section 8.11.

To show that MatC is a monoidal bicategory, it remains to check the three axioms
in Definition 6.4.1.

Lemma 8.12.1. MatC satisfies the non-abelian 4-cocycle condition (6.4.2).

Proof. Consider arbitrary objects n1, n2, n3, n4, n5 ∈ MatC with N = n1n2n3n4n5. We
use the abbreviations

(8.12.2)

1(123,4),5 = (1n1n2n3 ⊠1n4)⊠1n5 11,2345 = 1n1 ⊠1n2n3n4n5

11,(234,5) = 1n1 ⊠ (1n2n3n4 ⊠1n5) 1123,45 = 1n1n2n3 ⊠1n4n5

a⊠1,2,345 = a⊠
1

n1 ,1n2 ,1n3n4n5 a−⊠1,234,5 = (a
⊠

1
n1 ,1n2n3n4 ,1n5 )

−1

π1,23,4,5 = πn1,n2n3,n4,n5 ⊠−0
1,2 = (⊠0

n1,n2
)−1

and so forth. The non-abelian 4-cocycle condition (6.4.2) for MatC for the objects
(n1, . . . , n5) states the following pasting diagram equality in MatCN,N .

(8.12.3) =

N
N N

N N

N N

N N

1
(123,4),5

1
1234,5

1
(1,234),5

1
N

1
1,2345

1
1,(2,345)

1
N 1

N
1

N

N

N N

1
N

1
1,(234,5)

1
1,23451

N

1
N

1
1,2345

1
123,(4,5)

1
123,45

⇒

a−⊠1,234,5

⇒

1
n1 π2,3,4,5

⇒

π1,23,4,5

⇒

a−⊠123,4,5

⇒
1⊠⊠−0

4,5

⇒

π1,2,3,45

N
N N

N N

N N

N N

1
(123,4),5

1
1234,5

1
(1,234),5

1
N

1
1,2345

1
1,(2,345)

1
N 1

N
1

N

N

N
1

1234,5

1
1234,5

1
N 1

N

1
(1,2),345

1
12,345

⇒π1,2,3,41
n5

⇒

π1,2,34,5

⇒

a⊠1,2,345

⇒⊠−0
1,2 ⊠ 1

⇒

π12,3,4,5

Consider (8.12.3).

● The common (co)domain 1-cell has the left normalized bracketing (5.2.13)
by Convention 6.2.12.
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● As discussed in Explanation 6.4.7, both 1n1 π2,3,4,5 and π1,2,3,41
n5 involve

⊠±2 in (8.6.20) and the base left unitor ℓ in (8.2.2).
● There are many instances of the base associator in (8.3.2) and its inverse

that are not explicitly displayed in each pasting diagram.

If N = 0, then MatCN,N is the terminal category, and the equality (8.12.3) holds
automatically.

The proof of the equality (8.12.3) for the case N > 0 is adapted from those of
Lemmas 8.8.11 and 8.10.4. Since we already showed all the detail in those lemmas,
here we only outline the remaining steps.

(1) First restrict to a typical (j, i)-entry with 1 ≤ i, j ≤ N. In the (j, i)-entry, the
two pasting diagrams in (8.12.3) yield a zigzag diagram in C analogous
to the diagram (8.10.8). The object Y in (8.10.9) is now replaced by the
object

⎧⎪⎪⎨⎪⎪⎩

1 ∈ C if i = j and
0 ∈ C if i /= j.

The diagram involves zigzags because instances of ⊠2 and a4 in (8.3.5) are
expressed using their respective inverses, that is, ⊠−2 and a−4.

(2) The set X in (8.10.16) and the function φ ∶ X Ob(C) are now defined
as follows.
● X = {0X, 1X}.
● φ(0X) = 0 and φ(1X) = 1.

(3) The procedure in the proof of Lemma 8.10.4 after (8.10.16) yields a dia-
gram D in Gr(X). Each subdiagram in D consists of two parallel paths
with common codomain

⎧⎪⎪⎨⎪⎪⎩

1X if i = j and
0X if i /= j.

The image of D in C is the diagram in step (1).
(4) If i = j, then the regularity of 1X and Lemma 3.1.29 imply that each ver-

tex in D is regular. Since C is assumed to be tight, the Coherence Theo-
rem 3.9.1 implies that each subdiagram in D is commutative in C.

(5) If i /= j, then each vertex in D has the same support as 0X. Proposi-
tion 3.5.33 implies that each subdiagram in D is commutative in C.

The commutativity of D in C implies the equality (8.12.3) in the (j, i)-entry. □

Lemma 8.12.4. MatC satisfies the left normalization axiom (6.4.3).

Proof. Consider arbitrary objects n1, n2, n3 ∈ MatC with N = n1n2n3. We use the
abbreviations in (8.12.2) and the following.

(8.12.5) λ⊠2,3 = λ⊠n2,n3
µ1,2 = µn1,n2 µ1,23 = µn1,n2n3
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The left normalization axiom (6.4.3) for MatC for the objects (n1, n2, n3) states the
following pasting diagram equality in MatCN,N .

(8.12.6) =

N

N N

N N

N

1
(1,2),3

1
12,3

1
(1,2),3

1
N

1
N

1
N

N

N

N

1
N

1
1,23 1

1,(2,3)

1
N

1
1,23

1
N

1
1,(2,3)

1
1,23

⇒

a−⊠1,2,3

⇒

1
n1 λ⊠2,3

⇒

πn1,1,n2,n3

⇒

a−⊠1,2,3

⇒
1⊠⊠−0

2,3

⇒

µ1,23

N

N N

N N

N

1
(1,2),3

1
12,3

1
(1,2),3

1
N

1
N

1
N

1
12,3

1
N

1
N

⇒

µ1,21
n3

⇒
⊠−0

12,3

⇒

r1N

⇒

ℓ−1
1N

Consider (8.12.6).
● The common domain 1-cell has the left normalized bracketing (5.2.13) by

Convention 6.2.12.
● As discussed in Explanation 6.4.7, both 1n1 λ⊠2,3 and µ1,21

n3 involve ⊠±2 in
(8.6.20) and the base left unitor ℓ in (8.2.2).
● There are instances of the base associator in (8.3.2) and its inverse that are

not explicitly displayed.
If N = 0, then MatCN,N is the terminal category, and the equality (8.12.6) holds

automatically. The proof of the equality (8.12.6) for the case N > 0 is adapted from
those of Lemmas 8.8.11 and 8.10.4, using the steps (1)–(5) outlined in the proof of
Lemma 8.12.1. □

Lemma 8.12.7. MatC satisfies the right normalization axiom (6.4.4).

Proof. Consider arbitrary objects n1, n2, n3 ∈ MatC with N = n1n2n3. We use the
abbreviations in (8.12.2), (8.12.5), and ρ⊠1,2 = ρ⊠n1,n2

. The right normalization axiom
(6.4.4) for MatC for the objects (n1, n2, n3) states the following pasting diagram
equality in MatCN,N .

(8.12.8) =

N

N N

N N

N

1
N

1
1,(2,3)

1
1,23

1
1,(2,3)

1
N

1
N

N

N

N

1
N

1
(1,2),3

1
12,3

1
12,3

1
N

1
N

1
(1,2),3

1
12,3

⇒

a⊠1,2,3

⇒

ρ⊠1,21
n3

⇒

πn1,n2,1,n3

⇒

a⊠1,2,3

⇒⊠−0
1,2 ⊠ 1

⇒

µ12,3

N

N N

N N

N

1
N

1
1,(2,3)

1
1,23

1
1,(2,3)

1
N

1
N

1
1,23

1
N

1
N

⇒

1
n1 µ2,3

⇒

⊠−0
1,23

⇒

ℓ1N

⇒

r−1
1N

Consider (8.12.8).
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● The common domain 1-cell has the left normalized bracketing (5.2.13) by
Convention 6.2.12.
● As discussed in Explanation 6.4.7, both ρ⊠1,21

n3 and 1n1 µ2,3 involve ⊠±2 in
(8.6.20) and the base left unitor ℓ in (8.2.2).
● There are instances of the base associator in (8.3.2) and its inverse that are

not explicitly displayed.

If N = 0, then MatCN,N is the terminal category, and the equality (8.12.8) holds
automatically. The proof of the equality (8.12.8) for the case N > 0 is adapted from
those of Lemmas 8.8.11 and 8.10.4, using the steps (1)–(5) outlined in the proof of
Lemma 8.12.1. □

We now assemble the results so far in this chapter to obtain the following.

Theorem 8.12.9. For each tight symmetric bimonoidal category C, the matrix bicategory
MatC is a monoidal bicategory.

Proof. As noted in the beginning of this section, all the monoidal bicategorical data
on MatC have already been constructed in the previous sections. The three axioms
in Definition 6.4.1 are proved in Lemmas 8.12.1, 8.12.4, and 8.12.7. □

8.13. The Braiding

For each tight symmetric bimonoidal category C, in Theorem 8.12.9, we ob-
served that MatC is a monoidal bicategory. The goal for the rest of this chapter is
to show that this structure on MatC extends to a symmetric monoidal bicategory as
in Definition 6.5.9. Recall the following concepts.

● A symmetric monoidal bicategory is a sylleptic monoidal bicategory as
in Definition 6.5.7 that satisfies the triple braid axiom (6.5.10).
● A sylleptic monoidal bicategory is a braided monoidal bicategory as in

Definition 6.5.3 together with an invertible modification ν, which is called
the syllepsis, that satisfies the two axioms in Definition 6.5.7.

Therefore, our next task is to construct a braided monoidal bicategory structure
on MatC. In this section, we construct the braiding (β, β ●, ηβ, εβ) in the monoidal
bicategory MatC.

From Explanation 6.5.6, the braiding consists of the following data.

(i) β and β ● are strong transformations as in

⊠ ⊠τ
β

β
●

in which τ ∶ (MatC)2 (MatC)2 switches the two arguments.
(ii) ηβ and εβ are invertible modifications as follows.

1⊠ β ●β

ββ ● 1⊠τ

ηβ

εβ

Moreover, these data satisfy the triangle identities (6.3.10).
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Motivation 8.13.1. Let us motivate the construction of the braiding β. For complex
matrices A and B, the two matrix tensor products A⊗ B and B⊗ A are equal up to
a permutation of the entries. A permutation matrix is obtained from an identity
matrix by permuting its columns. It has precisely one instance of 1 in each row
and in each column, and every other entry is 0. There are permutation matrices P1

and P2 such that

(8.13.2) A⊗ B = P2(B⊗ A)P1.

Here P1 permutes the columns of B⊗ A, and P2 permutes the rows.
The identity matrix 1n ∈ MatCn,n makes sense in the matrix bicategory, and so

do permutation matrices. For 1-cells A and B in MatC, the matrix tensor products
A⊠ B and B⊠ A, with entries in (8.6.4), differ by

● a permutation of the entries as in the previous paragraph and
● an entrywise multiplicative symmetry

Aji ⊗ Blk Blk ⊗ Aji.
ξ⊗

However, even with the ξ⊗ taken into account, the equality (8.13.2) does not hold
strictly in MatC in general. The reason is that 0 and 1 in C are not strict zero and
strict unit, but only up to natural isomorphisms as in Definition 2.1.2. The ana-
logue of the equality (8.13.2) is an invertible 2-cell βA,B that is a component 2-cell
of the braiding β. Component 1-cells of β are analogues of the permutation matri-
ces P1 and P2 in (8.13.2). ◇

The rest of this section is organized as follows.

● Before we define the braiding, first we define row permutation, column
permutation, and permutation matrices in MatC in Definition 8.13.3, and
discuss some of their properties.
● The left adjoint β, the right adjoint β ●, the unit ηβ, and the counit εβ are

in Definitions 8.13.22, 8.13.30, 8.13.35, and 8.13.38.

Permutation Matrices. We now begin by defining row permutation, column
permutation, and permutation matrices in the setting of MatC. Recall that Σm de-
notes the symmetric group on m letters.

Definition 8.13.3. For m, n ≥ 0, suppose σ ∈ Σm, θ ∈ Σn, and A = (Aji) ∈MatCm,n.

● The row permutation of A by θ, denoted by θ A, is obtained from A by per-
muting its n rows by θ. Its entries are determined by

(8.13.4) (θ A)θ(j),i = Aji

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
● The column permutation of A by σ, denoted by Aσ, is obtained from A by

permuting its m columns by σ. Its entries are determined by

(8.13.5) (Aσ)j,σ(i) = Aji.

● Define the permutation matrix of σ as

(8.13.6) 1σ = (1m)σ.
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It is the column permutation of the m ×m identity matrix 1m in (8.1.6) by
σ. Its entries are given by

1σ
ij =
⎧⎪⎪⎨⎪⎪⎩

1 if j = σ(i) and
0 if j /= σ(i).

The notation in (8.13.4) and (8.13.5) also apply if A is a 2-cell in MatCm,n. ◇
To define the (co)unit of the braiding, we will use the following preliminary

observation. The transpose of a matrix A is denoted by AT .
Lemma 8.13.7. In the setting of Definition 8.13.3, the following statements hold.

(1) For σ′ ∈ Σm and θ′ ∈ Σn, the following equalities hold.

θ′(θ A) = θ′θ A

(Aσ)σ′ = Aσ′σ
(8.13.8)

(2) (1σ)T = 1σ−1
.

(3) For 1 ≤ i ≤ m, the ith diagonal entry in 1σ−1
1σ is

(8.13.9) (1σ−1
1σ)

ii
= {[

σ−1(i)−1

⊕
k=1

00]⊕

empty if σ−1(i) = 1

(11) ⊕ [
m
⊕

k=σ−1(i)+1
00]

empty if σ−1(i) = m

}
lt

.

(4) Each off-diagonal entry in 1σ−1
1σ is a left normalized sum of m objects as in

either

[00⊕⋯⊕10⊕⋯⊕ 01⊕⋯⊕ 00]
lt

or

[00⊕⋯⊕ 01⊕⋯⊕10⊕⋯⊕ 00]
lt

.
(8.13.10)

In each case, there is one instance of each of 10 and 01, and every other summand
is 00.

Proof. The equalities in (8.13.8) follow from the definitions (8.13.4) and (8.13.5).
For assertion (2), the transpose (1σ)T has 1 precisely in the (σ(i), i)-entries for

1 ≤ i ≤ m, that is, the (i, σ−1(i))-entries. These entries are where 1σ−1
has 1.

The last two assertions follow from assertion (2) and (8.1.4). □

Component 2-cells of the braiding β involve the natural isomorphisms in Lem-
mas 8.13.12 and 8.13.15 below.
Motivation 8.13.11. Suppose for the moment that 0 and 1 in C are strict zero and
strict unit. This is true, for example, if C is a right bipermutative category or a left
bipermutative category as in Definitions 2.5.2 and 2.5.11. Then the matrix product
A1σ is equal to Aσ, the column permutation of A by σ. In the general case, when
0 and 1 are not strict zero and strict unit, A1σ and Aσ are connected by a natural
isomorphism as in the next lemma. Similar remarks apply to 1θ A and

θ−1 A. ◇
Lemma 8.13.12. For σ ∈ Σm and A = (Aji) ∈MatCm,n, there is a natural isomorphism

(8.13.13) A1σ Aσ
rσ

A
≅

in MatCm,n.
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Proof. If either m or n is 0, then MatCm,n is the terminal category, and rσ
A is the

identity morphism of the empty matrix.
For m, n > 0, 1 ≤ i ≤ m, and 1 ≤ j ≤ n, the (j, i)-entry of A1σ is as follows.

(A1σ)ji = [
m
⊕
k=1

Ajk1
σ
ki]

lt

= {[
σ−1(i)−1

⊕
k=1

Ajk0]⊕

empty if σ−1(i) = 1

(Aj,σ−1(i)1) ⊕ [
m
⊕

k=σ−1(i)+1
Ajk0]

empty if σ−1(i) = m

}
lt

This object is isomorphic to Aσ
ji via the following composite in C.

(8.13.14)

(A1σ)ji Aσ
ji

( 0⊕⋯⊕ 0⊕
σ−1(i)− 1 copies of 0

Aj,σ−1(i) ⊕0⊕⋯⊕ 0
m − σ−1(i) copies of 0

)
lt

Aj,σ−1(i)

(ρ ●⊕⋯⊕ρ
●⊕ρ⊗⊕ρ

●⊕⋯⊕ρ
●)

lt

(rσ
A)ji

Z

If m = 1, then Z is the identity morphism. If m > 1, then Z is a composite of m − 1
morphisms, each being the sum of identity morphisms and one component of λ⊕

or ρ⊕.
The naturality of rσ

A with respect to A follows from the naturality of ρ ●, ρ⊗, λ⊕,
and ρ⊕, and the functoriality of ⊕ in C. □

In the next lemma, note that
θ−1 A is the row permutation of A by θ−1.

Lemma 8.13.15. For θ ∈ Σn and A = (Aji) ∈MatCm,n, there is a natural isomorphism

(8.13.16) 1θ A
θ−1 A

ℓθ
A
≅

in MatCm,n.

Proof. If either m or n is 0, then MatCm,n is the terminal category, and ℓθ
A is the

identity morphism of the empty matrix.
For m, n > 0, 1 ≤ i ≤ m, and 1 ≤ j ≤ n, the (j, i)-entry of 1θ A is as follows.

(1θ A)ji = [
n
⊕
l=1

1θ
jl Ali]

lt

= {[
θ(j)−1

⊕
l=1

0Ali]⊕

empty if θ(j) = 1

(1Aθ(j),i) ⊕ [
n
⊕

l=θ(j)+1
0Ali]

empty if θ(j) = n

}
lt
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This object is isomorphic to (
θ−1 A)ji via the following composite in C.

(8.13.17)

(1θ A)ji (
θ−1 A)ji

( 0⊕⋯⊕ 0⊕
θ(j)− 1 copies of 0

Aθ(j),i ⊕0⊕⋯⊕ 0
n − θ(j) copies of 0

)
lt

Aθ(j),i

(λ ●⊕⋯⊕λ
●⊕λ⊗⊕λ

●⊕⋯⊕λ
●)

lt

(ℓθ
A)ji

Z

If n = 1, then Z is the identity morphism. If n > 1, then Z is a composite of n − 1
morphisms, each being the sum of identity morphisms and one component of λ⊕

or ρ⊕.
The naturality of ℓθ

A with respect to A follows from the naturality of λ ●, λ⊗,
λ⊕, and ρ⊕, and the functoriality of ⊕ in C. □

Remark 8.13.18. In Lemma 8.13.12, if σ is the identity permutation idm, then 1idm =
1m, and ridm = r, which is the base right unitor in (8.2.8). In Lemma 8.13.15, if θ is
the identity permutation idn, then 1idn = 1n, and ℓidn = ℓ, which is the base left
unitor in (8.2.2). ◇

Denote by τm,n ∈ Σmn the permutation in (2.4.5). It rearranges n intervals of m
objects each to m intervals of n objects each. Note that

(8.13.19) (τm,n)−1 = τn,m.

The next lemma makes precise the two bullet points in Motivation 8.13.1. Namely,
the matrix tensor products A⊠ B and B⊠ A differ by a column permutation, a row
permutation, and a multiplicative symmetry in each entry.

Lemma 8.13.20. Suppose A ∈ MatCm,m′ and B ∈ MatCn,n′ are either both 1-cells or both
2-cells. Then there are equalities

(B⊠ A)τm,n
i′+(j′−1)m′,j+(i−1)n = Bj′ j ⊗ Ai′i

(τn′ ,m′
(A⊠ B))

i′+(j′−1)m′,j+(i−1)n
= Ai′i ⊗ Bj′ j

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ i′ ≤ m′, and 1 ≤ j′ ≤ n′.

Proof. The first equality follows from (2.4.5), (8.13.5), and (8.6.4) as follows.

(B⊠ A)τm,n
i′+(j′−1)m′,j+(i−1)n = (B⊠ A)τm,n

i′+(j′−1)m′,τm,n(i+(j−1)m)

= (B⊠ A)i′+(j′−1)m′,i+(j−1)m

= Bj′ j ⊗ Ai′i

The second equality follows similarly from (2.4.5), (8.13.4), and (8.6.4) as follows.

(τn′ ,m′
(A⊠ B))

i′+(j′−1)m′,j+(i−1)n
= (τn′ ,m′

(A⊠ B))
τn′ ,m′(j′+(i′−1)n′),j+(i−1)n

= (A⊠ B)j′+(i′−1)n′,j+(i−1)n

= Ai′i ⊗ Bj′ j

This finishes the proof of the lemma. □
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Explanation 8.13.21. There is a more conceptual way to represent the two matrices
in Lemma 8.13.20. Suppose A ●i ∈MatCm′,1 is the ith column of A for 1 ≤ i ≤ m. Then

(B⊠ A)τm,n = [ B⊠ A ●1 ⋯ B⊠ A ●m ] .

From left to right, the ith block is B ⊠ A ●i. In linear algebra, this column-wise
matrix tensor product is an example of the Khatri-Rao product [KR68], which is
related to the Tracy-Singh product [Liu99, TS72].

Similarly, suppose Bj′ ● ∈MatC1,n is the j′th row of B for 1 ≤ j′ ≤ n′. Then

τn′ ,m′
(A⊠ B) =

⎡⎢⎢⎢⎢⎢⎣

A⊠ B1 ●

⋮
A⊠ Bn′ ●

⎤⎥⎥⎥⎥⎥⎦
.

From top to bottom, the j′th block is A ⊠ Bj′ ●. In linear algebra, this row-wise
matrix tensor product is an example of the face product in [Sly99]. ◇

The Left Adjoint of the Braiding. Recall the monoidal composition (⊠,⊠2,⊠0)
in Definition 8.6.19 and Lemma 8.7.31.

Definition 8.13.22. Define the data of a lax transformation

⊠ ⊠τ
β

as follows, in which τ ∶ (MatC)2 (MatC)2 switches the two arguments.

Component 1-Cells: For each pair of objects (m, n) ∈ (MatC)2, define

mn = m⊠ n n⊠m = nm
βm,n

as the permutation matrix

(8.13.23) βm,n = 1τm,n ∈MatCmn,nm

in (8.13.6), with τm,n ∈ Σmn the permutation in (2.4.5).
Component 2-Cells: For 1-cells A ∈ MatCm,m′ and B ∈ MatCn,n′ , define the compo-

nent 2-cell

βA,B ∈MatCmn,n′m′((B⊠ A)βm,n; βm′,n′(A⊠ B))

as the following vertical composite.

(8.13.24)

nm

mn n′m′

m′n′

βm,n B⊠ A

A⊠ B βm′,n′

(B⊠ A)τm,n

τn′ ,m′
(A⊠ B)

⇒

ξ⊗

⇒

rτm,n
B⊠A

⇒

(ℓ
τm′ ,n′

A⊠B )
−1

● rτm,n
B⊠A is the natural isomorphism in (8.13.13).

● ℓ
τm′ ,n′

A⊠B is the natural isomorphism in (8.13.16), along with (8.13.19).
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● ξ⊗ is the 2-cell with (i′ + (j′ − 1)m′, j + (i − 1)n)-entry the structure
morphism in C,

Bj′ j ⊗ Ai′i Ai′i ⊗ Bj′ j

ξ⊗Bj′ j ,Ai′ i

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ i′ ≤ m′, and 1 ≤ j′ ≤ n′.
This finishes the definition of β. ◇
Explanation 8.13.25. Consider Definition 8.13.22.

(1) The entries of βm,n = 1τm,n are determined as follows.

(8.13.26) (βm,n)pq =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if (p, q) = (i + (j − 1)m, j + (i − 1)n)
for some 1 ≤ i ≤ m and 1 ≤ j ≤ n, and

0 otherwise.

(2) By (8.13.14) and (8.13.17), each entry of βA,B in (8.13.24) is a composite of
isomorphisms, each being an iterated sum of identity morphisms and at
most one component of λ±⊕, ρ±⊕, λ−⊗, ρ⊗, ξ⊗, λ− ●, or ρ ● in C.

(3) The 2-cell ξ⊗ in (8.13.24) is well defined by Lemma 8.13.20.
(4) There is a strong similarity between β and a⊠ in Definition 8.8.1. Since the

proofs in Section 8.8 for a⊠ have all the detail, we will safely skip most of
the detail below. ◇

Lemma 8.13.27. In Definition 8.13.22, β ∶ ⊠ ⊠ τ is a strong transformation.

Proof. Similar to Lemma 8.8.5, β in (8.13.24) is a natural isomorphism because the
structure isomorphisms λ⊕, ρ⊕, λ⊗, ρ⊗, ξ⊗, λ ●, and ρ ● in C are natural.

The lax unity axiom (6.2.15) for β states the following pasting diagram equality
in MatCmn,nm for m, n ≥ 0.

(8.13.28) =
mn mn

nm nm

βm,n

βm,n

1m ⊠1n

1nm

1n ⊠1m

⇒⊠0
(n,m)

⇒β1m ,1n
mn mn

nm nm

βm,n

βm,n

1m ⊠1n

1nm

βm,n

1mn

⇒ℓβm,n

⇒r−1
βm,n

⇒⊠0
(m,n)

The proof of this equality is adapted from that of (8.8.12), which is the lax unity
axiom for a⊠. Instead of diagonal entries, here we consider entries of the form

(i + (j − 1)m, j + (i − 1)n) for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

These entries are where 1 appears in βm,n (8.13.26). Instead of off-diagonal entries,
here we consider entries where 0 appears in βm,n.

The lax naturality axiom (6.2.16) for β states that for 1-cells

m n p

m′ n′ p′

A B

A′ B′
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in MatC, the following pasting diagram equality in MatCmm′,p′p holds.

(8.13.29) =
mm′ pp′

m′m p′p
n′n

βm,m′

βp,p′

BA⊠ B′A′

A′ ⊠ A B′ ⊠ B

B′A′ ⊠ BA

⇒⊠2

⇒βBA,B′A′

mm′ pp′

m′m p′p
n′n

βm,m′

βp,p′

BA⊠ B′A′

A′ ⊠ A B′ ⊠ B

nn′

βn,n′

A⊠ A′ B⊠ B′

⇒
βA,A′ ⇒

βB,B′

⇒⊠2

The proof of this equality is adapted from that of (8.8.16), which is the lax natural-
ity axiom for a⊠, in Lemmas 8.8.17 and 8.8.26. Instead of the subdivided diagram
(8.8.28), here we have a zigzag diagram analogous to (8.10.8). The object Y in
(8.10.9) is replaced by the following object for 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ k ≤ p, and
1 ≤ k′ ≤ p′.

[((B′ ⊠ B)(A′ ⊠ A))τm,m′ ]
(k+(k′−1)p, i′+(i−1)m′)

= [((B′ ⊠ B)(A′ ⊠ A))τm,m′ ]
(k+(k′−1)p, τm,m′(i+(i′−1)m))

= [(B′ ⊠ B)(A′ ⊠ A)](k+(k′−1)p, i+(i′−1)m)

= [
n′

⊕
j′=1

n
⊕
j=1
(B′k′ j′Bkj)(A′j′i′Aji)]

lt

This object is a typical entry of the column permutation of (B′ ⊠ B)(A′ ⊠ A) by
τm,m′ . The three equalities above follow from, respectively, (2.4.5), (8.13.5), and
(8.1.4) and (8.6.4). □

The Right Adjoint of the Braiding.

Definition 8.13.30. Define the data of a lax transformation

⊠τ ⊠β
●

as follows, in which τ ∶ (MatC)2 (MatC)2 switches the two arguments.

Component 1-Cells: For each pair of objects (m, n) ∈ (MatC)2, define

(8.13.31) nm = n⊠m m⊠ n = mn
β
●
m,n

as the permutation matrix

β
●
m,n = βn,m = 1τn,m ∈MatCnm,mn

in (8.13.6). Here τn,m = (τm,n)−1 with τm,n ∈ Σmn the permutation in (2.4.5).
Component 2-Cells: For 1-cells A ∈ MatCm,m′ and B ∈ MatCn,n′ , define the compo-

nent 2-cell

β
●
A,B = βB,A ∈MatCnm,m′n′((A⊠ B)β ●m,n; β

●
m′,n′(B⊠ A)).

This finishes the definition of β ●. ◇
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Explanation 8.13.32. Using (8.13.24) the component 2-cell β ●A,B = βB,A is the fol-
lowing vertical composite.

(8.13.33)

mn

nm m′n′

n′m′

β
●
m,n = βn,m A⊠ B

B⊠ A β
●
m′,n′ = βn′,m′

(A⊠ B)τn,m

τm′ ,n′
(B⊠ A)

⇒

ξ⊗

⇒

rτn,m
A⊠B

⇒

(ℓ
τn′ ,m′

B⊠A )
−1

● rτn,m
A⊠B is the natural isomorphism in (8.13.13).

● ℓ
τn′ ,m′

B⊠A is the natural isomorphism in (8.13.16), along with (8.13.19).
● ξ⊗ is the 2-cell with (j′ + (i′ − 1)n′, i + (j − 1)m)-entry the structure mor-

phism in C,

Ai′i ⊗ Bj′ j Bj′ j ⊗ Ai′i

ξ⊗Ai′ i ,Bj′ j

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ i′ ≤ m′, and 1 ≤ j′ ≤ n′. This is well defined by
Lemma 8.13.20.

By (8.13.14) and (8.13.17), each entry of β ●A,B is a composite of isomorphisms, each
being an iterated sum of identity morphisms and at most one component of λ±⊕,
ρ±⊕, λ−⊗, ρ⊗, ξ⊗, λ− ●, or ρ ● in C. ◇
Lemma 8.13.34. In Definition 8.13.30, β ● ∶ ⊠τ ⊠ is a strong transformation.

Proof. The proof of Lemma 8.13.27 applies here by switching symbols. In the lax
unity axiom (8.13.28), m and n are switched. In the lax naturality axiom (8.13.29),
the symbols (m, n, p, A, B) are switched with (m′, n′, p′, A′, B′). □

The Unit and the Counit of the Braiding. Recall that τm,n ∈ Σmn is the per-
mutation in (2.4.5). The next two definitions refer to the strong transformations

⊠ ⊠τ
β

β
●

in Definitions 8.13.22 and 8.13.30.
Definition 8.13.35. Define the data

1⊠ β ●β
ηβ

as consisting of the component 2-cells

(8.13.36)

(1⊠)(m,n) = 1mn

(β ●β)(m,n) = β ●m,nβm,n = 1τn,m1τm,n

η
β

(m,n) = (r
τm,n
1

τn,m )
−1

in MatCmn,mn for m, n ≥ 0, with r as in (8.13.13). ◇
Explanation 8.13.37. Consider (8.13.36).
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● η
β

(m,n) is well defined because rτm,n
1τn,m is a natural isomorphism

1τn,m1τm,n (1τn,m)τm,n = (1mn)τm,nτn,m = 1mn.
rτm,n
1

τn,m

– In the domain, the entries of 1τn,m1τm,n are described in (8.13.9) and
(8.13.10).

– In the codomain, the equalities follow from (8.13.8) and (8.13.19).
● The kth diagonal entry of η

β

(m,n) has the following form.

1 [(β ●β)(m,n)]kk

(λ−⊕, ρ−⊕, ρ−⊗, ρ−
●)

It is a composite of morphisms, each being an iterated sum of identity
morphisms and at most one component of λ−⊕, ρ−⊕, ρ−⊗, or ρ− ●.
● Similarly, each off-diagonal entry of η

β

(m,n) has the form

0 [(β ●β)(m,n)]kl

(λ−⊕, ρ−⊗, ρ−
●)

for 1 ≤ k /= l ≤ mn. ◇
Definition 8.13.38. Define the data

ββ ● 1⊠τ
εβ

as consisting of the component 2-cells

(8.13.39)

(ββ ●)(m,n) = βm,nβ ●m,n = 1τm,n1τn,m

(1⊠τ)(m,n) = 1nm = 1mn

ε
β

(m,n) = rτn,m
1

τm,n

in MatCmn,mn for m, n ≥ 0, with r as in (8.13.13). ◇
Explanation 8.13.40. Consider (8.13.39).

● ε
β

(m,n) is well defined by (8.13.8) and (8.13.19).

● The kth diagonal entry of ε
β

(m,n) has the following form.

[(ββ
●)(m,n)]kk 1

(λ⊕, ρ⊕, ρ⊗, ρ
●)

● Each off-diagonal entry of ε
β

(m,n) has the form

[(ββ
●)(m,n)]kl 0

(λ⊕, ρ⊗, ρ
●)

for 1 ≤ k /= l ≤ mn. ◇
Lemma 8.13.41. ηβ and εβ in, respectively, Definitions 8.13.35 and 8.13.38 are invertible
modifications.



I.418 8. SYMMETRIC MONOIDAL BICATEGORIFICATION

Proof. Each component 2-cell of each of ηβ ∶ 1⊠ β ●β and εβ ∶ ββ ● 1⊠τ is
invertible by (8.13.13).

The modification axiom (6.3.2) for ηβ states that for each pair of 1-cells

(A, B) ∈MatCm,m′ ×MatCn,n′

the following pasting diagram equality holds in MatCmn,m′n′ .

(8.13.42) =

mn m′n′

mn m′n′

n′m′

A⊠ B

A⊠ B

1mn

βm′,n′

βn′,m′

A⊠ B

1m′n′

⇒r
⇒ℓ
−1

⇒
η

β

(m′,n′)

mn m′n′

mn m′n′

n′m′

A⊠ B

A⊠ B

1mn

βm′,n′

βn′,m′

nm B⊠ A

βm,n

βn,m

⇒
η

β

(m,n)

⇒
βA,B

⇒
β
●
A,B = βB,A

The proof of this equality is adapted from that of (8.8.40), the modification axiom
for ηa. The proof of the modification axiom for εβ is obtained similarly. □

Lemma 8.13.43. The quadruple (β, β ●, ηβ, εβ) satisfies the triangle identities.

Proof. The left triangle identity (6.3.10) states the commutativity of the left diagram
below.

β1⊠ β

β(β ●β) 1⊠τ β

(ββ
●)β

rβ

1β ∗ ηβ

a−1
β,β ●,β εβ ∗ 1β

ℓβ

βm,n1
mn βm,n

βm,n(βn,mβm,n) 1nmβm,n

(βm,nβn,m)βm,n

rβm,n

1 ★ η
β

(m,n)

a−1
βm,n ,βn,m ,βm,n ε

β

(m,n) ★ 1

ℓβm,n

To show that the left diagram is commutative, it suffices to show that the two
composites have the same component 2-cells. So it suffices to show that the right
diagram is commutative for m, n ≥ 0. The proof of the commutativity of the right
diagram is adapted from that of (8.8.46), which is the left triangle identity for a⊠.
The proof for the right triangle identity is obtained similarly. □

Lemma 8.13.44. The quadruple (β, β ●, ηβ, εβ) with

● β in Definition 8.13.22,
● β ● in Definition 8.13.30,
● ηβ in Definition 8.13.35, and
● εβ in Definition 8.13.38

is an adjoint equivalence.

Proof. This follows from Lemmas 8.13.27, 8.13.34, 8.13.41, and 8.13.43. □
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8.14. The Matrix Braided Monoidal Bicategory

We continue to assume that C is a tight symmetric bimonoidal category. In
Section 8.13, we constructed the braiding (β, β ●, ηβ, εβ). In this section, we con-
struct the left hexagonator and the right hexagonator and observe that MatC is a
braided monoidal bicategory as in Definition 6.5.3.

● The left hexagonator is in Definition 8.14.9.
● The right hexagonator is in Definition 8.14.21.
● The verification of the braided monoidal bicategory axioms is in Theo-

rem 8.14.26.

The Left Hexagonator. To define the left hexagonator, we will make use of an
auxiliary 2-cell hm∣n,p in Lemma 8.14.4 below.
Motivation 8.14.1. The left hexagonator R−∣−− in a braided monoidal bicategory
is the 2-cell analogue of the left hexagon diagram in (II.1.3.17). With the braiding
denoted by β, the left hexagonator compares βA,B ⊠ 1C and 1B ⊠ βA,C with βA,B⊠C.
In the context of the matrix bicategory MatC, the left hexagonator involves a com-
parison 2-cell

(1n ⊠ βm,p)(βm,n ⊠1p) βm,np
hm∣n,p ∈MatCmnp,mnp

for objects m, n, p ∈ MatC, that is, nonnegative integers. To define this comparison
2-cell, in Lemma 8.14.2, we first describe explicitly the three 1-cells involved. The
definition of hm∣n,p is given in the proof of Lemma 8.14.4 in terms of the structure
morphisms in C. ◇
Lemma 8.14.2. For m, n, p ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ p, define the following
integers.

I = i + [k − 1+ (j − 1)p]m J = k + [j − 1+ (i − 1)n]p
J′ = k + [i − 1+ (j − 1)m]p

Then the following equalities hold for 1 ≤ u, v ≤ mnp.

(8.14.3)

(βm,np)uv =
⎧⎪⎪⎨⎪⎪⎩

1 if (u, v) = (I, J) for some (i, j, k), and
0 otherwise.

(1n ⊠ βm,p)uv =
⎧⎪⎪⎨⎪⎪⎩

1⊗1 if (u, v) = (I, J′) for some (i, j, k), and
0⊗ 0, 0⊗1, or 1⊗ 0 otherwise.

(βm,n ⊠1p)uv =
⎧⎪⎪⎨⎪⎪⎩

1⊗1 if (u, v) = (J′, J) for some (i, j, k), and
0⊗ 0, 0⊗1, or 1⊗ 0 otherwise.

Proof. If m, n, or p is 0, then MatCmnp,mnp is the terminal category, and the three
matrices in (8.14.3) are all empty matrices. In this case, there is nothing to prove,
so we assume that m, n, p > 0.

With 1 ≤ j ≤ n and 1 ≤ k ≤ p, the sum k + (j − 1)p runs through {1, . . . , np}.
Therefore, the first equality in (8.14.3) is the result of applying (8.13.26) to βm,np.

For the second equality, by (8.1.6) and (8.6.3), there is an equality as follows.

1n ⊠ βm,p =
⎡⎢⎢⎢⎢⎢⎣

1⊠ βm,p ⋯ 0⊠ βm,p
⋮ ⋱ ⋮

0⊠ βm,p ⋯ 1⊠ βm,p

⎤⎥⎥⎥⎥⎥⎦
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Among its n2 blocks,

● each of the n diagonal blocks is 1⊠ βm,p ∈MatCmp,mp, and
● each off-diagonal block is 0⊠ βm,p ∈MatCmp,mp.

By (8.13.26), the (I, J′)-entry in 1n ⊠ βm,p is the following object in the jth diagonal
block 1⊠ βm,p.

(1n ⊠ βm,p)I,J′ = (1⊠ βm,p)(i+(k−1)m, k+(i−1)p)

= 1⊗1

Every other entry in the jth diagonal block 1 ⊠ βm,p is 1⊗ 0. Each entry in each
off-diagonal block 0⊠ βm,p is either 0⊗ 0 or 0⊗1. This proves the second equality
in (8.14.3).

For the last equality in (8.14.3), by (8.6.3), βm,n ⊠ 1p has (mn)2 blocks. By
(8.13.26),

● its (i + (j − 1)m, j + (i − 1)n)-th block is 1 ⊠ 1p ∈ MatCp,p for 1 ≤ i ≤ m and
1 ≤ j ≤ n, and
● every other block is 0⊠1p ∈MatCp,p.

In the (i + (j − 1)m, j + (i − 1)n)-th block of βm,n ⊠1p, namely, 1⊠1p,

● for 1 ≤ k ≤ p, the (k, k)-entry is

(βm,n ⊠1p)J′,J = 1⊗1,

and
● every other entry is 1⊗ 0.

Each entry in every other block of βm,n ⊠1p, namely, 0⊠1p, is either 0⊗1 or 0⊗0.
This proves the last equality in (8.14.3). □

Using Lemma 8.14.2, we now define the comparison 2-cell hm∣n,p.

Lemma 8.14.4. For m, n, p ≥ 0, there is an isomorphism

(8.14.5) (1n ⊠ βm,p)(βm,n ⊠1p) βm,np
hm∣n,p ∈MatCmnp,mnp

that is defined entrywise by the structure morphisms in C.

Proof. If m, n, or p is 0, then MatCmnp,mnp is the terminal category, and hm∣n,p is the
identity morphism of the empty matrix. Next we assume that m, n, p > 0.

Using Lemma 8.14.2 and its notation, there are equalities as follows.

[(1n ⊠ βm,p)(βm,n ⊠1p)]
I,J

= [
mnp

⊕
t=1
(1n ⊠ βm,p)I,t ⊗ (βm,n ⊠1p)t,J]

lt

= [ z1 ⊕⋯⊕ zJ′−1⊕
empty if J′ = 1

(11)(11)⊕ zJ′+1 ⊕⋯⊕ zmnp

empty if J′ = mnp

]
lt

Here each zt for 1 ≤ t ≤ mnp with t /= J′ has the form (δ1δ2)(δ3δ4) such that
● each δi ∈ {0,1} and
● (δ1, δ2) /= (1,1) /= (δ3, δ4).



8.14. THE MATRIX BRAIDED MONOIDAL BICATEGORY I.421

The (I, J)-entry of hm∣n,p is the following composite isomorphism in C.

(8.14.6)

[(1n ⊠ βm,p)(βm,n ⊠1p)]
I,J

(βm,np)I,J

( 0⊕⋯⊕ 0⊕
J′ − 1 copies of 0

1 ⊕0⊕⋯⊕ 0
mnp − J′ copies of 0

)
lt

1

(λ⊗,λ ●,ρ ●)

(hm∣n,p)I,J

(λ⊕,ρ⊕)

Here we used the notation in (8.7.6) for morphisms. For example, (λ⊗, λ ●, ρ ●) is
a composite of morphisms, each being an iterated sum and product of identity
morphisms and at most one component of λ⊗, λ ●, or ρ ●.

If (u, v) /= (I, J) for any (i, j, k), then Lemma 8.14.2 implies that

[(1n ⊠ βm,p)(βm,n ⊠1p)]
uv
= [y1 ⊕⋯⊕ ymnp]lt.

Here each yt for 1 ≤ t ≤ mnp has the form (δ1δ2)(δ3δ4)with

● each δi ∈ {0,1} and
● (δ1, δ2, δ3, δ4) /= (1,1,1,1).

The (u, v)-entry of hm∣n,p is the following composite isomorphism in C.

(8.14.7)

[(1n ⊠ βm,p)(βm,n ⊠1p)]
uv

(βm,np)uv

[
mnp

⊕
t=1

0]
lt

0

(λ ●,ρ ●)

(hm∣n,p)uv

(λ⊕)

This finishes the construction of the isomorphism hm∣n,p. □

Explanation 8.14.8. While some choices are made in the definition of hm∣n,p—for
example, in the order in which λ⊕ and ρ⊕ are applied in (8.14.6)—its value as a
2-cell in MatC is unique. This follows from essentially the same argument as in
Examples 8.1.14 and 8.2.5 using the set X = {0X, 1X} of formal variables and the
function φ ∶ X Ob(C)with φ(0X) = 0 and φ(1X) = 1.

● In the (I, J)-entry for some (i, j, k), this uniqueness follows from the reg-
ularity of 1X, Lemma 3.1.29, and the Coherence Theorem 3.9.1.
● In every other entry, this uniqueness follows from Proposition 3.5.33. ◇

Using the comparison 2-cell hm∣n,p, we now define the left hexagonator in the
matrix bicategory MatC.
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Definition 8.14.9. Define R−∣−− as consisting of the 2-cells Rm∣n,p ∈ MatCmnp,npm for
m, n, p ≥ 0 given by the following pasting diagram.

(8.14.10) (mn)p n(pm)

(nm)p n(mp)

m(np) (np)m

βm,n ⊠1p

a⊠n,m,p = 1
nmp

1
n ⊠ βm,p

1
mnp = a⊠m,n,p

βm,np

a⊠n,p,m = 1
npm

1
n ⊠ βm,p

βm,np

βm,np
⇒

r⇒

hm∣n,p

⇒
ℓ−1⇒

r−1

This finishes the definition of R−∣−−. ◇
Explanation 8.14.11. Consider (8.14.10).

● By Convention 6.2.12, the (co)domain 1-cell has the left normalized brack-
eting.
● Each component 1-cell of β is a permutation matrix by (8.13.23).
● Each component 1-cell of a⊠ is an identity matrix by (8.8.2).
● The top 2-cell

r = r1n⊠βm,p ∶ (1
n ⊠ βm,p)1nmp 1n ⊠ βm,p

is the base right unitor in (8.2.8).
● hm∣n,p is the comparison 2-cell in (8.14.5).
● The 2-cell

ℓ−1 = ℓ−1
βm,np

∶ βm,np 1npmβm,np

is the inverse of the base left unitor in (8.2.2).
● The bottom 2-cell r−1 = r−1

βm,np
is the inverse of the base right unitor.

● By (8.2.4), (8.2.10), (8.14.6), and (8.14.7), each entry of Rm∣n,p is a com-
posite of morphisms, each being an iterated sum and product of identity
morphisms and at most one component of λ±⊕, ρ±⊕, λ±⊗, ρ±⊗, λ± ●, or
ρ± ●. ◇

Lemma 8.14.12. In Definition 8.14.9, R−∣−− is an invertible modification.

Proof. Each component 2-cell of R−∣−− is entrywise a composite of isomorphisms
in C, so it is invertible.

Using the notation in the proof of Lemma 8.10.4, the modification axiom (6.3.2)
for R−∣−− for the 1-cells

(B1, B2, B3) ∈MatCm,m′ ×MatCn,n′ ×MatCp,p′
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states the following pasting diagram equality in MatCmnp,n′p′m′ .

(8.14.13) =

(mn)p

(nm)p (m′n′)p′

n(mp) m′(n′p′)

n(pm) (n′p′)m′

n′(p′m′)

1
nmp

1
n ⊠ βm,p

1
m′n′p′

βm′,n′p′

βm,n ⊠1p

B2(31)

B(12)3

1n′p′m′

(n′m′)p′

n′(m′p′)

1
n′m′p′

1
n′ ⊠ βm′,p′

B(21)3
βm′,n′ ⊠1p′

B21βm,n ⊠ B31p βm′,n′B12 ⊠1p′B3

B2(13)

B21n ⊠ B31βm,p

1n′B2 ⊠ βm′,p′B13

⇒⊠
2

⇒ℓ−1r ⊠ βB1,B3
⇒⊠
−2

⇒
a⊠2,1,3

⇒⊠
2

⇒βB1,B2 ⊠ ℓ−1r ⇒⊠
−2

⇒
Rm′∣n′,p′

(mn)p

(nm)p (m′n′)p′

n(mp) m′(n′p′)

n(pm) (n′p′)m′

n′(p′m′)

1
nmp

1
n ⊠ βm,p

1
m′n′p′

βm′,n′p′

βm,n ⊠1p

B2(31)

B(12)3

1n′p′m′

m(np)

(np)m

1
mnp

βm,np

B1(23)

B(23)11npm

⇒
Rm∣n,p

⇒
a⊠2,3,1

⇒
βB1,B2⊠B3

⇒
a⊠1,2,3

For example,

B2(31) = B2 ⊠ (B3 ⊠ B1)
a⊠2,1,3 = a⊠B2,B1,B3 .

The proof of the equality (8.14.13) is adapted from that of (8.10.5), which is the
modification axiom for the pentagonator π. When restricted to a typical entry, the
two pasting diagrams in (8.14.13) yield a zigzag diagram analogous to (8.10.8).
The object Y in (8.10.9) is now replaced by the corresponding entry of B(12)3, which
has the form

Y = (B1
i′i ⊗ B2

j′ j)⊗ B3
k′k.

Since the proof of the equality (8.10.5) has all the detail, we safely skip the detail
here. □

The Right Hexagonator. Similar to the left hexagonator R−∣−−, to define the
right hexagonator, we will make use of a comparison 2-cell that involves the 1-cells
in the following lemma.
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Lemma 8.14.14. For m, n, p ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ p, define the following
integers.

K = j + [i − 1+ (k − 1)m]n J = k + [j − 1+ (i − 1)n]p
K′ = j + [k − 1+ (i − 1)p]n

Then the following equalities hold for 1 ≤ u, v ≤ mnp.

(8.14.15)

(βmn,p)uv =
⎧⎪⎪⎨⎪⎪⎩

1 if (u, v) = (K, J) for some (i, j, k), and
0 otherwise.

(1m ⊠ βn,p)uv =
⎧⎪⎪⎨⎪⎪⎩

1⊗1 if (u, v) = (K′, J) for some (i, j, k), and
0⊗ 0, 0⊗1, or 1⊗ 0 otherwise.

(βm,p ⊠1n)uv =
⎧⎪⎪⎨⎪⎪⎩

1⊗1 if (u, v) = (K, K′) for some (i, j, k), and
0⊗ 0, 0⊗1, or 1⊗ 0 otherwise.

Proof. As in the proof of Lemma 8.14.2, we may assume that m, n, p > 0, since there
is nothing to prove otherwise. With 1 ≤ i ≤ m and 1 ≤ j ≤ n, the sum j + (i − 1)n
runs through {1, . . . , mn}. Therefore, the first equality in (8.14.15) is the result of
applying (8.13.26) to βmn,p.

The second equality in (8.14.15) is obtained from the second equality in (8.14.3)
by switching (i, m) with (j, n). The third equality in (8.14.15) is obtained from the
third equality in (8.14.3) by switching (j, n)with (k, p). □

Using Lemma 8.14.14, we now define the comparison 2-cell that will be used
in the definition of the right hexagonator.

Lemma 8.14.16. For m, n, p ≥ 0, there is an isomorphism

(8.14.17) (βm,p ⊠1n)(1m ⊠ βn,p) βmn,p
hm,n∣p ∈MatCmnp,mnp

that is defined entrywise by the structure morphisms in C.

Proof. As in the proof of Lemma 8.14.4, we may assume that m, n, p > 0, since
otherwise hm,n∣p is the identity morphism of the empty matrix.

Using Lemma 8.14.14 and its notation, analogous to (8.14.6), the (K, J)-entry
of hm,n∣p is the following composite isomorphism in C.

(8.14.18)

[(βm,p ⊠1n)(1m ⊠ βn,p)]
K,J

(βmn,p)K,J

( 0⊕⋯⊕ 0⊕
K′ − 1 copies of 0

1 ⊕0⊕⋯⊕ 0
mnp − K′ copies of 0

)
lt

1

(λ⊗,λ ●,ρ ●)

(hm,n∣p)K,J

(λ⊕,ρ⊕)
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Suppose (u, v) /= (K, J) for any (i, j, k). Analogous to (8.14.7), the (u, v)-entry of
hm,n∣p is the following composite isomorphism in C.

(8.14.19)

[(βm,p ⊠1n)(1m ⊠ βn,p)]
uv

(βmn,p)uv

[
mnp

⊕
t=1

0]
lt

0

(λ ●,ρ ●)

(hm,n∣p)uv

(λ⊕)

This finishes the construction of the isomorphism hm,n∣p. □

Explanation 8.14.20. As in Explanation 8.14.8, hm,n∣p is a well-defined 2-cell in
MatCmnp,mnp by Proposition 3.5.33 and Theorem 3.9.1. ◇

We now define the right hexagonator in the matrix bicategory MatC.

Definition 8.14.21. Define R−−∣− as consisting of the 2-cells Rm,n∣p ∈MatCmnp,pmn for
m, n, p ≥ 0 given by the following pasting diagram.

(8.14.22) m(np) (pm)n

m(pn) (mp)n

(mn)p p(mn)

1
m ⊠ βn,p

a⊠ ●m,p,n = 1
mpn

βm,p ⊠1n

1
mnp = a⊠ ●m,n,p

βmn,p

a⊠ ●p,m,n = 1
pmn

βm,p ⊠1n

βmn,p

βmn,p

⇒

r⇒

hm,n∣p

⇒

ℓ−1⇒

r−1

This finishes the definition of R−−∣−. ◇
Explanation 8.14.23. Consider (8.14.22).

● By Convention 6.2.12, the (co)domain 1-cell has the left normalized brack-
eting.
● hm,n∣p is the comparison 2-cell in (8.14.17).
● ℓ = ℓβmn,p is the base left unitor (8.2.2).
● The top r = rβm,p⊠1n and the bottom r = rβmn,p are the base right unitor

(8.2.8).
● Each component 1-cell of β is a permutation matrix by (8.13.23).
● Each component 1-cell of a⊠ ● is an identity matrix by (8.8.34).
● By (8.2.4), (8.2.10), (8.14.18), and (8.14.19), each entry of Rm,n∣p is a com-

posite of morphisms, each being an iterated sum and product of identity
morphisms and at most one component of λ±⊕, ρ±⊕, λ±⊗, ρ±⊗, λ± ●, or
ρ± ●. ◇

Lemma 8.14.24. In Definition 8.14.21, R−−∣− is an invertible modification.

Proof. Each component 2-cell of R−−∣− is entrywise a composite of isomorphisms
in C, so it is invertible.
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Using the notation in the proof of Lemma 8.10.4, the modification axiom (6.3.2)
for R−−∣− for the 1-cells

(B1, B2, B3) ∈MatCm,m′ ×MatCn,n′ ×MatCp,p′

states the following pasting diagram equality in MatCmnp,p′m′n′ .

(8.14.25) =

m(np)

m(pn) m′(n′p′)

(mp)n (m′n′)p′

(pm)n p′(m′n′)

(p′m′)n′

1
mpn

βm,p ⊠1n

1
m′n′p′

βm′n′,p′

1m ⊠ βn,p

B(31)2

B1(23)

1p′m′n′

m′(p′n′)

(m′p′)n′

1
m′p′n′

βm′,p′ ⊠1n′

B1(32)
1m′ ⊠ βn′,p′

B11m ⊠ B32βn,p 1m′B1 ⊠ βn′,p′B23

B(13)2

B31βm,p ⊠ B21n

βm′,p′B13 ⊠1n′B2

⇒⊠
2

⇒βB1,B3 ⊠ ℓ−1r ⇒⊠
−2

⇒
a⊠ ●1,3,2

⇒⊠
2

⇒ℓ−1r ⊠ βB2,B3 ⇒⊠
−2

⇒
Rm′,n′∣p′

m(np)

m(pn) m′(n′p′)

(mp)n (m′n′)p′

(pm)n p′(m′n′)

(p′m′)n′

1
mpn

βm,p ⊠1n

1
m′n′p′

βm′n′,p′

1m ⊠ βn,p

B(31)2

B1(23)

1p′m′n′

(mn)p

p(mn)

1
mnp

βmn,p

B(12)3

B3(12)1pmn

⇒
Rm,n∣p

⇒
a⊠ ●3,1,2

⇒
βB1⊠B2,B3

⇒
a⊠ ●1,2,3

Analogous to (8.14.13), the proof of the equality (8.14.25) is adapted from the
detailed proof of (8.10.5), which is the modification axiom for the pentagonator
π. □

The Axioms.
Theorem 8.14.26. For each tight symmetric bimonoidal category C, the matrix bicategory
MatC equipped with

● the braiding (β, β ●, ηβ, εβ) in Section 8.13,
● the left hexagonator R−∣−− in Definition 8.14.9, and
● the right hexagonator R−−∣− in Definition 8.14.21

is a braided monoidal bicategory.

Proof. We already have the following.
● MatC is a monoidal bicategory by Theorem 8.12.9.
● The braiding is an adjoint equivalence by Lemma 8.13.44.
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● The left hexagonator and the right hexagonator are invertible modifica-
tions by, respectively, Lemmas 8.14.12 and 8.14.24.

It remains to check the four axioms in Definition 6.5.3.
For objects m, n, p ∈ MatC, the Yang-Baxter axiom states the following pasting

diagram equality in MatCmnp,pnm.

=

(mn)p

(nm)p

n(mp)

n(pm)

(np)m

(pn)m p(nm)

m(np)

m(pn)

(mp)n

(pm)n

p(mn)

βm,n ⊠1p

1
nmp

1
n ⊠ βm,p

1
npm

βn,p ⊠1m

1
pnm

1
mnp

1
m ⊠ βn,p

1
mpn

βm,p ⊠1n

1
pmn

1
p ⊠ βm,n

(np)m

βm,np

1
npm

1
npm

β⊠1m

βm,pn

⇒
Rm∣n,p

⇒
η−a

⇒r

⇒
β1m ,βn,p

⇒
(R1

m∣p,n)
−1

(mn)p

(nm)p

n(mp)

n(pm)

(np)m

(pn)m p(nm)

m(np)

m(pn)

(mp)n

(pm)n

p(mn)

βm,n ⊠1p

1
nmp

1
n ⊠ βm,p

1
npm

βn,p ⊠1m

1
pnm

1
mnp

1
m ⊠ βn,p

1
mpn

βm,p ⊠1n

1
pmn

1
p ⊠ βm,n

(nm)p

β⊠1p

1
nmp

1
nmp

βnm,p

βmn,p

⇒
R1

n,m∣p

⇒η
−a

⇒ℓ

⇒
β−1

βm,n ,1p

⇒
(R3

m,n∣p)
−1

The proof of this equality is adapted from that of (8.12.3), which is the non-abelian
4-cocycle condition, in Lemma 8.12.1. The key points are as follows.

● Component 1-cells of a⊠ (8.8.2) and a⊠ ● (8.8.34) are identity matrices.
● Each component 1-cell of the braiding β (8.13.23) is a permutation matrix.

It has precisely one 1 in each row and each column and 0 in every other
entry.
● Each 2-cell in the Yang-Baxter axiom is entrywise defined by the structure

morphisms in C.
These facts allow us to reuse steps (1)–(5) in the proof of Lemma 8.12.1. In the last
two steps, instead of considering the two cases i = j and i /= j, we simply observe
that by Lemma 3.1.29, all the vertices in the diagram D in Gr(X) have the same
support, which is that of either 0X or 1X. Therefore, either Proposition 3.5.33 (for
0X) or the Coherence Theorem 3.9.1 (for 1X) implies the commutativity of D in C.
This, in turn, proves the Yang-Baxter axiom.

The (3,1)-crossing, the (1,3)-crossing, and the (2,2)-crossing axioms are proved
in the same way by following the steps in the proof of Lemma 8.12.1 as discussed
in the previous paragraph. □

8.15. The Matrix Symmetric Monoidal Bicategory

For a tight symmetric bimonoidal category C as in Definition 2.1.2, we saw in
Theorem 8.14.26 that the matrix bicategory MatC is a braided monoidal bicategory.
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In this section, we finish the proof that MatC is a symmetric monoidal bicategory as
in Definition 6.5.9. Since a symmetric monoidal bicategory is a sylleptic monoidal
bicategory as in Definition 6.5.7 with an extra axiom, our next task is to define the
syllepsis that relates the braid-square to the identity.

Definition 8.15.1. Define the data of a modification ν with component 2-cells

m⊠ n m⊠ n

n⊠m

1m⊠n

βm,n βn,m

⇒

νm,n

defined as

βn,mβm,n = 1τn,m1τm,n 1mn
νm,n = rτm,n

1
τn,m ∈MatCmn,mn

for m, n ≥ 0 and r as in (8.13.13). ◇
Explanation 8.15.2. In the setting of Definition 8.15.1, there are equalities

νm,n = rτm,n
1τn,m = (η

β

(m,n))
−1
= ε

β

(n,m)

with ηβ the unit (8.13.36) and εβ the counit (8.13.39) of the braiding. By (8.13.14)
and the notation for morphisms in (8.7.6),

● each diagonal entry of νm,n has the form (λ⊕, ρ⊕, ρ⊗, ρ ●), and
● each off-diagonal entry of νm,n has the form (λ⊕, ρ⊗, ρ ●).

The entries of the domain 1-cell 1τn,m1τm,n are described in (8.13.9) and (8.13.10). ◇
Lemma 8.15.3. ν in Definition 8.15.1 is an invertible modification.

Proof. Each component 2-cell of ν is invertible by (8.13.13). The modification axiom
(6.3.2) for ν is obtained from (8.13.42), which is the modification axiom for ηβ, by
pasting

● (ηβ

(m,n))
−1

on the left and

● (ηβ

(m′,n′))
−1

on the right

in each pasting diagram. □

We are now ready for the main result of this chapter.

Theorem 8.15.4 (Bicategorification). For each tight symmetric bimonoidal category C,
the quintuple

(MatC, β, R−∣−−, R−−∣−, ν)

is a symmetric monoidal bicategory.

Proof. By Theorem 8.14.26, the monoidal bicategory MatC in Theorem 8.12.9 be-
comes a braided monoidal bicategory when equipped with

● the braiding (β, β ●, ηβ, εβ) in Section 8.13 and
● the hexagonators R−∣−− and R−−∣− in Definitions 8.14.9 and 8.14.21.
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The syllepsis ν is an invertible modification by Lemma 8.15.3. It remains to check
the two syllepsis axioms in Definition 6.5.7 and the triple braid axiom (6.5.10).

The (2,1)-syllepsis axiom is the next pasting diagram equality in MatCmnp,mnp
for m, n, p ≥ 0. Unlabeled edges are identity 1-cells.

=

m(np)

m(pn)

(mp)n

(pm)n p(mn)

(mn)p

m(np)

1
m ⊠ βn,p

βm,p ⊠1n βp,mn

(mn)p

p(mn)

β

β

⇒
Rm,n∣p

⇒ℓ ⇒r

⇒ν
⇒r

⇒ℓ

m(np)

m(pn)

(mp)n

(pm)n p(mn)

(mn)p

m(np)

1
m ⊠ βn,p

βm,p ⊠1n βp,mn

(mp)n

m(pn)

1
m ⊠ β

1
m ⊠ β

β⊠1n

⇒R−1
p∣m,n

⇒ν1

⇒ℓ

⇒ℓ

⇒ℓ ⇒ν2

In these pasting diagrams, we used the fact that each component 2-cell of the
counit εa (8.8.38) is an instance of the base left unitor ℓ (8.2.2), applied to an iden-
tity 1-cell. The proof of the above equality is adapted from that of (8.12.3), which
is the non-abelian 4-cocycle condition, in Lemma 8.12.1 by following steps (1)–(5)
there. As we pointed out in the proof of Theorem 8.14.26, the key points that allow
us to reuse those steps are as follows.

● Component 1-cells of a⊠ (8.8.2) and a⊠ ● (8.8.34) are identity matrices.
● Each component 1-cell of the braiding β (8.13.23) is a permutation matrix,

with precisely one 1 in each row and each column and 0 in every other
entry.
● Each 2-cell in the (2,1)-syllepsis axiom is entrywise defined by the struc-

ture morphisms in C.
The (1,2)-syllepsis axiom is proved in the same way.

The triple braid axiom (6.5.10) states the following pasting diagram equality
in MatCmn,nm for m, n ≥ 0.

=
mn

nm mn

nm
βm,n

βm,n

βn,m

βm,n
1

mn

⇒νm,n

⇒r
mn

nm mn

nm
βm,n

βm,n

βn,m

βm,n1
nm

⇒νn,m

⇒ℓ

The proof of this equality is also adapted from that of (8.12.3) in Lemma 8.12.1
by following steps (1)–(5) there. In the last two steps, instead of considering the
two cases i = j and i /= j, we simply observe that by Lemma 3.1.29, all the vertices
in the diagram D in Gr(X) have the same support, which is that of either 0X or
1X. Therefore, either Proposition 3.5.33 (for 0X) or the Coherence Theorem 3.9.1
(for 1X) implies the commutativity of D in C. This in turn proves the triple braid
axiom. □

Example 8.15.5. Theorem 8.15.4 applies to the tight symmetric bimonoidal cate-
gories below.
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● Distributive symmetric monoidal categories by Proposition 2.3.2.
● Symmetric monoidal closed categories with finite coproducts by Exam-

ple 2.3.3.
● The category of modules over a commutative ring by Example 2.3.4.
● Distributive categories by Example 2.3.5.
● Σ and Σ′ by Propositions 2.4.8 and 2.4.23.
● Right bipermutative categories by Proposition 2.5.7.
● Left bipermutative categories by Proposition 2.5.16.
● The category VectC of finite dimensional complex vector spaces in Exam-

ple 8.4.13.
In particular, when applied to the last example C = VectC, Theorem 8.15.4 says that
2-vector spaces, in the form MatVect

C

, constitute a genuine symmetric monoidal
bicategory in which no structure morphisms are identities. ◇
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Braided Bimonoidal Categories





CHAPTER 1

Preliminaries on Braided Structures

Part 1 is about braided bimonoidal categories and some of their applications.
To reduce the prerequisite to an absolute minimum, we do not assume any prior
knowledge of the braid groups and braided monoidal categories. To facilitate the
discussion later, in this chapter we review some properties of the braid groups and
braided monoidal categories, starting from the basic definitions.

In Section 1.1, we first define the braid groups Bn algebraically. Then we dis-
cuss their geometric interpretation and some examples. Next we discuss braided
analogues of block sums and block permutations, which are called sum braids
and block braids, respectively. Each of these two constructions is first defined al-
gebraically and is followed by a geometric interpretation and examples.

In Section 1.2, we discuss elementary block braids induced by the generating
braid in B2. They are the braided analogues of interval-swapping permutations.
Elementary block braids are used in Definition 1.6.2 for the underlying braid of
a braided canonical map, which, in turn, is used in the Braided Coherence Theo-
rem 1.6.3. Elementary block braids will also play a crucial role in the braiding in
the braided distortion category in Section 5.2.

In Section 1.3, we first recall the definition of a braided monoidal category.
Then we prove several consequences of the braided monoidal category axioms,
including some unity properties and two categorical versions of the third Reide-
meister move. The unity properties are used in Sections 1.4 and 1.5 in the discus-
sion of the Drinfeld center and the symmetric center. Both the unity properties and
the categorical third Reidemeister move will be used in the proof of Theorem 2.2.1,
which recovers all the Laplaza axioms in a braided bimonoidal category.

Monoidal, braided monoidal, and symmetric monoidal categories are related
by two center constructions. In Section 1.4, we prove in detail that the Drinfeld
center of a monoidal category is a braided monoidal category. There are several
published accounts of this fact when the monoidal category is strict; see Note 1.7.2.
However, we will need the general nonstrict version of the Drinfeld center. Since
a proof for the general nonstrict case does not seem to have appeared before, we
provide the detailed proof in this section.

Section 1.5 contains the observation that the symmetric center of a braided
monoidal category is a symmetric monoidal category. Both the Drinfeld center and
the symmetric center will be extended to the bimonoidal and the ring categorical
setting in Chapter 4 and Section 9.6.

In Section 1.6, we review the Joyal-Street coherence theorem for braided mon-
oidal categories. It will be used in the proof of the Braided Bimonoidal Coher-
ence Theorem 5.4.4. Section 1.7 lists some references to the literature on the braid
groups, the Drinfeld center, and coherence theorems for braided monoidal cate-
gories.

II.7
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1.1. The Braid Groups

The purpose of this section is to recall the braid groups in its algebraic and
geometric forms. Then we define sum braids and block braids, which are the
braided analogues of block sums and block permutations. These constructions are
needed to define the braided distortion category in Section 5.2.

The Braid Groups.
Definition 1.1.1. For n ≥ 0, the nth braid group Bn is defined as follows.

● Both B0 and B1 are the trivial group with one element.
● For n ≥ 2, the braid group Bn is the group generated by the generators

s1, . . . , sn−1, and is subject to the following braid relations:

(1.1.2)
sisj = sjsi for ∣i − j∣ ≥ 2 and 1 ≤ i, j ≤ n − 1.

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n − 2.

Moreover, we define the following.
● An element in Bn is called a braid.
● si ∈ Bn is called the ith generating braid.
● To emphasize that si belongs to Bn, we write it as s(n)i .
● The identity element in Bn is called the identity braid and is denoted by id

or idn. ◇
Example 1.1.3. The braid group B2 has one generator s1 and no relations, so it is
the infinite cyclic group. ◇
Explanation 1.1.4. The braid group Bn admits the following geometric interpreta-
tion. A topological interval is a topological space homeomorphic to the closed unit
interval I = [0, 1] ⊆R. A geometric braid on n strings is a subset

b =
n
∐
i=1

Ii ⊆R2 × I

such that the following two statements hold.
(i) Each Ii, called the ith string of b, is a topological interval via the homeo-

morphism
Ii ⊆R2 × I I

with the second map the projection.
(ii) There are equalities

Ii ∩ (R2 × {0}) = {(i, 0, 0)} for 1 ≤ i ≤ n and

(
n
∐
i=1

Ii)∩ (R2 × {1}) = {(1, 0, 1), (2, 0, 1), . . . , (n, 0, 1)}.

A braid on n strings is an isotopy class of geometric braids on n strings. We will use
the same notation for a geometric braid and its isotopy class.

Similar to the fundamental group, using the I coordinate, the set of braids on
n strings is a group under vertical composition. This group is naturally identified
with the braid group Bn, in which the generator si ∈ Bn is identified with the braid
on n strings with the (i+ 1)st string crossing over the ith string when viewed from
bottom to top. We identify an element in the braid group Bn with the correspond-
ing braid on n strings. ◇
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Example 1.1.5. The generator s2 ∈ B5 and its inverse are the following braids.

s2 ∈ B5

0 1 2 3 4 5

1

s−1
2 ∈ B5

0 1 2 3 4 5

1

In each of these two pictures, the three axes, the horizontal dotted line, and the
numbers {0, . . . , 5} are not part of the braid. They are there to help the reader
visualize the braid. From now on, we will omit the axes and the dotted lines. ◇
Example 1.1.6. If n = 3 and i = 1, then the second braid relation

s1s2s1 = s2s1s2 ∈ B3

in (1.1.2) is the equality of the following two braids.

1 2 3

=
1 2 3

This equality is known as the third Reidemeister move. ◇

The Sum Braids.
Motivation 1.1.7. Σn denotes the permutation group on n letters. For permuta-
tions (σ, τ) ∈ Σm ×Σn, their block sum is the permutation σ⊕ τ ∈ Σm+n defined as

(1.1.8) (σ⊕ τ)(i) =
⎧⎪⎪⎨⎪⎪⎩

σ(i) if 1 ≤ i ≤ m and
τ(i −m)+m if m + 1 ≤ i ≤ m + n.

In other words, σ permutes the first m objects, and τ permutes the last n objects
with the indices shifted appropriately. Next we define the braided analogue of the
block sum. ◇
Definition 1.1.9. For m, n ≥ 1, the sum braid is the group homomorphism

(1.1.10) Bm × Bn Bm+n
⊕

defined on the generators by

s(m)i ⊕ s(n)j = s(m+n)
i s(m+n)

m+j ∈ Bm+n

for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1, extended multiplicatively to all of Bm × Bn. If
either m or n is 0, then we define the sum braid to be the identity map. ◇

The symmetric group Σn admits a similar generator and relation description
as the braid group Bn with si replaced by the adjacent transposition (i, i + 1) and
with the extra relation

(i, i + 1)(i, i + 1) = id

for each i.
Definition 1.1.11. The group homomorphism

(1.1.12) π ∶ Bn Σn
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is defined by sending the generating braid si ∈ Bn to the transposition (i, i+ 1) ∈ Σn
for 1 ≤ i ≤ n − 1, extended multiplicatively to all of Bn. For a braid b ∈ Bn, its image
π(b) ∈ Σn is denoted by b and is called the underlying permutation of b. ◇
Explanation 1.1.13. The sum braid (1.1.10) extends the block sum (1.1.8) of per-
mutations in the sense that there is a commutative diagram

(1.1.14)
Bm × Bn Bm+n

Σm ×Σn Σm+n

⊕

(π,π) π

⊕

of group homomorphisms, with each π the group homomorphism in (1.1.12). For
braids (σ, τ) ∈ Bm × Bn, the sum braid σ ⊕ τ ∈ Bm+n is geometrically the braid
obtained by placing σ and τ side-by-side with σ on the left. ◇
Example 1.1.15. The sum braid of s1s1 ∈ B2 and s1s2s1 ∈ B3 is geometrically the
braid on the right-hand side below.

1 2

s1s1 ∈ B2

⊕
1 2 3

s1s2s1 ∈ B3

=
1 2 3 4 5

s1s1 ⊕ s1s2s1 ∈ B5

Algebraically, it is the braid

s(2)1 s(2)1 ⊕ s(3)1 s(3)2 s(3)1 = s(5)1 s(5)1 s(5)3 s(5)4 s(5)3 ∈ B5.

The superscripts are included to clarify which braid group each si belongs to. ◇
Example 1.1.16. Since the sum braid is a group homomorphism, there are equali-
ties

σ⊕ τ = (σ⊕ idn)(idm ⊕ τ)
= (idm ⊕ τ)(σ⊕ idn)

(1.1.17)

in Bm+n for braids (σ, τ) ∈ Bm × Bn. ◇

The Block Braids.
Motivation 1.1.18. Suppose n ≥ 1, k1, . . . , kn ≥ 0, and k = k1 +⋯+ kn. We write k for
the sequence (k1, . . . , kn). The block permutation

Σn Σk
(−)⟨k⟩

is defined as follows for σ ∈ Σn, 1 ≤ j ≤ n, and 1 ≤ i ≤ k j.

(1.1.19) (σ⟨k⟩)(
0 if j = 1

k1 +⋯+ k j−1 + i) =
0 if σ(j) = 1

kσ−1(1) +⋯+ kσ−1(σ(j)−1) + i

To interpret this formula, consider n consecutive intervals with the jth interval
having k j objects for each 1 ≤ j ≤ n. The block permutation σ⟨k⟩ ∈ Σk permutes the
n intervals as σ ∈ Σn permutes n objects. For each 1 ≤ j ≤ n, within the jth interval
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the order of the k j objects remain unchanged. After the block permutation, the
new n intervals have lengths

(kσ−1(1), . . . , kσ−1(n)).

The formula (1.1.19) states that σ⟨k⟩ sends the ith object in the original jth interval
to the ith object in the new σ(j)th interval. Here are two examples.

● If k j = 1 for 1 ≤ j ≤ n, then

σ⟨1, . . . , 1⟩ = σ.

● If σ = idn ∈ Σn, then

idn⟨k⟩ = idk ∈ Σk.

Next we define the braided analogue of block permutation by expanding each
string into a band of several parallel strings. We first define block braid alge-
braically and then return to the geometric interpretation using parallel strings. ◇
Definition 1.1.20. Suppose n ≥ 1, k1, . . . , kn ≥ 0, and k = k1 +⋯+ kn. The block braid

(1.1.21)
Bn Bk

b b⟨k1, . . . , kn⟩ = b⟨k⟩

(−)⟨k⟩

is the constant function at the identity braid id ∈ Bk1
if n = 1. For n ≥ 2, the block

braid is the function defined by the following three steps.

(i) For 1 ≤ i ≤ n − 1, the generating braid si ∈ Bn is sent to the product

si⟨k⟩ = σ1⋯σki
∈ Bk with

σj =
ki+1

∏
m=1

s(k)k1+⋯+ki−1+j+ki+1−m ∈ Bk

= (s(k)k1+⋯+ki−1+j+ki+1−1)(s
(k)
k1+⋯+ki−1+j+ki+1−2)⋯ (s

(k)
k1+⋯+ki−1+j)

(1.1.22)

for 1 ≤ j ≤ ki. The empty product, which happens if ki or ki+1 is 0, is
defined as the identity.

(ii) For 1 ≤ i ≤ n − 1, the block braid for s−1
i is defined as

(1.1.23) s−1
i ⟨k⟩ = [si⟨k1, . . . , ki−1

∅ if i = 1

, ki+1, ki, ki+2, . . . , kn

∅ if i = n − 1

⟩]−1 ∈ Bk

(iii) Inductively, for σ, τ ∈ Bn, suppose the block braids σ⟨⋯⟩, τ⟨⋯⟩ ∈ Bk have
already been defined. The block braid for the product στ is defined as

(1.1.24) (στ)⟨k⟩ = σ⟨τk⟩ ⋅ τ⟨k⟩ ∈ Bk

with
● τ = π(τ) ∈ Σn the underlying permutation of τ in (1.1.12) and
● τk = (k

τ−1(1), . . . , k
τ−1(n)).

This finishes the definition of the block braid. ◇
Explanation 1.1.25. Let us provide geometric interpretation for Definition 1.1.20.
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(1) The block braid (1.1.21) extends the block permutation (1.1.19) in the
sense that there is a commutative diagram

(1.1.26)

Bn Bk1+⋯+kn

Σn Σk1+⋯+kn

π

⟨k⟩

π

⟨k⟩

of functions with π the underlying permutation in (1.1.12). The for-
mula (1.1.24) implies that the block braid is not a group homomorphism
and similarly for the block permutation. Therefore, the diagram (1.1.26)
is only commutative in the category of sets and not in the category of
groups.

(2) Geometrically, for a braid b ∈ Bn, the block braid b⟨k⟩ is obtained from b
by replacing its jth string by k j parallel strings for 1 ≤ j ≤ n.
● In the block braid si⟨k⟩, each of the ki+1 strings in the (i + 1)st block

crosses over each of the ki strings in the ith block.
● The braid σj in (1.1.22) encodes the ki+1 strings in the (i + 1)st block

crossing over the jth string in the ith block. More precisely, the lth
generator

s(k)k1+⋯+ki−1+j+l−1 ∈ Bk,

counting from the right in σj, represents the lth string in the (i + 1)st
block crossing over the jth string in the ith block.
● In the formula (1.1.23), the braid

si⟨k1, . . . , ki−1, ki+1, ki, ki+2, . . . , kn⟩
is similar to si⟨k⟩, except that the ith string and the (i + 1)st string in
si are replaced by, respectively, ki+1 and ki parallel strings. Therefore,
its inverse s−1

i ⟨k⟩ is obtained from s−1
i by replacing the jth string by

k j parallel strings for 1 ≤ j ≤ n.
● The formula (1.1.24) means that (στ)⟨k⟩ is obtained from the braid

στ ∈ Bn by replacing its jth string by k j parallel strings for 1 ≤ j ≤ n.
An inspection of the relevant pictures shows that the block braid is well
defined, that is, respects the braid relations (1.1.2) in Bn. Moreover, the
algebraic definition agrees with the geometric interpretation. ◇

Example 1.1.27. If k j = 1 for 1 ≤ j ≤ n in (1.1.21), then

b⟨1, . . . , 1⟩ = b ∈ Bn.

Indeed, by (1.1.22) and (1.1.23), this equality is true for each generating braid si ∈
Bn and its inverse s−1

i . The formula (1.1.24) then implies the equality for a general
braid. Moreover, for the identity braid idn ∈ Bn, there is an equality

idn⟨k⟩ = idk ∈ Bk

by (1.1.23) and (1.1.24). ◇
Example 1.1.28. For the generator s1 ∈ B2, k1 = 2, and k2 = 3, the block braid

s1⟨2, 3⟩ =
σ1

s(5)3 s(5)2 s(5)1

σ2

s(5)4 s(5)3 s(5)2 ∈ B5
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is illustrated below.

1 2 3 4 5

s1⟨2, 3⟩ ∈ B5

=
1 2 3 4 5

s(5)3 s(5)2 s(5)1 s(5)4 s(5)3 s(5)2

● On the left-hand side, the first string in s1 ∈ B2 is replaced by two parallel
strings, and its second string is replaced by three parallel strings. Each of
the latter three strings crosses over each of the former two strings.
● On the right-hand side, from bottom to top, σ2 contains the first three

crossings, and σ1 contains the last three crossings. ◇
Example 1.1.29. To illustrate the formula (1.1.24) for (στ)⟨k⟩, consider

σ = τ = s1 ∈ B2, k1 = 2, and k2 = 3.

The block braid

(s1s1)⟨2, 3⟩ = s1⟨3, 2⟩ ⋅ s1⟨2, 3⟩ ∈ B5

= (s(5)2 s(5)1 s(5)3 s(5)2 s(5)4 s(5)3 )(s
(5)
3 s(5)2 s(5)1 s(5)4 s(5)3 s(5)2 )

is illustrated below.

1 2 3 4 5

In this picture, the bottom half is s1⟨2, 3⟩ as in Example 1.1.28. The top half is
s1⟨3, 2⟩. The entire block braid is obtained from s1s1 ∈ B2 by replacing, from the
bottom, its first string by two parallel strings and its second string by three parallel
strings. ◇

1.2. Elementary Block Braids

Block braids of the type in Example 1.1.28 are part of the braiding in the
braided distortion category in Section 5.2. They are also used in Definition 1.6.2
for the underlying braid of a braided canonical map and the Braided Coherence
Theorem 1.6.3. In this section, we discuss some of their properties.

Motivation 1.2.1. For the transposition τ ∈ Σ2, the block permutation τ⟨m, n⟩ ∈
Σm+n swaps an interval of length m with an interval of length n and leaves the
order within each interval unchanged. It is given by the formula

(1.2.2) (τ⟨m, n⟩)(j) =
⎧⎪⎪⎨⎪⎪⎩

j + n if 1 ≤ j ≤ m and
j −m if m + 1 ≤ j ≤ m + n.
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The generating braid s1 ∈ B2 has underlying braid the transposition τ ∈ Σ2. The
braided analogue of the interval-swapping permutation τ⟨m, n⟩ ∈ Σm+n is defined
as a block braid of s1. ◇
Definition 1.2.3. For the generator s1 ∈ B2 and m, n ≥ 0, define the elementary block
braid

(1.2.4) b⊕m,n = s1⟨m, n⟩ ∈ Bm+n

with the right-hand side as in (1.1.22). ◇
Explanation 1.2.5. Geometrically, b⊕m,n is obtained from the generating braid s1 ∈
B2 by replacing, from the bottom, its first string by m parallel strings and its second
string by n parallel strings. Each of the latter n strings crosses over each of the
former m strings. For example, b⊕2,3 = s1⟨2, 3⟩ is the block braid in Example 1.1.28.

Algebraically (1.1.22), b⊕m,n is the product

b⊕m,n = b1⋯ bm ∈ Bm+n with

bi =
n
∏
j=1

s(m+n)
i+n−j = (s

(m+n)
i+n−1 )(s

(m+n)
i+n−2 )⋯ (s

(m+n)
i )(1.2.6)

for 1 ≤ i ≤ m. Counting from the right, for 1 ≤ l ≤ n, the lth generator s(m+n)
i+l−1 in bi

represents the lth string in the second block crossing over the ith string in the first
block. ◇

Next we provide another formula for the elementary block braid b⊕m,n that will
be useful in proving some of its properties.

Lemma 1.2.7. For m, n ≥ 0, there is an equality

b⊕m,n = b′n⋯ b′1 ∈ Bm+n with

b′j = (s
(m+n)
j )(s(m+n)

j+1 )⋯ (s(m+n)
j+m−1)

(1.2.8)

for 1 ≤ j ≤ n.

Proof. The formula (1.2.8) is another interpretation of b⊕m,n as obtained from the
generating braid s1 ∈ B2 by replacing, from the bottom, its first string by m parallel
strings and its second string by n parallel strings. For 1 ≤ j ≤ n, the braid b′j ∈ Bm+n

encodes the jth string in the second block crossing over the m strings in the first
block. □

The next two lemmas describe how the factors of b⊕m,n in (1.2.6) and (1.2.8)
commute with generating braids.

Lemma 1.2.9. For 1 ≤ i ≤ m−1 and 1 ≤ j ≤ n, the braid b′j in (1.2.8) satisfies the following
equality.

(1.2.10) b′js
(m+n)
j+i−1 = s(m+n)

j+i b′j ∈ Bm+n

Proof. Since we are working in the braid group Bm+n only, we omit the superscript
(m + n). The equality (1.2.10) follows from the following computation that uses
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the braid relations (1.1.2) repeatedly.

b′jsj+i−1 =
∅ if i = 1

(sj⋯ sj+i−2) (sj+i−1sj+i)
∅ if i = m − 1

(sj+i+1⋯ sj+m−1) sj+i−1

= (sj⋯ sj+i−2)[(sj+i−1sj+i)sj+i−1](sj+i+1⋯ sj+m−1)
= (sj⋯ sj+i−2)[sj+i(sj+i−1sj+i)](sj+i+1⋯ sj+m−1)
= sj+i(sj⋯ sj+i−2)(sj+i−1sj+i)(sj+i+1⋯ sj+m−1)
= sj+ib

′
j

The second equality uses the first braid relation m − i − 1 times. The third equality
uses the second braid relation in the form

sj+i−1sj+isj+i−1 = sj+isj+i−1sj+i.

The fourth equality uses the first braid relation i − 1 times. □

An almost identical calculation as in the proof of Lemma 1.2.9 proves the fol-
lowing.
Lemma 1.2.11. For 1 ≤ i ≤ m and 1 ≤ j ≤ n − 1, the braid bi in (1.2.6) satisfies the
following equality.

(1.2.12) bis
(m+n)
i+j = s(m+n)

i+j−1 bi ∈ Bm+n

The following lemma will be used to show the naturality of the braiding in the
braided distortion category in Section 5.2.
Lemma 1.2.13. The following equality holds in Bm+n for m, n ≥ 0, σ ∈ Bm, and τ ∈ Bn.

(1.2.14) b⊕m,n(σ⊕ τ) = (τ ⊕ σ)b⊕m,n

Proof. It suffices to prove (1.2.14) in two cases: τ = idn or σ = idm. In fact, if
these two special cases are true, then the general case follows from the following
computation using (1.1.17).

b⊕m,n(σ⊕ τ) = b⊕m,n(σ⊕ idn)(idm ⊕ τ)
= (idn ⊕ σ)b⊕m,n(idm ⊕ τ)
= (idn ⊕ σ)(τ ⊕ idm)b⊕m,n

= (τ ⊕ σ)b⊕m,n

Since the sum braid is a group homomorphism, to prove (1.2.14) for τ = idn,
it suffices to consider a generating braid σ = s(m)i ∈ Bm for 1 ≤ i ≤ m − 1. This case
follows from the following computation using (1.2.8) and (1.2.10) repeatedly.

b⊕m,n(s
(m)
i ⊕ idn) = b′n⋯ b′2b′1s(m+n)

i

= b′n⋯ b′2s(m+n)
i+1 b′1

= b′n⋯ b′3s(m+n)
i+2 b′2b′1

⋮

= s(m+n)
i+n b′n⋯ b′1

= (idn ⊕ s(m)i )b⊕m,n.
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Similarly, to prove the desired equality (1.2.14) for σ = idm, it suffices to con-
sider a generating braid τ = s(n)j ∈ Bn for 1 ≤ j ≤ n − 1. This case follows from the
following computation using (1.2.6) and (1.2.12) repeatedly.

b⊕m,n(idm ⊕ s(n)j ) = b1⋯ bm−1bms(m+n)
m+j

= b1⋯ bm−1s(m+n)
m+j−1 bm

= b1⋯ bm−2s(m+n)
m+j−2 bm−1bm

⋮

= s(m+n)
j b1⋯ bm

= (s(n)j ⊕ idm)b⊕m,n

This finishes the proof of the lemma. □

Explanation 1.2.15. Recall from Explanation 1.1.13 that σ ⊕ τ is the braid with σ
on the left and τ on the right. The equality (1.2.14) may be visualized as follows.

b⊕m,n(σ⊕ τ)

σ τ

n m

=

(τ ⊕ σ)b⊕m,n

m n

τ σ

On the left-hand side, the bottom half consists of the braids σ and τ side-by-side,
and the top half is b⊕m,n. On the right-hand side, the bottom half is b⊕m,n, and the top
half is τ and σ side-by-side. ◇

The following lemma will be used to prove the hexagon axioms in the braided
distortion category in Section 5.2.

Lemma 1.2.16. For l, m, n ≥ 0, the following equalities hold in Bl+m+n.

b⊕l+m,n = (b
⊕

l,n ⊕ idm)(idl ⊕ b⊕m,n)(1.2.17)

b⊕l,m+n = (idm ⊕ b⊕l,n)(b
⊕

l,m ⊕ idn)(1.2.18)

Proof. The first equality (1.2.17) follows from the following computation using
(1.2.6) and the multiplicativity of the sum braid.

(b⊕l,n ⊕ idm)(idl ⊕ b⊕m,n)

= [(
l
∏
h=1

n
∏
j=1

s(l+n)
h+n−j)⊕ idm][idl ⊕ (

m
∏
i=1

n
∏
j=1

s(m+n)
i+n−j )]

= [
l
∏
h=1

n
∏
j=1

s(l+m+n)
h+n−j ][

m
∏
i=1

n
∏
j=1

s(l+m+n)
l+i+n−j ]

=
l+m
∏
h=1

n
∏
j=1

s(l+m+n)
h+n−j = b⊕l+m,n
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The equality (1.2.18) is proved using the alternative factorization in (1.2.8),

b⊕m,n =
n
∏
j=1

m
∏
i=1

s(m+n)
n−j+i ∈ Bm+n.

Then (1.2.18) follows from the following computation.

(idm ⊕ b⊕l,n)(b
⊕

l,m ⊕ idn)

= [idm ⊕ (
n
∏
j=1

l
∏
h=1

s(l+n)
n−j+h)][(

m
∏
i=1

l
∏
h=1

s(l+m)
m−i+h)⊕ idn]

= [
n
∏
j=1

l
∏
h=1

s(l+m+n)
m+n−j+h][

m
∏
i=1

l
∏
h=1

s(l+m+n)
m−i+h ]

=
m+n
∏
j=1

l
∏
h=1

s(l+m+n)
m+n−j+h = b⊕l,m+n

This finishes the proof of the lemma. □

Explanation 1.2.19. The equality (1.2.17) may be visualized as follows.

l m n

b⊕l+m,n

=
l m n

(b⊕l,n ⊕ idm)(idl ⊕ b⊕m,n)

Similarly, the equality (1.2.18) may be visualized as follows.

l m n

b⊕l,m+n

=
l m n

(idm ⊕ b⊕l,n)(b
⊕

l,m ⊕ idn)

In these pictures, each label l means that that band contains l parallel strings, and
similarly for m and n. ◇

1.3. Braided Monoidal Categories

In this section, we recall (braided) monoidal categories, (braided) monoidal
functors, and monoidal natural transformations. Then we discuss basic properties
of braided monoidal categories that we will use later.

Monoidal Categories.
Definition 1.3.1. A monoidal category is a tuple

(C,⊗,1, α, λ, ρ)
consisting of

● a category C;
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● a functor
⊗ ∶ C×C C,

which is called the monoidal product;
● an object 1 ∈ C, which is called the monoidal unit;
● a natural isomorphism

(X⊗Y)⊗ Z X⊗ (Y⊗ Z)
αX,Y,Z

≅

for all objects X, Y, Z ∈ C, which is called the associativity isomorphism; and
● natural isomorphisms

1⊗X X
λX
≅ and X⊗1 X

ρX

≅

for all objects X ∈ C, which are called the left unit isomorphism and the right
unit isomorphism, respectively.

These data are subject to the following two axioms.
The Unity Axiom: The diagram

(1.3.2)
(X⊗1)⊗Y X⊗ (1⊗Y)

X⊗Y X⊗Y

ρX⊗1Y

αX,1,Y

1X⊗λY

is commutative for all objects X, Y ∈ C.
The Pentagon Axiom: The pentagon

(1.3.3)

(W ⊗X)⊗ (Y⊗ Z)

((W ⊗X)⊗Y)⊗ Z

(W ⊗ (X⊗Y))⊗ Z W ⊗ ((X⊗Y)⊗ Z)

W ⊗ (X⊗ (Y⊗ Z))

αW,X,Y⊗ZαW⊗X,Y,Z

αW,X,Y⊗1Z

αW,X⊗Y,Z

1W⊗αX,Y,Z

is commutative for all objects W, X, Y, Z ∈ C.
This finishes the definition of a monoidal category. A monoidal category is strict if
α, λ, and ρ are identity natural transformations. ◇

In a monoidal category, the equality

(1.3.4) λ1 = ρ1 ∶ 1⊗1 1

and the commutative diagrams

(1.3.5)
(1⊗X)⊗Y 1⊗ (X⊗Y)

X⊗Y X⊗Y

λX⊗1Y

α1,X,Y

λX⊗Y

(X⊗Y)⊗1 X⊗ (Y⊗1)

X⊗Y X⊗Y

ρX⊗Y

αX,Y,1

1X⊗ρY

are formal consequences of the monoidal category axioms. These two diagrams
are called the left unity diagram and the right unity diagram, respectively.
Definition 1.3.6. A monoid in a monoidal category C is a triple (X, µ, η)with

● X an object in C;
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● µ ∶ X⊗X X a morphism, which is called the multiplication; and
● η ∶ 1 X a morphism, which is called the unit.

These data are required to make the following associativity and unity diagrams
commutative.

(X⊗X)⊗X X⊗ (X⊗X)

X⊗X

X⊗X X

µ⊗1X

α

1X⊗µ

µ

µ

1⊗X X

X⊗X X

X⊗1 X

η⊗1X

λX

µ

1X⊗η

ρX

A morphism of monoids

f ∶ (X, µX , ηX) (Y, µY, ηY)
is a morphism f ∶ X Y in C that preserves the multiplications and the units in
the sense that the diagrams

X⊗X Y⊗Y

X Y

µX

f⊗ f

µY

f

1 X

1 Y

ηX

f
ηY

are commutative. ◇
Definition 1.3.7. For monoidal categories C and D, a monoidal functor

(F, F2, F0) ∶ C D

consists of
● a functor F ∶ C D;
● a natural transformation, which is called the monoidal constraint,

(1.3.8) FX⊗ FY F(X⊗Y) ∈ DF2

for objects X, Y ∈ C; and
● a morphism, which is called the unit constraint,

(1.3.9) 1D F1C ∈ D.F0

These data are required to satisfy the following associativity and unity axioms.
Associativity: The diagram

(1.3.10)

(FX⊗ FY)⊗ FZ FX⊗ (FY⊗ FZ)

F(X⊗Y)⊗ FZ FX⊗ F(Y⊗ Z)

F((X⊗Y)⊗ Z) F(X⊗ (Y⊗ Z))

αD

F2⊗1FZ 1FX⊗F2

F2 F2

FαC

is commutative for all objects X, Y, Z ∈ C.
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Unity: The diagrams

(1.3.11)
1D ⊗ FX FX

F1C ⊗ FX F(1C ⊗X)

F0⊗1FX

λD
FX

F2

FλC
X

FX⊗1D FX

FX⊗ F1C F(X⊗1C)

1FX⊗F0

ρDFX

F2

FρCX

are commutative for all objects X ∈ C. They are called the left unity diagram
and the right unity diagram, respectively.

This finishes the definition of a monoidal functor. A monoidal functor (F, F2, F0)
is often abbreviated to F.

Moreover, a monoidal functor (F, F2, F0) is said to be
● unital if F0 is an isomorphism;
● strictly unital if F0 is the identity morphism;
● strong if F0 and the components of F2 are isomorphisms; and
● strict if F0 and the components of F2 are identity morphisms. ◇

Definition 1.3.12. Suppose

C D E
F G

are monoidal functors. Their composite

(GF, (GF)2, (GF)0) ∶ C E

is the monoidal functor with underlying functor GF and the structure morphisms

1 G1 GF1

GFA⊗GFB G(FA⊗ FB) GF(A⊗ B)

G0 G(F0)

(GF)0

G2 G(F2)

(GF)2

for objects A, B ∈ C. ◇
Definition 1.3.13. For monoidal functors F, G ∶ C D, a monoidal natural trans-
formation θ ∶ F G is a natural transformation between the underlying functors
such that the diagrams

(1.3.14)
FX⊗ FY GX⊗GY

F(X⊗Y) G(X⊗Y)
F2

θX⊗θY

G2

θX⊗Y

1D F1C

1D G1C

F0

θ
1C

G0

are commutative for all objects X, Y ∈ C. ◇

Braided Monoidal Categories.
Definition 1.3.15. A braided monoidal category is a pair (C, ξ) consisting of the fol-
lowing data.

● (C,⊗,1, α, λ, ρ) is a monoidal category.
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● ξ is a natural isomorphism

(1.3.16) X⊗Y Y⊗X
ξX,Y

≅

for objects X, Y ∈ C, which is called the braiding.

These data are required to satisfy the Hexagon Axioms, stating the commutativity
of the following two diagrams, called the left hexagon diagram and the right hexagon
diagram, respectively, for objects X, Y, Z ∈ C.

(1.3.17) Y⊗ (Z⊗X)

Y⊗ (X⊗ Z)(Y⊗X)⊗ Z

(X⊗Y)⊗ Z

X⊗ (Y⊗ Z) (Y⊗ Z)⊗X

ξX,Y⊗1Z

α

1Y⊗ξX,Z

α

ξX,YZ

α

(Z⊗X)⊗Y

(X⊗ Z)⊗YX⊗ (Z⊗Y)

X⊗ (Y⊗ Z)

(X⊗Y)⊗ Z Z⊗ (X⊗Y)

1X⊗ξY,Z

α−1

ξX,Z⊗1Y

α−1

ξXY,Z

α−1

This finishes the definition of a braided monoidal category. A braided monoidal
category is strict if the underlying monoidal category is strict. ◇
Definition 1.3.18. For braided monoidal categories C and D, a braided monoidal
functor (F, F2, F0) ∶ C D is a monoidal functor between the underlying monoi-
dal categories such that the diagram

(1.3.19)
FX⊗ FY FY⊗ FX

F(X⊗Y) F(Y⊗X)
F2

ξFX,FY

≅

F2

FξX,Y

≅

is commutative for all objects X, Y ∈ C. A braided monoidal functor is said to
be strong (respectively, strict, unital, or strictly unital) if the underlying monoidal
functor is so. ◇
Explanation 1.3.20. The two hexagon diagrams in (1.3.17) may be visualized as
the braids, read bottom-to-top,

X Y Z X Y Z

in the braid group B3, with the braiding ξ interpreted as the generating braid s1 ∈
B2. On the left, the two strings labeled by Y and Z cross over the string labeled by
X. The two composites along the boundary of the left hexagon diagram (1.3.17)
correspond to passing Y and Z over X either one at a time, or both at once. On the
right, the string labeled by Z crosses over the two strings labeled by Y and X. The
two composites along the boundary of the right hexagon diagram (1.3.17) likewise
correspond to the two ways of passing Z over X and Y. ◇

The rest of this section contains several useful consequences of the hexagon
axioms (1.3.17). The following unit properties are from [JS93, Prop. 2.1], but here
we provide more detail.
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Proposition 1.3.21. In each braided monoidal category (C, ξ), the following two unit
diagrams are commutative for all objects X ∈ C.

(1.3.22)
X⊗1 1⊗X 1⊗X X⊗1

X X X X

ρX

ξX,1

λX λX

ξ1,X

ρX

Proof. To show that the left unit diagram in (1.3.22) is commutative, by the natu-
rality and the invertibility of λ, it suffices to show that the following diagram is
commutative.

(1.3.23)
1⊗ (X⊗1) 1⊗ (1⊗X)

1⊗X 1⊗X

11⊗ρX

11⊗ξX,1

11⊗λX

To show that (1.3.23) is commutative, we consider the left hexagon diagram in
(1.3.17) with Y = Z = 1, which is the outer diagram below. To save space, we omit
the ⊗ symbol.

(1.3.24) (X1)1 X1 1X 1(1X)

(1X)1 1(X1)

X(11) (11)X

(1.3.23)
ξX,111

α1,X,1

11ξX,1

αX,1,1

ξX,11

α1,1,X

ρX1 ξX,1 11λX

ρ1X 11ρX

1Xρ1 ρ11X

Consider the top half of the diagram (1.3.24).

● The left triangle is commutative by the naturality of ρ.
● The middle triangle is commutative by the right unity property in (1.3.5).
● The right triangle is the diagram (1.3.23) that we want to show is commu-

tative.

Consider the bottom half of the diagram (1.3.24).

● The left triangle is commutative by the right unity property in (1.3.5).
● The middle trapezoid is commutative by the naturality of ξ.
● The right triangle is commutative by the unity axiom (1.3.2).

Moreover, the following statements hold.

● The outer diagram in (1.3.24), being the Y = Z = 1 special case of the left
hexagon diagram in (1.3.17), is commutative.
● Each arrow in (1.3.24) is an isomorphism.

It follows that the diagram (1.3.23) is commutative, proving the left unit diagram
in (1.3.22).

The right unit diagram in (1.3.22) is proved similarly by considering the right
hexagon diagram in (1.3.17) with X = Y = 1. □
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Proposition 1.3.25. For each object X in a braided monoidal category (C, ξ), the mor-
phisms

X⊗1 1⊗X
ξX,1

ξ1,X

are inverses of each other.

Proof. This follows by horizontally concatenating the two squares in (1.3.22) in
either order and using the invertibility of λX and ρX . □

Proposition 1.3.26. In each braided monoidal category (C, ξ), the equality

ξ1,1 = 11⊗1 ∶ 1⊗1 1⊗1
holds.

Proof. The desired equality follows from
● the equality λ1 = ρ1 in (1.3.4),
● the unit property ρ = λξ−,1 in (1.3.22), and
● the invertibility of ρ.

This finishes the proof. □

The following observation is from [JS93, Prop. 2.7], where it was obtained as
a consequence of the Braided Coherence Theorem 1.6.3. Here we provide a direct
proof.
Proposition 1.3.27. In each braided monoidal category (C, ξ), the following diagram is
commutative for all objects A, B, C ∈ C.

(1.3.28) A⊗ (C⊗ B)

A⊗ (B⊗C)(A⊗ B)⊗C

(B⊗ A)⊗C

C⊗ (B⊗ A) (C⊗ B)⊗ A

ξA,B⊗1C

ξB⊗A,C

α−1
C,B,A

αA,B,C

1A⊗ξB,C

ξA,C⊗B

Proof. The diagram (1.3.28) is the outer diagram below, with the symbol⊗ omitted.

(BA)C B(AC) B(CA) (BC)A A(CB)

(AB)C A(BC)

C(BA) (CB)A

ξA,B1C

ξBA,C
α−1

C,B,A

αA,B,C

1AξB,C

ξA,CB

αB,A,C 1BξA,C α−1
B,C,A

ξB,C1A

ξA,BC

● The top and the bottom left parallelograms are commutative by, respec-
tively, the left and the right hexagon diagrams in (1.3.17).
● The right diamond is commutative by the naturality of ξ.

This finishes the proof. □
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Explanation 1.3.29. The commutative diagram (1.3.28) may be visualized as the
third Reidemeister move in Example 1.1.6. The left braid in Example 1.1.6 corre-
sponds to the left-bottom composite in (1.3.28), and the right braid corresponds to
the top-right composite. ◇

The following variation of Proposition 1.3.27 is another manifestation of the
third Reidemeister move in a braided monoidal category.
Proposition 1.3.30. In each braided monoidal category (C, ξ), the following diagram is
commutative for all objects A, B, C ∈ C.

(1.3.31) C⊗ (B⊗ A)

C⊗ (A⊗ B)(A⊗ B)⊗C

A⊗ (B⊗C)

(B⊗C)⊗ A (C⊗ B)⊗ A

αA,B,C

ξA,B⊗C

ξB,C⊗1A

αC,B,A

ξA⊗B,C

1C⊗ξA,B

Proof. The diagram (1.3.31) is the outer diagram below, with the symbol⊗ omitted.

A(BC) C(BA)

(AB)C C(AB)

(BC)A (CB)A

(BA)C

A(CB)

(1.3.28)

αA,B,C

ξA,BC
ξB,C1A

αC,B,A

ξAB,C

1CξA,BξA,B1C

ξBA,C1AξB,C

ξA,CB

In this diagram, the middle subdiagram is commutative by (1.3.28). The upper
right and the lower left triangles are commutative by the naturality of ξ. □

Symmetric Monoidal Categories.
Definition 1.3.32. A symmetric monoidal category is a monoidal category

(C,⊗,1, α, λ, ρ)
equipped with a natural isomorphism

X⊗Y Y⊗X
ξX,Y

≅

for objects X, Y ∈ C, which is called the braiding or the symmetry isomorphism, that
satisfies the following axioms.
The Symmetry Axiom: The diagram

(1.3.33)
X⊗Y Y⊗X

X⊗Y

ξX,Y

ξY,X

is commutative for all objects X, Y ∈ C.
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The Unit Axiom: The diagram

(1.3.34)
X⊗1 1⊗X

X X

ρX

ξX,1

λX

is commutative for all objects X ∈ C.
The Hexagon Axiom: The diagram

(1.3.35) (X⊗Y)⊗ Z

X⊗ (Y⊗ Z)X⊗ (Z⊗Y)

(X⊗ Z)⊗Y

Y⊗ (X⊗ Z) (Y⊗X)⊗ Z

α

1X⊗ξZ,Y

α−1

ξX⊗Z,Y

α−1

ξY,X⊗1Z

is commutative for all objects X, Y, Z ∈ C.

This finishes the definition of a symmetric monoidal category. A permutative cat-
egory is a symmetric monoidal category whose underlying monoidal category is
strict.

A symmetric monoidal functor between symmetric monoidal categories is a
monoidal functor that satisfies (1.3.19). A symmetric monoidal functor is said to
be strong (respectively, strict, unital, or strictly unital) if the underlying monoidal
functor is so. ◇
Proposition 1.3.36. A symmetric monoidal category is precisely a braided monoidal cat-
egory whose braiding satisfies the symmetry axiom (1.3.33).

Proof. Suppose C is a symmetric monoidal category. The symmetry axiom (1.3.33)
implies the following statements.

● The hexagon axiom (1.3.35) in a symmetric monoidal category implies
the right hexagon diagram in (1.3.17).
● Taking the inverse of each edge in the right hexagon diagram yields the

left hexagon diagram in (1.3.17).

Therefore, C is also a braided monoidal category.
Conversely, suppose C is a braided monoidal category whose braiding satis-

fies the symmetry axiom.

● The unit axiom (1.3.34) holds by the left unit property in (1.3.22).
● By the symmetry axiom, the right hexagon diagram in (1.3.17) is equiva-

lent to the hexagon axiom (1.3.35).

Therefore, C is a symmetric monoidal category. □

Example 1.3.37. Since each symmetric monoidal category is also a braided mon-
oidal category, Propositions 1.3.21, 1.3.25 through 1.3.27, and 1.3.30 also hold for
symmetric monoidal categories. In particular, the unit axiom (1.3.34) is redundant
by the left unit property in (1.3.22). ◇
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1.4. The Drinfeld Center

The Drinfeld center is an important construction that takes a monoidal cat-
egory to a braided monoidal category. In this section, we provide a detailed
proof of this fact for a general nonstrict monoidal category; see Theorem 1.4.27
and Note 1.7.2. In Chapter 4 and Section 9.6, we will extend the Drinfeld center to
the bimonoidal and the ring categorical setting.

Defining the Drinfeld Center.
Motivation 1.4.1. Suppose M is a monoid in the usual set. The center of M, de-
noted Z(M), consists of elements a ∈ M such that

(1.4.2) ab = ba for each b ∈ M.

So an element in the center Z(M) commutes with each element in M. The center
Z(M) inherits from M the structure of a commutative monoid. The Drinfeld cen-
ter, which we will define shortly, is a categorification of the center construction that
takes a monoidal category to a braided monoidal category. In the categorification
process, the equality (1.4.2) is replaced by a natural isomorphism βA that satisfies
a coherence axiom (1.4.4), which is modeled after the left hexagon axiom (1.3.17).
For a monoid M and a monoidal category C, the following table summarizes this
discussion.

input center elements/objects

monoid M Z(M) is a commutative monoid a ∈ M such that ab = ba

monoidal category C C is a braided monoidal category (A, βA ∶ A⊗ (−) ≅ (−)⊗ A)

See Questions III.A.3.2 and III.A.3.3 for open questions related to the Drinfeld cen-
ter. ◇
Definition 1.4.3. Suppose (C,⊗,1, α, λ, ρ) is a monoidal category. The Drinfeld cen-
ter of C consists of the data of a braided monoidal category

(C, ⊗ ,1, α, λ, ρ, ξ)
defined as follows.
Objects: An object in C is a pair (A; βA) consisting of

● an object A ∈ C and
● a natural isomorphism

A⊗ B B⊗ A
βA

B
≅ for B ∈ C

such that the following hexagon is commutative for objects B, C ∈ C.

(1.4.4) B⊗ (C⊗ A)

(B⊗C)⊗ AA⊗ (B⊗C)

(A⊗ B)⊗C

(B⊗ A)⊗C B⊗ (A⊗C)

βA
B⊗C

α−1
A,B,C

βA
B⊗1C

αB,A,C

1B⊗βA
C

α−1
B,C,A

We call A the underlying object and βA the A-braiding.
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Morphisms: A morphism

f ∶ (A; βA) (B; βB)

in C is a morphism f ∶ A B in C such that the following diagram is
commutative for each object C ∈ C.

(1.4.5)
A⊗C B⊗C

C⊗ A C⊗ B

βA
C

f⊗1C

βB
C

1C⊗ f

Identity Morphisms: The identity morphism of an object (A; βA) ∈ C is the iden-
tity morphism 1A ∶ A A in C.

Composition: The composition of morphisms in C is the composition of mor-
phisms in C.

The Monoidal Product: For the rest of this definition, (A; βA), (B; βB), and (C; βC)
are arbitrary objects in C. The functor

(1.4.6) C×C C
⊗

is defined as follows.
Objects: Define the object

(1.4.7) (A; βA)⊗ (B; βB) = (A⊗ B; βA⊗B)
with βA⊗B defined by the following hexagon for objects C ∈ C.

(1.4.8) (C⊗ A)⊗ B

C⊗ (A⊗ B)(A⊗ B)⊗C

A⊗ (B⊗C)

A⊗ (C⊗ B) (A⊗C)⊗ B

βA⊗B
C

αA,B,C

1A⊗βB
C

α−1
A,C,B

βA
C⊗1B

αC,A,B

Morphisms: Define the morphism

(1.4.9) (A; βA)⊗ (B; βB) (A′; βA′)⊗ (B′; βB′)f ⊗ g

as

A⊗ B A′ ⊗ B′ ∈ Cf⊗g

for the following morphisms in C.

(A; βA) (A′; βA′)

(B; βB) (B′; βB′)

f

g

The Monoidal Unit: Define the object

(1.4.10) 1 = (1; β1)
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with β1 defined as the following composite for objects A ∈ C.

(1.4.11)
1⊗ A A⊗1

A
λA

β1A

ρ−1
A

The Associativity Isomorphisms: Define the morphism

(1.4.12)

[(A; βA)⊗ (B; βB)]⊗ (C; βC)

(A; βA)⊗ [(B; βB)⊗ (C; βC)]

α
(A;βA),(B;βB),(C;βC)

as

(A⊗ B)⊗C A⊗ (B⊗C) ∈ C.
αA,B,C

The Unit Isomorphisms: Define the left and the right unit isomorphisms

(1.4.13) 1⊗ (A; βA) (A; βA) (A; βA)⊗1
λ
(A;βA) ρ

(A;βA)

as, respectively,

1⊗ A A A⊗1 ∈ C.
λA ρA

The Braiding: Define the morphism

(1.4.14) (A; βA)⊗ (B; βB) (B; βB)⊗ (A; βA)
ξ
(A;βA),(B;βB)

as
βA

B ∶ A⊗ B B⊗ A ∈ C.

This finishes the definition of the Drinfeld center of C. ◇
Explanation 1.4.15. Consider Definition 1.4.3.

● For an object (A; βA) ∈ C, the naturality of βA means that for each mor-
phism g ∶ B C in C, the following diagram in C is commutative.

(1.4.16)
A⊗ B B⊗ A

A⊗C C⊗ A

βA
B

1A⊗g g⊗1A
βA

C

● The diagrams (1.4.4) and (1.4.8) are modeled after, respectively, the left
hexagon diagram and the right hexagon diagram in (1.3.17).
● The diagram (1.4.11) defining β1 is modeled after the right diagram in

(1.3.22).

Moreover, the diagram (1.4.18) below, characterizing βA
1

, is modeled after the left
diagram in (1.3.22). ◇
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The Braided Monoidal Category Axioms. We now check in several steps that
the Drinfeld center is, in fact, a braided monoidal category, starting with the fol-
lowing preliminary observations. For the rest of this section, in diagrams we often
omit the symbol ⊗ and some subscripts to save space.
Lemma 1.4.17. In the context of Definition 1.4.3, the following statements hold.

(1) C is a category.
(2) For each object (A; βA) ∈ C, the following diagram is commutative in C.

(1.4.18)
A⊗1 1⊗ A

A

βA
1

ρA λA

Proof. The first assertion follows from the following statements.
● 1A ∶ (A; βA) (A; βA) satisfies (1.4.5) because ⊗ preserves identity

morphisms.
● If

f ∶ (A; βA) (B; βB) and g ∶ (B; βB) (C; βC)

are morphisms in C, then g f satisfies (1.4.5) because ⊗ preserves compo-
sition and identity morphisms.
● The unity and the associativity of composition in C follow from the cor-

responding properties in C.

Therefore, C is a category.
For the second assertion, first observe that, by the naturality and the invert-

ibility of ρ, the diagram (1.4.18) is commutativity if and only if the diagram

(1.4.19)
(A⊗1)⊗1 (1⊗ A)⊗1

A⊗1

βA
1
⊗11

ρA⊗11 λA⊗11

is commutative. To show that (1.4.19) is commutative, consider the following dia-
gram.

(A1)1 A1 1A 1(1A)

A(11) (11)A

(1A)1 1(A1)

βA
11

α−1
A,1,1

βA
111

α1,A,1

11βA
1

α−1
1,1,A1Aλ1 λ11A

ρA11 βA
1 λ1A

λA11

λA1

(1.3.2)
nat

(1.3.5)

(1.4.19)

(1.3.5)

nat

● The outer diagram is the commutative diagram (1.4.4) with B = C = 1.
● In the top half, from left to right, the subdiagrams are commutative by

the unity axiom (1.3.2), the naturality of βA (1.4.16) for the morphism λ1,
and the left unity property in (1.3.5).
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● In the bottom half, the left triangle is (1.4.19). The other two triangles are
commutative by the left unity property in (1.3.5) and the naturality of λ.
● Each edge is an isomorphism.

Therefore, the diagram (1.4.19) is commutative. □

In the next three lemmas, we check that ⊗ in (1.4.6) is a well-defined functor.

Lemma 1.4.20. (A⊗ B; βA⊗B) in (1.4.7) is an object in C.

Proof. The (A⊗ B)-braiding βA⊗B in (1.4.8) is a natural isomorphism because α, βA,
and βB are natural isomorphisms. It remains to check the axiom (1.4.4) for βA⊗B.

For objects C, D ∈ C, the diagram (1.4.4) for βA⊗B is the outer diagram below.

(AB)(CD) A[B(CD)] A[(CD)B] [A(CD)]B [(CD)A]B

[(AB)C]D (CD)(AB)

[A(BC)]D C[D(AB)]

[A(CB)]D C[(DA)B]

[(AC)B]D C[(AD)B]

[(CA)B]D [C(AB)]D C[(AB)D] C[A(BD)] C[A(DB)]

α 1βB
CD α−1 βA

CD1

αα−1

α1

(1βB
C)1

α−11

(βA
C1)1

α1 α 1α 1(1βB
D)

1α−1

1(βA
D1)

1α

α−1

βAB
CD

βAB
C 1 1βAB

D

A[(BC)D]

A[(CB)D]

(AC)(BD)

(CA)(BD)

A[C(DB)]

A[C(BD)]

(AC)(DB)

(CA)(DB)

[(AC)D]B

[C(DA)]B

[(CA)D]B

[C(AD)]B

(†)

(1.4.4)

(1.4.4)

α

1α−1

α

1(βB
C1)

1α

α

βA
C1

α

1βB
D

1βB
D

αα

1α

1(1βB
D)

α

βA
C1

α

α−11

α (βA
C1)1

α α1

α

(1βA
D)1

α−11

α

● The three subdiagrams along the boundary are commutative by the defi-
nitions (1.4.8) of βA⊗B

C⊗D, βA⊗B
C , and βA⊗B

D .
● The subdiagram (†) is commutative by the functoriality of ⊗.
● Two subdiagrams are commutative by the axiom (1.4.4) for βA and βB as

indicated.
● Every other subdiagram is commutative by either the pentagon axiom

(1.3.3) or the naturality of α.

Therefore, βA⊗B satisfies the axiom (1.4.4). □

Lemma 1.4.21. f ⊗ g in (1.4.9) is a morphism in C.
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Proof. We must show that f ⊗ g satisfies the axiom (1.4.5), which is the outer dia-
gram below.

(AB)C (A′B′)C

A(BC) A′(B′C)

A(CB) A′(CB′)

(AC)B (A′C)B′

(CA)B (CA′)B′

C(AB) C(A′B′)

nat

(1.4.5)

nat

(1.4.5)

nat

(1.4.8) (1.4.8)

( f g)1

f (g1)

f (1g)

( f 1)g

(1 f )g

1( f g)

α

1βB
C

α−1

βA
C1

α

βAB
C

α

1βB′

C

α−1

βA′

C 1

α

βA′B′

C

● The left and the right rectangles are commutative by (1.4.8) for, respec-
tively, βA⊗B

C and βA′⊗B′

C .
● In the middle column, the following statements hold.

– The second rectangle is commutative by (1.4.5) for g and the functo-
riality of ⊗.

– The fourth rectangle is commutative by (1.4.5) for f and the functo-
riality of ⊗.

– The other three rectangles are commutative by the naturality of α.

Therefore, f ⊗ g satisfies the axiom (1.4.5). □

Lemma 1.4.22. In (1.4.6),

−⊗− ∶ C×C C

is a functor.

Proof. This follows from Lemmas 1.4.20 and 1.4.21 and the fact that ⊗ preserves
identity morphisms and composition. □

In the next four lemmas, we check that the monoidal unit, the associativity
isomorphisms, the left/right unit isomorphisms, and the braiding in C are well
defined.

Lemma 1.4.23. 1 = (1; β1) in (1.4.10) is an object in C.

Proof. β1 = ρ−1λ in (1.4.11) is a natural isomorphism because λ and ρ are natural
isomorphisms. The following commutative diagram proves the axiom (1.4.4) for
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β1. The unlabeled regions are commutative by the definition (1.4.11) of β1.

1(BC) BC (BC)1

(1B)C B(C1)

(B1)C B(1C)

λ ρ−1

α−1

β1B1 α 1β1C

α−1
λ1

ρ−11 1λ−1

1ρ−1

β1BC

(1.3.5) (1.3.5)

(1.3.2)

Therefore, 1 = (1; β1) is an object in C. □

Lemma 1.4.24. In (1.4.12),

α ∶ (−⊗−)⊗ − − ⊗ (−⊗−)
is a natural isomorphism.

Proof. Since α in C is a natural isomorphism, it suffices to check that each com-
ponent of α is a morphism in C. For each object D ∈ C, the axiom (1.4.5) for the
component (1.4.12) of α is the outer diagram below.

[(AB)C]D [A(BC)]D A[(BC)D] A[B(CD)] A[B(DC)]

(AB)(CD) A[(BD)C]

(AB)(DC) A[(DB)C]

[(AB)D]C A[D(BC)]

[A(BD)]C (AD)(BC)

[A(DB)]C (DA)(BC)

[(AD)B]C [(DA)B]C [D(AB)]C D[(AB)C] D[A(BC)]

α1 α 1α 1(1βC
D)

1α−1

1(βB
D1)

1α

α−1

βA
D1

α

α

1βC
D

α−1

α1

(1βB
D)1

α−11

(βA
D1)1 α1 α 1α

α

α

α

α

α

α

β(AB)C
D

βA(BC)
D

● The left-bottom subdiagram along the boundary is commutative by the
definitions (1.4.8) of β(A⊗B)⊗C

D and βA⊗B
D .

● The top-right subdiagram along the boundary is commutative by the def-
initions (1.4.8) of βA⊗(B⊗C)

D and βB⊗C
D .

● The other seven subdiagrams, from the upper left to the lower right, are
commutative by the pentagon axiom (1.3.3) and the naturality of α in an
alternating manner.
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Therefore, each component of α satisfies the axiom (1.4.5). □

Lemma 1.4.25. In (1.4.13),

λ ∶ 1⊗ − − and ρ ∶ − ⊗1 −

are natural isomorphisms.

Proof. Since λ and ρ in C are natural isomorphisms, it suffices to check that each
component of each of λ and ρ is a morphism in C. For the component λ(A;βA) in
(1.4.13) and an object B ∈ C, the axiom (1.4.5) is the outer diagram below.

(1A)B AB BA

1(AB) B(1A)

1(BA) (1B)A BA (B1)A

λ1 βA
B

α

1βA
B

α−1 λ1 ρ−11

α

1λλ

λ 1

β1A
B

(1.3.5)

nat

(1.3.5) (1.3.2)

● The subdiagram along the boundary is commutative by the definitions
(1.4.8) of β1⊗A

B and (1.4.11) of β1B.
● The other four subdiagrams are commutative by the left unity property

in (1.3.5), the naturality of λ, and the unity axiom (1.3.2).

Therefore, each component of λ satisfies the axiom (1.4.5).
For the component ρ(A;βA) in (1.4.13) and an object B ∈ C, the axiom (1.4.5) is

the outer diagram below.

(A1)B AB BA

A(1B) B(A1)

AB A(B1) (AB)1 (BA)1

ρ1 βA
B

α

1λ

1ρ−1 α−1 βA
B1

α

1ρ

1
ρ−1

ρβA1
B

(1.3.2)

(1.3.5)

nat

(1.3.5)

● The subdiagram along the boundary is commutative by the definitions
(1.4.8) of βA⊗1

B and (1.4.11) of β1B.
● The other four subdiagrams are commutative by the unity axiom (1.3.2),

the right unity property in (1.3.5), and the naturality of ρ.
Therefore, each component of ρ satisfies the axiom (1.4.5). □

Lemma 1.4.26. ξ in (1.4.14) is a natural isomorphism.

Proof. To check that the component

ξ(A;βA),(B;βB) = βA
B ∶ (A; βA)⊗ (B; βB) (B; βB)⊗ (A; βA)
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in (1.4.14) is a morphism in C, we check the axiom (1.4.5) for each object C ∈ C.
This is the outer diagram below.

(AB)C (BA)C

A(BC) B(AC)

A(CB) B(CA)

(AC)B (BC)A

(CA)B (CB)A

C(AB) C(BA)

(1.4.4)

nat

(1.4.4)

(1.4.8) (1.4.8)

βA
B1

1βA
B

βA
BC

βA
CB

α

1βB
C

α−1

βA
C1

α

βAB
C

α

1βA
C

α−1

βB
C1

α

βBA
C

● The left and the right rectangles are commutative by (1.4.8) for, respec-
tively, βA⊗B

C and βB⊗A
C .

● In the middle column, the following statements hold.
– The top and the bottom trapezoids are commutative by (1.4.4) for,

respectively, βA
B⊗C and βA

C⊗B.
– The middle parallelogram is commutative by the naturality (1.4.16)

of βA for the morphism βB
C.

Since each component of βA is an isomorphism, we have shown that each compo-
nent of ξ is an isomorphism in C.

To check the naturality of ξ, consider morphisms f , g ∈ C as in (1.4.9). Then the
naturality of ξ is the outer diagram below.

AB BA

AB′ B′A

A′B′ B′A′

nat

(1.4.5)

βA
B

βA
B′

βA′

B′

1g

f 1

f g

g1

1 f

g f

● The left and right rectangles are commutative by the functoriality of ⊗.
● The top middle rectangle is commutative by the naturality of βA.
● The bottom middle rectangle is commutative by the axiom (1.4.5) for f

applied to the object B′ ∈ C.

Therefore, ξ is a natural isomorphism. □

We are now ready for the main result of this section.
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Theorem 1.4.27. For each monoidal category (C,⊗,1, α, λ, ρ), the Drinfeld center

(C, ⊗ ,1, α, λ, ρ, ξ)
in Definition 1.4.3 is a braided monoidal category.

Proof. Using Lemmas 1.4.17 and 1.4.22 through 1.4.25, the unity axiom (I.1.2.2) and
the pentagon axiom (I.1.2.3) for the data

(C, ⊗ ,1, α, λ, ρ)
follow from the corresponding axioms for the monoidal category C. The braiding
ξ in (1.4.14) is a natural isomorphism by Lemma 1.4.26. The left and the right
hexagon diagrams (1.3.17) for (C, ξ) are commutative by, respectively, the axiom
(1.4.4) for βA

B⊗C and the definition (1.4.8) of βA⊗B
C . □

1.5. The Symmetric Center

Theorem 1.4.27 states that the Drinfeld center of a monoidal category is a
braided monoidal category. This section contains the following analogous con-
struction that sends a braided monoidal category to a symmetric monoidal cat-
egory. In Theorems 4.5.3 and 9.6.4, we will extend the symmetric center to the
bimonoidal and the ring categorical setting.

Definition 1.5.1. Suppose (C,⊗,1, α, λ, ρ, ξ) is a braided monoidal category. The
symmetric center of C is the full subcategory Csym consisting of objects A ∈ C such
that the diagram

(1.5.2)
A⊗ B A⊗ B

B⊗ A

1

ξA,B ξB,A

is commutative for each object B ∈ C. ◇
Proposition 1.5.3. For each braided monoidal category (C,⊗,1, α, λ, ρ, ξ), the symmetric
center Csym inherits from C the structure of a symmetric monoidal category.

Proof. The object 1 ∈ C satisfies

ξB,1ξ1,B = 11⊗B

by Proposition 1.3.25, so 1 ∈ Csym.
For objects A, B ∈ Csym, the monoidal product A⊗ B also belongs to Csym by the

following commutative diagram, with C ∈ C an arbitrary object.

(AB)C C(AB) (AB)C

A(BC) (CA)B A(BC)

A(CB) (AC)B (AC)B A(CB)

ξAB,C ξC,AB

α

1ξB,C

α−1 α

1ξC,B

α−1α−1

ξA,C1 ξC,A1

1

(1.3.17) (1.3.17)

(1.5.2)

(1.5.2)
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● The two subdiagrams involving ξA⊗B,C and ξC,A⊗B are commutative by,
respectively, the right hexagon diagram and the left hexagon diagram in
(1.3.17).
● The other two subdiagrams are commutative by the axiom (1.5.2) for A

and B.

Therefore, A⊗ B also satisfies the axiom (1.5.2).
Restricting (⊗, α, λ, ρ, ξ) to Csym, the data

(Csym,⊗,1, α, λ, ρ, ξ)

satisfy all the axioms of a braided monoidal category by the corresponding proper-
ties in C. Moreover, the axiom (1.5.2) implies that the braiding ξ in Csym satisfies the
symmetry axiom (1.3.33). Proposition 1.3.36 now implies that Csym is a symmetric
monoidal category. □

1.6. Coherence of Braided Monoidal Categories

In this section, we recall a coherence theorem of braided monoidal categor-
ies due to Joyal and Street. First we recall a few definitions that are used in the
coherence theorems for (symmetric) monoidal categories.

Words and Canonical Maps. A word of length 0 is the symbol e. A word
of length 1 is the symbol −. Inductively, if u and v are words of lengths m and n,
respectively, then u◻ v is a word of length m+n. The length of a word w is denoted
by ∣w∣.

For a monoidal category (C,⊗,1, α, λ, ρ), each word w of length n determines
a functor

w ∶ Cn C

by interpreting

● the length 0 word e as the constant functor at the monoidal unit 1;
● the length 1 word − as the identity functor 1C; and
● ◻ as the monoidal product ⊗ in C.

Canonical maps are natural isomorphisms between words of the same length that
are defined inductively by the following four conditions.

● The identity morphism of 1 is a canonical map.
● The identity natural transformation of 1C is a canonical map.
● α, λ, ρ, and their inverses are canonical maps.
● Canonical maps are closed under ⊗ and vertical composites.

For a word w of length n and a permutation σ ∈ Σn, the permuted word

wσ ∶ Cn C

is the composite functor w ○ σ, where σ ∶ Cn Cn is given by

σ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n))

with the xi’s all objects, or all morphisms, in C.
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The Braided Case.
Definition 1.6.1. In a braided monoidal category (C, ξ), a braided canonical map
is a natural isomorphism between permuted words of the same length that has
the same definition as a canonical map by also allowing the braiding ξ and its
inverse. For a symmetric monoidal category, a braided canonical map is also called
a permuted canonical map. ◇
Definition 1.6.2. In a braided monoidal category (C,⊗,1, α, λ, ρ, ξ), each braided
canonical map ϕ between permuted words of the same length n has an underlying
braid br(ϕ) ∈ Bn defined as follows.

● br(11) = id0 ∈ B0.
● The identity natural transformation of 1C has underlying braid id1 ∈ B1.
● The vertical composite ϕ′ϕ of two braided canonical maps has underlying

braid the product br(ϕ′)br(ϕ).
● For braided canonical maps ϕ1 and ϕ2, the underlying braid of ϕ1 ⊗ ϕ2 is

br(ϕ1 ⊗ ϕ2) = br(ϕ1)⊕ br(ϕ2)
with ⊕ the sum braid (1.1.10).
● For permuted words u, v, and w, the associativity isomorphism

αu,v,w ∶ (u⊗ v)⊗w u⊗ (v⊗w)
has underlying braid

br(αu,v,w) = id ∈ B∣u∣+∣v∣+∣w∣.

● The unit isomorphisms

λ ∶ 1⊗ u u and ρ ∶ u⊗1 u

have underlying braids

br(λu) = br(ρu) = id ∈ B∣u∣.

● The braiding
ξu,v ∶ u⊗ v v⊗ u

has underlying braid

br(ξu,v) = b⊕∣u∣,∣v∣ ∈ B∣u∣+∣v∣

with the right-hand side the elementary block braid (1.2.4).
This finishes the definition of the underlying braid. ◇
Theorem 1.6.3 (Braided Coherence). In a braided monoidal category C, two braided
canonical maps with the same (co)domain are equal if their underlying braids are equal.
Example 1.6.4. Recall the elementary block braid

b⊕m,n = s(2)1 ⟨m, n⟩ ∈ Bm+n

with s(2)1 ∈ B2 the generating braid. The braided canonical map

(X⊗Y)⊗ Z

(Y⊗X)⊗ Z Y⊗ (X⊗ Z)

Y⊗ (Z⊗X)

ξX,Y ⊗ 1Z

α

1Y ⊗ ξX,Z
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has underlying braid

(id1 ⊕ s(2)1 )(s
(2)
1 ⊕ id1) = s(3)2 s(3)1

= b⊕1,2 ∈ B3.

This is the left braid in Explanation 1.3.20. The braid b⊕1,2 is also the underlying
braid of the following braided canonical map.

(X⊗Y)⊗ Z

X⊗ (Y⊗ Z) (Y⊗ Z)⊗X

Y⊗ (Z⊗X)
α

ξX,YZ

α

The equality between this braided canonical map and the previous one is the left
hexagon axiom (1.3.17). ◇

A consequence of Theorem 1.6.3 is the following strictification result.
Theorem 1.6.5 (Braided Strictification). For each braided monoidal category C, there
exist a braided strict monoidal category Cst and an adjoint equivalence

Cst C
L

R

with (i) both L and R strong braided monoidal functors and (ii) LR = 1C.

1.7. Notes

1.7.1 (The Braid Groups). For more detailed discussion of the braid groups, the
reader is referred to [Art47, KT08]. ◇
1.7.2 (The Drinfeld Center). The Drinfeld center plays an important role in quan-
tum group theory. For a finite dimensional Hopf algebra A with invertible an-
tipode, the Drinfeld center of the monoidal category of A-modules is equivalent
to the category of modules over the Drinfeld double of A. See [Kas95, XIII.5.1] for
a proof. According to [Kas95, XIII.7] and [Maj91, Ex. 3.4], the Drinfeld center is
due to Drinfeld in unpublished work.

The Drinfeld center is called the center in [JS91c, Prop. 4(a)]. In [JS91c], the
commutative diagram (1.4.18) characterizing βA

1
is included as an axiom of βA.

Our proof of (1.4.18) shows that it is a formal consequence of the axiom (1.4.4) and
other monoidal category axioms.

Under different terminology, the Drinfeld center appeared in [Maj91, Th. 3.3]
at about the same time as [JS91c]. In [Kas95, JS91c, Maj91], the proof that the
Drinfeld center is a braided monoidal category is only given when the monoidal
category is strict. A detailed proof in the general nonstrict case as in Section 1.4
does not seem to have appeared before. ◇
1.7.3 (Braided Coherence). Theorem 1.6.3 is due to Joyal and Street [JS93, Cor. 2.6].
A detailed proof at a higher level of generality is in [Yau∞, 20.3.7 and 21.3.4]. For
the Braided Strictification Theorem 1.6.5, see [Yau∞, 20.1.1 and 21.3.1]. Further
discussion of coherence can be found in [Kel74] and [Yau∞, Part 4]. ◇



CHAPTER 2

Braided Bimonoidal Categories

In this chapter, we introduce braided bimonoidal categories and prove some
of their basic properties. Braided bimonoidal categories are the braided analogues
of symmetric bimonoidal categories with the multiplicative structure replaced by
a braided monoidal category. The first half of this chapter contains the defini-
tion of a braided bimonoidal category and its relationship with a symmetric bi-
monoidal category. The second half of this chapter contains the observation that
an abelian category with a compatible (symmetric/braided) monoidal structure
is a tight (symmetric/braided) bimonoidal category. Examples, applications, and
further properties of braided bimonoidal categories are discussed in subsequent
chapters.

Organization. In Section 2.1, we first recall the notion of a symmetric bimon-
oidal category; see Definition 2.1.1. Then we define a braided bimonoidal cate-
gory. As in Definition 2.1.1, in a braided bimonoidal category, the distributivity
morphisms δl and δr are only assumed to be natural monomorphisms. If δl and
δr are natural isomorphisms, then the braided bimonoidal category is said to be
tight. Our tight braided bimonoidal categories are equivalent to the BD (= braided
distributive) categories in the sense of Blass and Gurevich [BG20a], with some
presentational differences, which will be discussed in Explanation 2.1.37.

By definition, a braided bimonoidal category satisfies 12 of Laplaza’s axioms
in Definition 2.1.1, one from each of the 12 groups of axioms there, along with a
variant of each of the axioms (2.1.4) and (2.1.18). In Definition 2.1.1, these last two
Laplaza axioms are the only ones involving ξ⊗. In the braided case, due to the
absence of the symmetry axiom (1.3.33), we also need the variants of (2.1.4) and
(2.1.18) with each ξ⊗ pointing in the opposite direction.

In Section 2.2, we observe that each braided bimonoidal category satisfies all
24 Laplaza axioms in Definition 2.1.1; see Theorem 2.2.1. For a tight braided bi-
monoidal category, this theorem is due to Blass and Gurevich [BG20a]. This theo-
rem is proved by adapting the lemmas in Section I.2.2 in the symmetric case with

● the axiom (2.1.4) replaced by its variant (2.1.32) and
● the axiom (2.1.18) replaced by its variant (2.1.33) in three instances.

A consequence of Theorem 2.2.1 is that a symmetric bimonoidal category is pre-
cisely a braided bimonoidal category whose braiding ξ⊗ satisfies the symmetry
axiom (I.1.2.20); see Corollary 2.2.3. This is the bimonoidal analogue of Proposi-
tion 1.3.36 relating symmetric and braided monoidal categories.

To prepare for the discussion in Sections 2.4 and 2.5, in Section 2.3 we re-
call some basic concepts related to Ab-categories, abelian categories, and additive
functors. Most of the properties about Ab-categories and additive functors that we
will use later are in Theorem 2.3.7.

II.39
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The main result of Section 2.4 is Theorem 2.4.22. It states that an abelian cate-
gory with a compatible braided monoidal structure⊗ is a tight braided bimonoidal
category. Compatibility means that the functors A⊗− and −⊗A are additive func-
tors for each object A. The additive symmetric monoidal structure comes from
the direct sum of the abelian category. This result is due to Blass and Gurevich
[BG20a]. Applications of Theorem 2.4.22 in quantum group theory and topologi-
cal quantum computation will be discussed in Chapter 3.

In Section 2.5, we observe that the symmetric and the nonbraided analogues
of Theorem 2.4.22 are also true; see Corollary 2.5.1 and Theorem 2.5.2. In other
words, an abelian category with a compatible (symmetric) monoidal structure is a
tight (symmetric) bimonoidal category.

The following table summarizes the main properties of braided bimonoidal
categories, along with their references.

axioms 12 + 2 (2.1.29)

Laplaza axioms all 24 (2.2.1)

key examples 2.4.22, 3.2.19, 3.4.13, 3.6.14

centers 4.4.3, 4.5.3

coherence 5.4.4

strictification 6.3.6, 6.3.7

Braided Baez Conjecture 7.3.4, 7.3.6

monoidal bicategorification 8.4.7

Reading Guide.

(1) Read Definition 2.1.1 of a symmetric bimonoidal category as a refresher.
(2) Read Definition 2.1.29 of a braided bimonoidal category.
(3) Read the statement of Theorem 2.2.1, which says that each braided bi-

monoidal category satisfies all the axioms of a symmetric bimonoidal cat-
egory.

(4) Read Convention 2.4.1 and the statement of Theorem 2.4.22, which says
that an abelian category with a compatible braided monoidal structure is
a tight braided bimonoidal category.

(5) Read Corollary 2.5.1 and the statement of Theorem 2.5.2, which is the
nonbraided version of Theorem 2.4.22.

(6) Go back and read the rest of this chapter.

2.1. Definitions

In this section, we first recall the definition of a symmetric bimonoidal cat-
egory. Then we define braided bimonoidal categories as the braided analogues
of symmetric bimonoidal categories. Our braided bimonoidal categories are more
general than the BD categories in the sense of Blass and Gurevich [BG20a] because
our distributivity morphisms δl and δr are only assumed to be natural monomor-
phisms, instead of isomorphisms. The differences between these two definitions
are discussed in Explanation 2.1.37.

Symmetric Bimonoidal Categories. For comparison and reference, we first
recall the notion of a symmetric bimonoidal category from Definition I.2.1.2.
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Definition 2.1.1. A symmetric bimonoidal category is a tuple

(C, (⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕), (⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗), (λ ●, ρ
●), (δl , δr))

consisting of the following data.

● (C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) is a symmetric monoidal category, which is called
the additive structure.
● (C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗) is a symmetric monoidal category, which is called

the multiplicative structure.
● λ ● and ρ ● are natural isomorphisms

(2.1.2) 0⊗ A 0 A⊗ 0
λ
●
A
≅ ≅

ρ
●
A for A ∈ C,

which are called the left multiplicative zero and the right multiplicative zero,
respectively.
● δl and δr are natural monomorphisms

(2.1.3)
A⊗ (B⊕C) (A⊗ B)⊕ (A⊗C)

(A⊕ B)⊗C (A⊗C)⊕ (B⊗C)

δl
A,B,C

δr
A,B,C

for objects A, B, C ∈ C, which are called the left distributivity morphism and
the right distributivity morphism, respectively.

To simplify the presentation, we abbreviate ⊗ using concatenation. In the absence
of parentheses, ⊗ always takes precedence over ⊕. For example, the left distribu-
tivity morphism is abbreviated to A(B⊕C) AB⊕ AC.

The above data are required to make the following 24 diagrams in C commu-
tative for all objects A, B, C, D ∈ C. They are collectively known as Laplaza’s Axioms.

Distributivity and Multiplicative Symmetry:

(2.1.4)

(A⊕ B)C AC⊕ BC

C(A⊕ B) CA⊕CB

ξ⊗A⊕B,C

δr
A,B,C

ξ⊗A,C⊕ξ⊗B,C
δl

C,A,B

Distributivity and Additive Symmetry:

(2.1.5)

A(B⊕C) AB⊕ AC

A(C⊕ B) AC⊕ AB

1Aξ⊕B,C

δl
A,B,C

ξ⊕AB,AC
δl

A,C,B

(2.1.6)

(A⊕ B)C AC⊕ BC

(B⊕ A)C BC⊕ AC

ξ⊕A,B1C

δr
A,B,C

ξ⊕AC,BC
δr

B,A,C
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Distributivity and Additive Associativity:

(2.1.7)
[(A⊕ B)⊕C]D (A⊕ B)D⊕CD (AD⊕ BD)⊕CD

[A⊕ (B⊕C)]D AD⊕ (B⊕C)D AD⊕ (BD⊕CD)

α⊕A,B,C1D

δr
A⊕B,C,D δr

A,B,D⊕1CD

α⊕AD,BD,CD
δr

A,B⊕C,D 1AD⊕δr
B,C,D

(2.1.8)
A[(B⊕C)⊕D] A(B⊕C)⊕ AD (AB⊕ AC)⊕ AD

A[B⊕ (C⊕D)] AB⊕ A(C⊕D) AB⊕ (AC⊕ AD)

1Aα⊕B,C,D

δl
A,B⊕C,D δl

A,B,C⊕1AD

α⊕AB,AC,AD
δl

A,B,C⊕D 1AB⊕δl
A,C,D

Distributivity and Multiplicative Associativity:

(2.1.9)
(AB)(C⊕D) (AB)C⊕ (AB)D

A[B(C⊕D)] A(BC⊕ BD) A(BC)⊕ A(BD)

α⊗A,B,C⊕D

δl
AB,C,D

α⊗A,B,C⊕α⊗A,B,D
1Aδl

B,C,D δl
A,BC,BD

(2.1.10)
[(A⊕ B)C]D (AC⊕ BC)D (AC)D⊕ (BC)D

(A⊕ B)(CD) A(CD)⊕ B(CD)

α⊗A⊕B,C,D

δr
A,B,C1D δr

AC,BC,D

α⊗A,C,D⊕α⊗B,C,D
δr

A,B,CD

(2.1.11)
[A(B⊕C)]D (AB⊕ AC)D (AB)D⊕ (AC)D

A[(B⊕C)D] A(BD⊕CD) A(BD)⊕ A(CD)

α⊗A,B⊕C,D

δl
A,B,C1D δr

AB,AC,D

α⊗A,B,D⊕α⊗A,C,D
1Aδr

B,C,D δl
A,BD,CD

2-By-2 Distributivity:

(2.1.12)

(A⊕ B)(C⊕D) A(C⊕D)⊕ B(C⊕D)

(A⊕ B)C⊕ (A⊕ B)D (AC⊕ AD)⊕ (BC⊕ BD)

(AC⊕ BC)⊕ (AD⊕ BD) AC⊕ [AD⊕ (BC⊕ BD)]

AC⊕ [BC⊕ (AD⊕ BD)] AC⊕ [(AD⊕ BC)⊕ BD]

AC⊕ [(BC⊕ AD)⊕ BD] AC⊕ [(BC⊕ AD)⊕ BD]

δl
A⊕B,C,D

δr
A,B,C⊕D

δl
A,C,D⊕δl

B,C,D

δr
A,B,C⊕δr

A,B,D α⊕AC,AD,BC⊕BD

α⊕AC,BC,AD⊕BD 1AC⊕(α⊕)−1

1AC⊕(α⊕)−1 1AC⊕(ξ⊕AD,BC⊕1BD)

Multiplicative Zero of 0:

(2.1.13) 0⊗ 0 0
λ
●
0

ρ
●
0
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Multiplicative Zero of a Sum:

(2.1.14)
0(A⊕ B) 0A⊕ 0B

0 0⊕ 0

λ
●
A⊕B

δl
0,A,B

λ
●
A⊕λ

●
B

λ⊕0

(2.1.15)
(A⊕ B)0 A0⊕ B0

0 0⊕ 0

ρ
●
A⊕B

δr
A,B,0

ρ
●
A⊕ρ

●
B

λ⊕0

Multiplicative Zero and Multiplicative Unit:

(2.1.16) 0⊗1 0
λ
●
1

ρ⊗0

(2.1.17) 1⊗ 0 0
ρ
●
1

λ⊗0

Symmetry of Multiplicative Zero:

(2.1.18)
A⊗ 0 0⊗ A

0
ρ
●
A

ξ⊗A,0

λ
●
A

Multiplicative Zero and Multiplicative Associativity:

(2.1.19)
(AB)0 A(B0)

0 A0

ρ
●
AB

α⊗A,B,0

1Aρ
●
B

ρ
●
A

(2.1.20)

(A0)B A(0B)

0B A0

0

ρ
●
A1B

α⊗A,0,B

1Aλ
●
B

λ
●
B ρ

●
A

(2.1.21)

(0A)B 0B

0(AB) 0

α⊗0,A,B

λ
●
A1B

λ
●
B

λ
●
AB
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Additive and Multiplicative Zero:

(2.1.22)
A(0⊕ B) A0⊕ AB

AB 0⊕ AB

1Aλ⊕B

δl
A,0,B

ρ
●
A⊕1AB

λ⊕AB

(2.1.23)
(0⊕ B)A 0A⊕ BA

BA 0⊕ BA

λ⊕B 1A

δr
0,B,A

λ
●
A⊕1BA

λ⊕BA

(2.1.24)
A(B⊕ 0) AB⊕ A0

AB AB⊕ 0

1Aρ⊕B

δl
A,B,0

1AB⊕ρ
●
A

ρ⊕AB

(2.1.25)
(B⊕ 0)A BA⊕ 0A

BA BA⊕ 0

ρ⊕B 1A

δr
B,0,A

1BA⊕λ
●
A

ρ⊕BA

Distributivity and Multiplicative Unit:

(2.1.26)
1(A⊕ B) 1A⊕1B

A⊕ B
λ⊗A⊕B

δl
1,A,B

λ⊗A⊕λ⊗B

(2.1.27)
(A⊕ B)1 A1⊕ B1

A⊕ B
ρ⊗A⊕B

δr
A,B,1

ρ⊗A⊕ρ⊗B

This finishes the definition of a symmetric bimonoidal category.
A bimonoidal category has the same definition as a symmetric bimonoidal cate-

gory except for the following two conditions.
● The multiplicative symmetry ξ⊗ is omitted, and (C,⊗,1, α⊗, λ⊗, ρ⊗) is a

monoidal category.
● The axioms (2.1.4) and (2.1.18) are omitted.

Moreover, we define the following.
● A (symmetric) bimonoidal category is small if its class of objects is a set.
● A (symmetric) bimonoidal category is tight if both δl and δr are natural

isomorphisms.
● The objects 0 and 1 are called the additive zero and the multiplicative unit,

respectively.
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● ⊕ and ⊗ are called the sum and the product, respectively.
● α⊕, λ⊕, ρ⊕, and ξ⊕ are called the additive associativity isomorphism, the left

additive zero, the right additive zero, and the additive symmetry isomorphism,
respectively.
● α⊗, λ⊗, ρ⊗, and ξ⊗ are called the multiplicative associativity isomorphism,

the left multiplicative unit, the right multiplicative unit, and the multiplicative
symmetry isomorphism, respectively. ◇

The 24 Laplaza axioms (2.1.4)–(2.1.27) are precisely the axioms (I.2.1.5)–
(I.2.1.28) in the same order.

Braided Bimonoidal Categories.

Motivation 2.1.28. To motivate the definition of a braided bimonoidal category,
recall from Definition 2.1.1 that a symmetric bimonoidal category C has

● an additive symmetric monoidal structure ⊕,
● a multiplicative symmetric monoidal structure ⊗,
● left and right multiplicative zeros (λ ●, ρ ●), and
● left and right distributivity morphisms (δl , δr).

The braided analogue replaces the multiplicative symmetric monoidal category
by a braided monoidal category.

We showed in Section I.2.2 that among the 24 Laplaza axioms of a symmetric
bimonoidal category, 12 of them are formal consequences of the others. In each of
the 12 groups of axioms in Definition 2.1.1, only the first axiom, or an equivalent
axiom within that group, is necessary. In the braided analogue, one Laplaza axiom
from each of those 12 groups is assumed to hold. In Section 2.2, we will show that,
analogous to Section I.2.2, in a braided bimonoidal category, the other 12 Laplaza
axioms can be recovered from the assumed axioms.

Among the 24 Laplaza axioms in Definition 2.1.1, only (2.1.4) and (2.1.18)
involve the multiplicative symmetry ξ⊗. The symmetry axiom (1.3.33) in (C,⊗)
states that

ξ⊗Y,Xξ⊗X,Y = 1X⊗Y.

This implies that each of the two axioms (2.1.4) and (2.1.18) is equivalent to the
modified version with each ξ⊗?,?′ replaced by ξ⊗?′,? pointing in the opposite direc-
tion. In the braided analogue, ξ⊗ is the braiding of a braided monoidal category,
so the braiding-square ξ⊗Y,Xξ⊗X,Y is not equal to 1X⊗Y in general. Therefore, in the
braided case, (2.1.4) and (2.1.18) are not in general equivalent to their respective
modified versions. In the definition of a braided bimonoidal category, these modi-
fied versions are two additional axioms (2.1.32) and (2.1.33). We will discuss these
axioms in more detail in Explanations 2.1.35 and 2.1.37. ◇
Definition 2.1.29. A braided bimonoidal category is a tuple

(C, (⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕), (⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗), (λ ●, ρ
●), (δl , δr))

consisting of the following data.
● (C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) is a symmetric monoidal category, which is called

the additive structure.
● (C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗) is a braided monoidal category, which is called

the multiplicative structure, with ξ⊗ called the braiding.
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● λ ● and ρ ● are natural isomorphisms

(2.1.30) 0⊗ A 0 A⊗ 0
λ
●
A
≅ ≅

ρ
●
A for A ∈ C,

which are called the left multiplicative zero and the right multiplicative zero,
respectively.
● δl and δr are natural monomorphisms

(2.1.31)
A⊗ (B⊕C) (A⊗ B)⊕ (A⊗C)

(A⊕ B)⊗C (A⊗C)⊕ (B⊗C)

δl
A,B,C

δr
A,B,C

for objects A, B, C ∈ C, which are called the left distributivity morphism and
the right distributivity morphism, respectively.

The above data are required to satisfy the following 14 axioms for all objects
A, B, C, D ∈ C.
12 Laplaza Axioms: The following diagrams are commutative: (2.1.4), (2.1.5),

(2.1.8), (2.1.9), (2.1.12), (2.1.13), (2.1.15), (2.1.17), (2.1.18), (2.1.19), (2.1.24),
and (2.1.26).

Distributivity and the Braiding: The following diagram is commutative in C.

(2.1.32)

C⊗ (A⊕ B) (C⊗ A)⊕ (C⊗ B)

(A⊕ B)⊗C (A⊗C)⊕ (B⊗C)

ξ⊗C,A⊕B

δl
C,A,B

ξ⊗C,A⊕ξ⊗C,B
δr

A,B,C

Multiplicative Zeros and the Braiding: The following diagram is commutative
in C.

(2.1.33)
A⊗ 0 0⊗ A

0
ρ
●
A

ξ⊗0,A

λ
●
A

This finishes the definition of a braided bimonoidal category. Moreover, a braided
bimonoidal category is called

● tight if δl and δr are natural isomorphisms and
● small if it has a set of objects. ◇

Convention 2.1.34. We often omit the ⊗ symbol to save space. In the absence of
clarifying parentheses, ⊗ takes precedence over ⊕. For example, AB⊕CD means
(A⊗ B)⊕ (C⊗D). ◇
Explanation 2.1.35 (Axioms). Consider Definition 2.1.29.

● One axiom is assumed in each of the 12 groups of Laplaza’s axioms in
Definition 2.1.1. We will see in Theorem 2.2.1 that all 24 Laplaza axioms
hold in a braided bimonoidal category.
● The diagram (2.1.32) is a modified version of (2.1.4). In a braided monoi-

dal category, the braiding-square

ξ⊗Y,Xξ⊗X,Y ∶ X⊗Y X⊗Y
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is not the same as 1X⊗Y in general. Therefore, in a braided bimonoidal
category, (2.1.32) and (2.1.4) are not equivalent to each other in general.
● The diagram (2.1.33) is a modified version of (2.1.18). In a braided bi-

monoidal category, (2.1.33) and (2.1.18) are not equivalent to each other
in general because

ξ⊗0,Aξ⊗A,0 ∶ A⊗ 0 A⊗ 0

is not equal to 1A⊗0 in general. ◇
Remark 2.1.36. The braided bimonoidal categories in Definition 2.1.29 are more
general than Richter’s in [Ric10, Def. 5.1], which correspond to right permbraided
categories in Definition 5.1.11. ◇

Blass-Gurevich BD Categories.

Explanation 2.1.37. Definition 2.1.29 of a braided bimonoidal category is more
general than the one introduced by Blass and Gurevich in [BG20a, Def. 7]. Here
we discuss the differences between the two definitions.
Terminology: Our tight braided bimonoidal categories are equivalent to the

BD categories in [BG20a], with BD standing for braided distributive. In
[BG20a], they assume from the beginning that the distributivity mor-
phisms δl and δr in BD categories are natural isomorphisms. In our
braided bimonoidal categories, δl and δr are only natural monomor-
phisms.

Notation: The notational differences are listed in the following table, with the last
column explained below.

structure 2.1.29 [BG20a] primitive data

additive symmetry ξ⊕ γ⊕ yes

braiding ξ⊗ γ⊗ yes

left distributivity δl δ yes

right distributivity δr δ♯ no

right multiplicative zero ρ ● ε yes

left multiplicative zero λ ● λ∗ no

Distributivity: In [BG20a], δr (= their δ♯) is not taken as part of the data, but is
defined in terms of δl and ξ⊗ using the diagram (2.1.4). Moreover, instead
of the braided bimonoidal category axioms (2.1.4) and (2.1.32), in [BG20a,
Fig. 9], they assume the commutativity of a diagram that is equivalent to
the outer diagram below.

(2.1.38)

C(A⊕ B) CA⊕CB

(A⊕ B)C AC⊕ BC

C(A⊕ B) CA⊕CB

(2.1.32)

(2.1.4)

ξ−⊗C,A⊕B

δl
C,A,B

ξ⊗C,A ⊕ ξ⊗C,B

ξ⊗A⊕B,C

δl
C,A,B

ξ−⊗A,C ⊕ ξ−⊗B,C

δr
A,B,C
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● Their definition of δr in terms of δl and ξ⊗ is equivalent to the com-
mutativity of the lower half of (2.1.38), which is equivalent to the
axiom (2.1.4) by the invertibility of ξ⊗.
● The upper half of (2.1.38) is equivalent to (2.1.32).

Among (2.1.4), (2.1.32), and the outer diagram in (2.1.38), any two of them
imply the third. The two halves of (2.1.38) provide two equivalent ways
to represent δr in terms of δl and ξ⊗.

Multiplicative Zeros: In [BG20a], λ ● (= their λ∗) is not taken as part of the data,
but is defined in terms of ρ ● and ξ⊗ using the diagram (2.1.33). Moreover,
instead of the braided bimonoidal category axioms (2.1.18) and (2.1.33),
in [BG20a, Fig. 9], they assume the commutativity of the diagram below.

(2.1.39)
A⊗ 0 A⊗ 0

0⊗ A
ξ⊗A,0

1A⊗0

ξ⊗0,A

For comparison, the axiom (2.1.18) is equivalent to the left commutative
diagram below by the invertibility of ξ⊗. The axiom (2.1.33) is the right
commutative diagram below.

A⊗ 0 0⊗ A

0
ρ
●
A λ

●
A

(2.1.18)

ξ−⊗A,0
A⊗ 0 0⊗ A

0
ρ
●
A λ

●
A

(2.1.33)

ξ⊗0,A

By the invertibility of ρ ●, among (2.1.18), (2.1.33), and (2.1.39), any two of
them imply the third. The previous two commutative diagrams provide
two equivalent ways to represent λ ● in terms of ρ ● and ξ⊗.

We define braided bimonoidal categories as in Definition 2.1.29, instead of the
form in [BG20a], for three reasons.

(1) We want the definition of a braided bimonoidal category to be as similar
to that of a symmetric bimonoidal category in Definition 2.1.1 as possible.
In particular, we want to preserve the symmetry of the data pairs (λ ●, ρ ●)
in (2.1.30) and (δl , δr) in (2.1.31).

(2) As explained above, instead of the axioms (2.1.32) and (2.1.33), we could
also have assumed the outer diagrams in (2.1.38) and (2.1.39). We chose
to adopt (2.1.32) and (2.1.33), instead of (2.1.38) and (2.1.39), because of
their symmetry with (2.1.4) and (2.1.18), respectively.

(3) We want to clarify precisely where the invertibility of the distributivity
morphisms δl and δr is needed, and where it is not necessary. There-
fore, following Definition 2.1.1, we only assume that δl and δr are natural
monomorphisms in a general braided bimonoidal category. ◇

2.2. Recovering Laplaza’s Axioms

Recall from Definition 2.1.29 that a braided bimonoidal category satisfies the
following 14 axioms:
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● 12 Laplaza axioms: (2.1.4), (2.1.5), (2.1.8), (2.1.9), (2.1.12), (2.1.13), (2.1.15),
(2.1.17), (2.1.18), (2.1.19), (2.1.24), and (2.1.26); and
● the axioms (2.1.32) and (2.1.33), which are variants of, respectively, (2.1.4)

and (2.1.18).
In this section, we observe that all 24 Laplaza axioms, (2.1.4)–(2.1.27), in Defini-
tion 2.1.1 are satisfied by each braided bimonoidal category. This is the braided
analogue of Theorem I.2.2.13. A consequence of this result is Corollary 2.2.3. It
states that a symmetric bimonoidal category is precisely a braided bimonoidal
category whose braiding ξ⊗ satisfies the symmetry axiom (1.3.33). This is the bi-
monoidal analogue of Proposition 1.3.36.
Theorem 2.2.1. Each braided bimonoidal category satisfies all 24 Laplaza axioms in Def-
inition 2.1.1.

Proof. Since 12 of the 24 Laplaza axioms are already assumed to hold in a braided
bimonoidal category, we must prove that the other 12 Laplaza axioms also hold.
They are listed in the leftmost column in the following table. To obtain these ax-
ioms, we reuse the proofs in Section I.2.2 with (C, ξ⊗) a braided monoidal category,
along with suitable braided bimonoidal category axioms and properties, as indi-
cated in the next three columns in the following table. Recall that the 24 Laplaza
axioms (2.1.4)–(2.1.27) are precisely (I.2.1.5)–(I.2.1.28) in the same order.

To obtain Use the axioms And In the proof of

(2.1.6) (2.1.32), (2.1.5) Lemma I.2.2.4

(2.1.7) (2.1.32), (2.1.8) Lemma I.2.2.5

(2.1.10) (2.1.32), (2.1.9) (1.3.31) Lemma I.2.2.6

(2.1.11) (2.1.32), (2.1.9) (1.3.17) Lemma I.2.2.7

(2.1.14) (2.1.32), (2.1.33), (2.1.15) Lemma I.2.2.8

(2.1.16) (2.1.17), (2.1.18) (1.3.22) Lemma I.2.2.9

(2.1.20), (2.1.21) (2.1.33), (2.1.19) (1.3.17) Lemma I.2.2.10

(2.1.22), (2.1.23), (2.1.25) (2.1.32), (2.1.5), (2.1.18), (2.1.24) Lemma I.2.2.11

(2.1.27) (2.1.32), (2.1.26) (1.3.22) Lemma I.2.2.12

Note the following two facts in the second column.
● Each instance of (2.1.4), which is the same as (I.2.1.5), is replaced by its

variant (2.1.32).
● (2.1.18), which is the same as (I.2.1.19), is replaced by its variant (2.1.33)

for (2.1.14), (2.1.20), and (2.1.21).
The following remarks are about the third column in the previous table.

● To obtain (2.1.10), (1.3.31) is used in place of the Symmetric Coherence
Theorem I.1.3.8 in the proof of Lemma I.2.2.6.
● To obtain (2.1.11), the left hexagon axiom (1.3.17) is used in place of The-

orem I.1.3.8 in the proof of Lemma I.2.2.7.
● To obtain (2.1.20), the right hexagon axiom (1.3.17) is used in place of

Theorem I.1.3.8 in the first diagram in the proof of Lemma I.2.2.10.
● To obtain (2.1.21), the left hexagon axiom (1.3.17) is used in place of The-

orem I.1.3.8 in the second diagram in the proof of Lemma I.2.2.10.
● The right diagram in (1.3.22), stating λ⊗ = ρ⊗ξ⊗

1,−, for the braided monoi-
dal category (C, ξ⊗) is used to obtain
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– (2.1.16) in the outer diagram in the proof of Lemma I.2.2.9 and
– (2.1.27) in the left and the right triangles in Lemma I.2.2.12.

This finishes the proof. □

Remark 2.2.2. The tight braided bimonoidal category case of Theorem 2.2.1 is due
to Blass and Gurevich [BG20a, Th. 10]. In addition to not requiring the invertibility
of the distributivity morphisms, our proof above is shorter and simpler than the
one in [BG20a]. ◇

Recall from Definition 2.1.1 that a symmetric bimonoidal category is called
tight if δl and δr are natural isomorphisms.
Corollary 2.2.3. A (tight) symmetric bimonoidal category is precisely a (tight) braided
bimonoidal category whose braiding satisfies the symmetry axiom (1.3.33).

Proof. In both Definitions 2.1.1 and 2.1.29, tightness refers to the invertibility of δl

and δr. Suppose C is a symmetric bimonoidal category.
● By Proposition 1.3.36, the multiplicative structure of C, which is a sym-

metric monoidal category, is also a braided monoidal category.
● The 12 Laplaza axioms in Definition 2.1.29 are among those of a symmet-

ric bimonoidal category in Definition 2.1.1.
● The symmetry axiom (1.3.33) in (C,⊗) implies that (2.1.32) and (2.1.33)

are equivalent to (2.1.4) and (2.1.18), respectively.
Therefore, C is a braided bimonoidal category.

Conversely, suppose C is a braided bimonoidal category whose braiding sat-
isfies the symmetry axiom. Then the multiplicative structure of C is a symmetric
monoidal category by Proposition 1.3.36. Theorem 2.2.1 implies that C is a sym-
metric bimonoidal category. □

2.3. Abelian Categories

In this section, we discuss Ab-categories, (pre)additive categories, abelian cat-
egories, and additive functors. These concepts will be used in Section 2.4 when we
discuss braided bimonoidal categories arising from abelian categories with a com-
patible braided monoidal structure. In the following definitions, the prototypical
example to keep in mind is the category Ab of abelian groups. See Section 2.6 for
a list of references on abelian categories.

Ab-Categories and Additive Functors.

Definition 2.3.1. An Ab-category is a category C in which each set C(A, B) for ob-
jects A, B ∈ C is equipped with the structure of an abelian group, written additively,
such that categorical composition distributes over addition. This means that for
any morphisms

A B C,
f

f ′

g

g′

the equalities

(g + g′) f = g f + g′ f

g( f + f ′) = g f + g f ′
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hold in C(A, C). The additive unit in the abelian group C(A, B) is written as 0 ∶
A B and is called the zero morphism. ◇
Lemma 2.3.2. Suppose f ∶ A B and g ∶ B C are morphisms in an Ab-category
C. Then the following equalities hold in C(A, C).

0 f = 0 = g0

g(− f ) = −(g f ) = (−g) f

Proof. The equalities 0 f = 0 = g0 follow from the following computation.

0 f = (0+ 0) f = 0 f + 0 f

g0 = g(0+ 0) = g0+ g0

The previous equalities and the computation

0 = g0 = g( f + (− f )) = g f + g(− f )
0 = 0 f = (g + (−g)) f = g f + (−g) f

imply g(− f ) = −(g f ) = (−g) f . □

Definition 2.3.3. An additive functor F ∶ C D between Ab-categories is a functor
such that the function

C(A, B) D(FA, FB)F

is a group homomorphism for each pair of objects A, B ∈ C. ◇
The concept in the next definition is modeled after the direct sum of two mod-

ules over a ring.

Definition 2.3.4. For objects A, B ∈ C with C an Ab-category, a direct sum of A and
B is a quintuple

(C, p1, p2, i1, i2)
as in the diagram

A C B
i1

p1 p2

i2

in C that satisfies the following equalities.

i1 p1 + i2 p2 = 1C

pkij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1A if k = j = 1,
1B if k = j = 2, and
0 if k /= j.

(2.3.5)

In this case, we define the following.
● C is called a direct sum object of A and B, which is denoted by A⊕ B.
● p1 and p2 are called the projections.
● i1 and i2 are called the inclusions.

If we want to emphasize the objects A and B, we will write p1 as pA,B
1 and similarly

for pA,B
2 , iA,B

1 , and iA,B
2 . ◇

The following definition extends the concept of a direct sum to morphisms.
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Definition 2.3.6. Suppose C is an Ab-category, and A, A′, B, B′ ∈ C are objects such
that the direct sums A ⊕ A′ and B ⊕ B′ exist. For morphisms f ∶ A B and
f ′ ∶ A′ B′, define the direct sum morphism

A⊕ A′ B⊕ B′
f⊕ f ′

by requiring that the diagram

A B

A⊕ A′ B⊕ B′

A′ B′

f

p1

f⊕ f ′

p2

p1

p2

f ′

be commutative. ◇
In other words, the direct sum morphism f ⊕ f ′ is defined by the projections.

The following result collects some of the basic properties of Ab-categories, direct
sums, and additive functors.
Theorem 2.3.7. Suppose C is an Ab-category, and A, B, C ∈ C are objects. Then the
following statements hold.

(1) The following three statements are equivalent:
(i) A and B have a product (C, p1, p2) as in the diagram

A C B.
p1 p2

(ii) A and B have a coproduct (C, i1, i2) as in the diagram

A C B.
i1 i2

(iii) A and B have a direct sum (C, p1, p2, i1, i2) as in Definition 2.3.4.
(2) In the context of Definition 2.3.6, the diagram

A B

A⊕ A′ B⊕ B′

A′ B′

i1

f

i1
f⊕ f ′

i2
f ′

i2

is commutative.
(3) Suppose the direct sums A ⊕ A and B ⊕ B exist. Then for morphisms f , g ∶

A B, the diagram

(2.3.8)
A B

A × A = A⊕ A B⊕ B = B ∐ B

f+g

∆A

f⊕g
∇B

is commutative, with
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● ∆A ∶ A A × A the diagonal defined by

p1∆A = p2∆A = 1A

and
● ∇B ∶ B ∐ B B the codiagonal defined by

∇Bi1 = ∇Bi2 = 1B.

(4) For a functor F ∶ C D between Ab-categories with C having all direct sums,
F is additive if and only if it preserves direct sums.

Proof. Proof of (1). First we observe that a direct sum yields a (co)product.
A direct sum is a (co)product. Suppose (C, p1, p2, i1, i2) is a direct sum. We check

that (C, p1, p2) is a product of A and B. Given morphisms f1 ∶ D A and f2 ∶
D B, we must show that there is a unique morphism f ∶ D C such that
the solid-arrow diagram

(2.3.9)

D

A C B

f1 f
f2

i1

p1 p2

i2

is commutative. We will show that the morphism

f = i1 f1 + i2 f2 ∶ D C

has these properties. By Lemma 2.3.2 and the axioms (2.3.5) of a direct sum, we
have

p1 f = p1(i1 f1 + i2 f2)
= p1i1 f1 + p1i2 f2

= 1A f1 + 0 f2 = f1.

A similar computation shows that p2 f = f2. This shows that the solid-arrow dia-
gram (2.3.9) is commutative. For uniqueness, suppose g ∶ D C also makes the
solid-arrow diagram (2.3.9) commutative. By (2.3.5), we have

g = 1Cg

= (i1 p1 + i2 p2)g
= i1 p1g + i2 p2g
= i1 f1 + i2 f2 = f .

This shows the uniqueness of f , so (C, p1, p2) is a product of A and B. A dual
argument proves that (C, i1, i2) is a coproduct of A and B.

A (co)product is a direct sum. To prove the converse, suppose (A × B, p1, p2)
is a product of A and B. By the universal property of a product, the morphisms
1A ∶ A A and 0 ∶ A B yield a unique morphism i1 ∶ A A× B such that
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the top half of the diagram

A

A A × B B

B

1A i1
0

p1 p2

0
i2

1B

is commutative. Similarly, the morphisms 0 ∶ B A and 1B ∶ B B yield
a unique morphism i2 ∶ B A × B such that the bottom half of the previous
diagram is commutative. This commutative diagram means that the direct sum
axioms (2.3.5), with the possible exception of the first equality there, are satisfied.

By the universal property of a product, to prove the first equality in (2.3.5), it
suffices to show that

pj(i1 p1 + i2 p2) = pj for j = 1, 2.

The j = 1 case is proved by the following computation, with the last equality by
Lemma 2.3.2.

p1(i1 p1 + i2 p2) = p1i1 p1 + p1i2 p2

= 1A p1 + 0p2 = p1

A similar computation proves the j = 2 case. Therefore, (A × B, p1, p2, i1, i2) is a
direct sum of A and B. A dual argument shows that a coproduct of A and B is also
a direct sum. This proves assertion (1).

Proof of (2). In the context of Definition 2.3.6, there are equalities as follows,
with the last equality by Lemma 2.3.2.

( f ⊕ f ′)i1 = 1B⊕B′( f ⊕ f ′)i1
= (i1 p1 + i2 p2)( f ⊕ f ′)i1
= i1 p1( f ⊕ f ′)i1 + i2 p2( f ⊕ f ′)i1
= i1 f p1i1 + i2 f ′p2i1
= i1 f 1A + i2 f ′0
= i1 f

A similar computation shows that ( f ⊕ f ′)i2 = i2 f ′.
Proof of (3). Using parts (1) and (2), the commutativity of the diagram (2.3.8) is

proved by the following computation.

∇B( f ⊕ g)∆A = ∇B( f ⊕ g)1A⊕A∆A

= ∇B( f ⊕ g)(i1 p1 + i2 p2)∆A

= ∇B( f ⊕ g)i1 p1∆A +∇B( f ⊕ g)i2 p2∆A

= ∇Bi1 f p1∆A +∇Bi2gp2∆A

= 1B f 1A + 1Bg1A

= f + g
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Proof of (4). Suppose F ∶ C D is a functor between Ab-categories with C
having all direct sums. First suppose F is an additive functor. Then F preserves
direct sums because the direct sum axioms (2.3.5) consist of zero morphisms, iden-
tity morphisms, composites, and sums of morphisms, all of which are preserved
by an additive functor.

Conversely, suppose that F preserves direct sums. To show that F is an addi-
tive functor, we must show that, for objects A, B ∈ C, the function

C(A, B) D(FA, FB)F

preserves
● the zero morphism and
● sums of morphisms.

Suppose (A ⊕ B, p1, p2, i1, i2) is a direct sum of A and B, which exists by the as-
sumption on C. By the assumption on F, the tuple

(F(A⊕ B), Fp1, Fp2, Fi1, Fi2)
is a direct sum of FA and FB. By the last direct sum axiom in (2.3.5) and the
functoriality of F, we have

0 = (Fp2)(Fi1) = F(p2i1) = F0.

This shows that F preserves the zero morphism.
For the preservation of sums of morphisms, suppose f , g ∶ A B are mor-

phisms. Using part (3) twice, the assumption that F preserves direct sums, and
the functoriality of F, the following equalities prove that F preserves sums of mor-
phisms.

F( f + g) = F(∇B( f ⊕ g)∆A)
= (F∇B)F( f ⊕ g)(F∆A)
= ∇FB(F f ⊕ Fg)∆FA

= F f + Fg

This finishes the proof. □

Explanation 2.3.10. Consider Theorem 2.3.7.
● Statement (1) says that, in an Ab-category, a product, a coproduct, and a

direct sum are equivalent.
● Statement (2) says that the direct sum morphism f ⊕ f ′, which is defined

in terms of the projections, can also be characterized in terms of the in-
clusions.
● Statement (3) says that, for morphisms f , g ∶ A B, the sum f + g fac-

tors through the direct sum morphism f ⊕ g.
● Statement (4) says that, for a functor F ∶ C D between Ab-categories

with C having all direct sums, F preserves the abelian group structures in
the morphism sets if and only if it preserves direct sums. ◇

Additive Categories. Recall that a zero object 0 in a category C is an object that
is both initial and terminal. In other words, for each object A ∈ C, there are unique
morphisms A 0 A.
Definition 2.3.11.
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● A preadditive category is an Ab-category with a zero object.
● An additive category is a preadditive category in which any two objects

have a direct sum. ◇
Lemma 2.3.12. For objects A and B in a preadditive category C with a zero object 0, the
composite

A 0 B

is the zero morphism in C(A, B).

Proof. By the universal properties of a zero object, we have

C(A, 0) = ∗ and C(0, B) = ∗.

So the unique morphisms

A 0
tA and 0 B

iB

are also the zero morphisms in, respectively, C(A, 0) and C(0, B). Since composi-
tion with a zero morphism yields a zero morphism by Lemma 2.3.2, the composite
iBtA is the zero morphism. □

In a category C with a zero object 0, the composite A 0 B is denoted
by 0 ∶ A B for objects A and B. The following concepts are categorical ana-
logues of (co)kernels of linear maps between modules.

Definition 2.3.13. Suppose C is a category with a zero object 0, and f ∶ A B is
a morphism in C. Define the following.

● A kernel of f is an equalizer of the morphisms f , 0 ∶ A B.
● A cokernel of f is a coequalizer of the morphisms f , 0 ∶ A B. ◇

Explanation 2.3.14. A kernel, if it exists, is unique up to a unique isomorphism.
More explicitly, a kernel of f ∶ A B is a morphism c ∶ C A such that the
following two conditions hold.

(i) f c = 0 ∶ C B.
(ii) For each morphism c′ ∶ C′ A with f c′ = 0 ∶ C′ B, there exists a

unique morphism c′′ ∶ C′ C such that the following diagram is com-
mutative.

C′ C

A

B

c′′

c′

0

c

0
f

A kernel is a monomorphism.
Similarly, a cokernel, if it exists, is unique up to a unique isomorphism. More

explicitly, a cokernel of f ∶ A B is a morphism d ∶ B D such that the fol-
lowing two conditions hold.

(i) d f = 0 ∶ A D.
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(ii) For each morphism d′ ∶ B D′ with d′ f = 0 ∶ A D′, there exists
a unique morphism d′′ ∶ D D′ such that the following diagram is
commutative.

A

B

D D′

f
0 0

d d′

d′′

A cokernel is an epimorphism. ◇

Abelian Categories. Recall from Definition 2.3.11 that an additive category is
an Ab-category with a zero object in which any two objects have a direct sum.
Definition 2.3.15. An abelian category is an additive category in which the follow-
ing three conditions are satisfied.

● Each morphism has a kernel and a cokernel.
● Each monomorphism is a kernel of some morphism.
● Each epimorphism is a cokernel of some morphism.

This finishes the definition of an abelian category. ◇
Example 2.3.16. In the abelian category Ab of abelian groups, kernels and coker-
nels are taken in the usual sense of basic algebra. Monomorphisms and epimor-
phisms are precisely, respectively, injective and surjective group homomorphisms.
Suppose f ∶ A B is a morphism in Ab.

● If f is a monomorphism, then it is the kernel of the quotient map

B cok( f )

to the cokernel.
● If f is an epimorphism, then it is the cokernel of the inclusion

ker( f ) A

from the kernel. ◇
Lemma 2.3.17. Each abelian category has all finite limits and finite colimits, with prod-
ucts and coproducts given by direct sums.

Proof. By Theorem 2.3.7 (1), an abelian category C has all finite (co)products given
by iterated direct sums. For morphisms f , g ∶ A B in C,

● an equalizer is given by a kernel of f − g, and
● a coequalizer is given by a cokernel of f − g.

With finite (co)products and (co)equalizers, C has all finite (co)limits. □

Example 2.3.18. Suppose A and B are abelian categories.
● The opposite category Aop is an abelian category.
● For each small category D, the functor category AD is an abelian category,

with 0, direct sums, and (co)kernels defined pointwise in A.
● The category ChA of chain complexes in A is an abelian category, with 0,

direct sums, and (co)kernels taken degreewise.
● The Cartesian product A×B is an abelian category.
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● For a ring R, the category of left R-modules is an abelian category, with
0, direct sums, and (co)kernels taken in the usual sense. Similarly, the
category of right R-modules is an abelian category.
● The category of finitely generated left modules over a left Noetherian ring

is an abelian category. ◇

2.4. Abelian Categories with a Braiding

The main result of this section, Theorem 2.4.22, states that an abelian category
with a compatible braided monoidal structure has the structure of a tight braided
bimonoidal category. The additive symmetric monoidal structure is given by the
direct sum of the abelian category. This theorem is due to Blass and Gurevich
[BG20a, Th. 12]. It provides a natural class of examples of tight braided bimonoi-
dal categories. Applications of Theorem 2.4.22 are provided in Chapter 3. Recall
from Definitions 1.3.15, 2.3.3, and 2.3.15 the notions of a braided monoidal cate-
gory, an additive functor, and an abelian category.

Convention 2.4.1. Throughout this section, assume that the tuple

(C, 0,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗)
consists of

● an abelian category C with a zero object 0 and
● a braided monoidal category (C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗).

Moreover, for each object A ∈ C, it is assumed that the functors

C C
A⊗−

−⊗A

are additive functors. ◇
This section is organized as follows.
● Using the direct sum of the abelian category, the additive symmetric

monoidal structure ⊕ on C is defined in Definition 2.4.2. Its detail is in
Explanation 2.4.3. The essence of the additive structure is that it is en-
tirely defined in terms of the projections of the direct sum.
● Using both the direct sum ⊕ and the braided monoidal structure ⊗, the

distributivity morphisms δl and δr are defined in (2.4.9). Lemma 2.4.10
shows that they are natural isomorphisms. It is here that we use the as-
sumption that −⊗ A and A⊗− are additive functors.
● The multiplicative zeros λ ● and ρ ● are in Definition 2.4.11, and are ver-

ified to be natural isomorphisms in Lemma 2.4.12. To show that they
have invertible components, we have to use the assumption that − ⊗ A
and A⊗− preserve zero morphisms.
● The second half of this section contains the proof of the 14 braided bi-

monoidal category axioms in C.

The Additive Structure. In an abelian category, any two objects have a direct
sum as in Definition 2.3.4, which is both a product and a coproduct.

Definition 2.4.2. With C as in Convention 2.4.1, denote by

(C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
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the symmetric monoidal category with the monoidal product given by the direct
sum ⊕ on objects. This is called the additive structure of C. ◇
Explanation 2.4.3. A more detailed description of the additive structure of C is
given as follows, with A, B, C ∈ C arbitrary objects.

The Sum: The object A⊕ B is their direct sum in (2.3.5).
For morphisms f ∶ A A′ and g ∶ B B′ in C, the morphism

f ⊕ g is defined by the following commutative diagram.

(2.4.4)

A A′

A⊕ B A′ ⊕ B′

B B′

fp1

f⊕g

p2

p1

p2

g

The Additive Associativity: α⊕A,B,C is defined by the following commutative dia-
gram.

(2.4.5)

(A⊕ B)⊕C A⊕ (B⊕C)

A⊕ B A

C B⊕C

A⊕ B B

p1

α⊕A,B,C

p2

p2

p1 p1

p2 p2

p1
p1

The Additive Zeros: The left and the right unit isomorphisms

(2.4.6) 0⊕ A A A⊕ 0
λ⊕A = p2 ρ⊕A = p1

are, respectively, the projections to the second factor and the first factor.
The Additive Symmetry: ξ⊕A,B is defined by the following commutative diagram.

(2.4.7) A⊕ B B⊕ A

B

A

p2

ξ⊕A,B

p1

p1

p2

This finishes the description of the additive structure of C. ◇

Distributivity. Next we define the distributivity morphisms in C.
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Definition 2.4.8. With C as in Convention 2.4.1 and Definition 2.4.2, define the
distributivity morphisms δl

A,B,C and δr
A,B,C by the commutative diagrams

(2.4.9) A⊗ (B⊕C) (A⊗ B)⊕ (A⊗C)

A⊗ B

A⊗C

1A ⊗ pB,C
1

δl
A,B,C

1A ⊗ pB,C
2

pA⊗B,A⊗C
1

pA⊗B,A⊗C
2

(A⊕ B)⊗C (A⊗C)⊕ (B⊗C)

A⊗C

B⊗C

pA,B
1 ⊗ 1C

δr
A,B,C

pA,B
2 ⊗ 1C

pA⊗C,B⊗C
1

pA⊗C,B⊗C
2

for objects A, B, C ∈ C. ◇
Lemma 2.4.10. In Definition 2.4.8, δl and δr are natural isomorphisms.

Proof. We prove the assertion for δl ; the proof for δr is essentially the same.
To see that δl

A,B,C is an isomorphism, recall that A⊗− is an additive functor.
So it preserves the equations in (2.3.5) that characterize the direct sum B⊕C. By
Theorem 2.3.7(1), this implies that the diagram

A⊗ B A⊗ (B⊕C) A⊗C
1A⊗pB,C

1 1A⊗pB,C
2

is a product of A⊗ B and A⊗C. Therefore, A⊗ (B⊕C) is uniquely isomorphic to
the direct sum (A⊗ B)⊕ (A⊗C), which is also the product. This unique isomor-
phism is δl

A,B,C by definition.
To show that δl is a natural transformation, consider morphisms

f ∶ A A′, g ∶ B B′, and h ∶ C C′.

We must show that the rectangle (†) in the following diagram is commutative.
The symbol ⊗ is omitted among objects to save space.

A(B⊕C) AB⊕ AC

AB

A′(B′ ⊕C′) A′B′ ⊕ A′C′

AB A′B′

(†)

(2.4.9)

(2.4.9)

(2.4.4)

(2.4.4)

1A ⊗ pB,C
1

δl
A,B,C

pAB,AC
1

1A ⊗ pB,C
1

f ⊗ (g⊕ h)

δl
A′,B′,C′

( f ⊗ g)⊕ ( f ⊗ h)

f ⊗ g
1A′ ⊗ pB′ ,C′

1
pA′B′ ,A′C′

1

f ⊗ g

This diagram shows that the two composites in (†) composed with the projection
pA′B′ ,A′C′

1 are equal to each other. An analogous diagram shows that the two com-
posites in (†) composed with the other projection pA′B′ ,A′C′

2 are equal to each other.
Since the direct sum A′B′ ⊕ A′C′ is also the product of A′B′ and A′C′, it follows
that (†) is commutative. This proves the naturality of δl . □
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The Multiplicative Zeros. Next we define the multiplicative zeros in C.
Definition 2.4.11. With C as in Convention 2.4.1 and an object A ∈ C, define the
left and the right multiplicative zeros

0⊗ A 0 A⊗ 0
λ
●
A ρ

●
A

as the unique morphisms to the zero object 0 ∈ C. ◇
Lemma 2.4.12. In Definition 2.4.11, λ ● and ρ ● are natural isomorphisms.

Proof. The inverse
λ−

●
A ∶ 0 0⊗ A

is defined as the unique morphism from the initial object 0.
● The composite

λ
●
Aλ−

●
A ∶ 0 0

is the identity morphism because 0 is a zero object.
● The zero morphism in C(0, 0), which has only one element, is also the

identity morphism 10. Since − ⊗ A is an additive functor, the identity
morphism 10⊗A is equal to the zero morphism in C(0⊗ A, 0⊗ A). This
zero morphism is equal to the composite λ− ●A λ ●A by Lemma 2.3.12. So
λ− ●A λ ●A is the identity morphism.

Therefore, λ ●A is indeed an isomorphism with inverse λ− ●A . The naturality of λ ●

follows from the fact that 0 is a terminal object.
The proof for ρ ● is almost the same as that for λ ●. □

The Braided Bimonoidal Category Axioms. We now assume the setting of
Convention 2.4.1 and Definitions 2.4.2, 2.4.8, and 2.4.11. Together they contain the
data part of a braided bimonoidal category C. To show that C is a tight braided
bimonoidal category, we check the 14 axioms in Definition 2.1.29, starting with the
trivial ones.
Lemma 2.4.13. The axioms (2.1.13), (2.1.15), (2.1.17), (2.1.18), (2.1.19), and (2.1.33)
hold in C.

Proof. In each of these diagrams, the common codomain of the two composites is
the terminal object 0. □

In the next several lemmas, we omit the symbol ⊗ among objects and mor-
phisms.
Lemma 2.4.14. C satisfies the axiom (2.1.24).

Proof. The diagram (2.1.24) is the outer diagram below.

A(B⊕ 0) AB⊕ A0

AB AB⊕ 0

(2.4.9)
(2.4.4)

δl
A,B,0

ρ⊕AB = pAB,0
1

1Aρ⊕B = 1A pB,0
1

pAB,A0

1

1AB ⊕ ρ
●
A

By (2.4.4), (2.4.6), and (2.4.9), the above diagram shows that (2.1.24) is commuta-
tive. □
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Motivation 2.4.15. In each of the remaining proofs of the braided bimonoidal cat-
egory axioms in C, the idea is the same as in the proof of the naturality of δl in
Lemma 2.4.10. In other words, in each of the desired axioms, we consider the two
composites composed with a projection of the common codomain to each of its
direct sum factors, and show that they are equal to each other. The fact that the
direct sum is also the product, as in Theorem 2.3.7 (1), then implies the desired
axiom. ◇
Lemma 2.4.16. C satisfies the axiom (2.1.26).

Proof. The diagram (2.1.26) is the middle triangle in the diagram below.

1A

1(A⊕ B) 1A⊕1B

A⊕ B

A

(2.4.9)

(2.1.26)

(2.4.4)

11pA,B
1 p1A,1B

1

δl
1,A,B

λ⊗A⊕B λ⊗A ⊕ λ⊗B

pA,B
1

λ⊗A

The outer diagram is commutative by the naturality of λ⊗. This diagram shows
that the two composites in (2.1.26) composed with the projection pA,B

1 are equal
to each other. An analogous diagram shows that the two composites in (2.1.26)
composed with the other projection pA,B

2 are equal to each other. Since the direct
sum A⊕ B is also the product A × B, it follows that (2.1.26) is commutative. □

Lemma 2.4.17. C satisfies the axioms (2.1.4) and (2.1.32).

Proof. We will prove (2.1.4); the proof of its variant (2.1.32) is almost the same.
The diagram (2.1.4) is the rectangle in the following diagram.

(A⊕ B)C AC⊕ BC

AC

C(A⊕ B) CA⊕CB

AC CA

(2.1.4)

(2.4.9)

(2.4.9)

(2.4.4)

nat

pA,B
1 1C

δr
A,B,C

pAC,BC
1

pA,B
1 1C

ξ⊗A⊕B,C

δl
C,A,B

ξ⊗A,C ⊕ ξ⊗B,C

ξ⊗A,C1C pA,B
1

pCA,CB
1

ξ⊗A,C

This diagram shows that the two composites in (2.1.4) composed with the pro-
jection pCA,CB

1 are equal to each other. An analogous diagram shows that the two
composites in (2.1.4) composed with the other projection pCA,CB

2 are equal to each
other. Since the direct sum CA⊕ CB is also the product CA × CB, it follows that
(2.1.4) is commutative. □
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Lemma 2.4.18. C satisfies the axiom (2.1.5).

Proof. The diagram (2.1.5) is the top rectangle in the following diagram.

A(B⊕C) AB⊕ AC

A(C⊕ B) AC⊕ AB

AC AC

(2.1.5)

(2.4.9)(2.4.7) (2.4.7)

δl
A,B,C

δl
A,C,B

1Aξ⊕B,C

1A pC,B
1

ξ⊕AB,AC

pAC,AB
1

1A pB,C
2 pAB,AC

2

The outer diagram is commutative by (2.4.9). The above diagram shows that the
two composites in (2.1.5) composed with the projection pAC,AB

1 are equal to each
other. An analogous diagram shows that the two composites in (2.1.5) composed
with the other projection pAC,AB

2 are equal to each other. Since AC⊕ AB is also the
product AC × AB, it follows that (2.1.5) is commutative. □

Lemma 2.4.19. C satisfies the axiom (2.1.8).

Proof. The diagram (2.1.8) is the middle rectangle in the following diagram.

A(B⊕C) A(B⊕C) AB⊕ AC

A[(B⊕C)⊕D] A(B⊕C)⊕ AD (AB⊕ AC)⊕ AD

A[B⊕ (C⊕D)] AB⊕ A(C⊕D) AB⊕ (AC⊕ AD)

AB AB AB

(2.4.9) (2.4.4)

(2.1.8)

(2.4.9) (2.4.4)

(2.4.5) (2.4.5)

δl
A,B,C

δl
A,B⊕C,D δl

A,B,C ⊕ 1AD

δl
A,B,C⊕D 1AB ⊕ δl

A,C,D

1A pB⊕C,D
1 pA(B⊕C),AD

1 pAB⊕AC,AD
1

1Aα⊕B,C,D α⊕AB,AC,AD

1A pB,C⊕D
1 pAB,A(C⊕D)

1 pAB,AC⊕AD
1

1A pB,C
1 pAB,AC

1

The outer diagram is commutative by (2.4.9). The above diagram shows that the
two composites in (2.1.8) composed with the projection pAB,AC⊕AD

1 are equal to each
other. Two analogous diagrams show that the two composites in (2.1.8) composed
with either iterated projections below are equal to each other.

AB⊕ (AC⊕ AD) AC⊕ AD AC

AB⊕ (AC⊕ AD) AC⊕ AD AD

pAB,AC⊕AD
2 pAC,AD

1

pAB,AC⊕AD
2 pAC,AD

2

Since AB⊕ (AC⊕ AD) is also the product AB × (AC × AD), it follows that (2.1.8)
is commutative. □

Lemma 2.4.20. C satisfies the axiom (2.1.9).
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Proof. The diagram (2.1.9) is the middle left rectangle in the following diagram.

(AB)(C⊕D) (AB)C⊕ (AB)D (AB)C

A[B(C⊕D)] A(BC⊕ BD) A(BC)⊕ A(BD)

A(BC) A(BC) A(BC)

(2.4.9)

(2.1.9) (2.4.4)

(2.4.9) (2.4.9)

1AB pC,D
1

δl
AB,C,D p(AB)C,(AB)D

1

1Aδl
B,C,D δl

A,BC,BD

α⊗A,B,C⊕D α⊗A,B,C ⊕ α⊗A,B,D

1A(1B pC,D
1 ) 1A pBC,BD

1 pA(BC),A(BD)
1

α⊗A,B,C

The outer diagram is commutative by the naturality of α⊗. The above diagram
shows that the two composites in (2.1.9) composed with the projection pA(BC),A(BD)

1
are equal to each other. An analogous diagram shows that the two composites
in (2.1.9) composed with the other projection pA(BC),A(BD)

2 are equal to each other.
Since A(BC)⊕ A(BD) is also the product A(BC)× A(BD), it follows that (2.1.9) is
commutative. □

Lemma 2.4.21. C satisfies the axiom (2.1.12).

Proof. The diagram (2.1.12) is the outer diagram below.

(A⊕ B)(C⊕D) A(C⊕D)⊕ B(C⊕D)

(A⊕ B)C⊕ (A⊕ B)D (AC⊕ AD)⊕ (BC⊕ BD)

(AC⊕ BC)⊕ (AD⊕ BD) AC⊕ [AD⊕ (BC⊕ BD)]

AC⊕ [BC⊕ (AD⊕ BD)] AC⊕ [(AD⊕ BC)⊕ BD]

AC⊕ [(BC⊕ AD)⊕ BD]

(A⊕ B)C

AC⊕ BC

BC⊕ (AD⊕ BD)

B(C⊕D)

BC⊕ BD

AD⊕ (BC⊕ BD)

(AD⊕ BC)⊕ BD

BC

BC

BC

(†)

(†)δl

δr ⊕ δr

α⊕

1⊕ α−⊕

δr

δl ⊕ δl

α⊕

1⊕ α−⊕

1⊕ (ξ⊕ ⊕ 1)

p21

p2 p1

1p1

δr

p1

p1

p2

p21

p2

p1

1p1

p1 p1 p2

p2

δl

p1

p2

p2

p2

α−⊕

p2 p1 p2

The two triangles labeled by (†) are commutative by the functoriality of ⊗. Every
other subdiagram is commutative by (2.4.4), (2.4.5), (2.4.7), and (2.4.9). The above
diagram shows that the two composites in (2.1.12) composed with the following
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iterated projection are equal to each other.

AC⊕ [(BC⊕ AD)⊕ BD] (BC⊕ AD)⊕ BD BC⊕ AD BC
p2 p1 p1

Three analogous diagrams show that the two composites in (2.1.12) composed
with each of the following three iterated projections are equal to each other.

AC⊕ [(BC⊕ AD)⊕ BD] AC

AC⊕ [(BC⊕ AD)⊕ BD] (BC⊕ AD)⊕ BD BD

AC⊕ [(BC⊕ AD)⊕ BD] (BC⊕ AD)⊕ BD BC⊕ AD AD

p1

p2 p2

p2 p1 p2

Since AC ⊕ [(BC ⊕ AD)⊕ BD] is also the product AC × [(BC × AD) × BD], it fol-
lows that (2.1.12) is commutative. □

We are now ready for the main result of this section.
Theorem 2.4.22. Under Convention 2.4.1, with

● the additive structure in Definition 2.4.2,
● the distributivity morphisms δl and δr in Definition 2.4.8, and
● the multiplicative zeros λ ● and ρ ● in Definition 2.4.11,

C is a tight braided bimonoidal category.

Proof. This is a consequence of the following facts.
● Since the direct sum ⊕ is also the product, the additive structure is a sym-

metric monoidal structure on C.
● Lemmas 2.4.10 and 2.4.12 show that δl , δr, λ ●, and ρ ● are natural isomor-

phisms.
● The 14 axioms of a braided bimonoidal category in Definition 2.1.29 are

verified in Lemmas 2.4.13, 2.4.14, and 2.4.16 through 2.4.21.
Therefore, C is a tight braided bimonoidal category. □

2.5. Abelian Categories with a Monoidal Structure

Theorem 2.4.22 states that an abelian category with a compatible braided mon-
oidal structure is a tight braided bimonoidal category. This section contains the
symmetric and the nonbraided analogues of Theorem 2.4.22. Recall from Defini-
tion 2.1.1 the notion of a tight (symmetric) bimonoidal category.
Corollary 2.5.1. Under the assumptions of Theorem 2.4.22, if the braided monoidal struc-
ture on C is symmetric monoidal, then C is a tight symmetric bimonoidal category.

Proof. This is a consequence of Proposition 1.3.36, Corollary 2.2.3, and Theo-
rem 2.4.22. □

Next is the nonbraided version of Theorem 2.4.22.
Theorem 2.5.2. Suppose the tuple

(C, 0,⊗,1, α⊗, λ⊗, ρ⊗)
consists of

● an abelian category C with a zero object 0 and
● a monoidal structure (⊗,1, α⊗, λ⊗, ρ⊗)
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such that, for each object A ∈ C, the functors

C C
A⊗−

−⊗A

are additive functors. Then with
● the additive structure in Definition 2.4.2,
● the distributivity morphisms δl and δr in Definition 2.4.8, and
● the multiplicative zeros λ ● and ρ ● in Definition 2.4.11,

C is a tight bimonoidal category.

Proof. The additive structure is a symmetric monoidal category because the direct
sum is a product of the abelian category. Lemmas 2.4.10 and 2.4.12 show that δl ,
δr, λ ●, and ρ ● are natural isomorphisms. We must check the 22 Laplaza axioms in
Definition 2.1.1 not including (2.1.4) and (2.1.18), which involve ξ⊗.

● Lemma 2.4.18 proves the axiom (2.1.5). The axiom (2.1.6) is proved by
almost the same argument.
● Lemma 2.4.19 proves the axiom (2.1.8). The axiom (2.1.7) is proved by

almost the same argument.
● Lemma 2.4.20 proves the axiom (2.1.9). The axioms (2.1.10)–(2.1.11) are

proved by almost the same argument.
● Lemma 2.4.21 proves the axiom (2.1.12).
● The axioms (2.1.13)–(2.1.17) and (2.1.19)–(2.1.21) hold because, in each

case, the common codomain of the two composites is the terminal object
0.
● Lemma 2.4.14 proves the axiom (2.1.24). The axioms (2.1.22), (2.1.23), and

(2.1.25) are proved by almost the same argument.
● Lemma 2.4.16 proves the axiom (2.1.26). The axiom (2.1.27) is proved by

almost the same argument.
Therefore, C is a tight bimonoidal category. □

In summary, an abelian category with a compatible (symmetric) monoidal
structure ⊗—in the sense that A⊗− and −⊗A are additive functors for each object
A—has the structure of a tight (symmetric) bimonoidal category.

2.6. Notes

2.6.1 (Abelian Categories). The definitions and results in Section 2.3 are from
[ML98, VIII.2–3], where a direct sum is called a biproduct. For more discussion of
abelian categories, the reader is referred to

● the papers [Buc55, Gro57] and
● the books [BK00, 2.2–2.3], [Fre03, Ch. 2], [ML98, VIII], [Mit65, I.20], and

[Sch72, Ch. 12].
In [Buc55], an abelian category is called an exact category, which differs from mod-
ern usage of that term.

Some authors assume a different set of axioms for an abelian category. For ex-
ample, in [Fre03, Ch. 2] and [Sch72, Ch. 12], a category C is abelian if the following
conditions hold:

(i) It has a zero object.
(ii) Each pair of objects has a product and a coproduct.
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(iii) Each morphism has a kernel and a cokernel.
(iv) Each monomorphism is a kernel of some morphism.
(v) Each epimorphism is a cokernel of some morphism.

This definition does not assume that C is an Ab-category. However, the results in
[Fre03, 2.3–2.4] and [Sch72, 12.5] show that this definition and Definition 2.3.15
of an abelian category are equivalent. Furthermore, axiom (ii) can be replaced by
either one of the following two weaker axioms:

● Each pair of objects has a product.
● Each pair of objects has a coproduct. ◇

2.6.2 (Mitchell’s Embedding Theorem). A central result about abelian categories
is the embedding theorem due to Mitchell [Mit64], which is also known as the
Freyd-Mitchell Embedding Theorem. It states that each small abelian category
admits a full and exact embedding into the category of modules over some ring.
For a textbook account of this theorem, see [Mit65, VI.7] and [Fre03, 7.34]. ◇





CHAPTER 3

Applications to Quantum Groups and Topological
Quantum Computation

This chapter contains the following applications of braided bimonoidal cate-
gories to quantum group theory and topological quantum computation.

Quantum Groups. A central fact in quantum group theory states that, for
each braided bialgebra A, which is also known as a quasitriangular bialgebra, the
category Mod(A) of left A-modules is a braided monoidal category with the tensor
product. In Theorem 3.2.19, we observe that, together with the direct sum of left
A-modules, Mod(A) becomes a tight braided bimonoidal category. This assertion
can be verified directly from the definition, but we will obtain it as a corollary of
Theorem 2.4.22. The nonbraided and the symmetric analogues—for modules over,
respectively, bialgebras and symmetric bialgebras—are also true.

Topological Quantum Computation. We observe that Fibonacci anyons and
Ising anyons each form a tight braided bimonoidal category; see Theorems 3.4.13
and 3.6.14. These anyons are two of the most popular models in topological quan-
tum computation. Providing a simple mathematical framework for anyon models
in topological quantum computation is the main motivation for introducing tight
braided bimonoidal categories in [BG20a]. Fibonacci anyons are generated under
the direct sum ⊕ by the vacuum 1 and the non-abelian anyon τ, with the fusion
rule

τ ⊗ τ = 1⊕ τ.

Ising anyons are generated under the direct sum by the vacuum 1, the non-abelian
anyon σ, and the fermion ψ. The fusion rules are

σ⊗ σ = 1⊕ψ,

σ⊗ψ = σ = ψ⊗ σ, and
ψ⊗ψ = 1.

In each case, 1 is a strict two-sided unit for ⊗. These tight braided bimonoidal cat-
egories of Fibonacci anyons and Ising anyons are obtained as corollaries of Theo-
rem 2.4.22.

These applications in quantum group theory and topological quantum com-
putation provide specific examples of tight braided bimonoidal categories that
are important outside of pure category theory. Connection of braided bimonoi-
dal categories with homotopy theory and algebraic K-theory will be discussed in
Part III.2.

II.69
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Organization. In preparation for Theorem 3.2.19, in Section 3.1 we recall the
definitions of a bialgebra, a braided bialgebra, and a symmetric bialgebra. In the
literature, braided and symmetric bialgebras are also called quasitriangular and
triangular bialgebras, respectively. Then we discuss some well-known examples
from quantum group theory, including:

● cocommutative bialgebras, group bialgebras, the universal enveloping
bialgebras, and Sweedler’s 4-dimensional non-(co)commutative bialge-
bra, which are symmetric bialgebras; and
● the anyonic quantum groups, which are braided bialgebras.

In Section 3.2, we first prove the well-known fact in quantum group theory
that, for a bialgebra A, the category Mod(A) of left A-modules is a monoidal cat-
egory. It is, furthermore, symmetric or braided if A is a symmetric or braided
bialgebra, respectively. See Propositions 3.2.6, 3.2.12, and 3.2.13. Then we equip
Mod(A)with an additive structure ⊕, multiplicative zeros, and distributivity mor-
phisms. The main observation is Theorem 3.2.19. It states that, for a bialgebra A,
the category Mod(A) is a tight bimonoidal category, which is, furthermore, sym-
metric or braided if A is a symmetric or braided bialgebra, respectively.

In preparation for Theorem 3.4.13, in Section 3.3 we first define the abelian
category F any of Fibonacci anyons. Then we equip it with a monoidal structure
⊗, using the fusion rule τ ⊗ τ = 1⊕ τ and the requirement that 1 is a strict two-
sided unit. Some sample calculation involving ⊗ is provided, both as examples
and as preparation for the proofs of the (braided) monoidal category axioms. This
section ends with Lemma 3.3.27, which proves in detail that (F any,⊗) is a monoidal
category.

Section 3.4 begins with the definition of the braiding β in F any. Lemma 3.4.5
shows that (F any,⊗, β) is a braided monoidal category. As a consequence of The-
orem 2.4.22, we obtain Theorem 3.4.13, which states that F any is a tight braided
bimonoidal category.

In Section 3.5, we define the abelian category Iany of Ising anyons and equip it
with a monoidal structure. After some sample calculation, we carefully check the
pentagon axiom (1.3.3) in Lemma 3.5.27. In Section 3.6, we equip the monoidal cat-
egory Iany with a braiding and prove the hexagon axioms (1.3.17) in Lemma 3.6.7.
Theorem 3.6.14 states that Iany is a tight braided bimonoidal category.

Section 3.7 lists some references for the literature on quantum groups and
topological quantum computation. Convention 2.1.34 is still in effect, so⊗ is some-
times abbreviated to concatenation.

Reading Guide.

Quantum groups:
(1) Read Definitions 3.1.6 and 3.1.19 of a braided bialgebra.
(2) Read Definition 3.2.2 and the statement of Proposition 3.2.6 for the

multiplicative structure on Mod(A).
(3) Read Definition 3.2.8 and the statement of Proposition 3.2.12 for the

braided monoidal structure on Mod(A)⊗.
(4) Read Definition 3.2.14 and the statement of Theorem 3.2.19 for the

tight braided bimonoidal structure on Mod(A).
Fibonacci anyons:
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(1) Read Definitions 3.3.1, 3.3.3, 3.3.7, and 3.3.23 and the statement of
Lemma 3.3.27 for the monoidal category F any.

(2) Read Definition 3.4.1 and the statements of Lemma 3.4.5 and Theo-
rem 3.4.13 for the tight braided bimonoidal structure on F any.

Ising anyons:
(1) For the monoidal structure, read Definitions 3.5.1, 3.5.5, and 3.5.21

and the statement of Lemma 3.5.27.
(2) Read Definition 3.6.1 and the statements of Lemma 3.6.7 and Theo-

rem 3.6.14 for the tight braided bimonoidal structure on Iany.
Then go back and read the rest of this chapter.

3.1. Braided Bialgebras

In preparation for Section 3.2, where we apply Theorems 2.4.22 and 2.5.2
and Corollary 2.5.1 to the category of modules over a (symmetric/braided) bial-
gebra, in this section we review the definitions of (symmetric/braided) bialgebras
and some examples. In the literature, braided and symmetric bialgebras are also
known as, respectively, quasitriangular and triangular bialgebras. For their con-
nection with quantum group theory, the reader is referred to the references in
Note 3.7.1.
Convention 3.1.1. Throughout this section, k is a fixed ground field.

● Vectk is the category of k-vector spaces and k-linear maps. If there is no
danger of confusion, we drop k and call them vector spaces and linear
maps.
● For vector spaces A and B, their direct sum and tensor product as vector

spaces are written as, respectively A⊕ B and A⊗ B.
● Following common practice, for another vector space C, using the canon-

ical isomorphism

(A⊗ B)⊗C A⊗ (B⊗C)
(a⊗ b)⊗ c a⊗ (b⊗ c),

≅

we omit parentheses and write A ⊗ B ⊗ C for either one of these two
canonically isomorphic vector spaces. A similar convention applies to
direct sums and morphisms.
● A⊗n = A⊗⋯⊗ A with n copies of A, and A⊗0 = k.
● A⊕n = A⊕⋯⊕ A with n copies of A, and A⊕0 = 0 (the 0 k-vector space).
● Vectk

⊗
= (Vectk,⊗,k, ξ⊗) is the symmetric monoidal category of vector

spaces with the tensor product.
● Vectk

⊕
= (Vectk,⊕, 0, ξ⊕) is the symmetric monoidal category of vector

spaces with the direct sum. ◇

Algebras and Coalgebras.
Definition 3.1.2.

(1) A k-algebra, or simply an algebra, is a monoid in Vectk
⊗

.
(2) A k-coalgebra, or simply a coalgebra, is a comonoid in Vectk

⊗
.

(3) A k-(co)algebra is (co)commutative if it is so as a (co)monoid. ◇
Explanation 3.1.3.
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(1) Interpreting Definition I.1.2.8 in Vectk
⊗

, a k-algebra is a triple (A, µ, η) con-
sisting of
● a k-vector space A;
● a linear map µ ∶ A⊗ A A, which is called the multiplication; and
● a linear map η ∶ k A, which is called the unit.

These data are required to make the following associativity and unity
diagrams commutative.

A⊗3 A⊗2

A⊗2 A

µ⊗1

1⊗µ

µ

µ

k⊗ A A⊗2 A⊗k

A A A

η⊗1

λ µ

1⊗η

ρ

(2) Interpreting Definition I.1.2.9 in Vectk
⊗

, a k-coalgebra is a triple (C, ∆, ε)
consisting of
● a k-vector space C;
● a linear map ∆ ∶ C C⊗C, which is called the comultiplication; and
● a linear map ε ∶ C k, which is called the counit.

These data are required to make the following coassociativity and counity
diagrams commutative.

(3.1.4)
C C⊗2

C⊗2 C⊗3

∆

∆ ∆⊗1

1⊗∆

C C C

k⊗C C⊗2 C⊗k

∆λ

ε⊗1 1⊗ε

ρ

Moreover, interpreting (I.1.2.24), a coalgebra is cocommutative if the dia-
gram

(3.1.5)
C C

C⊗2 C⊗2

∆ ∆

ξ⊗

is commutative. ◇

Bialgebras.
Definition 3.1.6. A k-bialgebra, or simply a bialgebra, is a tuple

(A, µ, η, ∆, ε)
consisting of

● an algebra (A, µ, η) and
● a coalgebra (A, ∆, ε)

such that ∆ and ε are morphisms of algebras. ◇
Explanation 3.1.7. Consider Definition 3.1.6.

(1) k is regarded as an algebra with
● the canonical isomorphism k⊗ k ≅

k, sending 1⊗ 1 to 1, as the
multiplication, and
● the identity morphism 1 ∶ k k as the unit.

(2) The tensor product A⊗2 is regarded as an algebra with
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● multiplication the composite

(3.1.8) A⊗2 ⊗ A⊗2 A⊗2 ⊗ A⊗2 A⊗21⊗ξ⊗⊗1 µ⊗µ

and
● unit the composite

(3.1.9) k k⊗2 A⊗2.≅ η⊗2

(3) The comultiplication ∆ ∶ A A⊗2 is a morphism of algebras if and only
if the following two diagrams are commutative.

(3.1.10)

A⊗2 A⊗4

A⊗4

A A⊗2

µ

∆⊗2

1⊗ξ⊗⊗1

µ⊗µ

∆

k A

k⊗2 A⊗2

≅

η

∆

η⊗2

(4) The counit ε ∶ A k is a morphism of algebras if and only if the fol-
lowing two diagrams are commutative.

(3.1.11)
A⊗2 k⊗2

A k

µ

ε⊗2

≅
ε

k A

k

η

ε

Therefore, a bialgebra (A, µ, η, ∆, ε) is simultaneously an algebra (A, µ, η) and a
coalgebra (A, ∆, ε) such that the four diagrams in (3.1.10) and (3.1.11) are commu-
tative. ◇
Notation 3.1.12.

● For elements x and y in an algebra (A, µ, η), we write

µ(x, y) = xy and η(1k) = 1A = 1,

with 1k the multiplicative unit in k.
● For an element S = ∑i s′i ⊗ s′′i ∈ A⊗2 for an algebra A, we define the ele-

ment

(3.1.13) Sop = ξ⊗S =∑
i

s′′i ⊗ s′i ∈ A⊗2

and the following elements in A⊗3.

S12 =∑
i

s′i ⊗ s′′i ⊗ 1

S13 =∑
i

s′i ⊗ 1⊗ s′′i

S23 =∑
i

1⊗ s′i ⊗ s′′i

(3.1.14)
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● For an element x in a coalgebra (C, ∆, ε), we use Sweedler’s notation for
comultiplication:

(3.1.15) ∆(x) =∑
(x)

x(1) ⊗ x(2).

◇
Example 3.1.16.

● The four commutative diagrams in (3.1.10) and (3.1.11) defining a bialge-
bra mean the following four equalities for elements x, y ∈ A.

∑
(xy)
(xy)(1) ⊗ (xy)(2) = ∑

(x),(y)
(x(1)y(1))⊗ (x(2)y(2)) ∈ A⊗2

∆(1A) = 1A ⊗ 1A ∈ A⊗2

ε(xy) = ε(x)ε(y) ∈ k
ε(1A) = 1k ∈ k

(3.1.17)

● The counity (3.1.4) in a coalgebra C means the following equalities for
x ∈ C.

(3.1.18) ∑
(x)

ε(x(1))x(2) = x =∑
(x)

x(1)ε(x(2))
◇

Braided and Symmetric Bialgebras.
Definition 3.1.19. Suppose (A, µ, η, ∆, ε) is a bialgebra.

● The opposite comultiplication is defined as

∆op = ξ⊗∆ ∶ A A⊗2.

● An R-matrix is an invertible element R in the algebra A⊗2 such that the
equality

(3.1.20) ∆op(a)R = R∆(a)
holds for each element a ∈ A.
● A is quasi-cocommutative if it is equipped with an R-matrix.
● A braided bialgebra is a quasi-cocommutative bialgebra

(A, µ, η, ∆, ε, R)
whose R-matrix R satisfies the following two equalities in A⊗3 using the
notation in (3.1.14).

(∆⊗ 1)(R) = R13R23

(1⊗∆)(R) = R13R12
(3.1.21)

● A symmetric bialgebra is a braided bialgebra whose R-matrix satisfies the
equality

(3.1.22) Rop = R−1 ∈ A⊗2

using the notation in (3.1.13). ◇
Explanation 3.1.23. For a quasi-cocommutative bialgebra A with R-matrix R, we
write

R =∑
i

si ⊗ ti ∈ A⊗2.
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● The R-matrix axiom (3.1.20) is the equality

(3.1.24) ∑
(a),i

a(2)si ⊗ a(1)ti = ∑
(a),i

sia
(1) ⊗ tia

(2)

in A⊗2 for each element a ∈ A. The R-matrix measures how far A is from
being cocommutative. In fact, A is cocommutative (that is, ∆op = ∆) if
and only if 1⊗ 1 is an R-matrix.
● The braided bialgebra axioms (3.1.21) mean the following equalities in

A⊗3.

∑
i,(si)

s(1)i ⊗ s(2)i ⊗ ti =∑
i,j

si ⊗ sj ⊗ titj

∑
i,(ti)

si ⊗ t(1)i ⊗ t(2)i =∑
i,j

sisj ⊗ tj ⊗ ti

(3.1.25)

The braided bialgebra axioms (3.1.21) are algebraic analogues of, respec-
tively, the right and the left hexagon diagrams in (1.3.17).
● The symmetric bialgebra axiom (3.1.22) means the equality

(3.1.26) ∑
i,j

tjsi ⊗ sjti = 1⊗ 1 ∈ A⊗2.

This is an algebraic analogue of the symmetry axiom (1.3.33). ◇

Examples. The rest of this section contains examples of braided and symmet-
ric bialgebras.

Example 3.1.27 (Cocommutative Bialgebras). Suppose (A, µ, η, ∆, ε) is a cocom-
mutative bialgebra, that is, a bialgebra satisfying ∆op = ∆. Then A equipped with
the element

R = 1⊗ 1 ∈ A⊗2

is a symmetric bialgebra. Indeed, the R-matrix axiom (3.1.20) holds by cocommu-
tativity. The braided bialgebra axioms (3.1.21) and the symmetric bialgebra axiom
(3.1.22) hold because ∆(1) = 1⊗ 1 by (3.1.17) and µ(1, 1) = 1. ◇
Example 3.1.28 (Group Bialgebras). For a finite group G, the group bialgebra kG
is the cocommutative bialgebra defined as follows.

● Its vector space basis is the set G. A typical element in kG is a linear
combination ∑g∈G agg for some scalars ag ∈ k.
● Its algebra structure is induced by the group multiplication and unit in

G, with multiplication extended linearly to all of kG. Associativity and
unity hold because they do in k and G. This is a noncommutative algebra
in general, unless G is an abelian group.
● Its coalgebra structure is determined by

∆(g) = g⊗ g and

ε(g) = 1 for g ∈ G,

extended linearly to all of kG. Coassociativity, counity (3.1.4), and co-
commutativity (3.1.5) hold because they hold for the basis elements.
● ε is an algebra morphism (3.1.11) by definition.
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● ∆ is an algebra morphism because, with e ∈ G denoting the unit,

∆(e) = e⊗ e and

∆(gh) = gh⊗ gh

= (g⊗ g)(h⊗ h)
= ∆(g)∆(h)

for g, h ∈ G.

Therefore, by Example 3.1.27, (kG, e⊗ e) is a symmetric bialgebra. ◇
Example 3.1.29 (Universal Enveloping Bialgebras). Suppose (g, [−,−]) is a Lie al-
gebra over k. Its universal enveloping bialgebra Ug is the cocommutative bialgebra
defined as follows.

● As an algebra, it is the quotient

⊕
n≥0

g⊗n

([x, y]− xy + yx ∶ x, y ∈ g)

of the tensor algebra⊕
n≥0

g⊗n by the relation

[x, y] = xy − yx for x, y ∈ g,

with g⊗0 = k. This is a noncommutative algebra in general.
● Its coalgebra structure is determined by

∆(x) = x⊗ 1+ 1⊗ x and

ε(x) = 0 for x ∈ g,

extended as algebra morphisms to all of Ug using (3.1.10) and (3.1.11). It
follows from the definition that ε is well defined.

Extending ∆ as an algebra morphism means that we define

∆(1) = 1⊗ 1 ∈ (Ug)⊗2 and

∆(xy) = ∆(x)∆(y)
= (x⊗ 1+ 1⊗ x)(y⊗ 1+ 1⊗ y)

for x, y ∈ g. This definition respects the defining relation in Ug by the
following computation.

∆(xy − yx) = ∆(xy)−∆(yx)
= (x⊗ 1+ 1⊗ x)(y⊗ 1+ 1⊗ y)− (y⊗ 1+ 1⊗ y)(x⊗ 1+ 1⊗ x)
= xy⊗ 1+ y⊗ x + x⊗ y + 1⊗ xy − yx⊗ 1− x⊗ y − y⊗ x − 1⊗ yx

= (xy − yx)⊗ 1+ 1⊗ (xy − yx)
= [x, y]⊗ 1+ 1⊗ [x, y]
= ∆([x, y])

Counity (3.1.4) holds because

ε(1) = 1 and ε(x) = 0 for x ∈ g.
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Coassociativity holds because it holds for the algebra generators x ∈ g:

(∆⊗ 1)∆(x) = x⊗ 1⊗ 1+ 1⊗ x⊗ 1+ 1⊗ 1⊗ x

= (1⊗∆)∆(x).
Cocommutativity (3.1.5) holds because it holds for the algebra generators
x ∈ g.

Therefore, by Example 3.1.27, (Ug, 1⊗ 1) is a symmetric bialgebra. ◇
Next is a noncommutative and non-cocommutative symmetric bialgebra.

Example 3.1.30 (Sweedler’s 4-Dimensional Bialgebra). Assuming 2 is invertible
in k, Sweedler’s 4-dimensional noncommutative, non-cocommutative bialgebra
(H4, µ, η, ∆, ε) is defined as follows.

● H4 is a 4-dimensional vector space with a basis {1, x, y, xy}.
● 1 is the multiplicative unit. The rest of the multiplicative structure in H4

is defined by the following multiplication table.
x y xy

x 1 xy y
y −xy 0 0

xy −y 0 0
In other words, as an algebra H4 is generated by {x, y}, subject to the
three relations

(3.1.31) x2 = 1, y2 = 0, and yx = −xy.

This is a noncommutative algebra because yx = −xy.
● Its coalgebra structure is determined as follows, extended multiplica-

tively to all of H4 using (3.1.10) and (3.1.11).

∆(x) = x⊗ x ε(x) = 1

∆(y) = 1⊗ y + y⊗ x ε(y) = 0

A short calculation shows that ∆ and ε respect the three defining relations
(3.1.31) in H4, and are coassociative and counital (3.1.4). This coalgebra is
non-cocommutative because ∆op(y) /= ∆(y).

For each scalar c ∈ k, consider the element

Rc = Rc,1 + Rc,2 ∈ H⊗2
4 with

Rc,1 =
1
2
(1⊗ 1+ 1⊗ x + x⊗ 1− x⊗ x) and

Rc,2 =
c
2
(y⊗ y + y⊗ xy + xy⊗ xy − xy⊗ y).

(3.1.32)

Then (H4, Rc) is a symmetric bialgebra. In other words, Rc satisfies the axioms
(3.1.20), (3.1.21), and (3.1.22), with R−1

c = Rop
c .

For the R-matrix axiom (3.1.20), it suffices to check it for the algebra generators
x and y. For the generator x, it follows from the following computation.

∆op(x)Rc = (x⊗ x)(Rc,1 + Rc,2)

= 1
2
(x⊗ x + x⊗ 1+ 1⊗ x − 1⊗ 1)+ c

2
(xy⊗ xy + xy⊗ y + y⊗ y − y⊗ xy)

= (Rc,1 + Rc,2)(x⊗ x) = Rc∆(x)
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Similarly, the equalities
∆op(y)Rc,2 = 0 = Rc,2∆(y)

imply the following equalities, which prove (3.1.20) for the generator y.

∆op(y)Rc = (y⊗ 1+ x⊗ y)Rc,1

= 1
2
(y⊗ 1+ 1⊗ y + x⊗ y + y⊗ x + xy⊗ x − x⊗ xy + 1⊗ xy − xy⊗ 1)

= Rc,1(1⊗ y + y⊗ x) = Rc∆(y)
The two braided bialgebra axioms (3.1.21) are proved similarly using the

equalities

∆(xy) = ∆(x)∆(y)
= (x⊗ x)(1⊗ y + y⊗ x)
= x⊗ xy + xy⊗ 1.

In each axiom in (3.1.21), on the right-hand side (that is, either R13R23 or R13R12
for R = Rc), the following statements hold.

● The term with coefficient c2/4 is 0 because y2 = 0.
● For terms with coefficients 1/4 or c/4, half of them cancel out due to oppo-

site signs. The remaining terms add to the left-hand side, which is either
one of the following two elements in H⊗3

4 .

(∆⊗ 1)Rc =
1
2
(1⊗ 1⊗ 1+ 1⊗ 1⊗ x + x⊗ x⊗ 1− x⊗ x⊗ x)

+ c
2
(1⊗ y⊗ y + y⊗ x⊗ y + 1⊗ y⊗ xy + y⊗ x⊗ xy +∆(xy)⊗ xy −∆(xy)⊗ y)

(1⊗∆)Rc =
1
2
(1⊗ 1⊗ 1+ 1⊗ x⊗ x + x⊗ 1⊗ 1− x⊗ x⊗ x)

+ c
2
(y⊗ 1⊗ y + y⊗ y⊗ x + y⊗∆(xy)+ xy⊗∆(xy)− xy⊗ 1⊗ y − xy⊗ y⊗ x)

The proof for the symmetric bialgebra axiom (3.1.22) is similar and is outlined
as follows.

Rop
c Rc = (Rop

c,1 + Rop
c,2)(Rc,1 + Rc,2)

= Rop
c,1Rc,1

1⊗1

+Rop
c,2Rc,1 + Rop

c,1Rc,2

0

+Rop
c,2Rc,2

0

In summary, (H4, Rc) is a symmetric bialgebra for each scalar c ∈ k. ◇
Example 3.1.33 (Anyonic Quantum Groups). For the cyclic groupZn of order n ≥ 2
generated by x, the group bialgebraCZn over the fieldC in Example 3.1.28 is both
commutative (because Zn is abelian) and cocommutative (because it is a group
bialgebra). In addition to the symmetric bialgebra structure with R-matrix 1⊗ 1 in
Example 3.1.28, it is also a braided bialgebra with the nonstandard R-matrix

(3.1.34) R = 1
n

n−1
∑

p,q=0
e−2πipq/nxp ⊗ xq ∈ (CZn)⊗2.

Its inverse is

R−1 = 1
n

n−1
∑

r,s=0
e−2πirs/nx−r ⊗ xs.
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Indeed, the R-matrix axiom (3.1.20) holds by (co)commutativity.
To check the invertibility of R and the braided bialgebra axioms (3.1.21), we

use the equality

(3.1.35)
1
n

n−1
∑
q=0

e−2πiq(p−r)/n = δp,r =
⎧⎪⎪⎨⎪⎪⎩

1 if p = r and
0 if p /= r.

Then
RR−1 = 1⊗ 1

by the following computation, with the last equality by (3.1.35).

RR−1 = 1
n2 (

n−1
∑

p,q=0
e−2πipq/nxp ⊗ xq)(

n−1
∑

r,s=0
e−2πirs/nx−r ⊗ xs)

= 1
n2 ∑

p,q,r,s
e−2πi(pq+rs)/nxp−r ⊗ xq+s

= 1
n2 ∑

p,q,r,s
e−2πiq(p−r)/n ⋅ e−2πir(q+s)/nxp−r ⊗ xq+s

= 1⊗ 1.

The first braided bialgebra axiom (3.1.21) follows from almost the same computa-
tion as follows, with the third equality by (3.1.35).

R13R23 = (
1
n

n−1
∑

p,q=0
e−2πipq/nxp ⊗ 1⊗ xq)( 1

n

n−1
∑

r,s=0
e−2πirs/n1⊗ xr ⊗ xs)

= 1
n2 ∑

p,q,r,s
e−2πiq(p−r)/n ⋅ e−2πir(q+s)/nxp ⊗ xr ⊗ xq+s

= 1
n
∑
p,t

e−2πipt/nxp ⊗ xp ⊗ xt

= (∆⊗ 1)R
A similar computation proves the other braided bialgebra axiom (3.1.21). There-
fore, (CZn, R) is a braided bialgebra.

Note that Rop = R. If n = 2, then Rop = R−1, and (CZ2, R) is a symmetric
bialgebra. If n > 2, then (CZn, R) is not symmetric. ◇

3.2. Modules over Braided Bialgebras

In this section, we apply the main results in Sections 2.4 and 2.5 to the category
Mod(A) of left modules over a (symmetric/braided) bialgebra A. The conclusion
is that Mod(A) is a tight (symmetric/braided) bimonoidal category.

● For a bialgebra A, in Definition 3.2.2 we equip the category of left A-
modules with a multiplicative structure Mod(A)⊗. Proposition 3.2.6
shows that Mod(A)⊗ is a monoidal category.
● For a braided bialgebra (A, R), in Definition 3.2.8 we equip the monoi-

dal category Mod(A)⊗ with a braiding. Proposition 3.2.12 shows that
Mod(A)⊗ is a braided monoidal category. If (A, R) is furthermore a sym-
metric bialgebra, then Proposition 3.2.13 shows that Mod(A)⊗ is a sym-
metric monoidal category.
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● In Definition 3.2.14, we define the additive structure, the multiplicative
zeros, and the distributivity morphisms in Mod(A). Theorem 3.2.19
shows that for a bialgebra A, Mod(A) is a tight bimonoidal category. It is
furthermore a tight symmetric/braided bimonoidal category if (A, R) is
a symmetric/braided bialgebra.
● Example 3.2.20 applies Theorem 3.2.19 to the symmetric/braided bialge-

bras in Examples 3.1.27 through 3.1.30 and 3.1.33.
Convention 3.1.1 is still in effect, with k the fixed ground field. Also recall

Sweedler’s notation (3.1.15) for comultiplication.

Modules over Bialgebras.

Motivation 3.2.1. For an algebra A, the tensor product A⊗2 is an algebra with the
multiplication in (3.1.8) and the unit in (3.1.9). For left A-modules M and N, the
tensor product M⊗N in Vectk

⊗
becomes a left A⊗2-module with the action

(a⊗ b)(x⊗ y) = ax⊗ by

for a, b ∈ A, x ∈ M, and y ∈ N. If A is, furthermore, a bialgebra with comultipli-
cation ∆ ∶ A A⊗2, then one can use ∆(a) for a ∈ A to define an A-action on
M⊗N. This makes the category of left A-modules into a monoidal category, as we
now explain in detail. ◇
Definition 3.2.2. Suppose (A, µ, η, ∆, ε) is a bialgebra as in Definition 3.1.6, and
Mod(A) is the category of left A-modules and A-linear maps. Define the data of a
monoidal category

(3.2.3) Mod(A)⊗ = (Mod(A),⊗,k, α⊗, λ⊗, ρ⊗),
which is called the multiplicative structure on Mod(A), as follows.
The Monoidal Product: The functor

−⊗− ∶Mod(A)×Mod(A) Mod(A)
is defined as follows.
Objects: For two left A-modules M and N, M⊗N is their tensor product

in Vectk
⊗

, with the following left A-action for a ∈ A, x ∈ M, and y ∈ N.

(3.2.4)
A⊗M⊗N M⊗N

a⊗ x⊗ y ∆(a)(x⊗ y) = ∑
(a)

a(1)x⊗ a(2)y

µM⊗N

Morphisms: For two left A-module morphisms f and g, f ⊗ g is defined
as their tensor product in Vectk

⊗
.

The Monoidal Unit: The left A-module structure on k is defined as follows for
a ∈ A and c ∈ k.

(3.2.5) A⊗k k⊗k k

a⊗ c ε(a)c

ε⊗1 ≅

Associativity and Unity: The associativity isomorphism α⊗, the left unit isomor-
phism λ⊗, and the right unit isomorphism ρ⊗ are the ones in Vectk

⊗
.

The finishes the definition of Mod(A)⊗. ◇
Proposition 3.2.6. For each bialgebra A, Mod(A)⊗ is a monoidal category.
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Proof. To see that ⊗ in Mod(A)⊗ is a well-defined functor, first observe that M⊗N
with the left A-action in (3.2.4) is a left A-module because the comultiplication
∆ ∶ A A⊗2 is an algebra morphism (3.1.10), corresponding to the first two con-
ditions in (3.1.17). For two left A-module morphisms f and g, f ⊗ g is a morphism
of left A-modules by the A-linearity of f and g. Moreover, ⊗ in Mod(A)⊗ preserves
identity morphisms and composition by the functoriality of ⊗ in Vectk

⊗
.

The left A-module structure on k in (3.2.5) is well defined because the counit ε ∶
A k is an algebra morphism (3.1.11), corresponding to the last two conditions
in (3.1.17).

The A-linearity of each component of α⊗ in Mod(A)⊗ follows from the coas-
sociativity (3.1.4) of the comultiplication ∆. The A-linearity of each component of
each of λ⊗ and ρ⊗ in Mod(A)⊗ follows from the counity (3.1.4) of the coalgebra
(A, ∆, ε), corresponding to the condition (3.1.18). The naturality and the invertibil-
ity of α⊗, λ⊗, and ρ⊗ in Mod(A)⊗ follow from their corresponding properties in
Vectk

⊗
.

Finally, the unity axiom (1.3.2) and the pentagon axiom (1.3.3) in Mod(A)⊗
follow from the corresponding axioms in Vectk

⊗
. □

Modules over Braided Bialgebras.
Motivation 3.2.7. In a braided bialgebra (A, R) as in Definition 3.1.19, the R-
matrix R controls the non-cocommutativity of the coalgebra structure of A. As
we will explain shortly, the R-matrix R defines a braiding in the monoidal cate-
gory Mod(A)⊗, which makes it into a braided monoidal category. This explains
the terminology of a braided bialgebra. In Proposition 3.2.12, we will show that
the axioms for R correspond to properties in Mod(A)⊗ as follows.

● The R-matrix axiom (3.1.20) corresponds to the A-linearity of the braid-
ing.
● The invertibility of R corresponds to the invertibility of the brading.
● The braided bialgebra axioms (3.1.21) correspond to the hexagon axioms

(1.3.17).
If, in addition, (A, R) is a symmetric bialgebra, then the symmetric bialgebra ax-
iom (3.1.22) implies that the braiding satisfies the symmetry axiom (1.3.33). In this
case, Mod(A)⊗ is a symmetric monoidal category. ◇
Definition 3.2.8. Suppose (A, µ, η, ∆, ε, R) is a braided bialgebra with R-matrix R.
Define the braiding in Mod(A)⊗ by

(3.2.9)
M⊗N N ⊗M

x⊗ y ξ⊗(R(x⊗ y))

ξ⊗M,N

for left A-modules M and N, x ∈ M, and y ∈ N, with ξ⊗ the symmetry isomorphism
in Vectk

⊗
. ◇

Explanation 3.2.10. The braiding (3.2.9) is equal to

(3.2.11) ξ⊗M,N(x⊗ y) =∑
i

tiy⊗ six = Ropξ⊗(x⊗ y)

with
R =∑

i
si ⊗ ti ∈ A⊗2 and Rop =∑

i
ti ⊗ si
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as in (3.1.13). ◇

Proposition 3.2.12. For a braided bialgebra (A, µ, η, ∆, ε, R), when equipped with the
braiding in (3.2.9), the pair

(Mod(A)⊗, ξ⊗)

is a braided monoidal category.

Proof. By Proposition 3.2.6, Mod(A)⊗ is a monoidal category.
For left A-modules M and N, the A-linearity of ξ⊗M,N in (3.2.9) follows from

the following computation for a ∈ A, x ∈ M, and y ∈ N, using the R-matrix axiom
(3.1.20) and the left A-action on M⊗N in (3.2.4).

ξ⊗M,N(a(x⊗ y)) = ξ⊗(R∆(a)(x⊗ y))
= ξ⊗(∆op(a)R(x⊗ y))
= ∆(a)(ξ⊗R(x⊗ y))
= a(ξ⊗M,N(x⊗ y))

The invertibility of ξ⊗M,N follows from the invertibility of ξ⊗ in Vectk
⊗

and of R ∈
A⊗2. The inverse of ξ⊗M,N is R−1ξ⊗(−). Moreover, the braiding in (3.2.9) is natural
with respect to left A-module morphisms by the A-linearity of the morphisms
involved. Therefore, the braiding is a natural isomorphism.

For another left A-module P and an element z ∈ P, the right hexagon axiom
(1.3.17) starting from M⊗N⊗ P follows from the following computation, with the
third equality by the first braided bialgebra axiom in (3.1.25).

(ξ⊗M,P ⊗ 1)(1⊗ ξ⊗N,P)(x⊗ y⊗ z)

= (ξ⊗M,P ⊗ 1)(∑
j

x⊗ tjz⊗ sjy)

=∑
i,j

titjz⊗ six⊗ sjy

= ∑
i,(si)

tiz⊗ s(1)i x⊗ s(2)i y

=∑
i

tiz⊗ si(x⊗ y)

= ξ⊗M⊗N,P(x⊗ y⊗ z)

Similarly, the left hexagon axiom (1.3.17) starting from M⊗N⊗ P follows from the
following computation, with the third equality by the second braided bialgebra
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axiom in (3.1.25).

(1⊗ ξ⊗M,P)(ξ
⊗
M,N ⊗ 1)(x⊗ y⊗ z)

= (1⊗ ξ⊗M,P)(∑
j

tjy⊗ sjx⊗ z)

=∑
i,j

tjy⊗ tiz⊗ sisjx

= ∑
i,(ti)

t(1)i y⊗ t(2)i z⊗ six

=∑
i

ti(y⊗ z)⊗ six

= ξ⊗M,N⊗P(x⊗ y⊗ z)

Therefore, (Mod(A)⊗, ξ⊗) is a braided monoidal category. □

Recall from Definition 3.1.19 that a symmetric bialgebra is a braided bialgebra
(A, R)whose R-matrix R satisfies Rop = R−1.
Proposition 3.2.13. For a symmetric bialgebra (A, µ, η, ∆, ε, R), when equipped with the
braiding in (3.2.9), the pair

(Mod(A)⊗, ξ⊗)
is a symmetric monoidal category.

Proof. By Propositions 1.3.36 and 3.2.12, it suffices to check that the braiding in
(3.2.9) satisfies the symmetry axiom (1.3.33). For left A-modules M and N, the
symmetry axiom is proved by the following computation, using the formulation
of the braiding in (3.2.11).

ξ⊗N,Mξ⊗M,N = Ropξ⊗Ropξ⊗

= RopRξ⊗ξ⊗

This is equal to 1M⊗N by (i) the symmetry axiom (1.3.33) of ξ⊗ in Vectk
⊗

and (ii) the
symmetric bialgebra axiom Rop = R−1 in (3.1.22). □

Bimonoidal Structure.
Definition 3.2.14.

(1) For an algebra A, the additive structure on Mod(A) is the symmetric mon-
oidal category

(3.2.15) Mod(A)⊕ = (Mod(A),⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
with
● ⊕ the direct sum of left A-modules and A-linear maps;
● 0 the zero left A-module; and
● (α⊕, λ⊕, ρ⊕, ξ⊕) defined as in Vectk

⊕
via the underlying vector spaces.

(2) Suppose A is a bialgebra.
(i) Define the left and the right multiplicative zeros

(3.2.16) 0⊗M 0 M⊗ 0
λ
●
M ρ

●
M

as the unique morphisms to the zero A-module for M ∈ Mod(A),
with ⊗ the monoidal product in Mod(A)⊗ in Definition 3.2.2.
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(ii) Define the left distributivity morphism as

(3.2.17)
M⊗ (N ⊕ P) (M⊗N)⊕ (M⊗ P)

x⊗ (y⊕ z) (x⊗ y)⊕ (x⊗ z)

δl
M,N,P

and the right distributivity morphism as

(3.2.18)
(M⊕N)⊗ P (M⊗ P)⊕ (N ⊗ P)
(x⊕ y)⊗ z (x⊗ z)⊕ (y⊗ z)

δr
M,N,P

for M, N, P ∈Mod(A) and (x, y, z) ∈ M ×N × P. ◇
We are now ready for the main observation of this section. Recall from Defi-

nitions 2.1.1 and 2.1.29 the notion of a tight (symmetric/braided) bimonoidal cat-
egory.

Theorem 3.2.19. Suppose A is a bialgebra.
(1) Then the category Mod(A) equipped with

● the additive structure Mod(A)⊕ in (3.2.15),
● the multiplicative structure Mod(A)⊗ in (3.2.3),
● the multiplicative zeros λ ● and ρ ● in (3.2.16), and
● the distributivity morphisms δl in (3.2.17) and δr in (3.2.18)

is a tight bimonoidal category.
(2) If (A, R) is a braided bialgebra, then Mod(A) with the braiding (3.2.9) is a tight

braided bimonoidal category.
(3) If (A, R) is a symmetric bialgebra, then Mod(A) with the braiding (3.2.9) is a

tight symmetric bimonoidal category.

Proof. We observed in Proposition 3.2.6 that Mod(A)⊗ is a monoidal category.
Moreover, the category Mod(A) is an abelian category with the usual notions of
direct sums ⊕, zero module 0, and (co)kernels.

● Its additive structure in the sense of Definition 2.4.2 is equal to Mod(A)⊕
in (3.2.15).
● Its distributivity morphisms in the sense of Definition 2.4.8 are equal to

those in (3.2.17) and (3.2.18).
● Its multiplicative zeros in the sense of Definition 2.4.11 are equal to those

in (3.2.16).
● For each M ∈ Mod(A), the functors M ⊗ − and − ⊗M on Mod(A) are

additive functors, that is, preserve zero morphisms and addition of mor-
phisms.

Therefore, assertion (1) follows from Theorem 2.5.2.
For assertion (2), since (A, R) is a braided bialgebra, Mod(A)⊗ is a braided

monoidal category by Proposition 3.2.12. Therefore, Mod(A) is a tight braided
bimonoidal category by Theorem 2.4.22.

For assertion (3), since (A, R) is a symmetric bialgebra, Mod(A)⊗ is a symmet-
ric monoidal category by Proposition 3.2.13. Therefore, Mod(A) is a tight symmet-
ric bimonoidal category by Corollary 2.5.1. □
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Example 3.2.20. Below are examples of tight symmetric/braided bimonoidal cat-
egories that arise as the categories of modules over some symmetric/braided bial-
gebras.

(1) A cocommutative bialgebra A with the R-matrix 1⊗1 is a symmetric bial-
gebra by Example 3.1.27. Therefore, Mod(A) is a tight symmetric bimon-
oidal category. For example, this applies to
● the group bialgebra kG of a finite group G in Example 3.1.28 and
● the universal enveloping bialgebra Ug of a Lie algebra g in Exam-

ple 3.1.29.
For left A-modules M and N, the braiding

M⊗N N ⊗M
ξ⊗M,N

≅

sends x⊗ y to y⊗ x for (x, y) ∈ M ×N.
(2) Assuming 2 is invertible in k, for each scalar c ∈ k, (H4, Rc) is a symmetric

bialgebra with
● H4 Sweedler’s 4-dimensional bialgebra in Example 3.1.30 and
● Rc the R-matrix in (3.1.32).

Therefore, Mod(H4) is a tight symmetric bimonoidal category. Its braid-
ing sends x⊗ y to ξ⊗(Rc(x⊗ y)).

(3) The group bialgebra CZn in Example 3.1.33 with the nonstandard R-
matrix R in (3.1.34) is a braided bialgebra that is symmetric only when
n = 2. Therefore, Mod(CZn) is a tight braided bimonoidal category if
n > 2, and is a tight symmetric bimonoidal category if n = 2. The braiding
sends x⊗ y to ξ⊗(R(x⊗ y)). ◇

3.3. Fibonacci Anyons: The Monoidal Structure

This section and Section 3.4 contain an application of Theorem 2.4.22 to Fi-
bonacci anyons. They form a model for universal quantum computation. The
main result is Theorem 3.4.13. It states that there is a tight braided bimonoidal
category F any in which the vacuum 1 and the non-abelian anyon τ generate all the
objects under the direct sum. The fusion rule τ ⊗ τ = 1⊕ τ uses both the additive
structure ⊕ and the multiplicative structure ⊗.

In this section, we first define the abelian category F any. Then we equip F any

with a monoidal structure ⊗, along with some sample calculation. The pentagon
axiom (1.3.3) in F any is proved in detail in Lemma 3.3.27. The braiding in F any is
discussed in Section 3.4. The reader is referred to the references in Note 3.7.3 for
further discussion of topological quantum computation.

The Abelian Category of Fibonacci Anyons. In the category of Fibonacci
anyons, there are two simple objects. Each of the two simple objects is based on a
copy of the skeleton of VectC defined next. Recall from Definition 2.3.15 the notion
of an abelian category.

Definition 3.3.1. Suppose VectCsk is the abelian category defined by the following
data.
Objects: The objects in VectCsk are nonnegative integers n ≥ 0.
Morphisms: VectCsk(m, n) is the abelian group of C-linear maps Cm Cn.
Identities: The identity morphism 1n is the identity map of Cn.
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Composition: Composition is that of C-linear maps.
The Zero Object: It is the object 0.
The Direct Sums: m⊕ n = m + n for objects m, n ≥ 0.

This finishes the definition of VectCsk . ◇
Explanation 3.3.2. Consider the abelian category VectCsk in Definition 3.3.1.

● VectCsk is a skeleton of VectC, the category of finite dimensional complex
vector spaces and linear maps. In fact, the assignments sending m to Cm

and a linear map to itself is an equivalence of categories VectCsk VectC.
This justifies the notation for VectCsk .
● In the context of Definition 2.3.4, the inclusions

m m⊕ n n
i1 i2

are, respectively,
– the inclusion i1 ∶Cm Cm+n in the first m coordinates and
– the inclusion i2 ∶Cn Cm+n in the last n coordinates.

The projections are defined similarly by the first m coordinates and the
last n coordinates.
● Kernels and cokernels are the usual ones for C-linear maps. Monomor-

phisms are injective linear maps. Epimorphisms are surjective linear
maps. ◇

Definition 3.3.3. The abelian category of Fibonacci anyons is the Cartesian product

F any = VectCsk ×VectCsk .

Moreover, define the following objects in F any:

● the additive zero 0 = (0; 0),
● the vacuum 1 = (1; 0), and
● the non-abelian anyon τ = (0; 1).

The first and the second components of F any are called the 1-component and the
τ-component, respectively. ◇
Explanation 3.3.4. The direct sum in F any is taken componentwise.

● For m, n, p ≥ 0, we write

(m; n)⊕p = (mp; np)

for the direct sum of p copies of (m; n), with (m; n)⊕0 = 0.
● Each object (m; n) ∈ F any can be expressed as a sum

(3.3.5) (m; n) = 1⊕m ⊕ τ⊕n = τ⊕n ⊕1⊕m.

For example, 1⊕ τ = (1; 1).
● A morphism in F any is a pair

(3.3.6) (m; n) (p; q)( f ;g)

of linear maps f ∶Cm Cp and g ∶Cn Cq.
● The only morphism between 1 and τ in either direction is the zero mor-

phism. ◇
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The Monoidal Product.

Definition 3.3.7. Define the functor

(3.3.8) F any ×F any F any⊗

by the following three rules.

(i) For each object (m; n) ∈ F any,

(3.3.9) 0⊗ (m; n) = 0 = (m; n)⊗ 0.

(ii) On the objects {1, τ}, it is defined by the following four equalities.

(3.3.10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1⊗1 = 1
1⊗ τ = τ = τ ⊗1
τ ⊗ τ = 1⊕ τ (the fusion rule)

(iii) ⊗ distributes over ⊕ in F any strictly on both sides.

This finishes the definition of ⊗ in F any. ◇
Explanation 3.3.11. Consider ⊗ in Definition 3.3.7.

● The fusion rule, τ ⊗ τ = 1⊕ τ, is physically interpreted as follows. When
two copies of the anyon τ are fused together, the result is either the vac-
uum 1 or τ with a certain probability.
● The first three equalities in (3.3.10), the strict distributivity of ⊗ over ⊕ on

both sides, and (3.3.5) imply that the vacuum 1 ∈ F any is a strict two-sided
unit for ⊗.
● By (3.3.5) and the strict distributivity of ⊗ over ⊕, the rules (3.3.9) and

(3.3.10) uniquely determine ⊗. The general formula for ⊗ is given in
(3.3.13) below. The iterated tensor products of copies of τ are computed
in Lemma 3.3.17. ◇

Lemma 3.3.12. For m, m′, n, n′ ≥ 0, the equality

(3.3.13) (m; n)⊗ (m′; n′) = 1⊕(mm′+nn′) ⊕ τ⊕(mn′+nm′+nn′)

holds in F any.

Proof. This follows from the following computation using (3.3.10) and the strict
distributivity of ⊗ over ⊕.

(m; n)⊗ (m′; n′)

= (1⊕m ⊕ τ⊕n)⊗ (1⊕m′ ⊕ τ⊕n′)

= (1⊕m ⊗1⊕m′)⊕ (1⊕m ⊗ τ⊕n′)⊕ (τ⊕n ⊗1⊕m′)⊕ (τ⊕n ⊗ τ⊕n′)

= (1⊗1)⊕mm′ ⊕ (1⊗ τ)⊕mn′ ⊕ (τ ⊗1)⊕nm′ ⊕ (τ ⊗ τ)⊕nn′

= 1⊕mm′ ⊕ τ⊕mn′ ⊕ τ⊕nm′ ⊕ (1⊕ τ)⊕nn′

= 1⊕(mm′+nn′) ⊕ τ⊕(mn′+nm′+nn′).

This proves (3.3.13). □

Recall from Definition 2.3.3 the concept of an additive functor.
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Lemma 3.3.14. The functors

F any F any
(m;n)⊗−

−⊗(m;n)

are additive functors for each object (m; n) ∈ F any.

Proof. This follows from (3.3.6) and (3.3.13). □

Iterated Monoidal Products. To define the associativity isomorphism and to
check the pentagon axiom (1.3.3) and the hexagon axioms (1.3.17) later, we will
need to use iterated monoidal products of copies of τ. These products have a
simple description in terms of the Fibonacci sequence, which we recall next.

Motivation 3.3.15. The Fibonacci sequence {Fn}n≥0 is defined recursively by:

(3.3.16) F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 for n ≥ 1.

The first ten terms are 0, 1, 1, 2, 3, 5, 8, 13, 21, and 34. The next observation says
that iterated monoidal products of τ can be expressed in terms of the Fibonacci
sequence, justifying the names for the category F any and the anyon τ. ◇
Lemma 3.3.17. The Fibonacci anyon τ ∈ F any satisfies

τ⊗n = 1⊕Fn−1 ⊕ τ⊕Fn for n ≥ 1,

with
● {Fn} the Fibonacci sequence (3.3.16) and
● τ⊗n having either the right normalized bracketing (I.5.2.12) or the left normal-

ized bracketing (I.5.2.13).

Proof. For n = 1 and n = 2, the stated formula says, respectively,

τ = 1⊕0 ⊕ τ and τ⊗2 = 1⊕ τ.

These formulas hold by definition. Inductively, for n ≥ 2 and the right normalized
bracketing, we compute as follows.

τ⊗(n+1) = τ ⊗ τ⊗n

= τ ⊗ (1⊕Fn−1 ⊕ τ⊕Fn)
= (τ ⊗1⊕Fn−1)⊕ (τ ⊗ τ⊕Fn)
= (τ ⊗1)⊕Fn−1 ⊕ (τ ⊗ τ)⊕Fn

= τ⊕Fn−1 ⊕ (1⊕ τ)⊕Fn

= 1⊕Fn ⊕ τ⊕(Fn−1+Fn)

Since Fn+1 = Fn + Fn−1, this finishes the induction step. The computation for the left
normalized bracketing is almost identical. □

Example 3.3.18. The cases n = 2, 3, 4, and 5 of Lemma 3.3.17 are as follows.

τ⊗2 = 1⊕ τ τ⊗4 = 1⊕2 ⊕ τ⊕3

τ⊗3 = 1⊕ τ⊕2 τ⊗5 = 1⊕3 ⊕ τ⊕5
◇
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Example 3.3.19. There are the following two ways to compute τ⊗3, depending on
the bracketing. Each of τ1 and τ2 below denotes a copy of τ.

(τ ⊗ τ)⊗ τ = (1⊕ τ)⊗ τ

= (1⊗ τ)⊕ (τ ⊗ τ)
= τ1 ⊕ (1⊕ τ2)
= 1⊕ (τ1 ⊕ τ2)

τ ⊗ (τ ⊗ τ) = τ ⊗ (1⊕ τ)
= (τ ⊗1)⊕ (τ ⊗ τ)
= τ1 ⊕ (1⊕ τ2)
= 1⊕ (τ1 ⊕ τ2)

(3.3.20)

These expressions for τ⊗3 will be used in (3.3.25) below to define the associativity
isomorphism. ◇
Example 3.3.21. There are five ways to compute τ⊗4, depending on the bracketing.
The following computation gives one such expression for τ⊗4. Each 1i denotes a
copy of 1, and each τj denotes a copy of τ.

(τ ⊗ τ)⊗ (τ ⊗ τ) = (1⊕ τ)⊗ (1⊕ τ)
= (1⊗1)⊕ (1⊗ τ)⊕ (τ ⊗1)⊕ (τ ⊗ τ)
= 11 ⊕ τ1 ⊕ τ2 ⊕ (12 ⊕ τ3)
= (11 ⊕12)⊕ (τ1 ⊕ τ2 ⊕ τ3).

(3.3.22)

For each of the four-fold tensor products

((τ ⊗ τ)⊗ τ)⊗ τ and τ ⊗ ((τ ⊗ τ)⊗ τ),

there is an analogous computation involving the following steps.

● Start with the expression for (τ ⊗ τ)⊗ τ in (3.3.20).
● Apply −⊗ τ in the first case and τ ⊗− in the second case, respectively.
● Use the rules in (3.3.10) and the distributivity of ⊗ over ⊕.

For example,

((τ ⊗ τ)⊗ τ)⊗ τ = (1⊕ τ ⊕ τ)⊗ τ

= (1⊗ τ)⊕ (τ ⊗ τ)⊕ (τ ⊗ τ)
= τ1 ⊕ (11 ⊕ τ2)⊕ (12 ⊕ τ3)
= (11 ⊕12)⊕ (τ1 ⊕ τ2 ⊕ τ3).

In this computation, as in (3.3.20) and (3.3.22), we do not additively permute two
copies of τ or two copies of 1.

For each of the four-fold tensor products

(τ ⊗ (τ ⊗ τ))⊗ τ and τ ⊗ (τ ⊗ (τ ⊗ τ)),

there is an analogous computation, starting with the expression for τ ⊗ (τ ⊗ τ) in
(3.3.20). These five expressions for τ⊗4 will be used in Lemma 3.3.27 below to
verify the pentagon axiom in F any. ◇



II.90 3. APPLICATIONS TO QUANTUM GROUPS AND TQC

The Associativity Isomorphism. The tensor product ⊗ in (3.3.8) has the vac-
uum 1 as a strict two-sided unit. Next we define the associativity isomorphism in
the sense of Definition I.1.2.1.
Definition 3.3.23. For the functor ⊗ in (3.3.8), define a natural isomorphism

(3.3.24) (−⊗−)⊗− −⊗ (−⊗−)α
≅

by the following four rules.
(i) Using the expressions in (3.3.20) and 1 ∈ C as the basis vector for each

copy of C, the component

C1⊕Cτ1 ⊕Cτ2 C1⊕Cτ1 ⊕Cτ2
ατ,τ,τ

is defined by the matrix

(3.3.25) ατ,τ,τ =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 q q1/2

0 q1/2 −q

⎤⎥⎥⎥⎥⎥⎦
with q =

√
5− 1
2

.

(ii) Each component of α with at least one subscript 1 is the identity mor-
phism.

(iii) Each component of α with at least one subscript 0 is the identity mor-
phism of 0.

(iv) All other components of α are determined by the above rules and the
naturality requirement of α.

This finishes the definition of α. ◇
Explanation 3.3.26. Consider α in Definition 3.3.23.

● With the computation in (3.3.20), the component ατ,τ,τ is a morphism

ατ,τ,τ ∶ (1; 2) (1; 2) ∈ F any.

In other words, ατ,τ,τ consists of a pair of linear maps as follows.
– The entry 1 in the matrix (3.3.25) means that the 1-component of

ατ,τ,τ is the identity map C C.
– Using the standard basis of C2 =C⊕C, the τ-component of

ατ,τ,τ ∶C2 C2

is given by the lower-right 2× 2 submatrix in (3.3.25).
● The number q in (3.3.25) is the positive root of the quadratic equation

x2 + x − 1 = 0.

It is also the reciprocal of the golden ratio (
√

5+ 1)/2.
● The matrix ατ,τ,τ is orthogonal. In other words, its transpose, which is

equal to itself, is its inverse. It follows that ατ,τ,τ is an isomorphism. ◇
Lemma 3.3.27. The quadruple

(F any,⊗,1, α)
consisting of

● F any and 1 = (1; 0) in Definition 3.3.3,
● −⊗− ∶ F any ×F any F any in (3.3.8), and
● α in (3.3.24)

is a monoidal category with identities for the left and the right unit isomorphisms.
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Proof. The naturality of α is part of its definition. Each of its components is an
isomorphism because it is a direct sum of identity morphisms and copies of ατ,τ,τ .

The unity axiom (1.3.2) holds because both the left and the right unit isomor-
phisms are identities. It remains to check the pentagon axiom (1.3.3). By Defini-
tion 3.3.23 (ii)–(iv) and the strict distributivity of ⊗ over ⊕, it suffices to check the
pentagon axiom when all four objects involved are copies of τ. In the following
computation, we use the expressions in Example 3.3.21 for the five ordered bases
of the vector space

(C11 ⊕C12)⊕ (Cτ1 ⊕Cτ2 ⊕Cτ3)
corresponding to the five objects in the pentagon axiom involving only copies of
τ.

With the order of the basis vectors in each basis taken into account, the upper
path in this pentagon axiom (1.3.3) is given by the following matrix. Each unspec-
ified entry is 0.

(ατ,τ,τ⊗τ)(ατ⊗τ,τ,τ) = (ατ,τ,1⊕τ)(α1⊕τ,τ,τ)
= (ατ,τ,1 ⊕ ατ,τ,τ)(α1,τ,τ ⊕ ατ,τ,τ)
= (1τ⊗τ ⊕ ατ,τ,τ)(1τ⊗τ ⊕ ατ,τ,τ)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

q q1/2

1
q1/2 −q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
q q1/2

q1/2 −q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

q q −q3/2

q q1/2

−q3/2 q1/2 q2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3.28)

The lower path in the pentagon axiom is given by the following matrix.

(1τ ⊗ ατ,τ,τ)(ατ,τ⊗τ,τ)(ατ,τ,τ ⊗ 1τ)
= (1τ ⊗ ατ,τ,τ)(ατ,1⊕τ,τ)(ατ,τ,τ ⊗ 1τ)
= (1τ ⊗ ατ,τ,τ)(ατ,1,τ ⊕ ατ,τ,τ)(ατ,τ,τ ⊗ 1τ)
= (1τ ⊗ ατ,τ,τ)(1τ⊗τ ⊕ ατ,τ,τ)(ατ,τ,τ ⊗ 1τ)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q q1/2

q1/2 −q
1

q q1/2

q1/2 −q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

q q1/2

1
q1/2 −q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q q1/2

q1/2 −q
1

q q1/2

q1/2 −q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q2 + q
q + q2

q q −q3/2

q q3/2 + q5/2

−q3/2 q3/2 + q5/2 q − q3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3.29)

The last matrix in (3.3.28) is equal to the last matrix in (3.3.29) because

q2 + q = 1.

This finishes the proof of the pentagon axiom. □

3.4. Fibonacci Anyons: The Braided Bimonoidal Structure

In this section, we first equip the monoidal category F any of Fibonacci anyons
in Lemma 3.3.27 with a braiding. Then we observe that the abelian category F any

with this braiding is a tight braided bimonoidal category. Therefore, F any pro-
vides a specific connection between braided bimonoidal categories and topologi-
cal quantum computation.
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Definition 3.4.1. For the functor ⊗ in (3.3.8), define a natural isomorphism

(3.4.2) (m; n)⊗ (m′; n′) (m′; n′)⊗ (m; n)
β
(m;n),(m′ ;n′)

≅

for objects (m; n), (m′; n′) ∈ F any by the following four rules.
(i) Using 1 ∈C as the basis vector for each copy of C, the component

1⊕ τ = τ ⊗ τ τ ⊗ τ = 1⊕ τ
βτ,τ

is defined by the matrix

(3.4.3) βτ,τ = [
z2 0
0 z] with z = e3πi/5.

(ii) Each component of β with at least one subscript 1 is the identity mor-
phism.

(iii) Each component of β with at least one subscript 0 is the identity mor-
phism of 0.

(iv) All other components of β are determined by the above rules and the
naturality requirement of β.

This finishes the definition of β. ◇
Explanation 3.4.4. Consider β in Definition 3.4.1.

● z in (3.4.3) is a primitive tenth root of unity. It follows that βτ,τ has order
10.
● The 1-component of βτ,τ is the linear mapC C that multiplies by z2.

The τ-component of βτ,τ is the linear map C C that multiplies by z.
It follows that βτ,τ is an isomorphism. ◇

Lemma 3.4.5. The quintuple
(F any,⊗,1, α, β)

consisting of
● the monoidal category (F any,⊗,1, α) in Lemma 3.3.27 and
● β in (3.4.2)

is a braided monoidal category.

Proof. The naturality of β is part of its definition. Each of its components is an
isomorphism because it is a direct sum of identity morphisms and copies of βτ,τ . It
remains to check the two hexagon axioms (1.3.17). As in the proof of Lemma 3.3.27,
it suffices to check each hexagon axiom when all three objects involved are copies
of τ.

The left hexagon in (1.3.17) involving only τ is the following diagram.

(3.4.6)

(τ ⊗ τ)⊗ τ τ ⊗ (τ ⊗ τ)

(τ ⊗ τ)⊗ τ τ ⊗ (τ ⊗ τ)

τ ⊗ (τ ⊗ τ) (τ ⊗ τ)⊗ τ

βτ,τ ⊗ 1τ

ατ,τ,τ

1τ ⊗ βτ,τ

ατ,τ,τ

βτ,τ⊗τ

ατ,τ,τ
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Using the two ordered bases of

C1⊕ (Cτ1 ⊕Cτ2)
in (3.3.20), with 1 ∈ C as the basis vector for each copy of C, the lower path in the
left hexagon diagram (3.4.6) is given by the following matrix.

(ατ,τ,τ)(βτ,τ⊗τ)(ατ,τ,τ)
= (ατ,τ,τ)(βτ,1⊕τ)(ατ,τ,τ)
= (ατ,τ,τ)(βτ,1 ⊕ βτ,τ)(ατ,τ,τ)
= (ατ,τ,τ)(1τ ⊕ βτ,τ)(ατ,τ,τ)

=
⎡⎢⎢⎢⎢⎢⎣

1
q q1/2

q1/2 −q

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

z2

1
z

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
q q1/2

q1/2 −q

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

z2

q2 + qz q3/2(1− z)
q3/2(1− z) q + q2z

⎤⎥⎥⎥⎥⎥⎦

(3.4.7)

The upper path in the diagram (3.4.6) is given by the following matrix.

(1τ ⊗ βτ,τ)(ατ,τ,τ)(βτ,τ ⊗ 1τ)

=
⎡⎢⎢⎢⎢⎢⎣

z
z2

z

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
q q1/2

q1/2 −q

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

z
z2

z

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

z2

qz4 q1/2z3

q1/2z3 −qz2

⎤⎥⎥⎥⎥⎥⎦

(3.4.8)

The last matrix in (3.4.7) is equal to the last matrix in (3.4.8) if and only if the
following three equalities hold.

q2 + qz = qz4

q3/2(1− z) = q1/2z3

q + q2z = −qz2

(3.4.9)

To prove these equalities, first we note that

(3.4.10) z5 = e3πi = −1 and z8 = −z3.

Moreover, since
z4 = e12πi/5 = e2πi/5,

it follows that
z4 − z = e2πi/5 − e3πi/5

is a positive real number.
The first desired equality in (3.4.9) is equivalent to

(3.4.11) q = z4 − z.

Since q and z4 − z are positive real numbers, (3.4.11) holds if z4 − z is also a root of
x2 + x − 1 = 0. The following computation shows that this is indeed the case, using
(3.4.10) in the second and the last steps.

(z4 − z)2 + (z4 − z)− 1 = z8 − 2z5 + z2 + z4 − z − 1

= 1− z + z2 − z3 + z4

= 1+ z5

1+ z
= 0

(3.4.12)
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This proves the first equality in (3.4.9).
Using q = z4 − z, the second desired equality in (3.4.9) is equivalent to

z4 − z = z3

1− z
,

which is equivalent to

1− z + z2 − z3 + z4 = 0.

The last equality is verified in (3.4.12) above.
The last desired equality in (3.4.9) is equivalent to the equality

q = −1
z
− z,

which by (3.4.10) is equivalent to q = z4 − z. The last equality is verified in (3.4.11)
and (3.4.12) above. This finishes the proof of the left hexagon axiom (3.4.6) involv-
ing only copies of τ.

The right hexagon diagram (1.3.17) involving only τ is obtained from the left
hexagon diagram (3.4.6) by replacing

● βτ,τ⊗τ by β−1
τ⊗τ,τ and

● each of the other two βτ,τ by β−1
τ,τ .

The matrix for β−1
τ,τ is

β−1
τ,τ = [

z−2 0
0 z−1] .

Therefore, the lower and the upper paths in the right hexagon diagram involving
only τ are obtained from, respectively, (3.4.7) and (3.4.8) by replacing each z by z−1.
Equating them leads to the same three equations in (3.4.9) with each z replaced by
z−1. These equalities are verified by the same steps that proved (3.4.9) above by
replacing z by z−1. This is valid by the equalities

z−5 = −1 and z−8 = −z−3,

which are analogues of (3.4.10), and the fact that

z−4 − z−1 = e−2πi/5 − e−3πi/5

is a positive real number. □

We are now ready for the main result of this section.

Theorem 3.4.13. The abelian category F any in Definition 3.3.3, when equipped with the
braided monoidal structure in Lemma 3.4.5, is a tight braided bimonoidal category.

Proof. We combine the following facts.

● F any is an abelian category by definition.
● It is a braided monoidal category by Lemma 3.4.5.
● The functors (m; n)⊗− and −⊗(m; n) are additive functors for each object
(m; n) ∈ F any by Lemma 3.3.14.

Therefore, the assertion follows from Theorem 2.4.22. □
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3.5. Ising Anyons: The Monoidal Structure

This section and Section 3.6 contain an application of Theorem 2.4.22 to Ising
anyons. These anyons form another anyon model for topological quantum com-
putation that has both a non-abelian anyon σ and a fermion ψ. The main result is
Theorem 3.6.14. It states that there is a tight braided bimonoidal category Iany in
which the vacuum 1, the non-abelian anyon σ, and the fermion ψ generate all the
objects under the direct sum.

