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Andre-Quillen homology of commutative algebras 

Srikanth Iyengar 

ABSTRACT. These notes are an introduction to basic properties of Andre­
Quillen homology for commutative algebras. They are an expanded version of 
my lectures at the summer school. The aim is to give fairly complete proofs of 
characterizations of smooth homomorphisms and of locally complete intersec­
tion homomorphisms in terms of vanishing of Andn3-Quillen homology. The 
choice of the material, and the point of view, are guided by these goals. 
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In the late 60's Andre and Quillen introduced a (co)-homology theory for com­
mutative algebras that now goes by the name of Andre-Quillen (co)-homology. This 
is the subject of these notes. They are no substitute for either the panoramic view 
that [22] provides, or the detailed exposition in [23] and [2]. 

My objective is to provide complete proofs of characterizations of two impor­
tant classes of homomorphisms of noetherian rings: regular homomorphisms and 
locally complete intersection homomorphisms, in terms of Andre-Quillen homology. 
However, I have chosen to treat only the case when the homomorphism is essentially 
of finite type; this notion is recalled a few paragraphs below. One reason for this 
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204 SRIKANTH IYENGAR 

choice is that it is this class of homomorphisms which is of principal interest from 
the point of view of algebraic geometry. 

The main reason is that there are technical hurdles, even at the level of defi­
nitions and which have nothing to do with Andre-Quillen homology, that have to 
be crossed in dealing with general homomorphisms, and delving into those aspects 
would be too much of a digression. The problem is intrinsic: There are many results 
for homomorphisms essentially of finite type (notably, those involving completions 
and localizations) that are simply not true in general, and require additional hy­
potheses. Some of these issues are discussed in the text. 

Andre-Quillen homology is also discussed in Paul Goerss' notes in this volume. 
There it appears as the derived functor of abelianization, while here it viewed as the 
derived functor (in a non-abelian context) of Kahler differentials. Another difference 
is that in the former, as in Quillen's approach, simplicial resolutions are treated in 
the general context of cofibrant replacements in model categories. Here I have 
described, as Andre does, an explicit procedure for building simplicial resolutions. 
This approach is ad hoc, but it does allow one to construct resolutions in the main 
cases of interest in these notes. In any event, it was useful and entertaining to 
work with 'concrete' simplicial algebras and modules. However, when it comes 
to establishing the basic properties of Andre-Quillen homology, I have followed 
Quillen's more homotopy theoretic treatment, for I believe that it is easier to grasp. 

A few words now on the exposition: Keeping in line with the aim of the summer 
school, and the composition of its participants, I have written these notes for an au­
dience of homotopy theorists and (commutative) algebraists. Consequently, I have 
taken for granted material that will be familiar to mathematicians of either per­
suasion, but have attempted to treat with some care topics that may be unfamiliar 
to one or the other. For instance, I have not hesitated to work with the homotopy 
category of complexes of modules, and even its structure as a triangulated category, 
but I do discuss in detail simplicial resolutions (presumably for algebraists), and 
Kahler differentials (presumably for homotopy theorists). 

Acknowledgements. I should like to thank the organizers: Lucho Avramov, 
Dan Christensen, Bill Dwyer, Mike Mandell, and Brooke Shipley for giving me an 
opportunity to speak on Andre-Quillen homology. I owe special thanks to Lucho 
A vramov also for numerous discussions on this writeup. 

Notation. The rings in the paper are commutative. 

1.1. Complexes. For these notes, the principal reference for homological algebra 
of complexes is Weibel's book [26], and sometimes also the article [6], by Avramov 
and Foxby. Complexes of modules will be graded homologically: 

· · · ---+ Mi+ 1 ---+ Mi ---+ Mi -1 ---+ · · · . 

When necessary, the differential of a complex M is denoted f)M. The suspension of 
M, denoted r.M, is the complex with 

(r.M)n = Mn-1 and OL.M = -OM. 

Given complexes of R-modules Land M, the notation L ~ M indicates that Land 
M are homotopy equivalent. 

1.2. Homomorphisms. Let r.p: R ---> S be a homomorphism of commutative 
rings. One says that r.p is flat if the R-module Sis fiat. If the R-algebra Sis finitely 
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ANDRE-QUILLEN HOMOLOGY 205 

generated, then r.p is of finite type; it is essentially of finite type if Sis a localization, 
at a multiplicatively closed set, of a finitely generated R-algebra. 

The notation (R, m, k) denotes a (commutative, noetherian) local ring R, with 
maximal ideal m, and residue field k = Rjm. A homomorphism of local rings 
r.p: (R, m, k)----> (S, n, l) is local if r.p(m) <:;;; n. 

For every prime ideal pin R, we set k(p) = Rp/PRp; this is the residue field of 
Rat p. The fiber of r.p over pis the k(p)-algebra S 0R k(p). Given a prime ideal q 
inS, the induced local homomorphism RqnR----> Sq is denoted 'Pq· 

For results in commutative ring theory, we usually refer to Matsumura [19]. 

2. Kahler differentials 

Let r.p: R----> S be a homomorphism of commutative rings and Nan S-module. 
The ring S is commutative, so any S-module (be it a left module or a right 

module) is canonically an S-bimodule; for instance, when N is a left S-module, the 
right S-module structure is defined as follows: for n E N and s E S, set 

n · s = sn 

In what follows, it will be assumed tacitly that any S-module, in particular, N, is 
an S-bimodule, and hence also an R-bimodule, via r.p. 

