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ABSTRACT. Mackey functors provide the coefficient systems for equivariant co-
homology theories. More generally, enriched presheaf categories provide a clas-
sification and organization for many stable model categories of interest. Chang-
ing enrichments along K-theory multifunctors provides an important tool for con-
structing spectral Mackey functors from Mackey functors enriched in algebraic
structures such as permutative categories.

This work gives a detailed development of diagrams, presheaves, and
Mackey functors enriched over closed multicategories. Change of enrichment,
including the relevant compositionality, is treated with care. This framework
is applied to the homotopy theory of enriched diagram and Mackey functor
categories, including equivalences of homotopy theories induced by K-theory
multifunctors. Particular applications of interest include diagrams and Mackey
functors enriched in pointed multicategories, permutative categories, and sym-
metric spectra.
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Preface

“Just as the social insects build marvellously designed intricate struc-
tures by apparently carrying materials around at random so have the
mathematicians built a marvellously articulated body of abstract con-
cepts by following their individual instincts with an eye to what their
colleagues are doing.”

– George W. Mackey, What Do Mathematicians Do? Paris, 1982

This work develops techniques and basic results concerning the homotopy
theory of enriched diagrams and enriched Mackey functors. Presentation of a
category of interest as a diagram category has become a standard and powerful
technique in a range of applications. Diagrams that carry enriched structures pro-
vide deeper and more robust applications. With an eye to such applications, we
provide further development of both the categorical algebra of enriched diagrams,
and the homotopy theoretic applications in K-theory spectra.

The title of this work refers to certain enriched presheaves, known as Mackey
functors, whose homotopy theory classifies that of equivariant spectra. More gen-
erally, certain stable model categories are classified as modules—in the form of
enriched presheaves—over categories of generating objects. We provide further
review of this motivating context in Chapter 0 below.

The main body of this work provides a detailed study of enriched diagrams,
including enriched presheaves and enriched Mackey functors, and their homo-
topy theory. Part 1 provides background on the homotopy-theoretic context, in-
cluding K-theory functors and the homotopy theory of multicategories. Part 2 ex-
tends this material to the homotopy theory of pointed multicategories, providing
for the later applications a setting that is both conceptually and technically more
natural.

The categorical algebra of enriched diagrams is the subject of Part 3 and may
be of independent interest. It extends the theory of enrichment over a symmetric
monoidal category in two ways. First, it gives a careful exposition of the theory
of enrichment over a multicategory, including fundamental definitions of closed
multicategory and self-enrichment. Second, it carefully explains change of en-
richment along a multifunctor and the resulting diagram change of enrichment.
Compositionality of the latter is more subtle, and treated in detail.

Applications to the homotopy theory of enriched diagrams, Mackey functors,
and change of enrichment are the focus of Part 4. These arise from enrichments
over permutative categories and pointed multicategories, with change of enrich-
ment along K-theory multifunctors.

ix
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Audience

This work is aimed at graduate students and researchers with an interest in
category theory, algebraic K-theory, and homotopy theory. Our highly detailed
exposition is designed to make this work accessible to a wide audience.

Part and Chapter Summaries

This work consists of the following.

● Chapter 0: Motivations from Equivariant Topology
● Part 1: Background on Multicategories and K-Theory Functors
● Part 2: Homotopy Theory of Pointed Multicategories,M1-Modules, and

Permutative Categories
● Part 3: Enrichment of Diagrams and Mackey Functors in Closed Multi-

categories
● Part 4: Homotopy Theory of Enriched Diagrams and Mackey Functors
● Appendices A through C on Categories, Enriched Category Theory, and

Multicategories
● Appendix D: Open Questions

Below is a brief summary of each part and chapter. Following these sum-
maries, we outline the interdependence of their content. In the main text, each
chapter starts with an introduction that describes more thoroughly its content and
connections with other chapters.

Chapter 0: Motivations from Equivariant Topology

This chapter reviews the use of enriched diagrams and enriched Mackey func-
tors in equivariant homotopy theory and the theory of stable model categories.
The results outlined here are not used directly in the main body of the work be-
low, but they provide an important motivating context. The goal of this chapter is,
therefore, to outline some of the main ideas and provide numerous references to
the literature for further treatment.

Part 1. Background on Multicategories and K-Theory Functors
This part provides background that is essential for this text, and is more special-
ized than that of the appendices. The main inputs for modern K-theory spectra
are multicategories and permutative categories reviewed in Chapter 1. The con-
struction of K-theory functors—also known as infinite loop space machinery—is
reviewed in Chapter 2. More modern applications to the homotopy theory of mul-
ticategories are summarized in Chapter 3.

Chapter 1: Categorically Enriched Multicategories

This chapter reviews the 2-category of small multicategories, including three
important special cases. These are pointed multicategories, leftM1-modules, and
permutative categories with multilinear functors. These variants are related by
various free, forgetful, and endomorphism functors that will be used throughout
the rest of this work.

Chapter 2: Infinite Loop Space Machines
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This chapter reviews the K-theory functors KSe and KEM, due to Segal and
Elmendorf-Mandell, respectively. These are also called infinite loop space ma-
chines because they produce connective spectra from permutative categories and
multicategories. Each is constructed as a composite of other functors, via certain
diagram categories, that we describe.

Chapter 3: Homotopy Theory of Multicategories

This chapter reviews equivalences of homotopy theories between Multicat,
the category of small multicategories and multifunctors, PermCatst, the category
of small permutative categories and strict monoidal functors, and PermCatsu, the
category of small permutative categories and strictly unital symmetric monoidal
functors. These equivalences are given by a free left adjoint to the endomorphism
functor. This material provides important foundation for that of Part 2.

Part 2. Homotopy Theory of Pointed Multicategories, M1-Modules, and Permu-
tative Categories
The purpose of these two chapters is to extend the equivalences of homotopy the-
ories from Chapter 3 to the context of pointed multicategories. Chapter 4 develops
the essential extensions to the pointed case. Chapter 5 develops the multifunctori-
ality results of the pointed free functor, along with multinaturality of the adjunc-
tion unit and counit.

Chapter 4: Pointed Multicategories andM1-Modules Model All Connective
Spectra

This chapter extends the material of Chapter 3 to a pointed free construction,
F●, from pointed multicategories to permutative categories. This is not a restric-
tion, along the inclusion of pointed multicategories among all multicategories, but
an extension, along the functor that adjoins a disjoint basepoint. Essential results,
such as the adjunction with the endomorphism construction and compatibility
with stable equivalences, are likewise extended from Chapter 3.

Chapter 5: Multiplicative Homotopy Theory

This chapter shows that the pointed free construction from Chapter 4, F●, is a
non-symmetric multifunctor. Furthermore, F● provides equivalences of homotopy
theories between categories of non-symmetric algebras in pointed multicategories
and permutative categories. This is the basis for applications to enriched diagrams
in Chapter 12.

Part 3. Enrichment of Diagrams and Mackey Functors in Closed Multicategories
This part covers the categorical algebra of enrichment over multicategories (Chap-
ter 6), change of enrichment along a multifunctor (Chapter 7), closed multicate-
gories (Chapter 8), and self-enrichment thereof (Chapter 9). These are combined
in Chapter 10 to develop the diagram change of enrichment for non-symmetric
multifunctors (Theorem 10.3.1) and the presheaf change of enrichment for mul-
tifunctors (Theorem 10.3.4). These results are the foundation for applications to
homotopy theory in Part 4.

Chapter 6: Multicategorically Enriched Categories
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This chapter gives the basic definitions and results for enrichment in a non-
symmetric multicategory M. Proposition 6.2.1 shows that this material agrees, in
the case that M is the endomorphism multicategory of a monoidal category, with
classical enriched category theory over V. The main application takes M to be the
multicategory of permutative categories and strictly unital symmetric monoidal
functors, which is not an endomorphism multicategory. Sections 6.3 through 6.5
treat this case in detail.

Chapter 7: Change of Multicategorical Enrichment

This chapter develops the first collection of results around change of enrich-
ment along a (possibly non-symmetric) multifunctor. As in Chapter 6, it is shown
that this theory extends the classical theory for enrichment over (possibly sym-
metric) monoidal categories. Compositionality and 2-functoriality for the change-
of-enrichment constructions are treated in Sections 7.4 and 7.5, respectively.

Chapter 8: The Closed Multicategory of Permutative Categories

This chapter extends the general multicategorical enrichment theory from
Chapter 6 to enrichment over closed multicategories. Because enrichment over
permutative categories is both illustrative of the general theory and essential for
the further applications, this chapter focuses on that case in detail.

Chapter 9: Self-Enrichment and Standard Enrichment

This chapter describes the theory of self-enrichment for closed multicate-
gories, and of standard enrichment for multifunctors between closed multicate-
gories. The self-enrichment of the multicategory of permutative categories, from
Chapter 8, is a special case. Compositionality of standard enrichment is discussed
in Section 9.3, and applied to the factorization of Elmendorf-Mandell K-theory in
Section 9.4.

Chapter 10: Enriched Mackey Functors of Closed Multicategories

This chapter provides the main results of Part 3. These make use of the pre-
ceding material on enrichment over (closed) multicategories, and apply it to cat-
egories of enriched diagrams and enriched Mackey functors. A key detail, both
here and in the homotopical applications of Part 4 is that non-symmetric multi-
functors provide a diagram change of enrichment, but not necessarily a change
of enrichment for enriched Mackey functors (presheaves). The essential reason is
that symmetry of a multifunctor is required for commuting the (−)op in the do-
main of enriched presheaves with change of enrichment. Sections 10.5 and 10.6
give applications to Elmendorf-Mandell K-theory, with attention to the relevant
symmetry conditions among other details.

Part 4. Homotopy Theory of Enriched Diagrams and Mackey Functors
The two final chapters of this work apply the preceding categorical algebra and
homotopical constructions. Chapter 11 develops applications to the homotopy
theory of enriched diagrams and Mackey functors in general. Chapter 12 gives fur-
ther detailed applications to enriched diagrams and Mackey functors of pointed
multicategories and permutative categories.

Chapter 11: Homotopy Equivalences between Enriched Diagram Categories
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This chapter establishes the general theory for a pair of non-symmetric mul-
tifunctors (E, F) to provide inverse equivalences of homotopy theories between
enriched diagram categories. The main result is Theorem 11.4.14 and does not re-
quire E or F to satisfy the symmetry condition of a multifunctor. A similar result
for enriched Mackey functor categories, in Theorem 11.4.24, requires that E, but
not necessarily F, is a multifunctor. This is important for the applications, Theo-
rems 12.1.6 and 12.4.6 below. There, E is an endomorphism multifunctor and F is
a corresponding free non-symmetric multifunctor.

Chapter 12: Applications to Multicategories and Permutative Categories

This chapter applies the general theory from Chapter 11 to change of enrich-
ment along the inverse equivalences of homotopy theories developed in Part 2.
The main results, Theorems 12.1.6, 12.4.6, and 12.6.6, establish equivalences of ho-
motopy theories for enriched diagram categories and Mackey functor categories
over pointed multicategories, permutative categories, andM1-modules.

Appendices

This work includes the following four appendices of supplemental background
material and further open questions.

Appendix A. Categories: This appendix reviews basic concepts related to monoi-
dal categories and 2-categories.

Appendix B. Enriched Category Theory: Here we review the classical theory of
categories enriched over monoidal categories.

Appendix C. Multicategories: This appendix gives background on multicate-
gories, including enriched multicategories, endomorphism multicate-
gories, and pointed multicategories.

Appendix D. Open Questions: In this appendix we discuss a number of open
questions related to the topics of this work. They provide further mo-
tivation for the main text.

Chapter Interdependence

The material in Chapter 0 is not prerequisite for the main text, but is part of the
broader context in which this work is situated. Appendices A, B, and C contain
background material that will be used throughout.

As noted in the summaries above, part of this work involves abstract categori-
cal algebra of multicategorical enrichments, which may be of independent interest.
In the following table, we separate chapters and sections into columns according
to whether they involve only (multi-)categorical algebra, or additional homotopy-
theoretic concepts.
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(Multi-) Categorical Algebra Homotopy Theory

Appendices A, B, and C

Part 1 Chapter 1 Chapters 2 and 3

Part 2 Chapters 4 and 5

Part 3 Chapters 6, 7, and 8

Sections 9.1 through 9.3 Section 9.4

Sections 10.1 through 10.4 Sections 10.5 and 10.6

Part 4 Sections 11.1 through 11.3 Section 11.4

Chapter 12

Each entry in the above table depends on those to its left and above. Thus,
the material in the left column may be read independently of that in the right.
The introduction of each chapter contains subsections titled Connection with Other
Chapters and Background that give more detailed discussions of the respective de-
pendencies.

Related Literature

Here we list a selection of references for background or further reading.

2-Dimensional Categories: [JY21]
Monoidal Categories and Enriched Multicategories: [JY∞, Yau16]
Stable Homotopy Theory: [BR20, May99]
Equivariant Homotopy Theory: [tD79, LMS86, May96, HHR21]
Algebraic K-Theory Spectra: [JY∞, JY22c, BF78, May78, Man10, Qui73, Seg74,

Tho95, Wal85]
Multifunctorial K-Theory: [EM06, EM09, JY∞, JY22a, JY22b, JY22c, JY23]
Spectral Mackey Functors: [SS03, BO15, Bar17, MM19, BGS20, MM22, GM22,

GMMO23]



CHAPTER 0

Motivations from Equivariant Topology

In this chapter we describe context from equivariant topology and the theory
of stable model categories that motivates our further study of multicategorically
enriched categories, enriched diagrams, enriched Mackey functors, and change of
enrichment.

Convention 0.0.1. Assume throughout this chapter that G is a finite group. See
Remarks 0.1.1 and 0.2.8 for further comments on this convention. ◇

Connection with Main Content. The purpose of this chapter is to indicate the
role that categorical diagrams—particularly Mackey functors—play in equivariant
homotopy theory. None of the mathematics in this present work depends on the
content of this chapter, but the attendant applications are a key motivation.

For example, the Burnside 2-category GE (Definition 0.3.5) is enriched in the
multicategory of permutative categories, PermCatsu (Section 1.4). We give a treat-
ment of

● categories enriched in closed multicategories, in Chapter 6,
● change of enrichment, in Chapter 7,
● the closed multicategory structure of PermCatsu in Chapter 8, and
● self-enrichment for closed multicategories in Chapter 9.

In the Guillou-May Theorem 0.3.9, the domain of spectral Mackey functors,
(GE

K

)op, is given by a change of enrichment (−)
K

and requires a distinction be-
tween enriched diagrams, with domain GE

K

, and enriched Mackey functors, with
domain (GE

K

)op. We describe the relevant subtleties further in Remarks 0.3.7
and 10.5.5.

Similarly, but in a more abstract context, the spectral presheaves in the
Schwede-Shipley Characterization Theorem 0.4.3 have domain E(P)op. The in-
put E(P) is the spectral endomorphism category of a set of compact generators P
for a simplicial, cofibrantly generated, proper, and stable model category M.

We give a general treatment of enriched diagrams and enriched Mackey
functors, including interactions with change of enrichment, in Chapter 10. We
develop techniques and applications for the corresponding homotopy theory in
Chapters 11 and 12.

Chapter Summary. A substantive treatment of equivariant homotopy theory
is well beyond our current scope. At the end of this introduction we give a list of
key references. The remaining content in this chapter is restricted to those defini-
tions and results that provide motivating context for our work below.

Section 0.1 concerns equivariant spaces.

● The orbit category of G is denoted OG; see Definition 0.1.3.

xv
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● Elmendorf’s Theorem 0.1.9 shows that the homotopy theory of G-spaces
is equivalent to that of topological presheaves on OG.

Section 0.2 concerns Abelian Mackey functors.

● The Burnside ring of G is denoted GA. Its elements are isomorphism
classes of finite G-sets with disjoint union and Cartesian product; see Def-
inition 0.2.5.
● The Burnside category of G is denoted GB. Its morphisms are isomor-

phism classes of spans between finite G-sets. Disjoint union provides an
enrichment over Abelian groups; see Definition 0.2.5.
● Abelian Mackey functors are enriched presheaves on the Burnside cate-

gory; see Definition 0.2.9.

Sections 0.3 and 0.4 concern spectral Mackey functors.

● The Burnside 2-category of G is denoted GE . Its 1- and 2-cells are categor-
ies of spans between finite G-sets. Disjoint union, together with a choice
of pullbacks and whiskering by a strict unit, provides an enrichment over
permutative categories; see Definition 0.3.5.
● Spectral Mackey functors are enriched presheaves on a spectral enrich-

ment of the Burnside 2-category; see Definition 0.3.8.
● The Guillou-May Theorem 0.3.9 shows that the homotopy theory of G-

spectra is equivalent to that of spectral Mackey functors.
● The Schwede-Shipley Characterization Theorem 0.4.3 shows that the ho-

motopy theory of a simplicial, cofibrantly generated, proper, and stable
model category is equivalent to that of spectral presheaves on an endo-
morphism category of generating objects.

References. Main references for equivariant homotopy theory include, at
least, the following. We include further specialized references at relevant points
in the discussion below.

● The text by tom Dieck [tD79] lays the foundations for equivariant ho-
motopy theory of spaces, including equivariant (co)homology theories
known as Bredon cohomology.
● The monograph [LMS86], by Lewis, May, and Steinberger, gives the

foundational treatment of equivariant stable homotopy theory, particu-
larly equivariant spectra.
● The CBMS Alaska conference proceedings [May96] refines and signifi-

cantly extends the preceding theory, including more development of the
closed monoidal structure for equivariant spectra.
● The recent textbook account by Hill-Hopkins-Ravenel [HHR21] provides

a more modern perspective, with thorough treatment of norm operations
and the slice filtration that are essential in their solution of the Kervaire
invariant problem [HHR16].

0.1. Equivariant Spaces and Presheaves on the Orbit Category

Recall Convention 0.0.1 that G is assumed to be a finite group.

Remark 0.1.1. Many, but not all, of the concepts below extend to more general
cases of interest, such as G being a compact Lie group or a general topological
group. The most important exception is our definition of the Burnside category in
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Definitions 0.2.5 and 0.3.5, which depends on finiteness of G. See Remark 0.2.8 for
further comments and references regarding that point. ◇
Definition 0.1.2. Suppose C and M are categories, with C small. A diagram of shape
C, or C-diagram in M is a functor

C M.

A presheaf on C or C-presheaf in M is a diagram of shape Cop in M, where Cop is the
opposite category of C. That is, a presheaf on C is a functor

Cop M.

The phrase “in M” is often omitted when M is clear from context. Morphisms
between diagrams and presheaves are natural transformations, and so

Cat(C,M) and Cat(Cop,M)
are the respective categories of diagrams and presheaves on C. If M is a symmetric
monoidal closed category (Definition A.1.19) or, more generally, a closed multicat-
egory (Definition 8.1.1), then there are corresponding enriched variants described
in Definition 10.1.1. ◇
Definition 0.1.3. The orbit category of a group G, denoted OG, consists of the fol-
lowing. Its objects are the G-orbits G/H, where H is a subgroup of G, and its
morphisms are the G-equivariant morphisms. ◇
Remark 0.1.4. Note that each G-equivariant map

f ∶ G/H G/K in OG

determines and is determined by an element g ∈ G, where f (eH) = gK, such that

g−1Hg ⊂ K. Thus, the morphisms in OG are given by subconjugacy relations. ◇
Definition 0.1.5 (G-Spaces). A G-space is a topological space on which G acts con-
tinuously. Morphisms of G-spaces are continuous functions that commute with

the G-action. The category of G-spaces and their morphisms is denoted TopG. ◇
Definition 0.1.6 (Fixed Points). For each G-space X, and for each subgroup H in

G, the H-fixed point space, denoted XH , consists of the subspace of points on which

H acts trivially. As a G-space, XH can be defined equivalently as the space of
G-equivariant morphisms

TopG(G/H, X),
where G/H has the discrete topology. The assignment

G/H XH

determines a presheaf of spaces on the orbit category OG,

(0.1.7) ΦX ∶ Oop
G TopG

called the fixed point functor. ◇
Discussion of equivariant homotopy and (co)homology is beyond our current

scope, but the following gives an indication of the role that the orbit category plays
in equivariant topology.
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Explanation 0.1.8. The coefficient systems for Bredon cohomology of G-spaces are
given by presheaves

A ∶ Oop
G Ab,

where Ab is the category of Abelian groups and group homomorphisms. In par-
ticular, for a G-space X, the composite with πn for n ≥ 2 yields a coefficient system

Oop
G

ΦX
Top

πn
Ab. ◇

The following result due to Elmendorf [Elm83] gives a different indication of
the importance of presheaves on the orbit category.

Theorem 0.1.9 ([Elm83, GMR19]). The fixed points functor, Φ, induces a Quillen
equivalence

Φ ∶ TopG
≃Q (TopG-Cat)(Oop

G ,Top)
between the category of G-equivariant topological spaces and the category of topological
presheaves on OG.

As we outline below, presheaves on the Burnside (2-)category, which are
known as Mackey functors, fill an analogous role in the generalization to stable
equivariant homotopy.

0.2. The Burnside Category and Abelian G-Mackey Functors

The Burnside category (Definition 0.2.5 below) extends the orbit category of
G using spans of finite G-sets. The key motivation for this expansion of OG is
to account for the restriction, induction, and transfer morphisms on finite G-sets.
Further explanation and examples of this perspective can be found in [Web00] and
[HHR21, Sections 8.1 and 8.2].

Definition 0.2.1 (Finite G-Sets). Let NG denote the following skeleton of the cat-
egory of finite G-sets. The objects of NG are pairs (n, α), where n is a natural
number, n = {1, . . . , n}, and

α ∶ G Σn

is a group homomorphism. We regard X = (n, α) as a G-set with the action

g ⋅ i = α(g)(i)
for g ∈ G and i ∈ n. The morphisms f ∶ (n, α) (p, β) in NG are G-equivariant
morphisms. That is, f is a map of sets n p such that

β(g)( f (i)) = f (α(g)(i)) for g ∈ G and i ∈ n.

We call n the cardinality of X = (n, α) and write ∣X∣ = n. Additionally, we define
the following.

(1) The disjoint union of finite G-sets, ∐, defines a permutative structure

with unit given by the empty G-set. We write (0, !) for the empty finite
set and the unique action homomorphism G Σ0.

(2) The Cartesian product, together with the lexicographic ordering

(0.2.2) n × p ≅ np via (i, j) p(i − 1)+ j,

defines a second permutative structure on NG. Its unit is the terminal

G-set (1, !), consisting of the terminal set and the unique action homo-
morphism G Σ1. ◇



0.2. THE BURNSIDE CATEGORY AND ABELIAN G-MACKEY FUNCTORS xix

Definition 0.2.3 (Bicategory of Spans). Suppose C is a small category with pull-
backs, equipped with a choice of pullbacks for each pair of morphisms having a
common codomain. The bicategory of spans in C is denoted Span(C) and consists of
the following.

0-Cells: The 0-cells are objects X ∈ C.
1-Cells: The 1-cells with domain X and codomain Y are triples (A, f , g) that are

spans

(0.2.4) X
f

A
g

Y in C.

Since the object A is determined by the two morphisms, a span is some-
times denoted by its pair of morphisms, ( f , g).

2-Cells: The 2-cells (A, f , g) (A′, f ′, g′) are morphisms w ∶ A A′ in C that
make the following diagram commute in C.

X

A

A′
Y

f

f ′

g

g′
w

Identities: The identity 1-cell on a 0-cell X is the triple ∆X = (X, 1X, 1X) given by
the identity morphisms in C. The identity 2-cell on a 1-cell (A, f , g) is the
identity morphism 1A in C.

Composition: For objects X, Y, and Z in C, the composition functor

Span(C)(Y, Z)× Span(C)(X, Y) Span(C)(X, Z)
sends a composable pair to the span given by their chosen pullback, as
shown below.

X Y Z

A B

A ×Y B

f g h k

Having a chosen pullback for each pair of morphisms with a common codomain
makes the composition of 1-cells well defined. Universality of pullbacks makes it
associative and unital up to isomorphisms that satisfy the axioms of bicategorical
composition. See [JY21, Example 2.1.22] for further details of this construction. ◇

Now we use Definitions 0.2.1 and 0.2.3 to define the Burnside category and its
specialization, the Burnside ring. In Definition 0.3.5 below we generalize further
to a Burnside 2-category.

Definition 0.2.5 (Burnside Category and Burnside Ring). The Burnside category
of a finite group G, denoted GB, is an Ab-enriched category defined as follows.
The objects of GB are the finite G-sets X ∈ NG. The Abelian group GB(X, Y) for
X, Y ∈ NG is the Grothendieck group of isomorphism classes of spans

X A Y in NG.

Thus, GB is the category obtained from Span(NG) by taking isomorphism classes
of 1-cells and then group-completing each set of morphisms with respect to the
Abelian monoid structure given by disjoint union.
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The Burnside ring of G, denoted GA, is obtained by taking isomorphism classes
of objects in GB. Equivalently, the additive group of elements is given by the
Grothendieck group of isomorphism classes of finite G-sets, with addition given
by disjoint union. Its multiplication is induced by Cartesian product. ◇
Lemma 0.2.6 (Self-Duality of GB). There is an isomorphism of Ab-enriched categories

(0.2.7) GB ≅
GBop

that is the identity on objects and is induced on hom Abelian groups by the isomorphism

Span(NG)(X, Y) ≅
Span(NG)(Y, X)

that sends a span ( f , g) to its reverse, (g, f ).
Proof. Functoriality of the indicated isomorphism follows from universality of the
pullbacks defining composition. �

We warn the reader that the 2-categorical analog of the self-duality (0.2.7) does
not hold for the Burnside 2-category GE in Definition 0.3.5 below. Sending ( f , g)
to its reverse (g, f ) does not define a 2-functor in that context; see Remark 0.3.7.

Remark 0.2.8 (Self-Duality and Stable Orbit Spectra). Self-duality of the Burnside
category GB (0.2.7) is nearly transparent in its simplicity, but it is an algebraic arti-
fact of a much deeper topological phenomenon. Each orbit G/H has an equivariant
suspension spectrum, Σ

∞G/H+, and there is an equivalent definition of GB with
morphisms given by stable equivariant morphisms Σ

∞G/H+ Σ
∞G/K+; see

[May96, Section XIX.3]. The stable orbit spectra Σ
∞G/H+ satisfy an equivariant

self-duality ([May96, Section XVI.7] or [HHR21, Section 8.0C]) that implies that of
Lemma 0.2.6.

The definition of the Burnside category in terms of stable orbit spectra is the
more general one, with origins in work of tom Dieck [tD79]; see [May96, Sec-
tion XVII.2]. The proofs that this definition can be given equivalently by spans of
finite G-sets, as in Definition 0.2.5, depend on the assumption that G is finite. In
more general cases, the definition of the Burnside category in terms of stable orbit
spectra is necessary. ◇
Definition 0.2.9. An Abelian G-Mackey functor is an Ab-enriched presheaf

GBop Ab.

Because GB is isomorphic to GBop (Lemma 0.2.6), an Abelian G-Mackey functor
is equivalently defined as a functor GB Ab. ◇
Remark 0.2.10. Each Abelian G-Mackey functor M has an associated Eilenberg-
Mac Lane G-spectrum, HM. See [May96, Section V.4] or [HHR21, Theorem 8.8.4]
for constructions via Elmendorf’s Theorem 0.1.9. Such Mackey functors M, and
their associated G-spectra HM, are the coefficient systems for Bredon cohomology
of G-spectra. ◇
Explanation 0.2.11. An Abelian G-Mackey functor M can be defined equivalently
as a pair of functors

M∗ ∶ NG Ab and M∗ ∶ N op
G Ab

that agree on objects and are subject to the following two axioms, where

MX = M∗X = M∗X
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denotes the common value on objects.

(1) For each pair of objects X and Y in NG, applying M∗ to the structure
morphisms of the coproduct

X X∐Y Y

induces a universal morphism with domain MX⊕MY that is an isomor-
phism

MX⊕MY
≅

M(X∐Y).
(2) For each pullback diagram in NG,

Z

X

Y

W
p

q

g

f

the following equality of composite morphisms holds in Ab:

(M∗ f )(M∗g) = (M∗p)(M∗q).
See [Web00, Section 2] and [HHR21, Definition 8.2.3] for further discussion of this
perspective, explanation of the equivalence with Definition 0.2.5, and several com-
pelling examples. ◇

0.3. Equivariant Spectra and Presheaves on the Burnside 2-Category

For the category C = NG, there is a choice of pullbacks that makes Span(NG)
nearly a 2-category. Following Guillou-May [GM22, Remark 1.8 and Defini-
tion 6.2], the following will be used in the definition of the Burnside 2-category
(Definition 0.3.5) below. A more general approach to such strictifications can be
found in [Gui10].

Explanation 0.3.1 (Choices of Pullbacks in NG). Recall the lexicographic ordering
of products from (0.2.2). We use this to determine choices of pullbacks in NG, as
follows. Suppose given the following composable pair of spans in NG,

X Y Z,

A Bf g h k

where

X = (nX , αX), A = (nA, αA), Y = (nY, αY), B = (nB, αB), and Z = (nZ, αZ).
Let

A ×Y B = {(a, b) ∈ nA × nB ∣ g(a) = h(b)}
denote the pullback of G-sets, with its ordering induced by the lexicographic or-
dering on nA × nB. This determines a unique order-preserving isomorphism of
finite G-sets

(0.3.2) (p, ρ) ≅
A ×Y B

with (p, ρ) ∈ NG.
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We write A ○ B = (p, ρ) to denote this choice of pullback in NG and let πA and
πB denote the indicated composites below, where the unlabeled isomorphism is
that of (0.3.2).

(0.3.3) X Y Z

A B

A ×Y B

A ○ B

f g h k

πA πB≅

We note three consequences of these choices via lexicographic ordering.

(1) These choices for pullbacks make composition in Span(NG) strictly asso-
ciative.

(2) The morphism πA is always order-preserving.
(3) The morphism πB is generally not order-preserving.

For each Y = (nY, αY) in NG, let ∆Y denote the unit 1-cell for Y in Span(NG):

∆Y = (Y
1Y

Y
1Y

Y).
In (0.3.3) above, if the span (h, k) is the unit ∆Y, then B = Y and we have

A ○ B = A, πA = 1A, and πB = g.

Thus, ∆Y is a strict right unit.
Now suppose, instead, that the span ( f , g) in (0.3.3) is the unit ∆Y. Then A = Y,

but πB = g if and only if h is an order-preserving G-map. In general, πB is an
isomorphism of finite G-sets determined by the re-ordering of nB that is induced
by the fibers of h. ◇

To construct a 2-category from Span(NG), the identity 1-cells ∆X are aug-
mented by new strict identities via the following construction.

Definition 0.3.4 (Whiskering a Category). Suppose given a small category D with

a distinguished object ∆ ∈ D. Define the whiskering at ∆, denoted D†, as a category
whose objects consist of those of D, together with a new object I and an isomor-
phism

I
ζ∆

≅ ∆.

The morphisms in D† are generated by those of D and composition with ζ∆ and its

inverse. Thus, D† is the pushout in Cat of the two inclusions

D {∆} {ζ±1
∆
}

where {∆} denotes the discrete category on ∆ and the right hand side denotes the
category generated by the isomorphism ζ∆ and its inverse. A further elaboration
of the whiskering construction is given in [GM22, Definition 6.1]. ◇
Definition 0.3.5 (The Burnside 2-Category). The Burnside 2-category of a finite
group G is a PermCatsu-enriched category (Explanation 6.3.2) denoted GE and de-
fined as follows. Its objects are the finite G-sets X = (n, α) of NG (Definition 0.2.1).
For each pair of objects

X = (n, α) and Y = (p, β) in NG,
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the category of 1- and 2-cells is given by

(0.3.6) GE(X, Y) =
⎧⎪⎪⎨⎪⎪⎩
Span(NG)(X, Y) if X ≠ Y or ∣X∣ ≤ 1,

Span(NG)(X, X)† if X = Y and ∣X∣ ≥ 2

where Span(NG) is the bicategory of spans (Definition 0.2.3) with the lexicographic

choice of pullbacks from Explanation 0.3.1 and Span(NG)(X, X)† is the whiskering
of the category Span(NG)(X, X) as in Definition 0.3.4 at the unit 1-cell ∆X .

The horizontal composition of Span(NG) extends uniquely to GE such that

the 1-cells I∆X
∈ Span(NG)(X, X)† are strictly unital. The permutative structure

of each Span(NG)(X, Y) given by disjoint union (Definition 0.2.1 (1)) also extends

uniquely such that (0, !) remains its unit and for Y ≠ (0, !) we have

I∆X ∐Y = X∐Y and Y∐ I∆X
= Y∐X.

For further explanation of this structure, see [GM22, Definition 6.2], where our GE
is denoted GE ′. ◇
Remark 0.3.7 (Non-Self-Duality of GE). Recall that the Burnside 1-category, GB in
Definition 0.2.5 is self-dual (Lemma 0.2.6). However, the assignment that sends a
span ( f , g) as in (0.2.4) to its reverse (g, f ) does not define a 2-functor

GE GEop

because it does not preserve composition strictly. It is natural to consider the gen-
eralization from 2-functors to pseudofunctors, but the latter structure does not
provide a PermCatsu-enriched functor in the sense of Explanation 6.3.12. This sub-
tlety has further implications to be noted in Remark 10.5.5 below. ◇

The following is a special case of more general enriched Mackey functors in-
troduced in Definition 10.1.1.

Definition 0.3.8. Suppose given a (possibly non-symmetric) K-theory multifunc-
tor

K ∶ PermCatsu Sp

from permutative categories to spectra, and let (−)K denote the corresponding
change of enrichment (Definition 7.1.1). The category of spectral G-Mackey functors
for K is the enriched presheaf category

Sp -Cat((GEK)op,Sp ),
consisting of Sp-enriched functors and transformations, as in (10.1.3). ◇

Note that if K is a multifunctor in the symmetric sense—for example, if K is the
Elmendorf-Mandell K-theory, KEM, in (2.5.8)—then (GEK)op and (GEop)K are equal
as Sp-categories by Proposition 7.2.1. In such a case, the category of spectral G-

Mackey functors is equal to Sp -Cat((GEop)K,Sp ). However, if K is not symmetric,
then there is no such identification. See, e.g., Theorem 10.5.1 and Remark 10.5.5
for particular uses of these details.

For further development of both theory and applications of spectral Mackey
functors in equivariant algebraic K-theory, the reader is referred to [BO15, Bar17,
MM19, BGS20, MM22, GM22, GMMO23]. The key result for our purposes is the
following from Guillou-May [GM22], which is a stable analog of Elmendorf’s The-
orem 0.1.9. Here, K denotes the non-symmetric K-theory multifunctor in [GM22,
GMMO23].
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Theorem 0.3.9 ([GM22, Theorem 0.1]). There is a zigzag of Quillen equivalences

G-Sp ≃Q Sp -Cat((GE
K

)op,Sp )
where G-Sp is the category of G-spectra.

Thus, the Guillou-May theorem shows that the homotopy theory of G-spectra
is equivalent to that of spectral G-Mackey functors for K.

0.4. Stable Model Categories as Spectral Presheaf Categories

Definition 0.4.1. Suppose given a model category M. We recall the following terms
briefly and refer the reader to [Hov99, Hir03] for more detailed descriptions.

(1) We say M is simplicial if it is enriched, tensored, and cotensored over sim-
plicial sets, such that the following pullback powering condition holds. For
each cofibration i ∶ A B and fibration p ∶ X Y in M, the universal
morphism induced by M(i, X) and M(B, p),

M(B, X) M(A, X)×M(A,Y)M(B, Y),
is a Kan fibration that is acyclic whenever either i or p is acyclic.

(2) We say M is cofibrantly generated if it is equipped with two sets of mor-
phisms, I and J , such that the following three statements hold.
● Both I and J permit the small object argument.
● A morphism of M is a fibration if and only if it has the right lifting

property with respect to every element of J
● A morphism of M is an acyclic fibration if and only if it has the right

lifting property with respect to every element of I.
(3) We say that M is proper if the following two conditions hold.

● Every pushout of a weak equivalence along a cofibration is a weak
equivalence.
● Every pullback of a weak equivalence along a fibration is a weak

equivalence.
(4) We say that M is stable if the suspension and loop functors on its homo-

topy category are inverse equivalences. ◇
For the remainder of this section we suppose that M is a simplicial, cofibrantly

generated, proper, and stable model category. The category of symmetric spectra
over M [SS03, Definition 3.6.1] is denoted SpM. The following, from [SS03, Def-
inition 3.7.5], describes an Sp-enriched category generalizing the endomorphism
spectrum associated to an object of M.

Definition 0.4.2. Suppose P is a set of cofibrant objects in M. The spectral endo-
morphism category E(P) is the full Sp-subcategory of SpM with objects given by the
fibrant replacements, relative to the level model structure on SpM, of the symmetric
suspension spectra of the objects in P. ◇

The following result of Schwede-Shipley gives a characterization of M via Sp-

enriched presheaves. In this result, Sp -Cat(E(P)op,Sp ) denotes the E(P)-presheaf
category of Sp as in (10.1.3).

Theorem 0.4.3 ([SS03, Theorem 3.3.3]). Suppose P is a set of compact generators of
a simplicial, cofibrantly generated, proper, and stable model category M. Then there is a
chain of simplicial Quillen equivalences

M ≃Q Sp -Cat(E(P)op,Sp ).
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The work of Schwede-Shipley goes on to give a number of applications in
(derived) Morita theory and equivariant stable homotopy. In each case, their
work characterizes the relevant stable model category as a category of spectral
presheaves, also called enriched Mackey functors (see Definition 10.1.1).
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CHAPTER 1

Categorically Enriched Multicategories

In this chapter we discuss the following four categorically-enriched multicat-
egories that are central to this work:

● Multicat of small multicategories (Section 1.1),
● Multicat∗ of small pointed multicategories (Section 1.2),
● ModM1 of leftM1-modules (Section 1.3), and
● PermCatsu of small permutative categories (Section 1.4).

Each of the Cat-multicategories,

Multicat, Multicat∗, and ModM1,

is induced by a corresponding symmetric monoidal Cat-category structure. On
the other hand, the Cat-multicategory structure on PermCatsu is not induced by
the monoidal structure on ModM1 or Multicat∗. The next table summarizes the
various structures of these categories.

Multicat Multicat∗ ModM1 PermCatsu

2-category C.1.33 C.4.9 1.3.13 A.2.3

symmetric monoidal Cat-category 1.1.19 1.2.8 1.3.23 —

Cat-multicategory 1.1.20 1.2.9 1.3.24 1.4.29

These four Cat-multicategories are related by several Cat-multifunctors

(1.0.1)

PermCatsu Multicat

ModM1 Multicat∗

End

End●
EndM1

UM1

U ●

that we will explain in Theorem 1.4.38. Here is a summary table.

End End● EndM1 U ● UM1

2-functor C.3.6 C.4.10 1.3.16 C.4.11 1.3.17 (3) and (4)

symmetric monoidal Cat-functor — — — 1.2.10 1.3.27

Cat-multifunctor 1.4.40 1.4.32 1.4.41 1.2.14 1.3.29

Connection with Other Chapters.
Infinite Loop Space Machines. As summarized in (2.5.1), the Cat-multicategory

PermCatsu is connected to several categories in Segal K-theory and Elmendorf-
Mandell K-theory via enriched multifunctors, including EndM1.

3
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Equivalences of Homotopy Theories. In Chapter 3 we discuss the fact that the
endomorphism multicategory construction End in (1.0.1) is an equivalence of ho-
motopy theories. Moreover, in Chapters 4 and 5 we extend this observation to the
pointed setting by showing that each of End●, EndM1, and UM1 is an equivalence of
homotopy theories. In Part 4 we further extend these equivalences of homotopy
theories to the respective categories of enriched diagrams and enriched Mackey
functors. See Theorems 12.1.6, 12.4.6, and 12.6.6.

Background. Definitions about permutative categories, enriched multicate-
gories, and pointed multicategories are in Appendices A.1 and C. Definitions for
2-categories and enriched categories are in Appendices A.2 and B.1. Symmetric
monoidal enriched categories are discussed in Appendices B.2 through B.4.

Chapter Summary. The following table lists the main content in this chapter.

Section 1.1. Multicategories

multicategories as monadic algebras 1.1.4

Boardman-Vogt tensor product 1.1.12 and 1.1.19

Multicat as a Cat-multicategory 1.1.20

internal hom multicategories 1.1.23 and 1.1.26

Section 1.2. Pointed Multicategories

smash product and pointed internal hom 1.2.1

pointed transformations 1.2.6

Multicat∗ as a Cat-multicategory 1.2.9

Cat-multifunctor U ● ∶Multicat∗ Multicat 1.2.14

Section 1.3.M1-Modules

partition multicategories,M1, and partition product 1.3.1, 1.3.3, and 1.3.4

2-category ModM1 ofM1-modules 1.3.13

endomorphismM1-modules EndM1 1.3.15

free-forgetful 2-adjunctionM1∧− ∶Multicat∗ ModM1 ∶ UM1 1.3.19

ModM1 as a Cat-multicategory 1.3.24

Cat-multifunctor UM1 ∶ModM1 Multicat∗ 1.3.29

Section 1.4. Permutative Categories

multilinear functors and transformations 1.4.2 and 1.4.10

PermCatsu as a Cat-multicategory 1.4.15, 1.4.16, and 1.4.21

End = U ● ○ End● = U ● ○ UM1 ○ EndM1 1.4.32, 1.4.39, 1.4.40, and 1.4.41

The material in this chapter is adapted from [JY∞, Chapters 5, 6, 8, and 10], which
has all the detailed proofs. We remind the reader of Convention A.1.2 about uni-
verses and Convention A.1.30 about left normalized bracketing for iterated prod-
ucts.

1.1. Multicategories

There is a 2-category Multicat of small multicategories, multifunctors, and
multinatural transformations (Theorem C.1.33). In this section we review
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(1) the symmetric monoidal closed structure (Theorems 1.1.19 and 1.1.26)
and

(2) the Cat-multicategory structure (Explanation 1.1.20)

on Multicat.

● The monoidal product is in Definition 1.1.12 after some preliminary con-
structions. This monoidal product is often called the Boardman-Vogt tensor
product in the literature because of its origin in [BV73].
● The closed structure is given by the internal hom multicategory in Defi-

nition 1.1.23.

The material in this section is adapted from [JY∞, Chapters 5 and 6].

Multicategories as Monadic Algebras. The tensor product on small multi-
categories requires some preliminary constructions, which we recall first. The first
fact we need is that small multicategories are algebras over a monad. We use the
following notation for input profiles and output. Recall the class of profiles Prof

(Definition C.1.1).

Definition 1.1.1. Suppose C and D are two classes. Given profiles

⟨c⟩ = ⟨ci⟩mi=1 ∈ Prof(C) and ⟨d⟩ = ⟨dj⟩nj=1 ∈ Prof(D),
we define the following in Prof(C ×D):

⟨c⟩× dj = ⟨(ci, dj)⟩mi=1

ci × ⟨d⟩ = ⟨(ci, dj)⟩nj=1

⟨c⟩⊗ ⟨d⟩ = ⟨⟨(ci, dj)⟩mi=1⟩nj=1

⟨c⟩⊗t ⟨d⟩ = ⟨⟨(ci, dj)⟩nj=1⟩mi=1

Denote by

(1.1.2) ξ⊗ = ξ⊗m,n ∶ ⟨c⟩⊗ ⟨d⟩ ≅ ⟨c⟩⊗t ⟨d⟩
the transpose permutation induced by changing order of indexing. ◇
Definition 1.1.3. A multigraph X consists of

● a class VtX of vertices and
● a set X(⟨x⟩ ; x′) for each tuple of vertices ⟨x⟩ and x′.

We refer to the elements of X(⟨x⟩ ; x′) as multiedges, with source ⟨x⟩ and target x′.
We let Prof(X) denote Prof(VtX).

A morphism of multigraphs

f ∶ X Y

consists of

● a function
f ∶ VtX VtY

on vertices and
● a function

f ∶ X(⟨x⟩ ; x′) Y( f ⟨x⟩ ; f (x′))
on multiedges for each (⟨x⟩ ; x′) ∈ Prof(X)×VtX, with f ⟨x⟩ = ⟨ f xj⟩nj=1 if

⟨x⟩ = ⟨xj⟩nj=1.

Moreover, we define the following.
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● A multigraph is small if its class of vertices is a set.
● The collection of small multigraphs and their morphisms form a category,

denoted MGraph.

This finishes the definition. ◇
The following result combines [JY∞, 5.5.9 and 5.5.11].

Theorem 1.1.4. There is a free-forgetful adjunction

MGraph Multicat

L

U

�

that is strictly monadic.

Two Auxiliary Products.

Definition 1.1.5. For multigraphs X and Y with vertex classes C and D, respec-
tively, we define a multigraph X & Y with vertex class C ×D as follows. Given

⟨c, d⟩ = ⟨(cj, dj)⟩nj=1
∈ Prof(C ×D) and (c′, d′) ∈ C ×D,

the set of multiedges with source ⟨c, d⟩ and target (c′, d′) is given by the coproduct

(1.1.6) (X & Y)(⟨c, d⟩ ; (c′, d′)) = ∐
⟨c′′⟩⊗⟨d′′⟩= ⟨c,d⟩

X(⟨c′′⟩ ; c′)×Y(⟨d′′⟩ ; d′).
The coproduct is indexed by pairs

(⟨c′′⟩, ⟨d′′⟩) ∈ Prof(C)×Prof(D) such that ⟨c′′⟩⊗ ⟨d′′⟩ = ⟨c, d⟩
with the tensor product of profiles in Definition 1.1.1. ◇
Definition 1.1.7. For small multicategories M and N, we define the sharp product
M #N as the pushout in Multicat

(1.1.8)

ObM×ObN ∐d∈ObNM

∐c∈ObMN M #N

along morphisms induced by the inclusions

ObM M and ObN N. ◇
Explanation 1.1.9 (Sharp Product). Restricting Definition 1.1.7 to objects, there is
a canonical bijection

Ob(M #N) ≅ ObM×ObN.

The operations of M #N are generated by operations of the form

φ × d ∈M× {d} and c ×ψ ∈ {c}×N
subject to the axioms (i) through (v) below, which are determined by the pushout
(1.1.8).

(i) For (c, d) ∈M #N, there are equalities

1c × d = 1(c,d) = c × 1d.
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(ii) For operations φ, φ1, . . . , φn in M such that the composite below is defined,
there is an equality

γ(φ × d ; ⟨φj × d⟩nj=1) = γ(φ ; ⟨φj⟩nj=1)× d.

(iii) For σ ∈ Σn, there is an equality

(φ × d) ⋅ σ = (φ ⋅ σ)× d.

(iv) For operations ψ, ψ1, . . . , ψm in N such that the composite below is de-
fined, there is an equality

γ(c ×ψ ; ⟨c ×ψi⟩mi=1) = c ×γ(ψ ; ⟨ψi⟩mi=1).
(v) For σ ∈ Σm, there is an equality

(c ×ψ) ⋅ σ = c × (ψ ⋅ σ).
These conditions are equivalent to the requirement that a multifunctor

F ∶M #N P

consists of an assignment on objects,

F(c, d) ∈ ObP for (c, d) ∈ ObM×ObN,

such that each of

F(c,−) ∶ N P and F(−, d) ∶M P

is a multifunctor. ◇
The Boardman-Vogt Tensor Product of Multicategories.

Definition 1.1.10. Suppose given small multicategories M and N along with oper-
ations

φ ∈M(⟨c⟩ ; c′) and ψ ∈ N(⟨d⟩ ; d′).
We define the following:

φ × ⟨d⟩ = ⟨φ × dj⟩j ∈∏j M(⟨c⟩ ; c′)× {dj}
⟨c⟩×ψ = ⟨ci ×ψ⟩i ∈∏i {ci}×N(⟨d⟩ ; d′)

φ⊗ψ = γ(c′ ×ψ ; φ × ⟨d⟩) ∈ (M #N)(⟨c⟩⊗ ⟨d⟩ ; (c′, d′))
φ⊗t ψ = γ(φ × d′ ; ⟨c⟩×ψ) ∈ (M #N)(⟨c⟩⊗t ⟨d⟩ ; (c′, d′))

Denote by ξ⊗ the bijection

(1.1.11) (M #N)(⟨c⟩⊗t ⟨d⟩ ; (c′, d′)) ≅ (M #N)(⟨c⟩⊗ ⟨d⟩ ; (c′, d′))
induced by the transpose permutation ξ⊗ in (1.1.2) that interchanges order of in-
dexing. ◇
Definition 1.1.12 (Tensor Product of Multicategories). For small multicategories
M and N, the tensor products of Definition 1.1.10 give two canonical morphisms
of multigraphs

(UM)& (UN) U(M#N).⊗

ξ
⊗
○⊗

t

Taking adjoints, we obtain the two morphisms in Multicat below. We define M⊗N
to be their coequalizer in Multicat:

(1.1.13) L((UM)& (UN)) M #N M⊗N
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For an object (c, d) ∈ M #N, we denote by c⊗ d its image in M⊗N. Moreover, the
tensor product ⊗ extends naturally to multifunctors. ◇
Explanation 1.1.14 (Unpacking the Tensor Product). Restricting Definition 1.1.12
to objects, there are canonical bijections

(1.1.15) Ob(M⊗N) ≅ Ob(M #N) ≅ ObM×ObN.

The operations of M⊗N are generated by

φ⊗ d ∈M(⟨c⟩ ; c′)× {d} and c⊗ψ ∈ {c}×N(⟨d⟩ ; d′)
subject to the relations of M # N in Explanation 1.1.9 along with one additional
interchange relation

(1.1.16) φ⊗ψ = (φ⊗t ψ) ⋅ ξ⊗.

A multifunctor

F ∶M⊗N P

consists of an assignment on objects,

F(c, d) ∈ ObP for (c, d) ∈ ObM×ObN,

such that the following two conditions hold.

● Each of

F(c,−) ∶ N P and F(−, d) ∶M P

is a multifunctor.
● There is an equality

(1.1.17) F(φ⊗ψ) = F(φ⊗t ψ) ⋅ ξ⊗
for each φ ∈M(⟨c⟩ ; c′) and ψ ∈ N(⟨d⟩ ; d′). ◇

Definition 1.1.18 (Braiding on Multicategories). For small multicategories M and
N, suppose

β ∶M #N N #M

is the multifunctor given

● on objects by β(c, d) = (d, c) and
● on generating operations by

β(φ × d) = d × φ and β(c ×ψ) = ψ × c.

Define the braiding

β ∶M⊗N N⊗M

as the induced multifunctor on tensor products. ◇
Recall the following.

● A symmetric monoidal V-category (Definition B.2.16) is a symmetric
monoidal category in the V-enriched sense. Theorem 1.1.19 below in-
volves the case V = (Cat,×, 1).
● There is a 2-category Multicat, which is Theorem C.1.33 with V = Set.
● The initial operad I in Example C.1.35 (i) has a single object ∗ and a single

unit operation 1∗ ∈ I(∗ ; ∗).
The following result combines [JY∞, 5.6.18 and 6.4.3].
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Theorem 1.1.19. The following quadruple is a symmetric monoidal category, with the
associativity and unit isomorphisms induced by those of the sharp product, #.

(Multicat,⊗, I, β)
Moreover, the tensor product ⊗ extends componentwise to multinatural transformations
such that the quadruple above becomes a symmetric monoidal Cat-category.

Explanation 1.1.20 (Multicat as a Cat-Multicategory). Since Multicat is a symmet-
ric monoidal Cat-category, it has the structure of a Cat-multicategory by Proposi-
tion C.3.9, with the following data.

● Its objects are small multicategories.
● For small multicategories ⟨Mj⟩nj=1 and N, the n-ary multimorphism cate-

gory is

(1.1.21) Multicat(⟨Mj⟩nj=1 ; N) = ⎧⎪⎪⎨⎪⎪⎩
Multicat(⊗n

j=1 Mj , N) if n > 0 and

Multicat(I,N) if n = 0.

If n > 0, then this category has
– multifunctors

⊗n
j=1 Mj N

as objects and
– multinatural transformations between such multifunctors as mor-

phisms.
If n = 0, then the objects in

Multicat(⟨⟩ ; N) =Multicat(I,N)
are multifunctors

I N.

Each such multifunctor is determined by a choice of an object in N. Thus,

Multicat(⟨⟩ ; N) is canonically isomorphic to the underlying category of N
as in Example C.1.16.
● The symmetric group action is induced by the braiding β of the tensor

product (Definition 1.1.18).
● The multicategorical composition is given by tensor product and compo-

sition of multifunctors, and likewise for multinatural transformations.

This finishes the description of the Cat-multicategory Multicat. ◇
Internal Hom for Multicategories. We use the following notation for a tuple

of multifunctors ⟨F⟩.
Definition 1.1.22. Suppose given multicategories M and N together with a tuple
of multifunctors ⟨F⟩ = ⟨Fi⟩mi=1 with each Fi ∶ M N. Then we use the following
notation.

● For c ∈ ObM, denote by

⟨F⟩c = ⟨Fic⟩mi=1.

● For ⟨c⟩ = ⟨cj⟩nj=1 ∈ Prof(ObM), denote by

⟨Fc⟩ = ⟨⟨Ficj⟩mi=1⟩nj=1 and ⟨Fc⟩t = ⟨⟨Ficj⟩nj=1⟩mi=1.
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● For an n-ary operation φ ∈M(⟨c⟩ ; c′), denote by

⟨F⟩φ = ⟨Fiφ⟩mi=1 ∈∏m
i=1N(Fi⟨c⟩ ; Fic

′).
This finishes the definition. ◇
Definition 1.1.23. For small multicategories M andN, the internal hom multicategory

Hom(M,N)
is defined as follows.

● The objects of Hom(M,N) are multifunctors M N.
● The m-ary operations

(1.1.24) θ ∶ ⟨F⟩ = ⟨Fi⟩mi=1 G

in Hom(M,N) are called transformations and are given by component m-
ary operations

θc ∈ N(⟨F⟩c ; Gc) for c ∈ ObM.

For each operation φ ∈ M(⟨c⟩ ; c′) with ⟨c⟩ = ⟨cj⟩nj=1 and θ⟨c⟩ = ⟨θc j
⟩nj=1, the

following naturality condition is required to hold:

(1.1.25) γ(Gφ ; θ⟨c⟩) = γ(θc′ ; ⟨F⟩φ)) ⋅ ξ⊗m,n.

● The unit operation

1G ∶ G G

is given by the identity multinatural transformation whose component at
c is the (Gc)-colored unit 1Gc in N.
● The composition and symmetric group action of Hom(M,N) are given

componentwise by those of N.

This finishes the definition of the internal hom multicategory Hom(M,N). More-
over, Hom(−,−) extends naturally to multifunctors, contravariantly in the first ar-
gument and covariantly in the second argument. ◇

Recall from Definition A.1.19 that a symmetric monoidal category is closed if,
for each object x, the functor −⊗ x admits a right adjoint. The following is [JY∞,
5.7.14].

Theorem 1.1.26. Equipped with the internal hom of Definition 1.1.23, the symmetric
monoidal category Multicat in Theorem 1.1.19 is closed.

1.2. Pointed Multicategories

There is a 2-category Multicat∗ of small pointed multicategories, pointed mul-
tifunctors, and pointed multinatural transformations (Appendix C.4). In this sec-
tion we review

(1) the symmetric monoidal closed structure (Theorem 1.2.8) and
(2) the Cat-multicategory structure (Explanation 1.2.9)

on Multicat∗. The material in this section is adapted from [JY∞, Chapters 5 and 6].

Definition 1.2.1. Suppose (M, iM) and (N, iN) are small pointed multicategories.
We define the following small pointed multicategories.
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(1) The wedge product, also called the wedge sum, is the pointed multicategory
defined by the following coequalizer in Multicat.

(1.2.2) T M∐N M∨NiM

iN

(2) The smash product is the pointed multicategory defined by the following
pushout in Multicat.

(1.2.3)

(M⊗T)∐ (T⊗N) M⊗N

T M∧Ni
M∧N

̟M,N

In (1.2.3), ⊗ is the tensor product in (1.1.13), and T is the terminal multi-
category in Example C.1.17. Moreover, the smash product extends natu-
rally to pointed multifunctors.

(3) The smash unit I+ is the pointed multicategory

(1.2.4) I+ = I∐T

with I the initial operad in Example C.1.35 (i). The pointed structure
T I+ is given by the T summand in I+.

(4) The pointed internal hom is the pointed multicategory defined by the fol-
lowing pullback in Multicat, where Hom(−,−) is the internal hom multi-
category in Definition 1.1.23.

(1.2.5)

Hom∗(M,N) T

Hom(M,N) Hom(T,N)
The pointed structure T Hom∗(M,N) is induced by the composite

T ≅ Hom(M,T) (i
N
)∗

Hom(M,N) (i
M
)
∗

Hom(T,N),
which is equal to the right vertical morphism in (1.2.5). Moreover,
Hom∗(−,−) extends naturally to pointed multifunctors, contravariantly
in the first argument and covariantly in the second argument.

This finishes the definition. ◇
Explanation 1.2.6 (Pointed Internal Hom Multicategory). Unpacking the pullback
(1.2.5), we describe the pointed multicategory Hom∗(M,N) explicitly as follows.

● Its objects are pointed multifunctors (M, iM) (N, iN).
● For pointed multifunctors

⟨F⟩ = ⟨Fi⟩mi=1 , G ∶M N,

an m-ary operation in Hom∗(M,N)(⟨F⟩ ; G) is a transformation

θ = {θc}c∈ObM ∶ ⟨F⟩ G

as in (1.1.24) such that the component at the basepoint object ∗ ∈ ObM,

(1.2.7) θ∗ = ιm ∈ N(⟨F⟩∗ ; G(∗)) = N(⟨∗⟩mi=1 ; ∗),
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is equal to the m-ary basepoint operation in N.

A transformation that satisfies the basepoint condition (1.2.7) is called a pointed
transformation. ◇

The following result combines [JY∞, 5.7.22 and 6.4.4] and is the pointed vari-
ant of Theorems 1.1.19 and 1.1.26.

Theorem 1.2.8. In the context of Definition 1.2.1, the quadruple

(Multicat∗,∧, I+,Hom∗)
is a complete and cocomplete symmetric monoidal closed category, with the associativity
and unit isomorphisms induced by those of Multicat in Theorem 1.1.19.

Moreover, the smash product ∧ extends componentwise to pointed multinatural trans-
formations such that Multicat∗ becomes a symmetric monoidal Cat-category.

Next is the pointed variant of Explanation 1.1.20.

Explanation 1.2.9 (Multicat∗ as a Cat-Multicategory). Since Multicat∗ is a symmet-
ric monoidal Cat-category, it has the structure of a Cat-multicategory by Proposi-
tion C.3.9, with the following data.

● Its objects are small pointed multicategories.

● For small pointed multicategories ⟨(Mj, iMj)⟩n
j=1

and (N, iN), the n-ary

multimorphism category

Multicat∗ (⟨(Mj, iMj)⟩n
j=1

; (N, iN)) =Multicat∗(⋀n
j=1 Mj , N)

has
– pointed multifunctors

⋀n
j=1 Mj N

as objects and
– pointed multinatural transformations between such pointed multi-

functors as morphisms.
If n = 0, then the objects in

Multicat∗(⟨⟩ ; (N, iN)) =Multicat∗(I+,N)
are pointed multifunctors

I+ = I∐T (N, iN).
Each such pointed multifunctor is determined by a choice of an object in

N. Thus, Multicat∗(⟨⟩ ; (N, iN)) is canonically isomorphic to the underly-
ing category of N as in Example C.1.16.
● The symmetric group action is induced by the braiding of the smash

product, which, in turn, is induced by the braiding of the tensor prod-
uct (Definition 1.1.18).
● The multicategorical composition is given by smash product and com-

position of pointed multifunctors, and likewise for pointed multinatural
transformations.

This finishes the description of the Cat-multicategory Multicat∗. ◇
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Explanation 1.2.10 (Forgetting Basepoints). The forgetful 2-functor

(1.2.11) U ● ∶ (Multicat∗,∧, I+) (Multicat,⊗, I)
in Proposition C.4.11 is a symmetric monoidal Cat-functor (Definition B.2.24) with
the following structure morphisms:

Unit Constraint: It is the multifunctor

(1.2.12) i ∶ I I+ = I∐T

given by the inclusion of the I summand in I+.
Monoidal Constraint: Its component for small pointed multicategories M and N

is the multifunctor

(1.2.13) ̟M,N ∶M⊗N M∧N
given by the right vertical arrow in the pushout (1.2.3) that defines the
smash product. ◇

Explanation 1.2.14 (U● as a Cat-Multifunctor). Regarding Multicat and Multicat∗ as
Cat-multicategories as in Explanations 1.1.20 and 1.2.9, respectively, the symmetric
monoidal Cat-functor U ● in (1.2.11) induces a Cat-multifunctor

(1.2.15) U ● ∶Multicat∗ Multicat

in the sense of Definition C.1.19 with the following structure:

Object Assignment: U ● sends a small pointed multicategory (M, i) to the multi-
category M.

Multimorphism Functors: Suppose given small pointed multicategories ⟨M⟩ =⟨Mj⟩nj=1 and N. The n-ary multimorphism functor

U ● ∶Multicat∗(⋀n
j=1 Mj , N) Multicat(⊗n

j=1 Mj , N)
sends a pointed multifunctor

P ∶ ⋀n
j=1 Mj N

to the composite multifunctor

⊗n
j=1 Mj ⋀n

j=1 Mj N
̟ P

if n > 0, where ̟ is an iterate of the monoidal constraint in (1.2.13). If
n = 0, then U● sends P to the composite multifunctor

I I+ N
i P

where i is the unit constraint in (1.2.12). For a pointed multinatural trans-
formation, U ● is defined similarly by whiskering with ̟ if n > 0 and with
i if n = 0. ◇

1.3. M1-Modules

In this section we review a full sub-2-category of Multicat∗ given by the left
modules over a small pointed multicategoryM1 (Example 1.3.3).

● In Definitions 1.3.1 and 1.3.4 we discuss the partition multicategoryMa
of a pointed finite set a and a pairing called the partition product.
● The partition multicategoryM1 is equipped with the structure of a com-

mutative monoid in (Multicat∗,∧, I+) in Definition 1.3.12.
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● The 2-category of leftM1-modules is in Definition 1.3.13. Its main prop-
erties are summarized in Proposition 1.3.17.
● The symmetric monoidal Cat-category of left M1-modules is in Def-

inition 1.3.23. Its induced Cat-multicategory is discussed in Explana-
tion 1.3.24.

The material in this section is adapted from [JY∞, Chapters 8 and 10].

Partition Multicategories. Recall from Definition A.1.17 the permutative cat-
egory

(F ,∧, 1, ξ)
of pointed finite sets and pointed functions with the smash product as the monoi-
dal product.

Definition 1.3.1. For a pointed finite set a with basepoint ∗, the unpointed finite
set a♭ is obtained from a by removing its basepoint:

(1.3.2) a♭ = a ∖ {∗}.
The partition multicategory, denoted Ma, is the pointed multicategory defined as
follows.

Objects: Ob(Ma) = P(a♭), the set of basepoint-free subsets of a.
Multimorphisms: For an n-tuple ⟨s⟩ = ⟨sj⟩nj=1 with each sj ∈ P(a♭) and t ∈ P(a♭),

the set of n-ary operations is

(Ma)(⟨s⟩ ; t) = ⎧⎪⎪⎨⎪⎪⎩
{ι⟨s⟩} if ⟨s⟩ is a partition of t and

∅ otherwise.

In the first case, {ι⟨s⟩} is a one-element set.
Pointed Structure: It is the multifunctor i ∶ T Ma given by

● the empty set ∅ ∈ P(a♭) and
● the unique operations

ιn = ι⟨∅⟩n
j=1
∈ (Ma)(⟨∅⟩nj=1 ; ∅) for n ≥ 0.

Other Structure: The colored units, symmetric group action, and composition are
uniquely defined by the terminal property of a one-element set.

This finishes the definition of the partition multicategoryMa. ◇
An important pointed multicategory for this work is the partition multicate-

goryM1 of the pointed finite set 1 = {0, 1}.
Example 1.3.3. We explain in detail the partition multicategoryM1.

● Its object set is

Ob(M1) = P(1♭) = {∅,{1}}.
● Its nonempty sets of operations are

M1(⟨∅⟩nj=1 ; ∅) = {ιn}
M1((∅, . . . ,{1}, . . . ,∅) ; {1}) = {πn

j }
for n ≥ 0 and j ∈ {1, . . . , n}. In the definition of πn

j above,

(∅, . . . ,{1}, . . . ,∅)
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has length n with {1} in the jth entry and ∅ in other entries. The op-
erations ιn for n ≥ 0 are closed under the symmetric group action and
composition.
● The {1}-colored unit is

π1
1 ∈M1({1} ; {1}).

● The right Σn-action on πn
j is given by

πn
j ⋅ σ = πn

σ−1(j) for σ ∈ Σn.

● The composition involving πn
j is given by

γ (πn
j ; (⟨ιki⟩j−1

i=1
, π

k j
p , ⟨ιki⟩ni=j+1)) = π

k1+⋯+kn

k1+⋯+k j−1+p

for k1, . . . , kn ≥ 0 and p ∈ {1, . . . , kj}.
This finishes the description of the partition multicategoryM1. ◇

The Commutative MonoidM1. The partition multicategoryM1 becomes a
commutative monoid (Definition A.1.18) via the following multiplication. Recall
the smash product defined in (1.2.3).

Definition 1.3.4. For a pair of pointed finite sets a and b, the partition product is the
pointed multifunctor

(1.3.5) ∏a,b ∶Ma ∧Mb M(a ∧ b)
defined as follows.

Object Assignment: This is given by the Cartesian product of subsets, noting that

s × t ⊂ (a♭ × b♭) ≅ (a ∧ b)♭ for s ⊂ a♭ and t ⊂ b♭.

Multimorphism Assignment: By Explanation 1.1.14, the generating operations of
the tensor product

Ma⊗Mb

are of the form

ι⟨s⟩ ⊗ t ∈Ma(⟨s⟩ ; s′)× {t} and s⊗ ι⟨t⟩ ∈ {s}×Mb(⟨t⟩ ; t′)
with
● s ⊂ a♭, t ⊂ b♭,
● ⟨s⟩ a partition of s′ inMa, and
● ⟨t⟩ a partition of t′ inMb.

We define partitions of s′ × t and s× t′ by, respectively,

⟨s⟩× t = ⟨si × t⟩i and s× ⟨t⟩ = ⟨s × tj⟩j.
Then we define∏a,b on generating operations by

ι⟨s⟩ ⊗ t ι⟨s⟩×t and s⊗ ι⟨t⟩ ιs×⟨t⟩.

The definition of∏a,b descends to the smash productMa∧Mb because the Carte-
sian product of any set with the empty set is empty. Therefore, each generating
operation of the form

ι⟨s⟩ ×∅ or ∅× ι⟨t⟩
is sent to a partition of the empty set, which is a basepoint operation ofM(a ∧ b).
This finishes the definition of the partition product∏a,b. ◇
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Lemma 1.3.6. For each pointed finite set b, the partition products for 1 and b are isomor-
phisms

∏1,b ∶M1∧Mb
≅ M(1∧ b) ≅Mb(1.3.7)

∏b,1 ∶Mb ∧M1
≅ M(b∧ 1) ≅Mb.

Recall from Theorem 1.2.8 the symmetric monoidal category Multicat∗.

Proposition 1.3.8. The partition multicategoryM defines a symmetric monoidal functor

M ∶ (Fop,∧, 1) (Multicat∗,∧, I+)
with the following structure morphisms.

Unit Constraint: It is the pointed multifunctor

(1.3.9) M0 ∶ I+ = I∐T M1

determined by sending the unique object of I to {1} ∈ P(1♭).
Monoidal Constraint: It is the composite of the partition product ∏ with the lexico-

graphic isomorphisms

(1.3.10) M2
m,n ∶Mm ∧Mn

∏m,n M(m ∧ n) ≅M(mn).
Explanation 1.3.11. The symmetric monoidal functor M is neither strong nor

strictly unital because the unit and monoidal constraints, M0 and M2 in (1.3.9)
and (1.3.10), are not isomorphisms. ◇

Recall from Definition A.1.18 the notion of a commutative monoid in a sym-
metric monoidal category. The following definition uses the symmetric monoidal
category (Multicat∗,∧, I+) in Theorem 1.2.8.

Definition 1.3.12. We define the commutative monoid

(M1,∏1,1 ,M0)
in the symmetric monoidal category (Multicat∗,∧, I+) as follows.

Object: It is the partition multicategoryM1 (Example 1.3.3).
Multiplication: It is the partition product for 1 and 1 in (1.3.7):

∏1,1 ∶M1∧M1
≅ M1.

Unit: It is the unit constraintM0 ∶ I+ M1 in (1.3.9). ◇
The 2-Category of M1-Modules. Recall from Definition A.1.9 that each

monoid in a monoidal category has an associated category of left modules. The
following definition uses the commutative monoid M1 in Multicat∗ in Defini-
tion 1.3.12.

Definition 1.3.13. We define the 2-category of leftM1-modules, denoted ModM1,
as follows.

● It has objects and 1-cells given by, respectively, leftM1-modules and their
morphisms as in Definition A.1.9.
● For leftM1-module morphisms

F, F′ ∶ N N′,
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the set of leftM1-module 2-cells consists of pointed multinatural transfor-
mations (Definition C.4.1)

θ ∶ F F′

such that the two whiskerings in (1.3.14) below are equal, where µ and µ′

denote the leftM1-module structures for N and N′, respectively.

(1.3.14)

M1∧N M1∧N′

N N′

1F

F

µ µ
′1F′

F′

⇒

1θ

⇒

θ

● Identities and compositions in ModM1 are given by those of Multicat∗ in
Theorem C.4.9.

We use the same notation for the underlying 1-category of ModM1. ◇
Example 1.3.15 (EndomorphismM1-Modules). Each small permutative category(C,⊕, e, ξ) has an associated leftM1-module

EndM1(C) = (End●(C), µ)
defined as follows.

● End●(C) is the pointed endomorphism multicategory in Example C.4.8.
● The leftM1-module structure

µ ∶M1∧End●(C) End●(C)
is given by the following assignments for a ∈ ObC and multimorphisms
f in End●(C).
(∅, a) e ιn ∧ a ιn = 1e ∅∧ f 1e

({1}, a) a πn
j ∧ a 1a {1}∧ f f

As in Examples C.3.1 and C.4.8, it is enough to assume that (C,⊗,1) is a symmetric
monoidal category. In this more general case,

● the image of ιn ∧ a is an iterate of the right unit isomorphism ρ in C, and
● the image of πn

j ∧ a is an iterate of the left unit isomorphism λ and the

right unit isomorphism ρ in C.

Moreover, the following statements hold:

(1) Each strictly unital symmetric monoidal functor between symmetric mon-
oidal categories

(P, P2, P0 = 1) ∶ C D

induces a leftM1-module morphism

EndM1(P) ∶ EndM1(C) EndM1(D)
given by the pointed multifunctor End●(P) in Example C.4.8. The latter
is given by End(P) in (C.3.3).
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(2) Each monoidal natural transformation between strictly unital symmetric
monoidal functors between symmetric monoidal categories

θ ∶ (P, P2, P0 = 1) (Q, Q2, Q0 = 1) ∶ C D

induces a leftM1-module 2-cell

EndM1(C) EndM1(D)
EndM1(P)

EndM1(Q)

⇒

EndM1(θ)

given by the pointed multinatural transformation End●(θ) in Exam-
ple C.4.8.

If there is no danger of confusion, we denote EndM1(C) by C. ◇
Proposition 1.3.16. The endomorphism leftM1-module in Example 1.3.15 defines a 2-
functor

EndM1 ∶ PermCatsu ModM1 .

We also denote by EndM1 the restriction of the 2-functor in Proposition 1.3.16

to the locally-full sub-2-category PermCatst in Definition A.2.3.
The following result from [JY∞, 10.1.14, 10.1.28, 10.2.5, and 10.2.22] summa-

rizes some of the main properties ofM1-modules.

Proposition 1.3.17.

(1) Suppose N is a leftM1-module in Multicat∗. Then the structure morphism

µ ∶M1∧N N

is an isomorphism. Its inverse is given by the unit

(1.3.18) N
λ
−1

≅ I+ ∧N M0 ∧ 1 M1∧N
with
● λ the left unit isomorphism for ∧ and

● M0 ∶ I+ M1 the unit constraint in (1.3.9).
(2) The structure morphism for a rightM1-module is an isomorphism with inverse

given by (1∧ η) ○ ρ−1, where ρ is the right unit isomorphism for ∧.
(3) Each small pointed multicategory N admits at most one leftM1-module struc-

ture and at most one rightM1-module structure.
(4) The 2-category of left, respectively right,M1-modules is a full sub-2-category of

Multicat∗ in Theorem C.4.9.
(5) For a left M1-module (N, µN) and a rightM1-module (P, µP), the two mor-

phisms in Multicat∗

(P∧M1)∧N P∧N
µ
P ∧ 1

(1∧ µ
N) ○ α

are equal. Therefore, the canonical morphism to the coequalizer

P∧N ≅
P ∧M1 N

is an isomorphism in Multicat∗.
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(6) For each small permutative category C, there are natural isomorphisms of
pointed categories

ModM1 (M1 , EndM1(C)) ≅Multicat∗(I+ , End ●(C)) ≅ (C, e).
(7) There is a complete, cocomplete, symmetric monoidal, and closed category

(ModM1,∧,M1,Hom∗).
● The monoidal product and internal hom are those of (Multicat∗,∧,Hom∗)

in Theorem 1.2.8.
● The monoidal unit isM1.
● The unit isomorphisms are given by the left M1-module structure and

braiding for ∧.

Recall from Definition A.2.11 the notion of a 2-adjunction.

Proposition 1.3.19. There is a free-forgetful 2-adjunction

Multicat∗ ModM1 .�
M1∧−

UM1

Explanation 1.3.20 (Unit and Counit). For the 2-adjunction (M1 ∧ −) ⊣ UM1, the
unit

(1.3.21) η̂ ∶ 1Multicat∗ UM1 ○ (M1∧−)
has component pointed multifunctor given by the composite

M I+ ∧M M1∧Mλ
−1

≅
M0 ∧ 1

η̂M

in (1.3.18) for each small pointed multicategory M. This component is, in general,
not an isomorphism because M need not be a leftM1-module.

The counit

(1.3.22) ε̂ ∶ (M1∧−) ○UM1 1
ModM1

of the 2-adjunction (M1∧−) ⊣ UM1 has component

ε̂N = µ ∶M1∧N ≅
N

given by the leftM1-module structure morphism for each leftM1-module (N, µ).
This component is an isomorphism by Proposition 1.3.17 (1). ◇

The Symmetric Monoidal Cat-Category of M1-Modules. Recall the notion
of a symmetric monoidal V-category (Definition B.2.16). The following definition
involves the case V = (Cat,×, 1).
Definition 1.3.23. Define the symmetric monoidal Cat-category

(ModM1,∧,M1)
with the following data.
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● The base Cat-category is the 2-category of left M1-modules in Defini-
tion 1.3.13. By Proposition 1.3.17 (4), it has hom categories

ModM1(N,N′) =Multicat∗(N,N′)
for leftM1-modules N and N′.
● The monoidal composition is given by the smash product, ∧, in Multicat∗.

This is well defined by Proposition 1.3.17 (5).
● The identity object isM1 (Example 1.3.3).
● The monoidal unitors and monoidal associator are given by those of(Multicat∗,∧) in Theorem 1.2.8.

This finishes the definition. ◇
Explanation 1.3.24 (ModM1 as a Cat-Multicategory). Since ModM1 is a symmet-
ric monoidal Cat-category, it has the structure of a Cat-multicategory by Proposi-
tion C.3.9, with the following data.

● Its objects are leftM1-modules.
● For leftM1-modules ⟨Nj⟩nj=1 and N′, the n-ary multimorphism category

is

ModM1 (⟨Nj⟩nj=1 ; N′) =ModM1 (⋀n
j=1 Nj , N′)

=
⎧⎪⎪⎨⎪⎪⎩
Multicat∗ (⋀n

j=1 Nj , N′) if n > 0 and

Multicat∗ (M1 , N′) if n = 0.

If n > 0, then this category has
– pointed multifunctors

(1.3.25) ⋀n
j=1 Nj N′

as objects and
– pointed multinatural transformations between such pointed multi-

functors as morphisms.
If n = 0, then an empty ∧ in (1.3.25) means M1, the monoidal unit in
ModM1.
● The symmetric group action is induced by the braiding of the smash

product in Multicat∗.
● The multicategorical composition is given by smash product and com-

position of pointed multifunctors, and likewise for pointed multinatural
transformations.

This finishes the description of the Cat-multicategory ModM1. We note the sub-
tle difference between the Cat-multicategories ModM1 and Multicat∗ in Explana-
tion 1.2.9, especially in arity 0. ◇
Proposition 1.3.26. The 2-functor

M1∧− ∶Multicat∗ ModM1

is a strong symmetric Cat-monoidal functor, hence also a Cat-multifunctor.

Proof. The unit constraint forM1∧− is the isomorphism

M1
ρ
−1

≅ M1∧ I+
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where ρ is the right unit isomorphism for ∧. The monoidal constraint is the com-
posite isomorphism for M,N ∈Multicat∗

(M1∧M)∧ (M1∧N) ≅ (M1∧M1)∧ (M∧N) ∏1,1 M1∧ (M∧N),
where the first isomorphism permutes the factors and the second isomorphism is
the partition product from Lemma 1.3.6 with b = 1. The symmetric Cat-monoidal
functor axioms of Definitions B.2.20 and B.2.24 then follow becauseM1 is a com-
mutative monoid in Multicat∗. �

Explanation 1.3.27 (ForgettingM1-Module Structure). The forgetful 2-functor

(1.3.28) UM1 ∶ (ModM1,∧,M1) (Multicat∗,∧, I+)
is a symmetric monoidal Cat-functor (Definition B.2.24) with the following struc-
ture morphisms:

Monoidal Constraint: It is the identity.
Unit Constraint: It is the pointed multifunctor in (1.3.9),

M0 ∶ I+ M1.

By Proposition 1.3.17 (4) and (5), the underlying forgetful 2-functor

UM1 ∶ModM1 Multicat∗
is an inclusion between the underlying 2-categories. However, as a symmetric

monoidal Cat-functor, it is neither unital nor strong, since M0 is not an iso-
morphism. Therefore, ModM1 is not a symmetric monoidal Cat-subcategory of
Multicat∗. ◇
Explanation 1.3.29 (UM1 as a Cat-Multifunctor). Regarding ModM1 and Multicat∗
as Cat-multicategories using Explanations 1.2.9 and 1.3.24, there is an induced Cat-
multifunctor (Definition C.1.19)

(1.3.30) UM1 ∶ModM1 Multicat∗
with the following structure:

Object Assignment: UM1 sends a leftM1-module (M, µ) to the pointed multicat-
egory M.

Multimorphism Functors: Suppose given leftM1-modules ⟨M⟩ = ⟨Mj⟩nj=1 and N.

The n-ary multimorphism functor

UM1 ∶ModM1 (⋀n
j=1 Mj , N) Multicat∗(⋀n

j=1 Mj , N)
is an isomorphism if n > 0 by Proposition 1.3.17 (4) and (5).

If n = 0, then UM1 sends a leftM1-module morphism

P ∶M1 N

to the composite pointed multifunctor

I+ M1 N
M0 P

where M0 is the unit constraint in (1.3.9). For a left M1-module 2-cell
(Definition 1.3.13), UM1 is defined similarly by whiskering withM0. ◇

Proposition 1.3.31. The unit η̂ in (1.3.21) and the counit ε̂ in (1.3.22) are monoidal
Cat-natural transformations, hence also Cat-multinatural transformations.
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Proof. As in Proposition 1.3.26, the assertions about η̂ and ε̂ follow from the com-
mutative monoid structure ofM1. �

1.4. Permutative Categories

There is a 2-category PermCatsu of small permutative categories, strictly uni-
tal symmetric monoidal functors, and monoidal natural transformations (Def-
inition A.2.3). In this section we extend the 2-category PermCatsu to a Cat-
multicategory.

● In Definitions 1.4.2 and 1.4.10 we define n-linear functors and n-linear
transformations. They generalize strictly unital symmetric monoidal
functors and monoidal natural transformations, respectively.
● The Cat-multicategoryPermCatsu is in Definitions 1.4.15, 1.4.16, and 1.4.21.
● Theorem 1.4.38 shows that the Cat-multicategories PermCatsu, Multicat,
Multicat∗, and ModM1 are related by the various endomorphism multi-
category constructions and forgetful functors.

The material in this section is adapted from [JY∞, Sections 6.5 and 6.6].
Throughout this section, suppose ⟨C⟩ = ⟨Cj⟩nj=1 and D are permutative categor-

ies. In each of these permutative categories, the monoidal product, monoidal unit,
and braiding are denoted by ⊕, e, and ξ, respectively.

Multilinear Functors and Transformations.

Notation 1.4.1. Suppose ⟨x⟩ = ⟨xj⟩nj=1 is an n-tuple of symbols, and y is a symbol

with k ∈ {1, . . . , n}. We denote by

⟨x ○k y⟩ = ⟨x⟩ ○k y = ( x1, . . . , xk−1

empty if k = 1

, y, xk+1, . . . , xn

empty if k = n

)

the n-tuple obtained from ⟨x⟩ by replacing its k-th entry by y. Similarly, for k ≠ ℓ ∈{1, . . . , n} and a symbol z, we denote by

⟨x ○k y ○ℓ z⟩ = ⟨x⟩ ○k y ○ℓ z

the n-tuple obtained from ⟨x ○k y⟩ by replacing its ℓ-th entry by z. ◇
Definition 1.4.2. An n-linear functor

∏n
j=1Cj D

(P,{P2
j }n

j=1)

consists of the following data.

● P ∶ ∏n
j=1 Cj D is a functor.

● For each j ∈ {1, . . . , n}, P2
j is a natural transformation, called the j-th lin-

earity constraint, with component morphisms

(1.4.3) P⟨x ○j xj⟩⊕ P⟨x ○j x′j⟩ P⟨x ○j (xj ⊕ x′j)⟩ ∈ DP2
j

for objects ⟨x⟩ ∈∏n
j=1Cj and x′j ∈ Cj.

These data are required to satisfy the axioms (1.4.4) through (1.4.8) below.
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Unity: For objects ⟨x⟩ and morphisms ⟨ f ⟩ in∏n
j=1Cj, the following object and mor-

phism equalities hold for each j ∈ {1, . . . , n}.
(1.4.4) { P⟨x ○j e⟩ = e

P⟨ f ○j 1e⟩ = 1e

Constraint Unity:

(1.4.5) P2
j = 1 if any xi = e or if x′j = e.

Constraint Associativity: The following diagram commutes for each i ∈ {1, . . . , n}
and objects ⟨x⟩ ∈∏n

j=1Cj, with x′i , x′′i ∈ Ci.

(1.4.6)

P⟨x ○i xi⟩⊕ P⟨x ○i x′i⟩⊕ P⟨x ○i x′′i ⟩ P⟨x ○i xi⟩⊕ P⟨x ○i (x′i ⊕ x′′i )⟩

P⟨x ○i (xi ⊕ x′i)⟩⊕ P⟨x ○i x′′i ⟩ P⟨x ○i (xi ⊕ x′i ⊕ x′′i )⟩

1⊕ P2
i

P2
i ⊕ 1 P2

i

P2
i

Constraint Symmetry: The following diagram commutes for each i ∈ {1, . . . , n}
and objects ⟨x⟩ ∈∏n

j=1Cj, with x′i ∈ Ci.

(1.4.7)

P⟨x ○i xi⟩⊕ P⟨x ○i x′i⟩ P⟨x ○i (xi ⊕ x′i)⟩

P⟨x ○i x′i⟩⊕ P⟨x ○i xi⟩ P⟨x ○i (x′i ⊕ xi)⟩

P
2
i

ξ P⟨1 ○i ξ⟩
P

2
i

Constraint 2-By-2: The following diagram commutes for each

i ≠ k ∈ {1, . . . , n}, ⟨x⟩ ∈∏n
j=1Cj, x′i ∈ Ci, and x′k ∈ Ck.

(1.4.8)

P⟨x ○i xi ○k xk⟩⊕ P⟨x ○i x′i ○k xk⟩
⊕P⟨x ○i xi ○k x′k⟩⊕ P⟨x ○i x′i ○k x′k⟩

P⟨x ○i xi ○k xk⟩⊕ P⟨x ○i xi ○k x′k⟩⊕P⟨x ○i x′i ○k xk⟩⊕ P⟨x ○i x′i ○k x′k⟩

P⟨x ○i (xi ⊕ x′i) ○k xk⟩⊕ P⟨x ○i (xi ⊕ x′i) ○k x′k⟩

P⟨x ○i xi ○k (xk ⊕ x′k)⟩⊕ P⟨x ○i x′i ○k (xk ⊕ x′k)⟩

P⟨x ○i (xi ⊕ x′i) ○k (xk ⊕ x′k)⟩

P2
i ⊕ P2

i
P2

k

1⊕ ξ ⊕ 1

P2
k ⊕ P2

k

P2
i

This finishes the definition of an n-linear functor.
Moreover, we define the following.

● If n = 0, then a 0-linear functor is a functor 1 D, which is also re-
garded as a choice of an object in D.

● An n-linear functor (P,{P2
j }) is

– strong if each P2
j is a natural isomorphism and

– strict if each P2
j is an identity natural transformation.

● A multilinear functor is an n-linear functor for some n ≥ 0. ◇
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Example 1.4.9. A 1-linear functor C D is precisely a strictly unital symmetric
monoidal functor (Definition A.1.22). ◇
Definition 1.4.10. Suppose P, Q are n-linear functors as displayed below.

(1.4.11)
n

∏
j=1

Cj D

(P,{P2
j })

(Q,{Q2
j })

⇒

θ

An n-linear transformation θ ∶ P Q is a natural transformation of underlying
functors that satisfies the following two multilinearity conditions.

Unity:

(1.4.12) θ⟨x⟩ = 1e if any xi = e ∈ Ci.

Constraint Compatibility: The following diagram commutes for each ⟨x⟩ ∈
∏n

j=1Cj and x′i ∈ Ci with i ∈ {1, . . . , n}.

(1.4.13)

P⟨x ○i xi⟩⊕ P⟨x ○i x′i⟩ P⟨x ○i (xi ⊕ x′i)⟩

Q⟨x ○i xi⟩⊕Q⟨x ○i x′i⟩ Q⟨x ○i (xi ⊕ x′i)⟩

P2
i

θ ⊕ θ θ

Q2
i

This finishes the definition of an n-linear transformation. Moreover, we define the
following.

● A multilinear transformation is an n-linear transformation for some n ≥ 0.
● Identities and compositions of multilinear transformations are defined

componentwise. ◇
Example 1.4.14. A 1-linear transformation between 1-linear functors is precisely
a monoidal natural transformation (Definition A.1.27) between corresponding
strictly unital symmetric monoidal functors. ◇

Cat-Multicategory Structure. Next we define the Cat-multicategory (Defini-
tion C.1.3) PermCatsu whose objects are small permutative categories. For the rest
of this section, ⟨C⟩ = ⟨Cj⟩nj=1 and D are small permutative categories. The notation

in the following definition is chosen to match with the notation in Definition A.2.3
in the 1-linear case; see Examples 1.4.9 and 1.4.14.

Definition 1.4.15 (Multimorphism Categories). We define the following categories
of n-linear functors and transformations.

● PermCatsu (⟨C⟩ ; D) is the category with
– n-linear functors ⟨C⟩ D as objects and
– n-linear transformations between them as morphisms.

● PermCatsus(⟨C⟩ ; D) is the full subcategory of strong n-linear functors.

● PermCatst (⟨C⟩ ; D) is the full subcategory of strict n-linear functors. ◇
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Definition 1.4.16 (Symmetric Group Action). Suppose given n-linear functors P
and Q together with an n-linear transformation θ as displayed below.

(1.4.17)
n

∏
j=1

Cj D

(P,{P2
j })

(Q,{Q2
j })

⇒

θ

For a permutation σ ∈ Σn, the symmetric group action

(1.4.18) PermCatsu (⟨C⟩ ; D) PermCatsu (⟨C⟩σ ; D)σ
≅

sends the data (1.4.17) to the following composites and whiskerings, where σ per-
mutes the coordinates according to σ.

(1.4.19)
n

∏
j=1

Cj D

n

∏
j=1

Cσ(j) σ

(P,{P2
j })

(Q,{Q2
j })

⇒

θ

For objects

⟨a⟩ = ⟨aj⟩nj=1 ∈
n

∏
j=1

Cσ(j) and a′j ∈ Cσ(j),

the j-th linearity constraint of Pσ = P ○ σ has component given by the following
composite in D.

(1.4.20)

Pσ⟨a⟩⊕ Pσ⟨a ○j a′j⟩ Pσ⟨a ○j (aj ⊕ a′j)⟩
P(σ⟨a⟩)⊕ P(σ⟨a⟩ ○σ(j) a′j) P(σ⟨a⟩ ○σ(j) (aj ⊕ a′j))

(Pσ)2j

P2
σ(j)

If P is strong, respectively strict, with each P2
j a natural isomorphism, respectively

identity, then Pσ is also strong, respectively strict. ◇
Definition 1.4.21 (Multicategorical Composition). Suppose given, for each j ∈{1, . . . , n},

● permutative categories ⟨Bj⟩ = ⟨Bj,i⟩k j

i=1,

● kj-linear functors P′j , Q′j ∶ ⟨Bj⟩ Cj, and

● a kj-linear transformation θj ∶ P′j Q′j as follows.

(1.4.22)
k j

∏
i=1

Bj,i
Cj

P
′
j

Q
′
j

⇒

θj

With ⟨B⟩ = ⟨⟨Bj⟩⟩nj=1
, the multicategorical composition functor

(1.4.23) PermCatsu (⟨C⟩ ; D)×∏n
j=1 PermCatsu (⟨Bj⟩ ; Cj) PermCatsu (⟨B⟩ ; D)γ
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sends the data (1.4.17) and (1.4.22) to the composites

(1.4.24)
n

∏
j=1

k j

∏
i=1

Bj,i D

P ○∏jP
′
j

Q ○∏jQ
′
j

Ô
⇒θ⊗ (∏j θj)

defined as follows.

Composite Multilinear Functor: Suppose given tuples of objects

(1.4.25)
⟨wj⟩ = ⟨wj,i⟩k j

i=1 ∈∏k j

i=1Bj,i for j ∈ {1, . . . , n} and

⟨w⟩ = ⟨⟨wj⟩⟩nj=1 ∈∏n
j=1∏

k j

i=1
Bj,i.

Then we have the object

(1.4.26)
(P ○∏j P′j )⟨w⟩ = P⟨P′j ⟨wj⟩⟩nj=1

= P(P′1⟨w1⟩, . . . , P′n⟨wn⟩) in D.

For the linearity constraints of the composite P ○∏j P′j in (1.4.24), in

addition to the objects in (1.4.25), consider
● an object w′j,i ∈ Bj,i for some choice of (j, i)with

ℓ = k1 +⋯+ kj−1 + i

and
● ⟨P′w⟩ = ⟨P′j ⟨wj⟩⟩nj=1

∈∏n
j=1 Cj.

The following objects appear in (1.4.27) below.

⟨wj ○i w′j,i⟩ = (
empty if i = 1

wj,1, . . . , wj,i−1, w′j,i ,

empty if i = k j

wj,i+1, . . . , wj,k j
)

⟨wj ○i (wj,i⊕w′j,i)⟩ = (wj,1, . . . , wj,i−1

empty if i = 1

, wj,i ⊕w′j,i , wj,i+1, . . . , wj,k j

empty if i = k j

).

The ℓ-th linearity constraint (P ○∏jP
′
j )2ℓ is defined as the following com-

posite in D.

(1.4.27)

P⟨P′w⟩⊕ P⟨P′w ○j P′j ⟨wj ○i w′j,i⟩⟩

(P ○∏jP
′
j )⟨w⟩⊕ (P ○∏jP

′
j )⟨w ○ℓ w′j,i⟩

P⟨P′w ○j (P′j ⟨wj⟩⊕ P′j ⟨wj ○i w′j,i⟩)⟩

(P ○∏jP
′
j )⟨w ○ℓ (wj,i ⊕w′j,i)⟩

P⟨P′w ○j P′j ⟨wj ○i (wj,i⊕w′j,i)⟩⟩

P2
j

P⟨1 ○j (P′j )2i ⟩

(P ○∏jP
′
j )

2

ℓ
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If P and each P′j are strong, respectively strict, then each linearity con-

straint (P ○∏jP
′
j )2ℓ is componentwise invertible, respective identity, and,

therefore, the composite P ○∏jP
′
j is also strong, respective strict.

Composite Multinatural Transformation: The n-linear transformation θ⊗(∏j θj)
in (1.4.24) is the horizontal composite of the natural transformations∏j θj

and θ. More explicitly, the component morphism (θ ⊗ (∏j θj))⟨w⟩ is the

following composite in D.

(1.4.28) P⟨P′j ⟨wj⟩⟩nj=1
P⟨Q′j⟨wj⟩⟩nj=1

Q⟨Q′j⟨wj⟩⟩nj=1

P⟨(θj)⟨wj⟩⟩
n
j=1

θ⟨Q′
j
⟨wj⟩⟩nj=1

The finishes the definition of the multicategorical composition in PermCatsu. ◇
Theorem 1.4.29. There is a Cat-multicategory

PermCatsu

defined by the following data.

● The objects are small permutative categories.
● The multimorphism categories are in Definition 1.4.15.
● The colored units are identity symmetric monoidal functors.
● The symmetric group action is in Definition 1.4.16.
● The multicategorical composition is in Definition 1.4.21.

Moreover, there are sub-Cat-multicategories

PermCatst PermCatsus PermCatsu

with the multimorphism categories in Definition 1.4.15.

Explanation 1.4.30. The underlying 2-categories, in the sense of Example C.1.16
with V = (Cat,×, 1), of the Cat-multicategories

PermCatsu, PermCatsus, and PermCatst

are the corresponding 2-categories in Definition A.2.3. ◇
The following result combines [JY∞, 6.5.10 and 6.5.13].

Proposition 1.4.31. For small permutative categories ⟨Cj⟩nj=1 and D, the 2-functor

End ● ∶ PermCatsu Multicat∗

in Proposition C.4.10 induces an isomorphism of multimorphism categories

PermCatsu (⟨C⟩ ; D) End●

≅ Multicat∗(⟨End ●(C)⟩ ; End●(D))
=Multicat∗(⋀n

j=1 End●(Cj) , End●(D))
between

● the category of n-linear functors and transformations ⟨C⟩ D and
● the category of pointed multifunctors

⋀n
j=1 End●(Cj) End ●(D)

and pointed multinatural transformations.

Therefore, End● is a Cat-multifunctor.
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Explanation 1.4.32 (End● as a Cat-Multifunctor). The Cat-multifunctor End ● in
Proposition 1.4.31 is given explicitly as follows.

Object Assignment. It sends a small permutative category C to the pointed
endomorphism multicategory

End●(C) = (End(C), i)
in Example C.4.8.

Multimorphism Functor on Objects. An object in the n-ary multimorphism cate-

gory PermCatsu (⟨C⟩ ; D) is an n-linear functor (Definition 1.4.2)

∏n
j=1Cj D.

(P,{P2
j }n

j=1)

The image pointed multifunctor

(1.4.33) End●(P) ∶ ⋀n
j=1 End●(Cj) End●(D)

has object assignment induced by the object assignment of P. This makes sense
because, by the pushout (1.2.3) that defines the smash product ⋀n

j=1 End ●(Cj), its

objects are represented by elements in

Ob(⊗n
j=1 End(Cj)) =∏n

j=1 Ob (End(Cj)) =∏n
j=1 Ob(Cj).

The object unity axiom (1.4.4) ensures that it descends to the objects of the smash
product.

By the pushout (1.2.3) again, each multimorphism in ⋀n
j=1 End●(Cj) is repre-

sented by a multimorphism in⊗n
j=1 End(Cj). By

● Explanation 1.1.14 of the tensor product and
● the definition of End (Example C.3.1),

the multimorphisms in⊗n
j=1 End(Cj) are generated by

(1.4.34) c1 ⊗⋯⊗ cj−1 ⊗ψ⊗ cj+1 ⊗⋯⊗ cn

for some j ∈ {1, . . . , n}, objects ci ∈ Ci for i ≠ j, and multimorphism

ψ ∈ End(Cj)(⟨xk⟩rk=1 ; y) = Cj(⊕r
k=1 xk , y).

We use the following notation.

(1.4.35)
⟨c⟩ ○j ? = (c1, . . . , cj−1, ?, cj+1, . . . , cn)

1⟨c⟩ ○j ? = (1c1 , . . . , 1c j−1
, ?, 1c j+1

, . . . , 1cn)
Then End ●(P) sends the multimorphism in (1.4.34) to the following composite
morphism in D.

(1.4.36)

⊕r
k=1 P (⟨c⟩ ○j xk)

P (⟨c⟩ ○j (⊕r
k=1 xk))

P (⟨c⟩ ○j y)
P2

j P (1⟨c⟩ ○j ψ)

This is an r-ary multimorphism in

End(D) (⟨P(⟨c⟩ ○j xk)⟩rk=1
; P(⟨c⟩ ○j y)) .
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This assignment descends to the smash product by the unity axioms (1.4.4)
and (1.4.5). These object and multimorphism assignments yield a pointed multi-
functor End●(P) as in (1.4.33) by the other axioms of an n-linear functor (Defini-
tion 1.4.2).

Multimorphism Functor on Morphisms. A morphism

θ ∶ P Q in PermCatsu (⟨C⟩ ; D)
is an n-linear transformation (Definition 1.4.10). A morphism in

Multicat∗(⋀n
j=1 End●(Cj) , End●(D))

is a pointed multinatural transformation (Definition C.4.1). For each object ⟨c⟩ ∈
∏n

j=1 Cj, the component of

End●(θ) ∶ End ●(P) End●(Q)
at the object of ⋀n

j=1 End●(Cj) represented by ⟨c⟩ is the component morphism

(1.4.37) θ⟨c⟩ ∶ P⟨c⟩ Q⟨c⟩ in D.

This defines a pointed multinatural transformation End ●(θ) by the multilinearity
conditions (1.4.12) and (1.4.13). ◇

The following result combines [JY∞, 5.3.6, 5.3.9, 6.5.1, and 10.2.14].

Theorem 1.4.38. There is a commutative diagram of Cat-multifunctors

(1.4.39)

PermCatsu Multicat

ModM1 Multicat∗

End

End ●
EndM1

UM1

U ●

defined as follows.

● U ●, UM1, and End● are the Cat-multifunctors in Explanations 1.2.14, 1.3.29,
and 1.4.32, respectively.
● End is the compositeCat-multifunctor U ● ○End●, which restricts to the 2-functor

in Proposition C.3.6.
● EndM1 is defined on objects in Example 1.3.15. It extends to a Cat-multifunctor

satisfying
UM1 ○EndM1 = End ●

by Proposition 1.3.17 (4) through (6) and Proposition 1.4.31.

Explanation 1.4.40 (End as a Cat-Multifunctor). The Cat-multifunctor

End = U ●End● ∶ PermCatsu Multicat

in (1.4.39) sends a small permutative category C to the endomorphism multicat-
egory End(C) in Example C.3.1. For small permutative categories ⟨C⟩ and D, the
composite multimorphism functor

PermCatsu (⟨C⟩ ; D)

Multicat∗(⋀n
j=1 End●(Cj) , End●(D))

Multicat(⊗n
j=1 End(Cj) , End(D))End

≅End ● U ●

is as described in Explanation 1.4.32 before descending to the smash product. ◇
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Explanation 1.4.41 (EndM1 as a Cat-Multifunctor). The Cat-multifunctor

EndM1 ∶ PermCatsu ModM1

in (1.4.39) sends a small permutative category C to the endomorphism left M1-
module

EndM1(C) = (End●(C), µ)
in Example 1.3.15. For small permutative categories ⟨C⟩ and D, the multimorphism
functor EndM1 is the following composite isomorphism.

PermCatsu (⟨C⟩ ; D)

ModM1 (⋀n
j=1 EndM1(Cj) , EndM1(D))

Multicat∗(⋀n
j=1 End ●(Cj) , End ●(D))End●

≅

EndM1 (UM1)−1≅

● End● is an isomorphism by Proposition 1.4.31.
● UM1 is an isomorphism by

– Proposition 1.3.17 (4) and (5) if n > 0 and
– Proposition 1.3.17 (6) if n = 0. ◇



CHAPTER 2

Infinite Loop Space Machines

In this chapter we review two K-theory functors,

● KSe due to Segal [Seg74] and
● KEM due to Elmendorf-Mandell [EM06, EM09],

from small permutative categories, PermCatsu, to connective symmetric spectra,
Sp≥0:

PermCatsu Sp≥0 .
K

Se

K
EM

Each of KSe and KEM is an equivalence of homotopy theories. This implies that each
of them induces an equivalence between the respective stable homotopy categor-
ies, which are obtained by inverting the respective classes of stable equivalences.

Moreover, there are decompositions

KSe = KF ○ Ner∗ ○ JSe and

KEM = KG ○ Ner∗ ○ JT ○EndM1

as in the following diagram, which we explain in more detail in Section 2.5.

(2.0.1)

PermCatsu Γ-Cat Γ-sSet Sp≥0

G∗-Cat G∗-sSetModM1

J
Se Ner∗ K

F

J
EM

EndM1

J
T Ner∗

K
G

∧∗
i∗ L⊢

∧∗
i∗L ⊣

S∗P
A

K
EM

⇒

Π
∗

Each category in (2.0.1) is an enriched symmetric monoidal category, except for
PermCatsu, which is a Cat-multicategory. However, Segal K-theory, KSe, is not a
multifunctor because JSe is not a multifunctor. On the other hand, each constituent
functor that comprises Elmendorf-Mandell K-theory, KEM, is an enriched multi-
functor, so KEM itself is an enriched multifunctor.

Each functor in (2.0.1), except JT and KG , is an equivalence of homotopy theo-
ries. Each of the three pairs along the top row of (2.0.1),

(P , JSe), (S∗,Ner∗), and (A,KF),
induces mutually inverse equivalences between the respective stable homotopy
categories. Among the three homotopy inverses P , S∗, and A, only P is a non-
symmetric Cat-multifunctor. Each of S∗ and A is incompatible with the multi-
plicative structures of its domain and codomain.

Connection with Other Chapters.

31
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Equivalences of Homotopy Theories. We use equivalences of homotopy theories
(Section 2.1) in several subsequent chapters.

● In Chapter 3 we observe that there are equivalences of homotopy theories
between small multicategories, Multicat, and small permutative categor-
ies, PermCatsu. Together with Segal K-theory, KSe (Section 2.5), we obtain
an equivalence of homotopy theories from Multicat to Sp≥0.
● In Chapters 4 and 5 we extend the equivalences of homotopy theories be-

tween Multicat and PermCatsu first to pointed multicategories, Multicat∗,
and then further to left M1-modules, ModM1. Together with Segal K-
theory, this implies that there is an equivalence of homotopy theories
from each of Multicat∗ and ModM1 to Sp≥0.

Enriched Mackey Functors.

● In Sections 9.4, 10.5, and 10.6 we apply our general results about mul-
ticategorical standard enrichment, enriched diagrams, and enriched
presheaves to the Cat-multifunctors that constitute Elmendorf-Mandell
K-theory, KEM. In particular, Theorems 10.5.1 and 10.6.2 prove that KEM in-
duces a change-of-enrichment functor KEM★ that produces spectral Mackey
functors from permutative Mackey functors based on any small cate-
gory C enriched in PermCatsu. Moreover, this functor factors through
categories of enriched Mackey functors based on left M1-modules, G∗-
categories, and G∗-simplicial sets.
● In Part 4 we further extend the equivalences of homotopy theories be-

tween Multicat∗, ModM1, and PermCatsu to their respective categories of
enriched diagrams and enriched Mackey functors. See Theorems 12.1.6,
12.4.6, and 12.6.6.

Background. We use the notions of enriched (monoidal) categories and mul-
ticategories in Appendices B.1, B.2, and C.1. We also use the symmetric monoidal
Cat-category ModM1 and the Cat-multicategory PermCatsu in Sections 1.3 and 1.4,
respectively.

Chapter Summary. In Section 2.1 we review homotopy theories and their
equivalences in the context of complete Segal spaces. In Section 2.2 we discuss
pointed diagram categories and their symmetric monoidal closed structure. In
Section 2.3 we review Γ-objects, which are pointed diagrams on the category F
of pointed finite sets. In Section 2.4 we review G∗-objects, which are pointed di-
agrams on the category G with finite tuples of pointed finite sets as objects. In
Section 2.5 we review the categories and functors that constitute Segal K-theory,
its homotopy inverse, and Elmendorf-Mandell K-theory. Here is a summary table.
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Section 2.1. Homotopy Theories via Complete Segal Spaces

complete Segal space model structure 2.1.5

relative categories, functors, and natural transformations 2.1.6

(criteria for) equivalences of homotopy theories 2.1.7 (2.1.9)

Section 2.2. Category of Pointed Diagrams

symmetric monoidal closed category of pointed objects 2.2.7

pointed unitary enrichment 2.2.11

pointed Day convolution and monoidal unit 2.2.14

symmetric monoidal closed category of pointed diagrams 2.2.19

Section 2.3. Γ-Objects

category F and Γ-objects A.1.17 and 2.3.1

symmetric monoidal closed category of Γ-objects 2.3.2

Section 2.4. G∗-Objects

category G and G∗-objects 2.4.5, 2.4.7, and 2.4.10

symmetric monoidal closed category of G∗-objects 2.4.11

functors i ∶ F G ∶ ∧ 2.4.18 and 2.4.19

Section 2.5. Segal and Elmendorf-Mandell K-theory

Segal K-theory KSe 2.5.3

homotopy inverses P , S∗, andA 2.5.17, 2.5.18, and 2.5.19

Elmendorf-Mandell K-theory KEM 2.5.8

Most of the material in this chapter is adapted from [JY∞, Chapters 4 and 8–10]
and [JY22b, JY22c]. We provide more references below. We remind the reader of
Conventions A.1.2 and A.1.30.

2.1. Homotopy Theories via Complete Segal Spaces

In this section we review equivalences of homotopy theories in terms of com-
plete Segal spaces in the sense of [Rez01]. See [BK12, DK80, Toë05] for further
development. Practical criteria for checking equivalences of homotopy theories
are discussed in [GJO17a, GJO17b, JY22c]. General references for model category
theory are [Hir03, Hov99].

Complete Segal Spaces. The category sSet of simplicial sets is equipped with
the standard Kan model structure. The nerve functor is denoted

(2.1.1) Ner ∶ Cat sSet.

See [JY∞, Section 7.2] for an elementary discussion of the nerve. For n ≥ 0, we
denote by

(2.1.2) n = {0, 1, . . . , n}
the pointed finite set with n + 1 elements and basepoint 0.

Definition 2.1.3.

(1) Denote by 2 the nerve of the category consisting of two isomorphic ob-
jects.
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(2) For n ≥ 2 and j ∈ {1, . . . , n}, the j-th characteristic map is the pointed func-
tion

χj ∶ 1 n such that χj(1) = j.

(3) A bisimplicial set is a simplicial object in the category of simplicial sets.
(4) A bisimplicial set is Reedy fibrant if it is a fibrant object in the Reedy model

structure.
(5) For a bisimplicial set A, the n-th Segal morphism is the simplicial map

An

n copies of A1

A1 ×A0
⋯×A0

A1

whose composite with the j-th coordinate projection is A(χj) for each
j ∈ {1, . . . , n}.

(6) We say that a bisimplicial set satisfies the Segal condition if the n-th Segal
morphism is a weak equivalence of simplicial sets for each n ≥ 2. ◇

Definition 2.1.4. A complete Segal space is a bisimplicial set A that satisfies the fol-
lowing three conditions.

Fibrancy: A is Reedy fibrant.
Segal Condition: A satisfies the Segal condition.
Path Condition: The morphism

A0 ≅Map(∆[0], A) Map(2, A)

induced by the unique morphism 2 ∆[0] is a weak equivalence of
simplicial sets. ◇

The following is [Rez01, Theorem 7.2].

Theorem 2.1.5. There is a simplicial model structure on the category of bisimplicial sets,
called the complete Segal space model structure, that is given as a left Bousfield lo-
calization of the Reedy model structure and in which the fibrant objects are precisely the
complete Segal spaces.

A weak equivalence in the complete Segal space model structure of bisimpli-
cial sets is called a Rezk weak equivalence.

Homotopy Theories of Relative Categories. A wide subcategory of a category
C is a subcategory that contains all of the objects of C.

Definition 2.1.6.

(1) A relative category is a pair (C,W) consisting of
● a category C and
● a wide subcategoryW of C.

We refer to morphisms inW as stable equivalences. If there is no danger of
confusion, we denote a relative category (C,W) by C.

(2) A relative functor between relative categories

F ∶ (C,W) (D,X )
is a functor F ∶ C D that restricts to a functorW X .

(3) Suppose (C,W) and (D,X ) are relative categories. A functor F ∶ C D

creates morphisms inW ifW = F−1(X ).
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(4) For relative functors

F, G ∶ (C,W) (D,X ),
a relative natural transformation

θ ∶ F G

is a natural transformation such that each component of θ is a morphism
in X .

(5) A subclassW ⊂ C of morphisms in a category C has the 2-out-of-3 property
if, for each pair of morphisms f , g ∈ C with g f defined, whenever any two
of

f , g, and g f

belong toW , then so does the third morphism.
(6) A category with weak equivalences is a relative category (C,W) such thatW

● contains all the isomorphisms and
● has the 2-out-of-3 property. ◇

For example, the class of weak equivalences in each model category contains
all the isomorphisms and has the 2-out-of-3 property.

Definition 2.1.7. Suppose (C,W) is a relative category.

(1) For a small category D, the relative diagram category

(C,W)D

is the wide subcategory of the diagram category CD = [D,C] in which a
morphism is a natural transformation with each component inW .

(2) The classification diagram of (C,W) is the bisimplicial set

Ner∆(C,W) = Ner ((C,W)∆[?])
with ∆[n] denoting the category with n composable arrows for n ≥ 0.

(3) A homotopy theory of (C,W) is a fibrant replacement of Ner∆(C,W) in the
complete Segal space model structure.

(4) A relative functor

F ∶ (C,W) (D,X )
is an equivalence of homotopy theories if the bisimplicial map R(Ner∆(F))
is a Rezk weak equivalence, where R denotes fibrant replacement in the
complete Segal space model structure. We sometimes denote an equiva-

lence of homotopy theories by
∼

. ◇
Definition 2.1.8. Suppose given

● relative categories (C,W) and (D,X ) and
● functors

L ∶ C D ∶ R.

Then we say that L and R are inverse equivalences of homotopy theories if the following
three conditions hold:

(i) L and R are relative functors.
(ii) RL and 1C are connected by a zigzag of relative natural transformations.

(iii) LR and 1D are connected by a zigzag of relative natural transformations.

This finishes the definition. ◇
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We emphasize that the functors L and R in Definition 2.1.8 do not have to form
an adjunction. The following result from [GJO17b, Corollary 2.9] is our main tool
for proving equivalences of homotopy theories.

Proposition 2.1.9. Suppose given inverse equivalences of homotopy theories (Defini-
tion 2.1.8)

L ∶ (C,W) (D,X ) ∶ R.

Then L and R are equivalences of homotopy theories in the sense of Definition 2.1.7 (4).

The following definition from [GJO17a, 1.8] strengthens Definition 2.1.8.

Definition 2.1.10. Suppose (C,W) and (D,X ) are relative categories, and suppose

L ∶ C D ∶ R
is an adjunction of categories with left adjoint L. We call L ⊣ R an adjoint equivalence
of homotopy theories if the following three conditions hold:

(i) L and R are relative functors.
(ii) The unit of L ⊣ R is a relative natural transformation 1C RL.

(iii) The counit of L ⊣ R is a relative natural transformation LR 1D.

This finishes the definition. ◇
If L ⊣ R is an adjoint equivalence of homotopy theories, then L and R are

inverse equivalences of homotopy theories in the sense of Definition 2.1.8. Propo-
sition 2.1.9 implies that L and R are equivalences of homotopy theories.

2.2. Category of Pointed Diagrams

To prepare for the discussion of Γ-objects and G∗-objects in Sections 2.3 and 2.4,
in this section we review pointed diagrams. The main results, Theorems 2.2.19
and 2.2.21, state that the category of pointed functors and natural transforma-
tions is complete, cocomplete, symmetric monoidal closed, enriched, tensored,
and cotensored. The material in this section is adapted from [JY∞, Chapter 4].

Symmetric Monoidal Closed Category of Pointed Objects.

Definition 2.2.1 (Pointed Objects). Suppose C is a category with a chosen terminal
object t. We denote by C∗ the category under t, which is defined as follows.

● An object in C∗ is a pair (a, ia) consisting of
– an object a in C and
– a morphism

ia ∶ t a ∈ C.

We call (a, ia) a pointed object with pointed structure ia.

● For pointed objects (a, ia) and (b, ib), a morphism

f ∶ (a, ia) (b, ib) in C∗
is a morphism f ∶ a b in C such that the following diagram in C com-
mutes.