In this section, we first define the abelian category Iany. Then we equip Iany
with a monoidal structure ⊗, along with some sample calculation. The pentagon
axiom (1.3.3) in Iany is proved in detail in Lemma 3.5.27. The braiding in Iany is
discussed in Section 3.6. The reader is referred to the references in Notes 3.7.3
and 3.7.4 for further discussion of topological quantum computation and Ising
anyons.

The Abelian Category of Ising Anyons. Recall from Definition 3.3.1 the
abelian category VectCsk . Its objects are nonnegative integers n ≥ 0. A morphism
m n is a C-linear map Cm Cn, with direct sum m⊕ n = m + n.
Definition 3.5.1. The abelian category of Ising anyons is the Cartesian product

Iany = VectCsk ×VectCsk ×VectCsk .

Moreover, define the following objects in Iany:
● the additive zero 0 = (0; 0; 0),
● the vacuum 1 = (1; 0; 0),
● the non-abelian anyon σ = (0; 1; 0), and
● the fermion ψ = (0; 0; 1).

The first, the second, and the third components of Iany are called, respectively, the
1-component, the σ-component, and the ψ-component. ◇
Explanation 3.5.2. The direct sum in the abelian category Iany is taken componen-
twise.

● For k, m, n, p ≥ 0, we write

(m; n; p)⊕k = (mk; nk; pk)
for the direct sum of k copies of (m; n; p), with (m; n; p)⊕0 = 0.
● Each object (m; n; p) ∈ Iany can be expressed as a sum

(3.5.3) (m; n; p) = 1⊕m ⊕ σ⊕n ⊕ψ⊕p.

For example, 1⊕ψ = (1; 0; 1).
● A morphism in Iany is a triple

(3.5.4) (m; n; p) (r; s; t)( f ;g;h)

of linear maps f ∶Cm Cr, g ∶Cn Cs, and h ∶Cp Ct. ◇

The Monoidal Product.
Definition 3.5.5. Define the functor

(3.5.6) Iany × Iany Iany⊗

by the following three rules.
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(i) For each object (m; n; p) ∈ Iany,

(3.5.7) 0⊗ (m; n; p) = 0 = (m; n; p)⊗ 0.

(ii) On the objects {1, σ, ψ}, it is defined by the following equalities.

Two-sided unit: 1⊗ x = x = x⊗1 for x ∈ {1, σ, ψ}.

The fusion rules:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ⊗ σ = 1⊕ψ

σ⊗ψ = σ = ψ⊗ σ

ψ⊗ψ = 1.

(3.5.8)

(iii) ⊗ distributes over ⊕ in Iany strictly on both sides.
This finishes the definition of ⊗ in Iany. ◇
Explanation 3.5.9. Consider ⊗ in Definition 3.5.5.

● The first line in (3.5.8), the strict distributivity of ⊗ over ⊕ on both sides,
and (3.5.3) imply that the vacuum 1 ∈ Iany is a strict two-sided unit for ⊗.
● By (3.5.3) and the strict distributivity of ⊗ over ⊕, the rules (3.5.7) and

(3.5.8) uniquely determine ⊗. The general formula for ⊗ is given in
(3.5.14) below. The iterated tensor products of copies of the non-abelian
anyon σ are computed in Lemma 3.5.16. ◇

Example 3.5.10. The expressions below are obtained by applying the fusion rules
(3.5.8) and the strict distributivity of ⊗ over ⊕. They will be used in (3.5.22) to
define the associativity isomorphism α in Iany. The first two sets of expressions
correspond to nonidentity components of α.

⎧⎪⎪⎨⎪⎪⎩

(σ⊗ψ)⊗ σ = σ⊗ σ = 1⊕ψ

σ⊗ (ψ⊗ σ) = σ⊗ σ = 1⊕ψ

⎧⎪⎪⎨⎪⎪⎩

(ψ⊗ σ)⊗ψ = σ⊗ψ = σ

ψ⊗ (σ⊗ψ) = ψ⊗ σ = σ

(3.5.11)

The following expressions correspond to identity components of α.

⎧⎪⎪⎨⎪⎪⎩

(ψ⊗ σ)⊗ σ = σ⊗ σ = 1⊕ψ

ψ⊗ (σ⊗ σ) = ψ⊗ (1⊕ψ) = ψ⊕1
⎧⎪⎪⎨⎪⎪⎩

(σ⊗ σ)⊗ψ = (1⊕ψ)⊗ψ = ψ⊕1
σ⊗ (σ⊗ψ) = σ⊗ σ = 1⊕ψ

⎧⎪⎪⎨⎪⎪⎩

(ψ⊗ψ)⊗ σ = 1⊗ σ = σ

ψ⊗ (ψ⊗ σ) = ψ⊗ σ = σ

⎧⎪⎪⎨⎪⎪⎩

(σ⊗ψ)⊗ψ = σ⊗ψ = σ

σ⊗ (ψ⊗ψ) = σ⊗1 = σ

⎧⎪⎪⎨⎪⎪⎩

(ψ⊗ψ)⊗ψ = 1⊗ψ = ψ

ψ⊗ (ψ⊗ψ) = ψ⊗1 = ψ

(3.5.12)

Note that in (ψ⊗σ)⊗σ, the object 1 is listed first. On the other hand, in ψ⊗ (σ⊗σ),
the object ψ is listed first. We will need to take this order into account when we
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write down the matrices using these symbols as ordered bases. A similar remark
applies to the pair with (σ⊗ σ)⊗ψ and σ⊗ (σ⊗ψ). ◇
Lemma 3.5.13. For m, m′, n, n′, p, p′ ≥ 0, the following equality holds in Iany.

(m; n; p)⊗ (m′; n′; p′)

= 1⊕(mm′+nn′+pp′) ⊕ σ⊕(mn′+nm′+np′+pn′) ⊕ψ⊕(mp′+nn′+pm′)(3.5.14)

Proof. This follows from the following computation using (3.5.8) and the strict dis-
tributivity of ⊗ over ⊕.

(m; n; p)⊗ (m′; n′; p′)

= (1⊕m ⊕ σ⊕n ⊕ψ⊕p)⊗ (1⊕m′ ⊕ σ⊕n′ ⊕ψ⊕p′)

= (1⊕m ⊗1⊕m′)⊕ (1⊕m ⊗ σ⊕n′)⊕ (1⊕m ⊗ψ⊕p′)

⊕ (σ⊕n ⊗1⊕m′)⊕ (σ⊕n ⊗ σ⊕n′)⊕ (σ⊕n ⊗ψ⊕p′)

⊕ (ψ⊕p ⊗1⊕m′)⊕ (ψ⊕p ⊗ σ⊕n′)⊕ (ψ⊕p ⊗ψ⊕p′)

= 1⊕mm′ ⊕ σ⊕mn′ ⊕ψ⊕mp′

⊕ σ⊕nm′ ⊕ (1⊕ψ)⊕nn′ ⊕ σ⊕np′

⊕ψ⊕pm′ ⊕ σ⊕pn′ ⊕1⊕pp′

This is equal to the expression in (3.5.14). □

Lemma 3.5.15. For each object (m; n; p) ∈ Iany, the following functors are additive.

Iany Iany
(m;n;p)⊗−

−⊗(m;n;p)

Proof. This follows from (3.5.4) and (3.5.14). □

Lemma 3.5.16. The following equalities hold in Iany for n ≥ 1, with each ⊗-product either
left normalized (I.5.2.13) or right normalized (I.5.2.12).

σ⊗2n = 1⊕2n−1
⊕ψ⊕2n−1

σ⊗(2n+1) = σ⊕2n(3.5.17)

Proof. The proof proceeds by induction. If n = 1, then σ⊗2 = 1⊕ ψ by one of the
fusion rules (3.5.8). Moreover, there are equalities as follows.

σ⊗ (σ⊗ σ) = σ⊗ (1⊕ψ)
= (σ⊗1)⊕ (σ⊗ψ)
= σ⊕ σ

(σ⊗ σ)⊗ σ = (1⊕ψ)⊗ σ

= (1⊗ σ)⊕ (ψ⊗ σ)
= σ⊕ σ

(3.5.18)
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The induction step for the right normalized bracketing is proved as follows.

σ⊗2(n+1) = σ⊗ σ⊗(2n+1)

= σ⊗ σ⊕2n

= (σ⊗ σ)⊕2n

= (1⊕ψ)⊕2n

= 1⊕2n
⊕ψ⊕2n

σ⊗2(n+1)+1 = σ⊗ σ⊗2(n+1)

= σ⊗ (1⊕2n
⊕ψ⊕2n

)

= (σ⊗1)⊕2n
⊕ (σ⊗ψ)⊕2n

= σ⊕2n
⊕ σ⊕2n

= σ⊕2n+1

The computation for the left normalized bracketing is almost identical. □

Example 3.5.19. Using (3.5.18), there are the following five ways to compute σ⊗4,
depending on the bracketing. Each 1i is a copy of 1, and each ψj is a copy of ψ.

[(σ⊗ σ)⊗ σ]⊗ σ = (σ⊕ σ)⊗ σ

= (σ⊗ σ)⊕ (σ⊗ σ)
= (11 ⊕ψ1)⊕ (12 ⊕ψ2)

(σ⊗ σ)⊗ (σ⊗ σ) = (1⊕ψ)⊗ (1⊕ψ)
= (1⊗1)⊕ (1⊗ψ)⊕ (ψ⊗1)⊕ (ψ⊗ψ)
= 11 ⊕ψ1 ⊕ψ2 ⊕12

= (11 ⊕ψ1)⊕ (12 ⊕ψ2)
σ⊗ [σ⊗ (σ⊗ σ)] = σ⊗ (σ⊕ σ)

= (σ⊗ σ)⊕ (σ⊗ σ)
= (11 ⊕ψ1)⊕ (12 ⊕ψ2)

[σ⊗ (σ⊗ σ)]⊗ σ = (σ⊕ σ)⊗ σ

= (σ⊗ σ)⊕ (σ⊗ σ)
= (11 ⊕ψ1)⊕ (12 ⊕ψ2)

σ⊗ [(σ⊗ σ)⊗ σ] = σ⊗ (σ⊕ σ)
= (σ⊗ σ)⊕ (σ⊗ σ)
= (11 ⊕ψ1)⊕ (12 ⊕ψ2)

(3.5.20)

These four-fold tensor products will be used in Lemma 3.5.27 below to verify the
pentagon axiom in Iany. ◇

The Associativity Isomorphism. Unless otherwise specified below, 1 ∈ C is
the basis vector for each copy of C.
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Definition 3.5.21. For the functor ⊗ in (3.5.6), define a natural isomorphism

(3.5.22) (−⊗−)⊗− −⊗ (−⊗−)α
≅

by the following rules.
(i) Using the expressions in (3.5.18), the component

σ⊕ σ = (σ⊗ σ)⊗ σ σ⊗ (σ⊗ σ) = σ⊕ σ
ασ,σ,σ

is defined by the matrix

(3.5.23) ασ,σ,σ =
1√
2
[1 1
1 −1] .

(ii) The following two components of α use the expressions in (3.5.11).
● The component

1⊕ψ = (σ⊗ψ)⊗ σ σ⊗ (ψ⊗ σ) = 1⊕ψ
ασ,ψ,σ

is defined by the matrix

(3.5.24) ασ,ψ,σ = [
1 0
0 −1] .

● The component

σ = (ψ⊗ σ)⊗ψ ψ⊗ (σ⊗ψ) = σ
αψ,σ,ψ

is defined as multiplication by −1.
(iii) Using the expressions in (3.5.12), every other component of α with sub-

scripts in {σ, ψ} is the identity morphism.
(iv) Each component of α with at least one subscript in {0,1} is the identity

morphism.
(v) All other components of α are determined by the above rules and the

naturality requirement of α.
This finishes the definition of α. ◇
Explanation 3.5.25. Definition 3.5.21 (iii) means that each of the following five
components of α is the identity morphism.

(3.5.26)

1⊕ψ = (ψ⊗ σ)⊗ σ ψ⊗ (σ⊗ σ) = ψ⊕1

ψ⊕1 = (σ⊗ σ)⊗ψ σ⊗ (σ⊗ψ) = 1⊕ψ

σ = (ψ⊗ψ)⊗ σ ψ⊗ (ψ⊗ σ) = σ

σ = (σ⊗ψ)⊗ψ σ⊗ (ψ⊗ψ) = σ

ψ = (ψ⊗ψ)⊗ψ ψ⊗ (ψ⊗ψ) = ψ

αψ,σ,σ

ασ,σ,ψ

αψ,ψ,σ

ασ,ψ,ψ

αψ,ψ,ψ

Moreover, the matrix ασ,σ,σ in (3.5.23) is orthogonal. In other words, its transpose,
which is equal to itself, is its inverse. ◇
Lemma 3.5.27. The quadruple

(Iany,⊗,1, α)
consisting of



II.100 3. APPLICATIONS TO QUANTUM GROUPS AND TQC

● Iany and 1 = (1; 0; 0) in Definition 3.5.1,
● −⊗− ∶ Iany × Iany Iany in (3.5.6), and
● α in (3.5.22)

is a monoidal category with identities for the left and the right unit isomorphisms.

Proof. The naturality of α is part of its definition. Each of its components is an
isomorphism because it is a direct sum of identity morphisms and copies of ασ,σ,σ
in (3.5.23), ασ,ψ,σ in (3.5.24), and αψ,σ,ψ = −1.

The unity axiom (1.3.2) holds because both the left and the right unit isomor-
phisms are identities. It remains to check the pentagon axiom (1.3.3). By Defini-
tion 3.5.21 (iii)–(v) and the strict distributivity of ⊗ over ⊕, it suffices to check the
pentagon axiom when all four objects involved are in {σ, ψ} with at least one σ.
There are 15 cases, which we divide into four groups depending on the number
of ψ factors. To save space below, we omit the ⊗ symbols among objects, so, for
example, σσ = σ⊗ σ. We write Id for an identity matrix. In each matrix, an empty
entry means 0.

Case 1

If all four objects involved are σ, then the pentagon (1.3.3) in Iany is the follow-
ing diagram.

(σσ)(σσ)

[(σσ)σ]σ σ[σ(σσ)]

[σ(σσ)]σ σ[(σσ)σ]

ασσ,σ,σ ασ,σ,σσ

ασ,σ,σ ⊗ 1σ

ασ,σσ,σ

1σ ⊗ ασ,σ,σ

To prove the commutativity of this pentagon, we consistently use the ordered
bases {11, ψ1,12, ψ2} in (3.5.20). In the upper path of the pentagon, the two maps
are given by the following matrices.

ασσ,σ,σ = α1⊕ψ,σ,σ = α1,σ,σ ⊕ αψ,σ,σ = Id

ασ,σ,σσ = ασ,σ,1⊕ψ = ασ,σ,1 ⊕ ασ,σ,ψ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Therefore, the matrix for the upper path of the pentagon is the same as that for
ασ,σ,σσ.

Note that the matrix for ασ,σ,σσ is not the identity matrix for the following
reasons.

● In the domain (σσ)(σσ), the object 1 in the second σσ = 1 ⊕ ψ yields
{11, ψ2}.
● In the codomain σ[σ(σσ)], the object 1 in the rightmost σσ = 1⊕ψ yields
{11, ψ1}.

This role-reversal involving ψ1 and ψ2 and the consistent usage of the ordered
bases {11, ψ1,12, ψ2} lead to the above matrix for ασ,σ,σσ. Analogous remarks will
apply in some of the matrices below.
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In the lower path of the pentagon, the three maps are given by the following
matrices involving ασ,σ,σ in (3.5.23) and ασ,ψ,σ in (3.5.24).

ασ,σ,σ ⊗ 1σ = 1σ ⊗ ασ,σ,σ =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

1 −1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

ασ,σσ,σ = ασ,1⊕ψ,σ = ασ,1,σ ⊕ ασ,ψ,σ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Therefore, the matrix for the lower path of the pentagon is the product

1√
2
⋅ 1√

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

1 −1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

1 −1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
2

2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

This is equal to the matrix for the upper path, that is, the matrix for ασ,σ,σσ.

Case 2

Next are the four subcases involving one ψ and three copies of σ. We use the
ordered bases in (3.5.11), (3.5.12), and (3.5.18).

The pentagon

(ψσ)(σσ)

[(ψσ)σ]σ ψ[σ(σσ)]

[ψ(σσ)]σ ψ[(σσ)σ]

αψσ,σ,σ αψ,σ,σσ

αψ,σ,σ ⊗ 1σ

αψ,σσ,σ

1ψ ⊗ ασ,σ,σ

is commutative by the following computation.

(αψ,σ,σσ)(αψσ,σ,σ) = (αψ,σ,1⊕ψ)(ασ,σ,σ) = (αψ,σ,1 ⊕ αψ,σ,ψ)(ασ,σ,σ)

= 1√
2
[1 −1] [

1 1
1 −1] =

1√
2
[ 1 1
−1 1] =

1√
2
[1 1
1 −1] (Id) [

1
1 ]

= (ασ,σ,σ)(αψ,1,σ ⊕ αψ,ψ,σ)(αψ,σ,σ ⊗ 1σ)
= (ασ,σ,σ)(αψ,1⊕ψ,σ)(αψ,σ,σ ⊗ 1σ)
= (1ψ ⊗ ασ,σ,σ)(αψ,σσ,σ)(αψ,σ,σ ⊗ 1σ)

The pentagon

(σψ)(σσ)

[(σψ)σ]σ σ[ψ(σσ)]

[σ(ψσ)]σ σ[(ψσ)σ]

ασψ,σ,σ ασ,ψ,σσ

ασ,ψ,σ ⊗ 1σ

ασ,ψσ,σ

1σ ⊗ αψ,σ,σ



II.102 3. APPLICATIONS TO QUANTUM GROUPS AND TQC

is commutative by the following computation.

(ασ,ψ,σσ)(ασψ,σ,σ) = (ασ,ψ,1⊕ψ)(ασ,σ,σ)
= (ασ,ψ,1 ⊕ ασ,ψ,ψ)(ασ,σ,σ) = Id(ασ,σ,σ)

= 1√
2
[1 1
1 −1] =

1√
2
[ 1
1 ] [1 1

1 −1] [
1
−1]

= (1σ ⊗ αψ,σ,σ)(ασ,σ,σ)(ασ,ψ,σ ⊗ 1σ)
= (1σ ⊗ αψ,σ,σ)(ασ,ψσ,σ)(ασ,ψ,σ ⊗ 1σ)

The pentagon

(σσ)(ψσ)

[(σσ)ψ]σ σ[σ(ψσ)]

[σ(σψ)]σ σ[(σψ)σ]

ασσ,ψ,σ ασ,σ,ψσ

ασ,σ,ψ ⊗ 1σ

ασ,σψ,σ

1σ ⊗ ασ,ψ,σ

is commutative by the following computation.

(ασ,σ,ψσ)(ασσ,ψ,σ) = (ασ,σ,σ)(α1⊕ψ,ψ,σ)
= (ασ,σ,σ)(α1,ψ,σ ⊕ αψ,ψ,σ) = (ασ,σ,σ)Id

= 1√
2
[1 1
1 −1] =

1√
2
[1 −1] [

1 1
1 −1] [

1
1 ]

= (1σ ⊗ ασ,ψ,σ)(ασ,σ,σ)(ασ,σ,ψ ⊗ 1σ)
= (1σ ⊗ ασ,ψ,σ)(ασ,σψ,σ)(ασ,σ,ψ ⊗ 1σ)

The pentagon

(σσ)(σψ)

[(σσ)σ]ψ σ[σ(σψ)]

[σ(σσ)]ψ σ[(σσ)ψ]

ασσ,σ,ψ ασ,σ,σψ

ασ,σ,σ ⊗ 1ψ

ασ,σσ,ψ

1σ ⊗ ασ,σ,ψ

is commutative by the following computation.

(ασ,σ,σψ)(ασσ,σ,ψ) = (ασ,σ,σ)(α1⊕ψ,σ,ψ) = (ασ,σ,σ)(α1,σ,ψ ⊕ αψ,σ,ψ)

= 1√
2
[1 1
1 −1] [

1
−1] =

1√
2
[1 −1
1 1 ] =

1√
2
[ 1
1 ] (Id) [1 1

1 −1]

= (1σ ⊗ ασ,σ,ψ)(ασ,1,ψ ⊕ ασ,ψ,ψ)(ασ,σ,σ ⊗ 1ψ)
= (1σ ⊗ ασ,σ,ψ)(ασ,1⊕ψ,ψ)(ασ,σ,σ ⊗ 1ψ)
= (1σ ⊗ ασ,σ,ψ)(ασ,σσ,ψ)(ασ,σ,σ ⊗ 1ψ)

Case 3

Next are the six subcases involving two copies of ψ and two copies of σ.
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The pentagon

(ψψ)(σσ)

[(ψψ)σ]σ ψ[ψ(σσ)]

[ψ(ψσ)]σ ψ[(ψσ)σ]

αψψ,σ,σ αψ,ψ,σσ

αψ,ψ,σ ⊗ 1σ

αψ,ψσ,σ

1ψ ⊗ αψ,σ,σ

is commutative by the following computation.

(αψ,ψ,σσ)(αψψ,σ,σ) = (αψ,ψ,1⊕ψ)(α1,σ,σ)
= (αψ,ψ,1 ⊕ αψ,ψ,ψ)(α1,σ,σ)

= (Id)(Id) = [ 1
1 ] [ 1

1 ](Id)

= (1ψ ⊗ αψ,σ,σ)(αψ,σ,σ)(αψ,ψ,σ ⊗ 1σ)
= (1ψ ⊗ αψ,σ,σ)(αψ,ψσ,σ)(αψ,ψ,σ ⊗ 1σ)

The pentagon

(ψσ)(ψσ)

[(ψσ)ψ]σ ψ[σ(ψσ)]

[ψ(σψ)]σ ψ[(σψ)σ]

αψσ,ψ,σ αψ,σ,ψσ

αψ,σ,ψ ⊗ 1σ

αψ,σψ,σ

1ψ ⊗ ασ,ψ,σ

is commutative by the following computation.

(αψ,σ,ψσ)(αψσ,ψ,σ) = (αψ,σ,σ)(ασ,ψ,σ)

= [ 1
1 ] [1 −1] = [

−1
1 ] = [1 −1] [

1
1 ](−Id)

= (1ψ ⊗ ασ,ψ,σ)(αψ,σ,σ)(αψ,σ,ψ ⊗ 1σ)
= (1ψ ⊗ ασ,ψ,σ)(αψ,σψ,σ)(αψ,σ,ψ ⊗ 1σ)

The pentagon

(ψσ)(σψ)

[(ψσ)σ]ψ ψ[σ(σψ)]

[ψ(σσ)]ψ ψ[(σσ)ψ]

αψσ,σ,ψ αψ,σ,σψ

αψ,σ,σ ⊗ 1ψ

αψ,σσ,ψ

1ψ ⊗ ασ,σ,ψ

is commutative by the following computation.

(αψ,σ,σψ)(αψσ,σ,ψ) = (αψ,σ,σ)(ασ,σ,ψ)

= [ 1
1 ] [ 1

1 ] = [ 1
1 ](Id)[ 1

1 ]

= (1ψ ⊗ ασ,σ,ψ)(αψ,1,ψ ⊕ αψ,ψ,ψ)(αψ,σ,σ ⊗ 1ψ)
= (1ψ ⊗ ασ,σ,ψ)(αψ,1⊕ψ,ψ)(αψ,σ,σ ⊗ 1ψ)
= (1ψ ⊗ ασ,σ,ψ)(αψ,σσ,ψ)(αψ,σ,σ ⊗ 1ψ)
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The pentagon

(σψ)(ψσ)

[(σψ)ψ]σ σ[ψ(ψσ)]

[σ(ψψ)]σ σ[(ψψ)σ]

ασψ,ψ,σ ασ,ψ,ψσ

ασ,ψ,ψ ⊗ 1σ

ασ,ψψ,σ

1σ ⊗ αψ,ψ,σ

is commutative by the following computation.

(ασ,ψ,ψσ)(ασψ,ψ,σ) = (ασ,ψ,σ)(ασ,ψ,σ)

= [1 −1] [
1
−1] = (Id)(Id)(Id)

= (1σ ⊗ αψ,ψ,σ)(ασ,1,σ)(ασ,ψ,ψ ⊗ 1σ)
= (1σ ⊗ αψ,ψ,σ)(ασ,ψψ,σ)(ασ,ψ,ψ ⊗ 1σ)

The pentagon

(3.5.28)

(σψ)(σψ)

[(σψ)σ]ψ σ[ψ(σψ)]

[σ(ψσ)]ψ σ[(ψσ)ψ]

ασψ,σ,ψ ασ,ψ,σψ

ασ,ψ,σ ⊗ 1ψ

ασ,ψσ,ψ

1σ ⊗ αψ,σ,ψ

is commutative by the following computation.

(ασ,ψ,σψ)(ασψ,σ,ψ) = (ασ,ψ,σ)(ασ,σ,ψ)

= [1 −1] [
1

1 ] = [ 1
−1 ] = (−Id)[ 1

1 ] [1 −1]

= (1σ ⊗ αψ,σ,ψ)(ασ,σ,ψ)(ασ,ψ,σ ⊗ 1ψ)
= (1σ ⊗ αψ,σ,ψ)(ασ,ψσ,ψ)(ασ,ψ,σ ⊗ 1ψ)

The pentagon

(σσ)(ψψ)

[(σσ)ψ]ψ σ[σ(ψψ)]

[σ(σψ)]ψ σ[(σψ)ψ]

ασσ,ψ,ψ ασ,σ,ψψ

ασ,σ,ψ ⊗ 1ψ

ασ,σψ,ψ

1σ ⊗ ασ,ψ,ψ

is commutative by the following computation.

(ασ,σ,ψψ)(ασσ,ψ,ψ) = (ασ,σ,1)(α1⊕ψ,ψ,ψ)
= (ασ,σ,1)(α1,ψ,ψ ⊕ αψ,ψ,ψ)

= (Id)(Id) = (Id)[ 1
1 ] [ 1

1 ]

= (1σ ⊗ ασ,ψ,ψ)(ασ,σ,ψ)(ασ,σ,ψ ⊗ 1ψ)
= (1σ ⊗ ασ,ψ,ψ)(ασ,σψ,ψ)(ασ,σ,ψ ⊗ 1ψ)

Case 4
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Next are the four pentagons involving three copies of ψ and one σ.

(ψψ)(ψσ)

[(ψψ)ψ]σ ψ[ψ(ψσ)]

[ψ(ψψ)]σ ψ[(ψψ)σ]

αψψ,ψ,σ

1

αψ,ψ,ψσ

1

αψ,ψ,ψ ⊗ 1σ 1

αψ,ψψ,σ

1

1ψ ⊗ αψ,ψ,σ1

(ψψ)(σψ)

[(ψψ)σ]ψ ψ[ψ(σψ)]

[ψ(ψσ)]ψ ψ[(ψσ)ψ]

αψψ,σ,ψ

1

αψ,ψ,σψ

1

αψ,ψ,σ ⊗ 1ψ 1

αψ,ψσ,ψ

−1

1ψ ⊗ αψ,σ,ψ−1

(ψσ)(ψψ)

[(ψσ)ψ]ψ ψ[σ(ψψ)]

[ψ(σψ)]ψ ψ[(σψ)ψ]

αψσ,ψ,ψ

1

αψ,σ,ψψ

1

αψ,σ,ψ ⊗ 1ψ −1

αψ,σψ,ψ

−1

1ψ ⊗ ασ,ψ,ψ1

(σψ)(ψψ)

[(σψ)ψ]ψ σ[ψ(ψψ)]

[σ(ψψ)]ψ σ[(ψψ)ψ]

ασψ,ψ,ψ

1

ασ,ψ,ψψ

1

ασ,ψ,ψ ⊗ 1ψ 1

ασ,ψψ,ψ

1

1σ ⊗ αψ,ψ,ψ1

In each of these four pentagons, by the fusion rules

ψψ = 1 and σψ = σ = ψσ

in (3.5.8), each map is either the identity 1 or its negative −1, as indicted by the label
next to each arrow. In each case, both the upper path and the lower path are equal
to the identity map. This finishes the proof that Iany is a monoidal category. □

3.6. Ising Anyons: The Braided Bimonoidal Structure

In this section, we first equip the monoidal category Iany of Ising anyons in
Lemma 3.5.27 with a braiding. Then we observe that the abelian category Iany with
this braiding is a tight braided bimonoidal category. Unless otherwise specified
below, 1 ∈C is the basis vector.
Definition 3.6.1. For the functor ⊗ in (3.5.6), define a natural isomorphism

(3.6.2) x⊗ y y⊗ x
βx,y

≅

for objects x, y ∈ Iany by the following three rules.
(i) The components of β with subscripts in {σ, ψ} are defined as follows.

● The component

1⊕ψ = σ⊗ σ σ⊗ σ = 1⊕ψ
βσ,σ

is defined as the matrix

(3.6.3) βσ,σ = [
w−1

w3] with w = eπi/8.

● Both components

(3.6.4) σ = σ⊗ψ ψ⊗ σ = σ
βσ,ψ

βψ,σ

are defined as multiplication by

w−4 = e−πi/2 = −i.
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● The component

(3.6.5) 1 = ψ⊗ψ ψ⊗ψ = 1
βψ,ψ

is defined as multiplication by -1.
(ii) Each component of β with at least one subscript in {0,1} is the identity

morphism.
(iii) All other components of β are determined by the above rules and the

naturality requirement of β.
This finishes the definition of β. ◇
Explanation 3.6.6. Consider β in Definition 3.6.1.

● w in (3.6.3) is a primitive 16th root of unity, and βσ,σ has order 16.
● βψ,ψ = −1 in (3.6.5) has order 2. ◇

Lemma 3.6.7. The quintuple
(Iany,⊗,1, α, β)

consisting of
● the monoidal category (Iany,⊗,1, α) in Lemma 3.5.27 and
● β in (3.6.2)

is a braided monoidal category.

Proof. The naturality of β is part of its definition. Each of its components is an
isomorphism because it is a direct sum of identity morphisms and copies of βσ,σ
in (3.6.3), βσ,ψ and βψ,σ in (3.6.4), and βψ,ψ in (3.6.5).

It remains to verify the two hexagon axioms (1.3.17). By Definition 3.6.1 (ii)–
(iii) and the strict distributivity of⊗ over⊕, it suffices to check each hexagon axiom
when all three objects involved are in {σ, ψ}. First we consider the left hexagon
axiom. We divide the 8 cases into 3 groups, depending on the number of ψ factors.
As in the proof of Lemma 3.5.27, to save space, we omit the ⊗ symbols among
objects

Case 1

First are the four left hexagon diagrams with three copies of ψ, or with two
copies of ψ and one σ.

(ψψ)ψ ψ(ψψ)

(ψψ)ψ ψ(ψψ)

ψ(ψψ) (ψψ)ψ

βψ,ψ ⊗ 1ψ −1

αψ,ψ,ψ

1

1ψ ⊗ βψ,ψ−1

αψ,ψ,ψ 1

βψ,ψψ

1

αψ,ψ,ψ1

(ψψ)σ ψ(ψσ)

(ψψ)σ ψ(σψ)

ψ(ψσ) (ψσ)ψ

βψ,ψ ⊗ 1σ −1

αψ,ψ,σ

1

1ψ ⊗ βψ,σ−i

αψ,ψ,σ 1

βψ,ψσ

−i

αψ,σ,ψ−1

(σψ)ψ σ(ψψ)

(ψσ)ψ σ(ψψ)

ψ(σψ) (σψ)ψ

βψ,σ ⊗ 1ψ −i

ασ,ψ,ψ

1

1σ ⊗ βψ,ψ−1

αψ,σ,ψ −1

βψ,σψ

−i

ασ,ψ,ψ1

(ψσ)ψ ψ(σψ)

(σψ)ψ ψ(ψσ)

σ(ψψ) (ψψ)σ

βσ,ψ ⊗ 1ψ −i

αψ,σ,ψ

−1

1ψ ⊗ βσ,ψ−i

ασ,ψ,ψ 1

βσ,ψψ

1

αψ,ψ,σ1



3.6. ISING ANYONS: THE BRAIDED BIMONOIDAL STRUCTURE II.107

In each of these four left hexagon diagrams, each map is the identity, multiplica-
tion by −1, or multiplication by −i, as indicated by the label next to each edge. In
each case, the upper path and the lower path are equal.

Case 2

Next are the three left hexagon diagrams with one ψ and two copies of σ.
The left hexagon diagram

(3.6.8)

(σψ)σ σ(ψσ)

(ψσ)σ σ(σψ)

ψ(σσ) (σσ)ψ

βψ,σ ⊗ 1σ

ασ,ψ,σ

1σ ⊗ βψ,σ

αψ,σ,σ

βψ,σσ

ασ,σ,ψ

is commutative by the following computation.

(1σ ⊗ βψ,σ)(ασ,ψ,σ)(βψ,σ ⊗ 1σ) = (−i)[1 −1](−i) = [−1
1]

= [ 1
1 ] [1 −1] [

1
1 ] = (ασ,σ,ψ)(βψ,1 ⊕ βψ,ψ)(αψ,σ,σ)

= (ασ,σ,ψ)(βψ,1⊕ψ)(αψ,σ,σ) = (ασ,σ,ψ)(βψ,σσ)(αψ,σ,σ)
The left hexagon diagram

(3.6.9)

(ψσ)σ ψ(σσ)

(σψ)σ ψ(σσ)

σ(ψσ) (ψσ)σ

βσ,ψ ⊗ 1σ

αψ,σ,σ

1ψ ⊗ βσ,σ

ασ,ψ,σ

βσ,ψσ

αψ,σ,σ

is commutative by the following computation.

(1ψ ⊗ βσ,σ)(αψ,σ,σ)(βσ,ψ ⊗ 1σ) = [w
−1

w3] [
1

1 ](w−4)

= [ w−5

w−1 ] = [ −w3

w−1 ] = [ 1
1 ] [w

−1

w3] [
1
−1]

= (αψ,σ,σ)(βσ,σ)(ασ,ψ,σ) = (αψ,σ,σ)(βσ,ψσ)(ασ,ψ,σ)
We used the equalities

(3.6.10) w8 = eπi = −1 and w3 = −w−5.

The left hexagon diagram

(3.6.11)

(σσ)ψ σ(σψ)

(σσ)ψ σ(ψσ)

σ(σψ) (σψ)σ

βσ,σ ⊗ 1ψ

ασ,σ,ψ

1σ ⊗ βσ,ψ

ασ,σ,ψ

βσ,σψ

ασ,ψ,σ
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is commutative by the following computation.

(1σ ⊗ βσ,ψ)(ασ,σ,ψ)(βσ,σ ⊗ 1ψ) = (w−4)[ 1
1 ] [w

−1

w3]

= [ w−1

w−5 ] = [ w−1

−w3 ] = [1 −1] [
w−1

w3] [
1

1 ]

= (ασ,ψ,σ)(βσ,σ)(ασ,σ,ψ) = (ασ,ψ,σ)(βσ,σψ)(ασ,σ,ψ)

Case 3

Next is the left hexagon diagram with three copies of σ.

(3.6.12)

(σσ)σ σ(σσ)

(σσ)σ σ(σσ)

σ(σσ) (σσ)σ

βσ,σ ⊗ 1σ

ασ,σ,σ

1σ ⊗ βσ,σ

ασ,σ,σ

βσ,σσ

ασ,σ,σ

Using the equalities

(3.6.13) w2 = eπi/4 = 1+ i√
2

and w−2 = 1− i√
2
= −w6,

the previous left hexagon diagram is commutative by the following computation.

(1σ ⊗ βσ,σ)(ασ,σ,σ)(βσ,σ ⊗ 1σ)

= 1√
2
[w
−1

w3] [
1 1
1 −1] [

w−1

w3]

= 1√
2
[w
−2 w2

w2 −w6] =
1√
2
⋅ 1√

2
[1− i 1+ i
1+ i 1− i]

= 1√
2
⋅ 1√

2
[1 1
1 −1] [

1
−i] [

1 1
1 −1]

= (ασ,σ,σ)(βσ,1 ⊕ βσ,ψ)(ασ,σ,σ)
= (ασ,σ,σ)(βσ,1⊕ψ)(ασ,σ,σ)
= (ασ,σ,σ)(βσ,σσ)(ασ,σ,σ)

This finishes the proof of the left hexagon axiom (1.3.17) in (Iany, β).
Each of the eight right hexagon diagrams (1.3.17) involving only σ and ψ is

obtained from the left hexagon counterpart by replacing each instance of β?,?′ by
β−1

?′,?. In other words, we replace

● βσ,σ = [w
−1

w3] by β−1
σ,σ = [

w
w−3];

● βσ,ψ = w−4 = −i by β−1
ψ,σ = w4 = i;

● βψ,σ = w−4 = −i by β−1
σ,ψ = w4 = i; and

● βψ,ψ = −1 by β−1
ψ,ψ = −1.

With these replacements, the computation above, using (3.6.10) and (3.6.13) in the
last three cases, shows that each of the eight right hexagon diagrams involving
only σ and ψ is commutative. This finishes the proof that (Iany, β) is a braided
monoidal category. □
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We are now ready for the main result of this section.

Theorem 3.6.14. The abelian category Iany in Definition 3.5.1, when equipped with the
braided monoidal structure in Lemma 3.6.7, is a tight braided bimonoidal category.

Proof. We combine the following facts.

● Iany is an abelian category by definition.
● It is a braided monoidal category by Lemma 3.6.7.
● The functors x⊗− and −⊗ x are additive functors for each object x ∈ Iany

by Lemma 3.5.15.

Therefore, the assertion follows from Theorem 2.4.22. □

3.7. Notes

3.7.1 (Braided Bialgebras). The reader is referred to the books [Abe80, Kas95,
Maj95, Mon93, Swe69] for further discussion and examples of (braided) bialge-
bras. Braided bialgebras and symmetric bialgebras were introduced by Drinfeld
[Dri87, Dri89], who called them quasitriangular bialgebras and triangular bialgebras,
respectively. The bialgebra H4 in Example 3.1.30 is from [Swe69]. The R-matrix Rc
in (3.1.32) is from [Rad93]. The nonstandard R-matrix in (3.1.34) is from [Maj93,
Prop. 2.1]. ◇
3.7.2 (Modules over Braided Bialgebras). Propositions 3.2.6, 3.2.12, and 3.2.13 on
the (braided/symmetric) monoidal structure on Mod(A) are from quantum group
theory; see for example [Kas95, Prop. III.5.1 and VIII.3.1]. Theorem 3.2.19 on the
(braided/symmetric) bimonoidal structure on Mod(A) is new, especially as con-
sequences of Theorems 2.4.22 and 2.5.2 and Corollary 2.5.1. ◇
3.7.3 (Topological Quantum Computation). For general surveys, the reader is re-
ferred to [FKLW03, LP17, NSS+08, Pac12, PP11, Wan10]. Computation related
to the Fibonacci anyons, such as that in Sections 3.3 and 3.4, can be found in
[BG16, BG20b, TTWL08]. ◇
3.7.4 (Ising Anyons). In defining the associativity isomorphism α in (3.5.22) and
the braiding β in (3.6.2) for the Ising anyons, we follow the sign conventions in
[Wan10, 1.5.1]. These signs are different from those in [Pac12, 4.3] as follows.

● In [Pac12], the ψ-component of ασ,ψ,σ (= (Fψ
σψσ)σσ there) is not explicitly

specified. We define the ψ-component of ασ,ψ,σ to be −1 in (3.5.24).
● In [Pac12], βσ,ψ (= Rσ

σψ there) is i. In (3.6.4), we define

βσ,ψ = −i = βψ,σ.

● In [Pac12], βψ,ψ is not explicitly specified. In (3.6.5), we define

βψ,ψ = −1.

The specific signs that we adopted for α in (3.5.22) and β in (3.6.2) are impor-
tant for the following reasons.

(1) The pentagon (3.5.28), starting at [(σψ)σ]ψ, shows that one must define
the ψ-component of ασ,ψ,σ to be −1.

(2) The hexagon (3.6.8), starting at (ψσ)σ, shows that one must define βψ,ψ =
−1.
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(3) As opposed to our definition in (3.6.4) with βσ,ψ = −i, if we were to define

βσ,ψ = i = w4

as in [Pac12, 4.3], then the following would happen.
(i) The hexagon (3.6.9), starting at (σψ)σ, would not be commutative.

The reason is that the (2, 1)-entry in the upper path would be w7,
and the (2, 1)-entry in the lower path is still w−1. However, w7 /= w−1

by (3.6.10).
(ii) A similar discussion using the (1, 2)-entry shows that the hexagon

(3.6.11), starting at (σσ)ψ, would not be commutative.
(iii) The hexagon (3.6.12), involving three copies of σ, would not be com-

mutative. The upper path, involving ασ,σ,σ and βσ,σ, remains the
same. However, in the lower path, the matrix for βσ,σσ = βσ,1 ⊕ βσ,ψ

would become [1 i]. So the lower path would not be equal to the

upper path.
Therefore, the choice βσ,ψ = i would not yield a braided monoidal category of Ising
anyons. ◇



CHAPTER 4

Bimonoidal Centers

In this chapter, we extend the Drinfeld center and the symmetric center con-
structions in Section 1.4 to the bimonoidal setting. Section 1.4 contains the follow-
ing two results about monoidal categories.

● Theorem 1.4.27 states that the Drinfeld center C in Definition 1.4.3 of each
monoidal category C is a braided monoidal category.
● Proposition 1.5.3 states that the symmetric center Csym in Definition 1.5.1

of each braided monoidal category is a symmetric monoidal category.
To extend these constructions and results to the bimonoidal setting, recall from
Definition 2.1.1 that a bimonoidal category is defined in a similar way as a sym-
metric bimonoidal category, except for the following two conditions:

● There is no multiplicative symmetry ξ⊗, so the multiplicative structure is
a monoidal category.
● The axioms (2.1.4) and (2.1.18), which involve ξ⊗, are omitted.

A bimonoidal category is tight if the distributivity morphisms δl and δr are natural
isomorphisms.

The main result of this chapter is Theorem 4.4.3. It states that the bimonoidal
Drinfeld center of each tight bimonoidal category is a tight braided bimonoidal
category. The symmetric analogue of this result is Theorem 4.5.3. It states that
the bimonoidal symmetric center of a braided bimonoidal category is a symmetric
bimonoidal category. Notice that tightness is not required in Theorem 4.5.3. The
following table summaries the center constructions mentioned above.

– category center reference

monoidal braided monoidal 1.4.27

braided monoidal symmetric monoidal 1.5.3

tight bimonoidal tight braided bimonoidal 4.4.3

braided bimonoidal symmetric bimonoidal 4.5.3

For open questions related to the center constructions, see Question III.A.3.2.

Motivation. To motivate the definition of the bimonoidal Drinfeld center, re-
call from Definition 1.4.3 and Theorem 1.4.27 that the Drinfeld center C of a mon-
oidal category C is a braided monoidal category. The hexagon axioms (1.3.17) are
built into the definition of C as follows.

(1) An object in C is a pair (A; βA) consisting of
● an object A ∈ C and
● a natural isomorphism

βA ∶ A⊗− ≅ −⊗A,

II.111
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which is called the A-braiding,
such that βA

B⊗C satisfies the left hexagon axiom in the form (1.4.4).
(2) The monoidal product ⊗ of two objects in C involves the (A ⊗ B)-

braiding βA⊗B that is defined by the right hexagon axiom in the form
(1.4.8).

In other words, the left hexagon axiom is an axiom of the A-braiding, and the right
hexagon axiom is the definition of the (A⊗ B)-braiding.

The monoidal category axioms of C imply those of C. Since the two hexagon
axioms (1.3.17) are built into the definition of the Drinfeld center C, checking that it
is a braided monoidal category is mostly about checking that its various parts are
well defined. These categorical diagram-chasing proofs involve repeated usage
of the pentagon axiom (1.3.3), the unity axiom (1.3.2), and the unity properties
(I.1.2.7) in C.

In a similar manner, the bimonoidal Drinfeld center of a tight bimonoidal
category C is a tight braided bimonoidal category C

bi
. Among the 14 axioms of

a braided bimonoidal category in Definition 2.1.29, only four of them—namely,
(2.1.4), (2.1.18), and their variants (2.1.32) and (2.1.33)—involve the braiding ξ⊗.
These axioms are incorporated into the definition of the bimonoidal Drinfeld cen-
ter as follows.

In each object (A; βA), in addition to the compatibility with a product B⊗ C,
we also assume that the A-braiding βA is compatible with (i) the sum B⊕ C and
(ii) the additive zero 0.

● The condition (i) corresponds to the axiom (2.1.32) relating δl and δr via
the braiding and requires the invertibility of δr. This is why we need the
bimonoidal category C to be tight.
● The condition (ii) corresponds to the axiom (2.1.18) relating ρ ● and λ ● via

the braiding.
The axioms

● (2.1.4) relating δr and δl via the braiding and
● (2.1.33) relating λ ● and ρ ● via the braiding

are built into the definitions of, respectively, the (A ⊕ B)-braiding βA⊕B in (4.1.8)
and the 0-braiding β0 in (4.1.11).

With the four axioms (2.1.4), (2.1.18), (2.1.32), and (2.1.33) built into the defini-
tion of the bimonoidal Drinfeld center C

bi
, the other 10 Laplaza axioms in Defini-

tion 2.1.29 follow from the corresponding properties in C. Therefore, showing that
C

bi
is a tight braided bimonoidal category is mostly about showing that its various

parts are well defined. These proofs in Sections 4.2 through 4.4 use all 22 Laplaza
axioms in the tight bimonoidal category C.

Interpretation. There are several ways to interpret Theorems 4.4.3 and 4.5.3
conceptually.

(i) They provide evidence that the axioms of a braided bimonoidal category
in Definition 2.1.29 are well chosen, in the sense that both the Drinfeld
center and the symmetric center extend naturally to the bimonoidal set-
ting.

(ii) They provide further illustration of Laplaza’s axioms in Definition 2.1.1.
In the course of defining the bimonoidal Drinfeld center and verifying
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that it is well defined, we will use all 24 Laplaza axioms, the variant
(2.1.32) of (2.1.4), and the variant (2.1.33) of (2.1.18).

(iii) Theorems 4.4.3 and 4.5.3 provide further justification for distinguishing
between
● braided bimonoidal categories, with δl and δr natural monomor-

phisms, and
● tight braided bimonoidal categories, with δl and δr invertible.

In the definition of the bimonoidal Drinfeld center, the invertibility of the
distributivity morphisms are used in (4.1.3) and (4.1.8). This is why tight-
ness is required in Theorem 4.4.3. On the other hand, the proof of Theo-
rem 4.5.3 involving the bimonoidal symmetric center uses the monomor-
phism assumption on δr, but not the invertibility of δl and δr. Therefore,
this result does not require tightness.

Organization. The bimonoidal Drinfeld center C
bi

of a tight bimonoidal cate-
gory C is defined in Section 4.1. Section 4.2 proves that the additive structure of
C

bi
is a symmetric monoidal category. Section 4.3 proves that the multiplicative

structure of C
bi

is a braided monoidal category. Section 4.4 proves that the multi-
plicative zeros and the distributivity morphisms are natural isomorphisms in C

bi

and the main Theorem 4.4.3. Section 4.5 proves Theorem 4.5.3, which states that
the bimonoidal symmetric center of a braided bimonoidal category is a symmetric
bimonoidal category. Convention 2.1.34 is still in effect, so ⊗ is sometimes abbre-
viated to concatenation.

Reading Guide.
(1) Read Definition 4.1.2 and the statement of Theorem 4.4.3 for the bimon-

oidal Drinfeld center.
(2) Read Definition 4.5.1 and the statement of Theorem 4.5.3 for the bimon-

oidal symmetric center.
(3) Go back and read the rest of this chapter.

4.1. The Bimonoidal Drinfeld Center: Definition

In this section, we define the bimonoidal Drinfeld center, followed by some
commentary.
Motivation 4.1.1. Recall from Definition 1.4.3 that, for a monoidal category (C,⊗),
an object in the Drinfeld center C of C is a pair (A; βA)with A ∈ C an object and

βA ∶ A⊗ (−) (−)⊗ A

a natural isomorphism that satisfies a version of the left hexagon axiom. For the
Drinfeld center of a bimonoidal category C, which we will define shortly, we also
need to make sure that βA is compatible with the monoidal structure (⊕, 0) in the
sense of (4.1.3) and (4.1.4) below. ◇
Definition 4.1.2. Suppose C is a tight bimonoidal category as in Definition 2.1.1.
The bimonoidal Drinfeld center of C consists of the data of a braided bimonoidal
category

(Cbi
, (⊕ , 0, α⊕, λ⊕, ρ⊕, ξ⊕), (⊗ ,1, α⊗, λ⊗, ρ⊗, ξ⊗), (λ

●
, ρ
●), (δl

, δ
r))

defined as follows.
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Objects: An object in C
bi

is a pair (A; βA) consisting of
● an object A ∈ C and
● a natural isomorphism

A⊗ B B⊗ A
βA

B
≅ for B ∈ C

such that (1.4.4) and the following two diagrams are commutative for
objects B, C ∈ C.

(4.1.3)

A⊗ (B⊕C) (B⊕C)⊗ A

(A⊗ B)⊕ (A⊗C) (B⊗ A)⊕ (C⊗ A)

δl
A,B,C

βA
B⊕C

βA
B⊕βA

C

δ−r
B,C,A

(4.1.4)
A⊗ 0 0⊗ A

0

βA
0

ρ
●
A λ−

●
A

We call A the underlying object and βA the A-braiding.
Morphisms: A morphism

f ∶ (A; βA) (B; βB)

in C
bi

is a morphism f ∶ A B in C such that (1.4.5) is commutative for
each object C ∈ C.

Identity Morphisms: The identity morphism of an object (A; βA) ∈ Cbi
is the iden-

tity morphism 1A ∶ A A in C.
Composition: The composition of morphisms in C

bi
is the composition of mor-

phisms in C.
The Multiplicative Structure: The data

(4.1.5) (⊗ ,1, α⊗, λ⊗, ρ⊗, ξ⊗)

are defined as in Definition 1.4.3, with α now denoted by α⊗ and similarly
for λ, ρ, and ξ.

The Additive Monoidal Product: For the rest of this definition, (A; βA), (B; βB),
and (C; βC) are arbitrary objects in C

bi
. The functor

(4.1.6) C
bi ×Cbi

C
bi⊕

is defined as follows.
Objects: Define the object

(4.1.7) (A; βA)⊕ (B; βB) = (A⊕ B; βA⊕B)
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with βA⊕B defined by the following diagram for objects C ∈ C.

(4.1.8)

(A⊕ B)⊗C C⊗ (A⊕ B)

(A⊗C)⊕ (B⊗C) (C⊗ A)⊕ (C⊗ B)

δr
A,B,C

βA⊕B
C

βA
C⊕βB

C

δ−l
C,A,B

Morphisms: Define the morphism

(4.1.9) (A; βA)⊕ (B; βB) (A′; βA′)⊕ (B′; βB′)f ⊕ g

as

A⊕ B A′ ⊕ B′
f⊕g

in C for the following morphisms in C
bi

.

(A; βA) (A′; βA′)

(B; βB) (B′; βB′)

f

g

The Additive Unit: Define the object

(4.1.10) 0 = (0; β0) ∈ Cbi

with β0 defined as the following composite for objects A ∈ C.

(4.1.11)
0⊗ A A⊗ 0

0
λ
●
A

β0
A

ρ−
●

A

The Additive Associativity: Define the morphism

(4.1.12)

[(A; βA)⊕ (B; βB)]⊕ (C; βC)

(A; βA)⊕ [(B; βB)⊕ (C; βC)]

α⊕
(A;βA),(B;βB),(C;βC)

in C
bi

as

(A⊕ B)⊕C A⊕ (B⊕C) ∈ C.
α⊕A,B,C

The Additive Zeros: Define the morphisms

(4.1.13) 0⊕ (A; βA) (A; βA) (A; βA)⊕ 0
λ⊕
(A;βA)

ρ⊕
(A;βA)

in C
bi

as, respectively,

0⊕ A A A⊕ 0 ∈ C.
λ⊕A ρ⊕A



II.116 4. BIMONOIDAL CENTERS

The Additive Symmetry: Define the morphism

(4.1.14) (A; βA)⊕ (B; βB) (B; βB)⊕ (A; βA)
ξ⊕
(A;βA),(B;βB)

in C
bi

as
ξ⊕A,B ∶ A⊕ B B⊕ A ∈ C.

The Multiplicative Zeros: Define the morphisms

(4.1.15) 0⊗ (A; βA) 0 (A; βA)⊗ 0
λ
●

(A;βA)
ρ
●

(A;βA)

in C
bi

as, respectively,

0⊗ A 0 A⊗ 0 ∈ C.
λ
●
A ρ

●
A

The Left Distributivity: Define the morphism

(4.1.16)

(A; βA)⊗ [(B; βB)⊕ (C; βC)]

[(A; βA)⊗ (B; βB)]⊕ [(A; βA)⊗ (C; βC)]

δ
l
(A;βA),(B,βB),(C,βC)

in C
bi

as

A⊗ (B⊕C) (A⊗ B)⊕ (A⊗C) ∈ C.
δl

A,B,C

The Right Distributivity: Define the morphism

(4.1.17)

[(A; βA)⊕ (B; βB)]⊗ (C; βC)

[(A; βA)⊗ (C; βC)]⊕ [(B; βB)⊗ (C; βC)]

δ
r
(A;βA),(B,βB),(C,βC)

in C
bi

as

(A⊕ B)⊗C (A⊗C)⊕ (B⊗C) ∈ C.
δr

A,B,C

This finishes the definition of the bimonoidal Drinfeld center C
bi

. ◇
Explanation 4.1.18. Consider Definition 4.1.2.

(1) C
bi

is a category as in Lemma 1.4.17.
(2) Consider the multiplicative structure (4.1.5).

● ⊗ and 1 = (1; β1) are as in (1.4.6) and (1.4.10), respectively. In the
definitions (1.4.8) of βA⊗B

C and (1.4.11) of β1A, the morphisms α, λ, and
ρ mean, respectively, α⊗, λ⊗, and ρ⊗.
● α⊗, λ⊗, and ρ⊗ are defined as, respectively, α⊗, λ⊗, and ρ⊗ in C using

the underlying objects.
● The braiding ξ⊗(A;βA),− is the A-braiding βA as in (1.4.14).
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However, Theorem 1.4.27 is not enough to conclude that the multiplica-
tive structure (4.1.5) is a braided monoidal category because of the ax-
ioms (4.1.3) and (4.1.4) for an object in C

bi
. These axioms are not in Defi-

nition 1.4.3 of the Drinfeld center of a monoidal category. Therefore, we
still need to check that β1 and βA⊗B, for objects (A; βA) and (B; βB) in C

bi
,

satisfy the axioms (4.1.3) and (4.1.4).
(3) The bimonoidal category C is assumed to be tight for two reasons.

● The axiom (4.1.3) of βA
B⊕C uses the invertibility of δr.

● The definition (4.1.8) of βA⊕B
C uses the invertibility of δl .

(4) In an object (A; βA) ∈ Cbi
, the three axioms (1.4.4), (4.1.3), and (4.1.4) de-

termine the A-braiding of, respectively, a product B⊗C, a sum B⊕C, and
the additive zero 0. The A-braiding of 1 is equal to λ−⊗A ρ⊗A, as shown in
(1.4.18).

(5) The definition (4.1.8) of βA⊕B
C and the axiom (4.1.3) of βA

B⊕C are modeled
after, respectively, the Laplaza axiom (2.1.4) and its variant (2.1.32).

(6) The axiom (4.1.4) of βA
0 and the definition (4.1.11) of β0

A are modeled after,
respectively, the Laplaza axiom (2.1.18) and its variant (2.1.33).

In the sense of the last two points, the only two Laplaza axioms involving ξ⊗,
namely, (2.1.4) and (2.1.18), and their variants (2.1.32) and (2.1.33), are already
incorporated into the definition of the bimonoidal Drinfeld center. The other 22
Laplaza axioms in Definition 2.1.1 will appear in the proofs in the next few sec-
tions. ◇

4.2. The Additive Structure

In this section, we check that the additive structure of the bimonoidal Drinfeld
center C

bi
is a symmetric monoidal category. To check that the additive structure

(Cbi
, ⊕ , 0, α⊕, λ⊕, ρ⊕, ξ⊕)

is a symmetric monoidal category, first we check that (A⊕ B; βA⊕B) in (4.1.7) is a
well-defined object in C

bi
for any two objects (A; βA), (B; βB) ∈ Cbi

.

Lemma 4.2.1. βA⊕B in (4.1.8) satisfies the axiom (1.4.4).
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Proof. For objects C, D ∈ C, the diagram (1.4.4) for βA⊕B is the outer diagram below.

(A⊕ B)(CD) (CD)(A⊕ B)

[(A⊕ B)C]D C[D(A⊕ B)]

[AC⊕ BC]D C[DA⊕DB]

[CA⊕CB]D C[AD⊕ BD]

[C(A⊕ B)]D C[(A⊕ B)D]

A(CD)⊕ B(CD) (CD)A⊕ (CD)B

(AC)D⊕ (BC)D C(DA)⊕C(DB)

(CA)D⊕ (CB)D C(AD)⊕C(BD)

(4.1.8)

(4.1.8) (4.1.8)
(1.4.4)

nat nat

(2.1.9)(2.1.10)

(2.1.11)

βA⊕B
CD

α−⊗

δr1

(βA
C ⊕ βB

C)1

δ−l1

α⊗
1δr

1(βA
D ⊕ βB

D)

1δ−l

α−⊗

βA⊕B
C 1 1βA⊕B

D

δr

βA
CD ⊕ βB

CD

δ−l

α−⊗ ⊕ α−⊗ α−⊗ ⊕ α−⊗

δr

βA
C1⊕ βB

C1 1βA
D ⊕ 1βB

D

δ−l

δr

α⊗ ⊕ α⊗

δ−l

● The top, the left, and the right subdiagrams along the boundary are com-
mutative by the definitions (4.1.8) of, respectively, βA⊕B

C⊗D, βA⊕B
C , and βA⊕B

D .
● The middle hexagon is commutative by the axiom (1.4.4) for βA and βB.
● The two subdiagrams labeled by nat are commutative by the naturality

of δl and δr.
● Three subdiagrams are commutative by the axioms (2.1.9), (2.1.10), and

(2.1.11) in C.

Therefore, βA⊕B satisfies the axiom (1.4.4). □

Lemma 4.2.2. βA⊕B in (4.1.8) satisfies the axiom (4.1.3).
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Proof. For objects C, D ∈ C, the diagram (4.1.3) for βA⊕B is the outer diagram below.

A(C⊕D)⊕ B(C⊕D) (C⊕D)A⊕ (C⊕D)B

(AC⊕ AD)⊕ (BC⊕ BD) (CA⊕DA)⊕ (CB⊕DB)

AC⊕ [AD⊕ (BC⊕ BD)] CA⊕ [DA⊕ (CB⊕DB)]

AC⊕ [(AD⊕ BC)⊕ BD] CA⊕ [(DA⊕CB)⊕DB]

AC⊕ [(BC⊕ AD)⊕ BD] CA⊕ [(CB⊕DA)⊕DB]

AC⊕ [BC⊕ (AD⊕ BD)] CA⊕ [CB⊕ (DA⊕DB)]

(A⊕ B)(C⊕D) (C⊕D)(A⊕ B)

(A⊕ B)C⊕ (A⊕ B)D C(A⊕ B)⊕D(A⊕ B)

(AC⊕ BC)⊕ (AD⊕ BD) (CA⊕CB)⊕ (DA⊕DB)

(4.1.8)

(4.1.3)

nat

(2.1.12) (2.1.12)
(1.3.33)

(4.1.8)

βA⊕B
C⊕D

δl

δr ⊕ δr

(βA
C ⊕ βB

C)⊕ (β
A
D ⊕ βB

D)

δ−l ⊕ δ−l

δ−r

βA⊕B
C ⊕ βA⊕B

D

δr

βA
C⊕D ⊕ βB

C⊕D

δ−l

δl ⊕ δl δr ⊕ δr

(βA
C ⊕ βA

D)⊕ (β
B
C ⊕ βB

D)

α⊕ α⊕

βA
C ⊕ [β

A
D ⊕ (β

B
C ⊕ βB

D)]

1⊕ α−⊕ 1⊕ α−⊕

βA
C ⊕ [(β

A
D ⊕ βB

C)⊕ βB
D]

1⊕ (ξ⊕ ⊕ 1) 1⊕ (ξ⊕ ⊕ 1)

βA
C ⊕ [(β

B
C ⊕ βA

D)⊕ βB
D]

1⊕ α⊕ 1⊕ α⊕

α⊕

βA
C ⊕ [β

B
C ⊕ (β

A
D ⊕ βB

D)]

α−⊕

● The top and the bottom subdiagrams along the boundary are commuta-
tive by the definitions (4.1.8) of βA⊕B

C⊕D, βA⊕B
C , and βA⊕B

D .
● The left vertical trapezoid is commutative by the axiom (2.1.12) in C.
● The right vertical trapezoid is commutative by the axiom (2.1.12) and the

symmetry axiom (1.3.33) for the additive symmetry ξ⊕.
● In the middle column, the following statements hold.

– The top rectangle is commutative by the axiom (4.1.3) for βA
C⊕D and

βB
C⊕D.

– The rectangle labeled by nat is commutative by the naturality of ξ⊕.
– The other four unlabeled subdiagrams are commutative by the nat-

urality of α⊕.

Therefore, βA⊕B satisfies the axiom (4.1.3). □

Lemma 4.2.3. (A⊕ B; βA⊕B) in (4.1.7) is an object in C
bi

.

Proof. βA⊕B in (4.1.8) is a natural isomorphism because βA, δl , and δr are natural
isomorphisms. By Lemmas 4.2.1 and 4.2.2, respectively, βA⊕B satisfies the axioms
(1.4.4) and (4.1.3). It remains to check the axiom (4.1.4) for βA⊕B, which is the outer
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diagram below.

A0⊕ B0 0A⊕ 0B

0⊕ 0

(A⊕ B)0 0(A⊕ B)

0

(4.1.8)

(4.1.4)
(2.1.15) (2.1.14)

βA⊕B
0

ρ
●
A⊕B λ−

●
A⊕B

δr

βA
0 ⊕ βB

0

δ−l

ρ
●
A ⊕ ρ

●
B λ−

●
A ⊕ λ−

●
B

λ⊕0

● The top trapezoid is commutative by the definition (4.1.8) of βA⊕B
0 .

● The middle triangle is commutative by the axiom (4.1.4) for βA
0 and βB

0.
● The other two subdiagrams are commutative by the axioms (2.1.14) and

(2.1.15) in C.

Therefore, βA⊕B satisfies the axiom (4.1.4). □

Lemma 4.2.4. In (4.1.6),

−⊕− ∶ Cbi ×Cbi
C

bi

is a functor.

Proof. Lemma 4.2.3 shows that ⊕ is well defined on objects. To show that it is well
defined on morphisms, we must show that f ⊕ g in (4.1.9) is a morphism in C

bi
for

morphisms f , g ∈ Cbi
. In other words, we must check that f ⊕ g satisfies the axiom

(1.4.5) for each object C ∈ C, which is the outer diagram below.

(A⊕ B)C (A′ ⊕ B′)C

AC⊕ BC A′C⊕ B′C

CA⊕CB CA′ ⊕CB′

C(A⊕ B) C(A′ ⊕ B′)

βA⊕B
C βA′⊕B′

C

δr

βA
C ⊕ βB

C

δ−l

δr

βA′

C ⊕ βB′

C

δ−l

( f ⊕ g)1

f 1⊕ g1

1 f ⊕ 1g

1( f ⊕ g)

(4.1.8) (4.1.8)

nat

(1.4.5)

nat

● The left and the right rectangles are commutative by (4.1.8).
● In the middle column, the following statements hold.

– The top and the bottom rectangles are commutative by the naturality
of, respectively, δr and δl .

– The middle rectangle is commutative by the axiom (1.4.5) for f and
g.

Therefore, f ⊕ g is a well-defined morphism in C
bi

.
The fact that ⊕ preserves identity morphisms and composition follows from

the corresponding properties of ⊕ in C. □

Lemma 4.2.5. 0 = (0; β0) in (4.1.10) is an object in C
bi

.
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Proof. By definition (4.1.11), β0 = ρ− ●λ ● is a natural isomorphism because λ ● and ρ ●

are natural isomorphisms. It remains to check the axioms (1.4.4), (4.1.3), and (4.1.4)
for β0. In the commutative diagrams below, B, C ∈ C are objects, and unlabeled
regions are commutative by the definition β0 = ρ− ●λ ●.

The following commutative diagram proves the axiom (1.4.4) for β0.

0(BC)

0

(BC)0

(0B)C B(C0)

0C B0

(B0)C B(0C)

β0
BC

α−⊗

β0
B1

α⊗

1β0
C

α−⊗λ
●

ρ−
●

λ
●
1

ρ−
●
1 1λ

●

1ρ−
●λ

● ρ−
●

(2.1.21) (2.1.19)

(2.1.20)

The following commutative diagram proves the axiom (4.1.3) for β0.

0(B⊕C) 0 (B⊕C)0

0B⊕ 0C 0⊕ 0 B0⊕C0

λ
● ρ−

●

λ
● ⊕ λ

● ρ−
● ⊕ ρ−

●
δl λ−⊕ δ−r

β0
B⊕C

β0
B ⊕ β0

C

(2.1.14) (2.1.15)

The axiom (4.1.4) follows from the definition (4.1.11) and the axiom (2.1.13):

β0
0 = ρ−

●
0 λ

●
0 = λ−

●
0 ρ

●
0.

Therefore, 0 = (0; β0) is a well-defined object in C
bi

. □

Lemma 4.2.6. The additive structure in Definition 4.1.2

(Cbi
, ⊕ , 0, α⊕, λ⊕, ρ⊕, ξ⊕)

is a symmetric monoidal category.

Proof. By Lemmas 4.2.4 and 4.2.5, ⊕ is a functor, and 0 is a well-defined object
in C

bi
. Once we check that α⊕, λ⊕, ρ⊕, and ξ⊕ are well-defined natural isomor-

phisms, the symmetric monoidal category axioms for the additive structure of C
bi

will follow from the corresponding properties of C.
Since α⊕, λ⊕, ρ⊕, and ξ⊕ in C are natural isomorphisms, to show that α⊕, λ⊕,

ρ⊕, and ξ⊕ are natural isomorphisms, it suffices to check that, in each case, each
component is a well-defined morphism in C

bi
. In the following diagrams in C, each

unlabeled region is commutative by a combination of

● the definition (4.1.8) of βA⊕B or the definition (4.1.11) of β0,
● the functoriality of ⊕ in C, and
● the naturality of α⊕, λ⊕, ρ⊕, or ξ⊕ in C.
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The following four commutative diagrams prove the axiom (1.4.5) of a morphism
in C

bi
for α⊕ in (4.1.12), λ⊕ and ρ⊕ in (4.1.13), and ξ⊕ in (4.1.14).

[(A⊕ B)⊕C]D [A⊕ (B⊕C)]D

(A⊕ B)D⊕CD AD⊕ (B⊕C)D

(AD⊕ BD)⊕CD AD⊕ (BD⊕CD)

(DA⊕DB)⊕DC DA⊕ (DB⊕DC)

D(A⊕ B)⊕DC DA⊕D(B⊕C)

D[(A⊕ B)⊕C] D[A⊕ (B⊕C)]

δr

δr ⊕ 1

(βA
D ⊕ βB

D)⊕ βC
D

δ−l ⊕ 1

δ−l

1α⊕

α⊕1

δr

1⊕ δr

βA
D ⊕ (β

B
D ⊕ βC

D)

1⊕ δ−l

δ−l

α⊕

α⊕

β(A⊕B)⊕C
D

βA⊕B
D ⊕ βC

D

βA⊕(B⊕C)
D

βA
D ⊕ βB⊕C

D

(2.1.7)

(2.1.8)

(0⊕ A)B AB

0B⊕ AB

0⊕ AB 0⊕ AB AB

B0⊕ AB

B0⊕ BA 0⊕ BA

B(0⊕ A) BA

δr

λ
● ⊕ 1

ρ−
● ⊕ 1

1⊕ βA
B

δ−l

1λ⊕

λ⊕1

βA
B

λ⊕

1⊕ βA
B

λ⊕

ρ
● ⊕ 1

β0⊕A
B

β0
B ⊕ 1

(2.1.23)

(2.1.22)

(A⊕ 0)B AB

AB⊕ 0B

AB⊕ 0 AB⊕ 0 AB

AB⊕ B0

BA⊕ B0 BA⊕ 0

B(A⊕ 0) BA

δr

1⊕ λ
●

1⊕ ρ−
●

βA
B ⊕ 1

δ−l

1ρ⊕

ρ⊕1

βA
B

ρ⊕

βA
B ⊕ 1

ρ⊕

1⊕ ρ
●

βA⊕0

B

1⊕ β0
B

(2.1.25)

(2.1.24)

(A⊕ B)C (B⊕ A)C

AC⊕ BC BC⊕ AC

CA⊕CB CB⊕CA

C(A⊕ B) C(B⊕ A)

βA⊕B
C βB⊕A

C

δr

βA
C ⊕ βB

C

δ−l

δr

βB
C ⊕ βA

C

δ−l

ξ⊕1

ξ⊕

ξ⊕

1ξ⊕

(2.1.6)

(2.1.5)

Therefore, each component of each of α⊕, λ⊕, ρ⊕, and ξ⊕ is a morphism in C
bi

. □
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4.3. The Multiplicative Structure

In this section, we check that the multiplicative structure of the bimonoidal
Drinfeld center C

bi
is a braided monoidal category. Recall that the multiplicative

structure (4.1.5)
(⊗ ,1, α⊗, λ⊗, ρ⊗, ξ⊗)

in C
bi

is as in Definition 1.4.3 using the multiplicative structure (⊗,1, α⊗, λ⊗, ρ⊗).
We first check that

−⊗− ∶ Cbi ×Cbi
C

bi

is well defined on objects.

Lemma 4.3.1. For objects (A; βA), (B; βB) ∈ Cbi
,

(A⊗ B; βA⊗B)

in (1.4.7) is an object in C
bi

.

Proof. In Lemma 1.4.20, we observed that
● βA⊗B in (1.4.8) is a natural isomorphism, and
● βA⊗B satisfies the axiom (1.4.4).

The following two commutative diagrams verify the other two axioms (4.1.3) and
(4.1.4) for βA⊗B. The unlabeled regions are commutative by a combination of the
functoriality of ⊕, the definition (1.4.8) of βA⊗B, and the naturality of δl or δr.

(AB)(C⊕D) A[B(C⊕D)] A[(C⊕D)B] [A(C⊕D)]B

(AB)C⊕ (AB)D A(BC⊕ BD) (AC⊕ AD)B [(C⊕D)A]B

A(BC)⊕ A(BD) A(CB⊕DB) (CA⊕DA)B (C⊕D)(AB)

A(CB)⊕ A(DB) (AC)B⊕ (AD)B (CA)B⊕ (DA)B C(AB)⊕D(AB)

δl

α⊗ ⊕ α⊗

1βB
C ⊕ 1βB

D

α−⊗ ⊕ α−⊗ βA
C1⊕ βA

D1 α⊗ ⊕ α⊗

δ−r

βAB
C ⊕ βAB

D

α⊗ 1βB
C⊕D α−⊗

βA
C⊕D1

α⊗

βAB
C⊕D

1δl

δl

1(βB
C ⊕ βB

D)

1δr

δl

δl1

δr

(βA
C ⊕ βA

D)1
δr1

δr

(2.1.9)

(2.1.11)

(2.1.10)

(4.1.3)

(4.1.3)

(AB)0 A(B0) A(0B)

(A0)B

0 0(AB) (0A)B

0

0

A0

0B

ρ
●

λ−
●

α⊗ 1βB
0

α−⊗

βA
01

α⊗

βAB
0

1ρ
●

1λ−
●

ρ
●

ρ
●
1

λ−
●
1

λ
●

(2.1.19)

(2.1.20)

(2.1.21)

(4.1.4)

(4.1.4)

Therefore, (A⊗ B; βA⊗B) in (1.4.7) is an object in C
bi

. □
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Lemma 4.3.2. 1 = (1; β1) in (1.4.10) is an object in C
bi

.

Proof. In Lemma 1.4.23, we observed that

● β1 = ρ−⊗λ⊗ in (1.4.11) is a natural isomorphism, and
● β1 satisfies the axiom (1.4.4).

The following two commutative diagrams verify the other two axioms (4.1.3) and
(4.1.4) for β1, with the unlabeled regions commutative by the definition β1 =
ρ−⊗λ⊗ and the functoriality of ⊕.

1(A⊕ B) A⊕ B (A⊕ B)1

1A⊕1B A⊕ B A1⊕ B1

δl

λ⊗ ⊕ λ⊗ ρ−⊗ ⊕ ρ−⊗

δ−r

β1A ⊕ β1B

λ⊗ ρ−⊗

β1A⊕B

(2.1.26) (2.1.27)

1⊗ 0 0 0⊗1

0
ρ
●
1 λ−

●
1

λ⊗0 ρ−⊗0

β10

(2.1.17) (2.1.16)

Therefore, 1 = (1; β1) in (1.4.10) is an object in C
bi

. □

Lemma 4.3.3. The multiplicative structure

(Cbi
, ⊗ ,1, α⊗, λ⊗, ρ⊗, ξ⊗)

in Definition 4.1.2 is a braided monoidal category.

Proof. By Lemmas 1.4.21 and 4.3.1, ⊗ is well defined. It preserves identity mor-
phisms and composition by the corresponding properties of ⊗ in C. Lemma 4.3.2
shows that 1 is an object in C

bi
. Lemmas 1.4.24 through 1.4.26 show that α⊗, λ⊗,

ρ⊗, and ξ⊗ are natural isomorphisms.
The unity axiom (1.3.2) and the pentagon axiom (1.3.3) for the data

(Cbi
, ⊗ ,1, α⊗, λ⊗, ρ⊗)

follow from the corresponding properties of the multiplicative structure of C. The
left and the right hexagon diagrams (1.3.17) for (Cbi

, ξ⊗) are commutative by, re-
spectively, the axiom (1.4.4) for βA

B⊗C and the definition (1.4.8) of βA⊗B
C . □

4.4. The Multiplicative Zeros and Distributivity

In this section, we finish the proof that the bimonoidal Drinfeld center C
bi

is
a tight braided bimonoidal category. First we check that the multiplicative zeros
and the distributivity morphisms are natural isomorphisms.

The Multiplicative Zeros.

Lemma 4.4.1. In (4.1.15),

λ
●
∶ 0⊗ − 0 and ρ

● ∶ − ⊗ 0 0

are natural isomorphisms.
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Proof. Since λ ● and ρ ● in C are natural isomorphisms, it suffices to check that each
component of each of λ

●
and ρ

● is a morphism in C
bi

. The following two com-
mutative diagrams prove the axiom (1.4.5) for each component of λ

●
and ρ

●. The
unlabeled regions are commutative by a combination of

● the definition (1.4.8) of βA⊗B or the definition (4.1.11) of β0,
● the functoriality of ⊗ in C, and
● the naturality of λ ● or ρ ● in C.

(0A)B 0B

0(AB) 0

0(BA) 0

(0B)A

0A 0

(B0)A

B(0A) B0

α⊗

1βA
B

α−⊗

λ
●
1

ρ−
●
1

α⊗

1λ
●

β0A
B

β0
B1

λ
●
1

λ
●

ρ−
●

β0
B

λ
●

λ
●

λ
●

(2.1.21)

(2.1.21)

(2.1.20)

(A0)B 0B

A(0B)

A0 0

A(B0)

(AB)0 0

(BA)0 0

B(A0) B0

α⊗

1λ
●

1ρ−
●

α−⊗

βA
B1

α⊗

1ρ
●

βA0
B

1β0
B

ρ
●
1

λ
●

ρ−
●

β0
B

ρ
●

ρ
●

ρ
●

(2.1.20)

(2.1.19)

(2.1.19)

Therefore, λ
●

and ρ
● are natural isomorphisms. □

Distributivity.

Lemma 4.4.2. δ
l

in (4.1.16) and δ
r

in (4.1.17) are natural isomorphisms.
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Proof. The following two commutative diagrams prove the axiom (1.4.5) for each

component of δ
l

and δ
r
.

[A(B⊕C)]D (AB⊕ AC)D

A[(B⊕C)D] (AB)D⊕ (AC)D

A(BD⊕CD) A(BD)⊕ A(CD)

A(DB⊕DC) A(DB)⊕ A(DC)

A[D(B⊕C)] (AD)B⊕ (AD)C

(AD)(B⊕C) (DA)B⊕ (DA)C

(DA)(B⊕C) D(AB)⊕D(AC)

D[A(B⊕C)] D(AB⊕ AC)

α⊗

1δr

1(βB
D ⊕ βC

D)

1δ−l

α−⊗

βA
D1

α⊗

1δl

βA(B⊕C)
D

1βB⊕C
D

δl1

δr

α⊗ ⊕ α⊗

1βB
D ⊕ 1βC

D

α−⊗ ⊕ α−⊗

βA
D1⊕ βA

D1

α⊗ ⊕ α⊗

δ−l

βAB⊕AC
D

βAB
D ⊕ βAC

D

δl

δl

δl

δl

(2.1.11)

(2.1.9)

(2.1.9)

[(A⊕ B)C]D (AC⊕ BC)D

(A⊕ B)(CD) (AC)D⊕ (BC)D

(A⊕ B)(DC) A(CD)⊕ B(CD)

[(A⊕ B)D]C A(DC)⊕ B(DC)

(AD⊕ BD)C (AD)C⊕ (BD)C

(DA⊕DB)C (DA)C⊕ (DB)C

[D(A⊕ B)]C D(AC)⊕D(BC)

D[(A⊕ B)C] D(AC⊕ BC)

α⊗

1βC
D

α−⊗

δr1

(βA
D ⊕ βB

D)1

δ−l1

α⊗

1δr

β(A⊕B)C
D

βA⊕B
D 1

δr1

δr

α⊗ ⊕ α⊗

1βC
D ⊕ 1βC

D

α−⊗ ⊕ α−⊗

βA
D1⊕ βB

D1

α⊗ ⊕ α⊗

δ−l

βAC⊕BC
D

βAC
D ⊕ βBC

D

δr

δr

δr

δr

(2.1.10)

(2.1.10)

(2.1.11)

In the above diagrams, the unlabeled regions are commutative by a combination
of

● the definition (1.4.8) of βA⊗B or the definition (4.1.8) of βA⊕B,
● the functoriality of ⊗ in C, and
● the naturality of δl or δr in C.

Since δl and δr in C are natural isomorphisms, it follows that δ
l

and δ
r

are natural
isomorphisms. □

The Main Result. Recall from Definitions 2.1.1 and 2.1.29 the notions of a
tight bimonoidal category and a tight braided bimonoidal category. We are now
ready for the main result of this chapter.

Theorem 4.4.3. For each tight bimonoidal category C, the bimonoidal Drinfeld center C
bi

in Definition 4.1.2 is a tight braided bimonoidal category.

Proof. We already have the following results.

● Lemma 4.2.6 shows that the additive structure of C
bi

is a symmetric mon-
oidal category.
● Lemma 4.3.3 shows that the multiplicative structure of C

bi
is a braided

monoidal category.

● Lemmas 4.4.1 and 4.4.2 show that λ
●
, ρ

●, δ
l
, and δ

r
are natural isomor-

phisms.

The braiding ξ⊗ in (1.4.14) is the only structure morphism in C
bi

that is not defined
by its counterpart in C. Among the 12 Laplaza axioms in Definition 2.1.29, only
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(2.1.4) and (2.1.18) involve the braiding. Therefore, the other 10 Laplaza axioms
there hold in C

bi
as they do in C.

Consider the remaining 4 axioms.

● (2.1.4) holds in C
bi

by the definition (4.1.8) of βA⊕B.
● (2.1.18) holds in C

bi
by the axiom (4.1.4) for βA

0.
● (2.1.32) holds in C

bi
by the axiom (4.1.3) for βA

B⊕C.

● (2.1.33) holds in C
bi

by the definition (4.1.11) of β0.

Therefore, C
bi

is a tight braided bimonoidal category. □

Example 4.4.4 (Abelian Categories with a Monoidal Structure). Suppose C is
an abelian category equipped with a compatible monoidal structure as in The-
orem 2.5.2. Then C is also a tight bimonoidal category. By Theorem 4.4.3, its
bimonoidal Drinfeld center is a tight braided bimonoidal category. ◇

4.5. The Bimonoidal Symmetric Center

Recall from Definition 1.5.1 that the symmetric center Csym of a braided mon-
oidal category C is the full subcategory consisting of objects A ∈ C satisfying the
symmetry axiom in the sense of (1.5.2). In Proposition 1.5.3, we observed that
the symmetric center Csym inherits from C the structure of a symmetric monoidal
category. This section contains the bimonoidal analogue of that result.

Definition 4.5.1. For a braided bimonoidal category C as in Definition 2.1.29, the
bimonoidal symmetric center of C is the full subcategory Csym consisting of objects
A ∈ C such that the symmetry axiom

(4.5.2) ξ⊗−,Aξ⊗A,− = 1 ∶ A⊗− A⊗−

holds. ◇
Theorem 4.5.3. For each braided bimonoidal category C as in Definition 2.1.29, the bi-
monoidal symmetric center Csym inherits from C the structure of a symmetric bimonoidal
category.

Proof. First we check that the additive structure of C restricts to one on Csym. For
each object A ∈ C, the following diagram in C is commutative.

0A A0

0 0A

λ
●
A

ξ⊗0,A

ξ⊗A,0

λ
●
A

ρ
●
A(2.1.33)

(2.1.18)

The above commutative diagram and the invertibility of λ ● imply the symmetry
axiom (4.5.2) for 0, that is,

ξ⊗A,0ξ⊗0,A = 1 ∶ 0⊗ A 0⊗ A,

so 0 ∈ Csym.
To check that Csym is closed under ⊕, suppose A, B ∈ Csym, so each of them

satisfies the symmetry axiom (4.5.2). For each object C ∈ C, the following diagram
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in C is commutative.

(A⊕ B)C C(A⊕ B) (A⊕ B)C

AC⊕ BC CA⊕CB AC⊕ BC

ξ⊗A⊕B,C ξ⊗C,A⊕B

ξ⊗A,C ⊕ ξ⊗B,C ξ⊗C,A ⊕ ξ⊗C,B

1

δr
δl δr

(2.1.4) (2.1.32)

(4.5.2)

The above commutative diagram and the fact that δr is a natural monomorphism
imply the symmetry axiom (4.5.2) for A⊕ B, that is,

ξ⊗C,A⊕Bξ⊗A⊕B,C = 1 ∶ (A⊕ B)C (A⊕ B)C,

so A⊕ B ∈ Csym. Therefore, restricting (⊕, α⊕, λ⊕, ρ⊕, ξ⊕) to Csym, the additive struc-
ture

(Csym,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
satisfies all the symmetric monoidal category axioms as they do in C.

Since the multiplicative structure of C is a braided monoidal category, Propo-
sition 1.5.3 shows that the multiplicative structure

(Csym,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗)

is a symmetric monoidal category. Equipped with the restrictions of δl , δr, λ ●, and
ρ ●, Csym satisfies all 14 axioms of a braided bimonoidal category in Definition 2.1.29
as they do in C. Moreover, since the braiding ξ⊗ in Csym satisfies the symmetry
axiom (4.5.2), Csym is a symmetric bimonoidal category by Corollary 2.2.3. □

Example 4.5.4 (Abelian Categories with a Braiding). As in Convention 2.4.1, sup-
pose C is an abelian category equipped with a compatible braided monoidal struc-
ture. Theorem 2.4.22 shows that C is a tight braided bimonoidal category. By
Theorem 4.5.3, its bimonoidal symmetric center is a tight symmetric bimonoidal
category. ◇
Example 4.5.5 (Anyonic Quantum Groups). Recall from Example 3.1.33 that the
group bialgebraCZn of the cyclic group Zn of order n is a braided bialgebra when
equipped with the nonstandard R-matrix R in (3.1.34). As discussed in Exam-
ple 3.2.20, the category Mod(CZn) of left CZn-modules is a tight braided bimon-
oidal category. By Theorem 4.5.3, its bimonoidal symmetric center is a tight sym-
metric bimonoidal category. ◇
Example 4.5.6 (Fibonacci Anyons). By Theorem 3.4.13, the Fibonacci anyons F any

form a tight braided bimonoidal category. By Theorem 4.5.3, its bimonoidal sym-
metric center is a tight symmetric bimonoidal category. ◇
Example 4.5.7 (Ising Anyons). Theorem 3.6.14 shows that the Ising anyons Iany
form a tight braided bimonoidal category. By Theorem 4.5.3, its bimonoidal sym-
metric center is a tight symmetric bimonoidal category. ◇



CHAPTER 5

Coherence of Braided Bimonoidal Categories

In this chapter, we discuss the first coherence theorem for braided bimonoidal
categories as in Definition 2.1.29. Using terminology that will be introduced in
this chapter, the main Theorem 5.4.4 states that, for each braided bimonoidal cate-
gory C that satisfies a monomorphism assumption, any two parallel paths with the
same braided distortion have the same value in C. The monomorphism assump-
tion is automatically satisfied if C is tight. Theorem 5.4.4 is the braided version
of Theorem I.4.4.3, which is the analogous statement for a symmetric bimonoi-
dal category. It is also a bimonoidal analogue of the Joyal-Street Coherence Theo-
rem 1.6.3 for braided monoidal categories. For open questions related to coherence
of braided bimonoidal categories, see Questions III.A.1.6 and III.A.5.6.

The Blass-Gurevich Conjecture. Recall from Explanation 2.1.37 that BD cat-
egories in the sense of [BG20a] are our tight braided bimonoidal categories, up
to some presentational differences. In [BG20a, Conjecture 3], Blass and Gurevich
conjectured that there should be a coherence theorem for BD categories. The main
Theorem 5.4.4 of this chapter proves the Blass-Gurevich Conjecture in the form
of commutative formal diagrams in braided bimonoidal categories that satisfy a
monomorphism assumption.

The Coherence Theorem 5.4.4 will play an important role in later chapters.
● Using Theorem 5.4.4, in Theorems 6.3.6 and 6.3.7, we prove the Blass-

Gurevich Conjecture in the form of strictification results for tight braided
bimonoidal categories. These theorems are the bimonoidal analogues of
the Strictification Theorem 1.6.5 for braided monoidal categories. They
are also the braided analogues of Theorems I.5.4.6 and I.5.4.7, which are
strictification results for tight symmetric bimonoidal categories.
● In Chapter 7, we use Theorem 5.4.4 to prove a braided version of Baez’s

Conjecture (Theorem I.7.8.1).
● In Chapter 8, we use Theorem 5.4.4 to prove a braided version of Theo-

rem I.8.12.9, which states that MatC is a monoidal bicategory if C is a tight
braided bimonoidal category.

In the rest of this introduction, we motivate Theorem 5.4.4 and outline the rest of
this chapter.

Motivation. To motivate Theorem 5.4.4, first recall that the Braided Coher-
ence Theorem 1.6.3 states that two parallel braided canonical maps in a braided
monoidal category are equal if their underlying braids are equal. In particular,
the value of a braided canonical map is not determined by the domain and the
codomain, unlike the Coherence Theorem I.1.3.8 for symmetric monoidal categor-
ies. Instead, the value of a braided canonical map in a braided monoidal category

II.129
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is determined by how it braids the tensor factors. This suggests that a coherence
theorem for braided bimonoidal categories in the form of commutative formal di-
agrams should not be simply about the domain and the codomain. Therefore, we
are not seeking a braided analogue of Laplaza’s First Coherence Theorem I.3.9.1
for symmetric bimonoidal categories.

In a braided bimonoidal category C (Definition 2.1.29), the multiplicative
structure (C,⊗) is a braided monoidal category, and the additive structure (C,⊕)
is a symmetric monoidal category. Using the distributivity morphisms δl and δr, a
formal expression involving the sum ⊕ and the product ⊗ may be expanded to a
sum of monomials as follows.

(5.0.1) a =
m
⊕
i=1
(ai

1 ⊗⋯⊗ ai
ri
)

Here the sum has some additive bracketing, and each monomial

ai = ai
1 ⊗⋯⊗ ai

ri

for 1 ≤ i ≤ m has some multiplicative bracketing. Similar to the Coherence Theo-
rem 1.6.3 for braided monoidal categories, a bimonoidal analogue of the underly-
ing braid of a braided canonical map should involve braiding the ri tensor factors
in each monomial ai in a. So it involves the product

Br1 ×⋯× Brm

of m braid groups as in Definition 1.1.1. Moreover, we also need to know how a
path permutes the set of monomials {a1, . . . , am} in a. So a bimonoidal analogue of
an underlying braid should also involve the symmetric group Σm. This leads to the
braided analogue Dbr of the distortion category D in Definition I.4.2.1. The latter
is the main ingredient in formulating Laplaza’s Second Coherence Theorem I.4.4.3
for symmetric bimonoidal categories.

As in the distortion category D, the braided distortion category Dbr has as its
objects finite sequences

r = (r1, . . . , rm)
of nonnegative integers. The length m of this sequence records the number of
monomials in a. The ith entry ri ≥ 0 records the number of tensor factors in the ith
monomial ai in a. Unlike the distortion category D, morphisms r s ∈ Dbr are
finite sequences

σ = (σ; σ1, . . . , σm) ∈ Σm × Br1 ×⋯× Brm

such that σr = s. In terms of the polynomial a in (5.0.1), σ first braids the tensor
factors in each monomial ai via the braid σi ∈ Bri , which is called the ith braid com-
ponent in σ. Then it permutes the m resulting monomials using the permutation
σ ∈ Σm, which is called the permutation component in σ. The rest of the structure of
Dbr also needs to be suitably redefined relative to D because of the presence of the
braid groups.

The graph theoretic notion of a path in Gr(X) in Section I.3.1 is the bimonoidal
analogue of a canonical map in a monoidal category in Section 1.6. The bimonoidal
analogue of the underlying braid of a braided canonical map is the braided distor-
tion of a path in Gr(X). The braided distortion of a path is its image in the braided
distortion category Dbr, which will be defined precisely in Definition 5.3.15. The
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bimonoidal analogue of two parallel braided canonical maps having the same un-
derlying braids consists of two parallel paths in Gr(X) with the same braided dis-
tortion. Under this assumption, Theorem 5.4.4 states that these two paths have
the same value in the given braided bimonoidal category C, as long as it satisfies
a monomorphism condition.

Proof Strategy. Since Theorem 5.4.4 is the braided version of the Second Co-
herence Theorem I.4.4.3 for symmetric bimonoidal categories, we will reuse parts
of the proof of the latter. The proof of Theorem I.4.4.3 uses the same five reduc-
tion steps as in the proof of the First Coherence Theorem I.3.9.1 for symmetric
bimonoidal categories, which involve many concepts and preliminary results in
Chapter I.3. The proof of Theorem 5.4.4 also uses these five reduction steps, the
third of which requires the monomorphism assumption on C. In the proof of The-
orem 5.4.4, we will explain in detail how the concepts and results in Chapter I.3
are adapted to the braided context.

In the proof of Theorem I.4.4.3, after the five reduction steps, we are reduced
to dealing with polynomials as in (5.0.1). To finish the proof, the Coherence Theo-
rem I.1.3.8 for symmetric monoidal categories is used twice, once for the additive
structure applied to the set of monomials and once for the multiplicative structure
applied to the tensor factors in each monomial. Simiarly, for Theorem 5.4.4, af-
ter the five reduction steps, we use Theorem I.1.3.8 for the additive structure and
the Braided Coherence Theorem 1.6.3 for the multiplicative structure. This step is
carried out in Lemma 5.4.2.

Organization. An outline of the rest of this chapter follows.
In Section 5.1, we introduce left permutative braided categories, which are also

called left permbraided categories, and the right analogue. They are the braided
analogues of left and right bipermutative categories in Section I.2.5. By Defini-
tion 5.1.2 and Proposition 5.1.10, a left permbraided category is a tight braided
bimonoidal category that satisfies the following conditions.

● Its additive structure is a permutative category.
● Its multiplicative structure is a braided strict monoidal category.
● The structure morphisms λ ●, ρ ●, δl , ξ⊗−,0, and ξ⊗0,− are identities.

In a right permbraided category, the right distributivity morphism δr, instead of
δl , is the identity. Left and right permbraided categories serve two purposes. First,
the braided distortion categoryDbr is a left permbraided category. Second, in Theo-
rems 6.3.6 and 6.3.7, we prove strictification results from tight braided bimonoidal
categories to right and left permbraided categories.

In Section 5.2, as the first step in formulating Theorem 5.4.4, we define the
braided distortion category Dbr. The main observation in this section is Theo-
rem 5.2.30, which states that Dbr is a left permbraided category. This is the braided
analogue of Theorem I.4.2.29, which states that the distortion category D is a left
bipermutative category. In particular, Dbr is a tight braided bimonoidal category
and satisfies all 24 Laplaza axioms in Definition 2.1.1. Moreover, its only noniden-
tity structure morphisms are the additive symmetry ξ⊕, the braiding ξ⊗, and the
right distributivity morphism δr. Among these three structure morphisms, only
the braiding ξ⊗ in (5.2.18) involves nonidentity braid components, which are the
elementary block braids in (1.2.4).
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In Section 5.3, as the next step in formulating Theorem 5.4.4, we define the
braided distortion of a path in Gr(X). For the reader’s convenience, we first recall
some relevant graph theoretic definitions from Chapter I.3. For a path in Gr(X),
its braided distortion is defined as its value in the braided distortion category Dbr

under the graph morphism ϑ ∶ Gr(X) Dbr in (5.3.17).
In Section 5.4, we first prove Lemma 5.4.2, which is a preliminary case of The-

orem 5.4.4, with assumptions not only on the paths but also on the domain and
the codomain. The proof of Theorem 5.4.4 involves reduction steps that reduce
to the setting of Lemma 5.4.2. The monomorphism assumption in Theorem 5.4.4
is automatically satisfied if C is tight, which means that δl and δr are natural iso-
morphisms, not just monomorphisms. After listing some examples, we finish this
section with an explanation of why the First Coherence Theorem I.3.9.1 for sym-
metric bimonoidal categories does not have a braided analogue.

Section 5.5 provides a conceptual description of the braided distortion cate-
gory as a Grothendieck construction over the finite ordinal category Σ. This obser-
vation is a repackaging of the definition of Dbr, but it provides a better perspective
about the relationship between Dbr and Σ. It is the braided version of Proposi-
tions I.4.6.5 and I.4.6.7 for, respectively, the distortion category D and the additive
distortion category Dad.

Convention 2.1.34 is still in effect, so ⊗ is sometimes abbreviated to concate-
nation.

Reading Guide.

(1) Read Definition 5.1.2 and the statements of Propositions 5.1.8 and 5.1.10
for left permbraided categories.

(2) Read Definition 5.1.11 and the statements of Propositions 5.1.17 and 5.1.19
for right permbraided categories.

(3) Read Definitions 5.2.2, 5.2.8, 5.2.14, and 5.2.25 and the statement of Theo-
rem 5.2.30 for the braided distortion category Dbr.

(4) Read Definition 5.3.15 for the braided distortion of a path.
(5) Read Convention 5.4.1 and Theorem 5.4.4 for the coherence of braided

bimonoidal categories.
(6) Go back and read the rest of this chapter.

5.1. Permutative Braided Categories

In this section, we define left and right permutative braided categories and
observe that they are tight braided bimonoidal categories. The braided distortion
category in Section 5.2 is an example of a left permutative braided category.

Motivation 5.1.1. The Coherence Theorem 5.4.4 for braided bimonoidal categor-
ies is formulated in terms of the braided analogue Dbr of the distortion category
D in Section I.4.2. In Theorem I.4.2.29, we observed that D is a left bipermutative
category as in Definition I.2.5.11. In a left bipermutative category, the additive
structure and the multiplicative structure are both permutative categories. More-
over, the multiplicative zeros and the left distributivity morphisms are the iden-
tities, and it is assumed to satisfy a small list of axioms. In Proposition I.2.5.16,
we checked that each left bipermutative category is a tight symmetric bimonoidal
category.



5.1. PERMUTATIVE BRAIDED CATEGORIES II.133

In the braided distortion categoryDbr, the multiplicative structure is a braided
strict monoidal category. There should be an analogue of a left bipermutative cate-
gory with the multiplicative structure given by a braided strict monoidal category,
of which Dbr is an example. We make this concept precise below and observe that
it is a tight braided bimonoidal category as in Definition 2.1.29. ◇

Left Permutative Braided Categories.

Definition 5.1.2. A left permutative braided category, or a left permbraided category for
short, is a tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (λ ●, ρ
●), (δl , δr))

consisting of the following data.

● (C,⊕, 0, ξ⊕) is a permutative category.
● (C,⊗,1, ξ⊗) is a braided strict monoidal category.
● λ ●, ρ ●, δl , and δr are natural transformations as in (2.1.30) and (2.1.31).

The above data are required to satisfy the following four conditions.

(1) λ ● and ρ ● are both equal to the identity natural transformation of the
constant functor C C at 0.

(2) δl is the identity natural transformation.
(3) For each object A, the morphisms

A⊗ 0 0⊗ A
ξ⊗A,0

ξ⊗0,A

are both equal to the identity morphism of 0.
(4) The axioms (2.1.4), (2.1.5), (2.1.12), and (2.1.32) are satisfied.

This finishes the definition of a left permbraided category. ◇
Explanation 5.1.3. In Definition 5.1.2, suppose A, B, C, and D are objects in C.

● The axiom (2.1.4) is the following commutative diagram.

(5.1.4)

(A⊕ B)C AC⊕ BC

C(A⊕ B) CA⊕CB

δr
A,B,C

ξ⊗A⊕B,C
ξ⊗A,C⊕ξ⊗B,C

δl
C,A,B
=

Since the braiding ξ⊗ is a natural isomorphism, it follows that δr is also a
natural isomorphism.
● The axiom (2.1.32) is the following commutative diagram.

(5.1.5)

C(A⊕ B) CA⊕CB

(A⊕ B)C AC⊕ BC

ξ⊗C,A⊕B

δl
C,A,B
=

ξ⊗C,A⊕ξ⊗C,B
δr

A,B,C
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● The axiom (2.1.5) is the following commutative diagram.

(5.1.6)

A(B⊕C) AB⊕ AC

A(C⊕ B) AC⊕ AB

1Aξ⊕B,C

δl
A,B,C
=

ξ⊕AB,AC
δl

A,C,B
=

● The axiom (2.1.12) is the following commutative diagram.

(5.1.7)

(A⊕ B)(C⊕D) A(C⊕D)⊕ B(C⊕D)

(A⊕ B)C⊕ (A⊕ B)D AC⊕ AD⊕ BC⊕ BD

AC⊕ BC⊕ AD⊕ BD

δr
A,B,C⊕D

= δl
A,C,D ⊕ δl

B,C,D

1AC ⊕ ξ⊕AD,BC ⊕ 1BD

δl
A⊕B,C,D =

δr
A,B,C ⊕ δr

A,B,D

◇
Proposition 5.1.8. Each left bipermutative category is a left permbraided category.

Proof. This follows from Definitions I.2.5.11 and 5.1.2 and Proposition 1.3.36. In
a left bipermutative category, the axiom (2.1.32) holds because it is equivalent to
(2.1.4) when ξ⊗ satisfies the symmetry axiom (1.3.33). □

Example 5.1.9. The finite ordinal category Σ in Definition I.2.4.1 and the distortion
category D in Theorem I.4.2.29 are left bipermutative categories, hence also left
permbraided categories. In Theorem 5.2.30 below, we will show that the braided
distortion category Dbr is a left permbraided category. ◇
Proposition 5.1.10. Each left permbraided category is a tight braided bimonoidal cate-
gory.

Proof. Each left permbraided category C has the data of a braided bimonoidal cat-
egory as in Definition 2.1.29. The left distributivity morphism δl is the identity
by assumption, and δr is a natural isomorphism as discussed in Explanation 5.1.3.
Consider the 14 axioms in Definition 2.1.29.

● (2.1.4), (2.1.5), (2.1.12), and (2.1.32) hold by assumption.
● (2.1.8), (2.1.9), (2.1.13), (2.1.17), (2.1.18), (2.1.19), (2.1.24), (2.1.26), and

(2.1.33) hold because λ ●, ρ ●, δl , ξ⊗−,0, and ξ⊗0,− are the identities.
● (2.1.15) holds because ρ ● and δr

A,B,0 are both equal to the identity mor-
phism of 0. The equality δr

A,B,0 = 10 follows from (5.1.4) and ξ⊗−,0 = 10.
Therefore, C is a tight braided bimonoidal category. □

Right Permutative Braided Categories. Next we discuss the right version of
a left permbraided category.
Definition 5.1.11. A right permutative braided category, or a right permbraided category
for short, is a tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (λ ●, ρ
●), (δl , δr))

consisting of the following data.
● (C,⊕, 0, ξ⊕) is a permutative category.
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● (C,⊗,1, ξ⊗) is a braided strict monoidal category.
● λ ●, ρ ●, δl , and δr are natural transformations as in (2.1.30) and (2.1.31).

The above data are required to satisfy the following four conditions.
(1) λ ● and ρ ● are both equal to the identity natural transformation of the

constant functor C C at 0.
(2) δr is the identity natural transformation.
(3) For each object A, the morphisms

A⊗ 0 0⊗ A
ξ⊗A,0

ξ⊗0,A

are both equal to the identity morphism of 0.
(4) The axioms (2.1.4), (2.1.6), (2.1.12), and (2.1.32) are satisfied.

This finishes the definition of a right permbraided category. ◇
Explanation 5.1.12. In Definition 5.1.11, suppose A, B, C, and D are objects in C.

● The axiom (2.1.4) is the following commutative diagram.

(5.1.13)

(A⊕ B)C AC⊕ BC

C(A⊕ B) CA⊕CB

δr
A,B,C
=

ξ⊗A⊕B,C
ξ⊗A,C⊕ξ⊗B,C

δl
C,A,B

Since the braiding ξ⊗ is a natural isomorphism, it follows that δl is also a
natural isomorphism.
● The axiom (2.1.32) is the following commutative diagram.

(5.1.14)

C(A⊕ B) CA⊕CB

(A⊕ B)C AC⊕ BC

ξ⊗C,A⊕B

δl
C,A,B

ξ⊗C,A⊕ξ⊗C,B
δr

A,B,C
=

● The axiom (2.1.6) is the following commutative diagram.

(5.1.15)

(A⊕ B)C AC⊕ BC

(B⊕ A)C BC⊕ AC

ξ⊕A,B1C

δr
A,B,C
=

ξ⊕AC,BC
δr

B,A,C
=

● The axiom (2.1.12) is the following commutative diagram.

(5.1.16)

(A⊕ B)(C⊕D) A(C⊕D)⊕ B(C⊕D)

(A⊕ B)C⊕ (A⊕ B)D AC⊕ AD⊕ BC⊕ BD

AC⊕ BC⊕ AD⊕ BD

δr
A,B,C⊕D
=

δl
A,C,D ⊕ δl

B,C,D

1AC ⊕ ξ⊕AD,BC ⊕ 1BD

δl
A⊕B,C,D

δr
A,B,C ⊕ δr

A,B,D
=

◇
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Proposition 5.1.17. Each right bipermutative category is a right permbraided category.

Proof. This follows from Definitions I.2.5.2 and 5.1.11 and Proposition 1.3.36. In a
right bipermutative category, the axiom (2.1.32) holds because it is equivalent to
(2.1.4) when ξ⊗ satisfies the symmetry axiom (1.3.33). □

Example 5.1.18. The categories
● Σ′ in Definition I.2.4.18 and
● VectCc of coordinatized finite dimensional complex vector spaces in Ex-

ample I.2.5.9
are right bipermutative categories, hence also right permbraided categories. ◇
Proposition 5.1.19. Each right permbraided category is a tight braided bimonoidal cate-
gory.

Proof. Each right permbraided category C has the data of a braided bimonoidal
category as in Definition 2.1.29. The right distributivity morphism δr is the identity
by assumption, and δl is a natural isomorphism as discussed in Explanation 5.1.12.
Consider the 14 axioms in Definition 2.1.29.

● (2.1.4), (2.1.12), and (2.1.32) hold by assumption.
● (2.1.5) follows from (2.1.6) and (2.1.32) as in the proof of Lemma I.2.2.4.
● (2.1.8) follows from (2.1.7) and (2.1.32) as in the proof of Lemma I.2.2.5.

The axiom (2.1.7) holds because δr is the identity.
● (2.1.9) follows from (2.1.10), (1.3.31), and (2.1.32) as in the proof of

Lemma I.2.2.6. The axiom (2.1.10) holds because δr is the identity.
● (2.1.13), (2.1.15), (2.1.17), (2.1.18), (2.1.19), and (2.1.33) hold because λ ●, ρ ●,

δr, ξ⊗−,0, and ξ⊗0,− are the identities.
● (2.1.24) follows from (2.1.18), (2.1.25), and (2.1.32) as in the last diagram

in the proof of Lemma I.2.2.11. The axiom (2.1.25) holds because δr and
λ ● are the identities.
● (2.1.26) follows from (2.1.27), (1.3.22), and (2.1.32) as in the proof of

Lemma I.2.2.12. The axiom (2.1.27) holds because δr is the identity.
Therefore, C is a tight braided bimonoidal category. □

Remark 5.1.20. Right permbraided categories in Definition 5.1.11 are precisely
Richter’s braided bimonoidal categories in [Ric10, Def. 5.1]. Braided bimonoidal
categories in Definition 2.1.29 are strictly more general than Richter’s. ◇

5.2. The Braided Distortion Category

The purpose of this section is to define the braided version of the distortion
category in Section I.4.2. The braided distortion category will be the main ingredi-
ent in formulating and proving the Coherence Theorem 5.4.4 for braided bimon-
oidal categories. This section is organized as follows.

● The underlying categoryDbr of the braided distortion category is defined
in Definition 5.2.2.
● The additive structure in Dbr is defined in Definition 5.2.8.
● The multiplicative structure in Dbr is defined in Definition 5.2.14 and is

shown to be a braided strict monoidal category in Lemma 5.2.21.
● The multiplicative zeros, λ ● and ρ ●, and the distributivity morphisms, δl

and δr, are defined in Definition 5.2.25.
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● The explicit formula for δr is in Lemma 5.2.28.
● Theorem 5.2.30 shows thatDbr is a left permbraided category in the sense

of Definition 5.1.2.
● Corollaries 5.2.33 and 5.2.34 state that Dbr is a tight braided bimonoidal

category and that it satisfies all 24 Laplaza axioms in Definition 2.1.1.
Motivation 5.2.1. In the distortion category D in Definition I.4.2.1, an object is a
finite sequence r = (r1, . . . , rm) with length ∣r∣ = m ≥ 0 and with each ri ≥ 0. We
think of r as a sum of m monomials, with the ith monomial having ri factors. For
objects r and s with the same length m, the morphism set D(r; s) is the set of finite
sequences of permutations

σ = (σ; σ1, . . . , σm) ∈ Σm ×Σr1 ×⋯×Σrm

such that
σr = (rσ−1(1), . . . , rσ−1(m)) = s.

For each 1 ≤ i ≤ m, σi ∈ Σri permutes the ri factors in the ith monomial in r. The
first entry σ ∈ Σm permutes the m resulting monomials in r and leaves the order of
the factors in each monomial unchanged.

In a braided bimonoidal category, the additive structure is still a symmetric
monoidal category, but the multiplicative structure is a braided monoidal cate-
gory. Therefore, in the braided analogue of the distortion category, σ should still
be a permutation, but each σi should be an element in the braid group Bri in Def-
inition 1.1.1. In the braided distortion category, we think of σi as braiding the ri
factors in the ith monomial in r. In other words, its underlying permutation π(σi)
in (1.1.12) permutes the ri factors in the ith monomial in r. Composition and other
structures must take into account the fact that σi belongs to the braid group Bri and
not the symmetric group Σri .

As we will explain in Section 5.4, this braided version of the distortion cate-
gory is precisely the concept needed to formulate a coherence theorem for braided
bimonoidal categories. ◇

The Underlying Category.
Definition 5.2.2. Define the braided distortion category Dbr as follows.
Objects: An object in Dbr is a finite sequence

r = (r1, . . . , rm)
with m ≥ 0 and each ri ≥ 0 for 1 ≤ i ≤ m. We call m the length of r, which is
denoted by ∣r∣. The unique sequence with length 0 is denoted by ∅.

Morphisms: Suppose s = (s1, . . . , sn) is an object in Dbr. With r as above, the mor-
phism set Dbr(r; s) is defined as follows.
● If m /= n, then Dbr(r; s) is empty.
● If m = n, then Dbr(r; s) is the set of finite sequences

σ = (σ; σ1, . . . , σm) ∈ Σm × Br1 ×⋯× Brm

such that

(5.2.3) σr = (rσ−1(1), . . . , rσ−1(m)) = s.

Here Σm is the mth symmetric group, and each Bri is the rith braid
group in Definition 1.1.1. We call σ the permutation component and σi
the ith braid component of σ.
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Identities: The identity morphism of an object r as above is the sequence

(5.2.4) 1r = (idm; idr1 , . . . , idrm) ∈ Σm × Br1 ×⋯× Brm

with 1∅ = (id0; ).
Composition: Suppose given morphisms

r s t
σ τ

in Dbr with σ as above and with

τ = (τ; τ1, . . . , τm) ∈ Σm × Br
σ−1(1)

×⋯× Br
σ−1(m)

.

Their composite

( r t
τσ ) ∈ Dbr(r; t)

is defined as

(5.2.5) τσ = (τσ; τσ(1)σ1, . . . , τσ(m)σm) ∈ Σm × Br1 ×⋯× Brm .

This finishes the definition of the braided distortion category. ◇
Explanation 5.2.6. Consider Definition 5.2.2.

● We regard an object r = (r1, . . . , rm) ∈ Dbr as a sum of m monomials, with
the ith monomial having ri factors for 1 ≤ i ≤ m.
● A morphism

σ = (σ; σ1, . . . , σm) ∶ r s ∈ Dbr

is regarded as a two-step process.
– Starting with r, first it braids the ri factors in the ith monomial in r

via the braid σi ∈ Bri for 1 ≤ i ≤ m.
– Then it additively permutes the m resulting monomials via σ ∈ Σm.

The result is s.
● The composition (5.2.5) has the same formula (I.4.2.4) as in the distortion

category D, except that each τσ(i)σi here is a product in the braid group
Bri instead of the symmetric group Σri . ◇

Lemma 5.2.7. The braided distortion category Dbr in Definition 5.2.2 is a groupoid.

Proof. The proof is the same as that of Lemma I.4.2.5, which states that the
distortion category D is a groupoid. We simply note that, in each morphism
(σ; σ1, . . . , σm), each entry σi for 1 ≤ i ≤ m is in a braid group. □

In what follows, as in Lemma 5.2.7, we often reuse proofs in the symmetric
case and simply point out the necessary modifications.

The Additive Structure.
Definition 5.2.8. Define the additive structure

(⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
in the braided distortion category Dbr as follows.
The Sum: The functor

Dbr ×Dbr Dbr⊕

is defined as follows.
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Objects: For objects r = (r1, . . . , rm) and r′ = (r′1, . . . , r′n) in Dbr, define the
object

(5.2.9) r⊕ r′ = (r1, . . . , rm, r′1, . . . , r′n)

with length ∣r∣+ ∣r′∣ = m + n.
Morphisms: For morphisms σ = (σ; σ1, . . . , σm) ∈ Dbr(r; s) and

σ′ = (σ′; σ′1, . . . , σ′n) ∈ Σn × Br′1
×⋯× Br′n

in Dbr(r′; s′)with ∣r′∣ = ∣s′∣ = n, define the morphism

σ⊕ σ′ = (σ⊕ σ′; σ1, . . . , σm, σ′1, . . . , σ′n)
∈ Σm+n × Br1 ×⋯× Brm × Br′1

×⋯× Br′n

(5.2.10)

in Dbr(r⊕ r′; s⊕ s′). Here σ⊕ σ′ ∈ Σm+n is the block sum in (1.1.8).
The Additive Zero: The object 0 is defined as the empty sequence ∅ ∈ Dbr.
Associativity and Unity: The natural transformations α⊕, λ⊕, and ρ⊕, with com-

ponents, respectively,

(r⊕ r′)⊕ r′′ r⊕ (r′ ⊕ r′′)

∅⊕ r r

r⊕∅ r

α⊕r,r′ ,r′′

λ⊕r

ρ⊕r

are defined as the identities.
The Additive Symmetry: The natural transformation ξ⊕ has components

r⊕ r′ r′ ⊕ r

(r1, . . . , rm, r′1, . . . , r′n) (r′1, . . . , r′n, r1, . . . , rm)

ξ⊕r,r′

defined as

ξ⊕r,r′ = (ξ
⊕
m,n; idr1 , . . . , idrm , idr′1

, . . . , idr′n)
∈ Σm+n × Br1 ×⋯× Brm × Br′1

×⋯× Br′n
(5.2.11)

with ξ⊕m,n ∈ Σm+n the block permutation τ⟨m, n⟩ in (1.2.2).

This finishes the definition of (⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) in Dbr. ◇
Explanation 5.2.12. Consider Definition 5.2.8 using Explanation 5.2.6.

(1) The sum r⊕ r′ in (5.2.9) corresponds to adding r and r′ such that, in each
of r and r′, the order of the monomials and the order of the factors in each
monomial remain unchanged.

(2) Consider the sum

σ⊕ σ′ ∶ r⊕ r′ s⊕ s′

in (5.2.10).
● For each 1 ≤ i ≤ m, σi ∈ Bri braids the ri factors in the ith monomial in

r.
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● For each 1 ≤ j ≤ n, σ′j ∈ Br′j
braids the r′j factors in the jth monomial in

r′.
● Then the block sum σ⊕ σ′ ∈ Σm+n permutes

– the first m resulting monomials via σ ∈ Σm and
– the last n resulting monomials via σ′ ∈ Σn.

(3) The additive symmetry ξ⊕r,r′ in (5.2.11) swaps the places of r and r′ and
leaves the orders of both the monomials and the factors in each monomial
in each of r and r′ unchanged. The formula (5.2.11) is the same as in the
distortion category (I.4.2.10), except that each id? here is an identity braid
instead of an identity permutation. ◇

Lemma 5.2.13. In Definition 5.2.8, the tuple

(Dbr,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
is a permutative category.

Proof. We reuse the proof of Lemma I.4.2.12, which states that the distortion cate-
gory D with its additive structure is a permutative category. In the proofs of the
naturality of ξ⊕ and of the symmetric monoidal category axioms, we use the fact
that each component of ξ⊕ in (5.2.11) has a sequence of identity braids after the
permutation component ξ⊕m,n. □

The Multiplicative Structure.
Definition 5.2.14. Define the multiplicative structure

(⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗)
in the braided distortion category Dbr as follows.
The Product: The functor

Dbr ×Dbr Dbr⊗

is defined as follows.
Objects: For objects r = (r1, . . . , rm) and r′ = (r′1, . . . , r′n) in Dbr, define the

object

(5.2.15) r⊗ r′ = ({ri + r′1}
m
i=1, . . . ,{ri + r′n}

m
i=1)

with length ∣r∣ ⋅ ∣r′∣ = mn. The (i + (j − 1)m)th entry is ri + r′j for each
1 ≤ i ≤ m and 1 ≤ j ≤ n.

Morphisms: For morphisms σ ∈ Dbr(r; s) and σ′ ∈ Dbr(r′; s′) as in Defini-
tion 5.2.8, define the morphism

(5.2.16) σ⊗ σ′ = (σ⊗ σ′;{σi ⊕ σ′1}
m
i=1, . . . ,{σi ⊕ σ′n}

m
i=1) ∈ D

br(r⊗ r′; s⊗ s′)

with the following entries.
● The permutation component σ⊗ σ′ ∈ Σmn is defined by

(5.2.17) (σ⊗ σ′)(i + (j − 1)m) = σ(i)+ (σ′(j)− 1)m
for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
● The (i + (j − 1)m)th braid component σi ⊕ σ′j ∈ Bri+r′j

is the sum

braid (1.1.10).
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The Multiplicative Unit: The object 1 is the sequence (0) ∈ Dbr with length 1 and
the entry 0.

Associativity and Unity: The natural transformations α⊗, λ⊗, and ρ⊗, with com-
ponents, respectively,

(r⊗ r′)⊗ r′′ r⊗ (r′ ⊗ r′′)

(0)⊗ r r

r⊗ (0) r

α⊗r,r′ ,r′′

λ⊗r

ρ⊗r

are defined as the identities.
The Braiding: The natural transformation ξ⊗ has components

r⊗ r′ r′ ⊗ r

({ri + r′1}
m
i=1, . . . ,{ri + r′n}

m
i=1) ({r′j + r1}

n
j=1, . . . ,{r′j + rm}

n
j=1)

ξ⊗r,r′

defined as

(5.2.18) ξ⊗r,r′ = (ξ
⊗
m,n;{b⊕ri ,r′1

}m
i=1, . . . ,{b⊕ri ,r′n

}m
i=1)

with the following entries.
● The permutation component ξ⊗m,n ∈ Σmn is defined by

(5.2.19) ξ⊗m,n(i + (j − 1)m) = j + (i − 1)n
for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
● The (i + (j − 1)m)th braid component

b⊕ri ,r′j
= s(2)1 ⟨ri, r′j⟩ ∈ Bri+r′j

is an elementary block braid (1.2.4).
This finishes the definition of (⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗) in Dbr. ◇
Explanation 5.2.20. Consider Definition 5.2.14 using Explanation 5.2.6.

(1) Regarding r as a sum of m monomials and r′ as a sum of n monomials, the
object r⊗ r′ in (5.2.15) is an expanded form of their product. The resulting
mn monomials are arranged into an n ×m matrix.

r⊗ r′ =
⎡⎢⎢⎢⎢⎢⎣

r1 + r′1 ⋯ rm + r′1
⋮ ⋱ ⋮

r1 + r′n ⋯ rm + r′n

⎤⎥⎥⎥⎥⎥⎦
For 1 ≤ i ≤ m and 1 ≤ j ≤ n, the (j, i)-entry of the matrix is the product
of the ith monomial in r with the jth monomial in r′, which has ri + r′j
factors.

(2) Consider the morphism σ⊗ σ′ in (5.2.16).
● The (i + (j − 1)m)th braid component σi ⊕ σ′j ∈ Bri+r′j

acts on the (j, i)-
entry ri + r′j of r ⊗ r′. It braids the first ri factors via σi ∈ Bri and the
last r′j factors via σ′j ∈ Br′j

.
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● In the permutation component σ⊗ σ′ in (5.2.17),
– the factor σ permutes the m columns in the n ×m matrix, and
– the factor σ′ permutes the n rows in the n ×m matrix.

(3) Consider the braiding ξ⊗r,r′ in (5.2.18).

● The (i+(j−1)m)th braid component b⊕ri ,r′j
acts on the (j, i)-entry ri + r′j

of r⊗ r′ by braiding the jth monomial in r′ over the ith monomial in
r.
● The permutation component ξ⊗m,n in (5.2.19) takes the transpose of

the resulting n ×m matrix. ◇
The proof of the next lemma refers to the left bipermutative category Σ in

Proposition I.2.4.8.
Lemma 5.2.21. In Definition 5.2.14, the tuple

(Dbr,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗)
is a braided strict monoidal category.

Proof. We follow the proof of Lemma I.4.2.19, which states that the distortion cate-
goryD with its multiplicative structure is a permutative category, with the follow-
ing notes and adjustments.

● To show that ⊗ preserves composition in Dbr, we note that the sum braid
⊕ in (1.1.10) is multiplicative.
● To show that α⊗ = 1 is well defined, we note that the sum braid ⊕ is

strictly associative.
● Each component ξ⊗r,r′ in (5.2.18) is an isomorphism with inverse

(5.2.22) ξ−⊗r,r′ = (ξ
⊗
n,m;{b−⊕r1,r′j

}n
j=1, . . . ,{b−⊕rm ,r′j

}n
j=1).

Here
ξ⊗n,m = (ξ⊗m,n)

−1 ∈ Σmn,

which follows from the definition (5.2.19). The (j+ (i − 1)n)th braid com-
ponent is defined as

b−⊕ri ,r′j
= (s1⟨ri, r′j⟩)

−1

= s−1
1 ⟨r′j, ri⟩ ∈ Bri+r′j

.
(5.2.23)

This is the inverse of b⊕ri ,r′j
defined in (1.1.23).

● In the proof of the naturality of the braiding ξ⊗ in Dbr, the permutation
component is the same as in the proof of Lemma I.4.2.19. The required
equality in each braid component follows from (1.2.14).
● In the proof of the right hexagon axiom (1.3.17) in Dbr, the permutation

component is the equality

ξ⊗lm,n = (ξ
⊗
l,n ⊗ idm)(idl ⊗ ξ⊗m,n) ∈ Σlmn

for l, m, n ≥ 0. This is the hexagon axiom (I.2.4.10) in the multiplicative
structure in the left bipermutative category Σ. The required equality in
each braid component follows from (1.2.17).
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● In the proof of the left hexagon axiom (1.3.17) in Dbr, the permutation
component is the equality

ξ⊗l,mn = (idm ⊗ ξ⊗l,n)(ξ
⊗
l,m ⊗ idn) ∈ Σlmn

for l, m, n ≥ 0. This is the left hexagon axiom in the multiplicative struc-
ture in the left bipermutative category Σ. The left hexagon axiom holds
in (Σ,⊗) by Proposition 1.3.36. The required equality in each braid com-
ponent follows from (1.2.18).

This finishes the proof. □

Explanation 5.2.24. The multiplicative structure in the braided distortion category
Dbr in Lemma 5.2.21 is genuinely a braided monoidal category and not a symmet-
ric monoidal category. The reason is that the braiding-square ξ⊗r′,rξ⊗r,r′ is not the
identity in general. In fact, its typical braid component is

b⊕r′j ,ri
b⊕ri ,r′j

= s1⟨r′j, ri⟩ ⋅ s1⟨ri, r′j⟩ ∈ Bri+r′j
.

This is not the identity braid in general. For example, b⊕3,2b⊕2,3 ∈ B5 is the nonidentity
braid in Example 1.1.29. ◇

The Multiplicative Zeros and Distributivity.
Definition 5.2.25. Define the natural transformations

(λ ●, ρ
●, δl , δr)

for the braided distortion category Dbr as follows, for objects r, r′, r′′ ∈ Dbr.

The Multiplicative Zeros and the Left Distributivity: λ ●, ρ ●, and δl , with com-
ponents, respectively,

0⊗ r 0

r⊗ 0 0

r⊗ (r′ ⊕ r′′) (r⊗ r′)⊕ (r⊗ r′′)

λ
●
r

ρ
●
r

δl
r,r′ ,r′′

are defined as the identities.
The Right Distributivity: δr has components the composites

(5.2.26)

(r⊕ r′)⊗ r′′ (r⊗ r′′)⊕ (r′ ⊗ r′′)

r′′ ⊗ (r⊕ r′) (r′′ ⊗ r)⊕ (r′′ ⊗ r′)

δr
r,r′ ,r′′

ξ⊗r⊕r′ ,r′′
δl

r′′ ,r,r′

=

ξ−⊗r,r′′ ⊕ ξ−⊗r′ ,r′′

with ξ⊗ the braiding in (5.2.18).

This finishes the definition of (λ ●, ρ ●, δl , δr) for Dbr. ◇
Lemma 5.2.27. The natural transformations (λ ●, ρ ●, δl , δr) in Definition 5.2.25 are well
defined.

Proof. We reuse the proof of Lemma I.4.2.25, which states that the constructions
(λ ●, ρ ●, δl , δr) in the distortion category D are natural transformations. □
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Next we provide an explicit description of the right distributivity morphism in
the braided distortion category. The following observation is the braided analogue
of Lemma I.4.2.27.
Lemma 5.2.28. For objects r, r′, r′′ ∈ Dbr with lengths ∣r∣ = m, ∣r′∣ = n, and ∣r′′∣ = p, the
right distributivity morphism

(r⊕ r′)⊗ r′′ = ({ri + r′′1 }
m
i=1,{r′j + r′′1 }

n
j=1, . . . ,{ri + r′′p}

m
i=1,{r′j + r′′p}

m
j=1)

(r⊗ r′′)⊕ (r′ ⊗ r′′) = ({ri + r′′1 }
m
i=1, . . . ,{ri + r′′p}

m
i=1,{r′j + r′′1 }

n
j=1, . . . ,{r′j + r′′p}

n
j=1)

δr
r,r′ ,r′′

in (5.2.26) is given by

((ξ⊗p,m ⊕ ξ⊗p,n)ξ⊗m+n,p;{idri+r′′1
}m

i=1,{idr′j+r′′1
}n

j=1, . . . ,{idri+r′′p }
m
i=1,{idr′j+r′′p }

n
j=1)

∈ Σ(m+n)p ×
p

∏
k=1
[(

m
∏
i=1

Bri+r′′k
)× (

n
∏
j=1

Br′j+r′′k
)].

Here
ξ⊗p,m ⊕ ξ⊗p,n ∈ Σpm+pn

is the block sum in (1.1.8).

Proof. By (5.2.10), (5.2.18), and (5.2.22), the two vertical morphisms in (5.2.26) are
as follows.

ξ⊗r⊕r′,r′′ = (ξ
⊗
m+n,p;{b⊕ri ,r′′1

}m
i=1,{b⊕r′j ,r′′1 }

n
j=1, . . . ,{b⊕ri ,r′′p

}m
i=1,{b⊕r′j ,r′′p }

n
j=1)

ξ−⊗r,r′′ ⊕ ξ−⊗r′,r′′ = (ξ⊗p,m ⊕ ξ⊗p,n;{b−⊕r1,r′′k
}p

k=1, . . . ,{b−⊕rm ,r′′k
}p

k=1,{b−⊕r′1,r′′k
}p

k=1, . . . ,{b−⊕r′n ,r′′k
}p

k=1)

The stated formula for δr
r,r′,r′′ now follows from (5.2.5) and the fact that the braid

b−⊕a,b in (5.2.23) is the inverse of the elementary block braid b⊕a,b. □

Explanation 5.2.29. Consider Lemma 5.2.28.
(1) The right distributivity morphism δr has only identity braid components.

Its only nonidentity part is the permutation component

(ξ⊗p,m ⊕ ξ⊗p,n)ξ⊗m+n,p ∈ Σ(m+n)p.

As in Explanation 5.2.20, suppose
● A is the p ×m matrix with entries those in r⊗ r′′, and
● B is the p × n matrix with entries those in r′ ⊗ r′′.

Then the domain and the codomain of δr
r,r′,r′′ are the following arrange-

ments.
(r⊕ r′)⊗ r′′ = [A ∣B]

(r⊗ r′′)⊕ (r′ ⊗ r′′) = [A
B
]

(2) The formula for δr is the same as in Lemma I.4.2.27 for δr in the distortion
category D, except that each id? here is an identity braid instead of an
identity permutation.

(3) Among the structure morphisms α⊕, λ⊕, ρ⊕, ξ⊕, α⊗, λ⊗, ρ⊗, ξ⊗, λ ●, ρ ●, δl ,
and δr in Dbr, only
● ξ⊕ in (5.2.11),
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● ξ⊗ in (5.2.18), and
● δr in (5.2.26) and Lemma 5.2.28

are nonidentities. Moreover, among these three structure morphisms,
only ξ⊗ has nonidentity braid components. ◇

The Main Result. Next is the braided analogue of Theorem I.4.2.29, which
states that the distortion category D is a left bipermutative category. Recall the
notion of a left permbraided category in Definition 5.1.2.

Theorem 5.2.30. The braided distortion category Dbr with

● the underlying category in Definition 5.2.2,
● the additive structure in Definition 5.2.8,
● the multiplicative structure in Definition 5.2.14, and
● the natural transformations (λ ●, ρ ●, δl , δr) in Definition 5.2.25

is a left permbraided category.

Proof. By Lemmas 5.2.7, 5.2.13, 5.2.21, and 5.2.27, it remains to check conditions (3)
and (4) in Definition 5.1.2 for Dbr.

For each object r ∈ Dbr, both ξ⊗r,∅ and ξ⊗∅,r are equal to (id0; ) = 1∅ by definition
(5.2.18). This proves condition (3) in Dbr.

For condition (4), the axiom (2.1.4) holds by the definition (5.2.26) of δr.
For the axioms (2.1.5) and (2.1.12), we reuse the proofs of these axioms in the

distortion category D in Theorem I.4.2.29. For (2.1.12), instead of Lemma I.4.2.27,
we use the corresponding Lemma 5.2.28 here.

Finally, the axiom (2.1.32) asserts the commutativity of the diagram

(5.2.31)

r′′ ⊗ (r⊕ r′) (r′′ ⊗ r)⊕ (r′′ ⊗ r′)

(r⊕ r′)⊗ r′′ (r⊗ r′′)⊕ (r′ ⊗ r′′)

δl
r′′ ,r,r′

=

ξ⊗r′′ ,r⊕r′ ξ⊗r′′ ,r ⊕ ξ⊗r′′ ,r′
δr

r,r′ ,r′′

for objects r, r′, r′′ ∈ Dbr. To prove the commutativity of (5.2.31), first note that,
by definition (5.2.18), the right vertical morphism is the sum of the following two
morphisms, where ∣r∣ = m, ∣r′∣ = n, and ∣r′′∣ = p.

ξ⊗r′′,r = (ξ
⊗
p,m;{b⊕r′′k ,r1

}p
k=1, . . . ,{b⊕r′′k ,rm

}p
k=1)

ξ⊗r′′,r′ = (ξ
⊗
p,n;{b⊕r′′k ,r′1

}p
k=1, . . . ,{b⊕r′′k ,r′n

}p
k=1)

By definition (5.2.10), their sum is the following morphism.

ξ⊗r′′,r ⊕ ξ⊗r′′,r′

= (ξ⊗p,m ⊕ ξ⊗p,n;{b⊕r′′k ,r1
}p

k=1, . . . ,{b⊕r′′k ,rm
}p

k=1,{b⊕r′′k ,r′1
}p

k=1, . . . ,{b⊕r′′k ,r′n
}p

k=1)
(5.2.32)

On the other hand, by (5.2.9) and (5.2.18), the left vertical morphism in (5.2.31)
is the following morphism.

ξ⊗r′′,r⊕r′ = (ξ⊗p,m+n;{b⊕r′′k ,r1
}p

k=1, . . . ,{b⊕r′′k ,rm
}p

k=1,{b⊕r′′k ,r′1
}p

k=1, . . . ,{b⊕r′′k ,r′n
}p

k=1)



II.146 5. COHERENCE OF BRAIDED BIMONOIDAL CATEGORIES

Combining this with (5.2.5) and the formula for δr
r,r′,r′′ in Lemma 5.2.28, the com-

posite δr
r,r′,r′′ξ

⊗
r′′,r⊕r′ is the following morphism.

((ξ⊗p,m ⊕ ξ⊗p,n) ξ⊗m+n,pξ⊗p,m+n

idp(m+n)

;{b⊕r′′k ,r1
}p

k=1, . . . ,{b⊕r′′k ,rm
}p

k=1,{b⊕r′′k ,r′1
}p

k=1, . . . ,{b⊕r′′k ,r′n
}p

k=1)

This is equal to the morphism in (5.2.32) because

ξ⊗m+n,p = (ξ⊗p,m+n)
−1 ∈ Σp(m+n),

which follows from the definition (5.2.19). This proves that (5.2.31) is commuta-
tive. □

Corollary 5.2.33. The braided distortion category Dbr is a tight braided bimonoidal cate-
gory.

Proof. This follows from Proposition 5.1.10 and Theorem 5.2.30. □

Corollary 5.2.34. The braided distortion category Dbr satisfies all 24 Laplaza axioms in
Definition 2.1.1.

Proof. This follows from Theorem 2.2.1 and Corollary 5.2.33. □

5.3. The Braided Distortion of a Path

In preparation for the Coherence Theorem 5.4.4, in this section, we define the
braided distortion of a path in Gr(X). For the reader’s convenience, first we re-
call some graph theoretic definitions from Chapter I.3, including that of the graph
Gr(X) of a set X with two distinguished elements {0X, 1X}. Then we define the
value of a path P ∈ Gr(X) in a braided bimonoidal category. In Definition 5.3.15,
we define the braided distortion of a path P ∈ Gr(X) using a particular function
ϑ ∶ X Ob(Dbr), with Dbr the braided distortion category in Section 5.2. This
section ends with some examples.

Elementary Graph. The following definitions are from Section I.3.1.

Definition 5.3.1. For a set S, its free {⊕,⊗}-algebra is the set Sfr defined inductively
by the following two conditions.

● S ⊂ Sfr.
● If a, b ∈ Sfr, then the symbols

a⊕ b and a⊗ b

also belong to Sfr. They are called, respectively, the sum and the product
of a and b.

We sometimes abbreviate a⊗ b to ab. In the absence of clarifying parentheses, ⊗
takes precedence over ⊕. ◇
Definition 5.3.2. A graph G = (V, E) is a pair consisting of the following data.

● V is a class. An element in V is called a vertex in G.
● E assigns to each ordered pair (u, v)with u, v ∈ V a set E(u, v), an element

of which is called an edge with domain u and codomain v. We also denote
such an edge by

u v, e ∶ u v, or u ve
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if e is the name of the edge.
A path in such a graph is a nonempty finite sequence of edges (en, . . . , e1) as in

v0 v1 ⋯ vn.
e1 e2 en

Such a path is denoted by
v0 vn

and is said to have length n, domain v0, and codomain vn. ◇
Example 5.3.3. Each category C has an associated graph (V, E)with V the class of
objects in C, and E(u, v) = C(u, v) for objects u, v ∈ C. A nonempty finite sequence
of composable morphisms in C yields a path in the associated graph. ◇
Definition 5.3.4. Suppose X is a set with two distinguished elements 0X and 1X,
called the additive zero and the multiplicative unit, respectively. The elementary graph
of X, which is denoted by Grel(X), is the graph defined as follows.

Vertices: The set of vertices in Grel(X) is the free {⊕,⊗}-algebra Xfr of X.
Edges: Edges in Grel(X) are of the following types for all x, y, z ∈ Xfr.

The Additive Structure:

(x⊕ y)⊕ z x⊕ (y⊕ z) x⊕ y y⊕ x
α⊕x,y,z

α−⊕x,y,z

ξ⊕x,y

ξ−⊕x,y

0X ⊕ x x x⊕ 0X
λ⊕x

λ−⊕x ρ−⊕x

ρ⊕x

The Multiplicative Structure:

(x⊗ y)⊗ z x⊗ (y⊗ z) x⊗ y y⊗ x
α⊗x,y,z

α−⊗x,y,z

ξ⊗x,y

ξ−⊗x,y

1X ⊗ x x x⊗ 1X
λ⊗x

λ−⊗x ρ−⊗x

ρ⊗x

The Multiplicative Zeros:

0X ⊗ x 0X x⊗ 0X
λ
●
x

λ−
●

x ρ−
●

x

ρ
●
x

The Distributivity Morphisms:

x⊗ (y⊕ z) (x⊗ y)⊕ (x⊗ z)

(x⊕ y)⊗ z (x⊗ z)⊕ (y⊗ z)

δl
x,y,z

δr
x,y,z

Identities:

x x
1x

This finishes the definition of Grel(X).
Moreover, we define the following.
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● The set of edges in Grel(X) is denoted by Eel(X), the elements of which
are called elementary edges.
● α⊕ and α−⊕ are formal inverses of each other, and similarly for the other 9

pairs of elementary edges in the first three groups above.
● 1x is called the identity of x.
● The names in Definition 2.1.29 are reused for elementary edges. For ex-

ample, ξ⊗ is called the braiding. ◇

Graph.
Definition 5.3.5. With (X, 0X, 1X) as in Definition 5.3.4, consider the free {⊕,⊗}-
algebra Efrel(X) of the set Eel(X) of elementary edges. The domain and the codomain
of an element f ∈ Efrel(X) are elements in Xfr defined inductively as follows.

● For an elementary edge f ∈ Eel(X), its (co)domain are those of f in the
elementary graph Grel(X).
● Suppose f1, f2 ∈ Efrel(X)with

– ui ∈ Xfr the domain of fi and
– vi ∈ Xfr the codomain of fi

already defined for i = 1, 2. Then
– f1 ⊕ f2 has domain u1 ⊕ u2 and codomain v1 ⊕ v2, and
– f1 ⊗ f2 has domain u1 ⊗ u2 and codomain v1 ⊗ v2. ◇

Definition 5.3.6. Continuing Definition 5.3.5, identity prime edges and nonidentity
prime edges are elements in Efrel(X) defined inductively by the following four con-
ditions.

● Elementary edges of the type 1x for x ∈ Xfr are identity prime edges.
● Elementary edges not of the type 1x for x ∈ Xfr are nonidentity prime

edges.
● If e1, e2 ∈ Efrel(X) are identity prime edges, then so are e1 ⊕ e2 and e2 ⊗ e2.
● If f is a nonidentity prime edge and if e is an identity prime edge, then

f ⊕ e, e⊕ f , f ⊗ e, and e⊗ f

are nonidentity prime edges.
Moreover, we define the following.

● A prime edge means either an identity prime edge or a nonidentity prime
edge. An identity prime edge is also called an identity.
● The set of prime edges is denoted by Epr(X). ◇

Note that each nonidentity prime edge involves a finite number of identity
elementary edges and only one nonidentity elementary edge.
Definition 5.3.7. With (X, 0X, 1X) as in Definition 5.3.4, the graph of X, which is
denoted by Gr(X), is the graph with the following vertices and edges.

Vertices: The set of vertices in Gr(X) is the free {⊕,⊗}-algebra Xfr of X.
Edges: The set of edges in Gr(X) is the set Epr(X) of prime edges as in Defini-

tion 5.3.6, with (co)domain as in Definition 5.3.5. ◇
The following notions are from Definitions I.3.6.2, I.3.8.1, and I.3.8.8 and Ex-

planation I.3.8.9.
Definition 5.3.8. In the context of Definition 5.3.7, define the following notions in
Gr(X).
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● A δ-prime edge is a prime edge that involves either δl or δr.
● An element a ∈ Xfr is δ-reduced if it is not the domain of any δ-prime

edges.
● A 1X-prime edge is a prime edge that involves either λ⊗ or ρ⊗.
● An element a ∈ Xfr is 1X-reduced if it is not the domain of any 1X-prime

edges.
● A 1X-free path in Gr(X) is a path in which each prime edge is either an

identity or involves a single instance of α±⊕, ξ±⊕, α±⊗, or ξ±⊗. ◇
The Value of a Path. The graph of X is interpreted in a braided bimonoidal

category via the following concept.
Definition 5.3.9. Suppose G1 = (V1, E1) and G2 = (V2, E2) are graphs. A graph
morphism f ∶ G1 G2 consists of functions

● fV ∶ V1 V2 and
● fE ∶ E1(u, v) E2( fVu, fVv) for u, v ∈ V1.

Both fV and fE are denoted by the same symbol f below. ◇
The definitions so far in this section are purely graph theoretic. Braided

bimonoidal categories are involved in the next two definitions, which are the
braided versions of Definitions I.3.1.14 and I.4.3.1.
Definition 5.3.10. Suppose given data (X,C, φ) as follows.

● X is a set with two distinguished elements {0X, 1X} as in Definition 5.3.4.
● C is an arbitrary braided bimonoidal category as in Definition 2.1.29,

equipped with the graph structure in Example 5.3.3.
● φ ∶ X Ob(C) is any function such that

(5.3.11) φ(0X) = 0 and φ(1X) = 1.

Extend φ to a graph morphism

Gr(X) C
φ

as follows.
Vertices: For x, y ∈ Xfr such that φx, φy ∈ Ob(C) are already defined, we define

φ(x⊕ y) = φx⊕ φy and

φ(x⊗ y) = φx⊗ φy.
(5.3.12)

Elementary Edges: φ sends each elementary edge to the structure morphism in
C with the same name and with the subscripts replaced by their images
under φ.

Prime Edges: If f1, f2 ∈ Epr(X) are prime edges with at most one of them noniden-
tity and with φ( f1) and φ( f2) already defined, then we define

φ( f1 ⊕ f2) = φ( f1)⊕ φ( f2) and

φ( f1 ⊗ f2) = φ( f1)⊗ φ( f2).
(5.3.13)

This finishes the definition of the graph morphism φ ∶ Gr(X) C.
Moreover, we define the following.
● For a path P = ( fn, . . . , f1) in Gr(X) with domain u and codomain v, its

value in C is the composite morphism

(5.3.14) φP = φ( fn) ○⋯ ○ φ( f1) ∈ C(φu; φv).
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● A diagram with vertices and edges in Gr(X) is commutative in C if its
image under the graph morphism φ is a commutative diagram in C.
● A diagram with vertices and edges in Gr(X) is braided commutative if it is

commutative in each braided bimonoidal category C and for each func-
tion φ ∶ X Ob(C) satisfying (5.3.11). ◇

In the next definition, Dbr is the braided distortion category in Section 5.2.

Definition 5.3.15. Suppose X is a set with two distinguished elements {0X, 1X}.
● Define the function

ϑ ∶ X Ob(Dbr)

as follows.

(5.3.16) ϑ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1) if x ∈ X ∖ {0X, 1X},
∅ if x = 0X, and
(0) if x = 1X.

● Using the same symbol, define the associated graph morphism

(5.3.17) Gr(X) Dbrϑ

as in Definition 5.3.10, applied to ϑ in (5.3.16) and Dbr.
● For a path P in Gr(X), its value ϑP ∈ Dbr in the sense of (5.3.14) is called

the braided distortion of P.

This finishes the definition. ◇

Examples. Suppose X is a set with two distinguished elements {0X, 1X}. In
the following examples, the symbol ⊗ in Xfr is often omitted.

Example 5.3.18. For elements r, s, t, u, v, w, x, y, z ∈ X ∖ {0X, 1X}, consider the ele-
ments

a = (uv1X)⊕ (1X1X1X)⊕ (w1X x1Xy)⊕ (z0X),
b = r⊕ (0X0X)⊕ (st), and

c = (r⊕ s)(t⊕ u)⊕ 1X ⊕ 0X

in Xfr, with any additive bracketing and any multiplicative bracketing within each
monomial in a. Using the graph morphism ϑ in (5.3.17), there are the following
objects in the braided distortion category Dbr.

ϑ(a) = (2, 0, 3)
ϑ(b) = (1, 2)
ϑ(c) = (2, 2, 2, 2, 0)

ϑ(a⊕ b) = (2, 0, 3, 1, 2)
ϑ(a⊗ b) = (3, 1, 4, 4, 2, 5)
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With more detail, ϑ(c) ∈ Dbr is computed as follows.

ϑ(c) = {[ϑ(r)⊕ ϑ(s)]⊗ [ϑ(t)⊕ ϑ(u)]}⊕ ϑ(1X)⊕ ϑ(0X)
= {[(1)⊕ (1)]⊗ [(1)⊕ (1)]}⊕ (0)⊕∅
= {(1, 1)⊗ (1, 1)}⊕ (0)
= (1+ 1, 1+ 1, 1+ 1, 1+ 1)⊕ (0)
= (2, 2, 2, 2, 0)

The other objects ϑ(a), ϑ(b), ϑ(a⊕ b), and ϑ(a⊗ b) are computed similarly. ◇
Convention 5.3.19. For Lemma 5.3.20 below, we interpret the diagrams (2.1.4)–
(2.1.27) in Definition 2.1.1, (2.1.32), and (2.1.33) in Gr(X) as follows.

● We interpret each object there as an element in Xfr with A, B, C, D ∈ Xfr,
and with 0 and 1 interpreted as 0X and 1X, respectively.
● We interpret each morphism there as the corresponding prime edge in
Gr(X) as in Definition 5.3.6, with one kind of exceptions as stated next.
● If a morphism is the sum of two nonidentity structure morphisms, then

we interpret it as a path of length 2 in Gr(X) consisting of the two corre-
sponding nonidentity prime edges. For example, the morphism

AC⊕ BC CA⊕CB
ξ⊗A,C⊕ξ⊗B,C

in (2.1.4) is interpreted as the path

AC⊕ BC CA⊕ BC CA⊕CB
ξ⊗A,C⊕1BC 1CA⊕ξ⊗B,C

of length 2 in Gr(X).
In this way, we interpret each of those 26 diagrams as consisting of two paths in
Gr(X)with a common domain and a common codomain. ◇
Lemma 5.3.20. With Convention 5.3.19, in each of (2.1.4)–(2.1.27), (2.1.32), and
(2.1.33), the two paths in Gr(X) have the same braided distortion.

Proof. The assertion means that, if we apply ϑ ∶ Gr(X) Dbr in (5.3.17) to each
of those 26 diagrams, then the result is a commutative diagram in Dbr. Therefore,
the assertion follows from Corollaries 5.2.33 and 5.2.34. □

5.4. The Coherence Theorem

The purpose of this section is to prove Theorem 5.4.4, which is our main co-
herence result for braided bimonoidal categories in this chapter. It is the braided
version of the Coherence Theorem I.4.4.3 for symmetric bimonoidal categories. It
asserts that for a braided bimonoidal category C that satisfies a monomorphism
assumption, which is automatically true if C is tight, any two parallel paths in
Gr(X)with the same braided distortion also have the same value in C.

The proof of Theorem 5.4.4 is adapted from that of Theorem I.4.4.3 and reuses
a large part of Chapter I.3, with appropriate adjustments to be explained in detail
below. We first prove a preliminary version of Theorem 5.4.4 in Lemma 5.4.2. In
the proof of Theorem 5.4.4, we reduce to the special setting of Lemma 5.4.2.

After Theorem 5.4.4 and some examples, we explain why Laplaza’s First Co-
herence Theorem I.3.9.1 does not have a braided analogue.
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Convention 5.4.1. Suppose (X,C, φ) consists of the following data.
● X is a set with two distinguished elements {0X, 1X} as in Definition 5.3.4.
● C is a braided bimonoidal category as in Definition 2.1.29, equipped with

the graph structure in Example 5.3.3.
● φ ∶ X Ob(C) is a function such that

φ(0X) = 0 and φ(1X) = 1.

Moreover, suppose φ ∶ Gr(X) C is the graph morphism in Definition 5.3.10.
The value in C of each path P ∈ Gr(X) is defined in (5.3.14) using the graph mor-
phism φ. ◇

Definitions 5.3.8, 5.3.10, and 5.3.15 are used in the following preliminary case
of the coherence theorem. It is the braided analogue of Lemma I.4.4.1.
Lemma 5.4.2. With Convention 5.4.1, suppose

a b
P1

P2

are two paths in Gr(X) such that the following two statements hold.
● P1 and P2 have the same braided distortion and are 1X-free paths.
● a and b contain no 0X and are δ-reduced and 1X-reduced.

Then P1 and P2 have the same value in C.

Proof. We reuse most of the proof of Lemma I.4.4.1. Each of a and b is a polynomial,
that is, a finite ⊕ of monomials, each being a finite ⊗ of elements in X. Moreover,
in a and b, each monomial is either equal to 1X, or contains no 0X and 1X.

As in the proof of Lemma I.4.4.1, for each i = 1, 2, there is a diagram in Gr(X)

a b

ci

Pi

P′i P′′i

such that the following three statements hold.
● The diagram is braided commutative, in particular in C and Dbr.
● P′i ∶ a ci consists of identities and prime edges involving α±⊕ or ξ±⊕.
● P′′i ∶ ci b consists of identities and prime edges involving α±⊗ or

ξ±⊗.
We aim to show that P′1 and P′2 have the same value in C and similarly for P′′1 and
P′′2 .

Suppose that P1 has braided distortion

ϑ(P1) = (σ; σ1, . . . , σm) ∈ Σm × Br1 ×⋯× Brm ,

which is a morphism ϑa ϑb in the braided distortion category Dbr. The proof
of Lemma I.4.4.1 shows the following equalities.

ϑ(P′1) = ϑ(P′2) = (σ; idr1 , . . . , idrm)
ϑ(P′′1 ) = ϑ(P′′2 ) = (idm; σσ−1(1), . . . , σσ−1(m))

c1 = c2 ∈ Xfr

(5.4.3)
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We write c for the element c1 = c2.
The first line in (5.4.3) implies that P′1 and P′2 ∶ a c both additively per-

mute the set of monomials in a via σ ∈ Σm. The Symmetric Coherence Theo-
rem I.1.3.8, applied to the symmetric monoidal category

(C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕),
implies that P′1 and P′2 have the same value in C.

The second line in (5.4.3) implies that P′′1 and P′′2 ∶ c b, when restricted
to the ith monomial in c for each 1 ≤ i ≤ m, both have underlying braid

σσ−1(i) ∈ Br
σ−1(i)

in the sense of Definition 1.6.2. The Braided Coherence Theorem 1.6.3, applied to
the braided monoidal category

(C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗)
and to each monomial in c, implies that the paths P′′1 and P′′2 have the same value
in C. Therefore, P1 = (P′′1 , P′1) and P2 = (P′′2 , P′2) have the same value in C. □

Next is our main coherence result for braided bimonoidal categories in this
chapter. It is the braided analogue of Theorem I.4.4.3. The monomorphism as-
sumption in the next theorem is automatically satisfied if C is tight.
Theorem 5.4.4 (Braided Bimonoidal Coherence). With Convention 5.4.1, suppose the
value of each δ-prime edge is a monomorphism in C. If

a b
P1

P2

are two paths in Gr(X) with the same braided distortion, then their values in C are equal.

Proof. We reuse the strategy in the proof of Theorem I.4.4.3, which consists of two
main steps. First we remark that the braided distortion category Dbr is a groupoid
by Lemma 5.2.7 and is a tight braided bimonoidal category by Corollary 5.2.33.
Therefore, if two diagrams in Gr(X),

a b

a′ b′
Qa

Pi

Qb

Ri

for i = 1, 2,

are braided commutative in the sense of Definition 5.3.10, in particular inDbr, such
that P1 and P2 have the same braided distortion (that is, ϑP1 = ϑP2 in Dbr), then R1
and R2 also have the same braided distortion.

Next we observe that, with appropriate adjustments as explained below, the
five reduction steps in the proof of Theorem I.3.9.1 are still valid in the current
setting. The hypothesis that the value of each δ-prime edge is a monomorphism
in C is used in the third reduction step involving the diagram (I.3.9.2). Those five
reduction steps in Theorem I.3.9.1 involve a number of definitions and preliminary
results in Chapter I.3 about the given triple (X,C, φ). To reuse them here, we note
that they fall into two groups.
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(i) Concepts and statements that only involve Gr(X) and not C, such as Def-
inition I.3.3.4 and Lemma I.3.3.5, are reused here with no changes.

(ii) Other concepts and statements involve both Gr(X) and C, such as Defini-
tion I.3.4.5 and Lemma I.3.4.8.

Definitions and assertions in group (ii) are reused here with the following
notes and adjustments.
Laplaza’s axioms: C here is a braided bimonoidal category. By Theorem 2.2.1, C

satisfies all 24 Laplaza axioms in Definition 2.1.1 of a symmetric bimonoi-
dal category, in addition to the axioms (2.1.32) and (2.1.33). In the proofs
in Chapter I.3, whenever an axiom in Definition 2.1.1, which is the same
as Definition I.2.1.2, is used to infer the commutativity of a diagram in C,
we can still do that here.

Commutativity: In Definition I.3.1.14, a diagram in Gr(X) is said to be commuta-
tive if it is commutative in each symmetric bimonoidal category C and
for each function φ ∶ X Ob(C) satisfying φ(0X) = 0 and φ(1X) =
1. This concept of commutativity is used in Definitions I.3.4.5, I.3.7.1,
and I.3.8.11, and a number of related assertions. In the current setting,
we replace commutativity by the corresponding concept of braided com-
mutativity in Definition 5.3.10.

Symmetry: When the symmetry axiom (1.3.33) is used with either axioms (2.1.4)
or (2.1.18)—which are the same as, respectively, (I.2.1.5) and (I.2.1.19)—in
the following places, here we replace that part of the proof by an appro-
priate braided bimonoidal category axiom.
● In (I.3.5.15), the left diagram is commutative by the axiom (2.1.33).
● In the proof of Lemma I.3.6.12, in

– the diagram (I.3.6.18) and
– the last paragraph case I.(iii) with ( f , g) = (ξ−⊗, δr),

we use the axiom (2.1.32) instead of (2.1.4).
Symmetric Coherence: When the Symmetric Coherence Theorem I.1.3.8 is used

in the following places, here we replace it by the Braided Coherence The-
orem 1.6.3 for the braided monoidal category (C,⊗, ξ⊗).
● In Lemmas I.3.4.11 and I.3.4.12, we now use Theorem 1.6.3 along

with the fact that the first braid group B1 is the trivial group.
● In the proofs of Lemma I.3.8.13 case (3) and of Proposition I.3.8.14,

Theorem 1.6.3 is applicable because, in each case, the two braided
canonical maps in question have the same underlying braid.

With the remark in the first paragraph of this proof and the adjustments above,
we can reuse the five reduction steps in the proof of Theorem I.3.9.1. After the
five reduction steps, we reduce to the setting of Lemma 5.4.2, which finishes the
proof. □

Next is the braided version of Definition I.3.9.9.
Definition 5.4.5. A braided bimonoidal category C is called flat if each iterated
sum and product of a component of δl or δr with a finite number of identity mor-
phisms is a monomorphism. ◇
Example 5.4.6. Tight braided bimonoidal categories—that is, those with δl and δr

natural isomorphisms—are flat. If C is a flat braided bimonoidal category, then
the value of each δ-prime edge is a monomorphism in C. Therefore, Theorem 5.4.4
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applies to each flat, in particular, tight, braided bimonoidal category. For example,
Theorem 5.4.4 applies in the following cases.

● Theorem 2.4.22 shows that an abelian category equipped with a compat-
ible braided monoidal structure is a tight braided bimonoidal category.
This includes

– the category Mod(A) in Theorem 3.2.19 (2) for a braided bialgebra
(A, R),

– the category F any of Fibonacci anyons in Theorem 3.4.13, and
– the category Iany of Ising anyons in Theorem 3.6.14.

● Theorem 4.4.3 shows that, for each tight bimonoidal category C, the bi-
monoidal Drinfeld center C

bi
is a tight braided bimonoidal category.

● By Proposition 5.1.10, each left permbraided category is a tight braided
bimonoidal category, and similarly for each right permbraided category
by Proposition 5.1.19. ◇

The Regular Version Fails. Theorem 5.4.4 is the braided version of Laplaza’s
Second Coherence Theorem I.4.4.3 for symmetric bimonoidal categories. They im-
pose a condition on the two paths P1 and P2, namely, that they have the same
braided distortion in the sense of Definition 5.3.15, or that they have the same
distortion in the symmetric case. However, no conditions are imposed on their
domain a and codomain b.

It is natural to ask whether or not Laplaza’s First Coherence Theorem I.3.9.1
also has a braided version. In Theorem I.3.9.1, no conditions are imposed on the
two paths P1 and P2. Instead, it is assumed that their domain a ∈ Xfr is regular in
the sense of Definition I.3.1.25. The braided version of Theorem I.3.9.1, if it is true,
would assert the following.

For (X,C, φ) as in Theorem 5.4.4 with a ∈ Xfr regular, but with-
out any assumption on P1 and P2, the values of P1 and P2 in C
are equal.

This braided version is not true. For example, for distinct elements x, y ∈ X, there
are two paths

a = x⊗ y x⊗ y

y⊗ x
ξ⊗x,y

1a

ξ⊗y,x

in Gr(X) with a = x⊗ y regular. However, in a braided monoidal category C, it is
not true in general that ξ⊗y,xξ⊗x,y = 1x⊗y, which is the symmetry axiom (1.3.33).

A natural followup question is the following.
Where does the proof of Theorem I.3.9.1 fail for a braided bi-
monoidal category?

The five reduction steps in the proof of Theorem I.3.9.1 are still valid in the braided
case, as we explained in the proof of Theorem 5.4.4. This allows us to reduce to
the setting of Lemma 5.4.2, but without the assumption ϑP1 = ϑP2. In the absence
of this assumption, the last paragraph in the proof of Lemma 5.4.2 fails for the
following reason. Without assuming ϑP1 = ϑP2, we can no longer infer that P′′1 and
P′′2 ∶ c b have the same underlying braid when restricted to each monomial
in c. Therefore, we cannot apply the Braided Coherence Theorem 1.6.3 to infer that
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P′′1 and P′′2 have the same value in C. This is where the proof of Theorem I.3.9.1 fails
for a general braided bimonoidal category. In the actual proof of Theorem I.3.9.1,
this corresponds to the second bullet point in the last paragraph.

In fact, the failure of the last part of the proof of Theorem I.3.9.1 in the braided
case as discussed above is precisely why Theorem 5.4.4 has the assumption that P1
and P2 have the same braided distortion.

5.5. Braided Distortion as a Grothendieck Construction

In this section, we provide a conceptual explanation of the braided distortion
category Dbr (Definition 5.2.2) as a Grothendieck construction over the finite ordi-
nal category. This description of Dbr is not used in the rest of this work.

The Grothendieck Construction. Recall from Definition I.4.6.1 that, for a cat-
egory C and a functor F ∶ Cop Cat, the Grothendieck construction of F is the
category ∫C F with objects (A, X)with A ∈ C and X ∈ FA. A morphism

( f , p) ∶ (A, X) (B, Y) ∈ ∫
C

F

consists of
● a morphism f ∶ A B in C and
● a morphism p ∶ X (F f )(Y) in FA.

The identity morphism of an object (A, X) is the pair (1A, 1X) of identity mor-
phisms. For another morphism

(g, q) ∶ (B, Y) (C, Z),
the composition with ( f , p) is defined as

(g, q) ○ ( f , p) = (g f , (F f )(q) ○ p) ∶ (A, X) (C, Z).
Proposition I.4.6.5 shows that there is a canonical isomorphism of categories

D ≅ ∫
Σ

F

between
● the distortion category D in Definition I.4.2.1 and
● the Grothendieck construction of some functor

F ∶ Σop Cat.

Here Σ is the finite ordinal category in Definition I.2.4.1.
● Its objects are nonnegative integers n ≥ 0.
● Its morphisms are permutations

Σ(n, n) = Σn

with Σ(m, n) = ∅ if m /= n.
● Identity morphisms are identity permutations.
● Composition is the product in each symmetric group Σn.

The functor F is defined by the following assignments on objects and morphisms.

n Σ×n

(Σ(n, n) = Σn ∋ σ) (σ−1 ∈ Cat(Σ×n, Σ×n))
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Here σ−1 is the functor that permutes the factors via σ−1 ∈ Σn. Moreover, Proposi-
tion I.4.6.7 is the additive version for the additive distortion category Dad.

The Braided Distortion Category. The description of the braided distortion
categoryDbr as a Grothendieck construction over Σ involves the following braided
version of Σ. Recall the nth braid group Bn in Definition 1.1.1.
Definition 5.5.1. The braid category B is the category defined as follows.

● Its objects are nonnegative integers m ≥ 0.
● For m, n ≥ 0, the morphism set is defined as

B(m, n) =
⎧⎪⎪⎨⎪⎪⎩

Bm if m = n and
∅ if m /= n.

● Identity morphisms are identity braids.
● Composition is the product in each braid group Bm.

This finishes the definition of B. ◇
We will use the following braided analogue of the functor F to relate the

braided distortion category Dbr, the finite ordinal category Σ, and the braid cat-
egory B. The n-fold Cartesian product of B is denoted by B×n, with B×0 = ∗.
Definition 5.5.2. Define a functor

Fbr ∶ Σop Cat

by the following assignments on objects and morphisms.

n B×n

(Σ(n, n) = Σn ∋ σ) (σ−1 ∈ Cat(B×n,B×n))

Here σ−1 is the functor that permutes the factors via σ−1 ∈ Σn, that is,

σ−1(x1, . . . , xn) = (xσ(1), . . . , xσ(n)).

This finishes the definition of the functor Fbr. ◇
The following observation provides a conceptual explanation of the braided

distortion category Dbr as a Grothendieck construction over Σ.
Proposition 5.5.3. There is a canonical isomorphism of categories

(5.5.4) Dbr ≅ ∫
Σ

Fbr

with Fbr ∶ Σop Cat the functor in Definition 5.5.2.

Proof. This follows from unpacking the definition of ∫Σ Fbr. In more detail, an ob-
ject in ∫Σ Fbr is a pair (m, r) consisting of

● an object m ≥ 0 in Σ and
● an object r ∈ Fbr(m) = B×m, that is, a sequence (r1, . . . , rm)with each rj ≥ 0.

A morphism

σ ∶ (m, r) (n, s) ∈ ∫
Σ

Fbr

consists of
● a morphism σ ∈ Σ(m, n), that is, a permutation σ ∈ Σm with m = n, and
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● a morphism

(σ1, . . . , σm) ∶ r σ−1s = (sσ(1), . . . , sσ(m)) ∈ B×m,

that is, a braid

σj ∈ B(rj, rj) = Brj for each 1 ≤ j ≤ m

with rj = sσ(j).

So objects and morphisms in ∫Σ Fbr are the same as those in the braided distortion
category Dbr (Definition 5.2.2). Similarly, the identity morphisms and composition
in ∫Σ Fbr are the same as those in Dbr. □

The following table summarizes the relationship between the additive distor-
tion category Dad, the distortion category D, and the braided distortion category
Dbr. See also Question III.A.5.6.

Dad (I.4.5.2) D (I.4.2.1) Dbr (5.2.2)

functor Σop Cat Fad (I.4.6.6) F (I.4.6.3) Fbr (5.5.2)

sends n to N×n Σ×n B×n

sends σ ∈ Σ(n, n) = Σn to σ−1 σ−1 σ−1

Grothendieck construction ∫Σ Fad (I.4.6.7) ∫Σ F (I.4.6.5) ∫Σ Fbr (5.5.3)

Braided Structure on the Braid Category. Since the braided distortion cate-
gory Dbr is a left permbraided category, which is, in particular, a tight braided bi-
monoidal category (Corollary 5.2.33), the braid category B in Definition 5.5.1 also
has a braided structure.
Proposition 5.5.5. The multiplicative structure on the braided distortion category Dbr

restricts to a braided strict monoidal structure on the braid category B.

Proof. Under the canonical isomorphism Dbr ≅ ∫Σ Fbr in (5.5.4), the braid category
B is the full subcategory ofDbr consisting of objects of length 1, that is, nonnegative
integers. Objects of length 1 are closed under the multiplicative structure on Dbr

in Definition 5.2.14. Since Dbr with its multiplicative structure is a braided strict
monoidal category by Lemma 5.2.21, so is the braid category B. □

Explanation 5.5.6. Restricting Definition 5.2.14 to objects of length 1 yields the
following explicit description of the braided strict monoidal structure on the braid
category B.

● The monoidal product⊗ ∶ B×B B is given on objects and morphisms
by, respectively,

m⊗ n = m + n and
σ⊗ τ = σ⊕ τ

with σ⊕ τ the sum braid (1.1.10).
● The monoidal unit is 0.
● The braiding ξ at a pair of nonnegative integers (m, n) is the elementary

block braid
b⊕m,n ∶ m + n n +m

in Bm+n in (1.2.4).
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This braided strict monoidal structure on the braid category B was first described
in [JS93]. It is proved there that B is the free braided strict monoidal category on
one object. For a more general discussion of coherence of monoidal structure, see
[Yau∞, 21.3]. ◇





CHAPTER 6

Strictification of Tight Braided Bimonoidal Categories

Recall from Definition 2.1.29 that a braided bimonoidal category is tight if the
distributivity morphisms δl and δr are natural isomorphisms, not just monomor-
phisms. Examples of tight braided bimonoidal categories include those in The-
orems 2.4.22, 3.2.19, 3.4.13, 3.6.14, and 4.4.3. By Definition 5.1.11 and Proposi-
tion 5.1.19, a right permbraided category is a tight braided bimonoidal category with

● a permutative category as its additive structure,
● a braided strict monoidal category as its multiplicative structure, and
● identities for the structure morphisms λ ●, ρ ●, δr, ξ⊗−,0, and ξ⊗0,−.

The main Theorem 6.3.6 in this chapter states that each tight braided bimonoi-
dal category is canonically equivalent to a right permbraided category. The left
variant is Theorem 6.3.7. It states that each tight braided bimonoidal category is
canonically equivalent to a left permbraided category.

The Blass-Gurevich Conjecture. As stated in the introduction in Chapter 5,
the Blass-Gurevich Conjecture in [BG20a] states that there should be a coherence
theorem for their BD categories, which are our tight braided bimonoidal cate-
gories. Theorem 5.4.4 is one positive answer to the Blass-Gurevich Conjecture
in the form of commutative formal diagrams in braided bimonoidal categories
that satisfy a monomorphism assumption. The main results in this chapter, Theo-
rems 6.3.6 and 6.3.7, are two further positive answers to the Blass-Gurevich Con-
jecture in the form of strictification of tight braided bimonoidal categories.

There are several more ways to interpret Theorems 6.3.6 and 6.3.7.
● They are the bimonoidal analogues of the Braided Strictification Theo-

rem 1.6.5 for braided monoidal categories.
● They are the braided analogues of Theorems I.5.4.6 and I.5.4.7, which

are the strictification results for tight symmetric bimonoidal categories
to, respectively, right and left bipermutative categories.
● As we will explain below, the proofs of Theorems 6.3.6 and 6.3.7 crucially

depend on the Coherence Theorem 5.4.4 for braided bimonoidal categor-
ies. Therefore, the main results in this chapter are illustrations of the
practical usage of Theorem 5.4.4.

Motivation. To motivate the Strictification Theorems 6.3.6 and 6.3.7, first con-
sider the known cases of monoidal categories, braided monoidal categories, and
symmetric bimonoidal categories.

The Strictification Theorem I.1.3.5 for a monoidal category C (see [ML98, XI.3
Theorem 1]) asserts the existence of an adjoint equivalence of strong monoidal
functors between C and a strict monoidal category Cst. The proof explicitly con-
structs Cst and the adjoint equivalence. The objects in Cst are finite sequences

II.161
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of objects in C, with the monoidal product given by concatenation of sequences.
By taking iterated monoidal products in C with the right normalized bracketing
(6.2.2), each object in Cst has a canonically associated object in C. Morphisms in
Cst are defined as morphisms in C between the associated objects. The nontrivial
part involves using Mac Lane’s Coherence Theorem I.1.3.3 for monoidal categories
(see [ML98, VII.2 Cor.])

● to define the monoidal product of two morphisms in Cst and to see that
it is well defined;
● to prove the strict associativity and unity of the monoidal product in Cst

for morphisms; and
● to define the strong monoidal functors between C and Cst.

The key observation is that the coherence theorem for monoidal categories, in the
form of commutative formal diagrams, is used in the construction of the strict
monoidal category Cst and the adjoint equivalence with C.

The Strictification Theorem 1.6.5 for braided monoidal categories relies on the
Joyal-Street Braided Coherence Theorem 1.6.3 in a similar way. The underlying
strict monoidal category is also Cst. The Braided Coherence Theorem 1.6.3 is used
in the construction of the braiding and the proof of the hexagon axioms in Cst. For
an explicit proof, see the references in Note 1.7.3.

A symmetric bimonoidal analogue of Mac Lane’s Coherence Theorem I.1.3.3
is Laplaza’s First Coherence Theorem I.3.9.1. The latter states that, in each sym-
metric bimonoidal category C that satisfies a monomorphism assumption, which
is automatically true if C is tight, any two parallel paths in Gr(X) with a regu-
lar domain, in the sense of Definition I.3.1.25, have the same value in C. Simi-
lar to the strictification of monoidal categories, the Strictification Theorem I.5.4.6
of tight symmetric bimonoidal categories to right bipermutative categories uses
Theorem I.3.9.1 many times. For a tight symmetric bimonoidal category C, its as-
sociated right bipermutative category A has as its objects formal polynomials in
the objects in C. They are interpreted in C using suitable additive and multiplica-
tive bracketings. In the proof of the Strictification Theorem I.5.4.6, the Coherence
Theorem I.3.9.1 is used in Explanations I.5.2.31 and I.5.2.37 and Lemmas I.5.2.33,
I.5.3.1, I.5.3.4, I.5.3.7, I.5.3.8, and I.5.4.4. Each time Theorem I.3.9.1 is used to infer
the commutativity of a diagram in C.

For a tight braided bimonoidal category C, the associated right permbraided
category A has the same underlying category and additive structure as in the sym-
metric case; see Definitions 6.2.3 and 6.2.10. In particular, its objects are formal
polynomials in the objects in C. The rest of the construction of A—including the
multiplicative zeros λ ● and ρ ●, the distributivity morphisms δl and δr, and the
proof that it is a right permbraided category—follows a similar outline, but it is
different in one crucial aspect. As we mentioned in the previous paragraph, in
the symmetric case, we use Theorem I.3.9.1 many times to infer the commutativ-
ity of formal diagrams in C. However, as discussed near the end of Section 5.4,
Theorem I.3.9.1 does not have a literal braided analogue, with the word braided
replacing the word symmetric in the statement.

A careful examination of the proof of Theorem I.5.4.6 reveals that each in-
stance of Theorem I.3.9.1 may be replaced by Laplaza’s Second Coherence Theo-
rem I.4.4.3. We use Theorem I.3.9.1 instead of Theorem I.4.4.3 mainly for conve-
nience. In each instance, by assigning a separate formal variable to each alphabet
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involved, we make sure that the common domain of the parallel paths is regular
as in Definition I.3.1.25. Therefore, we can simply use Theorem I.3.9.1 each time.
To use Theorem I.4.4.3 instead, we would have to check that, in each instance, the
two paths in question have the same distortion in the sense of Definition I.4.3.1.
This is possible, but it involves more work.

The Braided Bimonoidal Coherence Theorem 5.4.4 is the braided version of
Theorem I.4.4.3. Therefore, in the proof of Theorem 6.3.6, each time Theorem I.3.9.1
is used in the proof of Theorem I.5.4.6, we now use Theorem 5.4.4. In each instance,
we check that the two paths in question have the same braided distortion as in
Definition 5.3.15. See the proofs of Lemmas 6.2.29, 6.2.35, 6.2.37, 6.2.38, and 6.3.4.

Organization. An outline of the rest of this chapter follows.
To prepare for Theorem 6.3.6, in Section 6.1, we discuss braided bimonoidal

functors. They are the same as symmetric bimonoidal functors in Definition I.5.1.1,
but they apply to braided bimonoidal categories. After providing equivalent char-
acterizations of the axioms and defining composition, we finish this section with
some examples. Proposition 6.1.12 shows that, for abelian categories with a com-
patible braided monoidal structure, a braided monoidal functor that is also an
additive functor canonically extends to a braided bimonoidal functor.

As the first main step for Theorem 6.3.6, in Section 6.2, for each tight braided
bimonoidal category C, we construct an explicit right permbraided category A.
An important difference between the braided case and the symmetric case is in
the definition of the left distributivity morphism δl in A. In the symmetric case
(I.5.3.6), δl is defined in terms of δr and the multiplicative symmetry ξ⊗ in A using
the diagram (2.1.4). Therefore, that axiom is automatically true in A. On the other
hand, in the braided case (6.2.34), δl is defined in terms of δr and the braiding ξ⊗

in A using the diagram (2.1.32) in the definition of a braided bimonoidal category.
So we have to check the axiom (2.1.4) in A, which is Lemma 6.2.38.

In Section 6.3, we finish the proof of Theorem 6.3.6 by constructing an ad-
joint equivalence between C and A. The two functors involved are both braided
bimonoidal equivalences. The Strictification Theorem 6.3.7 to left permbraided
categories has almost the same proof as that of Theorem 6.3.6, and we explain the
necessary adjustments. This time δr is defined in terms of δl and ξ⊗ using (2.1.4),
and we have to prove the axiom (2.1.32).

As before, we often omit the ⊗ symbol to save space. In the absence of clar-
ifying parentheses, ⊗ takes precedence over ⊕. For example, AB ⊕ CD means
(A⊗ B)⊕ (C⊗D).

Reading Guide.

(1) Read Definitions 6.1.1 and 6.1.8 of braided bimonoidal functors and their
composites.

(2) Read Convention 6.2.1 and Definitions 6.2.3, 6.2.9, 6.2.10, 6.2.19, 6.2.22,
and 6.2.31 and the statement of Proposition 6.2.39 for the associated right
permbraided category.

(3) Read Definitions 6.3.1 and 6.3.2 and the statements of Theorems 6.3.6
and 6.3.7 for the strictification of tight braided bimonoidal categories.

(4) Go back and read the rest of this chapter.



II.164 6. STRICTIFICATION OF TIGHT BRAIDED BIMONOIDAL CATEGORIES

6.1. Braided Bimonoidal Functors

In this section, we define functors between braided bimonoidal categories and
observe that there is a category Bibr of small braided bimonoidal categories and
braided bimonoidal functors. Examples of braided bimonoidal functors are dis-
cussed in the second half of this section. Recall from Definitions 1.3.7 and 1.3.18
the concept of a braided monoidal functor and from Definition 2.1.29 the concept
of a braided bimonoidal category.
Definition 6.1.1. Suppose C and D are braided bimonoidal categories. A braided
bimonoidal functor from C to D is a tuple

(F, F2
⊕, F0

⊕, F2
⊗, F0

⊗) ∶ C D

consisting of the following data.
The Additive Structure:

F⊕ = (F, F2
⊕, F0

⊕) ∶ (C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) (D,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
is a symmetric monoidal functor.

The Multiplicative Structure:

F⊗ = (F, F2
⊗, F0

⊗) ∶ (C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗) (D,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗)
is a braided monoidal functor.

These data are required to make the following two diagrams in D commutative for
all objects A, B, C ∈ C.
Multiplicative Zero:

(6.1.2)

(FA)0 (FA)(F0)

0 F(A0)

F0

ρ
●
FA

1FA F0
⊕

F2
⊗

F0
⊕

Fρ
●
A

Distributivity:

(6.1.3)

(FA⊕ FB)(FC) (FA)(FC)⊕ (FB)(FC)

F(A⊕ B)(FC) F(AC)⊕ F(BC)

F((A⊕ B)C) F(AC⊕ BC)

F2
⊕

1FC

δr

F2
⊗
⊕F2
⊗

F2
⊗ F2

⊕

Fδr

This finishes the definition of a braided bimonoidal functor.
Moreover, we define the following.
● A braided bimonoidal functor as above is sometimes abbreviated to F.
● A braided bimonoidal functor F is

– robust if F2
⊕, F0

⊕, and F0
⊗ are isomorphisms;

– strong (respectively, strict) if both F⊕ and F⊗ are so;
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– unitary if it is strong and if F0
⊕ and F0

⊗ are identities; and
– a braided bimonoidal equivalence if it is also an equivalence of categor-

ies. ◇
Explanation 6.1.4. A braided bimonoidal functor F is strong (respectively, strict)
if F2
⊕, F0

⊕, F2
⊗, and F0

⊗ are isomorphisms (respectively, identities). It is unitary if F0
⊕

and F0
⊗ are identities, and F2

⊕ and F2
⊗ are isomorphisms. ◇

While the axioms (6.1.2) and (6.1.3) are stated in terms of ρ ● and δr, they are
equivalent to the left versions in the following sense.

Proposition 6.1.5. Suppose

(F, F2
⊕, F0

⊕, F2
⊗, F0

⊗) ∶ C D

consists of the same data as in Definition 6.1.1.

(1) The multiplicative zero axiom (6.1.2) is equivalent to the commutativity of the
following diagram for all objects A ∈ C.

(6.1.6)

0(FA) (F0)(FA)

0 F(0A)

F0

λ
●
FA

F0
⊕

1FA

F2
⊗

F0
⊕

Fλ
●
A

(2) The distributivity axiom (6.1.3) is equivalent to the commutativity of the follow-
ing diagram for all objects A, B, C ∈ C.

(6.1.7)

(FA)(FB⊕ FC) (FA)(FB)⊕ (FA)(FC)

(FA)F(B⊕C) F(AB)⊕ F(AC)

F(A(B⊕C)) F(AB⊕ AC)

1FA F2
⊕

δl

F2
⊗
⊕F2
⊗

F2
⊗ F2

⊕

Fδl

Proof. We reuse the proof of Proposition I.5.1.4, which is the symmetric bimonoidal
functor analogue, with the following changes.

● To prove the equivalence between (6.1.2) and (6.1.6), in the first diagram
in the proof of Proposition I.5.1.4, we use the braided bimonoidal cate-
gory axiom (2.1.33) instead of (2.1.18), which is the same as (I.2.1.19), and
the symmetry axiom (1.3.33).
● To prove the equivalence between (6.1.3) and (6.1.7), in the second dia-

gram in the proof of Proposition I.5.1.4, we use the braided bimonoidal
category axiom (2.1.32) instead of (2.1.4), which is the same as (I.2.1.5),
and the symmetry axiom. □

Recall from Definition 1.3.12 the composite of two monoidal functors.
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Definition 6.1.8. Suppose

C D E
F G

are braided bimonoidal functors. The composite

(GF, (GF)2⊕, (GF)0⊕, (GF)2⊗, (GF)0⊗) ∶ C E

is defined by the following composites of monoidal functors.

(GF, (GF)2⊕, (GF)0⊕) = G⊕ ○ F⊕

(GF, (GF)2⊗, (GF)0⊗) = G⊗ ○ F⊗

The finishes the definition of the composite. ◇
The next two results are the braided analogues of Lemma I.5.1.9 and Proposi-

tion I.5.1.10, whose proofs are reused here without any changes.
Lemma 6.1.9. In Definition 6.1.8, GF ∶ C E is a braided bimonoidal functor. More-
over, if both F and G are robust (respectively, strong, unitary, or strict), then so is GF.

A subcategory is called wide if it contains all the objects in the larger category.
A braided bimonoidal category is small if it has a set of objects.

Proposition 6.1.10. There is a category Bibr with the following data.
● The objects are small braided bimonoidal categories as in Definition 2.1.29.
● The morphisms are braided bimonoidal functors as in Definition 6.1.1.
● Identity morphisms are identity functors with identity monoidal structures.
● Composition is as in Definition 6.1.8.

Moreover, Bibr has the wide subcategories

● Bibrr with robust braided bimonoidal functors as morphisms;
● Bibrsg with strong braided bimonoidal functors as morphisms;
● Bibru with unitary braided bimonoidal functors as morphisms; and
● Bibrst with strict braided bimonoidal functors as morphisms.

Examples. The rest of this section contains examples of braided bimonoidal
functors.
Example 6.1.11. A symmetric monoidal category is also a braided monoidal cat-
egory by Proposition 1.3.36, and similarly in the bimonoidal setting by Corol-
lary 2.2.3. Therefore, by Definitions I.5.1.1, 1.3.18, 1.3.32, and 6.1.1, between sym-
metric bimonoidal categories, a braided bimonoidal functor is the same thing as a
symmetric bimonoidal functor. ◇

In Theorem 2.4.22, we observed that an abelian category with a compatible
braided monoidal structure is a tight braided bimonoidal category. Examples of
such braided bimonoidal categories include

● the category Mod(A) in Theorem 3.2.19 (2) for a braided bialgebra (A, R),
● the category F any of Fibonacci anyons in Theorem 3.4.13, and
● the category Iany of Ising anyons in Theorem 3.6.14.

Recall from Definition 2.3.3 the notion of an additive functor.
Proposition 6.1.12. Suppose the triple (C,D, F⊗) consists of the following data.

● Each of C and D is an abelian category with a compatible braided monoidal struc-
ture in the sense of Convention 2.4.1.



6.1. BRAIDED BIMONOIDAL FUNCTORS II.167

● F⊗ = (F, F2
⊗, F0

⊗) ∶ C D is a braided monoidal functor such that F ∶ C D
is also an additive functor.

Then F canonically extends to a braided bimonoidal functor

(F, F2
⊗, F0

⊗, F2
⊕, F0

⊕) ∶ C D

with C and D regarded as tight braided bimonoidal categories as in Theorem 2.4.22.

Proof. First we define the additive structure morphisms F0
⊕ and F2

⊕.

● F0
⊕ ∶ 0 F0 ∈ D is the unique morphism from the zero object in D.

● The additive monoidal constraint F2
⊕ is defined by the commutative dia-

grams

(6.1.13)
FA1 ⊕ FA2 F(A1 ⊕ A2)

FAk

F2
⊕

i
FA1,FA2
k Fi

A1,A2
k

for objects A1, A2 ∈ C and k = 1, 2, with each ik the kth factor inclusion in
Definition 2.3.4.

The naturality and the invertibility of F2
⊕ follow from Theorem 2.3.7 (4), which

states that F preserves direct sums. In particular, F2
⊕ can also be characterized by

the commutative diagrams

(6.1.14)
FA1 ⊕ FA2 F(A1 ⊕ A2)

FAk
p

FA1,FA2
k

F2
⊕

Fp
A1,A2
k

with each pk the kth factor projection.
The associativity axiom (1.3.10), the unity axiom (1.3.11), and the compatibility

axiom (1.3.19) with ξ⊕ for F⊕ = (F, F2
⊕, F0

⊕) follow from the direct sum axioms
(2.3.5) and Explanation 2.4.3. Therefore,

(C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) (D,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)F⊕

is a symmetric monoidal functor.
The multiplicative zero axiom (6.1.2) is the outer diagram below for A ∈ C.

(FA)0 (FA)(F0)

0 F(A0)

F0

ρ
●
FA

1FA F0
⊕

F2
⊗

F0
⊕ Fρ

●
A

● The middle horizontal arrow is the unique morphism to the zero object
in D. This implies that the top square is commutative.
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● In the bottom triangle,

ρ
●
A ∶ A⊗ 0 0

is the unique morphism to the zero object by Definition 2.4.11. This is
also the zero morphism in the trivial abelian group C(A⊗ 0, 0). Since F
is additive, it preserves zero morphisms. Lemma 2.3.12 implies that the
zero morphism Fρ ●A is equal to the composite

F(A0) 0 F0.

Therefore, the bottom triangle is commutative.
This proves the axiom (6.1.2).

Next we consider the distributivity axiom (6.1.3). Since F preserves direct
sums, it suffices to show that the two composites in (6.1.3) composed with the
projection to the object F(AC) are equal and similarly for F(BC). Composed with
the projection to F(AC), (6.1.3) becomes the outer diagram below.

(FA⊕ FB)(FC) (FA)(FC)⊕ (FB)(FC) F(AC)⊕ F(BC)

F(A⊕ B)(FC) (FA)(FC) F(AC⊕ BC)

F((A⊕ B)C) F(AC)

F(AC⊕ BC)

(6.1.14)
(6.1.14)

(2.4.9)

(2.4.9)

(2.4.4)

nat

δr F2
⊗ ⊕ F2

⊗

pF(AC),F(BC)
1

F2
⊕1FC

F2
⊗

F(pA,B
1 1C)

(FpA,B
1 )1FC

pFA,FB
1 1FC

p(FA)(FC),(FB)(FC)
1

F2
⊗

F2
⊕

FpAC,BC
1

Fδr FpAC,BC
1

As indicated, this diagram is commutative by
● the naturality of F2

⊗ and
● the definitions of a direct sum of morphisms (2.4.4), δr (2.4.9), and F2

⊕
(6.1.14).

A similar diagram with p2 instead of p1 shows that the two composites in (6.1.3)
composed with the projection to the object F(BC) are equal. This proves the axiom
(6.1.3). We have proved that F is a braided bimonoidal functor when equipped
with the additive structure F⊕ and the multiplicative structure F⊗. □

Corollary 6.1.15. In Proposition 6.1.12, suppose the braided monoidal structures on C
and D are symmetric monoidal. Then the extension of F is a symmetric bimonoidal functor.

Proof. By Corollary 2.5.1, C and D are tight symmetric bimonoidal categories.
Therefore, the assertion follows from Example 6.1.11 and Proposition 6.1.12. □

6.2. Associated Right Permutative Braided Category

In this section, for each tight braided bimonoidal category C, we construct
an associated right permbraided category A in the sense of Definition 5.1.11. By
Proposition 5.1.19, each right permbraided category is a tight braided bimonoidal
category whose structure morphisms α⊕, λ⊕, ρ⊕, α⊗, λ⊗, ρ⊗, λ ●, ρ ●, δr, ξ⊗−,0, and
ξ⊗0,− are identities. In Theorem 6.3.6, we will observe that A is a strictification of C
in a precise sense.
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This section is organized as follows.
● Definition 6.2.3 defines the underlying category of A.
● The additive structure of A is in Definition 6.2.10 and is verified to be a

permutative category in Lemma 6.2.18.
● The multiplicative structure of A is in Definition 6.2.22 and is verified to

be a braided strict monoidal category in Lemma 6.2.29.
● The multiplicative zeros and the distributivity morphisms in A are in Def-

inition 6.2.31 and are verified to be well defined in Lemma 6.2.35.
● The other axioms are checked in Lemmas 6.2.36 through 6.2.38.
● Proposition 6.2.39 states that A is a right permbraided category.

Convention 6.2.1. For the rest of this chapter, unless specified otherwise, C is a
tight braided bimonoidal category as in Definition 2.1.29. ◇

The Underlying Category. The morphisms in the associated right permuta-
tive braided category A uses the following notation. With ⊙ ∈ {⊕,⊗}, the right
normalized bracketing is defined inductively by

(6.2.2) (x1 ⊙⋯⊙ xk)rt =
⎧⎪⎪⎨⎪⎪⎩

x1 if k = 1 and
x1 ⊙ (x2 ⊙⋯⊙ xk)rt if k > 1.

The next definition is the same as in the symmetric case in Definitions I.5.2.3,
I.5.2.16, and I.5.2.21.

Definition 6.2.3. For a tight braided bimonoidal category C, define
● the category A and
● the function π ∶ Ob(A) Ob(C)

as follows.
Objects: An object a ∈ Ob(A) is a finite sequence

(6.2.4) a = {a1, . . . , ar}

with additive length ∣a∣ = r ≥ 0, such that for each 1 ≤ i ≤ r, ai is a finite
sequence

(6.2.5) ai = (ai
1, . . . , ai

mi
)

with multiplicative length ∣ai∣ = mi ≥ 0 and each ai
j ∈ Ob(C). We call

● ai the ith monomial in a and
● ai

j the jth alphabet in ai.
Realization: Define the realization function

(6.2.6) Ob(A) Ob(C)π

as follows for a = {a1, . . . , ar} ∈ Ob(A) as in (6.2.4).

πai =
⎧⎪⎪⎨⎪⎪⎩

1 ∈ C if mi = 0 and
(ai

1 ⊗⋯⊗ ai
mi
)
rt
∈ C if mi > 0.

πa =
⎧⎪⎪⎨⎪⎪⎩

0 ∈ C if r = 0 and
(πa1 ⊕⋯⊕πar)

rt
∈ C if r > 0.

(6.2.7)
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For each 1 ≤ i ≤ r, πai uses the right normalized bracketing (6.2.2) in
(C,⊗). The object πa uses the right normalized bracketing in (C,⊕).

Morphisms: For objects a, b ∈ Ob(A), define the morphism set

(6.2.8) A(a; b) = C(πa; πb)

with π the realization function in (6.2.6).
Identity Morphisms: Define 1a = 1πa ∈ A(a; a).
Composition: Define the composition in A

A(b; c)×A(a; b) = C(πb; πc)×C(πa; πb) C(πa; πc) = A(a; c)

as the composition in C.

This finishes the definition of (A, π). ◇
Since C is a category, so is A.

Mac Lane Coherence Isomorphisms. Recall from (5.3.14) the value in C of a
path in Gr(X). Each time the value in C of a path is considered, it is assumed that
the following data (X, φ) are given.

● X is a set of formal variables with two distinguished elements {0X, 1X}.
● φ ∶ X Ob(C) is a function that satisfies

φ(0X) = 0 and φ(1X) = 1.

The function φ is extended additively and multiplicatively to a graph morphism
φ ∶ Gr(X) C as in (5.3.12) and (5.3.13). The additive structure in A involves the
following notion; see (6.2.14) and (6.2.16).

Definition 6.2.9. A Mac Lane coherence isomorphism in C, which is denoted by ≅⊕ML,
is the value φP ∶ φu φv in C of a path P ∶ u v in Gr(X) that satisfies the
following three conditions.

(i) P only involves identities, α±⊕, λ±⊕, ρ±⊕, and ξ±⊕.
(ii) In addition to the distinguished elements {0X, 1X}, the set X contains a

specific element xm for each monomial m in each object in A that appears
in φu.

(iii) For each monomial m in (ii), the equality

φ(xm) = π(m) ∈ C

holds, with π(m) as in (6.2.7).

This finishes the definition of a Mac Lane coherence isomorphism. ◇

The Additive Structure.

Definition 6.2.10. Continuing Definition 6.2.3, define the additive structure

(0A,⊕A, ξ⊕A)

in A as follows.

The Additive Zero: Define
0A = ∅ ∈ Ob(A)

as the unique object with additive length 0.
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The Sum on Objects: For objects a = {a1, . . . , ar} and b = {b1, . . . , bs} ∈ Ob(A),
define their sum by concatenation, that is,

(6.2.11) a⊕A b = {a1, . . . , ar, b1, . . . , bs} ∈ Ob(A),
which has additive length ∣a∣+ ∣b∣.

The Sum on Morphisms: For morphisms

(6.2.12)
a b ∈ A(a; b) = C(πa; πb) and

c d ∈ A(c; d) = C(πc; πd),

f

g

their sum

(6.2.13) a⊕A c b⊕A d ∈ A(a⊕A c; b⊕A d) = C(π(a⊕A c); π(b⊕A d))f⊕Ag

is defined as the following composite in C, with ≅⊕ML as in Definition 6.2.9.

(6.2.14)
π(a⊕A c) π(b⊕A d)

πa⊕πc πb⊕πd

≅⊕ML

f⊕Ag

f⊕g
≅⊕ML

The Additive Symmetry: For objects a, b ∈ Ob(A), define the morphism

(6.2.15) a⊕A b b⊕A a ∈ A(a⊕A b; b⊕A a) = C(π(a⊕A b); π(b⊕A a))
ξ⊕A

a;b

as the following composite in C, with ≅⊕ML as in Definition 6.2.9.

(6.2.16)
π(a⊕A b) π(b⊕A a)

πa⊕πb πb⊕πa

≅⊕ML

ξ⊕A

a;b

ξ⊕
πa;πb

≅⊕ML

This finishes the definition of the additive structure in A. ◇
Explanation 6.2.17. In the definition (6.2.14) of f ⊕A g, suppose a = {a1, . . . , ar} and
c = {c1, . . . , ct} ∈ A. The Mac Lane coherence isomorphism

π(a⊕A c) πa⊕πc
≅⊕ML

is defined as follows. Conditions (i)–(iii) below refer to those in Definition 6.2.9.
● By (ii), the set X of formal variables is

X = {0X, 1X, x1, . . . , xr, y1, . . . , yt},
with one element in X ∖ {0X, 1X} for each monomial in each of a and c.
● By (iii), the function φ ∶ X Ob(C) is defined as

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X,
1 if x = 1X,
πai if x = xi for 1 ≤ i ≤ r, and
πck if x = yk for 1 ≤ k ≤ t.
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● By (i) and Mac Lane’s Coherence Theorem I.1.3.3, the left vertical ≅⊕ML in
(6.2.14) is

– λ−⊕πc if a = 0A and
– ρ−⊕πa if c = 0A.

If a /= 0A /= c, then this instance of ≅⊕ML involves only identity morphisms
and α−⊕.

Each of the other three instances of ≅⊕ML in (6.2.14) and (6.2.16) admits a similar
description. ◇

Recall from Definition 1.3.32 that a permutative category is a symmetric monoi-
dal category whose underlying monoidal category is strict; that is, the associativity
isomorphism and the left/right unit isomorphisms are identities.
Lemma 6.2.18. In the context of Definitions 6.2.3 and 6.2.10, the quadruple

(A,⊕A, 0A, ξ⊕A)
is a permutative category.

Proof. The proofs of Lemmas I.5.2.8, I.5.2.23, I.5.2.33, and I.5.3.1, where C is a tight
symmetric bimonoidal category, are still valid in the current context. □

Laplaza Coherence Isomorphisms. We continue to assume that C is a tight
braided bimonoidal category. The multiplicative structure in A involves the fol-
lowing notion; see (6.2.25) and (6.2.27).
Definition 6.2.19. A Laplaza coherence isomorphism in C, which is denoted by ≅Lap,
is the value φP ∶ φv φw in C of a path P ∶ v w in Gr(X) that satisfies the
following three conditions.

(i) P does not involve ξ±⊗.
(ii) In addition to the distinguished elements {0X, 1X}, the set X contains a

specific element xa for each alphabet a in each object in A that appears in
φv.

(iii) For each alphabet a in (ii), the equality

φ(xa) = a ∈ C
holds.

The inverse of a Laplaza coherence isomorphism is denoted by ≅−1
Lap. ◇

Explanation 6.2.20. By Definition 5.3.4, the elementary edges δl and δr in Gr(X) do
not have formal inverses. Therefore, a Laplaza coherence isomorphism also does
not involve δ−l and δ−r. On the other hand, the inverse of a Laplaza coherence
isomorphism may involve δ−l and δ−r, but neither δl nor δr. This is why we need
to distinguish between ≅Lap and ≅−1

Lap. The tightness assumption on C is needed
to make sure that the distributivity morphisms δl and δr are invertible, so ≅−1

Lap is
defined. ◇
Lemma 6.2.21. The following statements hold for Laplaza coherence isomorphisms.

(1) A Mac Lane coherence isomorphism as in Definition 6.2.9 is also a Laplaza co-
herence isomorphism.

(2) Laplaza coherence isomorphisms are closed under ⊕, ⊗, and composition.
(3) The braided distortion of each path that yields a Laplaza coherence isomorphism

has identity braid components.
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Proof. Statement (1) holds by definition.
For statement (2), Laplaza coherence isomorphisms are closed under composi-

tion because two paths P and Q in Gr(X) can be concatenated to the path (Q, P) as
long as the codomain of P is the domain of Q. Closure under ⊕ and ⊗ follows from
the definition (5.3.13) of the graph morphism φ ∶ Gr(X) C at prime edges.

For statement (3), the braided distortion of a path is its value in the braided
distortion category as in Definition 5.3.15. As noted in Explanation 5.2.29 (3), in
the braided distortion categoryDbr, the braiding ξ⊗ in (5.2.18) is the only structure
isomorphism with nonidentity braid components in the sense of Definition 5.2.2.
By definition, a Laplaza coherence isomorphism is the value in C of a path that
does not involve ξ±⊗. So the braided distortion of such a path has only identity
braids in its braid components. □

The Multiplicative Structure.

Definition 6.2.22. Continuing Definition 6.2.3, define the multiplicative structure

(1A,⊗A, ξ⊗A)

in A as follows.

The Multiplicative Unit: Define

1A = {∅} ∈ Ob(A)

as the object with additive length 1 whose only monomial has multiplica-
tive length 0.

The Product on Objects: For objects a = {a1, . . . , ar} and b = {b1, . . . , bs} in A, de-
fine their product by

(6.2.23) a⊗A b = {(a1, b1), . . . , (a1, bs), . . . , (ar, b1), . . . , (ar, bs)} ∈ Ob(A)

with additive length ∣a∣∣b∣. For 1 ≤ i ≤ r and 1 ≤ j ≤ s, the (j + (i − 1)s)th
monomial in a⊗A b is the concatenation (ai, bj)with multiplicative length
∣ai∣+ ∣bj∣.

The Product on Morphisms: For morphisms f and g as in (6.2.12), their product

(6.2.24) a⊗A c b⊗A d ∈ A(a⊗A c; b⊗A d) = C(π(a⊗A c); π(b⊗A d))f⊗Ag

is defined as the following composite in C.

(6.2.25)
π(a⊗A c) π(b⊗A d)

πa⊗πc πb⊗πd

≅−1
Lap

f⊗Ag

f⊗g

≅Lap

The Braiding: For objects a, b ∈ Ob(A), define the morphism

(6.2.26) a⊗A b b⊗A a ∈ A(a⊗A b; b⊗A a) = C(π(a⊗A b); π(b⊗A a))
ξ⊗A

a;b
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as the following composite in C.

(6.2.27)
π(a⊗A b) π(b⊗A a)

πa⊗πb πb⊗πa

≅−1
Lap

ξ⊗A

a;b

ξ⊗
πa;πb

≅Lap

This finishes the definition of the multiplicative structure in A. ◇
Explanation 6.2.28. In the definition (6.2.25) of f ⊗A g, suppose

● b = {b1, . . . , bs} ∈ A with

bj = (bj
1, . . . , bj

nj
)

for 1 ≤ j ≤ s and
● d = {d1, . . . , du} ∈ A with

dl = (dl
1, . . . , dl

ql
)

for 1 ≤ l ≤ u.
The Laplaza coherence isomorphism

πb⊗πd π(b⊗A d)≅Lap

is defined as follows. Conditions (i)–(iii) below refer to those in Definition 6.2.19.
● By (ii), the set X of formal variables is

X = {0X, 1X}∐{xj
1, . . . , xj

nj
}1≤j≤s∐{y

l
1, . . . , yl

ql
}1≤l≤u.

There is one element in X ∖ {0X, 1X} for each alphabet in each of b and d.
● By (iii), the function φ ∶ X Ob(C) is defined as

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X,
1 if x = 1X,
bj

h if x = xj
h for 1 ≤ j ≤ s and 1 ≤ h ≤ nj, and

dl
k if x = yl

k for 1 ≤ l ≤ u and 1 ≤ k ≤ ql .

● By (i), the right vertical ≅Lap in (6.2.25) is
– λ ●πd if b = 0A,
– λ⊗

πd if b = 1A,
– ρ ●πb if d = 0A, and
– ρ⊗

πb if d = 1A.
If b, d /∈ {0A,1A}, then this instance of ≅Lap involves identity morphisms,
α±⊕, ξ⊕, α⊗, λ⊗, ρ⊗, δl , and δr. Moreover, λ⊗ and ρ⊗ are involved if and
only if, respectively, b and d contain monomials of multiplicative length
0.

Each of the other three instances of ≅Lap in (6.2.25) and (6.2.27) admits a similar
description. ◇

Recall from Definition 1.3.15 that a braided monoidal category is strict if the
underlying monoidal category is strict; that is, the associativity isomorphism and
the left/right unit isomorphisms are identities.
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Lemma 6.2.29. In the context of Definitions 6.2.3 and 6.2.22, the quadruple

(A,⊗A,1A, ξ⊗A)

is a braided strict monoidal category.

Proof. We reuse the proofs of Lemmas I.5.2.8, I.5.2.33, and I.5.3.1 with the follow-
ing adjustments. First note that in (6.2.25) and (6.2.27), ≅Lap and ≅−1

Lap are well de-
fined. Indeed, each of the four instances of ≅Lap is the value in C of a path whose
braided distortion has only identity braid components by Lemma 6.2.21(3). The
permutation component is uniquely determined by the monomials of the objects
involved because there is a unique permutation between any two permuted words
of the same length. The Coherence Theorem 5.4.4, which is applicable because C
is assumed to be tight, then implies that each instance of ≅Lap is well defined in C.

To check that (A,⊗A,1A) is a strict monoidal category, first note that the func-
toriality of

−⊗A − ∶ A×A A

follows from the functoriality of ⊗ in C.
It is shown in Lemma I.5.2.8 that ⊗A is strictly associative on objects, with 1A

as a strict two-sided unit. The naturality of the left unit isomorphism λ⊗A = 1 and
the right unit isomorphism ρ⊗A = 1 follow from the naturality of λ⊗ and ρ⊗ in C.

The naturality of the multiplicative associativity α⊗A = 1 in A follows from the
following diagram in C for morphisms fi ∈ A(ai; bi) for 1 ≤ i ≤ 3.

(6.2.30)

π((a1 ⊗A a2)⊗A a3) π(a1 ⊗A (a2 ⊗A a3))

π(a1 ⊗A a2)⊗πa3 πa1 ⊗π(a2 ⊗A a3)

(πa1 ⊗πa2)⊗πa3 πa1 ⊗ (πa2 ⊗πa3)

(πb1 ⊗πb2)⊗πb3 πb1 ⊗ (πb2 ⊗πb3)

π(b1 ⊗A b2)⊗πb3 πb1 ⊗π(b2 ⊗A b3)

π((b1 ⊗A b2)⊗A b3) π(b1 ⊗A (b2 ⊗A b3))

≅−1
Lap

=

≅−1
Lap

≅−1
Lap⊗ 1 1⊗≅−1

Lap

( f1⊗ f2)⊗ f3

α⊗

f1⊗( f2⊗ f3)

≅Lap⊗ 1

α⊗

1⊗≅Lap

≅Lap ≅Lap
=

● By (6.2.25), the left vertical composite defines ( f1 ⊗A f2) ⊗A f3, and the
right vertical composite defines f1 ⊗A ( f2 ⊗A f3).
● The middle rectangle is commutative by the naturality of α⊗ in C.
● In the bottom rectangle, each of the two composites is a Laplaza coher-

ence isomorphism. As in the first paragraph of this proof, Lemma 6.2.21
and Theorem 5.4.4 imply that the two composites are equal.
● The top rectangle is commutative for the same reason as for the bottom

rectangle, after replacing each ≅−1
Lap with its inverse ≅Lap in the opposite

direction.



II.176 6. STRICTIFICATION OF TIGHT BRAIDED BIMONOIDAL CATEGORIES

The unity axiom (1.3.2) and the pentagon axiom (1.3.3) hold in (A,⊗A,1A) be-
cause each edge involved is the identity morphism. Therefore, (A,⊗A,1A) is a strict
monoidal category.

Similar to (6.2.30), the naturality and the invertibility of ξ⊗A in (6.2.26) follow
from the corresponding properties of ξ⊗ in C and the fact that each ≅Lap is well
defined.

The left hexagon diagram (1.3.17) for objects a, b, c ∈ A is the outer diagram in
C below.

(πb⊗πa)⊗πc π(b⊗A a)⊗πc π[(b⊗A a)⊗A c]

(πa⊗πb)⊗πc π[b⊗A (a⊗A c)]

π(a⊗A b)⊗πc πb⊗π(a⊗A c)

π[(a⊗A b)⊗A c] πb⊗ (πa⊗πc)

π[a⊗A (b⊗A c)] πb⊗ (πc⊗πa)

πa⊗π(b⊗A c) π(b⊗A c)⊗πa π[b⊗A (c⊗A a)] πb⊗π(c⊗A a)

πa⊗ (πb⊗πc)

(πb⊗πc)⊗πa

(1.3.17)

(†)

≅−1
Lap

≅−1
Lap ⊗1

ξ⊗1

≅Lap ⊗1 ≅Lap

α⊗A = 1

≅−1
Lap

1⊗ ≅−1
Lap

1ξ⊗

1⊗ ≅Lap

≅Lap

α⊗A = 1

≅−1
Lap

ξ⊗ ≅Lap

α⊗

α⊗

ξ⊗

α⊗

1⊗ ≅Lap

≅Lap ⊗1

ξ⊗A

a;b ⊗
A 1c

1b ⊗
A ξ⊗A

a;cα⊗Aξ⊗a;b⊗Ac

● By (6.2.25) and (6.2.27), the three boundary regions are the definitions of
the indicated morphisms.
● The subdiagram (†) is commutative by the naturality of ξ⊗ in C.
● The middle subdiagram is an instance of the left hexagon diagram in the

multiplicative structure in C, which is a braided monoidal category.
● In each of the three remaining subdiagrams, for each instance of ≅−1

Lap, we
consider its inverse ≅Lap in the opposite direction. Each of these three
subdiagrams is commutative by Lemma 6.2.21 and Theorem 5.4.4 as in
(6.2.30).

The right hexagon axiom (1.3.17) in A follows similarly from that in the multi-
plicative structure in C, the naturality of ξ⊗ in C, Lemma 6.2.21, and Theorem 5.4.4.
Therefore, (A,⊗A,1A, ξ⊗A) is a braided strict monoidal category. □

The Multiplicative Zeros and Distributivity.
Definition 6.2.31. Continuing Definitions 6.2.3, 6.2.10, and 6.2.22, define the struc-
ture morphisms λ ●A, ρ ●A, δlA, and δrA in A as follows.
The Multiplicative Zeros: λ ●A and ρ ●A have components

(6.2.32) 0A ⊗A a 0A a⊗A 0A
λ
●A
a

= =
ρ
●A
a

the identity morphism of 0 ∈ C for objects a ∈ A.
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Right Distributivity: δrA has components the identity morphisms

(6.2.33) (a⊕A b)⊗A c (a⊗A c)⊕A (b⊗A c)
δrA

a;b;c

=

in C for objects a, b, c ∈ A.
Left Distributivity: δlA has components the composites

(6.2.34)

a⊗A (b⊕A c) (a⊗A b)⊕A (a⊗A c)

(b⊕A c)⊗A a (b⊗A a)⊕A (c⊗A a)

ξ⊗A

a; b⊕Ac

δlA
a;b;c

δrA
b;c;a

=

ξ−⊗A

a;b ⊕
A ξ−⊗A

a;c

in C for objects a, b, c ∈ A, with ξ−⊗A the inverse of ξ⊗A in (6.2.26).

This finishes the definition of λ ●A, ρ ●A, δlA, and δrA. ◇
Lemma 6.2.35. In Definition 6.2.31, λ ●A, ρ ●A, δlA, and δrA are natural isomorphisms.

Proof. By Lemma I.5.2.8, the following equalities hold for objects a, b, c ∈ A.

0A ⊗A a = 0A = a⊗A 0A

(a⊕A b)⊗A c = (a⊗A c)⊕A (b⊗A c)
Since π(0A) = 0 ∈ C, the identity morphisms in (6.2.32) and (6.2.33) are well de-
fined.

To see that λ ●A is natural, for a morphism f ∈ A(a; b), 10A ⊗A f is the following
composite in C by (6.2.25).

π(0A ⊗A a) π0A ⊗πa π0A ⊗πb π(0A ⊗A b)

0 0⊗πa 0⊗πb 0

λ−
●

πa 10⊗ f λ
●

πb

This composite is equal to 10 ∈ C by the naturality of λ ● in C. Similarly, the natu-
rality of ρ ● in C implies the naturality of ρ ●A.

The naturality of δrA in (6.2.33) is proved by the following diagram in C for
morphisms fi ∈ A(ai; bi) for 1 ≤ i ≤ 3, with ⊗ abbreviated to concatenation.

π((a1 ⊕A a2)⊗A a3) π((a1 ⊗A a3)⊕A (a2 ⊗A a3))

π(a1 ⊕A a2)(πa3) π(a1 ⊗A a3)⊕π(a2 ⊗A a3)

(πa1 ⊕πa2)(πa3) (πa1)(πa3)⊕ (πa2)(πa3)

(πb1 ⊕πb2)(πb3) (πb1)(πb3)⊕ (πb2)(πb3)

π(b1 ⊕A b2)(πb3) π(b1 ⊗A b3)⊕π(b2 ⊗A b3)

π((b1 ⊕A b2)⊗A b3) π((b1 ⊗A b3)⊕A (b2 ⊗A b3))

≅−1
Lap

=

≅⊕ML

≅⊕ML⊗1 ≅−1
Lap⊕≅

−1
Lap

( f1⊕ f2) f3

δr

f1 f3⊕ f2 f3

≅⊕ML⊗1

δr

≅Lap⊕≅Lap

≅Lap ≅⊕ML

=
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● By Lemma 6.2.21, (6.2.14), and (6.2.25), the left vertical composite is ( f1⊕A

f2)⊗A f3, and the right vertical composite is ( f1 ⊗A f3)⊕A ( f2 ⊗A f3).
● The middle rectangle is commutative by the naturality of δr in C.
● The top and the bottom rectangles are commutative by Lemma 6.2.21

and Theorem 5.4.4 as in (6.2.30).
The naturality of δlA in (6.2.34) follows from that of ξ⊗A in Lemma 6.2.29 and

δrA, and the functoriality of ⊕A and ⊗A. □

The Right Permutative Braided Category Axioms. With C still assumed to
be a tight braided bimonoidal category, we now show in several steps that A as
in Definitions 6.2.3, 6.2.10, 6.2.22, and 6.2.31 is a right permbraided category as in
Definition 5.1.11.
Lemma 6.2.36. For each object a ∈ A, the morphisms

a⊗A 0A 0A ⊗A a
ξ⊗A

a;0A

ξ⊗A

0A ;a

are both equal to 10A .

Proof. By (6.2.27) with b = 0A, the morphism ξ⊗A

a;0A is the following composite in C.

0 = π(a⊗A 0A) πa⊗ 0 0⊗πa π(0A ⊗A a) = 0
ρ−

●
πa ξ⊗πa;0 λ

●
πa

This is equal to 10 = 10A by the axiom (2.1.18) in C. Similarly, the morphism ξ⊗A

0A;a
is equal to 10A by the axiom (2.1.33) in C. □

Lemma 6.2.37. A satisfies the axioms (2.1.32), (2.1.6), and (2.1.12).

Proof. The axiom (2.1.32) holds by the definition (6.2.34) of δlA.
The axiom (2.1.6) is proved as in Lemma I.5.3.7, which is the symmetric case.

In the diagram in that proof, the top and the bottom subdiagrams are now com-
mutative by Lemma 6.2.21 and Theorem 5.4.4 as in the proof of Lemma 6.2.29.

The axiom (2.1.12) is proved by reusing the proof of Lemma I.5.3.8, which is
the symmetric case, with the following changes in the diagram in that proof.

● The left vertical morphism ξ⊗ ⊕ ξ⊗ is replaced by

ξ−⊗
π(a⊕Ab);πc ⊕ ξ−⊗

π(a⊕Ab);πd.

● The right vertical morphism (ξ⊗ ⊕ ξ⊗)⊕ (ξ⊗ ⊕ ξ⊗) is replaced by

(ξ−⊗πa;πc ⊕ ξ−⊗πa;πd)⊕ (ξ
−⊗
πb;πc ⊕ ξ−⊗πb;πd).

These changes are necessary because δlA in (6.2.34) involves ξ−⊗A

a;b and ξ−⊗A
a;c , hence

also ξ−⊗ in C. In a braided monoidal category, ξ⊗?,?′ and ξ−⊗?′,? are not equal in gen-
eral.

The diagram in Lemma I.5.3.8 is divided into four subdiagrams from top to
bottom. In the current context, they are commutative for the following reasons.

● The first and the third subdiagrams do not involve ξ±⊗. They are com-
mutative by Lemma 6.2.21 and Theorem 5.4.4 as in Lemma 6.2.29.
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● The second subdiagram is commutative by Theorem 5.4.4 because the
two paths that yield the two composites have the same braided distortion
in the sense of Definition 5.3.15. Indeed, in the braided distortions, the
permutation component is uniquely determined by the monomials of the
objects involved because there is a unique permutation between any two
permuted words of the same length. Moreover, by (5.2.18), the braided
distortion of each path has as its braid components the elementary block
braids (1.2.4)

{{b⊕∣ai ∣,∣ck ∣}
r
i=1,{b⊕∣bj ∣,∣ck ∣}

s
j=1}

t

k=1
{{b⊕∣ai ∣,∣dl ∣}

r
i=1,{b⊕∣bj ∣,∣dl ∣}

s
j=1}

u

l=1

if

a = {a1, . . . , ar},
b = {b1, . . . , bs},
c = {c1, . . . , ct}, and

d = {d1, . . . , du} ∈ A.

Therefore, Theorem 5.4.4 implies that the two composites are equal.
● The bottom subdiagram in Lemma I.5.3.8 is commutative for the same

reason as for the second subdiagram. The braided distortions of the two
paths that yield the two composites have the same permutation compo-
nent, and their braid components are as follows by (5.2.22).

{{b−⊕∣ai ∣,∣ck ∣}
t
k=1}

r

i=1
{{b−⊕∣bj ∣,∣ck ∣}

t
k=1}

s

j=1
{{b−⊕∣ai ∣,∣dl ∣}

u
l=1}

r

i=1
{{b−⊕∣bj ∣,∣dl ∣}

u
l=1}

s

j=1

This proves the axiom (2.1.12). □

Lemma 6.2.38. A satisfies the axiom (2.1.4).

Proof. For objects a, b, c ∈ A, the diagram (2.1.4) is the outer diagram in C below. To
save space, we abbreviate ⊕A and ⊗A to, respectively, ⊕ and ⊗, and write ⊗ in C as
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concatenation.

π[(a⊕ b)⊗ c] π[(a⊗ c)⊕ (b⊗ c)] π(a⊗ c)⊕π(b⊗ c)

π(a⊕ b)(πc) (πa)(πc)⊕ (πb)(πc)

(πc)π(a⊕ b) (πc)(πa)⊕ (πc)(πb)

π[c⊗ (a⊕ b)] π(c⊗ a)⊕π(c⊗ b)

(πc)π(a⊕ b) π[(c⊗ a)⊕ (c⊗ b)]

π(a⊕ b)(πc) π(c⊗ a)⊕π(c⊗ b)

π[(a⊕ b)⊗ c] (πc)(πa)⊕ (πc)(πb)

π[(a⊗ c)⊕ (b⊗ c)] π(a⊗ c)⊕π(b⊗ c) (πa)(πc)⊕ (πb)(πc)

(πa⊕πb)(πc)

(πc)(πa⊕πb)

(πc)(πa⊕πb)

(πa⊕πb)(πc)

5.4.4

5.4.4

5.4.4

(2.1.32)

nat

≅−1
Lap

ξ⊗

≅Lap

≅−1
Lap

ξ⊗

≅Lap

δrA =

≅⊕ML ≅−1
Lap ⊕ ≅−1

Lap

ξ−⊗ ⊕ ξ−⊗

≅Lap ⊕ ≅Lap

≅⊕ML

δrA

=
≅⊕ML

≅−1
Lap ⊕ ≅−1

Lap

ξ⊗ ⊕ ξ⊗

≅Lap ⊕ ≅Lap

≅⊕ML

≅⊕ML δr

≅⊕ML δl

≅⊕ML

ξ⊗

δl≅⊕ML

δr

ξ⊗A

a⊕b; c

δlA
c;a;b

ξ⊗A
a;c ⊕ ξ⊗A

b;c

● The three boundary regions define the indicated morphisms by (6.2.14),
(6.2.27), (6.2.33), and (6.2.34).
● The middle unlabeled subdiagram is commutative by definition.
● As in the proof of Lemma 6.2.29, the top rectangle and the bottom trape-

zoid are commutative by Theorem 5.4.4 and Lemma 6.2.21.
● In the second rectangle from the top, as in the proof of Lemma 6.2.37,

the two paths that yield the two composites have the same permutation
component in the braided distortions. Moreover, the braided distortion
of each path has as its braid components the following elementary block
braids (1.2.4).

{{b⊕∣ai ∣,∣ck ∣}
r
i=1,{b⊕∣bj ∣,∣ck ∣}

s
j=1}

t

k=1

Therefore, these paths have the same value in C by Theorem 5.4.4.
● The subdiagram with label nat is commutative by the naturality of ξ⊗ in
C.
● The remaining subdiagram is commutative by the axiom (2.1.32) in C.

This finishes the proof. □

Recall from Definition 5.1.11 and Proposition 5.1.19 that a right permbraided
category is a tight braided bimonoidal category in which the structure morphisms
α⊕, λ⊕, ρ⊕, α⊗, λ⊗, ρ⊗, λ ●, ρ ●, δr, ξ⊗−,0, and ξ⊗0,− are identities.
Proposition 6.2.39. Associated to each tight braided bimonoidal category C, the tuple

(A, (⊕A, 0A, ξ⊕A), (⊗A,1A, ξ⊗A), λ
●A, ρ

●A, δrA, δlA)
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in Definitions 6.2.3, 6.2.10, 6.2.22, and 6.2.31 is a right permbraided category.

Proof. We already checked all the conditions for A to be a right permbraided cate-
gory.

● Lemma 6.2.18 shows that (A,⊕A, 0A, ξ⊕A) is a permutative category.
● Lemma 6.2.29 shows that (A,⊗A,1A, ξ⊗A) is a braided strict monoidal cat-

egory.
● Lemma 6.2.35 shows that the natural isomorphisms λ ●A = 1, ρ ●A = 1, δrA =

1, and δlA are well defined.
● The other axioms in Definition 5.1.11 are verified in Lemmas 6.2.36

through 6.2.38.
Therefore, A is a right permbraided category. □

6.3. Strictification

In this section, we finish the proof that each tight braided bimonoidal cate-
gory is equivalent to a right permbraided category. There is also a variant that
involves a left permbraided category. These results are the braided analogues of
Theorems I.5.4.6 and I.5.4.7, which are strictification results for tight symmetric
bimonoidal categories. We continue to assume that C is a tight braided bimonoi-
dal category. Moreover, A denotes the associated right permbraided category in
Proposition 6.2.39. First we define the functors that constitute an adjoint equiva-
lence between them.

Definition 6.3.1. Define the functor

π ∶ A C

as follows.
● Its assignment on objects is the realization function in (6.2.6).
● For objects a, b ∈ A, its assignment on morphisms

A(a; b) C(πa; πb)π

is the identity function using (6.2.8).
The fact that π is a functor is part of Definition 6.2.3. ◇
Definition 6.3.2. Define the functor

ι ∶ C A

as follows.
● Using the notations in (6.2.4) and (6.2.5), for each object X ∈ C, define the

object
ιX = {(X)} ∈ A.

It has additive length 1, and its only monomial has multiplicative length
1 consisting of X.
● On morphism sets, it is the identity function

C(X; Y) = C(πιX; πιY) = A(ιX; ιY).

The fact that ι is a functor is part of Definition 6.2.3. ◇
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Lemma 6.3.3. The functors in Definitions 6.3.1 and 6.3.2 form an adjoint equivalence

A C
π

ι

with counit ε ∶ πι 1C the identity natural transformation.

Proof. The proof of Lemma I.5.4.3, which is the symmetric case, is still valid in the
current context. □

Recall from Definition 6.1.1 that a braided bimonoidal functor F ∶ C D is a
functor between braided bimonoidal categories that is equipped with

● a symmetric monoidal functor structure (F, F2
⊕, F0

⊕) between the additive
structures of C and D and
● a braided monoidal functor structure (F, F2

⊗, F0
⊗) between the multiplica-

tive structures of C and D.
Moreover, the data (F, F2

⊕, F0
⊕, F2

⊗, F0
⊗) are required to satisfy the multiplicative zero

axiom (6.1.2) and the distributivity axiom (6.1.3). It is said to be unitary if F0
⊕ and

F0
⊗ are identities and if F2

⊕ and F2
⊗ are isomorphisms. It is a braided bimonoidal

equivalence if F is an equivalence of categories.
Lemma 6.3.4. There is a unitary braided bimonoidal equivalence

(π, π2
⊕, π0

⊕, π2
⊗, π0

⊗) ∶ A C.

Proof. Using the equalities

π0A = 0 and π1A = 1,

we define the unit constraints

0 π0A
π0
⊕ and 1 π1A

π0
⊗

as the identity morphisms of, respectively, 0 and 1 in C.
For objects a, b ∈ A, we define the monoidal constraints

πa⊕πb π(a⊕A b)
π2
⊕

as a Mac Lane coherence isomorphism ≅⊕ML as in Definition 6.2.9 and

πa⊗πb π(a⊗A b)
π2
⊗

as a Laplaza coherence isomorphism ≅Lap as in Definition 6.2.19. These are natural
isomorphisms by

● the definition (6.2.14) of ⊕A on morphisms,
● the definition (6.2.25) of ⊗A on morphisms, and
● Definition 6.3.1 of π as the identity assignment on morphisms.

The triple (π, π2
⊕, π0

⊕) is a symmetric monoidal functor between the additive
structures because each diagram in (1.3.10), (1.3.11), and (1.3.19) is commutative
by the Coherence Theorem I.1.3.8 for the symmetric monoidal category (C,⊕).

Next we check that the triple (π, π2
⊗, π0

⊗) is a braided monoidal functor.
● The unity axioms (1.3.11) hold because each vertical morphism there is

an identity morphism.
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● By Lemma 6.2.29, α⊗A = 1. In the associativity axiom (1.3.10), each of the
two composites is a Laplaza coherence isomorphism. They are equal by
Lemma 6.2.21 and Theorem 5.4.4 as in the first paragraph in the proof of
Lemma 6.2.29.
● By the definition (6.2.27) of ξ⊗A, the compatibility axiom (1.3.19) with the

braidings is the following diagram in C for objects a, b ∈ A.

πa⊗πb πb⊗πa

π(a⊗A b) πa⊗πb πb⊗πa π(b⊗A a)

≅Lap

ξ⊗

≅Lap
≅−1
Lap ξ⊗ ≅Lap

This diagram is commutative by definition.

The multiplicative zero axiom (6.1.2) for π holds because

● π0
⊕ and ρ ●A are the identities, and

● there is an equality

π2
⊗ = ρ

●
πa ∶ (πa)⊗ (π0A) = (πa)⊗ 0 0 = π(a⊗A 0A).

In the distributivity axiom (6.1.3) for π, δrA = 1 by definition (6.2.33). Each of
the two composites is a Laplaza coherence isomorphism. They are equal by
Lemma 6.2.21 and Theorem 5.4.4 as in the proof of Lemma 6.2.29.

Finally, π is an equivalence of categories by Lemma 6.3.3. □

Recall from Definition 6.1.1 that a braided bimonoidal functor F is strong if F2
⊕,

F0
⊕, F2

⊗, and F0
⊗ are natural isomorphisms.

Lemma 6.3.5. There is a strong braided bimonoidal equivalence

(ι, ι2⊕, ι0⊕, ι2⊗, ι0⊗) ∶ C A.

Proof. The proof of Lemma I.5.4.5, which is the symmetric case, is still valid in the
current context. □

Combining Proposition 6.2.39 and Lemmas 6.3.3 through 6.3.5, we obtain
the following strictification result to right permbraided categories as in Defini-
tion 5.1.11.

Theorem 6.3.6 (Right Permbraided Strictification). Suppose C is a tight braided bi-
monoidal category. Then there is an adjoint equivalence

A C
π

ι

with
● A the right permbraided category in Proposition 6.2.39,
● counit ε ∶ πι 1C the identity natural transformation,
● π the unitary braided bimonoidal equivalence in Lemma 6.3.4, and
● ι the strong braided bimonoidal equivalence in Lemma 6.3.5.

A minor variation of the constructions in this chapter yields the following
strictification result to left permbraided categories as in Definition 5.1.2.
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Theorem 6.3.7 (Left Permbraided Strictification). Suppose C is a tight braided bimon-
oidal category. Then there is an adjoint equivalence

Al C
π

ι

with

● Al a left permbraided category,
● counit ε ∶ πι 1C the identity natural transformation,
● π a unitary braided bimonoidal equivalence, and
● ι a strong braided bimonoidal equivalence.

Proof. The proof is essentially the same as that of Theorem 6.3.6, with the following
modifications.

● The category Al and its additive zero, multiplicative unit, sum, additive
symmetry, and braiding, are the same as those in A in Definitions 6.2.3,
6.2.10, and 6.2.22.
● The product in Al is redefined in such a way that the left distributive law

holds strictly, that is, as

a⊗Al b = {(a1, b1), . . . , (ar, b1), . . . , (a1, bs), . . . , (ar, bs)}

instead of (6.2.23).
● δl in Al is defined as the identity natural transformation.
● Instead of (6.2.34), here the axiom (2.1.4) is used to define δrAl in terms of

ξ⊗Al and δlAl = 1. In other words, we define δrAl as having the following
components for a, b, c ∈ Al .

(a⊕Al b)⊗Al c (a⊗Al c)⊕Al (b⊗Al c)

c⊗Al (a⊕Al b) (c⊗Al a)⊕Al (c⊗Al b)

ξ⊗Al

a⊕Al b; c

δrAl

a;b;c

δlAl

c;a;b

=

ξ−⊗Al
a;c ⊕Al ξ−⊗Al

b;c

All other structures in Al are defined as in A.
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● The diagram in the proof of Lemma 6.2.38 is adapted to form the follow-
ing diagram in C that proves the axiom (2.1.32) in Al .

π[a⊗ (b⊕ c)] π[(a⊗ b)⊕ (a⊗ c)] π(a⊗ b)⊕π(a⊗ c)

(πa)π(b⊕ c) (πa)(πb)⊕ (πa)(πc)

π(b⊕ c)(πa) (πb)(πa)⊕ (πc)(πa)

π[(b⊕ c)⊗ a] π(b⊗ a)⊕π(c⊗ a)

π(b⊕ c)(πa) π[(b⊗ a)⊕ (c⊗ a)]

(πa)π(b⊕ c) π(b⊗ a)⊕π(c⊗ a)

π[a⊗ (b⊕ c)] (πb)(πa)⊕ (πc)(πa)

π[(a⊗ b)⊕ (a⊗ c)] π(a⊗ b)⊕π(a⊗ c) (πa)(πb)⊕ (πa)(πc)

(πa)(πb⊕πc)

(πb⊕πc)(πa)

(πb⊕πc)(πa)

(πa)(πb⊕πc)

5.4.4

5.4.4

5.4.4

(2.1.4)

nat

≅−1
Lap

ξ⊗

≅Lap

≅−1
Lap

ξ⊗

≅Lap

δlAl =

≅⊕ML ≅−1
Lap ⊕ ≅−1

Lap

ξ−⊗ ⊕ ξ−⊗

≅Lap ⊕ ≅Lap

≅⊕ML

δlAl

=
≅⊕ML

≅−1
Lap ⊕ ≅−1

Lap

ξ⊗ ⊕ ξ⊗

≅Lap ⊕ ≅Lap

≅⊕ML

≅⊕ML δl

≅⊕ML δr

≅⊕ML

ξ⊗

δr≅⊕ML

δl

ξ⊗Al

a; b⊕c

δrAl

b;c;a

ξ⊗Al

a;b ⊕ ξ⊗Al
a;c

In the second rectangle from the top, in the braided distortion of each of
the two paths that yield the two composites, the braid components are
the following elementary block braids.

{{b⊕∣ai ∣,∣bj ∣}
r
i=1}

s

j=1
{{b⊕∣ai ∣,∣ck ∣}

r
i=1}

t

k=1

Other proofs require minimal or no changes. □





CHAPTER 7

The Braided Baez Conjecture

The purpose of this chapter is to prove the braided version of Baez’s Conjec-
ture; see Theorem 7.3.4. It states that in a suitable 2-category of small braided
bimonoidal categories, the left bipermutative category Σ in Proposition I.2.4.8 is
an initial object in the bicategorical sense. This theorem is the braided version
of Baez’s Conjecture, Theorem I.7.8.1, which is the same statement for symmetric
bimonoidal categories. There is another version that involves the right bipermu-
tative category Σ′ in Proposition I.2.4.23; see Theorem 7.3.6. For an open question
related to the braided version of Baez’s Conjecture, see Question III.A.2.6.

Proof Strategy. Since the main Theorem 7.3.4 is the braided analogue of
Baez’s Conjecture, Theorem I.7.8.1, as in Chapter 6, we will adapt the proof in the
symmetric case by making suitable adjustments when necessary. To understand
what adjustments we must make, let us first discuss the statement of the Braided
Baez Conjecture.

In Definition 7.1.5, we will define a 2-category Bifbrr with

● flat small braided bimonoidal categories in Definition 5.4.5 as objects,
● robust braided bimonoidal functors in Definition 6.1.1 as 1-cells, and
● bimonoidal natural transformations in Definition 7.1.2 as 2-cells.

The flatness condition on the objects ensures that the Coherence Theorem 5.4.4 for
braided bimonoidal categories is applicable. The robustness condition on the 1-
cells allows us to use the inverses of the structure morphisms G2

⊕, G0
⊕, and G0

⊗ of
a braided bimonoidal functor G. This is necessary for the uniqueness part of the
Braided Baez Conjecture.

Since Σ is a small left bipermutative category, it is also an object in Bifbrr . With
∅ denoting the empty 2-category, the main Theorem 7.3.4 in this chapter states
that Σ is a lax bicolimit of the unique 2-functor ∅ Bifbrr . Restating this in 1-
categorical language, the assertion is that, for each flat small braided bimonoidal
category C, the unique functor

Bifbrr (Σ,C) 1T

to the terminal category 1 is an equivalence of categories. In other words, the
functor T is (i) fully faithful on morphisms and (ii) essentially surjective on objects.

In the proof of Baez’s Conjecture in Chapter I.7, the fully faithfulness of the
functor T occupies Sections I.7.5 through I.7.7. A careful examination of those
sections reveals that they still hold in the braided context essentially without any
changes. The reason is that they do not involve the Coherence Theorems I.3.9.1
and I.4.4.3 for symmetric bimonoidal categories.

II.187
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The proof of the essential surjectivity of the functor T in Chapter I.7 occupies
Sections I.7.2 through I.7.4. The construction of the strong symmetric monoidal
functor

F⊕ ∶ (Σ,⊕) (C,⊕)
between the additive structures in Section I.7.2 does not use the Coherence Theo-
rems I.3.9.1 and I.4.4.3. So this part of the proof is also reused in this chapter with
minimal changes; see Lemma 7.2.4.

On the other hand,
● the construction of the symmetric monoidal functor

F⊗ ∶ (Σ,⊗) (C,⊗)
between the multiplicative structures in Section I.7.3 and
● the proof that F ∶ Σ C is a robust symmetric bimonoidal functor in

Section I.7.4
both use the distortion of a path in Definition I.4.3.1 and Theorems I.3.9.1 and I.4.4.3.
To use these constructions and proofs in the braided setting, the following changes
are necessary.

(i) Instead of the distortion of a path, here we use the braided distortion of a
path in Definition 5.3.15. In particular, this involves the braided distor-
tion category Dbr in Section 5.2, which in turn involves the braid groups.

(ii) Instead of Theorems I.3.9.1 and I.4.4.3, here we use Theorem 5.4.4, which
is our main coherence theorem for braided bimonoidal categories. Each
time either Theorem I.3.9.1 or Theorem I.4.4.3 is used in Sections I.7.3
and I.7.4, here we have to check that the two paths in question have the
same braided distortion in order to use Theorem 5.4.4.

Furthermore, as in Chapter I.7, the proof of the Braided Baez Conjecture does
not use the Strictification Theorems 6.3.6 and 6.3.7 for tight braided bimonoidal
categories. This approach has two advantages.

● Both of those strictification theorems require tightness, that is, the invert-
ibility of the distributivity morphisms δl and δr in the braided bimonoi-
dal categories. In the Braided Baez Conjecture, Theorem 7.3.4, the small
braided bimonoidal categories are flat in the sense of Definition 5.4.5,
which is a much weaker assumption than tightness.
● By not using the strictification theorems, we work directly with a flat

small braided bimonoidal category C instead of an equivalent one.

Organization. The rest of this chapter contains the following sections.
In Section 7.1, we define several 2-categories of braided bimonoidal categor-

ies, braided bimonoidal functors, and bimonoidal natural transformations. The
2-category Bifbrr that appears in the Braided Baez Conjecture is in Definition 7.1.5.

Section 7.2 proves the first half of the Braided Baez Conjecture concerning the
existence of an appropriate 1-cell in Bifbrr . For each flat braided bimonoidal cate-
gory C, Lemma 7.2.11 states that there is an explicitly constructed robust braided
bimonoidal functor

(F, F2
⊕, F0

⊕, F2
⊗, F0

⊗) ∶ Σ C.
The additive and multiplicative structures,

F⊕ = (F, F2
⊕, F0

⊕) and F⊗ = (F, F2
⊗, F0

⊗),
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are in, respectively, Definitions 7.2.3 and 7.2.8.
Section 7.3 proves the second half of the Braided Baez Conjecture concerning

the existence and the uniqueness of appropriate 2-cells in Bifbrr . For any two robust
braided bimonoidal functors G, H ∶ Σ C, the objective is to show that there ex-
ists a unique 2-cell G H in Bifbrr . This is carried out in Lemmas 7.3.1 and 7.3.3
and Theorem 7.3.4. The second version of the Braided Baez Conjecture is Theo-
rem 7.3.6. It involves the right bipermutative category Σ′ in Proposition I.2.4.23.

Reading Guide.
(1) Read Convention 7.1.1 and Definitions 7.1.2, 7.1.3, and 7.1.5 for the 2-

category Bifbrr of flat small braided bimonoidal categories, robust braided
bimonoidal functors, and bimonoidal natural transformations.

(2) Read Theorems 7.3.4 and 7.3.6 for the two versions of the Braided Baez
Conjecture.

(3) Go back and read the rest of this chapter.

7.1. The 2-Category of Braided Bimonoidal Categories

In this section, we define the 2-category Bibr of small braided bimonoidal cate-
gories, braided bimonoidal functors, and bimonoidal natural transformations. The
Braided Baez Conjecture, Theorem 7.3.4, involves the full sub-2-category Bifbrr in
Definition 7.1.5.

● The objects in Bifbrr are flat small braided bimonoidal categories as in Def-
inition 5.4.5. The flatness assumption ensures that the Coherence Theo-
rem 5.4.4 is applicable.
● The 1-cells in Bifbrr are robust braided bimonoidal functors as in Defini-

tion 6.1.1. The robustness condition on a braided bimonoidal functor F
means that the structure morphisms F2

⊕, F0
⊕, and F0

⊗ are isomorphisms.
Proposition 7.1.7 provides a class of examples of bimonoidal natural transforma-
tions in the context of Theorem 2.4.22.
Convention 7.1.1. The following conventions are in effect throughout this chapter.

(1) Unless otherwise specified, C and D are arbitrary braided bimonoidal cat-
egories as in Definition 2.1.29. Sometimes they are required to be small
or flat, as in Definition 5.4.5, as specified.

(2) A Mac Lane coherence isomorphism means a component of a permuted
canonical map as in Definition 1.6.1, applied to the additive structure

(C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕),
which is often abbreviated to (C,⊕). This is an adaptation of Defini-
tion 6.2.9 to the current context. ◇

For monoidal functors F, G ∶ C D, recall from Definition 1.3.13 that a mon-
oidal natural transformation θ ∶ F G is a natural transformation that is also
compatible with the structure morphisms (F2, F0) of F and (G2, G0) of G.

Recall from Definition 6.1.1 that a braided bimonoidal functor F ∶ C D is a
functor equipped with

● a symmetric monoidal functor structure

F⊕ = (F, F2
⊕, F0

⊕) ∶ (C,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) (D,⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕)
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and
● a braided monoidal functor structure

F⊗ = (F, F2
⊗, F0

⊗) ∶ (C,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗) (D,⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗).
These data satisfy the multiplicative zero axiom (6.1.2) and the distributivity axiom
(6.1.3).

Next is the braided version of Definition I.7.1.2.
Definition 7.1.2. Suppose F, G ∶ C D are two braided bimonoidal functors.

(1) A bimonoidal natural transformation θ ∶ F G is a natural transformation
of the underlying functors such that both
● θ ∶ F⊕ G⊕ and
● θ ∶ F⊗ G⊗

are monoidal natural transformations.
(2) A bimonoidal natural isomorphism is an invertible bimonoidal natural trans-

formation. ◇
Recall from Proposition 6.1.10 the 1-category Bibr of small braided bimonoidal

categories and braided bimonoidal functors. Also recall its wide subcategories
Bibrr , Bibrsg, Bibru , and Bibrst with, respectively, robust, strong, unitary, and strict braided
bimonoidal functors. Now we extend these 1-categories to 2-categories as follows.

Definition 7.1.3. Define the 2-categorical data for Bibr as follows.
Objects: Objects are small braided bimonoidal categories.
1-Cells: The 1-cells in Bibr(C,D) are the braided bimonoidal functors C D.
Identity 1-Cells: 1C ∈ Bibr(C,C) is the identity braided bimonoidal functor.
1-Cell Composition: Horizontal composition of 1-cells is as in Definition 6.1.8.
2-Cells: The 2-cells in Bibr(C,D)(F, G) are the bimonoidal natural transformations

F G in Definition 7.1.2.
Identity 2-Cells: For each 1-cell F ∶ C D, the identity 2-cell

1F ∈ Bibr(C,D)(F, F)
is the identity natural transformation of F.

2-Cell Compositions: Vertical and horizontal compositions of 2-cells are those of
natural transformations in Definition I.1.1.8.

This finishes the definition of the 2-categorical data for Bibr.
Moreover, similar definitions define the 2-categorical data for

● Bibrr with robust braided bimonoidal functors as 1-cells,
● Bibrsg with strong braided bimonoidal functors as 1-cells,
● Bibru with unitary braided bimonoidal functors as 1-cells, and
● Bibrst with strict braided bimonoidal functors as 1-cells. ◇

Proposition 7.1.4. With the data in Definition 7.1.3, Bibr is a 2-category that contains
the following full sub-2-categories:

Bibrst ⊂ Bibru ⊂ Bibrsg ⊂ Bibrr ⊂ Bibr.

Proof. The proof of Proposition I.7.1.7, which is the symmetric case for Bisy, is still
valid in the current context. Instead of Lemma I.5.1.9, here we use the correspond-
ing Lemma 6.1.9 to infer the existence of the four sub-2-categories. □
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Recall from Definition 5.4.5 that a braided bimonoidal category is flat if each
iterated sum and product of a component of either δl or δr (2.1.31) with a finite
number of identity morphisms is a monomorphism. For example, tight braided
bimonoidal categories—that is, those with δl and δr natural isomorphisms—are
flat. The Coherence Theorem 5.4.4 applies to flat braided bimonoidal categories.
Also recall from Definition 6.1.1 that a robust braided bimonoidal functor F has F2

⊕,
F0
⊕, and F0

⊗ isomorphisms.

Definition 7.1.5. Denote by Bifbrr the full sub-2-category of Bibr with
● flat small braided bimonoidal categories as objects and
● robust braided bimonoidal functors as 1-cells. ◇

Example 7.1.6.
(1) The tight, in particular flat, braided bimonoidal category F any of Fi-

bonacci anyons in Theorem 3.4.13 is small by Definition 3.3.3. In fact, it
has a countable set of objects.

(2) The tight, in particular flat, braided bimonoidal category Iany of Ising
anyons in Theorem 3.6.14 is small by Definition 3.5.1. It also has a count-
able set of objects. ◇

In Theorem 2.4.22, we observed that an abelian category with a compatible
braided monoidal structure is a tight braided bimonoidal category. Recall from
Definition 2.3.3 the notion of an additive functor. The next observation provides a
class of examples of bimonoidal natural transformations between braided bimon-
oidal functors.
Proposition 7.1.7. Suppose the quintuple

(C,D, F⊗, G⊗, θ)
consists of the following data.

● Each of C and D is an abelian category with a compatible braided monoidal struc-
ture in the sense of Convention 2.4.1.
● Each of

F⊗ = (F, F2
⊗, F0

⊗) and G⊗ = (G, G2
⊗, G0

⊗)
is a braided monoidal functor C D that is also an additive functor.
● θ ∶ F⊗ G⊗ is a monoidal natural transformation.

Then θ is a bimonoidal natural transformation

θ ∶ (F, F2
⊗, F0

⊗, F2
⊕, F0

⊕) (G, G2
⊗, G0

⊗, G2
⊕, G0

⊕)
between the canonically extended braided bimonoidal functors.

Proof. By Proposition 6.1.12, F canonically extends to a braided bimonoidal func-
tor

(F, F2
⊗, F0

⊗, F2
⊕, F0

⊕) ∶ C D

with C and D regarded as tight braided bimonoidal categories by Theorem 2.4.22,
and similarly for G. Since θ ∶ F⊗ G⊗ is a monoidal natural transformation by
assumption, it remains to check that

θ ∶ F⊕ = (F, F2
⊕, F0

⊕) (G, G2
⊕, G0

⊕) = G⊕

is a monoidal natural transformation.
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The compatibility condition of θ with F0
⊕ and G0

⊕ asserts the commutativity of
the diagram

0 F0

0 G0

F0
⊕

θ0

G0
⊕

in D. This diagram is commutative because each composite is the unique mor-
phism from the zero object 0 in D.

The compatibility condition of θ with F2
⊕ and G2

⊕ asserts the commutativity of
the following diagram in D for objects A, B ∈ C.

(7.1.8)
FA⊕ FB GA⊕GB

F(A⊕ B) G(A⊕ B)
F2
⊕

θA⊕θB

G2
⊕

θA⊕B

The additive functors F and G preserve direct sums by Theorem 2.3.7 (4). There-
fore, it suffices to show that the two composites in (7.1.8) composed with the pro-
jection to GA ∈ D are equal, and similarly for GB. When composed with the pro-
jection to GA, (7.1.8) is the outer diagram in D below.

FA⊕ FB GA⊕GB

F(A⊕ B) FA G(A⊕ B)

G(A⊕ B) GA

(6.1.14)
(6.1.14)(2.4.4)

nat

θA ⊕ θB

pGA,GB
1

F2
⊕

θA⊕B

GpA,B
1

FpA,B
1

pFA,FB
1

θA

G2
⊕

GpA,B
1

As indicated, this diagram is commutative by
● the naturality of θ and
● the definitions of a direct sum of morphisms (2.4.4), F2

⊕ (6.1.14), and G2
⊕.

A similar diagram with p2 instead of p1 shows that the two composites in (7.1.8)
composed with the projection to the object GB are equal. □

7.2. Weakly Initial Braided Bimonoidal Category

In this section, we prove the first half of the Braided Baez Conjecture, Theo-
rem 7.3.4. For each flat braided bimonoidal category C as in Definition 5.4.5, we
construct a robust braided bimonoidal functor

F ∶ Σ C

as in Definition 6.1.1, with Σ the left bipermutative category in Definition I.2.4.1
and Proposition I.2.4.8. See Lemma 7.2.11.

Recall that each left bipermutative category, such as Σ, is a tight, in particular
flat, braided bimonoidal category by Propositions 5.1.8 and 5.1.10. Moreover, Σ
is small because it has a countable set of objects. After recalling the definition of
Σ, we define the additive structure of F in Definition 7.2.3 and the multiplicative
structure of F in Definition 7.2.8.
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The Finite Ordinal Category. Let us first recall the structure of Σ from Defi-
nition I.2.4.1. It is the category with

● objects n ≥ 0 and
● morphisms

Σ(m, n) =
⎧⎪⎪⎨⎪⎪⎩

Σn if m = n and
∅ if m /= n.

Here Σn is the symmetric group on n letters.
In the context of Definition 2.1.1, its symmetric bimonoidal structure is as fol-

lows.
● The functor

−⊕− ∶ Σ ×Σ Σ
is given by

– m⊕ n = m + n on objects and
– the block sums (1.1.8) on morphisms.

The additive zero is 0.
● The additive symmetry

m + n n +m
ξ⊕m,n

is the interval-swapping permutation τ⟨m, n⟩ ∈ Σm+n in (1.2.2).
● The functor

−⊗− ∶ Σ ×Σ Σ
is given by

– m⊗ n = mn on objects and
– the permutations in (5.2.17) on morphisms.

The multiplicative unit is 1. We think of m ⊗ n as an n ×m matrix. For
permutations σ ∈ Σm and σ′ ∈ Σn, the morphism

m⊗ n m⊗ nσ⊗σ′

permutes the n rows via σ′ and the m columns via σ.
● The multiplicative symmetry

mn nm
ξ⊗m,n

is the permutation ξ⊗m,n ∈ Σmn in (5.2.19). It corresponds to taking the
transpose of an n ×m matrix.
● The right distributivity morphism

(m + n)p mp + np
δr

m,n,p

is the permutation in Σ(m+n)p given by

(ξ⊗p,m ⊕ ξ⊗p,n)ξ⊗m+n,p ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i + (k − 1)(m + n) i + (k − 1)m
j +m + (k − 1)(m + n) j + (k − 1)n + pm

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ p. It appears as the permutation
component in δr in the braided distortion category Dbr in Lemma 5.2.28;
see also Explanation 5.2.29 (1).
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● α⊕, λ⊕, ρ⊕, α⊗, λ⊗, ρ⊗, λ ●, ρ ●, and δl are the identities.
By Proposition I.2.4.8, Σ is a left bipermutative category in the sense of Defini-
tion I.2.5.11.

The Additive Structure. The definition of the desired braided bimonoidal
functor F ∶ Σ C uses the following notions.

With ⊙ ∈ {⊕,⊗}, the left normalized bracketing is defined inductively by

(7.2.1) (x1 ⊙⋯⊙ xk)lt =
⎧⎪⎪⎨⎪⎪⎩

x1 if k = 1 and
(x1 ⊙⋯⊙ xk−1)lt ⊙ xk if k > 1.

Definition 7.2.2. For each integer n ≥ 0, define the following object in C.

n =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if n = 0,
1 if n = 1, and
(1⊕⋯⊕1)lt if n > 1.

In the last case, n is the left normalized sum (7.2.1) of n copies of 1 ∈ C. ◇
Recall from Convention 7.1.1 that, in this chapter, a Mac Lane coherence isomor-

phism is a component of a permuted canonical map in the additive structure (C,⊕).
The next definition is the same as Definition I.7.2.2, except that C is a braided bi-
monoidal category here.
Definition 7.2.3. Using the additive structures in Σ and C, define the data

F⊕ = (F, F2
⊕, F0

⊕) ∶ (Σ,⊕) (C,⊕)
of a symmetric monoidal functor as follows.
The Functor: The functor F ∶ Σ C is defined as follows.

Objects: For each n ≥ 0, define

F(n) = n ∈ C
with n as in Definition 7.2.2.

Morphisms: For each morphism σ ∈ Σ(n, n), define the morphism

F(n) = n n = F(n) ∈ CF(σ)

as the Mac Lane coherence isomorphism that additively permutes
the n copies of 1 in n as σ ∈ Σn permutes n letters. Its existence
and uniqueness are guaranteed by the Symmetric Coherence Theo-
rem I.1.3.8 in the symmetric monoidal category (C,⊕).

The Additive Zero Constraint: The morphism

0 F(0) = 0 ∈ C
F0
⊕

is the identity morphism 10.
The Additive Monoidal Constraint: For m, n ≥ 0, define the morphism

m⊕ n = F(m)⊕ F(n) F(m + n) = m + n ∈ C
F2
⊕

as the Mac Lane coherence isomorphism that does not involve ξ±⊕. Its
existence and uniqueness are guaranteed by Mac Lane’s Coherence The-
orem I.1.3.3 in the monoidal category (C,⊕).
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This finishes the definition of F⊕. ◇
Lemma 7.2.4. For each braided bimonoidal category C,

F⊕ ∶ (Σ,⊕) (C,⊕)

in Definition 7.2.3 is a strong symmetric monoidal functor.

Proof. The proof of Lemma I.7.2.9, which is the case with C a symmetric bimonoi-
dal category, is still valid in the current context. □

The Multiplicative Structure.

Convention 7.2.5. For the rest of this chapter, unless otherwise specified, C is a
flat braided bimonoidal category as in Definition 5.4.5. ◇

The multiplicative structure of F ∶ Σ C requires some preliminary notions.
Next is the braided version of Definition I.7.3.3. Recall from Definition 5.3.15 the
braided distortion of a path P ∈ Gr(X). It is the value of P, in the sense of (5.3.14), in
the braided distortion category Dbr via the graph morphism ϑ ∶ Gr(X) Dbr in
(5.3.17).

Definition 7.2.6. Suppose m, n ≥ 1.
● Define the set

B = {0B, 1B, b1, . . . , bn}
with n + 2 elements.
● With each 1B

i denoting a copy of 1B, define

(7.2.7) (
m
⊕
i=1

1B
i )

lt
⊗ (

n
⊕
j=1

bj)
lt

(
n
⊕
j=1

m
⊕
i=1

bj)
lt

P

as any path in Gr(B)whose braided distortion is the identity morphism

1(1,...,1) = (idmn;
mn

id1, . . . , id1 ) ∈ Σmn × B×mn
1

of (1, . . . , 1) ∈ Dbr.
● Define the function

φ ∶ B Ob(C)

by

φ(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x = 0B and
1 if x ∈ {1B, b1, . . . , bn}.

The value of the path P in C is defined as in Definition 5.3.10 via the
associated graph morphism φ ∶ Gr(B) C. ◇

Next we define the multiplicative structure of F.

Definition 7.2.8. For a flat braided bimonoidal category C, extend the functor F in
Definition 7.2.3 to the data

F⊗ = (F, F2
⊗, F0

⊗) ∶ (Σ,⊗) (C,⊗)

of a braided monoidal functor between the multiplicative structures as follows.
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The Multiplicative Unit Constraint: The morphism

1 F(1) = 1 ∈ C
F0
⊗

is the identity morphism 11.
The Multiplicative Monoidal Constraint: For m, n ≥ 0, define the morphism

m⊗ n = F(m)⊗ F(n) F(mn) = mn ∈ C
F2
⊗

as follows.
● If m = 0, then F2

⊗ is the left multiplicative zero

0⊗ n 0.
λ
●

n

● If n = 0, then F2
⊗ is the right multiplicative zero

m⊗ 0 0.
ρ
●

m

If m = n = 0, then λ ●0 = ρ ●0 by the axiom (2.1.13) in C.
● If m, n > 0, then

(
m
⊕
i=1
1)

lt
⊗ (

n
⊕
j=1
1)

lt
(

n
⊕
j=1

m
⊕
i=1
1)

lt

F2
⊗

is the value in C of any path P as in (7.2.7) with identity braided
distortion.

This finishes the definition of F⊗. ◇
Lemma 7.2.9. For each flat braided bimonoidal category C,

F⊗ ∶ (Σ,⊗) (C,⊗)

in Definition 7.2.8 is a braided monoidal functor.

Proof. We reuse the proofs in Section I.7.3 for the symmetric case, with the follow-
ing notes and adjustments.

● Each instance of the distortion of a path in Gr(X) is replaced by the braided
distortion of that path via the graph morphism

ϑ ∶ Gr(X) Dbr

in (5.3.17). In particular, the path Q in (I.7.3.19) has as its braided distor-
tion the identity morphism

(7.2.10) 1(2,...,2) = (idmn;
mn

id2, . . . , id2 ) ∈ Σmn × B×mn
2

of (2, . . . , 2) ∈ Dbr.
● By Theorem 2.2.1, C satisfies all 24 Laplaza axioms in Definition 2.1.1.

Some of those axioms are used in the proofs of the associativity axiom
(1.3.10) and the unity axioms (1.3.11) of F⊗ in Lemmas I.7.3.25 and I.7.3.27.
We can still use those axioms here.
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Moreover, each instance of Laplaza’s Second Coherence Theorem I.4.4.3 for
symmetric bimonoidal categories is replaced by its braided analogue here, namely,
the Coherence Theorem 5.4.4 for braided bimonoidal categories, which is applica-
ble because C is flat. In each case, as listed below, the paths in question have the
same braided distortion.

● Lemma I.7.3.15 shows that F2
⊗ is well defined and is natural.

– In the first paragraph of its proof and (I.7.3.17), P and P′ both have
braided distortion the identity morphism.

– The last paragraph of its proof shows that the two paths have the
same permutation component in their braided distortions. More-
over, since B1 is the trivial group, each of their braid components is
the identity braid id1 ∈ B1. Therefore, the two paths have the same
braided distortion.

● Similarly, in the proofs of Lemmas I.7.3.21, I.7.3.24, and I.7.3.25 for the
associativity axiom (1.3.10) for F⊗, each path has braided distortion the
identity morphism.

Furthermore, the proof of Lemma I.7.3.28 is reused here with the following
adjustments.

● In case (1), the diagram is commutative by the braided bimonoidal cate-
gory axiom (2.1.33), which states that λ ● = ρ ●ξ⊗0,−.
● In the diagram (I.7.3.31), both vertical paths Q and Q′ have braided dis-

tortions the identity morphism of (2, . . . , 2) ∈ Dbr. The top path ξ⊗ and
the bottom path R both have braided distortions the morphism

(ξ⊗m,n;
mn

s1, . . . , s1 ) ∈ Σmn × B×mn
2 .

Here
– ξ⊗m,n ∈ Σmn is the permutation in (5.2.19), and
– s1 ∈ B2 is the generating braid as in Definition 1.1.1.

● In the last paragraph, we use Theorem 5.4.4 instead of Laplaza’s First
Coherence Theorem I.3.9.1 by noting that the two paths in (I.7.3.31) have
the same braided distortion. □

Lemma 7.2.11. For each flat braided bimonoidal category C, the data

(F, F2
⊕, F0

⊕, F2
⊗, F0

⊗) ∶ Σ C

in Definitions 7.2.3 and 7.2.8 constitute a robust braided bimonoidal functor.

Proof. We already have the following.
● Lemma 7.2.4 shows that

F⊕ = (F, F2
⊕, F0

⊕)

is a strong symmetric monoidal functor.
● Lemma 7.2.9 shows that

F⊗ = (F, F2
⊗, F0

⊗)

is a braided monoidal functor.
● F0
⊗ is the identity morphism 11 by definition.
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Therefore, it remains to check the multiplicative zero axiom (6.1.2) and the dis-
tributivity axiom (6.1.3).

To prove these two axioms, as in the proof of Lemma 7.2.9, we reuse the proofs
of Lemma I.7.4.3 and Proposition I.7.4.4 in the symmetric case with the following
notes and adjustments.

● In Lemma I.7.4.3, to show that the diagram (I.7.4.2) is commutative in
C in the current context, observe that each of its six paths has braided
distortion an identity morphism in Dbr.

– For the paths Q1, Q2 ⊕ 1, and 1⊕Q3 in that diagram, this is true by
(7.2.10).

– The paths 1⊗ R1 and R2 involve only identities and α−⊕.
In the braided distortion category Dbr, the only nonidentity structure
morphisms are ξ⊕ (5.2.11), ξ⊗ (5.2.18), and δr (5.2.26). Therefore, in the
diagram (I.7.4.2), each of the two composite paths has identity braided
distortion. It is commutative in C by Theorem 5.4.4.
● The proof of Proposition I.7.4.4 uses Lemma I.7.4.3 and Laplaza’s axioms

in Definition 2.1.1, which also hold in the braided bimonoidal category C
by Theorem 2.2.1. □

7.3. Bi-Initial Braided Bimonoidal Category

In this section, we finish the proof of the Braided Baez Conjecture in Theo-
rem 7.3.4. In the language of bicategory theory, it states that the left bipermutative
category Σ in Proposition I.2.4.8 is a bi-initial object in the 2-category Bifbrr in Defi-
nition 7.1.5. There is also a second version involving the right bipermutative cate-
gory Σ′ in Proposition I.2.4.23; see Theorem 7.3.6. These theorems are the braided
analogues of Theorems I.7.8.1 and I.7.8.3.

As we will explain in the proof, Theorem 7.3.4 has
● an existence part for 1-cells and
● a uniqueness part for 2-cells.

The existence part is already established in Lemma 7.2.11. The uniqueness part is
proved in Lemmas 7.3.1 and 7.3.3 below.
Lemma 7.3.1. Suppose given the following data.

● C is a braided bimonoidal category as in Definition 2.1.29.
● G, H ∶ Σ C are robust braided bimonoidal functors.
● π ∶ G H is a bimonoidal natural transformation as in Definition 7.1.2.

Then the following statements hold.
(1) π0 is the following composite in C.

G(0) 0 H(0)G−0
⊕ H0

⊕

π0

(2) π1 is the following composite in C.

G(1) 1 H(1)G−0
⊗ H0

⊗

π1
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(3) For each n ≥ 2, πn is the following composite in C.

G(n) H(n)

(
n
⊕
i=1

G(1))
lt

(
n
⊕
i=1

H(1))
lt

G−1
⊕

πn

(⊕iπ1)lt

H⊕

Here G⊕ means
● G2

⊕ if n = 2 and
● inductively, G2

⊕(G⊕ ⊕ 1) if n > 2.
H⊕ is defined in the same way using H2

⊕.
(4) π is the only bimonoidal natural transformation G H.
(5) π is a bimonoidal natural isomorphism.

Proof. The proofs of Lemmas I.7.6.2 and I.7.6.3 in the symmetric case are still valid
in the current context. □

In the rest of this section, F ∶ Σ C is the robust braided bimonoidal functor
in Lemma 7.2.11.
Definition 7.3.2. Suppose

● C is a flat braided bimonoidal category, and
● G ∶ Σ C is a robust braided bimonoidal functor.

Define
θG ∶ F G

with the component morphisms

F(n) = n G(n) ∈ C
θG

n

for n ≥ 0 as follows.
● θG

0 is the additive zero constraint

F(0) = 0 G(0).
G0
⊕

● θG
1 is the multiplicative unit constraint

F(1) = 1 G(1).
G0
⊗

● For each n ≥ 2, θG
n is the following composite in C.

F(n) = n G(n)

(
n
⊕
j=1
1)

lt
(

n
⊕
j=1

G(1))
lt

θG
n

(⊕jG
0
⊗
)lt

G⊕

This finishes the definition of θG. ◇
Lemma 7.3.3. In the context of Definition 7.3.2, the following statements hold.

(1) θG ∶ F G is the unique bimonoidal natural transformation from F to G.
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(2) θG is a bimonoidal natural isomorphism.

Proof. We reuse the proofs of Theorem I.7.5.8 and Lemmas I.7.7.3, I.7.7.4, and I.7.7.6
in the symmetric case to show that

θG ∶ F⊕ G⊕ and θG ∶ F⊗ G⊗
are both monoidal natural transformations. The uniqueness and the invertibility
of θG follow from Lemma 7.3.1. □

Recall the following.
● ∅ is the empty 2-category, with no objects, no 1-cells, and no 2-cells.
● Bifbrr is the 2-category in Definition 7.1.5 with

– flat small braided bimonoidal categories in Definition 5.4.5 as ob-
jects,

– robust braided bimonoidal functors in Definition 6.1.1 as 1-cells, and
– bimonoidal natural transformations in Definition 7.1.2 as 2-cells.

We are now ready for the braided version of Baez’s Conjecture, Theorem I.7.8.1.
Theorem 7.3.4 (Braided Baez Conjecture). Σ is a lax bicolimit of the 2-functor

∅ Bifbrr .

Proof. Using [JY21, Sections 4.1 and 5.2] to unpack the assertion in 1-categorical
terms, it means that for each flat small braided bimonoidal category C, the unique
functor

Bifbrr (Σ,C) 1T

to the terminal category 1 is an equivalence of categories. In other words, it is fully
faithful on morphisms and essentially surjective on objects.

Since 1 is the terminal category, the essential surjectivity of T means the exis-
tence of a robust braided bimonoidal functor Σ C. Even without the smallness
assumption on C, this is true by Lemma 7.2.11, where we constructed a canonical
robust braided bimonoidal functor F ∶ Σ C.

The fully faithfulness of the functor T means that, for each pair G, H ∶ Σ C
of robust braided bimonoidal functors, there exists a unique bimonoidal natural
transformation G H. Even without the smallness assumption on C, such a
bimonoidal natural transformation is given by the vertical composite

G F H
(θG)−1

θH

with θG and θH from Lemma 7.3.3. Its uniqueness follows from Lemma 7.3.1. □

Remark 7.3.5. In the proof of the Braided Baez Conjecture, the smallness assump-
tion of C is only used to make sure that it is an object in the 2-category Bifbrr . The
construction of F ∶ Σ C and the proofs of its properties do not require any
smallness condition. ◇

Recall Σ′ in Definition I.2.4.18 and Proposition I.2.4.23. It is a small right biper-
mutative category in the sense of Definition I.2.5.2, so it is also an object in Bifbrr by
Propositions 5.1.17 and 5.1.19. Moreover, as symmetric bimonoidal categories, Σ′

is canonically isomorphic to Σ by Propositions I.5.1.15 and I.5.1.16. Therefore, The-
orem 7.3.4 also holds for Σ′.
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Theorem 7.3.6 (Braided Baez Conjecture, Version 2). Σ′ is a lax bicolimit of the 2-
functor

∅ Bifbrr .

In other words, for each flat small braided bimonoidal category C, the unique functor

Bifbrr (Σ′,C) 1

is an equivalence of categories.





CHAPTER 8

Monoidal Bicategorification

The main Theorem 8.4.7 in this chapter states that, for each tight braided bi-
monoidal category C as in Definition 2.1.29, the matrix construction MatC in Chap-
ter I.8, with appropriate adjustments, is a monoidal bicategory in the sense of Def-
inition I.6.4.1. This is an extension of Theorem I.8.12.9, which states that MatC is a
monoidal bicategory for each tight symmetric bimonoidal category C. While most
of the constructions in the symmetric case in Chapter I.8 remain the same in the
braided case, there are several crucial differences, which we discuss next.

Coherence: In Chapter I.8, most of the commutative diagrams are proved by in-
voking the Coherence Theorems I.3.9.1 and I.4.4.3 and Proposition I.3.5.33
for symmetric bimonoidal categories, or Theorem I.3.10.7 for bimonoidal
categories. In this chapter, we use Theorem 5.4.4, which is our main co-
herence result for braided bimonoidal categories. Each time this coher-
ence result is used, we have to check that the relevant paths have the
same braided distortion in the sense of Definition 5.3.15.

The Monoidal Composition: In Chapter I.8, the lax functoriality constraint ⊠2 in
(I.8.6.20) of the monoidal composition ⊠ in MatC involves the paths P and
Q in Lemma I.8.6.16. The same paths are used in the braided case in
Lemma 8.2.14, except that here we must specify their braided distortions.
See (8.2.15) and (8.2.16). The additional requirement on the paths P and
Q is needed in the current context because the Coherence Theorem 5.4.4
has a hypothesis about the braided distortions of the paths.

The Braiding: When C is a tight symmetric bimonoidal category, Theorem I.8.15.4
states that MatC is a symmetric monoidal bicategory. Its braiding β in-
volves the braiding ξ⊗ in C in a natural way; see (I.8.13.24). One may
optimistically guess that, when C is a tight braided bimonoidal category,
the same construction would yield a braided monoidal bicategory struc-
ture in MatC. However, this guess is false. As we will explain at the end
of Section 8.4, in the current context, β in Definition I.8.13.22 is not in gen-
eral a strong transformation because it fails to satisfy the lax naturality
axiom. Furthermore, the unit ηβ ∶ 1⊠ β ●β as in Definition I.8.13.35 is
not a modification. Therefore, Theorem I.8.15.4 does not seem to have a
braided analogue.