2.1. Derivations. An R-linear derivation of S with coefficients in N is a ho­
momorphism of R-modules 0: S ----> N satisfying the Leibniz rule: 

o(st) = o(s)t + so(t) for s, t E S. 

An alternative definition is that 0 is a homomorphism of abelian groups satisfying 
the Leibniz rule, and such that Or.p = 0. The set of R-linear derivations of S with 
coefficients inN is denoted DerR(S; N). This is a subset of HomR(S, N), and even 
an S-submodule, with the induced action: 

(s 0 o)(t) = so(t) 

for s, t E Sand 0 E DerR(S; N). 

EXERCISE 2.1.1. Let M be an S-module. The homomorphism of S-modules 

Homs(M, N) ®s HomR(S, M) _____, HomR(S, N) 

a 0 (3 ~----+ a/3 

restricts to a homomorphism of S-modules: 

Homs(M, N) ®s DerR(S; M) _____, DerR(S; N) 

In particular, for each derivation o: S ----> M, composition induces a homomorphism 
of S-modules Homs(M, N) ----> DerR(S; N). 

2.2. Kahler differentials. It is not hard to verify that the map N ~----+ DerR(S; N) 
is an additive functor on the category of S-modules. It turns out that this functor 
is representable, that is to say, there is an S-module n and an R-linear derivation 
o: S----> n such that, for each S-module N, the induced homomorphism 

Hom8 (!1, N) _____, DerR(S; N) 

of S-modules, is bijective. Such a pair (!1, o) is unique up to isomorphism, in a 
suitable sense of the word; one calls n the module of Kahler differentials and o the 
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206 SRIKANTH IYENGAR 

universal derivation of <p. In these notes, they are denoted n'P and 8'~' respectively; 
we sometimes follow established usage of writing ns I R for n'P. 

In one case, the existence of such an n'P is clear: 

EXERCISE 2.2.1. Prove that when <p is surjective O'P = 0. 

A homomorphism <p such that n'~' = 0 is said to be unramified. 
There are various constructions of the module of Kahler differentials and the 

universal derivation; see Matsumura [19, §9], and Exercise 2.6. The one presented 
below is better tailored to our needs: 

We are in the world of commutative rings, so the product map 

fJ~: S 0R S ------+ S where s &,! t f---7 st 

is a homomorphism of rings. Set I = Ker(tJ~). Via 11~ the S 0R S-module I I I 2 

acquires the structure of an S-module. Set 

0'P=III2 and 8'~':8------+0'~' with8'~'(s)=(10s-s01). 

As the notation suggests, (O'P, 8'~') is the universal pair we seek. The first step in 
the verification of this claim is left as an 

EXERCISE 2.2.2. The map 8'~' is an R-linear derivation. 

By Exercise 2.1.1, the map 8'~' induces a homomorphism of S-modules 

Homs(O'P, N) ------+ DerR(S; N) 

We prove that this map is bijective by constructing an explicit inverse. 
Let 8: S ----t N be an R-linear derivation. As 8 is a homomorphism of R­

modules, extension of scalars yields a homomorphism of S-modules 

8': S 0R S ----t N, where 8'(s &,! t) = s8(t) 

Here we view S&,!RS as an S-module via action on the left hand factor ofthe tensor 
product: s · (x &,! y) = (sx &,! y). One thus obtains, by restriction, a homomorphism 
of S-modules I____, N, also denoted 8'. 

EXERCISE 2.2.3. Verify the following claims. 

(1) 8'(I2 ) = 0, so 8' induces a homomorphism of S-modules 8: 0'~' ____, N. 

(2) The assignment 8 f---7 8 gives a homomorphism DerR(S; N) ____, Homs(O'P, N) 
of S-modules, and it is an inverse to the map ( *) above. 

This exercise justifies the claim that 8'~' : S ____, O'P is a universal derivation. 

The next goal is an explicit presentation for n'P as an S-module, given the 
presentation of S as an R-algebra. The first step towards it is the following exercise 
describing the module of Kahler differentials for polynomial extensions of R. Solve 
it in two ways: by using the construction in paragraph 2.2 above; by proving directly 
that it has the desired universal property. 

EXERCISE 2.3. Let S = R[Y] be the polynomial algebra over R on a set of 
variables Y, and <p: R ----t S the inclusion map. Prove that 

n'P = EB Sdy and 8'~'(r) = L =r dy. 
yEY yEY y 

Here, n'P is a free S-module on a basis { dy }yEY' and 8(-) I 8y denotes partial 
derivative with respect to y. 
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ANDRE-QUILLEN HOMOLOGY 207 

2.4. Jacobi-Zariski sequence. Let Q !..... R .'!.... S be a homomorphism of com­
mutative rings. One has a natural exact sequence of S-modules: 

(2.4.1) 

The maps in question are defined are follows: by restriction, the R-linear derivation 
/j'P: s -t n'P is also a Q-linear derivation, hence it induces the homomorphism 
/3: n'P'I/J _. n'P such that f3 o /j'P'I/J = /j'P. In the same vein, /j'P'I/J 'P: R -t n'P'I/J is a 
Q-linear derivation, so it induces an R-linear homomorphism a': rl,p _. n'P,p; the 
map a is obtained by extension of scalars, for n'P'I/J is an S-module. 