(2.2.2) t

a

b

ia

ib

f

We call a morphism in C∗ a pointed morphism.
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This finishes the definition of C∗. ◇
Note that if C is complete and cocomplete, then so is C∗.

Definition 2.2.3 (Smash Product and Pointed Hom). Suppose (C,⊗,1,Hom) is a
complete and cocomplete symmetric monoidal closed category (Definition A.1.19)

with a chosen terminal object t. Suppose (a, ia) and (b, ib) are pointed objects. We
define the following pointed objects.

(1) The wedge a ∨ b is the pushout in C of the span

a
i
a

t
i
b

b

with pointed structure given by the composite

t
ia

a a ∨ b.

(2) The smash product a ∧ b is the following pushout in C.

(2.2.4)

(a⊗ t)∐ (t⊗ b) a⊗ b

t a ∧ b

(1a ⊗ ib)∐ (ia ⊗ 1b)

ia∧b

πa,b

(3) The smash unit 1+ is the coproduct in C

(2.2.5) 1+ = 1∐ t

with pointed structure given by the inclusion of the t summand.
(4) The pointed hom Hom∗(a, b) is the following pullback in C.

(2.2.6)

Hom∗(a, b) t

Hom(a, b) Hom(t, b)
(ia)∗

The right vertical morphism in (2.2.6) is equal to the composite

t ≅ Hom(a, t)
(ib)∗

Hom(a, b)
(ia)∗

Hom(t, b).

This induces the pointed structure of Hom∗(a, b).
This finishes the definition. ◇

The following is [EM09, 4.20], as presented in [JY∞, 4.2.3].

Theorem 2.2.7. In the context of Definition 2.2.3, the quadruple

(C∗,∧,1+,Hom∗)

is a complete and cocomplete symmetric monoidal closed category.

We mainly use Theorem 2.2.7 when (C,⊗,1, t) is

● (Cat,×, 1, 1), the category of small categories (Example A.1.21), and
● (sSet,×,∗,∗), the category of simplicial sets.



38 2. INFINITE LOOP SPACE MACHINES

Pointed Unitary Enrichment.

Definition 2.2.8 (Zero Objects and Zero Morphisms). A zero object in a category C

is an object 0 that is both initial and terminal. Moreover, for a given zero object 0
in C, we define the following.

● A zero morphism in C is a morphism that factors through 0. In other words,
for objects x, y ∈ C, the zero morphism is the composite

x 0 y.

● A nonzero morphism is a morphism that does not factor through 0.
● For objects x, y ∈ C, we denote by

(2.2.9) C♭(x, y) = C(x, y)∖ {0}
the set of nonzero morphisms x y. ◇

Definition 2.2.10. Suppose (D,⊡, e) is a symmetric monoidal category. A zero
object tD in D is called a null object if there are natural isomorphisms

a ⊡ tD ≅ tD ≅ tD ⊡ a

for objects a in D. ◇
The following definition uses Theorem 2.2.7 on V and categories enriched in

V∗ as in Definition B.1.1.

Definition 2.2.11 (Pointed Unitary Enrichment). Suppose

● (D,⊡, e, tD) is a small symmetric monoidal category with a chosen null
object tD and
● (V,⊗,1, [, ], tV) is a complete and cocomplete symmetric monoidal closed

category with a chosen terminal object tV.

The pointed unitary enrichment of D over V∗, denoted D̂, is the V∗-category with

● the same class of objects as D and
● for any pair of objects a, b ∈ D, the morphism object

(2.2.12) D̂(a, b) = ⋁
f ∈D♭(a,b)

1+ in V∗

with the notation as follows.
– The wedge and the smash unit, 1+ = 1∐ tV, are as in Definition 2.2.3.
– An empty wedge means tV ∈ V∗.
– D♭(a, b) is the set of nonzero morphisms as in (2.2.9).

Moreover, we denote by

D̂ ∧ D̂
the tensor product V∗-category as in Definition B.2.1. ◇

By [JY∞, 2.4.10], the symmetric monoidal structure on D induces a symmetric

monoidal V∗-category structure on D̂ (Definition B.2.16).

Pointed Diagrams.

Definition 2.2.13 (Pointed Diagram Categories).

(1) A pointed category is a pair (C,∗) consisting of
● a category C and
● a chosen object ∗ ∈ C, which is called the basepoint.



2.2. CATEGORY OF POINTED DIAGRAMS 39

(2) For pointed categories (C,∗) and (D,∗), a pointed functor

F ∶ (C,∗) (D,∗)
is a functor F ∶ C D such that F(∗) = ∗.

(3) For pointed functors F, G ∶ (C,∗) (D,∗), a pointed natural transforma-
tion

θ ∶ F G

is a natural transformation such that

θ∗ = 1∗ ∶ F(∗) = ∗ ∗ = G(∗) in D.

Moreover, suppose C is small. We define the pointed diagram category C∗-D with

● pointed functors (C,∗) (D,∗) as objects,
● pointed natural transformations between them as morphisms,
● identity functors as identity morphisms, and
● vertical composition of natural transformations as composition.

This finishes the definition. ◇
In what follows, as in Definition 2.2.11, an empty wedge means the chosen

terminal object tV ∈ V∗.

Definition 2.2.14 (Pointed Day Convolution). In the context of Definition 2.2.11,
suppose given pointed functors

A, B ∶ (D, tD) (V∗, tV).

We define the following pointed functors (D, tD) (V∗, tV).
(1) The monoidal unit diagram is the pointed functor

(2.2.15) j = ⋁
D♭(e,−)

1+ ∶ (D, tD) (V∗, tV)

with D♭(−,−) the set of nonzero morphisms as in (2.2.9).
(2) The pointed Day convolution is the V∗-coend

(2.2.16) A ∧ B = ∫ (a,b)∈D̂∧D̂
⋁

D♭(a⊡b,−)
(Aa ∧ Bb)

with D̂ the pointed unitary enrichment in Definition 2.2.11. If the input
object is tD in (2.2.16), we choose tV for the coend.

(3) The pointed hom diagram is the V∗-end

(2.2.17) HomD*
(A, B) = ∫

b∈D̂
[Ab , B(−⊡ b)]∗

where [, ]∗ is the pointed hom (2.2.6) for V∗. If the input object is tD in
(2.2.17), we choose tV for the end.

(4) The pointed mapping object is the V∗-end

(2.2.18) MapD*
(A, B) = ∫

b∈D̂
[Ab, Bb]∗ ≅ (HomD*

(A, B)) (e).

Each of (2.2.16) through (2.2.18) extends componentwise to pointed natural trans-
formations. ◇
Theorem 2.2.19. In the context of Definitions 2.2.11, 2.2.13, and 2.2.14, the quadruple

(D∗-V,∧, j,HomD*
)

is a complete and cocomplete symmetric monoidal closed category.
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It follows from Theorems 2.2.19 and B.3.7 that D∗-V is a symmetric monoidal
(D∗-V)-category.

Definition 2.2.20. In the context of Theorem 2.2.19, evaluation at the monoidal
unit of D defines a symmetric monoidal functor

eve ∶ D∗-V V∗.

It admits a strong symmetric monoidal left adjoint, denoted Le. ◇
Theorem 2.2.21. In the context of Theorem 2.2.19 and Definition 2.2.20, the adjunction

(2.2.22) V∗ D∗-V�
Le

eve

makes the pointed diagram category D∗-V enriched, tensored, and cotensored over V∗,
with mapping objects given by MapD*

in (2.2.18). In particular, D∗-V is

● a symmetric monoidal V-category (Definition B.2.16) and
● a V-multicategory.

Explanation 2.2.23. In Theorem 2.2.21, the assertion about symmetric monoidal
V-category follows from

● the fact that D∗-V is a symmetric monoidal (D∗-V)-category (Theo-
rems 2.2.19 and B.3.7) and
● Corollary B.4.11 applied to the symmetric monoidal functor eve (Defini-

tion 2.2.20).

The assertion about V-multicategory follows from Proposition C.3.9. ◇
2.3. Γ-Objects

In this section we review the symmetric monoidal closed category of Γ-objects.
The material in this section is adapted from [JY∞, Section 8.1].

Recall from Definition A.1.14 that a permutative category is a strict symmetric
monoidal category. Recall from Definition A.1.17 the permutative category

(F ,∧, 1, ξ)

of pointed finite sets and pointed functions with the smash product as the monoi-
dal product. Note that 0 ∈ F is a null object (Definition 2.2.10). For V = sSet, the
following definition is due to Segal [Seg74].

Definition 2.3.1 (Γ-Objects). Suppose (V,⊗,1, [, ], tV) is a complete and cocomplete
symmetric monoidal closed category with a chosen terminal object tV. With the
small pointed category (F , 0), we define the category of Γ-objects in V as the pointed
diagram category

Γ-V = F∗-V

as in Definition 2.2.13. Moreover, we define the following.

● With

(V,⊗,1, tV) = (Cat,×, 1, 1),
we call an object in Γ-Cat a Γ-category.
● With

(V,⊗,1, tV) = (sSet,×,∗,∗),
we call an object in Γ-sSet a Γ-simplicial set. ◇
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Explanation 2.3.2 (Symmetric Monoidal Closed Structure). A Γ-object in V is a
pointed functor

(F , 0) (V∗, tV).
Morphisms of Γ-objects are pointed natural transformations between such pointed
functors. With the indexing permutative category

(D,⊡, e, tD) = (F ,∧, 1, 0),

by Theorem 2.2.19 there is a complete and cocomplete symmetric monoidal closed
category

(2.3.3) (Γ-V,∧, j,HomF*
).

Moreover, by Theorem 2.2.21, Γ-V is enriched, tensored, and cotensored over V∗.
In particular, Γ-V is

● a symmetric monoidal V-category (Definition B.2.16) and
● a V-multicategory (Proposition C.3.9).

Therefore,

● Γ-Cat is a Cat-multicategory, and
● Γ-sSet is an sSet-multicategory.

Specifying Definition 2.2.14 to the case D = F , the symmetric monoidal closed
structure and V∗-enrichment of Γ-V is given as follows. An empty wedge means
the chosen terminal object tV ∈ V∗.

(1) The monoidal unit diagram is the pointed functor

(2.3.4) j = ⋁
F♭(1,−)

1+ ∶ (F , 0) (V∗, tV).

(2) The pointed Day convolution is the V∗-coend

(2.3.5) A ∧ B = ∫ (m,n)∈F̂∧F̂
⋁

F♭(m∧n,−)
(Am ∧ Bn).

If the input object is 0, we choose tV for the coend.
(3) The pointed hom diagram is the V∗-end

(2.3.6) HomF*
(A, B) = ∫

n∈F̂
[An , B(−∧ n)]∗.

If the input object is 0, we choose tV for the end.
(4) The pointed mapping object is the V∗-end

(2.3.7) MapF*
(A, B) = ∫

n∈F̂
[An, Bn]∗ ≅ (HomF*

(A, B)) (1).

To understand (2.3.4), we observe that there is a canonical bijection

F ♭(1, n) ≅ n♭ = {1, . . . , n}

for each n ≥ 0, where F ♭(1, 0) = ∅. ◇

2.4. G∗-Objects

In this section we review the symmetric monoidal closed category of G∗-
objects. The material in this section is adapted from [JY∞, Sections 9.1 and 9.2].
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Smash Powers of F . The indexing category G involves the categoryF in Def-
inition A.1.17. To define G, first we need some preliminary definitions.

Definition 2.4.1 (Injections). We define the category Inj as follows.

● Its objects are unpointed finite sets

(2.4.2) n =
⎧⎪⎪
⎨
⎪⎪⎩

{1, . . . , n} if n > 0,

∅ if n = 0,

for n ≥ 0.
● Its morphisms are injections.

Suppose f ∶ q p is an injection. We define a functor

f∗ ∶ F q F p

called the reindexing injection as follows. Suppose given q-tuples of pointed finite
sets or pointed functions

(2.4.3) ⟨n⟩ = ⟨nk⟩qk=1
or ⟨ψ⟩ = ⟨ψk⟩qk=1

∈ F q,

respectively. We define

f∗⟨n⟩ = ⟨n f −1(j)⟩pj=1
and f∗⟨ψ⟩ = ⟨ψ f −1(j)⟩pj=1

∈ F p,

where

n∅ = 1 and ψ∅ = 11.

This finishes the definition. ◇
Definition 2.4.4 (Smash Powers of F ). For q ≥ 0, we define the pointed category

F(q), called the q-th smash power of F , as follows.

The Case q = 0: We define

Ob F(0) = {☆, ⟨⟩},
which consists of the basepoint object ☆ and the empty tuple ⟨⟩. We define

the morphisms of F(0) such that
● ☆ is both initial and terminal and
● the only nonzero morphism is the identity morphism of ⟨⟩.

The Case q > 0: With F having basepoint 0, we define the q-fold smash power of
pointed categories

F(q) = F∧q

as in (2.2.4) applied to

(C,⊗,1) = (Cat,×, 1).
We denote the objects and morphisms of F(q) as q-tuples as in (2.4.3).

● A q-tuple ⟨n⟩ is identified with the basepoint of F(q) if any nk = 0.
We call q the length of a q-tuple ⟨n⟩.
● A q-tuple ⟨ψ⟩ is a zero morphism if any ψk factors through 0 ∈ F .

This finishes the definition. ◇
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The Permutative Category G. Next we define the indexing category G.

Definition 2.4.5 (Tuples of Pointed Finite Sets). We define a small pointed category

(G,☆)
as follows.

Objects: The set of objects is the wedge of pointed sets

Ob G = ⋁
q≥0

Ob (F(q))
as in Definition 2.2.3 applied to (C, t) = (Set,∗). The basepoint object ☆ is
both initial and terminal in G.

Morphisms: For a pair of objects

⟨n⟩ = ⟨nk⟩qk=1
and ⟨m⟩ = ⟨mj⟩pj=1

,

the set of morphisms in G is

G(⟨n⟩ , ⟨m⟩) = ⋁
f ∈Inj(q , p)

(F(p)( f∗⟨n⟩ , ⟨m⟩) )(2.4.6)

= ⋁
f ∈Inj(q , p)

( p∧
j=1
F(n f −1(j) , mj)).

In (2.4.6) for p > 0, we denote a morphism by a pair ( f , ⟨ψ⟩) with

q p ∈ Injf
and f∗⟨n⟩ ⟨m⟩ ∈ F(p).⟨ψ⟩

A morphism ( f , ⟨ψ⟩) is identified with the zero morphism in G(⟨n⟩, ⟨m⟩) if
there exists a component morphism

ψj ∶ n f −1(j) mj for some j ∈ {1, . . . , p}
that factors through 0 ∈ F .

Identities: The identity morphism of a q-tuple ⟨n⟩ is the pair (1q, 1⟨n⟩).
Composition: The composite of morphisms

⟨n⟩ ( f , ⟨ψ⟩) ⟨m⟩ (g, ⟨φ⟩) ⟨ℓ⟩
in G is the pair

(g f , ⟨φ⟩ ○ g∗⟨ψ⟩).
This finishes the definition of (G,☆). ◇
Definition 2.4.7 (Permutative Structure on G). We define a permutative category

(G,⊕, ⟨⟩, ξ)
as follows.

Monoidal Unit: It is the empty tuple ⟨⟩.
Monoidal Product: The concatenation product

G ×G ⊕ G
is the concatenation of tuples

⟨n⟩⊕ ⟨n′ ⟩ and ⟨ψ⟩⊕ ⟨ψ′⟩
for tuples of pointed finite sets and pointed functions, respectively.
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● The basepoint ☆ ∈ G is defined as a null object for ⊕ (Defini-
tion 2.2.10).
● The concatenation product of any morphism with a morphism from,

respectively to, ☆ is uniquely determined because ☆ is a null object.
Given morphisms

( f , ⟨ψ⟩) ∈ G(⟨n⟩ , ⟨m⟩) and ( f ′, ⟨ψ′⟩) ∈ G(⟨n′⟩ , ⟨m′⟩),
the concatenation of injections

f ∶ q p and f ′ ∶ q′ p′

is the injection

( f ⊕ f ′)(i) =
⎧⎪⎪⎨⎪⎪⎩

f (i) for i ∈ {1, . . . , q}
p+ f ′(i − q) for i ∈ {q+ 1, . . . , q + q′}.

Then we define the morphism

( f , ⟨ψ⟩)⊕ ( f ′, ⟨ψ′⟩) = ( f ⊕ f ′ , ⟨ψ⟩⊕ ⟨ψ′⟩).
Symmetry: For non-basepoint objects ⟨n⟩ and ⟨n′⟩ in G, the symmetry component

(2.4.8) ξ⟨n⟩,⟨n′ ⟩ ∶ ⟨n⟩⊕ ⟨n′⟩ ≅ ⟨n′ ⟩⊕ ⟨n⟩
is the pair (τq,q′ , 1) defined as follows.
● The first entry

(2.4.9) τq,q′ ∶ q + q′ ≅
q′ + q

is the block permutation that swaps the first q elements with the last
q′ elements.
● The second entry is the identity morphism on

(τq,q′)∗(⟨n⟩⊕ ⟨n′ ⟩) = ⟨n′ ⟩⊕ ⟨n⟩.
Each component of ξ involving the null basepoint ☆ is 1☆.

This finishes the definition of the permutative structure on G. ◇
G∗-Objects. For V = Cat and sSet, the following definition is due to Elmendorf

and Mandell [EM06].

Definition 2.4.10 (G∗-Objects). Suppose (V,⊗,1, [, ], tV) is a complete and cocom-
plete symmetric monoidal closed category with a chosen terminal object tV. With
the small pointed category (G,☆), we define the category of G∗-objects in V as the
pointed diagram category

G∗-V

as in Definition 2.2.13. Moreover, we define the following.

● With

(V,⊗,1, tV) = (Cat,×, 1, 1),
we call an object in G∗-Cat a G∗-category.
● With

(V,⊗,1, tV) = (sSet,×,∗,∗),
we call an object in G∗-sSet a G∗-simplicial set. ◇
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Explanation 2.4.11 (Symmetric Monoidal Closed Structure). A G∗-object in V is a
pointed functor

(G,☆) (V∗, tV).

Morphisms of G∗-objects are pointed natural transformations between such
pointed functors. With the indexing permutative category

(D,⊡, e, tD) = (G,⊕, ⟨⟩,☆),
by Theorem 2.2.19 there is a complete and cocomplete symmetric monoidal closed
category

(2.4.12) (G∗-V,∧, j,HomG*
).

Moreover, by Theorem 2.2.21, G∗-V is enriched, tensored, and cotensored over V∗.
In particular, G∗-V is

● a symmetric monoidal V-category (Definition B.2.16) and
● a V-multicategory (Proposition C.3.9).

Therefore,

● G∗-Cat is a Cat-multicategory, and
● G∗-sSet is an sSet-multicategory.

Specifying Definition 2.2.14 to the case D = G, the symmetric monoidal closed
structure and V∗-enrichment of G∗-V is given as follows. An empty wedge means
the chosen terminal object tV ∈ V∗.

(1) The monoidal unit diagram is the pointed functor

(2.4.13) j = ⋁
G♭(⟨⟩,−)

1+ ∶ (G,☆) (V∗, tV).
(2) The pointed Day convolution is the V∗-coend

(2.4.14) A ∧ B = ∫ (⟨m⟩,⟨n⟩)∈Ĝ∧Ĝ
⋁

G♭(⟨m⟩⊕⟨n⟩,−)
(A⟨m⟩∧ B⟨n⟩).

If the input object is ☆, we choose tV for the coend.
(3) The pointed hom diagram is the V∗-end

(2.4.15) HomG*
(A, B) = ∫⟨n⟩∈Ĝ [A⟨n⟩ , B(−⊕ ⟨n⟩)]

∗
.

If the input object is ☆, we choose tV for the end.
(4) The pointed mapping object is the V∗-end

(2.4.16) MapG*
(A, B) = ∫⟨n⟩∈Ĝ [A⟨n⟩, B⟨n⟩]

∗
≅ (HomG*

(A, B)) ⟨⟩.
To understand (2.4.13), we observe that there are canonical bijections

G♭(⟨⟩, ⟨n⟩) ≅∏q
k=1
F ♭(1, nk) ≅∏q

k=1
n♭k =∏q

k=1
nk

if ⟨n⟩ = ⟨nk⟩qk=1
with each nk ∈ F . ◇
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Functors betweenF and G. The indexing categories F and G in, respectively,
Definitions 2.4.5 and A.1.17 are related by the following functors.

Definition 2.4.17. We define the following pointed functors.

Length-One Inclusion: The pointed functor

(2.4.18) i ∶ (F , 0) (G,☆)
sends
● each pointed finite set n ∈ F to the length-one tuple (n) ∈ G and
● each morphism ψ in F to the pair (1

1
, (ψ)).

Smash Product: The strict symmetric monoidal pointed functor

(2.4.19) ∧ ∶ (G,⊕, ⟨⟩,☆) (F ,∧, 1, 0)
is defined on objects as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∧☆ = 0,

∧⟨⟩ = 1, and

∧⟨nk⟩qk=1
= ∧q

k=1
nk = n1⋯nq for q > 0.

The image of a morphism

( f , ⟨ψ⟩) ∶ ⟨nk⟩qk=1
⟨mj⟩pj=1 in G

under ∧ is the following composite in F .

∧q
k=1

nk ∧q
k=1

n f −1(k) ∧p
j=1

n f −1(j) ∧p
j=1

mj

f∗

≅
≅ ∧

p

j=1
ψj

Induced Functors on Diagrams: In the context of Definitions 2.3.1 and 2.4.10, ∧ in
(2.4.19) and i in (2.4.18) induce the functors

(2.4.20) Γ-V G∗-V Γ-V
∧
∗ i∗

given by precomposition and whiskering with ∧ and i, respectively. ◇
Explanation 2.4.21. Consider Definition 2.4.17.

(1) The functor i is fully faithful, and

∧ ○ i = 1F ∶ F G F .

This implies that the composite in (2.4.20), i∗ ○ ∧∗, is the identity functor
on Γ-V.

(2) While ∧ is strict symmetric monoidal, i is neither monoidal nor oplax
monoidal. ◇

2.5. Segal and Elmendorf-Mandell K-theory

In this section we briefly review

● Segal K-theory

KSe = KF ○ Ner∗ ○ JSe ∶ PermCatsu Sp≥0 ;

● the homotopy inverse functors P , S∗, andA; and
● Elmendorf-Mandell K-theory

KEM = KG ○ Ner∗ ○ JEM ∶ PermCatsu Sp≥0 .
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They are summarized in the diagram (2.5.1) below.

(2.5.1)

PermCatsu Γ-Cat Γ-sSet Sp≥0

G∗-Cat G∗-sSetModM1

J
Se Ner∗ K

F

J
EM

EndM1

J
T Ner∗

K
G

∧∗
i∗ L⊢

∧∗
i∗L ⊣

A

S∗P

K
EM

⇒

Π
∗

Each arrow in (2.5.1), except JT and KG , is an equivalence of homotopy theories.
The following table summarizes their multicategorical and symmetric monoidal
properties.

PermCatsu Cat-multicategory 1.4.29

ModM1, Γ-Cat, G∗-Cat symmetric monoidal Cat-categories 1.3.23, 2.3.2, 2.4.11

Γ-sSet, G∗-sSet, Sp≥0 symmetric monoidal sSet-categories 2.3.2, 2.4.11, 2.5.2

P non-symmetric Cat-multifunctor 2.5.17

KEM sSet-multifunctor 2.5.8

JEM, EndM1 Cat-multifunctors 2.5.10, 1.4.41

∧∗ enriched symmetric monoidal functors 2.4.20

JT symmetric monoidal Cat-functor 2.5.9

Ner∗, KF , KG symmetric monoidal sSet-functors 2.5.5, 2.5.11, 2.5.6, 2.5.12

KSe, JSe, i∗, L, S∗,A not multifunctors 2.5.3, 2.5.4, 2.4.20, 2.5.13, 2.5.18, 2.5.19

Later in this work, when we apply our general results to some of these functors,
we only need to use some of their categorical properties, which we recall below.
Detailed discussion of these functors are in [JY∞, Chapters 8–10], [JY22b, JY22c],
and the references cited below.

Categories. The categories in (2.5.1) are defined as follows. Recall symmet-
ric monoidal V-category and V-multicategory from Definitions B.2.16 and C.1.3,
respectively.

● PermCatsu is the category of small permutative categories and strictly uni-
tal symmetric monoidal functors in Definition A.2.3. By Theorem 1.4.29
it is a Cat-multicategory.
● ModM1 is the symmetric monoidal Cat-category of left M1-modules in

Definition 1.3.23.
● Γ-Cat and Γ-sSet are the categories of Γ-categories and Γ-simplicial sets,

respectively, in Definition 2.3.1. They are symmetric monoidal categories
enriched in Cat and sSet, respectively, by Explanation 2.3.2.
● G∗-Cat and G∗-sSet are the categories of G∗-categories and G∗-simplicial

sets, respectively, in Definition 2.4.10. They are symmetric monoidal cat-
egories enriched in Cat and sSet, respectively, by Explanation 2.4.11.
● Sp≥0 is the category of connective symmetric spectra. It is the full subcat-

egory of the category

(2.5.2) Sp
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of all symmetric spectra [HSS00]. Connective means that the negative
degree homotopy groups are trivial. The category Sp is complete, cocom-
plete, and symmetric monoidal closed. Moreover, it is enriched, tensored,
and cotensored over sSet∗. In particular, Sp≥0 is a symmetric monoidal
sSet-category. See [JY∞, Chapter 7] for an elementary discussion of sym-
metric spectra.

Segal K-Theory. The left-to-right composite functor along the top row of
(2.5.1),

(2.5.3) KSe = KF ○Ner∗ ○ JSe ∶ PermCatsu Sp≥0,

is called Segal K-theory. We also denote by KSe its composite with the subcategory
inclusion Sp≥0 Sp. The constituent functors are as follows.

● The first functor is Segal J-theory [Seg74, May78]

(2.5.4) JSe ∶ PermCatsu Γ-Cat

that sends each small permutative category C to the Γ-category

(JSeC)(−) =Multicat∗(M(−),End●C) ∶ F Cat∗.

In this definition,
– M(−) is the partition multicategory in Definition 1.3.1, and
– End●C is the pointed endomorphism multicategory in Example C.4.8.

While both its domain and codomain are Cat-multicategories, JSe is not a
multifunctor because it is incompatible with the multiplicative structures.
See [JY∞, Section 8.5] for a thorough discussion.
● The second functor,

(2.5.5) Ner∗ ∶ Γ-Cat Γ-sSet,

is induced by precomposing and whiskering with the nerve functor, Ner,
in (2.1.1). Since the nerve is a right adjoint, it preserves all small limits,
in particular, terminal objects and finite products. Therefore, Ner∗ is a
symmetric monoidal sSet-functor by [JY∞, 3.7.28].
● The third functor [BF78, Seg74],

(2.5.6) KF ∶ Γ-sSet Sp≥0,

sends each Γ-simplicial set X to the connective symmetric spectrum

(2.5.7) KFX = {(KFX)k = ∣X(Sk)∣}
k≥0

with ∣ − ∣ denoting the diagonal and Sk = (S1)∧k denoting the standard
simplicial k-sphere. Thus (KFX)k is the pointed simplicial set whose set
of n-simplices is given by

((KFX)k)
n
= (X(Sk

n))n
= (Xnk)

n
.

For k ≥ 1 the structure morphism

Σ∣X(Sk−1)∣ ∣X(Sk)∣
is induced by the inclusions

Sk−1
n ≅ {0, i}∧ Sk−1

n S1
n ∧ Sk−1

n ≅ Sk
n
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for i ∈ {1, . . . , n}. The Σk-action on ∣X(Sk)∣ is induced by the Σk-action

on Sk = (S1)∧k that permutes the k smash factors. See [JY∞, Section 8.2]
for a thorough discussion. Moreover, with Sp as the codomain, KF is a
symmetric monoidal sSet-functor by [JY∞, 9.4.18].

We discuss the functors P , S∗, and A in (2.5.17) through (2.5.19) below when we
discuss equivalences of homotopy theories.

Elmendorf-Mandell K-Theory. The composite along the bottom of (2.5.1),

(2.5.8)
KEM = KG ○Ner∗ ○ JEM
= KG ○Ner∗ ○ JT ○EndM1 ∶ PermCatsu Sp≥0,

is called Elmendorf-Mandell K-theory [EM06, EM09]. We also denote by KEM its
composite with the subcategory inclusion Sp≥0 Sp. The constituent enriched
multifunctors are as follows.

● The endomorphism leftM1-module Cat-multifunctor

EndM1 ∶ PermCatsu ModM1

is as in Explanation 1.4.41.
● The symmetric monoidal Cat-functor

(2.5.9) JT =Multicat∗(T ,−) ∶ModM1 G∗-Cat

sends each leftM1-module M to the G∗-category

(JTM)(−) =Multicat∗(T (−),M) ∶ G Cat∗.

Here T is defined by

T ⟨mj⟩pj=1 = ⋀p
j=1Mmj for ⟨mj⟩pj=1 ∈ G

with M(−) the partition multicategory in Definition 1.3.1. See [JY∞,
10.3.17] for a detailed discussion.
● Elmendorf-Mandell J-theory is the composite Cat-multifunctor

(2.5.10) JEM = JT ○EndM1 ∶ PermCatsu G∗-Cat,

which associates to each small permutative category a G∗-category. See
[JY∞, Section 10.3] for a thorough discussion.
● The symmetric monoidal sSet-functor [JY∞, 9.2.19]

(2.5.11) Ner∗ ∶ G∗-Cat G∗-sSet

is induced by precomposing and whiskering with the nerve functor, Ner.
● The symmetric monoidal sSet-functor [EM06, Definition 4.5]

(2.5.12) KG ∶ G∗-sSet Sp

sends each G∗-simplicial set X to the connective symmetric spectrum

KGX = {(KGX)k = ∣X(S1, . . . , S1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

)∣}
k≥0

.

The structure morphisms and symmetric group action are analogous to
those for KF(−) in (2.5.7). See [JY∞, Sections 9.3 and 9.4] for a thorough
discussion.

It follows that KEM is an sSet-multifunctor.
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Relating Segal and Elmendorf-Mandell K-Theory. The other functors in
(2.5.1) are defined as follows.

● The functors

Γ-Cat G∗-Cat Γ-Cat

Γ-sSet G∗-sSet Γ-sSet

∧
∗ i∗

∧
∗ i∗

are induced by
– the smash product, ∧ ∶ G F , and
– the length-one inclusion functor, i ∶ F G, as in (2.4.20).

Since ∧ is a strict symmetric monoidal functor, each ∧∗ is a symmetric
monoidal functor in the enriched sense by [JY∞, 9.4.18]. However, nei-
ther i∗ is a multifunctor because i is not compatible with the permutative
structures of its domain and codomain.
● In the middle square in (2.5.1), associativity of composition of functors

and whiskering implies the following equalities.

Ner∗ ○ ∧∗ = ∧∗ ○Ner∗ ∶ Γ-Cat G∗-sSet

Ner∗ ○ i∗ = i∗ ○Ner∗ ∶ G∗-Cat Γ-sSet.

● The right region in (2.5.1) commutes,

KG ○ ∧∗ = KF ∶ Γ-sSet Sp≥0 .

See [JY∞, 9.3.16] for a proof.
● In the left region in (2.5.1), there is an equality

i∗ ○ JEM = JSe ∶ PermCatsu Γ-Cat

by the definitions of the functors involved; see [JY∞, 8.5.1, 10.3.1, and
10.3.27]. Moreover, there is a natural transformation [EM06, Theorem
4.6]

Π
∗ ∶ ∧∗ ○ JSe JEM ∶ PermCatsu G∗-Cat.

See [JY∞, Section 10.6] for a detailed discussion.
● Each of the functors

(2.5.13) Γ-Cat G∗-Cat
L

and Γ-sSet G∗-sSet
L

is the left adjoint of the respective functor i∗. See [JY22c, Section 3] for
a detailed construction of L. By the explicit formulas of the pointed Day
convolution, (2.3.5) and (2.4.14), neither L is compatible with the multi-
plicative structures of its domain and codomain.

Stable Equivalences. Each category in (2.5.1) is equipped with the structure
of a relative category (Definition 2.1.6) as follows.

● The pair

(Sp≥0 , S)
is a relative category, where S is the wide subcategory of stable equiva-
lences of connective symmetric spectra.
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● For each of PermCatsu, Γ-Cat, and Γ-sSet, we denote by S the wide sub-
category of morphisms created by the indicated functor:

(2.5.14) (PermCatsu , S) J
Se (Γ-Cat , S) Ner∗ (Γ-sSet , S) K

F (Sp≥0 , S).
In each case, we call morphisms in S stable equivalences. In particular,
stable equivalences in PermCatsu are created by Segal K-theory KSe (2.5.3).
● We denote by

S i ⊂ G∗-Cat and S i ⊂ G∗-sSet

the wide subcategories created by, respectively, the functors

G∗-Cat Γ-Cat
i∗

and G∗-sSet Γ-sSet.
i∗

We refer to morphisms in S i as i∗-stable equivalences.
● The natural transformation Π

∗ is componentwise an i∗-stable equiva-
lence in G∗-Cat; see [JY22c, 4.10] for an explanation.

In Definition 4.7.1 we equip ModM1 with the structure of a relative category.

Remark 2.5.15 (Stable Equivalences). The following two key properties of stable
equivalences will be used repeatedly below.

(1) Each class of stable equivalences includes isomorphisms, is closed un-
der composition, and has the 2-out-of-3 property. These follow from the
stronger statement that there is a Quillen model structure on Sp whose
weak equivalences are the stable equivalences [HSS00, 3.4.4 and 5.3.8].

(2) Suppose given

P ∶ C D in PermCatsu .

If the underlying functor of P is a left or right adjoint, then P is a stable
equivalence. This follows from the observations that (i) an adjunction of
categories induces a homotopy equivalence on nerves [JY∞, 7.2.5] and
(ii) the stable equivalences of symmetric spectra contain the level equiv-
alences [JY∞, 7.8.8]. ◇

Equivalences of Homotopy Theories. Equipped with the relative category
structures above, each arrow in (2.5.1), except JT and KG , is an equivalence of ho-
motopy theories in the sense of Definition 2.1.7.

Segal K-Theory.

● Each of the two relative functors

PermCatsu Γ-Cat Γ-sSet
JSe Ner∗

is an equivalence of homotopy theories by the work of Mandell [Man10],
which sharpens earlier work of Thomason [Tho95].
● The relative functor

KF ∶ Γ-sSet Sp≥0

is an equivalence of homotopy theories by the work of Segal [Seg74] and
Bousfield-Friedlander [BF78]. Therefore, Segal K-theory

(2.5.16) KSe = KF ○ Ner∗ ○ JSe ∶ PermCatsu Sp≥0

is an equivalence of homotopy theories.
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Homotopy Inverses. Each constituent functor in Segal K-theory admits a homo-
topy inverse functor given by the right-to-left functors along the top row of (2.5.1).

● The work of Mandell [Man10] constructs the relative functor P in

(2.5.17) PermCatsu Γ-Cat
JSe

P

and shows that the pair (P , JSe) forms inverse equivalences of homotopy
theories as in Definition 2.1.8. Thus P is an equivalence of homotopy
theories by Proposition 2.1.9.

While JSe is not a multifunctor even in the non-symmetric sense, P
is a non-symmetric Cat-multifunctor by [JY22b, 1.3]. Moreover, P is a
pseudo symmetric Cat-multifunctor by [Yau24, 10.12]. This means that P
preserves the symmetric group action up to natural isomorphisms that
satisfy further coherence axioms. Since we will not use the pseudo sym-
metry of P in this work, we refer the reader to [Yau24] for detailed defi-
nitions and discussion.
● The work of Mandell [Man10] also constructs the relative functor S∗ in

(2.5.18) Γ-Cat Γ-sSet
Ner∗

S∗

and shows that the pair (S∗,Ner∗) forms inverse equivalences of homo-
topy theories as in Definition 2.1.8. Thus S∗ is an equivalence of homo-
topy theories by Proposition 2.1.9. In contrast to the symmetric monoidal
sSet-functor Ner∗, the functor S∗ is not a multifunctor even in the non-
symmetric sense. See the introduction of [JY22c] for an explanation.
● The relative functor A in

(2.5.19) Γ-sSet Sp≥0

KF

A

is constructed in [Seg74, Def. 3.1]. The work of Bousfield-Friedlander
[BF78, Theorem 5.8] shows that the adjoint pair KF ⊣ A is a Quillen
equivalence. In contrast to the symmetric monoidal sSet-functor KF , the
functor A is not compatible with the multiplicative structures of its do-
main and codomain. Thus A is not a multifunctor even in the non-
symmetric sense.

Elmendorf-Mandell K-Theory.

● The authors show in [JY22c] that each of the three relative functors

(2.5.20)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JEM ∶ PermCatsu G∗-Cat,

Ner∗ ∶ G∗-Cat G∗-sSet, and

KEM = KG ○ Ner∗ ○ JEM ∶ PermCatsu Sp≥0

is an equivalence of homotopy theories. Therefore, the composite

Ner∗ ○ JEM ∶ PermCatsu G∗-sSet

is also an equivalence of homotopy theories.
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● The work of [JY22c] also shows that each of the six relative functors

Γ-Cat

G∗-Cat

Γ-sSet

G∗-sSet

i∗∧∗ L⊢ i∗ ∧∗L ⊣

is an equivalence of homotopy theories.

In Theorems 4.8.3 and 5.5.12 we show that

EndM1 ∶ PermCatsu ModM1

is an equivalence of homotopy theories. We emphasize that the functors

JT ∶ModM1 G∗-Cat and

KG ∶ G∗-sSet Sp≥0

are probably not equivalences of homotopy theories because they are not known
to be relative functors.





CHAPTER 3

Homotopy Theory of Multicategories

Recall the following 2-categories from Definition A.2.3 and Theorem C.1.33.

● PermCatst is the 2-category of small permutative categories, strict sym-
metric monoidal functors, and monoidal natural transformations.
● PermCatsu is the larger 2-category with strictly unital symmetric monoidal

functors as 1-cells.
● Multicat is the 2-category of small multicategories, multifunctors, and

multinatural transformations.

To prepare for Chapters 4 and 5, in this chapter we review equivalences of homo-
topy theories between these three 2-categories. Here is a summary diagram.

(3.0.1) (Multicat , SF) � (PermCatst , S I) (PermCatsu , S) (Sp≥0 , S)F

End

I K
Se

F

End

Each arrow in the diagram (3.0.1) is an equivalence of homotopy theories, where

KSe ∶ (PermCatsu , S) ∼ (Sp≥0 , S)
is Segal K-theory. Thus, there is a composite equivalence of homotopy theories

(Multicat , SF) (PermCatsu , S) (Sp≥0 , S).F
∼

K
Se

∼

Moreover, for each small non-symmetric Cat-multicategory Q, there are equiva-
lences of homotopy theories

(3.0.2) (MulticatQ , (SF)Q) ∼ ((PermCatsu)Q , SQ)F
Q

End
Q

between categories of non-symmetric Q-algebras. See Theorem 3.5.5.

Connection with Other Chapters.
Pointed Extension. In Chapter 4 we extend the 2-adjunction and adjoint equiv-

alence of homotopy theories

(3.0.3) (Multicat , SF) � (PermCatst , S I)F

End

to small pointed multicategories, Multicat∗, and left M1-modules, ModM1. One
subtlety of this pointed extension is that it is not achieved through the free-
forgetful adjunction between Multicat and Multicat∗ in Proposition C.4.16. Instead,
the key ingredient is a detailed analysis of the pointed variant of F, denoted F● in
Theorem 4.1.17. Note that F in (3.0.3) is not a multifunctor because a multifunctor

55
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structure on F requires using strictly unital, but generally non-strict, symmetric
monoidal functors. See Theorem 3.4.31.

Pointed Multifunctorial Extension. With PermCatsu in place of PermCatst, in
Chapter 5 we extend

● the Cat-multifunctors F and End (non-symmetric in the case of F) and
● the equivalences of homotopy theories in (3.0.2)

to small pointed multicategories and leftM1-modules. This requires a nontrivial
extension of the machinery in Section 3.4 and key results in Chapter 4.

Enriched Mackey Functors. In Part 4 we further extend the main results in
Chapter 5 to equivalences of homotopy theories between

● enriched Mackey functors based on permutative categories,
● enriched Mackey functors based on small pointed multicategories, and
● enriched Mackey functors based on leftM1-modules.

See Theorems 12.1.6, 12.4.6, and 12.6.6.

Background. We use 2-adjunctions in Definition A.2.11, enriched multifunc-
tors and multinatural transformations in Appendix C.1, multilinear functors in
Definition 1.4.2, and equivalences of homotopy theories in Section 2.1. Discussion
of Segal K-theory is in Section 2.5. The material in this chapter is adapted from
[JY22a, JY23], where we refer the reader for detailed proofs.

Chapter Summary. In Section 3.1 we discuss the 2-functor F in (3.0.3), which
we call the free permutative category construction. In Section 3.2 we discuss the 2-
adjunction F ⊣ End in (3.0.3). In Section 3.3 we discuss a componentwise right
adjoint ̺ of the counit ε of F ⊣ End. This componentwise right adjoint is, fur-
thermore, a symmetric monoidal functor. In Section 3.4 we extend the 2-functor
F to a non-symmetric Cat-multifunctor with codomain PermCatsu. In Section 3.5
we define the subcategories S I and SF and review the equivalences of homotopy
theories in (3.0.1) and (3.0.2). Here is a summary table.

F on multicategories, multifunctors, and multinatural transformations 3.1.5, 3.1.16, and 3.1.19

unit η ∶ 1 EndF and counit ε ∶ FEnd 1 for F ⊣ End 3.2.1 and 3.2.4

componentwise right adjoint ̺C of εC 3.3.1

symmetric monoidal functor (̺C, ̺2
C, ̺0

C
) 3.3.9

multilinear functor Fn ∶ ⟨FMi⟩ F(⊗i Mi) 3.4.14

non-symmetric Cat-multifunctor F 3.4.26

non-symmetric Cat-multinatural unit η ∶ 1 EndF 3.4.34

stable equivalences S I and SF 3.5.1

equivalences of homotopy theories in (3.0.1) and (3.0.2) 3.5.3, 3.5.5, 3.5.7, and 3.5.9

We remind the reader of Conventions A.1.2 and A.1.30.

3.1. Free Permutative Categories

In this section we describe a 2-functor

F ∶Multicat PermCatst .
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In Section 3.2 we discuss unit and counit that make the pair (F,End) into a 2-
adjunction.

Multicat PermCatst�
F

End

Free Permutative Category of a Multicategory. Recall from (2.4.2) that

n = {1, . . . , n}
denotes the unpointed finite set with n elements, where 0 = ∅. Concatenation of
tuples is denoted by ⊕. The definition of F uses the following notation for sub-
tuples of objects and morphisms.

Definition 3.1.1 (Sub-tuples). Suppose M is a multicategory (Definition C.1.3), and⟨x⟩ = ⟨xi⟩ri=1 is an r-tuple of objects in M. Suppose

r s t
f g

are functions of unpointed finite sets with r, s, t ≥ 0. We define the following.

(1) For j ∈ s, we define the sub-tuple of ⟨x⟩,
(3.1.2) ⟨x⟩ f −1(j) =

⎧⎪⎪⎨⎪⎪⎩
⟨xi⟩i∈ f −1(j) if f−1(j) ≠ ∅ and

⟨⟩ if f−1(j) = ∅,

consisting of those objects xi such that f (i) = j.
(2) For an s-tuple ⟨φ⟩ = ⟨φj⟩sj=1 of multimorphisms in M and k ∈ t, we define

the sub-tuple of ⟨φ⟩,
(3.1.3) ⟨φ⟩g−1(k) =

⎧⎪⎪⎨⎪⎪⎩
⟨φj⟩j∈g−1(k) if g−1(k) ≠ ∅ and

⟨⟩ if g−1(k) = ∅.

(3) For k ∈ t, we define σk
g, f ∈ Σt to be the unique permutation determined by

the equality

(3.1.4) [ ⊕
j∈g−1(k)

⟨x⟩ f −1(j)] ⋅ σk
g, f = ⟨x⟩(g f )−1(k).

● The tuple ⊕j∈g−1(k)⟨x⟩ f −1(j) in (3.1.4) is the concatenation of the tu-

ples ⟨x⟩ f −1(j) in the order specified by j ∈ g−1(k).
● The right-hand side of (3.1.4) is a sub-tuple of ⟨x⟩, defined as in

(3.1.2).

This finishes the definition. ◇
Recall from Definition C.1.1 that Prof(S) means the class of finite tuples in S.

The free permutative category in the next definition is sketched in [EM09, Theo-
rem 4.2].

Definition 3.1.5 (Free Permutative Category). Given a multicategory (M, γ, 1), we
define a permutative category

(FM,⊕, ⟨⟩, ξ),
which is called the free permutative category on M, as follows.
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Objects: Ob(FM) = Prof(M), the class of finite tuples ⟨x⟩ = ⟨xi⟩ri=1 with each xi ∈
ObM and r ≥ 0.

Morphisms: Given finite tuples ⟨x⟩ = ⟨xi⟩ri=1 and ⟨y⟩ = ⟨yj⟩sj=1, a morphism

(3.1.6) ( f , ⟨φ⟩) ∶ ⟨x⟩ ⟨y⟩ in FM

is a pair consisting of
● a function

f ∶ r s,

called the index map, and
● an s-tuple of multimorphisms

⟨φ⟩ = ⟨φj⟩sj=1 with φj ∈M (⟨xi⟩i∈ f −1(j) ; yj) .

Identities: The identity morphism for an object ⟨x⟩ = ⟨xi⟩ri=1 in FM is the pair

1⟨x⟩ = (1r , ⟨1xi
⟩ri=1) .

Composition: Given a pair of morphisms

⟨x⟩ = ⟨xi⟩ri=1

( f , ⟨φ⟩) ⟨y⟩ = ⟨yj⟩sj=1

(g, ⟨ψ⟩) ⟨z⟩ = ⟨zk⟩tk=1

their composite is the morphism

(3.1.7) (g f , ⟨θk ⋅ σk
g, f ⟩tk=1

) ∶ ⟨x⟩ ⟨z⟩
with

(3.1.8) θk = γ (ψk ; ⟨φj⟩j∈g−1(k)) ∈M⎛⎝ ⊕
j∈g−1(k)

⟨x⟩ f −1(j) ; zk

⎞
⎠

for each k ∈ t and σk
g, f as in (3.1.4).

Monoidal Product on Objects: The monoidal product

(3.1.9) ⊕ ∶ FM×FM FM

is given by concatenation of finite tuples on objects:

(3.1.10) ⟨xi⟩ri=1 ⊕ ⟨yj⟩sj=1 = (⟨xi⟩ri=1 , ⟨yj⟩sj=1).
Monoidal Product on Morphisms: Given a pair of morphisms

( f , ⟨φj⟩sj=1) ∶ ⟨xi⟩ri=1 ⟨yj⟩sj=1 and ( f ′, ⟨φ′j⟩s′j=1) ∶ ⟨x′i⟩r′i=1 ⟨y′j⟩s′j=1

in FM, their monoidal product is the morphism

(3.1.11) ( f ⊕ f ′ , ⟨φ⟩⊕ ⟨φ′⟩) ∶ ⟨x⟩⊕ ⟨x′⟩ ⟨y⟩⊕ ⟨y′⟩.
In (3.1.11) the index map is the composite

r + r′ r∐ r′ s∐ s′ s+ s′
≅ f ∐ f ′ ≅

f ⊕ f ′

given by
● the canonical order-preserving isomorphisms and
● the disjoint union of f with f ′.

Monoidal Unit: The strict monoidal unit is the empty sequence ⟨⟩. The associa-
tivity and unit isomorphisms for ⊕ are identity natural transformations.
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Braiding: The braiding for objects ⟨xi⟩ri=1 and ⟨yj⟩sj=1 is

(3.1.12) ξ⟨x⟩,⟨y⟩ = (τr,s , ⟨1⟩) ∶ ⟨x⟩⊕ ⟨y⟩ ≅ ⟨y⟩⊕ ⟨x⟩.
In (3.1.12) the index map is the composite

r + s r∐ s s∐ r s+ r
≅ ≅

swap
≅

τr,s

given by
● the canonical order-preserving isomorphisms and
● the block permutation that swaps r and s, keeping the relative order

within each block unchanged.
Each entry in the (r+ s)-tuple ⟨1⟩ in (3.1.12) is a colored unit of some xi or
yj.

This finishes the definition of (FM,⊕, ⟨⟩, ξ). ◇
A detailed proof of the following is in [JY23, 5.7].

Proposition 3.1.13. For each multicategory M, the quadruple in Definition 3.1.5

(FM,⊕, ⟨⟩, ξ)
is a permutative category.

Example 3.1.14 (Free Permutative Category of the Initial Operad). The initial op-
erad I in Example C.1.35 (i) has a single object ∗ and a single operation 1∗ ∈ I1. The
free permutative category F(I) is isomorphic to the permutation category defined
as follows.

● Its objects are natural numbers, n ≥ 0, corresponding to length-n se-
quences of the object ∗ ∈ I.
● Its morphisms are permutations

F(I)(p, q) =
⎧⎪⎪⎨⎪⎪⎩

Σp if p = q,

∅ if p ≠ q

for p, q ≥ 0.
● The permutative structure ⊕ is given by addition on objects and block

sums on morphisms.
● The monoidal unit is the object 0.
● The braiding

ξp,q ∶ p+ q
≅

q + p

is the block permutation in Σp+q that swaps the first p elements with the
last q elements. This is denoted τp,q in (2.4.9). ◇

Example 3.1.15 (Free Permutative Category of the Terminal Multicategory). The
terminal multicategory T in Example C.1.17 has a single object and a unique n-ary
operation for each n. The free permutative category FT is isomorphic to the natural
number category N, whose objects are natural numbers and whose morphisms are
given by morphisms of finite sets

N(r, s) = Set(r, s).
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The natural number r ∈ N corresponds to the sequence of length r where each
term is the unique object of T. A morphism f ∶ r s in N corresponds to the
morphism

( f , ⟨φ⟩) ∈ FT
where φj is the unique operation in T of arity ∣ f−1(j)∣. ◇

Free Permutative Category as a 2-Functor. Next we define F on multifunctors
(Definition C.1.19) and multinatural transformations (Definition C.1.25).

Definition 3.1.16 (F on Multifunctors). Given a multifunctor H ∶ M N, we
define a strict symmetric monoidal functor

FH ∶ FM FN

as follows.

Object Assignment: For an object ⟨xi⟩ri=1 in FM, we define the object

(3.1.17) (FH)⟨xi⟩ri=1 = ⟨Hxi⟩ri=1 in FN.

Morphism Assignment: For a morphism

( f , ⟨φj⟩sj=1) ∶ ⟨xi⟩ri=1 ⟨yj⟩sj=1 in FM

as in (3.1.6), we define the morphism

(3.1.18) (FH)( f , ⟨φ⟩) = ( f , ⟨Hφj⟩sj=1) ∶ ⟨Hxi⟩ri=1 ⟨Hyj⟩sj=1

in FN.
Constraints: The unit and monoidal constraints for FH are identities.

This finishes the definition of FH. ◇
Definition 3.1.19 (F on Multinatural Transformations). Suppose H, K ∶ M N

are multifunctors. Given a multinatural transformation

ω ∶ H K,

we define a monoidal natural transformation

Fω ∶ FH FK

with component morphism

(3.1.20) (Fω)⟨x⟩ = (1r , ⟨ωxi
⟩ri=1) ∶ ⟨Hxi⟩ri=1 ⟨Kxi⟩ri=1 in FN

for each object ⟨xi⟩ri=1 in FM. ◇
The following result is [JY23, 5.13].

Proposition 3.1.21. The constructions in Definitions 3.1.5, 3.1.16, and 3.1.19 provide a
2-functor

F ∶Multicat PermCatst .

We also use F to denote the composite of the 2-functor in Proposition 3.1.21
with any one of the inclusion 2-functors in (A.2.6).
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3.2. Free Permutative Category as a Left 2-Adjoint

In this section we recall the fact that the 2-functor F in Proposition 3.1.21 is a
left 2-adjoint of the endomorphism multicategory 2-functor in Proposition C.3.6

End ∶ PermCatst Multicat.

Recall from Example C.3.1 that, for each permutative category C, the endomor-
phism multicategory End(C) has the same objects as C. Next we define the unit
and counit for the 2-adjunction (F,End) in the sense of Definition A.2.11.

Definition 3.2.1 (Unit). Given a multicategory M, we define a multifunctor

ηM ∶M End FM

as follows.

Object Assignment: For an object y in M, we define the object

(3.2.2) ηM(y) = (y) in End FM,

where (y) on the right-hand side is the length-1 tuple consisting of the
object y.

Multimorphism Assignment: For an r-ary multimorphism

φ ∶ ⟨x⟩ = ⟨xi⟩ri=1 y in M,

we define the r-ary multimorphism

(3.2.3) ηM(φ) = (ιr , (φ)) ∶ ⟨x⟩ (y)
in

(End FM) (⟨(xi)⟩ri=1
; (y)) = (FM)(⟨x⟩ , (y)).

On the right-hand side of (3.2.3),

● ιr ∶ r 1 is the unique function, and
● (φ) is the length-1 tuple consisting of φ.

This finishes the definition of ηM. Multifunctoriality of ηM follows from the def-
initions of monoidal sum and composition in FM. The 2-naturality of η follows
from the termwise definitions of FH and Fω in Definitions 3.1.16 and 3.1.19, re-
spectively. ◇
Definition 3.2.4 (Counit). Given a permutative category (C,⊕, e, ξ), we define a
strict symmetric monoidal functor

εC ∶ F End(C) C

as follows.

Object Assignment: For an r-tuple ⟨xi⟩ri=1 of objects in C, we define the object

(3.2.5) εC⟨x⟩ =⊕r
i=1 xi in C,

where an empty ⊕means the monoidal unit e.
Morphism Assignment: Suppose given a morphism

(3.2.6) ( f , ⟨φj⟩sj=1) ∶ ⟨xi⟩ri=1 ⟨yj⟩sj=1 in F End(C)
with each

φj ∈ End(C) (⟨x⟩ f −1(j) ; yj) = C(⊕i∈ f −1(j) xi , yj) .
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We define the morphism

εC( f , ⟨φ⟩) ∶ εC⟨x⟩ εC⟨y⟩ in C

as the following composite.

(3.2.7) ⊕r
i=1 xi ⊕s

j=1⊕i∈ f −1(j) xi ⊕s
j=1 yj

ξ f

≅

⊕
s
j=1 φj

εC( f , ⟨φ⟩)

In (3.2.7) ξ f is the unique coherence isomorphism in C that permutes the
terms of the sum. Existence and uniqueness of this coherence isomor-
phism follows from the symmetric monoidal Coherence Theorem [ML98,
XI.1, Th. 1].

Constraints: The unit and monoidal constraints of εC are defined as the identities.

This finishes the definition of εC. Verification that εC is strict symmetric monoidal
follows from strictness of concatenation and uniqueness of the coherence isomor-
phisms ξ f . The 2-naturality of ε follows because strict symmetric monoidal func-
tors preserve the monoidal sums ⊕ixi and coherence isomorphisms ξ f in (3.2.5)
and (3.2.7). ◇

The following result combines [JY23, 6.2, 6.8, and 6.11]. Recall the notion of a
2-adjunction from Definition A.2.11.

Theorem 3.2.8. There is a 2-adjunction

Multicat PermCatst�
F

End

consisting of the following data.

● PermCatst is the 2-category in Definition A.2.3.
● Multicat is the 2-category in Theorem C.1.33.
● The left adjoint is F in Proposition 3.1.21.
● The right adjoint is End in Proposition C.3.6 restricted to PermCatst.
● The unit

η ∶ 1Multicat End F

has components in Definition 3.2.1.
● The counit

ε ∶ F End 1PermCatst

has components in Definition 3.2.4.

Remark 3.2.9 (Naturality of the Counit). The counit ε in Theorem 3.2.8 is only
natural with respect to strict symmetric monoidal functors. This implies that the
2-adjunction F ⊣ End does not extend to a 2-adjunction, or even an adjunction of
underlying categories, to any of the larger 2-categories in Definition A.2.3 in which
the 1-cells are, in general, not strict symmetric monoidal. ◇

3.3. Componentwise Right Adjoint of the Counit

In this section we discuss a componentwise right adjoint of the counit of the
2-adjunction F ⊣ End in Theorem 3.2.8. We also discuss a symmetric monoidal
structure on this componentwise right adjoint; see Lemma 3.3.12.
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Definition 3.3.1. For each permutative category (C,⊕), we define an adjunction

F End(C) C�
εC

̺C

as follows, where εC is the strict symmetric monoidal functor in Definition 3.2.4.

Right Adjoint: The functor ̺C is defined by the object and morphism assignments

(3.3.2)

⎧⎪⎪⎨⎪⎪⎩
̺C(x) = (x) for x ∈ ObC and

̺C(φ) = (11
, (φ)) ∶ (x) (y) for φ ∈ C(x, y).

On the right-hand side of (3.3.2), (x), (y), and (φ) are tuples of length 1.
Counit: The following composite is the identity functor.

(3.3.3) C
̺C

F End(C) εC
C

We define the counit for the adjunction (εC, ̺C) as the identity functor,

ǫ = 1C.

Unit: The composite

(3.3.4) F End(C) εC
C

̺C
F End(C)

is given by the following assignments for each object ⟨xi⟩ri=1 and mor-

phism ( f , ⟨φj⟩sj=1) in FEnd(C) as in (3.2.6).

(3.3.5)

⎧⎪⎪⎨⎪⎪⎩
⟨x⟩ (⊕r

i=1 xi )
( f , ⟨φ⟩) (1

1
, (⊕s

j=1 φj) ○ ξ f ) ∶ (⊕r
i=1 xi ) (⊕s

j=1 yj )
We define the unit for the adjunction (εC, ̺C) as the natural transforma-
tion

υ ∶ 1FEnd(C) ̺CεC

with component morphism

(3.3.6) υ⟨x⟩ = (ιr , 1⊕r
i=1

xi
) ∶ ⟨xi⟩ri=1 (⊕r

i=1 xi ) in FEnd(C)
for each length-r tuple ⟨xi⟩ri=1 of objects in C. In (3.3.6),

● ιr ∶ r 1 is the unique function, and
● the identity morphism

1⊕r
i=1

xi
∈ (End(C))(⟨xi⟩ri=1 ; ⊕r

i=1 xi) = C (⊕r
i=1 xi , ⊕r

i=1 xi)
is an r-ary multimorphism in End(C).

This finishes the definition. ◇
The following result is [JY23, 6.13].

Proposition 3.3.7. In the context of Definition 3.3.1, there is an adjunction of categories

(3.3.8) F End(C) C�
εC

̺C

with the following data.

● The left adjoint is εC in Definition 3.2.4.
● The right adjoint is ̺C in (3.3.2).
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● The counit ǫ is the identity functor on C.
● The unit υ has components in (3.3.6).

Symmetric Monoidal Structure. The right adjoint ̺C in (3.3.8) is a symmetric
monoidal functor with the following structure morphisms. The next definition
uses the permutative category structure on FEnd(C) in Definition 3.1.5, with M =
End(C) in Example C.3.1.

Definition 3.3.9. For each permutative category (C,⊕, e, ξ), we define unit con-

straint ̺0
C and monoidal constraint ̺2

C for the functor in (3.3.8)

̺C ∶ C F End(C)
as follows.

Unit Constraint: It is the morphism

(3.3.10) ̺0
C = (ι0 , 1e) ∶ ⟨⟩ (e) = ̺C(e) in F End(C)

defined as follows.
● ι0 ∶ 0 = ∅ 1 is the unique function.
● The identity morphism

1e ∈ (End(C))(⟨⟩ ; e) = C(e, e)
is a nullary multimorphism in End(C).

Monoidal Constraint: For each pair of objects x, y ∈ C, the monoidal constraint
has a component morphism

(3.3.11) (̺2
C)x,y = (ι2 , 1x⊕y) ∶ (x)⊕ (y) = (x, y) (x⊕ y) in F End(C)

defined as follows.
● ι2 ∶ 2 1 is the unique function.
● The identity morphism

1x⊕y ∈ (End(C))(x, y ; x ⊕ y) = C(x⊕ y, x⊕ y)
is a binary multimorphism in End(C).

This finishes the definition of ̺0
C and ̺2

C. ◇
The terminal property of 1 = {1} and the permutative category axioms of C

imply the following.

Lemma 3.3.12. In the context of Definition 3.3.9, the triple

(̺C, ̺2
C, ̺0

C) ∶ C F End(C)
is a symmetric monoidal functor.

Remark 3.3.13 (Not Strictly Unital). The symmetric monoidal functor (̺C, ̺2
C, ̺0

C
)

in Lemma 3.3.12 is neither strictly unital nor strong because the unit constraint,
which is the morphism

̺0
C = (ι0 , 1e) ∶ ⟨⟩ (e)

in (3.3.10), is not an isomorphism in FEnd(C). This stands in stark contrast with its
left adjoint, εC in Definition 3.2.4, which is a strict symmetric monoidal functor. ◇
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3.4. Free Permutative Category as a Non-Symmetric Cat-Multifunctor

In this section we extend the 2-functor in Proposition 3.1.21

F ∶Multicat PermCatst

to a non-symmetric Cat-multifunctor

F ∶Multicat PermCatsu

in the sense of Definition C.1.19 with (V,⊗) = (Cat,×). This is one of the main
results in [JY22a].

● The domain Multicat is the Cat-multicategory in Explanation 1.1.20.
It is induced by a symmetric monoidal Cat-category structure (Theo-
rem 1.1.19), with the tensor product ⊗ in Definition 1.1.12.
● The codomain PermCatsu is the Cat-multicategory in Theorem 1.4.29. Its

multimorphism categories have multilinear functors as objects and mul-
tilinear transformations as morphisms (Definition 1.4.15).

Here is an outline of this section.

● The non-symmetric Cat-multifunctor F involves strong n-linear functors
Fn in Definition 3.4.14. The definition of each Fn, in turn, requires some
auxiliary constructions involving tuples in Definitions 3.4.1 and 3.4.7.
● The multimorphism functors of F are in Definition 3.4.26.

Tensor Product of Tuples. Suppose ⟨Mi⟩ni=1 and N are small multicategories
for some n ≥ 0. Recall from Definition 3.1.5 that objects in the free permutative
category FN are finite tuples of objects in N.

Definition 3.4.1 (Tensor Product of Tuples of Objects). Suppose given objects

(3.4.2) ⟨xi⟩ = ⟨xi
j⟩ri

j=1
∈ FMi for i ∈ {1, . . . , n}

with each xi
j an object in Mi.

● For each n-tuple of indices ⟨ji⟩ni=1 with each ji ∈ {1, . . . , ri}, we define the
object

(3.4.3) x1⋯n
j1,...,jn

= ⟨xi
ji
⟩n

i=1
in ⊗n

i=1 Mi

using the canonical bijection (1.1.15) for objects in the tensor product.
● We define an object

(3.4.4) ⟨x1⋯n⟩ =⊗n
i=1⟨xi⟩ in F(⊗n

i=1 Mi)
using the tensor product of tuples in Definition 1.1.1.

In other words, with

(3.4.5) r1⋯n =∏n
i=1ri,

the object ⟨x1⋯n⟩ in (3.4.4) is the r1⋯n-tuple

(3.4.6) ⟨x1⋯n⟩ = ⟨⋯ ⟨x1⋯n
j1,...,jn

⟩r1

j1=1
⋯ ⟩rn

jn=1

with each entry as in (3.4.3). ◇
The following definition extends the construction ⟨x1⋯n⟩ to morphisms.
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Definition 3.4.7 (Tensor Product of Morphisms). Suppose given morphisms

(3.4.8) ( f i , ⟨φi⟩) ∶ ⟨xi⟩ = ⟨xi
j⟩ri

j=1
⟨yi⟩ = ⟨yi

k⟩si
k=1

in FMi

for i ∈ {1, . . . , n}with

● each f i ∶ ri si an index map,

● each ⟨φi⟩ = ⟨φi
k⟩si

k=1
an si-tuple, and

● each

φi
k ∈Mi(⟨xi

j⟩j∈( f i)−1(k) ; yi
k)

an ∣( f i)−1(k)∣-ary multimorphism in Mi.

We define the following objects and (multi)morphisms.

● First we define an index map f 1⋯n as the composite function

(3.4.9) r1⋯n ∏n
i=1 ri ∏n

i=1 si s1⋯n.≅ ≅∏
n
i=1 f

i

f
1⋯n

In (3.4.9),
– the integers

r1⋯n =∏n
i=1ri and s1⋯n =∏n

i=1si

are as in (3.4.5), and
– the two unlabeled isomorphisms are given by the reverse lexico-

graphic ordering of the products.
● For each n-tuple of indices ⟨ki⟩ni=1 with each ki ∈ {1, . . . , si}, we define the

object in F(⊗n
i=1 Mi)

(3.4.10)

⟨x1⋯n⟩ f ; k1,...,kn
=⊗n

i=1⟨xi
j⟩j∈( f i)−1(ki)

= ⟨⋯ ⟨x1⋯n
j1,...,jn

⟩
j1∈( f 1)−1(k1)

⋯ ⟩
jn∈( f n)−1(kn)

as a sub-tuple of ⟨x1⋯n⟩ in (3.4.6). Then we define the multimorphism

(3.4.11) φ1⋯n
k1,...,kn

=⊗n
i=1 φi

ki
∶ ⟨x1⋯n⟩ f ; k1,...,kn

y1⋯n
k1,...,kn

in ⊗n
i=1 Mi.

● We define the s1⋯n-tuple of multimorphisms

(3.4.12)

⟨φ1⋯n⟩ =⊗n
i=1⟨φi⟩

= ⟨⋯ ⟨φ1⋯n
k1,...,kn

⟩s1

k1=1
⋯ ⟩sn

kn=1

with each entry as in (3.4.11).
● Finally, we define the morphism

(3.4.13) ( f 1⋯n , ⟨φ1⋯n⟩) ∶ ⟨x1⋯n⟩ ⟨y1⋯n⟩ in F(⊗n
i=1 Mi)

with
– the objects ⟨x1⋯n⟩ and ⟨y1⋯n⟩ as in (3.4.4),

– the index map f 1⋯n in (3.4.9), and

– ⟨φ1⋯n⟩ the s1⋯n-tuple in (3.4.12).

This finishes the definition of ( f 1⋯n , ⟨φ1⋯n⟩). ◇
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The Strong Multilinear Functor Fn. Recall

● from Definition 1.4.2 the notion of an n-linear functor and
● from Example 3.1.14 the free permutative category F(I) of the initial op-

erad I.

Definition 3.4.14 (Multilinear Functor Fn). Suppose ⟨Mi⟩ni=1 are small multicate-
gories. We define the data of an n-linear functor

(Fn , ⟨(Fn)2p⟩np=1
) ∶ ∏n

i=1FMi F(⊗n
i=1 Mi)

as follows. For n = 0, we define the 0-linear functor

F0 ∶ 1 F(I)
by the choice of the length-one tuple (∗) ∈ F(I).

Suppose n > 0 for the rest of this definition. Suppose given morphisms

( f i , ⟨φi⟩) ∶ ⟨xi⟩ = ⟨xi
j⟩ri

j=1
⟨yi⟩ = ⟨yi

k⟩si
k=1

in FMi

for i ∈ {1, . . . , n} as in (3.4.8).

Object Assignment: We define the object

(3.4.15) Fn⟨⟨xi⟩⟩n
i=1
= ⟨x1⋯n⟩ in F(⊗n

i=1 Mi)
using (3.4.4).

Morphism Assignment: We define the morphism

(3.4.16) Fn ⟨( f i , ⟨φi⟩)⟩n
i=1
= ( f 1⋯n , ⟨φ1⋯n⟩) in F(⊗n

i=1 Mi)
using (3.4.13).

Linearity Constraints: For p ∈ {1, . . . , n}, suppose given an object

⟨x̂p⟩ = ⟨x̂p
j
⟩r̂p

j=1
in FMp

with each x̂
p
j an object in Mp. We first define the object

⟨x̃p⟩ = ⟨xp⟩⊕ ⟨x̂p⟩ in FMp

with length rp + r̂p. Then we define the objects

(3.4.17) ⟨x̂1⋯n⟩ and ⟨x̃1⋯n⟩ in F(⊗n
i=1 Mi)

as in (3.4.4), using ⟨x̂p⟩ and ⟨x̃p⟩, respectively, in place of ⟨xp⟩.
The pth linearity constraint, (Fn)2p, is defined by component isomor-

phisms in F(⊗n
i=1 Mi)

(3.4.18) (Fn)2p = (ρrp,r̂p , ⟨1⟩) ∶ ⟨x1⋯n⟩⊕ ⟨x̂1⋯n⟩ ≅ ⟨x̃1⋯n⟩.
In (3.4.18) the two components of (Fn)2p are as follows.

● The first component

(3.4.19) ρrp,r̂p ∈ Σr1⋯(rp+r̂p)⋯rn

is the unique permutation of entries determined by the domain and

codomain of (Fn)2p.

● Each entry in ⟨1⟩ is a colored unit of an entry in either ⟨x1⋯n⟩ or

⟨x̂1⋯n⟩.
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This finishes the definition of (Fn , ⟨(Fn)2p⟩np=1
). ◇

Remark 3.4.20.

(1) For n = 1, the 1-linear functor F1 is the identity symmetric monoidal func-
tor on FM1.

(2) For n ≥ 2, the permutation ρrp,r̂p in (3.4.19) is the identity if p = n, but it is

not the identity in general.

(3) In [JY22a, Section 7], the multilinear functors (Fn, (Fn)2p) are denoted

(S,S2
p). ◇

The following result combines [JY22a, 7.12, 7.14, and 7.16].

Proposition 3.4.21. Suppose ⟨Mi⟩ni=1 are small multicategories. Then the following state-
ments hold.

(1) The data in Definition 3.4.14,

(Fn , ⟨(Fn)2p⟩np=1
) ∶ ∏n

i=1FMi F(⊗n
i=1 Mi),

form a strong n-linear functor.
(2) Each Fn is 2-natural with respect to multifunctors and multinatural transfor-

mations.

Explanation 3.4.22 (2-Naturality of Fn). In Proposition 3.4.21 (2), the 2-naturality
of Fn with respect to multifunctors between small multicategories

Hi ∶Mi Ni for i ∈ {1, . . . , n}
means that the following two composite n-linear functors are equal.

(3.4.23)

∏n
i=1FMi

F(⊗n
i=1 Mi)

∏n
i=1FNi

F(⊗n
i=1 Ni)

∏
n
i=1FHi

F(⊗n
i=1 Hi)

F
n

F
n

The 2-naturality of Fn with respect to multinatural transformations

θi ∶ Hi Ki for i ∈ {1, . . . , n}
means the following equality of n-linear transformations.

(3.4.24) 1(Fn) ∗ (∏n
i=1Fθi) = F(⊗n

i=1 θi) ∗ 1(Fn)

This equality is obtained from the diagram (3.4.23) by replacing each Hi with θi. ◇
The Non-Symmetric Cat-Multifunctor F. Next we extend the 2-functor F in

Proposition 3.1.21 to multimorphism categories.

Convention 3.4.25. To avoid confusion in Definition 3.4.26 below, for small multi-
categories M and N, we denote by

F ∶Multicat(M,N) PermCatst(FM,FN)
the assignment of F on multifunctors and multinatural transformations as in Def-
initions 3.1.16 and 3.1.19, respectively. ◇

In (3.4.28) below, we use the multilinear functor Fn (Proposition 3.4.21).
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Definition 3.4.26. Suppose ⟨M⟩ = ⟨Mi⟩ni=1 and N are small multicategories. We
define a functor between multimorphism categories

(3.4.27) F ∶Multicat(⟨M⟩ ; N) PermCatsu (⟨FM⟩ ; FN)
as follows. Suppose given multifunctors H and K and a multinatural transforma-
tion θ as in the diagram below.

⟨M⟩ N

H

K

⇒

θ

Then F sends these data to the following composite n-linear functors and whisker-
ing.

(3.4.28) ⟨FM⟩ F(⊗n
i=1 Mi) FN

F
n

FH

FK

⇒

Fθ

This finishes the definition of the multimorphism functor F. ◇
Explanation 3.4.29. In the case n = 1, the 1-linear functor F1 is the identity symmet-
ric monoidal functor (Remark 3.4.20 (1)). The multimorphism functor F in (3.4.27)
reduces to the hom functor of the 2-functor F in Proposition 3.1.21. Therefore, there
is no ambiguity in reusing the notation F in Definition 3.4.26. ◇
Explanation 3.4.30. In the case n = 0, recall from Explanation 1.1.20 that a nullary

operation H ∈ Multicat(⟨⟩ ; N) consists of a choice of object H∗ ∈ N, where ∗ is

the unique object of I. The 0-linear functor F0 ∶ 1 F(I) chooses the length-one

tuple (∗) ∈ F(I), and hence FH = (FH) ○ F0 is determined by the length-one tuple(H∗) ∈ FN. ◇
Recall from Definition C.1.19 that a non-symmetric Cat-multifunctor between

Cat-multicategories preserve colored units and composition, but it is not required
to preserve the symmetric group action as in (C.1.20). The following result is
[JY22a, 8.1].

Theorem 3.4.31. There is a non-symmetric Cat-multifunctor

(3.4.32) F ∶Multicat PermCatsu

defined by the following data.

● Multicat is the Cat-multicategory in Explanation 1.1.20.
● PermCatsu is the Cat-multicategory in Theorem 1.4.29.
● The object assignment of F is the free permutative category in Proposition 3.1.13.
● The multimorphism functors of F are in (3.4.27).

Explanation 3.4.33. Consider Theorem 3.4.31.

(1) As explained in [JY22a, 8.2], the non-symmetry of F in (3.4.28) is due to
the incompatibility of Fn with permutations.

(2) As in Definition 3.1.16, F sends each multifunctor to a strict symmetric
monoidal functor. Moreover, by Proposition 3.4.21 (1), each Fn is a strong
multilinear functor. Therefore, the composite in (3.4.28)

FH = FH ○ Fn

is a strong n-linear functor by definition (1.4.27). ◇
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Recall from Explanation 1.4.40 the Cat-multifunctor

End ∶ PermCatsu Multicat.

Also recall from Explanation C.2.2 an explicit description of a (non-symmetric)
Cat-multinatural transformation. The following result is [JY22a, 9.2], where F is
the non-symmetric Cat-multifunctor in Theorem 3.4.31.

Lemma 3.4.34. The unit in Theorem 3.2.8

Multicat Multicat

1Multicat

End F

⇒

η

is a non-symmetric Cat-multinatural transformation.

Remark 3.4.35 (Non-Existence of Counit Analog). The counit in Theorem 3.2.8
does not yield a non-symmetric Cat-multinatural transformation

ε ∶ F End 1PermCatsu .

As we mentioned in Remark 3.2.9, that counit ε is only natural with respect to strict
symmetric monoidal functors but not strictly unital symmetric monoidal functors
in general. Thus, the analog of Lemma 3.4.34 does not hold for the counit. ◇

3.5. Homotopy Equivalences between Multicategories and Permutative
Categories

In this section we review equivalences of homotopy theories between the cat-
egories Multicat, PermCatst, and PermCatsu.

● Theorem 3.5.3, which relates Multicat and PermCatst, is the main result
of [JY23]. The morphisms in the category PermCatst are strict symmetric
monoidal functors. The proof of this theorem relies on the component-
wise right adjoint of the counit ε in Proposition 3.3.7. In Chapter 4 we
use a pointed version of this componentwise right adjoint to extend the
equivalence of homotopy theories to pointed multicategories and leftM1-
modules.
● Theorem 3.5.5 relates Q-algebras in Multicat and Q-algebras in PermCatsu

for a small non-symmetric Cat-multicategory Q. It is the main result of
[JY22a]. In the larger category PermCatsu, the morphisms are strictly uni-
tal symmetric monoidal functors. In Chapter 5 we extend this equiva-
lence of homotopy theories between categories of non-symmetric alge-
bras, as well as the Cat-multifunctoriality of F (non-symmetric in the case
of F) and End, to pointed multicategories and leftM1-modules.
● Theorem 3.5.7, which relates Multicat and PermCatsu, is the special case

of Theorem 3.5.5 when Q is the initial operad.
● A consequence of Theorems 3.5.3 and 3.5.7 is that the inclusion functor

from PermCatst to PermCatsu is an equivalence of homotopy theories. See
Corollary 3.5.9.

Stable Equivalences. Recall from Section 2.5 that Segal K-theory

KSe ∶ (PermCatsu , S) ∼ (Sp≥0 , S)
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is an equivalence of homotopy theories with the following relative category struc-
tures. Recall that a subcategory is wide if it contains all the objects of the larger
category.

● In the codomain, the wide subcategory

S ⊂ Sp≥0

consists of stable equivalences of connective symmetric spectra.
● In the domain, the wide subcategory of stable equivalences

S ⊂ PermCatsu

is created by KSe. In other words, a stable equivalence in PermCatsu is a
strictly unital symmetric monoidal functor P between small permutative
categories such that KSeP ∈ Sp≥0 is a stable equivalence of connective sym-
metric spectra.

To relate the homotopy theories of Multicat, PermCatst, and PermCatsu, first we
specify classes of stable equivalences in Multicat and PermCatst.

Definition 3.5.1 (Stable Equivalences). We define the wide subcategories

S I = I−1(S) ⊂ PermCatst and

SF = F−1(S I) ⊂Multicat

as the subcategories created by the indicated functors below.

(3.5.2) (Multicat , SF) (PermCatst , S I) (PermCatsu , S)F I

● F is the underlying functor of the 2-functor in Proposition 3.1.21.
● I is the underlying functor of the inclusion 2-functor in (A.2.6).

We call morphisms in S I and SF stable equivalences and F-stable equivalences, respec-
tively. ◇

Equivalences of Homotopy Theories. Recall from Definition 2.1.10 the no-
tion of an adjoint equivalence of homotopy theories. The following result is [JY23, 7.3].
Its proof makes crucial use of Proposition 3.3.7 on the componentwise right adjoint
of the counit.

Theorem 3.5.3. The adjunction in Theorem 3.2.8

(Multicat , SF) � (PermCatst , S I)F

End

is an adjoint equivalence of homotopy theories.

In particular, each of the unit and the counit of F ⊣ End in Theorem 3.5.3 is a
relative natural transformation with respect to SF and S I , respectively.

The equivalences of homotopy theories—but not the adjunction—in Theo-
rem 3.5.3 can be extended to the larger category PermCatsu, together with algebraic
structures in the following sense.

Definition 3.5.4 (Symmetric and Non-Symmetric Algebras). Suppose P is a small
Cat-multicategory, and N is a Cat-multicategory.

● A P-algebra in N is a Cat-multifunctor

P N.
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● A morphism of P-algebras in N is a Cat-multinatural transformation (Ex-
planation C.2.2).

● The category of P-algebras and their morphisms in N is denoted NP.

There is also a non-symmetric analog, for which we use the same notation and
similar terminology. Suppose Q is a small non-symmetric Cat-multicategory, and
N as above is a Cat-multicategory.

● A non-symmetric Q-algebra in N is a non-symmetric Cat-multifunctor

Q N.

● A morphism of non-symmetric Q-algebras in N is a non-symmetric Cat-
multinatural transformation.
● The category of non-symmetric Q-algebras and their morphisms in N is

denoted NQ.

If the underlying 1-category of N is a relative category (N,W), then the cat-
egories of P-algebras, respectively non-symmetric Q-algebras, have an induced
relative structure.

● We define the wide subcategories

WP ⊂ NP and WQ ⊂ NQ

to be those that contain all the morphisms with each component inW .

● We consider the pairs (NP,WP) and (NQ,WQ) as relative categories.

This finishes the definition. ◇
Recall the Cat-multifunctors (non-symmetric for F)

F ∶Multicat PermCatsu ∶ End
in Theorem 3.4.31 and Explanation 1.4.40. Theorem 3.5.5 below extends the equiv-
alences of homotopy theories in Theorem 3.5.3 to non-symmetric algebras. It is the
main result in [JY22a, 1.1].

Theorem 3.5.5. Suppose Q is a small non-symmetric Cat-multicategory. Then the func-
tors

FQ ∶ (MulticatQ , (SF)Q) ∼ ((PermCatsu)Q , SQ) ∶ EndQ,

induced by post-composition and whiskering with, respectively, F and End, are inverse
equivalences of homotopy theories in the sense of Definition 2.1.8.

Thus, by Proposition 2.1.9, FQ and EndQ are equivalences of homotopy theo-
ries between categories of non-symmetric Q-algebras.

Remark 3.5.6 (Subtleties). There are two main subtleties of Theorem 3.5.5.

(1) Unlike Theorem 3.5.3, the two functors in Theorem 3.5.5 do not form an
adjunction in general, as discussed in Remark 3.2.9. Nevertheless, the
unit

η ∶ 1Multicat End F

in Theorem 3.2.8 is
● componentwise an F-stable equivalence by Theorem 3.5.3 and
● a non-symmetric Cat-multinatural transformation by Lemma 3.4.34.
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(2) For a permutative category C, the functor in (3.3.8)

̺C ∶ C F End(C)
is not strictly unital, as discussed in Remark 3.3.13. Therefore, we cannot

use ̺ directly to compare the identity functor on (PermCatsu)Q and the

composite FQ EndQ. To use Proposition 2.1.9, the proof in [JY22a] com-
pares these two functors via a zigzag of relative natural transformations.

As we discuss in Chapter 4, the pointed variant of ̺C is strictly unital. In this sense,
the pointed variant of Theorem 3.5.5 is more natural than the unpointed version
here. ◇

Taking Q as the initial operad in Example C.1.35 (i), Theorem 3.5.5 yields the
following special case.

Theorem 3.5.7. The relative functors

F ∶ (Multicat , SF) ∼ (PermCatsu , S) ∶ End
are equivalences of homotopy theories.

Corollary 3.5.9 below follows from

● the commutative diagram

(3.5.8) Multicat PermCatst PermCatsu,
F I

F

● Theorems 3.5.3 and 3.5.7, and
● the 2-out-of-3 property of Rezk weak equivalences (Theorem 2.1.5).

Corollary 3.5.9. The inclusion relative functor in (3.5.2)

(PermCatst , S I) (PermCatsu , S)I
∼

is an equivalence of homotopy theories.

Combining (2.5.16), Theorems 3.5.3 and 3.5.7, and Corollary 3.5.9, we see that
each arrow in the diagram

(3.5.10) (Multicat , SF) � (PermCatst , S I) (PermCatsu , S) (Sp≥0 , S)F

End

I K
Se

F

End

is an equivalence of homotopy theories.
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CHAPTER 4

Pointed Multicategories andM1-Modules Model All

Connective Spectra

The title of this chapter refers to equivalences of homotopy theories

KSe ○ I ○ F● ∶ (Multicat∗ , S●) ∼ (Sp≥0 , S) and

KSe ○ I ○ FM1 ∶ (ModM1 , SM1) ∼ (Sp≥0 , S)
that are established below. The main results and their context are summarized in
the following diagram of 2-adjunctions and functors.

(4.0.1) (Multicat∗ , S●) (PermCatst , S I)

(Multicat , SF)

(ModM1 , SM1)

(PermCatsu , S) (Sp≥0 , S)F●

End●

F

End

(−)+
U ●

FM1

EndM1UM1

M1∧−

I K
Se

Each of the arrows in (4.0.1), except U ●, is a relative functor.

● KSe is Segal K-theory in (2.5.1) and (2.5.3).
● I is the inclusion functor in (A.2.6), which is the identity on objects.
● The 2-adjunctions

(−)+ ⊣ U ●, F ⊣ End, and (M1∧−) ⊣ UM1

are in Proposition C.4.16, Theorem 3.2.8, and Proposition 1.3.19, respec-
tively.
● We establish the 2-adjunctions

F● ⊣ End ● and FM1 ⊣ EndM1

in Theorems 4.3.11 and 4.4.1, respectively, below.
● The diagram involving the right adjoints

End = U ● ○End ● = U ● ○UM1 ○EndM1

is the restriction of the commutative diagram (1.4.39) to PermCatst and
underlying 2-functors.
● The diagram involving the left adjoints commutes up to 2-natural iso-

morphisms:

F ≅ F● ○ (−)+ ≅ FM1 ○ (M1∧−) ○ (−)+.

77
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Each arrow in (4.0.1), except U ●, is an equivalence of homotopy theories in the sense
of Definition 2.1.7 (4).

● The inclusion functor I and Segal K-theory KSe are equivalences of homo-
topy theories by Corollary 3.5.9 and (2.5.16), respectively.
● F ⊣ End is an adjoint equivalence of homotopy theories by Theorem 3.5.3.
● We show that (−)+ is an equivalence of homotopy theories in Corol-

lary 4.7.4 below.
● We establish the adjoint equivalences of homotopy theories

F● ⊣ End●, (M1∧−) ⊣ UM1, and FM1 ⊣ EndM1

in Theorems 4.7.3, 4.8.1, and 4.8.3, respectively, below.
● We do not know whether U ● is a relative functor with respect to the sub-

categories S● and SF, and thus cannot conclude that it is an equivalence of
homotopy theories. See Question D.2 for further discussion of this point.

The definition of F● and some of its properties follow formally from the adjunc-
tion F ⊣ End. In particular, Proposition 4.2.5 shows that F● can be constructed as
a 2-categorical pushout that collapses basepoint operations. However, the adjoint
equivalences of homotopy theories are slightly more subtle because our arguments
depend on particular details of F● described in Section 4.5. Explanations 4.6.3
and 4.6.11 contain further comments on this point.

Connection with Other Chapters. Chapter 5 extends F● and FM1 to Cat-
enriched multifunctors and extends the equivalences of homotopy theories in
this chapter to categories of algebras. This is further extended in Chapter 12 to
enriched diagrams and Mackey functors. See Remark 4.6.12 for more detailed
technical comments about these extensions.

Background. The material in Chapter 3 describes the equivalences of homo-
topy theories given by the unpointed free construction F and its right 2-adjoint
End. Pointed multicategories are reviewed in Section 1.2. The symmetric mon-
oidal Cat-category ofM1-modules, and its relation to pointed multicategories, is
described in Section 1.3. Equivalences of homotopy theories are described in Sec-
tion 2.1.

Chapter Summary. In Section 4.1 we define the pointed free permutative cate-
gory construction, F●, via certain equivalence relations on F. Section 4.2 further
develops the relationships between F and F●. Section 4.3 shows that F● has a right
2-adjoint End●. Section 4.4 explains how F● and related constructions restrict to the
sub 2-category ofM1-modules. In Section 4.5 we compute several examples F●M
for certain pointed multicategories M. Section 4.6 gives a componentwise right ad-
joint, providing a pointed analog of Section 3.3. Sections 4.7 and 4.8 then establish
the equivalences of homotopy theories described above. Here is a summary table.
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Underlying category and permutative structure on F●M 4.1.4 and 4.1.11

F● on pointed multifunctors and multinatural transformations 4.1.12 and 4.1.15

pM ∶ FM F●M 4.2.1

F● as a 2-pushout 4.2.5

unit η
● ∶ 1 End●F● and counit ε

● ∶ F●End● 1 4.3.1 and 4.3.6

isomorphism FM ≅ F●(M+) 4.3.16

2-adjunction FM1 ⊣ EndM1 4.4.1

symmetric monoidal functor ̺
●
C ∶ C F●End●C 4.6.1

stable equivalences SM1 and S● 4.7.1

equivalences of homotopy theories 4.7.3, 4.7.4, 4.8.1, 4.8.3

We remind the reader of Convention A.1.2 about universes.

4.1. Pointed Free Permutative Categories

This section defines the pointed free construction F● in details that will be use-
ful below. Section 4.2 shows that F● is a certain pushout constructed from F.

Underlying Category F●M. The objects and morphisms of F●M are determined
by the following equivalence relations on objects and morphisms of F.

Definition 4.1.1 (Removing Basepoints). Suppose (M, iM) is a pointed multicate-

gory with basepoint ∗ = iM(∗) and n-ary basepoint operations ιn ∈M(⟨∗⟩ ; ∗).
(1) For each tuple of objects ⟨xi⟩ri=1 ∈ FM, with xi ∈M, let ⟨x⟩∧ be the sub-tuple

consisting of non-basepoint objects, xi ≠ ∗ = iM(∗).
(2) For each morphism

⟨xi⟩ri=1

( f , ⟨φ⟩) ⟨yj⟩sj=1, in FM

define

⟨x⟩′ ( f ′, ⟨φ⟩′) ⟨y⟩′ in FM

as follows. An index j ∈ s is called removable if φj is a basepoint operation
in M. That is, if
● yj = ∗,
● xi = ∗ for each i ∈ f−1(j), and

● φj = ι∣ f
−1(j)∣ ∈M(⟨∗⟩ ; ∗).

An index j is irremovable if it is not removable. Let s′ ⊂ s be the subset

consisting of irremovable j. Let r′ = f−1(s′) and then define

◇(4.1.2) ⟨y⟩′ = ⟨yj⟩j∈s′ , ⟨x⟩′ = ⟨xi⟩i∈r′ , ⟨φ⟩′ = ⟨φj⟩j∈s′ , and f ′ = f ∣r′ .
Definition 4.1.3 (Up-To-Basepoint Equivalence). Suppose (M, iM) is a pointed
multicategory. Define the following equivalence relations, called up-to-basepoint
equivalence on objects and morphisms of FM.

Objects: Up-to-basepoint equivalence is denoted
ob∼ on Ob(FM) and defined by

⟨x⟩ ob∼ ⟨y⟩ if and only if ⟨x⟩∧ = ⟨y⟩∧.
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Thus, ⟨x⟩ ob∼ ⟨y⟩ if the tuples ⟨x⟩ and ⟨y⟩ agree up to insertion or deletion
of basepoints. The equivalence class of ⟨x⟩ is denoted [⟨x⟩].

Morphisms: An m-tuple of morphisms (( f1, ⟨φ1⟩), . . . , ( fm, ⟨φm⟩)) is
ob∼-composable

if

cod( fi, ⟨φi⟩) ob∼ dom( fi+1, ⟨φi+1⟩) for each 1 ≤ i ≤ m − 1.

Let M̃or(FM) ⊂ ∐m≥1 Mor(FM)×m denote the collection of
ob∼-composable

tuples of morphisms.

For
ob∼-composable tuples of morphisms

f = (( f1, ⟨φ1⟩), . . . , ( fm, ⟨φm⟩)) and g = ((g1, ⟨ψ1⟩), . . . , (gn, ⟨ψn⟩)),
up-to-basepoint equivalence is denoted ≃ and is generated by

1∼ and
2∼ as

follows.
(1) For relation one, f

1∼ g if m = n+ 1 and there is some 1 ≤ i ≤ m− 1 such

that
● for j /∈ {i, i + 1}:
( f j, ⟨φj⟩) = (gj, ⟨ψj⟩) if 1 ≤ j < i

( f j, ⟨φj⟩) = (gj−1, ⟨ψj−1⟩) if i + 1 < j ≤ m

● cod( fi, ⟨φi⟩) = dom( fi+1, ⟨φi+1⟩) in FM, and

(gi, ⟨ψi⟩) = ( fi+1, ⟨φi+1⟩) ○ ( fi, ⟨φi⟩),
the composite in FM (3.1.7).

(2) For relation two, f
2∼ g if m = n and there is some 1 ≤ i ≤ m such that

● ( f j, ⟨φj⟩) = (gj, ⟨ψj⟩) for j ≠ i, and

● ( fi, ⟨φi⟩)′ = (gi, ⟨ψi⟩)′ as in (4.1.2) above.

Thus, two
ob∼-composable tuples of morphisms are equivalent if they differ

by either
● composition in FM of adjacent entries, or
● insertion or deletion of basepoint operations.

The equivalence class of f is denoted [ f ]. ◇
Definition 4.1.4 (Pointed Free Permutative Category). Suppose (M, iM) is a
pointed multicategory. Define the data of the pointed free permutative category
F●M as follows.

Objects: The objects are given by
ob∼-equivalence classes:

Ob(F●M) = Ob(FM)/ ob∼ .

Morphisms: The morphisms are given by ≃-equivalence classes of
ob∼-composable

tuples:

Mor(F●M) = M̃or(FM)/ ≃ .

For f = (( f1, ⟨φ1⟩), . . . , ( fm, ⟨φm⟩)) in M̃or(FM), define

dom([ f ]) = [dom( f1, ⟨φ1⟩)] and cod([ f ]) = [cod( fm, ⟨φm⟩)].
Note that these are well defined since both relations

1∼ and
2∼ preserve

ob∼-equivalence classes of (co)domain.
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Identities: For an
ob∼-equivalence class [⟨x⟩] in F●M, define

1[⟨x⟩] = [1⟨x⟩].
This is well defined by relation

2∼ for 1⟨x⟩ = (1, ⟨1xi
⟩i).

Composition: Composition of equivalence classes

[⟨x⟩] [ f ] [⟨y⟩] [g] [⟨z⟩] ∈ F●M
is given by concatenation of representative tuples,

[g] ○ [ f ] = [ f , g] = [(( f1, ⟨φ1⟩), . . . , ( fm, ⟨φm⟩), (g1, ⟨ψ1⟩), . . . , (gn, ⟨ψn⟩))],
where

f = (( f1, ⟨φ1⟩), . . . , ( fm, ⟨φm⟩)) and g = ((g1, ⟨ψ1⟩), . . . , (gn, ⟨ψn⟩)).
This concatenation is

ob∼-composable because

cod([ f ]) = [cod( fm, ⟨φm⟩)] and dom([g]) = [dom(g1, ⟨φ1⟩)].
The composite [g] ○ [ f ] is well defined by the definitions of

1∼ and
2∼.

This finishes the definition of F●M. ◇
Remark 4.1.5. The description of F● in Definitions 4.1.3 and 4.1.4 is an exten-
sion of the explicit description for coequalizers in Cat from [Yau20b, Section 1.4].
Proposition 4.2.5 shows that F●M can equivalently be constructed as a pushout in
PermCatsu. ◇
Lemma 4.1.6. In the context of Definition 4.1.4, F●M is a category. If M is a small
multicategory, then F●M is a small category.

Proof. Associativity of composition holds because concatenation of sequences is

associative. The composition with identities is unital by relation
1∼. If M is small,

then FM, and hence also F●M, is small because its objects are finite tuples of objects
of M (Definition 3.1.5). �

Permutative Structure for F●M. Recall from Definition 3.1.5 that the un-
pointed free construction FM has monoidal sum ⊕ given by concatenation and
monoidal unit the empty tuple, ⟨⟩. There is an induced permutative structure on
F●M, described as follows.

Definition 4.1.7. In the context of Definition 4.1.4, suppose given morphisms

[ f ] ∶ [⟨x⟩] [⟨y⟩] and [ f ′] ∶ [⟨x′⟩] [⟨y′⟩]
in F●M, with

f = (( f1, ⟨φ1⟩), . . . , ( fm, ⟨φm⟩)) and

f ′ = (( f ′1, ⟨φ′1⟩), . . . , ( f ′n, ⟨φ′n⟩)).
Define

f ⊕ 1⟨x′⟩ = (( f1, ⟨φ1⟩)⊕ 1⟨x′⟩, . . . , ( fm, ⟨φm⟩)⊕ 1⟨x′⟩) and(4.1.8)

1⟨y⟩ ⊕ f ′ = (1⟨y⟩⊕ ( f ′1, ⟨φ′1⟩), . . . , 1⟨y⟩⊕ ( f ′n, ⟨φ′n⟩)),(4.1.9)

where the sums at right are those of FM. ◇
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Explanation 4.1.10. Observe that the ≃-equivalence classes of (4.1.8) and (4.1.9) are
well defined in the following senses.

● If ⟨x′⟩ ob∼ ⟨w′⟩, then f ⊕ 1⟨x′⟩
2∼ f ⊕ 1⟨w′⟩.

● If f
1∼ g, then f ⊕ 1⟨x′⟩

1∼ g⊕ 1⟨x′⟩ by functoriality of ⊕.

● If f
2∼ g, then f ⊕ 1⟨x′⟩

2∼ g⊕ 1⟨x′⟩.

The corresponding statements for (4.1.9) hold likewise. ◇
Definition 4.1.11 (Permutative Structure on F●M). Suppose (M, iM) is a pointed
multicategory. Define the data of a permutative category

(F●M,⊕, [⟨⟩], ξ)
as follows.

Monoidal Sum: The monoidal sum functor

F●M×F●M ⊕
F●M

is defined by that of FM on representative objects and morphisms, as fol-
lows.
● For objects [⟨x⟩] and [⟨x′⟩] in F●M, let

[⟨x⟩]⊕ [⟨x′⟩] = [⟨x⟩⊕ ⟨x′⟩],
where the monoidal sum at right is that of FM. This is well de-

fined because concatenation of representatives in FM preserves
ob∼-

equivalence classes.

● For morphisms [ f ] ∶ [⟨x⟩] [⟨y⟩] and [ f ′] ∶ [⟨x′⟩] [⟨y′⟩] in

F●M, use Definition 4.1.7 and let

[ f ]⊕ [ f ′] = [1⟨y⟩ ⊕ f ′] ○ [ f ⊕ 1⟨x′⟩]
= [ f ⊕ 1⟨y′⟩] ○ [1⟨x⟩ ⊕ f ′].

The ≃-equivalence classes at right are well defined by Explana-
tion 4.1.10. The two indicated composites are equal as morphisms in

F●M by
1∼-equivalence and functoriality of ⊕ in FM.

Monoidal Unit: The monoidal unit is [⟨⟩], the equivalence class of the empty tu-
ple of objects.

Symmetry: The symmetry isomorphism for F●M is given by the equivalence class
of the symmetry for FM, as below for objects [⟨x⟩] and [⟨x′⟩].

[⟨x⟩]⊕ [⟨x′⟩]
[⟨x⟩⊕ ⟨x′⟩]

[⟨x′⟩]⊕ [⟨x⟩]
[⟨x′⟩⊕ ⟨x⟩]

ξ[⟨x⟩],[⟨x′⟩]

[ξ⟨x⟩,⟨x′⟩]

This is well defined because ξ⟨w⟩,⟨w′⟩
2∼ ξ⟨x⟩,⟨x′⟩ for ⟨x⟩ ob∼ ⟨w⟩ and ⟨x′⟩ ob∼

⟨w′⟩.
The monoidal sum is strictly associative and unital because concatenation of tu-
ples is so. The symmetry and hexagon axioms (A.1.15) follow from those of FM. ◇
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The 2-Functor F●. Recall the descriptions of F on multifunctors and multi-
natural transformations from Definitions 3.1.16 and 3.1.19. These induce pointed
variants for F●, which we now describe.

Definition 4.1.12 (F● on 1-Cells). Suppose given a pointed multifunctor between
pointed multicategories

H ∶ (M, iM) (N, iN).
Define a strict symmetric monoidal functor

F●H ∶ F●M F●N

induced by FH as follows.

Object Assignment: For an object [⟨xi⟩ri=1] in F●M, define the object

(4.1.13) (F●H)[⟨xi⟩ri=1] = [⟨Hxi⟩ri=1] in F●N.

The assumption that H is a pointed multifunctor ensures that (4.1.13) is

well defined with respect to
ob∼-equivalence.

Morphism Assignment: For a morphism

[ f ] ∶ [⟨x⟩] [⟨y⟩] in F●M

with
f = (( f1, ⟨φ1⟩), . . . , ( fm, ⟨φm⟩)),

define

(F●H)[ f ] = [(FH)( f1, ⟨φ1⟩), . . . , (FH)( fm, ⟨φm⟩)],(4.1.14)

= [( f1, ⟨Hφ1,j1⟩s1
j1=1
), . . . , ( fm, ⟨Hφm,jm⟩sm

jm=1
)],

where each ⟨φi⟩ has length si. Multifunctoriality of H ensures that (4.1.14)

is well defined with respect to
1∼-equivalence. The assumption that H

is pointed, and therefore preserves basepoint operations, ensures that

(4.1.14) is well defined with respect to
2∼-equivalence.

Constraints: The unit and monoidal constraints for F●H are identities.

Functoriality and the strict symmetric monoidal conditions for F●H follow from
those of FH on representatives. This finishes the definition of F●H. ◇
Definition 4.1.15 (F● on 2-Cells). Suppose given a pointed multinatural transfor-
mation θ between pointed multifunctors between pointed multicategories

(M, iM) (N, iN).
H

K

⇒

θ

Define a monoidal natural transformation

F●M F●N

F●H

F●K

⇒

F●θ

induced by Fθ with component morphism in F●N

(4.1.16) (F●θ)[⟨x⟩] = [(Fθ)⟨x⟩] = [(1r , ⟨θxi
⟩ri=1)] ∶ [⟨Hxi⟩ri=1] [⟨Kxi⟩ri=1]

for each object [⟨xi⟩ri=1] in F●M. The assumption that θ is a pointed multifunctor,
and hence its basepoint component is an identity operation, ensures that (4.1.16)
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is well defined with respect to
ob∼-equivalence. The monoidal naturality conditions

for F●θ follow from those of Fθ on representatives. This finishes the definition of
F●θ. ◇

The 2-functoriality of F (Proposition 3.1.21) implies that the assignments above
determine a 2-functor.

Theorem 4.1.17. The assignments on objects, 1-cells, and 2-cells given in Defini-
tions 4.1.11, 4.1.12, and 4.1.15, respectively, determine a 2-functor

F● ∶Multicat∗ PermCatst .

4.2. Relating Unpointed and Pointed Free Permutative Categories

In this section we define a 2-natural transformation

Multicat∗ PermCatst .

F ○U ●

F●
⇒

p

We usually suppress U ● and abbreviate F ○U ● to F. Using p, we show in Proposi-
tion 4.2.5 that F●M is the pushout in PermCatst of the span

1 FT
Fi

M

FM,

where 1 is the terminal permutative category, T is the terminal multicategory (Ex-

ample C.1.17), and (M, iM) is a small pointed multicategory.

Definition 4.2.1. For a small pointed multicategory (M, iM), define a strict sym-
metric monoidal functor

pM ∶ FM F●M

on objects ⟨x⟩ and morphisms ( f , ⟨φ⟩) by the assignments

(4.2.2) { ⟨x⟩ [⟨x⟩] and

( f , ⟨φ⟩) [( f , ⟨φ⟩)],
where a morphism of FM is regarded as an

ob∼-composable tuple of length one.

These assignments are functorial by definition of
1∼. Recall that the monoidal sum

in F●M is given by concatenation, and the monoidal sum in FM is functorial. These
imply that pM is a strict symmetric monoidal functor. ◇
Proposition 4.2.3. The strict symmetric monoidal functors pM of Definition 4.2.1 are
components of a 2-natural transformation

(4.2.4) p ∶ F F●.

Proof. Suppose given a pointed multinatural transformation θ between pointed
multifunctors between small pointed multicategories

(M, iM) (N, iN).
H

K

⇒

θ

In the following diagram we have

pN ○ (FH) = (F●H) ○ pM and pN ○ (FK) = (F●K) ○ pM
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by definition of p and Definition 4.1.12 for F● on 1-cells.

FM FN

F●M F●N

FH

F●H

FK

F●K

pM pN

⇒

Fθ

⇒

F●θ

By Definition 4.1.15, we also have the equality of whiskerings

(F●θ) ∗ pM = pN ∗ (Fθ).
This completes the proof that p is 2-natural. �

Recall from Example 3.1.15 that the free permutative category FT is the natural
number category N whose objects are natural numbers and morphisms are given
by morphisms of finite sets.

Proposition 4.2.5. For each small pointed multicategory (M, iM), the diagram

(4.2.6)
FT FM

1 F●M

FiM

pM

is a 2-pushout in PermCatst.

Proof. Suppose given a permutative category C and a strict symmetric monoidal
functor Q such that the outer diagram below commutes.

(4.2.7)

FT FM

1 F●M

C

FiM

pM Q

Q

Commutativity of the outer diagram implies that Q sends the objects and mor-
phisms of FT to, respectively, the monoidal unit e ∈ C and identities on that unit.

If ⟨x⟩ ob∼ ⟨y⟩ in FM then, because Q is strict symmetric monoidal, we have

Q⟨x⟩ = ⊕iQxi = ⊕jQyj = Q⟨y⟩,
where the middle equality holds because ⟨x⟩ ob∼ ⟨y⟩ and e ∈ C is a strict unit. There-

fore, Q uniquely determines a well-defined assignment on objects Q that com-
mutes with pM.

Now consider

[ f ] = [( f1, ⟨φ1⟩), . . . , ( fm, ⟨φm⟩)] in Mor(F●M) = M̃or(FM)/ ≃ .

For Q to be functorial and commute with pM, we must have

Q[ f ] = Q( fm, ⟨φm⟩) ○⋯ ○Q( f1, ⟨φ1⟩).
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This is well defined with respect to
1∼-equivalence classes by functoriality of Q. The

definition of Q on
2∼-equivalence classes is well defined because the morphisms in

FM that are induced by basepoint operations will be sent by Q to identity mor-
phisms 1e in C.

Thus, there is a unique strict symmetric monoidal functor Q in (4.2.7) that com-
mutes with pM. This proves that F●M satisfies the desired 1-dimensional universal
property.

For the 2-dimensional aspect of the universal property, suppose given a mon-
oidal natural transformation κ as in the diagram below, such that the whiskering

κ ∗ (FiM) is equal to the identity 2-cell of the constant functor given by the left-
bottom composite.

(4.2.8)

FT FM

1 F●M

C

FiM

pM

Q

R

Q

R

⇒

κ

⇒

κ

Hence, the component of κ at the basepoint object is an identity morphism. Be-
cause κ is monoidal natural, this implies that

κ⟨x⟩ = κ⟨y⟩

whenever ⟨x⟩ ob∼ ⟨y⟩. Therefore, κ is uniquely determined and well defined with
components

κ[⟨x⟩] = κ⟨x⟩.

This completes the proof. �

Definition 4.2.9. In the context of Proposition 4.2.5, say that a strict symmetric
monoidal functor

Q ∶ FM C

is basepoint-collapsing if the outer diagram (4.2.7) commutes. Say that a monoidal
natural transformation

κ ∶ Q R

is basepoint-collapsing if Q and R are basepoint-collapsing and

κ ∗FiM = 11e

as in (4.2.8). Thus, Q is basepoint-collapsing if and only if Qιn = 1e for each base-
point operation ιn. Similarly, κ is basepoint-collapsing if and only if κ∗ = 1e. With
these terms, Proposition 4.2.5 asserts that basepoint-collapsing 1- and 2-cells of
PermCatst extend uniquely along pM. ◇

4.3. Pointed Free Permutative Category as a Left 2-Adjoint

In this section we show that the adjunction F ⊣ End from Theorem 3.2.8 in-
duces an adjunction F● ⊣ End ●. As above, we usually suppress the forgetful U ●.
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Definition 4.3.1 (Unit). Suppose M is a small pointed multicategory. We define
the composite multifunctor

(4.3.2)

M EndFM = End ● FM End● F●M
ηM End●(pM)

η
●

M

as follows.

● ηM is the unit of the 2-adjunction F ⊣ End in Definition 3.2.1.
● End● is the Cat-multifunctor in Explanation 1.4.32.
● pM ∶ FM F●M is the strict symmetric monoidal functor in Defini-

tion 4.2.1.

This finishes the definition of η
●
M. ◇

Explanation 4.3.3. The multifunctor η
●
M in (4.3.2) is given explicitly by the assign-

ments

y [(y)], for y ∈M, and

φ [(ιr, (φ))] for φ ∈M(⟨xi⟩ri=1 ; y),
where ιr ∶ r 1 is the unique index map. Note, in particular, that η

●
M sends each

basepoint operation of M to the equivalence class of the identity 1[⟨⟩] by relation
2∼. ◇
Explanation 4.3.4. In (4.3.2), even though M and End ● FM are pointed multicate-
gories, we emphasize that ηM is not pointed because ηM sends the basepoint object
∗ ∈ M to the length-one tuple (∗) ≠ ⟨⟩. The composite, η

●
M in (4.3.2) is pointed be-

cause [(∗)] = [⟨⟩] in F●M. ◇
Lemma 4.3.5. In the context of Definition 4.3.1,

η
●
M ∶M End● F●M

is a pointed multifunctor that is, moreover, 2-natural in M.

Proof. Multifunctoriality of η
●
M follows from that of ηM. As noted in Explana-

tions 4.3.3 and 4.3.4, η
●
M is pointed by relations

ob∼ on objects and
2∼ on morphisms

in F●M. The 2-naturality of η
● follows from that of ηM and pM, together with Cat-

multifunctoriality of End●. �

For a small permutative category C, recall the counit

εC ∶ FEndC C

from Definition 3.2.4. Note that εC is basepoint-collapsing (Definition 4.2.9) by its
definition on morphisms (3.2.7).

Definition 4.3.6 (Counit). Suppose (C,⊕, e) is a small permutative category. We
define a strict symmetric monoidal functor ε

●
C as the unique dashed arrow

(4.3.7)

FEndC = FEnd●C F● End ●C C
pEnd ●C ε

●

C

εC

induced by the pushout (4.2.7), where

● M = End●C,
● pEnd ●C is the strict symmetric monoidal functor in Definition 4.2.1, and
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● Q = εC is the counit of the 2-adjunction F ⊣ End in Definition 3.2.4.

This finishes the definition of ε
●
C. ◇

Explanation 4.3.8. The proof of Proposition 4.2.5 explains that the multifunctor ε
●
C

in (4.3.7) is given by εC on representative objects and operations of FEnd ●C. ◇
Lemma 4.3.9. In the context of Definition 4.3.6, ε

●
C is 2-natural in C.

Proof. The 2-naturality of ε
● follows from the universality of the pushouts in

Proposition 4.2.5. Indeed, given a strict symmetric monoidal functor R ∶ C D,
consider the following.

(4.3.10)

FEnd ●C F● End ●C C

FEnd ●D F● End ●D D

pEnd ●C ε
●

C

pEnd ●D ε
●

D

εC

εD

In the above diagram, the rectangle at left and the outer rectangle commute by nat-
urality of p and ε, respectively. This implies that both composites around the rec-
tangle at right are basepoint-collapsing. Therefore, the two composites are equal
by uniqueness of the universal dashed functor in (4.3.10). Similar reasoning, using
the 2-dimensional aspect of the pushout, verifies 2-naturality of ε

●
with respect to

monoidal natural transformations. �

The diagram (4.3.12) below uses the 2-adjunctions

(−)+ ⊣ U ● and F ⊣ End
in Proposition C.4.16 and Theorem 3.2.8, respectively.

Theorem 4.3.11. There is a 2-adjunction

Multicat∗ � PermCatst
F●

End ●

with unit η
● and counit ε

● in Definitions 4.3.1 and 4.3.6, respectively. Moreover, (i)
and (ii) below hold regarding the following diagram.

(4.3.12)

Multicat∗ PermCatst

Multicat

F●

End ●

F
End

(−)+
U ●

(i) There is an equality of 2-functors

(4.3.13) End = U ● ○End ● ∶ PermCatst Multicat

given by restricting the diagram (1.4.39) to PermCatst.
(ii) There is a 2-natural isomorphism

(4.3.14) F ≅ F● ○ (−)+ ∶Multicat PermCatst .
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Proof. Throughout this proof we write E = End and E ● = End●. The unit η
● and

counit ε
●

are shown to be 2-natural in Lemmas 4.3.5 and 4.3.9, respectively. We
now verify that the two triangle identities for η

● and ε
● follow from those of η and

ε.
Consider the following diagram, for a small pointed multicategory M. As

above, we suppress the forgetful U ●.

(4.3.15)

FM FEFM FM

FE ●FM

FE ●F●M F●E ●FM

F●M F●E ●F●M F●M

FηM εFM

F●η
●

M ε
●

F●M

pM pM

FE●pM pE●FM

pE●F●M F●E●pM

Fη
●

M ε
●

FM

In the above diagram, the two upper regions commute by definition of η
● and

ε
●
. The lower left quadrilateral commutes by 2-naturality of p with respect to η

●
M.

The middle quadrilateral commutes by 2-naturality of p with respect to E ●pM. The
lower right quadrilateral commutes by 2-naturality of ε

● with respect to pM.
The composite along the top of (4.3.15) is equal to 1FM by the triangle identity

for η and ε. Thus, the composite along the top and right, which is equal to pM, is
basepoint-collapsing in the sense of Definition 4.2.9. Therefore, by the universal
property of the pushout (Proposition 4.2.5), the bottom composite of (4.3.15) is
equal to 1F●M.

The other triangle identity is simpler. For each small permutative category C,
the following diagram commutes by definition of η

● and ε
●.

EC

EFEC

EC

E ●C

E ●F●E ●C

E ●C

E ●FE ●C

ηEC EεC

η
●

E ●C E●ε
●

CE●pE●C

Commutativity of the above diagram, together with the respective triangle iden-
tity for η and ε, implies that the bottom composite is equal to 1E ●C.

The equality (i) holds by definition. Uniqueness of left adjoints implies the
existence of an isomorphism as in (ii). �

Explanation 4.3.16. An explicit description of the isomorphism

F ≅ F● ○ (−)+ ∶Multicat PermCatst

in Theorem 4.3.11 (ii) can be given as follows. For a small multicategory M, the
canonical inclusion into M+ induces a strict symmetric monoidal functor

F(M) F(M+) pM
F●(M+).

For the reverse direction, there is a strict symmetric monoidal functor

(4.3.17) F(M+) FM
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that is given on length-one tuples by

(x) ⎧⎪⎪⎨⎪⎪⎩
(x) if x ≠ ∗
⟨⟩ if x = ∗.