The following table summarizes the main results for the matrix construction.

tight bimonoidal category C bicategory MatC

plain plain (I.8.4.12)

braided monoidal (8.4.7)

symmetric symmetric monoidal (I.8.15.4)

II.203
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For open questions related to the matrix construction, see Appendix III.A.

Organization. A description of the rest of this chapter follows.
In Section 8.1, the main result is Theorem 8.1.13. It states that, for each tight

braided bimonoidal category C, MatC equipped with the structure in Sections I.8.1
through I.8.4 is a bicategory.

In Section 8.2, we define the monoidal identity (1⊠, 12
⊠
, 10
⊠
) and the monoidal

composition (⊠,⊠2,⊠0) in the bicategory MatC by extending the constructions in
Sections I.8.5 through I.8.7.

In Section 8.3, we define the monoidal associator (a⊠, a⊠ ●, ηa, εa), the left mon-
oidal unitor (ℓ⊠, ℓ⊠ ●, ηℓ, εℓ), and the right monoidal unitor (r⊠, r⊠ ●, ηr, εr) in the bi-
category MatC by extending the constructions in Sections I.8.8 and I.8.9.

In Section 8.4, we define the pentagonator π, the middle 2-unitor µ, the left
2-unitor λ⊠, and the right 2-unitor ρ⊠ in the bicategory MatC by extending the
constructions in Sections I.8.10 and I.8.11. After proving the main Theorem 8.4.7,
we explain in detail the reasons why, for a tight braided bimonoidal category C,
MatC is not a braided monoidal bicategory.

Reading Guide.
(1) Read Definitions 8.1.5 and 8.1.6 and the statements of Lemma 8.1.10

and Theorem 8.1.13 for the bicategory MatC.
(2) Read Definitions 8.2.5 and 8.2.7 and Lemma 8.2.10 for the monoidal iden-

tity, the matrix tensor product, and the lax unity constraint.
(3) Read Definitions 8.2.13 and 8.2.18 for the monoidal composition.
(4) Read Definitions 8.3.1, 8.3.5, and 8.3.7 for the monoidal associator.
(5) Read Definitions 8.3.9 through 8.3.11 for the left monoidal unitor.
(6) Read Definitions 8.3.13 through 8.3.15 for the right monoidal unitor.
(7) Read Definitions 8.4.1 and 8.4.3 through 8.4.5 for the pentagonator and

the 2-unitors.
(8) Read the statement of Theorem 8.4.7, which says that MatC is a monoidal

bicategory.
(9) Go back and read the rest of this chapter.

8.1. Matrix Bicategories

The main observation in this section is Theorem 8.1.13. It states that the matrix
construction MatC is a bicategory for each tight braided bimonoidal category C.
We actually proved a more general result in Theorem I.8.4.12, where C is only
assumed to be a tight bimonoidal category. In this section, we give another proof
of this result in the braided context using the Coherence Theorem 5.4.4 for braided
bimonoidal categories.

We first recall the definition of a bicategory from Chapter I.6. The related
definitions of a lax functor, a lax transformation, a modification, an adjoint equiv-
alence, and so forth, can also be found in Chapter I.6 and [JY21]. Then we define
the matrix construction MatC for each tight braided bimonoidal category C and
prove Theorem 8.1.13.

Bicategories. One way to understand the definition of a bicategory is that a
monoidal category is precisely a one-object bicategory. The unity axiom and the
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pentagon axiom in the definition of a bicategory are conceptually identical to those
in a monoidal category in (1.3.2) and (1.3.3).

Definition 8.1.1. A bicategory is a tuple

(B, 1, c, a, ℓ, r)

consisting of the following data.

● B is equipped with a class Ob(B) of objects.
● For each pair of objects X, Y ∈ B, it is equipped with a hom category
B(X, Y).

– Its objects f ∶ X Y are called 1-cells.
– Its morphisms α ∶ f f ′ are called 2-cells.
– Its composition is called the vertical composition.

● Each object X ∈ B is equipped with an identity 1-cell

1X ∶ X X.

● For each triple of objects X, Y, Z ∈ B,

B(Y, Z)×B(X, Y) B(X, Z)cXYZ

is a functor, which is called the horizontal composition. For
– 1-cells f ∈ B(X, Y) and g ∈ B(Y, Z) and
– 2-cells α ∈ B(X, Y) and β ∈ B(Y, Z),

the horizontal compositions are denoted by g f and β ∗ α.
● It is equipped with a natural isomorphism

(hg) f h(g f )
ah,g, f

for 1-cells

(h, g, f ) ∈ B(Y, Z)×B(X, Y)×B(W, X).

It is called the associator.
● It is equipped with two natural isomorphisms

1Y f f f 1X
ℓ f r f

for 1-cells f ∈ B(X, Y), which are called the left unitor and the right unitor,
respectively.

The above data are required to satisfy the following two axioms for 1-cells f ∈
B(V, W), g ∈ B(W, X), h ∈ B(X, Y), and k ∈ B(Y, Z).
The Unity Axiom: The middle unity diagram

(8.1.2)

(g1W) f g(1W f )

g f

ag,1W , f

rg∗1 f 1g∗ℓ f

in B(V, X) is commutative.
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The Pentagon Axiom: The diagram

(8.1.3)

(kh)(g f )

((kh)g) f

(k(hg)) f k((hg) f )

k(h(g f ))

ak,h,g fakh,g, f

ak,h,g∗1 f
ak,hg, f

1k∗ah,g, f

in B(V, Z) is commutative.
This finishes the definition of a bicategory. We sometimes abbreviate a bicategory
as above to B. A 2-category is a bicategory in which a, ℓ, and r are identity natural
transformations. ◇
Example 8.1.4. Suppose B and B′ are bicategories such that B has a set of objects.
Then there is a bicategory Bicat(B,B′)with the following data.

● Its objects are lax functors B B′.
● 1-cells in Bicat(B,B′)(F, G) are lax transformations F G.
● 2-cells α β are modifications for 1-cells α, β ∶ F G.
● Identity 1-cells are identity strong transformations of lax functors.
● Vertical composition is that of modifications.
● Horizontal composition is that of lax transformations for 1-cells and that

of modifications for 2-cells.
● The associator, the left unitor, and the right unitor are invertible modifi-

cations whose component 2-cells are defined in B′.
Moreover, Bicat(B,B′) is a 2-category if B′ is a 2-category.

The bicategory Bicat(B,B′) contains a subbicategory Bicatps(B,B′)with
● pseudofunctors B B′ as objects,
● strong transformations between such pseudofunctors as 1-cells, and
● modifications between such strong transformations as 2-cells.

This is a sub-2-category of Bicat(B,B′) if B′ is a 2-category. ◇

The Matrix Product. Next we define the hom categories in MatC.

Definition 8.1.5. Suppose C is a category. For integers m, n ≥ 0, define a category
MatCm,n as follows.

Objects: An object in MatCm,n is an n ×m matrix

A = (Aji)1≤j≤n, 1≤i≤m

with each Aji, which is called the (j, i)-entry in A, an object in C. We call
A an n ×m matrix in C. When n and m are understood, we will also write
A as (Aji).

Morphisms: A morphism

f ∶ A = (Aji) (A′ji) = A′

is an n ×m matrix
f = ( f ji)1≤j≤n, 1≤i≤m

with each f ji ∶ Aji A′ji a morphism in C.
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Identity Morphisms: For an object A = (Aji), its identity morphism is the n ×m
matrix

1A = (1Aji
)

of identity morphisms in C.
Composition: If f ∶ A A′ is a morphism as above and if f ′ ∶ A′ A′′ is

another morphism, then their composite f ′ f ∶ A A′′ is defined en-
trywise in C as

( f ′ f )ji = f ′ji f ji ∶ Aji A′′ji .

This finishes the definition of the category MatCm,n.
If C has a distinguished object 0, then the 0 matrix 0m,n ∈ MatCm,n is the matrix

with each entry 0 ∈ C if m, n > 0. If either m or n is 0, then 0m,n denotes the empty
matrix. ◇

To define the horizontal composition in MatC, we extend the usual matrix
product to MatC.
Definition 8.1.6. Suppose C is a bimonoidal category, and m, n, p ≥ 0.

● For
– an n ×m matrix A = (Aji) ∈MatCm,n and
– a p × n matrix B = (Bkj) ∈MatCn,p,

define their matrix product

BA ∈MatCm,p

whose (k, i)-entry, for 1 ≤ i ≤ m and 1 ≤ k ≤ p, is the following object in C:

(8.1.7) (BA)ki =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
n
⊕
j=1
(Bkj ⊗ Aji))

lt
if n ≥ 1 and

0 if n = 0.

The subscript lt denotes the left normalized sum in (7.2.1). If either m or
p is 0, then BA is the empty matrix.

● For morphisms
– f = ( f ji) ∈MatCm,n(A, A′) and
– g = (gkj) ∈MatCn,p(B, B′),

define their matrix product

g ★ f ∈MatCm,p(BA, B′A′)
as the p ×m matrix whose (k, i)-entry, for 1 ≤ i ≤ m and 1 ≤ k ≤ p, is the
following morphism in C:

(8.1.8) (g ★ f )ki =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
n
⊕
j=1
(gkj ⊗ f ji))

lt
∶ (BA)ki (B′A′)ki if n ≥ 1 and

10 ∶ 0 0 if n = 0.

If either m or p is 0, then g ★ f is the identity morphism of the empty
matrix.
● The n × n identity matrix is the square matrix 1n ∈MatCn,n with entries

(8.1.9) 1n
ji =
⎧⎪⎪⎨⎪⎪⎩

1 if i = j and
0 if i /= j.
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Here 1 is the multiplicative unit in C, and 0 is the additive zero in C. If
n = 0, then 10 is the unique empty matrix. ◇

The Bicategory Structure. The left unitor and the right unitor in MatC are,
respectively, ℓ and r in (8.1.11) below, and the associator in MatC is in (8.1.12) be-
low. The next lemma combines Lemmas I.8.1.8, I.8.1.10, I.8.1.18, I.8.2.1, I.8.2.7,
and I.8.3.1.
Lemma 8.1.10. Suppose C is a tight bimonoidal category, and m, n, p, q ≥ 0.

(1) The matrix product

MatCn,p ×MatCm,n MatCm,p

in Definition 8.1.6 is a functor.
(2) There are natural isomorphisms

(8.1.11)

0n,p A 0m,p

A0q,m 0q,n

1n A A A1m

ζℓA

ζr
A

ℓA rA

for A ∈MatCm,n such that the following statements hold.
● ζℓA involves only identities, λ⊕0 , and λ ●.
● ζr

A involves only identities, λ⊕0 , and ρ ●.
● ℓA involves only identities, λ⊕, ρ⊕, λ⊗, and λ ●.
● rA involves only identities, λ⊕, ρ⊕, ρ⊗, and ρ ●.

(3) There is a natural isomorphism

(8.1.12) (CB)A C(BA) ∈MatCm,q
aC,B,A

for
(A, B, C) ∈MatCm,n ×MatCn,p ×MatCp,q

such that the following statements hold.
● If either m or q is 0, or if m, q > 0 and n = p = 0, then aC,B,A is the identity

morphism.
● If m, p, q > 0 and n = 0, then aC,B,A = (ζr

C)−1.
● If m, n, q > 0 and p = 0, then aC,B,A = ζℓA.
● If m, n, p, q > 0, then each entry of aC,B,A factors as a4a3a2a1 such that the

following statements hold.
– a1 involves only identities and δr.
– a2 involves only identities and α⊗.
– a3 involves only identities, α±⊕, and ξ⊕.
– a4 involves only identities and δ−l .

Next is the main result of this section. It states that each tight braided bimon-
oidal category C has an associated matrix bicategory MatC.
Theorem 8.1.13. Suppose C is a tight braided bimonoidal category. Then there is a bicat-
egory

(MatC,1, c, a, ℓ, r)
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with the following data.

● The objects in MatC are nonnegative integers n ≥ 0.
● For m, n ≥ 0, the hom category MatC(m, n) is the category MatCm,n in Defini-

tion 8.1.5.
● For each object n ≥ 0, its identity 1-cell 1n is the n × n identity matrix 1n ∈
MatCn,n defined entrywise in (8.1.9).
● The horizontal composition c is the matrix product in Lemma 8.1.10 (1).
● The left unitor ℓ and the right unitor r are the natural isomorphisms in (8.1.11).
● The associator a is the natural isomorphism in (8.1.12).

Proof. This theorem holds more generally for tight bimonoidal categories by Theo-
rem I.8.4.12. Here we give another proof using the Braided Bimonoidal Coherence
Theorem 5.4.4.

To prove the unity axiom (8.1.2) and the pentagon axiom (8.1.3), we reuse the
proofs of Lemmas I.8.4.2, I.8.4.8, and I.8.4.9, with the following notes and adjust-
ments.

Coherence: These lemmas are proved using Theorem I.3.10.7 for bimonoidal cat-
egories. Here we use Theorem 5.4.4, which is our main coherence result
for braided bimonoidal categories. To use this coherence result in the
braided context, in each case, we check that the paths in question have the
same braided distortion in the sense of Definition 5.3.15. In the rest of this
proof, we describe the braided distortions of the paths that are used in the
proofs of Lemmas I.8.4.2, I.8.4.8, and I.8.4.9. In each case, the (co)domain
of the paths in the braided distortion category Dbr is computed using the
definitions (5.3.16) of the function ϑ, its extension by additivity and mul-
tiplicativity (5.3.12), the sum (5.2.9), and the product (5.2.15) in Dbr.

The Left and the Right Zeros: For the path Zℓ in (I.8.1.15) for an entry of ζℓA in
(8.1.11), its braided distortion is the identity morphism

1∅ = (id0; ) ∈ Σ0

of ∅ ∈ Dbr. Recall from Definition 5.2.8 that the empty sequence ∅ is the
additive zero 0 in the braided distortion category Dbr.

Similarly, for the path Zr in (I.8.1.23) for an entry of ζr
A in (8.1.11), its

braided distortion is the identity morphism

1∅ ∈ Dbr(∅;∅).

The Unitors: For the path Pℓ in (I.8.2.6) for an entry of the left unitor ℓA in (8.1.11),
its braided distortion is the identity morphism

1(1) = (id1; id1) ∈ Σ1 × B1

of (1) ∈ Dbr, which has length 1 and unique entry 1.
Similarly, for the path Pr in (I.8.2.12) for an entry of the right unitor

rA in (8.1.11), its braided distortion is the identity morphism

1(1) ∈ Dbr((1); (1)).

The Associator: Consider the paths in (I.8.3.12) for an entry of the associator a in
(8.1.12).
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● The path P1
a consists of identities and δr. Its braided distortion is the

identity morphism

1(3,...,3) = (idpn;
pn

id3, . . . , id3) ∈ Σpn × B×pn
3

of the object
(3, . . . , 3) ∈ Dbr

with pn copies of 3. This follows from Lemma 5.2.28, which de-
scribes δr in Dbr, and the fact that ξ⊗−,1 and ξ⊗1,− are identity permuta-
tions.
● The path P2

a consists of identities and α⊗. Its braided distortion is the
identity morphism of (3, . . . , 3) ∈ Dbr because α⊗ inDbr is the identity.
● The path P4

a consists of identities and δl . Its braided distortion is the
identity morphism of (3, . . . , 3) ∈ Dbr because δl in Dbr is the identity.
● The path P3

a consists of identities, α±⊕, and ξ⊕. In Dbr, α⊕ is the
identity, and ξ⊕ (5.2.11) has identity braid components. The braided
distortion of P3

a is the morphism

(ξ⊗p,n;
pn

id3, . . . , id3 ) ∈ Σpn × B×pn
3

in Dbr((3, . . . , 3); (3, . . . , 3)). Its permutation component ξ⊗p,n is de-
fined in (5.2.19), and it corresponds to taking the transpose of an
n × p matrix.

The Unity Axiom: In the proof of Lemma I.8.4.2 for the unity axiom, consider the
diagram (I.8.4.5).
● Each of the paths R, L, and M, has braided distortion the identity

morphism

1(2,...,2) = (idn;
n

id2, . . . , id2) ∈ Σn × B×n
2

of the object
(2, . . . , 2) ∈ Dbr

with n copies of 2.
● Due to the presence of δX

l j, each of the paths Ph
a for 1 ≤ h ≤ 4 also has

braided distortion the identity morphism of (2, . . . , 2) ∈ Dbr.
Therefore, each of the five paths in (I.8.4.5) has identity braided distor-
tion.

The Pentagon Axiom: In the proof of Lemma I.8.4.8, in each of cases (6)–(8), in
the second pentagon, each path has braided distortion 1∅.

In the proof of Lemma I.8.4.9, in the subdivided pentagon (I.8.4.10),
each path (both solid and dashed) has identity braid components. The
reason is that they do not involve the braiding ξ⊗, which is the only struc-
ture morphism in Dbr with nonidentity braid components. See Explana-
tion 5.2.29 (3). In each of the five quadrilaterals, the two composite paths
have the same permutation components because there is a unique per-
muted canonical map between two permuted words of the same length.
Therefore, in each of the five quadrilaterals, the two composite paths have
the same braided distortion.
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With the adjustments described above and the Coherence Theorem 5.4.4, the
proofs of Lemmas I.8.4.2, I.8.4.8, and I.8.4.9 imply that MatC is a bicategory. □

8.2. The Monoidal Identity and the Monoidal Composition

We continue to assume that C is a tight braided bimonoidal category as in
Definition 2.1.29. In Theorem 8.1.13, we observed that MatC is a bicategory. In the
rest of this chapter, we equip MatC with the structure of a monoidal bicategory.
In this section, we define the monoidal identity and the monoidal composition in
MatC. We first recall the definition of a monoidal bicategory from Chapter I.6.

Monoidal Bicategories. Conceptually, monoidal bicategories are to bicategor-
ies as monoidal categories are to categories. Monoidal bicategories may be defined
as one-object tricategories. The following is the explicit definition of a monoidal
bicategory. Denote by 1 the bicategory with one object ∗, one 1-cell 1∗, and one
2-cell 11∗ .

Definition 8.2.1. A monoidal bicategory is a tuple

(B,⊠, 1⊠, a, ℓ, r, π, µ, λ, ρ)

consisting of the following data.

● B is a bicategory, which is called the base bicategory.
● It is equipped with a pseudofunctor

B×B B,
(⊠,⊠2,⊠0)

which is called the monoidal composition.
● It is equipped with a pseudofunctor

1 B,
(1⊠,12

⊠
,10
⊠
)

which is called the monoidal identity. The object 1⊠(∗) ∈ B is denoted by
1⊠, which is called the identity object.
● It is equipped with an adjoint equivalence (a, a ●, ηa, εa)with left adjoint

B3 B2

B2 B

⊠× 1

1×⊠ ⊠

⊠

⇒a

in the bicategory Bicatps(B3,B), which is called the monoidal associator. Its
left and right adjoints have the following component 1-cells for objects
A, B, C ∈ B.

(C ⊠ B)⊠ A C ⊠ (B⊠ A) ∈ B
aC,B,A

a ●C,B,A



II.212 8. MONOIDAL BICATEGORIFICATION

● It has adjoint equivalences (ℓ, ℓ ●, ηℓ, εℓ) and (r, r ●, ηr, εr) with respective
left adjoints

B B

B2

B B

B2

1

1⊠ × 1 ⊠

1

1× 1⊠ ⊠⇒

ℓ

⇒

r

in the bicategory Bicatps(B,B), which are called the left monoidal unitor
and the right monoidal unitor, respectively. Their left and right adjoints
have component 1-cells

1⊠ ⊠ A A A⊠ 1⊠ ∈ B.
ℓA

ℓ
●
A r ●A

rA

● It has an invertible modification π, which is called the pentagonator, with
the following component 2-cells for objects A, B, C, D ∈ B.

((D ⊠C)⊠ B)⊠ A D ⊠ (C ⊠ (B⊠ A))

(D ⊠ (C ⊠ B))⊠ A D ⊠ ((C ⊠ B)⊠ A)

(D ⊠C)⊠ (B⊠ A)

aD,C,B ⊠ 1A

aD,C⊠B,A

1D ⊠ aC,B,A

aD⊠C,B,A aD,C,B⊠A

⇒

πD,C,B,A

● It has invertible modifications µ, λ, and ρ, which are called, respectively,
the middle 2-unitor, the left 2-unitor, and the right 2-unitor, with the follow-
ing component 2-cells in B.

B⊠ A B⊠ A

(B⊠ 1⊠)⊠ A B⊠ (1⊠ ⊠ A)
r ●B ⊠ 1A

aB,1⊠,A

1B ⊠ ℓA

1B⊠A

⇒

µB,A

(1⊠ ⊠ B)⊠ A B⊠ A

1⊠ ⊠ (B⊠ A)

ℓB ⊠ 1A

a1⊠,B,A ℓB⊠A

⇒

λB,A

B⊠ A B⊠ (A⊠ 1⊠)

(B⊠ A)⊠ 1⊠

1B ⊠ r ●A

r ●B⊠A aB,A,1⊠

⇒

ρB,A

The above data are required to satisfy the following three pasting diagram equal-
ities for objects A, B, C, D, E ∈ B, with ⊠ abbreviated to concatenation and iterates
of ⊠ denoted by parentheses.
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The Non-Abelian 4-Cocycle Condition:

(8.2.2) =

(E(D(CB)))A
(E((DC)B))A E((D(CB))A)

((E(DC))B)A E(D((CB)A))

(((ED)C)B)A E(D(C(BA)))

((ED)C)(BA) (ED)(C(BA))

(a1)1

a1

(1a)1 a

1a

1(1a)

a a a

E(((DC)B)A)

(E(DC))(BA) E((DC)(BA))

a 1(a1)

1aa

a

1a

a(1B1A) a1BA

⇒

a−1
1,a,1

⇒

1π

⇒

π

⇒

a−1
a,1,1

⇒
1a(⊠−0

B,A)

⇒

π

(E(D(CB)))A
(E((DC)B))A E((D(CB))A)

((E(DC))B)A E(D((CB)A))

(((ED)C)B)A E(D(C(BA)))

((ED)C)(BA) (ED)(C(BA))

(a1)1

a1

(1a)1 a

1a

1(1a)

a a a

((ED)(CB))A

(ED)((CB)A)
a1

a1

a a

(1E1D)a1EDa

⇒π1

⇒

π

⇒

a1,1,a

⇒(⊠−0
E,D)1a

⇒

π

Left Normalization:

(8.2.3) =

(C(1⊠B))A

((C1⊠)B)A (CB)A

(CB)A C(BA)

C(BA)

(r ●1)1

a1 (1ℓ)1

a

a 1

C((1⊠B)A)

C(1⊠(BA))

(C1⊠)(BA)

a

1a 1(ℓ1)

a
1ℓ

a

r ●(1B1A)
r ●1BA

⇒

a−1
1,ℓ,1

⇒

1λ

⇒

π

⇒

a−1
r ●,1,1

⇒
1r ●⊠−0

B,A

⇒

µ

(C(1⊠B))A

((C1⊠)B)A (CB)A

(CB)A C(BA)

C(BA)

(r ●1)1

a1 (1ℓ)1

a

a 1

1CB1A

1(CB)A

a

⇒

µ1

⇒

⊠−0
CB,A

⇒

ra

⇒

ℓ−1
a
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Right Normalization:

(8.2.4) =

C((B1⊠)A)

C(BA) C(B(1⊠A))

(CB)A C(BA)

(CB)A

a

1(r ●1) 1a

1(1ℓ)

1 a

(C(B1⊠))A

((CB)1⊠)A

(CB)(1⊠A)

a

(1r ●)1 a1

r ●1
a

a

(1C1B)ℓ
1CBℓ

⇒

a1,r ●,1

⇒

ρ1

⇒

π

⇒

a1,1,ℓ

⇒⊠−0
C,B1ℓ

⇒

µ

C((B1⊠)A)

C(BA) C(B(1⊠A))

(CB)A C(BA)

(CB)A

a

1(r ●1) 1a

1(1ℓ)

1 a

1C1BA

1C(BA)

a

⇒

1µ

⇒
⊠−0

C,BA
⇒

ℓa

⇒

r−1
a

This finishes the definition of a monoidal bicategory. ◇

The Monoidal Identity. For a tight braided bimonoidal category C as in Defi-
nition 2.1.29, we now begin to define the structure of a monoidal bicategory on the
matrix bicategory MatC in Theorem 8.1.13, starting with the monoidal identity.
Definition 8.2.5. Define the data of a lax functor

1 MatC
(1⊠,12

⊠
,10
⊠
)

as follows.
Object: The identity object 1⊠(∗) is the integer 1 ∈MatC.
1-Cell: The identity 1-cell 1∗ ∈ 1(∗,∗) is sent by 1⊠ to the 1× 1 identity matrix

11 = (1) ∈MatC1,1

whose only entry is the multiplicative unit 1 ∈ C.
2-Cell: The identity 2-cell 11∗ ∈ 1(1∗, 1∗) is sent by 1⊠ to the 1× 1 matrix

(11) ∈MatC1,1(11,11)
whose only entry is the identity morphism

11 ∶ 1 1 ∈ C.

The Lax Unity Constraint: Define

11⊠(∗) = 11 = 11 = (1) (1) = 11 = 1⊠(1∗)
10
⊠

as the identity 2-cell (11).
The Lax Functoriality Constraint: Using the matrix product (I.8.1.4), define

1⊠(1∗)1⊠(1∗) = (1)(1) = (1⊗1) (1) = 1⊠(1∗) = 1⊠(1∗1∗)
12
⊠

as the 1× 1 matrix whose only entry is the left multiplicative unit

λ⊗
1
∶ 1⊗1 1 ∈ C.

This finishes the definition of the tuple (1⊠, 12
⊠
, 10
⊠
). ◇
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Next is the braided version of Lemma I.8.5.2, whose proof is reused here with-
out any changes.

Lemma 8.2.6. The tuple
(1⊠, 12

⊠
, 10
⊠
)

in Definition 8.2.5 is a strictly unitary pseudofunctor.

The Matrix Tensor Product. To define the monoidal composition ⊠ in MatC,
we extend the matrix product to MatC. The following is Definition I.8.6.1 applied
to a tight braided bimonoidal category C.

Definition 8.2.7. Suppose

A = (Aji) ∈MatCm,n and B = (Blk) ∈MatCp,q

for some m, n, p, q ≥ 0.

● For each object C ∈ C, define the scalar product

C ⊠ A = (C⊗ Aji) ∈MatCm,n

as the n ×m matrix obtained from A by replacing each entry Aji by the
product C⊗ Aji.
● Define the matrix tensor product

(8.2.8) A⊠ B = (Aji ⊠ B)1≤j≤n, 1≤i≤m ∈MatCmp,nq

as the nq ×mp matrix obtained from A by replacing each entry Aji by the
scalar product Aji ⊠ B. In other words, it has entries

(A⊠ B)(j−1)q+l, (i−1)p+k = Aji ⊗ Blk ∈ C

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p, and 1 ≤ l ≤ q.

The same notation and terminology apply if C, A, and B are morphisms in, respec-
tively, C, MatCm,n, and MatCp,q. ◇

Next is the braided version of Lemma I.8.6.7, whose proof is reused here with-
out any changes.

Lemma 8.2.9. For m, n, p, q ≥ 0, the matrix tensor product

MatCm,n ×MatCp,q MatCmp,nq
⊠

in (8.2.8) is a functor.

The Lax Unity Constraint. The next lemma will be used to define the lax
unity constraint of ⊠. It is the braided version of Lemma I.8.6.8, whose proof is
reused here without any changes.

Lemma 8.2.10. For m, p ≥ 0, there is a canonical isomorphism

(8.2.11) 1mp 1m ⊠1p ∈MatCmp,mp

⊠0
(m,p)

≅

with each entry λ−⊗
1

, ρ− ●
1

, λ− ●
1

, or λ− ●0 if m, p > 0.
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The Lax Functoriality Constraint. To define the lax functoriality constraint ⊠2

of the monoidal composition in MatC, suppose A = (Aji), B = (Bkj), A′ = (A′j′i′),
and B′ = (B′k′ j′) are arbitrary 1-cells in MatC as follows.

(8.2.12)
m n p

m′ n′ p′

A B

A′ B′

To define the lax functoriality constraint ⊠2
(B,B′),(A,A′) in most cases, we use paths

in the sense of Definition 5.3.10 with the following setting.

Definition 8.2.13. In the setting of (8.2.12), suppose m, n, p, m′, n′, p′ > 0.
● Define the set of formal variables

X⊠ = {0X, 1X, aji, bkj, a′j′i′ , b′k′ j′}

with 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p, 1 ≤ i′ ≤ m′, 1 ≤ j′ ≤ n′, and 1 ≤ k′ ≤ p′.
● Define the function φ⊠ ∶ X⊠ Ob(C) as follows.

φ⊠(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0X.
1 if x = 1X.
Aji if x = aji.
Bkj if x = bkj.
A′j′i′ if x = a′j′i′ .
B′k′ j′ if x = b′k′ j′ .

Paths in Gr(X⊠) take values in C in the sense of (5.3.14), via the graph morphism
φ⊠ ∶ Gr(X⊠) C. ◇

Recall from Definition 5.3.15 the notion of the braided distortion of a path. It
is the value of the path in the braided distortion category Dbr under the graph
morphism ϑ in (5.3.17). The paths in the next lemma will be used to define most
cases of ⊠2. Recall that the subscript lt means the left normalized sum in (7.2.1).
Lemma 8.2.14. In the setting of Definition 8.2.13, the following statements hold.

(1) There exist paths

[
n
⊕
j=1

n′

⊕
j′=1
[(bkj ⊗ b′k′ j′)⊗ (aji ⊗ a′j′i′)]]

lt

[
n
⊕
j=1
[

n′

⊕
j′=1
(bkj ⊗ aji)⊗ (b′k′ j′ ⊗ a′j′i′)]

lt
]
lt

[
n
⊕
j=1
(bkj ⊗ aji)]

lt
⊗ [

n′

⊕
j′=1
(b′k′ j′ ⊗ a′j′i′)]

lt

P

Q

in Gr(X⊠) such that the following statements hold.
● The braided distortion of P is the morphism

(8.2.15) (idnn′ ;
nn′

s2, . . . , s2 ) ∈ Σnn′ × B×nn′
4
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in
Dbr((4, . . . , 4); (4, . . . , 4)),

with s2 ∈ B4 the second braid generator as in Definition 1.1.1. In the object
(4, . . . , 4), there are nn′ copies of 4.
● The braided distortion of Q is the morphism

(8.2.16) (ξ⊗n,n′ ;
nn′

id4, . . . , id4 ) ∈ Σnn′ × B×nn′
4

inDbr((4, . . . , 4); (4, . . . , 4)), with permutation component ξ⊗n,n′ defined in
(5.2.19).

(2) All the paths in Gr(X⊠) with the same (co)domain and braided distortion as P,
respectively Q, have the same value in C.

Proof. This is the braided analogue of Lemma I.8.6.16, with the additional condi-
tions about braided distortions. The desired paths P and Q with the stated braided
distortions are the paths in the proof of Lemma I.8.6.16.

● The path P involves only identities, α±⊗, and ξ⊗. In the braided distortion
category Dbr, α⊗ is the identity. The nn′ braid components s2 ∈ B4 in P
arise from braiding the middle two variables from

(bkj ⊗ b′k′ j′)⊗ (aji ⊗ a′j′i′) to (bkj ⊗ aji)⊗ (b′k′ j′ ⊗ a′j′i′).

The braided distortion of the path P is as in (8.2.15) by
– the definition (5.2.18) of the braiding ξ⊗ in Dbr;
– ξ⊗1,1 = id1 ∈ Σ1;
– b⊕1,1 = s1 ∈ B2 as in (1.2.4); and
– id1 ⊕ s1 ⊕ id1 = s2 ∈ B4 as in Definition 1.1.9.

● The path Q involves only identities, δl , and δr. In the braided distortion
category Dbr, δl is the identity, and δr has identity braid components by
Lemma 5.2.28. Its permutation component is ξ⊗n,n′ , which corresponds to
taking the transpose of an n′ × n matrix, by

– the definitions of the sum (5.2.9) and the product (5.2.15) in Dbr and
– the fact that there is a unique permuted canonical map between two

permuted words of the same length.

The second assertion, which is about the uniqueness of the values in C of P
and Q with the prescribed braided distortions, follows from the Coherence Theo-
rem 5.4.4. It is applicable because C is assumed to be tight. □

Explanation 8.2.17. For the path P in Lemma 8.2.14, each braid component s2 ∈ B4
in its braided distortion (8.2.15) is geometrically the following braid.

As in Example 1.1.5, geometric braids are read bottom-to-top. So s2 ∈ B4 has
a right-handed crossing—that is, a crossing with the right string over the left
string—involving the second and the third strings. ◇

Next is the monoidal composition in MatC in the sense of Definition 8.2.1.
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Definition 8.2.18. For a tight braided bimonoidal category C, define the data of a
lax functor

MatC ×MatC MatC
(⊠,⊠2,⊠0)

as follows.
Objects: For each pair of objects (m, p) ∈MatC ×MatC, define the object

⊠(m, p) = m⊠ p = mp ∈MatC.

The Local Functors: For m, n, p, q ≥ 0, the local functor

(MatC ×MatC)((m, p), (n, q)) =MatCm,n ×MatCp,q MatCmp,nq
⊠

is defined as the matrix tensor product in Lemma 8.2.9.
The Lax Unity Constraint: For each pair of objects (m, p) ∈ MatC ×MatC, define

the component 2-cell

1m⊠p = 1mp 1m ⊠1p = ⊠(1(m,p)) ∈MatCmp,mp

⊠0
(m,p)

as the canonical isomorphism in (8.2.11).
The Lax Functoriality Constraint: In the setting of (8.2.12), the component 2-cell

(B⊠ B′)(A⊠ A′) BA⊠ B′A′ ∈MatCmm′,pp′
⊠2
(B,B′),(A,A′)

is the identity morphism of the empty matrix if m, m′, p, or p′ is 0. If
m, m′, p, p′ > 0, then its ((k − 1)p′ + k′, (i − 1)m′ + i′)-entry is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ− ●0 if n = n′ = 0,
λ− ●(B′A′)k′ i′

if n = 0 and n′ > 0,

ρ− ●(BA)ki
if n > 0 and n′ = 0, and

(φ⊠Q)−1(φ⊠P) if n, n′ > 0.

● The indices are 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ k ≤ p, and 1 ≤ k′ ≤ p′.
● λ− ● and ρ− ● are the inverses of, respectively, λ ● and ρ ● in C.
● P and Q are the paths in Lemma 8.2.14 with braided distortions, re-

spectively, (8.2.15) and (8.2.16). The symbols φ⊠P and φ⊠Q are their
values in C as in (5.3.14) via the graph morphism φ⊠ from Defini-
tion 8.2.13.

This finishes the definition of the tuple (⊠,⊠2,⊠0). ◇
Lemma 8.2.19. The data

(⊠,⊠2,⊠0)
in Definition 8.2.18 is a pseudofunctor.

Proof. We reuse the proofs of Lemma I.8.6.21 and the lemmas in Section I.8.7 in the
symmetric case, with the following notes and adjustments.
Coherence: As in the proof of Theorem 8.1.13, here we use the Coherence Theo-

rem 5.4.4 for braided bimonoidal categories in place of Theorems I.3.9.1
and I.4.4.3 and Proposition I.3.5.33 for symmetric bimonoidal categories.
It remains to check that, in each case, the paths in question have the same
braided distortion in the sense of Definition 5.3.15.
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Lax Associativity: In (I.8.7.7), (I.8.7.10), (I.8.7.16), and (I.8.7.20), each path has
braided distortion the identity morphism 1∅ ∈ Dbr(∅;∅) by the equalities

∅⊗ r = ∅ = ∅⊕∅

for all r ∈ Dbr.
Consider (I.8.7.26).
● Each of the 12 vertices is sent by the graph morphism ϑ in (5.3.17) to

the object

(6, . . . , 6) ∈ Dbr

with pp′nn′ copies of 6.
● The braided distortions of the parallel paths

(R, L6) and (L5, L4, L3, L2, L1)

have the same permutation component in Σpp′nn′ because there is a
unique permuted canonical map between two permuted words of
the same length. Each of them has the braid components

(8.2.20) (s4s2s3, . . . , s4s2s3) ∈ B×pp′nn′

6

with pp′nn′ copies of the braid s4s2s3 ∈ B6. This braid arises from
braiding cbac′b′a′ to cc′bb′aa′. Therefore, these two parallel paths
have the same braided distortion.
● Similarly, the braided distortions of the parallel paths

(R, L12) and (L11, L10, L9, L8, L7)

have the same permutation component. Moreover, each of them has
the braid components (8.2.20).

Lax Unity: In (I.8.7.30), each of the five paths has braided distortion the identity
morphism

1(2) = (id1; id2) ∈ Σ1 × B2

in Dbr((2); (2)).
Therefore, in each case, the two paths have the same braided distortion, and The-
orem 5.4.4 applies. □

Explanation 8.2.21. Each braid s4s2s3 ∈ B6 in (8.2.20) is geometrically the following
braid.

Note that there is an equality

s4s2s3 = s2s4s3 ∈ B6

by the first braid relation (1.1.2). ◇
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8.3. The Monoidal Associator and the Monoidal Unitors

With C still assumed to be a tight braided bimonoidal category, in this section
we define the monoidal associator and the monoidal unitors in MatC. The monoi-
dal associator is a quadruple (a⊠, a⊠ ●, ηa, εa) consisting of the following data.

(i) a⊠ and a⊠ ● are strong transformations as in Definition I.6.2.14 as follows.

⊠(⊠× 1) ⊠(1×⊠)
a⊠

a⊠ ●

(ii) ηa and εa are invertible modifications as in Definition I.6.3.1 as follows.

1⊠(⊠×1) a⊠ ●a⊠

a⊠a⊠ ● 1⊠(1×⊠)

ηa

εa

Moreover, these data are required to satisfy the triangle identities (I.6.3.10).

The Left Adjoint of the Monoidal Associator. Next is Definition I.8.8.1 for a
tight braided bimonoidal category C.

Definition 8.3.1. With respect to the pseudofunctor (⊠,⊠2,⊠0) in Lemma 8.2.19,
define the data of a lax transformation

⊠(⊠× 1) ⊠(1×⊠)a⊠

as follows.

Component 1-Cells: For each triple of objects (m, n, p) ∈ (MatC)3, define

mnp = ((m⊠ n)⊠ p) (m⊠ (n⊠ p)) = mnp
a⊠m,n,p

as the identity matrix 1mnp ∈MatCmnp,mnp in (8.1.9).
Component 2-Cells: For each triple of 1-cells

(A = (Ai′i), B = (Bj′ j), C = (Ck′k)) ∈MatCm,m′ ×MatCn,n′ ×MatCp,p′ ,

define the component 2-cell

a⊠A,B,C ∈MatCmnp,m′n′p′([A⊠ (B⊠C)]a⊠m,n,p; a⊠m′,n′,p′[(A⊠ B)⊠C])

as the following vertical composite.

mnp

mnp m′n′p′

m′n′p′

1
mnp A⊠ (B⊠C)

(A⊠ B)⊠C
1

m′n′p′

A⊠ (B⊠C)

(A⊠ B)⊠C

⇒

α−⊗

⇒

rA⊠ (B⊠C)

⇒

ℓ−1
(A⊠ B)⊠C

● ℓ and r are as in (8.1.11).
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● α−⊗ is the 2-cell with ((i′ − 1)n′p′ + (j′ − 1)p′ + k′, (i − 1)np + (j − 1)p + k)-entry
the structure morphism in C,

Ai′i ⊗ (Bj′ j ⊗Ck′k) (Ai′i ⊗ Bj′ j)⊗Ck′k

α−⊗Ai′ i ,Bj′ j ,Ck′k

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p, 1 ≤ i′ ≤ m′, 1 ≤ j′ ≤ n′, and 1 ≤ k′ ≤ p′.
This finishes the definition of a⊠. ◇
Lemma 8.3.2. a⊠ in Definition 8.3.1 is a strong transformation.

Proof. We reuse the proofs of Lemmas I.8.8.5, I.8.8.11, I.8.8.17, and I.8.8.26 in the
symmetric case, with the following notes and adjustments.

Coherence: As in the proofs of Theorem 8.1.13 and Lemma 8.2.19, here we use the
Coherence Theorem 5.4.4 for braided bimonoidal categories. So we have
to check that, in each case, the paths in question have the same braided
distortion as in Definition 5.3.15. Moreover, the equality of the permu-
tation components follows from the uniqueness of permuted canonical
maps between two permuted words of the same length.

Lax Unity: In (I.8.8.13), each path has braided distortion

1(0) ∈ Dbr((0); (0)).

In (I.8.8.14), each path has braided distortion

1∅ ∈ Dbr(∅;∅).

Lax Naturality: In (I.8.8.25), each path has braided distortion

1∅ ∈ Dbr(∅;∅).

Consider (I.8.8.31).
● Each of the six vertices is sent by ϑ to (6, . . . , 6) ∈ Dbr with n copies of

6.
● The braided distortions of the parallel paths F1 and (G2, H1) have

braid components

(8.3.3) (s3s2s4, . . . , s3s2s4) ∈ B×n
6 .

Each braid s3s2s4 ∈ B6 arises from braiding bab′a′b′′a′′ to bb′b′′aa′a′′.
● The braided distortions of the parallel paths G1 and (F3, H2, H1) also

have the braid components (8.3.3).
● Each braid component in the braided distortions of the parallel paths

F2 and (G3, H2) is the identity braid id6 ∈ B6.

Therefore, in each case, the two paths have the same braided distortion, and The-
orem 5.4.4 applies. □

Explanation 8.3.4. Each braid s3s2s4 ∈ B6 in (8.3.3) is geometrically the following
braid.
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Note that there is an equality

s3s2s4 = s3s4s2 ∈ B6

by the first braid relation (1.1.2). ◇

The Right Adjoint of the Monoidal Associator.

Definition 8.3.5. With respect to the pseudofunctor (⊠,⊠2,⊠0) in Lemma 8.2.19,
define the data of a lax transformation

⊠(1×⊠) ⊠(⊠× 1)a⊠ ●

as follows.

Component 1-Cells: For each triple of objects (m, n, p) ∈ (MatC)3, define

(m⊠ (n⊠ p)) = mnp mnp = ((m⊠ n)⊠ p)
a⊠ ●m,n,p

as the identity matrix 1mnp ∈MatCmnp,mnp in (8.1.9).
Component 2-Cells: For each triple of 1-cells

(A = (Ai′i), B = (Bj′ j), C = (Ck′k)) ∈MatCm,m′ ×MatCn,n′ ×MatCp,p′ ,

define the component 2-cell

a⊠ ●A,B,C ∈MatCmnp,m′n′p′([(A⊠ B)⊠C]a⊠ ●m,n,p; a⊠ ●m′,n′,p′[A⊠ (B⊠C)])

as the following vertical composite.

mnp

mnp m′n′p′

m′n′p′

1
mnp (A⊠ B)⊠C

A⊠ (B⊠C)
1

m′n′p′

(A⊠ B)⊠C

A⊠ (B⊠C)

⇒

α⊗

⇒

r(A⊠ B)⊠C

⇒

ℓ−1
A⊠ (B⊠C)

● ℓ and r are as in (8.1.11).
● α⊗ is the 2-cell with ((i′ − 1)n′p′ + (j′ − 1)p′ + k′, (i − 1)np + (j − 1)p + k)-entry

the structure morphism in C,

(Ai′i ⊗ Bj′ j)⊗Ck′k Ai′i ⊗ (Bj′ j ⊗Ck′k)
α⊗Ai′ i ,Bj′ j ,Ck′k

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p, 1 ≤ i′ ≤ m′, 1 ≤ j′ ≤ n′, and 1 ≤ k′ ≤ p′.

This finishes the definition of a⊠ ●. ◇
A minor modification of the proof of Lemma 8.3.2 yields the next lemma.

Lemma 8.3.6. a⊠ ● in Definition 8.3.5 is a strong transformation.
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The Unit and the Counit of the Monoidal Associator.
Definition 8.3.7. For the strong transformations

⊠(⊠× 1) ⊠(1×⊠)
a⊠

a⊠ ●

in Definitions 8.3.1 and 8.3.5, define the data

1⊠(⊠×1) a⊠ ●a⊠
ηa

a⊠a⊠ ● 1⊠(1×⊠)
εa

as consisting of the component 2-cells

(1⊠(⊠×1))(m,n,p) = 1
mnp (a⊠a⊠ ●)(m,n,p) = 1mnp1mnp

(a⊠ ●a⊠)(m,n,p) = 1mnp1mnp (1⊠(1×⊠))(m,n,p) = 1
mnp

ℓ−1
1

mnpηa
(m,n,p) = ℓ

1
mnpεa

(m,n,p) =

in MatCmnp,mnp for each triple of objects (m, n, p) ∈ (MatC)3. Here ℓ is as in (8.1.11).
◇

Lemma 8.3.8. The quadruple
(a⊠, a⊠ ●, ηa, εa)

in Definitions 8.3.1, 8.3.5, and 8.3.7 is an adjoint equivalence.

Proof. We reuse the proofs of Lemmas I.8.8.39 and I.8.8.45 in the symmetric case,
with the following notes and adjustments.
Coherence: As in the proofs of Theorem 8.1.13 and Lemmas 8.2.19 and 8.3.2, here

we use the Coherence Theorem 5.4.4 for braided bimonoidal categories.
In each case, we check that the paths in question have the same braided
distortion as in Definition 5.3.15. Moreover, the equality of the permu-
tation components follows from the uniqueness of permuted canonical
maps between two permuted words of the same length.

The Modification Axiom: In (I.8.8.44), each path has braided distortion the iden-
tity morphism 1(3) ∈ Dbr((3); (3)).

The Triangle Identities: In (I.8.8.48), there are two cases.
● If s /= t, then each path has braided distortion

1∅ ∈ Dbr(∅;∅).
● If s = t, then each path has braided distortion

1(0) ∈ Dbr((0); (0)).
This finishes the proof. □

The Left Monoidal Unitor. Next we define the left adjoint of the left monoi-
dal unitor.
Definition 8.3.9. Define the data of a lax transformation

⊠(1⊠ × 1MatC) 1MatC
ℓ⊠

as follows.
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Component 1-Cells: For each object m ∈MatC, define

m = 1⊠m (1MatC
)m = m

ℓ⊠m

as the identity matrix 1m ∈MatCm,m in (8.1.9).
Component 2-Cells: For each 1-cell A = (Aji) ∈MatCm,n, define

ℓ⊠A ∈MatCm,n( (1MatC A) ℓ⊠m; ℓ⊠n (⊠(1⊠ × 1MatC)) (A))

as the following vertical composite 2-cell.

m

m n

n

1
m A

1⊠ A 1
n

A

1⊠ A

⇒
λ−⊗

⇒
rA

⇒

ℓ−1
1⊠A

● By the definition (8.2.8) of the matrix tensor product,

(⊠(1⊠ × 1MatC)) (A) = 1
1 ⊠ A = 1⊠ A = (1⊗ Aji).

● ℓ and r are as in (8.1.11).
● λ−⊗ is the 2-cell with (j, i)-entry the structure morphism in C,

Aji 1⊗ Aji

λ−⊗Aji

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

This finishes the definition of ℓ⊠. ◇
Next we define the right adjoint of the left monoidal unitor.

Definition 8.3.10. Define the data of a lax transformation

1MatC ⊠(1⊠ × 1MatC)
ℓ⊠

●

as follows.

Component 1-Cells: For each object m ∈MatC, define

m = (1MatC
)m 1⊠m = m

ℓ⊠
●

m

as the identity matrix 1m ∈MatCm,m in (8.1.9).
Component 2-Cells: For each 1-cell A = (Aji) ∈MatCm,n, define

ℓ⊠
●

A ∈MatCm,n( (⊠(1⊠ × 1MatC)) (A)ℓ
⊠ ●
m ; ℓ⊠ ●n (1MatC A) )
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as the following vertical composite 2-cell.

m

m n

n

1
m

1⊠ A

A 1
n

1⊠ A

A

⇒

λ⊗

⇒

r1⊠A

⇒

ℓ−1
A

In this vertical composite, λ⊗ is the 2-cell with (j, i)-entry the structure
morphism in C,

1⊗ Aji Aji

λ⊗Aji

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
This finishes the definition of ℓ⊠ ●. ◇

Next we define the unit and the counit for (ℓ⊠, ℓ⊠ ●).
Definition 8.3.11. Define the data

1⊠(1⊠×1
MatC

) ℓ⊠ ●ℓ⊠
ηℓ

ℓ⊠ℓ⊠ ● 11
MatC

εℓ

as consisting of the component 2-cells

(1⊠(1⊠×1
MatC

))m = 1
m (ℓ⊠ℓ⊠ ●)m = 1m1m

(ℓ⊠ ●ℓ⊠)m = 1m1m (11
MatC
)m = 1

m

ℓ−1
1mηℓm =

ℓ1mεℓm =

in MatCm,m for each object m ∈MatC. Here ℓ is as in (8.1.11). ◇
Lemma 8.3.12. The quadruple

(ℓ⊠, ℓ⊠ ●, ηℓ, εℓ)
in Definitions 8.3.9 through 8.3.11 is an adjoint equivalence.

Proof. Similar to Lemma I.8.9.9, which is the symmetric case, the proof is adapted
from that of Lemma 8.3.8 for the monoidal associator. □

The Right Monoidal Unitor. Next we define the right monoidal unitor in
MatC, which is similar to the left monoidal unitor.
Definition 8.3.13. Define the data of a lax transformation

⊠(1MatC × 1⊠) 1MatC
r⊠

as follows.
Component 1-Cells: For each object m ∈MatC, define

m = m⊠ 1 (1MatC
)m = m

r⊠m

as the identity matrix 1m ∈MatCm,m in (8.1.9).



II.226 8. MONOIDAL BICATEGORIFICATION

Component 2-Cells: For each 1-cell A = (Aji) ∈MatCm,n, define

r⊠A ∈MatCm,n( (1MatC A) r⊠m; r⊠n (⊠(1MatC × 1⊠)) (A))

as the following vertical composite 2-cell.

m

m n

n

1
m A

A⊠1 1
n

A

A⊠1

⇒

ρ−⊗

⇒

rA

⇒

ℓ−1
A⊠1

● A⊠1 is the matrix tensor product in (8.2.8) with

A⊠1 = (Aji ⊗1) = (⊠(1MatC × 1⊠)) (A).

● ρ−⊗ is the 2-cell with (j, i)-entry the structure morphism in C,

Aji Aji ⊗1
ρ−⊗Aji

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

This finishes the definition of r⊠. ◇
Definition 8.3.14. Define the data of a lax transformation

1MatC ⊠(1MatC × 1⊠)r⊠ ●

as follows.

Component 1-Cells: For each object m ∈MatC, define

m = (1MatC
)m m⊠ 1 = m

r⊠ ●m

as the identity matrix 1m ∈MatCm,m in (8.1.9).
Component 2-Cells: For each 1-cell A = (Aji) ∈MatCm,n, define

r⊠ ●A ∈MatCm,n( (⊠(1MatC × 1⊠)) (A)r⊠ ●m ; r⊠ ●n (1MatC A) )

as the following vertical composite 2-cell.

m

m n

n

1
m A⊠1

A 1
n

A⊠1

A

⇒

ρ⊗

⇒

rA⊠1

⇒

ℓ−1
A
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In this vertical composite, ρ⊗ is the 2-cell with (j, i)-entry the structure
morphism in C,

Aji ⊗1 Aji

ρ⊗Aji

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
This finishes the definition of r⊠ ●. ◇
Definition 8.3.15. Define the data

1⊠(1
MatC

×1⊠) r⊠ ●r⊠
ηr

r⊠r⊠ ● 11
MatC

εr

as consisting of the component 2-cells

(1⊠(1
MatC

×1⊠))m = 1
m (r⊠r⊠ ●)m = 1m1m

(r⊠ ●r⊠)m = 1m1m (11
MatC
)m = 1

m

ℓ−1
1mηr

m = ℓ1mεr
m =

in MatCm,m for each object m ∈MatC. Here ℓ is as in (8.1.11). ◇
Lemma 8.3.16. The quadruple

(r⊠, r⊠ ●, ηr, εr)
in Definitions 8.3.13 through 8.3.15 is an adjoint equivalence.

Proof. Similar to Lemma I.8.9.21, which is the symmetric case, the proof is adapted
from that of Lemma 8.3.8 for the monoidal associator. □

8.4. Matrix Monoidal Bicategories

We continue to assume that C is a tight braided bimonoidal category. In this
section, we define the remaining structure that makes MatC into a monoidal bi-
category, namely, the pentagonator and the three 2-unitors. Then we prove the
main Theorem 8.4.7, which states that MatC is a monoidal bicategory as in Def-
inition 8.2.1. This section ends with a discussion of why MatC is not a braided
monoidal bicategory in general.

The Pentagonator.
Definition 8.4.1. Define π as consisting of the 2-cells

πm,n,p,q ∈MatCs,s with m, n, p, q ≥ 0 and s = mnpq

given by the composite of the following pasting diagram in MatCs,s.

((m⊠ n)⊠ p)⊠ q m⊠ (n⊠ (p⊠ q))

(m⊠ (n⊠ p))⊠ q m⊠ ((n⊠ p)⊠ q)

(m⊠ n)⊠ (p⊠ q)

a⊠m,n,p ⊠1q

a⊠m,np,q

1m ⊠ a⊠n,p,q

a⊠mn,p,q a⊠m,n,pq

1s
1s

1s

⇒
⊠−0

mnp,q

⇒

ℓ1s

⇒⊠−0
m,npq

⇒

11s1s
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Here ⊠−0 is the inverse of ⊠0 in (8.2.11), and ℓ is as in (8.1.11). This finishes the
definition of π. ◇
Lemma 8.4.2. In Definition 8.4.1, π is an invertible modification.

Proof. We reuse the proof of Lemma I.8.10.4 in the symmetric case, with the fol-
lowing notes and adjustments.
Coherence: We use the Coherence Theorem 5.4.4 for braided bimonoidal categor-

ies, as in the proofs of Theorem 8.1.13 and Lemmas 8.2.19, 8.3.2, and 8.3.8.
The Modification Axiom: In (I.8.10.8), which is realized as a diagram in Gr(X)

using the variables in (I.8.10.16), each path has braided distortion

1(4) ∈ Dbr((4); (4)).

Therefore, Theorem 5.4.4 applies. □

The 2-Unitors. Next we define the middle 2-unitor, the left 2-unitor, and the
right 2-unitor in MatC. In the next three definitions, we use ⊠0 in (8.2.11), and ℓ
and r in (8.1.11).

Definition 8.4.3. Define µ as consisting of the 2-cells

µm,n ∈MatCmn,mn with m, n ≥ 0

given by the composite of the following pasting diagram in MatCmn,mn.

m⊠ n m⊠ n

(m⊠ 1)⊠ n m⊠ (1⊠ n)

r⊠ ●m ⊠1n 1mn

a⊠m,1,n

1m ⊠ ℓ⊠n

1m⊠n

1m ⊠1n

1mn

⇒⊠
−0
m,n

⇒

r1m⊠1n

⇒

⊠−0
m,n

⇒

ℓ1mn

This finishes the definition of µ. ◇
Definition 8.4.4. Define λ⊠ as consisting of the 2-cells

λ⊠m,n ∈MatCmn,mn with m, n ≥ 0

given by the composite of the following pasting diagram in MatCmn,mn.

(1⊠m)⊠ n m⊠ n

1⊠ (m⊠ n)

ℓ⊠m ⊠1n

1mn

a⊠1,m,n ℓ⊠mn

⇒

⊠−0
m,n

⇒

ℓ−1
1mn

This finishes the definition of λ⊠. ◇
Definition 8.4.5. Define ρ⊠ as consisting of the 2-cells

ρ⊠m,n ∈MatCmn,mn with m, n ≥ 0
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given by the composite of the following pasting diagram in MatCmn,mn.

m⊠ n m⊠ (n⊠ 1)

(m⊠ n)⊠ 1

1m ⊠ r⊠ ●n

1mn

r⊠ ●mn a⊠m,n,1

⇒

⊠−0
m,n

⇒

ℓ−1
1mn

This finishes the definition of ρ⊠. ◇
Lemma 8.4.6. µ, λ⊠, and ρ⊠ in Definitions 8.4.3 through 8.4.5 are invertible modifica-
tions.

Proof. As in Lemma 8.4.2 for the pentagonator π, we reuse the proofs in the sym-
metric cases in Lemmas I.8.11.4, I.8.11.9, and I.8.11.14, and use the Coherence The-
orem 5.4.4. In steps (1)–(3) in the proof of Lemma I.8.11.4, each path has braided
distortion the identity morphism

1(2) ∈ Dbr((2); (2)).

A similar remark applies in the proofs of Lemmas I.8.11.9 and I.8.11.14. Therefore,
Theorem 5.4.4 applies. □

The Main Theorem.

Theorem 8.4.7. For each tight braided bimonoidal category C, MatC equipped with

● the bicategory structure in Theorem 8.1.13,
● the monoidal identity (1⊠, 12

⊠
, 10
⊠
) in Lemma 8.2.6,

● the monoidal composition (⊠,⊠2,⊠0) in Lemma 8.2.19,
● the monoidal associator (a⊠, a⊠ ●, ηa, εa) in Lemma 8.3.8,
● the left monoidal unitor (ℓ⊠, ℓ⊠ ●, ηℓ, εℓ) in Lemma 8.3.12,
● the right monoidal unitor (r⊠, r⊠ ●, ηr, εr) in Lemma 8.3.16,
● the pentagonator π in Lemma 8.4.2, and
● the 2-unitors µ, λ⊠, and ρ⊠ in Lemma 8.4.6

is a monoidal bicategory.

Proof. It remains to check the three axioms (8.2.2), (8.2.3), and (8.2.4) in Defini-
tion 8.2.1. We reuse the proofs of Lemmas I.8.12.1, I.8.12.4, and I.8.12.7 in the sym-
metric case, with the following notes and adjustments.

Coherence: We use the Coherence Theorem 5.4.4 for braided bimonoidal categor-
ies, as in the earlier proofs in this chapter.

The Non-Abelian 4-Cocycle Condition: In steps (1)–(5) in Lemma I.8.12.1, each
path has braided distortion
● 1(0) ∈ Dbr((0); (0)) if i = j and
● 1∅ ∈ Dbr(∅;∅) if i /= j.

Left and Right Normalizations: The same remark applies in the proofs of Lem-
mas I.8.12.4 and I.8.12.7.

This finishes the proof. □



II.230 8. MONOIDAL BICATEGORIFICATION

Not a Braided Monoidal Bicategory. In Theorem I.8.15.4, we proved that, for
each tight symmetric bimonoidal category C, MatC equipped with

● the braiding (β, β ●, ηβ, εβ) in Section I.8.13,
● the left hexagonator R−∣−− in Definition I.8.14.9,
● the right hexagonator R−−∣− in Definition I.8.14.21, and
● the syllepsis ν in Definition I.8.15.1

is a symmetric monoidal bicategory. Moreover, for each tight braided bimonoidal
category C, Theorem 8.4.7 states that MatC is a monoidal bicategory. A natural
question is whether MatC, when equipped with the braiding and the hexagona-
tors above, is a braided monoidal bicategory in the sense of Definition I.6.5.3. The
answer is no in general. To explain this negative answer, let us first recall from
Definition I.8.13.22 the braiding β in MatC in the symmetric case.
Definition 8.4.8. Define the data of a lax transformation

⊠ ⊠τ
β

as follows, in which
τ ∶ (MatC)2 (MatC)2

switches the two arguments.

Component 1-Cells: For each pair of objects (m, n) ∈ (MatC)2, define

mn = m⊠ n n⊠m = nm
βm,n

as the permutation matrix

βm,n = 1τm,n ∈MatCmn,nm.

It is obtained from the identity matrix 1mn in (8.1.9) by permuting its
columns by the permutation ξ⊗m,n in (5.2.19).

Component 2-Cells: For 1-cells A ∈ MatCm,m′ and B ∈ MatCn,n′ , define the compo-
nent 2-cell

βA,B ∈MatCmn,n′m′((B⊠ A)βm,n; βm′,n′(A⊠ B))
as the following vertical composite.

nm

mn n′m′

m′n′

βm,n B⊠ A

A⊠ B βm′,n′

(B⊠ A)τm,n

τn′ ,m′
(A⊠ B)

⇒

ξ⊗

⇒

rτm,n
B⊠A

⇒

(ℓ
τm′ ,n′

A⊠B )
−1

● (B ⊠ A)τm,n is obtained from B ⊠ A by permuting its columns by the
permutation ξ⊗m,n.
● rτm,n

B⊠A is the natural isomorphism in (I.8.13.13). It consists of identi-
ties, λ⊕, ρ⊕, ρ⊗, and ρ ●.
● τn′ ,m′

(A ⊠ B) is obtained from A ⊠ B by permuting its rows by the
permutation ξ⊗n′,m′ .
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● ℓ
τm′ ,n′

A⊠B is the natural isomorphism in (I.8.13.16). It consists of identi-
ties, λ⊕, ρ⊕, λ⊗, and λ ●.
● ξ⊗ is the 2-cell with (i′ + (j′ − 1)m′, j + (i − 1)n)-entry the braiding

Bj′ j ⊗ Ai′i Ai′i ⊗ Bj′ j

ξ⊗Bj′ j ,Ai′ i

in C for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ i′ ≤ m′, and 1 ≤ j′ ≤ n′.
This finishes the definition of β. ◇

When C is a tight symmetric bimonoidal category, Lemma I.8.13.27 states that
β ∶ ⊠ ⊠ τ is a strong transformation. However, when C is a tight braided bi-
monoidal category, β is not in general a strong transformation because it does not
satisfy the lax naturality axiom (I.6.2.16), which is the pasting diagram equality
(I.8.13.29). Indeed, for this pasting diagram equality to hold in general (that is, for
an arbitrary tight braided bimonoidal category C), it would have to hold for the
braided distortion category Dbr, which is a tight braided bimonoidal category by
Corollary 5.2.33. In other words, after representing a typical entry of each side as
the value in C of a path, the two resulting paths in Gr(X) should have the same
braided distortion. However, in the process of checking that their braid compo-
nents are equal, we would need the following two braids in B4 to be equal.

Although these two braids in B4 have the same underlying permutation, they are
not equal as braids. Indeed, the second and the third strings from the bottom wrap
around each other on the left side, but not on the right side.

Moreover, changing either

● β in such a way that its typical component 2-cell involves ξ−⊗ instead of
ξ⊗, or
● ⊠2 in such a way that each braid component in (8.2.15) involves s−1

2 ∈ B4
instead of s2,

or both, would lead to similar problems of trying to equate braids that are not
equal.

Furthermore, for the unit

ηβ ∶ 1⊠ β
●
β

in Definition I.8.13.35, the modification axiom (I.6.3.2) is the pasting diagram
equality (I.8.13.42). After representing a typical entry of each side as the value
in C of a path, we would need to show that the two resulting paths have the
same braided distortion. If these braided distortions were equal, then their braid
components would yield the equality

id2 = s1s1 ∈ B2,

which is false. Therefore, for a tight braided bimonoidal category C, ηβ is not a
modification in general.
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In summary, for a tight braided bimonoidal category C, MatC is a monoidal
bicategory, but not in general a braided monoidal bicategory with the quadruple
(β, β ●, ηβ, εβ) in Section I.8.13.
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CHAPTER 9

Ring, Bipermutative, and Braided Ring Categories

In this chapter, we discuss another categorification of a rig, called a ring cate-
gory, and their permutative and braided analogues, called, respectively, a bipermu-
tative category and a braided ring category. They are different from their bimonoidal
counterparts in several ways.
Strict Additive and Multiplicative Structures: Like a bimonoidal category, a ring

category C also has a symmetric monoidal structure (⊕, 0, ξ⊕) and an-
other monoidal structure (⊗,1). These two monoidal structures in a ring
category are assumed to be strict monoidal from the start.

Strict Multiplicative Zeros: The left multiplicative zero λ ● and the right multi-
plicative zero ρ ● in a ring category are assumed to be the identity natural
transformations. This is called the multiplicative zero axiom (9.1.4).

Factorizations: More significantly, instead of distributivity morphisms δl and δr

as in a bimonoidal category, a ring category has factorization morphisms

(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

(A⊗ B)⊕ (A⊗C) A⊗ (B⊕C)

∂l
A,B,C

∂r
A,B,C

that go in the opposite direction as δr and δl . These are natural transfor-
mations, but not natural isomorphisms in general.

Due to the differences between factorization morphisms and distributivity
morphisms, a ring category is in general not a bimonoidal category, or vice versa.
We will observe that tight ring categories, that is, those with invertible factorization
morphisms, form a subclass of tight bimonoidal categories. Therefore, the strictifi-
cation theorems for tight bimonoidal categories also apply to tight ring categories.
There are similar results for the bipermutative and the braided cases. These sub-
class inclusions and strictification results are summarized in the following table.

tight – categories are special cases of tight – categories strictify to right/left – categories

ring bimonoidal (9.1.15) rigid bimonoidal (9.1.20)

bipermutative symmetric bimonoidal (9.3.7) bipermutative (9.3.13)

braided ring braided bimonoidal (9.5.6) permbraided (9.5.11)

For open questions related to coherence of ring, bipermutative, and braided ring
categories, see Question III.A.2.1.

Connection with Algebraic K-Theory. Ring categories, bipermutative cate-
gories, and braided ring categories will play important roles in our discussion
of algebraic K-theory in Part III.2. The ring and bipermutative categories in this
chapter were introduced by Elmendorf-Mandell [EM06, EM09] in the context of
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multiplicative infinite loop space theory and algebraic K-theory. As proved in
[EM06, EM09], the Elmendorf-Mandell K-theory multifunctor sends

● a small ring category to a strict ring symmetric spectrum and
● a small bipermutative category to an E∞-symmetric spectrum.

In Part III.2, we will discuss in detail the Segal K-theory functor and the Elmendorf-
Mandell K-theory multifunctor and extend the above statements to the E2 case. So
the K-theory multifunctor sends a small braided ring category to an E2-symmetric
spectrum.

Here is a conceptual way to understand the connection between braided ring
categories and E2-symmetric spectra. A central fact in algebraic K-theory is that
the Segal K-theory, which is equivalent to the Elmendorf-Mandell K-theory, of
a small permutative category is a symmetric spectrum. To have an E2 structure
on the K-theory symmetric spectrum, one should start with a small permutative
category with an E2 structure. By the work of Boardman-Vogt [BV73] and May
[May72], E2 structure corresponds to double loop spaces. Their categorical coun-
terparts are braided monoidal categories by the work of Fiedorowicz [Fie∞, Theo-
rem 2]. Therefore, a small permutative category with a compatible braided monoi-
dal structure should yield an E2-symmetric spectrum via the K-theory multifunc-
tor. The precise categorical notion is a braided ring category.

Moreover, the general En analogues for 1 < n < ∞ are also true. They involve
En-monoidal categories that we will discuss in Chapter 10. We will show that the
K-theory multifunctor sends a small En-monoidal category to an En-symmetric
spectrum.

Organization. A summary of the rest of this chapter follows.
Section 9.1 introduces ring categories in the sense of Elmendorf-Mandell and

discusses their relationship with bimonoidal categories. Theorem 9.1.15 identi-
fies tight ring categories, which have invertible factorization morphisms ∂l and
∂r, with a subcalss of tight bimonoidal categories. As a result, right and left rigid
bimonoidal categories (Definition I.5.5.8) are tight ring categories with, respec-
tively, ∂l = 1 and ∂r = 1. Moreover, tight ring categories can be strictified to adjoint
equivalent right or left rigid bimonoidal categories by the Rigid Strictification The-
orems I.5.5.11 and I.5.5.12.

Section 9.2 observes that each small permutative category C yields an endo-
morphism ring category Permsu(C;C)with

● as its objects strictly unital symmetric monoidal functors F ∶ C C and
● as its morphisms monoidal natural transformations.

The strictly unital condition means that the unit constraint

F0 ∶ 0 F0

is the identity; see (9.2.4). The existence of the endomorphism ring category is
analogous to the fact that each commutative monoid A has an endomorphism
rig End(A) of monoid endomorphisms A A. The most nontrivial part of the
proof that Permsu(C;C) is a ring category involves checking that the right factor-
ization morphism ∂r is entrywise a monoidal natural transformation; see (9.2.16).
The endomorphism ring category Permsu(C;C) is, in general, not tight because ∂r is
usually not invertible. A tight version Permsug(C;C) is obtained in Theorem 9.2.20
by restricting to strictly unital strong symmetric monoidal functors F ∶ C C.
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The strong condition means that, in addition to F0 = 10, the monoidal constraint
F2 is a natural isomorphism.

Section 9.3 introduces bipermutative categories in the sense of Elmendorf-
Mandell and discusses their relationship with symmetric bimonoidal categories.
In addition to an underlying ring category, a bipermutative category C is equipped
with a multiplicative symmetry

ξ⊗A,B ∶ A⊗ B ≅ B⊗ A

that makes the multiplicative structure into a permutative category, along with
two axioms involving ξ⊗. Theorem 9.3.7 identifies tight bipermutative categories
with a subclass of tight symmetric bimonoidal categories. As a result, right and
left bipermutative categories (Definitions I.2.5.2 and I.2.5.11) are tight bipermuta-
tive categories with, respectively, ∂l = 1 and ∂r = 1. Moreover, tight bipermutative
categories can be strictified to adjoint equivalent right or left bipermutative cate-
gories by the Bipermutative Strictification Theorems I.5.4.6 and I.5.4.7.

Section 9.4 shows that, in a bipermutative category, about half of the ring cat-
egory axioms are redundant. This is analogous to the fact, established in Sec-
tion I.2.2, that half of the 24 Laplaza axioms in a symmetric bimonoidal category
are redundant. In a ring category (Definition 9.1.2), most of the axioms have both
a left version for ∂l and a right version for ∂r. In a bipermutative category, us-
ing the multiplicative symmetry ξ⊗ and the axiom (9.3.4) relating ∂l and ∂r, some
of the ring category axioms for ∂l are equivalent to the ∂r versions. One of these
redundancies was already observed by Elmendorf-Mandell; see Note 9.7.4.

Section 9.5 introduces the braided analogue of a ring category, in which the
multiplicative structure is now a braided strict monoidal category. A bipermu-
tative category is precisely a braided ring category whose braiding satisfies the
symmetry axiom ξ⊗ξ⊗ = 1. Like in a bipermutative category, Theorem 9.5.5 shows
that, in a braided ring category, about half of the ring category axioms are redun-
dant. Theorem 9.5.6 identifies tight braided ring categories with a subclass of tight
braided bimonoidal categories. As a result, left and right permbraided categories
(Definitions 5.1.2 and 5.1.11) are tight braided ring categories with, respectively,
∂r = 1 and ∂l = 1. Moreover, tight braided ring categories can be strictified to
adjoint equivalent right or left permbraided categories by the Permbraided Stric-
tification Theorems 6.3.6 and 6.3.7.

Section 9.6 extends the Drinfeld center (Theorem 1.4.27) and the symmetric
center (Proposition 1.5.3) for monoidal categories to the setting of ring categories.
Corollary 9.6.1 shows that the bimonoidal Drinfeld center (Theorem 4.4.3) of each
tight ring category is a tight braided ring category. Theorem 9.6.4 shows that for
a braided ring category whose left factorization morphism ∂l is a natural epimor-
phism, the symmetric center is a bipermutative category.

Section 9.7 discusses some differences between [EM06] and Sections 9.1
through 9.4. Note 9.7.5 points out that our braided ring categories are more
general than Richter’s braided bimonoidal categories in [Ric10, Def. 5.1].

Reading Guide.

(1) For ring categories, read Definition 9.1.2 and the statements of Theo-
rem 9.1.15 and Corollaries 9.1.19 and 9.1.20.
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(2) For bipermutative categories, read Definition 9.3.2 and the statements of
Theorem 9.3.7 and Corollaries 9.3.12 and 9.3.13.

(3) For braided ring categories, read Definition 9.5.1 and the statements
of Proposition 9.5.4, Theorems 9.5.5 and 9.5.6, and Corollaries 9.5.10
and 9.5.11.

(4) Go back and read the rest of this chapter.

9.1. Ring Categories

In this section, we define ring categories in the sense of Elmendorf-Mandell
[EM06, Def. 3.3] and discuss their relationship with bimonoidal categories in Def-
inition 2.1.1. A ring category has a symmetric strict monoidal structure (⊕, 0),
a multiplicative strict monoidal structure (⊗,1), and strict multiplicative zeros.
Moreover, a ring category has factorization morphisms that go in the opposite di-
rection as the distributivity morphisms in a bimonoidal category. Therefore, a ring
category is, in general, not a bimonoidal category, or vice versa.

The main observation in this section is Theorem 9.1.15. It identifies tight ring
categories—those with invertible factorization morphisms—with the subclass of
tight bimonoidal categories with

● strict additive and multiplicative structures and
● identities for the left and right multiplicative zeros.

As a result, both right and left rigid bimonoidal categories (Definition I.5.5.8)
are tight ring categories with identity as one factorization morphism; see Corol-
lary 9.1.19. Moreover, the Rigid Strictification Theorems I.5.5.11 and I.5.5.12 apply
to tight ring categories. Therefore, each tight ring category is adjoint equivalent
to one in which the left, or the right, factorization morphism is the identity; see
Corollary 9.1.20.

Motivation 9.1.1. In a bimonoidal category, the distributivity morphisms δl and
δr in (2.1.3) are categorifications of the distributive properties

x(y + z) = xy + xz

(x + y)z = xz + yz

in a rig. In a ring category, which we will define shortly, we read these equalities
from right to left. In other words, we factor x out in the first equality and z out
in the second equality. Therefore, the corresponding categorified natural transfor-
mations in (9.1.3) are called factorization morphisms. ◇

Definition. Recall from Definitions 1.3.1 and 1.3.32 strict monoidal and per-
mutative categories. In a strict monoidal category, the associativity isomorphism
α, the left unit isomorphism λ, and the right unit isomorphism ρ are identity natu-
ral transformations, so we omit them from the notation. Also recall that ∗ denotes
the terminal category, with only one object and its identity morphism
Definition 9.1.2. A ring category is a tuple

(C, (⊕, 0, ξ⊕), (⊗,1), (∂l , ∂r))
consisting of the following data.
The Additive Structure: (C,⊕, 0, ξ⊕) is a permutative category, with ⊕, 0, and ξ⊕

called, respectively, the sum, the additive zero, and the additive symmetry.
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The Multiplicative Structure: (C,⊗,1) is a strict monoidal category, with ⊗ and
1 called, respectively, the product and the multiplicative unit.

The Factorization Morphisms: ∂l and ∂r are natural transformations

(9.1.3)
(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

(A⊗ B)⊕ (A⊗C) A⊗ (B⊕C)

∂l
A,B,C

∂r
A,B,C

for objects A, B, C ∈ C, which are called the left factorization morphism and
the right factorization morphism, respectively.

To simplify the presentation, we often abbreviate ⊗ to concatenation, with ⊗ al-
ways taking precedence over ⊕ in the absence of clarifying parentheses. For ex-
ample, the left factorization morphism is abbreviated to

AC⊕ BC (A⊕ B)C.

The subscripts in ξ⊕, ∂l , and ∂r are sometimes omitted.
The above data are required to satisfy the following seven axioms for all ob-

jects A, A′, A′′, B, B′, B′′, C, and C′ in C.
The Multiplicative Zero Axiom: The diagram of functors

(9.1.4)
∗×C C C×∗

C×C C C×C
0×1C

≅

0

≅

1C×0

⊗ ⊗

is commutative. In this diagram, the top horizontal isomorphisms drop
the ∗ argument. Each 0 denotes the constant functor at 0 ∈ C and 10.

The Zero Factorization Axiom:

(9.1.5)

∂l
0,B,C = 1B⊗C ∂r

0,B,C = 10

∂l
A,0,C = 1A⊗C ∂r

A,0,C = 1A⊗C

∂l
A,B,0 = 10 ∂r

A,B,0 = 1A⊗B

The three equalities for ∂l are called the left zero factorization axioms. The
three equalities for ∂r are called the right zero factorization axioms.

The Unit Factorization Axiom:
∂l

A,B,1 = 1A⊕B

∂r
1,B,C = 1B⊕C

(9.1.6)

These are called, respectively, the left and the right unit factorization ax-
ioms.

The Symmetry Factorization Axiom: The following two diagrams in C are com-
mutative.

(9.1.7)

AC⊕ BC (A⊕ B)C

BC⊕ AC (B⊕ A)C

ξ⊕

∂l

ξ⊕1C

∂l

AB⊕ AC A(B⊕C)

AC⊕ AB A(C⊕ B)

ξ⊕

∂r

1Aξ⊕

∂r

These are called, respectively, the left and the right symmetry factorization
axioms.
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The Internal Factorization Axiom: The following two diagrams in C are commu-
tative.

(9.1.8)

AB⊕ A′B⊕ A′′B (A⊕ A′)B⊕ A′′B

AB⊕ (A′ ⊕ A′′)B (A⊕ A′ ⊕ A′′)B

1⊕∂l

∂l⊕1

∂l

∂l

AB⊕ AB′ ⊕ AB′′ A(B⊕ B′)⊕ AB′′

AB⊕ A(B′ ⊕ B′′) A(B⊕ B′ ⊕ B”)

1⊕∂r

∂r⊕1

∂r

∂r

These are called, respectively, the left and the right internal factorization
axioms.

The External Factorization Axiom: The three diagrams in C below are commuta-
tive.

(9.1.9)

ABC⊕ A′BC (A⊕ A′)BC

(AB⊕ A′B)C (A⊕ A′)BC

∂l
AB,A′B,C

∂l
A,A′ ,BC

∂l
A,A′ ,B1C

(9.1.10)

ABC⊕ AB′C (AB⊕ AB′)C

A(BC⊕ B′C) A(B⊕ B′)C

∂r
A,BC,B′C

∂l
AB,AB′ ,C

∂r1C
1A∂l

B,B′ ,C

(9.1.11)

ABC⊕ ABC′ AB(C⊕C′)

A(BC⊕ BC′) AB(C⊕C′)

∂r
A,BC,BC′

∂r
AB,C,C′

1A∂r
B,C,C′

These are called, respectively, the left, the middle, and the right external
factorization axioms.

The 2-By-2 Factorization Axiom: The following diagram in C is commutative.

(9.1.12)

A(B⊕ B′)⊕ A′(B⊕ B′)

AB⊕ AB′ ⊕ A′B⊕ A′B′

(A⊕ A′)(B⊕ B′)

AB⊕ A′B⊕ AB′ ⊕ A′B′

(A⊕ A′)B⊕ (A⊕ A′)B′

∂r ⊕ ∂r

∂l

1⊕ ξ⊕ ⊕ 1

∂l ⊕ ∂l
∂r

This finishes the definition of a ring category.
Moreover, a ring category as above is said to be
● small if it has a set of objects and
● tight if ∂l and ∂r in (9.1.3) are natural isomorphisms. ◇
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Explanation 9.1.13. Consider Definition 9.1.2 of a ring category.

(1) The factorization morphisms ∂l and ∂r in (9.1.3) are not required to be
invertible in general. Moreover, they go in the opposite direction as the
distributivity morphisms δr and δl , respectively, in (2.1.3) and (2.1.31).
● The left factorization morphism ∂l goes from −⊗C on the inside to

the outside.
● The right factorization morphism ∂r goes from A⊗− on the inside to

the outside.
The direction of the factorization morphisms is similar to the monoidal
constraint of a monoidal functor in (1.3.8).

(2) The multiplicative zero axiom (9.1.4) means the equalities

0⊗ A = 0 = A⊗ 0

10 ⊗ f = 10 = f ⊗ 10
(9.1.14)

for objects A ∈ C and morphisms f ∈ C. ◇

Relationship with Bimonoidal Categories. Recall from Definition 2.1.1 that a
bimonoidal category has the same definition as a symmetric bimonoidal category,
except that

● the multiplicative structure is a monoidal category, and
● the two Laplaza axioms (2.1.4) and (2.1.18) are omitted.

It is called tight if both distributivity morphisms δl and δr in (2.1.3) are invertible.
We now observe that tight ring categories can be identified with a subclass of tight
bimonoidal categories.

Theorem 9.1.15. There is a canonical bijective correspondence between
(1) the class of tight ring categories in Definition 9.1.2 and
(2) the class of tight bimonoidal categories in Definition 2.1.1 with

● a permutative category as the additive structure,
● a strict monoidal category as the multiplicative structure, and
● λ ● = 1 and ρ ● = 1.

The correspondence between the factorization morphisms (∂l , ∂r) in (1) and the distribu-
tivity morphisms (δl , δr) in (2) is given by the equalities

(9.1.16) δl = (∂r)−1 and δr = (∂l)−1.

Proof. First suppose C is a tight ring category. Consider the data part of a bimon-
oidal category.

● C is already equipped with a permutative structure as its additive struc-
ture and a strict monoidal structure as its multiplicative structure.
● The left and right distributivity morphisms, δl and δr, are defined as in

(9.1.16). They are natural isomorphisms because the factorization mor-
phisms ∂r and ∂l are assumed to be so.
● The left and right multiplicative zeros, λ ● and ρ ● as in (2.1.2), are de-

fined as the identity natural transformations. The fact that they are well-
defined natural isomorphisms is equivalent to the multiplicative zero ax-
iom (9.1.4), or equivalently (9.1.14).
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With the above structure, next we observe that C satisfies the 22 Laplaza ax-
ioms for a bimonoidal category, namely, (2.1.5)–(2.1.27) excluding (2.1.18). The
symmetry axiom (1.3.33) in the permutative category (C, ξ⊕), namely,

ξ⊕A,B = ξ−⊕B,A,

will be used below without further comment.
● The Laplaza axioms (2.1.6) and (2.1.5) are equivalent to the symmetry

factorization axiom (9.1.7).
● The Laplaza axioms (2.1.7) and (2.1.8) are equivalent to the internal fac-

torization axiom (9.1.8).
● The Laplaza axioms (2.1.9)–(2.1.11) are equivalent to the external factor-

ization axioms (9.1.11), (9.1.9), and (9.1.10), respectively.
● (2.1.12) is equivalent to the 2-by-2 factorization axiom (9.1.12).
● (2.1.13) and (2.1.16)–(2.1.21), excluding (2.1.18), hold by λ ● = 1 and ρ ● = 1.
● Given that λ ● = 1 and ρ ● = 1, the axioms (2.1.14), (2.1.15), and (2.1.22)–

(2.1.25) are equivalent to the zero factorization axiom (9.1.5).
● The last two Laplaza axioms (2.1.26) and (2.1.27) are equivalent to the

unit factorization axiom (9.1.6).
Therefore, C yields a tight bimonoidal category as in (2) in the statement of the
theorem.

Conversely, suppose given a tight bimonoidal category as in (2) in the state-
ment of the theorem. The argument above shows that it yields a tight ring category
with the factorization morphisms

(9.1.17) ∂l = (δr)−1 and ∂r = (δl)−1,

as stated in (9.1.16). □

Example 9.1.18. The additive distortion categoryDad in Section I.4.5 is a small tight
bimonoidal category that satisfies the conditions in Theorem 9.1.15(2). So Dad is a
small tight ring category with factorization morphisms

● ∂l = (δr)−1 with δr in (I.4.5.4) and
● ∂r = (δl)−1 = 1. ◇

Strictification. Recall from Definition I.5.5.8 that a right rigid bimonoidal cate-
gory is a tight bimonoidal category with

● a permutative category as its additive structure,
● a strict monoidal category as its multiplicative structure, and
● identities for the structure morphisms λ ●, ρ ●, and δr.

A left rigid bimonoidal category is defined in the same way but with δl = 1 in-
stead of δr = 1. The next observation follows from Theorem 9.1.15 and provides
examples of tight ring categories.
Corollary 9.1.19. Each right (respectively, left) rigid bimonoidal category yields a tight
ring category with factorization morphisms determined by (9.1.17).
Corollary 9.1.20. Each tight ring category, when regarded as a tight bimonoidal category
as in Theorem 9.1.15 (2), is adjoint equivalent to a right (respectively, left) rigid bimonoidal
category via strong bimonoidal functors.

Proof. Apply the Rigid Strictification Theorems I.5.5.11 and I.5.5.12. □
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In other words, each tight ring category is adjoint equivalent, via strong bi-
monoidal functors, to one with ∂l = 1, respectively, ∂r = 1.

9.2. Endomorphism Ring Categories

In this section, we observe in Theorems 9.2.14 and 9.2.20 that each small per-
mutative category C yields

● an endomorphism ring category Permsu(C;C) and
● a tight endomorphism ring category Permsug(C;C).

The objects in the endomorphism ring category Permsu(C;C) are strictly unital
symmetric monoidal functors in the sense of Definitions 1.3.7 and 1.3.32. They
are symmetric monoidal functors

(F, F2, F0) ∶ C C

such that the unit constraint
F0 ∶ 0 F0

is the identity morphism, while F2 is a natural transformation. The morphisms
are monoidal natural transformations. Theorem 9.2.14 shows that Permsu(C;C) is
a ring category. We emphasize that Permsu(C;C) is usually not a tight ring category
because its right factorization morphism (9.2.11) is, in general, not invertible.

To obtain a tight ring category, we consider the full subcategory Permsug(C;C)
of Permsu(C;C) whose objects (F, F2, F0 = 1) satisfy the additional condition that
F2 is a natural isomorphism. Theorem 9.2.20 says that Permsug(C;C) is a tight ring
category.
Motivation 9.2.1. As motivation for the relevant definitions, consider a commu-
tative monoid (A,+, 0), such as the set N of natural numbers with its addition.
The set End(A) of monoid morphisms A A has a canonical rig (that is, ring
without additive inverse) structure defined as follows.

● The addition is given by pointwise addition in A, that is,

( f + g)(a) = f (a)+ g(a)
for monoid morphisms f , g ∶ A A and elements a ∈ A.
● The additive zero is the constant map at 0 ∈ A.
● The multiplication is given by composition of monoid morphisms, that

is,
( f g)(a) = f (g(a)).

● The multiplicative unit is the identity map

1A ∶ A A.

All the rig axioms for End(A) follow from the fact that A is a commutative monoid
and that composition is strictly associative. We call End(A) the endomorphism rig
of A. Note that even if A is commutative, End(A) is in general not a commutative
rig because composition is rarely commutative.

A permutative category, that is, a symmetric strict monoidal category, is a cat-
egorification of a commutative monoid. By the above example of the endomor-
phism rig End(A), we expect a permutative category C to yield an endomorphism
ring category, with suitable functors C C as objects, pointwise sum, and com-
position as the product on objects. This is, in fact, true by Theorem 9.2.14. To
explain the detail, first we make precise the relevant structure. ◇
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Definition 9.2.2. For permutative categories (C,⊕, 0, ξ⊕) and (D,⊕, 0, ξ⊕) with C
small, define the category

Permsu(C;D)
as follows.
Objects: Its objects are strictly unital symmetric monoidal functors C D.
Morphisms: Its morphisms are monoidal natural transformations.
Identities: The identity morphism of an object F ∶ C D is the identity natural

transformation of F.
Composition: Composition is the vertical composition of natural transformations

(Definition I.1.1.8).
This finishes the definition of the category Permsu(C;D). ◇
Explanation 9.2.3. Consider Definition 9.2.2.

(1) Interpreting Definitions 1.3.7 and 1.3.32 here, a strictly unital symmetric
monoidal functor

(F, F2) ∶ C D

consists of
● a functor F ∶ C D and
● a natural transformation

FA⊕ FB F(A⊕ B)
F2

A,B

for objects A, B ∈ C, which is called the monoidal constraint.
It is required that (i) the equalities

F(0) = 0

F2
0,B = 1FB

F2
A,0 = 1FA

(9.2.4)

hold and (ii) the associativity and symmetry diagrams

(9.2.5)
FA⊕ FB⊕ FC FA⊕ F(B⊕C)

F(A⊕ B)⊕ FC F(A⊕ B⊕C)

F2⊕1

1⊕F2

F2

F2

FA⊕ FB FB⊕ FA

F(A⊕ B) F(B⊕ A)
F2

ξ⊕

F2

Fξ⊕

are commutative for objects A, B, C ∈ C. We emphasize that the monoidal
constraint F2 is not required to be a natural isomorphism.

(2) Interpreting Definition 1.3.13 here, a morphism

θ ∶ (F, F2) (G, G2) ∈ Permsu(C;D)
is a natural transformation θ ∶ F G such that

(9.2.6) θ0 = 10 ∶ 0 0

and the diagram

(9.2.7)
FA⊕ FB GA⊕GB

F(A⊕ B) G(A⊕ B)
F2

θA⊕θB

G2

θA⊕B
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is commutative for objects A, B ∈ C. The smallness of C ensures that there
is only a set of such natural transformations. ◇

Definition 9.2.8. For a small permutative category (C,⊕, 0, ξ⊕), define the endo-
morphism ring category

(Permsu(C;C), (⊞, 0, ξ⊞), (⊗,1), (∂l , ∂r))

by the following ring category data on the category Permsu(C;C).
The Additive Zero: The object

0 ∈ Permsu(C;C)

is the constant functor C C at the additive zero 0 ∈ C and its identity
morphism 10, with monoidal constraint

10 ∶ 0⊕ 0 = 0 0.

The Sum: The functor

−⊞− ∶ Permsu(C;C)×Permsu(C;C) Permsu(C;C)

is defined by

(F, F2)⊞ (G, G2) = (F ⊞G, (F ⊞G)2)

for strictly unital symmetric monoidal functors

(F, F2), (G, G2) ∶ C C,

with
(F ⊞G)(A) = FA⊕GA

for objects and morphisms A ∈ C. Its monoidal constraint is the composite

(9.2.9)

(F ⊞G)(A)⊕ (F ⊞G)(B) (F ⊞G)(A⊕ B)

FA⊕GA⊕ FB⊕GB F(A⊕ B)⊕G(A⊕ B)

FA⊕ FB⊕GA⊕GB

(F ⊞G)2A,B

1⊕ ξ⊕ ⊕ 1 F2 ⊕G2

in C for objects A, B ∈ C.
For morphisms

θ ∶ F F1 and ϕ ∶ G G1 ∈ Permsu(C;C),

that is, monoidal natural transformations, their sum

θ ⊞ ϕ ∶ F ⊞G F1 ⊞G1

has component morphisms

(θ ⊞ ϕ)A = θA ⊕ ϕA ∶ FA⊕GA F1 A⊕G1 A

for objects A ∈ C.
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The Additive Symmetry: The natural transformation

ξ⊞F,G ∶ F ⊞G G ⊞ F

has component morphisms

(ξ⊞F,G)A = ξ⊕FA,GA ∶ FA⊕GA ≅ GA⊕ FA

for objects A ∈ C.
The Multiplicative Unit: The object

1 ∈ Permsu(C;C)
is the identity symmetric monoidal functor 1C.

The Product: The functor

−⊗− ∶ Permsu(C;C)×Permsu(C;C) Permsu(C;C)
is defined as the composite

(F, F2)⊗ (G, G2) = (FG, (FG)2)
of strictly unital symmetric monoidal functors as in Definition 1.3.12.

For morphisms θ ∶ F F1 and ϕ ∶ G G1 as above, their product
is the horizontal composite natural transformation

θ ⊗ ϕ = θ ∗ ϕ ∶ FG F1G1

in Definition I.1.1.8.
Left Factorization: For objects (F, F2), (F′, F′2), and (G, G2) in Permsu(C;C), the

left factorization morphism

(9.2.10) (F⊗G)⊞ (F′ ⊗G) (F ⊞ F′)⊗G
∂l

F,F′ ,G

has as its components the identity morphisms 1FG(A)⊕F′G(A) for A ∈ C.

Right Factorization: For another object (G′, G′2) in Permsu(C;C), the right factor-
ization morphism

(F⊗G)⊞ (F⊗G′) F⊗ (G ⊞G′)
∂r

F,G,G′

has as its components the morphisms

(9.2.11) FG(A)⊕ FG′(A) F(GA⊕G′A)
F2

GA,G′A

for A ∈ C.
This finishes the definition of the endomorphism ring category Permsu(C;C). ◇
Explanation 9.2.12. In Definition 9.2.8, the monoidal constraint of the product
(F, F2)⊗ (G, G2) is the composite

(9.2.13)

FG(A)⊕ FG(B) FG(A⊕ B)

F(GA⊕GB)

(FG)2A,B

F2
GA,GB F(G2

A,B)

in C for objects A, B ∈ C.
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The product morphism

θ ⊗ ϕ ∶ FG F1G1

has component morphisms

(θ ∗ ϕ)A = F1(ϕA) ○ θGA

= θG1 A ○ F(ϕA)

for A ∈ C. ◇
Next is the main observation of this section.

Theorem 9.2.14. For each small permutative category (C,⊕, 0, ξ⊕), the data

(Permsu(C;C), (⊞, 0, ξ⊞), (⊗,1), (∂l , ∂r))

in Definition 9.2.8 form a ring category.

Proof. We need to check the following statements:

(i) (Permsu(C;C),⊞, 0, ξ⊞) is a permutative category.
(ii) (Permsu(C;C),⊗,1) is a strict monoidal category.

(iii) Each component ∂l
F,F′,G is a morphism in Permsu(C;C), that is, a monoidal

natural transformation, and ∂l is natural with respect to F, F′, and G.
(iv) Each component ∂r

F,G,G′ is a monoidal natural transformation, and ∂r is
natural with respect to F, G, and G′.

(v) Permsu(C;C) satisfies the seven axioms in Definition 9.1.2.
With two exceptions that we will explain below, the statements (i)–(v) above

consist of direct instances of Definition 9.2.8 and the axioms of
● the permutative category C,
● strictly unital symmetric monoidal functors, (9.2.4) and (9.2.5), and
● monoidal natural transformations between such functors, (9.2.6) and

(9.2.7).
For example, the 2-by-2 factorization axiom (9.1.12) in Permsu(C;C) means the
commutativity of the diagram

(9.2.15)

F(GA⊕G′A)⊕ F′(GA⊕G′A)

FGA⊕ FG′A⊕ F′GA⊕ F′G′A (F ⊞ F′)(G ⊞G′)A

FGA⊕ F′GA⊕ FG′A⊕ F′G′A FGA⊕ FG′A⊕ F′GA⊕ F′G′A

FGA⊕ F′GA⊕ FG′A⊕ F′G′A

F2 ⊕ F′
2

∂l = 1

1⊕ ξ⊕ ⊕ 1

∂l ⊕ ∂l = 1 1⊕ ξ⊕ ⊕ 1

F2 ⊕ F′
2

in C for objects F, F′, G, G′ ∈ Permsu(C;C) and A ∈ C. Here we used the definitions
(9.2.9) and (9.2.11) to obtain the equalities

(∂r
F⊞F′,G,G′)A = (F ⊞ F′)2GA,G′A

= (F2
GA,G′A ⊕ F′2GA,G′A)(1⊕ ξ⊕ ⊕ 1).
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The symmetry axiom (1.3.33) in the permutative category (C, ξ⊕), that is,

ξ⊕ξ⊕ = 1,

implies that both composites in (9.2.15) are equal to

F2
GA,G′A ⊕ F′2GA,G′A.

This is what we mean by direct instances above, since the commutativity of the
desired diagrams can be seen without factoring them in any way.

The first exception that requires more work is the verification of the naturality
of ∂r in statement (iv) above. This is the assertion that for morphisms

θ ∶ F F1, ϕ ∶ G G1, and ϕ′ ∶ G′ G′1 ∈ Permsu(C;C),

the diagram

(F⊗G)⊞ (F⊗G′) F⊗ (G ⊞G′)

(F1 ⊗G1)⊞ (F1 ⊗G′1) F1 ⊗ (G1 ⊞G′1)

(θ∗ϕ)⊞(θ∗ϕ′)

∂r
F,G,G′

θ∗(ϕ⊞ϕ′)
∂r

F1,G1,G′1

in Permsu(C;C) is commutative. This, in turn, means that for each object A ∈ C, the
outer diagram

FGA⊕ FG′A F(GA⊕G′A)

F1GA⊕ F1G′A F1(GA⊕G′A)

F1G1 A⊕ F1G′1 A F1(G1 A⊕G′1 A)

θGA⊕θG′A

F2

θGA⊕G′A

F1ϕA⊕F1ϕ′A

F2
1

F1(ϕA⊕ϕ′A)
F2

1

in C is commutative. The top rectangle is commutative by the compatibility axiom
(9.2.7) of θ with the monoidal constraints. The bottom rectangle is commutative
by the naturality of the monoidal constraint F2

1 .
The other exception is also about statement (iv). To show that each component

(F⊗G)⊞ (F⊗G′) F⊗ (G ⊞G′)
∂r

F,G,G′

is a monoidal natural transformation, we must show that it is compatible with the
monoidal constraints of its (co)domain in the sense of (9.2.7). By (9.2.9), (9.2.11),
and (9.2.13), the desired diagram (9.2.7) for ∂r

F,G,G′ is the outer diagram in C below



9.2. ENDOMORPHISM RING CATEGORIES II.249

for objects A, B ∈ C.

(9.2.16)

FGA⊕ FG′A⊕ FGB⊕ FG′B F(GA⊕G′A)⊕ F(GB⊕G′B)

FGA⊕ FGB⊕ FG′A⊕ FG′B F(GA⊕G′A⊕GB⊕G′B)

F(GA⊕GB)⊕ F(G′A⊕G′B) F(GA⊕GB⊕G′A⊕G′B)

FG(A⊕ B)⊕ FG′(A⊕ B) F(G(A⊕ B)⊕G′(A⊕ B))

●

●

●

●

(9.2.5)

(†)

(£)

(£)

F2 ⊕ F2

F2

F(1⊕ ξ⊕ ⊕ 1)

F(G2 ⊕G′
2)

1⊕ ξ⊕ ⊕ 1

F2 ⊕ F2

F(G2)⊕ F(G′2)
F2

1⊕ F2 ⊕ 1

1⊕ F2

F2
1⊕ Fξ⊕ ⊕ 1

1⊕ F(ξ⊕ ⊕ 1)

1⊕ F2 ⊕ 1 1⊕ F2

F2

F2

In (9.2.16), the middle subdiagram (†) is the diagram

FGA⊕ F(G′A⊕GB)⊕ FG′B FGA⊕ F(G′A⊕GB⊕G′B)

FGA⊕ F(GB⊕G′A)⊕ FG′B FGA⊕ F(GB⊕G′A⊕G′B)

1⊕Fξ⊕⊕1

1⊕F2

1⊕F(ξ⊕⊕1)
1⊕F2

in C. In (9.2.16), (†) and the two unlabeled subdiagrams are commutative by the
naturality of F2. The upper-left subdiagram is commutative by the compatibility
(9.2.5) of F2 with ξ⊕.

Both subdiagrams (£) in (9.2.16) are commutative by the following commuta-
tive diagram for objects A, B, C, D ∈ C.

(9.2.17)

FA⊕ FB⊕ FC⊕ FD FA⊕ F(B⊕C)⊕ FD

FA⊕ FB⊕ F(C⊕D) FA⊕ F(B⊕C⊕D)

F(A⊕ B)⊕ F(C⊕D) F(A⊕ B⊕C⊕D)

1⊕1⊕F2

1⊕F2⊕1

1⊕F2

F2⊕1

1⊕F2

F2

F2

Here both the top and the bottom rectangles are commutative by the associativity
of F2 in (9.2.5). Therefore, the diagram (9.2.16) is commutative. □

Tight Endomorphism Ring Categories. In Theorem 9.2.14, the endomor-
phism ring category Permsu(C;C) is in general not a tight ring category because
the right factorization morphism ∂r

F,G,G′ (9.2.11) has components those of F2,
which is a natural transformation but not a natural isomorphism in general. To
obtain a tight variant of the endomorphism ring category, we consider a smaller
class of objects as follows.
Definition 9.2.18. Suppose (C,⊕, 0, ξ⊕) is a small permutative category.

● Define
Permsug(C;C)

as the full subcategory of Permsu(C;C) in Definition 9.2.2 with, as its ob-
jects, strictly unital strong symmetric monoidal functors C C.
● Restrict Definition 9.2.8 to Permsug(C;C) to equip it with ring category

data. ◇
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Explanation 9.2.19. Consider Definition 9.2.18.
(1) An object in Permsug(C;C) is a symmetric monoidal functor

(F, F2, F0) ∶ C C

with
● unit constraint

0 F0F0

the identity morphism 10 and
● monoidal constraint

FA⊕ FB F(A⊕ B)F2

≅

a natural isomorphism.
Such symmetric monoidal functors are closed under composition by Def-
inition 1.3.12.

(2) The restriction of Definition 9.2.8 to Permsug(C;C) is well defined because
● (F ⊞G)2A,B in (9.2.9) and
● (FG)2A,B in (9.2.13)

are both isomorphisms when F2 and G2 are natural isomorphisms. ◇
Next is the tight variant of Theorem 9.2.14.

Theorem 9.2.20. For each small permutative category (C,⊕, 0, ξ⊕), the data

(Permsug(C;C), (⊞, 0, ξ⊞), (⊗,1), (∂l , ∂r))
in Definition 9.2.18 form a tight ring category.

Proof. After restricting to Permsug(C;C), the proof of Theorem 9.2.14 applies here
without changes to show that Permsug(C;C) is a ring category. Moreover, we note
the following:

● Each component ∂l
F,F′,G of the left factorization morphism in (9.2.10) is

the identity natural transformation.
● Each component ∂r

F,G,G′ of the right factorization morphism in (9.2.11) is
a natural isomorphism because F2 is so.

Therefore, Permsug(C;C) is a tight ring category. □

9.3. Elmendorf-Mandell Bipermutative Categories

In this section, we define bipermutative categories in the sense of Elmendorf-
Mandell [EM06, Def. 3.6]. Bipermutative categories are the commutative ring ana-
logues of ring categories, so their multiplicative structures are permutative. Like
ring categories, bipermutative categories have factorization morphisms instead of
distributivity morphisms. Therefore, a bipermutative category is, in general, not a
symmetric bimonoidal category, or vice versa.

The main observation in this section is Theorem 9.3.7. It identifies tight biper-
mutative categories, which have invertible factorization morphisms, with the sub-
class of tight symmetric bimonoidal categories with

● strict additive and multiplicative structures and
● identities for the left and right multiplicative zeros.
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As a result, both right and left bipermutative categories (Definitions I.2.5.2 and I.2.5.11)
are tight bipermutative categories with identity as one factorization morphism; see
Corollary 9.3.12. Moreover, the Strictification Theorems I.5.4.6 and I.5.4.7 apply
to tight bipermutative categories. Therefore, each tight bipermutative category is
adjoint equivalent to one in which the left, or the right, factorization morphism is
the identity; see Corollary 9.3.13.

Motivation 9.3.1. Just as a ring category (Definition 9.1.2) is a categorification
of a rig using factorization morphisms, bipermutative categories in the sense of
Elmendorf-Mandell, which we will define shortly, is a categorification of a com-
mutative rig. The multiplicative structure ⊗ is now a permutative category with
a braiding ξ⊗. We also need to make sure that the braiding ξ⊗ is compatible with
the additive structure in the sense of (9.3.3) and (9.3.4) below. ◇
Definition 9.3.2. A bipermutative category is a tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (∂l , ∂r))

consisting of
● a ring category

(C, (⊕, 0, ξ⊕), (⊗,1), (∂l , ∂r))

as in Definition 9.1.2 and
● a permutative category structure (C,⊗,1, ξ⊗), with ξ⊗ called the multi-

plicative symmetry.
These data are required to satisfy the following two axioms for objects A, B, C ∈ C.
The Zero Symmetry Axiom: There is an equality of morphisms

(9.3.3) ξ⊗A,0 = 10 ∶ A⊗ 0 = 0 0 = 0⊗ A.

The Multiplicative Symmetry Factorization Axiom: The diagram

(9.3.4)

(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

(C⊗ A)⊕ (C⊗ B) C⊗ (A⊕ B)

ξ⊗A,C⊕ξ⊗B,C

∂l
A,B,C

ξ⊗A⊕B,C
∂r

C,A,B

is commutative.
This finishes the definition of a bipermutative category. A bipermutative category
is small, respectively, tight, if the underlying ring category is so. ◇
Explanation 9.3.5. Consider Definition 9.3.2 of a bipermutative category.

(1) A bipermutative category C has two permutative category structures:
● an additive one (⊕, 0, ξ⊕) and
● a multiplicative one (⊗,1, ξ⊗).

This justifies the name bipermutative category.
(2) By the symmetry axiom (1.3.33) in the permutative category (C, ξ⊗), the

zero symmetry axiom (9.3.3) is equivalent to the equality

(9.3.6) ξ⊗0,A = 10 ∶ 0⊗ A = 0 0 = A⊗ 0.

of morphisms. ◇
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Relationship with Symmetric Bimonoidal Categories. Like ring categories,
bipermutative categories have factorization morphisms ∂l and ∂r as in (9.1.3),
which are natural transformations but not natural isomorphisms in general. So
bipermutative categories are different from symmetric bimonoidal categories as
in Definition 2.1.1, which have distributivity morphisms δl and δr that go in the
opposite direction as, respectively, ∂r and ∂l . Next is the symmetric analogue of
Theorem 9.1.15 that identifies tight bipermutative categories—that is, those with
invertible factorization morphisms ∂l and ∂r—with a subclass of tight symmetric
bimonoidal categories.
Theorem 9.3.7. There is a canonical bijective correspondence between

(1) the class of tight bipermutative categories in Definition 9.3.2 and
(2) the class of tight symmetric bimonoidal categories in Definition 2.1.1 with

● a permutative category as the additive, respectively, multiplicative, struc-
ture, and
● λ ● = 1 and ρ ● = 1.

The correspondence between the factorization morphisms (∂l , ∂r) in (1) and the distribu-
tivity morphisms (δl , δr) in (2) is given by the equalities

(9.3.8) δl = (∂r)−1 and δr = (∂l)−1.

Proof. First suppose C is a tight bipermutative category. By Theorem 9.1.15, the
underlying tight ring category of C yields a tight bimonoidal category with per-
mutative additive and multiplicative structures, λ ● = 1, ρ ● = 1, and distributivity
morphisms determined by (9.3.8). To see that this is a tight symmetric bimonoidal
category, it remains to prove the two Laplaza axioms (2.1.4) and (2.1.18).

● (2.1.4) is equivalent to the multiplicative symmetry factorization axiom
(9.3.4).
● Since λ ● = 1 and ρ ● = 1, (2.1.18) is equivalent to the equality ξ⊗−,0 = 10,

which is the zero symmetry axiom (9.3.3).
Conversely, suppose C is a tight symmetric bimonoidal category as in (2) in

the statement of the theorem. By Theorem 9.1.15, C yields a tight ring category
with the factorization morphisms

(9.3.9) ∂l = (δr)−1 and ∂r = (δl)−1.

Reusing the previous paragraph, the two bipermutative category axioms (9.3.3)
and (9.3.4) are equivalent to, respectively, the axioms (2.1.18) and (2.1.4). □

Example 9.3.10 (Finite Ordinal Categories). The finite ordinal category Σ and its
variant Σ′ in, respectively, Propositions I.2.4.8 and I.2.4.23 are small tight symmet-
ric bimonoidal categories that satisfy the conditions in Theorem 9.3.7 (2). So each
of them is a small tight bipermutative category.

● In Σ, the factorization morphisms are
– ∂l = (δr)−1 with δr in (I.2.4.6) and
– ∂r = (δl)−1 = 1.

● In Σ′, the factorization morphisms are
– ∂r = (δl)−1 with δl in (I.2.4.21) and
– ∂l = (δr)−1 = 1. ◇
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Example 9.3.11 (Distortion Category). The distortion category D in Section I.4.2 is
a small left bipermutative category, which is, in particular, a small tight symmetric
bimonoidal category by Proposition I.2.5.16. Moreover, it satisfies the conditions in
Theorem 9.3.7 (2). So D is a small tight bipermutative category with factorization
morphisms

● ∂l = (δr)−1 with δr in (I.4.2.24) and
● ∂r = (δl)−1 = 1. ◇

Strictification. Recall from Definition I.2.5.2 and Proposition I.2.5.7 that a right
bipermutative category is precisely a tight symmetric bimonoidal category that sat-
isfies

● the conditions in Theorem 9.3.7 (2) and
● δr = 1.

Moreover, the conditions λ ● = 1 and ρ ● = 1 and the axiom (2.1.18) imply ξ⊗−,0 = 1.
By Definition I.2.5.11 and Proposition I.2.5.16, a left bipermutative category is such a
tight symmetric bimonoidal category but with δl = 1 instead of δr = 1. The next
observation follows from Theorem 9.3.7 and provides examples of tight bipermu-
tative categories.
Corollary 9.3.12. Each right (respectively, left) bipermutative category becomes a tight
bipermutative category with factorization morphisms determined by (9.3.9).
Corollary 9.3.13. Each tight bipermutative category, when regarded as a tight symmetric
bimonoidal category as in Theorem 9.3.7 (2), is adjoint equivalent to a right (respectively,
left) bipermutative category via strong symmetric bimonoidal functors.

Proof. Apply the Strictification Theorems I.5.4.6 and I.5.4.7. □

In other words, each tight bipermutative category is adjoint equivalent, via
strong symmetric bimonoidal functors, to one with ∂l = 1, respectively, ∂r = 1.

9.4. Reduction of Bipermutative Category Axioms

In this section, we observe that in a bipermutative category in Definition 9.3.2,
about half of the ring category axioms in Definition 9.1.2 are redundant. One
of these redundancies was observed by Elmendorf-Mandell [EM06, Fig. 1]; see
Note 9.7.4. This reduction of the axioms of a bipermutative category is analogous
to the fact that, among the 24 Laplaza axioms in a symmetric bimonoidal category,
half of them are formal consequences of the others; see Section I.2.2. The key point
is that, in the presence of the multiplicative symmetry ξ⊗ and the axiom (9.3.4)
relating ∂l and ∂r, some of the ring category axioms for ∂l are equivalent to their
counterparts for ∂r. We present these reductions in Lemmas 9.4.2 through 9.4.6
and then summarize them in Theorem 9.4.7.
Convention 9.4.1. Suppose the tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (∂l , ∂r))
consists of

● a permutative category (C,⊕, 0, ξ⊕),
● a permutative category (C,⊗,1, ξ⊗), and
● natural transformations ∂l and ∂r as in (9.1.3)

such that the multiplicative symmetry factorization axiom (9.3.4) holds. ◇
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In the proofs of Lemmas 9.4.2 through 9.4.6 below, A, B, C, and D are arbitrary
objects in C.

Lemma 9.4.2. Under Convention 9.4.1, suppose the zero symmetry axiom (9.3.3) also
holds. Then

● the left zero factorization axioms and
● the right zero factorization axioms

in (9.1.5) are equivalent to each other.

Proof. The left zero factorization axioms say

∂l
0,B,C = 1B⊗C, ∂l

A,0,C = 1A⊗C, and ∂l
A,B,0 = 10.

The right zero factorization axioms say

∂r
0,B,C = 10, ∂r

A,0,C = 1A⊗C, and ∂r
A,B,0 = 1A⊗B.

To see that these two sets of axioms are equivalent to each other, consider the
commutative diagram

(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

(C⊗ A)⊕ (C⊗ B) C⊗ (A⊕ B)

ξ⊗A,C⊕ξ⊗B,C

∂l
A,B,C

ξ⊗A⊕B,C
∂r

C,A,B

in C in the multiplicative symmetry factorization axiom (9.3.4).

● If A = 0, then the left arrow is ξ⊗B,C because ξ⊗0,C = 10 by (9.3.6), which
is equivalent to the zero symmetry axiom (9.3.3). The right arrow is also
ξ⊗B,C, which is an isomorphism. So the top arrow ∂l

0,B,C is the identity if
and only if the bottom arrow ∂r

C,0,B is the identity.
● If B = 0, then the left and the right arrows are both ξ⊗A,C, which is an

isomorphism. So the top arrow ∂l
A,0,C is the identity if and only if the

bottom arrow ∂r
C,A,0 is the identity.

● If C = 0, then the left arrow is

ξ⊗A,0 ⊕ ξ⊗B,0 = 10 ⊕ 10 = 10,

and the right arrow is also

ξ⊗A⊕B,0 = 10

by the zero symmetry axiom (9.3.3). So the top arrow ∂l
A,B,0 is 10 if and

only if the bottom arrow ∂r
0,A,B is 10.

Therefore, the left zero factorization axioms and the right zero factorization axioms
are equivalent to each other. □

Lemma 9.4.3. Under Convention 9.4.1,
● the left unit factorization axiom and
● the right unit factorization axiom

in (9.1.6) are equivalent to each other.
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Proof. The left and the right unit factorization axioms say, respectively,

∂l
A,B,1 = 1A⊕B and ∂r

1,B,C = 1B⊕C.

Consider the commutative diagram (9.3.4) with C = 1, which is the diagram in C
below.

(A⊗1)⊕ (B⊗1) (A⊕ B)⊗1

(1⊗ A)⊕ (1⊗ B) 1⊗ (A⊕ B)

ξ⊗A,1⊕ξ⊗B,1

∂l
A,B,1

ξ⊗A⊕B,1
∂r
1,A,B

By the unit axiom (1.3.34) in the permutative category (C, ξ⊗), which says

ξ⊗−,1 = 1−,

both the left and the right arrows in the previous diagram are 1A⊕B. Therefore, the
top arrow ∂l

A,B,1 is 1A⊕B if and only if the bottom arrow ∂r
1,A,B is 1A⊕B. □

Lemma 9.4.4. Under Convention 9.4.1,
● the left symmetry factorization axiom and
● the right symmetry factorization axiom

in (9.1.7) are equivalent to each other.

Proof. This proof adapts the diagram in the proof of Lemma I.2.2.4 by
● turning each arrow around and
● replacing (δl , δr, ξ⊕?,−, ξ⊗?,−)with (∂r, ∂l , ξ⊕−,?, ξ⊗−,?).

So we consider the diagram in C below.

A(B⊕C) AB⊕ AC

(B⊕C)A BA⊕CA

(C⊕ B)A CA⊕ BA

A(C⊕ B) AC⊕ AB

(9.3.4)

left (9.1.7)

(9.3.4)

nat nat

∂r

ξ⊕1ξ⊕

∂r

∂l

ξ⊕ξ⊕1

∂l

ξ⊗ ξ⊗ ⊕ ξ⊗

ξ⊗ ξ⊗ ⊕ ξ⊗

The middle rectangle is the left symmetry factorization axiom, and the outer rec-
tangle is the right symmetry factorization axiom in (9.1.7). The top and the bottom
trapezoids are commutative by (9.3.4). The left and the right trapezoids are com-
mutative by the naturality of, respectively, ξ⊗ and ξ⊕. Since ξ⊗ is a natural iso-
morphism, the middle rectangle is commutative if and only if the outer rectangle
is commutative. □

Lemma 9.4.5. Under Convention 9.4.1,
● the left internal factorization axiom and
● the right internal factorization axiom

in (9.1.8) are equivalent to each other.
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Proof. Similar to Lemma 9.4.4, this proof adapts the diagram in the proof of
Lemma I.2.2.5 by

● turning each arrow around and
● replacing (δl , δr, ξ⊕?,−, ξ⊗?,−)with (∂r, ∂l , ξ⊕−,?, ξ⊗−,?).

So we consider the diagram in C below.

A(B⊕C⊕D) A(B⊕C)⊕ AD AB⊕ AC⊕ AD

A(B⊕C)⊕DA AB⊕ AC⊕DA

(B⊕C⊕D)A (B⊕C)A⊕DA BA⊕CA⊕DA

(B⊕C⊕D)A BA⊕ (C⊕D)A BA⊕CA⊕DA

AB⊕ (C⊕D)A AB⊕CA⊕DA

A(B⊕C⊕D) AB⊕ A(C⊕D) AB⊕ AC⊕ AD

(9.3.4)

(9.3.4)

(9.3.4)

(9.3.4)

left (9.1.8)

∂r ∂r ⊕ 1

∂r 1⊕ ∂r

∂l ∂l ⊕ 1

∂l 1⊕ ∂l

ξ⊗ ξ⊗ ⊕ ξ⊗

1⊕ ξ⊗

ξ⊗ ⊕ 1

∂r ⊕ 1

1⊕ ξ⊗

ξ⊗ ⊕ ξ⊗ ⊕ 1

ξ⊗ ξ⊗ ⊕ ξ⊗

1⊕ ξ⊗

ξ⊗ ⊕ 1

1⊕ ∂l

1⊕ ξ⊗ ⊕ ξ⊗

ξ⊗ ⊕ 1

● The six unlabeled subdiagrams are commutative by the functoriality of ⊕
or definition.
● Four subdiagrams are commutative by (9.3.4) as indicated.
● The middle rectangle is the left internal factorization axiom, and the outer

diagram is the right internal factorization axiom in (9.1.8).

Since ξ⊗ is a natural isomorphism, the outer diagram is commutative if and only
if the middle rectangle is commutative. □

Lemma 9.4.6. Under Convention 9.4.1, the following two statements hold for the external
factorization axioms (9.1.9)–(9.1.11).

● (9.1.9) = (9.1.11).
● (9.1.11) implies (9.1.10).

Proof. Similar to Lemmas 9.4.4 and 9.4.5, the two assertions are proved by adapt-
ing the diagrams in the proofs of, respectively, Lemmas I.2.2.6 and I.2.2.7 by

● turning each arrow around and
● replacing (δl , δr, ξ⊕?,−, ξ⊗?,−)with (∂r, ∂l , ξ⊕−,?, ξ⊗−,?).
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For the first assertion, we consider the following diagram in C.

AB(C⊕D) ABC⊕ ABD

(C⊕D)AB CAB⊕DAB

(C⊕D)BA CBA⊕DBA

(C⊕D)BA (CB⊕DB)A CBA⊕DBA

B(C⊕D)A (BC⊕ BD)A BCA⊕ BDA

AB(C⊕D) A(BC⊕ BD) ABC⊕ ABD

nat

nat

nat

(9.3.4)

(9.3.4)

(9.3.4)

(9.1.9)(1.3.28) (1.3.28)

∂r

1∂r ∂r

ξ⊗

1ξ⊗

ξ⊗

ξ⊗1

ξ⊗ ⊕ ξ⊗

1ξ⊗ ⊕ 1ξ⊗

ξ⊗ ⊕ ξ⊗

ξ⊗1⊕ ξ⊗1

ξ⊗

(ξ⊗ ⊕ ξ⊗)1

∂l

∂l

∂l1 ∂l

∂r1 ∂l

We will use Proposition 1.3.36, which says that a symmetric monoidal category
is precisely a braided monoidal category whose braiding satisfies the symmetry
axiom (1.3.33).

● The left and the right trapezoids in the previous diagram are commuta-
tive by the third Reidemeister move (1.3.28).
● The three subdiagrams labeled by nat are commutative by the naturality

of ∂l and ξ⊗.
● Three other subdiagrams are commutative by (9.3.4).

Since ξ⊗ is a natural isomorphism, the outer diagram (9.1.11) is commutative if
and only if the middle rectangle (9.1.9) is commutative. This proves the first asser-
tion.

For the second assertion, we consider the following diagram in C.

A(B⊕C)D (AB⊕ AC)D ABD⊕ ACD

DA(B⊕C) D(AB⊕ AC) DAB⊕DAC

DA(B⊕C) DAB⊕DAC

AD(B⊕C) ADB⊕ ADC

AD(B⊕C) A(DB⊕DC) ADB⊕ ADC

A(B⊕C)D A(BD⊕CD) ABD⊕ ACD

nat

nat

nat

(9.3.4)

(9.3.4)

(9.1.11)

(9.1.11)

(1.3.17) (1.3.17)

∂r1 ∂l

1∂l ∂r

ξ⊗

ξ⊗1

1ξ⊗

ξ⊗ ⊕ ξ⊗

ξ⊗1⊕ ξ⊗1

1ξ⊗ ⊕ 1ξ⊗

ξ⊗

1(ξ⊗ ⊕ ξ⊗)

1∂r ∂r

∂r

∂r

1∂r ∂r
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● The left and the right trapezoids are commutative by the right hexagon
axiom (1.3.17) in the permutative category (C, ξ⊗).
● The three subdiagrams labeled by nat are commutative by the naturality

of ∂r and ξ⊗.
● Two other subdiagrams are commutative by (9.3.4).

Since ξ⊗ is invertible, if (9.1.11) holds, then the outer diagram, which is (9.1.10), is
commutative. This proves the second assertion. □

Next is the main observation of this section. It says that about half of the ring
category axioms in Definition 9.1.2 are redundant in a bipermutative category in
Definition 9.3.2.
Theorem 9.4.7. Suppose the tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (∂l , ∂r))

consists of
● a permutative category (C,⊕, 0, ξ⊕),
● a permutative category (C,⊗,1, ξ⊗), and
● natural transformations ∂l and ∂r as in (9.1.3).

Then C is a bipermutative category if and only if it satisfies
● the multiplicative zero axiom (9.1.4),
● the left or the right zero factorization axioms (9.1.5),
● the left or the right unit factorization axiom (9.1.6),
● the left or the right symmetry factorization axiom (9.1.7),
● the left or the right internal factorization axiom (9.1.8),
● the left (9.1.9) or the right (9.1.11) external factorization axiom,
● the 2-by-2 factorization axiom (9.1.12), and
● the bipermutative category axioms (9.3.3) and (9.3.4).

Proof. The only if implication follows from Definitions 9.1.2 and 9.3.2. The con-
verse follows from Lemmas 9.4.2 through 9.4.6. □

9.5. Braided Ring Categories

In this section, we first define the braided analogue of a bipermutative cate-
gory (Definition 9.3.2) by relaxing the multiplicative structure to a braided strict
monoidal category. Since the braiding ξ⊗ no longer satisfies the symmetry axiom
(1.3.33) in general, we also need to include the analogues of both bipermutative
category axioms (9.3.3) and (9.3.4) with each instance of ξ⊗?,− replaced by ξ⊗−,? in
the opposite direction. This is reminiscent of the fact that, in a braided monoidal
category (Definition 1.3.15), there are two hexagon axioms (1.3.17), both of which
are equivalent to the hexagon axiom (1.3.35) in a symmetric monoidal category.

There are three main observations in this section.
(1) Theorem 9.5.5, which is the braided analogue of Theorem 9.4.7, says that

in a braided ring category, about half of the ring category axioms are
redundant.

(2) Theorem 9.5.6 is the braided analogue of Theorems 9.1.15 and 9.3.7. It
identifies tight braided ring categories with tight braided bimonoidal cat-
egories with both monoidal structures strict, λ ● = 1, and ρ ● = 1.
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(3) Corollary 9.5.11 says that each tight braided ring category is adjoint
equivalent, via strong braided bimonoidal functors, to one with ∂l = 1 or
∂r = 1.

Definition. Recall from Definition 1.3.15 that a braided monoidal category is
strict if the underlying monoidal category is strict. Also recall from Definition 9.1.2
that a ring category is tight if the factorization morphisms ∂l and ∂r are natural
isomorphisms.
Definition 9.5.1. A braided ring category is a tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (∂l , ∂r))
consisting of

● a ring category

(C, (⊕, 0, ξ⊕), (⊗,1), (∂l , ∂r))
as in Definition 9.1.2 and
● a braided strict monoidal category structure (C,⊗,1, ξ⊗), with ξ⊗ called

the braiding.
These data are required to satisfy the following axioms for objects A, B, C ∈ C.
The Zero Braiding Axiom: There are equalities of morphisms as follows.

ξ⊗A,0 = 10 ∶ A⊗ 0 = 0 0 = 0⊗ A

ξ⊗0,A = 10 ∶ 0⊗ A = 0 0 = A⊗ 0
(9.5.2)

The Braiding Factorization Axiom: The diagram

(9.5.3)

(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

(C⊗ A)⊕ (C⊗ B) C⊗ (A⊕ B)

(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

ξ⊗A,C⊕ξ⊗B,C

∂l
A,B,C

ξ⊗A⊕B,C

ξ⊗C,A⊕ξ⊗C,B

∂r
C,A,B

ξ⊗C,A⊕B
∂l

A,B,C

is commutative.
This finishes the definition of a braided ring category. A braided ring category is
small, respectively, tight, if the underlying ring category is so. ◇

By Proposition 1.3.36, a symmetric monoidal category is precisely a braided
monoidal category whose braiding satisfies the symmetry axiom. Next is the ring
category analogue of this fact.
Proposition 9.5.4. A bipermutative category in Definition 9.3.2 is precisely a braided
ring category whose braiding satisfies the symmetry axiom (1.3.33).

Proof. The bipermutative category axioms (9.3.3) and (9.3.4) are, respectively, the
first zero braiding axiom (9.5.2) and the top half of the braiding factorization axiom
(9.5.3). In the presence of the symmetry axiom (1.3.33) for the braiding ξ⊗, the two
zero braiding axioms,

ξ⊗−,0 = 1 and ξ⊗0,− = 1,
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are equivalent. Moreover, in (9.5.3), the commutativity of the top half for all A, B, C
is equivalent to the commutativity of the bottom half for all A, B, C. Therefore, the
assertion follows from Proposition 1.3.36. □

Reduction of Axioms. Theorem 9.4.7 shows that in a bipermutative category,
about half of the ring category axioms are redundant. Next is the braided ana-
logue.
Theorem 9.5.5. Suppose the tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (∂l , ∂r))
consists of

● a permutative category (C,⊕, 0, ξ⊕),
● a braided strict monoidal category (C,⊗,1, ξ⊗), and
● natural transformations ∂l and ∂r as in (9.1.3).

Then C is a braided ring category if and only if it satisfies
● the multiplicative zero axiom (9.1.4),
● the left or the right zero factorization axioms (9.1.5),
● the left or the right unit factorization axiom (9.1.6),
● the left or the right symmetry factorization axiom (9.1.7),
● the left or the right internal factorization axiom (9.1.8),
● the left (9.1.9) or the right (9.1.11) external factorization axiom,
● the 2-by-2 factorization axiom (9.1.12), and
● the braided ring category axioms (9.5.2) and (9.5.3).

Proof. The only if implication follows from Definitions 9.1.2 and 9.5.1. For the con-
verse, we reuse the proofs of Lemmas 9.4.2 through 9.4.6 with the following notes.

● In the proof of Lemma 9.4.2, both

ξ⊗0,− = 10 and ξ⊗−,0 = 10

are from the zero braiding axiom (9.5.2).
● In the proof of Lemma 9.4.3, the unity property

ξ⊗−,1 = 1

is from the left diagram in (1.3.22).
● In the proofs of Lemmas 9.4.4 through 9.4.6, each instance of (9.3.4) is the

top half of the braiding factorization axiom (9.5.3).
Therefore, the stated axioms are sufficient to imply that C is a braided ring cate-
gory. □

Relationship with Braided Bimonoidal Categories. A braided ring category
has an underlying ring category, which has factorization morphisms ∂l and ∂r that
go in the opposite direction as, respectively, the distributivity morphisms δr and δl

in (2.1.31). So a braided ring category is, in general, not a braided bimonoidal cate-
gory, or vice versa. Next is the braided analogue of Theorems 9.1.15 and 9.3.7 that
identifies tight braided ring categories—that is, those with invertible factorization
morphisms—with a subclass of tight braided bimonoidal categories.
Theorem 9.5.6. There is a canonical bijective correspondence between

(1) the class of tight braided ring categories in Definition 9.5.1 and
(2) the class of tight braided bimonoidal categories in Definition 2.1.29 with
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● a permutative category as the additive structure,
● a braided strict monoidal category as the multiplicative structure, and
● λ ● = 1 and ρ ● = 1.

The correspondence between the factorization morphisms (∂l , ∂r) in (1) and the distribu-
tivity morphisms (δl , δr) in (2) is given by the equalities

(9.5.7) δl = (∂r)−1 and δr = (∂l)−1.

Proof. First suppose C is a tight braided ring category. By Theorem 9.1.15, the un-
derlying tight ring category of C yields a tight bimonoidal category with a permu-
tative additive structure, a braided strict monoidal multiplicative structure, λ ● = 1,
ρ ● = 1, and distributivity morphisms determined by (9.5.7). To see that this is a
tight braided bimonoidal category, it remains to prove (i) the two Laplaza axioms
(2.1.4) and (2.1.18) and (ii) their variants (2.1.32) and (2.1.33).

● (2.1.4) and (2.1.32) are equivalent to, respectively, the top and the bottom
halves of the braiding factorization axiom (9.5.3).
● Since λ ● = 1 and ρ ● = 1, (2.1.18) and (2.1.33) are equivalent to the equalities

ξ⊗−,0 = 10 = ξ⊗0,−,

which form the zero braiding axiom (9.5.2).
Conversely, suppose C is a tight braided bimonoidal category as in (2) in the

statement of the theorem. By Theorem 2.2.1, C satisfies all 24 Laplaza axioms, so
it is a tight bimonoidal category. By Theorem 9.1.15, C yields a tight ring category
with the factorization morphisms

(9.5.8) ∂l = (δr)−1 and ∂r = (δl)−1.

To see that C is a braided ring category, we reuse the previous paragraph. The zero
braiding axiom (9.5.2) is equivalent to the braided bimonoidal category axioms
(2.1.18) and (2.1.33). The braiding factorization axiom (9.5.3) is equivalent to the
braided bimonoidal category axioms (2.1.4) and (2.1.32). □

Example 9.5.9. By Corollary 5.2.33, the braided distortion category Dbr in Sec-
tion 5.2 is a small tight braided bimonoidal category. Moreover, it satisfies the
conditions in Theorem 9.5.6 (2). So Dbr is a small tight braided ring category with
factorization morphisms

● ∂l = (δr)−1 with δr in (5.2.26) and
● ∂r = (δl)−1 = 1. ◇

Strictification. Recall from Definition 5.1.2 and Proposition 5.1.10 that a left
permbraided category is precisely a tight braided bimonoidal category that satisfies

● the conditions in Theorem 9.5.6 (2) and
● δl = 1.

Moreover, the conditions λ ● = 1 and ρ ● = 1 and the axioms (2.1.18) and (2.1.33)
imply

ξ⊗−,0 = 1 and ξ⊗0,− = 1.
By Definition 5.1.11 and Proposition 5.1.19, a right permbraided category is precisely
such a tight braided bimonoidal category but with δr = 1 instead of δl = 1. The next
observation follows from Theorem 9.5.6 and provides examples of tight braided
ring categories.
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Corollary 9.5.10. Each right (respectively, left) permbraided category becomes a tight
braided ring category with factorization morphisms determined by (9.5.8).
Corollary 9.5.11. Each tight braided ring category, when regarded as a tight braided
bimonoidal category as in Theorem 9.5.6 (2), is adjoint equivalent to a right (respectively,
left) permbraided category via strong braided bimonoidal functors.

Proof. Apply the Strictification Theorems 6.3.6 and 6.3.7. □

In other words, each tight braided ring category is adjoint equivalent, via
strong braided bimonoidal functors, to one with ∂l = 1, respectively, ∂r = 1. See
also Note 9.7.5.

9.6. Ring Categorical Drinfeld and Symmetric Centers

In this section, we extend the Drinfeld center and the symmetric center to
the setting of (braided) ring categories and bipermutative categories. Recall from
Theorem 1.4.27 that each monoidal category has a canonically associated Drinfeld
center, which is a braided monoidal category. Moreover, the symmetric center of
each braided monoidal category is a symmetric monoidal category. The bimonoi-
dal analogues of these center constructions are in Theorems 4.4.3 and 4.5.3. Both
of these theorems will play a role in this section. The following table summaries
these center constructions.

category center reference

monoidal braided monoidal 1.4.27

braided monoidal symmetric monoidal 1.5.3

tight bimonoidal tight braided bimonoidal 4.4.3

braided bimonoidal symmetric bimonoidal 4.5.3

tight ring tight braided ring 9.6.1

braided ring with ∂l epimorphism bipermutative 9.6.4

Drinfeld Centers of Tight Ring Categories. For Corollary 9.6.1 below, we
use Theorems 9.1.15 and 9.5.6 to regard tight (braided) ring categories (Defini-
tions 9.1.2 and 9.5.1) as tight (braided) bimonoidal categories with

● both the additive and the multiplicative structures strict monoidal,
● λ ● = 1 and ρ ● = 1, and
● δl = (∂r)−1 and δr = (∂l)−1.

In Theorem 4.4.3, we observed that the bimonoidal Drinfeld center in Defini-
tion 4.1.2 of each tight bimonoidal category is a tight braided bimonoidal category.
Next is the (braided) ring category analogue.
Corollary 9.6.1. The bimonoidal Drinfeld center of each tight ring category is a tight
braided ring category.

Proof. This is the special case of Theorem 4.4.3 for tight ring categories. Indeed,
if C is a ring category, then its structure morphisms α⊕, λ⊕, ρ⊕, α⊗, λ⊗, ρ⊗, λ ●,
and ρ ● are identities. Along with the multiplicative zero axiom (9.1.4) and the zero
factorization axiom (9.1.5), we infer that, in its bimonoidal Drinfeld center C

bi
in

Definition 4.1.2,
● both the additive structure (4.1.6)–(4.1.14) and the multiplicative struc-

ture (4.1.5) are strict monoidal, and
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● both multiplicative zeros (4.1.15) are identities.

Therefore, C
bi

is a tight braided ring category by Theorems 4.4.3 and 9.5.6. □

Symmetric Centers of Braided Ring Categories. In Theorem 4.5.3, we ob-
served that the bimonoidal symmetric center in Definition 4.5.1 of each braided
bimonoidal category is a symmetric bimonoidal category. Next is the analogue
involving braided ring categories and bipermutative categories.
Definition 9.6.2. For a braided ring category C as in Definition 9.5.1, the symmetric
center of C is the full subcategory Csym consisting of objects A ∈ C such that the
symmetry axiom

(9.6.3) ξ⊗−,Aξ⊗A,− = 1 ∶ A⊗− A⊗−
holds. ◇
Theorem 9.6.4. Suppose C is a braided ring category in which the left factorization mor-
phism ∂l is a natural epimorphism. Then its symmetric center inherits a bipermutative
category structure.

Proof. We adapt the proof of Theorem 4.5.3 as follows. First we check that the
additive structure of C restricts to one on Csym. The additive zero 0 ∈ C is in Csym

because
ξ⊗0,− = 10 = ξ⊗−,0

by the zero braiding axiom (9.5.2).
To check that Csym is closed under ⊕, suppose A, B ∈ Csym, so each of them

satisfies the symmetry axiom (9.6.3). For each object C ∈ C, the following diagram
in C is commutative.

(A⊕ B)C C(A⊕ B) (A⊕ B)C

AC⊕ BC CA⊕CB AC⊕ BC

ξ⊗C,A⊕B ξ⊗A⊕B,C

ξ⊗C,A ⊕ ξ⊗C,B ξ⊗A,C ⊕ ξ⊗B,C

1

∂l ∂r
∂l

(9.5.3) (9.5.3)

(9.6.3)

The above commutative diagram and the assumption that ∂l is a natural epimor-
phism imply the symmetry axiom (9.6.3) for A⊕ B, that is, the equality

ξ⊗C,A⊕Bξ⊗A⊕B,C = 1 ∶ (A⊕ B)C (A⊕ B)C,

so A⊕ B ∈ Csym. Therefore, restricting (⊕, ξ⊕) to Csym, the additive structure

(Csym,⊕, 0, ξ⊕)
satisfies all the permutative category axioms as they do in C.

Since the multiplicative structure of C is a braided strict monoidal category,
Proposition 1.5.3 shows that the multiplicative structure

(Csym,⊗,1, ξ⊗)
is a symmetric strict monoidal category, that is, a permutative category. Equipped
with the restrictions of the factorization morphisms ∂l and ∂r, Csym satisfies all the
axioms of a braided ring category in Definition 9.5.1 as they do in C. Moreover,
since the braiding ξ⊗ in Csym satisfies the symmetry axiom (1.3.33) by construction,
Csym is a bipermutative category by Proposition 9.5.4. □
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Remark 9.6.5. Theorem 9.6.4 is not a corollary of Theorem 4.5.3. To apply Theo-
rem 4.5.3 to a braided ring category C, we would need to regard C as a braided
bimonoidal category using Theorem 9.5.6, which assumes tightness, that is, the in-
vertibility of the factorization morphisms ∂l and ∂r. While tightness is sufficient to
infer that the symmetric center is a bipermutative category, it is not necessary. The
proof of Theorem 9.6.4 shows that we only need the left factorization morphism ∂l

to be a natural epimorphism, instead of the invertibility of both ∂l and ∂r. ◇

9.7. Notes

9.7.1 (Ring Categories). The notion of a ring category in Definition 9.1.2 is from
[EM06, Def. 3.3], which did not explicitly state the unit factorization axiom (9.1.6)
and the second identity in (9.1.14). The following table compares the axioms, no-
tation, and terminology in our Definition 9.1.2 of a ring category with the one in
[EM06].

Definition 9.1.2 [EM06, Def. 3.3]

factorization morphisms ∂l and ∂r distributivity maps dl and dr

(9.1.4) axiom (a)

(9.1.8) axiom (b)

(9.1.7) axiom (c)

(9.1.9) + (9.1.11) axiom (d)

(9.1.10) axiom (e)

(9.1.12) axiom (f)

We call ∂l and ∂r factorization morphisms, instead of distributivity maps as in
[EM06], because these natural transformations are not invertible in general. More-
over, they go in the opposite direction as the distributivity morphisms δr and δl in
a bimonoidal category (Definition 2.1.1). ◇
9.7.2 (Endomorphism Ring Categories). For a small permutative category C, the
endomorphism ring category Permsu(C;C) is an example in [EM06, p. 176-177],
but we provided all the detail in the proof of Theorem 9.2.14. ◇
9.7.3 (Bipermutative Categories). The notion of a bipermutative category in Def-
inition 9.3.2 is from [EM06, Def. 3.6], which did not explicitly state the zero sym-
metry axiom (9.3.3). Immediately above [EM06, Def. 3.6], there is a statement that
claims the following:

● Laplaza’s symmetric bimonoidal categories are more general than biper-
mutative categories.
● Symmetric bimonoidal categories can be strictified to equivalent right

bipermutative categories.
We emphasize that these claims are only true with the tightness assumption.

● Symmetric bimonoidal categories (Definition 2.1.1) have distributivity
natural monomorphisms δl and δr as in (2.1.3) that go in the opposite di-
rection as the factorization morphisms ∂r and ∂l . Since none of them are
required to be invertible in general, bipermutative categories are not, in
general, symmetric bimonoidal categories. The correct statement is The-
orem 9.3.7 that identifies tight bipermutative categories with a subclass of
tight symmetric bimonoidal categories.
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● Strictification of symmetric bimonoidal categories to right or left biper-
mutative categories also requires the tightness assumption. See Theo-
rems I.5.4.6 and I.5.4.7. ◇

9.7.4 (Bipermutative Category Axioms). In a bipermutative category, the redun-
dancy of the middle external factorization axiom (9.1.10) in Lemma 9.4.6 was first
observed by Elmendorf-Mandell [EM06, Fig. 1]. ◇
9.7.5 (Braided Ring Categories). Braided bimonoidal categories in the sense of
Richter [Ric10, Def. 5.1] are right permbraided categories in Definition 5.1.11.
Equivalently, Richter’s braided bimonoidal categories are precisely the braided
ring categories in Definition 9.5.1 such that ∂l = 1. So Richter’s braided bimonoi-
dal categories appear as the target of the strictification Corollary 9.5.11. Note that
our braided bimonoidal categories (Definition 2.1.29) and braided ring categories
(Definition 9.5.1) are both strictly more general than Richter’s braided bimonoidal
categories. ◇





CHAPTER 10

Iterated and En-Monoidal Categories

This chapter discusses iterated monoidal categories and their ring analogues,
which are called, respectively, n-fold monoidal categories and En-monoidal cat-
egories. The notion of an n-fold monoidal category simultaneously generalizes
strict monoidal categories, braided monoidal categories, and symmetric monoidal
categories. Adding a compatible permutative category structure, En-monoidal
categories simultaneously generalize ring categories, braided ring categories,
and bipermutative categories. Theorem III.13.2.1 shows that the categorical op-
erad Monn that parametrizes small n-fold monoidal categories is an En-operad.
The importance of En-monoidal categories lies in algebraic K-theory. In Corol-
lary III.13.5.2, we will show that the Elmendorf-Mandell K-theory multifunctor
sends small En-monoidal categories to symmetric spectra with an En structure for
1 ≤ n <∞. Appendix III.A.2 and Question III.A.4.2 contain open questions related
to iterated and En-monoidal categories.

Iterated Monoidal Categories. The notion of an n-fold monoidal category is
from [BFSV03]. An n-fold monoidal category C is equipped with n strict monoidal
structures

⊗1, . . . ,⊗n ∶ C×C C,
a common strict monoidal unit 1 ∈ C, and exchange natural transformations

(A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)
η

i,j
A,B,C,D

for 1 ≤ i < j ≤ n, subject to unity, associativity, and exchange axioms. The ηi,j

are not required to be natural isomorphisms. The strictness of {⊗i}1≤i≤n and 1

is assumed for convenience to reduce the amount of data and axioms, especially
for En-monoidal categories. The strictness conditions can be replaced by suitable
associativity isomorphisms; see Note 10.11.2. The strict version, as originally in-
troduced in [BFSV03], is already sufficient for the intended algebraic K-theory
application in Chapter III.13.

The original motivation and terminology for n-fold monoidal categories came
from iterated loop space theory. A loop space of a 1-fold loop space is a 2-fold
loop space. A loop space of a 2-fold loop space is a 3-fold loop space, and so
forth. Following this line of thinking, one starts with small strict monoidal cate-
gories, which correspond to 1-fold loop spaces via the group completions of the
classifying spaces. A small 2-fold monoidal category is a monoid in a suitable cat-
egory of small strict monoidal categories. A small 3-fold monoidal category is a
monoid in a suitable category of small 2-fold monoidal categories, and so forth.
Small n-fold monoidal categories yield n-fold loop spaces via the group comple-
tions of their classifying spaces [BFSV03]. Moreover, the categorical operad Monn

II.267
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for small n-fold monoidal categories is operadically equivalent, via the classifying
space construction, to the little n-cube operad of Boardman-Vogt [BV73] and May
[May72]. Therefore, Monn is an En-operad; see Theorem III.13.2.1.

With an appropriate concept of n-fold monoidal functors, we will show that
small (n + 1)-fold monoidal categories are precisely the monoids in the monoidal
category of small n-fold monoidal categories. Moreover, braided strict monoi-
dal categories (Definition 1.3.15) are special cases of 2-fold monoidal categories.
Permutative categories (Definition 1.3.32) are special cases of n-fold monoidal cat-
egories for n ≥ 2. The following table summarizes the relationships between the
various types of small monoidal categories and the iterated loop spaces that they
yield via the group completions of their classifying spaces.

n-fold monoidal categories loop spaces references

n = 1 strict monoidal categories (10.1.9) 1-fold [MS76, Seg74]

n = 2 contain braided s.m.c. (10.1.14) 2-fold [Fie∞]

2 ≤ n <∞ contain permutative categories (10.1.21) n-fold [BFSV03, FV03, FSV13]

n =∞ permutative categories infinite [May72, May74]

In the n = 2 row, s.m.c. is short for strict monoidal categories.

En-Monoidal Categories. Since our intended applications are En structures
via algebraic K-theory, we should start with permutative categories, which corre-
spond to symmetric spectra under the Segal K-theory functor and the Elmendorf-
Mandell K-theory multifunctor. When combined with n-fold monoidal categories,
this leads to our notion of an En-monoidal category. Conceptually, an En-monoidal
category is to an n-fold monoidal category as a ring category is to a strict monoidal
category. In terms of data, an En-monoidal category C consists of

● a permutative category structure (⊕, 0, ξ⊕),
● an n-fold monoidal category structure ({⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n), and
● factorization natural transformations

(A⊗i C)⊕ (B⊗i C) (A⊕ B)⊗i C

(A⊗i B)⊕ (A⊗i C) A⊗i (B⊕C)

∂l,i
A,B,C

∂r,i
A,B,C

for 1 ≤ i ≤ n.

The tuple (C,⊕,⊗i, ∂l,i, ∂r,i) is required to be a ring category (Definition 9.1.2) for
each 1 ≤ i ≤ n. There are also several axioms that express the compatibility between
the exchanges ηi,j and the factorizations ∂l,i and ∂r,i.

The notion of an En-monoidal category simultaneously generalizes the three
types of ring categories in Chapter 9. An E1-monoidal category is precisely a
ring category. Braided ring categories (Definition 9.5.1) are special cases of E2-
monoidal categories. Bipermutative categories (Definition 9.3.2) are special cases
of En-monoidal categories for n ≥ 2.

Connection with Algebraic K-Theory. As proved in [EM06, EM09], which
we will discuss in Corollaries III.11.3.16 and III.11.6.12, the Elmendorf-Mandell
K-theory multifunctor sends
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● small ring categories to E1-symmetric spectra, that is, strict ring symmet-
ric spectra and
● small bipermutative categories to E∞-symmetric spectra.

In Corollaries III.12.5.3 and III.13.5.2, we will prove the En variants, with
● small braided ring categories (Definition 9.5.1) yielding E2-symmetric

spectra and
● small En-monoidal categories yielding En-symmetric spectra.

For the case n = 2, braided ring categories are simpler than E2-monoidal categories,
so they are better as inputs of the K-theory multifunctor.

The result relating small En-monoidal categories and En-symmetric spectra is
a consequence of the existence of the Elmendorf-Mandell K-theory multifunctor
and Theorem III.13.4.12. The latter says that an En-monoidal structure on a small
permutative category C is precisely determined by a Cat-enriched multifunctor

F ∶Monn PermCatsu such that F(∗) = C.

Here Monn is the one-object Cat-enriched multicategory for n-fold monoidal cate-
gories, and PermCatsu is the Cat-enriched multicategory of small permutative cat-
egories. The following table summarizes the relationships between the various
types of small ring-like categories and the En-symmetric spectra that they yield
via the Elmendorf-Mandell K-theory multifunctor.

categories symmetric spectra

n = 1 ring (9.1.2) strict ring (III.11.3.16)

n = 2 braided ring (9.5.1) E2 (III.12.5.3)

2 ≤ n <∞ En-monoidal (10.7.2) En (III.13.5.2)

n =∞ bipermutative (9.3.2) E∞ (III.11.6.12)

Organization. A summary of the rest of this chapter follows.
Section 10.1 defines n-fold monoidal categories and studies their relationships

with braided monoidal and permutative categories.
● Proposition 10.1.14 proves that braided strict monoidal categories are 2-

fold monoidal categories in which
– the two monoidal products coincide, and
– the exchange η is a natural isomorphism that satisfies a middle unity

property.
● Proposition 10.1.21 proves that permutative categories are n-fold monoi-

dal categories for n ≥ 2 in which
– the n monoidal products coincide, and
– the exchanges ηi,j are natural isomorphisms that coincide for all 1 ≤

i < j ≤ n and satisfy a middle unity property and a middle symmetry
property.

We emphasize that Definition 10.1.1 of an n-fold monoidal category is not an in-
ductive definition. It is defined explicitly for all n ≥ 1 at the same time.

Section 10.2 contains examples of 2-fold monoidal categories that do not come
from braided strict monoidal categories; see Proposition 10.2.8. These 2-fold mon-
oidal categories are constructed from totally ordered monoids, which are monoids
equipped with a total ordering that is compatible with the monoid multiplication,
such that the monoid unit is also the least element with respect to the ordering. In
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the associated 2-fold monoidal category, ⊗1 is max with respect to the ordering,
and ⊗2 is the monoid multiplication.

Section 10.3 defines n-fold monoidal functors between n-fold monoidal cate-
gories and studies their relationships with braided monoidal functors.

● Proposition 10.3.11 shows that, between braided strict monoidal categor-
ies, a braided strictly unital monoidal functor is a 2-fold monoidal func-
tor whose two monoidal constraints coincide. The converse holds if the
monoidal constraint is an isomorphism.
● Proposition 10.3.15 shows that, between permutative categories, a sym-

metric strictly unital monoidal functor is an n-fold monoidal functor for
n ≥ 2 whose n monoidal constraints coincide. The converse holds if the
monoidal constraint is an isomorphism.
● Lemma 10.3.20 shows that composites of n-fold monoidal functors are

well defined.

The category of small n-fold monoidal categories and n-fold monoidal functors is
denoted by MCatn.

Section 10.4 studies monoids in MCatn.

● Lemma 10.4.2 shows that MCatn is a monoidal category with the Carte-
sian product.
● Theorem 10.4.5 shows that monoids in the monoidal category MCatn are

precisely small (n + 1)-fold monoidal categories.

However, morphisms of monoids in MCatn are not precisely (n + 1)-fold monoi-
dal functors. Proposition 10.4.13 shows that a morphism of monoids in MCatn is
precisely an (n + 1)-fold monoidal functor whose last monoidal constraint is the
identity.

Section 10.5 studies the free n-fold monoidal category of a small category in
Proposition 10.5.9. Theorem 10.5.18 shows that the free n-fold monoidal cate-
gory of a small category decomposes into smaller pieces involving the categories
Monn(k) in Definition 10.5.13. In Definition III.13.1.12, we will use {Monn(k)}k≥0
to form a Cat-enriched operad Monn that acts on small n-fold monoidal categories.
Moreover, we will see that Monn also parametrizes En-monoidal category struc-
tures on small permutative categories. This will lead to the observation that the
Elmendorf-Mandell K-theory of a small En-monoidal category is an En-symmetric
spectrum.

Section 10.6 discusses the Coherence Theorem 10.6.8 for n-fold monoidal cate-
gories from [BFSV03]. This theorem provides necessary and sufficient conditions
for the existence of a morphism A B in the category Monn(k). Moreover, each
nonempty morphism set in Monn(k) has a unique element. As a consequence,
in each n-fold monoidal category, each formal diagram built from identity mor-
phisms, the exchanges {ηi,j}i<j, the monoidal products {⊗i}n

i=1, and composites is
commutative. In Part III.2, Theorem 10.6.8 will be applied in

● Theorem III.13.2.1, which says that the n-fold monoidal category operad
Monn is an En-operad, and
● Theorem III.13.3.3, which is a coherence theorem for Monn.

Section 10.7 introduces the notion of an En-monoidal category, which com-
bines
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● n ring categories

(C, (⊕, 0, ξ⊕), (⊗i,1), (∂l,i, ∂r,i))

for 1 ≤ i ≤ n and
● a compatible n-fold monoidal category

(C,{⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n).

By definition, an E1-monoidal category is a ring category. The compatibility be-
tween the n ring categories and the n-fold monoidal category is expressed in the
axioms (10.7.7)–(10.7.11). The first axiom (10.7.7) says that ηi,j is the identity of 0 if
any one of its four input objects is 0. The other four axioms, which are called the
exchange factorization axioms, express how the exchanges ηi,j commute with the
factorization morphisms ∂l,i and ∂r,i.

Section 10.8 shows that the relationship between braided strict monoidal cat-
egories and 2-fold monoidal categories extends to the ring setting. More precisely,
Theorem 10.8.1 proves that a braided ring category is precisely an E2-monoidal
category in which

● the two ring category structures coincide, and
● the only exchange η is a natural isomorphism that satisfies a middle unity

property.
The nontrivial part is to show that the ring category axioms and the braiding fac-
torization axiom (9.5.3) in a braided ring category correspond to the exchange fac-
torization axioms (10.7.8)–(10.7.11) in an E2-monoidal category.

Section 10.9 is the permutative analogue of Section 10.8. Theorem 10.9.1 shows
that a bipermutative category is precisely an En-monoidal category for n ≥ 2 that
satisfies the following conditions.

● The n ring category structures coincide.
● All the exchanges ηi,j are natural isomorphisms that coincide for all 1 ≤

i < j ≤ n and satisfy a middle unity property and a middle symmetry
property.

Section 10.10 provides further examples of En-monoidal categories by showing
that each small category freely generates an En-monoidal category. This construc-
tion extends the one in Section 10.5 for free n-fold monoidal categories.

Reading Guide.
(1) For n-fold monoidal categories, read Definition 10.1.1 and the statements

of Propositions 10.1.14, 10.1.21, and 10.2.8.
(2) For n-fold monoidal functors, read Definition 10.3.1 and the statements

of Propositions 10.3.11 and 10.3.15, Lemmas 10.3.20 and 10.4.2, and The-
orem 10.4.5.

(3) For free n-fold monoidal categories, read Definitions 10.5.2, 10.5.8,
and 10.5.13 and the statements of Proposition 10.5.9 and Theorem 10.5.18.

(4) For the coherence of n-fold monoidal categories, read Definition 10.6.1
and the statement of Theorem 10.6.8.

(5) For En-monoidal categories, read Definition 10.7.2 and the statements of
Theorems 10.8.1 and 10.9.1 and Proposition 10.10.2.

(6) Go back and read the rest of this chapter.
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10.1. Iterated Monoidal Categories

In this section, we define n-fold monoidal categories following [BFSV03] and
provide some examples. These iterated monoidal categories contain braided strict
monoidal categories and permutative categories:

● Proposition 10.1.14 identifies braided strict monoidal categories with a
subclass of 2-fold monoidal categories.
● Proposition 10.1.21 identifies permutative categories with a subclass of

n-fold monoidal categories for n ≥ 2.

Proposition 10.2.8 shows that each totally ordered monoid such that the unit is
also the least element has a canonical 2-fold monoidal category structure that does
not, in general, come from a braided strict monoidal category. With the n-fold
monoidal functors in Definition 10.3.1, in Section 10.4 we will see that small n-fold
monoidal categories form a monoidal category MCatn. Moreover, the monoids in
MCatn are precisely small (n + 1)-fold monoidal categories.

Definition. Recall from Definition 1.3.1 that a monoidal category is strict if
the associativity isomorphism α, the left unit isomorphism λ, and the right unit
isomorphism ρ are identity natural transformations. In this case, they are omitted
from the notation.

Definition 10.1.1. For n ≥ 1, an n-fold monoidal category is a tuple

(C,{⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n)

consisting of the following data.

The Underlying Category: C is a category.
The Unit: 1 ∈ C is an object, which is called the unit
The Multiplicative Structures: For each 1 ≤ i ≤ n,

(C,⊗i,1)

is a strict monoidal category, which is called the ith monoidal structure,
with ⊗i called the ith product

The Exchanges: For each pair (i, j)with 1 ≤ i < j ≤ n,

(10.1.2) (A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)
η

i,j
A,B,C,D

is a natural transformation for objects A, B, C, D ∈ C, which is called the
(i, j)-exchange

These data are required to satisfy the following equalities and commutative dia-
grams for objects A, A′, A′′, B, B′, B′′, C, C′, D, and D′ in C. The axioms (10.1.3)–
(10.1.6) are defined for 1 ≤ i < j ≤ n. The axiom (10.1.7) is defined for 1 ≤ i < j < k ≤ n.

The Internal Unity Axiom:

(10.1.3) η
i,j
A,B,1,1 = 1A⊗jB = η

i,j
1,1,A,B

The External Unity Axiom:

(10.1.4) η
i,j
A,1,B,1 = 1A⊗i B = η

i,j
1,A,1,B
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The Internal Associativity Axiom:

(10.1.5)

(A⊗j A′)⊗i (B⊗j B′)⊗i (C⊗j C′)

(A⊗j A′)⊗i [(B⊗i C)⊗j (B′ ⊗i C′)] [(A⊗i B)⊗j (A′ ⊗i B′)]⊗i (C⊗j C′)

(A⊗i B⊗i C)⊗j (A′ ⊗i B′ ⊗i C′)

1A⊗j A′ ⊗i η
i,j
B,B′,C,C′

η
i,j
A,A′,B⊗iC,B′⊗iC′

η
i,j
A,A′,B,B′ ⊗i 1C⊗jC′

η
i,j
A⊗i B,A′⊗i B′,C,C′

The External Associativity Axiom:

(10.1.6)

(A⊗j A′ ⊗j A′′)⊗i (B⊗j B′ ⊗j B′′)

(A⊗i B)⊗j [(A′ ⊗j A′′)⊗i (B′ ⊗j B′′)] [(A⊗j A′)⊗i (B⊗j B′)]⊗j (A′′ ⊗i B′′)

(A⊗i B)⊗j (A′ ⊗i B′)⊗j (A′′ ⊗i B′′)

η
i,j
A,A′⊗j A′′,B,B′⊗j B′′

1A⊗i B ⊗j η
i,j
A′,A′′,B′,B′′

η
i,j
A⊗j A′,A′′,B⊗j B′,B′′

η
i,j
A,A′,B,B′ ⊗j 1A′′⊗i B′′

The Triple Exchange Axiom:

(10.1.7)

[(A⊗k A′)⊗j (B⊗k B′)]⊗i [(C⊗k C′)⊗j (D⊗k D′)]

[(A⊗j B)⊗k (A′ ⊗j B′)]⊗i [(C⊗j D)⊗k (C′ ⊗j D′)] [(A⊗k A′)⊗i (C⊗k C′)]⊗j [(B⊗k B′)⊗i (D⊗k D′)]

[(A⊗j B)⊗i (C⊗j D)]⊗k [(A′ ⊗j B′)⊗i (C′ ⊗j D′)] [(A⊗i C)⊗k (A′ ⊗i C′)]⊗j [(B⊗i D)⊗k (B′ ⊗i D′)]

[(A⊗i C)⊗j (B⊗i D)]⊗k [(A′ ⊗i C′)⊗j (B′ ⊗i D′)]

η
j,k
A,A′,B,B′ ⊗i η

j,k
C,C′,D,D′

ηi,k
A⊗j B,A′⊗j B′,C⊗j D,C′⊗j D′

η
i,j
A,B,C,D ⊗k η

i,j
A′,B′,C′,D′

η
i,j
A⊗k A′,B⊗k B′,C⊗kC′,D⊗k D′

ηi,k
A,A′,C,C′ ⊗j ηi,k

B,B′,D,D′

η
j,k
A⊗iC,A′⊗iC′,B⊗i D,B′⊗i D′

This finishes the definition of an n-fold monoidal category. It is small if it has a set
of objects. ◇
Explanation 10.1.8. Consider Definition 10.1.1 of an n-fold monoidal category.

● The n strict monoidal categories (C,⊗i,1) for 1 ≤ i ≤ n have a common
underlying category C and a common monoidal unit 1.
● The direction of the (i, j)-exchange ηi,j in (10.1.2) is reminiscent of the

monoidal constraint F2 of a monoidal functor F in Definition 1.3.7. It
goes from ⊗j on the inside to the outside. Moreover, ηi,j is not required to
be a natural isomorphism.
● The triple exchange axiom (10.1.7) has the following symmetry. Each ar-

row and its counterpart across the center involve the same type of ex-
change morphisms. For example, both vertical arrows involve ηi,k. ◇

Example 10.1.9. A 1-fold monoidal category is a strict monoidal category (C,⊗,1),
since there are no (i, j)-exchanges when n = 1. ◇
Example 10.1.10. An (n + 1)-fold monoidal category yields an n-fold monoidal
category by forgetting the product ⊗n+1 and the natural transformations ηi,n+1 for
1 ≤ i < n + 1. ◇
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Example 10.1.11. Suppose C is an n-fold monoidal category, and

I ⊆ {1, . . . , n}
is a nonempty subset with cardinality ∣I∣. Then there is an ∣I∣-fold monoidal cate-
gory

(C,{⊗i}i∈I ,1,{ηi,j}i<j∈I)
that retains the monoidal products ⊗i and the exchanges ηi,j with i, j ∈ I. ◇
Example 10.1.12. Given two n-fold monoidal categories C and D, their Cartesian
product C×D is an n-fold monoidal category, in which the unit, the multiplicative
structures, and the exchanges are all defined componentwise in C and D. ◇

Braided and 2-Fold Monoidal Categories.
Explanation 10.1.13. Unpacking Definition 10.1.1 in the case n = 2, a 2-fold mon-
oidal category

(C,⊗1,⊗2,1, η)
consists of

● a category C,
● a unit object 1 ∈ C,
● two strict monoidal structures (C,⊗1,1) and (C,⊗2,1), and
● a natural transformation

(A⊗2 B)⊗1 (C⊗2 D) (A⊗1 C)⊗2 (B⊗1 D)
ηA,B,C,D

for objects A, B, C, D ∈ C.
These data are required to satisfy the axioms (10.1.3)–(10.1.6) for (i, j) = (1, 2)with

η1,2 = η.

The triple exchange axiom (10.1.7), which requires 1 ≤ i < j < k ≤ n, does not
happen when n = 2. ◇

Recall from Definition 1.3.15 that a braided monoidal category is strict if the
underlying monoidal category is strict. The next observation identifies braided
strict monoidal categories with a subclass of 2-fold monoidal categories.
Proposition 10.1.14. There is a canonical bijective correspondence between

(1) the class of braided strict monoidal categories and
(2) the class of 2-fold monoidal categories in Explanation 10.1.13 with

● ⊗1 = ⊗2 and
● η a natural isomorphism satisfying

(10.1.15) ηA,B,1,C = 1A⊗1B⊗1C = ηA,1,B,C.

Proof. First suppose (C,⊗,1, ξ⊗) is a braided strict monoidal category with braid-
ing

A⊗ B B⊗ A.
ξ⊗A,B

≅

We define the monoidal structures ⊗1 and ⊗2 and the natural isomorphism η as
follows.

⊗1 = ⊗ = ⊗2

ηA,B,C,D = 1A ⊗ ξ⊗B,C ⊗ 1D
(10.1.16)
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We check the 2-fold monoidal category axioms (10.1.3)–(10.1.6) and (10.1.15).
● The condition (10.1.15), the internal unity axiom (10.1.3)

ηA,B,1,1 = 1A⊗B = η1,1,A,B,

and the external unity axiom (10.1.4)

ηA,1,B,1 = 1A⊗B = η1,A,1,B

all follow from the unity properties

ξ⊗−,1 = 1 = ξ⊗
1,−

in a braided strict monoidal category (1.3.22).
● The internal associativity axiom (10.1.5) holds by the Coherence Theo-

rem 1.6.3 in the braided strict monoidal category C. Indeed, the left and
right composites in (10.1.5) have, respectively, the left and right braids
below, read bottom-to-top, as their underlying braids.

Since their underlying braids are equal, the two composites in (10.1.5) are
equal.
● The external associativity axiom (10.1.6) also holds by Theorem 1.6.3. The

left and right composites in (10.1.6) have, respectively, the left and right
braids below as their underlying braids.

Since their underlying braids are equal, the two composites in (10.1.6) are
equal.

This shows that
(C,⊗1,⊗2,1, η)

is a 2-fold monoidal category as in (2) in the statement.
Conversely, suppose

(C,⊗,⊗,1, η)
is a 2-fold monoidal category as in (2) in the statement, so (C,⊗,1) is a strict mon-
oidal category. The component ξ⊗A,B of the desired braiding ξ⊗ is defined as the
composite below.

(10.1.17)
A⊗ B B⊗ A

1⊗ A⊗ B⊗1 1⊗ B⊗ A⊗1

ξ⊗A,B

η1,A,B,1

This is a natural isomorphism because η is so. It remains to check the two hexagon
axioms (1.3.17) in (C,⊗,1, ξ⊗). First we need some preliminary equalities.

● With A′ = B = 1 in the internal associativity axiom (10.1.5),
– the lower left arrow ηA,1,C,B′⊗C′ and
– the upper right arrow ηA,1,1,B′ ⊗ 1
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are both identities by (10.1.15). Switching symbols from (B′, C′) to (B, D),
this yields the equality

(10.1.18) 1A ⊗ η1,B,C,D = ηA,B,C,D.

● With B′ = C = 1 in the internal associativity axiom (10.1.5),
– the upper left arrow 1⊗ ηB,1,1,C′ and
– the lower right arrow ηA⊗B,A′,1,C′

are both identities by (10.1.15). Switching symbols from (A′, B, C′) to
(B, C, D), this yields the equality

(10.1.19) ηA,B,C,D = ηA,B,C,1 ⊗ 1D.

● (10.1.17), (10.1.18), and (10.1.19) yield the following equalities.

1A ⊗ ξ⊗B,C = ηA,B,C,1(10.1.20a)

ξ⊗A,B ⊗ 1C = η1,A,B,C(10.1.20b)

1A ⊗ ξ⊗B,C ⊗ 1D = ηA,B,C,D(10.1.20c)

To obtain the left hexagon axiom (1.3.17), we set A = B′ = C′ = 1 in the internal
associativity axiom (10.1.5) to obtain the equality

(η1,A′,B⊗C,1)(1A′ ⊗ ηB,1,C,1) = (ηB,A′,C,1)(η1,A′,B,1 ⊗ 1C).
By the first external unity axiom (10.1.4), (10.1.17), and (10.1.20a), the previous
equality becomes

ξ⊗A′,B⊗C = (1B ⊗ ξ⊗A′,C)(ξ
⊗
A′,B ⊗ 1C),

which is the left hexagon axiom.
To obtain the right hexagon axiom (1.3.17), we set A = B = C′ = 1 in the internal

associativity axiom (10.1.5) to obtain the equality

(η1,A′,C,B′)(1A′ ⊗ η1,B′,C,1) = (η1,A′⊗B′,C,1)(η1,A′,1,B′ ⊗ 1C).
By the second external unity axiom (10.1.4), (10.1.17), and (10.1.20b), the previous
equality becomes the equality below.

(ξ⊗A′,C ⊗ 1B′)(1A′ ⊗ ξ⊗B′,C) = ξ⊗A′⊗B′,C

Since this is the right hexagon axiom, (C,⊗,1, ξ⊗) is a braided strict monoidal
category.

The above constructions are inverses of each other by (10.1.16), (10.1.17), and
(10.1.20c). □

Examples of 2-fold monoidal categories that do not correspond to braided
strict monoidal categories will be given in Proposition 10.2.8.

Permutative and n-Fold Monoidal Categories. Recall from Definition 1.3.32
that a permutative category is a symmetric strict monoidal category. The next
observation identifies permutative categories with a subclass of n-fold monoidal
categories in Definition 10.1.1.
Proposition 10.1.21. For each n ≥ 2, there is a canonical bijective correspondence between
the following two classes.

(1) The class of permutative categories.
(2) The class of n-fold monoidal categories satisfying the following conditions:

● ⊗1 = ⊗2 = ⋯ = ⊗n.
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● ηi,j = ηk,l for all 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n.
● Each ηi,j is a natural isomorphism that satisfies the following equalities for

A, B, C, D ∈ C.

ηA,B,1,C = 1A⊗B⊗C = ηA,1,B,C

(ηA,C,B,D)(ηA,B,C,D) = 1A⊗B⊗C⊗D
(10.1.22)

Here ⊗ is the common value of ⊗i for 1 ≤ i ≤ n, and η is the common value
of ηi,j for 1 ≤ i < j ≤ n.

Proof. Suppose (C,⊗,1, ξ⊗) is a permutative category. We define ⊗i for 1 ≤ i ≤ n
and ηi,j for 1 ≤ i < j ≤ n as follows.

⊗i = ⊗

η
i,j
A,B,C,D = 1A ⊗ ξ⊗B,C ⊗ 1D

(10.1.23)

Then we observe the following.

● The equalities (10.1.22), the internal unity axiom (10.1.3), and the external
unity axiom (10.1.4) follow from the symmetry axiom (1.3.33) and the unit
axiom (1.3.34) in the permutative category C.
● The other three n-fold monoidal category axioms (10.1.5)–(10.1.7) follow

from the Coherence Theorem I.1.3.8 for symmetric monoidal categories.

Conversely, suppose (C,⊗,1, η) is an n-fold monoidal category as in (2) in
the statement. Since n ≥ 2, (C,⊗,⊗,1, η) is a 2-fold monoidal category by Ex-
ample 10.1.10. By Proposition 10.1.14, (C,⊗,1, ξ⊗), with ξ⊗ as in (10.1.17), is a
braided strict monoidal category. Since ξ⊗ satisfies the symmetry axiom (1.3.33) by
the second equality in (10.1.22), (C,⊗,1, ξ⊗) is a permutative category by Proposi-
tion 1.3.36. Moreover, the equality (10.1.20c) is still valid here, and it is proved by
the same argument as in the proof of Proposition 10.1.14.

The above constructions are inverses of each other by (10.1.17), (10.1.20c), and
(10.1.23). □

10.2. Two-Fold Monoidal Categories From Totally Ordered Monoids

In this section, we give examples of 2-fold monoidal categories from totally
ordered monoids that are not coming from braided strict monoidal categories in
the sense of Proposition 10.1.14. See also Note 10.11.5 for related discussion. We
first recall some relevant definitions.

Definition 10.2.1. Suppose S is a set.

● A partial ordering on S is a relation ≤ on S that satisfies the following three
conditions for all x, y, z ∈ S:

– Reflexivity: x ≤ x.
– Transitivity: If x ≤ y and y ≤ z, then x ≤ z.
– Antisymmetry: If x ≤ y and y ≤ x, then x = y.

● A partially ordered set is a set equipped with a partial ordering.
● In a partially ordered set, if x ≤ y and x /= y, then we write x < y.
● In a partially ordered set, a least element is an element e such that e ≤ x for

all x.
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● A total ordering on S is a partial ordering that also satisfies the compara-
bility condition: either

x ≤ y or y ≤ x for x, y ∈ S.

A totally ordered set is a set equipped with a total ordering.
● For elements x and y in a totally ordered set (S,≤), define

max(x, y) =
⎧⎪⎪⎨⎪⎪⎩

x if y ≤ x and
y if x < y.

We call max(x, y) the maximum of x and y. ◇
Explanation 10.2.2. A partially ordered set (S,≤) is also regarded as a category
with object set S and morphism sets

S(x, y) =
⎧⎪⎪⎨⎪⎪⎩

∗ if x ≤ y and
∅ otherwise.

Reflexivity gives the identity morphisms. Transitivity gives the composition. Un-
less otherwise specified, a partially ordered set is regarded as a category in this
way. Note that each nonempty morphism set has a unique element. ◇

Recall from Definition 1.3.32 that a permutative category is a strict symmetric
monoidal category.
Lemma 10.2.3. Suppose (S,≤) is a totally ordered set with a least element e. Then

(S, max, e)
is a permutative category, with symmetry isomorphism the identity.

Proof. The product max is well defined on morphisms because, if x ≤ x′ and y ≤ y′,
then

x ≤ x′ ≤max(x′, y′)
y ≤ y′ ≤max(x′, y′).

It follows that
max(x, y) ≤max(x′, y′).

On objects, the product max is associative, symmetric, and unital with respect to
e. The last unity property uses the assumption that e is the least element. The
associativity of max on morphisms, the functoriality of max, and the permutative
category axioms hold because each nonempty morphism set has only one element.

□

Definition 10.2.4. A totally ordered monoid is a tuple

(M, µ,1,≤)
consisting of

● a monoid (M, µ,1) in Set (Definition I.1.2.8) and
● a total ordering ≤ on M

such that

(10.2.5) x ≤ y implies xz ≤ yz and zx ≤ zy

for x, y, z ∈ M, where µ(x, y) is written as xy. ◇
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Example 10.2.6. Each of the tuples

(N,+, 0,≤), (R≥0,+, 0,≤), (N≥1,×, 1,≤), and (R≥1,×, 1,≤)
is a totally ordered monoid, with ≤ the usual ordering ofN orR. The subscript ≥ r
means the subset of N or R greater than or equal to r. ◇
Lemma 10.2.7. Suppose (M, µ,1,≤) is a totally ordered monoid. Then the following
statements hold for x, y ∈ M.

(1) Suppose that the unit 1 is also the least element with respect to ≤. If x, y /= 1,
then xy /= 1.

(2) If x ≤ y and x′ ≤ y′, then xx′ ≤ yy′.

Proof. For assertion (1), suppose x, y /= 1. Then

1 < x and 1 < y,

since 1 is the least element. If xy = 1, then the axiom (10.2.5), applied to 1 < x,
implies

y = 1y ≤ xy = 1.

Since
1 < y and y ≤ 1,

antisymmetry implies 1 = y, which is a contradiction. Therefore, xy /= 1, which
proves (1). Assertion (2) follows from transitivity and

xx′ ≤ xy′ ≤ yy′,

in which each ≤ is a result of the axiom (10.2.5). □

Recall from Explanation 10.1.13 that a 2-fold monoidal category has only one
exchange η1,2 = η. Moreover, the triple exchange axiom (10.1.7) is trivially satisfied
when n = 2. The following result is [FSS07, 4.3]; see also Note 10.11.5.
Proposition 10.2.8. Suppose (M, µ,1,≤) is a totally ordered monoid such that the unit
1 is also the least element with respect to ≤. Then the tuple

(M,⊗1 =max,⊗2 = µ,1, η)
is a 2-fold monoidal category, with each component of η the unique morphism.

Proof. We check that the data and axioms in Explanation 10.1.13 for a 2-fold mon-
oidal category hold for the tuple (M, max, µ,1, η). Recall that a morphism

x y ∈ M

exists, which must be unique, if and only if x ≤ y.
The first product. By Lemma 10.2.3, (M, max,1) is a permutative category,

which is, in particular, a strict monoidal category.
The second product. The monoid product µ is well defined on morphisms be-

cause, if x ≤ y and x′ ≤ y′, then
xx′ ≤ yy′

by Lemma 10.2.7 (2). On objects, µ is associative and unital with respect to 1 by
the monoid axioms. The associativity of µ on morphisms, the functoriality of µ,
and the strict monoidal category axioms for the tuple (M, µ,1) all follow from the
fact that each nonempty morphism set has a unique element.



II.280 10. ITERATED AND En-MONOIDAL CATEGORIES

The exchange. For elements a, b, c, d ∈ M, the exchange morphism

max(ab, cd) max(a, c)max(b, d)
ηa,b,c,d

exists because

(10.2.9) ab, cd ≤max(a, c)max(b, d)
by Lemma 10.2.7 (2). The naturality of η and the 2-fold monoidal category ax-
ioms (10.1.3)–(10.1.6) follow from the fact that each nonempty morphism set has a
unique element. □

Example 10.2.10. In each of the totally ordered monoids

(N,+, 0,≤), (R≥0,+, 0,≤), (N≥1,×, 1,≤), and (R≥1,×, 1,≤)
in Example 10.2.6, the unit is also the least element. By Proposition 10.2.8, each of
them yields a 2-fold monoidal category with

● ⊗1 =max with respect to the total ordering ≤ and
● ⊗2 the monoid product.

Moreover, in each case, ⊗1 /= ⊗2. Therefore, these 2-fold monoidal categories
do not correspond to braided strict monoidal categories in the sense of Proposi-
tion 10.1.14. ◇

10.3. Iterated Monoidal Functors

In this section, we discuss functors between n-fold monoidal categories, which
are called n-fold monoidal functors. This notion contains braided and symmetric
monoidal functors in the following sense.

● Proposition 10.3.11 shows that, between braided strict monoidal categor-
ies, which are also regarded as 2-fold monoidal categories via Proposi-
tion 10.1.14, a braided strictly unital monoidal functor is also a 2-fold
monoidal functor. The converse holds if the monoidal constraint is a nat-
ural isomorphism.
● Proposition 10.3.15 is the symmetric analogue. It involves symmetric

strictly unital monoidal functors and n-fold monoidal functors between
permutative categories, which are also regarded as n-fold monoidal cat-
egories via Proposition 10.1.21.

In Lemma 10.3.20, we check that n-fold monoidal functors are closed under com-
position. Therefore, there is a category MCatn with small n-fold monoidal categor-
ies as objects and n-fold monoidal functors as morphisms. In Section 10.4, we will
extend MCatn to a monoidal category and observe that its monoids are precisely
the small (n + 1)-fold monoidal categories.

Definition. Recall from Definition 1.3.7 the notion of a monoidal functor be-
tween monoidal categories. Also recall n-fold monoidal categories from Defini-
tion 10.1.1.
Definition 10.3.1. For n-fold monoidal categories

(C,{⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n) and (D,{⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n)
with n ≥ 1, an n-fold monoidal functor

(F,{F2
i }n

i=1) ∶ C D
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consists of the following data.

● F ∶ C D is a functor.
● For each 1 ≤ i ≤ n,

(10.3.2) FA⊗i FB F(A⊗i B)
(F2

i )A,B

is a natural transformation for objects A, B ∈ C, which is called the ith
monoidal constraint

These data are required to satisfy the following conditions.

Monoidality: For each 1 ≤ i ≤ n,

(F, F2
i ) ∶ (C,⊗i,1) (D,⊗i,1)

is a strictly unital monoidal functor.
The Exchange Constraint Axiom: The following diagram in D is commutative for

all A, B, C, D ∈ C and 1 ≤ i < j ≤ n.

(10.3.3)

(FA⊗j FB)⊗i (FC⊗j FD)

F(A⊗j B)⊗i F(C⊗j D) (FA⊗i FC)⊗j (FB⊗i FD)

F((A⊗j B)⊗i (C⊗j D)) F(A⊗i C)⊗j F(B⊗i D)

F((A⊗i C)⊗j (B⊗i D))

(F2
j )A,B ⊗i (F

2
j )C,D

(F2
i )A⊗j B,C⊗j D

Fη
i,j
A,B,C,D

η
i,j
FA,FB,FC,FD

(F2
i )A,C ⊗j (F

2
i )B,D

(F2
j )A⊗iC,B⊗i D

This finishes the definition of an n-fold monoidal functor. Moreover, an n-fold
monoidal functor is strong (respectively, strict) if each of its n monoidal constraints
is a natural isomorphism (respectively, an identity natural transformation). ◇
Explanation 10.3.4. Consider Definition 10.3.1 of an n-fold monoidal functor.

● The exchange constraint axiom (10.3.3) has the following symmetry. Each
arrow and its counterpart across the center involve the same type of struc-
ture morphisms. For example, the upper left arrow and the lower right
arrow both involve the jth monoidal constraint F2

j .

● Each F2
i is a natural transformation but not a natural isomorphism in gen-

eral.
● The condition that (F, F2

i ) is a strictly unital monoidal functor means that
the unit equalities

F(1) = 1
(F2

i )1,B = 1FB

(F2
i )A,1 = 1FA

(10.3.5)
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hold, and the associativity diagram

(10.3.6)

FA⊗i FB⊗i FC FA⊗i F(B⊗i C)

F(A⊗i B)⊗i FC F(A⊗i B⊗i C)

F2
i ⊗i1

1⊗i F
2
i

F2
i

F2
i

is commutative for objects A, B, C ∈ C.
● A strict n-fold monoidal functor is a functor that strictly preserves the

unit 1, the monoidal products {⊗i}1≤i≤n, and the exchanges {ηi,j}1≤i<j≤n
by the exchange constraint axiom (10.3.3). ◇

Example 10.3.7. A 1-fold monoidal functor between 1-fold monoidal categories is
precisely a strictly unital monoidal functor between strict monoidal categories. ◇
Example 10.3.8. Suppose C and D are (n + 1)-fold monoidal categories. As in
Example 10.1.10, suppose C′ and D′ are the n-fold monoidal categories obtained
from, respectively, C and D by forgetting the product ⊗n+1 and the natural trans-
formations ηi,n+1 for 1 ≤ i < n + 1. If

(F, F2
1 , . . . , F2

n , F2
n+1) ∶ C D

is an (n + 1)-fold monoidal functor, then

(F, F2
1 , . . . , F2

n) ∶ C′ D′

is an n-fold monoidal functor. ◇
Example 10.3.9. Suppose

I ⊆ {1, . . . , n}
is a nonempty subset with cardinality ∣I∣, and C and D are n-fold monoidal categor-
ies. As in Example 10.1.11, suppose C′ an D′ are the ∣I∣-fold monoidal categories
obtained from, respectively, C and D by retaining only the monoidal products ⊗i
and the exchanges ηi,j with i, j ∈ I. If

(F,{F2
i }n

i=1) ∶ C D

is an n-fold monoidal functor, then

(F,{F2
i }i∈I) ∶ C′ D′

is an ∣I∣-fold monoidal functor. ◇
Example 10.3.10. Suppose

F ∶ A B and G ∶ C D

are n-fold monoidal functors. Then their Cartesian product

F ×G ∶ A×C B×D

is an n-fold monoidal functor with

● A ×C and B ×D the Cartesian products of n-fold monoidal categories in
Example 10.1.12 and
● monoidal constraints defined componentwise by those of F and G. ◇
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Braided and 2-Fold Monoidal Functors. Recall from Definition 1.3.18 that
a braided monoidal functor is a monoidal functor that is also compatible with
the braidings, in the sense that the diagram (1.3.19) is commutative. In Proposi-
tion 10.3.11 below, we use Proposition 10.1.14 to identify braided strict monoidal
categories with a subclass of 2-fold monoidal categories, with the correspondence
given by (10.1.16) and (10.1.17). For braided strict monoidal categories, there are
two notions of functors, namely, braided monoidal functors and 2-fold monoidal
functors in Definition 10.3.1. The next observation identifies these notions of func-
tors with appropriate restrictions.
Proposition 10.3.11. Suppose (C,⊗,1, ξ⊗) and (D,⊗,1, ξ⊗) are braided strict monoidal
categories.

(1) Suppose
(F, F2) ∶ C D

is a braided strictly unital monoidal functor. Then

(10.3.12) (F, F2, F2) ∶ C D

is a 2-fold monoidal functor.
(2) Suppose (10.3.12) is a 2-fold monoidal functor with F2 a natural isomorphism.

Then
(F, F2) ∶ C D

is a braided strictly unital monoidal functor.

Proof. For assertion (1), we need to prove the exchange constraint axiom (10.3.3),
which asserts the commutativity of the outer diagram below. Since ⊗1 = ⊗2 in both
C and D, we abbreviate each product to concatenation.

(10.3.13)

(FA)(FB)(FC)(FD) (FA)(FC)(FB)(FD)

(FA)F(BC)(FD) (FA)F(CB)(FD)

F(AB)F(CD) F(AC)F(BD)

(FA)F(BCD) (FA)F(CBD)

F(ABCD) F(ACBD)

1ξ⊗1

F2F2

F2

F2F2

F2

F(1ξ⊗1)

1(Fξ⊗)1

1F21F2

1F(ξ⊗1)

1F21 1F21

F2 F2

(†)

(£) (£)

nat

nat

● Each of the left and the right trapezoids (£) is commutative by the asso-
ciativity of F2 in (10.3.6) twice, as proved in (9.2.17) (with⊕ there replaced
by ⊗1 here).
● The middle square and the bottom trapezoid are commutative by the nat-

urality of F2.
● The top trapezoid (†) is commutative by the compatibility (1.3.19) of F2

with the braidings.
Therefore, the diagram (10.3.13) is commutative, and (F, F2, F2) in (10.3.12) is a
2-fold monoidal functor.

For assertion (2), we assume that (F, F2, F2) in (10.3.12) is a 2-fold monoidal
functor with F2 a natural isomorphism. By assumption, (F, F2) is a strictly unital
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monoidal functor; that is, it satisfies (10.3.5) and (10.3.6). To see that F2 is compat-
ible with the braidings in the sense of (1.3.19), we reuse the diagram (10.3.13) and
observe the following.

● The outer diagram is commutative by the exchange constraint axiom
(10.3.3).
● The four subdiagrams labeled by (£) or nat are commutative, as ex-

plained in the previous paragraph.
Since F2 is assumed to be invertible, it follows that the top trapezoid (†) is com-
mutative. Setting A = D = 1 in (†) and using F(1) = 1, we infer that the diagram

(FB)(FC) (FC)(FB)

F(BC) F(CB)
F2

ξ⊗

F2

Fξ⊗

is commutative. Therefore, the desired diagram (1.3.19) is commutative. This
proves that (F, F2) ∶ C D is a braided strictly unital monoidal functor. □

Remark 10.3.14. In Proposition 10.3.11 (2), the invertibility assumption of F2 can
be replaced by the following weaker assumption:

F2 and 1F ⊗1 F2 are natural monomorphisms.
Indeed, with this weaker assumption, to show the commutativity of the subdia-
gram (†) in (10.3.13), we only need to show that its two composites become equal
after post-composition with the monomorphism

(FA)F(CB)(FD) F(ACBD)F2○(1F2)

in (10.3.13). The equality of these two longer composites follows from the commu-
tativity of the outer diagram in (10.3.13) and its four subdiagrams labeled by (£)
or nat. The same remark also applies to the symmetric case in Proposition 10.3.15
(2) below. ◇

Symmetric and n-Fold Monoidal Functors. A symmetric monoidal functor
in Definition 1.3.32 is a monoidal functor between symmetric monoidal categories
that is compatible with the symmetry isomorphisms, in the sense of (1.3.19). In
other words, a symmetric monoidal functor has the same definition as a braided
monoidal functor. In Proposition 10.3.15 below, we use Proposition 10.1.21 to iden-
tify permutative categories with a subclass of n-fold monoidal categories for n ≥ 2,
with the correspondence given by (10.1.17) and (10.1.23). For permutative cate-
gories, there are two notions of functors, namely, symmetric monoidal functors
and n-fold monoidal functors in Definition 10.3.1. The next observation identifies
these notions of functors with appropriate restrictions.
Proposition 10.3.15. Suppose (C,⊗,1, ξ⊗) and (D,⊗,1, ξ⊗) are permutative categories.

(1) Suppose
(F, F2) ∶ C D

is a symmetric strictly unital monoidal functor. Then

(10.3.16) (F,

n

F2, . . . , F2 ) ∶ C D
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is an n-fold monoidal functor for each n ≥ 2.
(2) Suppose (10.3.16) is an n-fold monoidal functor for some n ≥ 2, with F2 a natu-

ral isomorphism. Then

(F, F2) ∶ C D

is a symmetric strictly unital monoidal functor.

Proof. For assertion (1), (F, F2) is a braided strictly unital monoidal functor. The
diagram (10.3.13) proves that (F, F2, . . . , F2) satisfies the exchange constraint ax-
iom (10.3.3), so it is an n-fold monoidal functor.

For assertion (2), since n ≥ 2, (F, F2, F2) is a 2-fold monoidal functor as in
Example 10.3.8. Proposition 10.3.11 (2) shows that (F, F2) is a symmetric strictly
unital monoidal functor. □

Composition of Iterated Monoidal Functors.

Definition 10.3.17. Suppose C, D, and E are n-fold monoidal categories, and

C D E
(F,{F2

i }
n
i=1) (G,{G2

i }
n
i=1)

are n-fold monoidal functors. Their composite is defined as the tuple

(GF,{(GF)2i }n
i=1) ∶ C E

with each (GF)2i , for 1 ≤ i ≤ n, the natural transformation

(10.3.18)

GFA⊗i GFB G(FA⊗i FB) GF(A⊗i B)
(G2

i )FA,FB G(F2
i )A,B

((GF)2i )A,B

for objects A, B ∈ C ◇
Explanation 10.3.19. In Definition 10.3.17, for each 1 ≤ i ≤ n, (GF, (GF)2i ) is the
composite of the strictly unital monoidal functors

(C,⊗i,1) (D,⊗i,1) (E,⊗i,1)
(F,F2

i ) (G,G2
i )

as in Definition 1.3.12. Therefore, each (GF, (GF)2i ) is a strictly unital monoidal
functor, and composition of n-fold monoidal functors is strictly associative. More-
over, it has a two-sided strict unit given by the identity functor with identity mon-
oidal constraints. However, we still need to check that n-fold monoidal functors
are closed under composition. ◇
Lemma 10.3.20. The composite of two n-fold monoidal functors is an n-fold monoidal
functor. Moreover, composition preserves the strong (respectively, strict) property of n-
fold monoidal functors.

Proof. Using the notations in Definition 10.3.17, for each 1 ≤ i ≤ n,

(GF, (GF)2i ) ∶ (C,⊗i,1) (E,⊗i,1)

is a strictly unital monoidal functor. It remains to check the exchange constraint
axiom (10.3.3) for (GF,{(GF)2i }n

i=1), which asserts the commutativity of the outer
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diagram below.

(GFA⊗j GFB)⊗i (GFC⊗j GFD) (GFA⊗i GFC)⊗j (GFB⊗i GFD)

G(FA⊗j FB)⊗i G(FC⊗j FD) G(FA⊗i FC)⊗j G(FB⊗i FD)

GF(A⊗j B)⊗i GF(C⊗j D) GF(A⊗i C)⊗j GF(B⊗i D)

G[F(A⊗j B)⊗i F(C⊗j D)] G[F(A⊗i C)⊗j F(B⊗i D)]

GF[(A⊗j B)⊗i (C⊗j D)] GF[(A⊗i C)⊗j (B⊗i D)]

● ●

G2
j ⊗i G2

j

G(F2
j )⊗i G(F2

j )

G2
i

G(F2
i )

GFηi,j

ηi,j

G2
i ⊗j G2

i

G(F2
i )⊗j G(F2

i )

G2
j

G(F2
j )

G2
i

G(F2
j ⊗i F2

j )

Gηi,j
G2

j

G(F2
i ⊗j F2

i )

(10.3.3)

(10.3.3)

● The middle horizontal arrow is

G[(FA⊗j FB)⊗i (FC⊗j FD)] G[(FA⊗i FC)⊗j (FB⊗i FD)].
Gηi,j

● The left triangle is commutative by the naturality of G2
i .

● The right triangle is commutative by the naturality of G2
j .

● The top hexagon is commutative by the axiom (10.3.3) for G.
● The bottom hexagon is obtained from the exchange constraint axiom for

F by applying G, so it is commutative.
Therefore, the composite GF also satisfies the exchange constraint axiom, and it
is an n-fold monoidal functor. If both F and G are strong (respectively, strict),
then so is the composite GF because ((GF)2i )A,B in (10.3.18) is an isomorphism
(respectively, identity morphism). □

A subcategory is wide if it contains all the objects of the larger category.
Definition 10.3.21. For n ≥ 1,

MCatn

is defined as the category consisting of the following data.
● Its objects are small n-fold monoidal categories in Definition 10.1.1.
● Its morphisms are n-fold monoidal functors in Definition 10.3.1.
● The identity morphism of each small n-fold monoidal category is the

identity functor with identity monoidal constraints.
● Composition is as in Definition 10.3.17.

Moreover, MCatn
sg (respectively, MCatn

st) is the wide subcategory of MCatn with
strong (respectively, strict) n-fold monoidal functors as morphisms. ◇

MCatn, MCatn
sg, and MCatn

st are well-defined categories by Lemma 10.3.20.

Example 10.3.22. Continuing Examples 10.1.9 and 10.3.7, MCat1 is the category
with small strict monoidal categories as objects and strictly unital monoidal func-
tors as morphisms. ◇

We emphasize that MCatn has small n-fold monoidal categories as its objects.
The smallness condition is necessary to ensure that, for each pair of small n-fold
monoidal categories, there is only a set of n-fold monoidal functors between them.



10.4. MONOIDS IN ITERATED MONOIDAL CATEGORIES II.287

10.4. Monoids in Iterated Monoidal Categories

In this section, we study monoids in the category MCatn in Definition 10.3.21.

● Lemma 10.4.2 extends the Cartesian product to the category MCatn to
make it into a monoidal category.
● Theorem 10.4.5 observes that the monoids in MCatn are precisely the

small (n+ 1)-fold monoidal categories in Definition 10.1.1. It follows that
k-fold monoids in MCatn are precisely the small (n+ k)-fold monoidal cat-
egories. This observation provides a conceptual understanding of n-fold
monoidal categories as iterated monoids.
● Proposition 10.4.13 observes that monoid morphisms in MCatn are

stricter than (n + 1)-fold monoidal functors. It may be slightly disap-
pointing that monoid morphisms in MCatn are not precisely (n + 1)-fold
monoidal functors. In this regard, one may think of n-fold monoidal
functors as the correct notions of morphisms that yield the identification
of monoids in MCatn with small (n + 1)-fold monoidal categories.

Convention 10.4.1. Denote by (Cat,×, 1) the monoidal category with

● Cat the category of small categories and functors,
● × the Cartesian product, and
● 1 the terminal category with one object ∗ and its identity morphism. ◇

Lemma 10.4.2. The data

(MCatn,×, 1)
form a monoidal category for each n ≥ 1.

Proof. The terminal category 1 has a unique n-fold monoidal category structure.
The Cartesian products × of n-fold monoidal categories and n-fold monoidal func-
tors are defined componentwise, as discussed in, respectively, Examples 10.1.12
and 10.3.10. This is a well-defined functor because it is defined componentwise.

The functor parts of the associativity isomorphism α, the left unit isomorphism
λ, and the right unit isomorphism ρ are those in the monoidal category (Cat,×, 1).

● Each component of α is the identity functor with identity monoidal con-
straints. So it is an n-fold monoidal functor, and α is a natural isomor-
phism. Moreover, the pentagon axiom (1.3.3) holds.
● Each component of λ, say,

λC ∶ 1 ×C C,

drops the 1 component on the left, and has identity monoidal constraints
in the C component. So each λC is an n-fold monoidal functor, and λ is
a natural isomorphism. Similarly, ρ is a natural isomorphism. Moreover,
the unity axiom (1.3.2) holds.

This shows that (MCatn,×, 1) is a monoidal category. □

Monoids in MCatn. Recall from Definition 1.3.6 that a monoid in a monoidal
category (C,⊗,1, α, λ, ρ) consists of an object A and structure morphisms

A⊗ A A 1,
µ η
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which are called, respectively, the multiplication and the unit. The unity diagram

(10.4.3)
1⊗ A A⊗ A A⊗1

A A A

η⊗1

λA µ

1⊗η

ρA

and the associativity diagram

(10.4.4)
(A⊗ A)⊗ A A⊗ (A⊗ A) A⊗ A

A⊗ A A

µ⊗1

α 1⊗µ

µ

µ

are required to be commutative.
Theorem 10.4.5. Monoids in the monoidal category (MCatn,×, 1) are precisely small
(n + 1)-fold monoidal categories.

Proof. In terms of data, a monoid in MCatn consists of
● a small n-fold monoidal category

(C,{⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n)

as in Definition 10.1.1,
● a unit n-fold monoidal functor

(10.4.6) (ε,{ε2
i }1≤i≤n) ∶ 1 C

as in Definition 10.3.1, and
● a multiplication n-fold monoidal functor

(10.4.7) (⊗n+1,{ηi,n+1}1≤i≤n) ∶ C×C C.

The unity diagram

(10.4.8)
1 ×C C×C C× 1

C C C

≅

(ε,{ε2
i })×1

(⊗n+1,{ηi,n+1})

1×(ε,{ε2
i })

≅

and the associativity diagram

(10.4.9)

C×C×C C×C

C×C C

1× (⊗n+1,{ηi,n+1})

(⊗n+1,{ηi,n+1})(⊗n+1,{ηi,n+1})× 1
(⊗n+1,{ηi,n+1})

in MCatn are required to be commutative. We will unpack the above data and
axioms and observe that they constitute precisely a small (n + 1)-fold monoidal
category

(10.4.10) (C,{⊗i}1≤i≤n+1,1,{ηi,j}1≤i<j≤n+1).

First we unpack the data (10.4.6) and (10.4.7). By Definition 10.3.1, the unit
n-fold monoidal functor (10.4.6) consists of
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● a functor
ε ∶ 1 C,

that is, an object ε(∗) ∈ C, and
● for each 1 ≤ i ≤ n, a morphism

ε(∗)⊗i ε(∗) ε(∗) ∈ C,
ε2

i

since 1 has only the identity morphism of ∗.
These data satisfy the following conditions.
Monoidality: The unit equalities (10.3.5) are as follows.

ε(∗) = 1
ε2

i = 11
The associativity diagram (10.3.6) imposes no conditions on

(ε = 1, ε2
i = 11),

since it already holds in the strict monoidal category (C,⊗i,1).
The Exchange Constraint Axiom: The commutative diagram (10.3.3) imposes no

conditions. Indeed, the left side of that diagram consists of three identity
morphisms. The right side consists of η

i,j
1,1,1,1, which is an identity mor-

phism by the internal unity axiom (10.1.3) in C, and two identity mor-
phisms. Therefore, each of the two composites is the identity morphism.

By Definition 10.3.1, the multiplication n-fold monoidal functor (10.4.7) con-
sists of

● a functor
⊗n+1 ∶ C×C C

and
● for each 1 ≤ i ≤ n, a natural transformation

(A⊗n+1 B)⊗i (A′ ⊗n+1 B′) (A⊗i A′)⊗n+1 (B⊗i B′)
ηi,n+1
(A,B),(A′ ,B′)

for objects A, B, A′, B′ ∈ C. We will omit the parentheses in the subscript
of ηi,n+1.

These data satisfy the following conditions.
Monoidality: The unit equalities (10.3.5) are as follows.

1⊗n+1 1 = 1(10.4.11a)

ηi,n+1
1,1,A,B = 1A⊗n+1B = ηi,n+1

A,B,1,1(10.4.11b)

The condition (10.4.11b) is the internal unity axiom (10.1.3) for 1 ≤ i < j =
n + 1.

The associativity diagram (10.3.6) for (⊗n+1, ηi,n+1) is the internal as-
sociativity axiom (10.1.5) for 1 ≤ i < j = n + 1.

The Exchange Constraint Axiom: The commutative diagram (10.3.3) for the n-
fold monoidal functor

(⊗n+1,{ηi,n+1}1≤i≤n)
is the triple exchange axiom (10.1.7) for 1 ≤ i < j < k = n + 1.
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Next we unpack the axioms (10.4.8) and (10.4.9).

Monoid Unity: The commutativity of the unity diagram (10.4.8) in Cat means the
equalities

1⊗n+1 A = A = A⊗n+1 1

11 ⊗n+1 f = f = f ⊗n+1 11
(10.4.12)

for objects A and morphisms f ∈ C. In other words, the unit 1 ∈ C is
naturally a strict two-sided unit for ⊗n+1, as well as ⊗i for 1 ≤ i ≤ n. Note
that the first equality in (10.4.12) subsumes (10.4.11a).

In terms of the monoidal constraints (10.3.2), the commutativity of
the unity diagram (10.4.8) means the equalities

ηi,n+1
1,A,1,B = 1A⊗i B = ηi,n+1

A,1,B,1,

which form the external unity axiom (10.1.4) for 1 ≤ i < j = n + 1.
Monoid Associativity: The commutativity of the associativity diagram (10.4.9) in

Cat means that ⊗n+1 is strictly associative. So (C,⊗n+1,1) is a strict mon-
oidal category.

In terms of the monoidal constraints, the commutativity of (10.4.9) is
the external associativity axiom (10.1.6) for 1 ≤ i < j = n + 1.

Therefore, the data in (10.4.10) form a small (n + 1)-fold monoidal category.
Conversely, given a small (n + 1)-fold monoidal category as in (10.4.10), we

reuse the argument above to infer that it yields a monoid in MCatn. □

Monoid Morphisms in MCatn. In a monoidal category (C,⊗,1, α, λ, ρ), recall
that a morphism

f ∶ (A, µ, η) (B, µ, η)
of monoids is a morphism f ∶ A B in C such that the compatibility diagrams

A⊗ A B⊗ B

A B

µ

f⊗ f

µ

f

1 A

1 B

η

f
η

in C are commutative. The next observation shows that morphisms of monoids
in MCatn are, in general, strictly stronger than (n + 1)-fold monoidal functors. We
use Theorem 10.4.5 to identify monoids in (MCatn,×, 1) with small (n + 1)-fold
monoidal categories.

Proposition 10.4.13. A morphism of monoids in (MCatn,×, 1) is precisely an (n + 1)-
fold monoidal functor

(F,{F2
i }1≤i≤n+1)

such that F2
n+1 is the identity.

Proof. Suppose C and D are monoids in MCatn, that is, small (n+ 1)-fold monoidal
categories. A monoid morphism C D consists of a morphism in MCatn, that
is, an n-fold monoidal functor

(F, F2
1 , . . . , F2

n) ∶ C D
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such that the compatibility diagrams

(10.4.14)
1 C

1 D

ε

(F,{F2
i })

ε

and

(10.4.15)

C×C D×D

C D

(F,{F2
i })× (F,{F2

i })

(⊗n+1,{ηi,n+1})(⊗n+1,{ηi,n+1})
(F,{F2

i })

in MCatn are commutative.
Considering the equalities of functors and monoidal constraints, the commu-

tative diagram (10.4.14) is equivalent to the following equalities for 1 ≤ i ≤ n.

F(1) = 1
F(11) = 11 = (F2

i )1,1

These equalities hold by the functoriality of F and the fact that (F, F2
i ) is a strictly

unital monoidal functor (10.3.5). So they impose no restrictions on (F,{F2
i }1≤i≤n).

Next, consider the commutative diagram (10.4.15).

● In terms of functors, this commutative diagram means the equality

FA⊗n+1 FB = F(A⊗n+1 B)

with A, B ∈ C both objects or both morphisms. So we may define the
(n + 1)st monoidal constraint (10.3.2)

⊗n+1 ○ (F × F) F ○⊗n+1
F2

n+1

for F as the identity natural transformation. The pair

(F, F2
n+1 = 1) ∶ (C,⊗n+1,1) (D,⊗n+1,1)

is a strictly unital monoidal functor because the unit equalities (10.3.5)
hold and the associativity diagram (10.3.6) is commutative.
● In terms of the n monoidal constraints, the commutativity of (10.4.15) is

the exchange constraint axiom (10.3.3) for 1 ≤ i < j = n + 1, where we use
F2

n+1 = 1.

Therefore,

(10.4.16) (F, F2
1 , . . . , F2

n , F2
n+1 = 1) ∶ C D

is an (n + 1)-fold monoidal functor.
Conversely, if (10.4.16) is an (n + 1)-fold monoidal functor, then the argument

above shows that (F,{F2
i }1≤i≤n) is a morphism of monoids in MCatn. □
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10.5. Free Iterated Monoidal Categories

Recall from Definition 10.3.1 that MCatn
st is the category with small n-fold mon-

oidal categories as objects and strict n-fold monoidal functors as morphisms. With
Cat denoting the category of small categories and functors, there is a forgetful
functor

(10.5.1) MCatn
st Cat

U

that forgets about the n-fold monoidal structure in objects and the identity mon-
oidal constraints in morphisms. In this section, we discuss the left adjoint FMonn

of this forgetful functor, which is the free n-fold monoidal category functor, in
Proposition 10.5.9. In Theorem 10.5.18, we observe that the free n-fold monoidal
category of a small category splits in Cat into smaller pieces involving the categor-
ies Monn(k) in Definition 10.5.13.

Free n-Fold Monoidal Categories. First we define the free n-fold monoidal
category of a small category.

Definition 10.5.2. Suppose C is a small category. Define the data of an n-fold
monoidal category

FMonn(C)
as follows.

Objects: The objects in FMonn(C) are defined as follows.
● Each object in C is also an object in FMonn(C).
● FMonn(C) is equipped with a unit object 1 that is not in C.
● Inductively, if X and Y are objects in FMonn(C), then so are

X⊗i Y for 1 ≤ i ≤ n.

These objects are subject to the relations that, for 1 ≤ i ≤ n,
● ⊗i is strictly associative on objects, and
● 1 is the strict two-sided unit for ⊗i.

Morphisms: The morphisms in FMonn(C) are defined as follows.
● Each morphism in C is a morphism in FMonn(C).
● Each object A ∈ FMonn(C) is equipped with an identity morphism

A A,
1A

which is the identity morphism 1A ∈ C if A ∈ C.
● For objects A, B, C, D ∈ FMonn(C) and 1 ≤ i < j ≤ n, FMonn(C) is

equipped with a morphism

(10.5.3) (A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D),
η

i,j
A,B,C,D

which is called the (i, j)-exchange.
● Inductively, if

f ∶ A B, g ∶ B C, and f ′ ∶ A′ B′
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are morphisms in FMonn(C), then so are

A⊗i A′ B⊗i B′

A C

f⊗i f ′

g f

for 1 ≤ i ≤ n, with g f , which is called the composite, the composite in
C if f , g ∈ C.

These morphisms are subject to the relations (i)–(v) below.
(i) Composition is strictly associative and unital with respect to identity

morphisms.
(ii) Each ⊗i preserves identity morphisms and composition.

(iii) Each⊗i is strictly associative on morphisms with 11 as the strict two-
sided unit.

(iv) For 1 ≤ i < j ≤ n and morphisms

fX ∶ X X′ ∈ FMonn(C) with X ∈ {A, B, C, D},

the diagram

(10.5.4)

(A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)

(A′ ⊗j B′)⊗i (C′ ⊗j D′) (A′ ⊗i C′)⊗j (B′ ⊗i D′)

( fA⊗j fB)⊗i( fC⊗j fD)

η
i,j
A,B,C,D

( fA⊗i fC)⊗j( fB⊗i fD)
η

i,j
A′ ,B′ ,C′ ,D′

in FMonn(C) is commutative.
(v) The unity, associativity, and exchange axioms (10.1.3)–(10.1.7) hold

for objects in FMonn(C).
This finishes the definition of FMonn(C). ◇
Explanation 10.5.5. Consider Definition 10.5.2.

● An object in FMonn(C) is either the unit 1 or a finite {⊗i}n
i=1-product of

objects in C.
● Relation (ii), which states that ⊗i preserves identity morphisms and com-

position, means the equalities

1X ⊗i 1Y = 1X⊗iY

g f ⊗i g′ f ′ = (g⊗i g′)( f ⊗i f ′)

for objects X, Y and morphisms f , g, f ′, g′ in FMonn(C), assuming that the
composites in the second equality are defined. By these equalities, each
morphism in FMonn(C) is a finite composite of finite {⊗i}n

i=1-products of
morphisms in C and the exchanges {ηi,j}i<j in (10.5.3).
● The strict associativity and unity of each ⊗i mean the equalities

{
(X⊗i Y)⊗i Z = X⊗i (Y⊗i Z)
( f ⊗i g)⊗i h = f ⊗i (g⊗i h)

{
1⊗i X = X = X⊗i 1

11 ⊗i f = f = f ⊗i 11

for objects X, Y, Z and morphisms f , g, h in FMonn(C). ◇
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Example 10.5.6. In FMonn(C), since each ⊗i is strictly associative, parentheses are
not necessary for an iterated product involving ⊗i for only one i. For example, for
objects A1, . . . , A9 ∈ C, the expression

(A1 ⊗1 A2 ⊗1 A3)⊗3 (A4 ⊗2 A5)⊗3 A6 ⊗3 (A7 ⊗1 (A8 ⊗3 A9))

is an object in FMonn(C), and similarly if the Ai’s are morphisms in FMonn(C). ◇
Lemma 10.5.7. For each small category C, FMonn(C) in Definition 10.5.2 is an n-fold
monoidal category.

Proof. The relations (i)–(v) refer to those in Definition 10.5.2.

● FMonn(C) is a category by relation (i).
● For 1 ≤ i ≤ n,

FMonn(C)× FMonn(C) FMonn(C)⊗i

is a functor by relation (ii).
● For 1 ≤ i ≤ n,

(FMonn(C),⊗i,1)
is a strict monoidal category by the strict associativity and unity of ⊗i on
objects and relation (iii).
● For 1 ≤ i < j ≤ n, the exchange ηi,j in (10.5.3) is a natural transformation

by relation (iv).

The n-fold monoidal category axioms hold in FMonn(C) by relation (v). □

Free n-Fold Monoidal Category Functor. Next we define what FMonn does
to functors.

Definition 10.5.8. Suppose F ∶ C D is a functor between small categories. De-
fine the data of a functor

FMonn(F) = F ∶ FMonn(C) FMonn(D)

as follows.

Objects: The object assignment of F is defined as follows.
● The restriction of F to Ob(C) is F.
● F1 = 1.
● Inductively, if A, B ∈ FMonn(C) are objects with FA, FB ∈ FMonn(D)

already defined, then

F(A⊗i B) = FA⊗i FB for 1 ≤ i ≤ n.

Morphisms: The morphism assignment of F is defined as follows.
● The restriction of F to the morphisms in C is F.
● On identity morphisms and the exchanges,

F1A = 1FA

Fη
i,j
A,B,C,D = η

i,j
FA,FB,FC,FD

for objects A, B, C, D ∈ FMonn(C) and 1 ≤ i < j ≤ n.
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● Inductively, if f , g, f ′ ∈ FMonn(C) are morphisms with g f defined
and F f , Fg, and F f ′ already defined, then

F( f ⊗i f ′) = F f ⊗i F f ′

F(g f ) = (Fg)(F f ).
This finishes the definition of FMonn(F). ◇
Proposition 10.5.9. Definitions 10.5.2 and 10.5.8 define a functor

FMonn ∶ Cat MCatn
st

that is the left adjoint in the adjunction

(10.5.10) Cat MCatn
st

FMonn

U

with U the forgetful functor in (10.5.1).

Proof. For a functor F ∶ C D between small categories,

FMonn(F) = F ∶ FMonn(C) FMonn(D)
in Definition 10.5.8 is a well-defined functor by

● the functoriality of F and
● the fact that FMonn(D) also satisfies the relations in Definition 10.5.2.

Equipped with identity monoidal constraints, F is a strict n-fold monoidal functor
as in Definition 10.3.1 because it strictly preserves each monoidal product ⊗i, the
unit 1, and each exchange ηi,j. In particular, the exchange constraint axiom (10.3.3)
is precisely the strict preservation of ηi,j by F. It also follows from Definition 10.5.8
that

FMonn ∶ Cat MCatn
st

is a functor.
To see that FMonn is left adjoint to U, suppose

G ∶ C UD

is a functor with
● C a small category and
● D a small n-fold monoidal category.

We must show that G admits a unique extension to a strict n-fold monoidal functor

G ∶ FMonn(C) D.

Since G is to extend G, we must define

GA = GA

G f = G f

for objects A and morphisms f in C. Since G is to be a strict n-fold monoidal
functor, G must strictly preserve identity morphisms, composites, the unit 1, the
monoidal products {⊗i}n

i=1, and the exchanges {ηi,j}1≤i<j≤n by the exchange con-
straint axiom (10.3.3). So G is unique. It is well defined because all the relations
that define FMonn(C) in Definition 10.5.2 also hold in the n-fold monoidal category
D. □
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Definition 10.5.11. The functor

FMonn ∶ Cat MCatn
st

is called the free n-fold monoidal category functor. ◇
Example 10.5.12. Suppose S is a set, which is also regarded as a discrete category
with only identity morphisms. The morphisms in FMonn(S) are generated under
{⊗i}n

i=1 and composites by

● the identity morphisms 1x for x ∈ S and
● the exchanges

(A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)
η

i,j
A,B,C,D

in (10.5.3) for A, B, C, D ∈ FMonn(S) and 1 ≤ i < j ≤ n.

In particular, FMonn(∅) is the terminal category. ◇

Decomposition of Free Iterated Monoidal Categories. Next we discuss a de-
composition of the free n-fold monoidal category of a small category that uses the
following categories.

Definition 10.5.13. Suppose S is a totally ordered finite set with k ≥ 0 elements,
which is also regarded as a discrete category.

● For n ≥ 1, define the full subcategory

(10.5.14) Monn(S) ⊂ FMonn(S)

in which each object can be written as an iterated {⊗i}n
i=1-product with

each element in S occurring precisely once.
● Define a Σk-action on Monn(S) by letting each permutation in Σk

– permute the elements in S from the right and
– change the subscripts in each generating morphism ηi,j accordingly.

Moreover, define the category

Monn(k) =Monn({1, . . . , k})

as above with S = {1, . . . , k}. ◇
Example 10.5.15. Each of

Monn(0) = {1} and Monn(1) = {1}

is the terminal category. For k ≥ 1, Monn(k) is not an n-fold monoidal subcategory
of FMonn{1, . . . , k}. ◇
Example 10.5.16. Monn(2) consists of the objects

1⊗i 2 and 2⊗i 1 for 1 ≤ i ≤ n.
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By the internal and external unity axioms (10.1.3) and (10.1.4), the morphisms in
Monn(2) are generated under composites by the exchanges

(τ(1)⊗j 1)⊗i (1⊗j τ(2)) (τ(1)⊗i 1)⊗j (1⊗i τ(2))

τ(1)⊗i τ(2) τ(1)⊗j τ(2)

(1⊗j τ(1))⊗i (τ(2)⊗j 1) (1⊗i τ(2))⊗j (τ(1)⊗i 1)

τ(1)⊗i τ(2) τ(2)⊗j τ(1)

η
i,j
τ(1),1,1,τ(2)

η
i,j
1,τ(1),τ(2),1

for 1 ≤ i < j ≤ n and τ ∈ Σ2. The right Σ2-action on the above exchanges is given by

θ(ηi,j
τ(1),1,1,τ(2)) = η

i,j
θτ(1),1,1,θτ(2)

θ(ηi,j
1,τ(1),τ(2),1) = η

i,j
1,θτ(1),θτ(2),1

for θ ∈ Σ2. ◇
Example 10.5.17. Monn(3) consists of the objects

(σ(1)⊗i σ(2))⊗k σ(3) and σ(1)⊗i (σ(2)⊗k σ(3))
for i, k ∈ {1, . . . , n} and σ ∈ Σ3. The morphisms in Monn(3) are generated under
composites by the following morphisms for 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, and σ ∈ Σ3.

(σ(1)⊗i σ(2))⊗k σ(3) (σ(1)⊗j σ(2))⊗k σ(3)

(σ(1)⊗i σ(2))⊗k σ(3) (σ(2)⊗j σ(1))⊗k σ(3)

σ(1)⊗k (σ(2)⊗i σ(3)) σ(1)⊗k (σ(2)⊗j σ(3))

σ(1)⊗k (σ(2)⊗i σ(3)) σ(1)⊗k (σ(3)⊗j σ(2))

η
i,j
σ(1),1,1,σ(2) ⊗k 1σ(3)

η
i,j
1,σ(1),σ(2),1 ⊗k 1σ(3)

1σ(1) ⊗k η
i,j
σ(2),1,1,σ(3)

1σ(1) ⊗k η
i,j
1,σ(2),σ(3),1

(σ(1)⊗k σ(2))⊗i σ(3) (σ(1)⊗k σ(2))⊗j σ(3)

(σ(1)⊗k σ(2))⊗i σ(3) σ(3)⊗j (σ(1)⊗k σ(2))

σ(1)⊗i (σ(2)⊗k σ(3)) σ(1)⊗j (σ(2)⊗k σ(3))

σ(1)⊗i (σ(2)⊗k σ(3)) (σ(2)⊗k σ(3))⊗j σ(1)

η
i,j
(σ(1)⊗kσ(2)),1,1,σ(3)

η
i,j
1,(σ(1)⊗kσ(2)),σ(3),1

η
i,j
σ(1),1,1,(σ(2)⊗kσ(3))

η
i,j
1,σ(1),(σ(2)⊗kσ(3)),1

((σ(1)⊗j σ(2))⊗i σ(3) (σ(1)⊗i σ(3))⊗j σ(2)

((σ(1)⊗j σ(2))⊗i σ(3) σ(1)⊗j (σ(2)⊗i σ(3))

σ(1)⊗i (σ(2)⊗j σ(3)) (σ(1)⊗i σ(2))⊗j σ(3)

σ(1)⊗i (σ(2)⊗j σ(3)) σ(2)⊗j (σ(1)⊗i σ(3))

η
i,j
σ(1),σ(2),σ(3),1

η
i,j
σ(1),σ(2),1,σ(3)

η
i,j
σ(1),1,σ(2),σ(3)

η
i,j
1,σ(1),σ(2),σ(3)

● In the first group, each morphism has the form ηi,j ⊗k 1 or 1⊗k ηi,j.



II.298 10. ITERATED AND En-MONOIDAL CATEGORIES

● In the second group, each morphism has a subscript that is a ⊗k-product.
● In the third group, each morphism has one subscript given by 1.

For θ ∈ Σ3, the right θ-action is given by

θ(ηi,j
σ(1),1,1,σ(2) ⊗k 1σ(3)) = η

i,j
θσ(1),1,1,θσ(2) ⊗k 1θσ(3)

θ(ηi,j
σ(1)⊗kσ(2),1,1,σ(3)) = η

i,j
θσ(1)⊗kθσ(2),1,1,θσ(3)

θ(ηi,j
σ(1),σ(2),σ(3),1) = η

i,j
θσ(1),θσ(2),θσ(3),1

and similarly for the other generating morphisms. ◇
The next result is a decomposition of the free n-fold monoidal category of a

small category.
Theorem 10.5.18. There is a natural isomorphism of categories

(10.5.19) ∐
k≥0

Monn(k)×Σk C
×k FMonn(C)

ϕC

≅

for small categories C that extends the isomorphism

Monn(1)×C ≅ C,

where Σk acts on C×k by permuting the k entries.

Proof. Pick a small category C and write ϕ for ϕC. We first define ϕ for k = 0, 1.
● For k = 0, ϕ sends the unique object and morphism in Monn(0) × ∗ to,

respectively, the unit 1 and the identity morphism 11 in FMonn(C).
● For k = 1, the restriction of ϕ to Monn(1)×C is the isomorphism

Monn(1)×C = {1}×C C
≅

followed by the inclusion into FMonn(C).
Next we consider the case k ≥ 2.

Objects. A typical element

P(1, . . . , k) ∈Monn(k)
is an iterated {⊗i}n

i=1-product with each element in {1, . . . , k} occurring precisely
once. For objects Ai ∈ C for 1 ≤ i ≤ k, define

(10.5.20) ϕ(P(1, . . . , k);{Ai}k
i=1) = P(A1, . . . , Ak) ∈ FMonn(C),

which is obtained from P(1, . . . , k) by replacing each i ∈ {1, . . . , k} with Ai. For
example, for i, k ∈ {1, . . . , n} and σ ∈ Σ3,

ϕ((σ(1)⊗i σ(2))⊗k σ(3);{Ai}3
i=1) = (Aσ(1) ⊗i Aσ(2))⊗k Aσ(3).

The formula (10.5.20) is well defined on the objects in Monn(k)×Σk C
×k because

(10.5.21) ϕ(P(θ(1), . . . , θ(k));{Aθ−1(i)}
k
i=1) = P(A1, . . . , Ak)

for θ ∈ Σk.
Morphisms. A typical morphism

f (1, . . . , k) ∶ P(1, . . . , k) Q(1, . . . , k) ∈Monn(k)
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is a finite composite of iterated {⊗i}n
i=1-product of identity morphisms and ex-

changes {ηi,j}1≤i<j≤n. For morphisms

gi ∶ Ai Bi ∈ C for 1 ≤ i ≤ k,

define

(10.5.22) ϕ( f (1, . . . , k);{gi}k
i=1) ∶ P(A1, . . . , Ak) Q(B1, . . . , Bk)

as either composite in the diagram

(10.5.23)
P(A1, . . . , Ak) Q(A1, . . . , Ak)

P(B1, . . . , Bk) Q(B1, . . . , Bk)

f(A1,...,Ak)

P(g1,...,gk) Q(g1,...,gk)

f(B1,...,Bk)

in FMonn(C), which is commutative by repeated applications of (10.5.4). For ex-
ample, for the first generating morphism in Example 10.5.17, the morphism

ϕ(ηi,j
σ(1),1,1,σ(2) ⊗k 1σ(3);{gi}k

i=1)

is the composite

(Aσ(1) ⊗i Aσ(2))⊗k Aσ(3) (Aσ(1) ⊗j Aσ(2))⊗k Aσ(3)

(Bσ(1) ⊗j Bσ(2))⊗k Bσ(3)

η
i,j
Aσ(1),1,1,Aσ(2)

⊗k 1

(gσ(1) ⊗j gσ(2))⊗k gσ(3)

in FMonn(C). Similar to (10.5.21), the definition (10.5.22) respects the Σk-action on
Monn(k) and C×k.

The morphism (10.5.22) is independent of the choice of a decomposition of the
morphism f (1, . . . , k) into a finite composite of iterated {⊗i}n

i=1-product of identity
morphisms and exchanges {ηi,j}1≤i<j≤n. Indeed, any two such decompositions of
f (1, . . . , k) can be transformed into each other by applying the relations (i)–(v) in
Definition 10.5.2 finitely many times. The two corresponding decompositions of
f (A1, . . . , Ak) ∈ FMonn(C) are equal because FMonn(C) also satisfies those five
relations.

Functoriality. To see that ϕ is a functor, first note that it preserves identity
morphisms because, if f (1, . . . , k) and each gi are identity morphisms, then the
morphism in (10.5.22) is the composite of two identity morphisms.

To see that ϕ preserves composites, suppose

f ′(1, . . . , k) ∶ Q(1, . . . , k) R(1, . . . , k) ∈Monn(k) and

g′i ∶ Bi Ci ∈ C for 1 ≤ i ≤ k

are morphisms. Consider the diagram

(10.5.24)

P(A1, . . . , Ak) Q(A1, . . . , Ak) R(A1, . . . , Ak)

Q(B1, . . . , Bk) R(B1, . . . , Bk)

R(C1, . . . , Ck)

f(A1,...,Ak) f ′(A1,...,Ak)

Q(g1,...,gk) R(g1,...,gk)

f ′(B1,...,Bk)

R(g′1,...,g′k)
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in FMonn(C).
● The square is commutative by repeated applications of (10.5.4).
● By the functoriality of each ⊗i in FMonn(C), there is an equality

R(g′1g1, . . . , g′kgk) = R(g′1, . . . , g′k) ○ R(g1, . . . , gk).

So the top-right composite in (10.5.24) is the morphism

ϕ( f ′(1, . . . , k) f (1, . . . , k);{g′i gi}k
i=1).

● The other composite in (10.5.24) is the morphism

ϕ( f ′(1, . . . , k);{g′i}k
i=1) ○ ϕ( f (1, . . . , k);{gi}k

i=1).

This shows that ϕ preserves composites and is a functor.
Naturality. The naturality of ϕC with respect to the small category C means the

commutativity of the diagram

(10.5.25)

∐
k≥0

Monn(k)×Σk C
×k FMonn(C)

∐
k≥0

Monn(k)×Σk D
×k FMonn(D)

∐k Id×Σk
F×k

ϕC

FMonn(F)

ϕD

for a functor F ∶ C D between small categories. This diagram is commutative
by

● the definition of ϕ, namely, (10.5.20) and (10.5.23), and
● Definition 10.5.8 of FMonn(F), with the unit 1, identity morphisms, com-

posites, {⊗i}n
i=1, and {ηi,j}1≤i<j≤n all strictly preserved.

Indeed, each composite in (10.5.25) sends

● the object (P(1, . . . , k);{Ai}k
i=1) to P(FA1, . . . , FAk) and

● the morphism ( f (1, . . . , k);{gi}k
i=1) to the composite

P(FA1, . . . , FAk) Q(FA1, . . . , FAk)

Q(FB1, . . . , FBk)

f (FA1, . . . , FAk)

Q(Fg1, . . . , Fgk)

in FMonn(D).
Invertibility. It remains to observe that the functor

∐
k≥0

Monn(k)×Σk C
×k FMonn(C)ϕ

is a bijection on objects and morphisms.
● The assignment of ϕ on objects, for k ∈ {0, 1} and in (10.5.20) for k ≥ 2,

identifies the objects in its domain and codomain. In each case, the objects
consist of the unit 1, the objects in C, and the iterated {⊗i}n

i=1-products
involving k ≥ 2 objects in C, with each ⊗i strictly associative and with 1
as the strict two-sided unit.
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● Similarly, the assignment of ϕ on morphisms, for k ∈ {0, 1} and in (10.5.22)
for k ≥ 2, identifies the generating morphisms and relations in its domain
and codomain.

This finishes the proof. □

Example 10.5.26. Taking C as the terminal category 1, there are isomorphisms of
categories

FMonn(1) ≅∐
k≥0

Monn(k)×Σk 1×k

≅∐
k≥0

Monn(k)/Σk.

This is the free n-fold monoidal category on one object ◇
Example 10.5.27. For each small n-fold monoidal category C, the counit of the
adjunction FMonn ⊣ U in (10.5.10) is a strict n-fold monoidal functor

FMonn(UC) C.

Combining this with the isomorphism ϕUC in (10.5.19) and using the notation in
(10.5.20)–(10.5.23) yield the following evaluation functors θk for k ≥ 0.

(10.5.28)

Monn(k)×Σk C
×k C

(P(1, . . . , k);{Ai}k
i=1) P(A1, . . . , Ak)

( f (1, . . . , k);{gi}k
i=1) Q(g1, . . . , gk) ○ f (A1, . . . , Ak)

θk

The object P(A1, . . . , Ak) and the morphisms Q(g1, . . . , gk) and f (A1, . . . , Ak) are
interpreted in C using its n-fold monoidal structure. ◇

10.6. Coherence of Iterated Monoidal Categories

In this section, we discuss the Coherence Theorem 10.6.8 for n-fold monoidal
categories from [BFSV03]. As a result of Theorem 10.6.8, in each n-fold monoi-
dal category, each formal diagram built from identity morphisms, the exchanges
{ηi,j}i<j, the monoidal products {⊗i}n

i=1, and composites is commutative. The fol-
lowing concepts are needed for the coherence theorem.
Definition 10.6.1. Suppose given a /= b ∈ {1, . . . , k}.

● The restriction functor

(10.6.2) Monn(k) Monn({a, b})
Ra,b

is defined by

Ra,b(i) =
⎧⎪⎪⎨⎪⎪⎩

i if i ∈ {a, b} and
1 if i ∈ {1, . . . , k}∖ {a, b}

on objects and subscripts of the generating exchanges ηi,j.
● The image of an object or a morphism under Ra,b is called its restriction to
{a, b}.
● For an object A ∈Monn(k), we write

(10.6.3) a⊗i b ∈ A if Ra,b(A) = a⊗i b ∈Monn({a, b}).
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This finishes the definition. ◇
Explanation 10.6.4. Similar to Example 10.5.16, the objects in Monn({a, b}) are

a⊗i b and b⊗i a for i ∈ {1, . . . , n}.

So for each object A ∈Monn(k), either

a⊗i b ∈ A or b⊗i a ∈ A

for a unique i ∈ {1, . . . , n}. ◇
Example 10.6.5. If

A = 2⊗i (3⊗j 1) ∈Monn(3),
then the following statements hold.

● 2⊗i 1 is the only object in Monn({1, 2}) that satisfies 2⊗i 1 ∈ A.
● 3⊗j 1 is the only object in Monn({1, 3}) that satisfies 3⊗j 1 ∈ A.
● 2⊗i 3 is the only object in Monn({2, 3}) that satisfies 2⊗i 3 ∈ A. ◇

Example 10.6.6. For the morphism

(1⊗k 2)⊗i 3 (1⊗k 2)⊗j 3 ∈Monn(3)
η

i,j
(1⊗k2),1,1,3

with 1 ≤ i < j ≤ n and 1 ≤ k ≤ n, its restrictions to {1, 2}, {1, 3}, and {2, 3} are,
respectively, the following morphisms.

1⊗k 2 1⊗k 2

1⊗i 3 1⊗j 3

2⊗i 3 2⊗j 3

η
i,j
(1⊗k2),1,1,1 = 1

η
i,j
1,1,1,3

η
i,j
2,1,1,3

The first morphism η
i,j
(1⊗k2),1,1,1 is the identity morphism by the internal unity

axiom (10.1.3) in FMonn({1, 2}). ◇
Motivation 10.6.7. Mac Lane’s Coherence Theorem I.1.3.3 says that each formal
diagram in a monoidal category is commutative. Theorem 10.6.8 below, which is
[BFSV03, 3.6], is the analogue for n-fold monoidal categories. Among other things,
it says that each diagram in each category Monn(k) is commutative. When com-
bined with the evaluation functors in (10.5.28), it follows that each formal diagram,
built from the exchanges ηi,j and identity morphisms, in each n-fold monoidal cat-
egory is commutative. ◇
Theorem 10.6.8 (n-Fold Monoidal Category Coherence). Suppose A and B are objects
in Monn(k). Then the following two statements hold.

(1) There is at most one morphism A B.
(2) There exists a morphism A B if and only if, for any a /= b ∈ {1, . . . , k},

a⊗i b ∈ A implies either
● a⊗j b ∈ B for some j ≥ i or
● b⊗j a ∈ B for some j > i.
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Proof. We refer the reader to [BFSV03, 3.6] for the proof. It uses (i) a double induc-
tion and (ii) the n-fold monoidal category axioms (10.1.3)–(10.1.7) and the natural-
ity of the exchanges ηi,j. Here we only explain the necessity part in assertion (2).
Suppose

● f ∶ A B is a morphism in Monn(k), and
● a⊗i b ∈ A for some a /= b ∈ {1, . . . , k} and i ∈ {1, . . . , n} as in (10.6.3).

If f is the identity morphism, then a⊗i b ∈ B.
If f is not the identity morphism, then its restriction to {a, b} is a morphism

a⊗i b = Ra,b(A) Ra,b(B) ∈Monn({a, b}).
Ra,b( f)

As in Example 10.5.16 with {a, b} in place of {1, 2}, the morphism Ra,b( f ) is a
composite in Monn({a, b}) of some exchanges

σ(a)⊗k σ(b) σ(a)⊗l σ(b)

σ(a)⊗k σ(b) σ(b)⊗l σ(a)

ηk,l
σ(a),1,1,σ(b)

ηk,l
1,σ(a),σ(b),1

with 1 ≤ k < l ≤ n and each σ a permutation of {a, b}. Therefore,

Ra,b(B) = σ(a)⊗j σ(b)
for some j > i and permutation σ of {a, b}. □

Explanation 10.6.9. By Theorem 10.6.8 (1), each diagram in each category Monn(k)
is commutative. Combining this fact with the evaluation functors in (10.5.28), it
follows that, in each n-fold monoidal category, each formal diagram built from

● identity morphisms,
● the exchanges {ηi,j}i<j,
● the monoidal products {⊗i}n

i=1, and
● composites

is commutative. The n-fold monoidal category axioms (10.1.3)–(10.1.7) are the base
cases. ◇

10.7. En-Monoidal Categories

In this section, we define En-monoidal categories, which generalize both ring
categories (Definition 9.1.2) and n-fold monoidal categories (Definition 10.1.1). In
Sections 10.8 and 10.9, we will prove the following statements.

● E2-monoidal categories have braided ring categories (Definition 9.5.1) as
special cases, in the same way as 2-fold monoidal categories containing
braided strict monoidal categories (Proposition 10.1.14).
● En-monoidal categories for n ≥ 2 have bipermutative categories (Defini-

tion 9.3.2) as special cases, in the same way as n-fold monoidal categories
containing permutative categories (Proposition 10.1.21).

These En-monoidal categories will play an important role in Chapter III.13, where
their K-theories are shown to be En-symmetric spectra for n ≥ 1.
Motivation 10.7.1. In Example 10.1.9 and Propositions 10.1.14 and 10.1.21, we saw
that n-fold monoidal categories simultaneously generalize
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● strict monoidal categories (n = 1),
● braided strict monoidal categories (n = 2), and
● permutative categories (n ≥ 2).

Along the same lines, En-monoidal categories, which we will define shortly, si-
multaneously generalize ring categories, bipermutative categories, and braided
ring categories in Definitions 9.1.2, 9.3.2, and 9.5.1. To accomplish this, we need an
additive structure ⊕ and n compatible multiplicative structures ⊗1, . . . ,⊗n.

To say more about the compatibility conditions between the additive structure
and the multiplicative structures, first recall the following categorical structures.

● A permutative category in Definition 1.3.32 is a symmetric strict monoi-
dal category (C,⊕, 0, ξ⊕). Strictness means that the underlying monoidal
category is strict, so the associativity isomorphism, the left unit isomor-
phism, and the right unit isomorphism are identity natural transforma-
tions.
● A ring category C in Definition 9.1.2 is equipped with

– a permutative category structure (⊕, 0, ξ⊕), which is called the addi-
tive structure,

– a strict monoidal structure (⊗,1), which is called the multiplicative
structure, and

– factorization natural transformations ∂l and ∂r that relate ⊕ and ⊗.
● An n-fold monoidal category C in Definition 10.1.1 is equipped with

– n strict monoidal structures {⊗i}1≤i≤n with a common unit 1 and
– exchange natural transformations ηi,j that relate ⊗i and ⊗j for 1 ≤ i <

j ≤ n.

An En-monoidal category C is equipped with

● a permutative category structure (⊕, 0, ξ⊕),
● an n-fold monoidal category structure

({⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n),

and
● factorization morphisms {∂l,i, ∂r,i}1≤i≤n

such that
(C,⊕, 0, ξ⊕,⊗i,1, ∂l,i, ∂r,i)

is a ring category for each 1 ≤ i ≤ n. There are also several compatibility axioms
(10.7.7)–(10.7.11) that relate the exchanges ηi,j and the n ring category structures.

● The zero exchange axiom (10.7.7) says that 0 is a strict zero for ηi,j.
● In a typical component η

i,j
A,B,C,D, the codomain is

(A⊗i C)⊗j (B⊗i D).

In each of the four exchange factorization axioms (10.7.8)–(10.7.11), one
of the four codomain factors is changed to a sum, that is,

A⊕ A′, B⊕ B′, C⊕C′, or D⊕D′.

Each of these axioms equates two parallel composites with the new
codomain. ◇
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Definition 10.7.2. For n ≥ 1, an En-monoidal category is a tuple

(C, (⊕, 0, ξ⊕),{⊗i, ∂l,i, ∂r,i}1≤i≤n,1,{ηi,j}1≤i<j≤n)

consisting of the following data.

The Ring Category Structures: For each 1 ≤ i ≤ n, the tuple

(10.7.3) (C, (⊕, 0, ξ⊕), (⊗i,1), (∂l,i, ∂r,i))

is a ring category (Definition 9.1.2), with ⊕, 0, ξ⊕, ⊗i, and 1 called, respec-
tively, the sum, the additive zero, the additive symmetry, the ith product, and
the unit. The natural transformations

(10.7.4)
(A⊗i C)⊕ (B⊗i C) (A⊕ B)⊗i C

(A⊗i B)⊕ (A⊗i C) A⊗i (B⊕C)

∂l,i
A,B,C

∂r,i
A,B,C

for objects A, B, C ∈ C, are called, respectively, the ith left factorization mor-
phism and the ith right factorization morphism.

The n-Fold Monoidal Structure: The tuple

(10.7.5) (C,{⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n)

is an n-fold monoidal category (Definition 10.1.1), with (i, j)-exchange the
natural transformation

(10.7.6) (A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)
η

i,j
A,B,C,D

for objects A, B, C, D ∈ C and 1 ≤ i < j ≤ n.

These data are required to satisfy the following axioms for 1 ≤ i < j ≤ n and objects
A, A′, B, B′, C, C′, D, and D′ in C.

The Zero Exchange Axiom:

(10.7.7) η
i,j
A,B,C,D = 10 if A, B, C, or D is 0.

The Exchange Factorization Axiom: The following four diagrams are commuta-
tive. They are called, respectively, EF1, EF2, EF3, and EF4.

(10.7.8)

[(A⊗j B)⊗i (C⊗j D)]⊕ [(A′ ⊗j B)⊗i (C⊗j D)]

[(A⊗i C)⊗j (B⊗i D)]⊕ [(A′ ⊗i C)⊗j (B⊗i D)] [(A⊗j B)⊕ (A′ ⊗j B)]⊗i (C⊗j D)

[(A⊗i C)⊕ (A′ ⊗i C)]⊗j (B⊗i D) [(A⊕ A′)⊗j B]⊗i (C⊗j D)

[(A⊕ A′)⊗i C]⊗j (B⊗i D)

η
i,j
A,B,C,D ⊕ η

i,j
A′,B,C,D

∂
l,j
A⊗iC,A′⊗iC,B⊗i D

∂l,i
A,A′,C ⊗j 1

∂l,i
A⊗j B,A′⊗j B,C⊗j D

∂
l,j
A,A′,B ⊗i 1

η
i,j
A⊕A′,B,C,D
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(10.7.9)

[(A⊗j B)⊗i (C⊗j D)]⊕ [(A⊗j B′)⊗i (C⊗j D)]

[(A⊗i C)⊗j (B⊗i D)]⊕ [(A⊗i C)⊗j (B′ ⊗i D)] [(A⊗j B)⊕ (A⊗j B′)]⊗i (C⊗j D)

(A⊗i C)⊗j [(B⊗i D)⊕ (B′ ⊗i D)] [A⊗j (B⊕ B′)]⊗i (C⊗j D)

(A⊗i C)⊗j [(B⊕ B′)⊗i D]

η
i,j
A,B,C,D ⊕ η

i,j
A,B′,C,D

∂
r,j
A⊗iC,B⊗i D,B′⊗i D

1⊗j ∂l,i
B,B′,D

∂l,i
A⊗j B,A⊗j B′,C⊗j D

∂
r,j
A,B,B′ ⊗i 1

η
i,j
A,B⊕B′,C,D

(10.7.10)

[(A⊗j B)⊗i (C⊗j D)]⊕ [(A⊗j B)⊗i (C′ ⊗j D)]

[(A⊗i C)⊗j (B⊗i D)]⊕ [(A⊗i C′)⊗j (B⊗i D)] (A⊗j B)⊗i [(C⊗j D)⊕ (C′ ⊗j D)]

[(A⊗i C)⊕ (A⊗i C′)]⊗j (B⊗i D) (A⊗j B)⊗i [(C⊕C′)⊗j D]

[A⊗i (C⊕C′)]⊗j (B⊗i D)

η
i,j
A,B,C,D ⊕ η

i,j
A,B,C′,D

∂
l,j
A⊗iC,A⊗iC′,B⊗i D

∂r,i
A,C,C′ ⊗j 1

∂r,i
A⊗j B,C⊗j D,C′⊗j D

1⊗i ∂
l,j
C,C′,D

η
i,j
A,B,C⊕C′,D

(10.7.11)

[(A⊗j B)⊗i (C⊗j D)]⊕ [(A⊗j B)⊗i (C⊗j D′)]

[(A⊗i C)⊗j (B⊗i D)]⊕ [(A⊗i C)⊗j (B⊗i D′)] (A⊗j B)⊗i [(C⊗j D)⊕ (C⊗j D′)]

(A⊗i C)⊗j [(B⊗i D)⊕ (B⊗i D′)] (A⊗j B)⊗i [C⊗j (D⊕D′)]

(A⊗i C)⊗j [B⊗i (D⊕D′)]

η
i,j
A,B,C,D ⊕ η

i,j
A,B,C,D′

∂
r,j
A⊗iC,B⊗i D,B⊗i D′

1⊗j ∂r,i
B,D,D′

∂r,i
A⊗j B,C⊗j D,C⊗j D′

1⊗i ∂
r,j
C,D,D′

η
i,j
A,B,C,D⊕D′

This finishes the definition of an En-monoidal category. It is small if the category C
is small. ◇
Explanation 10.7.12. Consider Definition 10.7.2 of an En-monoidal category.

● The n ring category structures in (10.7.3) have a common additive struc-
ture (C,⊕, 0, ξ⊕), which is a permutative category, and a common unit
1.
● In each of the four exchange factorization axioms (10.7.8)–(10.7.11), the

hexagon is symmetric across the center in the sense that each arrow and
its counterpart across the center involve the same type of structure mor-
phisms. For example, the following symmetry occurs in the hexagon in
(10.7.8):

– The upper left arrow and the lower right arrow involve ηi,j.
– The lower left arrow and the upper right arrow involve ∂l,i.
– Both vertical arrows involve ∂l,j. ◇
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Example 10.7.13. An E1-monoidal category is precisely a ring category as in Defi-
nition 9.1.2. ◇
Example 10.7.14. An En+1-monoidal category

(C, (⊕, 0, ξ⊕),{⊗i, ∂l,i, ∂r,i}1≤i≤n+1,1,{ηi,j}1≤i<j≤n+1)

yields an En-monoidal category by forgetting
● the product ⊗n+1,
● the factorization morphisms ∂l,n+1 and ∂r,n+1, and
● the exchange morphisms ηi,n+1 for 1 ≤ i < n + 1. ◇

Example 10.7.15. More generally, suppose C is an En-monoidal category, and

I ⊆ {1, . . . , n}
is a nonempty subset with cardinality ∣I∣. Then there is an E∣I∣-monoidal category

(C, (⊕, 0, ξ⊕),{⊗i, ∂l,i, ∂r,i}i∈I ,1,{ηi,j}i<j∈I)

that retains the structure ⊗i, ∂l,i, ∂r,i, and ηi,j with indices i, j ∈ I. ◇
More examples are given in Sections 10.8 through 10.10.

10.8. Braided Ring Categories are E2-Monoidal Categories

Proposition 10.1.14 identifies braided strict monoidal categories with a sub-
class of 2-fold monoidal categories. A braided ring category is a braided strict
monoidal category with a compatible permutative structure. An E2-monoidal cat-
egory is a 2-fold monoidal category with a compatible permutative structure. This
section extends Proposition 10.1.14 to braided ring categories and E2-monoidal
categories as follows.
Theorem 10.8.1. There is a canonical bijective correspondence between

(1) the class of braided ring categories in Definition 9.5.1 and
(2) the class of E2-monoidal categories in Definition 10.7.2 with

● ⊗1 = ⊗2,
● ∂l,1 = ∂l,2,
● ∂r,1 = ∂r,2, and
● η1,2 = η a natural isomorphism satisfying

(10.8.2) ηA,B,1,C = 1A⊗1B⊗1C = ηA,1,B,C.

The correspondence between the braiding ξ⊗ and the exchange η is defined by (10.1.16)
and (10.1.17).

Proof. First suppose

(10.8.3) (C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (∂l , ∂r))
is a braided ring category as in Definition 9.5.1. We define the data of an E2-
monoidal category as specified in (2) in the statement and (10.1.16):

(10.8.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊗1 = ⊗2 = ⊗
∂l,1 = ∂l,2 = ∂l

∂r,1 = ∂r,2 = ∂r

ηA,B,C,D = 1A ⊗ ξ⊗B,C ⊗ 1D.
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By construction, for each i = 1, 2, the tuple

(C, (⊕, 0, ξ⊕), (⊗i = ⊗,1), (∂l,i = ∂l , ∂r,i = ∂r))

is a ring category. Moreover, since (C,⊗,1, ξ⊗) is a braided strict monoidal cate-
gory by definition, Proposition 10.1.14 implies that the tuple

(C,⊗1 = ⊗,⊗2 = ⊗,1, η = 1⊗ ξ⊗ ⊗ 1)

is a 2-fold monoidal category, with η a natural isomorphism satisfying (10.8.2).
Next we check the E2-monoidal category axioms (10.7.7)–(10.7.11).

With η defined as in (10.8.4), the zero exchange axiom (10.7.7) states that

(10.8.5) 1A ⊗ ξ⊗B,C ⊗ 1D = 10 if A, B, C, or D is 0.

● If A = 0 or D = 0, then (10.8.5) holds by the multiplicative zero axiom
(9.1.14) in the ring category C.
● If B = 0 or C = 0, then

ξ⊗B,C = 10

by the zero braiding axiom (9.5.2) in the braided ring category C. So
(10.8.5) holds by the multiplicative zero axiom (9.1.14).

We will abbreviate the strictly associative ⊗ using concatenation below, with ⊗
taking precedence over ⊕ in the absence of clarifying parentheses.

The axioms EF1 (10.7.8) and EF4 (10.7.11) are, respectively, the left and the
right outer diagrams below.

ABCD⊕ A′BCD

ACBD⊕ A′CBD (AB⊕ A′B)CD

(AC⊕ A′C)BD (A⊕ A′)BCD

(A⊕ A′)CBD

nat

(9.1.9)

(9.1.9)

1ξ⊗1⊕ 1ξ⊗1

∂l

∂l1

∂l

∂l1

1ξ⊗1

∂l

∂l

ABCD⊕ ABCD′

ACBD⊕ ACBD′ AB(CD⊕CD′)

AC(BD⊕ BD′) ABC(D⊕D′)

ACB(D⊕D′)

nat

(9.1.11)

(9.1.11)

1ξ⊗1⊕ 1ξ⊗1

∂r

1∂r

∂r

1∂r

1ξ⊗1

∂r

∂r

EF1 on the left is commutative by the left external factorization axiom (9.1.9) and
the naturality of ∂l . Similarly, EF4 on the right is commutative by the right external
factorization axiom (9.1.11) and the naturality of ∂r.
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The axiom EF2 (10.7.9) is the outer diagram below.

(10.8.6)

ABCD⊕ AB′CD

ACBD⊕ ACB′D (AB⊕ AB′)CD

AC(BD⊕ B′D) A(B⊕ B′)CD

A(B⊕ B′)CD

AC(B⊕ B′)D

A(BCD⊕ B′CD)

A(CBD⊕CB′D) A(BC⊕ B′C)D

A(CB⊕CB′)D

nat

nat(9.1.11)

(9.1.10)

(9.1.10)

(9.1.9)

top (9.5.3)

1ξ⊗1⊕ 1ξ⊗1

∂r

1∂l

∂l

∂r1

1ξ⊗1

∂r

1(ξ⊗1⊕ ξ⊗1)
1∂l

1∂l 1(ξ⊗ ⊕ ξ⊗)1

1∂r1

∂r

1∂r

1∂l

1∂l1

● The two subdiagrams labeled by nat are commutative by the naturality
of ∂r and ∂l .
● Four subdiagrams are commutative by the external factorization axioms

(9.1.9)–(9.1.11).
● The lower right subdiagram is commutative by the top half of the braid-

ing factorization axiom (9.5.3).
The axiom EF3 (10.7.10) is the outer diagram below.

(10.8.7)

ABCD⊕ ABC′D

ACBD⊕ AC′BD AB(CD⊕C′D)

(AC⊕ AC′)BD AB(C⊕C′)D

AB(C⊕C′)D

A(C⊕C′)BD

(ABC⊕ ABC′)D

(ACB⊕ AC′B)D A(BC⊕ BC′)D

A(CB⊕C′B)D

nat

nat(9.1.9)

(9.1.10)

(9.1.10)

(9.1.11)

bottom (9.5.3)

1ξ⊗1⊕ 1ξ⊗1

∂l

∂r1

∂r

1∂l

1ξ⊗1

∂l

(1ξ⊗ ⊕ 1ξ⊗)1
∂r1

∂r1 1(ξ⊗ ⊕ ξ⊗)1

1∂l1

∂l

∂l1

∂r1

1∂r1

Six subdiagrams are commutative by the naturality of ∂l and ∂r and the external
factorization axioms (9.1.9)–(9.1.11) as indicated. The lower right subdiagram is
commutative by the bottom half of the braiding factorization axiom (9.5.3). There-
fore, (10.8.3) and (10.8.4) define an E2-monoidal category as in statement (2).

Conversely, suppose C is an E2-monoidal category as in statement (2). In par-
ticular, the tuple

(10.8.8) (C, (⊕, 0, ξ⊕), (⊗ = ⊗1,1), (∂l = ∂l,1, ∂r = ∂r,1))
in (10.7.3) is a ring category. Moreover, with the braiding

(10.8.9) ξ⊗A,B = η1,A,B,1 ∶ AB = 1AB1 ≅
1BA1 = BA

as in (10.1.17), Proposition 10.1.14 implies that

(C,⊗ = ⊗1,1, ξ⊗ = η1,−,−,1)
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is a braided strict monoidal category. It remains to verify the braided ring category
axioms (9.5.2) and (9.5.3). By (10.8.9), the zero braiding axiom (9.5.2) states

η1,A,0,1 = 10 = η1,0,A,1.

These equalities hold by the zero exchange axiom (10.7.7) in the E2-monoidal cat-
egory C.

To verify the top half of the braiding factorization axiom (9.5.3), we reuse the
diagram (10.8.6) with A = D = 1. Since (C,⊗,1) is a strict monoidal category, to
check the commutativity of the top half of (9.5.3), it suffices to show that the lower
right subdiagram in (10.8.6) with A = D = 1 is commutative. Moreover, by the unit
factorization axiom (9.1.6) in the ring category (10.8.8), both morphisms

1BC1⊕1B′C1 1(BC1⊕ B′C1) 1(BC⊕ B′C)1
∂r
1,BC1,B′C1 1(∂l

BC,B′C,1)

in (10.8.6), from the top to the domain of the lower right subdiagram, are iden-
tity morphisms. Therefore, the commutativity of the lower right subdiagram in
(10.8.6) follows from the commutativity of the other six subdiagrams and the outer
diagram, which is commutative by the axiom EF2 (10.7.9) in the E2-monoidal cat-
egory C.

The bottom half of the braiding factorization axiom (9.5.3) is obtained from the
diagram (10.8.7) with A = D = 1, using the procedure in the previous paragraph.
Therefore, (10.8.8) and (10.8.9) define a braided ring category.

The constructions above are based on those in Proposition 10.1.14. They are
inverse bijections of each other because the additive structure (⊕, 0, ξ⊕) does not
change in either direction. □

10.9. Bipermutative Categories are En-Monoidal Categories

Proposition 10.1.21 identifies permutative categories with a subclass of n-fold
monoidal categories for n ≥ 2. A bipermutative category is a permutative category
with another compatible permutative structure, and an En-monoidal category is
an n-fold monoidal category with a compatible permutative structure. This sec-
tion extends Proposition 10.1.21 to bipermutative categories and En-monoidal cat-
egories as follows.
Theorem 10.9.1. For n ≥ 2, there is a canonical bijective correspondence between the
following two classes.

(1) The class of bipermutative categories in Definition 9.3.2.
(2) The class of En-monoidal categories in Definition 10.7.2 that satisfy the follow-

ing conditions:
● ⊗1 = ⊗2 = ⋯ = ⊗n.
● ∂l,1 = ∂l,2 = ⋯ = ∂l,n.
● ∂r,1 = ∂r,2 = ⋯ = ∂r,n.
● ηi,j = ηk,l for all 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n.
● Each ηi,j is a natural isomorphism that satisfies the following equalities for

A, B, C, D ∈ C.
ηA,B,1,C = 1A⊗B⊗C = ηA,1,B,C

(ηA,C,B,D)(ηA,B,C,D) = 1A⊗B⊗C⊗D
(10.9.2)

Here ⊗ is the common value of ⊗i for 1 ≤ i ≤ n, and η is the common value
of ηi,j for 1 ≤ i < j ≤ n.
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The correspondence between the multiplicative symmetry ξ⊗ and the exchange η is defined
by (10.1.16) and (10.1.17).

Proof. First suppose

(10.9.3) (C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (∂l , ∂r))
is a bipermutative category as in Definition 9.3.2. We define the data of an En-
monoidal category as specified in (2) in the statement and (10.1.16):

(10.9.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊗1 = ⊗2 = ⋯ = ⊗n = ⊗
∂l,1 = ∂l,2 = ⋯ = ∂l,n = ∂l

∂r,1 = ∂r,2 = ⋯ = ∂r,n = ∂r

η
i,j
A,B,C,D = 1A ⊗ ξ⊗B,C ⊗ 1D for 1 ≤ i < j ≤ n.

By construction, for each 1 ≤ i ≤ n, the tuple

(C, (⊕, 0, ξ⊕), (⊗i = ⊗,1), (∂l,i = ∂l , ∂r,i = ∂r))
is a ring category. Moreover, since (C,⊗,1, ξ⊗) is a permutative category by defi-
nition, Proposition 10.1.21 implies that the tuple

(C,{⊗i = ⊗}1≤i≤n,1,{ηi,j = 1⊗ ξ⊗ ⊗ 1}1≤i<j≤n)
is an n-fold monoidal category, with η a natural isomorphism satisfying (10.9.2).
The proof of the En-monoidal category axioms (10.7.7)–(10.7.11) uses

● the proof of Theorem 10.8.1 from (10.8.5) to (10.8.7) and
● the fact that C is also a braided ring category by Proposition 9.5.4.

Conversely, suppose C is an En-monoidal category as in statement (2). Since
n ≥ 2, by forgetting some structures, Example 10.7.14 implies that

(C, (⊕, 0, ξ⊕),{⊗i, ∂l,i, ∂r,i}i=1,2,1,{η1,2})
is an E2-monoidal category. Theorem 10.8.1 implies that

(10.9.5) (C, (⊕, 0, ξ⊕),{⊗1,1, ξ⊗ = η1,2
1,−,−,1}, (∂

l,1, ∂r,1))

is a braided ring category. Moreover, the braiding η1,2
1,−,−,1 satisfies the symmetry

axiom (1.3.33) by the second equality in (10.9.2). Therefore, (10.9.5) is a bipermu-
tative category by Proposition 9.5.4.

The constructions above are based on those in Proposition 10.1.21. They are
inverse bijections of each other because the additive structure (⊕, 0, ξ⊕) does not
change in either direction. □

10.10. Free En-Monoidal Categories

In this section, we observe that each small category freely generates an En-
monoidal category by extending the construction in Section 10.5. This provides
further examples of En-monoidal categories.
Definition 10.10.1. For a small category C, define the data of an En-monoidal cat-
egory

FEn(C)
as follows.
Objects: The objects in FEn(C) are defined as follows.
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● Each object in C is also an object in FEn(C).
● FEn(C) is equipped with two distinguished objects 0 and 1 that are

not in C.
● Inductively, if X and Y are objects in FEn(C), then so are

X⊕Y and X⊗i Y for 1 ≤ i ≤ n.

These objects are subject to the following relations for 1 ≤ i ≤ n:
● ⊕ and ⊗i are strictly associative on objects.
● 0 is the strict two-sided unit for ⊕.
● 1 is the strict two-sided unit for ⊗i.

Morphisms: The morphisms in FEn(C) are defined as follows.
● Each morphism in C is a morphism in FEn(C).
● Each object A ∈ FEn(C) is equipped with an identity morphism

A A,
1A

which is the identity morphism 1A ∈ C if A ∈ C.
● FEn(C) is equipped with morphisms

A⊕ B B⊕ A

(A⊗i C)⊕ (B⊗i C) (A⊕ B)⊗i C

(A⊗i B)⊕ (A⊗i C) A⊗i (B⊕C)

(A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)

ξ⊕A,B

∂l,i
A,B,C

∂r,i
A,B,C

η
i,j
A,B,C,D

for objects A, B, C, D ∈ FEn(C), 1 ≤ i ≤ n, and 1 ≤ i < j ≤ n for ηi,j.
● Inductively, if

f ∶ A B, g ∶ B C, and f ′ ∶ A′ B′

are morphisms in FEn(C), then so are

A⊕ A′ B⊕ B′

A⊗i A′ B⊗i B′

A C

f⊕ f ′

f⊗i f ′

g f

for 1 ≤ i ≤ n, with g f , which is called the composite, the composite in
C if f , g ∈ C.

These morphisms are subject to the relations (i)–(ix) below.
(i) Composition is strictly associative and unital with respect to identity

morphisms.
(ii) Each ⊗i and ⊕ preserve identity morphisms and composition.

(iii) ⊕ is strictly associative on morphisms with 10 as the strict two-sided
unit.

(iv) Each⊗i is strictly associative on morphisms with 11 as the strict two-
sided unit.
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(v) For morphisms

fX ∶ X X′ ∈ FEn(C) with X ∈ {A, B, C, D},
the following diagrams in FEn(C) are commutative.

A⊕ B B⊕ A

A′ ⊕ B′ B′ ⊕ A′

fA⊕ fB

ξ⊕A,B

fB⊕ fA
ξ⊕A′ ,B′

(A⊗i C)⊕ (B⊗i C) (A⊕ B)⊗i C

(A′ ⊗i C′)⊕ (B′ ⊗i C′) (A′ ⊕ B′)⊗i C′

( fA⊗i fC)⊕( fB⊗i fC)

∂l,i
A,B,C

( fA⊕ fB)⊗i fC
∂l,i

A′ ,B′ ,C′

(A⊗i B)⊕ (A⊗i C) A⊗i (B⊕C)

(A′ ⊗i B′)⊕ (A′ ⊗i C′) A′ ⊗i (B′ ⊕C′)

( fA⊗i fB)⊕( fA⊗i fC)

∂r,i
A,B,C

fA⊗i( fB⊕ fC)
∂r,i

A′ ,B′ ,C′

(A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)

(A′ ⊗j B′)⊗i (C′ ⊗j D′) (A′ ⊗i C′)⊗j (B′ ⊗i D′)

( fA⊗j fB)⊗i( fC⊗j fD)

η
i,j
A,B,C,D

( fA⊗i fC)⊗j( fB⊗i fD)
η

i,j
A′ ,B′ ,C′ ,D′

(vi) The tuple
(FEn(C),⊕, 0, ξ⊕)

satisfies the axioms (1.3.33)–(1.3.35) of a permutative category, with
● (1.3.34) interpreted as ξ⊕?,0 = 1? and
● α = 1 in (1.3.35).

(vii) For 1 ≤ i ≤ n, the tuple

(FEn(C), (⊕, 0, ξ⊕), (⊗i,1), (∂l,i, ∂r,i))
satisfies the axioms (9.1.4)–(9.1.12) of a ring category.

(viii) The tuple

(FEn(C),{⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n)
satisfies the axioms (10.1.3)–(10.1.7) of an n-fold monoidal category.

(ix) The En-monoidal category axioms (10.7.7)–(10.7.11) are satisfied in
FEn(C).

This finishes the definition of FEn(C). ◇
Proposition 10.10.2. For each small category C, FEn(C) is an En-monoidal category.

Proof. The relations (i)–(ix) refer to those in Definition 10.10.1.
● FEn(C) is a category by (i).
● The assignments

⊕,⊗i ∶ FEn(C)× FEn(C) FEn(C)
are functors by (ii).
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● The triple
(FEn(C),⊕, 0)

is a strict monoidal category by the strict associativity and unity of ⊕ on
objects and (iii).
● For 1 ≤ i ≤ n, the triple

(FEn(C),⊗i,1)

is a strict monoidal category by the strict associativity and unity of ⊗i on
objects and (iv).
● ξ⊕, ∂l,i, ∂r,i, and ηi,j are natural transformations by (v).
● The quadruple

(FEn(C),⊕, 0, ξ⊕)
is a permutative category by (vi).
● For 1 ≤ i ≤ n, the tuple

(FEn(C), (⊕, 0, ξ⊕), (⊗i,1), (∂l,i, ∂r,i))

is a ring category by (vii).
● The tuple

(FEn(C),{⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n)
is an n-fold monoidal category by (viii).

The En-monoidal category axioms hold in FEn(C) by (ix). □

10.11. Notes

10.11.1 (Iterated Monoidal Categories and Functors). Definitions 10.1.1 and 10.3.1
of an n-fold monoidal category and functor are [BFSV03, Def. 1.7 and 1.8].

● Propositions 10.1.14 and 10.1.21, which identify braided strict monoidal
and permutative categories with subclasses of 2-fold and n-fold monoidal
categories, are expanded versions of [BFSV03, Remarks 1.5 and 1.9].
● Theorem 10.4.5, which states that monoids in MCatn are precisely small
(n + 1)-fold monoidal categories, is stated in [BFSV03, p. 285], but an
explicit proof was not given there.
● Theorem 10.5.18, which provides a decomposition of the free n-fold mon-

oidal category, is stated in [BFSV03, p. 291].
In addition to Theorem 10.6.8, coherence results for categories equipped with only
the exchanges ηi,j are proved in [DP12] ◇
10.11.2 (Lax Iterated Monoidal Categories). In Definition 10.1.1 of an n-fold mon-
oidal category, the strictness of the monoidal categories (C,⊗i,1) for 1 ≤ i ≤ n is
assumed for convenience. It is possible to incorporate associativity and unit iso-
morphisms into the definition of an n-fold monoidal category. See, for example,

● [For04] with associativity isomorphisms and a common strict unit,
● [FSS07] with associativity isomorphisms and distinct strict units, and
● [AM10, Ch. 6–7] with associativity isomorphisms and distinct units.

Related to 2-fold monoidal categories are the duoidal categories in [BM12]. See also
Appendix III.A.2. ◇
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10.11.3 (Iterated Loop Spaces and En Structures). It is shown in [BFSV03] that the
group completion of the classifying space of a small n-fold monoidal category is
an n-fold loop space for each n ≥ 1. This generalizes the important fact that the
group completion of the classifying space of a small strict monoidal category is a
loop space. The converse—that each n-fold loop space is the group completion of
the classifying space of some small n-fold monoidal category—is proved in [FV03,
FSV13].

In addition to the work of [BV73, BFSV03, FV03, FSV13, May72], there are
many other approaches to En structures and n-fold loop spaces, including

● Milgram’s model of ΩnΣnX [Mil66],
● Smith’s model of ΩnΣnX [Smi89],
● Batanin’s n-operads [Bat08, Bat98, Bat07],
● Berger’s filtration of the Barratt-Eccles operad [Ber96],
● Fiedorowicz’s En-operads [Fie∞b], and
● the Fulton-MacPherson En-operads [Fre17, FM94, GJ∞, Sal01]. ◇

10.11.4 (En-Ring Categories). Our En-monoidal categories in Definition 10.7.2 are
different from the En-ring categories in [Dun97, Def. 3.1]. As pointed out in [EM06,
p. 166], there is a critical error in [Dun97, Lemma 2.2(ii)], where ξ is not well
defined. ◇
10.11.5 (Totally Ordered Monoids). For discussion of ordered algebraic structures,
the reader is referred to [Bly05, Ful97, Sch03]. Proposition 10.2.8, regarding 2-fold
monoidal categories from totally ordered monoids, is [FSS07, 4.3]. ◇
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CHAPTER 1

Enriched Monoidal Categories

Part 1 is about enriched monoidal categories and enriched multicategories.
We will use this material in the following two ways.

● Many of the K-theory constructions presented in Chapters 8, 9, and 10
are enriched, as monoidal functors or as multifunctors. We use the gen-
eral theory presented here to explain the relevant enrichments of their
co/domains and the (multi-)functors themselves.
● The operads that describe En-monoidal structure, presented in Chap-

ters 11, 12, and 13, are 1-object enriched multicategories. That point of
view is important for the preservation of En-monoidal structure by the
(enriched) Elmendorf-Mandell K-theory multifunctor.