I leave it to you to verify that the sequence (2.4.1) is exact. It is sometimes 
called the Jacobi-Zariski sequence. One way to view Andn~-Quillen homology is 
that it extends this exact sequence to a long exact sequence; that is to say, it is a 
'left derived functor' of n_, viewed as a functor of algebras; see 6.7. 

When N is a S-module, applying Horns(-, N) to the exact sequence (2.4.1), 
and using the identification in 2.2, yields an exact sequence of S-modules 

0---+ DerR(S; N) ---+ Derq(S; N) ---+ Derq(R; N). 

One could just as well have deduced (2.4.1) from the naturality of this sequence. 

EXERCISE 2.4.1. Interpret the maps in the exact sequence above. 

The following exercise builds on Exercise 2.3. 

EXERCISE 2.5. Let 1/J: R[Y] -t R[Z] be a homomorphism of R-algebras, where 
Y and Z are sets of variables. Verify that the map 

n'I/JIR: nR[Y]IR---+ nR[Z]IR is defined by y f---> L ~~ dz. 
zEZ 

Sequence (2.4.1) allows for a 'concrete' description of the Kahler differentials: 

EXERCISE 2.6. WriteS= R[Y]/(r), where R[Y] is the polynomial ring over R 
on a set of variables Y and r = {r>.} is a set of polynomials in R[Y] indexed by the 
set A. Note that such a presentation of Sis always possible. The homomorphism 
'P is then the composition R <----+ R[Y] """* S. 

Prove that the module of Kahler differentials of 'P is presented by 

EB Se,>. .!!..... EB Sdy ---+ n'P ---+ 0' where 
>-EA yEY 

a( e.>.)= I:: at>.) dy. 
yEY y 

The matrix representing 8 is the Jacobian matrix of the polynomials r. 

Here is an exercise to give you a feel for the procedure outlined above: 

EXERCISE 2.7. Let k be a field, S = k[y], the polynomial ring in the variable 
y, and let R be the subring k[y2 , y3]. Find a presentation for the module of Kahler 
differentials for the inclusion R <----+ S. 

The relevance of the following exercise should be obvious. 
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208 SRIKANTH IYENGAR 

EXERCISE 2.8. Let S and T be R-algebras. Prove that there is a natural 
homomorphism of (S Ci9R T)-modules 

(S 0R Dr 1R) ffi(ns 1R 0R T)----+ n(s®RT)IR, 

and that this map is bijective. 

In a special case, one can readily extend (2.4.1) one step further to the left: 

2.9. The conormal sequence. SupposeS= Rl I, where I is an ideal in R, and 
'P: R ~ S the canonical surjection; in particular, Dcp = 0. Let 7/J: Q ~ R be a 
homomorphism of rings. The exact sequence (2.4.1) extends to an exact sequence 

of S-modules. The map ( is defined as follows: restricting the universal derivation 
8'1/J gives a Q-linear derivation I ~ D,p and hence, by composition, a Q-linear 
derivation 8: I ~ (D,p Q9 R S) = D,p I ID,p. Keeping in mind that 8 is a derivation it 
is easy to verify that 8(I2 ) = 0, so it factors through I I I 2 ; this is the map (. It is 
also elementary to check that ( is S-linear. 

3. Simplicial algebras 

This section is a short recap on simplicial algebras and simplicial modules. The 
aim is to introduce enough structure, terminology, and notation to be able to work 
with simplicial algebras and their resolutions, and construct cotangent complexes, 
the topics of forthcoming sections. The reader may refer to [13] and [20] for in­
depth treatments of things simplicial. 

To begin with, let me try to explain what we are trying to do here. 

3.1. Computing derived functors. I remarked during the discussion on Jacobi­
Zariski sequence (2.4.1) that Andre-Quillen homology may be viewed as a derived 
functor of n_. In order to understand the problem, and its solution, let us revisit 
the process of deriving a more familiar functor. 

As before, let tp: R ~ S be a homomorphism of commutative rings. Let M(S) 
be the category of S-modules. Consider the functor 

S Ci9R-: M(S) ----+ M(S) where N ~--+ S Ci9R N. 

Each exact sequence of S-modules 0 ~ N ~ N' ~ N" ~ 0 gives rise to an exact 
sequence of S-modules 

s Q9 R N ----+ s Q9 R N' ----+ s Q9 R N" ----+ 0 

However, the homomorphism on the left is not injective, unless S is flat as an R­
module; in short, the functor S Ci9R- is left-exact, but it is not exact. This lack of 
exactness is compensated by extending the sequence above to a long exact sequence. 
There are three steps involved in this process: 

Step 1. Construct a projective resolution F of S over R. 

Step 2. Show that F is unique up to homotopy of complexes of R-modules. 

Step 3. Set T 'P = F Ci9R S, and for each S-module N set 

H~(N) = Hn(T"' 0s N) 
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ANDRE-QUILLEN HOMOLOGY 209 

One then has H;s'(N) = S 0R N, and the functors {H~(-)}n>O extend(*) above 
to a long exact sequence of S-modules, which is what one wants. We have not 
discovered anything new here: H~ ( N) = Tor~ ( S, N). 

Note that the complex T 'Pis well-defined in the homotopy category of complexes 
of S-modules; this follows from Step 2. It is this property that dictates the kind of 
resolution we pick. For instance, flat resolutions, although a natural choice, would 
not work, for they are not unique, even up to homotopy. It is another matter that 
they can be used to compute H~(N). 