On generating morphisms (ιr, (φ)), where φ is an r-ary operation and ιr ∶ r 1
is the unique index map, (4.3.17) is given by

(ιr, (φ)) ⎧⎪⎪⎨⎪⎪⎩
(ιr, (φ)) if φ ∈M(⟨x⟩ ; y)
1⟨⟩ otherwise,

where the second case applies if φ is a basepoint operation of M+. These assign-
ments uniquely determine a strict symmetric monoidal functor that is basepoint-
collapsing, and hence induce a unique

(4.3.18) F●(M+) FM.

The composite

FM F(M+) F●(M+) FM

is the identity by definition. The other composite is the identity by uniqueness
of (4.3.18). The 2-naturality of this isomorphism follows from 2-naturality of the
canonical inclusion M M+ and the 2-dimensional universality of the pushout
F●(M+). ◇

4.4. Free Permutative Categories ofM1-Modules

In this section we use the 2-adjunctions

(M1∧−) ⊣ UM1 and F● ⊣ End●
from Proposition 1.3.19 and Theorem 4.3.11, respectively, to describe an induced
adjunction forM1-modules.

Theorem 4.4.1. There is a 2-adjunction

ModM1 PermCatst�
FM1

EndM1

such that (i) through (iii) below hold regarding the following diagram.

(4.4.2)

Multicat∗ PermCatst

ModM1

F●

End ●

FM1

EndM1UM1

M1∧−

(i) FM1 is defined as the following composite 2-functor.

(4.4.3)

ModM1 Multicat∗ PermCatst
UM1 F●

FM1
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(ii) There is an equality of 2-functors

(4.4.4) End ● = UM1 ○EndM1

given by restricting (1.4.39) to PermCatst.
(iii) There is a 2-natural isomorphism

(4.4.5) F● ≅ FM1 ○ (M1∧−).
Proof. The 2-adjunction

FM1 ⊣ EndM1

is given by the following 2-natural isomorphisms, explained below, for each N ∈
ModM1 and Q ∈ PermCatst:

PermCatst (FM1N , Q) = PermCatst (F●UM1N , Q)
≅Multicat∗(UM1N , End ●Q)
=Multicat∗(UM1N , UM1EndM1Q)
≅ModM1 (N , EndM1Q).

In the above computation, the two equalities follow from (4.4.3) and (4.4.4). The
first isomorphism is given by the 2-adjunction F● ⊣ End● of Theorem 4.3.11.
The last isomorphism holds because ModM1 is a full sub-2-category of Multicat∗
(Proposition 1.3.17 (4)).

The 2-natural isomorphism (4.4.5) follows from uniqueness of left adjoints.
This completes the proof. �

Explanation 4.4.6. The unit and counit of the 2-adjunction FM1 ⊣ EndM1 in Theo-
rem 4.4.1 are given as follows.

Unit: The unit is the 2-natural transformation

(4.4.7) ηM1 ∶ 1
ModM1 EndM1FM1

with component at each leftM1-module M given by the morphism

η
M1

M
∶M EndM1FM1M

= EndM1F●UM1M in ModM1 .

This morphism is uniquely determined by the image

UM1η
M1

M
= η

●
UM1M

∶ UM1M UM1EndM1F●UM1M

= End ● F●UM1M

in Multicat∗ using Proposition 1.3.17 (4), with η
●

the unit of F● ⊣ End ● in
(4.3.2).

Counit: The counit is the 2-natural transformation

(4.4.8) εM1 ∶ FM1EndM1 1PermCatst

with components defined by ε
● as follows:

(4.4.9)

FM1EndM1C F●UM1EM1C F●End●C C
ε
●

C

ε
M1

C

for each C ∈ PermCatst. ◇
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4.5. Examples of Pointed Free Permutative Categories

In this section we describe some examples of F●M for pointed multicategories
M. Our first two examples make use of the isomorphism (4.3.14):

F●(M+) ≅ F(M)
for unpointed multicategories M. Recall, from Example 3.1.14, that F(I) is iso-
morphic to the permutation category with objects given by natural numbers and
morphisms given by symmetric groups.

Example 4.5.1 (The Smash Unit). Recall from Theorem 1.2.8 that I+ is the unit for
the smash product of pointed multicategories. Using (4.3.14) we have

(4.5.2) F●(I+) ≅ F(I).
Each object of F●(I+) is an

ob∼-equivalence class of tuples of objects of I+ and, there-
fore, is identified with a natural number for its non-basepoint entries. Each mor-

phism of F(I+) is
2∼-equivalent to one with only non-basepoint operations. Because

the only such operations are the unit operation in I, each morphism of F(I+) is
2∼-

equivalent to one given by a permutation of non-basepoint entries. ◇
Example 4.5.3 (The Terminal Multicategory). Let ∅ denote the empty multicate-
gory, with no objects and no operations. Then T = ∅+ and we have

F●(T) ≅ F(∅) ≅ 1,

where the last isomorphism identifies the unique object of 1 with the empty tuple⟨⟩ ∈ F(∅). ◇
For further examples, we will make use of the following observation for gen-

eral pointed multicategories.

Explanation 4.5.4 (Morphisms Arising from Nullary Operations). For each pointed
multicategory M, with basepoint object ∗, there is a nullary operation

ι0 ∈M(⟨⟩ ; ∗).
For each object x ∈M, this gives a morphism in FM

( f (x) , (1x, ι0)) ∶ (x) (x,∗),
where the index map f (x) is the standard inclusion 1 2.

More generally, suppose given an object ⟨x⟩ ∈ FM. Recall that ⟨x⟩∧ denotes the
sub-tuple consisting of non-basepoint objects, xi ≠ ∗. The nullary operations give
rise to a morphism in FM

(4.5.5) w⟨x⟩ = ( f ⟨x⟩ , ⟨δxi⟩i) ∶ ⟨x⟩∧ ⟨x⟩
defined as follows.

● The index map f ⟨x⟩ is the inclusion to the subset that indexes non-
basepoint objects of ⟨x⟩, preserving their order.
● For each entry xi in ⟨x⟩,

δxi = ⎧⎪⎪⎨⎪⎪⎩
1xi

if xi ≠ ∗
ι0 if xi = ∗.
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Note that we have
w⟨x⟩ 2∼ 1⟨x⟩.

Therefore, for any morphism

( f , ⟨φ⟩) ∶ ⟨x⟩ ⟨x′⟩ in FM,

we have

(4.5.6) ( f , ⟨φ⟩) 1∼ (1⟨x⟩ , ( f , ⟨φ⟩)) 2∼ (w⟨x⟩ , ( f , ⟨φ⟩)) in M̃or(FM).
We will make use of these equivalences now in the following examples, and later
in the proof of Proposition 4.6.6. ◇

We next consider F●M = FM1M forM1-modules M. We use the following char-

acterization, from [JY∞], to construct a partial inverse for w⟨x⟩. Recall the inter-
change permutation ξ⊗ from (1.1.16).

Proposition 4.5.7 ([JY∞, 10.2.7]). Suppose M is a pointed multicategory with basepoint
∗. Then a leftM1-module structure on M

µ ∶M1∧M M.

determines and is uniquely determined by operations

π2
1(x) ∈M(x,∗ ; x) for x ∈M

such that the following basepoint, unit, and interchange conditions hold for objects x in M

and operations φ in M(⟨y⟩ ; x) with ⟨y⟩ = (y1, . . . , ym).
π2

1(∗) = ι2 in M(∗,∗ ; ∗)(4.5.8)

γ(π2
1(x) ; 1x, ι0) = 1x in M(x ; x)(4.5.9)

γ(φ ; ⟨π2
1(yj)⟩j) = γ(π2

1(x) ; φ, ιm) ⋅ ξ⊗ in M(y1,∗, . . . , ym,∗ ; x)(4.5.10)

Remark 4.5.11. Using equivariance on operations in M and induction, the opera-

tions π2
1 determine a larger family with similar properties

πn
j (x) ∈M(∗, . . . , x, . . . ,∗ ; x),

where the input profile has x in position j and the n−1 other entries are basepoints.
See [JY∞, 8.4.5,10.2.4] for further discussion of these operations. ◇
Example 4.5.12 (Operations Arising from Strict Units). If M = Ma for a pointed

finite set a, then the operations π2
1(x) arise because ∗ = ∅ is a strict unit for the

disjoint union in P(a♭). If M = End ●C for a permutative category C, then the oper-

ations π2
1(x) arise because ∗ = e is strict unit for the monoidal sum in C. ◇

We will show that the operations π2
1(xi), for entries xi in a tuple ⟨x⟩, pro-

vide a partial inverse to w⟨x⟩. Note, however, that the only morphism in FM with
codomain ⟨⟩ is the identity 1⟨⟩. Therefore, cases where ⟨x⟩ consists entirely of base-
point objects must be treated separately, as in the following.

Definition 4.5.13. Suppose M is a pointed multicategory with basepoint object ∗.
Let (∗r) denote the r-tuple consisting entirely of basepoints. Define the following
for ⟨x⟩ ∈ FM:

(4.5.14) ⟨x⟩∼ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(∗) if ⟨x⟩ = (∗r) for r > 0

⟨⟩ if ⟨x⟩ = ⟨⟩
⟨x⟩∧ if ⟨x⟩ has any non-basepoint entries.
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Thus, ⟨x⟩∼ is equal to ⟨x⟩∧ unless ⟨x⟩ = (∗r) for r > 0. ◇
Lemma 4.5.15. Suppose M is a left M1-module. Then, for each ⟨x⟩ ∈ FM there is a
morphism

c⟨x⟩ ∶ ⟨x⟩ ⟨x⟩∼ in FM

such that the composite

⟨x⟩∧ w⟨x⟩ ⟨x⟩ c⟨x⟩ ⟨x⟩∼
is ≃-equivalent to the identity 1⟨x⟩ in M̃or(FM).
Proof. Suppose ⟨x⟩ has length r. We use the operations π2

1(x) described in Propo-

sition 4.5.7 to show that there is a morphism c⟨x⟩ such that

(4.5.16) c⟨x⟩ ○w⟨x⟩ = ⎧⎪⎪⎨⎪⎪⎩
(∅ !

1 , ι0) if ⟨x⟩ = (∗r) for r > 0,

1⟨x⟩∧ otherwise,

where ! denotes the unique index map. In either of the two cases (4.5.16), we have
the conclusion

[c⟨x⟩ ○w⟨x⟩] = 1[⟨x⟩] in F●M = FM1M.

First we discuss three trivial cases, where ⟨x⟩ consists of either r > 0 basepoint
entries, or is empty, or consists of r > 0 non-basepoint entries.

● If ⟨x⟩ = (∗r) for r > 0, then the r-ary basepoint operation ιr defines a
morphism

c(∗
r) = (r !

1, ιr) ∶ (∗r) (∗)
as desired.
● If r = 0, note w⟨⟩ = 1⟨⟩ and choose

c⟨⟩ = 1⟨⟩.

● If r > 0 and ⟨x⟩ has no basepoint entries, then ⟨x⟩ = ⟨x⟩∧ = ⟨x⟩∼ and we
choose

c⟨x⟩ = 1⟨x⟩ = 1⟨x⟩∧ .

Each of these choices satisfies (4.5.16).
For the remainder of the proof we suppose r ≥ 2 and ⟨x⟩ has at least one base-

point entry that is adjacent to one non-basepoint entry xi ≠ ∗. Note, therefore, that⟨x⟩∼ = ⟨x⟩∧. If r = 2 and ⟨x⟩ = (x1,∗), then there is an operation

π = π2
1(x1) ∈M((x1,∗) ; x1)

determined by Proposition 4.5.7. In this case, choose

c(x1,∗) = (2 !
1 , π).

If r = 2 and ⟨x⟩ = (∗, x2) then choose c(∗,x2) similarly, using the operation

π = π2
1(x2)τ ∈M((∗, x2) ; x2)

given by the right action of the transposition τ ∈ Σ2. Note that

(4.5.17) c(x1,∗) ○w(x1,∗) = 1(x1) and c(∗,x2) ○w(∗,x2) = 1(x2) in M̃or(FM)
by property (4.5.9) of the operations π and hence these choices satisfy (4.5.16).
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If r > 2, then ⟨x⟩ decomposes as a sum

⟨x⟩ = ⟨x′⟩⊕ ⟨x′′⟩⊕ ⟨x′′′⟩,
where the first and last summands are possibly empty and the middle summand

⟨x′′⟩ is either (xi,∗) or (∗, xi). Then choose c⟨x⟩ inductively as the composite along
the top and right of the following diagram, where ⟨y⟩ = ⟨x′⟩⊕ (xi)⊕ ⟨x′′′⟩, so ⟨y⟩
has length r − 1, and c⟨y⟩ is any choice of morphism satisfying (4.5.16).

⟨x′⟩⊕ ⟨x′′⟩⊕ ⟨x′′′⟩⟨x⟩ ⟨x′⟩⊕ (xi)⊕ ⟨x′′′⟩

⟨x⟩∧

⟨x′⟩⊕ (xi)⊕ ⟨x′′′⟩

⟨x⟩∧ ⟨y⟩∧

1⊕ c
⟨x′′⟩
⊕ 1

c
⟨y⟩

w
⟨y⟩

1⊕w
(xi) ⊕ 1

w
⟨x⟩

1

1

In the above diagram, the region at left commutes by definition of w⟨x⟩ and com-
position in FM and the lower right region commutes by inductive hypothesis on

c⟨y⟩. The upper triangle commutes by (4.5.17) for c⟨x
′′⟩, and hence the composite

c⟨x⟩ also satisfies (4.5.16). This completes the proof. �

Combining Lemma 4.5.15 with (4.5.6) gives an application that we explain in
Lemma 4.5.19 below.

Explanation 4.5.18 (Non-Uniqueness of c⟨x⟩). Note that the morphisms c⟨x⟩ con-
structed in the proof of Lemma 4.5.15 generally depend on a choice of non-
basepoint entry xi in ⟨x⟩ and are not necessarily unique. However, the condition

c⟨x⟩ ○w⟨x⟩ ≃ 1⟨x⟩ in M̃or(FM),
together with the observation w⟨x⟩ 2∼ 1⟨x⟩ from Explanation 4.5.4, implies that c⟨x⟩ ≃
1⟨x⟩ for any choice of c⟨x⟩. Therefore, all such choices result in identity morphisms

in F●M. This is the key property of the morphisms c⟨x⟩. ◇
The following result uses the notation of Explanation 4.5.4, Definition 4.5.13,

and Lemma 4.5.15 above.

Lemma 4.5.19. Suppose M is a pointed multicategory and suppose that, for each object⟨x⟩ ∈ FM, there is a morphism

c⟨x⟩ ∶ ⟨x⟩ ⟨x⟩∼ in FM

such that the composite

⟨x⟩∧ w⟨x⟩ ⟨x⟩ c⟨x⟩ ⟨x⟩∼
is ≃-equivalent to the identity 1⟨x⟩ in M̃or(FM). Then each morphism [⟨x⟩] [⟨y⟩] in
F●M is represented by a length-one sequence consisting of a morphism

( f ′, ⟨φ′⟩) ∶ ⟨x⟩∧ ⟨y⟩∼ in FM.
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Proof. Applying the observation (4.5.6) to c⟨x⟩, we have the following equivalences

in M̃or(FM):
(c⟨x⟩) ≃ (w⟨x⟩ , c⟨x⟩) 1∼ (c⟨x⟩ ○w⟨x⟩) ≃ (1⟨x⟩),

where the final relation holds by hypothesis on c⟨x⟩. Now suppose given a mor-
phism

( f , ⟨φ⟩) ∶ ⟨x⟩ ⟨y⟩ in FM.

Let ( f ′, ⟨φ′⟩) and ( f ′′, ⟨φ′′⟩) denote the composites indicated below.

(4.5.20)

⟨x⟩ ⟨y⟩

⟨x⟩∼

⟨x⟩∧

⟨y⟩∼

( f , ⟨φ⟩)

( f ′, ⟨φ′⟩)

( f ′′, ⟨φ′′⟩)

w⟨x⟩

c⟨y⟩w̃⟨x⟩

In the above diagram, either

● ⟨x⟩ has some non-basepoint operation, in which case the unlabeled mor-

phism ⟨x⟩∧ ⟨x⟩∼ is the identity and w̃⟨x⟩ is equal to w⟨x⟩, or
● ⟨x⟩ = (∗r) consists of all basepoint entries, in which case the unlabeled

morphism, w̃⟨x⟩, and w⟨x⟩, are all determined by basepoint operations

and a choice of index map 1 r for w̃⟨x⟩.

In either case, note that w̃⟨x⟩ is also ≃-equivalent to an identity. This conclusion

holds independently of which index map 1 r we choose for w̃⟨x⟩ in the case⟨x⟩ = (∗r).
Since each of w⟨x⟩, w̃⟨x⟩, and c⟨y⟩ is ≃-equivalent to an identity, we have

( f ′ , ⟨φ′⟩) ≃ ( f , ⟨φ⟩) ≃ ( f ′′ , ⟨φ′′⟩) in M̃or(FM).
This proves the assertion for morphisms of the form [( f , ⟨φ⟩)] in F●M.

For a pair of
ob∼-composable morphisms,

⟨x⟩ ( f , ⟨φ⟩) ⟨y⟩ ob∼ ⟨u⟩ (g, ⟨ψ⟩) ⟨v⟩,
note that we have ⟨y⟩∧ = ⟨u⟩∧ and ⟨y⟩∼ = ⟨u⟩∼ by definition of

ob∼ and (4.5.14).
Considering the following diagram,

⟨x⟩ ⟨y⟩

⟨x⟩∼

⟨x⟩∧

⟨y⟩∼

( f , ⟨φ⟩)

( f
′
, ⟨φ′⟩)

( f
′′

, ⟨φ′′⟩)

w
⟨x⟩

c
⟨y⟩

w̃
⟨x⟩

⟨u⟩ ⟨v⟩

⟨u⟩∼ ⟨v⟩∼

(g, ⟨ψ⟩)

(g′, ⟨ψ′⟩)

c
⟨v⟩

w̃
⟨u⟩

ob
∼

=
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we conclude that

[( f , ⟨φ⟩) , (g, ⟨ψ⟩)] ≃ [( f ′′, ⟨φ′′⟩) , (g′, ⟨ψ′⟩)] 1∼ [(g′, ⟨ψ′⟩) ○ ( f ′′, ⟨φ′′⟩)].
Therefore, by induction, each tuple of

ob∼-composable morphisms in M̃or(FM)
is equivalent to a single morphism in FM, with domain of the form ⟨x⟩∧ and
codomain of the form ⟨y⟩∼. This completes the proof. �

Combining Lemmas 4.5.15 and 4.5.19 yields the following result.

Corollary 4.5.21. Suppose M is a leftM1-module. Then each morphism [⟨x⟩] [⟨y⟩]
in FM1M = F●UM1M is represented by a length-one sequence consisting of a morphism

( f ′, ⟨φ′⟩) ∶ ⟨x⟩∧ ⟨y⟩∼ in FM.

Example 4.5.22 (Partition Multicategories). Applying Corollary 4.5.21 for a par-
tition multicategory M = Ma, note that the only partitions of the empty subset
∅ ⊂ a♭ are those consisting of empty subsets. Therefore, the only morphisms with

codomain (∅) ∈ F(Ma) are those that are
2∼-equivalent to 1⟨⟩. Thus Corollary 4.5.21

simplifies slightly to give the following description of the permutative category
FM1(Ma) = F●UM1(Ma).
Objects: Each object of FM1(Ma) is uniquely represented by a tuple ⟨s⟩ such that

each entry si is a nonempty subset of a♭.
Morphisms: Each morphism of FM1(Ma) is uniquely represented by a morphism

( f , ⟨φ⟩) ∶ ⟨s⟩ ⟨t⟩
where each si and tj is nonempty and each ⟨s⟩ f −1(j) is a partition of tj,

with corresponding operation φj = ι⟨s⟩
f−1(j)

inMa.

As a special case, with a = 1, the discussion above shows that FM1(M1) is
isomorphic to the permutation category with

● objects given by natural numbers n ≥ 0, corresponding to length-n tuples
of the subset s = {1}, and
● morphisms given by symmetric groups, whose elements permute the en-

tries of a tuple.

Thus, we conclude

(4.5.23) FM1(M1) ≅ F(I).
In fact, this isomorphism is a special case M = I combining the general isomor-
phisms

FM ≅ F●(M+) ≅ FM1(M1∧M+)
from (4.3.14) and (4.4.5) above. ◇

Corollary 4.5.21 can be used for an application similar to that of Example 4.5.22
in the case M = End●C, although there may be nontrivial morphisms x e in C

and hence this case does not admit the same simplification as in Example 4.5.22.
An alternative application is given in Proposition 4.6.6 below, where we use Ex-
planation 4.5.4 to show that there is an adjunction in PermCatsu between C and
F●End ●C.
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4.6. Componentwise Right Adjoint of the Pointed Adjunction

In this section we extend the componentwise right adjoint ̺C from Proposi-
tion 3.3.7 to the pointed context.

Definition 4.6.1. For each small permutative category C, we define the symmetric
monoidal functor ̺

●
C as the composite

(4.6.2)

C FEnd(C) = FEnd ●C F● End●C
̺C pEnd●C

̺
●

C

of

● the symmetric monoidal functor ̺C in Lemma 3.3.12 and
● the strict symmetric monoidal functor pEnd ●C in Definition 4.2.1. ◇

Explanation 4.6.3. The symmetric monoidal functor ̺
●
C in (4.6.2) is given explicitly

by combining the definition of ̺C from (3.3.2) with that of p from (4.2.2):

(4.6.4)

⎧⎪⎪⎨⎪⎪⎩
̺
●
C(x) = [(x)] for x ∈ ObC and

̺
●
C(φ) = [(11

, (φ))] ∶ [(x)] [(y)] for φ ∈ C(x, y).
We emphasize that ̺C is not strictly unital, as discussed in Remark 3.3.13. Despite
this, Lemma 4.6.5 below shows that ̺

●
C is strictly unital. ◇

Lemma 4.6.5. For each small permutative category C, the symmetric monoidal functor

̺
●
C ∶ C F● End●C

in (4.6.2) is strictly unital.

Proof. The monoidal and unit constraints for ̺C are given in Definition 3.3.9. Since
pEnd ●C is strict symmetric monoidal, the monoidal and unit constraints of ̺

●
C are

given by pEnd ●C(̺2
C) and pEnd ●C(̺0

C), respectively. By (3.3.10),

̺0
C = (ι0, 1e) ∶ ⟨⟩ (e).

Therefore pEndC(̺0
C
) = [(ι0, 1e)] = 1[⟨⟩], by relation

2∼. �

Proposition 4.6.6. For each small permutative category C, the adjunction εC ⊣ ̺C in
(3.3.8) extends along pEnd ●(C) to an adjunction in PermCatsu.

(4.6.7) F● End ●C C�
ε
●

C

̺
●

C

with

● ε
●
C the counit in (4.3.7) and

● ̺
●
C the strictly unital symmetric monoidal functor in Lemma 4.6.5.

Proof. Throughout this proof we write

E = End, E ● = End ●, and p = pE ●C.

Recalling Proposition 3.3.7, the adjunction εC ⊣ ̺C has unit and counit

1FEC
υ

̺CεC and εC̺C
1

1C,
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respectively, where υ is defined in (3.3.6). Lemma 3.3.12 and Remark 3.3.13 explain
that ρC is a symmetric monoidal functor that is generally not strong monoidal.

To show that υ gives a well defined a unit

υ
● ∶ 1F●E●C ̺

●
Cε
●
C,

first recall from (4.5.6) with M = E ●C that we have

(4.6.8) ( f , ⟨φ⟩) ≃ (w⟨x⟩ , ( f , ⟨φ⟩)) in M̃or(FE ●C),
where ( f , ⟨φ⟩) ∶ ⟨x⟩ ⟨z⟩ is any morphism in FE ●C and

w⟨x⟩ ∶ ⟨x⟩∧ ⟨x⟩
is determined by the nullary basepoint operations (Explanation 4.5.4).

Now suppose ⟨x⟩ ob∼ ⟨y⟩ in FE ●C. Then

● ⟨x⟩∧ = ⟨y⟩∧ by definition of
ob∼,

● ⊕ixi = ⊕jyj by strictness of the monoidal unit in C, and
● the following equalities hold in FE ●C:

υ⟨x⟩ ○w⟨x⟩ = υ⟨x⟩∧ = υ⟨y⟩∧ = υ⟨y⟩ ○w⟨y⟩.

Therefore, by (4.6.8) with M = E ●C we have

(υ⟨x⟩) ≃ (w⟨x⟩ , υ⟨x⟩) ≃ (w⟨y⟩ , υ⟨y⟩) ≃ (υ⟨y⟩).
Hence, the components

(4.6.9) υ
●
[⟨x⟩] = [υ⟨x⟩] ∶ [⟨x⟩] [(⊕ixi)] in F●E ●C

are well defined with respect to
ob∼-equivalence classes of objects. With this defini-

tion, naturality of υ implies that of υ
●

and we have

p ∗ υ = υ
● ∗ p

in the following diagram in PermCatsu.

(4.6.10)

FEC

FE ●C
C

F●E ●C

FEC

FE ●C

C

F●E ●C

p p

1

εC ̺C

ε
●

C ̺
●

C

1

⇒

υ

⇒

υ
●

Since ε
●
Cp = εC, we also have

ε
●
C̺

●
C = 1C.

One of the triangle identities for (ε ●C, ̺
●
C, υ

●
, 1C) is, therefore, immediate. The other

follows from the corresponding identity for (εC, ρC, υ, 1C) on representative objects
and morphisms. �

Explanation 4.6.11. Note that our proof of Proposition 4.6.6 depends on specific
details from Explanation 4.5.4 instead of the 2-categorical pushout description
of F●M in Proposition 4.2.5. This is because Proposition 4.2.5 describes a push-
out in PermCatst, while (4.6.10) is a diagram in PermCatsu. Thus, a more general
proof of Proposition 4.6.6 using Proposition 4.2.5 would require a comparison of
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2-dimensional pushouts. The strictification theory of [BKP89] provides some com-
parisons of this sort, and may be one way of approaching more general versions
of the results here and below. ◇
Remark 4.6.12. Our first main application of Proposition 4.6.6 is Theorem 4.7.3,
showing that the components of ε

● are stable equivalences. The further applica-
tions of Proposition 4.6.6, in Theorems 5.4.1, 5.5.12, 12.1.6, and 12.4.6 use the same
result for ̺

● instead. The reason for this change is that ̺
● is shown to be Cat-

multinatural in Lemma 5.3.3, while the corresponding result for ε
● does not hold

(see [JY22a, Remark 10.4]). ◇
Recall from Example C.4.8 (i) that each strictly unital symmetric monoidal

functor P induces a pointed multifunctor End●(P). Since the components of ̺
●

are
strictly unital, by Lemma 4.6.5, we may consider End ●̺

●. For comparison, recall
the description of η

●
from Explanation 4.3.3. The following result is used in the

proof of Theorem 12.1.6, step (v).

Lemma 4.6.13. Suppose C is a small permutative category. Then the two pointed multi-
functors below are equal.

End ●C End ●F●End●C
η
●

End ●C

End ●̺
●

C

Proof. We need to show that η
●
End ●C and End ●̺

●
C have (i) the same object assign-

ment and (ii) the same multimorphism assignment. For each object x in C, there
are object equalities

η
●
End ●C(x) = [(x)] = (End●̺ ●C)(x) in End●F●End ●C.

This proves (i).
To prove (ii), consider an r-ary multimorphism

ψ ∈ (End●C)(⟨xi⟩ri=1 ; y) = C(⊕r
i=1 xi , y).

Then there are equalities

(4.6.14) η
●
End ●C(ψ) = [(ιr , (ψ))] = (End●̺ ●C)(ψ)

in

(End ●F●End●C)(⟨[(xi)]⟩ri=1 ; [(y)]) = (F●End●C)([⟨xi⟩ri=1] , [(y)])
for the following reasons.

● The first equality in (4.6.14) follows from definition (3.2.3) of

ηEndC(ψ) = (ιr , (ψ)) ∶ ⟨xi⟩ri=1 (y)
and the fact that each component of p is a strict symmetric monoidal func-
tor (Definition 4.2.1).
● By definition (3.3.2), we have the equality

̺C(ψ) = (11
, (ψ)) ∶ (⊕r

i=1 xi) (y).
The symmetric monoidal structure of ̺C in Lemma 3.3.12 implies that(End●̺ ●C)(ψ) is the following composite.

[⟨xi⟩ri=1] [(ιr , 1⊕i xi)] [(⊕r
i=1 xi)] [(1

1
, (ψ))] [(y)]
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This composite is equal to the middle entry in (4.6.14) because

1
1
○ ιr = ιr ∶ r 1 and

ψ ○ 1⊕ixi
= ψ ∶ ⊕r

i=1 xi y.

This proves (4.6.14). �

4.7. Homotopy Theory of Pointed Multicategories

Recall the notions about relative categories in Definition 2.1.6. We extend the
relative category structure on PermCatst to Multicat∗ and ModM1 as follows.

Definition 4.7.1 (Stable Equivalences). We define the wide subcategories

SM1 = (FM1)−1(S I) ⊂ModM1 and

S● = F−1
● (S I) ⊂Multicat∗

as the subcategories created by the indicated functors below.

(4.7.2)
(ModM1 , SM1)
(Multicat∗ , S●)

(PermCatst , S I)
FM1

F●

● S I = I−1(S) ⊂ PermCatst is the wide subcategory in Definition 3.5.1.
● FM1 is the underlying functor of the 2-functor in (4.4.3).
● F● is the underlying functor of the 2-functor in Theorem 4.1.17.

We refer to morphisms in SM1 and S● as FM1-stable equivalences and F●-stable equiv-
alences, respectively. ◇

Note that F●-stable equivalences are the preimages of the stable equivalences
in S ⊂ PermCatsu (2.5.14) under the following composite.

Multicat∗ PermCatst PermCatsu
F● I

Recall the notion of an adjoint equivalence of homotopy theories in Definition 2.1.10.

Theorem 4.7.3. The adjunction in Theorem 4.3.11

�(Multicat∗ , S●) (PermCatst , S I)F●

End ●

is an adjoint equivalence of homotopy theories.

Proof. The left adjoint F● is a relative functor by definition of S●. To see that
End● is a relative functor, first recall that each ε

●
C is a left adjoint in PermCatsu

by Proposition 4.6.6. Thus, the components of ε
●

are stable equivalences by Re-
mark 2.5.15 (2). Naturality of ε

● and the 2-out-of-3 property for stable equivalences
(Remark 2.5.15 (1)) then imply that

F●End●P ∶ F●End ●C F●End●D

is a stable equivalence whenever P is a stable equivalence. This, in turn, implies
that End ●P is an F●-stable equivalence. Hence End● is a relative functor.

The triangle identities for η
● and ε

●, together with the 2-out-of-3 property, im-
ply that the components of η

●
are also stable equivalences. This completes the

proof. �
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Recall from Definition 3.5.1 the wide subcategory

SF = F−1(S I) ⊂Multicat

of F-stable equivalences. Also recall the 2-functor in (C.4.14)

(−)+ ∶Multicat Multicat∗

given by adjoining a basepoint. Corollary 4.7.4 below uses the underlying functor
of this 2-functor.

Corollary 4.7.4. The functor

(−)+ ∶ (Multicat , SF) ∼ (Multicat∗ , S●)
is an equivalence of homotopy theories, with S● as in Definition 4.7.1.

Proof. The result follows by the 2-out-of-3 property for equivalences of homotopy
theories, using Theorems 3.5.3 and 4.7.3 together with Theorem 4.3.11 (ii). �

4.8. Homotopy Theory ofM1-Modules

Theorem 4.8.1. The adjunction in Proposition 1.3.19

(4.8.2) �(Multicat∗ , S●) (ModM1 , SM1)
M1∧−

UM1

is an adjoint equivalence of homotopy theories, with S● and SM1 as in Definition 4.7.1.

Proof. The left adjoint, M1 ∧ −, creates F●-stable equivalences because, by Theo-
rem 4.4.1 (iii), there is a 2-natural isomorphism

F● ≅ FM1 ○ (M1∧−).
The right adjoint, UM1, creates FM1-stable equivalences by definition of FM1 (4.4.3).

Recalling Explanation 1.3.20, the counit of the adjunction (4.8.2) is a compo-
nentwise isomorphism and, therefore, a componentwise FM1-stable equivalence.
Using the 2-out-of-3 property and the fact thatM1∧− creates stable equivalences,
the left triangle identity then shows that the unit of (4.8.2) is a componentwise
F●-stable equivalence. �

Theorem 4.8.3. The adjunction in Theorem 4.4.1

�(ModM1 , SM1) (PermCatst , S I)
FM1

EndM1

is an adjoint equivalence of homotopy theories, with SM1 as in Definition 4.7.1.

Proof. Recall from Theorem 4.7.3 that the components of η
● and ε

● are stable equiv-
alences. By Explanation 4.4.6 we have

UM1η
M1

M
= η

●
UM1 M

.

This shows that ηM1 is a componentwise FM1-stable equivalence because UM1

creates FM1-stable equivalences (4.4.3). Likewise, εM1 is a componentwise stable
equivalence by (4.4.9). �



CHAPTER 5

Multiplicative Homotopy Theory of Pointed

Multicategories andM1-Modules

The main results of this chapter extend the equivalences of homotopy theories
between categories of non-symmetric Q-algebras, for Q a small non-symmetric
Cat-multicategory, in Theorem 3.5.5,

FQ ∶ (MulticatQ , (SF)Q) ∼ ((PermCatsu)Q , SQ) ∶ EndQ,

from MulticatQ to MulticatQ∗ and (ModM1)Q. The three pairs of functors in the dia-
gram below are shown to be inverse equivalences of homotopy theories in Theo-
rems 5.4.1, 5.5.12, and 5.5.14.

(5.0.1)

(MulticatQ∗ , SQ● ) ((PermCatsu)Q , SQ)

((ModM1)Q , (SM1)Q)

F
Q
●

End
Q
●

F
Q
M1

End
Q
M1U

Q
M1

(M1∧−)Q

Connection with Other Chapters. In Chapter 12 we show, after developing
the relevant basic theory in the intervening chapters, that the multifunctors F● and
FM1 also induce equivalences of homotopy theories between enriched diagram
categories.

Background. Recall Definition 2.1.8 for inverse equivalences of homotopy
theories. Chapter 4 describes the underlying adjoint pairs F● ⊣ End● and FM1 ⊣
EndM1 in Theorems 4.3.11 and 4.4.1, respectively. Note that these adjunctions are

restricted to PermCatst in Chapter 4, but the natural domain of End●, and hence
also EndM1, is PermCatsu (see Explanation 1.4.32). The necessity of expanding to
PermCatsu for the codomain of F● as a non-symmetric Cat-multifunctor is described
in Explanation 5.2.5. Also recall Remark 4.6.12 for further technical remarks about
how Proposition 4.6.6 is used below. The pair (M1 ∧ −) ⊣ UM1 is described in
Proposition 1.3.19.

Chapter Summary. Section 5.1 defines the strong multilinear functors Fn● with

their linearity constraints (Fn● )2p. Section 5.2 uses Fn● to define F● on multimorphism

categories, showing that F● is a non-symmetric Cat-multifunctor. Section 5.3 devel-
ops the (non-symmetric) Cat-multinaturality of η

● and ̺
●. Sections 5.4 and 5.5 de-

velop the three inverse equivalences of homotopy theories shown in the diagram
(5.0.1) above. Here is a summary table.
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n-linear functors (Fn● , (Fn● )2p) 5.1.1, 5.1.7

non-symmetric Cat multifunctor F● 5.2.2, 5.2.6

non-symmetric Cat-multinatural transformations

p ∶ FU ● F● 5.2.8

η
● ∶ 1Multicat∗ End●F● 5.3.2

̺
● ∶ 1PermCatsu F●End ● 5.3.3

inverse equivalences of homotopy theories

(FQ● , EndQ● ) 5.4.1

(FQM1 , EndQM1) 5.5.12

((M1∧−)Q , UQ
M1) 5.5.14

We remind the reader of Convention A.1.2 about universes and Convention A.1.30
about left normalized bracketing for iterated products.

5.1. The Strong Multilinear Functor Fn●

This section defines pointed variants of the strong multilinear functors Fn from
Proposition 3.4.21. These are determined by commutativity with the strict sym-
metric monoidal functors

pM ∶ FM F●M

for small pointed multicategories M, from Definition 4.2.1.
To begin, the definition of underlying functors Fn● depends on the tensor prod-

ucts of objects (3.4.4) and morphisms (3.4.13) defining Fn. Also recall the universal
morphism ̟ (1.2.3) from a tensor product of small pointed multicategories to their
corresponding smash product. For the case n = 0, recall from Example 4.5.1 that
F●(I+) ≅ F(I) is isomorphic to the permutation category.

Definition 5.1.1 (The Functors Fn● ). Suppose ⟨M⟩ = ⟨Mi⟩ni=1 are small pointed mul-
ticategories. We define the data of a functor Fn● such that the following diagram
commutes.

(5.1.2)

∏n
i=1FMi F(⊗n

i=1 Mi)

∏n
i=1F●Mi

F(⋀n
i=1 Mi)

F●(⋀n
i=1 Mi)

F
n

F̟

∏ipMi

F
n
●

p(∧iMi)

If n = 0, then recall T is the empty product in Multicat and I+ is the empty
smash product in Multicat∗. The functor

F0
● ∶ 1 F●(I+)

is defined by the choice of object [(1)] ∈ F●(I+), where (1) is the length-one tuple
consisting of the unique object of the initial operad, I.

Now suppose n > 0.

Assignment on Objects: Define Fn● on objects by

(5.1.3) Fn
● ([⟨x1⟩], . . . , [⟨xn⟩]) = [⟨x1⋯n⟩] ∈ F●(⋀n

i=1 Mi),
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using the tensor product of tuples

(5.1.4) ⟨x1⋯n⟩ = ⟨⋯ ⟨x1⋯n
j1,...,jn

⟩r1

j1=1
⋯ ⟩rn

jn=1

from (3.4.4). This assignment is well defined on
ob∼-equivalence classes

because the term

x1⋯n
j1,...,jn

= ⟨xi
ji
⟩ni=1 in ⊗n

i=1 Mi

is sent to the basepoint object of ⋀i Mi whenever any xi
ji
= ∗ ∈ Mi. Thus,

any basepoint terms of ⟨xi⟩ produce corresponding basepoint terms of

⟨x1⋯n⟩.
Assignment on Morphisms: For morphisms, suppose given length-one sequences

[( f i , ⟨φi⟩)] ∶ [⟨xi⟩] [⟨yi⟩] in F●Mi.

Define

(5.1.5) Fn
● ([( f 1, ⟨φ1⟩)], . . . , [( f n, ⟨φn⟩)]) = [( f 1⋯n, ⟨φ1⋯n⟩)],

using the index map f 1⋯n and the tensor product of morphisms

(5.1.6) ⟨φ1⋯n⟩ =⊗n
i=1⟨φi⟩

from (3.4.13). This assignment is well defined on
2∼-equivalence classes

because the operation

⊗n
i=1 φi

ki
in ⊗n

i=1 Mi

is sent to a basepoint operation of ⋀i Mi whenever any φi
ki

is a basepoint

operation in Mi.
Composition in F●Mi is given by concatenation of representative se-

quences, so the definition of Fn● on morphisms with representative se-
quences of length greater than one is determined by the desired functori-

ality of Fn● . These assignments are well defined on
1∼-equivalence classes

by functoriality of Fn, p, and F●(̟).
The assignments above show that (5.1.2) commutes on objects and morphisms.

The definition of Fn● on morphisms implies that it is functorial. ◇
Definition 5.1.7 (Linearity Constraints of Fn● ). Suppose ⟨M⟩ = ⟨Mi⟩ni=1 is a tuple
of small pointed multicategories. For each p ∈ {1, . . . , n}, we define the data of a

natural transformation (Fn● )2p with components determined on representatives by

(Fn)2p. That is, we define

(5.1.8) (Fn
● )2p = [(Fn)2p] = [(ρrp,r̂p , ⟨1⟩)] ∶ [⟨x1⋯n⟩]⊕ [⟨x̂1⋯n⟩] ≅ [⟨x̃1⋯n⟩]

for

⟨x̂p⟩ ∈ FMp, and ⟨x1⋯n⟩, ⟨x̂1⋯n⟩, ⟨x̃1⋯n⟩ ∈ F(⊗n
i=1 Mi)

as in (3.4.17). The components (5.1.8) are well defined because the operations de-

termining (Fn)2p are colored units and, therefore,
ob∼-equivalent representatives in

the domain or codomain of (5.1.8) will result in
2∼-equivalent components (Fn)2p.
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Naturality of (5.1.8) follows, for length-one morphism sequences, from that

of (Fn)2p. This implies naturality with respect to general
ob∼-composable morphism

sequences because composition in F●(⋀n
i=1 Mi) is given by concatenation. ◇

Now we show that the constructions above assemble to form multilinear func-
tors (Definition 1.4.2).

Proposition 5.1.9. Suppose ⟨M⟩ = ⟨Mi⟩ni=1 is a tuple of small pointed multicategories for
n ≥ 0. The data in Definitions 5.1.1 and 5.1.7

(5.1.10) (Fn
● , ⟨(Fn

● )2p⟩np=1
) ∶ ∏n

i=1F●Mi F●(⋀n
i=1 Mi)

form a strong n-linear functor.

Proof. Each of the multilinearity axioms in Definition 1.4.2 follows from the corre-

sponding axiom for (Fn , ⟨(Fn)2p⟩np=1
) on representatives. The components of each

(Fn● )2p are isomorphisms because their representatives (Fn)2p are so. �

Proposition 5.1.11. For n ≥ 0, the strong n-linear functor in (5.1.10),

(Fn
● , ⟨(Fn

● )2p⟩np=1
) ∶ ∏n

i=1F●Mi F●(⋀n
i=1 Mi),

is 2-natural with respect to pointed multifunctors and pointed multinatural transforma-
tions.

Proof. Suppose given a tuple ⟨H⟩ = ⟨Hi⟩ni=1 of pointed multifunctors

Hi ∶Mi Ni for 1 ≤ i ≤ n.

Naturality of Fn● with respect to ⟨Hi⟩ is verified by commutativity of the inner
rectangle in the following diagram.

(5.1.12)

∏n
i=1F●Mi ∏n

i=1F●Ni

F●(⋀n
i=1 Mi) F●(⋀n

i=1 Ni)

∏n
i=1FMi ∏n

i=1FNi

F(⊗n
i=1 Mi) F(⊗n

i=1 Ni)

F(⋀n
i=1 Mi) F(⋀n

i=1 Ni)

∏ipMi ∏ipNi

F̟

p

F̟

p

∏iFHi

F(⊗i Hi)

F(∧i Hi)

F
n

F
n

∏iF●Hi

F●(∧i Hi)

F
n
● F

n
●

The functors p are surjective on objects and on length-one tuples of morphisms.
Since morphisms in each F●Mi are generated under composition (concatenation)
by those of length one, it suffices to verify

Fn
● ○ (∏iF●Hi) ○ (∏ipMi

) = F●(⋀i Hi) ○ Fn● ○ (∏ipMi
).

The equality above holds by commutativity of the following in (5.1.12).

● The trapezoids at left and right commute by (5.1.2).
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● The bottom trapezoid commutes by naturality of ̟ (1.2.3).
● The remaining two trapezoid regions commute by naturality of p (4.2.4).
● The outer rectangle commutes by naturality of Fn.

This shows that Fn● is natural with respect to ⟨H⟩. A similar analysis for
pointed multinatural transformations shows that Fn● is 2-natural. �

5.2. Pointed Free Permutative Category as a Non-Symmetric Cat-Multifunctor

In this section we extend the 2-functor

F● ∶Multicat∗ PermCatst

in Theorem 4.1.17 to multimorphism categories.

Convention 5.2.1. To avoid confusion in Definition 5.2.2 below, for small pointed
multicategories M and N, we denote by

F● ∶Multicat∗(M,N) PermCatst(F●M,F●N)
the assignment of F● on pointed multifunctors and pointed multinatural transfor-
mations as in Definitions 4.1.12 and 4.1.15, respectively. This is the pointed analog
of Convention 3.4.25 for F. ◇

In (5.2.4) below, we use the multilinear functor Fn● (Proposition 5.1.9).

Definition 5.2.2. Suppose ⟨M⟩ = ⟨Mi⟩ni=1 and N are small pointed multicategories.
We define a functor between multimorphism categories

(5.2.3) F● ∶Multicat∗(⟨M⟩ ; N) PermCatsu (⟨F●M⟩ ; F●N)
as follows. Suppose given pointed multifunctors H and K and a pointed multinat-
ural transformation θ as in the diagram below.

⟨M⟩ N

H

K

⇒

θ

Then F● sends these data to the following composite n-linear functors and whisker-
ing.

(5.2.4) ⟨F●M⟩ F●(⋀n
i=1 Mi) F●N

F
n
●

F●H

F●K

⇒

F●θ

This finishes the definition of the multimorphism functor F●. ◇
Explanation 5.2.5 (Codomain Not Strict). In (5.2.3) above and Theorem 5.2.6 be-
low, we stress that the codomain uses PermCatsu and not PermCatst, which is the
codomain of F● in Convention 5.2.1. The reason is that the definition of F● in (5.2.4)
involves the strong n-linear functor Fn● in (5.1.10). The latter is not strict because the

components of its linearity constraints (Fn● )2p in Definition 5.1.7 are not identities

in general. ◇
Theorem 5.2.6. There is a non-symmetric Cat-multifunctor

(5.2.7) F● ∶Multicat∗ PermCatsu

with

● object assignment in Definition 4.1.11 and
● multimorphism functors in Definition 5.2.2.
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Moreover, F● extends the 2-functor in Theorem 4.1.17.

Proof. To see that F● preserves units, note that F1● is the identity monoidal functor.

Since F● is functorial, we have

F●(1M) = 1F●M

for each small pointed multicategory M.
To see that F● preserves composition, suppose given

Hi ∈Multicat∗(⟨Mi⟩ ; M′i) for 1 ≤ i ≤ n, and

H′ ∈Multicat∗(⟨M′⟩ ; M′′).
Let ki denote the length of ⟨Mi⟩. The two multilinear functors

F●(γ(H′ ; ⟨H⟩)) and γ(F●H′ ; ⟨F●H⟩)
are given by the two composites around the boundary in the following diagram,
where the unlabeled isomorphisms are given by reordering terms.

∏i,jF●Mi,j

F●(⋀i,j Mi,j) F●(⋀i⋀j Mi,j) F●(⋀i M
′

i) F●M′′

∏i∏jF●Mi,j

∏iF●(⋀j Mi,j) ∏iF●M
′

iF
k1+⋯+kn
●

≅ F●(∧i Hi) F●H
′

≅

∏iF
ki
●

∏iF●(Hi)

F
n
●F

n
●

In the above diagram, the two composites around the middle rectangle are
equal as multilinear functors by naturality of Fn● (Proposition 5.1.11) with respect
to the multifunctors Hi. The rectangle at left commutes on objects and length-one

sequences of morphisms because the corresponding diagram for F and (Fn, (Fn)2p)
commutes (Theorem 3.4.31 c.f., proof of [JY22a, 8.1]). The commutativity for gen-
eral morphisms then follows from functoriality of Fn● . A similar diagram for multi-
natural transformations Hi Ki and H′i K′i commutes by the 2-naturality of
Fn● . �

Recall (non-symmetric) Cat-multinatural transformation from Explanation C.2.2.

Lemma 5.2.8. The 2-natural transformation p of Proposition 4.2.3 extends to a non-
symmetric Cat-multinatural transformation

Multicat∗ PermCatsu .

F ○U ●

F●

⇒

p

Proof. Recall from Explanation 1.2.14 that the forgetful

U ● ∶Multicat∗ Multicat

is a Cat-multifunctor with n-ary multimorphism functors

Multicat∗(⟨M⟩ ; N) Multicat(U ●⟨M⟩ ; U ●N)
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given by composition and whiskering with ̟ ∶ ⊗iMi ∧i Mi (1.2.13). The Cat-
multifunctoriality of F is described in Theorem 3.4.31 and its multimorphism func-
tors are given by precomposition and whiskering with the n-linear functors Fn

from Definition 3.4.14.
For objects of Multicat∗(⟨M⟩ ; N), i.e., multifunctors

H ∶ ⋀i Mi N,

the object Cat-naturality diagram (C.2.8) for p is the following. In this diagram, we
suppress U ● except in the lower left arrow.

∏iFMi

F(⊗i Mi)

FN

∏iF●Mi

F●(⋀i Mi)

F●N

F(⋀i Mi)
F

n

F(U ●H)

F
n
●

F●H

∏ipMi

F̟ p∧iMi

pN

FH

In the above diagram, the top rectangle commutes by construction (5.1.2), the
lower left triangle commutes by definition of U ●H, and the lower right trapezoid
commutes by naturality of p. Therefore, the object Cat-naturality condition (C.2.8)

holds for each H ∈ Multicat∗(⟨M⟩ ; N). For morphisms, i.e., multinatural transfor-
mations

θ ∶ H H′ ∶ ⋀i Mi N,

a similar argument applies to verify the morphism Cat-naturality condition (C.2.9),
using 2-naturality of p. �

Example 5.2.9 (Partition Products). Recall from Definition 1.3.4 the partition prod-
uct multifunctor

Πa,b ∶Ma ∧Mb M(a ∧ b)
for finite pointed sets a and b. It is given on objects by the Cartesian product, and
preserves operations because a pairwise Cartesian product of partitions ⟨s⟩ and ⟨t⟩
provides a partition of (∪isi)× (∪jtj). Using the description from Example 4.5.22,
and omitting the forgetful UM1, the composite

F●(Ma)× F●(Mb) F
2
●

F●(Ma ∧Mb) F●(Πa,b)
F●(M(a ∧ b))

is given as follows for two tuples of nonempty subsets s1
i ⊂ a♭ and s2

j ⊂ b♭:

[⟨s1⟩], [⟨s2⟩] [⟨s12⟩] [⟨⟨s1
i × s2

j ⟩i⟩j]. ◇
5.3. Comparison Transformations

Consider the diagram

(5.3.1) F● ∶Multicat∗ PermCatsu ∶ End ●
consisting of the following data.

● Multicat∗ is the Cat-multicategory in Explanation 1.2.9.
● PermCatsu is the Cat-multicategory in Theorem 1.4.29.
● End● is the Cat-multifunctor in Explanation 1.4.32.
● F● is the non-symmetric Cat-multifunctor in Theorem 5.2.6.
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Recall from Theorem 4.3.11 that the 2-adjunction

Multicat∗ � PermCatst
F●

End ●

has unit

η
● ∶ 1Multicat∗ End●F●

in Definition 4.3.1. Recall (non-symmetric) Cat-multinatural transformation from Ex-
planation C.2.2.

Lemma 5.3.2. In the context of (5.3.1),

η
● ∶ 1Multicat∗ End●F●

is a non-symmetric Cat-multinatural transformation.

Proof. In this proof we will omit the adjective non-symmetric for the Cat-multinatural
transformations under discussion. Recall from (4.3.2) that η

●
is the composite of

End●(p) = End ● ∗ p with η. Thus, Cat-multinaturality of η
● follows from that of

η (Lemma 3.4.34) and that of p ∗ End ● (Lemma 5.2.8 and Explanation 1.4.32). In-
deed, as a 2-natural transformation, η

●
satisfies the following equality of pasting

diagrams.

=

Multicat∗

PermCatsu
Multicat∗

Multicat

Multicat∗

F●

End●

U ●

1 U ●

1
⇒

η
●

Multicat∗

PermCatsu
Multicat∗

Multicat

Multicat∗

F●

End●

U ●

1 U ●

Multicat

U ●

F

1

End

⇒

p

⇒

η

The right hand side is also a diagram of Cat-multinatural transformations, and
thus U ● ∗ η

●
is Cat-multinatural. Now since

(i) the two conditions for Cat-multinaturality in Explanation C.2.2 consist of
certain equalities (C.2.8) and (C.2.9) involving composition of operations,
and

(ii) and such equalities are detected on underlying multicategories, by ap-
plying U ●,

we conclude that η
●

also satisfies the conditions for Cat-multinaturality. �

Recall from Lemma 4.6.5 the strictly unital symmetric monoidal functor

̺
●
C ∶ C F● End●C

for each small permutative category C.

Lemma 5.3.3. In the context of (5.3.1),

̺
● ∶ 1PermCatsu F● End●

is a non-symmetric Cat-multinatural transformation.

Proof. For objects of PermCatsu (⟨C⟩ ; D), i.e., multilinear functors

Q ∶ ∏n
i=1Ci D,
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the object Cat-naturality diagram (C.2.8) for ̺
● is the following, where we use the

abbreviation E ● = End●.

(5.3.4)

∏iCi ∏iFE ●Ci ∏iF●E ●Ci

D FE ●D F●E ●D

F(⊗i E ●Ci) F●(⋀i E ●Ci)

∏i̺Ci ∏ipE●Ci

̺D pE●D

Q

F
n

F(E●Q)

F
n
●

F●(E●Q)

In the above diagram, the rectangle at right commutes by multifunctoriality of p
(Lemma 5.2.8). To verify that the rectangle at left commutes, we first consider the
underlying functors and then check linearity constraints.

For morphisms

φi ∶ bi ci in Ci,

the composite to FE ●D along the top and vertical middle functors of (5.3.4) is given
as follows:

(φ1,⋯, φn) ( (11, (φ1)), . . . (11, (φn))) by (3.3.2) for ̺,

(11 , (φ1⋯n) ) by (3.4.16) for Fn,

(11 , (Hφ1⋯n) ) by (3.1.18) for H = E ●Q,

where (φ1⋯n) is the length-one tuple consisting of the morphism φ1⋯n = ⊗iφ
i in

⊗iCi. By (1.4.36) we have

Hφ1⋯n = (E ●Q)(φ1, . . . , φn) = Q(φ1, . . . , φn);
the linear constraints Q2 do not appear because each φi is a unary operation in
E ●C. This verifies that the left side of (5.3.4) commutes as a diagram of underlying
functors.

Next we consider the jth linearity constraints on the left side of (5.3.4), for
1 ≤ j ≤ n. Suppose given

ci ∈ Ci for each 1 ≤ i ≤ n, and ĉj ∈ Cj.

Recall the notation ○j from Notation 1.4.1. We will use the following:

c̃j = cj ⊕ ĉj in Cj,

{c} = (c1, . . . , cn) in ∏iCi,

{ĉ} = {c ○j ĉj} = (c1, . . . , ĉj, . . . , cn) in ∏iCi, and

{c̃} = {c ○j c̃j} = (c1, . . . , c̃j, . . . , cn) in ∏iCi.



112 5. MULTIPLICATIVE HOMOTOPY THEORY

So each of {ĉ} and {c̃} has the same entries as {c} in all but the jth position. Next
we introduce further notation:

∏̺ =∏i̺Ci
,

(c1⋯n) =⊗i(ci) = Fn(∏̺{c}) in F(⊗i E ●Ci),
(ĉ1⋯n) = Fn(∏̺{ĉ}) in F(⊗i E ●Ci),
(c̃1⋯n) = Fn(∏̺{c̃}) in F(⊗i E ●Ci), and

c =∏̺{c} ○j (cj, ĉj) in ∏iFE ●Ci.

So each of (c1⋯n), (ĉ1⋯n), and (c̃1⋯n) is a length-one tuple and

c = ((c1), . . . , (cj, ĉj), . . . , (cn))
has the same entries as ∏̺{c} except entry j, which is ∏̺(c)⊕∏̺(ĉj) = (cj, ĉj).
With this notation, note that Fnc is the length-two tuple (c1⋯n, ĉ1⋯n).

Applying (1.4.27) and (3.4.18), the jth linearity constraint of Fn ○ ∏̺ at the
objects {c} and {ĉ} is the composite in Fn(⊗iE ●Ci)
(5.3.5) (c1⋯n, ĉ1⋯n) (Fn)2j = 1

Fnc
F

n(⟨1 ○j ̺
2
Cj
⟩) (c̃1⋯n),

where we note

Fn(∏̺{c})⊕Fn(∏̺{ĉ}) = (c1⋯n, ĉ1⋯n) and

Fn(∏̺{c̃}) = (c̃1⋯n).
Recall (3.3.11) for the monoidal constraint ρ2

Cj
. Since F(E ●Q) is strict symmetric

monoidal, the jth linearity constraint of the top and vertical middle composite of
(5.3.4) is given by applying F(E ●Q) to (5.3.5), resulting in the following:

Q(c1⋯n)⊕Q(ĉ1⋯n) 1
Q(c1⋯n)⊕Q(ĉ1⋯n) (ι2 , (Q2

j ))
Q(c̃1⋯n).

Now since

(ι2 , (Q2
j )) = ̺D(Q2

j ),
we conclude that the jth linearity constraints of the two composites in the left
half of (5.3.4) are equal. This completes verification of the object Cat-naturality
condition (C.2.5) for ̺.

Verification of the morphism Cat-naturality condition (C.2.6) is similar. Given
a multilinear transformation

θ ∶ Q Q′,

one verifies

F●(E ●θ) ∗ (Fn
● ○∏ipE ●Ci

○∏i̺Ci
) = pE ●D ∗ F(E ●θ) ∗ (Fn ○∏i̺Ci

) = (pE●D ○ ̺D) ∗ θ,

using Lemma 5.2.8 for the first equality and (1.4.37) with (3.1.20) for the second.
This completes the proof. �
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5.4. Multiplicative Homotopy Theory of Pointed Multicategories

Recall from Definition 4.7.1 the wide subcategory

S● ⊂Multicat∗

of F●-stable equivalences created by

F● ∶ (Multicat∗ , S●) (PermCatst , S I).
Recall from Definition 3.5.4 the notion of non-symmetric algebras.

Theorem 5.4.1 below considers the Cat-multifunctors (non-symmetric for F●)

F● ∶Multicat∗ PermCatsu ∶ End ●
in (5.3.1). This result simultaneously extends

● Theorem 3.5.5 from Multicat to Multicat∗ and
● Theorem 4.7.3 to non-symmetric algebras.

As in Theorem 3.5.5, each of the two induced functors FQ● and EndQ● is given by
post-composition and whiskering with the respective functor.

Theorem 5.4.1. Suppose Q is a small non-symmetric Cat-multicategory. In the context
of (5.3.1), the induced functors

FQ● ∶ (MulticatQ∗ , SQ● ) ∼ ((PermCatsu)Q , SQ) ∶ EndQ●
are inverse equivalences of homotopy theories in the sense of Definition 2.1.8.

Proof. We first verify that FQ● and EndQ● are relative functors. The functor FQ● is a

relative functor because the stable equivalences SQ● are determined component-
wise and F● creates the stable equivalences S●.

In Theorem 4.7.3, End ● is shown to be a relative functor with respect to strict
symmetric monoidal functors. For more general strictly unital symmetric monoi-
dal functors, recall from Lemma 4.6.5 the strictly unital

̺
●
C ∶ C F●End●C for C ∈ PermCatst .

Proposition 4.6.6 shows that each ̺
●
C is a right adjoint and, hence, a stable equiv-

alence of permutative categories. Lemma 5.3.3 shows that ̺
●

is Cat-multinatural
and, in particular, 2-natural with respect to strictly unital symmetric monoidal
functors. Therefore, if P ∶ C D is a stable equivalence in PermCatsu, then the
naturality diagram

(5.4.2)
C F●End ●C

D F●End ●D

̺
●

C

∼

̺
●

D

∼

P ∼ F●End●P

shows that F●End●P is a stable equivalence by the 2-out-of-3 property. Since F● cre-
ates stable equivalences, this implies that End●P is a stable equivalence. Therefore,
End● is a relative functor with respect to the strictly unital stable equivalences.

Thus it follows that EndQ● is also a relative functor with respect to SQ.
Since ̺

● is 2-natural and componentwise a stable equivalence, the induced

(̺ ●)Q is a natural stable equivalence

1(PermCatsu)Q
(̺ ●)Q
∼ FQ● End

Q
● .
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For the reverse composite, recall from Lemma 5.3.2 that η
● is Cat-multinatural and,

in particular, 2-natural with respect to pointed multifunctors. The components of
η
● are shown to be stable equivalences in the proof of Theorem 4.7.3, and hence

the induced (η ●)Q is a natural stable equivalence

1
MulticatQ∗

(η ●)Q
∼ EndQ● F

Q
● .

Thus, by Proposition 2.1.9, FQ● and EndQ● are equivalences of homotopy theories
between categories of non-symmetric Q-algebras. This completes the proof. �

5.5. Multiplicative Homotopy Theory ofM1-Modules

Consider the diagram

(5.5.1) FM1 ∶ModM1 PermCatsu ∶ EndM1

consisting of the following.

● ModM1 is the Cat-multicategory in Explanation 1.3.24.
● PermCatsu is the Cat-multicategory in Theorem 1.4.29.
● EndM1 is the Cat-multifunctor in Explanation 1.4.41.
● FM1 is the non-symmetric Cat-multifunctor given by the following com-

posite.

(5.5.2)

ModM1 Multicat∗ PermCatsu
UM1 F●

FM1

In (5.5.2),
– UM1 is the Cat-multifunctor in Explanation 1.3.29, and
– F● is the non-symmetric Cat-multifunctor in Theorem 5.2.6.

Explanation 5.5.3 (2-Functors). Considering the underlying 2-functors, the dia-
gram (5.5.2) factors as follows.

(5.5.4)

Multicat∗

ModM1

PermCatst PermCatsu
F● I

UM1 FM1

FM1

F●

● The interior FM1 is the 2-functor in (4.4.3).
● The interior F● is the 2-functor in Theorem 4.1.17.
● I is the inclusion 2-functor in (A.2.6).

Thus the non-symmetric Cat-multifunctor FM1 in (5.5.2) extends the 2-functor FM1

in (4.4.3). ◇
Comparison Transformations.

Definition 5.5.5 (Comparing EndM1FM1 and the Identity). In the context of (5.5.1),
we define the non-symmetric Cat-multinatural transformation

(5.5.6) ηM1 ∶ 1
ModM1 EndM1FM1
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with, for each leftM1-module M, the component morphism

η
M1

M
∶M EndM1FM1M

= EndM1F●UM1M in ModM1

given by the unit in (4.4.7). ◇
Explanation 5.5.7. As explained in (4.4.7), the leftM1-module morphism η

M1

M
is

uniquely determined by its image in Multicat∗:

UM1η
M1

M
= η

●
UM1M

∶ UM1M UM1EndM1F●UM1M

= End ● F●UM1M.

The components η
M1

M
define a non-symmetric Cat-multinatural transformation

ηM1 as in (5.5.6) by the following facts.

● ModM1 is a full sub-2-category of Multicat∗ (Proposition 1.3.17 (4)).
● UM1 is a Cat-multifunctor (Explanation 1.3.29).
● η

● is a non-symmetric Cat-multinatural transformation (Lemma 5.3.2).
◇

Definition 5.5.8 (Comparing FM1EndM1 and the Identity). In the context of (5.5.1),
we define the non-symmetric Cat-multinatural transformation ̺M1,

(5.5.9)
̺M1 = ̺

● ∶ 1PermCatsu FM1EndM1

= F●UM1EndM1 = F● End●,
as ̺

● in Lemma 5.3.3. ◇
Explanation 5.5.10. For each small permutative category C, the component strictly
unital symmetric monoidal functor

̺
M1

C
= ̺

●
C ∶ C FM1EndM1C = F● End●C

is in Definition 4.6.1 and Explanation 4.6.3. ◇
The following result is the ModM1 analog of Lemma 4.6.13. It is used in Theo-

rem 12.4.6, which is the ModM1 analog of Theorem 12.1.6.

Lemma 5.5.11. Suppose C is a small permutative category. Then the two leftM1-module
morphisms below are equal.

EndM1C EndM1FM1EndM1C

η
M1

EndM1C

EndM1̺
M1

C

Proof. LeftM1-module morphisms are determined by their underlying multifunc-
tors. Thus it suffices to show that the two arrows in question are equal as mul-
tifunctors. In this case, the equality between them follows from Lemma 4.6.13,
which gives the equality

η
●
End ●C = End●̺ ●C ,

along with Example 1.3.15 about EndM1, (4.4.3) about FM1, (4.4.7) about ηM1, and
(5.5.9) about ̺M1. �
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Equivalences of Homotopy Theories. Recall from Definition 4.7.1 the wide
subcategory

SM1 ⊂ModM1

of FM1-stable equivalences created by

FM1 ∶ (ModM1 , SM1) (PermCatst , S I).
Recall from Definition 3.5.4 the notion of non-symmetric algebras. Theorem 5.5.12
below simultaneously extends

● Theorem 5.4.1 from Multicat∗ to ModM1 and
● Theorem 4.8.3 to non-symmetric algebras.

As in Theorems 3.5.5 and 5.4.1, each of the two induced functors FQM1 and EndQM1

is given by post-composition and whiskering with the respective functor.

Theorem 5.5.12. Suppose Q is a small non-symmetric Cat-multicategory. In the context
of (5.5.1), the induced functors

FQM1 ∶ ((ModM1)Q , (SM1)Q) ∼ ((PermCatsu)Q , SQ) ∶ EndQM1

are inverse equivalences of homotopy theories in the sense of Definition 2.1.8.

Proof. This proof is similar to that of Theorem 5.4.1. The functor FM1 creates stable
equivalences by definition of SM1, and thus the forgetful UM1 also creates stable
equivalences, because FM1 = F●UM1. Also recall from Proposition 1.3.17 (4) that

ModM1 is a full sub-2-category of Multicat∗. Together these imply that

● the components of ̺M1 in (5.5.9) are natural stable equivalences and
● the components of ηM1 in (5.5.6) are natural stable equivalences.

The naturality diagram (5.4.2) then shows that EndM1 is a relative functor.

Therefore, we conclude that (FM1)Q and (EndM1)Q are both relative functors

and the induced (̺M1)Q and (ηM1)Q are natural stable equivalences

1(PermCatsu)Q
(̺M1)Q
∼ FQM1End

Q
M1 and 1(ModM1)Q

(ηM1)Q
∼ EndQM1F

Q
M1.

Thus, by Proposition 2.1.9, FQM1 and EndQM1 are inverse equivalences of homo-
topy theories between categories of non-symmetric Q-algebras. This completes
the proof. �

Recall that there is an adjoint equivalence of homotopy theories

(5.5.13) M1∧− ∶Multicat∗ ∼ ModM1 ∶ UM1

by Theorem 4.8.1 Recall, furthermore, that

● M1∧− is Cat-multifunctorial by Proposition 1.3.26 and
● UM1 is Cat-multifunctorial by Explanation 1.3.29.

SinceM1 ∧− and UM1 are Cat-multifunctors in the symmetric sense, induced
by symmetric Cat-monoidal functors, the following result holds for both symmet-
ric and non-symmetric Q. Recall from Definition 3.5.4 that, for a Cat-multicategory

N, the notation NQ denotes the category of Q-algebras (in the symmetric sense) if
Q is a small Cat-multicategory in the symmetric sense.
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Theorem 5.5.14. Suppose Q is either a symmetric or non-symmetric small multicate-
gory. The induced functors between categories of algebras (non-symmetric if Q is non-
symmetric)

(5.5.15) (M1∧−)Q ∶ (MulticatQ∗ , SQ● ) ∼ ((ModM1)Q , (SM1)Q) ∶ UQ
M1

are inverse equivalences of homotopy theories in the sense of Definition 2.1.8.

Proof. Recall from Explanation 1.3.20 and Proposition 1.3.31 the unit η̂ and counit ε̂
for the adjunction (M1∧−) ⊣ UM1 are monoidal Cat-natural transformations, and

hence Cat-multinatural. It follows, therefore, that (M1∧−)Q and UQ
M1 are inverse

equivalences of homotopy theories because η̂ and ε̂ are shown to be component-
wise stable equivalences in Theorem 4.8.1. �
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CHAPTER 6

Multicategorically Enriched Categories

This chapter defines and develops the basic properties of enrichment in a non-
symmetric multicategory M. This is similar to, but more general than, the concept
of enrichment in a monoidal category V from Appendix B. For the special case
M = EndV, Proposition 6.2.1 shows that the two notions of enrichment agree. Ex-
ample 6.2.3 lists a number of symmetric monoidal closed categories for which en-
richment over EndV applies.

The main application for our further work is M = PermCatsu. Theorem 6.4.20
shows that PermCatsu is a PermCatsu-category. Propositions 6.5.7 and 6.5.8 provide
further details that will be used in Chapters 8 and 9 to discuss a corresponding
closed structure for PermCatsu.

In the case that M has a symmetric group action making it a multicategory,
there is a notion of opposite M-category described in Section 6.6. For the spe-
cial case M = EndV with V a symmetric monoidal category, Proposition 6.6.8
shows that the notions of opposite M-category and opposite V-category agree. This
will be used in Chapter 10 for the discussion of enriched diagrams and enriched
Mackey functors.

The abstract theory of multicategorical enrichment developed here and in
the remaining chapters of Part 3 will find homotopy-theoretic applications in
Part 4. Chapter 11 develops conditions for change of enrichment functors, be-
tween enriched diagram and Mackey functor categories, to induce equivalences
of homotopy theories. Chapter 12 applies this to enrichment over, and diagrams
in, PermCatsu, Multicat∗, and ModM1.

Connection with Other Chapters. The remaining chapters in this work de-
pend on the multicategorical enrichment developed here. Change of enrichment
is discussed in Chapter 7. Chapter 8 develops the basic theory of closed multicat-
egories and extends the results about PermCatsu in Sections 6.4 and 6.5 to a closed
multicategory structure. In Chapter 9 the theory of self-enriched multicategories is
developed further, with additional applications to PermCatsu. Opposite enriched
categories (Section 6.6) are important in Chapters 10 through 12, where they are
the domains of enriched Mackey functor categories (10.1.3).

Background. The content of this chapter depends only on that of Chapter 1
and Appendices A through C.

Chapter Summary. Section 6.1 defines enrichment in a non-symmetric multi-
category. Section 6.2 shows that enrichment in an endomorphism multicategory
agrees with enrichment in the underlying monoidal category. Section 6.3 describes
enrichment in PermCatsu, the Cat-multicategory of permutative categories. As an

121



122 6. MULTICATEGORICALLY ENRICHED CATEGORIES

important special case, Section 6.4 describes the self-enrichment of PermCatsu. Sec-
tion 6.5 explains the bilinear evaluation for PermCatsu. Section 6.6 develops the ba-
sic theory for opposites of multicategorically-enriched categories. Here is a sum-
mary table.

2-category of M-categories 6.1.27

V-categories and End(V) categories 6.2.1 and 6.2.3

2-category of PermCatsu-categories 6.3.2, 6.3.12, and 6.3.16

self-enrichment of PermCatsu 6.4.19 and 6.4.20

bilinear evaluation for PermCatsu 6.5.1, 6.5.7, and 6.5.8

opposite M-categories 6.6.1 and 6.6.8

We remind the reader of Convention A.1.2 about universes and Conven-
tion A.1.30 about left normalized bracketing for iterated products.

6.1. Enrichment in a Multicategory

Throughout this section, we assume that

(M, γ, 1)
is a non-symmetric multicategory (Definition C.1.3). This means that M is a non-
symmetric Set-multicategory, with (Set,×,∗) the symmetric monoidal category of
sets and functions with the Cartesian product as the monoidal product. In this
section we define categories, functors, and natural transformations enriched in M.
This section is organized as follows.

● M-categories, M-functors, and M-natural transformations are in Defini-
tions 6.1.1, 6.1.7, and 6.1.14.
● Vertical composition of M-natural transformations are discussed in Defi-

nition 6.1.18 and Lemma 6.1.21.
● Horizontal composition of M-natural transformations are discussed in

Definition 6.1.22 and Lemma 6.1.24.
● Theorem 6.1.27 proves the existence of a 2-category with small M-

categories as objects.

We discuss enrichment in the endomorphism multicategory of a monoidal cate-
gory in Section 6.2. In particular, Proposition 6.2.1 proves that, for a monoidal cat-
egory V, the 2-category of small V-categories and the 2-category of small (EndV)-
categories are the same. Thus the two notions of enrichment over a monoidal
category coincide.

M-Categories.

Definition 6.1.1. An M-category (C,m, i), which is also called a category enriched in
M, consists of the following data.

Objects: C is equipped with a class ObC of objects. We usually write x ∈ C instead
of x ∈ ObC.

Hom Objects: For each pair of objects x, y ∈ C, C is equipped with an object

C(x, y) ∈ ObM,
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which is called the hom object with domain x and codomain y. We some-
times abbreviate C(x, y) to Cx,y to save space.

Composition: For objects x, y, z ∈ C, C is equipped with a binary multimorphism

(6.1.2) mx,y,z ∶ (C(y, z) , C(x, y)) C(x, z) in M,

which is called the composition.
Identities: Each object x ∈ C is equipped with a nullary multimorphism

(6.1.3) ix ∶ ⟨⟩ C(x, x) in M,

which is called the identity of x. Here ⟨⟩ denotes the empty sequence.

These data are required to make the following associativity and unity diagrams in
M commute for objects w, x, y, z ∈ C.

(6.1.4)

(C(y, z) , C(x, y) , C(w, x)) (C(x, z) , C(w, x))

(C(y, z) , C(w, y)) C(w, z)

(mx,y,z , 1)

mw,x,z(1 , mw,x,y)
mw,y,z

(6.1.5)

(C(x, y) , ⟨⟩) C(x, y) (⟨⟩ , C(x, y))

(C(x, y) , C(x, x)) C(x, y) (C(y, y) , C(x, y))
(1 , ix) 1 (iy , 1)

mx,x,y mx,y,y

This finishes the definition of an M-category. An M-category is small if its class of
objects is a set. ◇
Explanation 6.1.6 (M-Categories). The composition mx,y,z in (6.1.2) is an element
in

M(Cy,z , Cx,y ; Cx,z).
The identity ix of x in (6.1.3) is an element in

M(⟨⟩ ; Cx,x).
The associativity diagram (6.1.4) means the equality of 3-ary multimorphisms

γ(mw,y,z ; 1Cy,z
, mw,x,y) = γ(mw,x,z ; mx,y,z , 1Cw,x

)
in M(Cy,z , Cx,y , Cw,x ; Cw,z). The unity diagram (6.1.5) means the equalities of
unary multimorphisms

γ(mx,x,y ; 1Cx,y
, ix) = 1Cx,y

= γ(mx,y,y ; iy , 1Cx,y
)

in M(Cx,y ; Cx,y). Other commutative diagrams in M below are interpreted simi-
larly. ◇

M-Functors.

Definition 6.1.7. Suppose (C,m, i) and (D,m, i) are M-categories. An M-functor

F ∶ C D,

which is also called a functor enriched in M, consists of the following data.
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Object Assignment: F is equipped with a function

F ∶ ObC ObD,

which is called the object assignment.
Component Morphisms: For each pair of objects x, y ∈ C, F is equipped with a

unary multimorphism

(6.1.8) Fx,y ∶ C(x, y) D(Fx, Fy) in M,

which is called the (x, y)-component of F. We sometimes abbreviate Fx,y to
F.

These data are required to make the following two diagrams in M commute for
objects x, y, z ∈ C.

(6.1.9)

(C(y, z) , C(x, y)) C(x, z)

(D(Fy, Fz) , D(Fx, Fy)) D(Fx, Fz)

mx,y,z

Fx,z(Fy,z , Fx,y)
mFx,Fy,Fz

⟨⟩ C(x, x)

D(Fx, Fx)

ix

Fx,x
iFx

This finishes the definition of an M-functor.
Moreover, we define the following.

● The identity M-functor

(6.1.10) 1C ∶ C C

is defined by the identity object assignment and unit (x, y)-component

(1C)x,y = 1C(x,y) ∶ C(x, y) C(x, y) in M

for each pair of objects x, y ∈ C.
● For M-functors F ∶ C D and G ∶ D E, the composite M-functor

(6.1.11) GF ∶ C E

is defined by composing the object assignments. The (x, y)-component of
GF is the composite unary multimorphism

(6.1.12) C(x, y) Fx,y
D(Fx, Fy) GFx,Fy

E(GFx, GFy)
in M. The commutativity of the diagrams (6.1.9) for GF follows from the
commutativity of the corresponding diagrams for F and G. Composition
of M-functors is associative and unital with respect to identity M-functors
by the associativity and unity axioms of M in (C.1.8) through (C.1.10).

This finishes the definition. ◇
Remark 6.1.13 (History). Enrichment in a non-symmetric multicategory goes back
to the beginning of multicategory theory. It is mentioned in [Lam69, page 106],
immediately after the definition of a non-symmetric multicategory. The explicit
data and axioms of an M-category and an M-functor in Definitions 6.1.1 and 6.1.7
are from [BO15, Section 2]. ◇
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M-Natural Transformations.

Definition 6.1.14. Suppose F, G ∶ C D are M-functors between M-categories.
An M-natural transformation

θ ∶ F G

consists of, for each object x in C, a nullary multimorphism

(6.1.15) θx ∶ ⟨⟩ D(Fx, Gx) in M,

which is called the x-component of θ. The following naturality diagram in M is re-
quired to commute for each pair of objects x, y ∈ C, with m denoting the composi-
tion of D.

(6.1.16)

(⟨⟩ , C(x, y)) (D(Fy, Gy) , D(Fx, Fy))
(C(x, y) , ⟨⟩)

(D(Gx, Gy) , D(Fx, Gx)) D(Fx, Gy)

(θy , Fx,y)

m

(Gx,y , θx)
m

We also call θ a natural transformation enriched in M.
Moreover, the identity M-natural transformation

(6.1.17) 1F ∶ F F

is defined by the identity components:

(1F)x = iFx ∶ ⟨⟩ D(Fx, Fx) for x ∈ C.

We use the 2-cell notation (A.1.29) for M-natural transformations. ◇
Next we define vertical and horizontal compositions for M-natural transfor-

mations.

Definition 6.1.18. Suppose θ and ψ are M-natural transformations between M-
functors between M-categories as in the left diagram below.

(6.1.19) C D

F

G

H

⇒

θ

⇒

ψ
C D

F

H

⇒

ψθ

The vertical composite M-natural transformation ψθ, as in the right diagram above,
has, for each object x in C, x-component given by the following composite in M,
with m denoting the composition of D.

(6.1.20) ⟨⟩ (⟨⟩ , ⟨⟩) (D(Gx, Hx) , D(Fx, Gx)) D(Fx, Hx)(ψx , θx) m

(ψθ)x

This finishes the definition of ψθ. ◇
Lemma 6.1.21. In the context of Definition 6.1.18, the following statements hold.

(1) The vertical composite ψθ is a well-defined M-natural transformation.
(2) Vertical composition of M-natural transformations is associative.
(3) Identity M-natural transformations (6.1.17) are two-sided units for vertical

composition.



126 6. MULTICATEGORICALLY ENRICHED CATEGORIES

Proof. Assertion (1). Suppose x and y are objects in C. By the definition (6.1.20)
of (ψθ)x, the naturality diagram (6.1.16) for ψθ is the boundary of the following
diagram in M, where we abbreviate C(x, y) to Cx,y and likewise for D.

(Cx,y , ⟨⟩ , ⟨⟩) (⟨⟩ , Cx,y , ⟨⟩) (⟨⟩ , ⟨⟩ , Cx,y)

(DHx,Hy , DGx,Hx , DFx,Gx) (DGy,Hy , DFy,Gy , DFx,Fy)

(DHx,Hy , DFx,Hx) (DFy,Hy , DFx,Fy)

(DGy,Hy , DGx,Gy , DFx,Gx)

(DGx,Hy , DFx,Gx) (DGy,Hy , DFx,Gy)

DFx,Hy

(Hx,y , ψx , θx)

(1 , m)

m

(ψy , θy , Fx,y)

(m , 1)

m

(ψy , Gx,y , θx)

(m , 1) (m , 1) (1 , m) (1 , m)

m m

The diagram above is commutative for the following reasons.

● The top left and right pentagons are commutative by the naturality
(6.1.16) of ψ and θ, respectively.
● The other three sub-regions are commutative by the associativity (6.1.4)

of D.

This proves that ψθ is an M-natural transformation.

Assertion (2). Suppose ϕ ∶ H I is an M-natural transformation for an M-
functor I ∶ C D. We must show that, for each object x in C, the x-components
of (ϕψ)θ and ϕ(ψθ) are equal. Consider the following diagram in M.

(⟨⟩ , ⟨⟩ , ⟨⟩) (DHx,Ix , DGx,Hx , DFx,Gx)

(DGx,Ix , DFx,Gx)

(DHx,Ix , DFx,Hx)

DFx,Ix
(ϕx , ψx , θx)

(m , 1)

(1 , m)

m

m

The following statements hold for the diagram above.

● The composite along the top is the x-component of (ϕψ)θ.
● The composite along the bottom is the x-component of ϕ(ψθ).
● The right quadrilateral commutes by the associativity (6.1.4) of D.

This proves that the M-natural transformations (ϕψ)θ and ϕ(ψθ) are equal.

Assertion (3). We must show that θ1F and 1Gθ have, for each object x in C, the
same x-component as θ. We consider the following diagram in M.

(⟨⟩ , ⟨⟩) (DFx,Gx , ⟨⟩) = (⟨⟩ , DFx,Gx) (⟨⟩ , ⟨⟩)

(DFx,Gx , DFx,Fx) DFx,Gx (DGx,Gx , DFx,Gx)

θx θx

(θx , iFx) (1 , iFx) 1
(iGx , 1) (iGx , θx)

m m

The following statements hold for the diagram above.

● The left-bottom composite, γ(m ; θx, iFx), is the x-component of θ1F. This
composite is equal to the Z-shaped composite by the associativity (C.1.8)
and left unity (C.1.10) of M.
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● The right-bottom composite, γ(m ; iGx, θx), is the x-component of 1Gθ.
This composite is equal to the S-shaped composite by the associativity
(C.1.8) and left unity (C.1.10) of M.
● The composite 1θx is equal to θx by the left unity (C.1.10) of M.
● The middle two triangles are commutative by the unity (6.1.5) of D.

This proves that θ1F and 1Gθ are both equal to θ. �

Definition 6.1.22. Suppose θ and θ′ are M-natural transformations between M-
functors between M-categories as in the left diagram below.

C D E

F

G

F′

G′

⇒

θ

⇒

θ
′ C E

F′F

G′G

⇒

θ
′∗ θ

The horizontal composite M-natural transformation θ′∗ θ, as in the right diagram
above, has, for each object x in C, x-component given by the following composite
in M, with m denoting the composition of E.

(6.1.23)

⟨⟩ E(F′Fx, G′Gx)

(E(F′Gx, G′Gx) , E(F′Fx, F′Gx))

D(Fx, Gx) (⟨⟩ , D(Fx, Gx))

(θ′∗ θ)x

θx

(θ′Gx , F′Fx,Gx)

m

This finishes the definition of θ′∗ θ. ◇
Lemma 6.1.24. In the context of Definition 6.1.22, the following statements hold.

(1) (θ′∗ θ)x in (6.1.23) is equal to the following composite in M.

(6.1.25)

⟨⟩ E(F′Fx, G′Gx)

(E(G′Fx, G′Gx) , E(F′Fx, G′Fx))

D(Fx, Gx) (D(Fx, Gx) , ⟨⟩)

θx

(G′Fx,Gx , θ
′

Fx)

m

(2) θ′∗ θ is a well-defined M-natural transformation.
(3) Horizontal composition of M-natural transformations is associative.
(4) Identity M-natural transformations (6.1.17) of identity M-functors (6.1.10) are

two-sided units for horizontal composition.
(5) Horizontal composition preserves identity M-natural transformations (6.1.17).
(6) Horizontal composition preserves vertical composition of M-natural transforma-

tions (6.1.19).

Proof. Assertion (1). This follows from the naturality of θ′ (6.1.16), which implies
that the right composites in (6.1.23) and (6.1.25) are equal.
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Assertion (2). By (6.1.12) and (6.1.23), for objects x, y ∈ C the naturality dia-
gram (6.1.16) for θ′∗ θ is the boundary of the following diagram in M, with C(x, y)
abbreviated to Cx,y and likewise for D and E.

(Cx,y , ⟨⟩) (⟨⟩ , Cx,y) (⟨⟩ , DFy,Gy , DFx,Fy)

(DGx,Gy , ⟨⟩ , DFx,Gx) (⟨⟩ , DGx,Gy , DFx,Gx)
(⟨⟩ , DFx,Gy)

(EF′Gy,G′Gy , EF′Fy,F′Gy , EF′Fx,F′Fy)

(EG′Gx,G′Gy , EF′Gx,G′Gx , EF′Fx,F′Gx)

(EF′Gy,G′Gy , EF′Gx,F′Gy , EF′Fx,F′Gx)

(EF′Gy,G′Gy , EF′Fx,F′Gy)

(EF′Fy,G′Gy , EF′Fx,F′Fy)

(EG′Gx,G′Gy , EF′Fx,G′Gx) EF′Fx,G′Gy

(EF′Gx,G′Gy , EF′Fx,F′Gx)

�

�

♠

♣(G, θx)

(G′, θ
′

Gx, F
′)

(1,m)

m

(θy, F)

(θ′Gy, F
′
, F
′)

(m, 1)

m

m

m

(θ′Gy, F
′)

(θ′Gy, F
′
, F
′)

(1,m)

(m, 1)

(m, 1)

(1,m)

m

m

The following statements hold for the diagram above.

● The sub-regions labeled � and � are commutative by the naturality
(6.1.16) of θ and θ′, respectively.
● The sub-regions labeled ♠ and ♣ are commutative by the compatibility of

F′ with composition (6.1.9).
● The three unlabeled sub-regions are commutative by the associativity of

the composition of E (6.1.4).

This proves that θ′∗ θ is an M-natural transformation.

Assertion (3). To show that horizontal composition is associative, consider hor-
izontally composable M-natural transformations as follows.

B C D E

F

G

F′

G′

F′′

G′′

⇒

θ

⇒

θ
′

⇒

θ
′′
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To show that, for each object x in B, θ′′∗ (θ′∗ θ) and (θ′′∗ θ′) ∗ θ have the same
x-components, we consider the following diagram in M.

⟨⟩

(⟨⟩ , CFx,Gx)

(⟨⟩ , DF′Gx,G′Gx , DF′Fx,F′Gx)

(EF′′G′Gx,G′′G′Gx , EF′′F′Gx,F′′G′Gx , EF′′F′Fx,F′′F′Gx)

(EF′′F′Gx,G′′G′Gx , EF′′F′Fx,F′′F′Gx)

(⟨⟩ , DF′Fx,G′Gx)
(EF′′G′Gx,G′′G′Gx , EF′′F′Fx,F′′G′Gx)

EF′′F′Fx,G′′G′Gx

θx

(θ′Gx, F
′)

m

(θ′′G′Gx, F
′′)

m

(m, 1)

m

(1,m)

(θ′′G′Gx, F
′′

, F
′′)

The following statements hold for the diagram above.

● The left-bottom composite is (θ′′∗ (θ′∗ θ))
x
.

● The other composite is ((θ′′∗ θ′) ∗ θ)
x
.

● The left quadrilateral is commutative by the compatibility of F′′ with
composition (6.1.9).
● The right quadrilateral is commutative by the associativity of the compo-

sition of E (6.1.4).

This proves that θ′′∗ (θ′∗ θ) is equal to (θ′′∗ θ′) ∗ θ.

Assertion (4). Consider the following M-natural transformations.

C C D D

1C

1C

F

G

1D

1D

⇒

11C

⇒

θ

⇒

11D

To show that 11D∗ θ is equal to θ, we consider, for each object x ∈ C, the following
diagram in M.

⟨⟩ DFx,Gx

(⟨⟩ , DFx,Gx) (DGx,Gx , DFx,Gx)

θx

θx

(iGx , 1)
m1

The following statements hold for the diagram above.

● The left-bottom-right composite is the x-component of 11D∗ θ.
● The upper left triangle is commutative by the left unity of M (C.1.10).
● The lower right triangle is commutative by the unity of D (6.1.5).

This proves that 11D∗ θ is equal to θ.
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To show that θ ∗ 11C is equal to θ, we consider, for each object x ∈ C, the follow-
ing diagram in M.

⟨⟩ (DFx,Gx , ⟨⟩) DFx,Gx

(⟨⟩ , Cx,x) (⟨⟩ , DFx,Fx) (DFx,Gx , DFx,Fx)

θx 1

ix

F (θx , 1)
m

iFx (1, iFx)

θx

(θx , F)

The following statements hold for the diagram above.

● The left-bottom-right composite is the x-component of θ ∗ 11C .
● The bottom sub-region and the middle quadrilateral are commutative by

definition.
● The top sub-region is commutative by the left unity of M (C.1.10).
● The left triangle is commutative by the compatibility of F with identities

(6.1.9).
● The right triangle is commutative by the unity of D (6.1.5).

This proves that θ ∗ 11C is equal to θ.

Assertion (5). Consider two horizontally composable identity M-natural trans-
formations as follows.

C D E

F

F

F′

F′

⇒

1F

⇒

1F′

To show that 1F′ ∗ 1F is equal to 1F′F, we consider, for each object x ∈ C, the follow-
ing diagram in M.

⟨⟩ EF′Fx,F′Fx

(⟨⟩ , DFx,Fx) (⟨⟩ , EF′Fx,F′Fx) (EF′Fx,F′Fx , EF′Fx,F′Fx)

iF′Fx

iF′Fx 1iFx

F′ (iF′Fx , 1)

m

(iF′Fx , F′)

The following statements hold for the diagram above.

● The left-bottom-right composite is the x-component of 1F′ ∗ 1F.
● The bottom sub-region is commutative by definition.
● The left triangle is commutative by the compatibility of F′ with identities

(6.1.9).
● The middle triangle is commutative by the left unity of M (C.1.10).
● The right triangle is commutative by the unity of E (6.1.5).

This proves that horizontal composition preserves identity M-natural transforma-
tions.
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Assertion (6). To show that horizontal composition preserves vertical compo-
sition, consider the following M-natural transformations.

C D E

F

G

H

F′

G′

H′

⇒

θ

⇒

ψ

⇒

θ
′

⇒

ψ
′

We must show that, for each object x in C, the following equality holds in M.

(6.1.26) ((ψ′∗ψ)(θ′∗ θ))
x
= ((ψ′θ′) ∗ (ψθ))

x

To prove (6.1.26) we use the notation

X = (EG′Hx,H′Hx , EG′Gx,G′Hx , EF′Gx,G′Gx , EF′Fx,F′Gx) ,

Y = (EG′Gx,H′Hx , EF′Gx,G′Gx , EF′Fx,F′Gx) , and

Z = (EG′Hx,H′Hx , EF′Hx,G′Hx , EF′Fx,F′Hx)
and consider the following diagram in M.

(⟨⟩ , ⟨⟩)

(⟨⟩ , DGx,Hx , DFx,Gx)

(⟨⟩ , ⟨⟩ , DFx,Hx)

(⟨⟩ , DGx,Hx , ⟨⟩ , DFx,Gx) Z

X (EF′Hx,H′Hx , EF′Fx,F′Hx)

(EG′Gx,H′Hx , EF′Fx,G′Gx) EF′Fx,H′Hx

(⟨⟩ , EF′Hx,G′Hx , EF′Gx,F′Hx , EF′Fx,F′Gx)

(EG′Hx,H′Hx , EF′Gx,G′Hx , EF′Fx,F′Gx)

Y (EG′Hx,H′Hx , EF′Fx,G′Hx)

(EF′Gx,H′Hx , EF′Fx,F′Gx)

(ψx, θx)

(ψ′Hx, G′, θ
′

Gx, F′)

(m,m)

(ψx, θx) m

(ψ′Hx, θ
′

Hx, F′)

(m, 1)

m

m

(θ′Hx, F′, F′)

(ψ′Hx, 1,m)
(ψ′Hx,m, 1)

(1,m, 1)

(m, 1, 1)

(1,m)
(m, 1)

m

(1,m)

(m, 1)

(1,m)

m

The following statements hold for the diagram above.

● The left-bottom composite is the left-hand side of (6.1.26).
● The top-right composite is the right-hand side of (6.1.26).
● The upper left quadrilateral is commutative by the naturality of θ′

(6.1.16).
● The upper right quadrilateral is commutative by the compatibility of F′

with composition (6.1.9).
● The lower left triangle is commutative by definition.
● The other five sub-regions are commutative by the associativity of the

composition of E (6.1.4).

This proves the desired equality (6.1.26). �
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Recall the notion of a 2-category in Definition A.2.1.

Theorem 6.1.27. For each non-symmetric multicategory (M, γ, 1), there is a 2-category

M-Cat

defined by the following data.

● The objects are small M-categories (Definition 6.1.1).
● The 1-cells are M-functors (Definition 6.1.7).
● Identity 1-cells are identity M-functors (6.1.10).
● Horizontal composition of 1-cells is composition of M-functors (6.1.11).
● The 2-cells are M-natural transformations (Definition 6.1.14).
● Identity 2-cells are identity M-natural transformations (6.1.17).
● Vertical and horizontal compositions of 2-cells are those of M-natural transfor-

mations (Definitions 6.1.18 and 6.1.22).

Proof. Axioms (i) through (iv) in Definition A.2.1 of a 2-category hold for M-Cat
by, respectively,

(i) Lemma 6.1.21,
(ii) Lemma 6.1.24 (5) and (6),

(iii) Definition 6.1.7, and
(iv) Lemma 6.1.24 (3) and (4).

This finishes the proof. �

Example 6.1.28. By Theorem 1.4.29 PermCatsu is a Cat-multicategory, in particular
a multicategory. By Theorem 6.1.27 there is a 2-category PermCatsu-Cat of small
categories, functors, and natural transformations enriched in the multicategory
PermCatsu. We describe this 2-category more explicitly in Section 6.3. ◇

6.2. Enrichment in an Endomorphism Multicategory

For a monoidal category V (Definition A.1.3), there are two notions of enrich-
ment over V.

(1) By Example B.1.12 there is a 2-category V-Cat of small V-categories, V-
functors, and V-natural transformations.

(2) By Example C.3.1 there is a non-symmetric endomorphism multicategory
EndV, which is, furthermore, a multicategory if V is symmetric monoi-
dal. By Theorem 6.1.27 there is a 2-category (EndV)-Cat of small (EndV)-
categories, (EndV)-functors, and (EndV)-natural transformations.

Next we observe that these two notions of enrichment are the same. This result is
stated in [BO15, Remark 2.10].

Proposition 6.2.1. For each monoidal category (V,⊗,1), there is an equality of 2-
categories

V-Cat = (EndV)-Cat.
Proof. The objects in V-Cat and (EndV)-Cat are small V-categories and small(EndV)-categories, respectively. The identification of these objects follows by
comparing

● Definition 6.1.1 for (EndV)-categories and
● Definition B.1.1 for V-categories.

More explicitly, suppose C is a V-category.
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● The identity of an object x ∈ C is a morphism

ix ∶ 1 C(x, x) ∈ V.

By the definition (C.3.2) of EndV, such a morphism ix is the same as a
nullary multimorphism in

(EndV)(⟨⟩ ; C(x, x)) = V(1,C(x, x)).
● For objects x, y, z ∈ C, the multiplication of C is a morphism

mx,y,z ∶ C(y, z)⊗C(x, y) C(x, z) in V.

This is the same as a binary multimorphism in

(EndV)(C(y, z),C(x, y) ; C(x, z)) = V(C(y, z)⊗C(x, y) , C(x, z)).
● Under the above identifications, the associativity axiom (B.1.4) and the

unity axiom (B.1.5) of a V-category are equivalent to those of an (EndV)-
category in (6.1.4) and (6.1.5).

Thus C is equivalently an (EndV)-category.
A similar comparison of

● Definitions 6.1.7, 6.1.14, 6.1.18, and 6.1.22 for (EndV)-Cat and
● Definitions B.1.8 and B.1.10 for V-Cat

proves that the rest of the 2-category structures in V-Cat and (EndV)-Cat—namely,
(identity) 1-cells, (identity) 2-cells, vertical composition of 2-cells, and horizontal
composition of 1-cells and 2-cells—are the same. For example, the two diagrams
in (B.1.9) for a V-functor are equivalent to the diagrams in (6.1.9) for an (EndV)-
functor. The naturality diagram (B.1.11) for a V-natural transformation is equiva-
lent to the naturality diagram (6.1.16) for an (EndV)-natural transformation. �

For a monoidal category V, Proposition 6.2.1 identifies V-enrichment and(EndV)-enrichment, with EndV the non-symmetric endomorphism multicategory.
In what follows, we use them interchangeably.

Example 6.2.2 (Self-Enrichment). Suppose V is a symmetric monoidal closed cat-
egory (Definition A.1.19). Then V is also a symmetric monoidal V-category with
the canonical self-enrichment (Theorem B.3.7). By Proposition 6.2.1 the canonical
self-enrichment of V is equal to an (EndV)-enrichment, making V into an (EndV)-
category. ◇
Example 6.2.3. Proposition 6.2.1 and Example 6.2.2 apply to the following sym-
metric monoidal closed categories:

● Multicat of small multicategories (Theorem 1.1.26);
● Multicat∗ of small pointed multicategories (Theorem 1.2.8);
● ModM1 of leftM1-modules (Proposition 1.3.17 (7));
● C∗ of pointed objects in a complete and cocomplete symmetric monoidal

closed category C (Theorem 2.2.7);
● D∗-V of pointed diagrams in a complete and cocomplete symmetric mon-

oidal closed category V with a chosen terminal object (Theorem 2.2.19);
● Γ-V of Γ-objects in V (2.3.3);
● G∗-V of G∗-objects in V (2.4.12); and
● Sp of symmetric spectra (2.5.2).
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However, Proposition 6.2.1 and Example 6.2.2 do not apply to PermCatsu (The-
orem 1.4.29) because its multicategory structure is not induced by a monoidal
structure. See [JY∞, 5.7.23 and 10.2.17]. We discuss its self-enrichment in The-
orem 6.4.20. ◇

6.3. Enrichment in the Multicategory of Permutative Categories

Recall from Theorem 1.4.29 that PermCatsu is a Cat-multicategory, hence also
a multicategory.

● Its objects are small permutative categories (Definition A.1.14).
● Its n-ary multimorphisms are n-linear functors (Definition 1.4.2).
● Its colored units are identity symmetric monoidal functors.
● Its symmetric group action and composition are in Definitions 1.4.16

and 1.4.21, respectively.

In this section we explicitly describe categories, functors, and natural transforma-
tions enriched in PermCatsu in, respectively, Explanations 6.3.2, 6.3.12, and 6.3.16.
We discuss the self-enrichment of PermCatsu in Section 6.4.

We use the shortened notation

(6.3.1) Psu = PermCatsu

to simplify the presentation.

Explanation 6.3.2 (Psu-Categories). Unpacking Definition 6.1.1 with M = Psu, a
Psu-category (C,m, i) consists of the following data.

Objects: C is equipped with a class ObC of objects.
Hom Permutative Categories: For each pair of objects x, y ∈ C, C is equipped with

a small permutative category (Definition A.1.14)

(C(x, y),⊕, e, ξ),
which is also denoted Cx,y.

Composition: For each triple of objects x, y, z ∈ C, C is equipped with a bilinear
functor (Definition 1.4.2)

mx,y,z ∶ C(y, z)×C(x, y) C(x, y).
Its first and second linearity constraints are denoted m1

x,y,z and m2
x,y,z, re-

spectively. If there is no danger of confusion, we sometimes omit the
subscripts.

Identities: Recalling that a 0-linear functor is a choice of an object in the codomain
category, each object x ∈ C is equipped with an object

ix ∈ C(x, x).
This is also regarded as a functor 1 C(x, x) from the terminal cate-
gory. We emphasize that ix is not required to be the monoidal unit e of
C(x, x).

Below, we describe some implications of this structure. We abbreviate each
m(−,−) to concatenation, so

(6.3.3) mx,y,z( f , g) = f g.

The constraint 2-by-2 axiom (1.4.8) for m says that, for objects x, y, z ∈ C, with

(6.3.4) f , f ′ ∈ C(y, z), and g, g′ ∈ C(x, y),
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the following diagram in C(x, z) commutes.

(6.3.5)

f g⊕ f ′g⊕ f g′ ⊕ f ′g′

( f ⊕ f ′)g⊕ ( f ⊕ f ′)g′

( f ⊕ f ′)(g⊕ g′)
f g⊕ f g′ ⊕ f ′g⊕ f ′g′

f (g⊕ g′)⊕ f ′(g⊕ g′)

1⊕ ξ ⊕ 1

m
1 ⊕m

1

m
2 ⊕m

2

m
2

m
1

The associativity axiom (6.1.4) of a Psu-category says that, for objects w, x, y, z ∈
C, the following two composite 3-linear functors are equal, with each 1 denoting
the identity symmetric monoidal functor.

(6.3.6)

C(y, z)×C(x, y)×C(w, x) C(x, z)×C(w, x)

C(y, z)×C(w, y) C(w, z)

mx,y,z × 1

mw,x,z1×mw,x,y

mw,y,z

This means, first of all, that the two composites in (6.3.6) are equal as functors.
Furthermore, their respective linearity constraints are equal. To make this explicit,
consider objects

(6.3.7) f , f ′ ∈ C(y, z), g, g′ ∈ C(x, y), and h, h′ ∈ C(w, x).
Linearity constraints of composite multilinear functors are defined in (1.4.27). The
equality of, respectively, the first, second, and third linearity constraints of the two
composites in (6.3.6) are the following three commutative diagrams in C(w, z).

(6.3.8) f (gh)⊕ f ′(gh)
( f g)h⊕ ( f ′g)h ( f g⊕ f ′g)h

( f ⊕ f ′)(gh) (( f ⊕ f ′)g)h

m
1
w,x,z

(m1
x,y,z)1h

m
1
w,y,z

(6.3.9) f (gh)⊕ f (g′h)
( f g)h⊕ ( f g′)h ( f g⊕ f g′)h

f (gh⊕ g′h) f ((g⊕ g′)h)
( f (g⊕ g′))h

m
1
w,x,z

(m2
x,y,z)1h

m
2
w,y,z

1 f (m1
w,x,y)

f (gh)⊕ f (gh′)
( f g)h⊕ ( f g)h′ ( f g)(h⊕ h′)

f (gh⊕ gh′) f (g(h⊕ h′))

m
2
w,x,z

m
2
w,y,z

1 f (m2
w,x,y)
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The unity axiom (6.1.5) of a Psu-category says that, for objects x, y ∈ C, the
following diagram of symmetric monoidal functors commutes.

(6.3.10)

C(x, y)× 1

C(x, y)
1 ×C(x, y)

C(x, y)×C(x, x)
C(x, y) C(y, y)×C(x, y)

≅ ≅

1× ix 1 iy × 1

mx,x,y mx,y,y

Both boundary composites in (6.3.10) are strictly unital by the unity axiom (1.4.4)
of each bilinear functor m. In terms of the monoidal constraints, the commutative
diagram (6.3.10) means the following commutative diagram in C(x, y) for objects
g, g′ ∈ C(x, y), where we use concatenation to denote m as in (6.3.3).

(6.3.11)

gix ⊕ g′ix g⊕ g′ iyg⊕ iyg′

(g⊕ g′)ix g⊕ g′ iy(g⊕ g′)
m

1
x,x,y 1 m

2
x,y,y

This finishes the description of a Psu-category. ◇
Explanation 6.3.12 (Psu-Functors). Unpacking Definition 6.1.7 with M = Psu, a Psu-
functor

F ∶ (C,m, i) (D,m, i)
between Psu-categories consists of

● an object assignment F ∶ ObC ObD and
● for each pair of objects x, y ∈ C, a strictly unital symmetric monoidal func-

tor (Definition A.1.22)

(Fx,y , F2
x,y , F0

x,y = 1) ∶ C(x, y) D(Fx, Fy).
The compatibility of F with composition (6.1.9) is the following commutative

diagram of bilinear functors.

(6.3.13)

C(y, z)×C(x, y) C(x, z)

D(Fy, Fz)×D(Fx, Fy) D(Fx, Fz)

mx,y,z

Fx,zFy,z × Fx,y

mFx,Fy,Fz

This means, first of all, that (6.3.13) is a commutative diagram of functors. More-
over, the equality of, respectively, the first and second linearity constraints of
the two composites in (6.3.13) are the following two commutative diagrams in
D(Fx, Fz) for objects f , f ′ ∈ C(y, z) and g, g′ ∈ C(x, y), with m shortened to concate-
nation as in (6.3.3).

(6.3.14) (F f )(Fg)⊕ (F f ′)(Fg)

F( f g)⊕ F( f ′g) F( f g⊕ f ′g)

(F f ⊕ F f ′)(Fg) (F( f ⊕ f ′))(Fg)

F(( f ⊕ f ′)g)

F
2

F(m2
1)

m
2
1

F
2
1Fg

(F f )(Fg)⊕ (F f )(Fg′)

F( f g)⊕ F( f g′) F( f g⊕ f g′)

(F f )(Fg⊕ Fg′) (F f )F(g⊕ g′)

F( f (g⊕ g′))

F
2

F(m2
2)

m
2
2

1F f F
2
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The compatibility of F with identities (6.1.9) means the object equality

(6.3.15) Fx,x(ix) = iFx in D(Fx, Fx)
for each object x in C. This finishes the description of a Psu-functor. ◇
Explanation 6.3.16 (Psu-Natural Transformations). Unpacking Definition 6.1.14
with M = Psu, a Psu-natural transformation

C D

F

G

⇒

θ

between Psu-functors between Psu-categories consists of, for each object x in C, an
object

θx ∈ D(Fx, Gx).
This is also regarded as a functor 1 D(Fx, Gx).

The naturality diagram (6.1.16) for a Psu-natural transformation is the follow-
ing commutative diagram of symmetric monoidal functors for each pair of objects
x, y ∈ C.

(6.3.17)

C(x, y) 1 ×C(x, y) D(Fy, Gy)×D(Fx, Fy)

C(x, y)× 1

D(Gx, Gy)×D(Fx, Gx) D(Fx, Gy)

≅ θy × Fx,y

mFx,Fy,Gy

≅

Gx,y × θx

mFx,Gx,Gy

Both composites in (6.3.17) are strictly unital because

● Fx,y and Gx,y are strictly unital and
● both bilinear functors m satisfy the unity axiom (1.4.4).

In addition to being a commutative diagram of functors, the equality of the monoi-
dal constraints of the two composites in (6.3.17) means the following commutative
diagram in D(Fx, Gy) for objects g, g′ ∈ C(x, y), with m denoted by concatenation
as in (6.3.3).

(6.3.18) (Gg)θx ⊕ (Gg′)θx

θy(Fg)⊕ θy(Fg′) θy(Fg⊕ Fg′)

(Gg⊕Gg′)θx (G(g⊕ g′))θx

θyF(g⊕ g′)

m
2
2

1θy
F

2

m
2
1

G
2
1θx

This finishes the description of a Psu-natural transformation. ◇

6.4. Self-Enrichment of the Multicategory of Permutative Categories

In this section we observe that the 2-category PermCatsu (Definition A.2.3) of
small permutative categories has the additional structure of a category enriched in
the multicategory PermCatsu (Theorem 1.4.29) in the sense of Definition 6.1.1. See
Theorem 6.4.20. There are two ways to think about this result.
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(1) It is a permutative extension of the 2-category structure on PermCatsu.
So we have hom permutative categories and composition bilinear functors
between permutative categories. From this viewpoint, this section is an
expanded version of [BO15, Section 5]; see also [Gui10, Example 3.4].

(2) Theorem 6.4.20 is a precursor of Theorem 8.4.15, which extends the Cat-
multicategory PermCatsu and its self-enrichment to a closed multicategory
structure. One may consider this section as a warm-up exercise for The-
orem 8.4.15. Each non-symmetric closed multicategory has a canonical
self-enrichment (Theorem 9.1.7), so, in particular, PermCatsu has a canon-
ical self-enrichment. As we discuss in more detail in Proposition 9.1.8,
the self-enrichment of PermCatsu in Theorem 6.4.20 is the same as its
canonical self-enrichment obtained from its closed multicategory struc-
ture. However, a non-symmetric closed multicategory has more structure
than its self-enrichment.

This section is organized as follows.

● The hom permutative categories are constructed in Definition 6.4.1 and
verified in Lemma 6.4.11.
● The composition bilinear functors are constructed in Definition 6.4.12 and

verified in Lemma 6.4.17.
● The self-enrichment of PermCatsu is constructed in Definition 6.4.19 and

verified in Theorem 6.4.20.

To simplify the presentation, we also use the shortened notation in (6.3.1):

Psu = PermCatsu .

In a typical permutative category, the monoidal product, monoidal unit, and
braiding are denoted ⊕, e, and ξ, respectively.

Definition 6.4.1 (Hom Permutative Categories). Given small permutative categor-
ies C and D, we define a small permutative category

(6.4.2) (Psu(C,D),⊕, e, ξ)
as follows. The small category Psu(C,D) is a hom category of the 2-category
PermCatsu in Definition A.2.3.

● Its objects are strictly unital symmetric monoidal functors C D (Def-
inition A.1.22).
● Its morphisms are monoidal natural transformations (Definition A.1.27).
● Identity morphisms and composition are those of monoidal natural trans-

formations.

The monoidal product

(6.4.3) ⊕ ∶ Psu(C,D)×Psu(C,D) Psu(C,D)
is defined as follows.

Objects. It sends a pair of strictly unital symmetric monoidal functors

(F, F2) , (G, G2) ∶ C D

to the following composite functor, with diag denoting the diagonal functor.

(6.4.4)

C C×C D×D D
diag F ×G ⊕

F⊕G
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In other words, the monoidal product is defined pointwise in D:

(6.4.5) (F⊕G)(x) = Fx⊕Gx for x ∈ C.

The unit constraint and monoidal constraint of F⊕G are defined as follows.

Unit Constraint: It is the identity morphism

1e ∶ e e = e⊕ e = (F⊕G)(e) in D.

Monoidal Constraint: It is the following composite in D for objects x, y ∈ C.

(6.4.6)

(F⊕G)(x)⊕ (F⊕G)(y) (F⊕G)(x⊕ y)
Fx ⊕Gx⊕ Fy⊕Gy F(x ⊕ y)⊕G(x⊕ y)

Fx ⊕ Fy⊕Gx⊕Gy

(F⊕G)2x,y

1⊕ ξGx,Fy⊕ 1 F2
x,y⊕G2

x,y

The naturality of (F⊕G)2 follows from

● the naturality of the braiding ξ of D, F2, and G2, and
● the functoriality of ⊕ for D.

Morphisms: For a pair of monoidal natural transformations

C D and C D

F

G

F′

G′

⇒

θ

⇒

θ
′

between strictly unital symmetric monoidal functors, their monoidal product

θ⊕ θ′ ∶ F⊕ F′ G⊕G′

is the following whiskering.

C C×C D×D D
diag

F × F′

G ×G′

⊕⇒

θ × θ
′

In other words, for each object x ∈ C, the x-component of θ ⊕ θ′ is

(6.4.7) (θ⊕ θ′)x = θx ⊕ θ′x ∶ Fx⊕ F′x Gx⊕G′x.

This defines a monoidal natural transformation for the following reasons.

● The naturality of θ ⊕ θ′ follows from the naturality of θ and θ′, together
with the functoriality of ⊕ in D.
● θ⊕ θ′ satisfies the unity constraint axiom in (A.1.28) because, if x = e in C,

then θe = 1e = θ′e.
● θ ⊕ θ′ satisfies the monoidal constraint axiom in (A.1.28) by

– the naturality of the braiding ξ in D and
– the monoidal constraint axiom (A.1.28) for θ and θ′.

The functoriality of ⊕ for Psu(C,D) follows from the functoriality of ⊕ for D.

Monoidal Unit. It is the constant functor

(6.4.8) e ∶ C D

at the monoidal unit of D. Its unit constraint and monoidal constraint are both
given by the identity morphism 1e in D.
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Braiding. For strictly unital symmetric monoidal functors F and G as in (6.4.4),
the (F, G)-component of the braiding ξ is the natural isomorphism

(6.4.9) C D

F⊕G

G⊕ F

⇒

ξF,G

with, for each object x ∈ C, x-component given by the braiding

(6.4.10) (F⊕G)(x) = Fx⊕Gx
ξFx,Gx

≅ Gx⊕ Fx = (G⊕ F)(x)
in D. The naturality of the braiding in D implies the naturality of both

● (ξF,G)x with respect to x ∈ C and
● ξF,G with respect to F and G in Psu(C,D).

This finishes the definition. ◇
Lemma 6.4.11. For small permutative categories C and D, the quadruple in (6.4.2)

(Psu(C,D),⊕, e, ξ)
is a small permutative category.

Proof. We already explained some of the required conditions in Definition 6.4.1. It
remains to prove statements (i) through (v) below.

(i) The pair defined in (6.4.4) and (6.4.6)

(F⊕G, (F⊕G)2) ∶ C D

is a strictly unital symmetric monoidal functor.
(ii) The functor ⊕ in (6.4.3) is associative.

(iii) The constant functor e in (6.4.8) is a strict two-sided unit for ⊕.
(iv) The natural transformation ξF,G in (6.4.9) is monoidal (Definition A.1.27).
(v) Psu(C,D) satisfies the symmetry and hexagon axioms (A.1.15).

Statement (i). We need to check the unity axiom (A.1.23), the associativity ax-
iom (A.1.24), and the braiding axiom (A.1.25) for F⊕G.