All of the necessary background on 2-categories and bicategories can be found in
Chapter I.6 and [JY21].

This chapter gives introductory definitions and basic results about monoidal
structure for enriched categories. We do not assume any prior knowledge of en-
riched category theory. Throughout this chapter V = (V,⊗) will denote a monidal
category and will be assumed either braided or symmetric, as needed. We give a
short review of monoidal categories, along with their braided and symmetric vari-
ants, in Section 1.1. We then review the basic definitions of V-category, V-functor,
and V-natural transformation in Section 1.2.

In Section 1.3, under the assumption that V is braided monoidal, we define the
tensor product of enriched categories and show that it defines a monoidal product
for the category of V-categories (Theorem 1.3.35). In Section 1.4 we use the tensor
product to define monoidal V-categories, V-functors, and V-natural transforma-
tions along with braided and symmetric variants.

In Section 1.5 we apply the definitions of Section 1.4 in the case (V,⊗) =
(Cat,×) to obtain definitions of plain, braided, and symmetric monoidal struc-
ture for a 2-category. We explain how these definitions are a special, more strict,
case of the general definitions for monoidal bicategories from Section I.6.4. In
Theorem 1.5.5 we show, for general braided monoidal V, that the 2-category of
V-categories is monoidal in the more strict Cat-enriched sense.

1.1. Review of Monoidal Categories

For the reader’s convenience we recall definitions and basic properties of mon-
oidal categories, functors, and natural transformations along with the braided and
symmetric variants. These definitions along with basic properties will be used
throughout this and several subsequent chapters. At the end of the section we in-
clude statements of the coherence and strictification theorems, which we will use

III.7
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in a few key places. With the exception of Lemma 1.1.34, all of this material has
been covered with more detail previously in Chapters I.1 and II.1.

Monoidal Categories.

Definition 1.1.1. A monoidal category is a tuple

(C,⊗,1, α, λ, ρ)

consisting of

● a category C;
● a functor ⊗ ∶ C×C C, which is called the monoidal product;
● an object 1 ∈ C, which is called the monoidal unit;
● a natural isomorphism

(X⊗Y)⊗ Z X⊗ (Y⊗ Z)
αX,Y,Z

≅

for all objects X, Y, Z ∈ C, which is called the associativity isomorphism; and
● natural isomorphisms

1⊗X X
λX
≅ and X⊗1 X

ρX

≅

for all objects X ∈ C, which are called the left unit isomorphism and the right
unit isomorphism, respectively.

These data are subject to the following two axioms.

The Unity Axiom: The diagram

(1.1.2)
(X⊗1)⊗Y X⊗ (1⊗Y)

X⊗Y X⊗Y

ρX⊗1Y

αX,1,Y

1X⊗λY

is commutative for all objects X, Y ∈ C.
The Pentagon Axiom: The pentagon

(1.1.3)

(W ⊗X)⊗ (Y⊗ Z)

((W ⊗X)⊗Y)⊗ Z

(W ⊗ (X⊗Y))⊗ Z W ⊗ ((X⊗Y)⊗ Z)

W ⊗ (X⊗ (Y⊗ Z))

αW,X,Y⊗ZαW⊗X,Y,Z

αW,X,Y⊗1Z

αW,X⊗Y,Z

1W⊗αX,Y,Z

is commutative for all objects W, X, Y, Z ∈ C.

This finishes the definition of a monoidal category. A monoidal category is strict if
α, λ, and ρ are identity natural transformations. ◇

In a monoidal category, the equality

(1.1.4) λ1 = ρ1 ∶ 1⊗1 1
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and the commutative diagrams

(1.1.5)
(1⊗X)⊗Y 1⊗ (X⊗Y)

X⊗Y X⊗Y

λX⊗1Y

α1,X,Y

λX⊗Y

(X⊗Y)⊗1 X⊗ (Y⊗1)

X⊗Y X⊗Y

ρX⊗Y

αX,Y,1

1X⊗ρY

are formal consequences of the monoidal category axioms. These two diagrams
are called the left unity diagram and the right unity diagram, respectively.
Definition 1.1.6. For monoidal categories C and D, a monoidal functor

(F, F2, F0) ∶ C D

consists of
● a functor F ∶ C D;
● a natural transformation, which is called the monoidal constraint,

(1.1.7) FX⊗ FY F(X⊗Y) ∈ DF2

for objects X, Y ∈ C; and
● a morphism, which is called the unit constraint,

(1.1.8) 1D F1C ∈ D.F0

These data are required to satisfy the following associativity and unity axioms.
Associativity: The diagram

(1.1.9)

(FX⊗ FY)⊗ FZ FX⊗ (FY⊗ FZ)

F(X⊗Y)⊗ FZ FX⊗ F(Y⊗ Z)

F((X⊗Y)⊗ Z) F(X⊗ (Y⊗ Z))

αD

F2⊗1FZ 1FX⊗F2

F2 F2

FαC

is commutative for all objects X, Y, Z ∈ C.
Unity: The diagrams

(1.1.10)
1D ⊗ FX FX

F1C ⊗ FX F(1C ⊗X)

F0⊗1FX

λD
FX

F2

FλC
X

FX⊗1D FX

FX⊗ F1C F(X⊗1C)

1FX⊗F0

ρDFX

F2

FρCX

are commutative for all objects X ∈ C. They are called the left unity diagram
and the right unity diagram, respectively.

This finishes the definition of a monoidal functor. A monoidal functor (F, F2, F0)
is often abbreviated to F.

Moreover, a monoidal functor (F, F2, F0) is said to be
● unital if F0 is an isomorphism;
● strictly unital if F0 is the identity morphism;
● strong if F0 and the components of F2 are isomorphisms; and
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● strict if F0 and the components of F2 are identity morphisms. ◇
Definition 1.1.11. Suppose

C D E
F G

are monoidal functors. Their composite

(GF, (GF)2, (GF)0) ∶ C E

is the monoidal functor with underlying functor GF and the structure morphisms

1 G1 GF1

GFA⊗GFB G(FA⊗ FB) GF(A⊗ B)

G0 G(F0)

(GF)0

G2 G(F2)

(GF)2

for objects A, B ∈ C. ◇
Definition 1.1.12. For monoidal functors F, G ∶ C D, a monoidal natural trans-
formation θ ∶ F G is a natural transformation between the underlying functors
such that the diagrams

(1.1.13)
FX⊗ FY GX⊗GY

F(X⊗Y) G(X⊗Y)
F2

θX⊗θY

G2

θX⊗Y

1D F1C

1D G1C

F0

θ
1C

G0

are commutative for all objects X, Y ∈ C. ◇

Braided Monoidal Categories.
Definition 1.1.14. A braided monoidal category is a pair (C, ξ) consisting of the fol-
lowing data.

● (C,⊗,1, α, λ, ρ) is a monoidal category.
● ξ is a natural isomorphism

(1.1.15) X⊗Y Y⊗X
ξX,Y

≅

for objects X, Y ∈ C, which is called the braiding.
These data are required to satisfy the Hexagon Axioms, stating the commutativity
of the following two diagrams, called the left hexagon diagram and the right hexagon
diagram, respectively, for objects X, Y, Z ∈ C.

(1.1.16) Y⊗ (Z⊗X)

Y⊗ (X⊗ Z)(Y⊗X)⊗ Z

(X⊗Y)⊗ Z

X⊗ (Y⊗ Z) (Y⊗ Z)⊗X

ξX,Y⊗1Z

α

1Y⊗ξX,Z

α

ξX,YZ

α

(Z⊗X)⊗Y

(X⊗ Z)⊗YX⊗ (Z⊗Y)

X⊗ (Y⊗ Z)

(X⊗Y)⊗ Z Z⊗ (X⊗Y)

1X⊗ξY,Z

α−1

ξX,Z⊗1Y

α−1

ξXY,Z

α−1
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This finishes the definition of a braided monoidal category. A braided monoidal
category is strict if the underlying monoidal category is strict. ◇
Definition 1.1.17. For braided monoidal categories C and D, a braided monoidal
functor (F, F2, F0) ∶ C D is a monoidal functor between the underlying monoi-
dal categories such that the diagram

(1.1.18)
FX⊗ FY FY⊗ FX

F(X⊗Y) F(Y⊗X)
F2

ξFX,FY

≅

F2

FξX,Y

≅

is commutative for all objects X, Y ∈ C. A braided monoidal functor is said to
be strong (respectively, strict, unital, or strictly unital) if the underlying monoidal
functor is so. ◇
Explanation 1.1.19. The two hexagon diagrams in (1.1.16) may be visualized as
the braids, read bottom-to-top,

X Y Z X Y Z

in the braid group B3, with the braiding ξ interpreted as the generating braid s1 ∈
B2. On the left, the two strings labeled by Y and Z cross over the string labeled by
X. The two composites along the boundary of the left hexagon diagram (1.1.16)
correspond to passing Y and Z over X either one at a time, or both at once. On the
right, the string labeled by Z crosses over the two strings labeled by Y and X. The
two composites along the boundary of the right hexagon diagram (1.1.16) likewise
correspond to the two ways of passing Z over X and Y. ◇

We note several useful consequences of the hexagon axioms (1.1.16); proofs of
these are given in Section II.1.3.

In each braided monoidal category (C, ξ), the following two unit diagrams are
commutative for all objects X ∈ C.

(1.1.20)
X⊗1 1⊗X 1⊗X X⊗1

X X X X

ρX

ξX,1

λX λX

ξ1,X

ρX

In each braided monoidal category (C, ξ), the equality

(1.1.21) ξ1,1 = 11⊗1 ∶ 1⊗1 1⊗1

holds.
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In each braided monoidal category (C, ξ), the following diagram is commuta-
tive for all objects A, B, C ∈ C.

(1.1.22) A⊗ (C⊗ B)

A⊗ (B⊗C)(A⊗ B)⊗C

(B⊗ A)⊗C

C⊗ (B⊗ A) (C⊗ B)⊗ A

ξA,B⊗1C

ξB⊗A,C

α−1
C,B,A

αA,B,C

1A⊗ξB,C

ξA,C⊗B

Symmetric Monoidal Categories.

Definition 1.1.23. A symmetric monoidal category is a monoidal category

(C,⊗,1, α, λ, ρ)

equipped with a natural isomorphism

X⊗Y Y⊗X
ξX,Y

≅

for objects X, Y ∈ C, which is called the braiding or the symmetry isomorphism, that
satisfies the following axioms.

The Symmetry Axiom: The diagram

(1.1.24)
X⊗Y Y⊗X

X⊗Y

ξX,Y

ξY,X

is commutative for all objects X, Y ∈ C.
The Unit Axiom: The diagram

(1.1.25)
X⊗1 1⊗X

X X

ρX

ξX,1

λX

is commutative for all objects X ∈ C.
The Hexagon Axiom: The diagram

(1.1.26) (X⊗Y)⊗ Z

X⊗ (Y⊗ Z)X⊗ (Z⊗Y)

(X⊗ Z)⊗Y

Y⊗ (X⊗ Z) (Y⊗X)⊗ Z

α

1X⊗ξZ,Y

α−1

ξX⊗Z,Y

α−1

ξY,X⊗1Z

is commutative for all objects X, Y, Z ∈ C.
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This finishes the definition of a symmetric monoidal category. A permutative cat-
egory is a symmetric monoidal category whose underlying monoidal category is
strict.

A symmetric monoidal functor between symmetric monoidal categories is a
monoidal functor that satisfies (1.1.18). A symmetric monoidal functor is said to
be strong (respectively, strict, unital, or strictly unital) if the underlying monoidal
functor is so.

Proposition II.1.3.36 shows that a symmetric monoidal category is precisely a
braided monoidal category whose braiding satisfies the symmetry axiom (1.1.24).

◇
Definition 1.1.27. We let PermCat denote the 2-category of small permutative cat-
egories, symmetric monoidal functors, and monoidal natural transformations. We
also use the following locally-full sub 2-categories consisting of the same objects
but restricting the 1-cells.

● PermCatu has 1-cells given by unital symmetric monoidal functors.
● PermCatsu has 1-cells given by strictly unital symmetric monoidal func-

tors.
● PermCatsus has 1-cells given by strictly unital strong symmetric monoidal

functors.
In each case the 2-cells are given by monoidal natural transformations. ◇
Definition 1.1.28. A symmetric monoidal category C is closed if, for each object X,
the functor

−⊗X ∶ C C

admits a right adjoint, which is denoted by [X,−] and is called the internal hom. ◇

Coherence and Strictification Theorems. We recall the statements of monoi-
dal coherence and strictification theorems together with the braided and symmet-
ric variants. More detailed discussion has been given in Sections I.1.3 and II.1.6.

We recall from Definitions I.1.3.1 and I.1.3.2 the notions of (normalized) words
and canonical maps. We then state the monoidal coherence and strictification the-
orems.
Definition 1.1.29. A word of length n ≥ 0 is defined inductively as follows.

● The only word of length 0 is the symbol e.
● The only word of length 1 is the symbol −.
● If u and v are words of lengths m and n, respectively, then u◻ v is a word

of length m + n.
Moreover, we define the following.

● A left normalized word is the word e, −, u◻ e, or u◻−, with u a left normal-
ized word.
● A right normalized word is the word e, −, e ◻ u, or − ◻ u, with u a right

normalized word.
● For a monoidal category C, each word w of length n determines a functor

w ∶ Cn C by interpreting
– the length 0 word e as the constant functor at 1;
– the length 1 word − as the identity functor 1C; and
– ◻ as the monoidal product in C.

We also call this functor a word. ◇
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Definition 1.1.30. For a monoidal category (C,⊗,1, α, λ, ρ), canonical maps are nat-
ural isomorphisms between words of the same length, defined inductively by the
following four conditions.

● The identity morphism of 1 is a canonical map.
● The identity natural transformation of 1C is a canonical map.
● α, λ, ρ, and their inverses are canonical maps.
● Canonical maps are closed under ⊗ and vertical composites. ◇

Theorem 1.1.31 (Mac Lane’s Coherence). Suppose u and v are words Cn C of the
same length in a monoidal category C. Then there exists a unique canonical map u v.

Theorem 1.1.32 (Mac Lane’s Strictification). For each monoidal category C, there exist
a strict monoidal category Cst and an adjoint equivalence

Cst C
L

R

with (i) both L and R strong monoidal functors, and (ii) LR = 1C.

Explanation 1.1.33. We note that the equality LR = 1C in Theorem 1.1.32 is an
equality of monoidal functors, and hence entails that the monoidal and unit con-
straints (LR)2 and (LR)0, respectively, are identities. The same holds for the
Braided and Symmetric Strictification Theorems 1.1.39 and 1.1.42 below. ◇

The following lemma shows that the unit of the adjunction in Theorem 1.1.32
is a monoidal natural transformation. The same conclusion holds for the Braided
and Symmetric Strictification Theorems 1.1.39 and 1.1.42 below.

Lemma 1.1.34. Suppose given an adjoint equivalence of monoidal categories

D C
L

R

with (i) both L and R strong monoidal functors, and (ii) LR = 1C. Then the unit

η ∶ 1D RL

is a monoidal natural transformation.

Proof. We must show that the following diagrams commute for each X, Y ∈ D. In
the diagram below we let ε = 11C denote the counit of the adjunction.

(1.1.35)
X⊗Y RLX⊗ RLY

X⊗Y RL(X⊗Y)

1X⊗Y

ηX⊗ηY

(RL)2

ηX⊗Y

1D 1D

1D RL1D

1

η
1D

(RL)0

Since (L, R) is an equivalence, it suffices to see that the diagrams commute af-
ter applying L. Applying L to the left hand diagram of (1.1.35) yields the outer
diagram below, where we recall the monoidal constraint (RL)2 is given by the
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composite of R(L2) and R2 (Definition 1.1.11).

L(X⊗Y) L(RLX⊗ RLY)

L(X⊗Y)

LR(LX⊗ LY)

LRL(X⊗Y)

LX⊗ LY LRLX⊗ LRLY

L(X⊗Y)

LX⊗ LY

L(ηX ⊗ ηY)

L(R2)

LR(L2)

L1X⊗Y

L(ηX⊗Y)

L2 L2

εL(X⊗Y)

L2

εLX⊗LY

LηX ⊗ LηY

εLX ⊗ εLY (LR)2

1

L2

1 ☆

Each of the quadrilaterals in the diagram above commutes by naturality of either
L2 or ε. The triangle ☆ commutes because LR = 1C and in particular the monoidal
constraint (LR)2 is the identity. The remaining two middle triangles commute by
the triangle identities for the unit and counit of the adjunction. The outer trian-
gle at left commutes by functoriality of L and the triangle at right commutes by
definition of (LR)2.

For the right hand diagram of (1.1.35), a similar analysis shows that the dia-
gram commutes after applying L. This analysis uses the triangle diagrams for the
adjunction and the condition (LR)0 = 1 implied by LR = 1C. □

The braided coherence and strictification theorems involve the concepts of
braided canonical map and underlying braid from Definitions II.1.6.1 and II.1.6.2.
In the latter, Bn denotes the nth braid group (Definition II.1.1.1). See Section II.1.1
for further explanations of braids.
Definition 1.1.36. In a braided monoidal category (C, ξ), a braided canonical map
is a natural isomorphism between permuted words of the same length that has
the same definition as a canonical map by also allowing the braiding ξ and its
inverse. For a symmetric monoidal category, a braided canonical map is also called
a permuted canonical map. ◇
Definition 1.1.37. In a braided monoidal category (C,⊗,1, α, λ, ρ, ξ), each braided
canonical map ϕ between permuted words of the same length n has an underlying
braid br(ϕ) ∈ Bn defined as follows.

● br(11) = id0 ∈ B0.
● The identity natural transformation of 1C has underlying braid id1 ∈ B1.
● The vertical composite ϕ′ϕ of two braided canonical maps has underlying

braid the product br(ϕ′)br(ϕ).
● For braided canonical maps ϕ1 and ϕ2, the underlying braid of ϕ1 ⊗ ϕ2 is

br(ϕ1 ⊗ ϕ2) = br(ϕ1)⊕ br(ϕ2)
with ⊕ the sum braid (II.1.1.10).
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● For permuted words u, v, and w, the associativity isomorphism

αu,v,w ∶ (u⊗ v)⊗w u⊗ (v⊗w)
has underlying braid

br(αu,v,w) = id ∈ B∣u∣+∣v∣+∣w∣.

● The unit isomorphisms

λ ∶ 1⊗ u u and ρ ∶ u⊗1 u

have underlying braids

br(λu) = br(ρu) = id ∈ B∣u∣.

● The braiding
ξu,v ∶ u⊗ v v⊗ u

has underlying braid

br(ξu,v) = b⊕∣u∣,∣v∣ ∈ B∣u∣+∣v∣

with the right-hand side the elementary block braid (II.1.2.4).
This finishes the definition of the underlying braid. ◇
Theorem 1.1.38 (Braided Coherence). In a braided monoidal category C, two braided
canonical maps with the same (co)domain are equal if their underlying braids are equal.
Theorem 1.1.39 (Braided Strictification). For each braided monoidal category C, there
exist a braided strict monoidal category Cst and an adjoint equivalence

Cst C
L

R

with (i) both L and R strong braided monoidal functors and (ii) LR = 1C.
The symmetric coherence and strictification theorems involve the concepts of

permuted word and permuted canonical map from Definition I.1.3.6.
Definition 1.1.40. The symmetric group on n letters is denoted by Σn. Suppose C
is a monoidal category.

● For a word w of length n and a permutation σ ∈ Σn, the permuted word
wσ ∶ Cn C is the composite functor w ○ σ, where σ ∶ Cn Cn is
given by

σ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n))
with the xi’s all objects, or all morphisms, in C.
● For a symmetric monoidal category (C, ξ), a permuted canonical map is a

natural isomorphism between permuted words of the same length, de-
fined as in Definition 1.1.30 by also allowing the symmetry isomorphism
ξ. ◇

Theorem 1.1.41 (Symmetric Coherence). Suppose uσ and vτ are two permuted words
of the same length in a symmetric monoidal category C. Then there exists a unique per-
muted canonical map uσ vτ.
Theorem 1.1.42 (Symmetric Strictification). For each symmetric monoidal category C,
there exist a permutative category Cst and an adjoint equivalence

Cst C
L

R
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with (i) both L and R strong symmetric monoidal functors, and (ii) LR = 1C.
We also recall Epstein’s Coherence Theorem I.1.3.12 for monoidal and sym-

metric monoidal functors. This involves the concept of F-iterate from Defini-
tion I.1.3.11.

Definition 1.1.43. Suppose (F, F2, F0) ∶ C D is a (symmetric) monoidal functor
between (symmetric) monoidal categories.

(1) The set of F-iterates is the set of functors Cn D for n ≥ 1 defined in-
ductively by the following two conditions.
● Fw ∶ Cn D is an F-iterate for each (permuted) word w ∶ Cn C

of length n.
● If G ∶ Cm D and H ∶ Cn D are F-iterates, then so is the com-

posite

Cm+n = Cm ×Cn D×D D.G×H ⊗

(2) The set of F-coherent maps is the set of natural transformations between
F-iterates defined inductively as follows.
● Suppose θ is a (permuted) canonical map in C that does not involve
1C, λC, or ρC. Then 1F ∗ θ is an F-coherent map.
● The identity natural transformation, αD, their inverses, and ξD in the

symmetric case, applied to F-iterates are F-coherent maps.
● F2 is an F-coherent map.
● F-coherent maps are closed under vertical composites and ⊗D. ◇

Theorem 1.1.44 (Epstein’s Coherence). Suppose F ∶ C D is a (symmetric) monoi-
dal functor between (symmetric) monoidal categories, and G, H ∶ Cn D are F-iterates.
Then there exists at most one F-coherent map from G to H.

1.2. Enriched Categories, Functors, and Natural Transformations

In this section we recall some basic definitions regarding categories, func-
tors, and natural transformations that are enriched over a monoidal category V =
(V,⊗,1, α, λ, ρ). The material in this section does not assume that V has a braiding
until the discussion of opposites in Definition 1.2.16 and following.

Definition 1.2.1. Suppose V is a monoidal category. A V-category C, also called a
category enriched in V, consists of:

● a class Ob(C) of objects in C;
● for each pair of objects X, Y in C, an object C(X, Y) in V, called the hom

object with domain X and codomain Y;
● for each triple of objects X, Y, Z in C, a morphism

C(Y, Z)⊗C(X, Y) C(X, Z)
mX,Y,Z

in V, called the composition; and
● for each object X in C, a morphism

1 C(X, X)iX

in V, called the identity of X.
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These data are required to make the associativity diagram

(1.2.2)

(C(Y, Z)⊗C(X, Y))⊗C(W, X) C(Y, Z)⊗ (C(X, Y)⊗C(W, X))

C(Y, Z)⊗C(W, Y)

C(X, Z)⊗C(W, X) C(W, Z)

m⊗1

α

1⊗m

m

m

and the unity diagram

(1.2.3)

1⊗C(X, Y) C(X, Y) C(X, Y)⊗1

C(Y, Y)⊗C(X, Y) C(X, Y) C(X, Y)⊗C(X, X)

iY⊗1

λ ρ

1⊗iX

m m

commute for objects W, X, Y, Z in C. This finishes the definition of a V-category. A
V-category C is small if Ob(C) is a set. ◇

Next we recall functors, natural transformations, and adjunctions in the en-
riched setting. In the next few definitions, the reader will notice that we recover
the plain categorical notions from Section I.1.1 when V = Set.
Definition 1.2.4. Suppose C and D are V-categories. A V-functor F ∶ C D con-
sists of:

● an assignment on objects

Ob(C) Ob(D), X FX;

and
● for each pair of objects X, Y in C, a morphism

C(X, Y) D(FX, FY)
FX,Y

in V.
These data are required to satisfy the following two axioms.
Composition: For each triple of objects X, Y, Z in C, the diagram

(1.2.5)

C(Y, Z)⊗C(X, Y) C(X, Z)

D(FY, FZ)⊗D(FX, FY) D(FX, FZ)

m

F⊗F F

m

in V is commutative.
Identities: For each object X ∈ C, the diagram

(1.2.6)

1 C(X, X)

1 D(FX, FX)

iX

F
iFX

in V is commutative.
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Moreover:
● For V-functors F ∶ C D and G ∶ D E, their composition

GF ∶ C E

is the V-functor defined by composing the assignments on objects and
forming the composite

(GF)X,Y = GFX,FY FX,Y ∶ C(X, Y) E(GFX, GFY)
in V on hom objects.
● The identity V-functor of C, denoted 1C ∶ C C, is given by the identity

morphism on Ob(C) and the identity morphism 1C(X,Y) for objects X, Y
in C. ◇

Definition 1.2.7. Suppose F, G ∶ C D are V-functors between V-categories C
and D.

(1) A V-natural transformation θ ∶ F G consists of a morphism

θX ∶ 1 D(FX, GX)
in V, called a component of θ, for each object X in C, such that the following
diagram commutes for objects X, Y in C.

(1.2.8) C(X, Y)

1⊗C(X, Y) D(FY, GY)⊗D(FX, FY)

C(X, Y)⊗1 D(GX, GY)⊗D(FX, GX)

D(FX, GY)

λ−1

≅

ρ−1
≅

θY ⊗ F

G⊗ θX

m

m

(2) The identity V-natural transformation of F, denoted by 1F ∶ F F, is de-
fined by the component

(1F)X = iFX ∶ 1 D(FX, FX)
for each object X in C. ◇

We give an alternative characterization of V-naturality in Lemma 2.1.11 below.
Just as for ordinary natural transformations, there are two types of compositions
for V-natural transformations.
Definition 1.2.9. Suppose θ ∶ F G is a V-natural transformation for V-functors
F, G ∶ C D.

(1) Suppose ϕ ∶ G H is another V-natural transformation for a V-functor
H ∶ C D. The vertical composition

ϕθ ∶ F H

is the V-natural transformation whose component (ϕθ)X is the composite

1 D(FX, HX)

1⊗1 D(GX, HX)⊗D(FX, GX)

(ϕθ)X

≅λ−1

ϕX⊗θX

m
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in V for each object X in C.
(2) Suppose θ′ ∶ F′ G′ is a V-natural transformation for V-functors

F′, G′ ∶ D E with E a V-category. The horizontal composition

θ′ ∗ θ ∶ F′F G′G

is the V-natural transformation whose component (θ′ ∗ θ)X , for an object
X in C, is defined as the composite

(1.2.10)

1 E(F′FX, G′GX)

E(F′GX, G′GX)⊗E(F′FX, F′GX)

1⊗1 E(F′GX, G′GX)⊗D(FX, GX)

≅λ−1

(θ′∗θ)X

m

θ′GX⊗θX

1⊗F′

in V. ◇
Definition 1.2.11. A V-natural transformation θ ∶ F G is called a V-natural
isomorphism if there exists a V-natural transformation θ−1 ∶ G F such that the
equalities

θ−1θ = 1F and θθ−1 = 1G

hold. ◇
The following special cases of horizontal composition will be useful in several

computations below.
Lemma 1.2.12 (Whiskering). Suppose given V-categories B, C, D, and E; V-functors F,
G, H, and K; and a V-natural transformation θ as in the following diagram:

B C D E
KH

F

G

⇒

θ

Then for each Y ∈ B and X ∈ C we have

(θ ∗ 1H)Y = θHY and (1K ∗ θ)X = (KFX,GX) ○ θX .

Proof. For the whiskering of θ with H, consider the following diagram in V, where
the top arrow is θHY and the composite along the remaining boundary is the defi-
nition (1.2.10) for (θ ∗ 1H)Y.

1 D(FHY, GHY)

1⊗1 D(FHY, GHY)⊗C(HY, HY)

D(FHY, GHY)⊗1 D(FHY, GHY)⊗D(FHY, FHY)

θHY

λ−1

θHY ⊗ iHY

1⊗ F

m

θHY ⊗ 1

ρ

1⊗ iFHY

θHY ⊗ iFHY

The upper left region commutes by naturality of ρ and the equality λ1 = ρ1 (1.1.4).
The upper right triangle commutes by the right unity diagram (1.2.3). The lower
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right triangle commutes by functoriality of ⊗ and the identity axiom F ○ iHY = iFHY
(1.2.6). The remaining triangle commutes by functoriality of ⊗.

For the whiskering of θ with K, consider the following diagram in V, where the
top arrow is the composite (KFX,GX) ○ θX and the composite around the remaining
boundary is (1.2.10) for (1K ∗ θ)X .

1 D(FX, GX) E(KFX, KGX)

1⊗1 E(KGX, KGX)⊗D(FX, GX)

1⊗E(KFX, KGX) E(KGX, KGX)⊗E(KFX, KGX)

θX KFX,GX

λ−1

iKGX ⊗ θX

1⊗KFX,GX

m

1⊗ ((KFX,GX) ○ θX)

λ

iKGX ⊗ 1

In the above diagram, the upper left region commutes by naturality of λ, the lower
region commutes by functoriality of ⊗, and the triangular region commutes by the
left unity axiom (1.2.3) for m. □

Definition 1.2.13. Suppose V is a monoidal category. The 2-category V-Cat is de-
fined by the following data.

● The objects are small V-categories, 1-cells are V-functors, and 2-cells are
V-natural transformations.
● Horizontal composition of 1-cells is given by composition of V-functors.
● Vertical and horizontal composition of 2-cells are given by those of V-

natural transformations.
● Identity V-functors are identity 1-cells.
● Identity V-natural transformations are identity 2-cells.

The axioms of a 2-category follow from the defining axioms above. For example,
strict associativity of the vertical composition of 2-cells follows from instances of
the enriched composition axiom (1.2.5) and the associativity of composition axiom
(1.2.2). ◇

Recall from Definition I.6.3.9 the notions of internal adjunction and equiva-
lence in a bicategory. The corresponding notions for V-Cat determine the defini-
tions of V-adjunction and V-equivalence. We give detailed definitions for refer-
ence.

Definition 1.2.14. Suppose C and D are V-categories, and L ∶ C D and R ∶
D C are V-functors. A V-adjunction L ⊣ R consists of

● a V-natural transformation η ∶ 1C RL called the unit, and
● a V-natural transformation ε ∶ LR 1D called the counit,

such that the following diagrams commute.

LRL

L L

ε∗1L

1L

1L∗η
RLR

R R

1R∗ε

1R

η∗1R

In this case, L is called the left adjoint, and R is called the right adjoint. ◇
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Definition 1.2.15. Suppose F ∶ C D is a V-functor. We call F a V-equivalence if
there exist

● a V-functor F′ ∶ D C and
● V-natural isomorphisms η ∶ 1C F′F≅ and ε ∶ FF′ 1D.≅

An adjoint V-equivalence consists of a V-adjunction L ⊣ R such that the unit and
counit are V-natural isomorphisms. ◇

Next we define the opposite of a V-category. Unlike the other content in this
section, this definition requires that V be braided monoidal

Definition 1.2.16. Suppose V = (V,⊗, ξ) is a braided monoidal category and sup-
pose that C is a V-category. The opposite V-category, Cop, is defined to have the same
objects as C and hom objects

Cop(X, Y) = C(Y, X).

The composition in Cop is defined for each triple of objects X, Y, Z in Cop as the
following composite using the braiding ξ of V and the composition m of C:

Cop(Y, Z)⊗Cop(X, Y)

C(Z, Y)⊗C(Y, X) C(Y, X)⊗C(Z, Y) C(Z, X)

Cop(X, Z)
ξ m

The unit of Cop is the same as that of C:

1
iX

C(X, X) = Cop(X, X).

We show that these data satisfy the axioms of a V-category in Lemma 1.2.17 below.
◇

Lemma 1.2.17. In the context of Definition 1.2.16, Cop is a V-category.

Proof. We show that the axioms for Cop follow from the corresponding axioms for
C together with braiding properties of ξ. First, the associativity diagram (1.2.2)
for Cop is the outer diagram below for W, X, Y, Z ∈ C. In this diagram we use the
notation

Cop(W, X) = C(X, W) = CX,W
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and likewise for the other hom objects. We also omit tensor symbols to save space.

(CZ,YCY,X)CX,W CZ,Y(CY,XCX,W)

CZ,Y(CX,WCY,X)

CZ,YCY,W

CY,WCZ,Y

CZ,W

(CY,XCZ,Y)CX,W

CZ,XCX,W

CX,WCZ,X

CX,W(CY,XCZ,Y) (CX,WCY,X)CZ,Y

α

1ξ

1m

ξ

m

ξ1

m1

ξ

m

ξ ξ

α

1m

m1

In the above diagram, the upper hexagon commutes by compatibility of ξ with α
(1.1.22), the lower pentagon commutes by the associativity diagram (1.2.2) for C,
and the other two regions commute by naturality of ξ.

Second, using the same notation, the left and right unity diagrams (1.2.3) for
Cop are the outer diagrams below.

CY,X

CY,X

1CY,X

CY,YCY,X

CY,XCY,Y

CY,X1

CY,X1

CY,XCX,X

CX,XCY,X

1CY,X

λ

i1

ξ m

ξ

1i

ρ

ρ

i1

ξm

ξ

1i

λ

In the above diagram, the top two triangles commute by compatibility of ξ with λ
and ρ (1.1.20), the middle two trapezoids commute by the unity diagrams (1.2.3)
for C, and the remaining two parallelograms commute by naturality of ξ. □

We will define (−)op on V-functors and V-natural transformations in Proposi-
tion 1.2.19 below. The construction is covariant with respect to horizontal compo-
sition, but contravariant with respect to vertical composition of V-natural trans-
formations. We will use the following notation.

Definition 1.2.18. Let V-Catco denote the 2-category with the same cells as V-Cat,
but the direction of 2-cells reversed. So the category of 1- and 2-cells from C to D
is given by the opposite category:

V-Catco(C,D) = V-Cat(C,D)op.

Identities and horizontal composition in V-Catco are given by the opposite functors
of those in V-Cat. ◇
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Proposition 1.2.19. Suppose V = (V,⊗, ξ) is a braided monoidal category. Taking oppo-
site V-categories defines a 2-functor

(−)op ∶ V-Cat V-Catco.

Proof. Continuing from Lemma 1.2.17, we need to define (−)op for V-functors and
V-natural transformations. Given a V-functor F, we define Fop to have the same
assignment on objects as F and define Fop

X,Y = FY,X as below.

Cop(X, Y)

C(Y, X)

Dop(FX, FY)

D(FY, FX)

Fop
X,Y

FY,X

The composition and identity axioms for Fop follow from those for F together with
naturality of ξ. For example, the diagram below is the composition axiom for Fop

at X, Y, Z ∈ C, with tensor symbols omitted for space.

Cop(Y, Z)Cop(X, Y)

C(Z, Y)C(Y, X)

C(Y, X)C(Z, Y)

C(Z, X)

Cop(X, Z)

Dop(FY, FZ)Dop(FX, FY)

D(FZ, FY)D(FY, FX)

D(FY, FX)D(FZ, FY)

D(FZ, FX)

Dop(FX, FZ)

ξ

m

ξ

m

FopFop

FF

Fop

F

FF

Since composition of V-functors is given by composition of assignments on objects
and composition in V on hom objects, we have (GF)op = GopFop for V-functors

C
F

D
G

E.

Since the identity of Cop has the same components as that of C, we have (1C)op =
1(Cop).

For V-functors F, G ∶ C D and a V-natural transformation θ ∶ F G, the
component of θop ∶ Gop Fop at X ∈ C is given by θX as below.

1

Dop(GX, FX)

D(FX, GX)

θopX

θX

The V-naturality axiom for θop follows from that of θ together with naturality of ξ.
Preservation of horizontal composition

(θ′ ∗ θ)op = (θ′)op ∗ θop,
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for F′, G′ ∶ D E and θ′ ∶ F′ G′, follows from the commutative diagram
below for each X ∈ C. The composite along the right, when composed with λ−1,
is (θ′ ∗ θ)opX = (θ

′ ∗ θ)X . The composite along the left, when composed with λ−1,
is ((θ′)op ∗ θop)X . We omit tensor signs to save space and explain commutativity
below.

11E(F′FX, G′FX)D(FX, GX)

E(F′FX, G′FX)E(G′FX, G′GX)

E(G′FX, G′GX)E(F′FX, G′FX)

E(F′GX, G′GX)D(FX, GX)

E(F′GX, G′GX)E(F′FX, F′GX)

E(F′FX, G′GX)

1D(FX, GX)

D(FX, GX)1

D(FX, GX)E(F′FX, G′FX)

θ′FXθX

1G′

ξ

m

θ′GXθX

1F′

m

ξ

θ′GX1

ξ

1θ′FX

G′1

1θX

θX1

In the above diagram, the top right triangle commutes by functoriality of ⊗. The
remaining upper/left regions commute by functoriality of ⊗ and naturality of ξ,
recalling that ξ1,1 = 111 (1.1.21). The lower right region commutes by V-naturality
of θ′ (1.2.8) at the objects FX and GX, together with the compatibility of ξ with λ
and ρ (1.1.20).

Preservation of vertical composition (contravariantly)

(ϕθ)opX = (θ
opϕop)X

follows simply from naturality of ξ and the definition

(ϕθ)X = m ○ (ϕX ⊗ θX) ○ λ−1,

again recalling ξ1,1 = 111. □

1.3. The Tensor Product of Enriched Categories

Now we turn to the definition of tensor product for enriched categories. The
content of this section, and indeed the rest of this chapter, requires a braiding on
the enriching category V. Throughout this section we assume that V = (V,⊗, ξ) is
braided monoidal. We use the braiding to define a monoidal product ⊗ on V-Cat.

If, moreover, V is symmetric monoidal, then we can define a braiding for ⊗
and show that (V-Cat,⊗) is a symmetric monoidal category. The following table
summarizes the relationships.

(1.3.1)

V V-Cat
monoidal exists
braided monoidal

symmetric symmetric
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See Note 1.6.2 for an expansion of this table via the iterated monoidal structures
of Chapter II.10.

It will be convenient for our discussion below to introduce the following no-
tation.

Definition 1.3.2. Let ξmid denote the natural isomorphism whose component at a
quadruple of objects X, Y, Z, and W in V is given by the following composite of ξ
with associativity isomorphisms.

(X⊗Y)⊗ (Z⊗W)

((X⊗Y)⊗ Z)⊗W

(X⊗ (Y⊗ Z))⊗W

(X⊗ Z)⊗ (Y⊗W)

((X⊗ Z)⊗Y)⊗W

(X⊗ (Z⊗Y))⊗W

α−1
X⊗Y,Z,W

αX,Y,Z ⊗ 1W

(1⊗ ξ)⊗ 1

α−1
X,Z,Y ⊗ 1W

αX⊗Z,Y,W

ξmid

The isomorphisms ξmid are called middle four interchange. By the Braided Coher-
ence Theorem 1.1.38, ξmid is the unique braided canonical map in V whose under-
lying braid is s2 in B4. ◇
Definition 1.3.3. Suppose that C and D are V-categories with V braided monoidal.
The tensor product C⊗D consists of the following.

● Objects are given by pairs: Ob(C⊗D) = ObC×ObD. Objects are denoted
X⊗Y for X ∈ C and Y ∈ D.

● For objects X ⊗ Y and X′ ⊗ Y′, the hom object with domain X ⊗ Y and
codomain X′ ⊗Y′ is given by the monoidal product of hom objects

(C⊗D)(X⊗Y, X′ ⊗Y′) = C(X, X′)⊗D(Y, Y′).
● The composition for X ⊗Y, X′ ⊗Y′, and X′′ ⊗Y′′ is given by the follow-

ing composite in V, where ξmid is the middle four interchange of Defini-
tion 1.3.2:

(C(X′, X′′)⊗D(Y′, Y′′))⊗ (C(X, X′)⊗D(Y, Y′))

(C(X′, X′′)⊗C(X, X′))⊗ (D(Y′, Y′′)⊗D(Y, Y′))

C(X, X′′)⊗D(Y, Y′′)

ξmid m⊗m

● The identity of X⊗Y is given by the following composite

1
λ−1

1⊗1 iX ⊗ iY
C(X, X)⊗D(Y, Y). ◇

This defines the data of C ⊗ D. The associativity and unity axioms (1.2.2) and
(1.2.3), respectively, follow from those for C and D together with coherence for
the braiding of V.

Lemma 1.3.4. In the context of Definition 1.3.3, C⊗D is a V-category.
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Proof. To verify the associativity diagram (1.2.2), suppose given

X0, X1, X2, X3 ∈ C and Y0, Y1, Y2, Y3 ∈ D.

For i, j ∈ {0, 1, 2, 3}we let

C(Xi, Xj) = Xij and D(Yi, Yj) = Yij.

Then the associativity diagram for C⊗D is the following, in which we omit ten-
sor signs to save space. The arrows labeled s4, s2, and s3 are the unique braided
canonical morphisms with the given underlying braids.

((X23Y23)(X12Y12))(X01Y01)

((X23X12)(Y23Y12))(X01Y01)

(X13Y13)(X01Y01)

(X13X01)(Y13Y01)

(X23Y23)((X12Y12)(X01Y01))

(X23Y23)((X12X01)(Y12Y01))

(X23Y23)(X02Y02)

(X23X02)(Y23Y02)

((X23X12)(Y23X01))(Y12Y01)

((X23X12)X01)((Y23Y12)Y01)

(X23(X12X01))(Y23(Y12Y01))

X03Y03

ξmid1

(mm)1

ξmid

mm

α

1ξmid

1(mm)

ξmid

mm

s4 s2

s3

(m1)(m1)
αα

(1m)(1m)

(1)

(2) (3)

☆

The three numbered regions commute by the Braided Coherence Theorem 1.1.38.
The composites around region (1) have the following underlying braid.

1 2 3 4 5 6

s4s2 = s2s4 ∈ B6

(1)

Composites around regions (2) and (3) have the following underlying braids and
are equal by Theorem 1.1.38 together with naturality of the braided canonical
maps.

1 2 3 4 5 6

s3s4 ∈ B6

(2)
1 2 3 4 5 6

s3s2 ∈ B6

(3)
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The remaining region ☆ commutes by associativity in C and D.
For the left unity diagram (1.2.3) we have the following, using the notation as

above.

1(X01Y01)

(11)(X01Y01)

(X11Y11)(X01Y01) (X11X01)(Y11Y01)

X01Y01

X01Y01

(1X01)(1Y01)

λ−1(11)

(ii)(11)

ξmid mm

ξmid

λλ

(i1)(i1)

λ

☆

In the above diagram, the two unlabeled regions commute by naturality and unity
properties of the braiding ξ. The underlying braids of composites around their
boundaries are identities. The remaining region labeled ☆ commutes by the left
unity in C and D. The right unity diagram for C⊗D is similar. □

Definition 1.3.5. For a braided monoidal category V, the tensor product of V-
categories extends to V-functors and V-natural transformations as follows. Sup-
pose that F, F′ ∶ C C′ and G, G′ ∶ D D′ are V-functors. Suppose, moreover,
that θ ∶ F F′ and ω ∶ G G′ are V-natural transformations.

(1) The V-functor F⊗G is defined on objects by the Cartesian product, so

(F⊗G)(X⊗Y) = FX⊗GY.

It is defined on hom objects by the monoidal product in V, so for X, X′ ∈ C
and Y, Y′ ∈ D we have

(F⊗G)X⊗Y,X′⊗Y′ = (FX,X′)⊗ (GY,Y′).
The composition and identity axioms of Definition 1.2.4 follow from
those of F and G separately together with the naturality of the braiding ξ
in V.

(2) The V-natural transformation θ ⊗ω has components for each X⊗Y ∈ C⊗
D given by composing the inverse of a unit morphism with θX and ωY to
form the following composite:

1
λ−1

1⊗1 θX ⊗ωY
C′(FX, F′X)⊗D′(GY, G′Y).

The enriched naturality axiom (1.2.8) for θ⊗ω follow from those of θ and
ω separately, naturality of the brading ξ, and the unit axiom (1.1.25) for ξ
with unit morphisms. ◇

Proposition 1.3.6. The tensor product is a 2-functor

⊗ ∶ V-Cat×V-Cat V-Cat.

Proof. We verify functoriality with respect to horizontal composition of V-natural
transformations. Functoriality with respect to horizontal composition of 1-cells
and vertical composition of 2-cells are similar. Preservation of unit 1- and 2-cells
is verified directly from Definition 1.3.5.
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Now suppose given V-functors and V-natural transformations as in the dia-
gram below.

C⊗D C′ ⊗D′ C′′ ⊗D′′

F⊗G

H ⊗K

F′ ⊗G′

H′ ⊗K′

⇒

θ ⊗ω

⇒

θ′ ⊗ω′

We will show that the components of (θ′⊗ω)∗ (θ⊗ω) and (θ′ ∗ θ)⊗ (ω′ ∗ω) at an
object X⊗Y ∈ C⊗D are equal. To simplify the diagrams, we will use the following
notation:

C′(FX, HX) = X00 D′(GY, KY) = Y00

C′′(F′FX, F′HX) = X01 D′′(G′GY, G′KY) = Y01

C′′(F′HX, H′HX) = X12 D′′(G′KY, K′KY) = Y12

C′′(F′FX, H′HX) = X02 D′′(G′GY, K′KY) = Y02.

For example, in this notation the component of θ′ ∗ θ at X is the composite

1
λ−1

1⊗1
θ′HX ⊗ θX X12 ⊗X00

1⊗ F′ X12 ⊗X01
m X02.

In the diagram below, the composite along the left edge is (θ′⊗ω′)∗ (θ⊗ω)while
the composite along the right edge is (θ′ ∗ θ)⊗ (ω′ ∗ω).

1 1⊗2 (1⊗2)⊗ (1⊗2)

(X12 ⊗X00)⊗ (Y12 ⊗Y00)

(X12 ⊗X01)⊗ (Y12 ⊗Y01) X02 ⊗Y02

(X12 ⊗Y12)⊗ (X00 ⊗Y00)

(X12 ⊗Y12)⊗ (X01 ⊗Y01)

λ−1 λ−1 ⊗ λ−1

(θ′HX ⊗ θX)⊗ (ω
′
KY ⊗ωY)

(1⊗ F′)⊗ (1⊗G′)

(θ′HX ⊗ω′KY)⊗ (θX ⊗ωY)

(1⊗ 1)⊗ (F′ ⊗G′)

m⊗m

ξmid

ξmid

To see that each subdiagram above commutes, recall that ξ1,1 is the identity on
1⊗1 (1.1.21). Then both subdiagrams above commute by naturality of ξ. □

We now turn to the unitors, associator, and braiding for (V-Cat,⊗). Here we
simply define the data and show what basic properties they satisfy. We will use
these to define monoidal V-categories for general braided monoidal V and then
observe, in Theorem 1.5.5, that V-Cat is a braided monoidal Cat-category and is
symmetric if V is symmetric.
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Definition 1.3.7. The unit V-category, I, is the one-object V-category whose unique
hom object is the unit, 1, of V. The composition and identity structure morphisms
are given, respectively, by the unit and identity morphisms of 1. ◇
Definition 1.3.8. The left unitor, ℓ⊗, and right unitor, r⊗, are 2-natural isomor-
phisms

V-Cat2

V-Cat V-Cat

I× 1 ⊗

1

⇒

ℓ⊗

and

V-Cat2

V-Cat V-Cat

1× I ⊗

1

⇒
r⊗

in 2Cat(V-Cat,V-Cat) defined as follows. The unitor components at a V-category
C,

I⊗C
ℓ⊗C

C
r⊗C

C⊗ I,

are given on objects by the unitors for the Cartesian product and are given on hom
objects by the unit isomorphisms

1⊗C(X, X′) λ
C(X, X′)

ρ
C(X, X′)⊗1

with X and X′ objects of C. We show that the components of ℓ⊗C and r⊗C are V-
functors in Lemma 1.3.9 below. The naturality of λ and ρ with respect to mor-
phisms in V implies that ℓ⊗ and r⊗ are 2-natural with respect to V-functors and
V-natural transformations. ◇
Lemma 1.3.9. In the context of Definition 1.3.8, the components ℓ⊗C and r⊗C are V-
functors.

Proof. For ℓ⊗C , the composition axiom (1.2.5) is commutativity of the outer diagram
below for each triple X, X′, X′′ ∈ C, where we use the notation

C(X, X′) = X01 C(X′, X′′) = X12 C(X, X′′) = X02.

(1⊗X12)⊗ (1⊗X01)

(1⊗1)⊗ (X12 ⊗X01)

1⊗X02

X12 ⊗X01

X02

1⊗ (X12 ⊗X01)

ξmid

λ⊗m

m

λ⊗ λ

λ

1⊗m

λ⊗ (1⊗ 1)

λ☆

The underlying braids of the two composites around the trapezoid labeled ☆ are
both id2 ∈ B2 and therefore☆ commutes by the Braided Coherence Theorem 1.1.38.
The remaining regions commute by functoriality of ⊗ and naturality of λ.
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The identity axiom (1.2.6) is commutativity of the following diagram for X ∈ C,
which follows from naturality of λ.

1

1⊗1
1⊗C(X, X)

C(X, Y)

λ−1
1⊗ iX

λ
ix

The corresponding axioms for r⊗C are similar, making use of the right unit isomor-
phism ρ. □

Definition 1.3.10. The associator, a⊗, is a 2-natural isomorphism

V-Cat3 V-Cat2

V-Cat2 V-Cat

⊗× 1

⊗

1×⊗ ⊗
⇒a⊗

in 2Cat(V-Cat3,V-Cat) defined as follows. For C, D, E in V-Cat, the associator com-
ponent

a⊗C,D,E ∶ (C⊗D)⊗E C⊗ (D⊗E)

is given on objects by the associativity isomorphism of the Cartesian product and
is given on hom objects by the associativity isomorphism

α ∶ (C(X, X′)⊗D(Y, Y′))⊗E(Z, Z′) C(X, X′)⊗ (D(Y, Y′)⊗E(Z, Z′))

for objects X, X′ ∈ C, Y, Y′ ∈ D, and Z, Z′ ∈ E. The braided monoidal axioms for
(V,⊗,1, α, λ, ρ, ξ) imply that each component a⊗C,D,E is a V-functor. Naturality of
α with respect to morphisms in V implies that a⊗ is 2-natural with respect to V-
functors and V-natural transformations. ◇
Lemma 1.3.11. In the context of Definition 1.3.10 the associator components a⊗C,D,E are
V-functorial.

Proof. The composition axiom (1.2.5) for a⊗C,D,E is commutativity of the outer dia-
gram below for objects X, X′, X′′ ∈ C; Y, Y′, Y′′ ∈ D; and Z, Z′, Z′′ ∈ E. In the below
diagram we use the following notation and omit the tensor signs to save space.

C(X, X′) = X01 C(X′, X′′) = X12 C(X, X′′) = X02

D(Y, Y′) = Y01 D(Y′, Y′′) = Y12 D(Y, Y′′) = Y02

E(Z, Z′) = Z01 E(Z′, Z′′) = Z12 E(Z, Z′′) = Z02
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((X12Y12)Z12)((X01Y01)Z01)

((X12Y12)(X01Y01))(Z12Z01)

((X12X01)(Y12Y01))(Z12Z01)

(X02Y02)Z02

(X12(Y12Z12))(X01(Y01Z01))

(X12X01)((Y12Z12)(Y01Z01))

(X12X01)((Y12Y01)(Z12Z01))

X02(Y02Z02)

ξmid

ξmid(11)

(mm)m

ξmid

(11)ξmid

m(mm)

αα

α

α

☆

Commutativity of the region labeled ☆ follows from the Braided Coherence The-
orem 1.1.38 because the underlying braids of the boundary composites, shown
below, are equal. The remaining rectangle commutes by naturality of α.

1 2 3 4 5 6

s2s4s3 ∈ B6

=
1 2 3 4 5 6

s4s2s3 ∈ B6

The identity axiom (1.2.6) for a⊗C,D,E is similar to that of the unitors, following
from unity properties of V (1.1.5) and naturality of α. □

Explanation 1.3.12 (2-Naturality of the Associator and Unitors). The 2-naturality
of a⊗ means that the following diagram commutes for V-functors

F ∶ C C′, G ∶ D D′, and H ∶ E E′.

(1.3.13)

(C⊗D)⊗E

C⊗ (D⊗E)

(C′ ⊗D′)⊗E′

C′ ⊗ (D′ ⊗E′)

a⊗ a⊗

(F⊗G)⊗H

F⊗ (G⊗H)

The 2-naturality of ℓ⊗ and r⊗ yield similar commutative diagrams. ◇
The unitors ℓ⊗ and r⊗ as well as the associator a⊗ satisfy the following two

important properties generalizing those of monoidal categories.

Lemma 1.3.14 (Middle Unity for ℓ⊗ and r⊗). The following diagram commutes for
each pair of V-categories C and D.
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Middle Unity Diagram:

(1.3.15)
(C⊗ I)⊗D C⊗ (I⊗D)

C⊗D C⊗D
r⊗C⊗1D

a⊗C,I,D

1C⊗ℓ⊗D
1C⊗D

Proof. To verify that the diagram of V-functors commutes, we first observe that it
commutes on objects by the middle unity axiom for the Cartesian product. For
objects X, X′ ∈ C and Y, Y′ ∈ D the middle unity diagram on hom objects is the
following.

(1.3.16)

(C(X, X′)⊗1)⊗D(Y, Y′) C(X, X′)⊗ (1⊗D(Y, Y′))

C(X, X′)⊗D(Y, Y′) C(X, X′)⊗D(Y, Y′)

ρ⊗1

α

1⊗λ

1

This diagram in V commutes by the middle unity axiom for λ and ρ. □

Lemma 1.3.17 (Pentagon Axiom for a⊗). The following diagram commutes for each
tuple of V-categories A, B, C, and D.
Pentagon Diagram:

(1.3.18)

(A⊗B)⊗ (C⊗D)

((A⊗B)⊗C)⊗D

(A⊗ (B⊗C))⊗D A⊗ ((B⊗C)⊗D)

A⊗ (B⊗ (C⊗D))

a⊗A,B,C⊗Da⊗A⊗B,C,D

a⊗A,B,C⊗1D
a⊗A,B⊗C,D

1A⊗a⊗B,C,D

Proof. Our argument that (1.3.18) commutes is similar to the argument of Lemma 1.3.14.
First we observe that the diagram commutes on objects by the pentagon axiom
for the Cartesian product. Next, we observe that commutativity of the diagram
on hom objects is equivalent to the pentagon axiom for those hom objects and the
associator in V. □

We also have the following result generalizing the additional unity properties
(1.1.4) and (1.1.5).
Lemma 1.3.19. The following equality in V-Cat holds:

(1.3.20) ℓ⊗
I
= r⊗

I
∶ I⊗ I I.

In addition, the following left unity diagram and right unity diagram commute for each
pair of V-categories C and D.

(1.3.21)
(I⊗C)⊗D I⊗ (C⊗D)

C⊗D

a⊗
I,C,D

ℓ⊗C ⊗ 1D ℓ⊗C⊗D

C⊗ (D⊗ I)(C⊗D)⊗ I

C⊗D

a⊗C,D,I

1C ⊗ r⊗Dr⊗C⊗D
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Proof. We sketch two separate proofs of this result.

(1) Repeat the arguments from Remark I.1.2.5 that establish (1.1.4) and (1.1.5)
from the axioms of a monoidal category, using the diagrams (1.3.15) and
(1.3.18) instead.

(2) Argue as in Lemmas 1.3.14 and 1.3.17 that the result follows from (1.1.4)
and (1.1.5) on objects (for the Cartesian product) and on hom objects (for
the monoidal product in V). □

Now we turn to the braiding for the tensor product of V-categories. For sim-
plicity we require that V be symmetric monoidal, although more subtle hypotheses
in terms of iterated monoidal structures can be used to obtain more subtle results.
See Note 1.6.2 for further comments and references.

Definition 1.3.22. Suppose that (V, ξ) is a symmetric monoidal category. The
braiding, β⊗, is a 2-natural isomorphism

V-Cat2 V-Cat

V-Cat2

⊗

τ ⊗

⇒

β⊗

in 2Cat(V-Cat2,V-Cat) defined as follows. For C and D in V-Cat, the braiding com-
ponent

β⊗C,D ∶ C⊗D D⊗C

is given on objects by the braiding of the Cartesian product and is given on hom
objects by the braiding in V

ξ ∶ C(X, X′)⊗D(Y, Y′) D(Y, Y′)⊗C(X, X′)

for objects X, X′ ∈ C and Y, Y′ ∈ D. The symmetric monoidal axioms for (V,⊗,1, α, λ, ρ, ξ)
imply that each component β⊗C,D is a V-functor (see Lemma 1.3.23). Naturality of
ξ with respect to morphisms in V implies that β⊗ is 2-natural with respect to
V-functors and V-natural transformations. ◇
Lemma 1.3.23. In the context of Definition 1.3.22 the braiding components β⊗C,D are
V-functorial.

Proof. The composition axiom (1.2.5) for β⊗C,D is commutativity of the outer dia-
gram below for objects X, X′, X′′ ∈ C and Y, Y′, Y′′ ∈ D. In the below diagram we
use the following notation and omit the tensor signs to save space.

C(X, X′) = X01 C(X′, X′′) = X12 C(X, X′′) = X02

D(Y, Y′) = Y01 D(Y′, Y′′) = Y12 D(Y, Y′′) = Y02
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(1.3.24)

(X12Y12)(X01Y01)

(X12X01)(Y12Y01)

X02Y02

(Y12X12)(Y01X01)

(Y12Y01)(X12X01)

Y02X02

ξmid

mm

ξmid

mm

ξξ

ξ

ξ

☆

In the above diagram, the middle horizontal arrow ξ interchanges X12X01 and
Y12Y01. The composites around the region labeled ☆ have the same underly-
ing permutation and therefore ☆ commutes by the Symmetric Coherence Theo-
rem 1.1.41. The lower rectangle commutes by naturality of ξ.

Checking the identity axiom (1.2.6) for β⊗C,D is similar to that of the unitors and
associator, following from symmetric unity properties of V and naturality of ξ. □

Explanation 1.3.25. In (1.3.24) above, the underlying braids for the two composites
around the region labeled ☆ are the following distinct elements of B4.

1 2 3 4

s2s1s3s2s2 ∈ B4

/=
1 2 3 4

s2s1s3 ∈ B4

Therefore, if V is merely braided monoidal then the data of β⊗C,D generally do not
form a V-functor. ◇
Explanation 1.3.26 (2-Naturality of the Braiding). The 2-naturality of β⊗ means
that the following diagram commutes for V-functors

F ∶ C C′ and G ∶ D D′.

(1.3.27)

C⊗D

D⊗C

C′ ⊗D′

D′ ⊗C′

β⊗C,D β⊗C′,D′

F⊗G

G⊗ F

◇
Next we discuss axioms satisfied by β⊗.

Convention 1.3.28. Since Definition 1.3.22 assumes that V is symmetric monoidal,
that assumption is in effect any time β⊗ appears below. ◇
Lemma 1.3.29 (Hexagon Axioms for β⊗). Suppose V is symmetric monoidal. The
following diagrams commute for each triple of V-categories A, B, and C, with a−⊗ denoting
the inverse of a⊗.
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Left Hexagon Diagram:

(1.3.30) B⊗ (C⊗A)

B⊗ (A⊗C)(B⊗A)⊗C

(A⊗B)⊗C

A⊗ (B⊗C) (B⊗C)⊗A

β⊗A,B⊗1C

a⊗B,A,C

1B⊗β⊗A,C

a⊗A,B,C
β⊗A,B⊗C

a⊗B,C,A

Right Hexagon Diagram:

(1.3.31) (C⊗A)⊗B

(A⊗C)⊗BA⊗ (C⊗B)

A⊗ (B⊗C)

(A⊗B)⊗C C⊗ (A⊗B)

1A⊗β⊗B,C

a−⊗A,C,B

β⊗A,C⊗1B

a−⊗A,B,C
β⊗A⊗B,C

a−⊗C,A,B

Proof. Our arguments that (1.3.30) and (1.3.31) commute are similar to the argu-
ments of Lemmas 1.3.14 and 1.3.17. Commutativity on objects follows from the
hexagon diagrams for the braiding of the Cartesian product, and commutativity
on hom objects follows from the hexagon axioms for the braiding of V. □

Lemma 1.3.32 (Symmetry Axiom for β⊗). Suppose V is symmetric monoidal. Then
the following diagram commutes for each pair of V-categories C and D.
Symmetry Diagram:

(1.3.33)
C⊗D

D⊗C

C⊗D1

β⊗C,D β⊗D,C

Proof. Similarly to the proofs of Lemmas 1.3.14, 1.3.17, and 1.3.29, commutativity
of (1.3.33) follows on objects by the symmetry of the Cartesian product and follows
on hom objects by the symmetry axiom for ξ. □

Lemma 1.3.34 (Unit Properties for β⊗). Suppose V is symmetric monoidal. The follow-
ing diagrams commute for each V-category C.

A⊗ I I⊗A

A

β⊗A,I

r⊗A ℓ⊗A

C⊗ II⊗C

C

β⊗
I,C

r⊗Cℓ⊗C
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Proof. Commutativity on objects follows from the corresponding properties of the
Cartesian product. On hom objects, commutativity follows from the unit diagrams
(1.1.20) in V. □

Restricting to the underlying 1-category of V-Cat, the preceding definitions
and results of this section prove the following. In fact they prove a stronger Cat-
enriched result that we state as Theorem 1.5.5 below, after giving the relevant back-
ground in Sections 1.4 and 1.5.

Theorem 1.3.35. Suppose V = (V,⊗, ξ) is a braided monoidal category. Equipped with
the data above, (V-Cat,⊗, I, a⊗, ℓ⊗, r⊗) is a monoidal category. If V is symmetric monoi-
dal then so is (V-Cat, β⊗).

In Explanation 1.3.25 above we explained that the braiding β⊗ cannot be de-
fined as a V-functor when V is merely braided monoidal. However, the same as-
signment on objects can be extended to a V-functor using the opposite V-category
construction from Definition 1.2.16. We will make use of this in Example 1.4.27
below.

Definition 1.3.36. Suppose (V, ξ) is a braided monoidal category and suppose
C,D ∈ V-Cat. Define a V-functor

γC,D ∶ Cop ⊗Dop (D⊗C)op

with the assignment

X⊗Y Y⊗X

on objects X ⊗Y ∈ Cop ⊗Dop. On hom objects we define (γC,D)X⊗Y,X′⊗Y′ via the
braiding ξ below.

(Cop ⊗Dop)(X⊗Y, X′ ⊗Y′)

Cop(X, X′)⊗Dop(Y, Y′)

C(X′, X)⊗D(Y′, Y) D(Y′, Y)⊗C(X′, X)

(D⊗C)(Y′ ⊗X′, Y⊗X)

(D⊗C)op(Y⊗X, Y′ ⊗X′)

ξ

We verify the V-functor axioms for γC,D in Lemma 1.3.37. When clear from context
we will omit the subscripts C and D. ◇
Lemma 1.3.37. In the context of Definition 1.3.36,

γ ∶ Cop ⊗Dop (D⊗C)op

is a V-functor.

Proof. To verify the composition axiom (1.2.5) for γ, suppose given

X0, X1, X2 ∈ C and Y0, Y1, Y2 ∈ D.

For i, j ∈ {0, 1, 2, 3}we let

Cop(Xi, Xj) = Xij = Xji = C(Xj, Xi) and Dop(Yi, Yj) = Yij = Yji = D(Yj, Yi).
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Then the composition axiom for γ is the outer diagram below, where we omit
tensors to save space.

(X12Y12)(X01Y01)

(X12X01)(Y12Y01)

(X21X10)(Y21Y10)

(X10X21)(Y10Y21)

X20Y20

(Y12X12)(Y01X01)

(Y21X21)(Y10X10)

(Y10X10)(Y21X21)

(Y10Y21)(X10X21)

Y20X20

ξξ

s1s3

ξmid s2

ξξ s1s3

mm

ξ

ξb⊕2,2 = s2s1s3s2

ξmid

mm

ξ

b⊕2,2 = s2s1s3s2

☆

In the diagram above, the vertical composite along the left is the composition for
Cop⊗Dop, beginning with ξmid as in Definition 1.3.3. The vertical composite along
the right is the composition in (D⊗ C)op, beginning with the block braid ξ as in
Definition 1.2.16. The lower region commutes by naturality of ξ and the upper
region ☆ commutes by the Braided Coherence Theorem 1.1.38: each morphism
is labeled with its underlying braid, and the two boundary composites are the
following.

1 2 3 4

b⊕2,2(s1s3)s2 ∈ B4

=

1 2 3 4

s2 b⊕2,2(s1s3) ∈ B4

Using the same notation, the identity axiom (1.2.6) for γ is the following.

1 11

X00Y00

X00Y00

Y00X00

Y00X00

λ−1

ii

ii

ξ
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Recalling that ξ1,1 = 111 (1.1.21), the diagram above commutes by naturality of
ξ. □

Explanation 1.3.38. The one-object V-category I has

Iop(∗,∗) = I(∗,∗) = 1.

Since ξ1,1, ρ1, and λ1 are identities, the composition laws for I and its opposite
are equal. Therefore, we have

Iop = I
as V-categories. ◇

For future reference, we will need the following properties of γ.
Lemma 1.3.39. Suppose given V-categories

C,D,E,C0,C1,D0, and D1

along with V-functors

C0
F

C1 and D0
G

D1.
Then following diagrams of V-categories and V-functors commute.

(1.3.40)

Cop
0 ⊗D

op
0 Cop

1 ⊗D
op
1

(D0 ⊗C0)op (D1 ⊗C1)op

Fop ⊗Gop

(G⊗ F)op

γC0,D0 γC1,D1

(1.3.41)

(Cop ⊗Dop)⊗Eop

(D⊗C)op ⊗Eop

(E⊗ (D⊗C))op

Cop ⊗ (Dop ⊗Eop)

Cop ⊗ (E⊗D)op

((E⊗D)⊗C)op

γC,D ⊗ 1

γD⊗C,E

1⊗ γD,E

γC,E⊗D

a⊗

(a⊗)op

(1.3.42)

Cop ⊗ Iop

Cop ⊗ I

(I⊗C)op

Cop

γC,I

r⊗
(ℓ⊗)op

and

Iop ⊗Cop

I⊗Cop

(C⊗ I)op

Cop

γI,C

ℓ⊗
(r⊗)op

Proof. For each of the diagrams, one can check commutativity on objects directly
because (−)op is the identity on objects. On hom objects, one unpacks the various
opposites involved and finds that the relevant diagram commutes by the corre-
sponding property of ξ. We give the unpacked diagrams below.
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For X, X′ ∈ C0 and Y, Y′ ∈ D0, the diagram (1.3.40) at the hom object

Cop
0 (X, X′)⊗Dop

0 (Y, Y′)

is the following. It commutes by naturality of ξ.

C0(X′, X)⊗D0(Y′, Y) C1(FX′, FX)⊗D1(GY′, GY)

D0(Y′, Y)⊗C0(X′, X) D1(GY′, GY)⊗C1(FX′, FX)

F⊗G

G⊗ F

ξ ξ

For X, X′ ∈ C, Y, Y′ ∈ D, and Z, Z′ ∈ E, the diagram (1.3.41) at the hom object

(Cop(X, X′)⊗Dop(Y, Y′))⊗Eop(Z, Z′)

is the following. It commutes by the hexagon (1.1.22) for ξ and α.

(C(X′, X)⊗D(Y′, Y))⊗E(Z′, Z)

(D(Y′, Y)⊗C(X′, X))⊗E(Z′, Z)

E(Z′, Z)⊗ (D(Y′, Y)⊗C(X′, X))

C(X′, X)⊗ (D(Y′, Y)⊗E(Z′, Z))

C(X′, X)⊗ (E(Z′, Z)⊗D(Y′, Y))

(E(Z′, Z)⊗D(Y′, Y))⊗C(X′, X)

ξ ⊗ 1

ξ

1⊗ ξ

ξ

α

α

For X, X′ ∈ C, the diagrams (1.3.42) at the hom object Cop(X, X′) are the fol-
lowing. They commute by the unity properties (1.1.20) for ξ.

C(X′, X)⊗1 1⊗C(X′, X)

C(X′, X)

ξ

ρ λ

1⊗C(X′, X) C(X′, X)⊗1

C(X′, X)

ξ

λ ρ

This completes the proof. □

Explanation 1.3.43. One can define an opposite monoidal structure on V-Cat with
monoidal product ⊗τ given by twisting with the braiding τ of (Cat,×). Then
Lemma 1.3.39 shows that γ provides a monoidal constraint for (−)op, making it a
monoidal functor (of 1-categories) from (V-Cat,⊗) to (V-Cat,⊗τ). Following The-
orem 1.3.35, one can show that γ is 2-natural and one expects these claims will
extend to make (−)op monoidal as a 2-functor to V-Catco (with twisted monoidal
product). Further development of these points is beyond our current scope. ◇
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1.4. Monoidal Enriched Categories

In this section we use the monoidal structure of Section 1.3 to define V-
enriched monoidal structures. As in Section 1.3, we assume throughout this
section that (V,⊗, ξ) is a braided monoidal category. We define monoidal V-
categories, V-functors, and V-natural transformations and, under the further
assumption that V is symmetric monoidal, we define braided and symmetric
variants.

In the definitions below, we will write the tensor product of V-categories as
juxtaposition. We will denote the associator, unitors, and braiding of V-Cat with
superscripts: a⊗, ℓ⊗, r⊗, and β⊗. We will use superscripts with a minus sign, −⊗,
to denote their inverses.
Motivation 1.4.1 (Monoidal Categories). For a monoidal category C, the asso-
ciativity and unit isomorphisms are natural transformations described in Defi-
nition 1.1.1 via their components. The axioms for these data are given in terms
of commuting diagrams of components. They can be rewritten equivalently as
equalities of certain composites of natural transformations—that is, as equalities
of pasting diagrams in Cat.

This equivalent form of data (as 2-cells) and axioms (as equalities of cer-
tain pasting diagrams) yields a definition that can be studied in any monoidal
2-category A. The definitions and results in this section are obtained by applying
such a point of view to the 2-category A = V-Cat with its tensor product. We
encourage the reader to observe, for each of the definitions below, how the cor-
responding diagrams in Cat would define the monoidal structures discussed in
Section 1.1. The theory of pseudoalgebras over 2-monads yields an even more
general approach to this theory, and we give some references in Note 1.6.3.

However, to minimize the necessary background, our presentation below does
not depend on this general theory. Indeed, we will apply the material in this sec-
tion to define the 2-dimensional monoidal structure on V-Cat in Section 1.5. There-
fore, to avoid circularity, in this section we neither use nor mention general results
about 2-dimensional monoidal structure. A reader familiar with the more gen-
eral theory may recognize many of these results as special cases of more general
ones. A reader unfamiliar with the more general theory may take these results as
motivating examples. ◇
Definition 1.4.2. A monoidal V-category is a tuple

(K,⊠, I⊠, a⊠, ℓ⊠, r⊠)
consisting of the following data.
Base V-category: It has a V-category K called the base V-category.
Monoidal Composition: It has a V-functor

K⊗K ⊠
K

called the monoidal composition.
Monoidal Identity: It has a V-functor

I
I⊠

K

called the monoidal identity. The image of the unique object in I is also
denoted I⊠ and called the identity object.
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Monoidal Unitors: It has V-natural isomorphisms

(1.4.3)

K

IK K2

K

ℓ−⊗

I⊠1K

⊠

1K

⇒

ℓ⊠

K

KI K2

K

r−⊗

1KI⊠

⊠

1K
⇒

r⊠

in V-Cat(K,K), called the left monoidal unitor and the right monoidal unitor,
respectively. Their components at an object X ∈ K are, respectively,

1
ℓ⊠X

K(I⊠ ⊠X, X) and 1
r⊠X

K(X ⊠ I⊠, X).

Monoidal Associator: It has a V-natural isomorphism

(1.4.4)

(K2)K

K(K2)

K2

K2 K

⊠1K

⊠

1K⊠
⊠

a⊗

⇒a⊠

in V-Cat((K2)K,K), called the monoidal associator. Its component at a
triple of objects X, Y, Z ∈ K is a morphism in V

1
a⊠X,Y,Z

K((X ⊠Y)⊠ Z, X ⊠ (Y ⊠ Z)).

These data are required to satisfy the following two axioms, where we write 1 for
the identity V-functor.



1.4. MONOIDAL ENRICHED CATEGORIES III.43

Unity Axiom: The composites of the following two middle unity pasting diagrams
are equal.

(1.4.5)

=

(K2)K K2

K2 K

(KI)K

K2

⊠1

⊠

⊠

r−⊗1

(1I⊠)1

12

K(K2)K(IK)

a⊗

1⊠
1ℓ−⊗

1(I⊠1)
a⊗

⇒a⊠

⇒1ℓ⊠

☆

(K2)K K2

K2 K

(KI)K

K2

⊠1

⊠

⊠

r−⊗1

(1I⊠)1

12

12

⇒r⊠1

In the first diagram above, the unlabeled rectangle commutes by natu-
rality of a⊗ (1.3.13) and the triangle labeled ☆ commutes by the middle
unity for ℓ⊗ and r⊗ (1.3.15).
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Pentagon Axiom: The composites of the following two pentagon pasting diagrams
are equal.

(1.4.6)

=

(K(K2))K ((K2)K)K

(K2)K

K2

K

K((K2)K)

K(K(K2))

K(K2) K2

a⊗1

a⊗

1a⊗

1(1⊠)

1⊠ ⊠

(⊠1)1

⊠1

⊠

(K2)K

K(K2)

(1⊠)1

1(⊠1)
a⊗

⊠1

1⊠

⇒a⊠1

⇒a⊠

⇒1a⊠

(K(K2))K ((K2)K)K

(K2)K

K2

K

K((K2)K)

K(K(K2))

K(K2) K2

a⊗1

a⊗

1a⊗

1(1⊠)

1⊠ ⊠

(⊠1)1

⊠1

⊠

(K2)(K2) K(K2)

(K2)K K2

12⊠

⊠12

⊠1

1⊠

a⊗

a⊗

a⊗

a⊗

⊠

⇒a⊠

⇒a⊠

☆

The central square in the first diagram above commutes by 2-functoriality
of ⊗ in each variable (Proposition 1.3.6). The other unmarked quadrilat-
erals in the two diagrams above commute by 2-naturality of a⊗ (1.3.13).
The pentagon labeled☆ commutes by the pentagon axiom for a⊗ (1.3.18).

This finishes the definition of a monoidal V-category. We say that a monoidal
V-category is strict if the monoidal unitors ℓ⊠ and r⊠ along with the monoidal
associator a⊠ are identity V-natural transformations. ◇
Explanation 1.4.7 (Interchange for a Monoidal V-category). In the context of Def-
inition 1.4.2, the composition axiom for V-functoriality of ⊠ (Definition 1.2.4) im-
plies that, for all objects

X, X′, Y, Y′, Z, Z′ ∈ K,



1.4. MONOIDAL ENRICHED CATEGORIES III.45

the following enriched interchange diagram in V commutes.

(K(Y, Z)⊗K(Y′, Z′))⊗ (K(X, Y)⊗K(X′, Y′))

K(Y ⊠Y′, Z ⊠ Z′)⊗K(X ⊠X′, Y ⊠Y′)

(K(Y, Z)⊗K(X, Y))⊗ (K(Y′, Z′)⊗K(X′, Y′))

K(X, Z)⊗K(X′, Z′)

K(X ⊠X′, Z ⊠ Z′)ξmid

⊠⊗⊠

m

m⊗m

⊠

◇

Explanation 1.4.8 (Monoidal V-Category Axiom Components). Each of the axioms
in Definition 1.4.2 is an equality of composites of V-natural transformations. In
each case one can express the relevant equality via components. For example, the
Pentagon Axiom (1.4.6) is equivalent to the following equality of components for
each ((X⊗Y)⊗ Z)⊗W ∈ ((K2)K)K.

1

1⊗1

1⊗ (1⊗1)

K((X ⊠Y)⊠ (Z ⊠W) , X ⊠ (Y ⊠ (Z ⊠W)))
⊗K(((X ⊠Y)⊠ Z)⊠W , (X ⊠Y)⊠ (Z ⊠W))

K(X ⊠ ((Y ⊠ Z)⊠W) , X ⊠ (Y ⊠ (Z ⊠W)))
⊗ (K((X ⊠ (Y ⊠ Z))⊠W , X ⊠ ((Y ⊠ Z)⊠W))

⊗K(((X ⊠Y)⊠ Z)⊠W , (X ⊠ (Y ⊠ Z))⊠W))

K(((X ⊠Y)⊠ Z)⊠W , X ⊠ (Y ⊠ (Z ⊠W)))
λ−1

λ−1 ○ λ−1

a⊠ ⊗ a⊠

(1⊠ a⊠)⊗ (a⊠ ⊗ (a⊠ ⊠ 1))

◇
For the definition of braided monoidal V-category, we will need a mate

of a⊠ defined similarly to the mates of a pentagonator discussed just before
Lemma I.6.5.2.
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Definition 1.4.9. Suppose K is a monoidal V-category. We let a⊠1 denote the mate
of a⊠ given by the inverse of a⊗, as shown below.

(K2)K

K(K2)

K2

K2 K

⊠1K

⊠

1K⊠
⊠

a−⊗

⇒a⊠1

We let a−⊠1 denote the inverse of a⊠1 . ◇
Recall from Convention 1.3.28 that we assume V to be symmetric monoidal

whenever using the braiding β⊗ of (V-Cat,⊗).
Definition 1.4.10. Suppose V is a symmetric monoidal category. A braided monoidal
V-category is a pair

(K, β⊠)

consisting of the following data.

● K is a monoidal V-category as in Definition 1.4.2.
● β⊠ is a V-natural isomorphism

K2 K

K2

⊠

β⊗ ⊠

⇒

β⊠

in V-Cat(K2,K) called the braiding of K.

These data are required to satisfy the following two axioms.

Left Hexagon Axiom: The composites of the following two left hexagon pasting di-
agrams are equal.

(1.4.11)

=

K(K2)

(K2)K

(K2)K

K(K2)

K2

K2 K

a⊗

β⊗

a⊗

1⊠

⊠

⊠1

⊠

(K2)K

K(K2)

β⊗1

1β⊗

a⊗
⊠1

1⊠

⇒β⊠1

⇒1β⊠

⇒a⊠

☆

K(K2)

(K2)K

(K2)K

K(K2)

K2

K2 K

a⊗

β⊗

a⊗

1⊠

⊠

⊠1

⊠

K2

K2

1⊠

⊠1
β⊗

⊠

⊠

⇒β⊠

⇒a⊠

⇒a⊠
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In the diagrams above, the unlabeled quadrilateral commutes by 2-
naturality of β⊗ (1.3.27) and the hexagon labeled☆ commutes by the left
hexagon axiom for β⊗ (1.3.30).

Right Hexagon Axiom: The composites of the following two right hexagon pasting
diagrams are equal.

(1.4.12)

=

(K2)K

K(K2)

K(K2)

(K2)K

K2

K2 K

a−⊗

β⊗

a−⊗

⊠1

⊠

1⊠

⊠

K(K2)

(K2)K

1β⊗

β⊗1

a−⊗
1⊠

⊠1

⇒1β⊠

⇒β⊠1

⇒a−⊠1

☆

(K2)K

K(K2)

K(K2)

(K2)K

K2

K2 K

a−⊗

β⊗

a−⊗

⊠1

⊠

1⊠

⊠

K2

K2

⊠1

1⊠
β⊗

⊠

⊠

⇒β⊠

⇒a−⊠1

⇒a−⊠1

In the diagrams above, the unlabeled quadrilateral commutes by 2-
naturality of β⊗ (1.3.27) and the hexagon labeled ☆ commutes by the
right hexagon axiom for β⊗ (1.3.31). The 2-cell isomorphism a−⊠1 is the
inverse of a⊠1 described in Definition 1.4.9.

This finishes the definition of a braided monoidal V-category. ◇
Definition 1.4.13. Suppose V is a symmetric monoidal category. A symmetric mon-
oidal V-category is a braided monoidal V-category

(K, β⊠)
that satisfies the following axiom.
Symmetry Axiom: The composites of the following two symmetry pasting diagrams

are equal.
(1.4.14)

=

K2

K2

K

1

⊠

⊠
K2

β⊗

β⊗

⊠

⇒

β⊠

⇒

β⊠☆

K2

K2

K

1

⊠

⊠

The right hand diagram above indicates the identity V-natural transformation. In
the left hand diagram, the triangle labeled ☆ commutes by the symmetry axiom
for β⊗ (1.3.33). When this axiom holds, β⊠ is also called the symmetry of K. ◇

Next we give the definitions of monoidal V-functors and V-natural transfor-
mations. These require only that V is braided monoidal. We will use the following
two mates.
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Definition 1.4.15. Suppose K is a monoidal V-category. We let ℓ⊠1 and r⊠1 denote
the mates of ℓ⊠ and r⊠ given, respectively, by using ℓ⊗ and r⊗ in place of their
inverses, as shown below.

(1.4.16)

K

IK K2

K

ℓ⊗

I⊠1K

⊠

1K

⇒

ℓ⊠1

K

KI K2

K

r⊗

1KI⊠

⊠

1K
⇒

r⊠1

◇
Definition 1.4.17. Suppose K and L are monoidal V-categories. A monoidal V-
functor

(F, F2, F0) ∶ K L

consists of
● a V-functor F ∶ K L;
● a V-natural transformation

K2 L2

K L

⊠ ⊠

F⊗ F

F

⇒F2

called the monoidal constraint; and
● a V-natural transformation

I

K L

I⊠ I⊠

F

⇒F0

called the unit constraint.
These data are required to satisfy the following associativity and unity axioms.
Associativity: The composites of the following two associativity pasting diagrams

are equal.

=

(K2)K

K(K2)

K2

K

(L)2L

L2

L

a⊗

(FF)F

⊠

1⊠

⊠1

⊠

F

K2⊠1

⊠

FF

⇒a⊠

⇒F21

⇒F2

(K2)K

K(K2)

K2

K

(L)2L

L2

L

a⊗

(FF)F

⊠

1⊠

⊠1

⊠

F

L(L2)

L2

a⊗

1⊠

⊠

F(FF)

FF

⇒a⊠

⇒F2

⇒1F2
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In the right hand diagram above, the unlabeled parallelogram commutes
by naturality of a⊗.

Left Unity: The composites of the following two left unity pasting diagrams are
equal.

=

IK LK L2

K L

I⊠1 1F

F

ℓ⊗ ⊠
K2

F1

⊠

I⊠1

⇒

F01

⇒ℓ⊠1 ⇒F2

IK LK L2

K L

I⊠1 1F

F

ℓ⊗ ⊠IL

1F
I⊠1

ℓ⊗

⇒ℓ⊠1

In the right hand diagram above, the lower unlabeled quadrilateral com-
mutes by naturality of ℓ⊗ and the upper unlabeled region commutes by
2-functorality of ⊗. The 2-cell isomorphisms labeled ℓ⊠1 are each the mate
of ℓ⊠ described in Definition 1.4.15.

Right Unity: The composites of the following two right unity pasting diagrams are
equal.

=

KI KL L2

K L

1I⊠ F1

F

r⊗ ⊠
K2

1F

⊠

1I⊠
⇒

1F0

⇒r⊠1
⇒F2

KI KL L2

K L

1I⊠ F1

F

r⊗ ⊠LI

F1
1I⊠

r⊗

⇒r⊠1

In the right hand diagram above, the lower unlabeled quadrilateral com-
mutes by naturality of r⊗ and the upper unlabeled region commutes by
2-functorality of ⊗. The 2-cell isomorphisms labeled r⊠1 are each the mate
of r⊠ described in Definition 1.4.15.

This finishes the definition of a monoidal V-functor. Moreover, we have the fol-
lowing additional variants.

● A unital monoidal V-functor is one for which F0 is invertible.
● A strictly unital monoidal V-functor is one for which F0 is an identity.
● A strong monoidal V-functor is one for which both F0 and F2 are invertible.
● A strict monoidal V-functor is one for which both F0 and F2 are identities.

◇
Definition 1.4.18. Suppose K and L are braided monoidal V-categories, with V
symmetric monoidal. A braided monoidal V-functor

(F, F2, F0) ∶ K L

is a monoidal V-functor that satisfies the following axiom.
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Braid Axiom: The composites of the following two braiding pasting diagrams are
equal.

=

K2

K2

K

L2

L

β⊗

⊠

FF

F

⊠L2

β⊗

⊠

FF ⇒β⊠

⇒F2

K2

K2

K

L2

L

β⊗

⊠

FF

F

⊠⊠⇒β⊠ ⇒F2

In the left hand diagram above, the unlabeled quadrilateral commutes by natural-
ity of β⊗. This finishes the definition of a braided monoidal V-functor.

If K and L are symmetric monoidal V-categories then we say that F is a sym-
metric monoidal V-functor. ◇
Definition 1.4.19. For a pair of composable monoidal V-functors

K
F

L
P

M,

the composite PF is a monoidal V-functor with monoidal and unit constraints given,
respectively, by the composites of the following pasting diagrams.

K2 L2 M2

K L M

⊠ ⊠ ⊠

F⊗ F P⊗ P

F P

⇒F2 ⇒P2 and

I

K

L

M

I⊠

I⊠

I⊠

F P

⇒F0 ⇒P0

In Proposition 1.4.21 below we verify that (braided) monoidal V-functors are
closed under composition. ◇
Lemma 1.4.20. Suppose K is a monoidal V-category. The identity V-functor 1K is mon-
oidal as a V-functor. If K is braided monoidal (with V symmetric) then so is 1K.

Proof. We take the monoidal and unit constraints of 1K to be identity V-natural
transformations. Then the associativity and unity axioms of Definition 1.4.17 are
tautologies because horizontal and vertical composition of V-natural transforma-
tions are strictly unital. The same holds for the braid axiom of Definition 1.4.18 if
K is braided monoidal. □

Proposition 1.4.21. In the context of Definition 1.4.19, the composite PF is a monoidal
V-functor. If F and P are braided monoidal V-functors (with V symmetric monoidal), then
so is PF. Moreover, composition of monoidal V-functors is strictly associative and unital.
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Proof. We verify the associativity axiom of Definition 1.4.17 via the equalities of
pasting diagrams below; the unity and (in the braided case) braid axioms are sim-
ilar.

=
=

(K2)K

K(K2)

K2

K

(L)2L

L

(M)2M

M2

M

a⊗

(FF)F
(PP)P

⊠

1⊠

⊠1

⊠

F
P

L2⊠1

⊠

PP

⇒P21

⇒P2

K2⊠1

⊠

FF

⇒a⊠

⇒F21

⇒F2

(K2)K

K(K2)

K2

K

(L)2L

L

(M)2M

M2

M

a⊗

(FF)F
(PP)P

⊠

1⊠

⊠1

⊠

F
P

L2⊠1

⊠

PP

⇒P21

⇒P2

L(L2)

L2

a⊗

1⊠

⊠

F(FF)

FF
⇒F2

⇒1F2

⇒a⊠

(K2)K

K(K2)

K2

K

(L)2L

L

(M)2M

M2

M

a⊗

(FF)F
(PP)P

⊠

1⊠

⊠1

⊠

F
P

L(L2)

L2

a⊗

1⊠

⊠

F(FF)

FF
⇒F2

⇒1F2

M(M2)

M2

a⊗

1⊠

⊠

P(PP)

PP

⇒a⊠

⇒P2

⇒1P2

The equalities above follow from the associativity axioms for F and P. This proves
the associativity axiom for PF because, by 2-functoriality of ⊗ (Proposition 1.3.6),
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we have the following:

=

(K2K) (L2)L (M2)M

K2 L2 M2

(FF)F (PP)P

FF PP

⊠1 ⊠1⊠1
⇒F21 ⇒P21

(K2K) (L2)L (M2)M

K2 L2 M2

(FF)F (PP)P

FF PP

⊠1 ⊠1
⇒(PF)21

along with a similar equality for 1(PF)2.
The assertion that composition of (braided) monoidal V-functors is strictly as-

sociative and unital follows from the corresponding statements for underlying
V-functors together with strictness of vertical and horizontal composition for V-
natural transformations. For example, strictly unital composition implies that the
monoidal and unit constraints of 1L ○ F and F1K are equal to those of F. Simi-
larly, the monoidal and unit constraints of a three-fold composite are given by the
three-fold pasting of monoidal and unit constraints. □

Definition 1.4.22. Suppose K and L are monoidal V-categories, and suppose that
F, G ∶ K L are monoidal V-functors. A monoidal V-natural transformation

θ ∶ F G

is a V-natural transformation of underlying V-functors that satisfies the following
two additional axioms.
Monoidal Naturality: The composites of the following two monoidal naturality

pasting diagrams are equal.

=

K2 L2

K L

⊠ ⊠

F⊗ F

G

F⇒

θ

⇒F2
K2 L2

K L

⊠ ⊠

F⊗ F

G

G⊗G

⇒

θ ⊗ θ

⇒G2

Unit Naturality: The composites of the following two unit naturality pasting dia-
grams are equal.

=

I

K L

I⊠ I⊠

G

F⇒

θ

⇒F0

I

K L

I⊠ I⊠

G

⇒G0

This finishes the definition of a monoidal V-natural transformation. Verification
that monoidal V-natural transformations are closed under vertical and horizontal
composition is given in Proposition 1.4.24 below. Then identities and compos-
ites of monoidal V-natural transformations are defined via underlying V-natural
transformations. ◇
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Explanation 1.4.23 (Components of monoidal V-natural transformations). Recall-
ing the definitions of horizontal and vertical composition for V-natural transfor-
mations (Definition 1.2.9), the monoidal naturality axiom of Definition 1.4.22 is
equivalent to commutativity of the following diagram in V for each pair of objects
X and Y in K.

1⊗1

L(F(X ⊠Y), G(X ⊠Y))⊗ L(FX ⊠ FY, F(X ⊠Y))

L(GX ⊠GY, G(X ⊠Y))⊗ L(FX, GX)⊗ L(FY, GY)

L(GX ⊠GY, G(X ⊠Y))⊗ L(FX ⊠ FY, GX ⊠GY)

L(FX ⊠ FY, G(X ⊠Y))

θX⊠Y ⊗ F2
X,Y

m

G2
X,Y ⊗ (θ ⊗ θ)X⊗Y

1⊗⊠
m

In the diagram above, (θ ⊗ θ)X⊗Y is the component of

θ ⊗ θ ∶ F⊗ F G⊗G

at X⊗Y. Following Definition 1.3.5, it is defined to be

1
λ−1

1⊗1 θX ⊗ θY
L(FX, GX)⊗ L(FY, GY)

Similarly, the unit naturality axiom of Definition 1.4.22 is equivalent to com-
mutativity of the following diagram in V, with I = I⊠ denoting the unit objects of
K and L.

1

1⊗1

L(FI, GI)⊗ L(I, FI)

L(I, GI)
λ−1

θI ⊗ F0

m

G0

◇

Proposition 1.4.24. Monoidal V-natural transformations are closed under vertical and
horizontal composition of underlying V-natural transformations.

Proof. This result follows from 2-functoriality of ⊗ (Proposition 1.3.6). We will
demonstrate for vertical composition; horizontal composition is similar. Suppose
that

F, G, H ∶ K L

are monoidal V-functors between monoidal V-categories. Suppose that

θ ∶ F G and ϕ ∶ G H
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are monoidal V-natural transformations. Then monoidal naturality of θ and ϕ
gives the first two equalities of pasting diagrams below. The third follows by 2-
functoriality of ⊗; we write ν = ϕθ to conserve space.

= = =

K2 L2

K L

⊠ ⊠

F⊗ F

H

F

G

⇒

θ⇒

ϕ

⇒F2

K2 L2

K L

⊠ ⊠

F⊗ F

H

G

G⊗G

⇒

ϕ

⇒

θ ⊗ θ

⇒G2

K2 L2

K L

⊠ ⊠

F⊗ F

H

G⊗G

H ⊗H

⇒

θ ⊗ θ

⇒

ϕ⊗ ϕ

⇒H2

K2 L2

K L

⊠ ⊠

F⊗ F

H

H ⊗H

⇒

ν⊗ ν

⇒H2

The equalities above show that ϕθ satisfies the monoidal naturality condition of
Definition 1.4.22. The unit naturality condition is similar. □

The results of Propositions 1.4.21 and 1.4.24 show that (braided) monoidal V-
functors and monoidal V-natural transformations satisfy the composition laws of
a 2-category.
Definition 1.4.25. Suppose V = (V,⊗, ξ) is a braided monoidal category. For items
(2) and (3) suppose that V is symmetric. We define the following 2-categories of
small monoidal V-categories.

(1) Let V-MCat denote the 2-category whose objects are small monoidal V-
categories, 1-cells are monoidal V-functors, and 2-cells are monoidal V-
natural transformations.

(2) Let V-BMCat denote the 2-category whose objects are small braided mon-
oidal V-categories, 1-cells are braided monoidal V-functors, and 2-cells
are monoidal V-natural transformations.

(3) Let V-SMCat denote the 2-category whose objects are small symmetric
monoidal V-categories, 1-cells are symmetric monoidal V-functors, and
2-cells are monoidal V-natural transformations.

These are related by 2-functors where the first recognizes symmetric structure as a
special case of the braided analogue, the second forgets the braiding data, and the
third forgets all monoidal data:

V-SMCat V-BMCat V-MCat V-Cat. ◇
Definition 1.4.26. A monoidal V-adjunction between monoidal V-categories K and
L consists of a V-adjunction

K L
F

G
�

such that F and G are monoidal V-functors and the unit and counit are monoidal
V-natural transformations. If K and L are small, this is an internal adjunction in
V-MCat. A monoidal adjoint V-equivalence consists of a monoidal V-adjunction such
that the unit and counit are monoidal V-natural isomorphisms. For V symmetric
monoidal, a monoidal V-adjunction or V-equivalence is called braided, respectively
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symmetric, if F and G are braided, respectively symmetric, monoidal as V-functors.
◇

Next we describe a rotated multiplication on the opposite of a monoidal V-
category. Recall from Definition 1.3.36 the V-functor

Cop ⊗Dop γ (D⊗C)op

for V-categories C and D. Recall from Proposition 1.2.19 that (−)op is a 2-functor
on V-Cat that is covariant with respect to horizontal composition of 1- and 2-cells,
but contravariant with respect to vertical composition of 2-cells.

Example 1.4.27 (Rotated Multiplication). Suppose V = (V,⊗, ξ) is a braided monoi-
dal category and suppose K = (K,⊠, I, a, ℓ, r) is a monoidal V-category. The rotation
of K is defined by the following data.

● The underlying V-category is the opposite, K = Kop.
● The monoidal composition

⊠ ∶ K⊗K K

is defined to be the composite

Kop ⊗Kop γ (K⊗K)op ⊠op
Kop

using γ (Definition 1.3.36) and the opposite V-functor of ⊠. Therefore, for
objects X, X′, Y, Y′ ∈ K we have X⊠Y = Y ⊠ X. The morphism on hom
objects is given by the following composite of ξ and ⊠.

K(X, X′)⊗K(Y, Y′)

K(X′, X)⊗K(Y′, Y) K(Y′, Y)⊗K(X′, X) K(Y′ ⊠X′, Y ⊠X)

K(X⊠Y, X′ ⊠Y′)
ξ ⊠

● The monoidal identity is

I = Iop ∶ I = Iop Kop.

● The monoidal unitors are given by

ℓ = r−1 ∶ 1 K(X, X ⊠ I) = K(I⊠X, X)

and
r = ℓ−1 ∶ 1 K(X, I⊠X) = K(X⊠ I, X)

for X ∈ K.
● The monoidal associator component at X, Y, Z ∈ K is given by

aX,Y,Z = aZ,Y,X ∶ 1 K((Z ⊠Y)⊠X, Z ⊠ (Y ⊠X)) = K((X⊠Y)⊠Z, X⊠ (Y⊠Z))

for X, Y, Z ∈ K.

To verify that the unitors and associator have the required sources and targets,
we use Lemma 1.3.39 to see that the unlabeled regions in each of the following
diagrams commute. Recall from Proposition 1.2.19 that (−)op reverses directions
of V-natural transformations. The components of r, ℓ, and a given above are those
of the V-natural transformations indicated below.
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(1.4.28)

K

(IK)op (K2)op

K

KI K
2

(ℓ−⊗K )
op

(I1K)
op

⊠op

(1K)
op = 1

K

γ
γ

r−⊗
K

1
K

I

⇒

(ℓop)−1

K

(KI)op (K2)op

K

IK K
2

(r−⊗K )
op

(1KI)op

⊠op

(1K)
op = 1

K

γ
γ

ℓ−⊗
K

I1
K

⇒
(rop)−1

(1.4.29)
((K2)K)op

(K(K2))op

(K2)op

(K2)op K

K K
2 K(K2)op K

2

K
2
K

(K2)opK

K
2

(⊠1K)
op

⊠op

(1K⊠)
op

⊠op

(a⊗)op

1γ 1⊠op

γ

γ1

⊠op1

γ

a⊗

γ

γ

⇒(a⊠)op

One can use either of two approaches to verify that these data satisfy the unity
and associativity axioms of Definition 1.4.2. In one approach, use (2-) naturality
of γ to verify that the relevant pasting diagrams reduce to whiskerings of those
for K. In the other, consider components as in Explanation 1.4.8 to see that the re-
quired equalities for K reduce to corresponding equalities for K. For example, the
pentagon axiom for a is, for each quadruple of objects X, Y, Z, W ∈ K, an equality
of components

1 K(((X⊠Y)⊠Z)⊠W , X⊠ (Y⊠ (Z⊠W)))

= K(((W ⊠Z)⊠Y)⊠X , W ⊠ (Z⊠ (Y⊠X)))

The required equality follows from the corresponding equality for a at the quadru-
ple W, Z, Y, X. Similarly, the unity axiom for K at X, Y ∈ K holds by the unity axiom
for K at Y, X. ◇
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1.5. Cat-Monoidal 2-Categories

The case V = Cat, the category of small categories, warrants special attention
because the definition of monoidal Cat-category gives an important notion of strict
monoidal bicategory. Since the notion of (locally small) 2-category is the same
as that of a Cat-enriched category, and each 2-category is a bicategory, the term
“monoidal 2-category” might be understood to mean either of the following:

● a monoidal V-category in the case V = Cat, or
● a monoidal bicategory whose underlying bicategory is a 2-category.

These are distinct notions and therefore to avoid ambiguity we introduce the fol-
lowing terms for the Cat-enriched case.

Definition 1.5.1. Suppose (V,⊗,1) = (Cat,×, 1) in the context of Definitions 1.4.2,
1.4.10, and 1.4.13. We introduce the following special terminology.

● We say that K is a Cat-monoidal 2-category if K is a monoidal Cat-category
in the sense of Definition 1.4.2.
● We say that K is a braided Cat-monoidal 2-category if K is a braided monoi-

dal Cat-category in the sense of Definition 1.4.10.
● We say that K is a symmetric Cat-monoidal 2-category if K is a symmetric

monoidal Cat-category in the sense of Definition 1.4.13. ◇
Next we relate the definition of Cat-monoidal 2-category, along with the

braided and symmetric variants, to the 1-categorical analogues.

Explanation 1.5.2 (Relation to Monoidal 1-Categories). Suppose that (K,⊗, I, a, ℓ, r)
is a Cat-monoidal 2-category.

(1) The underlying 1-categorical data of (K,⊗, I, a, ℓ, r) form a monoidal 1-
category. The axioms for a monoidal 1-category are obtained by taking
components of the diagrams (1.4.5) and (1.4.6) above.

(2) In particular, the components of a, ℓ, and r satisfy the equality

ℓI = rI ∶ I⊗ I I

from (1.1.4) along with the left and right unity diagrams of (1.1.5).
(3) If (K, β) is braided Cat-monoidal, then the underlying 1-category is

braided monoidal.
(4) If (K, β) is symmetric Cat-monoidal, then the underlying 1-category is

symmetric monoidal. ◇
Next we relate the definition of Cat-monoidal 2-category, along with the

braided and symmetric variants, to the definitions of plain, braided, and symmet-
ric monoidal bicategory.

Explanation 1.5.3 (Relation to Monoidal Bicategories). Suppose K is a Cat-monoidal
2-category.

(1) The data of K are those of a monoidal bicategory whose base bicategory is
a 2-category and for which the pentagonator π and 2-unitors λ, µ, and ρ
are all identities. Commutativity of the pentagon diagram (1.4.6) is equiv-
alent to triviality of π; commutativity of the middle unity diagram (1.4.5)
is equivalent to triviality of µ; and the triviality of λ, respectively ρ, is
equvialent to commutativity of the left, respectively right, unity diagram
from (1.1.5). The non-Abelian 4-cocycle condition (I.6.4.2) along with the
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two normalization axioms (I.6.4.3) and (I.6.4.4) then consist entirely of
identity 2-cells because ⊗ is 2-functorial and a, ℓ, and r are 2-natural.

(2) If, moreover, K is braided Cat-monoidal, then the corresponding bicate-
gory is braided monoidal with hexagonators R−∣−− and R−−∣− being iden-
tities. The four axioms of Definition I.6.5.3 are equalities of identity 2-
cells.

(3) If, moreover, K is symmetric Cat-monoidal, then the corresponding bicat-
egory is symmetric monoidal with syllepsis ν being an identity. The two
syllepsis axioms of Definition I.6.5.7 as well as the triple braid axiom of
Definition I.6.5.9 are equalities of identity 2-cells. ◇

Example 1.5.4. Equipped with the Cartesian product, (Cat,×, 1) is a symmetric
Cat-monoidal 2-category. The associator, unitors, and braiding are those of the
Cartesian product, and are 2-natural by construction. ◇
Theorem 1.5.5. Suppose V = (V,⊗, ξ) is a braided monoidal category. Then the tensor
product of V-categories makes (V-Cat,⊗, I) a Cat-monoidal 2-category. If V is symmetric
monoidal, then so is (V-Cat, β⊗).

Proof. All of the relevant data and axioms are described in Section 1.3 above. The
data are the following.

● The monoidal composition is the tensor product for V-categories; see Def-
initions 1.3.3 and 1.3.5. It is shown to be a 2-functor in Proposition 1.3.6.
● The identity object is the unit V-category; see Definition 1.3.7.
● The monoidal unitors are ℓ⊗ and r⊗; see Definition 1.3.8.
● The monoidal associator is a⊗; see Definition 1.3.10.
● If V is symmetric, the braiding is β⊗; see Definition 1.3.22.

The axioms are checked as follows.
● The unity axiom (1.4.5) is verified on components by Lemma 1.3.14.
● The pentagon axiom (1.4.6) is verified on components by Lemma 1.3.17.
● If V is symmetric, the hexagon axioms (1.4.11) and (1.4.12) are verified on

components by Lemma 1.3.29.
● If V is symmetric, the symmetry axiom (1.4.14) is verified on components

by Lemma 1.3.32. □

Restricting to the underlying 1-categorical data recovers the 1-categorical
monoidal structure stated in Theorem 1.3.35.

1.6. Notes

1.6.1 (Enriched Categories). The standard reference for the theory of enriched cat-
egories is [Kel05]. Many of the basic definitions are developed in [EK66], which is
itself based on preliminary work referenced there. ◇
1.6.2 (Iterated Monoidal Structure on V and V-Cat). Forcey [For04] defines enrich-
ment over V when V has an iterated monoidal structure described in Chapter II.10.
The main result [For04, Theorem1] shows that if V is n-fold monoidal then V-Cat
is (n − 1)-fold monoidal. The cases n = 1 and n = 2, along with the relevant Stric-
tification Theorems 1.1.32 and 1.1.39, imply the statements in the top two rows of
(1.3.1). Recall from Proposition II.10.1.21 that the case n =∞ corresponds to V be-
ing permutative. This explains why our table in (1.3.1) collapses at the symmetric
case. ◇
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1.6.3 (Enriched Monoidal Categories via 2-Categorical Algebra). Day and Street
[DS97] develop a theory of pseudomonoids in a Gray monoid and apply it to
give definitions of monoidal V-categories (along with the braided and symmetric
variants) that correspond, via the tricategorical strictification of [GPS95, Gur13],
to those of Section 1.4. This approach via pseudomonoids or more general 2-
monad theory also appears in the thesis of Cruttwell [Cru09]. We have chosen
to give more direct definitions to limit the 2-categorical background required for
this work. ◇
1.6.4 (Enriched Monoidal Categories for Strict V). For V strict monoidal, work
of Kong and Zheng [KZ18, Definitions 2.3 and 2.4] gives definitions of (braided)
monoidal V-categories in terms of the underlying categories. Theorem 2.5.1 below,
which to our knowledge has not previously appeared in the literature, shows that
the definitions of [KZ18] are special cases of the definitions given here.

Work of Morrison and Penneys [MP19] also gives a definition of strict mon-
oidal V-category in the case that V is strict. In that work the authors pose the
question of defining non-strict monoidal V-categories and proving coherence theo-
rems. The definitions in this chapter together with the results of Chapter 2 provide
positive answers to those questions.

The following table, where V denotes the enriching braided monoidal cate-
gory, summarizes the various levels of strictness for [MP19], [KZ18] (where V is
denoted B), and this chapter.

[MP19] [KZ18] 1.4
V strict strict non-strict

monoidal V-categories strict non-strict non-strict
◇





CHAPTER 2

Change of Enrichment

This chapter discusses change of enrichment along a monoidal, respectively
braided monoidal, respectively symmetric monoidal functor

U ∶ V W.

Sections 2.1 through 2.4 describe the general 2-functoriality properties for change
of enrichment along U. They show, moreover, that it is compatible with rele-
vant monoidal structures under further assumptions that U, V, and W are braided
or symmetric monoidal. The results are summarized in the statements of Theo-
rems 2.2.7, 2.3.9, and 2.4.10.

We have two distinct purposes for covering this material. The first is for Sec-
tions 2.5 and 2.6, where change of enrichment along the corepresented functor

V(1,−) ∶ V Set

allows us to lift the coherence and strictification theory for ordinary monoidal cat-
egories, along with their braided and symmetric variants, to coherence and stricti-
fication results for monoidal V-categories. Similar results hold for the correspond-
ing braided and symmetric variants.

Our second purpose for covering this material is for the development of var-
ious enriched monoidal categories and functors for our K-theory applications in
Part 2. We will apply change of enrichment to develop new enriched monoidal
structures from existing ones.

2.1. Change of Enriching Categories

In this section we discuss change of enriching category via a monoidal functor.
Throughout this section we assume that

U ∶ V W

is a monoidal functor between monoidal categories. Braidings are not required.
Definition 2.1.1. Suppose (V,⊗,1) and (W,⊗,1) are monoidal categories and

U ∶ V W

is a monoidal functor. Then there is an induced change of enrichment 2-functor

(−)U ∶ V-Cat W-Cat

given as follows.
● For a small V-category C, the W-category CU has the same objects and has

hom objects
CU(X, Y) = U(C(X, Y)).

The composition and identity of CU are given by applying U to those of
C and composing the monoidal and unit constraints of U, respectively.

III.61
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● For a V-functor F ∶ C D, the W-functor FU is the same assignment on
objects and is the induced morphism on hom objects

FU = U(FX,Y) ∶ U(C(X, Y)) U(D(FX, FY)).

● For a V-natural transformation θ ∶ F G, the W-natural transformation
θU has components given by the following composite in W:

1
U0

U1
UθX U(D(FX, GX)). ◇

Proposition 2.1.2. In the context of Definition 2.1.1, (−)U is a 2-functor.

Proof. Verifying that (−)U gives the requisite assignments on 0-, 1-, and 2-cells
consists of verifying that each of CU , FU , and θU satisfy the axioms for W-category,
W-functor, and W-natural transformation, respectively. We will check the first, and
the other two are similar.

The composition in CU is defined by the following composite for objects X, Y,
and Z in C:
(2.1.3)

U(C(Y, Z))⊗U(C(X, Y)) U2

U(C(Y, Z)⊗C(X, Y)) Um U(C(X, Z)).

The associativity diagram (1.2.2) for this composition is the outer diagram below,
where we write CA,B for the object C(A, B) to save space.

(UCY,Z ⊗UCX,Y)⊗UCW,X UCY,Z ⊗ (UCX,Y ⊗UCW,X)

U(CY,Z ⊗CX,Y)⊗UCW,X UCY,Z ⊗U(CX,Y ⊗CW,X)

UCX,Z ⊗UCW,X UCY,Z ⊗UCW,Y

U(CX,Z ⊗CW,X) U(CY,Z ⊗CW,Y)

UCW,Z

U((CY,Z ⊗CX,Y)⊗CW,X) U(CY,Z ⊗ (CX,Y ⊗CW,X))

α

Uα

U2 ⊗ 1 1⊗U2

Um⊗ 1 1⊗Um

U2 U2

Um Um

U2 U2

U(m⊗ 1) U(1⊗m)

The upper hexagon commutes by the associativity axiom (1.1.9) for U. The lower
pentagon commutes by applying U to the associativity diagram (1.2.2) for compo-
sition in C. Each of the two quadrilaterals commutes because U preserves identity
morphisms and U2 is natural.
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The identity of an object X in CU is defined by the following composite:

(2.1.4) 1
U0

U1
U(iX) U(C(X, X)).

The left side of the unity diagram (1.2.3) for this composition is the outer diagram
below; we again abbreviate C(A, B) as CA,B.

1⊗UCX,Y

U1⊗UCX,Y

UCY,Y ⊗UCX,Y U(CY,Y ⊗CX,Y) UCX,Y

U(1⊗CX,Y)

UCX,Y

U0 ⊗ 1

UiY ⊗ 1

U2 Um

λ

U2

Uλ

1

U(iY ⊗ 1)

The upper quadrilateral commutes by the left unity axiom (1.1.10) for U. The
lower left square commutes because U preserves identities and U2 is natural. The
quadrilateral at right commutes by applying U to the left side of the unity diagram
(1.2.3) for composition in C. The right side of the unity diagram for composition
in CU is similar.

To verify that (−)U is a 2-functor, we must verify that it preserves identity 1-
and 2-cells, horizontal composition of 1- and 2-cells, and vertical composition of
2-cells. The identity V-functor 1C is given by the identity on objects and identity
morphisms on each hom object C(X, Y). Therefore (1C)U = 1CU because U pre-
serves identity morphisms. For V-functors

C
F

D
G

E,

recall from Definition 1.2.4 that the composite GF is given by the composite on
objects of C and

(GF)X,Y = GFX,FY FX,Y

for X, Y ∈ C. Therefore,
(GF)U;X,Y = (GU ○ FU)X,Y

because U preserves composition. The computations showing that (−)U preserves
horizontal and vertical composition of 2-cells are similar and make use of the mon-
oidal compatibility axioms (1.1.9) and (1.1.10) for U. □

Lemma 2.1.5. The corepresented functor

V(1,−) ∶ V Set

is a monoidal functor with respect to the monoidal product in V and the Cartesian prod-
uct in Set. If V is braided, respectively symmetric, monoidal then V(1,−) is a braided,
respectively symmetric, monoidal functor.

Proof. The monoidal constraint for V(1,−) is given by functoriality of the monoi-
dal product and composition with a unitor:

V(1, X)×V(1, Y) −⊗−
V(1⊗1, X⊗Y)

(λ−1)∗
V(1, X⊗Y).
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The unit constraint for V(1,−) is given by the identity morphism of 1, where ∗
denotes the terminal set:

∗ 11
V(1,1).

The associativity axiom (1.1.9) follows from naturality of α: for morphisms

f ∈ V(1, X), g ∈ V(1, Y), and h ∈ V(1, Z),
the following diagram commutes by naturality of α and compatibility with unit
isomorphisms (1.1.5).

1

(1⊗1)⊗1

1⊗ (1⊗1)

(X⊗Y)⊗ Z

X⊗ (Y⊗ Z)

(λ−1 ⊗ 1) ○ λ−1

λ−1 ○ λ−1

( f ⊗ g)⊗ h

f ⊗ (g⊗ h)

α α

Combining this with the functoriality of ⊗ verifies the associativity axiom.
The left and right unity axioms (1.1.10) follow likewise from the naturality of

the unitors in V. For example, the left unity axiom follows from commutativity of

1

1⊗1

X

1⊗X

λ−1

1⊗ f
λ

f

for each f ∈ V(1, X). The right unity axiom follows similarly, and uses the equality
λ1 = ρ1 (1.1.4). This completes the proof that V(1,−) is a monoidal functor.

If V is braided or symmetric monoidal, then similar analysis shows that the
braid compatibility axiom (1.1.18) follows from naturality of ξ and the equality
ξ1,1 = 11⊗1 (1.1.21). □

We apply Lemma 2.1.5 together with Proposition 2.1.2 to define the underlying
category of a V-category.

Definition 2.1.6. Suppose C is a V-category. The underlying category of C is denoted
C0 and defined as follows. The objects of C0 are those of C, and the morphism sets
are defined by

C0(X, Y) = V(1,C(X, Y)). ◇
Lemma 2.1.7. The 2-functor

(−)0 ∶ V-Cat Cat

is injective on 2-cells. That is, two parallel V-natural transformations θ and ω are equal if
and only if their underlying natural transformations θ0 and ω0 are equal.

Proof. Suppose F, G ∶ C D are V-functors and θ, ω ∶ F G are V-natural
transformations. The component of θ0 at an object X is defined to be the image of
the following composite, where ∗ denotes the terminal set:

∗ 11
V(1,1)

V(1, θX)
V(1,D(FX, GX)).
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This morphism of sets sends the unique element of ∗ to the composite θX ○ 11 ∈
V(1,D(FX, GX)). Similarly, we have (ω0)X = ωX ○ 11. The result then follows
because θX = ωX if and only if θX ○ 11 = ωX ○ 11. □

Next we define underlying represented, respectively corepresented, functors
on the underlying category of a V-category D. We use them to give an alternative
condition for V-naturality in Lemma 2.1.11 below.

Definition 2.1.8. Suppose D is a V-category and

θ ∶ 1 D(P, Q)
is a morphism in V. Then for each X ∈ D we let D(X, θ) denote the following
composite in V.

(2.1.9)

D(X, P)

1⊗D(X, P) D(P, Q)⊗D(X, P)

D(X, Q)

λ−1

θ ⊗ 1

m

D(X, θ)

Similarly, for each Y ∈ D we let D(θ, Y) denote the following composite in V.

(2.1.10)

D(Q, Y)

D(Q, Y)⊗1 D(Q, Y)⊗D(P, Q)

D(P, Y)

ρ−1

1⊗ θ

m

D(θ, Y)

Recalling the definition of the identity (2.1.4) and composition (2.1.3) in D0, it fol-
lows directly from the axioms for unity (1.2.3) and associativity of composition
(1.2.2) that the constructions above define functors

D(X,−) ∶ D0 V and D(−, Y) ∶ Dop
0 V

called the underlying corepresented functor and underlying represented functor, respec-
tively. ◇
Lemma 2.1.11. Suppose F, G ∶ C D are V-functors between V-categories C and D.
Suppose that

θX ∶ 1 D(FX, GX)
is a collection of morphisms in V for X ∈ C. The morphisms θX are the components of a
V-natural transformation θ if and only if the following diagram commutes for each pair of
objects X and Y in C.

(2.1.12)

C(X, Y) D(FX, FY)

D(GX, GY) D(FX, GY)

F

G D(FX, θY)

D(θX , GY)
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Proof. Consider the following diagram in V for each X, Y ∈ C.

C(X, Y)
1⊗C(X, Y)

D(FY, GY)⊗D(FX, FY)

C(X, Y)⊗1

D(GX, GY)⊗D(FX, GX)

D(FX, GY)

D(FX, FY)
1⊗D(FX, FY)

D(GX, GY)
D(GX, GY)⊗1

λ−1

ρ−1

θY ⊗ F

G⊗ θX

m

m

F

G

λ−1

ρ−1

1⊗ F

G⊗ 1

θY ⊗ 1

1⊗ θX

Commutativity of the innermost region in the above diagram is the naturality
condition (1.2.8) of Definition 1.2.7 above. On the other hand, by the definitions
of D(FX, θY) and D(θX , GY) in Definition 2.1.8, the outermost composites in the
above diagram are precisely the morphisms in (2.1.12).

The two quadrilaterals and two triangles in the above diagram commute by
naturality of the unitors and functoriality of the monoidal product

⊗ ∶ V ×V V,

respectively. Therefore, the innermost region in the above diagram commutes if
and only if the two composites along the boundary are equal. This proves the
result. □

2.2. 2-Functoriality of Change of Enrichment

In this section we show that the assignment from monoidal functors

U ∶ V W

to 2-functors
(−)U ∶ V-Cat W-Cat

is 2-functorial with respect to monoidal functors and monoidal natural transfor-
mations. Throughout this section we work with general monoidal categories,
monoidal functors, and monoidal natural transformations; braidings are not as-
sumed.

Next we define the 2-natural transformation, between change of enrichment
2-functors, that is induced by a monoidal natural transformation.

Definition 2.2.1. Suppose V and W are moniodal categories, U, T ∶ V W are
moniodal functors, and µ ∶ U T is a monoidal natural transformation. For
each V-category C let

Cµ ∶ CU CT

denote the W-functor that is the identity on objects and whose morphism on hom
objects is

UC(X, Y)
µC(X,Y)

TC(X, Y),
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the component of µ at C(X, Y). The composition and identity axioms of Defini-
tion 1.2.4 for Cµ follow from the monoidal axioms (1.1.13) for µ and naturality of
µ. ◇
Proposition 2.2.2. In the context of Definition 2.2.1, the components Cµ are 2-natural
with respect to V-functors and V-natural transformations.

Proof. Suppose given V-categories C and D together with V-functors F and G and
a V-natural transformation θ as in the diagram below:

C D.
F

G

⇒

θ

Consider the following two diagrams in W-Cat.

(2.2.3)

CU DU

CT DT

FU

GT

Cµ Dµ

GU

⇒

θU CU DU

CT DT

FU

GT

Cµ Dµ

FT⇒

θT

The quadrilateral region of each diagram commutes by naturality of µ. For ex-
ample the diagram involving G becomes the following naturality square for each
hom object C(X, Y).

UC(X, Y) UD(GX, GY)

TC(X, Y) TD(GX, GY)

UG

TG

µ µ

To compare the two whiskerings indicated in the two diagrams of (2.2.3), we use
the Whiskering Lemma 1.2.12. For each X ∈ C, the component (1Dµ

∗ θU)X is given,
via Lemma 1.2.12, by the upper right composite in the diagram below. Similarly,
the component (θT ∗ 1Cµ

)X is given by the lower composite.

1

U1 UD(FX, GX)

T1 TD(FX, GX)

U0

U(θX)

T0 T(θX)

µ µ

In the above diagram, the triangle commutes by the unit condition (1.1.13) for µ
and the square commutes by naturality of µ. Thus the two whiskerings in (2.2.3)
are equal. This finishes the verification that (−)µ is 2-natural. □
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Recall from Definition 1.1.11 the monoidal and unit constraints of a composite
of monoidal functors

V1
U1

V2
U2

V3.
are given, respectively by

(U2U1)2 = (U2(U2
1)) ○U2

2 and (U2U1)0 = (U2(U0
1)) ○U0

2 .

Proposition 2.2.4. Suppose given monoidal categories V1, V2, and V3 together with mon-
oidal functors

V1
U1

V2
U2

V3.
Then change of enrichment (−)(U2U1) along the composite U2U1 is equal as a 2-functor to
the composite

V1-Cat
(−)U1

V2-Cat
(−)U2

V3-Cat.

Proof. First we describe

((−)U1)U2 and (−)(U2U1)

on objects of V1-Cat. For a V1-category C, the objects of the V3-categories (CU1)U2
and C(U2U1) are the same as those of C. Moreover we have an equality of hom
objects

(CU1)U2(X, Y) = U2(CU1(X, Y)) = U2U1C(X, Y) = C(U2U1)(X, Y).
To finish checking that (CU1)U2 and C(U2U1) are equal as V3-categories, we need to
verify that the composition and identity morphisms are equal.

For objects X, Y, Z ∈ C, the composition morphism for (CU1)U2 is given by the
composite

(2.2.5)

(CU1)U2(Y, Z)⊗ (CU1)U2(X, Y)

U2(CU1(Y, Z)⊗CU1(X, Y))

U2U1(C(Y, Z)⊗C(X, Y)) U2U1C(X, Z)

U2
2

U2(U
2
1)

U2U1m

because (U1m) ○U2
1 is the composition for CU1 and U2 is functorial. But since the

monoidal constraint of the composite U2U1 is precisely (U2(U2
1)) ○U2

2 , (2.2.5) also
gives the composition morphism for C(U2U1). A similar computation using the unit
constraint for (U2U1) shows that the identity morphisms of (CU1)U2 and C(U2U1)
are equal. This shows that

((−)U1)U2 and (−)(U2U1)

give the same assignments on objects of V1-Cat.
Next we check assignments on 1-cells. For a V1-functor

F ∶ C D
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the morphisms on hom objects for both (FU1)U2 and F(U2U1) are given by

U2U1C(X, Y)
U2U1(FX,Y)

U2U1D(FX, FY)
for X, Y ∈ C. Therefore, (FU1)U2 = F(U2U1).

Finally we check assignments on 2-cells. For a V1-natural transformation θ ∶
F G, each of (θU1)U2 and θ(U2U1) the component at X ∈ C given by the com-
posite

1
U0

2 U21
U2(U

0
1) U2U11

U2U1(θX) U2U1D(FX, GX)
because U2 is functorial and the unit constraint of the composite U2U1 is precisely
(U2(U0

1)) ○U0
2 . This shows that (θU1)U2 = θ(U2U1) and completes the proof. □

Recall from Example I.6.1.14 that MCat denotes the 2-category of small mon-
oidal categories, monoidal functors, and monoidal natural transformations.

Motivation 2.2.6 (2-Functoriality and Size). The preceding results of this section
can be summarized as a 2-functoriality statement where

V V-Cat,

U (−)U , and

µ (−)µ
are the assignments on 0-, 1-, and 2-cells of a 2-functor E out of MCat. However, a
nontrivial set-theoretic consideration is necessary. Although we define each V-Cat
as a 2-category consisting of small V-categories, V-Cat itself is generally not small.
For this reason, the codomain of E must be enlarged. Subtleties of this sort moti-
vated Eilenberg and Mac Lane to introduce the category of “large” categories in
the original category theory paper [EML45], and that is one resolution available
here too.

A similar but technically different approach can be given as follows. The def-
initions of small monoidal categories, small V-categories, and all other uses of
small in this work, implicitly assume a chosen model for set theory, called a uni-
verse U . The term set is reassigned to mean member of U , and a category or V-
category C called small if ObC ∈ U . Let us temporarily call this condition U-small.
Grothendieck’s Axiom of Universes (see Note 2.7.3) implies (by choosing a larger in-
accessible cardinal) the existence of a Grothendieck universe U ′ such that, for each
U-small monoidal category V, and for V-Cat denoting the 2-category of U-small
V-categories, we have

Ob(V-Cat) ∈ U ′.
Thus, if 2Cat′ denotes the 2-category of all U ′-small 2-categories, then V-Cat is an
object of 2Cat′ for each U-small monoidal category V. All of our previous discus-
sion of 2Cat applies to 2Cat′ in the (Grothendieck) universe U ′.

We point out that this is only one convenient way of resolving the size subtlety.
This one, the Eilenberg-Mac Lane use of “large”, and a number of other more
nuanced approaches, are outlined in [Shu∞b]. We state the next result with a
hypothesis about U ′ that may follow from any of such approaches. ◇
Theorem 2.2.7. Suppose U ′ is a universe of sets containing Ob(V-Cat) for each small
monoidal category V. Let 2Cat′ denote the 2-category of 2-categories that are small with



III.70 2. CHANGE OF ENRICHMENT

respect to U ′. Then change of enrichment provides a 2-functor

E ∶MCat 2Cat′

given by
● EV = V-Cat
● EU = (−)U
● Eµ = (−)µ

for a small monoidal category V, monoidal functor U, and monoidal natural transforma-
tion µ, respectively.

Proof. By hypothesis on U ′, together with Propositions 2.1.2 and 2.2.2, E is a valid
assignment on objects, 1-cells, and 2-cells. Now we verify that E is 2-functorial. To
verify that E preserves identities, consider 1V. Inspection of the definition shows
that (−)1V is the identity V-functor. Similarly for a monoidal functor U the 2-
natural transformation

(−)1U ∶ (−)U (−)U
has all identity components and is therefore the identity.

Proposition 2.2.4 shows that E preserves horizontal composition of 1-cells.
Now we verify that E preserves horizontal and vertical composition of 2-cells.
Suppose given monoidal categories, functors, and natural transformations as in
the following diagram:

V1 V2 V3.

U1

T1

U2

T2

⇒

µ

⇒

π

To verify
(Eπ) ∗ (Eµ) = E(π ∗ µ),

it suffices to verify that the components at each V1-category C are equal. Unwind-
ing the definitions, these components are V3-functors that are identities on objects
and whose morphisms on hom objects C(X, Y) are given by either of the two com-
posites around the square below—the two composites are equal because they are
the two equal expressions for the component of (π ∗µ) at the object C(X, Y) in V1.

U2U1C(X, Y) T2U1C(X, Y)

U2T1C(X, Y) T2T1C(X, Y)

π ∗U1

π ∗ T1

U2 ∗ µ T2 ∗ µ

Lastly we check that E preserves vertical composition of monoidal natural
transformations. Suppose given monoidal functors

S, T, U ∶ V W

and a composable pair of monoidal natural transformations

U
µ

T ν S.
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For each C ∈ V-Cat, the W-functors

CU
Cµ

CT
Cν

CS and CU
C(νµ)

CS

are identities on objects and have the same morphisms on hom objects

UC(X, Y)
µ

TC(X, Y) ν SC(X, Y)

because the component of νµ at C(X, Y) ∈ V is the composite of the corresponding
components of ν and µ. This completes the proof that E is a 2-functor. □

Explanation 2.2.8. Even though Theorem 2.2.7 is stated for small monoidal cat-
egories V, the arguments that change of enrichment E preserves identities and
composition of monoidal functors and/or monoidal natural transformations are
independent of size. For a statement involving some specific monoidal categor-
ies, such as the adjunction result stated in Corollary 2.2.10 below, one can make a
size-independent conclusion in one of two ways.

If Grothendieck’s Axiom of Universes is assumed (see Note 2.7.3), then one can
use Theorem 2.2.7 by choosing a sufficiently large universe in which the given
monoidal categories are small. In that case, as noted in Motivation 2.2.6, the Axiom
of Universes also implies the existence of U ′ in the statement of Theorem 2.2.7. In
terms of cardinality, these are obtained by taking successively larger inaccessible
cardinals.

Alternatively, one can use the preceding results and the arguments given in
the proof of Theorem 2.2.7 to show directly that the relevant identities and com-
posites are preserved. This approach is less concise, but avoids the set-theoretic
considerations and the assumption of Grothendieck’s axiom. ◇
Definition 2.2.9. A monoidal adjunction between monoidal categories V and W con-
sists of an adjunction

W V
T

U
�

such that T and U are monoidal functors and the unit and counit are monoidal
natural transformations. If V and W are small, this is an internal adjunction in
MCat. A monoidal adjoint equivalence consists of a monoidal adjunction such that
the unit and counit are monoidal natural isomorphisms. ◇

Recall, as a special case of Definition I.6.3.9, an adjunction of 2-categories con-
sists of 2-functors F and G

A B
F

G
�

together with 2-natural unit and counit satisfying triangle identities. If A and B
are small then this is an internal adjunction in 2Cat.

Corollary 2.2.10. Suppose given a monoidal adjunction

W V.
T

U
�
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Then change of enrichment induces an adjunction of 2-categories

W-Cat V-Cat.

(−)T

(−)U

�

If T ⊣ U is a monoidal equivalence, then (−)T ⊣ (−)U is an equivalence of 2-categories.

Proof. For small monoidal categories V and W, the result follows from the state-
ment of Theorem 2.2.7. As discussed in Explanation 2.2.8, one can deduce the
result for general V and W by either:

● enlarging to a Grothendieck universe that contains ObV and ObW (under
the assumption of Grothendieck’s Axiom of Universes) or
● applying the proofs of Proposition 2.2.4 and Theorem 2.2.7 to T, U, the

unit, and the counit of the adjunction. □

The Monoidal Strictification Theorem 1.1.32 is a monoidal equivalence by
Lemma 1.1.34 and therefore yields an important special case of Corollary 2.2.10.
Corollary 2.2.11. Suppose V is a monoidal category and

Vst V
L

R

is a monoidal equivalence with Vst strict monoidal. Then there is an equivalence of 2-
categories

(Vst)-Cat V-Cat.
(−)L

(−)R

2.3. Preservation of Enriched Tensor

In this section we discuss change of enrichment along a braided monoidal
functor. Throughout, we suppose that V = (V,⊗, ξ) and W = (W,⊗, ξ) are braided
monoidal categories and

U ∶ V W

is a braided monoidal functor. Recall from Definition 2.1.1 the change of enrich-
ment 2-functor induced by U and denoted

(−)U ∶ V-Cat W-Cat.

First we identify how change of enrichment is compatible with the enriched
tensor product.
Definition 2.3.1. For V-categories C and D, we define

(−)2U ∶ CU ⊗DU (C⊗D)U
to be the identity on objects and given on hom objects by the morphism in W

(CU ⊗DU)(X⊗Y, X′ ⊗Y′)

CU(X, X′)⊗DU(Y, Y′)

(C⊗D)U(X⊗Y, X′ ⊗Y′)

(C(X, X′)⊗D(Y, Y′))U

= =

U2

for X, X′ ∈ C and Y, Y′ ∈ D. We define

(−)0U ∶ I IU
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as the identity on the unique object and

1
U0

U1

on the unique hom object. ◇

Lemma 2.3.2 (W-Functoriality and 2-Naturality of (−)2U). The assignment (−)2U de-
fines a W-functor. The definition of (−)2U is 2-natural with respect to

● V-functors C C′ and D D′; and
● V-natural transformations thereof.

Proof. The composition and identity axioms of Definition 1.2.4 require that the
following diagrams, respectively, commute for each X ⊗Y, X′ ⊗Y′, and X′′ ⊗Y′′

in C ⊗ D. In the first diagram m1 denotes the composition in CU ⊗ DU and m2
denotes the composition in (C⊗D)U . In the second diagram i1 denotes the unit of
CU ⊗DU and i2 denotes the unit of (C⊗D)U .

(CU ⊗DU)(X′ ⊗Y′, X′′ ⊗Y′′)⊗ (CU ⊗DU)(X⊗Y, X′ ⊗Y′)

(CU ⊗DU)(X⊗Y, X′′ ⊗Y′′)

(C⊗D)U(X′ ⊗Y′, X′′ ⊗Y′′)⊗ (C⊗D)U(X⊗Y, X′ ⊗Y′)

(C⊗D)U(X⊗Y, X′′ ⊗Y′′)

m1

m2

U2 ⊗U2

U2

1

1

(CU ⊗DU)(X⊗Y, X⊗Y)

(C⊗D)U(X⊗Y, X⊗Y)

U2

i1

i2

Unpacking the definitions of m1 and m2 via Definition 1.3.3 and (2.1.3) shows that
the first diagram commutes by the associativity axiom (1.1.9) and the braid axiom
(1.1.18) for U. Similarly, unpacking the definitions of i1 and i2 via (2.1.4) and Defi-
nition 1.3.3 shows that the second diagram commutes by the unity axioms (1.1.10)
for U.
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To check naturality of (−)2U , consider W-functors and W-natural transforma-
tions as in the diagrams below.
(2.3.3)

CU ⊗DU C′U ⊗D′U

(C⊗D)U (C′ ⊗D′)U

FU ⊗GU

(F′ ⊗G′)U

(−)2U (−)2U
F′U ⊗G′U

⇒

θU ⊗ωU CU ⊗DU C′U ⊗D′U

(C⊗D)U (C′ ⊗D′)U

FU ⊗GU

(F′ ⊗G′)U

(−)2U (−)2U(F⊗G)U
⇒

(θ ⊗ω)U

Naturality of (−)2U with respect to V-functors, i.e., commutativity of the empty re-
gion in each diagram, follows by checking the induced morphisms on hom objects
and using naturality of U2 with respect to morphisms in V. Naturality of (−)2U with
respect to V-natural transformations, i.e., equality of the indicated whiskerings
with (−)2U , follows by checking components via the Whiskering Lemma 1.2.12.
Equality of the relevant components follows from naturality of U2, functoriality of
⊗, naturality of λ in V, and the left unity axiom (1.1.10) for U. □

Lemma 2.3.4 (Associativity Axiom for (−)U). The following diagram commutes for
each triple of V-categories B, C, and D.

Associativity Diagram:

(BU ⊗CU)⊗DU

(B⊗C)U ⊗DU

((B⊗C)⊗D)U

BU ⊗ (CU ⊗DU)

BU ⊗ (C⊗D)U

(B⊗ (C⊗D))U

(−)2U ⊗ 1

(−)2U

1⊗ (−)2U

(−)2U

a⊗

(a⊗)U

Proof. Commutativity of the diagram on objects (W ⊗X)⊗Y ∈ (B⊗C)⊗D is im-
mediate because (−)2U is the identity on objects. For hom objects

(BU(W, W′)⊗CU(X, X′))⊗DU(Y, Y′),

commutativity follows from the definition of a⊗ (Definition 1.3.10) and the asso-
ciativity axiom (1.1.9) for U. □

Lemma 2.3.5 (Unity Axiom for (−)U). The following two diagrams commute for each
V-category C.
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Unity Diagrams:

I⊗CU

IU ⊗CU

CU

(I⊗C)U

(−)0U ⊗ 1

(−)2U

(ℓ⊗)U

ℓ⊗
CU ⊗ I

CU ⊗ IU

CU

(C⊗ I)U

1⊗ (−)0U
(−)2U

(r⊗)U

r⊗

Proof. Similar to the proof of Lemma 2.3.4, commutativity on objects is immedi-
ate and commutativity on hom objects follows from the definitions of ℓ⊗ and r⊗

(Definition 1.3.8) together with the unity axioms (1.1.10) for U. □

Lemma 2.3.6 (Braid Axiom for (−)U). Suppose V is symmetric monoidal. The following
diagram commutes for each pair of V-categories C and D.
Braid Diagram:

CU ⊗DU DU ⊗CU

(C⊗D)U (D⊗C)U

(−)2U (−)2U

β⊗

β⊗U

Proof. Similarly to the proofs of Lemmas 2.3.4 and 2.3.5, commutativity on objects
is immediate and commutativity on hom objects follows from the definition of β⊗

(Definition 1.3.22) together with the braid axiom (1.1.18) for U. □

Lemmas 2.3.4 through 2.3.6 together verify the axioms of Definitions 1.1.6
and 1.1.17, therefore proving the following result.
Theorem 2.3.7. Suppose

U ∶ V W

is a braided monoidal functor between braided monoidal categories. Then the change of
enrichment

(−)U ∶ V-Cat W-Cat
is a Cat-monoidal 2-functor with respect to the enriched tensor products. Moreover, if U
is a symmetric monoidal functor between symmetric monoidal categories, then (−)U is
symmetric Cat-monoidal.

Theorem 2.3.7 is the first step toward extending Theorem 2.2.7 to the braided
and symmetric cases. We will show in Theorem 2.3.9 that change of enrich-
ment provides a 2-functor from braided monoidal categories to Cat-monoidal
2-categories. As discussed in Motivation 2.2.6, this gives a convenient packaging
of the relevant statements about preserving units and composition, but at the cost
of some set-theoretic subtlety. We will use a similar approach as in Theorem 2.2.7,
but applied to the second two of the 2-categories defined as follows.
Definition 2.3.8.

(1) We let BMCat denote the 2-category consisting of
● small braided monoidal categories as objects,
● braided monoidal functors as 1-cells, and
● monoidal natural transformations as 2-cells.
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(2) We let SMCat denote the 2-category consisting of
● small symmetric monoidal categories as objects,
● symmetric monoidal functors as 1-cells, and
● monoidal natural transformations as 2-cells.

(3) We let CM2Cat denote the 2-category consisting of
● small Cat-monoidal 2-categories as objects,
● Cat-monoidal 2-functors as 1-cells, and
● Cat-monoidal 2-natural transformations as 2-cells.

(4) We let SCM2Cat denote the 2-category consisting of
● small symmetric Cat-monoidal 2-categories as objects,
● symmetric Cat-monoidal 2-functors as 1-cells, and
● symmetric Cat-monoidal 2-natural transformations as 2-cells.

For verification that these form 2-categories, SMCat is described in Example I.6.1.15.
Units and compositions of braided monoidal functors and natural transformations
are given by their underlying monoidal counterparts, so the 2-category axioms for
BMCat follow from those of MCat (Example I.6.1.14). The 2-categories CM2Cat and
SCM2Cat are special cases of V-MCat, respectively V-SMCat in Definition 1.4.25
with V = Cat. ◇
Theorem 2.3.9. Suppose U ′ is a universe of sets containing Ob(V-Cat) for each small
monoidal category V. Let CM2Cat′ and SCM2Cat′ denote the 2-categories of Cat-
monoidal, respectively symmetric Cat-monoidal, 2-categories that are small with respect
to U ′. Then change of enrichment provides a 2-functor

E ∶ BMCat CM2Cat′

given by
● EV = V-Cat
● EU = (−)U
● Eµ = (−)µ

for a small braided monoidal category V, braided monoidal functor U, and monoidal natu-
ral transformation µ, respectively. Restricted along the inclusion

SMCat BMCat,

E takes values in SCM2Cat’.

Proof. Theorem 2.3.7 shows that the assignment on 1-cells is valid; the assignments
on 0- and 2-cells are those of Theorem 2.2.7. Since identities and vertical or hor-
izontal composites of 2-cells in BMCat, respectively CM2Cat′ are those of MCat,
respectively 2Cat′, it follows from Theorem 2.2.7 that these are preserved in the
braided case.

Given braided monoidal functors

V1
U1

V2
U2

V3,

Proposition 2.2.4 verifies that

((−)U1)U2 and (−)(U2U1)

are equal as 2-functors. To complete the proof of the first assertion, we verify
that the monoidal and unit constraints are equal. These constraints are 2-natural
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transformations whose components, at a pair of V1-categories C and D, are V3-
functors

C(U2U1) ⊗D(U2U1) = (CU1)U2 ⊗ (DU1)U2 ((C⊗D)U1)U2 = (C⊗D)(U2U1).

Recalling Definition 2.3.1, these V3-functors are identities on objects. Therefore, it
remains only to verify they are equal on hom objects.

By Definition 1.4.19, the monoidal and unit constraints of the composite
((−)U1)U2 are given by the composite 2-natural transformations of the following
pasting diagrams, where 1 denotes the terminal 2-category.

(2.3.10)
(V1-Cat)2 (V2-Cat)2 (V3-Cat)2

V1-Cat V2-Cat V3-Cat

⊗ ⊗ ⊗

(−)U1 ⊗ (−)U1 (−)U2 ⊗ (−)U2

(−)U1 (−)U2

⇒(−)2U1
⇒(−)2U2

(2.3.11)

1

V1-Cat

V2-Cat

V3-Cat

I

I

I

(−)U1 (−)U2

⇒(−)0U1 ⇒(−)0U2

For X, X′ ∈ C and Y, Y′ ∈ D the morphism on hom objects given by (2.3.10) (at C,D)
is the composite below.

(CU1)U2(X, X′)⊗ (DU1)U2(Y, Y′)

U2((CU1)(X, X′)⊗ (DU1)(Y, Y′)) U2U1(C(X, X′)⊗D(Y, Y′))

U2
2

U2(U
2
1)

This composite is, by Definition 1.1.11, the monoidal constraint of the composite
U2U1, and therefore is the morphism on hom objects given by (−)2U2U1

at C,D. A
similar unpacking shows that the unit constraints agree, and this finishes the proof
that

E ∶ BMCat CM2Cat′

is a 2-functor.
Recalling Proposition 1.4.21, the composite of symmetric monoidal enriched

functors is again symmetric monoidal. Therefore the second assertion, regarding
the restriction of E to SMCat, follows from the first assertion and the symmetric
cases of Theorems 1.5.5 and 2.3.7. □

Explanation 2.3.12. As in Explanation 2.2.8, we note that one can apply the argu-
ments in the proof of Theorem 2.3.9 to specific cases of interest without assump-
tions such as the Axiom of Universes. For example, one can do so for the proofs of
Corollaries 2.2.10 and 2.2.11 below. ◇
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Definition 2.3.13. A braided monoidal adjunction between braided monoidal cate-
gories V and W consists of an adjunction

W V
T

U
�

such that T and U are braided monoidal functors and the unit and counit are mon-
oidal natural transformations. If V and W are small, this is an internal adjunction
in BMCat. A braided monoidal adjoint equivalence consists of a braided monoidal
adjunction such that the unit and counit are monoidal natural isomorphisms.

A braided monoidal adjunction, respectively equivalence, between symmetric
monoidal categories is called a symmetric monoidal adjunction, respectively symmet-
ric monoidal equivalence. ◇
Corollary 2.3.14. Suppose given a braided monoidal adjunction

W V.
T

U
�

Then change of enrichment induces an adjunction of Cat-monoidal 2-categories

W-Cat V-Cat.

(−)T

(−)U

�

If T ⊣ U is a braided monoidal equivalence, then (−)T ⊣ (−)U is a Cat-monoidal equiva-
lence of 2-categories.

If T ⊣ U is a symmetric monoidal adjunction between symmetric monoidal categories,
then (−)T ⊣ (−)U is a symmetric Cat-monoidal adjunction.

The Braided Strictification Theorem 1.1.39 is a braided monoidal equivalence
by Lemma 1.1.34 and therefore yields an important special case of Corollary 2.3.14.

Corollary 2.3.15. Suppose V is a braided monoidal category and

Vst V
L

R

is a braided monoidal equivalence with Vst strict braided monoidal. Then there is a Cat-
monoidal equivalence of 2-categories

(Vst)-Cat V-Cat.
(−)L

(−)R

The Symmetric Strictification Theorem 1.1.42 is a symmetric monoidal equiv-
alence by Lemma 1.1.34 and therefore yields another important special case of
Corollary 2.3.14.

Corollary 2.3.16. Suppose V is a symmetric monoidal category and

Vst V
L

R
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is a symmetric monoidal equivalence with Vst strict symmetric monoidal. Then there is a
symmetric Cat-monoidal equivalence of 2-categories

(Vst)-Cat V-Cat.
(−)L

(−)R

2.4. Preservation of Enriched Monoidal Structure

In Theorem 2.3.7 above we showed that change of enrichment along a braided
monoidal functor

U ∶ V W

provides a Cat-monoidal 2-functor

(−)U ∶ (V-Cat,⊗) (W-Cat,⊗).

In this section we show that (−)U preserves enriched monoidal structure on each
monoidal V-category, V-functor, and V-natural transformation. The main result
is that (−)U restricts to 2-functors indicated in the following diagram (with V, W,
and U assumed to be symmetric monoidal for the definitions of enriched braided
or symmetric monoidal structures). See Theorem 2.4.10 and Explanation 2.4.15.

V-CatV-MCatV-BMCatV-SMCat

W-CatW-MCatW-BMCatW-SMCat

(−)U (−)U (−)U (−)U

Again throughout this section V and W are braided monoidal categories and
U ∶ V W is a braided monoidal functor. We will make use of the following
details and conventions.

Convention 2.4.1 (Notation for Monoidal Data). We denote the monoidal prod-
ucts in V-Cat and W-Cat via juxtaposition, and use exponents such as K2 to denote
KK. We also omit superscripts ⊗ and let (I, a, ℓ, r, β) denote the braided monoidal
data of either V-Cat or W-Cat, with context clarifying which we mean. In most
cases the data of V-Cat will appear only when considering their images under
(−)U , and therefore will appear as (IU , aU , ℓU , rU , βU). ◇
Explanation 2.4.2 (2-Functoriality of (−)U). In Definition 2.4.3 below we will use
the following three consequences of Proposition 2.1.2, that change of enrichment,
(−)U , is a 2-functor.

(1) Change of enrichment strictly preserves identities, so for a V-category K
we have (1K)U = 1(KU). We will use 1U to denote this identity W-functor.

(2) Change of enrichment strictly preserves inverses, so for a V-functor F we
have (F−1)U = (FU)−1. We will use this for the images of the unitors, ℓ
and r, denoting the inverses of ℓU and rU by ℓ−1

U and r−1
U , respectively.

(3) Change of enrichment strictly preserves horizontal composition. There-
fore, if θ is a V-natural transformation whose domain is a composite GF,
then the domain of θU is GU FU = (GF)U . We will apply this to the V-
natural transformations in the data of a (braided) monoidal V-category.

◇
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Definition 2.4.3. Suppose K = (K,⊠, I⊠, a⊠, ℓ⊠, r⊠) is a monoidal V-category. Define
a monoidal structure

(KU ,⊠′, I′, a′, ℓ′, r′),
with base W-category KU and the following additional data. In these definitions
we use Convention 2.4.1 for the monoidal data of V-Cat and W-Cat and implicitly
use the 2-functoriality of (−)U as noted in Explanation 2.4.2.
Monoidal Composition: The monoidal composition ⊠′ is defined to be the com-

posite

(KU)2
(−)2U (K2)U

⊠U
KU .

Monoidal Identity: The monoidal identity I′ is defined to be the composite

I
(−)0U

IU
I⊠U

KU .

Monoidal Unitors: The left unitor, ℓ′ is equal to ℓ⊠ composed with an identity
2-cell as shown in the pasting diagram below. The triangular regions
commute by definition, the unlabeled quadrilateral commutes by natu-
rality of (−)2U and the quadrilateral labeled☆ commutes by the left unity
axiom for (−)U , Lemma 2.3.5.

(2.4.4)

KU

IKU (KU)2

KU

IUKU

(K2)U(IK)U

ℓ−1

I′1

⊠′

1

ℓ−1
U

(−)2U

(−)0U1 IU1

(I1)U
(−)2U

⊠U

☆

⇒

(ℓ⊠)U

The right unitor, r′ is equal to r⊠ composed with an identity 2-cell as
shown in the pasting diagram below. The triangular regions commute by
definition, the unlabeled quadrilateral commutes by naturality of (−)2U
and the quadrilateral labeled ☆ commutes by the right unity axiom for
(−)U , Lemma 2.3.5.

(2.4.5)

KU

KUI (KU)2

KU

KUIU

(K2)U(KI)U

r−1

1I′

⊠′

1

r−1
U

(−)2U

1(−)0U 1IU

(1I)U
(−)2U

⊠U

☆

⇒

(r⊠)U

Monoidal Associator: The monoidal associator a′ is equal to a whiskering of a⊠

composed with identity 2-cells as shown in the pasting diagram below.
The triangular regions commute by definition, the unlabeled quadrilater-
als commute by naturality of (−)2U , and the hexagon labeled☆ commutes
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by the associativity axiom for (−)U , Lemma 2.3.4.

(2.4.6)

((KU)2)KU

KU((KU)2)

(KU)2

(KU)2 KU

((K2)K)U

(K(K2))U

(K2)UKU

KU(K2)U

(K2)U

(K2)U

⊠′1

⊠′

1⊠′

⊠′

a (−)2U1

1(−)2U

(−)2U

(−)2U aU

⊠U1

1⊠U

(−)2U

(−)2U

⊠U

⊠U

(⊠1)U

(1⊠)U ⇒(a⊠)U

☆

If, moreover, K is braided monoidal with braiding β⊠ (when V is assumed
symmetric), we make the following definition.
Braiding: The braiding β′ is equal to a whiskering of β⊠ composed with identity

2-cells as shown in the pasting diagram below. The triangular regions
commute by definition and the quadrilateral labeled ☆ commutes by the
braid axiom for (−)U , Lemma 2.3.6.

(2.4.7)

(KU)2 KU

(KU)2

(K2)U

(K2)U

⊠

β ⊠′

βU

(−)2U

(−)2U

⊠U

⊠U

⇒

β⊠

☆

This finishes the definition of the data for monoidal structure on KU . We show
that these data satisfy the relevant axioms in Theorem 2.4.10 below. ◇
Definition 2.4.8. Suppose (F, F2, F0) ∶ K L is a monoidal functor between
monoidal V-categories K and L. When KU and LU are given the monoidal W-
category structure of Definition 2.4.3, then we define a monoidal functor

(FU , (F2
U)′, (F0

U)′) ∶ KU LU

with underlying W-functor FU and the following monoidal and unit constraints.
As above we use Convention 2.4.1 for the monoidal data of V-Cat and W-Cat.
Monoidal Constraint: The monoidal constraint (F2

U)′ is defined to be the wisker-
ing of F2

U shown below, where the upper square commutes by naturality
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of (−)2U .

K2
U L2

U

(K2)U (L2)U

KU LU

(FU)(FU)

(FF)U

FU

(−)2U (−)2U

⊠U ⊠U
⇒F2

U

Unit Constraint: The unit constraint (F0
U)′ is defined to be the whiskering of F0

U
shown below.

I

IU

KU LU

(−)0U

IU IU

FU

⇒F0
U

This finishes the definition of (FU , (F2
U)′, (F0

U)′). We address the relevant axioms
in Theorem 2.4.10 below. ◇

Lemma 2.4.9. Suppose

K
F

L
P

M

is a composable pair of monoidal V-functors. Then

(PF)U = (PU)(FU).

Proof. The 2-functoriality of (−)U implies that the asserted equality holds for un-
derlying V-functors; we need to check the monoidal and unit constraints are equal.
Recalling Definition 1.4.19, the monoidal and unit constraints of PF are given by
pasting those of F and P. Thus the monoidal and unit constraints for (PF)U are
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given by the pastings below.

(K2)U (L2)U (M2)U

KU LU MU

K2
U L2

U M2
U

⊠U ⊠U ⊠U

(FF)U (PP)U

FU PU

(FU)(FU) (PU)(PU)

(−)2U (−)2U (−)2U

⇒F2
U ⇒P2

U

and
IU

KU

LU

MU

I

IU

IU

IU

FU PU

(−)0U

⇒F0
U ⇒P0

U

Since (as in any 2-category) horizontal composition of V-natural transformations
distributes over vertical composition, the indicated composites are precisely the
monoidal and unit constraints of (PU)(FU). This completes the proof. □

Theorem 2.4.10. Suppose

U ∶ V W

is a braided monoidal functor between braided monoidal categories. In the context of Def-
initions 2.4.3 and 2.4.8 above, we have the following results. For items (1) and (2), the
braided and symmetric monoidal cases assume moreover that U, V, and W are symmetric
monoidal.

(1) If K is a monoidal, respectively braided monoidal, respectively symmetric mon-
oidal, V-category, then KU is a monoidal, respectively braided monoidal, respec-
tively symmetric monoidal, W-category.

(2) If F ∶ K L is a monoidal, respectively braided monoidal, respectively sym-
metric monoidal, V-functor between monoidal, respectively braided monoidal,
respectively symmetric monoidal, V-categories, then

FU ∶ KU LU

is a monoidal, respectively braided monoidal, respectively symmetric monoidal,
W-functor.

(3) If θ ∶ F G is a monoidal V-natural transformation between monoidal V-
functors F and G, then

θU ∶ FU GU

is a monoidal W-natural transformation.

Proof. Each of the three assertions follows by verifying the relevant axioms from
Section 1.4. To ease readability of the computations below, we denote the whisker-
ings of a W-natural transformation θ with the W-functor (−)2U as

θ ∗ (−)2U and (−)2U ∗ θ

instead of our usual convention using the identity on (−)2U
θ ∗ 1(−)2U

and 1(−)2U
∗ θ.
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For assertion (1), we begin with the middle unity axiom (1.4.5). Below we show
the pasting of a′ and 1ℓ′.
(2.4.11)

(KU)2KU (K2)UKU (KU)2

(K2)U

(KU)2 KU(K2)U

(KUIU)KU(KUI)KU

(KU)2

(−)2U1 ⊠U1

(−)2U

⊠U

(−)2U
⊠U

r−11

(1(−)0U)1 (1IU)1

12

KU(KU)2

KU(K2)U

KU(IUKU)

KU(IKU)

KU(IK)U

(K2K)U

(KK2)U

a

1(−)2U

1⊠U1ℓ−1

1(IU1)
a

1((−)0U1)

a

1(−)2U 1(I1)U

1ℓ−1
U

(−)2U

(−)2U

aU

(1⊠)U

(⊠1)U

⇒(a⊠)U

⇒
1(ℓ⊠)U

The 2-naturality of (−)2U gives the equality

(−)2U ∗ [1(ℓ⊠)U] = (1ℓ⊠)U ∗ (−)2U ,

and we use this together with several of the other basic axioms for monoidal struc-
ture to show that the composite of (2.4.11) is equal to that of (2.4.12).
(2.4.12)

(KU)2KU (K2)UKU (KU)2

(K2)U

(KU)2 KU(K2)U

(KUIU)KU(KUI)KU

(KU)2

(−)2U1 ⊠U1

(−)2U

⊠U

(−)2U
⊠U

r−11

(1(−)0U)1 (1IU)1

12

(K2K)U

(KK2)U

((KI)K)U

(K(IK))U

(KI)UKU

(K2)U

(−)2U 1

((1I)1)U

(1(I1))U

(1ℓ−1)U

aU

r−1
U 1

(r−11)U

(−)2U
(−)2U1 (−)2U

aU

(1⊠)U

(⊠1)U

⇒(a⊠)U
⇒(1ℓ⊠)U



2.4. PRESERVATION OF ENRICHED MONOIDAL STRUCTURE III.85

Next we apply (−)U to the middle unity axiom (1.4.5) for K and use the resulting
equality to show that the composite of (2.4.12) is equal to that of (2.4.13).
(2.4.13)

(KU)2KU (K2)UKU (KU)2

(K2)U

(KU)2 KU(K2)U

(KUIU)KU(KUI)KU

(KU)2

(−)2U1 ⊠U1

(−)2U

⊠U

(−)2U
⊠U

r−11

(1(−)0U)1 (1IU)1

12

(K2K)U((KI)K)U(KI)UKU

(K2)U

(−)2U 1

((1I)1)U

r−1
U 1

(r−11)U

(12)U

(−)2U
(−)2U1 (−)2U

(⊠1)U

⇒

(r⊠1)U

Finally, we again use 2-naturality of (−)2U , giving

(r⊠1U) ∗ (−)2U = (−)2U ∗ [(r⊠U1)],
to conclude that the composite of (2.4.13) is equal to that of (2.4.14) below. This last
composite is equal to the whiskering of r′1 required for the second half of (1.4.5)
for KU .
(2.4.14)

(KU)2KU (K2)UKU (KU)2

(K2)U

(KU)2 KU(K2)U

(KUIU)KU(KUI)KU

(KU)2

(−)2U1 ⊠U1

(−)2U

⊠U

(−)2U
⊠U

r−11

(1(−)0U)1 (1IU)1

12

(KI)UKU

12

(−)2U1

r−1
U 1

(1I)U1

⇒

(r⊠)U1

Each of the remaining axioms to be verified for item (1) is an equality of two
composites of pasting diagrams, and in each diagram the only nontrivial 2-cells are
given by applying (−)U to corresponding 2-cells of K. The equality then follows
as above, using defining properties of (braided/symmetric) monoidal categories
and functors, together with the image under (−)U of the relevant axiom for K.

For example, the pentagon axiom for KU follows directly from the definitions
and the pentagon axiom for K. If K is symmetric, the symmetry axiom for KU
follows likewise from that of K. Similarly, in the case that K is braided, the two
hexagon axioms require equalities such as

(−)2U ∗ (β⊠U1) = (β⊠1)U ∗ (−)2U ,
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that follow from the 2-naturality of (−)2U as above. In addition, for the right
hexagon axiom (1.4.12) one uses 2-functoriality of (−)U to see that the mate of a′

described in Definition 1.4.9 is equal to an appropriate whiskering of (a⊠1 )U . Thus
(again using 2-functoriality of (−)U) the inverse (a′1)−1 is obtained by whiskering
a−⊠1 .

For assertion (2) the axioms of Definitions 1.4.17 and 1.4.18 are similar but
simpler, following from naturality of (−)2U and the corresponding axioms for F.
For assertion (3) the axioms of Definition 1.4.22 are immediate from the definitions.

□

Explanation 2.4.15. Using the notation of Definition 1.4.25, Theorem 2.4.10 proves
that (−)U restricts to 2-functors indicated in the diagram below, with V, W, and
U assumed symmetric for the definitions of V-BMCat, W-BMCat, V-SMCat, and
W-SMCat.

(2.4.16)

V-CatV-MCatV-BMCatV-SMCat

W-CatW-MCatW-BMCatW-SMCat

(−)U (−)U (−)U (−)U

By Lemma 2.4.9, (−)U preserves composition of monoidal V-functors. By Propo-
sition 1.4.21, composites of braided and symmetric monoidal enriched functors
are given by composites of the underlying monoidal enriched functors. By Propo-
sition 1.4.24 composites of monoidal enriched natural transformations are given
by composites of the underlying enriched natural transformations. Therefore 2-
functoriality of (−)U on V-Cat implies 2-functoriality of each restriction. ◇

When V is braided monoidal then the corepresented functor U = V(1,−) is
braided monoidal by Lemma 2.1.5. It is, furthermore, symmetric if V is symmetric.
Therefore, by Theorem 2.4.10 we have the following.
Corollary 2.4.17. Suppose V is a braided monoidal category. Then the following state-
ments hold. For items (1) and (2), the braided and symmetric monoidal cases assume
moreover that V is symmetric monoidal.

(1) Suppose K is a monoidal, respectively braided monoidal, respectively symmetric
monoidal, V-category. Then the underlying category K0 is a monoidal, respec-
tively braided monoidal, respectively symmetric monoidal, category.

(2) Suppose that F ∶ K L is a monoidal, respectively braided monoidal, respec-
tively symmetric monoidal, V-functor between monoidal, respectively braided
monoidal, respectively symmetric monoidal, V-categories. Then the underlying
functor

F0 ∶ K0 L0

is monoidal, respectively braided monoidal, respectively symmetric monoidal.
(3) Suppose that θ ∶ F G is a monoidal V-natural transformation between mon-

oidal V-functors. Then the underlying natural transformation

θ0 ∶ F0 G0

is a monoidal natural transformation.
The proof of Theorem 2.4.10 has a technical feature that will be useful to state

explicitly. We will use this in the proof of Theorem 2.5.1 below.
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Explanation 2.4.18. For each of the axioms (1.4.5), (1.4.6), (1.4.11), (1.4.12), and
(1.4.14), let θ denote the composite of the top and/or left pasting diagram for K
and ω denote the composite of the bottom and/or right pasting diagram for K. So
each axiom is an equality θ = ω.

Let θ′ and ω′ denote top/left and bottom/right composites, respectively, in
the corresponding axioms for KU . The monoidal constraint of (−)U is (−)2U and
we let (−)3U denote the two equal composites

(KU)3 (K3)U
given by iterating (−)2U .

With this notation, the argument for each axiom in the proof of Theorem 2.4.10
consists of two steps:

(1) First, θ′ = θU ∗ (−)nU and ω′ = ωU ∗ (−)nU , where n = 2 or 3.
(2) Second, θU ∗ (−)nU = ωU ∗ (−)nU by the corresponding axiom for K.

This implies then that θ′ = ω′.
For example, the diagrams (2.4.11) and (2.4.14) above are the pasting diagrams

for θ′ and ω′, respecitevly, in the middle unity axiom. On the other hand, diagrams
(2.4.12) and (2.4.13) are simply the pasting diagrams for θU ∗ (−)2U and ωU ∗ (−)2U ,
respectively, with several additional identity 2-cells.

Now we point out that this argument can be used in reverse, under the as-
sumption that (−)U is faithful on 2-cells. Indeed, if θ′ = ω′, then by item (1) above
we conclude θU ∗ (−)nU = ωU ∗ (−)nU . Since (−)2U is an identity on objects, and hence
so is (−)3U , we apply the Whiskering Lemma 1.2.12 to conclude that the compo-
nents of θU are equal to those of θU ∗ (−)nU . Similarly, the components of ωU are
equal to those of ωU ∗ (−)nU . Therefore, θU = ωU . Assuming that (−)U is injective
on 2-cells, then we conclude θ = ω. ◇

2.5. Coherence of Enriched Monoidal Categories

In this section we extend the coherence results for categories that are mon-
oidal, respectively braided monoidal, respectively symmetric monoidal, to V-
enriched counterparts. Throughout we assume V = (V,⊗, ξ) is a braided monoidal
category. Recall from Convention 1.3.28 that we assume V to be symmetric mon-
oidal whenever making use of the braiding β⊗ for (V-Cat,⊗). We begin with the
following reverse of Corollary 2.4.17, and then use it to lift monoidal coherence
results from Cat to V-Cat.

Theorem 2.5.1. Suppose that V = (V,⊗, ξ) is a braided monoidal category and consider
the change of enrichment

(−)0 ∶ V-Cat Cat.

For the braided and symmetric monoidal cases in the statements below, suppose that V is
symmetric monoidal.

(1) Suppose K is a V-category.
(a) Suppose (⊠, I, a, ℓ, r) is the data of a monoidal V-category structure for K

and let (⊠′, I′, a′, ℓ′, r′) denote the functors and natural transformations
given by change of enrichment. Then

(K,⊠, I, a, ℓ, r)
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is a monoidal V-category if and only if

(K0,⊠′, I′, a′, ℓ′, r′)
is a monoidal category.

(b) Suppose, moreover, that β is the data of a braiding for a braided monoidal V-
category structure on K and let β′ denote the natural transformation given
by change of enrichment. Then

(K,⊠, I, a, ℓ, r, β)
is a braided, respectively symmetric, monoidal V-category if and only if

(K0,⊠′, I′, a′, ℓ′, r′, β′)
is a braided, respectively symmetric, monoidal category.

(2) Suppose K and L are monoidal, respectively braided monoidal, respectively sym-
metric monoidal, V-categories and suppose

F ∶ K L

is a V-functor. Suppose given V-natural transformations (F2, F0) as in the
data for F to be a monoidal, respectively braided monoidal, respectively symmet-
ric monoidal, V-functor. Let ((F2)′, (F0)′) denote the natural transformations
given by change of enrichment. Then

(F, F2, F0) ∶ K L

satisfies the axioms of a monoidal, respectively braided monoidal, respectively
symmetric monoidal, V-functor if and only if

(F0, (F2)′, (F0)′) ∶ K0 L0

satisfies the axioms of a monoidal, respectively braided monoidal, respectively
symmetric monoidal, functor.

(3) Suppose F and G are monoidal V-functors. A V-natural transformation

θ ∶ F G

is monoidal V-natural if and only if the underlying data

θ0 ∶ F0 G0

is a monoidal natural transformation.

Proof. We discuss assertion (1) in the symmetric monoidal case; the same argu-
ment applies to the other cases and the other two assertions. One implication
is provided by Corollary 2.4.17: if (K,⊠, I, a, ℓ, r, β) is symmetric monoidal in the
V-enriched sense, then (K0,⊠′, I′, a′, ℓ′, r′, β′) satisfies the axioms in Cat for a sym-
metric monoidal category.

For the reverse implication, suppose that (K0,⊠′, I′, a′, ℓ′, r′, β′) satisfies the
appropriate symmetric monoidal axioms. We then use the technical argument
outlined at the end of Explanation 2.4.18 as follows. For each axiom of Defini-
tions 1.4.2, 1.4.10, and 1.4.13, we apply (−)0 to the two sides of the required equal-
ity and whisker with a monoidal constraint (−)2U or (−)3U to obtain two natural
transformations that are equal in Cat by the corresponding axiom for K0. Using
Lemma 1.2.12 to check the components of the whiskerings, and noting that each
of (−)nU is the identity on objects, the images under (−)0 are equal in Cat. We
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noted in Lemma 2.1.7 above that (−)0 is injective on V-natural transformations
and therefore each axiom of Definition 1.4.2 holds in V-Cat. □

As a further corollary of Theorem 2.5.1 and the 2-cell injectivity result of
Lemma 2.1.7, we can extend the Coherence Theorems 1.1.31, 1.1.38, and 1.1.41 to
give a coherence result (Theorem 2.5.6 below) for monoidal, braided monoidal,
and symmetric monoidal V-categories (with V symmetric monoidal in the latter
cases). First we extend the definitions of (permuted) word and (permuted) canonical
map.
Definition 2.5.2. Suppose V is a braided monoidal category (respectively sym-
metric monoidal in the braided and symmetric cases below) and suppose K is a
monoidal V-category. Extending Definitions 1.1.29 and 1.1.30, we say that a V-
functor

w ∶ K⊗n K

is a V-word if the underlying functor w0 composed with the monoidal constraint
for (−)0 is a word

Kn
0 ≅ (Kn)0

w0
K0.

We say that a V-natural isomorphism between V-words of the same length is a
canonical V-map if its underlying natural transformation induces a canonical map.

Moreover, if K is braided, respectively symmetric, monoidal, we extend Defi-
nitions 1.1.36 and 1.1.40 to say that wσ is a permuted V-word if the following com-
posite of σ, the monoidal constraint, and w0 is a permuted word

Kn
0

σ
Kn

0 ≅ (Kn)0
w0

K0.

We call this composite the underlying permuted word. We say that a V-natural iso-
morphism is a braided canonical V-map, respectively permuted canonical V-map if its
underlying natural isomorphism induces a braided, respectively permuted canon-
ical map. Extending Definition 1.1.37, the underlying braid of a braided canonical
V-map is the underlying braid of its underlying braided canonical map. ◇
Definition 2.5.3. Suppose K is a monoidal V-category and suppose X = (X1, . . . , Xn)
is a sequence of objects Xi ∈ K. The left normalized product is defined to be

(2.5.4) (⋯((X1 ⊠X2)⊠X3)⋯)⊠Xn.

The right normalized product is defined to be

(2.5.5) X1 ⊠ (X2 ⊠ (X3 ⊠ (⋯(Xn−1 ⊠Xn)⋯))).
The left and right normalized products of the empty sequence are both defined to
be the monoidal identity object I ∈ K. ◇

The next result is a coherence theorem for monoidal, braided monoidal, and
symmetric monoidal V-categories.
Theorem 2.5.6 (Enriched Monoidal Coherence). Suppose V is braided monoidal (re-
spectively symmetric monoidal in the braided and symmetric cases below) and suppose K
is a monoidal V-category.

(1) If u, v ∶ K⊗n K are V-words of the same length then there exists a unique
canonical V-map u v.

(2) Suppose, moreover, that K is braided monoidal and uσ and vτ are permuted V-
words. If two braided canonical V-maps uσ vτ have the same underlying
braid, then they are equal.
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(3) Suppose, moreover, that K is symmetric monoidal. If uσ and vτ are permuted V-
words of the same length then there exists a unique permuted canonical V-map
uσ vτ.

Proof. The existence statements follow from the existence statements of Theo-
rems 1.1.31 and 1.1.41 because, by Theorem 2.5.1, the data of the V-enriched
monoidal structure corresponds to the data of the underlying monoidal structure.
Thus we have V-natural transformations whose underlying natural transforma-
tions compose to give any canonical map. The uniqueness statements follow from
Lemma 2.1.7 together with the uniqueness statements of Theorems 1.1.31, 1.1.38,
and 1.1.41. □

Next we describe an enriched analogue of Epstein’s Coherence Theorem 1.1.44
for (symmetric) monoidal functors.

Definition 2.5.7. Suppose F ∶ K L is either

● a monoidal V-functor between monoidal V-categories, with V braided
monoidal, or
● a symmetric monoidal V-functor between symmetric monoidal V-categories,

with V symmetric monoidal.

Recall F0 ∶ K0 L0 denotes the underlying (symmetric) monoidal functor of F.

(1) A V-functor

G ∶ K⊗n L

is an F-iterate if the composite

(Kn
0)

(−)n0 (K⊗n)0
G0

L0

is an F0-iterate in the sense of Definition 1.1.43 (1).
(2) A V-natural transformation

θ ∶ G H

between parallel F-iterates K⊗n L is an F-coherent map if

θ0 ∗ 1(−)n
0
∶ G0 ○ (−)n0 H0 ○ (−)n0

is an F0-coherent map in the sense of Definition 1.1.43 (2). ◇
Theorem 2.5.8 (Enriched Epstein’s Coherence). In the context of Definition 2.5.7,
there exists at most one F-coherent map between any two parallel F-iterates G, H ∶
K⊗n L.

Proof. If θ and ω are F-coherent maps G H, then Epstein’s Theorem 1.1.44
implies that we have an equality of F0-coherent maps

θ0 ∗ 1(−)n
0
= ω0 ∗ 1(−)n

0
.

Since (−)n0 is the identity on objects, the first equality in the Whiskering Lemma 1.2.12
implies that θ0 = ω0. Then the result follows by injectivity of (−)0 on 2-cells
(Lemma 2.1.7). □
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2.6. Strictification of Enriched Monoidal Categories

Recall from Definition 1.4.2 that a monoidal V-category is called strict if the
unitors and associator are identity V-natural transformations. We now use the
Enriched Monoidal Coherence Theorem 2.5.6 to extend Mac Lane’s Strictification
Theorem 1.1.32 to the V-enriched setting. Recall from Definition 1.4.26 that a mon-
oidal adjoint V-equivalence consists of a V-adjoint pair of monoidal V-functors
such that the unit and counit are monoidal V-natural isomorphisms.
Theorem 2.6.1 (Enriched Monoidal Strictification). Suppose V is a braided monoidal
category and suppose K is a monoidal V-category. Then there exist

● a canonical strict monoidal V-category Kst and
● a canonical monoidal adjoint V-equivalence

Kst K
(−)′

i

with (−)′ unital strong monoidal, i strong monoidal, and (−)′ ○ i = 1K.

Proof. The argument here follows the argument of Mac Lane’s Strictification Theo-
rem 1.1.32, given in [ML98, XI.3 Theorem 1], but uses the Coherence Theorem 2.5.6
in place of the plain monoidal Coherence Theorem 1.1.31.

First we define Kst as a V-category. We denote the V-category structure of K
with superscripts, such as iK and mK, and use unadorned notation for the structure
in Kst to be defined. The objects of Kst are finite, possibly empty, sequences of
objects in K. For such a sequence X = (X1, . . . , Xn) we define X′ in K to be the
left normalized product (2.5.4). In particular, for X = () the empty tuple we define
()′ = IK, the monoidal unit of K. Given two sequences of objects X = (X1, . . . , Xn)
and Y = (Y1, . . . , Ym)with Xi, Yj ∈ K we define the hom object of Kst as

Kst(X, Y) = K(X′, Y′).
The identity morphisms and composition in Kst,

1
iX

Kst(X, X) = K(X′, X′)
and

K(Y′, Z′)⊗K(X′, Y′) = Kst(Y, Z)⊗Kst(X, Y)
mX,Y,Z

Kst(X, Z) = K(X′, Z′),
are likewise defined via the corresponding structure in K:

iX = iKX′ and mX,Y,Z = mK
X′,Y′,Z′ .

This makes Kst into a V-category with (−)′ a V-functor.
Next we define the monoidal composition

⊠ ∶ Kst ⊗Kst Kst.

The product on objects is given by concatenation of sequences, with the empty
sequence as the monoidal unit. Thus the monoidal composition is strictly associa-
tive and unital on objects. To define ⊠ on hom objects, suppose A, X, B, Y ∈ Kst are
sequences of objects of K. Then we have

Kst(A, X)⊗Kst(B, Y) = K(A′, X′)⊗K(B′, Y′)
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and
Kst(A⊠ B, X ⊠Y) = K((A⊠ B)′, (X ⊠Y)′).

By the Coherence Theorem 2.5.6 (1) there is a unique canonical V-map that, on
hom objects, induces

K(A′ ⊠K B′, X′ ⊠K Y′) K((A⊠ B)′, (X ⊠Y)′)
where ⊠K denotes the monoidal composition in K. Then we define

⊠ ∶ Kst(A, X)⊗Kst(B, Y) Kst(A⊠ B, X ⊠Y)
as the composite of this canonical V-map with the monoidal composition in K:

K(A′, X′)⊗K(B′, Y′) ⊠K
K(A′ ⊠K B′, X′ ⊠K Y′) K((A⊠ B)′, (X ⊠Y)′).

For the monoidal axioms of Kst, the composites around the boundaries of the
unity diagrams (1.4.3) and the associativity diagram (1.4.4) are equal as V-functors
by the Coherence Theorem 2.5.6 (1) for K. Therefore, we may define the unitors
and associator of Kst as identity V-natural transformations. The unity and penta-
gon axioms for Kst then hold because each 2-cell is an identity.

We take the unit constraint ((−)′)0 to be the identity on

()′ = IK

and we take the monoidal constraint ((−)′)2 to be the V-natural transformation
with components

1 K(X′ ⊠Y′, (X ⊠Y)′)
given by the unique canonical V-maps. To verify that (−)′ is monoidal as a V-
functor, each axiom of Definition 1.4.17 asserts an equality between two paral-
lel canonical V-maps of K. So they are equal by the uniqueness part of Theo-
rem 2.5.6 (1). Therefore, (−)′ is a unital strong monoidal V-functor.

The V-functor
i ∶ K Kst

is defined by sending each object of K to the length 1 sequence and by the identity
on hom objects. Components of its unit and monoidal constraints

1
i0

Kst((), (IK)) and 1
i2

Kst((P)⊠ (Q), (P⊠K Q)),
with P, Q ∈ K, are given by the identities of IK and P ⊠K Q, respectively. To see
that i is a strong monoidal V-functor, one can again appeal to Theorem 2.5.6 (1) for
the axioms of Definition 1.4.17, or one can make a direct argument as in Explana-
tion 2.6.2 below.

We then have (iP)′ = P for P ∈ K and unit of the adjunction (−)′ ⊣ i given by
components

1
iKX′

K(X′, X′) = Kst(X, i(X′))
for X ∈ Kst. Thus (−)′ ⊣ i defines a strong monoidal adjoint V-equivalence. □

Explanation 2.6.2. In the proof of Theorem 2.6.1, one can also give the following
direct argument that the V-functor

i ∶ K Kst

is monoidal.
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Associativity: Since i2 is componentwise an identity morphism and since ⊠ on
hom objects involves a canonical V-map, both composites are equal to a
component of the monoidal associator a in K. On the left pasting diagram,
this component of a comes from the last 2-cell,

1i ∗ a.

On the right pasting diagram, this component of a comes from the middle
2-cell

1⊠ ∗ (1⊗ i2) ∗ 1a⊗ .
Left Unity: Both pasting diagrams are equal to an identity morphism in K. The

right pasting diagram is the identity because ℓ in Kst is the identity. On
the left pasting diagram, the first 2-cell

1⊠ ∗ 1(1⊗i) ∗ (i0 ⊗ 1)

is given by a component of (ℓK)−1 in K and the component of

i2 ∗ 1I⊗1

is an identity. The component of the last 2-cell

1i ∗ ℓ1

is a component of ℓK in K. The composite of these is an identity in K.
Right Unity: Similarly, both pasting diagrams are equal to an identity morphism

in K. The right pasting diagram is an identity because Kst is strict, and
the left pasting diagram has identity components given by composing r−1

with r.
One way of explaining the asymmetry between the associativity axiom (where

both sides are given by generally nontrivial components) and the unity axioms
(where both sides are given by identities) is the following. Even though the com-
ponents of i0 and i2 are given by identities in K, they are not identities in Kst.
Therefore, their whiskerings appearing in the axioms may have non-identity com-
ponents. Such whiskerings appear on both sides of the associativity axiom, but
only on the left side of each unity axiom. ◇

Next we turn to the braided case, extending the Braided Strictification Theo-
rem 1.1.39 to braided monoidal V-categories.
Theorem 2.6.3 (Enriched Braided Strictification). Suppose V is a symmetric monoidal
category and suppose K is a braided monoidal V-category. Then there exist

● a canonical braided strict monoidal V-category Kst and
● a canonical braided monoidal adjoint V-equivalence

Kst K
(−)′

i

with (−)′ unital strong braided monoidal, i strong braided monoidal, and (−)′ ○
i = 1K.

Proof. The definition of Kst and the monoidal adjoint V-equivalence

Kst K
(−)′

i
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are given as in Theorem 2.6.1. Now using the braiding in K, define the braiding in
Kst to have components

1
β

Kst(X ⊠Y, Y ⊠X) = K((X ⊠Y)′, (Y ⊠X)′)

at X, Y ∈ Kst given by the composite of the braiding for K and the two canonical
V-maps from Theorem 2.5.6 (1) having components

1 K((X ⊠Y)′, X′ ⊠K Y′) and 1 K(Y′ ⊠K X′, (Y ⊠X)′).

For each of the hexagon axioms in Kst, (1.4.11) and (1.4.12), both sides have the
same underlying braid described in Explanation II.1.2.19. Therefore, the axioms
hold by Theorem 2.5.6 (2). Therefore, Kst is a braided monoidal V-category.

Now to verify that (−)′ satisfies the braid axiom in Definition 1.4.18, note that
on both sides each component

1 K(X′ ⊠K Y′, (Y ⊠X)′)

has underlying braid given by the same elementary block braid (see Defini-
tion II.1.2.3, with m and n given by the lengths of the sequences X and Y).
Therefore, the two are equal by Theorem 2.5.6 (2) for K. This shows that (−)′
is a strong braided monoidal V-functor.

For i, the underlying braid on both sides of the braid axiom is the generating
braid s1 in B2. Therefore, i is a strong braided monoidal V-functor. □

Finally we turn to the symmetric case, extending the Symmetric Strictification
Theorem 1.1.42 to symmetric monoidal V-categories.
Theorem 2.6.4 (Enriched Symmetric Strictification). Suppose V is a symmetric mon-
oidal category and suppose K is a symmetric monoidal V-category. Then there exist

● a canonical symmetric strict monoidal V-category Kst and
● a canonical symmetric monoidal adjoint V-equivalence

Kst K
(−)′

i

with (−)′ unital strong symmetric monoidal, i strong symmetric monoidal, and
(−)′ ○ i = 1K.

Proof. The definition of Kst and the adjoint V-equivalence

Kst K
(−)′

i

are given as in Theorems 2.6.1 and 2.6.3. The symmetry axiom of Definition 1.4.13
for Kst follows from the uniqueness part of Theorem 2.5.6 (3) for K. □

2.7. Notes

2.7.1 (Literature on Change of Enrichment). Change of enrichment along a monoi-
dal functor is discussed in [EK66]. The thesis of Cruttwell [Cru09] provides some
further development: Theorem 2.2.7 above appears as [Cru09, Theorem 4.3.2] and
Theorem 2.4.10 (1) above appears as [Cru09, Theorem 5.7.1]. ◇
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2.7.2 (Coherence and Strictification). Kong and Zheng give an enriched stricti-
fication theorem [KZ18, Proposition 2.4], under the assumption that V is strict.
Theorem 2.6.1 generalizes to the case that V is not necessarily strict.

The general theory of pseudoalgebras over 2-monads gives another approach
to coherence and strictification results. Starting points for this theory are [BKP89]
and [Lac02]. The thesis of Houston [Hou07] discusses pseudomonoids specifically
and explains general methods for translating results about monoidal categories to
corresponding results for pseudomonoids. ◇
2.7.3 (Axiom of Universes). In Motivation 2.2.6 and Explanation 2.2.8, and in the
proofs of Corollaries 2.2.10 and 2.3.14, we refer to Grothendieck’s Axiom of Uni-
verses. This axiom asserts that every set belongs to some Grothendieck universe.
See [JY21, Section 1.1] for further discussion. The results in this chapter do not
depend on the Axiom of Universes, but it gives a convenient way of identifying
and precisely navigating the size subtleties that arise in the statements of Theo-
rems 2.2.7 and 2.3.9 and their applications. The survey [Shu∞b] describes several
other potential approaches. ◇





CHAPTER 3

Self-Enrichment and Enriched Yoneda

Throughout this chapter we assume that V is a symmetric monoidal closed
category. The material has three separate but closely related points of focus.

Canonical Self-Enrichment. In Section 3.1 we explain how a symmetric mon-
oidal closed category V is canonically enriched over itself. We denote the resulting
V-category as V. In Section 3.2 we describe represented V-functors and several
consequences of the closed structure on V that will be useful throughout the chap-
ter. In Section 3.3 we apply Theorem 2.5.1 to show that V is symmetric monoidal
as a V-category.

Enriched Co/Ends and the Enriched Yoneda Lemma. In Section 3.4 we give
a preliminary version of the enriched Yoneda Lemma that we call the Enriched
Yoneda Bijection 3.4.12 because it asserts a bijection of certain underlying sets. The
Yoneda V-functor is described in Section 3.5 and requires background material on
V-enriched coends and ends given there. Then in Section 3.6 we give additional
necessary background and prove the full V-Yoneda Lemma 3.6.9.

Enriched Symmetric Monoidal Diagram Categories. In Section 3.7 we ap-
ply the previous material to categories of enriched symmetric monoidal functors
from a small V-category D to V. Using the V-Yoneda Lemma 3.6.9 we prove an
equivalent statement known as the V-Yoneda Density Theorem 3.7.8. With this we
show that the category of symmetric monoidal V-functors from D to V is symmet-
ric monoidal and closed. In Section 3.8 we use change of enrichment to show that
the category of enriched diagrams to V is symmetric monoidal as a V-category.
The additional section Section 3.9 describes tensor and cotensor structures for en-
riched categories. The material there will be applied to certain diagram categories
in Chapters 4, 7, and 9.

3.1. Self-Enriched Categories

Recall from Definition 1.1.28 that a symmetric monoidal category V is closed
if, for each object X ∈ V, the endofunctor −⊗X has a right adjoint [X,−] ∶ V V.
Definition 3.1.1. Suppose V is a symmetric monoidal closed category. For each
X ∈ V the evaluation at X, denoted eval, is the counit

[X,−]⊗X eval IdV.

The coevaluation at X, denoted coeval, is the unit

IdV
coeval [X,−⊗X]. ◇

Explanation 3.1.2. For reference below, we note two particular consequences of
the closed structure on V. Both follow from examining the relevant adjunctions.

III.97
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(1) The following diagram of sets commutes for each A, C ∈ V, where the
unlabeled isomorphisms are those of the closed structure.

(3.1.3)

V(1, [1, [A, C]])

V(1⊗1, [A, C])

V(1, [1⊗ A, C])

V(1, [A, C]) λ∗

[λ, C]∗ ≅

≅

(2) The following diagram in V commutes for each P, Q, A, C ∈ V, where each
of the isomorphisms is given by the closed structure of V.

(3.1.4)
[P, [Q, [A, C]]]

[P, [Q⊗ A, C]]

[P⊗ (Q⊗ A), C]

[P⊗Q, [A, C]] [(P⊗Q)⊗ A, C]

≅ ≅

≅

≅

≅

◇
Definition 3.1.5. Suppose V is a symmetric monoidal closed category. We let V
denote V equipped with the canonical self-enrichment defined as follows.

● The objects are those of V.
● For each pair of objects X, Y ∈ V, the hom object with domain X and

codomain Y is V(X, Y) = [X, Y].
● For each triple of objects X, Y, Z ∈ V, the composition

mX,Y,Z ∶ [Y, Z]⊗ [X, Y] [X, Z]

is defined as the adjoint to the following composite in V.

(3.1.6)

([Y, Z]⊗ [X, Y])⊗X

[Y, Z]⊗ ([X, Y]⊗X) [Y, Z]⊗Y

Z

α

1⊗ eval

eval

● For each object X ∈ V, the identity

iX ∶ 1 [X, X]

is defined as the adjoint to the left unit isomorphism in V

1⊗X λ X.

Proposition 3.1.11 below shows that these satisfy the axioms of Definition 1.2.1. ◇
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Explanation 3.1.7. The multiplication and identity morphisms of Definition 3.1.5
are defined via adjoints. Recall that for an adjuction F ⊣ G, the adjoints of mor-
phisms

FX
f

Y and X
g

GY

are the following composites with the unit, respectively counit, of the adjunction:

X GFX
G f

GY and FX
Fg

FGY Y.

In the context of Definition 3.1.5, this means that the composition of hom objects
is given by the following composite.

[Y, Z]⊗ [X, Y]

[X, ([Y, Z]⊗ [X, Y])⊗X]

[X, [Y, Z]⊗ ([X, Y]⊗X)]

[X, [Y, Z]⊗Y]

[X, Y]

coeval

[X, α] [X, 1⊗ eval]
[X, eval]

Similarly, the identity is defined by the following composite:

1
coeval [X,1⊗X]

[X, λ]
[X, X].

Moreover, m and i are defined as adjoints and adjunction is a bijection, so
taking adjoints of m and i, respectively, results in the following two commutative
diagrams.

(3.1.8)

([Y, Z]⊗ [X, Y])⊗X

[Y, Z]⊗ ([X, Y]⊗X)

[Y, Z]⊗Y

[X, Z]⊗X

Z

m⊗ 1

eval

α

1⊗ eval

eval

(3.1.9)

1⊗X [X, X]⊗X

X

i⊗ 1

eval
λ

We also note, for a morphism ψ ∶ P′ P in V, we have the following com-
mutative diagram expressing a compatibility of the composition with the induced
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morphism [ψ, Q] ∶ [P, Q] [P′, Q] for P, P′, Q, R ∈ V.

(3.1.10)

[Q, R]⊗ [P, Q] [Q, R]⊗ [P′, Q]

[P, R] [P′, R]

1⊗ [ψ, Q]

[ψ, R]

m m

Commutativity of the above diagram follows by taking adjoints and using the
observations above. ◇
Proposition 3.1.11. Suppose V is a symmetric monoidal closed category. Then the closed
structure gives V the structure of a V-category.

Proof. The data of the canonical self-enrichment is given in Definition 3.1.5. We
verify commutativity of the associativity and unity diagrams of Definition 1.2.1
by verifying that their adjoints commute.

To take the adjoint of the associativity diagram (1.2.2) we apply − ⊗W and
then compose with the evaluation

eval ∶ [W, Z]⊗W Z.

Doing so yields the outermost composites to Z in the diagram below.

(([Y, Z]⊗ [X, Y])⊗ [W, X])⊗W ([Y, Z]⊗ ([X, Y]⊗ [W, X]))⊗W

([Y, Z]⊗ [X, Y])⊗ ([W, X]⊗W)

[Y, Z]⊗ ([X, Y]⊗ ([W, X]⊗W))

[Y, Z]⊗ (([X, Y]⊗ [W, X])⊗W)

[Y, Z]⊗ ([X, Y]⊗X)

[Y, Z]⊗Y

[Y, Z]⊗ ([W, Y]⊗W)

([Y, Z]⊗ [W, Y])⊗W

([Y, Z]⊗ [X, Y])⊗X

[X, Z]⊗X

[X, Z]⊗ ([W, X]⊗W)

([X, Z]⊗ [W, X])⊗W [W, Z]⊗W

Z

α⊗ 1

α

α

α

1⊗ α

α

m⊗ 1 m⊗ 1

eval

(m
⊗

1)
⊗

1

m
⊗
(1
⊗

1)

α

1⊗ eval eval

(1
⊗

m
)⊗

1

1
⊗
(m
⊗

1)

α

1⊗ eval
eval

(1⊗ 1)⊗ eval

m⊗ 1

1⊗ (1⊗ eval)

1⊗ eval

☆

☆

☆ ☆

In the diagram above, commutativity of the regions marked ☆ follows from
(3.1.8). Commutativity of the remaining subdiagrams follows from naturality of α
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(three times), the pentagon axiom (1.1.3), and the equality

(m⊗ 1) ○ ((1⊗ 1)⊗ eval) = m⊗ eval = (1⊗ eval) ○ (m⊗ (1⊗ 1)).
For the unity diagram (1.2.3), we apply −⊗X and then compose with the eval-

uation
eval ∶ [X, Y]⊗X Y.

Doing so yields the outermost composites to Y on both sides of the diagram below.

(1⊗ [X, Y])⊗X

([Y, Y]⊗ [X, Y])⊗X

[X, Y]⊗X

[X, Y]⊗X

([X, Y]⊗1)⊗X

([X, Y]⊗ [X, X])⊗X

1⊗ ([X, Y]⊗X)

1⊗Y

λ

Y

[Y, Y]⊗ ([X, Y]⊗X)

[Y, Y]⊗Y Y

[X, Y]⊗ (1⊗X)

[X, Y]⊗ ([X, X]⊗X)

λ⊗ 1

m⊗ 1

(i⊗ 1)⊗ 1

ρ⊗ 1

m⊗ 1

(1⊗ i)⊗ 1

α

1⊗ eval

eval

α

1⊗ eval

eval

i⊗ (1⊗ 1) i⊗ 1

λ

eval

1⊗ eval

α

α

1⊗ (i⊗ 1)

1⊗ λ

☆

☆

♡
♡

In the diagram above, the unlabeled arrows are composites of an associator
with an evaluation. The regions marked ☆ commute by (3.1.8) and the regions
marked ♡ commute by (3.1.9). The remaining regions commute by the unity prop-
erties (1.1.5) and (1.1.2), naturality of λ, naturality of α (twice), and the equality

(1⊗ eval) ○ (i⊗ (1⊗ 1)) = i⊗ eval = (i⊗ 1) ○ (1⊗ eval). □

3.2. Represented Enriched Functors

In this section we describe corepresented and represented V-functors taking
values in V. In Lemma 3.2.12 we give a characterization of V-natural transforma-
tions between V-functors with codomain V.

Definition 3.2.1. Suppose C is a V-category and suppose X ∈ C. Then YX = C(X,−)
denotes the corepresented V-functor

YX ∶ C V

whose assignment on objects is W C(X, W) and whose morphism of hom ob-
jects

(YX)Z,W ∶ C(Z, W) [YXZ,YXW]
is defined as the adjoint to composition in C:

C(Z, W)⊗YXZ = C(Z, W)⊗C(X, Z) m
C(X, W) = YXW

for each Z, W ∈ C. The composition and identity axioms of Definition 1.2.4 follow
from the associativity and unity axioms (Definition 1.2.1) of C together with the
definitions of composition and identity morphisms in V. ◇
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For the dual definition, recall from Definition 1.2.16 the opposite of an en-
riched category.

Definition 3.2.2. Suppose C is a V-category and suppose Y ∈ C. Then YY = C(−, Y)
denotes the represented V-functor

YY ∶ Cop V

whose assignment on objects is Z C(Z, Y) and whose morphism of hom ob-
jects

(YY)Z,W ∶ Cop(Z, W) = C(W, Z) [YYZ,YYW]
is the adjoint to composition in Cop:

C(W, Z)⊗YYZ = C(W, Z)⊗C(Z, Y) ξ
C(Z, Y)⊗C(W, Z) m

C(W, Y) = YYW.

Verifying V-functoriality of YY is similar to that of YX . ◇
Definition 3.2.3. Suppose V is a symmetric monoidal closed category and suppose
that θ ∶ P Q is a morphism in V. Let θ⊥ denote the morphism

1
θ⊥ [P, Q]

adjoint to θ ○λ. The correspondence θ θ⊥ provides an isomorphism of categor-
ies between V and (V)0, the underlying category of the self-enrichment of V. We
call this the canonical underlying isomorphism of V. ◇
Explanation 3.2.4. To see that the correspondence θ θ⊥ in Definition 3.2.3 pre-
serves composition, suppose given a composable pair of morphisms in V

P θ Q ω R.

Then the equality

(3.2.5) (ωθ)⊥ = (ω⊥)(θ⊥)

is commutativity of the following diagram in V.

1 [P, R]

1⊗1 [Q, R]⊗ [P, Q]

(ωθ)⊥

λ−1

(ω⊥)⊗ (θ⊥)
m

The equality (3.2.5) then follows by considering the adjoints of the composites
above, using functoriality of ⊗, naturality of λ, and the definition of the composi-
tion m. ◇

Recall from Definition 2.1.8 with D = V we have morphisms

(3.2.6) V(X, θ⊥) = [X, θ⊥] ∶ [X, P] [X, Q] and [Q, Y]
[θ⊥, Y]

[P, Y].

In Lemmas 3.2.7 and 3.2.8 we show that these morphisms have a simple descrip-
tion via θ.
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Lemma 3.2.7. Suppose θ ∶ P Q is a morphism in V and X is an object of V. The
adjoint of

[X, θ⊥] ∶ [X, P] [X, Q]

is

[X, P]⊗X eval P θ Q.

Proof. The result follows by commutativity of the diagram below. Recalling Defi-
nition 2.1.8, the adjoint to [X, θ⊥] is the composite along the left, bottom, and right
of the diagram.

[X, P]⊗X

(1⊗ [X, P])⊗X ([P, Q]⊗ [X, P])⊗X

[X, Q]⊗X

P Q

1⊗ ([X, P]⊗X) [P, Q]⊗ ([X, P]⊗X)

1⊗ P [P, Q]⊗ P

λ−1 ⊗ 1

(θ⊥ ⊗ 1)⊗ 1

θ⊥ ⊗ (1⊗ 1)

m⊗ 1

λ−1

1⊗ eval

λ−1

eval θ

eval
θ⊥ ⊗ 1

eval

α
α

1⊗ eval

In the above diagram, the upper-right trapezoid commutes by definition of θ⊥

and the rightmost trapezoid commutes by (3.1.8). The other regions commute by
naturality of λ and α, functoriality of ⊗, and the left unity diagram (1.1.5). □

Lemma 3.2.8. Suppose θ ∶ P Q is a morphism in V and Y is an object of V. The
adjoint of

[θ⊥, Y] ∶ [Q, Y] [P, Y]

is

[Q, Y]⊗ P 1⊗ θ [Q, Y]⊗Q eval Y.

Proof. The result follows by commutativity of the diagram below. Recalling Defi-
nition 2.1.8, the adjoint to [θ⊥, Y] is the composite along the left, bottom, and right
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of the diagram.

[Q, Y]⊗ P

([Q, Y]⊗1)⊗ P ([Q, Y]⊗ [P, Q])⊗ P

[P, Y]⊗ P

[Q, Y]⊗Q Y

[Q, Y]⊗ (1⊗ P) [Q, Y]⊗ ([P, Q]⊗ P)

ρ−1 ⊗ 1

(1⊗ θ⊥)⊗ 1

1⊗ (θ⊥ ⊗ 1)

m⊗ 1

1⊗ λ−1

1⊗ θ eval

eval

α
α

1⊗ eval

In the above diagram, the upper trapezoid commutes by definition of θ⊥ and the
rightmost trapezoid commutes by (3.1.8). The other regions commute by natural-
ity of α and the middle unity diagram (1.1.2). □

Explanation 3.2.9. The statements of Lemmas 3.2.7 and 3.2.8 will be useful in our
work below, but they also allow us to explain the relationship between three subtly
different versions of the represented and corepresented functors. Recall we use the
notation V to denote V equipped with its self-enrichment as in Definition 3.1.5, and
reserve the notation V for the ordinary symmetric monoidal closed category as in
Section 1.1.

For X, Y ∈ V we have:
(1) the ordinary functors

[X,−] ∶ V V and [−, Y] ∶ Vop V

defined via the closed structure on V,
(2) the V-enriched functors

YX ∶ V V and YY ∶ Vop V

of Definitions 3.2.1 and 3.2.2 with C = V, and
(3) the ordinary functors

[X, (−)⊥] ∶ (V)0 V and [(−)⊥, Y] ∶ (V)op0 V

defined in (3.2.6) as a special case of Definition 2.1.8.
The functors (1) and (3) correspond under the canonical underlying isomorphism
of categories (V)0 ≅ V given by the identity on objects and the correspondence
θ θ⊥ from Definition 3.2.3. Indeed for a morphism θ ∶ P Q in V we have
equalities

[X, θ] = [X, θ⊥] and [θ, Y] = [θ⊥, Y]
because, by Lemma 3.2.7 and Lemma 3.2.8, respectively, the corresponding ad-
joints are equal.

To compare with (2), we consider the induced functor on (V)0. For θ ∶ P Q
in V the morphism (YX)0θ⊥ is defined to be the composite

1
θ⊥ [P, Q] YX

[[X, P], [X, Q]].
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Using the definition of YX and [X, θ⊥], one verifies that the adjoint of (YX)0θ⊥ is
equal to the composite

1⊗ [X, P] λ [X, P]
[X, θ⊥]

[X, Q].

With a similar calculation for (YY)0θ⊥ we have

(YX)0θ⊥ = [X, θ⊥]⊥ = [X, θ]⊥ and (YY)0θ⊥ = [θ⊥, Y]⊥ = [θ, Y]⊥. ◇

In our work below we will use the following characterization of V-naturality
for the special case of V-functors with codomain V.

Lemma 3.2.10. Suppose that C is a V-category and that F, G ∶ C V are V-functors.
Suppose that

θX ∶ FX GX

is a collection of morphisms in V for X ∈ C. The morphisms

θ⊥X ∶ 1 [FX, GX]

are the components of a V-natural transformation θ⊥ if and only if the following diagram
commutes for each pair of objects X and Y in C.

(3.2.11)

C(X, Y)⊗ FX [FX, FY]⊗ FX FY

C(X, Y)⊗GX [GX, GY]⊗GX GY

F⊗ 1

1⊗ θX

eval

G⊗ 1 eval

θY

Proof. Beginning with the characterization of V-naturality in Lemma 2.1.11, with
D = V, we apply − ⊗ FX to the diagram (2.1.12) and compose with evaluation.
Then Lemmas 3.2.7 and 3.2.8, together with the equality

(1⊗ θX) ○ (G⊗ 1) = G⊗ θX = (G⊗ 1) ○ (1⊗ θX),

show that the adjoints to [θ⊥X , GY] and [FX, θ⊥Y] are the composites with 1⊗ θX and
θY indicated in (3.2.11). This shows that the two composites around the boundary
of (3.2.11) are the adjoints of the two composites around (2.1.12). Therefore, for
each X, Y ∈ C, (2.1.12) commutes if and only if (3.2.11) commutes. □

The following immediate applications of Lemma 3.2.10 will be useful in our
work below.

Lemma 3.2.12. Suppose, in the context of Lemma 3.2.10, that each θX is an isomorphism
in V

θX ∶ FX ≅ GX.

Then the components θ⊥X are V-natural if and only if the inverse components (θ−1
X )⊥ are

V-natural.
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Proof. For each X, Y ∈ C, the vertical composites in the diagram below are identi-
ties.

C(X, Y)⊗ FX [FX, FY]⊗ FX FY

C(X, Y)⊗GX [GX, GY]⊗GX GY

C(X, Y)⊗ FX [FX, FY]⊗ FX FY

F⊗ 1

1⊗ θX

eval

G⊗ 1 eval

θY

F⊗ 1

1⊗ θ−1
X

eval

θ−1
Y

Therefore, the upper half commutes if and only if the lower half commutes. Hence
the result follows from Lemma 3.2.10. □

Lemma 3.2.13. Suppose F ∶ C D is a V-functor between V-categories. Then the
morphisms

C(X, Y)
FX,Y

D(FX, FY)
for X, Y ∈ C determine V-natural transformations

C(−, W)
(F−,W)

⊥

D(F(−), FW) and C(Z,−)
(FZ,−)

⊥

D(FZ, F(−))
for Z, W ∈ C.

Proof. We apply Lemma 3.2.10 to show that both of the V-naturality conditions
follow from the composition axiom for F. For each W ∈ C consider the V-functors

C(−, W) ∶ Cop V and D(F(−), FW) ∶ Cop V.

The diagram (3.2.11) for F−,W is the outer diagram below, for X, Y ∈ C, where m′ =
m ○ ξ is the composition in Cop, respectively Dop.

C(X, Y)⊗C(Y, W)

[C(Y, W),C(X, W)]⊗C(Y, W)

C(X, W)

C(X, Y)⊗D(FY, FW)

[D(FY, FW),D(FX, FW)]⊗D(FY, FW)

D(FX, FW)

C(Y, W)⊗C(X, Y)

D(FX, FY)⊗D(FY, FW) D(FY, FW)⊗D(FX, FY)

C(−, W)⊗ 1 eval

D(F(−), FW)⊗ 1 eval

1⊗ FY,W FX,W

ξ m

F⊗ 1

ξ

m

FY,W ⊗ FX,Y



3.2. REPRESENTED ENRICHED FUNCTORS III.107

In the above diagram, the upper and lower regions commute by definitions of
C(−, W) and D(F(−), FW), respectively. The pentagonal region at left commutes
by naturality of ξ, and the remaining trapezoid is the composition axiom. There-
fore (F−,W)⊥ is V-natural. The argument for V-naturality of (FZ,−)⊥ is similar but
does not require the symmetry isomorphism ξ. □

In our work below we will need one further result proved using Lemma 3.2.10.
For the following, recall from Definition 1.2.14 a V-adjunction L ⊣ R is an adjoint
pair of 1-cells in V-Cat.

Proposition 3.2.14. A pair of V-functors

C D
L

R

is a V-adjoint pair with L ⊣ R if and only if there are isomorphisms in V

D(LX, Y) ≅ C(X, RY)

that are V-natural with respect to X ∈ C and Y ∈ D.

Proof. For one implication, suppose given unit and counit V-natural transforma-
tions

η ∶ 1C RL and ε ∶ LR 1D
making L ⊣ R a V-adjunction. For each X ∈ C and Y ∈ D we define η∗ and ε∗ to be
the following composites in V, with tensor symbols omitted from the diagrams.

C(RLX, RY)

C(RLX, RY)1

C(RLX, RY)C(X, RLX)

C(X, RY)

ρ−1

1ηX

m

η∗

D(LX, LRY)

1D(LX, LRY)

D(LRY, Y)D(LX, LRY)

D(LX, Y)

λ−1

εY1

m

ε∗

Then we define ζX,Y and υX,Y via the following composites, respectively.

D(LX, Y) C(X, RY)

C(RLX, RY)

RLX,Y
η∗

ζX,Y
C(X, RY) D(LX, Y)

D(LX, LRY)

LX,RY ε∗

υX,Y

To verify that ζ⊥ and υ⊥ are V-natural in each variable, first observe by Lemma 3.2.10
that the morphisms RLX,Y and LX,RY define V-natural R⊥ and L⊥. Then V-
naturality of η and ε implies that the composites determining ζ and υ determine
V-natural transformations.

The triangle identities of Definition 1.2.14 for η and ε imply that ζ and υ are
mutually inverse. For example, the following commutative diagram shows that
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υζ is equal to the composite (Lη∗)ε∗, where ε∗ is defined dually to ε∗.

D(LX, Y) C(RLX, RY) C(X, RY)

D(LX, LRY)

D(LX, Y)

D(LRLX, LRY)

D(LRLX, Y)

R η∗

L

ε∗

L

ε∗

ε∗
Lη∗

Lη∗

In the above diagram, the left inner region commutes by the V-naturality condition
(1.2.8) for ε. The other regions commute by V-functoriality of L and associativity
of composition in D. Then the left triangle identity implies (Lη∗)ε∗ = 1. A sim-
ilar calculation using V-naturality of η and the right triangle identity shows that
the reverse composite ζυ is also the identity. This finishes the proof of the first
implication.

For the reverse implication, suppose given isomorphisms in V

D(LX, Y)
ζX,Y
≅ C(X, RY)

such that ζ⊥ is V-natural with respect to X ∈ C and Y ∈ D. By Lemma 3.2.10, V-
naturality of ζ⊥ is equivalent to commutativity of the following diagram in V for
each X, X′ ∈ C and Y, Y′ ∈ D, again with tensor symbols omitted.

(Cop(X, X′)D(Y, Y′))D(LX, Y)

(Cop(X, X′)D(Y, Y′))C(X, RY)

(Dop(LX, LX′)D(Y, Y′))D(LX, Y)

(Cop(X, X′)C(RY, RY′))C(X, RY)

Dop(LX, LX′)D(LX, Y′)

Cop(X, X′)C(X, RY′)

D(LX′, Y′)

C(X′, RY′)

(11)ζX,Y ζX′,Y′

(Lop1)1 (1m)α

m ξ

(1R)1 (1m)α

m ξ

In the above diagram, the upper and lower composites are those that determine
the corresponding morphisms in (3.2.11) for D(L(−),−) and C(−, R(−)).

This V-naturality condition implies that the following two diagrams commute
for each X, X′ ∈ C and Y, Y′ ∈ D, again with tensor symbols omitted. The first
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follows from the special case X = X′ and the second follows from the special case
Y = Y′.
(3.2.15)

D(Y, Y′)D(LX′, Y)

D(Y, Y′)C(X′, RY)

C(RY, RY′)C(X′, RY)

C(X′, RY′)

D(LX′, Y′)

1ζX′,Y

RY,Y′1
m

ζX′,Y′

m
D(LX, Y)C(X′, X)

D(LX, Y)D(LX′, LX)

D(LX′, Y)

C(X′, RY)C(X, RY)C(X′, X)

1LX′,X
m

ζX′,YζX,Y1

m

Now we define components of a unit η and counit ε via the following compos-
ites, respectively.

1 C(X, RLX)

D(LX, LX)

iLX
ζX,LX

ηX
1 D(LRY, Y)

C(RY, RY)

iRY
ζ−1

RY,Y

εY

We use (3.2.15) to show that η and ε are V-natural. The V-naturality condition
(1.2.8) for η at X, X′ ∈ C and Y, Y′ ∈ D is the outer diagram below, with tensor
symbols omitted.

C(X′, X)

1C(X′, X)

1C(X′, X) C(X, RLX)C(X′, X)

C(X′, RLX)

C(X′, X)1

C(RLX′, RLX)1 C(RLX′, RLX)C(X′, RLX′)

D(LX′, LX)

D(LX′, LX)D(LX′, LX′)

D(RLX′, RLX)D(LX′, LX′)

D(LX, LX)D(LX′, LX)

D(LX, LX)C(X′, X)

λ−1 ≅

11

ηX′1

m

ρ−1 ≅

(RL)X′,X1

1ηX′

m

L

i 1

1L

ζ1

L i
R1

m

m

ζ

i L

1 i 1ζ

In the above diagram, the lower right region commutes by the first diagram of
(3.2.15), with Y = LX′ and Y′ = LX. The upper right region commutes by the
second diagram of (3.2.15), with Y = LX. The other regions of the above diagram
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commute by definition of η, unity properties, and V-functoriality of L and R. The
argument for V-naturality of ε is similar, again reducing to special cases of (3.2.15).

The triangle identities for η and ε follow from the definitions—notably the
invertibility of each ζX,Y. One uses the formula for composition of natural trans-
formations (Definition 1.2.9) and again reduces to special cases of (3.2.15) to show
that each of the relevant components is an identity. □

3.3. Self-Enriched Symmetric Monoidal Categories

In this section we show that the canonical self-enrichment of a symmetric
monoidal closed category V extends to an enrichment of the data ⊗, 1, α, λ, ρ, and
ξ over V. In Theorem 3.3.2 we prove that V is a symmetric monoidal V-category.
Definition 3.3.1. We extend the monoidal product and monoidal unit of V to V-
functors

⊠ ∶ V⊗V V and I ∶ I V

with the same assignments on objects, so

X ⊠Y = X⊗Y and I∗ = 1.

We use the notation ⊠ and I to help distinguish between the different roles that ⊗
and 1 play in this definition.

For a pair of objects (X, X′), (Y, Y′) ∈ V⊗V, the morphism

⊠(X,X′),(Y,Y′) ∶ [X, Y]⊗ [X′, Y′] [X ⊠X′, Y ⊠Y′]
is defined as the adjoint to the following composite, where ξmid is the middle four
interchange of Definition 1.3.2.

([X, Y]⊗ [X′, Y′])⊗ (X⊗X′) ([X, Y]⊗X)⊗ ([X′, Y′]⊗X′)

Y⊗Y′

ξmid

eval⊗ eval

The morphism
1 [1,1]

is defined as the adjoint to

1⊗1
λ1 = ρ1

1.
For both ⊠ and I, the composition and identity axioms of Definition 1.2.4 fol-

low by verifying that the relevant adjoints are equal. ◇
Theorem 3.3.2. Suppose V = (V,⊗,1, α, λ, ρ, ξ) is a symmetric monoidal closed category.
Then V is symmetric monoidal as a V-category.

Proof. Definition 3.3.1 extends ⊗ and 1 to V-functors denoted ⊠ and I, respectively.
Using the notation of Definition 3.2.3, the natural transformations α, λ, ρ, and ξ
define the following adjoint components for X, Y, Z ∈ V.

α⊥X,Y,Z ∶ 1 [(X ⊠Y)⊠ Z, X ⊠ (Y ⊠ Z)]
λ⊥X ∶ 1 [1⊠X, X]
ρ⊥X ∶ 1 [X ⊠1, X]

ξ⊥X,Y ∶ 1 [X ⊠Y, Y ⊠X].
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We use Lemma 3.2.10 to verify V-naturality for each collection of components. We
then verify that these satisfy the axioms of Definitions 1.4.2, 1.4.10, and 1.4.13.
As in Section 1.4, we will write the monoidal product in V-Cat as juxtaposition
throughout this proof.

For α⊥, we have C = (V2)V, with F = ⊠ ○ (⊠1) and G = ⊠ ○ (1⊠). Recall from
Definition 3.3.1 that

⊠ ∶ [X, Y]⊗ [X′, Y′] [X ⊠X′, Y ⊠Y′]
is adjoint to a composite of ξmid with eval ⊗ eval. Using functoriality of ⊗, the
morphisms of hom objects defined by F are adjoint to

(([X, Y]⊗ [X′, Y′])⊗ [X′′, Y′′])⊗ ((X⊗X′)⊗X′′)

(([X, Y]⊗X)⊗ ([X′, Y′]⊗X′))⊗ ([X′′, Y′′]⊗X′′)

(Y⊗Y′)⊗Y′′

(eval⊗2)⊗ eval

where the first unlabeled morphism is a permutation of terms given by α and ξ.
Similarly, the morphisms of hom objects defined by G are adjoint to

([X, Y]⊗ ([X′, Y′]⊗ [X′′, Y′′]))⊗ (X⊗ (X′ ⊗X′′))

([X, Y]⊗X)⊗ (([X′, Y′]⊗X′)⊗ ([X′′, Y′′]⊗X′′))

Y⊗ (Y′ ⊗Y′′)

eval⊗ (eval⊗2)

where the first unlabeled morphism is a permutation of terms given by α and ξ.
Now we apply Lemma 3.2.10. Since the morphisms along the top and bottom of
(3.2.11) are the adjoints of F and G, respectively, then α⊥ is V-natural if and only
if the boundary of the following diagram commutes, where the two unlabeled
morphisms are permutations of terms given by α and ξ.

(([X, Y]⊗ [X′, Y′])⊗ [X′′, Y′′])⊗ ((X⊗X′)⊗X′′)

(([X, Y]⊗X)⊗ ([X′, Y′]⊗X′))⊗ ([X′′, Y′′]⊗X′′)

(Y⊗Y′)⊗Y′′

([X, Y]⊗ ([X′, Y′]⊗ [X′′, Y′′]))⊗ (X⊗ (X′ ⊗X′′))

([X, Y]⊗X)⊗ (([X′, Y′]⊗X′)⊗ ([X′′, Y′′]⊗X′′))

Y⊗ (Y′ ⊗Y′′)

α⊗ α

(eval⊗2)⊗ eval

eval⊗ (eval⊗2)

α

α
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The left half of the above diagram commutes by the Symmetric Coherence Theo-
rem 1.1.41. The right half commutes by naturality of α.

Verifying V-naturality for λ⊥, ρ⊥, and ξ⊥ follows the same structure: In each
case the relevant functors F and G are defined via their adjoints, which involve
canonical morphisms and evaluation. In each case, the corresponding version of
(3.2.11) has one half that commutes by coherence, and another half that commutes
by naturality.

The result then follows by Theorem 2.5.1: the symmetric monoidal axioms for
V as a V-category hold if and only if the corresponding axioms hold for V as a
plain category. □

Definition 3.3.3. Suppose V and W are symmetric monoidal closed categories and
suppose U ∶ V W is a symmetric monoidal functor. For each X, Y ∈ V, let

UX,Y ∶ U[X, Y] [UX, UY]

be the morphism in W adjoint to the composite

U[X, Y]⊗UX U2

U([X, Y]⊗X) Ueval UY.

The standard enrichment of U is the symmetric monoidal W-functor

U ∶ VU W

defined by the same assignment on objects as the underlying functor U and de-
fined on hom objects by the morphisms UX,Y. This finishes the definition of U as
an assignment on objects and a collection of morphisms between hom objects. We
verify that these define a symmetric monoidal W-functor in Proposition 3.3.4. ◇
Proposition 3.3.4. In the context of Definition 3.3.3, the standard enrichment of U is a
symmetric monoidal W-functor.

Proof. This proof has three parts. The first is to check the composition and identity
axioms of Definition 1.2.4 to verify that U is a W-functor. Each of these is verified
by checking that its adjoint commutes. For the composition axiom, with X, Y, Z ∈
V, taking adjoints and using the definitions of UX,Z and the composition in W
yields the outer composites in the following diagram. In this diagram, and the
other diagrams in this proof, we abbreviate the monoidal products in V and W as
concatenation and use subscripts AU to denote UA for A ∈ V.

([Y, Z]U[X, Y]U)XU

[Y, Z]U([X, Y]X)U

([Y, Z][X, Y])UXU [X, Z]UXU

([X, Z]X)U

([YU , ZU][XU , YU])XU [YU , ZU]YU ZU

([Y, Z]([X, Y]X))U

[Y, Z]UYU ([Y, Z]Y)U

U21 mU1

(1eval) ○ α eval

(UY,ZUX,Y)1

U2

evalU

αU ○U2(1U2) ○ α

U2

1evalU

U2

evalUUY,Z1

(1eval)U
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Commutativity of the subdiagrams above follows from the associativity axiom
(1.1.9) for U; naturality of U2; and the definitions of UX,Y, UY,Z, and the composi-
tion in V. A similar adjoint diagram verifies the identity axiom for U.

For the second part of this proof, we use Lemma 3.2.10 to verify that the ad-
joints (U0)⊥ and (U2)⊥ are W-natural. These provide the enriched monoidal and
unit constraints for U.

The component of (U2)⊥ at an object X⊗X′ ∈ V⊗V is a morphism in W

(U2)⊥X⊗X′ ∶ 1 [(UX)⊗ (UX′), U(X⊗X′)].

For each X⊗X′ and Y⊗Y′ in V⊗V, the relevant version of (3.2.11) is the following
diagram.

(3.3.5)

([X, Y]U[X′, Y′]U)(XUX′U)

[XUX′U , YUY′U](XUX′U)

YUY′U

([X, Y]U[X′, Y′]U)(XX′)U

[(XX′)U , (YY′)U](XX′)U

(YY′)U

eval

eval

1U2 U2

In the above diagram, the top unlabeled morphism is the identity on (XUX′U) and
the following composite on the other factor:

[X, Y]U[X′, Y′]U
UX,YUX′,Y′ [XU , YU][X′U , Y′U]

⊠ [XUX′U , YUY′U].

The bottom unlabeled morphism in (3.3.5) is the identity on (XX′)U and the fol-
lowing composite on the other factor:

[X, Y]U[X′, Y′]U

([X, Y][X′Y′])U [XX′, YY′]U

[(XX′)U , (YY′)U].
U2

⊠U

UXX′,YY′

Commutativity of (3.3.5) follows from Epstein’s Coherence Theorem 1.1.44 toget-
her with the naturality of U2.

The component of (U0)⊥ at the unique object of I is a morphism in W

1 [1,1U],

where 1 denotes the monoidal unit of either V or W, distinguished by context.
Recall from Definition 3.3.1 that the unit for self-enriched monoidal structure is
determined by the adjoint of λ1 = ρ1. Let

λ̃ ∶ 1 [1,1]

denote this adjoint of λ1 in both V and W. With this notation, and recalling the
definition of the monoidal identity for VU from Definition 2.4.3, the version of
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(3.2.11) for W-naturality of (U0)⊥ is commutativity of the outer diagram below.

11

[1,1]1

1

1U11U

1U1U

[1,1]U1U

[1U ,1U]1U

(11)U

([1,1]1)U

λ̃1 eval

U0

λ

1U0

U01

(λ̃)U1

U1,11

eval

λ

U2

λU

(λ̃1)U

U2

evalU

In the above diagram, the two triangular regions involving λ̃ commute by def-
inition. The upper central region commutes by naturality of λ. The two lower
quadrilateral regions commute by naturality of U2 and definition of U1,1, respec-
tively. The remaining region, involving U0, U2, and λ, is the left unity diagram
(1.1.10) for U.

The third and final part of this proof consists of checking the symmetric mon-
oidal axioms of Definitions 1.4.17 and 1.4.18. This is similar to the verification of
axioms in the proof of Theorem 3.3.2. We check the axioms on components, and in
each case taking adjoints yields the corresponding axiom for (U, U2, U0).

To illustrate, the associativity axiom of Definition 1.4.17 is the following equal-
ity of components for each

(X⊗Y)⊗ Z ∈ (V⊗2)⊗V.

1

1(11)

1(11)

[((XY)Z)U , (X(YZ))U]
([(XY)UZU , ((XY)Z)U]

[(XUYU)ZU , (XY)UZU])

[XU(YZ)U , (X(YZ))U]
([XU(YUZU) , XU(YZ)U]

[(XUYU)ZU , XU(YUZU)])

[(XUYU)ZU , (X(YZ))U]

λ−1 ○ λ−1

λ−1 ○ λ−1

α⊥U( (U
2)⊥ ((U2)⊥1) )

(U2)⊥( (1(U2)⊥) α⊥ )

The adjoints of the two composites in the above diagram are two morphisms

(XUYU)ZU (X(YZ))U ,
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and it follows from the definitions of α⊥ and (U2)⊥ that they are the two com-
posites in the associativity axiom (1.1.9) for U. The two unity axioms of Defini-
tion 1.4.17 and the braid axiom of Definition 1.4.18 follow in the same way. □

3.4. Enriched Yoneda Bijection

In this section we prove the V-Yoneda Bijection 3.4.12. This is a preliminary
version that will be used in the proof of the full V-Yoneda Lemma 3.6.9. We as-
sume throughout that V is symmetric monoidal closed and that C is a small V-
category. Recall from Definitions 3.2.1 and 3.2.2 the corepresented and represented
V-functors

YX = C(X,−) ∶ C V and YY = C(−, Y) ∶ Cop V

for X, Y ∈ C.

Definition 3.4.1. Suppose W ∈ V. We let κW denote the composite shown below.

[1, W] W

[1, W]⊗1

κW

ρ[1,W] eval

Using the triangle identities for the closed monoidal structure of V, one verifies
that κW is an isomorphism with inverse given by

W coeval [1, W ⊗1]
[1, ρ]

[1, W].

When clear from context we will often omit the subscript W. ◇
Explanation 3.4.2. Checking adjoints shows that the following two diagrams in-
volving κ commute for Z, W ∈ V. The first uses unity properties in V, and the
second follows from the first along with additional unity properties, naturality of
the monoidal structure morphisms, and the commutativity of (3.1.8) relating the
enriched composition m with the counit eval in V.

(3.4.3)

[1, Z]⊗1 Z⊗1

Z

κZ ⊗ 1

ρZ
eval

[Z, W]⊗ [1, Z] [Z, W]⊗ Z

[1, W] W

1⊗ κZ

κW

m eval

◇
Next we record some notation to be used in our discussion of the V-enriched

Yoneda lemmas.

Definition 3.4.4. Suppose C is a small V-category and F, G ∶ C V are V-
functors.

● We let V-nat(F, G) denote the collection of V-natural transformations
F G. We note that V-nat(F, G) is a set because the components of a
V-natural transformation are indexed by objects of C.
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● For objects X, Y ∈ V, recall that V(X, Y) denotes the set of morphisms
X Y in the category V, while V(X, Y) = [X, Y] denotes the V-object of
morphisms for the standard self-enrichment of V.
● Recall that YX = C(X,−) denotes the corepresented V-functor C V for

X ∈ C (Definition 3.2.1).
● Given a morphism η ∈ V(1, FX) for X ∈ C, define ηY for each Y ∈ V as the

composite in the following diagram.

(3.4.5)

C(X, Y) FY

[FX, FY] [1, FY]

ηY

F

[η, FY]

κFY

Using the notation of Definition 3.2.3, let

(3.4.6) η̃Y = (ηY)
⊥ ∶ 1 [C(X, Y), FY].

By Lemma 3.2.10, using the V-functoriality of F and YX , one verifies that
the components η̃Y define a V-natural transformation

η̃ ∶ YX F.

● Given X ∈ C and a V-natural transformation θ ∶ YX F we define θ0 ∶
1 FX as the composite in the following diagram.

◇(3.4.7)

1 FX

[C(X, X), FX] [1, FX]

θ0

θX

[iX , FX]

κFX

Explanation 3.4.8. Our proof of Theorem 3.4.12 will rely on several observations,
recorded as commutativity of the diagrams below. In each case one verifies the
equality by taking adjoints and using

● basic properties of the closed monoidal structure on V (Definition 1.1.1,
(1.1.4), and (1.1.5)),
● definitions and basic properties of the canonical self-enrichment (Defini-

tion 3.1.5 and Explanation 3.1.7),
● definition of the corepresented functor YX (Definition 3.2.1), and
● properties of the isomorphisms κ (Explanation 3.4.2).

Thus the following diagrams commute for X, Y ∈ C.

(3.4.9)

1 FX

[FX, FX] [1, FX]

η

iFX

[η, FX]

κFX
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(3.4.10)

YXY⊗YXX

[YXX,YXY]⊗YXX

YXY

m

YX ⊗ 1

eval

(3.4.11)

[YXY, W]⊗C(X, Y) W

[YXY, W]⊗ [YXX,YXY] [YXX, W] [1, W]

eval

1⊗YX

m [iX , W]

κW

◇

Theorem 3.4.12 (V-Yoneda Bijection). Suppose V is a symmetric monoidal closed cat-
egory and C is a small V-category. For each V-functor F ∶ C V there is a bijection of
sets

(3.4.13) V-nat(YX , F) ≅ V(1, FX)

induced by the assignments

θ θ0 and η η̃

of Definition 3.4.4 for θ ∈ V-nat(YX , F) and η ∈ V(1, FX). Dually, for each V-functor
G ∶ Cop V there is a bijection of sets

(3.4.14) V-nat(YY, G) ≅ V(1, GY).

Proof. For the second assertion, we note that

YY = C(−, Y) = Cop(Y,−)

as V-functors. Therefore, the second follows from applying the first to Cop.
To prove the first assertion, suppose given η ∈ V(1, FX). Then η̃0 is the com-

posite

1
η̃X [C(X, X), FX]

[iX , FX]
[1, FX] κ FX
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and η̃X = (ηX)⊥. To see that η̃0 = η, we first use naturality of ρ to obtain commuta-
tive rectangles along the top of the diagram below.

1⊗1 [YXX, FX]⊗1 [1, FX]⊗1 FX⊗1

1

FX

1 [YXX, FX] [1, FX] FX

1⊗C(X, X) [YXX, FX]⊗C(X, X)

C(X, X) [FX, FX] [1, FX]

η̃X ⊗ 1 [iX , FX]⊗ 1 κ⊗ 1

eval ρ

λ

η

η̃X [iX , FX] κ

ρ−1
ρ−1 ρ−1 ρ−1

iX iFX

F [η, FX] κ

1⊗ iX 1⊗ iX

η̃X ⊗ 1

evalλ

In the above diagram, the left vertical composite is the identity because λ1 = ρ1
(1.1.4). Then we obtain the remaining commutative regions using the following,
respectively: naturality of λ, functoriality of ⊗, the adjoint of [iX , FX], the triangle
(3.4.3), the definition of η̃X = (ηX)⊥, the identity axiom for F (Definition 1.2.4), and
(3.4.9).

Next, suppose given θ ∈ V-nat(YX , F). Then (̃θ0) is a V-natural transformation
whose component at Y ∈ C is (θ0)

⊥
Y with (θ0)Y given by the composite

C(X, Y) F [FX, FY]
[θ0, FY]

[1, FY] κ FY.

To see that (̃θ0)Y = θY for each Y ∈ C, we use the diagram below to show that the
adjoint of θY, along the top edge, is equal to (θ0)Y ○ λ, along the left and bottom
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edges.

1⊗C(X, Y) [YXY, FY]⊗C(X, Y) FY

C(X, Y) [FX, FY] [1, FY] FY

C(X, Y)

C(X, Y)⊗1

[FX, FY]⊗1

[FX, FY]⊗ [YXX, FX]

[YXX, FY]

[YXY, FY]⊗ [YXX,YXY]

[FX, FY]⊗ [1, FX]

[1, FY]
[FX, FY]⊗ FX

[1, FY]⊗1

FY⊗1

θY ⊗ 1 eval

λ

F [θ0, FY] κ

ρ−1

ρ

λ

ρ−1

F⊗ 1

1⊗ θX

m

1⊗YX

m

[θ0, FY]⊗ 1

κ⊗ 1

eval

[iX , FY]

1⊗ [iX , FX]

m
1⊗ κ

eval
κ

ρ

ρ ρ

In the above diagram, each of the quadrilaterals along the bottom commutes by
naturality of ρ and the trapezoid at left commutes by invertibility of ρ. Commu-
tativity of the remaing regions is a consequence of the following, respectively: the
V-naturality of θ (1.2.8), compatibility of YX with m (3.4.11), compatibility of m
with morphisms in V (3.1.10), the square (3.4.3), the definition of θ0, and the trian-
gle (3.4.3). □

The following application of Theorem 3.4.12 will be useful in Section 3.9 below.
Proposition 3.4.15. Suppose D and C are small V-categories and suppose given V-
functors

D C.
F

G

Then the underlying functors form an adjoint pair F0 ⊣ G0 if and only if F ⊣ G is a
V-adjoint pair.

Proof. One implication follows directly from 2-functoriality of

(−)0 ∶ V-Cat Cat,

proved in Proposition 2.1.2 and Lemma 2.1.5.
For the reverse implication, suppose given V-functors F and G such that F0 ⊣

G0 is an adjoint pair. Then we have unit and counit with components

ηX ∈ D0(X, GFX) = V(1,D(X, GFX)) and

εY ∈ C0(FGY, Y) = V(1,C(FGY, Y))
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for each X ∈ D and Y ∈ C. By the Yoneda Bijection 3.4.12 we have

V-nat(C(FX,−),D(X, G(−))) ≅ V(1,D(X, GFX)) and

V-nat(D(−, GY),C(F(−), Y) ≅ V(1,C(FGY, Y)).

Recalling the proof of Theorem 3.4.12, the morphisms ηX and εY therefore
induce components

(3.4.16) C(FX, Y)
ηX,Y

D(X, GY) and D(X, GY)
εX,Y

C(FX, Y)
such that the η⊥ is V-natural with respect to Y ∈ V for each X ∈ V and ε⊥ is V-natural
with respect to X ∈ V for each Y ∈ V. The triangle identities for F0 ⊣ G0 imply that
these components are mutually inverse isomorphisms in V.

For V-naturality of each morphism with respect to the other variable, we re-
call from Lemma 3.2.12 that a collection of isomorphisms in V determines a V-
natural transformation if and only if its collection of inverse morphisms does so.
Therefore, the V-naturality of η⊥ with respect to Y implies that of ε⊥ and the V-
naturality of ε⊥ with respect to X implies that of η⊥. Lastly, by Proposition 3.2.14
the V-naturality of isomorphisms (3.4.16) implies that F ⊣ G is a V-adjunction. □

3.5. Enriched Ends and Internal Mapping Objects

The statement of the full V-enriched Yoneda Lemma 3.6.9 requires the follow-
ing V-enriched notion of coends and ends generalizing the plain categorical notion
from Definition I.1.1.16. Proposition 3.5.5 shows that all V-coends, respectively V-
ends, exist if V is cocomplete, respectively complete.

Definition 3.5.1. Suppose A is a V-category and suppose F ∶ Aop ⊗ A V is a
V-functor.

(1) A V-cowedge of F is a pair (X, ζ) consisting of
● an object X ∈ V and
● morphisms ζa ∶ F(a, a) X in V for a ∈ A

such that the following diagram in V commutes for all objects a, a′ ∈ A.

(3.5.2)

A(a, a′) [F(a′, a), F(a, a)]

[F(a′, a), F(a′, a′)] [F(a′, a), X]

F(−, a)

F(a′,−)

[F(a′, a), ζa′]

[F(a′, a), ζa]

(2) A V-coend of F is an initial V-cowedge and is denoted by the pair

(∫
a∈A

F(a, a), ω)

or simply by ∫
a∈AF(a, a)with ω implicit.

A V-end of F is the dual notion given as follows.
(3) A V-wedge of F is a pair (Y, δ) consisting of

● an object Y ∈ V and
● morphisms δa ∶ Y F(a, a) in V for a ∈ A
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such that the following diagram in V commutes for all objects a, a′ ∈ A.

(3.5.3)

A(a, a′) [F(a, a), F(a, a′)]

[F(a′, a′), F(a, a′)] [Y, F(a, a′)]

F(a,−)

F(−, a′)

[δa′ , F(a, a′)]

[δa, F(a, a′)]

(4) A V-end of F is a terminal V-wedge and is denoted by the pair

(∫
a∈A

F(a, a), σ)

or simply by ∫a∈A F(a, a)with σ implicit.

When clear from context, we will omit the ambient category from the superscript
or subscript. ◇
Explanation 3.5.4 (Universal Properties of Enriched Coends and Ends). The def-
inition of a V-coend for F as an initial V-cowedge means that it satisfies the fol-
lowing universal property. Given any V-cowedge with components ζa as shown
below, there exists a unique morphism in V such that the following diagram com-
mutes for all a ∈ A.

∫
a

F(a, a)

F(a, a)

X

ωa ζa

∃!

Dually, a V-end for F satisfies the following universal property. Given any V-
wedge with components δa as shown below, there exists a unique morphism in V
such that the following diagram commutes for all a ∈ A.

∫
a

F(a, a)

F(a, a)

Y

σaδa

∃!

◇
Proposition 3.5.5. Suppose given a V-functor

F ∶ Aop ⊗A V

as in Definition 3.5.1. If V is cocomplete and A is small, then the V-coend of F exists and
is given by a coequalizer in V

(3.5.6) ∫
a∈A

F(a, a) ≅ coeq ( ∐
a,a′∈A

A(a, a′)⊗ F(a′, a) ∐
a∈A

F(a, a)).
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Dually, if V is complete and A is small, then the V-end of F exists and is given by an
equalizer in V

(3.5.7) ∫
a∈A

F(a, a) ≅ eq (∏
a∈A

F(a, a) ∏
a,a′∈A

[A(a, a′), F(a, a′)]).

Proof. The symmetric monoidal closed structure of V gives isomorphisms

(3.5.8) V(P, [Q, R]) ≅ V(P⊗Q, R) ξ∗

≅ V(Q⊗ P, R) ≅ V(Q, [P, R])

for each P, Q, R ∈ V. Using the first bijection of (3.5.8), the V-cowedge condition
(3.5.2) for components ζa is equivalent to commutativity of the following diagram
for each a, a′ ∈ A.

A(a, a′)⊗ F(a′, a) F(a, a)

F(a′, a′) X
ζa′

ζa

In the above diagram, the unlabeled horizontal, respectively vertical, morphism
corresponds to F(−, a), respectively F(a′,−) under the first bijection of (3.5.8).
Therefore the coend of F can be expressed as the indicated coequalizer.

Dually, using the composite bijection of (3.5.8), the V-wedge condition (3.5.3)
for components δa is equivalent to commutativity of the following diagram for
each a, a′ ∈ A.

Y F(a, a)

F(a′, a′) [A(a, a′), F(a, a′)]

δa

δa′

In the above diagram, the unlabeled vertical, respectively horizontal, morphism
corresponds to F(a,−), respectively F(−, a′) under the bijection (3.5.8). □

Explanation 3.5.9. In the context of Definition 3.5.1, a V-coend ∫
a F(a, a) is called

a coend in V if, for each b ∈ V, the morphisms [ωa, b] induce an isomorphism

(3.5.10) [∫
a

F(a, a), b] ≅
∫

a
[F(a, a), b].

Similarly, a V-end ∫a F(a, a) is called an end in V if, for each b ∈ V, the morphisms
[b, σa] induce an isomorphism

(3.5.11) [b,∫
a

F(a, a)] ≅
∫

a
[b, F(a, a)].

If, as we assume throughout this chapter, V is symmetric monoidal closed, then
(3.5.10) and (3.5.11) are necessarily isomorphisms and therefore every V-end, re-
spectively V-coend, is an end in V, respectively coend in V. Therefore, we will not
have need for this alternate terminology. ◇
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Definition 3.5.12. Suppose F, G ∶ C V are V-functors with V complete. We
define the mapping object as the V-end

(3.5.13) Map(F, G) = ∫
Y∈C
[FY, GY]

with V-wedge components

Map(F, G) σZ [FZ, GZ]
for each Z ∈ C. ◇
Lemma 3.5.14. In the context of Definition 3.5.12, the underlying set

V(1,Map(F, G))
is naturally isomorphic to the set of V-natural transformations F G.

Proof. By universality of the end, each morphism in V from 1 to Map(F, G) is uni-
quely determined by a V-wedge with components

1
θX [FX, GX]

such that the following diagram commutes for each X, Y ∈ C.

C(X, Y) [[FX, GX], [FX, GY]]

[[FY, GY], [FX, GY]] [1, [FX, GY]]

[FX,−]

[−, GY] [θX , [FX, GY]]

[θY , [FX, GY]]

Taking adjoints and unpacking the definitions of the morphisms involved, com-
mutativity of the diagram above is equivalent to commutativity of the defining
diagram (1.2.8) for V-naturality of θ. □

Definition 3.5.15. Suppose θ ∶ P [Q, R] is a morphism in V. The transform of θ
is

θ# ∶ Q [P, R]
defined as the adjoint of

Q⊗ P
ξ

P⊗Q θ ⊗ 1 [Q, R]⊗Q eval R. ◇
The following result will be useful in our discussion of the Enriched Yoneda

Lemma 3.6.9 below.
Lemma 3.5.16. Suppose F ∶ C V is a V-functor, suppose X ∈ C, and suppose

θY ∶ YXY [Q, FY]
is a morphism in V for each Y ∈ C. The transforms

θ#
Y ∶ Q [YXY, FY]

form a wedge (Q, θ) if and only if the morphisms

θ⊥Y ∶ 1 [YXY, [Q, FY]]
adjoint to θY ○ λ are components of a V-natural transformation YX [Q, F(−)].
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Proof. The V-naturality condition for θ⊥Y given in Lemma 3.2.10 is that the diagram
below commutes for each Y ∈ C.
(3.5.17)

C(X, Y)⊗YXX [YXX,YXY]⊗YXX YXY

C(X, Y)⊗ [Q, FX] [[Q, FX], [Q, FY]]⊗ [Q, FX] [Q, FY]

YX ⊗ 1 eval

[Q, F(−)]⊗ 1 eval

1⊗ θX θY

To explain the V-wedge condition (3.5.3) for θ#, we let θY denote the adjoint of θY,
given by the following composite.

(YXY)⊗Q

[Q, FY]⊗Q

FY

θY ⊗ 1 eval

θ

The V-wedge condition (3.5.3) for θ# is that the outer diagram below commutes for
each Y ∈ C. In this diagram the unlabeled isomorphisms are given by the monoidal
closed structure of V.
(3.5.18)

C(X, Y) [YXX,YXY] [[YXY, FY], [YXX, FY]]

[FX, FY]

[[YXX, FX], [YXX, FY]] [Q, [YXX, FY]]

[[YXY, FY]⊗YXX, FY]

[Q⊗YXX, FY]

[(YXX)⊗Q, (YXY)⊗Q]

[[YXX, FX]⊗YXX, FY]

[(YXX)⊗Q, FY]

YX [−, FY]

F

[YXX,−]

[θ#
X , [YX , FY]]

[θ#
Y , [YX , FY]]

−⊗Q

≅

≅≅

[eval, 1]

[θX , FY]
[(YXX)⊗Q, θY]

[ξ, FY]

[θ#
X ⊗ 1, FY]

[θ#
Y ⊗ 1, FY]

☆

In the above diagram, each region except the one labeled ☆ commutes as a con-
sequence of the symmetric monoidal closed structure of V and the definitions of
the relevant morphisms. Therefore θ# satisfies the V-wedge condition if and only
if the region ☆ commutes.

The adjoints of the two composites around the boundary of☆ are given by the
composites around the boundary of the diagram below. In this below diagram,
each region except the one labeled ♡ commutes as a consequence of the symmet-
ric monoidal closed structure of V and the definitions of the relevant morphisms.
Therefore, the composites around the boundary of the diagram below are equal if
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and only if the composites around the boundary of the region ♡ are equal.

(C(X, Y)⊗YXX)⊗Q

(C(X, Y)⊗ [Q, FX])⊗Q

([[Q, FX], [Q, FX]]⊗ [Q, FX])⊗Q

[Q, FX]⊗Q FY([FX, FY]⊗ [Q, FX])⊗Q

[FX, FY]⊗ ([Q, FX]⊗Q)

C(X, Y)⊗ ((YXX)⊗Q)

[FX, FY]⊗ ((YXX)⊗Q) [FX, FY]⊗ FX

[(YXX)⊗Q, (YXY)⊗Q]⊗ ((YXX)⊗Q)

(YXY)⊗Q

[(YXX)⊗Q, FY]⊗ ((YXX)⊗Q)

α

F⊗ (1⊗ 1)

1⊗ θ

eval

(1⊗ θX)⊗ 1

([Q, F(−)]⊗ 1)⊗ 1

eval⊗ 1

eval

(F⊗ 1)⊗ 1

m⊗ 1

α

1⊗ eval

((YX(−))⊗Q)⊗ (1⊗ 1)

eval

[(YXX)⊗Q, θY]⊗ (1⊗ 1)

θY

eval

m⊗ 1

♡

Noting that the composite along the top of (3.5.17) is the composition m in C, the
composites around the boundary of the region labeled ♡ in the diagram above
are the adjoints of the composites around the boundary of (3.5.17). Thus for each
Y ∈ C the V-naturality diagram (3.5.17) commutes if and only if the wedge diagram
(3.5.18) does so. □

Now we show that the mapping objects give a V-category of V-functors
C V.

Definition 3.5.19. Suppose C is a small V-category with V complete. We define
the mapping V-category C-V to have objects given by V-functors C V and hom
objects

C-V(F, G) =Map(F, G)

for V-functors F and G.
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For each F ∈ C-V, the identity iF is the universal arrow induced by θZ = iFZ for
each Z ∈ C.

(3.5.20)

1 Map(F, F)

[FZ, FZ]

iF

σZiFZ

For F, G, H ∈ C-V, the composition morphism m = mMap is the universal arrow
induced by the composite m ○ (σ⊗ σ) below.

(3.5.21)

Map(G, H)⊗Map(F, G) Map(F, H)

[GZ, HZ]⊗ [FZ, GZ] [FZ, HZ]

mMap

m

σZ ⊗ σZ σZ

In Lemma 3.5.24 we show that the unity and associativity axioms hold for C-V,
making it a V-category. Lemma 3.5.14 above shows that the underlying category
of C-V is isomorphic to the plain category V-Cat(C,V). ◇
Explanation 3.5.22. In (3.5.21) above, the adjoint of σZ ○mMap is equal to the lower
left composite below.

(3.5.23)

(Map(G, H)⊗Map(F, G))⊗ FZ

HZ([GZ, HZ]⊗ [FZ, GZ])⊗ FZ

[GZ, HZ]⊗ ([FZ, GZ]⊗ FZ) [GZ, HZ]⊗GZ

eval ○ (m⊗ 1)

α

1⊗ eval

(σZ ⊗ σZ)⊗ 1

eval

The rectangle commutes by definition of the composition m in V via (3.1.6). ◇
Lemma 3.5.24. In the context of Definition 3.5.19, C-V is a V-category.

Proof. We begin with the left unity diagram (1.2.3). By the universal property of
V-ends, it suffices to show that the following diagram commutes for each Z ∈ C.
Here and throughout the rest of this proof we abbreviate Map(−,−) as M(−,−) and
omit the tensor symbols in V.

1M(F, G) M(F, G)

M(G, G)M(F, G) M(F, G)

[FZ, GZ]

λ

σZ

iG1

mMap σZ
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To see that the above diagram commutes, we verify that the following adjoint
diagram commutes, where we have used (3.5.23) for the adjoint of σZ ○mMap.

(1M(F, G)(FZ)) M(F, G)(FZ)

[FZ, GZ](FZ)

GZ(M(G, G)M(F, G))(FZ)

([GZ, GZ][FZ, GZ])(FZ)

(1[FZ, GZ])(FZ)

λ1

σZ1

eval

(iG1)1

(σZσZ)1

(1σZ)1
λ1

(iGZ1)1
m1

In the above diagram, the parallelogram at left commutes by the definition of iG
(3.5.20), the upper parallelogram commutes by naturality of λ, and the remaining
triangle commutes by the left unity diagram for V. This verifies that the left unity
diagram for C-V commutes. The right unity diagram for C-V is similar, using the
right unity of V.

Now we turn to the associativity diagram (1.2.2) for mMap. Again using uni-
versality of V-ends, it suffices to show that the following diagram commutes for
E, F, G, H ∈ C-V.

(M(G, H)M(F, G))M(E, F) M(G, H)(M(F, G)M(E, F))

M(G, H)M(E, G)

M(E, H)

[EZ, HZ]

M(F, H)M(E, F)

M(E, H)

α

1mMap

mMap

σZ

mMap 1

mMap

σZ

To see that the above diagram commutes, we verify that the following adjoint
diagram commutes, where we have used (3.5.23) twice for adjoints of σZ ○mMap

and abbreviated

L = (([GZ, HZ][FZ, GZ])[EZ, FZ])(EZ)
and

R = ([GZ, HZ]([FZ, GZ][EZ, FZ]))(EZ).
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((M(G, H)M(F, G))M(E, F))(EZ)

(M(F, H)M(E, F))(EZ)

([FZ, HZ][EZ, FZ])(EZ)

(M(G, H)(M(F, G)M(E, F)))(EZ)

(M(G, H)M(E, G))(EZ)

([GZ, HZ][EZ, GZ])(EZ)

[EZ, HZ](EZ) HZ

L R

α1

(1mMap)1

(σZσZ)1

m1

eval

(mMap1)1

(σZσZ)1

m1

((σZσZ)σZ)1 (σZ(σZσZ))1

(m1)1 (1m)1

α1

In the above diagram, the quadrilaterals at left and right commute by definition
of mMap. The upper middle region commutes by naturality of α and the lower
middle region commutes by associativity for m in V. This completes the proof that
C-V is a V-category. □

Definition 3.5.25 (Yoneda V-functor). Suppose C is a small V-category with V com-
plete. Define the Yoneda V-functor

Y(−) ∶ C (C-V)op

by

X YX

on objects and the following universal arrow on hom objects:

(3.5.26)

C(X, Y) Map(YY,YX)

[C(Y, Z),C(X, Z)]

(Y(−))X,Y

σZ(YZ)X,Y

We show in Lemma 3.5.29 that the identity and composition axioms hold for Y(−),
making it a V-functor. We show in Corollary 3.6.11 that Y(−) induces isomor-
phisms on hom objects. For this reason, Y(−) is also called the V-Yoneda embed-
ding. ◇
Explanation 3.5.27. In the context of Definition 3.5.25 above, the adjoint of σZ ○
(Y(−))X,Y is the adjoint of (YZ)X,Y. Recalling Definition 3.2.2, it is the below com-
posite of the symmetry ξ in V and the composition m of C:

◇(3.5.28) C(X, Y)⊗C(Y, Z) ξ
C(Y, Z)⊗C(X, Y) m

C(X, Z).

Lemma 3.5.29. In the context of Definition 3.5.25, Y(−) is a V-functor.



3.5. ENRICHED ENDS AND INTERNAL MAPPING OBJECTS III.129

Proof. Throughout this proof we will omit the tensor symbols in V and we will use
the following abbreviations for X, Y ∈ C:

M =Map and CX,Y = C(X, Y).
Now we begin with the identity axiom (1.2.6). By universality of V-ends, it suffices
to show that the following diagram commutes for Y, Z ∈ C.

1 CY,Y

M(YY,YY)

[CY,Z,CY,Z]

iY

Y(−)

σZ

iYY

iCY,Z YZ

Taking adjoints, commutativity of the above diagram is equivalent to that of the
outer diagram below. We have used (3.5.28) for the adjoint of YZ.

1CY,Z CY,YCY,Z

CY,Z1 CY,ZCY,Y

CY,Z

iY1

ξ

m

ξ

1iY

ρ
λ

In the above diagram, the upper parallelogram commutes by naturality of ξ. The
triangle at left commutes by symmetry of units (1.1.20) and the triangle at right
commutes by the right unity axiom for composition m in C.

Now we turn to the composition axiom (1.2.5). By universality of V-ends, it
suffices to verify that the following diagram commutes for W, X, Y, Z ∈ C. In the
below diagram, (mMap)′ denotes the composition in (C-V)op and is defined via
the lower triangle.

CY,ZCX,Y CX,Z

M(YZ,YY)M(YY,YX) M(YZ,YX)

M(YY,YX)M(YZ,YY)

[YZW,YXW]

m

Y(−)

σW

Y(−)Y(−)

(mMap)′

ξ
mMap

YW
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Taking adjoints, commutativity of the diagram above is equivalent to that of the
outer diagram below. We have used (3.5.28) for the adjoint of YZ and the lower
composite of (3.5.23) for the adjoint of σW ○mMap.
(3.5.30)

(CY,ZCX,Y)CZ,W CX,ZCZ,W

CZ,WCX,Z

CX,W

(M(YZ,YY)M(YY,YX))CZ,W

(M(YY,YX)M(YZ,YY))CZ,W

([CY,W ,CX,W][CZ,W ,CY,W])CZ,W [CY,W ,CX,W]([CZ,W ,CY,W]CZ,W)

[CY,W ,CX,W]CY,W

CZ,W(CY,ZCX,Y)

(CZ,WCY,Z)CX,Y

CY,WCX,Y

CX,YCY,W

CY,WCX,Y

(CX,YCY,Z)CZ,W

CX,Y(CY,ZCZ,W)

CX,Y(CZ,WCY,Z)

M(YY,YX)(M(YZ,YY)CZ,W)

m1

ξ

m

(Y(−)Y(−))1

ξ1

(σW σW)1

α
1eval

eval

ξ

α−1

m1

ξ

☆

ξ

1

ξ1

α

1ξ

1m
Y(−)(Y(−)1)

(Y(−)Y(−))1

σW(σW1)

1m

ξ

m

☆

♡

♡

In the above diagram, the four unlabeled regions commute by naturality of α
(once) and ξ (three times). The two regions labeled ♡ commute, respectively, by
the definition of Y(−) and by associativity of the composition m in C. The two re-
gions labeled☆ commute by the symmetry axiom (1.1.24) for ξ and the Symmetric
Coherence Theorem 1.1.41 for V. □

Explanation 3.5.31. We note that the composition axiom for Y(−) depends heavily
on the underlying assumption that V is symmetric monoidal. The two regions
marked ☆ in (3.5.30) do not commute when V is merely braided monoidal. ◇
Definition 3.5.32. Suppose F ∶ C V is a V-functor with V complete. Define

Map(−, F) ∶ (C-V)op V

by

G Map(G, F) = ∫
Z∈C
[GZ, FZ]
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on objects and the following universal arrow on hom objects:

(3.5.33)

Map(G, H) [Map(H, F),Map(G, F)]

[GW, HW]

[[HW, FW], [GW, FW]]

[Map(H, F), [GW, FW]]

(Map(−, F))
G,H

[Map(H, F), σW]σW

[−, FW] [σW , [GW, FW]]

As we describe in Explanation 3.5.34 below, Map(−, F) is the represented V-functor
YF for the V-category C-V. ◇
Explanation 3.5.34 (V-Functoriality of Map(−, F)). In the context of Definition 3.5.32
above, the adjoint of (3.5.33) is given by the following diagram, where the unla-

beled top arrow is the adjoint of (Map(−, F))
G,H

.

(3.5.35)

Map(G, H)⊗Map(H, F) Map(G, F)

[GW, FW]

[GW, HW]⊗ [HW, FW] [HW, FW]⊗ [GW, HW]

σW

σW ⊗ σW

ξ m

Recalling (3.5.21), this shows that (Map(−, F))
G,H

is adjoint to

(mMap)′ = mMap ○ ξ,

the composition in (C-V)op. Therefore, Map(−, F) is the V-functor represented by
F. ◇

Now Lemma 3.5.29 and V-functoriality of Map(−, F) give the following.

Proposition 3.5.36. For each V-functor F ∶ C V,

Map(Y(−), F) ∶ C V

is a V-functor.

Explanation 3.5.37. The composite Map(Y(−), F) in Proposition 3.5.36 is given on
objects by the assignment

X Map(YX , F) = ∫
Z∈C
[YXZ, FZ]



III.132 3. SELF-ENRICHMENT AND ENRICHED YONEDA

for X ∈ C. The morphism on hom objects C(X, Y) is the top horizontal morphism
in the following diagram, induced by the other morphisms.

(3.5.38)

C(X, Y) [Map(YX , F),Map(YY, F)]

[Map(YX , F), [YYZ, FZ]][YYZ,YXZ]

[[YXZ, FZ], [YYZ, FZ]]

Map(YY,YX)

Map(Y(−), F)

[Map(YX , F), σZ]C(−, Z)

[−, FZ] [σZ, [YYZ, FZ]]

Y(−)
Map(−, F)

σZ

In the above diagram, the upper triangular region is the definition of the compos-
ite V-functor on hom objects, and the remaining two regions are the definitions
(3.5.26) and (3.5.33) of Y(−) and Map(−, F), respectively. ◇

3.6. Enriched Yoneda Lemma

Throughout this section we assume V is a symmetric monoidal closed category
that is complete. The main purpose of this section is to prove the V-Yoneda Lemma
3.6.9.
Definition 3.6.1. For each V-functor F ∶ C V and each X ∈ C let

FX
ϕX

Map(YX , F)
denote the morphism in V induced by morphisms

FX
F#

X,Z [YXZ, FZ]
that are the transforms of

YXZ = C(X, Z)
FX,Z [FX, FZ].

We show in Lemma 3.6.5 below that the ϕX determine a V-natural transformation

ϕ⊥ ∶ F Map(Y(−), F). ◇
Explanation 3.6.2 (The morphisms ϕX). The composition axiom for F (1.2.5) toget-
her with Lemma 3.2.10 shows that the morphisms

F⊥X,Z ∶ 1 [C(X, Z), [FX, FZ]]
determine a V-natural transformation C(−,−) [F(−), F(−)]. In particular, for
fixed X, Lemma 3.5.16 shows that the morphisms F#

X,Z for Z ∈ C satisfy the V-
wedge condition (3.5.3), thus inducing the morphisms

FX
ϕX

∫
Z∈C
[YXZ, FZ] =Map(YX , F)

in V. ◇
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We will use the following result with H = YZ to show that each F#
−,Z determines

a V-natural transformation. Then we use that result to show that ϕ⊥ is V-natural.
Lemma 3.6.3. Suppose F ∶ C V and H ∶ Cop V are V-functors and suppose
Q ∈ V. A collection of morphisms

θX ∶ FX [HX, Q]
for X ∈ C determines a V-natural transformation θ⊥ if and only if the transforms

θ#
X ∶ HX [FX, Q]

determine a V-natural transformation (θ#)⊥.

Proof. We apply Lemma 3.2.10. Throughout this proof we omit tensor symbols
and use [−, Q] to denote the V-enriched functor from Vop to V represented by Q.
The diagram (3.2.11) for θ⊥ is the following, for X, Y ∈ C.

C(X, Y)FX [FX, FY]FX FY

C(X, Y)[HX, Q] [[HX, Q], [HY, Q]][HX, Q] [HY, Q]

[HY, HX][HX, Q]

F1 eval

[H(−), Q]1 eval

1θX θY

H1 [−, Q]1

The diagram (3.2.11) for (θ#)⊥ is the following, for X, Y ∈ C.

C(X, Y)HY [HY, HX]HY HX

C(X, Y)[FY, Q] [[FY, Q], [FX, Q]][FY, Q] [FX, Q]

[FX, FY][FY, Q]

H1 eval

[F(−), Q]1 eval

1θ#
Y θ#

X
F [−, Q]1

Now let
θX ∶ FX⊗HX Q

denote the morphism adjoint to θX for each X ∈ C, so that θXξ is the adjoint of
θ#

X . Then taking adjoints and using naturality of ξ and α together with the defini-
tion of the represented V-functors [−, Q] (Definition 3.2.2), we see that each of the
diagrams above commutes if and only if the following diagram commutes.

(C(X, Y)FX)HY ([FX, FY]FX)HY (FY)(HY)

(C(X, Y)HY)FX ([HY, HX]HY)FX (HX)(FX)

Q

(F1)1 eval1

(H1)1 eval1

θY

θXξ

Therefore, θ⊥ is V-natural if and only if (θ#)⊥ is V-natural. □
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Lemma 3.6.4. For each V-functor F ∶ C V and each Z ∈ C, the transforms F#
X,Z

determine a V-natural transformation

(F#
−,Z)⊥ ∶ F [YZ, FZ]

Proof. By Lemma 3.2.13, the composition axiom for F implies that F−,Z determines
a V-natural transformation

F⊥−,Z ∶ YZ [F(−), FZ].

Then the result follows from Lemma 3.6.3. □

Lemma 3.6.5. In the context of Definition 3.6.1, the morphisms

ϕX ∶ FX Map(YX , F)

for X ∈ C are components of a V-natural transformation

ϕ⊥ ∶ F Map(Y(−), F).

Proof. We apply Lemma 3.2.10. We omit tensor symbols and abbreviate M =Map in
this proof. The diagram (3.2.11) for ϕ is the upper region labeled☆ in the diagram
below. By universality of V-ends it suffices to show that the composites around ☆
are equal after composed with σZ for each Z ∈ C.

C(X, Y)FX [FX, FY]FX FY

C(X, Y)M(YX , F)

[M(YX , F),M(YY, F)]M(YX , F)

M(YY, F)

[YYZ, FZ]

M(YY,YX)M(YX , F)

M(YY,YX)[YXZ, FZ]

[YYZ,YXZ][YXZ, FZ]C(X, Y)[YXZ, FZ]

[[YXZ, FZ], [YYZ, FZ]][YXZ, FZ]

F1 eval

[M(Y(−), F)]1 eval

1ϕX ϕY

Y(−)1 (mMap)′

M(−, F)1

σZσZ

m′

σZ1σZ
Y(−)1 σZ1

[−, FZ]1

(Y(−)Z)1

[Y(−)Z, FZ]1 eval

☆

In the above diagram, the two triangular regions below ☆ commute by def-
inition, where (mMap)′ = mMap ○ ξ is the composition in (C-V)op. We also let
m′ = m ○ ξ. The remaining regions, from left to right and top to bottom, commute
by functoriality of ⊗, definition of mMap (3.5.21) and naturality of ξ, definition of
Y(−) on hom objects (3.5.26), and definition of [Y(−)Z, FZ].
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Lastly, by Definition 3.6.1 the components of ϕ are determined by the equali-
ties

F#
X,Z = σZ ○ ϕX and F#

Y,Z = σZ ○ ϕY.

Therefore, the outer diagram above commutes by naturality of (F#
−,Z)⊥, proved in

Lemma 3.6.4. This implies that the composites around☆ are equal after composing
with each σZ, and thus completes the proof that ϕ⊥ is V-natural. □

Lemma 3.6.6. Suppose that f , g, and h are morphisms in V as shown at left below. Then
the diagram at left commutes if and only if the diagram at right commutes.

(3.6.7)

A

B

[C, Z]

f

h

g
[A, Z]

[B, Z]

C

[ f , Z]

h#

g#

Proof. By taking adjoints one verifies that each of the two traingles in (3.6.7) com-
mutes if and only if the triangle below commutes, where the unlabeled arrows are
the adjoints of g and h, respectively.

A⊗C

B⊗C

Zf ⊗C

□

Lemma 3.6.8. Suppose η ∶ 1 [Q, A] is a morphism in V and let η′ denote the com-
posite

Q
η#

[1, A] κ
≅ A.

Then the following diagram in V commutes.

[A, B] [Q, B]

[[Q, A], [Q, B]] [1, [Q, B]]

[η′, B]

[η, [Q, B]]

[Q,−] κ≅
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Proof. Taking adjoints, the diagram in the statement commutes if and only if the
outer diagram below commutes.

[A, B]⊗1 [Q, B]⊗1

[Q, B]

[[Q, A], [Q, B]]⊗1 [[Q, A], [Q, B]]⊗ [Q, A]

[A, B]⊗ [Q, A]

[η′, B]⊗ 1

ρ

[Q,−]⊗ 1

1⊗ η
eval

1⊗ η

m

[Q,−]⊗ 1

In the above diagram, commutativity of the region at left follows from functori-
ality of ⊗. Commutativity of the lower right triangle follows from the definition
of [Q,−]. Commutativity of the remaining region follows from another adjoint
diagram argument comparing the corresponding morphisms

([A, B]⊗1)⊗Q B. □

Now we use the V-Yoneda Bijection 3.4.12 to prove the following.

Theorem 3.6.9 (V-Yoneda Lemma). Suppose V is a symmetric monoidal closed category
that is complete. Suppose C is a small V-category and F ∶ C V is a V-functor. Then

FX
ϕX

Map(YX , F)

is an isomorphism for each X ∈ C. These provide the components of a V-natural isomor-
phism

ϕ⊥ ∶ F Map(Y(−), F).

Proof. The definition of ϕ is given in Definition 3.6.1 above. The V-naturality of ϕ⊥

is proved in Lemma 3.6.5 above. Now we show that each ϕX is an isomorphism in
V by showing that FX satisfies the universal property of the end Map(YX , F).

To do so, suppose that

Q
θ#

Z [YXZ, FZ]

is a collection of morphisms for Z ∈ V that are transforms of

YXZ
θZ [Q, FZ].

By Lemma 3.5.16 the transforms θ# satisfy the V-wedge condition (3.5.3) if and
only if θ⊥ are the components of a V-natural transformation YX [Q, F(−)]. In
this case, the V-Yoneda Bijection of Theorem 3.4.12 implies that there is a unique
morphism in V

η ∶ 1 [Q, FX]
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such that the outer square of the diagram below commutes for each Y ∈ C.

YXY [Q, FY]

[[Q, FX], [Q, FY]] [1, [Q, FY]]

[FX, FY]

θY

[η, [Q, FY]]

[Q, F(−)] κ≅

F

[Q,−]

[η′, FY]

In the above diagram, the lower right quadrilateral commutes by Lemma 3.6.8
and therefore the upper triangular region also commutes. By Lemma 3.6.6 the
commutativity of that upper triangular region is equivalent to commutativity of
the triangle below.

(3.6.10)

Q

FX

[YXY, FY]

η′

θ#
Y

ϕY

This argument shows that uniqueness of η′ making (3.6.10) commute is equivalent
to uniquess of η in the V-Yoneda Bijection of Theorem 3.4.12. Therefore, (FX, ϕ)
satisfies the universal property of the end defining Map(YX , F). □

Corollary 3.6.11 (V-Yoneda Embedding Theorem). The Yoneda V-functor induces
isomorphisms in V

C(X, Y)
(Y(−))X,Y

Map(YY,YX)
for X, Y ∈ C.

Proof. Taking F = YX in Theorem 3.6.9 (interchanging X and Y), we have

ϕY = Y(−)X,Y

because the transform

(YX)#Y,Z ∶ YXY [YYZ,YXZ]

in Definition 3.6.1 is the same as (YZ)X,Y in (3.5.26). Therefore, the result follows
from Theorem 3.6.9. □

Definition 3.6.12. Suppose F, G ∶ C V are V-functors with V complete and
suppose

θ ∶ F G

is a V-natural transformation. We define

Map(Y(−), F)
Map(Y(−), θ)

Map(Y(−), G)
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to be the V-natural transformation with component Map(YX , θ) at X ∈ C deter-
mined by the following diagram for Z ∈ C.

(3.6.13)

Map(YX , F) Map(YX , G)

[YXZ, GZ][YXZ, FZ]

[YXZ,1⊗ (FZ)] [YXZ, [FZ, GZ]⊗ (FZ)]

Map(YX , θ)

σZσZ

[YXZ, λ−1]

[YXZ, θZ1]

[YXZ, eval]

That is, we define

Map(Y(−), θ)X = (Map(YX , θ))⊥.

We show in Lemma 3.6.14 that Map(Y(−), θ) is V-natural. ◇
Lemma 3.6.14. In the context of Definition 3.6.12,

(1) Map(Y(−), θ) is a V-natural transformation and
(2) the following diagram of V-natural transformations is commutative, where ϕ⊥

denotes the V-natural transformations of Definition 3.6.1 for both F and G, re-
spectively.

(3.6.15)
F Map(Y(−), F)

G Map(Y(−), G)

ϕ⊥

ϕ⊥
θ Map(Y(−), θ)

Proof. It suffices, for both assertions in the statement, to show that (3.6.15) is com-
ponentwise commutative. Then V-naturality of

Map(Y(−), θ) = (ϕ⊥) θ (ϕ⊥)−1

follows from V-naturality of θ and of each ϕ⊥, proved in Lemma 3.6.5.
For each X ∈ C, let ωX denote the composite

FX λ−1

1⊗ FX
θX ⊗ 1 [FX, GX]⊗ FX eval GX,

so that θX = ω⊥X . Then by functoriality of (−)⊥ (3.2.5) we have

(ϕ⊥X) θX (ϕ⊥X)−1 = (ϕXωXϕ−1
X )⊥.