We turn now to the functor of interest fL. Taking a cue from the preced­
ing discussion, the plan is to attach a complex of projective S-modules called the 
cotangent complex of'{), which I denote £"', with 

Ho(£"' 0s N) = f!"' 0s N 

such that it extends the sequence (2.4.1) to a long exact sequence of S-modules. 
The functor f!_ is non-linear: it takes into account the structure of S as an R­
algebra, rather than as an R-module. Keeping this in mind, one should pick a 
suitable category of R-algebras, and a notion of homotopy for morphisms in that 
category, such that resolutions have the following properties: 

(a) They must reflect the structure of S as an R algebra. 
(b) They should be unique up to homotopy. 
(c) The functor[!_ must preserve homotopies, in a suitable sense of the word. 

It turns out that simplicial algebras provide the right context for obtaining such 
resolutions; confer [11] for a discussion about why this is so. 

QuESTION. Why is the category of differential graded R-algebras not suitable 
for the purpose on hand? 

3.2. Simplicial modules and algebras. As usual, let R be a commutative ring. 
A simplicial R-module is a simplicial object in the category of R-modules, that 

is to say, a collection V = {Vn}n>O of R-modules such that, for each non-negative 
integer n, there are homomorphisms of R-modules: 

for 0 S i,j S n. 

called face maps and degeneracies, respectively, satisfying the identities: 

(3.2.1) didj = dj-ldi when i < j 

{

Sj-ldi when i < j 
disj = 1 when i = j, j + 1 

Sjdi-1 when i > j + 1 

SiSj = Sj+!Si when iS j 

Prescribing this data is equivalent to defining a contravariant functor from the 
ordinal number category to the category of R-modules; see [11, §(1.5)] 

A simplicial R-algebra is a simplicial object in the category of R-algebras; thus, 
it is a simplicial R-module A where each An has the structure of an R-algebra, and 
the face and degeneracies are homomorphisms of R-algebras. A simplicial module 
over a simplicial R-algebra A is a simplicial R-module V where each Vn is an An­
module and the face maps and degeneracies are compatible with those on A. 
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210 SRIKANTH IYENGAR 

EXAMPLE 3.3. Given an R-module N, it is not hard to verify that the graded 
module s(N), with 

s(N)n = N and di = idN = Sj for 0 ~ i, j ~ n. 

is a simplicial R-module. For any R-algebra S, it is evident that s(S) is a simplicial 
R-algebra. 

3.4. Normalization. Let V be a simplicial R-module. The normalization of V 
is the complex of R-modules N(V), defined by 

n 

N(V)n = n Ker(di) with differential 
i=1 

On= do: N(V)n ______. N(V)n-1" 

That On is a differential follows from (3.2.1). The nth homotopy module of Vis the 
R-module 

nn(V) = Hn(N(V)). 

This is not the 'right' way to introduce homotopy, but will serve the purpose here, 
see [11, (2.15)]. 

There is another way to pass from simplicial modules to complexes: The face 
maps on V give the graded R-module underlying V the structure of a complex of 
R-modules, with differential: 

n 

i=O 
This complex is also denoted V; this could cause confusion, but will not, for the 
structure involved is usually clear from the context. Fortunately, the homology of 
this complex is the same as the homotopy, see, for instance, [13, Chapter III, (2.7)]. 

EXERCISE 3.5. LetS be an R-algebra. Verify that N(s(S)) = S. 

EXERCISE 3.6. Let A be a simplicial R-algebra and V a simplicial A-module. 
Verify that for each n, the R-submodules N(V)n, Ker(on), and Im(on+l) of Vn 

are stable under the action of An, that is to say, they are An-submodules of Vn. 
In particular, n0 (A) is an R-algebra. Moreover, when Vn is a noetherian An­

module, so is 7rn(V). 

NoTES 3.7. For each simplicial R-algebra A, the graded module n*(A) is a 
commutative n0 (A)-algebra with divided powers, see [12, (2.3)]. Moreover, if Vis 
a simplicial A-module, 1r * (V) is a graded 1r *(A)-module. These structures play no 
role in this write-up, but they are an important facet of the theory; see [4] and [7]. 

NoTES 3.8. The functor N(-) from simplicial R-modules to complexes of R­
modules is an equivalence of categories; this is the content of the Dold-Kan theorem, 
see [11, (4.1)]. 

EXAMPLE 3.9. Let A be a simplicial R-algebra and Nan no(A)-module. Then 
s(N) is a simplicial A-module, where, for each non-negative integer n, the An­
module structure on s(N)n is induced via the composed homomorphism of rings 

A din A din-1 di1 A 
n ---+ n-1 ----> · · · ------+ 0 . 

It is an exercise to check that the choices of indices in, ... , h is irrelevant. 
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ANDRE-QUILLEN HOMOLOGY 211 

3.10. Morphisms. A morphism <I>: A ----+ B of simplicial R-algebras is a collec­
tion of homomorphisms of R-algebras <I>n: An ----+ Bn, one for each n;::: 0, commut­
ing with both face maps and degeneracies. Such a <I> induces a homomorphism of 
R-modules 

1r*(<I>): 1r*(A)----+ 1r*(B) 
One says that <I> is a weak equivalence if 1r * (<I>) is bijective. I will leave it to you to 
formulate the definition of a morphism of simplicial modules. 