Since its unit constraint is 1e, the unity axiom (A.1.23) for F ⊕ G means the
equalities

(F⊕G)2e,? = 1F?⊕G? = (F⊕G)2?,e in D.

These equalities follow from the following equalities in D.

ξe,? = 1? = ξ?,e F2
e,? = 1F? = F2

?,e G2
e,? = 1G? = G2

?,e
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For objects x, y, z ∈ C, the associativity diagram (A.1.24) for F⊕G is the bound-
ary of the following diagram in D.

Fx⊕Gx⊕ Fy⊕Gy⊕ Fz⊕Gz

Fx⊕ Fy⊕Gx⊕Gy⊕ Fz⊕Gz Fx⊕Gx⊕ Fy⊕ Fz⊕Gy⊕Gz

F(x⊕ y)⊕G(x⊕ y)⊕ Fz⊕Gz Fx⊕Gx⊕ F(y⊕ z)⊕G(y⊕ z)

F(x⊕ y)⊕ Fz⊕G(x⊕ y)⊕Gz Fx⊕ F(y⊕ z)⊕Gx⊕G(y⊕ z)

F(x⊕ y⊕ z)⊕G(x⊕ y⊕ z)

Fx⊕ Fy⊕ Fz⊕Gx⊕Gy⊕Gz

1⊕ ξ ⊕ 1 1⊕ ξ ⊕ 1

F2 ⊕G2⊕ 1 1⊕ F2⊕G2

1⊕ ξ ⊕ 1 1⊕ ξ ⊕ 1

F2 ⊕G2 F2 ⊕G2

1⊕ ξ ⊕ 1 1⊕ ξ ⊕ 1

F2 ⊕ 1⊕G2 ⊕ 1 1⊕ F2⊕ 1⊕G2

The following statements hold for the diagram above.

● The top sub-region commutes by the coherence theorem for symmetric
monoidal categories [ML98, XI.1 Theorem 1].
● The left and right sub-regions commute by the naturality of the braiding

ξ in D.
● The bottom sub-region commutes by the axiom (A.1.24) for F and G.

This proves the associativity axiom (A.1.24) for F⊕G.
For objects x, y ∈ C, the braiding diagram (A.1.25) for F⊕G is the boundary of

the following diagram in D.

(F⊕G)(x)⊕ (F⊕G)(y) (F⊕G)(y)⊕ (F⊕G)(x)
Fx ⊕Gx⊕ Fy⊕Gy Fy⊕Gy⊕ Fx⊕Gx

Fx ⊕ Fy⊕Gx⊕Gy Fy⊕ Fx⊕Gy⊕Gx

F(x ⊕ y)⊕G(x⊕ y) F(y⊕ x)⊕G(y⊕ x)

1⊕ ξ ⊕ 1 1⊕ ξ ⊕ 1

F2 ⊕G2 F2 ⊕G2

ξ

ξ ⊕ ξ

Fξ ⊕Gξ

The following statements hold for the diagram above.

● The top rectangle commutes by the coherence theorem for symmetric
monoidal categories [ML98, XI.1 Theorem 1].
● The bottom rectangle commutes by the axiom (A.1.25) for F and G.

This proves the braiding axiom (A.1.25) for F⊕G.

Statement (ii). To verify that ⊕ in (6.4.3) is associative on objects, we consider
strictly unital symmetric monoidal functors

(F, F2) , (G, G2) , (H, H2) ∶ C D.

The definition (6.4.5) of (F ⊕ G)(x) and the associativity of ⊕ in D imply that(F⊕G)⊕H is equal to F⊕ (G⊕H) as functors. Moreover, each of them has unit
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constraint given by 1e. To show that their monoidal constraints are the same, we
consider the following diagram in D for objects x, y ∈ C.

(Fx⊕Gx)⊕Hx⊕ (Fy⊕Gy)⊕Hy

Fx⊕ (Gx⊕Hx)⊕ Fy⊕ (Gy⊕Hy) Fx⊕ Fy⊕Gx⊕ (Hx⊕Gy)⊕Hy

Fx⊕ Fy⊕Gx⊕Gy⊕Hx⊕HyFx⊕ (Gx⊕ Fy)⊕Gy⊕Hx⊕Hy

F(x⊕ y)⊕G(x⊕ y)⊕H(x ⊕ y)

1⊕ ξ ⊕ 1

1⊕ ξ ⊕ 1

F
2
⊕G

2
⊕H

2

1⊕ ξ ⊕ 1

1⊕ ξ ⊕ 1

The following statements hold for the diagram above.

● The left-bottom composite is the monoidal constraint ((F⊕G)⊕H)2
x,y

.

● The top-right composite is the monoidal constraint (F⊕ (G⊕H))2
x,y

.

● The top sub-region commutes by the coherence theorem for symmetric
monoidal categories [ML98, XI.1 Theorem 1].

This shows that⊕ in (6.4.3) is associative on objects. Its associativity on morphisms
follows from the definition (6.4.7) of (θ⊕ θ′)x and the associativity of ⊕ in D. Thus
the monoidal product of Psu(C,D) is associative.

Statement (iii). The constant functor e in (6.4.8), with 1e as the unit and mon-
oidal constraints, is a strict two-sided unit for ⊕ in Psu(C,D) for the following
reasons.

● F⊕ e and e⊕ F are both equal to F as functors because the monoidal unit
e in D is strict.
● The equalities (A.1.13)

ξe,? = 1? = ξ?,e in D

imply that for F ⊕ e and e ⊕ F, the morphism 1 ⊕ ξ ⊕ 1 in (6.4.6) is the

identity. The second morphism in (6.4.6) is F2
x,y⊕ 1e or 1e⊕ F2

x,y, which are

both equal to F2
x,y by the strict unity of e in D.

This shows that (Psu(C,D),⊕, e) is a strict monoidal category.

Statement (iv). The natural transformation ξF,G in (6.4.9) satisfies the unity
axiom in (A.1.28) because its e-component is

ξFe,Ge = ξe,e = 1e

by either unity properties in (A.1.13).
To show that ξF,G is compatible with the monoidal constraints of its domain

and codomain in the sense of (A.1.28), we consider the following diagram in D for
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objects x, y ∈ C.

(F⊕G)(x)⊕ (F⊕G)(y) (G⊕ F)(x)⊕ (G⊕ F)(y)
Fx ⊕Gx⊕ Fy⊕Gy Gx⊕ Fx⊕Gy⊕ Fy

Fx ⊕ Fy⊕Gx⊕Gy Gx⊕Gy⊕ Fx⊕ Fy

F(x ⊕ y)⊕G(x⊕ y) G(x⊕ y)⊕ F(x⊕ y)

1⊕ ξ ⊕ 1 1⊕ ξ ⊕ 1

F2 ⊕G2 G2 ⊕ F2

ξ ⊕ ξ

ξ

ξ

The following statements hold for the diagram above.

● The left vertical composite is the monoidal constraint (F⊕G)2x,y.

● The right vertical composite is the monoidal constraint (G⊕ F)2x,y.

● The top rectangle commutes by the coherence theorem for symmetric
monoidal categories [ML98, XI.1 Theorem 1].
● The bottom rectangle commutes by the naturality of the braiding in D.

This shows that ξF,G is a monoidal natural transformation (Definition A.1.27).

Statement (v). The symmetry and hexagon axioms (A.1.15) hold in Psu(C,D)
by

● the componentwise definitions (6.4.5), (6.4.7), and (6.4.10), and
● the corresponding axioms in D.

This finishes the proof. �

From now on Psu(C,D) is a permutative category as in Lemma 6.4.11.

Definition 6.4.12 (Composition). For small permutative categories B, C, and D, we
define the data of a bilinear functor (Definition 1.4.2)

(6.4.13) mB,C,D ∶ Psu(C,D)×Psu(B,C) Psu(B,D)
as follows, where we abbreviate mB,C,D to m.

Objects and Morphisms: The underlying functor of m is given by
● composition of strictly unital symmetric monoidal functors on ob-

jects and
● horizontal composition of monoidal natural transformations on

morphisms,
as displayed below.

(6.4.14) B C D B D

F

G

H

I

HF

IG

m⇒

θ

⇒

ψ

⇒

ψ ∗ θ

This is part of the 2-category structure on PermCatsu (Definition A.2.3).
First Monoidal Constraint: It is the identity natural transformation

(6.4.15) HF⊕ IF
m

2
1 = 1 (H⊕ I)F.

Thus for each object x ∈ B, its x-component is the identity morphism

HFx ⊕ IFx
1 (H⊕ I)(Fx).
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Second Monoidal Constraint: It is the natural transformation

(6.4.16) HF⊕HG
m

2
2

H(F⊕G)
with, for each object x ∈ B, x-component given by the monoidal constraint

HFx ⊕HGx
H2

Fx,Gx
H(Fx⊕Gx).

The naturality of m2
2 with respect to x ∈ B follows from the naturality of

H2.

This finishes the definition of mB,C,D. ◇
Lemma 6.4.17. In the context of Definition 6.4.12,

(mB,C,D , m2
1 = 1 , m2

2) ∶ Psu(C,D)×Psu(B,C) Psu(B,D)
is a bilinear functor.

Proof. We prove statements (i) through (v) below.

(i) The natural transformation m2
1 in (6.4.15) is monoidal.

(ii) The natural transformation m2
2 in (6.4.16) is monoidal.

(iii) m2
1 is natural in F, H, and I.

(iv) m2
2 is natural in F, G, and H.

(v) (m,m2
1,m2

2) satisfies the axioms of a bilinear functor (Definition 1.4.2).

Statement (i). To check that the natural transformation m2
1 in (6.4.15) is monoi-

dal (Definition A.1.27), first recall that each of its components is an identity mor-

phism. Thus m2
1 satisfies the unit axiom (A.1.28) because its e-component is 1e.

Moreover, for objects x, y ∈ B, the (x, y)-component of the monoidal constraint of
each of HF⊕ IF and (H⊕ I)F is the following composite in D.

HFx ⊕ IFx ⊕HFy⊕ IFy

HFx ⊕HFy⊕ IFx⊕ IFy H(Fx ⊕ Fy)⊕ I(Fx⊕ Fy)

HF(x ⊕ y)⊕ IF(x ⊕ y)
1⊕ ξ ⊕ 1

H2 ⊕ I2

H(F2)⊕ I(F2)

This shows that m2
1 in (6.4.15) is a monoidal natural transformation.

Statement (ii). To check that the natural transformation m2
2 in (6.4.16) is monoi-

dal, first note that the unity axioms (A.1.23) of the strictly unital symmetric mon-

oidal functor (H, H2, H0 = 1e) imply the equalities

(6.4.18) H2
e,? = 1H? = H2

?,e.

Since the domain and codomain of m2
2 are strictly unital, the unit axiom (A.1.28)

for m2
2 is the equality

H2
Fe,Ge = 1e,

which holds by (6.4.18) and the strict unity of F, G, and H.
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Next we check the compatibility of m2
2 with the monoidal constraints of its

domain and codomain (A.1.28). For objects x, y ∈ B, we use the notation

X1 = HFx⊕H(Gx⊕ Fy)⊕HGy,

X2 = H(Fx⊕Gx⊕ Fy)⊕HGy,

Y1 = HFx⊕H(Fy⊕Gx)⊕HGy, and

Y2 = H(Fx⊕ Fy⊕Gx)⊕HGy,

and consider the following diagram in D.

HFx⊕HGx⊕HFy⊕HGy H(Fx⊕Gx)⊕H(Fy⊕Gy)

HFx⊕HFy⊕HGx⊕HGy H(Fx⊕Gx⊕ Fy⊕Gy)

H(Fx⊕ Fy)⊕H(Gx⊕Gy) H(Fx⊕ Fy⊕Gx⊕Gy)

HF(x⊕ y)⊕HG(x⊕ y) H(F(x ⊕ y)⊕G(x⊕ y))

X1

X2

Y1

Y2

♠

♣

♣

♣

1⊕ ξ ⊕ 1

H
2
⊕H

2

H(F2)⊕H(G2)
H

2

H
2
⊕H

2

H
2

H(1⊕ ξ ⊕ 1)

H(F2
⊕G

2)

H
2

1⊕H(ξ)⊕ 1

H(1⊕ ξ)⊕ 1

1⊕H
2
⊕ 1 H

2
⊕ 1

H
2

1⊕H
2
⊕ 1 H

2
⊕ 1

H
2

The following statements hold for the diagram above.

● The left vertical composite is the (x, y)-component of the monoidal con-

straint of HF⊕HG, which is the domain of m2
2.

● The right vertical composite is the (x, y)-component of the monoidal con-

straint of H(F⊕G), which is the codomain of m2
2.

● The sub-region labeled ♠ is commutative by the compatibility of H with
the braiding (A.1.25).

● The three sub-regions labeled ♣ are commutative by the naturality of H2.

● The two unlabeled triangles are commutative by the associativity of H2

(A.1.24).

This shows that m2
2 in (6.4.16) is a monoidal natural transformation.

Statement (iii). To show that m2
1 is natural in F, H, and I, we consider monoidal

natural transformations

B C

C D

C D

F

F′

H

H′

I

I′

⇒

θ

⇒

ψ

⇒

ϕ
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between strictly unital symmetric monoidal functors. The corresponding natural-

ity diagram for m2
1 commutes because, for each object x ∈ B, both x-components

((ψ ∗ θ)⊕ (ϕ ∗ θ))
x

and ((ψ⊕ ϕ) ∗ θ)
x

are given by the composite

HFx ⊕ IFx HF′x⊕ IF′x H′F′x ⊕ I′F′x
H(θx)⊕ I(θx) ψF′x ⊕ ϕF′x

in D.

Statement (iv). To show that m2
2 is natural in F, G, and H, we consider monoidal

natural transformations

B C

B C

C D

F

F′

G

G′

H

H′

⇒

θ

⇒

π

⇒

ψ

between strictly unital symmetric monoidal functors and the corresponding natu-
rality diagram below.

HF⊕HG H(F⊕G)

H′F′ ⊕H′G′ H′(F′ ⊕G′)

m
2
2

ψ ∗ (θ⊕π)(ψ ∗ θ)⊕ (ψ ∗π)
m

2
2

For each object x ∈ B, the x-component of the diagram above is the boundary of
the following diagram in D.

HFx ⊕HGx H(Fx ⊕Gx)

HF′x⊕HG′x H(F′x⊕G′x)

H′F′x⊕H′G′x H′(F′x⊕G′x)

H2

H2

(H′)2

H(θx)⊕H(πx)

ψF′x ⊕ψG′x

H(θx ⊕πx)

ψF′x⊕G′x

The top rectangle commutes by the naturality of H2. The bottom rectangle com-

mutes by the monoidality of ψ (A.1.28). This shows that m2
2 is natural in F, G, and

H.

Statement (v). Next we check the axioms of a bilinear functor for (m,m2
1,m2

2).
Unity (1.4.4). It holds for m in (6.4.13) for the following reasons.

● The monoidal unit in each hom permutative category Psu(C,D) is the
constant functor at the monoidal unit of D (6.4.8).
● Objects in Psu(C,D) are strictly unital symmetric monoidal functors.
● Each morphism in Psu(C,D) has e-component given by 1e by the unit

axiom of a monoidal natural transformation (A.1.28).
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Constraint Unity (1.4.5). It holds for m2
1 in (6.4.15) because each of its compo-

nents is an identity morphism. For the same reason, m2
1 also satisfies the next two

axioms, (1.4.6) and (1.4.7).
The constraint unity axiom holds for m2

2 in (6.4.16) for the following reasons.

● If H is the monoidal unit e (6.4.8), then its monoidal constraint H2 is 1e
by definition.
● If either F or G is the monoidal unit e, then (6.4.18) yields the desired

equalities

H2
e,Gx = 1HGx and H2

Fx,e = 1HFx.

Constraint Associativity (1.4.6) and Symmetry (1.4.7). They hold for m2
2 by the

associativity (A.1.24) and symmetry (A.1.25) of the monoidal constraint H2.

Constraint 2-By-2 (1.4.8). We consider strictly unital symmetric monoidal func-
tors as follows.

B C D
F

G

H

I

In the constraint 2-by-2 axiom, if i = 1 and k = 2, then the diagram (1.4.8) is the left

pentagon below, which commutes by the definition of (H⊕ I)2 in (6.4.6).

HF⊕ IF⊕HG⊕ IG

(H⊕ I)F⊕ (H⊕ I)G

(H⊕ I)(F⊕G)
HF⊕HG⊕ IF⊕ IG

H(F⊕G)⊕ I(F⊕G)

1⊕ 1
(H⊕ I)2

1⊕ ξ ⊕ 1

H2 ⊕ I2

1

HF⊕HG⊕ IF⊕ IG

H(F⊕G)⊕ I(F⊕G)

(H⊕ I)(F⊕G)
HF⊕ IF⊕HG⊕ IG

(H⊕ I)F⊕ (H⊕ I)G

H2 ⊕ I2

1

1⊕ ξ ⊕ 1

1⊕ 1

(H⊕ I)2

If i = 2 and k = 1, then the constraint 2-by-2 diagram (1.4.8) is the right pentagon
above. For each object x ∈ B, the x-component of this pentagon is the following
diagram in D.

HFx ⊕HGx⊕ IFx⊕ IGx H(Fx ⊕Gx)⊕ I(Fx ⊕Gx)

HFx ⊕ IFx ⊕HGx⊕ IGx HFx ⊕HGx⊕ IFx⊕ IGx

H2 ⊕ I2

1⊕ ξ ⊕ 1

1⊕ ξ ⊕ 1

H2 ⊕ I2

This diagram commutes by the symmetry axiom (A.1.15) and the functoriality of
⊕ in the permutative category D.

This finishes the proof that (m,m2
1,m2

2) is a bilinear functor. �

Recall the description of a PermCatsu-category in Explanation 6.3.2.

Definition 6.4.19. The self-enrichment of Psu, which we also denote by Psu, is the
Psu-category defined as follows. Theorem 6.4.20 verifies that Psu is a Psu-category.

Objects: The objects are small permutative categories (Definition A.1.14).
Hom Permutative Categories: For small permutative categories C and D, the hom

permutative category Psu(C,D) is the one in Lemma 6.4.11.
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Composition: For small permutative categories B, C, and D, the composition bi-
linear functor

(mB,C,D , m2
1,m2

2) ∶ Psu(C,D)×Psu(B,C) Psu(B,D)
is the one in Lemma 6.4.17.

Identities: Each small permutative category B is equipped with the identity
symmetric monoidal functor 1B, which is also regarded as an object in
Psu(B,B).

This finishes the definition of the self-enrichment of Psu. ◇
Theorem 6.4.20. Equipped with the self-enrichment in Definition 6.4.19, PermCatsu is
a PermCatsu-category.

Proof. We need to check that Psu satisfies the associativity axiom (6.1.4) and the
unity axiom (6.1.5) of a Psu-category.

Associativity (6.1.4). For Psu this axiom means the commutativity of the follow-
ing diagram of composite 3-linear functors for small permutative categories A, B,
C, and D.

(6.4.21)

Psu(C,D)×Psu(B,C)×Psu(A,B) Psu(B,D)×Psu(A,B)

Psu(C,D)×Psu(A,C) Psu(A,D)

mB,C,D × 1

mA,B,D1×mA,B,C

mA,C,D

As a diagram of functors, (6.4.21) is commutative because

● composition of strictly unital symmetric monoidal functors and
● horizontal composition of monoidal natural transformations

are both associative.
To show that the two composites in (6.4.21) have the same linearity constraints,

as in (6.3.8) and (6.3.9), we consider strictly unital symmetric monoidal functors as
follows.

A B C D
H

H′

G

G′

F

F′

We consider the three diagrams in (6.3.8) and (6.3.9) in the current context of Psu.

● The diagram for the first linearity constraint (6.3.8) is commutative be-

cause each arrow is the identity, since m2
1 = 1 by definition (6.4.15).

● The diagram for the second linearity constraint (= left diagram in (6.3.9))

is commutative because m2
1 = 1 and each m2

2 is given by the monoidal

constraint F2 of F.
● The diagram for the third linearity constraint (= right diagram in (6.3.9))

is as follows.

F(GH)⊕ F(GH′)
(FG)H⊕ (FG)H′ (FG)(H⊕H′)

F(GH⊕GH′) F(G(H⊕H′))

(FG)2

F2

F(G2)
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This diagram commutes by the definition of the monoidal constraint

(FG)2 (Definition A.1.26).

This proves the associativity axiom (6.1.4) for Psu.

Unity (6.1.5). In the current context of Psu, the unity diagram (6.3.10) com-
mutes as a diagram of functors because, for each small permutative category B,
the identity iB is the identity symmetric monoidal functor 1B (Definition 6.4.19).
Moreover, the diagram (6.3.11) for the monoidal constraints is commutative for
the following reasons.

● The left half of (6.3.11) is commutative because m2
1 = 1.

● The right half of (6.3.11) is commutative because the monoidal constraint
of 1B is the identity.

This finishes the proof that Psu is a Psu-category. �

6.5. Bilinear Evaluation for Permutative Categories

In this section we discuss a bilinear evaluation for permutative categories. The
bilinear evaluation in (6.5.2) below is an analog of the evaluation in a symmetric
monoidal closed category (B.3.2). Along with the self-enrichment of PermCatsu

(Theorem 6.4.20), the bilinear evaluation in this section is also a part of the closed
multicategory structure on PermCatsu, which we discuss in Chapter 8. We will use
the bilinear evaluation in Explanations 9.4.5, 9.4.9, and 12.2.9 below.

This section is organized as follows.

● The evaluation bilinear functor for small permutative categories is con-
structed in Definition 6.5.1 and verified in Proposition 6.5.7.
● Proposition 6.5.8 shows that evaluation is compatible with the composi-

tion bilinear functor m in Lemma 6.4.17.

Recall bilinear functors between permutative categories (Definition 1.4.2) and the
permutative category PermCatsu(C,D) in Lemma 6.4.11. To simplify the presenta-
tion, we use the shortened notation in (6.3.1):

Psu = PermCatsu .

Definition 6.5.1. For small permutative categories C and D, we define the data of
a bilinear functor

(6.5.2) (evC,D , (evC,D)21 , (evC,D)22) ∶ Psu(C,D)×C D,

which is called the evaluation, as follows.

Objects: For a strictly unital symmetric monoidal functor (F, F2) ∶ C D and
an object x ∈ C, the object assignment is defined as

(6.5.3) evC,D(F, x) = Fx in D.

Morphisms: Consider
● a monoidal natural transformation θ ∶ F G between strictly uni-

tal symmetric monoidal functors F, G ∶ C D and
● a morphism f ∶ x y in C.

The morphism

evC,D(F, x) = Fx
evC,D(θ, f )

Gy = evC,D(G, y)
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is defined as either one of the following two composites in D, which are
equal by the naturality of θ.

(6.5.4)

Fx Gx

Fy Gy

θx

G fF f

θy

First Linearity Constraint: It is the identity natural transformation with compo-
nents as follows.

(6.5.5)
evC,D(F, x)⊕ evC,D(G, x) evC,D(F⊕G, x)

Fx⊕Gx (F⊕G)x

(evC,D)21

1

Second Linearity Constraint: It is given componentwise by the monoidal con-
straint of the first variable as follows.

(6.5.6)
evC,D(F, x)⊕ evC,D(F, y) evC,D(F, x⊕ y)

Fx ⊕ Fy F(x⊕ y)

(evC,D)22

F
2
x,y

This finishes the definition of the evaluation. If there is no danger of confusion,
we omit the subscripts in evC,D. ◇

Propositions 6.5.7 and 6.5.8 below show that evaluation is bilinear and has the
expected property with respect to composition. Proposition 6.5.7 is analogous to
the composition bilinear functor in Lemma 6.4.17. In Lemma 8.3.8 we extend it to
a multilinear functor as part of the closed multicategory structure on PermCatsu.

Proposition 6.5.7. For small permutative categories C and D, the triple

(evC,D , (evC,D)21 , (evC,D)22) ∶ Psu(C,D)×C D

in (6.5.2) is a bilinear functor.

Proof. We prove statements (i) through (iii) below.

(i) evC,D is a functor.

(ii) (evC,D)21 in (6.5.5) and (evC,D)22 in (6.5.6) are natural transformations.
(iii) evC,D satisfies the bilinear functor axioms.

Statement (i). The assignment evC,D preserves identity morphisms because all
four morphisms in (6.5.4) are identity morphisms if θ = 1F and f = 1x.

To see that evC,D preserves composition, consider a monoidal natural transfor-
mation ψ ∶ G H and a morphism g ∶ y z in C. In the following diagram in
D, the rectangle is commutative by the naturality of ψ.

Fx Gx Hx

Gy Hy

Hz

θx ψx

ψy

G f H f

Hg
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The top-right composite is

(H(g f ))(ψθ)x = evC,D(ψθ, g f ).
The other composite is

(Hg)ψy(G f )θx = evC,D(ψ, g)evC,D(θ, f ).
This shows that evC,D is a functor.

Statement (ii). The morphism (evC,D)21 in (6.5.5) is natural

● with respect to F and G by (6.4.7) and
● with respect to x by (6.4.5).

The morphism (evC,D)22 in (6.5.6) is natural

● with respect to F by the monoidality of θ (A.1.28) and

● with respect to x and y by the naturality of the monoidal constraint F2.

Statement (iii). The unity axiom (1.4.4) follows from the definitions (6.5.3)
and (6.5.4).

The first linearity constraint (evC,D)21 satisfies the constraint unity, associativ-
ity, and symmetry axioms, (1.4.5) through (1.4.7), because its components are iden-
tity morphisms.

The second linearity constraint (evC,D)22 satisfies the constrain unity axiom
(1.4.5) for the following reasons.

● The monoidal constraint of the monoidal unit (6.4.8) in Psu(C,D) is the
identity morphism 1e in D.
● If either x or y is the monoidal unit e in C, then

F2
e,y = 1Fy and F2

x,e = 1Fx

by the unity of (F, F2, F0 = 1e) in (A.1.23).

The constraint associativity and symmetry axioms, (1.4.6) and (1.4.7), hold for

(evC,D)22 by the associativity (A.1.24) and symmetry (A.1.25) of the monoidal con-

straint F2.
The constraint 2-by-2 axiom (1.4.8) is

● the left pentagon below if (i, k) = (1, 2) and
● the right pentagon below if (i, k) = (2, 1).

Fx⊕Gx⊕ Fy⊕Gy

(F⊕G)x⊕ (F⊕G)y

(F⊕G)(x⊕ y)
Fx⊕ Fy⊕Gx⊕Gy

F(x⊕ y)⊕G(x⊕ y)

1⊕ 1
(F⊕G)2

1⊕ ξ ⊕ 1

F2⊕G2

1

Fx⊕ Fy⊕Gx⊕Gy

F(x⊕ y)⊕G(x⊕ y)

(F⊕G)(x⊕ y)
Fx⊕Gx⊕ Fy⊕Gy

(F⊕G)x⊕ (F⊕G)y

F2⊕G2

1

1⊕ ξ ⊕ 1

1⊕ 1

(F⊕G)2

The left pentagon is commutative by the definition of (F⊕G)2 in (6.4.6). The right
pentagon is commutative by the symmetry axiom (A.1.15) and the functoriality of
⊕ in the permutative category D. �
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The following result is the permutative categorical analog of the left dia-
gram in (B.3.9) for symmetric monoidal closed categories. We will use this result
in Proposition 9.1.8 as part of the identification of the two self-enrichment of
PermCatsu; see (v) in that proof. Recall the composition of multilinear functors in
Definition 1.4.21 and the composition bilinear functor mB,C,D in Lemma 6.4.17.

Proposition 6.5.8. For small permutative categories B, C, and D, the following two com-
posite 3-linear functors are equal.

(6.5.9)

Psu(C,D)×Psu(B,C)×B Psu(B,D)×B

Psu(C,D)×C D

mB,C,D × 1

evB,D1× evB,C

evC,D

Proof. We prove statements (i) and (ii) below.

(i) The two composites in (6.5.9) are equal as functors.
(ii) Their three respective linearity constraints are equal.

Statement (i). Consider a morphism f ∶ x y in B and monoidal natural
transformations between strictly unital symmetric monoidal functors as follows.

B C D

F

G

H

I

⇒

θ

⇒

ψ

Each composite in (6.5.9) sends the triple (H, F, x) to the object HFx ∈ D. For
morphisms we consider the following diagram in D.

HFx HGx IGx

HGy IGy

Hθx ψGx

HevB,C(θ, f )
ψGy

HG f IG f

The following statements hold for the diagram above.

● The top-right composite is

(IG f )(ψ ∗ θ)x = evB,D(ψ ∗ θ, f ) = evB,D(mB,C,D(ψ, θ), f ).
● The bottom composite is evC,D(ψ, evB,C(θ, f )) by the left-bottom compos-

ite in (6.5.4) applied to evC,D(ψ,−).
● The left triangle is commutative by the definition (6.5.4) of evB,C(θ, f ).
● The right rectangle is commutative by the naturality of ψ.

This shows that (6.5.9) is commutative as a diagram of functors.

Statement (ii). Recall from (1.4.27) the definition of the linearity constraints of
a composite multilinear functor. Now we consider the three linearity constraints
of the two composites in (6.5.9).

● Their first linearity constraints are equal because both first linearity con-

straints m2
1 in (6.4.15) and ev2

1 in (6.5.5) are the identity.
● Their second linearity constraints are equal because both second linearity

constraints m2
2 in (6.4.16) and ev2

2 in (6.5.6) are given by the monoidal
constraint of the monoidal functor in question.
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● Their third linearity constraints are equal because the monoidal con-

straint of the composite monoidal functor HF is H(F2) ○ H2 by Defini-
tion A.1.26.

This proves that the two composite 3-linear functors in (6.5.9) are equal. �

6.6. Opposite Enriched Categories

In this section we discuss the opposite of an M-category when (M, γ, 1) is a
multicategory; see Proposition 6.6.7. By Definition C.1.3 M is a Set-multicategory,
where (Set,×,∗) is the symmetric monoidal category of sets and functions with the
monoidal product given by the Cartesian product. We emphasize that a multicat-
egory has a symmetric group action (C.1.4), which is necessary to define opposite
enriched categories.

When the enriching category is symmetric monoidal, we observe that the op-
posite enriched category in Definition B.1.13 is the same as the one in this section;
see Proposition 6.6.8. Looking ahead we consider change of enrichment of oppo-
site enriched categories in Proposition 7.2.1. Moreover, opposite enriched categor-
ies are important in Chapter 10 and Part 4, where they are the domains of enriched
presheaf categories (10.1.3).

Recall the notion of an M-category in Definition 6.1.1.

Definition 6.6.1. Suppose (M, γ, 1) is a multicategory, and (C,m, i) is an M-
category. The opposite M-category

(Cop,mop, i)
is the M-category defined as follows.

Objects: It has the same class of objects as C.
Hom Objects: For objects x, y ∈ Cop, its hom object is the object

Cop(x, y) = C(y, x) in M.

Composition: For objects x, y, z ∈ Cop, its composition is the binary multimor-
phism

(6.6.2) m
op
x,y,z ∶ (Cop(y, z) , Cop(x, y)) Cop(x, z) in M

given by the image of the composition binary multimorphism

mz,y,x ∶ (C(y, x) , C(z, y)) C(z, x)
under the symmetric group action of the nonidentity permutation τ ∈ Σ2:

(6.6.3) M(C(y, x) , C(z, y) ; C(z, x)) τ
≅ M(C(z, y) , C(y, x) ; C(z, x)).

Identities: The identity of an object x ∈ Cop is the nullary multimorphism

(6.6.4) ix ∶ ⟨⟩ C(x, x) = Cop(x, x) in M.

This is the same as the identity of x as an object in C.

This finishes the definition of (Cop,mop, i). Proposition 6.6.7 proves that Cop is
actually an M-category. ◇
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Explanation 6.6.5. We denote the composition m
op
x,y,z in (6.6.2) diagrammatically

as follows.

(6.6.6)

(Cop(y, z) , Cop(x, y)) Cop(x, z)
(C(z, y) , C(y, x)) C(z, x)

(C(y, x) , C(z, y))

m
op
x,y,z

τ mz,y,x

We understand this composite as given by the symmetric group action (6.6.3) in M.
This diagram is an analog of the composite (B.1.14) that defines the composition
of an opposite V-category with V a braided monoidal category. ◇

We now check that Cop satisfies the axioms of an M-category. The following
observation is stated in [BO15, Remark 2.8].

Proposition 6.6.7. In the context of Definition 6.6.1, (Cop,mop, i) is an M-category.

Proof. We need to prove the associativity axiom (6.1.4) and the unity axiom (6.1.5)
for Cop.

For objects w, x, y, z ∈ Cop, the associativity diagram (6.1.4) for Cop is the
boundary of the following diagram in M, with Cx,y denoting C(x, y) and τ ∈ Σ2

denoting the nonidentity permutation.

(Cz,y , Cy,x , Cx,w) (Cy,x , Cz,y , Cx,w) (Cz,x , Cx,w)

(Cz,y , Cx,w , Cy,x) (Cx,w , Cy,x , Cz,y) (Cx,w , Cz,x)

(Cz,y , Cy,w) (Cy,w , Cz,y) Cz,w

(τ, 1) (m, 1)

τ⟨1, 2⟩ (1,m)

τ m

(1, τ)

(1,m)

τ⟨2, 1⟩

(m, 1)

τ

m

(mop, 1)

m
op

(1,mop) m
op

The following statements hold for the diagram above.

● The right and bottom strips are the definition of mop (6.6.6).
● The left and top strips are commutative by (6.6.6) and the right unity

axiom (C.1.9) for M.
● Each τ⟨r, s⟩ ∈ Σ3 is the block permutation (C.1.12) that permutes a block

of length r with a block of length s. There are equalities of permutations

τ⟨1, 2⟩ ○ (1× τ) = (1, 3) = τ⟨2, 1⟩ ○ (τ × 1) in Σ3,

where (1, 3) denotes the transposition of 1 and 3. The upper left rectangle

composed with either γ(m ; m, 1) or γ(m ; 1,m) is commutative by the
symmetric group axiom (C.1.7) for M.
● The lower left rectangle composed with the lower right horizontal m is

commutative by the top equivariance axiom (C.1.11) for M.
● The lower right rectangle is commutative by the associativity axiom

(6.1.4) for C.
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● The upper right rectangle composed with the lower right vertical m is
commutative by the top equivariance axiom (C.1.11) for M.

This proves the associativity axiom for Cop.
For objects x, y ∈ Cop, the unity diagram (6.1.5) for Cop is the boundary of the

following diagram in M.

(Cy,x , ⟨⟩) (⟨⟩ , Cy,x) (Cy,x , ⟨⟩) (⟨⟩ , Cy,x)

(Cy,x , Cx,x) (Cy,y , Cy,x)

(Cx,x , Cy,x) Cy,x (Cy,x , Cy,y)

τ⟨1, 0⟩ = 1 τ⟨0, 1⟩ = 1

(1, ix)

τ

m

(iy, 1)

τ

m

(ix, 1)
1

(1, iy)

The following statements hold for the diagram above.

● The middle two sub-regions are commutative by the unity axiom (6.1.5)
for C.
● Since the block permutations τ⟨1, 0⟩ and τ⟨0, 1⟩ ∈ Σ1 are the identity, they

act on M as the identity by the first part of the symmetric group axiom
(C.1.7) for M.
● The left sub-region composed with the bottom left m is commutative by

the top equivariance axiom (C.1.11) for M.
● The right sub-region composed with the bottom right m is commutative

by the top equivariance axiom (C.1.11) for M.

This proves the unity axiom for Cop. �

For a monoidal category V, Proposition 6.2.1 shows that a V-category is the
same thing as an (EndV)-category for the non-symmetric endomorphism multi-
category EndV. Next we observe that, if V is symmetric monoidal, then we can
also identify opposite categories enriched in V and in EndV.

Proposition 6.6.8. For each symmetric monoidal category (V,⊗,1) and V-category C,

● the opposite V-category Cop in Definition B.1.13 and
● the opposite (EndV)-category Cop in Definition 6.6.1

are the same.

Proof. A comparison of Definitions 6.6.1 and B.1.13 shows that Cop in these two
definitions have

● the same objects, namely, the objects of C;
● the same hom objects, namely,

Cop(x, y) = C(y, x)
for objects x, y ∈ Cop; and
● the same identity for each object x ∈ Cop, namely,

ix ∈ (EndV)(⟨⟩ ; C(x, x)) = V(1,C(x, x)).
Their compositions, (6.6.6) and (B.1.14), are also the same because the symmetric
group action of the multicategory EndV is induced by the braiding of the symmet-
ric monoidal category V. �
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Example 6.6.9. Proposition 6.6.8 applies to all the symmetric monoidal categories
in Example 6.2.3. For example, consider the symmetric monoidal closed category
ModM1 in Proposition 1.3.17 (7), with associated Cat-multicategory in Explana-
tion 1.3.24. For a ModM1-category C, the opposite ModM1-category Cop in the sense
of Definitions 6.6.1 and B.1.13 are the same. ◇



CHAPTER 7

Change of Multicategorical Enrichment

This chapter defines and develops the basic properties of the change-of-
enrichment 2-functor induced by a non-symmetric multifunctor

F ∶M N

between non-symmetric multicategories M andN. IfM andN are multicategories—
equipped with the necessary symmetric group actions—then change of enrich-
ment is shown to preserve opposites in Proposition 7.2.1. Composing change of
enrichment functors is treated in Proposition 7.4.1, and Theorem 7.5.6 extends this
to show that there is a 2-functor

E ∶Multicatns 2Cat

given by the assignments

● EM =M-Cat (Theorem 6.1.27) on objects,
● EF = (−)F (Proposition 7.1.9) on 1-cells, and
● Eθ = (−)θ (Proposition 7.5.5) on 2-cells.

Our main motivation for these results is for application to K-theory multifunctors,
discussed in Examples 7.2.3, 7.3.2, and 7.4.2.

Connection with Other Chapters. The material in this chapter is used in each
of Chapters 9 through 12. Of these, Chapters 9 and 10 extend the theory here to
that of self-enrichments and enriched diagrams, respectively. The factorization of
Elmendorf-Mandell K-theory (7.4.3) is discussed further

● in Theorem 9.4.2 in the context of standard enrichment and
● in Theorem 10.6.2 in the context of presheaf change of enrichment.

Chapters 11 and 12 give homotopy-theoretic applications, with Chapter 12 focus-
ing on diagrams and Mackey functors enriched in Multicat∗ and PermCatsu.

Background. The content of this chapter depends on the multicategorical en-
richment developed in Chapter 6.

Chapter Summary. Section 7.1 defines the change-of-enrichment 2-functor
along a non-symmetric multifunctor. Section 7.2 specializes to the symmetric case
and shows that change of enrichment along a multifunctor preserves opposite en-
riched categories. Section 7.3 shows that the two notions of change of enrichment
along a monoidal functor—monoidal or multicategorical—agree. Section 7.4 de-
scribes compositionality for change of enrichment, and Section 7.5 extends this to
show that change of enrichment is 2-functorial. Here is a summary table.

157
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change of enrichment along a non-symmetric multifunctor 7.1.1 and 7.1.9

examples of change of enrichment 7.1.10 and 7.1.12

preservation of opposite enriched categories 7.2.1 and 7.2.3

change of enrichment along a monoidal functor 7.3.1

composition of change-of-enrichment 7.4.1

2-functoriality of change of enrichment 7.5.6

We remind the reader of Convention A.1.2 about universes and Conven-
tion A.1.30 about left normalized bracketing for iterated products.

7.1. Change of Enrichment along a Multifunctor

Each monoidal functor between monoidal categories

U ∶ V W

induces a change-of-enrichment 2-functor (Proposition B.4.6)

(−)U ∶ V-Cat W-Cat.

In this section we generalize this construction from a monoidal functor to a non-
symmetric multifunctor. This section is organized as follows.

● The change of enrichment along a non-symmetric multifunctor F is con-
structed in Definition 7.1.1 and is shown to be a 2-functor in Proposi-
tion 7.1.9.
● Example 7.1.10 illustrates Proposition 7.1.9 with K-theory multifunctors,

some of which are non-symmetric.
● As a further illustration of change of enrichment, in Explanation 7.1.12

we explicitly describe the change-of-enrichment 2-functor induced by the
non-symmetric multifunctor (Theorem 5.2.6)

F● ∶Multicat∗ PermCatsu

given by the pointed free permutative category construction.

Defining Change of Enrichment. Recall

● non-symmetric multicategories (Definition C.1.3),
● non-symmetric multifunctors (Definition C.1.19), and
● for a non-symmetric multicategory M, the 2-category M-Cat of small M-

categories, M-functors, and M-natural transformations (Theorem 6.1.27).

We emphasize that a non-symmetric multifunctor preserves colored units (C.1.21)
and composition (C.1.22), but not necessarily the symmetric group action even if
its domain and codomain are multicategories.

First we define the object, 1-cell, and 2-cell assignments of change of enrich-
ment. Recall the notion of a 2-functor (Definition A.2.4).

Definition 7.1.1. Suppose given a non-symmetric multifunctor between non-
symmetric multicategories

F ∶ (M, γ, 1) (N, γ, 1).
We define the data of a 2-functor

(−)F ∶M-Cat N-Cat,
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which is called the change of enrichment or the change-of-enrichment 2-functor along
F, as follows.

Object Assignment: The image of an M-category (C,m, i) (Definition 6.1.1) under(−)F is the N-category

(7.1.2) (CF,mF, iF)
consisting of the following data.
● The objects of CF are those of C.
● For each pair of objects x, y ∈ CF, the hom object is

(7.1.3) (CF)(x, y) = FC(x, y) in N.

● For objects x, y, z ∈ CF, the composition binary multimorphism

(7.1.4) (FC(y, z) , FC(x, y)) (mF)x,y,z = F (mx,y,z)
FC(x, z) in N

is the image under F of the composition mx,y,z in (6.1.2).
● For each object x ∈ C, the identity nullary multimorphism

(7.1.5) ⟨⟩ (iF)x = F(ix)
FC(x, x) in N

is the image under F of the identity ix in (6.1.3).
This finishes the definition of the N-category (CF,mF, iF) in (7.1.2). Its as-
sociativity diagram (6.1.4) and unity diagram (6.1.5) are obtained from
those for C by applying F, which preserves colored units and composi-
tion.

1-Cell Assignment: The image of an M-functor between M-categories (Defini-
tion 6.1.7)

H ∶ (C,m, i) (D,m, i)
under (−)F is the N-functor

(7.1.6) HF ∶ (CF,mF, iF) (DF,mF, iF)
defined as follows.
● The object assignment of HF is the object assignment of H.
● For each pair of objects x, y ∈ CF, the component unary multimor-

phism

(7.1.7) FC(x, y) (HF)x,y = F(Hx,y)
FD(Hx, Hy) in N

is the image under F of the component Hx,y in (6.1.8).
This finishes the definition of the N-functor HF in (7.1.6). Its compati-
bility axioms (6.1.9) are obtained from those for H by applying the non-
symmetric multifunctor F.

2-Cell Assignment: Suppose θ ∶ H G is an M-natural transformation (Defini-
tion 6.1.14) as in the left diagram below.

C D

H

G

⇒

θ CF DF

HF

GF

⇒

θF
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We define θF as the N-natural transformation, as in the right diagram
above, with, for each object x ∈ CF, x-component nullary multimorphism

(7.1.8) ⟨⟩ (θF)x = F(θx)
FD(Hx, Gx) in N.

This is the image under F of the x-component

θx ∶ ⟨⟩ D(Hx, Gx)
of θ in (6.1.15), which is a nullary multimorphism in M. The naturality
diagram (6.1.16) for θF is obtained from the naturality diagram for θ by
applying F.

This finishes the definition of (−)F. ◇
The following result is stated in [BO15, Proposition 2.11].

Proposition 7.1.9. For each non-symmetric multifunctor F ∶ M N between non-
symmetric multicategories, the change of enrichment along F in Definition 7.1.1 is a 2-
functor

(−)F ∶M-Cat N-Cat.

Proof. We need to check that the assignment (−)F preserves

● identity 1-cells (6.1.10),
● horizontal composition of 1-cells (6.1.11),
● identity 2-cells (6.1.17),
● vertical composition of 2-cells (6.1.20), and
● horizontal composition of 2-cells (6.1.23).

These preservation properties of (−)F follow from

(1) the componentwise definitions (7.1.3) through (7.1.5), (7.1.7), and (7.1.8),
and

(2) the fact that F preserves colored units and composition.

This finishes the proof. �

Examples of Change of Enrichment.

Example 7.1.10 (K-Theory Multifunctors). The change-of-enrichment 2-functor
exists for each of the multifunctors in the following diagram from (1.4.39), (2.5.1),
and (3.4.32) along with (5.2.7) and (5.5.2). Among these arrows, F, F●, FM1, and P
are non-symmetric.

(7.1.11)
PermCatsuMulticat

ModM1Multicat∗

Γ-Cat

G∗-Cat

Sp
End

End●
EndM1

F

F●
FM1

J
EM

P

K
EM

In other words, each of these multifunctors (non-symmetric for F, F●, FM1, and P)
induces a change-of-enrichment 2-functor as in Proposition 7.1.9. We emphasize
that none of the arrows in (7.1.11) is a monoidal functor because the multicategory
structure on PermCatsu is not induced by a monoidal structure. Thus Proposi-
tion B.4.6 does not apply to the arrows in (7.1.11). In Example 7.3.2 below we ex-
tend this example to include other K-theoretic symmetric monoidal functors. ◇
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Explanation 7.1.12 (Change of Enrichment along F●). To illustrate Definition 7.1.1,
we describe the change-of-enrichment 2-functor

(7.1.13) (−)F● ∶Multicat∗-Cat PermCatsu-Cat

induced by the non-symmetric multifunctor (Theorem 5.2.6)

F● ∶Multicat∗ PermCatsu .

To simplify the presentation, we use the shortened notation

M∗ =Multicat∗ and Psu = PermCatsu .

Since M∗ is a symmetric monoidal closed category (Theorem 1.2.8), by Proposi-
tion 6.2.1 the 2-category M∗-Cat is the same regardless of whether we consider it
in the sense of Example B.1.12 or Theorem 6.1.27.

(−)F● on Objects. Suppose (C,m, i) is an M∗-category (Definition B.1.1). Besides
its class of objects, C consists of the following data.

● For each pair of objects x, y ∈ C, the hom object C(x, y) is a small pointed
multicategory (Definition C.4.1).
● For objects x, y, z ∈ C, the composition is a pointed multifunctor

(7.1.14) mx,y,z ∶ C(y, z)∧C(x, y) C(x, z).
● The identity of each object x ∈ C is a pointed multifunctor

(7.1.15) ix ∶ I+ = I∐T C(x, x)
from the smash unit I+ in (1.2.4). Since ix preserves the basepoint, it sends
the unique object ∗ ∈ T to the basepoint of C(x, x). Thus ix is determined
by the object

ix(1) ∈ C(x, x)
with 1 denoting the unique object in the initial operad I in Example C.1.35
(i). To simplify the notation, we also denote the object ix(1) by ix .

The associativity diagram (B.1.4) and the unity diagram (B.1.5) are required to
commute.

Applying (7.1.3) through (7.1.5) to F●, the Psu-category (Explanation 6.3.2)

(CF● , mF● , iF●)
consists of the following data.

● Ob (CF●) = ObC.
● For each pair of objects x, y ∈ CF● , the hom object

CF●(x, y) = F●C(x, y)
is the pointed free permutative category (Definitions 4.1.4 and 4.1.11) of
the small pointed multicategory C(x, y).
● For objects x, y, z ∈ CF● , applying the n = 2 case of (5.2.4) to mx,y,z, the

composition bilinear functor

F●C(y, z)× F●C(x, y) F●(C(y, z)∧C(x, y)) F●C(x, z)F
2
● F●(mx,y,z)

(mF●)x,y,z

is the composite of

– the strong bilinear functor F2● in Proposition 5.1.9 and
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– the strict symmetric monoidal functor F●(mx,y,z) in Definition 4.1.12.
● For each object x ∈ C, we also regard the pointed multifunctor ix in (7.1.15)

as an object in the pointed multicategory C(x, x), given by the image

of the unique object 1 ∈ I. The identity of an object x ∈ CF● is the
ob∼-

equivalence class

(iF●)x = [(ix)] ∈ F●C(x, x)
of the length-one sequence (ix) ∈ FC(x, x) (Definition 4.1.4). More explic-
itly, applying the n = 0 case of (5.2.4) to ix, the identity (iF●)x is given by
the 0-linear functor

(7.1.16) ⟨⟩ F
0
●

F●(I+) F●(ix)
F●C(x, x).

By Definition 5.1.1 F0● is given by the
ob∼-equivalence class [(1)] ∈ F●(I+).

Then F●(ix) sends [(1)] to [(ix)] by definition (4.1.13) applied to the
pointed multifunctor ix .

(−)F● on 1-Cells. Consider an M∗-functor (Definition B.1.8) between M∗-
categories

H ∶ (C,m, i) (D,m, i).
Besides its object assignment, H has, for each pair of objects x, y ∈ C, a component
pointed multifunctor

(7.1.17) Hx,y ∶ C(x, y) D(Hx, Hy).
These pointed multifunctors are compatible with composition and identities in the
sense of (B.1.9). In particular, compatibility with identities means that, for each
object x ∈ C, the identity ix ∈ C(x, x) is sent to the identity

Hx,x(ix) = iHx ∈ D(Hx, Hx).
Applying the change of enrichment along F●, the Psu-functor (Explana-

tion 6.3.12)
HF● ∶ (CF● , mF● , iF●) (DF● , mF● , iF●)

has the same object assignment as H. For objects x, y ∈ CF● , HF● has the component
strict symmetric monoidal functor (7.1.7)

F●C(x, y) F●Hx,y
F●D(Hx, Hy).

This is obtained from the pointed multifunctor Hx,y in (7.1.17) by applying the
1-cell assignment of F● in Definition 4.1.12.

(−)F● on 2-Cells. Consider an M∗-natural transformation (Definition B.1.10)

(C,m, i) (D,m, i)H

G

⇒

θ

between M∗-functors between M∗-categories. For each object x ∈ C, the x-
component of θ is a pointed multifunctor

θx ∶ I+ = I∐T D(Hx, Gx).
Similar to (7.1.15), the pointed multifunctor θx is determined by the object

θx(1) ∈ D(Hx, Gx)
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with 1 ∈ I denoting the unique object. As before we abbreviate θx(1) to θx. For
objects x, y ∈ C, the naturality diagram (B.1.11) for θ is the following commutative
diagram of pointed multifunctors.

(7.1.18) C(x, y)

I+ ∧C(x, y) D(Hy, Gy)∧D(Hx, Hy)

D(Hx, Gy)

C(x, y)∧ I+ D(Gx, Gy)∧D(Hx, Gx)

λ
−1 ≅

θy ∧Hx,y

m

≅ρ
−1

Gx,y ∧ θx

m

The commutative diagram (7.1.18) is equivalent to the following equality in
D(Hx, Gy) for objects and multimorphisms f ∈ C(x, y).

m(θy ∧ (Hx,y f )) = m((Gx,y f )∧ θx)
Applying the change of enrichment along F● to θ yields the following Psu-

natural transformation (Explanation 6.3.16).

(CF● , mF● , iF●) (DF● , mF● , iF●)
HF●

GF●

⇒

θF●

For each object x ∈ CF● , its x-component is the
ob∼-equivalence class (7.1.8)

(θF●)x = [(θx)] ∈ F●D(Hx, Gx)
of the length-one sequence (θx) ∈ FD(Hx, Gx). The reasoning is the same as in
(7.1.16), with ix replaced by θx.

This finishes our description of the change-of-enrichment 2-functor (−)F● . We
will use (−)F● in Example 9.2.14 and Explanations 12.3.1, 12.3.5, and 12.3.11. ◇

7.2. Preservation of Opposite Enriched Categories

By Proposition 7.1.9 each non-symmetric multifunctor F yields a change-of-
enrichment 2-functor (−)F. Recall that a multifunctor preserves colored units,
composition, and symmetric group action (Definition C.1.19). In this section we
observe that change of enrichment along a multifunctor preserves opposite en-
riched categories (Definition 6.6.1); see Proposition 7.2.1. We will use this opposite-
preservation property in (10.2.4) to define the presheaf change of enrichment of F.
In that context, we will use Proposition 7.2.1 in Theorems 10.3.4, 10.4.5, and 11.4.24
and Remark 10.5.4.

Proposition 7.2.1. Suppose given a multifunctor between multicategories

F ∶ (M, γ, 1) (N, γ, 1)
and an M-category C. Then there is an equality of N-categories

(Cop)F = (CF)op
with (−)F the change of enrichment in (7.1.2).

Proof. For an M-category (C,m, i), we need to show that the following two N-
categories are the same.
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● (Cop)F is the change of enrichment along F (7.1.2) of the opposite M-
category Cop (Definition 6.6.1).
● (CF)op is the opposite N-category of CF, which is the change of enrich-

ment of C along F.

In both (Cop)F and (CF)op, the objects are those of C. For objects x, y ∈ C, the hom
objects are equal:

(Cop)F(x, y) = FCop(x, y) = FC(y, x) = CF(y, x) = (CF)op(x, y).
By (6.6.4) and (7.1.5), the identity of an object x in (Cop)F and (CF)op is the nullary
multimorphism

F(ix) ∶ ⟨⟩ FC(x, x) in N.

For objects x, y, z ∈ (Cop)F and (CF)op, the compositions are equal:

(7.2.2)

((mop)F)x,y,z
= F(mz,y,x ⋅ τ)
= (Fmz,y,x) ⋅ τ
= ((mF)op)x,y,z

.

The first and third equalities above use the definitions (6.6.2) and (7.1.4). The sec-
ond equality uses the fact that F is a multifunctor, which preserves the symmetric
group action (C.1.20). �

We emphasize that Proposition 7.2.1 does not extend to non-symmetric mul-
tifunctors between multicategories because the second equality in (7.2.2) requires
that F preserves the symmetric group action in the strict sense.

Example 7.2.3 (K-Theory Multifunctors). Proposition 7.2.1 applies to the multi-
functors in the following sub-diagram of (7.1.11).

(7.2.4)

PermCatsuMulticat

ModM1Multicat∗

Sp

G∗-Cat

End

End●
EndM1

J
EM

K
EM

In other words, the change of enrichment induced by each multifunctor in (7.2.4)
preserves opposite enriched categories. For example, consider a PermCatsu-
category C (Explanation 6.3.2). Then Proposition 7.2.1 yields the equality of
Sp-categories

(Cop)KEM = (CKEM)op.

The opposite on the left-hand side is taken in PermCatsu-Cat. The opposite on the
right-hand side is taken in Sp -Cat, after the change of enrichment along KEM. The
above equality of Sp-categories is important in the context of presheaf change of
enrichment; see Theorem 10.5.1 and Remarks 10.5.4 and 10.5.5.

Note that F, F●, FM1, and P in (7.1.11) are excluded from the diagram (7.2.4) be-
cause they are non-symmetric multifunctors and do not preserve opposite enriched
categories in general. Specifically, each of these non-symmetric multifunctors fails
to satisfy the second equality in (7.2.2), which requires strict preservation of sym-
metric group action. ◇
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7.3. Change of Enrichment along a Monoidal Functor

For a monoidal functor between monoidal categories (Definition A.1.22)

U ∶ V W,

there are two change-of-enrichment 2-functors as follows.

(1) By Proposition B.4.6 there is a change-of-enrichment 2-functor

(−)U ∶ V-Cat W-Cat.

(2) By Example C.3.1 there is a non-symmetric multifunctor

EndU ∶ EndV EndW.

By Propositions 6.2.1 and 7.1.9 there is a change-of-enrichment 2-functor

(−)EndU ∶ (EndV)-Cat = V-Cat (EndW)-Cat =W-Cat.

In this section we observe that these two change-of-enrichment 2-functors are
equal.

Proposition 7.3.1. For each monoidal functor between monoidal categories

(U, U2, U0) ∶ (V,⊗,1) (W,⊗,1),
there is an equality of change-of-enrichment 2-functors

(−)U = (−)EndU ∶ V-Cat W-Cat.

Proof. We need to show that (−)U and (−)EndU are equal on the objects, 1-cells,
and 2-cells of the 2-category (Proposition 6.2.1)

V-Cat = (EndV)-Cat.
First we consider a V-category (C,m, i) (Definition B.1.1).

● By Definitions 7.1.1 and B.4.1, both CU and CEndU have
– the same objects as C and
– hom objects UC(x, y) for objects x, y ∈ C.

● The identity of an object x ∈ CU is given by the composite (B.4.3)

1
U0

U1
Uix

UC(x, x).
Regarding x as an object in CEndU , (7.1.5) implies that its identity is also
given by the composite above because EndU on a nullary multimorphism

(C.3.4) is the composite of the unit constraint U0 followed by U(−).
● For objects x, y, z ∈ CU the composition is given by the composite (B.4.2)

UC(y, z)⊗UC(x, y) U2

U(C(y, z)⊗C(x, y)) Um
UC(x, z).

Regarding x, y, and z as objects in CEndU , (7.1.4) implies that the com-
position is also given by the composite above because EndU on a binary

multimorphism (C.3.4) is the composite of the monoidal constraint U2

followed by U(−).
This proves that (−)U and (−)EndU are equal on objects.

Next we consider a V-functor between V-categories (Definition B.1.8)

H ∶ C D.
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By (7.1.7), (B.4.4), and (C.3.4), for objects x, y ∈ CU and CEndU, there are equalities
of component morphisms in W:

(HU)x,y = U(Hx,y) = (EndU)(Hx,y) = (HEndU)x,y.

Thus (−)U and (−)EndU are equal on 1-cells.
By (7.1.8) and (B.4.5), the proof that (−)U and (−)EndU are equal on each V-

natural transformation θ is the same as the argument above for the identity of an
object, with ix replaced by the component θx for objects x ∈ C. �

Example 7.3.2 (K-Theory Symmetric Monoidal Functors). Proposition 7.3.1 ap-
plies to the symmetric monoidal functors in the following commutative diagram
from (1.2.11), (1.3.28), (2.4.20), and (2.5.1).

(7.3.3)

Multicat

Multicat∗

ModM1

Γ-Cat Γ-sSet Sp

G∗-Cat G∗-sSet

UM1

U ●

J
T Ner∗

K
G

Ner∗ K
F

∧∗ ∧∗

In other words, for each of these symmetric monoidal functors, the induced
change-of-enrichment 2-functors in Propositions 7.1.9 and B.4.6 are the same.
Moreover, each of these change-of-enrichment 2-functors preserves opposite en-
riched categories in the sense of Proposition 7.2.1. ◇

7.4. Composition of Change-of-Enrichment 2-Functors

By Proposition 7.1.9 each non-symmetric multifunctor F has an associated
change-of-enrichment 2-functor (−)F. In this section we observe that change of
enrichment respects composition of non-symmetric multifunctors; see Proposi-
tion 7.4.1. This is an analog of Proposition B.4.7 for change of enrichment along
monoidal functors. Proposition 7.4.1 is important in the context of standard
enrichment, diagram change of enrichment, and Mackey functor change of en-
richment; see Theorems 9.3.6, 10.4.1, and 10.4.5 and (9.4.13), (11.1.4), (11.2.7),
and (12.5.9).

Proposition 7.4.1. For non-symmetric multifunctors between non-symmetric multicat-
egories

M
F

N
G

P,

the following diagram of change-of-enrichment 2-functors commutes.

M-Cat N-Cat P-Cat
(−)F (−)G

(−)GF

Proof. We need to show that (−)GF and (−)G ○ (−)F are equal on the objects, 1-cells,
and 2-cells of the 2-category M-Cat (Theorem 6.1.27).

First we consider an M-category (C,m, i) (Definition 6.1.1).

● Both (CF)G and CGF have the same objects as C and hom objects

GFC(x, y) ∈ P for x, y ∈ C.
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● For each object x ∈ (CF)G and CGF, by (7.1.5) and (C.1.23) the identity is
the nullary multimorphism

⟨⟩ GF(ix)
GFC(x, x) in P.

● For objects x, y, z ∈ (CF)G and CGF, by (7.1.4) and (C.1.23) the composition
is the binary multimorphism

(GFC(y, z) , GFC(x, y)) GF(mx,y,z)
GFC(x, z) in P.

This shows that (−)GF and (−)G ○ (−)F are equal on M-categories.
Next we consider an M-functor H ∶ C D between M-categories (Defini-

tion 6.1.7).

● Both (HF)G and HGF have the same object assignment as H.
● For objects x, y ∈ (CF)G and CGF, by (7.1.7) there are equalities of compo-

nent unary multimorphisms

((HF)G)x,y
= GF(Hx,y) = (HGF)x,y in P.

This shows that (−)GF and (−)G ○ (−)F are equal on M-functors.
For an M-natural transformation θ and an object x ∈ (CF)G and CGF, by (7.1.8)

there are equalities of x-component nullary multimorphisms

((θF)G)x
= GF(θx) = (θGF)x in P.

Thus (−)GF and (−)G ○ (−)F are equal on M-natural transformations. �

We emphasize that Proposition 7.4.1 does not require F and G to preserve the
symmetric group action even if M, N, and P are multicategories.

Example 7.4.2 (K-Theory Multifunctors). Proposition 7.4.1 applies to all the (non-
symmetric) multifunctors in (7.1.11) and (7.3.3). For example, consider the follow-
ing commutative sub-diagram of (2.5.1) consisting of multifunctors.

(7.4.3)

PermCatsu Γ-Cat Γ-sSet Sp

G∗-Cat G∗-sSetModM1

Ner∗ K
F

J
EM

EndM1

J
T Ner∗

K
G

∧∗ ∧∗

K
EM

By Proposition 7.4.1 the associated diagram of change-of-enrichment 2-functors
is commutative. In particular, the change-of-enrichment 2-functor along KEM is
equal to the composite of the change-of-enrichment 2-functors along EndM1, J

T ,
Ner∗, and KG. We discuss the factorization (7.4.3) of KEM further

● in Theorem 9.4.2 in the context of standard enrichment and
● in Theorem 10.6.2 in the context of presheaf change of enrichment. ◇

7.5. 2-Functoriality of Change of Enrichment

In this section we show that the (change of) enrichment constructions

M M-Cat and F (−)F
in Theorem 6.1.27 and Proposition 7.1.9, respectively, are part of a 2-functor;
see Theorem 7.5.6. To explain this precisely, first we construct the change of
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enrichment of multinatural transformations (Definition 7.5.1). We show in Propo-
sition 7.5.5 that this yields a well-defined 2-natural transformation.

Beyond its immediate usage in Theorem 7.5.6, we will use Proposition 7.5.5
in (11.1.3) to construct a functor that goes in the backward direction as a diagram
change of enrichment. Then we use that functor to construct an equivalence of
homotopy theories in that context; see Theorem 11.4.14.

Recall 2-natural transformations and multinatural transformations in Defini-
tions A.2.7 and C.1.25, respectively.

Definition 7.5.1. Suppose θ ∶ F G is a multinatural transformation between
non-symmetric multifunctors between non-symmetric multicategories, as in the
left diagram below.

(7.5.2) (M, γ, 1) (N, γ, 1)F

G

⇒

θ M-Cat N-Cat

(−)F

(−)G

⇒

(−)θ

We define the data of a 2-natural transformation (−)θ, as in the right diagram in
(7.5.2), as follows. Here

● M-Cat and N-Cat are the 2-categories in Theorem 6.1.27, and
● (−)F and (−)G are the change-of-enrichment 2-functors in Proposi-

tion 7.1.9.

For each small M-category (C,m, i) (Definition 6.1.1), we define the data of an N-
functor (Definition 6.1.7)

(7.5.3) Cθ ∶ (CF,mF, iF) (CG,mG, iG)
as follows.

● Cθ is the identity assignment on objects. This is well defined since CF and
CG both have the same objects as C.
● For each pair of objects x, y ∈ C, the (x, y)-component of Cθ is defined as

the C(x, y)-component of θ:

(7.5.4) CF(x, y) = FC(x, y) (Cθ)x,y = θC(x,y)
CG(x, y) = GC(x, y).

This is a unary multimorphism in N.

This finishes the definition of (−)θ . ◇
Now we check that (−)θ is well defined.

Proposition 7.5.5. In the context of Definition 7.5.1, (−)θ is a 2-natural transformation.

Proof. We prove statements (i) through (iii) below.

(i) Cθ in (7.5.3) is an N-functor (Definition 6.1.7).
(ii) (−)θ is natural with respect to M-functors (A.2.8).

(iii) (−)θ is natural with respect to M-natural transformations (A.2.9).
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Statement (i). We abbreviate C(x, y) to Cx,y. For objects x, y, z ∈ CF, the two
compatibility diagrams in (6.1.9) for Cθ are as follows.

(FCy,z , FCx,y) FCx,z

(GCy,z , GCx,y) GCx,z

Fmx,y,z

θCx,z
(θCy,z

, θCx,y
)

Gmx,y,z

⟨⟩ FCx,x

GCx,x

Fix

θCx,xGix

These two diagrams commute by the naturality of θ (C.1.26) for, respectively, the
binary multimorphism mx,y,z and the nullary multimorphism ix in M.

Statement (ii). For an M-functor P ∶ C D (Definition 6.1.7), the 1-cell nat-
urality diagram (A.2.8) for (−)θ is the left diagram of N-functors below, where PF

and PG are defined in (7.1.6).

CF CG

DF DG

Cθ

PGPF

Dθ

FCx,y GCx,y

FDPx,Py GDPx,Py

θCx,y

GPx,yFPx,y

θDPx,Py

Both PGCθ and Dθ PF have the same object assignment as P, since Cθ and Dθ are the
identity functions on objects. For objects x, y ∈ CF, the (x, y)-component of the left
diagram above is the right diagram in N. The latter commutes by the naturality of
θ (C.1.26) for the unary multimorphism

Px,y ∶ C(x, y) D(Px, Py) in M.

Statement (iii). Consider an M-natural transformation ψ ∶ P Q (Defini-
tion 6.1.14) for M-functors P, Q ∶ C D. The 2-cell naturality diagram (A.2.9) for(−)θ is the left diagram of N-natural transformations below, where ψF and ψG are
defined in (7.1.8).

CF CG

DF DG

Cθ

Dθ

PF

QF

PG

QG
⇒
ψF

⇒
ψG

⟨⟩

FDPx,Qx GDPx,Qx

Fψx

θDPx,Qx

Gψx

For each object x ∈ CF, since Cθ is the identity on objects, the x-component of the
left diagram above is the right diagram in N. The latter commutes by the naturality
of θ (C.1.26) for the nullary multimorphism

ψx ∶ ⟨⟩ D(Px, Qx) in M.

This finishes the proof. �

To state the main result of this section, recall the following 2-categories.

● 2Cat is the 2-category of small 2-categories, 2-functors, and 2-natural
transformations (Example A.2.10).
● Multicatns is the 2-category of non-symmetric small multicategories, mul-

tifunctors, and multinatural transformations (C.1.34).
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We now observe that change of enrichment is a 2-functor between these 2-
categories. The following result is a multicategorical analog of [JY∞, 2.2.7], which
is about enrichment in monoidal categories. See Explanation 7.5.7 for a discussion
related to universes.

Theorem 7.5.6. There is a 2-functor

E ∶Multicatns 2Cat

given by the assignments

● EM =M-Cat (Theorem 6.1.27) on objects,
● EF = (−)F (Proposition 7.1.9) on 1-cells, and
● Eθ = (−)θ (Proposition 7.5.5) on 2-cells.

Proof. We prove statements (i) through (iv) below.

(i) E preserves identity 1-cells and horizontal composition of 1-cells.
(ii) E preserves identity 2-cells.

(iii) E preserves vertical composition of 2-cells.
(iv) E preserves horizontal composition of 2-cells.

Statement (i). For a small non-symmetric multicategory M, the identity non-
symmetric multifunctor 1M (Definition C.1.19) consists of the identity functions
on objects and multimorphisms. The change of enrichment along 1M,

(−)1M ∶M-Cat M-Cat,

is the identity 2-functor on M-Cat by the componentwise definitions (7.1.3)
through (7.1.5), (7.1.7), and (7.1.8). Moreover, E preserves horizontal composi-
tion of 1-cells by Proposition 7.4.1.

Statement (ii). For a non-symmetric multifunctor F ∶ M N, the identity
multinatural transformation 1F (Definition C.1.25) has, for each object x ∈ M, x-
component given by the colored unit 1Fx. By definitions (6.1.10) and (7.5.4), each
component of the 2-natural transformation

(−)1F
∶ (−)F (−)F

is an identity N-functor, so (−)1F
= 1(−)F

.

Statement (iii). We consider vertically composable multinatural transforma-
tions between non-symmetric multifunctors, as in the left diagram below.

M N

F

G

H

⇒

θ

⇒

ψ
M-Cat N-Cat

(−)F

(−)H

(−)G

⇒

(−)θ

⇒ (−)ψ

The desired equality of 2-natural transformations is

(−)ψ(−)θ = (−)ψθ,

where ψθ ∶ F H is the vertical composition (C.1.29). We need to show that, for
each small M-category C, the following diagram of N-functors commutes.

CF CG CH
Cθ Cψ

Cψθ
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On objects of CF, each of the three arrows in the diagram above is the identity
function. For objects x, y ∈ CF, the (x, y)-component is the following diagram of
unary multimorphisms in N.

FC(x, y) GC(x, y) HC(x, y)θC(x,y) ψC(x,y)

(ψθ)C(x,y)

This diagram commutes because ψθ is defined componentwise (C.1.30).

Statement (iv). We consider horizontally composable multinatural transforma-
tions θ and θ′ between non-symmetric multifunctors (C.1.31), as in the left diagram
below.

M N P

F

G

F′

G′

⇒

θ

⇒

θ
′ M P

F′F

G′G

⇒

θ
′∗ θ

This yields the following 2-natural transformations.

M-Cat N-Cat P-Cat

(−)F

(−)G

(−)F′

(−)G′

⇒

(−)θ
⇒

(−)θ′ M-Cat P-Cat

(−)F′F

(−)G′G

⇒

(−)θ′∗θ

The desired equality of 2-natural transformations is

(−)θ′ ∗ (−)θ = (−)θ′∗θ.

For a small M-category C, the C-component of (−)θ′ ∗ (−)θ is the bottom composite
P-functor in the following diagram, while the C-component of (−)θ′∗θ is the top
P-functor.

(CF)F′ (CG)F′ (CG)G′
CF′F CG′G

(Cθ)F′ (CG)θ′

Cθ′∗θ

Each of these two P-functors is the identity on objects. For objects x, y ∈ CF′F, the(x, y)-components yield the following diagram of unary multimorphisms in P.

F′FC(x, y) F′GC(x, y) G′GC(x, y)F′θC(x,y) θ
′

GC(x,y)

(θ′∗ θ)C(x,y)

This diagram commutes by the definition (C.1.32) of each component of θ′∗ θ. �

Explanation 7.5.7 (Universes). In Theorem 7.5.6, for a small non-symmetric multi-
category M with respect to a given universe U , the 2-category M-Cat is, in general,
not small with respect to U . We implicitly use Grothendieck’s Axiom of Universes
(Convention A.1.2) to choose a larger universe U ′ such that, for each U-small non-
symmetric multicategory M, Ob(M-Cat) is a member of U ′. Then we consider the
2-category 2Cat′, whose objects are U ′-small 2-categories. The precise codomain
of E in Theorem 7.5.6 is 2Cat′. For related discussion in the context of enrichment
in monoidal categories, the reader is referred to [JY∞, 2.2.6 and 2.2.8]. ◇





CHAPTER 8

The Closed Multicategory of Permutative Categories

This chapter defines and develops the basic properties of closed multicate-
gories M. This is similar to, but more general than, the concept of symmetric mon-
oidal closed categories V from Definition A.1.19. For the special case M = EndV,
Proposition 8.1.16 shows that the two notions agree. Sections 8.2 through 8.4 de-
velop the special case of PermCatsu, the multicategory of permutative categories.
This, along with the closed symmetric monoidal categories Multicat∗ and ModM1,
will be the main case of interest for applications in Chapters 11 and 12.

More general closed structures for PermCat, PermCatst, and PermCatsus are dis-
cussed in Section 8.5. These structures involve notions of lax, respectively strong,
respectively strictly unital strong, multilinear functors.

Connection with Other Chapters. Chapter 9 develops the general theory of
self-enrichment for closed multicategories, with PermCatsu being one of the key
examples for further applications. Chapter 10 develops the theory of enriched
diagrams and enriched Mackey functors in a closed multicategory M. Chapter 12
applies theory from Chapter 11 to PermCatsu-enriched categories and diagrams.

Background. The Cat-multicategory structure for PermCatsu is discussed in
Section 1.4. The self-enrichment of PermCatsu is discussed in Section 6.4.

Chapter Summary. Section 8.1 gives the basic definitions for closed multi-
categories. Section 8.2 describes the internal hom for PermCatsu, and Section 8.3
describes the multicategorical evaluation. In Section 8.4 these are combined to
give the closed multicategory structure for PermCatsu. Section 8.5 discusses how
the previous structures can be generalized to PermCat and other multicategories
of permutative categories. Here is a summary table.

definition of a closed multicategory 8.1.1

internal hom for PermCatsu 8.2.1 and 8.2.13

symmetric group action on internal hom 8.2.14 and 8.2.16

multicategorical ev and χ 8.3.1, 8.3.8, 8.3.9, and 8.3.16

multicategorical evaluation axioms 8.4.1 and 8.4.9

lax multilinear functors 8.5.6, 8.5.14, 8.5.34, and 8.5.36

closed structure in lax case 8.5.41, 8.5.46, 8.5.48, and 8.5.50

main results 8.4.15 and 8.5.56

We remind the reader of Convention A.1.2 about universes and Conven-
tion A.1.30 about left normalized bracketing for iterated products.

173
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8.1. Closed Multicategories

Recall from Definition C.1.3 that a multicategory means a Set-multicategory for
the symmetric monoidal category (Set,×) of sets and functions with the Carte-
sian product as the monoidal product. In this section we define closed multicate-
gories, which are multicategories equipped with internal hom objects and compat-
ible evaluations. This concept provides a common setting for

● symmetric monoidal closed categories (Proposition 8.1.16) and
● the closed structure on the multicategory PermCatsu (Theorem 8.4.15).

We emphasize that, just like multicategories, closed multicategories have symmet-
ric group action compatible with the closed structure.

In the absence of a symmetric monoidal closed structure, a closed multicat-
egory structure is the closest substitute that is still sufficient for a robust theory
of self-enrichment (Section 9.1), standard enrichment (Section 9.2), enriched dia-
grams, enriched Mackey functors (Section 10.1), and change of enrichment in those
contexts (Sections 9.3 and 10.2). In short, closed multicategories are the focus of
the rest of this work.

After defining closed multicategories (Definition 8.1.1), in Remarks 8.1.12
and 8.1.13 we discuss the relationship between our definition and those in the
literature [Lam69, Man12, Zak18]. Proposition 8.1.16 shows that each symmetric
monoidal closed category yields a closed multicategory via the endomorphism
construction.

Definition 8.1.1. A closed multicategory is a triple

(M , M , ev)
consisting of the following data.

Underlying Multicategory: M = (M, γ, 1) is a multicategory (Definition C.1.3).
Internal Hom Objects: For n ≥ 0 and each (n + 1)-tuple of objects ⟨x⟩ = ⟨xi⟩ni=1, y

in M, it is equipped with an object

(8.1.2) M(⟨x⟩ ; y) ∈M,

which is called an n-ary internal hom object and also denoted M⟨x⟩; y.

Symmetric Group Action on Internal Hom: For objects ⟨x⟩, y ∈ M as above and
each permutation σ ∈ Σn, it is equipped with an invertible unary multi-
morphism

(8.1.3) M(⟨x⟩ ; y) M(⟨x⟩σ ; y)σ
≅ in M

with ⟨x⟩σ = ⟨xσ(i)⟩ni=1. It is called the right symmetric group action or the
right σ-action on internal hom objects.

Multicategorical Evaluation: For objects ⟨x⟩, y ∈ M as above, it is equipped with
an (n + 1)-ary multimorphism

(8.1.4) (M(⟨x⟩ ; y) , ⟨x⟩) y
ev⟨x⟩; y

in M,

which is called the multicategorical evaluation or the evaluation at (⟨x⟩; y).
The above data are required to satisfy the axioms (8.1.5) through (8.1.8) below.
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Equivariance of Internal Hom: For the identity permutation idn ∈ Σn, the right
idn-action

(8.1.5) M(⟨x⟩ ; y) idn = 1
M(⟨x⟩ ; y)

is the colored unit of the internal hom object M(⟨x⟩ ; y). Moreover, for
σ, τ ∈ Σn, the following diagram of unary multimorphisms in M com-
mutes.

(8.1.6)

M(⟨x⟩ ; y) M(⟨x⟩σ ; y)

M(⟨x⟩στ ; y)

σ

στ
τ

Evaluation Bijection: For objects ⟨x⟩ = ⟨xi⟩ni=1, ⟨y⟩ = ⟨yj⟩pj=1, z ∈M, the function

(8.1.7)
M (⟨x⟩ ; M(⟨y⟩ ; z)) M(⟨x⟩, ⟨y⟩ ; z)

f γ(ev⟨y⟩; z ; f , ⟨1y j
⟩pj=1
)

χ⟨x⟩;⟨y⟩; z

≅

is a bijection, which is called the evaluation bijection. Two multimorphisms

in M that correspond under this bijection are called partners. We write f #

for the partner of a multimorphism f , so

χ( f ) = f # and χ−1(g) = g#

for f ∈M (⟨x⟩ ; M(⟨y⟩ ; z)) and g ∈M(⟨x⟩, ⟨y⟩ ; z).
Equivariance of Evaluation Bijection: For objects ⟨x⟩, ⟨y⟩, z ∈M as above and per-

mutations σ ∈ Σn and ς ∈ Σp, the following diagram of bijections com-
mutes.

(8.1.8)

M (⟨x⟩ ; M(⟨y⟩ ; z)) M(⟨x⟩, ⟨y⟩ ; z)

M (⟨x⟩σ ; M(⟨y⟩ ; z))

M (⟨x⟩σ ; M(⟨y⟩ς ; z)) M(⟨x⟩σ, ⟨y⟩ς ; z)

χ⟨x⟩; ⟨y⟩; z

σ × ς

σ

γ(ς ; −)
χ⟨x⟩σ; ⟨y⟩ς; z

In (8.1.8) the arrows are defined as follows.
● The top left arrow σ and the right vertical arrow σ × ς are right sym-

metric group action of M (C.1.4).
● In the lower left arrow, ς is the right ς-action on the internal hom

object M(⟨y⟩ ; z) in (8.1.3).
● γ(ς ; −) is composition with the unary multimorphism ς in M.
● The two horizontal arrows χ are the evaluation bijections in (8.1.7).

This finishes the definition of a closed multicategory.

Moreover, a non-symmetric closed multicategory is a triple (M,M, ev) as above
with the changes (i) through (iii) below.

(i) (M, γ, 1) is a non-symmetric multicategory.
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(ii) The internal hom objects M(⟨x⟩ ; y) are not equipped with the right sym-
metric group action (8.1.3).

(iii) We do not require the equivariance of
● internal hom objects, (8.1.5) and (8.1.6), and
● evaluation bijection, (8.1.8).

Thus the only axiom is the evaluation bijection axiom (8.1.7).

This finishes the definition of a non-symmetric closed multicategory. ◇
Example 8.1.9 (Waldhausen Categories). The 2-category of small Waldhausen cat-
egories, exact functors, and natural transformations extends to a closed multicate-
gory Wald by [Zak18, 5.6]. Since we do not use that result in this work, we refer the
reader to [Zak18] for further discussion of the closed multicategory Wald. All the
results in this work about (non-symmetric) closed multicategories apply to Wald.
See, for example, Theorem 9.1.7. ◇

We discuss more examples below after some explanation and remarks.

Explanation 8.1.10 (Closed Multicategories). Suppose (M,M, ev) is a non-symmetric
closed multicategory.

(1) If M is a closed multicategory, then the right σ-action on internal hom
object (8.1.3) is an element

σ ∈M(M(⟨x⟩ ; y) ; M(⟨x⟩σ ; y)).
It is a unary multimorphism in M regardless of the length of ⟨x⟩ = ⟨xi⟩ni=1.

(2) The evaluation at (⟨x⟩; y) in (8.1.4), which is an (n + 1)-ary multimor-
phism, is an element

ev⟨x⟩; y ∈M(M(⟨x⟩ ; y) , ⟨x⟩ ; y).
This is an analog of the evaluation (B.3.2) in a symmetric monoidal closed
category.

(3) If ⟨x⟩ = ⟨⟩, then evaluation at (⟨⟩; y) is a unary multimorphism

M(⟨⟩ ; y) ev⟨⟩; y
y in M.

We do not require this to be the colored unit of y. We elaborate on this
point in Remark 8.1.13 below.

(4) In the evaluation bijection χ⟨x⟩; ⟨y⟩; z in (8.1.7) with ⟨x⟩ = ⟨xi⟩ni=1 and ⟨y⟩ =
⟨yj⟩pj=1,

● the domain M (⟨x⟩ ; M(⟨y⟩ ; z)) is an n-ary multimorphism set in M,
and
● the codomain M(⟨x⟩, ⟨y⟩ ; z) is an (n + p)-ary multimorphism set in
M.

The evaluation bijection is an analog of the ⊗-Hom adjunction in a sym-
metric monoidal closed category (Definition A.1.19). Partners—which
mean multimorphisms that correspond to each other under the evalu-
ation bijection—are analogs of adjoints.
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(5) If ⟨x⟩ = ⟨⟩, then the evaluation bijection χ⟨⟩; ⟨y⟩; z is the following bijection.

(8.1.11)
M (⟨⟩ ; M(⟨y⟩ ; z)) M(⟨y⟩ ; z)

f γ(ev⟨y⟩; z ; f , ⟨1y j
⟩p

j=1
)

χ⟨⟩; ⟨y⟩; z

≅

Thus, via this evaluation bijection, each multimorphism set M(⟨y⟩ ; z) is
in bijection with the nullary multimorphism set with output given by the

internal hom object M(⟨y⟩ ; z). ◇
Remark 8.1.12 (Variants). There are other variants of closed multicategories in the
literature. We briefly discuss some of them here.

(1) A closed multicategory as in Definition 8.1.1 is called a closed symmetric
multicategory in [Zak18, 1.2]. There are no other differences between
the two definitions. In particular, the main result in [Zak18]—that
small Waldhausen categories form a closed multicategory Wald (Exam-
ple 8.1.9)—still holds with our Definition 8.1.1. The permutative analog
of this observation is Theorem 8.4.15.

(2) A biclosed monoidal multicategory in [Lam69, page 106] is analogous to
a non-symmetric closed multicategory as in Definition 8.1.1. However,
Lambek’s definition has more structure, denoted i and m there, which
roughly correspond to a monoidal unit and a monoidal product.

(3) A closed multicategory in [Man12, 3.6, 3.7] is a more restrictive version of
a non-symmetric closed multicategory as in Definition 8.1.1. We discuss
this nontrivial difference in more detail in Remark 8.1.13.

Our terminology is in line with Definition C.1.3, where a V-multicategory is
equipped with a symmetric group action. We add the adjective non-symmetric to
the variant without the symmetric group action. ◇
Remark 8.1.13 (Important Differences with Manzyuk’s Definition). A closed mul-
ticategory as in [Man12, 3.7] is more restrictive than a non-symmetric closed mul-
ticategory as in Definition 8.1.1. Specifically, the definition in [Man12, 3.7] requires
(i) the object equality

(8.1.14) M(⟨⟩ ; y) = y for y ∈ ObM
and (ii) the unary multimorphism equality

(8.1.15) (M(⟨⟩ ; y) , ⟨⟩) ev⟨⟩; y = 1y

y in M(y ; y).
On the other hand, Definition 8.1.1 does not require these two equalities. The

reason that we do not impose the equalities (8.1.14) and (8.1.15) is that they are not
satisfied by our most basic examples of endomorphism multicategories in Propo-
sition 8.1.16 below. As stated in (8.1.17), the nullary internal hom object is the
internal hom object

EndV(⟨⟩ ; y) = [1, y] for y ∈ V
because an empty ⊗ is, by definition, the monoidal unit 1 in V. The object [1, y]
is, in general, not equal to y. The nullary multicategorical evaluation ev⟨⟩; y in

(8.1.21) is also not an identity in general. Due to this nontrivial difference between
Definition 8.1.1 and the one in [Man12], in this work we will not use any of the
results in [Man12]. ◇
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Proposition 8.1.16 below says that the endomorphism multicategory (Exam-
ple C.3.1) of a symmetric monoidal closed category (Definition A.1.19) is a closed
multicategory, as one would expect. It is briefly mentioned in [Zak18, Section 1];
we provide a proof here for completeness. We remind the reader that an iterated
monoidal product⊗n

i=1 is left normalized (Convention A.1.30), and an empty ⊗ is
the monoidal unit 1.

Proposition 8.1.16. For each symmetric monoidal closed category (V,⊗,1, ξ, [, ]), the
endomorphism multicategory EndV becomes a closed multicategory

(EndV , EndV , ev)
when it is equipped with the following data.

● For objects ⟨xi⟩ni=1, y ∈ V, the n-ary internal hom object (8.1.2) is defined as the
object

(8.1.17) EndV(⟨xi⟩ni=1 ; y) = [⊗n
i=1 xi , y] in V.

● For a permutation σ ∈ Σn, the right σ-action (8.1.3) on internal hom objects

(8.1.18) [⊗n
i=1 xi , y] σ

≅ [⊗n
i=1 xσ(i) , y] in V

is the image under [−, y] of the unique symmetry coherence isomorphism

(8.1.19) ⊗n
i=1 xσ(i)

σ
≅ ⊗n

i=1 xi

that permutes the n factors according to σ.
● The multicategorical evaluation ev⟨x⟩;y (8.1.4) is defined as the following com-

posite in V if n > 0.

(8.1.20)

[⊗n
i=1 xi , y]⊗ x1 ⊗⋯⊗ xn

[⊗n
i=1 xi , y]⊗ (⊗n

i=1 xi)

y
ev⟨x⟩; y

α ≅
ev⊗n

i=1
xi, y

In (8.1.20) α is the unique coherence isomorphism in V that moves parentheses,
which is the identity if n = 1, and ev⊗n

i=1
xi, y is the evaluation in V (B.3.2). If

n = 0, then the multicategorical evaluation ev⟨⟩; y is defined as the following

composite, with ρ the right unit isomorphism and ev1,y the evaluation in V.

(8.1.21) [1, y] [1, y]⊗ 1 y
ρ
−1

≅

ev1,y

ev⟨⟩; y

Proof. We check the axioms (8.1.5) through (8.1.8) for EndV. For the rest of this

proof, ⟨x⟩ = ⟨xi⟩ni=1, ⟨y⟩ = ⟨yj⟩pj=1
, y, and z are objects in V.

Equivariance of Internal Hom. For the identity permutation idn ∈ Σn, the sym-
metry coherence isomorphism (8.1.19) is the identity morphism. Thus the right
idn-action in (8.1.18) is the identity morphism, proving the axiom (8.1.5).

For permutations σ, τ ∈ Σn, the axiom (8.1.6) requires the commutativity of the
following diagram in V.

(8.1.22) [⊗n
i=1 xi , y] [⊗n

i=1 xσ(i) , y] [⊗n
i=1 xστ(i) , y]σ τ

στ
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The diagram (8.1.22) is the image under [−, y] of the following diagram in V.

⊗n
i=1 xστ(i) ⊗n

i=1 xσ(i) ⊗n
i=1 xi

τ σ

στ

This diagram commutes by the uniqueness of the symmetry coherence isomor-
phism that permutes the n factors according to στ [ML98, XI.1 Theorem 1]. Thus
the diagram (8.1.22) is also commutative.

Evaluation Bijection. Note that each of the two cases of ev⟨x⟩;y in (8.1.20)

and (8.1.21) consists of a coherence isomorphism followed by an instance of
the evaluation in V. For the rest of this proof, the symbol ≅ denotes a coherence
isomorphism.

The function χ = χ⟨x⟩; ⟨y⟩; z in (8.1.7)—which we want to show is a bijection—

sends a morphism

(8.1.23) ⊗n
i=1 xi

f [⊗p
j=1 yj , z] in V

to the following composite.

(8.1.24)

(⊗n
i=1 xi)⊗ y1 ⊗⋯⊗ yp z

[⊗p
j=1 yj , z]⊗ y1⊗⋯⊗ yp [⊗p

j=1 yj , z]⊗ (⊗p
j=1 yj)

χ( f )

f ⊗ 1y1 ⊗⋯⊗ 1yp

≅

ev
⊗

p

j=1
yj , z

The desired inverse of χ sends a morphism

(⊗n
i=1 xi)⊗ y1⊗⋯⊗ yp

g
z in V

to the adjoint

⊗n
i=1 xi

g# [⊗p
j=1 yj , z]

of the following composite g.

(⊗n
i=1 xi)⊗ (⊗p

j=1 yj) (⊗n
i=1 xi)⊗ y1⊗⋯⊗ yp z≅ g

g

The assignments, f χ( f ) and g g#, are inverses of each other by the
uniqueness of adjoints and the fact that the evaluation in V (B.3.2) is the counit of
the ⊗-[, ] adjunction. Thus χ is a bijection.
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Equivariance of Evaluation Bijection. For permutations σ ∈ Σn and ς ∈ Σp and a
morphism f as in (8.1.23), the desired commutative diagram (8.1.8) is the bound-
ary of the following diagram in V.

(⊗n
i=1 xσ(i))⊗ yς(1) ⊗⋯⊗ yς(p) (⊗n

i=1 xi)⊗ y1 ⊗⋯⊗ yp

(⊗n
i=1 xi)⊗ yς(1) ⊗⋯⊗ yς(p) [⊗p

j=1
yj , z]⊗ y1 ⊗⋯⊗ yp

[⊗p
j=1

yj , z]⊗ yς(1) ⊗⋯⊗ yς(p)

[⊗p
j=1

yj , z]⊗ (⊗p
j=1

yς(j))
[⊗p

j=1
yj , z]⊗ (⊗p

j=1
yj)

[⊗p
j=1

yς(j) , z]⊗ yς(1) ⊗⋯⊗ yς(p)

[⊗p
j=1

yς(j) , z]⊗ (⊗p
j=1

yς(j)) z

σ⊗ ς

f ⊗ 1⊗⋯⊗ 1

≅

ev

σ⊗ 1⊗⋯⊗ 1

f ⊗ 1⊗⋯⊗ 1

ς⊗ 1⊗⋯⊗ 1

≅
ev

1⊗ ς

1⊗ ς

≅

ς⊗ 1

1⊗ ς

The following statements hold for the diagram above.

● The top triangle and the quadrilateral under it commute by the functori-
ality of ⊗.
● The middle quadrilateral commutes by the coherence theorem for sym-

metric monoidal categories [ML98, XI.1].
● The lower left quadrilateral commutes by the naturality of coherence iso-

morphisms.
● The lower right quadrilateral commutes because each of the two compos-

ites has adjoint

[⊗p
j=1

yj , z] [⊗p
j=1

yς(j) , z]
given by the image under [−, z] of the symmetry coherence isomorphism

⊗p
j=1 yς(j)

ς

≅ ⊗p
j=1 yj.

This finishes the proof of the axioms (8.1.5) through (8.1.8) for EndV. �

Example 8.1.25. Proposition 8.1.16 applies to each of the symmetric monoidal
closed categories listed in Example 6.2.3. In other words, via the endomorphism
multicategory construction, each of those symmetric monoidal closed categories is
a closed multicategory. However, Proposition 8.1.16 does not apply to PermCatsu

because it is not a monoidal category. ◇

8.2. Internal Hom Permutative Categories

Recall the following two results about permutative categories.

(1) By Theorem 1.4.29 PermCatsu is a Cat-multicategory. As a multicategory,
it has
● small permutative categories (Definition A.1.14) as objects and
● multilinear functors (Definition 1.4.2) as multimorphisms.

(2) By Theorem 6.4.20 the category PermCatsu is a PermCatsu-category.
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In Sections 8.2 through 8.4, we generalize these two facts by showing that PermCatsu

is a closed multicategory (Definition 8.1.1); see Theorem 8.4.15. In this section we
construct the internal hom objects and their symmetry group action in the closed
multicategory structure on PermCatsu. Here is an outline of this section.

● The internal hom objects are constructed in Definition 8.2.1 and verified
in Lemma 8.2.13.
● The symmetric group action on the internal hom objects are constructed

in Definition 8.2.14 and verified in Lemma 8.2.16.

We discuss the multicategorical evaluation and the closed multicategory axioms
of PermCatsu in subsequent sections.

Internal Hom Objects. To construct the closed multicategory structure on
PermCatsu, first we define the n-ary internal hom objects (8.1.2). For a generic per-
mutative category, we denote the monoidal product, monoidal unit, and braiding
by ⊕, e, and ξ, respectively.

Definition 8.2.1. For small permutative categories D and ⟨C⟩ = ⟨Ci⟩ni=1 for n ≥ 0,
we define the data of a small permutative category

(8.2.2) (PermCatsu(⟨C⟩ ; D) , ⊕ , e , ξ),
which is called an internal hom permutative category, as follows. We also use the
shortened notation

Psu = PermCatsu and Psu = PermCatsu.

Underlying Category: It is the category Psu(⟨C⟩ ; D) in Definition 1.4.15.
● Its objects are n-linear functors ⟨C⟩ D (Definition 1.4.2).
● Its morphisms are n-linear transformations (Definition 1.4.10).

Monoidal Product on Objects: For two n-linear functors

(8.2.3) (P,{P2
i }n

i=1) , (Q,{Q2
i }n

i=1) ∶ ∏n
i=1Ci D,

their monoidal product has underlying functor P⊕Q given by the com-
posite functor below.

(8.2.4) ∏n
i=1Ci D×D D

(P, Q) ⊕

P⊕Q

In other words, the functor P ⊕ Q is given by the objectwise monoidal
product

(P⊕Q)⟨x⟩ = P⟨x⟩⊕Q⟨x⟩
for objects and morphisms ⟨x⟩ in∏n

i=1Ci.
For each i ∈ {1, . . . , n}, the i-th linearity constraint of P⊕Q, denoted

(P⊕Q)2i , is defined as follows. For objects ⟨x⟩ ∈∏n
i=1Ci and x′i ∈ Ci, using

Notation 1.4.1 we denote by

(8.2.5) ⟨x′⟩ = ⟨x⟩ ○i x′i and ⟨x′′⟩ = ⟨x⟩ ○i (xi ⊕ x′i).
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The corresponding component of (P⊕Q)2i is the following composite in
D, with ξ denoting the braiding in D.

(8.2.6)

(P⊕Q)⟨x⟩⊕ (P⊕Q)⟨x′⟩
P⟨x⟩⊕Q⟨x⟩⊕ P⟨x′⟩⊕Q⟨x′⟩

P⟨x⟩⊕ P⟨x′⟩⊕Q⟨x⟩⊕Q⟨x′⟩

(P⊕Q)⟨x′′⟩
P⟨x′′⟩⊕Q⟨x′′⟩

(P⊕Q)2i

1⊕ ξ ⊕ 1 P2
i ⊕Q2

i

The naturality of (P⊕Q)2i follows from the naturality of P2
i , Q2

i , and ξ,
together with the functoriality of ⊕ in D.

Monoidal Product on Morphisms: For n-linear functors P and Q as above, sup-
pose given n-linear transformations θ and ψ as follows.

(8.2.7) ∏n
i=1Ci D

P

P
′

⇒

θ ∏n
i=1Ci D

Q

Q
′

⇒

ψ

Their monoidal product

θ ⊕ψ ∶ P⊕Q P′ ⊕Q′

is the natural transformation defined by the whiskering below.

(8.2.8) ∏n
i=1Ci D×D D

(P, Q)

(P′, Q
′)

⊕⇒

(θ, ψ)

In other words, for each object ⟨x⟩ ∈ ∏n
i=1Ci, θ ⊕ ψ has ⟨x⟩-component

given by the monoidal product

(θ ⊕ψ)⟨x⟩ = θ⟨x⟩⊕ψ⟨x⟩ ∶ P⟨x⟩⊕Q⟨x⟩ P′⟨x⟩⊕Q′⟨x⟩.
This defines an n-linear transformation θ ⊕ψ for the following reasons.
● The naturality of θ ⊕ψ follows from the naturality of θ and ψ, toget-

her with the functoriality of ⊕ in D.
● The unity axiom (1.4.12) holds for θ ⊕ ψ because, if any xi = e in Ci,

then θ⟨x⟩ = 1e = ψ⟨x⟩.
● The constraint compatibility axiom (1.4.13) holds for θ ⊕ψ by

– the naturality of the braiding ξ in D and
– the axiom (1.4.13) for θ and ψ.

The construction ⊕ for Psu(⟨C⟩ ; D) preserves identities and composition
of n-linear transformations by the functoriality of ⊕ in D. Moreover, ⊕ is
associative on n-linear transformations because ⊕ in D is associative.

Monoidal Unit: The monoidal unit is the constant functor

(8.2.9) e ∶ ∏n
i=1Ci D

at the monoidal unit e in D. Each of its n linearity constraints is given
componentwise by the identity morphism

1e ∶ e⊕ e = e e in D.

The axioms of an n-linear functor hold for e because
● e is a strict monoidal unit in D and
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● there are morphism equalities

(8.2.10) ξe,? = 1? = ξ?,e in D.

These two facts also imply that e is a strict two-sided unit for ⊕.
Braiding: For n-linear functors P and Q as above, the (P, Q)-component of the

braiding

ξ
P,Q
∶ P⊕Q Q⊕ P

is the natural isomorphism given by the following pasting diagram, with
τ swapping the two factors and ξ denoting the braiding in D.

(8.2.11) ∏n
i=1Ci

D×D

D×D
D

(P, Q)

(Q, P)

τ

⊕

⊕
⇒

ξ

In other words, for each object ⟨x⟩ ∈∏n
i=1Ci, ξ

P,Q
has ⟨x⟩-component given

by the braiding in D

(ξ
P,Q
)⟨x⟩ = ξP⟨x⟩,Q⟨x⟩ ∶ P⟨x⟩⊕Q⟨x⟩ ≅

Q⟨x⟩⊕ P⟨x⟩.
The naturality of the braiding ξ in D implies the naturality of each of
● (ξ

P,Q
)⟨x⟩ with respect to ⟨x⟩ and

● ξ
P,Q

with respect to P and Q.

This finishes the definition of PermCatsu(⟨C⟩ ; D). Lemma 8.2.13 proves that it is a
permutative category. ◇
Explanation 8.2.12. Consider Definition 8.2.1.

● If n = 0, then ⟨C⟩ is the empty sequence and

PermCatsu(⟨⟩ ; D) = D
as permutative categories.
● If n = 1, then

PermCatsu(C;D) = PermCatsu(C,D),
the hom permutative category in Lemma 6.4.11. ◇

Lemma 8.2.13. For small permutative categories ⟨C⟩ = ⟨Ci⟩ni=1 and D, the quadruple

(PermCatsu(⟨C⟩ ; D) , ⊕ , e , ξ)
in Definition 8.2.1 is a small permutative category.

Proof. By Explanation 8.2.12 and Lemma 6.4.11 for the case n = 1, we only need to
check the cases for n > 1. We already explained some of the required conditions in
Definition 8.2.1. It remains to check statements (i) through (iii) below.

(i) The data defined in (8.2.4) and (8.2.6)

(P⊕Q , {(P⊕Q)2i }n

i=1
) ∶ ∏n

i=1Ci D

satisfy the axioms (1.4.4) through (1.4.8) of an n-linear functor.
(ii) The construction ⊕ is associative on n-linear functors∏n

i=1Ci D.
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(iii) For n-linear functors P and Q, the natural isomorphism defined in (8.2.11)

ξ
P,Q
∶ P⊕Q Q⊕ P

satisfies the axioms (1.4.12) and (1.4.13) of an n-linear transformation.

Once we establish statements (i) through (iii) above, the symmetry and hexagon

axioms (A.1.15) for Psu(⟨C⟩ ; D) follow from those for D.

Statement (i). The unity axiom (1.4.4) for P⊕Q follows from the unity axiom for
P and Q, together with the strict unity of e in D. The constraint unity, associativity,
and symmetry axioms, (1.4.5) through (1.4.7), are proved using the argument for
statement (i) in the proof of Lemma 6.4.11, with an appropriate change of notation.

For the constraint 2-by-2 axiom (1.4.8), suppose i ≠ k ∈ {1, . . . , n} and consider
objects

⟨x⟩ = ⟨x0
j ⟩nj=1 ∈∏n

j=1Cj , x1
i ∈ Ci , and x1

k ∈ Ck.

We define the following objects for ℓ ∈ {i, k}, a, b ∈ {0, 1, 2}, and R ∈ {P, Q}.
x2
ℓ
= x0

ℓ
⊕ x1

ℓ
∈ Cℓ Ra,b = R⟨x ○i xa

i ○k xb
k⟩ ∈ D

For example, we have the objects

P0,0 = P⟨x⟩ and Q1,2 = Q⟨x ○i x1
i ○k (x0

k ⊕ x1
k)⟩.

In the following diagram, we omit all the ⊕ symbols to save space. With these
conventions, the constraint 2-by-2 diagram (1.4.8) for P⊕Q is the boundary of the
following diagram in D.

P0,0Q0,0P1,0Q1,0P0,1Q0,1P1,1Q1,1

P0,0P1,0Q0,0Q1,0P0,1P1,1Q0,1Q1,1

P2,0P2,1Q2,0Q2,1

P2,0Q2,0P2,1Q2,1

P2,2Q2,2P0,0Q0,0P0,1Q0,1P1,0Q1,0P1,1Q1,1

P0,0P0,1Q0,0Q0,1P1,0P1,1Q1,0Q1,1

P0,2Q0,2P1,2Q1,2

P0,2P1,2Q0,2Q1,2

P0,0P1,0P0,1P1,1Q0,0Q1,0Q0,1Q1,1

P0,0P0,1P1,0P1,1Q0,0Q0,1Q1,0Q1,1

(1ξ1)(1ξ1)

P
2
i Q

2
i P

2
i Q

2
i

1ξ1

P
2
k Q

2
k

1ξ1

(1ξ1)(1ξ1)

P
2
k Q

2
kP

2
k Q

2
k

1ξ1

P
2
i Q

2
i

1ξ1

P
2
i P

2
i Q

2
i Q

2
i

1ξ11ξ1

1ξ1 P
2
k P

2
k Q

2
kQ

2
k

The following statements hold for the diagram above.

● The top and bottom quadrilaterals commute by the naturality of the
braiding ξ in D.
● The left sub-region commutes by the coherence theorem for symmetric

monoidal categories [ML98, XI.1 Theorem 1].
● The right pentagon commutes by the constraint 2-by-2 axiom for P and

Q.
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This proves that P⊕Q is an n-linear functor.

Statement (ii). The associativity of ⊕ for n-linear functors

(P,{P2
i }n

i=1) , (Q,{Q2
i }n

i=1) , (R,{R2
i }n

i=1) ∶ ∏n
i=1Ci D

is proved using the argument for statement (ii) in the proof of Lemma 6.4.11, with
an appropriate change of notation.

Statement (iii). The axioms (1.4.12) and (1.4.13) of an n-linear transformation
for

ξ
P,Q
∶ P⊕Q Q⊕ P

are proved using the argument for statement (iv) in the proof of Lemma 6.4.11,
with an appropriate change of notation. �

From now on, Psu(⟨C⟩ ; D) is a permutative category as in Lemma 8.2.13.

Symmetric Group Action on Internal Hom. Next we define the right sym-

metric group action (8.1.3) on the internal hom permutative categoriesPsu(⟨C⟩ ; D).
Recall from Definition 8.2.1 that the underlying category of Psu(⟨C⟩ ; D) is the cate-

gory Psu(⟨C⟩ ; D) in Definition 1.4.15, with n-linear functors as objects and n-linear
transformations as morphisms.

Definition 8.2.14. For small permutative categories D and ⟨C⟩ = ⟨Ci⟩ni=1 for n ≥ 0
and a permutation σ ∈ Σn, we define the functor

(8.2.15) PermCatsu(⟨C⟩ ; D) σ
≅ PermCatsu(⟨C⟩σ ; D)

as the isomorphism

PermCatsu (⟨C⟩ ; D) σ
≅ PermCatsu (⟨C⟩σ ; D)

in (1.4.18). ◇
Lemma 8.2.16. In the context of Definition 8.2.14, the following statements hold.

(1) Equipped with identity monoidal and unit constraints, σ in (8.2.15) is a strict
symmetric monoidal isomorphism.

(2) The equivariance axioms for internal hom objects, (8.1.5) and (8.1.6), hold.

Proof. Once statement (1) is proved, statement (2) follows from (i) the definition
(1.4.19) and (ii) the associativity of functor composition and horizontal composi-
tion of natural transformations.

For statement (1), we need to show that σ preserves (i) the monoidal unit and
(ii) the monoidal product of its domain and codomain. We denote σ(−) by (−)σ.

Preservation of Monoidal Unit. The isomorphism σ preserves the monoidal unit
e in (8.2.9) because the composite

∏n
i=1Cσ(i)

σ ∏n
i=1Ci

e
D

is the constant functor at the monoidal unit e in D, since e is constant at e. By
definition (1.4.20), for each i ∈ {1, . . . , n} the i-th linearity constraint of eσ is the
σ(i)-th linearity constraint of e, which is componentwise given by 1e in D. Thus eσ

is the monoidal unit in Psu(⟨C⟩σ ; D).
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Preservation of Monoidal Product. For n-linear functors P, Q ∶ ⟨C⟩ D as in
(8.2.3), there is an equality of n-linear functors

Pσ ⊕Qσ = (P⊕Q)σ ∶ ⟨C⟩σ D

for the following reasons. First, by definitions (1.4.19) and (8.2.4), each of the func-
tors Pσ ⊕Qσ and (P⊕Q)σ is given by the following composite.

(8.2.17) ∏n
i=1Cσ(i)

σ ∏n
i=1Ci

(P, Q)
D×D ⊕

D

Next, to show that Pσ⊕Qσ and (P⊕Q)σ have the same i-th linearity constraint
for each i ∈ {1, . . . , n}, we consider objects

⟨x⟩ = ⟨xj⟩nj=1 ∈∏n
j=1Cσ(j) and x′i ∈ Cσ(i)

and use the notation x′′i = xi⊕ x′i . For these objects, by definition (1.4.20) and (8.2.6),

each of (Pσ⊕Qσ)2i and ((P⊕Q)σ)2
i

is given by the following composite morphism
in D.

(P⊕Q)σ⟨x⟩⊕ (P⊕Q)σ⟨x ○i x′i⟩ (P⊕Q)σ⟨x ○i x′′i ⟩

P(σ⟨x⟩)⊕Q(σ⟨x⟩)⊕ P(σ⟨x⟩ ○σ(i) x′i)⊕Q(σ⟨x⟩ ○σ(i) x′i) P(σ⟨x⟩ ○σ(i) x′′i )⊕Q(σ⟨x⟩ ○σ(i) x′′i )

P(σ⟨x⟩)⊕ P(σ⟨x⟩ ○σ(i) x′i)
⊕Q(σ⟨x⟩)⊕Q(σ⟨x⟩ ○σ(i) x′i)

1⊕ ξ ⊕ 1 P
2
σ(i)⊕Q

2
σ(i)

This proves that Pσ ⊕Qσ and (P⊕Q)σ are equal as n-linear functors.
Finally, by (1.4.19), (8.2.8), and (8.2.17) with the n-linear functors (P, Q) re-

placed by n-linear transformations (θ, ψ), the functor (−)σ preserves the monoidal
product of morphisms. �

8.3. Multicategorical Evaluation for Permutative Categories

In Section 8.2 we constructed internal hom permutative categories and their
symmetric group action. To continue the construction of the closed multicategory
structure on PermCatsu, in this section we construct its multicategorical evaluation.

● We define the multicategorical evaluation for small permutative categor-
ies in Definition 8.3.1. We verify their multilinearity in Lemma 8.3.8.
● Explanations 8.3.9 and 8.3.16 provide a thorough description of the func-

tion χ (8.1.7) in the definition of a closed multicategory, in the context
of small permutative categories. We use this discussion in the next sec-
tion to establish the evaluation bijection and its equivariance axiom; see
Lemmas 8.4.1 and 8.4.9.

Multicategorical Evaluation. Now we define the evaluation (8.1.4) for the in-
ternal hom permutative categories Psu(⟨C⟩ ; D) in Lemma 8.2.13.

Definition 8.3.1. For small permutative categories D and ⟨C⟩ = ⟨Ci⟩ni=1 with n ≥ 0,
we define the data of an (n+ 1)-linear functor

(8.3.2) PermCatsu(⟨C⟩ ; D)×∏n
i=1Ci

ev⟨C⟩;D
D

as follows.
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Underlying Functor: For an n-linear functor

(P,{P2
i }n

i=1) ∶ ∏n
i=1Ci D

and an object ⟨x⟩ ∈∏n
i=1Ci, we define the object

(8.3.3) ev⟨C⟩;D(P, ⟨x⟩) = P⟨x⟩ in D.

For an n-linear transformation θ ∶ P Q between n-linear functors

(P,{P2
i }n

i=1) , (Q,{Q2
i }n

i=1) ∶ ∏n
i=1Ci D

and a morphism ⟨ f ⟩ ∶ ⟨x⟩ ⟨y⟩ in∏n
i=1Ci, we define the morphism

ev⟨C⟩;D(θ, ⟨ f ⟩) ∶ P⟨x⟩ Q⟨y⟩ in D

as either one of the following two composites.

(8.3.4)

P⟨x⟩ Q⟨x⟩

P⟨y⟩ Q⟨y⟩

θ⟨x⟩

Q⟨ f ⟩P⟨ f ⟩
θ⟨y⟩

The diagram (8.3.4) commutes by the naturality of θ.
Linearity Constraints: Suppose P and Q are n-linear functors as above, and sup-

pose ⟨x⟩ ∈∏n
i=1Ci and x′i ∈ Ci are objects.

● The first linearity constraint of ev⟨C⟩;D is given by the following iden-
tity morphism in D.

(8.3.5) ev⟨C⟩;D(P, ⟨x⟩)⊕ ev⟨C⟩;D(Q, ⟨x⟩) ev⟨C⟩;D(P⊕Q, ⟨x⟩)
P⟨x⟩⊕Q⟨x⟩ (P⊕Q)⟨x⟩

(ev⟨C⟩;D)21

1

● For each i ∈ {1, . . . , n}, the (i + 1)-st linearity constraint of ev⟨C⟩;D is
given by the following i-th linearity constraint of P.

(8.3.6)
ev⟨C⟩;D(P, ⟨x⟩)⊕ ev⟨C⟩;D(P, ⟨x⟩ ○i x′i) ev⟨C⟩;D(P, ⟨x⟩ ○i (xi ⊕ x′i))

P⟨x⟩⊕ P(⟨x⟩ ○i x′i) P(⟨x⟩ ○i (xi ⊕ x′i))

(ev⟨C⟩;D)2i+1

P2
i

This finishes the definition of ev⟨C⟩;D. ◇
Explanation 8.3.7. Consider Definition 8.3.1.

● If n = 0, then ⟨C⟩ is empty, and

ev⟨⟩;D ∶ PermCatsu(⟨⟩ ; D) = D D

is the identity symmetric monoidal functor on D.
● If n = 1, then

evC;D ∶ Psu(C;D)×C D

is equal to the bilinear functor evC,D in Proposition 6.5.7. ◇
Lemma 8.3.8. For small permutative categories D and ⟨C⟩ = ⟨Ci⟩ni=1, the data

(ev⟨C⟩;D , {(ev⟨C⟩;D)2i }n+1

i=1
) ∶ PermCatsu(⟨C⟩ ; D)×∏n

i=1Ci D

in Definition 8.3.1 form an (n + 1)-linear functor.
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Proof. By Explanation 8.3.7 and Proposition 6.5.7 for the case n = 1, we only need
to check statements (i) through (iii) below for n > 1.

(i) ev⟨C⟩;D is a functor.

(ii) (ev⟨C⟩;D)2i is a natural transformation for each i ∈ {1, . . . , n + 1}.
(iii) ev⟨C⟩;D satisfies the axioms (1.4.4) through (1.4.8) for an (n + 1)-linear

functor.

Statements (i) and (ii). These assertions are proved using the proofs for state-
ments (i) and (ii), respectively, in the proof of Proposition 6.5.7, with an appropri-
ate change of notation.

Statement (iii). The unity axiom (1.4.4) holds for ev⟨C⟩;D by the definitions

(8.2.9) of e, (8.3.3) of ev⟨C⟩;D(P, ⟨x⟩), and (8.3.4) of ev⟨C⟩;D(θ, ⟨ f ⟩).
The constraint unity, associativity, and symmetry axioms, (1.4.5) through (1.4.7),

hold for (ev⟨C⟩;D)21 because it is the identity natural transformation. For (ev⟨C⟩;D)2i+1
with i ∈ {1, . . . , n}, these axioms hold by the definition (8.2.9) of e and the corre-
sponding axioms for n-linear functors.

For the constraint 2-by-2 axiom (1.4.8) for ev⟨C⟩;D, we consider distinct indices

i ≠ k ∈ {1, . . . , n+ 1} as follows.