Therefore, using the universality of V-ends, the component of (3.6.15) at X
commutes if and only if the following diagram commutes for each Z ∈ C. Here
and throughout the rest of this proof we omit tensor symbols. The triangles below
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determine the morphisms ϕX (Definition 3.6.1)

FX

Map(YX , F)

[YXZ, FZ]

[YXZ, GZ]GX

Map(YX , G)

ϕX σZ

[YXZ, ωZ]ωX

ϕX σZ

F#
X,Z

G#
X,Z

By taking adjoints of the composites in the inner rectangle above—using Defini-
tion 3.5.15 for the adjoints of the transforms F# and G#—we obtain the rectangle
(3.2.11) that determines V-naturality of ω⊥ = θ. Therefore, V-naturality of θ im-
plies that the above diagram commutes for each Z ∈ C. Hence (3.6.15) commutes
componentwise. □

Explanation 3.6.16. The commutativity of (3.6.15) also proves that the assignment

θ Map(Y(−), θ)
is functorial with respect to identities and vertical composites. Therefore, we have
a functor of categories

V-Cat(C,V)
Map(Y(−),−)

V-Cat(C,V).
The V-Yoneda Lemma 3.6.9 together with (3.6.15) imply that this functor is natu-
rally isomorphic to the identity functor. ◇

3.7. Symmetric Monoidal Diagram Categories

Throughout this section we let V denote a symmetric monoidal closed cate-
gory that is complete and cocomplete. We let D denote a small symmetric mon-
oidal V-category. The purpose of this section is to describe a symmetric monoidal
closed structure on the category of V-functors from D to V. Throughout this sec-
tion, recall from Theorem 3.3.2 that the monoidal data of V are V-natural. These,
along with the V-natural monoidal structure of D, will be used as part of the V-
natural monoidal structure on the V-functor category.

Definition 3.7.1. Suppose C is a V-category and D is a small V-category. A V-
functor D C is called a D-shaped diagram in C. The category of V-functors and
V-natural transformations is denoted D-C. In the case C = V with its canonical
self-enrichment, we will write

D-V = V-Cat(D,V).
In this context we will often use lowercase letters a, b, c, . . . ∈ D for objects of D,
uppercase letters X, Y, Z, . . . ∈ D-C for D-shaped diagrams, and subscripts Xa for
the value of a diagram X at an object a. ◇
Explanation 3.7.2. In Definition 3.5.19 and Lemma 3.5.24, withD = C, we used the
notationD-V for the V-enriched category ofD-shaped diagrams in V with hom ob-
jects given by the mapping objects Map(−,−) (Definition 3.5.12). By Lemma 3.5.14,
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the underlying category of this V-enriched category is isomorphic to the cate-
gory of V-functors and V-natural transformations denoted D-V in Definition 3.7.1.
Throughout this section we will letD-V denote the ordinary category and define a
symmetric monoidal closed structure for it. In Explanation 3.8.3 we will relate this
back to the V-enriched structure of Definition 3.5.19 and Lemma 3.5.24. ◇
Definition 3.7.3. Suppose that (V,⊗) is a symmetric monoidal closed category
that is complete and cocomplete. Suppose that D is small symmetric monoidal V-
category with product denoted ⊡. Suppose given D-shaped diagrams X, Y ∈ D-V.
The Day convolution product of X and Y is denoted X ⊗ Y and is defined as the
V-coend

(3.7.4) X⊗Y = ∫
(a,b)∈D⊗D

D(a⊡ b,−)⊗ ((Xa)⊗ (Yb)).

The hom diagram from X to Y is denoted HomD(X, Y) and is defined as the V-end

HomD(X, Y) = ∫
c∈D
[∫

b∈D
D(−⊡ b, c)⊗Xb, Yc](3.7.5)

≅ ∫(b,c)∈D⊗D
[D(−⊡ b, c)⊗Xb, Yc](3.7.6)

with the isomorphism following from (3.5.10). The assumption that V is complete
and cocomplete implies that the objects

(X⊗Y)a ∈ V and HomD(X, Y)a ∈ V

exist for all diagrams X and Y in D-V and all a ∈ D. The V-functoriality of

X⊗Y ∶ D V and HomD(X, Y) ∶ D V

follows from universality of the (co)ends along with V-functoriality of the monoi-
dal products and internal homs in V and D. ◇

In Proposition 3.7.19 below we give the definitions of ⊗ and HomD on mor-
phisms of D-V—that is, V-natural transformations—and show that they are func-
tors

⊗ ∶ D-V ×D-V D-V and HomD ∶ D-Vop ×D-V D-V.

We show that ⊗ and HomD are adjoints in Proposition 3.7.21. Finally in Theo-
rem 3.7.22 we show that these give a symmetric monoidal closed structure onD-V.

To express the associativity and unit isomorphisms for Day convolution,
we will need some introductory definitions and results related to the V-Yoneda
Lemma 3.6.9. For X ∈ D-V, it follows from V-naturality of the morphisms

D(x, s)
Xx,s [Xx, Xs].

and Lemma 3.5.16 that the adjoints

D(x, s)⊗Xx
Xx,s

Xs

satisfy the V-cowedge condition (3.5.2).

Definition 3.7.7. For each V-functor X ∶ D V and each s ∈ D, let

∫
x∈D
D(x, s)⊗Xx

ψs
Xs
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denote the morphism induced by the adjoints of

D(x, s)
Xx,s [Xx, Xs]. ◇

Theorem 3.7.8 (V-Yoneda Density). Suppose D is a small V-category and

X ∶ D V

is a V-functor. Then for each s ∈ D

∫
x
D(x, s)⊗Xx

ψs
Xs

is an isomorphism. These provide components of a V-natural isomorphism

∫
x
D(x,−)⊗Xx

ψ⊥

X.

Proof. The V-naturality of ψ⊥ follows via Lemma 3.2.10 from V-naturality of the
morphisms (Xx,s)⊥. To prove that each ψs is an isomorphism in V, it suffices to
prove that the induced morphisms

[Xs, Z]
[ψs, Z]

[∫
x∈D
D(x, s)⊗Xx, Z]

are isomorphisms for each Z ∈ V. First by (3.5.10) we have

[∫
x∈D
D(x, s)⊗Xx, Z] ≅ ∫

x∈D
[D(x, s)⊗Xx, Z]

and then using the closed structure we have

[D(x, s)⊗Xx, Z] ≅ [D(x, s), [Xx, Z]]

for each x ∈ D. The composite morphisms

[Xs, Z] ∫
x∈D
[D(x, s), [Xx, Z]] = ∫

x∈Dop
[Dop(s, x), [Xx, Z]]

are those induced by the structure morphisms of the V-functor

[X(−), Z] ∶ Dop V.

Therefore, the V-Yoneda Lemma 3.6.9 shows that these morphisms, and hence also
the morphisms [ψs, Z], are isomorphisms for each Z ∈ V. □

Explanation 3.7.9. In the context of Theorem 3.7.8, the V-Yoneda Lemma 3.6.9 can
be written in the following equivalent form. For each s ∈ D

Xs
ϕs

∫
x
[D(s, x), Xx]

is an isomorphism. These provide components of a V-natural isomorphism

◇(3.7.10) X
ϕ⊥

∫
x
[D(−, x), Xx]

As an immediate application of Theorem 3.7.8, we have the following.
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Explanation 3.7.11. In the context of Definition 3.7.3 we have a sequence of V-
natural isomorphisms given by the isomorphism (3.5.10), interchanging order of
ends, the symmetric monoidal closed structure of V, the isomorphism (3.5.11), and
the V-Yoneda Density Theorem 3.7.8.

HomD(X, Y) = ∫
c
[∫

b
D(−⊡ b, c)⊗Xb, Yc]

≅ ∫
c
∫

b
[D(−⊡ b, c)⊗Xb, Yc]

≅ ∫
b
∫

c
[Xb, [D(−⊡ b, c), Yc]]

≅ ∫
b
[Xb,∫

c
[D(−⊡ b, c), Yc]]

≅ ∫
b∈D
[Xb, Y−⊡b].(3.7.12)

With this latter formulation one can see more directly that we have

(3.7.13) Map(X, Y) ≅ HomD(X, Y)e

where e ∈ D is the monoidal unit. ◇
We will use Theorem 3.7.8 as stated, along with two special cases defined as

follows.

Definition 3.7.14. For each triple a, b, c ∈ D, let

(3.7.15) ∫
x
D(x ⊡ b, c)⊗D(a, x)

γa,c;b
≅ D(a⊡ b, c)

denote the morphisms induced by

D(x ⊡ b, c)⊗D(a, x)
1⊗ (−⊡ b)

D(x ⊡ b, c)⊗D(a⊡ b, x ⊡ b) m D(a⊡ b, c).

Similarly, let

(3.7.16) ∫
x
D(b⊡ x, c)⊗D(a, x)

γb;a,c
≅ D(b⊡ a, c)

denote the morphisms induced by

D(b⊡ x, c)⊗D(a, x)
1⊗ (b⊡−)

D(b⊡ x, c)⊗D(b⊡ a, b⊡ x) m D(b⊡ a, c).

Applying Theorem 3.7.8 with Xs = D(s ⊡ b, c) and Xs = D(b ⊡ s, c), respectively,
together with an appropriate symmetry isomorphism ξ shows that the γa,c;b and
γb;a,c are isomorphisms. ◇

Using the isomorphisms given above, we define the following V-natural iso-
morphisms of diagrams. These will define the components of the associativity and
unit isomorphisms for the Day convolution product in Theorem 3.7.22.

Definition 3.7.17. Suppose D is a small symmetric monoidal V-category with
monoidal unit e. Suppose X, Y, and Z are V-functors D V. Define the unit
diagram J to be the V-functor

(3.7.18) J = Y e = D(e,−) ∶ D V.
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Define V-natural isomorphisms

αX,Y,Z ∶ (X⊗Y)⊗ Z X⊗ (Y⊗ Z)
λX ∶ J ⊗X X
ρX ∶ X⊗ J X

ξX,Y ∶ X⊗Y Y⊗X

as follows.
Associativity: The associativity isomorphsm αX,Y,Z is the V-natural isomorphism

with components determined by the following composite, explained be-
low, for each s ∈ D:

[(X⊗Y)⊗ Z]s = ∫
x,r
D(x ⊡ r, s)⊗ (X⊗Y)x ⊗ Zr

= ∫
x,r
D(x ⊡ r, s)⊗ ((∫

p,q
D(p⊡ q, x)⊗ (Xp ⊗Yq))⊗ Zr)

≅ ∫
p,q,r
(∫

x
D(x ⊡ r, s)⊗D(p⊡ q, x))⊗ ((Xp ⊗Yq)⊗ Zr)

≅ ∫
p,q,r
(∫

x
D(p⊡ x, s)⊗D(q⊡ r, x))⊗ (Xp ⊗ (Yq ⊗ Zr))

≅ ∫
p,x
(D(p⊡ x, s)⊗Xp)⊗ (∫

q,r
D(q⊡ r, x)⊗ (Yq ⊗ Zr))

= [X⊗ (Y⊗ Z)]s.
The first isomorphism above is given by associativity isomorphisms in V
along with interchanging order of coends. The middle isomorphism is
given by associativity

(Xp ⊗Yq)⊗ Zr ≅ Xp ⊗ (Yq ⊗ Zr)

in V together with the morphisms γ(p⊡q),s;r and γ−1
p;(q⊡r),s from Defini-

tion 3.7.14 as well as the isomorphism

D(p⊡ (q⊡ r), s) ≅ D((p⊡ q)⊡ r, s)
induced by associativity in D. The third isomorphism is similar to the
first, but also uses a symmetry isomorphism in V to permute Xp with
D(q⊡ r, x).

Left Unit: The left unit isomorphism λX is the V-natural isomorphism with com-
ponents determined by the following composite of isomorphisms, ex-
plained below, for each s ∈ D:

(J ⊗X)s = ∫
p,q
D(p⊡ q, s)⊗ (D(e, p)⊗Xq)

≅ ∫
q
(∫

p
D(p⊡ q, s)⊗D(e, p))⊗Xq

≅ ∫
q
D(q, s)⊗Xq

≅ Xs.

The first isomorphism is given by associativity in V and interchanging
order of limits. The second isomorphism is given by γe,s;q (3.7.15) and
the left unit isomorphism of D. The final isomorphism is the V-Yoneda
Density Theorem Theorem 3.7.8 for X.
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Right Unit: The right unit isomorphism ρX is the V-natural isomorphism with com-
ponents determined by the following composite for each s ∈ D defined
similarly to those for λX :

(X⊗ J)s = ∫
q,p
D(q⊡ p, s)⊗ (Xq ⊗D(e, p))

≅ ∫
q
(∫

p
D(q⊡ p, s)⊗D(e, p))⊗Xq

≅ ∫
q
D(q, s)⊗Xq

≅ Xs.

The only significant difference between ρX and λX is that the first isomor-
phism above also requires use of the symmetry isomorphism in V

Xq ⊗D(e, p) ξ

≅ D(e, p)⊗Xq.

Symmetry: The symmetry isomorphism ξX,Y is the V-natural isomorphism with
components determined by the following isomorphism for each s ∈ D.

(X⊗Y)s = ∫
p,q
D(p⊡ q, s)⊗ (Xp ⊗Yq)

≅ ∫
q,p
D(q⊡ p, s)⊗ (Yq ⊗Xp)

= (Y⊗X)s
This isomorphism is induced by interchanging order of limits along with
the symmetry isomorphisms

Xp ⊗Yq ≅ Yq ⊗Xp and D(p⊡ q, s) ≅ D(q⊡ p, s)
of V and D, respectively. ◇

Now we give a series of results aiming to show that D-V has a symmetric
monoidal closed structure.
Proposition 3.7.19. The convolution product and hom diagram of Definition 3.7.3 are
functorial with respect to V-natural transformations.

Proof. Suppose given V-natural transformations

θ ∶ X X′ and η ∶ Y Y′

for X, X′, Y, Y′ ∈ D-V. Then

θ ⊗ η ∶ X⊗Y X′ ⊗Y′

has components (θ ⊗ η)c for c ∈ D defined as

∫
a,b
D(a⊡ b, c)⊗ (Xa ⊗Yb)

∫
a,b

1⊗ (θa ⊗ ηb)
∫

a,b
D(a⊡ b, c)⊗ (X′a ⊗Y′b).

Similarly,
HomD(θ, η) ∶ HomD(X′, Y) HomD(X, Y′)

has components HomD(θ, η)a for a ∈ D defined, via (3.7.12), as

HomD(X′, Y)a ≅ ∫
b
[X′b, Ya⊡b]

∫
b
[θb, ηa⊡b]

∫
b
[Xb, Y′a⊡b] ≅ HomD(X, Y′)a.
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To verify that these components (θ ⊗ η)c and HomD(θ, η)a define V-natural trans-
formations, we use the alternative characterization given in Lemma 2.1.11. For
θ ⊗ η, this means we must verify the following version of (2.1.12) commutes for
each pair of objects c, c′ ∈ D.

D(c, c′) [(X⊗Y)c, (X⊗Y)c′]

[(X′ ⊗Y′)c, (X′ ⊗Y′)c′] [(X⊗Y)c, (X′ ⊗Y′)c′]

(X⊗Y)c,c′

(X′ ⊗Y′)c,c′ [(X⊗Y)c, (θ ⊗ η)c′]

[(θ ⊗ η)c, (X′ ⊗Y′)c′]

The adjoint of the above diagram is the outer diagram below. The unlabeled mor-
phisms are given by associators in V and universality of the coends; the mor-
phisms m∗ are induced by the composition of D. To save space the monoidal
products ⊡ and ⊗ are denoted by juxtaposition.
(3.7.20)

D(c, c′)(∫
a,b
D(ab, c)(XaYb))

∫
a,b
(D(c, c′)D(ab, c))(XaYb)

∫
a,b
D(ab, c′)(XaYb)

D(c, c′)(∫
a,b
D(ab, c)(X′aY′b))

∫
a,b
(D(c, c′)D(ab, c))(X′aY′b)

∫
a,b
D(ab, c′)(X′aY′b)

m∗

m∗

1(∫
a,b

1(θaηb))

∫
a,b
(11)(θaηb)

∫
a,b

1(θaηb)

The above diagram commutes by functoriality of ⊗ and naturality of the monoidal
structure and coend morphisms. This shows that θ ⊗ η is V-natural. The functori-
ality of ⊗ with respect to identities and composition of V-natural transformations
follows from functoriality of ⊗ and universality of the coends.
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A similar analysis shows that HomD(θ, η) is V-natural: the adjoint of the dia-
gram (2.1.12) for HomD is the following, explained below.

D(a, a′)(∫
b
[X′b, Yab])

∫
b
D(a, a′)[X′b, Yab]

∫
b
[X′b, Ya′b]

D(a, a′)(∫
b
[Xb, Y′ab])

∫
b
D(a, a′)[Xb, Y′ab]

∫
b
[Xb, Y′a′b]

ϕ

ϕ

1(∫
b
[θb, ηab])

∫
b

1[θb, ηab]

∫
a,b
[θb, ηa′b]

In the above diagram, the unlabeled morphisms are given by universality of the
ends and the morphisms labeled ϕ are induced by the composites

D(a, a′)[X′b, Yab]

D(ab, a′b)[X′b, Yab] [Yab, Ya′b][X′b, Yab]

[X′b, Ya′b]
((−)b) 1

Y 1

m

for each b ∈ D. Commutativity of (3.7.20), and hence V-naturality of HomD(θ, η),
follows as for θ ⊗ η. Then functoriality of HomD with respect to θ (contravariant)
and η (covariant) follows from functoriality of [−,−] and universality of the ends.

□

Proposition 3.7.21. The convolution product and hom diagram of Definition 3.7.3 are
adjoint: for each Y ∈ D-V there is an adjunction

−⊗Y ⊣ HomD(Y,−).

Proof. We will show the following isomorphism in V for each triple of diagrams
X, Y, Z ∈ D-V:

Map(X⊗Y, Z) ≅Map(X,HomD(Y, Z)).

The isomorphism of underlying sets of V-natural transformations then follows
from Lemma 3.5.14.
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Beginning with the definitions of Map (3.5.13) and ⊗ (3.7.4) we have the fol-
lowing sequence of isomorphisms, explained below:

Map(X⊗Y, Z) = ∫
c
[(X⊗Y)c , Zc] = ∫

c
[∫

a,b
D(a⊡ b, c)⊗ (Xa ⊗Yb) , Zc]

≅ ∫
c,a
[Xa ⊗ (∫

b
D(a⊡ b, c)⊗Yb) , Zc]

≅ ∫
a,c
[Xa , [∫

b
D(a⊡ b, c)⊗Yb , Zc]]

≅ ∫
a
[Xa , ∫

c
[∫

b
D(a⊡ b, c)⊗Yb , Zc]]

= ∫
a
[Xa , HomD(Y, Z)a] =Map(X,HomD(Y, Z)).

After using the definitions in the first line, the middle three lines are given by:

(1) the isomorphism (3.5.10) and then associativity and symmetry in V fol-
lowed by commuting Xa ⊗−with coends;

(2) the closed structure of V and interchanging order of ends; and
(3) the isomorphism (3.5.11).

The final line is given by definition of the hom diagram (3.7.5) and of the mapping
object. □

Theorem 3.7.22 ([Day70]). Suppose V is a symmetric monoidal closed category that is
complete and cocomplete. Suppose D is a small symmetric monoidal V-category. Then
D-V is a symmetric monoidal closed category with the following data.

● The monoidal product is given by the Day convolution product (3.7.4).
● The closed structure is given by the hom diagram (3.7.5).
● The monoidal unit is given by the diagram J = Y e (3.7.18), where e denotes the

monoidal unit of D.
● The unit, associativity, and symmetry isomorphisms are given by the compo-

nents in Definition 3.7.17.

Proof. Functoriality of the monoidal product and internal hom are discussed in
Proposition 3.7.19. The symmetric monoidal axioms of Definitions 1.1.1 and 1.1.23
follow from

● the universal properties of (co)ends,
● symmetric monoidal axioms for D and V, and
● functoriality of the monoidal structures for D and V.

As an example, we prove the pentagon axiom (1.1.3) for D-V. For X, Y, Z, W ∈
D-V we compute below each of the five vertices of the pentagon. In each case,
first we use the definition of ⊗ (3.7.4), second we interchange coends and use as-
sociativity along with (in all but the first case) symmetry in V, and third we use
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isomorphisms γ from Definition 3.7.14. To save space, we denote ⊡ and ⊗ by jux-
taposition.

[((XY)Z)W]
t
= ∫

x,s
D(xs, t)(∫

y,r
D(yr, x)((∫

p,q
D(pq, y)(XpYq))Zr)Ws)

(3.7.23)

≅ ∫
p,q,r,s

(∫
x,y
D(xs, t)(D(yr, x)D(pq, y)))(((XpYq)Zr)Ws)

≅ ∫
p,q,r,s

D(((pq)r)s, t)(((XpYq)Zr)Ws)

[(XY)(ZW)]
t
= ∫

x,y
D(xy, t)((∫

p,q
D(pq, x)(XpYq))(∫

r,s
D(rs, y)(ZrWs)))

(3.7.24)

≅ ∫
p,q,r,s

(∫
x,y
D(xy, t)(D(pq, x)D(rs, y)))((XpYq)(ZrWs))

≅ ∫
p,q,r,s

D((pq)(rs), t)((XpYq)(ZrWs))

[X(Y(ZW))]
t
= ∫

p,x
D(px, t)(Xp(∫

q,y
D(qy, x)(Yq(∫

r,s
D(rs, y)(ZrWs)))))

(3.7.25)

≅ ∫
p,q,r,s

(∫
x,y
D(px, t)(D(qy, x)D(rs, y)))(Xp(Yq(ZrWs)))

≅ ∫
p,q,r,s

D(p(q(rs)), t)(Xp(Yq(ZrWs)))

[(X(YZ))W]
t
= ∫

x,s
D(xs, t)((∫

p,y
D(py, x)(Xp(∫

q,r
D(qr, y)(YqZr))))Ws)

(3.7.26)

≅ ∫
p,q,r,s

(∫
x,y
D(xs, t)(D(py, x)D(qr, y)))((Xp(YqZr))Ws)

≅ ∫
p,q,r,s

D((p(qr))s, t)((Xp(YqZr))Ws)

[X((YZ)W)]
t
= ∫

p,x
D(px, t)(Xp(∫

y,s
D(ys, x)((∫

q,r
D(qr, y)(YqZr))Ws)))

(3.7.27)

≅ ∫
p,q,r,s

(∫
x,y
D(px, t)(D(ys, x)D(qr, y)))(Xp((YqZr)Ws))

≅ ∫
p,q,r,s

D(p((qr)s), t)(Xp((YqZr)Ws))

Then, by the universal property of coends, the pentagon axiom for each quadruple
X, Y, Z, W ∈ D-V follows from:
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(1) the pentagon axiom for D (involving the components at p, q, r, and s),
(2) the pentagon axiom for V (involving the components at Xp, Yq, Zr, and

Ws), and
(3) the functoriality of ⊗ in V.

The other symmetric monoidal category axioms for D-V are proved in similar
ways. The closed structure is provided by the ⊗-HomD adjunction are given in
Proposition 3.7.21. □

Recall the concept of a symmetric monoidal V-functor from Definitions 1.4.17
and 1.4.18. We end this section with the following change-of-shape theorem.
Theorem 3.7.28. Suppose V is a symmetric monoidal closed category that is complete
and cocomplete. Suppose F ∶ D E is a symmetric monoidal V-functor between small
symmetric monoidal V-categories. Then precomposition with F is part of a symmetric
monoidal functor

E-V D-V.F∗

Proof. Since F is a V-functor, precomposition with it yields a well-defined V-
functor, F∗ = − ○ F. The unit constraint of F∗ is the following composite of
V-natural transformations, with e and e′ the monoidal units in, respectively, D
and E .

JD = D(e,−) E(e′, F(−)) = JE ○ F

E(Fe, F(−))
F

(F∗)0

(F0)∗

Here (F0)∗ is induced by the monoidal constraint F0 of the monoidal V-functor
(F, F2, F0).

The monoidal constraint (F∗)2 of F∗ is defined as follows. For X, Y ∈ E-V, the
(X, Y) component of (F∗)2 is defined by the following commutative diagram in
D-V, with the monoidal products in D, E , and V denoted by juxtaposition.

F∗X⊗ F∗Y

∫
(a,b) ∈D⊗D

D(ab,−)(XFaYFb)

D(ab,−)(XFaYFb)

F∗(X⊗Y)

∫
(c,d) ∈E⊗E

E(cd, F(−))(XcYd)

E((Fa)(Fb), F(−))(XFaYFb)

E(F(ab), F(−))(XFaYFb)

(F∗)2X,Y

ωa,b ωFa,Fb

F⊗ 1 (F2
a,b)
∗ ⊗ 1

The two vertical morphisms ω are V-coend structure morphisms. The natural-
ity of (F∗)2 follows from the V-naturality of F2. The axioms in Definitions 1.1.6
and 1.1.17 for (F∗, (F∗)2, (F∗)0) to be a symmetric monoidal functor follow from
the corresponding axioms for the symmetric monoidal V-functor (F, F2, F0) in Def-
initions 1.4.17 and 1.4.18 □
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3.8. Enriched Diagram Categories

Throughout this section we continue to let V denote a symmetric monoidal
closed category that is complete and cocomplete.
Lemma 3.8.1. In the context of Definition 3.7.17, evaluation at e defines a symmetric
monoidal functor

eve ∶ D-V V.

Proof. For X, Y ∈ D-V we define eveX = Xe and for a natural transformation of
V-functors we let eve take the component at e. The monoidal constraint

Xe ⊗Ye
ev2

e (X⊗Y)e = ∫
p,q
D(p⊡ q, e)⊗ (Xp ⊗Yq)

is given by the following composite with the structure morphism ω(e,e) for the
coend:

(3.8.2) Xe ⊗Ye D(e⊡ e, e)⊗ (Xe ⊗Ye)
ω(e,e)

∫
p,q
D(p⊡ q, e)⊗ (Xp ⊗Yq).

The unlabeled morphism above is given by the inverse of the left unitor and ten-
soring with the composite

1
ie D(e, e) ≅ D(e⊡ e, e)

induced by the identity and unitors for e in D.
Each of the symmetric monoidal axioms for eve follows from universality of

the coends and a corresponding commutativity of a diagram of components at e.
For example, the symmetry axiom follows from commutativity of

Xe ⊗Ye Ye ⊗Xe

D(e⊡ e, e)⊗ (Xe ⊗Ye) D(e⊡ e, e)⊗ (Ye ⊗Xe)

ξ

≅

In the above diagram, the vertical morphisms are given as in (3.8.2) and the un-
labeled horizontal morphism is induced by the symmetry on e ⊡ e (which is the
identity) and on Xe ⊗Ye. The diagram therefore commutes by naturality of the left
unit isomorphism. The associativity and unity axioms for eve follow similarly. □

For a symmetric monoidal functor U ∶ V W, recall the change of enrich-
ment 2-functor (−)U ∶ V-Cat W-Cat from Definition 2.1.1.
Explanation 3.8.3 (Various Enrichments for D-V). We now have three interpreta-
tions of the notation D-V:

(1) In the notation of Definition 3.7.1 and Theorem 3.7.22, D-V denotes the
symmetric monoidal closed category of V-functors and V-natural trans-
formations from D to V.

(2) Via the canonical self-enrichment, D-V is symmetric monoidal as a D-V-
category with hom objects given by (3.7.12)

Hom(X, Y) ≅ ∫
b∈D
[Xb, Y−⊡b]
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for X, Y ∈ D-V.
(3) In the notation of Definition 3.5.19 and Lemma 3.5.24, D-V denotes the

V-enriched category with

D-V(X, Y) =Map(X, Y).

We discussed items (1) and (3) in Explanation 3.7.2 above: by Lemma 3.5.14, (1) is
the underlying category of (3). Now we observe, by (3.7.13), that (3) is obtained
from (2) by change of enrichment along the symmetric monoidal functor eve. This
last observation shows that (3) is symmetric monoidal as a V-category by Theo-
rem 2.4.10. ◇

Next we show that change of enrichment along a symmetric monoidal functor
U ∶ V W defines a symmetric monoidal functor on diagram categories. Re-
call from Proposition 3.3.4 that the standard enrichment of U defines a symmetric
monoidal W-functor VU W.

Proposition 3.8.4. Suppose V and W are complete and cocomplete symmetric monoidal
closed categories. Suppose U ∶ V W is a symmetric monoidal functor. Then change
of enrichment and composition with the standard enrichment of U defines a symmetric
monoidal functor

U∗ ∶ D-V DU-W

Proof. The underlying functor U∗ is given by

V-Cat(D,V)
(−)U

W-Cat(DU ,VU)
U ○ −

W-Cat(DU ,W).

For X ∈ D-V, the W-enriched diagram U∗X sends p ∈ DU to (U∗X)p = U(Xp). In
our work below we will omit parentheses from such expressions. For p, q ∈ D the
morphism on hom objects

(U∗X)p,q ∶ UD(p, q) [UXp, UXq]

is the morphism in W adjoint to the following composite:

UD(p, q)⊗UXp

U(D(p, q)⊗Xp) U([Xp, Xq]⊗Xp)

UXq.

U2

U(Xp,q ⊗ 1)

Ueval

For X, Y ∈ D-V the monoidal constraint

(U∗X)⊗ (U∗Y) U2
∗ U∗(X⊗Y)

is given by components for each s ∈ D via the following composite. The first
morphism below uses the monoidal constraint of U (twice) and the second uses
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the universal property of the coend.

((U∗X)⊗ (U∗Y))s U∗(X⊗Y)s

∫
p,q
DU(p⊡ q, s)⊗ ((UXp)⊗ (UYq))

∫
p,q

U(D(p⊡ q, s)⊗ (Xp ⊗Yq))

U( ∫
p,q
D(p⊡ q, s)⊗ (Xp ⊗Yq))

U2
∗

We take the unit constraint U0
∗ to be the identity because

U∗ J = UD(e,−)
is the monoidal unit of DU-W.

The symmetric monoidal functor axioms for U∗ follow from those of U toget-
her with universality of coends. We illustrate this with the left unity axiom (1.1.10).
The right unity, associativity, and symmetry axioms for U∗ follow similarly.

The left unity axiom for U∗ requires that the following diagram commute for
each s ∈ D.

(UJ ⊗U∗X)s

∫
p,q

UD(p⊡ q, s)⊗ (UD(e, p)⊗UXq) U(∫
p,q
D(p⊡ q, s)⊗ (D(e, p)⊗Xq))

U∗Xs

1

U2
∗

U∗λX

λUX X

Commutativity of the above diagram follows from commutativity of the following
two diagrams for p, q, s ∈ D, which we explain below.

(3.8.5)

UD(p⊡ q, s)⊗UD(e, p)

U(D(p⊡ q, s)⊗D(e, p))

UD(e⊡ q, s)

U2

γ

Uγ

(3.8.6)

∫
q

UD(q, s)⊗UXq UXs

∫
q

U(D(q, s)⊗Xq) U(∫
q
D(q, s)⊗Xq)

≅

∃!

≅

The diagram (3.8.5) compares the morphisms γ of Definition 3.7.14 for DU and D.
Commutativity follows from the definition of composition in DU via U2. The di-
agram (3.8.6) compares the isomorphisms of the V-Yoneda Density Theorem 3.7.8
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for UX and X. Commutativity follows from universality of the relevant coends.
□

One family of important special cases is those arising from ordinary symmet-
ric monoidal categories D via the following change of enrichment.
Definition 3.8.7. Let

(3.8.8) F1 ∶ (Set,×,∗) (V,⊗,1)
denote the strictly unital strong symmetric monoidal functor that sends a set X to
∐X 1. The unit constraint is 11. The monoidal constraint

FX⊗ FY
F2

X,Y
F(X ×Y)

is the following composite

(∐
X
1)⊗ (∐

Y
1) ≅ ∐

X×Y
(1⊗1) ≅ ∐

X×Y
1.

In the above composite, the first morphism is the canonical isomorphism com-
muting ⊗ with small coproducts (since V is symmetric monoidal closed) and the
second isomorphism is given by the left unit isomorphism in V. ◇
Definition 3.8.9. Suppose (D,⊡) is a small symmetric monoidal category. The
unitary enrichment of D over V is denoted D1 and is defined as the change of en-
richment for D, in the sense of Definition 2.1.1 and Proposition 2.1.2, along the
functor F1 of (3.8.8) above.

So D1 has the same objects as D and hom objects given by the coproduct in V

(3.8.10) D1(b, c) = ∐
p∈D(b,c)

1.

By Theorem 2.4.10, D1 is a symmetric monoidal V-category. ◇
Recall from Lemma 2.1.5 the corepresented functor

V(1,−) ∶ V Set

is symmetric monoidal.
Lemma 3.8.11. In the context of Definition 3.8.7, the corepresented functor

V(1,−) ∶ V Set

is right adjoint to F1.

Proof. The unit has component at a set X

ηX ∶ X V(1,∐
X
1)

which sends an element i ∈ X to

κi ∶ 1 ∐
X
1,

the canonical inclusion at summand i. The counit has component at an object A of
V

εA ∶ F1(V(1, A)) = ∐
V(1,A)

1 A

induced, for each summand f ∈ V(1, A), by f .
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The right triangle identity A in V is the composite

V(1, A) V(1, ∐
V(1,A)

1) V(1, A).

This composite is the identity because each f ∈ V(1, A) is sent to the composite

1
κ f

∐
V(1,A)

1
εA A

that, by definition of ε, is f . The left triangle identity for X in Set is the composite

∐
X
1 ∐

V(1,∐X 1)
1 ∐

X
1.

This composite is the identity because the summand 1 at i ∈ X maps via the iden-
tity on 1 to the summand at κi in the middle term and, by definition of ε, this
summand maps via κi to∐X 1. □

Proposition 3.8.12. In the context of Definition 3.8.9, there is an isomorphism of cate-
gories

(3.8.13) Cat(D,V) ≅ V-Cat(D1,V) = (D1)-V.

Proof. This is the isomorphism on hom categories of the change of enrichment
adjunction induced by

F1 ⊣ V(1,−)
of Lemma 3.8.11. More explicitly, a functor of categories

X ∶ D V

corresponds to a V-functor
X1 ∶ D1 V

with the same assignment on objects and with

D1(a, b) = ∐
p∈D(a,b)

1
(X1)a,b [Xa, Xb]

given by the bijection
V(1, [Xa, Xb]) ≅ V(Xa, Xb)

for each pair of objects a and b in D. The bijection of natural and V-natural trans-
formations is similar. □

Example 3.8.14 (Diagrams in Cat). For this example, suppose

(V,⊗,1) = (Cat,×, 1),
the category of small categories with the Cartesian product and terminal category
as its unit. Suppose D is an ordinary symmetric monoidal 1-category, regarded as
a symmetric Cat-monoidal 2-category with identity 2-cells. ThenD has the unitary
enrichment over Cat. Suppose given diagrams

X, Y ∶ D Cat.

We have the following simplification in this case, for objects b and c in D:

(3.8.15) [D(b, c), [Xb, Yc]] ≅ [ ∐
p∈D(b,c)

Xb, Yc] ≅ ∏
p∈D(b,c)

[Xb, Yc]
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where the coproduct and product are indexed over morphisms in D and [−,−]
denotes the category of functors and natural transformations—the closed structure
of Cat.

Recall from (3.7.13) we have

HomD(X, Y)e ≅Map(X, Y).
Using the simplification (3.8.15) and the equalizer formula (3.5.7), we have

(3.8.16) Map(X, Y) ≅ eq (∏
b
[Xb, Yb] ∏

p∶b c
[Xb, Yc]).

The two arrows in the equalizer are given, for each component p ∈ D(b, c), by pre-
and post-composition with Xp and Yp. Therefore a tuple of morphisms

αb ∶ Xb Yb

determines an object of Map(X, Y) if and only if the following diagram in Cat com-
mutes for each morphism p.

(3.8.17)

Xb Xc

Yb Yc

αb αc

Xp

Yp

This is precisely the 1-cell naturality condition (I.6.2.24) for α to define a 2-
natural transformation from X to Y. The 2-cell naturality condition (I.6.2.25) is
trivially satisfied because D has only identity 2-cells. Similarly, the morphisms
in Map(X, Y) correspond to tuples of natural transformations, Γb, such that the
whiskerings with Xp or Yp are equal. This is precisely the modification axiom
(I.6.3.2) for Γ to be a modification between 2-natural transformations. ◇

3.9. Tensored and Cotensored Enriched Categories

In this section we define and prove basic results about tensor and cotensor
structures.
Definition 3.9.1 (Tensored and Cotensored). Suppose V is a symmetric monoidal
closed category and suppose C is a V-category.
Tensored: We say that C is tensored over V if C is equipped, for each X ∈ C and

A ∈ V, with an object X⊗ A ∈ C together with isomorphisms in V

C(X⊗ A, Y) ≅ [A,C(X, Y)]
for all Y ∈ C.

Cotensored: We say that C is cotensored over V if C is equipped, for each X ∈ C and
A ∈ V, with an object XA ∈ C together with isomorphisms in V

C(Y, XA) ≅ [A,C(Y, X)]
for all Y ∈ C. ◇

Example 3.9.2. The closed structure for V makes the self-enriched V-category V
tensored and cotensored over V with tensor given by the monoidal product and
cotensor given by the closed structure. Isomorphisms

[X⊗Y, Z] ≅ [X, [Y, Z]]
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for X, Y, and Z in V follow from the Yoneda Lemma, the closed structure, and the
associativity in V. Indeed, for W ∈ V we have

V(W, [X⊗Y, Z]) ≅ V(W ⊗ (X⊗Y), Z) α∗

≅ V((W ⊗X)⊗Y, Z)
≅ V(W ⊗X, [Y, Z])
≅ V(W, [X, [Y, Z]]).

Then the tensor and cotensor isomorphisms of Definition 3.9.1 follow from the
symmetry of V. ◇

Although Definition 3.9.1 does not assert any particular compatibility of the
tensor/cotensor isomorphisms, the following result uses Proposition 3.4.15 to
show that the tensor and cotensor determine V-adjunctions.
Proposition 3.9.3. In the context of Definition 3.9.1, for each X and Y in V there are
unique extensions of the tensor and cotensor to V-functors

V
X⊗−

C and V
Y(−)

Cop,

respectively, such that the following are V-adjunctions

(X⊗−) ⊣ YX and Y(−) ⊣ YY.

Proof. We first note that, by the Yoneda Lemma for ordinary categories, the tensors
and cotensors on underlying categories extend uniquely to bifunctors

C0 ×V
−⊗−

C0 and C0 ×Vop (−)(−)
C0

such that for each X, Y ∈ V there are adjunctions

V C0

X⊗−

C(X,−)
� and V Cop

0

Y(−)

C(−, Y)
�

of underlying categories. It suffices to show that the underlying functors X ⊗ −
and Y(−) can be extended to V-functors. Then the result follows from Proposi-
tion 3.4.15.

We will give the argument for X ⊗ −; the argument for Y(−) is similar and
formally dual. To begin, we first observe the following details for X ⊗ −. Both
follow from the details noted in Explanation 3.1.2. Here and throughout the rest
of the proof we omit tensor symbols to save space.

For each Y ∈ C and P, A ∈ V, the tensor and closed structures give isomor-
phisms in V

C(X(PA), Y) ≅ [PA,C(X, Y)] ≅ [P, [A, C(X, Y)]] ≅ [P,C(XA, Y)] ≅ C((XA)P, Y).
The induced bijection of morphisms in C0

(3.9.4) C0(X(PA), Y) ≅ C0((XA)P, Y)
is natural with respect to Y ∈ C0 and P, A ∈ V by naturality of the underlying
adjunction. Therefore, by the Yoneda Lemma for ordinary categories, the bijection
(3.9.4) is induced by an isomorphism w = wP,A in C0

(XA)P
wP,A
≅ X(PA)
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that is natural with respect to P, A ∈ V. Unwinding the relevant adjunctions and
using C = C(X, Y) in (3.1.4), the following diagram in C0 commutes for each
P, Q, A ∈ V.

(3.9.5)
((XA)Q)P

(X(QA))P

X(P(QA))

(XA)(PQ) X((PQ)A)

wQ,A ⊗ P wP,QA

wP,Q

wPQ,A

XαP,Q,A

Similarly, there is a morphism

jX ∈ C0(X1, X)
corresponding, under the following isomorphisms of the closed and tensor struc-
tures, to 1X ∈ C0(X, X):

V(1,C(X, X)) λ∗
V(11,C(X, X)) ≅

V(1, [1,C(X, X)]) ≅
V(1,C(X1, X)).

Unwinding the relevant adjunctions and using C = C(X, Y) in (3.1.3), the following
diagram in C0 commutes for each A ∈ V.

(3.9.6)

(XA)1

X(1A) XA

w1,A

Xλ

jXA

Now we give the definition of X ⊗− on hom objects. For each A, A′, P ∈ V we
have

V(P, [A, A′]) ≅ V(PA, A′) V(1,C(X(PA), XA′)) ≅ V(1,C((XA)P, XA′))
(3.9.7)

≅ V(1, [P,C(XA, XA′)]) ≅ V(P,C(XA, XA′))
where:

● the first and last isomorphisms are given by the closed structure and unit
isomorphism of V,
● the arrow on the first row is given by the underlying functor X⊗−,
● the second isomorphism in the first row is given by precomposition with

wP,A, and
● the first isomorphism on the second row is given by the tensor structure

of C.
Taking P = [A, A′], the identity 1[A,A′] corresponds to a morphism in V that we
take as the definition of X⊗− on hom objects:

[A, A′]
(X⊗−)A,A′

C(XA, XA′).
Now we verify the axioms of Definition 1.2.4 for X⊗−.
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The composition axiom (1.2.5) follows from commutativity of the below outer
diagram for each P, Q, A, A′, A′′ ∈ V. Following the diagram we explain commu-
tativity of each region.

V(P, [A′, A′′])×V(Q, [A, A′])

V(PQ, [A′, A′′][A, A′])

V(PQ, [A, A′′])

V(PA′, A′′)×V(QA, A′)

V(PA′, A′′)×V(P(QA), PA′)

V(P(QA), A′′)

V((PQ)A, A′′)

C0(X(PA′), XA′′)×C0(X(QA), XA′)

C0((XA′)P, XA′′)×C0((X(QA))P, (XA′)P)

C0(X(P(QA)), XA′′)

C0((XA′)P, XA′′)×C0((XA)Q, XA′)

C0((XA′)P, XA′′)×C0(((XA)Q)P, (XA′)P)

C0(((XA)Q)P, XA′′)

C0((X(QA))P, XA′′)

V(P,C(XA′, XA′′))×V(Q,C(XA, XA′)) V(PQ,C(XA, XA′′))

C0((XA)(PQ), XA′′)

⊗ m∗

1× (P⊗−) ○

(α−1)∗≅

≅

≅

w∗ × (−⊗ P) (w−1)∗ ○

1× (−⊗ P) ○

m∗⊗

≅

(w−1)∗

≅

(X⊗−)× (X⊗−) X⊗−

w∗ ×w∗

w∗

(w∗)P

(1)

(2)

(3)

(4)

Now we explain each of the regions in the above diagram.
(1) The unlabeled vertical isomorphisms are given by the closed structure of

V. The region commutes by functoriality of the monoidal product in V.
(2) The lower right morphism is given by composition in C0 and precompo-

sition with w−1. Unwinding the definitions, commutativity of this region
follows from the naturality noted in (3.9.4) for morphisms QA A′ in
V.

(3) Unwinding the definitions, commutativity of this diagram follows from
underlying functoriality of −⊗ P with respect to morphisms in C0.

(4) The unlabeled vertical isomorphisms are from the closed structure and
unit isomorphisms of V. The lower horizontal morphism is the monoidal
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product of V followed by the composition in C. Commutativity of this
diagram follows the same argument as (1), using underlying functoriality
of −⊗ P.

Lastly, we observe that the vertical composite along the right is equal to (X ⊗
−)A,A′′ by the compatibility of w with α noted in (3.9.5) above.

The identity axiom (1.2.6) for (X ⊗−) follows from commutativity of the dia-
gram below by evaluating at iA ∈ V(1, [A, A]), as we explain below.

V(1, [A, A]) V(1A, A) C0(X(1A), XA)

C0((XA)1, XA)

V(1,C(XA, XA))V(A, A) C0(XA, XA)

≅ X⊗−

w∗

≅
≅ λ∗

X⊗−

Xλ∗
j∗

In the above diagram, the top and right composite is (3.9.7) with A′ = A and P = 1,
and therefore the image of iA under this composite is

1
iA [A, A]

(X⊗−)A,A
C(XA, XA).

The left and bottom composite is iXA because the underlying functor X ⊗ − pre-
serves identity morphisms. The middle rectangle commutes by underlying func-
toriality of X ⊗−. The triangle involving Xλ, w, and j commutes by (3.9.6) above.
The remaining triangles commute by definition. This completes the proof that
X⊗− extends to a V-functor determined by the underlying tensor adjunction. □

Recall from Definition 2.1.1 that for V-category C and a monoidal functor

U ∶ V W

we have the W-category CU with hom objects CU(X, Y) = UC(X, Y) for X, Y ∈ C.
The following result generalizes the change of enrichment for change of tensors
and cotensors as well.
Theorem 3.9.8. Suppose V and W are symmetric monoidal closed categories and suppose

W V
F

U
�

is an adjunction of monoidal functors, with F2 invertible. If C is enriched, tensored, and
cotensored over V, then CU is enriched, tensored, and cotensored over W with

● X⊗ A = X⊗ FA and
● XA = XFA

for X ∈ C and A ∈W.

Proof. The assertion that CU is a W-category is proved in Proposition 2.1.2. To
show that CU is tensored over W it suffices, by the Yoneda Lemma for ordinary
categories, to show, for each X, Y ∈ C and A ∈ V, there are bijections of sets

W(B,CU(X⊗ FA, Y)) ≅W(B, [A,CU(X, Y)])
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that are natural with respect to B ∈W. This we show by the following sequence of
natural bijections:

W(B,CU(X⊗ FA, Y)) =W(B, UC(X⊗ FA, Y))
≅ V(FB,C(X⊗ FA, Y)) since F ⊣ U,

≅ V(FB, [FA,C(X, Y)]) since C tensored over V,

≅ V(FB⊗ FA,C(X, Y)) since V closed monoidal,

≅ V(F(B⊗ A),C(X, Y)) since F2 invertible,

≅W(B⊗ A,CU(X, Y)) since F ⊣ U,

≅W(B, [A,CU(X, Y)]) since W closed monoidal.

A dual argument shows that CU is cotensored over W. We have the following
sequence of natural bijections:

W(B,CU(X, YFA)) =W(B, UC(X, YFA))
≅ V(FB,C(X, YFA)) since F ⊣ U,

≅ V(FB, [FA,C(X, Y)]) since C cotensored over V,

≅ V(FB⊗ FA,C(X, Y)) since V closed monoidal,

≅ V(F(B⊗ A),C(X, Y)) since F2 invertible,

≅W(B⊗ A, UC(X, Y)) since F ⊣ U,

≅W(B, [A, UC(X, Y)]) since W closed monoidal.

This completes the proof. □

Example 3.9.9. In the context of Theorem 3.9.8, the special case C = V shows that
VU is enriched, tensored, and cotensored over W. ◇

One of our important applications of Theorem 3.9.8 will be in the following
context.

● Suppose V is a complete and cocomplete symmetric monoidal closed cat-
egory.
● SupposeD is a small symmetric monoidal V-category with monoidal unit

e.

In this context, recalling Definition 3.7.1 and Theorem 3.7.22, we have a symmetric
monoidal closed category D-V with monoidal product given by Day convolution
and monoidal unit given by the V-functor

J = Y e = D(e,−) ∶ D V.

In this context, by Lemma 3.8.1, there is a symmetric monoidal functor

eve ∶ D-V V

given by evaluation at e. Now we define a left adjoint for eve.
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Definition 3.9.10. Suppose (V,⊗,1) is a complete and cocomplete symmetric
monoidal closed category. Suppose (D,⊡, e) is a small symmetric monoidal V-
category. Define a strong symmetric monoidal functor

Le ∶ V D-V

as follows. For each object A of V, let

Le A = A⊗ J,

the composite of V-functors

(3.9.11) D J
V

A⊗−
V.

For morphisms A B in V we have corresponding V-natural transformations

A⊗− B⊗−.

Whiskering with J defines Le on morphisms. Functoriality of Le follows because
whiskering is functorial with respect to vertical composition of 2-cells.

Recalling the symmetric monoidal data for V from Definition 3.3.1 and Theo-
rem 3.3.2, the monoidal unit for V is given by 1 and provides a V-natural isomor-
phism

1V ≅ 1⊗−
which then provides

L0
e ∶ J

≅
1⊗ J = Le1.

The monoidal constraint L2
e is given by the composite of V-natural isomorphisms

indicated by the following pasting diagram involving
● functoriality of the tensor product of V-categories with respect to compo-

sition of V-functors (Proposition 1.3.6),
● the unit isomorphism λ for J, from Definition 3.7.17, and
● the unique permuted canonical V-map provided by the Enriched Monoi-

dal Coherence Theorem 2.5.6.

D⊗D V⊗V

V⊗V

D V V

(Le A)⊗ (LeB)

J ⊗ J
(A⊗−)⊗ (B⊗−)

⊡ ⊗

J (A⊗ B)⊗−

⊗
⇒λ ⇒

◇
Lemma 3.9.12. In the context of Definition 3.9.10, Le is a strong symmetric monoidal
functor and provides an adjunction

(3.9.13) V D-V
Le

eve

�

where eve is evaluation at the monoidal unit e, as in Lemma 3.8.1.
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Proof. The associativity axiom (1.1.9) and unity axiom (1.1.10) for Le hold by En-
riched Monoidal Coherence Theorem 2.5.6 for V and ordinary Monoidal Coher-
ence Theorem 1.1.31 forD-V. The symmetry axiom (1.1.18) for Le follows similarly,
using the symmetric case of Theorem 2.5.6.

For A in V we have unit components ηA given by the composite

A
ρ−1

≅ A⊗1 1⊗ 1e A⊗D(e, e) = (eveLe)A.

Naturality of η follows from naturality of ρ and functoriality of the monoidal prod-
uct in V.

For X ∈ D-V we have counit components

εX ∶ (Leeve)X = Xe ⊗ J X

defined, as V-natural transformations, via components

1 [D(e, a), [Xe, Xa]] ≅ [Xe ⊗D(e, a), Xa]
where the first morphism is the adjoint of Xe,a and the second uses the symme-
try and closed monoidal structure of V. The V-naturality of each component εX
follows from functoriality of X. The naturality of ε with respect to morphisms (V-
natural transformations) θ from X to Y in D-V is the commutativity, for each a in
D, of the following diagram in V.

1⊗1

[Xa, Ya]⊗ [Xe ⊗D(e, a), Xa]

[Xe ⊗D(e, a), Ya]

[Ye ⊗D(e, a), Ya]⊗ [Xe ⊗D(e, a), Ye ⊗D(e, a)]

θa ⊗ (εX)a

(εY)a ⊗ ((Leeve)θ)a

m

m

Taking adjoints, commutativity of the diagram above follows from V-naturality of
θ.

The left triangle identity for A in V is the composite of V-natural transforma-
tions

(3.9.14) A⊗ J
ηA ⊗ J

(A⊗D(e, e))⊗ J ε A⊗ J

whose component at each a in D is adjoint to the composite

A⊗D(e, a) (A⊗D(e, e))⊗D(e, a) A⊗D(e, a)
given by composition with 1e. Therefore (3.9.14) is the identity. The right triangle
identity for X in D-V is the composite

Xe
ηXe Xe ⊗D(e, e)

(εx)e
Xe

also given by composition with 1e. This completes the proof. □

Applying Theorem 3.9.8 to the adjunction of (3.9.13) then gives the following.
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Corollary 3.9.15. Suppose V is a complete and cocomplete symmetric monoidal closed
category. Suppose D is a small symmetric monoidal V-category with monoidal unit e.
Then D-V is symmetric monoidal closed and, by changing enrichment along eve, is en-
riched, tensored, and cotensored over V.
Explanation 3.9.16. In the context of Corollary 3.9.15, one can give a separate,
more direct, explanation for the tensoring and cotensoring of D-V over V. Note
that the following explanation does not depend on the monoidal structure of D.
Recall from Explanation 3.8.3 that we regard D-V as a V-enriched category with
hom objects

Map(X, Y) = ∫
b
[Xb, Yb]

for X and Y in D-V. Then for A in V we define the tensor and cotensor via compo-
sition of V-functors

X⊗ A ∶ D X
V

−⊗ A
V

and

YA ∶ D Y
V

[A,−]
V

generalizing the definition of Le from Definition 3.9.10.
Then for the isomorphisms making D-V tensored over V we have the follow-

ing, using the closed structure of V and (3.5.11)

Map(X⊗ A, Y) = ∫
b
[(X⊗ A)b, Yb]

= ∫
b
[Xb ⊗ A, Yb]

≅ ∫
b
[A, [Xb, Yb]]

≅ [A,∫
b
[Xb, Yb]]

= [A,Map(X, Y)].
Similarly, for the cotensor isomorphisms we have

Map(X, YA) = ∫
b
[Xb, (YA)b]

= ∫
b
[Xb, [A, Yb]]

≅ ∫
b
[A, [Xb, Yb]]

≅ [A,Map(X, Y)]. ◇

3.10. Notes

3.10.1 (Self-Enrichment). Kelly shows a version of Proposition 3.1.11 in [Kel05,
Section 1.6]. Our approach is more elementary and direct than that of [Kel05],
which is in turn a simplification of general coherence methods of [KML71a,
KML71b, KML72]. ◇
3.10.2 (Enriched Yoneda Results). The V-Yoneda Bijection of Theorem 3.4.12 is of-
ten called the Weak Yoneda Lemma. The V-Yoneda Density Theorem 3.7.8 is often
called simply the Density Theorem or the Yoneda Lemma. It is equivalent to the
V-Yoneda Lemma 3.6.9. For further discussion of these results we refer the reader
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to [DK69], [Kel05, Sections 1.9, 2.4, and 5.1], [Bor94b, Section 6.3], [Lor21, Section
4.3.2]. ◇
3.10.3 (Simplifications for Enriched Co/Ends in V). Our treatment of V-coends
and V-ends in Section 3.5 involves several simplifications that do not hold for the
more general theory of enriched co/ends.

● When V is symmetric monoidal closed, V-enriched co/limits in V (in
the conical, unweighted sense) are canonically isomorphic to those in
the underlying category V0. Thus co/completeness of V0 in the unen-
riched sense implies enriched co/completeness of V (with respect to con-
ical co/limits). See [DK69, Kel05] for further explanation.
● The generalization of the isomorphisms (3.5.10) and (3.5.11) provides the

more useful notion of co/end in a general V-category C. See [DK69,
Day70].
● Our existence result Proposition 3.5.5 is a special case of that given in

[DK69].
● The theory of V-enriched weighted co/limits extends the theory of conical

co/limits and is defined in terms of certain co/ends. These more general
constructions are necessary for general V-enriched category theory, and
we refer the reader to [Kel05, Lor21] for further explanation. ◇

3.10.4 (Enriched Diagram Categories). Our discussion of enriched diagram cate-
gories in Section 3.7 follows [DK69, Day70]. A different sketch of the main ideas
around Day’s convolution product, under slightly simpler assumptions, is given
in [Ric20]. The thesis of Corner [Cor16] gives a review of Day convolution and
an extension to monoidal bicategories. Day-Street [DS97] gives a more general
treatment of the convolution product and hom diagram as part of a more general
theory of V-modules. ◇
3.10.5 (Enriched Tensors and Cotensors). For further discussion of enriched ten-
sors and cotensors we refer the reader to [Kel69, Bor94b, Kel05, Rie14]. In the
literature, the term copowered, respectively powered, is sometimes used in place of
the term tensored, respectively cotensored.

Our Definition 3.9.1 differs slightly from the literature in that the tensor and
cotensor isomorphisms are not assumed to be V-natural. Thus our conclusion in
Proposition 3.9.3 does not have all the features of an enriched 2-variable adjunction
as in [Rie14, Remark 3.7.4] or [Shu∞a]. Theorem 3.9.8 and Corollary 3.9.15, which
will be used in our work below, only establish tensor and cotensor structures in
the sense of Definition 3.9.1. ◇



CHAPTER 4

Pointed Objects, Smash Products, and Pointed Homs

Throughout this chapter we suppose C is a category with a terminal object T
and discuss objects X of C that are pointed by a morphism

ιX ∶ T X.

The category of pointed objects and morphisms, C∗, is the category under T. With
the exception of some preliminary definitions in Section 4.1, we assume through-
out that C is complete and cocomplete with a symmetric monoidal closed structure

(C,⊗,1, α, λ, ρ, ξ,Hom).
In Section 4.1 we define the smash product of pointed objects and show that it

induces a symmetric monoidal product on C∗. In Section 4.2 we define the pointed
hom and show that it is adjoint to the smash product. The following examples of
pointed categories will be essential parts for our algebraic K-theory work in Part 2.

● With C = Cat and T = 1, the terminal category, Cat∗ is the category of
pointed categories and pointed functors.
● With C = PermCat and T = 1 with its trivial monoidal product, every per-

mutative category has a canonical basepoint given by its monoidal unit.
For symmetric monoidal functors, preserving this basepoint is precisely
the strictly unital condition.
● In Section 5.6 we describe the Boardman-Vogt tensor product for multi-

categories and its associated smash product.
● With C = Set and T = ∗, the one-point set, Set∗ is the category of pointed

sets and pointed functions.
● In Section 7.1 we describe the category of pointed simplicial sets, sSet∗.

Symmetric spectra, defined in Section 7.4, are certain sequences of
pointed simplicial sets.

In many—but not all—of these applications, ⊗ is the Cartesian product in C and
the monoidal unit is a terminal object so we have 1 = T. The important exception is
C =Multicat, the category of small multicategories discussed in Chapters 5 and 6.

In Section 4.3 below we discuss categories of pointed diagrams. Theo-
rem 4.3.37 gives a summary statement. The development of K-theory for small
permutative categories, given in Chapters 8, 9, and 10, will make use of certain
pointed diagram categories and their symmetric monoidal closed structure.

4.1. Smash Products

We begin by defining categories of pointed objects. We show that complete-
ness and cocompleteness are inherited from the ambient category C, and then we
go on to define the smash product of pointed objects.

III.165
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Definition 4.1.1. Suppose C is a category with terminal object T. We let C∗ denote
the category under T. Its objects are morphisms

ιX ∶ T X ∈ C,

which are called pointed objects with ιX the basepoint. The morphisms of C∗, which
are called pointed morphisms, are those morphisms in C that preserve the structure
morphisms ι. ◇
Definition 4.1.2. Suppose C is a category with a terminal object T and with co-
products. If X is an object of C, then X+ = X∐ T denotes the pointed object given
by the structure morphism of the coproduct

T X∐ T.

This defines a functor C C∗ called adjoining a disjoint basepoint. ◇
Proposition 4.1.3. In the context of Definition 4.1.2, there is an adjunction of categories

C C∗
(−)+

U

with left adjoint (−)+ given by adjoining a disjoint basepoint and right adjoint U given
by forgetting basepoints.

Proof. The unit of the adjunction is the coproduct summand inclusion away from
T. The component of the counit at a pointed object Y is

(UY)+ Y for Y ∈ C∗
given by the identity on Y and the unique pointed morphism from the disjoint
basepoint to Y. The triangle identities are the following composites for X ∈ C and
Y ∈ C∗:

X+ (U(X+))+ X+ and UY U((UY)+) UY. □

Definition 4.1.4. Suppose C is a category with terminal object T. For pointed ob-
jects X and Y the wedge product X ∨Y is the pushout in C of the span

X ιX T ιY Y.

Equivalently, it is the coequalizer of the two induced morphisms

T X∐Y X ∨Y.
ιX

ιY

The wedge product is sometimes also called the wedge sum. ◇
Theorem 4.1.5. Suppose C is a category with terminal object T. If C is complete and
cocomplete, then so is C∗.

Proof. The coproduct of pointed objects is given by the wedge product. Coequal-
izers of pointed objects are given by coequalizers in C equipped with the induced
basepoint. Similarly, products and equalizers in C∗ are given in C and equipped
with the basepoints induced by these constructions. □
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Definition 4.1.6 (Smash Product). Suppose that C = (C,⊗,1) is a monoidal cate-
gory with terminal object T and with coproducts. Then the smash product X ∧Y is
the following pushout in C.

(4.1.7)

(X⊗ T)∐ (T⊗Y) X⊗Y

T X ∧Y

(1X ⊗ ιY)∐ (ιX ⊗ 1Y)

The smash unit E is defined by adjoining a disjoint basepoint to the unit of C:

E = 1+ = 1∐ T.

In Theorem 4.1.8 we show that (C∗,∧, E) is a symmetric monoidal category when
(C,⊗) is symmetric monoidal closed. In Section 4.2 we show, furthermore, that
under these hypotheses ∧ also has an adjoint. ◇

Beginning now, and continuing through Section 4.2, we suppose that (C,⊗,Hom)
is a complete and cocomplete symmetric monoidal closed category with terminal
object T.
Theorem 4.1.8. Suppose

C = (C,⊗,1, α, λ, ρ, ξ,Hom)
is a symmetric monoidal closed category that is complete and cocomplete with terminal
object T. Then (C∗,∧, E) is a complete and cocomplete symmetric monoidal category.

Proof. Theorem 4.1.5 shows that C∗ is complete and cocomplete. Now we show
that the smash product defines a symmetric monoidal product with unit

E = 1+ = 1∐ T.

Because C is symmetric monoidal closed, the functors

X⊗− ∶ C C and −⊗Z ∶ C C

for X, Z ∈ C are left adjoints. Throughout this proof we will use the fact that these
left adjoints preserve small colimits.

To construct the associativity isomorphism α∧ for the smash product, suppose
(X, ιX), (Y, ιY), and (Z, ιZ) are pointed objects. We write

X⊗Y X ∧Y ∈ C
πX,Y

for the right vertical morphism in the pushout (4.1.7). Omitting ⊗ to save space,
first observe that there is a pushout

(4.1.9)

(XY)T∐ (XT)Z∐ (TY)Z (XY)Z

(X ∧Y)Z

T (X ∧Y)∧ Z

πX,Y1

πX∧Y,Z
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in C with the top horizontal arrow induced by the basepoints of X, Y, and Z. In
more detail, consider the following diagram in C.

(4.1.10)

(XY)T∐ (XT)Z∐ (TY)Z (XY)Z

(X ∧Y)T∐ TZ (X ∧Y)Z

T (X ∧Y)∧ Z

ω πX,Y1

πX∧Y,Z

● The bottom square in (4.1.10) is a pushout by the definition (4.1.7) of the
smash product.
● The top square in (4.1.10) is obtained by first applying −⊗ Z to the push-

out (4.1.7) defining X ∧Y. This yields the pushout

(4.1.11)

(XT)Z∐ (TY)Z (XY)Z

TZ (X ∧Y)Z

τ πX,Y1

because −⊗Z is a left adjoint, which preserves all small colimits. The top
left vertical arrow in (4.1.10) is the coproduct

ω = (πX,Y ⊗ 1T)∐ τ.

Since (4.1.11) is a pushout, so is the top square in (4.1.10) by the functori-
ality of ⊗ in C.

Therefore, the outer diagram in (4.1.10), which is (4.1.9), is a pushout.
A similar argument using X ⊗ − yields the following pushout in C with the

right normalized bracketing:

(4.1.12)

X(YT)∐X(TZ)∐ T(YZ) X(YZ)

X(Y ∧ Z)

T X ∧ (Y ∧ Z)

1πY,Z

πX,Y∧Z

Now we consider the following morphism from the pushout (4.1.9), shown in the
back square below, to the pushout (4.1.12), shown in the front square below.

(4.1.13)

(XY)T∐ (XT)Z∐ (TY)Z (XY)Z

T (X ∧Y)∧ Z

X(YT)∐X(TZ)∐ T(YZ) X(YZ)

T X ∧ (Y ∧ Z)

α ∐ α ∐ α α

α∧X,Y,Z

∃!
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The left face in (4.1.13) commutes because T is a terminal object. The top face com-
mutes by the naturality of α. The universal property of pushouts implies that there
exists a unique dotted morphism α∧X,Y,Z that makes the entire cube commutative.
Since each α is an isomorphism, so is α∧X,Y,Z. We define this as the associativity
isomorphism α∧ for the pointed objects X, Y, and Z. The naturality of α∧ follows
from the naturality of α and the universal property of pushouts.

The pentagon axiom (1.1.3) for α∧ follows from that of α and the universal
property of pushouts. More precisely, for pointed objects W, X, Y, and Z, we write

Vl = ((WX)Y)T∐ ((WX)T)Z∐ ((WT)Y)Z∐ ((TX)Y)Z
Vr =W(X(YT))∐W(X(TZ))∐W(T(YZ))∐ T(X(YZ))

and consider the following cube.

(4.1.14)

Vl ((WX)Y)Z

T ((W ∧X)∧Y)∧ Z

Vr W(X(YZ))

T W ∧ (X ∧ (Y ∧ Z))

∃!

In the top face in (4.1.14), the morphism Vl Vr from the back pushout to the
front pushout is a coproduct of four morphisms, each being either composite in
the pentagon diagram (1.1.3) in C. The top right morphism

((W ⊗X)⊗Y)⊗ Z W ⊗ (X⊗ (Y⊗ Z))
is either composite in the pentagon diagram in C for W, X, Y, and Z. The universal
property of pushouts implies that there is a unique dotted arrow that renders the
cube commutative, which proves the pentagon axiom for α∧.

To define the left unit isomorphism λ∧ for the smash product, for a pointed
object X, consider the following diagram in C.

(4.1.15)

(1∐ T)T∐ TX (1∐ T)X ≅ 1X∐ TX

T (1∐ T)∧X

X
ιX

ℓ

∃! λ∧X

In (4.1.15), the top left square is a pushout by the definition (4.1.7) of the smash
product. The morphism ℓ is induced by the left unit isomorphism

1⊗X X
λX

in C and the composite

T⊗X T X.ιX
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The outer diagram in (4.1.15) is commutative, so there is a unique dotted arrow
λ∧X that renders the entire diagram commutative. Its naturality follows from that
of λ and the universal property of pushouts. Since λ is an isomorphism, λ∧X is an
isomorphism, with inverse the composite

X 1⊗X (1∐ T)⊗X (1∐ T)∧X.λ−1

The right unit isomorphism ρ∧ for the smash product is defined similarly by the
right unit isomorphism ρ in C and the pushout (4.1.7) that defines ∧.

With the smash unit
E = 1∐ T,

the unity axiom (1.1.2) for the smash product asserts the commutativity of the
following triangle in C for pointed objects X and Y.

(4.1.16)
(X ∧ E)∧Y X ∧ (E ∧Y)

X ∧Y
ρ∧X∧1Y

α∧X,E,Y

1X∧λ∧Y

Similar to the above proof of the pentagon axiom, the proof of the unity axiom for
the smash product is a cube argument that reduces to the unity axiom for ⊗. More
precisely, we consider the following morphism of spans in C, with the ⊗ symbol
omitted to save space.

(4.1.17)

(XE)T∐ (XT)Y∐ (TE)Y (XE)Y

T
XT∐ TY XY

T

f
g

Using the fact that −⊗ E commutes with small colimits, the morphisms f and g in
(4.1.17) are defined by the following morphisms, with t the unique morphism to
the terminal object T and ρ the right unit isomorphism in C.

(4.1.18)

(XE)T ≅ (X1)T∐ (XT)T XT

(XT)Y TY

(TE)Y TY

(XE)Y ≅ (X1)Y∐ (XT)Y XY

(ρ1T , (ιX○t)1T)

t1Y

t1Y

(ρ1Y , (ιX○t)1Y)

Since (4.1.17) is commutative, there is a unique induced morphism from the back
pushout to the front pushout, namely,

(X ∧ E)∧Y X ∧Y
ρ∧X∧1Y

in the triangle (4.1.16).
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On the other hand, the composite

(X ∧ E)∧Y X ∧Y
(1X∧λ∧Y) ○ α∧X,E,Y

in (4.1.16) is induced by the following morphisms, instead of those in (4.1.18), from
the back span to the front span in (4.1.17).

(XE)T X(ET) XT

(XT)Y X(TY) XT

(T1)Y T(1Y) TY

(TT)Y T(TY) TY

(X1)Y X(1Y) XY

(XT)Y X(TY) XY

α 1X t

α 1X t

α 1Tλ

α 1T(ιY○t)

α 1Xλ

α 1X(ιY○t)

To see that the two induced morphisms in (4.1.16) are equal, by the universal prop-
erty of the back pushout in (4.1.17), we must check that the two composites

(4.1.19)
(XE)Y ≅ (X1)Y∐ (XT)Y XY

X ∧Y

(ρX1Y , (ιX○t)1Y)

(1XλY , 1X(ιY○t)) ○ (α∐α)
πX,Y

are equal. On the summand (X1)Y, the equality

ρX ⊗ 1Y = (1X ⊗ λY) ○ α ∶ (X⊗1)⊗Y X⊗Y

holds by the unity axiom in C. On the other summand (XT)Y, the two composites
in (4.1.19) form the outer diagram below.

(XT)Y X(TY)

TY XT

XY XY

T

X ∧Y

t1Y

ιX1Y

πX,Y

α

1Xt

1X ιY

πX,Y

t t

In the above diagram, the top pentagon commutes because T is a terminal object.
The two lower parallelograms commute by the pushout definition of X ∧Y. This
proves the unity axiom for the smash product.

The symmetry isomorphism

X ∧Y Y ∧X
ξ∧X,Y

for the smash product is defined as the unique induced morphism from the push-
out (4.1.7) defining X ∧Y to the pushout defining Y ∧X, using the symmetry iso-
morphism ξX,Y in C. Similar to the previous two paragraphs, the symmetry axiom
(1.1.24) and the unit axiom (1.1.25) for ∧ follow from those in C. In the presence
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of the symmetry axiom, the hexagon axiom (1.1.26) for ∧ is equivalent to the left
hexagon axiom in (1.1.16), which asserts the commutativity of the following dia-
gram for pointed objects X, Y, and Z.

(4.1.20) (X ∧Y)∧ Z Y ∧ (Z ∧X)

(Y ∧X)∧ Z Y ∧ (X ∧ Z)

X ∧ (Y ∧ Z) (Y ∧ Z)∧X

ξ∧ ∧ 1

α∧

1∧ ξ∧

α∧

ξ∧

α∧

To prove the commutativity of (4.1.20), we again use a cube argument and
consider the following morphisms of spans in C.

(4.1.21)

(XY)T ∐ (XT)Z ∐ (TY)Z (XY)Z

T

(YX)T ∐ (YT)Z ∐ (TX)Z (YX)Z

T

Y(XT)∐Y(TZ)∐ T(XZ) Y(XZ)

T

Y(ZT)∐Y(TX)∐ T(ZX) Y(ZX)

T

ξ1∐ ξ1∐ ξ1

α ∐ α ∐ α

1ξ ∐ 1ξ ∐ 1ξ

ξ1

α

1ξ

In (4.1.21), the top middle face is commutative by the naturality of α. The other
two top faces are commutative by the naturality of ξ. So the diagram (4.1.21) is
commutative. The unique induced morphism from the back pushout to the front
pushout is the top composite in the left hexagon diagram (4.1.20).

Moreover, the left hexagon axiom in C is an equality

(4.1.22) 1ξ ○ α ○ ξ1 = α ○ ξ ○ α,

with the left-hand side the composite of the indicated morphisms in (4.1.21). Sim-
ilarly, the left hexagon axiom in C yields the equality

(1ξ ∐ 1ξ ∐ 1ξ) ○ (α ∐ α ∐ α) ○ (ξ1∐ ξ1∐ ξ1)
= (α ∐ α ∐ α) ○ (ξ ∐ ξ ∐ ξ) ○ (α ∐ α ∐ α),(4.1.23)

with the top line the composite of the indicated morphisms in (4.1.21). Using
● the right-hand side of (4.1.22) and
● the bottom line in (4.1.23)

in the diagram (4.1.21), the unique induced morphism from the back pushout to
the front pushout is the bottom composite in the left hexagon diagram (4.1.20).
Therefore, (4.1.20) is commutative. □
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4.2. Pointed Homs

We remind the reader that C = (C,⊗,Hom) is assumed to be a complete and
cocomplete symmetric monoidal closed category with terminal object T. In Sec-
tion 4.1 we defined the smash product and showed that it defines a symmetric
monoidal product ∧ on C∗, with unit E = 1∐T. Now we define a closed structure
for (C∗,∧, E)
Definition 4.2.1. For pointed objects X and Y in C∗, we define the pointed hom as
the following pullback in C.

(4.2.2)

Hom∗(X, Y) T

Hom(X, Y) Hom(T, Y)

The composite

T ≅ Hom(X, T) Hom(X, Y) Hom(T, Y)

induced by the structure morphisms for X and Y is equal to the vertical mor-
phism in the diagram, and therefore induces a canonical structure morphism
T Hom∗(X, Y)making Hom∗(X, Y) a pointed object. ◇
Theorem 4.2.3. Suppose

C = (C,⊗,1, α, λ, ρ, ξ,Hom)

is a symmetric monoidal closed category that is complete and cocomplete with terminal
object T. Then

(C∗,∧, E,Hom∗)

is a complete and cocomplete symmetric monoidal closed category.

Proof. Theorem 4.1.5 shows that C∗ is complete and cocomplete. Theorem 4.1.8
shows that (C∗,∧) is symmetric monoidal with unit E. Now we show that Hom∗
is adjoint to ∧.

We will show

Hom∗(X ∧Y, Z) ≅ Hom∗(X,Hom∗(Y, Z))

by showing that the right hand side satisfies the universal property of the pullback
defining the left hand side. To do so, first note that the functors

Hom(X,−) ∶ C C and Hom(−, Z) ∶ Cop C

both preserve small limits by the ⊗-Hom adjunction. That is, Hom(X,−) preserves
small limits in C, and Hom(−, Z) converts small colimits in C (limits in Cop) to
limits in C.

In the diagram below, we apply Hom(−, Z) to the pushout diagram (4.1.7)
defining X ∧Y. This yields a pullback in C shown at right. Next we observe that
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the definition of Hom∗(X ∧Y, Z)makes it a pullback shown at left.
(4.2.4)
Hom∗(X ∧Y, Z)

T

Hom(X ∧Y, Z) Hom(X⊗Y, Z)

Hom(T, Z) Hom((X⊗ T)∐ (T⊗Y), Z)

We will show that Hom∗(X,Hom∗(Y, Z)) is also a pullback of the outer rectangle,
via a sequence of isomorphisms that are natural in X, Y, and Z.

To begin, consider the following diagram in C. The horizontal morphisms are
given by the unique morphisms to T or by pulling back along the basepoint of X.
The other morphisms are described below.

(4.2.5)

Hom∗(X,Hom∗(Y, Z)) T

Hom(X,Hom∗(Y, Z)) Hom(T,Hom∗(Y, Z))

Hom(X,Hom(Y, Z)) Hom(T,Hom(Y, Z))

T T

Hom(X,Hom(T, Z)) Hom(T,Hom(T, Z))

The upper square of (4.2.5) is the pullback defining Hom∗(X,Hom∗(Y, Z)), and
the other two squares involving a single vertex T (that is, the left vertical and right
vertical squares) are given by applying Hom(X,−), respectively Hom(T,−) to the
pullback squares defining Hom∗(Y, Z). Thus, because Hom(X,−) and Hom(T,−)
are right adjoints, each of the squares involving a single vertex T is a pullback.

Now we use the closed structure of C to replace four lower vertices of (4.2.5)
with objects of the form Hom(−⊗−, Z) and recognize the right vertical composite

T Hom(T,Hom∗(Y, Z)) Hom(T⊗Y, Z)

as equal to the composite

T ≅ Hom(T⊗Y, T) Hom(T⊗Y, Z).
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Using this equality and rearranging (4.2.5), we have Hom∗(X,Hom∗(Y, Z)) as a
limit in the following diagram in C.

Hom(T⊗Y, Z)

Hom(X⊗ T, Z) Hom(T⊗ T, Z)

T

Hom(X⊗Y, Z)

Hom∗(X,Hom∗(Y, Z))

The vertex Hom(T ⊗ T, Z) is redundant, and we replace the two arrows out of T,
respectively Hom(X⊗Y, Z), with the corresponding arrow into

Hom(X⊗ T, Z)×Hom(T⊗Y, Z) ≅ Hom ( (X⊗ T)∐ (T⊗Y), Z ).
This exhibits Hom∗(X,Hom∗(Y, Z)) as the pullback below, which is the outer pull-
back of (4.2.4).

Hom∗(X,Hom∗(Y, Z))

Hom(X⊗Y, Z)

T

Hom((X⊗ T)∐ (T⊗Y), Z)

Therefore
Hom∗(X,Hom∗(Y, Z)) ≅ Hom∗(X ∧Y, Z),

naturally in X, Y, and Z. □

4.3. Pointed Diagram Categories

In this section we suppose that

V = (V,⊗,1, α, λ, ρ, [−,−], T)
is a complete and cocomplete symmetric monoidal closed category with chosen
terminal object T, sometimes denoted TV. Recalling the smash product and in-
ternal hom constructions of Sections 4.1 and 4.2, we have a symmetric monoidal
closed category

(V∗,∧, E, [−,−]∗)
where E = 1∐ T is the monoidal unit and [−,−]∗ denotes the pointed hom of
Definition 4.2.1.
Convention 4.3.1. To avoid ambiguity with our notation for diagram categories,
throughout this section we write

(4.3.2) VCat and V∗Cat

for the 2-categories of V-enriched, respectively V∗-enriched, categories, functors
and natural transformations. ◇
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Definition 4.3.3. Suppose (D,⊡, e) is a symmetric monoidal category. We say that
T is a null object for D if

● T is both initial and terminal in D, and
● there are natural isomorphisms

a⊡ T ≅ T ≅ T ⊡ a

for objects a in D. ◇
We will use the following notation throughout this section.

Definition 4.3.4. Let (Set∗,∧, 1,∗) denote the category of pointed finite sets with
its smash product ∧, unit 1 = {0, 1}, with basepoint element 0, and terminal 1-point
set ∗. ◇

The main result of this section, Theorem 4.3.19, gives a comparison between
pointed diagrams from (D, TD) to V∗ with enriched diagrams out of a certain V∗-
enriched category D̂ described in Definition 4.3.11. To prepare for this, we first
give the following general comparison between

● pointed functors between categories whose basepoints are both initial
and terminal, and
● Set∗-enriched functors between such categories.

Lemma 4.3.5. Suppose (B, TB) and (C, TC) are pointed categories in which the basepoints
TB and TC are both initial and terminal.

(1) Taking zero morphisms as basepoints of their hom sets, both B and C are enriched
categories over Set∗.

(2) There is an equivalence of categories

(4.3.6) Cat∗((B, TB), (C, TC)) ≃ (Set∗Cat)(B,C),
where the right hand side denotes the category of Set∗-enriched functors and
natural transformations.

Proof. For the first assertion, the composition and identities of B and C are Set∗-
enriched because composition with a zero morphism is zero. For the second asser-
tion, first observe that a pointed functor

H ∶ (B, TB) (C, TC)
preserves the zero morphisms and is therefore Set∗-enriched. Pointed natural
transformations are likewise Set∗-enriched. This provides a functor

Cat∗((B, TB), (C, TC)) (Set∗Cat)(B,C)
For the reverse direction, the forgetful functor

U ∶ Set∗ Set,

which is the identity on objects and morphisms, is symmetric monoidal with unit
constraint the inclusion of the one point set at the non-basepoint element of 1, the
monoidal unit for Set∗. The monoidal constraint

(UX)× (UY) = X ×Y
U2

X,Y
X ∧Y

for pointed sets X and Y is given by the structure morphism of the pushout (4.1.7)
defining X ∧Y. Changing enrichment along U provides a forgetful functor

(Set∗Cat)(B,C) Cat(B,C).
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from the category of Set∗-enriched functors and natural transformations to the un-
derlying category of ordinary Set-enriched functors and natural transformations.

We show that Set∗-enriched functors preserve initial and terminal objects
up to unique isomorphism, and then use these isomorphisms to provide strictly
pointed functors. To make this explicit, let 0Z,W denote the zero morphism

Z T W

factoring through the respective basepoint object for each pair of objects Z and W
objects in either B or C. Then we note the following.

● If F is a Set∗-enriched functor from B to C, then preserving the basepoint
of each hom set means

F(0X,Y) = 0FX,FY

for each pair of objects X and Y in B.
● For any object Z of B or C, we have

0Z,Z = 1Z

if and only if Z ≅ T, the respective basepoint object. This isomorphism is
necessarily unique.
● By the identity axiom (1.2.6) for a Set∗-enriched functor F ∶ B C, we

have
1F(TB) = F(1TB).

Combining these observations, we have

1F(TB) = F(1TB) = F(0TB,TB) = 0F(TB),F(TB)

and, therefore, a unique isomorphism

(4.3.7) F(TB) ≅ TC.

Since TB and TC are both initial and terminal, we can change the definition of F on
objects to

F′X =
⎧⎪⎪⎨⎪⎪⎩

FX if X /= TB

TC if X = TB.

and define F′ on morphisms via F and composition with (4.3.7) for the (necessarily
unique) morphisms to or from TB in B. The functoriality of F and uniqueness
of (4.3.7) ensure that F′ remains functorial. We likewise replace a Set∗-enriched
natural transformation

α ∶ F G
with a pointed natural transformation

α′ ∶ F′ G′

by changing the component at TB to be the identity of TC. Naturality of α′ follows
from that of α and the uniqueness of (4.3.7).

For a pointed functor

H ∶ (B, TB) (C, TC),
we have H′ = H. For a general Set∗-enriched functor F as above, there is a natural
isomorphism

ε ∶ F′ ≅ F



III.178 4. POINTED OBJECTS, SMASH PRODUCTS, AND POINTED HOMS

whose only potential non-identity component is the isomorphism (4.3.7). There-
fore we have ε′ = 1F′ . This proves the triangle identities for the second asser-
tion. □

Recall from Definition 3.8.9 the unitary enrichment of a symmetric monoidal
category over V. Now we introduce a pointed variant over V∗.

Definition 4.3.8. For a pointed set X, we let X♭ denote the punctured set

X♭ = X/{∗}
consisting of all elements of X except its basepoint. The symbol ♭ is the musical
flat symbol, and X♭ may be read as X-flat or X-punctured, with the mnemonic that
a punctured tire is flat. ◇
Definition 4.3.9. Define a pointed and strictly unital strong symmetric monoidal
functor

(4.3.10) F̂ ∶ (Set∗,∧, 1,∗) (V∗,∧, E, T)
by

F̂X = ⋁
i∈X♭

E for X ∈ Set∗

where we take T for the wedge over an empty indexing set. For a morphism of
pointed sets f ∶ X Y, the induced morphism

⋁
i∈X♭

E ⋁
i∈Y♭

E

has summand at i ∈ X♭ given by the identity 1E if f (i) is not the basepoint of Y
(and, therefore, f (i) ∈ Y♭) or by the zero morphism to the target (factoring through
the basepoint of the wedge) if f (i) = ∗.

The unit constraint F̂0 is 1E. The monoidal constraint

F̂X ∧ F̂Y
F̂2

X,Y
F̂(X ∧Y)

is given by the following composite

( ⋁
i∈X♭

E)∧ ( ⋁
j∈Y♭

E) ≅ ⋁
(i,j)∈X♭×Y♭

E ∧ E ≅ ⋁
(i,j)∈(X∧Y)♭

E.

In the above composite, the first morphism is the canonical isomorphism com-
muting ∧ with small coproducts (since V∗ is symmetric monoidal closed) and the
second morphism is given by the bijection of indexing sets

X♭ ×Y♭ ≅ (X ∧Y)♭

and the unit isomorphisms of E. ◇
Definition 4.3.11. Suppose (D,⊡, e, TD) is a small symmetric monoidal category
with null object TD and with its canonical enrichment over Set∗ as in Lemma 4.3.5
(1).

Suppose TV is a chosen terminal object of V. The pointed unitary enrichment
of D over V∗ is denoted D̂ and is defined as the change of enrichment for D, in
the sense of Definition 2.1.1 and Proposition 2.1.2, along the functor F̂ of (4.3.10)
above.
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So D̂ has the same objects as D and has hom objects given by the coproduct in
V∗

(4.3.12) D̂(a, b) = ⋁
p∈(D(a,b))♭

E

where we take TV for the empty wedge. By Theorem 2.4.10, D̂ is a symmetric
monoidal V∗-category. ◇
Explanation 4.3.13. Recalling the unitary enrichment of D over E, the monoidal
unit of V∗, Proposition 3.8.12 provides an isomorphism of categories

(4.3.14) Cat(D,V∗) ≅ V∗Cat(DE,V∗),
where V∗Cat is the 2-category of V∗-categories, V∗-functors, and V∗-natural trans-
formations. When D has a null object as its basepoint, as in Definition 4.3.11, then
there is also a V∗-functor

(4.3.15) DE D̂
induced, as in Definition 2.2.1, by a monoidal natural transformation

FE F̂

whose component at a pointed set X is the morphism

⋁
i∈X

E ⋁
i∈X♭

E

given by the identity 1E for each non-basepoint summand and by the zero mor-
phism for the basepoint summand. Restriction along the V∗-functor (4.3.15) pro-
vides a 2-functor

(4.3.16) V∗Cat(D̂,V∗) V∗Cat(DE,V∗).
We show in Theorem 4.3.19 below that this corresponds under the isomorphism
(4.3.14) to the forgetful inclusion of pointed functors among all functors. ◇
Example 4.3.17. In the case V∗ = Set∗, the enrichment D̂ of Definition 4.3.11 is the
canonical Set∗-enrichment described in Lemma 4.3.5 (1). ◇

For the remainder of this section we will have the following standing assump-
tions.

Convention 4.3.18 (Context for Pointed Diagram Categories).

(1) Suppose (V,⊗,1, TV) is a complete and cocomplete symmetric monoidal
closed category with chosen terminal object TV.

(2) Then by Theorem 4.2.3 (V∗,∧, E, [−,−]∗) is a complete and cocomplete
symmetric monoidal closed category with monoidal smash product ∧,
monoidal unit

E = 1∐ TV

and pointed hom [−,−]∗.
(3) Suppose (D,⊡, e, TD) is a small pointed symmetric monoidal category

with chosen null object TD as basepoint. ◇
Theorem 4.3.19. In the context of Convention 4.3.18 there is an equivalence of categories

(4.3.20) Cat∗((D, TD), (V∗, TV)) ≃
V∗Cat(D̂,V∗).
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Moreover, this equivalence commutes with the isomorphism (4.3.14) in the sense of the
following commutative diagram, where the vertical functors are given by the forgetful
inclusion and by (4.3.16).

(4.3.21)

Cat∗((D, TD), (V∗, TV)) V∗Cat(D̂,V∗)

Cat(D,V∗) V∗Cat(DE,V∗)

≃

≅

Proof. As noted in the proof of Proposition 3.8.12, the lower isomorphism of
(4.3.21) is the isomorphism on hom categories for the change of enrichment ad-
junction induced by

FE ⊣ V∗(E,−).
The right adjoint V∗(E,−) factors through Set∗ as

V∗
Û

Set∗ Set

where the second functor forgets the basepoint and, for each A in V∗ we let ÛA
denote V∗(E, A) equipped with the zero basepoint.

As in Lemma 3.8.11, Û is right adjoint to F̂ with natural isomorphisms

V∗(⋁
X♭

E, A) ≅∏
X♭

V∗(E, A) ≅ Set∗(X,V∗(E, A))

for each A in V∗. Thus we have the following serially-commuting diagram of
adjunctions, where the vertical functors are given by the forgetful inclusions.

Set∗ V∗

Set V

F̂

Û

FE

V∗(E,−)

�

�

In the above diagram, the lower adjunction induces the isomorphism (4.3.14)
shown along the bottom edge of (4.3.21). The upper adjunction induces an iso-
morphism

(4.3.22) (Set∗Cat)(D,V∗) ≅ V∗Cat(D̂,V∗)
between V∗-enriched diagrams and Set∗-enriched diagrams. We compose this iso-
morphism with the equivalence of Lemma 4.3.5 (2) to obtain (4.3.20). The diagram
(4.3.21) commutes by commutativity of the adjunctions above. □

Continuing in the context of Convention 4.3.18, the Day convolution and
hom diagram for enriched diagrams from D̂ to V∗ provide a symmetric monoi-
dal closed structure for pointed diagrams from (D, TD) to (V∗, TV). We record
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these here for later reference, using D̂ ∧ D̂ to denote the monoidal product as
V∗-categories, called the tensor product in Definition 1.3.3.
Definition 4.3.23. In the context of Convention 4.3.18, suppose given pointed dia-
grams

X, Y ∈ Cat∗((D, TD), (V∗, TV)).
We will use the notation

D♭(x, y) = (D(x, y))♭ for x, y ∈ D.

The Day convolution product for X and Y is the V∗-coend

(4.3.24) X ∧Y = ∫
(a,b)∈D̂∧D̂

⋁
D♭(a⊡b,−)

Xa ∧Yb

where we remind the reader that an empty wedge is TV by choice in the definition
of F̂ (Definition 4.3.9) and D̂ (4.3.12). If the input object is TD, we choose TV for the
coend. This definition is naturally isomorphic to the Day convolution (3.7.4) for D̂
and V∗, via the isomorphisms

D̂(a⊡ b, c)∧ (Xa ∧Yb) = ⋁
D♭(a⊡b,c)

E ∧ (Xa ∧Yb) ≅ ⋁
D♭(a⊡b,c)

Xa ∧Yb

induced by left unit isomorphisms in V∗, for a, b, and c in D.
The hom diagram from X to Y is the V∗-end

HomD∗(X, Y) = ∫(b,c)∈D̂∧D̂
[ ⋁
D♭(−⊡b;c)

Xb, Yc]
∗

(4.3.25)

≅ ∫
b∈D̂
[Xb, Y−⊡b]∗(4.3.26)

where the isomorphism is from (3.7.12). We again recall that an empty wedge is TV

by choice in the definition of F̂ (Definition 4.3.9). When the input object is TD, we
choose TV for the end. This definition is naturally isomorphic to the hom diagram
(3.7.5) for D̂ and V∗, via the isomorphisms

[D̂(a⊡ b, c)∧Xb, Yc]
∗
= [ ⋁
D♭(a⊡b,c)

E ∧Xb, Yc]
∗
≅ [ ⋁
D♭(a⊡b,c)

Xb, Yc]
∗

induced by the left unit isomorphisms in V∗, for a, b, and c in D.
The mapping object from X to Y is the V∗-end

(4.3.27) MapD∗(X, Y) = ∫
b∈D̂
[Xb, Yb]∗ ≅ HomD∗(X, Y)e

where the isomorphism follows from (3.7.12) and the unit isomorphisms in D.
The monoidal unit diagram is the V∗-functor

(4.3.28) J(−) = ⋁
D♭(e,−)

E ∶ D̂ V∗

where, as above, we take the empty wedge to be TV. ◇
Explanation 4.3.29. The Day convolution, hom diagram, and monoidal unit de-
fined in Definition 4.3.23 are all defined as V∗-enriched functors

D̂ V∗.
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Equivalently, using the isomorphism (4.3.22) from the proof of Theorem 4.3.19,
these are Set∗-enriched functors

D V∗.

Our choices of initial and terminal object when the inputs are TD make each of
these a pointed functor

(D, TD) (V∗, TV).
Moreover, the associativity, unit, and symmetry isomorphisms of Definition 3.7.17
are all pointed natural transformations with these definitions. We will use the
notation of Definition 4.3.23 for any of these three contexts. ◇

Combining Definition 4.3.23 and Explanation 4.3.29, we have the following
corollary of Theorems 3.7.22 and 4.3.19.

Corollary 4.3.30. In the context of Convention 4.3.18, the Day convolution, monoidal
unit, and hom diagram for pointed functors

(D, TD) (V∗, TV)

provide a symmetric monoidal closed structure for

Cat∗((D, TD), (V∗, TV)).

This makes the functors in the equivalence (4.3.20) into strong symmetric monoidal func-
tors.

Recall from Definition 3.7.1 we have the notation

(4.3.31) (D̂)-(V∗) = V∗Cat(D̂,V∗)

for the category of enriched D̂-shaped diagrams in the self-enrichment of V∗.

Definition 4.3.32. In the context of Convention 4.3.18, we let

◇(4.3.33) D∗-V = Cat∗((D, TD), (V∗, TV))

Explanation 4.3.34. In the notation of Definition 4.3.32, Theorem 4.3.19 gives an
equivalence of categories

(4.3.35) D∗-V ≃ (D̂)-(V∗)

and Definition 4.3.23, together with Explanation 4.3.29, uses this equivalence to
define

(D∗-V,∧, J,HomD∗)
as a symmetric monoidal closed category such that (4.3.35) is an equivalence via
strong symmetric monoidal functors. ◇

As an application of Lemmas 3.8.1 and 3.9.12 together with the equivalence
of categories from Theorem 4.3.19, evaluation at the monoidal unit of D̂ defines
a symmetric monoidal functor eve with left adjoint we again denote Le. The left
adjoint

(4.3.36) Le ∶ V∗ D∗-V ∶ eve

is strong symmetric monoidal by Lemma 3.9.12 and Corollary 4.3.30.
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Theorem 4.3.37. Suppose (V,⊗,1, TV) is a complete and cocomplete symmetric mon-
oidal closed category with chosen terminal object TV. Suppose (D,⊡, e, TD) is a small
symmetric monoidal category with chosen null object TD. Then the category of pointed
diagrams

D∗-V = Cat∗((D, TD), (V∗, TV))
is a complete and cocomplete symmetric monoidal closed category with

● monoidal product given by the Day convolution ∧,
● internal hom given by HomD∗ , and
● monoidal unit J.

Moreover, the adjunction (Le, eve)makes the pointed diagram category enriched, tensored,
and cotensored over V∗ with mapping objects given by MapD∗ .

Proof. Limits and colimits of pointed diagrams are computed objectwise, with
functoriality determined by the universal properties. The symmetric monoidal
closed structure is from Definition 4.3.23 and Explanation 4.3.29 together with
Theorems 3.7.22 and 4.3.19. The tensor and cotensor over V∗ follows from the
adjunction (4.3.36) and Corollary 3.9.15 or from Explanation 3.9.16 and the equiv-
alence of Theorem 4.3.19 directly. □

4.4. Notes

4.4.1 (Smash and Pointed Hom). Our proof of the ∧-Hom∗ adjunction in Theo-
rem 4.2.3 follows that of [EM09, Lemma 4.20]. An alternate proof of Theorem 4.1.8,
using the Yoneda Lemma and the ∧-Hom∗ adjunction from the proof of Theo-
rem 4.2.3 instead of our direct pushout arguments, is sketched in the proofs of
[EM09, Theorem 4.11 and Lemma 4.20]. ◇
4.4.2 (Choices for Pointed Convolution, Hom, and Monoidal Unit Diagrams). In
Definition 4.3.23 we emphasize choosing TV, instead of some other initial and ter-
minal object, for the empty wedges and constant co/ends when the input object
is TD. These choices make the convolution, hom, and monoidal unit diagrams
automatically pointed diagrams.

Without these conventions, the respective diagrams will still be enriched in
Set∗ and one can alternatively apply the strictification (−)′ defined in the proof of
Lemma 4.3.5 to obtain pointed convolution, hom, and monoidal unit diagrams. ◇





CHAPTER 5

Multicategories

In this chapter and the next we recall parts of the theory of multicategories.
We will use this in Chapters 8, 9, and 10 to define the K-theory functors KSe (Segal)
and KEM (Elmendorf-Mandell) that construct symmetric spectra from small per-
mutative categories. We will show that KEM preserves Cat-enrichment, as defined
in Chapter 6, and then use this in Part 2, Chapters 11, 12, and 13, to transport En-
monoidal structures on small permutative categories to En-monoidal structures on
the corresponding symmetric spectra.

In Section 5.1 we give the basic definitions and define the 2-category of small
multicategories, denoted Multicat. In Section 5.2 we discuss the Cartesian prod-
uct of multicategories. Then we define pointed multicategories in Section 5.3 and
explain the canonical inclusions of permutative categories as (pointed) multicate-
gories. Our K-theory constructions in Part 2 will make use of these inclusions.

The remaining sections are devoted to showing that Multicat is symmetric
monoidal closed. In Section 5.4 we review the general theory of limits and col-
imits for algebras over monads. We apply this in Section 5.5 to show that Multicat
is complete and cocomplete. Then in Sections 5.6 and 5.7 we use certain colimits
and limits to develop the tensor product and internal hom for Multicat. Applying
the general theory of Chapter 4, these descend to the category of small pointed
multicategories, giving a smash product and pointed hom.

5.1. The 2-Category of Multicategories

We begin with some notation and then give the definition of multicategory.
Definition 5.1.1. Suppose C is a class.

(1) Denote by
Prof(C) =∐

n≥0
C×n

the class of finite ordered sequences of elements in C. An element in
Prof(C) is called a C-profile.

(2) A typical C-profile of length n = len⟨c⟩ is denoted by ⟨c⟩ = (c1, . . . , cn) ∈
C×n or by ⟨ci⟩i to indicate the indexing variable. The empty C-profile is
denoted by ⟨⟩.

(3) We let ⊕ denote the concatenation of profiles, and note that ⊕ is an asso-
ciative binary operation with unit given by the empty tuple ⟨⟩.

(4) An element in Prof(C) × C is denoted as (⟨c⟩ ; c′) with c′ ∈ C and ⟨c⟩ ∈
Prof(C). ◇

Now we come to the definition of multicategory. In the literature, what we call
a multicategory in the next definition is sometimes called a symmetric multicategory
or a colored operad, with the term multicategory reserved for the non-symmetric
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version. Since we only consider the version with symmetric group action, we
simply call them multicategories.

Definition 5.1.2. A multicategory (M, γ,1) consists of the following data.
● M is equipped with a class ObM of objects. We abbreviate Prof(ObM) as
Prof(M).
● For c′ ∈ ObM and ⟨c⟩ = (c1, . . . , cn) ∈ Prof(M), M is equipped with a set

M(⟨c⟩ ; c′) =M(c1, . . . , cn ; c′)

of n-ary operations with input profile ⟨c⟩ and output c′.
● For (⟨c⟩ ; c′) ∈ Prof(M) ×ObM as above and a permutation σ ∈ Σn, M is

equipped with a bijection

M(⟨c⟩ ; c′) M(⟨c⟩σ ; c′),σ
≅

called the right action or the symmetric group action, in which

⟨c⟩σ = (cσ(1), . . . , cσ(n))

is the right permutation of ⟨c⟩ by σ.
● For c ∈ ObM, M is equipped with an element

1c ∈M(c ; c),

called the c-colored unit.
● For c′′ ∈ ObM, ⟨c′⟩ = (c′1, . . . , c′n) ∈ Prof(M), and ⟨cj⟩ = (cj,1, . . . , cj,kj

) ∈
Prof(M) for each j ∈ {1, . . . , n}, let ⟨c⟩ = ⊕j⟨cj⟩ ∈ Prof(M) be the concatena-
tion of the ⟨cj⟩. Then M is equipped with a map

(5.1.3) M(⟨c′⟩ ; c′′)×
n
∏
j=1

M(⟨cj⟩ ; c′j) M(⟨c⟩ ; c′′)γ

called the composition.
These data are required to satisfy the following axioms.

Symmetric Group Action: For (⟨c⟩ ; c′) ∈ Prof(M) × ObM with n = len⟨c⟩ and
σ, τ ∈ Σn, the diagram

M(⟨c⟩ ; c′) M(⟨c⟩σ ; c′)

M(⟨c⟩στ ; c′)
στ

σ

τ

is commutative. Moreover, the identity permutation in Σn acts as the
identity map on M(⟨c⟩ ; c′).

Associativity: Suppose given
● c′′′ ∈ ObM,
● ⟨c′′⟩ = (c′′1 , . . . , c′′n) ∈ Prof(M),
● ⟨c′j⟩ = (c′j,1, . . . , c′j,kj

) ∈ Prof(M) for each j ∈ {1, . . . , n}, and

● ⟨cj,i⟩ = (cj,i,1, . . . , cj,i,ℓj,i
) ∈ Prof(M) for each j ∈ {1, . . . , n} and each

i ∈ {1, . . . , k j},



5.1. THE 2-CATEGORY OF MULTICATEGORIES III.187

such that k j = len⟨c′j⟩ > 0 for at least one j. For each j, let ⟨cj⟩ = ⊕
kj
i=1⟨cj,i⟩

denote the concatenation of the ⟨cj,i⟩. Let ⟨c⟩ = ⊕n
j=1⟨cj⟩ denote the con-

catenation of the ⟨cj⟩. Let ⟨c′⟩ = ⊕n
j=1⟨c

′
j⟩ denote the concatenation of the

⟨c′j⟩.
Then the associativity diagram below commutes.

(5.1.4)

M(⟨c′′⟩ ; c′′′)× [
n
∏
j=1

M(⟨c′j⟩ ; c′′j )]×
n
∏
j=1
[

kj

∏
i=1

M(⟨cj,i⟩ ; c′j,i)]

M(⟨c′⟩ ; c′′′)×
n
∏
j=1
[

kj

∏
i=1

M(⟨cj,i⟩ ; c′j,i)]

M(⟨c′′⟩ ; c′′′)×
n
∏
j=1
[M(⟨c′j⟩ ; c′′j )×

kj

∏
i=1

M(⟨cj,i⟩ ; c′j,i)]

M(⟨c′′⟩ ; c′′′)×
n
∏
j=1

M(⟨cj⟩ ; c′′j )

M(⟨c⟩ ; c′′′)≅permute

(γ, 1)

γ

(1,∏j γ)

γ

Unity: Suppose c′ ∈ ObM.
(1) If ⟨c⟩ = (c1, . . . , cn) ∈ Prof(M) has length n ≥ 1, then the following

right unity diagram is commutative. Here {∗} is the one-point set,
and {∗}n is its n-fold product.

(5.1.5)

M(⟨c⟩ ; c′)× {∗}n M(⟨c⟩ ; c′)

M(⟨c⟩ ; c′)×
n
∏
j=1

M(cj ; cj) M(⟨c⟩ ; c′)

(1,∏1cj)

≅

1

γ

(2) For any ⟨c⟩ ∈ Prof(M), the left unity diagram below is commutative.

(5.1.6)

{∗}×M(⟨c⟩ ; c′) M(⟨c⟩ ; c′)

M(c′ ; c′)×M(⟨c⟩ ; c′) M(⟨c⟩ ; c′)

(1c′ ,1)

≅

1

γ

Equivariance: Suppose that in the definition of γ (5.1.3), len⟨cj⟩ = k j ≥ 0.
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(1) For each σ ∈ Σn, the following top equivariance diagram is commuta-
tive.

(5.1.7)

M(⟨c′⟩ ; c′′)×
n
∏
j=1

M(⟨cj⟩ ; c′j) M(⟨c′⟩σ ; c′′)×
n
∏
j=1

M(⟨cσ(j)⟩ ; c′σ(j))

M(⟨c1⟩, . . . , ⟨cn⟩ ; c′′) M(⟨cσ(1)⟩, . . . , ⟨cσ(n)⟩ ; c′′)

γ

(σ,σ−1)

γ

σ⟨kσ(1),...,kσ(n)⟩

Here σ⟨kσ(1), . . . , kσ(n)⟩ ∈ Σk1+⋯+kn is right action of the block permu-
tation (II.1.1.19) that permutes the n consecutive blocks of lengths
kσ(1), . . ., kσ(n) as σ permutes {1, . . . , n}, leaving the relative order
within each block unchanged.

(2) Given permutations τj ∈ Σkj
for 1 ≤ j ≤ n, the following bottom equiv-

ariance diagram is commutative.

(5.1.8)

M(⟨c′⟩ ; c′′)×
n
∏
j=1

M(⟨cj⟩ ; c′j) M(⟨c′⟩ ; c′′)×
n
∏
j=1

M(⟨cj⟩τj ; c′j)

M(⟨c1⟩, . . . , ⟨cn⟩ ; c′′) M(⟨c1⟩τ1, . . . , ⟨cn⟩τn ; c′′)

γ

(1,∏τj)

γ

τ1×⋯×τn

Here τ1 ×⋯ × τn ∈ Σk1+⋯+kn is the block sum (II.1.1.8) given by the
image of (τ1, . . . , τn) under the canonical inclusion

Σk1
×⋯×Σkn Σk1+⋯+kn .

This finishes the definition of a multicategory.
Moreover:

● A multicategory with only one object is an operad.
● If M is an operad, then its set of n-ary operations is denoted by Mn.
● A multicategory is small if its class of objects is a set.
● We will denote the image of an operation ϕ ∈ M(⟨c⟩ ; c′) under the right

action of a permutation σ as ϕ ⋅ σ ∈M(⟨c⟩σ ; c′).
● We will denote the composition of operations ϕ′ ∈ M(⟨c′⟩ ; c′′) and ϕj ∈
M(⟨cj⟩ ; c′j)with juxtaposition or ○, as in the following:

γ(ϕ′, (ϕ1, . . . , ϕn)) = ϕ′ ○ (ϕ1, . . . , ϕn) = (ϕ′) (ϕ1, . . . , ϕn). ◇

Example 5.1.9 (Unary Multicategories). Suppose M is a category. Then there is a
multicategory Mu whose object class is ObM and whose operations are given by

Mu(⟨c⟩ ; c′) =
⎧⎪⎪⎨⎪⎪⎩

M(c, c′) if ⟨c⟩ = c ∈ ObM,
∅ otherwise.

In other words, Mu only has unary operations, which are the morphisms in M.
The colored units and composition in Mu are given by those in M. There are no
non-trivial symmetric group actions, and the multicategory axioms reduce to the
axioms of a category.
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Conversely, if M is a multicategory then there is an underlying category, rM
consisting of the same objects and morphisms given by the unary operations of
M. ◇
Example 5.1.10 (Endomorphism Operad). Suppose X is an object of a permutative
category (C,⊕, e). Then there is a multicategory End(X) called the endomorphism
operad with a single object and with n-ary operations

End(X)n = C(X⊕n, X).

One detail of this example that will be important for our work below is the com-
position with nullary operations End(X)0 = C(e, X). For example, the composition

End(X)2 × (End(X)0 ×End(X)1) End(X)1
is given by the following composite for fi ∈ End(X)i:

X e⊕X
f0 ⊕ f1 X⊕X

f2 X.

The unlabeled morphism is given by (the inverse of) a unit isomorphism, which is
an identity because C is permutative. We will recall this observation in the proof
of Proposition 8.5.4 below. ◇
Example 5.1.11 (Endomorphism Multicategory). Suppose (C,⊕, e) is a small per-
mutative category. Then Example 5.1.10 generalizes to define the endomorphism
multicategory End(C)with object set given by ObC and with

End(C)(⟨X⟩ ; Y) = C(X1 ⊕⋯⊕Xn, Y)

for Y ∈ ObC and ⟨X⟩ = (X1,⋯, Xn) ∈ (ObC)×n. We note as in Example 5.1.10 that
compositions involving the empty tuple are defined via the (strict) unit isomor-
phisms of C. ◇
Definition 5.1.12. A multifunctor F ∶ M N between multicategories M and N
consists of the following data:

● an assignment
F ∶ ObM ObN,

where ObM and ObN are the classes of objects of M and N, respectively,
and
● for each (⟨c⟩ ; c′) ∈ Prof(M)×ObM with ⟨c⟩ = (c1, . . . , cn), a function

F ∶M(⟨c⟩ ; c′) N(F⟨c⟩ ; Fc′),

where F⟨c⟩ = (Fc1, . . . , Fcn).
These data are required to preserve the symmetric group action, the colored units,
and the composition in the following sense.

Symmetric Group Action: For each (⟨c⟩ ; c′) as above and each permutation σ ∈
Σn, the following diagram is commutative.

(5.1.13)

M(⟨c⟩ ; c′) N(F⟨c⟩ ; Fc′)

M(⟨c⟩σ ; c′) N(F⟨c⟩σ ; c′)

≅σ

F

≅σ

F
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Units: For each c ∈ ObM, the following equality holds:

(5.1.14) F1c = 1Fc ∈ N(Fc ; Fc).
Composition: For c′′, ⟨c′j⟩, and ⟨c⟩ = ⊕j⟨cj⟩ as in the definition of γ (5.1.3), the

following diagram is commutative.

(5.1.15)

M(⟨c′⟩ ; c′′)×
n
∏
j=1

M(⟨cj⟩ ; c′j) N(F⟨c′⟩ ; Fc′′)×
n
∏
j=1

N(F⟨cj⟩ ; Fc′j)

M(⟨c⟩ ; c′′) N(F⟨c⟩ ; Fc′′)

γ

(F,∏ F)

γ

F

This finishes the definition of a multifunctor.
Moreover:

(1) For another multifunctor G ∶ N P between multicategories, where P
has object class ObP, the composition GF ∶ M P is the multifunctor
defined by composing the assignments on objects

ObM ObN ObP
F G

and the functions on n-ary operations

M(⟨c⟩ ; c′) N(F⟨c⟩ ; Fc′) P(GF⟨c⟩ ; GFc′).F G

(2) The identity multifunctor 1M ∶ M M is defined by the identity assign-
ment on objects and the identity function on n-ary operations.

(3) An operad morphism is a multifunctor between two multicategories with
one object. ◇

Lemma 5.1.16. Composition of multifunctors is well defined, associative, and unital with
respect to the identity multifunctors.

Proof. For multifunctors F ∶M N and G ∶ N P, GF preserves the composi-
tions in M and P because the following diagram is commutative.

M(⟨c′⟩ ; c′′)×
n
∏
j=1

M(⟨cj⟩ ; c′j) M(⟨c⟩ ; c′′)

N(F⟨c′⟩ ; Fc′′)×
n
∏
j=1

N(F⟨cj⟩ ; Fc′j) N(F⟨c⟩ ; Fc′′)

P(GF⟨c′⟩ ; GFc′′)×
n
∏
j=1

P(GF⟨cj⟩ ; GFc′j) P(GF⟨c⟩ ; GFc′′)

γ

(F,∏ F)

(GF,∏GF)

F

GF
γ

(G,∏G) G

γ

Similarly, GF preserves the symmetric group actions and the colored units in M
and P, so it is a multifunctor. Composition of multifunctors is associative and
unital because composition of functions is associative and unital. □

Natural transformations and their horizontal and vertical compositions also
have direct generalizations to multicategories.



5.1. THE 2-CATEGORY OF MULTICATEGORIES III.191

Definition 5.1.17. Suppose F, G ∶M N are multifunctors as in Definition 5.1.12.
A multinatural transformation α ∶ F G consists of unary operations

αc ∈ N(Fc ; Gc) for c ∈ ObM

such that, for each n-ary operation p ∈M(⟨c⟩ ; c′)with ⟨c⟩ = (c1, . . . , cn), the follow-
ing naturality condition holds, with composition taken in N:

(Gp) ○ (αc1 , . . . , αcn) = αc′ ○ (Fp) ∈ N(F⟨c⟩ ; Gc′).
● Each αc is called a component of α.
● The identity multinatural transformation 1F ∶ F F has components

(1F)c = 1Fc ∈ N(Fc ; Fc) for c ∈ ObM. ◇
Definition 5.1.18. Suppose α ∶ F G is a multinatural transformation between
multifunctors as in Definition 5.1.17.

(1) Suppose β ∶ G H is a multinatural transformation for a multifunctor
H ∶M N. The vertical composition

βα ∶ F H

is the multinatural transformation with components given by composi-
tion in N

(βα)c = βc ○ αc ∈ N(Fc ; Hc) for c ∈ ObM.

(2) Suppose α′ ∶ F′ G′ is a multinatural transformation for multifunctors
F′, G′ ∶ N P. The horizontal composition

α′ ∗ α ∶ F′F G′G

is the multinatural transformation with components given by composi-
tion in P

(α′ ∗ α)c = α′Gc ○ (F′αc) = (G′αc) ○ (α′Fc) ∈ P(F′Fc ; G′Gc)
for each object c ∈ ObM, in which the second equality follows from the
naturality of α′. ◇

Example 5.1.19 (Functors and Natural Transformations). A functor F ∶ M N
between categories is also a multifunctor when M and N are regarded as multicat-
egories with only unary operations as in Example 5.1.9. Similarly, a natural trans-
formation α ∶ F F′ between functors is a multinatural transformation when F
and F′ are regarded as multifunctors. ◇
Theorem 5.1.20. There is a 2-category Multicat consisting of the following data.

● Its objects are small multicategories.
● For small multicategories M and N, the hom category Multicat(M,N) has:

– multifunctors M N as 1-cells;
– multinatural transformations between such multifunctors as 2-cells;
– vertical composition as composition; and
– identity multinatural transformations as identity 2-cells.

● The identity 1-cell 1M is the identity multifunctor 1M.
● Horizontal composition of 1-cells is the composition of multifunctors.
● Horizontal composition of 2-cells is that of multinatural transformations.

Definition 5.1.21. The initial operad I consists of a single object ∗ and a single unary
operation given by the unit 1∗ on its single object. ◇
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Explanation 5.1.22. For n /= 1, the n-ary operation sets In are empty. Since mul-
tifunctors preserve identity operations, I is indeed initial among operads. More
generally, for a multicategory M, a multifunctor I M consists of a choice of
object in M. Multinatural transformations between multifunctors

F ∶ I M and G ∶ I M

consist of unary operations F ∗ G∗. Thus, for small M, Multicat(I,M) is iso-
morphic to the underlying category of objects and unary operations in M. ◇
Definition 5.1.23. We will use the notation Multicat both for the 2-category of small
multicategories and for its underlying 1-category. ◇

Recall from Definition I.6.3.9 the notions of internal adjunction and equiva-
lence in a bicategory or 2-category.

Definition 5.1.24. An equivalence, respectively adjoint equivalence, of multicat-
egories is an internal equivalence, respectively adjoint equivalence, in the 2-
category of multicategories. ◇
Explanation 5.1.25. Suppose M and N are multicategories. A multifunctor

F ∶M N

is an equivalence if there is a multifunctor G ∶ N M together with isomor-
phisms of multifunctors

η ∶ 1M GF and ε ∶ FG 1N.

These data are an adjoint equivalence if they satisfy the addional triangle axioms
of an internal adjunction in Multicat. ◇

5.2. The Cartesian Structure on Multicategories

Now we discuss the Cartesian product for multicategories.

Definition 5.2.1. The terminal multicategory T consists of a single object and a single
n-ary operation ιn for each n ≥ 0. ◇
Explanation 5.2.2 (The Commutative Operad). The terminal multicategory T is
also denoted Com and is known as the commutative operad. For a permutative
category C, a multifunctor P ∶ T End(C) is precisely a commutative monoid
structure on the object P∗. Its unit is given by the nullary operation Pι0, its mul-
tiplication is given by the binary operation Pι2, and the axioms (associativity and
symmetry) follow from the composition and symmetric group actions on T = Com
being trivial.

For a general multicategory M, a multifunctor P ∶ T M is determined by a
choice of object P∗ and a choice of n-ary operation

Pιn ∈M((P∗, . . . , P∗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n terms

) ; P∗)

for each n ≥ 0, subject to the following compatibility conditions.

Unity: The equality Pι1 = 1P∗ holds.
Composition: The set of operations Pιn is closed under composition in M.
Symmetry: Each Pιn is fixed by the right symmetric group action. ◇
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Definition 5.2.3. Suppose M and N are multicategories. Their Cartesian product is
the multicategory M ×N whose objects are given by pairs (c, d) with c ∈ M and
d ∈ N and whose n-ary operations are given by the Cartesian product of sets

(M×N)(⟨c, d⟩ ; (c′, d′)) =M(⟨c⟩ ; c′)×N(⟨d⟩ ; d′).
for ⟨c, d⟩ = ((c1, d1), . . . , (cn, dn)) ∈ Prof(ObM ×ObN). The other data of M ×N is
specified as follows.

● The right action of a permutation σ is given by the diagonal

M(⟨c⟩ ; c′)×N(⟨d⟩ ; d′)
(σ, σ)

M(⟨c⟩σ ; c′)×N(⟨d⟩σ ; d′)
● The (c, d)-colored unit is the pair (1c, 1d).
● The composition is given by permuting factors and then applying the

product of the compositions in M and N:

[M(⟨c′⟩ ; c′′)×N(⟨d′⟩ ; d′′)]×
n
∏
j=1
[M(⟨cj⟩ ; c′j)×N(⟨dj⟩ ; d′j)]

[M(⟨c′⟩ ; c′′)×
n
∏
j=1

M(⟨cj⟩ ; c′j)]× [N(⟨d′⟩ ; d′′)×
n
∏
j=1

N(⟨dj⟩ ; d′j)]

M(⟨c⟩ ; c′′)×N(⟨d⟩ ; d′′)

where ⟨c⟩ = ⊕j⟨cj⟩ and ⟨d⟩ = ⊕j⟨dj⟩ are the concatenations of the ⟨cj⟩ and
⟨dj⟩, respectively.

The multicategory axioms for these data follow directly from the axioms for M and
N together with the axioms for × as a symmetric monoidal product on Set. ◇
Definition 5.2.4. For multifunctors

F ∶M M′ and G ∶ N N′,

the Cartesian product F×G is given by the pairwise assignment on objects and the
product of the corresponding morphisms on sets of operations:

M(⟨c⟩ ; c′)×N(⟨d⟩ ; d′) M′(F⟨c⟩ ; Fc′)×N′(G⟨d⟩ ; Gd′).
As above, the multifunctor axioms for F×G follow from those of F and G together
with the axioms for × as a symmetric monoidal product on Set. ◇
Proposition 5.2.5. The category of small multicategories is symmetric monoidal with
respect to the Cartesian product. The unit for this product is the terminal multicategory
T.

Proof. Since T has a single object, and each set of n-ary operations is a singleton,
the unit isomorphisms

T×M ≅M ≅M×T
for each small multicategory M follow from those for the singleton in Set. Like-
wise, the symmetry for the Cartesian product of multicategories is given by the
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symmetry of sets. The axioms making × a symmetric monoidal product in Multicat
follow from those in Set. For example, the hexagon axiom (I.1.2.22) follows from
commutativity of the following diagram in Set for each triple of small multicate-
gories L, M, and N and each triple of inputs and outputs

(⟨b⟩ ; b′) ∈ Prof(L)×ObL,

(⟨c⟩ ; c′) ∈ Prof(M)×ObM, and

(⟨d⟩ ; d′) ∈ Prof(N)×ObN.

[L(⟨b⟩ ; b′)×N(⟨d⟩ ; d′)]×M(⟨c⟩ ; c′)

L(⟨b⟩ ; b′)× [N(⟨d⟩ ; d′)×M(⟨c⟩ ; c′)]

L(⟨b⟩ ; b′)× [M(⟨c⟩ ; c′)×N(⟨d⟩ ; d′)]

[L(⟨b⟩ ; b′)×M(⟨c⟩ ; c′)]×N(⟨d⟩ ; d′)

N(⟨d⟩ ; d′)× [L(⟨b⟩ ; b′)×M(⟨c⟩ ; c′)]

[N(⟨d⟩ ; d′)× L(⟨b⟩ ; b′)]×M(⟨c⟩ ; c′)

≅ 1× ξ

≅ξ

≅ ξ × 1

The other axioms are proved in the same manner. □

5.3. Permutative Categories as Pointed Multicategories

In this section we describe pointed multicategories and the canonical base-
point for the multicategory End(C) associated to a permutative category C in Ex-
ample 5.1.11. Then we go on to discuss 2-functoriality of End(−). The multi-
functors induced by symmetric monoidal functors do not generally preserve the
canonical basepoints. However, we show below that strictly unital symmetric mon-
oidal functors yield pointed multifunctors.

The following is a special case of the more general Definition 4.1.1.

Definition 5.3.1. A pointed multicategory (M,∗M, ιM) consists of a multicategory M

together with a multifunctor T M determined by an object ∗M and operations
ιMn described in Explanation 5.2.2. Typically we will omit the superscripts when M
is clear from context.

A pointed multifunctor

F ∶ (M,∗M, ιM) (N,∗N, ιN)
is a multifunctor F ∶M N that commutes with the multifunctors T M and
T N. A pointed multinatural transformation between pointed multifunctors F
and G is a multinatural transformation α ∶ F G such that the component α∗M ∶
F(∗M) G(∗M) is the colored unit on ∗N. With these definitions, composites of
pointed multifunctors and multinatural transformations are again pointed. ◇
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Definition 5.3.2. We let Multicat∗ denote the 2-category of pointed small multi-
categories, pointed multifunctors, and pointed multinatural transformations. The
compositions and identity cells of Multicat∗ are defined as in Multicat (see Theo-
rem 5.1.20). ◇
Explanation 5.3.3. As noted in the introduction to Chapter 4, we will be interested
in a smash product for pointed multicategories, but not the one obtained from
the Cartesian product. We will develop a tensor product for multicategories in
Section 5.6 below, and its associated smash product will be the one of interest in
the applications of Part 2. ◇
Definition 5.3.4. Suppose (C,⊕, e) is a permutative category. The canonical base-
point of End(C) is given by the unit object e, with n-ary basepoint operations ιn = 1e
for all n ≥ 0. ◇
Explanation 5.3.5 (Strictly Unital Symmetric Monoidal Functors). Recall from Def-
initions 1.1.6 and 1.1.23 that a symmetric monoidal functor

F ∶ C D

has structure morphisms

F0 ∶ 1C F1D and

F2
X,Y ∶ FX⊕ FY F(X⊕Y)

satisfying axioms for associativity (1.1.9), unity (1.1.10), and compatibility with the
symmetry (1.1.18). We say that F is strictly unital if F0 is the identity morphism.
If C and D are permutative and F is strictly unital, then the unity axioms imply
that F2

X,Y is an identity whenever X or Y is the monoidal unit of C. Recall from
Definition 1.1.27 that

PermCatsu

denotes the 2-category consisting of permutative categories, strictly unital sym-
metric monoidal functors, and monoidal natural transformations. ◇
Proposition 5.3.6. The construction End(C) of Example 5.1.11 defines a 2-functor

End ∶ PermCat Multicat

from the 2-category of small permutative categories to the 2-category of small multicate-
gories.

Proof. Given a symmetric monoidal functor F ∶ C D, we apply F component-
wise on tuples of objects in End(C) to define an assignment Prof(C) Prof(D).
Given an operation

f ∈ End(C)(⟨X⟩ ; X′) = C(⊕iXi, X′),
we define (End(F)) f by the composite

⊕iFXi F(⊕iXi)
F f

FX′.

where the unlabeled morphism is given by iterating F2 if ⟨X⟩ is nonempty, and is
given by F0 if ⟨X⟩ = ⟨⟩. The associativity and unity axoms for F imply that this def-
inition of End(F) is compatible with the composition of operations in End(C) and
End(D). The symmetry axiom ensures that End(F) commutes with the symmetric
group actions on End(C) and End(D). Likewise, the components of a monoidal
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natural transformation α ∶ F F′ satisfy the naturality axiom for a multinatural
transformation from End(F) to End(F′).

To verify that End is 2-functorial, first note that End(1C) = 1End(C) by checking
that these multifunctors agree on objects and operations. Next, for a composable
pair of symmetric monoidal functors, G and F, we have

End(GF) = End(F) ○End(G)

because (GF)2 = G(F2) ○G2. □

Proposition 5.3.7. The 2-functor

End ∶ PermCat Multicat

is bijective on 1-cells and 2-cells.

Proof. The proof of Proposition 5.3.6 gives the construction of a multifunctor
End(C) End(D) from a symmetric monoidal functor C D. Here we dis-
cuss an inverse construction.

For each ⟨X⟩ ∈ Prof(C), we let ι⟨X⟩ ∈ End(C)(⟨X⟩ ; ⊕iXi) denote the operation
corresponding to the identity 1⊕iXi . Given a multifunctor

G ∶ End(C) End(D)

we define the underlying functor of

F ∶ C D

by restricting G to objects and unary operations. Then we define

F2
X,Y = Gι(X,Y) and F0 = Gι⟨⟩.

Naturality of F2 with respect to morphisms in C, the associativity axiom (I.1.2.14),
and the unity axioms (I.1.2.15) follow from the composition axiom (5.1.15) for G
together with the following equalities in End(C) for f ∶ X X′ and g ∶ Y Y′

in C:

(1) (functoriality of F2)

ι(X′,Y′) ○ ( f , g) = ( f ⊕ g) ○ ι(X,Y);

(2) (associativity axiom)

ι(X,Y⊕Z) ○ (1X , ι(Y,Z)) = ι(X,Y,Z) = ι(X⊕Y,Z) ○ (ι(X,Y), 1Z); and

(3) (unity axioms)

ι(e,X) ○ (ι⟨⟩, 1X) = 1X and ι(X,e) ○ (1X , ι⟨⟩) = 1X .

The symmetry axiom (I.1.2.26) for F holds by the equivariance axiom (5.1.13) for
G.

To see that this construction determines a bijection between monoidal functors
C D and multifunctors End(C) End(D), observe first by the associativity
of composition that the values of G on ι⟨X⟩ for profiles ⟨X⟩ of length n > 2 are
determined by its values on ι⟨⟩ and ι(X,Y). Next observe that composition with ι⟨X⟩
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induces a bijection on the top row of the following diagram for any ⟨X⟩ ∈ Prof(C)
and any Y ∈ C.

End(C)(⊕i Xi ; Y) End(C)(⟨X⟩ ; Y)

End(D)(G(⊕iXi) ; GY) End(D)(G⟨X⟩ ; GY)

(−) ○ ι⟨X⟩
≅

(−) ○ (Gι⟨X⟩)

G G

This shows that the values of G on arbitrary n-ary operations are determined by
its values on unary operations and on the operations ι⟨X⟩. Thus G is determined
by the data of F constructed above.

Now we turn to the correspondence between monoidal natural transforma-
tions of symmetric monoidal functors C D and multinatural transformations
of multifunctors End(C) End(D). Each type of transformation is determined
by its components, which are unary operations. As noted in the proof of Proposi-
tion 5.3.6, the components of a monoidal natural transformation F F′ already
satisfy the additional axioms for multinatural transformations

End(F) End(F′),
and thus End is bijective on 2-cells. □

Now we discuss preservation of the canonical basepoints.
Lemma 5.3.8. Suppose C and D are permutative categories.

● Suppose F ∶ C D is a symmetric monoidal functor. The multifunctor

End(F) ∶ End(C) End(D)
preserves the canonical basepoints if and only if F is strictly unital.
● Suppose α ∶ F F′ is a monoidal natural transformation between strictly

unital symmetric monoidal functors F, F′ ∶ C D. Then End(α) is a pointed
multinatural transformation.

Proof. Given a symmetric monoidal functor F ∶ C D, let

G = End(F) ∶ End(C) End(D)
denote the corresponding multifunctor. Since F and G are the same assignments
on objects, each strictly preserves the unit if and only if the other does. Moreover,
the proof of Proposition 5.3.7 shows that F0 = Gι⟨⟩ and F2

X,Y = Gι(X,Y). Thus we
conclude that F is strictly unital if and only if G is a pointed multifunctor.

Given a monoidal natural transformation α ∶ F F′ between strictly unital
symmetric monoidal functors

F, F′ ∶ C D,

the unit condition (1.1.13) for α implies that αe = 1e. Therefore, End(α) is a pointed
multinatural transformation. □

Using Lemma 5.3.8, we have the following corollary of Propositions 5.3.6
and 5.3.7.
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Corollary 5.3.9. The endomorphism construction End restricts to a 2-functor

End ∶ PermCatsu Multicat∗

that is bijective on 1-cells and 2-cells.

5.4. Limits and Colimits of Monadic Algebras

This section reviews the general theory of limits and colimits for algebras over
monads. We will apply this in Section 5.5 to show that Multicat, the category of
small multicategories and multifunctors, is complete and cocomplete.
Definition 5.4.1. A monad on a category B is a triple (T, µ, η) in which

● T ∶ B B is a functor and
● µ ∶ T2 T, called the multiplication, and η ∶ 1M T, called the unit,

are natural transformations
such that the associativity and unity diagrams

T3 T2

T2 T

µT

Tµ

µ

µ

1M ○ T T2 T ○ 1M

T T T

ηT

µ

Tη

are commutative. We often abbreviate such a monad to T. ◇
Definition 5.4.2. Suppose (T, µ, η) is a monad on a category B.

(1) A T-algebra is a pair (X, θ) consisting of
● an object X in B and
● a morphism θ ∶ TX X, called the structure morphism,

such that the associativity and unity diagrams

(5.4.3)
T2X TX

TX X

µX

Tθ

θ

θ

X TX

X

ηX

θ

are commutative.
(2) A morphism of T-algebras

f ∶ (X, θX) (Y, θY)
is a morphism f ∶ X Y in B such that the diagram

TX TY

X Y

T f

θX θY

f

is commutative. Identities and composition of T-algebra morphisms are
defined in B.

(3) The category of T-algebras is denoted by Alg(T). ◇
Example 5.4.4. Suppose given an adjunction

B A
L

U
�
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with unit η ∶ 1B UL and counit ε ∶ LU 1A. The composite functor UL is a
monad on B, with unit and composition given, respectively, by

η ∶ 1B UL and UεL ∶ ULUL UL,

where UεL = 1U ∗ ε ∗ 1L. One can verify that the triangle identities (I.1.1.11) for
L ⊣ U imply that the associativity and unity diagrams of Definition 5.4.1 commute
for T = UL.

For any A ∈ A, there is a canonical UL-algebra structure on UA given by Uε =
1U ∗ ε:

(UL)(UA) = (ULU)A UεA UA.
Naturality of the counit implies that U f ∶ UA UA′ is a morphism of UL-
algebras for each f ∶ A A′ in A. Thus U induces a canonical functor

◇(5.4.5) A Alg(UL).
Definition 5.4.6. In the context of Example 5.4.4, we say that L ⊣ U is a monadic
adjunction if the canonical functor (5.4.5) induced by U is an equivalence of cate-
gories

(5.4.7) A
≃

Alg(UL).
Moreover, we say that the adjunction L ⊣ U is strictly monadic if (5.4.7) is an iso-
morphism of categories.

We say that U ∶ A B is a monadic functor if it has a left adjoint L and the
pair (L, U) is a monadic adjunction. Similarly, we say that U is strictly monadic if it
has a left adjoint L such that (L, U) is a strictly monadic adjunction. ◇
Explanation 5.4.8 (Limits of Algebras). For any monad T on a category B, the
forgetful functor Alg(T) B creates limits in Alg(T). That is, given a diagram
of T-algebras, one proves that, upon forgetting to B, if the limit of the underlying
diagram exists then it has a canonical T-algebra structure and is indeed the limit
of the given diagram in Alg(T). ◇

In many applications of interest one can also obtain colimits in Alg(T) from
those in the underlying category, although the construction is more complicated.
We recall several standard definitions and results from the literature and apply
them below to the category of small multicategories.

To fix terminology, we begin with the following reformulation of colimits from
Definition I.1.1.13.
Definition 5.4.9 (Cocones and Colimits). Suppose that F ∶ D C is a functor of
categories. A cocone under F is an object W ∈ C together with a natural transfor-
mation c ∶ F ∆W , where ∆W denotes the constant functor at W, given by the
composite in the diagram below.

D C

∗

F

W

⇒c

A morphism of cocones (W, c) (W′, c′) consists of a morphism W W′ in
C whose whiskering with c is equal to c′. A colimit for F is an initial object in the
category of cocones under F. ◇
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Definition 5.4.10. Suppose A is a category and f , g ∈ A(X, Y) is a parallel pair of
morphisms.

(1) A coequalizer of f and g consists of a pair (Z, h)

X Y Z
f

g h

that is a colimit of the diagram formed by f and g.
(2) A split coequalizer of f and g consists of an object Z ∈ A together with

morphisms h, s, and t

X Y Z,
f

g h

t s

such that

h f = hg, hs = 1Z, gt = 1Y, and f t = sh.

We call these the splitting conditions.
(3) An absolute coequalizer for ( f , g) consists of an object and morphism pair
(Z, h) such that (FZ, Fh) is a coequalizer of (F f , Fg) for any functor F
with domain A. ◇

Explanation 5.4.11. The splitting conditions in the definition of split coequalizer
imply that Z is indeed a coequalizer of f and g. Moreover, since these conditions
are preserved by any functor, a split coequalizer is an absolute coequalizer. ◇
Definition 5.4.12. Suppose U ∶ A B is a functor. We say that U strictly creates
coequalizers for a parallel pair of morphisms ( f , g) in A if, for each coequalizer
(W, k) of (U f , Ug) in B,

UX UY W,
U f

Ug k

there is a unique object and morphism pair (Z, h) in A such that

(UZ, Uh) = (W, k)

and (Z, h) is a coequalizer of f and g in A. ◇
Theorem 5.4.13 (Beck’s Precise Tripleability). For an adjunction

B A
L

U
�

the following statements are equivalent.

(1) The adjunction L ⊣ U is strictly monadic.
(2) U strictly creates coequalizers for parallel pairs ( f , g) in A for which (U f , Ug)

has an absolute coequalizer in B.
(3) U strictly creates coequalizers for parallel pairs ( f , g) in A for which (U f , Ug)

has a split coequalizer in B.
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Proof. We provide a sketch proof, following that of [ML98, VI.7 Theorem 1]. We
refer the reader there for complete details, with the warning that [ML98] omits the
term “strictly” from our (2) and (3) but the conditions are identical. See Note 5.8.2
for further explanation of this point.

To show that (1) implies (2), let T = UL and suppose given a parallel pair of
morphisms in A ≅ Alg(T)

X Y
f

g

such that (U f , Ug) has an absolute coequalizer (W, k) in B. We must show two
things.

● There is a unique T-algebra structure on W. Letting Z denote the corre-
sponding T-algebra, we have Z = UW.
● The pair (Z, k) is a coequalizer of f and g in A ≅ Alg(T).

Applying T to the coequalizer diagram for W, one has the following diagram
in B, where the solid vertical arrows are the T-algebra structure morphisms for
UX and UY.

(5.4.14)

UX UY W

TUX TUY TW

U f

Ug
k

TU f

TUg
Tk

θ

The dashed arrow θ is uniquely determined because, by hypothesis, (W, k) is an
absolute coequalizer and therefore (TW, Tk) is a coequalizer of (TU f , TUg).

Next one shows that θ satisfies the associativity and unity diagrams (5.4.3) of
a T-algebra structure morphism. The associativity diagram follows from using the
absolute coequalizer condition in a second instance to conclude that (T2W, T2k) is
a coequalizer of (T2U f , T2Ug). This implies that the two composites T2W W
determined by θ and µ are equal. The unity diagram follows similarly by consid-
ering the analogue of (5.4.14) with the units for UX and UY.

Thus the absolute coequalizer condition determines a unique T-algebra struc-
ture on W = UZ such that k is a morphism of T-algebras. One uses the absolute
coequalizer condition again to argue that Z has the universal property of a co-
equalizer of f and g in A ≅ Alg(T). This concludes the argument that (1) implies
(2).

It is immediate that (2) implies (3) because each split coequalizer is an exam-
ple of an absolute coequalizer. To show that (3) implies (1), we begin with the
following key observation.

For any monad (T, µ, η) and T-algebra (X, θ), the multiplication and unit
structure morphisms make the following diagram a coequalizer in Alg(T) that
becomes a split coequalizer after forgetting down to the underlying category on
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which T acts.

(5.4.15)
T2X TX X

Tθ

µX

θ

ηTX ηX

The arrows Tθ, µX , and θ are morphisms of T-algebras, but the splittings are
merely morphisms in the underlying category.

For the argument that (3) implies (1), again let T = UL and note that for any
object A ∈ A we have a diagram

(5.4.16) LULUA LUA A
εLUA

LUεA

εA

given by the counit ε of the adjunction L ⊣ U. Applying U yields a split coequalizer
as an instance of (5.4.15) with X = UA. The assumption (3) implies therefore that
each object, respectively morphism, in A is uniquely determined as a coequalizer,
respectively morphism of coequalizers, in (5.4.16). The desired isomorphism in (1)
follows by further developing this observation. □

The second major result that we will need from the theory of monad algebras
is Theorem 5.4.18 below, concerning filtered colimits.

Definition 5.4.17 (Filtered Colimits). We say that a category J is filtered if every
finite diagram

N J

has a cocone.
(1) A filtered colimit is a colimit over a filtered diagram category.
(2) We say that a monad T ∶ B B preserves filitered colimits if, whenever

Z = colimJX for a filtered diagram

J
X

B,

then applying T yields a colimit, TZ, of the composite diagram

J
TX

B. ◇
Theorem 5.4.18. Suppose T is a monad on a complete and cocomplete category B. If
T preserves filtered colimits, then the category of T-algebras, Alg(T), is complete and
cocomplete.
Explanation 5.4.19. Theorem 5.4.18 appears in many introductory texts. For ex-
ample, [Rie16, Theorem 5.6.12] gives a complete proof following [Bor94b, Propo-
sition 4.3.6]. The hypothesis that T preserves filtered colimits is not required for
the construction of limits, but is required in order to show that Alg(T) has colim-
its. Since neither coequalizers nor coproducts are filtered colimits, the existence of
colimits is not an immediate consequence of the hypotheses.

One can construct coproducts of algebras via certain coequalizers of free al-
gebras, so the majority of the work in proving cocompleteness for Alg(T) is the
construction of coequalizers. To construct a coequalizer of algebra morphisms,
one constructs a certain sequence of coequalizers in the underlying category, none
of which are necessarily T-algebras. However, because sequential colimits are fil-
tered, their colimit is preserved by T and one uses this to define T-algebra structure
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morphisms. The hypothesis that T preserves filtered colimits is used several more
times while verifying the algebra axioms of Definition 5.4.2. ◇

For our application of Theorems 5.4.13 and 5.4.18 below, we will use the fol-
lowing observations about finite products.
Lemma 5.4.20.

(1) Suppose C is a category with products and suppose

Xi Yi Zi

is a split coequalizer in C for each i in an indexing set I. Then the product

∏i∈I Xi ∏i∈IYi ∏i∈I Zi

is a split coequalizer in C.
(2) Suppose J is a small filtered category, n is a natural number, and

Fi ∶ J Set

is a diagram with colimit Zi for each i ∈ {1, . . . , n}. Then the product∏n
i=1Zi is

a colimit for∏n
i=1Fi.

Proof. Statement (1) holds because the splittings are preserved and therefore imply
that the resulting diagram is a coequalizer (see Explanation 5.4.11). For statement
(2), the key observation is that the colimit for a diagram of sets

D
X

Set

is given by the quotient of∐d∈D X(d) subject to the relation that, for each x ∈ X(d)
and x′ ∈ X(d′)we have x ∼ x′ if and only if there are morphisms in D

h ∶ d t and h′ ∶ d′ t

such that
(Xh)(x) = (Xh′)(x′)

in the set X(t). We call d, respectively d′, the witness for x, respectively x′. We call
(h, h′) the witness for the equivalence x ∼ x′.

In the case of Zi = colimJFi, we have the canonical function

colimJ∏n
i=1Fi ∏n

i=1Zi

that sends each equivalence class of tuples to the tuple of corresponding equiva-
lence classes. This is well defined because an equivalence of tuples

(zi)ni=1 ∼ (z
′
i)ni=1

implies a componentwise equivalence zi ∼ z′i for each i.
We show that the canonical function is bijective. To check surjectivity, suppose

given zi ∈ Zi, each with witness di. Because J is filtered, it has a cocone t for the set
of objects

d1, . . . , dn ∈ D.
Let

hi ∶ di t
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denote the morphisms of this cocone, and let

zi = (Fihi)(zi),
so zi ∼ zi for each i, witnessed by (hi, 1j). Since each zi ∈ Fi(t), we have

(zi)ni=1 ∈ colimJ∏n
i=1Fi

such that the image of this tuple under the canonical function is equivalent to
(zi)ni=1. This shows that the canonical function is surjective.

To verify that the canonical function is injective, suppose given (zi) and (z′i)
such that zi ∼ z′i for each i, with witnesses

hi ∶ di ti and h′i ∶ d′i ti.

Because J is filtered, there is a cocone s for the finite subdiagram spanned by the
hi and h′i . Taking the product of composites

di ti s, respectively d′i ti s,

over i ∈ {1, . . . , n} provides a witness for the equivalence of tuples

(zi)ni=1 ∼ (z
′
i)ni=1 in colimJ

n
∏
i=1

Fi.

Therefore, the canonical function is injective. □

5.5. Limits and Colimits of Multicategories

We will use Theorems 5.4.13 and 5.4.18 to show that Multicat is complete and
cocomplete. The underlying category A for our application will be the category of
small multigraphs, which we now describe.

Definition 5.5.1. A multigraph X consists of a class VtX of vertices, together with
a set X(⟨c⟩ ; c′) for each tuple of vertices ⟨c⟩ = (c1, . . . , cn) and c′. We refer to the
elements of X(⟨c⟩ ; c′) as multiedges, with source ⟨c⟩ and target c′. As with multicat-
egories, we let Prof(X) denote Prof(VtX).

A morphism of multigraphs

f ∶ X Y

consists of a function on vertices

f ∶ VtX VtY

together with a function on multiedges

f ∶ X(⟨x⟩ ; x′) Y( f ⟨x⟩ ; f (x′))

for each (⟨x⟩ ; x′) ∈ Prof(X) × VtX, with f ⟨x⟩ being the tuple whose jth entry is
f (xj). This finishes the definition of a multigraph.

Moreover:
● A multigraph is small if its class of vertices is a set.
● The collection of small multigraphs and their morphisms form a category,

denoted MGraph.
● The category of multigraphs with a fixed set of vertices C and whose

morphisms are the identity on vertices is denoted MGraphC. ◇
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Explanation 5.5.2. Note that MGraphC is isomorphic to the category of functors
and natural transformations

SetProf(C)×C,

where Prof(C)×C is the discrete category with object set Prof(C)×C. ◇
Definition 5.5.3. Let MulticatC denote the subcategory of Multicat consisting of
those multicategories with object set C and those multifunctors that are the iden-
tity on objects. Let

UC ∶MulticatC MGraphC

denote the functor that takes a multicategory M to its underlying multigraph. The
vertices of UM are the objects of M and the multiedges of UM are the operations of
M. A multifunctor F that is the identity on object set C defines an assignment on
sets of operations, and this gives a morphism UF of underlying multigraphs. ◇
Theorem 5.5.4 ([Yau16, Theorem 20.3.22]). For a fixed set of objects C, the forgetful
functor UC ∶MulticatC MGraphC has a left adjoint LC.

Explanation 5.5.5. We will not need the precise definition of the left adjoint LC in
our discussion below. However, the following information will be useful.

For X ∈ MGraphC, the set of operations LCX(⟨c⟩ ; c′) is generated under for-
mal composition and permutation by the multiedges of X. To make this precise,
[Yau16] indexes such composites by certain rooted trees (planar and labeled by C).
Then

LCX(⟨c⟩ ; c′) =∐
[T]
∏

v
X(⟨cv⟩ ; c′v),

where the coproduct is over isomorphism classes of trees, the product is over the
internal vertices v of a class representative T, and (⟨cv⟩ ; c′v) is a labeling of v by
objects of C. Thus each element of LCX(⟨c⟩ ; c′) is a tuple of composible multiedges
of X, whose individual components have profile (⟨cv⟩ ; c′v) and whose underlying
multigraph has the shape of some planar tree T.

For our purposes, the crucial feature of LC is that the number of internal ver-
tices v in each tree T is finite. Therefore, LCX(⟨c⟩ ; c′) is a coproduct of finite prod-
ucts in Set. For further details and proofs, we refer the reader to [Yau16]. ◇
Definition 5.5.6. Suppose f0 ∶ C D is a function between sets. If X is a multi-
graph with vertex set D, we define f ∗0 X to be the multigraph whose vertices are
the elements of C and whose multiedges are given by applying f0:

(5.5.7) ( f ∗0 X)(⟨x⟩ ; x′) = X( f0⟨x⟩ ; f0(x′)).

Then f0 determines a morphism of multigraphs, using the same notation,

f ∗0 X
f0 X

given by f0 on vertices and by the identity on multiedges. If M is a multicategory
with object set C, we define f ∗0 M by applying f ∗0 to the underlying multigraph
of M. Defining symmetric group actions, units, and composition in f ∗0 M via the
equalities (5.5.7), f0 induces a multifunctor

f ∗0 M
f0

M. ◇
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Explanation 5.5.8. Suppose f ∶ X Y is a morphism of multigraphs. Using the
notation of Definition 5.5.6, f factors uniquely as a composite

X
f1 f ∗0 Y

f0 Y

where
● f0 ∶ VtX VtY is the function on vertices determined by f and
● f1 ∶ X f ∗0 Y is a multigraph morphism in MGraphVtX .

If f ∶ X Y and g ∶ Y Z is a composable pair of multigraph morphisms, the
factorization of their composite is given by

(g f )0 = g0 f0 and (g f )1 = ( f ∗0 g1) ○ f1

as in the following commutative diagram.

X f ∗0 Y

Y

f ∗0 g∗0 Z

g∗0 Z Z
f1

f0

f ∗0 g1 f0

g1

g0

Similarly, if F ∶M N is a multifunctor, F factors uniquely as a composite

M
F1 F∗0 N

F0
N

where
● F0 ∶ ObM ObN is the function on objects determined by F and
● F1 ∶M F∗0 N is a multifunctor in MulticatObM. ◇

We will use these factorizations to extend the adjunction of Theorem 5.5.4 as
follows.
Proposition 5.5.9. The forgetful functor U ∶ Multicat MGraph has a left adjoint L
given on each subcategory MGraphC by the adjoint LC.

Proof. Each multigraph X has a set of vertices C, so we define LX = LCX. For
a multigraph morphism f ∶ X Y where Y has vertex set VtY = D, we factor
f = f0 f1 as in Explanation 5.5.8 and define L( f0 f1) to be the composite

LCX
LC f1 LC( f ∗0 Y)

( f0)
′

LDY

where ( f0)′ is the multifunctor given by f0 on objects and induced by the identity
on sets of multiedges.

The units and counits of each adjunction LC ⊣ UC from Theorem 5.5.4 provide
components of a unit and counit for L ⊣ U. Naturality with respect to general
morphisms in Multicat and MGraph follows from naturality with respect to each
fixed object set C and the uniqueness of the decompositions in Explanation 5.5.8.
The triangle identities for L ⊣ U follow from the triangle identities for each fixed
object set C. □

Explanation 5.5.10 (Products of Multicategories). In Definition 5.2.3 we defined
the Cartesian product of multicategories. We can now observe that this Cartesian
product is created by taking the product of underlying multigraphs and verifying
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that the additional structure and axioms of a multicategory hold componentwise.
This construction is a special case of the more general construction for limits of
monad algebras mentioned in Explanation 5.4.8. ◇

Theorem 5.5.11. The adjunction

MGraph Multicat

L

U

�

is strictly monadic.

Proof. We will use Theorem 5.4.13. Therefore, it suffices to show that U strictly
creates coequalizers of parallel pairs F, G ∶ Multicat(M,N) such that (UF, UG) has
a split coequalizer in MGraph.

Suppose (F, G) is such a pair, and suppose

UM UN W
UF

UG K

R S

is a split coequalizer of multigraphs. Being a split coequalizer implies that each
set of multiedges in W with input profile ⟨c⟩ ∈ Prof(W) and output c′ is a split
coequalizer

UM(RS⟨c⟩ ; RSc′) UN(S⟨c⟩ ; Sc′) W(⟨c⟩ ; c′).
UF

UG K

R S

For each c ∈ VtW we define the c-colored unit in W to be the image under K of the
edge in UN corresponding to the (Sc)-colored unit in N.

Now we recall, from Lemma 5.4.20 (1), that split coequalizers commute with
finite products. Thus the left- and right-hand columns of the diagram below are
split coequalizers, where the labels at left indicate a product of morphisms given
by the indicated morphism of multigraphs. The solid horizontal arrows are in-
duced by the composition in M and N, respectively, and therefore commute with
the arrows labeled UF and UG (although they do not necessarily commute with
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the sections S and T). Thus there is a unique induced function between the co-
equalizers, drawn as the dashed arrow.

(5.5.12)

UM(RS⟨c′⟩ ; RSc′′)×∏
i

UM(RS⟨c⟩i ; RSc′i)

UN(S⟨c′⟩ ; Sc′′)×∏
i

UN(S⟨c⟩i ; Sc′i)

W(⟨c′⟩ ; c′′)×∏
i

W(⟨c⟩i ; c′i)

UM(RS⟨c⟩ ; RSc′′)

UN(S⟨c⟩ ; Sc′′)

W(⟨c⟩ ; c′′).

UFUG

K

R

S

UFUG

K

R

S

∃!

This defines the composition in W. Similarly, we define the symmetric group ac-
tions in W as the unique morphism of coequalizers shown below.

(5.5.13)

UM(RS⟨c⟩ ; RSc′)

UN(S⟨c⟩ ; Sc′)

W(⟨c⟩ ; c′).

UM(RS⟨c⟩σ ; RSc′)

UN(S⟨c⟩σ ; Sc′)

W(⟨c⟩σ ; c′).

UFUG

K

R

S

UFUG

K

R

S

Uσ

Uσ

∃!

Each of the axioms in the definition of a multicategory (Definition 5.1.2) is a
commuting diagram whose objects are finite products of sets of operations and
whose morphisms are a finite product of the following types:

● compositions,
● permutations,
● identities, and
● morphisms from singleton sets picking out unit operations.

Therefore, the morphisms in each diagram commute with those given by UF, re-
spectively UG, on components.
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Again using the fact that split coequalizers commute with finite products, to-
gether with functoriality of coequalizers with respect to natural transformations of
diagrams, we see that each axiom holds for W and therefore W is a multicategory.
For the remainder of this proof we will write UW for the underlying multigraph
of the multicategory W.

Now we show that W is a coequalizer in Multicat. Suppose that P is another
cocone for F and G. Since UW is the coequalizer of UF and UG, then there is
a unique induced morphism of multigraphs UW UP. A similar argument
based on split coequalizers commuting with finite products shows that this mor-
phism satisfies the axioms of a multifunctor W P. It is uniquely determined
by its underlying function of multigraphs, and therefore W is the coequalizer of F
and G in Multicat.

The choice of c-colored units in W is the unique one such that K preserves
units. Moreover, the uniqueness of the dashed arrow in (5.5.12) shows that the
composition in W is uniquely determined by the coequalizer condition. Similarly,
the uniqueness of the dashed arrow in (5.5.13) shows that the symmetric group
actions in W are uniquely determined. Therefore, our argument above shows that
the split coequalizer W has a unique multicategory structure induced by that of M
and N via split coequalizers. This verifies that U strictly creates coequalizers for
(F, G), and therefore verifies condition (3) of Theorem 5.4.13. □

Theorem 5.5.14. The category Multicat is complete and cocomplete.

Proof. We have shown that Multicat is monadic over MGraph in Theorem 5.5.11.
As noted in Explanation 5.4.8, limits of algebras are created in the underlying cat-
egory.

To show that Multicat is cocomplete, we apply Theorem 5.4.18. Thus it suffices
to verify that the monad T = UL of Theorem 5.5.11 preserves filtered colimits. This
follows because, for each multigraph W and each pair (⟨c⟩ ; c′) ∈ Prof(W) ×VtW,
the set of multiedges ULW(⟨c⟩ ; c′) is given by a coproduct of finite products of
sets (see Explanation 5.5.5). Since coproducts commute with arbitrary colimits
and we recall, from Lemma 5.4.20 (2), that filtered colimits are preserved by finite
products, it follows that T preserves filtered colimits. □

Colimits of multicategories are generally difficult to describe explicitly. How-
ever, the following feature is relatively straightforward and will be useful in our
further work.
Proposition 5.5.15. Suppose D is a small category and X ∶ D Multicat is a diagram
of multicategories. Then the set of objects of colimX is given by the colimit of objects:

Ob(colimX) ≅ colim(ObX).

Proof. Suppose W is a colimit of X in Multicat and let T be the colimit of ObX in
Set. For each d ∈ D, let

Fd ∶ Xd W and gd ∶ Ob(Xd) T

be the structure morphisms to the respective colimits. We show that the canonical
map of sets

(5.5.16) T ObW

is a bijection.
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To see that (5.5.16) is surjective, suppose a is an object of W. Then there is some
d ∈ D and object x ∈ Ob(Xd) such that Fd(x) = a. Then gd(x) is an element of T that
maps to a under (5.5.16).

To see that (5.5.16) is injective, suppose given z, z′ ∈ T such that both z and z′

map to a ∈ ObW under (5.5.16). There are d, d′ ∈ D together with

x ∈ Ob(Xd) and x′ ∈ Ob(Xd′)
such that gd(x) = z and gd′(x′) = z′. If z and z′ both map to the same object
a ∈ Ob(W) then there must be some d′′ ∈ D together with morphisms

d d′′ d′

such that the objects x ∈ Ob(Xd) and x′ ∈ Ob(Xd′) map to the same object of Xd′′.
But this implies that z = z′ and therefore (5.5.16) is injective. □

5.6. Tensor and Smash Products of Multicategories

In this section we define monoidal products for multicategories (and pointed
multicategories) that are part of a symmetric monoidal closed structure.

Definition 5.6.1. Given profiles ⟨c⟩ ∈ Prof(C) and ⟨d⟩ ∈ Prof(D) with m = len⟨c⟩
and n = len⟨d⟩, we define

⟨c⟩× dj = ⟨(ci, dj)⟩i = ((c1, dj), (c2, dj), . . .),
ci × ⟨d⟩ = ⟨(ci, dj)⟩j = ((ci, d1), (ci, d2), . . .),
⟨c⟩⊗ ⟨d⟩ = ⟨⟨(ci, dj)⟩i⟩j, and

⟨c⟩⊗t ⟨d⟩ = ⟨⟨(ci, dj)⟩j⟩i.

Let ξ⊗ = ξ⊗m,n denote the permutation ⟨c⟩⊗ ⟨d⟩ ⟨c⟩⊗t ⟨d⟩ induced by changing
order of indexing. ◇
Explanation 5.6.2. In the context of Definition 5.6.1, we note the following rela-
tionships to earlier material.

● Viewing the tuples ⟨c⟩ and ⟨d⟩ as elements of the distortion category (Def-
inition I.4.2.1), the product ⟨c⟩⊗ ⟨d⟩ is that of (I.4.2.15) with (−,−) in place
of +.
● Taking m = len⟨c⟩ and n = len⟨d⟩ as objects of the finite ordinal category

Σ (Definition I.2.4.1), the permutation ξ⊗m,n is induced by the multiplica-
tive symmetry (I.2.4.5) between mn and nm. Explanation I.2.4.7 gives a
geometric description via the transpose of an n ×m matrix. ◇

Definition 5.6.3. For multigraphs X and Y with vertex classes C and D, respec-
tively, we define a multigraph X & Y with vertex class C ×D as follows. Given

⟨c, d⟩ = ((c1, d1), . . . , (cn, dn)) ∈ Prof(C ×D) and (c′, d′) ∈ C ×D,

the set of multiedges with source ⟨c, d⟩ and target (c′, d′) is given by the following
coproduct over pairs ⟨c′′⟩, ⟨d′′⟩ such that ⟨c′′⟩⊗ ⟨d′′⟩ = ⟨c, d⟩:

◇(5.6.4) (X & Y)(⟨c, d⟩ ; (c′, d′)) = ∐
⟨c′′⟩⊗⟨d′′⟩=⟨c,d⟩

X(⟨c′′⟩ ; c′)×Y(⟨d′′⟩ ; d′).

Explanation 5.6.5. If the indexing set of the coproduct (5.6.4) is empty, then

(X & Y)(⟨c, d⟩ ; (c′, d′))
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is empty. For an example where the indexing set has more than a single element,
suppose given c ∈ C and d ∈ D. Then the pair ((c, d) , (c, d)) is equal to both

(c)⊗ (d, d) and (c, c)⊗ (d). ◇
Explanation 5.6.6 (Definition via Kan Extensions). Recall the concept of Kan ex-
tensions from Definition I.1.1.18 and Explanation I.1.1.19. Viewing multigraphs as
functors

X ∶ Prof(X)×VtX Set,
the product X & Y is the left Kan extension along the composite

(5.6.7)

Prof(X)×VtX ×Prof(Y)×VtY

(Prof(X)×Prof(Y))× (VtX ×VtY)

Prof(X ×Y)× (VtX ×VtY)

≅

⊗× 1× 1

that swaps VtX with Prof(Y) and then takes the tensor product of profiles. That
is, letting X ⊠Y denote the external product

(⟨c⟩, c′, ⟨d⟩, d′) X(⟨c⟩ ; c′)×Y(⟨d⟩ ; d′),
one verifies that X & Y is initial among left extensions as in the diagram below,
where the unlabeled arrow is the composite (5.6.7) and the double arrow denotes
a natural transformation of functors.

Prof(X)×VtX ×Prof(Y)×VtY

Prof(X ×Y)×VtX ×VtY

Set

X & Y

X ⊠Y

⇒

Since Prof(X) × VtX × Prof(Y) × VtY is discrete, the coend formula for left Kan
extension (Explanation I.1.1.19) reduces to the coproduct (5.6.4). ◇
Definition 5.6.8. Suppose M and N are small multicategories. We define the sharp
product M#N as the following pushout along morphisms induced by the inclusions

ObM M and ObN N.

ObM×ObN ∐
d∈ObN

M

∐
c∈ObM

N
M #N

◇
Explanation 5.6.9 (Unpacking the Sharp Product). Restricting Definition 5.6.8 to
objects and recalling Proposition 5.5.15, we see that

Ob(M #N) ≅ ObM×ObN.
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The operations of M #N are generated by operations of the form

ϕ × d ∈M× {d} and c ×ψ ∈ {c}×N
subject to the following symmetry and compatibility axioms determined by the
pushout.

(1) For (c, d) ∈M #N, we have

1c × d = 1(c,d) = c × 1d.

(2) For operations ϕ, ϕ1, . . . , ϕn in M such that the composite below is defined,
we have

(ϕ × d) ○ (ϕ1 × d, . . . , ϕn × d) = (ϕ ○ (ϕ1, . . . , ϕn))× d.

(3) For σ ∈ Σn, we have

(ϕ × d) ⋅ σ = (ϕ ⋅ σ)× d.

(4) For operations ψ, ψ1, . . . , ψm in N such that the composite below is de-
fined, we have

(c ×ψ) ○ (c ×ψ1, . . . , c ×ψm) = c × (ψ ○ (ψ1, . . . , ψm)).
(5) For σ ∈ Σm, we have

(c ×ψ) ⋅ σ = c × (ψ ⋅ σ).
The first three conditions imply that, for any d ∈ N, the assignment M M # N
given by ϕ ϕ × d is a multifunctor. Likewise, the first, fourth, and fifth condi-
tions imply that ψ c × ψ is a multifunctor N M # N for any c ∈ M. Taken
together, the conditions are equivalent to the requirement that a multifunctor

F ∶M #N P

consists of an assignment on objects,

F(c, d) ∈ ObP
for (c, d) ∈ ObM×ObN such that each

F(c,−) ∶ N P and F(−, d) ∶M P

is a multifunctor. ◇
Definition 5.6.10. Suppose given small multicategories M and N along with oper-
ations

ϕ ∈M(⟨c⟩ ; c′) and ψ ∈ N(⟨d⟩ ; d′).
We define

ϕ × ⟨d⟩ = ⟨ϕ × dj⟩j ∈∏
j
M(⟨c⟩ ; c′)× {dj}

⟨c⟩×ψ = ⟨ci ×ψ⟩i ∈∏
i
{ci}×N(⟨d⟩ ; d′)

ϕ⊗ψ = (c′ ×ψ) ○ (ϕ × ⟨d⟩) ∈ (M #N)(⟨c⟩⊗ ⟨d⟩ ; (c′, d′))
ϕ⊗t ψ = (ϕ × d′) ○ (⟨c⟩×ψ) ∈ (M #N)(⟨c⟩⊗t ⟨d⟩ ; (c′, d′)).

Let ξ⊗ denote the bijection

(M #N)(⟨c⟩⊗t ⟨d⟩ ; (c′, d′)) ≅ (M #N)(⟨c⟩⊗ ⟨d⟩ ; (c′, d′))
induced by the permutation ξ⊗ that interchanges order of indexing. ◇
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Definition 5.6.11 (Boardman-Vogt Tensor Product of Multicategories). For small
multicategories M and N, the tensor products of Definition 5.6.10 give two canon-
ical morphisms of multigraphs

(5.6.12) (UM)& (UN) U(M #N).
⊗

ξ⊗ ○⊗t

Taking adjoints, we have two morphisms in Multicat, and we define M⊗N to be
their coequalizer.

L((UM)& (UN)) M #N M⊗N

For an object (c, d) ∈M #N, we let c⊗ d denote its image in M⊗N. ◇
Explanation 5.6.13 (Definition via Kan Extensions). Continuing from Explana-
tion 5.6.6, the tensor products of Definition 5.6.10 give two different left extensions
shown below.

Prof(M)×ObM×Prof(N)×ObN

Prof(ObM×ObN)×ObM×ObN

Set

U(M #N)

(UM)⊠ (UN)

⇒

⊗

Prof(M)×ObM×Prof(N)×ObN

Prof(ObM×ObN)×ObM×ObN

Set

U(M #N)

(UM)⊠ (UN)

⇒

ξ⊗ ○⊗t

The canonical morphisms of (5.6.12) are the corresponding universal morphisms
out of the left Kan extension (UM)& (UN). ◇
Explanation 5.6.14 (Unpacking the Tensor Product). Restricting Definition 5.6.11
to objects, we see that

Ob(M⊗N) ≅ Ob(M #N) ≅ ObM×ObN.

Continuing from our unpacking of the sharp product in Explanation 5.6.9, the
operations of M⊗N are generated by

ϕ⊗ d ∈M(⟨c⟩ ; c′)× {d} and c⊗ψ ∈ {c}×N(⟨d⟩ ; d′)

subject to the relations of M #N along with one additional interchange relation

(5.6.15) ϕ⊗ψ = (ϕ⊗t ψ) ⋅ ξ⊗.
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If we draw an operation as an arrow from its input profile to its output object, the
interchange relation means that the two composites

⟨c⟩⊗ ⟨d⟩ c′ × ⟨d⟩

(c′, d′)

⟨c⟩⊗t ⟨d⟩ ⟨c⟩× d′

ϕ⊗ ⟨d⟩

⟨c⟩⊗ψ

c′ ⊗ψ

ϕ⊗ d′

correspond under the bijection

ξ⊗ ∶ (M⊗N)(⟨c⟩⊗t ⟨d⟩ ; c′ ⊗ d′) ≅ (M⊗N)(⟨c⟩⊗ ⟨d⟩ ; c′ ⊗ d′).
A multifunctor

F ∶M⊗N P

consists of an assignment on objects F(c, d) ∈ ObP for (c, d) ∈ ObM ×ObN such
that each F(c,−) and F(−, d) is a multifunctor and such that we have

(5.6.16) F(ϕ⊗ψ) = F(ϕ⊗t ψ) ⋅ ξ⊗

for each ϕ ∈M(⟨c⟩ ; c′) and ψ ∈ N(⟨d⟩ ; d′). ◇
Definition 5.6.17. For small multicategories M and N, let

β ∶M #N N #M

denote the multifunctor given on objects by β(c, d) = (d, c) and on generating op-
erations by

β(ϕ × d) = d × ϕ and β(c ×ψ) = ψ × c.
Let

β ∶M⊗N N⊗M
denote the induced multifunctor on tensor products. ◇

Recall from Definition 5.1.21 the initial operad I has a single object ∗ and single
operation 1∗.
Theorem 5.6.18. The tensor product

⊗ ∶Multicat×Multicat Multicat

is a symmetric monoidal product on the category of small multicategories, with unit given
by the initial operad I and symmetry given by β.

Proof. Observe first that (#, I, β) is a symmetric monoidal product on Multicat:
● Functoriality of # follows from functoriality of the pushout in Defini-

tion 5.6.8.
● The associativity and unit isomorphisms follow from Explanation 5.6.9.

Multifunctors with domain I are simply a choice of object, and therefore
the unit isomorphisms

M # I ≅
M

≅
I #M

are determined by the identities on M. Likewise we have

(L #M) #N ≅
L # (M #N)

determined by the identity multifunctors in each variable.
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● The universal property of pushouts implies that these satisfy the axioms
of a symmetric monoidal category listed in Definitions 1.1.1 and 1.1.23.

Similarly, functoriality of the tensor product follows from functoriality of the co-
equalizer in Definition 5.6.11. The associativity, unit, and symmetry isomorphisms
for the tensor product are induced by those for the sharp product, and satisfy the
corresponding axioms by the universal product of coequalizers. □

Motivation 5.6.19 (2-functoriality of the Tensor Product). We have not yet dis-
cussed 2-functoriality of the tensor product with respect to multinatural transfor-
mations. We will describe this in Section 6.4 and show that it provides a symmetric
Cat-monoidal structure as in Definition 1.5.1. ◇

Recall from Definition 5.3.1 a pointed multicategory consists of a multicate-
gory M together with a multifunctor T M determined by an object ∗M and
operations ιM. The following are special cases of the smash and wedge products
defined in Section 4.1.
Definition 5.6.20. Given small pointed multicategories (M,∗M, ιM) and (N,∗N, ιN),
we define the smash product as the following pushout in Multicat.

(5.6.21)

(M⊗T)∐ (T⊗N) M⊗N

T M∧N
The smash unit multicategory is

◇(5.6.22) S = I+ = I∐T.

Definition 5.6.23. Given small pointed multicategories (M,∗M, ιM) and (N,∗N, ιN),
we define the wedge product as the coequalizer in Multicat of the two structure mor-
phisms

T M∐N M∨N
∗M

∗N

The wedge product is sometimes also called the wedge sum. ◇
In Theorem 5.7.22 below we will show, as a special case of Theorem 4.2.3, that

the smash product is part of a symmetric monoidal closed structure on Multicat∗.

5.7. The Internal Hom for Multicategories

In this section we describe internal hom objects for Multicat and Multicat∗. We
will use the following notation for a tuple of multifunctors ⟨F⟩.
Definition 5.7.1. Suppose given multicategories M and N together with a tuple of
multifunctors ⟨F⟩ = (F1, . . . , Fm)where each

Fi ∶M N for 1 ≤ i ≤ m.

Then we use the following notation.
● For c ∈ ObM, let ⟨F⟩c = ⟨Fic⟩i.
● For ⟨c⟩ = (c1, . . . , cn) ∈ Prof(ObM), let

⟨Fc⟩ = ⟨⟨Ficj⟩i⟩j and ⟨Fc⟩t = ⟨⟨Ficj⟩j⟩i.
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● For ϕ ∈M(⟨c⟩ ; c′), let

⟨F⟩ϕ = ⟨Fiϕ⟩i ∈∏
i
N(Fi⟨c⟩ ; Fic

′).

◇
Definition 5.7.2. Suppose M and N are small multicategories. The internal hom
multicategory Hom(M,N) is defined as follows. The objects of Hom(M,N) are mul-
tifunctors M N. The operations

α ∶ ⟨F⟩ G

in Hom(M,N) are called transformations and are given by components

αc ∈ N(⟨F⟩c ; Gc)

for each c ∈ ObM such that, for each operation ϕ ∈ M(⟨c⟩ ; c′), the following natu-
rality condition holds, with α⟨c⟩ = ⟨αcj⟩j, len⟨F⟩ = m, and len⟨c⟩ = n:

(5.7.3) (Gϕ) ○ α⟨c⟩ = (αc′ ○ ⟨F⟩ϕ) ⋅ ξ⊗m,n.

The unit operation 1F ∶ F F is given by the identity multinatural trans-
formation whose component at c is 1Fc. The composition and symmetric group
actions on operations of Hom(M,N) are given componentwise by those in N.

We describe (5.7.3) further in Explanation 5.7.4. In Lemma 5.7.6 we show
that (5.7.3) is closed under composition. Using this, we complete the proof that
Hom(M,N) is a multicategory in Proposition 5.7.11. ◇
Explanation 5.7.4 (Operations in Hom(M,N)). If we draw an operation as an arrow
from its input profile to its output object, the equality (5.7.3) means that the two
composites

⟨Fc⟩

⟨Fc⟩t ⟨F⟩c′

G⟨c⟩

Gc′

α⟨c⟩

⟨F⟩ϕ

Gϕ

αc′

correspond under the bijection

ξ⊗ ∶ N(⟨Fc⟩t ; Gc′) ≅
N(⟨Fc⟩ ; Gc′). ◇

Explanation 5.7.5 (Category of Unary Operations in Hom(M,N)). In the case that
⟨F⟩ is a singleton, then ξ⊗ is an identity and the equality (5.7.3) reduces to the
naturality condition of Definition 5.1.17. Therefore, the set of unary operations
Hom(M,N)(F, G) is precisely the set of multinatural transformations from F to G.
Thus the underlying category of objects and unary operations of Hom(M,N) is
Multicat(M,N). ◇
Lemma 5.7.6. In the context of Definition 5.7.2, the naturality condition (5.7.3) is closed
under composition.

Proof. Suppose given multifunctors

Ei,k, Fi, G ∶M N for 1 ≤ i ≤ m and 1 ≤ k ≤ pi.

Let
⟨F⟩ = ⟨Fi⟩i, ⟨Ei⟩ = ⟨Ei,k⟩k, ⟨E⟩ = ⊕i⟨Ei⟩ = ⟨⟨Ei,k⟩k⟩i,
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and p = p1 +⋯+ pm.

So ⟨F⟩ has length m, each ⟨Ei⟩ has length pi, and ⟨E⟩ has length p = ∑i pi. Then
suppose given transformations

α ∈ Hom(M,N)(⟨F⟩ ; G) and ωi ∈ Hom(M,N)(⟨Ei⟩ ; Fi).

We must show that the composite α ○ ⟨ω⟩ satisfies the naturality condition
(5.7.3). That is, we must show

(5.7.7) (Gϕ) ○ (α ○ ⟨ω⟩)⟨c⟩ = ((α ○ ⟨ω⟩)c′ ○ ⟨E⟩ϕ) ⋅ ξ
⊗
p,n

for each ⟨c⟩ = (c1, . . . , cn) ∈ Prof(M) and each operation ϕ ∈ M(⟨c⟩ ; c′). For this
purpose, we introduce the following notation.

● As in Definition 5.7.1, we let

⟨F⟩ϕ = ⟨Fiϕ⟩i ∈
m
∏
i=1

N(Fi⟨c⟩ ; Fic
′)

for ϕ ∈M(⟨c⟩ ; c′).
● For ⟨c⟩ = (c1, . . . , cn) ∈ Prof(M)we let

⟨ωc⟩ = ⟨⟨(ωi)cj⟩i⟩j and ⟨ωc⟩t = ⟨⟨(ωi)cj⟩j⟩i

● As described in Explanation 5.6.2, we use subscripts ξ⊗m,n to indicate the
component of ξ⊗ (I.2.4.5) at mn. So, for example, we have

(5.7.8) ⟨ωc⟩t ⋅ ξ⊗m,n = ⟨ωc⟩.

● We write ⟨p⟩n for the tuple of indices

⊕n
j=1⟨p⟩ = (p1, . . . , pm

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1

, . . . , p1, . . . , pm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

).

So ⟨p⟩n has length mn.
● We use the notation ξ⊗m,n⟨⟨p⟩n⟩ for the block permutation (II.1.1.19) in-

duced by ξ⊗m,n on mn subintervals whose lengths are given by ⟨p⟩n. So
ξ⊗m,n⟨⟨p⟩n⟩ permutes the subintervals as ξ⊗m,n permutes the elements of
mn, but leaves the relative order within each block unchanged.

The desired equality (5.7.7) is given by the following computation. In this
computation we use the naturality conditions (5.7.3) for α and ω, together with
the multicategory axioms for N and the following equality relating (block) trans-
position permutations:

(5.7.9) (⊕m
i=1 ξ⊗pi ,n) ⋅ ξ

⊗
m,n⟨⟨p⟩n⟩ = ξ⊗(p1+⋯+pm),n

= ξ⊗p,n
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We explain the equality (5.7.9) in Explanation 5.7.10 below. Now we give the com-
putation showing (5.7.7).

(Gϕ) ○ (α ○ ⟨ω⟩)⟨c⟩ = (Gϕ) ○ ⟨αcj ○ ⟨ω⟩cj⟩j
by definition,

= ((Gϕ) ○ α⟨c⟩) ○ ⟨ωc⟩
by associativity,

= ((αc′ ○ ⟨F⟩ϕ) ⋅ ξ⊗m,n) ○ ⟨ωc⟩
by naturality (5.7.3) for α,

= ((αc′ ○ ⟨F⟩ϕ) ○ ⟨ωc⟩t) ⋅ ξ⊗m,n⟨⟨p⟩n⟩
by (5.7.8) and top equivariance,

= (αc′ ○ ⟨Fiϕ ○ (ωi)⟨c⟩⟩i) ⋅ ξ
⊗
m,n⟨⟨p⟩n⟩

by associativity,

= (αc′ ○ ⟨((ωi)c′ ○ ⟨Ei⟩ϕ) ⋅ ξ⊗pi ,n⟩i) ⋅ ξ
⊗
m,n⟨⟨p⟩n⟩

by naturality (5.7.3) for ω,

= (αc′ ○ ⟨(ωi)c′ ○ ⟨Ei⟩ϕ⟩i) ⋅ ((⊕
m
i=1ξ⊗pi ,n) ⋅ ξ

⊗
m,n⟨⟨p⟩n⟩)

by bottom equivariance and group action,

= (αc′ ○ ⟨(ωi)c′ ○ ⟨Ei⟩ϕ⟩i) ⋅ ξ
⊗
p,n

by the hexagon equality (5.7.9),

= ((α ○ ⟨ω⟩)c′ ○ ⟨⟨Ei⟩ϕ⟩i) ⋅ ξ
⊗
p,n

by associativity,

= ((α ○ ⟨ω⟩)c′ ○ ⟨E⟩ϕ) ⋅ ξ
⊗
p,n

by definition.

Therefore, α ○ ⟨ω⟩ is a transformation. □

Explanation 5.7.10 (Block Transposition Relation). Here we explain the equality
(5.7.9),

(⊕m
i=1 ξ⊗pi ,n) ⋅ ξ

⊗
m,n⟨⟨p⟩n⟩ = ξ⊗(p1+⋯+pm),n

= ξ⊗p,n,

used in the proof of Lemma 5.7.6 above. We first give explicit formulas showing
the two sides are equal. Then we give a second, more geometric argument, using
the interpretation of ξ⊗ as matrix transposition.

Using the formulas of Definition I.2.4.1 and (II.1.1.19), both sides of (5.7.9) send

A = (j − 1)p + p1 +⋯+ pi−1 + k

to
B = n(p1 +⋯+ pi−1 + k − 1)+ j

for
i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, and k ∈ {1, . . . , pi}.
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The block permutation ξ⊗m,n⟨⟨p⟩n⟩ sends A to

A′ = n(p1 +⋯+ pi−1)+ (j − 1)pi + k.

The block sum
⊕m

i=1ξ⊗pi ,n

then sends A′ to B.
Alternatively, we also have the following geometric interpretation of (5.7.9) in

terms of matrix transposition. A special case of this argument, where all of the
pi are equal, is used in Explanation I.2.4.14 to explain the hexagon axiom for Σ.
Suppose

Pi = [●, . . . , ●] for 1 ≤ j ≤ n and 1 ≤ i ≤ m

is a 1× pi matrix with pi objects, and consider the n × p matrix

M =
⎡⎢⎢⎢⎢⎢⎣

P11 ⋯ P1m
⋮ ⋱ ⋮

Pn1 ⋯ Pnm

⎤⎥⎥⎥⎥⎥⎦
with each Pji a copy of Pi for 1 ≤ j ≤ n. Then the left hand side of (5.7.9) is the com-
posite of permutations along the top and right of the following diagram, while the
right hand side is the other permutation, with (−)T denoting transpose of matrices.

⎡⎢⎢⎢⎢⎢⎣

P11 ⋯ P1m
⋮ ⋱ ⋮

Pn1 ⋯ Pnm

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

P11 ⋯ Pn1
⋮ ⋱ ⋮

P1m ⋯ Pnm

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

p1 ⊗ n
⋮

pm ⊗ n

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

n⊗ p1
⋮

n⊗ pm

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

PT
11 ⋯ PT

n1
⋮ ⋱ ⋮

PT
1m ⋯ PT

nm

⎤⎥⎥⎥⎥⎥⎦

ξ⊗m,n⟨⟨p⟩n⟩

⊕m
i=1ξ⊗pi ,n

ξ⊗p,n

The two equalities in the above diagram are instances of the convention for prod-
ucts in Σ, as described in Explanation I.2.4.7. For example, each pi ⊗ n is viewed
either as a row of pin objects arranged into n intervals, each with pi objects, or as
an n × pi matrix. ◇
Proposition 5.7.11. In the context of Definition 5.7.2, Hom(M,N) is a multicategory.

Proof. Lemma 5.7.6 shows that the naturality condition (5.7.3) is closed under com-
position. Closure of the naturality condition under permutations follows from the
top and bottom equivariance axioms for composition in N.

The four multicategory axioms for Hom(M,N) follow from those of N. For
example, let H = Hom(M,N) and suppose given

● F′′′ ∈ H,
● ⟨F′′⟩ ∈ Prof(H) of length n,
● ⟨F′j ⟩ ∈ Prof(H) of length k j for each j ∈ {1, . . . , n}, and
● ⟨Fj,i⟩ ∈ Prof(H) of length ℓj,i for each i ∈ {1, . . . , k j}.



III.220 5. MULTICATEGORIES

Then, using the notation conventions for concatenation from (5.1.4), the associa-
tivity diagram

H(⟨F′′⟩ ; F′′′)× [
n
∏
j=1

H(⟨F′j ⟩ ; F′′j )]×
n
∏
j=1
[

kj

∏
i=1

H(⟨Fj,i⟩ ; F′j,i)]

H(⟨F′⟩ ; F′′′)×
n
∏
j=1
[

kj

∏
i=1

H(⟨Fj,i⟩ ; F′j,i)]

H(⟨F′′⟩ ; F′′′)×
n
∏
j=1
[H(⟨F′j ⟩ ; F′′j )×

kj

∏
i=1

H(⟨Fj,i⟩ ; F′j,i)]

H(⟨F′′⟩ ; F′′′)×
n
∏
j=1

H(⟨Fj⟩ ; F′′j )

H(⟨F⟩ ; F′′′)≅permute

(γ, 1)

γ

(1,∏j γ)

γ

commutes because, for

● α′′ ∈ H(⟨F′′⟩ ; F′′′),
● α′j ∈ H(⟨F′j ⟩ ; F′′j ) for j ∈ {1, . . . , n}, and

● αj,i ∈ H(⟨Fj,i⟩ ; F′j,i) for j ∈ {1, . . . , n} and i ∈ {1, . . . , k j},
the two composites around the diagram, which are

(α′′ ○ ⟨α′j⟩) ○ ⟨⟨αj,i⟩i⟩j and α′′ ○ ⟨α′j ○ ⟨αj,i⟩i⟩j,

are given componentwise by the corresponding two composites around the fol-
lowing diagram for each c ∈M, and are therefore equal.

N(⟨F′′⟩c ; F′′′c)× [
n
∏
j=1

N(⟨F′j ⟩c ; F′′j c)]×
n
∏
j=1
[

kj

∏
i=1

N(⟨Fj,i⟩c ; F′j,ic)]

N(⟨F′⟩c ; F′′′c)×
n
∏
j=1
[

kj

∏
i=1

N(⟨Fj,i⟩c ; F′j,ic)]

N(⟨F′′⟩c ; F′′′c)×
n
∏
j=1
[N(⟨F′j ⟩c ; F′′j c)×

kj

∏
i=1

N(⟨Fj,i⟩c ; F′j,ic)]

N(⟨F′′⟩c ; F′′′c)×
n
∏
j=1

N(⟨Fj⟩c ; F′′j c)

N(⟨F⟩c ; F′′′c)≅permute

(γ, 1)

γ

(1,∏j γ)

γ
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The other axioms of Definition 5.1.2 are verified componentwise in the same way.
□

In the special case N = End(C) for a permutative category C, the following
result gives a description of Hom(M,N) arising from the monoidal product on C.

Lemma 5.7.12. Suppose M is a small multicategory and (C,⊕, e, ξ) is a small permutative
category.

(1) Taking the pointwise monoidal product of multifunctors induces a permutative
structure on Multicat(M,End(C)).

(2) There is an isomorphism of multicategories

End(Multicat(M,End(C))) ≅ Hom(M,End(C)).

Proof. First we explain the pointwise monoidal product. Suppose given multi-
functors

F, F′ ∈Multicat(M,End(C)).

For each c ∈M and ϕ ∈M(⟨c⟩ ; c′), let ξ⊕ denote the shuffle isomorphism

⊕
ci∈⟨c⟩
(Fci ⊕ F′ci)

ξ⊕ ( ⊕
ci∈⟨c⟩

Fci)⊕ ( ⊕
ci∈⟨c⟩

F′ci)

induced by the permutation ξ⊗2,len⟨c⟩ (I.2.4.5) in the finite ordinal category. Then we
define

(F⊕ F′)c = (Fc)⊕ (F′c) and (F⊕ F′)ϕ = ((Fϕ)⊕ (F′ϕ)) ○ ξ⊕.

For multinatural transformations

α ∶ F G and α′ ∶ F′ G′

we define

(α⊕ α′)c = αc ⊕ α′c.

The monoidal unit is the constant multifunctor at e ∈ C, and the permutative struc-
ture for C implies that this is a strict symmetric monoidal product for

Multicat(M,End(C)).

Second we verify the asserted isomorphism. To begin, observe that the objects
and unary operations on both sides are the same by definition. For operations

η ∈ Hom(M,End(C))(⟨F⟩ ; F′),

we have, by definition,

ηc ∶ ⟨F⟩c = ⊕
Fi∈⟨F⟩

Fic F′c
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and in this context the equality (5.7.3) is equivalent to commutativity of the fol-
lowing diagram in C for each ϕ ∈M(⟨c⟩ ; c′).

⊕
i
⊕

j
Ficj ⊕

i
Fic
′

F′c′

⊕
j
⊕

i
Ficj

⊕
j

F′cj

⟨F⟩ϕ

ηc′

ξ

≅

η⟨c⟩

F′ϕ

Inverting the shuffle isomorphism, this is precisely the condition in Defini-
tion 5.1.17 for η to define a multinatural transformation

⊕iFi F.

Thus the data of an operation in Hom(M,End(C)) is precisely the same as that of
an operation in

End(Multicat(M,End(C))).
This correspondence preserves compositions and symmetric group actions be-
cause these are induced by the permutative structure of C. □

Proposition 5.7.13. Given small multicategories M, N, and P, there are isomorphisms of
categories

Multicat(M,Hom(N,P)) ≅Multicat(M⊗N,P) ≅Multicat(N,Hom(M,P))

that are natural in M, N, and P.

Proof. We discuss the first isomorphism; the second follows from the first by ap-
plying the symmetry β. We define a functor

Θ ∶Multicat(M,Hom(N,P)) Multicat(M⊗N,P)

as follows. Given
H ∶M Hom(N,P)

we first define an assignment

ΘH ∶M⊗N P

beginning with M×N and then descending to M #N and M⊗N.
● For (c, d) ∈M×N, let

(ΘH)(c, d) = (Hc)d.

● For ϕ ∈M(⟨c⟩ ; c′) and ψ ∈ N(⟨d⟩ ; d′), let

(ΘH)(ϕ × d) = (Hϕ)d and (ΘH)(c ×ψ) = (Hc)ψ.
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Now by definition
(ΘH)(c,−) = (Hc)(−)

is a multifunctor from N to P for each object c in M. Next we observe that

(ΘH)(−, d) ∶M P

is a multifunctor for each d ∈ N. The basic reason for this is that the composition of
operations in Hom(N,P) is defined componentwise. For example, given compos-
able operations ϕ′ and ⟨ϕ⟩ in M, we have and equality of operations in Hom(N,P),

H(ϕ′) ○H⟨ϕ⟩ = H(ϕ′ ○ ⟨ϕ⟩),
because H is a multifunctor. Now because composition of operations in Hom(N,P)
is defined componentwise, we have the following for each d ∈ N:

(ΘH)(ϕ′ × d) ○ ⟨(ΘH)(ϕi × d)⟩i = H(ϕ′)d ○ (H⟨ϕ⟩)d
= (H(ϕ′ ○ ⟨ϕ⟩))d
= (ΘH)((ϕ′ ○ ⟨ϕ⟩)× d).

The rest of the multifunctor axioms for (ΘH)(−, d) are verified similarly.
Therefore, recalling Explanation 5.6.9, ΘH gives a well-defined multifunctor

on M #N. To verify that this assignment descends to a unique multifunctor on the
tensor product M⊗N, we recall from Explanation 5.6.14 that it suffices to show

(ΘH)(ϕ⊗ψ) = (ΘH)((ϕ⊗t ψ) ⋅ ξ⊗)
for all operations

ϕ ∈M(⟨c⟩ ; c′) and ψ ∈ N(⟨d⟩ ; d′).
Using the decompositions of Definition 5.6.10 and the definition of ΘH, we must
verify

((Hc′)ψ) ○ ⟨(Hϕ)dj
⟩j = ((Hϕ)d′ ○ ⟨(Hci)⟩iψ) ⋅ ξ⊗.

This equality follows directly from the defining equality (5.7.3) at the operation

ψ ∈ N(⟨d⟩ ; d′)
with

α = (Hϕ), Fi = Hci, and G = Hc′.
Therefore

ΘH ∶M⊗N P

is a well-defined multifunctor for each

H ∈Multicat(M,Hom(N,P)).
For a multinatural transformation

η ∈Multicat(M,Hom(N,P))(H, H′),
we define

Θη ∈Multicat(M⊗N,P)(ΘH, ΘH′)
via components

(Θη)c⊗d = (ηc)d.
One verifies the analogue of equality (5.7.3) for Θη on generating operations
ϕ⊗ d and c⊗ ψ using, respectively, componentwise composition of operations in
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Hom(N,P) at the object d and the analogue of (5.7.3) for each ηc at the operation ψ.
This shows that Θ defines a function

Multicat(M,Hom(N,P))(H, H′) Θ
Multicat(M⊗N,P)(ΘH, ΘH′)

for each pair
H, H′ ∈Multicat(M,Hom(N,P)).

Finally, one verifies that Θ preserves identities and composition because these
are determined componentwise:

(Θ1H)c⊗d = ((1H)c)d and

(Θ(η′η))c⊗d = ((η′η)c)d = (η′c)d ○ (ηc)d) = ((Θη′) ○ (Θη))c⊗d

for composable multinatural transformations η′ and η and for each c⊗ d ∈ M⊗N.
This finishes the definition of a functor

Θ ∶Multicat(M,Hom(N,P)) Multicat(M⊗N,P).
Next we define a functor

Ψ ∶Multicat(M⊗N,P) Multicat(M,Hom(N,P))
as follows. Given a multifunctor K ∶M⊗N P we first define

(ΨK)c = K(c⊗ (−)) ∶ N P

and
(ΨK)ϕ = K(ϕ⊗−) ∈ Hom(N,P)((ΨK)⟨c⟩ ; (ΨK)c′)

for
(⟨c⟩ ; c′) ∈ Prof(ObM)×ObM and ϕ ∈M(⟨c⟩ ; c′).

Given a multinatural transformation ω ∈Multicat(M⊗N,P)(K, K′), we define

(Ψω)c = ωc⊗− ∶ K(c⊗−) K′(c⊗−).
Checking the definitions, one verifies the following.

(1) (ΨK)c is a multifunctor N P for each c ∈M and (ΨK)ϕ is an operation
of Hom(N,P) for each ϕ ∈M(⟨c⟩ ; c′). Therefore, ΨK defines a function on
objects and operations of M taking values in Hom(N,P).

(2) ΨK satisfies the axioms of a multifunctor

ΨK ∶M Hom(N,P)
for each K ∈Multicat(M⊗N,P).

(3) Ψω satisfies the axioms of an operation ΨK ΨK′ for each

ω ∈Multicat(M⊗N,P)(K, K′).
Therefore, Ψ defines a function on the objects and morphisms

Multicat(M⊗N,P) Multicat(M,Hom(N,P)).
(4) Ψ is functorial.

Lastly, one verifies that Θ and Ψ define an inverse bijection on objects and mor-
phisms and, therefore, define an isomorphism of categories. Naturality of the iso-
morphism with respect to multifunctors of M, N, and P follows from the defini-
tions of Θ and Ψ. □
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The isomorphism of Proposition 5.7.13 shows that the internal Hom provides
a closed structure for (Multicat,⊗, β). Combining Proposition 5.7.13 with Theo-
rems 5.5.14 and 5.6.18 we have the following.
Theorem 5.7.14. The category of small multicategories Multicat is complete, cocomplete,
symmetric monoidal, and closed. The monoidal product is given by the tensor product of
Definition 5.6.11 and the closed structure is given by the internal hom of Definition 5.7.2.

Recalling Example 3.9.2, the symmetric monoidal closed structure for Multicat
also makes it tensored and cotensored over itself. Thus we record the following
internal ⊗-Hom adjunction.
Lemma 5.7.15. In the context of Proposition 5.7.13, there are isomorphisms of multicat-
egories

(5.7.16) Hom(M,Hom(N,P)) ≅ Hom(M⊗N,P) ≅ Hom(N,Hom(M,P))
that are natural in M, N, and P.

Restricting to pointed multicategories, we now define a pointed internal hom.
This is a special case of Definition 4.2.1.
Definition 5.7.17. Suppose M and N are small pointed multicategories. We define
the pointed hom multicategory as the following pullback in Multicat.

(5.7.18)

Hom∗(M,N) T

Hom(M,N) Hom(T,N)

The composite

T ≅ Hom(M,T) Hom(M,N) Hom(T,N)
induced by the structure morphisms for M and N is equal to the vertical mor-
phism in the diagram, and therefore induces a canonical structure morphism
T Hom∗(M,N)making Hom∗(M,N) a pointed multicategory. ◇
Explanation 5.7.19. The objects and operations of Hom∗(M,N) can be identified as
follows. The objects are those multifunctors M N that commute with the struc-
ture morphisms from T. The n-ary operations are those operations η in Hom(M,N),
between pointed multifunctors, such that

η∗M = ιNn ,

with ∗M the basepoint of M. Specializing Explanation 5.7.5, we see that the under-
lying category of objects and unary operations of Hom∗(M,N) is Multicat∗(M,N).
That is, we have an isomorphism of categories

(5.7.20) Multicat(I,Hom∗(M,N)) ≅Multicat∗(M,N).
◇

The following pointed version of Lemma 5.7.12 will be used in the proof of
Proposition 10.6.7.
Lemma 5.7.21. Suppose M is a small pointed multicategory and (C,⊕, e, ξ) is a small
permutative category.
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(1) The pointwise monoidal product on Multicat(M,End(C)) restricts to make

Multicat∗(M,End(C))
a permutative category.

(2) There is an isomorphism of multicategories

End(Multicat∗(M,End(C))) ≅ Hom∗(M,End(C)).

Proof. First, if
F, F′ ∈Multicat∗(M,End(C))

then so is F ⊕ F′, because C is permutative. Likewise, if α and α′ are pointed
multinatural transformations between pointed multifunctors, then so is α⊕α′. The
pointwise monoidal unit, which is the constant multifunctor at the unit e ∈ C, is a
pointed multifunctor. The symmetry isomorphism of

Multicat(M,End(C)),
induced by that of C, is pointed because C is permutative.

Second, we observe that the correspondence of operations established in the
proof of Lemma 5.7.12 restricts to a correspondence between pointed operations.
Using Explanation 5.7.19, we see that n-ary operations

η ∈ Hom∗(M,End(C))(⟨F⟩ ; F)
have components

ηc ∶ ⟨F⟩c = ⊕
Fi∈⟨F⟩

Fic F′c

such that
η∗M = ιn = 1e ∶ ⊕

Fi∈⟨F⟩
e e.

Since this is precisely the condition for n-ary operations of

End(Multicat∗(M,End(C))),
the result follows. □

Now applying Theorem 4.2.3 to the complete and cocomplete symmetric mon-
oidal closed category

(Multicat,⊗, I,Hom)
with terminal object T, we have the following.
Theorem 5.7.22. The category of pointed small multicategories Multicat∗ is complete,
cocomplete, symmetric monoidal, and closed. The monoidal product is given by the smash
product of Definition 5.6.20 with monoidal unit

S = I∐T.

The closed structure is given by the pointed hom of Definition 5.7.17.
Recall from Corollary 5.3.9 that taking endomorphism multicategories pro-

vides a 2-functor
PermCatsu

End
Multicat∗

from permutative categories and strictly unital functors to pointed multicategories
and pointed multifunctors. The smash product of multicategories does not restrict
along this 2-functor, as we now show.
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Proposition 5.7.23. The symmetric monoidal structure on Multicat∗ in Theorem 5.7.22
does not restrict to a symmetric monoidal structure on PermCatsu along the 2-functor End
in Corollary 5.3.9.

Proof. The monoidal unit in Multicat∗ is S = I∐T with object set {1, 0}, where 1
denotes the unique object of I and 0 denotes the unique object of T, the basepoint
of S. The entries of this 2-object multicategory are given by

S(ε1, . . . , εn ; ε) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T(0, . . . , 0 ; 0) = ∗ if ε1 = ⋯ = εn = ε = 0,
I(1 ; 1) = ∗ if ε1 = ε = 1 with n = 1, and
∅ otherwise.

If the symmetric monoidal structure on Multicat∗ restricts to one on PermCatsu

along End, then
S = End(J)

for some permutative category (J,⊕, 0) with object set {0, 1}. But then there are
equalities

∅ = S(0, 1 ; 1) = End(J)(0, 1 ; 1)
= J(0⊕ 1; 1) = J(1; 1) /= ∅,

which cannot happen. □

5.8. Notes

5.8.1 (Multicategories). What we call a multicategory is also called a symmetric
multicategory, with the plain term multicategory reserved for the non-symmetric
definition. The terms operad, a symmetric operad, and a colored operad are also com-
mon. The book [Yau16] is a gentle introduction to multicategories.

Historically, multicategories without symmetric group actions were intro-
duced by Lambek [Lam69]. May [May72] introduced the term operad for a one-
object multicategory. The tensor product was introduced by Boardman and Vogt
[BV73] and proved to give a symmetric monoidal closed structure on the category
of small multicategories and multifunctors by Moerdijk and Toen [MT10]. Ho-
motopy theory of multicategories is discussed in [MT10, WY18]. Applications of
multicategories outside of pure mathematics can be found in [Yau18, Yau20]. ◇
5.8.2 (Creating Coequalizers). In the context of Definition 5.4.12 we caution that
some authors, notably [ML98], write that U creates coequalizers for what we have
called strictly creating coequalizers in Definition 5.4.12. We have included the ex-
tra adjective because a more general condition, without the adjective “strictly”, is
often used in the literature and is equivalent to the comparison (5.4.7)

A Alg(UL)
being a mere equivalence of categories. See, for example, [Rie16, Section 5] for
further development. ◇
5.8.3 (Monadicity Theorems). The original reference for tripleability/monadicity
theorems is the thesis of Beck [Bec67]. Our proof of Theorem 5.4.13 sketches that
of [ML98, VI.7 Theorem 1], which follows [Bec67]. Variations and generalizations
of Theorem 5.4.13 are given in [Bec67] and the later literature. See [ML98, Sec-
tion VI.7] and [Rie16, Section 5.5] for further discussion and references. ◇
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5.8.4 (Finite Products and Filtered Colimits). Our proof of Lemma 5.4.20 (2), that
finite products commute with filtered colimits in Set, is an adaptation of a more
general argument in [Rie16, Theorem 3.8.9] showing that general finite limits com-
mute with filtered colimits in Set. The argument is special to the category Set, as it
depends on the construction of colimits there. ◇
5.8.5 (Symmetric Monoidal Closed Structure). Our presentation of the tensor
product in Definition 5.6.11 follows that of Elmendorf-Mandell [EM09] and is
equivalent to the tensor product introduced by Boardman-Vogt [BV73]. We refer
the reader to [MT10] for additional development.

Our presentations of the internal hom and its pointed variant also follow
[EM09]. A more general properad analogue of Proposition 5.7.13 and Theo-
rem 5.7.14 is given by Hackney-Robertson-Yau in [HRY15, Theorem 4.30 and
Corollary 4.31]. ◇
5.8.6 (Closed Symmetric Multicategories). The category Multicat of small multi-
categories is closed symmetric monoidal by Theorem 5.7.14. This implies that
Multicat is a closed symmetric multicategory in the sense of [Zak18, 1.2]. The internal
hom objects are the small multicategories

Hom(A1 ⊗⋯⊗An;B)
for n ≥ 0 and small multicategories A1, . . . ,An,B. The evaluation morphism is the
second isomorphism in Proposition 5.7.13 with

M = A1 ⊗⋯⊗An

N = Hom(A1 ⊗⋯⊗An;B)
P = B.

This notion of a closed symmetric multicategory is the symmetric analogue of
a closed multicategory in the sense of [Lam69, p. 106] and [Man12, 3.6], which
considered multicategories without symmetric group actions. The same remarks
also apply to the category of pointed small multicategories Multicat∗, which is
closed symmetric monoidal by Theorem 5.7.22 with the pointed hom in Defini-
tion 5.7.17. ◇



CHAPTER 6

Enriched Multicategories

In this chapter we define multicategories enriched over a symmetric monoidal
category V = (V,⊗, ξ). To simplify the presentation, we give the definitions under
the assumption that V is permutative. These provide the general definitions via
strictification, and we describe that process in Explanation 6.1.19 below. This will
be important because in our two applications of interest V is symmetric monoidal
but not permutative. The first is V = Cat, and will be discussed below. The second
uses V = Cat∗, the category of small pointed categories, and V = sSet∗, the category
of pointed simplicial sets. The latter will be discussed in Chapter 7.

In Section 6.1 we define the 2-category of V-enriched multicategories, mul-
tifunctors, and multinatural transformations. In Section 6.2 we discuss change of
enrichment along a symmetric monoidal functor. In Section 6.3 we consider a sym-
metric monoidal V-category K, as defined in Section 1.4, and show that End(K) is
V-enriched as a multicategory.

In Sections 6.4 through 6.6 we apply the preceding general theory to the case
V = Cat and K = Multicat∗. This begins in Section 6.4 where we extend The-
orem 5.7.22 to show that Multicat∗ is a symmetric Cat-monoidal 2-category and
therefore a Cat-enriched multicategory.

Our main reason for considering the Cat-enriched multicategory structure
on Multicat∗, rather than the Cat-monoidal structure from which it arises, is the
following. As noted in Proposition 5.7.23, the symmetric monoidal structure of
Multicat∗ does not restrict along the 2-functor

PermCatsu
End

Multicat∗

of Section 5.3. In contrast, the multicategory structure does restrict along inclusions
such as End.

We describe this induced multicategory structure in Section 6.5. The objects in
this multicategory are small permutative categories. Each category

PermCatsu (⟨C⟩ ; D)

has multilinear functors as objects (Definition 6.5.4) and multilinear transforma-
tions as morphisms (Definition 6.5.11).

The Cat-enriched multicategory structure on PermCatsu is of fundamental im-
portance for our applications in Part 2 because it encodes the algebraic structures
of interest for our K-theory multifunctors. It is the domain of the Elmendorf-
Mandell K-theory multifunctor defined in Chapter 10. Therefore, in Section 6.6 we
give a second, self-contained and detailed proof that PermCatsu is a Cat-enriched
multicategory. As we explain there, the multicategory structure on PermCatsu is a
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generalization of the 2-category of small symmetric monoidal categories, symmet-
ric monoidal functors, and monoidal natural transformations. Keeping this con-
nection in mind, the proofs that (i) the various parts of PermCatsu are well defined
and (ii) the Cat-enriched multicategory axioms are satisfied, are not conceptually
difficult. However, they require a nontrivial amount of notation to keep track of
the many lists of objects. See also Note 6.7.2. By reversing the linearity constraints,
the detailed proofs in Section 6.6 can also be used for colax multilinear functors
and colax multilinear transformations; see Definition 10.7.24 for PermCatsuco.

6.1. Enriched Multicategories

Throughout this section we suppose that V = (V,⊗, ξ) is a permutative cate-
gory. Recall from Definition 1.1.23 this means that the associativity and unit iso-
morphisms of V are identities. However in some of the axioms it will be useful to
explicitly write the units

λ ∶ 1⊗X X and ρ ∶ X⊗1 X

even though they are identities.

Definition 6.1.1. Suppose V is a permutative category. A V-enriched multicategory
(M, γ,1) consists of the following data.

● M is equipped with a class ObM of objects. We write Prof(M) for
Prof(ObM).
● For c′ ∈ ObM and ⟨c⟩ = (c1, . . . , cn) ∈ Prof(M), M is equipped with an

object of V
M(⟨c⟩ ; c′) =M(c1, . . . , cn ; c′) ∈ V

called the n-ary operation object with input profile ⟨c⟩ and output c′.
● For (⟨c⟩ ; c′) ∈ Prof(M) ×ObM as above and a permutation σ ∈ Σn, M is

equipped with an isomorphism in V

M(⟨c⟩ ; c′) M(⟨c⟩σ ; c′),σ
≅

called the right action or the symmetric group action, in which

⟨c⟩σ = (cσ(1), . . . , cσ(n))

is the right permutation of ⟨c⟩ by σ.
● For c ∈ ObM, M is equipped with a morphism

1c ∶ 1 M(c ; c),
called the c-colored unit.
● For c′′ ∈ ObM, ⟨c′⟩ = (c′1, . . . , c′n) ∈ Prof(M), and ⟨cj⟩ = (cj,1, . . . , cj,kj

) ∈
Prof(M) for each j ∈ {1, . . . , n}, let ⟨c⟩ = ⊕j⟨cj⟩ ∈ Prof(M) be the concatena-
tion of the ⟨cj⟩. Then M is equipped with a morphism in V

(6.1.2) M(⟨c′⟩ ; c′′)⊗
n
⊗
j=1

M(⟨cj⟩ ; c′j) M(⟨c⟩ ; c′′)γ

called the composition.
These data are required to satisfy the following axioms.
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Symmetric Group Action: For (⟨c⟩ ; c′) ∈ Prof(M) × ObM with n = len⟨c⟩ and
σ, τ ∈ Σn, the following diagram in V commutes.

M(⟨c⟩ ; c′) M(⟨c⟩σ ; c′)

M(⟨c⟩στ ; c′)
στ

σ

τ

Moreover, the identity permutation in Σn acts as the identity morphism
of M(⟨c⟩ ; c′).

Associativity: Suppose given
● c′′′ ∈ ObM,
● ⟨c′′⟩ = (c′′1 , . . . , c′′n) ∈ Prof(M),
● ⟨c′j⟩ = (c′j,1, . . . , c′j,kj

) ∈ Prof(M) for each j ∈ {1, . . . , n}, and

● ⟨cj,i⟩ = (cj,i,1, . . . , cj,i,ℓj,i
) ∈ Prof(M) for each j ∈ {1, . . . , n} and each

i ∈ {1, . . . , k j},
such that k j = len⟨c′j⟩ > 0 for at least one j. For each j, let ⟨cj⟩ = ⊕

kj
i=1⟨cj,i⟩

denote the concatenation of the ⟨cj,i⟩. Let ⟨c⟩ = ⊕n
j=1⟨cj⟩ denote the con-

catenation of the ⟨cj⟩. Let ⟨c′⟩ = ⊕n
j=1⟨c

′
j⟩ denote the concatenation of the

⟨c′j⟩.
Then the associativity diagram below commutes.

(6.1.3)

M(⟨c′′⟩ ; c′′′)⊗ [
n
⊗
j=1

M(⟨c′j⟩ ; c′′j )]⊗
n
⊗
j=1
[

kj

⊗
i=1

M(⟨cj,i⟩ ; c′j,i)]

M(⟨c′⟩ ; c′′′)⊗
n
⊗
j=1
[

kj

⊗
i=1

M(⟨cj,i⟩ ; c′j,i)]

M(⟨c′′⟩ ; c′′′)⊗
n
⊗
j=1
[M(⟨c′j⟩ ; c′′j )⊗

kj

⊗
i=1

M(⟨cj,i⟩ ; c′j,i)]

M(⟨c′′⟩ ; c′′′)⊗
n
⊗
j=1

M(⟨cj⟩ ; c′′j )

M(⟨c⟩ ; c′′′)≅permute

(γ, 1)

γ

(1,⊗j γ)

γ

Unity: Suppose c′ ∈ ObM.
(1) If ⟨c⟩ = (c1, . . . , cn) ∈ Prof(M) has length n ≥ 1, then the following

right unity diagram is commutative. Here 1n is the n-fold monoidal
product of 1 with itself and the unlabeled morphism is given by a
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composite of (strict) units in V.

(6.1.4)

M(⟨c⟩ ; c′)⊗1n M(⟨c⟩ ; c′)

M(⟨c⟩ ; c′)⊗
n
⊗
j=1

M(cj ; cj) M(⟨c⟩ ; c′)

1⊗(⊗j1cj) 1

γ

(2) For any ⟨c⟩ ∈ Prof(M), the left unity diagram below is commutative,
where the unlabeled morphism is given by a (strict) unit in V.

(6.1.5)

1⊗M(⟨c⟩ ; c′) M(⟨c⟩ ; c′)

M(c′ ; c′)⊗M(⟨c⟩ ; c′) M(⟨c⟩ ; c′)

1c′⊗1 1

γ

Equivariance: Suppose that in the definition of γ (6.1.2), len⟨cj⟩ = k j ≥ 0.
(1) For each σ ∈ Σn, the following top equivariance diagram is commuta-

tive.
(6.1.6)

M(⟨c′⟩ ; c′′)⊗
n
⊗
j=1

M(⟨cj⟩ ; c′j) M(⟨c′⟩σ ; c′′)⊗
n
⊗
j=1

M(⟨cσ(j)⟩ ; c′σ(j))

M(⟨c1⟩, . . . , ⟨cn⟩ ; c′′) M(⟨cσ(1)⟩, . . . , ⟨cσ(n)⟩ ; c′′)

γ

(σ,σ−1)

γ

σ⟨kσ(1),...,kσ(n)⟩

Here σ⟨kσ(1), . . . , kσ(n)⟩ ∈ Σk1+⋯+kn is right action of the block permu-
tation (II.1.1.19) that permutes the n consecutive blocks of lengths
kσ(1), . . ., kσ(n) as σ permutes {1, . . . , n}, leaving the relative order
within each block unchanged.

(2) Given permutations τj ∈ Σkj
for 1 ≤ j ≤ n, the following bottom equiv-

ariance diagram is commutative.

(6.1.7)

M(⟨c′⟩ ; c′′)⊗
n
⊗
j=1

M(⟨cj⟩ ; c′j) M(⟨c′⟩ ; c′′)⊗
n
⊗
j=1

M(⟨cj⟩τj ; c′j)

M(⟨c1⟩, . . . , ⟨cn⟩ ; c′′) M(⟨c1⟩τ1, . . . , ⟨cn⟩τn ; c′′)

γ

(1,⊗jτj)

γ

τ1×⋯×τn

Here the block sum τ1 ×⋯ × τn ∈ Σk1+⋯+kn (II.1.1.8) is the image of
(τ1, . . . , τn) under the canonical inclusion

Σk1
×⋯×Σkn Σk1+⋯+kn .

This finishes the definition of a V-enriched multicategory. A V-enriched multicat-
egory is small if its class of objects is a set. ◇
Definition 6.1.8. A V-enriched multicategory with only one object is called a V-
enriched operad. If M is a V-enriched operad, then its object of n-ary operations is
denoted by Mn ∈ V. ◇
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Example 6.1.9. Suppose M is a V-enriched multicategory and c is an object of M.
Then End(c) is the V-enriched operad consisting of the single object c and n-ary
operation object

End(c)n =M(⟨c⟩ ; c) ∈ V,

where ⟨c⟩ denotes the constant n-tuple at c. The symmetric group action, unit, and
composition of End(c) are given by those of M. ◇
Definition 6.1.10. A V-enriched multifunctor F ∶M N between V-enriched mul-
ticategories M and N consists of the following data:

● an assignment
F ∶ ObM ObN,

where ObM and ObN are the classes of objects of M and N, respectively,
and
● for each (⟨c⟩ ; c′) ∈ Prof(M) ×ObM with ⟨c⟩ = (c1, . . . , cn), a morphism in
V

F ∶M(⟨c⟩ ; c′) N(F⟨c⟩ ; Fc′),
where F⟨c⟩ = (Fc1, . . . , Fcn).

These data are required to preserve the symmetric group action, the colored units,
and the composition in the following sense.

Symmetric Group Action: For each (⟨c⟩ ; c′) as above and each permutation σ ∈
Σn, the following diagram in V is commutative.

(6.1.11)

M(⟨c⟩ ; c′) N(F⟨c⟩ ; Fc′)

M(⟨c⟩σ ; c′) N(F⟨c⟩σ ; c′)

≅σ

F

≅σ

F

Units: For each c ∈ ObM, the following diagram in V is commutative.

(6.1.12) 1

M(c ; c)

N(Fc ; Fc)

1c

1Fc

F

Composition: For c′′, ⟨c′j⟩, and ⟨c⟩ = ⊕j⟨cj⟩ as in the definition of γ (5.1.3), the
following diagram in V is commutative.

(6.1.13)

M(⟨c′⟩ ; c′′)⊗
n
⊗
j=1

M(⟨cj⟩ ; c′j) N(F⟨c′⟩ ; Fc′′)⊗
n
⊗
j=1

N(F⟨cj⟩ ; Fc′j)

M(⟨c⟩ ; c′′) N(F⟨c⟩ ; Fc′′)

γ

(F,⊗j F)

γ

F

This finishes the definition of a V-enriched multifunctor.
Moreover:

(1) For another V-enriched multifunctor G ∶ N P between V-enriched
multicategories, where P has object class ObP, the composition GF ∶
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M P is the V-enriched multifunctor defined by composing the as-
signments on objects

ObM ObN ObP
F G

and the morphisms on n-ary operations

M(⟨c⟩ ; c′) N(F⟨c⟩ ; Fc′) P(GF⟨c⟩ ; GFc′).F G

(2) The identity V-enriched multifunctor 1M ∶ M M is defined by the iden-
tity assignment on objects and the identity morphism on n-ary opera-
tions.

(3) A V-enriched operad morphism is a V-enriched multifunctor between two
V-enriched multicategories with one object.

The proof of Lemma 5.1.16 generalizes to the V-enriched case, with ⊗ in place of
×, and shows that composition of V-enriched multifunctors is well defined, asso-
ciative, and unital with respect to identity multifunctors. ◇
Definition 6.1.14. Suppose P is a V-enriched operad and M is a V-enriched multi-
category. A P-algebra in M is a pair

(c, θ)
consisting of an object c in M and a V-enriched multifunctor

θ ∶ P M

that sends the single object of P to c. Equivalently, θ is a V-enriched operad mor-
phism

θ ∶ P End(c). ◇
Definition 6.1.15. Suppose F, G ∶M N are V-enriched multifunctors as in Def-
inition 6.1.10. A V-enriched multinatural transformation α ∶ F G consists of mor-
phisms in V

αc ∶ 1 N(Fc ; Gc) for c ∈ ObM
such that the following V-naturality diagram in V commutes for each (⟨c⟩ ; c′) ∈
Prof(M)×ObM with ⟨c⟩ = (c1, . . . , cn).

(6.1.16) M(⟨c⟩ ; c′)

1⊗M(⟨c⟩ ; c′) N(Fc′ ; Gc′)⊗N(F⟨c⟩ ; Fc′)

N(F⟨c⟩ ; Gc′)

M(⟨c⟩ ; c′)⊗
n
⊗
j=1
1 N(G⟨c⟩ ; Gc′)⊗

n
⊗
j=1

N(Fcj ; Gcj)

λ−1

1

1

αc′ ⊗ F

γ

G⊗
n
⊗
j=1

αcj

γ

This finishes the definition of a V-enriched multinatural transformation.
● Each αc is called a component of α.
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● The identity V-enriched multinatural transformation 1F ∶ F F has com-
ponents

(1F)c = 1Fc for c ∈ ObM. ◇
Definition 6.1.17. Suppose α ∶ F G is a V-enriched multinatural transforma-
tion between V-enriched multifunctors as in Definition 6.1.15.

(1) Suppose β ∶ G H is a V-enriched multinatural transformation for a
V-enriched multifunctor H ∶M N. The vertical composition

βα ∶ F H

is the V-enriched multinatural transformation with components at c ∈
ObM given by the following composites in V.

1

1⊗1 N(Gc ; Hc)⊗N(Fc ; Gc)

N(Fc ; Hc)

λ−1 1
βc ⊗ αc

γ

(βα)c

(2) Suppose α′ ∶ F′ G′ is a V-enriched multinatural transformation for
V-enriched multifunctors F′, G′ ∶ N P. The horizontal composition

α′ ∗ α ∶ F′F G′G

is the V-enriched multinatural transformation with components at c ∈
ObM given by the following composites in V.

1

1⊗1 P(F′Gc ; G′Gc)⊗N(Fc ; Gc)

P(F′Gc ; G′Gc)⊗P(F′Fc ; F′Gc)

P(F′Fc ; G′Gc)
(α′ ∗ α)c

λ−1 1

α′Gc ⊗ αc

1⊗ F′

γ

◇
Theorem 6.1.18. There is a 2-category V-Multicat consisting of the following data.

● Its objects are small V-enriched multicategories.
● For small V-enriched multicategories M and N, the hom category V-Multicat(M,N)

has:
– V-enriched multifunctors M N as 1-cells;
– V-enriched multinatural transformations as 2-cells;
– vertical composition as composition; and
– identity V-enriched multinatural transformations as identity 2-cells.

● The identity 1-cell 1M is the identity V-enriched multifunctor 1M.
● Horizontal composition of 1-cells is the composition of V-enriched multifunctors.
● Horizontal composition of 2-cells is that of V-enriched multinatural transforma-

tions.



III.236 6. ENRICHED MULTICATEGORIES

Explanation 6.1.19 (Enrichment over Non-Strict V). We extend the definitions in
this and subsequent sections to general symmetric monoidal V by using the same
data and then, in each axiom, choosing an association of iterated monoidal prod-
ucts and inserting associativity isomorphisms so that the new diagrams corre-
spond to the given ones under the symmetric strictification

V Vst

of Theorem 1.1.42. Because strictification is an equivalence, the strict diagrams
commute if and only if their preimages in V commute. ◇

6.2. Change of Enriching Categories

In this section we discuss change of enrichment along a symmetric monoidal
functor

U ∶ V W.

We continue the assumption that V and W are permutative categories. The defini-
tions and results of this section are extended to general V and W via strictification
as in Explanation 6.1.19, replacing U with the composite

Vst
R

V
U

W
L

Wst.

Definition 6.2.1. Suppose (V,⊗,1) and (W,⊗,1) are permutative categories and

U ∶ V W

is a symmetric monoidal functor. For a V-enriched multicategory M we define a
W-enriched multicategory MU with the following data.

● The objects of MU are those of M.
● The n-ary operation objects are given by

MU(⟨c⟩ ; c′) = UM(⟨c⟩ ; c′)

for c′ ∈ ObM and ⟨c⟩ ∈ Prof(M).
● The symmetric group action is given by

UM(⟨c⟩ ; c′) Uσ UM(⟨c⟩σ ; c′)
for σ ∈ Σn where n is the length of ⟨c⟩.
● The c-colored unit for c ∈ ObM is given by

1
U0

U1
U1c UM(c ; c).

● The composition for MU is given as follows for c′′ ∈ ObM, ⟨c′⟩ ∈ Prof(M),
and ⟨cj⟩ ∈ Prof(M) for each j ∈ {1, . . . , n}. Let ⟨c⟩ = ⊕j⟨cj⟩ ∈ Prof(M) be the
concatenation of the ⟨cj⟩. Then the composition of MU is given by

(6.2.2)

UM(⟨c′⟩ ; c′′)⊗
n
⊗
j=1

UM(⟨cj⟩ ; c′j)

U(M(⟨c′⟩ ; c′′)⊗
n
⊗
j=1

M(⟨cj⟩ ; c′j)) UM(⟨c⟩ ; c′′)Uγ
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where the vertical morphism is the U-coherent map given by iterates of
U2 and is unique by Epstien’s Coherence Theorem 1.1.44. ◇

Proposition 6.2.3. In the context of Definition 6.2.1, MU is a W-enriched multicategory.

Proof. Each of the axioms of Definition 6.1.1 for MU follows by applying U to the
corresponding axiom for M and then using naturality of U2 and symmetric mon-
oidal axioms of U. □

Definition 6.2.4. Suppose (V,⊗,1) and (W,⊗,1) are permutative categories and

U ∶ V W

is a symmetric monoidal functor. Suppose M and N are V-enriched multicategories
and

F ∶M N

is a V-enriched multifunctor. We define a W-enriched multifunctor

FU ∶MU NU

with the following data.
● The assignment on objects is given by that of F.
● The morphism on operation objects is given by

UF ∶ UM(⟨c⟩ ; c′) UN(F⟨c⟩ ; Fc′)

for c ∈ ObM and ⟨c⟩ ∈ Prof(M). ◇
Proposition 6.2.5. In the context of Definition 6.2.4, FU is a W-enriched multifunctor.

Proof. The symmetric group action diagram (6.1.11) and unit diagram (6.1.12) for
FU both commute by functoriality of U and the corresponding diagrams for F.
For the composition diagram (6.1.13), first note that U2, and hence also the U-
coherent maps defining composition in MU and NU (6.2.2), are natural with respect
to morphisms in V. Then the composition diagram for FU commutes by applying
U to the corresponding diagram for F, using functoriality of U and naturality of
the U-coherent maps in (6.2.2). □

Definition 6.2.6. Suppose (V,⊗,1) and (W,⊗,1) are permutative categories and

U ∶ V W

is a symmetric monoidal functor. Suppose M and N are V-enriched multicategories
and

α ∶ F G ∶M N

are V-enriched multifunctors and a V-enriched multinatural transformation, re-
spectively. We define a W-enriched multinatural transformation

αU ∶ FU GU

with components

1
U0

U1 Uα UN(Fc ; Gc). ◇
Proposition 6.2.7. In the context of Definition 6.2.6, αU is a W-enriched multinatural
transformation.
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Proof. Verification that the W-naturality diagram (6.1.16) holds for αU is similar to
the proof of Proposition 6.2.5 for FU . We apply U to the V-naturality diagram for
α and then use functoriality of U and naturality of U0 and of the U-coherent maps
appearing in (6.2.2) for MU and NU . □

Definition 6.2.8. Suppose V and W are permutative categories and

U ∶ V W

is a symmetric monoidal functor. Then there is a change of enrichment 2-functor

(−)U ∶ V-Multicat W-Multicat

given by Definitions 6.2.1, 6.2.4, and 6.2.6. ◇
Proposition 6.2.9. In the context of Definition 6.2.8,

(−)U ∶ V-Multicat W-Multicat

is a 2-functor.

Proof. Change of enrichment preserves identities and composition of multifunc-
tors by functoriality of U. Preservation of identity multinatural transformations
holds by the definition of identity operations via composition with U0. Horizontal
and vertical composition of multinatural transformations are preserved by func-
toriality of U and naturality of U0 and U2. □

6.3. Enriched Endomorphism Multicategories

The two main types of enriched multicategories we will consider are enriched
operads and those arising from enriched symmetric monoidal categories. We de-
scribe the latter in this section.

Again throughout this section we suppose that V = (V,⊗, ξ) is a permutative
category. However, as outlined in Explanation 6.1.19, we will implicitly extend the
definitions here to general symmetric monoidal V via strictification.

Convention 6.3.1 (Left Normalized Iterated Products). Suppose K is a monoidal
V-category and ⟨X⟩ = (X1, . . . , Xn) is a tuple of objects of K. Recall from Defini-
tion 2.5.3 the left normalized product is defined to be

⊠⟨X⟩ = (⋯((X1 ⊠X2)⊠X3)⋯)⊠Xn.

For tuples of objects ⟨Xj⟩ = (Xj,1, . . . , Xj,kj
) with j ∈ {1, . . . , n}, let ⟨X⟩ denote their

concatenation. By the coherence for monoidal V-categories, Theorem 2.5.6, there
is a unique canonical V-map giving an isomorphism

⊠⟨X⟩ ≅ n⊠
j=1
(

kj
⊠
i=1

Xj,i).

We call this the normalization map and write

K(
n⊠

j=1
(

kj
⊠
i=1

Xj,i), Y) ≅
norm K(⊠⟨X⟩, Y)

for the induced morphism on hom objects. ◇
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Example 6.3.2. In the context of Convention 6.3.1, if n = 3 and (k1, k2, k3) = (2, 2, 1),
then the normalization map at left below is given by an (inverse) associator. If n = 3
and (k1, k2, k3) = (2, 0, 1), then the normalization map at right below is given by a
right unitor.

((X1,1 ⊠X1,2)⊠ (X2,1 ⊠X2,2))⊠X3,1

(((X1,1 ⊠X1,2)⊠X2,1)⊠X2,2)⊠X3,1

≅norm

((X1,1 ⊠X1,2)⊠ I)⊠X3,1

(X1,1 ⊠X1,2)⊠X3,1

≅norm

◇
Definition 6.3.3 (Enriched Endomorphism Multicategory). Suppose that V is a
permutative category and K is a symmetric monoidal V-category. The V-enriched
endomorphism multicategory of K, denoted End(K), is a V-enriched multicategory
defined as follows.

● The objects are those of K.
● For an object X′ ∈ K and a tuple ⟨X⟩ ∈ Prof(K), we define the V-object of

operations

End(K)(⟨X⟩ ; X′) = K(⊠⟨X⟩, X′),

where ⊠⟨X⟩ denotes the left normalized product.
● For ⟨X⟩ and X′ as above and a permutation σ ∈ Σn, the right action of σ is

defined as the following composite.

(6.3.4)

K(⊠⟨X⟩, X′)

K(⊠⟨X⟩, X′)⊗1 K(⊠⟨X⟩, X′)⊗K(⊠⟨X⟩σ,⊠⟨X⟩)

K(⊠⟨X⟩σ, X′)

ρ−1

1⊗ βσ

m

σ

In the above diagram, βσ denotes the V-natural isomorphism that per-
mutes coordinates according to the permutation σ. The existence and
uniqueness of such a V-natural isomorphism follows from the symmetric
form of coherence, Theorem 2.5.6.
● For each X ∈ K the unit of End(K) is given by that of K,

1X ∶ 1 K(X, X) = End(K)(X ; X).

● The composition γ in End(K) is defined as the following composite for
tuples of objects X′′, ⟨X′⟩ = (X′1, . . . , X′n), and ⟨Xj⟩ = (Xj,1, . . . , Xj,kj

) with
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j ∈ {1, . . . , n} and with ⟨X⟩ being the concatenation of the ⟨Xj⟩.

(6.3.5)

K(⊠⟨X′⟩, X′′)⊗
n
⊗
j=1

K(
kj
⊠
i=1

Xj,i, X′j)

K(⊠⟨X′⟩, X′′)⊗K(
n⊠

j=1

kj
⊠
i=1

Xj,i,⊠⟨X′⟩) K(
n⊠

j=1

kj
⊠
i=1

Xj,i, X′′)

K(⊠⟨X⟩, X′′)

1⊗⊠n−1
j=1

m

≅norm

γ

◇
Proposition 6.3.6. Suppose that V is a permutative category and K is a symmetric mon-
oidal V-category. Then End(K) is a V-enriched multicategory.

Proof. We will verify commutativity of the associativity diagram (6.1.3) for End(K).
The other axioms are similar. We use the following notation for W, Zj, Yji, and Xjik
objects of K with j ∈ {1, . . . , n}, i ∈ 1, . . . , mj, and k ∈ {1, . . . , ℓji}.

EZW = K(
n⊠

j=1
Zj, W) EYZ = K(

n⊠
j=1

mj
⊠
i=1

Yji,
n⊠

j=1
Zj)

EYZ
j = K(

mj
⊠
i=1

Yji, Zj) EYW = K(
n⊠

j=1

mj
⊠
i=1

Yji, W)

EXY
j i = K(

ℓji
⊠

k=1
Xjik, Yji) EXY = K(

n⊠
j=1

mj
⊠
i=1

ℓji
⊠

k=1
Xjik,

n⊠
j=1

mj
⊠
i=1

Yji)

EXY
j =K(

mj
⊠
i=1

ℓji
⊠

k=1
Xjik,

mj
⊠
i=1

Yji) EXZ
j = K(

mj
⊠
i=1

ℓji
⊠

k=1
Xjik, Zj)

EXZ = K(
n⊠

j=1

mj
⊠
i=1

ℓji
⊠

k=1
Xjik,

n⊠
j=1

Zj) EXW = K(
n⊠

j=1

mj
⊠
i=1

ℓji
⊠

k=1
Xjik, W)

Thus, for example, we have

End(K)(⟨Z⟩ ; W) = K(⊠⟨Z⟩, W) = EZW .

Moreover, we use the following notation.

● The concatenation of the ⟨Yj⟩ is denoted ⟨Y⟩ and

EYW
norm = End(K)(⊠⟨Y⟩, W).

● For each j, the concatenation of the ⟨Xji⟩ is denoted ⟨Xj⟩ and

EXZ
j norm = End(K)(⊠⟨Xj⟩, Zj).

● The concatenation of the ⟨Xj⟩ is denoted ⟨X⟩ and

EXW
norm = End(K)(⊠⟨X⟩, W).
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The associativity diagram for End(K) is the outer diagram below, where the left
and right vertical composites are, by definition, γ⊗ 1 and 1⊗⊗j γ, respectively.

EZW ⊗
n
⊗
j=1

EYZ
j ⊗

n
⊗
j=1
[

kj

⊗
i=1

EXY
j i ]

EZW ⊗EYZ ⊗
n
⊗
j=1
[

kj

⊗
i=1

EXY
j i ]

EYW ⊗
n
⊗
j=1
[

kj

⊗
i=1

EXY
j i ]

EYW ⊗EXY

EYW
norm ⊗

n
⊗
j=1
[

kj

⊗
i=1

EXY
j i ]

EZW ⊗
n
⊗
j=1
[EYZ

j ⊗
kj

⊗
i=1

EXY
j i ]

EZW ⊗
n
⊗
j=1
[EYZ

j ⊗EXY
j ]

EZW ⊗
n
⊗
j=1

EXZ
j

EZW ⊗EXZ

EZW ⊗
n
⊗
j=1

EXZ
j norm

EXW

EXW
norm

EZW ⊗EYZ ⊗EXY

EZW ⊗
n
⊗
j=1

EYZ
j ⊗

n
⊗
j=1

EXY
j

≅
permute

1⊗⊠⊗ 1

m⊗ 1

1⊗⊠

m

1⊗⊗j [1⊗⊠]

1⊗⊗j m

1⊗⊠

m

1⊗ 1⊗⊠

m⊗ 1

≅
permute

1⊗m

1⊗⊠⊗⊠

1⊗ 1⊗⊗j ⊠

≅ norm⊗ 1 ≅1⊗ norm

≅ norm

γ γ

(1)

(3)

(2)

(2)

(4)

(5) (5)

Commutativity of each of the inner regions is verified as follows.

(1) Use naturality of the symmetry, ξ, in V.
(2) Use functoriality of the monoidal product, ⊗.
(3) Use enriched functoriality of ⊠ (interchange; see Explanation 1.4.7).
(4) Use associativity of the composition m in K (1.2.2).
(5) Use functoriality of ⊗ and naturality of m with respect to morphisms in

V. □

The following is a special case of Example 6.1.9.
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Definition 6.3.7 (Enriched Endomorphism Operad). Suppose V is a permutative
category and K is a symmetric monoidal V-category. For each object X ∈ K, the
endomorphism operad of X is the V-enriched multicategory with a single object X
and with n-ary operations

End(X)n = End(K)(⟨X⟩ ; X)

where ⟨X⟩ is the length-n tuple whose entries are all the single object X. Symmetric
group actions, unit, and compositions are defined as in End(K). ◇
Definition 6.3.8. Suppose that V is a permutative category, K and L are symmetric
monoidal V-categories, and

F ∶ K L

is a symmetric monoidal V-functor. We define a V-enriched multifunctor

End(F) ∶ End(K) End(L)
with assignment on objects given by F and morphisms on operation objects

(6.3.9) End(F) ∶ End(K)(⟨X⟩ ; X′) End(L)(F⟨X⟩ ; X′)

defined as follows. For each n ≥ 1, there is an F-coherent map with components

Fn ∶ 1 L( ⊠ (F⟨X⟩) , F(⊠⟨X⟩) )

provided by iterated application of F2, where ⟨X⟩ has length n. This is unique by
Enriched Epstein’s Coherence Theorem 2.5.8. Then (6.3.9) is given by applying F
to mapping objects

F ∶ K(⊠⟨X⟩, X′) L(F(⊠⟨X⟩), FX′)
and then precomposing with the components of Fn. ◇
Proposition 6.3.10. In the context of Definition 6.3.8,

End(F) ∶ End(K) End(L)
is a V-enriched multifunctor.

Proof. The unit condition (6.1.12) is given by the identity axiom (1.2.6) for F. We
apply the coherence Theorem 2.5.8 to show that the diagrams for preservation of
the symmetric group action (6.1.11) and composition (6.1.13) commute.

By definition, the morphisms given by End(F) on operation objects are F-
coherent maps. The permutation action (6.3.4) and composition (6.3.5) of End(K)
and End(L) are given by composites of the monoidal product ⊠, symmetry β, and
the normalization maps of Convention 6.3.1. All of these are (permuted) canonical
V-maps and hence also F-coherent maps. This shows that (6.1.11) and (6.1.13) for
End(F) consist entirely of F-coherent maps. Therefore their respective composites
are equal by Theorem 2.5.8. □

6.4. The Multicategory of Small Multicategories

Now we use the theory above to show that the 2-categories Multicat and
Multicat∗ have the structure of Cat-enriched multicategories. Although Cat is not
a permutative category, we understand the definition of Cat-enriched multicate-
gory via strictification, as outlined in Explanation 6.1.19.



6.4. THE MULTICATEGORY OF SMALL MULTICATEGORIES III.243

We first show that each of (Multicat,⊗) and (Multicat∗,∧) is symmetric
Cat-monoidal in the sense of Definition 1.5.1. Then we apply Definition 6.3.7
and Proposition 6.3.6 to obtain Cat-enriched multicategory structures.

To show that (Multicat,⊗) is symmetric Cat-monoidal, we must first extend
the Boardman-Vogt tensor product of Definition 5.6.11 to multinatural transfor-
mations.
Definition 6.4.1. Suppose that

F, F′ ∶M M′ and G, G′ ∶ N N′

are multifunctors and suppose moreover that

θ ∶ F F′ and ω ∶ G G′

are multinatural transformations. Define a multinatural transformation

θ ⊗ω ∶ F⊗G F′ ⊗G′

via components
(θ ⊗ω)(c,d) = θc ×ωd

for c ∈M and d ∈ N. ◇
Proposition 6.4.2. In the context of Definition 6.4.1, θ ⊗ω is a multinatural transfor-
mation F⊗G F′ ⊗G′.

Proof. We verify the naturality condition of Definition 5.1.17 for generating opera-
tions ϕ⊗ d and c⊗ψ with

ϕ ∈M(⟨c⟩ ; c′) and ψ ∈ N(⟨d⟩ ; d′).
Let (θ ⊗ω)⟨c⟩⊗d denote the tuple of unary operations θci ×ωd indexed by the ob-
jects of ⟨c⟩⊗ d. Similarly let (θ ⊗ω)c⊗⟨d⟩ denote the tuple indexed by c⊗ ⟨d⟩. The
equalities

(F′ϕ⊗G′d) ○ ((θ ⊗ω)⟨c⟩⊗d) = (θc′ ×ωd) ○ (Fϕ⊗Gd) and

(F′c⊗G′ψ) ○ ((θ ⊗ω)c⊗⟨d⟩) = (θc ×ωd′) ○ (Fc⊗Gψ)
follow from the naturality conditions for θ and ω, respectively, together with the
unit conditions

1G′dωd = ωd1Gd and 1F′cθc = θc1Fc. □

Theorem 6.4.3. The tensor product of small multicategories is a 2-functor

Multicat×Multicat
⊗

Multicat

and (Multicat,⊗) is a symmetric Cat-monoidal 2-category.

Proof. The 2-functoriality of ⊗ follows because the units and composition of multi-
natural transformations are given componentwise Recalling Definition 6.4.1, the
components of θ ⊗ω are given pairwise by those of θ and ω. Therefore, ⊗ is 2-
functorial.

To show that Multicat is symmetric Cat-monoidal, we will apply Theo-
rem 2.5.1. So we need to continue showing that the data of the symmetric monoi-
dal structure on Multicat extend to 2-functors and 2-natural transformations.

To that end, we first note that the unit

∗ I
Multicat
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extends to a 2-functor by sending the unique 2-cell of the terminal 2-category to
the identity multinatural transformation on the identity multifunctor 1I. Next we
show that the symmetry β is 2-natural. Suppose given multifunctors

F, F′ ∶M N and G, G′ ∶M′ N′

together with multinatural transformations

θ ∶ F F′ and ω ∶ G G′.

The whiskering of ω⊗ θ with βM,M′ ,

M⊗M′ M′ ⊗M N′ ⊗N,
β

G⊗ F

G′ ⊗ F′
⇒

ω⊗ θ

has component at an object c⊗ c′ ∈M⊗M′ given by

(ω⊗ θ)β(c⊗c′) = ωc′ ⊗ θc.

On the other hand, the whiskering of βN,N′ with θ ⊗ω,

M⊗M′ N⊗N′ N′ ⊗N,
β

F⊗G

F′ ⊗G′

⇒

θ ⊗ω

has component at an object c⊗ c′ ∈M⊗M′ given by

β(θc ⊗ωc′) = ωc′ ⊗ θc.

Therefore, β is 2-natural.
Similar arguments for the unit and associativity isomorphisms show that these

are 2-natural as well. Ultimately their 2-naturality follows from the 2-naturality
of the corresponding data for the Cartesian product, pushouts, and coequalizers.
Since the data of the symmetric monoidal structure on (Multicat,⊗) are the under-
lying functors and natural transformations of Cat-enriched data, Theorem 2.5.1
shows that (Multicat,⊗) is symmetric Cat-monoidal. □

The proof of Theorem 6.4.3 descends to the smash product of pointed multi-
categories and gives the following.
Theorem 6.4.4. The smash of small multicategories is a 2-functor

Multicat∗ ×Multicat∗
∧

Multicat∗

and (Multicat∗,∧) is a symmetric Cat-monoidal 2-category.
By applying Proposition 6.3.6 to (Multicat,⊗) and (Multicat∗,∧), we have the

following.
Corollary 6.4.5. Each of Multicat and Multicat∗ has the structure of Cat-enriched mul-
ticategory induced by the products ⊗ and ∧, respectively.
Convention 6.4.6 (Multicategories Multicat and Multicat∗). Instead of the overly-
cumbersome End(Multicat) and End(Multicat∗), we will continue to use the nota-
tion Multicat and Multicat∗ even when regarding these as Cat-enriched multicate-
gories. ◇
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6.5. Permutative Categories and Multilinearity

Recall from Definition 1.1.27 that PermCatsu denotes the 2-category of small
permutative categories, strictly unital symmetric monoidal functors, and monoi-
dal natural transformations. Moreover, recall from Corollary 5.3.9 that taking en-
domorphism multicategories provides a 2-functor

End ∶ PermCatsu Multicat∗

that is bijective on 1- and 2-cells.
Therefore, we have a multicategory structure on PermCatsu given by restrict-

ing that of Multicat∗. Likewise, the Cat-enriched multicategory structure on
Multicat∗ restricts to such a structure for PermCatsu. This is in contrast to Proposi-
tion 5.7.23, which shows that the symmetric monoidal structure of Multicat∗ does
not restrict along End.
Definition 6.5.1. We define a Cat-enriched multicategory structure on PermCatsu

as the sub-multicategory of Multicat∗ given by the image of End. Recalling Corol-
lary 5.3.9, this is the full sub-multicategory whose objects are given by End(C) for
permutative categories C. As an extension of Convention 6.4.6, we continue to use
the notation PermCatsu for the Cat-enriched multicategory. ◇

The Cat-enriched multicategory structure of PermCatsu is fundamental to our
K-theory applications in Part 2 because it is the domain of the Elmendorf-Mandell
K-theory multifunctor defined in Chapter 10. Therefore, in Section 6.6 we give a
second, more direct proof that PermCatsu is a Cat-enriched multicategory.

In the remainder of this section we give more detailed descriptions of the cat-
egories of operations

PermCatsu (⟨C⟩ ; D)
for permutative categories C1, . . . ,Cn, and D. Such a category is, by definition, the
category of multifunctors

(6.5.2) F ∶ ∧n
i=1End(Ci) End(D)

and multinatural transformations between them.
Definition 6.5.3. Suppose ⟨X⟩ ∈∏jCj is a tuple of objects.

● For an object X′i ∈ Ci with i ∈ {1, . . . , n}, we let ⟨X ○i X′i ⟩ denote the tuple
whose jth entry is Xj for j ≠ i, and whose ith entry is X′i .
● Similarly, for objects X′i ∈ Ci and X′k ∈ Ck with i, k ∈ {1, . . . , n} and i ≠ k, we

let ⟨X ○i X′i ○k X′k⟩ denote the tuple whose jth entry is that of ⟨X ○i X′i ⟩ for
j ≠ k and whose kth entry is X′k. ◇

Definition 6.5.4 (Multilinear Functors). Suppose C1, . . . ,Cn, and D are permutative
categories. An n-linear functor from ⟨C⟩ to D is a functor

F ∶ C1 ×⋯×Cn D

together with, for each i ∈ {1, . . . , n}, a natural transformation F2
i called the ith

linearity constraint with components

F2
i ∶ F⟨X ○i Xi⟩⊕ F⟨X ○i X′i ⟩ F⟨X ○i (Xi ⊕X′i)⟩

for ⟨X⟩ ∈∏jCj and X′i ∈ Ci. These data satisfy the following axioms.
Unity: If any Xj = e, the unit of Cj, then F⟨X⟩ = e, the unit in D. Moreover,

F⟨ f ○j 1e⟩ = 1e for any morphisms fi ∈ Ci for i /= j.
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Constraint Unity: If any Xj = e or if X′i = e, then F2
i is an identity morphism.

Constraint Associativity: The following diagram commutes for each i ∈ {1, . . . , n}
and ⟨X⟩ ∈∏jCj, with X′i , X′′i ∈ Ci.

(6.5.5)

F⟨X ○i Xi⟩⊕ F⟨X ○i X′i ⟩⊕ F⟨X ○i X′′i ⟩ F⟨X ○i Xi⟩⊕ F⟨X ○i (X′i ⊕X′′i )⟩

F⟨X ○i (Xi ⊕X′i)⟩⊕ F⟨X ○i X′′i ⟩ F⟨X ○i (Xi ⊕X′i ⊕X′′i )⟩

1⊕ F2
i

F2
i ⊕ 1 F2

i

F2
i

Constraint Symmetry: The following diagram commutes for each i ∈ {1, . . . , n}
and ⟨X⟩ ∈∏jCj, with X′i ∈ Ci.

(6.5.6)

F⟨X ○i Xi⟩⊕ F⟨X ○i X′i ⟩ F⟨X ○i (Xi ⊕X′i)⟩

F⟨X ○i X′i ⟩⊕ F⟨X ○i Xi⟩ F⟨X ○i (X′i ⊕Xi)⟩

F2
i

ξ F⟨1 ○i ξ⟩

F2
i

Constraint 2-By-2: The following diagram commutes for each

i /= k ∈ {1, . . . , n}, ⟨X⟩ ∈∏jCj, X′i ∈ Ci, and X′k ∈ Ck.

(6.5.7)

F⟨X ○i Xi ○k Xk⟩⊕ F⟨X ○i X′i ○k Xk⟩
⊕F⟨X ○i Xi ○k X′k⟩⊕ F⟨X ○i X′i ○k X′k⟩

F⟨X ○i Xi ○k Xk⟩⊕ F⟨X ○i Xi ○k X′k⟩
⊕F⟨X ○i X′i ○k Xk⟩⊕ F⟨X ○i X′i ○k X′k⟩

F⟨X ○i (Xi ⊕X′i) ○k Xk⟩⊕ F⟨X ○i (Xi ⊕X′i) ○k X′k⟩

F⟨X ○i Xi ○k (Xk ⊕X′k)⟩⊕ F⟨X ○i X′i ○k (Xk ⊕X′k)⟩

F⟨X ○i (Xi ⊕X′i) ○k (Xk ⊕X′k)⟩

F2
i ⊕ F2

i

F2
k

1⊕ ξ ⊕ 1

F2
k ⊕ F2

k

F2
i

A 0-linear functor is a choice of object in D, regarded as a functor

F ∶ 1 D
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from the empty product. We say that F is a multilinear functor if it is n-linear
for some n ≥ 0. In Proposition 6.5.10 below we will show that the operations
of PermCatsu are precisely multilinear functors. ◇
Example 6.5.8. In the context of Definition 6.5.4 with n = 1, comparing the axioms
above with those of Definition 1.1.6 shows that a 1-linear functor is precisely a
strictly unital symmetric monoidal functor. ◇
Example 6.5.9 (Ring Category Product). Recall from Definition II.9.1.2 the defini-
tion of ring category. If

C = (C, (⊕, 0, ξ⊕), (⊗,1), (∂l , ∂r))
is a ring category, then

F = ⊗ ∶ C×C C

is a 2-linear functor with F2
1 = ∂l and F2

2 = ∂r. The following table lists the cor-
respondence between axioms of Definition 6.5.4 for n = 2 and those of Defini-
tion II.9.1.2.

2-Linear Functor Ring Category Product
Unity Multiplicative Zero

Constraint Unity Zero Factorization

Constraint Associativity Internal Factorization

Constraint Symmetry Symmetry Factorization

Constraint 2-By-2 2-By-2 Factorization

We explain further details of this correspondence when, in the proof of The-
orem 11.2.16, we use it along with 1- and 3-linearity to show that ring category
structure on C is encoded by action of the Cat-enriched associative operad.

Theorem 11.2.16 is, in turn, used in Theorems 11.5.5, 12.4.5, and 13.4.12 to es-
tablish similar correspondences between certain operad actions and, respectively,
bipermutative, braided ring, and En-monoidal structures on C. In the proof of The-
orem 13.4.12, 4-linearity is used to describe the exchanges ηk,l (Definition 13.4.1).

◇
Proposition 6.5.10. Suppose C1, . . . ,Cn and D are small permutative categories. The
objects of

PermCatsu (⟨C⟩ ; D) =Multicat∗(∧
j
End(Cj),End(D))

are precisely the multilinear functors ⟨C⟩ D.

Proof. Recall from the proofs of Proposition 5.3.7 and Lemma 5.3.8 that, in the
correspondence between strictly unital symmetric monoidal functors and pointed
multifunctors

F ∶ C D and G ∶ End(C) End(D),
respectively, the strictly unital aspect of F corresponds to preservation of base-
points by G, the monoidal constraints F2

X,Y correspond to the values of G on ι(X,Y),
and the symmetric monoidal axioms for F correspond to the multifunctoriality ax-
ioms for G. Applying this to Definition 6.5.4, we can describe a multilinear functor

F ∶ ⟨C⟩ D

as a functor on underlying objects and unary operations of ∧jEnd(Cj) such that
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● F is strictly unital in each variable;
● F is a symmetric monoidal functor when restricted to each Ci; and
● F satisfies a 2-by-2 interchange condition for the monoidal structures in

separate variables.
Recalling our discussion of multifunctors out of a tensor product in Explana-

tion 5.6.14, F corresponds to an assignment on objects

F̃ ∶∏
i
ObEnd(Ci) ObEnd(D)

such that
● F̃ is a pointed multifunctor in each variable separately, because in each

variable F is strictly unital symmetric monoidal;
● F̃ satisfies the interchange relation (5.6.15), by the constraint 2-by-2 axiom

for F; and
● F̃ descends to the smash product because it is pointed in each variable.

This proves that multilinear functors ⟨C⟩ D correspond to multifunctors

∧
j
End(Cj) End(D). □

One can also give a description similar to that of Definition 6.5.4 for the mor-
phisms of

PermCatsu (⟨C⟩ ; D).
Definition 6.5.11 (Multilinear Transformations). Suppose C1, . . . ,Cn, and D are
permutative categories. Suppose

F, F′ ∶ ⟨C⟩ D

are n-linear functors. An n-linear transformation is a natural transformation of un-
derlying functors

α ∶ F F′

that satisfies the following two multilinearity conditions.
(1) The diagram

(6.5.12)

F⟨X ○i Xi⟩⊕ F⟨X ○i X′i ⟩ F⟨X ○i (Xi ⊕X′i)⟩

F′⟨X ○i Xi⟩⊕ F′⟨X ○i X′i ⟩ F′⟨X ○i (Xi ⊕X′i)⟩

F2
i

α⊕ α α

(F′)2i

commutes for each i ∈ {1, . . . , n} and ⟨X⟩ ∈∏jCj with X′i ∈ Ci.
(2) The component of α at a tuple ⟨X⟩ is an identity if any Xi = e.

As we explain in the proof of Proposition 6.5.13 below, the two multilinearity
conditions make α a monoidal natural transformation in each variable separately.
We say that α is a multilinear transformation if it is n-linear for some n ≥ 0. ◇
Proposition 6.5.13. Suppose C1, . . . ,Cn and D are small permutative categories. Suppose
that F and F′ are multilinear functors, regarded as objects of

PermCatsu (⟨C⟩ ; D) =Multicat∗(∧
j
End(Cj),End(D)).
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The morphisms between F and F′ in PermCatsu (⟨C⟩ ; D) are precisely the multilinear
transformations F F′.

Proof. By definition, the morphisms in PermCatsu (⟨C⟩ ; D) are the pointed multi-
natural transformations between multifunctors

∧
j
End(Cj) End(D).

Recalling the proofs of Proposition 5.3.7 and Lemma 5.3.8, such a multinatural
transformation corresponds to a natural transformation of multilinear functors,

α ∶ F F′,

that is monoidal in each variable separately. Since F and F′ are strictly unital in
each variable, the two conditions of Definition 1.1.12 for monoidal naturality are,
for each variable separately, precisely the two multinaturality conditions of Defi-
nition 6.5.11. □

6.6. The Multicategory of Small Permutative Categories

In this section, we provide a direct proof that PermCatsu is a Cat-enriched mul-
ticategory. The fact that PermCatsu is a Cat-enriched multicategory is crucial in
Corollaries 11.3.16, 11.6.12, 12.5.3, and 13.5.2, where PermCatsu appears as the do-
main of the Elmendorf-Mandell K-theory multifunctor. See also Note 6.7.2.

Definitions. The objects in PermCatsu are small permutative categories. For
small permutative categories C1, . . . ,Cn, and D, the category

PermCatsu (⟨C⟩ ; D) = PermCatsu (⟨C1, . . . ,Cn⟩ ; D)

is defined as follows.

● Its objects are n-linear functors (Definition 6.5.4)

C1 ×⋯×Cn D.

● Its morphisms are multilinear transformations (Definition 6.5.11).
● Identity morphisms are identity natural transformations.
● Categorical composition is the vertical composition of natural transfor-

mations (Definition I.1.1.8).

Units. For each small permutative category (C,⊕, 0, ξ⊕), the C-colored unit in
the category PermCatsu (C ; C) is the identity functor 1C ∶ C C with the identity
linearity constraint

(6.6.1) 1A⊕B ∶ A⊕ B A⊕ B for A, B ∈ C.

Equivariance. With ⟨C⟩ = (C1, . . . ,Cn) and σ ∈ Σn, the symmetric group action

(6.6.2) PermCatsu (⟨C⟩ ; D) PermCatsu (⟨C⟩σ ; D)σ
≅

sends an n-linear functor

(F,{F2
j }1≤j≤n) ∶ C1 ×⋯×Cn D
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to the composite functor

Cσ(1) ×⋯×Cσ(n) D

C1 ×⋯×Cn

≅
σ

Fσ

F

with σ permuting the entries from the left. For 1 ≤ j ≤ n, the jth linearity constraint
of Fσ is F2

σ(j) applied to appropriately permuted sequences of objects. In other
words, for objects

● ⟨A⟩ = (A1, . . . , An) ∈∏n
i=1 Cσ(i) and

● A′j ∈ Cσ(j),

with the ○j notation in Definition 6.5.3, the jth linearity constraint (Fσ)2j is the
following composite in D.

(6.6.3)
Fσ⟨A⟩⊕ Fσ⟨A ○j A′j⟩ Fσ⟨A ○j (Aj ⊕ A′j)⟩

F(σ⟨A⟩)⊕ F(σ⟨A⟩ ○σ(j) A′j) F(σ⟨A⟩ ○σ(j) (Aj ⊕ A′j))

(Fσ)2j

F2
σ(j)

The symmetric group action sends a multilinear transformation α ∶ F G be-
tween n-linear functors F, G ∈ PermCatsu (⟨C⟩ ; D) to the horizontal composite
(Definition I.1.1.8)

(6.6.4) ασ = α ∗ 1σ ∶ Fσ Gσ.

Composition of multilinear functors. For the multicategorical composition γ, sup-
pose

● ⟨Bj⟩ = (Bj,1, . . . ,Bj,kj
) is a k j-tuple of small permutative categories for each

1 ≤ j ≤ n and
● ⟨B⟩ = ⊕n

j=1⟨Bj⟩ is their concatenation.

For multilinear functors

● (F,{F2
j }1≤j≤n) ∈ PermCatsu (⟨C⟩ ; D) and

● (Hj,{H2
j,i}1≤i≤kj

) ∈ PermCatsu (⟨Bj⟩ ; Cj) for 1 ≤ j ≤ n,

the composition

(6.6.5) PermCatsu (⟨C⟩ ; D)×
n
∏
j=1

PermCatsu (⟨Bj⟩ ; Cj) PermCatsu (⟨B⟩ ; D)
γ

is defined by

γ((F,{F2
j }1≤j≤n), ((Hj,{H2

j,i}1≤i≤kj
))

1≤j≤n
)

= (F ○∏j Hj,{(F ○∏jHj)
2
l }1≤l≤k1+⋯+kn

).
(6.6.6)

Below we will abbreviate the object in (6.6.6) to γ(F, (Hj)).
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In (6.6.6), F ○∏jHj is the composite functor

n
∏
j=1

kj

∏
i=1

Bj,i
n
∏
j=1

Cj D.
∏j Hj F

To explain its linearity constraints, consider

● objects Wj,i ∈ Bj,i for 1 ≤ j ≤ n and 1 ≤ i ≤ k j,
● an object W′j,i ∈ Bj,i for a particular choice of (j, i)with l = k1 +⋯+ k j−1 + i,

● ⟨Wj⟩ = (Wj,1, . . . , Wj,kj
) ∈∏

kj
i=1 Bj,i,

● ⟨W⟩ = ⊕n
j=1⟨Wj⟩ ∈∏n

j=1∏
kj
i=1 Bj,i their concatenation, and

● ⟨HW⟩ = (H1⟨W1⟩, . . . , Hn⟨Wn⟩) ∈∏n
j=1 Cj.

Note that

⟨Wj ○i W′j,i⟩ = (
empty if i = 1

Wj,1, . . . , Wj,i−1, W′j,i,

empty if i = k j

Wj,i+1, . . . , Wj,kj
)

⟨Wj ○i (Wj,i ⊕W′j,i)⟩ = (Wj,1, . . . , Wj,i−1

empty if i = 1

, Wj,i ⊕W′j,i, Wj,i+1, . . . , Wj,kj

empty if i = k j

).(6.6.7)

The lth linearity constraint (F ○∏j Hj)
2
l in (6.6.6) is defined as the following com-

posite in D.

(6.6.8)

F⟨HW⟩⊕ F⟨HW ○j Hj⟨Wj ○i W′j,i⟩⟩

(F ○∏jHj)⟨W⟩⊕ (F ○∏j Hj)⟨W ○l W′j,i⟩

F⟨HW ○j (Hj⟨Wj⟩⊕Hj⟨Wj ○i W′j,i⟩)⟩

(F ○∏j Hj)⟨W ○l (Wj,i ⊕W′j,i)⟩

F⟨HW ○j Hj⟨Wj ○i (Wj,i ⊕W′j,i)⟩⟩

F2
j

F⟨1 ○j H2
j,i⟩

(F ○∏j Hj)
2
l

Note that if n = 1 = k1, then (FH, (FH)2) in (6.6.6) is precisely the composite of
strictly unital symmetric monoidal functors in Definition II.1.3.12.

Composition of multilinear transformations. For multilinear transformations

● α ∶ F F′ in PermCatsu (⟨C⟩ ; D) and
● β j ∶ Hj H′j in PermCatsu (⟨Bj⟩ ; Cj) for each 1 ≤ j ≤ n, with ⟨β⟩ =
(β1, . . . , βn),

the multicategorical composition is defined as the horizontal composite

(6.6.9) γ(α, ⟨β⟩) = α ∗∏n
j=1β j ∶ F ○∏j Hj F′ ○∏j H

′
j

of natural transformations (Definition I.1.1.8).
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Proofs. By Theorem 6.4.4, Convention 6.4.6, and Definition 6.5.1, the defini-
tions above define a Cat-enriched multicategory PermCatsu. The rest of this section
contains an alternative direct proof of this fact in several steps.

Lemma 6.6.10. γ(F, (Hj)) in (6.6.6) satisfies the constraint 2-by-2 axiom (6.5.7).

Proof. There are two cases. For the first case, suppose p /= q ∈ {1, . . . , n}, 1 ≤ a ≤ kp,
and 1 ≤ b ≤ kq. Consider objects

● ⟨Wj⟩ = (Wj,1, . . . , Wj,kj
) ∈∏

kj
i=1 Bj,i for 1 ≤ j ≤ n,

● W′p,a ∈ Bp,a, ⟨W′p⟩ = ⟨Wp ○a W′p,a⟩ ∈∏
kp
i=1 Bp,i,

● W′q,b ∈ Bq,b, ⟨W′q⟩ = ⟨Wq ○b W′q,b⟩ ∈∏
kq
i=1 Bq,i,

● ⟨W⟩ = ⊕n
j=1⟨Wj⟩ ∈∏n

j=1∏
kj
i=1 Bj,i,

● Xj = Hj⟨Wj⟩ ∈ Cj for 1 ≤ j ≤ n,
● X′p = Hp⟨W′p⟩, X′q = Hq⟨W′q⟩,
● ⟨X⟩ = (X1, . . . , Xn) ∈∏n

j=1 Cj,
● Yp = Hp⟨Wp ○a (Wp,a ⊕W′p,a)⟩ ∈ Cp,
● Yq = Hq⟨Wq ○b (Wq,b ⊕W′q,b)⟩ ∈ Cq, and
● U = F⟨X ○p (Xp ⊕X′p) ○q (Xq ⊕X′q)⟩ ∈ D.

By the definition (6.6.8) of the linearity constraints (F ○∏j Hj)2l , the constraint 2-by-
2 diagram (6.5.7) for γ(F, (Hj)) for the above objects is the outer diagram below.

F⟨X⟩⊕ F⟨X ○p X′p⟩⊕ F⟨X ○q X′q⟩⊕ F⟨X ○p X′p ○q X′q⟩

F⟨X⟩⊕ F⟨X ○q X′q⟩⊕ F⟨X ○p X′p⟩⊕ F⟨X ○p X′p ○q X′q⟩

F⟨X ○q (Xq ⊕X′q)⟩⊕ F⟨X ○p X′p ○q (Xq ⊕X′q)⟩

F⟨X ○p (Xp ⊕X′p)⟩⊕ F⟨X ○p (Xp ⊕X′p) ○q X′q⟩

U

U

F⟨X ○q Yq⟩⊕ F⟨X ○p X′p ○q Yq⟩

F⟨X ○p Yp⟩⊕ F⟨X ○p Yp ○q X′q⟩

F⟨X ○p Yp ○q (Xq ⊕X′q)⟩

F⟨X ○p Yp ○q Yq⟩

F⟨X ○p (Xp ⊕X′p) ○q Yq⟩

(6.5.7)

F2
q nat

F2
p nat

F2
p ⊕ F2

p

F⟨1 ○p H2
p,a⟩⊕ F⟨1 ○p H2

p,a⟩

F2
q

F⟨1 ○q H2
q,b⟩

1⊕ ξ⊕ ⊕ 1

F2
q ⊕ F2

q

F⟨1 ○q H2
q,b⟩⊕ F⟨1 ○q H2

q,b⟩

F2
p

F⟨1 ○p H2
p,a⟩

F2
q

F⟨1 ○p H2
p,a⟩

F2
p

F⟨1 ○p H2
p,a ○q H2

q,b⟩

F⟨1 ○q H2
q,b⟩

● The upper left subdiagram is commutative by the constraint 2-by-2 axiom
(6.5.7) for F.
● The top right and the bottom subdiagrams are commutative by the natu-

rality of, respectively, the linearity constraints F2
q and F2

p .
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● The two unlabeled subdiagrams are commutative by the functoriality of
F.

This proves the first case of the constraint 2-by-2 axiom.
For the other case of the constraint 2-by-2 axiom (6.5.7) for γ(F, (Hj)) in (6.6.6),

suppose p = q ∈ {1, . . . , n} and a /= b ∈ {1, . . . , kp}. Consider objects

● ⟨Wj⟩ ∈∏i Bj,i and ⟨W⟩ = ⊕n
j=1⟨Wj⟩ ∈∏j∏i Bj,i as above,

● W′p,a ∈ Bp,a, ⟨Wa
p⟩ = ⟨Wp ○a W′p,a⟩,

● W′p,b ∈ Bp,b, ⟨Wb
p⟩ = ⟨Wp ○b W′p,b⟩,

● ⟨Wa,b
p ⟩ = ⟨Wp ○a W′p,a ○b W′p,b⟩,

● Xj = Hj⟨Wj⟩ ∈ Cj, ⟨X⟩ = (X1, . . . , Xn) ∈∏j Cj,

● Xa
p = Hp⟨Wa

p⟩, Xb
p = Hp⟨Wb

p⟩, Xa,b
p = Hp⟨Wa,b

p ⟩,
● Ya = Hp⟨Wp ○a (Wp,a ⊕W′p,a)⟩,
● Yb = Hp⟨Wp ○b (Wp,b ⊕W′p,b)⟩,
● Za = Hp⟨Wp ○a (Wp,a ⊕W′p,a) ○b W′p,b⟩,
● Zb = Hp⟨Wp ○a W′p,a ○b (Wp,b ⊕W′p,b)⟩,
● Z = Hp⟨Wp ○a (Wp,a ⊕W′p,a) ○b (Wp,b ⊕W′p,b)⟩,
● U1 = F⟨X ○p (Xp ⊕Xa

p ⊕Xb
p ⊕Xa,b

p )⟩,
● U2 = F⟨X⟩⊕ F⟨X ○p (Xa

p ⊕Xb
p ⊕Xa,b

p )⟩,
● U3 = F⟨X⟩⊕ F⟨X ○p (Xa

p ⊕Xb
p)⟩⊕ F⟨X ○p Xa,b

p ⟩,
● U4 = F⟨X⟩⊕ F⟨X ○p (Xb

p ⊕Xa
p)⟩⊕ F⟨X ○p Xa,b

p ⟩,
● U5 = F⟨X⟩⊕ F⟨X ○p (Xb

p ⊕Xa
p ⊕Xa,b

p )⟩, and

● U6 = F⟨X ○p (Xp ⊕Xb
p ⊕Xa

p ⊕Xa,b
p )⟩.

The objects Xa
p, Xb

p, Xa,b
p , Ya, Yb, Za, Zb, and Z are in Cp, and each U? is in D. The

constraint 2-by-2 diagram (6.5.7) for γ(F, (Hj)) for the above objects is the outer
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diagram below.

F⟨X⟩⊕ F⟨X ○p Xa
p⟩⊕ F⟨X ○p Xb

p⟩⊕ F⟨X ○p Xa,b
p ⟩

F⟨X⟩⊕ F⟨X ○p Xb
p⟩⊕ F⟨X ○p Xa

p⟩⊕ F⟨X ○p Xa,b
p ⟩

F⟨X ○p (Xp ⊕Xb
p)⟩⊕ F⟨X ○p (Xa

p ⊕Xa,b
p )⟩

F⟨X ○p (Xp ⊕Xa
p)⟩⊕ F⟨X ○p (Xb

p ⊕Xa,b
p )⟩

F⟨X ○p Yb⟩⊕ F⟨X ○p Zb⟩

U1

U2

U3

U4

U5

U6

F⟨X ○p Ya⟩⊕ F⟨X ○p Za⟩

F⟨X ○p (Ya ⊕ Za)⟩

F⟨X ○p Z⟩

F⟨X ○p (Yb ⊕ Zb)⟩

(6.5.5)

(6.5.6)

(6.5.5)

(6.5.7)

F2
p ⊕ F2

p

F⟨1 ○p H2
p,a⟩⊕ F⟨1 ○p H2

p,a⟩

F2
p

F⟨1 ○p H2
p,b⟩

1⊕ ξ⊕ ⊕ 1

F2
p ⊕ F2

p

F⟨1 ○p H2
p,b⟩⊕ F⟨1 ○p H2

p,b⟩ F2
p

F⟨1 ○p H2
p,a⟩

F2
p

F⟨1 ○p (H2
p,a ⊕H2

p,a)⟩

F⟨1 ○p (1⊕ ξ⊕ ⊕ 1)⟩

1⊕ F2
p ⊕ 1

1⊕ F2
p

F2
p

f

1⊕ F⟨1 ○p ξ⊕⟩⊕ 1

1⊕ F2
p

F2
p

F⟨1 ○p (H2
p,b ⊕H2

p,b)⟩

1⊕ F2
p ⊕ 1

F2
p

● The morphism f ∶ U2 U5 is

1⊕ F⟨1 ○p (ξ⊕ ⊕ 1)⟩.