EXAMPLE 3.11. Let A be a simplicial R-algebra. Following Example 3.9, it is 
not hard to verify that any homomorphism of R-algebras ¢: 1r0 (A)----+ S induces a 
morphism of simplicial algebras, <I>: A----+ s(S). Given Example 3.3 it is clear that 

7rn(<I>) = {¢ when n = 0 
0 otherwise 

Thus, <I> is a weak equivalence if and only if¢ is bijective and 7rn(A) = 0 for n;::: 1. 

To summarize Examples 3.3 and 3.11: The functors(-) is a faithful embedding 
of the category of R-algebras into the category of simplicial R-algebras, and 1r0 (-) 

is a left adjoint to this embedding. 

EXERCISE 3.11.1. Prove that the embedding is also full. 

3.12. Tensor products. The tensor product of simplicial A-modules V and W 
is the simplicial A-module denoted V ®A W, with 

(V ®A W)n = Vn ®An Wn for each n;::: 0, 

and face maps and degeneracies induced from those on V and W. When N is an 
1r0 (A)-module, it is customary to write V ®AN for V ®A s(N). 

Various standard properties of tensor products (for example: associativity and 
commutativity) carry over to this context. 

4. Simplicial resolutions 

This section discusses simplicial resolutions. The first step is to introduce free 
extensions, which are analogues in simplicial algebra of bounded-below complexes 
of free modules in the homological algebra of complexes over rings. 

4.1. Free simplicial extensions. Let A be a simplicial R-algebra. We call a 
free 1 simplicial extension of A on a graded set X = { Xn}n;.o of indeterminates a 
simplicial R-algebra, denoted A[X], satisfying the following conditions: 

(i) A[XJn = An[XnJ, the polynomial ring over An on the variables Xn; 
(ii) Sj(Xn) ~ Xn+l for each j, n; 

(iii) The inclusion A ~ A[X] is a morphism of simplicial R-algebras. 

Note that there is no restriction on the face maps. 
For instance, if S = R[Y] is a polynomial ring over R, then the simplicial 

algebra s(S) is a free extension of s(R), with Xn = Y for each n. 

4.2. Base change. If A[X] is a free extension of A, and <I>: A ----+ B is a morphism 
of simplicial algebras, then B ®A A[X] is a free extension of B. 

1See footnote for Definition 4.20 of [11] 
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212 SRIKANTH IYENGAR 

4.3. Existence of resolutions. Let ¢: A ---* B be a morphism of simplicial R­
algebras. A simplicial resolution of B over A is a factorization of ¢ as a diagram 

A)----) A[X] ~ B 

of morphisms of simplicial algebra, with A---* A[X] a free extension and ci> a surjec­
tive weak equivalence. Usually, one refers to A[X] itself as a simplicial resolution 
of B over A. Simplicial resolutions exist; one procedure for constructing them is 
described in the paragraphs below; see 4.12. 

4.4. Existence of lifting. Given a commutative diagram of simplicial algebras 

where ci> is surjective and a weak equivalence, there exists a morphism "' that 
preserves the commutativity of the diagram. 

For a proof of the lifting property, see [11, (5.4)]. The morphism "' in the 
diagram above is unique up to homotopy, in a sense described below. The definition 
may appear to come out of the blue, but it is a special case of a notion of homotopy 
in model categories. Much of this following discussion is best viewed in that general 
context; see Dwyer and Spalinski [10, (4.1)], or [11, (2.2)]. 

4.5. Homotopy. Let A---* A[X] be a free extension. For each integer n, one has 
the product morphism 

J-ln = An[Xn] @An An[Xn] ~ An[Xn]· 

They form a morphism of simplicial A-algebras 

J-L: A[X] ®A A[X]---* A[X]. 

It is convenient to write A[X, X] for A[X] @A A[X]. 
The simplicial algebra A[ X, X] has the functorial properties one expects of a 

product. Namely, given morphisms ci>, I]!: A[ X] ---* B of simplicial A-algebras, there 
is an induced morphism of simplicial algebras 

ci> 8 \1!: A[X, X] ~ B with ( ci> 8 \l!)n(x@ x') = ci>(x)\l!(x'). 

Let A[X, X, Y] be a simplicial resolution of A[X] over A[X, X]; it is called 
a cylinder object for the A-algebra A[X], see [11, (2.4)]. The morphisms ci> and 
I]! are homotopic if ci> 8 I]! extends to a cylinder object, that is to say, there is a 
commutative diagram of morphisms of simplicial A-algebras 

A[X, X] ----------l A[X, X, Y] 

~1 
B 

Given the lifting property of free extensions 4.4, it is easy to check that the notion 
of homotopy does not depend on the choice of a cylinder object, and that homotopy 
is an equivalence relation on morphisms of A-algebras, see [10, (4.7)]. 
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4.6. Uniqueness of lifting. Using the lifting property 4.4 of free extensions a 
formal argument shows that the lifting map "' in 4.4 is unique up to homotopy of 
simplicial A-algebras, see [10, ( 4.9)]. 

4.7. Uniqueness of resolutions. A standard argument using lifting properties of 
free extensions 4.4, 4.6 yields that simplicial resolutions are unique up to homotopy 
of simplicial A-algebras. 