● If either i = 1 or k = 1, then the desired diagram (1.4.8) commutes by

the definition (8.2.6) of (P⊕Q)2i , the symmetry axiom (A.1.15), and the
functoriality of ⊕ in D, as in the proof of statement (iii) in the proof of
Proposition 6.5.7.
● If i, k > 1, then the desired diagram (1.4.8) is the constraint 2-by-2 diagram

for an n-linear functor P and the indices i − 1 ≠ k − 1 ∈ {1, . . . , n}, which is
commutative.

This proves that ev⟨C⟩;D is an (n + 1)-linear functor. �

The Function χ for Permutative Categories. To prepare for the proofs of the
other two axioms of a closed multicategory, (8.1.7) and (8.1.8), for PermCatsu in
the next section, here we explain the function χ in (8.1.7) in the current context,
starting with its domain.

Explanation 8.3.9 (Domain of χ). We consider the following context:

● M = Psu, the multicategory of small permutative categories and multilin-
ear functors in Theorem 1.4.29;
● M(?; ?) = Psu(?; ?), the internal hom permutative categories in Lemma 8.2.13;
● the right symmetric group action on internal hom in Lemma 8.2.16; and
● the multilinear evaluation ev?;? in Lemma 8.3.8.

In this context, we consider small permutative categories

B , ⟨C⟩ = ⟨Ci⟩ni=1 , and ⟨D⟩ = ⟨Dj⟩pj=1;

morphisms

(8.3.10) ⟨w⟩ ⟨ f ⟩ ⟨x⟩ ∈∏n
i=1Ci and ⟨y⟩ ⟨g⟩ ⟨z⟩ ∈∏p

j=1
Dj;

and an n-linear functor (Definition 1.4.2)

(8.3.11) (P,{P2
i }n

i=1) ∶ ∏n
i=1Ci Psu(⟨D⟩ ; B).

We explain the n-linear functor (P,{P2
i }n

i=1) and establish some notation.
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Underlying Functor. By Definition 8.2.1, the object P⟨w⟩ in Psu(⟨D⟩ ; B) is a p-
linear functor, and P⟨ f ⟩ is a p-linear transformation (Definition 1.4.10), as in the
left diagram below.

(8.3.12) ∏p
j=1Dj B

(P⟨w⟩,{P⟨w⟩2j }p
j=1
)

(P⟨x⟩,{P⟨x⟩2j }p
j=1
)

⇒

P⟨ f ⟩ ∏p
j=1Dj B

P⟨w⟩⊕ P⟨w′⟩

P⟨w′′⟩

⇒

(P2
i )⟨w⟩; xi

Linearity Constraints. For indices i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, we use the
following notation.

(8.3.13)

⟨w′⟩ = ⟨w ○i xi⟩ ⟨y′⟩ = ⟨y ○j zj⟩
⟨w′′⟩ = ⟨w ○i (wi ⊕ xi)⟩ ⟨y′′⟩ = ⟨y ○j (yj ⊕ zj)⟩

(P⟨w⟩)⟨y⟩ = P⟨w⟩⟨y⟩
For each i ∈ {1, . . . , n}, the i-th linearity constraint P2

i of P is a natural transforma-
tion, with a typical component given by a p-linear transformation, as in the right
diagram in (8.3.12) above. Next we unpack its multilinearity axioms.

Unity. The axiom (1.4.12) for the p-linear transformation (P2
i )⟨w⟩; xi

says that,

if any yj = e in Dj, then the ⟨y⟩-component

(8.3.14) P⟨w⟩⟨y⟩⊕ P⟨w′⟩⟨y⟩ ((P2
i )⟨w⟩;xi

)⟨y⟩
P⟨w′′⟩⟨y⟩

is equal to 1e in B.

Constraint Compatibility. For the axiom (1.4.13) for the p-linear transformation

(P2
i )⟨w⟩; xi

, first recall the linearity constraints of P⟨w⟩⊕ P⟨w′⟩ defined in (8.2.6).

The diagram (1.4.13) for (P2
i )⟨w⟩; xi

is the following commutative diagram in B.

(8.3.15)

P⟨w⟩⟨y⟩⊕ P⟨w′⟩⟨y⟩⊕ P⟨w⟩⟨y′⟩⊕ P⟨w′⟩⟨y′⟩

P⟨w′′⟩⟨y⟩⊕ P⟨w′′⟩⟨y′⟩

P⟨w′′⟩⟨y′′⟩
P⟨w⟩⟨y⟩⊕ P⟨w⟩⟨y′⟩⊕ P⟨w′⟩⟨y⟩⊕ P⟨w′⟩⟨y′⟩

P⟨w⟩⟨y′′⟩⊕ P⟨w′⟩⟨y′′⟩

((P2
i )⟨w⟩; xi

)⟨y⟩ ⊕ ((P
2
i )⟨w⟩; xi

)⟨y′⟩

(P⟨w′′⟩2j )⟨y⟩; zj

1⊕ ξ ⊕ 1

(P⟨w⟩2j )⟨y⟩; zj
⊕ (P⟨w′⟩2j )⟨y⟩; zj

((P2
i )⟨w⟩; xi

)⟨y′′⟩

This finishes our description of the n-linear functor (P,{P2
i }n

i=1). ◇
Explanation 8.3.16 (The Function χ). In the context of Explanation 8.3.9, we con-
sider the function defined in (8.1.7)

(8.3.17) Psu (⟨C⟩ ; Psu(⟨D⟩ ; B)) χ⟨C⟩; ⟨D⟩;B
Psu(⟨C⟩, ⟨D⟩ ; B),

which we abbreviate to χ. This function sends an n-linear functor

(P,{P2
i }n

i=1) ∶ ∏n
i=1Ci Psu(⟨D⟩ ; B)
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to the (n + p)-linear functor χP given by the following composite, where we sup-
press the associativity isomorphism for the Cartesian product.

(8.3.18) ∏n
i=1Ci ×∏p

j=1
Dj Psu(⟨D⟩ ; B)×∏p

j=1
Dj BP × 1 ev⟨D⟩;B

(χP , {(χP)2r}n+p
r=1
)

Next we unpack this (n+ p)-linear functor, using the notation in (8.3.13).

Underlying Functor. By Definition 8.3.1, on objects χP is given by

(8.3.19)
(χP)(⟨w⟩, ⟨y⟩) = ev⟨D⟩;B(P⟨w⟩, ⟨y⟩)

= P⟨w⟩⟨y⟩ in B.

The morphism

(χP)(⟨ f ⟩, ⟨g⟩) = ev⟨D⟩;B(P⟨ f ⟩, ⟨g⟩)
is given by either one of the following two boundary composites in B, which are
equal by the naturality of P⟨ f ⟩.

(8.3.20)

P⟨w⟩⟨y⟩ P⟨x⟩⟨y⟩

P⟨w⟩⟨z⟩ P⟨x⟩⟨z⟩

P⟨ f ⟩⟨y⟩

P⟨x⟩⟨g⟩P⟨w⟩⟨g⟩
P⟨ f ⟩⟨z⟩

(χP)(⟨ f ⟩, ⟨g⟩)

Linearity Constraints. The linearity constraints for composite multilinear func-
tors are defined in (1.4.27). By (8.3.5), for each i ∈ {1, . . . , n}, the i-th linearity

constraint (χP)2i is a natural transformation, with a typical component given by a

component morphism in B of (P2
i )⟨w⟩; xi

—which is a component of the i-th linear-

ity constraint P2
i in (8.3.12)—as follows.

(8.3.21)
(χP)(⟨w⟩ , ⟨y⟩)⊕ (χP)(⟨w′⟩ , ⟨y⟩) (χP)(⟨w′′⟩ , ⟨y⟩)

P⟨w⟩⟨y⟩⊕ P⟨w′⟩⟨y⟩ P⟨w′′⟩⟨y⟩

((χP)2i )⟨w⟩,⟨y⟩; xi

((P2
i )⟨w⟩; xi

)⟨y⟩

By (8.3.6), for each j ∈ {1, . . . , p}, the (n + j)-th linearity constraint (χP)2n+j is a nat-

ural transformation, with a typical component given by a component morphism

in B of P⟨w⟩2j —which is the j-th linearity constraint of P⟨w⟩ in (8.3.12)—as follows.

(8.3.22)
(χP)(⟨w⟩ , ⟨y⟩)⊕ (χP)(⟨w⟩ , ⟨y′⟩) (χP)(⟨w⟩ , ⟨y′′⟩)

P⟨w⟩⟨y⟩⊕ P⟨w⟩⟨y′⟩ P⟨w⟩⟨y′′⟩

((χP)2n+j)⟨w⟩,⟨y⟩; zj

(P⟨w⟩2j )⟨y⟩; zj

Multilinearity Axioms. The axioms (1.4.4) through (1.4.8) of an (n + p)-linear
functor hold for χP for the following reasons.

● The unity axiom (1.4.4) holds for χP by the same axiom for the n-linear
functor P and each p-linear functor P⟨w⟩.
● The constraint unity axiom (1.4.5) holds for χP by

– the axiom (1.4.5) for the n-linear functor P and each p-linear functor
P⟨w⟩,
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– the unity axiom (8.3.14) for the p-linear transformation (P2
i )⟨w⟩; xi

,
and

– the unity axiom (1.4.4) for P.
● The constraint associativity and symmetry axioms, (1.4.6) and (1.4.7),

hold for χP by the same axioms for the n-linear functor P and each
p-linear functor P⟨w⟩.

● The constraint 2-by-2 axiom (1.4.8) for χP and distinct indices

r ≠ s ∈ {1, . . . , n+ p}
holds for the following reasons.

– If both r, s ∈ {1, . . . , n}, then, by (8.3.21), the axiom (1.4.8) for χP fol-
lows from the same axiom for the n-linear functor P.

– If both r, s ∈ {n + 1, . . . , n + p}, then, by (8.3.22), the axiom (1.4.8) for
χP follows from the same axiom for the p-linear functor P⟨w⟩ and
indices

r − n ≠ s − n ∈ {1, . . . , p}.
– If r ∈ {1, . . . , n} and s ∈ {n+ 1, . . . , n+ p}, then the axiom (1.4.8) for χP

follows from the commutative diagram (8.3.15).
– If r ∈ {n + 1, . . . , n + p} and s ∈ {1, . . . , n}, then we again use the

commutative diagram (8.3.15) but with the arrow 1⊕ ξ ⊕ 1 reversed,
which is possible by the symmetry axiom (A.1.15) for B.

This finishes our description of the function χ in (8.3.17). ◇

8.4. The Closed Multicategory Structure

In this section we complete the construction of the closed multicategory struc-
ture on PermCatsu.

● In Lemma 8.4.1 we prove the evaluation bijection axiom.
● In Lemma 8.4.9 we prove the equivariance axiom for evaluation bijection.
● The closed multicategory structure on PermCatsu is stated in Theo-

rem 8.4.15.

Multicategorical Evaluation Axioms.

Lemma 8.4.1. The evaluation bijection axiom (8.1.7) holds for

(PermCatsu , PermCatsu , ev)
defined in Theorem 1.4.29 and (8.2.2) and (8.3.2)

Proof. We need to show that, for small permutative categories B, ⟨C⟩ = ⟨Ci⟩ni=1,

and ⟨D⟩ = ⟨Dj⟩pj=1, the function χ = χ⟨C⟩; ⟨D⟩;B in (8.3.17), as displayed below, is a

bijection.

(8.4.2) Psu (⟨C⟩ ; Psu(⟨D⟩ ; B)) Psu(⟨C⟩, ⟨D⟩ ; B)χ

Ψ

We show that χ is a bijection by constructing an explicit inverse Ψ in the following
two steps.

(1) We construct a function Ψ that goes in the opposite direction as χ.
(2) We show that χ and Ψ are inverses of each other.
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Step (1): The Function Ψ

Given an (n+ p)-linear functor

(8.4.3) (R,{R2
r}n+p

r=1
) ∶ ∏n

i=1Ci ×∏p
j=1

Dj B,

we define an n-linear functor

(8.4.4) (ΨR,{(ΨR)2i }n
i=1) ∶ ∏n

i=1Ci Psu(⟨D⟩ ; B)
in steps (i) through (iv) below.

(i) We define ΨR on objects in (8.4.5) and (8.4.6).
(ii) We define ΨR on morphisms in (8.4.7).

(iii) We define the linearity constraints (ΨR)2i in (8.4.8).

(iv) We check the n-linear functor axioms for (ΨR,{(ΨR)2i }n
i=1).

In the rest of this proof, we use the notation in (8.3.10) and (8.3.13) for objects and
morphisms, so we ask the reader to briefly review them.

Step (1)(i): Objects. For an object ⟨w⟩ in∏n
i=1Ci, we define the functor

(8.4.5) ∏p
j=1Dj

(ΨR)⟨w⟩ = R(⟨w⟩,−)
B.

For each j ∈ {1, . . . , p}, its j-th linearity constraint (ΨR)⟨w⟩2j is defined componen-

twise by the (n+ j)-th linearity constraint of R, as indicated below.

(8.4.6)

R(⟨w⟩, ⟨y⟩)⊕ R(⟨w⟩, ⟨y′⟩) R(⟨w⟩, ⟨y′′⟩)
(ΨR)⟨w⟩⟨y⟩⊕ (ΨR)⟨w⟩⟨y′⟩ (ΨR)⟨w⟩⟨y′′⟩((ΨR)⟨w⟩2j )⟨y⟩; zj

(R2
n+j)⟨w⟩,⟨y⟩; zj

This is natural in ⟨y⟩ and zj because R2
n+j is a natural transformation. The p-linear

functor axioms—(1.4.4) through (1.4.8)—for (ΨR)⟨w⟩ defined in (8.4.5) and (8.4.6)
follow from the corresponding axioms for the given (n + p)-linear functor R in
(8.4.3).

Step (1)(ii): Morphisms. For a morphism ⟨ f ⟩ ∶ ⟨w⟩ ⟨x⟩ in ∏n
i=1Ci, we define

the natural transformation

∏p
j=1

Dj B

(ΨR)⟨w⟩

(ΨR)⟨x⟩

⇒

(ΨR)⟨ f ⟩

with, for each object ⟨y⟩ in ∏p
j=1

Dj, ⟨y⟩-component given by the following mor-

phism in B.

(8.4.7)

R(⟨w⟩, ⟨y⟩) R(⟨x⟩, ⟨y⟩)
(ΨR)⟨w⟩⟨y⟩ (ΨR)⟨x⟩⟨y⟩(ΨR)⟨ f ⟩⟨y⟩

R(⟨ f ⟩, 1⟨y⟩)

Its naturality in ⟨y⟩ follows from the functoriality of R.
Moreover, (ΨR)⟨ f ⟩ is a p-linear transformation (Definition 1.4.10) for the fol-

lowing reasons.
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● By definition (8.4.7), the unity axiom (1.4.12) for (ΨR)⟨ f ⟩ says that, if any
yj = e in Dj, then

R(⟨ f ⟩, 1⟨y⟩) = 1e in B.

This is true by the unity axiom (1.4.4) for the (n+ p)-linear functor R.
● By definition (8.4.6), the constraint compatibility axiom (1.4.13) for(ΨR)⟨ f ⟩ is the following diagram in B, which commutes by the natu-

rality of R2
n+j.

R(⟨w⟩, ⟨y⟩)⊕ R(⟨w⟩, ⟨y′⟩) R(⟨w⟩, ⟨y′′⟩)

R(⟨x⟩, ⟨y⟩)⊕ R(⟨x⟩, ⟨y′⟩) R(⟨x⟩, ⟨y′′⟩)

(R2
n+j)⟨w⟩,⟨y⟩; zj

(R2
n+j)⟨x⟩,⟨y⟩; zj

R(⟨ f ⟩, 1⟨y⟩)⊕ R(⟨ f ⟩, 1⟨y′⟩) R(⟨ f ⟩, 1⟨y′′⟩)

Thus (ΨR)⟨ f ⟩ is a p-linear transformation. The functoriality of ΨR follows from
the definition (8.4.7) and the functoriality of R.

Step (1)(iii): Linearity Constraints. For each i ∈ {1, . . . , n} and objects ⟨w⟩ ∈
∏n

i=1Ci and xi ∈ Ci, we define the i-th linearity constraint (ΨR)2i as having the
following component p-linear transformation.

∏p
j=1Dj B

(ΨR)⟨w⟩⊕ (ΨR)⟨w′⟩

(ΨR)⟨w′′⟩

⇒ ((ΨR)2i )⟨w⟩; xi

For each object ⟨y⟩ ∈ ∏p
j=1Dj, its ⟨y⟩-component is the corresponding component

morphism of the i-th linearity constraint R2
i , as indicated below.

(8.4.8)

R(⟨w⟩, ⟨y⟩)⊕ R(⟨w′⟩, ⟨y⟩) R(⟨w′′⟩, ⟨y⟩)
(ΨR)⟨w⟩⟨y⟩⊕ (ΨR)⟨w′⟩⟨y⟩ (ΨR)⟨w′′⟩⟨y⟩

(((ΨR)2i )⟨w⟩; xi
)
⟨y⟩

(R2
i )⟨w⟩,⟨y⟩; xi

The naturality of

● (((ΨR)2i )⟨w⟩; xi
)
⟨y⟩

with respect to ⟨y⟩ and

● ((ΨR)2i )⟨w⟩; xi
with respect to ⟨w⟩ and xi

follows from the naturality of R2
i .

The components (8.4.8) define a p-linear transformation ((ΨR)2i )⟨w⟩; xi
for the

following reasons.

● The unity axiom (1.4.12) for ((ΨR)2i )⟨w⟩; xi
says that, if any yj = e in Dj,

then

(R2
i )⟨w⟩,⟨y⟩; xi

= 1e in B.

This holds by the constraint unity axiom (1.4.5) for R2
i .
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● Using (8.2.6) for (ΨR)⟨w⟩⊕ (ΨR)⟨w′⟩ and (8.4.6), the constraint compati-

bility axiom (1.4.13) for ((ΨR)2i )⟨w⟩; xi
is the following diagram in B.

R(⟨w⟩, ⟨y⟩)⊕ R(⟨w′⟩, ⟨y⟩)
⊕R(⟨w⟩, ⟨y′⟩)⊕ R(⟨w′⟩, ⟨y′⟩)

R(⟨w′′⟩, ⟨y⟩)⊕ R(⟨w′′⟩, ⟨y′⟩)

R(⟨w′′⟩, ⟨y′′⟩)
R(⟨w⟩, ⟨y⟩)⊕ R(⟨w⟩, ⟨y′⟩)
⊕R(⟨w′⟩, ⟨y⟩)⊕ R(⟨w′⟩, ⟨y′⟩)

R(⟨w⟩, ⟨y′′⟩)⊕ R(⟨w′⟩, ⟨y′′⟩)

(R2
i )⟨w⟩,⟨y⟩; xi

⊕ (R2
i )⟨w⟩,⟨y′⟩; xi

(R2
n+j)⟨w′′⟩,⟨y⟩; zj

1⊕ ξ ⊕ 1

(R2
n+j)⟨w⟩,⟨y⟩; zj

⊕ (R2
n+j)⟨w′⟩,⟨y⟩; zj

(R2
i )⟨w⟩,⟨y′′⟩; xi

This diagram commutes by the constraint 2-by-2 axiom (1.4.8) for R.

Thus ((ΨR)2i )⟨w⟩; xi
is a p-linear transformation.

Step (1)(iv): Multilinearity Axioms. The data (ΨR,{(ΨR)2i }) satisfy the axioms
(1.4.4) through (1.4.8) for an n-linear functor for the following reasons.

● The unity axiom (1.4.4) for ΨR follows from
– the definitions (8.4.5) through (8.4.7),
– the unity axiom (1.4.4), and the constraint unity axiom (1.4.5) for R.

● Each of the constraint unity, associativity, symmetry, and 2-by-2 axioms—
(1.4.5) through (1.4.8)—for ΨR follows from the same axiom for R and the
definition (8.4.8).

This finishes the construction of the n-linear functor (ΨR,{(ΨR)2i }) in (8.4.4) and
completes step (1).

Step (2): χ and Ψ are Mutual Inverses

This consists of the following two steps.

(i) We show the equality

Ψχ = 1 ∶ Psu (⟨C⟩ ; Psu(⟨D⟩ ; B)) Psu (⟨C⟩ ; Psu(⟨D⟩ ; B)) .

(ii) We show the equality

χΨ = 1 ∶ Psu(⟨C⟩, ⟨D⟩ ; B) Psu(⟨C⟩, ⟨D⟩ ; B).
Step (2)(i). For an n-linear functor

(P,{P2
i }n

i=1) ∶ ∏n
i=1Ci Psu(⟨D⟩ ; B)

as in (8.3.11), we want to show that ΨχP is equal to P as n-linear functors.

● ΨχP is equal to P on the objects of∏n
i=1Ci by (8.3.19) and (8.4.5).

● ΨχP is equal to P on each morphism ⟨ f ⟩ in∏n
i=1Ci because

(ΨχP)⟨ f ⟩? = (χP)(⟨ f ⟩, 1?) = P⟨ f ⟩?
by (8.3.20) and (8.4.7).
● For each i ∈ {1, . . . , n}, the i-th linearity constraints of ΨχP and P are equal

by (8.3.21) and (8.4.8).
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This shows that Ψχ is equal to the identity function.

Step (2)(ii). For an (n+ p)-linear functor

(R,{R2
r}n+p

r=1 ) ∶ ∏n
i=1Ci ×∏p

j=1Dj B

as in (8.4.3), we want to show that χΨR is equal to R as (n + p)-linear functors.

● χΨR is equal to R on the objects of∏n
i=1Ci ×∏p

j=1
Dj by (8.3.19) and (8.4.5).

● χΨR is equal to R on each morphism

(⟨ f ⟩, ⟨g⟩) ∶ (⟨w⟩, ⟨y⟩) (⟨x⟩, ⟨z⟩) in ∏n
i=1Ci ×∏p

j=1Dj

by the following computation.

(χΨR)(⟨ f ⟩, ⟨g⟩)
= (ΨR)⟨x⟩⟨g⟩ ○ (ΨR)⟨ f ⟩⟨y⟩ by (8.3.20)

= R(1⟨x⟩, ⟨g⟩) ○ R(⟨ f ⟩, 1⟨y⟩) by (8.4.5) and (8.4.7)

= R(⟨ f ⟩, ⟨g⟩) by functoriality of R

● To check that χΨR and R have the same n + p linearity constraints, we
consider the following two cases.

– For each i ∈ {1, . . . , n}, their i-th linearity constraints are equal by
(8.3.21) and (8.4.8).

– For each j ∈ {1, . . . , p}, their (n + j)-th linearity constraints are equal
by (8.3.22) and (8.4.6).

This shows that χΨ is equal to the identity function and completes step (2). The
proof of the Lemma is now complete. �

Lemma 8.4.9. The equivariance axiom for evaluation bijection (8.1.8) holds for

(PermCatsu , PermCatsu , ev)
defined in Theorem 1.4.29 and (8.2.2), (8.2.15), and (8.3.2).

Proof. For small permutative categories B, ⟨C⟩ = ⟨Ci⟩ni=1, and ⟨D⟩ = ⟨Dj⟩pj=1
and

permutations (σ, ς) ∈ Σn ×Σp , the desired commutative diagram is the following.

(8.4.10)

Psu (⟨C⟩ ; Psu(⟨D⟩ ; B)) Psu(⟨C⟩, ⟨D⟩ ; B)

Psu (⟨C⟩σ ; Psu(⟨D⟩ ; B))

Psu (⟨C⟩σ ; Psu(⟨D⟩ς ; B)) Psu(⟨C⟩σ, ⟨D⟩ς ; B)

χ⟨C⟩; ⟨D⟩;B

σ × ς

σ

γ(ς ; −)
χ⟨C⟩σ; ⟨D⟩ς;B

An object in the upper left node in (8.4.10) is an n-linear functor

(P,{P2
i }n

i=1) ∶ ∏n
i=1Ci Psu(⟨D⟩ ; B)

as in (8.3.11). We need to check the following two statements.

(i) The two composites in (8.4.10) applied to P are equal as functors.
(ii) The two functors in (i) have the same n + p linearity constraints.
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Statement (i). To show that the two composites in (8.4.10) applied to P are equal
as functors, we consider the following diagram.

∏n
i=1Cσ(i) ×∏p

j=1
Dς(j)

∏n
i=1Ci ×∏p

j=1
Dj

Psu(⟨D⟩ ; B)×∏p
j=1

Dj

B

Psu(⟨D⟩ς ; B)×∏p
j=1

Dς(j)

∏n
i=1Ci ×∏p

j=1
Dς(j) Psu(⟨D⟩ ; B)×∏p

j=1
Dς(j)

σ × ς P × 1 ev

σ × 1

P × 1

ς × 1

ev

P × ς 1× ς
−1

By definitions (1.4.19) and (8.3.18), the following statements hold for the diagram
above.

● Denoting χ = χ⟨C⟩; ⟨D⟩;B, the top boundary composite is the functor

(8.4.11) (χP)(σ × ς).
Denoting χ′ = χ⟨C⟩σ; ⟨D⟩ς;B, the other boundary composite is the functor

(8.4.12) χ′(γ(ς ; Pσ)).
● The left quadrilateral and the lower middle triangle commute by functo-

riality of the Cartesian product.
● The right quadrilateral commutes by the definition (1.4.19) of the right

ς-action on Psu(⟨D⟩ ; B), which is the same as the right ς-action on

Psu(⟨D⟩ ; B) (8.2.15).

This proves statement (i).

Statement (ii). We consider indices r ∈ {1, . . . , n} and t ∈ {1, . . . , p} and objects

(⟨a⟩ , ⟨b⟩) ∈∏n
i=1Cσ(i) ×∏p

j=1Dς(j) and (a′r , b′t) ∈ Cσ(r) ×Dς(t).

The following equalities follow from (1.4.20), (8.3.21), and (8.3.22).

(((χP)(σ× ς))2
r
)⟨a⟩,⟨b⟩; a′r

= ((P2
σ(r))σ⟨a⟩; a′r

)
ς⟨b⟩

= ((χ′(γ(ς ; Pσ)))2
r
)⟨a⟩,⟨b⟩; a′r

(8.4.13)

(((χP)(σ × ς))2
n+t
)⟨a⟩,⟨b⟩; b′t

= (P(σ⟨a⟩)2ς(t))ς⟨b⟩; b′t

= ((χ′(γ(ς ; Pσ)))2
n+t
)⟨a⟩,⟨b⟩; b′t

(8.4.14)

Thus the functors in (8.4.11) and (8.4.12) have the same n + p linearity constraints,
proving statement (ii). �

We are now ready to show that small permutative categories form a closed
multicategory (Definition 8.1.1).

Theorem 8.4.15. There is a closed multicategory

(PermCatsu , PermCatsu , ev)
consisting of the following data.

● The underlying multicategory is PermCatsu in Theorem 1.4.29.
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● The internal hom objects are the permutative categories PermCatsu(⟨C⟩ ; D) in
Lemma 8.2.13.
● The symmetric group action on internal hom is given in Lemma 8.2.16.
● The multicategorical evaluations are the multilinear functors

PermCatsu(⟨C⟩ ; D)×∏n
i=1Ci

ev⟨C⟩;D
D

in Lemma 8.3.8.

Proof. The data are well defined by the indicated results, Theorem 1.4.29 and Lem-
mas 8.2.13, 8.2.16, and 8.3.8. The closed multicategory axioms, (8.1.5) through (8.1.8),
hold by Lemmas 8.2.16, 8.4.1, and 8.4.9. �

8.5. Closed Multicategories of Lax and Strong Multilinear Functors

In this section we describe closed multicategory structures for PermCat,
PermCatsg, and PermCatsus. This material extends that of Sections 1.4 and 8.4
to multilinear functors with generally non-trivial unit constraints. Our treatment
below describes the relevant data and axioms generalizing those of the strictly
unital case.

Recall from Proposition 1.4.31 that multilinear functors can be identified
with multifunctors out of a smash product of endomorphism multicategories. In
Lemma 8.5.14 and Proposition 8.5.34 we show that lax multilinear functors have a
corresponding description using tensor products in place of smash products. The
main results of this section are stated in Theorems 8.5.36 and 8.5.56.

Cat-Multicategory Structure. Recall from Notation 1.4.1 that ⟨x ○j y⟩ denotes
the tuple obtained by replacing xj with y. For the unit constraint below, we require
the following similar notation, where the existence of xj is not assumed.

Notation 8.5.1. Suppose given j ∈ {1, . . . , n} together with symbols

xi for 1 ≤ i ≤ n with i ≠ j,

and another symbol y. We denote by

(8.5.2) ⟨xi⟩i≠j ●j y = ( x1, . . . , xj−1

empty if j = 1

, y, xj+1, . . . , xn

empty if j = n

)

the n-tuple that has xi in each entry i ≠ j, and has y as its j-th entry. Thus, in
the tuple (8.5.2), no entry of the (n − 1)-tuple ⟨xi⟩i≠j is replaced by y. Instead, y is

inserted as a new entry of ⟨xi⟩i≠j, shifting the positions of the entries in positions
i > j.

We also use the following further variants:

⟨xi⟩i≠j ○k x′k ●j e has x′k in position k and e in position j,(8.5.3)

⟨xi⟩i≠j ○k (xk ⊕ x′k) ●j e has xk ⊕ x′k in position k and e in position j, and(8.5.4)

⟨xi⟩i≠j,k ●k e ●j e has e in positions k and j.(8.5.5)

◇
The following generalizes Definition 1.4.2.



198 8. THE CLOSED MULTICATEGORY OF PERMUTATIVE CATEGORIES

Definition 8.5.6. A lax n-linear functor

∏n
j=1Cj D

(P,{P2
j }n

j=1,{P0
j }n

j=1)

consists of the following data.

● P ∶ ∏n
j=1 Cj D is a functor.

● For each j ∈ {1, . . . , n}, P2
j is a natural transformation, called the j-th lin-

earity constraint, with component morphisms

(8.5.7) P⟨x ○j xj⟩⊕ P⟨x ○j x′j⟩ P⟨x ○j (xj ⊕ x′j)⟩ ∈ DP2
j

for objects ⟨x⟩ ∈∏n
j=1Cj and x′j ∈ Cj.

● For each j ∈ {1, . . . , n}, P0
j is a natural transformation, called the j-th unit

constraint, with component morphisms

(8.5.8) e P(⟨xi⟩i≠j ●j e) ∈ DP0
j

for objects ⟨xi⟩i≠j ∈ ∏i≠jCi. In (8.5.8), e denotes the monoidal unit of D,

respectively Cj, in the domain, respectively codomain of P0
j .

These data are required to satisfy six axioms. Of these, three are axioms for n-
linear functors: constraint associativity (1.4.6), constraint symmetry (1.4.7), and
constraint 2-by-2 (1.4.8). The remaining three axioms are as follows, using Nota-
tion 8.5.1.

Lax Unity: For each j ∈ {1, . . . , n}, and for objects ⟨xi⟩i≠j ∈ ∏i≠jCi, the following

diagrams commute in D.
(8.5.9)

e⊕ P⟨x⟩ P⟨x⟩

P(⟨xi⟩i≠j ●j e)⊕ P⟨x⟩ P⟨x ○j (e⊕ xj)⟩

1

P0
j ⊕ 1 1

P2
j

P⟨x⟩⊕ e P⟨x⟩

P⟨x⟩⊕ P(⟨xi⟩i≠j ●j e) P⟨x ○j (xj ⊕ e)⟩

1

1⊕ P0
j 1

P2
j

Constraint 0-by-2: For each pair j, k ∈ {1, . . . , n} with j ≠ k, and for objects ⟨xi⟩i≠j ∈
∏i≠jCi and x′k ∈ Ck, the following diagram commutes in D.

(8.5.10)

e⊕ e e

P(⟨xi⟩i≠j ●j e)⊕ P(⟨xi⟩i≠j ○k x′k ●j e) P(⟨xi⟩i≠j ○k (xk ⊕ x′k) ●j e)

1

P0
j ⊕ P0

j P0
j

P2
k

Constraint 0-by-0: For each pair j, k ∈ {1, . . . , n}with j ≠ k, and for objects ⟨xi⟩i≠j,k ∈
∏i≠j,kCi, the following two morphisms are equal:

(8.5.11) e P(⟨xi⟩i≠j,k ●k e ●j e).
P0

j

P0
k
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These are the component of P0
j with xk = e and the component of P0

k with
xj = e.

This finishes the definition of a lax n-linear functor.
Moreover, we define the following.

● A lax multilinear functor is a lax n-linear functor for some n ≥ 0.

● A lax n-linear functor (P,{P2
j },{P0

j }) is

– strongly unital if each P0
j is a natural isomorphism,

– strictly unital if each P0
j is an identity,

– strongly unital and strongly monoidal if each P0
j and each P2

j is a natural

isomorphism,

– strictly unital and strong if each P0
j is an identity and each P2

j is a

natural isomorphism, and

– strict if each P0
j and each P2

j is an identity natural transformation. ◇
Explanation 8.5.12 (Multilinearity and Strict Units). In the context of Defini-

tion 8.5.6 above, note that (P,{P2
j },{P0

j }) is strictly unital if and only if (P,{P2
j })

is an n-linear functor in the sense of Definition 1.4.2. When each P0
j is an identity,

then the lax unity diagrams correspond to the constraint unity axiom (1.4.5) in the
case i = j, and the constraint 0-by-2 diagrams (8.5.10) correspond to the constraint
unity axiom (1.4.5) in the cases i ≠ j. The other strictly unital variants above can be
identified with corresponding variants at the end of Definition 1.4.2. ◇
Remark 8.5.13. In the context of Definition 8.5.6 above, commutativity of each lax
unity diagram (8.5.9) follows from the other, by the constraint symmetry axiom

(1.4.7) for P2
j together with the equalities

ξe,? = 1? = ξ?,e

in any permutative category. ◇
Lemma 8.5.14. In the context of Definition 8.5.6, there is a bijection between multifunc-
tors

F ∶ ⊗n
i=1 End(Ci) End(D)

and lax n-linear functors
P ∶ ∏n

i=1Ci D.

Proof. Recall from Explanation 1.1.14 that a multifunctor out of a tensor product
is characterized by (i) multifunctoriality in each variable separately and (ii) the
interchange equality (1.1.17). In the context of Definition 8.5.6, this means that a
multifunctor

(8.5.15) F ∶
n⊗

i=1

End(Ci) End(D)
is characterized by an underlying functor of categories

(8.5.16) P ∶
n∏

i=1

Ci D

such that the following conditions hold.

(i) In each variable separately, F determines a multifunctor

End(Ci) End(D).
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(ii) The interchange equality

(8.5.17) F(⊗i φi) = F(⊗t
i φi) ⋅ ξ⊗

holds for multimorphisms φi ∈ End(Ci)(⟨xi⟩ ; yi), where ξ⊗ denotes the
bijection (1.1.11) induced by transposition of tensor products.

To explain how these conditions relate to the data and axioms of lax multilin-
earity for P, note that each multimorphism

φi ∈ End(Ci)(⟨xi⟩ ; yi) = Ci(⊕ℓ xi,ℓ , yi)
with input profile

⟨xi⟩ = ⟨xi,ℓ⟩ℓ = (xi,1, . . . , xi,ni
) ∈ Prof(Ci)

is determined uniquely as the composite of a characteristic multimorphism

ι⟨xi⟩ ∈ End(Ci)(⟨xi⟩ ; ⊕ℓ xi,ℓ),
given by the identity morphism 1⊕ℓxi,ℓ

in Ci, and a morphism

φi ∶⊕ℓ xi,ℓ yi in Ci.

Furthermore, by associativity of the monoidal sum in Ci, each characteristic mul-
timorphism ι⟨xi⟩ decomposes as an iterated composite in End(Ci) of multimor-
phisms ι⟨⟩, ιxi,ℓ

= 1xi,ℓ
, and ι(xi,ℓ,xi,ℓ+1). Of those cases, the first two are necessary

when ⟨xi⟩ has length zero or one.
For each j ∈ {1, . . . , n}, each tuple

⟨xj⟩ = ⟨xj,ℓ⟩ℓ = (xj,1, . . . , xj,nj
) ∈ Prof(Cj),

and each n − 1 tuple of objects

xi ∈ Ci with i ≠ j,

let

ι
j

⟨x j⟩ = 1x1 ⊗⋯⊗ 1x j−1
⊗ ι⟨x j⟩ ⊗ 1x j+1

⊗⋯⊗ 1xn .

The two cases of interest are where ⟨xj⟩ has length zero or two. For a pair of objects

xj, x′j ∈ Cj, define the following:

P0
j = Fι

j

⟨⟩ and

P2
j = Fι

j

(x j,x
′
j
).

With this notation, the reasoning above shows that the assignment of F on multi-
morphisms ⊗iφi is determined by

● its underlying functor P,

● the multimorphisms P0
j and P2

j , and

● multifunctoriality of F.

The remainder of this proof identifies how the multifunctoriality of F corresponds
to the six multilinearity axioms of Definition 8.5.6.

Condition (i), multifunctoriality in each variable separately, is equivalent to

the condition that the data {P0
j } and {P2

j } are natural with respect to the vari-

ables xi for i ≠ j and satisfy the axioms for lax unity (8.5.9), constraint associativity
(1.4.6), and constraint symmetry (1.4.7).
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For condition (ii), the interchange equality (8.5.17) holds in general if and only
if it holds when, for each pair j ≠ k in {1, . . . , n}, the multimorphisms φj and φk are
characteristic multimorphisms:

φj = ι⟨⟩ or φj = ι(x j,x
′
j
),

φk = ι⟨⟩ or φk = ι(xk,x′
k
),

and each other φi is a colored unit. By symmetry in j and k, the reduction above
results in three distinct cases. The interchange equality (ii) for those three cases cor-
responds to the constraint axioms 2-by-2 (1.4.8), 0-by-2 (8.5.10), and 0-by-0 (8.5.11)
for P.

Thus, a multifunctor F in (8.5.15) determines and is uniquely determined by
an underlying functor P in (8.5.16) with linearity and unit constraints

P2
j = Fι

j

(x j,x
′
j
) and P0

j = Fι
j

⟨⟩

satisfying the six multilinearity axioms of Definition 8.5.6. This completes the
proof. �

The following generalizes Definition 1.4.10.

Definition 8.5.18. Suppose P, Q are lax n-linear functors as displayed below.

(8.5.19)
n∏

j=1

Cj D

(P,{P2
j },{P0

j })

(Q,{Q2
j },{Q0

j })

⇒

θ

A lax n-linear transformation θ ∶ P Q is a natural transformation of underlying
functors that satisfies the constraint compatibility condition (1.4.13) together with
the following lax unity axiom.

Lax Unity:

(8.5.20) e

P(⟨xi⟩i≠j ●j e)

Q(⟨xi⟩i≠j ●j e)

P
0
j

Q
0
j

θ

This finishes the definition of a lax n-linear transformation. Moreover, we define
the following.

● A lax multilinear transformation is a lax n-linear transformation for some
n ≥ 0.
● Identities and compositions of lax multilinear transformations are de-

fined componentwise.

Note that a lax n-linear transformation between strictly unital lax n-linear functors
is the same as an n-linear transformation in the sense of Definition 1.4.10. ◇
Definition 8.5.21 (Multimorphism Categories). We define the following categories
of lax n-linear functors and transformations.

● PermCat(⟨C⟩ ; D) is the category with
– lax n-linear functors ⟨C⟩ D as objects and
– lax n-linear transformations between them as morphisms.
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● PermCatsg(⟨C⟩ ; D) is the full subcategory of strongly unital and strongly
monoidal n-linear functors. ◇

Combined with the multimorphism categories of Definition 1.4.15, these fit into
the following commutative diagram of full subcategory inclusions.

(8.5.22) PermCatst (⟨C⟩ ; D)
PermCatsg(⟨C⟩ ; D)

PermCatsus(⟨C⟩ ; D)

PermCat(⟨C⟩ ; D)

PermCatsu (⟨C⟩ ; D)
The following generalizes Definition 1.4.16.

Definition 8.5.23 (Symmetric Group Action). Suppose given lax n-linear functors
P and Q together with a lax n-linear transformation θ as displayed below.

(8.5.24)
n∏

j=1

Cj D

(P,{P2
j },{P0

j })

(Q,{Q2
j }),{Q0

j })

⇒

θ

For a permutation σ ∈ Σn, the symmetric group action

(8.5.25) PermCat(⟨C⟩ ; D) PermCat(⟨C⟩σ ; D)σ
≅

sends the data (8.5.24) to the following composites and whiskerings, where σ per-
mutes the coordinates according to σ.

(8.5.26)
n∏

j=1

Cj D

n∏
j=1

Cσ(j) σ

(P,{P2
j },{P0

j })

(Q,{Q2
j },{Q0

j })

⇒

θ

For objects

⟨a⟩ = ⟨aj⟩nj=1 ∈
n∏

j=1

Cσ(j) and a′j ∈ Cσ(j),

the j-th linearity constraint of Pσ = P ○ σ has component given as in (1.4.20):

(Pσ)2j = P2
σ(j).

The j-th unit constraint is likewise given by

(Pσ)0j = P0
σ(j).

As with Definition 1.4.16, each of the variants in Definition 8.5.6 is preserved by
this action. ◇

The following generalizes Definition 1.4.21.

Definition 8.5.27 (Multicategorical Composition). Suppose given, for each j ∈{1, . . . , n},
● permutative categories ⟨Bj⟩ = ⟨Bj,i⟩k j

i=1,

● lax kj-linear functors P′j , Q′j ∶ ⟨Bj⟩ Cj, and



8.5. CLOSED MULTICATEGORIES OF LAX AND STRONG MULTILINEAR FUNCTORS 203

● a lax kj-linear transformation θj ∶ P′j Q′j as follows.

(8.5.28)
k j∏

i=1

Bj,i
Cj

P′j

Q′j

⇒

θj

With ⟨B⟩ = ⟨⟨Bj⟩⟩nj=1
, the multicategorical composition functor

(8.5.29) PermCat(⟨C⟩ ; D)×∏n
j=1PermCat(⟨Bj⟩ ; Cj) PermCat(⟨B⟩ ; D)γ

sends the data (8.5.24) and (8.5.28) to the composites

(8.5.30)
n∏

j=1

k j∏
i=1

Bj,i D

P ○∏jP
′

j

Q ○∏jQ
′

j

Ô
⇒θ⊗ (∏j θj)

defined as follows.

Composite Lax Multilinear Functor: The underlying functor (P ○∏j P′j ) and lin-

earity constraints (P ○∏j P′j )2ℓ are defined as in Definition 1.4.21. The unit

constraints (P ○∏j P′j )0ℓ are defined as follows.

Suppose
ℓ = k1 +⋯+ ka−1 + b,

for some a ∈ {1, . . . , n} and b ∈ {1, . . . , ka}, and suppose given

(8.5.31)
⟨wj⟩ = ⟨wj,i⟩k j

i=1
∈∏k j

i=1
Bj,i for j ∈ {1, . . . , n} with j ≠ a and

wa,i ∈ Ba,i for i ∈ {1, . . . , ka} with i ≠ b.

Then there is the tuple
(8.5.32)⟨P′j ⟨wj⟩⟩j≠a

= (P′1⟨w1⟩, . . . , P′a−1⟨wa−1⟩, P′a+1⟨wa+1⟩, . . . , P′n⟨wn⟩) in ∏j≠a Cj.

The unit constraint (P ○∏j P′j )0ℓ is the following composite in D:

(8.5.33)

e P(⟨P′j wj⟩j≠a
●a e) P(⟨P′j wj⟩j≠a

●a P′a(⟨wa,i⟩i≠b ●b e)).P0
a P(⟨1 ●a (P′a)0b⟩)

If the monoidal constraints P0
a and (P′a)0b are isomorphisms, respectively

identities, then so is the composite (8.5.33). Therefore, as with Defini-
tion 1.4.21, each of the variants in Definition 8.5.6 is preserved by compo-
sition.

Composite Lax Multinatural Transformation: The lax n-linear transformation
θ ⊗ (∏j θj) in (8.5.30) is the horizontal composite of the natural transfor-

mations∏j θj and θ, as in (1.4.28).

The finishes the definition of the multicategorical composition in PermCat.
Verifying the lax multilinearity axioms for the composite P ○∏j P′j is similar to

that of the strictly unital case in [JY∞, Section 6.6]. In particular, the axioms (8.5.9)
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through (8.5.11) hold by the corresponding axioms for P and P′j , along with natu-

rality and multifunctoriality of the data involved. For example, in the constraint

0-by-2 axiom (8.5.10) for (P ○∏j P′j )0ℓ and (P ○∏j P′j )2m with

ℓ = k1 +⋯+ ka−1 + b for a ∈ {1, . . . , n} and b ∈ {1, . . . , ka}
m = k1 +⋯+ kc−1 + d for c ∈ {1, . . . , n} and d ∈ {1, . . . , kc},

there are two cases to consider. If c ≠ a, then verifying this case uses (8.5.10) for P0
a

along with naturality of P2
c , naturality of P0

a , and multifunctoriality of P. If c = a

and b ≠ d, then verifying this case uses (8.5.9) for P0
a and (8.5.10) for (P′a)0b and

(P′a)2d, along with naturality of P2
a and multifunctoriality of P.

Similarly, the lax unity axiom (8.5.20) for θ⊗ (∏jθj) follows from that of θ and

θj individually. ◇
Proposition 8.5.34. For small permutative categories ⟨Cj⟩nj=1 and D, the 2-functor

End ∶ PermCat Multicat

in Proposition C.3.6 induces an isomorphism of categories

PermCat(⟨C⟩ ; D) End
≅ Multicat(⟨End(C)⟩ ; End(D))

=Multicat(⊗n
i=1 End(Ci) , End(D))

between

● the category of lax n-linear functors and transformations ⟨C⟩ D and
● the category of multifunctors

⊗n
i=1 End(Ci) End(D)

and multinatural transformations.

Proof. This proof is an unpointed analog of Explanation 1.4.32. The bijection be-
tween lax multilinear functors from∏iCi to D and multifunctors from⊗i End(Ci)
to End(D) is given by Lemma 8.5.14.

The argument that End induces a bijection between lax n-linear transforma-
tions (Definition 8.5.18)

θ ∶ P Q in PermCat(⟨C⟩ ; D)
and multinatural transformations (Definition C.1.25)

ω ∶ End(P) End(Q) in Multicat(⊗n
i=1 End(Ci) , End(D))

is similar. Indeed, for

θ ∶ P Q in PermCat(⟨C⟩ ; D),
the multinatural transformation

End(θ) ∶ End(P) End(Q)
is uniquely determined by the component morphisms

(8.5.35) θ⟨c⟩ ∶ P⟨c⟩ Q⟨c⟩ in D,

for ⟨c⟩ ∈∏n
i=1 Ci. Using the same reduction to characteristic multimorphisms in the

proof of Lemma 8.5.14, the multinaturality axioms of ω = End(θ) determine and
are uniquely determined by the two lax multilinearity axioms of θ. �
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The following generalizes Theorem 1.4.29.

Theorem 8.5.36. There is a Cat-multicategory

PermCat

defined by the following data.

● The objects are small permutative categories.
● The multimorphism categories are in Definition 8.5.21.
● The colored units are identity symmetric monoidal functors.
● The symmetric group action is in Definition 8.5.23.
● The multicategorical composition is in Definition 8.5.27.

Moreover, the multimorphism categories (8.5.22) give the following commutative diagram
of sub-Cat-multicategories.

(8.5.37) PermCatst

PermCatsg

PermCatsus

PermCat

PermCatsu

The remainder of this section describes the closed structure for PermCat,
PermCatsg, and PermCatsus.

Internal Hom Objects. The following generalizes the monoidal sum of mul-
tilinear functors.

Explanation 8.5.38 (Monoidal Sum of Lax Multilinear Functors). Suppose given
small permutative categories D and ⟨C⟩ = ⟨Ci⟩ni=1 for n ≥ 0. The monoidal sum

on PermCatsu (⟨C⟩ ; D), from Definition 8.2.1, generalizes to a monoidal sum on

PermCat(⟨C⟩ ; D).
To explain this, first note that

⊕ ∶ D ×D D

is a strictly unital strong symmetric monoidal functor. Details for this appear in the
proof of Lemma 6.4.11 statement (i), taking F = G = 1D. The monoidal constraint
of ⊕ is given by

(8.5.39) (a⊕ b)⊕ (c⊕ d) 1⊕ ξ ⊕ 1 (a⊕ c)⊕ (b⊕ d)
for each quadruple a, b, c, d ∈ D. The associativity and braiding axioms for ⊕ both
follow from coherence for symmetric monoidal categories [ML98, XI.1 Theorem
1].

For multilinear functors P and Q in PermCatsu (⟨C⟩ ; D), the underlying func-
tor and linearity constraints of P⊕Q are given by those of the composite ⊕ ○ (P ×
Q). This same definition applies more generally to lax multilinear functors P and

Q in PermCat(⟨C⟩ ; D). Since ⊕ is strictly unital, the unit constraints of the sum are
given by

(8.5.40) (P⊕Q)0j = P0
j ⊕Q0

j .

The linearity constraints are given as in (8.2.6).
Lax multilinearity of P⊕Q is a special case of general composition of lax mul-

tilinear functors, but can also be verified directly. The proof of Lemma 8.2.13 ver-
ifies the axioms (1.4.6) through (1.4.8) for P ⊕ Q. The remaining axioms, (8.5.9)
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through (8.5.11), are similar. In each case, one makes use of the corresponding ax-
ioms for P and Q, together with strictness of the unit e. For (8.5.9) and (8.5.10), one
also uses naturality of ξ and the identities

ξ?,e = 1? = ξe,?

that hold in any permutative category. ◇
The monoidal sum from Explanation 8.5.38 gives the following generalization

of Definition 8.2.1.

Definition 8.5.41. For small permutative categories D and ⟨C⟩ = ⟨Ci⟩ni=1 for n ≥ 0,
the internal hom permutative category

(8.5.42) (PermCat(⟨C⟩ ; D) , ⊕ , e , ξ)
is given by the underlying categories

PermCat(⟨C⟩ ; D).
The monoidal sum ⊕ is given on objects (lax multilinear functors) by composition
with the strictly unital strong symmetric monoidal functor

(8.5.43) ⊕ ∶ D ×D D

as described in Explanation 8.5.38. The monoidal sum on morphisms (lax multi-
linear transformations) is given by whiskering with ⊕. The monoidal unit e and
braiding ξ from Definition 8.2.1 also provide a monoidal unit and braiding for

PermCat(⟨C⟩ ; D). Verification that this defines a permutative category (8.5.42) is
similar to the proof of Lemma 8.2.13, extended to the case of not-necessarily-strict
unit constraints.

This finishes the definition of the permutative structure on PermCat(⟨C⟩ ; D).
Moreover, because⊕ (8.5.43) is a strictly unital strong symmetric monoidal functor,
composition with ⊕ also defines permutative structures in the strong and strictly
unital strong cases. These are denoted

(8.5.44) (PermCatsg(⟨C⟩ ; D) , ⊕ , e , ξ) and (PermCatsus(⟨C⟩ ; D) , ⊕ , e , ξ)
respectively. ◇
Remark 8.5.45. The permutative structure described above does not specialize to
strict multilinear functors

P, Q ∈ PermCatst (⟨C⟩ ; D).
This is because, when P and Q are strict, the monoidal sum P⊕Q generally has
nontrivial monoidal constraint determined by that of ⊕ ∶ D × D D (8.5.39).
As noted in Explanation 8.5.38, the latter is an isomorphism—generally not an
identity—determined by the symmetry isomorphism of D. ◇

Symmetric Group Action on Internal Hom. The following generalizes Defi-
nition 8.2.14.

Definition 8.5.46. For small permutative categories D and ⟨C⟩ = ⟨Ci⟩ni=1 for n ≥ 0
and a permutation σ ∈ Σn, we define the functor

(8.5.47) PermCat(⟨C⟩ ; D) σ
≅ PermCat(⟨C⟩σ ; D)
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as the isomorphism of underlying categories

PermCat(⟨C⟩ ; D) σ
≅ PermCat(⟨C⟩σ ; D)

that is given, as in (1.4.18), by precomposition and whiskering with the permuta-
tion of factors

∏n
i=1Cσ(i)

σ ∏n
i=1Ci. ◇

An argument similar to that of Lemma 8.2.16 shows that (8.5.47) is a strict sym-
metric monoidal isomorphism and that the equivariance axioms for internal hom
objects, (8.1.5) and (8.1.6), hold.

This describes the symmetric group action for PermCat. Moreover, the same
action induces a symmetric group action in the strong and strictly unital strong
cases (8.5.44) above. The same arguments verify the equivariance axioms in these
cases.

Multicategorical Evaluation. The following generalizes Definition 8.3.1.

Definition 8.5.48. For small permutative categories D and ⟨C⟩ = ⟨Ci⟩ni=1 with n ≥ 0,
we define the data of a lax (n+ 1)-linear functor

(8.5.49) PermCat(⟨C⟩ ; D)×∏n
i=1Ci

ev⟨C⟩;D
D

as follows.

Underlying Functor: The underlying functor is that of (8.3.3) and (8.3.4):

ev⟨C⟩;D(P, ⟨x⟩) = P⟨x⟩ and ev⟨C⟩;D(θ, ⟨ f ⟩) = Q( f ) ○ θ⟨x⟩ = θ⟨y⟩ ○ P( f ).
Linearity Constraints: The linearity constraints are given by (8.3.5) and (8.3.6):

(ev⟨C⟩;D)21 = 1 and (ev⟨C⟩;D)2i+1 = P2
i for i ∈ {1, . . . , n}.

Unit Constraints: The unit constraints are given by

(ev⟨C⟩;D)01 = 1 and (ev⟨C⟩;D)0i+1 = P0
i for i ∈ {1, . . . , n}.

This finishes the definition of ev⟨C⟩;D. Verification that these data define a lax(n + 1)-linear functor is similar to the proof of Lemma 8.3.8. The axioms (8.5.9)
through (8.5.11) for lax unity, constraint 0-by-2, and constraint 0-by-0, hold by
those for P in the cases j > 0 and k > 0. For the cases j = 0 or k = 0, these axioms hold

because the constant functor e is strictly monoidal and because (P⊕Q)0j = P0
j ⊕Q0

j

in (8.5.40).
To verify the evaluation bijection axiom (8.1.7), Explanation 8.5.50 below de-

scribes how the definitions of χ and Ψ in Explanation 8.3.16 and Lemma 8.4.1 gen-
eralize to the lax multilinear case. The equivariance axiom (8.1.8) for evaluation
bijection follows from the same argument in the proof of Lemma 8.4.9. Verifica-
tion that the corresponding unit constraints are equal uses the same permutation
of indices as in (8.4.13) and (8.4.14), with the definitions (8.5.52) and (8.5.53) from
(8.1.7) below.

Because the unit and linearity constraints of ev depend on those of its first ar-
gument, P, the same definition specializes to the strong and strictly unital strong
cases (8.5.44) above. The same arguments verify the evaluation bijection and
equivariance axioms in these cases too. ◇

The following generalizes the functions χ and Ψ from Explanation 8.3.16
and Lemma 8.4.1, respectively.
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Explanation 8.5.50 (The Functions χ and Ψ). For small permutative categories B,

⟨C⟩ = ⟨Ci⟩ni=1, and ⟨D⟩ = ⟨Dj⟩pj=1
, there are inverse functions

(8.5.51) PermCat (⟨C⟩ ; PermCat(⟨D⟩ ; B)) PermCat(⟨C⟩, ⟨D⟩ ; B)χ

Ψ

generalizing those of Explanation 8.3.16 and Lemma 8.4.1.
For

P = (P,{P2
i },{P0

i }) in PermCat (⟨C⟩ ; PermCat(⟨D⟩ ; B)) ,

χP has linearity constraints given by (8.3.21) and (8.3.22). The unit constraints of

χP are given by corresponding components of P0
i and (P⟨w⟩)0n+j as shown in the

following displays, with ⟨w⟩ ∈∏kCk, ⟨y⟩ ∈∏kDk, i ∈ {1, . . . , n}, and j ∈ {1, . . . , p}.

(8.5.52)
e

e

(χP)((⟨wk⟩k≠i ●i e) , ⟨y⟩)
P(⟨wk⟩k≠i ●i e)⟨y⟩

((χP)0i )⟨wk⟩k≠i,⟨y⟩

((P0
i )⟨wk⟩k≠i

)⟨y⟩

(8.5.53)
e

e

(χP)(⟨w⟩ , (⟨yk⟩k≠j ●j e))
P⟨w⟩(⟨yk⟩k≠j ●j e)

((χP)0n+j)⟨w⟩,⟨yk⟩k≠j

(P⟨w⟩0j )⟨yk⟩k≠j

Each of the first three lax multilinearity axioms for χP, (1.4.6) through (1.4.8),
follows as in Explanation 8.3.16. Verifying the other lax multilinearity axioms,
(8.5.9) through (8.5.11), is similar, using the corresponding axioms for χP. Verifi-
cation of the axioms involving indices i ∈ {1, . . . , n} and n + j ∈ {n + 1, . . . , n + p}
uses the lax multinaturality axioms (1.4.13) and (8.5.20) for P0

i and P2
i .

For

R = (R,{R2
r},{R0

r}) in PermCat(⟨C⟩, ⟨D⟩ ; ⟨B⟩),
and for each ⟨w⟩ ∈ ∏kCk, the linearity constraints of ΨR⟨w⟩ and ΨR are given by
(8.4.6) and (8.4.8), respectively. The unit constraints of ΨR⟨w⟩ and ΨR are deter-

mined by corresponding components of R0 as shown in the following displays,
with ⟨y⟩, i, and j as above.

(8.5.54)
e

e

(ΨR)⟨w⟩(⟨yk⟩k≠j ●j e)

R(⟨w⟩, (⟨yk⟩k≠j ●j e))

((ΨR)⟨w⟩0j )⟨yk⟩k≠j

(R0
n+j)⟨w⟩,⟨yk⟩k≠j

(8.5.55)
e

e

(ΨR)(⟨wk⟩k≠i ●i e)⟨y⟩
R((⟨wk⟩k≠i ●i e), ⟨y⟩)

(((ΨR)0i )⟨wk⟩k≠i
)
⟨y⟩

(R0
i )⟨wk⟩k≠i,⟨y⟩

Verification of the necessary axioms follows the same structure as in the proof
of Lemma 8.4.1. For ⟨w⟩ ∈∏kCk, each of the lax p-multilinearity axioms for ΨR⟨w⟩,
(ΨR⟨w⟩)0j , and (ΨR⟨w⟩)2j with j ∈ {1, . . . , p}, (1.4.6) through (1.4.8) and (8.5.9)
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through (8.5.11), follows from the corresponding axiom for R, R0
n+j, and R2

n+j. For

i ∈ {1, . . . , n}, the lax multinaturality axioms for (ΨR)0i and (ΨR)2i hold by the 2-by-
2, 0-by-2, and 0-by-0 axioms for R, with indices i and n + j ∈ {n+ 1, . . . , n + p}. The
remaining lax multilinearity axioms for ΨR then follow from the corresponding
axioms for R.

Lastly, it remains to verify that χ and Ψ are inverse functions. This follows the
same argument given in the proof of Lemma 8.4.1, using (8.5.52) through (8.5.55)
along with (8.3.5), (8.3.6), (8.3.21), and (8.3.22). ◇

With these extensions to lax multilinear functors, the following result general-
izes Theorem 8.4.15.

Theorem 8.5.56. There is a closed multicategory

(PermCat , PermCat , ev)
consisting of the following data.

● The underlying multicategory is PermCat in Theorem 8.5.36.

● The internal hom objects are the permutative categories PermCat(⟨C⟩ ; D) in
Definition 8.5.41.
● The symmetric group action on internal hom is given in Definition 8.5.46.
● The multicategorical evaluations are the lax multilinear functors

PermCat(⟨C⟩ ; D)×∏n
i=1Ci

ev⟨C⟩;D
D

in Definition 8.5.48.

Furthermore, the data above specialize to define closed multicategory structures

(PermCatsg , PermCatsg , ev) and (PermCatsus , PermCatsus , ev).
Remark 8.5.57. Recall from Remark 8.5.45 that the monoidal sum of strict multi-
linear functors is generally not strict, and therefore the internal hom structures in
Definition 8.5.41 do not specialize to PermCatst. The same obstruction (generally
nontrivial symmetry in the target, D) also prevents Theorem 8.5.56 from specializ-
ing to PermCatst. ◇





CHAPTER 9

Self-Enrichment and Standard Enrichment of Closed

Multicategories

This chapter develops the definitions and basic theory of

● self-enrichment for closed multicategories and
● standard enrichment for multifunctors between closed multicategories.

For a non-symmetric multifunctor

(M,M, evM) F (N,N, evN),
Definition 9.1.1 and Theorem 9.1.7 describe corresponding self-enriched categories
for M and N. Definition 9.2.1 and Theorem 9.2.12 describe the induced N-functor

F̂ ∶MF N,

where MF is the N-category obtained by applying the change-of-enrichment 2-
functor (Proposition 7.1.9)

(−)F ∶M-Cat N-Cat

to M as an M-category. The definition of F̂ is given on objects by F and on hom

objects via F together with the evaluation evM from the closed structure of M.
Compositionality of the standard enrichment construction is treated in Sec-

tion 9.3. For a composable pair of non-symmetric multifunctors between closed
non-symmetric multicategories,

(M,M, evM) F (N,N, evN) G (P,P, evP),
Theorem 9.3.6 shows that the following diagram of P-functors commutes.

(9.0.1)
MGF P

(MF)G NG

ĜF

F̂G

Ĝ

Section 9.4 applies this to the factorization of Elmendorf-Mandell K-theory,
KEM from (2.5.8).

(9.0.2)
PermCatsu Sp

ModM1 G∗-Cat G∗-sSet

K
EM

EndM1

J
T Ner∗

K
G
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The introduction of Section 9.4 gives further review of the closed multicategories
and multifunctors above. The factorization above yields a corresponding factor-

ization of the standard enrichment K̂EM into four spectrally-enriched functors. The-
orem 9.4.2 gives a precise statement, and the remainder of Section 9.4 gives further
details.

Connection with Other Chapters. The diagram change of enrichment theory
in Chapter 10 depends on the self-enrichments and standard enrichments devel-
oped here. That is then used to study the homotopy theory of enriched diagram
categories, in Chapters 11 and 12. The standard enrichment of KEM and its factor-
ization are used in Sections 10.5 and 10.6 for the development of corresponding
spectral Mackey functors.

Background. The development of self-enrichment and standard enrichment
in Sections 9.1 through 9.3 depends on the theory of multicategorical enrichment
and closed multicategories, from Chapters 6 through 8. Section 9.4 uses the defi-
nition and factorization of Elmendorf-Mandell K-theory, KEM, from Section 2.5.

Chapter Summary. Section 9.1 defines the self-enrichment of non-symmetric
closed multicategories. Section 9.2 defines the standard enrichment of non-
symmetric multifunctors between non-symmetric closed multicategories. Sec-
tion 9.3 shows that the standard enrichment construction respects composition of
non-symmetric multifunctors. This is applied in Section 9.4 to factor the standard
enrichment of the Elmendorf-Mandell K-theory functor, KEM, into four spectrally
enriched functors. Here is a summary table.

self-enrichment of a closed multicategory 9.1.1 and 9.1.7

application to permutative categories 9.1.8

application to symmetric monoidal closed categories 9.1.9

standard enrichment of a multifunctor 9.2.1 and 9.2.12

examples of standard enrichment 9.2.14 and 9.2.17

compositionality of standard enrichment 9.3.6

application to Elmendorf-Mandell K-theory 9.4.2, 9.4.5, 9.4.9, 9.4.14, and 9.4.17

We remind the reader of Convention A.1.2 about universes and Conven-
tion A.1.30 about left normalized bracketing for iterated products.

9.1. Self-Enrichment of Closed Multicategories

In this section we observe that each non-symmetric closed multicategory is
enriched in itself; see Theorem 9.1.7. In this context of self-enrichment, we prove
two consistency results.

(1) In Proposition 9.1.8 we observe that, for the closed multicategory PermCatsu

of small permutative categories, the self-enrichment obtained from the
closed multicategory structure coincides with the one in Theorem 6.4.20.

(2) For each symmetric monoidal closed category V, the self-enrichment is
the same whether V is regarded as a symmetric monoidal closed category
or as a closed multicategory; see Proposition 9.1.9.

The self-enrichment of a non-symmetric closed multicategory is an integral part of
several key constructions later in this work, including:
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● the standard enrichment of a multifunctor (Definition 9.2.1),
● diagrams enriched in a multicategory (10.1.2), and
● Mackey functors enriched in a multicategory (10.1.3).

In short, self-enrichment is one of the key features of non-symmetric closed multi-
categories, and we will make full use of it.

Canonical Self-Enrichment. Recall M-categories for a non-symmetric multi-
category M (Definition 6.1.1). For a non-symmetric closed multicategory M (Defi-
nition 8.1.1), recall that two multimorphisms are called partners if they correspond
to each other under the evaluation bijection (8.1.7).

M (⟨x⟩ ; M(⟨y⟩ ; z)) M(⟨x⟩, ⟨y⟩ ; z)
f γ(ev⟨y⟩; z ; f , ⟨1y j

⟩pj=1
)

χ⟨x⟩;⟨y⟩; z

≅

Now we define the canonical self-enrichment.

Definition 9.1.1. Suppose (M,M, ev) is a non-symmetric closed multicategory. We
define the data of an M-category

(M, ○, i),
which is called the canonical self-enrichment of M, as follows.

Objects: The objects are those of M.
Hom Objects: For each pair of objects x, y ∈ M, the morphism object is the unary

internal hom object M(x ; y) in M. This is the n = 1 case of (8.1.2).
Identities: For each object x in M, the identity

(9.1.2) ix ∶ ⟨⟩ M(x ; x),
which is a nullary multimorphism in M, is defined as the partner of the

x-colored unit 1x ∈M(x ; x).
Composition: For objects x, y, z ∈M, the composition

(9.1.3) (M(y ; z) , M(x ; y)) ○
M(x ; z),

which is a binary multimorphism in M, is defined as the partner of the
following 3-ary multimorphism.

(9.1.4) (M(y ; z) , M(x ; y) , x) (1, evx; y) (M(y ; z) , y) evy; z
z

This finishes the definition of the canonical self-enrichment of M. Theorem 9.1.7
proves that it is an M-category. ◇
Explanation 9.1.5 (Canonical Self-Enrichment). Definition 9.1.1 does not use any-
thing about symmetric group action, either on M or on the internal hom objects.
Thus it makes sense for a non-symmetric closed multicategory.

By definition (8.1.7), the composition ○ in (9.1.3) and the identity ix in (9.1.2)
are the unique binary, respectively, nullary, multimorphisms in M that make the
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following two diagrams in M commute.

(9.1.6)

(M(y ; z) , M(x ; y) , x) (M(x ; z) , x)

(M(y ; z) , y) z

(○ , 1x)

evx; z(1 , evx; y)
evy; z

(⟨⟩ , x) (M(x ; x) , x)

x

(ix , 1x)

evx; x
1x

We call these the associativity diagram and the unity diagram, respectively, of the
canonical self-enrichment of M. These diagrams are the analogs of those in (B.3.9)
for a symmetric monoidal closed category. ◇

We now show that the canonical self-enrichment is well defined.

Theorem 9.1.7. For each non-symmetric closed multicategory (M,M, ev), the canonical
self-enrichment of M in Definition 9.1.1 is an M-category.

Proof. We need to prove the associativity axiom (6.1.4) and the unity axiom (6.1.5)
for the canonical self-enrichment of M.

Associativity (6.1.4). Consider objects w, x, y, z ∈ M. Since taking partners is
a bijection (8.1.7), it suffices to show that the two composites in the associativity
diagram (6.1.4) for M have the same partners. These two partners are the left and
right boundary composites of the following diagram in M, which we want to show

is commutative. We abbreviate M(x ; y) to Mx; y.

(My; z , Mx; y , Mw; x , w)
(My; z , Mw; y , w)

(My; z , Mx; y , x)
(Mx; z , Mw; x , w)

(Mw; z , w)

(My; z , y) (Mx; z , x)

(Mw; z , w)
z

�
(1, ○, 1)

(1, 1, evw; x)

(○, 1, 1)

(○, 1)

(1, evw; y)

(1, evx; y) (○, 1)

(1, evw; x)

(○, 1)

evw; z

evy; z evx; z

evw; z

The following statements hold for the diagram above.

● The sub-region labeled� commutes by definition.
● The other four sub-regions commute by the associativity diagram in

(9.1.6).

This proves the associativity axiom (6.1.4) for the canonical self-enrichment of M.

Unity (6.1.5). Similar to associativity, it suffices to show that the partners of the
composites in the unity diagram (6.1.5) are equal. These partners are the boundary
composites and the middle evx; y in the following diagram in M, which we want to
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show is commutative.

(Mx; y , ⟨⟩ , x) (Mx; y , x) (⟨⟩ , Mx; y , x)

(Mx; y , Mx; x , x) (My; y , Mx; y , x)

(Mx; y , x) (Mx; y , x)
y

(Mx; y , x)

(⟨⟩ , y)

(My; y , y)y

u

u
ru

lu

a a

(1, ix , 1) (iy, 1, 1)

(○, 1) (○, 1)

evx; y evx; y

evx; y

(1, evx; x)

(1, 1)

evx; y

evx; y

1 (iy, 1)

evy; y (1, evx; y)

The following statements hold for the diagram above.

● The two sub-regions labeled a commute by the associativity diagram in
(9.1.6).
● The two sub-regions labeled u commute by the unity diagram in (9.1.6).

● The sub-regions labeled ru and lu commute by, respectively, the right
unity (C.1.9) and left unity (C.1.10) of M.
● The remaining unlabeled quadrilateral commutes by definition.

This proves the unity axiom (6.1.5) for the canonical self-enrichment of M. �

Self-Enrichment of PermCatsu. Consider the closed multicategory Psu =
PermCatsu of small permutative categories (Theorem 8.4.15). By Theorem 9.1.7
Psu has a canonical self-enrichment. In other words, Psu has the structure of a
Psu-category. Moreover, we previously established a Psu-category structure on Psu

in Theorem 6.4.20. Now we observe that these Psu-categories are the same.

Proposition 9.1.8. For the closed multicategory PermCatsu,

● the self-enrichment in Theorem 6.4.20 and
● the canonical self-enrichment in Theorem 9.1.7

are equal as Psu-categories.

Proof. The two Psu-categories in question are the same for the following reasons.

(i) In each of Theorems 6.4.20 and 9.1.7, the Psu-category has small permu-
tative categories as objects.

(ii) For small permutative categories C and D, the hom object in Defini-
tion 9.1.1 is the small permutative category Psu(C;D) in Definition 8.2.1.
This is the same as the permutative category Psu(C,D) in Lemma 6.4.11,
as we pointed out in Explanation 8.2.12.

(iii) The bilinear evaluation evC;D in Lemma 8.3.8 coincides with the bilin-
ear evaluation evC,D in Proposition 6.5.7, as we pointed out in Explana-
tion 8.3.7.

(iv) The identity of a small permutative category C in the sense of (9.1.2) is
the unique 0-linear functor

iC ∶ 1 Psu(C;C),
which means a strictly unital symmetric monoidal functor C C, that
makes the unity diagram in (9.1.6) commutative. By Definition 8.3.1 for
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evC;C, the identity symmetric monoidal functor 1C makes the unity dia-
gram in (9.1.6) commutative. Thus uniqueness implies that iC is given by
1C. This is the same as the identity in Definition 6.4.19.

(v) For small permutative categories B, C, and D, the composition ○ in (9.1.3)
is the unique bilinear functor

Psu(C;D)×Psu(B;C) ○
Psu(B;D)

that makes the associativity diagram in (9.1.6) commutative. By Propo-
sition 6.5.8 the composition bilinear functor mB,C,D in Lemma 6.4.17 also
makes the associativity diagram in (9.1.6) commutative. Thus uniqueness
implies

○ = mB,C,D,

which is the composition in Definition 6.4.19.

This finishes the proof. �

Self-Enrichment of Symmetric Monoidal Closed Categories. For a symmet-
ric monoidal closed category V, by Proposition 8.1.16 there is an endomorphism
closed multicategory

(EndV , EndV , ev)
with internal hom objects and evaluation induced by those of V. There are two
self-enrichment constructions in this context:

(1) V has a canonical self-enrichment (Theorem B.3.7).
(2) By Theorem 9.1.7 the endomorphism multicategory EndV has a canonical

self-enrichment, which is an (EndV)-category. By Proposition 6.2.1 en-
richment in V and in EndV are the same thing. Thus we may also regard
the canonical self-enrichment of EndV as a V-category (Definition B.1.1).

Now we observe that these two self-enrichment constructions are the same.

Proposition 9.1.9. For a symmetric monoidal closed category (V,⊗,1, [, ]),
● the canonical self-enrichment of V in Theorem B.3.7 and
● the canonical self-enrichment of EndV in Theorem 9.1.7

are equal as V-categories.

Proof. We compare Definition B.3.4 for the canonical self-enrichment of V and Def-
inition 9.1.1 for the canonical self-enrichment of EndV.

Objects and Morphism Objects. The objects of EndV are those of V. For objects
x, y ∈ EndV, the morphism object in EndV is the internal hom object

EndV(x ; y) = [x, y] in V.

This is the same hom object as in Definition B.3.4.

Identities. The identity of an object x ∈ EndV is the nullary multimorphism
(9.1.2)

ix ∈ (EndV)(⟨⟩ ; EndV(x; x)) = V(1, [x, x])
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that makes the left diagram in EndV below commutative.

(⟨⟩ , x) (EndV(x; x) , x)

x

(ix , 1x)

evx; x
1x

1⊗ x [x, x]⊗ x

x x
1x

λ
−1

ix ⊗ 1x

evx,x

The left diagram in EndV above means the right commutative diagram in V, with
λ denoting the left unit isomorphism. Comparing the right diagram above with
the right diagram in (B.3.9), the uniqueness of adjoints implies that ix is equal to
the identity of x in the canonical self-enrichment of V.

Composition. For objects x, y, z ∈ EndV, the composition in EndV is the binary
multimorphism (9.1.3)

○ ∈ (EndV)(EndV(y; z) , EndV(x; y) ; EndV(x; z))
= V([y, z]⊗ [x, y] , [x, z])

that makes the left diagram in EndV below commutative.

(EndV(y; z) , EndV(x; y) , x)

(EndV(x; z) , x)(EndV(y; z) , y)

z

(○ , 1x)

evx; z

(1 , evx; y)

evy; z

([y, z]⊗ [x, y])⊗ x

[y, z]⊗ ([x, y]⊗ x)

[y, z]⊗ y

[x, z]⊗ x

z

○⊗ 1x

evx,z

α ≅

1⊗ evx,y

evy,z

The left diagram in EndV above means the right commutative diagram in V, with
α denoting the associativity isomorphism. Comparing the right diagram above
with the left diagram in (B.3.9), the uniqueness of adjoints implies that ○ is equal
to the composition m in the canonical self-enrichment of V. �

9.2. Standard Enrichment of a Multifunctor

In Theorem 9.1.7 we showed that each non-symmetric closed multicate-
gory M has a canonical self-enrichment. In this section we use the canonical
self-enrichment to show that each non-symmetric multifunctor F between non-
symmetric closed multicategories induces a multicategorically enriched functor

F̂, called the standard enrichment of F. We discuss further functoriality properties
and an application to K-theory in Sections 9.3 and 9.4. In subsequent chapters, the
standard enrichment is one of the two key constructions for change of enrichment
for enriched diagrams (10.2.3) and enriched Mackey functors (10.2.4).

Here is an outline of this section.

● The standard enrichment is constructed in Definition 9.2.1 and verified in
Theorem 9.2.12.
● As an illustration of the construction, Example 9.2.14 describes the stan-

dard enrichment of the non-symmetric multifunctor

F● ∶Multicat∗ PermCatsu

in Theorem 5.2.6.



218 9. SELF-ENRICHMENT AND STANDARD ENRICHMENT

● As a consistency check, in Proposition 9.2.17 we prove that, for a monoi-
dal functor between symmetric monoidal closed categories, the two stan-
dard enrichment constructions in Proposition B.4.17 and Theorem 9.2.12
are the same.

Standard Enrichment. Recall from Definition 8.1.1 that, in a non-symmetric
closed multicategory, two multimorphisms that correspond to each other under
the evaluation bijection (8.1.7) are called partners. The partner of a multimorphism

f is denoted f #.

Definition 9.2.1 (Standard Enrichment). For a non-symmetric multifunctor (Defi-
nition C.1.19) between non-symmetric closed multicategories

F ∶ (M,M, evM) (N,N, evN),
we define the data of an N-functor (Definition 6.1.7)

(9.2.2) F̂ ∶MF N,

which is called the standard enrichment of F, as follows.

Domain: The domain of F̂ is the N-category MF obtained from the canonical self-
enrichment of M (Theorem 9.1.7), which is an M-category, by applying
the change-of-enrichment 2-functor (Proposition 7.1.9)

(−)F ∶M-Cat N-Cat.

Codomain: The codomain of F̂ is the canonical self-enrichment of N (Theo-
rem 9.1.7), which is an N-category.

Object Assignment: F̂ has the same object assignment as F.
Component Morphisms: For each pair of objects x, y ∈ M, the (x, y)-component

unary multimorphism

(9.2.3) F̂x,y = (F(evMx; y))# ∶ FM(x; y) N(Fx; Fy) in N

is defined as the partner of the binary multimorphism

(9.2.4) F(evMx; y) ∶ (FM(x; y), Fx) Fy in N.

This is the image under F of the evaluation binary multimorphism (8.1.4)

evMx; y ∶ (M(x; y), x) y

at (x; y), which is part of the closed multicategory structure of M.

This finishes the definition of the standard enrichment F̂. We verify that F̂ is an
N-functor in Theorem 9.2.12 below. ◇

Before we show that F̂ is an N-functor, let us explain some aspects of the stan-
dard enrichment construction.

Explanation 9.2.5 (Symmetry is Not Required). In Definition 9.2.1, even if M and N

are closed multicategories—as opposed to non-symmetric ones—F is not required
to preserve the symmetric group action on (i) M and N (C.1.20) and (ii) their in-
ternal hom objects (8.1.3). This is possible because the change-of-enrichment 2-
functor (−)F (Proposition 7.1.9) and the canonical self-enrichment (Theorem 9.1.7)
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do not require symmetry. This point is important for our applications in Chap-
ter 12 where we consider the non-symmetric multifunctors F● and FM1 in Theo-
rem 5.2.6 and (5.5.2); see Theorems 12.1.6 and 12.4.6. We discuss the standard
enrichment of F● in Example 9.2.14 below. ◇
Explanation 9.2.6 (Domain of F̂). Interpreting the change of enrichment (Defini-
tion 7.1.1) for the canonical self-enrichment of M (Theorem 9.1.7), we unpack the

N-category MF, which is the domain of the standard enrichment F̂, as follows.

● MF has the same objects as M.
● For each pair of objects x, y ∈MF, the hom object is

(MF)(x, y) = FM(x; y) in N.

● The identity of an object x ∈MF is the nullary multimorphism

(9.2.7) ⟨⟩ F(ix)
FM(x; x) in N

given by applying F to the identity (9.1.2)

⟨⟩ ix
M(x; x) in M.

● For objects x, y, z ∈MF, the composition binary multimorphism

(9.2.8) (FM(y; z) , FM(x; y)) F(○)
FM(x; z) in N

is given by applying F to the composition (9.1.3)

(M(y; z) , M(x; y)) ○
M(x; z) in M.

Moreover, applying the non-symmetric multifunctor F ∶ M N to the associa-
tivity and unity diagrams in (9.1.6) yields the following commutative diagrams in
N.

(9.2.9)

(FM(y ; z) , FM(x ; y) , Fx) (FM(x ; z) , Fx)

(FM(y ; z) , Fy) Fz

(F(○) , 1)

F(evMx; z)(1 , F(evMx; y))
F(evMy; z)

(⟨⟩ , Fx) (FM(x ; x) , Fx)

Fx

(F(ix) , 1)

F(evMx; x)
1

We emphasize that the two commutative diagrams in (9.2.9) use the fact that F
preserves colored units (C.1.21) and composition (C.1.22), but they do not require
F to preserve the symmetric group action even if M and N are multicategories. ◇
Explanation 9.2.10 (Component Morphisms of F̂). By definition (9.2.3), for objects

x, y ∈M, the (x, y)-component unary multimorphism F̂x,y is the partner of F(evMx;y).
By the definition of the evaluation bijection (8.1.7), this means that F̂x,y is the unique
unary multimorphism that makes the following diagram in N commutative.

(9.2.11)
(FM(x; y) , Fx) (N(Fx; Fy) , Fx)

Fy

(F̂x,y , 1Fx)

ev
N
Fx; Fy

F(evMx; y)

The diagram (9.2.11) is the analog of the first diagram in Explanation B.4.18 in
the context of the standard enrichment of a monoidal functor between symmetric
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monoidal closed categories. We make this connection precise in Proposition 9.2.17
below. ◇

Now we show that the standard enrichment is a well-defined enriched functor
(Definition 6.1.7).

Theorem 9.2.12. For each non-symmetric multifunctor between non-symmetric closed
multicategories

F ∶ (M,M, evM) (N,N, evN),
the standard enrichment in Definition 9.2.1

F̂ ∶MF N

is an N-functor.

Proof. We need to show that F̂ preserves composition and identities in the sense

of (6.1.9). For F̂ those diagrams are the diagrams in N in (9.2.13) below for objects
x, y, z ∈ M. We use (9.2.7) and (9.2.8) for the identities and composition of MF, and
we denote M(x; y) by Mx;y.

(9.2.13)

(FMy; z , FMx; y) FMx; z

(NFy; Fz , NFx; Fy) NFx; Fz

F(○)

F̂x,z(F̂y,z , F̂x,y)
○

⟨⟩ FMx; x

NFx; Fx

F(ix)

F̂x,xiFx

Since taking partners is a bijection (8.1.7), it suffices to show that, in each diagram
in (9.2.13), the partners of the two composites are equal.

Preservation of Composition. For the left diagram in (9.2.13), the partners of the
two composites are the two boundary composites in the following diagram in N,
which we want to show is commutative.

(FMy; z , FMx; y , Fx)
(NFy; Fz , NFx; Fy , Fx) (FMx; z , Fx)

(NFx; Fz , Fx) (NFx; Fz , Fx)
Fz

(FMy; z , Fy)
(NFy; Fz , Fy)

⧫

♠

♣

(F̂y,z , F̂x,y , 1) (F(○) , 1)

(○ , 1) (F̂x,z , 1)

ev
N

ev
N

(1 , F(evM))(F̂y,z , F(evM))

(1 , evN) (F̂y,z , 1)

F(evM)
F(evM)

ev
N

The diagram above is commutative for the following reasons.

● The triangle labeled ♣ is commutative by definition.
● The sub-regions labeled ♠ and ⧫ are commutative by the left diagrams in,

respectively, (9.1.6) and (9.2.9).
● The remaining three sub-regions are commutative by (9.2.11).

This proves that the left diagram in (9.2.13) is commutative.
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Preservation of Identities. For the right diagram in (9.2.13), the partners of the
two composites are the two boundary composites in the following diagram in N.

(⟨⟩ , Fx) (FMx; x , Fx)

(NFx; Fx , Fx) (NFx; Fx , Fx)
Fx

(iFx , 1)

ev
N

(F(ix) , 1)

(F̂x,x , 1)

ev
N

1
F(evM)

From left to right, the three sub-regions in the diagram above are commutative by,
respectively, the unity diagram in (9.1.6), the right diagram in (9.2.9), and (9.2.11).
This proves that the right diagram in (9.2.13) is commutative. �

Examples of Standard Enrichment.

Example 9.2.14 (Standard Enrichment of F●). As an illustration of Definition 9.2.1,
consider the non-symmetric multifunctor (Theorem 5.2.6)

F● ∶Multicat∗ PermCatsu

and its standard enrichment PermCatsu-functor

(9.2.15) F̂● ∶ (Multicat∗)F● PermCatsu .

For the context, first recall the following.

● Multicat∗ =M∗ is a symmetric monoidal closed category (Theorem 1.2.8).
– Its objects are small pointed multicategories (Definition C.4.1).
– Its monoidal product is the smash product, ∧, in (1.2.3).
– Its internal hom is the pointed internal hom, Hom∗, in (1.2.5).

Via its endomorphism multicategory, M∗ is a closed multicategory
(Proposition 8.1.16). It is enriched in itself (Proposition 9.1.9).
● PermCatsu = Psu is a closed multicategory (Theorem 8.4.15).

– Its objects are small permutative categories (Definition A.1.14).
– Its multicategory structure is discussed in Section 1.4.
– Its internal hom objects, their symmetric group action, and multicat-

egorical evaluation are constructed in, respectively, Definitions 8.2.1,
8.2.14, and 8.3.1

– We proved its evaluation bijection axiom in Lemma 8.4.1. In partic-
ular, the inverse of the function χ is the function Ψ in (8.4.2).

As a closed multicategory, Psu is enriched in itself (Proposition 9.1.8).
● F● is a non-symmetric Cat-multifunctor, hence also a non-symmetric mul-

tifunctor. It is genuinely non-symmetric because its construction (5.2.4)
involves Fn● in (5.1.2), which is induced by Fn in Definition 3.4.14. As we
mentioned in Explanation 3.4.33 (1), Fn is not compatible with permu-
tations. So Fn● is also not compatible with permutations, leading to the
non-symmetry of F●.
● As we discussed in detail in Explanation 7.1.12, the non-symmetric mul-

tifunctor F● has an associated change-of-enrichment 2-functor

(−)F● ∶Multicat∗-Cat PermCatsu-Cat.

When we apply (−)F● to the M∗-category M∗, as in Explanation 9.2.6, we

obtain the Psu-category (M∗)F● , which is the domain of F̂●.
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The object assignment of the standard enrichment F̂● is the same as that of F●
in Definition 4.1.11. For each pair of small pointed multicategories X and Y, the(X,Y)-component is the strictly unital symmetric monoidal functor

(9.2.16) F̂●X,Y = (F●(evM∗X,Y
))# ∶ F●Hom∗(X,Y) Psu(F●X,F●Y).

In other words, F̂●X,Y is the image under Ψ (8.4.2) of the bilinear functor

F●(evM∗X,Y
) ∶ F●Hom∗(X,Y)× F●X F●Y.

This bilinear functor is the image under F● (5.2.3) of the evaluation pointed multi-
functor

evM∗
X,Y
∶ Hom∗(X,Y)∧X Y

in (B.3.2), which is regarded as a binary multimorphism in M∗. ◇
Recall from (C.3.3) that each monoidal functor induces a non-symmetric multi-

functor via the endomorphism construction. The next observation is a consistency
result. It says that for a monoidal functor between symmetric monoidal closed
categories, the standard enrichment in Proposition B.4.17 and Theorem 9.2.12 are
the same.

Proposition 9.2.17. For each monoidal functor between symmetric monoidal closed cat-
egories

(U, U2, U0) ∶ (V,⊗, [, ]) (W,⊗, [, ]),
the following two W-functors are the same:

● The standard enrichment

Û ∶ VU W

of U in Proposition B.4.17.
● The standard enrichment

ÊndU ∶ (EndV)EndU EndW

in Theorem 9.2.12 of the non-symmetric multifunctor

EndU ∶ EndV EndW.

Proof. This assertion follows by combining the following facts.

● By Proposition 6.2.1 enrichment in the symmetric monoidal category V

and in the multicategory EndV are the same thing.
● By Proposition 8.1.16 EndV is a closed multicategory, with internal hom

objects and evaluation induced by those of (V, [, ]).
● By Proposition 9.1.9 the canonical self-enrichment of the symmetric mon-

oidal closed category V is equal to the canonical self-enrichment of the
closed multicategory EndV. These statements also hold for W.
● By Proposition 7.3.1 the change-of-enrichment 2-functors (−)U and(−)EndU are equal. This yields an equality of W-categories

VU = (EndV)EndU .

So the W-functors in question, Û and ÊndU, have the same domain and
the same codomain.
● Both Û and ÊndU have the same object assignment as U.
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It remains to show that Û and ÊndU have the same component morphisms.
For each pair of objects x, y ∈ V, the diagram (9.2.11) for F = EndU is the diagram

(9.2.18)

U[x, y]⊗Ux [Ux, Uy]⊗Ux

U([x, y]⊗ x) Uy

ÊndUx,y ⊗ 1

evU
2

U(ev)

in W because, by (C.3.4),

(EndU)(ev) = U(ev) ○U2.

The diagram (9.2.18) coincides with the first diagram in Explanation B.4.18, which

has Ûx,y in place of ÊndUx,y. Since (9.2.11) uniquely defines ÊndUx,y, we conclude

that it is equal to Ûx,y. This proves that Û and ÊndU have the same component
morphisms. �

9.3. Compositionality of Standard Enrichment

For each non-symmetric multifunctor

F ∶M N

between non-symmetric closed multicategories, in Theorem 9.2.12 we constructed
its standard enrichment N-functor

F̂ ∶MF N.

In this section we show that the standard enrichment construction, F F̂, re-
spects composition of non-symmetric multifunctors; see Theorem 9.3.6. In par-
ticular, this compositionality property holds for monoidal functors between sym-
metric monoidal closed categories (Example 9.3.12). In Section 9.4 we apply Theo-

rem 9.3.6 to factor the standard enrichment of Elmendorf-Mandell K-theory, K̂EM,
into four spectrally enriched functors.

Context of Compositionality. For the set up, consider

(9.3.1) M
F

N
G

P

consisting of

● non-symmetric closed multicategories M, N, and P (Definition 8.1.1) and
● non-symmetric multifunctors F and G (Definition C.1.19).

By Proposition 7.4.1 the following diagram of change-of-enrichment 2-functors is
commutative.

(9.3.2)

M-Cat N-Cat P-Cat
(−)F (−)G

(−)GF

We consider the following three P-functors.

(i) The standard enrichment of G in (9.2.2) is the P-functor

Ĝ ∶ NG P.
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(ii) The standard enrichment of the composite non-symmetric multifunctor
GF in (9.3.1) is the P-functor

ĜF ∶MGF P.

(iii) Using (9.3.2) and applying the change-of-enrichment 2-functor (−)G to

the standard enrichment F̂ ∶MF N of F in (9.2.2) yield the P-functor

F̂G ∶MGF = (MF)G NG.

Explanation 9.3.3 (Change of Enrichment of Standard Enrichment). In the context
of (9.3.1) and (9.3.2), the P-functor

F̂G ∶MGF = (MF)G NG

has the same object assignment as F ∶ M N. For each pair of objects x, y ∈ M,

the (x, y)-component of F̂ is the unary multimorphism (9.2.3)

F̂x,y = (F(evMx; y))# ∶ FM(x; y) N(Fx; Fy) in N.

The (x, y)-component of F̂G is the unary multimorphism

(9.3.4) (F̂G)x,y = GF̂x,y ∶ GFM(x; y) GN(Fx; Fy) in P

obtained by applying G to F̂x,y. In particular, applying the non-symmetric multi-
functor G to the commutative diagram (9.2.11) yields the following commutative
diagram in P.

(9.3.5)
(GFM(x; y) , GFx) (GN(Fx; Fy) , GFx)

GFy

(GF̂x,y , 1GFx)

G(evNFx; Fy)
GF(evMx; y)

This uses the fact that G, as a non-symmetric multifunctor, preserves composition
and colored units. ◇

The main observation of this section is that the P-functors F̂G, Ĝ, and ĜF are
related as follows.

Theorem 9.3.6. For composable non-symmetric multifunctors between non-symmetric
closed multicategories

(M,M, evM) F (N,N, evN) G (P,P, evP),
the following diagram of P-functors commutes.

(9.3.7)
MGF P

(MF)G NG

ĜF

F̂G

Ĝ

Proof. Each of the two composites in (9.3.7) has the same object assignment as GF.
It remains to show that the two composites have the same component morphisms.

For objects x, y ∈ M, the (x, y)-component of ĜF is, by definition (9.2.3), the
unary multimorphism

(9.3.8) ĜFx,y = (GF(evMx; y))# ∶ GFM(x; y) P(GFx; GFy) in P.
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As the partner of GF(evMx; y), it is uniquely determined by the following commuta-

tive diagram in P, which is (9.2.11) applied to GF.

(9.3.9)
(GFM(x; y) , GFx) (P(GFx; GFy) , GFx)

GFy

(ĜFx,y , 1GFx)

ev
P
GFx; GFy

GF(evMx; y)

On the other hand, the (x, y)-component of Ĝ ○ F̂G is the following composite in P,

with GF̂x,y as in (9.3.4).

(9.3.10) GFM(x; y) GN(Fx; Fy) P(GFx; GFy)GF̂x,y ĜFx,Fy

We want to show that (9.3.8) and (9.3.10) are equal. By uniqueness of partners,
it suffices to show that the composite in (9.3.10) also makes the diagram (9.3.9)
commutative.

To check this, we consider the following diagram in P, whose boundary is

obtained from (9.3.9) by replacing ĜFx,y with the composite in (9.3.10).

(9.3.11) (GFM(x; y) , GFx)

(GN(Fx; Fy) , GFx)

(P(GFx; GFy) , GFx)

GFy

(GF̂x,y , 1GFx) (ĜFx,Fy , 1GFx)

GF(evMx; y)

G(evNFx,Fy)

ev
P
GFx; GFy

● The left sub-region in (9.3.11) is the commutative diagram (9.3.5).
● The right sub-region in (9.3.11) is the commutative diagram (9.2.11) for

ĜFx,Fy.

Thus the composite in (9.3.10) also makes the diagram (9.3.9) commutative. This
proves that the unary multimorphisms in (9.3.8) and (9.3.10) are equal. �

Example 9.3.12 (Monoidal Functors). Consider monoidal functors between sym-
metric monoidal closed categories

V
T

W
U

X.

Passing to the endomorphism non-symmetric multifunctors (C.3.3)

EndV
EndT

EndW
EndU

EndX,

Theorem 9.3.6 yields the following commutative diagram of (EndX)-functors.

(9.3.13)
(EndV)(EndU)(End T) EndX

((EndV)End T)EndU (EndW)EndU

̂(EndU)(EndT)

ÊndTEndU

ÊndU
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By Propositions 7.3.1, 9.2.17, and C.3.6, the commutative diagram (9.3.13) is equal
to the following diagram of X-functors.

(9.3.14)

VUT X

(VT)U WU

ÛT

T̂U

Û

The diagram (9.3.14) uses the canonical self-enrichment, change of enrichment,
and standard enrichment in Theorem B.3.7 and Propositions B.4.6 and B.4.17 in
the context of monoidal functors. ◇

9.4. Factorization of K-Theory Standard Enrichment

In this section we illustrate Theorem 9.3.6 by applying it to Elmendorf-
Mandell K-theory KEM. The result is a factorization of the standard enrichment

K̂EM into four spectrally enriched functors; see Theorem 9.4.2. For the relationship

between the standard enrichment K̂EM and the work of Bohmann-Osorno [BO15],
see Remark 9.4.4. Each Sp-functor in the factorization of K̂EM in Theorem 9.4.2 is
either a standard enrichment functor (Theorem 9.2.12) or the change of enrich-
ment of a standard enrichment functor. We explain these Sp-functors further in
Explanations 9.4.5, 9.4.8, 9.4.9, 9.4.14, and 9.4.17.

Context. First recall from (2.5.8) that KEM factors into four multifunctors be-
tween closed multicategories as follows.

(9.4.1)
PermCatsu Sp

ModM1 G∗-Cat G∗-sSet

K
EM

EndM1

J
T Ner∗

K
G

Closed Multicategories

● PermCatsu is a closed multicategory by Theorem 8.4.15.
● Each of the other four multicategories in (9.4.1) is induced by a symmetric

monoidal closed structure. See
– Proposition 1.3.17 (7) for ModM1,
– (2.4.12) for G∗-Cat and G∗-sSet, and
– (2.5.2) for Sp.

By Proposition 8.1.16 and Example C.3.1, each of their endomorphism
multicategories is a closed multicategory, which we denote by the same
symbol.

Multifunctors

● EndM1 is the Cat-multifunctor in Explanation 1.4.41.
● JT is the symmetric monoidal Cat-functor in (2.5.9).
● Ner∗ is the symmetric monoidal sSet-functor in (2.5.11) induced by the

nerve functor.
● KG is the symmetric monoidal sSet-functor in (2.5.12).

Each of the symmetric monoidal functors JT , Ner∗, and KG induces a multifunctor
by the endomorphism construction (C.3.3).
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Theorem 9.4.2. The factorization (9.4.1) of multifunctors between closed multicategories

KEM = KG ○Ner∗ ○ JT ○EndM1 ∶ PermCatsu Sp

induces the following factorization of the standard enrichment K̂EM into four Sp-functors.

(9.4.3)

(PermCatsu)KEM Sp

(ModM1)KG Ner∗ JT

(G∗-Cat)KG Ner∗

(G∗-sSet)KG

K̂EM

(ÊndM1)KG Ner∗ JT

(ĴT )KG Ner∗ (N̂er∗)KG

K̂G

Proof. The desired factorization of K̂EM in (9.4.3) is obtained by applying Theo-
rem 9.3.6 three times to the factorization (9.4.1) of KEM. More precisely, we com-

pute as follows, where we denote some standard enrichment ?̂ by ?∧ to improve
readability.

K̂EM = (KG ○Ner∗ ○ JT ○EndM1)∧
= K̂G ○ (Ner∗ ○ JT ○EndM1)∧KG
= K̂G ○ (N̂er∗)KG ○ (JT ○EndM1)∧KG Ner∗

= K̂G ○ (N̂er∗)KG ○ (ĴT )KG Ner∗
○ (ÊndM1)KG Ner∗ JT

For the last two equalities above, we also use the compositionality of change-of-
enrichment 2-functors in Proposition 7.4.1. �

We explain the Sp-functors in (9.4.3) in more detail after the following remark.

Remark 9.4.4 (Work of Bohmann-Osorno). In [BO15, Theorem 6.2] there is a

Sp-functor Φ that is categorically similar to the standard enrichment K̂EM in

(9.4.3). The important difference is that, while K̂EM is constructed from Elmendorf-
Mandell K-theory KEM, the Bohmann-Osorno Sp-functor Φ is the standard enrich-
ment of the K-theory non-symmetric multifunctor K in the Guillou-May Theo-
rem 0.3.9 [GM22, GMMO23]. As far as the authors know, there is no known
multiplicative comparison between KEM and K. Thus we also do not know how

K̂EM is related to Φ. ◇
The rest of this section explains the Sp-functors in (9.4.3) in more detail. We

use the shortened notation

Psu = PermCatsu and Psu = PermCatsu.

Explanation 9.4.5 (The Sp-functor K̂EM). Specifying to KEM (2.5.8), Theorem 9.2.12
says that the standard enrichment of KEM is the Sp-functor

(9.4.6) K̂EM ∶ (Psu)KEM Sp .

Next we describe its object assignment and component morphisms.

Object Assignment. The standard enrichment K̂EM has the same object assign-
ment as KEM. In other words, it sends each small permutative category C to the
connective symmetric spectrum KEMC.



228 9. SELF-ENRICHMENT AND STANDARD ENRICHMENT

Components. For each pair of small permutative categories C and D, by defini-
tion (9.2.3) and (9.2.4), the component morphism

K̂EM
C,D ∶ KEMPsu(C;D) Sp(KEMC;KEMD) in Sp

is the adjoint of the morphism

KEM(evC;D) ∶ KEMPsu(C;D)∧KEMC KEMD.

● Psu(C;D) is the small permutative category in Lemma 8.2.13. Since the
domain has length 1, Psu(C;D) is equal to the hom object Psu(C,D) in
Definition 6.4.19.
● The evaluation is the bilinear functor (8.3.2)

evC;D ∶ Psu(C;D)×C D.

This is equal to the evaluation evC,D in (6.5.2).
● ∧ is the smash product of symmetric spectra [JY∞, 7.6.1].

By uniqueness of adjoints, K̂EM
C,D is characterized by the following commutative

diagram in Sp.

(9.4.7)
KEMPsu(C;D)∧KEMC Sp(KEMC;KEMD)∧KEMC

KEMD

K̂EM
C,D ∧ 1

ev
K

EM(ev)

This is the commutative diagram (9.2.11) for F = KEM. ◇
Explanation 9.4.8 (The Sp-Functor K̂G). In the diagram (9.4.3), the Sp-functor

K̂G ∶ (G∗-sSet)KG Sp

is the standard enrichment of the symmetric monoidal functor in (2.5.12),

KG ∶ G∗-sSet Sp .

The standard enrichment Sp-functor K̂G exists by either Proposition B.4.17 or The-
orem 9.2.12, which yield the same Sp-functor by Proposition 9.2.17. ◇

The other three constituent Sp-functors in (9.4.3) are the following.

(ÊndM1)KG Ner∗ JT
∶ (Psu)KEM (ModM1)KG Ner∗ JT

(ĴT )KG Ner∗
∶ (ModM1)KG Ner∗ JT

(G∗-Cat)KG Ner∗

(N̂er∗)KG ∶ (G∗-Cat)KG Ner∗
(G∗-sSet)KG

Each of these three Sp-functors is obtained from the indicated standard enrichment
?̂ by applying the change of enrichment in the subscript, as in Explanation 9.3.3.
We describe them more explicitly in Explanations 9.4.9, 9.4.14, and 9.4.17 below.

Explanation 9.4.9 (The Sp-Functor (ÊndM1)KG Ner∗ JT
). We obtain an explicit de-

scription of the Sp-functor

(ÊndM1)KG Ner∗ JT
∶ (Psu)KEM (ModM1)KG Ner∗ JT
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in (9.4.3) by interpreting Explanation 9.3.3 with the multifunctors between closed
multicategories

F = EndM1 ∶ Psu ModM1 and

G = KG Ner∗ JT ∶ModM1 Sp

in Explanation 1.4.41 and (2.5.1), respectively. Note that KEM = GF by definition
(2.5.8).

Object Assignment. (ÊndM1)KG Ner∗ JT
sends each small permutative category

C to

(ÊndM1)KG Ner∗ JT
(C) = EndM1C in ModM1 .

This is the endomorphism leftM1-module in Example 1.3.15.

Standard Enrichment of EndM1. For the component morphisms, we first con-

sider the standard enrichment ModM1-functor of EndM1 (Theorem 9.2.12),

(9.4.10) ÊndM1 ∶ (Psu)EndM1
ModM1 .

For small permutative categories C and D, the (C,D)-component of ÊndM1 is the

following morphism in ModM1.

(9.4.11) (EndM1(evC;D))# ∶ EndM1P
su(C;D) Hom∗(EndM1C;EndM1D)

This is adjoint to the following morphism in ModM1.

EndM1(evC;D) ∶ EndM1P
su(C;D)∧EndM1C EndM1D

Here

evC;D ∶ Psu(C;D)×C D

is the evaluation bilinear functor in (8.3.2), which is the same as evC,D in (6.5.2).
The smash product, ∧, and the internal hom, Hom∗, are part of the symmetric
monoidal closed structure of ModM1 in Proposition 1.3.17 (7).

Components of (ÊndM1)KG Ner∗ JT
. The composite symmetric monoidal functor

KG Ner∗ J
T induces a change-of-enrichment 2-functor

(9.4.12) (−)KG Ner∗ JT
∶ModM1-Cat Sp -Cat.

This change of enrichment exists by either Proposition B.4.6 or Proposition 7.1.9,
which yield the same 2-functor by Proposition 7.3.1.

Applying the change of enrichment (9.4.12) to the standard enrichment ÊndM1

in (9.4.10) yields the Sp-functor in the upper left of the diagram (9.4.3):

(9.4.13)

((Psu)EndM1
)
KG Ner∗ JT

(Psu)KEM

(ModM1)KG Ner∗ JT

(ÊndM1)KG Ner∗ JT

The equality of Sp-categories at the top of (9.4.13) follows from Proposition 7.4.1
applied to the factorization (9.4.1) of KEM. For small permutative categories C and
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D, the (C,D)-component of (ÊndM1)KG Ner∗ JT
is the following morphism in Sp.

KG Ner∗ J
T EndM1P

su(C;D)KEMPsu(C;D)

KG Ner∗ J
T Hom∗(EndM1C;EndM1D)

K
G
Ner∗ J

T (EndM1(evC;D))
#

This is obtained from the morphism (ÊndM1)C,D
in (9.4.11) by applying the functor

KG Ner∗ J
T . ◇

Explanation 9.4.14 (The Sp-Functor (ĴT )KG Ner∗
). The symmetric monoidal func-

tor in (2.5.9),

JT ∶ModM1 G∗-Cat,

has a standard enrichment (G∗-Cat)-functor

ĴT ∶ (ModM1)JT G∗-Cat

by Propositions 9.2.17 and B.4.17 and Theorem 9.2.12. The symmetric monoidal
functor

KG Ner∗ ∶ G∗-Cat G∗-sSet Sp

induces a change-of-enrichment 2-functor

(−)KG Ner∗
∶ (G∗-Cat)-Cat Sp -Cat

by Propositions 7.1.9, 7.3.1, and B.4.6. Applying this change of enrichment to the

standard enrichment ĴT yields the following Sp-functor in (9.4.3).

((ModM1)JT )KG Ner∗
(ModM1)KG Ner∗ JT

(G∗-Cat)KG Ner∗

(ĴT )KG Ner∗

On objects it sends each leftM1-module N to

(ĴT )KG Ner∗
(N) = JT N in G∗-Cat.

For leftM1-modules N and P, the (N,P)-component morphism in Sp

(9.4.15) KG Ner∗ J
T Hom∗(N,P) KG Ner∗HomG*

(JT N, JT P)((ĴT )KG Ner∗
)
N,P

is obtained by applying the functor KG Ner∗ to the adjoint—taken in the symmetric

monoidal closed category (G∗-Cat,∧,HomG*
) in (2.4.12)—of the following compos-

ite morphism.

(9.4.16) JT Hom∗(N,P)∧ JT N JT (Hom∗(N,P)∧N) JT P
(JT )2 J

T (ev)

● In (9.4.15) and (9.4.16), (ModM1,∧,Hom∗) is the symmetric monoidal

closed structure on ModM1 in Proposition 1.3.17 (7).

● (JT )2 is the monoidal constraint of the symmetric monoidal functor JT .
See [JY∞, 10.3.11] for a detailed description.
● ev is the evaluation (B.3.2) in (ModM1,∧,Hom∗).
● The first ∧ in (9.4.16) and HomG*

in (9.4.15) are the pointed Day convolu-
tion and pointed hom for G∗-categories in (2.4.14) and (2.4.15). ◇
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Explanation 9.4.17 (The Sp-Functor (N̂er∗)KG ). The symmetric monoidal functor
in (2.5.11),

Ner∗ ∶ G∗-Cat G∗-sSet,

is induced levelwise by the nerve functor, Ner. Its standard enrichment (G∗-sSet)-
functor

N̂er∗ ∶ (G∗-Cat)Ner∗ G∗-sSet

exists by Propositions 9.2.17 and B.4.17 and Theorem 9.2.12. The symmetric mon-
oidal functor

KG ∶ G∗-sSet Sp

in (2.5.12) induces a change-of-enrichment 2-functor

(−)KG ∶ (G∗-sSet)-Cat Sp -Cat

by Propositions 7.1.9, 7.3.1, and B.4.6. Applying this change of enrichment to the

standard enrichment N̂er∗ yields the following Sp-functor in (9.4.3).

((G∗-Cat)Ner∗)KG(G∗-Cat)KG Ner∗ (G∗-sSet)KG(N̂er∗)KG

On objects it sends each G∗-category A to

(N̂er∗)KG(A) = Ner∗ A in G∗-sSet.

For G∗-categories A and B, the (A, B)-component morphism in Sp

(9.4.18) KG Ner∗HomG*
(A, B) KG HomG*

(Ner∗ A,Ner∗ B)((N̂er∗)KG)A,B

is obtained by applying the functor KG to the adjoint—taken in the symmetric

monoidal closed category (G∗-sSet,∧,HomG*
) in (2.4.12)—of the following com-

posite morphism.

(9.4.19) Ner∗HomG*
(A, B)∧Ner∗ A Ner∗ (HomG*

(A, B)∧ A) Ner∗ B
Ner

2
∗ Ner∗(ev)

● In (9.4.18) HomG*
in the domain is the pointed hom in G∗-Cat (2.4.15). The

HomG*
in the codomain is the one in G∗-sSet.

● In (9.4.19) Ner2∗ is the monoidal constraint of the symmetric monoidal
functor Ner∗. See [JY∞, 3.8.4] for a detailed description.
● ev is the evaluation (B.3.2) in (G∗-Cat,∧,HomG*

). ◇





CHAPTER 10

Enriched Diagrams and Mackey Functors of Closed

Multicategories

This chapter studies categories of enriched functors

M-Cat(C,M) and M-Cat(Cop,M),
where C is an M-category. At left, M is assumed to be a non-symmetric closed
multicategory. At right, M is assumed to have the additional symmetric structure
of a closed multicategory, so that Cop is defined (Definition 6.6.1).

For a non-symmetric multifunctor between non-symmetric closed multicate-
gories

F ∶M N,

the change-of-enrichment 2-functors from Proposition 7.1.9 induce diagram change
of enrichment (Theorem 10.3.1)

F★ ∶M-Cat(C,M) N-Cat(CF,N).
When F is a multifunctor between closed multicategories, there is a presheaf
change of enrichment (Proposition 7.2.1 and Theorem 10.3.4)

F★ ∶M-Cat(Cop,M) N-Cat((CF)op,N).
These results apply to the following diagram of K-theory multifunctors from
(2.5.1); see Example 10.3.5.

(10.0.1)

PermCatsu Γ-Cat Γ-sSet Sp

G∗-Cat G∗-sSetModM1

Ner∗ K
F

J
EM

EndM1

J
T Ner∗

K
G

∧∗ ∧∗

K
EM

Each arrow in this diagram is a multifunctor between closed multicategories.
The compositionality of change-of-diagram and change-of-presheaf involves

that of both the change of enrichment (Section 7.4) and the standard enrichment
(Section 9.3). The resulting theory is explained in Section 10.4.

233



234 10. ENRICHED MACKEY FUNCTORS OF CLOSED MULTICATEGORIES

The main application in this chapter is Theorem 10.6.2, which shows that the
factorization of KEM induces the following factorization of the diagram change-of-
enrichment functor KEM

★ , where C is a small PermCatsu-category.

(10.0.2)

PermCatsu-Cat(C,PermCatsu ) Sp -Cat(CKEM ,Sp )

ModM1-Cat(CEndM1
, ModM1 )

(G∗-Cat)-Cat(CJT EndM1
, G∗-Cat)

(G∗-sSet)-Cat(CNer∗ JT EndM1
, G∗-sSet)

K
EM

★

(EndM1)★

J
T

★ (Ner∗)★

K
G

★

A similar factorization holds with C and each C? above replaced by Cop and (C?)op,
respectively.

Connection with Other Chapters. Chapter 11 develops homotopical proper-
ties of the enriched diagram and Mackey functor change-of-enrichment functors
F★. Chapter 12 then gives the corresponding applications to K-theory multifunc-
tors.

Background. The material in this chapter is a culmination of the multifuncto-
rial enrichment and change of enrichment from Chapters 6 through 9. In particu-
lar, the applications to K-theory in Sections 10.5 and 10.6 depend on the descrip-
tions in Section 9.4.

Chapter Summary. Section 10.1 gives the basic definitions of enriched dia-
grams and enriched Mackey functors. Section 10.2 defines change-of-enrichment
functors for enriched diagrams. Section 10.3 contains the proofs that these are
functorial, along with key K-theoretic applications. In Section 10.4 we show
that the diagram change-of-enrichment construction respects composition. Sec-
tion 10.5 applies the general results from Section 10.3 to the Elmendorf-Mandell
K-theory functor KEM. Section 10.6 applies the general results from Section 10.4 to
factor the change of enrichment given by KEM. Here is a summary table.

enriched diagrams and enriched Mackey functors 10.1.1

diagram change of enrichment definition 10.2.1, 10.2.5, and 10.2.13

diagram change of enrichment functoriality 10.3.1 and 10.3.4

diagram change of enrichment compositions 10.4.1 and 10.4.5

application to Elmendorf-Mandell K-theory 10.5.1, 10.5.8, and 10.5.11

factorization of Elmendorf-Mandell change of enrichment 10.6.2 and 10.6.5

10.1. Enriched Diagrams and Mackey Functors as Modules

In this section we introduce categories of enriched diagrams and enriched
presheaves, also called Mackey functors, with respect to a (non-symmetric) closed
multicategory.

● Diagrams and presheaves enriched in a (non-symmetric) closed multicat-
egory are in Definition 10.1.1.
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● We characterize the objects, morphisms, and composition in these cate-
gories in terms of partners in Propositions 10.1.8, 10.1.17, and 10.1.22. The
upshot is that we may consider these categories as categories of modules
over an enriched category.
● In Examples 10.1.26 and 10.1.27 we discuss enriched presheaves in the

work of
– [SS03] about stable model categories and
– [GM22] about genuine equivariant spectra.

We discuss change of enrichment of enriched diagram and presheaf categories in
the remaining sections of this chapter.

Defining Enriched Diagrams and Mackey Functors.

Definition 10.1.1. Suppose (M,M, ev) is a non-symmetric closed multicategory
(Definition 8.1.1). We also regard M as an M-category with the canonical self-
enrichment (M, ○, i) (Theorem 9.1.7). Suppose (C,m, i) is an M-category (Defini-
tion 6.1.1).