● The four unlabeled subdiagrams are commutative by the naturality of F2
p .

● Each of the two subdiagrams labeled by (6.5.5) is commutative by the pth
linearity constraint associativity axiom (6.5.5) for F twice, as in (II.9.2.17)
with F2

p in place of F2.
● The middle left trapezoid is commutative by the pth linearity constraint

symmetry axiom (6.5.6) for F.
● The remaining subdiagram is obtained from the constraint 2-by-2 dia-

gram (6.5.7) for Hp by applying F⟨1 ○p −⟩, so it is commutative.
This proves the second case of the constraint 2-by-2 axiom (6.5.7) for γ(F, (Hj)) in
(6.6.6). □

Lemma 6.6.11. γ(F, (Hj)) in (6.6.6) is a k-linear functor in PermCatsu (⟨B⟩ ; D) with
k = k1 +⋯+ kn.

Proof. The naturality of the lth linearity constraint (F ○∏j Hj)
2
l in (6.6.8) follows

from the functoriality of F and the naturality of F2
j and H2

j,i. Next we check that
γ(F, (Hj)) satisfies the axioms in Definition 6.5.4 for a k-linear functor from ⟨B⟩ to
D. Its constraint 2-by-2 axiom (6.5.7) is verified in Lemma 6.6.10. Its unity axiom
and constraint unity axiom follow from those of F and the Hj’s.

For the constraint associativity axiom (6.5.5), consider the objects in (6.6.7) and
● W′′j,i ∈ Bj,i,

● ⟨W1
j ⟩ = ⟨Wj ○i W′j,i⟩,



6.6. THE MULTICATEGORY OF SMALL PERMUTATIVE CATEGORIES III.255

● ⟨W2
j ⟩ = ⟨Wj ○i W′′j,i⟩,

● ⟨W01
j ⟩ = ⟨Wj ○i (Wj,i ⊕W′j,i)⟩,

● ⟨W12
j ⟩ = ⟨Wj ○i (W′j,i ⊕W′′j,i)⟩,

● ⟨W012
j ⟩ = ⟨Wj ○i (Wj,i ⊕W′j,i ⊕W′′j,i)⟩,

● ⟨HWj⟩ = Hj⟨Wj⟩,
● ⟨HW?

j ⟩ = Hj⟨W?
j ⟩ ∈ Cj for ? ∈ {1, 2, 01, 12, 012},

● ⟨HW?⟩ = ⟨HW ○j ⟨HW?
j ⟩⟩ ∈ D,

● ⟨HWj⟩0,1 = ⟨HWj⟩⊕ ⟨HW1
j ⟩,

● ⟨HWj⟩1,2 = ⟨HW1
j ⟩⊕ ⟨HW2

j ⟩,
● ⟨HWj⟩01,2 = ⟨HW01

j ⟩⊕ ⟨HW2
j ⟩,

● ⟨HWj⟩0,12 = ⟨HWj⟩⊕ ⟨HW12
j ⟩, and

● ⟨HWj⟩0,1,2 = ⟨HWj⟩⊕ ⟨HW1
j ⟩⊕ ⟨HW2

j ⟩.

The constraint associativity axiom (6.5.5) for γ(F, (Hj)) in (6.6.6) for the objects
above is the outer diagram in D below.

F⟨HW⟩⊕ F⟨HW1⟩⊕ F⟨HW2⟩

F⟨HW ○j ⟨HWj⟩0,1⟩⊕ F⟨HW2⟩ F⟨HW⟩⊕ F⟨HW ○j ⟨HWj⟩1,2⟩

F⟨HW01⟩⊕ F⟨HW2⟩ F⟨HW⟩⊕ F⟨HW12⟩

F⟨HW ○j ⟨HWj⟩01,2⟩ F⟨HW ○j ⟨HWj⟩0,12⟩

F⟨HW012⟩

F⟨HW ○j ⟨HWj⟩0,1,2⟩

(6.5.5)

(6.5.5)

F2
j ⊕ 1

F⟨1 ○j H2
j,i⟩⊕ 1

F2
j

F⟨1 ○j H2
j,i⟩

1⊕ F2
j

1⊕ F⟨1 ○j H2
j,i⟩

F2
j

F⟨1 ○j H2
j,i⟩

F2
j F2

j

F⟨1 ○j (H
2
j,i ⊕ 1)⟩ F⟨1 ○j (1⊕H2

j,i)⟩

● The top diamond is commutative by the jth linearity constraint associa-
tivity axiom (6.5.5) for F.
● The bottom diamond is obtained from the ith linearity constraint associa-

tivity diagram (6.5.5) for Hj by applying F⟨1 ○j −⟩, so it is commutative.
● The left and right triangles are commutative by the naturality of F2

j .

This proves the constraint associativity axiom (6.5.5) for γ(F, (Hj)).
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The constraint symmetry axiom (6.5.6) for γ(F, (Hj)) is the outer diagram in
D below.

F⟨HW⟩⊕ F⟨HW1⟩

F⟨HW1⟩⊕ F⟨HW⟩ F⟨HW ○j (⟨HWj⟩⊕ ⟨HW1
j ⟩)⟩

F⟨HW ○j (⟨HW1
j ⟩⊕ ⟨HWj⟩)⟩ F⟨HW01⟩

F⟨HW ○j Hj⟨Wj ○i (W′j,i ⊕Wj,i)⟩⟩

ξ⊕

F2
j

F⟨1 ○j H2
j,i⟩

F2
j

F⟨1 ○j H2
j,i⟩

F⟨1 ○j Hj⟨1 ○i ξ⊕⟩⟩

F⟨1 ○j ξ⊕⟩

The top subdiagram is commutative by the jth linearity constraint symmetry ax-
iom (6.5.6) for F. The bottom subdiagram is obtained from the ith linearity con-
straint symmetry diagram (6.5.6) for Hj by applying F⟨1 ○j −⟩, so it is commutative.
This finishes the proof that γ(F, (Hj)) in (6.6.6) is a k-linear functor. □

Lemma 6.6.12. γ in (6.6.5) is a functor.

Proof. Lemma 6.6.11 shows that γ is well defined on multilinear functors.
To see that the horizontal composite natural transformation

γ(α, ⟨β⟩) = α ∗∏jβ j ∶ F ○∏j Hj F′ ○∏j H
′
j

in (6.6.9) is a multilinear transformation, we check the two conditions in Defini-
tion 6.5.11. The second condition, which says that the component of γ(α, ⟨β⟩) at
a tuple with at least one entry 0 is the identity morphism 10, follows from the
corresponding property for α and the β j’s.

The other condition is the commutativity of the diagram (6.5.12) for γ(α, ⟨β⟩).
To prove this, consider the objects in (6.6.7) and in the proof of Lemma 6.6.11. We
extend those notations to H′ and β. For example, we have the morphisms

● β j,⟨Wj⟩ ∶ ⟨HWj⟩ = Hj⟨Wj⟩ H′j⟨Wj⟩ = ⟨H′Wj⟩,
● β = β⟨W⟩ = (β1,⟨W1⟩, . . . , βn,⟨Wn⟩) ∶ ⟨HW⟩ ⟨H′W⟩,
● β1 = β⟨W1⟩ = ⟨β⟨W⟩ ○j β j,⟨W1

j ⟩
⟩ ∶ ⟨HW1⟩ ⟨H′W1⟩, and

● β⟨W01⟩ = ⟨β⟨W⟩ ○j β j,⟨W01
j ⟩
⟩ ∶ ⟨HW01⟩ ⟨H′W01⟩.
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The diagram (6.5.12) for γ(α, ⟨β⟩) is the outer diagram in D below.

F⟨H′W⟩⊕ F⟨H′W1⟩

F′⟨H′W⟩⊕ F′⟨H′W1⟩

F′⟨H′W ○j ⟨H′Wj⟩0,1⟩

F⟨HW⟩⊕ F⟨HW1⟩

F′⟨HW⟩⊕ F′⟨HW1⟩

F′⟨HW ○j ⟨HWj⟩0,1⟩

F⟨H′W ○j ⟨H′Wj⟩0,1⟩

F′⟨H′W01⟩

F⟨HW ○j ⟨HWj⟩0,1⟩

F⟨HW01⟩

F⟨H′W01⟩

(6.5.12)

(6.5.12)

nat

Fβ⊕ Fβ1

α⊕ α

F′j
2

F′⟨1 ○j κ⟩

F2
j

F⟨1 ○j H2
j,i⟩

Fβ⟨W01⟩

α

α⊕ α

F′β⊕ F′β1

F′j
2 α

F′ε Fε

α F⟨1 ○j κ⟩

● The morphism ε is

⟨β⟨W⟩ ○j (β j,⟨Wj⟩ ⊕ β j,⟨W1
j ⟩
)⟩.

● The morphism

κ ∶ ⟨H′Wj⟩0,1 ⟨H′W01
j ⟩

is the ith linearity constraint of H′j .
● The three unlabeled subdiagrams are commutative by the naturality of α.
● The subdiagram labeled by nat is commutative by the naturality of F′j

2.
● The upper right subdiagram is commutative by (6.5.12) for α.
● The remaining subdiagram is obtained from the diagram (6.5.12) for β by

applying F⟨β⟨W⟩ ○j −⟩, so it is commutative.
This shows that γ is well defined on multilinear transformations.

Moreover, γ preserves identity multilinear transformations because horizontal
composition preserves identity natural transformations. Finally, γ preserves the
categorical composition in its (co)domain by the following facts:

● The categorical composition in each category PermCatsu (⟨C⟩ ; D) is verti-
cal composition of natural transformations.
● On multilinear transformations, γ is defined by horizontal composition

of natural transformations.
● Natural transformations satisfy the middle-four exchange property

(θ′θ) ∗ (ϕ′ϕ) = (θ′ ∗ ϕ′)(θ ∗ ϕ)
with respect to vertical composition and horizontal composition, which
are denoted by, respectively, concatenation and ∗.

This finishes the proof that γ is a functor. □

Theorem 6.6.13. PermCatsu is a Cat-enriched multicategory.

Proof. We check the axioms in Definition 6.1.1.
● The symmetric group action (6.6.2) is a well-defined right Σn-action be-

cause it is given by pre-composition with σ ∈ Σn or 1σ.
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● The equivariance axioms (6.1.6) and (6.1.7) also follow from the fact
that the symmetric group action (6.6.2) in PermCatsu is defined by pre-
composition with a permutation.
● The unity axioms (6.1.4) and (6.1.5) follow from the fact that, for each

small permutative category C, the C-colored unit in PermCatsu is the iden-
tity functor 1C with the identity linearity constraint (6.6.1).

For the associativity axiom (6.1.3) on objects, consider multilinear functors

● (F,{F2
j }1≤j≤n) ∈ PermCatsu (⟨C⟩ ; D),

● (Hj,{H2
j,i}1≤i≤kj

) ∈ PermCatsu (⟨Bj⟩ ; Cj) for 1 ≤ j ≤ n, and

● (Gj,i,{G2
j,i,h}1≤h≤lj,i

) ∈ PermCatsu (⟨Aj,i⟩ ; Bj,i)with

⟨Aj,i⟩ = (Aj,i,1, . . . ,Aj,i,lj,i
)

an lj,i-tuple of small permutative categories for 1 ≤ j ≤ n and 1 ≤ i ≤ k j.

Then each composite in the associativity diagram (6.1.3) sends the tuple

((F,{F2
j }), ((Hj,{H2

j,i}))1≤j≤n, (((Gj,i,{G2
j,i,h}))1≤i≤kj

)1≤j≤n)

∈ PermCatsu (⟨C⟩ ; D)×
n
∏
j=1

PermCatsu (⟨Bj⟩ ; Cj)×
n
∏
j=1

kj

∏
i=1

PermCatsu (⟨Aj,i⟩ ; Bj,i)
(6.6.14)

to the composite functor

n
∏
j=1

kj

∏
i=1

lj,i

∏
h=1

Aj,i,h
n
∏
j=1

kj

∏
i=1

Bj,i
n
∏
j=1

Cj D.
∏j∏i Gj,i ∏j Hj F

To see that their corresponding linearity constraints are equal, for 1 ≤ j ≤ n,
1 ≤ i ≤ k j, and 1 ≤ h ≤ lj,i, consider

● lj = lj,1 +⋯+ lj,kj
,

● objects Vj,i,h ∈ Aj,i,h,
● for a particular choice of (j, i, h), an object V′j,i,h ∈ Aj,i,h with p = l1 +⋯+ lj−1

and q = lj,1 +⋯+ lj,i−1,

● ⟨Vj,i⟩ = (Vj,i,1, . . . , Vj,i,lj,i
) ∈∏

lj,i
h=1 Aj,i,h,

● ⟨V′j,i⟩ = ⟨Vj,i ○h V′j,i,h⟩,
● ⟨V′′j,i⟩ = ⟨Vj,i ○h (Vj,i,h ⊕V′j,i,h)⟩,

● ⟨Vj⟩ = ⊕
kj
i=1⟨Vj,i⟩ ∈∏

kj
i=1∏

lj,i
h=1 Aj,i,h,

● ⟨V′j ⟩ = ⟨Vj ○q+h V′j,i,h⟩,

● ⟨V⟩ = ⊕n
j=1⟨Vj⟩ ∈∏n

j=1∏
kj
i=1∏

lj,i
h=1 Aj,i,h,

● ⟨V′⟩ = ⟨V ○p+q+h V′j,i,h⟩,

● ⟨GjVj⟩ = (Gj,1⟨Vj,1⟩, . . . , Gj,kj
⟨Vj,kj

⟩) ∈∏
kj
i=1 Bj,i,

● ⟨GjV′j ⟩ = ⟨GjVj ○i Gj,i⟨V′j,i⟩⟩,
● ⟨HGV⟩ = (H1⟨G1V1⟩, . . . , Hn⟨GnVn⟩) ∈∏n

j=1 Cj, and
● ⟨HGV′⟩ = ⟨HGV ○j Hj⟨GjV′j ⟩⟩.
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By the definition (6.6.8) and the functoriality of F, each composite in the associa-
tivity diagram (6.1.3), when applied to the multilinear functors in (6.6.14) and the
objects above, has (p + q + h)th linearity constraint the following composite in D.

F⟨HGV⟩⊕ F⟨HGV′⟩ F⟨HGV ○j Hj⟨GjVj ○i Gj,i⟨V′′j,i⟩⟩⟩

F⟨HGV ○j (Hj⟨GjVj⟩⊕Hj⟨GjV′j ⟩)⟩

F⟨HGV ○j Hj⟨GjVj ○i (Gj,i⟨Vj,i⟩⊕Gj,i⟨V′j,i⟩)⟩⟩

F2
j

F⟨1○j H
2
j,i⟩

F⟨1○j Hj⟨1○iG
2
j,i,h⟩⟩

This proves that γ in (6.6.5) satisfies the associativity axiom (6.1.3) on multilinear
functors.

Since multilinear transformations are natural transformations with additional
properties, but not additional data, the associativity of γ on multilinear transfor-
mations follows from the associativity of horizontal composition of natural trans-
formations. □

6.7. Notes

6.7.1 (Enriched Multicategories). For further development of the theory of en-
riched multicategories, we refer the reader to [YJ15, Yau20]. ◇
6.7.2 (Small Permutative Categories). In Section 6.6, we proved in detail that
PermCatsu is a Cat-enriched multicategory. This fact was stated in [EM06, 1.1], but
a detailed proof was not given there. Our proof in Section 6.6 that PermCatsu is a
Cat-enriched multicategory is a generalization of the proof that small symmetric
monoidal categories, symmetric monoidal functors, and monoidal natural trans-
formations form a 2-category. There are two main differences between the cases
of PermCatsu and small symmetric monoidal categories:

● The constraint 2-by-2 axiom (6.5.7) only happens in multilinear func-
tors. So Lemma 6.6.10, which proves the constraint 2-by-2 axiom for
γ(F, (Hj)), does not have an analogue for symmetric monoidal functors.
● The notation for PermCatsu is much more complicated because it involves

lists of objects instead of one object. ◇
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CHAPTER 7

Homotopy Theory Background

In Part 2 we develop the En-monoidal K-theory spectra associated to small En-
monoidal categories. In this chapter we review the parts of homotopy theory that
will be necessary for the constructions and their applications.

Convention 7.0.1 (K-theory and J-theory). Throughout Part 2, and throughout
this entire work, we use the umbrella term K-theory for any construction taking
values in a category of spectra. This is the standard usage in the literature and is
motivated by Quillen’s definition of the higher algebraic K-groups of a commuta-
tive ring R as the homotopy groups of an associated spectrum KR [Qui73, Gra76].
See Note 10.8.10 for further discussion of this point.

The K-theory constructions we develop will all take values in the category of
symmetric spectra and will all be either:

● functors, such as KSe (Definition 8.5.1),
● (enriched) symmetric monoidal functors, such as KF (Definition 8.2.5)

and KG (Definition 9.3.14), or
● (enriched) multifunctors, such as KEM (Definition 10.3.32).

We follow [EM06, EM09] in using the umbrella term J-theory for constructions
that take values in certain pointed diagrams of small categories. The two cases
of interest for us will be Γ-categories (Definition 8.1.17) and G∗-categories (Defi-
nition 9.2.1). The motivation for this terminology is that construction of the re-
spective J-theory is a key step in both the Segal and Elmendorf-Mandell K-theory
constructions. See also Note 8.6.1. ◇
Now we describe the material in this chapter.

Organization. In Section 7.1 we review simplicial objects in a general cate-
gory, focusing on the special case of simplicial sets. In Section 7.2 we describe
the nerve functor from small categories to simplicial sets. This functor provides
the fundamental connection between categorical algebra and homotopy theory
through which all of our applications factor.

Section 7.3 introduces a certain diagram category of pointed simplicial sets
known as symmetric sequences. These are sequences of pointed simplicial sets
with compatible symmetric group actions. Symmetric spectra are defined in Sec-
tion 7.4 as left modules over the symmetric sequence formed by the simplicial
spheres, Sn. The Segal and Elmendorf-Mandell K-theory functors defined in Chap-
ters 8, 9, and 10 will take values in the category of symmetric spectra.

In Section 7.5 we show that the category of symmetric spectra is complete and
cocomplete. In Section 7.6 we describe its smash product and internal hom. The
operad actions that define En-symmetric spectra for 1 ≤ n ≤ ∞ in Chapters 11, 12,
and 13 are defined in this symmetric monoidal closed structure.
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In Section 7.7 we review the definitions of Quillen model categories, which
provide a general framework for homotopy theory. In Section 7.8 we describe
several important examples, including model structures for pointed simplicial sets
and for symmetric spectra.

7.1. Simplicial Objects

Simplicial sets, which we define below, give a combinatorial approach to
working with topological spaces. We will also use simplicial categories, and
therefore begin with a presentation of simplicial objects in general categories.
Definition 7.1.1. For natural numbers n ≥ 0, the totally ordered set {0 < 1 < ⋯ < n}
is denoted n. We let ∆ denote the category whose objects are n for all n ≥ 0 and
whose morphisms are order-preserving functions.

The morphisms of ∆ are generated by

di ∶ n − 1 n, 0 ≤ i ≤ n, and

si ∶ n + 1 n, 0 ≤ i ≤ n,

known as the coface and codegeneracy morphisms, respectively. The coface di is
the unique order-preserving injection whose image does not contain i ∈ n. The
codegeneracy si is the unique order-preserving surjection such that the preimage
of i ∈ n is a two-element set.

The coface and codegeneracy morphisms are subject to the following cosimpli-
cial identities.

djdi = didj−1 if i < j

sjdi = disj−1 if i < j

sjdj = 1 = sjdj+1

sjdi = di−1sj if i > j + 1

sjsi = sisj+1 if i ≤ j ◇
The cofaces, codegeneracies, and cosimplicial identities are a generating set of
morphisms and relations for ∆.
Explanation 7.1.2. In the context of Definition 7.1.1, the coface and codegeneracy
maps are given by the following formulas. For 0 ≤ i ≤ n,

di(k) =
⎧⎪⎪⎨⎪⎪⎩

k, if k < i
k + 1, if k ≥ i

and si(k) =
⎧⎪⎪⎨⎪⎪⎩

k, if k ≤ i
k − 1, if k > i.

◇
Explanation 7.1.3. It will sometimes be useful to regard the totally ordered set n
as a category with a unique morphism i j for each i ≤ j in n. Because the mor-
phisms in ∆ are order-preserving, they yield functors between the corresponding
categories. ◇
Definition 7.1.4. Suppose C is a category. A simplicial C-object is a functor

X ∶ ∆op C.

We let Xn = Xn and follow the usual convention of letting di, respectively si, de-
note Xdi, respectively Xsi. These are called face and degeneracy morphisms. When



7.1. SIMPLICIAL OBJECTS III.265

necessary for clarity, we write dX
i and sX

i to indicate the functor X. Morphisms
f ∶ X Y of simplicial objects are given by natural transformations, and we let
fn denote the compoent of f at n. The category of simplicial C-objects is denoted
sC. ◇

Our two most frequent uses of this notion will be the cases C = Set or C = Cat,
yielding the category of simplicial sets, sSet, and the category of simplicial small
categories, sCat, respectively.
Example 7.1.5 (One-Point Simplicial Set). The one-point simplicial set is denoted ∗
and is defined by the constant functor at the one-point set ∗. ◇
Explanation 7.1.6. The face and degeneracy morphisms are subject to the follow-
ing simplicial identities.

didj = dj−1di if i < j
disj = sj−1di if i < j
djsj = 1 = dj+1sj

disj = sjdi−1 if i > j + 1

sisj = sj+1si if i ≤ j ◇
Explanation 7.1.7 (Bisimplicial Sets). In the case C = sSet, we call simplicial sSet-
objects bisimplicial sets, and we implicitly identify s(sSet)with the category of func-
tors and natural transformations ∆op ×∆op Set. Composing with the diagonal
on ∆op gives a functor from bisimplicial sets to simplicial sets. ◇
Definition 7.1.8. For a simplicial set X, the elements of Xn are called n-simplices.
Those which are in the image of a degeneracy si are called degenerate n-simplices.
Often we focus only on the nondegenerate simplices. ◇

The following definitions provide important basic examples of simplicial sets.
Definition 7.1.9. The standard n-simplex, ∆n ∈ sSet, is the simplicial set defined by
the represented functor ∆(−, n). The fundamental simplex ιn = 1n is the identity mor-
phism in ∆n

n. The boundary, ∂∆n, is the smallest simplicial subset of ∆n containing
diιn for all 0 ≤ i ≤ n.

The k-horn Λn
k ⊂ ∆n is the simplicial subset generated by all the faces diιn except

for the kth face, dkιn. ◇
Explanation 7.1.10. The standard n-simplex may be visualized as follows. Its 0-
simplices are the elements of n, which may be thought of as vertices. Its nonde-
generate 1-simplices are pairs i < j in n, which may be thought of as edges from
vertex i to vertex j. Its nondegenerate 2-simplices are triples i < j < k in n, which
may be thought of as oriented triangles. Diagrams for n = 2 and n = 3 are drawn
below.

2

1

0

(0, 1) (1, 2)

(0, 2) 2

1

0
3(0, 3)

(0, 1)

(1, 2)
(0, 2)

(1, 3)

(2, 3)

There are no nondegenerate simplices of ∆n above dimension n. Each ∆n has a
long spine consisting of n 1-simplices (i, i + 1) and a short spine consisting of the
1-simplex (0, n).
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The kth horn Λn
k consists of all faces that include the kth 0-simplex. For exam-

ple, Λ2
1 consists of the 1-simplices

0
(0, 1)

1
(1, 2)

2

and Λ3
1 consists of three triangular faces, omitting the face (0, 2, 3). ◇

Definition 7.1.11. Since ∆n = ∆(−, n) is covariant in n, we have a functor

∆? ∶ ∆ sSet

whose value at n ∈ ∆ is ∆n. ◇
Definition 7.1.12. The simplicial circle is denoted S1 and is defined to be the quo-
tient ∆1/∂∆1. For 0 ≤ j ≤ n + 1, let hj ∈ ∆(n, 1) denote the function

hj(i) =
⎧⎪⎪⎨⎪⎪⎩

0, if i < j
1, if i ≥ j.

Then the n-simplices of S1 form an (n + 1)-element set given by

S1
n = ∆(n, 1)/(hn+1 = h0).

Identifying S1
n with n via hj j for 0 ≤ j ≤ n, then the face di ∶ S1

n S1
n−1 is the

unique order-preserving surjection such that di(i+1) = i and si ∶ S1
n S1

n+1 is the
unique order-preserving injection whose image skips i + 1. Thus all of the faces
and degeneracies preserve the elements 0 h0, and we take this as a simplicial
basepoint of S1. The only nondegenerate simplex is 1 h1 ∈ S1

1. ◇
Definition 7.1.13. We let Top denote the category of compactly generated weak
Hausdorff spaces and continuous functions. For each n ≥ 0 we let △n denote the
topological n-simplex

△n = {(t0, . . . , tn) ∣ 0 ≤ ti ≤ 1, ∑iti = 1} ⊂R(n+1). ◇
Definition 7.1.14. Given a simplicial set X, the geometric realization ∣X∣ is the topo-
logical space defined as the coequalizer

coeq( ∐
n m ∈∆

Xm ×△n ∐
n∈∆

Xn ×△n ).

Geometric realization defines a functor

∣− ∣ ∶ sSet Top

and has a right adjoint given by the total singular complex

Sing ∶ Top sSet. ◇
Explanation 7.1.15. The coequalizer in the definition of geometric realization is
the coend

∫
n∈∆

sSet(∆n, X)×△n ≅ ∫
n∈∆

Xn ×△n. ◇
Example 7.1.16 (Simplices and Circles). The geometric realization of the standard
n-simplex ∆n is the topological n-simplex, △n. The geometric realization of the
simplicial circle is a topological circle. ◇

As a diagram category, sC inherits limits and colimits from C. We record sev-
eral of the key consequences here, recalling from the following.
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● Tensors and cotensors are discussed in Section 3.9.
● Mapping objects in diagram categories are defined in Definition 3.5.19

Proposition 7.1.17. Suppose that C has all limits and colimits.

(1) The category C is tensored and cotensored over Set, with

X⊗ S =∐
S

X and XS =∏
S

X

for X ∈ C and S ∈ Set.
(2) Limits and colimits in sC exist and are computed objectwise.
(3) If C is monoidal (resp. braided monoidal, resp. symmetric monoidal), then so is

sC, with the monoidal product computed objectwise. The monoidal unit of sC is
the constant simplicial object at the monoidal unit of C.

(4) If C = (C,⊗,1, [−,−]) is symmetric monoidal closed, then sC is enriched, ten-
sored, and cotensored over C with

Map(X, Y) = ∫
n∈∆op

[Xn, Yn]

(X⊗ A)n = Xn ⊗ A

(XA)n = [A, Xn]

where n ≥ 0, X and Y are objects of sC, and A is an object of C.

Proof.

(1) The tensor and cotensor over Set are provided by the isomorphisms

C(∐SX, Y) ≅∏SC(X, Y) ≅ Set(S,C(X, Y))
and

C(Y,∏SX) ≅∏SC(X, Y) ≅ Set(S,C(X, Y))

for a set S and objects X, Y of C.
(2) For a small category D and a functor

F ∶ D sC,

the definitions

(limDF)n = limD(Fn) and (colimDF)n = colimD(Fn)

define simplicial objects in C by universality of the limits and colimits.
(3) If C has monoidal product ⊗, the monoidal product of simplicial objects

X and Y is given by

(X⊗Y)n = Xn ⊗Yn.

This simplicial object is the composite of

∆op diag
∆op ×∆op X ×Y

C×C ⊗
C

where diag denotes the diagonal functor. The monoidal, respectively
braided monoidal, respectively symmetric monoidal structure and ax-
ioms follow from those of (C,⊗).
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(4) When C is symmetric monoidal closed, then sC is a special case of the
mapping diagram category denoted (∆op)-C in Definition 3.5.19. This
provides a C-enrichment by Lemma 3.5.24. The tensor and cotensor iso-
morphisms

Map(X⊗ A, Y) ≅ [A,Map(X, Y)]
and

Map(X, YA) ≅ [A,Map(X, Y)]
are given by commuting ends with [−,−] and by the closed structure of
C, as in Explanation 3.9.16. □

Explanation 7.1.18. When (C,⊗) = (Set,×), the equalizer formula (3.5.7) shows
that

Map(X, Y) = sSet(X, Y)
is the set of natural transformations, that is, simplicial set morphisms, from X to Y.
See Example 3.8.14 for a discussion of the case (C,⊗) = (Cat,×), where Map(X, Y)
is the category whose objects are 2-natural transformations and whose morphisms
are modifications. ◇
Proposition 7.1.19. The category of simplicial sets is symmetric monoidal closed with
product given by the Cartesian product

(X ×Y)n = Xn ×Yn

and internal hom given by

(7.1.20) Hom(X, Y)n =Map(X ×∆n, Y).

Proof. The symmetric monoidal structure is that of Proposition 7.1.17 (3). Writing
[−,−] for Set(−,−) and recalling

∆n
m = ∆(m, n) = ∆op(n, m)

from Definition 7.1.9, the closed monoidal adjunction is given as follows:

Map(X,Hom(Y, Z)) = ∫
n∈∆op

[Xn,Hom(Y, Z)n] = ∫
n∈∆op

[Xn,Map(Y ×∆n, Z)]

= ∫
n∈∆op

[Xn,∫
m∈∆op

[Ym ×∆n
m, Zm]]

≅ ∫
m∈∆op ∫n∈∆op

[∆n
m ×Xn, [Ym, Zm]]

≅ ∫
m∈∆op

[∫
n∈∆op

∆op(n, m)×Xn, [Ym, Zm]]

(☆) ≅ ∫
m∈∆op

[Xm, [Ym, Zm]]

≅Map(X ×Y, Z).
In the above computation, the isomorphism labeled ☆ is an application of the
V-Yoneda Density Theorem 3.7.8 with V = Set. The other isomorphisms follow
from definitions, moving co/ends in or out of hom objects (Explanation 3.5.9),
commuting ends, and the closed structure for Set. □

In Chapter 4 we discussed the general theory of pointed objects, smash prod-
ucts, and pointed homs.
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Definition 7.1.21. If C has a terminal object, ∗, then the constant simplicial C-
object at ∗ is terminal in sC. Applying Definition 4.1.1 to sC, we have the category
of pointed simplicial objects in C, denoted sC∗. ◇
Explanation 7.1.22. Since the basepoint of sC is constant at ∗, and morphisms of
simplicial objects are defined levelwise, the category of pointed simplicial objects
in C is naturally isomorphic to the category of simplicial objects in C∗. Thus the
notation sC∗ can be read as either s(C∗) or (sC)∗. ◇

In the important special case C = Set, we have the following.
Definition 7.1.23 (Pointed Simplicial Sets). The category of pointed simplicial sets,
sSet∗, is the category of functors

∆op Set∗

and pointed natural transformations between them. It is symmetric monoidal
closed with smash product X ∧Y given levelwise

(X ∧Y)n = Xn ∧Yn

for X, Y ∈ sSet∗ and with internal hom object defined levelwise by

HomsSet∗(X, Y)n = sSet∗(X ∧∆n
+, Y).

The closed monoidal adjunction is given by a computation similar to that of Propo-
sition 7.1.19 but with (V,⊗) = (Set∗,∧). ◇
Explanation 7.1.24. In Definitions 4.1.6 and 4.2.1 we give general constructions of
smash product and pointed hom in a complete and cocomplete symmetric mon-
oidal category (C,⊗,1, T) with terminal object T. Using functoriality of pushouts
and pullbacks, and commuting ends with pullbacks, the smash product and inter-
nal hom defined in Definition 7.1.23 are equivalent descriptions of those given by
Definitions 4.1.6 and 4.2.1 for (sSet,×,∗,∗). ◇

7.2. Simplicial Homotopy and Nerve

In this section we define simplicial homotopy and the nerve functor from
small categories to simplicial sets.
Definition 7.2.1 (Simplicial Homotopy). Suppose

f , g ∶ X Y

are morphisms of simplicial sets X and Y. A simplicial homotopy from f to g is a
morphism of simplicial sets, H, such that the following diagram commutes.

X ×∆0 X

X ×∆1

X ×∆0 X

Y

f

g

1× d1

1× d0

H

≅

≅

In the above diagram, the unlabeled isomorphisms are the projection isomorphism

X ×∆0 ≅ X.
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This finishes the definition of a simplicial homotopy. We say that a morphism

f ∶ X Y

is a simplicial homotopy equivalence if there is a morphism

f ′ ∶ Y X

together with simplicial homotopies from 1X to f ′ f and from f f ′ to 1Y. ◇
Explanation 7.2.2. We note that simplicial homotopy does not provide an equiva-
lence relation without additional fibrancy conditions on X. We refer the reader to
[GJ09, Section 1.6] for further development of the homotopy theory of simplicial
sets. ◇
Definition 7.2.3. Suppose that C is a small category. For each totally ordered set p,
regarded as a category, we let NpC denote the set of functors p C. This is the
set of objects of the functor category C

p. Then

N(−)C = Ob (C(−)) ∶ ∆op Set

is a simplicial set called the nerve of C. Thus the nerve defines a functor

N ∶ Cat sSet.

The nerve has a left adjoint
h ∶ sSet Cat

that takes a simplicial set X to a category hX defined as follows. The objects of
hX are the elements of X0. The morphisms of hX are generated by the 1-simplices
σ ∈ X1, where each σ is regarded as a morphism

σ ∶ d1σ d0σ.

These morphisms are subject to the relation

(d0σ) ○ (d2σ) ∼ d1σ

for all 2-simplices σ. ◇
Explanation 7.2.4. The set of 0-simplices N0C is given by the set of objects of C.
For a 1-simplex f ∶ u v in N1C,

d0( f ) = v and d1( f ) = u.

For p > 1, the set of p-simplices NpC is given by p-tuples ( f1, . . . , fp) of com-
posable morphisms

●
f1

●
f2

● ⋯ ●
fp

●.

The faces di are given by composing fi with fi+1 for 0 < i < p. For i = 0 or i = p,
respectively, di is given by deleting f1 or fp, respectively. The morphisms fi can
be thought of as the long spine of the simplex ( f1, . . . , fp), and their composites
form its other 1-dimensional faces. The degeneracy si is given by inserting an
identity morphism at position i. The unity and associativity axioms for compo-
sition (Definition I.1.1.1) correspond to the simplicial identities didi+1 = didi and
djsj = 1 = dj+1sj. The other simplicial identities listed in Explanation 7.1.6 are a
matter of reindexing. ◇
Proposition 7.2.5. Suppose C and D are small categories.



7.2. SIMPLICIAL HOMOTOPY AND NERVE III.271

(1) A natural transformation between functors

F, G ∶ C D

induces a simplicial homotopy from NF to NG.
(2) An adjunction

C D
L

R

with L ⊣ R induces a simplicial homotopy equivalence on nerves:

NL ∶ NC ND.

Proof. The second assertion follows from the first. To prove the first assertion,
let I denote a category with two objects a single non-identity morphism. Let 0,
respectively 1, denote the source, respectively target, of the nonidentity morphism.
Let

i0, i1 ∶ 1 I

denote the two functors from the terminal category to I, sending the unique object
to 0 and 1, respectively. Then a natural transformation

α ∶ F G

provides a functor, also denoted α, such that the following diagram commutes in
Cat, where the unlabeled isomorphisms are given by the projection away from 1.

C× 1 C

C× I

C× 1 C

D

F

G

1× i0

1× i1

α

≅

≅

In the above diagram, the functor α sends a pair of morphisms

(a
f

b , 0 1) in C× I
to either of the two composites in the following naturality diagram for α.

Fa Fb

Ga Gb

F f

G f

αa αb

Since the nerve functor N is a right adjoint, it commutes with the Cartesian
product. Taking nerve of the diagram above therefore provides a simplicial homo-
topy from NF to NG. □

Example 7.2.6 (Bar Construction). Suppose that G is a group, and let ΣG denote
the 1-object category with morphisms given by G. Then the nerve N(ΣG) is the
simplicial bar construction on G. It has a single 0-simplex, and the set of p-simplices
for p > 0 is given by p-tuples of elements of G. The faces di for 0 < i < p are given



III.272 7. HOMOTOPY THEORY BACKGROUND

by multiplying group elements, while d0 and dp are given by deleting the first and
last element of the tuple, respectively. The degeneracies are given by inserting
identities in the appropriate positions. ◇
Example 7.2.7 (Nerve of a Simplicial Category). Suppose A is a simplicial category.
Composing with the nerve, we have a simplicial object in sSet:

∆op A
Cat

N
sSet.

This yields a bisimplicial set, and restriction to the diagonal of ∆op ×∆op yields a
simplicial set

NA ∶ ∆op Set

given by (NA)p = Np Ap for p ∈ ∆op. ◇
Example 7.2.8 (Classifying Spaces). For a small category C, the geometric realiza-
tion of the nerve NC is called the classifying space of C and denoted BC = ∣NC∣. If
C = ΣG is a 1-object groupoid, then BΣG is an Eilenberg-Mac Lane space of type
(G, 1). It is usually denoted BG and called the classifying space of G (instead of
ΣG). ◇
Proposition 7.2.9. The nerve is a strong symmetric monoidal functor

N ∶ (Cat,×, 1) (sSet,×,∗).

Proof. Recall from Definition 7.2.3 that N is a right adjoint. Therefore, N commutes
with small limits and, in particular, preserves terminal objects and commutes with
Cartesian products. □

7.3. Symmetric Sequences of Pointed Simplicial Sets

This section describes symmetric sequences in sSet∗. These are used to de-
scribe symmetric spectra in Section 7.4. Recall from Definition I.2.4.1 the finite
ordinal category Σ whose objects are natural numbers and morphisms are permu-
tations.

Definition 7.3.1. A symmetric sequence X = {Xk}k≥0 is a functor

X ∶ Σ sSet∗.

Thus each Xk = Xk is an object of sSet∗ and is equipped with an action of the
symmetric group

Σk sSet∗(Xk, Xk)0.

The category of symmetric sequences is the category of functors Σ sSet∗ and
natural transformations between them, denoted sSetΣ

∗ . ◇
Explanation 7.3.2. A symmetric sequence consists of pointed simplicial sets Xk for
k ≥ 0 together with a basepoint-preserving action of the symmetric group Σk on
each Xk. A morphism X Y of symmetric sequences consists of Σk-equivariant
and basepoint-preserving morphisms Xk Yk for each k ≥ 0. ◇

We will use the additive structure of Σ below along with the unitary enrich-
ment Definition 3.8.9 over sSet∗. Recall the Day convolution and hom diagram
from Definition 3.7.3. The following is a special case of the convolution product
(3.7.4) for V = sSet∗ and D = Σ.
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Definition 7.3.3. Suppose that X and Y are two symmetric sequences. The Day
convolution, X ◻Y, is a symmetric sequence given by

(X ◻Y)k = ⋁
p+q=k

Σk ×Σp×Σq Xp ∧Yq.

The fibre product is taken with respect to the inclusion

ip,q ∶ Σp ×Σq Σ(p+q)

where Σp permutes the first p elements and Σq permutes the last q elements.
The unit object I is the symmetric sequence given by I0 = S0 and Ik = ∗ for

k > 0. The unit isomorphisms

λ ∶ I ◻X X and ρ ∶ X ◻ I X

are induced by the isomorphisms

Σ(p+q) ×Σp×Σq (∗∧Xq) ≅ ∗ and Σ(p+q) ×Σp×Σq (Xp ∧∗) ≅ ∗

along with the unit isomorphisms for S0 in sSet∗. The associativity isomorphism

α ∶ (X ◻Y)◻ Z ≅ X ◻ (Y ◻ Z)
is given on summands by the composite isomorphisms shown below, where the
first and third are the universal isomorphisms for iterated pullbacks and the sec-
ond is induced by the associativity in sSet∗.

Σ(p+q+r) ×Σ
(p+q)×Σr ((Σp+q ×Σp×Σq Xp ∧Yq)∧ Zr)

Σ(p+q+r) ×Σp×Σq×Σr ((Xp ∧Yq)∧ Zr)

Σ(p+q+r) ×Σp×Σq×Σr (Xp ∧ (Yq ∧ Zr))

Σ(p+q+r) ×Σp×Σ
(q+r)
(Xp ∧ (Σq+r ×Σq×Σr Yq ∧ Zr))

≅

≅

≅

There is a symmetry isomorphism

ξ ∶ X ◻Y Y ◻X

given on summands by the isomorphism

ξp,q ∶ Σ(p+q) ×Σp×Σq Xp ∧Yq
≅ Σ(q+p) ×Σq×Σp Yq ∧Xp

induced by the symmetry on sSet∗ and the block permutation χp,q ∈ Σ(p+q) that
swaps the first p and last q elements. Naturality of the symmetry, associativity,
and unit isomorphisms follows by naturality of the canonical morphisms together
with naturality of the corresponding data in sSet∗. ◇
Definition 7.3.4. For each n ∈ Σ, let Σ[n] denote the symmetric sequence given by
the corepresented functor

Σ[n] = Σ(n,−) ∶ Σ sSet∗,

with Σ(n, m) being the one point simplicial set for m ≠ n and the constant simpli-
cial set Σn with basepoint the identity permutation for m = n. ◇
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Definition 7.3.5. Suppose X and Y are symmetric sequences and A is a pointed
simplicial set.

(1) The simplicial tensor is the symmetric sequence X ∧ A defined for each
k ≥ 0 as

(X ∧ A)k = Xk ∧ A
with the diagonal action of Σk acting trivially on A. As a functor out of
Σ, it is the composite

Σ X
sSet∗

(−)∧ A
sSet∗.

(2) The simplicial cotensor is the symmetric sequence XA defined for each k ≥ 0
as

(XA)k = (Xk)A

with the pointwise action of Σk. As a functor out of Σ, it is the composite

Σ X
sSet∗

(−)A

sSet∗.

(3) The symmetric mapping object is the pointed simplicial set

MapΣ(X, Y) = sSetΣ
∗(X ∧∆?

+, Y),
where ∆?

+ is given by adjoining a disjoint basepoint to ∆? (see Defini-
tion 7.1.11).

(4) The symmetric hom object is the symmetric sequence

HomΣ(X, Y) =MapΣ(X ◻Σ[−]+, Y)
where Σ[−]+ is given by adjoining a disjoint basepoint to Σ[−].

For the closed monoidal adjunction, natural isomorphisms

MapΣ(X,HomΣ(Y, Z)) ≅MapΣ(X ◻Y, Z)
are given similarly to those of Proposition 7.1.19, using the V-Yoneda Density The-
orem 3.7.8 with V = sSet∗. ◇
Definition 7.3.6. For each n ≥ 0

in ∶ sSet∗ sSetΣ
∗

be the functor that sends a pointed simplicial set X to the symmetric sequence
whose nth term is X ∧ (Σn)+ and whose other terms are the terminal simplicial
set ∗. A morphism of pointed simplicial sets f ∶ A B induces a morphism of
symmetric sequences in A inB given at level n by f ∧ id.

Let
evn ∶ sSetΣ

∗ sSet∗

be the functor that sends a symmetric sequence X to the pointed simplicial set Xn
and that sends a morphism of symmetric sequences to its component at n. For
each n ≥ 0 these are an adjoint pair of functors

sSet∗ sSetΣ
∗ .

in

evn

�

It follows from the definition of the Day convolution ◻ that i0 is strong symmetric
monoidal and ev0 is symmetric monoidal. ◇
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The following result is a special case of Theorem 3.7.22 combined with The-
orem 3.9.8. Additional discussion of this application appears in [HSS00, Hov01,
Ric20].

Theorem 7.3.7. Equipped with the Day convolution product and symmetric hom, the
category of symmetric sequences, sSetΣ

∗ , is a symmetric monoidal closed category with
● monoidal product given by Day convolution of Definition 7.3.3 and
● internal hom given by the symmetric hom objects of Definition 7.3.5.

Moreover, the adjunction (i0, ev0) makes sSetΣ
∗ enriched, tensored, and cotensored over

sSet∗. The sSet∗ enrichment is given by the symmetric mapping objects of Defini-
tion 7.3.5.

Definition 7.3.8. For X ∈ sSet∗ and k > 0 we let X∧k denote the k-fold smash
product defined iteratively by X∧k+1 = X ∧ X∧k. We call this the right normalized
convention for smash powers. The empty smash product X∧0 is the unit, S0.

The symmetric group action of Σp on X∧p is given by the unique coherence
isomorphism in sSet∗ (from Theorem 1.1.41) that permutes the p copies of X. We
call this the action by permuting factors. ◇

Recall from Definition I.1.2.8 the concept of a monoid in a monoidal category.

Proposition 7.3.9. Suppose X ∈ sSet∗ and let Sym(X) be the symmetric sequence given
by Sym(X)k = X∧k with Σk acting by permuting factors. Then Sym(X) is a commutative
monoid in the category of symmetric sequences.

Proof. The multiplication morphism

µ ∶ Sym(X)◻ Sym(X) Sym(X)

is defined on summands

µΣ
p,q ∶ Σ(p+q) ×Σp×Σq X∧p ∧X∧q X∧(p+q)

by the associativity in sSet∗ and the action of Σp+q permuting factors. The monoid
associativity and unity axioms follow from the Symmetric Coherence Theorem
Theorem 1.1.41 for sSet∗.

To see that Sym(X) is a commutative monoid, we have the following commut-
ing diagram for each summand of (Sym(X)◻ Sym(X))(p+q).

Σ(p+q) ×Σp×Σq X∧p ∧X∧q Σ(q+p) ×Σq×Σp X∧q ∧X∧p

X∧(p+q)

ξp,q

µΣ
p,q µΣ

q,p

□

7.4. Symmetric Spectra

Our model for the stable homotopy category will be the category of symmetric
spectra. It has a symmetric monoidal smash product induced by the convolution
product on symmetric sequences.

We begin with the following important special case of Definition 7.3.8.
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Definition 7.4.1. For p ≥ 0, the simplicial p-sphere is the p-fold smash product

Sp = (S1)∧p,

using the right normalized convention of Definition 7.3.8. The symmetric sphere is
the symmetric sequence S = Sym(S1). ◇
Definition 7.4.2. Suppose (C,⊗,1, α, λ, ρ) is a monoidal category, and (A, µ, η) is
a monoid in C. A left A-module, also called a left module over A, is a pair

(M, θ)
consisting of

● an object M ∈ C and
● a structure morphism θ ∶ A⊗M M

such that the following associativity and unity diagrams commute.

(A⊗ A)⊗M A⊗ (A⊗M)

A⊗M

A⊗M M

µ⊗1

α

1⊗θ

θ

θ

1⊗M M

A⊗M M

η⊗1

λ

θ

A morphism
f ∶ (M, θM) (N, θN)

of left A-modules is a morphism f ∶ M N ∈ C such that the diagram

A⊗M M

A⊗N N

1⊗ f

θM

f

θN

commutes. The identity morphism of a left A-module (M, θ) is 1M ∈ C, and com-
position is defined in C. The above data define the category of left A-modules. ◇
Example 7.4.3. In the context of Definition 7.4.2, (A, µ) is a left A-module. ◇
Explanation 7.4.4 (Right Modules). In the context of Definition 7.4.2, there is a
similar definition of right A-module N, with structure morphism

N ⊗ A N.

If (C,⊗) is symmetric monoidal and A is a commutative monoid in C, then the
category of right A-modules is isomorphic to the category of left A-modules via
the symmetry of C. ◇
Definition 7.4.5. The category of symmetric spectra, SymSp, is the category consist-
ing of left modules over the symmetric sphere and left module morphisms. ◇

Proposition 7.5.5 below shows that SymSp is complete and cocomplete. Theo-
rem 7.6.15 below shows that SymSp is symmetric monoidal closed.
Explanation 7.4.6. We have the following explicit description of symmetric spec-
tra. An action

ρ ∶ S◻X X
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has summands for each k = p + q ≥ 0

ρΣ
p,q ∶ Σ(p+q) ×Σp×Σq Sp ∧Xq Xp+q.

The action ρ is determined by morphisms

ρp,q ∶ Sp ∧Xq Xp+q

for p, q ≥ 0 with the following properties.
Unity: The morphism

(7.4.7) ρ0,q ∶ S0 ∧Xq Xq

is the unit isomorphism for the smash product.
Associativity: The following diagram commutes for each r, p, and q, where the

unlabeled vertical morphism is the smash product of the associativity
isomorphisms Sr ∧ Sp ≅ Sr+p with the identity on Xq.

(7.4.8)

(Sr ∧ Sp)∧Xq Sr ∧ (Sp ∧Xq)

Sr ∧Xp+qSr+p ∧Xq

Xr+p+q

a

1∧ ρp,q

ρr,p+qρr+p,q

Equivariance: Each ρp,q is equivariant with respect to the (Σp ×Σq)-action on the
source and the inclusion

ip,q ∶ Σp ×Σq Σ(p+q)

where Σp permutes the first p elements and Σq permutes the last q ele-
ments.

An S-module morphism X X′ consists of a sequence of morphisms

fk ∶ Xk X′k
that are equivariant with respect to the action of Σk on Xk and X′k and that com-
mute with the structure morphisms ρp,q. ◇

Basic Examples of Symmetric Spectra.
Example 7.4.9 (The Sphere Spectrum). By Example 7.4.3, the symmetric sphere S
with its monoid multiplication is a symmetric spectrum. ◇
Example 7.4.10 (Suspension Spectra). Suppose K is a pointed simplicial set. The
suspension spectrum Σ∞K is the symmetric spectrum with

(Σ∞K)n = Sn ∧K ∈ sSet∗ for n ≥ 0.

The Σn-action on Sn ∧K is given by permuting the n smash factors in

Sn = (S1)∧n.

For p, q ≥ 0, the left S-module structure morphism ρp,q is the composite

Sp ∧ (Sq ∧K) Sp+q ∧K

(Sp ∧ Sq)∧K

ρp,q

≅ ≅
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of associativity isomorphisms if p, q > 0. It is
● the left unit isomorphism λSq∧K if p = 0 and
● 1Sp ∧ λK if q = 0.

The fact that ρp,q is well defined and the unity, associativity, and equivariance con-
ditions in Explanation 7.4.6 follow from the Symmetric Coherence Theorem 1.1.41
for sSet∗. ◇
Example 7.4.11 (Eilenberg-Mac Lane Spectra). Suppose R is a ring. The Eilenberg-
Mac Lane spectrum HR is the symmetric spectrum with

(HR)n = R⊗ Sn ∈ sSet∗ for n ≥ 0.

For k ≥ 0, its set of k-simplices is the free left R-module

(R⊗ Sn)k = ⊕
(kn)♭

R

with
kn ≅ k∧n = (Sn)k

the set of k-simplices in the n-sphere Sn. The basepoint of (R⊗ Sn)k is the element
0. The simplicial structure morphisms in (HR)n are induced by those in Sn.

To describe the symmetric sequence structure on HR, we represent a typical
direct sum generator in (HR)n in the form

ri1,...,in with r ∈ R and each ij ∈ k♭.

The Σn-action on (HR)n is given on these generators by

σ ⋅ ri1,...,in = ri
σ−1(1),...,iσ−1(n)

for σ ∈ Σn.

The left S-module structure morphisms on HR,

Sp ∧ (R⊗ Sq) R⊗ Sp+q for p, q ≥ 0,
ρp,q

are defined on k-simplices by

k∧p ∧ ( ⊕
(kq)♭

R) ⊕
(kp+q)♭

R

((h1, . . . , hp), ri1,...,iq) rh1,...,hp ,i1,...,iq

(ρp,q)k

for k ≥ 0 and h1, . . . , hp, i1, . . . , iq ∈ k♭. Moreover, since (ρp,q)k preserves the base-
point, we have

(ρp,q)k(0, r) = 0.
The unity, associativity, and equivariance conditions in Explanation 7.4.6 hold be-
cause they do for direct sum generators. ◇

Chapters 11, 12, and 13 have further examples of symmetric spectra with
extra structure arising from categorical data. We will revisit Examples 7.4.9
through 7.4.11 in

● Examples 11.3.13 through 11.3.15 in the context of strict ring symmetric
spectra and
● Examples 11.6.7, 11.6.9, and 11.6.10 in the context of E∞-symmetric spec-

tra.



7.5. LIMITS AND COLIMITS OF SYMMETRIC SPECTRA III.279

7.5. Limits and Colimits of Symmetric Spectra

The category of symmetric spectra is defined as the category of left S-modules,
in the sense of Definition 7.4.2, over the symmetric sphere S. Recall the concepts
of a monad and an algebra over a monad in Definitions 5.4.1 and 5.4.2. Using
Proposition 7.5.1 below, we can also regard SymSp as the category of algebras over
the monad S◻− in the category sSetΣ

∗ of symmetric sequences.

Modules as Monadic Algebras.

Proposition 7.5.1. Suppose (C,⊗,1, α, λ, ρ) is a monoidal category, and (A, µ, η) is a
monoid in C.

(1) There is a monad
(A⊗−, π, ν)

on C with multiplication π and unit ν defined as the following composites for
each object X ∈ C.

A⊗ (A⊗X) A⊗X

(A⊗ A)⊗X

πX

α−1 µ⊗1

X A⊗X

1⊗X

νX

λ−1 η⊗1

(2) There is a canonical isomorphism between
● the category of left A-modules in Definition 7.4.2 and
● the category of algebras over the monad (A⊗−, π, ν).

Proof. For assertion (1), we check the commutativity of the associativity and unity
diagrams in Definition 5.4.1 for (A⊗−, π, ν). Since each diagram asserts the equal-
ity of parallel natural transformations, it suffices to check each diagram at an object
X ∈ C. The monad associativity diagram for (A⊗−, π, ν) at an object X is the outer
diagram in C below, where all the tensor symbols are omitted to save space.

A(A(AX)) A((AA)X) A(AX)

(A(AA))X (AA)X

(AA)(AX) ((AA)A)X

A(AX) (AA)X AX

α−1

1α−1

α−1

1(µ1)

α−1

α−11

(1µ)1

µ1

µ1

α−1

(µ1)1

α−1 µ1

● The upper left rectangle is commutative by the pentagon axiom (1.1.3) in
C.
● The lower right rectangle is commutative by the associativity axiom of

the monoid (A, µ, η).
● The lower left and upper right rectangles are commutative by the natu-

rality of α.
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The monad unity diagram for (A⊗−, π, ν) at an object X is the outer diagram
in C below.

A(AX) 1(AX) AX A(1X) A(AX)

(1A)X (A1)X

(AA)X AX (AA)X

α−1

η1

α−1

λ−1 1λ−1

α−1

1(η1)

α−1

(η1)1
λ1 ρ1 (1η)1

µ1 µ1

In the left half of the diagram above,
● the left and right trapezoids are commutative by, respectively, the natu-

rality of α and the left unity property (1.1.5) in C, and
● the bottom triangle is commutative by the left unity axiom in the monoid
(A, µ, η).

Similarly, the right half of the previous diagram is commutative by the naturality
of α, the unity axiom (1.1.2) in C, and the right unity axiom in the monoid (A, µ, η).
This proves assertion (1).

For assertion (2), the associativity and unity diagrams for a left A-module in
Definition 7.4.2 are precisely those for an (A⊗−)-algebra in (5.4.3), after inverting
the natural isomorphisms α and λ. Morphisms, identity morphisms, and compo-
sition of left A-modules also correspond to those of (A⊗−)-algebras. □

Proposition 7.5.1 applies to the symmetric sphere in Definition 7.4.1 and yields
the following description of the category SymSp of symmetric spectra.
Corollary 7.5.2. There is a canonical isomorphism of categories

SymSp ≅ Alg(S◻−),
with S the symmetric sphere in the symmetric monoidal category sSetΣ

∗ .

Limits and Colimits of Modules. The next observation is a variant of The-
orem 5.4.18 that applies to left modules, with different assumptions and a much
simpler proof. We will use it with the symmetric sphere.
Proposition 7.5.3. Suppose (A, µ, η) is a monoid in a complete and cocomplete monoidal
category (C,⊗,1, α, λ, ρ) such that

A⊗− ∶ C C

preserves small colimits. Then for the monad A⊗− in Proposition 7.5.1, its category of
algebras, Alg(A⊗−), has all small limits and colimits, which are, furthermore, preserved
by the forgetful functor

U ∶ Alg(A⊗−) C.

Proof. For a functor F as in

D Alg(A⊗−) C
F U

with D a small category, the composite UF ∶ D C has a colimit in C. The natural
morphism

colim (A⊗UF) A⊗ (colimUF)ω
≅
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is an isomorphism by assumption. We equip the object colimUF ∈ C with the
structure morphism ϕ below.

A⊗ (colimUF) colimUF

colim (A⊗UF)

ϕ

≅ colimd∈D θd

For each d ∈ D,

A⊗ (UFd) UFd
θd

is the (A⊗−)-algebra structure morphism of Fd. By

● the universal property of colimits and
● the assumption that A⊗− preserves small colimits,

the associativity and unity axioms (5.4.3) for the pair

(colimUF, ϕ)

to be an (A⊗−)-algebra reduce to those for each Fd. The fact that it is a colimit of
F follows from the definition of the isomorphism ω.

Similarly, a limit of F in Alg(A⊗−) consists of the object limUF ∈ C and struc-
ture morphism φ defined by the commutative diagrams

A⊗ (limUF) limUF

A⊗ (UFd) UFd

φ

1⊗pd pd

θd

in C for d ∈ D. Here

limUF UFd
pd

is a structure morphism of the limit. □

Explanation 7.5.4. In Proposition 7.5.3, the condition that A ⊗ − preserves small
colimits is true if C is symmetric monoidal closed. For example, this is the case
when

● A is the symmetric sphere S in Definition 7.4.1 and
● C is the category of symmetric sequences sSetΣ

∗ in Definition 7.3.1. ◇
Now we apply the results above to SymSp.

Proposition 7.5.5. The category of symmetric spectra, SymSp, is complete and cocom-
plete.

Proof. By Proposition 7.1.17, sSetΣ
∗ , on which the monad S ◻ − acts, is complete,

cocomplete, and symmetric monoidal closed. We finish the proof using Corol-
lary 7.5.2, Proposition 7.5.3, and Explanation 7.5.4. □
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7.6. Smash Products, Internal Hom, and (Co)tensored Structure of Symmetric
Spectra

Proposition 7.5.5 shows that the category of symmetric spectra is complete and
cocomplete. Therefore we have the following constructions of monoidal product
and internal hom. Since S is a commutative monoid in sSetΣ

∗ , these provide a
symmetric monoidal closed structure for SymSp.

Smash Product.

Definition 7.6.1. The smash product of symmetric spectra X and Y is denoted

X ∧Y = X ◻S Y

and is given by the coequalizer in sSetΣ
∗

(X ◻ S)◻ Y X ◻ Y X ◻S Y
(1◻ ρY) ○ a

ρX ◻ 1

where
ρY ∶ S◻Y Y

is the left action of S on Y and ρX is the right action of S on X defined as the
composite

ρX = ρX ○ ξ ∶ X ◻ S S◻X X

of the symmetry ξ with ρX , the left action of S on X. The left S-module structure
of X ◻S Y is given by the left action of S on X. ◇

The following observation is useful for constructing morphisms out of a smash
product of symmetric spectra. We will use it in Proposition 11.3.2 to describe strict
ring symmetric spectra.

Proposition 7.6.2. Suppose (X, ρX), (Y, ρY), and (Z, ρZ) are symmetric spectra. Then
a morphism

X ◻S Y Z ∈ SymSp
f

determines and is uniquely determined by a morphism

X ◻Y Z ∈ sSetΣ
∗

f

such that the diagram

(7.6.3)

(X ◻ S)◻Y (S◻X)◻Y S◻ (X ◻Y)

X ◻ (S◻Y) X ◻Y

X ◻Y Z S◻ Z

≅a

ξ◻1
≅

ρX◻1

a
≅

1◻ f

1◻ρY f

f ρZ

in sSetΣ
∗ commutes.
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Proof. Given a morphism f ∶ X ◻S Y Z of symmetric spectra, the morphism f
is defined as the composite

X ◻Y X ◻S Y Z ∈ sSetΣ
∗ .

f

● The left half of the diagram (7.6.3) follows from the coequalizer that de-
fines the smash product X ◻S Y in Definition 7.6.1.
● The right half of (7.6.3) expresses the compatibility of f with the left S-

action.

This argument can also be used in reverse. □

Explanation 7.6.4. Using Definition 7.3.3 of the Day convolution and Explana-
tion 7.4.6, we can further unpack the morphism f ∶ X ◻ Y Z in Proposi-
tion 7.6.2 as the family of (Σp ×Σq)-equivariant morphisms

Xp ∧Yq Zp+q ∈ sSet∗
fp,q

for p, q ≥ 0.

The right half of the diagram (7.6.3) is equivalent to the diagram

(7.6.5)

(Sn ∧Xp)∧Yq Sn ∧ (Xp ∧Yq)

Xn+p ∧Yq

Zn+p+q Sn ∧ Zp+q

ρX
n,p∧1

a
≅

1∧ fp,q

fn+p,q
ρZ

n,p+q

in sSet∗ for n, p, q ≥ 0. With the abbreviation

(7.6.6) Σn ×Σp = Σn,p,

the left half of the diagram (7.6.3) is equivalent to the diagram

(7.6.7)

Σ(p+n+q) ×Σp+n,q (Σ(p+n) ×Σp,n Xp ∧ Sn)∧Yq

Σ(p+n+q) ×Σn+p,q (Σ(n+p) ×Σn,p Sn ∧Xp)∧Yq

Σ(p+n+q) ×Σp,n+q Xp ∧ (Σ(n+q) ×Σn,q Sn ∧Yq)

Σ(p+n+q) ×Σn+p,q Xn+p ∧Yq

Σ(p+n+q) ×Σp,n+q Xp ∧Yn+q

Zn+p+q

≅a

ξp,n∧1

ρX
n,p∧1

1∧ρY
n,q

fn+p,q
fp,n+q

in sSet∗ for n, p, q ≥ 0. ◇
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Internal Hom.
Definition 7.6.8. The internal hom for symmetric spectra X and Y is given by the
equalizer in sSetΣ

∗

(7.6.9) HomS(X, Y) HomΣ(X, Y) HomΣ(S◻X, Y)

where the two parallel arrows are adjoint to the two composites in the diagram
below, determined by the S-module structures of X and Y denoted ρX and ρY,
respectively.

HomΣ(X, Y)◻ (S◻X) S◻Y

HomΣ(X, Y)◻X Y

1◻ ρX
ρY

The upper horizontal morphism is the composite of associativity and symmetry

HomΣ(X, Y)◻ (S◻X) S◻ (HomΣ(X, Y)◻X)
together with evaluation. The lower horizontal morphism is evaluation. The left
S-module structure of HomS(X, Y) is induced by that of Y. ◇
Proposition 7.6.10. Suppose (A, ρA), (X, ρX), and (Y, ρY) are symmetric spectra. Then
a morphism

A HomS(X, Y) ∈ SymSp
f

determines and is uniquely determined by a morphism

A◻X Y ∈ sSetΣ
∗

f

such that the diagram

(7.6.11)

A◻ (S◻X) S◻ (A◻X) (S◻ A)◻X

S◻Y

A◻X Y A◻X

≅

1◻ρX

1◻ f

a−1

ρA◻1

ρY

f f

commutes, with ≅ the unique coherence isomorphism that swaps A and S.

Proof. Given a morphism f ∈ SymSp as stated above, the morphism f is the adjoint
of the composite

A HomS(X, Y) HomΣ(X, Y) ∈ sSetΣ
∗

f

under the (◻,HomΣ)-adjunction in Theorem 7.3.7.
● The left half of the diagram (7.6.11) follows from the equalizer that de-

fines the internal hom HomS in (7.6.9).
● The right half of (7.6.11) expresses the compatibility of f ∈ sSetΣ

∗ with the
left S-action.
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This argument can also be used in reverse. □

Explanation 7.6.12. Similar to Explanation 7.6.4, the morphism f ∶ A◻X Y in
Proposition 7.6.10 is equivalent to the family of (Σp ×Σq)-equivariant morphisms

Ap ∧Xq Yp+q ∈ sSet∗ for p, q ≥ 0.
fp,q

The right half of the diagram (7.6.11) is equivalent to the diagram

Sp ∧ (An ∧Xq) (Sp ∧ An)∧Xq

Sp ∧Yn+q

Yp+n+q Ap+n ∧Xq

1∧ fn,q

a−1

≅

ρA
p,n∧1

ρY
p,n+q

fp+n,q

in sSet∗ for n, p, q ≥ 0. With the abbreviation in (7.6.6), the left half of the diagram
(7.6.11) is equivalent to the diagram

Σ(p+n+q) ×Σp,n+q Sp ∧ (Σn+q ×Σn,q An ∧Xq)

Σ(n+p+q) ×Σn,p+q An ∧ (Σ(p+q) ×Σp,q Sp ∧Xq)

Σ(p+n+q) ×Σp,n+q Sp ∧Yn+q

Σ(n+p+q) ×Σn,p+q An ∧Xp+q

Yn+p+q

1∧ fn,q

1∧ρX
p,q

a(ξn,p∧1)a−1

ρY
p,n+qfn,p+q

in sSet∗ for n, p, q ≥ 0. ◇

Simplicial Tensored and Cotensored Structure. Next we note, for each n ≥ 0,
there is a level-n adjunction with pointed simplicial sets.

Definition 7.6.13. For each n ≥ 0 we compose the adjunction (in, evn) of Defini-
tion 7.3.6 with the free-forgetful adjunction for left S-modules to obtain an adjunc-
tion

sSet∗ SymSp

Fn

evn

�

where evnX = Xn for a symmetric spectrum X and Fn A = S ◻ in A for a pointed
simplicial set A. With respect to the smash product ∧ = ◻S, the left adjoint F0 is
strong symmetric monoidal and the right adjoint ev0 is symmetric monoidal. ◇
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Explanation 7.6.14. Suppose K ∈ sSet∗ and n, k ≥ 0. Then FnK is the symmetric
spectrum with

(FnK)k = (S◻ inK)k
= ⋁

p+q=k
Σk ×Σp×Σq Sp ∧ (inK)q

=
⎧⎪⎪⎨⎪⎪⎩

∗ if k < n and
Σk ×Σk−n×Σn Sk−n ∧ (K ∧ (Σn)+) if k ≥ n.

The left S-action

Sp ∧ (FnK)q (FnK)p+q for p, q ≥ 0
ρp,q

is the basepoint inclusion if q < n. If q ≥ n, then ρp,q is induced by the canonical
isomorphism

Sp ∧ Sq−n Sp+q−n.
µS

p,q−n

≅

In particular, we have
F0K = Σ∞K,

the suspension spectrum of K in Example 7.4.10. ◇
An adjunction between ∧ = ◻S and HomS follows formally from their construc-

tions as coequalizers and equalizers, respectively. Thus we have the following
result, with the second half following from Theorem 3.9.8.
Theorem 7.6.15. The category of symmetric spectra, SymSp, is a symmetric monoidal
closed category with

● monoidal product given by ∧ = ◻S,
● internal hom given by HomS, and
● monoidal unit the symmetric sphere S.

Moreover, the adjunction (F0, ev0) makes SymSp enriched, tensored, and cotensored over
sSet∗.

Applying Theorems 2.4.10 and 3.3.2 with the change of enrichment by ev0, we
have the following.
Corollary 7.6.16. The symmetric monoidal structure (SymSp,∧, S) is sSet∗-enriched.
Explanation 7.6.17. Suppose X ∈ SymSp and K ∈ sSet∗. Then the tensored and
cotensored structures in Theorem 7.6.15 are given by

X ∧K = X ◻S Σ∞K

XK = HomS(Σ∞K, X),
where we used the fact F0 = Σ∞ in Explanation 7.6.14. ◇
Definition 7.6.18. Because the equalizer (7.6.9) is computed levelwise, we define
MapS as the following special case for X, Y ∈ SymSp:

MapS(X, Y) = HomS(X, Y)0
is the equalizer

MapS(X, Y) MapΣ(X, Y) MapΣ(S◻X, Y).
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Therefore, from Definition 7.3.5 (3) we have

(7.6.19) MapS(X, Y) ≅ SymSp(X ∧∆?
+, Y)

as pointed simplicial sets. ◇
Explanation 7.6.20 (Underlying Symmetric Sequence of Hom Object). Recall from
Definition 7.6.13 the adjunction (Fn, evn) and from Definition 7.3.4 the symmetric
sequence Σ[n] = Σ(n,−) for each n ≥ 0. We have FnS0 = S◻Σ[n]+ and therefore, for
each n ≥ 0 and each W ∈ SymSp, a composite of natural isomorphisms of pointed
simplicial sets

MapS(S◻Σ[n]+, W) ≅MapsSet∗(S
0, evnW) ≅Wn.

Since Σ[−]+ is a functor from Σop to sSetΣ
∗ , these isomorphisms are equivariant

with respect to the induced action of Σn and we have an isomorphism of symmet-
ric sequences

MapS(S◻Σ[−]+, W) ≅W.

Applying this to W = HomS(X, Y) for symmetric spectra X and Y, the ∧-HomS
adjunction gives an isomorphism of symmetric sequences

HomS(X, Y) ≅MapS(S◻Σ[−]+,HomS(X, Y)) ≅MapS(X ∧ (S◻Σ[−]+), Y).

Combining this with (7.6.19) we have

◇(7.6.21) HomS(X, Y) ≅ SymSp((X ∧ (S◻Σ[−]+))∧∆?
+, Y).

Recall from Definition 6.3.7 the enriched endomorphism operad of an ob-
ject X in a symmetric monoidal V-category with V permutative. The category
of pointed simplicial sets is symmetric monoidal closed, but is not strictly asso-
ciative or unital. Nevertheless, as noted in Explanation 6.1.19, we extend Defi-
nitions 6.1.1 and 6.3.3 to the sSet∗-enriched case via the Symmetric Strictification
Theorem 1.1.42. Then we have the following.

Definition 7.6.22. Suppose X is a symmetric spectrum. The endomorphism sim-
plicial operad of X is the sSet∗-enriched operad End(X) whose nth term for n ≥ 0
is

End(X)n =MapS(X∧n, X) = SymSp(X∧n ∧∆?
+, X). ◇

7.7. Quillen Model Categories

Definition 7.7.1. Suppose M is a category.

(1) For morphisms f ∶ A B and g ∶ C D in M, we write f ⧄ g if for
each solid-arrow commutative diagram

A C

B D

f g

in M, there is a morphism B C that makes the entire diagram com-
mutative.



III.288 7. HOMOTOPY THEORY BACKGROUND

(2) For a class A of morphisms in M, we define the classes of morphisms

⧄A = { f ∈M ∣ f ⧄ a for all a ∈ A},
A⧄ = {g ∈M ∣ a⧄ g for all a ∈ A}.

(3) We say that a pair (L,R) of classes of morphisms in M functorially factors
M if each morphism h in M has a functorial factorization h = g f such that
f ∈ L and g ∈R.

(4) A weak factorization system in M is a pair (L,R) of classes of morphisms in
M such that

(i) (L,R) functorially factors M,
(ii) L = ⧄R, and

(iii) R = L⧄. ◇
Explanation 7.7.2. The lifting properties imply a number of closure properties.
Among them are the following (see, e.g., [MP12, Proposition 14.1.8]):

● Each of L andR contains all isomorphisms.
● Each of L andR is closed under composition and retracts.
● The left class, L, is closed under pushouts and coproducts.
● The right class,R, is closed under pullbacks and products. ◇

Definition 7.7.3. A model category is a complete and cocomplete category M
equipped with three classes of morphisms (W ,C,F), called weak equivalences,
cofibrations, and fibrations, that satisfy the following two axioms:

2-out-of-3: For any morphisms f and g in M such that the composition g f is de-
fined, if any two of the three morphisms f , g, and g f are inW , then so is
the third.

WFS: (C,F ∩W) and (C ∩W ,F) are weak factorization systems.

This finishes the definition of a model category. We have the following additional
concepts in a model category M.

(1) An acyclic (co)fibration is a morphism that is both a (co)fibration and a
weak equivalence.

(2) An object A ∈ M is cofibrant if the unique morphism ∅ A from the
initial object is a cofibration.

(3) An object A ∈M if fibrant if the unique morphism A ∗ to the terminal
object is a fibration.

(4) A cofibrant replacement for A ∈M is an object Ac obtained by the factoriza-
tion of ∅ A as a cofibration followed by an acyclic fibration:

∅ Ac ∼ A.

(5) A fibrant replacement for A ∈ M is an object A f obtained by the factoriza-
tion of A ∗ as an acyclic cofibration followed by a fibration:

A ∼ A f ∗ .

(6) A cylinder object for A ∈ M is an object Cyl(A) ∈ M obtained by factoring
the fold morphism A∐A A as a cofibration followed by an acyclic
fibration:

A∐ A Cyl(A) ∼ A.
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(7) A path object for A ∈M is an object Path(A) ∈M obtained by factoring the
diagonal A A × A into an acyclic cofibration followed by a fibration:

A ∼
Path(A) A × A.

(8) Functoriality of the weak factorization system (C,F ∩W), respectively
(C ∩W ,F), implies that the cofibrant replacements and cylinder objects,
respectively fibrant replacements and path objects, are functorial.

(9) If A is fibrant, then Ac is also fibrant. Likewise, if B is cofibrant then
B f is also cofibrant. We let (−)c f = ((−)c) f and (−) f c = ((−) f )c denote
the composites. The lifting properties imply there is a canonical weak
equivalence Ac f ∼ A f c for each A ∈M. ◇

Definition 7.7.4. Suppose that f , g ∶ A B are morphisms in a model category
M.

● A left homotopy from f to g is a morphism h ∶ Cyl(A) B such that the
following diagram in M commutes.

A

A

Cyl(A)A∐ A B
i0

i1

g

f

h

● A right homotopy from f to g is a morphism h ∶ A Path(B) such that
the following diagram in M commutes.

B

B

Path(B) B × BA
p1

p2

f

g

h

◇
Proposition 7.7.5 ([MP12, Proposition 14.3.11]). Suppose f , g ∶ A B are mor-
phisms in a model category M.

● If A is cofibrant and f is left homotopic to g, then f is right homotopic to g.
● If B is fibrant and f is right homotopic to g, then f is left homotopic to g.

Definition 7.7.6. Suppose f , g ∶ A B are morphisms in a model category M,
and suppose that A is cofibrant and B is fibrant. We say that f is homotopic to g
if f is left, or equivalently right, homotopic to g. When each of A and B is both
fibrant and cofibrant, we say that f is a homotopy equivalence if there is a morphism
f ′ ∶ B A such that the composites f ′ f and f f ′ are homotopic to the respective
identities. ◇
Definition 7.7.7. Let Mc f denote the full subcategory of M whose objects are both
fibrant and cofibrant. For objects A, B ∈Mc f , let [A, B] denote the set of homotopy
equivalence classes of morphisms A B. ◇
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Theorem 7.7.8 ([MP12, Theorem 14.3.15]). Suppose that f ∶ A B is a morphism
in a model category M, and suppose that each of A and B is both fibrant and cofibrant.
Then f is a homotopy equivalence if and only if it is a weak equivalence.

Theorem 7.7.8 is the key result that justifies the following definition.

Definition 7.7.9. Suppose that M is a model category. The homotopy category, HoM
is defined to have the same objects as M and morphism sets

HoM(A, B) = [Ac f , Bc f ].
By functoriality of factorizations, there is a canonical functor

γ ∶M HoM

that is the identity on objects and sends a morphism f ∶ A B to the homotopy
class of f c f . ◇
Explanation 7.7.10. One can show that there is a natural homotopy equivalence
(Ac) f ∼ (A f )c, and thus HoM does not depend on which order one takes fi-
brant and cofibrant replacements. See [MP12, Section 14.4]. ◇
Definition 7.7.11. Suppose that C is a category andW is a class of morphisms in
C. We say that a functor λ ∶ C C′ is a localization of C atW if the following two
conditions hold.

(1) For each morphism f ∈W, the morphism λ f is an isomorphism.
(2) If κ ∶ C D is a functor as in the solid-arrow diagram below such that

κ f is an isomorphism for each f ∈ W , then there is a unique functor κ
such that κλ = κ.

C

C′

D

λ

κ

∃! κ

When such a localization exists, it is denoted C[W−1]. ◇
Theorem 7.7.12 ([MP12, Theorem 14.4.7]). Suppose M is a model category with weak
equivalencesW . The functor γ ∶M HoM is a localization of M atW .
Explanation 7.7.13. In the context of Definition 7.7.11, one can always define mor-
phisms in C[W−1] as a quotient of a free graph. However, in general this produces
has a proper class of morphisms between two objects instead of a set. The ma-
chinery of model categories guarantees that the morphisms in HoM between two
objects do form a set, and thus HoM is a category in the same Grothendieck uni-
verse as M. ◇

Now we turn to functors between model categories, and the conditions under
which we have an induced functor on homotopy categories. Certainly functors
that preserve weak equivalences will induce functors on homotopy categories.
However one has similar results under more general hypotheses, and these are
needed in most applications of interest.

Definition 7.7.14. Suppose that F ∶ M N is a functor of model categories. A
left functor of F is a pair (L, λ) consisting of a functor

L ∶ HoM HoN
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and a natural transformation λ as in the diagram below, where γM and γN are the
canonical localizations.

M N

HoM HoN

γM γN

F

L

⇒
λ

A morphism of left functors (L, λ) (L, λ′) is a natural transformation η ∶
L L′ such that the following equality of pasting diagrams holds.

=

M N

HoM HoN

γM γN

F

L

L′
⇒

λ′

⇒η

M N

HoM HoN

γM γN

F

L

⇒
λ

A left derived functor for F is a terminal object (LF, λ̃) among left functors of F. ◇
Definition 7.7.15. Suppose that F ∶ M N is a functor of model categories. A
right functor of F is a pair (R, ρ) consisting of a functor

R ∶ HoM HoN

and a natural transformation ρ as in the diagram below, where γM and γN are the
canonical localizations.

M N

HoM HoN

γM γN

F

R

⇒ρ

A morphism of right functors (R, ρ) (R, ρ′) is a natural transformation η ∶
R R′ such that the following equality of pasting diagrams holds.

=

M N

HoM HoN

γM γN

F

R′

R

⇒ρ

⇒

η

M N

HoM HoN

γM γN

F

R′

⇒ρ′

A right derived functor for F is an initial object (RF, ρ̃) among right functors of F. ◇
Explanation 7.7.16. Since initial and terminal objects are unique up to unique iso-
morphism, it is usual to refer to the left and right derived functors of F. ◇

The following result gives a set of conditions that often occur in applictions
and under which one has left and right derived functors.
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Proposition 7.7.17 ([MP12, Propositions 16.1.3 and 16.1.4]). Suppose that F ∶
M N is a functor of model categories.

(1) If F takes acyclic cofibrations between cofibrant objects to weak equivalences,
then F ○ (−)c carries weak equivalences in M to isomorphisms in HoN. The
induced functor

LF ∶ HoM HoN

is the left derived functor of F.
(2) If F takes acyclic fibrations between fibrant objects to weak equivalences, then

F ○ (−) f carries weak equivalences in M to isomorphisms in HoN. The induced
functor

RF ∶ HoM HoN

is the right derived functor of F.
The next result records a useful set of equivalent conditions, and follows from

an application of adjoints and the lifting properties of weak factorization systems.
Lemma 7.7.18. Suppose that M and N are model categories and suppose that (F, U) is an
adjunction

F ∶M N ∶ U.�

Then the following conditions are equivalent.
(1) F preserves cofibrations and U preserves fibrations.
(2) F preserves cofibrations and acyclic cofibrations.
(3) U preserves fibrations and acyclic fibrations.
(4) F preserves acyclic cofibrations and U preserves acyclic fibrations.

Definition 7.7.19. We say that an adjoint pair of functors (F, U) is a Quillen adjunc-
tion if the equivalent conditions in Lemma 7.7.18 are satisfied. We say that (F, U)
is a Quillen equivalence if it is a Quillen adjunction with the following property. For
any cofibrant X ∈ M and fibrant Y ∈ N, a morphism FX Y is a weak equiva-
lence in N if and only if its adjoint X UY is a weak equivalence in M. In this
case, we denote the adjunction with ≃Q, as in the following.

F ∶M N ∶ U.≃Q

◇
The definitions of Quillen adjunction and Quillen equivalence are designed

to induce the corresponding structures on homotopy categories, as the following
result explains.
Proposition 7.7.20 ([MP12, Proposition 16.2.2]). Suppose that (F, U) is a Quillen
adjunction. Then the derived functors LF and RU exist and form an adjoint pair of
functors between HoM and HoN. If (F, U) is a Quillen equivalence, then (LF,RU) is an
adjoint equivalence.

Now we discuss cofibrantly generated model categories. The concept of a
small object A in the following definition essentially means that a morphism from
A to the codomain of a sufficiently long composition must factor through some
stage. We regard an ordinal as a category with a unique morphism i j if and
only if i ≤ j. See [Pin14, SV02] for further discussion of cardinals and ordinals.
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Definition 7.7.21. Suppose C is a cocomplete category, and I is a collection of
morphisms in C.

(1) For an ordinal α, an α-sequence in C is a colimit-preserving functor

X ∶ α C.

The induced morphism

X0 colimβ<αXβ

is called a transfinite composition.
(2) For an ordinal α and an α-sequence X, if each morphism Xβ Xβ+1

belongs to I for each ordinal β satisfying β+ 1 < α, then we call the above
morphism a transfinite composition of morphisms in I.

(3) A relative I-cell complex is a transfinite composition of pushouts of mor-
phisms in I. The collection of relative I-cell complexes is denoted by
Cell(I).

(4) For an object A in C and a cardinal κ, we say that A is κ-small relative to I
if for
● each regular cardinal α ≥ κ and
● each α-sequence X in C with each morphism Xβ Xβ+1 in I for

each ordinal β satisfying β + 1 < α,
the induced morphism of sets

colimβ<αC(A, Xβ) C(A, colimβ<αXβ)

is a bijection.
(5) We say that A is small relative to I if it is κ-small relative to I for some

cardinal κ.
(6) We say that I permits the small object argument if the domain of each mor-

phism in I is small relative to Cell(I).
◇

Definition 7.7.22. A model category (M,W ,C,F) is cofibrantly generated if it is
equipped with two sets I and J of morphisms such that the following three state-
ments hold:

(i) Both I and J permit the small object argument.
(ii) F = J ⧄.

(iii) F ∩W = I⧄.

In this case, the morphisms in I are called generating cofibrations and the mor-
phisms in J are called generating acyclic cofibrations. ◇

In particular, in a cofibrantly generated model category, fibrations are detected
by the set J , and acyclic fibrations are detected by the set I. The cofibrations and
acyclic cofibrations are defined by lifting against acyclic fibrations and fibrations,
respectively. These include the morphisms of I, respectively J , but generally oth-
ers as well.

Definition 7.7.23. Suppose (M,∧, S0) is a symmetric monoidal category. The push-
out product of morphisms f ∶ A B and g ∶ C D is the morphism f ◻ g
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induced by the universal property of the pushout in the following diagram.

A ∧C A ∧D

B ∧C (B ∧C)∪A∧C (A ∧D)

B ∧D

A ∧ g

f ∧C f ∧D

B ∧ g

f ◻ g

◇
Definition 7.7.24. Suppose (M,∧, S0) is a symmetric monoidal closed category and
that M has a model structure. We say that (M,∧, S0) is a monoidal model category if
the following axiom holds.
Pushout product axiom: If f and g are cofibrations, then the pushout product

f ◻ g is a cofibration and is acyclic if either f or g is acyclic. ◇

7.8. Examples of Quillen Model Categories

Example 7.8.1 (Small Categories [JT91, Rez∞]). The category Cat of small cate-
gories and functors has a standard model structure given as follows.
Fibrations: A functor F ∶ C D is a fibration if for each

● object X ∈ C and
● isomorphism f ∶ FX ≅ Y ∈ D,

there exists an isomorphism g ∶ X ≅ Z ∈ C such that

FZ = Y and Fg = f .

Cofibrations: A functor is a cofibration if it is injective on objects.
Weak equivalences: A functor is a weak equivalence if it is an equivalence of cate-

gories.
This is a monoidal model category with respect to the Cartesian product. It is
cofibrantly generated with the following data.
Generating acyclic cofibration: J contains the single functor

{0} Jt

that sends the object 0 in the domain to 0 in the codomain J = {0 ≅ 1},
which has two objects and a single isomorphism between them.

Generating cofibrations: The set

I = {u, v, w}
contains the following three functors. The functor

∅ {0}u

is the unique functor. Suppose
● V0 = {0, 1} is a discrete category with two objects, and
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● V = {0 1} contains two objects and one non-identity morphism
between them.

The functor
V0 Vv

is the identity function on objects. Suppose W = {0 ⇉ 1} contains two
objects and a parallel pair of non-identity morphisms. The functor

W Vw

is the identity on objects and sends both non-identity morphisms in W to
the unique non-identity morphism in V.

A functor is a fibration if and only if it has the right lifting property with respect
to J = {t}. A functor is an acyclic fibration if and only if it has the right lifting
property with respect to I = {u, v, w}. ◇
Example 7.8.2 (Chain Complexes [Hov99, Section 2.3]). Suppose that R is a com-
mutative ring, and Ch(R) the category of chain complexes over R. The projective
model structure on Ch(R) consists of the following.
Weak equivalences: W is the set of homology isomorphisms.
Fibrations: F is the set of levelwise surjections.
The cofibrations are defined by lifting against the acyclic fibrations. This model
structure is also known as the standard model structure

There is a second model structure on Ch(R) that has the same weak equiva-
lences (homology isomorphisms), but whose cofibrations are levelwise injections
and whose fibrations are defined by lifting against acyclic cofibrations. Although
these model structures are distinct, the identity functor is a Quillen equivalence
between them. ◇
Example 7.8.3 (Simplicial Sets [MP12, Section 17.5]). The standard model structure
on sSet is a cofibrantly generated monoidal model structure, given as follows.
Generating cofibrations: C is the set of boundary inclusions

∂∆n ∆n.

Generating acyclic cofibrations: J is the set of horn inclusions

Λn
k ∆n.

Fibrations: Morphisms in F = J ⧄ are called Kan fibrations, and the fibrant objects
are called Kan complexes.

Weak equivalences: W is the set of morphsisms f ∶ X Y such that

f ∗ ∶ [Y, Z] [X, Z]
is a bijection for all Kan complexes Z, where [X, Z] denotes left homo-
topy equivalence classes of morphisms with respect to the cylinder object
Cyl(X) = X ×∆1. ◇

Explanation 7.8.4. In the context of Example 7.8.3, the cofibrations in sSet are lev-
elwise inclusions. In particular, every simplicial set is cofibrant. A simplicial ho-
motopy equivalence (Definition 7.2.1) is a left homotopy in the sense of Defini-
tion 7.7.4. Therefore, every simplicial homotopy equivalence is a weak equiva-
lence in sSet. By Theorem 7.7.8, the weak equivalences between Kan complexes
are precisely the simplicial homotopy equivalences. ◇
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Example 7.8.5 (Topological Spaces [MP12, Section 17.2]). The Quillen model struc-
ture on Top is a cofibrantly generated monoidal model structure defined as follows.
Generating Cofibrations: I is the set of inclusions

Sn−1 Dn

of the topological (n − 1)-sphere as the boundary of the n-disk for n ≥ 0,
where S−1 denotes the empty set.

Generating Acyclic Cofibrations: J is the set of inclusions

Dn ≅ Dn × {0} Dn × I

where I is the unit interval. ◇
Theorem 7.8.6. With the model structures defined in Examples 7.8.3 and 7.8.5, the geo-
metric realization and total singular complex functors define a Quillen equivalence.

∣− ∣ ∶ Top sSet ∶ Sing≃Q

The category of symmetric spectra, SymSp, has a model structure called the
stable model structure that we now explain.
Definition 7.8.7. A morphism f = { fk}k≥0 of symmetric spectra is a level equivalence
if each fk is a weak equivalence of pointed simplicial sets. It is a level fibration if
each fk is a Kan fibration. ◇
Explanation 7.8.8. The weak equivalences of symmetric spectra are known as sta-
ble equivalences and are detected in cohomology. They include the level equiva-
lences, but are more general. ◇
Theorem 7.8.9 ([HSS00, Theorem 3.4.4, Corollary 5.3.8]). The category of symmetric
spectra is a monoidal model category with weak equivalences given by the stable equiva-
lences and fibrations given by the level fibrations.
Explanation 7.8.10. The model structure on symmetric spectra is Quillen equiv-
alent to other modern models of stable homotopy theory, including orthogonal
spectra and S-modules. See [MMSS01] for further details. ◇

7.9. Notes

7.9.1 (Simplicial Objects). See [Fri12] for an introduction to simplicial sets. For fur-
ther details and development of simplicial objects, see [Cur71, GZ67, GJ09, May92,
Rie14, Ric20]. Discussion of limits and colimits in diagram categories can be found
in [Rie16], and the resulting enrichment properties are in [Kel05]. ◇
7.9.2 (Nerve and Geometric Realization). The nerve and geometric realization
functors described in Definitions 7.1.14 and 7.2.3, respectively, together with their
adjoints, arise from the theory of Kan extensions and are discussed in [Rie14].
Additional references include [Ric20, MP12]. ◇
7.9.3 (Compactly Generated Topological Spaces). With the usual product topol-
ogy, the category of all topological spaces fails to be symmetric monoidal closed
with respect to the Cartesian product. Moreover, the induced smash product fails
to be associative. Restricting to compactly generated weak Hausdorff spaces, as
we do in Definition 7.1.13, avoids the point-set pathologies of the larger cate-
gory. Familiar classes of spaces, including CW complexes, compact spaces, lo-
cally compact spaces, topological manifolds, and metrizable spaces are all weak
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Hausdorff and compactly generated. See [Rie14, Section 6.1] for definitions and
a detailed overview. For further reference see [Bor94b, Section 7.1], [May99, Sec-
tion 5], and [MS06, Section 1.7]. Further references include [Bro64, GZ67, Kel55,
May72, Ste67]. In the literature, these spaces are sometimes called k-spaces and
Kelley spaces. ◇
7.9.4 (Symmetric Spectra). The category of symmetric spectra was developed in
Hovey-Shipley-Smith [HSS00]. See [HSS00, Proposition 1.2.10] for completeness
and cocompleteness as in Proposition 7.5.5. See [HSS00, Theorem 2.2.10] for the
monoidal product and internal hom as in Theorem 7.6.15. For further develop-
ment, we also refer the reader to [MMSS01, Ric20] and [Hov01]. The latter of
those discusses symmetric spectra in a general pointed bicomplete category C.

Symmetric spectra are one of several prominent models for stable homotopy
theory with a symmetric monoidal product. Others include the S-modules of
Elmendorf-Kriz-Mandell-May [EKMM97] and the orthogonal spectra of Mandell-
May-Schwede-Shipley [MMSS01]. All of these, and others, are defined and com-
pared in [MMSS01]. ◇
7.9.5 (Sequential Spectra). The earliest and simplest model for stable homotopy
theory is the category of sequential spectra, SpN introduced by Lima [Lim59]. The
objects are sequences of pointed simplicial sets together with structure morphisms

Xn ∈ sSet∗ and σn ∶ S1 ∧Xn Xn+1, for n ≥ 0.

The morphisms of sequential spectra are sequences of morphisms in sSet∗ com-
muting with the structure morphisms σ. One motivating interest in sequential
spectra is that they represent generalized cohomology theories of spaces (see, for
example, [May99]).

One can describe sequential spectra as modules over the sequential sphere
spectrum {Sn}. However, the construction of a smash product as in Section 7.4
fails because the sequential sphere spectrum is not a commutative monoid. See
[HSS00, Section 2.3] for further details on this point. The more sophisticated cate-
gories of spectra, including symmetric spectra, were motivated by interest in sym-
metric monoidal constructions in stable homotopy theory.

The homotopy groups of a sequential spectrum X are given by a limit of the
simplicial homotopy groups

πnX = lim
k ∞

πn+kXk

that, for each n, is guaranteed to stabilize by the Freudenthal Suspension Theorem.
Weak equivalences of sequential spectra are morphisms that induce isomorphisms
on πn for all n, and these are part of a Quillen model structure described in [BF78].
The essential requirement for any category of spectra is that its homotopy category
be equivalent to the homotopy category of sequential spectra.

There is a forgetful functor

U ∶ SymSp SpN

given by forgetting the symmetric group actions. If f is a weak equivalence of
symmetric spectra (i.e. a stable equivalence), then U f is a weak equivalence (i.e. a
π∗-isomorphism) of sequential spectra. However the converse generally does not
hold. Nevertheless, [HSS00] shows that there is a Quillen equivalence between
the (model) category of symmetric spectra and that of sequential spectra. We refer
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the reader there for detailed definitions of the model structures and proof of the
Quillen equivalence. ◇
7.9.6 (Model Categories). The concept of a model category is originally due to
Quillen [Qui67]. Our presentation generally follows [MP12]. Many additional
examples of model categories can be found in [WY18, WY20]. The first of these,
[WY18], gives a general approach to (semi-)model structures on the category of
algebras over a colored operad in a monoidal model category. For additional ref-
erences, see [DS95, Hov99, Hir03, Rie11]. ◇



CHAPTER 8

Segal K-Theory of Permutative Categories

In this chapter we discuss the Segal K-theory spectra associated to small per-
mutative categories. This construction, an extension of that given by Segal [Seg74],
takes values in symmetric spectra. The construction has three components.

(1) There is a functor

KF ∶ Γ-sSet SymSp

where Γ-sSet is a certain category of (pointed) diagrams of simplicial sets.
We define Γ-sSet in Section 8.1 and KF in Section 8.2.

(2) Composition with the nerve defines a functor of (pointed) diagram cate-
gories

N∗ ∶ Γ-Cat Γ-sSet
given in Definition 8.1.18.

(3) There is a functor

JSe ∶ PermCatsu Γ-Cat

that constructs Γ-categories from small permutative categories. The defi-
nition of JSe is in Section 8.5.

The Segal K-theory functor, KSe, is the composite

PermCatsu
JSe

Γ-Cat
N∗ Γ-sSet KF

SymSp.

In the treatment below, we give two different but equivalent constructions of
the functor JSe. The first, denoted CF for a small permutative category C, is in
Section 8.3. It is more straightforward and consists of systems of objects indexed
by certain pairs of disjoint finite sets. This is the construction originally given by
Segal. There are three variants of this construction, each with respective benefits,
and all give level-equivalent symmetric spectra.

The second construction is the one we denote JSe. Its construction uses certain
diagram multicategories that we call partition multicategories. These package the
combinatorial structure given by partitions of finite sets and make the categorical
properties of JSe more apparent. For example, we describe the 2-functoriality of
JSe in these terms. Moreover, the approach via partition multicategories is more
readily comparable to our constructions of Elmendorf-Mandell K-theory, denoted
KEM, in Chapter 10. We describe the partition multicategories in Section 8.4 and
then define JSe and KSe in Section 8.5.

The following table summarizes Segal K-theory and the main constructions in
this chapter. The upper portion concerns the definition of Segal K-theory and the
constructions (−)F due to Segal. The lower portion concerns details related to the
construction of JSe via partition multicategories.

III.299
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Segal K-theory KSe = KFN∗JSe (8.5.1)

indexing category F (8.1.1)

K-theory KF ∶ Γ-sSet SymSp (8.2.5)

nerve N∗ ∶ Γ-Cat Γ-sSet (8.1.18)

Segal Γ-categories (−)F , (−)Flax, (−)Fco (8.3.14)

comparison (−)F , (−)Flax, (−)Fco 8.3.21, 8.5.2

Segal J-theory JSe ∶ PermCatsu Γ-Cat

definition JSe = JM ○End (8.5.1)

endomorphism multicategories End ∶ PermCatsu Multicat∗ (5.1.11, 5.3.9)

partition multicategories M ∶ Fop Multicat∗ (8.4.1, 8.4.7)

partition J-theory JM ∶Multicat∗ Γ-Cat (8.4.10)

Segal J-theory and Γ-categories JSe ≅ (−)Flax (8.4.8)

level equivalence KSe ∼
KEM (10.6.10)

Reading Guide.

(1) For the essential definitions, read Definitions 8.1.1, 8.1.8, and 8.1.16
through 8.1.18, together with the statement of Proposition 8.2.6.

(2) For Segal’s construction alone, it suffices to read the material from (1) and
then Definitions 8.3.1, 8.3.9, 8.3.12, and 8.3.14 followed by the statement
of Proposition 8.3.13.

(3) For our second, equivalent construction, the material in Section 8.3 may
be skipped. After (1), read Definition 8.4.1 and the statement of Proposi-
tion 8.4.7. Then read Definitions 8.4.10 and 8.5.1. After that, the items in
(2) may be read as a concrete simplification of this material.

(4) For the material on partition multicategories in Section 8.4, the reader will
want to be familiar with the basic definitions of multicategories and mul-
tifunctors from Section 5.1. However, the additional material in Chapter 5
will not play a major role in this chapter.

(5) Go back and read the rest of this chapter.

8.1. Categories of Γ-Objects

In this section we introduce Γ-objects and their morphisms. The two important
cases of interest for us will be Γ-simplicial sets and, later, Γ-categories.

Definition 8.1.1. Let FinSet∗ denote the category whose objects are pointed finite
sets and whose morphisms are basepoint-preserving functions. Let F denote the
full subcategory of FinSet∗ whose objects are pointed finite sets n = {0, . . . , n} for
natural numbers n ≥ 0. The pointed finite set 0 is an initial and terminal object for
both FinSet∗ and F , providing a basepoint such that the inclusion

F FinSet∗

is a pointed functor. ◇
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Explanation 8.1.2. Note that FinSet∗ is not small, just as the category of all (not-
necessarily-pointed) finite sets is not small. However, F is a small skeleton for
FinSet∗. The inclusion

F FinSet∗

is fully faithful by definition and is essentially surjective because each pointed
finite a is (non-uniquely) isomorphic to n − 1, where n = ∣a∣ is the cardinality of a.
Therefore the inclusion is an equivalence of categories. ◇
Definition 8.1.3. We make the following notational conventions for pointed finite
sets a ∈ FinSet∗.

● Unless otherwise specified, the basepoint of a general pointed finite set a
is denoted ∗.
● The basepoint of n is the element 0.
● We let a♭ denote the punctured finite set a/{∗}, obtained by removing the

basepoint.
● We let ∣a∣ denote the cardinality of a. ◇

Explanation 8.1.4. For a natural number n, we have

n♭ = {1, . . . , n}
and ∣n∣ = n + 1. The notation (−)♭ was introduced in Definition 4.3.8, and a♭ may
be read as a-flat or a-punctured. ◇
Definition 8.1.5. Suppose m and n are objects ofF . The lexicographic order for m∧n
is the bijection

L ∶ m ∧ n ≅ mn
given by

L(x, y) =
⎧⎪⎪⎨⎪⎪⎩

0 if x = 0 or y = 0,
n(x − 1)+ y if x > 0 and y > 0.

We will also use L to denote the composite

⋁
m♭

n ≅ m ∧ n ≅ mn,

where the first bijection identifies the wedge summand indexed by i ∈ m♭ with the
elements (i, y) ∈ m ∧ n. ◇
Explanation 8.1.6. Using the lexicographic order, the smash product of pointed
finite sets induces a monoidal product on F that we also denote ∧. Elementary
algebra with the formula for L shows that this product is strictly associative and
unital with strict monoidal unit 1, so (F ,∧, 1) is a permutative category. Note that
its symmetry is generally not trivial, and is induced by that of FinSet∗

m ∧ n ≅ n ∧m.

When we take the smash products of objects in F below, we will use the lexico-
graphic order unless otherwise stated. ◇
Explanation 8.1.7. One may visualize the lexicographical order

L ∶ m ∧ n ≅ mn

as an (m + 1) × (n + 1) matrix, with m and n indexing, respectively, the rows and
the columns. Each entry in the first row and the first column yields 0 ∈ mn under L.
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For the other entries, one counts from left to right in each row, from top to bottom.
With this matrix interpretation, the symmetry isomorphism

m ∧ n ≅ n ∧m

corresponds to taking the transpose.
The associativity of ∧ corresponds to a 3-dimensional matrix. In terms of alge-

bra, the associativity of ∧ means the commutativity of the following diagram for
all m, n, and p.

(m ∧ n)∧ p mn ∧ p

m ∧ (n ∧ p)

m ∧ np mnp

≅

L∧1

L

1∧L
L

To check its commutativity, consider elements x ∈ m, y ∈ n, and z ∈ p. If one of x,
y, or z is 0, then each of the two composites in the previous diagram sends (x, y, z)
to 0. If x, y, z > 0, then both composites send (x, y, z) to

np(x − 1)+ p(y − 1)+ z = p(n(x − 1)+ y − 1)+ z

in mnp. ◇
Definition 8.1.8. Suppose (C,∗) is a pointed category with ∗ terminal in C. A
Γ-object in C is a pointed functor

X ∶ (F , 0) (C,∗).

The category of Γ-objects in C, denoted Γ-C, is

Cat∗((F , 0), (C,∗)),

the category of pointed functors from (F , 0) to (C,∗) and pointed natural trans-
formations. ◇
Explanation 8.1.9 (Notation Γ). The category Γ-C would be denoted F∗-C in the
notation of Definition 4.3.32. The usage of Γ is a historical artifact of Segal’s con-
struction [Seg74], which defined a category Γ that is isomorphic to Fop and then
defined Γ-objects as pointed functors out of Γop. The usage of Γ in this context is a
fixture of the literature. ◇
Explanation 8.1.10 (Categories of Γ-objects). Some authors work with diagrams
on FinSet instead of F , as doing so avoids choices of specific finite sets n. We
define Γ-objects as functors out of F , the skeletal replacement of FinSet, so that the
collection of Γ-objects forms a category. Moreover, we implicitly use the canonical
ordering on each n in constructions that are indexed over the elements of n. ◇
Explanation 8.1.11 (Canonial Basepoints for Γ-Objects). In the context of Defini-
tion 8.1.8, recall from Definition 4.1.1 that C∗ denotes the category of objects and
morphisms under ∗ in C. Because 0 is also initial in F , there is a canonical isomor-
phism of categories

(8.1.12) Γ-C ≅ Γ-(C∗).
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For each Γ-object X, the unique morphisms

0 n

induce canonical basepoints
∗ = X0 Xn.

By functoriality, each Γ-object in C thereby determines a unique Γ-object in C∗,
and conversely. Morphisms of Γ-objects (pointed natural transformations between
pointed functors) necessarily preserve the canonical basepoints, and thus we have
a bijection between the morphisms of Γ-C and those of Γ-(C∗). ◇

Recall the notion of model category from Definition 7.7.3.
Definition 8.1.13. In the context of Definition 8.1.8, suppose furthermore that C
is a model category. A levelwise weak equivalence of Γ-objects in C is a morphism f
such that each fn is a weak equivalence in the model structure for C. ◇
Definition 8.1.14. Suppose X is a Γ-object in C and suppose C has products. For
n > 0, the nth Segal map is the morphism

pn ∶ Xn ∏
i∈n♭

X1

induced by the maps δi ∶ n 1 with δi(j) = 0 for j ≠ i and δi(i) = 1. The 0th Segal
map, p0, is the identity on the terminal object ∗.

Suppose, moreover, that C is a model category. We say that X is special if the
Segal maps pn are weak equivalences for all natural numbers n ≥ 0. ◇
Explanation 8.1.15. In the context of Definition 8.1.14, the Segal map p0 is an iden-
tity by definition and the Segal map p1 is an identity by functoriality of X. So the
first nontrivial Segal map is

p2 ∶ X2 X1×X1. ◇
The two types of Γ-objects we will see most frequently below are the following.

Because we will make frequent use of the canonical basepoints for Γ-objects, we
take these as part of the definitions.
Definition 8.1.16 (Γ-Simplicial Sets). A Γ-simplicial set is a Γ-object in sSet∗. We let

Γ-sSet

denote the category of Γ-objects and morphisms in sSet∗. By (8.1.12) this is canon-
ically isomorphic to the category of Γ-objects and morphisms in sSet. ◇

Recall from Definition I.6.3.1 the notion of modification between transforma-
tions.
Definition 8.1.17 (Γ-Categories). A Γ-category is a Γ-object in Cat∗. We let

Γ-Cat

denote the category of Γ-objects and morphisms in Cat∗. By (8.1.12) this is canoni-
cally isomorphic to the category of Γ-objects and morphisms in Cat.

We extend Γ-Cat to a 2-category by taking pointed modifications, that is, modi-
fications θ between pointed natural transformations such that the component at 0
is the identity natural transformation on the identity functor of 1. We will use the
notation Γ-Cat for both this 2-category and its underlying 1-category. ◇

Recall the nerve functor N from Definition 7.2.3.
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Definition 8.1.18. We let
N∗ ∶ Γ-Cat Γ-sSet

denote the functor induced by composition with the nerve functor N. For a Γ-
category X, the Γ-simplicial set N∗X is the composite

F X
Cat

N
sSet.

For a morphism of Γ-categories f , the morphism N∗ f is the whiskering of f (as a
natural transformation) with N. ◇

8.2. Symmetric Spectra from Γ-Simplicial Sets

Now we define the K-theory of Γ-simplicial sets as a functor

KF ∶ Γ-sSet SymSp.

Recall Sp denotes the p-fold smash product of the simplicial circle, S1 (Defini-
tion 7.4.1). In Definition 7.1.12 the set of n-simplices (S1)n is identified with n.
We will also need the following identification of the n-simplices (Sp)n for each p
and n.
Definition 8.2.1 (F-Sphere). Taking the lexicographic ordering (Definition 8.1.5)
defines a bijection

(Sp)n = n∧p ≅ np

for p > 0. Let S
0 = 1, the constant simplicial set, and for p > 0 let S

p
be the pointed

simplicial set whose n-simplicies are np and such that Sp ≅ S
p

is an isomorphism
of simplicial sets. Let S be the symmetric sequence determined by these isomor-
phisms, so that S ≅ S is an isomorphism of symmetric spectra. We refer to S as the
F-sphere. ◇

The structure morphisms for the symmetric spectra we construct will be de-
fined using the following morphisms.
Definition 8.2.2. Suppose X is a Γ-simplicial set. For each m and n in F , and for
each i ∈ m♭, let

hi ∶ n ⋁
m♭

n ≅ mn.

be the composite of the structure morphism indexed by the inclusion {i} ⊂ m♭ and
the isomorphism given by lexicographic ordering (Definition 8.1.5). Applying X,
we define

ηm,n,i = Xhi ∶ Xn Xmn.
Taking the wedge sum, we have

(8.2.3) ηm,n ∶ m ∧Xn ≅ ⋁
i∈m♭

Xn Xmn.

These morphisms are natural with respect to morphisms of m and n in F . ◇
Explanation 8.2.4. The map hi ∶ n mn in Definition 8.2.2 is given by

hi(j) =
⎧⎪⎪⎨⎪⎪⎩

0 if j = 0 and
n(i − 1)+ j if j ∈ n♭.

Using the matrix interpretation of m∧ n in Explanation 8.1.7, hi corresponds to the
inclusion of the row indexed by i ∈ m♭. ◇
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In the following definition we will construct pointed bisimplicial sets as func-
tors

∆op sSet∗

and take the diagonal as discussed in Explanation 7.1.7 to obtain a pointed simpli-
cial set.

Definition 8.2.5. Suppose X is a Γ-simplicial set. The K-theory of X is a symmetric
spectrum KFX defined as follows.

For each natural number k ≥ 0, let (KFX)k be the pointed simplicial set ob-

tained by taking the diagonal of the pointed bisimplicial set X ○ S
k
:

∆op S
k

F X
sSet∗.

The components ηm,n defined in (8.2.3) assemble to give a natural transformation
in the diagram below.

∆op

∆op ×∆op

F ×F F × sSet∗

F sSet∗

diag

S
p × S

q 1×X

S
p+q X

∧ ∧
⇒
η

Taking the diagonal of these pointed bisimplicial sets and using the isomorphsm
S ≅ S, we obtain morphisms in sSet∗

ρp,q ∶ Sp ∧ (KFX)q ≅ S
p ∧ (KFX)q (KFX)(p + q).

In Proposition 8.2.6 we show that these data define a symmetric spectrum KFX
for each Γ-simplicial set X and moreover that KF determines a functor

KF ∶ Γ-sSet SymSp.

In Explanation 8.2.7 we give an alternate description of each (KFX)k in terms of
its n-simplices. ◇
Proposition 8.2.6. The data {(KFX)k, ρp,q ∣ k, p, q ≥ 0} of Definition 8.2.5 define a
functor

KF ∶ Γ-sSet SymSp.

Proof. We will use the description in Explanation 7.4.6 to verify that each pair
(KFX, ρ) is a symmetric spectrum. The unity condition (7.4.7) follows because

S
0

is the constant simplicial set 1 and each η1,n is the identity. The associativity
condition (7.4.8) holds because associativity of the lexicographic smash product
L (Definition 8.1.5) implies that the following diagram for components of η com-
mutes for each ℓ, m, and n in F .

ℓ ∧m ∧Xn ℓ ∧X(mn)

ℓm ∧Xn X(ℓmn)

1∧ ηm,n

ηℓ,mnL ∧ 1

ηℓm,n
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The action of Σk on (KFX)k is given by permuting the factors of S
k
. The equiv-

ariance of ρp,q with respect to the standard inclusion ip,q ∶ Σp ×Σq Σp+q then
follows from the definition of the Σp action on the smash powers Sp ≅ S

p
(see

Definitions 7.3.8 and 7.4.1).
Since the definition of η is natural with respect to morphisms of Γ-simplicial

sets (i.e., natural transformations of functors), so are the structure morphisms ρp,q.
This shows that KF takes values in the category of symmetric spectra and mor-
phisms thereof. Functoriality follows because each step in the construction of
(KFX)k is functorial. □

Explanation 8.2.7 (Simplices of KFX). Here we give a more explicit definition of
the simplices of (KFX)k from Definition 8.2.5. This is the description often given

in the literature. For each n, evaluating X at S
k
n ∈ F gives a simplicial set

(m (X(Sk
n))m).

The pointed simplicial set (KFX)k is given by its diagonal:

(KFX)k = X(Sk) = (n (X(Sk
n))n).

The structure morphisms

ΣX(Sk−1) X(Sk)
are given, for each n, by

S
1
n ∧ (X(S

k−1
n ))n ≅ ⋁

i∈(S1
n)♭
(X(Sk−1

n ))n (X(Sk
n))n

induced by the inclusions

hi ∶ S
k−1
n ≅ {0, i}∧ S

k−1
n S

1
n ∧ S

k−1
n ≅ S

k
n

for i ∈ (S1
n)♭. ◇

8.3. Γ-Categories from Permutative Categories

In this section we define Segal’s construction of Γ-categories from small per-
mutative categories. There are three variants of this construction, and they all
yield equivalent K-theory spectra by Theorems 8.3.21 and 8.5.2.
Definition 8.3.1. Suppose (C,⊕, e) is a small permutative category and n is an
object of F . An n-system in C is a pair

(C, ρ) = {Cs, ρs,t}
consisting of

● a system of objects, with Cs ∈ C for each basepoint-free subset s ⊂ n♭, and
● a system of morphisms, with

ρs,t ∶ Cs ⊕Ct Cs∪t

for each pair of disjoint basepoint-free subsets:

s, t ⊂ n♭ and s ∩ t = ∅.

We call ρs,t the (s, t)-gluing morphism. These data are subject to the following ax-
ioms.
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Object Unity: For the empty subset we have

(8.3.2) C∅ = e.

Gluing Unity: The (∅, t)- and (s,∅)-gluing morphisms are identities:

(8.3.3) ρ∅,t = 1Ct and ρs,∅ = 1Cs .

Gluing Symmetry: The following diagram commutes for each pair of disjoint
basepoint-free subsets s and t, where ξ denotes the symmetry isomor-
phism of C.

(8.3.4)

Cs ⊕Ct Cs∪t

Ct ⊕Cs Ct∪s

ρs,t

ρt,s

ξ 1

Gluing Associativity: The following diagram commutes for each triple of pair-
wise disjoint basepoint-free subsets s, t, and u.

(8.3.5)

Cs ⊕Ct ⊕Cu Cs∪t ⊕Cu

Cs ⊕Ct∪u Cs∪t∪u

ρs,t ⊕ 1

ρs,t∪u

1⊕ ρt,u ρs∪t,u

This finishes the definition of an n-system in C. We also have the following variant
definitions and terms.

● When helpful for clarity, we also call an n-system a lax n-system.
● A strong n-system is an n-system for which all of the gluing morphisms

ρs,t are isomorphisms.
● A colax n-system in C is an n-system in Cop. That is, the direction of each
(s, t)-gluing morphism is reversed but the same axioms (with reversed
arrows ρs,t) are satisfied. ◇

Definition 8.3.6. Suppose (C,⊕, e) is a small permutative category and suppose
given n-systems

{Cs, ρs,t} and {C′s, ρ′s,t}
for n in F . A morphism of n-systems, denoted

{αs} ∶ {Cs, ρs,t} {C′s, ρ′s,t},

consists of component morphisms

αs ∶ Cs C′s,

for each basepoint-free subset s ⊂ n♭. These components are subject to the follow-
ing axioms.

Unitary: For the empty subset we have

(8.3.7) α∅ = 1e.
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Gluing Compatibility: The following diagram commutes for each pair of disjoint
basepoint-free subsets s and t.

(8.3.8)

Cs ⊕Ct

C′s ⊕C′t

Cs∪t

C′s∪t

αs ⊕ αt αs∪t

ρs,t

ρ′s,t

This finishes the definition of a morphism of n-systems. We also have the follow-
ing variant definitions.

● A morphism of strong n-systems is defined as above, with {Cs, ρs,t} and
{C′s, ρ′s,t} strong n-systems.
● A morphism of colax n-systems is defined as above, with {Cs, ρs,t} and
{C′s, ρ′s,t} colax n-systems, but the gluing compatibility axiom (8.3.8) has
the variance of ρ reversed as in the following diagram.

Cs ⊕Ct

C′s ⊕C′t

Cs∪t

C′s∪t

αs ⊕ αt αs∪t

ρs,t

ρ′s,t

The identity morphism for a lax, strong, or colax n-system {Cs, ρs,t} consists of
identities

αs = 1Cs for s ⊂ n♭.

Composition of morphisms is defined componentwise. This composition is asso-
ciative and unital because the composition in C is so. ◇
Definition 8.3.9. Suppose (C,⊕, e) is a small permutative category and suppose
given n in F . Define a pointed category CFn as follows.

● The objects of CFn are the strong n-systems in C.
● The morphisms of CFn are the morphisms of strong n-systems.
● The basepoint of CFn is the constant n-system with

Cs = e and ρs,t = 1e

for all disjoint basepoint-free subsets:

s, t ⊂ n♭ and s ∩ t = ∅.

This finishes the definition of CFn. We also have the following variant definitions
and notation.

● To emphasize that the objects of CFn are the strong n-systems, we also
use the notation

CF≅ n = CFn.

● We let
CFlaxn

denote the category of lax n-systems and morphisms of such. The base-
point is that of CF≅ n.
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● We let
CFcon

denote the category of colax n-systems and morphisms of such. The base-
point is that of CF≅ n. ◇

In the following examples, we describe explicitly the categories CFn for n =
0, 1, 2.
Example 8.3.10. There are canonical isomorphisms

CF0 ≅ 1

CF1 ≅ C
with 1 the terminal category. ◇
Example 8.3.11. Since

22♭ = {∅,{1},{2},{1, 2}},
up to a canonical isomorphism, CF2 may be described as follows. An object in CF2
is a quadruple

(X1, X2, X12, ρX ∶ X1 ⊕X2
≅ X12)

consisting of
● three objects X1, X2, X12 ∈ C and
● an isomorphism ρX ∈ C as indicated.

A morphism

(X1, X2, X12, ρX) (Y1, Y2, Y12, ρY) ∈ CF2
α= (α1,α2,α12)

consists of morphisms

Xa Ya ∈ C for a ∈ {1, 2, 12}αa

such that the diagram

X1 ⊕X2 X12

Y1 ⊕Y2 Y12

α1⊕α2

ρX

α12

ρY

commutes.
● The identity morphism is given by

1(X1,X2,X12,ρX) = (1X1 , 1X2 , 1X12).
● Composition is defined entrywise in C.

This finishes the description of CF2. ◇
Now we define CF on the morphisms of F .

Definition 8.3.12. Suppose (C,⊕, e) is a small permutative category and suppose
given a morphism n in F

ψ ∶ n m.
Define a pointed functor

CFψ ∶ CFn CFm
as follows.
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● Given an n-system {Cs, ρs,t}, define an m-system {Cψ
r , ρ

ψ
r,q}with

Cψ
r = Cψ−1(r) and

ρ
ψ
r,q = ρψ−1(r),ψ−1(q)

for disjoint basepoint-free subsets:

r, q ⊂ m♭ and r ∩ q = ∅.

● Given a morphism of n-systems {αs}, define a morphism of m-systems
{αψ

r }with
α

ψ
r = αψ−1(r) for r ⊂ m♭.

These definitions give well-defined m-systems and morphisms thereof because
taking inverse images of a basepoint-preserving function preserves the proper-
ties of being basepoint-free and disjoint. If Cs, respectively ρs,t, is constant at e,
respectively 1e, then so is Cψ

r , respectively ρ
ψ
r,q.

Define the pointed functor CFψ by the following assignment on objects and
morphisms:

{Cs, ρs,t} {Cψ
r , ρ

ψ
r,q} and

{αs} {αψ
r }.

Functoriality of CFψ follows because composition and identities in CFn are de-
fined componentwise.

This finishes the definition of CFψ. We also have the following variant defini-
tions and notation extending that of Definition 8.3.9.

● For emphasis or clarity we sometimes also use the notation

CF≅ψ = CFψ.

● We let
CFlaxψ ∶ CFlaxn CFlaxm

and
CFcoψ ∶ CFcon CFcom

be the pointed functors given by the same definitions as above for lax,
respectively colax, n-systems and morphisms. ◇

Taken together, Definitions 8.3.1, 8.3.6, 8.3.9, and 8.3.12 give assignments on
objects and morphisms

CF = CF≅ ∶ F Cat∗,

CFlax ∶ F Cat∗, and

CFco ∶ F Cat∗.

Now we show that these are Γ-categories.
Proposition 8.3.13. Suppose C is a small permutative category. Each of the assignments

CF = CF≅ , CFlax, and CFco

defines a Γ-category.
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Proof. First note that if ψ = 1n then the definition of CFψ will be the identity
functor. Functoriality with respect to a composable pair ψ and ϕ follows because
(ψϕ)−1 = ϕ−1ψ−1. The same argument applies to show that CFlax and CFco are functo-
rial. □

Definition 8.3.14. Suppose C is a small permutative category. We call
● CF = CF≅ the strong Segal Γ-category of C,
● CFlax the lax Segal Γ-category of C, and
● CFco the colax Segal Γ-category of C. ◇

Now we relate the three Segal Γ-category constructions.
Definition 8.3.15. Suppose (C,⊕, e, ξ) is a small permutative category and

ν ∈ {≅, lax, co}
is one of the variant subscripts for CF . For each n inF , let (e, . . . , e) be the basepoint
of Cn and define pointed functors

Pν ∶ CFν n Cn and Qν ∶ Cn CFν n

as follows. For objects {Cs, ρs,t} and morphisms {αs} in CFν n, define

Pν{Cs, ρs,t} = (C{1}, . . . , C{n}) and

Pν{αs} = (α{1}, . . . , α{n}).
For objects (C1, . . . , Cn) and morphisms (α1, . . . , αn) in Cn, define

Qν(C1, . . . , Cn) =
⎧⎪⎪⎨⎪⎪⎩

{⊕i∈sCi , ξs,t}, if ν ∈ {≅, lax}
{⊕i∈sCi , ξ−1

s,t }, if ν = co,

and

Qν(α1, . . . , αn) = {⊕i∈sαi}
where

ξs,t ∶ (⊕
i∈s

Ci)⊕ (⊕
i∈t

Ci) ⊕
i∈(s∪t)

Ci

is the unique morphism given by permuting summands with the symmetry of
C. Functoriality of Pν and Qν follows because composition and identities in each
of the categories CFν n and Cn are given componentwise. Each of Pν and Qν is a
pointed functor by definition of the basepoints in CFν n and the assumption that e
is a strict unit for C. ◇
Proposition 8.3.16. In the context of Definition 8.3.15,

● (P≅, Q≅) is an adjoint equivalence,
● Plax is a right adjoint, with left adjoint Qlax, and
● Pco is a left adjoint, with right adjoint Qco.

Proof. For each variant
ν ∈ {≅, lax, co},

the composite

Cn Qν
CFν n

Pν
Cn

is the identity functor. The other composite

CFν n
Pν

Cn Qν
CFν n
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is given on objects and morphisms of CFν n by the following assignments:

{Cs, ρs,t}
⎧⎪⎪⎨⎪⎪⎩

{⊕i∈sC{i} , ξs,t} for ν = ≅, ν = lax
{⊕i∈sC{i} , ξ−1

s,t } for ν = co

and

{αs} {⊕i∈sα{i}}.
If the variant ν is either ≅ or lax, then the gluing morphisms of each n-system

provide morphisms

(8.3.17) ρ̂s ∶⊕
i∈s

C{i} Cs

for each basepoint-free subset s ⊂ n♭. These are uniquely determined by the gluing
associativity condition (8.3.5). Using gluing associativity again together with glu-
ing symmetry (8.3.4), the morphisms ρ̂s satisfy the gluing compatibility condition
(8.3.8) with the morphisms ξs,t and, therefore, define a morphism

(8.3.18) {ρ̂s} ∶ {⊕i∈sC{i} , ξs,t} {Cs, ρs,t}.
If the variant ν is co, the colax gluing morphisms of a colax n-system provide

morphisms ρ̂ co
s that go in the opposite direction of (8.3.17). Then we have a mor-

phism of colax n-systems

{ρ̂ co
s } ∶ {Cs, ρs,t} {⊕i∈sC{i}, ξ−1

s,t }.
In any of the three cases for ν, the morphisms (8.3.18) are natural with respect

to morphisms {αs} by the gluing compatibility (8.3.8) for {αs}with the morphisms
ρs,t. Thus we have a natural transformation γ with components

γ{Cs ,ρs,t} = {ρ̂s}
that provides either a counit (if ν is either ≅ or lax) or a unit (if ν is co). Since the
gluing morphisms for the basepoint of CFν n are identities, the component of γ at
the basepoint is its identity.

In any of the three cases for ν, one verifies the triangle identities with the
following computations.

● For {Cs, ρs,t} in CFν n,

Pνγ{Cs ,ρs,t} = Pν{ρ̂s} = (ρ̂{1}, . . . , ρ̂{n}) = 1(C
{1},...,C

{n}).

● For (C1, . . . , Cn) in Cn,

γQν(C1,...,Cn) =
⎧⎪⎪⎨⎪⎪⎩

{ξ̂s} if ν =≅, ν = lax,

{ξ̂−1
co
s } if ν = co,

= {1(⊕i∈sC
{i})
}.

The assertion that (P≅, Q≅) is an adjoint equivalence follows because the compo-
nents of γ are given by the gluing morphisms ρs,t. □

Observe that each strong n system is lax and, by taking inverses of the gluing
morphisms, also colax. Thus we have forgetful functors, given by the identities on
morphisms

(8.3.19) CFcon CF≅ n CFlaxn
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for each n in F . These are natural with respect to morphisms in F and therefore
we have the following.

Definition 8.3.20. Suppose C is a small permutative category. The levelwise inclu-
sions

CFco CF≅ CFlax

are the morphisms of Γ-categories induced by the forgetful functors (8.3.19). ◇
Recall from Definition 8.1.18 that

N∗ ∶ Γ-Cat Γ-sSet

denotes the functor induced by composition with the nerve functor N.

Theorem 8.3.21. Suppose C is a small permutative category. Each of the Γ-simplicial sets

N∗CF≅ , N∗CFlax, and N∗CFco

is special. Moreover, the levelwise inclusions

CFco CF≅ CFlax

induce levelwise weak equivalences of Γ-simplicial sets.

Proof. For each variant

ν ∈ {≅, lax, co}

we have an isomorphism of categories

CFν 1 ≅ C.

Since the nerve functor is a right adjoint, we have an isomorphism of simplicial
sets

N(Cn) ≅ (NC)n

for each n ≥ 0. Recalling Proposition 7.2.5, an adjunction of categories induces a
simplicial homotopy equivalence on nerves. Therefore the adjunctions of Propo-
sition 8.3.16 provide simplicial homotopy equivalences in the composite below

NCFν n ≃ N(Cn) ≅ (NC)n ≅ (NCFν 1)n

for each n in F . We recall from Explanation 7.8.4 that each simplicial homotopy
equivalence is a weak equivalence. This completes the proof that each NCFν is
special.

For the second assertion we note, moreover, that the levelwise inclusions com-
mute with the functors

Qν ∶ Cn CFν n

for each variant ν and each n in F . Therefore the levelwise inclusions are weak
equivalences by the 2-out-of-3 property of Definition 7.7.3. □
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8.4. Partition Multicategories

For each small permutative category C and each object n ofF , the objects of the
category CFn are systems indexed by disjoint pairs of basepoint-free subsets of n;
the morphisms are similarly indexed. The partition multicategories we introduce
in this section provide an abstract approach to such indexed systems. In Proposi-
tion 8.4.8 we show that the Γ-categories constructed via partition multicategories
are isomorphic to those constructed via (−)Flax.

Our approach via partition multicategories will make the categorical proper-
ties of the Segal J-theory and K-theory constructions in Section 8.5 more transpar-
ent. Moreover, our development of Elmendorf-Mandell K-theory in Chapter 10
depends on a generalization of the material here.

Definition 8.4.1. Suppose a is a pointed finite set. We define the partition multicat-
egory,Ma, as follows. The object set ofMa is 2a♭ , the set of basepoint-free subsets
of a. For an n-tuple of subsets

⟨s⟩ = (s1, . . . , sn) ∈ Prof(2a♭)

and a subset t ∈ 2a♭ , we define the set of operations, (Ma)(⟨s⟩ ; t), to be a 1-element
set if ⟨s⟩ is a partition of t, and empty otherwise. If ⟨s⟩ is a partition of t, we let ι⟨s⟩
denote the single operation in (Ma)(⟨s⟩ ; t).

Thus

(Ma)(⟨s⟩ ; t) =
⎧⎪⎪⎨⎪⎪⎩

{ι⟨s⟩} if si ∩ sj = ∅ for all i ≠ j and t =∐i si,
∅ otherwise.

The empty set ∅ ∈ 2a♭ provides a basepoint forMa with the unique operations in

(Ma)((∅, . . . ,∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

n terms

) ; ∅) for n ≥ 0.

This defines the objects, operations, and basepoint ofMa. In Proposition 8.4.2 we
show that these data satisfy the axioms of a pointed multicategory. ◇
Proposition 8.4.2. In the context of Definition 8.4.1,Ma is a pointed multicategory.

Proof. For unit operations we have

1t = ιt ∈ (Ma)(t ; t).

For symmetric group actions, suppose ⟨s⟩ ∈ Prof(2a♭) has length n. If (Ma)(⟨s⟩ ; t)
is nonempty (and therefore a singleton) then so is

(Ma)(⟨s⟩σ ; t) for σ ∈ Σn.

Therefore, the symmetric group actions

(Ma)(⟨s⟩ ; t) σ
≅ (Ma)(⟨s⟩σ ; t) for σ ∈ Σn

are uniquely determined. For composition, suppose ⟨s⟩ ∈ Prof(2a♭) has length n
and suppose given

⟨ri⟩ ∈ Prof(2a♭) for i ∈ {1, . . . , n}.
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Let ⟨r⟩ denote the concatenation of the ⟨ri⟩. If

(Ma)(⟨s⟩ ; t)×
n
∏
i=1
(Ma)(⟨ri⟩ ; si)

is nonempty, then so is
(Ma)(⟨r⟩ ; t).

Therefore, the composition

(Ma)(⟨s⟩ ; t)×
n
∏
i=1
(Ma)(⟨ri⟩ ; si) (Ma)(⟨r⟩ ; t)

is uniquely determined. Each of the axioms in Definition 5.1.2 consists of diagrams
where either the common domain of the two composites is empty and there is
nothing to verify, or the common domain is a singleton and therefore so is each of
the other operation sets in the diagram. □

Explanation 8.4.3. For a pointed finite set a, let C denote the discrete permutative
category whose objects are those of the commutative monoid

(2a♭ ,∪,∅).
Then the objects ofMa are those of End(C) but the operations are only those whose
input profiles consist of pairwise disjoint subsets. ◇

In the following examples, we describe explicitly the partition multicategories
Mn for n = 0, 1, 2.
Example 8.4.4. The partition multicategoryM0 has object set

20♭ = {∅}.
Each set of operations has a single element,

M0(⟨∅⟩ ; ∅) = {ιn},
where ⟨∅⟩ = (∅, . . . ,∅) contains n copies of the empty set. Its multicategory struc-
ture is given as follows.

● The ∅-colored unit is ι1 ∈M0(∅ ; ∅).
● Each ιn is fixed by the right Σn-action.
● The composition is given by

ιn ○ (ιk1 , . . . , ιkn) = ιk1+⋯+kn

for n ≥ 1 and k1, . . . , kn ≥ 0.
Therefore, there is a canonical isomorphism

M0 ≅ T
with the terminal multicategory T (Definition 5.2.1). ◇
Example 8.4.5. The partition multicategoryM1 has object set

21♭ = {∅,{1}}.
Its nonempty sets of operations are

M1(⟨∅⟩ ; ∅) = {ιn}
M1((∅, . . . ,{1}, . . . ,∅) ; {1}) = {πn

j }
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for n ≥ 0 and 1 ≤ j ≤ n. In the definition of πn
j above,

(∅, . . . ,{1}, . . . ,∅)
has length n with {1} in the jth entry and ∅ in other entries. The multicategory
structure involving only ιn for n ≥ 0 is as inM0 in Example 8.4.4.

The rest of the multicategory structure inM1 is given as follows.
● The {1}-colored unit is

π1
1 ∈M1({1} ; {1}).

● The right Σn-action is given by

πn
j ⋅ σ = πn

σ−1(j) for σ ∈ Σn.

The composition involving πn
j is given by

πn
j ○ (ι

k1 , . . . , ιkj−1 , π
kj
p , ιkj+1 , . . . , ιkn) = π

k1+⋯+kn
k1+⋯+kj−1+p

for 1 ≤ p ≤ k j. This finishes the description ofM1. ◇
Example 8.4.6. The partition multicategoryM2 has object set

22♭ = {∅,{1},{2},{1, 2}}.
Its nonempty sets of operations are

M2(⟨∅⟩ ; ∅) = {ιn}
M2((∅, . . . ,{1}, . . . ,∅) ; {1}) = {πn

j }
M2((∅, . . . ,{2}, . . . ,∅) ; {2}) = {τn

j }
M2((∅, . . . ,{1}, . . . ,{2}, . . . ,∅) ; {1, 2}) = {θn

i,j}

for n ≥ 0, 1 ≤ j ≤ n in the second and third lines, and 1 ≤ i /= j ≤ n in the last line.
● ιn and πn

j are as inM1 in Example 8.4.5.
● In the definition of τn

j ,

(∅, . . . ,{2}, . . . ,∅)
has length n with {2} in the jth entry and ∅ in other entries.
● In the definition of θn

i,j, {1} and {2} are in, respectively, the ith and the jth
entries in

(∅, . . . ,{1}, . . . ,{2}, . . . ,∅),
with both i < j and i > j possible. All other entries are ∅.

The multicategory structure inM2 involving only ιn and πn
j is as inM1 in Exam-

ple 8.4.5. The multicategory structure involving only ιn and τn
j is also as inM1,

with τn
j playing the role of πn

j .
The rest of the multicategory structure inM2 is given as follows.
● The {1, 2}-colored unit is

θ2
1,2 ∈M2(({1},{2}) ; {1, 2}).

● The right Σn-action is given by

θn
i,j ⋅ σ = θn

σ−1(i),σ−1(j) for σ ∈ Σn.
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The composition involving θn
i,j is given by

θn
i,j ○ (ι

k1 , . . . , π
ki
p , . . . , τ

kj
q , . . . , ιkn) = θ

k1+⋯+kn
k1+⋯+ki−1+p, k1+⋯+kj−1+q

for 1 ≤ i /= j ≤ n, 1 ≤ p ≤ ki, and 1 ≤ q ≤ k j. For 1 ≤ r ≤ n, the rth entry in

(ιk1 , . . . , π
ki
p , . . . , τ

kj
q , . . . , ιkn)

is
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ιkr if r /= i, j,
π

ki
p if r = i, and

τ
kj
q if r = j.

This finishes the description ofM2. ◇
Proposition 8.4.7. The assignment

n Mn

is the assignment on objects of a pointed functor

M ∶ (Fop, 0) (Multicat∗,T)
taking values in the category of small pointed multicategories.

Proof. Suppose ψ ∶ n m is a morphism of pointed finite sets. Since ψ preserves
the basepoint, taking inverse images provides a function from subsets of m♭ to
subsets of n♭:

2m♭ 2n♭ , u ψ−1(u).
We denote this function ψ̃. Since taking inverse images preserves disjunction, ψ̃
defines a pointed multifunctor

ψ̃ ∶Mm Mn

that is an identity if ψ is an identity. For composable functions ϕ and ψ in F , we
have (ϕψ)−1 = ψ−1ϕ−1 and thusM is (contravariantly) functorial. □

We use the partition multicategories to give a reformulation of the lax Segal
Γ-categories associated to a small permutative category. This reformulation will
be used in our comparison with the more general Elmendorf-Mandell K-theory in
Chapter 10. More immediately, we will use this reformulation to verify functorial-
ity of the lax Segal Γ-categories as the input permutative category C varies.
Proposition 8.4.8. Suppose C is a small permutative category. For each n in F there is
an isomorphism of pointed categories

Multicat∗(Mn,End(C)) ≅ CFlaxn.

These isomorphisms are natural with respect to morphisms in F .

Proof. The fundamental reason for this result is that the operations ι⟨c⟩ of length
n > 2 can be decomposed as composites of binary operations ι(s,t). This implies
that pointed multifunctors fromMn to End(C) are determined by their values on
binary operations, in the following two specific ways.

Suppose given a pointed multifunctor

F ∶Mn End(C).
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(1) For a tuple ⟨c⟩ of length n > 2, the composition axiom (5.1.15) implies that
Fι⟨c⟩ is determined by its value on the operations ι(s,t) for disjoint pairs

s, t ∈ 2n♭ . In particular, for pairwise disjoint subsets s, t, u ∈ 2n♭ the ternary
operation ι(s,t,u) is equal to both of the following composites:

ι(s∪t,u) ○ (ι(s,t), ιu) = ι(s,t,u) = ι(s,t∪u) ○ (ιs, ι(t,u)).

Therefore the images of these composites under F are equal.
(2) Preservation of the symmetric group action (5.1.13) holds if and only if

each Fι(s,t) commutes with the transposition of s and t as in the following
diagram.

Ft⊕ Fs Fs⊕ Ft

F(s ∪ t)
Fι(t,s) Fι(s,t)

ξ

Moreover, the composite

(Mn)((∅, t) ; t)× ((Mn)(⟨⟩ ; ∅)× (Mn)(t ; t)) (Mn)(t ; t)

takes the unique triple of operations in the source to the unique operation in the
target, that is the identity on t. Therefore, after applying F, we have the following
commuting diagram in C.

Ft

e⊕ Ft e⊕ Ft

Ft

1

Fι⟨⟩ ⊕ 1Ft

Fι(∅,t)

1Ft

If F is a pointed multifunctor then Fι⟨⟩ = 1e and therefore Fι(∅,t) = 1Ft.
These observations show that the data of an object in CFlaxn is equivalent to the

data of a pointed multifunctorMn End(C). The object unity axiom (8.3.2) and
gluing unity axiom (8.3.3) correspond to the requirement that F be pointed. The
gluing symmetry axiom (8.3.4) corresponds to the requirement that F preserves
symmetry as in (2) above. The gluing associativity axiom (8.3.5) corresponds to
the composition axiom for F as in (1) above. Therefore, the correspondence

F {(Fs, Fι(s,t))}

establishes a bijection on objects between Multicat∗(Mn,End(C)) and CFlaxn.
We have two similar observations for pointed multinatural transformations

θ ∶ F F′ between pointed multifunctors

F, F′ ∶Mn End(C).
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(1) The naturality condition of Definition 5.1.17 holds if and only if θ is nat-
ural with respect to the pairwise operations ι(s,t), as in the following dia-
gram.

Fs⊕ Ft F(s ∪ t)

F′s⊕ F′t F′(s ∪ t)

Fι(s,t)

F′ι(s,t)

θs ⊕ θt θs∪t

(2) Because F, F′, and θ are pointed, the basepoint component θ∅ is the iden-
tity 1e.

Thus the correspondence
θ {θs}

establishes a bijection between the morphisms of Multicat∗(Mn,End(C)) and
those of CFlaxn. The pointed condition for θ corresponds to the unity condition
(8.3.7) and the naturality condition for θ corresponds to the gluing compatibility
axiom (8.3.8).

To verify naturality of these isomorphisms with respect to a morphism of
pointed finite sets

ψ ∶ n m in F ,
recall from Proposition 8.4.7 thatMψ = ψ̃ is given by the function

2m♭ 2n♭

that takes inverse images of subsets. Then the functor

Multicat∗(Mn,End(C)) Multicat∗(Mm,End(C))
induced by Mψ is given on multifunctors F and multinatural transformations θ
by

(ψ̃∗F)s = F(ψ−1(s)) and (ψ̃∗θ)s = θψ−1(s).

Restricted to binary operations, this is precisely Definition 8.3.12 for CFlaxψ. □

Explanation 8.4.9. Variants of Proposition 8.4.8 can be given for the strong and
colax Segal Γ-category constructions. However we focus on the lax case because
it is the one we will use to compare with the Elmendorf-Mandell construction in
Chapter 10. ◇
Definition 8.4.10. Let JM denote the 2-functor

JM =Multicat∗(M,−) ∶Multicat∗ Γ-Cat.

For each small pointed multicategory P, the Γ-category JMP is

JMP =Multicat∗(M(−),P) ∶ F Cat.

We call this the partition J-theory of multicategories, or theM-partition J-theory to
emphasize the dependence onM. ◇
Explanation 8.4.11. In the context of Definition 8.4.10, suppose given small
pointed multicategories, pointed multifunctors and a pointed multinatural trans-
formation:

H, H′ ∶ P P′ and θ ∶ H H′ in Multicat∗.
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Then
(JMH)n, (JMH′)n ∶ (JMP)n (JMP′)n

are given by composition with H and H′, denoted H∗ and H′∗, respectively. The
component of JMθ at n is given by whiskering with θ:

Multicat∗(Mn,P) Multicat∗(Mn,P′).

H∗

H′∗

⇒

θ ∗ (1−)

◇

8.5. Segal J-Theory and K-Theory

Recall from Example 5.1.11 the endomorphism multicategory End(C) for a
permutative category C. Recall from Corollary 5.3.9 that this construction pro-
vides a 2-functor

End ∶ PermCatsu Multicat∗.

From Definition 8.4.10 we have the 2-functor

JM =Multicat∗(M,−) ∶Multicat∗ Γ-Cat.

Definition 8.5.1 (Segal J-theory and K-theory). Suppose C is a small permutative
category. The Segal J-theory of C is the Γ-category

JSeC =Multicat∗(M(−),End(C)) ∶ F Cat∗.

As a 2-functor, JSe is the composite

PermCatsu
End

Multicat∗
JM Γ-Cat.

Taking levelwise nerves, N∗JSeC is a Γ-simplicial set. We define the Segal K-
theory of C to be the symmetric spectrum

KSeC = KF(N∗JSeC)
given by applying the K-theory construction of Definition 8.2.5 to N∗JSeC. As a
functor, KSe is the composite

PermCatsu
End

Multicat∗
JM Γ-Cat

N∗ Γ-sSet KF
SymSp. ◇

Recall from Section 8.3 the three Γ-simplicial sets CFν associated to a small per-
mutative category C, where ν is one of the variants

ν ∈ {≅, lax, co}.
The three Γ-simplicial sets are levelwise weakly equivalent by Theorem 8.3.21.
Therefore, by Proposition 8.4.8 we have the following.
Theorem 8.5.2. For each small permutative category C and each variant

ν ∈ {≅, lax, co},
there is a level equivalence of symmetric spectra

KF(N∗CFν ) ≃ KSeC.
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Recall from Lemma 5.7.21 that for any small pointed multicategory M, the
category

Multicat∗(M,End(C))

has a permutative structure given by the pointwise monoidal product. We will
compare this with the following.

Definition 8.5.3. Suppose a is a pointed finite set, regarded as a discrete category,
and (C,⊕, e) is a small permutative category. The pointwise monoidal product on

Cat∗(a,C),

the category of pointed functors and natural transformations, is given as follows.
For pointed functors

F, F′ ∶ a C,

define a pointed functor F⊕ F′ by its assignment on elements:

(F⊕ F′)x = (Fx)⊕ (F′x) for x ∈ a.

For pointed natural transformations

θ ∶ F G and θ′ ∶ F′ G′,

define a pointed natural transformation θ ⊕ θ′ with components

(θ ⊕ θ′)x = θx ⊕ θ′x for x ∈ a.

The monoidal unit is the constant functor at e ∈ C. The associativity and unit
isomorphisms are identities because C is permutative. The symmetry is given
elementwise by that of C and the hexagon axiom (1.1.26) follows from that of C. ◇

The next result is a reformulation of the adjunction Proposition 8.3.16 for CFlax.
We repeat the proof with additional details because this result will be used in
Proposition 10.6.7 for our comparison with the J-theory of Elmendorf-Mandell.

Proposition 8.5.4. Suppose (C,⊕, e) is a small permutative category, equipped with base-
point e. Suppose a is a pointed finite set. There are strictly unital strong symmetric mon-
oidal functors

Cat∗(a,C) Multicat∗(Ma,End(C))
L

R

and a strong symmetric monoidal adjunction with the following defined below:

● left adjoint L = (−)⊕,
● right adjoint R = (−),
● unit η ∶ Id RL the identity, and
● counit ε ∶ LR Id.

If, moreover, C is a groupoid, then ε is a natural isomorphism and (L, R) is a strong
symmetric monoidal equivalence.

Proof. Suppose F is a pointed multifunctor

F ∶Ma End(C).
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Let ∗ denote the basepoint of a. Restricting to singleton subsets of a♭ yields an
assignment

RF = F ∶ a ObC

(x ∈ a)
⎧⎪⎪⎨⎪⎪⎩

e if x = ∗
F{x} otherwise.

If F is constant at e ∈ C, then so is F.
A pointed multinatural transformation θ ∶ F F′ has, in particular, unary

operations
θx ∶ F{x} F′{x}

for each x ∈ a♭. These give a natural transformation

Rθ = θ ∶ F F
′

with components

θx =
⎧⎪⎪⎨⎪⎪⎩

1e if x = ∗
θx otherwise.

If η ∶ G G′ is another pointed multinatural transformation between pointed
multifunctors

G, G′ ∶Ma End(C),
we have

F⊕G = F⊕G and θ ⊕ η = θ ⊕ η.
This defines a strict symmetric monoidal functor

R = (−) ∶Multicat∗(Ma,End(C)) Cat∗(a,C).
For a reverse construction, we first fix a total order on a♭ for the remainder of

this proof. Suppose P is an assignment

P ∶ a C

with P∗ = e. We define a pointed multifunctor

LP = P⊕ ∶Ma End(C)

by sending a subset s ∈ 2a♭ to the sum

P⊕s =⊕
x∈s

Px

in C, where the order of summation is given by the chosen total ordering on a. If
⟨c⟩ is a partition of s, define P⊕ on the single element ι⟨c⟩ ofMa(⟨c⟩ ; s) to be the
unique coherence isomorphism

⊕
ci

⊕
x∈ci

Px ⊕
x∈s

Px

in C that permutes the summands Px, given by the Symmetric Coherence Theo-
rem 1.1.41. If any ci is empty, we implicitly compose with the (strict) unit isomor-
phisms of C, as noted in Examples 5.1.10 and 5.1.11. The multifunctor axioms for
P⊕ follow from Theorem 1.1.41 applied to C. Note that P⊕∅ = e because the empty
sum in C is the unit object. Similarly, P⊕ι⟨⟩ is the identity on the empty sum and
therefore P⊕ is a pointed multifunctor.
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A pointed natural transformation

ω ∶ P P′, for P, P′ ∈ Cat∗(a, C),

has components
ωx ∶ Px P′x, for x ∈ a,

and these assemble to give

(Lω)s = ω⊕s =⊕
x∈s

ωx, for s ⊂ a♭.

The naturality axiom for ω⊕s follows from the naturality of the associativity and
unit isomorphisms in C.

Now we turn to the data and axioms making L = (−)⊕ a symmetric monoidal
functor. Given another assignment Q ∶ a C, we define

P⊕ ⊕Q⊕ ≅ (P⊕Q)⊕

to have component at s ⊂ a♭ given by the shuffle permutation

(8.5.5) (⊕
x∈s

Px)⊕ (⊕
x∈s

Qx) ≅ ⊕
x∈s
(Px⊕Qx).

To see that these components give a well-defined isomorphism in

Multicat∗(Ma,End(C)),

note that the values of P⊕ and Q⊕ on the operations ι⟨c⟩ are also given by permu-
tations of summands and, therefore, the components (8.5.5) satisfy the naturality
condition of Definition 5.1.17 by the Symmetric Coherence Theorem 1.1.41. Nat-
urality of the symmetry in C implies that the structure isomorphism for (−)⊕ is
natural with respect to morphisms in Cat∗(Ma,C).

In both Multicat(Ma,End(C)) and Cat∗(a,C), the unit for the pointwise mon-
oidal product is the constant functor at the unit e ∈ C. Thus (−)⊕ strictly preserves
the unit. The symmetric monoidal functor axioms for (−)⊕ also follow from The-
orem 1.1.41. This completes the definition of strictly unital symmetric monoidal
functors

R = (−) ∶Multicat∗(Ma,End(C)) Cat∗(a,C) and

L = (−)⊕ ∶ Cat∗(a,C) Multicat∗(Ma,End(C)).

Now we discuss the unit η and counit ε of this adjunction. First, we have
(−)⊕ = 1 because restricting to singletons gives equalities

P⊕ = P and ω⊕ = ω

for each P ∈ Cat∗(a,C) and each ω ∈ Cat∗(a,C)(P, P′). Therefore we take η to
be the identity. For the other composite, we define a multinatural transformation
with components

εF ∶ F
⊕

F

as follows. For each subset s ∈ 2a♭ , let ⟨s ●⟩ denote the tuple formed by all singleton
subsets of s, ordered by the chosen ordering on a, and let F⟨s ●⟩ denote the corre-
sponding tuple given by applying F to each of the singletons {x} ∈ ⟨s ●⟩. If s is
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empty then the tuple of singletons is the empty tuple. The unary operations in
End(C) are morphisms in C, and we let εF;s be the morphism

εF;s ∶ F
⊕

s =⊕
x∈s

F{x} Fs

given by applying F to ι⟨s ●⟩, the single element ofMa(⟨s ●⟩ ; s). If s = ∅, then

εF;s = Fι⟨⟩ = 1e

because F is pointed.
The naturality condition of Definition 5.1.17 for these components is the fol-

lowing equality:

(8.5.6) (Fι⟨c⟩) ○ ( ⊕
ci∈⟨c⟩

εF;ci) = εF;s ○ (F
⊕

ι⟨c⟩).

Since
εF;s = Fι⟨s ●⟩ and εF;ci = Fι⟨c ●i ⟩

for s ∈ 2a♭ , ci ∈ ⟨c⟩,
the naturality condition is equivalent to commutativity in C of the outer rectan-
gle (8.5.7) below. In that diagram, each ⟨c ●i ⟩ denotes the tuple of singletons in ci,
with the order inherited from a; the tuple ⟨c ●⟩ is the concatenation of the ⟨c ●i ⟩, in
the order determined by ⟨c⟩; and s is the union of the subsets ci, with the order
determined as a subset of a♭.

(8.5.7)

⊕
ci∈⟨c⟩

⊕
x∈ci

F{x}

⊕
x∈s

F{x}

⊕
ci∈⟨c⟩

Fci

Fs

F
⊕

ι⟨c⟩ Fι⟨c⟩

⊕
ci∈⟨c⟩

Fι⟨c ●i ⟩

Fι⟨s ●⟩

Fι⟨c ●⟩

The upper-right triangle commutes because the composition inMa gives

ι⟨c⟩ ○ (ι⟨c ●1⟩, . . . , ι⟨c ●n⟩) = ι⟨c ●⟩

and F preserves composition. The morphism F
⊕

ι⟨c⟩ is, by definition, given by
permuting terms. Therefore the equivariance condition (5.1.13) for F implies that
the lower-left triangle commutes. This concludes the definition of the component

εF ∶ F
⊕

F

and the proof that it is a multinatural transformation.
For a multinatural transformation θ ∶ F F′, the naturality of θ at the oper-

ation ι⟨s ●⟩ ensures that the following diagram commutes for each s ⊂ a♭.

⊕
x∈s

F{x} ⊕
x∈s

F′{x}

Fs F′s

θ
⊕
s

θs

εF;s εF′;s
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Therefore, the components of ε at F and F′ commute with θ and θ
⊕

because the
relevant composite multinatural transformations have the same components at s
for each s ∈Ma. Hence

ε ∶ LR = ( )
⊕

Id
is a natural transformation of functors.

Since η is the identity, the triangle identities for this adjunction reduce to the
equalities

εP⊕ = 1P⊕ and εF = 1F
for P and F as above. Both of these equalities follow directly from the definitions.

Verifying that ε is monoidal natural requires commutativity of the following
rectangle for pointed multifunctors F and G and subsets s ⊂ a♭.

(⊕
x∈s

F{x})⊕ (⊕
x∈s

G{x}) Fs⊕Gs

(⊕
x∈s
(F⊕G){x}) (F⊕G)s

Fι⟨s ●⟩ ⊕Gι⟨s ●⟩

(F⊕G)ι⟨s ●⟩

≅ 1

Commutativity of this diagram follows by definition of (F⊕G) on operations, as
given in the proof of Lemma 5.7.12. Therefore, the functors R = ( ) and L = ( )⊕
determine a symmetric monoidal adjunction. Since the components of ε are given
by morphisms in C, this adjunction is an equivalence if C is a groupoid. □

8.6. Notes

8.6.1 (Segal K-Theory). The K-theory functor for small permutative categories first
developed by Segal [Seg74] uses the Γ-simplicial set CF of Section 8.3 instead of the
approach via the partition multicategoriesMn given in Section 8.4. The K-theory
construction via CF is the standard one. See, for example, [May78, EM06, Man10].

Our definitions of JSe, and KSe in Section 10.3, in terms of the partition multicat-
egoriesMa are equivalent to those of [EM09] using the terminal parameter multicat-
egory for modules, denoted E there. Our justifications for attaching Segal’s name to
these constructions are the isomorphisms of Proposition 8.4.8 and the level equiv-
alences of Theorem 8.5.2. In the literature, including [GJO17b, Man10], the name
Segal K-theory is sometimes used for JSe. ◇
8.6.2 (Variants of Segal K-theory). Our discussion of the lax and colax variants for
CF , together with the proof that they result in levelwise equivalent Γ-simplicial
sets (Theorem 8.3.21) follows the sketch given in [Man10, Section 3]. See [GJO17a]
for a general approach to equivalences of homotopy theories between categories
of strict, strong, and lax algebra morphisms for a monad. Examples given there
include categories of small symmetric monoidal categories, Γ-categories, and n-
fold monoidal categories. ◇
8.6.3 (2-Functoriality of CFν ). One can show the 2-functoriality of CFlax directly, with-
out explicit use of the isomorphism in Proposition 8.4.8. There are similar 2-
functoriality results for CF≅ and CFco. However, the natural domain of definition
for CF≅ is

PermCatsus,
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whose morphisms are given by strictly unital strong monoidal functors (Defini-
tion 1.1.27). Likewise, the natural domain of definition for CFco consists of small
permutative categories and colax symmetric monoidal functors, also known as oplax
symmetric monoidal functors or lax symmetric comonoidal functors. These are de-
fined with the same axioms as symmetric monoidal functors but their monoidal
and unit constraints, (1.1.7) and (1.1.8) respectively, have the opposite variance.
Strictly unital colax symmetric monoidal functors are the colax 1-linear functors in
Definition 10.7.24. These are used in PermCatsuco and Proposition 10.7.27. ◇
8.6.4 (Γ-Simplicial Sets and Connective Spectra). In Note 7.9.5 we recall the earlier
and simpler notion of sequential spectra. A sequential spectrum is called connec-
tive if its homotopy groups πn are trivial for n < 0. We let SpN≥0 denote the category
of connective sequential spectra. A sequential spectrum X is a weak Ω-spectrum if
the adjoint structure morphisms

Xn ΩXn+1

are weak equivalences of pointed simplicial sets, where Ω denotes the pointed
simplicial loop functor HomsSet∗(S1,−).

When introducing Γ-simplicial sets in [Seg74], Segal shows that the spectrum
associated to a special Γ-simplicial set is a weak Ω-spectrum. Therefore by The-
orem 8.3.21 each spectrum KSeC, with C a small permutative category, is a weak
Ω-spectrum.

Segal [Seg74] also develops homotopy theory for Γ-simplicial sets and its re-
lation to that of connective spectra. Bousfield-Friedlander [BF78] extend this to
model structures for both Γ-sSet and SpN≥0, with the weak equivalences of Γ-sSet
being created by Segal’s K-theory functor KF and with the fibrant objects being
the weak Ω-spectra. They go on to show that there is a Quillen equivalence of
model categories

◇(8.6.5) Γ-sSet ≃Q SpN≥0 .

8.6.6 (Permutative Categories and Connective Spectra). Continuing from the pre-
vious discussion in Note 8.6.4, one can define weak equivalences of small per-
mutative categories to be the strictly unital symmetric monoidal functors that in-
duce weak equivalences of Γ-simplicial sets (that is, those functors that induce π∗-
isomorphisms of associated sequential spectra). It follows from work of Thomason
[Tho95], for the more general category of small symmetric monoidal categories
and all symmetric monoidal functors, that when one inverts the respective weak
equivalences there is an equivalence of homotopy categories

(8.6.7) Ho(PermCatsu) ≃ Ho(Γ-sSet).
Combining (8.6.7) with (8.6.5) means that, up to weak equivalence, all connec-

tive spectra can be obtained from the Segal K-theory of small permutative categor-
ies. In [Man10], Mandell gives a second proof of (8.6.7) by defining a functor

P = P ○S ∶ Γ-sSet PermCat,

via a certain Grothendieck construction, and showing it is inverse to N∗JSe. This
work is extended to 2-dimensional category theory, for symmetric monoidal 2-
categories and Γ-2-categories, in [GJO17b]. ◇



CHAPTER 9

Categories of G∗-Objects

This is the first of two chapters generalizing the Segal K-theory functor

KSe ∶ PermCatsu SymSp,

from Chapter 8, to a simplicially-enriched multifunctor

KEM ∶ PermCatsu SymSp,

due to Elmendorf-Mandell [EM06, EM09]. The material in this chapter concerns
the replacement of F and its associated K-theory

Γ-Cat
N∗ Γ-sSet KF

SymSp

with another diagram category G and an associated K-theory functor

G∗-Cat
N∗ G∗-sSet KG

SymSp.

The corresponding J-theory, JEM, is given in Chapter 10.
Beyond simply replacing F and KF , this chapter also describes the relevant

enriched monoidal structures. These are essential for our applications to K-theory
of En-monoidal categories.

(1) Theorem 9.2.15 shows that G∗-Cat and G∗-sSet are symmetric monoidal
closed categories and are enriched, as symmetric monoidal categories,
over Cat∗ and sSet∗, respectively.

(2) Theorem 9.2.19 shows that the nerve functor gives G∗-Cat an enrichment
over sSet∗ and that

N∗ ∶ G∗-Cat G∗-sSet

is symmetric monoidal as a sSet∗-enriched functor.
(3) Theorem 9.4.9 shows that

KG ∶ G∗-sSet SymSp

is symmetric monoidal as a sSet∗-enriched functor.

Organization. In Section 9.1 we define the category G, which replaces F . The
objects of G consist of certain tuples of objects from F , and G has a permutative
structure given by concatenation of tuples. Taking the smash product of pointed
finite sets, with lexicographic ordering, provides a functor

(9.0.1) ∧ ∶ G F
described in Definition 9.1.15.

In Section 9.2 we show that G∗-objects in C form a symmetric monoidal closed
category, where C is a complete and cocomplete symmetric monoidal closed cate-
gory (Theorem 9.2.15). Our two examples of interest are C = sSet∗ and C = Cat∗.

III.327



III.328 9. CATEGORIES OF G∗-OBJECTS

● Our method of proof uses the general theory for (pointed) diagram cate-
gories developed in Section 4.3.
● We also apply the general theory of enriched monoidal categories and

functors from Chapters 2 and 3 to show that N∗ is enriched symmetric
monoidal (Theorem 9.2.19).
● Of potentially independent interest, our method of proof also shows that

Γ-C is a symmetric monoidal closed category (Explanation 9.2.18), with
product induced by the smash product of pointed finite sets in F . See
Note 9.5.5 for further generalization.

In Section 9.3 we define the associated K-theory functor

KG ∶ G∗-sSet SymSp,

which replaces KF . We also show, as Proposition 9.3.16, that KG agrees with KF

along the functor
Γ-sSet G∗-sSet

induced by the smash product of pointed finite sets (9.0.1).
In Section 9.4 we show that KG is a sSet∗-enriched symmetric monoidal functor

(Theorem 9.4.9). We show, as a result of the compatibility with KF , that KF is also
symmetric monoidal as a sSet∗-enriched functor (Theorem 9.4.18).

9.1. The Category G
Recall from Definition 8.1.1 that F denotes the category whose objects are

pointed finite sets n = {0, . . . , n} for n ≥ 0 and whose morphisms are basepoint-
preserving functions. In this section we define another category, G, whose objects
are tuples of objects from F , subject to certain identifications.

Motivation 9.1.1 (Smash Products of Pointed Finite Sets). Recall, as described in
Explanation 8.1.6, that (F ,∧, 1) is a permutative category. Here, ∧ denotes the
smash product of pointed finite sets implicitly composed with the lexicographic
order isomorphism

m ∧ n ≅ mn.

The germ of the idea for a K-theory functor that preserves multiplicative structure
is that it ought to be encoded via the smash product in F . Working this out with
F alone, one encounters a crucial obstruction that we clarify in Note 10.8.6.

The diagram category G, to be described in Definition 9.1.7 below, resolves the
difficulty. Although presented differently, the germ of the idea remains the same.
With that in mind, one might conceive of the objects and morphisms of G as some-
thing like “pre-smash-products” of pointed finite sets and their morphisms. We
take tuples of objects of F , but with certain technical identifications correspond-
ing to the following properties of the smash product.

● The 1-point set 0 is a null object for (F ,∧, 1), in the sense of Defini-
tion 4.3.3: 0 is both initial and terminal, and smash product of any object
with 0 results in 0. Thus, for a q-tuple of objects (n1, . . . , nq), we will have

⋀
j

nj = 0

if any nj = 0.
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● The unit for ∧ is 1. Thus, for a q-tuple and an r-tuple,

(n1, . . . , nq) and (m1, . . . , mr),
we will have

⋀
j

nj =⋀
k

mk

whenever the tuples differ by insertion or deletion of 1 in various po-
sitions. There will of course be other circumstances where the two are
equal, depending on the prime factors of the numbers involved, but here
we focus on equalities that are a result of extraneous multiplication by 1.
● The product ∧ is symmetric monoidal, but not strictly so. Thus we will

have isomorphisms, but generally not equalities, given by permuting the
terms of a smash product.
● For each q > 0 there is at least one q-tuple whose smash product is 0. But

there is no such tuple for q = 0; the smash product over the empty tuple
is 1. We will need an extra object ∗ to account for this, and it will be
identified with all q-tuples for q > 0 whose smash products are 0. ◇

With the observations of Motivation 9.1.1 in mind, we give the definition of G
in terms of the following preliminary definitions. These will account for insertions
terms 1, permutation of terms, and identifications of tuples whose smash products
are 0 in F .
Definition 9.1.2. Let Inj denote the category whose objects are unpointed finite sets

p = p♭ =
⎧⎪⎪⎨⎪⎪⎩

{1, . . . , p} if p > 0,
∅ if p = 0,

for each natural number p ≥ 0, and whose morphisms are injections

f ∶ q p. ◇
Definition 9.1.3. For each unpointed finite set q with q > 0, define

F(q) = F∧q,

the q-fold smash power of pointed categories, whereF has basepoint 0. We denote
the objects of F(q) as

⟨n⟩ = (n1, . . . , nq) for ni ∈ F

where ⟨n⟩ is identified with the basepoint of F(q) if any ni = 0. We denote the
morphisms of F(q) as

⟨ψ⟩ = (ψ1, . . . , ψq)
for morphisms ψi in F . A tuple ⟨ψ⟩ is a zero morphism if any ψi factors through 0
in F .

For q = 0, define
Ob F(0) = {∗, ⟨⟩}

where ∗ is the basepoint object and ⟨⟩ is the empty tuple. Define the morphisms of
F(0) such that ∗ is both initial and terminal and the only nonzero morphisms are
identities. That is,

● there are unique morphisms

⟨⟩ ∗ ⟨⟩,



III.330 9. CATEGORIES OF G∗-OBJECTS

● the only endomorphism of ∗ is its identity, and
● the endomorphisms of ⟨⟩ consist of its identity and a zero morphism

given by the unique composite through ∗.
We note that F(0) is distinct from the smash product over the empty indexing
set in the category of small pointed categories. We give an alternate description
and further details in Note 9.5.2, but they will not be necessary for our further
work. ◇
Definition 9.1.4. Suppose

f ∶ q p in Inj

is an injection of unpointed finite sets. We define a functor

f∗ ∶ F q F p

called the reindexing injection as follows. For each q-tuple of pointed finite sets

⟨n⟩ = (n1, . . . , nq) ∈ F q,

let n∅ denote the pointed finite set 1 and define f∗⟨n⟩ to be the p-tuple whose jth
entry is n f−1(j). For each q-tuple of pointed functions

⟨ψ⟩ = (ψ1, . . . , ψq) ∈ F q,

let ψ∅ denote the identity 11 and define f∗⟨ψ⟩ to be the p-tuple whose jth entry is
ψ f−1(j).

If any ni = 0, then the f (i)th coordinate of f∗⟨n⟩ is 0. Therefore, f∗ descends to
give pointed functors

f∗ ∶ F(q) F(p).
For q = 0 and f the unique injection

∅ p,

we have
f∗ ∶ F(0) F(p) with f∗⟨⟩ = (1, . . . , 1

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
p terms

). ◇

Explanation 9.1.5. For an injection f ∶ q p, the entries of f∗⟨n⟩ are reindexed
by f , with 1 inserted for each index not in the image of f . Equivalently, f∗ takes
the ith coordinate of F q to the f (i)th coordinate of F p, and has the value 1 in each
coordinate of F p not in the image of f . ◇
Example 9.1.6. Consider the injection

f ∶ 2 3, (1 3; 2 1)
Then

f∗(n1 , n2) = (n2 , 1 , n1).
◇

Definition 9.1.7. We define a small pointed category G as follows.
Objects: The set of objects is the wedge of pointed sets

Ob G = ⋁
q≥0

Ob (F(q)).
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The distinct objects of G consist of a basepoint object ∗ together with q-
tuples of pointed finite sets

⟨n⟩ = (n1, . . . , nq)

where q ≥ 0 and each ni ∈ F with ni > 0. Each q-tuple ⟨n⟩ for which some
ni = 0 is identified with the basepoint object of F(q) and thus also with
the basepoint ∗ of the wedge.

Morphisms: The basepoint ∗ is both initial and terminal in G. The set of mor-
phisms from a q-tuple ⟨n⟩ to a p-tuple ⟨m⟩ is

G(⟨n⟩, ⟨m⟩) = ⋁
f ∈Inj(q , p)

(F(p)( f∗⟨n⟩, ⟨m⟩) )(9.1.8)

= ⋁
f ∈Inj(q , p)

(
p
∧
j=1
F(n f−1(j), mj) )

where n∅ = 1 as in Definition 9.1.4. For p = 0, the empty smash product
of pointed sets is the unit for the smash product—a two-element set. In
this case we must also have q = 0, and

G(⟨⟩, ⟨⟩) = F(0)(⟨⟩, ⟨⟩)
is a two-element set consisting of a zero morphism and an identity mor-
phism.

In (9.1.8) for p > 0 we denote a morphism by a pair ( f , ⟨ψ⟩), where

f ∶ q p in Inj

and
⟨ψ⟩ ∶ f∗⟨n⟩ ⟨m⟩

is a morphism in F(p). Thus each

ψj ∶ n f−1(j) mj

is a morphism in F . A morphism ( f , ⟨ψ⟩) is identified with the zero mor-
phism

⟨n⟩ ∗ ⟨m⟩
if there exists a component morphism

ψj ∶ n f−1(j) mj

that is a zero morphism in F , factoring through 0.
Identities: The identity on a q-tuple ⟨n⟩ is given by the pair (1q, 1⟨n⟩).
Composition: The composite of morphisms

⟨n⟩
( f , ⟨ψ⟩)

⟨m⟩
(g, ⟨ϕ⟩)

⟨ℓ⟩
is given by the pair (g f , ⟨ϕ⟩ ○ g∗⟨ψ⟩).

This finishes the definition of G. The composition in G is associative and unital
since (g f )∗ = g∗ ○ f∗ for composable injections f and g. Moreover, we note the
following.

● We call q the length of a q-tuple ⟨n⟩.
● The zero morphism from ⟨n⟩ to ⟨m⟩ is the unique morphism factoring

through the basepoint ∗.
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● Each morphism set G(⟨n⟩, ⟨m⟩) is a pointed set with basepoint the zero
morphism.
● For readability, we sometimes use a semicolon and write G(⟨n⟩ ; ⟨m⟩) for

the set of morphisms in G from ⟨n⟩ to ⟨m⟩.
In Note 9.5.3 we give an alternate description of G as a Grothendieck construction,
but that description will not be necessary for our further work. ◇
Explanation 9.1.9. We discuss some special cases of Definition 9.1.7.

(1) Each of the following objects in F(1) and F(2) are identified with the
basepoint in G, for any n in F .

∗ = (0) = (0, n) = (n, 0).

(2) Let d2 and s0 denote the following morphisms in F , respectively:

d2 ∶ 1 2 (1 1)
s0 ∶ 2 1 (1 0; 2 1).

Then neither d2 nor s0 is a zero morphism, but the composite

1 d2

2 s0

1

is a zero morphism in F . The composite in G

(1, n, m)
(13 , (d2, 1n, 1m))

(2, n, m)
(13 , (s0, 1n, 1m))

(1, n, m)

is a zero morphism for any n and m in F .
(3) Suppose q = 2, p = 3, and ⟨ℓ⟩ has length 4. Suppose f and g are the

following injections, respectively:

f ∶ 2 3, (1 3; 2 1)
g ∶ 3 4, (1 4; 2 1; 3 2).

Then the second coordinate of the composite

⟨n⟩
( f , ⟨ψ⟩)

⟨m⟩
(g, ⟨ϕ⟩)

⟨ℓ⟩

is the following morphism in F(4):

(1 , n1 , 1 , n2)
(ψ2, ψ3, 11, ψ1) (m2 , m3 , 1 , m1)

(ϕ1, ϕ2, ϕ3, ϕ4) (ℓ1 , ℓ2 , ℓ3 , ℓ4).

(4) In the case q = 0, we have the empty tuple ⟨⟩ of length zero. The only
nonzero morphism from ⟨⟩ to ⟨⟩ is the identity. If ⟨m⟩ has length p > 0,
then a morphism

⟨⟩ ⟨m⟩
is determined by (ip, ⟨ψ⟩)where

ip ∶ 0 = ∅ p

is the unique inclusion and

⟨ψ⟩ ∶ ⟨1⟩ ⟨m⟩ in F(p)



9.1. THE CATEGORY G III.333

where ⟨1⟩ is the constant p-tuple at 1. Such a morphism factors uniquely
as the composite

◇(9.1.10) ⟨⟩
(ip, 1⟨1⟩)

⟨1⟩
(1, ⟨ψ⟩)

⟨m⟩.

Explanation 9.1.11 (G as a Small Skeleton). Recall, from Explanation 8.1.2, that F
is a small skeletion for FinSet∗. The category G is a small skeleton for a similarly-
constructed category whose objects are finite tuples of pointed finite sets and
whose morphisms are given by tuples of morphisms along with injections of in-
dexing sets. We work with diagrams on G for the same reasons mentioned in
Explanation 8.1.10: The collection of G∗-objects in a pointed category C will form a
category because G is small. Moreover each ni has a canonical total ordering that
will be used in the constructions below. ◇

We now discuss a permutative structure on G given by concatenation of tuples.
Recall from Definition 4.3.3 an object T of a symmetric monoidal category is called
a null object if it is null for the monoidal product and is initial and terminal.

Definition 9.1.12. The concatenation product

G ×G ⊕ G

is defined as follows. The concatenation isomorphism of tuples

F q ×F q′ ≅ F q+q′

descends to

F(q) ∧F(q
′) ⊕ F(q+q′)

for each q, q′ ≥ 0. This defines

⟨n⟩⊕ ⟨n′⟩ and ⟨ψ⟩⊕ ⟨ψ′⟩

for tuples of pointed finite sets and pointed functions, respectively. Since ⊕ is a
pointed functor, the basepoint ∗ is a null object for this product in the sense of
Definition 4.3.3.

Since ∗ is null, the product of any morphism with a morphism from, respec-
tively to, the basepoint is uniquely determined. Given morphisms

( f , ⟨ψ⟩) ∈ G(⟨n⟩, ⟨m⟩) and ( f ′, ⟨ψ′⟩) ∈ G(⟨n′⟩, ⟨m′⟩),

we first define the concatenation of injections

f ∶ q p and f ′ ∶ q′ p′

to be the injection

( f ⊕ f ′)(i) =
⎧⎪⎪⎨⎪⎪⎩

f (i) for i ∈ {1, . . . , q}
p + f ′(i − q) for i ∈ {q + 1, . . . , q + q′}.

Then the concatenation product of ( f , ⟨ψ⟩) and ( f ′, ⟨ψ′⟩) is given by the pair

( f , ⟨ψ⟩)⊕ ( f ′, ⟨ψ′⟩) = ( f ⊕ f ′, ⟨ψ⟩⊕ ⟨ψ′⟩).
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For checking functoriality, the essential observation is that for morphisms

( f , ⟨ψ⟩) ∈ G(⟨n⟩, ⟨m⟩),
( f ′, ⟨ψ′⟩) ∈ G(⟨n′⟩, ⟨m′⟩),
(g, ⟨ϕ⟩) ∈ G(⟨m⟩, ⟨ℓ⟩), and

(g′, ⟨ϕ′⟩) ∈ G(⟨m′⟩, ⟨ℓ′⟩),

we have

(g⊕ g′)∗(⟨ψ⟩⊕ ⟨ψ′⟩) = (g∗⟨ψ⟩)⊕ (g′∗⟨ψ′⟩).

The concatentation product is strictly associative, and the empty tuple ⟨⟩ provides
a strict unit. This concludes the definition and verification that (G,⊕, ⟨⟩) is a strict
monoidal category.

The symmetry components

(9.1.13) ξ⟨n⟩,⟨n′ ⟩ ∶ ⟨n⟩⊕ ⟨n
′⟩ ⟨n′⟩⊕ ⟨n⟩

are given by pairs (γq,q′ , 1)where the first entry

γq,q′ ∶ q + q′ q′ + q

is the block permutation swapping the first q elements with the last q′ elements.
This is the permutation denoted τ⟨q, q′⟩ in (II.1.2.2). The second entry is the iden-
tity on

(γq,q′)∗(⟨n⟩⊕ ⟨n′⟩) = ⟨n′⟩⊕ ⟨n⟩.

We take the components of ξ involving the basepoint ∗ to be the identity on ∗.
The components of ξ involving the empty tuple ⟨⟩ are identities because the block
permutations γ0,q′ and γq,0 are identities.

We verify that the components ξ⟨n⟩,⟨n′ ⟩ are natural and that (G,⊕, ⟨⟩, ξ) is a
permutative category in Proposition 9.1.14. ◇
Proposition 9.1.14. The concatenation product

G ×G ⊕ G

makes

(G,⊕, ⟨⟩, ξ,∗)

a permutative category with null object ∗.

Proof. The descriptions in Definition 9.1.12 show that (G,⊕, ⟨⟩) is a strict monoidal
category with null object ∗. The components ξ are defined there, and now we
verify that they are natural with respect to morphisms in G. There is nothing to
check for monoidal products involving ∗ because all such products are equal to ∗
and the relevant components are identities. Next, for each pair of morphisms

( f , ⟨ψ⟩) ∈ G(⟨n⟩, ⟨m⟩) and

( f ′, ⟨ψ′⟩) ∈ G(⟨n′⟩, ⟨m′⟩)
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we verify that the following diagram commutes in G.

⟨n⟩⊕ ⟨n′⟩ ⟨n′⟩⊕ ⟨n⟩

⟨m⟩⊕ ⟨m′⟩ ⟨m′⟩⊕ ⟨m′⟩

ξ⟨n⟩,⟨n′ ⟩

ξ⟨m⟩,⟨m′ ⟩

( f , ⟨ψ⟩)⊕ ( f ′, ⟨ψ′⟩) ( f ′, ⟨ψ′⟩)⊕ ( f , ⟨ψ⟩)

Commutativity for the first components follows because the block permutations γ
are natural with respect to concatenation of injections f and f ′. Commutativity for
the second components follows because the second component of ξ is an identity
and γ∗(⟨ψ⟩⊕ ⟨ψ′⟩) = ⟨ψ′⟩⊕ ⟨ψ⟩. The symmetry axiom (1.1.24) follows from the
equality of permutations

γq′,qγq,q′ = 1q+q′ .

The unit axiom (1.1.25) for ξ holds by definition. The hexagon axiom (1.1.26) fol-
lows from the equality of block permutations shown in the following commutative
diagram.

q + q′ + q′′

q + q′′ + q′

q′′ + q + q′

1q ⊕ γq′,q′′

γq+q′,q′′

γq′′,q ⊕ 1q′

This completes the proof that (G,⊕, ⟨⟩, ξ) is a permutative category. □

Now we compare the category G and its concatenation product to F and its
smash product.

Definition 9.1.15. The smash product of pointed finite sets defines a strict sym-
metric monoidal pointed functor

∧ ∶ (G,⊕, ⟨⟩,∗) (F ,∧, 1, 0)
whose value at a tuple of pointed finite sets ⟨n⟩ is

∧⟨n⟩ = n1⋯nq

where ⟨n⟩ has length q > 0. We define

∧⟨⟩ = 1 and ∧∗ = 0.

To define ∧ on morphisms in G, suppose given

( f , ⟨ψ⟩) ∶ ⟨n⟩ ⟨m⟩

with ⟨n⟩ ∈ F(q) and ⟨m⟩ ∈ F(p). Recall from Definition 8.1.5 the lexicographic
ordering bijections on FinSet∗. The value of ∧ on ( f , ⟨ψ⟩) is given by composing
the lexicographic ordering bijections

q
∧

k=1
n k ≅∏knk and

p
∧
j=1

mj ≅∏jmj
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with the composite

(9.1.16)
q
∧

k=1
n k

≅
permute ∧

j∈p,
f−1(j)≠∅

n f−1(j)
≅ p
∧
j=1

n f−1(j)
∧jψj p

∧
j=1

mj

consisting of:
(1) the permutation induced by f , followed by
(2) unit isomorphisms for the entries of f∗⟨n⟩ not indexed by f , and then by
(3) the smash product of morphisms ψj ∈ ⟨ψ⟩.

If any ni = 0, then (9.1.16) is the zero morphism to ∧jmj.
If ( f , ⟨ψ⟩) = (1, ⟨1⟩) is an identity morphism in G, then the morphism (9.1.16)

is the composite of identity morphisms. That ∧ preserves composition follows
from functoriality of the smash product on F along with naturality of its unit and
symmetry isomorphisms. The monoidal constraint of ∧ is the identity because ∧
for F implicitly composes with the lexicographic isomorphisms. ◇
Example 9.1.17. Consider the injection

f ∶ 2 3, (1 3; 2 1)
and suppose that

( f , ⟨ψ⟩) ∶ (n1 , n2) (m1 , m2 , m3)
is a morphism in G. Then ∧( f , ⟨ψ⟩) is the composite

n1n2 ≅ n1 ∧ n2
≅ n2 ∧ n1

≅ n2 ∧ 1∧ n1

∧jψj
m1 ∧m2 ∧m3 ≅ m1m2m3.

◇

9.2. Symmetric Monoidal Closed Structure for G∗-Objects

In this section we describe G∗-objects and symmetric monoidal closed struc-
tures for categories of such. The material here is an application of the general
theory of enriched (pointed) diagram categories in Section 4.3, which itself de-
pends on the preceding material in Part 1. However, for the applications here, the
reader need only be familiar with the definitions and statements of results that we
reference.
Definition 9.2.1. A G∗-object in a pointed category (C,∗) is a pointed functor

X ∶ (G,∗) (C,∗).
The category of G∗-objects in C, denoted

(9.2.2) G∗-C = Cat∗((G,∗), (C,∗))
is the category of pointed functors and natural transformations. ◇
Explanation 9.2.3 (Canonical Basepoints for G∗-Objects). In the context of Defini-
tion 9.2.1, there is a canonical isomorphism of categories

(9.2.4) G∗-C ≅ G∗-(C∗).
For each G∗-object X, the unique morphisms

∗ ⟨n⟩
induce canonical basepoints

∗ = X ∗ X⟨n⟩
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for each ⟨n⟩ in G. By functoriality, each G∗-object in C thereby determines a unique
G∗-object in C∗, and conversely. Morphisms of G∗-objects (pointed natural trans-
formations between pointed functors) necessarily preserve these basepoints, and
thus we have a bijection between the morphisms of G∗-C and those of G∗-(C∗).

The theory of pointed diagrams from Section 4.3 is formulated for G∗-(C∗),
and so we will use (9.2.4) implicitly to apply it below. We’ve given the defini-
tion of G∗-C as in (9.2.2) so that it is not necessary to explicitly note the canonical
basepoints in our further work below. ◇

Recall from Definition 4.3.23 and Corollary 4.3.30 the Day convolution, hom
diagram, and monoidal unit for pointed diagrams out of a small symmetric mon-
oidal category with a null object as its basepoint. Applying this theory to G, we
have the following preliminary definitions.

Definition 9.2.5. Suppose (C,⊗,1,∗) is a symmetric monoidal closed category that
is complete and cocomplete with chosen terminal object ∗. In the notation of Sec-
tion 4.3, taking

(D,⊡, e, TD) = (G,⊕, ⟨⟩,∗),

we have the following.

(1) For ⟨a⟩ and ⟨b⟩ in G, we use the notation

(9.2.6) G♭(⟨a⟩ ; ⟨b⟩) = (G(⟨a⟩, ⟨b⟩))♭

for the subset of nonzero morphisms.
(2) From Definition 4.3.11, we let Ĝ denote G equipped with the pointed uni-

tary enrichment over C∗ defined by

(9.2.7) Ĝ(⟨a⟩, ⟨b⟩) = ⋁
G♭(⟨a⟩ ; ⟨b⟩)

E

where E = 1∐ ∗ is the monoidal unit of (C∗,∧). The empty wedge is the
terminal object ∗ of C.

(3) The monoidal product of C∗-categories, called the tensor product in Def-
inition 1.3.3, is denoted ∧ and, in particular, Ĝ ∧ Ĝ has hom objects given
by smash products. ◇

The following specializes Definition 4.3.23 and the adjunction (4.3.36) to G∗-C.

Definition 9.2.8. Suppose (C,⊗,1,∗) is a symmetric monoidal closed category that
is complete and cocomplete with chosen terminal object ∗. Suppose given G∗-
objects X and Y. We define a mapping object Map∗(X, Y) in C∗ and G∗-objects

X ∧Y, Hom∗(X, Y), and J

as follows. Each of X ∧Y, Hom∗(X, Y), and J are pointed diagrams, so they send
the basepoint ∗ of G to that of C.

● The Day convolution product of X and Y is

(9.2.9) X ∧Y = ∫
(⟨a⟩,⟨b⟩)∈Ĝ∧Ĝ

⋁
G♭(⟨a⟩⊕⟨b⟩ ;−)

(X⟨a⟩∧Y⟨b⟩).



III.338 9. CATEGORIES OF G∗-OBJECTS

● The hom diagram for X and Y is

Hom∗(X, Y) = ∫(⟨b⟩,⟨c⟩)∈Ĝ∧Ĝ ∏
G♭(−⊕⟨b⟩ ; ⟨c⟩)

[X⟨b⟩, Y⟨c⟩]∗(9.2.10)

≅ ∫⟨b⟩∈Ĝ [X⟨b⟩, Y(−⊕ ⟨b⟩)]∗(9.2.11)

where [−,−]∗ denotes the pointed internal hom of (C∗,∧).
● The mapping object for X and Y is

(9.2.12) Map∗(X, Y) = ∫⟨b⟩∈Ĝ [X⟨b⟩, Y⟨b⟩]∗ = (Hom∗(X, Y))⟨⟩,

where the second equality holds because ⟨⟩ is a strict unit in G.
● The monoidal unit diagram is

(9.2.13) J = Ĝ(⟨⟩,−) = ⋁
G♭(⟨⟩ ;−)

E.

These define a symmetric monoidal closed structure for G∗-C by Corollary 4.3.30
and the isomorphism (9.2.4).

Moreover, evaluation at the empty tuple ⟨⟩ defines a symmetric monoidal
functor ev⟨⟩ that has a strong symmetric monoidal left adjoint L⟨⟩:

(9.2.14) L⟨⟩ ∶ C∗ G∗-C ∶ ev⟨⟩.

The left adjoint L⟨⟩ is defined for A ∈ C∗ by composition

A ∧ J ∶ Ĝ J
C∗

A ∧−
C∗. ◇

Applying Theorem 4.3.37 in this case, we have the following.

Theorem 9.2.15. Suppose (C,⊗,1,∗) is a symmetric monoidal closed category that is
complete and cocomplete with chosen terminal object ∗. Then G∗-C is a complete and
cocomplete symmetric monoidal closed category with

● monoidal product given by the Day convolution ∧ (9.2.9),
● internal hom given by Hom∗ (9.2.10), and
● monoidal unit given by J (9.2.13).

Moreover, the adjunction (L⟨⟩, ev⟨⟩) makes G∗-C enriched, tensored, and cotensored over
C∗ with mapping objects given by Map∗.

Our applications of Theorem 9.2.15 will have C = sSet, so C∗ = sSet∗ and C =
Cat, so C∗ = Cat∗.

Explanation 9.2.16 (Mapping Objects for Diagrams in Cat∗). Example 3.8.14 de-
scribes the following. Suppose D is a small symmetric monoidal category with
unitary enrichment D̂ over Cat. If X and Y are diagrams from D̂ to Cat then, by
the equalizer formula (3.5.7), the mapping object

Map(X, Y) = ∫
b∈D̂

Cat(Xb, Yb)

is the category of 2-natural transformations and modifications between X and Y
regarded as 2-functors.
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Similarly, now suppose D̂ is the pointed unitary enrichment (Definition 4.3.11)
over (Cat∗,∧). If X and Y are diagrams from D̂ to Cat∗, then the objects of the
pointed category

Map∗(X, Y) = ∫
b∈D̂

Cat∗(Xb, Yb)

are 2-natural transformations α such that each component

αb ∶ Xb Yb

is a pointed functor. The basepoint of Map∗(X, Y) has each component at b ∈ D
given by the constant functor to the basepoint of Yb. The morphisms of Map∗(X, Y)
from α to α′ are given by modifications Θ such that each component

Θb ∶ αb α′b

is a pointed natural transformation. That is, for each b ∈ D the component of Θ at
the basepoint T of Xb is the identity morphism of αb(T) = α′b(T). ◇
Explanation 9.2.17 (Mapping Objects for Diagrams in sSet∗). Here we give a sim-
ilar explanation to that of Explanation 9.2.16. Suppose that D is a small symmet-
ric monoidal category and suppose that D̂ is its strictly unitary enrichment over
(sSet∗,∧). Recall from Proposition 7.1.19 that the internal hom for pointed simpli-
cial sets has set of n-simplices given by

HomsSet∗(A, B)n = sSet∗(A ∧∆n
+, B) = ∫

m∈∆op
Set∗(Am ∧∆n

m, Bm).

for pointed simplicial sets A and B.
Now if X and Y are diagrams from D̂ to sSet∗, we write Xb,n for the n-simplices

of Xb with b ∈ D. A similar application of the equalizer formula (3.5.7) shows that
n-simplices of the mapping object Map∗(X, Y)

Map∗(X, Y)n = ∫
b∈D̂

sSet∗(Xb,− ∧∆n
+, Yb,−)

= ∫
b∈D̂ ∫m∈∆op

Set∗(Xb,m ∧∆n
m, Yb,m)

are given by natural transformations between functors

X ∧∆n, Y ∶ D ×∆op Set∗.

Equivalently, Map∗(X, Y) is isomorphic to the internal hom for simplicial objects
of D∗-Set. ◇
Explanation 9.2.18 (Symmetric Monoidal Closed Structure for Γ-Objects). One can
also apply the theory of Section 4.3 to F , taking

(D,⊡, e, TD) = (F ,∧, 1, 0).
With C as in Definition 9.2.8, and with (G,⊕, ⟨⟩) replaced by (F ,∧, 1), the Day
convolution, hom diagram, and monoidal unit for

F∗-C = Γ-C

are defined via formulas similar to those of Definition 9.2.8. By Corollary 4.3.30
this defines a symmetric monoidal closed structure for Γ-C. In Theorem 9.4.18
below we will see that the functor

KF ∶ Γ-sSet SymSp
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of Proposition 8.2.6 is symmetric monoidal as a sSet∗-functor. However one en-
counters difficulties when trying to develop symmetric monoidal structure for

JSe ∶ PermCatsu Γ-Cat.

See Note 10.8.6 for additional remarks on this point. ◇
As with Γ-categories and Γ-simplicial sets, we will apply the nerve functor

N (Definition 7.2.3) to obtain G∗-simplicial sets from G∗-categories. Now we show
that N is compatible with the symmetric monoidal structures discussed above. We
will use several of the general results from Chapters 2 and 3 related to change of
enrichments, self-enrichments, and enriched diagram categories.

Recall from Proposition 7.2.9 that the nerve is a strong symmetric monoidal
functor

N ∶ (Cat,×, 1) (sSet∗,×,∗).
Theorem 9.2.19. The nerve functor N induces the following.

(1) There is a sSet∗-enrichment of G∗-Cat with hom objects given by

N(Map∗(X, Y))

for G∗-categories X and Y.
(2) Nerve induces a symmetric monoidal sSet∗-functor

N∗ ∶ G∗-Cat G∗-sSet

with the following data.
● For a G∗-category X, N∗X is the G∗-simplicial set given by the composite

G X
Cat∗

N
sSet∗.

● For G∗-categories X and Y, the morphism on hom objects

N∗ ∶ N(Map∗(X, Y)) Map∗(N∗X, N∗Y)

sends a 0-simplex α ∶ X Y in the source to the morphism of simplicial
sets N∗α given by the whiskering of α with N

(9.2.20) G Cat∗ sSet∗.
X

Y

N⇒

α

Proof. Recall from Definition 9.2.5 that Ĝ denotes the pointed unitary enrichment
(9.2.7) of G over (C∗,∧, E), for a complete and cocomplete symmetric monoidal
closed category (C,⊗,1,∗)with terminal object ∗ and

E = 1∐ ∗.

The symmetric monoidal closed structure on G∗-C, described in Theorem 9.2.15, is
given via the equivalence (4.3.35)

G∗-C ≃ Ĝ-(C∗) = C∗Cat( Ĝ , C∗ ).

The right hand side above denotes the category of C∗-enriched functors and natu-
ral transformations from Ĝ to C∗, where the latter is the canonical self-enrichment
of C∗ (Definition 3.1.5).
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Our two cases of interest are

(C,⊗,1,∗) = (Cat,×, 1, 1)
(C,⊗,1,∗) = (sSet,×,∗,∗).

We take N1 = ∗ so that N preserves the monoidal unit and terminal object strictly.
Therefore, with Ĝ denoting the pointed unitary enrichment for Cat∗, the change of
enrichment ĜN is the pointed unitary enrichment of G for sSet∗.

Since N is strong symmetric monoidal (Proposition 7.2.9), change of enrich-
ment and composition with N defines a symmetric monoidal functor

N∗ ∶ Ĝ-(Cat∗) (ĜN)-(sSet∗) = Ĝ-(sSet∗).
by Proposition 3.8.4. On the right hand side we have used the observation above
that ĜN is the pointed unitary enrichment of G for sSet∗.

Next, we take the canonical self-enrichments of both Ĝ-(Cat∗) and Ĝ-(sSet∗),
using the same notation for readability. The standard enrichment of U = N∗ (Defi-
nition 3.3.3) is a symmetric monoidal W-functor

(9.2.21) U = N∗ ∶ (Ĝ-(Cat∗))U Ĝ-(sSet∗)

with W = Ĝ-(sSet∗). For a pair of G∗-categories X and Y, the morphism on hom
objects is

(9.2.22) N∗(Hom∗(X, Y)) Hom∗(N∗X, N∗Y)
given by adjunction, the monoidal structure of N∗, and evaluation (see Defini-
tion 3.3.3).

Now we use the evaluation at the monoidal unit ⟨⟩ in G. By Lemma 3.8.1, ev⟨⟩
is a symmetric monoidal functor

Ĝ-sSet sSet.

Changing enrichment of U = N∗ along ev⟨⟩, as in Definition 2.1.1, makes

(9.2.23) (U)ev
⟨⟩
= (N∗)ev

⟨⟩
∶ ((Ĝ-Cat∗)U)ev

⟨⟩

(Ĝ-sSet∗)ev
⟨⟩

a symmetric monoidal sSet∗-functor.
For ease of notation we usually write N∗ for the change of enrichment

(N∗)ev⟨⟩. The domain of (9.2.23) has hom objects given as follows for G∗-categories
X and Y:

ev⟨⟩(N∗(Hom∗(X, Y))) = N(Hom∗(X, Y)⟨⟩) ≅ N(Map∗(X, Y)).

This gives the sSet∗-enrichment of G∗-Cat. By definition (Theorem 9.2.15) the
codomain of (9.2.23) is the sSet∗-enrichment of G∗-sSet, with hom objects also de-
noted Map∗. This finishes the proof that N∗ defines a symmetric monoidal sSet∗-
functor.

For G∗-categories X and Y, the morphism of simplicial sets

(9.2.24) N(Map∗(X, Y)) Map∗(N∗X, N∗Y)

is given by evaluating (9.2.22) at the empty tuple, ⟨⟩. Checking components at
objects of the categories X⟨m⟩, for ⟨m⟩ in G, confirms that (9.2.24) is given on a
0-simplex α by the whiskering (9.2.20) as asserted. □
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9.3. Symmetric Spectra from G∗-Simplicial Sets

In this section we construct a symmetric spectrum KGX associated to a G∗-
simplicial set X. We begin with necessary preliminary definitions and then give
the construction in Definition 9.3.14. We prove functoriality of KG and compare it
with KF in Proposition 9.3.16.

Recall from Definition 9.1.15 the smash product of pointed finite sets defines a
functor

∧ ∶ G F .

Definition 9.3.1. For each natural number p, we have the inclusion of length-p tuples

(9.3.2) ip ∶ F(p) G

given by the identity on objects and by

⟨ψ⟩ (1p, ⟨ψ⟩).

on morphisms. ◇
Explanation 9.3.3. For p > 0, the composite

F(p)
ip G ∧ F

is the p-fold smash product of pointed finite sets and pointed morphisms. For
p = 0, the composite sends ∗ to 0 and ⟨⟩ to 1. ◇
Definition 9.3.4. For each p > 0 we define a functor from the p-fold Cartesian
product

(9.3.5) cp ∶ F p F(p)

by iterating the canonical projection

(9.3.6) c ∶ A×B A∧B

in the definition of the smash product (4.1.7) for pointed categories A and B with
C = Cat. For p = 0 we define

(9.3.7) c0 ∶ F0 = 1 F(0)

by sending the unique object of 1 to the empty tuple ⟨⟩. We note that c0 is not a
pointed functor. ◇

Now we define a functor for G∗-simplicial sets that restricts to that of Defini-
tion 8.2.5 along the functor

(9.3.8) Γ-sSet ∧∗ G∗-sSet

induced by the smash product ∧ ∶ G F of Definition 9.1.15. In the following
discussion, recall from Definition 8.2.1 the F-sphere S is a symmetric spectrum
with n-simplices of the pth term given by

S
p
n = np.

Under the composite

F(p)
ip G ∧ F
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we have
(S1

n, . . . , S
1
n)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

S
p
n.

In particular, for p = 0, the empty tuple ⟨⟩ is sent to S
0
n.

The structure morphisms for the symmetric spectra we construct will be de-
fined using the following morphisms.
Definition 9.3.9. Suppose X is a G∗-simplicial set. For each m ∈ F and each q-tuple
⟨n⟩ ∈ G with q ≥ 0 we combine the inclusion i1 with the concatenation ⊕ in G to
form the (q + 1)-tuple

(i1m)⊕ ⟨n⟩ = (m , n1 , . . . , nq).
For each x ∈ m♭, let

hx ∶ 1 m
be the pointed function that sends 1 to x. Let

f1 ∶ q q + 1

be given by f1(i) = i + 1. Then for each x ∈ m♭ we have a morphism in G
( f1, (i1hx)⊕ 1⟨n⟩) ∶ ⟨n⟩ (i1m)⊕ ⟨n⟩.

Applying X to this morphism, we have a morphism in sSet∗

ηm,⟨n⟩,x = X( f1, (i1hx)⊕ 1⟨n⟩) ∶ X⟨n⟩ X((i1m)⊕ ⟨n⟩).
Taking the wedge, we have

(9.3.10) ηm,⟨n⟩ ∶ m ∧X⟨n⟩ ≅ ⋁
x∈m♭

X⟨n⟩ X((i1m)⊕ ⟨n⟩).

If m = 0, then (i10) ⊕ ⟨n⟩ has first entry 0, so it is the null object * in G. Since
X(∗) = ∗, η0,⟨n⟩ is the identity morphism 1∗.

If ⟨m⟩ ∈ F(p) is a p-tuple of pointed finite sets with p > 1, we define

(9.3.11) η⟨m⟩,⟨n⟩ ∶ m1 ∧ (m2 ∧ (⋯(mp ∧X⟨n⟩)⋯)) X((ip⟨m⟩)⊕ ⟨n⟩)
inductively as the composite

m1 ∧ (m2 ∧ (⋯(mp ∧X⟨n⟩)⋯))

m1 ∧X((ip−1⟨m′⟩)⊕ ⟨n⟩)

X((ip⟨m⟩)⊕ ⟨n⟩)

1m1
∧ η⟨m′ ⟩,⟨n⟩ ηm1,⟨n′ ⟩

where
⟨m′⟩ = (m2, . . . , mp) and ⟨n′⟩ = (ip−1⟨m′⟩)⊕ ⟨n⟩.

Similarly to (9.3.10), if any mi = 0, then

(ip⟨m⟩)⊕ ⟨n⟩
has an entry 0, so it is ∗ in G. Since X(∗) = ∗, (9.3.11) is 1∗.

These morphisms are natural with respect to ⟨m⟩ ∈ F(p) and ⟨n⟩ ∈ G. For p = 0,
we define

(9.3.12) η⟨⟩,⟨n⟩ = 1 ∶ X⟨n⟩ X⟨n⟩
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to be the identity of X⟨n⟩. For the basepoint ∗ ∈ G, we recall that ∗ is a null object
with respect to the concatenation in G and, for p-tuples ⟨m⟩with p ≥ 0, define

(9.3.13) η⟨m⟩,∗ = 1∗,

the identity on the initial and terminal pointed simplicial set. ◇
Generalizing the constructions of Definition 8.2.5, we will construct pointed

bisimplicial sets as functors
∆op sSet∗

and take the diagonal as discussed in Explanation 7.1.7 to obtain a pointed simpli-
cial set.

Definition 9.3.14. Suppose X is a G∗-simplicial set. We define a pointed simplicial
set (KGX)k for each natural number k ≥ 0 and structure morphisms

ρp,q ∶ Sp ∧ (KGX)q (KGX)(p + q)

for natural numbers p, q ≥ 0. In Proposition 9.3.16 below we will show that these
data define a functor

KG ∶ G∗-sSet SymSp.

For each natural number k ≥ 0, let (KGX)k be the pointed simplicial set ob-
tained by taking the diagonal of the pointed bisimplicial set given by the following
composite:

∆op diag
(∆op)k

(S1)k
F k ck F(k)

ik G X
sSet∗.

In this composite, the first functor is the diagonal, the second is the k-fold Cartesian

product of S
1
, the third is the canonical functor to the smash product (9.3.5), and

the fourth is the inclusion of length k-tuples (9.3.2).
The components of η defined in (9.3.11), (9.3.12), and (9.3.13) assemble to give

a natural transformation in the following diagram, whose terms we explain below.
(9.3.15)

∆op

(∆op)p × (∆op)q

F p ×F q

F(p) ×F(q)

F(p) ×G

F(p) × sSet∗

(∆op)p+q

F p+q

F(p+q)

F(p) ∧F(q) G

G ×G

sSet∗

F(p) ∧ sSet∗

diag

(S1)p × (S1)q cp × cq 1× iq 1×X

diag (S1)p+q cp+q
ip+q X

≅

≅

c

≅

ip × 1

⊕
c

∧

⇒
η

In the diagram (9.3.15) above:
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● The unnamed vertical isomorphisms are given by associativity isomor-
phisms (for p, q > 0) or unit isomorphisms (for p = 0 or q = 0) of the
Cartesian or smash products.
● The vertical morphisms c are given by the canonical functors to the smash

product (9.3.6).
● The vertical morphism labeled ∧ is the iterated levelwise smash product

of pointed finite sets with simplicial sets:

F(p) ∧ sSet∗
(1F(p−1) ,∧)

F(p−1) ∧ sSet∗⋯ F ∧ sSet∗ ∧
sSet∗.

● The natural transformation η has components η⟨m⟩,⟨n⟩ given in (9.3.11).
● The unlabeled parallelogram and triangular regions commute.

The upper, respectively lower, composite around the boundary of (9.3.15) is the
pointed bisimplicial set

S
p ∧X(S1

, . . . , S
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
q

), respectively X(S1
, . . . , S

1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p+q

),

where we have made use of the equality S
p = (S1)∧p in the diagram category

Cat(∆op,F). Taking diagonals and using the isomorphism S ≅ S, we have mor-
phisms in sSet∗

ρp,q ∶ Sp ∧ (KGX)q ≅ S
p ∧ (KGX)q (KGX)(p + q).

This completes the definition of ρp,q. ◇
As an example of the construction KG , Lemma 9.4.3 below shows that KG J

is the symmetric sphere spectrum, where J is the monoidal unit of G∗-sSet from
(9.2.13).
Proposition 9.3.16. The data {(KGX)k, ρp,q ∣ k, p, q ≥ 0} of Definition 9.3.14 define a
functor

KG ∶ G∗-sSet SymSp

such that the following diagram commutes.

(9.3.17)

Γ-sSet

G∗-sSet

SymSp∧∗
KF

KG

Proof. We first show that the construction (KGX, ρ) of Definition 9.3.14 is a sym-
metric spectrum. For this, we use the description of symmetric spectra from Ex-
planation 7.4.6. The unity condition (7.4.7) holds because each η⟨⟩,⟨n⟩ is an identity.
The associativity condition (7.4.8) for ρ follows from the inductive definition of η.
The equivariance condition follows because the action of Σk on (KGX)k is given

by permuting the coordinates of (S1)k.
The components of η defined in (9.3.11), (9.3.12), and (9.3.13) are natural with

respect to morphisms of G∗-simplicial sets (that is, natural transformations of func-
tors) and hence the structure morphisms ρp,q are too. This shows that KG takes
values in the category of symmetric spectra and morphisms thereof. Functoriality
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of KG with respect to morphisms of G∗-simplicial sets follows because each step in
the construction of (KGX)k is functorial.

Commutativity of the diagram (9.3.17) follows by checking the definitions of
(KFX)k and ρp,q. The key fact is that our definitions of

∧ ∶ G F and S
k ∈ Cat(∆op,F)

ensure that we have, for each n, an equality

∧(S1
n, . . . , S

1
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

) = S
k
n. □

9.4. KG is Symmetric Monoidal

Recall from Corollary 7.6.16 that the category of symmetric spectra is symmet-
ric monoidal as a sSet∗-category. Applying Theorem 9.2.15 in the case

(C,⊗,1,∗) = (sSet,×, 1, 1)
shows that G∗-sSet is enriched over sSet∗ and is symmetric monoidal as a sSet∗-
category. In this section, we show that the functor KG in Proposition 9.3.16 is a
symmetric monoidal sSet∗-functor (Definition 1.4.18).

● Lemma 9.4.3 shows that KG sends the monoidal unit in G∗-sSet to the
symmetric sphere, which is the monoidal unit in SymSp.
● Lemma 9.4.6 computes KG of a triple product in G∗-sSet.
● Theorem 9.4.9 is the main result of this section, which uses both Lem-

mas 9.4.3 and 9.4.6.
● Theorem 9.4.18 shows that the other two functors in (9.3.17), KF and ∧∗,

are also symmetric monoidal sSet∗-functors. See Note 9.5.5 for further
generalization.

Monoidal Units. First recall the following structure.

● (sSet∗,∧, S0) is the symmetric monoidal closed category of pointed sim-
plicial sets (Definition 7.1.23).
● The category G is a permutative category (Proposition 9.1.14) with

– the concatenation product ⊕ and
– the empty tuple ⟨⟩ as the monoidal unit.

● From (9.2.6) we use

G♭(⟨a⟩ ; ⟨b⟩) = (G(⟨a⟩, ⟨b⟩))♭

to denote the set of nonzero morphisms from ⟨a⟩ to ⟨b⟩ in G.
● In the symmetric monoidal closed category G∗-sSet, the monoidal unit

(9.2.13) is defined by

J⟨m⟩ = ⋁
G♭(⟨⟩ ; ⟨m⟩)

S0 for ⟨m⟩ ∈ G

and(9.4.1)
J∗ = ∗.

The rest of the symmetric monoidal structure in G∗-sSet is induced by the
Day convolution and hom diagrams as described in Definition 9.2.8.
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● For X ∈ G∗-sSet and m, p ≥ 0, we write

(9.4.2) (KGX)p,m = X(m⊕p)m
for the pointed set of m-simplices in the pointed simplicial set (KGX)p
(Definition 9.3.14).

The following preliminary observation says that the symmetric sphere (Defi-
nitions 7.4.1 and 8.2.1) is the K-theory of the monoidal unit J ∈ G∗-sSet. It is both
an example of the construction KG and an important part of Theorem 9.4.9 below,
which asserts that KG is a symmetric monoidal sSet∗-functor.
Lemma 9.4.3. There is a canonical isomorphism

(9.4.4) S ≅ KG J

of symmetric spectra with
● S the symmetric sphere,
● KG ∶ G∗-sSet SymSp the functor in Proposition 9.3.16, and
● J ∈ G∗-sSet the monoidal unit.

Proof. We compute the symmetric spectrum KG J and show that it is canonically
isomorphic to S. By Explanation 9.1.9 (4), a morphism

⟨⟩ ⟨m⟩ = (m1, . . . , mp) ∈ G

consists of the unique injection

∅ = 0 p = {1, . . . , p}
together with pointed functions

1 mi for 1 ≤ i ≤ p.
ψi

Applied to (9.4.1), this implies that

(9.4.5) J⟨m⟩ = ⋁
G♭(⟨⟩ ; ⟨m⟩)

S0 ≅
p

⋀
i=1

mi ∈ sSet∗.

For p, n ≥ 0, the pointed simplicial set (KG J)p has, as its set of n-simplices, the
pointed set

(KG J)p,n = J(n⊕p)n
≅ n∧p

= (Sp)n.

● The first equality above is from (9.4.2).
● The isomorphism is by (9.4.5).
● The last equality is from Definitions 7.1.12 and 7.1.23.

Fixing p and varying n, the pointed simplicial set structure of (KG J)p comes from
the n variable as in Definition 7.1.12. So the above isomorphisms yield an isomor-
phism of pointed simplicial sets

(KG J)p ≅ Sp.

The Σp-action on (KG J)p,n comes from permuting the p copies of n in n⊕p. So the
Σp-action on (KG J)p corresponds to that on Sp under the above isomorphism.
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By Definition 9.3.9, for q ≥ 0, the symmetric spectrum structure morphism

S1 ∧ (KG J)q (KG J)1+q

is induced by the following composite for ⟨n⟩ = (n1, . . . , nq), m ≥ 0, x ∈ m♭, and
hx ∶ 1 m the pointed function with hx(1) = x.

J⟨n⟩ J(i1m⊕ ⟨n⟩)

n1 ∧⋯∧ nq m ∧ n1 ∧⋯∧ nq

{0, 1}∧ n1 ∧⋯∧ nq

ηm,⟨n⟩,x

≅ hx ∧ 1

So the S1-action on KG J corresponds to the structure morphism

S1 ∧ Sq S1+q≅

on the symmetric sphere. By the associativity condition (7.4.8) in Explanation 7.4.6,
for p, q ≥ 0, the symmetric spectrum structure morphism

Sp ∧ (KG J)q (KG J)p+q

also corresponds to that for the symmetric sphere. □

K-Theory of Triple Products. To facilitate the proof of Theorem 9.4.9, the next
result contains some preliminary computation. Recall from Theorem 9.2.15 with

(C,⊗,1,∗) = (sSet,×, 1, 1)
that G∗-sSet is a symmetric monoidal sSet∗-category with

● monoidal product ∧ in (9.2.9) induced by Day convolution and
● J in (9.4.1) as the monoidal unit.

We use the notation (9.4.2) below. Moreover, for indexing of coends we write

Ĝ 2 = Ĝ ∧ Ĝ
and

Ĝ 3 = Ĝ ∧ (Ĝ ∧ Ĝ) or (Ĝ ∧ Ĝ)∧ Ĝ
with context determining the latter.
Lemma 9.4.6. For X, Y, Z ∈ G∗-sSet and m, p ≥ 0, there are isomorphisms of pointed sets

KG(X ∧ (Y ∧ Z))p,m

≅ ∫
(⟨a⟩,⟨b⟩,⟨c⟩) ∈ Ĝ 3

⋁
G♭(⟨a⟩⊕⟨b⟩⊕⟨c⟩; m⊕p)

X⟨a⟩m ∧ (Y⟨b⟩m ∧ Z⟨c⟩m)

KG((X ∧Y)∧ Z)p,m

≅ ∫
(⟨a⟩,⟨b⟩,⟨c⟩) ∈ Ĝ 3

⋁
G♭(⟨a⟩⊕⟨b⟩⊕⟨c⟩; m⊕p)

(X⟨a⟩m ∧Y⟨b⟩m)∧ Z⟨c⟩m

(9.4.7)

that are natural in X, Y, and Z.
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Proof. Applying (9.4.2) to X ∧Y, there are pointed sets as follows.

KG(X ∧Y)p,m = (X ∧Y)(m⊕p)m

= ∫
(⟨a⟩,⟨b⟩) ∈ Ĝ 2

⋁
G♭(⟨a⟩⊕⟨b⟩; m⊕p)

X⟨a⟩m ∧Y⟨b⟩m
(9.4.8)

Using (9.4.8) twice, the first isomorphism in (9.4.7) follows from the following
computation.

KG(X ∧ (Y ∧ Z))p,m

= ∫
⟨a⟩, ⟨d⟩

⋁
G♭(⟨a⟩⊕⟨d⟩; m⊕p)

X⟨a⟩m ∧ (Y ∧ Z)⟨d⟩m

= ∫
⟨a⟩, ⟨d⟩

⋁
G♭(⟨a⟩⊕⟨d⟩; m⊕p)

X⟨a⟩m ∧ [∫
⟨b⟩, ⟨c⟩

⋁
G♭(⟨b⟩⊕⟨c⟩; ⟨d⟩)

Y⟨b⟩m ∧ Z⟨c⟩m]

≅ ∫
⟨a⟩, ⟨b⟩, ⟨c⟩

[ ⋁
∫
⟨d⟩
G♭(⟨a⟩⊕⟨d⟩; m⊕p)×G♭(⟨b⟩⊕⟨c⟩; ⟨d⟩)

X⟨a⟩m ∧ (Y⟨b⟩m ∧ Z⟨c⟩m)]

≅ ∫
⟨a⟩,⟨b⟩,⟨c⟩

⋁
G♭(⟨a⟩⊕⟨b⟩⊕⟨c⟩; m⊕p)

X⟨a⟩m ∧ (Y⟨b⟩m ∧ Z⟨c⟩m)

● The first isomorphism above uses the fact that X⟨a⟩m ∧− is a left adjoint,
which commutes with small colimits. Then it switches the outer wedge

and the coend ∫
⟨b⟩, ⟨c⟩, which is possible because they are both colimits.

Next it switches the order of the coends from

∫
⟨a⟩, ⟨d⟩

∫
⟨b⟩, ⟨c⟩

to ∫
⟨a⟩, ⟨b⟩, ⟨c⟩

∫
⟨d⟩

.

Then it combines the two wedges and brings ∫
⟨d⟩ down to the index of

the combined wedge, which is the only place where ⟨d⟩ appears.
● The last isomorphism uses the isomorphism (3.7.16) on the wedge index.

Each step in each of the isomorphisms above is natural in X, Y, and Z. This proves
the first isomorphism in (9.4.7). The second isomorphism in (9.4.7) is proved sim-
ilarly using (i) the commutativity of −∧ Z⟨c⟩m with small colimits and (ii) the iso-
morphism (3.7.15). □

Main Result. For the following result, first recall from

● Definitions 1.4.17 and 1.4.18 a symmetric monoidal V-functor, which is,
furthermore, unital if the unit constraint is invertible, and
● Theorem 7.6.15 that the category SymSp is a symmetric monoidal sSet∗-

category with
– the smash product ◻S (Definition 7.6.1) as the monoidal product and
– the symmetric sphere S as the monoidal unit.

Theorem 9.4.9. The functor

KG ∶ G∗-sSet SymSp

in Proposition 9.3.16 extends to a unital symmetric monoidal sSet∗-functor.
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Proof. Recall that the monoidal product in G∗-sSet is defined by that of the en-
riched diagram category (Ĝ)-(sSet∗), where Ĝ has the pointed unitary sSet∗ en-
richment (9.2.7). Therefore, by Theorem 2.5.1 (2), it suffices to extend KG to a unital
symmetric monoidal functor. This consists of the following steps:

(1) We first define the unit and monoidal constraints for KG .
(2) Then we check that they are well defined.
(3) Then we show that they satisfy the axioms of a symmetric monoidal func-

tor.
The unit constraint. The canonical isomorphism

S KG J
(KG)0

≅

in (9.4.4) is the unit constraint for KG .
The monoidal constraint. By Proposition 7.6.2 and Explanation 7.6.4, for X, Y ∈

G∗-sSet, the (X, Y) component of the monoidal constraint

(9.4.10) KGX ◻S K
GY KG(X ∧Y) ∈ SymSp

(KG)2X,Y

is uniquely determined by a family of (Σp ×Σq)-equivariant morphisms

(9.4.11) (KGX)p ∧ (KGY)q KG(X ∧Y)p+q ∈ sSet∗
(KG)2X,Y;p,q

for p, q ≥ 0 such that the diagrams (7.6.5) and (7.6.7) are commutative. Using
(9.4.8), at level m ≥ 0, the morphism (KG)2X,Y;p,q,m in (9.4.11) is defined as the fol-
lowing composite of pointed functions.
(9.4.12)

X(m⊕p)m ∧Y(m⊕q)m ⋁
G♭(m⊕p⊕m⊕q ; m⊕(p+q))

X(m⊕p)m ∧Y(m⊕q)m

∫
(⟨a⟩,⟨b⟩) ∈ Ĝ 2

⋁
G♭(⟨a⟩⊕⟨b⟩; m⊕(p+q))

X⟨a⟩m ∧Y⟨b⟩m

ι

(KG)2X,Y;p,q,m

ω
(m⊕p , m⊕q

)

● ι is the wedge summand inclusion for the identity morphism of

m⊕p ⊕m⊕q = m⊕(p+q) ∈ G.

● ω(m⊕p , m⊕q) is the coend structure morphism (Definition 3.5.1) for

⟨a⟩ = m⊕p and ⟨b⟩ = m⊕q.

As m varies, the collection of morphisms in (9.4.12) is a morphism (KG)2X,Y;p,q of
pointed simplicial sets. Its naturality with respect to X and Y follows from the
functoriality of ∧ and the naturality of coends. Next we check equivariance and
the commutativity of the diagrams (7.6.5) and (7.6.7).

Equivariance. To show that the morphism (KG)2X,Y;p,q is (Σp ×Σq)-equivariant,
it suffices to show that, for permutations (σ, τ) ∈ Σp ×Σq, the following diagram of
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pointed functions is commutative, where most instances of ⊕ are omitted to save
space.

X(mp)m ∧Y(mq)m ⋁
G♭(mpmq ; mp+q)

X(mp)m ∧Y(mq)m

⋁
G♭(mpmq ; mp+q)

X(mp)m ∧Y(mq)m

X(mp)m ∧Y(mq)m ∫
⟨a⟩,⟨b⟩

⋁
G♭(⟨a⟩⟨b⟩ ; mp+q)

X⟨a⟩m ∧Y⟨b⟩m

⋁
G♭(mpmq ; mp+q)

X(mp)m ∧Y(mq)m

⋁
G♭(mpmq ; mp+q)

X(mp)m ∧Y(mq)m ∫
⟨a⟩,⟨b⟩

⋁
G♭(⟨a⟩⟨b⟩ ; mp+q)

X⟨a⟩m ∧Y⟨b⟩m

X(σ)m∧Y(τ)m

ι

ι

ω

(σ⊕τ)∗

⋁X(σ)m∧Y(τ)m

ι ∫ (σ⊕τ)∗

ω

ω

● In the above diagram, ι and ω are as in (9.4.12).
● In the morphism X(σ)m ∧Y(τ)m,

σ = (σ,{1}) ∶ m⊕p m⊕p ∈ G

consists of the permutation

σ ∶ p p

and the entrywise identity function

{1} ∶ σ∗m⊕p m⊕p.

The morphism

τ = (τ,{1}) ∶ m⊕q m⊕q ∈ G

is defined similarly.
● The morphism (σ⊕ τ)∗ is the precomposition with

σ⊕ τ ∶ m⊕p ⊕m⊕q m⊕p ⊕m⊕q ∈ G

in the wedge index. The morphism (σ⊕ τ)∗ is the post-composition with
σ⊕ τ in the wedge index.
● The two subdiagrams containing the left vertical composite and the right

vertical composite are commutative by definition. The quadrilateral con-
taining the bottom horizontal arrow is commutative by the definition of
the coend in the lower right corner.

The commutativity of the above diagram proves that the morphism (KG)2X,Y;p,q in
(9.4.11) is (Σp ×Σq)-equivariant.

Compatibility with S-action. To prove the commutativity of the diagram (7.6.5)
for (KG)2X,Y;p,q, by the associativity condition in Explanation 7.4.6 of the structure
morphisms in symmetric spectra, it suffices to consider the case n = 1. At level
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m ≥ 0 with n = 1, (7.6.5) is the following diagram of pointed functions, with α an
associativity isomorphism and ρ the S1-action.

(9.4.13)

((S1)m ∧ (KGX)p,m)∧ (KGY)q,m (S1)m ∧ ((KGX)p,m ∧ (KGY)q,m)

(KGX)1+p,m ∧ (KGY)q,m

KG(X ∧Y)1+p+q,m (S1)m ∧KG(X ∧Y)p+q,m

ρ∧1

α

1∧(KG)2

(KG)2

ρ

To show that this diagram is commutative, first recall the following from Defini-
tion 9.3.9.

● For each x ∈ m♭, hx ∶ 1 m is the pointed function with

hx(1) = x.

● For p ≥ 0, f1 ∶ p 1+ p is the pointed function given by

f1(j) = j + 1 for j ∈ p = {1, . . . , p}.
● We write

ix
1 = ( f1, (i1hx)⊕ 1m⊕p) ∶ m⊕p m⊕(1+p) ∈ G,

so there is an equality

X(ix
1) = ηm,m⊕p ,x ∶ X(m⊕p) X(m⊕(1+p)) ∈ sSet∗.

The S1-action (9.3.10) on KGX is defined by these morphisms X(ix
1) for x ∈ m♭.

Using (9.4.8), to show that (9.4.13) is commutative, it suffices to show that the
outer diagram below is commutative for x ∈ m♭, with the symbol ⊕ for concatena-
tion omitted to save space.

X(mp)m ∧Y(mq)m

X(m1+p)m ∧Y(mq)m

⋁
G♭(m1+pmq ; m1+p+q)

X(m1+p)m ∧Y(mq)m

⟨c⟩,⟨d⟩

∫ ⋁
G♭(⟨c⟩⟨d⟩ ; m1+p+q)

X⟨c⟩m ∧Y⟨d⟩m

⋁
G♭(mpmq ; mp+q)

X(mp)m ∧Y(mq)m

⟨a⟩,⟨b⟩

∫ ⋁
G♭(⟨a⟩⟨b⟩ ; mp+q)

X⟨a⟩m ∧Y⟨b⟩m

⋁
G♭(m1+pmq ; m1+p+q)

X(mp)m ∧Y(mq)m

⋁
G♭(mpmq ; m1+p+q)

X(mp)m ∧Y(mq)m

X(ix
1)m ∧ 1

ι

ω(m1+p ,mq)

ι

ω(mp ,mq)

(ix
1)∗

(ix
1)∗

ι

(ix
1)
∗

ω(mp ,mq)

⋁X(ix
1)m ∧ 1

● In the above diagram, each ι is a wedge summand inclusion correspond-
ing to an identity morphism in the wedge index. The upper left triangle
and the upper right subdiagram are commutative by definition.
● The lower left parallelogram is commutative by the definition of the co-

end in the lower left corner.



9.4. KG IS SYMMETRIC MONOIDAL III.353

● The lower right subdiagram is commutative by the naturality of coends.
This proves the commutativity of the diagram (9.4.13), which, in turn, implies the
commutativity of (7.6.5) for (KG)2X,Y;p,q. A similar argument shows that (7.6.7) is

commutative. This finishes the construction of the monoidal constraint (KG)2.
Next we check the symmetric monoidal functor axioms in Definitions 1.1.6

and 1.1.17 for (KG , (KG)2, (KG)0).
Unity. The left unity axiom in (1.1.10) asserts the commutativity of the follow-

ing diagram in SymSp.

(9.4.14)
S◻S K

GX KGX

KG J ◻S K
GX KG(J ∧X)

(KG)0◻S1

λ

(KG)2
KGλ

To show that (9.4.14) is commutative, it suffices to show that the following diagram
of pointed functions is commutative for p, m ≥ 0.

(9.4.15)

(S1)m ∧ (KGX)p,m (KGX)1+p,m

(KG J)1,m ∧ (KGX)p,m KG(J ∧X)1+p,m

(KG)0∧1

λ

(KG)2J,X;1,p,m

KGλ

It suffices to show that the diagram (9.4.15) is commutative when restricted to each
x ∈ m♭ ⊂ (S1)m. By the definitions

● of the canonical isomorphism (9.4.4)

(KG)0 ∶ S ≅
KG J,

● of (KG)2 in (9.4.12), and
● of the left unit isomorphism

λ ∶ J ∧X ≅ X

induced by that of the Day convolution product in Definition 3.7.17,
the diagram (9.4.15) restricted to x ∈ m♭ is the outer diagram below, where the
symbol ⊕ is omitted to save space.

X(mp)m

{0, 1}∧X(mp)m

m ∧X(mp)m

⋁
G♭(mmp ; m1+p)

m ∧X(mp)m

X(m1+p)m

⟨b⟩

∫ ⋁
G♭(⟨b⟩ ; m1+p)

X⟨b⟩m

⟨b⟩

∫ [
⟨a⟩

∫ ⋁
G♭(⟨a⟩⟨b⟩ ; m1+p)

J⟨a⟩m]∧X⟨b⟩m

⟨a⟩,⟨b⟩

∫ ⋁
G♭(⟨a⟩⟨b⟩ ; m1+p)

J⟨a⟩m ∧X⟨b⟩m

X(m1+p)m

⋁
G♭(m1+p ; m1+p)

X(m1+p)m

X(ix
1)

≅

hx ∧ 1

ι

ω(m,mp)

≅

≅

≅

ηm,mp

1

ι

⋁ ηm,mp

ωm1+p
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● Each ι is a wedge summand inclusion corresponding to an identity mor-
phism in the wedge index. Each ω is a coend structure morphism.
● The morphism ηm,mp is the one in (9.3.10) at level m. The upper left sub-

diagram is commutative by the definition of ηm,mp .
● The lower left parallelogram is commutative by the naturality of wedges.
● The upper right parallelogram is commutative by the definition of the

upper right vertical isomorphism.
● The lower right subdiagram is commutative by the definitions of the two

vertical isomorphisms.

This proves the left unity axiom in (1.1.10). The right unity axiom is proved by a
similar argument.

Associativity. The associativity axiom (1.1.9) for KG asserts the commutativity
of the following diagram in SymSp, where the bottom α is the associativity isomor-
phism for the Day convolution product in Definition 3.7.17.

(9.4.16)

(KGX ◻S K
GY)◻S K

GZ KGX ◻S (KGY ◻S K
GZ)

KG(X ∧Y)◻S K
GZ KGX ◻S K

G(Y ∧ Z)

KG((X ∧Y)∧ Z) KG(X ∧ (Y ∧ Z))

(KG)2◻S1

α

1◻S(KG)2

(KG)2 (KG)2

KGα

By (9.4.7) and the definition (9.4.12) of (KG)2X,Y;p,q,m, to show that (9.4.16) is com-
mutative, it suffices to show that, for m, p, q, r ≥ 0, the following diagram of pointed
functions is commutative.

(X(m⊕p)m ∧Y(m⊕q)m)∧ Z(m⊕r)m

⋁ (X(m⊕p)m ∧Y(m⊕q)m)∧ Z(m⊕r)m

∫ ⋁ (X⟨a⟩m ∧Y⟨b⟩m)∧ Z⟨c⟩m

X(m⊕p)m ∧ (Y(m⊕q)m ∧ Z(m⊕r)m)

⋁X(m⊕p)m ∧ (Y(m⊕q)m ∧ Z(m⊕r)m)

∫ ⋁X⟨a⟩m ∧ (Y⟨b⟩m ∧ Z⟨c⟩m)

ι

ω

ι

ω

α

∫ ⋁ α

● In the above diagram, α is an associativity isomorphism.
● In the middle level, each wedge is indexed by the pointed set

G♭(m⊕p ⊕m⊕q ⊕m⊕r ; m⊕(p+q+r)).

Each ι is the wedge summand inclusion corresponding to the identity
morphism of m⊕(p+q+r).
● In the bottom level, each wedge is indexed by the pointed set

G♭(⟨a⟩⊕ ⟨b⟩⊕ ⟨c⟩ ; m⊕(p+q+r)).

Each coend is indexed by

(⟨a⟩, ⟨b⟩, ⟨c⟩) ∈ Ĝ 3.
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Each ω is the coend structure morphism for

⟨a⟩ = m⊕p, ⟨b⟩ = m⊕q, and ⟨c⟩ = m⊕r.

The above diagram is commutative by the definition of the bottom horizontal mor-
phism ∫ ⋁ α.

Symmetry. The compatibility axiom (1.1.18) for KG asserts the commutativity
of the following diagram in SymSp, where the bottom ξ is the symmetry isomor-
phism for the Day convolution product in Definition 3.7.17.

(9.4.17)
KGX ◻S K

GY KGY ◻S K
GX

KG(X ∧Y) KG(Y ∧X)
(KG)2

ξ

(KG)2

KGξ

Similar to the proof of the associativity axiom (9.4.16) above, the commutativity of
(9.4.17) follows from (9.4.8), the definition (9.4.12) of (KG)2X,Y;p,q,m, and the defini-
tion of (KGξ)p,m. □

Theorem 9.4.18. The functors

Γ-sSet SymSp

G∗-sSet

∧∗

KF

in (9.3.17) are symmetric monoidal sSet∗-functors.

Proof. Since
KF = KG ○ ∧∗,

by Theorem 9.4.9 it suffices to show that ∧∗ is a symmetric monoidal sSet∗-functor.
Since each of F and G is given the pointed unitary enrichment over sSet∗ (Defi-
nition 4.3.11), as in the first paragraph of the proof of Theorem 9.4.9, it suffices to
show that ∧∗ is a symmetric monoidal functor. By Theorem 3.7.28, it suffices to
show that

Ĝ F̂∧

is a symmetric monoidal sSet∗-functor. Once again, by the pointed unitary enrich-
ment, it remains to observe that

G F∧

in Definition 9.1.15 is a strict symmetric monoidal functor that preserves the null
objects. □

9.5. Notes

9.5.1 (References). The category G in Definition 9.1.7 and the associated K-theory
functor KG in Definition 9.3.14 were first developed in [EM06, EM09]. Theo-
rem 9.2.15, which follows from the more general Theorem 4.3.37, is stated as
[EM09, Theorem 5.6]. A similar construction of symmetric spectra from certain
diagram categories is given in [BO20] (see Note 9.5.3 below). ◇
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9.5.2 (F(0)). The category of small pointed categories and pointed functors, Cat∗,
has a symmetric monoidal smash product whose unit E is a discrete category with
two objects. So the category F(0) of Definition 9.1.3 is not the monoidal unit of
(Cat∗,∧) and, therefore, not the smash product over the empty indexing set in
(Cat∗,∧). However, F(0) is the monoidal unit for the smash product in Cat0, the
category of pointed small categories whose basepoints are initial and terminal,
together with pointed functors. All of the other smash powers F(q) for q > 0 are
the same whether taken in Cat∗ or Cat0. Further discussion of Cat0 as a module
category is given in [EM09, Section 5], and this perspective is used in the definition
of G as a Grothendieck construction in Note 9.5.3. ◇
9.5.3 (Alternate Description of G). For those readers familiar with Grothendieck
constructions (see e.g., [BW12, Chapter 12] or [JY21, Chapter 10]), the category G
of Definition 9.1.7 can be described similarly.

Recall from Definition 9.1.2 that Inj denotes the category whose objects are
unpointed finite sets q = {1, . . . , q} for q ≥ 0 and whose morphisms are injections.
As in Note 9.5.2, let Cat0 denote the category of small pointed categories whose
basepoints are both initial and terminal, together with pointed functors. Then, as
described further in Note 9.5.2,

F(−) ∶ Inj Cat0

defines a functor that sends an object p to the p-fold smash power in Cat0 and
sends an injection f ∶ p q to the functor f∗ defined in Definition 9.1.7. Then
G is the Grothendieck construction

∫
Inj
F(−)

formed in Cat0. This construction is similar to the usual Grothendieck construc-
tion, but uses the coproduct (wedge) and smash product in Cat0 instead of the
disjoint union and Cartesian product in Cat. This is the definition given in [EM09,
Section 5], denoted G∗ there.

Alternatively, one can make a Grothendieck construction in (Cat,×)

H = ∫
Inj
F×(−),

where F×(q) denotes the q-fold Cartesian product. Then G can be defined as a
quotient of H, identifying all tuples ⟨n⟩ having an entry 0 to a basepoint ∗ and
all morphisms factoring through such tuples to the zero morphism in G∗. This
description is given in [EM06]; see Note 9.5.4 for an explanation of the notation
change. Bohmann and Osorno, in [BO20, Section 5], use a similar Grothendieck
construction, denoted E , over Cartesian products of ∆op in Cat. They then define
E∗-objects as diagrams that factor through a quotient similar to that defining G
fromH. ◇
9.5.4 (Notation Warning for G∗). We warn the reader comparing with the work
of Elmendorf-Mandell [EM06, EM09] that the category we denote G in Defini-
tion 9.1.7 is denoted G∗ in those references. Moreover, those references use G to
denote what we call H in Note 9.5.3. We have made this change of notation be-
cause the category we call G is the one that parallels most closely the skeleton of
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finite sets, F . Moreover, then we can reserve the notation G∗ for the pointed di-
agram categories G∗-Cat and G∗-sSet. See Note 10.8.5 for further comparison of
notation between [EM06, EM09] and this work. ◇
9.5.5 (Generality of KG). In Theorem 9.4.9, we showed that the K-theory construc-
tion

KG ∶ G∗-sSet SymSp

is unital symmetric monoidal as a sSet∗-functor. This theorem holds more gen-
erally with sSet∗ replaced by the category sC∗ of pointed simplicial objects in a
complete, cocomplete, and Cartesian closed category C.

● The relevant structure on G∗-C, the category of G∗-objects in C, is still
given by Theorem 9.2.15.
● Instead of symmetric spectra based on pointed simplicial sets (Explana-

tion 7.4.6), one considers symmetric spectra based on sC∗ as defined in,
for example, [EM06, 7.1].

The constructions and proof of Theorem 9.4.9 translate to this more general setting
essentially verbatim. This more general form of the theorem implies [EM06, 7.4],
which says that KG , denoted by I there, is an enriched multifunctor. ◇





CHAPTER 10

Elmendorf-Mandell K-Theory of Permutative
Categories

This is the second of two chapters generalizing the Segal K-theory functor

KSe ∶ PermCatsu SymSp,

from Chapter 8, to a simplicially-enriched multifunctor

KEM ∶ PermCatsu SymSp,

due to Elmendorf-Mandell [EM06, EM09]. Chapter 9 describes the sSet∗-enriched
symmetric monoidal categories and functors

G∗-Cat
N∗ G∗-sSet KG

SymSp.

In this chapter we describe G∗-diagrammatic replacements of the partition multi-
categoryM and its associated J-theory,

PermCatsu Multicat∗ Γ-CatEnd JM

JSe

with a partition multicategory for tuples, T , and an associated J-theory

PermCatsu ModM1 G∗-Cat.End JT

JEM

It is important to note the change in the codomain of End (and the domain of JT )
from Multicat∗ to ModM1—the category of left modules overM1 (Example 8.4.5).
We discuss the reasons for this change in the Literature subsection below. For now
we only need to note that End factors through ModM1 (Lemma 10.2.14).

Theorem 10.6.10 shows that the two constructions

KSe = KFN∗JSe and KEM = KGN∗JEM

are naturally level-equivalent as functors from PermCatsu to SymSp. But, as with
G and KG in Chapter 9, we do more than simply replacing JM with JT . We also
describe the relevant enriched monoidal structures.

(1) The smash product of small pointed multicategories restricts to a sym-
metric monoidal product for ModM1, with monoidal unit M1. With re-
spect to this structure, ModM1 is a Cat∗-enriched symmetric monoidal
category (Definition 10.1.36).

III.359
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(2) Theorem 10.3.17 shows that

JT ∶ModM1 G∗-Cat

is symmetric monoidal as a Cat∗-enriched functor.
(3) Lemma 10.2.14 shows that

End ∶ PermCatsu ModM1

is a Cat-enriched multifunctor.
(4) Changing enrichments to sSet via the nerve, the Elmendorf-Mandell K-

theory, KEM, is the composite sSet-enriched multifunctor

PermCatsu ModM1 G∗-Cat G∗-sSet SymSp.End JT N∗ KG

JEM

As a consequence of the enriched multifunctoriality, KEM preserves operad actions.
We state this result as Theorem 10.3.33 and apply it in Chapters 11, 12, and 13.

The following table summarizes the Segal and Elmendorf-Mandell K-theory
constructions, extending the table given in the introduction to Chapter 8. Each N∗
is induced by composition with the nerve functor

N ∶ Cat sSet,

from Definition 7.2.3.

KSe = KFN∗JSe (8.5.1) KEM = KGN∗JEM (10.3.32)

indexing category F (8.1.1) G (9.1.7)

K-theory KF ∶ Γ-sSet SymSp (8.2.5) KG ∶ G∗-sSet SymSp (9.3.14)

nerve N∗ ∶ Γ-Cat Γ-sSet (8.1.18) N∗ ∶ G∗-Cat G∗-sSet (9.2.19)

Γ/G∗-categories (−)F , (−)Flax, (−)Fco (8.3.14) (−)G
≅

, (−)G , (−)Gco (10.4.20)

variants equiv. (8.5.2) (10.7.16, 10.7.19)

J-theory JSe ∶ PermCatsu Γ-Cat JEM ∶ PermCatsu G∗-Cat

definition JSe = JM ○End (8.5.1) JEM = JT ○End (10.3.25)

End End ∶ PermCatsu ModM1 Multicat∗ (5.1.11, 5.3.9, 10.2.14)

partitions M ∶ Fop Multicat∗ (8.4.1) T ∶ Gop ModM1 (10.3.1)

partition J-theory JM ∶Multicat∗ Γ-Cat (8.4.10) JT ∶ModM1 G∗-Cat (10.3.9)

equiv. desc. J JSe ≅ (−)Flax (8.4.8) JEM ≅ (−)G (10.5.1)

level equiv. KSe ∼
KEM (10.6.10)

Organization. Sections 10.1 and 10.2 discuss smash products of the partition
multicategoriesMa from Section 8.4. It follows from Proposition 10.1.6 thatM1
is a commutative monoid with respect to this product. Important properties of
M1-modules are discussed in the remainder of Section 10.1 and in Section 10.2.

Section 10.3 defines a partition multifunctor for G via smash products of the
partition multicategoriesMn. This is denoted T and defines a partition J-theory

JT ∶ModM1 G∗-Cat.

The main result of this section is Theorem 10.3.17, which shows that JT is sym-
metric monoidal as a Cat∗-enriched functor. Combining this with the previous
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material from Chapter 9, we define the Elmendorf-Mandell J- and K-theory mul-
tifunctors in Definitions 10.3.25 and 10.3.32, respectively.

Section 10.4 defines G∗-categories CG , including lax, strong, and colax variants
(Definition 10.4.20), that generalize the Segal Γ-categories CF from Section 8.3. Sec-
tion 10.5 shows that the constructions JEMC and CG = CGlax give naturally isomorphic
G∗-categories (Proposition 10.5.1). Definition 10.5.3 uses the strong and colax vari-
ants of (−)G to define strong and colax Elmendorf-Mandell K-theory, denoted KEM

≅

and KEM
co .

Section 10.6 is devoted to proving that the Segal and Elmendorf-Mandell K-
theory symmetric spectra are naturally level-equivalent constructions. The main
result is Theorem 10.6.10, and depends on several preliminary comparisons for
partition multicategories.

Section 10.7 compares the K-theory symmetric spectra given by the three vari-
ant constructions CG = CGlax, C

G

≅
, and CGco. The main results are Theorems 10.7.16

and 10.7.19, which show that the resulting symmetric spectra are level equivalent.

Reading Guide. The material in this chapter depends on the smash product
of pointed multicategories from Section 5.6 as well as the material on enriched
multicategories from Chapter 6. A familiarity with the general definitions and
main results will be useful. Throughout this chapter we give references to partic-
ular definitions and results from earlier material as needed.

(1) For M1-modules, read Definition 10.1.1 and the statement of Propo-
sition 10.1.6, followed by Explanations 10.1.10 and 10.1.11. Then read
Definition 10.1.12 and the important properties of M1-modules given
in the statement of Proposition 10.1.28. Finally, read Definition 10.1.36
followed by Proposition 10.2.7, Definition 10.2.13, and the statement of
Lemma 10.2.14.

(2) For the partition J-theory JT , read Definition 10.3.1, Explanation 10.3.2,
and the statement of Theorem 10.3.17.

(3) For JEM and KEM, read Definition 10.3.25 and the following text up
through Definition 10.3.32. Read both the statement and the short proof
of Theorem 10.3.33. Then read the statement of Theorem 10.6.10 for the
level equivalence between KSe and KEM.

(4) For the reader who is only interested in the further applications to En-
monoidal structures, in Chapters 11, 12, and 13, the remaining content
of this chapter is not necessary. Go back and finish reading Sections 10.1
through 10.3 and 10.6. Then go on to the subsequent chapters.

(5) For the reader who is interested in the G∗-categories CG and variants,
read all of Section 10.4, the statement of Proposition 10.5.1, and Defini-
tion 10.5.3. Then read the statements of Theorems 10.7.16 and 10.7.19.

(6) Go back and read the rest of this chapter.

The detailed proofs and variant definitions in this chapter and the previous one
have several additional purposes.

Cat-Enriched Multifunctors. In the definitions of KSe and KEM via the respec-
tive composites

PermCatsu Multicat∗ Γ-Cat Γ-sSet SymSpEnd JM N∗ KF
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and

PermCatsu ModM1 G∗-Cat G∗-sSet SymSp,End JT N∗ KG

we see that almost all of the categories and functors are symmetric monoidal. The
only exceptions are the following.

● There is not a symmetric monoidal structure on PermCatsu inherited from
either Multicat∗ (Proposition 5.7.23), or the proper subcategory ModM1

(Proposition 10.2.17). It is merely a Cat-enriched multicategory.
● As a consequence of the previous item, End is merely a Cat-enriched mul-

tifunctor. This is why KEM is defined as a multifunctor instead of a sym-
metric monoidal functor.
● The monoidal constraint forM is not an isomorphism, and thus JM is not

a symmetric monoidal functor (see Explanation 10.1.10 and Note 10.8.6).
This is why, for our applications to K-theory of En-monoidal categories,
we use KEM instead of KSe.

Literature. We alluded above to the importance of ModM1 as the domain of
JT . This is because there are subtle errors in [EM09] and subsequent literature
regarding the domain of JT . In our treatment we note the following.

(1) ModM1 is a proper subcategory of Multicat∗ (Examples 10.2.15 and 10.2.16).
Notably, it does not contain the unit pointed multicategory, S.

(2) JT does not extend, as a monoidal functor, to all of Multicat∗ (see Ques-
tion A.5.1).

This final item is contrary to the statement of [EM09, Theorem 1.3] and some other
assertions there. We give a careful account with corrections in Note 10.8.2. All
of the incorrect statements are corrected by restricting JT to ModM1. The essen-
tial difficulty is the unit constraint for JT , and we discuss it further in Note 10.8.3
and Question A.5.1.

We point out that the important structure result for M1-modules, Proposi-
tion 10.1.28, is also given in [EM09]. See Note 10.8.1 for further details about that
result.

Lax versus Strong K-Theory. The lax construction KEM = KEM
lax has a significant

difference from the strong construction KEM
≅

that is not present for KSe
lax and KSe

≅
.

First, in similarity with the case of Segal K-theory, Theorem 10.7.16 shows that
there is a level equivalence

KEM
≅
C KEM

lax C

for each small permutative category C. As noted in Explanation 10.7.23, the do-
main of definition for KEM

≅
is the subcategory PermCatsus consisting of strictly unital

strong symmetric monoidal functors. All of these statements are similarly true for
KSe

lax and KSe
≅

.
Moreover, one obtains an equivalence of homotopy categories between PermCatsu

and PermCatsus upon inverting those morphisms that induce weak-equivalences
on Segal K-theory spectra. These are discussed, for example, in [Man10, The-
orem 3.9] and [GJO17a, Theorem 2.15]. These equivalences are obtained from
general (2-)monadic strictification theory, and they imply that, for the purposes of
Segal K-theory, there is no homotopy-theoretic difference between PermCatsu and
PermCatsus.
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However, such strictification functors generally do not preserve additional
structure such as the multicategory structure present for small permutative cat-
egories. General monoidal strictification theory, such as that of [WY19, Theo-
rems 4.4 and 4.6], does not apply because PermCatsu does not have a monoidal
structure.

Therefore, for the purposes of En-monoidal structures on Elmendorf-Mandell
K-theory spectra, the difference between the domains of definition PermCatsu and
PermCatsus is a significant one. For example (see Explanation 10.7.23), small ring
categories are monoids in PermCatsu. But monoids in PermCatsus are small ring
categories with invertible factorization morphisms. A general small ring category
C can be regarded as an object of PermCatsus by forgetting structure, but then one
cannot detect the monoid structure on KSe

≅
C. The non-invertible factorization mor-

phisms have been forgotten. Similar issues arise for other En-algebras in PermCatsu

and we discuss them in Question A.5.7.

10.1. The Partition Product

Recall the partition multicategory M of Definition 8.4.1, whose basepoint is
the empty set

∅ ∈ 2a♭ .

Examples 8.4.4 through 8.4.6 give explicit descriptions ofM0,M1, andM2. Re-
call from Definition 5.6.20 and Theorem 5.7.22 the smash product of pointed mul-
ticategories. In this section we record several details related to smash products of
partition multicategories.

Definition 10.1.1. For a pair of finite pointed sets a and b, the Cartesian product
of subsets induces a multifunctor

(10.1.2) ∏a,b ∶Ma ∧Mb M(a ∧ b)
called the partition product. The assignment on objects is given by the Cartesian
product of subsets, noting that

s × t ⊂ (a♭ × b♭) ≅ (a ∧ b)♭ for s ⊂ a♭ and t ⊂ b♭.

Recalling Explanation 5.6.14, the generating operations of

Ma⊗Mb

are of the form

ι⟨s⟩ ⊗ t ∈Ma(⟨s⟩ ; s′)× {t} and s⊗ ι⟨t⟩ ∈ {s}×Mb(⟨t⟩ ; t′)

where
● s ⊂ a♭, t ⊂ b♭,
● ⟨s⟩ is a partition of s′ inMa, and
● ⟨t⟩ is a partition of t′ inMb.

In this context we define partitions of s′ × t and s × t′ by, respectively,

⟨s⟩× t = ⟨si × t⟩i and s × ⟨t⟩ = ⟨s × tj⟩j.

Then we define∏a,b on generating operations by

ι⟨s⟩ ⊗ t ι⟨s⟩×t and s⊗ ι⟨t⟩ ιs×⟨t⟩.
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This assignment preserves the interchange relation of the tensor product as in
(5.6.16) because the two composites

(10.1.3)

⟨s⟩⊗ ⟨t⟩ s′ × ⟨t⟩

(s′, t′)

⟨s⟩⊗t ⟨t⟩ ⟨s⟩× t′

ι⟨s⟩ ⊗ ⟨t⟩

⟨s⟩⊗ ι⟨t⟩

s′ ⊗ ι⟨t⟩

ι⟨s⟩ ⊗ t′

are sent to
ι⟨s⟩⊗⟨t⟩ and ι⟨s⟩⊗t⟨t⟩,

respectively, and these are interchanged by the action of the transposition reindex-
ing denoted ξ⊗ in Definition 5.6.10 and Explanation 5.6.14.

The definition of ∏a,b descends to the smash product ofMa andMb because
the Cartesian product of any set with the empty set is again empty. Therefore, each
generating operation of the form

ι⟨s⟩ ×∅ or ∅× ι⟨t⟩

is sent to a partition of the empty set, the basepoint ofM(a ∧ b).
Each of the axioms in Definition 5.1.12 for F =∏a,b consists of diagrams where

either the common domain of the two composites is empty and there is nothing to
verify, or the common domain is a singleton and, therefore, so is each of the other
operation sets in the diagram. ◇
Lemma 10.1.4. The partition product components ∏a,b are natural with respect to mor-
phisms of pointed finite sets.

Proof. Suppose given pointed finite sets and morphisms

ψ ∶ a c and ϕ ∶ b d.

Recalling Proposition 8.4.7, we have

ψ̃ = ψ−1 ∶ 2c♭ 2a♭ and ϕ̃ = ϕ−1 ∶ 2d♭ 2b♭ .

The following diagram of sets commutes, where the horizontal morphisms are
given by Cartesian products of subsets.

2c♭ × 2d♭ 2(c∧d)♭

2a♭ × 2b♭ 2(a∧b)♭

−×−

−×−

ψ̃ × ϕ̃ ψ̃ ∧ ϕ

Therefore, the following diagram of multicategories commutes on objects.

(10.1.5)

Mc ×Md M(c ∧ d)

Ma ×Mb M(a ∧ b)

∏

∏

ψ̃ × ϕ̃ ψ̃ ∧ ϕ
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Commutativity of the above diagram on generating operations of the form

ι⟨s⟩ ∧ t or s ∧ ι⟨t⟩

follows, as for objects, because taking inverse images commutes with taking Carte-
sian products. This finishes the proof of naturality for∏. □

Proposition 10.1.6. The partition multicategoryM defines a symmetric monoidal func-
tor

(Fop,∧, 1) (Multicat∗,∧,S).

Proof. The unit constraint

(10.1.7) M0 ∶ S M1

is the pointed multifunctor determined by sending the unique object of I to {1} ⊂
1♭. The monoidal constraint is given by the composite of the partition product ∏
with the lexicographic isomorphisms

(10.1.8) M2
m,n ∶Mm ∧Mn

∏m,n M(m ∧ n) ≅M(mn).

Naturality ofM2 is given by that of∏ (Lemma 10.1.4).
The associativity axiom (1.1.9) forM2 =∏ is that the following diagram com-

mutes for each triple of objects ℓ, m, and n in F .

(10.1.9)

(Mℓ ∧Mm)∧Mn Mℓ ∧ (Mm ∧Mn)

M(ℓ ∧m)∧Mn

M((ℓ ∧m)∧ n)

Mℓ ∧M(m ∧ n)

M(ℓ ∧ (m ∧ n))

α

M(α−1)

∏∧ 1

∏

1∧∏

∏

Commutativity of the above diagram uses associativity of the Cartesian product
for subsets. Generating operations of the form

(ι⟨s⟩ ⊗ t)⊗ v, (s⊗ ι⟨t⟩)⊗ v, and ((s, t))⊗ ι⟨v⟩

are sent, via either composite of (10.1.9), to

ι⟨s⟩×(t×v), ιs×(⟨t⟩×v), and ιs×(t×⟨v⟩),

respectively.
The left unity axiom (1.1.10) follows because

∏1,n ∶M1∧Mn Mn

sends the object ({1}, s) to 1 × s ≅ s ⊂ n♭. The right unity axiom is similar. The
braiding axiom (1.1.18) follows by symmetry of the Cartesian product. □

Explanation 10.1.10. The monoidal constraintM2 determined by ∏ is generally
far from an isomorphism of pointed multicategories, and thusM is not strong as a
monoidal functor. This is the main reason for introducing the category G and the
construction T in Definition 10.3.1 below. ◇
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Explanation 10.1.11 (M1-modules). Since 1 is the monoidal unit in F , it follows
from Proposition 10.1.6 thatM1 is a commutative monoid in Multicat∗. The unit
morphism

η =M0 ∶ S M1

is the unit constraint (10.1.7). The multiplication morphism is given by

π =∏1,1 ∶M1∧M1 M1.

For each pointed finite set b, the partition product multifunctors

∏1,b ∶M1∧Mb M(1∧ b) ≅Mb

∏b,1 ∶Mb ∧M1 M(b ∧ 1) ≅Mb

makeMb a bimodule overM1. ◇
Definition 10.1.12. The 2-category of leftM1-modules, denoted ModM1, has ob-
jects and 1-cells given by modules and module morphisms as in Proposition 7.5.1.
ForM1-modules N and N′ together withM1-module morphisms

F, F′ ∶ N N′,

the set ofM1-module 2-cells consists of pointed multinatural transformations

θ ∶ F F′

such that the whiskerings indicated in the following diagram are equal, where µ
denotes the module structure for both N and N′.

(10.1.13)

M1∧N M1∧N′

N N′

1F

F
µ µ

1F′

F′

⇒

1θ

⇒

θ

Identities and compositions in ModM1 are given by those of Multicat∗.
We will use the same notation for the underlying 1-category of ModM1.

In Proposition 10.1.28 below we show that ModM1 is a full sub-2-category of
Multicat∗, with the same monoidal product. This defines a Cat∗-enriched symmet-
ric monoidal structure on ModM1 in Definition 10.1.36. ◇
Corollary 10.1.14. The category ofM1-modules is complete and cocomplete.

Proof. The result follows from Proposition 7.5.1 (2) together with Proposition 7.5.3
and Explanation 7.5.4. □

We will use the following special cases below.
Lemma 10.1.15. For each pointed finite set b, the partition products for 1 and b are
isomorphisms

∏1,b ∶M1∧Mb ≅ M(1∧ b) ≅Mb(10.1.16)

∏b,1 ∶Mb ∧M1 ≅ M(b ∧ 1) ≅Mb.
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Proof. We will show that ∏1,b is an isomorphism. The assertion for ∏b,1 then fol-
lows because M is symmetric monoidal (Proposition 10.1.6). If b = 0, there is
nothing to prove because both sides of (10.1.16) are isomorphic to the terminal
multicategory, T. For the remainder of the proof we assume that b has more than
one element.

For the remainder of this proof we write ∏ for ∏1,b. We recall and extend the
notation of Example 8.4.5 as follows for t ⊂ b♭.

● Let
(t)nj = (∅, . . . , t, . . . ,∅)

denote the n-tuple with all entries ∅ except for t in position j.
● Let (∅)n denote the n-tuple with all entries ∅.
● For b = 1, let (1)nj = ({1})

n
j .

● The nonempty sets of operations inM1 are singletons

M1((∅)n ; ∅) = {ιn}
M1((1)nj ; {1}) = {πn

j }.

We will also write πn
j (1) = πn

j .
● Define operations ιn and πn

j (t) inMb as

Mb((∅)n ; ∅) = {ιn}
Mb((t)nj ; t) = {πn

j (t)}.

● We use ∧ instead of ⊗ to denote operations inM1∧Mb.
The definition of∏ via Cartesian products of subsets shows that it is bijective

on objects. The nontrival generating operations of M1 ∧Mb, and their images
under∏, are

{1}∧ ι⟨u⟩ ι⟨u⟩ for ⟨u⟩ a partition of u′ ⊂ b♭

and

πn
j (1)∧ t πn

j (t) for t ⊂ b♭.

This shows that∏ is surjective on operations. To show that∏ is injective on oper-
ations, we need to show

(10.1.17) πn
j (1)∧ t = {1}∧πn

j (t) for 1 ≤ j ≤ n and t ⊂ b♭.

Using the interchange relation (10.1.3) inM1⊗Mb with

⟨s⟩ = (1)nj s′ = {1} ι⟨s⟩ = πn
j (1)

⟨t⟩ = (t)nj t′ = t ι⟨t⟩ = πn
j (t),

we see that the composites below are identified under the action of ξ⊗.

(10.1.18)

(1)nj ⊗ (t)
n
j {1}× (t)nj

({1}, t)

(1)nj ⊗
t (t)nj (1)nj × t

πn
j (1)⊗ (t)

n
j

(1)nj ⊗πn
j (t)

{1}⊗πn
j (t)

πn
j (1)⊗ t
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Descending to the smash productM1∧Mb, each of the leftmost tuples of objects
is sent to the n2-tuple whose only non-basepoint entry is ({1}, t) in position

n(j − 1)+ j ∈ n ⋅ n (j, j) ∈ n × n,

with the correspondence given by the lexicographic ordering (Definition 8.1.5).
The other entries are basepoints, using the equalities

({1},∅) = (∅,∅) = (∅, t)
in the smash product. Likewise, when descending toM1∧Mb, the upper middle
and lower middle objects are both sent to the n-tuple whose only non-basepoint
entry is ({1}, t). Letting

(1, t)n
2

n(j−1)+j and (1, t)nj
denote these tuples, (10.1.18) becomes the following inM1∧Mb, where we use ∧
in place of ⊗ and ×.

(10.1.19)

(1)nj ∧ (t)
n
j {1}∧ (t)nj

({1}, t)

(1)nj ∧
t (t)nj (1)nj ∧ t

(1, t)n
2

n(j−1)+j
(1, t)nj

πn
j (1)∧ (t)

n
j

(1)nj ∧πn
j (t)

{1}∧πn
j (t)

πn
j (1)∧ t

The two composites in (10.1.19) are equal by the interchange relation. For (10.1.17),
we need to show that the two rightmost operations are equal.

To continue on, we make the following simplifications and notation.
● By equivariance inM1∧Mb, it suffices to prove (10.1.17) in the case j = 1.
● To avoid confusion with some additional notation below, we let s = {1},
(s)nj = (1)

n
j , and πn

j (s) = πn
j (1).

● We let P =M1∧Mb.
● To denote the basepoint of P, we use

∗ = (∅,∅) = (s,∅) = (∅, t).
● We let (∗)n denote the n-tuple in P whose entries are all basepoints.
● The operations ιn ∧ t, ιn ∧∅, s∧ ιn, and ∅∧ ιn are basepoint operations and

hence are all equal in P. We let ιnP denote this operation, so

(10.1.20) ιnP = ιn ∧ t = ιn ∧∅ = s ∧ ιn = ∅∧ ιn ∈ P((∗)n ; ∗).
● We let

γ(ϕ ; ψ1, . . . , ψm) = ϕ ○ ⟨ψ⟩
denote composition of an m-ary operation ϕ with an m-tuple of opera-
tions ⟨ψ⟩ in P.
● We use γM1 and γMb similarly to denote composition in the indicated

multicategories.
Now we show (10.1.17) in the case j = 1 and n = 2. We will use each of the

following computations.
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● In P((s, t) ; (s, t))we have

(10.1.21) γ(π2
1(s)∧ t ; 1(s,t) , ι0 ∧ t) = γM1(π2

1(s) ; 1s , ι0)∧ t = 1s ∧ t = 1(s,t)

because −∧ t is a multifunctor fromM1 to P.
● In P((∅,∅) ; (s,∅)) = P(∗ ; ∗)we have

(10.1.22) γ(π2
1(s)∧∅ ; s ∧ ι0 , 1(∅,∅)) = γ(ι2P ; ι0P , ι1P) = 1∗

because π2
1(s)∧∅ is equal to ι2P.

● In P((s, t) ; (s, t))we have

(10.1.23) γ(s ∧π2
1(t) ; 1(s,t) , s ∧ ι0) = s ∧ γMb(π2

1(t) ; 1t , ι0) = s ∧ 1t = 1(s,t)

because s ∧− is a multifunctor fromMb to P.
● In P((∅,∅) ; (∅, t)) = P(∗ ; ∗)we have

(10.1.24) γ(∅∧π2
1(t) ; ι0 ∧ t, 1(∅,∅)) = γ(ι2P ; ι0P, ι1P) = ι1P = 1∗

because ∅∧π2
1(t) is equal to ι2P.

Next, we apply the above computations:

s ∧π2
1(t) = γ(s ∧π2

1(t) ; 1(s,t) , 1∗)
by right unity (5.1.5) in P

= γ(s ∧π2
1(t) ; γ(π2

1(s)∧ t ; 1(s,t) , ι0 ∧ t) , γ(π2
1(s)∧∅ ; s ∧ ι0 , 1(∅,∅)))

by (10.1.21) and (10.1.22)

= γ(γ(s ∧π2
1(t) ; π2

1(s)∧ t , π2
1(s)∧∅) ; 1(s,t) , ι0 ∧ t , s ∧ ι0 , 1(∅,∅))

by associativity (5.1.4) in P

= γ(γ(π2
1(s)∧ t ; s ∧π2

1(t) , ∅∧π2
1(t)) ; 1(s,t) , s ∧ ι0 , ι0 ∧ t , 1(∅,∅))

by interchange (10.1.19) and ι0P equalities (10.1.20)

= γ(π2
1(s)∧ t ; γ(s ∧π2

1(t) ; 1(s,t) , s ∧ ι0) , γ(∅∧π2
1(t) ; ι0 ∧ t , 1(∅,∅)))

by associativity (5.1.4) in P

= γ(π2
1(s)∧ t ; 1(s,t) , 1∗)

by (10.1.23) and (10.1.24)

= π2
1(s)∧ t

by right unity (5.1.5) in P.

This proves (10.1.17) in the case j = 1 and n = 2.
For j = 1 and n ≥ 3 we note

πn
1 (s) = γM1(π2

1(s) ; π2
1(s) , ιn−2) in M1(s,∅, . . . ,∅

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
(n−1)

; s)(10.1.25)

and

πn
1 (t) = γMb(π2

1(t) ; π2
1(t) , ιn−2) in Mb(t,∅, . . . ,∅

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
(n−1)

; t).(10.1.26)
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Then, using the composites above and (10.1.17) for n = 2 we have

s ∧πn
1 (t) = s ∧ γMb(π2

1(t) ; π2
1(t) , ιn−2)

by (10.1.26)

= γ(s ∧π2
1(t) ; s ∧π2

1(t) , s ∧ ιn−2)
by multifunctoriality of s ∧−

= γ(π2
1(s)∧ t ; π2

1(s)∧ t , ιn−2 ∧ t)
by the case n = 2 and ιnP equalities (10.1.20)

= γM1(π2
1(s) ; π2

1(s) , ιn−2)∧ t
by multifunctoriality of −∧ t

= πn
1 (s)∧ t

by (10.1.25).

This proves (10.1.17) in the case j = 1 and n ≥ 3. The case for general j follows by
equivariance. This finishes the proof that ∏1,b is injective on operations, and thus
finishes the proof that∏1,b is an isomorphism of pointed multicategories. □

As a special case of Lemma 10.1.15, the multiplication for M1 is an isomor-
phism

(10.1.27) M1∧M1 ≅ M1.

This implies the following. See Note 10.8.4 for discussion of more general cases.
Proposition 10.1.28.

(1) Suppose N is a leftM1-module in Multicat∗. Then the structure morphism

µ ∶M1∧N N

is an isomorphism with inverse given by the unit

N
λ−1

≅ S∧N
η ∧ 1

M1∧N

where λ is the left unit isomorphism for ∧ and η =M0 is the unit forM1.
(2) Similarly, the structure morphism for a right module is an isomorphism with

inverse given by (1∧ η) ○ ρ−1, where ρ is the right unit isomorphism for ∧.
(3) Each small pointed multicategory N admits at most one leftM1-module struc-

ture and one rightM1-module structure.
(4) The 2-category of left, respectively right,M1-modules is a full sub-2-category of

Multicat∗.
(5) For a leftM1-module (N, µN) and a rightM1-module (P, µP), the two mor-

phisms in Multicat∗

(10.1.29) (P∧M1)∧N P∧N
µP ∧ 1

(1∧ µN) ○ α

are equal and so the canonical morphism to the coequalizer

P∧N P∧M1 N

is an isomorphism in Multicat∗.
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Proof. Let

η =M0 ∶ S M1 and π =∏1,1 ∶M1∧M1 M1

denote the unit and multiplication morphisms, respectively, for M1. As stated
above, π is an isomorphism by Lemma 10.1.15 with b = 1. The left and right unit
diagrams for η and π are the following

(10.1.30)

S∧M1 M1∧ SM1∧M1

M1

η ∧ 1 1∧ η

π≅
λ ρ

We note, therefore, that (η ∧ 1) and (1∧ η) in the above diagram are both isomor-
phisms.

To show (1), suppose N is a leftM1-module. Applying (−∧N) to (10.1.30) and
using the inverse of (1∧ η), we obtain the upper region of the following diagram.
In this diagram we write

A =M1

and α denotes the associativity isomorphism for ∧. Here and below we write ∧ as
juxtaposition to save space.

(10.1.31)

(SA)N (AA)N (AS)N

S(AN) A(AN) A(SN)

AN

AN

N SN AN

λ1 (ρ1)−1

(η1)1 ((1η)1)−1

α α α

η(11) (1(η1))

(λ1)−1

(λAN)
−1

µ 1µ 1µ
1λ

λ−1 η1

In the above diagram, the uppermost region commutes by (10.1.30). The triangle
and two squares on the middle row commute by (1.1.5) and naturality of α. On the
bottom row, the leftmost square commutes by naturality of λ and the remaining
square commutes by functoriality of ∧. The remaining triangle commutes by the
unit condition for left module structure on N.

Now the composite in (10.1.31) from the leftmost vertex AN around the top
and right to the bottom right vertex AN is an identity by invertibility of λ and the
middle unity axiom (1.1.2). This shows that the composite

AN
µ

N
λ−1

SN
η1

AN
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is the identity. The reverse composite

N
λ−1

SN
η1

AN
µ

N

is the identity by the left unit condition for N. This completes the proof of (1). The
corresponding calculation for right module structure shows (2).

The remaining parts of this proof follow from (1) and (2). For assertion (3),
suppose

µ, µ′ ∶M1∧N N

are the multiplication morphisms for two left module structures on N. Then by (1)
both µ and µ′ are isomorphisms with inverse given by the composite

(η ∧ 1) ○ λ−1 ∶ N M1∧N.

Therefore µ = µ′. This proves the uniqueness of left module structures. A similar
argument using (2) proves the uniqueness of right module structures.

Now we show that assertion (4) for left modules follows from (1). A similar
argument shows that the assertion for right modules follows from (2). By (3) the
forgetful 2-functor U from left M1-modules to pointed multicategories is injec-
tive on objects. The forgetful 2-functor U is faithful on 1- and 2-cells because each
left-module multifunctor and multinatural transformation is determined by its un-
derlying data in Multicat∗. Thus the 2-category of left M1-modules is identified
with a sub-2-category of Multicat∗.

Now suppose that N and N′ are leftM1-modules and suppose that

F ∶ N N′ in Multicat∗

is a pointed multifunctor. Naturality of λ and η implies that the following outer
diagram commutes.