Given an R-algebra S, it is accepted usage to speak of a simplicial resolution 
of the R-algebra S, meaning a simplicial resolution of s(S) over s(R). 

REMARK 4.8. Let S be an R-algebra and M an R-module. Let R[X] be a 
simplicial resolution of the R-algebra S. The complex underlying R[X] is an R-free 
resolution of S, so for each integer n, one has 

nn(R[X]&JR M) = Tor~(S, M). 

Next we outline a procedure for constructing simplicial resolutions. The strat­
egy is the one used to obtain free resolutions: 

4.9. Resolutions of modules over rings. Let M be an R-module. A free resolu­
tion of M over R may be built as follows: One constructs a sequence of complexes 
of free R-modules 0 C p(o) <;;;:: F(1) <;;;:: • · · such that p(o) is a free module mapping 
onto M, and for each d ?: 1 one has 

Hi(F(d)) = {M fori= 0, 
0 for 1 :::; i :::; d - 1 . 

Given p(d- 1) one builds p(d) by killing cycles in Fd~~ 1 ) that are not boundaries. 

In detail: choose a set of cycles {z;J>.EA which generate Hd_ 1(F(d-1l), and set 

Fd = ffiRe>. 
.\EA 

p(d) = p(d- 1) EB :r:d Fd with a(e>.) = Z>,. 

The homology of p(d) is readily computed from the short exact sequence of com­
plexes 0 -+ p(d- 1) -+ p(d) -+ r:d Fd -+ 0. 

Then the complex Ud~oF(d) is the desired free resolution of M. 

A similar procedure can be used to construct simplicial resolutions. The crucial 
step then is a method for killing cycles. In the category of modules, to kill a cycle 
in degree d- 1 we attached a free module, Fd, in degree d. In the category of 
simplicial algebras, we have to attach a (polynomial) variable in degree d; however, 
the simplicial identities (3.2.1) (notably, disj = 1 fori= j,j + 1) force us to then 
attach a whole slew of variables in higher degrees. 

4.10. Killing cycles. Let A be a simplicial R-algebra, d a positive integer, and 
let wE Ad-1 be a cycle in N(A)d_ 1 , the normalized chain complex of A, see 3.4. 

The goal is to construct a free extension of A in which the cycle w becomes a 
boundary; I write A[{x} la(x) = w], or just A[{x}] when the cycle being killed is 
understood, for the resulting simplicial algebra. It has the following properties: 

(a) For each integer n, the An-algebra A[{x}]n is free on a set Xn of finite 
cardinality. In particular, if the ring An is noetherian, so is the ring A[ { x} ln. 
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(b) The inclusion A <---+ A [ { x}] induces isomorphisms 

for n ~ d- 2. 

(c) One has an exact sequence of n0 (A)-modules 

0----+ Ad-1cls(w)----+ 1fd-1(A)----+ 7rd-1(A[{x}])----+ 0. 

where cls(w) is the class of the cycle win 7rd_1(A). Note that the ideal 
Ad-1 w ~ Ad-1 consists of cycles. 

The construction of A[{x}] is as follows: 

The set X. For each positive integer n, set 

Xn = { Xt I t: [n] ----+ [d] is surjective and monotone.} 

Clearly, card(Xn) is finite, as claimed. 
The face and degeneracies on A [ { x}] extend those on A, so to define them, 

it suffices to specify their action the set X. This process involves the co-face and 
co-degeneracy maps, see [11, (1.10)]. 

Degeneracies. For each Xt E Xn, set 

Sj(xt) = XtosJ for 0 ~ j ~ n. 

Here si: [n + 1] ----+ [n] is the jth co-degeneracy operator. 

Face maps. The set X d is a singleton: { Xid}. Set 

di(Xid)={~ ~:~~d 
It remains to define face maps on Xn for n 2:: d + 1. Fix such an n and a surjective 
monotone map t: [n] ----+ [d]. If for a co-face map di: [n - 1] ----+ [n] the composed 
map to di: [n- 1] ----+ [d] is not surjective, then one has a commutative diagram 

[n]-----+[d] 

d' I I dj 

[n-1] ~ [d-1] 

where u is surjective and monotone. The face operators on Xn is defined as follows: 

di(xt) = {Xtod' if to di is surjective, 
u* ( di ( w)) otherwise. 

where u*: Ad-1 ----+ An-1 is the map induced by u. Here we are viewing A as 
defining a contravariant functor from the ordinal number category to the category 
of R-algebras; u* is the image of u under this functor, see [11, (1.10)]. 

EXERCISE 4.10.1. Prove that, with the prescription above, A[{ x }] is a simplicial 
R-algebra, and a free extension of A. 

As to the properties of A[{x}]: given 4.10(a), it is clear that 4.10(b) holds. 

EXERCISE 4.10.2. Prove that property 4.10.(c) holds. Hint: use 3.4. 

4.11. Generating cycles. The preceding construction can also be used to create 
cycles in degree d: take w = 0. 
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ANDRE-QUILLEN HOMOLOGY 215 

Using 4.10 and 4.11, and taking limits one arrives at the conclusion below. 
This is a good place to point out that this construction of resolutions is best viewed 
in the context of a general technique called the 'small object argument', due to 
Quillen, see [11, (3.5)]. 