● The category

(10.1.2) M-Cat(C,M)
is called the C-diagram category of M. An object in this category is called a
C-diagram enriched in M.
● Suppose, in addition, M is a closed multicategory, and Cop is the opposite
M-category (Proposition 6.6.7). The Cop-diagram category

(10.1.3) M-Cat(Cop,M)
is also called the C-presheaf category of M and the C-Mackey functor category
of M. An object in this category is also called a C-presheaf and a C-Mackey
functor enriched in M.

This finishes the definition. ◇
Using Propositions 6.6.7 and 7.2.1, the discussion below aboutC-diagrams also

applies to C-Mackey functors.

Explanation 10.1.4 (Size). To define the category M-Cat(C,M), technically we need
C and M to be small. We can deal with this issue in one of two ways.

(1) As in Convention A.1.2, if necessary we can move to a larger universe
where C and M are small.

(2) We observe that all of our proofs and assertions are about M-functors
C M and M-natural transformations between them. These notions
are defined without assuming that C and M are small. We refer to the
category M-Cat(C,M) simply because it provides a convenient context to
phrase functorial and naturality properties. Thus, C and M do not need
to be small. ◇

Diagrams as Modules. Recall that in a (non-symmetric) closed multicategory,

taking partner, denoted f f #, is a bijection (8.1.7). In the rest of this section, we
characterize the objects, morphisms, and composition in the category M-Cat(C,M)
in terms of partners.
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Explanation 10.1.5 (Unpacking C-Diagrams). In (10.1.2) M-Cat(C,M) is a hom cat-
egory in the 2-category M-Cat (Theorem 6.1.27). An object in M-Cat(C,M) is an
M-functor A ∶ C M (Definition 6.1.7). Such an M-functor has an object assign-
ment

(10.1.6) A ∶ ObC ObM.

For objects x, y ∈ C, its (x, y)-component is a unary multimorphism

Ax,y ∶ C(x, y) M(Ax; Ay) in M.

Its partner (8.1.7) is a binary multimorphism

(10.1.7) A#
x,y ∶ (C(x, y) , Ax) Ay in M.

In Proposition 10.1.8 below, we interpret the M-functor axioms (6.1.9) for A in
terms of these componentwise partners. ◇

The following observation allows us to regard a C-diagram in M as a left C-
module.

Proposition 10.1.8. In the context of Definition 10.1.1, an M-functor A ∶ C M is
uniquely determined by

● an object assignment as in (10.1.6) and

● component binary multimorphisms {A#
x,y}x,y∈C as in (10.1.7)

such that the following two diagrams in M commute for all objects x, y, z ∈ C, with C(x, y)
abbreviated to Cx,y.

(10.1.9)

(Cy,z , Cx,y , Ax) (Cx,z , Ax)

(Cy,z , Ay) Az

(m , 1)

A
#
x,z(1 , A

#
x,y)

A
#
y,z

(⟨⟩ , Ax) (Cx,x , Ax)

Ax Ax

(ix , 1)

A
#
x,x

1

Proof. Since taking partner is a bijection (8.1.7), it suffices to show that the dia-
grams in (10.1.9) are the partners of the diagrams in (6.1.9), which are the axioms

for an M-functor C M. We abbreviate M(?; ?) and evM to M?;? and ev, respec-

tively. For objects x, y ∈ C, the component Ax,y and its partner A#
x,y determine each

other via the following commutative diagram in M.

(10.1.10)

(Cx,y , Ax)

(MAx;Ay , Ax) Ay

(Ax,y , 1)
ev

A
#
x,y
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To see that the left diagram in (6.1.9) yields the left diagram in (10.1.9) upon
taking partners, we consider the following diagram in M.

(10.1.11)

(Cy,z , Cx,y , Ax)

(Cy,z , Ay) (MAy;Az , MAx;Ay , Ax) (Cx,z , Ax)

(MAy;Az , Ay) (MAx;Az , Ax)

Az

�

(Ay,z , 1) (Ax,z , 1)
(1 , e

v) (○ , 1)

(1 , A
#
x,y)

(Ay,z , Ax,y , 1)
(m , 1)

ev ev
A

#
y,z A

#
x,z

The sub-region labeled�, when composed with the lower right ev, yields the part-
ners (8.1.7) of the two composites in the left diagram in (6.1.9) for A ∶ C M. The
boundary of (10.1.11) is the left diagram in (10.1.9). Thus it suffices to show that
the other four sub-regions in (10.1.11) commute.

● The middle diamond region commutes by the definition of ○ in the canon-
ical self-enrichment of M (9.1.6).
● The other three sub-regions commute by (10.1.10).

To see that the right diagram in (6.1.9) yields the right diagram in (10.1.9) upon
taking partners, we consider the following diagram in M.

(10.1.12)

(⟨⟩ , Ax) (Cx,x , Ax)

(MAx;Ax , Ax)

Ax

(iAx , 1)

(ix , 1)

(Ax,x , 1)

ev
1

A#
x,x

The top triangle, when composed with ev, yields the partners of the two compos-
ites in the right diagram in (6.1.9) for A ∶ C M. The boundary of (10.1.12) is the
right diagram in (10.1.9). Thus it suffices to show that the other two sub-regions
in (10.1.12) commute.

● The left sub-region commutes by the definition of iAx in the canonical
self-enrichment of M (9.1.6).
● The right sub-region commutes by (10.1.10).

This finishes the proof. �

Mackey Functors as Modules. Recall that each category C enriched in a mul-
ticategory has an opposite (Cop,mop, i) (Proposition 6.6.7). The following observa-
tion is Proposition 10.1.8 applied to Cop.

Proposition 10.1.13. In the context of (10.1.3), an M-functor A ∶ Cop M is uniquely
determined by

● an object assignment A ∶ ObC ObM and
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● for each pair of objects x, y ∈ C, a component binary multimorphism

A#
x,y ∶ (Cy,x , Ax) Ay in M

such that the following two diagrams in M commute for all objects x, y, z ∈ C, with τ ∈ Σ2

the nonidentity permutation.

(10.1.14) (Cz,y , Cy,x , Ax) (Cz,x , Ax)

(Cy,x , Cz,y , Ax)

(Cz,y , Ay) Az

(τ , 1) (m , 1)

A
#
x,z(1 , A

#
x,y)

A
#
y,z

(⟨⟩ , Ax) (Cx,x , Ax)

Ax Ax

(ix , 1)

A
#
x,x

1

Diagram Morphisms as Module Morphisms.

Explanation 10.1.15. A morphism in M-Cat(C,M) is an M-natural transformation
between M-functors (Definition 6.1.14) as follows.

C M

A

B

⇒

θ

Such an M-natural transformation consists of, for each object x in C, a component
nullary multimorphism

θx ∶ ⟨⟩ M(Ax; Bx) in M

that satisfies the naturality axiom (6.1.16).

● Identity morphisms in M-Cat(C,M) are identity M-natural transforma-
tions (6.1.17), where each component θx is the identity iAx (9.1.2).
● Composition is given by vertical composition of M-natural transfor-

mations (Definition 6.1.18). We characterize composition in Proposi-
tion 10.1.22 below.

The partner (8.1.7) of θx is a unary multimorphism

(10.1.16) θ#
x ∶ Ax Bx in M.

In Proposition 10.1.17 below, we interpret the naturality axiom (6.1.16) for θ in
terms of these componentwise partners and those of A and B in (10.1.7). ◇

Proposition 10.1.8 above interprets an object in M-Cat(C,M) as a left C-module.
The following observation interprets a morphism in M-Cat(C,M) as a morphism
of left C-modules.

Proposition 10.1.17. In the context of Definition 10.1.1, an M-natural transformation
θ ∶ A B is uniquely determined by component unary multimorphisms as in (10.1.16)

{θ#
x ∶ Ax Bx}

x∈C
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such that the following diagram in M commutes for all objects x, y ∈ C, with A#
x,y and B#

x,y

as in (10.1.7).

(10.1.18)

(C(x, y) , Ax) Ay

(C(x, y) , Bx) By

A#
x,y

θ
#
y(1 , θ

#
x)

B#
x,y

Proof. Since taking partner is a bijection (8.1.7), it suffices to show that the natu-
rality diagram (6.1.16) for θ ∶ A B yields the diagram (10.1.18) upon taking
partners. We use the same abbreviations as in the proof of Proposition 10.1.8, so

(10.1.19) C(?, ?) = C?,?, M(?; ?) =M?;?, and ev = evM.

For each object x in C, the x-component θx and its partner θ#
x determine each other

via the following commutative diagram in M.

(10.1.20)

(⟨⟩ , Ax)

(MAx;Bx , Ax) Bx

(θx , 1)
ev

θ
#
x

The boundary of the following diagram in M is (10.1.18).

(10.1.21)

(Cx,y , ⟨⟩ , Ax) (⟨⟩ , Cx,y , Ax)

(Cx,y , Bx)
(MBx;By , MAx;Bx , Ax) (MAy;By , MAx;Ay , Ax)

(⟨⟩ , Ay)

(MBx;By , Bx) (MAx;By , Ax) (MAy;By , Ay)

By

�

B
#
x,y

(1 , θ
#
x) A

#
x,y

θ
#
y

(Bx,y , θx , 1) (θy , Ax,y , 1)

(B
x,y , 1)

(1 , ev)
(○ , 1) (○ ,

1)
(1 , ev)

(θ y
, 1
)

ev ev ev

The sub-region labeled �, when composed with the lower middle ev, yields the
partners (8.1.7) of the two composites in the naturality diagram (6.1.16) for θ ∶
A B. Thus it suffices to show that the other sub-regions in (10.1.21) are com-
mutative.

● The top left and bottom right sub-regions commute by (10.1.20).
● The top right and bottom left sub-regions commute by (10.1.10).
● The two remaining sub-regions commute by the definition of ○ in the

canonical self-enrichment of M (9.1.6).

This finishes the proof. �

Partner Characterization of Composition. Proposition 10.1.22 below charac-
terizes vertical composition of M-natural transformations (Definition 6.1.18) in the
category M-Cat(C,M) in terms of partners. It says that, at each component, com-
position commutes with taking partners.
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Proposition 10.1.22. In the context of Definition 10.1.1, suppose θ and ψ are vertically
composable M-natural transformations as follows.

C M

F

G

H

⇒

θ

⇒

ψ

Then for each object x in C, there is an equality of unary multimorphisms

(10.1.23) (ψθ)#x = γM(ψ#
x ; θ#

x) ∶ Fx Hx in M.

Proof. We use the abbreviations in (10.1.19). By definition (6.1.20) the x-component
of ψθ is the following composite nullary multimorphism in M.

(10.1.24) ⟨⟩ (⟨⟩ , ⟨⟩) (MGx;Hx , MFx;Gx) MFx;Hx
(ψx , θx) ○

(ψθ)x

Its partner (10.1.20) is the left-bottom composite in the diagram (10.1.25) in M be-
low. The right-hand side of the desired equality (10.1.23) is the top-right composite
in (10.1.25).

(10.1.25)

(⟨⟩ , ⟨⟩ , Fx) = Fx Gx = (⟨⟩ , Gx)

(MGx;Hx , MFx;Gx , Fx) (MGx;Hx , Gx)

(MFx;Hx , Fx) Hx

θ
#
x

(1 , ev)

ev

(ψx , θx , 1)

(○ , 1)

(ψx , 1)

ev

ψ
#
x

The three sub-regions in (10.1.25) are commutative for the following reasons.

● The bottom left sub-region commutes by the definition of ○ in (9.1.6).

● The top left sub-region commutes by the definition of θ#
x (10.1.20).

● The right sub-region commutes by the definition of ψ#
x (10.1.20).

The commutative diagram (10.1.25) proves the desired equality (10.1.23). �

Examples of Mackey Functor Categories.

Example 10.1.26 (Stable Model Categories). Suppose M is a simplicial, cofibrantly
generated, proper, and stable model category (Definition 0.4.1). The Schwede-
Shipley Characterization Theorem 0.4.3 shows that, if P is a set of compact gener-
ators of M, then there is a chain of simplicial Quillen equivalences

M ≃Q Sp -Cat(E(P)op,Sp )
between M and the E(P)-presheaf category of Sp in the sense of (10.1.3). On the
right-hand side, E(P) is the spectral endomorphism category (Definition 0.4.2) and
E(P)op is its opposite Sp-category as in Proposition 6.6.7. ◇
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Example 10.1.27 (Genuine Equivariant Spectra). Recall from Definition 0.3.5 the
Burnside 2-category GE for a finite group G. The Guillou-May Theorem 0.3.9 gives
a zigzag of Quillen equivalences

(10.1.28) G-Sp ≃Q Sp -Cat((GE
K

)op , Sp )
between the category of genuine equivariant G-spectra, G-Sp, and the category of
spectral Mackey functors for K (Definition 0.3.8). As in Remark 9.4.4, K denotes
the K-theory non-symmetric multifunctor in [GM22, GMMO23].

We emphasize that in (10.1.28) the opposite in (GE
K

)op is taken in Sp -Cat
(Proposition 6.6.7) after the change of enrichment along K. In Remark 10.5.5 we
further discuss the relationship between

● the Guillou-May Quillen equivalence (10.1.28),
● the work of Bohmann-Osorno [BO15], and
● our diagram change-of-enrichment functor in Theorem 10.3.1.

There, we note and discuss the nontrivial distinction between the Sp-categories(GE
K

)op and (GEop)
K

. ◇

10.2. Change of Enrichment of Enriched Diagrams and Mackey Functors

In this section we construct change-of-enrichment functors on enriched di-
agram and Mackey functor categories associated to (non-symmetric) multifunc-
tors between (non-symmetric) closed multicategories (Definitions 8.1.1, 10.1.1,
and C.1.19).

● The change-of-enrichment construction is in Definition 10.2.1.
● Explanations 10.2.5 and 10.2.13 unpack the change-of-enrichment con-

struction on objects and morphisms.

We defer the proof that change of enrichment is a functor to Section 10.3; see The-
orems 10.3.1 and 10.3.4. In Section 10.4 we show that these change-of-enrichment
functors are compatible with composition of (non-symmetric) multifunctors.

Defining F★.

Definition 10.2.1. Suppose given a non-symmetric multifunctor between non-
symmetric closed multicategories

F ∶M N

and a small M-category C (Definition 6.1.1). We define the data of a functor

(10.2.2) F★ ∶M-Cat(C,M) N-Cat(CF,N),
called the diagram change of enrichment of F at C, as follows.

Domain: The domain of F★ is the C-diagram category of M in (10.1.2).
Codomain: CF is the N-category obtained from C by applying the change-of-

enrichment 2-functor in Proposition 7.1.9

(−)F ∶M-Cat N-Cat.

The codomain of F★ is the CF-diagram category of N in (10.1.2).
Object and Morphism Assignments: Suppose given

● M-functors A and B and
● an M-natural transformation ψ ∶ A B in M-Cat(C,M)
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as in the left diagram below.

(10.2.3) C M CF MF N

A

B

F★⇒

ψ

AF

BF

F̂⇒

ψF

Then F★ sends A, B, and ψ to the composites and whiskering as in the

right diagram in (10.2.3), with F̂ the standard enrichment of F in Theo-
rem 9.2.12.

This finishes the definition of F★. We also call F★ a diagram change-of-enrichment
functor.

Moreover, we define the following.

● If we want to emphasize C, then we write FC
★ instead of F★.

● Suppose F is a multifunctor between closed multicategories and Cop is
the opposite M-category of C (Proposition 6.6.7). Using Proposition 7.2.1
to identify the N-categories (Cop)F and (CF)op, we call

(10.2.4) F★ ∶M-Cat(Cop,M) N-Cat((CF)op,N)
the presheaf change of enrichment of F. We also call this F★ a presheaf change-
of-enrichment functor.

This finishes the definition. Theorems 10.3.1 and 10.3.4 prove that F★ in (10.2.2)
and (10.2.4) are functors. ◇

The assignment F★ in (10.2.3) is

● the change of enrichment (−)F (Proposition 7.1.9) followed by

● the standard enrichment F̂ (Theorem 9.2.12).

We describe F★ in more detail in Explanations 10.2.5 and 10.2.13 below.

Unpacking F★.

Explanation 10.2.5 (F★ on Objects). For an M-functor A ∶ C M, in (10.2.3) the
N-functor

(10.2.6) F★A ∶ CF
AF

MF
F̂

N

is the composite of

● AF, which is the image of A under the change of enrichment (−)F, and

● the standard enrichment F̂ of F in Theorem 9.2.12.

Object Assignment. More explicitly, the N-functor AF has the same object as-

signment as A ∶ C M. The standard enrichment F̂ has the same object assign-
ment as F. Thus the object assignment of the N-functor F★A is given by

(10.2.7) (F★A)(x) = F(A(x)) ∈ N for x ∈ C.

Components. To describe F★A on hom objects, suppose given a pair of objects
x, y ∈ C. The component (F★A)x,y is the following composite in N of unary multi-
morphisms.

(10.2.8) FC(x, y) FM(Ax ; Ay) N(FAx ; FAy)FAx,y F̂Ax,Ay

(F★A)x,y
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The two constituent arrows in (10.2.8) are as follows.

● The unary multimorphism

(10.2.9) Ax,y ∶ C(x, y) M(Ax ; Ay) in M

is the (x, y)-component of the M-functor A (Definition 6.1.7). The left
arrow in (10.2.8) is the image of Ax,y under F, which is a unary multimor-
phism in N.
● The right arrow in (10.2.8) is the (Ax, Ay)-component unary multimor-

phism of the standard enrichment F̂ in (9.2.3). Its construction uses the
closed structure on both M and N.

Partner Characterization. We can characterize (F★A)x,y in terms of its partner
(8.1.7), using the following commutative diagram in N.

(10.2.10)

(FC(x, y) , FAx)

(FM(Ax ; Ay) , FAx)

(N(FAx ; FAy) , FAx)

FAy

(FAx,y , 1FAx)

(F̂Ax,Ay , 1FAx)

F(A#
x,y)

F(evMAx; Ay)

ev
N
FAx; FAy

((F★A)x,y , 1FAx)

The diagram (10.2.10) commutes for the following reasons.

● A#
x,y is the partner (8.1.7) of Ax,y in (10.2.9). By definition it is the follow-

ing composite in M.

(10.2.11)

(C(x, y) , Ax)

(M(Ax ; Ay) , Ax) Ay

(Ax,y , 1Ax)
A#

x,y

ev
M
Ax; Ay

The upper right region in (10.2.10) commutes because it is the image un-
der F of (10.2.11). This uses the fact that F, as a non-symmetric multifunc-
tor, preserves colored units and composition.

● The bottom right region in (10.2.10) commutes by the definition of F̂Ax,Ay;
see (9.2.11).
● The left region in (10.2.10) commutes by (10.2.8).

In (10.2.10) the left-bottom composite is, by definition, the partner of (F★A)x,y.
Thus (10.2.10) yields the equality of binary multimorphisms

(10.2.12) (F★A)#x,y = F(A#
x,y) ∶ (FC(x, y) , FAx) FAy in N.

So the partner of (F★A)x,y is the image under F of the partner of Ax,y. ◇
Explanation 10.2.13 (F★ on Morphisms). Suppose ψ is an M-natural transforma-
tion as follows.

C M

A

B

⇒

ψ

In the definition (10.2.3),

(10.2.14) F★ψ = 1F̂ ∗ψF ∶ F★A = F̂ ○ AF F★B = F̂ ○ BF
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is the horizontal composite (Definition 6.1.22) below.

CF MF N

AF

BF

F̂

F̂

⇒

ψF

⇒

1F̂

● The N-natural transformation ψF is the image of ψ under the change of
enrichment (−)F.

● 1F̂ is the identity N-natural transformation of the standard enrichment F̂
(6.1.17).

Components. More explicitly, for each object x ∈ C, the x-component of ψ ∶
A B is a nullary multimorphism

(10.2.15) ψx ∶ ⟨⟩ M(Ax ; Bx) in M,

with ⟨⟩ denoting the empty sequence. After the change of enrichment (−)F, the
x-component of ψF ∶ AF BF is the nullary multimorphism

(ψF)x = Fψx ∶ ⟨⟩ FM(Ax ; Bx) in N.

The x-component of F★ψ is the nullary multimorphism given by the following
composite in N.

(10.2.16) ⟨⟩ FM(Ax ; Bx) N(FAx ; FBx)Fψx F̂Ax,Bx

(F★ψ)x

The right arrow in (10.2.16) is the (Ax, Bx)-component unary multimorphism of

the standard enrichment F̂ in (9.2.3).

Partner Characterization. We can describe the component (F★ψ)x in terms of its
partner (8.1.7), using the following commutative diagram in N.

(10.2.17)

(⟨⟩ , FAx)

(FM(Ax ; Bx) , FAx)

(N(FAx ; FBx) , FAx)

FBx

(Fψx , 1FAx)

(F̂Ax,Bx , 1FAx)

F(ψ#
x)

F(evMAx; Bx)

ev
N
FAx; FBx

((F★ψ)x , 1FAx)

The diagram (10.2.17) commutes for the following reasons.

● ψ#
x is the partner (8.1.7) of ψx in (10.2.15). By definition it is the following

composite in M.

(10.2.18)

(⟨⟩ , Ax)

(M(Ax ; Bx) , Ax) Bx

(ψx , 1Ax)
ψ

#
x

ev
M
Ax; Bx

The upper right region in (10.2.17) commutes because it is the image un-
der F of (10.2.18). This uses the fact that F, as a non-symmetric multifunc-
tor, preserves colored units and composition.
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● The bottom right region in (10.2.17) commutes by the definition of F̂Ax,Bx;
see (9.2.11).
● The left region in (10.2.17) commutes by (10.2.16).

In (10.2.17) the left-bottom composite is, by definition, the partner of (F★ψ)x. Thus
(10.2.17) yields the equality of unary multimorphisms

(10.2.19) (F★ψ)#x = F(ψ#
x) ∶ FAx FBx in N.

So the partner of (F★ψ)x is the image under F of the partner of ψx. ◇

10.3. Diagram and Mackey Functor Change-of-Enrichment Functors

This section has two purposes.

(1) We show that the diagram and Mackey functor change of enrichment in
(10.2.2) and (10.2.4) are functors (Theorems 10.3.1 and 10.3.4).

(2) We illustrate them with K-theoretic functors in Examples 10.3.2 and 10.3.5.

Diagram Change of Enrichment is a Functor.

Theorem 10.3.1. For each non-symmetric multifunctor between non-symmetric closed
multicategories

F ∶M N

and each small M-category C, the diagram change of enrichment

F★ ∶M-Cat(C,M) N-Cat(CF,N)
in (10.2.2) is a functor.

Proof. The assignments of F★

● on objects

A F★A = F̂ ○ AF

in (10.2.6) and
● on morphisms

ψ F★ψ = 1F̂ ∗ψF

in (10.2.14)

are well defined because they are given by composition of N-functors and hori-
zontal composition of N-natural transformations, respectively.

Preservation of Identity Morphisms. Suppose ψ = 1A is the identity M-natural
transformation of an M-functor A ∶ C M. Then the 2-functoriality of the
change of enrichment (−)F (Proposition 7.1.9) implies the following equalities.

F★1A = 1F̂ ∗ (1A)F = 1F̂ ∗ 1(AF) = 1F★A

Preservation of Composition. Suppose given M-functors A, B, D ∶ C M and
vertically composable M-natural transformations

A
ψ

B
φ

D.
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The following computation, using the 2-functoriality of (−)F in the second equal-
ity, shows that F★ preserves composition.

F★(φψ) = 1F̂ ∗ (φψ)F
= 1F̂ ∗ (φFψF)
= (1F̂ ∗ φF)(1F̂ ∗ψF)
= (F★φ)(F★ψ)

This finishes the proof. �

Example 10.3.2 (Inverse K-Theory and Free Permutative Categories). Theo-
rem 10.3.1 is applicable to the non-symmetric multifunctors in the following
diagram.

(10.3.3) Multicat∗ PermCatsu Γ-Cat

Multicat

ModM1

F

F●

FM1

P

● PermCatsu is a closed multicategory by Theorem 8.4.15.
● Multicat, Multicat∗, ModM1, and Γ-Cat are symmetric monoidal closed cat-

egories by Theorems 1.1.26 and 1.2.8, Proposition 1.3.17, and (2.3.3). Thus
they are closed multicategories by Proposition 8.1.16.
● P is a non-symmetric multifunctor by [JY22b, 1.3].
● F, F●, and FM1 are non-symmetric multifunctors by Theorems 3.4.31

and 5.2.6 and (5.5.2).

For example, Theorem 10.3.1 applied to inverse K-theory P says that, for each
small (Γ-Cat)-category C (Definitions 6.1.1 and B.1.1), there is a diagram change-
of-enrichment functor

P★ ∶ (Γ-Cat)-Cat(C, Γ-Cat) PermCatsu-Cat(CP ,PermCatsu )
defined as in (10.2.3). More explicitly, the functor P★ sends each (Γ-Cat)-functor
(Definitions 6.1.7 and B.1.8)

A ∶ C Γ-Cat

to the composite PermCatsu-functor

P★A ∶ CP AP (Γ-Cat)P P̂
PermCatsu .

● AP is the image of A under the change-of-enrichment 2-functor (Propo-
sition 7.1.9)

(−)P ∶ (Γ-Cat)-Cat PermCatsu-Cat

along P .
● The PermCatsu-functor

P̂ ∶ (Γ-Cat)P PermCatsu

is the standard enrichment of P (Theorem 9.2.12).
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The morphism assignment of P★ sends a (Γ-Cat)-natural transformation (Defini-
tions 6.1.14 and B.1.10) ψ to the whiskering

P★ψ = 1P̂ ∗ψP
as in (10.2.14). The diagram change-of-enrichment functors F★, (F●)★, and (FM1)★
admit analogous description. ◇

We provide further examples and applications of Theorem 10.3.1 in Exam-
ple 10.3.5 and Chapters 11 and 12. In particular, in Chapter 12 we use (F●)★
and (FM1)★ to construct equivalences of homotopy theories from diagrams and

presheaves enriched in Multicat∗ and ModM1 to those enriched in PermCatsu.

Mackey Functor Change of Enrichment is a Functor.

Theorem 10.3.4. For each multifunctor between closed multicategories

F ∶M N

and each small M-category C, the presheaf change of enrichment

F★ ∶M-Cat(Cop,M) N-Cat((CF)op,N)
in (10.2.4) is a functor.

Proof. This is Theorem 10.3.1 applied to the opposite M-category Cop. We use
Proposition 7.2.1 to obtain the equality

(Cop)F = (CF)op
of N-categories. �

We stress that Theorem 10.3.4 does not apply to non-symmetric multifunctors.
For the equality in its proof to hold, F needs to preserve the symmetric group
action as in the second equality in (7.2.2).

Example 10.3.5 (K-Theory Multifunctors). Theorems 10.3.1 and 10.3.4 are applica-
ble to the following multifunctors in (2.5.1).

(10.3.6)

PermCatsu Γ-Cat Γ-sSet Sp

G∗-Cat G∗-sSetModM1

Ner∗ K
F

J
EM

EndM1

J
T Ner∗

K
G

∧
∗

∧
∗

K
EM

Each arrow in (10.3.6) is a multifunctor between closed multicategories.

● PermCatsu, Γ-Cat, and Γ-sSet are closed multicategories by (2.3.3), Propo-
sition 8.1.16, and Theorem 8.4.15, as discussed in Example 10.3.2.
● ModM1, G∗-Cat, G∗-sSet, and Sp are symmetric monoidal closed categories

(Proposition 1.3.17 and (2.4.12) and (2.5.2)), hence also closed multicate-
gories (Proposition 8.1.16).
● JEM, EndM1, and KEM are multifunctors.
● The other arrows in (10.3.6) are symmetric monoidal functors, hence also

multifunctors via the endomorphism construction (C.3.3).

We discuss the case for KEM in more detail in Sections 10.5 and 10.6. We emphasize
that Theorem 10.3.4 does not apply to the arrows in (10.3.3)—namely,P , F, F●, and
FM1—because those are non-symmetric multifunctors. ◇
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10.4. Composition of Diagram Change-of-Enrichment Functors

In Theorem 10.3.1 we observe that there is a diagram change-of-enrichment
functor

F★ = FC
★ ∶M-Cat(C,M) N-Cat(CF,N)

for each

● non-symmetric multifunctor F ∶M N between non-symmetric closed
multicategories and
● small M-category C.

In this section we show that the construction, F F★, respects composition
of non-symmetric multifunctors; see Theorem 10.4.1. The version for enriched
Mackey functors is Theorem 10.4.5. We discuss applications of Theorems 10.4.1
and 10.4.5 to Elmendorf-Mandell K-theory in Section 10.6.

Theorem 10.4.1. Suppose given non-symmetric multifunctors between non-symmetric
closed multicategories

M
F

N
G

P

and a small M-category C. Then the following diagram of functors commutes.

(10.4.2)
M-Cat(C,M)

N-Cat(CF,N)

P-Cat(CGF,P)(GF)C★

FC
★ GCF

★

Proof. By Proposition 7.4.1 the following diagram of change-of-enrichment 2-
functors commutes.

(10.4.3) M-Cat N-Cat P-Cat
(−)F (−)G

(−)GF

This gives an equality of P-categories

(CF)G = CGF,

so the arrow G
CF
★ in (10.4.2) is well defined.

To prove that (10.4.2) is commutative, suppose A ∶ C M is an M-functor.
By definition (10.2.6) F★A is the composite N-functor

F★A ∶ CF
AF

MF
F̂

N

with

● (−)F the change of enrichment in (10.4.3) and

● F̂ the standard enrichment of F (Theorem 9.2.12).

Applying the change-of-enrichment 2-functor (−)G to the above composite and

composing with the standard enrichment Ĝ, we obtain the composite P-functor
along the top of the following diagram.

(10.4.4) CGF MGF = (MF)G NG P
AGF F̂G Ĝ

(F★A)G

ĜF
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Theorem 9.3.6 gives the equality of P-functors

ĜF = Ĝ ○ F̂G ∶MGF P.

In the commutative diagram (10.4.4),

● the composite along the top is G★F★(A), and
● the composite along the bottom is (GF)★(A).

This proves that the diagram (10.4.2) is commutative on objects.
Replacing A by an M-natural transformation in M-Cat(C,M), the previous

paragraph also proves that the diagram (10.4.2) is commutative on morphisms.
�

The following result shows that presheaf change-of-enrichment functors are
closed under composition. Recall from Definition C.1.19 that multifunctors are
required to preserve the colored units, composition, and symmetric group action.

Theorem 10.4.5. Suppose given multifunctors between closed multicategories

M
F

N
G

P

and a small M-category C. Then the following diagram of presheaf change-of-enrichment
functors commutes.

(10.4.6)
M-Cat(Cop,M)

N-Cat((CF)op,N)

P-Cat((CGF)op,P)(GF)C
op

★

FC
op

★ G
(CF)op
★

Proof. This is Theorem 10.4.1 applied to the opposite M-category Cop (Proposi-
tion 6.6.7). The equality of N-categories

(Cop)F = (CF)op
and the equalities of P-categories

((CF)op)G = ((CF)G)op = (CGF)op = (Cop)GF

are from Propositions 7.2.1 and 7.4.1. �

We emphasize that Theorem 10.4.5 does not apply to non-symmetric multi-
functors because the equalities in the proof above require that F and G preserve
the symmetric group action.

10.5. Spectral Mackey Functors from K-Theory

Recall from (2.5.8) that Elmendorf-Mandell K-theory

KEM ∶ PermCatsu Sp

is a multifunctor in the sSet-enriched sense. In this section we apply our gen-
eral results about diagram and presheaf change of enrichment, Theorems 10.3.1
and 10.3.4, to obtain spectrally enriched diagrams and Mackey functors via
Elmendorf-Mandell K-theory.
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Theorem 10.5.1. Suppose C is a small PermCatsu-category. Then KEM induces a diagram
change-of-enrichment functor

(10.5.2) PermCatsu-Cat(C,PermCatsu ) K
EM

★

Sp -Cat(CKEM ,Sp )
and a presheaf change-of-enrichment functor

(10.5.3) PermCatsu-Cat(Cop,PermCatsu ) K
EM

★

Sp -Cat((CKEM)op,Sp ).
Proof. The existence of the functor KEM

★ in (10.5.2) is Theorem 10.3.1 applied to the
multifunctor F = KEM between closed multicategories.

● PermCatsu is a closed multicategory by Theorem 8.4.15.
● The symmetric monoidal closed category Sp of symmetric spectra is a

closed multicategory by Proposition 8.1.16.

The existence of the functor in (10.5.3) is Theorem 10.3.4 applied to KEM. �

We describe the functor KEM
★ in more detail in Explanations 10.5.8 and 10.5.11

after Remarks 10.5.4 and 10.5.5. In Section 10.6 we factor the functors in (10.5.2)
and (10.5.3) through enriched diagram and Mackey functor categories defined on
leftM1-modules, G∗-categories, and G∗-simplicial sets.

Symmetry and Opposite.

Remark 10.5.4 (Symmetry of KEM). For the presheaf change-of-enrichment functor
KEM
★ in (10.5.3), it is crucial that KEM is a multifunctor in the symmetric sense in order

to identify the Sp-categories

(Cop)KEM and (CKEM)op
using Proposition 7.2.1. Without this symmetry property of KEM, we would have to
use (Cop)KEM in the codomain of KEM

★ , which is (10.5.2) for Cop. Thus, the fact that
the codomain of KEM

★ in (10.5.3) is a category of spectrally enriched presheaves—as
opposed to enriched diagrams—depends on the symmetry of KEM. ◇
Remark 10.5.5 (Symmetric and Non-Symmetric K-Theory Multifunctors). The di-
agram change-of-enrichment functor KEM

★ in (10.5.2) is the KEM variant of the main
result in [BO15, Theorem 7.5], which states the following using our notation:

Let G be a finite group. Then there is a functor

(10.5.6) K★ ∶ PermCatsu-Cat(GEop,PermCatsu ) Sp -Cat((GEop)
K

, Sp ).
In [BO15] K★, PermCatsu, and Sp are denoted KG, Perm, and Spec, respectively.
As in Theorem 0.3.9, Remark 9.4.4, and Example 10.1.27, K is the K-theory non-
symmetric multifunctor in [GM22, GMMO23], and GE is the permutative Burn-
side category (Definition 0.3.5). The diagram change-of-enrichment functor K★ in
(10.5.6) exists by Theorem 10.3.1 applied to

● the non-symmetric multifunctor K and
● the PermCatsu-category GEop, which is the opposite PermCatsu-category

of GE (Proposition 6.6.7).

We emphasize the following regarding the diagram change-of-enrichment
functorK★ in (10.5.6).

(i) Unlike Elmendorf-Mandell K-theory, K does not preserve symmetry
[GMMO23, Theorem 8.12]. Thus we cannot use Proposition 7.2.1 to
identify the Sp-categories
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● (GEop)
K

, with opposite taken in PermCatsu-Cat, and
● (GE

K

)op, with opposite taken in Sp -Cat.
(ii) Recall from Remark 0.3.7 that the PermCatsu-category GE and its oppo-

site GEop are not known to be equivalent as PermCatsu-categories. The
assignment that sends a span of G-sets ( f , g) to (g, f ) as in (0.2.7) does
not define a PermCatsu-functor

GE GEop

because it does not preserve composition as in (6.1.9).
(iii) The Sp-category GE

K

and its opposite (GE
K

)op are also not known to be
equivalent.

Thus the codomain of K★ has to be (GEop)
K

and not (GE
K

)op as stated in [BO15,
7.5], where (GE

K

)op is denoted GBop. As far as the authors know, the codomain
of K★ is a category of spectrally enriched diagrams but not spectrally enriched
presheaves as in the Guillou-May Quillen equivalence (10.1.28). ◇

Description of KEM
★ . The rest of this section describes the functor KEM

★ in
(10.5.2) in detail. The same discussion also applies to Cop and (Cop)KEM =(CKEM)op; see Remark 10.5.4. As defined in (10.2.3), the diagram change-of-
enrichment functor KEM

★

● first applies the change-of-enrichment 2-functor (Proposition 7.1.9)

(10.5.7) (−)KEM ∶ PermCatsu-Cat Sp -Cat.

along KEM and then

● composes or whiskers with the standard enrichment Sp-functor K̂EM (Ex-
planation 9.4.5).

Explanation 10.5.8 (KEM
★ on Objects). Consider a PermCatsu-functor

A ∶ C PermCatsu .

Applying Explanation 10.2.5 to the context of Theorem 10.5.1, the Sp-functor KEM
★ A

is the following composite.

(10.5.9) CKEM (PermCatsu)KEM Sp
AKEM K̂EM

K
EM

★ A

● AKEM is the image of A under the change-of-enrichment 2-functor (−)KEM

in (10.5.7).
● K̂EM is the standard enrichment of KEM in Explanation 9.4.5.

Next we describe its object assignment and component morphisms.

Object Assignment. For an object x ∈ C, the object assignment is

(KEM
★ A)(x) = KEM(Ax) in Sp .

This is the Elmendorf-Mandell K-theory of the small permutative category Ax.



252 10. ENRICHED MACKEY FUNCTORS OF CLOSED MULTICATEGORIES

Components. For objects x, y ∈ C, the component (KEM
★ A)x,y is the following

composite morphism in Sp.

KEMC(x, y)

KEMPermCatsu(Ax; Ay)

Sp(KEM(Ax);KEM(Ay))(KEM

★ A)x,y

K
EM(Ax,y)

K̂EM
Ax,Ay

The adjoint of (KEM
★ A)x,y in Sp is the following composite morphism.

(10.5.10)
KEMC(x, y)∧KEM(Ax)

KEMPermCatsu(Ax; Ay)∧KEMAx

KEM(Ay)K
EM(A#

x,y)

K
EM(Ax,y)∧ 1

K
EM(evAx; Ay)

Here A#
x,y is the partner of Ax,y. It is defined in (10.2.11). ◇

Explanation 10.5.11 (KEM
★ on Morphisms). Consider a PermCatsu-natural transfor-

mation (Explanation 6.3.16) ψ as follows.

C PermCatsu
A

B

⇒

ψ

For each object x ∈ C, the x-component of ψ is a nullary multimorphism

ψx ∶ ⟨⟩ PermCatsu(Ax ; Bx) in PermCatsu

with ⟨⟩ denoting the empty sequence. This means a choice of an object in

PermCatsu(Ax ; Bx). In other words, ψx is a strictly unital symmetric monoidal
functor

(10.5.12) ψx ∶ Ax Bx in PermCatsu .

Applying Explanation 10.2.13 to the context of Theorem 10.5.1, the image of ψ
under the diagram change-of-enrichment functor KEM

★ ,

KEM
★ ψ ∶ KEM

★ A = K̂EM ○ AKEM KEM
★ B = K̂EM ○ BKEM ,

is the following whiskering of the Sp-natural transformation ψKEM with the Sp-

functor K̂EM in Explanation 9.4.5.

CKEM (PermCatsu)KEM Sp

AKEM

BKEM

K̂EM⇒

ψKEM

For each object x ∈ C, the x-component of KEM
★ ψ is a nullary multimorphism

(KEM
★ ψ)x ∶ ⟨⟩ Sp(KEM(Ax);KEM(Bx)) in Sp .

Since the multicategory structure on Sp is induced by a symmetric monoidal struc-
ture, this nullary multimorphism is a morphism

(KEM
★ ψ)x ∶ S Sp(KEM(Ax);KEM(Bx)) in Sp,
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where S denotes the symmetric sphere spectrum [JY∞, 7.4.1]. The adjoint of this
morphism in Sp is the composite

(10.5.13) S ∧KEM(Ax) KEM(Ax) KEM(Bx)≅ K
EM(ψx)

(KEM

★ ψ)#x

with ψx in (10.5.12). ◇

10.6. Spectral Mackey Functors from Multicategorical Mackey Functors

In this section we apply Theorems 10.4.1 and 10.4.5 along with the factoriza-
tion of Elmendorf-Mandell K-theory to factor the diagram and presheaf change-
of-enrichment functors KEM

★ in Theorem 10.5.1. For the context, recall from (2.5.8)
that Elmendorf-Mandell K-theory KEM is the following composite.

(10.6.1)
PermCatsu Sp

ModM1 G∗-Cat G∗-sSet

K
EM

EndM1

J
T Ner∗

K
G

As we explain under (9.4.1), the commutative diagram (10.6.1) consists of multi-
functors between closed multicategories.

Theorem 10.6.2. Suppose C is a small PermCatsu-category. Then the factorization
(10.6.1) of KEM induces the following factorization of the diagram change-of-enrichment
functor KEM

★ in (10.5.2).

(10.6.3)

PermCatsu-Cat(C,PermCatsu ) Sp -Cat(CKEM ,Sp )

ModM1-Cat(CEndM1
, ModM1 )

(G∗-Cat)-Cat(CJT EndM1
, G∗-Cat)

(G∗-sSet)-Cat(CNer∗ JT EndM1
, G∗-sSet)

K
EM

★

(EndM1)★

J
T

★ (Ner∗)★

K
G

★

Moreover, there is an analogous factorization of the presheaf change-of-enrichment functor
KEM
★ in (10.5.3) with C and each C? in (10.6.3) replaced by Cop and (C?)op, respectively.

Proof. The factorization (10.6.3) is the result of applying Theorem 10.4.1 three times
to the commutative diagram (10.6.1). The second assertion about Cop follows sim-
ilarly from Theorem 10.4.5. �

Explanation 10.6.4 (Diagram Change of Enrichment). By definition (10.2.3) each
diagram change-of-enrichment functor F★ is given by

● applying the change-of-enrichment 2-functor (−)F (Proposition 7.1.9) and
then
● composing or whiskering the result with the standard enrichment F̂ in

Theorem 9.2.12.
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In Explanations 10.5.8 and 10.5.11 we describe the diagram change-of-enrichment
functor KEM

★ . The other four diagram change-of-enrichment functors in (10.6.3)
admit analogous description. Just like Sp, each of the closed multicategories

ModM1, G∗-Cat, and G∗-sSet

is a symmetric monoidal closed category by Proposition 1.3.17 and (2.4.12). In
each case we can use the adjunction between the monoidal product and the closed
structure to obtain the analogs of the adjoint description in (10.5.10) and (10.5.13).

◇
Explanation 10.6.5 (Multicategorical Mackey Functors). The second assertion of
Theorem 10.6.2 gives, for each small PermCatsu-category C, the following factor-
ization of the presheaf change-of-enrichment functor KEM

★ in (10.5.3).

(10.6.6)

PermCatsu-Cat(Cop,PermCatsu ) Sp -Cat((CKEM)op,Sp )

ModM1-Cat((CEndM1
)op , ModM1 )

(G∗-Cat)-Cat((CJT EndM1
)op , G∗-Cat)

(G∗-sSet)-Cat((CNer∗ JT EndM1
)op , G∗-sSet)

K
EM

★

(EndM1)★

J
T

★ (Ner∗)★

K
G

★

Via the composite KG★ ○ (Ner∗)★ ○ JT★, we obtain Sp-enriched Mackey functors from
ModM1-enriched Mackey functors. This is what the title of this section refers to. ◇
Explanation 10.6.7 (Equivalences of Homotopy Theories). In Theorem 12.4.6 we
observe that (EndM1)★ in each of (10.6.3) and (10.6.6) is an equivalence of homo-
topy theories. This implies that the homotopy theories of modules in PermCatsu

and in ModM1 are equivalent via (EndM1)★. An analogous equivalence of homo-

topy theories also holds with ModM1 replaced by Multicat∗; see Theorem 12.1.6.
These equivalences of homotopy theories are all instances of the much more gen-
eral Theorems 11.4.14 and 11.4.24, which hold at the level of (non-symmetric)
multifunctors between (non-symmetric) closed multicategories. We do not know
whether KEM

★ , JT★, (Ner∗)★, KG★, or any of their composites are equivalences of ho-
motopy theories or not. See Question D.3. ◇
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CHAPTER 11

Homotopy Equivalences between Enriched Diagram

and Mackey Functor Categories

Throughout this chapter we suppose given a pair of non-symmetric multi-
functors between non-symmetric closed multicategories

F ∶M N ∶ E,

together with multinatural transformations as follows.

M M

1M

EF

⇒

κ N N

1N

FE

⇒

ξ

The main results of this chapter identify conditions under which these data will
induce, for each small N-category C, inverse equivalences of homotopy theories
between enriched diagram categories (Theorem 11.4.14)

M-Cat(CE,M) N-Cat(C,N)Fξ

★

E★

and enriched Mackey functor categories (Theorem 11.4.24)

M-Cat((CE)op,M) N-Cat(Cop,N),F
ξ

★

E★

with the latter requiring that E be a multifunctor, not merely a non-symmetric
multifunctor. The functors E★ are the diagram change of enrichment for E (Theo-

rem 10.3.1). The functors Fξ
★ are similar, and are described in Section 11.1.

It is important to note that, while E is required to satisfy the additional sym-
metric group action axiom of a multifunctor in Theorem 11.4.24, F is not. In the
applications, Theorems 12.1.6 and 12.4.6 below, E is an endomorphism multifunc-
tor and F is a corresponding free non-symmetric multifunctor.

Connection with Other Chapters. The results in this chapter provide a gen-
eral approach to three main results in Chapter 12, as follows.

● The application (F , E) = (F● , E ●) and (κ , ξ) = (η ● , ̺
●) is described in

Sections 12.1 through 12.3.

● The application (F , E) = (FM1 , EM1) and (κ , ξ) = (ηM1 , ̺M1) is de-
scribed in Sections 12.4 and 12.5.
● The application (F , E) = (M1 ∧ − , UM1) and (κ , ξ) = (η̂ , ε̂−1) is de-

scribed in Sections 12.6 and 12.7.

For each application, we recall further background and context in the respective
sections of Chapter 12.

257
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Background. Section 10.1 describes enriched diagram categories and en-
riched Mackey functor categories. Sections 10.2 through 10.4 give the definitions
and basic properties of the functors E★ and F★ for diagram change of enrichment.
That material, and many of the details later in this chapter, depends on the basic
theory of (self-)enrichment in a non-symmetric multicategory, from Chapters 6, 7,
and 9.

Chapter Summary. The precise context and assumptions for this chapter are
given in Definition 11.1.1. The remainder of Section 11.1 gives the definition and

further explanations of the functor Fξ
★. Sections 11.2 and 11.3 construct two nat-

ural transformations, denoted κ★ and ξ★, that compare the composites E★Fξ
★ and

Fξ
★E★ to the respective identity functors. The main result, that Fξ

★ and E★ are in-
verse equivalences of homotopy theories in the sense of Definition 2.1.8, is in Sec-
tion 11.4; see Theorem 11.4.14. With the further assumption that E is a multifunctor
(not merely a non-symmetric multifunctor), Theorem 11.4.24 yields inverse equiv-
alences of homotopy theories between enriched Mackey functor categories. Here
is a summary table.

definition and explanations of Fξ
★ 11.1.1, 11.1.7, and 11.1.14

κ★ ∶ 1 E★Fξ
★ 11.2.1, 11.2.19, and 11.2.24

ξ★ ∶ 1 Fξ
★E★ 11.3.1, 11.3.18, and 11.3.23

componentwise stable equivalences for enriched diagrams 11.4.1, 11.4.7, 11.4.4, and 11.4.13

(Fξ
★ , E★) inverse equivalence of homotopy theories 11.4.14 and 11.4.24

(F , E) inverse equivalence of homotopy theories 11.4.25

11.1. Comparing Enriched Diagram and Mackey Functor Categories

In this section we define a pair of functors

M-Cat(CE,M) N-Cat(C,N)Fξ
★

E★

that compare two categories of enriched diagrams in the sense of Definition 10.1.1.
The functor E★ is the diagram change of enrichment of E ∶ N M (Theo-

rem 10.3.1). The functor Fξ
★ and the context for this chapter are discussed in

Definition 11.1.1. After that definition we unravel the functor Fξ
★.

● Explanation 11.1.7 describes Fξ
★ on objects.

● Explanation 11.1.14 describes Fξ
★ on morphisms.

Defining the Functor Fξ
★.

Definition 11.1.1. Suppose given the data (i) through (v) below.

(i) (M,M, evM) and (N,N, evN) are non-symmetric closed multicategories
(Definition 8.1.1).

(ii) (C,m, i) is a small N-category (Definition 6.1.1).
(iii) F and E are non-symmetric multifunctors (Definition C.1.19) as follows.

F ∶M N ∶ E
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(iv) κ and ξ are multinatural transformations (Definition C.1.25) as follows.

M M

1M

EF

⇒

κ N N

1N

FE

⇒

ξ

(v) For each pair of objects x, y ∈ C, the two unary multimorphisms in M

(11.1.2) EC(x, y) EFEC(x, y)κEC(x,y)

EξC(x,y)

are equal, where C(x, y) ∈ ObN is a morphism object of C.

We define the functor Fξ
★ as the composite

(11.1.3) M-Cat(CE,M) N-Cat(CFE,N) N-Cat(C,N)F★ C
∗

ξ

F
ξ

★

involving the following data.

● Each of M and N is equipped with the canonical self-enrichment (Theo-
rem 9.1.7).
● The change-of-enrichment 2-functors (Propositions 7.1.9 and 7.4.1)

(11.1.4) M-Cat N-Cat
(−)F
(−)E

(−)FE = (−)F ○ (−)E

are induced by F, E, and FE. The M-category CE and the N-category CFE

are obtained from C by applying, respectively, (−)E and (−)FE.
● F★ in (11.1.3) is the diagram change-of-enrichment functor of F at the M-

category CE (Theorem 10.3.1).
● The N-functor

(11.1.5) Cξ ∶ C CFE

is the C-component (7.5.3) of the 2-natural transformation

N-Cat N-Cat

1N-Cat

(−)FE

⇒ (−)ξ

induced by ξ ∶ 1N FE (Proposition 7.5.5).
● The functor C∗ξ in (11.1.3) is given by pre-composing and whiskering with

the N-functor Cξ in (11.1.5).

This finishes the definition of the functor Fξ
★. ◇

Remark 11.1.6. The functor Fξ
★ in (11.1.3) does not use the multinatural transfor-

mation κ in Definition 11.1.1 (iv) and condition (v). For the discussion below, it is
more convenient to state κ and ξ together in one place. We use κ in Definition 11.2.1
below. We use condition (v) in (11.2.23); see also Remark 11.3.22. Instances of con-
dition (v) include

● Lemma 4.6.13, which is used in the proof of Theorem 12.1.6;
● Lemma 5.5.11, which is used in the proof of Theorem 12.4.6; and
● the right triangle identity of the 2-adjunction (M1∧−,UM1) in (12.6.8). ◇
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In Explanations 11.1.7 and 11.1.14, we explicitly describe the object and mor-
phism assignments of the functor

Fξ
★ ∶M-Cat(CE,M) F★

N-Cat(CFE,N) C
∗

ξ
N-Cat(C,N)

in (11.1.3).

Unraveling the Functor Fξ
★.

Explanation 11.1.7 (Fξ
★ on Objects). For an M-functor A ∶ CE M (Defini-

tion 6.1.7), the N-functor

(11.1.8) CFE (CE)F MF N
AF F̂

F★A

is, by Definition 10.2.1, the composite of two N-functors.

● AF is the image of A under the change-of-enrichment 2-functor (−)F
(Proposition 7.1.9).

● F̂ is the standard enrichment of F ∶M N (Theorem 9.2.12).

Its object assignment is given by

(F★A)x = FAx for x ∈ C.

For objects x, y ∈ C, the (x, y)-component of F★A is the composite unary multimor-
phism in N

(11.1.9) FEC(x, y) FM(Ax ; Ay) N(FAx ; FAy).FAx,y F̂Ax,Ay

(F★A)x,y

By definition (9.2.3),

(11.1.10) F̂Ax,Ay = (F(evMAx; Ay))#
is the partner of the binary multimorphism

F(evMAx; Ay) ∶ (FM(Ax ; Ay) , FAx) FAy in N.

By definition (11.1.3) the N-functor

(11.1.11) C CFE (CE)F MF N
Cξ AF F̂

F
ξ

★A

is the composite of Cξ in (11.1.5) and F★A in (11.1.8). Since Cξ is the identity on

objects, the object assignment of Fξ
★A is given by

(11.1.12) (Fξ
★A)x = FAx for x ∈ C.

For objects x, y ∈ C, the (x, y)-component of Fξ
★A is the composite unary multimor-

phism in N

(11.1.13)
C(x, y) N(FAx ; FAy)

FEC(x, y) FM(Ax ; Ay)

(Fξ

★A)x,y

ξC(x,y)
FAx,y

F̂Ax,Ay
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of the C(x, y)-component of ξ and (F★A)x,y in (11.1.9). ◇
Explanation 11.1.14 (Fξ

★ on Morphisms). Consider an M-natural transformation ψ
(Definition 6.1.14) as in the left diagram below.

(11.1.15) CE M

A

B

⇒

ψ C N

Fξ

★A

Fξ

★B

⇒

Fξ

★ψ

Then the N-natural transformation Fξ
★ψ, as in the right diagram in (11.1.15), is given

by the following whiskering, where ψF is the image of ψ under the change of
enrichment (−)F (Proposition 7.1.9).

(11.1.16) C CFE (CE)F MF N
Cξ

AF

BF

F̂⇒
ψF

This diagram is obtained from (11.1.11) by replacing A by ψ.
For each object x ∈ C, since Cξ is the identity on objects, the x-component of

Fξ
★ψ in (11.1.16) is the nullary multimorphism in N given by the composite

(11.1.17) ⟨⟩ FM(Ax ; Bx) N(FAx ; FBx)Fψx F̂Ax,Bx

(Fξ
★ψ)x

precisely as in (10.2.16).

● Fψx is the image under F of the x-component of ψ, which is a nullary
multimorphism

⟨⟩ ψx
M(Ax; Bx) in M.

● The unary multimorphism

F̂Ax,Bx = (F(evMAx; Bx))#
is the partner of the binary multimorphism

F(evMAx; Bx) ∶ (FM(Ax ; Bx) , FAx) FBx in N.

As in (10.2.19), the partner of (Fξ
★ψ)x in (11.1.17) is the unary multimorphism

(11.1.18) (Fξ
★ψ)#x = F(ψ#

x) ∶ FAx FBx in N,

where ψ#
x ∶ Ax Bx is the partner of ψx (10.2.18). ◇

In the context of Definition 11.1.1, there are two functors

(11.1.19) M-Cat(CE,M) N-Cat(C,N)Fξ
★

E★

as follows.

● Fξ
★ = C∗ξ F★ is the functor in (11.1.3).

● E★ is the diagram change-of-enrichment functor of E ∶ N M at the
N-category C (Theorem 10.3.1).

In Sections 11.2 and 11.3 we relate the composite functors E★Fξ
★ and Fξ

★E★ to the
respective identity functors using the multinatural transformations κ and ξ.
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11.2. Comparing E★Fξ
★ and the Identity

Throughout this section we assume the same context as in Definition 11.1.1.
In this section we extend the multinatural transformation in Definition 11.1.1 (iv)

M M

1M

EF

⇒

κ

to a natural transformation κ★ comparing E★Fξ
★ in (11.1.19) and the identity functor.

This section is organized as follows.

● κ★ is in Definition 11.2.1.
● To show that κ★ has the desired naturality properties, in Explana-

tions 11.2.5 and 11.2.6 and Lemma 11.2.10 we discuss the codomain
E★Fξ

★ of κ★ and its object assignment.

● We describe E★Fξ
★ on morphisms in Explanation 11.2.14 and Lemma 11.2.18.

● We show that κ★ is a natural transformation in Lemmas 11.2.19 and 11.2.24.

The Natural Transformation κ★.

Definition 11.2.1. In the context of Definition 11.1.1 and (11.1.19), we define the
data of a natural transformation

(11.2.2) M-Cat(CE,M) M-Cat(CE,M)
1

E★Fξ
★

⇒

κ
★

as follows. For an M-functor A ∶ CE M (Definition 6.1.7), the A-component of
κ★ is the M-natural transformation (Definition 6.1.14)

(11.2.3) CE M

A

E★F
ξ

★A

⇒

κ
★

A

with, for each object x ∈ C, x-component given by the nullary multimorphism

(11.2.4) (κ★A)x = κ#
Ax ∶ ⟨⟩ M(Ax ; EFAx) in M.

This is the partner (8.1.11) of the (Ax)-component

κAx ∶ Ax EFAx

of the multinatural transformation κ ∶ 1M EF, which is a unary multimor-
phism in M. This finishes the definition of κ★. We check that

● κ★A is an M-natural transformation in Lemma 11.2.19 and
● κ★ is a natural transformation in Lemma 11.2.24. ◇

Before we prove the M-naturality of κ★A and the naturality of κ★, we first dis-

cuss the codomain E★Fξ
★ of κ★ in detail in Explanations 11.2.5, 11.2.6, and 11.2.14.

Explanation 11.2.5 (Codomain of κ★). In the context of Definitions 11.1.1 and 11.2.1,
by (10.2.3) and (11.1.11) the codomain of κ★ in (11.2.2) is the composite of the func-
tors

Fξ
★ = F̂ ○ (−)F ○Cξ and

E★ = Ê ○ (−)E
involving the following.
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● The change-of-enrichment 2-functors (−)E and (−)F are as in (11.1.4).
● Cξ ∶ C CFE is the N-functor in (11.1.5).
● The standard enrichment

F̂ ∶MF N and Ê ∶ NE M

are from in Theorem 9.2.12. ◇
Explanation 11.2.6 (E★Fξ

★ on Objects). For an M-functor A ∶ CE M (Defini-
tion 6.1.7), the functoriality of (−)E implies that the codomain of κ★A in (11.2.3) is
the following M-functor.

E★Fξ
★A = Ê ○ (Fξ

★A)E
= Ê ○ (F̂ ○ AF ○Cξ)E
= Ê ○ F̂E ○ (AF)E ○ (Cξ)E ∶ CE M

By Proposition 7.4.1, E★Fξ
★A is the following composite M-functor.

(11.2.7)

CE

CEFE MEF NE

M

(Cξ)E
AEF F̂E

Ê

E★F
ξ

★A

We explain its object assignment and components in (11.2.8) and (11.2.9), respec-
tively.

Object Assignment. By (10.2.7) applied to E★ and (11.1.12), the object assign-

ment of E★Fξ
★A in (11.2.7) is given by

(11.2.8) (E★Fξ
★A)x = EFAx for x ∈ C.

This implies that the x-component (κ★A)x in (11.2.4) is well defined.

Components. By (11.2.7), for objects x, y ∈ C, the (x, y)-component of E★Fξ
★A is

the composite unary multimorphism along the boundary of the following diagram
in M.

(11.2.9)

EC(x, y)

EFEC(x, y)
EFM(Ax ; Ay)

EN(FAx ; FAy)

M(EFAx ; EFAy)(E★Fξ

★A)x,y

EξC(x,y)

EFAx,y EF̂Ax,Ay

ÊFAx,FAy
(EF(A#

x,y))#

(EF(evMAx; Ay))
#

By definition (9.2.3), in the lower right arrow, F̂Ax,Ay is as in (11.1.10). The upper
right arrow

ÊFAx,FAy = (E(evNFAx; FAy))#
is the partner of the binary multimorphism

E(evNFAx; FAy) ∶ (EN(FAx ; FAy) , EFAx) EFAy

in M. In Lemma 11.2.10 we discuss the two interior arrows in (11.2.9). ◇
Lemma 11.2.10. The diagram (11.2.9) is commutative.
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Proof. Since the boundary of the diagram (11.2.9) commutes by (11.2.7), it suffices
to prove the following two equalities regarding its two interior arrows.

(11.2.11)
γM(ÊFAx,FAy ; EF̂Ax,Ay) = (EF(evMAx; Ay))#

γM ((EF(evMAx; Ay))# ; EFAx,y) = (EF(A#
x,y))#

To prove these equalities, we consider the following diagram in M.

(11.2.12)

(EFEC(x, y) , EFAx)

(EFM(Ax ; Ay) , EFAx)

(EN(FAx ; FAy) , EFAx)

(M(EFAx ; EFAy) , EFAx)

EFAy

EFAy

EFAy

EFAy

(EFAx,y , 1)

(EF̂Ax,Ay , 1)

(ÊFAx,FAy , 1)

EF(A#
x,y)

EF(evMAx; Ay)

E(evNFAx; FAy)

ev
M
EFAx; EFAy

The three sub-regions in (11.2.12) are commutative for the following reasons.

● In the top sub-region, A#
x,y is the partner (8.1.7) of Ax,y. By definition the

following diagram in M commutes.

(11.2.13)

(EC(x, y) , Ax)

(M(Ax ; Ay) , Ax) Ay

(Ax,y , 1)
ev

M
Ax; Ay

A#
x,y

Applying the non-symmetric multifunctor EF to this commutative dia-
gram yields the top sub-region in (11.2.12).
● The middle sub-region in (11.2.12) is obtained from the commutative dia-

gram (9.2.11) defining F̂Ax,Ay by applying the non-symmetric multifunc-
tor E.
● The bottom sub-region in (11.2.12) is the commutative diagram (9.2.11)

that defines ÊFAx,FAy.

Since taking partner is a bijection (8.1.7), the commutativity of the bottom two
sub-regions in (11.2.12) proves the first desired equality in (11.2.11). The second
equality in (11.2.11) follows from the first equality and the boundary of the com-
mutative diagram (11.2.12). �

Explanation 11.2.14 (E★Fξ
★ on Morphisms). Suppose ψ ∶ A B is an M-natural

transformation (Definition 6.1.14) as in the left diagram below.

CE M

A

B

⇒

ψ CE M

E★F
ξ

★A

E★F
ξ

★B

⇒

E★F
ξ

★ψ
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By Explanation 11.2.5 the M-natural transformation E★Fξ
★ψ, as in the right diagram

above, is the following whiskering.

(11.2.15) CE CEFE MEF (MF)E NE M
(Cξ)E

AEF

BEF

F̂E Ê⇒

ψEF

Since (Cξ)E has the identity object assignment, by (7.1.8) and (11.2.15), for each

object x ∈ C the x-component of E★Fξ
★ψ is the following composite nullary multi-

morphism in M.

(11.2.16)

⟨⟩ M(EFAx ; EFBx)

EFM(Ax ; Bx) EN(FAx ; FBx)

(E★Fξ
★ψ)x

EF(ψx)
EF̂Ax,Bx

ÊFAx,FBx

In (11.2.16),

● ψx ∶ ⟨⟩ M(Ax; Bx) is the x-component of ψ (6.1.15), and

● the component morphisms F̂Ax,Bx and ÊFAx,FBx are as in (9.2.3).

Taking the partner (8.1.7) of (E★Fξ
★ψ)x yields the top unary multimorphism in M

below.

(11.2.17) EFAx EFBx
(E★F

ξ

★ψ)#x

EF(ψ#
x)

The bottom arrow is the image under EF of the unary multimorphism

ψ#
x ∶ Ax Bx in M,

which is the partner of ψx. Lemma 11.2.18 proves that they are the same. ◇
Lemma 11.2.18. The two unary multimorphisms in (11.2.17) are equal.

Proof. Since (E★Fξ
★ψ)x is the composite in (11.2.16), its partner is, by definition

(8.1.7), the left-bottom composite in the following diagram in M.

(⟨⟩ , EFAx)

(EFM(Ax ; Bx) , EFAx)

(EN(FAx ; FBx) , EFAx)

(M(EFAx ; EFBx) , EFAx)

EFBx

EFBx

EFBx

EFBx

EF(ψ#
x)

EF(evMAx; Bx)

E(evNFAx; FBx)

ev
M
EFAx; EFBx

(EF(ψx) , 1)

(EF̂Ax,Bx , 1)

(ÊFAx,FBx , 1)

The three sub-regions in the above diagram are commutative for the following
reasons.
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● The top sub-region is EF applied to the commutative diagram in M

(⟨⟩ , Ax)

(M(Ax ; Bx) , Ax) Bx

(ψx , 1)
ev

M
Ax; Bx

ψ
#
x

that defines the partner ψ#
x.

● The middle sub-region is E applied to the commutative diagram (9.2.11)

that defines F̂Ax,Bx.
● The bottom sub-region is the commutative diagram (9.2.11) that defines

ÊFAx,FBx.

This proves that (E★Fξ
★ψ)#x is equal to EF(ψ#

x). �

Naturality of κ★. To prove that κ★ is a natural transformation, we first check
that its components are well defined.

Lemma 11.2.19. In the context of Definitions 11.1.1 and 11.2.1, for each M-functor A ∶
CE M,

CE M

A

E★Fξ
★A

⇒

κ
★

A

in (11.2.3) is an M-natural transformation.

Proof. We must prove that the naturality diagram (6.1.16) for κ★A, which is the dia-
gram in M below for objects x, y ∈ C, is commutative.

(11.2.20)

(⟨⟩ , CE(x, y)) (M(Ay; EFAy) , M(Ax; Ay))

(CE(x, y) , ⟨⟩)

(M(EFAx; EFAy) , M(Ax; EFAx)) M(Ax; EFAy)

((κ★A)y , Ax,y)

○

((E★Fξ
★A)x,y , (κ★A)x)

○

Since taking partner in M is a bijection (8.1.7), it suffices to show that the two com-
posites in (11.2.20) have the same partner. We compute these partners in (11.2.21)
and (11.2.22). Then we observe that they are equal to finish the proof.
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Top-Right Composite. The partner of the top-right composite in (11.2.20) is, by
definition, the left-bottom composite in the following diagram in M.

(11.2.21)

(EC(x, y) , Ax) (EFEC(x, y) , EFAx)

(⟨⟩ , EC(x, y) , Ax) (⟨⟩ , Ay) = Ay EFAy

(M(Ay; EFAy) , M(Ax; Ay) , Ax) (M(Ay; EFAy) , Ay)

(M(Ax; EFAy) , Ax) EFAy

((κ★A)y , Ax,y , 1)

(○ , 1)

EF(A#
x,y)

ev
M

(κEC(x,y) , κAx)

A#
x,y

κAy

(κ#
Ay , 1)

(1 , evM)

ev
M

1

The four sub-regions in (11.2.21) are commutative for the following reasons.

● By Definition 7.1.1, there is an equality of objects in M

CE(x, y) = EC(x, y).
The top trapezoid commutes by the naturality (C.1.26) of the multinatural
transformation κ ∶ 1M EF.
● The top left triangle commutes by the definition of A#

x,y in (11.2.13) and

the definition of the y-component of κ★A in (11.2.4),

(κ★A)y = κ#
Ay ∶ ⟨⟩ M(Ay ; EFAy),

as the partner of the (Ay)-component of κ.
● The bottom rectangle commutes by the definition of the composition ○ in

the canonical self-enrichment of M in (9.1.6).
● The right sub-region commutes by the definition of κ#

Ay as the partner of

κAy (8.1.7).

This proves that the diagram (11.2.21) is commutative.
Left-Bottom Composite. The partner of the left-bottom composite in (11.2.20) is

the left-bottom composite in the following diagram in M.

(11.2.22)

(EC(x, y) , ⟨⟩ , Ax) (EC(x, y) , EFAx)

(M(EFAx; EFAy) , M(Ax; EFAx) , Ax)

(M(EFAx; EFAy) , EFAx)

(EFEC(x, y) , EFAx)

(M(Ax; EFAy) , Ax) EFAy

⧈

� �

((E★Fξ

★A)x,y , (κ★A)x , 1)

(○ , 1)

ev
M

(1 , evM)

ev
M

(1 , κAx)

((E★Fξ

★A)x,y , 1)

(E
★ F ξ
★ A) #

x,y

(EξC(x,y) , 1)

EF(A#
x,y)

(EξC(x,y) , κAx)

The five sub-regions in (11.2.22) are commutative for the following reasons.
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● The top sub-region commutes by the unity properties, (C.1.9) and (C.1.10),
in M.
● The bottom triangle commutes by the definition of ○ in (9.1.6).
● The sub-region labeled ⧈ commutes by the definition of (κ★A)x as the part-

ner of κAx (11.2.4).
● The triangle labeled � commutes by the definition of (E★Fξ

★A)#x,y as the

partner of (E★Fξ
★A)x,y (8.1.7).

● The triangle labeled� is the boundary of the following diagram.

(EC(x, y) , EFAx) EFAy

(M(EFAx; EFAy) , EFAx)

(EFEC(x, y) , EFAx)

(E★Fξ

★A)#x,y

((E★Fξ

★A)x,y , 1) ev
M

(EξC(x,y) , 1) EF(A#
x,y)((EF(A#

x,y))# , 1)

This diagram is commutative for the following reasons.

– The top triangle commutes by the definition of (E★Fξ
★A)#x,y as the

partner of (E★Fξ
★A)x,y (8.1.7).

– The right sub-region commutes by the definition of (EF(A#
x,y))# as

the partner of EF(A#
x,y) (8.1.7).

– The left sub-region commutes by the top commutative triangle in
(11.2.9), which is proved in Lemma 11.2.10.

This proves that the diagram (11.2.22) is commutative.
Comparing Partners. By the commutative diagrams (11.2.21) and (11.2.22), the

partners of the top-right composite and of the left-bottom composite in the desired
diagram (11.2.20) are the following binary multimorphisms in M.

(11.2.23)
γM(EF(A#

x,y) ; κEC(x,y) , κAx)
γM(EF(A#

x,y) ; EξC(x,y) , κAx)
The two binary multimorphisms in (11.2.23) are equal by Definition 11.1.1 (v),
which assumes the equality

κEC(x,y) = EξC(x,y) ∶ EC(x, y) EFEC(x, y)
for all objects x, y ∈ C. Since taking partner is a bijection (8.1.7), we conclude that
the diagram (11.2.20) is commutative. �

Lemma 11.2.24. In the context of Definitions 11.1.1 and 11.2.1,

M-Cat(CE,M) M-Cat(CE,M)
1

E★F
ξ

★

⇒

κ
★

in (11.2.2) is a natural transformation.
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Proof. Lemma 11.2.19 proves that each component of κ★ is a well-defined M-
natural transformation. Naturality for κ★ means that, for each M-natural transfor-
mation ψ as in

CE M

A

B

⇒

ψ

the following diagram of M-natural transformations in M-Cat(CE,M) commutes.

(11.2.25)
A E★Fξ

★A

B E★Fξ
★B

κ
★

A

E★F
ξ

★ψψ

κ
★

B

Since each M-natural transformation is determined by its components, it suffices
to show that, for each object x ∈ C, the two vertical composites in (11.2.25) have the
same x-components. By Definition 6.1.18 these two x-components are the follow-
ing two composite nullary multimorphisms in M.

(11.2.26)

(⟨⟩ , ⟨⟩) (M(EFAx ; EFBx) , M(Ax ; EFAx))

(M(Bx ; EFBx) , M(Ax ; Bx)) M(Ax ; EFBx)

((E★Fξ

★ψ)x , (κ★A)x)

○((κ★B)x , ψx)
○

Since taking partner is a bijection (8.1.7), it suffices to show that the two compos-
ites in (11.2.26) have the same partner. We compute these partners in (11.2.27)
and (11.2.28). Then we observe that they are equal to finish the proof.

Top-Right Composite. The partner of the top-right composite in (11.2.26) is the
left-bottom composite unary multimorphism in the following diagram in M.

(11.2.27)

(⟨⟩ , ⟨⟩ , Ax) = Ax (⟨⟩ , EFAx)

(M(EFAx ; EFBx) , M(Ax ; EFAx) , Ax)

(M(EFAx ; EFBx) , EFAx)

(M(Ax ; EFBx) , Ax) EFBx

κAx

(1 , evM)

ev
M

((E★Fξ

★ψ)x , (κ★A)x , 1)

(○ , 1)

((EF(ψ#
x))# , 1)

ev
M

EF(ψ#
x)

The three sub-regions in (11.2.27) are commutative for the following reasons.

● The bottom left sub-region commutes by the definition of ○ in (9.1.6).
● The top left sub-region commutes by

– the definition of (κ★A)x as the partner of κAx in (11.2.4) and

– Lemma 11.2.18, which implies that (E★Fξ
★ψ)x is the partner of

EF(ψ#
x).

● The right sub-region commutes by the definition of (EF(ψ#
x))# as the part-

ner of EF(ψ#
x).
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This proves that the diagram (11.2.27) is commutative.
Left-Bottom Composite. The partner of the left-bottom composite in (11.2.26) is

the left-bottom composite unary multimorphism in the following diagram in M.

(11.2.28)

(⟨⟩ , ⟨⟩ , Ax) = Ax (⟨⟩ , Bx)

(M(Bx ; EFBx) , M(Ax ; Bx) , Ax)

(M(Bx ; EFBx) , Bx)

(M(Ax ; EFBx) , Ax) EFBx

ψ
#
x

(1 , evM)

ev
M

((κ★B)x , ψx , 1)

(○ , 1)

(κ#
Bx , 1)

ev
M

κBx

The three sub-regions in (11.2.28) are commutative for the following reasons.

● The bottom left sub-region commutes by the definition of ○ in (9.1.6).
● The top left sub-region commutes by

– the definition of (κ★B)x as the partner of κBx in (11.2.4) and

– the definition of ψ#
x as the partner of ψx.

● The right sub-region commutes by the definition of κ#
Bx as the partner of

κBx.

This proves that the diagram (11.2.28) is commutative.
Comparing Partners. By the commutative diagrams (11.2.27) and (11.2.28), the

partners of the two composites in the desired diagram (11.2.26) are the composites
in M as follows.

Ax EFAx

Bx EFBx

κAx

EF(ψ#
x)ψ

#
x

κBx

This diagram commutes by the naturality condition (C.1.26) of the multinatural
transformation κ ∶ 1M EF. �

11.3. Comparing Fξ
★E★ and the Identity

Throughout this section we assume the same context as in Definition 11.1.1
and consider the functors in (11.1.19):

M-Cat(CE,M) N-Cat(C,N).Fξ

★

E★

In this section we extend the multinatural transformation in Definition 11.1.1 (iv)

N N

1N

FE

⇒

ξ

to a natural transformation ξ★ comparing Fξ
★E★ and the identity functor. This sec-

tion is organized as follows.

● ξ★ is in Definition 11.3.1.
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● To show that ξ★ has the desired naturality properties, in Explana-

tion 11.3.5 and Lemma 11.3.9 we describe the codomain Fξ
★E★ of ξ★ on

objects.

● We describe Fξ
★E★ on morphisms in Explanation 11.3.13 and Lemma 11.3.17.

● We show that ξ★ is a natural transformation in Lemmas 11.3.18 and 11.3.23.

The Natural Transformation ξ★.

Definition 11.3.1. In the context of Definition 11.1.1 and (11.1.19), we define the
data of a natural transformation

(11.3.2) N-Cat(C,N) N-Cat(C,N)
1

Fξ
★E★

⇒

ξ
★

as follows. For an N-functor P ∶ C N, the P-component of ξ★ is the N-natural
transformation

(11.3.3) C N

P

Fξ
★E★P

⇒
ξ
★

P

with, for each object x ∈ C, x-component given by the nullary multimorphism

(11.3.4) (ξ★P)x = ξ#
Px ∶ ⟨⟩ N(Px ; FEPx) in N.

This is the partner (8.1.11) of the (Px)-component

ξPx ∶ Px FEPx

of the multinatural transformation ξ ∶ 1N FE, which is a unary multimor-
phism in N. This finishes the definition of ξ★. We check that

● ξ★P is an N-natural transformation in Lemma 11.3.18 and
● ξ★ is a natural transformation in Lemma 11.3.23. ◇

Before we prove the N-naturality of ξ★P and the naturality of ξ★, we first discuss

the codomain Fξ
★E★ of ξ★ in detail in Explanations 11.3.5 and 11.3.13.

Explanation 11.3.5 (Fξ
★E★ on Objects). The codomain of ξ★ in (11.3.2) is the com-

posite of the functors

E★ = Ê ○ (−)E and

Fξ
★ = F̂ ○ (−)F ○Cξ

as in Explanation 11.2.5. For an N-functor P ∶ C N (Definition 6.1.7), the
codomain of ξ★P in (11.3.3) is the following composite N-functor.

(11.3.6)
C

CFE NFE = (NE)F MF

N

Cξ

PFE ÊF

F̂

Fξ
★E★P

Object Assignment. Since Cξ (11.1.5) has the identity object assignment, by

(7.1.6) and Definition 9.2.1 the object assignment of Fξ
★E★P in (11.3.6) is given by

(11.3.7) (Fξ
★E★P)x = FEPx for x ∈ C.
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This implies that the x-component (ξ★P)x in (11.3.4) is well defined.

Components. By (11.3.6), for objects x, y ∈ C, the (x, y)-component of Fξ
★E★P is

the composite unary multimorphism along the boundary of the following diagram
in N.

(11.3.8)

C(x, y)

FEC(x, y)
FEN(Px ; Py)

FM(EPx ; EPy)

N(FEPx ; FEPy)(Fξ

★E★P)x,y

ξC(x,y)

FEPx,y FÊPx,Py

F̂EPx,EPy
(FE(P#

x,y))#

(FE(evNPx; Py))
#

In Lemma 11.3.9 we discuss the two interior arrows in (11.3.8). ◇
Lemma 11.3.9. The diagram (11.3.8) is commutative.

Proof. Since the boundary of the diagram (11.3.8) commutes by (11.3.6), it suffices
to prove the following two equalities regarding its two interior arrows.

(11.3.10)
γN(F̂EPx,EPy ; FÊPx,Py) = (FE(evNPx; Py))#

γN ((FE(evNPx; Py))# ; FEPx,y) = (FE(P#
x,y))#

To prove these equalities, we consider the following diagram in N.

(11.3.11)

(FEC(x, y) , FEPx)

(FEN(Px ; Py) , FEPx)

(FM(EPx ; EPy) , FEPx)

(N(FEPx ; FEPy) , FEPx)

FEPy

FEPy

FEPy

FEPy

(FEPx,y , 1)

(FÊPx,Py , 1)

(F̂EPx,EPy , 1)

FE(P#
x,y)

FE(evNPx; Py)

F(evMEPx; EPy)

ev
N
FEPx; FEPy

The three sub-regions in (11.3.11) are commutative for the following reasons.

● In the top sub-region, P#
x,y is the partner (8.1.7) of Px,y. By definition the

following diagram in N commutes.

(11.3.12)

(C(x, y) , Px)

(N(Px ; Py) , Px) Py

(Px,y , 1)
ev

N
Px; Py

P#
x,y

Applying the non-symmetric multifunctor FE to this commutative dia-
gram yields the top sub-region in (11.3.11).
● The middle sub-region in (11.3.11) is obtained from the commutative di-

agram (9.2.11) defining ÊPx,Py by applying the non-symmetric multifunc-
tor F.
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● The bottom sub-region in (11.3.11) is the commutative diagram (9.2.11)

that defines F̂EPx,EPy.

Since taking partner is a bijection (8.1.7), the commutativity of the bottom two
sub-regions in (11.3.11) proves the first desired equality in (11.3.10). The second
equality in (11.3.10) follows from the first equality and the boundary of the com-
mutative diagram (11.3.11). �

Explanation 11.3.13 (Fξ
★E★ on Morphisms). Suppose θ ∶ P Q is an N-natural

transformation (Definition 6.1.14) as in the left diagram below.

C N

P

Q

⇒

θ C N

Fξ

★E★P

Fξ

★E★Q

⇒
Fξ

★E★θ

By Explanation 11.3.5 the N-natural transformation Fξ
★E★θ, as in the right diagram

above, is the following whiskering.

(11.3.14) C CFE NFE (NE)F MF N
Cξ

PFE

QFE

ÊF F̂⇒

θFE

Since Cξ has the identity object assignment, by (7.1.8) and (11.3.14), for each object

x ∈ C the x-component of Fξ
★E★θ is the following composite nullary multimorphism

in N.

(11.3.15)

⟨⟩ N(FEPx ; FEQx)

FEN(Px ; Qx) FM(EPx ; EQx)

(Fξ

★E★θ)x

FE(θx)
FÊPx,Qx

F̂EPx,EQx

In (11.3.15),

● θx ∶ ⟨⟩ N(Px; Qx) is the x-component of θ (6.1.15), and

● the component morphisms ÊPx,Qx and F̂EPx,EQx are as in (9.2.3).

Taking the partner (8.1.7) of (Fξ
★E★θ)x yields the top unary multimorphism in N

below.

(11.3.16) FEPx FEQx
(Fξ

★E★θ)#x

FE(θ#
x)

The bottom arrow is the image under FE of the unary multimorphism

θ#
x ∶ Px Qx in N,

which is the partner of θx. Lemma 11.3.17 proves that they are the same. ◇
Lemma 11.3.17. The two unary multimorphisms in (11.3.16) are equal.
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Proof. Since (Fξ
★E★θ)x is the composite in (11.3.15), its partner is, by definition

(8.1.7), the left-bottom composite in the following diagram in N.

(⟨⟩ , FEPx)

(FEN(Px ; Qx) , FEPx)

(FM(EPx ; EQx) , FEPx)

(N(FEPx ; FEQx) , FEPx)

FEQx

FEQx

FEQx

FEQx

FE(θ#
x)

FE(evNPx; Qx)

F(evMEPx; EQx)

ev
N
FEPx; FEQx

(FE(θx) , 1)

(FÊPx,Qx , 1)

(F̂EPx,EQx , 1)

The three sub-regions in the above diagram are commutative for the following
reasons.

● The top sub-region is FE applied to the commutative diagram in N

(⟨⟩ , Px)

(N(Px ; Qx) , Px) Qx

(θx , 1)
ev

N
Px; Qx

θ
#
x

that defines the partner θ#
x.

● The middle sub-region is F applied to the commutative diagram (9.2.11)

that defines ÊPx,Qx.
● The bottom sub-region is the commutative diagram (9.2.11) that defines

F̂EPx,EQx.

This proves that (Fξ
★E★θ)#x is equal to FE(θ#

x). �

Naturality of ξ★. To prove that ξ★ is a natural transformation, we first check
that its components are well defined.

Lemma 11.3.18. In the context of Definitions 11.1.1 and 11.3.1, for each N-functor P ∶
C N,

C N

P

Fξ

★E★P

⇒

ξ
★

P

in (11.3.3) is an N-natural transformation.

Proof. We must prove that the naturality diagram (6.1.16) for ξ★P, which is the dia-
gram in N below for objects x, y ∈ C, is commutative.

(11.3.19)

(⟨⟩ , C(x, y)) (N(Py; FEPy) , N(Px; Py))

(C(x, y) , ⟨⟩)

(N(FEPx; FEPy) , N(Px; FEPx)) N(Px; FEPy)

((ξ★P)y , Px,y)

○

((Fξ
★E★P)x,y , (ξ★P)x)

○
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Since taking partner in N is a bijection (8.1.7), it suffices to show that the two com-
posites in (11.3.19) have the same partner. We compute these partners in (11.3.20)
and (11.3.21). Then we observe that they are equal to finish the proof.

Top-Right Composite. The partner of the top-right composite in (11.3.19) is, by
definition, the left-bottom composite in the following diagram in N.

(11.3.20)

(C(x, y) , Px) (FEC(x, y) , FEPx)

(⟨⟩ , C(x, y) , Px) (⟨⟩ , Py) = Py FEPy

(N(Py; FEPy) , N(Px; Py) , Px) (N(Py; FEPy) , Py)

(N(Px; FEPy) , Px) FEPy

((ξ★P)y , Px,y , 1)

(○ , 1)

FE(P#
x,y)

ev
N

(ξC(x,y) , ξPx)

P#
x,y

ξPy

(ξ#
Py , 1)

(1 , evN)

ev
N

1

The four sub-regions in (11.3.20) are commutative for the following reasons.

● The top trapezoid commutes by the naturality (C.1.26) of the multinatural
transformation ξ ∶ 1N FE.
● The top left triangle commutes by the definition of P#

x,y in (11.3.12) and

the definition of the y-component of ξ★P in (11.3.4),

(ξ★P)y = ξ#
Py ∶ ⟨⟩ N(Py ; FEPy),

as the partner of the (Py)-component of ξ.
● The bottom rectangle commutes by the definition of the composition ○ in

the canonical self-enrichment of N in (9.1.6).
● The right sub-region commutes by the definition of ξ#

Py as the partner of

ξPy (8.1.7).

This proves that the diagram (11.3.20) is commutative.
Left-Bottom Composite. The partner of the left-bottom composite in (11.3.19) is

the left-bottom composite in the following diagram in N.

(11.3.21)

(C(x, y) , ⟨⟩ , Px) (C(x, y) , FEPx)

(N(FEPx; FEPy) , N(Px; FEPx) , Px)

(N(FEPx; FEPy) , FEPx)

(FEC(x, y) , FEPx)

(N(Px; FEPy) , Px) FEPy

⧈

� �

((Fξ
★E★P)x,y , (ξ★P)x , 1)

(○ , 1)

ev
N

(1 , evN)

ev
N

(1 , ξPx)

((Fξ
★E★P)x,y , 1)

(F ξ
★ E
★ P) #

x,y

(ξC(x,y) , 1)

FE(P#
x,y)

(ξC(x,y) , ξPx)

The five sub-regions in (11.3.21) are commutative for the following reasons.



276 11. HOMOTOPY EQUIVALENCES BETWEEN ENRICHED DIAGRAM CATEGORIES

● The top sub-region commutes by the unity properties, (C.1.9) and (C.1.10),
in M.
● The bottom triangle commutes by the definition of ○ in (9.1.6).
● The sub-region labeled ⧈ commutes by the definition of (ξ★P)x as the part-

ner of ξPx (11.3.4).
● The triangle labeled � commutes by the definition of (Fξ

★E★P)#x,y as the

partner of (Fξ
★E★P)x,y (8.1.7).

● The triangle labeled� is the boundary of the following diagram.

(C(x, y) , FEPx) FEPy

(N(FEPx; FEPy) , FEPx)

(FEC(x, y) , FEPx)

(Fξ

★E★P)#x,y

((Fξ

★E★P)x,y , 1) ev
N

(ξC(x,y) , 1) FE(P#
x,y)((FE(P#

x,y))# , 1)

This diagram is commutative for the following reasons.

– The top triangle commutes by the definition of (Fξ
★E★P)#x,y as the

partner of (Fξ
★E★P)x,y (8.1.7).

– The right sub-region commutes by the definition of (FE(P#
x,y))# as

the partner of FE(P#
x,y) (8.1.7).

– The left sub-region commutes by the top commutative triangle in
(11.3.8), which is proved in Lemma 11.3.9.

This proves that the diagram (11.3.21) is commutative.
Comparing Partners. By the commutative diagrams (11.3.20) and (11.3.21), the

partner of each composite in the desired diagram (11.3.19) is the following binary
multimorphism in N.

γN(FE(P#
x,y) ; ξC(x,y) , ξPx)

Since taking partner is a bijection (8.1.7), we conclude that the diagram (11.3.19) is
commutative. �

Remark 11.3.22 (Difference with κ★A). We structure the proofs of Lemmas 11.2.19
and 11.3.18 in a way that highlights their conceptual similarity. There is, how-
ever, one nontrivial difference between these two proofs of enriched naturality.
In the last paragraph of the proof of Lemma 11.2.19, to conclude that the two bi-
nary multimorphisms in (11.2.23) are the same, we need to use the assumption
in Definition 11.1.1 (v). On the other hand, in the last paragraph of the proof of
Lemma 11.3.18, no such assumption is needed. ◇
Lemma 11.3.23. In the context of Definitions 11.1.1 and 11.3.1,

N-Cat(C,N) N-Cat(C,N)
1

Fξ

★E★

⇒

ξ
★

in (11.3.2) is a natural transformation.
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Proof. Lemma 11.3.18 proves that each component of ξ★ is a well-defined N-
natural transformation. Naturality for ξ★ means that, for each N-natural transfor-
mation θ as in

C N

P

Q

⇒

θ

the following diagram of N-natural transformations in N-Cat(C,N) commutes.

(11.3.24)

P Fξ
★E★P

Q Fξ
★E★Q

ξ
★

P

Fξ

★E★θθ

ξ
★

Q

Since each N-natural transformation is determined by its components, it suffices
to show that, for each object x ∈ C, the two vertical composites in (11.3.24) have the
same x-components. By Definition 6.1.18 these two x-components are the follow-
ing two composite nullary multimorphisms in N.

(11.3.25)

(⟨⟩ , ⟨⟩) (N(FEPx ; FEQx) , N(Px ; FEPx))

(N(Qx ; FEQx) , N(Px ; Qx)) N(Px ; FEQx)

((Fξ
★E★θ)x , (ξ★P)x)

○((ξ★Q)x , θx)
○

Since taking partner is a bijection (8.1.7), it suffices to show that the two compos-
ites in (11.3.25) have the same partner. We compute these partners in (11.3.26)
and (11.3.27). Then we observe that they are equal to finish the proof.

Top-Right Composite. The partner of the top-right composite in (11.3.25) is the
left-bottom composite unary multimorphism in the following diagram in N.

(11.3.26)

(⟨⟩ , ⟨⟩ , Px) = Px (⟨⟩ , FEPx)

(N(FEPx ; FEQx) , N(Px ; FEPx) , Px)

(N(FEPx ; FEQx) , FEPx)

(N(Px ; FEQx) , Px) FEQx

ξPx

(1 , evN)

ev
N

((Fξ
★E★θ)x , (ξ★P)x , 1)

(○ , 1)

((FE(θ#
x))# , 1)

ev
N

FE(θ#
x)

The three sub-regions in (11.3.26) are commutative for the following reasons.

● The bottom left sub-region commutes by the definition of ○ in (9.1.6).
● The top left sub-region commutes by

– the definition of (ξ★P)x as the partner of ξPx in (11.3.4) and

– Lemma 11.3.17, which implies that (Fξ
★E★θ)x is the partner of FE(θ#

x).
● The right sub-region commutes by the definition of (FE(θ#

x))# as the part-

ner of FE(θ#
x).



278 11. HOMOTOPY EQUIVALENCES BETWEEN ENRICHED DIAGRAM CATEGORIES

This proves that the diagram (11.3.26) is commutative.
Left-Bottom Composite. The partner of the left-bottom composite in (11.3.25) is

the left-bottom composite unary multimorphism in the following diagram in N.

(11.3.27)

(⟨⟩ , ⟨⟩ , Px) = Px (⟨⟩ , Qx)

(N(Qx ; FEQx) , N(Px ; Qx) , Px)

(N(Qx ; FEQx) , Qx)

(N(Px ; FEQx) , Px) FEQx

θ
#
x

(1 , evN)

ev
N

((ξ★Q)x , θx , 1)

(○ , 1)

(ξ#
Qx , 1)

ev
N

ξQx

The three sub-regions in (11.3.27) are commutative for the following reasons.

● The bottom left sub-region commutes by the definition of ○ in (9.1.6).
● The top left sub-region commutes by

– the definition of (ξ★Q)x as the partner of ξQx in (11.3.4) and

– the definition of θ#
x as the partner of θx.

● The right sub-region commutes by the definition of ξ#
Qx as the partner of

ξQx.

This proves that the diagram (11.3.27) is commutative.
Comparing Partners. By the commutative diagrams (11.3.26) and (11.3.27), the

partners of the two composites in the desired diagram (11.3.25) are the composites
in N as follows.

Px FEPx

Qx FEQx

ξPx

FE(θ#
x)θ

#
x

ξQx

This diagram commutes by the naturality condition (C.1.26) of the multinatural
transformation ξ ∶ 1N FE. �

11.4. Homotopy Equivalent Enriched Diagram and Mackey Functor Categories

In this section we apply the results in previous sections to prove that, if the
data (F, E, κ, ξ) in Definition 11.1.1 are inverse equivalences of homotopy theories
(Definition 2.1.8), then they lift to inverse equivalences of homotopy theories be-
tween the enriched diagram categories in (11.1.19)

M-Cat(CE,M) N-Cat(C,N).Fξ

★

E★

This section is organized as follows.

● Stable equivalences in categories of enriched diagrams are defined com-
ponentwise. We make this precise in Definitions 11.4.1 and 11.4.7. Lem-
mas 11.4.4 and 11.4.13 contain some basic properties of these componen-
twise stable equivalences.
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● Theorem 11.4.14 is the main result of this chapter. It states that, under

suitable conditions, Fξ
★ and E★ are inverse equivalences of homotopy the-

ories.
● Theorem 11.4.24 is the variant that involves an opposite N-category Cop.
● Proposition 11.4.25 shows that, under the assumptions of Theorem 11.4.14,

F and E are inverse equivalences of homotopy theories between the un-
derlying categories. Therefore, the inverse equivalences of homotopy

theories Fξ
★ and E★ are, in fact, lifted from the underlying categories.

Componentwise Relative Structure on Enriched Diagram Categories. To
consider the homotopy theory of an enriched diagram category, we first define
its relative category structure (Definition 2.1.6). Recall that a multicategory has
an underlying category (Example C.1.16), which we denote by the same symbol.
Recall that a subcategory is wide if it contains all the objects of the larger category.
The next definition is an adaptation of Definition 3.5.4 to the current setting of
enriched diagram categories.

Definition 11.4.1. Suppose P is a non-symmetric closed multicategory, and D is
a P-category (Definitions 6.1.1 and 8.1.1). Suppose the underlying category of
P is equipped with the structure of a relative category (P,W). For the category
P-Cat(D,P) in (10.1.2), we define a wide subcategory

(11.4.2) W▴ ⊂ P-Cat(D,P)
as follows. A P-natural transformation θ (Definition 6.1.14) as in

D P

A

B

⇒

θ

is inW▴ if, for each object x in D, the unary multimorphism

(11.4.3) θ#
x ∶ Ax Bx is inW .

Here θ#
x is the partner (8.1.11) of the x-component of θ,

θx ∶ ⟨⟩ P(Ax; Bx),
which is a nullary multimorphism in P. We regard the pair

(P-Cat(D,P) ,W▴)
as a relative category. ◇

In other words, θ is inW▴ if each component of θ has its partner inW .
Recall that a category with weak equivalences (Definition 2.1.6 (6)) is a relative

category (P,W) such thatW contains all the isomorphisms in P and has the 2-out-
of-3 property.

Lemma 11.4.4. In the context of Definition 11.4.1, statements (i) through (iv) below hold.

(i) The subcategoryW▴ in (11.4.2) is well defined.
(ii) IfW has the 2-out-of-3 property, then so doesW▴.

(iii) IfW contains all the isomorphisms, then so doesW▴.

(iv) If (P,W) is a category with weak equivalences, then so is (P-Cat(D,P) ,W▴).
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Proof. Suppose θ and ψ are P-natural transformations as in the left diagram below.

D P

A

B

C

⇒

θ

⇒

ψ
D P

A

C

⇒

ψθ

For each object x in D, the x-component of the vertical composite ψθ, as in the right
diagram above, has partner (8.1.7) given by

(11.4.5) (ψθ)#x = γP(ψ#
x ; θ#

x) ∶ Ax Cx

by Proposition 10.1.22. Thus if θ and ψ are inW▴, then so is ψθ, proving statement
(i). The equality (11.4.5) also shows thatW▴ has the 2-out-of-3 property whenever
W does, proving statement (ii).

To prove statement (iii), suppose θ and ψ are inverses of each other. By (9.1.2)
this means that, for each object x in D, there are equalities

(11.4.6) (ψθ)#x = 1Ax and (θψ)#x = 1Bx.

Together with (11.4.5) and the variant for (θψ)#x, the equalities in (11.4.6) imply

that ψ#
x and θ#

x are mutually inverse isomorphisms in the underlying category of
P. This proves statement (iii).

Statement (iv) follows from statements (i) through (iii). �

Next we apply Definition 11.4.1 to the context of the previous sections. We
consider the underlying functor of the non-symmetric multifunctor F ∶ M N

(Example C.1.24), which we denote by the same symbol.

Definition 11.4.7. In the context of Definition 11.1.1, suppose, in addition, the
underlying category of N is equipped with the structure of a category with weak
equivalences (N,X ) (Definition 2.1.6 (6)). We define the following.

● We define the wide subcategory

(11.4.8) F−1X ⊂M
as the preimage of X under the underlying functor of F ∶ M N. We

refer to morphisms in F−1X as F-stable equivalences. We regard the pair

(11.4.9) (M, F−1X )
as a relative category.
● Applying Definition 11.4.1 with (D,P,W) given by

– (CE,M, F−1X ) and
– (C,N,X ),

we obtain the following two relative categories.

(11.4.10) (M-Cat(CE,M) , (F−1X )▴) (N-Cat(C,N) , X▴)
This finishes the definition. ◇
Explanation 11.4.11 (Unpacking (F−1X )▴). An M-natural transformation

CE M

A

B

⇒

ψ
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is in the subcategory (F−1X )▴ if, for each object x in C, the unary multimorphism

ψ#
x ∶ Ax Bx is in F−1X ⊂M.

This means that the unary multimorphism

◇(11.4.12) F(ψ#
x) ∶ FAx FBx is in X ⊂ N.

Lemma 11.4.13. The relative categories in (11.4.9) and (11.4.10) are categories with weak
equivalences.

Proof. The wide subcategory F−1X ⊂ M in (11.4.8) contains all the isomorphisms
and has the 2-out-of-3 property for the following two reasons.

● By assumption X ⊂ N has these two properties.
● The underlying functor of F ∶M N preserves identity morphisms and

composition of morphisms.

The relative categories in (11.4.10) are categories with weak equivalences by

Lemma 11.4.4 (iv) applied to (CE,M, F−1X ) and (C,N,X ). �

Equivalences of Homotopy Theories. Recall that inverse equivalences of homo-
topy theories are two relative functors in opposite direction such that each compos-
ite is connected to the identity functor by a zigzag of relative natural transforma-
tions (Definitions 2.1.6 and 2.1.8). Such functors are equivalences of homotopy
theories by Proposition 2.1.9. Theorem 11.4.14 below is the main result of this
chapter. It provides checkable criteria that guarantee that inverse equivalences of
homotopy theories (Proposition 11.4.25)

(M, F−1X ) (N,X )F
∼
E

lift to the categories of enriched diagrams in (11.4.10). Explanation 11.4.23 sum-
marizes all the hypotheses in Theorem 11.4.14. The variant for the opposite N-
category Cop is Theorem 11.4.24. In Chapter 12 we apply Theorem 11.4.14 to the
(non-symmetric) multifunctors connecting PermCatsu, Multicat∗, and ModM1; see
Theorems 12.1.6, 12.4.6, and 12.6.6 and Question D.4.

Theorem 11.4.14. In the context of Definitions 11.1.1 and 11.4.7, suppose, in addition,
the components of the multinatural transformations

M M and

1M

EF

⇒

κ N N

1N

FE

⇒

ξ

are in F−1X and X , respectively. Then the functors in (11.1.19)

(11.4.15) (M-Cat(CE,M) , (F−1X )▴) (N-Cat(C,N) , X▴)Fξ

★

∼
E★

are inverse equivalences of homotopy theories.

Proof. The two relative categories in (11.4.15) are defined in (11.4.10). They are
categories with weak equivalences by Lemma 11.4.13.

We prove statements (i) through (iii) below. By Definition 2.1.8 these state-

ments imply that Fξ
★ and E★ are inverse equivalences of homotopy theories.

(i) Fξ
★ and E★ in (11.4.15) are relative functors.
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(ii) The natural transformation in (11.2.2)

M-Cat(CE,M) M-Cat(CE,M)
1

E★Fξ

★

⇒

κ
★

has each component in (F−1X )▴.
(iii) The natural transformation in (11.3.2)

N-Cat(C,N) N-Cat(C,N)
1

F
ξ

★E★

⇒

ξ
★

has each component in X▴.

Statement (i): Fξ
★ is a Relative Functor. This means that, for each M-natural trans-

formation ψ ∈ (F−1X )▴ as in (11.4.16), the N-natural transformation Fξ
★ψ is in X▴.

(11.4.16) CE M

A

B

⇒

ψ C N

Fξ

★A

Fξ

★B

⇒

Fξ

★ψ

By (11.1.18) and (11.4.3), the desired condition Fξ
★ψ ∈ X▴ means that, for each object

x in C, the unary multimorphism

(11.4.17) (Fξ
★ψ)#x = F(ψ#

x) is in X .

This is true by (11.4.12). Thus Fξ
★ is a relative functor.

Statement (i): E★ is a Relative Functor. This means that, for each N-natural trans-
formation θ ∈ X▴ as in (11.4.18), the M-natural transformation E★θ is in (F−1X )▴.

(11.4.18) C N

P

Q

⇒

θ CE M

E★P

E★Q

⇒

E★θ

By (11.4.12) and (10.2.19) applied to E★θ, the desired condition E★θ ∈ (F−1X )▴
means that, for each object x in C, the unary multimorphism

(11.4.19) F((E★θ)#x) = FE(θ#
x) ∶ FEPx FEQx is in X .

To prove (11.4.19), we use the naturality of ξ ∶ 1N FE (C.1.26) to obtain the
following commutative diagram in N.

(11.4.20)

Px FEPx

Qx FEQx

ξPx

ξQx

θ
#
x FE(θ#

x)

● The assumption θ ∈ X▴ means that each θ#
x is in X .

● The components ξPx and ξQx are in X by the assumption on ξ.

The commutative diagram (11.4.20) and the 2-out-of-3 property of X imply that

FE(θ#
x) is in X , proving the desired condition (11.4.19). Thus E★ is a relative func-

tor. This finishes the proof of statement (i).
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Statement (ii). Suppose A ∶ CE M is an M-functor. We want to show that
the M-natural transformation in (11.2.3)

CE M

A

E★Fξ
★A

⇒

κ
★

A

is in (F−1X )▴. By (11.2.4) and (11.4.12), the desired condition κ★A ∈ (F−1X )▴ means
that, for each object x in C, the unary multimorphism

(11.4.21) F((κ★A)#x) = F(κAx) ∶ FAx FEFAx is in X .

This is true because each component of κ ∶ 1M EF is in F−1X by assumption.
This proves statement (ii).

Statement (iii). Suppose P ∶ C N is an N-functor. We want to show that the
N-natural transformation in (11.3.3)

C N

P

Fξ
★E★P

⇒
ξ
★

P

is in X▴. By (11.3.4) and (11.4.3), the desired condition ξ★P ∈ X▴ means that, for each
object x in C, the unary multimorphism

(11.4.22) (ξ★P)#x = ξPx ∶ Px FEPx is in X .

This is true by the assumption that each component of ξ is in X . This proves
statement (iii). �

Explanation 11.4.23 (Summary). We summarize the assumptions for Theorem 11.4.14
in (1) through (3) below.

(1) We assume (i) through (v) in Definition 11.1.1. These assumptions are
multicategorical in nature. They do not involve relative category struc-
tures. Using these assumptions we construct
● the functors

M-Cat(CE,M) N-Cat(C,N)Fξ
★

E★

in Theorem 10.3.1 (applied to E★) and (11.1.3) and
● the natural transformations

M-Cat(CE,M) M-Cat(CE,M)
1

E★Fξ

★

⇒

κ
★

N-Cat(C,N) N-Cat(C,N)
1

Fξ

★E★

⇒

ξ
★

in (11.2.2) and (11.3.2).
(2) We assume that (N,X ) is a category with weak equivalences (Defini-

tion 11.4.7). Using this assumption we define the wide subcategories
● X▴ ⊂ N-Cat(C,N) in (11.4.2),

● F−1X ⊂M in (11.4.8), and



284 11. HOMOTOPY EQUIVALENCES BETWEEN ENRICHED DIAGRAM CATEGORIES

● (F−1X )▴ ⊂M-Cat(CE,M) in (11.4.10).
The relative categories in (11.4.15) are defined using (F−1X )▴ and X▴.

(3) We assume that
● each component of κ ∶ 1M EF is in F−1X and
● each component of ξ ∶ 1N FE is in X .

In the proof of Theorem 11.4.14, we use the assumption about κ to prove
that κ★ is a relative natural transformation (11.4.21). We use the assump-
tion about ξ to prove that
● E★ is a relative functor (11.4.20) and
● ξ★ is a relative natural transformation (11.4.22).

As we explain in (11.4.17), the relative functoriality of Fξ
★ is a consequence of the

definitions of (F−1X )▴ and Fξ
★ψ. ◇

Recall that each category C enriched in a multicategory N has an opposite
N-category Cop (Proposition 6.6.7), whose composition involves the symmetric
group action on N. In the next result, we assume that E is a multifunctor (Defi-
nition C.1.19), so it strictly preserves the symmetric group action. This result gives
an equivalence of homotopy theories between enriched Mackey functor categor-
ies.

Theorem 11.4.24. In the context of Theorem 11.4.14, suppose, furthermore, that E ∶
N M is a multifunctor between multicategories. Then the functors in (11.1.19) ap-
plied to Cop,

(M-Cat((CE)op,M) , (F−1X )▴) (N-Cat(Cop,N) , X▴),F
ξ

★

∼
E★

are inverse equivalences of homotopy theories.

Proof. This is Theorem 11.4.14 applied to the opposite N-category Cop. By Propo-
sition 7.2.1 the multifunctoriality of E yields the equality

(Cop)E = (CE)op
of M-categories. �

For completeness we end this section with the following observation that says
that the functors F and E are inverse equivalences of homotopy theories.

Proposition 11.4.25. Under the assumptions of Theorem 11.4.14, the functors

(M, F−1X ) (N,X )F
∼
E

are inverse equivalences of homotopy theories.

Proof. This is a much simpler variant of the proof of Theorem 11.4.14.

● F is a relative functor by the definition of F−1X in (11.4.8).
● To see that E is a relative functor, suppose f ∶ a b is a morphism in

X . We want to show that E f is in F−1X , which means FE f ∈ X . The
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naturality of ξ yields the following commutative diagram in N.

a FEa

b FEb

ξa

ξb

f FE f

Similar to (11.4.20),
– the assumption f ∈ X ,
– the assumption that each component of ξ is in X , and
– the 2-out-of-3 property of X

imply that FE f is in X .

● The components of κ and ξ are in F−1X ⊂ M and X ⊂ N, respectively, by
assumption. So κ and ξ are relative natural transformations.

Thus, by Definition 2.1.8, the functors F and E are inverse equivalences of homo-
topy theories. �





CHAPTER 12

Applications to Multicategories and Permutative

Categories

This chapter develops three main applications from Chapter 11. These are
summarized below, where C is a small PermCatsu-category, D is a small ModM1-
category, and each wide subcategory of stable equivalences is created as in (11.4.2).
In each case, we state the equivalence of homotopy theories between enriched
diagram categories that follows from Theorem 11.4.14. There are also variants for
enriched Mackey functors that follow from Theorem 11.4.24 because, in each of the
three applications, the reverse functor E is a multifunctor in the symmetric sense
(Definition C.1.19). The more precise statements in the body of this chapter give
further details.

Pointed Multicategories and Permutative Categories. The first application
concerns the following data.

(12.0.1)

Multicat∗ PermCatsu
F●

End●

Multicat∗ Multicat∗

1

End ●F●

⇒

η
●

PermCatsu PermCatsu

1

F●End ●

⇒

̺
●

Theorem 12.1.6 shows that these induce an inverse equivalence of homotopy the-
ories between enriched diagram categories

(Multicat∗-Cat(CEnd ● ,Multicat∗) , (S●)▴) (PermCatsu-Cat(C,PermCatsu ) , S▴).(F●)̺
●

★

∼
(End ●)★

M1-Modules and Permutative Categories. The second application concerns
the following data.

(12.0.2)

ModM1 PermCatsu
FM1

EndM1

ModM1 ModM1

1

EndM1FM1

⇒

η
M1

PermCatsu PermCatsu

1

FM1EndM1

⇒

̺
M1

Theorem 12.4.6 shows that these induce an inverse equivalence of homotopy the-
ories between enriched diagram categories

(ModM1-Cat(CEndM1
,ModM1 ) , SM1

▴ ) (PermCatsu-Cat(C,PermCatsu ) , S▴).(FM1)̺
M1

★

∼
(EndM1)★

287
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Pointed Multicategories and M1-Modules. The third application concerns
the following data.

(12.0.3)

Multicat∗ ModM1
M1∧−

UM1

Multicat∗ Multicat∗

1

UM1(M1∧−)

⇒

η̂ ModM1 ModM1

1

(M1∧−)UM1

⇒
ε̂
−1

Theorem 12.6.6 shows that these induce an inverse equivalence of homotopy the-
ories between enriched diagram categories

(Multicat∗-Cat(DUM1
,Multicat∗) , (S●)▴) (ModM1-Cat(D,ModM1 ) , SM1

▴ ).(M1∧−)ε̂−1

★

∼

(UM1)★

Connection with Other Chapters. The results in this chapter relate to broader
work in homotopy theory of diagram spectra and spectral Mackey functors via the
constructions in Sections 10.5 and 10.6. Those sections develop spectral Mackey
functors from enriched Mackey functors in PermCatsu and ModM1.

Background. In addition to the results of Chapter 11, the main applications
in this chapter depend on the following context. The underlying inverse equiva-
lences of homotopy theories,

(F● , End●), (FM1 , EndM1), and (M1∧− , UM1)
are developed in Chapters 4 and 5. The closed multicategory structure for
PermCatsu is developed in Chapter 8. The corresponding structures for Multicat∗
and ModM1 follow from the general discussion in Section 8.1 about closed multi-
categorical structure on symmetric monoidal closed categories.

Chapter Summary. Section 12.1 describes the context and application for the
data in (12.0.1). Sections 12.2 and 12.3 further unpack and explain the details of
the functors involved.

Section 12.4 describes the context and application for the data in (12.0.2). Sec-
tion 12.5 further unpacks and explains the details of the functors involved.

Section 12.6 describes the context and application for the data in (12.0.3). Sec-
tion 12.7 further unpacks and explains the details of the functors involved.

Here is a summary table.

((F●)̺ ●★ , (End ●)★) inverse equivalence of homotopy theories 12.1.6

explanations of (End ●)★ 12.2.2 and 12.2.16

explanations of (F●)̺ ●★ 12.3.1, 12.3.5, and 12.3.11

((FM1)̺M1

★ , (EndM1)★) inverse equivalence of homotopy theories 12.4.6

explanations of (EndM1)★ 12.5.1, 12.5.4, and 12.5.6

explanations of (FM1)̺M1

★ 12.5.8, 12.5.12, and 12.5.18

((M1∧−)ε̂−1

★ , (UM1)★) inverse equivalence of homotopy theories 12.6.6

explanation of (UM1)★ 12.7.1

explanations of (M1∧−)ε̂−1

★ 12.7.3 and 12.7.7
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12.1. Homotopy Equivalent Multicategorical and Permutative Enriched
Diagrams

In this section we apply Theorems 11.4.14 and 11.4.24 to show that the cate-
gories of enriched diagrams and Mackey functors in pointed multicategories and
permutative categories are connected by inverse equivalences of homotopy theo-
ries. See Theorem 12.1.6. As a result, left modules in PermCatsu and left modules
in Multicat∗ have equivalent homotopy theories; see Explanation 12.1.8. In Sec-
tions 12.2 and 12.3 we explain in detail the functors that constitute this pair of
inverse equivalences of homotopy theories.

Context. For the context first recall the diagram

(12.1.1) Multicat∗ PermCatsu
F●

End ●

in (5.3.1) consisting of

● the Cat-multicategory Multicat∗ in Explanation 1.2.9,
● the Cat-multicategory PermCatsu in Theorem 1.4.29,
● the Cat-multifunctor End● in Explanation 1.4.32, and
● the non-symmetric Cat-multifunctor F● in Theorem 5.2.6.

The two composites in (12.1.1) are connected to the respective identity functors via
the following Cat-multinatural transformations from Lemmas 5.3.2 and 5.3.3.

(12.1.2) Multicat∗ Multicat∗

1

End●F●

⇒

η
●

PermCatsu PermCatsu
1

F●End●

⇒

̺
●

The underlying categories of Multicat∗ and PermCatsu are equipped with the rela-
tive category structures

(12.1.3) (Multicat∗ , S●) and (PermCatsu , S)
in (4.7.2) and (2.5.14).

● The wide subcategory of stable equivalences

S ⊂ PermCatsu

is created by Segal K-theory KSe (2.5.3). So a strictly unital symmetric
monoidal functor P is in S if and only if KSeP is a stable equivalence of
symmetric spectra. For a small PermCatsu-category C, the wide subcate-
gory in (12.1.7) below

(12.1.4) S▴ ⊂ PermCatsu-Cat(C,PermCatsu )
is defined as in (11.4.2) using S.
● The wide subcategory of F●-stable equivalences

S● = F−1
● (S) ⊂Multicat∗

is created by F●. The wide subcategory in (12.1.7) below

(12.1.5) (S●)▴ ⊂Multicat∗-Cat(CEnd ● ,Multicat∗)
is defined as in (11.4.2) using S●.



290 12. APPLICATIONS TO MULTICATEGORIES AND PERMUTATIVE CATEGORIES

Equivalences of Homotopy Theories. In Theorem 5.4.1 we observe that the
pair (F●,End●) induces inverse equivalences of homotopy theories between the re-
spective categories of non-symmetric Q-algebras for each small non-symmetric
Cat-multicategories Q. The following observation extends the inverse equiva-
lences of homotopy theories (F●,End●) to categories of enriched diagrams and
Mackey functors. In Sections 12.2 and 12.3 we further explain the functors (End●)★
and (F●)̺ ●★ .

Theorem 12.1.6. Suppose C is a small PermCatsu-category. Then the functors

(12.1.7) (Multicat∗-Cat(CEnd ● ,Multicat∗) , (S●)▴) (PermCatsu-Cat(C,PermCatsu ) , S▴),(F●)̺
●

★

∼
(End●)★

defined by the data in (12.1.1) through (12.1.5), are inverse equivalences of homotopy
theories.

Moreover, the variant with (CEnd ●)op and Cop replacing, respectively, CEnd ● and C

is also true.