(10.1.32)

AN AN′

N N′

1F

F

µ µ(η1) ○ λ−1 (η1) ○ λ−1

By (1), the two morphisms in each column are inverses and so the innermost di-
agram also commutes. Thus F is an module morphism for A = M1. The same
argument for pointed multinatural transformations

θ ∶ F F′

shows that the whiskerings indicated in the diagram below are equal, and hence
θ is an module 2-cell for A =M1.

(10.1.33)

AN AN′

N N′

1F

F
µ µ

1F′

F′

⇒

1θ

⇒

θ
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Now we show that assertion (5) follows from (1) and (2). Again using natural-
ity of α and middle unity, we have

((1η)1) ○ (ρ−11) = (α−1 ○ (1(η1)) ○ (1λ−1)).

By (1) and (2), this provides a common inverse for the two morphisms in (10.1.29).
□

Explanation 10.1.34. Lemma 10.1.15 for b /= 1 follows from Proposition 10.1.28.
However, the case b = 1 is required for the proof of Proposition 10.1.28. ◇

The unit
η =M0 ∶ S M1

is not an isomorphism. However, if N has a left M1-module structure, then
(η ∧ 1N) is an isomorphism by Proposition 10.1.28 (1). Similarly, by Proposi-
tion 10.1.28 (2), (1N ∧ η) is an isomorphism if N has a rightM1-module structure.
In Proposition 10.2.1 we show that the converse statements hold.

Explanation 10.1.35 (Sub 2-Category ofM1-Modules). For a commutative monoid
A in a symmetric monoidal category C, the category of left A-modules is generally
not a subcategory of C because a given object of C may admit several distinct
A-module structures. The multiplication and unit are additional data of an A-
module. For A =M1, Proposition 10.1.28 shows that

● anM1-module structure on N is unique if it exists and
● pointed multifunctors and pointed multinatural transformations are au-

tomatically compatible with such module structures.

Thus ModM1 is identified with a full sub-2-category of Multicat∗.
Part (5) of Proposition 10.1.28 shows that the smash product ofM1-modules is

naturally isomorphic to the underlying smash product of pointed multicategories.
In Definition 10.1.36 we use this to define the enriched symmetric monoidal struc-
ture of ModM1. ◇

Recall the descriptions of (Multicat,⊗) and (Multicat∗,∧) as symmetric Cat-
monoidal 2-categories from Theorems 6.4.3 and 6.4.4, respectively. By Proposi-
tion 10.1.28, the same verification of 2-naturality for the symmetric monoidal data
applies to the sub-2-category of leftM1-modules in Multicat∗. We extend Defini-
tion 10.1.12 as follows.

Definition 10.1.36. Let
(ModM1,∧,M1)

denote the full Cat∗-enriched subcategory of leftM1-modules in Multicat∗, with
hom categories

ModM1(N,N′) =Multicat∗(N,N′).
By Proposition 10.1.28, the smash product and symmetry of (Multicat∗,∧) restrict
to ModM1. WithM1 as monoidal unit and unit isomorphisms given by the mod-
ule structure and symmetry, these data make (ModM1,∧) a symmetric monoidal
Cat∗-category. Each of the axioms of Definition 1.4.13 for ModM1 follows from the
corresponding axioms for Multicat∗ because the forgetful inclusion

(10.1.37) ModM1 Multicat∗
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is faithful on 2-cells. With this structure, the inclusion (10.1.37) is a symmetric
monoidal Cat∗-functor whose monoidal constraint is the identity and whose unit
constraint is given by

η =M0 ∶ S M1. ◇

10.2. Characterization ofM1-Modules

As noted in Explanation 10.1.11,Mn is a bimodule overM1 for each n inF . In
Propositions 10.2.1 and 10.2.7 we give characterizations ofM1-module structure.
We use these to discuss further examples.
Proposition 10.2.1. A pointed multicategory N is a leftM1-module if and only if

S∧N
η ∧ 1

M1∧N
is an isomorphism. Similarly, N is a rightM1-module if and only if 1 ∧ η is an isomor-
phism.

Proof. We show that the statement for left modules follows from part (1) of Propo-
sition 10.1.28 and the unit properties of the smash product ∧. The statement for
right modules follows likewise from Proposition 10.1.28 (2).

If N is a leftM1-module, then η∧1 is an isomorphism by Proposition 10.1.28 (1).
For the converse, suppose that η ∧ 1 is an isomorphism and define a multiplication
µ as the composite

M1∧N

S∧N

N

(η ∧ 1)−1 λ

µ

Commutativity of the unity diagram of Definition 7.4.2 for µ is equivalent to that
of the above diagram defining µ.

Commutativity of the associativity diagram for µ follows from commutativity
of the outer diagram below, where we write ∧ as juxtaposition, A =M1, and π =
Π1,1 is the monoid multiplication forM1.

(AA)N A(AN)

(AS)N A(SN)

AN

α

α

(1η)−11 1(η1)−1

ρ1 1λ
π1 1µ

In the above diagram, the upper trapezoid commutes by naturality of the associa-
tivity isomorphism α. The inner triangle commutes by the unity axiom (1.1.2) for
∧. The region at left commutes by the right unit axiom for π and the region at right
commutes by the definition of µ. Therefore the outer diagram commutes. □
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By Proposition 10.2.1, one way to check that an object P in Multicat∗ is not a left
M1-module is to check that η ∧ 1P is not an isomorphism, and likewise for right
M1-modules.

Example 10.2.2. Consider the monoidal unit (5.6.22)

S = I∐T.

By naturality of the right unitor, (η ∧ 1S) is an isomorphism if and only if η is so.
Since η is not an isomorphism, then neither is (η ∧ 1S). Therefore, by Proposi-
tion 10.2.1, S does not have a leftM1-module structure. Likewise S does not have
a right module structure overM1. See Example 10.2.16 for a separate argument
regarding the non-existence ofM1-module structure for S. ◇

Uniqueness of the module structures in Proposition 10.1.28 implies the follow-
ing.
Corollary 10.2.3. Each pointed multicategory P is a left M1-module if and only if it
is a rightM1-module. In this case, the left and right module actions commute with the
symmetry of ∧ as in the following diagram.

M1∧P P∧M1

P

β

Proof. By naturality of the symmetry isomorphism for ∧, we have that (η ∧ 1P) is
an isomorphism if and only if (1P ∧ η) is so. By Propositions 10.1.28 and 10.2.1
these determine unique left- and right-module structures. □

In the discussion below we use the following notation from Example 8.4.5:

M1(⟨∅⟩ ; ∅) = {ιn}
M1((∅, . . . ,{1}, . . . ,∅) ; {1}) = {πn

j }

for n ≥ 0 and 1 ≤ j ≤ n. The input of ιn above is the constant n-tuple whose entries
are all the basepoint. The input of πn

j above consists of a length-n tuple whose
only non-basepoint entry is {1} in position j. We will also use

ιn ∈ T(⟨∗⟩ ; ∗)

to denote the unique n-ary operation in the terminal multicategory T, and the
unique n-ary basepoint operation in any pointed multicategory.
Lemma 10.2.4. Suppose P is a pointed multicategory with composition γ. A pointed
multifunctor

F ∶M1 P

is uniquely determined by
● an object x = F{1} and
● an operation π2

1(x) = Fπ2
1

such that
γ(π2

1(x) ; 1x, ι0) = 1x.
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Proof. Since F is a pointed multifunctor, we have

F∅ = ∗ and Fιn = ιn ∈ P(⟨∗⟩ ; ∗)
where ∗ denotes the basepoint of P. We let

x = F{1} ∈ P.

The nontrivial operations ofM1 are πn
j . By equivariance, the value of F on each

πn
j is determined by that of πn

1 . Furthermore, for n ≥ 3 we have

πn
1 = γM1(π2

1 ; π2
1 , ιn−2) in M1({1},∅, . . . ,∅

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
(n−1)

; {1}).

Therefore, by multifunctoriality of F, each Fπn
1 is determined by Fπ2

1. We define

π2
1(x) = Fπ2

1 ∈ P(x,∗ ; x).
Lastly, we also have

1{1} = γM1(π2
1 ; 1{1} , ι0) in M1({1} ; {1}).

Applying F and using multifunctoriality together with preservation of basepoint
operations, we have

1x = 1F{1} = F(1{1}) = F(γM1(π2
1 ; 1{1} , ι0))

= γ(Fπ2
1 ; F(1{1}) , F(ι0))

= γ(π2
1(x) ; 1x , ι0). □

Lemma 10.2.5. Suppose (C,⊕, e) is a small permutative category and suppose End(C)
is equipped with its canonical basepoint, e. There is a natural isomorphism of pointed
categories

(10.2.6) Multicat∗(M1,End(C)) ≅ (C, e)

Proof. With the canonical basepoint e, the n-ary basepoint operations ιn of End(C)
are given by 1e viewed as morphisms

e =
n
⊕
i=1

e
1e e.

By Lemma 10.2.4, a pointed multifunctor

F ∶M1 End(C)
is determined by

x = F{1} and π2
1(x) = Fπ2

1 ∈ End(C)(x, e ; x) = C(x⊕ e, x)

such that the composite of π2
1(x)with

ι0 = 1e ∈ End(C)(⟨⟩ ; e) = C(e, e) and 1x ∈ End(C)(x ; x) = C(x, x)
is the identity on x. This means that the composite

x⊕ e
1x ⊕ 1e x⊕ e

π2
1(x) x

is equal to 1x.
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Therefore, we must also have π2
1(x) = 1x and hence F is determined uniquely

by x = F{1}. A pointed multinatural transformation

θ ∶ F G in Multicat∗(M1,End(C))
is likewise completely determined by the component morphism in C

θ{1} ∶ F({1}) G({1}).
Since identity morphisms and composition in Multicat∗(M1,End(C)) are de-

fined in C, this gives the isomorphism (10.2.6). Naturality in C follows by con-
struction. □

Proposition 10.2.7. Suppose P is a pointed multicategory with basepoint ∗. Then a left
M1-module structure on P

µ ∶M1∧P P.
determines and is uniquely determined by operations

π2
1(a) ∈ P(a,∗ ; a) for a ∈ ObP

such that the following basepoint, unit, and interchange conditions hold for objects a in
ObP and operations ϕ in P(⟨b⟩ ; a) with ⟨b⟩ = (b1, . . . , bm).

π2
1(∗) = ι2 in P(∗,∗ ; ∗)(10.2.8)

γ(π2
1(a) ; 1a, ι0) = 1a in P(a ; a)(10.2.9)

γ(ϕ ; ⟨π2
1(bj)⟩j) = γ(π2

1(a) ; ϕ, ιm) ⋅ ξ⊗2,m in P(b1,∗, . . . , bm,∗ ; a)(10.2.10)

Proof. Suppose P is a leftM1-module with multiplication µ. Then µ is
● a pointed multifunctor and
● a unital multiplication.

Therefore, µ must give the following assignments for an object a and an m-ary
operation ϕ in P:

(∅, a) ∗ ιn ∧ a ιn ∅∧ ϕ ιm

({1}, a) a πn
j ∧ a πn

j (a) = µ(πn
j ∧ a) {1}∧ ϕ ϕ

where we take µ(πn
j ∧ a) as the definition of πn

j (a).
The basepoint condition (10.2.8) follows because µ is a pointed multifunctor.

Now each µ(− ∧ a) is a pointed multifunctor fromM1 to P and so Lemma 10.2.4
implies the following.

● The operations πn
j (a) are determined via equivariance by πn

1 (a).
● The operations πn

1 (a) for n ≥ 3 are determined by

π2
1(a) ∈ P(a,∗ ; a).

● The operation π2
1(a) satisfies the unit condition (10.2.9).

For each m-ary operation
ϕ ∈ P(⟨b⟩ ; a)

the compatibility of µ with composition means that the two sides of (10.2.10) can
be rewritten as

(10.2.11) γ(ϕ ; ⟨π2
1(bj)⟩j) = γ(µ({1}∧ ϕ) ; µ(π2

1 ∧ ⟨b⟩)) = µ(π2
1 ∧ ϕ)
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and

(10.2.12) γ(π2
1(a) ; ϕ, ιm) = γ(µ(π2

1 ∧ a) ; µ(({1},∅)∧ ϕ)) = µ(π2
1 ∧t ϕ).

Thus, the interchange relation (5.6.15) in M1 ∧ P implies the interchange condi-
tion (10.2.10). This finishes the proof that a leftM1-module structure determines
operations satisfying the indicated conditions.

Conversely, suppose given operations π2
1(a) for each a in ObP, satisfying the

three conditions (10.2.8) through (10.2.10). By Lemma 10.2.4, the unit conditions
(10.2.9) imply that each π2

1(a) determines a pointed multifunctor

µa ∶M1 P.

We let
● µ(∅,−) be the constant pointed multifunctor at ∗ ∈ P,
● µ({1},−) be the identity pointed multifunctor on P, and
● µ(−, a) = µa for each object a of P.

By Explanation 5.6.9 this defines a pointed multifunctor

µ ∶M1 #P P.

Next, because the operations µ(πn
j ∧ a) in P are determined by multifunctorial-

ity and the operations µ(π2
1 ∧ a), the interchange conditions (10.2.10) imply, via the

equalities (10.2.11) and (10.2.12), that µ satisfies the interchange condition (5.6.16)
of Explanation 5.6.14. Thus µ descends toM1⊗P. Finally, µ descends toM1 ∧P
by the basepoint condition (10.2.8).

We have shown that the three conditions in the statement determine a pointed
multifunctor

µ ∶M1∧P P.
To see that µ is a leftM1-module multiplication, we will apply Proposition 10.2.1
together with parts (1) and (3) of Proposition 10.1.28. For this purpose, observe
that each of the composites

P
λ−1

S∧P
η ∧ 1P M1∧P

µ
P

and

M1∧P
µ

P
λ−1

S∧P
η ∧ 1P M1∧P

is the identity. The key step, as in the proof of Lemma 10.1.15, is the equality

{1}∧π2
1(a) = π2

1 ∧ a in M1∧P.

The above equality is given by the following computation, generalizing that of
Lemma 10.1.15 from the case P =Mb:

{1}∧π2
1(a) = γ(γ({1}∧π2

1(a) ; π2
1 ∧ a , π2

1 ∧∗) ; 1({1}, a) , ι0 ∧ a , {1}∧ ι0 , 1(∅,∗))
by multifunctoriality of −∧ a

= γ(γ(π2
1 ∧ a ; {1}∧π2

1(a) , ∅∧π2
1(a)) ; 1({1}, a) ,{1}∧ ι0 , ι0 ∧ a , 1(∅,∗))

by interchange inM1∧P
= π2

1 ∧ a

by multifunctoriality of {1}∧−.



10.2. CHARACTERIZATION OF M1-MODULES III.379

For n ≥ 3 we have

πn
1 = γ(π2

1 ; π2
1 , ιn−2) in M1({1},∅, . . . ,∅

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
n−1

; {1})

and, by definition of µ, we have

πn
1 (a) = µ(πn

1 ∧ a) = γ(π2
1(a) ; π2

1(a) , ιn−2) in P(a,∗, . . . ,∗
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

n−1

; a).

Therefore, again following the proof of Lemma 10.1.15, this implies

πn
j ∧ a = {1}∧πn

j (a)

for n ≥ 2 and 1 ≤ j ≤ n.
This shows that µ is an isomorphism with inverse (η ∧ 1) ○ λ−1. Therefore, by

Proposition 10.2.1 together with parts (1) and (3) of Proposition 10.1.28, µ is the
multiplication for the unique leftM1-module structure on P. □

Definition 10.2.13. Suppose (C,⊕, e) is a small permutative category and End(C)
is equipped with its canonical basepoint, e. Then the canonical (left) M1-module
structure on End(C) is

µ ∶M1∧End(C) End(C)
given as follows for objects a in C and morphisms f in End(C).

(∅, a) e ιn ∧ a ιn = 1e ∅∧ f 1e

({1}, a) a πn
j ∧ a 1a {1}∧ f f

Since e is a strict unit for C, the composite

a = a⊕ e
1a ⊕ 1e a⊕ e = a

1a a

is equal to the identity on a. The interchange relation (10.2.10) holds for each op-
eration f because both sides are equal to f . By Proposition 10.2.7 this uniquely
determines a leftM1-module structure on End(C). ◇
Lemma 10.2.14. Taking the canonical module structures of Definition 10.2.13, End fac-
tors as a Cat-enriched multifunctor through ModM1:

End ∶ PermCatsu ModM1 Multicat∗.

Proof. The canonical module structure on End(C) for each small permutative
category C is given by Definition 10.2.13. By Proposition 10.1.28 and Defini-
tion 10.1.36 the multifunctors and multinatural transformations of ModM1 are
those of Multicat∗. Moreover, the monoidal product and braiding of ModM1 are
those of Multicat∗. Hence, for n > 0, the n-ary operations of ModM1 and their per-
mutation actions are identified with those of Multicat∗ by Proposition 10.1.28 (4)
and Definition 10.1.36.

For n = 0, the monoidal unit of ModM1 isM1 and hence a 0-ary operation of
ModM1 is given by a pointed multifunctor out ofM1. In contrast, each 0-ary oper-
ation of Multicat∗ is given by a pointed multifunctor out of S. On 0-ary operations,
the inclusion

ModM1 Multicat∗
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is given by composition along the unit

η ∶ S M1.

For a small permutative category C, this composition induces a natural isomor-
phism of pointed categories

ModM1(M1,End(C)) =Multicat∗(M1,End(C)) ≅Multicat∗(S,End(C))

by Lemma 10.2.5.
These observations show that End factors through ModM1 as an assignment

on objects and n-ary operations for each n ≥ 0. The Cat∗-enriched multifunctor
axioms for End hold in ModM1 since the inclusion into Multicat∗ is injective on
2-cells. The Cat-enrichment is obtained by forgetting basepoint objects, that is,
multifunctors that factor through T. □

Example 10.2.15 (Non-examples of M1-modules). We use Proposition 10.2.7 to
give a class of pointed multicategories that are not left M1-modules. A similar
calculation shows that they also are not rightM1-modules.

Suppose (D,⊡, e, T) is a small permutative category with null object T /= e as
basepoint. Recall from Definition 4.3.3 that being null means T is both initial and
terminal and, moreover, is fixed by the monoidal product of D. We note two spe-
cific cases of interest:

● (F ,∧, 1, 0) (Explanation 8.1.6) and
● (G,⊕, ⟨⟩,∗) (Proposition 9.1.14).

Let End(D) be the endomorphism multicategory of D, but equipped with T as
its basepoint instead of the monoidal unit e. Thus the nullary basepoint operation

ι0 ∈ D(e, T)

is given by the unique morphism to T.
If

µ ∶M1∧End(D) End(D)
is a leftM1-module structure, then by Proposition 10.2.7 we must have, for each
object a of D, an operation

π2
1(a) ∈ End(D)(a, T ; a) = D(a⊡ T, a)

such that the composite with ι0 and 1a is the identity on a, as in (10.2.9). The
composition in End(D) is given by that of D, and because T is null any composite

a⊡ e
1a ⊡ ι0

a⊡ T
π2

1(a) a

is equal to the zero morphism of a. If a is not the basepoint T, this cannot be the
identity morphism of a. Therefore, End(D) equipped with T as its basepoint is not
a leftM1-module. ◇
Example 10.2.16 (Further Non-examples ofM1-modules). If Q is a nonempty mul-
ticategory and P = Q+ is the pointed multicategory obtained by adjoining a disjoint
basepoint, then P cannot be a left (or right)M1-module because, for any object a
in Q, the set of operations

P(a,∗ ; a)
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is empty. Hence there cannot be any operation π2
1(a) as required by Proposi-

tion 10.2.7. In particular, the monoidal unit (5.6.22)

S = I∐T

cannot be a left (or right)M1-module. ◇
Proposition 5.7.23 shows that the smash product for small pointed multicat-

egories does not restrict, along End, to define a symmetric monoidal structure on
the category PermCatsu. The proof there proceeds by showing that there is no per-
mutative category J such that

End(J) = S,

the monoidal unit for Multicat∗. However, Example 10.2.16 shows that S is not
a left M1-module. Moreover, Lemma 10.2.14 shows that End factors as a Cat-
enriched multifunctor

PermCatsu
End

ModM1 .

Now we show that this still does not provide a symmetric monoidal structure on
PermCatsu.

Proposition 10.2.17. The symmetric monoidal structure on ModM1 does not restrict to
a symmetric monoidal structure on PermCatsu.

Proof. Suppose to the contrary that the symmetric monoidal structure on ModM1

restricts to a symmetric monoidal structure on PermCatsu. Then there exists a per-
mutative category C with two objects {e, x} such that

End(C) ≅M1,

the monoidal unit in ModM1, as a pointed multicategory, with {e, x} corresponding
to the objects {∅,{1}} inM1. Since

C(x, x) /= ∅

and

∅ =M1({1},{1} ; {1})
= End(C)(x, x ; x) = C(x⊕ x, x),

we have that x⊕ x /= x. So x⊕ x = e, which implies

∅ /= C(x, x) = C(x⊕ e, x) = C(x⊕ x⊕ x, x)
= End(C)(x, x, x ; x)
=M1({1},{1},{1} ; {1}).

This contradicts the definition ofM1. □

The following results describe a closed structure for ModM1. Recall from Defi-
nition 5.7.17 the pointed hom for small pointed multicategories.

Lemma 10.2.18. For M ∈ Multicat∗ and N ∈ ModM1, the pointed hom multicategory,
Hom∗(M,N), is anM1-module.
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Proof. TheM1-module structure morphism for Hom∗(M,N),

M1∧Hom∗(M,N) Hom∗(M,N),

is adjoint to the composite

(10.2.19)
(M1∧Hom∗(M,N))∧M

M1∧ (Hom∗(M,N)∧M) M1∧N

N

≅
1∧ ev

where the first isomorphism is the associativity of ∧, the second is given by the
evaluation for Hom∗, and the third is theM1-module structure of N.

Then the M1-module axioms for Hom∗(M,N) follow from (10.2.19) and the
M1-module axioms for N. □

Explanation 10.2.20 (Module Structure of Hom∗(M,N)). The characterization of
M1-modules in Proposition 10.2.7 gives an alternative explanation of the M1-
module structure on Hom∗(M,N) in Lemma 10.2.18. For each pointed multifunctor

F ∈ Hom∗(M,N),

the requisite operation π2
1(F) is a pointed transformation defined by components

(10.2.21) (π2
1(F))c = π2

1(Fc) ∈ N(Fc,∗ ; Fc),

where the right hand side of the equality is the operation determined by theM1-
module structure on N. To show that (10.2.21) defines a pointed transformation
satisfying the basepoint, unit, and interchange conditions of Proposition 10.2.7,
one uses the fact that F is pointed, together with the corresponding conditions
componentwise in N. ◇
Proposition 10.2.22. The category ModM1 is complete, cocomplete, symmetric monoidal,
and closed. The product and internal hom are given by those of (Multicat∗,∧,Hom∗).

Proof. Corollary 10.1.14 shows that ModM1 is complete and cocomplete. Defi-
nition 10.1.36 describes the symmetric monoidal structure of ModM1. For small
pointed multicategories M, N, and P, Lemma 10.2.18 shows that the pointed hom
multicategory, Hom∗(M,N), is anM1-module. Recall also from Definition 10.1.36
that ModM1 is full as a subcategory of Multicat∗; this gives the first and final iso-
morphisms below. Then we have the following, with the second isomorphism
from the closed structure of Multicat∗, as in Proposition 5.7.13 and Theorem 5.7.22,
and the third isomorphism induced by that of Proposition 10.1.28 (5):

ModM1 (M,Hom∗(N,P)) ≅Multicat∗(M,Hom∗(N,P))
≅Multicat∗(M∧N,P)
≅Multicat∗(M∧M1 N,P)
≅ModM1 (M∧M1 N,P).

A similar treatment shows

ModM1 (M∧M1 N,P) ≅ModM1 (N,Hom∗(M,P)).

These isomorphisms provide the closed structure for ModM1. □
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Explanation 10.2.23. Recall, from Explanation 5.7.5, that the underlying category
of unary operations in each hom object Hom(M,N) gives the Cat-enrichment of
Multicat. The same reasoning shows that the Cat∗-enrichment of ModM1, in Def-
inition 10.1.36, is given by the underlying categories of the internal hom objects
Hom∗(M,N). ◇

10.3. Elmendorf-Mandell J-Theory and K-Theory

Now we turn to a second K-theory construction, with tuples of finite sets in
place of individual finite sets. While moderately more complex, it will yield equiv-
alent symmetric spectra. The additional structure present in G∗-categories will
allow us to express the additional multiplicative structure present in ring, biper-
mutative, braided ring, and En-monoidal categories.
Definition 10.3.1. Suppose ⟨a⟩ = (a1, . . . , aq) is a tuple of pointed finite sets. Let
T ⟨a⟩ denote the smash product of pointed multicategories

T ⟨a⟩ =
q

⋀
k=1
Mak

with respect to the basepoints
∅ ∈Mak.

We let ∅ also denote the basepoint object of T ⟨a⟩. For the empty tuple we define

T ⟨⟩ =M1. ◇
Explanation 10.3.2. Recalling Proposition 10.1.28 (5), T ⟨a⟩ is equivalently defined
as the smash product ofMak as leftM1-modules, takingM1 for the empty smash
product of such. ◇

Recall from Definition 10.1.36 that we let

(ModM1,∧,M1)
denote the full subcategory of leftM1-modules in Multicat∗.
Proposition 10.3.3. The smash product T of Definition 10.3.1 defines a pointed functor

T ∶ (Gop,∗) (ModM1,T).

Proof. We have T taking values in ModM1 by definition. To make T a pointed
functor, we define T ∗ = T, where ∗ is the basepoint of G. Since T is both initial
and terminal in Multicat∗, this defines T on morphisms in G either from or to the
basepoint ∗.

For tuples ⟨n⟩ and ⟨m⟩ of length q and p, respectively, the morphisms from ⟨n⟩
to ⟨m⟩ in G are given by pairs ( f , ⟨ψ⟩) as described in Definition 9.1.7. We define

T ( f , ⟨ψ⟩) ∶ ⋀
mj∈⟨m⟩

Mmj ⋀
n k∈⟨n⟩

Mn k

via the following.
● For each j ∈ p, we have

ψj ∶ n f−1(j) mj

and so we have an induced multifunctor

ψ̃j =Mψj ∶Mmj M(n f−1(j))
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defined by applying ψ−1
j to subsets, as in the proof of Proposition 8.4.7.

● Recall from Lemma 10.1.15 that the partition product (10.1.2) provides

∏1,n ∶M1∧Mn ≅ M(1∧ n) ≅Mn(10.3.4)

∏n,1 ∶Mn ∧M1 ≅ M(n ∧ 1) ≅Mn

for each n in F .
We define T ( f , ⟨ψ⟩) to be the composite formed by first taking the smash product
of ψ̃j over j ∈ p, then using (10.3.4) for any factors Mn∅, and then permuting
factors according to f−1:
(10.3.5)

⋀
j
Mmj

∧jψ̃j
⋀

j
M(n f−1(j))

≅ ⋀
f−1(j)/=∅

M(n f−1(j))
≅

permute ⋀
k
Mn k.

The associativity (10.1.9) of ∏ ensures that iterated applications of (10.3.4) are in-
dependent of order.

This definition of T on morphisms preserves identities because each of the
terms in (10.3.5) is an identity when ( f , ⟨ψ⟩) = (1, ⟨1⟩). It preserves composition by
naturality (10.1.5) of ∏, naturality of the symmetry for ∧ in Multicat∗, and functo-
riality of the smash product. □

Explanation 10.3.6. We note, in the proof of Proposition 10.3.3 with ⟨n⟩ = ⟨⟩, that

T⟨⟩,⟨m⟩ ∶ G(⟨⟩, ⟨m⟩) Multicat∗(T ⟨m⟩,T ⟨⟩) =Multicat∗(T ⟨m⟩,M1)

is given as follows. By Explanation 9.1.9 (4), a morphism from ⟨⟩ to ⟨m⟩ in G factors
uniquely as

⟨⟩
(ip, 1⟨1⟩)

⟨1⟩
(1, ⟨ψ⟩)

⟨m⟩
where ⟨m⟩ has length p, ⟨1⟩ denotes the constant p-tuple at 1, and ip is the unique
inclusion from ∅ to p. The pointed multifunctor induced by T is

∧jMmj
∧jψ̃j ∧jM1 ≅ M1

where the unlabeled isomorphism is the iterate of multiplication isomorphisms
forM1. Each

ψj ∶ 1 mj

is uniquely determined by an element x of mj, namely, the image of 1 ∈ 1. The
pointed multifunctor

ψ̃j = ψ−1
j (−) ∶Mmj M1

sends a subset s ⊂ m♭j to {1} if x ∈ s and to ∅ if x /∈ s. ◇
The main feature of T over the individual factorsM is stated in the following

result. Recall from Proposition 10.1.28 that the smash product of leftM1-modules
is the ordinary smash product of pointed multicategories. The important differ-
ence is their units.
Proposition 10.3.7. The functor

T ∶ Gop ModM1
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is a strictly unital strong symmetric monoidal functor with respect to the concatenation
product in G and the smash product of pointed multicategories.

Proof. The functor T has been defined in Proposition 10.3.3. Given objects ⟨n⟩ and
⟨n′⟩ in G, the monoidal constraint isomorphisms

(10.3.8) T 2 ∶ T ⟨n⟩∧ T ⟨n′⟩ ≅ T (⟨n⟩⊕ ⟨n′⟩)

are defined by the associativity of the smash product or, in the case that ⟨n⟩ or ⟨n′⟩
is empty, by theM1-module isomorphisms ∏ (10.1.16). Naturality of T 2 follows
from naturality of the associativity isomorphism and of ∏. The unit constraint is
the identity because

T ⟨⟩ =M1

by definition. The associativity axiom (1.1.9) requires an equality of two mor-
phisms

( ⋀
mj∈⟨m⟩

Mmj)∧ ( ⋀
m′j∈⟨m

′⟩
Mm′j)∧ ( ⋀

m′′j ∈⟨m
′′⟩
Mm′′j ) ⋀

r∈(⟨m⟩⊕⟨m′⟩⊕⟨m′′⟩)
Mr

defined by associativity isomorphisms. Therefore, the associativity axiom follows
from Mac Lane’s Coherence Theorem 1.1.31. The unity axiom (1.1.10) follows from
the definition of the unit constraint being the identity and the strict unit isomor-
phism in G. The symmetry axiom (1.1.18) follows from the Symmetric Coherence
Theorem 1.1.41. □

Definition 10.3.9. Let JT denote the Cat∗-functor

JT =Multicat∗(T ,−) ∶ModM1 G∗-Cat.

For each leftM1-module P, the G∗-category JT P is

JT P =Multicat∗(T (−),P) ∶ G Cat.

We call this the T -partition J-theory ofM1-modules, or simply the partition J-theory
when T is implied by context. ◇
Explanation 10.3.10 (Comparison and Contrast with JM). Recall theM-partition
J-theory, JM, from Definition 8.4.10. Explanation 8.4.11 describes the components
of JMH and JMθ for a pointed multifunctor H and a pointed multinatural trans-
formation θ. One has a similar description for JT , withM replaced by T and F
replaced by G.

The key distinction between JM and JT is Theorem 10.3.17, which shows that
JT is symmetric monoidal as a Cat∗-functor. See Note 10.8.6 for further discussion of
this point. The symmetric monoidal structure of JT is the reason that our further
applications require G, T , and JT . This is also the reason that the domain of JT

must be restricted from Multicat∗ to ModM1. ◇
Now we define the monoidal constraint and unit constraint for JT .

Definition 10.3.11. For each pair of leftM1-modules P and Q we define a pointed
functor of categories

(10.3.12) (JT )2P,Q ∶ (J
T P)∧ (JTQ) JT (P∧Q)
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as follows. For each pair of objects ⟨n⟩ and ⟨n′⟩ in G, we have

(10.3.13)

Multicat∗(T ⟨n⟩,P)∧Multicat∗(T ⟨n′⟩,Q)

Multicat∗((T ⟨n⟩)∧ (T ⟨n′⟩),P∧Q)

Multicat∗(T (⟨n⟩⊕ ⟨n′⟩),P∧Q)

∧

(T −2)∗

where ∧ is the smash product of pointed multifunctors and (T −2)∗ is precomposi-
tion with the inverse of the monoidal constraint for T (10.3.8).

Then the morphisms (10.3.13) induce a morphism of coends giving the first
arrow of the following composite for the Day convolution of G∗-categories, where
we write M∗ =Multicat∗ and evaluate at ⟨m⟩ in G.

(10.3.14)

((JT P)∧ (JTQ))
⟨m⟩

∫
(⟨n⟩,⟨n′ ⟩)∈Ĝ∧Ĝ

⋁
G♭(⟨n⟩⊕⟨n′ ⟩,⟨m⟩)

M∗(T ⟨n⟩,P)∧M∗(T ⟨n′⟩,Q)

∫
(⟨n⟩,⟨n′ ⟩)∈Ĝ∧Ĝ

⋁
G♭(⟨n⟩⊕⟨n′ ⟩,⟨m⟩)

M∗(T (⟨n⟩⊕ ⟨n′⟩) , P∧Q)

M∗(T ⟨m⟩ , P∧Q)

The second arrow in the above diagram is the universal morphism out of the coend
that is induced on each summand by

M∗(T ( f , ⟨ψ⟩) , P∧Q) for ( f , ⟨ψ⟩) ∈ G♭(⟨n⟩⊕ ⟨n′⟩, ⟨m⟩).

Therefore, (10.3.14) is induced by the pointed functor that, for each summand

( f , ⟨ψ⟩) ∈ G♭(⟨n⟩⊕ ⟨n′⟩, ⟨m⟩),

sends pointed multifunctors and pointed multinatural transformations

θ ∶ F F′ in M∗(T ⟨n⟩,P)
and

ω ∶ G G′ in M∗(T ⟨n′⟩,Q)



10.3. ELMENDORF-MANDELL J-THEORY AND K-THEORY III.387

to the respective composites
(10.3.15)

T ⟨m⟩ T (⟨n⟩⊕ ⟨n′⟩) (T ⟨n⟩)∧ (T ⟨n′⟩) P∧Q.
T ( f , ⟨ψ⟩) T −2

F ∧G

F′ ∧G′

⇒

θ ∧ω

These definitions on summands satisfy the V-cowedge condition (3.5.2) for V =
Cat∗ by the functoriality of T and naturality of T 2. We define the components

((JT )2P,Q)⟨m⟩

by (10.3.14).
With respect to morphisms in G, each morphism of (10.3.14) is natural. Thus

(JT 2)P,Q is a morphism of G∗-categories. By construction, these components are
2-natural with respect to pointed multifunctors and pointed multinatural transfor-
mations

P P′ and Q Q′.

This finishes the definition of (JT )2. ◇
Now we turn to the unit constraint for JT . Recall from (9.2.13) that the monoi-

dal unit in G∗-Cat is

J = Ĝ(⟨⟩,−) ∶ G Cat∗.

Recall from Explanation 10.3.6 the description of T on morphisms

⟨⟩
(ip, ⟨ψ⟩)

⟨m⟩ in G.

Definition 10.3.16. The unit constraint

(JT )0 ∶ J JT (M1) =Multicat∗(T (−),M1)

has component at each ⟨m⟩ given by applying T to morphisms:

Ĝ(⟨⟩, ⟨m⟩)
(T )⟨⟩,⟨m⟩

Multicat∗(T ⟨m⟩,T ⟨⟩) =Multicat∗(T ⟨m⟩,M1). ◇

Theorem 10.3.17. The functor

JT =Multicat∗(T ,−) ∶ModM1 G∗-Cat

is a symmetric monoidal Cat∗-functor.

Proof. The monoidal constraint (JT )2 is given in Definition 10.3.11. The unit con-
straint is given in Definition 10.3.16. Each is a Cat∗-natural transformation by con-
struction. By Theorem 2.5.1 it suffices to verify the symmetric monoidal axioms
for the underlying functor JT and underlying natural transformations (JT )2 and
(JT )0.

We first check the unity axioms (1.1.10) for JT . We will show the left unity
axiom and the right is similar. The left unity axiom requires that the following
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diagram commutes for each leftM1-module P.

(10.3.18)

J ∧ (JT P) JT P

(JTM1)∧ (JT P) JT (M1∧P)

λJ

(JT )0 ∧ 1

(JT )2

≅

In the above diagram, the morphism λJ denotes the left unit isomorphism for the
Day convolution (Definition 3.7.17). The unlabeled isomorphism is induced by the
leftM1-module structure of P.

The morphisms in (10.3.18) are morphisms of G∗-categories. We show they
are equal by showing their components at each ⟨m⟩ in G are equal. At ⟨m⟩, the
G∗-categories on the left side of (10.3.18) are given by the following coends. Here
and below we abbreviate M∗ =Multicat∗.

(J ∧ (JT P))⟨m⟩ =

∫
(⟨n⟩,⟨n′ ⟩)∈Ĝ∧Ĝ

⋁
G♭(⟨n⟩⊕⟨n′ ⟩,⟨m⟩)

Ĝ(⟨⟩, ⟨n⟩)∧M∗(T ⟨n′⟩,P)(10.3.19)

((JTM1)∧ (JT P))⟨m⟩ =

∫
(⟨n⟩,⟨n′ ⟩)∈Ĝ∧Ĝ

⋁
G♭(⟨n⟩⊕⟨n′ ⟩,⟨m⟩)

M∗(T ⟨n′⟩,M1)∧M∗(T ⟨n′⟩,P)

To show that the two composites around (10.3.18) are equal, we show that the
morphisms out of the coend (10.3.19) are equal by checking that the morphisms
out of each summand are equal. Recall from (9.2.7)

Ĝ(⟨⟩, ⟨m⟩) = ⋁
G♭(⟨⟩,⟨m⟩)

1+,

where 1 is the terminal category. For each pair ⟨n⟩ and ⟨n′⟩ in G, a summand of

⋁
G♭(⟨n⟩⊕⟨n′ ⟩,⟨m⟩)

Ĝ(⟨⟩, ⟨n⟩)∧M∗(T ⟨n′⟩,P)

together with an object in that summand are determined by

(10.3.20) (( f , ⟨ψ⟩) , (iq, ⟨ϕ⟩) , F)
where q is the length of ⟨n⟩,

( f , ⟨ψ⟩) ∈ G♭(⟨n⟩⊕ ⟨n′⟩, ⟨m⟩),
(iq, ⟨ϕ⟩) ∈ G♭(⟨⟩, ⟨n⟩), and

F ∈M∗(T ⟨n′⟩,P).

The left unit λJ sends the data (10.3.20) to the object of M∗(T ⟨m⟩,P) (a pointed
multifunctor) given by the composite
(10.3.21)

T ⟨m⟩ T (⟨n⟩⊕ ⟨n′⟩) T ⟨n′⟩ P.
T ( f , ⟨ψ⟩) T ((iq, ⟨ϕ⟩)⊕ 1⟨n′ ⟩) F
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The composite of other morphisms in (10.3.18) sends the data (10.3.20) first to

(( f , ⟨ψ⟩) , T (iq, ⟨ϕ⟩) , F),

by (JT )0 ∧ 1, and then to the following composite, where the final isomorphism is
the leftM1-module structure of P.
(10.3.22)

T ⟨m⟩ T (⟨n⟩⊕ ⟨n′⟩)

(T ⟨n⟩)∧ (T ⟨n′⟩) M1∧P

P
T ( f , ⟨ψ⟩)

T −2

T (iq, ⟨ϕ⟩)∧ F

≅

The two composites (10.3.21) and (10.3.22) are equal by commutativity of the
following diagram in M∗ =Multicat∗, which we explain below.

(10.3.23)

T (⟨n⟩⊕ ⟨n′⟩)

(T ⟨n⟩)∧ (T ⟨n′⟩)

T ⟨n′⟩

M1∧P

P

M1∧ (T ⟨n′⟩)
T −2

T (iq, ⟨ϕ⟩)∧ F

≅

T ((iq, ⟨ϕ⟩)⊕ 1⟨n′ ⟩) F

T (iq, ⟨ϕ⟩)∧ 1 1∧ F

≅T 2
⟨⟩,⟨n′ ⟩

In the above diagram, both upward-pointing isomorphisms are given by the left
M1-module structure. In the case of T ⟨n⟩, this module structure is given by the
partition product∏ (10.1.2) and is equal to the indicated component of T 2 by def-
inition (10.3.8). Therefore, the trapezoid at left commutes by naturality of T 2 and
the trapezoid at right commutes because each pointed multifunctor F is neces-
sarily a left M1-module morphism (Proposition 10.1.28 (4)). The lower triangle
commutes by functoriality of ∧.

Commutativity of (10.3.23) shows that the data (10.3.20) are sent to the same
object of (JT P)⟨m⟩ by both composites of the unity diagram (10.3.18). A similar
computation holds for morphisms, that is, multinatural transformations

θ ∶ F F′ in M∗(T ⟨n′⟩,P),

by the 2-cell aspect of Proposition 10.1.28 (4). This completes the proof of the left
unity axiom (1.1.10) for JT .

Now we turn to the associativity and braiding axioms for JT . The associa-
tivity axiom (1.1.9) follows, as in the definition of (JT )2 (10.3.12), by checking on
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summands as in (10.3.13). For ⟨n⟩, ⟨n′⟩, and ⟨n′′⟩ in G we have the following.

(Multicat∗(T ⟨n⟩,P)∧Multicat∗(T ⟨n′⟩,Q))∧Multicat∗(T ⟨n′′⟩,R)

Multicat∗(((T ⟨n⟩)∧ (T ⟨n′⟩))∧ (T ⟨n′′⟩),P∧ (Q∧R))

Multicat∗(T (⟨n⟩⊕ ⟨n′⟩⊕ ⟨n′′⟩),P∧ (Q∧R))

α∗ ○ ∧ ○ (∧, 1) α∗ ○ ∧ ○ (1,∧) ○ α′

In the above diagram, α′ denotes the associator for the smash product of Cat∗-
categories (denoted α⊗ in Section 1.4). The morphisms α∗ and α∗ denote pre-
and post-composition with the associativity isomorphism for the smash product
in Multicat∗. The upper two morphisms are equal by Cat∗-naturality of

α ∶ ∧ ○ (∧, 1) ∧ ○(1,∧) ○ α′.

The lower morphism is induced by either of the two equal morphisms

T (⟨n⟩⊕ ⟨n′⟩⊕ ⟨n′′⟩) ((T ⟨n⟩)∧ (T ⟨n′⟩))∧ (T ⟨n′′⟩)
given by the (inverses of) morphisms in the associativity axiom (1.1.9) for T . The
remaining morphisms defining (JT )2 are given by universal morphisms out of the
respective coends, and thus the associativity axiom for JT follows.

The braiding axiom (1.1.18) follows from naturality of the symmetry isomor-
phism for ∧ in Multicat∗ together with Proposition 10.1.28 (1) and (2). □

Recall from Definitions 6.3.3 and 6.3.8 the enriched endomorphism multicat-
egory and multifunctor associated to an enriched symmetric monoidal category
and functor, respectively. Then Theorem 10.3.17 implies the following.
Corollary 10.3.24. Taking Cat∗-enriched endomorphism multicategories,

JT ∶ModM1 G∗-Cat

is a Cat∗-enriched multifunctor between Cat∗-enriched multicategories.
Recall from Definition 10.2.13 the canonical left M1-module structure on

End(C) for a small permutative category C. With this choice of module structure,
Lemma 10.2.14 shows that End factors, as a Cat-enriched multifunctor, through
the category of left M1-modules in Multicat∗. Now we consider the composite
with the symmetric monoidal Cat∗-functor JT from Definition 10.3.9 and Theo-
rem 10.3.17:

PermCatsu
End

ModM1 JT G∗-Cat.

By Corollary 10.3.24 and forgetting to Cat, this is a composite of Cat-enriched mul-
tifunctors.

Definition 10.3.25. We define the Elmendorf-Mandell J-theory as the composite Cat-
enriched multifunctor

(10.3.26) JEM = JT ○End ∶ PermCatsu G∗-Cat.
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For a small permutative category C, the associated G∗-category is

◇(10.3.27) JEMC =Multicat∗(T (−),End(C)) ∶ G Cat∗.

Now we define the Elmendorf-Mandell K-theory multifunctor as a compos-
ite of the following. In each case except the first, we have symmetric monoidal
sSet-categories and -functors. Recall from Definitions 6.3.3 and 6.3.8 the enriched
endomorphism multicategory and multifunctor constructions. Proposition 6.3.10
shows that an enriched symmetric monoidal functor induces an enriched multi-
functor on endomorphism multicategories. When applying this result, we will
suppress End from the notation.

● By Definition 6.5.1 and Lemma 10.2.14, PermCatsu is a Cat-enriched mul-
ticategory such that

(10.3.28) End ∶ PermCatsu ModM1

is a Cat-enriched multifunctor. Using the same notation, we change en-
richment along the nerve functor N as described for enriched multicate-
gories in Section 6.3. Proposition 6.2.9 shows that the change of enrich-
ment makes (10.3.28) a sSet-enriched multifunctor.
● Theorem 10.3.17 shows that

(10.3.29) JT ∶ModM1 G∗-Cat

is a symmetric monoidal Cat∗-functor. Using the same notation, we apply
change of enrichment along N, as described for enriched symmetric mon-
oidal categories in Chapter 2. By Theorem 2.4.10 this makes JT a sym-
metric monoidal sSet∗-functor of symmetric monoidal sSet∗-categories.
Forgetting basepoints of hom objects (another change of enrichment) and
passing to sSet-multicategories via Proposition 6.3.10, we obtain (10.3.29)
as a sSet-enriched multifunctor.
● Theorem 9.2.19 shows that taking levelwise nerves induces a symmetric

monoidal sSet∗-functor

(10.3.30) N∗ ∶ G∗-Cat G∗-sSet.

Forgetting basepoints of hom objects and passing to sSet-multicategories
via Proposition 6.3.10, we regard (10.3.30) as a sSet-enriched multifunctor.
● Theorem 9.4.9 shows that

(10.3.31) KG ∶ G∗-sSet SymSp

is a unital symmetric monoidal sSet∗-functor. Forgetting basepoints of
hom objects and passing to sSet-multicategories via Proposition 6.3.10,
we obtain (10.3.31) as a sSet-enriched multifunctor.

Definition 10.3.32. The Elmendorf-Mandell K-theory

KEM ∶ PermCatsu SymSp

is the sSet-enriched multifunctor given by the composite

PermCatsu
End

ModM1 JT G∗-Cat
N∗ G∗-sSet KG

SymSp

of (10.3.28) through (10.3.31). ◇
We will use the sSet-enriched multifunctoriality of KEM as follows. Recall the

following notions from Section 6.1 for a symmetric monoidal category V.
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(1) A V-enriched operad is a V-enriched multicategory with one object (Def-
inition 6.1.8).

(2) A V-enriched operad morphism is a V-enriched multifunctor between V-
enriched operads (Definition 6.1.10).

(3) Suppose that P is a V-enriched operad and M is a V-enriched multicate-
gory. We say that (X, θ) is an algebra over P if X is an object of M and θ
is a multifunctor

θ ∶ P M

that sends the single object of P to X. Equivalently,

θ ∶ P End(X)

is an operad morphism from P to the endomorphism operad of X (Exam-
ple 6.1.9 and Definition 6.1.14).

For a Cat-enriched operad P, we let NP = PN denote the sSet-enriched operad
given by change of enrichment (Definition 6.2.1) along the nerve functor. The sSet-
enriched multifunctoriality of KEM implies the following result.

Theorem 10.3.33. Suppose P is a Cat-enriched operad and suppose (C, θ) is a P-algebra
in PermCatsu. Then KEMC is an NP-algebra in SymSp.

Proof. Consider the following composite of multifunctors.

P PermCatsu SymSp

∗ C KEMC

θ KEM

Then the composite sSet-enriched operad morphism

NP End(KEMC)

NEnd(C) NEnd(JEMC) End(N∗JEMC)

θN

JEM

N N∗
KG

gives KEMC the structure of an NP-algebra. □

In Chapters 11, 12, and 13 we show that the higher monoidal structures on
small permutative categories described in Part II.2 are encoded via Cat-enriched
operad actions. We apply Theorem 10.3.33 in Corollaries 11.3.16, 12.5.3, and 13.5.2
to show that the associated spectra given by KEM have En-monoidal structure for
1 ≤ n ≤∞.

10.4. Elmendorf-Mandell G∗-categories

In this section we define a G∗-category CG = CGlax for each small permutative
category C, along with two other variants CG

≅
and CGco. These generalize the three

constructions of Γ-categories CFlax, CF
≅

, and CFco of Section 8.3. In Proposition 10.5.1
below we show that JEMC and CG = CGlax are naturally isomorphic as G∗-categories.

Recall from Definition 6.5.3 that for ⟨s⟩ ∈ Prof(S) and t ∈ S, we let ⟨s ○k t⟩ denote
the tuple with t replacing sk. Likewise for k ≠ ℓ we let ⟨s ○k t ○l t′⟩ denote the tuple
with t replacing sk and t′ replacing sℓ.
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Definition 10.4.1. Suppose (C,⊕, e) is a small permutative category and ⟨n⟩ is an
object of G with length q > 0. An ⟨n⟩-system in C is a pair

(C, ρ) = {C⟨s⟩, ρ⟨s⟩;k,t,u}

consisting of

● a system of objects, with C⟨s⟩ ∈ C for each q-tuple of basepoint-free subsets
sk ⊂ n♭k, and
● a system of morphisms, with

ρ⟨s⟩;k,t,u ∶ C⟨s○kt⟩ ⊕C⟨s○ku⟩ C⟨s⟩

for each k ∈ q and each partition (t, u) of sk.

We call ρ⟨s⟩;k,t,u the (t, u)-gluing morphism of sk. These data are subject to the fol-
lowing axioms.

Object Unity: If sk = ∅ for any k, then

(10.4.2) C⟨s⟩ = e.

Gluing Unity: If sj = ∅ for any j, or if t = ∅, or if u = ∅, then

(10.4.3) ρ⟨s⟩;k,t,u = 1.

Gluing Symmetry: For each k ∈ q, the following diagram commutes for all parti-
tions (t, u) of sk.

(10.4.4)

C⟨s○kt⟩ ⊕C⟨s○ku⟩ C⟨s⟩

C⟨s○ku⟩ ⊕C⟨s○kt⟩ C⟨s⟩

ρ⟨s⟩;k,t,u

ρ⟨s⟩;k,u,t

ξ 1

Gluing Associativity: For each k ∈ q, the following diagram commutes for all par-
titions (t, u, v) of sk.

(10.4.5)

C⟨s○kt⟩ ⊕C⟨s○ku⟩ ⊕C⟨s○kv⟩ C⟨s○k t∪u⟩ ⊕C⟨s○kv⟩

C⟨s○kt⟩ ⊕C⟨s○k u∪v⟩ C⟨s⟩

ρ⟨s○k t∪u⟩;k,t,u ⊕ 1

ρ⟨s⟩;k,t,u∪v

1⊕ ρ⟨s○k u∪v⟩;k,u,v ρ⟨s⟩;k,t∪u,v
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Gluing 2-By-2: For each k ≠ ℓ, the following pentagon commutes for all partitions
(t, u) of sk and (v, w) of sℓ.

(10.4.6)

C⟨s○kt○ℓv⟩ ⊕C⟨s○ku○ℓv⟩ ⊕C⟨s○kt○ℓw⟩ ⊕C⟨s○ku○ℓw⟩

C⟨s○ℓv⟩ ⊕C⟨s○ℓw⟩

C⟨s⟩

C⟨s○kt○ℓv⟩ ⊕C⟨s○kt○ℓw⟩ ⊕C⟨s○ku○ℓv⟩ ⊕C⟨s○ku○ℓw⟩

C⟨s○kt⟩ ⊕C⟨s○ku⟩

1⊕ ξ ⊕ 1

ρ⟨s○ℓv⟩;k,t,u ⊕ ρ⟨s○ℓw⟩;k,t,u

ρ⟨s⟩;ℓ,v,w

ρ⟨s○kt⟩;ℓ,v,w ⊕ ρ⟨s○ku⟩;ℓ,v,w

ρ⟨s⟩;k,t,u

This finishes the definition of an ⟨n⟩-system in C. We also have the following
variant definitions and terms.

● We will also refer to an ⟨n⟩-system as a lax ⟨n⟩-system.
● A strong ⟨n⟩-system is an ⟨n⟩-system for which all of the gluing mor-

phisms ρ⟨s⟩;k,t,u are isomorphisms.
● A colax ⟨n⟩-system is an ⟨n⟩-system in Cop. That is, the direction of each

gluing morphism is reversed but the same axioms (with reversed arrows
ρ) are satisfied. ◇

Definition 10.4.7. Suppose (C,⊕, e) is a small permutative category and suppose
given ⟨n⟩-systems

{C⟨s⟩, ρ⟨s⟩;k,t,u} and {C′⟨s⟩, ρ′⟨s⟩;k,t,u}

for ⟨n⟩ in G with length q > 0. A morphism of ⟨n⟩-systems, denoted

{α⟨s⟩} ∶ {C⟨s⟩, ρ⟨s⟩;k,t,u} {C′⟨s⟩, ρ′⟨s⟩;k,t,u},

consists of component morphisms

α⟨s⟩ ∶ C⟨s⟩ C′⟨s⟩

for each q-tuple of basepoint-free subsets sk ⊂ n♭k. These components are subject to
the following axioms.

Unitary: If sk = ∅ for any k, then

(10.4.8) α⟨s⟩ = 1e.
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Gluing Compatibility: The following diagram commutes for all k and for each
partition (t, u) of sk.

(10.4.9)

C⟨s○kt⟩ ⊕C⟨s○ku⟩ C⟨s⟩

C′⟨s○kt⟩ ⊕C′⟨s○ku⟩ C′⟨s⟩

ρ⟨s⟩;k,t,u

ρ′⟨s⟩;k,t,u

α⟨s○kt⟩ ⊕ α⟨s○ku⟩ α⟨s⟩

This finishes the definition of a morphism of n-systems. We also have the follow-
ing variant definitions.

● A morphism of strong ⟨n⟩-systems is defined as above, with

{C⟨s⟩, ρ⟨s⟩;k,t,u} and {C′⟨s⟩, ρ′⟨s⟩;k,t,u}
strong ⟨n⟩-systems.
● A morphism of colax ⟨n⟩-systems is defined as above, with

{C⟨s⟩, ρ⟨s⟩;k,t,u} and {C′⟨s⟩, ρ′⟨s⟩;k,t,u}
colax ⟨n⟩-systems, but the gluing compatibility axiom (10.4.9) has the
variance of ρ reversed as in the following diagram.

C⟨s○kt⟩ ⊕C⟨s○ku⟩ C⟨s⟩

C′⟨s○kt⟩ ⊕C′⟨s○ku⟩ C′⟨s⟩

ρ⟨s⟩;k,t,u

ρ′⟨s⟩;k,t,u

α⟨s○kt⟩ ⊕ α⟨s○ku⟩ α⟨s⟩

The identity morphism for a lax, strong, or colax ⟨n⟩-system {C⟨s⟩, ρ⟨s⟩;k,t,u}
consists of identities

α⟨s⟩ = 1C
⟨s⟩

for each q-tuple of basepoint-free subsets sk ⊂ n♭k. Composition of morphisms is
defined componentwise. This composition is associative and unital because the
composition in C is so. ◇
Definition 10.4.10. Suppose (C,⊕, e) is a small permutative category. If ⟨n⟩ is an
object of G with length q > 0, define a pointed category CG⟨n⟩ as follows.

● The objects of CG⟨n⟩ are the lax ⟨n⟩-systems in C.
● The morphisms of CG⟨n⟩ are the morphisms of lax ⟨n⟩-systems.
● The basepoint of CG⟨n⟩ is the constant ⟨n⟩-system with

C⟨s⟩ = e and ρ⟨s⟩;k,t,u = 1e

for each ⟨s⟩, k, t, and u.
This finishes the definition of CG⟨n⟩.

For the empty tuple, we define

(10.4.11) CG⟨⟩ = C
with basepoint given by the unit e. For the basepoint ∗ of G we define

(10.4.12) CG∗ = 1,
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the terminal category. If ⟨n⟩ is an object of G such that some nj = 0, then by the
object unity condition (10.4.2) and the gluing unit condition (10.4.3), the only ⟨n⟩-
system is that given by the constant system at (e, 1e). In this case we define

CG⟨n⟩ = CG∗ = 1.

We also have the following variant definitions and notation. In each case we
take the value at the empty tuple ⟨⟩ to be C as in (10.4.11) and the value at ∗ to be
1 as in (10.4.12). This also defines the value at tuples ⟨n⟩where some nj = 0.

● To emphasize that the objects of CG⟨n⟩ are the lax ⟨n⟩-systems, we also
use the notation

CGlax⟨n⟩ = CG⟨n⟩.
● For ⟨n⟩ of positive length, and with each nj > 0, we let

CG
≅
⟨n⟩

denote the category of strong ⟨n⟩-systems and morphisms of such. The
basepoint is that of CG⟨n⟩.
● For ⟨n⟩ of positive length, and with each nj > 0, we let

CGco⟨n⟩
denote the category of colax ⟨n⟩-systems and morphisms of such. The
basepoint is that of CG⟨n⟩. ◇

Explanation 10.4.13. In contrast with Definition 8.3.9 using CFn for the category
of strong n-systems, we use the unadorned notation CG⟨n⟩ to denote the category
of lax ⟨n⟩-systems because this will be the one we use most frequently in our ap-
plications below. See Explanation 10.7.23 for further discussion of this point. ◇
Example 10.4.14. Suppose p > 0 and let ⟨1⟩ denote the constant p-tuple at 1. Then
there is a canonical isomorphism of pointed categories

(10.4.15) C ≅ CG⟨1⟩
where an object C of C corresponds to the ⟨1⟩-system whose only (possibly) non-
trivial object is C and whose gluing morphisms are all identities. A morphism h
of C corresponds to the morphism of ⟨1⟩-systems whose only (possibly) nontrivial
component is h. ◇

To define CG on morphisms of G, we first make the following preliminary def-
initions. The complete definition of CG on morphisms is Definition 10.4.17 below.
Recall from Definition 9.1.4 that for an injection

f ∶ q p

and a q-tuple of pointed finite sets ⟨n⟩, the p-tuple of pointed finite sets f∗⟨n⟩ has
jth entry given by n f−1(j).

Definition 10.4.16. Suppose (C,⊕, e) is a small permutative category and suppose

( f , ⟨ψ⟩) ∶ ⟨n⟩ ⟨m⟩
is a morphism in G where ⟨n⟩ has length q > 0 and ⟨m⟩ has length p > 0. So

f ∶ q p

is an injection of sets and
⟨ψ⟩ ∶ f∗⟨n⟩ ⟨m⟩

is a morphism in F p.
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(1) For a p-tuple of basepoint-free subsets ⟨s⟩with

sj ⊂ ( f∗⟨n⟩)♭j = n♭f−1(j),

let f̃∗⟨s⟩ be the q-tuple obtained by removing entries not indexed by the
image of f and then permuting according to (the inverse of) f . Then for
each ⟨n⟩-system

(C, ρ) = {C⟨s⟩, ρ⟨s⟩;k,t,u} ∈ CG⟨n⟩

and each morphism of ⟨n⟩-systems {α⟨s⟩}, we define data for objects and
morphisms in CG( f∗⟨n⟩)with the following:

C f
⟨s⟩ =

⎧⎪⎪⎨⎪⎪⎩

C f̃∗⟨s⟩ if each sj /= ∅,

e otherwise,

ρ
f
⟨s⟩;k,t,u =

⎧⎪⎪⎨⎪⎪⎩

ρ f̃∗⟨s⟩; f−1(k), t, u if each sj /= ∅,

1 otherwise,

and

α
f
⟨s⟩ =

⎧⎪⎪⎨⎪⎪⎩

α f̃∗⟨s⟩ if each sj /= ∅,

1 otherwise.

If, in the definition of ρ
f
⟨s⟩;k,t,u , we have f−1(k) = ∅, then sk ⊂ 1 and so at

least one of t and u is empty. In this case ρ
f
⟨s⟩;k,t,u is the identity at C f̃∗⟨s⟩

(if no sj is empty) or at e (if any sj is empty). We define a pointed functor

f̃ ∶ CG⟨n⟩ CG( f∗⟨n⟩)

by X X f where X is any of

C⟨s⟩, ρ⟨s⟩;k,t,u, or α⟨s⟩.

The definition of α
f
⟨s⟩ shows that f̃ is functorial and the definition of C f

⟨s⟩
shows that f̃ is pointed.

(2) For each p-tuple of basepoint-free subsets ⟨s⟩with sj ⊂ m♭j , we let ⟨ψ−1(s)⟩
be the tuple whose kth component is ψ−1

k (sk), a subset of the kth entry in
f∗⟨n⟩. Then for each f∗⟨n⟩-system

(C, ρ) = {C⟨s⟩, ρ⟨s⟩;k,t,u} ∈ CG( f∗⟨n⟩)

and each morphism of f∗⟨n⟩-systems {α⟨s⟩} we define data for objects
and morphisms in CG⟨m⟩ by letting

C⟨ψ⟩⟨s⟩ = C⟨ψ−1(s)⟩,

ρ
⟨ψ⟩
⟨s⟩;k,t,u = ρ⟨ψ−1(s)⟩; k, ψ−1

k (t), ψ−1
k (u)

, and

α
⟨ψ⟩
⟨s⟩ = α⟨ψ−1s⟩.

We define a pointed functor

⟨ψ̃⟩ ∶ CG( f∗⟨n⟩) CG⟨m⟩
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by X X⟨ψ⟩ where X is any of

C⟨s⟩, ρ⟨s⟩;k,t,u, or α⟨s⟩.

The definition of α
⟨ψ⟩
⟨s⟩ shows that ⟨ψ̃⟩ is functorial and the definition of

C⟨ψ⟩⟨s⟩ shows that ⟨ψ̃⟩ is pointed.

We use the same definitions and notation above if the systems (C, ρ) are strong or
colax. ◇

Now we define CG , CG
≅

, and CGco on the morphisms of G.
Definition 10.4.17. Suppose (C,⊕, e) is a small permutative category and suppose
given a morphism

Ψ ∶ N M
in G. If either N or M is the basepoint ∗, then define CGΨ as the corresponding
zero morphism in Cat∗.

Otherwise, Ψ is of the form

Ψ = ( f , ⟨ψ⟩) ∶ ⟨n⟩ ⟨m⟩.
If ⟨m⟩ is the empty tuple, ⟨⟩, then so is ⟨n⟩ and Ψ is either the zero morphism or
the identity. In either case CGΨ is uniquely determined.

Now suppose ⟨m⟩ has length p > 0. If ⟨n⟩ is the empty tuple, then Ψ factors
uniquely as a composite (9.1.10)

⟨⟩ ⟨1⟩
⟨ψ⟩

⟨m⟩
for ⟨ψ⟩ in F p (see Explanation 9.1.9 (4)). Then we define CGΨ to be the composite

CG⟨⟩ = C ≅
CG⟨1⟩

⟨ψ̃⟩
CG⟨m⟩

of the canonical isomorphism (10.4.15) with ⟨ψ̃⟩ as in Definition 10.4.16 above.
Now suppose, moreover, that ⟨n⟩ has length q > 0. Then we define CG( f , ⟨ψ⟩)

to be the composite pointed functor

CG⟨n⟩
f̃

CG( f∗⟨n⟩)
⟨ψ̃⟩

CG⟨m⟩
with f̃ and ⟨ψ̃⟩ as in Definition 10.4.16 above.

This finishes the definition of CGΨ, which we sometimes also denote CGlaxΨ. We
let

CG
≅

Ψ ∶ CG
≅
⟨n⟩ CG

≅
⟨m⟩

and
CGcoΨ ∶ CGco⟨n⟩ CGco⟨m⟩

be the pointed functors given by the same definitions as above for strong, respec-
tively colax, ⟨n⟩-systems and morphisms. ◇

Taken together, Definitions 10.4.1, 10.4.7, 10.4.10, 10.4.16, and 10.4.17 give as-
signments on objects and morphisms

CG = CGlax ∶ G Cat∗,

CG
≅
∶ G Cat∗, and

CGco ∶ G Cat∗.

Now we show these give G∗-categories.
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Proposition 10.4.18. Suppose C is a small permutative category. Each of the assignments

CG = CGlax, CG
≅

, and CGco

defines a G∗-category.

Proof. We give the proof for CG = CGlax; the argument for the other two cases is the
same. By definition we have CG∗ = 1, so CG preserves basepoints. Preservation of
identity morphisms (1, ⟨1⟩) can be checked directly from Definition 10.4.17.

Now we consider functoriality with respect to a composable pair of mor-
phisms

(10.4.19) ⟨n⟩
( f , ⟨ψ⟩)

⟨m⟩
(g, ⟨ϕ⟩)

⟨ℓ⟩.
where ⟨n⟩, ⟨m⟩, and ⟨ℓ⟩ are tuples of length q, p, and r, respectively. If r = 0 or p = 0,
then both p and q must be zero and ( f , ⟨ψ⟩) is either a zero or identity morphism so
functoriality follows. So now suppose both p > 0 and r > 0. On tuples of basepoint-
free and nonempty subsets ⟨s⟩, with sk a subset of the kth entry in g∗⟨m⟩, we have

⟨ψ−1 g̃∗⟨s⟩⟩ = g̃∗⟨(g∗⟨ψ⟩)−1(s)⟩.
This shows that the following diagram commutes in Cat∗. In the diagram below,
if q = 0, we let f∗⟨n⟩ and (g f )∗⟨n⟩ both be the constant tuple ⟨1⟩ of length p.

CG( f∗⟨n⟩) CG⟨m⟩

CG((g f )∗⟨n⟩) CG(g∗⟨m⟩)

CG(1, ⟨ψ⟩)

CG(1, g∗⟨ψ⟩)

CG(g, 1) CG(g, 1)
CG(g, g∗⟨ψ⟩)

Then functoriality follows by checking for composites of morphisms ( f , 1) with
(g, 1) and (1, ⟨ψ′⟩)with (1, ⟨ϕ⟩). □

Definition 10.4.20. Suppose C is a small permutative category. We call
● CGlax the lax Elmendorf-Mandell G∗-category of C,
● CG

≅
the strong Elmendorf-Mandell G∗-category of C, and

● CGco the colax Elmendorf-Mandell G∗-category of C.
When used without an adjective, the phrase Elmendorf-Mandell G∗-category will
refer to the lax case. ◇

In Section 10.7 we give a direct comparison of these three variants of CG and
show that the respective K-theory symmetric spectra are level equivalent.

10.5. An Equivalent Description of Elmendorf-Mandell J-theory

Now we relate the Elmendorf-Mandell G∗-categories with the J-theory con-
struction JEM via partition multicategories in Definition 10.3.25. This result is a G∗
version of Proposition 8.4.8 for JSe and CFlax.
Proposition 10.5.1. Suppose C is a small permutative category. For each ⟨n⟩ ∈ G there is
an isomorphism of pointed categories

JEMC⟨n⟩ =Multicat∗(T ⟨n⟩,End(C)) ≅ CG⟨n⟩.
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These isomorphisms are the components of a pointed natural isomorphism

JEMC ≅ CG .

Proof. The first assertion follows, as in the proof of Proposition 8.4.8, from an ex-
plicit description of the left hand side. Recall from Definition 10.3.1 and Explana-
tion 10.3.2 that by taking the smash product in ModM1 we have

(10.5.2) T ⟨n⟩ = ∧kMnk

for each ⟨n⟩ in G with length q ≥ 0. For q = 0, the empty smash product (10.5.2) is
M1. In this case we have

(JEMC)⟨⟩ =Multicat∗(M1,End(C)) ≅ C = CG⟨⟩
by Lemma 10.2.5. Recalling the proof, each pointed multifunctor on the left is
determined by where it sends the object {1} inM1.

For ⟨n⟩ of length q > 0, we introduce the following notation extending that of
Definition 6.5.3. Given a partition ⟨sk⟩ = (sk,1, . . . , sk,qk

) of sk ⊂ n♭k for some k, and
subsets sℓ ⊂ n♭ℓ for ℓ ≠ k, let

⟨s ○k ⟨sk⟩⟩ ∈ Prof(T ⟨n⟩)
be the profile of length qk whose jth entry is ⟨s ○k sk,j⟩. Let

⟨s ○k ι⟨sk⟩⟩ ∈ T ⟨n⟩(⟨s ○k ⟨sk⟩⟩ ; ⟨s⟩)
be the tuple of operations whose ℓth entry is the unit 1sℓ for ℓ ≠ k, and whose kth
entry is ι⟨sk⟩. Recalling Explanation 5.6.14, we note that these operations generate
the operations of the tensor product ⊗kMn k and hence also of the smash product
T ⟨n⟩.

Moreover, recalling the argument of Proposition 8.4.8 that the operations of
each Mn k are generated by 2-ary operations ι(t,u), we see that the operations of
T ⟨n⟩ are generated by ⟨s ○k ι(t,u)⟩. Therefore, a pointed multifunctor

F ∶⋀
k
Mnk End(C)

determines and is uniquely determined by the following data:
● a family of objects C⟨s⟩ = F⟨s⟩ ∈ C for tuples of subsets sk ∈ n♭k, and
● a family of morphisms

ρ⟨s⟩;k,t,u = F⟨s ○k ι(t,u)⟩ ∶ C⟨s○kt⟩ ⊕C⟨s○ku⟩ C⟨s⟩.

These data are subject to relations for symmetry, compatibility, and interchange
detailed in Explanations 5.6.9 and 5.6.14, along with relations for the smash prod-
uct, Definition 5.6.20. One can verify that these correspond to the axioms of Defi-
nition 10.4.1 just as was done in the proof of Proposition 8.4.8.

Similarly, a pointed multinatural transformation α ∶ F F′ determines and
is uniquely determined by a family of morphisms in C,

α⟨s⟩ ∶ C⟨s⟩ C′⟨s⟩,

satisfying basepoint and naturality axioms corresponding to the axioms for a mor-
phism in CG⟨n⟩.

Now we verify naturality of the isomorphisms

JEMC⟨n⟩ CG⟨n⟩
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with respect to morphisms ( f , ⟨ψ⟩) in G. For each p > 0, naturality for the mor-
phism

(ip, 1) ∶ ⟨⟩ 1
to the constant p-tuple at 1 follows by comparison of Explanation 10.3.6 with Ex-
ample 10.4.14. Both composites of the naturality square

Multicat∗(M1,End(C)) CG⟨⟩

Multicat∗(∧p
k=1M1,End(C)) CG⟨1⟩

≅

≅

(T (ip, 0))∗ ≅ CG(ip, 0)≅

are given as follows.
● A pointed multifunctor F is sent to the 1-system whose only (possibly)

nontrivial object is F{1}.
● A pointed multinatural transformation θ is sent to the morphism of 1-

systems whose only (possibly) nontrivial component is θ{1}.

Naturality with respect to all other morphisms ( f , ⟨ψ⟩) follows by comparing
the definition of T on morphisms, written in (10.3.5), with that of CG , written in
Definitions 10.4.16 and 10.4.17. The morphism denoted ⟨ψ̃⟩ corresponds to ∧jψ̃j

and the morphism denoted f̃ corresponds to the composite given by permutation
and the isomorphisms∏1,m and∏m,1. □

It follows from Definition 10.3.32 and Proposition 10.5.1 that there is a natural
isomorphism of symmetric spectra

KEMC = KGN∗JEMC ≅ KGN∗CGlax

with CGlax = CG , for small permutative categories C. Using the other two variants of
Elmendorf-Mandell G∗-categories in Definition 10.4.20, CG

≅
and CGco, we define the

following variants of Elmendorf-Mandell K-theory.
Definition 10.5.3. Suppose C is a small permutative category. We define the sym-
metric spectra

KEM
≅
C = KGN∗CG≅ and

KEM
co C = KGN∗CGco,

which are called, respectively, the strong Elmendorf-Mandell K-theory and the colax
Elmendorf-Mandell K-theory of C. ◇

In Theorems 10.7.16 and 10.7.19, we will show that the three variants of
Elmendorf-Mandell K-theory—namely, KEMC, KEM

≅
C, and KEM

co C in Definitions 10.3.32
and 10.5.3—are level equivalent symmetric spectra.
Explanation 10.5.4 (Multifunctoriality of (−)G). By Proposition 10.5.1, the object
assignment C CG is part of a Cat-enriched multifunctor

PermCatsu G∗-Cat.
(−)G

Here we describe in detail this Cat-enriched multifunctor. With the exception
of the case n = 0, the description below is essentially the proof of [EM06, Theo-
rem 6.1]. First recall from
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● Definitions 6.5.1, 6.5.4, and 6.5.11 that PermCatsu is the Cat-enriched mul-
ticategory with small permutative categories, multilinear functors, and
multilinear transformations, and
● Definition 9.2.8 and Theorem 9.2.15 the symmetric monoidal closed cate-

gory G∗-Cat with the Day convolution product ∧ (9.2.9) and hom diagram
(9.2.10), and with the permutative structure on G given by concatenation
of tuples of pointed finite sets.

For small permutative categories C1, . . . ,Cn, and D, the functor

(10.5.5) PermCatsu (C1, . . . ,Cn ; D) G∗-Cat(CG1 , . . . ,CGn ; DG)(−)G

is described as follows.
For n = 0, a 0-linear functor

1 F
D

in PermCatsu is uniquely determined by a choice of object x ∈ D. By Lemma 10.2.5,
such an object x determines a unique pointed multifunctor

(10.5.6) Ux ∶M1 End(D) with Ux{1} = x.

With J the monoidal unit of G∗-Cat, the image of F in (10.5.5) is given by the com-
posite
(10.5.7)

J
(JT )0

JT (M1) =Multicat∗(T (−),M1)
(Ux)∗

Multicat∗(T (−),End(D)) ≅ DG .

More explicitly, recall from (9.2.13) that

J⟨m⟩ = Ĝ(⟨⟩, ⟨m⟩)
for each object ⟨m⟩ ∈ G. If ⟨m⟩ has length 0, then the only nonzero morphism
⟨⟩ ⟨⟩ in G is the identity. The composite (10.5.7) sends 1⟨⟩ to the object

x = F(∗) ∈ D = DG⟨⟩.
If ⟨m⟩ has length p > 0, then, by Explanation 9.1.9 (4), a morphism

(ip, ⟨ψ⟩) ∶ ⟨⟩ ⟨m⟩ ∈ G
is uniquely determined by the pointed functions

ψi ∶ 1 mi for i ∈ p.

The composite (10.5.7) sends (ip, ⟨ψ⟩) to the object X ∈ DG⟨m⟩ given as follows. For
a p-tuple ⟨s⟩ of unpointed finite sets with each si ⊂ mi

♭ for i ∈ p, the ⟨s⟩-component
of X is given by

X⟨s⟩ =
⎧⎪⎪⎨⎪⎪⎩

x if ψi(1) ∈ si for each i ∈ p, and
e otherwise.

For the gluing morphisms, suppose k ∈ p and (t, u) is a partition of sk. Then the
(t, u)-gluing morphism

X⟨s○kt⟩ ⊕X⟨s○ku⟩ X⟨s⟩
ρ
⟨s⟩;k,t,u

is given by
● 1x if ψi(1) ∈ si for each i ∈ p, and
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● 1e otherwise.
For n > 0, (10.5.5) sends an n-linear functor

(10.5.8) C1 ×⋯×Cn D
(F,{F2

j }
n
j=1)

to a G∗-category morphism

(10.5.9)
n
⋀
j=1

CGj = C
G

1 ∧⋯∧C
G

n DG .FG

The iterated product on the left-hand side and below are assumed to be left nor-
malized (2.5.4). For p ≥ 0 and each p-tuple of pointed finite sets

⟨m⟩ = (m1, . . . , mp) ∈ F(p),

the G∗-category morphism FG has a component functor

(
n
⋀
j=1

CGj )⟨m⟩ DG⟨m⟩.FG⟨m⟩

Since ⋀n
j=1 is an iterated Day convolution product of G∗-categories, the functor

FG⟨m⟩ is uniquely determined by component functors

(10.5.10)
n
⋀
j=1

CGj (mij−1+1, . . . , mij
) DG⟨m⟩FG⟨m⟩

for sequences (i0 = 0, i1, . . . , in)with

1 ≤ i1 ≤ ⋯ ≤ in = p.

The smash product of small categories in (10.5.10) is the one in (4.1.7) for (Cat,×,∗).
Now we address two special cases.

● If p = 0, then ⟨m⟩ is the empty tuple. In (10.5.10), each CGj ⟨⟩ = Cj and
DG⟨⟩ = D by definition. The component functor FG⟨⟩ is given by the given
functor F in (10.5.8). It is well defined on the smash product in (10.5.10)
by the unity axiom of an n-linear functor.
● If p > 0 with some mi = 0, then ⟨m⟩ = ∗ in G, and DG(∗) = 1, the terminal

category. The component functor FG(∗) in (10.5.10) is the unique functor
to the terminal category.

Now suppose p > 0 and each mj > 0. To describe the functor FG⟨m⟩ in (10.5.10),
first note that an object in the domain in (10.5.10) is represented by an n-tuple of
objects

(10.5.11) C = ((C1, ρ1), . . . , (Cn, ρn)) ∈
n
∏
j=1

CGj (mij−1+1, . . . , mij
).

For a p-tuple of pointed finite sets

(10.5.12) ⟨s⟩ = (s1, . . . , sp) with each si ⊂ mi
♭,

the object
(FG⟨m⟩)C ∈ DG⟨m⟩
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has as its ⟨s⟩-component the object

(10.5.13) ((FG⟨m⟩)C)⟨s⟩ = F{Cj
(sij−1+1,...,sij

)}
n

j=1
∈ D.

For a partition

(10.5.14) t ∪ u = sk for some ir−1 + 1 ≤ k ≤ ir and 1 ≤ r ≤ n,

the gluing morphism ρ of (FG⟨m⟩)C is the following composite in D.

(10.5.15)

((FG⟨m⟩)C)⟨s○kt⟩ ⊕ ((F
G⟨m⟩)C)⟨s○ku⟩ ((FG⟨m⟩)C)⟨s⟩

F( . . . , Cr
(sir−1+1,...,t,...,sir )

, . . . )⊕ F( . . . , Cr
(sir−1+1,...,u,...,sir )

, . . . )

F{Cj
(sij−1+1,...,sij

)}
n

j=1

F( . . . , Cr
(sir−1+1,...,t,...,sir )

⊕Cr
(sir−1+1,...,u,...,sir )

, . . . )

F2
r

F(1, . . . , ρr, . . . , 1)

ρ⟨s⟩;k,t,u

In the above diagram, F2
r is the rth linearity constraint of the n-linear functor F,

and ρr is the gluing morphism in the object (Cr, ρr) for the indicated sequences of
finite sets and partition (10.5.14).

A morphism α ∶ C D in the domain in (10.5.10) is represented by an n-
tuple of morphisms

{(Cj, ρ
j
C) (Dj, ρ

j
D)

αj
}

n

j=1
∈

n
∏
j=1

CGj (mij−1+1, . . . , mij
).

With ⟨s⟩ as in (10.5.12), the morphism

(FG⟨m⟩)C (FG⟨m⟩)D ∈ DG⟨m⟩(FG⟨m⟩)α

has as its ⟨s⟩-component the morphism

(10.5.16) ((FG⟨m⟩)α)⟨s⟩ = F{αj
(sij−1+1,...,sij

)}
n

j=1
∈ D.

This finishes the description of the G∗-category morphism FG in (10.5.9).
Suppose θ is the following n-linear transformation between n-linear functors.

(10.5.17) C1 ×⋯×Cn D

F

G

⇒

θ

For n = 0, θ is uniquely determined by a morphism f ∶ x y, where x and y
are the objects determined by F and G. By Lemma 10.2.5, f determines a pointed
multinatural transformation

U f ∶ Ux Uy ∶M1 End(D) with (U f ){1} = f ,

where Ux and Uy are as in (10.5.6). This induces a modification

(U f )∗ ∶ (Ux)∗ (Uy)∗ ∶ JT (M1) Multicat∗(T (−),End(D)) ≅ DG .

Pre-whiskering (U f )∗ with (JT )0 gives the image of θ in (10.5.5).
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Now suppose n > 0 in (10.5.17). With C as in (10.5.11) and ⟨s⟩ as in (10.5.12),
(θG⟨m⟩)C has as its ⟨s⟩-component the morphism

((FG⟨m⟩)C)⟨s⟩ = F{Cj
(sij−1+1,...,sij

)}
n

j=1

((GG⟨m⟩)C)⟨s⟩ = G{Cj
(sij−1+1,...,sij

)}
n

j=1

θ
{Cj
(sij−1+1,...,sij

)
}

n

j=1

in D. This finishes the description of the functor (−)G in (10.5.5). ◇

10.6. Equivalence Between Segal K-Theory and Elmendorf-Mandell K-Theory

This section is devoted to proving Theorem 10.6.10, which asserts that the
symmetric spectra KSeC and KEMC are naturally level equivalent. Our comparison
begins with the observation that, for a tuple of pointed finite sets ⟨a⟩, we can also
form the smash product

∧kak ≅ (∏ka♭k)+
and applyM. This is the composite ofMwith (the opposite of) the functor

∧ ∶ G F
discussed in Definition 9.1.15.

The multicategory T ⟨a⟩ relates toM(∧k ak) as follows. The following extends
the partition product of Definition 10.1.1 to q-fold products for q > 2.
Definition 10.6.1. Suppose ⟨a⟩ = (a1, . . . , aq) is a q-tuple of pointed finite sets, and
∧k ak is their smash product. For q > 0, define

∏ ∶ T ⟨a⟩ M(∧k ak)
by

⟨s⟩ ∏
k

sk ⊂∏
k

a♭k ⊂ ∧k ak

where ⟨s⟩ is a q-tuple of basepoint-free subsets sk ⊂ a♭k. For q = 0, we take 1 as the
empty smash product in FinSet∗ and define

∏ = 1M1 ∶M1 = T ⟨⟩ M1.

We show that∏ is a well-defined pointed multifunctor in Proposition 10.6.2. ◇
The next result follows by induction on the binary case of Definition 10.1.1,

but we also give a detailed direct proof.
Proposition 10.6.2. In the context of Definition 10.6.1, suppose given a q-tuple of pointed
finite sets ⟨a⟩ for q ≥ 0. Then

∏ ∶ T ⟨a⟩ M(∧k ak)
is a well-defined pointed multifunctor.

Proof. For q = 0, ∏ is the identity and there is nothing to prove. For q > 0, the
essential observation that makes∏ well defined is that taking products preserves
disjunction. To explain more clearly, recall the following notation from Defini-
tion 9.1.4 and the proof of Proposition 10.5.1. Given a partition

⟨sk⟩ = (sk,1, . . . , sk,qk
)
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of sk ⊂ a♭k and subsets sℓ ⊂ a♭ℓ for ℓ ≠ k,

⟨s ○k sk,j⟩ ∈ T ⟨a⟩
denotes the tuple whose ℓth entry is sℓ for ℓ ≠ k, and whose kth entry is sk,j. Then

⟨s ○k ⟨sk⟩⟩ ∈ Prof(T ⟨a⟩)
is the profile of length qk whose jth entry is ⟨s ○k sk,j⟩. Finally,

⟨s ○k ι⟨sk⟩⟩ ∈ T (⟨s ○k ⟨sk⟩⟩ ; ⟨s⟩)
is the tuple of operations whose ℓth entry is the unit 1sℓ for ℓ ≠ k, and whose kth
entry is ι⟨sk⟩. Recalling Explanation 5.6.14, we note that these operations generate
the operations of the smash product T ⟨a⟩.

With this notation, the key observation is the following. Since the sk,j are dis-
joint for j ∈ {1, . . . , qk}, the products

∏⟨s ○k sk,j⟩ = ∏
u∈⟨s○ksk,j⟩

u and ∏⟨s ○k sk,i⟩ = ∏
u∈⟨s○ksk,i⟩

u

are disjoint for j ≠ i. Therefore, ⟨∏⟨s ○k sk,j⟩⟩
qk
j=1 is a partition of∏⟨s⟩ and we define

∏⟨s ○k ι⟨sk⟩⟩ = ι⟨∏⟨s○ksk,j⟩⟩
qk
j=1

.

This defines ∏ as an assignment on objects and operations. Since there is at most
one operation inM(∧k ak)with each given input profile and output, commutativ-
ity of the multifunctor axioms is automatic. □

Next we have a generalization of the naturality Lemma 10.1.4. Here too the
result follows by induction on the binary case, but we also give a detailed direct
proof.
Proposition 10.6.3. The pointed multifunctor∏ is natural with respect to the morphisms
of Gop and defines a natural transformation of functors

∏ ∶ T (M ○ ∧).

Proof. Recalling (9.1.16) and (10.3.5), naturality with respect to a morphism

( f , ⟨ψ⟩) ∶ ⟨n⟩ ⟨m⟩,
is verified by commutativity of the outer rectangle in the following diagram. In
the upper row we take smash products of leftM1-modules so that empty smash
products areM1. In the lower row empty smash products are 1.

⋀
j
Mmj ⋀

j
M(n f−1(j)) ⋀

f−1(j)/=∅
M(n f−1(j)) ⋀

k
Mn k

M[∧
j

mj] M[∧
j
(n f−1(j))] M[ ∧

f−1(j)/=∅
(n f−1(j))] M[∧

k
n k]

∧jψ̃j ≅ ≅
permute

∧̃jψj ≅ ≅
permute

∏ ∏ ∏ ∏

In the diagram above, the leftmost square commutes because ∧jψj is defined com-
ponentwise and hence, as a function on tuples of subsets ⟨t⟩with tj ⊂ m♭j , we have

∧j(ψ−1
j (tj)) = (∧jψj)−1(∧jtj).
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The two composites in the middle square are equal because both are given by

⟨s⟩ ∧
f−1(j)≠∅

s f−1(j)

for sj ⊂ n♭j . The two composites in the rightmost square are equal because both are

given by permuting factors of a smash product according to the action of f−1 on
its indexing set. □

There are projections
∧k ak ak

for each k, but these do not give well-defined multifunctors

M(∧k ak) Mak.

Disjoint subsets of a product may project to nondisjoint subsets. However, there is
an intermediary given as follows. Recall from Example 5.1.9 we let Mu denote the
unary multicategory associated to a category M.

Definition 10.6.4. Suppose ⟨a⟩ = (a1, . . . , aq) is a tuple of pointed finite sets for
q > 0. Let

P⟨a⟩ = ((∏
k

a♭k)
u)+

denote the pointed multicategory obtained by adjoining a disjoint basepoint T to
the discrete unary multicategory whose objects are the elements of the product.

Note that the objects of P⟨a⟩ correspond to the elements of ∧k ak, but P⟨a⟩
differs from the discrete unary multicategory on ∧k ak because a discrete unary
multicateory has no non-identity operations and therefore cannot be a pointed
multicategory. ◇
Remark 10.6.5. Note that P is not defined on morphisms of G. For a morphism
ψ ∶ n m inF , the inverse image of an element x ∈ m is generally not a singleton
subset of n. Therefore, the definitions ofM or T on morphisms of F or G, respec-
tively, do not specialize to give well-defined morphisms P⟨m⟩ P⟨n⟩. ◇
Definition 10.6.6. Suppose ⟨a⟩ is a q-tuple of pointed finite sets for q > 0. We define
two pointed multifunctors

T ⟨a⟩ i P⟨a⟩
j
M(∧k ak)

by taking elements of ∏k a♭k to singletons in two different ways. For each tuple of
elements ⟨x⟩ = (x1, . . . , xq) ∈∏k a♭k, we define

i⟨x⟩ = ({x1}, . . . ,{xq}) and

j⟨x⟩ = {(x1, . . . , xq)}.

So i sends ⟨x⟩ to the tuple of the singletons and j sends ⟨x⟩ to the singleton of the
tuple. ◇
Proposition 10.6.7. Suppose C = (C,⊕, e) is a small permutative category. Then for each
tuple of pointed finite sets ⟨a⟩ = (a1, . . . , aq) with q > 0, the pointed multifunctors j and i
induce adjunctions of pointed categories

Multicat∗(T ⟨a⟩,End(C)) i∗
Multicat∗(P⟨a⟩,End(C))
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and

Multicat∗(M(∧k ak),End(C))
j∗

Multicat∗(P⟨a⟩,End(C)).
Proof. We begin with the assertion about j∗. A pointed multifunctor from P⟨a⟩ to
End(C) necessarily sends the non-unary operations of the basepoint T to those of
e ∈ C. Therefore,

Multicat∗(P⟨a⟩,End(C)) = Cat∗(a,C),
where the basepoint of C is e and

(10.6.8) a = (∏
k

a♭k)+ ≅ ∧k ak.

By applying Proposition 8.5.4 to a and using the isomorphism (10.6.8), we see that
j∗ is a strictly unital symmetric monoidal right adjoint in PermCatsu.

For the assertion about i∗, we apply Proposition 8.5.4 to each individual
pointed finite set ak to obtain strictly unital symmetric monoidal adjunctions

(10.6.9) Multicat∗(Mak,End(C)) Cat∗(ak,C) =Multicat∗(Pak,End(C)).
By Corollary 5.3.9, End is 2-functorial with respect to strictly unital symmetric
monoidal functors. Applying End to both sides of (10.6.9) and using Lemma 5.7.21
we have, therefore, an internal right adjoint in Multicat∗

Hom∗(Mak,End(C)) Hom∗(Pak,End(C))
for each ak ∈ ⟨a⟩.

Therefore, by the ∧-Hom∗ adjunction of Theorem 5.7.22 we have, for example,
the following sequence of equivalences and right adjoints in Cat∗:

Multicat∗(M(a1)∧M(a2),End(C)) ≃Multicat∗(M(a1),Hom∗(M(a2),End(C)))
Multicat∗(M(a1),Hom∗(P(a2),End(C)))

≃Multicat∗(M(a1)∧P(a2),End(C))
≃Multicat∗(P(a2),Hom∗(M(a1),End(C)))

Multicat∗(P(a2),Hom∗(P(a1),End(C)))
≃Multicat∗(P(a1)∧P(a2),End(C)).

Now the assertion for i∗ follows from induction and the identification

∧kP(ak) ≅ P⟨a⟩. □

Recall from Definition 9.1.15 the smash product of pointed finite sets defines a
pointed functor

∧ ∶ G F .
Composition then provides a change-of-diagram functor

Γ-Cat − ○ ∧ G∗-Cat

denoted ∧∗ below.
Theorem 10.6.10. Suppose C is a small permutative category. The product

∏ ∶ T M(∧(−))
of Proposition 10.6.2 induces a level equivalence of symmetric spectra

KSeC KEMC

that is natural with respect to strictly unital symmetric monoidal functors.
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Proof. Recall from Proposition 10.6.3 that ∏ is natural with respect to morphisms
in G. Therefore, by functoriality of

Multicat∗(−,End(C)) ∶ (Multicat∗)op Cat∗

and
N ∶ Cat∗ sSet∗,

we have a morphism of G∗-simplicial sets

N∗∏∗ ∶ N∗ ∧∗ JSeC = N∗Multicat∗(M(∧(−)),End(C))
N∗Multicat∗(T (−),End(C)) = N∗JEMC(10.6.11)

where
● N∗ denotes the levelwise composition with N and
● ∧∗ is the functor along the top of the following commutative diagram in
Cat, induced by the smash product of pointed finite sets.

Γ-Cat G∗-Cat

Γ-sSet G∗-sSet

∧∗

∧∗
N∗ N∗

Since the above diagram commutes, and since we have

KF = KG∧∗

by Proposition 9.3.16, then (10.6.11) becomes

KSeC = KFN∗JSeC = KG ∧∗ N∗JSeC

= KGN∗ ∧∗ JSeC
KG(N∗∏∗)

KGN∗JEMC = KEMC.(10.6.12)

The morphism of symmetric spectra (10.6.12) is natural with respect to morphisms
in PermCatsu by naturality of N∗∏∗ and functoriality of KG .

We show (10.6.12) is a level equivalence of symmetric spectra by showing that
each component of (10.6.11) at ⟨n⟩ in G,

(10.6.13) NMulticat∗(M(∧knk),End(C)) NMulticat∗(T ⟨n⟩,End(C)),
is a simplicial homotopy equivalence.

If ⟨n⟩ = ⟨⟩, then ∏ is the identity and there is nothing more to prove. Now
suppose ⟨n⟩ ∈ G has length q > 0. Then we have the following diagram of pointed
multifunctors involving i and j of Definition 10.6.6 along with the component of
∏ at ⟨n⟩.

P⟨n⟩

M(∧k n k)

T ⟨n⟩
i

j ∏

This diagram in Multicat∗ commutes because, for a tuple ⟨x⟩ of elements xk ∈ n♭k,
the product of singleton subsets {xk} is the singleton of the tuple ⟨x⟩.
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Applying the functor

Multicat∗(−,End(C)) ∶ (Multicat∗)op Cat∗,

we have the following commutative diagram of pointed functors.

Multicat∗(P⟨n⟩,End(C))

(JSeC)(∧k n k)

(JEMC)⟨n⟩

j∗

i∗

∏∗

The vertical and horizontal functors are right adjoints of pointed categories by
Proposition 10.6.7 and, therefore, induce simplicial homotopy equivalences on
nerves by Proposition 7.2.5. This implies that (10.6.13),

(N∗∏∗)⟨n⟩ ∶ N(JSeC(∧k n k)) N(JEMC(⟨n⟩)),

is a simplicial homotopy equivalence for each ⟨n⟩ in G. □

10.7. Comparison of (Co)lax and Strong Elmendorf-Mandell G∗-Categories

Throughout this section, (C,⊕, e, ξ) denotes a small permutative category. The
main objective of this section is to compare the categories CGlax⟨n⟩, CG

≅
⟨n⟩, and

CGco⟨n⟩ in Definition 10.4.10, which we refer to as, respectively, the lax, strong, and
colax versions. Recall that, by definition, if either

● ⟨n⟩ = ⟨⟩ or
● some nj = 0, so ⟨n⟩ = ∗ in G,

then each of CGlax⟨n⟩, CG≅ ⟨n⟩, and CGco⟨n⟩ is defined in the same way—either C or 1.
After some preliminary definitions, Proposition 10.7.10 shows that CGlax⟨n⟩ and

CG
≅
⟨n⟩ are related by an adjunction. Theorem 10.7.16 shows that, as ⟨n⟩ varies in G,

the left adjoints assemble into a morphism of G∗-categories, which induces a level
equivalence in K-theory symmetric spectra. Proposition 10.7.22 shows that there
is, furthermore, a multifunctorial property with respect to the small permutative
category C. Theorem 10.7.19 and Proposition 10.7.27 are the corresponding results
for the colax and strong versions. Explanation 10.7.23 discusses some advantages
of KEM over KEM

≅
.

Levelwise Adjunctions.

Definition 10.7.1. We define an object (10.7.3) and a morphism (10.7.6) here. In
Lemma 10.7.8 below, we show that they are well defined. Suppose

⟨n⟩ = (n1, . . . , nq) ∈ F(q)

with q > 0 and each nj > 0. Suppose

(10.7.2) C = (C, ρ) = {C⟨s⟩, ρ⟨s⟩;k,t,u} ∈ CG⟨n⟩

is an ⟨n⟩-system as in Definition 10.4.1. Define an object

(10.7.3) (C̃, ρ̃) ∈ CG
≅
⟨n⟩
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as follows. For a tuple

(10.7.4) ⟨s⟩ = (s1, . . . , sq) with each sj ⊂ nj
♭,

define the component object

C̃⟨s⟩ = ⊕
(x1,...,xq) ∈∏

q
j=1 sj

C({x1},...,{xq}) ∈ C,

with the sequences

(10.7.5) (x1, . . . , xq) ∈
q

∏
j=1

sj ⊂
q

∏
j=1

n♭j

ordered by the lexicographical order of ∧q
j=1nj in Definition 8.1.5. For a partition

(t, u) of sk with 1 ≤ k ≤ q, the gluing morphism

C̃⟨s○kt⟩ ⊕ C̃⟨s○ku⟩ C̃⟨s⟩ ∈ C
ρ̃
⟨s⟩;k,t,u

≅

is
● the identity morphism if t, u, or any sj is empty, and
● the unique coherence isomorphism in C that permutes factors otherwise.

Moreover, for a morphism

α = {α⟨s⟩ ∶ C⟨s⟩ D⟨s⟩} ∶ C D ∈ CG⟨n⟩,
define a morphism

(10.7.6) (C̃, ρ̃C) (D̃, ρ̃D) ∈ CG≅ ⟨n⟩
α̃

with the components

α̃⟨s⟩ = ⊕
(x1,...,xq) ∈∏

q
j=1 sj

α({x1},...,{xq}) ∶ C̃⟨s⟩ D̃⟨s⟩ ∈ C

and ⟨s⟩ as in (10.7.4). ◇
Explanation 10.7.7. In ⟨s⟩ = (s1, . . . , sq) in (10.7.4), suppose that either

● each sj is a one-element set for 1 ≤ j ≤ q, or
● some sj = ∅.

Then
C̃⟨s⟩ = C⟨s⟩ and α̃⟨s⟩ = α⟨s⟩

in Definition 10.7.1. ◇
Lemma 10.7.8. The constructions (10.7.3) and (10.7.6) define a functor

CG⟨n⟩ CG
≅
⟨n⟩.(̃−)

Proof. The pair (C̃, ρ̃) in (10.7.3) satisfies the axioms in Definition 10.4.1 for an
object in CG

≅
⟨n⟩ by the Symmetric Coherence Theorem 1.1.41 in C, since the glu-

ing isomorphisms ρ̃ are coherence isomorphisms in C. The collection α̃ in (10.7.6)
is compatible with the gluing isomorphisms in C̃ and D̃ by the naturality of the
structure isomorphisms in C. So α̃ is a morphism in CG

≅
⟨n⟩. Identity morphisms
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and composition in CG⟨n⟩ are defined componentwise. So the functoriality of ⊕ in
C implies that (̃−) preserves identity morphisms and composition. □

Definition 10.7.9. For each q-tuple of pointed finite sets ⟨n⟩ ∈ F(q) with q ≥ 0,
define two functors

CG
≅
⟨n⟩ CG⟨n⟩

LC
⟨n⟩

RC
⟨n⟩

as follows.

● If ⟨n⟩ = ⟨⟩ or if any nj = 0, then RC
⟨n⟩ and LC

⟨n⟩ are both defined to be
identity functors.
● Otherwise:

– RC
⟨n⟩ = (̃−) is the functor in Lemma 10.7.8.

– LC
⟨n⟩ is also defined by the assignments (10.7.3) and (10.7.6), applied

to the objects and morphisms in CG
≅
⟨n⟩.

The proof of Lemma 10.7.8 applies to LC
⟨n⟩ to show that it is a functor. If C and ⟨n⟩

are understood, then we abbreviate LC
⟨n⟩ and RC

⟨n⟩ to, respectively, L and R. ◇
Proposition 10.7.10. In the context of Definition 10.7.9, the following statements hold.

(1) L ⊣ R is an adjunction with unit a natural isomorphism.
(2) If, in addition, C is a groupoid, then L ⊣ R is an adjoint equivalence.

Proof. There is nothing to check if ⟨n⟩ = ⟨⟩ or if any nj = 0. For the remainder of the
proof we assume q > 0 and each nj > 0. For the first assertion, we

● define the unit and the counit for (L, R) and
● check the triangle identities (I.1.1.11).

The component of the unit

1CG
≅
⟨n⟩ RL

η

at a strong ⟨n⟩-system

(10.7.11) C = (C, ρ) = {C⟨s⟩, ρ⟨s⟩;k,t,u} ∈ CG≅ ⟨n⟩

is the morphism

C RLC ∈ CG
≅
⟨n⟩ηC

with, for ⟨s⟩ = (s1, . . . , sq) as in (10.7.4), components

C⟨s⟩ ⊕
(x1,...,xq) ∈∏

q
j=1 sj

C({x1},...,{xq}) = (RLC)⟨s⟩ ∈ C
(ηC)⟨s⟩

given by

● the identity morphism in each of the two cases in Explanation 10.7.7 and
● composites of inverses of the gluing isomorphisms ρ in C otherwise.
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The second case above is well defined by the invertibility of ρ in C and the axioms
in Definition 10.4.1. The condition that ηC is a morphism in CG

≅
⟨n⟩ means that the

diagram

(10.7.12)

C⟨s○kt⟩ ⊕C⟨s○ku⟩ C⟨s⟩

(RLC)⟨s○kt⟩ ⊕ (RLC)⟨s○ku⟩ (RLC)⟨s⟩

(ηC)⟨s○kt⟩⊕(ηC)⟨s○ku⟩

ρ
⟨s⟩;k,t,u

(ηC)⟨s⟩
ρ̃
⟨s⟩;k,t,u

is commutative for each partition (t, u) of sk with 1 ≤ k ≤ q.

● If either each sj is a one-element set or some sj = ∅, then all four arrows
in (10.7.12) are identity morphisms.
● In all other cases, each (ηC)? consists of inverses of ρ in C, and ρ̃ is a

coherence isomorphism in C that permutes factors. So (10.7.12) is com-
mutative by the symmetry and associativity axioms (10.4.4) and (10.4.5)
for (C, ρ).

This shows that ηC is a morphism in CG
≅
⟨n⟩.

To check the naturality of η, suppose

α = {α⟨s⟩ ∶ C⟨s⟩ D⟨s⟩} ∶ (C, ρC) (D, ρC) ∈ CG≅ ⟨n⟩

is a morphism. It suffices to check the naturality of η at a component ⟨s⟩ as in
(10.7.4), which asserts the commutativity of the following diagram.

(10.7.13)

C⟨s⟩ ⊕
(x1,...,xq) ∈∏

q
j=1 sj

C({x1},...,{xq}) = (RLC)⟨s⟩

D⟨s⟩ ⊕
(x1,...,xq) ∈∏

q
j=1 sj

D({x1},...,{xq}) = (RLD)⟨s⟩

α
⟨s⟩

(ηC)⟨s⟩

⊕ α
({x1},...,{xq})

(ηD)⟨s⟩

In the two cases in Explanation 10.7.7, the horizontal arrows in (10.7.13) are iden-
tity morphisms, and the two vertical arrows are equal. In all other cases, (10.7.13)
is commutative by

● the fact that each of (ηC)⟨s⟩ and (ηD)⟨s⟩ is a composite of inverses of glu-
ing morphisms and
● the compatibility of α with the gluing morphisms in C and D.

We have shown that η is a natural transformation. Moreover, it is a natural iso-
morphism because each component (ηC)⟨s⟩ is either an identity morphism or a
composite of isomorphisms.

The component of the counit

LR 1CG⟨n⟩
ε

at a lax ⟨n⟩-system C ∈ CG⟨n⟩ as in (10.7.2) is the morphism

LRC C ∈ CG⟨n⟩εC
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with components

(LRC)⟨s⟩ = ⊕
(x1,...,xq) ∈∏

q
j=1 sj

C({x1},...,{xq}) C⟨s⟩ ∈ C
(εC)⟨s⟩

given by
● the identity morphism in each of the two cases in Explanation 10.7.7 and
● composites of the gluing morphisms ρ in C otherwise.

The second case above is well defined by the axioms in Definition 10.4.1. Reusing
the diagrams (10.7.12) and (10.7.13) with each η replaced by ε in the opposite di-
rection, we infer that ε is a natural transformation.

Next we check the triangle identities (I.1.1.11). For the triangle identity that
asserts the commutativity of the diagram

LRL

L L

εLLη

1L

consider an object C ∈ CG
≅
⟨n⟩. Then ((εL) ○ (Lη))C has components

(LC)⟨s⟩ = ⊕
(x1,...,xq) ∈∏

q
j=1 sj

C({x1},...,{xq})

(LRLC)⟨s⟩ = ⊕
(x1,...,xq) ∈∏

q
j=1 sj

C({x1},...,{xq})

(LC)⟨s⟩ = ⊕
(x1,...,xq) ∈∏

q
j=1 sj

C({x1},...,{xq})

⊕(ηC)({x1},...,{xq})(LηC)⟨s⟩ =

ρ̃(εLC)⟨s⟩ =

with ⟨s⟩ as in (10.7.4).
● In (LηC)⟨s⟩, each factor

(ηC)({x1},...,{xq})

is an identity morphism by definition, so (LηC)⟨s⟩ is an identity mor-
phism.
● The gluing morphism ρ̃ in LC is a coherence isomorphism in C that per-

mutes factors. The Symmetric Coherence Theorem 1.1.41 implies that ρ̃
is the identity morphism in the above diagram.

Therefore, each of Lη and εL is the identity natural transformation.
The other triangle identity

RLR

R R

RεηR

1R
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is proved similarly as follows.
● Each component (ηRC)⟨s⟩ is a coherence isomorphism in C that permutes

factors. Since its domain and codomain are equal, the uniqueness in The-
orem 1.1.41 implies that this is the identity morphism.
● The other natural transformation has components

(RεC)⟨s⟩ = ⊕
(x1,...,xq) ∈∏

q
j=1 sj

(εC)({x1},...,{xq}).

Each displayed component of εC is an identity morphism by definition.
Therefore, each of ηR and Rε is the identity natural transformation. This finishes
the proof that (L, R) is an adjunction with unit η and counit ε.

For the second assertion, suppose C is a groupoid. Then each component
(εC)⟨s⟩ is either an identity morphism or a composite of isomorphisms. In this
case, both the unit η and the counit ε are natural isomorphisms, so (L, R) is an
adjoint equivalence. □

Naturality. Next we observe that the left adjoints LC
⟨n⟩ are natural with re-

spect to ⟨n⟩ ∈ G. To do that, first we provide a simpler description of the left
adjoints as follows.

Definition 10.7.14. For each q-tuple of pointed finite sets ⟨n⟩ ∈ F(q), we denote by

CG
≅
⟨n⟩ CG⟨n⟩

IC
⟨n⟩

the full subcategory inclusion. If C and ⟨n⟩ are understood, then we abbreviate
IC⟨n⟩ to I. ◇

Proposition 10.7.15. For each ⟨n⟩ ∈ F(q), the two functors

CG
≅
⟨n⟩ CG⟨n⟩

L

I

in Definitions 10.7.9 and 10.7.14 are naturally isomorphic. Therefore, Proposition 10.7.10
also holds for the adjunction I ⊣ R.

Proof. If q = 0 or any nj = 0 then L and I are both the identity functor. For the
remainder of the proof we assume q > 0 and each nj > 0. We define a natural
isomorphism

L I
g
≅

as follows. For each object C ∈ CG
≅
⟨n⟩ as in (10.7.11) and ⟨s⟩ as in (10.7.4), the

morphism

(LC)⟨s⟩ = ⊕
(x1,...,xq) ∈∏

q
j=1 sj

C({x1},...,{xq}) C⟨s⟩ ∈ C
(gC)⟨s⟩

is given by
● the identity morphism in each of the two cases in Explanation 10.7.7 and
● composites of the gluing morphisms ρ in C otherwise.
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The second case above is well defined by the axioms in Definition 10.4.1. Reusing
the diagrams (10.7.12) and (10.7.13) with each η replaced by g in the opposite di-
rection, we infer that

● the collection

LC C
gC ={(gC)⟨s⟩}

is a morphism in CG⟨n⟩ and
● g ∶ L I is a natural transformation.

Since the gluing morphisms ρ in C are isomorphisms, each component (gC)⟨s⟩ is
an isomorphism. So g is a natural isomorphism. □

Recall that CG and, by restriction, CG
≅

are G∗-categories by Proposition 10.4.18.

Theorem 10.7.16. For each small permutative category (C,⊕, e, ξ), the functors IC⟨n⟩ in
Definition 10.7.14 are the components of a G∗-category morphism

CG
≅

CG .IC

Moreover, the induced morphism of symmetric spectra

KEM
≅
C = KGN∗CG≅ KGN∗CG ≅ KEMC

KGN∗ IC

is a level equivalence.

Proof. For each morphism

⟨n⟩ = (n1, . . . , nq) (m1, . . . , mp) = ⟨m⟩ ∈ G
( f ,⟨ψ⟩)

as in Definition 9.1.7, the diagram of functors

(10.7.17)

CG
≅
⟨n⟩ CG⟨n⟩

CG
≅
⟨m⟩ CG⟨m⟩

CG
≅
( f ,⟨ψ⟩)

IC
⟨n⟩

CG( f ,⟨ψ⟩)
IC
⟨m⟩

is commutative because each IC? is a full subcategory inclusion. So IC is a mor-
phism of G∗-categories.

For the second assertion, by Proposition 10.7.15, IC is levelwise a left adjoint.
After taking the nerve, N∗ IC is a levelwise simplicial homotopy equivalence of
G∗-simplicial sets. So KGN∗ IC is a level equivalence of symmetric spectra. □

Explanation 10.7.18. Using the notation in Definition 10.4.16, we explain the dia-
gram (10.7.17) in more detail. Suppose q > 0, p > 0, each nj > 0, and each mi > 0.
For an object (C, ρ) ∈ CG

≅
⟨n⟩ as in (10.7.11), denote by

(C′, ρ′) ∈ CG⟨m⟩
the image of (C, ρ) under either composite in (10.7.17). For a p-tuple of pointed
finite sets

⟨s⟩ = (s1, . . . , sp) ∈ F(p) with each si ⊂ m♭i ,
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the component C′⟨s⟩ is the object

C′⟨s⟩ =
⎧⎪⎪⎨⎪⎪⎩

C⟨ f̃∗ψ−1(s)⟩ if each ψ−1
i (si) /= ∅,

e otherwise

with
⟨ f̃∗ψ−1(s)⟩ = {ψ−1

f(j) (s f(j))}1≤j≤q
∈ F(q).

For a partition
t ∪ u = sk with 1 ≤ k ≤ p,

the gluing morphism ρ′ is

ρ′⟨s⟩;k,t,u =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ⟨ f̃∗ψ−1(s)⟩; f−1(k),ψ−1
k (t),ψ

−1
k (u)

if f−1(k) /= ∅ and each ψ−1
i (si) /= ∅,

1C
⟨ f̃∗ψ−1(s)⟩

if f−1(k) = ∅ and each ψ−1
i (si) /= ∅,

1e otherwise.

For a morphism

C D ∈ CG
≅
⟨n⟩,α

its image α′ under either composite in (10.7.17) has components

α′⟨s⟩ =
⎧⎪⎪⎨⎪⎪⎩

α⟨ f̃∗ψ−1(s)⟩ if each ψ−1
i (si) /= ∅,

1e otherwise

with ⟨s⟩ ∈ F(p) as above. ◇
So far we have compared the lax and the strong variants of the Elmendorf-

Mandell G∗-categories of C. The next result compares the colax and the strong
variants.
Theorem 10.7.19. The following statements hold for each small permutative category C

and each ⟨n⟩ ∈ F(q).
(1) For q > 0 and each nj > 0, the constructions (10.7.3) and (10.7.6) define functors

CGco⟨n⟩ CG
≅
⟨n⟩,

Lco
⟨n⟩

Rco
⟨n⟩

where, in

Rco
⟨n⟩(C, ρ) = (C̃, ρ̃) for (C, ρ) ∈ CG

≅
⟨n⟩,

the gluing morphisms go in the colax direction, as in

C̃⟨s⟩ C̃⟨s○kt⟩ ⊕ C̃⟨s○ku⟩ ∈ C.
ρ̃
⟨s⟩;k,t,u

≅

(2) The functors (Lco
⟨n⟩, Rco

⟨n⟩) form an adjunction with counit a natural isomor-
phism, where, if q = 0 or any nj = 0, we define Lco

⟨n⟩ and Rco
⟨n⟩ to both be identity

functors. If C is a groupoid, then (Lco
⟨n⟩, Rco

⟨n⟩) is, furthermore, an adjoint equiv-
alence.
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(3) Rco
⟨n⟩ is naturally isomorphic to the full and faithful functor

CGco⟨n⟩ CG
≅
⟨n⟩

Ico
⟨n⟩

that sends each object

(C, ρ) ∈ CG
≅
⟨n⟩ to (C, ρco) ∈ CGco⟨n⟩

with each component of ρco the inverse of the corresponding component of ρ. On
morphisms, Ico⟨n⟩ is the identity function.

(4) The functors Ico⟨n⟩ are the components of a G∗-category morphism

CGco CG
≅

.Ico

Moreover, the induced morphism of symmetric spectra

KEM
co C = KGN∗CGco KGN∗CG≅ = KEM

≅
C

KGN∗ Ico

is a level equivalence.

Proof. We reuse the proofs of Lemma 10.7.8, Propositions 10.7.10 and 10.7.15,
and Theorem 10.7.16 essentially without change. The key point is that, in (10.7.3),
ρ̃ is a coherence isomorphism in C and does not use the gluing morphisms in
the given ⟨n⟩-system (C, ρ). Moreover, for a strong ⟨n⟩-system (C, ρ), the gluing
morphisms ρ are isomorphisms, so they can be inverted to yield colax gluing
morphisms. □

Multifunctoriality. Theorem 10.7.16 can be strengthened to include multi-
functoriality as follows.
Definition 10.7.20.

● A multilinear functor F (Definition 6.5.4) is strong if each linearity con-
straint F2

i is a natural isomorphism for 1 ≤ i ≤ n.
● Denote by

PermCatsus

the Cat-enriched full sub-multicategory of PermCatsu in Definition 6.5.1
consisting of strong multilinear functors.

The definitions (6.6.3) and (6.6.8) show that strong multilinear functors are closed
under the symmetric group action and the composition. ◇
Explanation 10.7.21 (Multifunctoriality of (−)G

≅
). The Cat-enriched multifunctor

PermCatsu G∗-Cat
(−)G

in Explanation 10.5.4 restricts to a Cat-enriched multifunctor

PermCatsus G∗-Cat.
(−)G

≅

For (−)G
≅

, the restriction to strong multilinear functors is necessary. In more detail,
for an n-linear functor F as in (10.5.8), the G∗-category morphism FG

≅
has the same

description as FG in (10.5.9), but with
● each CGj replaced by (Cj)G≅ and
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● DG replaced by DG
≅

.

In this case, in (10.5.11), the components of the gluing morphisms ρj are isomor-
phisms in Cj. This implies that, in the diagram (10.5.15), the morphism

F(1, . . . , ρr, . . . , 1)
is an isomorphism. Therefore, in order for the gluing morphism ρ⟨s⟩;k,t,u in (10.5.15)

to be an isomorphism, we must assume that the linearity constraints {F2
r }

n
r=1 are

natural isomorphisms. In other words, F is a strong n-linear functor. ◇
Proposition 10.7.22. The G∗-category morphisms IC in Theorem 10.7.16 are the compo-
nents of a Cat-enriched multinatural transformation

PermCatsus G∗-Cat

PermCatsu

(−)G
≅

(−)G
⇒

I

with the unlabeled arrow the sub-multicategory inclusion.

Proof. For I, the naturality condition in Definition 5.1.17 states that, for each strong
n-linear functor

C1 ×⋯×Cn D with n ≥ 0,F

the diagram

(C1)G≅ ⊗⋯⊗ (Cn)G≅ DG
≅

CG1 ⊗⋯⊗C
G

n DG

IC1⊗⋯⊗ICn

FG
≅

ID

FG

in G∗-Cat is commutative. This diagram is commutative by the explicit description
of FG and FG

≅
on

● objects in (10.5.13) and (10.5.15) and
● morphisms in (10.5.16)

and the fact that each IC⟨m⟩, for C ∈ PermCatsus and ⟨m⟩ ∈ G, is an inclusion. □

Explanation 10.7.23 (Lax versus Strong K-Theory). The main reason that we con-
sider the lax version

KEM ≅ KGN∗(−)G ∶ PermCatsu SymSp,

instead of the strong version

KEM
≅
= KGN∗(−)G≅ ∶ PermCatsus SymSp,

as the default Elmendorf-Mandell K-theory is that KEM allows a strictly bigger do-
main multicategory PermCatsu, as opposed to PermCatsus. This is a nontrivial dif-
ference in practice when further algebraic structures are taken into account. In fact,
as we will see in Theorem 11.2.16, monoids in PermCatsu are small ring categories.
On the other hand, the same proof restricted to PermCatsus shows that monoids in
PermCatsus are small ring categories with invertible factorization morphisms ∂l and



III.420 10. ELMENDORF-MANDELL K-THEORY OF PERMUTATIVE CATEGORIES

∂r. So general small ring categories, whose factorization morphisms are not nec-
essarily invertible, can only be detected in PermCatsu. Moreover, there are similar
remarks for

● Theorem 11.5.5, where a Cat-enriched multifunctor

EAs PermCatsu

is a small bipermutative category;
● Theorem 12.4.5, where a Cat-enriched multifunctor

Br PermCatsu

is a small braided ring category; and
● Theorem 13.4.12, where a Cat-enriched multifunctor

Monn PermCatsu

is a small En-monoidal category.
In each of the above cases, replacing the codomain with PermCatsus yields the cor-
responding type of categorical structure with invertible factorization morphisms.

To phrase it in another way, while Theorem 10.7.16 shows that, for each small
permutative category C, IC induces a level equivalence

KEM
≅
C KEMC

KGN∗ IC

of K-theory symmetric spectra, many important algebraic structures preserved by
KEM—including those in Theorems 11.2.16, 11.5.5, 12.4.5, and 13.4.12—can only be
detected in the bigger multicategory PermCatsu, but not in PermCatsus. Therefore,
when algebraic structures on small permutative categories, as parametrized by
operads, are taken into account, the lax version KEM has a significant advantage
over the strong version KEM

≅
. ◇

Theorem 10.7.19 can also be strengthened to include multifunctoriality using
the definitions below.
Definition 10.7.24 (Colax Multilinear Functors). Suppose C1, . . . ,Cn, and D are
permutative categories.

● A colax n-linear functor

F ∶ ⟨C⟩ D

is defined as in Definition 6.5.4 with the direction of each linearity con-
straint F2

i reversed, as in

F2
i ∶ F⟨X ○i (Xi ⊕X′i)⟩ F⟨X ○i Xi⟩⊕ F⟨X ○i X′i ⟩,

but the same axioms, with the reversed arrows F2
i , are satisfied.

● A colax n-linear transformation between colax n-linear functors

F, F′ ∶ ⟨C⟩ D

is defined as in Definition 6.5.11 with the reserved arrows F2
i and (F′)2i in

the diagram (6.5.12).
● Denote by

PermCatsuco
the Cat-enriched multicategory consisting of
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– small permutative categories,
– colax multilinear functors, and
– colax multilinear transformations.

The proofs in Section 6.6, with the linearity constraints reversed, show that
PermCatsuco is a well-defined Cat-enriched multicategory. ◇
Explanation 10.7.25. Each strong n-linear functor (F,{F2

i }n
i=1) as in Definition 10.7.20

yields a colax n-linear functor by taking the inverse of each linearity constraint F2
i .

This assignment gives a Cat-enriched multifunctor

(10.7.26) PermCatsus PermCatsuco
ιco

that is the identity assignment on objects and multilinear transformations. More-
over, the object assignment C CGco is part of a Cat-enriched multifunctor

PermCatsuco G∗-Cat.
(−)Gco

The assignment on strictly unital colax multilinear functors and colax multilinear
transformations are as in Explanation 10.5.4, with

● the linearity constraints F2
i reversed and

● (−)Gco instead of (−)G .

In the current context, each arrow in the diagram (10.5.15) is reversed. ◇
Essentially the same reasoning for Proposition 10.7.22 gives the following re-

sult.

Proposition 10.7.27. The G∗-category morphisms Ico in Theorem 10.7.19 (4) are the com-
ponents of a Cat-enriched multinatural transformation

PermCatsus G∗-Cat

PermCatsuco

(−)G
≅

ιco (−)Gco

⇒

Ico

with ιco as in (10.7.26).

10.8. Notes

10.8.1 (Elmendorf-Mandell K-Theory). Continuing from Note 9.5.1, the construc-
tions JT , JEM, and KEM were first presented in [EM06, EM09]. The first of these uses
the G∗-categories CG (Section 10.4), and the second uses a description equivalent
to that of Section 10.3.

A description ofM1-modules is also given in [EM09] (there called E-modules,
where E is the terminal parameter multicategory for modules). The important struc-
ture result, Proposition 10.1.28, is from [EM09, Proposition 5.1] (see Note 10.8.4).
However, [EM09] contains incorrect statements that JT (there called J′) extends be-
yond ModM1 to all of Multicat∗. The error is related to the monoidal unit, and we
explain it further in Question A.5.1 below. We identify the necessary corrections
in Note 10.8.2 ◇
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10.8.2 (Corrections to [EM09]). As mentioned in Note 10.8.1, and discussed fur-
ther in Question A.5.1 below, the symmetric monoidal functor JT does not extend,
as a symmetric monoidal functor, to all of Multicat∗. The restriction of its domain
to ModM1 is essential to its satisfying the monoidal unity axioms as in (10.3.18).
These, in turn, are essential to the preservation of composition with identity oper-
ations in the associated multicategory.

To account for this subtlety, the following statements in [EM09] should be cor-
rected:

● In Theorems 1.3 and 5.14, and in Definition 5.15, Mult∗ should be re-
placed with ModM1 (there called the category of E-modules).
● On page 2392, lines 1 and 2 (just before the statement of Theorem 1.1), the

phrase beginning “with the objects of the larger category being...” should
end with “M1-modules.” Note that ModM1 is bicomplete and symmetric
monoidal closed as desired, by Proposition 10.2.22.
● On page 2432, the second to last sentence of section 5, which reads “The

lax structure map for the unit is then given by the unique map to the ter-
minal object,” should be removed and replaced with the unit constraint
(JT )0 from Definition 10.3.16.

If the unit constraint (JT )0 is the unique map to the terminal object in G∗-Cat,
then the unit axioms of a monoidal functor would imply that every left and right
unit isomorphism factors through the zero morphism. But that is not the case.

In the earlier paper [EM06], the construction JT (there called J) is only dis-
cussed as a multifunctor from PermCatsu. Since

End ∶ PermCatsu Multicat∗

takes values in ModM1 (Lemma 10.2.14), no corrections are necessary. In the proof
of [EM06, Theorem 6.1], the image of a 0-linear functor, as described in Explana-
tion 10.5.4, is left implicit. ◇
10.8.3 (Structure of JT on Multicat∗). Question A.5.1 and Note 10.8.2 explain that
JT cannot extend, as a monoidal functor, to all of Multicat∗. However we do have
the underlying 2-functor

JT =Multicat∗(T ,−)
defined on all of Multicat∗. Moreover, the monoidal constraint (JT )2 and the veri-
fications of the associativity and symmetry axioms in Theorem 10.3.17 are not re-
stricted to leftM1-modules. It appears that the unit constraint and unity axioms
are the essential reasons that JT cannot extend to a symmetric monoidal functor
on all of Multicat∗. ◇
10.8.4 (Monoids With Invertible Multiplication). Proposition 10.1.28 shows that
the category ofM1-modules is a full subcategory of Multicat∗. This result holds
generally for the subcategory of modules over a monoid M in a monoidal category
such that the multiplication map for M is an isomorphism. The result is proved
with this generality in [EM09, Proposition 5.1]. As noted there, a more general
result for algebras over idempotent monads is given in [Bor94b, Proposition 4.2.3].

◇
10.8.5 (Notation Comparison). For comparison with [EM06, EM09], we give the
following table of corresponding notation.
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[EM06, EM09] Our Notation Reference

G∗ G Definition 9.1.7

q ∶ r s f ∶ p q Definition 9.1.2

q∗⟨m⟩ f∗⟨n⟩ Definition 9.1.4

(α, q) ∶ ⟨m⟩ ⟨n⟩ ( f , ⟨ψ⟩) ∶ ⟨n⟩ ⟨m⟩ Definition 9.1.7

KSeg, KNew KSe, KEM Definitions 8.5.1 and 10.3.32

α∗ ⟨ψ̃⟩ Definition 10.4.16 (2)

E M1 Example 8.4.5

C⟨m⟩ CG⟨n⟩ Definition 10.4.10

pm, q⟨m⟩ i∗, j∗ Proposition 10.6.7

J,J′ JT Definition 10.3.9

◇
10.8.6 (Segal K-Theory and Symmetric Monoidal Structure). In Explanation 9.2.18
we note that Γ-C carries a symmetric monoidal structure defined similarly (via
Day convolution) to that of G∗-C. Theorem 9.4.18 shows that the functor

KF ∶ Γ-sSet SymSp

of Proposition 8.2.6 is symmetric monoidal as a sSet∗-functor. However one en-
counters difficulties attempting to develop a symmetric monoidal structure for

JSe ∶ PermCatsu Γ-Cat.

First, as noted in Propositions 5.7.23 and 10.2.17, the symmetric monoidal
structure for small pointed multicategories does not restrict to a symmetric mon-
oidal structure for PermCatsu. When one extends to use the symmetric monoidal
structure on pointed multicategories, as we do for JEM in Section 10.3, one faces
a more fundamental difficulty elaborated in [EM06, pp. 181–182]. To produce a
pairing

CFm ∧CFn CFmn
on objects, one needs to produce an (m∧n)-system, in the sense of Definition 8.3.1,
from an m-system and an n-system. The essential problem is that the (basepoint-
free) subsets of m ∧ n cannot be effectively determined by the subsets of m and
n alone. One can take products of subsets, as in Definition 10.1.1 and Propo-
sition 10.6.2, but these will not produce all the necessary subsets of the prod-
uct. Efforts to resolve that difficulty were the motivation for the development,
in [EM06, EM09], of G, KG , JEM, and KEM.

The preceding discussion can be rephrased in terms of the partition multicat-
egory functors

M ∶ Fop Multicat∗ and T ∶ Gop ModM1

from Definitions 8.4.1 and 10.3.1: both are symmetric monoidal functors, but only
T is strong (see Proposition 10.1.6, Explanation 10.1.10, and Proposition 10.3.7).
The inverse monoidal constraint for T is used in (10.3.13) and is an essential part of
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the proof in Theorem 10.3.17 that JT , and hence also JEM, is a symmetric monoidal
functor. ◇
10.8.7 (Multiplicative K-Theory Machines). In addition to the Elmendorf-Mandell
K-theory multifunctor, there is also May’s construction [May09a], which improves
the original version in [May77, May82]. See also the companion papers [May09b,
May09c]. A further extension to multiplicative equivariant K-theory is given in
[GMMO∞].

We follow the Elmendorf-Mandell approach in part because it has operadic
structure built into it in the sense that KEM is a multifunctor that respects the en-
richment. In particular, it allows us to seamlessly include En-symmetric spectra
for 1 ≤ n ≤∞ as the target of one construction KEM. ◇
10.8.8 (Lax versus Strong). In Section 10.7 we compare the lax, colax, and strong
variant constructions of Elmendorf-Mandell K-theory, showing that they result in
level-equivalent symmetric spectra. A similar result for the variant Segal K-theory
constructions is recorded in Theorems 8.3.21 and 8.5.2.

The paper [BO20] uses the strong Elmendorf-Mandell K-theory KEM
≅

. The con-
clusions of Theorem 10.7.16 are mentioned in a footnote in [BO20, p. 1215]. For
the Cat-enriched multifunctor (−)G

≅
, the necessity to restrict to strong multilinear

functors, which we discuss in Explanation 10.7.21, is mentioned in [BO20, Re-
mark 3.11]. ◇
10.8.9 (Waldhausen K-Theory). In addition to the Segal K-theory and the equiv-
alent Elmendorf-Mandell K-theory of a small permutative category, there is also
Waldhausen K-theory of a small Waldhausen category [Wal85]. When the latter
satisfies a split cofibration hypothesis, Waldhausen showed that his K-theory func-
tor and Segal’s yield equivalent spectra. The main results in [BO20] show that this
equivalence of K-theory spectra can be promoted to one between multifunctors,
using the multifunctorial Waldhausen K-theory in [BM11, GH06, Zak18] and the
strong Elmendorf-Mandell K-theory multifunctor KEM

≅
. ◇

10.8.10 (Quillen K-Theory). The K-theory constructions of Waldhausen discussed
above in Note 10.8.9, along with those of Segal and Elmendorf-Mandell, are gen-
eralizations of Quillen’s higher algebraic K-groups [Qui73]. For a commutative ring
R, these higher algebraic K groups are given by the homotopy groups of the space
BGL(R)+, where GL(R) is the infinite general linear group of R, its classifying
space is BGL(R), and (−)+ is Quillen’s plus construction that abelianizes π1 while
preserving homology groups of a space.

To relate Segal’s work to that of Quillen, the permutative category of inter-
est is S = ∐nGLn(R), the category whose object set is the natural numbers and
whose morphisms are the elements of the general linear groups. Quillen gives an
explicit construction, related in [Gra76] and also [Wei13, Section IV.4], that inverts
the monoidal sum in S to yield an infinite loop space equivalent to Z × BGL(R)+.
This space is the zeroth space of the spectrum KSe(S). The Segal and Elmendorf-
Mandell constructions thus generalize that of Quillen to arbitrary permutative
categories. This is why their constructions are regarded as general forms of K-
theory. ◇



CHAPTER 11

K-Theory of Ring and Bipermutative Categories

The Elmendorf-Mandell K-theory multifunctor (Definition 10.3.32)

PermCatsu SymSp
KEM

sends small permutative categories to symmetric spectra. It provides one of the
most important connections between category theory, homotopy theory, and al-
gebraic K-theory. Since SymSp is a symmetric monoidal closed category (Theo-
rem 7.6.15), it makes sense to talk about structured symmetric spectra, which are
symmetric spectra that are algebras of operads. Among the most important struc-
tured symmetric spectra are the En-symmetric spectra for 1 ≤ n ≤∞.

● An E1-symmetric spectrum is a strict ring symmetric spectrum, that is, a
monoid in SymSp. They form the most basic multiplicative structure in
symmetric spectra.
● An E∞-symmetric spectrum is a strict ring symmetric spectrum whose

multiplication is commutative up to all higher coherent homotopies. In a
model categorical sense, each E∞-symmetric spectrum is weakly equiv-
alent to a strictly commutative ring symmetric spectrum. For example,
the sphere symmetric spectrum in Definition 7.4.1 is an E∞-symmetric
spectrum.
● An En-symmetric spectrum for 1 < n < ∞ sits somewhere between the

E1 and the E∞ cases. For example, at each prime p, the Brown-Peterson
spectrum is an E4-symmetric spectrum but not an E∞-symmetric spec-
trum. See also Question A.4.2.

In this chapter, we apply the Elmendorf-Mandell K-theory multifunctor KEM

to ring categories and bipermutative categories (Chapter II.9) to produce, respec-
tively, strict ring symmetric spectra and E∞-symmetric spectra. These results are
due to Elmendorf-Mandell [EM06]. See Corollaries 11.3.16 and 11.6.12 and also
Note 11.7.4 for the differences between the presentation in [EM06] and this chap-
ter. In Chapters 12 and 13, using our braided ring categories and En-monoidal
categories (Definitions II.9.5.1 and II.10.7.2), the main results in this chapter will
be expanded to the En cases for 1 < n <∞.

Each of Corollaries 11.3.16 and 11.6.12 is a combination of several key facts.
First, the Elmendorf-Mandell K-theory multifunctor respects

● the categorical enrichment in the Cat-enriched multicategory PermCatsu

of small permutative categories and
● the simplicial enrichment in the symmetric monoidal closed category
SymSp of symmetric spectra.

The fact that KEM is a multifunctor that respects the enrichment implies that a struc-
ture in PermCatsu that is parametrized by a Cat-enriched operad passes along KEM

III.425
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to symmetric spectra. Therefore, Corollaries 11.3.16 and 11.6.12 will follow once
we know the parameter operads in PermCatsu for, respectively, ring categories and
bipermutative categories in Definitions II.9.1.2 and II.9.3.2.

For the E1 case, the associative operad As parametrizes
● monoids in a general symmetric monoidal category (Proposition 11.1.15)

and
● ring categories in the multicategory PermCatsu (Theorem 11.2.16).

Both of these statements are consequences of the Coherence Theorem 11.1.7 for
As. Combining Theorem 11.2.16 with KEM yields Corollary 11.3.16, which says
that, for each small ring category C, KEMC is a strict ring symmetric spectrum.
Along the same lines, the categorical Barratt-Eccles operad EAs is an E∞-operad
that parametrizes

● permutative categories in Cat (Proposition 11.4.26) and
● bipermutative categories in PermCatsu (Theorem 11.5.5).

Both of these statements are consequences of the Coherence Theorem 11.4.14 for
EAs. Combining Theorem 11.5.5 with KEM yields Corollary 11.6.12, which says
that, for each small bipermutative category C, KEMC is an E∞-symmetric spectrum.
The following table summaries this discussion.

operad associative As (11.1.1) Barratt-Eccles EAs (11.4.10)

E?-operad E1 (13.1.23, 13.2.1) E∞ (11.6.3)

coherence 11.1.7 11.4.14

in Cat strict monoidal (11.1.15) permutative (11.4.26)

in PermCatsu ring (11.2.16) bipermutative (11.5.5)

in SymSp strict ring (11.3.16) E∞ (11.6.12)

For open questions related to the Barratt-Eccles operad EAs, see Question A.4.3.

Organization. Section 11.1 discusses the associative operad As from scratch.
After defining As, Lemma 11.1.4 provides a detailed proof that As is actually an
operad. The nth object in As is the nth symmetric group Σn. Its operad composition
is defined by block sums and block permutations. The Coherence Theorem 11.1.7
describes As in terms of

● two generators, one for the unit and one for the multiplication, and
● two relations, one for unity and one for associativity.

The first application of Theorem 11.1.7 is Proposition 11.1.15, which says that As is
the operad for monoids.

Section 11.2 proves Theorem 11.2.16, which says that the associative operad As
detects ring category structures on small permutative categories. This is another
application of the Coherence Theorem 11.1.7 for As. Section 11.3 proves the main
result about strict ring symmetric spectra, Corollary 11.3.16, which says that KEMC
is a strict ring symmetric spectrum for each small ring category C. This result is a
consequence of Theorem 11.2.16 and the Elmendorf-Mandell K-theory multifunc-
tor.

Section 11.4 begins by defining the translation category of a set. Applied to
the associative operad, this yields the Cat-enriched Barratt-Eccles operad EAs. The
Coherence Theorem 11.4.14 describes the Barratt-Eccles operad in terms of

● two generating objects for the unit and the multiplication,
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● one generating isomorphism for the symmetry isomorphism, and
● generating relations corresponding to those of a permutative category.

The first application of Theorem 11.4.14 is Proposition 11.4.26, which says that EAs
is the Cat-enriched operad for permutative categories.

Section 11.5 proves Theorem 11.5.5, which says that the Barratt-Eccles operad
EAs detects bipermutative category structures on small permutative categories.
This is another application of the Coherence Theorem 11.4.14 for EAs. Section 11.6
proves the main result about E∞-symmetric spectra, Corollary 11.6.12, which says
that KEMC is an E∞-symmetric spectrum for each small bipermutative category
C. This result is a consequence of Theorem 11.5.5 and the Elmendorf-Mandell K-
theory multifunctor.

Reading Guide.
(1) Related to the associative operad, read Definition 11.1.1 and the state-

ments of Theorems 11.1.7 and 11.2.16, Proposition 11.1.15, and Corol-
lary 11.3.16.

(2) Related to the Barratt-Eccles operad, read Definitions 11.4.1, 11.4.10,
11.6.1, and 11.6.5 and the statements of Theorems 11.4.14 and 11.5.5,
Propositions 11.4.26 and 11.6.3, and Corollary 11.6.12.

(3) Go back and read the rest of this chapter.

11.1. The Associative Operad

Recall from Definition 5.1.2 that an operad is a one-object multicategory. In this
section, we describe the associative operad explicitly and also in terms of genera-
tors and relations (Theorem 11.1.7). As the first application of Theorem 11.1.7, we
observe in Proposition 11.1.15 that the associative operad detects monoid struc-
tures. Moreover, in Theorem 11.2.16, we use Theorem 11.1.7 to describe ring cate-
gory structures on small permutative categories in terms of the associative operad.
Recall that Σn denotes the nth symmetric group, with identity idn ∈ Σn.
Definition 11.1.1. The associative operad As is defined by the following data.
Operations: Asn = Σn for n ≥ 0.
Equivariance: The right symmetric group action

Asn ×Σn Asn

is the group multiplication in Σn.
Unit: The operad unit is id1 ∈ As1 = Σ1.
Composition: For n ≥ 1 and k j ≥ 0 for 1 ≤ j ≤ n, the operad composition

Asn ×
n
∏
j=1

Askj
Ask1+⋯+kn

γ

is defined by

(11.1.2) γ(σ, (τ1, . . . , τn)) =
block permutation

σ⟨k1, . . . , kn⟩ ⋅ (
block sum

τ1 ×⋯× τn)
for σ ∈ Σn and τj ∈ Σkj

. On the right-hand side, the block sum and the
block permutation are as in, respectively, (II.1.1.8) and (II.1.1.19).

This finishes the definition of As. ◇
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Explanation 11.1.3. The permutation in (11.1.2) is given by

(σ⟨k1, . . . , kn⟩ ⋅ (τ1 ×⋯× τn))(
0 if j = 1

k1 +⋯+ k j−1 + i)
= kσ−1(1) +⋯+ kσ−1(σ(j)−1)

0 if σ(j) = 1

+ τj(i)

for 1 ≤ j ≤ n and 1 ≤ i ≤ k j.

● This permutation first permutes within the jth block via τj ∈ Σkj
for each

1 ≤ j ≤ n.
● Then it permutes the n resulting consecutive blocks of lengths k1, . . . , kn

via σ ∈ Σn.

On the left-hand side, k1 +⋯ + k j−1 + i is the ith element in the jth block. On the
right-hand side, its image under the permutation is the τj(i)th element in the new
σ(j)th block. ◇
Lemma 11.1.4. As in Definition 11.1.1 is an operad.

Proof. We check the operad axioms in Definition 5.1.2 for As.
Unity. The right unity axiom (5.1.5) and the left unity axiom (5.1.6) follow

from the following permutation equalities.

n

id1 ×⋯× id1 = idn ∈ Σn

σ⟨1, . . . , 1⟩ = σ

id1⟨k1⟩ = idk1

Equivariance. The top equivariance axiom (5.1.7) holds by the following com-
putation for σ, σ′ ∈ Σn with n ≥ 1 and τj ∈ Σkj

for 1 ≤ j ≤ n.

γ(σ, (τ1, . . . , τn)) ⋅ σ′⟨kσ′(1), . . . , kσ′(n)⟩
= σ⟨k1, . . . , kn⟩ ⋅ (τ1 ×⋯× τn) ⋅ σ′⟨kσ′(1), . . . , kσ′(n)⟩
= σ⟨k1, . . . , kn⟩ ⋅ σ′⟨kσ′(1), . . . , kσ′(n)⟩ ⋅ (τσ′(1) ×⋯× τσ′(n))
= (σσ′)⟨kσ′(1), . . . , kσ′(n)⟩ ⋅ (τσ′(1) ×⋯× τσ′(n))

= γ(σσ′, (τσ′(1), . . . , τσ′(n)))

The bottom equivariance axiom (5.1.8) follows from the fact that block sums pre-
serve products in the sense that

(11.1.5) (τ1 ×⋯× τn) ⋅ (τ′1 ×⋯× τ′n) = τ1τ′1 ×⋯× τnτ′n

for τ′j ∈ Σkj
and 1 ≤ j ≤ n.

Associativity. For the associativity axiom (5.1.4), suppose further that θj,i ∈ Σlj,i

for 1 ≤ j ≤ n and 1 ≤ i ≤ k j. For each 1 ≤ j ≤ n, suppose

lj = lj,1 +⋯+ lj,kj
.
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Then there is an equality of permutations

(σ⟨k1, . . . , kn⟩ ⋅
n
∏
j=1

τj)⟨

((lj,i)1≤i≤kj
)1≤j≤n

l1,1, . . . , l1,k1
, . . . , ln,1, . . . , ln,kn⟩

= σ⟨l1, . . . , ln⟩ ⋅
n
∏
j=1

τj⟨lj,1, . . . , lj,kj
⟩ ∈ Σl1+⋯+ln .

(11.1.6)

Indeed, on each side of the equal sign in (11.1.6), the permutation is given by

(
j−1
∑
p=1

lp)+ (
i−1
∑

q=1
lj,q)+ h (

σ(j)−1
∑
p=1

lσ−1(p))+ (
τj(i)−1

∑
q=1

lj,τ−1
j (q)
)+ h

for 1 ≤ j ≤ n, 1 ≤ i ≤ k j, and 1 ≤ h ≤ lj,i, with the usual convention that an empty
sum means 0.

The associativity axiom (5.1.4) holds in As by the following computation,
where the second and the third equalities hold by, respectively, (11.1.6) and
(11.1.5).

γ(γ(σ, (τ1, . . . , τn)), ((θ1,i)1≤i≤k1
, . . . , (θn,i)1≤i≤kn))

= (σ⟨k1, . . . , kn⟩ ⋅
n
∏
j=1

τj)⟨l1,1, . . . , l1,k1
, . . . , ln,1, . . . , ln,kn⟩ ⋅

n
∏
j=1

kj

∏
i=1

θj,i

= σ⟨l1, . . . , ln⟩ ⋅ [
n
∏
j=1

τj⟨lj,1, . . . , lj,kj
⟩] ⋅

n
∏
j=1

kj

∏
i=1

θj,i

= σ⟨l1, . . . , ln⟩ ⋅
n
∏
j=1
[τj⟨lj,1, . . . , lj,kj

⟩ ⋅
kj

∏
i=1

θj,i]

= γ(σ, (γ(τj, (θj,1, . . . , θj,kj
))

1≤j≤n
)

This proves that As is an operad. □

Coherence of the Associative Operad. An operad morphism means a multi-
functor (Definition 5.1.12) between two one-object multicategories. So an operad
morphism f ∶ P Q between two operads P and Q consists of structure mor-
phisms

fn ∶ Pn Qn for n ≥ 0

that preserve the symmetric group action, operad units, and operad composition
in the sense of (5.1.13)–(5.1.15). The subscripts in the structure morphisms will
often be omitted. The next coherence result characterizes the associative operad in
terms of generators and relations.

Theorem 11.1.7. The associative operad As is operadically generated by the permutations

id0 ∈ Σ0 and id2 ∈ Σ2
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and is subject to the following unity and associativity relations.

γ(id2, (id0, id1)) = id1 = γ(id2, (id1, id0))
γ(id2, (id2, id1)) = id3 = γ(id2, (id1, id2))

(11.1.8)

Proof. Suppose F(µ, 0) is the operad freely generated by the elements

µ ∈ F2 and 0 ∈ F0,

and suppose 1 ∈ F1 is the operad unit. Suppose As′ is the quotient of F(µ, 0) by the
relations operadically generated by

(11.1.9) {
µ(0,1) = 1 = µ(1, 0)
µ(µ,1) = µ(1, µ)

in which we used the juxtaposition notation for operad composition. An element
in F(µ, 0) and its image in As′ will be denoted by the same symbol below. We will
show that As′ is canonically isomorphic to As.

By (11.1.9) and an induction, each operad composite in As′n involving only

µ0 = 0 ∈ As′0, µ1 = 1 ∈ As′1, and µ2 = µ ∈ As′2
yields the same element, which is denoted by µn ∈ As′n. This property will be called
the uniqueness of µn below. There is a unique operad morphism

F(µ, 0) As
ϕ

such that
⎧⎪⎪⎨⎪⎪⎩

ϕ(µ) = id2 ∈ Σ2

ϕ(0) = id0 ∈ Σ0.

Since the relations (11.1.8) hold in As, ϕ preserves the relations (11.1.9). So it factors
through the quotient operad As′ to yield an operad morphism

(11.1.10) As′ As
ϕ′

such that ϕ′(µn) = idn

for n ≥ 0.
In the other direction, there is an operad morphism as follows.

(11.1.11) As As′

Σn ∋ σ µnσ ∈ As′n

φ

Indeed, φ preserves the operad unit and the symmetric group action by defini-
tion. The preservation of the operad composition means the commutativity of the
diagram

(11.1.12)

Asn ×
n
∏
j=1

Askj
Ask

As′n ×
n
∏
j=1

As′kj
As′k

φ×∏j φ

γ

φ

γ

with k = k1 +⋯+ kn. By
● the equivariance axioms (5.1.7) and (5.1.8) in As and As′ and
● the fact that φ preserves the symmetric group action,
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it suffices to consider the element

(idn, (idkj
)nj=1) ∈ Asn ×

n
∏
j=1

Askj
.

On this element, the diagram (11.1.12) is commutative by the uniqueness of µk ∈
As′k. Finally, observe that the operad morphisms ϕ′ in (11.1.10) and φ in (11.1.11)
are inverses of each other. □

Monoids as Algebras. An operad, such as As, is regarded as an operad in a
permutative category (C,⊗,1) with all small coproducts, in which ⊗ commutes
with small coproducts on each side separately, via the strong symmetric monoidal
functor

(11.1.13)
Set C

X ∐
X
1.

Recall from Definition I.1.2.28 that a symmetric monoidal category is closed if, for
each object A, the functor −⊗ A has a right adjoint [A,−], which is called the in-
ternal hom. If C is closed, then, by adjunction, ⊗ commutes with all small colimits
that exist in C on each side separately.

In Proposition 11.1.15 below, we use the C-enriched endomorphism operad de-
fined using the internal hom as in Proposition 6.3.6 with A ∈ C = V = K. Its objects
are

(11.1.14) End(A)n = [A⊗n, A] ∈ C for n ≥ 0.

Recall from Definition I.1.2.8 that, in a monoidal category (C,⊗,1, α, λ, ρ), a monoid
(A, µ, η) consists of

● an object A ∈ C,
● a multiplication µ ∶ A⊗ A A, and
● a unit η ∶ 1 A

that are associative and unital in the sense that the following diagrams are com-
mutative.

(A⊗ A)⊗ A A⊗ (A⊗ A)

A⊗ A

A⊗ A A

µ⊗1A

α

1A⊗µ

µ

µ

1⊗ A A

A⊗ A A

A⊗1 A

η⊗1A

λA

µ

1A⊗η

ρA

The next observation is a consequence of the characterization of the associative
operad in Theorem 11.1.7.
Proposition 11.1.15. Suppose (C,⊗,1) is a permutative closed category with all small
coproducts. Then, for each object A ∈ C, a monoid structure on A is uniquely determined
by an operad morphism As End(A).

Proof. Given an operad morphism

ϕ ∶ As End(A),
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the adjoint of the structure morphism

(11.1.16) As0 = 1 [1, A] = End(A)0
ϕ0

is the monoid unit η ∶ 1 A. The monoid multiplication µ of A is the following
composite, with each 1? a copy of 1.

(11.1.17)
A⊗2 A

(1id2∐1(1,2))⊗ A⊗2 As2 ⊗ A⊗2

µ

id2 ϕ#
2

The right vertical morphism ϕ#
2 is the adjoint of the structure morphism

As2 = 1id2∐1(1,2) [A⊗2, A] = End(A)2.
ϕ2

The triple (A, µ, η) satisfies the monoid associativity and unity axioms in Defini-
tion I.1.2.8 by the corresponding properties (11.1.8) in As.

Conversely, given a monoid (A, µ, η), the assignment in the previous para-
graph uniquely defines an operad morphism As End(A) by Theorem 11.1.7.
By construction, these two assignments are inverses of each other. □

Remark 11.1.18. For symmetric monoidal categories that are not strict, we will use
Proposition 11.1.15 along with Explanation 6.1.19. ◇

11.2. Detecting Ring Categories

In this section, we prove that the associative operad detects ring category
structures on small permutative categories (Theorem 11.2.16). This result is due
to Elmendorf-Mandell and is an application of the Coherence Theorem 11.1.7 for
the associative operad.

Recall from Definition 11.1.1 and Lemma 11.1.4 that the associative operad As
has Asn = Σn, the nth symmetric group, and unit id1 ∈ As1. Its operad composition
γ is given by the product

γ(σ, (τ1, . . . , τn)) =
block permutation

σ⟨k1, . . . , kn⟩ ⋅ (
block sum

τ1 ×⋯× τn)

for σ ∈ Σn and τj ∈ Σkj
for 1 ≤ j ≤ n.

● By Theorem 11.1.7, As is operadically generated by id0 ∈ As0 and id2 ∈ As2
and is subject to unity and associativity relations.
● By Proposition 11.1.15, for a permutative closed category C with all small

coproducts, As detects monoid structure. This means that a monoid struc-
ture on an object A ∈ C is uniquely determined by an operad morphism
As End(A), with End(A) the C-enriched endomorphism operad in
(11.1.14).

The unique object in the one-object multicategory As is denoted by ∗.
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For each symmetric monoidal category (C,⊗,1) with small coproducts, in
which ⊗ commutes with small coproducts on each side separately, there is an ad-
junction

(11.2.1) Set C.
∐? 1

C(1,?)

The right adjoint sends each object A ∈ C to the set C(1, A) of morphisms 1 A
in C. The left adjoint is the functor in (11.1.13) that sends a set X to the coproduct
∐X 1. It is a strong symmetric monoidal functor. The associative operad As is
regarded as a C-enriched operad via the left adjoint.
Example 11.2.2. For the symmetric monoidal category Cat of small categories and
functors, the adjunction (11.2.1) becomes

(11.2.3) Set Cat.
dis

Ob

The left adjoint sends each set X to the discrete category dis(X) with object set X.
The right adjoint Ob is the forgetful functor that sends each small category to its
set of objects. The associative operad As is also regarded as a Cat-enriched operad
via the strong symmetric monoidal functor dis. So Asn is the discrete category with
object set Σn. ◇

For the reader’s convenience, here we recall from Chapter II.9 the definition
of a ring category.
Definition 11.2.4. A ring category is a tuple

(C, (⊕, 0, ξ⊕), (⊗,1), (∂l , ∂r))
consisting of the following data.
The Additive Structure: (C,⊕, 0, ξ⊕) is a permutative category.
The Multiplicative Structure: (C,⊗,1) is a strict monoidal category.
The Factorization Morphisms: ∂l and ∂r are natural transformations

(11.2.5)
(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

(A⊗ B)⊕ (A⊗C) A⊗ (B⊕C)

∂l
A,B,C

∂r
A,B,C

for objects A, B, C ∈ C, which are called the left factorization morphism and
the right factorization morphism, respectively.

To simplify the presentation, we often abbreviate ⊗ to concatenation, with ⊗ al-
ways taking precedence over ⊕ in the absence of clarifying parentheses. For ex-
ample, the left factorization morphism is abbreviated to AC ⊕ BC (A⊕ B)C.
The subscripts in ξ⊕, ∂l , and ∂r are sometimes omitted.

The above data are required to satisfy the following seven axioms for all ob-
jects A, A′, A′′, B, B′, B′′, C, and C′ in C.
The Multiplicative Zero Axiom: The diagram of functors

(11.2.6)
∗×C C C×∗

C×C C C×C
0×1C

≅

0

≅

1C×0

⊗ ⊗
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is commutative. In this diagram, the top horizontal isomorphisms drop
the ∗ argument. Each 0 denotes the constant functor at 0 ∈ C and 10.

The Zero Factorization Axiom:

(11.2.7)

∂l
0,B,C = 1B⊗C ∂r

0,B,C = 10

∂l
A,0,C = 1A⊗C ∂r

A,0,C = 1A⊗C

∂l
A,B,0 = 10 ∂r

A,B,0 = 1A⊗B

The three equalities for ∂l are called the left zero factorization axioms. The
three equalities for ∂r are called the right zero factorization axioms.

The Unit Factorization Axiom:

∂l
A,B,1 = 1A⊕B

∂r
1,B,C = 1B⊕C

(11.2.8)

These are called, respectively, the left and the right unit factorization ax-
ioms.

The Symmetry Factorization Axiom: The following two diagrams in C are com-
mutative.

(11.2.9)

AC⊕ BC (A⊕ B)C

BC⊕ AC (B⊕ A)C

ξ⊕

∂l

ξ⊕1C

∂l

AB⊕ AC A(B⊕C)

AC⊕ AB A(C⊕ B)

ξ⊕

∂r

1Aξ⊕

∂r

These are called, respectively, the left and the right symmetry factorization
axioms.

The Internal Factorization Axiom: The following two diagrams in C are commu-
tative.

(11.2.10)

AB⊕ A′B⊕ A′′B (A⊕ A′)B⊕ A′′B

AB⊕ (A′ ⊕ A′′)B (A⊕ A′ ⊕ A′′)B

1⊕∂l

∂l⊕1

∂l

∂l

AB⊕ AB′ ⊕ AB′′ A(B⊕ B′)⊕ AB′′

AB⊕ A(B′ ⊕ B′′) A(B⊕ B′ ⊕ B”)

1⊕∂r

∂r⊕1

∂r

∂r

These are called, respectively, the left and the right internal factorization
axioms.

The External Factorization Axiom: The three diagrams in C below are commuta-
tive.

(11.2.11)

ABC⊕ A′BC (A⊕ A′)BC

(AB⊕ A′B)C (A⊕ A′)BC

∂l
AB,A′B,C

∂l
A,A′ ,BC

∂l
A,A′ ,B1C

(11.2.12)

ABC⊕ AB′C (AB⊕ AB′)C

A(BC⊕ B′C) A(B⊕ B′)C

∂r
A,BC,B′C

∂l
AB,AB′ ,C

∂r1C
1A∂l

B,B′ ,C
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(11.2.13)

ABC⊕ ABC′ AB(C⊕C′)

A(BC⊕ BC′) AB(C⊕C′)

∂r
A,BC,BC′

∂r
AB,C,C′

1A∂r
B,C,C′

These are called, respectively, the left, the middle, and the right external
factorization axioms.

The 2-By-2 Factorization Axiom: The following diagram in C is commutative.

(11.2.14)

A(B⊕ B′)⊕ A′(B⊕ B′)

AB⊕ AB′ ⊕ A′B⊕ A′B′

(A⊕ A′)(B⊕ B′)

AB⊕ A′B⊕ AB′ ⊕ A′B′

(A⊕ A′)B⊕ (A⊕ A′)B′

∂r ⊕ ∂r

∂l

1⊕ ξ⊕ ⊕ 1

∂l ⊕ ∂l
∂r

This finishes the definition of a ring category.
Moreover, a ring category as above is said to be
● small if it has a set of objects and
● tight if ∂l and ∂r in (11.2.5) are natural isomorphisms. ◇

Definition 11.2.15. For a permutative category (C,⊕, 0, ξ⊕), a ring category struc-
ture on C is the additional data (⊗,1, ∂l , ∂r) such that the tuple

(C, (⊕, 0, ξ⊕), (⊗,1), (∂l , ∂r))

is a ring category as in Definition 11.2.4. ◇
Recall from Section 6.6 that PermCatsu is the Cat-enriched multicategory with

small permutative categories as objects. The category

PermCatsu (⟨C⟩ ; D) = PermCatsu (⟨C1, . . . ,Cn⟩ ; D)

has
● n-linear functors C1 ×⋯×Cn D (Definition 6.5.4) as objects and
● multilinear transformations (Definition 6.5.11) as morphisms.

Its operad composition is defined in (6.6.6) for multilinear functors and (6.6.9) for
multilinear transformations. Also recall from Definition 5.1.12 the notion of an
enriched multifunctor. The next result is [EM06, 3.4], which says that the Cat-
enriched associative operad detects ring category structures on small permutative
categories.
Theorem 11.2.16. For each small permutative category C, there is a canonical bijective
correspondence between

● ring category structures on C and
● Cat-enriched multifunctors

F ∶ As PermCatsu such that F(∗) = C.
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Proof. By the adjunction (11.2.3), a Cat-enriched multifunctor As PermCatsu is
equivalent to a multifunctor As PermCatsu with PermCatsu regarded as a mul-
ticategory without its Cat-enrichment, that is, multilinear transformations. There-
fore, by Theorem 11.1.7, a Cat-enriched multifunctor

(11.2.17) F ∶ As PermCatsu with F(∗) = (C,⊕, 0, ξ⊕)
is equivalent to

● a 0-linear functor, that is, an object

F(id0) = 1 ∈ C
and
● a 2-linear functor

F(id2) = (⊗, ∂l , ∂r) ∶ C×C C

such that the unity and the associativity relations (11.1.8) are preserved.
● The natural transformations

(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

(A⊗ B)⊕ (A⊗C) A⊗ (B⊕C)

∂l
A,B,C

∂r
A,B,C

for A, B, C ∈ C are, respectively, the first and the second linearity con-
straints of the 2-linear functor ⊗ as in Definition 6.5.4.
● The preservation of the unity relation in (11.1.8) means the commutativity

of the diagram

(11.2.18)
C C×C C

C C C

1×1C

(⊗,∂l ,∂r)

1C×1

1C 1C

of 1-linear functors. Here 1C ∶ C C is the identity 1-linear functor
with the identity linearity constraint (6.6.1).
● The preservation of the associativity relation in (11.1.8) means the com-

mutativity of the diagram

(11.2.19)
C×C×C C×C

C×C C

(⊗,∂l ,∂r)×1C

1C×(⊗,∂l ,∂r)

(⊗,∂l ,∂r)
(⊗,∂l ,∂r)

of 3-linear functors.
We now explain that the data {1,⊗, ∂l , ∂r} and the commutative diagrams (11.2.18)
and (11.2.19) are equivalent to a ring category structure on the small permutative
category (C,⊕, 0, ξ⊕).

The commutativity of the diagrams (11.2.18) and (11.2.19) of functors means
that ⊗ is strictly associative with 1 as the strict two-sided unit. In other words,
(C,⊗,1) is a strict monoidal category. At this point, the tuple

(C, (⊕, 0, ξ⊕), (⊗,1), (∂l , ∂r))
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contains the data part of a ring category in Definition 11.2.4. It remains to check
that

● the 2-linear functoriality of (⊗, ∂l , ∂r) and
● the linearity constraints of the commutative diagrams (11.2.18) and

(11.2.19)
are equivalent to the ring category axioms (11.2.6)–(11.2.14).

First we consider the 2-linear functor axioms in Definition 6.5.4 for (⊗, ∂l , ∂r).
● Its unity axiom is the multiplicative zero axiom (11.2.6).
● Its constraint unity axiom is the zero factorization axiom (11.2.7).
● Its constraint associativity axiom (6.5.5) is the internal factorization axiom

(11.2.10).
● Its constraint symmetry axiom (6.5.6) is the symmetry factorization ax-

iom (11.2.9).
● Its constraint 2-by-2 axiom (6.5.7) with (i, k) = (2, 1) is the 2-by-2 factor-

ization axiom (11.2.14). The case (i, k) = (1, 2) is equivalent to the case
(i, k) = (2, 1) by the symmetry axiom (II.1.3.33) for the additive symmetry
ξ⊕, which says ξ⊕ξ⊕ = 1.

Next we consider the linearity constraints, in the sense of Definition 6.5.4, in the
commutative diagrams (11.2.18) and (11.2.19) of multilinear functors.

● The linearity constraint of the identity 1-linear functor 1C is the identity
(6.6.1). Therefore, in terms of their linearity constraints, the commutativ-
ity of the diagram (11.2.18) of 1-linear functors is the unit factorization
axiom (11.2.8).
● In the commutative diagram (11.2.19) of 3-linear functors, the equality of

the first linearity constraints of the two composites is the left external fac-
torization axiom (11.2.11). The equality of the second (respectively, third)
linearity constraints is the middle external factorization axiom (11.2.12)
(respectively, the right external factorization axiom (11.2.13)).

Therefore, a Cat-enriched multifunctor as in (11.2.17) is equivalent to a ring cate-
gory structure on the small permutative category C. □

11.3. K-Theory of Ring Categories are Ring Symmetric Spectra

In this section, we prove a theorem of Elmendorf-Mandell that says that the
K-theory of each small ring category is a strict ring symmetric spectrum (Corol-
lary 11.3.16). This result is a consequence of Theorem 11.2.16 and the Elmendorf-
Mandell K-theory multifunctor. We begin by defining strict ring symmetric spectra
and discussing some examples.

Strict Ring Symmetric Spectra. Recall from Definitions 7.6.1 and 7.6.8 and The-
orem 7.6.15 the symmetric monoidal closed category

(SymSp,◻S,HomS )
of symmetric spectra.
Definition 11.3.1. A strict ring symmetric spectrum is a monoid in SymSp. ◇

To explicitly explain the structure of a strict ring symmetric spectrum, first
recall from Definitions 7.3.1, 7.3.3, and 7.4.1 the following concepts.

● sSetΣ
∗ is the symmetric monoidal closed category of symmetric sequences.
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● ◻ is the Day convolution of symmetric sequences.
● S ∈ sSetΣ

∗ is the symmetric sphere with monoid multiplication

S◻ S S
µS

determined by the canonical isomorphisms

Sp ∧ Sq Sp+q ∈ sSet∗
µS

p,q

≅ for p, q ≥ 0.

SymSp is the category of left S-modules as in Definition 7.4.2.

In the above context, we may unpack strict ring symmetric spectra as follows.

Proposition 11.3.2. A strict ring symmetric spectrum is equivalent to a triple

(X, µ, η)

consisting of

● a symmetric spectrum (X, ρ) and
● morphisms

X ◻X X S ∈ sSetΣ
∗

µ η

such that the following four diagrams in sSetΣ
∗ are commutative.

Compatibility of µ and S-action:

(11.3.3)

(X ◻ S)◻X (S◻X)◻X S◻ (X ◻X)

X ◻ (S◻X) X ◻X

X ◻X X S◻X

≅a

ξ◻1
≅

ρ◻1

a
≅

1◻µ

1◻ρ µ

µ ρ

Compatibility of η and S-action:

(11.3.4)
S◻ S S

S◻X X

1◻η

µS

η

ρ

Associativity:

(11.3.5)

(X ◻X)◻X X ◻ (X ◻X)

X ◻X

X ◻X X

µ◻1

a
≅

1◻µ

µ

µ
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Unity:

(11.3.6)

S◻X X

X ◻X X

X ◻ S S◻X

η◻1

ρ

µ

1◻η

ξ

ρ

Proof. By Definition I.1.2.8, a monoid in (SymSp,◻S) is a triple

(X, µ, η)
consisting of

● a symmetric spectrum

(X, ρ ∶ S◻X X)

and
● morphisms

X ◻S X X S ∈ SymSp
µ η

such that the associativity and unity diagrams in SymSp below are commutative.

(11.3.7)

(X ◻S X)◻S X X ◻S (X ◻S X)

X ◻S X

X ◻S X X

µ◻S1

a
≅

1◻Sµ

µ

µ

S◻S X X

X ◻S X X

X ◻S S S◻S X

η◻S1

ρ

µ

1◻Sη

ξ

ρ

By Proposition 7.6.2, the monoid multiplication µ is equivalent to a morphism

(11.3.8) X ◻X X ∈ sSetΣ
∗

µ

such that the compatibility diagram (11.3.3) commutes. The monoid unit mor-
phism η is a morphism

(11.3.9) S X ∈ sSetΣ
∗

η

that is compatible with the left S-module action as in Definition 7.4.2. This compat-
ibility condition is the commutative diagram (11.3.4). Since SymSp is the category
of left S-modules, the diagrams in (11.3.7) commute in SymSp if and only if they
commute in sSetΣ

∗ . Using
● the structure morphisms µ in (11.3.8) and η in (11.3.9) and
● the universal properties of the coequalizer defining the smash product ◻S

(Definition 7.6.1),

the diagrams in (11.3.7) commute in sSetΣ
∗ if and only if the diagrams (11.3.5) and

(11.3.6) commute. □



III.440 11. K-THEORY OF RING AND BIPERMUTATIVE CATEGORIES

Explanation 11.3.10 (Strict Ring Symmetric Spectra). As in Explanation 7.6.4, the
multiplication morphism µ in (11.3.8) is equivalent to the family of (Σp × Σq)-
equivariant morphisms

(11.3.11) Xp ∧Xq Xp+q ∈ sSet∗
µp,q

for p, q ≥ 0.

In terms of these morphisms, the compatibility diagram (11.3.3) is equivalent to
the diagrams (7.6.5) and (7.6.7) with fp,q = µp,q. These diagrams are stated below,
with Σp,n = Σp ×Σn in the second diagram.

(Sn ∧Xp)∧Xq Sn ∧ (Xp ∧Xq)

Xn+p ∧Xq

Xn+p+q Sn ∧Xp+q

ρn,p∧1

a
≅

1∧µp,q

µn+p,q

ρn,p+q

Σ(p+n+q) ×Σp+n,q (Σ(p+n) ×Σp,n Xp ∧ Sn)∧Xq

Σ(p+n+q) ×Σn+p,q (Σ(n+p) ×Σn,p Sn ∧Xp)∧Xq

Σ(p+n+q) ×Σp,n+q Xp ∧ (Σ(n+q) ×Σn,q Sn ∧Xq)

Σ(p+n+q) ×Σn+p,q Xn+p ∧Xq

Σ(p+n+q) ×Σp,n+q Xp ∧Xn+q

Xn+p+q

≅a

ξp,n∧1

ρn,p∧1

1∧ρn,q

µn+p,q
µp,n+q

The unit morphism η in (11.3.9) is equivalent to a sequence of Σp-equivariant
morphisms

(11.3.12) Sp Xp ∈ sSet∗
ηp

for p ≥ 0.

The compatibility diagram (11.3.4) and the associativity diagram (11.3.5) in sSetΣ
∗

are equivalent to the diagrams

Sp ∧ Sq Sp+q

Sp ∧Xq Xp+q

1∧ηq

µS
p,q

≅
ηp+q

ρp,q

(Xn ∧Xp)∧Xq Xn ∧ (Xp ∧Xq)

Xn ∧Xp+q

Xn+p ∧Xq Xn+p+q

µn,p∧1

a
≅

1∧µp,q

µn,p+q

µn+p,q
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in sSet∗ for n, p, q ≥ 0. The top and bottom halves of the unity diagram (11.3.6) are
equivalent to the diagrams

Sp ∧Xq Xp+q

Xp ∧Xq Xp+q

ηp∧1

ρp,q

µp,q

Σ(p+q) ×Σp×Σq Xp ∧ Sq Σ(q+p) ×Σq×Σp Sq ∧Xp

Σ(p+q) ×Σp×Σq Xp ∧Xq Xp+q = Xq+p

1∧ηq

ξ

≅

ρq,p

µp,q

in sSet∗ for p, q ≥ 0. ◇
Using Explanation 11.3.10, we now discuss a few basic examples of strict ring

symmetric spectra.

Example 11.3.13 (The Sphere Spectrum). Continuing Example 7.4.9, the symmet-
ric sphere

S = {Sp}p≥0

is a strict ring symmetric spectrum. The multiplication morphism µp,q in (11.3.11)
is given by the canonical isomorphism

Sp ∧ Sq Sp+q for p, q ≥ 0.
µS

p,q

≅

The unit morphism ηp in (11.3.12) is the identity morphism of Sp. The diagrams in
Explanation 11.3.10 for the symmetric sphere all follow from the bijection

(Sp)n = n∧p ≅ np for n, p ≥ 0

in Definitions 8.1.5 and 8.2.1 and the Symmetric Coherence Theorem 1.1.41 for
sSet∗. ◇
Example 11.3.14 (Suspension Spectra of Simplicial Monoids). Suppose (K, µ, η) is
a monoid in (sSet∗,∧, S0). Continuing Example 7.4.10, the suspension spectrum

Σ∞K = {Sp ∧K}p≥0

is a strict ring symmetric spectrum. The multiplication morphism µp,q in (11.3.11)
is given by the following composite.

(Sp ∧K)∧ (Sq ∧K) Sp+q ∧K

(Sp ∧ Sq)∧ (K ∧K)
ξmid

µp,q

µS
p,q∧µ

The morphism ξmid is the unique coherence isomorphism in the symmetric mon-
oidal category sSet∗ that swaps the first copy of K and Sq, as in Definition 1.3.2.
The unit morphism ηp in (11.3.12) is the composite

Sp Sp ∧K

Sp ∧ S0

ηp

≅ 1∧η

with ≅ the inverse of the right unit isomorphism in sSet∗. The first diagram in Ex-
planation 11.3.10 for Σ∞K is the outer diagram below in sSet∗, where ∧ is omitted
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to save space.

(Sn(SpK))(SqK) Sn((SpK)(SqK))

((SnSp)K)(SqK) ((SnSp)Sq)(KK) Sn((SpSq)(KK))

(Sn+pK)(SqK) (Sn(SpSq))(KK)

(Sn+pSq)(KK) (SnSp+q)(KK) Sn(Sp+qK)

Sn+p+qK (SnSp+q)K

a−11

(µS
n,p1)1

ξmid

µS
n+p,qµ

a

1ξmid

1(µS
p,qµ)

a−1

µS
n,p+q1

ξmid

(µS
n,p1)1 a1

a−1

(1µS
p,q)1

µS
n,p+qµ 1µ

coherence

nat

natassoc

functoriality

● The top region commutes by the Symmetric Coherence Theorem 1.1.41
for sSet∗.
● The left triangle commutes by the naturality of ξmid.
● The right trapezoid commutes by the naturality of the associativity iso-

morphism a.
● The lower left quadrilateral commutes by the associativity of µS and the

functoriality of ∧.
● The bottom triangle commutes by the functoriality of ∧.

Other diagrams in Explanation 11.3.10 follow similarly from those for the sym-
metric sphere, the monoid axioms for (K, µ, η), naturality, functoriality, and Theo-
rem 1.1.41 for sSet∗. ◇
Example 11.3.15 (Eilenberg-Mac Lane Spectra). Suppose R is a ring with unit 1R.
Continuing Example 7.4.11, the Eilenberg-Mac Lane spectrum

HR = {R⊗ Sp}p≥0

is a strict ring symmetric spectrum. The multiplication morphism µp,q in (11.3.11)
is given on k-simplices by the following assignment on direct sum generators, with
r, r′ ∈ R and ia, jb ∈ k♭.

( ⊕
(kp)♭

R)∧ ( ⊕
(kq)♭

R) ⊕
(kp+q)♭

R

(ri1,...,ip)∧ (r′j1,...,jq) (rr′)i1,...,ip ,j1,...,jq

(µp,q)k

The unit morphism ηp in (11.3.12) is given on k-simplices by the following mor-
phism.

(Sp)k = k∧p ⊕
(kp)♭

R

(i1, . . . , ip) 1R
i1,...,ip

if each ij ∈ k♭.

(i1, . . . , ip) 0 if some ij = 0.

(ηp)k
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The diagrams in Explanation 11.3.10 are commutative for HR because they are
commutative on direct sum generators in (HR)p for p ≥ 0. ◇

K-Theory Strict Ring Symmetric Spectra. Recall from Definition 10.3.32 the
Elmendorf-Mandell K-theory multifunctor

KEM = KGN∗JEM ∶ PermCatsu SymSp.

The following result is [EM06, 3.5] that describes the K-theory of ring categories.

Corollary 11.3.16. For each small ring category C, KEMC is a strict ring symmetric spec-
trum.

Proof. Consider the multifunctors

As PermCatsu SymSp

∗ (C,⊕, 0, ξ⊕) KEMC

F KEM

with F the multifunctor in Theorem 11.2.16 such that F(∗) is the underlying per-
mutative category of C. Since As has a unique object ∗, the composite multifunctor
KEM ○ F is equivalent to an operad morphism from As to the endomorphism op-
erad of KEMC. By Proposition 11.1.15, such an operad morphism is equivalent to a
monoid structure on KEMC. □

Example 11.3.17 (Endomorphism Ring Categories). Suppose C is a small permu-
tative category. Then

● the endomorphism ring category Permsu(C;C) in Theorem II.9.2.14 and
● the tight endomorphism ring category Permsug(C;C) in Theorem II.9.2.20

are both small. Corollary 11.3.16 applies to each of them to yield a K-theory strict
ring symmetric spectrum. ◇
Example 11.3.18 (Additive Distortion Category). By Example II.9.1.18, the addi-
tive distortion category Dad in Section I.4.5 is a small ring category, which is also
tight. Corollary 11.3.16 applies to Dad to yield a K-theory strict ring symmetric
spectrum. ◇
Example 11.3.19 (Ring Categories via Strictification). Suppose C is a small tight
bimonoidal category (Definition I.2.1.2). By Corollary II.9.1.19, the equivalent

● right rigid bimonoidal category A in Theorem I.5.5.11 and
● left rigid bimonoidal category Al in Theorem I.5.5.12

are small tight ring categories. Corollary 11.3.16 applies to each of A and Al to
yield a K-theory strict ring symmetric spectrum. ◇

11.4. The Barratt-Eccles Operad

In this section, we define the categorical Barratt-Eccles operad EAs and de-
scribe it in terms of generators and relations (Theorem 11.4.14). As the first appli-
cation of Theorem 11.4.14, in Proposition 11.4.26 we observe that the Barratt-Eccles
operad detects permutative category structures. Moreover, Theorem 11.5.5 shows
that the Barratt-Eccles operad detects bipermutative category structures on small
permutative categories.



III.444 11. K-THEORY OF RING AND BIPERMUTATIVE CATEGORIES

Translation Categories. In (11.2.3), we observed that the forgetful functor

Ob ∶ Cat Set

has a left adjoint dis that sends a set X to the discrete category with object set X.
The functor Ob also has a right adjoint given by the translation category functor in
the next definition. The translation category functor will be used in the definition
of the Barratt-Eccles operad.

Definition 11.4.1. The translation category functor

E ∶ Set Cat

is the functor defined as follows.
● For a set X, the translation category EX is the category with

– object set X and
– each morphism set a one-element set ∗.

● For a map f ∶ X Y of sets, the functor

E f ∶ EX EY

is
– the map f on objects and
– the unique map to a one-element set on morphisms.

This finishes the definition of the translation category functor E ◇
Example 11.4.2 (Principle Bundles). The classifying space (= the geometric real-
ization of the nerve in Example 7.2.8) of the translation category EX is contractible
for each set X, since the unique functor EX 1 to the terminal category is an
equivalence of categories. For a group G, the regular G-action, which is given by
the product in G, induces a free G-action

(11.4.3) EG ×G EG.

Here the G-action is free in the sense that, for any x, σ ∈ G,

xσ = x implies σ = e

with e ∈ G the identity element. For elements x, y ∈ G, we also denote the unique
morphism by

(11.4.4) yx−1 ∶ x y ∈ EG.

For each element σ ∈ G, the right σ-action in (11.4.3) is the functor

EG EGσ
≅

that sends
● an object x ∈ EG to xσ ∈ EG and
● the unique morphism yx−1 ∶ x y to the unique morphism

(11.4.5) yx−1 = (yσ)(xσ)−1 ∶ xσ yσ.

Since the classifying space of EG has a free G-action and is contractible, it is the
total space of a universal principal G-bundle. The reader is referred to [MS74] for
more discussion of principal bundles. ◇
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Example 11.4.6 (E as a Right Adjoint). There is an adjunction

(11.4.7) Cat Set
Ob

E

with
● left adjoint Ob the underlying object set functor in (11.2.3),
● E the translation category functor in Definition 11.4.1, and
● Ob ○E = 1Set.

Since Ob preserves products, if Q is a Cat-enriched operad, then Ob(Q) is an op-
erad. By construction, or by the fact that it is a right adjoint, E preserves products.
Therefore, if P is an operad in Set, then EP is a Cat-enriched operad such that

(11.4.8) Ob(EP) = P.

Moreover, the identity functor on Set induces a Cat-enriched operad morphism

(11.4.9) P EP.
ιP

On the left-hand side, P is regarded as a Cat-enriched operad via the discrete cat-
egory functor dis in (11.2.3), which preserves products. ◇
Definition 11.4.10. The Barratt-Eccles operad is the Cat-enriched operad EAs, with

● As the associative operad in Definition 11.1.1 and
● E the translation category functor in Definition 11.4.1. ◇

For i /= j ∈ {1, . . . , n}, the transposition that swaps i and j is written as (i, j).
Explanation 11.4.11.

(1) For the Cat-enriched operad morphism

(11.4.12) As EAs
ιAs

in (11.4.9), each functor

ιAs ∶ Asn EAsn

is the identity function on objects. The object set operad of EAs is the
associative operad As. On morphisms, the operad structure of EAs is uni-
quely determined by the fact that each morphism set in each translation
category EAsn has only one element.

(2) Denote by

(11.4.13) id2 (1, 2) ∈ EAs2(id2; (1, 2))τ
≅

the unique nonidentity isomorphism. Adjacent transpositions (i, i+1) for
1 ≤ i < n generate the symmetric group Σn. Moreover, there is an iterated
block sum decomposition

(i, i + 1) =
∅ if i = 1

idi−1 × (1, 2)
∅ if i = n − 1

× idn−i−1 ∈ Σn.

By the definition (11.1.2) of γ in As, this iterated block sum is an operadic
composite of (1, 2) and identities. So each morphism in EAsn decomposes
into a categorical composite of isomorphisms of the form ϕυ with
● each υ ∈ Σn and
● each ϕ an operadic composite of one τ and identity morphisms. ◇
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Coherence of the Barratt-Eccles Operad. Theorem 11.1.7 characterizes the as-
sociative operad As in terms of generators, namely, id0 ∈ Σ0 and id2 ∈ Σ2, and
the unity and associativity relations. The next result, which is [Fre17, 6.3.3], is
the extension of that characterization to the Barratt-Eccles operad EAs. It is a
coherence theorem in the sense that it characterizes the Barratt-Eccles operad in
terms of a small number of generators and a few relations. The axioms (11.4.17)–
(11.4.20) below are formally identical to those of a permutative category in Defini-
tion I.1.2.18. To simplify the notation, we write y(x1, . . . , xn) for the operad compo-
sition γ(y, (x1, . . . , xn)). An enriched operad morphism is an enriched multifunctor
as in Definition 5.1.12 between two enriched multicategories with one object.

Theorem 11.4.14. Suppose (P, γ,1) is a Cat-enriched operad. Then a Cat-enriched op-
erad morphism

f ∶ EAs P

is uniquely determined by

● the objects

1 = f (id0) ∈ P0

µ = f (id2) ∈ P2
(11.4.15)

and
● the isomorphism

(11.4.16) µ = f (id2) f (1, 2) = µ(1, 2) = µop ∈ P2(µ, µop)
ξ = f(τ)
≅

with

τ ∶ id2 (1, 2) ∈ EAs2

the isomorphism in (11.4.13).

The above data are subject to the following conditions.

Unity and Associativity on Objects: The equalities of objects

µ(1,1) = 1 = µ(1,1) ∈ P1

µ(µ,1) = µ(1, µ) ∈ P3
(11.4.17)

hold.
The Symmetry Axiom: The diagram

(11.4.18)

µ µ

µop

1µ

ξ ξop

in P2 is commutative, with

ξop = ξ(1, 2) ∶ µop µ

the image of ξ under the right (1, 2)-action.
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The Unit Axiom: The diagram

(11.4.19)

1 = µ(1,1) µ(1,1) = 1

µop(1,1)

11

ξ(1,1)

in P1 is commutative.
The Hexagon Axiom: The diagram

(11.4.20)

µ(µ,1) µop(µ,1)

µ(1, µ) µ(µop,1)(2, 3)

µ(1, µop) µ(µ,1)(2, 3)

ξ

µ(1, ξ) µ(ξ,1)(2, 3)

in P3 is commutative.

Proof. We need to prove the necessity and the sufficiency of the data (11.4.15)–
(11.4.16) and the axioms (11.4.17)–(11.4.20).

Necessity. Suppose f ∶ EAs P is a Cat-enriched operad morphism. We
define

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 = f (id0) ∈ P0,

µ = f (id2) ∈ P2, and

ξ = f (τ) ∶ µ µop ∈ P2

as in (11.4.15)–(11.4.16). Since f preserves the operad units, there is an equality

f (id1) = 1 ∈ P1.

● With ιAs as in (11.4.12), the composite

As EAs P
ιAs f

is a Cat-enriched operad morphism. So it preserves the operad relations
(11.1.8) in As, which become the equalities (11.4.17) of objects in P.
● Before applying f , the analogues of the axioms (11.4.18)–(11.4.20) hold in

EAs because each morphism set EAsn(⋅, ⋅) is a one-element set by Defini-
tion 11.4.1. Since f is a Cat-enriched operad morphism, after applying f ,
the axioms hold in P.

Therefore, the data (11.4.15)–(11.4.16) satisfy the axioms (11.4.17)–(11.4.20).
Sufficiency. Suppose given the data
● 1 = f (id0) ∈ P0,
● µ = f (id2) ∈ P2 as in (11.4.15), and
● ξ = f (τ) ∶ µ µ(1, 2) = µop ∈ P2(µ, µop) as in (11.4.16)

such that the axioms (11.4.17)–(11.4.20) hold in P. We show that these data extend
uniquely to a Cat-enriched operad morphism f ∶ EAs P in several stages.

Objects. By Theorem 11.1.7 and the unity and associativity relations (11.4.17),
the objects

1 = f (id0) and µ = f (id2)
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uniquely determine a Cat-enriched operad morphism

(11.4.21) As P
f

defined by
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f (id1) = 1 ∈ P1,

f (id2) = µ = µ2 ∈ P2,

f (idn) = µ(µn−1,1) = µn ∈ Pn for n ≥ 3, and

f (σ) = µnσ ∈ Pn for σ ∈ Σn.

By (11.4.8), this defines the object part of the Cat-enriched operad morphism f ∶
EAs P.

Morphisms. The identity morphisms 1id0 ∈ EAs0 and 1id1
∈ EAs1 must be sent

by f to, respectively, the identity morphisms 11 ∈ P0 and 11 ∈ P1. To define f
on the other morphisms in EAs, note that the coherence theorems for (symmetric)
monoidal categories can be applied to

● the objects {1,1, µ}, which are interpreted as, respectively, the monoidal
unit, the identity functor, and the monoidal product, and
● the symmetry isomorphism ξ.

The reason is that the assumed axioms (11.4.17), and also (11.4.18)–(11.4.20) in the
symmetric case, are formally identical to those of a (symmetric) strict monoidal
category in Definitions I.1.2.1 and I.1.2.18. We apply these coherence theorems as
follows.

● By (11.4.17) and Mac Lane’s Coherence Theorem I.1.3.3, each iterated op-
eradic composite in Pn involving only the objects

µ0 = 1 ∈ P0, µ1 = 1 ∈ P1, and µ2 = µ ∈ P2

is equal to µn. For example, there are equalities of objects

µ4 = µ(µ(µ,1),1) = µ(µ, µ) = µ(µ(1, µ),1)
= µ(1, µ(µ,1)) = µ(1, µ(1, µ)) ∈ P4.

● By (11.4.17)–(11.4.20) and the Symmetric Coherence Theorem 1.1.41, for
each pair of permutations σ, θ ∈ Σn, there is a unique isomorphism

(11.4.22) µnσ µnθ ∈ Pn
θσ−1

≅

that is a categorical composite of isomorphisms of the form ϕυ, with υ ∈
Σn and ϕ an operadic composite of

– one instance of ξ = f (τ) ∶ µ µop in (11.4.16) and
– identity morphisms.

Regarding ξ = f (τ) as corresponding to the permutation (1, 2) ∈ Σ2, the isomor-
phism in (11.4.22) corresponds to the permutation θσ−1 ∈ Σn. If

(σ, θ) = (id2, (1, 2)),
then the isomorphism in (11.4.22) is ξ.

By Explanation 11.4.11 (2), for each pair of permutations σ, θ ∈ Σn, the unique
isomorphism

θσ−1 ∶ σ θ ∈ EAsn
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decomposes into a categorical composite of isomorphisms of the form ϕυ, with
υ ∈ Σn and ϕ an operadic composite of

● one instance of τ ∶ id2 (1, 2) in (11.4.13) and
● identity morphisms.

The desired f ∶ EAs P must be levelwise a functor and preserve the operad
structure, namely, the operad units, the equivariant structure, and the operad com-
position. So we must define the morphism

(11.4.23) f (σ) = µnσ µnθ = f (θ) ∈ Pn
f(θσ−1)

as the corresponding isomorphism in (11.4.22). The uniqueness of the isomor-
phism in (11.4.22) implies the following two statements.

● f (θσ−1) is independent of the choice of a decomposition of θσ−1 ∈ EAsn
in Explanation 11.4.11 (2).
● f ∶ EAsn Pn is a functor for each n.

The uniqueness of each functor f ∶ EAsn Pn is part of the definitions (11.4.21)
and (11.4.23).

It remains to check that the functors f ∶ EAsn Pn preserve the operad
structure. Since f ∶ As P in (11.4.21) is a Cat-enriched operad morphism, by
(11.4.8) we only need to consider morphisms in EAsn.

Equivariant structure. The assertion that f preserves the symmetric group ac-
tion means that, for each permutation π ∈ Σn, the diagram

(11.4.24)
EAsn EAsn

Pn Pn

f

π

f

π

of functors, with each horizontal arrow the right π-action, is commutative. Since
f and π are functors, by the decomposition of morphisms in EAsn in Explana-
tion 11.4.11 (2), it suffices to consider morphisms of the form ϕυ ∈ EAsn with υ ∈ Σn
and ϕ an operadic composite of one τ ∶ id2 (1, 2) and identity morphisms. On
such a morphism ϕυ, the commutativity of (11.4.24) follows from

● the definition (11.4.5) of the equivariant structure on EAs and
● the uniqueness of (11.4.22).

Operad composition. The assertion that f preserves the operad composition
means the commutativity of the following diagram of functors.

(11.4.25)

EAsn ×
n
∏
j=1

EAskj
EAsk1+⋯+kn

Pn ×
n
∏
j=1

Pkj
Pk1+⋯+kn

f×∏j f

γ

f

γ

To prove the commutativity of (11.4.25), we use the following facts:
● EAs and P both satisfy the equivariance axioms (6.1.6) and (6.1.7).
● f and γ are functors.
● f preserves the equivariant structure.
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● Morphisms in EAs decompose as in Explanation 11.4.11 (2).
Using these facts, it suffices to consider (11.4.25) with

● an identity morphism in n of the n + 1 factors in EAsn ×∏n
j=1 EAskj

and
● in the remaining factor, an operadic composite of one τ ∶ id2 (1, 2)

and identity morphisms.
In this case, the commutativity of (11.4.25) follows from the uniqueness of (11.4.22).
Therefore, f ∶ EAs P is a Cat-enriched operad morphism. □

Permutative Categories as Algebras. Proposition 11.1.15 provided a concep-
tual explanation of the associative operad As as the operad for monoids. The next
observation is the analogue of that result for the Barratt-Eccles operad EAs in Def-
inition 11.4.10. We consider the category Cat of small categories and functors as a
symmetric monoidal closed category with

● the Cartesian product × as the monoidal product,
● the terminal category 1 as the monoidal unit, and
● internal hom given by diagram categories, which have functors as objects

and natural transformations as morphisms.
Similar to Convention 6.4.6, we use the same notation Cat for the associated Cat-
enriched multicategory in Proposition 6.3.6. The unique object in EAs, as a one-
object Cat-enriched multicategory, is denoted by ∗. For an object A in a permu-
tative closed category C, recall the C-enriched endomorphism operad End(A) in
(11.1.14), with nth object the internal hom object [A⊗n, A] ∈ C.
Proposition 11.4.26. For a small category C, a permutative category structure on C is
uniquely determined by a Cat-enriched multifunctor

f ∶ EAs Cat such that f (∗) = C.

Proof. A Cat-enriched multifunctor f ∶ EAs Cat such that f (∗) = C is equiva-
lent to a Cat-enriched operad morphism

EAs End(C) = {Cat(C×n,C)}n≥0
f

to the Cat-enriched endomorphism operad of C. By Theorem 11.4.14, such a Cat-
enriched operad morphism f is uniquely determined by

● the object
1 = f (id0) ∈ C,

● the functor
⊗ = f (id2) ∶ C×C C,

and
● the natural isomorphism

⊗ ⊗(1, 2) = ⊗opξ⊗ = f(τ)

such that the axioms (11.4.17)–(11.4.20) are satisfied.
● The unity and associativity axioms (11.4.17) state that (C,⊗,1) is a strict

monoidal category as in Definition I.1.2.1.
● The other axioms (11.4.18)–(11.4.20) state that (C,⊗,1, ξ⊗) is a permuta-

tive category as in Definition I.1.2.18.
This finishes the proof. □
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11.5. Detecting Bipermutative Categories

In this section, we prove that the Barratt-Eccles operad EAs in Definition 11.4.10
detects bipermutative category structures on small permutative categories (Theo-
rem 11.5.5). This result is due to Elmendorf-Mandell and is an application of the
Coherence Theorem 11.4.14 for EAs. For the reader’s convenience, here we recall
from Chapter II.9 the definition of a bipermutative category.
Definition 11.5.1. A bipermutative category is a tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (∂l , ∂r))
consisting of

● a ring category

(C, (⊕, 0, ξ⊕), (⊗,1), (∂l , ∂r))
as in Definition 11.2.4 and
● a permutative category structure (C,⊗,1, ξ⊗), with ξ⊗ called the multi-

plicative symmetry.
These data are required to satisfy the following two axioms for objects A, B, C ∈ C.
The Zero Symmetry Axiom: There is an equality of morphisms

(11.5.2) ξ⊗A,0 = 10 ∶ A⊗ 0 = 0 0 = 0⊗ A.

The Multiplicative Symmetry Factorization Axiom: The diagram

(11.5.3)

(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

(C⊗ A)⊕ (C⊗ B) C⊗ (A⊕ B)

ξ⊗A,C⊕ξ⊗B,C

∂l
A,B,C

ξ⊗A⊕B,C
∂r

C,A,B

is commutative.
This finishes the definition of a bipermutative category. A bipermutative category
is small, respectively, tight, if the underlying ring category is so. ◇
Definition 11.5.4. For a permutative category (C,⊕, 0, ξ⊕), a bipermutative category
structure on C is the additional data (⊗,1, ξ⊗, ∂l , ∂r) such that the tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (∂l , ∂r))
is a bipermutative category as in Definition 11.5.1. ◇

Recall from Section 6.6 that PermCatsu is the Cat-enriched multicategory with
small permutative categories as objects. The category

PermCatsu (⟨C⟩ ; D) = PermCatsu (⟨C1, . . . ,Cn⟩ ; D)
has

● n-linear functors
C1 ×⋯×Cn D

in Definition 6.5.4 as objects and
● multilinear transformations (Definition 6.5.11) as morphisms.

Also recall from Definition 5.1.12 the notion of an enriched multifunctor. The next
result is [EM06, 3.8], which says that the Barratt-Eccles operad detects bipermuta-
tive category structures on small permutative categories. It extends both
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● Theorem 11.2.16 from As to the Barratt-Eccles operad and
● Proposition 11.4.26 from Cat to PermCatsu.

Theorem 11.5.5. For each small permutative category C, there is a canonical bijective
correspondence between

● bipermutative category structures on C and
● Cat-enriched multifunctors

F ∶ EAs PermCatsu such that F(∗) = C.

Proof. A Cat-enriched multifunctor

F ∶ EAs PermCatsu such that F(∗) = (C,⊕, 0, ξ⊕)
is equivalent to a Cat-enriched operad morphism

F ∶ EAs End(C) = {PermCatsu (⟨
n

C, . . . ,C⟩ ; C)}n≥0

to the Cat-enriched endomorphism operad of C. By Theorem 11.4.14, such a Cat-
enriched operad morphism is uniquely determined by

● the 0-linear functor, that is, object

F(id0) = 1 ∈ C,

● the 2-linear functor

F(id2) = (⊗, ∂l , ∂r) ∶ C×C C,

and
● the invertible multilinear transformation

(⊗, ∂l , ∂r) (⊗op, ∂r, ∂l)ξ⊗ = F(τ)

such that the conditions (11.4.17)–(11.4.20) are satisfied, with

(µ,1, ξ) interpreted as ((⊗, ∂l , ∂r), 1C, ξ⊗).

By Theorem 11.2.16 and the first paragraph of its proof, the data (⊗,1, ∂l , ∂r) and
the condition (11.4.17) are equivalent to a ring category structure on the small per-
mutative category (C,⊕, 0, ξ⊕) in the sense of Definition 11.2.15. In particular,
(C,⊗,1) is a strict monoidal category. Next we consider the remaining data ξ⊗

and the axioms (11.4.18)–(11.4.20).
The invertible multilinear transformation

ξ⊗ ∶ ⊗ ≅ ⊗op

is, by definition, a natural isomorphism that satisfies the two conditions in Defini-
tion 6.5.11.

● The three remaining axioms (11.4.18)–(11.4.20) state that (C,⊗,1, ξ⊗) is a
permutative category as in Definition I.1.2.18.
● The commutativity of the diagram (6.5.12) for ξ⊗ and i = 1 is the multi-

plicative symmetry factorization axiom (11.5.3) in a bipermutative cate-
gory. In the presence of the symmetry axiom (11.4.18), the case i = 2 of
the diagram (6.5.12) is equivalent to the case i = 1. So it does not impose
any additional restriction.
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● The second condition in Definition 6.5.11 states the equalities

(11.5.6) ξ⊗−,0 = 10 = ξ⊗0,−.

The first equality in (11.5.6) is the zero symmetry axiom (11.5.2) in a biper-
mutative category. In the presence of the symmetry axiom (11.4.18), the
second equality in (11.5.6) is equivalent to the first one. So it does not
impose any additional restriction.

Therefore, a Cat-enriched operad morphism

F ∶ EAs End(C)
is equivalent to a bipermutative category structure on C. □

11.6. K-Theory of Bipermutative Categories are E∞-Symmetric Spectra

In this section, we prove that the K-theory of a small bipermutative category
is an E∞-symmetric spectrum (Corollary 11.6.12). This result is due to Elmendorf-
Mandell. It is a consequence of Theorem 11.5.5, the Elmendorf-Mandell K-theory
multifunctor, and the fact that EAs is an E∞-operad (Proposition 11.6.3). Along
the way, we record the relationship between strict ring symmetric spectra, E∞-
symmetric spectra, and commutative monoids in SymSp (Proposition 11.6.6).

E∞-Operads. We first define E∞-operads and discuss some examples. By
Definition 7.2.3, the nerve functor

N ∶ Cat sSet

is a right adjoint. So it preserves products and takes a Cat-enriched operad to
an sSet-enriched operad. A simplicial set is contractible if its geometric realization
(Definition 7.1.14) is a contractible space.
Definition 11.6.1. An sSet-enriched operad P is an E∞-operad if the following two
conditions hold for each n ≥ 0:
Contractibility: Pn is contractible.
Free Action: The Σn-action

Pn ×Σn Pn

is free.
A Cat-enriched operad Q is an E∞-operad if the sSet-enriched operad NQ is an
E∞-operad. ◇
Example 11.6.2. If P and Q are E∞-operads, then so is the product operad P×Q be-
cause the Cartesian product preserves levelwise contractibility and free symmetric
group action. ◇
Proposition 11.6.3. The Barratt-Eccles operad EAs is an E∞-operad.

Proof. The free symmetric group action on EAs remains free after applying the
nerve functor. It is levelwise contractible because each translation category EX,
which has a unique element in each morphism set, is equivalent to the terminal
category. □

Explanation 11.6.4 (Simplicial Barratt-Eccles Operad). Using Explanation 7.2.4,
we may describe the sSet-enriched Barratt-Eccles operad N(EAs) as follows. For
n ≥ 0, the simplicial set N(EAsn) has the set of k-simplices

N(EAsn)k = Σ×(k+1)
n for k ≥ 0,
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with Σn the symmetric group on n letters. Each (k + 1)-tuple of permutations

(σ0, . . . , σk) ∈ Σ×(k+1)
n

records k + 1 objects in the translation category EAsn. Since each morphism set in
EAsn is a one-element set, such a (k + 1)-tuple determines a unique k-simplex in
the nerve N(EAsn). The face and degeneracy maps are given by

di(σ0, . . . , σk) = (σ0, . . . , σ̂i, . . . , σk)
si(σ0, . . . , σk) = (σ0, . . . , σi, σi, . . . , σk)

for 0 ≤ i ≤ k. In other words, the ith face map di removes σi, and the ith degeneracy
map si repeats σi.

The simplicial operad unit is

id1 ∈ Σ1 = N(EAs1)0.

The right Σn-action on N(EAsn) is given on k-simplices by the diagonal action

(σ0, . . . , σk) ⋅π = (σ0π, . . . , σkπ) for π ∈ Σn.

The operad composition

N(EAsn)×
n
∏
i=1

N(EAski
) N(EAsk1+⋯+kn)

γ

is given on p-simplices by

γ((σ0, . . . , σp);{(σi
0, . . . , σi

p)}1≤i≤n)

= {γ(σj, (σ1
j , . . . , σn

j ))}0≤j≤p
∈

p

∏
j=0

Σk1+⋯+kn

for p ≥ 0, σ0, . . . , σp ∈ Σn, and σi
0, . . . , σi

p ∈ Σki
. In the second line above, γ is the

operad composition (11.1.2) in the associative operad. ◇

E∞-Symmetric Spectra. Next we define E∞-symmetric spectra and discuss a
few basic examples. Recall from Definition 7.6.22 that each symmetric spectrum
X has an endomorphism simplicial operad End(X), which is enriched over sSet∗. For
n ≥ 0, it has

End(X)n = SymSp(X∧n ∧∆?
+, X) ∈ sSet∗

as its pointed simplicial set of n-ary operations.
Definition 11.6.5.

● An E∞-structure on a symmetric spectrum X is an sSet-enriched operad
morphism

P End(X)
for some E∞-operad P as in Definition 11.6.1.
● An E∞-symmetric spectrum is a symmetric spectrum equipped with an

E∞-structure. ◇
Recall from Definition I.1.2.23 that a commutative monoid is a monoid with a

strictly commutative multiplication.
Proposition 11.6.6.

(1) Each commutative monoid in SymSp is an E∞-symmetric spectrum.
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(2) If a symmetric spectrum has an E∞-structure via the Barratt-Eccles operad, then
it is a strict ring symmetric spectrum.

Proof. There are morphisms of sSet-enriched operads

As N(EAs) Com,ι π

with
Asn = Σn and Comn = ∗

constant simplicial sets for n ≥ 0. The morphism ι is the nerve of the Cat-enriched
operad morphism ιAs in (11.4.12). The morphism π consists of the unique mor-
phisms

N(EAsn) Comn = ∗ for n ≥ 0.

A commutative monoid structure on a symmetric spectrum X is equivalent to an
sSet-enriched operad morphism

Com End(X).

Precomposing with π yields an E∞-structure, since N(EAs) is an E∞-operad by
Proposition 11.6.3. The second assertion follows by precomposing a given E∞-
structure

N(EAs) End(X)

with ι and using Proposition 11.1.15. □

Example 11.6.7 (The Sphere Spectrum). The symmetric sphere

S = {Sp}p≥0

is a commutative monoid in SymSp, so it is an E∞-symmetric spectrum by Propo-
sition 11.6.6. In more detail, by Examples 7.4.9 and 11.3.13, the symmetric sphere
is a monoid in SymSp with the canonical isomorphism

Sp ∧ Sq Sp+q for p, q ≥ 0.
µS

p,q

≅

The commutativity of the multiplication

S◻S S S ∈ SymSp
µS

follows from (i) the coequalizer in Definition 7.6.1 that defines ◻S and (ii) the com-
mutative diagram

(11.6.8)

Σ(p+q) ×Σp×Σq Sp ∧ Sq Σ(q+p) ×Σq×Σp Sq ∧ Sp

Sp+q

ξp,q

µS
q,pµS

p,q

in sSet∗ for p, q ≥ 0. ◇
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Example 11.6.9 (Suspension Spectra of Commutative Monoids). For a commuta-
tive monoid (K, µK, ηK) in (sSet∗,∧, S0), its suspension spectrum

Σ∞K = {Sp ∧K}p≥0

is a commutative monoid in SymSp, so it is an E∞-symmetric spectrum by Propo-
sition 11.6.6. In more detail, by Examples 7.4.10 and 11.3.14, the suspension spec-
trum Σ∞K is a monoid in SymSp with the multiplication morphism

(Sp ∧K)∧ (Sq ∧K) Sp+q ∧K

(Sp ∧ Sq)∧ (K ∧K)
ξmid

µp,q

µS
p,q∧µK

for p, q ≥ 0. By the coequalizer in Definition 7.6.1 that defines ◻S, the commutativ-
ity of the multiplication

Σ∞K ◻S Σ∞K Σ∞K ∈ SymSp
µ

follows from the commutative diagram

Σp+q ×p,q (Sp ∧K)∧ (Sq ∧K)

(Σp+q ×p,q (Sp ∧ Sq))∧ (K ∧K)

Sp+q ∧K

Σq+p ×q,p (Sq ∧K)∧ (Sp ∧K)

(Σq+p ×q,p (Sq ∧ Sp))∧ (K ∧K)

ξmid

µS
p,q ∧ µK

ξp,q

ξmid

µS
q,p ∧ µK

ξp,q ∧ ξ

in sSet∗ for p, q ≥ 0, where ×p,q = ×Σp×Σq .

● The top square commutes by the Symmetric Coherence Theorem 1.1.41
for sSet∗.
● The bottom triangle commutes by the commutativity of µK and (11.6.8).

◇
Example 11.6.10 (Eilenberg-Mac Lane Spectra). Suppose R is a commutative ring.
Then the Eilenberg-Mac Lane spectrum

HR = {R⊗ Sp}p≥0

is a commutative monoid in SymSp, so it is an E∞-symmetric spectrum by Propo-
sition 11.6.6. In more detail, by Examples 7.4.11 and 11.3.15, the Eilenberg-Mac
Lane spectrum HR is a monoid in SymSp with the multiplication morphism

( ⊕
(kp)♭

R)∧ ( ⊕
(kq)♭

R) ⊕
(kp+q)♭

R

(ri1,...,ip)∧ (r′j1,...,jq) (rr′)i1,...,ip ,j1,...,jq

(µp,q)k
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for p, q, k ≥ 0, r, r′ ∈ R, and ia, jb ∈ k♭. By the coequalizer in Definition 7.6.1 that
defines ◻S, the commutativity of the multiplication

HR◻S HR HR ∈ SymSp
µ

follows from the commutative diagram

Σp+q ×p,q ( ⊕
(kp)♭

R)∧ ( ⊕
(kq)♭

R) Σq+p ×q,p ( ⊕
(kq)♭

R)∧ ( ⊕
(kp)♭

R)

⊕
(kp+q)♭

R

(ξp,q)k

(µq,p)k(µp,q)k

in which ×p,q = ×Σp×Σq .

● On direct sum indices, commutativity follows from the commutative di-
agram (11.6.8).
● On direct sum generators in R, commutativity follows from the assump-

tion that R is a commutative ring. ◇
The E∞-symmetric spectra in Examples 11.6.7, 11.6.9, and 11.6.10 are commu-

tative monoids in SymSp. On the other hand, the K-theory E∞-symmetric spectra
in Corollary 11.6.12 below are, in general, not commutative monoids.

K-Theory E∞-Symmetric Spectra. The Elmendorf-Mandell K-theory KEM is
the following composite of multifunctors.

(11.6.11)

PermCatsu SymSp

G∗-Cat G∗-sSet

KEM

JEM

N∗
KG

● JEM is the Elmendorf-Mandell J-theory in Definition 10.3.25, which is a
Cat-enriched multifunctor.
● N ∶ Cat sSet is the nerve functor in Definition 7.2.3 from small cate-

gories to simplicial sets.
● N∗ is the induced change-of-codomain symmetric monoidal sSet∗-functor

in Theorem 9.2.19 (2).
● KG is the symmetric monoidal sSet∗-functor in Theorem 9.4.9.

The following result is the bipermutative analogue of Corollary 11.3.16 and is es-
sentially [EM06, 3.9]. It describes the K-theory of bipermutative categories.
Corollary 11.6.12. For each small bipermutative category C, KEMC is an E∞-symmetric
spectrum.

Proof. Consider the multifunctors

EAs PermCatsu SymSp

∗ (C,⊕, 0, ξ⊕) KEMC

F KEM

with
● KEM the Elmendorf-Mandell K-theory multifunctor in (11.6.11) and
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● F the Cat-enriched multifunctor in Theorem 11.5.5 such that F(∗) is the
additive structure of C.

By a change of enrichment (Theorem 2.3.7) via the nerve functor N ∶ Cat sSet,
JEMN ○ FN is an sSet-enriched multifunctor. Since N(EAs) is an E∞-operad by Propo-
sition 11.6.3, the composite sSet-enriched operad morphism

N(EAs) End(KEMC)

NEnd(C) NEnd(JEMC) End(N∗JEMC)

FN
JEM

N N∗
KG

gives KEMC the structure of an E∞-symmetric spectrum. □

The braided and En analogues of Corollary 11.6.12 are, respectively, Corollar-
ies 12.5.3 and 13.5.2.
Example 11.6.13. By Theorem II.9.3.7, each of the following is a small bipermuta-
tive category:

● the finite ordinal category Σ in Proposition I.2.4.8,
● its variant Σ′ in Proposition I.2.4.23,
● VectCc of coordinatized finite dimensional complex vector spaces in Ex-

ample I.2.5.9,
● each small right bipermutative category in Definition I.2.5.2, and
● each small left bipermutative category in Definition I.2.5.11, such as the

distortion category D in Section I.4.2.
Corollary 11.6.12 applies to each of these small bipermutative categories to yield a
K-theory E∞-symmetric spectrum. See also Questions A.5.4 and A.5.6. ◇
Example 11.6.14 (Bipermutative Strictification). Suppose given a small tight sym-
metric bimonoidal category C (Definition I.2.1.2), such as

● a small distributive symmetric monoidal category in Proposition I.2.3.2,
● the symmetric bimonoidal groupoid Π in Theorem I.2.6.2, and
● the bimonoidal symmetric center of each small tight braided bimonoidal

category in Theorem II.4.5.3.
By Corollary II.9.3.12, the equivalent

● right bipermutative category A in Sections I.5.2 through I.5.4 and
● left bipermutative category Al in Theorem I.5.4.7

are small tight bipermutative categories. Corollary 11.6.12 applies to each of A and
Al to yield a K-theory E∞-symmetric spectrum. ◇
Example 11.6.15 (Symmetric Center). Suppose C is a small braided ring category
in which the left factorization morphism ∂l is a natural epimorphism. By Theo-
rem II.9.6.4, its symmetric center Csym is a small bipermutative category. Corol-
lary 11.6.12 applies to Csym to yield a K-theory E∞-symmetric spectrum. ◇

11.7. Notes

11.7.1 (The Associative Operad). In slightly different form, the material in Sec-
tion 11.1 for the associative operad As can also be found in [Yau16, 14.2]. Further
discussion and examples related to As, such as the operads for morphisms and
general diagrams of monoids, can be found in [Yau16, Ch. 14] and [Yau20, Ch. 4.5
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and 7]. Moreover, the Cat-enriched associative operad is called the strict monoi-
dal category operad and denoted MCatst in [Yau∞, 18.5]. A more general analogue
is the monoidal category operad, whose algebras are general, instead of strict, small
monoidal categories [Yau∞, 18.2–18.3]. ◇
11.7.2 (The Barratt-Eccles Operad). The translation category EG of a group G is
also known as the action groupoid of G acting on itself. The simplicial Barratt-
Eccles operad N(EAs) in Explanation 11.6.4 is the simplicial E∞-operad defined
in [BE74a]. Due to its importance in infinite loop space theory, the Barratt-Eccles
operad is discussed in many other papers, including [BE74b, BE74c, Ber96, BF04,
BF02, Smi89]. In general symmetric monoidal categories, discussion of E∞-
operads in terms of the Boardman-Vogt W-construction and their algebras can be
found in [Yau20, Ch. 7 and 11]. See also Question A.4.3.

Moreover, the Barratt-Eccles operad EAs is called the strict S-monoidal category
operad and denoted MCatSst in [Yau∞, 21.4]. A more general analogue is the S-
monoidal category operad, whose algebras are general small symmetric monoidal
categories, instead of small permutative categories [Yau∞, 21.4.7]. ◇
11.7.3 (Action Operads). The monoidal category operad and the S-monoidal cat-
egory operad in Notes 11.7.1 and 11.7.2 are examples of the G-monoidal category
operad MCatG for some action operad G [Yau∞, 19.1]. An MCatG-algebra is a general
small monoidal category with a compatible action by the action operad G on iter-
ated monoidal products [Yau∞, 19.2]. Moreover, MCatst and MCatSst are examples
of the strict G-monoidal category operad MCatGst in [Yau∞, 19.3]. ◇
11.7.4 (Ring and Bipermutative Structures). Theorems 11.2.16 and 11.5.5 are from
[EM06, 3.4 and 3.8], but the proofs there are organized differently. More specif-
ically, in [EM06], the proof of each of these two theorems has essentially three
parts:

● Starting from a ring or bipermutative category structure, produce a mul-
tifunctor from As or EAs to PermCatsu.
● Starting from a multifunctor from As or EAs to PermCatsu, produce a ring

or bipermutative category structure.
● Observe that the previous two constructions are inverses of each other.

On the other hand, our presentation in this chapter emphasizes that, in each case,
the correspondence is a consequence of the coherence of the parameter operad that
is not specific to PermCatsu.

● Both Proposition 11.1.15 and Theorem 11.2.16 use the Coherence Theo-
rem 11.1.7 for the associative operad As.
● Both Proposition 11.4.26 and Theorem 11.5.5 use the Coherence Theo-

rem 11.4.14 for the Barratt-Eccles operad EAs.
In particular, our proof of each of Theorems 11.2.16 and 11.5.5 produces the bi-
jective correspondence in one step. The braided and general En cases (Theo-
rems 12.4.5 and 13.4.12) will follow a conceptually similar pattern. ◇
11.7.5 (Ring Spectra and Homotopy). For discussion of the relationship between
low-dimensional homotopy of ring symmetric spectra and their categorical alge-
bra, see [JP07, BJP08a, BJP08b, BM11, MT07]. These papers develop categorical
models and strict algebraic invariants for ring spectra whose nonvanishing homo-
topy groups are concentrated in dimensions 0 and 1. ◇





CHAPTER 12

K-Theory of Braided Ring Categories

In Corollaries 11.3.16 and 11.6.12, we observed that the Elmendorf-Mandell
K-theory multifunctor (Definition 10.3.32)

PermCatsu SymSp
KEM

sends
● small ring categories to strict ring symmetric spectra and
● small bipermutative categories to E∞-symmetric spectra.

This chapter extends the picture to the E2 case by showing, in Corollary 12.5.3, that
KEMC is an E2-symmetric spectrum for each small braided ring category C (Defini-
tion II.9.5.1). In Chapter 13, using En-monoidal categories and the n-fold monoidal
category operad, the results in Chapter 11 and this chapter will be extended to the
general En cases for n ≥ 1.

Similar to the strict ring and E∞ cases in Chapter 11, Corollary 12.5.3 is ob-
tained by combining several key facts. First, the Elmendorf-Mandell K-theory
multifunctor respects

● the categorical enrichment in the multicategory PermCatsu of small per-
mutative categories and
● the simplicial enrichment in the multicategory SymSp of symmetric spec-

tra.
Therefore, a structure in PermCatsu that is parametrized by a categorical operad
passes along KEM to symmetric spectra. For the E2 case, the braid operad Br in
Section 12.1 is an E2-operad (Theorem 12.2.4) that parametrizes

● braided strict monoidal categories in Cat (Proposition 12.3.22) and
● braided ring categories in PermCatsu (Theorem 12.4.5).

Both of these statements are consequences of the Coherence Theorem 12.3.10 for
Br. Combining Theorem 12.4.5 with KEM yields Corollary 12.5.3 about K-theory E2-
symmetric spectra. The following table summaries the main results in Chapter 11
and this chapter for the associative operad As, the braid operad Br, and the Barratt-
Eccles operad EAs. The shorthand smc stands for strict monoidal categories.

operad associative As (11.1.1) braid Br (12.1.2) Barratt-Eccles EAs (11.4.10)

E?-operad E1 (13.1.23, 13.2.1) E2 (12.2.4) E∞ (11.6.3)

coherence 11.1.7 12.3.10 11.4.14

in Cat smc (11.1.15) braided smc (12.3.22) permutative (11.4.26)

in PermCatsu ring (11.2.16) braided ring (12.4.5) bipermutative (11.5.5)

in SymSp strict ring (11.3.16) E2 (12.5.3) E∞ (11.6.12)

III.461
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Organization. Section 12.1 defines the braid operad Br. It generalizes the
Barratt-Eccles operad EAs by using braids with specified underlying permuta-
tions as morphisms. In Definition 11.4.10, the associative operad As yields the
Cat-enriched Barratt-Eccles operad EAs by applying the translation category func-
tor E, which is a right adjoint (Example 11.4.6) and preserves products. On the
other hand, the fact that Br is a Cat-enriched operad (Proposition 12.1.10) requires
a longer proof. See also Note 12.6.4 for generalizations of the braid operad. Propo-
sition 12.1.11 shows that the braid operad sits between the associative operad and
the Barratt-Eccles operad.

Section 12.2 shows that the braid operad Br is an E2-operad (Theorem 12.2.4).
To define E2-operads and En-operads in general, we first recall the little n-cube
operad Cn of Boardman-Vogt and May. An En-operad is, by definition, a topolog-
ical operad that is weakly equivalent to the little n-cube operad. This definition is
extended to simplicial operads and categorical operads via, respectively, the geo-
metric realization functor and the classifying space functor. The fact that Br is an
E2-operad is essentially due to Fiedorowicz [Fie∞] and is proved in [Fre17, 5.2.12].
See also Note 12.6.2.

Section 12.3 proves the Coherence Theorem 12.3.10 for the braid operad Br
that describes Cat-enriched operad morphisms from Br. Similar to the case of the
Barratt-Eccles operad, this coherence result depends on a decomposition of the
morphisms in Br (Lemma 12.3.6). This decomposition is a consequence of the fact
that braids are generated under braid products and sum braids by the generating
braid s1 ∈ B2 and its inverse s−1

1 . As the first application of the Coherence Theo-
rem 12.3.10, we observe in Proposition 12.3.22 that Br is the categorical operad for
small braided strict monoidal categories.

Section 12.4 shows that the braid operad Br detects braided ring category
structures on small permutative categories (Theorem 12.4.5). This is another ap-
plication of the Coherence Theorem 12.3.10 for Br. Section 12.5 proves the main
result about E2-symmetric spectra using the braid operad Br. This result, Corol-
lary 12.5.3, says that KEMC is an E2-symmetric spectrum for each small braided
ring category C.

Reading Guide.

(1) Read Definition 12.1.2 and the statements of Propositions 12.1.10 and 12.1.11
for the braid operad Br.

(2) For the fact that Br is an E2-operad, read Definition 12.2.3 and the state-
ment of Theorem 12.2.4.

(3) For the coherence and K-theoretic properties of Br, read Definition 12.5.1
and the statements of Lemma 12.3.6, Theorems 12.3.10 and 12.4.5, Propo-
sition 12.3.22, and Corollary 12.5.3.

(4) Go back and read the rest of this chapter.

12.1. The Braid Operad

In this section, we define the braid operad Br, which is the braided analogue
of the Barratt-Eccles operad EAs in Definition 11.4.10. In Proposition 12.1.10, we
prove in detail that Br is a Cat-enriched operad. In Proposition 12.1.11, we ob-
serve that the Cat-enriched operad morphism As EAs, from the associative
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operad to the Barratt-Eccles operad, factors through the braid operad. In subse-
quent sections, the braid operad will provide braided and E2 analogues of Propo-
sitions 11.4.26 and 11.6.3, Theorem 11.5.5, and Corollary 11.6.12.

Recall the nth braid group Bn in Definition II.1.1.1. It is generated by s1, . . . , sn−1,
and is subject to the braid relations:

sisj = sjsi for ∣i − j∣ ≥ 2 and 1 ≤ i, j ≤ n − 1.

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n − 2.

With Σn denoting the nth symmetric group, the canonical group homomorphism

Bn Σn

si (i, i + 1)

π

in (II.1.1.12) sends each braid b to its underlying permutation π(b) = b. Also recall the
notion of a Cat-enriched operad in Definition 6.1.1, with (Cat,×, 1) the symmetric
monoidal category of small categories with the Cartesian product.

Motivation 12.1.1. In the category EAsn, the objects are the permutations in Σn,
and the same is true for Brn. For two permutations σ, θ ∈ Σn, there is a unique
morphism

θσ−1 ∶ σ θ ∈ EAsn

as in (11.4.4). One way to understand this definition is that θσ−1 is the unique
permutation that sends σ to θ, in the sense that

(θσ−1)σ = θ.

On the other hand, morphisms in the braid operad Br are braids. While each braid
b has an underlying permutation b, the latter does not determine the given braid.
This fact accounts for the definition of morphisms in (12.1.3) below. ◇
Definition 12.1.2. The braid operad Br is defined as follows. Proposition 12.1.10
proves that it is a Cat-enriched operad.
Categories of Operations: For n ≥ 0, Brn is the groupoid defined as follows.

● Its object set is Σn.
● For permutations σ, θ ∈ Σn, the morphism set is

(12.1.3) Brn(σ; θ) = {b ∈ Bn ∣ b = θσ−1 ∈ Σn}

with b the underlying permutation of b.
● For each σ ∈ Σn, the identity morphism

1σ ∈ Brn(σ; σ)

is the identity braid idn ∈ Bn.
● The categorical composition in Brn is given by the multiplication in

the braid group Bn, that is,

b′ ○ b = b′b.

Unit: The unit is the identity braid

id1 ∈ Br1 ≅ 1.
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Symmetric Group Action: For each permutation υ ∈ Σn, the right υ-action is the
functor

(12.1.4) Brn Brn
υ
≅

defined by the assignments
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(σ ∈ Σn) (συ ∈ Σn)

(b ∈ Brn(σ; θ)) (b ∈ Brn(συ; θυ)).

Operad Composition: For n ≥ 1, k1, . . . , kn ≥ 0, and k = k1 +⋯+ kn, the functor

(12.1.5) Brn ×
n
∏
j=1

Brkj
Brk

γ

is defined on objects by

(12.1.6) γ(σ, (σj)1≤j≤n) =
block permutation

σ⟨k1, . . . , kn⟩ ⋅ (
block sum

σ1 ×⋯× σn) ∈ Σk

for σ ∈ Σn and σj ∈ Σkj
. This is the composition in the associative operad

As in (11.1.2). For morphisms
● b ∈ Brn(σ; σ′) and
● bj ∈ Brkj

(σj; σ′j ) for 1 ≤ j ≤ n,
γ is defined by

γ(b, (bj)1≤j≤n) =
block braid

b⟨kσ−1(1), . . . , kσ−1(n)⟩ ⋅ (

sum braid
n
⊕
j=1

bσ−1(j) )

∈ Brk(γ(σ, (σj)1≤j≤n); γ(σ′, (σ′j )1≤j≤n))

(12.1.7)

with the sum braid and block braid in Definitions II.1.1.9 and II.1.1.20.
This finishes the definition of the braid operad Br. ◇
Explanation 12.1.8. In (12.1.7), γ(b, (bj)1≤j≤n) is a sum braid followed by a block
braid, as discussed in Explanations II.1.1.13 and II.1.1.25.

● The sum braid
n
⊕
j=1

bσ−1(j) ∈ Bk

is geometrically obtained by placing the given braids bσ−1(1), . . . , bσ−1(n)
from left to right in the given order.
● The block braid

b⟨kσ−1(1), . . . , kσ−1(n)⟩ ∈ Bk

is obtained from b by replacing its jth string by kσ−1(j) parallel strings for
1 ≤ j ≤ n.

As we will see shortly in the proof of Proposition 12.1.10, the permutation σ ap-
pears in (12.1.7) to account for the fact that b is a morphism σ σ′ in Brn. ◇
Example 12.1.9. Consider the groupoids Brn.



12.1. THE BRAID OPERAD III.465

● Br0 and Br1 are the terminal category 1 because Σ0, Σ1, B0, and B1 are the
trivial groups.
● Br2 has two objects, id2 and (1, 2) ∈ Σ2. The braid group B2 is the infinite

cyclic group generated by s1, with underlying permutation (1, 2). The
morphism sets in Br2 are as follows.

Br2(id2; id2) = {s2k
1 }k∈Z Br2((1, 2); (1, 2)) = {s2k

1 }k∈Z

Br2(id2; (1, 2)) = {s2k+1
1 }k∈Z Br2((1, 2); id2) = {s2k+1

1 }k∈Z

For n ≥ 2, Brn has the n! permutations in Σn as objects. For any two permutations
σ, θ ∈ Σn, there are infinitely many braids b ∈ Bn with underlying permutation
θσ−1. ◇
Proposition 12.1.10. Br in Definition 12.1.2 is a Cat-enriched operad.

Proof. We need to check that

● the various parts of Br are well defined, and
● the Cat-enriched operad axioms in Definition 6.1.1 are satisfied.

Brn is a category. For morphisms

b0 ∶ σ0 σ1 and b1 ∶ σ1 σ2 ∈ Brn,

the morphism

b1b0 ∶ σ0 σ2

is well defined because its underlying permutation is

(b1b0) = b1b0 = (σ2σ−1
1 )(σ1σ−1

0 ) = σ2σ−1
0 ∈ Σn.

The unity and associativity of this categorical composition follow from the fact
that Bn is a group.

γ is well defined. With the notation

k = (k1, . . . , kn)
σk = (kσ−1(1), . . . , kσ−1(n))

for lists of integers, the following equalities in Σk prove that the braid in (12.1.7) is
a well-defined morphism

γ(σ, (σj)1≤j≤n) = σ⟨k⟩ ⋅
n
∏
j=1

σj σ′⟨k⟩ ⋅
n
∏
j=1

σ′j = γ(σ′, (σ′j )1≤j≤n)
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in Brk as in (12.1.3).

(σ′⟨k⟩ ⋅
n
∏
j=1

σ′j) ⋅ (σ⟨k⟩ ⋅
n
∏
j=1

σj)
−1

= σ′⟨k⟩ ⋅ (
n
∏
j=1

σ′j) ⋅ (
n
∏
j=1

σj)
−1
⋅ (σ⟨k⟩)−1

= σ′⟨k⟩ ⋅ (
n
∏
j=1

σ′j) ⋅ (
n
∏
j=1

σ−1
j ) ⋅ σ−1⟨σk⟩

= σ′⟨k⟩ ⋅ (
n
∏
j=1

σ′j) ⋅ σ−1⟨σk⟩ ⋅ (
n
∏
j=1

σ−1
σ−1(j))

= σ′⟨k⟩ ⋅ σ−1⟨σk⟩ ⋅ (
n
∏
j=1

σ′σ−1(j)) ⋅ (
n
∏
j=1

σ−1
σ−1(j))

= (σ′σ−1)⟨σk⟩ ⋅ (
n
∏
j=1

σ′σ−1(j)σ
−1
σ−1(j))

= b⟨σk⟩ ⋅
n
∏
j=1

bσ−1(j) = γ(b, (bj)1≤j≤n)

γ is a functor. The fact that γ in (12.1.5) preserves identity morphisms follows
from the equalities

idn⟨σk⟩ = idk =
n
⊕
j=1

idk
σ−1(j)

∈ Bk.

For morphisms

σ θ φ ∈ Brn

σj θj φj ∈ Brkj

b b′

bj b′j

for 1 ≤ j ≤ n, the fact that γ preserves categorical composition is proved by the
following equalities in Bk.

γ(b′b, (b′jbj)1≤j≤n)

= (b′b)⟨σk⟩ ⋅ (
n
⊕
j=1

b′σ−1(j)bσ−1(j))

= b′⟨θk⟩ ⋅ b⟨σk⟩ ⋅ (
n
⊕
j=1

b′σ−1(j)) ⋅ (
n
⊕
j=1

bσ−1(j))

= b′⟨θk⟩ ⋅ (
n
⊕
j=1

b′θ−1(j)) ⋅ b⟨σk⟩ ⋅ (
n
⊕
j=1

bσ−1(j))

= γ(b′, (b′j)1≤j≤n) ⋅ γ(b, (bj)1≤j≤n).

The middle two equalities above use the equality b = θσ−1 ∈ Σn. The first and last
equalities are the definition (12.1.7).

For the Cat-enriched operad axioms in Definition 6.1.1 for Br, first observe
that, on objects, Br is the associative operad As in Definition 11.1.1. So we only
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need to check the axioms on morphisms in Br, which are braids with specified
underlying permutations.

Symmetric Group Action. To see that the symmetric group action (12.1.4) is an
isomorphism of categories, first observe that its assignment on morphisms is well
defined because

(θυ)(συ)−1 = (θυ)(υ−1σ−1) = θσ−1 = b.

The functoriality of υ follows from the definition

υ(b) = b ∶ συ θυ

for each morphism b ∶ σ θ in Brn. This definition also implies that the sym-
metric group action on Brn is compatible with the multiplication and identity in
Σn.

Unity. The right unity axiom (6.1.4) holds in Br by the equalities

n

id1 ⊕⋯⊕ id1 = idn

b⟨1, . . . , 1⟩ = b

in Bn. The left unity axiom (6.1.5) holds in Br because

id1⟨m⟩ = idm ∈ Bm.

Associativity. Suppose given morphisms

● b ∈ Brn(σ; σ′)
● bj ∈ Brkj

(σj; σ′j ) for 1 ≤ j ≤ n, and
● bj,i ∈ Brlj,i

(σj,i; σ′j,i) for 1 ≤ j ≤ n and 1 ≤ i ≤ k j,

along with the following notation.

k = (k1, . . . , kn) k =
n
∑
j=1

k j

l j = (lj,1, . . . , lj,kj
) Lj =

kj

∑
i=1

lj,i

l = (l1, . . . , ln) L = (L1, . . . , Ln)

θ = γ(σ, (σj)1≤j≤n) = σ⟨k⟩ ⋅
n
∏
j=1

σj ∈ Σk

By definition (12.1.7), we have the following morphisms in Br.

γ(b, (bj)1≤j≤n) = b⟨σk⟩ ⋅
n
⊕
j=1

bσ−1(j)

∈ Brk(γ(σ, (σj)1≤j≤n); γ(σ′, (σ′j )1≤j≤n))

γ(bj, (bj,i)1≤i≤kj
) = bj⟨σjl j⟩ ⋅

kj

⊕
i=1

bj,σ−1
j (i)

∈ BrLj(γ(σj, (σj,i)1≤i≤kj
); γ(σ′j , (σ′j,i)1≤i≤kj

))
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The following equalities in BL1+⋯+Ln prove the associativity axiom (5.1.4) for Br.

γ(γ(b, (bj)1≤j≤n), ((bj,i)1≤i≤kj
)1≤j≤n)

= [(b⟨σk⟩ ⋅
n
⊕
j=1

bσ−1(j))⟨θl⟩] ⋅ [
n
⊕
j=1

k
σ−1(j)

⊕
i=1

bσ−1(j), σ−1
σ−1(j)

(i)]

= b⟨σL⟩ ⋅ [
n
⊕
j=1

bσ−1(j)⟨σσ−1(j)lσ−1(j)⟩] ⋅ [
n
⊕
j=1

k
σ−1(j)

⊕
i=1

bσ−1(j), σ−1
σ−1(j)

(i)]

= b⟨σL⟩ ⋅
n
⊕
j=1
[bσ−1(j)⟨σσ−1(j)lσ−1(j)⟩ ⋅{

k
σ−1(j)

⊕
i=1

bσ−1(j), σ−1
σ−1(j)

(i)}]

= b⟨σL⟩ ⋅
n
⊕
j=1

γ(bσ−1(j), (bσ−1(j),i)1≤i≤k
σ−1(j)

)

= γ(b, (γ(bj, (bj,i)1≤i≤kj
))

1≤j≤n
)

This proves that Br is a Cat-enriched operad. □

The braid operad is closely related to the associative operad and the Barratt-
Eccles operad. Recall

● the associative operad As with Asn = Σn in Definition 11.1.1,
● the Cat-enriched Barratt-Eccles operad EAs with E the translation cate-

gory functor in Definitions 11.4.1 and 11.4.10, and
● the Cat-enriched operad morphism

As EAs
ιAs

in (11.4.12) that is levelwise the identity function on objects.
We will use Proposition 12.1.11 in Corollary 12.5.2 below.
Proposition 12.1.11. There is a unique factorization of the Cat-enriched operad mor-
phism ιAs as in the diagram

As EAs

Br

ι1

ιAs

ι2

such that both ι1 and ι2 are levelwise the identity functions on objects.

Proof. By Definition 12.1.2, the object set operad of Br is the associative operad As.
This defines the operad morphism ι1. Since the object set operad of the Barratt-
Eccles operad EAs is also As, the operad morphism ι2 is well defined at the object
set level. For morphisms, ι2 is uniquely defined by the fact that, in each translation
category EAsn, each morphism set has a single element. This fact also implies that
ι2 is levelwise a functor that preserves the operad unit, symmetric group action,
and operad composition. □

Explanation 11.6.4 describes the simplicial Barratt-Eccles operad N(EAs), with
N ∶ Cat sSet the nerve functor (Definition 7.2.3). The simplicial operad NBr
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will play an important role in Theorem 12.2.4 and Corollaries 12.5.2 and 12.5.3. We
end this section with an explicit description of it.

Explanation 12.1.12 (Simplicial Braid Operad). For n, k ≥ 0, a k-simplex in the
nerve NBrn is a diagram

((σi)ki=0, (bj)kj=1) = ( σ0 σ1 ⋯ σk
b1 b2 bk )

with

● each σi ∈ Σn for 0 ≤ i ≤ k and
● each bj ∈ Brn(σj−1; σj) for 1 ≤ j ≤ k.

In other words, bj ∈ Bn is a braid with underlying permutation

bj = σjσ
−1
j−1 ∈ Σn.

In particular, the set of 0-simplices in NBrn is

(NBrn)0 = Σn.

The face and degeneracy maps are given as in Explanation 7.2.4.
The symmetric group Σn acts on NBrn diagonally on objects, that is,

((σi)ki=0, (bj)kj=1) ⋅π = ((σiπ)ki=0, (bj)kj=1) for π ∈ Σn.

The unit in the simplicial operad NBr is

id1 ∈ (NBr1)0 = Σ1.

The operad composition

NBrn ×
n
∏
ℓ=1

NBrkℓ NBrk1+⋯+kn

γ

is given on p-simplices by

γ(((σi)
p
i=0, (bj)

p
j=1);{((σ

ℓ
i )

p
i=0, (bℓj )

p
j=1)}

n
ℓ=1)

= ({γ(σi, (σ1
i , . . . , σn

i ))}
p
i=0,{γ(bj, (b1

j , . . . , bn
j ))}

p
j=1).

The last two γ’s are those in, respectively, (12.1.6) and (12.1.7). ◇

12.2. The Braid Operad is an E2-Operad

In this section, we observe in Theorem 12.2.4 that the braid operad Br in Propo-
sition 12.1.10 is an E2-operad. This is the E2 analogue of Proposition 11.6.3, which
says that the Barratt-Eccles operad is an E∞-operad. This assertion will be used in
Corollary 12.5.3, which says that the Elmendorf-Mandell K-theory of each small
braided ring category is an E2-symmetric spectrum. To make sense of the concept
of an E2-operad in Theorem 12.2.4, we first define the little n-cube operad Cn due
to Boardman-Vogt [BV73, 2.49] and May [May72]. It is used to define En-operads
for n ≥ 1 in Definition 12.2.3.
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Little n-Cubes. The ground symmetric monoidal category is Top, with com-
pactly generated weak Hausdorff spaces as objects and continuous maps as mor-
phisms. See Note 12.6.1 for related references. Suppose R is the topological space
of real numbers. Denote by

● [0, 1] ⊆R the closed unit interval with interior (0, 1) and
● [0, 1]×n ⊆Rn the closed unit n-cube with interior (0, 1)×n.

A little n-cube is a function

f = ( f 1, . . . , f n) ∶ [0, 1]×n [0, 1]×n

such that, for each 1 ≤ i ≤ n,

f i ∶ [0, 1] [0, 1]

is a linear function of the form

f i(t) = ai + t(bi − ai) for 0 ≤ t ≤ 1

and some 0 ≤ ai < bi ≤ 1. We sometimes denote f i by its image [ai, bi] and a little
n-cube by a product

(12.2.1) [a1, b1]×⋯× [an, bn].

For k ≥ 0, a k-tuple f = ( f1, . . . , fk) of little n-cubes is said to have pairwise
disjoint interiors if

(12.2.2) fi((0, 1)×n)∩ f j((0, 1)×n) = ∅ for 1 ≤ i < j ≤ k.

A k-tuple f = ( f1, . . . , fk) of little n-cubes with pairwise disjoint interiors is also
regarded as a function

k
∐
i=1
[0, 1]×n [0, 1]×n.

∐i fi

If k = 0, then this is regarded as the unique function ∅ [0, 1]×n. The set of all
continuous maps

k
∐
i=1
[0, 1]×n [0, 1]×n

is a topological space with the compact-open topology. The subset of k-tuples of
little n-cubes with pairwise disjoint interiors is given the subspace topology and is
denoted by

Cn(k).
When k = 0, Cn(0) is the one-point space containing the function ∅ [0, 1]×n.
Below is a picture of an element with three pairwise disjoint little 2-cubes inside
the unit square.

1

2
3

∈ C2(3)
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The Little n-Cube Operad. For each n ≥ 1, the sequence of topological spaces

Cn = {Cn(k)}k≥0

is a Top-enriched operad with the following data.
Unit: The unit is the identity map

(1 ∶ [0, 1]×n [0, 1]×n) ∈ Cn(1).
Equivariance: Given f = ( f1, . . . , fk) ∈ Cn(k) and a permutation σ ∈ Σk, define

f σ = ( fσ(1), . . . , fσ(k)) ∈ Cn(k).
Composition: For m ≥ 1 and k1, . . . , km ≥ 0 with k = k1 +⋯+ km, the composition

Cn(m)×
m
∏
i=1
Cn(ki) Cn(k)

γ

is defined as the composite

m
∐
i=1

ki
∐
l=1
[0, 1]×n [0, 1]×n

m
∐
i=1
[0, 1]×n

∐i g
i

γ( f ,(g
i
)1≤i≤m)

f

for f ∈ Cn(m) and g
i
∈ Cn(ki)with 1 ≤ i ≤ m.

This finishes the definition of Cn.
● The unity axioms (6.1.4) and (6.1.5) hold because the unit in Cn(1) is the

identity map.
● The symmetric group action and the equivariance axioms (6.1.6) and

(6.1.7) hold because the symmetric group action on Cn(k) simply per-
mutes the labels of the k little n-cubes in the k-tuples.
● The associativity axiom (6.1.3) holds because composition of continuous

maps is strictly associative.
The Top-enriched operad Cn is called the little n-cube operad.

For example, with f ∈ C2(3) and g ∈ C2(2) on the left-hand side below, the
composite γ( f , (1, g, 1)) ∈ C2(4) is the picture on the right below.

g
1

2

f
1

2
3

γ( f , (1, g, 1))

1

2
3 4
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En-Operads. Recall from Example 7.2.8 that the classifying space ∣NC∣ of a
small category C is the geometric realization of the nerve of that category (Def-
initions 7.1.14 and 7.2.3). The nerve N preserves limits, in particular, products,
because it is a right adjoint. The geometric realization ∣ − ∣ preserves finite limits,
in particular, products. A detailed proof of this fact is in [GZ67, III.3.4]. Therefore,
the classifying space functor ∣N(−)∣ also preserves products and takes a categori-
cal operad to a topological operad. In the next definition, a zigzag means a finite
nonempty sequence of arrows, each pointing in either direction.
Definition 12.2.3. Two Top-enriched operads P and Q are weakly equivalent if there
is a zigzag of Top-enriched operad morphisms

P P1 ⋯ Q
∼ ∼ ∼

connecting P and Q in which each operad morphism is levelwise a weak homo-
topy equivalence. Moreover, for 1 ≤ n <∞, we define the following.

● A Top-enriched operad is an En-operad if it is weakly equivalent to the
little n-cube operad Cn.
● An sSet-enriched operad is an En-operad if its geometric realization is an

En-operad.
● A Cat-enriched operad is an En-operad if its classifying space is an En-

operad. ◇
The following result is the braid operad analogue of Proposition 11.6.3, which

says that the Barratt-Eccles operad is an E∞-operad. This result is essentially due
to Fiedorowicz [Fie∞] and is proved in [Fre17, 5.2.12]. See also Note 12.6.2.
Theorem 12.2.4. The braid operad Br in Proposition 12.1.10 is an E2-operad.

Proof. We refer the reader to [Fre17, Ch. 5] for the proof with nice illustrations.
Here we provide an overview of the proof. The desired weak equivalence be-
tween the classifying space of the braid operad Br and the little 2-cube operad C2
is given by the following zigzag of Top-enriched operad isomorphisms ≅ and weak
equivalences ∼.

(12.2.5)

C2 ∣NBr∣

Sy(C̃2) ∣NSy(EB)∣

Sy(Q) Sy(∣NEB∣) ∣Sy(NEB)∣

(6) ≅ ≅ (1)

(5) ∼
(4)
∼

(3)
≅

≅ (2)

This diagram involves the following concepts and constructions.
Braided operads. Enriched braided operads have the same definition as enriched

operads in Definition 6.1.1, except that each symmetric group Σn is replaced by the
braid group Bn in Definition II.1.1.1. In the equivariance axioms (6.1.6) and (6.1.7),
the block permutation and the block sum are replaced by, respectively, the block
braid (II.1.1.21) and the sum braid (II.1.1.10).

B∞-operads. Just as the symmetric groups form the associative operad As in
Definition 11.1.1, the braid groups form a braided operad

(12.2.6) B = {Bk}k≥0,
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which is called the braid group operad.
● Applying the translation category functor E in Definition 11.4.1 yields a
Cat-enriched braided operad EB. It inherits from B the free braid group
action in each level.
● Applying the classifying space functor, ∣NEB∣ is a Top-enriched braided

operad with a levelwise free braid group action. Moreover, each space
∣NEBk∣ is contractible, since each translation category EBk is equivalent
to the terminal category.

A B∞-operad is a Top-enriched braided operad R such that
● each space Rn is contractible, and
● each braid group action

Rn × Bn Rn

is free.
So ∣NEB∣ is a B∞-operad.

Symmetrization. The kernel of the group homomorphism π ∶ Bk Σk in
(II.1.1.12) is called the kth pure braid group and is denoted by Pk. Elements in Pk
are braids with identity underlying permutation. For an object with a braid group
action, the quotient by Pk is called the symmetrization and is denoted by Sy. The
symmetrization has the following properties.

● It inherits a symmetric group action, since

Bk/Pk ≅ Σk.

● Sy turns a braided operad into an operad.
● When applied to a small category with a braid group action, Sy commutes

with the nerve.
● When applied to a simplicial set with a braid group action, Sy commutes

with the geometric realization, which is a coend.
● More conceptually, Sy is the left adjoint of the functor that sends an object

with a Σk-action to the same object with the pullback Bk-action via the
map π ∶ Bk Σk.

The commutativity of the symmetrization with the nerve and the geometric real-
ization yields the isomorphisms of operads (2) and (3) in (12.2.5).

Br as a symmetrization. For each k ≥ 0, there is a functor

EBk Brk

defined as follows.
● On objects, it is given by the underlying permutation π ∶ Bk Σk.
● Using the definitions (11.4.4) and (12.1.3), this functor sends a morphism

b′b−1 ∶ b b′

in the translation category EBk to the morphism

b′b−1 ∶ π(b) π(b′)
in the category Brk.

These functors induce an isomorphism of Cat-enriched operads

Sy(EB) Br.≅
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Applying the classifying space functor yields the isomorphism of operads (1) in
(12.2.5). This is [Fre17, 5.2.15].

Universal covering of C2. The little 2-cube operad C2 naturally extends to the
B∞-operad C̃2, with each C̃2(k) the universal covering space of C2(k). Passing to
the symmetrization of C̃2, the levelwise covering maps

(12.2.7) C̃2(k) C2(k)
induce the isomorphism of operads (6) in (12.2.5). This is [Fre17, 5.1.6].

Connecting B∞-operads. As noted above, C̃2 and ∣NEB∣ are B∞-operads. The
sequence of spaces

Q = {Qk = C̃2(k)× ∣NEBk∣}
k≥0

inherits the structure of a B∞-operad, with the braid group acting diagonally in
each level. Since C̃2(k) and ∣NEBk∣ are contractible, the projections

C̃2(k) Qk ∣NEBk∣∼ ∼

are weak homotopy equivalences and respect the free braid group action. These
projections form braided operad morphisms

(12.2.8) C̃2 Q ∣NEB∣.∼ ∼

Passing to the symmetrization yields the weak equivalences of operads (4) and (5)
in (12.2.5). □

12.3. Coherence of the Braid Operad

In this section, we prove a coherence theorem for the braid operad Br; see
Theorem 12.3.10. This result is the braid operad extension of Theorem 11.4.14 for
the Barratt-Eccles operad. Theorem 12.3.10 uses a decomposition of morphisms in
Br in Lemma 12.3.6. Example 12.3.9 is a concrete illustration of that decomposition
of morphisms in Br. As the first application, in Proposition 12.3.22, we observe
that the braid operad detects braided strict monoidal category structure. It will be
used again in Theorem 12.4.5 and Corollary 12.5.3 when we consider the K-theory
of braided ring categories.

Decomposition of Morphisms.
Motivation 12.3.1. By Explanation 11.4.11 (2), morphisms in EAsn for n ≥ 2 are
Cat-enriched operadically generated by the isomorphism

id2 (1, 2) ∈ EAs2(id2; (1, 2))τ
≅

and identity morphisms. Lemma 12.3.6 below is the analogue for the braid operad
Br. By Example 12.1.9, the braid operad Br contains the morphism set

Br2(id2; (1, 2)) = {s2k+1
1 }k∈Z,

where s1 ∈ B2 is the generating braid with underlying permutation (1, 2). In what
follows, the isomorphism

(12.3.2) id2 (1, 2) ∈ Br2
s1
≅

will play the role of the isomorphism τ ∈ EAs2(id2; (1, 2)).
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However, one should be careful that s−1
1 can mean either the inverse of the

isomorphism in (12.3.2), which is denoted by

(s1)−1 ∶ (1, 2) id2,

or the different isomorphism

(12.3.3) id2 (1, 2) ∈ Br2.
s−1

1
≅

They are related by the equality

(12.3.4) (s1)−1(1, 2) = s−1
1 ∶ id2 (1, 2) ∈ Br2

with (s1)−1(1, 2) the right (1, 2)-action (12.1.4) on (s1)−1. The equality (12.3.4)
holds because, by the symmetric group action (12.1.4) on the morphisms in Br,
each side is a morphism id2 (1, 2) represented by the braid s−1

1 ∈ B2. There is
also an isomorphism

(12.3.5) (1, 2) id2 ∈ Br2,
s1
≅

which is equal to the right (1, 2)-action on the s1 in (12.3.2). ◇
Lemma 12.3.6. Each morphism in Brn for n ≥ 2 decomposes into a categorical composite
of isomorphisms of the form ϕυ with

● each υ ∈ Σn and
● each ϕ an operadic composite of

– one instance of
s±1

1 ∶ id2 (1, 2)
in (12.3.2) and (12.3.3) and

– identity morphisms.

Proof. First recall the following three facts:
● By definition (12.1.3), each morphism set Brn(σ; θ) consists of braids b ∈

Bn with underlying permutation b = θσ−1.
● By Definition II.1.1.1, s(n)i ∈ Bn for 1 ≤ i < n are the group generators. The

underlying permutation of s(n)i is the adjacent transposition (i, i+1) ∈ Σn.
● By definition (II.1.1.10), there is a sum braid decomposition

(s(n)i )
±1 =

∅ if i = 1

idi−1⊕ s±1
1

∅ if i = n − 1

⊕ idn−i−1 ∈ Bn

with s1 ∈ B2 the generating braid.
These facts imply that each morphism in Brn decomposes into a categorical com-
posite of isomorphisms of the form

(12.3.7) (s(n)i )
±1

υ ∶ υ (i, i + 1)υ ∈ Brn

for some 1 ≤ i < n, permutation υ ∈ Σn, and sum braid

(12.3.8) (s(n)i )
±1 =

∅ if i = 1

idi−1⊕ s±1
1

∅ if i = n − 1

⊕ idn−i−1 ∶ idn (i, i + 1) ∈ Brn.

The block braid induced by an identity braid is an identity braid in the sense that

idn⟨σk⟩ = idk ∈ Bk.
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By the definition (12.1.7) of γ in Br, the sum braid in (12.3.8) is an operadic com-
posite of one

s±1
1 ∶ id2 (1, 2)

in (12.3.2) and (12.3.3) and identity morphisms. □

Example 12.3.9. To illustrate the decomposition in Lemma 12.3.6, consider

● the braid b = s2s−1
1 ∈ B3 with s1, s2 the generating braids in B3 and

● the cyclic permutations σ = (1, 3, 2) and θ = (1, 2, 3) ∈ Σ3.
Since

b = σ = θσ−1 ∈ Σ3,
there is a morphism b ∶ σ θ in Br3, as displayed below.

σ 2 3 1 σ

θ 3 1 2 θ = (2, 3)(1, 3)

(1, 2)σ = (1, 3)b

(s−1
1 ⊕ id1)σ

(id1 ⊕ s1)(1, 3)

The morphism b ∈ Br3(σ; θ) decomposes as the categorical composite

b = [(id1 ⊕ s1)(1, 3)][(s−1
1 ⊕ id1)σ]

with s±1
1 ∶ id2 (1, 2) in (12.3.2) and (12.3.3). Each of the two factors in the above

decomposition has the form (12.3.7). This example illustrates that the permutation
υ and the isomorphism s−1

1 cannot be omitted from Lemma 12.3.6. ◇

Coherence. The next result is a coherence theorem for the braid operad in the
sense that it describes the braid operad in terms of a small number of generators
and a few relations. It is the braid operad analogue of Theorem 11.1.7 for the as-
sociative operad As (Definition 11.1.1) and Theorem 11.4.14 for the Barratt-Eccles
operad EAs (Definition 11.4.10). The axioms (12.3.13) and (12.3.14) below are for-
mally identical to those of a braided strict monoidal category in Definitions 1.1.1
and 1.1.14. An enriched operad morphism is an enriched multifunctor as in Defini-
tion 5.1.12 between two enriched multicategories with one object. This result is
from [Fre17, 6.2.4 and 6.2.6]; see Note 12.6.3.
Theorem 12.3.10. Suppose (P, γ,1) is a Cat-enriched operad. Then a Cat-enriched op-
erad morphism

f ∶ Br P

is uniquely determined by
● the objects

1 = f (id0) ∈ P0

µ = f (id2) ∈ P2
(12.3.11)

and
● the isomorphism

(12.3.12) µ = f (id2) f (1, 2) = µ(1, 2) = µop ∈ P2(µ, µop)
ξ = f(s1)
≅
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with
s1 ∶ id2 (1, 2) ∈ Br2

the isomorphism in (12.3.2).
The above data are subject to the following conditions.
Unity and Associativity: The equalities of objects

µ(1,1) = 1 = µ(1,1) ∈ P1

µ(µ,1) = µ(1, µ) ∈ P3
(12.3.13)

hold.
The Hexagon Axiom: The left and right hexagon diagrams

(12.3.14)

µ(1, µ) µop(1, µ)

µ(µ,1) µ(1, µop)(1, 2)

µ(µop,1) µ(1, µ)(1, 2)

ξ

µ(ξ,1) µ(1, ξ)(1, 2)

µ(µ,1) µop(µ,1)

µ(1, µ) µ(µop,1)(2, 3)

µ(1, µop) µ(µ,1)(2, 3)

ξ

µ(1, ξ) µ(ξ,1)(2, 3)

in P3 are commutative.

Proof. Similar to the proof of Theorem 11.4.14, there are two directions.
Necessity. Suppose f ∶ Br P is a Cat-enriched operad morphism. We define

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 = f (id0) ∈ P0,

µ = f (id2) ∈ P2, and

ξ = f (s1) ∶ µ µop ∈ P2

as in (12.3.11)–(12.3.12). Since f preserves the operad units, there is an equality

f (id1) = 1 ∈ P1.

● The object set operad of Br is the associative operad As. So there is a
Cat-enriched operad morphism

(12.3.15) As Br
ι

that is levelwise the identity function on objects, that is, permutations in
Σn. The composite

As Br P
ι f

is a Cat-enriched operad morphism. So it preserves the operad relations
(11.1.8) in As, which become the equalities (12.3.13) of objects in P.
● Before applying f , the analogues of the left and right hexagons in

(12.3.14) are commutative in Br. In each case, each of the two composites
is the left, respectively, right, braid below, read bottom-to-top.

s2s1 ∈ B3 s1s2 ∈ B3

Since f is a Cat-enriched operad morphism, after applying f , the axioms
hold in P.
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Therefore, the data (12.3.11)–(12.3.12) satisfy the axioms (12.3.13)–(12.3.14).
Sufficiency. Suppose given the data
● 1 = f (id0) ∈ P0,
● µ = f (id2) ∈ P2 as in (12.3.11), and
● ξ = f (s1) ∶ µ µ(1, 2) = µop ∈ P2(µ, µop) as in (12.3.12)

such that the axioms (12.3.13)–(12.3.14) hold in P. We show that these data extend
uniquely to a Cat-enriched operad morphism f ∶ Br P in several stages.

Objects. By Theorem 11.1.7 and the axiom (12.3.13), the objects

1 = f (id0) and µ = f (id2)
uniquely determine a Cat-enriched operad morphism

(12.3.16) As P
f

defined by
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f (id1) = 1 ∈ P1,

f (id2) = µ = µ2 ∈ P2,

f (idn) = µ(µn−1,1) = µn ∈ Pn for n ≥ 3, and

f (σ) = µnσ ∈ Pn for σ ∈ Σn.

By (12.3.15), this defines the object part of the Cat-enriched operad morphism f ∶
Br P.

Morphisms. The identity morphisms 1id0 ∈ Br0 and 1id1
∈ Br1 must be sent by

f to, respectively, the identity morphisms 11 ∈ P0 and 11 ∈ P1. To define f on the
other morphisms in Br, note that the coherence theorems for (braided) monoidal
categories can be applied to

● the objects {1,1, µ}, which are interpreted as, respectively, the monoidal
unit, the identity functor, and the monoidal product, and
● the braiding ξ.

The reason is that the assumed axioms (12.3.13), and also (12.3.14) in the braided
case, are formally identical to those of a (braided) strict monoidal category in Def-
initions 1.1.1 and 1.1.14. We apply these coherence theorems as follows.

● By the axiom (12.3.13) and Mac Lane’s Coherence Theorem 1.1.31, each
iterated operadic composite in Pn involving only the objects

µ0 = 1 ∈ P0, µ1 = 1 ∈ P1, and µ2 = µ ∈ P2

is equal to µn.
● For each pair of permutations σ, θ ∈ Σn, consider isomorphisms

(12.3.17) µnσ µnθ ∈ Pn
≅

that are categorical composites of isomorphisms of the form ϕυ, with υ ∈
Σn and each ϕ an operadic composite of

– one

ξ = f (s1) ∶ µ µop or ξ−1(1, 2) ∶ µ µop

and
– identity morphisms.
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The hexagon axiom (12.3.14) and the Braided Coherence Theorem 1.1.38
imply that two isomorphisms as in (12.3.17) are equal if their underlying
braids are equal. In defining the underlying braids,

– the permutations υ are ignored, and
– ξ and ξ−1(1, 2) have underlying braids, respectively, s1 and s−1

1 ∈ B2.
This property will be called the braided uniqueness of (12.3.17).

By Lemma 12.3.6, for each pair of permutations σ, θ ∈ Σn, each isomorphism
b ∶ σ θ in Brn decomposes into a categorical composite of isomorphisms of the
form ϕυ with

● each υ ∈ Σn and
● each ϕ an operadic composite of one s±1

1 ∶ id2 (1, 2) and identity mor-
phisms.

The desired f ∶ Br P must be levelwise a functor and preserve the operad
structure, namely, the operad units, the equivariant structure, and the operad com-
position. So, by (12.3.4), we must define the isomorphism

(12.3.18) f (σ) = µnσ µnθ = f (θ) ∈ Pn
f(b)

as the corresponding isomorphism in (12.3.17) with

f (s−1
1 ∶ id2 (1, 2))

= ( f (s1) ∶ µ µop)−1(1, 2)
= (ξ−1(1, 2) ∶ µ µop).

(12.3.19)

The braided uniqueness of (12.3.17) implies the following two statements.

● f (b) is independent of the choice of a decomposition of each morphism
b ∈ Brn in Lemma 12.3.6.
● f ∶ Brn Pn is a functor for each n.

The uniqueness of each functor f ∶ Brn Pn is part of the definitions (12.3.16)
and (12.3.18).

It remains to check that the functors f ∶ Brn Pn preserve the operad
structure. Since f ∶ As P in (12.3.16) is a Cat-enriched operad morphism, by
(12.3.15) we only need to consider morphisms in Brn.

Equivariant structure. The assertion that f preserves the symmetric group ac-
tion means that, for each permutation π ∈ Σn, the diagram

(12.3.20)
Brn Brn

Pn Pn

f

π

f

π

of functors, with each horizontal arrow the right π-action, is commutative. Since
f and π are functors, by the decomposition of morphisms in Brn in Lemma 12.3.6,
it suffices to consider morphisms of the form ϕυ ∈ Brn with υ ∈ Σn and ϕ an op-
eradic composite of one s±1

1 ∶ id2 (1, 2) and identity morphisms. On such a
morphism ϕυ, the commutativity of (12.3.20) follows from

● the definition (12.1.4) of the equivariant structure on Brn,
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● the fact (12.3.4) that

(s1)−1(1, 2) = s−1
1 ∶ id2 (1, 2),

● the definition (12.3.18) of f on morphisms, and
● the braided uniqueness of (12.3.17).

Operad composition. The assertion that f preserves the operad composition
means the commutativity of the following diagram of functors.

(12.3.21)

Brn ×
n
∏
j=1

Brkj
Brk1+⋯+kn

Pn ×
n
∏
j=1

Pkj
Pk1+⋯+kn

f×∏j f

γ

f

γ

By the equivariance axioms in Br and P and the functoriality of f and γ, it suffices
to consider (12.3.21) with

● an identity morphism in n of the n + 1 factors in Brn ×∏n
j=1 Brkj

and
● in the remaining factor, a morphism of the form ϕυ with υ a permuta-

tion and ϕ an operadic composite of one s±1
1 ∶ id2 (1, 2) and identity

morphisms.
In this case, the commutativity of (12.3.21) follows from the braided uniqueness of
(12.3.17). Therefore, f ∶ Br P is a Cat-enriched operad morphism. □

Braided Strict Monoidal Categories as Algebras. Proposition 11.1.15 shows
that the associative operad As is the operad for monoids. Proposition 11.4.26
shows that the Barratt-Eccles operad EAs is the Cat-enriched operad for permu-
tative categories. The following application of Theorem 12.3.10 is the analogue for
the braid operad Br. See also Note 12.6.4.
Proposition 12.3.22. For a small category C, a braided strict monoidal category structure
on C is uniquely determined by a Cat-enriched multifunctor

f ∶ Br Cat such that f (∗) = C.

Proof. A Cat-enriched multifunctor f ∶ Br Cat such that f (∗) = C is equivalent
to a Cat-enriched operad morphism

Br End(C) = {Cat(C×n,C)}n≥0
f

to the Cat-enriched endomorphism operad of C. By Theorem 12.3.10, such a Cat-
enriched operad morphism f is uniquely determined by

● the object
1 = f (id0) ∈ C,

● the functor
⊗ = f (id2) ∶ C×C C,

and
● the natural isomorphism

⊗ ⊗(1, 2) = ⊗opξ⊗ = f(s1)
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such that the axioms (12.3.13)–(12.3.14) are satisfied.
● The unity and associativity axioms (12.3.13) state that (C,⊗,1) is a strict

monoidal category as in Definition I.1.2.1.
● The hexagon axiom (12.3.14) state that (C,⊗,1, ξ⊗) is a braided strict

monoidal category as in Definition II.1.3.15.
This finishes the proof. □

12.4. Detecting Braided Ring Categories

In this section, we prove that the braid operad detects braided ring category
structures on small permutative categories (Theorem 12.4.5). This result is an ap-
plication of the Coherence Theorem 12.3.10 for the braid operad. In Section 12.5,
we use this result to show that the K-theory of a small braided ring category is an
E2-symmetric spectrum (Corollary 12.5.3). For the reader’s convenience, here we
recall from Chapter II.9 the definition of a braided ring category.
Definition 12.4.1. A braided ring category is a tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (∂l , ∂r))
consisting of

● a ring category

(C, (⊕, 0, ξ⊕), (⊗,1), (∂l , ∂r))
as in Definition 11.2.4 and
● a braided strict monoidal category structure (C,⊗,1, ξ⊗), with ξ⊗ called

the braiding, as in Definitions 1.1.1 and 1.1.14.
These data are required to satisfy the following axioms for objects A, B, C ∈ C.
The Zero Braiding Axiom: There are equalities of morphisms as follows.

ξ⊗A,0 = 10 ∶ A⊗ 0 = 0 0 = 0⊗ A

ξ⊗0,A = 10 ∶ 0⊗ A = 0 0 = A⊗ 0
(12.4.2)

The Braiding Factorization Axiom: The diagram

(12.4.3)

(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

(C⊗ A)⊕ (C⊗ B) C⊗ (A⊕ B)

(A⊗C)⊕ (B⊗C) (A⊕ B)⊗C

ξ⊗A,C⊕ξ⊗B,C

∂l
A,B,C

ξ⊗A⊕B,C

ξ⊗C,A⊕ξ⊗C,B

∂r
C,A,B

ξ⊗C,A⊕B
∂l

A,B,C

is commutative.
This finishes the definition of a braided ring category. A braided ring category is
small, respectively, tight, if the underlying ring category is so. ◇
Definition 12.4.4. For a permutative category (C,⊕, 0, ξ⊕), a braided ring category
structure on C is the additional data (⊗,1, ξ⊗, ∂l , ∂r) such that the tuple

(C, (⊕, 0, ξ⊕), (⊗,1, ξ⊗), (∂l , ∂r))
is a braided ring category as in Definition 12.4.1. ◇
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Recall from Section 6.6 that PermCatsu is the Cat-enriched multicategory with
small permutative categories as objects. The category

PermCatsu (⟨C⟩ ; D) = PermCatsu (⟨C1, . . . ,Cn⟩ ; D)
has

● n-linear functors
C1 ×⋯×Cn D

as in Definition 6.5.4 as objects and
● multilinear transformations (Definition 6.5.11) as morphisms.

Also recall from Definition 5.1.12 the notion of an enriched multifunctor. The next
result is the braid operad analogue of Theorems 11.2.16 and 11.5.5. It says that
the braid operad detects braided ring category structures on small permutative
categories. It extends Proposition 12.3.22 from Cat to PermCatsu.
Theorem 12.4.5. For each small permutative category C, there is a canonical bijective
correspondence between

● braided ring category structures on C and
● Cat-enriched multifunctors

F ∶ Br PermCatsu such that F(∗) = C.

Proof. A Cat-enriched multifunctor

F ∶ Br PermCatsu such that F(∗) = (C,⊕, 0, ξ⊕)
is equivalent to a Cat-enriched operad morphism

F ∶ Br End(C) = {PermCatsu (⟨
n

C, . . . ,C⟩ ; C)}
n≥0

to the Cat-enriched endomorphism operad of C. By Theorem 12.3.10, such a Cat-
enriched operad morphism is uniquely determined by

● the 0-linear functor, that is, object

F(id0) = 1 ∈ C,

● the 2-linear functor

F(id2) = (⊗, ∂l , ∂r) ∶ C×C C,

and
● the invertible multilinear transformation

(⊗, ∂l , ∂r) (⊗op, ∂r, ∂l)ξ⊗ = F(s1)

such that the conditions (12.3.13)–(12.3.14) are satisfied, with

(µ,1, ξ) interpreted as ((⊗, ∂l , ∂r), 1C, ξ⊗).

By Theorem 11.2.16 and the first paragraph of its proof, the data (⊗,1, ∂l , ∂r) and
the condition (12.3.13) are equivalent to a ring category structure on the small per-
mutative category (C,⊕, 0, ξ⊕) in the sense of Definition 11.2.15. In particular,
(C,⊗,1) is a strict monoidal category. Next we consider the remaining data ξ⊗

and the hexagon axiom (12.3.14).
The invertible multilinear transformation

ξ⊗ ∶ ⊗ ≅ ⊗op
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is, by definition, a natural isomorphism that satisfies the two conditions in Defini-
tion 6.5.11.

● The hexagon axiom (12.3.14) states that (C,⊗,1, ξ⊗) is a braided strict
monoidal category as in Definition II.1.3.15.
● Consider the commutativity of the diagram (6.5.12) for α = ξ⊗.

– The case i = 1 is the top half of the braiding factorization axiom
(12.4.3) in a braided ring category.

– The case i = 2 is the bottom half of the braiding factorization axiom
(12.4.3).

● The second condition in Definition 6.5.11 states the equalities

ξ⊗−,0 = 10 = ξ⊗0,−.

These equalities form the zero braiding axiom (12.4.2) in a braided ring
category.

Therefore, a Cat-enriched operad morphism

F ∶ Br End(C)

is equivalent to a braided ring category structure on C. □

12.5. K-Theory of Braided Ring Categories are E2-Symmetric Spectra

In this section, we prove that the K-theory of a small braided ring category
is an E2-symmetric spectrum (Corollary 12.5.3). This result is the E2 analogue
of Corollaries 11.3.16 and 11.6.12. It is a consequence of Theorem 12.4.5, the
Elmendorf-Mandell K-theory multifunctor, and the fact that the braid operad is an
E2-operad (Theorem 12.2.4). Along the way, we record the relationship between
strict ring, E2-, and E∞-structures on symmetric spectra (Corollary 12.5.2). To
make sense of these results, we first define En-structure on symmetric spectra.