4.12. Resolutions exist. Given a morphism <I>: A----+ B of simplicial R-algebras, 
a simplicial resolution of B over A exists. As noted before, see 4. 7, such a resolution 
is unique up to homotopy of simplicial A-algebras. 

The following result is clear from the properties of the construction in 4.10. 

PROPOSITION. When R is noetherian and the R-algebra S is finitely generated, 
S admits a simplicial resolution R[X] with card(Xn) finite for each n. D 

Next I will describe an explicit resolution of the homomorphism R[y] --* R 
where y ,..... 0. It serves both as an elementary example of a simplicial resolution, 
and as a way to construct resolutions of complete intersections; see 4.16. 

CONSTRUCTION 4.13. Let R[y] be the polynomial ring over R, in the variable 
y, and let A: R[y]----+ R be the homomorphism of R-algebras defined by A(y) = 0. 

What is described below is the bar construction of the R-algebra R[y] with 
coefficients in R; see [16, Chapter X, §2]. It is built as follows: For each n 2": 0, set 

Bn = R[y]0R R[y] 0 n 

It is convenient to write b[b1l· ··Ibn] for the element b 0 b1 0 · · · 0 bn in Bn. 
Evidently, Bn is a polynomial algebra over R[y] over the set of n indeterminates 

Xn = {xnk}~~t, where 

Xnk = [11· · ·lvl· · ·11] withy the (k + l)st tensor. 

For each 0 ~ i ~ n, extend the mapping 

fori= 0 

for 1 ~ i ~ n- 1 

fori= n 

to a homomorphism of R[y]-algebras di: Bn ----+ Bn_1. In the same vein, for each 
0 ~ j ~ n extend the mapping 

to a homomorphism of R[y]-algebras Sj: Bn ----+ Bn+1· 

EXERCISE 4.13.1. The R[y]-algebra B = {Bn}, with face and degeneracy op­
erators defined above, is a free simplicial extension of R[y]. 

Note that the homomorphism A consists of killing the cycle yin R[y]. 

EXERCISE 4.13.2. Reconcile the construction given in this paragraph with the 
free extension R[y][{x} lo(x) = y] obtained from 4.10. 

The relevant properties of this free extension are as follows. 
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LEMMA 4.14. The canonical surjection c B ----+ R is a weak equivalence, and 
hence a simplicial resolution of R over R[y]. 

Let K denote the complex of R[y]-modules 0----+ R[y] ~ R[y] ----+ 0 concentrated 
in degrees 0 and 1. The morphism of complexes v: K ----+ B defined by v0 = idR(y] 
and v1 ( r) = r ® y, is a homotopy equivalence. 

SKETCH OF A PROOF. One way to prove this result is as follows: It can be 
checked directly that v is compatible with the surjections E: B ----+ R and 1r: K ----+ R. 
Moreover, both E and 1r are quasi-isomorphisms; this is clear for 1r, and is not hard 
to prove for E, see [16, Chapter X, §2]. Thus, since B and K are both bounded 
below complexes of free R[y]-modules, it follows that v is a homotopy equivalence. 

Another method is to prove first that v is a homotopy equivalence, and so 
deduce that E is a weak equivalence. I will leave it to you to construct a homotopy 
inverse to v. D 

Given the preceding construction, it is easy to get a simplicial resolution of R 
over R[y1, ... , Yd]· The underlying idea is explained in the following exercise. 

EXERCISE 4.15. Let K be a commutative ring and let R' ----+ S' and R" ----+ S" 
be homomorphism of commutative K-algebras, such that R' and S' are flat as 
K-modules. 

If B' and B" are simplicial resolutions of S' over R', and of S" over R", 
respectively, then B' ®K B" is a simplicial resolution of S' ®K S" over R' ®K R". 

Building on the Construction 4.13, I will describe a simplicial resolution of the 
R-algebra R/(r), when r is a nonzerodivisor on R. 

CONSTRUCTION 4.16. LetS= Rj(r), and cp: R----+ S the canonical surjection. 
Let R[y] denote the polynomial ring over R, in the variable y. Let .X: R[y] ----+ R 

and 'ljJ : R [y] ----+ R be homomorphisms of rings defined by .X (y) = 0 and 'ljJ (y) = r, 
respectively. Consider the diagram of homomorphisms of commutative rings: 

R[y]-->..-~R 

·1 l 
R __ 'P _ _, S = R'I/J ®R[y] 'R 

Let R[y] ----+ B ----+ R be the simplicial resolution of .X; see Construction 4.13 and 
Lemma 4.14. Set 

This is a free extension of R. Base change along along 'ljJ yields a diagram R ----+ 
A----+ S of morphisms of simplicial algebras. Since the complex of R[y]-modules B 
is homotopy equivalent to the complex K, defined in Lemma 4.14, one obtains that 
the complex of R-modules A is homotopy equivalent to the complex R'I/J ®R[y] K, 
that is to say, to the complex: 

0----+R~R----+0 
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if n = 0 

if n = 1 

ifn:2:2 

Given this calculation, the proof of the following result is clear. 

217 

LEMMA. If r is a nonzerodivisor on R, then A is a simplicial resolution of the 
R-algebra S. 0 

The modules and face and degeneracy maps in A are described completely by 
the data in 4.13. 

EXERCISE 4.17. Suppose that r 1 , ... , rc is an R-regular sequence, see 8.1. 
Mimic the proof of the preceding lemma to construct a simplicial resolution of 
R/(r) over R. Hint: use Exercise 4.15 and Remark 8.2. 