Proof. The first assertion is an instance of Theorem 11.4.14, which is applicable
in the current setting as we now explain. Following the summary in Explana-
tion 11.4.23, first we verify that Definition 11.1.1 (i) through (v) are satisfied in the
current context.

(i) M =Multicat∗ is a closed multicategory by
● Proposition 8.1.16 and
● the fact that it is a symmetric monoidal closed category (Theo-

rem 1.2.8).
By Theorem 8.4.15, N = PermCatsu is a closed multicategory.

(ii) C is, by assumption, a small PermCatsu-category.
(iii) F = F● in (12.1.1) is a non-symmetric multifunctor by Theorem 5.2.6, and

E = End ● is a multifunctor by Proposition 1.4.31.
(iv) κ = η

●
and ξ = ̺

●
in (12.1.2) are multinatural transformations by Lem-

mas 5.3.2 and 5.3.3, respectively.
(v) In the current setting, the condition (11.1.2) is the equality of the follow-

ing two pointed multifunctors for each pair of objects x, y ∈ C.

End●C(x, y) End●F●End●C(x, y)η
●

End ●C(x,y)

End ●̺
●

C(x,y)

This equality holds by Lemma 4.6.13 because each hom object C(x, y) is a
small permutative category.

Thus Definition 11.1.1 (i) through (v) hold in the context of (12.1.1) through (12.1.5).
Next, the only assumption in Definition 11.4.7 is that the relative category

(N,X ) = (PermCatsu , S)
is a category with weak equivalences (Definition 2.1.6 (6)). This is true for the
following two reasons.

● The wide subcategory S ⊂ PermCatsu is created by a functor, namely,
Segal K-theory (2.5.14)

KSe ∶ PermCatsu Sp≥0 .
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● The class of stable equivalences in Sp≥0 contains all the isomorphisms and
has the 2-out-of-3 property.

In the current setting there are equalities of wide subcategories

F−1X = F−1
● (S) = S● ⊂Multicat∗.

The data in (12.1.7) are those in (11.4.15) in the current context.
Finally, each component of ̺

● is a stable equivalence in PermCatsu by Re-
mark 2.5.15 (2) because it admits a left adjoint by Proposition 4.6.6. Moreover,
in the proof of Theorem 4.7.3 we explain that each component of η

● is an F●-stable
equivalence in Multicat∗. Thus Theorem 11.4.14 is applicable in the current setting,
proving the first assertion.

The second assertion about (CEnd ●)op andCop is an instance of Theorem 11.4.24.
It is applicable because End● is a multifunctor (Proposition 1.4.31). �

Explanation 12.1.8 (Homotopy Equivalent Categories of Modules). By Propo-
sitions 10.1.8 and 10.1.17, for each small PermCatsu-category C, the functors in
(12.1.7) are inverse equivalences of homotopy theories between

● left C-modules in PermCatsu and
● left CEnd ●-modules in Multicat∗.

We explain the functors (End●)★ and (F●)̺ ●★ in detail in Sections 12.2 and 12.3. ◇
Remark 12.1.9 (Non-Existence of Unpointed Version). We do not know of any
analog of Theorem 12.1.6 for the symmetric monoidal closed category Multicat

(Theorem 1.1.26), whose objects are small multicategories. The reason is that the

multinatural transformation ̺
● in (12.1.2) is necessary to define the functor (F●)̺ ●★ .

As we discuss in Remark 3.3.13, for each permutative category C, the symmetric
monoidal functor ̺C is not strictly unital. Thus we cannot use ̺ to define a multi-
natural transformation 1PermCatsu FEnd. ◇

12.2. Permutative to Multicategorical Enriched Diagrams

In this section we explain in detail the equivalence of homotopy theories in
(12.1.7)

Multicat∗-Cat(CEnd ● , Multicat∗) PermCatsu-Cat(C,PermCatsu )∼
(End●)★

that produces pointed multicategorical enriched diagrams from permutative en-
riched diagrams. To simplify the notation, we use the following abbreviations
throughout this section.

(12.2.1) M∗ =Multicat∗ Psu = PermCatsu

This section is organized as follows.

● Explanation 12.2.2 describes (End●)★ in terms of (−)End ● and Ênd ●.
● Explanation 12.2.4 describes the 2-functor (−)End ● .
● Explanation 12.2.9 describes the standard enrichment Ênd ●.
● Explanation 12.2.16 summarizes Explanations 12.2.2, 12.2.4, and 12.2.9.

Explanation 12.2.2 (Unpacking (End●)★). The diagram change-of-enrichment
functor in (12.1.7)

(End ●)★ ∶ Psu-Cat(C,Psu) M∗-Cat(CEnd ● ,M∗)
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is defined in (10.2.3) and verified in Theorem 10.3.1. To understand its assignments
on objects and morphisms, consider

● Psu-functors A, B ∶ C Psu (Explanation 6.3.12) and
● a Psu-natural transformation ψ ∶ A B (Explanation 6.3.16)

as in the left diagram below.

(12.2.3) C Psu CEnd ● (Psu)End ● M∗

A

B

(End●)★⇒

ψ

AEnd●

BEnd ●

Ênd●⇒

ψEnd●

Then (End ●)★ sends A, B, and ψ to the composites and whiskering as in the right
diagram in (12.2.3). In other words, the functor (End●)★

● first applies the change of enrichment (−)End ● and then

● composes or whiskers with the standard enrichment Ênd●.

We describe (−)End ● and Ênd● further in Explanations 12.2.4 and 12.2.9 below.
Then we summarize the discussion in Explanation 12.2.16. ◇
Explanation 12.2.4 (Unpacking (−)End ●). We describe the change-of-enrichment
2-functor in (12.2.3)

(−)End ● ∶ Psu-Cat M∗-Cat

by interpreting Definition 7.1.1 for the multifunctor (Explanation 1.4.32)

End● ∶ Psu M∗.

The existence of (−)End ● is an instance of Proposition 7.1.9.

Objects. First we consider a Psu-category (D,mD) (Explanation 6.3.2).

● The M∗-category DEnd ● has the same objects as D. So (Psu)End ● has small
permutative categories as objects.
● For each pair of objects a, b ∈ D, its hom object is

(DEnd ●)(a, b) = End●D(a, b) in M∗.

So for small permutative categories X and Y, by Theorem 6.4.20 there is a
hom object

(Psu)End ●(X,Y) = End●Psu(X,Y) in M∗.

– In Psu(X,Y) the objects are strictly unital symmetric monoidal func-
tors X Y.

– The morphisms are monoidal natural transformations.
– The monoidal structure is defined pointwise in the codomain Y.

End●Psu(X,Y) is the pointed multicategory associated to the permutative
category Psu(X,Y).
● For objects a, b, c ∈ D, the composition binary multimorphism in M∗

End●(mD
a,b,c) ∶ (End●D(b, c) , End ●D(a, b)) End ●D(a, c)

is the image under End● (Proposition 1.4.31) of the composition in D,

mD
a,b,c ∶ D(b, c)×D(a, b) D(a, c).
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The latter is a bilinear functor of permutative categories (Definition 1.4.2).
The composition in Psu as a Psu-category (Definition 6.4.19) extends com-
position of strictly unital symmetric monoidal functors and is a bilinear
functor.

1-Cells. For a Psu-functor A ∶ C Psu as in (12.2.3), the M∗-functor

AEnd ● ∶ CEnd ● (Psu)End ●
has the same object assignment as A. In other words, for each object x in C,

(12.2.5) (AEnd ●)x = Ax in Psu.

For objects x, y ∈ C, the (x, y)-component pointed multifunctor

(12.2.6) (AEnd ●)x,y = End●(Ax,y) ∶ End●C(x, y) End ●Psu(Ax, Ay)
is the image under End ● of the (x, y)-component strictly unital symmetric monoi-
dal functor

(Ax,y , A2
x,y) ∶ C(x, y) Psu(Ax, Ay),

as defined in Example C.4.8 (i). The same explanation also applies to the Psu-
functor B ∶ C Psu.

2-Cells. A Psu-natural transformation ψ ∶ A B as in (12.2.3) is determined
by its components. For each object x ∈ C, the x-component is a nullary multimor-
phism

ψx ∶ ⟨⟩ Psu(Ax, Bx) in Psu.

By Definitions 1.4.2 and 1.4.15, such a nullary multimorphism ψx is a 0-linear func-
tor to Psu(Ax, Bx). This, in turn, means a choice of an object in the permutative
category Psu(Ax, Bx). In other words, each component

(12.2.7) ψx ∶ Ax Bx

is a strictly unital symmetric monoidal functor.
Under the change of enrichment (−)End ● , the M∗-natural transformation in

(12.2.3)

ψEnd ● ∶ AEnd ● BEnd●

has, for each object x in C, x-component nullary multimorphism

(12.2.8) (ψEnd ●)x ∶ ⟨⟩ End●Psu(Ax, Bx) in M∗.

Since the multicategory structure on M∗ is induced by its symmetric monoidal
structure, such a nullary multimorphism is a pointed multifunctor

(ψEnd ●)x ∶ I+ = I∐T End●Psu(Ax, Bx)
from the smash unit I+ in (1.2.4). Preservation of basepoints and I being the ini-
tial operad imply that (ψEnd ●)x is a choice of an object in End●Psu(Ax, Bx), which
means an object in Psu(Ax, Bx). This, in turn, means a strictly unital symmetric
monoidal functor Ax Bx, which is given by ψx in (12.2.7).

In summary, the components of the M∗-natural transformation ψEnd ● are the
components of the Psu-natural transformation ψ. ◇
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Explanation 12.2.9 (Unpacking Ênd●). We describe the last arrow in (12.2.3)

Ênd● ∶ (Psu)End ● M∗.

This is the standard enrichment of End ●, which is an M∗-functor (Theorem 9.2.12).
Its object assignment is the same as that of End● (Example C.4.8). In other words,

(12.2.10) Ênd ●X = End ●X in M∗

for each small permutative category X.

For small permutative categories X and Y, the (X,Y)-component of Ênd● is a
pointed multifunctor

(12.2.11) (Ênd●)X,Y ∶ End●Psu(X,Y) Hom∗(End●X,End ●Y).
In the codomain, Hom∗ is the pointed internal hom (1.2.5) in M∗.

● The objects of Hom∗(?, ?) are pointed multifunctors.
● Its multimorphisms are pointed transformations (Explanation 1.2.6).

Next we describe the component pointed multifunctor (Ênd●)X,Y in two equiva-
lent ways.

First, (Ênd●)X,Y is uniquely determined by its adjoint, which is the arrow
End●(evX,Y) in the commutative diagram (12.2.12) in M∗.

(12.2.12)

End●Psu(X,Y)∧End●X

Hom∗(End ●X,End ●Y)∧ End●X

End●Y
End ●(evX,Y)

(Ênd ●)X,Y ∧ 1 ev
M∗

The diagram (12.2.12) is the diagram (9.2.11) for Ênd ●.

● In (12.2.12) ∧ is the smash product (1.2.3) in M∗.
● The evaluation for permutative categories

evX,Y ∶ Psu(X,Y)×X Y

is the bilinear functor in (6.5.2).
● evM∗ is the evaluation (B.3.2) in the symmetric monoidal closed category
M∗ (Theorem 1.2.8).

Alternatively, we obtain from (12.2.12) a direct description of the pointed mul-

tifunctor (Ênd ●)X,Y as follows. An object in End ●Psu(X,Y) is an object in Psu(X,Y),
which is a strictly unital symmetric monoidal functor

(Q, Q2) ∶ X Y.

Its image under (Ênd●)X,Y is the pointed multifunctor

(12.2.13) (Ênd●)X,Y(Q, Q2) = End●(Q, Q2) ∶ End●X End ●Y

obtained from (Q, Q2) by applying End● (Example C.4.8 (i)).
For n ≥ 0 an n-ary multimorphism

θ ∈ (End ●Psu(X,Y))(⟨(Qi, Q2
i )⟩ni=1

; (Q, Q2))
= Psu(X,Y)(⊕n

i=1(Qi, Q2
i ) , (Q, Q2))
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is a monoidal natural transformation as follows.

X Y

⊕
n
i=1 Qi

Q

⇒

θ

The domain of θ is the strictly unital symmetric monoidal functor

(⊕n
i=1 Qi , (⊕n

i=1 Qi)2) ∶ X Y.

● As a functor the sum is taken pointwise in Y, so

(⊕n
i=1 Qi)x =⊕n

i=1(Qix) for x ∈ X.

● ⊕n
i=1 Qi is strictly unital because each Qi is so.

● For objects x, x′ ∈ X, the (x, x′)-component of its monoidal constraint is
the following composite in Y, with the isomorphism permuting the ob-
jects using the braiding in Y.

(⊕n
i=1 Qix)⊕ (⊕n

i=1 Qix
′)

⊕n
i=1 (Qix⊕Qix

′)

⊕n
i=1 Qi(x⊕ x′)(⊕n

i=1 Qi)2x,x′

≅ ⊕
n
i=1(Q2

i )x,x′

For each object x ∈ X, the x-component of θ is a morphism

(12.2.14) θx ∶⊕n
i=1 Qix Qx in Y.

Applying (Ênd●)X,Y to θ yields the n-ary pointed transformation (Explana-
tion 1.2.6)

(Ênd●)X,Y(θ) ∈ Hom∗(End●X,End ●Y)(⟨End ●Qi⟩ni=1 ; End ●Q).
For each object x ∈ End ●X, meaning x ∈ X, the x-component of (Ênd●)X,Y(θ) is the
n-ary multimorphism

(12.2.15)
(Ênd●)X,Y(θ)x ∈ (End ●Y)(⟨(End●Qi)x⟩ni=1

; (End●Q)x)
= Y(⊕n

i=1 Qix , Qx)
given by the x-component θx in (12.2.14). In summary, the components of

(Ênd●)X,Y(θ) are the components of θ. ◇
Explanation 12.2.16 (Back to (End●)★). We summarize Explanations 12.2.2, 12.2.4,
and 12.2.9. For a Psu-functor A ∶ C Psu as in (12.2.3), the composite M∗-functor

CEnd ● (Psu)End ● M∗
AEnd ● Ênd ●

(End ●)★A

has, for each object x ∈ C, object assignment

((End ●)★A)x = End●(Ax) in M∗
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by (12.2.5) and (12.2.10). For objects x, y ∈ C, the (x, y)-component pointed multi-
functor of (End●)★A is the composite

(12.2.17)
End●C(x, y)

End●Psu(Ax, Ay)

Hom∗(End ●(Ax) , End●(Ay))((End ●)★A)
x,y

End●(Ax,y) (Ênd●)Ax,Ay

by (12.2.6) and (12.2.11).
For a Psu-natural transformation ψ ∶ A B as in (12.2.3), the M∗-natural

transformation (End●)★ψ is the whiskering below.

CEnd ● (Psu)End ● M∗

AEnd●

BEnd●

Ênd●⇒

ψEnd●

For each object x ∈ C, its x-component nullary multimorphism is the following
composite in M∗.

⟨⟩

End ●Psu(Ax, Bx)

Hom∗(End●(Ax) , End ●(Bx))((End●)★ψ)
x

(ψEnd ●)x
(Ênd ●)Ax,Bx

By (12.2.8) and (12.2.13), this is given by the pointed multifunctor

(12.2.18) ((End●)★ψ)
x
= End●(ψx) ∶ End●(Ax) End●(Bx)

obtained from the strictly unital symmetric monoidal functor ψx in (12.2.7) by ap-
plying End ●. ◇

12.3. Multicategorical to Permutative Enriched Diagrams

We continue to use the abbreviations in (12.2.1), so

M∗ =Multicat∗ and Psu = PermCatsu .

In this section we explain in detail the equivalence of homotopy theories in (12.1.7)

M∗-Cat(CEnd ● , M∗) Psu-Cat(C,Psu)∼
(F●)̺

●

★

that produces permutative enriched diagrams from pointed multicategorical en-
riched diagrams. This section is organized as follows.

● Explanation 12.3.1 describes (F●)̺ ●★ in terms of (F●)★ and C∗̺ ● .

● Explanation 12.3.5 describes (F●)̺ ●★ on objects.

● Explanation 12.3.11 describes (F●)̺ ●★ on morphisms.

Explanation 12.3.1 (Unpacking (F●)̺ ●★ ). The functor (F●)̺ ●★ is an instance of the

functor Fξ
★ (11.1.3) defined with the non-symmetric multifunctor (Theorem 5.2.6)

F = F● ∶M∗ Psu
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and the multinatural transformation ξ = ̺
● given by

Psu Psu

1

F●End●

⇒

̺
●

in Lemma 5.3.3.

● F● is defined on objects and multimorphisms in Definitions 4.1.11 and 5.2.2,
respectively.
● The components of ̺

● are defined in (4.6.2).

By definition (11.1.3) the functor (F●)̺ ●★ is the following composite.

(12.3.2)
M∗-Cat(CEnd ● , M∗)

Psu-Cat(CF●End ● , Psu)

Psu-Cat(C,Psu)(F●)̺
●

★

(F●)★ C
∗

̺ ●

The two constituent functors in (12.3.2) are as follows.

● (F●)★ is the diagram change-of-enrichment functor (Theorem 10.3.1) of F●
at the M∗-category CEnd ● . The latter is the image of the Psu-category C

under the change of enrichment (−)End ● (Explanation 12.2.4).
● C∗̺ ● is defined by pre-composition and whiskering with the Psu-functor

(12.3.3) C̺ ● ∶ C CF●End ● = (CEnd ●)F● .
This Psu-functor is the C-component of the 2-natural transformation
(Proposition 7.5.5)

Psu-Cat Psu-Cat

1

(−)F●End ● = (−)F● (−)End ●

⇒ (−)̺ ●

induced by the multinatural transformation ̺
● ∶ 1Psu F●End●. Here(−)F● is the change-of-enrichment 2-functor (Explanation 7.1.12)

(12.3.4) (−)F● ∶M∗-Cat Psu-Cat

induced by the non-symmetric multifunctor F● ∶M∗ Psu.

We describe (F●)̺ ●★ on objects and morphisms in Explanations 12.3.5 and 12.3.11,
respectively. ◇
Explanation 12.3.5 ((F●)̺ ●★ on Objects). Consider an M∗-functor (Definition B.1.8)

A ∶ CEnd ● M∗.

By (11.1.11) the Psu-functor (F●)̺ ●★ A is the following composite.

(12.3.6) C CF●End ● (CEnd ●)F● (M∗)F● Psu
C̺ ● AF● F̂●

(F●)̺
●

★ A

The constituent Psu-functors in (12.3.6) are as follows.

(i) C̺ ● is the Psu-functor in (12.3.3).

● Its object assignment is the identity function.
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● For objects x, y ∈ C, its (x, y)-component is the strictly unital sym-
metric monoidal functor

(12.3.7) ̺
●
C(x,y) ∶ C(x, y) F●End●C(x, y)

given by the C(x, y)-component of ̺
●

(4.6.2).
(ii) AF● is the change of enrichment of A under (−)F● (Explanation 7.1.12).

● Its object assignment is the same as that of A.
● For objects x, y ∈ C, its (x, y)-component is the strict symmetric mon-

oidal functor (Definition 4.1.12)

(12.3.8) F●Ax,y ∶ F●End ●C(x, y) F●Hom∗(Ax, Ay)
given by applying F● to the (x, y)-component pointed multifunctor
of A. Here Hom∗ is the pointed internal hom for small pointed mul-
ticategories (1.2.5).

(iii) F̂● is the standard enrichment Psu-functor of F● ∶M∗ Psu in (9.2.15).
● Its object assignment is the same as that of F●.
● For small pointed multicategories X and Y, its (X,Y)-component is

the strictly unital symmetric monoidal functor

(12.3.9) F̂●X,Y = (F●(evM∗X,Y
))# ∶ F●Hom∗(X,Y) Psu(F●X,F●Y).

Combining (12.3.6) through (12.3.9), the object assignment of (F●)̺ ●★ A is given
by, for each object x ∈ C,

((F●)̺ ●★ A)x = F●(Ax) in Psu.

For objects x, y ∈ C, its (x, y)-component strictly unital symmetric monoidal func-
tor is the following composite.

(12.3.10)
C(x, y) Psu(F●(Ax),F●(Ay))

F●End●C(x, y) F●Hom∗(Ax, Ay)

((F●)̺
●

★ A)x,y

̺
●

C(x,y)
F●Ax,y

F̂●Ax,Ay

The diagram (12.3.10) is the diagram (11.1.13) in the current context. ◇
Explanation 12.3.11 ((F●)̺ ●★ on Morphisms). Consider an M∗-natural transforma-
tion ψ (Definition B.1.10) as in the left diagram below.

CEnd ● M∗

A

B

⇒

ψ C Psu

(F●)̺
●

★A

(F●)̺
●

★B

⇒

(F●)̺
●

★ψ

The Psu-natural transformation (F●)̺ ●★ ψ, as in the right diagram above, is the fol-
lowing whiskering.

(12.3.12) C CF●End ● (CEnd ●)F● (M∗)F● Psu
C̺ ●

AF●

BF●

F̂●⇒

ψF●

The whiskering (12.3.12) is the one in (11.1.16) in the current context.

● The Psu-functors C̺ ● and F̂● are as in (12.3.6).

● ψF● is the change of enrichment of ψ under (−)F● in Explanation 7.1.12.
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Next we describe the components of (F●)̺ ●★ ψ explicitly. For each object x ∈ C,
the x-component of ψ is a pointed multifunctor

ψx ∶ I+ = I∐T Hom∗(Ax, Bx)
from the smash unit I+ in (1.2.4). Preservation of basepoint and I being the initial
operad imply that ψx is equivalent to a choice of an object in Hom∗(Ax, Bx). This
means a pointed multifunctor

(12.3.13) ψx ∶ Ax Bx.

The x-component of (F●)̺ ●★ ψ is a nullary multimorphism

((F●)̺ ●★ ψ)
x
∶ ⟨⟩ Psu(F●(Ax),F●(Bx)) in Psu.

This means a choice of an object in Psu(F●(Ax),F●(Bx)). This, in turn, means a
strictly unital symmetric monoidal functor F●(Ax) F●(Bx). Using (11.1.18) in
the current context, we obtain the x-component

((F●)̺ ●★ ψ)
x
= F●(ψx) ∶ F●(Ax) F●(Bx)

by applying F● to ψx in (12.3.13). By Definition 4.1.12 F●(ψx) is a strict symmetric
monoidal functor. ◇
12.4. Homotopy EquivalentM1-Modules and Permutative Enriched Diagrams

In this section we apply Theorems 11.4.14 and 11.4.24 to show that the cat-
egories of enriched diagrams and Mackey functors in leftM1-modules and per-
mutative categories are connected by inverse equivalences of homotopy theories.
See Theorem 12.4.6. Explanation 12.4.8 summarizes Theorems 12.1.6 and 12.4.6
in terms of left modules in ModM1, Multicat∗, and PermCatsu. We explain these
equivalences of homotopy theories further in Section 12.5.

Context. For the context first recall the diagram

(12.4.1) ModM1 PermCatsu
FM1

EndM1

in (5.5.1) consisting of

● the Cat-multicategory ModM1 in Explanation 1.3.24,
● the Cat-multicategory PermCatsu in Theorem 1.4.29,
● the Cat-multifunctor EndM1 in Explanation 1.4.41, and
● the non-symmetric Cat-multifunctor FM1 = F●UM1 in (5.5.2).

The two composites in (12.4.1) are connected to the respective identity functors via
the following Cat-multinatural transformations from Definitions 5.5.5 and 5.5.8.

(12.4.2) ModM1 ModM1

1

EndM1FM1

⇒

η
M1

PermCatsu PermCatsu

1

FM1EndM1

⇒

̺
M1

The underlying categories of ModM1 and PermCatsu are equipped with the relative
category structures

(12.4.3) (ModM1 , SM1) and (PermCatsu , S)
in (4.7.2) and (2.5.14).
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● The wide subcategory of stable equivalences

S ⊂ PermCatsu

is created by Segal K-theory KSe (2.5.3). For a small PermCatsu-category C,
the wide subcategory in (12.4.7) below

(12.4.4) S▴ ⊂ PermCatsu-Cat(C,PermCatsu )
is defined as in (11.4.2) using S.
● The wide subcategory of FM1-stable equivalences

SM1 = F−1
M1(S) ⊂ModM1

is created by FM1. The wide subcategory in (12.4.7) below

(12.4.5) SM1
▴ ⊂ModM1-Cat(CEndM1

,ModM1 )
is defined as in (11.4.2) using SM1.

Equivalences of Homotopy Theories. In Theorem 5.5.12 we observe that the
pair (FM1,EndM1) induces inverse equivalences of homotopy theories between the
respective categories of non-symmetric Q-algebras for each small non-symmetric
Cat-multicategories Q. The following observation extends the inverse equiva-
lences of homotopy theories (FM1,EndM1) to categories of enriched diagrams and

Mackey functors. It is the ModM1 analog of Theorem 12.1.6.

Theorem 12.4.6. Suppose C is a small PermCatsu-category. Then the functors

(12.4.7) (ModM1-Cat(CEndM1
,ModM1 ) , SM1

▴ ) (PermCatsu-Cat(C,PermCatsu ) , S▴),
(FM1)̺

M1

★

∼
(EndM1)★

defined by the data in (12.4.1) through (12.4.5), are inverse equivalences of homotopy
theories.

Moreover, the variant with (CEndM1
)op and Cop replacing, respectively, CEndM1

and

C is also true.

Proof. The first assertion is an instance of Theorem 11.4.14, which is applicable
in the current setting as we now explain. Following the summary in Explana-
tion 11.4.23, first we verify that Definition 11.1.1 (i) through (v) are satisfied in the
current context.

(i) M =ModM1 is a closed multicategory by
● Proposition 8.1.16 and
● the fact that it is a symmetric monoidal closed category (Proposi-

tion 1.3.17 (7)).
By Theorem 8.4.15, N = PermCatsu is a closed multicategory.

(ii) C is, by assumption, a small PermCatsu-category.
(iii) F = FM1 in (12.4.1) is a non-symmetric multifunctor by definition (5.5.2),

and E = EndM1 is a multifunctor by Theorem 1.4.38.
(iv) κ = ηM1 and ξ = ̺M1 in (12.4.2) are multinatural transformations by

● Explanation 5.5.7 for ηM1 and
● Lemma 5.3.3 and Definition 5.5.8 for ̺M1.
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(v) In the current setting, the condition (11.1.2) is the equality of the follow-
ing two leftM1-module morphisms for each pair of objects x, y ∈ C.

EndM1C(x, y) EndM1FM1EndM1C(x, y)
η
M1

EndM1C(x,y)

EndM1̺
M1

C(x,y)

This equality holds by Lemma 5.5.11 because each hom object C(x, y) is a
small permutative category.

Thus Definition 11.1.1 (i) through (v) hold in the context of (12.4.1) through (12.4.5).
Next, the only assumption in Definition 11.4.7 is that the relative category

(N,X ) = (PermCatsu , S)
is a category with weak equivalences (Definition 2.1.6 (6)). This is true for the
following two reasons.

● The wide subcategory S ⊂ PermCatsu is created by a functor, namely,
Segal K-theory (2.5.14)

KSe ∶ PermCatsu Sp≥0 .

● The class of stable equivalences in Sp≥0 contains all the isomorphisms and
has the 2-out-of-3 property.

In the current setting there are equalities of wide subcategories

F−1X = F−1
M1(S) = SM1 ⊂ModM1 .

The data in (12.4.7) are those in (11.4.15) in the current context.
Finally, the components of ηM1 are FM1-stable equivalences, as explained in the

proof of Theorem 4.8.3. Moreover, by definition (5.5.9) each component of ̺M1 is a
component of ̺

●
. The latter is a stable equivalence in PermCatsu by Remark 2.5.15

(2) because it has a left adjoint by Proposition 4.6.6. Thus Theorem 11.4.14 is ap-
plicable in the current setting, proving the first assertion.

The second assertion about (CEndM1
)op and Cop is an instance of Theo-

rem 11.4.24. It is applicable because EndM1 is a multifunctor (Theorem 1.4.38). �

Explanation 12.4.8 (Homotopy Equivalent Categories of Modules). The categor-
ies of enriched diagrams in (12.1.7) and (12.4.7) are categories of left modules by
Propositions 10.1.8 and 10.1.17. Thus, Theorems 12.1.6 and 12.4.6 together assert
that, for each small PermCatsu-category C, the functors in the diagram

(12.4.9)

(ModM1-Cat(CEndM1
, ModM1 ) , SM1

▴ )

(PermCatsu-Cat(C , PermCatsu ) , S▴)

(Multicat∗-Cat(CEnd ● , Multicat∗) , (S●)▴)

(FM1)̺
M1

★
(EndM1)★

(F●)̺
●

★(End ●)★

∼
∼

are equivalences of homotopy theories between

● left C-modules in PermCatsu,
● left CEndM1

-modules in ModM1, and

● left CEnd ●-modules in Multicat∗.
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Furthermore, these equivalences of homotopy theories still hold if C, CEndM1
, and

CEnd ● are replaced by Cop, (CEndM1
)op, and (CEnd ●)op, respectively. ◇

12.5. Explanation of the Equivalences of Homotopy Theories

In this section we

(1) explain in detail the inverse equivalences of homotopy theories (EndM1)★
and (FM1)̺M1

★ in (12.4.9) and
(2) compare them with the inverse equivalences of homotopy theories

(End●)★ and (F●)̺ ●★ .

This section is organized as follows.

● Explanation 12.5.1 describes how (End●)★ factors through (EndM1)★.
● Explanations 12.5.4 and 12.5.6 describe (EndM1)★ on objects and mor-

phisms, respectively.

● Explanation 12.5.8 describes how (FM1)̺M1

★ factors through (F●)̺ ●★ .

● Explanations 12.5.12 and 12.5.18 describe (FM1)̺M1

★ on objects and mor-
phisms, respectively.

Throughout this section we use the shortened notation in (12.2.1), so

M∗ =Multicat∗ and Psu = PermCatsu .

The Functor (EndM1)★.

Explanation 12.5.1 (Factoring (End●)★ Through (EndM1)★). By (1.4.39) there is a
factorization of multifunctors

(12.5.2) End● ∶ Psu EndM1

ModM1
UM1

M∗.

By Theorem 10.4.1 this factorization yields the following commutative diagram.

(12.5.3)

ModM1-Cat(CEndM1
, ModM1 )

Psu-Cat(C , Psu)

M∗-Cat(CEnd ● , M∗)

(EndM1)★

(UM1)★

(End ●)★

In (12.5.3) each arrow is a diagram change-of-enrichment functor (Theorem 10.3.1).
We describe (EndM1)★ on objects and morphisms in Explanations 12.5.4 and 12.5.6
below. ◇
Explanation 12.5.4 ((EndM1)★ on Objects). The functor (EndM1)★ in (12.5.3) has
an analogous description as (End●)★ in Explanation 12.2.16. More explicitly, the
functor (EndM1)★ sends a Psu-functor A ∶ C Psu to the following composite

ModM1-functor.

(12.5.5) CEndM1
(Psu)EndM1

ModM1AEndM1 ÊndM1

(EndM1)★A
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● AEndM1
is the image of A under the change-of-enrichment 2-functor

(−)EndM1
∶ Psu-Cat ModM1-Cat

along EndM1 (Explanation 1.4.41 and Proposition 7.1.9).

● ÊndM1 is the standard enrichment of EndM1 (Theorem 9.2.12).

The ModM1-functor (EndM1)★A in (12.5.5) sends each object x ∈ C to

((EndM1)★A)x = EndM1(Ax) in ModM1 .

For objects x, y ∈ C, the (x, y)-component left M1-module morphism of(EndM1)★A is the following composite, where Hom∗ is the internal hom in ModM1

(Proposition 1.3.17 (7)).

EndM1C(x, y)

EndM1P
su(Ax, Ay)

Hom∗(EndM1(Ax) , EndM1(Ay))((EndM1)★A)
x,y

EndM1(Ax,y) (ÊndM1)Ax,Ay

The underlying pointed multifunctor of this leftM1-module morphism is equal
to the one in (12.2.17) by Proposition 1.3.17 (7) and the factorization (12.5.2). ◇
Explanation 12.5.6 ((EndM1)★ on Morphisms). For a Psu-natural transformation

ψ ∶ A B as in (12.2.3), the ModM1-natural transformation (EndM1)★ψ is the
whiskering below.

CEndM1
(Psu)EndM1

ModM1

AEndM1

BEndM1

ÊndM1⇒

ψEndM1

For each object x ∈ C, its x-component is given by the leftM1-module morphism

(12.5.7) ((EndM1)★ψ)
x
= EndM1(ψx) ∶ EndM1(Ax) EndM1(Bx).

This is obtained from the strictly unital symmetric monoidal functor in (12.2.7)

ψx ∶ Ax Bx

by applying EndM1. The underlying pointed multifunctor of EndM1(ψx) in (12.5.7)
is equal to End●(ψx) in (12.2.18) by the factorization (12.5.2). ◇

The Functor (FM1)̺M1

★ .

Explanation 12.5.8 (Factoring (FM1)̺M1

★ Through (F●)̺ ●★ ). By definition (11.1.3) the

functor (FM1)̺M1

★ is the composite along the top of the following diagram.

(12.5.9) ModM1-Cat(CEndM1
, ModM1 )

Psu-Cat(CFM1EndM1
, Psu)

Psu-Cat(C,Psu)

M∗-Cat(CEnd ● , M∗)

(FM1)★ C
∗

̺M1

(UM1)★

(F●)★

(F●)̺
●

★

(FM1)̺
M1

★
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The two triangles in (12.5.9) are commutative for the following reasons.

(1) The diagram change of enrichment (UM1)★ is well defined by the factor-
ization (12.5.2)

End● = UM1EndM1

and the functoriality of change of enrichment with respect to composi-
tion (Proposition 7.4.1). The diagram change of enrichment (F●)★ is well
defined by the equalities

FM1EndM1 = F●UM1EndM1 = F●End●,
with the first equality given by the definition (5.5.2) of FM1 as the com-
posite

FM1 ∶ModM1
UM1

M∗
F●

Psu.

The left triangle in (12.5.9) commutes by the functoriality of diagram
change of enrichment with respect to composition (Theorem 10.4.1).

(2) The Psu-functor

(12.5.10) C̺M1 ∶ C CFM1EndM1

is the C-component of the 2-natural transformation (Proposition 7.5.5)

Psu-Cat Psu-Cat

1

(−)FM1EndM1
= (−)FM1

(−)EndM1

⇒ (−)̺M1

induced by the multinatural transformation (5.5.9)

̺M1 ∶ 1Psu FM1EndM1 = F●End●.
There is an equality of Psu-functors

(12.5.11) C̺M1 = C̺ ● ∶ C CFM1EndM1
= CF●End ● ,

with C̺ ● the Psu-functor in (12.3.3), for the following two reasons.

(i) Both C̺M1 and C̺ ● are the identity function on objects.

(ii) For objects x, y ∈ C, the (x, y)-component strictly unital symmetric
monoidal functors

C(x, y) FM1EndM1C(x, y) = F●End●C(x, y)̺
M1

C(x,y)

̺
●

C(x,y)

are equal by the definition (5.5.9) of ̺M1.
The equality (12.5.11) implies the equality of functors

C∗
̺M1 = C∗̺ ● ∶ Psu-Cat(CFM1EndM1

, Psu) Psu-Cat(C,Psu).
Thus the right triangle in (12.5.9) commutes by the definition (12.3.2) of

(F●)̺ ●★ .

In summary, the diagram (12.5.9) factors (FM1)̺M1

★ through (F●)̺ ●★ . ◇
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Explanation 12.5.12 ((FM1)̺M1

★ on Objects). The functor (FM1)̺M1

★ in (12.5.9) has

an analogous description as (F●)̺ ●★ in Explanations 12.3.5 and 12.3.11 by replac-
ing End●, F●, ̺

●
, and M∗ with EndM1, FM1, ̺M1, and ModM1, respectively. More

explicitly, (FM1)̺M1

★ sends a ModM1-functor

(12.5.13) A ∶ CEndM1
ModM1

to the following composite Psu-functor.

(12.5.14)
C

CFM1EndM1
(CEndM1

)FM1
(ModM1)FM1

Psu
(FM1)̺

M1

★ A

C̺M1

AFM1

F̂M1

● C̺M1 is the Psu-functor in (12.5.10).

● AFM1
is the image of A under the change-of-enrichment 2-functor

(12.5.15) (−)FM1
∶ModM1-Cat Psu-Cat

along FM1 (Theorem 4.4.1 and Proposition 7.1.9).

● F̂M1 is the standard enrichment Psu-functor of FM1 (Theorem 9.2.12).

The Psu-functor in (12.5.14) sends each object x ∈ C to

(12.5.16) ((FM1)̺M1

★ A)x = FM1(Ax) = F●UM1(Ax) in Psu,

with the second equality from the definition (5.5.2) of FM1.
For objects x, y ∈ C, the (x, y)-component of the Psu-functor in (12.5.14) is the

following composite strictly unital symmetric monoidal functor.

(12.5.17)
C(x, y) Psu(FM1(Ax) , FM1(Ay))

FM1EndM1C(x, y) FM1Hom∗(Ax, Ay)

((FM1)̺
M1

★ A)x,y

̺
M1

C(x,y)
FM1 Ax,y

(F̂M1)Ax,Ay

By the factorization (12.5.9), there is an equality of strictly unital symmetric mon-
oidal functors

((FM1)̺M1

★ A)
x,y
= ((F●)̺ ●★ ((UM1)★A))

x,y

with the left-hand side from (12.5.17) and the right-hand side from (12.3.10). ◇
Explanation 12.5.18 ((FM1)̺M1

★ on Morphisms). Consider a ModM1-natural trans-
formation ψ (Definition B.1.10) as in the left diagram below.

CEndM1
ModM1

A

B

⇒

ψ C Psu

(FM1)̺
M1

★ A

(FM1)̺
M1

★ B

⇒

(FM1)̺
M1

★ ψ
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The Psu-natural transformation (FM1)̺M1

★ ψ, as in the right diagram above, is the
following whiskering.

(12.5.19) C CFM1EndM1
(CEndM1

)FM1
(ModM1)FM1 Psu

C̺M1

AFM1

BFM1

F̂M1⇒

ψFM1

The whiskering (12.5.19) is the one in (11.1.16) in the current context and is an
analog of (12.3.12).

● The Psu-functors C̺M1 and F̂M1 are as in (12.5.14).

● ψFM1
is the change of enrichment of ψ under (−)FM1

in (12.5.15).

Next we describe the components of (FM1)̺M1

★ ψ explicitly. For each object x ∈
C, the x-component of ψ is a leftM1-module morphism

ψx ∶M1 Hom∗(Ax, Bx).
By the ∧-Hom∗ adjunction in ModM1 (Proposition 1.3.17 (7)), ψx is uniquely deter-
mined by its adjoint, which is a left M1-module morphism that we also denote
by

(12.5.20) ψx ∶ Ax Bx.

On the other hand, by (12.5.16) the x-component of (FM1)̺M1

★ ψ is a nullary multi-
morphism

((FM1)̺M1

★ ψ)
x
∶ ⟨⟩ Psu(FM1(Ax),FM1(Bx)) in Psu.

This means a choice of an object in Psu(FM1(Ax),FM1(Bx)). This, in turn, means a
strictly unital symmetric monoidal functor FM1(Ax) FM1(Bx). Using (11.1.18)
in the current context, we obtain the x-component

((FM1)̺M1

★ ψ)
x
= FM1(ψx)
= F●UM1(ψx) ∶ FM1(Ax) FM1(Bx)

by applying FM1 = F●UM1 to ψx in (12.5.20). By Definition 4.1.12 F●UM1(ψx) is a
strict symmetric monoidal functor. ◇

12.6. Homotopy Equivalent Multicategorical andM1-Modules Enriched
Diagrams

As we discuss in (12.4.9), enriched diagrams in ModM1 and Multicat∗ are con-
nected by two zigzags of equivalences of homotopy theories:

((FM1)̺M1

★ , (F●)̺ ●★ ) and ((EndM1)★ , (End ●)★).
Each of these two zigzags goes through enriched diagrams in PermCatsu. In this
section we apply Theorems 11.4.14 and 11.4.24 to show that the categories of en-
riched diagrams and Mackey functors in ModM1 and Multicat∗ are directly con-
nected by inverse equivalences of homotopy theories. See Theorem 12.6.6 and the
summary in Explanation 12.6.9. We explain these functors further in Section 12.7.
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Context. For the context first recall the diagram

(12.6.1) Multicat∗ ModM1
M1∧−

UM1

consisting of

● the Cat-multicategory Multicat∗ in Explanation 1.2.9,
● the Cat-multicategory ModM1 in Explanation 1.3.24,
● the Cat-multifunctorM1∧− in Proposition 1.3.26.
● the Cat-multifunctor UM1 in Explanation 1.3.29, and

The two composite functors in (12.6.1) are connected to the respective iden-
tity functors via the following Cat-multinatural transformations from Proposi-

tion 1.3.31, where ε̂−1 denotes the inverse of ε̂.

(12.6.2) Multicat∗ Multicat∗

1

UM1(M1∧−)

⇒

η̂ ModM1 ModM1

1

(M1∧−)UM1

⇒

ε̂
−1

The underlying categories of Multicat∗ and ModM1 are equipped with the relative
category structures in (4.7.2):

(12.6.3) (Multicat∗ , S●) and (ModM1 , SM1).
By Theorem 4.8.1 the functors in (12.6.1) are inverse equivalences of homotopy
theories. The algebra version is Theorem 5.5.14.

● The wide subcategory of F●-stable equivalences

S● = F−1
● (S) ⊂Multicat∗

is created by the functor

F● ∶Multicat∗ PermCatsu .

The wide subcategory S ⊂ PermCatsu is created by Segal K-theory KSe; see
(2.5.14). For a small ModM1-category D, the wide subcategory in (12.6.7)
below

(12.6.4) (S●)▴ ⊂Multicat∗-Cat(DUM1
,Multicat∗)

is defined as in (11.4.2) using S●.
● The wide subcategory of FM1-stable equivalences

SM1 = F−1
M1(S) ⊂ModM1

is created by the functor

FM1 ∶ModM1 PermCatsu .

The wide subcategory in (12.6.7) below

(12.6.5) SM1
▴ ⊂ModM1-Cat(D,ModM1 )

is defined as in (11.4.2) using SM1.
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Equivalences of Homotopy Theories. In Theorem 4.8.1 we observe that the
pair (M1 ∧ −,UM1) is an adjoint equivalence of homotopy theories. The follow-
ing observation extends these equivalences of homotopy theories to categories of
enriched diagrams and Mackey functors.

Theorem 12.6.6. Suppose D is a small ModM1-category. Then the functors

(12.6.7) (Multicat∗-Cat(DUM1
,Multicat∗) , (S●)▴) (ModM1-Cat(D,ModM1 ) , SM1

▴ ),(M1∧−)ε̂−1

★

∼

(UM1)★
defined by the data in (12.6.1) through (12.6.5), are inverse equivalences of homotopy
theories.

Moreover, the variant with (DUM1
)op and Dop replacing, respectively, DUM1

and D

is also true.

Proof. The first assertion is an instance of Theorem 11.4.14, which is applicable
in the current setting as we now explain. Following the summary in Explana-
tion 11.4.23, first we verify that Definition 11.1.1 (i) through (v) are satisfied in the
current context.

(i) M =Multicat∗ and N =ModM1 are closed multicategories by
● Proposition 8.1.16 and
● the fact that they are symmetric monoidal closed categories (Theo-

rem 1.2.8 and Proposition 1.3.17).
(ii) D is, by assumption, a small ModM1-category.

(iii) F =M1∧− in (12.6.1) is a multifunctor by Proposition 1.3.26, and E = UM1

is a multifunctor by Explanation 1.3.29.

(iv) κ = η̂ and ξ = ε̂−1 in (12.6.2) are multinatural transformations by Proposi-
tion 1.3.31.

(v) In the current setting, the condition (11.1.2) is the equality of the follow-
ing two pointed multifunctors for each pair of objects x, y ∈ D.

UM1D(x, y) UM1(M1∧−)UM1D(x, y)η̂UM1D(x,y)

UM1 ε̂
−1
D(x,y)

Since D(x, y) is a left M1-module, the equality of these two arrows fol-
lows from the right triangle identity (A.2.12) of the 2-adjunction

(12.6.8) ((M1∧−),UM1, η̂, ε̂) ∶Multicat∗ ModM1

in Proposition 1.3.19.

Thus Definition 11.1.1 (i) through (v) hold in the context of (12.6.1) through (12.6.5).
Next, the only assumption in Definition 11.4.7 is that the relative category

(N,X ) = (ModM1 , SM1)
is a category with weak equivalences (Definition 2.1.6 (6)). This is true for the
following two reasons.

● By Definition 4.7.1 the wide subcategory SM1 ⊂ ModM1 is created by the
functor

FM1 ∶ModM1 PermCatsu .

● The class of stable equivalences S ⊂ PermCatsu contains all the isomor-
phisms and has the 2-out-of-3 property.
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By (4.4.5) and (4.7.2) there are equalities of wide subcategories as follows.

F−1X = (M1∧−)−1(SM1)
= (M1∧−)−1F−1

M1(S)
= F−1

● (S)
= S● ⊂Multicat∗

The data in (12.6.7) are those in (11.4.15) in the current context.
Finally, we observe that the components of η̂ and ε̂−1 are stable equivalences.

● Each component of ε̂−1 (1.3.22) is an isomorphism, hence also an FM1-

stable equivalence in ModM1.
● The left triangle identity (A.2.12) for the 2-adjunction (12.6.8) and the 2-

out-of-3 property imply that each component of η̂ is an F●-stable equiva-
lence in Multicat∗.

Thus Theorem 11.4.14 is applicable in the current setting, proving the first asser-
tion.

The second assertion about (DUM1
)op andDop is an instance of Theorem 11.4.24.

It is applicable because UM1 is a multifunctor (Explanation 1.3.29). �

Explanation 12.6.9 (Homotopy Equivalent Categories of Modules). The categor-
ies of enriched diagrams in (12.6.7) are categories of left modules by Proposi-
tions 10.1.8 and 10.1.17. Thus, Theorem 12.6.6 asserts that, for each small ModM1-
category D, the functors in (12.6.7) are equivalences of homotopy theories between

● left D-modules in ModM1 and
● left DUM1

-modules in Multicat∗.

Furthermore, these equivalences of homotopy theories still hold if D and DUM1
are

replaced by Dop and (DUM1
)op, respectively. We explain the functors (UM1)★ and

(M1∧−)ε̂−1

★ in (12.6.7) in more detail in Section 12.7 below.
We use the abbreviations in (12.2.1), so

M∗ =Multicat∗ and Psu = PermCatsu .

Theorems 12.1.6, 12.4.6, and 12.6.6 together yield the following diagram of inverse
equivalences of homotopy theories for each small PermCatsu-category C.

(12.6.10)

(ModM1-Cat(CEndM1
, ModM1 ) , SM1

▴ )

(Psu-Cat(C , Psu) , S▴)

(M∗-Cat(CEnd ● , M∗) , (S●)▴)

(UM1)★(M1∧−)ε̂−1

★

(FM1)̺
M1

★(EndM1)★

(F●)̺
●

★
(End ●)★

Moreover, by (12.5.3) and (12.5.9), the factorizations

(End●)★ = (UM1)★(EndM1)★ and

(FM1)̺M1

★ = (F●)̺ ●★ (UM1)★
hold in (12.6.10). ◇
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12.7. Explanation of the Equivalences of Homotopy Theories

In this section we explain in detail the inverse equivalences of homotopy the-

ories (UM1)★ and (M1∧−)ε̂−1

★ in (12.6.7). We use the abbreviation

M∗ =Multicat∗

and denote by D a small ModM1-category (Definition B.1.1). This section is orga-
nized as follows.

● Explanation 12.7.1 describes the functor (UM1)★.

● Explanation 12.7.3 describes (M1∧−)ε̂−1

★ on objects.

● Explanation 12.7.7 describes (M1∧−)ε̂−1

★ on morphisms.

Explanation 12.7.1 (The Functor (UM1)★). The diagram change-of-enrichment
functor

ModM1-Cat(D , ModM1 ) M∗-Cat(DUM1
, M∗)(UM1)★

is defined in (10.2.3) and verified in Theorem 10.3.1. To understand its assignments
on objects and morphisms, consider

● ModM1-functors A, B ∶ D ModM1 (Definition B.1.8) and
● a ModM1-natural transformation ψ ∶ A B (Definition B.1.10)

as in the left diagram below.

(12.7.2) D ModM1 DUM1
(ModM1)UM1

M∗

A

B

(UM1)★⇒

ψ

AUM1

BUM1

ÛM1⇒

ψUM1

Then (UM1)★ sends A, B, and ψ to the composites and whiskering as in the right
diagram in (12.7.2). In other words, the functor (UM1)★

● first applies the change-of-enrichment 2-functor along the multifunctor
UM1 ((1.3.30) and Proposition 7.1.9)

(−)UM1
∶ModM1-Cat M∗-Cat

and then
● composes or whiskers with the standard enrichment ÛM1 (Theorem 9.2.12).

Next we describe the object assignment and components of (UM1)★A. For each
object x ∈ D, the object assignment of (UM1)★A is

((UM1)★A)x = UM1(Ax) in M∗.

For objects x, y ∈ D, the (x, y)-component of A is a leftM1-module morphism

Ax,y ∶ D(x, y) Hom∗(Ax, Ay).
Its adjoint in ModM1 is a morphism

A#
x,y ∶ D(x, y)∧ Ax Ay.
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The (x, y)-component of (UM1)★A is the following composite in ModM1.

UM1D(x, y)

UM1Hom∗(Ax, Ay)

Hom∗(UM1(Ax) , UM1(Ay))((UM1)★A)
x,y

UM1(Ax,y) (ÛM1)Ax,Ay

Its adjoint in ModM1 is the following composite, with U2
M1 the monoidal constraint

of UM1, which is the identity by Explanation 1.3.27.

UM1D(x, y)∧UM1(Ax)

UM1(D(x, y)∧ Ax)

UM1(Ay)((UM1)★A)#
x,y

U
2
M1 UM1(A#

x,y)

The x-component of (UM1)★ψ is the morphism

((UM1)★ψ)
x
= UM1(ψx) ∶ UM1(Ax) UM1(Bx) in M∗.

This is obtained from the x-component of ψ by applying UM1. ◇
Explanation 12.7.3 ((M1 ∧ −)ε̂−1

★ on Objects). We abbreviate the top functor in
(12.6.7) to

(12.7.4) H = (M1∧−)ε̂−1

★ ∶M∗-Cat(DUM1
, M∗) ModM1-Cat(D,ModM1).

The functor H sends an M∗-functor

P ∶ DUM1
M∗

to the following composite ModM1-functor.

(12.7.5)

D

D(M1∧−)UM1
(DUM1

)M1∧− (M∗)M1∧−

ModM1HP

Dε̂−1

PM1∧−

M̂1∧−

● The ModM1-functor Dε̂−1 is the D-component of the 2-natural transforma-
tion (Proposition 7.5.5)

ModM1-Cat ModM1-Cat

1

(−)(M1∧−)UM1
= (−)M1∧− (−)UM1

⇒

(−)ε̂−1

induced by the multinatural transformation (Proposition 1.3.31)

ε̂−1 ∶ 1
ModM1 (M1∧−)UM1.

● PM1∧− is the image of P under the change-of-enrichment 2-functor

(12.7.6) (−)M1∧− ∶M∗-Cat ModM1-Cat

along the multifunctorM1∧− (Propositions 1.3.26 and 7.1.9).

● M̂1∧− is the standard enrichment ModM1-functor of M1 ∧ − (Theo-
rem 9.2.12).
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The ModM1-functor HP in (12.7.5) sends each object x ∈ D to

(HP)x =M1∧ Px in ModM1 .

For objects x, y ∈ D, the (x, y)-component of P is a pointed multifunctor

Px,y ∶ UM1D(x, y) Hom∗(Px, Py).
Its adjoint in M∗ is a pointed multifunctor

P#
x,y ∶ UM1D(x, y)∧ Px Py.

The (x, y)-component of HP is the following composite morphism in ModM1.

D(x, y)

M1∧UM1D(x, y) M1∧Hom∗(Px, Py)

Hom∗(M1∧ Px,M1∧ Py)(HP)x,y

ε̂
−1
D(x,y) ≅

M1∧ Px,y

(M̂1∧−)Px,Py

The adjoint of (HP)x,y in ModM1 is the following composite, with∏1,1 the partition

product in (1.3.7).

D(x, y)∧ (M1∧ Px)

(M1∧UM1D(x, y))∧ (M1∧ Px) (M1∧M1)∧ (UM1D(x, y)∧ Px)

M1∧ Py
(HP)#x,y

ε̂
−1
D(x,y) ∧ 1 ≅

≅
permute

∏1,1 ∧ P#
x,y

The bottom horizontal isomorphism permutes the middle two factors. ◇
Explanation 12.7.7 ((M1∧−)ε̂−1

★ on Morphisms). Consider an M∗-natural transfor-
mation ψ (Definition B.1.10) as in the left diagram below.

DUM1
M∗

P

Q

⇒

ψ D ModM1

HP

HQ

⇒

Hψ

With the notation in (12.7.4), the ModM1-natural transformation Hψ, as in the right
diagram above, is the following whiskering.

(12.7.8)

D

D(M1∧−)UM1
(DUM1

)M1∧− (M∗)M1∧−

ModM1

Dε̂−1 PM1∧−

QM1∧−

M̂1∧−

⇒

ψM1∧−

The whiskering (12.7.8) is the one in (11.1.16) in the current context. It is obtained
from (12.7.5) by replacing P with ψ.

● The ModM1-functors Dε̂−1 and M̂1∧− are as in (12.7.5).
● ψM1∧− is the change of enrichment of ψ under (−)M1∧− in (12.7.6).

For each object x ∈ D, the x-component of ψ is a pointed multifunctor

ψx ∶ Px Qx.

The x-component of Hψ is the following morphism in ModM1.

(Hψ)x =M1∧ψx ∶M1∧ Px M1∧Qx
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This is obtained from ψx by applyingM1∧− (Proposition 1.3.19). ◇
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APPENDIX A

Categories

In this appendix we review monoidal categories and 2-categories. The follow-
ing table summarizes the main content in this appendix.

A.1. Monoidal Categories

Grothendieck universes A.1.1 and A.1.2

monoidal categories (braided, symmetric, closed) A.1.3 (A.1.10, A.1.14, A.1.19)

monoids, modules, and commutative monoids A.1.8, A.1.9, and A.1.18

diagram categories A.1.20

monoidal functors and natural transformations A.1.22 and A.1.27

A.2. 2-Categories

2-categories, 2-functors, and 2-natural transformations A.2.1, A.2.4, and A.2.7

2-category of small (permutative, 2-) categories A.2.2 (A.2.3, A.2.10)

2-adjunctions A.2.11

References for Appendices A.1 and A.2 are [JS93, ML98, Yau∞a, Yau∞b] and
[JY21], respectively.

A.1. Monoidal Categories

In this section we review Grothendieck universes, monoidal categories, mon-
oidal functors, and monoidal natural transformations.

Definition A.1.1. A universe is a set U that satisfies (i) through (iv) below:

(i) If a ∈ U and b ∈ a, then b ∈ U .
(ii) If a ∈ U , then P(a) ∈ U , where P(a) is the set of subsets of a.

(iii) If a ∈ U and xj ∈ U for each j ∈ a, then the union ⋃j∈a xj ∈ U .
(iv) N ∈ U , whereN is the set of finite ordinals. ◇

Convention A.1.2 (Universe). We assume Grothendieck’s Axiom of Universes:

Every set belongs to some universe.

We fix a universe U . An element in U is called a set. A subset of U is called a class.
A categorical structure is called small if it has a set of objects. We automatically
replace U by a larger universe V in which U is a set whenever necessary. For more
discussion of universes, see [JY21, Section 1.1] and [AGV72, ML69]. ◇
Definition A.1.3. A monoidal category is a sextuple

(C,⊗,1, α, λ, ρ)
consisting of the following data.

● C is a category.
● ⊗ ∶ C×C C is a functor, which is called the monoidal product.

317
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● 1 ∈ C is an object, which is called the monoidal unit.
● α, λ, and ρ are natural isomorphisms with the following components for

objects x, y, z ∈ C.

(x⊗ y)⊗ z x⊗ (y⊗ z)αx,y,z

≅

1⊗ x x x ⊗ 1λx

≅ ≅
ρx

They are called the associativity isomorphism, the left unit isomorphism, and
the right unit isomorphism, respectively.

The data above are required to make the following middle unity and pentagon dia-
grams commute for objects w, x, y, z ∈ C, where ⊗ is omitted to save space.

(A.1.4)
(x1)y x(1y)

xy

ρx1y

αx,1,y

1xλy

(wx)(yz)
((wx)y)z w(x(yz))

(w(xy))z w((xy)z)

αwx,y,z αw,x,yz

αw,x,y1z

αw,xy,z

1wαx,y,z

This finishes the definition of a monoidal category. Moreover, we define the fol-
lowing.

● We call a monoidal category strict if α, λ, and ρ are identity natural trans-
formations.
● We also call a (monoidal) category a (monoidal) 1-category. ◇

Remark A.1.5 (Unity Properties). In each monoidal category, the unit isomor-
phisms agree at the monoidal unit:

(A.1.6) λ1 = ρ1 ∶ 1⊗ 1 1.

Moreover, the following unity diagrams commute.

(A.1.7)

(1⊗ x)⊗ y 1⊗ (x⊗ y)

x⊗ y
λx⊗1y

α1,x,y

λx⊗y

(x⊗ y)⊗ 1 x⊗ (y⊗ 1)

x⊗ y
ρx⊗y

αx,y,1

1x⊗ρy

See [JY21, Section 2.2] for the proofs. ◇
Definition A.1.8. A monoid in a monoidal category C is a triple (x,m, i) consisting
of the following data.

● x ∈ C is an object.
● m ∶ x⊗ x x is a morphism, which is called the multiplication.
● i ∶ 1 x is a morphism, which is called the unit.

The data above are required to make the following associativity and unity dia-
grams commute.

(x⊗ x)⊗ x x⊗ (x⊗ x)

x⊗ x

x⊗ x x

m⊗1x

α

1x⊗m

m

m

1⊗ x

x⊗ x x

x⊗ 1

i⊗1x
λx

m

1x⊗i ρx
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A morphism of monoids

(x,mx, ix) (y,my, iy)f

is a morphism f ∶ x y in C such that the diagrams

x⊗ x y⊗ y

x y

mx

f⊗ f

my

f

1 x

y
iy

ix

f

commute. ◇
Definition A.1.9. Suppose (x,m, i) is a monoid in a monoidal category (C,⊗,1).

(1) A left x-module is a pair (a, µ) consisting of the following data.
● a is an object in C.
● µ ∶ x⊗ a a is a morphism, called the structure morphism.

The data above are required to make the following associativity and unity
diagrams commute.

(x⊗ x)⊗ a x⊗ (x⊗ a)

x⊗ a

x⊗ a a

m⊗1a

α

1x⊗µ

µ

µ

1⊗ a

x⊗ a a

i⊗1a
λa

µ

(2) A morphism of left x-modules

(a, µa) (b, µb)f

is a morphism f ∶ a b in C such that the following diagram com-
mutes.

x ⊗ a x⊗ b

a b

µa

1x⊗ f

µb

f

(3) Right x-modules, with structure morphisms a ⊗ x a, and their mor-
phisms are defined similarly. ◇

Definition A.1.10. A braided monoidal category is a pair (C, ξ) consisting of the fol-
lowing data.

● C is a monoidal category (Definition A.1.3).
● ξ is a natural isomorphism, which is called the braiding, with components

x⊗ y
ξx,y

≅ y⊗ x for x, y ∈ C.
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The hexagon diagrams

(A.1.11) y⊗ (z⊗ x)

y⊗ (x⊗ z)(y⊗ x)⊗ z

(x⊗ y)⊗ z

x⊗ (y⊗ z) (y⊗ z)⊗ x

ξ⊗x,y⊗1z

α

1y⊗ξ⊗x,z

α

ξ⊗x,y⊗z

α

(z⊗ x)⊗ y

(x⊗ z)⊗ yx⊗ (z⊗ y)

x⊗ (y⊗ z)

(x⊗ y)⊗ z z⊗ (x⊗ y)

1x⊗ξ⊗y,z

α−1

ξ⊗x,z⊗1y

α−1

ξx⊗y,z

α−1

are required to commute for objects x, y, z ∈ C. ◇
Remark A.1.12 (Unity Properties). In each braided monoidal category, the follow-
ing unity diagrams commute for each object x.

(A.1.13)
x⊗ 1 1⊗ x

x
ρx

ξx,1

λx

1⊗ x x⊗ 1

x
λx

ξ1,x

ρx

See [Yau∞b, 1.3.21] for the proof. ◇
Definition A.1.14. A symmetric monoidal category is a pair (C, ξ) consisting of the
following data.

● C is a monoidal category (Definition A.1.3).
● ξ is a natural isomorphism, which is called the symmetry isomorphism or

the braiding, with components

x⊗ y
ξx,y

≅ y⊗ x for x, y ∈ C.

The data above are required to make the following symmetry and hexagon dia-
grams commute for objects x, y, z ∈ C.

(A.1.15)

x ⊗ y x ⊗ y

y⊗ x

1x⊗y

ξx,y ξy,x

(y⊗ x)⊗ z y⊗ (x⊗ z)

(x⊗ y)⊗ z y⊗ (z⊗ x)

x ⊗ (y⊗ z) (y⊗ z)⊗ x

ξx,y ⊗ 1z

α

1y ⊗ ξx,z

α

ξx,y⊗z

α

A permutative category is a strict symmetric monoidal category. For a generic per-
mutative category, we often write its monoidal product and monoidal unit as ⊕
and e, respectively. ◇
Remark A.1.16 (Symmetry Implies Braided). The symmetry axiom, ξy,xξx,y = 1,
implies that the hexagons (A.1.11) are equivalent. Thus, a symmetric monoidal
category is precisely a braided monoidal category that satisfies the symmetry ax-
iom. As a result, the unity diagrams (A.1.13) commute in each symmetric monoi-
dal category. ◇

The following permutative category plays an important role in both Segal and
Elmendorf-Mandell K-theory (Sections 2.3 and 2.4).
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Definition A.1.17 (Pointed Finite Sets). We define the permutative category

(F ,∧, 1, ξ)
as follows.

Objects: The objects in F are the pointed finite sets

n = {0, . . . , n} for n ≥ 0

with basepoint 0.
Morphisms: For m, n ≥ 0, the set of morphisms F(m, n) is the set of pointed func-

tions m n, that is, functions that preserve the basepoint 0.
Monoidal Product: It is given on objects by the smash product of pointed finite

sets and the lexicographic ordering,

m ∧ n = mn.

It is given explicitly by the identification

m ∧ n ∋ (i, j) ⎧⎪⎪⎨⎪⎪⎩
0 ∈ mn if either i or j is 0, and

(i − 1)n+ j ∈ mn if i, j > 0.

This extends to pointed functions by functoriality of the smash product
of pointed finite sets. The monoidal product is strictly associative.

Monoidal Unit: The strict monoidal unit is 1 = {0, 1}.
Braiding: Its component at m, n is the pointed bijection

m ∧ n n∧m
ξm,n

≅
given by

m ∧ n ∋ (i, j)
⎧⎪⎪⎨⎪⎪⎩

0 if either i or j is 0, and

(j, i) if i, j > 0.

This finishes the definition of F . ◇
Definition A.1.18. In a symmetric monoidal category (C, ξ), a commutative monoid
is a monoid (x,m, i) as in Definition A.1.8 such that the diagram

x⊗ x x⊗ x

x
m

ξx,x

m

commutes. ◇
Definition A.1.19. A symmetric monoidal category (C,⊗) is closed if, for each ob-
ject x ∈ C, the functor

−⊗ x ∶ C C

admits a right adjoint, which is called an internal hom. A right adjoint of −⊗ x is
denoted by Hom(x,−) or [x,−]. ◇
Definition A.1.20 (Diagrams). For a small categoryB and a category C, the diagram
category B-C is defined by the following data.

● Its objects are functors B C.
● Its morphisms are natural transformations between such functors.
● Identity morphisms are identity natural transformations.
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● Composition is vertical composition of natural transformations.

Moreover, we define the following.

● A B-diagram in C is a functor B C.
● For the category Cat of small categories and functors, a functor B Cat

is called a B-indexed category. ◇
Example A.1.21 (Small Categories). (Cat,×, 1, [, ]) is a symmetric monoidal closed
category, where Cat is the category of small categories and functors.

● The monoidal product is the Cartesian product, denoted ×.
● The monoidal unit is the terminal category 1 with only one object ∗ and

its identity morphism 1∗.
● The closed structure [, ] is given by diagram categories (Definition A.1.20).

The category Cat is both complete and cocomplete. For an elementary proof of its
cocompleteness, see [Yau20b, Section 1.4]. ◇

Monoidal Functors and Natural Transformations.

Definition A.1.22. Suppose C and D are monoidal categories. A monoidal functor

(F, F2, F0) ∶ C D

is a triple consisting of the following data.

● F ∶ C D is a functor.
● F0 ∶ 1 F1 is a morphism in D, which is called the unit constraint.

● F2 is a natural transformation, which is called the monoidal constraint,
with components

Fx⊗ Fy F(x ⊗ y)F2
x,y

for x, y ∈ C.

The data above are required to make the following unity and associativity dia-
grams commute for objects x, y, z ∈ C.

(A.1.23)

1⊗ Fx Fx

F1⊗ Fx F(1⊗ x)
F0
⊗1Fx

λFx

F2

Fλx

Fx⊗ 1 Fx

Fx⊗ F1 F(x ⊗ 1)
1Fx⊗F0

ρFx

F2

Fρx

(A.1.24)

(Fx⊗ Fy)⊗ Fz Fx ⊗ (Fy⊗ Fz)

F(x⊗ y)⊗ Fz Fx ⊗ F(y⊗ z)

F((x⊗ y)⊗ z) F(x⊗ (y⊗ z))

α

F2
⊗1Fz 1Fx⊗F2

F2 F2

Fα

A monoidal functor (F, F2, F0) is

● strictly unital if F0 is the identity morphism;

● strong if F0 and F2 are isomorphisms; and

● strict if F0 and F2 are identities.
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An identity monoidal functor has F, F0, and F2 all given by identities.

Moreover, a monoidal functor (F, F2, F0) between braided monoidal categor-
ies C and D (Definition A.1.10) is a braided monoidal functor if the following diagram
commutes for objects x, y ∈ C.

(A.1.25)

Fx⊗ Fy Fy⊗ Fx

F(x⊗ y) F(y⊗ z)
F2

ξFx,Fy

≅
F2

Fξx,y

≅

A symmetric monoidal functor is a braided monoidal functor between symmetric
monoidal categories (Definition A.1.14). ◇
Definition A.1.26. Suppose given monoidal functors

C
(F, F2, F0)

D
(G, G2, G0)

E.

The composite monoidal functor

C
(GF, (GF)2, (GF)0)

E

has unit constraint given by the composite

1
G0

G1
G(F0)

GF1

and monoidal constraint given by the composite

GFx⊗GFy
G

2
Fx,Fy

G(Fx⊗ Fy) G(F2
x,y)

GF(x⊗ y)
for objects x, y ∈ C. ◇
Definition A.1.27. Suppose

(F, F2, F0) and (G, G2, G0) ∶ C D

are monoidal functors between monoidal categories C and D. A monoidal natural
transformation θ ∶ F G is a natural transformation of the underlying functors
such that the following unit constraint and monoidal constraint diagrams in D

commute for objects x, y ∈ C.

(A.1.28)

1 F1

G1

Fx⊗ Fy Gx⊗Gy

F(x⊗ y) G(x⊗ y)

F0

G0
θ1

θx ⊗ θy

G2F2

θx⊗y

A (monoidal) natural transformation is also denoted by

(A.1.29) C D

F

G

⇒

θ

and is called a 2-cell. ◇
Detailed discussion of pasting diagrams involving 2-cells is in [JY21, Ch. 3].
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Convention A.1.30 (Left Normalized Bracketing). An iterated monoidal product
is left normalized with the left half of each pair of parentheses at the far left, unless
a different bracketing is specified. An empty monoidal product is the monoidal
unit. ◇
Explanation A.1.31. As an example of Convention A.1.30, we denote

w⊗ x⊗ y⊗ z = ((w⊗ x)⊗ y)⊗ z.

We omit parentheses for iterated monoidal products and tacitly insert the neces-
sary associativity and unit isomorphisms. This is justified by Mac Lane’s Stric-
tification Theorem [ML98, XI.3.1]: Each monoidal category C admits a canonical
strong monoidal adjoint equivalence C ⇄ Cst with Cst a strict monoidal category.
The analogous braided and symmetric strictification theorems are in [Yau22, 21.3.1
and 21.6.1]. In each case, since an equivalence is full and faithful, the strict dia-
grams commute if and only if their preimages in C commute. ◇

A.2. 2-Categories

In this section we review

● 2-categories, 2-functors, 2-natural transformations, 2-adjunctions, and
● the 2-categories of small categories, small permutative categories, and

small 2-categories.

Definition A.2.1. A 2-category A consists of the following data.

Objects: It is equipped with a class A0 of objects.
1-Cells: For each pair of objects a, b ∈ A0, it is equipped with a class

A1(a, b)
of 1-cells from a to b. Such a 1-cell is denoted a b.

2-Cells: For 1-cells f , f ′ ∈ A1(a, b), it is equipped with a set

A2( f , f ′)
of 2-cells from f to f ′. Such a 2-cell is denoted f f ′.

Identities: A is equipped with
● an identity 1-cell

1a ∈ A1(a, a)
for each object a and
● an identity 2-cell

1 f ∈ A2( f , f )
for each 1-cell f ∈ A1(a, b).

Compositions: In the following compositions, a, b, and c denote objects in A.
● For 1-cells f , f ′, f ′′ ∈ A1(a, b), it is equipped with an assignment

A2( f ′, f ′′)×A2( f , f ′) A2( f , f ′′)v
, v(θ′, θ) = θ′θ

called the vertical composition of 2-cells.
● It is equipped with an assignment

A1(b, c)×A1(a, b) A1(a, c)h1
, h1(g, f ) = g f

called the horizontal composition of 1-cells.
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● For 1-cells f , f ′ ∈ A1(a, b) and g, g′ ∈ A1(b, c), it is equipped with an
assignment

A2(g, g′)×A2( f , f ′) A2(g f , g′ f ′)h2
, h2(φ, θ) = φ ∗ θ

called the horizontal composition of 2-cells.

The data above are required to satisfy (i) through (iv) below:

(i) Vertical composition is associative and unital for identity 2-cells.
(ii) Horizontal composition preserves vertical composition and identity 2-

cells.
(iii) Horizontal composition of 1-cells is associative and unital for identity 1-

cells.
(iv) Horizontal composition of 2-cells is associative and unital for identity 2-

cells of identity 1-cells.

This finishes the definition of a 2-category.
Moreover, we define the following.

● For objects a and b in a 2-category A, the hom category A(a, b) is the cate-
gory defined by the following data.

– Objects are 1-cells from a to b.
– Morphisms are 2-cells between 1-cells a b.
– Composition is vertical composition of 2-cells.
– Identities are identity 2-cells.

● A 2-category is locally small if each hom category is small.
● A 2-category is small if it has a set of objects and is locally small.
● The underlying 1-category of a 2-category is defined as follows.

– It has the same class of objects.
– Morphisms are 1-cells.
– Composition is horizontal composition of 1-cells.
– Identity morphisms are identity 1-cells.

We also use the 2-cell notation (A.1.29) for 2-cells in a 2-category. ◇
Example A.2.2 (Small Categories). The category Cat in Example A.1.21 is the un-
derlying 1-category of a 2-category, in which the 2-cells are natural transforma-
tions. Horizontal, respectively vertical, composition of 2-cells in Cat is the same as
that of natural transformations. ◇
Definition A.2.3 (Small Permutative Categories). Denote by

PermCat

the 2-category with

● small permutative categories as objects,
● symmetric monoidal functors as 1-cells, and
● monoidal natural transformations as 2-cells.

Moreover, we define the following locally-full sub-2-categories of PermCat with
the same objects but restricting the 1-cells.

● PermCatsu has 1-cells given by strictly unital symmetric monoidal func-
tors.
● PermCatsg has 1-cells given by strong symmetric monoidal functors.
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● PermCatsus has 1-cells given by strictly unital strong symmetric monoidal
functors.
● PermCatst has 1-cells given by strict symmetric monoidal functors.

In each case the 2-cells are given by monoidal natural transformations. ◇
The extensions of PermCatsu, PermCatsus, and PermCatst to Cat-multicategories

are in Theorem 1.4.29.

Definition A.2.4. For 2-categories A and B, a 2-functor F ∶ A B consists of the
following data.

Object Assignment: It is equipped with a function

A0 B0.
F0

1-Cell Assignment: For each pair of objects a, b in A, it is equipped with a function

A1(a, b) B1(F0a, F0b).F1

2-Cell Assignment: For each pair of objects a, b in A and 1-cells f , f ′ ∈ A1(a, b), it
is equipped with a function

A2( f , f ′) B2(F1 f , F1 f ′).F2

The data above are required to satisfy (i) through (iii) below, with each of F0, F1,
and F2 abbreviated to F:

(i) The object and 1-cell assignments of F form a functor from the underlying
1-category of A to the underlying 1-category of B.

(ii) For each pair of objects a, b in A, the 1-cell and 2-cell assignments of F
form a functor between hom categories:

A(a, b) B(Fa, Fb).F

(iii) F preserves horizontal composition of 2-cells.

This finishes the definition of a 2-functor.
Moreover, we define the following.

● The identity 2-functor 1A ∶ A A is defined by the identity assignments
on objects, 1-cells, and 2-cells.
● Given a 2-functor G ∶ B C, the composite GF is the 2-functor

A C
GF

defined by separately composing the assignments on objects, 1-cells, and
2-cells. ◇

Example A.2.5. In the context of Definition A.2.3, there are inclusion 2-functors as
follows.

(A.2.6) PermCatst PermCatsus

PermCatsu

PermCatsg

PermCat

Each 2-functor in (A.2.6) is the identity on
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● objects, which are small permutative categories, and
● 2-cells between each pair of 1-cells, which are monoidal natural transfor-

mations. ◇
Definition A.2.7. For 2-functors F, G ∶ A B between 2-categories A and B, a
2-natural transformation ϕ ∶ F G consists of, for each object a in A, a component
1-cell

Fa Ga in B
ϕa

such that the axioms (A.2.8) and (A.2.9) below hold:

1-Cell Naturality: For each 1-cell f ∶ a b in A, the following two composite
1-cells in B(Fa, Gb) are equal.

(A.2.8)

Fa Ga

Fb Gb

F f

ϕa

G f

ϕb

2-Cell Naturality: For each 2-cell θ ∶ f g in A(a, b), the two whiskered 2-cells
in the following diagram are equal.

(A.2.9)

Fa Ga

Fb Gb

ϕa

ϕb

F f Fg G f Gg
⇒
Fθ

⇒
Gθ

The axiom (A.2.9) means the following 2-cell equality in B(Fa, Gb):
Gθ ∗ 1ϕa = 1ϕb

∗ Fθ.

This finishes the definition of a 2-natural transformation.
Moreover, we define the following.

● We extend the 2-cell notation (A.1.29) to 2-natural transformations.
● A 2-natural isomorphism is a 2-natural transformation such that each com-

ponent 1-cell is an isomorphism in the underlying 1-category.
● Identity 2-natural transformations, horizontal composition of 2-natural

transformations, and vertical composition of 2-natural transformations
are defined componentwise. ◇

Example A.2.10 (Small 2-Categories). Analogous to Example A.2.2, there is a 2-
category 2Cat with

● small 2-categories as objects,
● 2-functors as 1-cells, and
● 2-natural transformations as 2-cells.

Horizontal, respectively vertical, composition of 2-cells in 2Cat is given by that
of 2-natural transformations. We also use the notation 2Cat for its underlying 1-
category. ◇
Definition A.2.11. Suppose A and B are 2-categories. A 2-adjunction from A to B is
a quadruple (F, G, η, ε) ∶ A B

consisting of the following data.

● F ∶ A B is a 2-functor, which is called the left adjoint.
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● G ∶ B A is a 2-functor, which is called the right adjoint.
● η ∶ 1A GF is a 2-natural transformation, which is called the unit.
● ε ∶ FG 1B is a 2-natural transformation, which is called the counit.

The data above are required to make the following two diagrams commute, where
∗ denotes horizontal composition of 2-natural transformations.

(A.2.12)
F FGF

F

G GFG

G

1F ∗ η

ε ∗ 1F
1F

η ∗ 1G

1G ∗ ε
1G

The two diagrams in (A.2.12) are called, respectively, the left triangle identity and
the right triangle identity. Such a 2-adjunction is also denoted F ⊣ G. ◇



APPENDIX B

Enriched Category Theory

In this appendix we review elements of enriched category theory. The follow-
ing table summarizes the main content in this appendix.

B.1. Enriched Categories

enriched categories, functors, and natural transformations B.1.1, B.1.8, and B.1.10

unit and opposite V-categories B.1.6 and B.1.13

Cat-categories as locally small 2-categories B.1.7

2-category V-Cat B.1.12

B.2. Enriched Monoidal Categories

tensor products and monoidal category of V-categories B.2.1 and B.2.6

monoidal V-categories (braided, symmetric) B.2.7 (B.2.13, B.2.16)

monoidal Cat-category (V-Cat,⊗) of V-categories B.2.6 and B.2.18

monoidal V-functors (braided, symmetric) B.2.20 (B.2.24)

monoidal V-natural transformations B.2.26

2-category V-MCat of monoidal V-categories B.2.27

B.3. Self-Enriched Symmetric Monoidal Categories

(co)evaluation B.3.1

canonical self-enrichment B.3.4 and B.3.8

symmetric monoidal V-category V B.3.7 and B.3.10

B.4. Change of Enrichment

change-of-enrichment 2-functor (−)U B.4.1 and B.4.6

composition of change-of-enrichment 2-functors B.4.7

monoidal Cat-functor (−)U ∶ (V-Cat,⊗) (W-Cat,⊗) B.4.8 and B.4.9

(−)U preserves enriched monoidal structure B.4.10

symmetric monoidal W-category VU B.4.11 and B.4.12

standard enrichment of a symmetric monoidal functor B.4.13, B.4.17, and B.4.18

The material in this chapter is adapted from [JY∞]; see also [Kel05]. We remind
the reader of Conventions A.1.2 and A.1.30.

B.1. Enriched Categories

In this section we review enriched variants of categories, functors, natural
transformations, and opposite categories. Suppose

(V,⊗,1, α, λ, ρ)
329
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is a monoidal category (Definition A.1.3). A braiding on V is not needed until
Definition B.1.13 of the opposite V-category. The material in this section is adapted
from [JY∞, Sections 1.1 and 1.2].

Definition B.1.1. A V-category C, which is also called a category enriched in V, con-
sists of the following data.

Objects: It is equipped with a class Ob(C), whose elements are called objects.
Hom Objects: Each pair of objects x, y in C is equipped with a hom object

C(x, y) ∈ V.

Composition: For objects x, y, z in C, it is equipped with a morphism in V

(B.1.2) C(y, z)⊗C(x, y) C(x, z)mx,y,z

called the composition.
Identities: Each object x in C is equipped with a morphism in V

(B.1.3) 1 C(x, x)ix

called the identity of x.

The data above are required to make the following associativity diagram and unity
diagram commute for objects w, x, y, z in C.

(B.1.4)

(C(y, z)⊗C(x, y))⊗C(w, x) C(y, z)⊗ (C(x, y)⊗C(w, x))

C(y, z)⊗C(w, y)

C(x, z)⊗C(w, x) C(w, z)

m⊗1

α

1⊗m

m

m

(B.1.5)

1⊗C(x, y) C(x, y)⊗ 1

C(y, y)⊗C(x, y) C(x, y) C(x, y)⊗C(x, x)
iy⊗1

λ ρ

1⊗ix

m m

This finishes the definition of a V-category. Moreover, a V-category C is small if
Ob(C) is a set. ◇
Definition B.1.6. The unit V-category, I, is the one-object V-category whose unique
hom object is the monoidal unit, 1, of V. The composition and identity structure
morphisms are given, respectively, by the left unit isomorphism λ1 and the iden-
tity morphism 11. ◇
Proposition B.1.7. Regarding (Cat,×, 1) as a monoidal category, a locally small 2-
category is precisely a Cat-category.

Definition B.1.8. A V-functor

F ∶ C D

between V-categories C and D consists of the following data.

Object Assignment: It is equipped with a function

F ∶ Ob(C) Ob(D).
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Component Morphisms: It is equipped with, for each pair of objects x, y in C, a
morphism

C(x, y) D(Fx, Fy)Fx,y
in V.

The data above is required to make the following two diagrams commute for ob-
jects x, y, z in C.

(B.1.9)

C(y, z)⊗C(x, y) C(x, z)

D(Fy, Fz)⊗D(Fx, Fy) D(Fx, Fz)

m

F⊗F F

m

1 C(x, x)

D(Fx, Fx)
iFx

ix

F

Moreover, we define the following.

● An identity V-functor is given by the identity object assignment and iden-
tity component morphisms.
● Composition of V-functors is defined by separately composing the object

assignments and the component morphisms. ◇
Definition B.1.10. For V-functors F, G ∶ C D between V-categories C and D, a
V-natural transformation θ ∶ F G consists of, for each object x in C, a morphism

1 D(Fx, Gx)θx
in V,

called the x-component of θ. The following naturality diagram in V is required to
commute for objects x, y in C.

(B.1.11)
C(x, y)

1⊗C(x, y) D(Fy, Gy)⊗D(Fx, Fy)

C(x, y)⊗ 1 D(Gx, Gy)⊗D(Fx, Gx)

D(Fx, Gy)
λ
−1

≅

ρ
−1 ≅

θy ⊗ F

G⊗ θx

m

m

Moreover, each of the following notions is defined componentwise:

● identity V-natural transformations,
● horizontal composition of V-natural transformations, and
● vertical composition of V-natural transformations.

We use the 2-cell notation (A.1.29) for V-natural transformations. ◇
Example B.1.12 (Small Enriched Categories). Each monoidal category V has an
associated 2-category V-Cat defined by the following data.

● Objects are small V-categories.
● 1-cells are V-functors.
● 2-cells are V-natural transformations.

The 2-category Cat in Example A.2.2 is the special case for V = (Set,×,∗). ◇
For the following definition, we assume that V is a braided monoidal category

(Definition A.1.10). The next definition is [JY∞, 1.2.16].

Definition B.1.13. Suppose C is a V-category with (V,⊗,1, ξ) a braided monoidal
category. The opposite V-category, Cop, is defined as follows.



332 B. ENRICHED CATEGORY THEORY

Objects: Cop has the same class of objects as C.
Hom Objects: Each pair of objects x, y in Cop is equipped with the hom object

Cop(x, y) = C(y, x).
Composition: The composition in Cop is defined for each triple of objects x, y, z

in Cop as the following composite in V using the braiding ξ of V and the
composition m of C:

(B.1.14)
Cop(y, z)⊗Cop(x, y)
C(z, y)⊗C(y, x) C(y, x)⊗C(z, y) C(z, x)

Cop(x, z)
ξ m

Identities: The identity of each object x in Cop is the same as the identity of x in C:

1
ix

C(x, x) = Cop(x, x).
This finishes the definition of the opposite V-category.

Moreover, we extend the opposite construction to V-functors and V-natural
transformations as follows.

● For a V-functor F ∶ C D, the opposite V-functor

Fop ∶ Cop Dop

has
– the same object assignment as F and
– the following component morphisms for objects x, y in Cop:

F
op
x,y = Fy,x ∶ Cop(x, y) Dop(Fx, Fy).

● For a V-natural transformation θ ∶ F G with F, G ∶ C D both V-
functors, the opposite V-natural transformation

θop ∶ Gop Fop

is defined by the component morphisms

θ
op
x = θx ∶ 1 Dop(Gx, Fx)

for objects x in Cop. ◇
B.2. Enriched Monoidal Categories

In this section we review monoidal categories, functors, and natural trans-
formations enriched in a braided monoidal category (V,⊗,1, α, λ, ρ, ξ) (Defini-
tion A.1.10). Whenever we need V to be symmetric monoidal, we state so explic-
itly. The material in this section is adapted from [JY∞, Chapter 1].

Tensor Product of Enriched Categories.

Definition B.2.1. Suppose C and D are V-categories. The tensor product, C⊗D, is
the V-category defined by the following data.

Objects: Its class of objects is

Ob(C⊗D) = Ob(C)×Ob(D).
Objects in C⊗D are denoted x⊗ y for x ∈ C and y ∈ D.

Hom Objects: For objects x⊗y and x′⊗y′, the hom object is the monoidal product

(C⊗D)(x⊗ y, x′ ⊗ y′) = C(x, x′)⊗D(y, y′) in V.
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Composition: For objects x ⊗ y, x′ ⊗ y′, and x′′ ⊗ y′′, the composition is the fol-
lowing composite in V, where ξmid interchanges the middle two factors
using the associativity isomorphism and braiding in V.

(C(x′, x′′)⊗D(y′, y′′))⊗ (C(x, x′)⊗D(y, y′))

(C(x′, x′′)⊗C(x, x′))⊗ (D(y′, y′′)⊗D(y, y′))

C(x, x′′)⊗D(y, y′′)
ξmid m⊗m

Identities: The identity of an object x ⊗ y is the following composite in V.

1
λ
−1

≅ 1⊗ 1 ix ⊗ iy
C(x, x)⊗D(y, y) = (C⊗D)(x⊗ y, x⊗ y)

This finishes the definition of the V-category C⊗D. The tensor product ⊗ extends
to V-functors and V-natural transformations componentwise. ◇

Recall from Example B.1.12 the 2-category V-Cat of small V-categories, V-
functors, and V-natural transformations.

Proposition B.2.2. The tensor product is a 2-functor

V-Cat×V-Cat V-Cat.
⊗

Recall the unit V-category I in Definition B.1.6. The tensor product on V-Cat
is part of a monoidal structure, with the following unit and associativity isomor-
phisms.

Definition B.2.3. We define the left unitor ℓ⊗ and the right unitor r⊗ as the 2-natural
isomorphisms

V-Cat2

V-Cat V-Cat

I× 1 ⊗

1

⇒

ℓ
⊗

and

V-Cat2

V-Cat V-Cat

1× I ⊗

1

⇒

r⊗

as follows. The unitor components at a V-category C are the V-functors

I⊗C ℓ
⊗

C
C

r⊗C
C⊗ I

given

● on objects by the unitors for the Cartesian product and
● on hom objects by the unit isomorphisms

1⊗C(x, x′) λ
C(x, x′) ρ

C(x, x′)⊗ 1 in V

for objects x, x′ ∈ C. ◇
Definition B.2.4. We define the associator a⊗ as the 2-natural isomorphism

V-Cat3 V-Cat2

V-Cat2 V-Cat

⊗× 1

⊗

1×⊗ ⊗
⇒a⊗
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as follows. For small V-categories C, D, and E, the associator component is the
V-functor

(C⊗D)⊗E C⊗ (D⊗E)a⊗
C,D,E

given

● on objects by the associativity isomorphism of the Cartesian product and
● on hom objects by the associativity isomorphism

(C(x, x′)⊗D(y, y′))⊗E(z, z′) C(x, x′)⊗ (D(y, y′)⊗E(z, z′))α

in V for objects x, x′ ∈ C, y, y′ ∈ D, and z, z′ ∈ E. ◇
The Cartesian product on objects and the monoidal structure of V both sat-

isfy the unity and pentagon axioms in (A.1.4), (A.1.6), and (A.1.7). Thus the data(⊗, I, a⊗, ℓ⊗, r⊗) in Definitions B.1.6, B.2.1, B.2.3, and B.2.4 also satisfy these ax-
ioms.

Definition B.2.5. Suppose that (V, ξ) is a symmetric monoidal category. We define
the braiding β⊗ as the 2-natural isomorphism

V-Cat2 V-Cat

V-Cat2

⊗

τ ⊗

⇒

β
⊗

as follows, with τ permuting the two arguments. For small V-categories C and D,
the braiding component is the V-functor

C⊗D D⊗Cβ⊗
C,D

given

● on objects by the braiding of the Cartesian product and
● on hom objects by the braiding

C(x, x′)⊗D(y, y′) D(y, y′)⊗C(x, x′)ξ

in V for objects x, x′ ∈ C and y, y′ ∈ D. ◇
The Cartesian product on objects and the symmetric monoidal structure of

V both satisfy the hexagon, unity, and symmetry axioms in (A.1.11), (A.1.13),
and (A.1.15). Thus the data (⊗, I, a⊗, ℓ⊗, r⊗, β⊗) also satisfy these axioms.

Theorem B.2.6. Suppose V = (V,⊗, ξ) is a braided monoidal category. Then

(V-Cat,⊗, I, a⊗, ℓ⊗, r⊗)
is a monoidal category. If V is symmetric monoidal, then so is (V-Cat, β⊗).

The Monoidal Cat-Category of Enriched Categories. Theorem B.2.6 is im-
proved to (symmetric) monoidal Cat-categories in Theorem B.2.18 below. To make
the necessary definitions, we

● abbreviate the tensor product of V-categories to juxtaposition and

● use superscript with a minus sign, ?−⊗, to denote the inverse (?⊗)−1.
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Definition B.2.7. A monoidal V-category is a sextuple

(K,⊠, I⊠, a⊠, ℓ⊠, r⊠)
consisting of the following data.

Base V-category: It has a V-category K, called the base V-category.
Monoidal Composition: It has a V-functor

K⊗K
⊠

K

called the monoidal composition.
Monoidal Identity: It has a V-functor

I

I
⊠

K

called the monoidal identity. The image of the unique object in I is also
denoted I⊠ and called the identity object.

Monoidal Unitors: It has V-natural isomorphisms

(B.2.8)

K

IK K2

K

ℓ
−⊗

I
⊠

1K

⊠

1K

⇒

ℓ
⊠

K

KI K2

K

r
−⊗

1KI
⊠

⊠

1K

⇒

r
⊠

called the left monoidal unitor and the right monoidal unitor, respectively.
Their components at an object x ∈ K are, respectively,

1
ℓ
⊠
x

K(I⊠ ⊠ x, x) and 1
r⊠x

K(x ⊠ I⊠, x).
Monoidal Associator: It has a V-natural isomorphism

(B.2.9)

(K2)K
K(K2)

K2

K2 K

⊠1K

⊠

1K⊠

⊠

a⊗

⇒a⊠

called the monoidal associator. Its component at a triple of objects x, y, z ∈ K
is a morphism in V

1
a⊠x,y,z

K((x ⊠ y)⊠ z , x ⊠ (y⊠ z)).
These data are required to satisfy the following two axioms, with 1 denoting the
identity V-functor.
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Unity Axiom: The composites of the following two middle unity pasting diagrams
are equal.

(B.2.10) =

(K2)K K2

K2 K

(KI)K

K2

⊠1

⊠

⊠

r−⊗1

(1I⊠)1

12

K(K2)K(IK)
a⊗

1⊠

1ℓ−⊗

1(I⊠1)
a⊗

⇒a⊠

⇒1ℓ⊠

☆

(K2)K K2

K2 K

(KI)K

K2

⊠1

⊠

⊠

r−⊗1

(1I⊠)1

12

12

⇒r⊠1

In the first diagram in (B.2.10), the unlabeled rectangle commutes by nat-
urality of a⊗. The region labeled☆ commutes by the middle unity for ℓ⊗

and r⊗.
Pentagon Axiom: The composites of the following two pentagon pasting diagrams

are equal.

(B.2.11) =

(K(K2))K ((K2)K)K

(K2)K

K2

K

K((K2)K)

K(K(K2))

K(K2) K2

a⊗1

a⊗

1a⊗

1(1⊠)
1⊠ ⊠

(⊠1)1

⊠1

⊠

(K2)K
K(K2)

(1⊠)1

1(⊠1)
a⊗

⊠1

1⊠

⇒a⊠1

⇒a⊠
⇒1a⊠

(K(K2))K ((K2)K)K

(K2)K

K2

K

K((K2)K)

K(K(K2))

K(K2) K2

a⊗1

a⊗

1a⊗

1(1⊠)
1⊠ ⊠

(⊠1)1

⊠1

⊠

(K2)(K2) K(K2)

(K2)K K2

12⊠

⊠12

⊠1

1⊠

a⊗

a⊗

a⊗

a⊗

⊠

⇒a⊠

⇒a⊠

☆
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The central square in the first diagram in (B.2.11) commutes by 2-
functoriality of ⊗ in each variable. The other unmarked quadrilaterals
in the two diagrams in (B.2.11) commute by 2-naturality of a⊗. The
pentagon labeled☆ commutes by the pentagon axiom for a⊗.

This finishes the definition of a monoidal V-category. ◇
For the definition of a braided monoidal V-category, we use a mate of a⊠ sim-

ilar to the mates of a pentagonator in [JY21, 12.1.4].

Definition B.2.12. For a monoidal V-category K, we denote by a⊠1 the mate of a⊠

given by the inverse of a⊗, as shown below.

(K2)K
K(K2)

K2

K2 K

⊠1K

⊠

1K⊠

⊠

a−⊗

⇒a⊠1

We denote by a−⊠1 the inverse of a⊠1 . ◇
Definition B.2.13. For a symmetric monoidal category V, a braided monoidal V-
category is a pair (K, β⊠) consisting of the following data.

● K is a monoidal V-category (Definition B.2.7).
● β⊠ is a V-natural isomorphism

K2 K

K2

⊠

β
⊗ ⊠

⇒

β
⊠

called the braiding of K.

These data are required to satisfy the following two axioms.

Left Hexagon Axiom: The composites of the following two left hexagon pasting di-
agrams are equal.

(B.2.14)

=

K(K2)

(K2)K

(K2)K

K(K2)

K2

K2 K

a
⊗

β
⊗

a
⊗

1⊠

⊠

⊠1

⊠

(K2)K

K(K2)

β
⊗

1

1β
⊗

a
⊗

⊠1

1⊠

⇒β
⊠

1

⇒1β
⊠

⇒a
⊠

☆

K(K2)

(K2)K

(K2)K

K(K2)

K2

K2 K

a
⊗

β
⊗

a
⊗

1⊠

⊠

⊠1

⊠

K2

K2

1⊠

⊠1

β
⊗

⊠

⊠

⇒β
⊠

⇒a
⊠

⇒a
⊠

In (B.2.14), the unlabeled quadrilateral commutes by 2-naturality of β⊗.
The hexagon labeled☆ commutes by the left hexagon axiom for β⊗.
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Right Hexagon Axiom: The composites of the following two right hexagon pasting
diagrams are equal.

(B.2.15)

=

(K2)K

K(K2)

K(K2)

(K2)K

K2

K2 K

a
−⊗

β
⊗

a
−⊗

⊠1

⊠

1⊠

⊠

K(K2)

(K2)K

1β
⊗

β
⊗

1

a
−⊗

1⊠

⊠1

⇒1β
⊠

⇒β
⊠

1

⇒a
−⊠

1

☆

(K2)K

K(K2)

K(K2)

(K2)K

K2

K2 K

a
−⊗

β
⊗

a
−⊗

⊠1

⊠

1⊠

⊠

K2

K2

⊠1

1⊠

β
⊗

⊠

⊠

⇒β
⊠

⇒a
−⊠

1

⇒a
−⊠

1

In (B.2.15), the unlabeled quadrilateral commutes by 2-naturality of β⊗.
The hexagon labeled ☆ commutes by the right hexagon axiom for β⊗.
The 2-cell isomorphism a−⊠1 is the inverse of a⊠1 (Definition B.2.12).

This finishes the definition of a braided monoidal V-category. ◇
Definition B.2.16. For a symmetric monoidal category V, a symmetric monoidal
V-category is a braided monoidal V-category (K, β⊠) that satisfies the following
axiom.

Symmetry Axiom: The composites of the following two symmetry pasting diagrams
are equal.

(B.2.17)
=

K2

K2

K

1

⊠

⊠

K2
β
⊗

β
⊗

⊠

⇒

β
⊠

⇒

β
⊠

☆

K2

K2

K

1

⊠

⊠

The right hand diagram in (B.2.17) is the identity V-natural transformation. In the
left hand diagram, the region labeled☆ commutes by the symmetry axiom for β⊗.
When this axiom holds, β⊠ is also called the symmetry of K. ◇

The following result uses the symmetric monoidal category (Cat,×, 1) in Ex-
ample A.1.21.

Theorem B.2.18. Suppose V = (V,⊗, ξ) is a braided monoidal category.

(1) There is a monoidal Cat-category (Definition B.2.7)

(V-Cat,⊗, I, a⊗, ℓ⊗, r⊗).
(2) If V is a symmetric monoidal category, then (V-Cat, β⊗) is a symmetric monoi-

dal Cat-category (Definition B.2.16).

Enriched Monoidal Functors and Natural Transformations.

Definition B.2.19. Suppose K is a monoidal V-category with (V, ξ) a braided mon-
oidal category. We denote by ℓ

⊠

1 and r⊠1 the mates of ℓ⊠ and r⊠ given, respectively,
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by using ℓ
⊗ and r⊗ in place of their inverses, as shown below.

K

IK K2

K

ℓ
⊗

I⊠1K

⊠

1K

⇒

ℓ
⊠

1

K

KI K2

K

r⊗

1KI⊠

⊠

1K

⇒

r⊠1

◇
Definition B.2.20. Suppose K and L are monoidal V-categories with V a braided
monoidal category. A monoidal V-functor

(F, F2, F0) ∶ K L

is a triple consisting of the following data.

● F ∶ K L is a V-functor.
● F2 and F0 are V-natural transformations as follows.

K2 L2

K L

⊠ ⊠

F⊗ F

F

⇒F
2

I

K L

I
⊠

I
⊠

F

⇒F
0

They are called the monoidal constraint and the unit constraint, respectively.

These data are required to satisfy the following associativity and unity axioms.

Associativity: The composites of the following two associativity pasting diagrams
are equal.

(B.2.21) =

(K2)K

K(K2)

K2

K

(L)2L

L2

L

a⊗

(FF)F

⊠

1⊠

⊠1

⊠

F

K2
⊠1

⊠

FF

⇒a⊠

⇒F21

⇒F2

(K2)K

K(K2)

K2

K

(L)2L

L2

L

a⊗

(FF)F

⊠

1⊠

⊠1

⊠

F

L(L2)

L2

a⊗

1⊠

⊠

F(FF)

FF

⇒a⊠

⇒F2

⇒1F2

In the right hand diagram in (B.2.21), the unlabeled parallelogram com-
mutes by naturality of a⊗.

Left Unity: The composites of the following two left unity pasting diagrams are
equal.

(B.2.22) =

IK LK L2

K L

I⊠1 1F

F

ℓ
⊗ ⊠

K2
F1

⊠

I⊠1

⇒

F01

⇒ℓ
⊠

1
⇒F2

IK LK L2

K L

I⊠1 1F

F

ℓ
⊗ ⊠

IL

1F
I⊠1

ℓ
⊗

⇒ℓ
⊠

1

In the right hand diagram in (B.2.22), the lower unlabeled quadrilateral
commutes by naturality of ℓ⊗. The upper unlabeled region commutes by
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2-functorality of ⊗. The 2-cell isomorphisms labeled ℓ
⊠

1 are each the mate

of ℓ⊠ (Definition B.2.19).
Right Unity: The composites of the following two right unity pasting diagrams are

equal.

(B.2.23) =

KI KL L2

K L

1I⊠ F1

F

r⊗ ⊠
K2

1F

⊠

1I⊠

⇒

1F0

⇒r⊠1
⇒F2

KI KL L2

K L

1I⊠ F1

F

r⊗ ⊠LI

F1
1I⊠

r⊗

⇒r⊠1

In the right hand diagram in (B.2.23), the lower unlabeled quadrilateral
commutes by naturality of r⊗. The upper unlabeled region commutes by
2-functorality of ⊗. The 2-cell isomorphisms labeled r⊠1 are each the mate

of r⊠ (Definition B.2.19).

This finishes the definition of a monoidal V-functor.
Moreover, we define the following variants.

● A unital monoidal V-functor is one for which F0 is invertible.

● A strictly unital monoidal V-functor is one for which F0 is an identity.

● A strong monoidal V-functor is one for which both F0 and F2 are invertible.

● A strict monoidal V-functor is one for which both F0 and F2 are identities.

For each variant, composition of composable monoidal V-functors is defined by
composing the V-functors, pasting the monoidal constraints, and pasting the unit
constraint. ◇
Definition B.2.24. Suppose K and L are braided monoidal V-categories with V a
symmetric monoidal category. A braided monoidal V-functor

(F, F2, F0) ∶ K L

is a monoidal V-functor that satisfies the following axiom.

Braid Axiom: The composites of the following two braiding pasting diagrams are
equal.

(B.2.25) =

K2

K2

K

L2

L

β
⊗

⊠

FF

F

⊠L2

β
⊗

⊠

FF ⇒β
⊠

⇒

F2

K2

K2

K

L2

L

β
⊗

⊠

FF

F

⊠⊠

⇒β
⊠ ⇒F2

In the left hand diagram in (B.2.25), the unlabeled quadrilateral commutes by nat-
urality of β⊗. This finishes the definition of a braided monoidal V-functor.

If K and L are symmetric monoidal V-categories, then we say that F is a sym-
metric monoidal V-functor. ◇
Definition B.2.26. Suppose F, G ∶ K L are monoidal V-functors between mon-
oidal V-categories with V a braided monoidal category. A monoidal V-natural trans-
formation

θ ∶ F G

is a V-natural transformation of underlying V-functors (Definition B.1.10) that sat-
isfies the following two additional axioms.
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Monoidal Naturality: The composites of the following two monoidal naturality
pasting diagrams are equal.

=

K2 L2

K L

⊠ ⊠

F⊗ F

G

F

⇒

θ

⇒F
2

K2 L2

K L

⊠ ⊠

F⊗ F

G

G⊗G

⇒

θ ⊗ θ

⇒G
2

Unit Naturality: The composites of the following two unit naturality pasting dia-
grams are equal.

=

I

K L

I⊠ I⊠

G

F

⇒

θ

⇒F0

I

K L

I⊠ I⊠

G

⇒G0

This finishes the definition of a monoidal V-natural transformation. Identity and
composites of monoidal V-natural transformations are defined via underlying V-
natural transformations. ◇
Theorem B.2.27. Suppose V = (V,⊗, ξ) is a braided monoidal category. For items (2)
and (3) below, suppose that V is a symmetric monoidal category.

(1) There exists a 2-category V-MCat with small monoidal V-categories as objects,
monoidal V-functors as 1-cells, and monoidal V-natural transformations as 2-
cells.

(2) There exists a 2-category V-BMCat with small braided monoidal V-categories as
objects, braided monoidal V-functors as 1-cells, and monoidal V-natural trans-
formations as 2-cells.

(3) There exists a 2-category V-SMCat with small symmetric monoidal V-categories
as objects, symmetric monoidal V-functors as 1-cells, and monoidal V-natural
transformations as 2-cells.

Moreover, there exist forgetful 2-functors

V-SMCat V-BMCat V-MCat V-Cat.

B.3. Self-Enriched Symmetric Monoidal Categories

In this section we review the self-enriched symmetric monoidal structure of
a symmetric monoidal closed category (Definition A.1.19). The material in this
section is adapted from [JY∞, Chapter 3]. Throughout this section, we assume
that

(V,⊗,1, α, λ, ρ, ξ, [, ])
is a symmetric monoidal closed category.

Definition B.3.1 (Evaluation and Coevaluation). Suppose x is an object in V.



342 B. ENRICHED CATEGORY THEORY

● The evaluation at x is the counit

(B.3.2) [x,−]⊗ x
evx,−

1V.

● The coevaluation at x is the unit

(B.3.3) 1V
coevx,− [x,−⊗ x].

These natural transformations refer to the adjunction

−⊗ x ∶ V V ∶ [x,−]
that is part of the closed structure of V. ◇

Recall the notion of a V-category in Definition B.1.1.

Definition B.3.4 (Canonical Self-Enrichment). We define the data of a V-category
V, called the canonical self-enrichment of V, as follows.

Objects: Ob(V) = Ob(V).
Hom Objects: Each pair of objects x, y ∈ V is equipped with the hom object

V(x, y) = [x, y] ∈ V.

Composition: For objects x, y, z ∈ V, the composition morphism

[y, z]⊗ [x, y] mx,y,z [x, z]
is the adjoint of the following composite morphism in V.

(B.3.5)

([y, z]⊗ [x, y])⊗ x

[y, z]⊗ ([x, y]⊗ x) [y, z]⊗ y

z

α ≅

1⊗ ev

ev

Identities: The identity

1
ix [x, x] for x ∈ V

is adjoint to the left unit isomorphism

(B.3.6) 1⊗ x
λ
≅ x in V.

This finishes the definition of V. If there is no danger of confusion, we abbreviate
V to V. ◇

Recall from Definitions B.2.7, B.2.13, and B.2.16 the notion of a symmetric
monoidal V-category. The following result combines [JY∞, 3.1.11 and 3.3.2].

Theorem B.3.7. Suppose V is a symmetric monoidal closed category. Then the following
statements hold.

(1) V in Definition B.3.4 is a V-category.
(2) The symmetric monoidal structure on V extends to V such that V is a symmetric

monoidal V-category.
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Explanation B.3.8 (Canonical Self-Enrichment). In the V-category V, the unique-
ness of adjoints implies that the composition m and the identity i are uniquely
characterized by the following two diagrams in V.

(B.3.9)

([y, z]⊗ [x, y])⊗ x

[y, z]⊗ ([x, y]⊗ x)

[y, z]⊗ y

[x, z]⊗ x

z

m⊗ 1

ev

α ≅

1⊗ ev

ev

1⊗ x [x, x]⊗ x

x

i⊗ 1

ev
λ
≅

We use these diagrams in Proposition 9.1.9. ◇
Explanation B.3.10 (Symmetric V-Monoidal Structure). In Theorem B.3.7 (2), the
symmetric monoidal V-category structure on the V-category V is given as follows.

Monoidal Composition: The V-functor

⊠ ∶ V⊗V V

has object assignment

x ⊠ y = x ⊗ y for x, y ∈ V.

We use the notation ⊠ to avoid confusion with the monoidal product ⊗ of
V and the tensor product of V-categories.

For a pair of objects (x, x′), (y, y′) ∈ V⊗V, the morphism

⊠(x,x′),(y,y′) ∶ [x, y]⊗ [x′, y′] [x⊗ x′, y⊗ y′] in V

is adjoint to each of the following two equal composites, with ξmid inter-
changing the middle two factors.

(B.3.11)

([x, y]⊗ [x′, y′])⊗ (x⊗ x′)

([x, y]⊗ x)⊗ ([x′, y′]⊗ x′)

[x⊗ x′, y⊗ y′]⊗ (x⊗ x′)

y⊗ y′

ξmid

ev⊗ ev

⊠⊗ 1

ev

Monoidal Identity: The V-functor

I ∶ I V

has object assignment

I(∗) = 1.

The morphism between hom objects

I ∶ 1 [1,1] in V

is adjoint to each of the following two equal composites.

(B.3.12)

1⊗ 1 [1,1]⊗ 1

1

λ
≅

I⊗ 1

ev
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Other Structure: The monoidal associator, monoidal unitors, and braiding have
component morphisms

(B.3.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α⊥x,y,z ∶ 1 [(x ⊠ y)⊠ z, x ⊠ (y⊠ z)]
λ⊥x ∶ 1 [1⊠ x, x]
ρ⊥x ∶ 1 [x ⊠ 1, x]

ξ⊥x,y ∶ 1 [x ⊠ y, y⊠ x]
adjoint to the composites of λ with the corresponding components of α,
λ, ρ, and ξ, respectively, in V. In each case, the adjoint component is
equal to the composite ev ○ (?⊥⊗ 1), similar to the top-right composites in
(B.3.11) and (B.3.12).

This finishes the description of the symmetric monoidal V-category V. ◇

B.4. Change of Enrichment

Recall from Example B.1.12 that each monoidal category V has an associated
2-category V-Cat of small V-categories, V-functors, and V-natural transformations.
In this section we review properties of changing the enriching monoidal category
V. Whenever we need the enriching monoidal category to be braided or symmetric
(Definitions A.1.10 and A.1.14), we state so explicitly. The material in this section
is adapted from [JY∞, Chapters 2 and 3].

Definition B.4.1. Suppose given a monoidal functor between monoidal categories

(U, U2, U0) ∶ (V,⊗,1) (W,⊗,1).
We define the data of a 2-functor

(−)U ∶ V-Cat W-Cat,

called the change of enrichment, as follows.

Object Assignment: For a V-category (C,m, i), the W-category

(CU,mU , iU)
has objects

Ob(CU) = Ob(C)
and hom objects

CU(x, y) = UC(x, y) ∈W for x, y ∈ CU .

The composition in CU is the following composite in W for x, y, z ∈ CU .

(B.4.2)

UC(y, z)⊗UC(x, y)

U(C(y, z)⊗C(x, y))

UC(x, z)mU

U2
Um

The identity of an object x ∈ CU is the following composite.

(B.4.3) 1 U1 UC(x, x)U
0 Uix

(iU)x
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1-Cell Assignment: For a V-functor F ∶ C D, the W-functor

FU ∶ CU DU

has the same object assignment as F. On hom objects it is the morphism

(B.4.4) (FU)x,y = U(Fx,y) ∶ UC(x, y) UD(Fx, Fy) in W

for x, y ∈ CU.
2-Cell Assignment: For a V-natural transformation θ as in the left diagram below

C D

F

G

⇒

θ CU DU

FU

GU
⇒

θU

the W-natural transformation θU, as in the right diagram above, has com-
ponent morphism at x ∈ CU given by the following composite.

(B.4.5) 1 U1 UD(Fx, Gx)U
0 Uθx

(θU)x

This finishes the definition of (−)U . ◇
The following is [JY∞, 2.1.2].

Proposition B.4.6. In the context of Definition B.4.1,

(−)U ∶ V-Cat W-Cat

is a 2-functor.

Change of enrichment is compatible with composition of monoidal functors
(Definition A.1.26), as in the following result from [JY∞, 2.2.4].

Proposition B.4.7. Given monoidal functors between monoidal categories

V1
U1

V2
U2

V3,

the following diagram of change-of-enrichment 2-functors commutes.

V1-Cat V2-Cat V3-Cat
(−)U1

(−)U2

(−)U2U1

Compatibility with Enriched Tensor Product. For a braided monoidal cate-
gory V, (V-Cat,⊗) is a monoidal Cat-category, which is, furthermore, symmetric
if V is symmetric (Theorem B.2.18). Change of enrichment is compatible with the
tensor product of enriched categories (Definition B.2.1), using the following defi-
nitions.

Definition B.4.8. Suppose given a braided monoidal functor between braided
monoidal categories

(U, U2, U0) ∶ V W.

We define monoidal constraint (−)2U and unit constraint (−)0U for the change-of-
enrichment 2-functor (−)U as follows.
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Monoidal Constraint: Its component W-functor at small V-categories C and D,

(−)2U ∶ CU ⊗DU (C⊗D)U,

has the identity object assignment. On hom objects it is given by the
following morphism in W for x, x′ ∈ C and y, y′ ∈ D.

(CU ⊗DU)(x⊗ y, x′ ⊗ y′)
UC(x, x′)⊗UD(y, y′)

(C⊗D)U(x⊗ y, x′ ⊗ y′)
U(C(x, x′)⊗D(y, y′))= =

U2

Unit Constraint: It is the W-functor

(−)0U ∶ I IU

given by the identity on the unique object and the morphism

1
U0

U1 in W

on the unique hom object.

This finishes the definition of (−)2U and (−)0U . ◇
The following is [JY∞, 2.3.7], which uses Theorem B.2.18 and Definitions B.2.20

and B.2.24.

Theorem B.4.9. For each braided monoidal functor between braided monoidal categories

(U, U2, U0) ∶ V W,

the triple in Definitions B.4.1 and B.4.8

((−)U, (−)2U, (−)0U) ∶ (V-Cat,⊗) (W-Cat,⊗)
is a monoidal Cat-functor. Moreover, if U is a symmetric monoidal functor between sym-
metric monoidal categories, then (−)U is a symmetric monoidal Cat-functor.

Compatibility with Enriched Monoidal Structure. Change of enrichment
preserves enriched monoidal structure, as in the following result from [JY∞,
2.4.10].

Theorem B.4.10. Suppose given a braided monoidal functor between braided monoidal
categories

U ∶ V W.

For (1) and (2) below, the braided and symmetric monoidal cases assume that U, V, and
W are symmetric monoidal.

(1) If K is a (braided, respectively symmetric) monoidal V-category, then KU is a
(braided, respectively symmetric) monoidal W-category.

(2) If F ∶ K L is a (braided, respectively symmetric) monoidal V-functor be-
tween (braided, respectively symmetric) monoidal V-categories, then

FU ∶ KU LU

is a (braided, respectively symmetric) monoidal W-functor.
(3) If θ ∶ F G is a monoidal V-natural transformation between monoidal V-

functors F and G, then

θU ∶ FU GU

is a monoidal W-natural transformation.
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Theorem B.3.7 (2) and Theorem B.4.10 (1) yield the following.

Corollary B.4.11. Suppose given a symmetric monoidal functor between symmetric mon-
oidal categories

(U, U2, U0) ∶ V W

with (V, [, ]) closed. Then VU is a symmetric monoidal W-category.