En-Symmetric Spectra. For each symmetric spectrum X, recall from Defini-
tion 7.6.22 that it has an endomorphism simplicial operad End(X), which is enriched
over sSet∗. For n ≥ 0, it has

End(X)n = SymSp(X∧n ∧∆?
+, X) ∈ sSet∗

as its pointed simplicial set of n-ary operations.

Definition 12.5.1. Suppose 1 ≤ n <∞.

● An En-structure on a symmetric spectrum X is an sSet-enriched operad
morphism

P End(X)
for some sSet-enriched En-operad P as in Definition 12.2.3.
● An En-symmetric spectrum is a symmetric spectrum equipped with an En-

structure. ◇
Recall

● that a strict ring symmetric spectrum is a monoid in the category SymSp
of symmetric spectra (Definition 11.3.1) and
● Definition 11.6.5, which is the E∞ analogue of Definition 12.5.1.
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Applying the factorization (Proposition 12.1.11)

As EAs

Br

ι1

ιAs

ι2

and using Propositions 11.1.15 and 11.6.3 and Theorem 12.2.4, we obtain the fol-
lowing relationship between strict ring structure, E2-structure, and E∞-structure.
This result is a refinement of Proposition 11.6.6 (2).
Corollary 12.5.2. Suppose X is a symmetric spectrum.

(1) An E∞-structure on X via the Barratt-Eccles operad EAs induces an E2-
structure on X by restricting along ι2.

(2) An E2-structure on X via the braid operad Br induces a strict ring structure on
X by restricting along ι1.

K-Theory E2-Symmetric Spectra. Recall the Elmendorf-Mandell K-theory
multifunctor in Definition 10.3.32,

KEM = KGN∗JEM ∶ PermCatsu SymSp.

The following result is the E2 analogue of Corollaries 11.3.16 and 11.6.12.
Corollary 12.5.3. For each small braided ring category C, KEMC is an E2-symmetric
spectrum.

Proof. Consider the multifunctors

Br PermCatsu SymSp

∗ (C,⊕, 0, ξ⊕) KEMC

F KEM

with F the Cat-enriched multifunctor in Theorem 12.4.5 such that F(∗) is the ad-
ditive structure of C. By Theorem 12.2.4, NBr is an E2-operad. As in the proof of
Corollary 11.6.12, the composite sSet-enriched operad morphism

NBr End(KEMC)

NEnd(C) NEnd(JEMC) End(N∗JEMC)

FN

JEM

N N∗
KG

gives KEMC the structure of an E2-symmetric spectrum. □

The En analogue of Corollary 12.5.3 is Corollary 13.5.2.
Example 12.5.4 (Braided Distortion). The braided distortion category Dbr in
Section II.5.2 is a small tight braided ring category by Example II.9.5.9. Corol-
lary 12.5.3 applies to Dbr to yield a K-theory E2-symmetric spectrum. See also
Questions A.5.6 and A.5.7. ◇
Example 12.5.5 (Bimonoidal Drinfeld Center). The bimonoidal Drinfeld center of
each small tight ring category is a small tight braided ring category by Corol-
lary II.9.6.1. Corollary 12.5.3 applies to the latter to yield a K-theory E2-symmetric
spectrum. ◇
Example 12.5.6 (Permbraided Strictification). Suppose C is a small tight braided
bimonoidal category (Definition II.2.1.29), such as
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● a small abelian category with a compatible braided monoidal structure in
Theorem II.2.4.22,
● F any of Fibonacci anyons in Theorem II.3.4.13,
● Iany of Ising anyons in Theorem II.3.6.14, and
● the bimonoidal Drinfeld center of a small tight bimonoidal category in

Theorem II.4.4.3.
By Corollary II.9.5.10, the equivalent

● right permbraided category A in Theorem II.6.3.6 and
● left permbraided category Al in Theorem II.6.3.7

are small tight braided ring categories. Corollary 12.5.3 applies to each of A and Al
to yield a K-theory E2-symmetric spectrum. ◇

12.6. Notes

12.6.1 (Compactly Generated Spaces). For more point-set level discussion of com-
pactly generated weak Hausdorff spaces, which are used in Section 12.2 to define
the little n-cube operads, the reader may consult [Bro64, GZ67, Kel55, May72,
May99, Ste67]. In the literature, these spaces are sometimes called k-spaces and
Kelley spaces. ◇
12.6.2 (Br is an E2-Operad). Theorem 12.2.4 is [Fre17, 5.2.12] with one main dif-
ference. In [Fre17, Ch. 5], Fresse actually uses the little 2-disc operad D2 and its
universal covering D̃2, instead of the little 2-cube operad C2 and its universal cov-
ering C̃2 as in Definition 12.2.3 and the diagram (12.2.5). The little 2-disc operadD2
has a definition similar to that of the little 2-cube operad, but it uses the closed unit
2-disc instead of the closed unit 2-cube. A little 2-disc is defined by radial contrac-
tion and translation. There is a weak equivalence, in the sense of Definition 12.2.3,
between C2 and D2 via the Steiner operad [Ber96, Ste79]. Combined with [Fre17,
5.2.12], this yields Theorem 12.2.4.

Alternatively, without using the nontrivial weak equivalence between C2 and
D2, one can directly adapt the argument in [Fre17, 5.1.6] for C2 and C̃2 to obtain (4)
and (5) in the diagram (12.2.5). A detailed description of the B∞-operad C̃2 is in
[Yau∞, 5.4], which also contains a detailed description of D̃2. Moreover, [Yau∞,
Ch. 5] contains a general discussion of braided operads. Covering space theory,
which is needed to define C̃2 and D̃2, is discussed in many books on elementary
topology, such as [Hat02, Mun00]. ◇
12.6.3 (Braid Operad Coherence). Lemma 12.3.6 and Theorem 12.3.10 for Br are
from [Fre17, 6.2.4 and 6.2.6] with the following differences.

(1) In [Fre17], those theorems have an extra unity axiom for the braiding

ξ1,1 = 11 = ξ1,1 ∈ P1,

which is stated as

c(e, x1) = idx1 = c(x1, e)
there. By Proposition II.1.3.21, this extra unity axiom is redundant be-
cause it is a formal consequence of the other axioms and data.

(2) In [Fre17, 6.2.4(a)], the role of the permutation υ is not made explicit as in
Lemma 12.3.6. The morphism

s(n)i ∶ idn (i, i + 1) ∈ Brn
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in (12.3.8) has domain the identity permutation idn. In the categorical
decomposition of a general morphism in Brn, the domain of a typical
factor is a general permutation and not idn. Therefore, a general factor

in the categorical decomposition has the form (s(n)i )
±1

υ in (12.3.7), with
a permutation υ.

(3) In [Fre17, 6.2.4(a)], the role of the isomorphism

s−1
1 ∶ id2 (1, 2)

is not made explicit as in Lemma 12.3.6. While s1, s−1
1 ∈ B2 both have

underlying permutation (1, 2), they are different as braids and represent
two different morphisms id2 (1, 2) in Br2. So s−1

1 must be included
in that lemma.

The necessity of the permutation υ and the isomorphism s−1
1 is illustrated in Ex-

ample 12.3.9. ◇
12.6.4 (Operad for Braided Monoidal Categories). The braid operad Br is called
the strict B-monoidal category operad and denoted MCatBst in [Yau∞, 21.1.15]. A more
general analogue is the B-monoidal category operad MCatB, whose algebras are gen-
eral, instead of strict, small braided monoidal categories [Yau∞, 21.1.7]. Further
coherence properties of braided monoidal categories, in the more general context
of action operads, are in [Yau∞, 21.2–21.3]. ◇



CHAPTER 13

K-Theory of En-Monoidal Categories

In Corollaries 11.3.16, 11.6.12, and 12.5.3, we saw that the Elmendorf-Mandell
K-theory multifunctor (Definition 10.3.32)

PermCatsu SymSp
KEM

sends

● small ring categories to strict ring symmetric spectra,
● small bipermutative categories to E∞-symmetric spectra, and
● small braided ring categories to E2-symmetric spectra.

This chapter completes the picture with Corollary 13.5.2. It shows that KEMC
is an En-symmetric spectrum for each small En-monoidal category C (Defini-
tion II.10.7.2) for n ≥ 1.

Similar to the strict ring, E∞, and E2 cases in Chapters 11 and 12, Corol-
lary 13.5.2 is obtained by combining several facts. First, the Elmendorf-Mandell
K-theory multifunctor respects

● the categorical enrichment in the multicategory PermCatsu of small per-
mutative categories and
● the simplicial enrichment in the multicategory SymSp of symmetric spec-

tra.

Therefore, a structure in PermCatsu that is parametrized by a categorical operad
passes along KEM to symmetric spectra. For the general En case, the n-fold mon-
oidal category operad Monn in Section 13.1 is an En-operad (Theorem 13.2.1) that
parametrizes

● n-fold monoidal categories in Cat (Proposition 13.3.18) and
● En-monoidal categories in PermCatsu (Theorem 13.4.12).

Both of these statements are consequences of the Coherence Theorem 13.3.3 for
Monn. Combining Theorem 13.4.12 with KEM yields Corollary 13.5.2 about K-
theory En-symmetric spectra.

Consider the first two cases of Corollary 13.5.2.

● If n = 1, then
– Mon1 is the associative operad As (Example 13.1.23), and
– an E1-monoidal category is a ring category (Example II.10.7.13).

So Corollary 13.5.2 with n = 1 recovers Corollary 11.3.16.
● If n = 2, then Corollary 13.5.2 says that KEMC is an E2-symmetric spectrum

for each small E2-monoidal category C. So Corollary 13.5.2 with n = 2 is
an alternative to Corollary 12.5.3 that also yields K-theory E2-symmetric
spectra. The difference is that Corollary 12.5.3 uses the E2-operad Br and

III.487
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braided ring categories, while Corollary 13.5.2 with n = 2 uses the E2-
operad Mon2 and E2-monoidal categories. By Theorem II.10.8.1, braided
ring categories are special cases of E2-monoidal categories.

The following table summaries the main results in Chapters 11 and 12 and this
chapter for the associative operad As, the braid operad Br, the n-fold monoidal cat-
egory operads Monn for n ≥ 1, and the Barratt-Eccles operad EAs. The shorthand
smc stands for strict monoidal categories.

operad As (11.1.1) Br (12.1.2) Monn (13.1.12) EAs (11.4.10)

E?-operad E1 (13.1.23, 13.2.1) E2 (12.2.4) En (13.2.1) E∞ (11.6.3)

coherence 11.1.7 12.3.10 13.3.3 11.4.14

in Cat smc (11.1.15) braided smc (12.3.22) n-fold monoidal (13.3.18) permutative (11.4.26)

in PermCatsu ring (11.2.16) braided ring (12.4.5) En-monoidal (13.4.12) bipermutative (11.5.5)

in SymSp strict ring (11.3.16) E2 (12.5.3) En (13.5.2) E∞ (11.6.12)

For open questions related to En-operads, see Appendices A.2 and A.4.

Organization. Section 13.1 defines the n-fold monoidal category operad
Monn and carefully proves in Proposition 13.1.20 that it is a Cat-enriched op-
erad. The constituent categories Monn(k) are those in Definition II.10.5.13. In
Theorem II.10.5.18, we saw that the categories Monn(k) provide a decomposition
of the free n-fold monoidal category FMonn(C) of a small category C. When n = 1,
Mon1 is equal to the Cat-enriched associative operad As.

Section 13.2 shows that the n-fold monoidal category operad Monn is an En-
operad. This result is from [BFSV03, 3.14]. The assertion (Theorem 13.2.1) that
the Cat-enriched operad Monn is an En-operad means that its classifying space is
connected to the little n-cube operad Cn by a zigzag of topological operad weak
equivalences. Explanation 13.2.12 compares (i) the zigzag in Theorem 12.2.4 that
connects the classifying space of the braid operad Br with the little 2-cube operad
C2 and (ii) the zigzag in Theorem 13.2.1.

Section 13.3 proves the Coherence Theorem 13.3.3 for the n-fold monoidal cat-
egory operad Monn that describes Cat-enriched operad morphisms from Monn.
While the details are different, the proof of Theorem 13.3.3 shares the same broad
strategy as those of Theorems 11.4.14 and 12.3.10. In particular, the Coherence The-
orem II.10.6.8 for Monn(k) is crucial in the sufficiency part of that proof. As the first
application of the Coherence Theorem 13.3.3, we observe in Proposition 13.3.18
that Monn is the categorical operad for small n-fold monoidal categories.

Section 13.4 shows that Monn detects En-monoidal category structures on
small permutative categories (Theorem 13.4.12). This is another application of the
Coherence Theorem 13.3.3 for Monn. Section 13.5 proves the main result about
En-symmetric spectra using the n-fold monoidal category operad Monn. This re-
sult, Corollary 13.5.2, says that KEMC is an En-symmetric spectrum for each small
En-monoidal category C. Proposition 13.5.1 shows that an E∞-structure induces
an En-structure on a symmetric spectrum.

Reading Guide.
(1) For the n-fold monoidal category operad Monn, read Definition 13.1.12

and the statements of Proposition 13.1.20 and Theorem 13.2.1.
(2) For the coherence and K-theoretic properties of Monn, read the statements

of Theorems 13.3.3 and 13.4.12, Proposition 13.3.18, and Corollary 13.5.2.
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(3) Go back and read the rest of this chapter.

13.1. The Iterated Monoidal Category Operad

In this section, we define the n-fold monoidal category operad Monn in Def-
inition 13.1.12. Proposition 13.3.18 and Theorem 13.4.12 will show that the Cat-
enriched operad Monn is to n-fold monoidal categories and En-monoidal categor-
ies as

● the associative operad (Definition 11.1.1) is to monoids and ring categor-
ies (Proposition 11.1.15 and Theorem 11.2.16);
● the Barratt-Eccles operad (Definition 11.4.10) is to permutative categories

and bipermutative categories (Proposition 11.4.26 and Theorem 11.5.5);
and
● the braid operad (Definition 12.1.2) is to braided strict monoidal categor-

ies and braided ring categories (Proposition 12.3.22 and Theorem 12.4.5).

Moreover, Monn is an En-operad by Theorem 13.2.1. The fact that Monn is actually
a Cat-enriched operad is proved in Proposition 13.1.20.

n-Fold Monoidal Categories. We first recall some concepts from Chapter II.10
about n-fold monoidal categories.

Definition 13.1.1. For n ≥ 1, an n-fold monoidal category is a tuple

(C,{⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n)

consisting of the following data.

The Underlying Category: C is a category.
The Unit: 1 ∈ C is an object, which is called the unit.
The Multiplicative Structures: For each 1 ≤ i ≤ n,

(C,⊗i,1)

is a strict monoidal category, which is called the ith monoidal structure,
with ⊗i called the ith product.

The Exchanges: For each pair (i, j)with 1 ≤ i < j ≤ n,

(13.1.2) (A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)
η

i,j
A,B,C,D

is a natural transformation for objects A, B, C, D ∈ C, which is called the
(i, j)-exchange.

These data are required to satisfy the following equalities and commutative dia-
grams for objects A, A′, A′′, B, B′, B′′, C, C′, D, and D′ in C. The axioms (13.1.3)–
(13.1.6) are defined for 1 ≤ i < j ≤ n. The axiom (13.1.7) is defined for 1 ≤ i < j < k ≤ n.

The Internal Unity Axiom:

(13.1.3) η
i,j
A,B,1,1 = 1A⊗jB = η

i,j
1,1,A,B

The External Unity Axiom:

(13.1.4) η
i,j
A,1,B,1 = 1A⊗i B = η

i,j
1,A,1,B
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The Internal Associativity Axiom:

(13.1.5)

(A⊗j A′)⊗i (B⊗j B′)⊗i (C⊗j C′)

(A⊗j A′)⊗i [(B⊗i C)⊗j (B′ ⊗i C′)] [(A⊗i B)⊗j (A′ ⊗i B′)]⊗i (C⊗j C′)

(A⊗i B⊗i C)⊗j (A′ ⊗i B′ ⊗i C′)

1A⊗j A′ ⊗i η
i,j
B,B′,C,C′

η
i,j
A,A′,B⊗iC,B′⊗iC′

η
i,j
A,A′,B,B′ ⊗i 1C⊗jC′

η
i,j
A⊗i B,A′⊗i B′,C,C′

The External Associativity Axiom:

(13.1.6)

(A⊗j A′ ⊗j A′′)⊗i (B⊗j B′ ⊗j B′′)

(A⊗i B)⊗j [(A′ ⊗j A′′)⊗i (B′ ⊗j B′′)] [(A⊗j A′)⊗i (B⊗j B′)]⊗j (A′′ ⊗i B′′)

(A⊗i B)⊗j (A′ ⊗i B′)⊗j (A′′ ⊗i B′′)

η
i,j
A,A′⊗j A′′,B,B′⊗j B′′

1A⊗i B ⊗j η
i,j
A′,A′′,B′,B′′

η
i,j
A⊗j A′,A′′,B⊗j B′,B′′

η
i,j
A,A′,B,B′ ⊗j 1A′′⊗i B′′

The Triple Exchange Axiom:

(13.1.7)

[(A⊗k A′)⊗j (B⊗k B′)]⊗i [(C⊗k C′)⊗j (D⊗k D′)]

[(A⊗j B)⊗k (A′ ⊗j B′)]⊗i [(C⊗j D)⊗k (C′ ⊗j D′)] [(A⊗k A′)⊗i (C⊗k C′)]⊗j [(B⊗k B′)⊗i (D⊗k D′)]

[(A⊗j B)⊗i (C⊗j D)]⊗k [(A′ ⊗j B′)⊗i (C′ ⊗j D′)] [(A⊗i C)⊗k (A′ ⊗i C′)]⊗j [(B⊗i D)⊗k (B′ ⊗i D′)]

[(A⊗i C)⊗j (B⊗i D)]⊗k [(A′ ⊗i C′)⊗j (B′ ⊗i D′)]

η
j,k
A,A′,B,B′ ⊗i η

j,k
C,C′,D,D′

ηi,k
A⊗j B,A′⊗j B′,C⊗j D,C′⊗j D′

η
i,j
A,B,C,D ⊗k η

i,j
A′,B′,C′,D′

η
i,j
A⊗k A′,B⊗k B′,C⊗kC′,D⊗k D′

ηi,k
A,A′,C,C′ ⊗j ηi,k

B,B′,D,D′

η
j,k
A⊗iC,A′⊗iC′,B⊗i D,B′⊗i D′

This finishes the definition of an n-fold monoidal category. It is small if it has a set
of objects. ◇

By Propositions II.10.1.14 and II.10.1.21, braided strict monoidal categories are
special cases of 2-fold monoidal categories, and permutative categories are special
cases of n-fold monoidal categories for n ≥ 2.

For n-fold monoidal categories C and D, an n-fold monoidal functor (Defini-
tion II.10.3.1)

(F,{F2
i }n

i=1) ∶ C D

consists of

● a functor F ∶ C D and
● for each 1 ≤ i ≤ n, a natural transformation

FA⊗i FB F(A⊗i B)
(F2

i )A,B

for objects A, B ∈ C, which is called the ith monoidal constraint.
These data are required to satisfy the following two conditions.
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Monoidality: For each 1 ≤ i ≤ n,

(F, F2
i ) ∶ (C,⊗i,1) (D,⊗i,1)

is a strictly unital monoidal functor.
The Exchange Constraint Axiom: The following diagram in D is commutative for

all A, B, C, D ∈ C and 1 ≤ i < j ≤ n.

(13.1.8)

(FA⊗j FB)⊗i (FC⊗j FD)

F(A⊗j B)⊗i F(C⊗j D) (FA⊗i FC)⊗j (FB⊗i FD)

F((A⊗j B)⊗i (C⊗j D)) F(A⊗i C)⊗j F(B⊗i D)

F((A⊗i C)⊗j (B⊗i D))

(F2
j )A,B ⊗i (F

2
j )C,D

(F2
i )A⊗j B,C⊗j D

Fη
i,j
A,B,C,D

η
i,j
FA,FB,FC,FD

(F2
i )A,C ⊗j (F

2
i )B,D

(F2
j )A⊗iC,B⊗i D

There is a monoidal category (MCatn,×, 1) of small n-fold monoidal categories
and n-fold monoidal functors by Lemma II.10.4.2. Monoids in MCatn are precisely
small (n + 1)-fold monoidal categories by Theorem II.10.4.5.

An n-fold monoidal functor (F,{F2
i }n

i=1) is strict if each F2
i is the identity natu-

ral transformation. Equivalently, it is a functor that strictly preserves
● the unit 1,
● the monoidal products {⊗i}n

i=1, and
● the exchanges {ηi,j}i<j.

The wide subcategory of MCatn with strict n-fold monoidal functors is denoted by
MCatn

st.

Free n-Fold Monoidal Categories. By Proposition II.10.5.9, there is an adjunc-
tion

(13.1.9) Cat MCatn
st

FMonn

U

with
● U the forgetful functor that forgets about the n-fold monoidal structure

and
● FMonn the free n-fold monoidal category functor.

Suppose C is a small category.
● The objects in FMonn(C) are generated by the objects in C under the

strictly associative products {⊗i}n
i=1, with a strict two-sided unit 1.

● The morphisms in FMonn(C) are generated by
– the morphisms in C,
– the identity morphisms 1A, and
– the exchanges

(A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)
η

i,j
A,B,C,D

for objects A, B, C, D ∈ FMonn(C) and 1 ≤ i < j ≤ n,
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under the strictly associative products {⊗i}n
i=1 and composites.

These data are subject to the relations that make FMonn(C) into an n-fold monoidal
category.

Decomposition of Free n-Fold Monoidal Categories. For k ≥ 0 and n ≥ 1,

Monn(k) ⊂ FMonn{1, . . . , k}
is the full subcategory in which each object can be written as an iterated {⊗i}n

i=1-
product with each object in the discrete category {1, . . . , k} occurring precisely
once (Definition II.10.5.13). Since {1, . . . , k} is a discrete category, the morphisms in
Monn(k) are iterated composites of finite {⊗i}n

i=1-products of identity morphisms
and the exchanges {ηi,j}i<j.

● For example, each of

Monn(0) = {1} and Monn(1) = {1}
is the terminal category.
● The category Monn(2) has objects

1⊗i 2 and 2⊗i 1 for 1 ≤ i ≤ n.

Its morphisms are generated under composites by the exchanges

τ(1)⊗i τ(2) τ(1)⊗j τ(2)

τ(1)⊗i τ(2) τ(2)⊗j τ(1)

η
i,j
τ(1),1,1,τ(2)

η
i,j
1,τ(1),τ(2),1

for 1 ≤ i < j ≤ n and τ ∈ Σ2.
A description of Monn(3) is in Example II.10.5.17.

There is a right Σk-action on the category Monn(k) that permutes the elements
in {1, . . . , k} and changes the subscripts in the generating morphisms accordingly.
By Theorem II.10.5.18, for each small category C, there is a natural isomorphism of
categories

(13.1.10) ∐
k≥0

Monn(k)×Σk C
×k FMonn(C)ϕC

≅

that extends the isomorphism Monn(1)×C ≅ C. For a small n-fold monoidal cate-
gory C, the composite of the isomorphism (13.1.10) and the counit of the adjunc-
tion (13.1.9) yields the evaluation functors

(13.1.11) Monn(k)×Σk C
×k C

θk

for k ≥ 0.

n-Fold Monoidal Category Operad. Recall from Definition 6.1.1 that a Cat-
enriched operad is a Cat-enriched multicategory with one object, and 1 is the ter-
minal category. We now assemble the categories Monn(k) into an operad.
Definition 13.1.12. For n ≥ 1, define the data of a Cat-enriched operad

Monn = ({Monn(k)}k≥0, γ,1)

as follows.



13.1. THE ITERATED MONOIDAL CATEGORY OPERAD III.493

Categories and Equivariance: For k ≥ 0, Monn(k) is the small category with its
right Σk-action in Definition II.10.5.13.

Unit: The unit
1 Monn(1) = {1}

is the unique functor.
Operad Composition on Objects: For k ≥ 1, j1, . . . , jk ≥ 0, and j = j1 +⋯ + jk, the

functor

(13.1.13) Monn(k)×
k
∏
i=1

Monn(ji) Monn(j)γ

is defined on objects by

(13.1.14) γ(P, (Ai)ki=1) = P(A′1, . . . , A′k).
This object is obtained from

P = P(1, . . . , k) ∈Monn(k)
by replacing each i ∈ {1, . . . , k} by

(13.1.15) A′i = Ai(ji + 1, . . . , ji + ji)
with

ji =
⎧⎪⎪⎨⎪⎪⎩

0 if i = 1
j1 +⋯+ ji−1 if 1 < i ≤ k.

So A′i is obtained from

Ai = Ai(1, . . . , ji) ∈Monn(ji)
by replacing each r ∈ {1, . . . , ji} by ji + r.

Operad Composition on Morphisms: For morphisms

(13.1.16)
P Q ∈Monn(k)

Ai Bi ∈Monn(ji)

f

gi

for 1 ≤ i ≤ k, the morphism

γ( f ,{gi}k
i=1) ∶ P(A

′
1, . . . , A′k) Q(B′1, . . . , B′k)

is defined as the composite

(13.1.17)

P(A′1, . . . , A′k) Q(A′1, . . . , A′k)

Q(B′1, . . . , B′k)

f (A′1, . . . , A′k)

Q(g′1, . . . , g′k)

in Monn(j).
● The morphism f (A′1, . . . , A′k) is obtained from f = f (1, . . . , k) by re-

placing each i ∈ {1, . . . , k} by A′i in (13.1.15).
● For each i ∈ {1, . . . , k},

(13.1.18) g′i = gi(ji + 1, . . . , ji + ji)
is obtained from gi = gi(1, . . . , ji) by replacing each r ∈ {1, . . . , ji} by
ji + r.
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● The morphism Q(g′1, . . . , g′k) is obtained from Q = Q(1, . . . , k) by re-
placing each i ∈ {1, . . . , k} by g′i .

This finishes the definition of Monn. ◇
Example 13.1.19. An example of the composition

Monn(2)×Monn(2)×Monn(3) Monn(5)γ

on objects (13.1.14) is

γ(2⊗i 1, (1⊗j 2, (2⊗k 3)⊗l 1))

= ((4⊗k 5)⊗l 3)⊗i (1⊗j 2) ∈Monn(5)

for i, j, k, l ∈ {1, . . . , n}. Consider morphisms

P = 2⊗i 1 2⊗i′ 1 = Q ∈Monn(2)

A1 = 1⊗j 2 2⊗j′ 1 = B1 ∈Monn(2)

A2 = (2⊗k 3)⊗l 1 (2⊗k 3)⊗l′ 1 = B2 ∈Monn(3)

f = ηi,i′

2,1,1,1

g1 = η
j,j′

1,1,2,1

g2 = ηl,l′

(2⊗k3),1,1,1

with i < i′, j < j′, and l < l′ in {1, . . . , n}. The morphism γ( f , (g1, g2)) in (13.1.17) is
the composite

P(A′1, A′2) = ((4⊗k 5)⊗l 3)⊗i (1⊗j 2)

Q(A′1, A′2) = ((4⊗k 5)⊗l 3)⊗i′ (1⊗j 2)

Q(B′1, B′2) = ((4⊗k 5)⊗l′ 3)⊗i′ (2⊗j′ 1)

ηi,i′

((4⊗k5)⊗l 3),1,1,(1⊗j2)
f(A′1,A′2)=

ηl,l′

(4⊗k5),1,1,3⊗i′ η
j,j′

1,1,2,1Q(g′1,g′2)=

in Monn(5). ◇
Proposition 13.1.20. Monn in Definition 13.1.12 is a Cat-enriched operad.

Proof. We must check that

● the composition γ in (13.1.13) is well defined, and
● the operad axioms in Definition 6.1.1 are satisfied.

Functoriality of γ. To see that γ is a functor, first observe that, if f and each
gi are identity morphisms, then γ( f ,{gi}k

i=1) in (13.1.17) is the composite of two
identity morphisms.

To see that γ preserves composites, consider morphisms

P Q R ∈Monn(k)

Ai Bi Ci ∈Monn(ji)

f f

gi gi
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for 1 ≤ i ≤ k and the diagram

(13.1.21)

P(A′1, . . . , A′k) Q(A′1, . . . , A′k) R(A′1, . . . , A′k)

Q(B′1, . . . , B′k) R(B′1, . . . , B′k)

R(C′1, . . . , C′k)

f(A′1,...,A′k) f(A′1,...,A′k)

Q(g′1,...,g′k) R(g′1,...,g′k)

f(B′1,...,B′k)

R(g′1,...,g′k)

in Monn(j), with j = j1 +⋯+ jk.

● The square in (13.1.21) is commutative by repeated applications of the
axiom (II.10.5.4), which is the naturality of the exchanges ηi,j.
● By the functoriality of each ⊗i in Monn(j), there is an equality

R(g′1g′1, . . . , g′kg′k) = R(g′1, . . . , g′k) ○ R(g′1, . . . , g′k).

So the top-right composite in (13.1.21) is the morphism

γ( f f ;{gigi}k
i=1).

● The other composite in (13.1.21) is the morphism

γ( f ;{gi}
k
i=1) ○ γ( f ;{gi}k

i=1).

This shows that γ preserves composites and is a functor.
Equivariance. The equivariance axioms (6.1.6) and (6.1.7) hold because the right

Σk-action on Monn(k) permutes the elements in {1, . . . , k} from the right.
Unity. The unity axioms (6.1.4) and (6.1.5) follow from the definitions of

● the unit

1 ≅
Monn(1) = {1}

and
● γ on objects (13.1.14) and morphisms (13.1.17).

Associativity. For the associativity axiom (6.1.3), consider objects

● P = P(1, . . . , k) ∈Monn(k),
● Ai = Ai(1, . . . , ji) ∈Monn(ji) for 1 ≤ i ≤ k, and
● Ci,l = Ci,l(1, . . . , mi,l) ∈Monn(mi,l) for 1 ≤ i ≤ k and 1 ≤ l ≤ ji,

and the following sums, with the convention that an empty sum is 0.

mi,l =
l−1
∑
s=1

mi,s mi =
i−1
∑
r=1

jr
∑
l=1

mr,l M =
k
∑
i=1

ji
∑
l=1

mi,l
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Using the prime notation in (13.1.15) to denote an expression whose labels are
shifted up appropriately, the following equalities of objects hold in Monn(M).

γ(γ(P, (Ai)ki=1), ((Ci,l)
ji
l=1)

k
i=1)

= (P(A′i)ki=1)((C
′
i,l)

ji
l=1)

k
i=1

= P(Ai(Ci,l(mi +mi,l + p)mi,l
p=1)

ji
l=1)

k

i=1

= P((Ai(C′i,l)
ji
l=1)

′)
k

i=1

= γ(P, (γ(Ai, (Ci,l)
ji
l=1))

k
i=1)

This proves the associativity axiom (6.1.3) on objects.
For morphisms, in addition to the morphisms f and {gi}k

i=1 in (13.1.16), sup-
pose given morphisms

Ci,l Di,l ∈Monn(mi,l)
hi,l

for 1 ≤ i ≤ k and 1 ≤ l ≤ ji. With the prime notation in (13.1.15) and (13.1.18), when
applied to the morphisms

( f , (gi)ki=1, ((hi,l)
ji
l=1)

k
i=1),

each composite in the associativity diagram (6.1.3) gives the following composite
in Monn(M).

(P(A′i)ki=1)((C
′
i,l)

ji
l=1)

k
i=1 = P((Ai(C′i,l)

ji
l=1)

′)
k

i=1

(Q(A′i)ki=1)((C
′
i,l)

ji
l=1)

k
i=1 = Q((Ai(C′i,l)

ji
l=1)

′)
k

i=1

(Q(B′i)ki=1)((C
′
i,l)

ji
l=1)

k
i=1 = Q((Bi(C′i,l)

ji
l=1)

′)
k

i=1

(Q(B′i)ki=1)((D
′
i,l)

ji
l=1)

k
i=1 = Q((Bi(D′i,l)

ji
l=1)

′)
k

i=1

f((Ai(C′i,l)
ji
l=1)

′

)
k

i=1

Q((gi(C′i,l)
ji
l=1)

′

)
k

i=1

Q((Bi(h′i,l)
ji
l=1)

′

)
k

i=1

This finishes the proof that Monn is a Cat-enriched operad. □

Definition 13.1.22. For n ≥ 1, the Cat-enriched operad Monn in Proposition 13.1.20
is called the n-fold monoidal category operad. ◇
Example 13.1.23. Mon1 is canonically isomorphic to the associative operad As in
Definition 11.1.1, which is also regarded as a Cat-enriched operad as in Exam-
ple 11.2.2. Indeed, by definition, each object in Mon1(k) can be written as an iter-
ated ⊗1-product with each object in {1, . . . , k} occurring precisely once. Since ⊗1 is
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strictly associative, the objects in Mon1(k) canonically correspond to the permuta-
tions in Σk, with

Σk ∋ σ corresponding to σ(1)⊗1⋯⊗1 σ(k) ∈Mon1(k).

There are no generating exchanges ηi,j when n = 1, so Mon1(k) is the discrete cate-
gory of Σk. Moreover, the right symmetric group action, the unit, and the operad
composition (13.1.14) in Mon1 correspond to those in As. ◇

Explanations 11.6.4 and 12.1.12 describe the simplicial Barratt-Eccles operad
N(EAs) and the simplicial braid operad NBr, with N ∶ Cat sSet the nerve
functor (Definition 7.2.3). The simplicial operad NMonn will play an important
role in Theorem 13.2.1, Proposition 13.5.1, and Corollary 13.5.2. We end this section
with an explicit description of it.

Explanation 13.1.24 (Simplicial n-Fold Monoidal Category Operad). For n ≥ 1 and
k, q ≥ 0, a q-simplex in the nerve NMonn(k) is a (q + 1)-tuple of objects

(P0, . . . , Pq) ∈ (Monn(k))×(q+1)

such that

(13.1.25) Monn(k)(Pj, Pj+1) /= ∅ for 0 ≤ j < q.

By the Coherence Theorem II.10.6.8 for n-fold monoidal categories, each mor-
phism set in Monn(k) is either empty or has only one element. So the condition
(13.1.25) specifies a unique q-simplex (Pj)

q
j=0 in NMonn(k). The face and degener-

acy maps are given by

di(P0, . . . , Pq) = (P0, . . . , P̂i, . . . , Pq)
si(P0, . . . , Pq) = (P0, . . . , Pi, Pi, . . . , Pq).

In other words, the ith face map di removes Pi, and the ith degeneracy map si
repeats Pi.

The symmetric group Σk acts diagonally on the q-simplices in NMonn(k), that
is,

(P0, . . . , Pq) ⋅π = (P0π, . . . , Pqπ) for π ∈ Σk.

Each Pjπ is obtained from Pj ∈ Monn(k) by permuting the elements in {1, . . . , k}
that appear in Pj via π. The unit in NMonn is

1 ∈ (NMonn(1))0 =Monn(1) = {1}.

The operad composition

NMonn(k)×
k
∏
ℓ=1

NMonn(mℓ) NMonn(m1 +⋯+mk)
γ

is given on q-simplices by

γ((Pj)
q
j=0;{(Pℓ

j )
q
j=0}

k
ℓ=1) = {γ(Pj, (P1

j , . . . , Pk
j ))}

q

j=0
.

The γ on the right-hand side is the one in (13.1.14). ◇
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13.2. The Iterated Monoidal Category Operad is an En-Operad

Recall from Definition 12.2.3 that a Top-enriched operad is an En-operad if it
is weakly equivalent to the little n-cube operad Cn. A Cat-enriched operad is an
En-operad if its image under the classifying space functor ∣N(−)∣ in Example 7.2.8
is an En-operad. Theorem 12.2.4 says that the braid operad Br is an E2-operad. The
following analogue for Monn in Definition 13.1.22 is the main theorem in [BFSV03,
3.14].

Theorem 13.2.1. For n ≥ 1, the n-fold monoidal category operad Monn is an En-operad.

Proof. We refer the reader to [BFSV03, 3.14] for the full proof. Here we provide
an overview of the proof. The desired weak equivalence between the classifying
space of Monn and the little n-cube operad Cn is given by the following zigzag of
Top-enriched operad isomorphisms ≅ and weak equivalences ∼.

(13.2.2)

Cn ∣NMonn∣

Dn {hocolim
Monn

(k)
∗ }

k≥0

{ colim
Monn

(k)
Fk}

k≥0
{hocolim

Monn
(k)

Fk}
k≥0

(1) ∼ ∼ (5)

(2) ≅

∼
(3)

∼ (4)

This diagram involves the following concepts and constructions.
The operad Dn. In the little n-cube operad Cn, define decomposable elements

inductively as follows.

● Each element in Cn(0) and Cn(1) is decomposable.
● Inductively, for k ≥ 2, an element f = ( f1, . . . , fk) in Cn(k) is decomposable

if there exists a hyperplane H ⊂Rn that satisfies the following conditions:
– H is perpendicular to one of the n coordinate axes.
– H does not intersect the interior of the little n-cubes fi for 1 ≤ i ≤ k.
– H partitions f into two nonempty disjoint subsets

S∐ ({ f1, . . . , fk}∖ S)

such that the following two conditions hold, where ∣S∣ is the cardi-
nality of S:
∗ S ∈ Cn(∣S∣) lies in the negative side of H and is decomposable.
∗ The subset

{ f1, . . . , fk}∖ S ∈ Cn(k − ∣S∣)

lies in the positive side of H and is decomposable.

For example, Cn(2) and C2(3) contain only decomposable elements. For k ≥ 0,
define

(13.2.3) Dn(k) ⊂ Cn(k)
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as the subspace of decomposable elements. These subspaces form a topological
suboperad

(13.2.4) Dn = {Dn(k)}k≥0 Cn

of the little n-cube operad. A general element ( f1, . . . , fk) in Cn(k) can be shrunk
toward the center of each constituent little n-cube fi to yield a decomposable ele-
ment. This gives the operad weak equivalence (1) in the diagram (13.2.2).

Separable little cubes. The functor Fk in (13.2.2) requires the following concepts
from Definition II.10.6.1. For distinct elements a /= b ∈ {1, . . . , k}, the restriction
functor

(13.2.5) Monn(k) Monn({a, b})
is the identity on {a, b} and sends each i ∈ {1, . . . , k} ∖ {a, b} to 1. For an object
A ∈Monn(k), we write

a⊗i b ∈ A
if the restriction functor in (13.2.5) sends A to a⊗i b.

Using the product notation in (12.2.1), suppose

f− = [a1, b1]×⋯× [an, bn]
f+ = [c1, d1]×⋯× [cn, dn]

are two little n-cubes. For 1 ≤ i ≤ n, we write

f− <i f+ if bi ≤ ci.

Geometrically, f− <i f+ means that there exists a hyperplane H with the following
three properties:

● H is perpendicular to the ith coordinate axis.
● The interior of f− lies in the negative side of H.
● The interior of f+ lies in the positive side of H.

For an object A ∈Monn(k), an element ( f1, . . . , fk) ∈ Cn(k) is A-separable if

a⊗i b ∈ A implies fa <i fb for a /= b ∈ {1, . . . , k}.
Define the contractible subspace

G(A) ⊂ Cn(k)
of A-separable elements. There is an equality

(13.2.6) ⋃
A∈Ob(Monn(k))

G(A) = Dn(k)

of subspaces of Cn(k), where Dn(k) is the subspace of decomposable elements in
(13.2.3).

The functor Fk. For k ≥ 0, the functor

(13.2.7) Fk ∶Monn(k) Top

is defined by the subspace

(13.2.8) Fk(A) = ⋃
Monn(k)(Y,A)/=∅

G(Y) ⊂ Dn(k)

for each object A ∈Monn(k). This union is indexed by the set of objects Y ∈Monn(k)
such that the morphism set Monn(k)(Y, A) is nonempty. By the Coherence Theo-
rem II.10.6.8 for Monn(k), each nonempty morphism set in Monn(k) has a unique
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element. Therefore, each morphism B A in Monn(k) has an associated sub-
space inclusion

Fk(B) Fk(A).

This defines Fk on morphisms in Monn(k).
For each object A ∈ Monn(k), the identity morphism of A gives the subspace

inclusion
G(A) Fk(A).

This is actually a strong deformation retract. Therefore, since G(A) is contractible,
so is Fk(A). Moreover, by (13.2.6), the subspace inclusions (13.2.8) induce an iso-
morphism

colim
Monn

(k)
Fk Dn(k)≅

for k ≥ 0. These levelwise isomorphisms form the operad isomorphism (2) in the
diagram (13.2.2).

Homotopy colimits. Each functor F ∶ C Top with C a small category has
a colimit, since Top has all coproducts and coequalizers. The homotopy colimit of
F, denoted by hocolimC F, is a modified construction that takes advantage of the
notion of homotopy in Top by incorporating cylinders in the identification process.
For example, the homotopy pushout of a pair of maps

X A Y
f g

is the pushout
X ∪ f (A ∧ I+)∪g Y

with I the unit interval. This pushout identifies, for each a ∈ A,
● f (a) ∈ X with (a, 0) ∈ A ∧ I+ and
● g(a) ∈ Y with (a, 1) ∈ A ∧ I+.

We refer the reader to [Dug∞, Part 1] and [MP12, 2.1] for an introduction to ho-
motopy colimits. By collapsing the cylinders, there is a canonical map

(13.2.9) hocolim
C

F colim
C

F
αF

from the homotopy colimit to the colimit. In general, αF is not a weak homotopy
equivalence. However, there are situations, including [BFSV03, 6.7–6.9], where αF
is a weak homotopy equivalence. The operad weak equivalence (3) in the diagram
(13.2.2) is levelwise the canonical map αFk in (13.2.9) for the functor Fk in (13.2.7)
for k ≥ 0.

The constant functor. For k ≥ 0,

∗ ∶Monn(k) Top

is the constant functor at the one-point space. Since Fk is objectwise contractible,
the natural transformation Fk ∗ induces a weak homotopy equivalence

(13.2.10) hocolim
Monn

(k)
Fk hocolim

Monn
(k)
∗∼

by the homotopy invariance of homotopy colimits [Dug∞, 4.7]. These maps for
k ≥ 0 assemble to form the operad weak equivalence (4) in the diagram (13.2.2).
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Homotopy colimits and classifying spaces. The operad weak equivalence (5) in the
diagram (13.2.2) follows from the general fact [Dug∞, 4.5] that a homotopy colimit
has the same weak homotopy type as the geometric realization of its simplicial
replacement. For the constant functor ∗, the simplicial replacement is the nerve of
the domain category Monn(k). □

Corollary 13.2.11. The classifying spaces of
● the braid operad Br and
● the 2-fold monoidal category operad Mon2

are weakly equivalent Top-enriched operads.

Proof. By Theorems 12.2.4 and 13.2.1, both Br and Mon2 are E2-operads, so their
classifying spaces are weakly equivalent to the little 2-cube operad C2. In more
detail, by the diagrams (12.2.5) and (13.2.2) with n = 2, there is a zigzag of Top-
enriched operad weak equivalences

Sy(Q) {hocolim
Mon2

(k)
Fk}

k≥0

∣NBr∣ C2 ∣NMon2∣

∼ ∼ ∼ ∼

that connects the classifying spaces of Br and Mon2. □

Explanation 13.2.12. Let us compare
● the diagram (12.2.5) that connects C2 with ∣NBr∣ and
● the diagram (13.2.2) that connects Cn with ∣NMonn∣.

For the braid operad Br, the key concept in the diagram (12.2.5) is that of a B∞-
operad, which is a topological braided operad that is levelwise contractible and
has a free braid group action. Both

● ∣NEB∣, which is the levelwise classifying space of the translation category
of the braid group operad B in (12.2.6), and
● C̃2, which is the levelwise universal covering of C2,

are B∞-operads. Two B∞-operads can always be connected by a zigzag of braided
operad weak equivalences as in (12.2.8). This connection between B∞-operads
yields the key zigzag

Sy(C̃2) Sy(Q) Sy(∣NEB∣)∼ ∼

of weak equivalences (4) and (5) in the diagram (12.2.5).
For the n-fold monoidal category operad Monn, the key concepts in the dia-

gram (13.2.2) are
● the functors

Fk ∶Monn(k) Top

in (13.2.7) and
● the homotopy colimit of a functor

F ∶ C Top

with C a small category.
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Homotopy colimit maps to colimit via the canonical map (13.2.9) and satisfies ho-
motopy invariance, which yields the weak equivalence (13.2.10). These properties
of homotopy colimits yield the key zigzag

{ colim
Monn

(k)
Fk}

k≥0
{hocolim

Monn
(k)

Fk}
k≥0

{hocolim
Monn

(k)
∗ }

k≥0

∼ ∼

of weak equivalences (3) and (4) in the diagram (13.2.2). ◇

13.3. Coherence of the Iterated Monoidal Category Operad

Recall the coherence results for
● the associative operad As (Definition 11.1.1) in Theorem 11.1.7,
● the Barratt-Eccles operad EAs (Definition 11.4.10) in Theorem 11.4.14, and
● the braid operad Br (Definition 12.1.2) in Theorem 12.3.10.

Each of these coherence results describes a small list of generators and relations for
an operad morphism from the operad in question. The main result in this section,
Theorem 13.3.3, is the analogue for the n-fold monoidal category operad Monn in
Definition 13.1.22. It involves

● the objects

1 ∈Monn(0) = {1}
1⊗i 2 ∈Monn(2)

(13.3.1)

for 1 ≤ i ≤ n and
● the generating exchange morphisms

(13.3.2) (1⊗j 2)⊗i (3⊗j 4) (1⊗i 3)⊗j (2⊗i 4)
η

i,j
1,2,3,4

for 1 ≤ i < j ≤ n in Monn(4).
We will use the juxtaposition notation

γ(y, (x1, . . . , xn)) = y(x1, . . . , xn)
in Definition 6.1.1 for operad composition. Recall that (i, j) denotes the transposi-
tion that swaps i and j. An enriched operad morphism is an enriched multifunctor as
in Definition 5.1.12 between two enriched multicategories with one object.
Theorem 13.3.3. Suppose n ≥ 1 and (P, γ,1) is a Cat-enriched operad. Then a Cat-
enriched operad morphism

f ∶Monn P

is uniquely determined by
● the objects

1 = f (1) ∈ P0

⊗i = f (1⊗i 2) ∈ P2
(13.3.4)

for 1 ≤ i ≤ n and
● the morphisms

(13.3.5) ⊗i(⊗j,⊗j) ⊗j(⊗i,⊗i)(2, 3) ∈ P4
ηi,j = f(ηi,j

1,2,3,4)

for 1 ≤ i < j ≤ n.
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The above data are subject to the following conditions.
Unity and Associativity: The equalities of objects

⊗i(1,1) = 1 = ⊗i(1,1) ∈ P1

⊗i(⊗i,1) = ⊗i(1,⊗i) ∈ P3
(13.3.6)

hold for 1 ≤ i ≤ n.
n-Fold Monoidal Category Axioms: The axioms (13.1.3)–(13.1.7) hold in P for the

objects and morphisms in (13.3.4)–(13.3.5).

Proof. As in the proofs of Theorems 11.4.14 and 12.3.10, there are two directions.
Necessity. Suppose f ∶ Monn P is a Cat-enriched operad morphism. We

define
1 ∈ P0, ⊗i ∈ P2, and ηi,j ∈ P4

as in (13.3.4)–(13.3.5). By definition, in Monn the following relations hold:

● Each ⊗i is strictly associative with 1 as the strict two-sided unit, in the
sense of the following equalities.

γ(1⊗i 2, (1, 1)) = 1 = γ(1⊗i 2, (1,1)) ∈Monn(1)
γ(1⊗i 2, (1⊗i 2, 1)) = 1⊗i 2⊗i 3

= γ(1⊗i 2, (1, 1⊗i 2)) ∈Monn(3)

● The n-fold monoidal category axioms (13.1.3)–(13.1.7) hold.

Since f is a Cat-enriched operad morphism, the corresponding axioms, which are
(13.3.6) and (13.1.3)–(13.1.7) for the objects and morphisms in (13.3.4)–(13.3.5), hold
in P.

Sufficiency. Suppose given the data

● 1 = f (1) ∈ P0,
● ⊗i = f (1⊗i 2) ∈ P2 as in (13.3.4), and
● ηi,j = f (ηi,j

1,2,3,4) ∶ ⊗i(⊗j,⊗j) ⊗j (⊗i,⊗i)(2, 3) ∈ P4 as in (13.3.5)

such that (13.3.6) and the n-fold monoidal category axioms (13.1.3)–(13.1.7) hold in
P. We show that these data extend uniquely to a Cat-enriched operad morphism
f ∶Monn P in several stages.

Objects. Since f must preserve the operad unit and the symmetric group ac-
tion, we must define

f (1) = 1 ∈ P1

f (2⊗i 1) = ⊗i(1, 2) ∈ P2
(13.3.7)

where, on the left-hand side, 1 ∈ Monn(1) = {1} is the operad unit in Monn. We
have already defined f on the objects in Monn(k) for k ≤ 2.

To define f on the objects in Monn(k) for k > 2, first we make some preliminary
observations.

● In each category Monn(k) with k ≥ 0, an object X is said to be in standard
form if the elements in {1, . . . , k} appear in X in increasing order from left
to right. For example,

1⊗i (2⊗j 3) ∈Monn(3)
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is in standard form, but (2⊗j 3)⊗i 1 is not. Each object in Monn(k) can be
written uniquely as

(13.3.8) Xσ

with X ∈Monn(k) in standard form and σ ∈ Σk. For example,

(2⊗j 3)⊗i 1 = ((1⊗j 2)⊗i 3)(1, 2, 3) ∈Monn(3),
with (1⊗j 2)⊗i 3 in standard form.
● By Definition II.10.5.2 of FMonn(C) and the definition (13.1.14) of γ on ob-

jects, each object X ∈ Monn(k) in standard form with k ≥ 3 can be written
as

(13.3.9) X = γ(1⊗i 2, (X1, X2))
for some objects

X1 ∈Monn(h) and X2 ∈Monn(k − h)
in standard form, 1 ≤ i ≤ n, and 1 ≤ h < k. For example,

(1⊗i 2)⊗j (3⊗l 4) = γ(1⊗j 2, (1⊗i 2, 1⊗l 2)) ∈Monn(4),
with 1⊗i 2 and 1⊗l 2 ∈Monn(2) in standard form.

Since f must preserve γ, if f X1 and f X2 are already defined, then, with X as in
(13.3.9), we must define

(13.3.10) f X = γ(⊗i, ( f X1, f X2)) ∈ Pk.

Well defined on objects. To see that (13.3.10) is well defined, suppose that X in
(13.3.9) has another decomposition as

(13.3.11) X = γ(1⊗j 2, (X′1, X′2))
for some 1 ≤ j ≤ n and objects X′1, X′2 in standard form. Then i = j, and, up to
switching the two decompositions (13.3.9) and (13.3.11), X has the form

X = (⋯)⊗i (⋯)⊗i (⋯)
= γ(1⊗i 2⊗i 3, (X1, X′′, X′2))

with

(13.3.12)
⎧⎪⎪⎨⎪⎪⎩

X2 = γ(1⊗i 2, (X′′, X′2))
X′1 = γ(1⊗i 2, (X1, X′′)).

For example, there are equalities in Monn(5) as follows.

(1⊗j 2)⊗i 3⊗i (4⊗l 5) = γ(1⊗i 2, (1⊗j 2, 1⊗i (2⊗l 3)))

= γ(1⊗i 2⊗i 3, (1⊗j 2, 1, 1⊗l 2))

= γ(1⊗i 2, ((1⊗j 2)⊗i 3, 1⊗l 2))

There are equalities in P as follows.

γ(⊗i, ( f X′1, f X′2)) = γ(⊗i, (γ(⊗i, ( f X1, f X′′)), f X′2))

= γ(⊗i, ( f X1, γ(⊗i, ( f X′′, f X′2))))

= γ(⊗i, ( f X1, f X2))
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The first and the third equalities follow from (13.3.10) and (13.3.12). The second
equality holds by the assumed associativity relation in (13.3.6). This shows that
the definition (13.3.10) on objects in standard form is well defined.

Since f must preserve the symmetric group action, we must extend (13.3.10)
by defining

(13.3.13) f (Xσ) = ( f X)σ ∈ Pk

for X ∈ Monn(k) in standard form and σ ∈ Σk. In particular, f is uniquely defined
on the objects in Monn.

Preservation of operad axioms on objects. By (13.3.7) and (13.3.13), f preserves the
operad unit and the symmetric group action.

To see that f preserves the operad composition on objects, we need to check
that the diagram

(13.3.14)

Monn(k)×
k
∏
i=1

Monn(ji) Monn(j)

Pk ×
k
∏
i=1

Pji Pj

f×∏i f

γ

f

γ

is commutative on objects, where j = j1 +⋯+ jk. By
● the decomposition Xσ in (13.3.8) for objects in Monn,
● the fact that f preserves the symmetric group action on objects, and
● the equivariance axioms (6.1.6) and (6.1.7) for γ,

it suffices to consider objects in Monn(k) ×∏k
i=1 Monn(ji) in standard form. Fur-

thermore, by
● the decomposition (13.3.9) for objects in standard form,
● the associativity and unity axioms (6.1.3)–(6.1.5),
● the assumed unity relation (13.3.6) in P,
● the fact that 1 is a strict two-sided unit for ⊗i in Monn, and
● an induction on k,

it suffices to consider an object of the form

(1⊗i 2, (X1, X2)) ∈Monn(2)×Monn(j1)×Monn(j2)
with j1, j2 ≥ 1 and each of X1 and X2 in standard form. On this object, the diagram
(13.3.14) is commutative by the definition (13.3.10) of f X.

Morphisms. The identity morphisms

11 ∈Monn(0) = {1} and 11 ∈Monn(1) = {1}
must be sent by f to, respectively, the identity morphisms 11 ∈ P0 and 11 ∈ P1. By
definition, each morphism φ ∈ Monn(k) with k ≥ 2 decomposes into a categorical
composite

(13.3.15) φ = (ϕrυr) ○⋯ ○ (ϕ1υ1)
with

● each υl ∈ Σk for 1 ≤ l ≤ r and
● each ϕl an operadic composite of
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– one η
i,j
1,2,3,4 with 1 ≤ i < j ≤ n in (13.3.2) and

– identity morphisms of objects in standard form.
Since f is to be a morphism of Cat-enriched operads, we must define

(13.3.16) f φ = (( f ϕr)υr) ○⋯ ○ (( f ϕ1)υ1) ∈ Pk

as the corresponding categorical composite with each f ϕl the corresponding op-
eradic composite of one ηi,j = f (ηi,j

1,2,3,4) in (13.3.5) and identity morphisms. In
particular, if f is well defined on morphisms, which we will verify shortly, then it
is uniquely defined on morphisms.

Well defined and functorial. To see that f is well defined on morphisms, note that
the Coherence Theorem II.10.6.8 for Monn(k) can also be applied to the objects and
morphisms

(1,{⊗i}n
i=1,{ηi,j}1≤i<j≤n)

in P. The reason is that the assumed axioms (13.3.6) and (13.1.3)–(13.1.7) are for-
mally identical to those in the categories Monn(k) for k ≥ 0. We will refer to this
property as the n-fold monoidal coherence in P. Suppose

φ = (ϕ′sυ′s) ○⋯ ○ (ϕ′1υ′1) ∈Monn(k)
is another decomposition of φ in (13.3.15) as in the previous paragraph. In the
image

(13.3.17) (( f ϕ′s)υ′s) ○⋯ ○ (( f ϕ′1)υ′1) ∈ Pk,

each f ϕ′h is an operadic composite of one ηi,j and identity morphisms. By the n-
fold monoidal coherence in P, the two morphisms (13.3.16) and (13.3.17), which
have the same (co)domain, are equal. This shows that f is well defined on mor-
phisms. The n-fold monoidal coherence in P also implies that

f ∶Monn(k) Pk

is a functor for each k ≥ 0.
Preservation of operad units and equivariant structure on morphisms. By definition,

f preserves the operad unit on morphisms. To see that f preserves the symmetric
group action on morphisms, suppose φ ∈ Monn(k) is as in (13.3.15) and π ∈ Σk.
The right π-action in each of Monn and P is a functor. Using this fact and the
definition (13.3.16) of f φ, the following computation shows that f preserves the
right π-action on morphisms.

f (φπ) = f([(ϕrυr) ○⋯ ○ (ϕ1υ1)]π)

= f((ϕrυr)π ○⋯ ○ (ϕ1υ1)π)

= f(ϕr(υrπ) ○⋯ ○ ϕ1(υ1π))
= ( f ϕr)(υrπ) ○⋯ ○ ( f ϕ1)(υ1π)
= (( f ϕr)υr)π ○⋯ ○ (( f ϕ1)υ1)π
= [( f ϕr)υr ○⋯ ○ ( f ϕ1)υ1]π
= ( f φ)π

Preservation of operad composition on morphisms. For the preservation of the op-
erad composition γ by f on morphisms, we use the following facts:
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● f is levelwise a functor and preserves the symmetric group action.
● γ in each of Monn and P is a functor and satisfies the equivariance axioms

(6.1.6) and (6.1.7).
● Morphisms in Monn decompose as in (13.3.15).

Using these facts, to prove the commutativity of the diagram (13.3.14) on mor-
phisms, it suffices to consider a morphism

(ϕ, (ϕi)ki=1) ∈Monn(k)×
k
∏
i=1

Monn(ji)

such that the following two conditions hold:
● There is only one nonidentity morphism in {ϕ, ϕ1, . . . , ϕk}.
● The nonidentity morphism in {ϕ, ϕ1, . . . , ϕk} is an operadic composite of

– one η
i,j
1,2,3,4 with 1 ≤ i < j ≤ n in (13.3.2) and

– identity morphisms of objects in standard form.
On such a morphism, the diagram (13.3.14) is commutative by the n-fold monoidal
coherence in P. □

n-Fold Monoidal Categories as Algebras. Recall the following results:
● The associative operad As is the operad for monoids (Proposition 11.1.15).
● The Barratt-Eccles operad EAs is the Cat-enriched operad for permutative

categories (Proposition 11.4.26).
● The braid operad Br is the Cat-enriched operad for braided strict monoi-

dal categories (Proposition 12.3.22).
Proposition 13.3.18 below is the analogue for n-fold monoidal categories and is an
application of Theorem 13.3.3.
Proposition 13.3.18. For n ≥ 1 and a small category C, an n-fold monoidal category
structure on C is uniquely determined by a Cat-enriched multifunctor

f ∶Monn Cat such that f (∗) = C.

Proof. A Cat-enriched multifunctor f ∶Monn Cat such that f (∗) = C is equiva-
lent to a Cat-enriched operad morphism

Monn End(C) = {Cat(C×k,C)}k≥0
f

to the Cat-enriched endomorphism operad of C. By Theorem 13.3.3, such a Cat-
enriched operad morphism f is uniquely determined by

● an object
1 ∈ C,

● a functor
⊗i ∶ C×C C

for each 1 ≤ i ≤ n, and
● a natural transformation

(A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)
η

i,j
A,B,C,D

for objects A, B, C, D ∈ C and 1 ≤ i < j ≤ n
such that the following two statements hold.
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● For 1 ≤ i ≤ n, ⊗i is strictly associative with 1 as the strict two-sided unit.
In other words, each (C,⊗i,1) is a strict monoidal category.
● The n-fold monoidal category axioms (13.1.3)–(13.1.7) hold in C.

This is the same thing as an n-fold monoidal category structure on C. □

13.4. Detecting En-Monoidal Categories

In this section, we prove that the n-fold monoidal category operad detects En-
monoidal category structures on small permutative categories (Theorem 13.4.12).
This result is an application of the Coherence Theorem 13.3.3 for the n-fold mon-
oidal category operad. In Section 13.5, we use this result to show that the K-theory
of a small En-monoidal category is an En-symmetric spectrum (Corollary 13.5.2).
For the reader’s convenience, here we recall from Chapter II.10 the definition of
an En-monoidal category.

Definition 13.4.1. For n ≥ 1, an En-monoidal category is a tuple

(C, (⊕, 0, ξ⊕),{⊗i, ∂l,i, ∂r,i}1≤i≤n,1,{ηi,j}1≤i<j≤n)

consisting of the following data.

The Ring Category Structures: For each 1 ≤ i ≤ n, the tuple

(13.4.2) (C, (⊕, 0, ξ⊕), (⊗i,1), (∂l,i, ∂r,i))

is a ring category (Definition 11.2.4). The natural transformations

(13.4.3)
(A⊗i C)⊕ (B⊗i C) (A⊕ B)⊗i C

(A⊗i B)⊕ (A⊗i C) A⊗i (B⊕C)

∂l,i
A,B,C

∂r,i
A,B,C

for objects A, B, C ∈ C, are called, respectively, the ith left factorization mor-
phism and the ith right factorization morphism.

The n-Fold Monoidal Structure: The tuple

(13.4.4) (C,{⊗i}1≤i≤n,1,{ηi,j}1≤i<j≤n)

is an n-fold monoidal category (Definition 13.1.1), with (i, j)-exchange the
natural transformation

(13.4.5) (A⊗j B)⊗i (C⊗j D) (A⊗i C)⊗j (B⊗i D)
η

i,j
A,B,C,D

for objects A, B, C, D ∈ C and 1 ≤ i < j ≤ n.

These data are required to satisfy the following axioms for 1 ≤ i < j ≤ n and objects
A, A′, B, B′, C, C′, D, and D′ in C.

The Zero Exchange Axiom:

(13.4.6) η
i,j
A,B,C,D = 10 if A, B, C, or D is 0.
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The Exchange Factorization Axiom: The following four diagrams are commuta-
tive. They are called, respectively, EF1, EF2, EF3, and EF4.

(13.4.7)

[(A⊗j B)⊗i (C⊗j D)]⊕ [(A′ ⊗j B)⊗i (C⊗j D)]

[(A⊗i C)⊗j (B⊗i D)]⊕ [(A′ ⊗i C)⊗j (B⊗i D)] [(A⊗j B)⊕ (A′ ⊗j B)]⊗i (C⊗j D)

[(A⊗i C)⊕ (A′ ⊗i C)]⊗j (B⊗i D) [(A⊕ A′)⊗j B]⊗i (C⊗j D)

[(A⊕ A′)⊗i C]⊗j (B⊗i D)

η
i,j
A,B,C,D ⊕ η

i,j
A′,B,C,D

∂
l,j
A⊗iC,A′⊗iC,B⊗i D

∂l,i
A,A′,C ⊗j 1

∂l,i
A⊗j B,A′⊗j B,C⊗j D

∂
l,j
A,A′,B ⊗i 1

η
i,j
A⊕A′,B,C,D

(13.4.8)

[(A⊗j B)⊗i (C⊗j D)]⊕ [(A⊗j B′)⊗i (C⊗j D)]

[(A⊗i C)⊗j (B⊗i D)]⊕ [(A⊗i C)⊗j (B′ ⊗i D)] [(A⊗j B)⊕ (A⊗j B′)]⊗i (C⊗j D)

(A⊗i C)⊗j [(B⊗i D)⊕ (B′ ⊗i D)] [A⊗j (B⊕ B′)]⊗i (C⊗j D)

(A⊗i C)⊗j [(B⊕ B′)⊗i D]

η
i,j
A,B,C,D ⊕ η

i,j
A,B′,C,D

∂
r,j
A⊗iC,B⊗i D,B′⊗i D

1⊗j ∂l,i
B,B′,D

∂l,i
A⊗j B,A⊗j B′,C⊗j D

∂
r,j
A,B,B′ ⊗i 1

η
i,j
A,B⊕B′,C,D

(13.4.9)

[(A⊗j B)⊗i (C⊗j D)]⊕ [(A⊗j B)⊗i (C′ ⊗j D)]

[(A⊗i C)⊗j (B⊗i D)]⊕ [(A⊗i C′)⊗j (B⊗i D)] (A⊗j B)⊗i [(C⊗j D)⊕ (C′ ⊗j D)]

[(A⊗i C)⊕ (A⊗i C′)]⊗j (B⊗i D) (A⊗j B)⊗i [(C⊕C′)⊗j D]

[A⊗i (C⊕C′)]⊗j (B⊗i D)

η
i,j
A,B,C,D ⊕ η

i,j
A,B,C′,D

∂
l,j
A⊗iC,A⊗iC′,B⊗i D

∂r,i
A,C,C′ ⊗j 1

∂r,i
A⊗j B,C⊗j D,C′⊗j D

1⊗i ∂
l,j
C,C′,D

η
i,j
A,B,C⊕C′,D

(13.4.10)

[(A⊗j B)⊗i (C⊗j D)]⊕ [(A⊗j B)⊗i (C⊗j D′)]

[(A⊗i C)⊗j (B⊗i D)]⊕ [(A⊗i C)⊗j (B⊗i D′)] (A⊗j B)⊗i [(C⊗j D)⊕ (C⊗j D′)]

(A⊗i C)⊗j [(B⊗i D)⊕ (B⊗i D′)] (A⊗j B)⊗i [C⊗j (D⊕D′)]

(A⊗i C)⊗j [B⊗i (D⊕D′)]

η
i,j
A,B,C,D ⊕ η

i,j
A,B,C,D′

∂
r,j
A⊗iC,B⊗i D,B⊗i D′

1⊗j ∂r,i
B,D,D′

∂r,i
A⊗j B,C⊗j D,C⊗j D′

1⊗i ∂
r,j
C,D,D′

η
i,j
A,B,C,D⊕D′

This finishes the definition of an En-monoidal category. It is small if the category C
is small. ◇
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Definition 13.4.11. For a permutative category (C,⊕, 0, ξ⊕), an En-monoidal cate-
gory structure on C for n ≥ 1 is the additional data

({⊗i, ∂l,i, ∂r,i}1≤i≤n,1,{ηi,j}1≤i<j≤n)

such that the tuple

(C, (⊕, 0, ξ⊕),{⊗i, ∂l,i, ∂r,i}1≤i≤n,1,{ηi,j}1≤i<j≤n)

is an En-monoidal category as in Definition 13.4.1. ◇
Recall from Section 6.6 that PermCatsu is the Cat-enriched multicategory with

small permutative categories as objects. The category

PermCatsu (⟨C⟩ ; D) = PermCatsu (⟨C1, . . . ,Cn⟩ ; D)

has
● n-linear functors

C1 ×⋯×Cn D

in Definition 6.5.4 as objects and
● multilinear transformations (Definition 6.5.11) as morphisms.

Also recall from Definition 5.1.12 the notion of an enriched multifunctor. The next
result is the Monn analogue of Theorems 11.2.16, 11.5.5, and 12.4.5 for, respectively,
the associative operad As, the Barratt-Eccles operad EAs, and the braid operad Br.
It says that the n-fold monoidal category operad detects En-monoidal category
structures on small permutative categories. It extends Proposition 13.3.18 from
Cat to PermCatsu.
Theorem 13.4.12. For n ≥ 1 and each small permutative category C, there is a canonical
bijective correspondence between

● En-monoidal category structures on C and
● Cat-enriched multifunctors

F ∶Monn PermCatsu such that F(∗) = C.

Proof. A Cat-enriched multifunctor

F ∶Monn PermCatsu such that F(∗) = (C,⊕, 0, ξ⊕)

is equivalent to a Cat-enriched operad morphism

F ∶Monn End(C) = {PermCatsu (⟨
k

C, . . . ,C⟩ ; C)}
k≥0

to the Cat-enriched endomorphism operad of C. By Theorem 13.3.3, such a Cat-
enriched operad morphism is uniquely determined by

● the 0-linear functor, that is, object

F(1) = 1 ∈ C,

● the 2-linear functors

F(1⊗i 2) = (⊗i, ∂l,i, ∂r,i) ∶ C×C C

for 1 ≤ i ≤ n, and
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● the multilinear transformations

(A⊗l B)⊗k (C⊗l D) (A⊗k C)⊗l (B⊗k D)
ηk,l

A,B,C,D = F(ηk,l
1,2,3,4)

for 1 ≤ k < l ≤ n and objects A, B, C, D ∈ C,

such that

● the unity and associativity conditions (13.3.6) and
● the n-fold monoidal category axioms (13.1.3)–(13.1.7)

hold in C.
The ring category structures. By Theorem 11.2.16 and the first paragraph of

its proof, for i ∈ {1, . . . , n}, the data (⊗i,1, ∂l,i, ∂r,i) and the conditions (13.3.6) are
equivalent to a ring category structure on the permutative category (C,⊕, 0, ξ⊕) as
in Definition 11.2.15. In particular, each (C,⊗i,1) is a strict monoidal category.

The n-fold monoidal category structure. The n-fold monoidal category axioms
(13.1.3)–(13.1.7) guarantee that the tuple

(C,{⊗i}1≤i≤n,1,{ηk,l}1≤k<l≤n)

is an n-fold monoidal category.
The En-monoidal category axioms. For 1 ≤ k < l ≤ n, the multilinear transforma-

tion

⊗k(⊗l ,⊗l) ⊗l(⊗k,⊗k)(2, 3) ∈ End(C)4
ηk,l

is, by definition, a natural transformation that satisfies the two conditions in Defi-
nition 6.5.11.

● For α = ηk,l , the commutative diagrams (6.5.12) for i ∈ {1, 2, 3, 4} are, re-
spectively, the axioms (13.4.7)–(13.4.10) in an En-monoidal category. Here
we use the explicit formulas (6.6.3) and (6.6.8) to unravel the linearity
constraints of the domain and codomain 4-linear functors of ηk,l .
● The second condition in Definition 6.5.11 states that

ηk,l
A,B,C,D = 10 if A, B, C, or D is 0.

This is the zero exchange axiom (13.4.6) in an En-monoidal category.

Therefore, a Cat-enriched operad morphism

F ∶Monn End(C)

is equivalent to an En-monoidal category structure on C. □

13.5. K-Theory of En-Monoidal Categories are En-Symmetric Spectra

In this section, we prove that the K-theory of a small En-monoidal category
is an En-symmetric spectrum (Corollary 13.5.2). This result is the En analogue of
Corollaries 11.3.16, 11.6.12, and 12.5.3. It is a consequence of Theorem 13.4.12, the
Elmendorf-Mandell K-theory multifunctor, and the fact that the n-fold monoidal
category operad is an En-operad (Theorem 13.2.1). Along the way, we observe that
an E∞-structure induces an En-structure (Proposition 13.5.1).
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En-Symmetric Spectra. An En-symmetric spectrum (Definition 12.5.1) is a sym-
metric spectrum X equipped with an sSet-enriched operad morphism

P End(X)
with

● P an sSet-enriched En-operad (Definition 12.2.3) and
● End(X) the endomorphism simplicial operad (Definition 7.6.22).

The E∞ analogue is Definition 11.6.5. Recall from Proposition 12.1.11 that the Cat-
enriched operad morphism

As EAs
ιAs

in (11.4.12), from the associative operad As to the Barratt-Eccles operad EAs, factors
through the braid operad Br. Recall that EAs is an E∞-operad (Proposition 11.6.3)
and Monn is an En-operad (Theorem 13.2.1). The following result provides a fac-
torization of ιAs through the n-fold monoidal category operad Monn for n ≥ 1. See
also Corollary 12.5.2.
Proposition 13.5.1. There is a commutative diagram of Cat-enriched operad morphisms

As ≅Mon1 Mon2 Mon3 ⋯

EAs

⋯

i1 i2 i3

ιAs = j1 j2 j3

with each in for n ≥ 1 the inclusion. As a result,
● each E∞-structure on a symmetric spectrum via the Barratt-Eccles operad EAs

induces an En-structure by restricting along jn, and
● each En+1-structure on a symmetric spectrum via Monn+1 induces an En-

structure by restricting along in.

Proof. The isomorphism As ≅ Mon1 is from Example 13.1.23. Each Monn(k) is the
full subcategory of Monn+1(k) consisting of objects that can be written without
⊗n+1. This inclusion preserves the operad structure in Monn and Monn+1 in Defini-
tion 13.1.12, so

Monn Monn+1in

is a Cat-enriched operad morphism.
To define jn, recall from (13.3.8) that each object in Monn(k) can be written

uniquely in the form Xσ, with
● X ∈ Monn(k) in standard form, which means that the elements in
{1, . . . , k} appear in X in increasing order from left to right, and
● σ ∈ Σk a permutation.

For k ≥ 0, the assignment

Monn(k) EAsk
jnk

on objects is defined as
jnk (Xσ) = σ
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for X ∈Monn(k) in standard form and σ ∈ Σk. These assignments define an operad
morphism between the object set operads of Monn and EAs. On morphisms, jnk is
uniquely defined by the fact that, in the translation category EAsk, each morphism
set has only one element. This property also implies that

● jn
k is a functor and

● jn = {jnk }k≥0 preserves operad units, symmetric group action, and operad
composition.

Therefore,

Monn EAs
jn

is a Cat-enriched operad morphism.
The equality

jn = jn+1in

follows from the fact that in is the inclusion. This proves the existence of the com-
mutative diagram in the statement. The remaining assertions follow from the ex-
istence of the Cat-enriched operad morphisms in and jn. □

K-Theory En-Symmetric Spectra. Recall the Elmendorf-Mandell K-theory
multifunctor in Definition 10.3.32,

KEM = KGN∗JEM ∶ PermCatsu SymSp.

The following result is the En analogue of Corollaries 11.3.16, 11.6.12, and 12.5.3.

Corollary 13.5.2. For n ≥ 1 and each small En-monoidal category C, KEMC is an En-
symmetric spectrum.

Proof. Consider the multifunctors

Monn PermCatsu SymSp

∗ (C,⊕, 0, ξ⊕) KEMC

F KEM

with F the Cat-enriched multifunctor in Theorem 13.4.12 such that F(∗) is the ad-
ditive structure of C. By Theorem 13.2.1, NMonn is an En-operad. As in the proofs
of Corollaries 11.6.12 and 12.5.3, the composite sSet-enriched operad morphism

NMonn End(KEMC)

NEnd(C) NEnd(JEMC) End(N∗JEMC)

FN
JEM

N N∗
KG

gives KEMC the structure of an En-symmetric spectrum. □

Example 13.5.3. By Proposition II.10.10.2, each small category C freely generates a
small En-monoidal category FEn(C). Corollary 13.5.2 applies to FEn(C) to yield a
K-theory En-symmetric spectrum. See also Questions A.4.2 and A.5.7. ◇
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13.6. Notes

13.6.1 (Homotopy Colimits). In addition to [Dug∞, MP12], other references for
homotopy colimits, which are needed in the proof of Theorem 13.2.1, include
[BK72, CS02, Hir03, Rie14, Shu∞a, Vog73, Vog77]. ◇
13.6.2 (Iterated Monoidal Category Operads). The nerve of the n-fold monoidal
category operad Monn in Theorem 13.2.1 is weakly equivalent to

● the nth stage of Berger’s filtration [Ber96] and
● the nth stage of Smith’s filtration [Smi89]

of the Barratt-Eccles operad and is closely related to Milgram’s model of ΩnΣnX
[Mil66]. See [BFSV03, Section 3]. Moreover, the group completion of the classi-
fying space of an n-fold monoidal category is an n-fold loop space by [BFSV03,
2.2 and 3.14]. Proposition 13.3.18, which says that Monn-algebras are small n-fold
monoidal categories, is a remark in [BFSV03, p. 292]. ◇
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APPENDIX A

Open Questions

“I enjoy questions that seem honest, even when they admit or reveal
confusion, in preference to questions that appear designed to project so-
phistication.”

– Bill Thurston, MathOverflow user profile

In this chapter, we discuss open questions related to the topics of this work.
These open questions provide additional motivation for the main text.

A.1. Bimonoidal Categories

The following questions are about bimonoidal, symmetric bimonoidal, and
braided bimonoidal categories in Definitions I.2.1.2 and II.2.1.29.

Question A.1.1 (Functoriality of the Matrix Construction). In Theorem I.8.15.4,
we showed that, for each tight symmetric bimonoidal category C, the matrix con-
struction MatC is a symmetric monoidal bicategory. Denote by Bitsy the full sub-
2-category of the 2-category Bisy in Proposition I.7.1.7, with small tight symmetric
bimonoidal categories as objects. Regard Bitsy as a tricategory with only identity
3-cells. It is claimed in [SP∞] that small symmetric monoidal bicategories are the
objects of a tricategory, denoted by SMB.

● Extend the assignment

C MatC

to a trifunctor
Bitsy SMB.

Among other things, one should carefully verify the tricategory axioms for SMB.
For a discussion of tricategories and a detailed verification of the tricategory of
small bicategories, the reader is referred to [JY21, Ch. 11]. ◇
Question A.1.2 (Bimonoidal Bicategories). Taking the categorification from (com-
mutative) rigs to (symmetric) bimonoidal categories one step further, we could ask
about two different monoidal structures, ⊞ and ⊠, on a bicategory, with ⊞ symmet-
ric.

● Define such a (braided/sylleptic/symmetric) bimonoidal bicategory, general-
izing the (braided/sylleptic/symmetric) monoidal bicategories in Sec-
tions I.6.4 and I.6.5.
● For a tight symmetric bimonoidal category C, prove that the symmetric

monoidal bicategory MatC extends to a symmetric bimonoidal bicategory.
● For a tight braided bimonoidal category C, prove that the monoidal bi-

category MatC extends to a bimonoidal bicategory.

III.517
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More precisely, in Theorem I.8.15.4, the monoidal composition ⊠ in the symmetric
monoidal bicategory MatC involves the matrix tensor product in (I.8.6.3). There
should be another symmetric monoidal bicategory structure on the matrix bicat-
egory MatC in Theorem I.8.4.12, whose monoidal composition uses the matrix di-
rect sum as in Example I.2.5.9. These two symmetric monoidal structures on MatC

should make it into a symmetric bimonoidal bicategory. A similar discussion ap-
plies in the braided case, with Theorem II.8.4.7 showing that MatC is a monoidal
bicategory.

● Extend the tricategory SMB (Question A.1.1) to a tricategory SBB with
small symmetric bimonoidal bicategories as objects.
● Construct a tricategory BB with small bimonoidal bicategories as objects.
● Extend the assignment C MatC in

– Theorem I.8.15.4 in the symmetric case to a trifunctor

Bitsy SBB

and
– Theorem II.8.4.7 in the braided case to an analogous trifunctor with

codomain BB. ◇
Question A.1.3 (Bimonoidal Bicategorical Centers). Extend the bimonoidal cen-
ters in Theorems II.4.4.3 and II.4.5.3 to the bimonoidal bicategorical setting in
Question A.1.2. In other words:

● Extend the bimonoidal Drinfeld center in Theorem II.4.4.3 to a bimonoi-
dal bicategory and show that it is a braided bimonoidal bicategory.
● Show that the center of a braided bimonoidal bicategory is a sylleptic

bimonoidal bicategory.
● Extend the bimonoidal symmetric center in Theorem II.4.5.3 to a sylleptic

bimonoidal bicategory and show that it is a symmetric bimonoidal bicat-
egory.

There are simpler centers of Gray monoids [BN96], braided monoidal 2-categories,
and sylleptic monoidal 2-categories [Cra98]. As in Theorem II.4.4.3, a tightness
assumption is likely necessary for some of these center constructions. ◇
Question A.1.4 (Gray Rings and Bipermutative Gray Monoids). Recall from Sec-
tions I.6.6 and I.6.7 that a Gray monoid is a 2-category equipped with a monoid
structure under the Gray tensor product. A permutative Gray monoid is a Gray
monoid equipped with a compatible Gray symmetry. Symmetric monoidal bi-
categories can be strictified to permutative Gray monoids; see [GJO17b] and the
discussion near the end of Section I.6.7.

● Define a Gray ring and a bipermutative Gray monoid that are analogous to,
respectively, a right rigid bimonoidal category (Definition I.5.5.8) and a
right bipermutative category (Definition I.2.5.2).
● Along the lines of Theorem I.5.5.11, prove a strictification result from bi-

monoidal bicategories (Question A.1.2) to Gray rings.
● Along the lines of Theorem I.5.4.6, prove a strictification result from sym-

metric bimonoidal bicategories to bipermutative Gray monoids.

A bipermutative Gray monoid should be a 2-category equipped with two compat-
ible permutative Gray monoid structures, ⊞ and ⊠, that interact via distributivity.
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In a Gray ring, ⊠ is a Gray monoid structure that is not assumed to be permutative.
The following table summaries these (conjectural) concepts.

lax structure strict structure strictification

bicategories 2-categories [JY21, 8.4.1]

monoidal bicategories Gray monoids [GPS95, Gur13]

symmetric monoidal bicategories permutative Gray monoids [GJO17b]

bimonoidal bicategories Gray rings conjecture

symmetric bimonoidal bicategories bipermutative Gray monoids conjecture

In each row, the left column can be strictified to the middle column. ◇
Question A.1.5 (Horizontal Bicategories of Double Categories). A number of bi-
categories, including those of spans and bimodules, are the horizontal bicategories
of some double categories.

● For a tight bimonoidal category C, is the matrix bicategory MatC in Theo-
rem I.8.4.12 the horizontal bicategory of a double category?
● If so, does the symmetric monoidal bicategory in Theorem I.8.15.4 arise

from a symmetric monoidal structure on the double category?
See [HS∞] and [JY21, 12.3 and 12.4] for a discussion of (monoidal) double cate-
gories and their horizontal bicategories. ◇
Question A.1.6 (Braided Sheet Diagrams). String diagrams are graphical reason-
ing tools in monoidal categories [JS91a, Sel11]. Sheet diagrams [CDH∞], which
we mentioned in Notes I.2.7.5 and I.7.9.2 and Example I.3.10.9, are their analogues
for tight bimonoidal categories.

● Develop sheet diagrams for
– symmetric bimonoidal categories (Definition I.2.1.2) and
– braided bimonoidal categories (Definition II.2.1.29).

This is, in fact, a coherence question with several parts. More precisely, a bimonoi-
dal signature S consists of (i) a set of generating objects and (ii) a set of generating
morphisms, each with (co)domain in the free {⊕,⊗}-algebra Sfr (Definition I.3.1.2).
Given a bimonoidal signature S, one first defines the appropriate braided bimonoi-
dal sheet diagrams and topological deformations corresponding to the axioms of a
braided bimonoidal category. Then one constructs a braided bimonoidal category
S′ with object set Sfr and, as morphisms, braided bimonoidal sheet diagrams mod-
ulo topological deformations. Finally, one proves that S′ is braided bimonoidally
equivalent to the free braided bimonoidal category on S. A similar discussion ap-
plies in the symmetric case.

In view of the results in Chapter II.3, braided bimonoidal sheet diagrams can
be used as graphical reasoning tools in (i) quantum group theory and (ii) the Fi-
bonacci and Ising anyons in topological quantum computation. Sheet diagrams
for tight bimonoidal categories in [CDH∞] involve the symmetric monoidal string
diagrams in [JS91a]. Braided bimonoidal sheet diagrams will likely involve both
the symmetric monoidal (for the additive structure ⊕) and the braided monoidal
(for the multiplicative structure⊗) string diagrams in [JS91a, Ch.2–3]. The Braided
Bimonoidal Coherence Theorem II.5.4.4 will be needed to check the axioms in
Definition II.2.1.29 for braided bimonoidal sheet diagrams. Similarly, Laplaza’s
Coherence Theorems I.3.9.1 and I.4.4.3 will be needed to check the axioms in Def-
inition I.2.1.2 for symmetric bimonoidal sheet diagrams.
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The distributivity morphisms δl and δr in Definitions I.2.1.2 and II.2.1.29 are
not invertible in general.

● Is it possible to replace the tightness assumption—that is, the invertibility
of δl and δr—in the sheet diagrams in [CDH∞] with flatness in Defini-
tions I.3.9.9 and II.5.4.5?

Related to Section I.7.9, to replace tightness with the much weaker assumption of
flatness, one would need to work directly with a flat (symmetric/braided) bimon-
oidal category and avoid using the Strictification Theorems I.5.4.6, I.5.4.7, I.5.5.11,
I.5.5.12, II.6.3.6, and II.6.3.7. The reason is that each of these theorems requires
the tightness assumption. See Question A.2.8 for further problems about sheet
diagrams. ◇

A.2. En-Monoidal Categories

The following questions are about the En-monoidal categories in Part II.2.
Question A.2.1 (Coherence of En-Monoidal Categories).

● Prove coherence theorems for ring categories (Definition II.9.1.2) along
the lines of Theorems I.3.10.7 and I.4.5.8. Each such coherence theorem
should say that any reasonable formal diagram in a ring category involv-
ing

(⊕, 0, ξ⊕,⊗,1, ∂l , ∂r)
is commutative, with an assumption on either the common domain or
the two paths.
● Prove coherence theorems for bipermutative categories (Definition II.9.3.2)

along the lines of Theorems I.3.9.1 and I.4.4.3.
● Prove a coherence theorem for braided ring categories (Definition II.9.5.1)

along the lines of Theorem II.5.4.4.
● More generally, prove a coherence theorem for En-monoidal categories

(Definition II.10.7.2) along the lines of Theorem II.5.4.4. The coherence
theorems for n-fold monoidal categories (Theorem II.10.6.8) should be
relevant.

As in Theorems I.3.9.1 and I.4.4.3, one may need to assume a monomorphism or
an epimorphism condition on the factorization morphisms ∂l and ∂r ◇
Question A.2.2 (n-Monoidal Categories). In an n-fold monoidal category (Defini-
tion II.10.1.1), each monoidal structure ⊗i is strictly associative with a common
strict unit 1. There is a more general concept called an n-monoidal category in
[AM10, Def. 6.1, 7.1, and 7.24]. It allows each monoidal structure ⊗i to be non-
strict and distinct monoidal units.

● Describe the free n-monoidal category of a small category, along the lines
of Proposition II.10.5.9 and Theorem II.10.5.18.
● Generalize the Coherence Theorem II.10.6.8 to n-monoidal categories.

In [AM10, Section 6.2], it is stated without detail that, in a 2-monoidal category,
each formal diagram is commutative. It is stated there that this coherence result
can be deduced from the work in [Lew72]. So one possible first step in answering
these questions would be to prove in detail this coherence result for 2-monoidal
categories. ◇

Questions A.2.3 through A.2.7 below are all related to each other.
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Question A.2.3 (Lax n-Fold Monoidal Categories). Between an n-fold monoidal
category and an n-monoidal category (Question A.2.2) is a lax n-fold monoidal cat-
egory. The latter allows each monoidal structure ⊗i to be nonstrict, and it as-
sumes a common nonstrict monoidal unit 1. Analogous to Propositions II.10.1.14
and II.10.1.21, general nonstrict braided monoidal categories should be examples
of lax 2-fold monoidal categories, and general nonstrict symmetric monoidal cate-
gories should be examples of lax n-fold monoidal categories for n ≥ 2.

● Describe the free lax n-fold monoidal category of a small category, along
the lines of Proposition II.10.5.9 and Theorem II.10.5.18.
● Extend the Coherence Theorem II.10.6.8 to lax n-fold monoidal categor-

ies.
● Can n-monoidal categories be strictified to lax n-fold monoidal categor-

ies?
● Can lax n-fold monoidal categories be strictified to n-fold monoidal cate-

gories?

There are two other possible variants of n-fold monoidal categories. The variant
in [For04] corresponds to a lax n-fold monoidal category with a common strict
monoidal unit. The variant in [FSS07] corresponds to an n-monoidal category
with generally distinct but strict monoidal units. The following table summaries
the strictness assumptions of n-fold monoidal categories and its four variants.

monoidal units strict {⊗i}1≤i≤n nonstrict {⊗i}1≤i≤n

common strict n-fold monoidal [For04]

common nonstrict lax n-fold monoidal

distinct strict [FSS07]

distinct nonstrict n-monoidal [AM10]

The questions below refer to lax n-fold monoidal categories as defined above, with
⊗i generally nonstrict and a common nonstrict monoidal unit. ◇
Question A.2.4 (Unstable Periodic Table of Weak n-Categories). The periodic table
in [BD98] of k-tuply monoidal n-categories is a guiding principle for defining some
versions of weak n-categories. In the n = 1 column in the periodic table, the val-
ues k = 0, 1, 2, and ≥ 3 correspond to, respectively, categories, monoidal categories,
braided monoidal categories, and symmetric monoidal categories. On the other
hand, by Propositions II.10.1.14 and II.10.1.21, braided strict monoidal categories
and permutative categories are special examples of, respectively, 2-fold monoi-
dal categories and k-fold monoidal categories for k ≥ 2. Proposition II.10.2.8 has
examples of 2-fold monoidal categories that are not braided strict monoidal cate-
gories. The k-fold monoidal category operad Monk (Proposition 13.1.20) is an Ek-
operad that parametrizes k-fold monoidal categories (Theorem 13.2.1 and Propo-
sition 13.3.18).

● Construct an unstable periodic table in which the n = 1 column consists of
lax k-fold monoidal categories (Question A.2.3) for k ≥ 1.

The n = 1 and n = 2 columns of the unstable periodic table should look like this:
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n = 1 n = 2

k = 0 categories bicategories

k = 1 monoidal categories monoidal bicategories

k ≥ 2 lax k-fold monoidal categories k-fold monoidal bicategories

The unstable periodic table does not stabilize like the periodic table in [BD98],
where the (n = 1, k ≥ 3) entries are all symmetric monoidal categories. Moreover,
the (n = 2, k ≥ 2) column in the unstable periodic table contains yet-to-be-defined
k-fold monoidal bicategories.

● Prove that braided, sylleptic, and symmetric monoidal bicategories in
Section I.6.5 are examples of k-fold monoidal bicategories for, respec-
tively, k = 2, 3, and ≥ 4. ◇

This question may be regarded as both (i) a litmus test for the correct definition of
a k-fold monoidal bicategory and (ii) a conceptual unification of braided, syllep-
tic, and symmetric monoidal bicategories. Further examples of k-fold monoidal
bicategories should arise from the matrix construction in Question A.2.7.

Question A.2.5 (Iterated Gray Monoids). This is a variation of Question A.1.4.
● Analogous to k-fold monoidal categories (Definition II.10.1.1) for k ≥ 1,

define the concept of a k-fold Gray monoid that satisfies the following state-
ments:

– A Gray monoid is precisely a 1-fold Gray monoid.
– A braided monoidal 2-category [Cra98] is an example of a 2-fold

Gray monoid, analogous to Proposition II.10.1.14.
– A sylleptic monoidal 2-category [Cra98] is an example of a 3-fold

Gray monoid.
– A permutative Gray monoid is an example of a k-fold Gray monoid

for k ≥ 4, analogous to Proposition II.10.1.21.
● Prove a strictification theorem from k-fold monoidal bicategories (Ques-

tion A.2.4) to k-fold Gray monoids. This should fit into the following
table of strictification theorems.

bicategories 2-categories [JY21, 8.4.1]

monoidal bicategories Gray monoids [GPS95, Gur13]

braided monoidal bicategories braided monoidal 2-categories [Gur11]

k-fold monoidal bicategories (k ≥ 1) k-fold Gray monoids conjecture

symmetric monoidal bicategories permutative Gray monoids [GJO17b]

In each row, the left column can be strictified to the middle column. For the sym-
metric case, see the discussion near the end of Section I.6.7. ◇
Question A.2.6 (Laplaza En-Monoidal Categories). The factorization morphisms
{∂l,i, ∂r,i}1≤i≤n in an En-monoidal category (Definition II.10.7.2) go in the oppo-
site direction as the distributivity morphisms in a bimonoidal category (Defini-
tion I.2.1.2). Moreover, in an En-monoidal category, the monoidal structures ⊕ and
{⊗i}n

i=1 are all strict.
● Define a Laplaza En-monoidal category with

– a generally nonstrict additive structure (⊕, 0),
– a lax n-fold monoidal structure ({⊗i}n

i=1,{ηi,j}) (Question A.2.3),
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– for each 1 ≤ i ≤ n, a bimonoidal structure (⊕,⊗i, λ ●i , ρ ●i , δl
i , δr

i ) (Defini-
tion I.2.1.2), and

– appropriate axioms relating the lax n-fold monoidal structure and
the n bimonoidal structures, analogous to those in Definition II.10.7.2.

Laplaza En-monoidal categories should contain the following examples:
● An En-monoidal category with invertible factorization morphisms should

be an example of a Laplaza En-monoidal category, analogous to Theo-
rems II.9.1.15, II.9.3.7, and II.9.5.6.
● A Laplaza E1-monoidal category should be precisely a bimonoidal cate-

gory (Definition I.2.1.2), analogous to Example II.10.7.13.
● A braided bimonoidal category (Definition II.2.1.29) should be an exam-

ple of a Laplaza E2-monoidal category with ⊗1 = ⊗2, analogous to Theo-
rem II.10.8.1.
● A symmetric bimonoidal category should be an example of a Laplaza

En-monoidal category for n ≥ 2 with ⊗1 = ⋯ = ⊗n, analogous to Theo-
rem II.10.9.1.
● Similar to Theorem II.2.4.22, an abelian category with a compatible lax

n-fold monoidal structure should be a Laplaza En-monoidal category.
Moreover:

● Prove a coherence theorem for Laplaza En-monoidal categories, along
the lines of Theorem II.5.4.4. This will certainly involve the coherence
theorem for lax n-fold monoidal categories in Question A.2.3.
● Prove a strictification theorem for tight Laplaza En-monoidal categories,

along the lines of Theorems II.6.3.6 and II.6.3.7. Here tight means that all
the distributivity morphisms, δl

i and δr
i , are natural isomorphisms.

● Is there an analogue of Baez’s Conjecture (Theorems I.7.8.1, I.7.8.3,
II.7.3.4, and II.7.3.6) for Laplaza En-monoidal categories? ◇

Question A.2.7 (Matrix Construction). In Theorem I.8.4.12 we showed that the
matrix construction MatC is a bicategory for each tight bimonoidal category C.
Moreover, MatC is (i) a monoidal bicategory if C is a tight braided bimonoidal
category (Theorem II.8.4.7) and (ii) a symmetric monoidal bicategory if C is a tight
symmetric bimonoidal category (Theorem I.8.15.4).

● Show that the matrix construction MatC of a tight Laplaza Ek+1-monoidal
category (Question A.2.6) is a k-fold monoidal bicategory.

This question asks for a refinement of the table in the introduction of Chapter II.8
as follows.

tight – category C – bicategory MatC

bimonoidal plain I.8.4.12

braided bimonoidal monoidal II.8.4.7

Laplaza Ek+1-monoidal (k ≥ 1) k-fold monoidal conjecture

symmetric bimonoidal symmetric monoidal I.8.15.4

The k-fold monoidal bicategories in the conjectural row refer to the n = 2 column
in the unstable periodic table in Question A.2.4. Proving that MatC is a k-fold mon-
oidal bicategory will certainly involve the coherence theorem for Laplaza Ek+1-
monoidal categories in Question A.2.6. The general picture of the table above is
that it takes a sum ⊕ and a product ⊗ to construct the matrix bicategory MatC. So



III.524 A. OPEN QUESTIONS

any further monoidal structures on the bicategory MatC would have to come from
further monoidal structures on C. ◇
Question A.2.8 (Higher Sheet Diagrams). As in Question A.1.6, develop higher
dimensional sheet diagrams for

● n-fold monoidal categories (Definition II.10.1.1),
● n-monoidal categories (Question A.2.2),
● lax n-fold monoidal categories (Question A.2.3),
● En-monoidal categories (Definition II.10.7.2), and
● Laplaza En-monoidal categories (Question A.2.6).

As discussed in Question A.1.6, each of these items is a coherence question with
several parts. ◇

A.3. Enriched Monoidal Categories

The following questions are about the concepts in Chapters 1, 2, and 3.

Question A.3.1 (Enriched Lax n-Fold Monoidal Categories). In Section 1.4, with V
a braided monoidal category, we defined monoidal, braided monoidal, and sym-
metric monoidal V-categories, with the latter two assuming that V is symmetric.
See Lemma 1.3.23 and Explanation 1.3.25.

● For n ≥ 2 and V a symmetric monoidal category, extend the lax n-fold
monoidal categories in Question A.2.3 to the V-enriched setting.
● Extend the results in Chapter 2 to lax n-fold monoidal V-categories.

Analogous to Propositions II.10.1.14 and II.10.1.21, braided monoidal V-categories
should be examples of lax 2-fold monoidal V-categories, and symmetric monoidal
V-categories should be examples of lax n-fold monoidal V-categories for n ≥ 2.
Theorem II.10.4.5 says that small (n+ 1)-fold monoidal categories are precisely the
monoids in the monoidal category MCatn of small n-fold monoidal categories and
n-fold monoidal functors.

● Extend Theorem II.10.4.5 to the V-enriched setting. ◇
Question A.3.2 (Centers and Enriched Centers). The Drinfeld center of a mon-
oidal category is a braided monoidal category (Theorem II.1.4.27), and the sym-
metric center of a braided monoidal category is a symmetric monoidal category
(Proposition II.1.5.3). Moreover, the Drinfeld center and the symmetric center are
generalized to (i) the bimonoidal setting in Theorems II.4.4.3 and II.4.5.3 and (ii)
the ring categorical setting in Corollary II.9.6.1 and Theorem II.9.6.4.

● Define a center construction that sends an n-fold monoidal category (Def-
inition II.10.1.1) to an (n + 1)-fold monoidal category.

Theorem II.10.4.5 should be relevant.
● Repeat the previous question for

– n-monoidal categories (Question A.2.2),
– lax n-fold monoidal categories (Question A.2.3),
– En-monoidal categories (Definition II.10.7.2),
– Laplaza En-monoidal categories (Question A.2.6), and
– lax n-fold monoidal V-categories (Question A.3.1).

As a special case of the last item, the Drinfeld center of a monoidal V-category
with V strict is studied in [KYZZ∞, KZ18]. ◇
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Question A.3.3 (Autonomous Enriched Monoidal Categories). The definition of
a monoidal V-category K in [MP19, 2.1] assumes that V is braided strict monoi-
dal and K is strict monoidal, so it is the special case of Definition 1.4.2 with both
V and K strict. The main theorem in [MP19, 1.1] shows that, using their defini-
tion, there is a bijective correspondence between (i) some autonomous monoidal
V-categories and (ii) some braided oplax monoidal functors from V to the Drin-
feld center of an autonomous monoidal category. This bijective correspondence is
extended to a 2-equivalence between 2-categories in [Del∞, 1.2]. In bicategorical
language (Definition I.6.3.9), autonomy means that each object X ∈ K is equipped
with both a left adjoint X∗ and a right adjoint X∗ that satisfy the triangle identi-
ties. A (braided) monoidal functor (F, F2, F0) is oplax if its monoidal constraint F2

and unit constraint F0 go in the opposite directions as those in Definitions 1.1.6
and 1.1.17, with appropriately adjusted axioms. Discussion of autonomous mon-
oidal categories can be found in [FY92, JS91b, JS93].

● Extend the 2-equivalence in [Del∞, 1.2] to general monoidal V-categories
K, with V and K not necessarily strict, as in Definition 1.4.2.

To extend this 2-equivalence to the general nonstrict case, the coherence and stric-
tification results of enriched monoidal categories in Sections 2.5 and 2.6 will likely
be necessary. ◇

A.4. Homotopy Theory

Question A.4.1 (Homotopy Theory of Matrix Bicategories). In Example I.8.15.5,
we listed some examples of tight symmetric bimonoidal categories C, to which the
Bicategorification Theorem I.8.15.4 may be applied to yield a symmetric monoidal
bicategory MatC.

● What can be said about the homotopy theoretic properties of any of these
symmetric monoidal bicategories?
● Consider the previous question for the symmetric bimonoidal bicategor-

ies in Question A.1.2.
For instance, for the finite ordinal category Σ in Section I.2.4, MatΣ may be related
to a remark in [JO12] about the multiplicative structure on the categorical model
for the sphere spectrum. ◇
Question A.4.2 (Categorical Model of BP). The Brown-Peterson spectrum BP has
an E4 structure [BM13], but not an E∞ structure at any prime [Law18, Sen∞].
By Corollary 13.5.2, the Elmendorf-Mandell K-theory of each small En-monoidal
category is an En-symmetric spectrum.

● Is there a small E4-monoidal category (Definition II.10.7.2) whose K-
theory is BP?

A positive answer to this question would provide a categorical model of BP. If
Question A.5.7 has a positive answer for the 4-fold monoidal category operad
Mon4, then this question also has a positive answer, at least up to weak equiva-
lences. ◇
Question A.4.3 (Boardman-Vogt En-Operads). In a symmetric monoidal category
C, the commutative operad Com is the operad with each entry the monoidal unit
1 and structure morphisms given by the coherence isomorphism 1⊗ 1 ≅ 1. The
algebras of Com are precisely commutative monoids. One model of an E∞-operad
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(Definition 11.6.1) is WCom, where W is the Boardman-Vogt W-construction. In the
topological setting, it was introduced in [BV73]. For a conceptual presentation of
the W-construction in terms of coends in a general symmetric monoidal category,
see [Yau20, Ch. 6–7].

● Describe En-operads (Definition 12.2.3) for n ≥ 1 as a filtration of sub-
operads of WCom.
● Compare these models of En-operads to

– the n-fold monoidal category operad Monn (Definition 13.1.12),
– Berger’s filtration [Ber96] of the Barratt-Eccles operad N(EAs) (Def-

inition 11.4.10),
– Smith’s filtration [Smi89] of the Barratt-Eccles operad,
– Batanin’s En-operads [Bat07, Bat08],
– Fiedorowicz’s En-operads [Fie∞b], and
– the Fulton-MacPherson En-operads [Fre17, FM94, GJ∞, Sal01].

In [Yau20, 3.2.11 and 6.3.1], the W-construction of an operad in a symmetric mon-
oidal category is defined entrywise as a coend indexed by a substitution category
whose objects are trees and whose morphisms correspond to tree substitution.
This applies, in particular, to the commutative operad Com. So describing En-
operads as sub-operads of WCom would provide a combinatorial description of
En-operads in terms of trees. ◇

A.5. Algebraic K-Theory

Question A.5.1 (Multifunctorial K-Theory of Pointed Multicategories). Contrary
to the claim in [EM09, Theorem 1.3], Elmendorf-Mandell J-theory JEM (Defini-
tion 10.3.25) does not extend to a multifunctor on all of Multicat∗, the category
of small pointed multicategories, but only to the full subcategory ModM1 of left
M1-modules, via the symmetric monoidal Cat∗-functor JT (Theorem 10.3.17). Ex-
amples 10.2.15 and 10.2.16 present some small pointed multicategories that are not
leftM1-modules.

● Is there a K-theory multifunctor that is objectwise equivalent to Segal K-
theory KSe and extends to Multicat∗ via the endomorphism multicategory
End in Corollary 5.3.9 and Definition 6.5.1?

The key issue is about the monoidal units. In Multicat∗ the smash unit is S = I∐T
(Definition 5.6.20), which is different from the monoidal unitM1 in ModM1. Un-
like Definition 10.3.16 with JT (M1), the object JT (S) is the terminal G∗-category
∗. If the monoidal unit constraint (JT )0 for JT were to be defined as the unique
morphism J JT (S) = ∗ to the terminal object, as stated in the last paragraph
in [EM09, Section 5], then JT cannot satisfy the unity axioms (1.1.10). The reason
is that a general left or right unit isomorphism for JT (−) does not factor through
the zero morphism in G∗-Cat. So with J ∗ as the unit constraint, JT would not
be a monoidal functor. ◇
Question A.5.2 (Comparison of KSe and KEM for M1-Modules). The Segal and
Elmendorf-Mandell K-theory constructions are defined as the following compos-
ites, respectively:

KSe = KFN∗JMEnd and KEM = KGN∗JT End.
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The domain of JM is the category of small pointed multicategories, Multicat∗, and
the domain of JT is the category of leftM1-modules within Multicat∗. Thus both
KSe and KEM can be expanded to ModM1. We will write

ModM1 K̃Se = KFN∗JM
SymSp and ModM1 K̃EM = KGN∗JT

SymSp.

● Is there a (natural) level equivalence K̃SeP K̃EMP for each left M1-
module P?

The level equivalence KSeC KEMC given in Theorem 10.6.10 for each small
permutative category C depends crucially on the adjunctions of Proposition 10.6.7
and these, in turn, depend on Proposition 8.5.4, which gives a strong symmetric
monoidal adjunction

Cat∗(a,C) Multicat∗(Ma,End(C))
L

R

for each small permutative category C and each pointed finite set a. Therefore the
proof of Theorem 10.6.10 does not immediately generalize to K̃Se and K̃EM. ◇
Question A.5.3 (Homotopy Theory of G∗-Objects). Notes 8.6.4 and 8.6.6 summa-
rize equivalences of homotopy categories from the work of [BF78, Tho95, Man10]:

Ho(PermCatsu) ≃ Ho(Γ-Cat) ≃ Ho(Γ-sSet) ≃ Ho(SpN≥0),

where SpN≥0 denotes the category of connective sequential spectra. The composite
from the homotopy category of small permutative categories to that of connec-
tive spectra is induced by Segal K-theory, KSe. Therefore, by Theorem 10.6.10, the
composite on homotopy categories is equal to that induced by Elmendorf-Mandell
K-theory, KEM. However, KEM factors through G∗-Cat and G∗-sSet instead of Γ-Cat
and Γ-sSet.

As diagram categories, G∗-Cat and G∗-sSet have Quillen model structures de-
fined similarly to those of Γ-Cat and Γ-sSet. The functor

∧ ∶ G F
is described in Definition 9.1.15 and is used in the comparison of KF and KG in
Proposition 9.3.16. The induced functor from Γ-objects to G∗-objects is symmetric
monoidal by Theorem 9.4.18.

● Are the induced functors

Γ-Cat ∧∗ G∗-Cat and Γ-sSet ∧∗ G∗-sSet

(monoidal) Quillen equivalences?
Question A.5.7 poses a related question regarding categories of algebras over op-
erads. ◇
Question A.5.4 (K-Theory of Matrix Bicategories). There is a K-theory construc-
tion via the following composite on objects only.

Bitsy SMB PGray Γ2CatMat strictify K

Mat is the matrix construction in Theorem I.8.15.4 that sends a tight symmetric
bimonoidal category to a symmetric monoidal bicategory. The middle arrow is the
strictification of symmetric monoidal bicategories to permutative Gray monoids.
The right arrow is the K-theory of permutative Gray monoids in [GJO17b].
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● How does this compare with the K-theory of tight symmetric bimonoidal
categories in [BDR04], which is defined using the direct sum instead of
the tensor product of matrices?
● What extra structures on Γ-2-categories are there when it is the K-theory

of the strictification of MatC for some tight symmetric bimonoidal cate-
gory C, such as those in Example I.8.15.5 and VectCc in Example I.2.5.9? ◇

Question A.5.5 (K-Theory of Matrix Symmetric Bimonoidal Bicategories). Repeat
Question A.5.4 for

● the matrix symmetric bimonoidal bicategories in Question A.1.2 and
● the bipermutative Gray monoids in Question A.1.4. ◇

Question A.5.6 (K-Theory of Distortion Categories). Recall the finite ordinal cate-
gory Σ in Definition I.2.4.1. Here we consider Σ as a permutative category with re-
spect to its additive structure ⊕. Quillen’s +-construction (BΣ)+ of the classifying
space BΣ is the sphere spectrum by the Barratt-Priddy-Quillen Theorem [BP72].
A different way to say this is that the algebraic K-groups of Σ are the stable homo-
topy groups of the spheres.

● Can the algebraic K-groups of
– the distortion category D in Section I.4.2,
– the additive distortion category Dad in Section I.4.5, and
– the braided distortion category Dbr in Section II.5.2

be computed in similar terms?
By Examples 11.3.18, 11.6.13, and 12.5.4, respectively, KEMDad, KEMD, and KEMDbr

are strict ring, E∞-, and E2-symmetric spectra. Moreover, each of the distortion
categories D, Dad, and Dbr is a Grothendieck construction over Σ by, respectively,
Propositions I.4.6.5, I.4.6.7, and II.5.5.3.

● Does that yield a computation of their (B?)+ and algebraic K-groups? ◇
Question A.5.7 (Lifting K-Theory Equivalences to Algebras). The Segal K-theory
functor in Definition 8.5.1 induces an equivalence of homotopy categories, from
permutative categories to connective symmetric spectra. See Question A.5.3 for
further description and a related question about KEM.

● Do the (Quillen) equivalences in Segal’s K-theory lift to the categories of
algebras over categorical operads, such as the E2-operad Br and the En-
operads Monn in Theorems 12.2.4 and 13.2.1?

For a categorical operad P and a Cat-enriched multicategory M, such as PermCatsu

in Section 6.6, a P-algebra in M is defined as a Cat-enriched multifunctor

F ∶ P M.

This is equivalent to a Cat-enriched operad morphism

P End(A)
to the Cat-enriched endomorphism operad of the object A = F(∗), with ∗ the
unique object in the multicategory P. If the answer to this question is yes for
a categorical operad P, then Segal’s K-theory induces an equivalence between the
homotopy categories of (i) P-algebras in permutative categories and (ii) P-algebras
in connective symmetric spectra.

To answer this question, it is tempting to use [WY19, Th. 4.4 and 4.6], which
give sufficient conditions under which a Quillen equivalence between monoidal
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model categories lifts to a Quillen equivalence between the categories of algebras
over some colored operads. This will not work because the domain of Segal’s
K-theory is the multicategory PermCatsu (Section 6.6), which is not a symmetric
monoidal category, hence also not a monoidal model category. ◇
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List of Main Facts

Part I.1. Symmetric Bimonoidal Categories

Chapter I.1. Basic Category Theory

(1.1.11) An adjunction satisfies the triangle identities.
(p. I.11) A functor is an equivalence if and only if it is fully faithful and essentially
surjective.
(1.1.14) Left adjoints preserve colimits. Right adjoints preserve limits.
(1.2.1) A monoidal category satisfies the unity axiom and the pentagon axiom.
(1.2.7) A monoidal category satisfies the left and the right unity properties.
(1.3.3) Mac Lane’s Coherence Theorem. Any two words of the same length in a
monoidal category are connected by a unique canonical map.
(1.3.5) Mac Lane’s Strictification Theorem. Each monoidal category is adjoint
equivalent to a strict monoidal category via strong monoidal functors.
(1.3.8) Symmetric Coherence Theorem. Any two permuted words of the same
length in a symmetric monoidal category are connected by a unique permuted
canonical map.
(1.3.10) Symmetric Strictification Theorem. Each symmetric monoidal category
is adjoint equivalent to a permutative category via strong symmetric monoidal
functors.
(1.3.12) Epstein’s Coherence Theorem. For each (symmetric) monoidal functor
F ∶ C D and F-iterates G, H ∶ Cn D, there exists at most one F-coherent
map G H.

Chapter I.2. Symmetric Bimonoidal Categories

(2.1.2) A symmetric bimonoidal category has two symmetric monoidal structures,
left/right multiplicative zero natural isomorphisms, and left/right distributivity
natural monomorphisms, and satisfies 24 axioms.
(2.1.2) A bimonoidal category is defined in the same way as a symmetric bimonoi-
dal category, but without the multiplicative symmetry ξ⊗ and the two axioms that
involve ξ⊗. So a bimonoidal category is defined by the other 22 axioms.
(2.1.32) There is a tight symmetric bimonoidal category VectC of finite dimensional
complex vector spaces.
(2.2.13) Half of the 24 axioms in a symmetric bimonoidal category are formal con-
sequences of the others.
(2.2.14) One axiom is redundant in a bimonoidal category, which is, therefore, de-
termined by 21 axioms.
(2.3.2) Each distributive symmetric monoidal category yields a tight symmetric
bimonoidal category, whose sum is the coproduct.
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(2.3.3–2.3.5) Symmetric monoidal closed categories with finite coproducts, the cat-
egory of modules over a commutative ring, and distributive categories are exam-
ples of tight symmetric bimonoidal categories.
(2.4.8) The category Σ of finite ordinals and permutations is a tight symmetric
bimonoidal category.
(2.4.23) The variant Σ′ of Σ is a tight symmetric bimonoidal category.
(2.5.7) Each right bipermutative category is a tight symmetric bimonoidal category.
(2.5.8–2.5.9) Σ′ and VectCc are right bipermutative categories.
(2.5.16) Each left bipermutative category is a tight symmetric bimonoidal category.
(2.5.17) Σ is a left bipermutative category.
(2.6.2) There is a symmetric bimonoidal groupoid Π with syntax of finite types as
objects and Π-terms and Π-combinators as morphisms.

Chapter I.3. Coherence of Symmetric Bimonoidal Categories

(3.1.6) In the elementary graph Grel(X), δl and δr do not have formal inverses.
(3.1.8) Each prime edge involves at most one nonidentity elementary edge.
(3.1.9) The graph Gr(X) consists of the vertex set Xfr and prime edges.
(3.1.14) Each functor φ ∶ X Ob(C) extends additively and multiplicatively to
a graph morphism φ ∶ Gr(X) C.
(3.1.18) The value in C of a path in Gr(X) is the composite of the images of its
constituent prime edges under φ.
(3.1.25) An element in Xfr is regular if it has the same support as a formal poly-
nomial whose monomials are distinct in the strict {⊕,⊗}-algebra Xst, and whose
factors in each monomial are distinct elements in X.
(3.1.29) Any two elements in Xfr connected by a path in Gr(X) have the same
support, and one of them is regular if and only if the other one is regular.
(3.2.15) For an element in Xfr, the size is equal to the rank if and only if it is a sum,
with each summand either in X or a product of two elements in X.
(3.3.6) Each element in Xfr has a 0X-reduction.
(3.3.11–3.3.12) Any two 0X-reductions of an element in Xfr have the same codomain
and the same value in a symmetric bimonoidal category.
(3.5.32) Each path in Gr(X) has a 0X-reduction.
(3.5.33) Any two parallel paths in Gr(X) whose domain has the same support as
0X have the same value in a symmetric bimonoidal category.
(3.6.5) An element in Xfr is a polynomial if and only if it is δ-reduced.
(3.6.9) Each element in Xfr has a δ-reduction.
(3.7.19) Each path in Gr(X) that does not contain 0X has a (0X, δ)-reduction.
(3.8.5–3.8.7) Each element in Xfr has a 1X-reduction. If the original element is δ-
reduced, then all of its 1X-reductions have the same codomain and the same value
in a symmetric bimonoidal category.
(3.8.14) Each (0X, δ)-free path in Gr(X) whose (co)domain is δ-reduced has a 1X-
reduction.
(3.9.1) Laplaza’s First Coherence Theorem. In each symmetric bimonoidal cate-
gory C satisfying a monomorphism assumption, any two parallel paths in Gr(X)
with a regular domain have the same value in C.
(3.9.9–3.9.10) Theorem I.3.9.1 applies to symmetric bimonoidal categories that are
flat, in particular, tight.
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(3.10.7) Bimonoidal Coherence Theorem. In each bimonoidal category C satisfy-
ing a monomorphism assumption, any two parallel paths in Grns(X) with a non-
symmetric regular domain have the same value in C.
(3.10.8) Theorem I.3.10.7 applies to flat, in particular, tight, bimonoidal categories.

Chapter I.4. Coherence of Symmetric Bimonoidal Categories II

(4.2.1) In the distortion category, each object is a finite sequence of nonnegative
integers, and each morphism is a finite sequence of permutations.
(4.2.5) The distortion category is a groupoid.
(4.2.12) The additive structure of the distortion category is a permutative category.
(4.2.19) The multiplicative structure of the distortion category is a permutative
category.
(4.2.29) The distortion category is a left bipermutative category.
(4.3.1) For a path in Gr(X), its distortion is defined as its value in the distortion
category.
(4.4.3) Laplaza’s Second Coherence Theorem. In each symmetric bimonoidal cat-
egory C satisfying a monomorphism assumption, any two parallel paths in Gr(X)
with the same distortion have the same value in C.
(4.4.5) Theorem I.4.4.3 applies to symmetric bimonoidal categories that are flat, in
particular, tight.
(4.5.2) In the additive distortion category, each object is a finite sequence of non-
negative integers, and each morphism is a permutation.
(4.5.6) The additive distortion category is a groupoid and a tight bimonoidal cate-
gory. It faithfully embeds into the distortion category.
(4.5.7) For a path in Grns(X), its additive distortion is defined as its value in the
additive distortion category.
(4.5.8) Bimonoidal Coherence Theorem II. In each bimonoidal category C satis-
fying a monomorphism assumption, any two parallel paths in Grns(X) with the
same additive distortion have the same value in C.
(4.5.9) Theorem I.4.5.8 applies to flat, in particular, tight, bimonoidal categories.
(4.6.5) The distortion category D is isomorphic to the Grothendieck construction
∫Σ F.
(4.6.7) The additive distortion categoryDad is isomorphic to the Grothendieck con-
struction ∫Σ Fad.

Chapter I.5. Strictification of Tight Symmetric Bimonoidal Categories

(5.1.1) A symmetric bimonoidal functor is a functor equipped with two symmetric
monoidal functor structures, and satisfies two axioms.
(5.1.10) There is a 1-category Bisy of small symmetric bimonoidal categories and
symmetric bimonoidal functors.
(5.1.11) Each symmetric monoidal functor between distributive symmetric monoi-
dal categories induces a symmetric bimonoidal functor.
(5.1.15–5.1.16) Σ and Σ′ are isomorphic via symmetric bimonoidal functors.
(5.3.9) Each tight symmetric bimonoidal category C has an associated right biper-
mutative category A, whose objects are formal polynomials in the objects in C.
(5.4.6–5.4.7) Bipermutative Strictification Theorems. Each tight symmetric bi-
monoidal category is adjoint equivalent to a right/left bipermutative category via
symmetric bimonoidal functors.
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(5.5.1) A bimonoidal functor is a functor equipped with an additive symmetric
monoidal functor structure and a multiplicative monoidal functor structure that
satisfies four axioms.
(5.5.4) There is a 1-category Bi of small bimonoidal categories and bimonoidal
functors.
(5.5.10) Each tight bimonoidal category C has an associated right rigid bimonoidal
category A, whose objects are formal polynomials in the objects in C.
(5.5.11–5.5.12) Rigid Strictification Theorems. Each tight bimonoidal category is
adjoint equivalent to a right/left rigid bimonoidal category via bimonoidal func-
tors.

Part I.2. Bicategorical Aspects of Symmetric Bimonoidal Categories

Chapter I.6. Definitions from Bicategory Theory
(6.1.2) A bicategory has objects, (identity) 1-cells, (identity) 2-cells, vertical and
horizontal compositions, an associator, and two unitors, and satisfies the unity
axiom and the pentagon axiom.
(6.1.8) A 2-category is a bicategory whose associator and unitors are identities.
(6.1.10) A 2-category can be described by data and axioms.
(6.1.11) A locally small 2-category is precisely a Cat-category.
(6.1.16) A monoidal category is a one-object bicategory.
(6.2.1) A lax functor has an object assignment, local functors, and two laxity con-
straints, and satisfies the lax associativity axiom and the lax unity axioms.
(6.2.11) There is a 1-category Bicat with small bicategories as objects and lax func-
tors as morphisms.
(6.2.14) A lax transformation has component 1-cells and natural component 2-cells,
and satisfies the lax unity axiom and the lax naturality axiom.
(6.2.26) There is a 2-category 2Cat of small 2-categories, 2-functors, and 2-natural
transformations.
(6.3.1) A modification has component 2-cells and satisfies the modification axiom.
(6.3.7) For bicategories B and B′ with Ob(B) a set, there is a bicategory Bicat(B,B′)
with lax functors B B′ as objects, lax transformations as 1-cells, and modifica-
tions as 2-cells. It is a 2-category if B′ is a 2-category. It contains a full subbicate-
gory Bicatps(B,B′) with pseudofunctors as objects and strong transformations as
1-cells.
(6.3.9) An adjunction in a bicategory consists of two 1-cells and two 2-cells, and
satisfies two triangle identities.
(6.4.1) A monoidal bicategory has a base bicategory, a monoidal composition, a
monoidal identity, a monoidal associator, two monoidal unitors, a pentagonator,
and three 2-unitors, and satisfies the non-abelian 4-cocycle condition and two nor-
malization axioms.
(6.5.3) A braided monoidal bicategory is a monoidal bicategory equipped with a
braiding and two hexagonators, and satisfies four axioms.
(6.5.7) A sylleptic monoidal bicategory is a braided monoidal bicategory equipped
with a syllepsis that satisfies two axioms.
(6.5.9) A symmetric monoidal bicategory is a sylleptic monoidal bicategory that
satisfies the triple braid axiom.
(6.6.12) The 1-category 2Cat equipped with the Gray tensor product is a symmetric
monoidal closed category Gray.
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(6.6.13) A Gray monoid is a monoid in Gray.
(6.7.1) A permutative Gray monoid is a Gray monoid equipped with a Gray sym-
metry that satisfies three axioms.
(6.7.16) A permutative 2-category is a monoid in (2Cat,×) that is equipped with a
symmetry 2-natural isomorphism and that satisfies the same three axioms as for
permutative Gray monoids.

Chapter I.7. Baez’s Conjecture

(7.1.2) A bimonoidal natural transformation is a natural transformation that is a
monoidal natural transformation for each of the additive structure and the multi-
plicative structure.
(7.1.7) There is a 2-category Bisy of small symmetric bimonoidal categories, sym-
metric bimonoidal functors, and bimonoidal natural transformations.
(7.1.9) Each monoidal natural transformation between symmetric monoidal func-
tors between distributive symmetric monoidal categories is a bimonoidal natural
transformation.
(7.2.9) For each symmetric bimonoidal category C, there is a strong symmetric
monoidal functor F⊕ ∶ Σ C between the additive structures.
(7.3.28) For each flat symmetric bimonoidal category C, there is a symmetric mon-
oidal functor F⊗ ∶ Σ C between the multiplicative structures.
(7.4.4) For each flat symmetric bimonoidal category C, F ∶ Σ C is a robust
symmetric bimonoidal functor.
(7.5.8) Epstein’s Coherence Theorem I.1.3.12 has a bimonoidal analogue.
(7.6.2–7.6.3) For a symmetric bimonoidal category C and robust symmetric bimon-
oidal functors G, H ∶ Σ C, there is at most one bimonoidal natural transforma-
tion G H, which must be invertible if it exists.
(7.7.9) For each flat symmetric bimonoidal category C and robust symmetric bi-
monoidal functor G ∶ Σ C, there exists a unique bimonoidal natural transfor-
mation θ ∶ F G, which is, moreover, invertible.
(7.8.1) Baez’s Conjecture. Σ is a lax bicolimit of the 2-functor ∅ Bifsyr .
(7.8.3) Baez’s Conjecture, Ver. 2. Σ′ is a lax bicolimit of the 2-functor ∅ Bifsyr .

Chapter I.8. Symmetric Monoidal Bicategorification

(8.1.1) For a category C, MatCm,n has n ×m matrices of objects in C as objects and
n ×m matrices of morphisms in C as morphisms.
(8.1.8) The matrix product is a functor.
(8.2.2) There is a natural isomorphism ℓA ∶ 1n A ≅ A for each flat bimonoidal
category C and A ∈MatCm,n.

(8.2.8) There is a natural isomorphism rA ∶ A1m ≅ A for each flat bimonoidal
category C and A ∈MatCm,n.

(8.3.1) There is a natural isomorphism a ∶ (CB)A ≅ C(BA) for each tight bimon-
oidal category C.
(8.4.12) For each tight bimonoidal category C, MatC is a bicategory.
(8.4.14) MatCn,n is a monoidal category.
(8.6.7) The matrix tensor product is a functor.
(8.7.31) The triple (⊠,⊠2,⊠0) on MatC is a pseudofunctor.
(8.8.49) The quadruple (a⊠, a⊠ ●, ηa, εa) is an adjoint equivalence.
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(8.9.9) The quadruple (ℓ⊠, ℓ⊠ ●, ηℓ, εℓ) is an adjoint equivalence.
(8.9.21) The quadruple (r⊠, r⊠ ●, ηr, εr) is an adjoint equivalence.
(8.10.4) π is an invertible modification.
(8.11.4) µ is an invertible modification.
(8.11.9) λ⊠ is an invertible modification.
(8.11.14) ρ⊠ is an invertible modification.
(8.12.9) For each tight symmetric bimonoidal category C, MatC is a monoidal bicat-
egory.
(8.13.13) For σ ∈ Σm, there is a natural isomorphism rσ

A ∶ A1σ ≅ Aσ for A ∈
MatCm,n.

(8.13.16) For θ ∈ Σn, there is a natural isomorphism ℓθ
A ∶ 1θ A ≅

θ−1 A for A ∈
MatCm,n.
(8.13.20) The matrix tensor products A⊠ B and B⊠ A differ by a column permuta-
tion, a row permutation, and a multiplicative symmetry in each entry.
(8.13.44) The quadruple (β, β ●, ηβ, εβ) is an adjoint equivalence.
(8.14.12) R−∣−− is an invertible modification.
(8.14.24) R−−∣− is an invertible modification.
(8.14.26) For each tight symmetric bimonoidal category C, MatC is a braided mon-
oidal bicategory.
(8.15.4) Bicategorification Theorem. For each tight symmetric bimonoidal cate-
gory C, MatC is a symmetric monoidal bicategory.
(8.15.5) Coordinatized 2-vector spaces 2Vectc =MatVect

C

form a symmetric monoi-
dal bicategory.

Part II.1. Braided Bimonoidal Categories

Chapter II.1. Preliminaries on Braided Structures
(1.1.1) The braid group Bn on n strings is generated by s1, . . . , sn−1 and subject to
two braid relations.
(1.1.9) Sum braids generalize block sums of permutations.
(1.1.12) Each braid has an underlying permutation.
(1.1.20) Block braids generalize block permutations.
(1.2.4) Elementary block braids generalize interval-swapping permutations.
(1.2.14) Elementary block braids are compatible with sum braids.
(1.2.16) Elementary block braids satisfy the hexagon axioms.
(1.3.15) A braided monoidal category is a monoidal category equipped with a
braiding that satisfies two hexagon axioms.
(1.3.18) A braided monoidal functor is defined in the same way as a symmetric
monoidal functor.
(1.3.21) In each braided monoidal category, the left unit isomorphism uniquely
determines the right unit isomorphism, and vice versa, via the braiding.
(1.3.28, 1.3.31) Each braided monoidal category satisfies the third Reidemeister
move.
(1.3.36) A symmetric monoidal category is precisely a braided monoidal category
whose braiding satisfies the symmetry axiom.
(1.4.27) The Drinfeld center of a monoidal category is a braided monoidal category.
(1.5.3) The symmetric center of a braided monoidal category is a symmetric mon-
oidal category.



LIST OF MAIN FACTS III.549

(1.6.3) Braided Coherence Theorem. Two braided canonical maps with the same
(co)domain in a braided monoidal category are equal if their underlying braids
are equal.
(1.6.5) Braided Strictification Theorem. Each braided monoidal category is ad-
joint equivalent to a braided strict monoidal category via strong braided monoidal
functors.

Chapter II.2. Braided Bimonoidal Categories
(2.1.29) A braided bimonoidal category is a category equipped with an addi-
tive symmetric monoidal structure, a multiplicative braided monoidal structure,
left/right multiplicative zero natural isomorphisms, and left/right distributivity
natural monomorphisms, and satisfies twelve Laplaza’s axioms and two addi-
tional axioms involving the braiding.
(2.1.37) Tight braided bimonoidal categories are equivalent to BD categories in the
sense of Blass and Gurevich.
(2.2.1) Each braided bimonoidal category satisfies all 24 Laplaza axioms.
(2.2.3) A symmetric bimonoidal category is precisely a braided bimonoidal cate-
gory whose braiding satisfies the symmetry axiom.
(2.3.2) In an Ab-category, composition with a zero morphism yields a zero mor-
phism, and composition commutes with taking the additive inverse of a mor-
phism.
(2.3.7 (1)) For any two objects in an Ab-category, a product, a coproduct, and a
direct sum are equivalent.
(2.3.7 (2)) In an Ab-category, the direct sum morphism f ⊕ f ′ can be characterized
in terms of the inclusions.
(2.3.7 (3)) In an Ab-category, the sum morphism f + g factors as ∇B( f ⊕ g)∆A.
(2.3.7 (4)) A functor between Ab-categories whose domain has all direct sums is an
additive functor if and only if it preserves direct sums.
(2.3.12) For any two objects in a preadditive category, the zero morphism is the
unique morphism that factors through the zero object.
(2.3.15) An abelian category is an Ab-category with a zero object, a direct sum for
any two objects, and a (co)kernel for each morphism, such that (i) each monomor-
phism is a kernel and (ii) each epimorphism is a cokernel.
(2.3.17) Each abelian category has all finite (co)limits, with (co)products given by
direct sums.
(2.4.22) An abelian category with a compatible braided monoidal structure is a
tight braided bimonoidal category.
(2.5.1–2.5.2) An abelian category with a compatible (symmetric) monoidal struc-
ture is a tight (symmetric) bimonoidal category.

Chapter II.3. Applications to Quantum Groups and Topological Quantum
Computation

(3.1.19) A braided bialgebra is a bialgebra equipped with an R-matrix that satisfies
two axioms. A symmetric bialgebra is a braided bialgebra in which the inverse of
the R-matrix is its opposite.
(3.1.27–3.1.30) Each cocommutative bialgebra is a symmetric bialgebra with the
R-matrix 1⊗ 1. Examples include group bialgebras, the universal enveloping bial-
gebra of a Lie algebra, and Sweedler’s 4-dimensional non-(co)commutative bial-
gebra.
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(3.1.33) Each anyonic quantum group is a braided bialgebra.
(3.2.6) The category of left modules over each bialgebra is a monoidal category
under the tensor product.
(3.2.12) The category of left modules over each braided bialgebra is a braided mon-
oidal category.
(3.2.13) The category of left modules over each symmetric bialgebra is a symmetric
monoidal category.
(3.2.19) The category of left modules over each bialgebra is a tight bimonoidal
category. The braided and the symmetric analogues are also true.
(3.3.27) The Fibonacci anyons form a monoidal category.
(3.4.5) The Fibonacci anyons form a braided monoidal category.
(3.4.13) The Fibonacci anyons form a tight braided bimonoidal category.
(3.5.27) The Ising anyons form a monoidal category.
(3.6.7) The Ising anyons form a braided monoidal category.
(3.6.14) The Ising anyons form a tight braided bimonoidal category.

Chapter II.4. Bimonoidal Centers

(4.2.6) The additive structure of the bimonoidal Drinfeld center is a symmetric
monoidal category.
(4.3.3) The multiplicative structure of the bimonoidal Drinfeld center is a braided
monoidal category.
(4.4.3) For each tight bimonoidal category, the bimonoidal Drinfeld center is a tight
braided bimonoidal category.
(4.5.3) For each braided bimonoidal category, the bimonoidal symmetric center is
a symmetric bimonoidal category.

Chapter II.5. Coherence of Braided Bimonoidal Categories

(5.1.2) A left permbraided category has an additive permutative structure, a mul-
tiplicative braided strict monoidal structure, and identities for λ ●, ρ ●, δl , ξ⊗−,0, and
ξ⊗0,−, and satisfies four braided bimonoidal category axioms.
(5.1.8) Each left bipermutative category is a left permbraided category.
(5.1.10) Each left permbraided category is a tight braided bimonoidal category.
(5.1.11) A right permbraided category has an additive permutative structure, a
multiplicative braided strict monoidal structure, and identities for λ ●, ρ ●, δr, ξ⊗−,0,
and ξ⊗0,−, and satisfies four braided bimonoidal category axioms.
(5.1.17) Each right bipermutative category is a right permbraided category.
(5.1.19) Each right permbraided category is a tight braided bimonoidal category.
(5.2.7) The braided distortion category is a groupoid.
(5.2.13) The additive structure of the braided distortion category is a permutative
category.
(5.2.21) The multiplicative structure of the braided distortion category is a braided
strict monoidal category.
(5.2.28) In the braided distortion category, the right distributivity morphism δr has
identity braid components.
(5.2.30) The braided distortion category is a left permbraided category.
(5.2.33–5.2.34) The braided distortion category is a tight braided bimonoidal cate-
gory and satisfies all 24 Laplaza axioms.
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(5.3.14) For a path in Gr(X), its value in a braided bimonoidal category is the com-
posite of the images of its constituent prime edges.
(5.3.15) The braided distortion of a path in Gr(X) is its value in the braided distor-
tion category.
(5.4.4) Braided Bimonoidal Coherence Theorem. In each braided bimonoidal cat-
egory C satisfying a monomorphism assumption, any two parallel paths in Gr(X)
with the same braided distortion have the same value in C.
(5.4.6) Theorem II.5.4.4 applies to flat, in particular, tight, braided bimonoidal cat-
egories.
(5.5.3) The braided distortion category Dbr is isomorphic to the Grothendieck con-
struction ∫Σ Fbr.

Chapter II.6. Strictification of Tight Braided Bimonoidal Categories

(6.1.1) A braided bimonoidal functor is a functor equipped with an additive sym-
metric monoidal structure and a multiplicative braided monoidal structure, and
satisfies two axioms.
(6.1.10) There is a category Bibr with small braided bimonoidal categories as objects
and braided bimonoidal functors as morphisms.
(6.1.12) Each braided monoidal functor that is also an additive functor between
abelian categories with a compatible braided monoidal structure canonically ex-
tends to a braided bimonoidal functor.
(6.1.15) Each symmetric monoidal functor that is also an additive functor between
abelian categories with a compatible symmetric monoidal structure canonically
extends to a symmetric bimonoidal functor.
(6.2.39) Each tight braided bimonoidal category has a canonically associated right
permbraided category.
(6.3.6–6.3.7) Permbraided Strictification. Each tight braided bimonoidal category
is adjoint equivalent to a right/left permbraided category via braided bimonoidal
functors.

Chapter II.7. The Braided Baez Conjecture

(7.1.4) There is a 2-category Bibr of small braided bimonoidal categories, braided
bimonoidal functors, and bimonoidal natural transformations.
(7.1.7) Each monoidal natural transformation between braided monoidal func-
tors that are also additive functors between abelian categories with a compatible
braided monoidal structure is a bimonoidal natural transformation.
(7.2.4) For each braided bimonoidal category C, there is a strong symmetric mon-
oidal functor F⊕ ∶ Σ C between the additive structures.
(7.2.9) For each flat braided bimonoidal category C, there is a braided monoidal
functor F⊗ ∶ Σ C between the multiplicative structures.
(7.2.11) For each flat braided bimonoidal category C, F ∶ Σ C is a robust
braided bimonoidal functor.
(7.3.4) Braided Baez Conjecture. Σ is a lax bicolimit of the 2-functor ∅ Bifbrr .
(7.3.6) Braided Baez Conjecture, Ver. 2. Σ′ is a lax bicolimit of the 2-functor
∅ Bifbrr .

Chapter II.8. Monoidal Bicategorification

(8.1.13) For each tight braided bimonoidal category C, MatC is a bicategory.
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(8.4.7) For each tight braided bimonoidal category C, MatC is a monoidal bicate-
gory.

Part II.2. En-Monoidal Categories

Chapter II.9. Ring, Bipermutative, and Braided Ring Categories

(9.1.15) Tight ring categories form a subclass of tight bimonoidal categories.
(9.1.19) Right and left rigid bimonoidal categories are tight ring categories.
(9.1.20) Each tight ring category is adjoint equivalent to a right, respectively, left,
rigid bimonoidal category.
(9.2.14) Each small permutative category has an endomorphism ring category.
(9.2.20) Each small permutative category has an endomorphism tight ring cate-
gory.
(9.3.7) Each tight bipermutative category yields a tight symmetric bimonoidal cat-
egory.
(9.3.12) Right and left bipermutative categories are tight bipermutative categories.
(9.3.13) Each tight bipermutative category is adjoint equivalent to a right, respec-
tively, left, bipermutative category.
(9.4.7) In a bipermutative category, about half of the ring category axioms are re-
dundant.
(9.5.4) A bipermutative category is a braided ring category whose braiding satis-
fies the symmetry axiom.
(9.5.5) In a braided ring category, about half of the ring category axioms are redun-
dant.
(9.5.6) Tight braided ring categories form a subclass of tight braided bimonoidal
categories.
(9.5.10) Right and left permbraided categories are tight braided ring categories.
(9.5.11) Each tight braided ring category is adjoint equivalent to a right, respec-
tively, left, permbraided category.
(9.6.1) The bimonoidal Drinfeld center of a tight ring category is a tight braided
ring category.
(9.6.4) The symmetric center of a braided ring category with left factorization a
natural epimorphism is a bipermutative category.

Chapter II.10. Iterated and En-Monoidal Categories

(10.1.9) A 1-fold monoidal category is a strict monoidal category.
(10.1.14) Braided strict monoidal categories form a subclass of 2-fold monoidal
categories.
(10.1.21) Permutative categories form a subclass of n-fold monoidal categories for
each n ≥ 2.
(10.2.3) A totally ordered set with a least element forms a permutative category
with identity symmetry.
(10.2.8) A totally ordered monoid whose unit is also the least element forms a 2-
fold monoidal category.
(10.3.7) A 1-fold monoidal functor is a strictly unital monoidal functor.
(10.3.11) A braided strictly unital monoidal functor is a 2-fold monoidal functor.
(10.3.15) A symmetric strictly unital monoidal functor is an n-fold monoidal func-
tor for each n ≥ 2.
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(10.3.20) The composite of two n-fold monoidal functors is an n-fold monoidal
functor.
(10.4.2) MCatn is a monoidal category.
(10.4.5) Monoids in MCatn are small (n + 1)-fold monoidal categories.
(10.4.13) A morphism of monoids in MCatn is an (n + 1)-fold monoidal functor
with the last monoidal constraint the identity.
(10.5.9) FMonn ∶ Cat MCatn

st is the left adjoint of the forgetful functor.
(10.5.18) FMonn(C) decomposes into a coproduct∐k≥0 Monn(k)×Σk C

×k.
(10.5.26)∐k≥0 Monn(k)/Σk is the free n-fold monoidal category on one object.
(10.5.28) There are evaluation functors θk ∶ Monn(k) ×Σk C

×k C for each small
n-fold monoidal category C.
(10.6.8 (1)) Each morphism set in Monn(k) has at most one morphism.
(10.6.8 (2)) There exists a morphism A B ∈Monn if and only if a⊗i b ∈ A implies
either a⊗j b ∈ B for some j ≥ i or b⊗j a ∈ B for some j > i.
(10.6.9) In each n-fold monoidal category, each formal diagram built from identity
morphisms, the exchanges {ηi,j}i<j, the monoidal products {⊗i}n

i=1, and compos-
ites is commutative.
(10.7.13) An E1-monoidal category is a ring category.
(10.8.1) Braided ring categories form a subclass of E2-monoidal categories.
(10.9.1) Bipermutative categories form a subclass of En-monoidal categories for
each n ≥ 2.
(10.10.2) Each small category has a free En-monoidal category.

Part III.1. Enriched Monoidal Categories and Multicategories

Chapter III.1. Enriched Monoidal Categories
(1.1.31) Mac Lane’s Coherence Theorem. Any two words of the same length in a
monoidal category are connected by a unique canonical map.
(1.1.32) Mac Lane’s Strictification Theorem. Each monoidal category is adjoint
equivalent to a strict monoidal category via strong monoidal functors.
(1.1.38) Braided Coherence Theorem. Two braided canonical maps with the same
(co)domain in a braided monoidal category are equal if their underlying braids
are equal.
(1.1.39) Braided Strictification Theorem. Each braided monoidal category is ad-
joint equivalent to a braided strict monoidal category via strong braided monoidal
functors.
(1.1.41) Symmetric Coherence Theorem. Any two permuted words of the same
length in a symmetric monoidal category are connected by a unique permuted
canonical map.
(1.1.42) Symmetric Strictification Theorem. Each symmetric monoidal category
is adjoint equivalent to a permutative category via strong symmetric monoidal
functors.
(1.1.44) Epstein’s Coherence Theorem. For each (symmetric) monoidal functor
F ∶ C D and F-iterates G, H ∶ Cn D, there exists at most one F-coherent
map G H.
(1.2.1) For a monoidal category V, a V-category has hom objects in V satisfying
associativity and unity axioms.
(1.2.4) A V-functor satisfies composition and identity axioms.
(1.2.7) A V-natural transformation satisfies a naturality axiom.
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(1.2.13) There is a 2-category formed by small V-categories, V-functors, and V-
natural transformations.
(1.2.16) The opposite of a V-category is defined if V is braided monoidal.
(1.3.3) The tensor product of V-categories is defined if V is braided monoidal.
(1.3.6) The tensor product of V-categories is 2-functorial.
(1.3.35) The underlying 1-category of V-Cat is monoidal if V is braided, and is
symmetric monoidal if V is symmetric.
(1.4.2) A monoidal V-category has associator and unitor V-natural transformations
that satisfy unity axioms and a pentagon axiom.
(1.4.7) Composition in a monoidal V-category has an enriched interchange.
(1.4.10) The definition of braided monoidal V-category requires that V be symmet-
ric monoidal.
(1.4.10) A braided monoidal V-category has a V-natural braiding satisfying two
hexagon axioms.
(1.4.13) A symmetric monoidal V-category is a braided monoidal V-category satis-
fying an additional symmetry axiom.
(1.4.17) A monoidal V-functor satisfies associativity and unity axioms.
(1.4.18) A braided monoidal V-functor satisfies a braid axiom. A symmetric mon-
oidal V-functor is a braided monoidal V-functor whose domain and codomain are
symmetric monoidal V-categories.
(1.4.22) A monoidal V-natural transformation satisfies monoidal naturality and
monoidal unity axioms.
(1.4.25) There are 2-categories formed by each of: monoidal V-categories, braided
monoidal V-categories, and symmetric monoidal V-categories with, in each case,
the corresponding V-functors and V-natural transformations.
(1.5.1) We use the term Cat-monoidal 2-category to indicate monoidal V-categories
when V = Cat.
(1.5.2) The underlying 1-category of a plain/braided/symmetric Cat-monoidal 2-
category has the corresponding structure as a 1-category.
(1.5.3) A Cat-monoidal 2-category has a strict form of the data and axioms for
a monoidal bicategory. Similar statements hold for the braided and symmetric
cases.
(1.5.4) With the Cartesian product, Cat is a symmetric Cat-monoidal 2-category.
(1.5.5) For a braided monoidal category V, V-Cat is a Cat-monoidal 2-category. If
V is symmetric, then so is V-Cat.

Chapter III.2. Change of Enrichment

(2.1.2) Change of enrichment along a monoidal functor U is 2-functorial.
(2.1.7) The functor from V-Cat to Cat that takes underlying categories is injective
on 2-cells.
(2.2.7) The assignment E ∶ V V-Cat is 2-functorial with respect to monoidal
functors and monoidal natural transformations.
(2.2.11) For small monoidal V, there is a 2-equivalence between V-Cat and (Vst)-Cat.
(2.3.7) If U is braided moniodal, then the change of enrichment induced by U is a
Cat-monoidal 2-functor. If U is symmetric, then so is the change of enrichment.
(2.3.9) The assignment E ∶ V V-Cat of braided monoidal categories to Cat-
monoidal 2-categories is 2-functorial. A similar result holds for symmetric monoi-
dal categories with E producing symmetric Cat-monoidal categories.
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(2.3.16) For small symmetric monoidal V, there is a symmetric Cat-monoidal 2-
equivalence between V-Cat and (Vst)-Cat.
(2.4.10, 2.4.15) For braided monoidal U ∶ V W, change of enrichment along U
induces 2-functors between the 2-categories of monoidal V- and W-categories. If
U is symmetric, then a similar result holds for braided and symmetric monoidal
V- and W-categories.
(2.4.17) The underlying category of a monoidal V-category is monoidal. Similar
statements hold for braided and symmetric cases, and for functors and natural
transformations.
(2.5.1) Given the data of a monoidal V-category, the enriched monoidal category
axioms are satisfied if and only if the underlying data satisfy the ordinary monoi-
dal category axioms. Similar results hold for the braided and symmetric monoidal
cases, and also for functors and natural transformations.
(2.5.6) Enriched (Braided/Symmetric) Monoidal Coherence Theorem. Any two
V-words of the same length in a monoidal V-category are connected by a unique
canonical V-map. Similar coherence results hold in the braided and symmetric
cases.
(2.5.8) Enriched Epstein’s Coherence Theorem. For each (symmetric) monoidal
V-functor F ∶ K L, and F-iterates G, H ∶ K⊗n L, there exists at most one
F-coherent map G H.
(2.6.1) Enriched Monoidal Strictification Theorem. Each monoidal V-category
is adjoint V-equivalent to a strict monoidal V-category via strong monoidal V-
functors.
(2.6.3) Enriched Braided Strictification Theorem. Each braided monoidal V-
category is adjoint V-equivalent to a braided strict monoidal V-category via strong
braided monoidal V-functors.
(2.6.4) Enriched Symmetric Strictification Theorem. Each symmetric monoidal
V-category is adjoint V-equivalent to a strict monoidal V-category via strong sym-
metric monoidal V-functors.

Chapter III.3. Self-Enrichment and Enriched Yoneda

(3.1.11) Each symmetric monoidal closed V has a canonical enrichment over itself,
V.
(3.2.1, 3.2.2) A category enriched over symmetric monoidal closed V has co/represented
V-functors YX and YY to V.
(3.3.2) The self-enriched category V is symmetric monoidal as a V-category.
(3.3.4) The standard enrichment of a symmetric monoidal functor is symmetric
monoidal in the enriched sense.
(3.4.12) V-Yoneda Bijection Theorem. For each V-functor F ∶ C V and each
X ∈ C, there is a bijection of sets V-nat(YX , F) ≅ V(1, FX). For each V-functor
G ∶ Cop V and each Y ∈ C, there is a bijection of sets V-nat(YY, G) ≅ V(1, GY).
(3.5.1) A V-coend is initial among V-cowedges. A V-end is terminal among V-
wedges.
(3.5.5) If V is cocomplete, then V-coends are computed by a coequalizer in V. If V
is complete, then V-ends are computed by an equalizer in V.
(3.5.12) For V complete symmetric monoidal closed, the mapping object for V-
functors to V is given by a V-end.
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(3.6.9) V-Yoneda Lemma. For a V-functor F ∶ C V with C small, there is a
V-natural isomorphism

F ≅
Map(Y(−), F).

(3.7.3) For V complete and cocomplete symmetric monoidal closed, the Day con-
volution and hom diagram are given by a V-coend and a V-end, respectively.
(3.7.8) V-Yoneda Density Theorem. For a V-functor X ∶ D V with D small,
there is a V-natural isomorphism

∫
xD(x,−)⊗Xx

≅ X.

(3.7.13) There is an isomorphism Map(X, Y) ≅ Hom(X, Y)e, for V-diagrams X and
Y.
(3.7.22) Day Convolution Theorem. For a small symmetric monoidal V-category
D, the category ofD-shaped diagrams in V is symmetric monoidal closed with the
Day convolution product, internal hom, and monoidal unit J = Y e.
(3.7.28) Precomposition with a symmetric monoidal V-functor induces a symmet-
ric monoidal functor between diagram V-categories.
(3.8.4) Change of enrichment along a symmetric monoidal functor U ∶ V W
induces a symmetric monoidal functor from D-V to DU-W.
(3.9.3) If C is tensored and cotensored over V, then X⊗− and Y(−) extend uniquely
to V-functors that are V-adjoint to the respective co/represented V-functors.
(3.9.8) If (F, U) is an adjunction of monoidal functors between symmetric monoi-
dal closed categories and if F2 is invertible, then F transfers tensor and cotensor
structure over its codomain to corresponding structure over its domain.
(3.9.15) The symmetric monoidal closed diagram category D-V is enriched, ten-
sored, and cotensored over V.

Chapter III.4. Pointed Objects, Smash Products, and Pointed Homs

(4.1.6) Smash product with respect to a terminal object T is given by a pushout
from a monoidal product.
(4.2.1) Pointed hom with respect to a terminal object T is given by a pullback from
an internal hom.
(4.1.5, 4.1.8, 4.2.3) Suppose C is complete and cocomplete symmetric monoidal
closed. Then C∗ is complete and cocomplete symmetric monoidal closed with
respect to the smash product and pointed hom.
(4.3.11) For a small symmetric monoidal category D with a null object, its pointed
unitary enrichment over (V∗,∧, E) is given by taking wedge sums of E over
nonzero morphisms in D.
(4.3.19) Assuming the basepoint of V is terminal and the basepoint of D is null,
there is an equivalence of categories between pointed functors from D to V∗ and
V∗-enriched functors from the pointed unitary enrichment of D to the self enrich-
ment of V∗.
(4.3.37) The category of pointed diagrams D∗-V is complete and cocomplete sym-
metric monoidal closed. Moreover, it is enriched, tensored, and cotensored over
V∗.

Chapter III.5. Multicategories
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(5.1.2) A multicategory has objects, n-ary operations, symmetric group actions, col-
ored units, and composition that are subject to axioms for symmetry, associativity,
unity, and equivariance.
(5.1.2) An operad is a multicategory with one object.
(5.1.11) Each small permutative category C has an endomorphism multicategory
with the same objects and with n-ary operations given by morphisms out of n-fold
sums in C.
(5.1.12) A multifunctor satisfies axioms for symmetric group action, units, and
composition.
(5.1.17) A multinatural transformation satisfies a naturality condition.
(5.1.20) There is a 2-category consisting of small multicategories, multifunctors,
and multinatural transformations.
(5.1.21) The initial operad I has a single object and only one operation, which is the
unit on its one object.
(5.2.1, 5.2.2) The terminal multicategory T has a single object and a single n-ary
operation for each n ≥ 0. The terminal multicategory is also known as the commu-
tative operad, Com.
(5.3.9) Taking endomorphism operads gives a 2-functor from PermCatsu to Multicat∗.
(5.4.1) A monad consists of an endofunctor together with multiplication and unit
natural transformations such that the associativity and unit diagrams commute.
(5.4.2) A monad algebra consists of an object and a structure morphism such that
associativity and unity diagrams commute.
(5.4.13) Beck’s Precise Tripleability Theorem. An adjunction L ⊣ U is strictly
monadic if and only if U strictly creates coequalizers for parallel pairs f , g for
which (U f , Ug) has a split coequalizer.
(5.4.18) If T is a monad on a complete and cocomplete category, and if T preserves
filtered colimits, then the category of T-algebras is complete and cocomplete.
(5.5.1) A multigraph consists of vertices and multiedges.
(5.5.4, 5.5.9) The forgetful functor from small multicategories to small multigraphs
has a left adjoint.
(5.5.11) The category of small multicategories is strictly monadic over the category
of small multigraphs.
(5.5.14) The category of small multicategories is complete and cocomplete.
(5.6.9) The sharp product of multicategories is generated by operations ϕ × d and
c ×ψ subject to symmetry and compatibility axioms.
(5.6.14) The tensor product of multicategories is generated by those of the sharp
product, and subject to an additional interchange relation.
(5.6.14) A multifunctor out of a tensor product of multicategories consists of an
assignment on objects that is multifunctorial in each variable separately and that
preserves the interchange relation.
(5.7.2, 5.7.4) The internal hom for multicategories has operations given by trans-
formations that satisfy a naturality condition.
(5.7.14) The category of small multicategories is complete and cocomplete sym-
metric monoidal closed with monoidal product given by the tensor product and
closed structure given by the internal hom.
(5.7.22) The category of small pointed multicategories is complete and cocomplete
symmetric monoidal closed with monoidal product given by the smash product
and closed structure given by the pointed hom.
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(5.7.23) The symmetric monoidal structure on Multicat∗ does not restrict along End
to a symmetric monoidal structure on PermCatsu.

Chapter III.6. Enriched Multicategories
(6.1.1) A V-enriched multicategory has n-ary operation objects, symmetric group
action, colored units, and composition morphisms in V. These satisfy axioms given
by commutative diagrams in V for symmetric group action, associativity, unity,
and equivariance.
(6.1.8) A V-enriched operad is a V-multicategory with one object.
(6.1.9) An object of an enriched multicategory has a V-enriched endomorphism
operad.
(6.1.10) A V-enriched multifunctor satisfies axioms given by commutative dia-
grams in V for symmetric group action, units, and composition.
(6.1.14) An algebra c over a V-enriched operad P is given by a V-enriched operad
morphism P End(c).
(6.1.15) A V-enriched multinatural transformation satisfies a V-naturality diagram
in V.
(6.1.18) There is a 2-category consisting of small V-enriched multicategories toget-
her with V-enriched multifunctors and multinatural transformations.
(6.2.9) For a symmetric monoidal functor U ∶ V W, change of enrichment
along U provides a 2-functor from small V-enriched multicategories to small W-
enriched multicategories.
(6.3.3, 6.3.6) A symmetric monoidal V-category has a V-enriched endomorphism
multicategory with V-objects of n-ary operations given by morphism objects out
of n-fold left normalized products in K.
(6.3.10) A symmetric monoidal V-functor induces a V-enriched multifunctor be-
tween V-enriched endomorphism multicategories of its domain and codomain.
(6.4.3) The tensor product is a Cat-enriched symmetric monoidal product for the
2-category of small multicategories.
(6.4.4) The smash product is a Cat-enriched symmetric monoidal product for the
2-category of small pointed multicategories.
(6.4.5) Each of Multicat and Multicat∗ has the structure of a Cat-enriched multicat-
egory induced by the tensor and smash product, respectively.
(6.5.1) The Cat-enriched multicategory structure on Multicat∗ induces a corre-
sponding structure on PermCatsu.
(6.5.4) Multilinear functors of permutative categories consist of functors out of a
Cartesian product together with linearity constraints. They are subject to axioms
for unity, constraint unity, constraint associativity, constraint symmetry, and con-
straint 2-by-2.
(6.5.11) Multilinear transformations between multilinear functors satisfy multilin-
earity conditions with respect to linearity constraints and identities.
(6.5.10, 6.5.13) The categories of n-ary operations in PermCatsu are canonically iso-
morphic to the corresponding categories of n-linear functors and transformations.
(6.6.13) The Cat-enriched multicategory structure of PermCatsu is described explic-
itly in terms of multilinear functors and transformations.

Part III.2. Algebraic K-Theory

Chapter III.7. Homotopy Theory Background
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(7.1.16) The geometric realization of the standard n-simplex is the topological n-
simplex.
(7.1.19) The category of simplicial sets is symmetric monoidal closed with the mon-
oidal product given by the levelwise Cartesian product.
(7.1.23) The category of pointed simplicial sets is symmetric monoidal closed with
monoidal product given by the levelwise smash product.
(7.2.4) The nerve of a small category is a simplicial set with p-simplices given by
strings of p composable arrows.
(7.2.5 (1)) A natural transformation between functors induces a simplicial homo-
topy on nerves.
(7.2.5 (2)) An adjunction of functors induces a simplicial homotopy equivalence on
nerves.
(7.3.7) The category of symmetric sequences is symmetric monoidal closed with
monoidal product given by Day convolution.
(7.4.5) The category of symmetric spectra is the category of left modules over the
symmetric sphere.
(7.4.6) A symmetric spectrum consists of a symmetric sequence with structure
morphisms satisfying unity, associativity, and equivariance axioms.
(7.5.5) The category of symmetric spectra is complete and cocomplete.
(7.6.1) The smash product of symmetric spectra is given by a coequalizer of actions
by S.
(7.6.8) The internal hom for symmetric spectra is given by an equalizer of actions
by S.
(7.6.15) The category of symmetric spectra is complete and cocomplete symmetric
monoidal closed.
(7.8.8) Every level equivalence of symmetric spectra is a stable equivalence.

Chapter III.8. Segal K-Theory of Permutative Categories

(8.1.8) A Γ-object in a pointed category C is a pointed functor from F to C.
(8.2.6) The construction KF is a functor from Γ-simplicial sets to symmetric spectra.
(8.3.13) For a small permutative category C, there are three variant constructions
of Γ-categories, CF = CF

≅
, CFlax, and CFco.

(8.3.21) For a small permutative category C, each of the Γ-simplicial sets N∗CF≅ ,
N∗CFlax, and N∗CFco is special, and all three are levelwise weakly-equivalent.
(8.4.5) The partition multicategoryM1 has two objects, ∅ and {1}, with operations
given by partitions.
(8.4.7) The partition multicategory M defines a pointed functor from Fop to
Multicat∗.
(8.4.8, 8.4.10) For a small permutative category C, there is an isomorphism of Γ-
categories JSeC ≅ CFlax.

Chapter III.9. Categories of G∗-Objects

(9.1.7) The objects of G are tuples of objects of F subject to certain basepoint iden-
tifications.
(9.1.15) Smash product of pointed finite sets defines a strict symmetric monoidal
functor from G to F .
(9.2.1) A G∗-object in a pointed category C is a pointed functor from G to C.
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(9.2.15) If C is complete and cocomplete symmetric monoidal closed with termi-
nal basepoint, then the category for G∗-objects in C is complete and cocomplete
symmetric monoidal closed with monoidal product given by Day convolution.
(9.2.19) The nerve induces a symmetric monoidal sSet∗-functor from small G∗-
categories to G∗-simplicial sets.
(9.3.16) The construction KG is a functor from G∗-simplicial sets to symmetric spec-
tra whose restriction along ∧∗ is equal to KF .
(9.4.9) The functor KG is a unital symmetric monoidal sSet-functor.
(9.4.18) The functors ∧∗ and KF are symmetric monoidal sSet∗-functors.

Chapter III.10. Elmendorf-Mandell K-Theory of Permutative Categories

(10.1.6) The partition multicategory M is a symmetric monoidal functor, with
monoidal constraint given by the partition product∏.
(10.1.14) The category of leftM1-modules is complete and cocomplete.
(10.1.15) The partition products∏1,b and∏b,1 are isomorphisms.
(10.1.28) The 2-category of left M1-modules in Multicat∗ is a full sub-2-category
and the smash product overM1 is isomorphic to that of Multicat∗.
(10.1.36) The category of left M1-modules is symmetric monoidal in the Cat∗-
enriched sense.
(10.2.14) If C is a small permutative category, End(C) has a canonical left M1-
module structure. Taking this structure, End factors through ModM1.
(10.2.15, 10.2.16) The category of left M1-modules is a proper subcategory of
Multicat∗. In particular, the monoidal unit S is not anM1-module.
(10.2.17) The symmetric monoidal structure on ModM1 does not restrict to PermCatsu.
(10.2.22) The symmetric monoidal structure on ModM1 is closed.
(10.3.3) The smash product of partition multicategories, T , defines a pointed func-
tor from Gop to ModM1.
(10.3.7) The functor T is strictly unital strong symmetric monoidal.
(10.3.13) The monoidal constraint for the partition J-theory JT uses the inverse
monoidal constraint for T .
(10.3.17) The partition J-theory JT is a symmetric monoidal Cat∗-functor.
(10.3.25) Elmendorf-Mandell J-theory JEM = JT ○ End is a Cat-enriched multifunc-
tor.
(10.3.32) Elmendorf-Mandell K-theory KEM = KGN∗JEM is a sSet-enriched multi-
functor.
(10.3.33) The multifunctor KEM preserves enriched operad actions.
(10.4.18) For a small permutative category C there are three variant constructions
of G∗-categories, CG = CGlax, CG

≅
, and CGco.

(10.5.1) For a small permutative category C, there is an isomorphism of G∗-
categories JEMC ≅ CGlax.
(10.6.10) There is a level equivalence of symmetric spectra KSeC KEMC for each
small permutative category C. It is natural with respect to strictly unital symmetric
monoidal functors.
(10.7.16) There is a level equivalence KEM

≅
C KEM

lax for each small permutative
category C.
(10.7.19 (4)) There is a level equivalence KEM

≅
KEM

co C for each small permutative
category C.
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(10.7.22, 10.7.27) The G∗-category morphisms CG
≅

CG and CG
≅

CGco are com-
ponents of Cat-enriched multinatural transformations.

Chapter III.11. K-Theory of Ring and Bipermutative Categories

(11.1.4) As is an operad.
(11.1.7) As is generated by id0 and id2, which are subject to unity and associativity
relations.
(11.1.15) As is the operad for monoids.
(11.2.16) As detects ring category structures on small permutative categories.
(11.3.2) A strict ring symmetric spectrum is a symmetric spectrum equipped with
multiplication and unit morphisms in symmetric sequences that satisfy compati-
bility, associativity, and unity axioms.
(11.3.13–11.3.15) The sphere spectrum, the suspension spectrum of a monoid in
pointed simplicial sets, and the Eilenberg-Mac Lane spectrum of a ring are strict
ring symmetric spectra.
(11.3.16) KEMC is a strict ring symmetric spectrum for each small ring category C.
(11.3.17) For each small permutative category, the K-theory of its (tight) endomor-
phism ring category is a strict ring symmetric spectrum.
(11.3.18) The K-theory of the additive distortion category is a strict ring symmetric
spectrum.
(11.3.19) For each small tight bimonoidal category, the K-theory of its right/left
rigid bimonoidal strictification is a strict ring symmetric spectrum.
(11.4.7) The translation category functor E is a right adjoint.
(11.4.11) Each morphism in the Barratt-Eccles operad decomposes into a categor-
ical composite of ϕυ with υ a permutation and ϕ an operadic composite of one
τ ∶ id2 (1, 2) and identity morphisms.
(11.4.14) The Barratt-Eccles operad is generated by two objects and one isomor-
phism, which are subject to relations that are formally identical to those of a per-
mutative category.
(11.4.26) The Barratt-Eccles operad is the Cat-enriched operad for permutative cat-
egories.
(11.5.5) The Barratt-Eccles operad detects bipermutative category structures on
small permutative categories.
(11.6.3) The Barratt-Eccles operad is an E∞-operad.
(11.6.6 (1)) Each commutative monoid in SymSp is an E∞-symmetric spectrum.
(11.6.6 (2)) Each E∞-symmetric spectrum via the Barratt-Eccles operad has a strict
ring structure.
(11.6.7) The symmetric sphere is a commutative monoid in SymSp.
(11.6.9) The suspension spectrum of a commutative monoid in sSet∗ is a commu-
tative monoid in SymSp.
(11.6.10) The Eilenberg-Mac Lane spectrum of a commutative ring is a commuta-
tive monoid in SymSp.
(11.6.12) KEMC is an E∞-symmetric spectrum for each small bipermutative cate-
gory C.
(11.6.13) The K-theory of each small right/left bipermutative category is an E∞-
symmetric spectrum. For example, this applies to the finite ordinal category Σ, its
variant Σ′, VectCc , and the distortion category.
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(11.6.14) For each small tight symmetric bimonoidal category, the K-theory of its
right/left bipermutative strictification is an E∞-symmetric spectrum. For exam-
ple, this applies to small distributive symmetric monoidal categories, the symmet-
ric bimonoidal groupoid Π, and the bimonoidal symmetric center of a small tight
braided bimonoidal category.
(11.6.15) For each small braided ring category whose left factorization morphism
is a natural epimorphism, the K-theory of its symmetric center is an E∞-symmetric
spectrum.

Chapter III.12. K-Theory of Braided Ring Categories

(12.1.10) The braid operad is a Cat-enriched operad.
(12.2.4) The braid operad is an E2-operad.
(12.3.6) Each morphism in the braid operad admits a categorical decomposition
into isomorphisms of the form ϕυ with υ a permutation and ϕ an operadic com-
posite of one s±1

1 ∶ id2 (1, 2) and identity morphisms.
(12.3.10) The braid operad is generated by two objects and one isomorphism,
which are subject to relations that are formally identical to those of a braided strict
monoidal category.
(12.3.22) The braid operad is the Cat-enriched operad for braided strict monoidal
categories.
(12.4.5) The braid operad detects braided ring category structures on small permu-
tative categories.
(12.5.2 (1)) An E∞-symmetric spectrum via the Barratt-Eccles operad has an E2-
structure.
(12.5.2 (2)) An E2-symmetric spectrum via the braid operad has a strict ring struc-
ture.
(12.5.3) KEMC is an E2-symmetric spectrum for each small braided ring category C.
(12.5.4) The K-theory of the braided distortion category is an E2-symmetric spec-
trum.
(12.5.5) For each small tight ring category, the K-theory of its bimonoidal Drinfeld
center is an E2-symmetric spectrum.
(12.5.6) For each small tight braided bimonoidal category, the K-theory of its
right/left permbraided strictification is an E2-symmetric spectrum. For exam-
ple, this applies to a small abelian category with a compatible braided monoidal
structure, Fibonacci anyons, Ising anyons, and the bimonoidal Drinfeld center of
a small tight bimonoidal category.

Chapter III.13. K-Theory of En-Monoidal Categories

(13.1.20) Monn is a Cat-enriched operad.
(13.1.23) Mon1 is the associative operad.
(13.2.1) Monn is an En-operad.
(13.3.3) Monn is generated by the objects 1 and {1⊗i 2}n

i=1 and the exchange mor-

phisms {ηi,j
1,2,3,4}1≤i<j≤n, which are subject to relations that are formally identical to

those of an n-fold monoidal category.
(13.3.18) Monn is the Cat-enriched operad for n-fold monoidal categories.
(13.4.12) Monn detects En-monoidal category structures on small permutative cat-
egories.
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(13.5.1) The canonical Cat-enriched operad morphism As EAs factors through
Monn. As a result, an E∞-symmetric spectrum via the Barratt-Eccles operad in-
duces an En-structure. An En+1-structure via Monn+1 induces an En-structure.
(13.5.2) KEMC is an En-symmetric spectrum for each small En-monoidal category
C.
(13.5.3) For each small category, the K-theory of its free En-monoidal category is
an En-symmetric spectrum.
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Part I.1
Chapter I.1 Page Description
Ob(C), ObC I.7 objects in a category C

C(X, Y), C(X; Y) I.8 set of morphisms X Y
1X I.8 identity morphism
g ○ f , g f I.8 composition of morphisms
≅, ≅ I.8 an isomorphism
F ∶ C D I.8 a functor
IdC, 1C I.9 identity functor
1 I.9 terminal category
θX I.9 a component of a natural transformation θ

1F I.9 identity natural transformation
ϕθ I.9 vertical composition
θ′ ∗ θ I.9 horizontal composition
(L, R, ϕ), L ⊣ R I.10 an adjunction
η, ε I.10 unit and counit of an adjunction
colim F I.11 colimit
lim F I.11 limit
∅, ∅C I.12 an initial object

∐, ∐ I.12 a coproduct
⊗ I.14 monoidal product
1 I.14 monoidal unit
α I.14 associativity isomorphism
λ, ρ I.15 unit isomorphisms
(X, µ, η) I.15 a monoid
(Y, ∆, ε) I.16 a comonoid
(F, F2, F0) I.16 a monoidal functor
ξ I.18 symmetry isomorphism
(Set,×,∗) I.19 category of sets
(Cat,×, 1) I.19 category of small categories
(Vectk,⊗,k) I.19 category of k-vector spaces
[−,−] I.19 internal hom
e, −, u◻ v I.19 words
σ(−) I.20 a left permutation
wσ I.20 a permuted word

Chapter I.2
(⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) I.25 additive structure
(⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗) I.25 multiplicative structure
λ ●, ρ ● I.25 multiplicative zeros
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δl , δr I.25 distributivity morphisms
VectC I.30 finite dimensional complex vector spaces
α−⊕ I.30 inverse of α⊕

Mod(R) I.37 category of R-modules
Σ I.38 category of finite ordinals and permutations
Σn I.38 symmetric group on n letters
σ⊕ τ I.38 block sum of permutations
MT I.42 transpose of M
Σ′ I.43 a variant of Σ
VectCc I.46 coordinatized version of VectC

Cm I.48 C⊕⋯⊕C with m copies of C
Π I.51 symmetric bimonoidal groupoid of syntax of finite types

Chapter I.3
Sfr I.58 free {⊕,⊗}-algebra of S
G = (V, E) I.58 a graph with vertex set V and edge set E
u v I.58 an edge with domain u and codomain v
(en, . . . , e1) I.58 a path consisting of the edges e1, . . . , en

v0 vn I.58 a path with domain v0 and codomain vn

0X, 1X I.59 additive zero and multiplicative unit in X
Grel(X) I.59 elementary graph
Eel(X) I.59 set of elementary edges
Efrel(X) I.60 free {⊕,⊗}-algebra of Eel(X)
Epr(X) I.60 set of prime edges
Gr(X) I.60 graph of X
φ ∶ Gr(X) C I.61 graph morphism extending φ ∶ X Ob(C)
φP I.62 value in C of a path P
Xst I.63 strict {⊕,⊗}-algebra of X
supp I.63 support Xfr Xst

norm I.65 norm Xfr Z+

rank I.66 rank Xfr Z+

size I.66 size Xfr Z+

P⊕ 1c, 1c ⊕ P I.73 sum of the paths P and 1c

P⊗ 1c, 1c ⊗ P I.73 product of the paths P and 1c

(IH) I.117 induction hypothesis
Grns(X) I.132 nonsymmetric graph of X
Xns I.133 nonsymmetric strict {⊕,⊗}-algebra of X
nsupp I.133 nonsymmetric support

Chapter I.4
idm I.143 identity permutation in Σm

D I.143 distortion category
r I.143 a finite sequence (r1, . . . , rm)
∣r∣ I.143 length of r
∅ I.143 empty sequence
σ I.143 a morphism (σ; σ1, . . . , σm) in D
ϑ I.156 X Ob(D) and Gr(X) D
Dad I.165 additive distortion category
ϑ I.167 X Ob(Dad) and Grns(X) Dad

∫C F I.168 Grothendieck construction of F ∶ Cop Cat

Σ×n I.169 n-fold Cartesian product of Σ
Fad I.170 functor Σop Cat
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N×n I.170 n-fold Cartesian product of N

Chapter I.5
(F, F2

⊕, F0
⊕, F2

⊗, F0
⊗) I.177 a (symmetric) bimonoidal functor

F⊕ I.178 additive structure (F, F2
⊕, F0

⊕)
F⊗ I.178 multiplicative structure (F, F2

⊗, F0
⊗)

Bisy I.181 category of small symmetric bimonoidal categories
A I.184 associated right bipermutative category
(−)rt, (−)lt I.186 right/left normalized bracketing
π I.186 Ob(A) Ob(C) and A C

≅⊕ML I.187 a Mac Lane coherence isomorphism
≅Lap I.188 a Laplaza coherence isomorphism
≅−1
Lap I.188 inverse of a Laplaza coherence isomorphism

ι I.197 functor C A

Bi I.202 category of small bimonoidal categories
A I.202 associated right rigid bimonoidal category

Part I.2
Chapter I.6
Ob(B) I.215 objects in a bicategory
⇒ I.216 a 2-cell
1 f I.216 identity 2-cell of f
1X I.216 identity 1-cell of X
g f , β ∗ α I.216 horizontal composition
a I.216 associator
ℓ, r I.216 left and right unitors
Cat I.219 2-category of small categories, functors, and natural transformations
MCat I.219 2-category of small monoidal categories
SMCat I.219 2-category of small symmetric monoidal categories
ΣC I.220 one-object bicategory of a monoidal category C

Bimod I.220 bicategory with bimodules as 1-cells
(F, F2, F0) I.220 a lax functor
1B I.223 identity strict functor of B
Bicat I.223 category of small bicategories and lax functors
Bicatps I.223 wide subcategory of Bicat with pseudofunctors
αX , α f I.224 component 1-/2-cells of a lax transformation α

1F I.225 identity strong transformation of F
βα I.226 horizontal composite of lax transformations
ΓX I.228 a component 2-cell of a modification Γ
ΩΓ I.228 vertical composite of modifications
Γ′ ∗ Γ I.228 horizontal composite of modifications
Bicat(B,B′) I.228 bicategory of lax functors/transformations and modifications
Bicatps(⋅, ⋅) I.229 Bicat(⋅, ⋅)with pseudofunctors and strong transformations
f ⊣ g, ( f , g, η, ε) I.230 an adjunction in a bicategory
f ● I.230 an adjoint of f
Bn I.231 B×⋯×B with n copies of B
(⊠,⊠2,⊠0) I.231 monoidal composition
(1⊠, 12

⊠
, 10
⊠
) I.231 monoidal identity

(a, a ●, ηa, εa) I.231 monoidal associator
(ℓ, ℓ ●, ηℓ, εℓ) I.231 left monoidal unitor
(r, r ●, ηr, εr) I.231 right monoidal unitor
π I.232 pentagonator
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µ, λ, ρ I.232 middle, left, and right 2-unitors
⊠−0 I.232 inverse of ⊠0

NB4 I.234 non-abelian 4-cocycle condition
π1, . . . , π10 I.236 mates of the pentagonator
(β, β ●, ηβ, εβ) I.236 braiding
R−∣−− I.237 left hexagonator
R−−∣− I.237 right hexagonator
ν I.243 syllepsis
C◻D I.245 box product
f ◻Y, X ◻ g I.245 basic 1-cells
α◻Y, X ◻ β I.246 basic 2-cells
C⍟D I.247 Gray tensor product
Σ f ,g, Σ−1

f ,g I.247 transition 2-cells

Gray I.249 2Cat with the Gray tensor product
2Cat I.249 category of small 2-categories and 2-functors
Hom I.249 internal hom in Gray

(C,⊙, I) I.250 a Gray monoid
(C,⊙, I, β) I.252 a permutative Gray monoid
(2Cat,×) I.257 2Cat with the Cartesian product
(C,⊡, I, β) I.257 a permutative 2-category
PGray I.259 category of permutative Gray monoids

Chapter I.7
∅ I.261 empty 2-category
Bisy I.266 2-category of small symmetric bimonoidal categories
Bifsyr I.267 full sub-2-category of Bisy with flat objects and robust 1-cells
n I.269 left normalized sum of n copies of 1
≅σ
ML I.276 coherence isomorphism m m that permutes copies of 1

pm,n I.286 value of a path Q with respect to φp

qm,n I.286 value of a path Q with respect to φq

?G I.288 image under G
θG I.293 unique bimonoidal natural transformation F G
T I.298 unique functor Bifsyr (Σ,C) 1

Chapter I.8
A = (Aji) I.301 a matrix with (j, i)-entry Aji

≅⊕ML, ≅Lap I.306 Mac Lane and Laplaza coherence isomorphisms
MatCm,n I.307 category of n ×m matrices in C

0m,n I.308 0 matrix in MatCm,n

BA I.309 matrix product
g ★ f I.309 matrix product of morphisms
1n I.309 n × n identity matrix
ζℓA I.310 natural isomorphism 0n,p A ≅ 0m,p

ζr
A I.311 natural isomorphism A0q,m

≅ 0q,n

ℓ I.313 base left unitor
r I.314 base right unitor
a I.316 base associator
δX I.322 Kronecker δ in X
2Vectc I.331 coordinatized 2-vector spaces
(1⊠, 12

⊠
, 10
⊠
) I.332 monoidal identity

A⊠ B I.334 matrix tensor product
(⊠,⊠2,⊠0) I.340 monoidal composition
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(a⊠, a⊠ ●, ηa, εa) I.383 monoidal associator
(ℓ⊠, ℓ⊠ ●, ηℓ, εℓ) I.387 left monoidal unitor
(r⊠, r⊠ ●, ηr, εr) I.390 right monoidal unitor
π I.392 pentagonator
µ I.400 middle 2-unitor
λ⊠ I.402 left 2-unitor
ρ⊠ I.404 right 2-unitor

θ A I.409 row permutation of A by θ

Aσ I.409 column permutation of A by σ

1σ I.409 permutation matrix of σ

rσ
A I.410 natural isomorphism A1σ ≅ Aσ

ℓθ
A I.411 natural isomorphism 1θ A ≅

θ−1 A
τm,n I.412 permutation in Σmn that transposes an n ×m matrix
(β, β ●, ηβ, εβ) I.418 braiding
hm∣n,p I.420 comparison 2-cell for R−∣−−
R−∣−− I.421 left hexagonator
hm,n∣p I.424 comparison 2-cell for R−−∣−
R−−∣− I.425 right hexagonator
ν I.428 syllepsis

Part II.1
Chapter II.1
Bn II.8 braid group on n strings
s1, . . . , sn−1 II.8 generating braids in Bn

s(n)i II.8 si in Bn

id, idn II.8 identity braid in Bn

I II.8 unit interval [0, 1]
⊕ II.9 sum braid
π(b), b II.10 underlying permutation of b
σ⟨k⟩ II.10 block permutation induced by σ ∈ Σn

b⟨k⟩ II.11 block braid induced by b ∈ Bn

τ⟨m, n⟩ II.13 interval-swapping permutation in Σm+n

b⊕m,n II.14 elementary block braid induced by s1 ∈ B2

(C, ⊗ ,1, α, λ, ρ, ξ) II.26 Drinfeld center of C
(A; βA) II.26 an object in C

Csym II.35 symmetric center of C
br(ϕ) II.37 underlying braid of ϕ

Chapter II.2
(⊕, 0, α⊕, λ⊕, ρ⊕, ξ⊕) II.45 additive structure
(⊗,1, α⊗, λ⊗, ρ⊗, ξ⊗) II.45 multiplicative structure
λ ●, ρ ● II.46 multiplicative zeros
δl , δr II.46 distributivity morphisms
Ab II.50 category of abelian groups
0 ∶ A B II.51 zero morphism
i1, i2 II.51 inclusions
p1, p2 II.51 projections
A⊕ B II.51 direct sum of objects A and B
f ⊕ f ′ II.52 direct sum morphism

Chapter II.3
Vectk II.71 category of k-vector spaces
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A⊗n II.71 A⊗⋯⊗ A with n copies of A and A⊗0 = k
A⊕n II.71 A⊕⋯⊕ A with n copies of A and A⊕0 = 0

Vectk
⊗

II.71 Vectk with the tensor product
Vectk

⊕
II.71 Vectk with the direct sum

(A, µ, η, ∆, ε) II.72 a bialgebra

∑i s′i ⊗ s′′i II.73 an element in A⊗2

Sop II.73 ξ⊗S
S12, S13, S23 II.73 elements obtained from S ∈ A⊗2 by inserting 1

∑(x) x(1) ⊗ x(2) II.74 Sweedler’s notation for comultiplication
∆op II.74 opposite comultiplication ξ⊗∆
kG II.75 group bialgebra of G
Ug II.76 universal enveloping bialgebra of g
H4 II.77 Sweedler’s 4-dimensional bialgebra
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canonical self-enrichment, III.98, III.150

symmetric monoidal, III.110
canonical underlying isomorphism, III.102
cardinal, III.292
Cat-monoidal, III.57

braided, III.57
symmetric, III.57

categorical probability theory, I.53
categorification, III.517
category, I.7

Ab-, II.50
1-, I.8
2-, I.218, II.206, III.525
abelian, II.57

alternative axioms, II.66
additive, II.56
additive distortion, I.165

K-theory, III.443
tight ring category, II.242

as a unary multicategory, III.188
autonomous monoidal, III.525
BD, II.47, II.129
bi-, I.215, II.205
bimonoidal, xi, I.28, II.44

left rigid, I.203
right rigid, I.203

bipermutative
Elmendorf-Mandell, I.54, II.251, III.451
May, I.54

braid, II.157
braided bimonoidal, II.45
braided distortion, II.137, II.216

K-theory, III.484
tight braided ring category, II.261

braided monoidal, II.20, III.10
braided ring, II.259, III.481
Cartesian closed, I.50
classifying space, III.272
closed, I.19, III.13, III.431
cocomplete, I.11
complete, I.11
discrete, III.433
distortion, I.143, I.164

K-theory, III.458
tight bipermutative category, II.253

distributive, I.38, I.182, I.268, I.430
distributive symmetric monoidal, I.37, I.131
double, III.519
duoidal, II.314

empty, I.12
En-monoidal, II.305, III.508

free, II.311
free, K-theory, III.513
structure, III.510

enriched, III.17
monoidal, III.41

enriched monoidal
center, III.524
classification, III.525

enriched multi-, III.230
exact, II.66
filtered, III.202
finite, I.8
finite ordinal, xii, I.38, I.298, I.430, II.142,

II.193, II.200, III.272
K-theory, III.458
tight bipermutative category, II.252

full sub-, I.8
Γ-, III.303
G∗-, III.338
groupoid, I.8, I.144, I.166
hom, I.215
homotopy, III.290
k-tuply monoidal, III.521
Laplaza En-monoidal, III.522
left bipermutative, I.49, I.131

K-theory, III.458
left permbraided, II.133, II.155
left permutative braided, II.133
monoidal, I.14, II.17, III.8, III.41
multi-, III.186
n-, III.521
n-monoidal, III.520
nerve, III.270
n-fold monoidal, II.272, III.489

enriched, III.524
free, II.292
lax, II.314, III.521
operad, III.492

of algebras over a monad, III.198
of algebras over an operad, III.528
of bicategories and lax functors, I.223
of bimonoidal categories, I.202
of braided bimonoidal categories, II.166
of functors, II.57
of matrices, I.307
of permutative Gray monoids, I.259
of sets, I.19
of simplicial sets, III.265
of simplicial small categories, III.265
of small categories, I.9, I.19
of small n-fold monoidal categories, II.286
of symmetric bimonoidal categories, I.181
of vector spaces, I.19
opposite, I.12
partially ordered set, II.278
periodic table, III.521
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permutative, xiii, I.18, I.40, II.25, III.13
preadditive, II.56
right bipermutative, I.40, I.45, I.131

K-theory, III.458
right permbraided, II.134, II.155
right permutative braided, II.134
ring, xiv, II.238, II.305, III.433, III.508
small, I.8
sub-, I.8
symmetric bimonoidal, I.25, II.41
symmetric monoidal, I.17, II.24, III.12

closed, I.37
symmetric monoidal closed

self-enrichment, III.98, III.150
symmetric rig, I.53
terminal, I.9, I.298, I.299
translation, III.444
tri-, III.517
underlying, III.64
wide sub-, II.166, II.286

center
bimonoidal bicategory, III.518
bimonoidal Drinfeld, xiii, II.113, II.126,

II.262
abelian category with a monoidal

structure, II.127
K-theory, III.484

bimonoidal symmetric, xiii, II.127, II.128
Fibonacci anyons, II.128
Ising anyons, II.128
K-theory, III.458

Drinfeld, xiii, II.26, II.35, II.38
En-monoidal category, III.524
enriched monoidal category, III.524
n-monoidal category, III.524
n-fold monoidal category, III.524

lax, III.524
sylleptic, III.518
symmetric, xiii, II.35, II.263

K-theory, III.458
chain complex, II.57
change of enrichment, III.61, III.66, III.151,

III.236, III.238
monoidal constraint, III.72
unit constraint, III.72

change of tensors and cotensors, III.159
change-of-shape, III.149
characterization of

a 2-functor, I.222
a 2-natural transformation, I.226
a bimonoidal category, I.36
a symmetric bimonoidal category, I.36
an additive functor, II.53
an equivalence, I.10
size equals rank, I.69
the zero morphism, II.56

circle
simplicial, III.266

classifying space, III.272, III.444, III.472,
III.498, III.514, III.528

closed
unit cube, III.470
unit interval, III.470

closed category, I.19, III.13, III.431
closed multicategory, III.228
coalgebra, II.71

comultiplication, II.72
counit, II.72

coassociativity, I.16
cocommutative bialgebra, II.75
cocommutative comonoid, I.19, II.71
cocomplete, I.11
cocone, I.11, III.199
codegeneracy, III.264
codiagonal, II.53
codomain, I.8

of a path, I.58, II.147
of an edge, I.58, I.60, II.146, II.148

coend, I.12, III.525
as a colimit, I.13
in V, III.122
V-, III.120
V- as coequalizer, III.121

coequalizer, I.12, I.13, II.56, III.200, III.500
absolute, III.200
split, III.200
strictly create, III.200, III.227

coevaluation
at X, III.97

coface, III.264
cofibrant object, III.288
cofibrant replacement, III.288
cofibrantly generated model category, III.293
cofibration, III.288
coherence

bimonoidal category, I.134, I.167
bipermutative category, III.520
braided bimonoidal category, II.153
braided monoidal category, II.37, III.16
braided monoidal enriched category, III.89
En-monoidal category, III.520
Laplaza En-monoidal category, III.523
monoidal category, I.20, I.22, III.14
monoidal enriched category, III.89
monoidal functor, I.22
n-monoidal category, III.520
n-fold monoidal category, II.302, II.314,

III.520, III.521
operad

associative, III.429
Barratt-Eccles, III.446
braid, III.476
n-fold monoidal category, III.502

ring category, III.520
symmetric bimonoidal category, I.127, I.164
symmetric monoidal category, I.21, III.16
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symmetric monoidal enriched category,
III.90

symmetric monoidal enriched functor,
III.90

symmetric monoidal functor, I.22, III.17
coherence isomorphism

Laplaza, I.188, I.306, II.172
Mac Lane, I.187, I.269, I.306, II.170, II.189

coherent map, I.21, III.17, III.90
cokernel, II.56
colax Elmendorf-Mandell G∗-category, III.399
colax multilinear functor, III.420
colax multilinear transformation, III.420
colax n-system, III.307
colax ⟨n⟩-system, III.394
colax Segal Γ-category, III.311
colax symmetric monoidal functor, III.326
colimit, I.11, III.199, III.500

2-, I.263
filtered, III.202
finite, I.11, II.57
homotopy, III.500, III.514
lax, I.263
lax bi-, I.262, I.298, I.299, II.200, II.201
preservation by left adjoints, I.11
pseudo, I.263
pseudo bi-, I.263
small, I.11

colored unit, III.186, III.230
column, I.308

permutation, I.409
commutative, I.62, II.150

braided, II.150
monoid, I.18, II.71
rig, I.29
ring, I.37

commutative monoid, III.454
Eilenberg-Mac Lane spectrum, III.456
sphere spectrum, III.455
suspension spectrum, III.456

commutative operad, III.192, III.525
commutativity, I.133
comonoid, I.16, II.71

cocommutative, I.19, II.71
compactly generated, III.266
compactly generated weak Hausdorff space,

III.470, III.485
complete, I.11
component

braid -, II.137
1-, II.86, II.95
permutation -, II.137
ψ-, II.95
σ-, II.95
τ-, II.86

composite, I.8
composition

enriched category, III.17

enriched functor, III.18, III.19
enriched multifunctor, III.233
enriched natural transformation

horizontal, III.20
vertical, III.19

lax functors, I.222
lax transformation

horizontal, I.226
modification

horizontal and vertical, I.228
monoidal enriched category, III.41
monoidal enriched functors, III.50
multicategory, III.186
multifunctor, III.190

computer science, I.54
comultiplication, I.16

opposite, II.74
Sweedler’s notation, II.74

concatenation, III.185
concatenation product, III.333
Conjecture

Baez’s, I.261, I.298
Laplaza En-monoidal category, III.523
nonsymmetric, I.299
version 2, I.299

Blass-Gurevich, xii, II.129, II.161
Braided Baez, II.200

version 2, II.201
conjunction, I.51
connective

spectrum, III.326
symmetric spectrum, III.527, III.528

conservation of information, I.50
constant functor, III.500
constraint 2-by-2

multilinear functor, III.246
of a composition, III.252

constraint associativity
multilinear functor, III.246

constraint symmetry
multilinear functor, III.246

constraint unity
multilinear functor, III.246

contractible space, III.444, III.453
convolution

Day - associativity isomorphism, III.143
Day - hom, III.140
Day - left unit isomorphism, III.143
Day - product, III.140
Day - right unit isomorphism, III.144
Day - symmetric monoidal closed, III.147
Day - symmetry isomorphism, III.144
Day - unit, III.142

coordinatized 2-vector space, I.331
matrix bicategory, I.430

coordinatized vector space, I.46
K-theory, III.458

copowered, III.164
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coproduct, I.12, II.52, II.57, III.500
corepresented functor, III.104

enriched, III.101, III.104
underlying, III.65

cosimplicial identities, III.264
cotensored, III.155, III.164

change of tensors and cotensors, III.159
counit, I.16

internal adjunction, I.230
of an adjunction, I.10
of enriched adjunction, III.21

counity, I.16
covering space, III.474, III.485
cowedge, I.12

V-, III.120
Curry-Howard-Lambek correspondence, I.50
cyclic group, II.8
cylinder object, III.288

D
D-shaped diagram, III.139, III.140, III.150
data wrangling, I.54
dataflow program, I.54
Day convolution, III.140

associativity isomorphism, III.143
G∗-objects, III.337
hom diagram, III.140
left unit isomorphism, III.143
pointed diagrams, III.181
right unit isomorphism, III.144
symmetric monoidal closed, III.147
symmetric sequences, III.273
symmetry isomorphism, III.144
unit diagram, III.142

decomposable element, III.498
degeneracy, III.264

co-, III.264
degenerate, III.265
δ-

free edge, I.101
free path, I.101
prime edge, I.99, I.127, I.164, I.167, II.149,

II.153
reduced, I.99, II.149
reduction, I.99
reduction exists, I.101

Density Theorem, III.163
diagonal, I.308, II.53
diagram

braided sheet, III.519
enriched, III.139, III.140, III.150
hom, III.140
pasting, I.223
sheet, I.54, I.134, I.300, III.519
string, I.54, III.519
unit, III.142

direct sum, II.51, II.57, II.66, II.71
matrix, I.47

morphism, II.52
object, II.51

disjoint basepoint, III.166, III.167
disjunction, I.51
distortion, I.156, I.164

additive, I.167, I.168
braided, II.150, II.153, II.195, II.216

distortion category, I.143, I.164
additive, I.165

Grothendieck construction, I.170, III.528
K-theory, III.443
tight ring category, II.242

additive structure, I.145
braided, II.137, II.195, II.216

Grothendieck construction, II.157, III.528
K-theory, III.484
tight braided ring category, II.261

distributivity morphisms, I.152
Grothendieck construction, I.170, III.528
K-theory, III.458, III.528
left bipermutative category, I.154
multiplicative structure, I.147
multiplicative zeros, I.152
tight bipermutative category, II.253

distributive
category, I.38, I.165, I.182, I.268, I.430
symmetric monoidal category, xii, I.37,

I.131, I.164, I.181, I.268, I.430
distributivity property, xi
domain, I.8

of a path, I.58, II.147
of an edge, I.58, I.60, II.146, II.148

double category, III.519
horizontal bicategory, III.519
symmetric monoidal, III.519

Drinfeld center, xiii, II.26, II.35
bimonoidal, xiii, II.113, II.126, II.262

abelian category with a monoidal
structure, II.127

K-theory, III.484
bimonoidal bicategory, III.518
braided monoidal category, II.35
enriched monoidal category, III.524

Drinfeld double, II.38
dual object, III.525
duoidal category, II.314

E
E2

operad
braid, III.472
little disc, III.485
little square, III.470
Steiner, III.485

symmetric spectrum
K-theory, III.484

edge, I.58, II.146
0X-free, I.78
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(0X , δ)-free, I.101
δ-free, I.101
elementary, I.59, II.148
identity, I.59, II.148
nonsymmetric, I.132
prime, I.60

Eilenberg-Mac Lane spectrum, III.278
commutative monoid, III.456
monoid, III.442

E∞
operad, III.453

Barratt-Eccles, III.453
Boardman-Vogt construction, III.525

symmetric spectrum, III.454
elementary

edge, I.59, II.148
nonsymmetric, I.132

graph, I.59, II.147
elementary block braid, II.14
Elmendorf-Mandell

bipermutative category, xiv, II.251, III.451
K-theory, II.236, II.268, III.457, III.484,

III.513
ring category, xiv

Elmendorf-Mandell G∗-category
colax, III.399
lax, III.399
strong, III.399

Elmendorf-Mandell J-theory, III.390
Elmendorf-Mandell K-theory, xiii, III.391

colax, III.401
equivalence with Segal K-theory, III.408
strong, III.401

embedding
enriched Yoneda, III.128

empty category, I.12
empty matrix, I.308
empty profile, III.185
empty sequence, I.143, II.137
empty type, I.51
En

operad, III.472, III.512
Boardman-Vogt construction, III.525
models of -, III.525
n-fold monoidal category, III.498

symmetric spectrum, III.483, III.512
K-theory, III.513

En-monoidal category, II.269, II.305, III.488,
III.508

additive symmetry, II.305
additive zero, II.305
as Monn-algebra, III.510
bipermutative category, II.310
braided ring category, II.307
coherence, III.520
E1, II.307
E2, II.307
E4, III.525

En-symmetric spectra, III.513
exchange, II.305, III.508
exchange factorization axiom, II.305, III.508
free, II.311

K-theory, III.513
K-theory, III.513
Laplaza, III.522
left factorization morphism, II.305, III.508
product, II.305
right factorization morphism, II.305, III.508
sheet diagram, III.524
small, II.306, III.509
structure, III.510
sum, II.305
unit, II.305
zero exchange axiom, II.305, III.508

end, I.13
in V, III.122
V-, III.121
V- as equalizer, III.122
V-co-, III.120
V-co- as coequalizer, III.121

endomorphism
multicategory, III.189, III.320
operad, III.189
rig, II.243
ring category, II.245

K-theory, III.443
tight ring category, II.249

endomorphism multicategory
enriched, III.239

endomorphism operad
enriched, III.233, III.242, III.287, III.431,

III.450
simplicial, III.287, III.454, III.483, III.512

enriched
adjoint equivalence, III.22
adjunction, III.21, III.107

counit, III.21
monoidal, III.54
unit, III.21

braided monoidal - category, III.46, III.59
2-category, III.54
coherence, III.89
strictification, III.93

braided monoidal - functor, III.49
category

2-category, I.219
coend, III.120, III.164
coherent map, III.90
diagram, III.139, III.140, III.150
end, III.121, III.164
endomorphism multicategory, III.239
endomorphism multifunctor, III.242
Epstein’s Coherence, III.90
equivalence, III.22
functor, III.18

corepresented, III.101, III.104
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mapping object, III.123
represented, III.102, III.104, III.131

identity functor, III.19
identity natural transformation, III.19
interchange diagram, III.45
iterate, III.90
mapping category, III.125, III.139, III.151
monoidal - category, III.41

2-category, III.54
axiom components, III.45
braided, III.46
coherence, III.89
strict, III.44, III.59
strictification, III.91
symmetric, III.47

monoidal - functor, III.48
monoidal - natural transformation, III.52
monoidal adjoint equivalence, III.54
multicategory, III.230

2-category, III.235
change of enrichment, III.236, III.238

multifunctor, III.233
multinatural transformation, III.234
natural isomorphism, III.20
natural transformation, III.19, III.115

horizontal composition, III.20
vertical composition, III.19

naturality, III.65, III.105
operad, III.232, III.392
operad algebra, III.234, III.392
operad morphism, III.234, III.392
symmetric monoidal - category, III.47

2-category, III.54
coherence, III.90
endomorphism multicategory, III.239
strictification, III.94

symmetric monoidal - functor, III.50
coherence, III.90
coherent map, III.90
endomorphism multifunctor, III.242
iterate, III.90

tensor product, III.26, III.28
associator, III.31
braiding, III.34
left unitor, III.30
monoidal, III.37
right unitor, III.30
unit, III.30
unity properties, III.33

Yoneda embedding, III.128
Yoneda functor, III.128

enriched category, III.17
2-category, III.21, III.23, III.37
braided monoidal, III.46

2-category, III.54
coherence, III.89

change of enrichment, III.61, III.66, III.151
monoidal, III.37, III.41

2-category, III.54
coherence, III.89

opposite, III.22, III.55
small, III.18
symmetric monoidal, III.47

2-category, III.54
coherence, III.90

underlying category, III.64
unit, III.30

enriched monoidal category
center, III.524
classification, III.525

enriched operad, III.232, III.392, III.453, III.472
algebra, III.234, III.392
endomorphism, III.431, III.450
morphism, III.234, III.392

Enriched Yoneda
Bijection, III.117
Density, III.141
Embedding, III.137
Lemma, III.136, III.141

enrichment
standard, III.112
unitary, III.153

epimorphism, I.8, II.57, II.263, III.458, III.520
cokernel, II.57

Epstein’s Coherence Theorem, I.22, I.291,
III.17

Enriched -, III.90
equalizer, I.12, II.56

co-, III.200
equivalence, I.10, I.298, I.299, II.86, II.200,

II.201, III.192
2-, III.525
enriched, III.22
simplicial homotopy, III.270

equivariance
enriched multicategory, III.232
enriched multifunctor, III.233
multicategory, III.187
multifunctor, III.189
symmetric spectrum, III.277

equivariant
K-theory, III.424

essentially surjective, I.11
evaluation

at ⟨⟩, III.338
left adjoint, III.338

at e, III.150, III.182
left adjoint, III.161, III.182

at n, III.274
left adjoint, III.274

at X, III.97
co-, III.97

exact category, II.66
exchange, II.272, III.489

En-monoidal category, II.305, III.508
triple - axiom, II.273, III.490
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external associativity axiom, II.273, III.490
external factorization axiom, II.240, II.256,

III.434
external unity axiom, II.272, III.489

F
face, III.264

co-, III.264
face product, I.413
factor, I.99
fermion, II.95
Fibonacci anyons, xiii, II.155, II.191, III.519

abelian category, II.86
additive zero, II.86
associativity isomorphism, II.90
bimonoidal symmetric center, II.128
braided monoidal category, II.92
braiding, II.92
Fibonacci sequence, II.88
fusion rule, II.87
hexagon axioms, II.92
monoidal category, II.90
non-abelian anyon, II.86
pentagon axiom, II.91
tight braided bimonoidal category, II.94
vacuum, II.86

Fibonacci sequence, II.88
fibrant object, III.288
fibrant replacement, III.288
fibration, III.288
filtered

category, III.202
colimit, III.202

finite
category, I.8
colimit, I.11, II.57
limit, I.11, II.57

finite ordinal category, xii, I.38, I.298, I.430,
II.142, II.193, II.200, III.272

is isomorphic to its variant, I.183
K-theory, III.458
tight bipermutative category, II.252
variant, I.43, I.299, I.430, II.201

K-theory, III.458
tight bipermutative category, II.252

finite sets
pointed, III.176, III.300

smash product, III.328, III.335, III.408
unpointed, III.329

finite type, I.50
flat

bimonoidal category, I.131, I.168
braided bimonoidal category, II.154, II.189,

II.191, II.196, II.200, II.201
symmetric bimonoidal category, I.131,

I.165, I.298, I.299
formal inverse, I.59, II.148

path, I.60

prime edge, I.60
free

algebra, I.58, II.146
monomial, I.99
norm, I.65
polynomial, I.99
rank, I.66
size, I.66

braided strict monoidal category, II.159
En-monoidal category, II.311

K-theory, III.513
n-fold monoidal category, II.292

decomposition, II.298
functor, II.296
of a set, II.296
on one object, II.301

operad, III.430
free action, III.444
Freyd-Mitchell Embedding Theorem, II.67
full subcategory, I.8
fully faithful, I.11
functor, I.8

2-, I.221, I.298, I.299, II.200, II.201
additive, II.51, II.88, II.97, II.167, II.191
as a multifunctor, III.191
bimonoidal, I.201
braided bimonoidal, II.164, II.167, II.190
braided monoidal, II.21, II.167, II.191, III.11
braided monoidal enriched, III.49
category, II.57
colimit, I.11
constant, III.500
corepresented, III.104
enriched, III.18
enriched corepresented, III.101, III.104
enriched endomorphism multi-, III.242
enriched represented, III.102, III.104, III.131
enriched Yoneda, III.128
enriched multi-, III.233
faithful embedding, I.166
free n-fold monoidal category, II.296
identity, I.9
lax, I.220
left derived, III.291
limit, I.11
local, I.220
monadic, III.199
monoidal, I.16, II.19, III.9
monoidal enriched, III.48
multi-, II.269, III.189
multilinear, III.245, III.249

colax, III.420
composition, III.250

n-fold monoidal, II.280
object set, III.433
opmonoidal, I.53
pseudo-, I.221, II.206, II.215, II.218
represented, III.104
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restriction, II.301
right derived, III.291
strict, I.221
strictly monadic, III.199
symmetric bimonoidal, I.177, I.181, II.168
symmetric monoidal, I.19, I.181, II.25, III.13

strictly unital, III.195
symmetric monoidal enriched, III.50
tensor, I.22
tri-, III.517
underlying corepresented, III.65
underlying represented, III.65

functor category, II.57
functorially factors, III.288
fundamental simplex, III.265
fusion rule

Fibonacci anyons, II.87
Ising anyons, II.96

G
Γ-category, III.303
Γ-object, III.302

category of -, III.302
symmetric monoidal closed, III.339

Γ-simplicial set, III.303
G∗-category, III.338

mapping object, III.338
pointed simplicial enrichment, III.340

G∗-object, III.336
category of -, III.336
Day convolution, III.337
hom diagram, III.338
mapping object, III.338
symmetric monoidal closed, III.338
tensored and cotensored, III.338
unit diagram, III.338

G∗-simplicial set, III.338
mapping object, III.339

generating acyclic cofibrations, III.293
generating braid, II.8
generating cofibrations, III.293
geometric braid, II.8
geometric realization, III.266, III.444, III.453,

III.472
gluing 2-by-2
⟨n⟩-system, III.393

gluing associativity
n-system, III.307
⟨n⟩-system, III.393

gluing compatibility
n-system morphism, III.308
⟨n⟩-system morphism, III.394

gluing morphism, III.306
gluing symmetry

n-system, III.307
⟨n⟩-system, III.393

gluing unity
n-system, III.307

⟨n⟩-system, III.393
graph, I.58, II.146

elementary, I.59, II.147
morphism, I.61, II.149, II.195, II.216

extension, I.61, II.149
multi-, III.204
nonsymmetric - of a set, I.132, I.168
of a set, I.60, II.148

Gray monoid, I.250, III.518
bipermutative, III.518
data and axioms, I.250
iterated, III.522
permutative, I.252, III.518

Gray ring, III.518
Gray structure 2-cell, I.247

properties, I.248
Gray symmetry, I.253, III.518

data and axioms, I.254
Gray tensor product, I.247

basic 1-cell, I.247
basic 2-cell, I.247
closed structure, I.249
Gray unit, I.250
monoid, I.250
proto-2-cell, I.247
symmetric monoidal closed, I.249
transition 2-cell, I.247
yields a 2-category, I.249

Gray unit, I.250
Grothendieck construction, I.168, II.156,

III.326, III.356
additive distortion category, I.170, III.528
braided distortion category, II.157, III.528
distortion category, I.170, III.528

group action
braid -, III.473
free, III.444
regular, III.444

group bialgebra, II.75
group completion, II.315, III.514
groupoid, I.8, I.144, I.166, II.138

bimonoidal, I.29
symmetric bimonoidal, I.29, I.51

H
Hausdorff

weak, III.266
hexagon axiom

Barratt-Eccles operad, III.447
block braid, II.16
braid operad, III.477
braided monoidal category, II.21, III.10
braided monoidal enriched category, III.46
enriched tensor product, III.35
Fibonacci anyons, II.92
Ising anyons, II.106
permutative Gray monoid, I.253
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symmetric monoidal category, I.18, II.25,
III.12

hexagon diagram, II.21, III.10
braided monoidal enriched category, III.47

hexagonator
left, I.237

matrix bicategory, I.421
right, I.237

matrix bicategory, I.425
hom

pointed, III.173
hom category, I.215
hom diagram, III.140
G∗-objects, III.338
pointed diagrams, III.181

hom object, III.17
adjoint to Gray tensor product, I.249
symmetric, III.274

homotopic, III.289
homotopy

colimit, III.500, III.514
canonical map, III.500
homotopy invariance, III.500

pushout, III.500
simplicial, III.269

homotopy category, III.290
homotopy equivalence, III.289

simplicial, III.270
homotopy type theory, I.50
Hopf algebra, II.38
horizontal composition

2-natural transformation, I.227
bicategory, I.216, II.205
enriched multinatural transformation,

III.235
enriched natural transformation, III.20
lax transformation, I.226
modification, I.228
multinatural transformation, III.191
natural transformation, I.9

horn, III.265
hyperplane, III.498

I
identities

cosimplicial, III.264
enriched functor, III.18
simplicial, III.265

identity, I.59
1-cell, I.216, II.205
2-cell, I.216
3-cell, III.517
braid, II.8
enriched functor, III.19
enriched multifunctor, III.234
functor, I.9
matrix, I.309
modification, I.228

monoidal enriched functor, III.50
morphism, I.8
multifunctor, III.190
natural transformation, I.9
object, I.231, II.211
prime edge, I.60
strict functor, I.223
strong transformation, I.225

identity object
monoidal enriched category, III.41

inclusion, II.51
inclusion of tuples, III.342
inconsistency, I.51
infinite loop space, III.459
initial object, I.12
initial operad, III.191
injection, III.329

reindexing, III.330
input profile, III.186, III.230
interchange

enriched - diagram, III.45
middle four - isomorphisms, III.26
monoidal enriched category, III.44
relation, III.213

internal
adjunction, I.230
equivalence, I.230

internal adjunction
adjoint pair, I.230
counit, I.230
left adjoint, I.230
right adjoint, I.230
unit, I.230

internal associativity axiom, II.273, III.490
internal factorization axiom, II.240, II.255,

III.434
internal hom, I.19, III.13, III.431

multicategory, III.216
pointed multicategory, III.225
simplicial set, III.268
symmetric sequence, III.274
symmetric spectra, III.284

internal unity axiom, II.272, III.489
invertible 2-cell, I.216
Ising anyons, xiii, II.155, II.191, III.519

abelian category, II.95
additive zero, II.95
associativity isomorphism, II.99

sign conventions, II.109
bimonoidal symmetric center, II.128
braided monoidal category, II.106
braiding, II.105

sign conventions, II.109
fermion, II.95
fusion rule, II.96
hexagon axioms, II.106
monoidal category, II.99
non-abelian anyon, II.95
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pentagon axiom, II.100
tight braided bimonoidal category, II.109
vacuum, II.95

isomorphism, I.8
canonical underlying, III.102

iterate, I.21, III.17, III.90
iterated loop space, II.267, II.315

Milgram’s model, III.514

J
J-theory, III.263

Elmendorf-Mandell, III.390
M-partition, III.319
Segal, III.320
T -partition, III.385

monoidal constraint, III.385, III.423
unit constraint, III.387, III.402, III.422

K
k-space, III.297, III.485
K-theory, xv, III.263

distortion category, III.528
Elmendorf-Mandell, xiii, II.236, II.268,

III.391, III.457, III.484, III.513
colax, III.401
strong, III.401

Elmendorf-Mandell-Segal equivalence,
III.408

equivariant, III.424
matrix symmetric monoidal bicategory,

III.527
May, III.424
multicategory, III.526
multiplicative, III.424
of Γ-simplicial set, III.305
of G∗-simplicial set, III.344

S-action, III.352
associativity, III.354
equivariance, III.350
monoidal constraint, III.350
symmetry, III.355
unit constraint, III.350
unity, III.353

of bipermutative categories, III.457
of braided ring categories, III.484
of En-monoidal categories, III.513
of ring categories, III.443
permutative Gray monoid, III.527
Quillen, III.424
Segal, xiii, II.236, III.320

Quillen equivalence, III.326, III.527,
III.528

Waldhausen, III.424
Kan extension, I.13
Kelley space, III.297, III.485
kernel, II.56
Khatri-Rao product, I.413
Kronecker delta, I.322

L
Laplaza coherence isomorphism, I.188, I.306,

II.172
Laplaza’s Axioms, I.25, I.36, I.53, II.41

braided bimonoidal category, II.46, II.49,
II.117

braided distortion category, II.146
Laplaza’s Coherence Theorem

First, I.127
Second, I.164

lax
bicolimit, I.262, I.298, I.299, II.200, II.201
colimit, I.263

lax Elmendorf-Mandell G∗-category, III.399
lax functor, I.220

bicategory, I.229
composite, I.222
lax functoriality constraint, I.221
lax unity constraint, I.221
strictly unitary, I.221
unitary, I.221

lax monoidal functor, I.22
lax n-system, III.307
lax naturality constraint, I.224
lax ⟨n⟩-system, III.394
lax Segal Γ-category, III.311
lax symmetric comonoidal functor, III.326
lax transformation, I.224

horizontal composition, I.226
least element, II.277
left 2-unitor, I.232, II.212

matrix bicategory, I.402, II.228
left additive zero, I.29
left adjoint, I.10

enriched, III.21
in a monoidal category, III.525
internal adjunction, I.230
preservation of colimits, I.11

left bipermutative category, I.49, I.131, I.200,
I.430

distortion category, I.154
K-theory, III.458
left permbraided category, II.134
tight symmetric bimonoidal category, I.49

left distributivity morphism
bimonoidal Drinfeld center, II.125
braided bimonoidal category, II.46
symmetric bimonoidal category, I.25, II.41

left factorization morphism
En-monoidal category, II.305, III.508
ring category, II.239, III.433

left functor, III.290
derived, III.291

left hexagonator, I.237
matrix bicategory, I.421

left homotopy, III.289
left lifting property, III.287
left module, III.276
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limits and colimits, III.280
monad, III.279

left monoidal unitor
monoidal enriched category, III.42

left multiplicative unit, I.29
left multiplicative zero

bimonoidal Drinfeld center, II.124
braided bimonoidal category, II.46
symmetric bimonoidal category, I.25, II.41

left normalization axiom, I.233, II.213
matrix bicategory, I.406

left normalized
bracketing, I.186, I.223, II.194, II.216
word, I.20, III.13

left normalized product, III.89, III.238
left permbraided category, II.133, II.155, II.184

braided distortion category, II.145
left bipermutative category, II.134
tight braided bimonoidal category, II.134

left permutative braided category, II.133
left rigid bimonoidal category, I.203, I.207
left unit isomorphism, I.15, II.18, III.8

Day convolution, III.143
left unitor, I.216, II.205

base, I.231
enriched tensor product, III.30
mate, III.48

left unity
enriched monoidal functor, III.49
enriched multicategory, III.232
enriched tensor product, III.33
monoidal category, I.15, II.18, III.9
multicategory, III.187

Lemma
Enriched Yoneda, III.136, III.141

length, I.143, I.166, II.137
additive, I.185, II.169
multiplicative, I.185, II.169
of a path, I.58, II.147

length of a profile, III.185
level equivalence, III.296
levelwise inclusion

of Segal Γ-categories, III.313
levelwise weak equivalence, III.303
lexicographic order, III.301, III.328
Lie algebra, II.76
limit, I.11

co-, III.199
finite, I.11, II.57
monad algebras, III.199
preservation by right adjoints, I.12
small, I.11

linearity constraint, III.245
identity, III.249

little 2-disc operad, III.485
little cube, III.470

operad, II.268, III.471, III.472, III.498
covering space, III.474

decomposable element, III.498
separable element, III.499

local functor, I.220
localization, III.290
locally small, I.217
long spine, III.265
loop space, II.267

infinite, II.236, II.268, III.459
iterated, II.267

M
M-partition

J-theory, III.319
M1-modules, III.366, III.373

closed structure, III.382
complete and cocomplete, III.366

Mac Lane coherence isomorphism, I.187,
I.269, I.306, II.170, II.189

Mac Lane’s
Coherence Theorem, I.20, III.14, III.448,

III.478
Strictification Theorem, I.20, III.14

mapping enriched category, III.125, III.139,
III.151

mapping object
G∗-category, III.338
G∗-objects, III.338
G∗-simplicial set, III.339
of enriched functors, III.123
pointed diagrams, III.181
symmetric, III.274
symmetric spectrum, III.286

Martin-Löf type theory, I.51
mate

associator, III.45
left unitor, III.48
pentagonator, I.235, III.45
right hexagonator, I.241
right unitor, III.48

matrix, I.40, I.44
0-, I.308, II.207
base associator, I.316, II.208
base left unitor, I.313, II.208
base right unitor, I.314, II.208
category, I.307, II.206
column, I.308
column permutation, I.40, I.44
diagonal, I.308
direct sum, I.47
empty, I.308, II.207
identity, I.309, II.207
Kronecker product, I.301
mixed-product property, I.302
monoidal category, I.331
multiplying with 0 matrices, I.310, I.311,

II.208
multiplying with permutation matrices,

I.410, I.411
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permutation, I.44, I.409
product, I.309, II.207
R-, II.74
row, I.308
row permutation, I.40, I.44
square, I.308
tensor product, I.47, I.301, I.334, II.215
transpose, I.40, I.44

matrix bicategory, I.330, II.208, III.517
braided monoidal, I.426
braiding, I.413
coordinatized 2-vector space, I.331, I.430
K-theory, III.527
left 2-unitor, I.402, II.228
left hexagonator, I.421
left monoidal unitor, I.385, II.225
left normalization axiom, I.406
middle 2-unitor, I.400, II.228
monoidal, I.408, II.229
monoidal associator, I.360, II.223
monoidal composition, I.340, II.218
monoidal identity, I.332, II.214
non-abelian 4-cocycle condition, I.405
pentagon axiom, I.324, I.326
pentagonator, I.392, II.227
right 2-unitor, I.404, II.228
right hexagonator, I.425
right monoidal unitor, I.389, II.227
right normalization axiom, I.407
symmetric monoidal, I.428
unity axiom, I.321

matrix product, I.309
matrix tensor product, I.334
maximum, II.278
middle 2-unitor, I.232, II.212

matrix bicategory, I.400, II.228
middle four

interchange isomorphisms, III.26
middle unity axiom

enriched tensor product, III.32
middle unity diagram

enriched tensor product, III.32
monoidal enriched category, III.43

Mitchell’s Embedding Theorem, II.67
model category, III.288

homotopy category, III.290
left derived functor, III.291
left functor, III.290
monoidal, III.294
of chain complexes, III.295
of simplicial sets, III.295
of small categories, III.294
of symmetric spectra, III.296
of topological spaces, III.296
Quillen adjunction, III.292
Quillen equivalence, III.292
right derived functor, III.291
right functor, III.291

model structure
chain complexes, III.295
simplicial sets, III.295
small categories, III.294
stable, III.296
topological spaces, III.296

modification, I.228, II.206, III.155
horizontal and vertical compositions, I.228
identity, I.228
invertible, I.228
pointed, III.303

module
left, III.276
right, III.276

modules, I.37, I.182, I.430, II.58
over a bialgebra, II.80

tight bimonoidal category, II.84
over a braided bialgebra, II.155

tight braided bimonoidal category, II.84
over a Noetherian ring, II.58
over a symmetric bialgebra

tight symmetric bimonoidal category,
II.84

over an algebra, II.83
overM1, III.366, III.373

closed structure, III.382
over symmetric sphere, III.276

monad, III.198
2-, I.137, I.173
bimonoidal, I.53
for left module, III.279
from adjunction, III.199
preserves filtered colimits, III.202

monadic
functor, III.199

monadic adjunction, III.199
strictly monadic, III.199

monadicity, III.200, III.227, III.280
monoid, I.15, II.18, II.71, II.287, III.431

as As-algebra, III.431
co-, I.16
commutative, I.18, II.71, III.454
Gray, I.250
in MCatn, II.288
in (2Cat,×), I.257
in symmetric spectra, III.437
left module, III.276
morphism, II.290

n-fold monoidal functor, II.290
permutative Gray, I.252
right module, III.276
totally ordered, II.278, II.315

2-fold monoidal category, II.279
monoidal

2-category, III.57
adjoint equivalence, III.71
adjunction, III.71
associator, I.231, II.211
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matrix bicategory, I.360, II.223
composition, I.231, II.211

matrix bicategory, I.340, II.218
identity, I.231, II.211

matrix bicategory, I.332, II.214
left - unitor, I.231, II.212

matrix bicategory, I.385, II.225
right - unitor, I.231, II.212

matrix bicategory, I.389, II.227
monoidal associator

monoidal enriched category, III.42
Monoidal Bicategorification Theorem, II.229
monoidal bicategory, I.230, II.211, III.57,

III.522
braided, I.236, III.57

matrix, I.426
matrix, I.408, II.229
syllepsis, I.428
sylleptic, I.243
symmetric, I.244, III.57

matrix, I.428
monoidal category, I.14, II.17, II.268, III.8,

III.41
as a one-object bicategory, I.220
autonomous, III.525
braided, II.20, III.10
coherence, I.20, I.22, III.14
Drinfeld center, II.26, II.35
dual object, III.525
E4, III.525
En, II.305, III.508

free, II.311
free, K-theory, III.513
structure, III.510

enriched, III.41
2-category, III.54
center, III.524
classification, III.525
coherence, III.89
strictification, III.91

Fibonacci anyons, II.90
from a totally ordered set, II.278
Ising anyons, II.99
matrices, I.331
modules over a bialgebra, II.80
n-, III.520
n-fold, II.272, III.26, III.489

coherence, II.302, II.314
enriched, III.524
free, II.292
lax, II.314, III.521
operad, III.492
strictification, III.521

of small enriched categories, III.37
of small n-fold monoidal categories, II.287
operad, III.459

B-, III.486
G-, III.459

S-, III.459
pentagon axiom, II.18, III.8
periodic table, III.521
pushout product, III.293
strict, I.15, II.18, III.8

1-fold monoidal category, II.273
strictification, I.20, III.14
string diagram, I.54, III.519
symmetric, I.17
tuply, III.521
unity axiom, II.18, III.8
unity properties, II.18, III.8
word, I.19, II.36, III.13

V-word, III.89
monoidal composition

monoidal enriched category, III.41
monoidal constraint, I.17

change of enrichment, III.72
enriched, III.48
partition J-theory, III.385

monoidal functor, I.16, II.19, III.9
2-fold, II.283
adjunction, III.71
braided, II.21, II.196, III.11
braided enriched, III.49
braided strictly unital, II.283
change of enrichment, III.61, III.151
coherence, I.22, III.17
composite, II.20, II.285, III.10
enriched, III.48

coherence, III.90
lax, I.22
n-fold, II.280, II.284
op-, I.53
oplax, III.525
strict, I.17, II.20, III.10
strictly unital, I.17, II.20, III.9

1-fold monoidal functor, II.282
strong, I.17, II.20, III.9
strong symmetric, III.431
symmetric, I.19
symmetric enriched, III.50
symmetric strictly unital, II.284
unital, I.17, II.20, III.9

monoidal identity
monoidal enriched category, III.41

monoidal model category, III.294
monoidal natural transformation, I.17, I.268,

II.20, II.191, III.10
enriched, III.52

monoidal naturality
enriched, III.52

monoidal product, I.14, II.18, III.8
monoidal unit, I.14, II.18, III.8
monomial, I.99, I.156, I.162, I.185, II.169
monomorphism, I.8, I.127, I.164, I.167, II.57,

II.153, II.284, III.520
kernel, II.56
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morphism, I.8
direct sum, II.52
enriched operad, III.234, III.392
epi-, I.8
graph, I.61, II.149
iso-, I.8
module structure, III.276
monad algebra, III.198
mono-, I.8
monoid, II.290

n-fold monoidal functor, II.290
multigraph, III.204
n-system, III.307
⟨n⟩-system, III.394
operad, III.429
pointed, III.166
zero, II.51

multicategory, III.186
2-category, III.191
Boardman-Vogt tensor product, III.213

2-functorial, III.243
Cartesian product, III.193
closed, III.228
closed symmetric, III.228
composition, III.186, III.230
endomorphism, III.189, III.320

enriched, III.239
enriched, III.230

2-category, III.235
change of enrichment, III.236, III.238
small, III.232

equivalence, III.192
internal hom, III.216
K-theory, III.526
of small multicategories, III.244
of small permutative categories, III.245,

III.249, III.257, III.482
of small pointed multicategories, III.244
partition, III.314, III.363
M1, III.315, III.366
M1 multiplication isomorphism, III.370
M1-modules, III.366, III.373
symmetric monoidal functor, III.365

pointed, III.194
hom, III.225
smash product, III.215, III.244
smash unit, III.215
symmetric monoidal closed, III.226
wedge, III.215

sharp product, III.211
small, III.188
symmetric, III.227
symmetric monoidal closed, III.225
tensor product, III.213

2-functorial, III.243
terminal, III.192
terminal parameter - for modules, III.325,

III.421

multiedges, III.204
multifunctor, II.269, III.189

Cartesian product, III.193
enriched, III.233

change of enrichment, III.237
enriched endomorphism, III.242
pointed, III.194

multigraph, III.204
internal product, III.210
morphism, III.204
small, III.204

multilinear
functor, III.245, III.249

0-linear, III.246, III.402, III.422
colax, III.420
composition, III.250
linearity constraint, III.245

transformation, III.248, III.249
colax, III.420
composition, III.251

multilinearity conditions, III.248
multinatural transformation, III.191

enriched, III.234
change of enrichment, III.237
identity, III.235

identity, III.191
pointed, III.194

multiplication
monad, III.198

multiplicative
associativity isomorphism, I.29, II.45
left - unit, I.29, II.45
right - unit, I.29, II.45
symmetry isomorphism, I.29, II.45
unit, I.29, I.59, II.44

multiplicative length, I.185, II.169
multiplicative structure

braided bimonoidal category, II.45
symmetric bimonoidal category, I.25, II.41

multiplicative symmetry factorization axiom,
II.251, II.253, III.451

multiplicative unit, II.147, II.239
multiplicative zero axiom, II.239, III.433

N
n-ary operation, III.186
n-ary operation object, III.230
n-fold

monoidal category, III.26
n-fold monoidal category, II.272, III.489

1-fold, II.273
2-fold, II.274

from totally ordered monoid, II.279
as Monn-algebra, III.507
as a monoid, II.288
bicategory, III.522

strictification, III.522
braided strict monoidal category, II.274
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category of -, II.286
coherence, II.302, II.314, III.520
En-monoidal category, II.305, III.508
enriched, III.524
enrichment, III.58
exchange, II.272, III.489
external associativity axiom, II.273, III.490
external unity axiom, II.272, III.489
free, II.292

decomposition, II.298
of a set, II.296
on one object, II.301

group completion of the classifying space,
III.514

internal associativity axiom, II.273, III.490
internal unity axiom, II.272, III.489
lax, II.314

coherence, III.521
sheet diagram, III.524

monoidal category of -, II.287
operad, III.492, III.514

algebra, III.507
braid operad, III.501
coherence, III.502
detects En-monoidal categories, III.510
En, III.498
morphism to Barratt-Eccles operad,

III.512
simplicial, III.497

periodic table, III.521
permutative category, II.276
product, II.272, II.274, III.489
sheet diagram, III.524
small, II.273, III.490
strict monoidal category, II.273
strictification, III.521
triple exchange axiom, II.273, III.490
unit, II.272, III.489

n-fold monoidal coherence, III.506
n-fold monoidal functor, II.280

1-fold, II.282
braided strictly unital monoidal functor,

II.283
composite, II.285
exchange constraint axiom, II.281, III.491
monoidal constraint, II.281
monoidality, II.281, III.491
product, II.282
strict, II.281

category of -, II.286
strong, II.281

category of -, II.286
symmetric strictly unital monoidal functor,

II.284
n-monoidal category, III.520

sheet diagram, III.524
n-operad, II.315
n-system, III.306

colax, III.307
gluing morphism, III.306
lax, III.307
morphism, III.307
strong, III.307

natural isomorphism, I.9
2-, I.227
enriched, III.20

natural monomorphism, I.9
natural transformation, I.9

2-, I.225, I.226, III.155
as a multinatural transformation, III.191
bimonoidal, I.266, II.190, II.191
enriched, III.19
enriched multi-, III.234
monoidal, I.17, I.268, II.20, II.191, III.10
monoidal enriched, III.52
multi-, III.191

naturality
enriched, III.19, III.65, III.105
lax, I.225

naturality condition
internal hom multicategory, III.216

NB4, I.234
nerve, III.270, III.340, III.444, III.453, III.472

classifying space, III.272
of G∗-category, III.340
simplices, III.270

No-Hiding Theorem, I.50
Noetherian ring, II.58
non-abelian 4-cocycle condition, I.232, II.212

matrix bicategory, I.405
non-abelian anyon

Fibonacci anyons, II.86
Ising anyons, II.95

nondegenerate, III.265
nonsymmetric

edge, I.132
elementary edge, I.132
graph of a set, I.132
path, I.132
prime edge, I.132
regular, I.133, I.134
strict algebra, I.133
support, I.133

norm, I.65
normalization map, III.238
normalized

left - product, III.89, III.238
right - product, III.89
right - smash powers, III.275

normalized bracketing
left, I.186, I.223, II.194
right, I.186, II.169

null object, III.176
⟨n⟩-system, III.393

colax, III.394
gluing morphism, III.393



III.602 INDEX

lax, III.394
morphism, III.394
strong, III.394

O
object, I.7

bicategory, I.215, II.205
enriched category, III.17
enriched multicategory, III.230
Γ-, III.302
G∗-, III.336
hom, III.17
initial, I.12
multicategory, III.186
null, III.176
simplicial, III.264
terminal, I.12
zero, I.12, II.55

object unity
n-system, III.307
⟨n⟩-system, III.393

one-point simplicial set, III.265
open

unit cube, III.470
unit interval, III.470

OpenRefine, I.54
operad, III.188, III.227, III.528

action -, III.459, III.486
algebra, III.425
associative, III.427, III.458, III.496

algebra, III.431
coherence, III.429
detects ring categories, III.435

B-monoidal category, III.486
strict, III.486

Barratt-Eccles, II.315, III.445, III.459
algebra, III.450
coherence, III.446
decomposition of morphisms, III.445
detects bipermutative categories, III.452
E∞, III.453
filtration, III.514

B∞-, III.473
Boardman-Vogt W-construction, III.459,

III.525
braid, III.463, III.465

2-fold monoidal category operad, III.501
algebra, III.480
as a symmetrization, III.473
coherence, III.476
decomposition of morphisms, III.475
detects braided ring categories, III.482
E2, III.472

braid group, III.473
braided, III.472, III.485

symmetrization, III.473
commutative, III.192, III.525
composition

juxtaposition notation, III.446
E4-, III.525
E∞-, III.453, III.525
En-, III.472, III.512, III.525

models of -, III.525
endomorphism, III.189

enriched, III.233, III.242, III.287, III.431,
III.450

simplicial, III.287, III.454, III.483, III.512
enriched, III.232, III.392, III.453, III.472
enriched algebra, III.234, III.392
free, III.430
Fulton-MacPherson, III.525
G-monoidal category, III.459

strict, III.459
initial, III.191
little 2-cube, III.472

covering space, III.474
little 2-disc, III.485
little n-cube, II.268, III.471, III.498

decomposable element, III.498
separable element, III.499

monoidal category, III.459
morphism, III.190

enriched, III.234, III.392
n-, II.315, III.525
n-fold monoidal category, III.492, III.514,

III.525
algebra, III.507
coherence, III.502
detects En-monoidal categories, III.510
En, III.498

S-monoidal category, III.459
strict, III.459

simplicial, III.459
Steiner, III.485
strict monoidal category, III.459
sub-, III.526
weak equivalence, III.472, III.485, III.501

operad morphism, III.429
oplax monoidal functor, III.525
oplax symmetric monoidal functor, III.326
opmonoidal functor, I.53
opposite

enriched category, III.22, III.55
opposite category, I.12
opposite comultiplication, II.74
opposite monoidal structure

for enriched tensor product, III.40
ordered

algebraic structure, II.315
partially - set, II.277
totally - set, II.278

ordering
partial, II.277
total, II.278

ordinal, III.292
orthogonal spectra, III.296
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output, III.186, III.230

P
pairwise disjoint interiors, III.470
parameter multicategory for modules, III.325,

III.421
partial ordering, II.277
partially ordered set, II.277

as a category, II.278
least element, II.277

partition, III.314
partition J-theory
M-, III.319
T -, III.385

monoidal constraint, III.385, III.423
unit constraint, III.387, III.402, III.422

partition multicategory, III.314, III.363
M1, III.315, III.366
M1 multiplication isomorphism, III.370
M1-modules, III.366, III.373
symmetric monoidal functor, III.365

partition product, III.363
pasting diagram, I.223
path, I.58, I.127, II.147

0X-free, I.78
0X-reduction, I.78

exists, I.97
(0X , δ)-free, I.101
(0X , δ)-reduction, I.112

exists, I.121
1X-free, I.124, I.162, II.149
1X-reduction, I.124

exists, I.126
δ-free, I.101
distortion, I.156, I.164

additive, I.167, I.168
braided, II.150, II.153, II.195, II.216

formal inverse, I.60
nonsymmetric, I.132
product, I.73
same support, I.64, I.133
sum, I.73
value, I.62, II.149, II.195

path object, III.289
pentagon axiom

bicategory, I.217, II.206
enriched tensor product, III.33
Fibonacci anyons, II.91
Ising anyons, II.100
matrix bicategory, I.324, I.326
monoidal category, I.15, II.18, III.8
monoidal enriched category, III.43

pentagon diagram
enriched tensor product, III.33
monoidal enriched category, III.44

pentagonator, I.232, II.212, III.45
mate, I.235, III.45
matrix bicategory, I.392, II.227

periodic table, III.521
permbraided category, II.265

left, II.133, II.155, II.184
left bipermutative category, II.134
tight braided bimonoidal category, II.134

right, II.134, II.155, II.183
right bipermutative category, II.136
tight braided bimonoidal category, II.136

tight braided ring category, II.262
permutation

block, II.10, III.427, III.464
block sum, I.38, II.9, III.427, III.464
column, I.409
component, II.137
interval-swapping, I.40, II.14
matrix, I.409
matrix transpose, I.40, I.44
of matrices, I.40, I.44
row, I.409
transposition, III.445
underlying - of a braid, II.10

permutative 2-category, I.257
data and axioms, I.258

permutative braided category
left, II.133
right, II.134

permutative category, xiii, I.18, I.40, II.25,
II.268, III.13, III.326, III.527, III.528

as EAs-algebra, III.450
associated right bipermutative category,

I.192
bipermutative category structure, III.451
braided distortion category, II.140
braided ring category structure, III.481
Elmendorf-Mandell G∗-category, III.399
Elmendorf-Mandell J-theory, III.390
Elmendorf-Mandell K-theory, xiii, III.391

colax, III.401
strong, III.401

Elmendorf-Mandell-Segal K-theory
equivalence, III.408

endomorphism multicategory, III.189,
III.320
M1-module, III.379

endomorphism ring category, II.245
K-theory, III.443

En-monoidal category structure, III.510
from a totally ordered set, II.278
multicategory of -, III.245, III.249, III.257,

III.482
n-fold monoidal category, II.276
pointwise monoidal product, III.321
ring category structure, III.247, III.435
Segal Γ-category, III.311
Segal J-theory, III.320
Segal K-theory, xiii, III.320
tight endomorphism ring category, II.249

K-theory, III.443



III.604 INDEX

permutative Gray functor, I.259
permutative Gray monoid, I.252, III.518

bi-, III.518
category of -, I.259
data and axioms, I.255
Gray symmetry, I.253
hexagon axiom, I.253
symmetry axiom, I.253
unit axiom, I.253

permuted V-word, III.89
permuted canonical V-map, III.89
permuted canonical map, I.21, II.37, III.15,

III.16
permuted word, I.20, II.36, III.16

underlying, III.89
permuting factors action, III.275
Π, I.51

-combinator, I.52
-term, I.51
coherence, I.131, I.165

plus construction, III.424
pointed

diagram category, III.176, III.179, III.182
complete and cocomplete, III.183
enriched, III.183
symmetric monoidal closed, III.183
tensored and cotensored, III.183

diagrams, III.176
Day convolution, III.181
hom diagram, III.181
mapping object, III.181
unit diagram, III.181

finite set, III.300
finite sets, III.176
hom, III.173
modification, III.303
morphism, III.166
multicategory, III.194

hom, III.225
smash product, III.215, III.244
smash unit, III.215
symmetric monoidal closed, III.226
wedge, III.215

multifunctor, III.194
multinatural transformation, III.194
object, III.166
punctured, III.178, III.301
simplicial objects, III.269
simplicial sets, III.269
smash product, III.167
smash unit, III.167, III.337

pointed multicategory, III.215
unitary enrichment, III.178, III.337
wedge, III.166

pointed finite set, III.300
pointwise monoidal product, III.321
polynomial, I.99, I.157, I.162
powered, III.164

preadditive category, II.56
preserves filtered colimits, III.202
prime edge, I.60, II.148

0X-, I.71
1X-, I.122, II.149
δ-, I.99, I.127, I.164, I.167, II.149, II.153
formal inverse, I.60
identity, I.60, II.148
nonidentity, I.60, II.148
nonsymmetric, I.132

principal bundle, III.444
product, I.12, I.29, I.58, II.45, II.52, II.57, II.146,

II.239
Boardman-Vogt tensor, III.213
box, I.245
concatenation, III.333
Gray tensor, I.247
partition, III.363
path, I.73
sharp, III.211
smash, III.167
wedge, III.166, III.215

product bicategory, I.231
product type, I.51
profile, III.185
projection, II.51
projective model structure

chain complexes, III.295
propositional logic, I.50
proto-2-cell, I.247
pseudo

bicolimit, I.263
colimit, I.263

pseudofunctor, I.221, II.206, II.215, II.218
pullback, I.12
punctured, III.178, III.301
pure braid group, III.473
pushout, I.12

homotopy, III.500
pushout product, III.293

Q
quantum circuit, I.54
quantum group, xiii, II.38, II.69

anyonic, II.78, II.128
modules, II.155

tight braided bimonoidal category, II.84
quasi-cocommutative bialgebra, II.74
quasitriangular bialgebra, xiii, II.109
Quillen
+-construction, III.528
equivalence, III.326, III.527, III.528
K-theory, III.424

Quillen adjunction, III.292
Quillen equivalence, III.292
Quillen model structure

topological spaces, III.296
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R
rank, I.66
realization

geometric, III.266
realization function, I.186, II.169
reduced

0X-, I.71, I.162
1X-, I.122, I.162, II.149
δ-, I.99, II.149

reduction
0X-, I.71

of a path, I.78
of a path exists, I.97
(0X , δ)-, I.112

exists, I.121
1X-, I.122

exists, I.122
of a path, I.124
of a path exists, I.126
uniqueness of codomain, I.123
uniqueness of value, I.123

δ-, I.99
exists, I.101

reflexivity, II.277
regular, I.63, I.64, I.127

nonsymmetric, I.133, I.134
regular action, III.444
Reidemeister move, II.9, II.24
reindexing injection, III.330
relative I-cell complex, III.293
relative cell complex, III.293
represented functor, III.104

co-, III.101, III.104
enriched, III.102, III.104, III.131
underlying, III.65

restriction, II.301
restriction functor, II.301
reversible programming, I.50
rig, xi

commutative, I.29
endomorphism, II.243

right 2-unitor, I.232, II.212
matrix bicategory, I.404, II.228

right action, III.186, III.230
right additive zero, I.29
right adjoint, I.10

enriched, III.21
in a monoidal category, III.525
internal adjunction, I.230
preservation of limits, I.12

right bipermutative category, I.40, I.45, I.131,
I.199, I.430

associated, I.184, I.196
K-theory, III.458
right permbraided category, II.136
tight symmetric bimonoidal category, I.46

right distributivity morphism
bimonoidal Drinfeld center, II.125

braided bimonoidal category, II.46
symmetric bimonoidal category, I.25, II.41

right factorization morphism
En-monoidal category, II.305, III.508
ring category, II.239, III.433

right functor, III.291
derived, III.291

right hexagonator, I.237
mate, I.241
matrix bicategory, I.425

right homotopy, III.289
right lifting property, III.287
right module, III.276
right monoidal unitor

monoidal enriched category, III.42
right multiplicative unit, I.29
right multiplicative zero

bimonoidal Drinfeld center, II.124
braided bimonoidal category, II.46
symmetric bimonoidal category, I.25, II.41

right normalization axiom, I.233, II.213
matrix bicategory, I.407

right normalized
bracketing, I.186, II.169
word, I.20, III.13

right normalized product, III.89
right normalized smash powers, III.275
right permbraided category, II.134, II.155,

II.180, II.183
right bipermutative category, II.136
tight braided bimonoidal category, II.136

right permutation, III.186, III.230
right permutative braided category, II.134
right rigid bimonoidal category, I.203, I.206
right unit isomorphism, I.15, II.18, III.8

Day convolution, III.144
right unitor, I.216, II.205

base, I.231
enriched tensor product, III.30
mate, III.48

right unity
enriched monoidal functor, III.49
enriched multicategory, III.231
enriched tensor product, III.33
monoidal category, I.15, II.18, III.9
multicategory, III.187

rigid bimonoidal category
left, I.203, I.207
right, I.203, I.206
tight ring category, II.242

K-theory, III.443
ring, xi, I.24
ring category, xiv, II.238, III.426, III.433,

III.461, III.488
2-by-2 factorization axiom, II.240, III.435
additive symmetry, II.238
additive zero, II.238
as As-algebra, III.435
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bipermutative category, II.251, III.451
braided, II.259, III.481

as Br-algebra, III.482
K-theory, III.484

coherence, III.520
Dunn’s En-, II.315
E1-symmetric spectra, II.269
E1-monoidal category, II.307
En-monoidal category, II.305, III.508
endomorphism, II.245

K-theory, III.443
external factorization axiom, II.240, III.434

in a bipermutative category, II.256
internal factorization axiom, II.240, III.434

in a bipermutative category, II.255
K-theory, III.443
left factorization morphism, II.239, III.433
multiplicative unit, II.239
multiplicative zero axiom, II.239, III.433
product, II.239
redundant axioms in a bipermutative

category, II.258, II.265
redundant axioms in a braided ring

category, II.260
right factorization morphism, II.239, III.433
small, II.240, III.435
strict ring symmetric spectra, III.443
structure, III.247, III.435
sum, II.238
symmetry factorization axiom, II.239,

III.434
in a bipermutative category, II.255

terminology, II.264
tight, II.240, III.435

bimonoidal Drinfeld center, xiii, II.262
bimonoidal Drinfeld center K-theory,

III.484
endomorphism, II.249
endomorphism K-theory, III.443
rigid bimonoidal category, II.242
rigid bimonoidal category, K-theory,

III.443
strictification, II.242
tight bimonoidal category, II.241

unit factorization axiom, II.239, III.434
in a bipermutative category, II.254

zero factorization axiom, II.239, III.434
in a bipermutative category, II.254

R-matrix, II.74
rotation

enriched braided monoidal, III.55
row, I.308

permutation, I.409

S
S-modules

another model for spectra, III.296
scalar product, I.334, II.215

Segal Γ-category
colax, III.311
lax, III.311
strong, III.311

Segal J-theory, III.320, III.325
Segal K-theory, xiii, III.320, III.325

equivalence with Elmendorf-Mandell
K-theory, III.408

Quillen equivalence, III.326, III.527, III.528
Segal map, III.303
self-enrichment, III.98, III.150
separable, III.499
sequence

symmetric, III.272
sequential spectra, III.297
sequential spectrum

connective, III.326
set

partially ordered, II.277
totally ordered, II.278

sheet diagram, I.54, I.134, I.300
braided, III.519
higher dimensional, III.524

short spine, III.265
simplices

degenerate, III.265
nerve, III.270
simplicial set, III.265

simplicial bar construction, III.271
simplicial category

category of small -, III.265
simplicial circle, III.266
simplicial cotensor

symmetric sequences, III.274
simplicial homotopy, III.269

equivalence, III.270
simplicial identities, III.265

co-, III.264
simplicial object, III.264

category of -, III.265
pointed, III.269
terminal, III.269

simplicial operad, III.459
Barratt-Eccles, III.453
braid, III.469
endomorphism, III.454, III.483, III.512
n-fold monoidal category, III.497

simplicial replacement, III.501
simplicial set

bi-, III.265
boundary, III.265
Cartesian product, III.268
category of -, III.265
fundamental simplex, III.265
Γ-, III.303
geometric realization, III.266
internal hom, III.268
k-horn, III.265
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model structure, III.295
one-point, III.265
pointed, III.269
simplices, III.265
standard n-simplex, III.265
total singular complex, III.266

simplicial sphere, III.276
F -sphere, III.304, III.342

simplicial tensor
symmetric sequences, III.274

singular complex
total, III.266

size, I.66
small

bimonoidal category, I.29
braided bimonoidal category, II.46
braided ring category, II.259, III.481
category, I.8, I.9
colimit, I.11
En-monoidal category, II.306, III.509
enriched category, III.18
enriched multicategory, III.232
limit, I.11
locally - bicategory, I.217
multicategory, III.188
multigraph, III.204
n-fold monoidal category, II.273, III.490
ring category, II.240, III.435
symmetric bimonoidal category, I.29

small object argument, III.293
small relative to I, III.293
smash

-hom adjunction, III.173, III.183
smash product, III.167

pointed finite sets, III.301, III.328, III.335,
III.408

pointed multicategories, III.215
symmetric monoidal, III.167
symmetric monoidal closed, III.173
symmetric spectra, III.282

smash unit, III.167, III.337
pointed multicategory, III.215

source, III.204
span, III.519
special, III.303
spectra

orthogonal, III.296
sphere
F -sphere, III.304, III.342
simplicial, III.276
symmetric, III.276

sphere spectrum, III.277, III.525, III.528
commutative monoid, III.455
monoid, III.441

spine
long, III.265
short, III.265

split coequalizer, III.200

splitting conditions
coequalizer, III.200

square matrix, I.308
stable equivalence, III.296
stable homotopy group, III.528
stable model structure, III.296
standard n-simplex, III.265
standard enrichment

symmetric monoidal functor, III.112
standard form, III.503
standard model structure

chain complexes, III.295
simplicial sets, III.295
small categories, III.294

Steiner operad, III.485
strict

algebra, I.63
B-monoidal category operad, III.486
braided monoidal category, II.21, III.11
functor, I.221

identity, I.223
G-monoidal category operad, III.459
monoidal category, I.15, II.18, III.8

operad, III.459
monoidal enriched category, III.44, III.59
monoidal enriched functor, III.49
monoidal functor, I.17, II.20, III.10
n-fold monoidal functor, II.281

category of -, II.286
composite, II.285

nonsymmetric - algebra, I.133
S-monoidal category operad, III.459
symmetric monoidal category, I.18
transformation, I.225

strictification
bimonoidal bicategory, III.518
braided monoidal category, II.38, III.16
braided monoidal enriched category, III.93
k-fold monoidal bicategory, III.522
Laplaza En-monoidal category, III.523
monoidal category, I.20, III.14
monoidal enriched category, III.91
n-monoidal category, III.520
n-fold monoidal category, III.521
symmetric bimonoidal bicategory, III.518
symmetric monoidal category, I.21, III.16
symmetric monoidal enriched category,

III.94
tight bimonoidal category, I.206, I.207
tight bipermutative category, II.253
tight braided bimonoidal category, II.183,

II.184
K-theory, III.484

tight braided ring category, II.262
tight ring category, II.242
tight symmetric bimonoidal category, I.199

K-theory, III.458
strictly creates coequalizers, III.200, III.227
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strictly monadic
functor, III.199

strictly unital monoidal enriched functor,
III.49

strictly unital monoidal functor, I.17, II.20,
III.9, III.195

strictly unital symmetric monoidal functor,
III.195

string
diagram, I.54, III.519
in a geometric braid, II.8

strong deformation retract, III.500
strong Elmendorf-Mandell G∗-category,

III.399
strong monoidal enriched functor, III.49
strong monoidal functor, I.17, II.20, III.9
strong n-system, III.307
strong n-fold monoidal functor, II.281

category of -, II.286
composite, II.285

strong ⟨n⟩-system, III.394
strong Segal Γ-category, III.311
strong symmetric monoidal functor, III.431
strong transformation, I.225, II.206

identity, I.225
structure morphism

module, III.276
structured symmetric spectrum, III.425
sub-2-category, I.218, II.190, II.206
subbicategory, I.217, II.206
subcategory, I.8
sum, I.29, I.58, II.45, II.146, II.238

braid, II.9, II.10, III.464
path, I.73
wedge, III.166, III.215

sum type, I.51
support, I.63, I.64

nonsymmetric, I.133
suspension spectrum, III.277

commutative monoid, III.456
monoid, III.441

Sweedler’s
bialgebra, II.77
notation, II.74

syllepsis, I.243
monoidal bicategory, I.428

sylleptic bimonoidal bicategory, III.517
sylleptic center, III.518
sylleptic monoidal

bicategory, I.243
(1,2)-syllepsis axiom, I.243
(2,1)-syllepsis axiom, I.243

symmetric Cat-monoidal, III.57
symmetric bialgebra, II.74

modules, II.84
symmetric monoidal category, II.83

symmetric bimonoidal bicategory, III.517
strictification, III.518

symmetric bimonoidal category, I.25, II.41
2-category of -, I.267
as a braided bimonoidal category, II.50
axioms, I.36
bimonoidal symmetric center, II.127
category of -, I.181
flat, I.131, I.165, I.298, I.299

2-category of -, I.267
groupoid, I.29, I.51
Laplaza’s First Coherence Theorem, I.127
Laplaza’s Second Coherence Theorem, I.164
sheet diagram, III.519
small, I.29, II.44
tight, xi, I.29, I.131, I.164, I.429, II.44, II.264

from an abelian category with a
symmetry, II.65

K-theory, III.458
matrix bicategory, I.330
matrix braided monoidal bicategory,

I.426
matrix monoidal bicategory, I.408
matrix symmetric monoidal bicategory,

I.428
modules over a symmetric bialgebra,

II.84
Strictification Theorems, I.199

symmetric bimonoidal functor, I.177, I.181,
II.168

composite, I.180
equivalence, I.178, I.199, I.200
robust, I.178, I.267
strict, I.178
strong, I.178
unitary, I.178

symmetric center, xiii, II.35
bimonoidal, II.127

K-theory, III.458
bimonoidal bicategory, III.518
bipermutative category, II.263

K-theory, III.458
braided ring category, II.263
enriched monoidal category, III.524

Symmetric Coherence Theorem, I.21, II.277,
III.16

symmetric group, I.20, I.38, II.193, III.16
action, III.186, III.230
generators and relations, II.9

symmetric hom object, III.274
symmetric mapping object, III.274
symmetric monoidal
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Martin-Löf, I.51

U
unary multicategory, III.188, III.407
underlying 1-category, I.219
underlying braid, II.37, III.15, III.89
underlying category, III.64
underlying corepresented functor, III.65
underlying isomorphism, III.102
underlying permutation, II.10, III.463
underlying permuted word, III.89
underlying represented functor, III.65
unit

internal adjunction, I.230
of an adjunction, I.10
of enriched adjunction, III.21
smash, III.167, III.337
symmetric sequence, III.273

unit constraint, I.17
change of enrichment, III.72
enriched, III.48
partition J-theory, III.387

unit cube, III.470
unit diagram, III.142
G∗-objects, III.338
pointed, III.181

unit enriched category, III.30
unit factorization axiom, II.239, II.254, III.434
unit interval, III.470
unit naturality

enriched, III.52
unit properties

enriched tensor product symmetry, III.36
unit type, I.51
unital monoidal enriched functor, III.49
unital monoidal functor, I.17, II.20, III.9
unitary

enrichment, III.153
lax functor, I.221
n-system morphism, III.307
⟨n⟩-system morphism, III.394

unitary enrichment
pointed, III.178, III.337



III.612 INDEX

unitor
monoidal enriched category, III.42

unity
bicategory, I.217, II.205
braided monoidal category, II.22, II.23,

III.11
enriched category, III.18
enriched multicategory, III.231, III.232
lax functor, I.221
lax transformation, I.224
matrix bicategory, I.321
module, III.276
monad, III.198
monad algebra, III.198
monoidal category, I.15, II.18, III.8
monoidal enriched category, III.42, III.43
monoidal functor, I.17, II.20, III.9
multicategory, III.187
multilinear functor, III.245
permutative Gray monoid, I.253
symmetric monoidal category, I.18, II.25,

III.12
symmetric spectrum, III.277

universal enveloping bialgebra, II.76
universal property, I.11
unpointed finite sets, III.329
unstable periodic table, III.521

V
V-coend, III.120

as coequalizer, III.121
V-cowedge, III.120
V-end, III.121

as equalizer, III.122
V-map

braided canonical, III.89
canonical, III.89
normalization, III.238
permuted canonical, III.89

V-wedge, III.120
V-word, III.89

permuted, III.89
vacuum

Fibonacci anyons, II.86
Ising anyons, II.95

value, I.127, I.156, I.164, I.167, II.153, II.195,
II.216

nonsymmetric path, I.132
path, I.62, II.149

vector space, xii, I.30, II.71, II.85
2-, I.430
coordinatized, I.46

K-theory, III.458
vertex, I.58, II.146
vertical composition

2-natural transformation, I.227
bicategory, I.216, II.205
enriched multinatural transformation,

III.235
enriched natural transformation, III.19
modification, I.228
multinatural transformation, III.191
natural transformation, I.9

vertical inverse, I.216

W
W-construction, III.459

commutative operad, III.525
Waldhausen

K-theory, III.424
weak Ω-spectrum, III.326
weak equivalence, III.288, III.485

levelwise - of Γ-objects, III.303
localization, III.290
operad, III.472, III.498, III.501

weak factorization system, III.288
weak Hausdorff, III.266
wedge

co-, I.12
V-, III.120
V-co-, III.120

wedge product, III.166, III.215
wedge sum, III.166, III.215
whiskering, III.20, III.304
Whiskering Lemma, III.20
wide subcategory, II.166, II.286
word, I.19, II.36, III.13

permuted, I.20, II.36, III.16
underlying, III.89

permuted V-, III.89
V-, III.89

Y
Yang-Baxter

axiom, I.240
Yoneda, I.13

Enriched - Bijection Theorem, III.117
Enriched - Density Theorem, III.141
enriched - embedding, III.128
Enriched - Embedding Theorem, III.137
Enriched - Lemma, III.136, III.141
enriched functor, III.128
Weak - Lemma, III.163

Z
zero braiding axiom, II.259, III.481
zero factorization axiom, II.239, II.254, III.434
zero morphism, II.51
zero object, I.12, II.55
zero symmetry axiom, II.251, II.254, III.451
zigzag, III.472, III.498


	Preface
	Bimonoidal and Eₙ-Monoidal Categories
	Applications in Quantum Science
	Applications in Algebraic K-Theory
	Audience and Features
	Part and Chapter Summaries
	Reading Guides

	Volume I.  Symmetric Bimonoidal Categories and Monoidal Bicategories
	Part 1.  Symmetric Bimonoidal Categories
	Chapter 1. Basic Category Theory
	1.1. Categories
	1.2. Monoidal Categories
	1.3. Coherence
	1.4. Notes

	Chapter 2. Symmetric Bimonoidal Categories
	2.1. Definitions
	2.2. Reduction of Axioms
	2.3. Distributive Symmetric Monoidal Categories
	2.4. Finite Ordinal Category
	2.5. Bipermutative Categories
	2.6. Application: Reversible Programming of Finite Types
	2.7. Notes

	Chapter 3. Coherence of Symmetric Bimonoidal Categories
	3.1. Regularity
	3.2. Induction Devices
	3.3. Reduction of Additive and Multiplicative Zeros
	3.4. Zero Reduction of Paths
	3.5. Existence of Zero Reduction of Paths
	3.6. Reduction of Distributivity
	3.7. Zero and Delta Reduction of Paths
	3.8. Reduction of Multiplicative Units
	3.9. The First Coherence Theorem
	3.10. Coherence of Bimonoidal Categories
	3.11. Notes

	Chapter 4. Coherence of Symmetric Bimonoidal Categories II
	4.1. Motivation
	4.2. The Distortion Category
	4.3. The Distortion of a Path
	4.4. The Second Coherence Theorem
	4.5. Coherence of Bimonoidal Categories II
	4.6. Distortion Categories as Grothendieck Constructions
	4.7. Notes

	Chapter 5. Strictification of Tight Symmetric Bimonoidal Categories
	5.1. Symmetric Bimonoidal Functors
	5.2. Associated Right Bipermutative Category: Definitions
	5.3. Associated Right Bipermutative Category: Proofs
	5.4. Strictification
	5.5. Strictification of Tight Bimonoidal Categories
	5.6. Notes


	Part 2.  Bicategorical Aspects of Symmetric Bimonoidal Categories
	Chapter 6. Definitions from Bicategory Theory
	6.1. Bicategories and 2-Categories
	6.2. Lax Functors, Lax Transformations, and Pastings
	6.3. Modifications and Adjunctions
	6.4. Monoidal Bicategories
	6.5. Symmetric Monoidal Bicategories
	6.6. The Gray Tensor Product
	6.7. Permutative Gray Monoids and 2-Categories

	Chapter 7. Baez's Conjecture
	7.1. The 2-Category of Symmetric Bimonoidal Categories
	7.2. The Additive Structure
	7.3. The Multiplicative Structure
	7.4. Weakly Initial Symmetric Bimonoidal Category
	7.5. Coherence of Symmetric Bimonoidal Functors
	7.6. Uniqueness of 2-Cells
	7.7. Initial 1-Cell
	7.8. Bi-Initial Symmetric Bimonoidal Category
	7.9. Notes

	Chapter 8. Symmetric Monoidal Bicategorification
	8.1. Matrix Construction
	8.2. The Base Unitors
	8.3. The Base Associator
	8.4. The Matrix Bicategory
	8.5. The Monoidal Identity
	8.6. The Monoidal Composition
	8.7. The Pseudofunctoriality of the Monoidal Composition
	8.8. The Monoidal Associator
	8.9. The Monoidal Unitors
	8.10. The Pentagonator
	8.11. The 2-Unitors
	8.12. The Matrix Monoidal Bicategory
	8.13. The Braiding
	8.14. The Matrix Braided Monoidal Bicategory
	8.15. The Matrix Symmetric Monoidal Bicategory



	Volume II.  Braided Bimonoidal Categories with Applications
	Part 1.  Braided Bimonoidal Categories
	Chapter 1. Preliminaries on Braided Structures
	1.1. The Braid Groups
	1.2. Elementary Block Braids
	1.3. Braided Monoidal Categories
	1.4. The Drinfeld Center
	1.5. The Symmetric Center
	1.6. Coherence of Braided Monoidal Categories
	1.7. Notes

	Chapter 2. Braided Bimonoidal Categories
	2.1. Definitions
	2.2. Recovering Laplaza's Axioms
	2.3. Abelian Categories
	2.4. Abelian Categories with a Braiding
	2.5. Abelian Categories with a Monoidal Structure
	2.6. Notes

	Chapter 3. Applications to Quantum Groups and Topological Quantum Computation
	3.1. Braided Bialgebras
	3.2. Modules over Braided Bialgebras
	3.3. Fibonacci Anyons: The Monoidal Structure
	3.4. Fibonacci Anyons: The Braided Bimonoidal Structure
	3.5. Ising Anyons: The Monoidal Structure
	3.6. Ising Anyons: The Braided Bimonoidal Structure
	3.7. Notes

	Chapter 4. Bimonoidal Centers
	4.1. The Bimonoidal Drinfeld Center: Definition
	4.2. The Additive Structure
	4.3. The Multiplicative Structure
	4.4. The Multiplicative Zeros and Distributivity
	4.5. The Bimonoidal Symmetric Center

	Chapter 5. Coherence of Braided Bimonoidal Categories
	5.1. Permutative Braided Categories
	5.2. The Braided Distortion Category
	5.3. The Braided Distortion of a Path
	5.4. The Coherence Theorem
	5.5. Braided Distortion as a Grothendieck Construction

	Chapter 6. Strictification of Tight Braided Bimonoidal Categories
	6.1. Braided Bimonoidal Functors
	6.2. Associated Right Permutative Braided Category
	6.3. Strictification

	Chapter 7. The Braided Baez Conjecture
	7.1. The 2-Category of Braided Bimonoidal Categories
	7.2. Weakly Initial Braided Bimonoidal Category
	7.3. Bi-Initial Braided Bimonoidal Category

	Chapter 8. Monoidal Bicategorification
	8.1. Matrix Bicategories
	8.2. The Monoidal Identity and the Monoidal Composition
	8.3. The Monoidal Associator and the Monoidal Unitors
	8.4. Matrix Monoidal Bicategories


	Part 2.  Eₙ-Monoidal Categories
	Chapter 9. Ring, Bipermutative, and Braided Ring Categories
	9.1. Ring Categories
	9.2. Endomorphism Ring Categories
	9.3. Elmendorf-Mandell Bipermutative Categories
	9.4. Reduction of Bipermutative Category Axioms
	9.5. Braided Ring Categories
	9.6. Ring Categorical Drinfeld and Symmetric Centers
	9.7. Notes

	Chapter 10. Iterated and Eₙ-Monoidal Categories
	10.1. Iterated Monoidal Categories
	10.2. Two-Fold Monoidal Categories From Totally Ordered Monoids
	10.3. Iterated Monoidal Functors
	10.4. Monoids in Iterated Monoidal Categories
	10.5. Free Iterated Monoidal Categories
	10.6. Coherence of Iterated Monoidal Categories
	10.7. Eₙ-Monoidal Categories
	10.8. Braided Ring Categories are E₂-Monoidal Categories
	10.9. Bipermutative Categories are Eₙ-Monoidal Categories
	10.10. Free Eₙ-Monoidal Categories
	10.11. Notes



	Volume III.  From Categories to Structured Ring Spectra
	Part 1.  Enriched Monoidal Categories and Multicategories
	Chapter 1. Enriched Monoidal Categories
	1.1. Review of Monoidal Categories
	1.2. Enriched Categories, Functors, and Natural Transformations
	1.3. The Tensor Product of Enriched Categories
	1.4. Monoidal Enriched Categories
	1.5. Cat-Monoidal 2-Categories
	1.6. Notes

	Chapter 2. Change of Enrichment
	2.1. Change of Enriching Categories
	2.2. 2-Functoriality of Change of Enrichment
	2.3. Preservation of Enriched Tensor
	2.4. Preservation of Enriched Monoidal Structure
	2.5. Coherence of Enriched Monoidal Categories
	2.6. Strictification of Enriched Monoidal Categories
	2.7. Notes

	Chapter 3. Self-Enrichment and Enriched Yoneda
	3.1. Self-Enriched Categories
	3.2. Represented Enriched Functors
	3.3. Self-Enriched Symmetric Monoidal Categories
	3.4. Enriched Yoneda Bijection
	3.5. Enriched Ends and Internal Mapping Objects
	3.6. Enriched Yoneda Lemma
	3.7. Symmetric Monoidal Diagram Categories
	3.8. Enriched Diagram Categories
	3.9. Tensored and Cotensored Enriched Categories
	3.10. Notes

	Chapter 4. Pointed Objects, Smash Products, and Pointed Homs
	4.1. Smash Products
	4.2. Pointed Homs
	4.3. Pointed Diagram Categories
	4.4. Notes

	Chapter 5. Multicategories
	5.1. The 2-Category of Multicategories
	5.2. The Cartesian Structure on Multicategories
	5.3. Permutative Categories as Pointed Multicategories
	5.4. Limits and Colimits of Monadic Algebras
	5.5. Limits and Colimits of Multicategories
	5.6. Tensor and Smash Products of Multicategories
	5.7. The Internal Hom for Multicategories
	5.8. Notes

	Chapter 6. Enriched Multicategories
	6.1. Enriched Multicategories
	6.2. Change of Enriching Categories
	6.3. Enriched Endomorphism Multicategories
	6.4. The Multicategory of Small Multicategories
	6.5. Permutative Categories and Multilinearity
	6.6. The Multicategory of Small Permutative Categories
	6.7. Notes


	Part 2.  Algebraic K-Theory
	Chapter 7. Homotopy Theory Background
	7.1. Simplicial Objects
	7.2. Simplicial Homotopy and Nerve
	7.3. Symmetric Sequences of Pointed Simplicial Sets
	7.4. Symmetric Spectra
	7.5. Limits and Colimits of Symmetric Spectra
	7.6. Smash Products, Internal Hom, and (Co)tensored Structure of Symmetric Spectra
	7.7. Quillen Model Categories
	7.8. Examples of Quillen Model Categories
	7.9. Notes

	Chapter 8. Segal K-Theory of Permutative Categories
	8.1. Categories of Γ-Objects
	8.2. Symmetric Spectra from Γ-Simplicial Sets
	8.3. Γ-Categories from Permutative Categories
	8.4. Partition Multicategories
	8.5. Segal J-Theory and K-Theory
	8.6. Notes

	Chapter 9. Categories of G*-Objects
	9.1. The Category G
	9.2. Symmetric Monoidal Closed Structure for G*-Objects
	9.3. Symmetric Spectra from G*-Simplicial Sets
	9.4. KG is Symmetric Monoidal
	9.5. Notes

	Chapter 10. Elmendorf-Mandell K-Theory of Permutative Categories
	10.1. The Partition Product
	10.2. Characterization of M1-Modules
	10.3. Elmendorf-Mandell J-Theory and K-Theory
	10.4. Elmendorf-Mandell G*-categories
	10.5. An Equivalent Description of Elmendorf-Mandell J-theory
	10.6. Equivalence Between Segal K-Theory and Elmendorf-Mandell K-Theory
	10.7. Comparison of (Co)lax and Strong Elmendorf-Mandell G*-Categories
	10.8. Notes

	Chapter 11. K-Theory of Ring and Bipermutative Categories
	11.1. The Associative Operad
	11.2. Detecting Ring Categories
	11.3. K-Theory of Ring Categories are Ring Symmetric Spectra
	11.4. The Barratt-Eccles Operad
	11.5. Detecting Bipermutative Categories
	11.6. K-Theory of Bipermutative Categories are E∞-Symmetric Spectra
	11.7. Notes

	Chapter 12. K-Theory of Braided Ring Categories
	12.1. The Braid Operad
	12.2. The Braid Operad is an E₂-Operad
	12.3. Coherence of the Braid Operad
	12.4. Detecting Braided Ring Categories
	12.5. K-Theory of Braided Ring Categories are E₂-Symmetric Spectra
	12.6. Notes

	Chapter 13. K-Theory of Eₙ-Monoidal Categories
	13.1. The Iterated Monoidal Category Operad
	13.2. The Iterated Monoidal Category Operad is an Eₙ-Operad
	13.3. Coherence of the Iterated Monoidal Category Operad
	13.4. Detecting Eₙ-Monoidal Categories
	13.5. K-Theory of Eₙ-Monoidal Categories are Eₙ-Symmetric Spectra
	13.6. Notes


	Bibliography and Indices
	Appendix A. Open Questions
	A.1. Bimonoidal Categories
	A.2. Eₙ-Monoidal Categories
	A.3. Enriched Monoidal Categories
	A.4. Homotopy Theory
	A.5. Algebraic K-Theory

	Bibliography
	List of Main Facts
	List of Notations
	Index