Explanation B.4.12. In Corollary B.4.11 the symmetric monoidal W-category VU
is given explicitly as follows.

Underlying W-Category: The W-category

(VU ,mU , iU)
is obtained from the V-category (V,m, i) in Definition B.3.4 by applying
the change-of-enrichment (−)U in Definition B.4.1. In other words, it has
objects

Ob(VU) = Ob(V) = Ob(V)
and hom objects

VU(x, y) = UV(x, y) = U[x, y] ∈W for x, y ∈ V.

The composition is the following composite, with m the composition in
V in (B.3.9).

U[y, z]⊗U[x, y]

U([y, z]⊗ [x, y])

U[x, z]mU

U2
Um

The identity of an object x ∈ VU is the following composite, with i the
identity in V in (B.3.9).

1 U1 U[x, x]U0 Uix

(iU)x

Monoidal Composition: The W-functor

VU ⊗VU

⊠U
VU

is given on objects by

x ⊠U y = x⊗ y for x, y ∈ V.

On hom objects it is the composite

U[x, y]⊗U[x′, y′]

U([x, y]⊗ [x′, y′])

U[x⊗ x′, y⊗ y′]⊠U

U2
U⊠

for x ⊗ x′, y⊗ y′ ∈ VU ⊗VU , with ⊠ as in (B.3.11).
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Monoidal Unit: The W-functor

IU ∶ I VU

has object assignment

IU(∗) = 1.

On hom objects it is the following composite, with I as in (B.3.12).

1 U1 U[1,1]U
0 U(I)

IU

Other Structure: The monoidal associator, monoidal unitors, and braiding have
component morphisms as follows, with α⊥, λ⊥, ρ⊥, and ξ⊥ as in (B.3.13).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
U

0

U1
Uα
⊥
x,y,z

U[(x ⊠ y)⊠ z, x ⊠ (y⊠ z)]
1

U0

U1
Uλ
⊥
x

U[1⊠ x, x]
1

U
0

U1
Uρ
⊥
x

U[x⊠ 1, x]
1

U
0

U1
Uξ
⊥
x,y

U[x⊠ y, y⊠ x]
This finishes the description of the symmetric monoidal W-category VU. ◇

Standard Enrichment. The following definition uses the symmetric monoidal
W-category VU in Explanation B.4.12.

Definition B.4.13. Suppose given a monoidal functor

(U, U2, U0) ∶ (V,⊗,1, [, ]) (W,⊗,1, [, ])
between symmetric monoidal closed categories. We define the data of a monoidal
W-functor

(Û, Û2, Û0) ∶ VU W,

called the standard enrichment of U, as follows.

Object Assignment: The object assignment of Û is the same as that of U.
Component Morphisms: For objects x, y ∈ V, the component morphism

Ûx,y ∶ U[x, y] [Ux, Uy] in W

is adjoint to the composite

(B.4.14) U[x, y]⊗Ux
U2

U([x, y]⊗ x) U(ev)
Uy.

Unit Constraint: The morphism

Û0 ∶ 1 [1, U1] in W

is adjoint to the composite

(B.4.15) 1⊗ 1
λ
≅ 1

U0

U1.
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Monoidal Constraint: Its component morphism

Û2
x⊗x′ ∶ 1 [Ux⊗Ux′, U(x⊗ x′)] for x⊗ x′ ∈ V⊗V

is adjoint to the composite

(B.4.16) 1⊗ (Ux⊗Ux′) λ
≅ Ux⊗Ux′

U2
x,x′

U(x⊗ x′).
This finishes the definition of the standard enrichment of U. ◇

The following is [JY∞, 3.3.4].

Proposition B.4.17. In the context of Definition B.4.13, the standard enrichment

(Û, Û2, Û0) ∶ VU W

is a monoidal W-functor. Moreover, if U is a symmetric monoidal functor, then Û is a
symmetric monoidal W-functor.

Explanation B.4.18. Each of Ûx,y, Û0, and Û2
x⊗x′ is defined by its adjoint in, re-

spectively, (B.4.14) through (B.4.16). Thus the uniqueness of adjoints implies that
these structure morphisms are uniquely characterized by the following commuta-
tive diagrams.

U[x, y]⊗Ux [Ux, Uy]⊗Ux

U([x, y]⊗ x) Uy

Ûx,y⊗ 1

evU
2

U(ev)

1⊗ 1 [1, U1]⊗ 1

1 U1

Û
0
⊗ 1

evλ ≅

U
0

1⊗ (Ux⊗Ux′) [Ux⊗Ux′, U(x⊗ x′)]⊗ (Ux⊗Ux′)

Ux⊗Ux′ U(x⊗ x′)

Û2
x⊗x′ ⊗ 1

evλ ≅

U2
x,x′

We use this adjoint characterization of Ûx,y in Proposition 9.2.17. ◇





APPENDIX C

Multicategories

In this appendix we review basic elements of multicategory theory. The fol-
lowing table summarizes the main content in this appendix.

C.1. Enriched Multicategories to C.3. Endomorphism Multicategories

V-multicategories (multifunctors, multinatural transformations) C.1.3 (C.1.19, C.1.25)

underlying V-category C.1.16

2-category V-Multicat of V-multicategories C.1.33

Cat-multinatural transformations C.2.2

endomorphism multicategories End (enriched) C.3.1 (C.3.8)

C.4. Pointed Multicategories

pointed multicategories, multifunctors, and multinatural transformations C.4.1

pointed endomorphism multicategories End ● C.4.8

2-category Multicat∗ of pointed multicategories C.4.9

free-forgetful 2-adjunction (−)+ ∶Multicat Multicat∗ ∶ U ● C.4.16

The main reference for this chapter is [JY∞]; see also [Yau16]. Conventions A.1.2
and A.1.30 are still in effect.

C.1. Enriched Multicategories

In this section we review enriched multicategories, multifunctors, and multi-
natural transformations. The material in this section is adapted from [JY∞, Section
6.1]. Throughout this section we assume that

(V,⊗,1, α, λ, ρ, ξ)
is a symmetric monoidal category (Definition A.1.14). We use the following nota-
tion for finite tuples of objects.

Definition C.1.1. Suppose S is a class.

Profiles: The class of finite tuples in S is denoted by

Prof(S) =∐
k≥0

Sk.

● An element in Prof(S) is called an S-profile.
● An S-profile of length n = len⟨x⟩ is denoted by

⟨x⟩ = (x1, . . . , xn) = ⟨xj⟩nj=1 ∈ Sn.

The empty S-profile is denoted by ⟨⟩.
● An element in Prof(S)× S is denoted by (⟨x⟩ ; y) with ⟨x⟩ ∈ Prof(S)

and y ∈ S.

351
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Concatenation: For two S-profiles ⟨x⟩ = ⟨xi⟩mi=1 and ⟨y⟩ = ⟨yj⟩nj=1, their concatenation

is the S-profile

(C.1.2) ⟨x⟩⊕ ⟨y⟩ = (x1, . . . , xm, y1, . . . , yn).
Concatenation is associative with the empty tuple ⟨⟩ as the strict unit. ◇

The symmetric group on n letters is denoted Σn.

Definition C.1.3. A V-multicategory is a triple

(M, γ, 1)
consisting of the following data.

Objects: It is equipped with a class ObM, whose elements are called objects. We
abbreviate Prof(ObM) to Prof(M).

Multimorphisms: For (⟨x⟩ ; x′) ∈ Prof(M)×ObM with ⟨x⟩ = ⟨xj⟩nj=1, it is equipped

with an object in V

M(⟨x⟩ ; x′) =M(x1, . . . , xn ; x′).
It is called the n-ary operation object or n-ary multimorphism object with in-
put profile ⟨x⟩ and output x′.
● We also say nullary for 0-ary, unary for 1-ary, and binary for 2-ary.
● If objects in V have underlying sets (for example, if V is Set or Cat),

then an element in M(⟨x⟩ ; x′) is called an n-ary multimorphism or n-
ary operation and denoted

⟨x⟩ = (x1, . . . , xn) x′.

Symmetric Group Action: For (⟨x⟩ ; x′) ∈ Prof(M)×ObM and a permutation σ ∈
Σn, M is equipped with an isomorphism in V

(C.1.4) M(⟨x⟩ ; x′) M(⟨x⟩σ ; x′),σ
≅

called the right σ-action or the symmetric group action, where

⟨x⟩σ = (xσ(1), . . . , xσ(n)) = ⟨xσ(j)⟩nj=1 ∈ Prof(M)
is the right permutation of ⟨x⟩ by σ.

Units: Each object x in M is equipped with a morphism

(C.1.5) 1 M(x ; x),1x

called the x-colored unit.
Composition: Suppose given

● (⟨x′⟩ ; x′′) ∈ Prof(M)×ObM with ⟨x′⟩ = ⟨x′j⟩nj=1 ∈ Prof(M) and

● ⟨xj⟩ = ⟨xj,i⟩k j

i=1 ∈ Prof(M) for each j ∈ {1, . . . , n} with ⟨x⟩ = ⊕n
j=1⟨xj⟩.

Then M is equipped with a morphism in V

(C.1.6) M(⟨x′⟩ ; x′′)⊗⊗n
j=1 M(⟨xj⟩ ; x′j) M(⟨x⟩ ; x′′),γ

called the composition or multicategorical composition. If objects in V have
underlying sets, then we also denote composition diagrammatically by

(⟨x1⟩, . . . , ⟨xn⟩) ( f1, . . . , fn) ⟨x′⟩ f
x′′
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for multimorphisms

f ∈M(⟨x′⟩ ; x′′) and f j ∈M(⟨xj⟩ ; x′j).
The data above are required to satisfy the following axioms.

Symmetric Group Action: The identity in Σn acts as the identity morphism on

M(⟨x⟩ ; x′)with n = len⟨x⟩. Moreover, for σ, τ ∈ Σn, the following diagram
in V commutes.

(C.1.7)

M(⟨x⟩ ; x′) M(⟨x⟩σ ; x′)

M(⟨x⟩στ ; x′)
στ

σ

τ

Associativity: Suppose given

● (⟨x′′⟩ ; x′′′) ∈ Prof(M)×ObM with ⟨x′′⟩ = ⟨x′′j ⟩nj=1 ∈ Prof(M),
● ⟨x′j⟩ = ⟨x′j,i⟩k j

i=1
∈ Prof(M) for each j ∈ {1, . . . , n} with ⟨x′⟩ = ⊕n

j=1⟨x′j⟩
and kj > 0 for at least one j, and

● ⟨xj,i⟩ = ⟨xj,i,p⟩ℓj,i

p=1 ∈ Prof(M) for each j ∈ {1, . . . , n} and each i ∈
{1, . . . , kj}with ⟨xj⟩ = ⊕k j

i=1⟨xj,i⟩ and ⟨x⟩ = ⊕n
j=1⟨xj⟩.

Then the associativity diagram below commutes.

(C.1.8)

M(⟨x′′⟩ ; x′′′)⊗ [ n⊗
j=1

M(⟨x′j⟩ ; x′′j )]⊗ n⊗
j=1
[ k j⊗

i=1
M(⟨xj,i⟩ ; x′j,i)]

M(⟨x′⟩ ; x′′′)⊗ n⊗
j=1
[ k j⊗

i=1
M(⟨xj,i⟩ ; x′j,i)]

M(⟨x′′⟩ ; x′′′)⊗ n⊗
j=1
[M(⟨x′j⟩ ; x′′j )⊗

k j⊗
i=1

M(⟨xj,i⟩ ; x′j,i)]

M(⟨x′′⟩ ; x′′′)⊗ n⊗
j=1

M(⟨xj⟩ ; x′′j )

M(⟨x⟩ ; x′′′)≅permute

(γ, 1)

γ

(1,⊗j γ)

γ

Unity: Suppose (⟨x⟩ ; x′) ∈ Prof(M)×ObM with ⟨x⟩ = ⟨xj⟩nj=1 ∈ Prof(M).
(1) If n ≥ 1, then the following right unity diagram commutes.

(C.1.9)

M(⟨x⟩ ; x′)⊗ 1⊗n

M(⟨x⟩ ; x′)⊗⊗n
j=1 M(xj ; xj) M(⟨x⟩ ; x′)

1⊗(⊗j1xj
)

ρ

γ
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(2) The left unity diagram below commutes.

(C.1.10)

1⊗M(⟨x⟩ ; x′)

M(x′ ; x′)⊗M(⟨x⟩ ; x′) M(⟨x⟩ ; x′)
1x′⊗1

λ

γ

Equivariance: Suppose len⟨xj⟩ = kj ≥ 0 in the definition of γ (C.1.6).
(1) For each σ ∈ Σn, the following top equivariance diagram commutes.

(C.1.11)

M(⟨x′⟩ ; x′′)⊗⊗n
j=1 M(⟨xj⟩ ; x′j) M(⟨x′⟩σ ; x′′)⊗⊗n

j=1 M(⟨xσ(j)⟩ ; x′σ(j))

M(⟨x1⟩, . . . , ⟨xn⟩ ; x′′) M(⟨xσ(1)⟩, . . . , ⟨xσ(n)⟩ ; x′′)
γ

(σ,σ−1)

γ

σ⟨kσ(1),...,kσ(n)⟩

In (C.1.11) the block permutation

(C.1.12) σ⟨kσ(1), . . . , kσ(n)⟩ ∈ Σk1+⋯+kn

permutes n consecutive intervals of lengths kσ(1), . . ., kσ(n), respec-

tively, as σ permutes {1, . . . , n}, without changing the order within
each interval.

(2) Given permutations τj ∈ Σk j
for 1 ≤ j ≤ n, the following bottom equiv-

ariance diagram commutes.

(C.1.13)

M(⟨x′⟩ ; x′′)⊗⊗n
j=1 M(⟨xj⟩ ; x′j) M(⟨x′⟩ ; x′′)⊗⊗n

j=1 M(⟨xj⟩τj ; x′j)

M(⟨x1⟩, . . . , ⟨xn⟩ ; x′′) M(⟨x1⟩τ1, . . . , ⟨xn⟩τn ; x′′)
γ

(1,⊗jτj)

γ

τ1×⋯×τn

In (C.1.13) the block sum

(C.1.14) τ1 ×⋯× τn ∈ Σk1+⋯+kn

is the image of (τ1, . . . , τn) under the canonical inclusion

Σk1
×⋯×Σkn

Σk1+⋯+kn
.

This finishes the definition of a V-multicategory. A V-multicategory is small if it
has a set of objects.

Moreover, we define the following variants.

● A non-symmetric V-multicategory is defined in the same way as a V-
multicategory by omitting the symmetric group action and the axioms
(C.1.7), (C.1.11), and (C.1.13) involving the symmetric group action.
● A (non-symmetric) multicategory is a (non-symmetric) Set-multicategory,

where (Set,×,∗) is the symmetric monoidal category of sets and func-
tions with the Cartesian product as the monoidal product.
● A V-operad is a V-multicategory with one object. If M is a V-operad, then

its n-ary multimorphism object is denoted by Mn ∈ V.
● An operad is a Set-operad, that is, a multicategory with one object. ◇

Remark C.1.15 (Related Concepts).
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(1) In the literature, including [Lam69] where this concept originated, a mul-
ticategory sometimes means a non-symmetric multicategory in the sense
of Definition C.1.3. Our convention is to include the symmetric group
action by default. We always include the word non-symmetric if we are
referring to the variant without the symmetric group action.

(2) There are more conceptual ways to define enriched multicategories as
(i) monoids in a certain monoidal category and (ii) algebras over some
monad. See [Yau20a, Ch. 4].

(3) There are variants of enriched multicategories whose equivariant struc-
ture is parametrized by groups different from the symmetric groups, such
as the braid groups. See [Yau22].

(4) There are many different but related generalizations of enriched multi-
categories whose operation objects have input and output profiles of ar-
bitrary lengths. See [JY21, Section 2.5] for one such variant called polycat-
egories and [YJ15] for other variants. ◇

Example C.1.16 (Underlying V-Categories). Each non-symmetric V-multicategory(M, γ, 1) has an underlying V-category (Definition B.1.1) defined as follows.

● It has the same class of objects as M.
● For objects x, y ∈M, the hom object is M(x ; y).
● The identities are the colored units in M.
● The composition is given by

M(y ; z)⊗M(x ; y) M(x ; z)γ

for objects x, y, z ∈M.

The associativity and unity diagrams, (B.1.4) and (B.1.5), of a V-category are the
1-ary restrictions of, respectively, the associativity and unity diagrams, (C.1.8)
through (C.1.10), of a V-multicategory.

Suppose V is the symmetric monoidal category (Cat,×, 1) of small categor-
ies and functors with the Cartesian product. Then each non-symmetric Cat-
multicategory has an underlying 2-category by Proposition B.1.7. ◇
Example C.1.17. With V = (Set,×,∗), the terminal multicategory T consists of a sin-
gle object ∗ and a single n-ary operation ιn for each n ≥ 0. ◇
Example C.1.18 (Endomorphism Operad). For each V-multicategory M and x ∈
ObM, the endomorphism V-operad End(x) consists of the single object x and n-ary
multimorphism object

End(x)n =M(⟨x⟩ ; x) ∈ V,

with ⟨x⟩ the n-tuple of copies of x. Its multicategory structure is inherited from
M. ◇

The 2-Category of Enriched Multicategories.

Definition C.1.19. Suppose M and N are V-multicategories. A V-multifunctor

F ∶M N

consists of the following data.

Object Assignment: It is equipped with a function

F ∶ ObM ObN.
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Component Morphisms: For (⟨x⟩ ; y) ∈ Prof(M) ×ObM with ⟨x⟩ = ⟨xj⟩nj=1, it is

equipped with a morphism

M(⟨x⟩ ; y) N(F⟨x⟩ ; Fy)F
in V

where F⟨x⟩ = ⟨Fxj⟩nj=1.

The data above are required to satisfy the following axioms.

Symmetric Group Action: For (⟨x⟩ ; y) ∈ Prof(M)×ObM and σ ∈ Σn, the follow-
ing diagram in V commutes.

(C.1.20)

M(⟨x⟩ ; y) N(F⟨x⟩ ; Fy)

M(⟨x⟩σ ; y) N(F⟨x⟩σ ; y)
≅σ

F

≅σ

F

Units: For each x ∈ ObM, the following diagram in V commutes.

(C.1.21) 1

M(x ; x)

N(Fx ; Fx)

1x

1Fx

F

Composition: For x′′, ⟨x′⟩, and ⟨x⟩ = ⊕n
j=1⟨xj⟩ as in (C.1.6), the following diagram

in V commutes.

(C.1.22)

M(⟨x′⟩ ; x′′)⊗⊗n
j=1 M(⟨xj⟩ ; x′j) N(F⟨x′⟩ ; Fx′′)⊗⊗n

j=1 N(F⟨xj⟩ ; Fx′j)

M(⟨x⟩ ; x′′) N(F⟨x⟩ ; Fx′′)
γ

(F,⊗jF)

γ

F

This finishes the definition of a V-multifunctor.
Moreover, we define the following.

● For a V-multifunctor G ∶ N P, the composition

GF ∶M P

is the V-multifunctor with object assignment given by the composite
function

ObM ObN ObP
F G

and component morphisms given by the composites

(C.1.23) M(⟨x⟩ ; y) N(F⟨x⟩ ; Fy) P(GF⟨x⟩ ; GFy).F G

● The identity V-multifunctor 1M ∶ M M has the identity object assign-
ment and identity component morphisms.
● A V-operad morphism is a V-multifunctor between V-multicategories with

one object.
● A non-symmetric V-multifunctor F ∶ M N between non-symmetric V-

multicategories is defined in the same way as a V-multifunctor but with-
out the symmetric group action axiom (C.1.20). Composition and identi-
ties are defined as above.
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● A (non-symmetric) multifunctor is a (non-symmetric) Set-multifunctor. ◇
Example C.1.24 (Underlying V-Functors). Continuing Example C.1.16, each (non-
symmetric) V-multifunctor (Definition C.1.19) restricts to a V-functor between the
underlying V-categories. The compatibility diagrams (B.1.9) of a V-functor are
the unit diagram (C.1.21) and the unary restriction of the composition diagram
(C.1.22). ◇
Definition C.1.25. Suppose F, G ∶ M N are V-multifunctors. A V-multinatural
transformation θ ∶ F G consists of, for each x ∈ ObM, a component morphism

1 N(Fx ; Gx)θx
in V

such that the following V-naturality diagram commutes for (⟨x⟩ ; y) ∈ Prof(M) ×
ObM with ⟨x⟩ = ⟨xj⟩nj=1.

(C.1.26) M(⟨x⟩ ; y)

1⊗M(⟨x⟩ ; y) N(Fy ; Gy)⊗N(F⟨x⟩ ; Fy)

N(F⟨x⟩ ; Gy)

M(⟨x⟩ ; y)⊗⊗n
j=1 1 N(G⟨x⟩ ; Gy)⊗⊗n

j=1 N(Fxj ; Gxj)

λ
−1

ρ
−1

θy ⊗ F

γ

G⊗⊗
n
j=1 θxj

γ

This finishes the definition of a V-multinatural transformation.
Moreover, we define the following.

● The identity V-multinatural transformation 1F ∶ F F has each compo-
nent given by a colored unit:

(1F)x = 1Fx for x ∈ ObM.

● A multinatural transformation is a Set-multinatural transformation.
● A V-multinatural transformation θ ∶ F G between non-symmetric V-

multifunctors F, G ∶M N is defined as above. In this case, we also call
θ a non-symmetric V-multinatural transformation if we want to emphasize
that its domain and codomain are non-symmetric V-multifunctors.

We use the 2-cell notation (A.1.29) for (non-symmetric) V-multinatural transfor-
mation. ◇
Example C.1.27 (Underlying V-Natural Transformations). Continuing Exam-
ples C.1.16 and C.1.24, each V-multinatural transformation (Definition C.1.25)
is also a V-natural transformation (Definition B.1.10) between the underlying V-
functors between the underlying V-categories. The naturality diagram (B.1.11)
of a V-natural transformation is the unary restriction of the naturality diagram
(C.1.26) of a V-multinatural transformation. ◇
Definition C.1.28. Suppose M, N, and P are V-multicategories.

(1) Suppose θ and ψ are V-multinatural transformations as in the left dia-
gram below.

(C.1.29) M N

F

G

H

⇒

θ

⇒

ψ
M N

F

H

⇒

ψθ
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The vertical composition ψθ, as in the right diagram above, is the V-
multinatural transformation with component at each x ∈ ObM given
by the following composite in V.

(C.1.30)
1

1⊗ 1 N(Gx ; Hx)⊗N(Fx ; Gx)

N(Fx ; Hx)
λ
−1

ψx ⊗ θx

γ

(ψθ)x

(2) Suppose θ and θ′ are V-multinatural transformations as in the left dia-
gram below.

(C.1.31) M N P

F

G

F
′

G
′

⇒

θ

⇒

θ
′ M P

F
′
F

G
′
G

⇒

θ
′
∗ θ

The horizontal composition θ′ ∗ θ, as in the right diagram above, is the V-
multinatural transformation with component at each x ∈ ObM given by
the following composite in V.

(C.1.32)

1

1⊗ 1 P(F′Gx ; G′Gx)⊗N(Fx ; Gx)

P(F′Gx ; G′Gx)⊗P(F′Fx ; F′Gx)

P(F′Fx ; G′Gx)(θ′ ∗ θ)x

λ
−1

θ
′

Gx ⊗ θx

1⊗ F′

γ

Vertical and horizontal compositions of non-symmetric V-multinatural transfor-
mations are defined as above. ◇
Theorem C.1.33. Suppose V is a symmetric monoidal category.

(1) There is a 2-category
V-Multicat

consisting of the following data.
● Its objects are small V-multicategories.
● For small V-multicategories M and N, the hom category

V-Multicat(M,N)
is defined as follows.

– Its objects are V-multifunctors M N.
– Its morphisms are V-multinatural transformations.
– Identity morphisms are identity V-multinatural transformations.
– Composition is vertical composition of V-multinatural transforma-

tions.
● The identity 1-cell 1M is the identity V-multifunctor 1M.
● Horizontal composition of 1-cells is the composition of V-multifunctors.
● Horizontal composition of 2-cells is that of V-multinatural transformations.

(2) There is an analogous 2-category

V-Multicatns

with
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● non-symmetric small V-multicategories as objects,
● non-symmetric V-multifunctors as 1-cells, and
● non-symmetric V-multinatural transformations as 2-cells.

(3) Suppose, furthermore, V is a complete and cocomplete symmetric monoi-
dal closed category. Then the underlying 1-categories of V-Multicat and
V-Multicatns are complete and cocomplete.

Proof. Assertions (1) and (3) for V-Multicat are proved using essentially the same
proofs as [JY21, 2.4.26] and [JY∞, 5.5.14], respectively, which deal with the case
V = Set. The analogous statements for the non-symmetric case use the same proofs
by ignoring the symmetric group action. �

We define

(C.1.34)
Multicat = Set-Multicat and

Multicatns = Set-Multicatns

which are, respectively, V-Multicat and V-Multicatns with (V,⊗,1) = (Set,×,∗). In
Section 1.1 we extend the 2-category Multicat to

● a symmetric monoidal Cat-category (Theorem 1.1.19) and
● a Cat-multicategory (Explanation 1.1.20).

Example C.1.35 (Initial and Terminal Objects).

(i) With (V,⊗) = (Set,×), the initial operad I has a single object ∗ and a single
unit operation 1∗ ∈ I1.

(ii) The initial V-multicategory has an empty set of objects.
(iii) If V has a terminal object T, then a terminal V-multicategory T has a single

object ∗ and n-ary multimorphism object

Tn = T( n terms

∗, . . . ,∗;∗) = T

for each n ≥ 0. ◇

C.2. Categorically-Enriched Multicategories

In this section we review multicategories enriched in Cat. Recall from Exam-
ple A.1.21 the symmetric monoidal closed category (Cat,×, 1) of small categories
and functors with the monoidal product given by the Cartesian product.

Definition C.2.1. Suppose ⟨x⟩ = ⟨xj⟩nj=1, y, z are objects in a Cat-multicategory

(M, γ, 1). The category

M(⟨x⟩ ; y)
is called a multimorphism category.

● An object in M(⟨x⟩ ; y) is called an n-ary 1-cell and is denoted ⟨x⟩ y.
● A morphism

θ ∶ f g in M(⟨x⟩ ; y)
is called an n-ary 2-cell. We extend the 2-cell notation (A.1.29) to n-ary
2-cells.

The same terminology applies to non-symmetric Cat-multicategories. ◇
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Explanation C.2.2 (Cat-Multinatural Transformations). Suppose M and N are Cat-
multicategories, and

F, G ∶M N

are Cat-multifunctors. A Cat-multinatural transformation θ ∶ F G consists of, for
each x ∈ ObM, a component 1-ary 1-cell

(C.2.3) Fx Gx
θx

in N

such that the following two Cat-naturality conditions hold:

Objects: For each k-ary 1-cell

p ∶ ⟨x⟩ x′ in M

with ⟨x⟩ = ⟨xj⟩kj=1, denote by

(C.2.4)

⎧⎪⎪⎨⎪⎪⎩
F⟨x⟩ = ⟨Fxj⟩kj=1 ∈ (ObN)k
θ⟨x⟩ = ⟨θx j

⟩kj=1 ∈∏k
j=1N(Fxj ; Gxj).

Then the following equality of k-ary 1-cells holds, where the composition
is taken in N:

(C.2.5) γ(Gp ; θ⟨x⟩) = γ(θx′ ; Fp) in N(F⟨x⟩ ; Gx′).
Morphisms: For each k-ary 2-cell

f ∶ p q in M(⟨x⟩ ; x′),
the following equality of k-ary 2-cells holds, with 1θ⟨x⟩

= ⟨1θxj
⟩kj=1:

(C.2.6) γ(G f ; 1θ⟨x⟩
) = γ(1θx′

; F f ) in N(F⟨x⟩ ; Gx′).
The conditions (C.2.5) and (C.2.6) together comprise the V-naturality condition
(C.1.26) with V = Cat.

The two sides of the object Cat-naturality condition (C.2.5) use the following
two compositions in N on objects.

(C.2.7)

N(G⟨x⟩ ; Gx′)×∏k
j=1N(Fxj ; Gxj) N(Fx′ ; Gx′)×N(F⟨x⟩ ; Fx′)

N(F⟨x⟩ ; Gx′)
γ γ

The object Cat-naturality condition (C.2.5) is the commutative diagram

(C.2.8)

F⟨x⟩ G⟨x⟩

Fx′ Gx′

Fp

θ⟨x⟩

Gp

θx′

involving the compositions (C.2.7) in N.
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The two sides of the morphism Cat-naturality condition (C.2.6) use the com-
positions in (C.2.7) on morphisms. The condition (C.2.6) is the equality of multi-
categorical pasting diagrams

(C.2.9) =

F⟨x⟩ G⟨x⟩

Fx′ Gx′

θ⟨x⟩

Gq

Fp

θx′

Fq

Ô⇒
F f

F⟨x⟩ G⟨x⟩

Fx′ Gx′

θ⟨x⟩

Gq

Fp

θx′

Gp

Ô⇒
G f

involving the composition in N.
By the object Cat-naturality condition (C.2.5) for θ′ ∶ F′ G′, there are two

ways to express the x-component of the horizontal composite (C.1.31) for x ∈ ObM:

(C.2.10)
(θ′ ∗ θ)x = γ(θ′Gx ; F′θx)

= γ(G′θx ; θ′Fx).
A non-symmetric Cat-multinatural transformation admits the same description as
above. ◇

C.3. Endomorphism Multicategories

In this section we review the endomorphism construction that goes from sym-
metric monoidal categories to multicategories, which mean Set-multicategories.
This construction defines a 2-functor; see Proposition C.3.6. The enriched variant
is in Definition C.3.8. The material in this section is adapted from [JY∞, Section
6.3].

Example C.3.1 (Endomorphism Multicategory). Suppose (C,⊕, e, ξ) is a permuta-
tive category (Definition A.1.14). Then it has an associated endomorphism multicat-
egory End(C) defined as follows.

● The object class is ObC.
● The n-ary multimorphism set is

End(C)(⟨x⟩ ; y) = C(⊕n
j=1 xj , y)

for (⟨x⟩ ; y) ∈ Prof(C)×C with ⟨x⟩ = ⟨xj⟩nj=1. By definition, an empty ⊕ in

C is the monoidal unit e.
● The symmetric group action is induced by the braiding ξ.
● For each object x in C, the x-colored unit is the identity morphism 1x.
● The multicategorical composition in End(C) is induced by ⊕ and compo-

sition in C.

There are two variants of the above endomorphism construction.

(1) If (C,⊗,1, ξ) is a symmetric monoidal category that is not necessarily
strict, then End(C) is still a multicategory.
● The n-ary multimorphism set is

(C.3.2) End(C)(⟨x⟩ ; y) = C(⊗n
j=1 xj , y)

with ⊗n
j=1 xj using Convention A.1.30 of left normalized bracketing.

By definition, an empty ⊗ is the monoidal unit 1.
● The symmetric group action is induced by the braiding ξ and the

associativity isomorphism α in C.
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● The composition in End(C) is induced by α, ⊗, and composition in
C. If nullary multimorphisms are involved, then we also use the left
and right unit isomorphisms in C.

(2) If (C,⊗,1) is a monoidal category, then the above definitions, without the
symmetric group action, yield a non-symmetric multicategory that we
also denote by End(C).

Furthermore, the endomorphism multicategory extends to symmetric mon-
oidal functors and monoidal natural transformations as follow. Each symmetric
monoidal functor between symmetric monoidal categories

(P, P2, P0) ∶ C D

induces a multifunctor

(C.3.3) End(P) ∶ End(C) End(D)
with the same object assignment as P. For an n-ary multimorphism

f ∈ End(C)(⟨x⟩ ; y) = C(⊗n
j=1 xj , y)

with (⟨x⟩ ; y) as above, its image in End(D)(⟨Px⟩ ; Py) is the composite

(C.3.4) ⊗n
j=1 Pxj

P
2

P(⊗n
j=1 xj) P f

Py in D.

The first morphism P2 in (C.3.4) means

● the unit constraint P0 ∶ 1 P1 if n = 0,
● the identity if n = 1, and

● a repeated application of the monoidal constraint P2 if n > 1.

Suppose θ is a monoidal natural transformation between symmetric monoidal
functors between symmetric monoidal categories, as in the left diagram below.

C D

(P, P2, P0)

(Q, Q2, Q0)

⇒

θ End(C) End(D)
End(P)

End(Q)

⇒

End(θ)

Then θ induces a multinatural transformation End(θ), as in the right diagram
above, with component morphisms

(C.3.5) End(θ)x = θx for x ∈ C.

The non-symmetric variants of the above statements also hold.

(1) If P is a monoidal functor between monoidal categories, then End(P) is a
non-symmetric multifunctor.

(2) If θ is a monoidal natural transformation between monoidal functors be-
tween monoidal categories, then End(θ) is a non-symmetric multinatural
transformation.

If there is no danger of confusion, we abbreviate End(C) to C and similarly for
End(P) and End(θ). We extend this example to the pointed context in Exam-
ple C.4.8 below. ◇

Recall the 2-categories

● Multicat of small multicategories, multifunctors, and multinatural trans-
formations (Theorem C.1.33 with V = (Set,×,∗)) and
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● PermCat of small permutative categories, symmetric monoidal functors,
and monoidal natural transformations (Definition A.2.3).

Proposition C.3.6. The endomorphism multicategory in Example C.3.1 defines a 2-
functor

End ∶ PermCat Multicat.

We also denote by End the restriction of the 2-functor in Proposition C.3.6 to
any one of the locally-full sub-2-categories of PermCat in Definition A.2.3, includ-
ing PermCatsu and PermCatst. In (1.4.39) we discuss an extension of End, with
domain PermCatsu, to a Cat-multifunctor.

Enriched Endomorphism Multicategories. For the rest of this section, we
assume that (V,⊗,1, ξ) is a symmetric monoidal category. Next we review the
V-multicategory associated to a symmetric monoidal V-category. The endomor-
phism multicategory in Example C.3.1 is the special case (V,⊗) = (Set,×).
Convention C.3.7 (Left Normalized Product). Suppose (K,⊠) is a monoidal V-
category (Definition B.2.7), and ⟨x⟩ = ⟨xj⟩nj=1 is an n-tuple of objects of K for some

n ≥ 0. We define the left normalized product as the object

⊠⟨x⟩ = n⊠
j=1

xj = (⋯ ((x1 ⊠ x2)⊠ x3)⋯)⊠ xn,

which is the identity object of K if n = 0. ◇
Definition C.3.8. Suppose (K, β⊠) is a symmetric monoidal V-category (Def-
inition B.2.16) with V a symmetric monoidal category. The endomorphism V-
multicategory of K, denoted End(K), consists of the following data.

Objects: Ob(End(K)) = ObK.
Multimorphism Objects: For an object x′ ∈ K and a tuple ⟨x⟩ ∈ Prof(K), we define

the object

End(K)(⟨x⟩ ; x′) = K(⊠⟨x⟩ , x′) in V

with ⊠⟨x⟩ denoting the left normalized product in Convention C.3.7.
Symmetric Group Action: For objects ⟨x⟩ and x′ as above and a permutation σ ∈

Σn, the right σ-action is defined as the following composite.

K(⊠⟨x⟩, x′)

K(⊠⟨x⟩, x′)⊗ 1 K(⊠⟨x⟩, x′)⊗K(⊠⟨x⟩σ,⊠⟨x⟩)

K(⊠⟨x⟩σ, x′)
ρ
−1

1⊗ β
⊠
σ

m

σ

In the above diagram, β⊠σ denotes the V-natural isomorphism that per-
mutes coordinates according to the permutation σ.

Units: For each object x ∈ K, the x-colored unit of End(K) is the identity of x in K,

1 K(x, x) = End(K)(x ; x).1x

Composition: The composition γ in End(K) is defined as the following composite
for tuples of objects

x′′, ⟨x′⟩ = ⟨x′j⟩nj=1 , and ⟨xj⟩ = ⟨xj,i⟩k j

i=1
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with j ∈ {1, . . . , n} and ⟨x⟩ = ⟨⟨xj⟩⟩nj=1.

K(⊠⟨x′⟩, x′′)⊗ n⊗
j=1

K( k j⊠
i=1

xj,i , x′j)

K(⊠⟨x′⟩, x′′)⊗K( n⊠
j=1

k j⊠
i=1

xj,i , ⊠⟨x′⟩) K( n⊠
j=1

k j⊠
i=1

xj,i , x′′)

K(⊠⟨x⟩, x′′)
1⊗⊠n−1

j=1

m

≅

γ

This finishes the definition of End(K). To simplify the notation, we also denote
End(K) by K. ◇

The following result is [JY∞, 6.3.6].

Proposition C.3.9. In the context of Definition C.3.8, End(K) is a V-multicategory.

If there is no danger of confusion, we abbreviate End(K) to K.

C.4. Pointed Multicategories

Recall that a multicategory means a Set-multicategory (Definition C.1.3), where(Set,×,∗) is the symmetric monoidal category of sets with the Cartesian product.
In this section we review pointed multicategories.

● The 2-category Multicat∗ of small pointed multicategories is in Theo-
rem C.4.9.
● The free-forgetful 2-adjunction between Multicat and Multicat∗ is in

Proposition C.4.16.

The material in this section is adapted from [JY∞, Section 5.3]. Recall the terminal
multicategory T in Example C.1.17. It has a single object ∗ and one n-ary operation
ιn for each n ≥ 0.

Definition C.4.1. We define the following.

(1) A pointed multicategory (M, i) is a pair consisting of the following data.
● M is a multicategory (Definition C.1.3).
● i ∶ T M is a multifunctor (Definition C.1.19), which is called the

pointed structure.
We denote
● i(∗) ∈ ObM by ∗, which is called the basepoint object, and

● i(ιn) ∈ M(⟨∗⟩nj=1 ; ∗) by ιn or ιn, which is called the n-ary basepoint

operation, for each n ≥ 0.

(2) For pointed multicategories (M, iM) and (N, iN), a pointed multifunctor

F ∶ (M, iM) (N, iN)
is a multifunctor F ∶ M N (Definition C.1.19) such that the following
diagram of multifunctors commutes.

(C.4.2) T

M

N

i
M

i
N

F

(3) A pointed multinatural transformation

θ ∶ F G ∶ (M, iM) (N, iN)
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between pointed multifunctors F and G is a multinatural transformation
(Definition C.1.25) such that the basepoint component

(C.4.3) θ∗ = 1∗ ∈ N(F(∗) ; G(∗)) = N(∗ ; ∗),
which is the colored unit of the basepoint object ∗ in N.

With these definitions, composites of pointed multifunctors and multinatural
transformations are again pointed. ◇
Explanation C.4.4 (Pointed Structure). For a multicategory (M, γ, 1), a multifunc-
tor i ∶ T M (Definition C.1.19) is uniquely determined by

● a basepoint object ∗ ∈ ObM and
● an n-ary basepoint operation

ιn ∈M(⟨∗⟩nj=1 ; ∗) for ≥ 0

such that the following three conditions hold:

Symmetry: For each n ≥ 0 and permutation σ ∈ Σn, there is an equality

(C.4.5) ιn ⋅ σ = ιn.

Unity: There is an equality

(C.4.6) ι1 = 1∗ ∈M(∗ ; ∗),
which is the colored unit of ∗ in M.

Composition: For n ≥ 1 and kj ≥ 0 for j ∈ {1, . . . , n}, there is an equality

(C.4.7) γ(ιn ; ⟨ιk j
⟩nj=1) = ιk1+⋯+kn

.

Moreover, for a pointed multifunctor

F ∶ (M, iM) (N, iN),
the commutative diagram (C.4.2) means

● F(∗) = ∗ in ObN and
● F(ιn) = ιn for each n ≥ 0.

In other words, a pointed multifunctor is a multifunctor that preserves the base-
point object and the basepoint operations. ◇
Example C.4.8 (Pointed Endomorphism Multicategory). Each permutative cate-
gory (C,⊕, e, ξ) has an associated pointed multicategory

End●(C) = (End(C), i)
defined as follows.

● End(C) is the endomorphism multicategory in Example C.3.1.
● Using Explanation C.4.4, the pointed structure is given by the multifunc-

tor

i ∶ T End(C)
determined by

– the basepoint object e ∈ C and
– n-ary basepoint operations

ιn = 1e ∶⊕n
j=1 e = e e for n ≥ 0.
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As in Example C.3.1, the above definitions still yield a pointed multicategory
End●(C) if (C,⊗,1) is a symmetric monoidal category that is not necessarily strict.
In this case, the n-ary basepoint operation

ιn ∶⊗n
j=1 1

≅
1

is

● the identity 11 if n = 0 or if n = 1 and
● an iterate of the right unit isomorphism ρ in C if n > 1.

The unity condition (C.4.6) holds by definition. The symmetry and composition
conditions, (C.4.5) and (C.4.7), hold by the Coherence Theorem for symmetric
monoidal categories [ML98, XI.1 Theorem 1].

Moreover, the following statements hold:

(i) Each strictly unital symmetric monoidal functor between symmetric mon-
oidal categories

(P, P2, P0 = 1) ∶ C D

induces a pointed multifunctor

End●(P) ∶ End ●(C) End ●(D)
given by the multifunctor End(P) in (C.3.3). Strict unity of P ensures that
End(P) is pointed as in Explanation C.4.4.

(ii) Each monoidal natural transformation between strictly unital symmetric
monoidal functors between symmetric monoidal categories

θ ∶ (P, P2, P0 = 1) (Q, Q2, Q0 = 1) ∶ C D

induces a pointed multinatural transformation

End●(θ) ∶ End ●(P) End●(Q) ∶ End ●(C) End ●(D)
with components as in (C.3.5):

End●(θ)x = θx for x ∈ C.

The pointed condition

End ●(θ)1 = θ1 = 11 ∶ 1 1 in D

follows from
● the left diagram in (A.1.28) and

● the assumption that both unit constraints P0 and Q0 are the identi-
ties.

If there is no danger of confusion, we denote End●(C) by C. We extend this example
to leftM1-modules in Example 1.3.15. ◇

Pointed multifunctors are multifunctors satisfying the extra property (C.4.2).
Likewise, pointed multinatural transformations are multinatural transformations
with the extra property (C.4.3). These extra properties are closed under the com-
positions of the 2-category Multicat (Theorem C.1.33). Therefore, the proof for the
existence of the 2-category Multicat also yields the following.

Theorem C.4.9. In the context of Definition C.4.1, there is a 2-category

Multicat∗

defined by the following data.
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● The objects are small pointed multicategories.
● The 1-cells are pointed multifunctors.
● The 2-cells are pointed multinatural transformations.
● The horizontal and vertical compositions and identity 1-cells and 2-cells are de-

fined as in the 2-category Multicat.

In Section 1.2 we discuss extensions of the 2-category Multicat∗ to

● a symmetric monoidal Cat-category (Theorem 1.2.8) and
● a Cat-multicategory (Explanation 1.2.9).

Proposition C.4.10. The pointed endomorphism multicategory in Example C.4.8 defines
a 2-functor

End ● ∶ PermCatsu Multicat∗

with PermCatsu the 2-category in Definition A.2.3.

We also denote by End● the restriction of the 2-functor in Proposition C.4.10 to
the locally-full sub-2-category PermCatst in Definition A.2.3. In (1.4.39) we discuss
an extension of End ● to a Cat-multifunctor.

Propositions C.4.11 and C.4.16 follow directly from the definitions.

Proposition C.4.11. There is a forgetful 2-functor

U ● ∶Multicat∗ Multicat

that sends

● a small pointed multicategory (M, i) to the multicategory M,
● a pointed multifunctor F to the multifunctor F, and
● a pointed multinatural transformation θ to the multinatural transformation θ.

Explanation C.4.12. The 2-functors in Propositions C.3.6, C.4.10, and C.4.11 yield
a commutative diagram

PermCatsu Multicat∗ Multicat
End ● U ●

End

with End restricted to PermCatsu. ◇
The forgetful 2-functor U ● admits a left 2-adjoint defined as follows.

Definition C.4.13 (Adjoining a Basepoint). We define a 2-functor

(C.4.14) (−)+ ∶Multicat Multicat∗

together with 2-natural transformations

(C.4.15)
η+ ∶ 1Multicat U ● ○ (−)+ and

ε+ ∶ (−)+ ○ U● 1Multicat∗

as follows.

The 2-Functor (−)+: This is defined by the following assignments.
● For a small multicategory M, we define the pointed multicategory

M+ =M∐T

with pointed structure given by the T summand, where the coprod-
uct is taken in Multicat.
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● For a multifunctor F ∶ M N between small multicategories, we
define the pointed multifunctor

F+ = F∐ 1T ∶M+ N+.

● Suppose θ ∶ F G is a multinatural transformation for multifunc-
tors F, G ∶ M N between small multicategories. The pointed
multinatural transformation

θ+ ∶ F+ G+

is given by
– the same components as θ for objects in M and
– 1∗ in N+ for the basepoint object ∗ ∈M+.

Unit: For a small multicategory M, the unit η+ has component multifunctor

η+M ∶M U ●(M+) =M∐T

given by the inclusion of the M summand.
Counit: For a small pointed multicategory (N, i), the counit ε+ has component

pointed multifunctor

ε+N = (1N , i) ∶ (U ●(N, i))
+
= N∐T N.

This finishes the definition. ◇
Recall the notion of a 2-adjunction in Definition A.2.11.

Proposition C.4.16. In the context of Definition C.4.13, there is a 2-adjunction

((−)+,U●, η+, ε+) ∶Multicat Multicat∗.



APPENDIX D

Open Questions

In this chapter, we discuss open questions related to the topics of this work.

Question D.1 (Diagrams and Presheaves on GE). Considering the Burnside 2-
category GE (Definition 0.3.5), Remark 0.3.7 notes that the assignment

( f , g) (g, f ),
sending a span to its reverse, is not functorial on 1-cells. However, it may be a
pseudofunctor. That possibility raises the following question.

Is there an equivalence of homotopy theories

PermCatsu-Cat(GE ,PermCatsu ) PermCatsu-Cat(GEop,PermCatsu )
with respect to the stable equivalences (2.5.14)? Such an equivalence, combined
with a change of enrichment as in Theorem 10.5.1, would give another approach
to G-spectra and would further inform the discussion in Remark 10.5.5.

The approach to equivalences of homotopy theories that we use throughout
this work requires an underlying (1-)functor, as in Definition 2.1.8. Therefore, an-
swering the above question in the affirmative appears to require new and likely
interesting extensions of that basic approach. Note, moreover, that this question is
a special case of Question D.4 below. ◇
Question D.2 (The Forgetful U ●). Considering the stable equivalences

S● ⊂Multicat∗ and SF ⊂Multicat

in (4.0.1), is the forgetful functor

U ● ∶Multicat∗ Multicat

a relative functor? If so, then the equality End = U ● ○ End●, together with the other
results in Chapter 4, implies that U ● is also an equivalence of homotopy theories.
In definition of η

●
M, (4.3.2) suppresses the forgetful U ●. Including it, (4.3.2) defines

η
●
M as the pointed multifunctor such that

U ●η
●
M = End(pM) ○ ηU ●M.

Observe, by Theorems 3.5.3 and 4.7.3, that

● ηU ●M and η
●
M are stable equivalences, and

● End(pM) is an F-stable equivalence if and only if pM is a stable equiva-
lence.

Therefore, it follows that U ● is a relative functor if and only if pM is a stable equiv-
alence for each pointed multicategory M.

For

H ∶M N ∈Multicat∗,

369
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there is a commutative diagram induced by naturality of p (Proposition 4.2.3).

FT FM F●M

FT FN F●N

1 FH F●H

Fι
M pM

Fι
N pN

Since the empty tuple is an initial object in FT, the nerve Ner(FT) is contractible. A
quasifibration argument, such as Quillen’s Theorem A [Qui73], might be one way
to approach this question.

Another approach might try to show directly that pM is a stable equivalence
for each M. For this second approach, show that there is an equivalence of cate-
gories

F(M+) ≃ FM
given by deleting the (disjoint) basepoint objects and operations from each tuple
of objects and morphisms in F(M+). This, combined with the isomorphism

F●(M+) ≅ FM
from (4.3.14), implies that

p(M+) ∶ F(M+) ≃
F●(M+)

is an equivalence of categories. Further work will be needed to determine whether
or not there is a stable equivalence between

F●(M) and F●(M+)
for all small pointed multicategories M. The authors are not aware of either a proof
or a counterexample to such an equivalence. ◇
Question D.3 (K-Theoretic Equivalences of Homotopy Theories). Are the diagram
and presheaf change-of-enrichment functors JT★, (Ner∗)★, KG★, and KEM

★ in (10.6.3)
and (10.6.6) equivalences of homotopy theories (Definition 2.1.7)? ◇
Question D.4 (Morita Theory for Closed Multicategories). Develop Morita the-
ory for diagram categories enriched in a non-symmetric closed multicategory M

(Definition 10.1.1). In other words, for M-categories C and D, give criteria that
guarantee that the categories

M-Cat(C,M) and M-Cat(D,M)
are

(i) equivalent or
(ii) connected by equivalences of homotopy theories.

Moreover, for a closed multicategory M, we ask the same questions for the en-
riched presheaf categories

M-Cat(Cop,M) and M-Cat(Dop,M)
with Cop and Dop the opposite M-categories of C and D (Proposition 6.6.7), respec-
tively. There is a huge literature on Morita theory in many different contexts. See,
for example,

● [Coh03, Sections 4.4 and 4.5] for Morita theory of modules over rings,
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● [Lin74, FPP75] for Morita theory of categories enriched in a closed cate-
gory, and
● [SS03, Section 4] and Example 10.1.26 for Morita theory of modules over

symmetric ring spectra.

Our Theorems 11.4.14, 11.4.24, 12.1.6, 12.4.6, and 12.6.6 are a kind of Morita theory
that involves a change of closed multicategories. ◇





Back Matter
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List of Main Facts

Chapter 0. Motivations from Equivariant Topology

(0.1.9) Elmendorf’s Theorem. There is a Quillen equivalence between G-spaces
and topological presheaves on OG.
(0.2.3) The spans in a small category C with chosen pullbacks form 1-cells of a
bicategory Span(C).
(0.2.6) The Burnside category GB is self-dual via the functor that reverses spans.
(0.3.1) Span(NG) has a choice of pullbacks that makes the composition of 1-cells
strictly associative and strictly unital on one side.
(0.3.7) The self-duality of the Burnside category does not extend to a 2-functor on
the Burnside 2-category.
(0.3.9) Guillou-May Theorem. There is a Quillen equivalence between G-spectra
and spectral Mackey functors.
(0.4.3) Schwede-Shipley Characterization Theorem. Stable model categories with
certain additional hypotheses are characterized by spectral Mackey functors on
spectral endomorphism categories.

Part 1. Background on Multicategories and K-Theory Functors

Chapter 1. Categorically Enriched Multicategories

(1.1.4) The category of small multicategories is strictly monadic over the category
of multigraphs.
(1.1.19) Multicat is a symmetric monoidal Cat-category with the Boardman-Vogt
tensor product.
(1.1.20) Multicat is a Cat-multicategory.
(1.1.26) The symmetric monoidal category Multicat is closed.
(1.2.8) Multicat∗ is a complete and cocomplete symmetric monoidal closed cate-
gory.
(1.2.9) Multicat∗ is a Cat-multicategory.
(1.2.10) The forgetful 2-functor U● ∶ Multicat∗ Multicat is a symmetric monoi-
dal Cat-functor.
(1.2.14) U ● ∶Multicat∗ Multicat is a Cat-multifunctor.
(1.3.6) The partition products∏1,− and∏−,1 are isomorphisms.

(1.3.8) The partition multicategoryM ∶ Fop Multicat∗ is a symmetric monoi-
dal functor.
(1.3.12)M1 is a commutative monoid in Multicat∗.
(1.3.13) There is a 2-category ModM1 of leftM1-modules.
(1.3.15) Each symmetric monoidal category has an endomorphism left M1-
module.

379
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(1.3.16) EndM1 ∶ PermCatsu ModM1 is a 2-functor.
(1.3.17) Each small pointed multicategory has at most one leftM1-module struc-
ture, and the structure morphism is an isomorphism. ModM1 is a full sub-2-
category of Multicat∗. ModM1 is a complete and cocomplete symmetric monoidal
closed category.
(1.3.19) There is a free-forgetful adjunctionM1∧− ∶Multicat∗ ModM1 ∶ UM1.

(1.3.22) The counit of (M1∧−,UM1) is componentwise an isomorphism.

(1.3.23) ModM1 is a symmetric monoidal Cat-category.
(1.3.24) ModM1 is a Cat-multicategory.
(1.3.26) M1 ∧ − is a strong symmetric Cat-monoidal functor, hence also a Cat-
multifunctor.
(1.3.27) UM1 is a symmetric monoidal Cat-functor.
(1.3.29) UM1 is a Cat-multifunctor.

(1.3.31) The unit and counit of (M1 ∧ −,UM1) are monoidal Cat-natural transfor-
mations, hence also Cat-multinatural transformations.
(1.4.9) A 1-linear functor is precisely a strictly unital symmetric monoidal functor.
(1.4.14) A 1-linear transformation is precisely a monoidal natural transformation.
(1.4.29) There are Cat-multicategories PermCatsu and PermCatst.
(1.4.31) End ● induces an isomorphism between multimorphism categories.
(1.4.32) End ● is a Cat-multifunctor.
(1.4.38) End = U ●End● and End● = UM1EndM1.
(1.4.40) End is a Cat-multifunctor.
(1.4.41) EndM1 is a Cat-multifunctor.

Chapter 2. Infinite Loop Space Machines

(2.1.5) The complete Segal space model structure on bisimplicial sets is a simplicial
model structure whose fibrant objects are precisely the complete Segal spaces.
(2.1.9) Inverse equivalences of homotopy theories are equivalences of homotopy
theories.
(2.1.10) An adjoint equivalence of homotopy theories induces equivalences of ho-
motopy theories.
(2.2.7) For a complete and cocomplete symmetric monoidal closed category C, the
category C∗ of pointed objects is also a complete and cocomplete symmetric mon-
oidal closed category.
(2.2.19) D∗-V is a complete and cocomplete symmetric monoidal closed category
with the pointed Day convolution.
(2.2.21)D∗-V is enriched and (co)tensored over V∗. D∗-V is a V-multicategory.
(2.3.3) Γ-V is a complete and cocomplete symmetric monoidal closed category.
(2.4.12) G∗-V is a complete and cocomplete symmetric monoidal closed category.
(2.4.18) Length-one inclusion defines a pointed functor i ∶ F G.
(2.4.19) Smash product ∧ ∶ G F is a strict symmetric monoidal pointed functor.
(2.5.1) Each functor in (2.5.1), except JT and KG , is an equivalence of homotopy
theories.
(2.5.3) Segal K-theory is the composite functor KSe = KF Ner∗ J

Se.
(2.5.4) Segal J-theory is not a multifunctor, so neither is KSe.
(2.5.8) Elmendorf-Mandell K-theory is the multifunctor KEM = KG Ner∗ JT EndM1.
(2.5.16) Segal K-theory is an equivalence of homotopy theories.
(2.5.20) Elmendorf-Mandell K-theory is an equivalence of homotopy theories.
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Chapter 3. Homotopy Theory of Multicategories

(3.1.13) Each multicategory M has an associated free permutative category FM.
(3.1.14) FI is isomorphic to the permutation category.
(3.1.15) FT is isomorphic to the category of natural numbers and morphisms of
finite sets.
(3.1.21) F ∶Multicat PermCatst is a 2-functor.
(3.2.8) F is a left 2-adjoint of End.
(3.3.7) The counit ε of (F,End) admits a componentwise right adjoint ̺.
(3.3.12) ̺C ∶ C FEnd(C) is a symmetric monoidal functor.
(3.4.21)Fn is a strong n-linear functor that is 2-natural with respect to multifunctors
and multinatural transformations.
(3.4.31) F ∶Multicat PermCatsu is a non-symmetric Cat-multifunctor.
(3.4.34) The unit η ∶ 1 EndF is a non-symmetric Cat-multinatural transforma-
tion.
(3.5.3) F ∶ Multicat PermCatst ∶ End is an adjoint equivalence of homotopy
theories.
(3.5.5) For each small non-symmetric Cat-multicategory Q, (FQ,EndQ) are inverse

equivalences of homotopy theories between MulticatQ and (PermCatsu)Q.
(3.5.7) F ∶ Multicat PermCatsu ∶ End are inverse equivalences of homotopy
theories.
(3.5.9) Inclusion I ∶ PermCatst PermCatsu is an equivalence of homotopy the-
ories.

Part 2. Homotopy Theory of Pointed Multicategories,M1-Modules, and
Permutative Categories

Chapter 4. Pointed Multicategories andM1-Modules Model All Connective
Spectra

(4.1.11) Each pointed multicategory M has an associated permutative category
F●M.
(4.1.17) F● ∶Multicat∗ PermCatst is a 2-functor.
(4.2.3) p ∶ F F● is a 2-natural transformation with each component a strict sym-
metric monoidal functor.
(4.2.5) pM is a 2-pushout of FT 1 in PermCatst.
(4.3.5) For each small pointed multicategory M, η

●
M ∶ M End●F●M is a pointed

multifunctor that is 2-natural in M.
(4.3.6) For each small permutative category C, ε

●
C ∶ F●End ●C C is a strict sym-

metric monoidal functor.
(4.3.9) ε

●
C is 2-natural in C.

(4.3.11) There is a 2-adjunction F● ∶Multicat∗ PermCatst ∶ End●.
(4.3.14) There is a 2-natural isomorphism F ≅ F● ○ (−)+.
(4.4.1) There is a 2-adjunction FM1 ∶ ModM1 PermCatst ∶ EndM1 with FM1 =
F●UM1.
(4.4.5) There is a 2-natural isomorphism F● ≅ FM1 ○ (M1∧−).
(4.5.3) F●T ≅ 1.
(4.5.7) A leftM1-module structure on a small pointed multicategory M determines

and is uniquely determined by binary operations π2
1(x) for objects x ∈ M that

satisfy basepoint, unit, and interchange conditions.
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(4.5.21) For each leftM1-module M, each morphism in FM1M is represented by a
length-one sequence.
(4.6.5) For each small permutative category C, ̺

●
C ∶ C F●End ●C is a strictly unital

symmetric monoidal functor.
(4.6.6) The adjunction εC ⊣ ̺C extends to an adjunction ε

●
C ⊣ ̺

●
C in PermCatsu.

(4.6.13) η
●
End ●C = End●̺ ●C.

(4.7.3) F● ∶Multicat∗ PermCatst ∶ End ● is an adjoint equivalence of homotopy
theories.
(4.7.4) (−)+ ∶Multicat Multicat∗ is an equivalence of homotopy theories.
(4.8.1)M1 ∧ − ∶ Multicat∗ ModM1 ∶ UM1 is an adjoint equivalence of homo-
topy theories.
(4.8.3) FM1 ∶ ModM1 PermCatst ∶ EndM1 is an adjoint equivalence of homo-
topy theories.

Chapter 5. Multiplicative Homotopy Theory

(5.1.9) Fn● is a strong n-linear functor.
(5.1.11) Fn● is 2-natural with respect to pointed multifunctors and pointed multi-
natural transformations.
(5.2.6) F● ∶Multicat∗ PermCatsu is a non-symmetric Cat-multifunctor.
(5.2.8) p ∶ FU ● F● is a non-symmetric Cat-multinatural transformation.
(5.3.2) η

● ∶ 1 End●F● is a non-symmetric Cat-multinatural transformation.
(5.3.3) ̺

● ∶ 1 F●End● is a non-symmetric Cat-multinatural transformation.

(5.4.1) For each small non-symmetric Cat-multicategory Q, (FQ● ,EndQ● ) are inverse

equivalences of homotopy theories between MulticatQ∗ and (PermCatsu)Q.
(5.5.2) FM1 ∶ModM1 PermCatsu is a non-symmetric Cat-multifunctor.
(5.5.5) ηM1 ∶ 1 EndM1FM1 is a non-symmetric Cat-multinatural transformation.
(5.5.8) ̺M1 ∶ 1 FM1EndM1 is a non-symmetric Cat-multinatural transformation.

(5.5.11) η
M1

EndM1C
= EndM1̺

M1

C
.

(5.5.12) For each small non-symmetric Cat-multicategory Q, (FQM1,End
Q
M1) are in-

verse equivalences of homotopy theories between (ModM1)Q and (PermCatsu)Q.

(5.5.14) For each small (non-)symmetric Cat-multicategory Q, ((M1 ∧ −)Q,UQ
M1)

are inverse equivalences of homotopy theories between MulticatQ∗ and (ModM1)Q.

Part 3. Enrichment of Diagrams and Mackey Functors in Closed Multicategories

Chapter 6. Multicategorically Enriched Categories

(6.1.27) For each non-symmetric multicategory M, there is a 2-category M-Cat of
small M-categories, M-functors, and M-natural transformations.
(6.2.1) For a monoidal category V, V-Cat and (EndV)-Cat are the same 2-categories.
(6.4.11) For small permutative categories C and D, Psu(C,D) is a small permutative
category.
(6.4.17) Composition mB,C,D is a bilinear functor.
(6.4.20) Psu is a Psu-category.
(6.5.7) For small permutative categories C and D, evC,D is a bilinear functor.
(6.5.8) mB,C,D is compatible with evaluation.
(6.6.7) For a multicategory M and an M-category C, Cop is an M-category.
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(6.6.8) For a symmetric monoidal category V, an opposite V-category is the same
as an opposite (EndV)-category.

Chapter 7. Change of Multicategorical Enrichment

(7.1.9) Each non-symmetric multifunctor F induces a change-of-enrichment 2-
functor.
(7.2.1) The change-of-enrichment 2-functor of a multifunctor preserves opposite
enriched categories.
(7.3.1) For a monoidal functor U, the change-of-enrichment 2-functors along U and
EndU are the same.
(7.4.1) Change-of-enrichment 2-functors of non-symmetric multifunctors are
closed under composition.
(7.5.6) There is a 2-functor E ∶Multicatns 2Cat that sends a small non-symmetric
multicategory M to M-Cat.

Chapter 8. The Closed Multicategory of Permutative Categories

(8.1.1) A closed multicategory is a multicategory equipped with n-ary internal
hom objects, symmetric group action on internal hom objects, and multicategorical
evaluation that satisfy equivariance and evaluation bijection axioms.
(8.1.16) For each symmetric monoidal closed category, the endomorphism multi-
category is closed.

(8.2.13) Each Psu(⟨C⟩ ; D) is a permutative category.

(8.2.16) The permutative categories Psu(⟨C⟩ ; D) admit symmetric group action
that satisfies the equivariance axioms for internal hom objects.
(8.3.8) Each ev⟨C⟩;D is a multilinear functor.
(8.4.1) Psu satisfies the evaluation bijection axiom.
(8.4.2) For Psu, the inverse of χ is Ψ.
(8.4.9) Psu satisfies the equivariance axioms for evaluation bijection.
(8.4.15) Psu is a closed multicategory.

Chapter 9. Self-Enrichment and Standard Enrichment

(9.1.7) Each non-symmetric closed multicategory admits a canonical self-enrichment.
(9.1.8) For Psu, the self-enrichment coincides with the canonical self-enrichment.
(9.1.9) For a symmetric monoidal closed category V, the canonical self-enrichment
of V coincides with the canonical self-enrichment of EndV.
(9.2.12) Each non-symmetric multifunctor F admits a standard enrichment F̂.
(9.2.17) For a monoidal functor U between symmetric monoidal closed categories,
the standard enrichment of U coincides with the standard enrichment of EndU.
(9.3.6) Standard enrichment functors are closed under composition in an appro-
priate sense.
(9.4.2) The standard enrichment of KEM factors into four spectral functors.

Chapter 10. Enriched Mackey Functors of Closed Multicategories

(10.1.8) For a non-symmetric closed multicategory M and an M-category C, a C-
diagram in M is precisely a left C-module.
(10.1.13) For a closed multicategory M and an M-category C, a C-Mackey functor
in M is precisely a left Cop-module.
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(10.1.17) An M-natural transformation between C-diagrams in M is precisely a left
C-module morphism.
(10.1.22) For vertically composable M-natural transformations between C-diagrams
in M, composition commutes with taking partners componentwise.
(10.1.26) Each simplicial, cofibrantly generated, proper, and stable model category
is Quillen equivalent to a category of spectral Mackey functors.
(10.1.27) For each finite group G, the category of genuine G-equivariant spectra is
Quillen equivalent to a spectral Mackey functor category associated to the permu-
tative Burnside category.
(10.3.1) For each non-symmetric multifunctor F ∶M N between non-symmetric
closed multicategories and a small M-category C, there is an induced diagram
change-of-enrichment functor from M-Cat(C,M) to N-Cat(CF,N).
(10.3.4) For each multifunctor F ∶ M N between closed multicategories and a
small M-category C, there is an induced presheaf change-of-enrichment functor
from M-Cat(Cop,M) to N-Cat((CF)op,N).
(10.4.1) Diagram change-of-enrichment functors are closed under composition.
(10.4.5) Presheaf change-of-enrichment functors are closed under composition.
(10.5.1) KEM induces diagram and presheaf change-of-enrichment functors.
(10.6.2) KEM

★ factors into four change-of-enrichment functors.

Part 4. Homotopy Theory of Enriched Diagrams and Mackey Functors

Chapter 11. Homotopy Equivalences between Enriched Diagram Categories

(11.1.1) For non-symmetric multifunctors F ∶M N ∶ E between non-symmetric
closed multicategories, a small N-category C, and a multinatural transformation

ξ ∶ 1N FE, there is an induced functor Fξ
★ from M-Cat(CE,M) to N-Cat(C,N).

(11.2.1) A multinatural transformation κ ∶ 1M EF induces a natural transfor-
mation κ★ ∶ 1 E★Fξ

★ on M-Cat(CE,M).
(11.3.1) A multinatural transformation ξ ∶ 1N FE induces a natural transfor-
mation ξ★ ∶ 1 Fξ

★E★ on N-Cat(C,N).
(11.4.1) For a non-symmetric closed multicategory P equipped with a relative cat-
egory structureW and a P-category D, there is an induced relative category struc-
ture on P-Cat(D,P).
(11.4.14) Under appropriate assumptions, inverse equivalences of homotopy the-

ories (F, E) lift to inverse equivalences of homotopy theories (Fξ
★, E★) between

M-Cat(CE,M) and N-Cat(C,N).
(11.4.24) If, furthermore, E is a multifunctor, then (Fξ

★, E★) are inverse equivalences
of homotopy theories between M-Cat((CE)op,M) and N-Cat(Cop,N).

Chapter 12. Applications to Multicategories and Permutative Categories

(12.1.6) F● and End ● induce inverse equivalences of homotopy theories between (i)
CEnd ● -diagrams in Multicat∗ and C-diagrams in PermCatsu and (ii) CEnd ● -Mackey
functors in Multicat∗ and C-Mackey functors in PermCatsu.
(12.4.6)FM1 and EndM1 induce inverse equivalences of homotopy theories between

(i) CEndM1
-diagrams in ModM1 and C-diagrams in PermCatsu and (ii) CEndM1

-

Mackey functors in ModM1 and C-Mackey functors in PermCatsu.
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(12.6.6) M1 ∧ − and UM1 induce inverse equivalences of homotopy theories be-

tween (i) DUM1
-diagrams in Multicat∗ and D-diagrams in ModM1 and (ii) DUM1

-

Mackey functors in Multicat∗ and D-Mackey functors in ModM1.

Appendix A. Categories

(A.1.2) Grothendieck’s Axiom of Universes. Every set belongs to some universe.
(A.1.6) Each monoidal category satisfies λ1 = ρ1.
(A.1.7) Each monoidal category satisfies the left and right unity properties.
(A.1.13) Each braided monoidal category satisfies ρ = λξ−,1 and λ = ρξ1,−

(A.1.16) A symmetric monoidal category is precisely a braided monoidal category
that satisfies the symmetry axiom.
(A.1.21) Cat is a symmetric monoidal closed category.
(A.1.30) Iterated monoidal products are left normalized.
(A.2.2) Cat is a 2-category.
(A.2.3) PermCat, PermCatst, and PermCatsu are 2-categories.

Appendix B. Enriched Category Theory

(B.1.7) A locally small 2-category is precisely a Cat-category.
(B.1.12) V-Cat is a 2-category.
(B.2.2) The tensor product is a 2-functor on V-Cat.
(B.2.6) V-Cat is a monoidal category if V is braided monoidal. It is symmetric
monoidal if V is.
(B.2.18) V-Cat is a monoidal Cat-category if V is braided monoidal. It is a symmet-
ric monoidal Cat-category if V is symmetric monoidal.
(B.2.27) If V is a braided monoidal category, then there is a 2-category of small
monoidal V-categories. If V is a symmetric monoidal category, then there are a
2-category of small braided monoidal V-categories and a 2-category of small sym-
metric monoidal V-categories.
(B.3.2) Evaluation is the counit of an adjunction.
(B.3.7) For a symmetric monoidal closed category V, the canonical self-enrichment
is a symmetric monoidal V-category.
(B.4.6) Each monoidal functor induces a change-of-enrichment 2-functor.
(B.4.7) Change-of-enrichment 2-functors are closed under composition.
(B.4.9) For a braided monoidal functor U, change of enrichment is a monoidal Cat-
functor, which is symmetric if U is.
(B.4.10) Change of enrichment preserves enriched monoidal structure.
(B.4.11) For a symmetric monoidal functor U ∶ V W with V symmetric monoi-
dal closed, VU is a symmetric monoidal W-category.
(B.4.17) For a monoidal functor U ∶ V W between symmetric monoidal closed
categories, the standard enrichment is a monoidal W-functor, which is symmetric
if U is.

Appendix C. Multicategories

(C.1.16) Each non-symmetric V-multicategory has an underlying V-category.
(C.1.17) The terminal multicategory T consists of a single object and a single n-ary
operation for each n.
(C.1.18) Each object in a V-multicategory generates an endomorphism V-operad.
(C.1.24) Each V-multifunctor restricts to a V-functor.
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(C.1.27) Each V-multinatural transformation restricts to a V-natural transforma-
tion.
(C.1.33) There is a 2-category with (non-symmetric) small V-multicategories as ob-
jects.
(C.1.35) The initial V-multicategory has an empty set of objects. The terminal V-
multicategory has one object and each multimorphism object given by the terminal
object in V.
(C.2.2) A Cat-multinatural transformation consists of component 1-ary 1-cells that
satisfy two Cat-naturality conditions for objects and morphisms.
(C.3.1) Each symmetric monoidal category has an endomorphism multicategory.
Each symmetric monoidal functor induces a multifunctor. Each monoidal natu-
ral transformation between symmetric monoidal functors induces a multinatural
transformation.
(C.3.6) The endomorphism multicategory defines a 2-functor.
(C.3.9) Each symmetric monoidal V-category induces a V-multicategory.
(C.4.4) A pointed structure on a multicategory consists of a basepoint object and
n-ary basepoint operations that satisfy symmetry, unity, and composition axioms.
(C.4.8) Each symmetric monoidal category induces a pointed endomorphism mul-
ticategory with the basepoint object given by the monoidal unit. Each strictly uni-
tal symmetric monoidal functor induces a pointed multifunctor.
(C.4.9) There is a 2-category with small pointed multicategories as objects.
(C.4.10) The pointed endomorphism multicategory defines a 2-functor.
(C.4.11) There is a forgetful 2-functor U ● ∶Multicat∗ Multicat.
(C.4.16) Adjoining a basepoint is a left 2-adjoint of U ●.
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Standard Notations Description
Ob(C), ObC objects in a category C

C(X, Y), C(X; Y) set of morphisms X Y

1, 1X identity morphism

dom( f ), cod( f ) domain and codomain of a morphism

g ○ f , g f composition of morphisms

≅, ≅
an isomorphism

∼, ∼
an equivalence

F ∶ C D a functor

IdC, 1C identity functor

1 terminal category

(Set,×,∗) category of sets and functions

θX a component of a natural transformation θ

1F identity natural transformation

φθ vertical composition of natural transformations

θ′ ∗ θ horizontal composition of natural transformations

(L, R), L ⊣ R an adjunction

η, ε unit and counit of an adjunction

∅, ∅C an initial object

∐, ∐ a coproduct

∏, ∏ a product

Σn symmetric group on n letters

Chapter 0 Page Description
G xv finite group

OG xvii orbit category of G

TopG xvii category of G-spaces and equivariant morphisms

XH xvii H-fixed point space of X

ΦX xvii fixed point functor of a G-space X

Ab xviii category of Abelian groups

≃Q xviii a chain of Quillen equivalences

NG xviii skeleton of the category of finite G-sets

Span(C) xix bicategory of spans in C

GB xix Burnside category of G

GA xx Burnside ring of G

Σ
∞G/H+ xx equivariant suspension spectrum

(M∗, M∗) xx covariant and contravariant functors of an Abelian Mackey functor

GE xxii Burnside 2-category

K xxiii non-symmetric K-theory multifunctor in [GM22, GMMO23]

G-Sp xxiv category of G-spectra

387
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SpM xxiv category of symmetric spectra over M

E(P) xxiv spectral endomorphism category

Part 1

Chapter 1 Page Description
⟨c⟩⊗ ⟨d⟩, ⟨c⟩⊗t ⟨d⟩ 5 ⟨⟨(ci, dj)⟩mi=1⟩nj=1 and ⟨⟨(ci, dj)⟩nj=1⟩mi=1

ξ⊗, ξ⊗m,n 5 transpose permutation

VtX 5 class of vertices of a multigraph X

MGraph 6 category of small multigraphs

X & Y 6 an auxiliary product of multigraphs

M #N 6 sharp product of small multicategories

M⊗N 7 tensor product of small multicategories

(Multicat,⊗, I, β) 9 symmetric monoidal category of small multicategories

⟨F⟩c 9 ⟨Fic⟩mi=1 for ⟨F⟩ = ⟨Fi⟩mi=1⟨Fc⟩, ⟨Fc⟩t 9 ⟨⟨Ficj⟩mi=1⟩nj=1 and ⟨⟨Ficj⟩nj=1⟩mi=1

Hom(M,N) 10 internal hom multicategory

M∨N 11 wedge product of small pointed multicategories

̟M,N 11 multifunctor M⊗N M∧N
I+ 11 smash unit I∐T

Hom∗(M,N) 11 pointed internal hom multicategory

(Multicat∗,∧, I+,Hom∗) 12 symmetric monoidal category of small pointed multicategories

a♭ 14 a ∖ {∗} for a pointed finite set a

Ma 14 partition multicategory of a

M1 14 partition multicategory of 1 = {0, 1}
ιn, πn

j 14 operations inM1

∏a,b 15 partition productMa ∧Mb M(a ∧ b)
M 16 symmetric monoidal functor Fop Multicat∗

M0 16 unit constraint I+ M1

M2
m,n 16 monoidal constraintMm ∧Mn M(mn)

ModM1 16 2-category of leftM1-modules

EndM1(−) 17 endomorphism leftM1-module

(ModM1,∧,M1,Hom∗) 19 symmetric monoidal category of leftM1-modules

M1∧− 19 left 2-adjoint Multicat∗ ModM1 of UM1

η̂ 19 unit of (M1∧−) ⊣ UM1

ε̂ 19 counit of (M1∧−) ⊣ UM1

⟨x ○k y⟩, ⟨x⟩ ○k y 22 replacing the k-th entry of ⟨x⟩ by y

(P,{P2
j }n

j=1) 22 an n-linear functor with j-th linearity constraint P2
j

PermCatsu (⟨C⟩ ; D) 24 category of n-linear functors and transformations

PermCatst (⟨C⟩ ; D) 24 category of strict n-linear functors and transformations

Pσ, P ○ σ 25 right σ-action on P

PermCatsu, PermCatst 27 Cat-multicategories of small permutative categories

Chapter 2 Page Description
Ner 33 nerve functor Cat sSet

n 33 pointed finite set {0, 1, . . . , n}
2 33 nerve of the category with two isomorphic objects

(C,W) 34 a relative category with stable equivalencesW
(C,W)D 35 a relative diagram category

Ner∆(C,W) 35 classification diagram of (C,W)
C∗ 36 category of pointed objects in C with terminal object t

(a, ia) 36 a pointed object with pointed structure ia
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a ∨ b 37 wedge of pointed objects

a ∧ b 37 smash product of pointed objects

1+ 37 smash unit 1∐ t

Hom∗(a, b) 37 pointed Hom

(C∗,∧,1+,Hom∗) 37 symmetric monoidal category of pointed objects

0 38 a zero object

C♭(x, y) 38 set of nonzero morphisms C(x, y)∖ {0}
D̂ 38 pointed unitary enrichment

(C,∗) 38 a pointed category with chosen object ∗
j 39 monoidal unit diagram

A ∧ B 39 pointed Day convolution

HomD*
(A, B) 39 pointed hom diagram

MapD*
(A, B) 39 pointed mapping object

(Le, eve) 40 an adjunction between V∗ and D∗-V

Γ-V 40 category F∗-V of Γ-objects in V

(Γ-V,∧, j,HomF*
) 41 symmetric monoidal category of Γ-objects

HomF*
, MapF*

41 pointed hom diagram and mapping object of Γ-V

Inj 42 category of unpointed finite sets and injections

n 42 unpointed finite set {1, . . . , n}
⟨n⟩ 42 q-tuple ⟨nk⟩qk=1

of pointed finite sets

f∗⟨n⟩ 42 ⟨n f −1(j)⟩pj=1

F(q) 42 q-th smash power of F
☆ 42 basepoint object of F(0)

(G,☆) 43 category of tuples of pointed finite sets

(G,⊕, ⟨⟩, ξ) 43 permutative structure on G with concatenation product ⊕
τq,q′ 44 block permutation swapping q and q′ elements

G∗-V 44 category of G∗-objects in V

HomG*
, MapG*

45 pointed hom diagram and mapping object of G∗-V

i 46 length-one inclusion (F , 0) (G,☆)
∧ 46 strict symmetric monoidal pointed functor G F
Sp, Sp≥0 47 category of (connective) symmetric spectra

KSe 48 Segal K-theory

JSe 48 Segal J-theory

Ner∗ 48 levelwise nerve Γ-Cat Γ-sSet

KF 48 functor Γ-sSet Sp≥0

KEM 49 Elmendorf-Mandell K-theory

JT 49 functor ModM1 G∗-Cat

JEM 49 Elmendorf-Mandell J-theory

Ner∗ 49 levelwise nerve G∗-Cat G∗-sSet

KG 49 functor G∗-sSet Sp

Π
∗ 50 a natural transformation ∧∗ ○ JSe JEM

L 50 left adjoint of i∗

S 51 stable equivalences in PermCatsu, Γ-Cat, Γ-sSet, and Sp≥0

S i 51 i∗-stable equivalences in G∗-Cat and G∗-sSet

P 52 inverse K-theory Γ-Cat PermCatsu

S∗ 52 homotopy inverse Γ-sSet Γ-Cat of Ner∗

A 52 homotopy inverse Sp≥0 Γ-sSet of KF

Chapter 3 Page Description
⟨x⟩ f −1(j) 57 sub-tuple ⟨xi⟩i∈ f −1(j)
σk

g, f 57 right permutation from⊕j∈g−1(k)⟨x⟩ f −1(j) to ⟨x⟩(g f )−1(k)
(FM,⊕, ⟨⟩, ξ) 57 free permutative category of a multicategory M
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( f , ⟨φ⟩) 58 a morphism in FM

F(I) 59 free permutative category of the initial operad I

FT 59 free permutative category of the terminal multicategory T

F 60 free permutative category 2-functor Multicat PermCatst

ηM 61 unit multifunctor M EndFM

εC 61 counit strict symmetric monoidal functor FEnd(C) C

F ⊣ End 62 2-adjunction Multicat PermCatst

̺C 63 right adjoint C FEnd(C) of εC

̺0
C, ̺2

C 64 unit and monoidal constraints of ̺C

x1⋯n
j1,...,jn

65 n-tuple ⟨xi
ji
⟩n

i=1⟨x1⋯n⟩ 65 tensor product⊗n
i=1⟨xi⟩ of tuples

r1⋯n 65 ∏n
i=1ri

f 1⋯n 66 index map induced by∏n
i=1 f i

⟨x1⋯n⟩ f ; k1,...,kn
66 ⊗n

i=1⟨xi
j⟩j∈( f i)−1(ki)

φ1⋯n
k1,...,kn

66 ⊗n
i=1 φi

ki⟨φ1⋯n⟩ 66 ⊗n
i=1⟨φi⟩

(Fn , ⟨(Fn)2p⟩np=1
) 67 strong n-linear functor∏n

i=1FMi F(⊗n
i=1 Mi)

F0 67 0-linear functor 1 F(I) determined by length-one tuple (∗)
⟨x̂1⋯n⟩, ⟨x̃1⋯n⟩ 67 analogs of ⟨x1⋯n⟩ defined using ⟨x̂p⟩ and ⟨x̃p⟩
ρrp,r̂p 67 unique permutation determined by the (co)domain of (Fn)2p
F 68 F on Multicat(M,N)
F 69 non-symmetric Cat-multifunctor Multicat PermCatsu

S I 71 stable equivalences in PermCatst

SF 71 F-stable equivalences in Multicat

NP 72 category of P-algebras in N

NQ 72 category of non-symmetric Q-algebras in N

WP 72 wide subcategory of morphisms with each component inW
FQ, EndQ 72 inverse equivalences of homotopy theories induced by F and End

Part 2

Chapter 4 Page Description
⟨x⟩∧ 79 sub-tuple of non-basepoint objects

( f ′, ⟨φ⟩′) 79 ( f , ⟨φ⟩) with basepoint operations removed
ob∼ 79 up-to-basepoint equivalence relation on objects of FM

[⟨x⟩] 80
ob∼-equivalence class of ⟨x⟩

M̃or(FM) 80
ob∼-composable tuples of morphisms

1∼ 80 relation for composition
2∼ 80 relation for removing basepoint operations

[ f ] 80 equivalence class of f

F●M 80 pointed free permutative category of a pointed multicategory M

(⊕, [⟨⟩], ξ) 82 permutative structure on F●M

F● 84 2-functor Multicat∗ PermCatst

p 84 2-natural transformation F F●

η
●

87 unit 1 End ●F●

ε
● 87 counit F●End● 1

F●, End● 88 2-adjunction Multicat∗ PermCatst

FM1, EndM1 90 2-adjunction ModM1 PermCatst

ηM1 91 unit 1 EndM1FM1

εM1 91 counit FM1EndM1 1

w⟨x⟩ 92 a morphism ⟨x⟩∧ ⟨x⟩ in FM

⟨x⟩∼ 93 (∗), ⟨⟩, or ⟨x⟩∧
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c⟨x⟩ 94 a morphism ⟨x⟩ ⟨x⟩∼ in FM

̺
●
C 98 strictly unital right adjoint C F●End●C of ε

●
C

υ
●

99 unit 1 ̺
●
Cε
●
C

SM1 101 FM1-stable equivalences in ModM1

S● 101 F●-stable equivalences in Multicat∗

Chapter 5 Page Description
Fn● 104 functor∏n

i=1F●Mi F●(⋀n
i=1 Mi)

F0● 104 functor 1 F●(I+) determined by the object [(∗)]
(Fn● )2p 105 p-th linearity constraint of Fn●

F● 107 F● on Multicat∗(M,N)
F● 107 non-symmetric Cat-multifunctor Multicat∗ PermCatsu

FQ● , EndQ● 113 inverse equivalences of homotopy theories induced by F● and End●

FM1 114 non-symmetric Cat-multifunctor ModM1 PermCatsu

ηM1 114 non-symmetric Cat-multinatural transformation 1 EndM1FM1

̺M1 115 non-symmetric Cat-multinatural transformation 1 FM1EndM1

FQM1, End
Q
M1 116 inverse equivalences of homotopy theories induced by FM1 and EndM1

(M1∧−)Q, UQ
M1 117 inverse equivalences of homotopy theories induced byM1∧− and UM1

Part 3

Chapter 6 Page Description
(C,m, i) 122 a category enriched in a non-symmetric multicategory

C(x, y), Cx,y 122 hom object with domain x and codomain y

mx,y,z 123 composition for objects x, y, and z

ix 123 identity of an object x

Fx,y 124 (x, y)-component of an enriched functor F

1C 124 identity enriched functor

GF 124 composite enriched functor of F and G

θx 125 x-component of an enriched natural transformation θ

1F 125 identity enriched natural transformation

ψθ 125 vertical composition of enriched natural transformations

θ′ ∗ θ 127 horizontal composition of enriched natural transformations

M-Cat 132 2-category of small M-categories

Psu 134 PermCatsu

m1
x,y,z, m2

x,y,z 134 linearity constraints of mx,y,z

(Psu(C,D),⊕, e, ξ) 138 a hom permutative category

(F⊕G)2 139 monoidal constraint of F⊕G

e ∶ C D 139 constant functor at the monoidal unit of D

mB,C,D 143 composition bilinear functor for B, C, and D

m2
1, m2

2 143 linearity constraints of mB,C,D

evC,D 149 evaluation bilinear functor for C and D

(evC,D)21, (evC,D)22 149 linearity constraints of evC,D(Cop,mop, i) 153 opposite enriched category

Chapter 7 Page Description
(−)F 158 change of enrichment along F

(CF,mF, iF) 159 change of enrichment of (C,m, i) along F

HF 159 change of enrichment of H along F

θF 160 change of enrichment of θ along F

(−)F● 161 change of enrichment along F●

M∗ 161 Multicat∗



392 LIST OF NOTATIONS

(Cop)F 163 change of enrichment of Cop

(CF)op 163 opposite of CF

(−)U, (−)EndU 165 change of enrichment along U and EndU

(−)θ 168 2-natural transformation induced by θ

E 170 2-functor Multicatns 2Cat sending M to M-Cat

Chapter 8 Page Description
(M , M , ev) 174 a closed multicategory

M(⟨x⟩ ; y), M⟨x⟩; y 174 an n-ary internal hom object

ev⟨x⟩; y 174 multicategorical evaluation

χ⟨x⟩; ⟨y⟩; z 175 evaluation bijection

f # 175 partner of f

Wald 176 closed multicategory of small Waldhausen categories

(EndV , EndV , ev) 178 endomorphism closed multicategory

PermCatsu(⟨C⟩ ; D) 181 internal hom permutative category

P⊕Q 181 monoidal product of n-linear functors P and Q

Psu 181 PermCatsu

(P⊕Q)2i 182 i-th linearity constraint of P⊕Q

e 182 constant functor∏n
i=1Ci D at the monoidal unit in D

ξ
P,Q

183 (P, Q)-component of the braiding ξ

ev⟨C⟩;D 186 multicategorical evaluation for PermCatsu

(ev⟨C⟩;D)2j 187 linearity constraints of ev⟨C⟩;D
χ⟨C⟩; ⟨D⟩;B 189 evaluation bijection for PermCatsu

(χP)2r 190 linearity constraints of χP

Ψ 191 inverse of χ

χ′ 196 χ⟨C⟩σ; ⟨D⟩ς;B

Chapter 9 Page Description
(M, ○, i) 213 canonical self-enrichment of M

F̂ 218 standard enrichment of F

F̂x,y 218 (x, y)-component of F̂

F̂● 221 standard enrichment of F● ∶Multicat∗ PermCatsu

ÊndU 222 standard enrichment of EndU

F̂G 224 change of enrichment of F̂ along G

K̂EM 227 standard enrichment of KEM ∶ Psu Sp

?∧ 227 standard enrichment ?̂

Φ 227 Bohmann-Osorno spectral functor

K 227 non-symmetric K-theory multifunctor

K̂G 228 standard enrichment of KG ∶ G∗-sSet Sp

ÊndM1 229 standard enrichment of EndM1 ∶ Psu ModM1

ĴT 230 standard enrichment of JT ∶ModM1 G∗-Cat

N̂er∗ 231 standard enrichment of Ner∗ ∶ G∗-Cat G∗-sSet

Chapter 10 Page Description
M-Cat(C,M) 235 C-diagram category

M-Cat(Cop,M) 235 C-presheaf category, C-Mackey functor category

F★, FC
★ 241 diagram change of enrichment of F

P★ 246 diagram change of enrichment of inverse K-theory P
(−)P 246 change of enrichment along P
P̂ 246 standard enrichment of P
KEM
★ 250 diagram and presheaf change of enrichment of KEM

K★ 250 diagram change of enrichment of K
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Part 4

Chapter 11 Page Description
κ, ξ 259 multinatural transformations 1M EF and 1N FE

Fξ
★ 259 a functor M-Cat(CE,M) N-Cat(C,N)

Cξ 259 C-component of (−)ξ ∶ 1N-Cat (−)FE

κ★ 262 natural transformation 1 E★Fξ
★

ξ★ 271 natural transformation 1 Fξ
★E★

W▴ 279 a wide subcategory of P-Cat(D,P) induced byW ⊂ P
F−1X 280 F-stable equivalences created by F

(F−1X )▴ 280 a wide subcategory of M-Cat(CE,M) induced by F−1X

Chapter 12 Page Description
S▴ 289 a wide subcategory of PermCatsu-Cat(C,PermCatsu)
(S●)▴ 289 a wide subcategory of Multicat∗-Cat(CEnd ● ,Multicat∗)
(F●)̺ ●★ , (End●)★ 290 inverse equivalences of homotopy theories induced by F● and End●

(−)End ● 292 change of enrichment along End ● ∶ Psu M∗

Ênd● 294 standard enrichment of End●

SM1
▴ 300 a wide subcategory of ModM1-Cat(CEndM1

,ModM1 )
(FM1)̺M1

★ , (EndM1)★ 300 inverse equivalences of homotopy theories induced by FM1 and EndM1

(−)EndM1
302 change of enrichment along EndM1 ∶ Psu ModM1

C̺M1 304 C-component of (−)̺M1 ∶ 1 (−)FM1
(−)EndM1(−)FM1

305 change of enrichment along FM1 ∶ModM1 Psu

(S●)▴ 307 a wide subcategory of Multicat∗-Cat(DUM1
,Multicat∗)

SM1
▴ 307 a wide subcategory of ModM1-Cat(D,ModM1 )
(M1∧−)ε̂−1

★ , (UM1)★ 308 inverse equivalences of homotopy theories induced byM1∧− and UM1

(−)UM1
310 change of enrichment along UM1 ∶ModM1 M∗

ÛM1 310 standard enrichment of UM1

Dε̂−1 311 D-component of (−)ε̂−1 ∶ 1 (−)M1∧− (−)UM1(−)M1∧− 311 change of enrichment alongM1∧− ∶M∗ ModM1

Appendix A Page Description
U 317 a Grothendieck universe

(C,⊗,1, α, λ, ρ) 317 a monoidal category

(x,m, i) 318 a monoid

(a, µ) 319 a left module

ξ 319 symmetry isomorphism or braiding

⊕, e 320 monoidal product and monoidal unit in a permutative category

(F ,∧, 1, ξ) 321 permutative category of pointed finite sets

n 321 pointed finite set {0, . . . , n}
[−,−], Hom(−,−) 321 internal hom

B-C 321 diagram category of functors B C

(Cat,×, 1, [, ]) 322 category of small categories

(F, F2, F0) 322 a monoidal functor

⇒ 323 a (multi)natural transformation, (n-ary) 2-cell

A0, A1, A2 324 objects, 1-cells, and 2-cells in a 2-category A

θ′θ 324 vertical composition of 2-cells

g f 324 horizontal composition of 1-cells

φ ∗ θ 325 horizontal composition of 2-cells

A(a, b) 325 a hom category
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PermCat, PermCat? 325 2-categories of small permutative categories

2Cat 327 2-category of small 2-categories

(F, G, η, ε) 327 a 2-adjunction

Appendix B Page Description
m 330 composition in a V-category

iX 330 identity in a V-category

I 330 unit V-category

V-Cat 331 2-category of small V-categories

Cop 331 opposite V-category

C⊗D 332 tensor product of V-categories

ξmid 333 interchanging the middle two factors

ℓ
⊗, r⊗ 333 left and right unitors for ⊗

a⊗ 333 associator for ⊗
β⊗ 334 braiding for ⊗
?−⊗ 334 inverse (?⊗)−1

a⊠1 337 mate of a⊠

ℓ
⊠

1 , r⊠1 338 mates of ℓ⊠ and r⊠

ev 342 evaluation

coev 342 coevaluation

V 342 canonical self-enrichment

(−)U 344 change of enrichment along U

(Û, Û2, Û0) 348 standard enrichment of U

Appendix C Page Description
Prof(S) 351 class of S-profiles

⟨x⟩, ⟨xj⟩nj=1 351 a length-n profile (x1, . . . , xn)
⟨⟩ 351 empty profile

(⟨x⟩ ; y) 351 an element in Prof(S)× S

⟨x⟩⊕ ⟨y⟩ 352 concatenation of profiles

(M, γ, 1) 352 a V-multicategory

M(⟨x⟩ ; x′) 352 an n-ary operation object

⟨x⟩σ 352 ⟨xσ(j)⟩nj=1

1x 352 x-colored unit

γ 352 composition in a V-multicategory

σ⟨kσ(1), . . . , kσ(n)⟩ 354 block permutation induced by σ

τ1 ×⋯× τn 354 block sum

Mn 354 n-ary operation object of a V-operad

T 355 terminal multicategory

End(x) 355 endomorphism V-operad of an object x

V-Multicat 358 2-category of small V-multicategories

V-Multicatns 358 2-category of non-symmetric small V-multicategories

Multicat, Multicatns 359 2-category of (non-symmetric) small multicategories

I 359 initial operad

T 359 a terminal object in V

⟨x⟩ y 359 an n-ary 1-cell

F⟨x⟩, θ⟨x⟩ 360 ⟨Fxj⟩kj=1 and ⟨θx j
⟩kj=1

1θ⟨x⟩
360 ⟨1θxj

⟩kj=1

End(−) 361 endomorphism multicategory

End(K) 363 endomorphism V-multicategory of K

(M, i) 364 a pointed multicategory with pointed structure i

End●(−) 365 pointed endomorphism multicategory
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Multicat∗ 366 2-category of small pointed multicategories

U ● 367 forgetful 2-functor Multicat∗ Multicat

(−)+ 367 adjoining a basepoint Multicat Multicat∗

η+, ε+ 367 unit and counit for (−)+ ⊣ U ●
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1-category, 318
underlying, 325

1-cell, 324

n-ary, 359
2-adjunction, 327
2-category, 324

Burnside, xxii, 241, 369
ofM1-modules, 16, 19
of small braided monoidal enriched

categories, 341

of small categories, 325
of small enriched categories, 331, 334

over a non-symmetric multicategory, 132
of small enriched multicategories, 358
of small monoidal enriched categories, 341
of small symmetric monoidal enriched

categories, 341
2-cell, 324

n-ary, 359
notation, 323

2-functor, 326
change of enrichment, 159, 165, 344
defined by change of enrichment, 170

2-natural

isomorphism, 327
transformation, 327

2-out-of-3 property, 35
G, 43
G∗

-category, 44
-objects, 44

-simplicial set, 44
Γ

-category, 40
-object, 40
-simplicial set, 40

A

Abelian Mackey functor, xx
adjoint equivalence

of homotopy theories, 36, 71, 101
adjunction

2-, 327
algebra

non-symmetric - over a multicategory, 72

over a multicategory, 71

associativity
enriched category, 123, 330
enriched monoidal functor, 339

enriched multicategory, 353
isomorphism, 318

associator
enriched tensor product, 333
mate, 337
monoidal enriched category, 335

Axiom of Universes, 171, 235, 317

B

base enriched category
monoidal enriched category, 335

basepoint, 38
bicategory of spans, xix
biclosed monoidal multicategory, 177
bijection

evaluation, 175
bilinear

evaluation functor, 149
bilinear functor, 149
bisimplicial set, 34
block

permutation, 354
sum, 354

Boardman-Vogt tensor product, 7
symmetric monoidal closed, 10

bottom equivariance
enriched multicategory, 354

bracketing

left normalized, 324
braid axiom

braided monoidal enriched functor, 340
braided monoidal category, 319

enriched, 337
2-category, 341

unity properties, 320

braided monoidal functor, 323
enriched, 340

braiding, 319
braided monoidal enriched category, 337
enriched tensor product, 334

braiding diagram
braided monoidal enriched functor, 340

Bredon cohomology, xviii, xx

397
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Burnside

2-category, xxii, 241, 369

category, xix, xx
ring, xx

C

canonical self-enrichment, 133, 213, 342

for permutative categories, 215

symmetric monoidal, 216, 342

Cat-multinatural
transformation, 360

Cat-naturality conditions, 360

category

2-, 324
G∗-, 44

Γ-, 40

braided monoidal, 319

Burnside, xix, xx

closed, 321
diagram, 321

enriched, 132, 330

monoidal, 335

enriched in permutative categories, 134
enriched multi-, 352

free permutative, 57

pointed, 80, 82, 83, 161, 221

free permutative - 2-functor, 60
pointed, 84

free permutative - multifunctor, 69

pointed, 107

indexed, 322
monoidal, 317

multimorphism, 359

of Γ-objects, 40

of G∗-objects, 44

of small categories, 322
permutative, 40, 320

enrichment in the multicategory of, 134

self-enrichment of the multicategory of,
147

pointed, 38
relative, 34

relative diagram -, 35

symmetric monoidal, 320

whiskering, xxii
with weak equivalences, 35

change of enrichment, 159, 165, 344

2-functoriality of, 170

composition of, 166
diagram, 241

Elmendorf-Mandell K-theory, 251

Mackey functor, 247

Elmendorf-Mandell K-theory, 247

monoidal constraint, 346
unit constraint, 346

classification diagram, 35

closed

category, 321

multicategory, 174, 177

- of permutative categories, 196, 209

Morita theory, 371
non-symmetric, 175

symmetric multicategory, 177

coefficient system, xviii

coevaluation
at x, 342

cofibrantly generated model category, xxiv

cohomology

Bredon, xviii, xx
colored unit, 352

commutative monoid, 16, 321

complete Segal space, 34

model structure, 34
component, 125, 331

composition

- of change of enrichment, 166

enriched category, 123, 330
enriched functor, 124, 331

enriched multifunctor, 356

monoidal enriched category, 335

multicategory, 352
multilinear functor, 26

compositionality

- of diagram change of enrichment, 248, 253

- of standard enrichment, 224
concatenation, 352

product, 43

constraint

- axiom
0-by-0, 198

0-by-2, 198

2-by-2, 23

associativity, 23

lax unity, 198
symmetry, 23

unity, 23

lax linearity, 198

lax unity, 198
linearity, 22

monoidal, 322

unit, 322

convention
left normalized bracketing, 324

left normalized product, 363

universe, 171, 235, 317

D

Day convolution
pointed diagrams, 39, 41, 45, 50

diagram, xvii

category, 321

pointed, 39
change of enrichment, 241

Elmendorf-Mandell K-theory, 251

endomorphism multicategory -, 291

change-of-enrichment functor, 242, 253



INDEX 399

compositionality, 248, 253

classification, 35

enriched, 235

E

Elmendorf-Mandell
J-theory, 49

change of enrichment along, 164

K-theory, 49

change of enrichment along, 164
diagram change of enrichment, 251

Mackey functor change of enrichment,
247

standard enrichment, 227

empty profile, 351
endomorphism

2-functor, 27, 29, 61, 363, 367

Cat-multifunctor, 29

enriched multicategory, 363

multicategory, 361
diagram change of enrichment, 291

operad, 355

pointed multicategory, 365

enriched
braided monoidal category, 337

2-category, 341

braided monoidal functor, 340

category - in a multicategory, 122
diagram, 235

functor, 123, 330

Mackey functor, 235

monoidal - category, 335
monoidal category

2-category, 341

monoidal functor, 339

monoidal natural transformation, 340

multifunctor, 355
multinatural transformation, 357

natural transformation, 125, 331

operad, 354

presheaf, 235
symmetric monoidal - functor, 340

symmetric monoidal category, 338

2-category, 341

tensor product
associator, 333

braiding, 334

unit, 330

enriched category, 132, 330
2-category, 334

braided monoidal, 337

2-category, 341

change of enrichment, 159, 165, 344

monoidal, 334, 335
2-category, 341

opposite, 153, 155, 163, 331

small, 123, 330

symmetric monoidal, 338

2-category, 341

tensor product, 332

left unitor, 333
right unitor, 333

underlying - of an enriched multicategory,
355

unit, 330

enriched multicategory, 352
2-category, 358

endomorphism, 363

initial, 359

terminal, 359

underlying enriched category, 355
enriched operad, 354

morphism, 356

enrichment

diagram change of -, 241
Elmendorf-Mandell K-theory, 251

Mackey functor change of -, 247

Elmendorf-Mandell K-theory, 247

standard, 218, 348
standard - compositionality, 224

equivalence

adjoint - of homotopy theories, 36, 71, 101

inverse - of homotopy theories, 35, 281
of homotopy theories, 35

stable, 34, 50

of permutative categories, 71

of pointed multicategories, 101

equivariance
enriched multicategory, 354

enriched multifunctor, 356

equivariant space, xvii

evaluation
at e, 40

left adjoint, 40

at x, 342

co-, 342
bilinear functor, 149

multicategorical, 174

multilinear functor, 186, 207

evaluation bijection, 175

F

finite G-sets, xviii
finite sets

pointed, 40, 321

unpointed, 42

fixed point
functor, xvii

space, xvii

free

permutative category, 57

pointed, 80, 82, 83, 161, 221
permutative category 2-functor, 60

pointed, 84

permutative category multifunctor, 69

pointed, 107
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functor
2-, 326

bilinear, 149
braided monoidal enriched, 340
diagram change-of-enrichment, 242, 253

compositionality of, 248, 253
enriched, 123, 330

monoidal, 322
monoidal enriched, 339
multi-, 355
multilinear, 23, 149

n-linear, 22
lax, 198

nerve, 33
pointed, 39
presheaf change-of-enrichment, 242

relative, 34
symmetric monoidal

strictly unital, 24
symmetric monoidal enriched, 340

G

G-sets
finite, xviii

G-space, xvii
graph

multi-, 5

Grothendieck Universe, 235, 317

H

hexagon diagram, 320
braided monoidal enriched category, 338

hom
- category in a 2-category, 325

internal, 321
internal - multicategory, 10, 174
permutative category, 138
pointed, 37

pointed internal - multicategory, 11
hom diagram

pointed diagrams, 39, 41, 45
hom object, 123, 330
homotopy theory, 35

adjoint equivalence of, 36, 71, 101
equivalence of, 35
inverse equivalence of, 35, 36, 281

horizontal composition

2-category, 324
enriched multinatural transformation, 358
enriched natural transformation, 127, 331
multinatural transformation, 27

I

identity

enriched functor, 124, 331
enriched multifunctor, 356
enriched natural transformation, 125, 331

identity object

monoidal enriched category, 335

index map, 58
indexed category, 322

initial
enriched multicategory, 359

initial operad, 59, 92
injection, 42
input profile, 352

interchange relation, 8
internal hom, 321

multicategory, 10, 174

permutative category, 181, 206
pointed multicategory, 11

inverse equivalence

of homotopy theories, 35, 36, 281

J

J-theory
Elmendorf-Mandell, 49
Segal, 48

K

K-theory, xxiii
change of enrichment along, 160, 164

Elmendorf-Mandell, 49
diagram change of enrichment, 251

Mackey functor change of enrichment,
247

standard enrichment, 227
Segal, 48

Kan model structure, 33

L

lax multilinear functor, 199

strictly unital, 199
strongly monoidal, 199

strongly unital, 199
lax multilinear transformation, 201
left monoidal unitor

monoidal enriched category, 335
left normalized, 324

product, 363

left unit isomorphism, 318
left unitor

enriched tensor product, 333

mate, 338
left unity

enriched monoidal functor, 339
enriched multicategory, 354

length

of a profile, 351
lexicographic ordering, xviii, xxi
linearity constraint, 22

locally small, 325

M

M1, 16

M1-modules, 16, 19
closed structure, 19

Mackey functor
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Abelian, xx

change of enrichment, 247
Elmendorf-Mandell K-theory, 247

enriched, xxv, 235

spectral, xxiii, xxiv
mapping object

pointed diagrams, 39, 41, 45
mate

associator, 337

left unitor, 338
pentagonator, 337

right unitor, 338
middle unity diagram

monoidal enriched category, 336

model category
cofibrantly generated, xxiv

proper, xxiv
simplicial, xxiv

stable, xxiv

model structure
complete Segal space, 34

Kan, 33
module, 319

overM1, 16, 19

closed structure, 19
monoid, 318

commutative, 16, 321
monoidal 1-category, 318

monoidal associator

monoidal enriched category, 335
monoidal category, 317

associativity isomorphism, 318
braided, 319

enriched, 335

2-category, 341
left unit isomorphism, 318

middle unity axiom, 318
monoidal product, 317

monoidal unit, 318

of small enriched categories, 334
pentagon axiom, 318

right unit isomorphism, 318
strict, 318

symmetric, 320

unity properties, 318
monoidal composition

monoidal enriched category, 335

monoidal constraint, 322
change of enrichment, 346

enriched, 339
monoidal functor, 322

braided, 323

braided enriched, 340
change of enrichment, 159, 165, 344

enriched, 339
strict, 322

strictly unital, 322

strong, 322

symmetric, 323

symmetric enriched, 340
monoidal identity

monoidal enriched category, 335

monoidal natural transformation, 24, 323
enriched, 340

monoidal naturality
enriched, 341

Morita theory, 370

morphism
enriched operad, 356

multigraph, 5
pointed, 36

zero, 38, 42, 43

multicategorical evaluation, 174
multicategory, 354

- of permutative categories, 27

adjoined basepoint, 367
Boardman-Vogt tensor product, 7

closed, 174, 177
self-enrichment, 213

closed - of permutative categories, 196, 209

composition, 352
endomorphism, 361

endomorphism - diagram change of
enrichment, 291

enriched, 352
2-category, 358

small, 354
enrichment in a -, 122

internal hom, 10

non-symmetric, 354
non-symmetric closed, 175

one object, 354
partition, 14

M1, 14, 16

M1-modules, 16, 19
symmetric monoidal functor, 16

pointed, 364
hom, 11

smash product, 11

smash unit, 11, 92
wedge, 11

pointed - stable equivalence, 101

sharp product, 6
symmetric monoidal closed, 10

tensor product, 7
terminal, 59, 85, 92, 355

multiedges, 5

multifunctor
enriched, 355

non-symmetric, 356
pointed, 364

pseudo symmetric Cat-, 52

standard enrichment, 218
standard enrichment compositionality, 224

multigraph, 5

internal product, 6
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morphism, 5

small, 6

multilinear
evaluation functor, 186, 207

multimorphism category, 24

multilinear functor, 23, 149

composition, 26
lax, 199

strictly unital, 199

strongly monoidal, 199

strongly unital, 199
strict, 23

strong, 23

multilinear transformation, 24

lax, 201
multilinearity conditions, 24

multimorphism, 352

category, 24, 359

multinatural transformation
Cat-, 360

composition, 27

enriched, 357

identity, 357
non-symmetric, 357

pointed, 364

multiplication, 318

N

n-ary
1-cell, 359

2-cell, 359

operation object, 352

n-linear
functor, 22

lax, 198

multimorphism category, 24

transformation, 24
lax, 201

natural isomorphism

2-, 327

natural transformation
2-, 327

enriched, 125, 331

enriched multi-, 357

monoidal, 24, 323

monoidal enriched, 340
pointed, 39

relative, 35

naturality condition

internal hom multicategory, 10
naturality diagram, 125, 331

nerve functor, 33

non-symmetric

algebra
over a multicategory, 72

closed multicategory, 175

multicategory, 354

multifunctor, 356

multinatural transformation, 357
normalized

left - product, 363
null object, 38

O

object
Γ-, 40
enriched category, 330
enriched multicategory, 352
hom, 123, 330
null, 38
pointed, 36
zero, 38

operad
endomorphism, 355
enriched, 354
initial, 59, 92
morphism, 356

opposite
enriched category, 153, 155, 163, 331
enriched functor, 332
enriched natural transformation, 332

orbit
category, xvii
stable - spectra, xx

ordering
lexicographic, xviii

output, 352

P

partition, 14
partition multicategory, 14
M1, 14, 16
M1-modules, 16, 19
symmetric monoidal functor, 16

partition product, 15, 109
partner, 175

characterization of composition, 240
pasting diagram

multicategorical, 361
pentagon axiom, 318

monoidal enriched category, 336
pentagonator, 337

mate, 337
permutation

transpose, 5
permutative category, 40, 320

closed multicategory of, 196, 209
endomorphism multicategory, 361

diagram change of enrichment, 291
enrichment in the multicategory of, 134
evaluation bijection, 191
free, 57

2-functor, 60

pointed, 80, 82, 83, 161, 221
free - multifunctor, 69

pointed, 107
internal hom -, 181, 206
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multicategory of, 27

multilinear evaluation, 186, 207

self-enrichment of multicategory of, 147,
215

stable equivalence, 71

pointed

category, 38

diagram category, 39

complete and cocomplete, 39
enriched, 40

symmetric monoidal closed, 39

tensored and cotensored, 40

diagrams
Day convolution, 39, 41, 45, 50

hom diagram, 39, 41, 45

mapping object, 39, 41, 45

unit diagram, 39, 41, 45

finite sets, 40, 321
free permutative category, 80, 82, 83, 161,

221

functor, 39

hom, 37

morphism, 36
multicategory, 364

forgetful functor, 13, 29, 367, 369

hom, 11

smash product, 11
smash unit, 11, 92

wedge, 11

multifunctor, 364

multinatural transformation, 364

natural transformation, 39
object, 36

smash unit

pointed multicategory, 11, 92

structure, 36
transformation, 12

unitary enrichment, 38

presheaf, xvii

change of enrichment, 242

enriched, 235
product

Boardman-Vogt tensor, 7

concatenation, 43

partition, 15, 109
sharp, 6

smash, 37

wedge, 11

profile, 351

proper model category, xxiv
pseudo symmetric

Cat-multifunctor, 52

pullback powering condition, xxiv

R

Reedy fibrant, 34

relation

interchange, 8

relative

category, 34

homotopy theory, 35
diagram category, 35

functor, 34

natural transformation, 35

Rezk weak equivalence, 34, 35
right action, 174, 352

right monoidal unitor

monoidal enriched category, 335

right permutation, 352
right unit isomorphism, 318

right unitor

enriched tensor product, 333

mate, 338
right unity

enriched monoidal functor, 340

enriched multicategory, 353

ring
Burnside, xx

S

Segal

complete - space, 34

model structure, 34
condition, 34

J-theory, 48

K-theory, 48

morphism, 34
self-enrichment, 133, 213, 342

of permutative categories, 215

simplicial model category, xxiv

simplicial set
G∗-, 44

Γ-, 40

simplicial sets, 33

small
enriched category, 123, 330

enriched multicategory, 354

multigraph, 6

smash product, 37
pointed multicategories, 11

smash unit, 37

pointed multicategory, 11, 92

source, 5

spans
bicategory of, xix

spectral

endomorphism category, xxiv

Mackey functor, xxiii, xxiv
stable equivalence, 34, 50

of permutative categories, 71

of pointed multicategories, 101

stable model category, xxiv
stable orbit spectra, xx

standard enrichment

- of Elmendorf-Mandell K-theory, 227

multifunctor, 218
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symmetric monoidal functor, 348
strict

monoidal category, 318

strict monoidal
enriched functor, 340
functor, 322

strict multilinear functor, 23
strictly unital

lax multilinear functor, 199
monoidal enriched functor, 340
monoidal functor, 24, 322

strong monoidal
enriched functor, 340
functor, 322

strong multilinear functor, 23
strongly monoidal

lax multilinear functor, 199
strongly unital

lax multilinear functor, 199

subcategory
wide, 34

sum
wedge, 11

symmetric group, 352
action, 174, 206, 352

multimorphism category, 25

symmetric monoidal category, 320
closed

self-enrichment, 133, 216, 342
enriched, 338

2-category, 341
symmetric monoidal functor, 323

change of enrichment, 159, 165, 344
enriched, 340

partition multicategory, 16
standard enrichment, 348

symmetry
symmetric monoidal enriched category, 338

symmetry axiom, 320
symmetric monoidal enriched category, 338

T

target, 5
tensor product

enriched category, 332

associator, 333
braiding, 334
left unitor, 333
monoidal, 334
right unitor, 333
unit, 330

terminal

enriched multicategory, 359
multicategory, 59, 85, 92, 355

top equivariance
enriched multicategory, 354

transformation
internal hom multicategory, 10
multilinear, 24

lax, 201
pointed, 12

transpose permutation, 5
triangle identities, 328

U

underlying 1-category, 325
unit, 318
unit constraint, 322

change of enrichment, 346
enriched, 339

unit diagram
pointed, 39, 41, 45

unit enriched category, 330
unit naturality

enriched, 341
unital monoidal

enriched functor, 340
unitary enrichment

pointed, 38
unitor

monoidal enriched category, 335
unity

enriched category, 123, 330
enriched multicategory, 353, 354
monoidal enriched category, 335, 336

universe, 171, 235, 317
unpointed finite sets, 42

V

vertical composition
2-category, 324
enriched multinatural transformation, 358
enriched natural transformation, 125, 331

W

weak equivalence
category with, 35
Rezk, 34, 35

wedge, 37
wedge product, 11
wedge sum, 11
whiskering

of a category, xxii
wide subcategory, 34

Z

zero
morphism, 38, 42, 43
object, 38
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