5. The cotangent complex 

We are now prepared to introduce the protagonist of these notes: the cotan­
gent complex of a homomorphism. This section describes one construction of the 
cotangent complex, and a discussion of its basic properties. 

5.1. Kahler differentials. Since fL IRis a functor on the category of R-algebras, 
it extends to a functor on the category of simplicial R-algebras: Given a simplicial 
R-algebra A, one obtains a simplicial A-module nAIR, with 

(nAIR)n =nAn IR 

for each n, and face maps and degeneracies induced by those on A. Moreover, each 
morphism cl>: A ----+ B of simplicial R-algebras induces a morphism of simplicial 
R-modules n4>IR: nAIR ----t nBIR· All this is clear from the properties of n-IR 
discussed in Section 2. 

5.2. The cotangent complex. Let <p: R ----+ S be a homomorphism of commuta­
tive rings. Let A be a simplicial resolution of S over R, and set 

L'P =nAIR 0A S. 

Thus, .C'P is a simplicial S-module; the associated complex of S-modules is called 
the cotangent complex of S over R; more precisely, of <p. This too we denote .C'P. 

Simplicial resolutions are unique up to homotopy, see 4.12, and n_l R trans­
forms homotopy equivalent morphisms of simplicial algebras into homotopy equiv­
alent morphisms of simplicial modules, so the complex .C'P is well defined in the 
homotopy category of complexes of S-modules; this is explained in the next para­
graph. It is in this sense that one speaks of the cotangent complex. 

The crucial point is the following. 

5.3. Weak equivalences and differentials. If a morphism of free simplicial R­
algebras cl>: R[X] ----+ R[Y] is a weak equivalence, then the induced morphism of 
simplicial R-modules nR[X]IR ----t nR[Y]IR is also a weak equivalence. 

The idea is that cl> admits a homotopy inverse, and hence there is a homotopy 
inverse also to n4> I R· Perhaps the best way to formalize this argument is to use 
the model category structures on the categories of simplicial R-algebras and on 
simplicial R-modules, see [22, §1]. 
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5.4. Homotopies. If <I>, \[1: R[X] ~ B are homotopic morphisms of simplicial 
R-algebras, then the induced morphisms of simplicial R-modules n<I>IR and nwiR' 

from f!R[X]IR to f!BIR' are homotopic. 
Indeed, suppose R[X, X, Y] is a cylinder object for the R-algebra R[X], see 4.5. 

Thus, there is diagram of simplicial R-algebras 

R[X,X]~ R[X,X, Y] ~ R[X] 

where the composed is the product map. Applying n_l R yields a diagram of 
simplicial R-modules 

f!R[X,X]IR~ f!R[X,X,Y]IR ~ f!R[X]IR 

The crucial information in the diagram is that the arrow on the right is a weak 
equivalence; this is by 5.3. Concatenating this diagram with the natural morphism 
of simplicial R-modules 

where the isomorphism is by Exercise 2.8, one obtains a diagram 

f!R[X]IR ffir!R[X]IR~ f!R[X,X,Y]IR ~ f!R[XJIR 

of simplicial R-modules. It is easy to check the composed map is: (a, b) ~---+ a+ b. 
The diagram above is tantamount to the statement that nR[X,X,Y]IR is a cylinder 
object for the simplicial R-module nR[X] I R, see [11, (2.4)]. 

Now, applying f!-IR to the diagram defining a homotopy between <I> and \[1, 

see 4.5, one obtains a commutative diagram of simplicial R-modules 

f!R[X]!Rffif!R[XJIR ~ f!R[X,X,YJIR 

~1~ 
f!BIR 

Since nR[X,X,Y]IR is a cylinder object for nR[X]IR, the diagram above means that 
f!<I>IR and f!wiR are homotopic, see [11, (2.7)]. 

EXERCISE 5.5. Let A -=.. 8 be a simplicial resolution, as above. Then A l8l R 8 is 
a simplicial R-algebra. Let J be the kernel of the morphism of simplicial 8-algebras 
A®R8 ~ s(8), where t:(a®s) = t:(a)s. Note that J is a simplicial ideal in A®R8; 
that is to say, J is a simplicial (A ®R 8)-submodule of A ®R 8. 

Prove that one has an isomorphism of simplicial 8-modules: 

c<p S:! J I J2 . 

Here J2 is the simplicial ideal in A ®R 8 with (J2)n = (Jn) 2 . 

NOTES 5.6. The gist of the preceding exercise is that one may view the cotan­
gent complex as 'derived indecomposables'. There are other interpretations of the 
cotangent complex: as the derived functor of the abelianization functor, see [11, 
(4.24)]; as cotriple homology, see [26, §8.8]. 

In [3], Andre introduces cotangent complex as in 5.2, but by using a canonical 
resolution of the R-algebra 8. This has the benefit that one does have to worry that 
that it is well-defined, and so avoids, in particular, the discussion in 5.4. However, 
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ANDRE-QUILLEN HOMOLOGY 219 

to establish any substantial property of cotangent complexes, one would have to 
prove that they can be obtained from any simplicial resolution, and so he does. 

REMARK 5.7. Let A = R[X] be a simplicial resolution of the R-algebra S. 
For each integer n, one has An = R[Xn], so Exercise 2.3 yields: nAn I R is a free 
An-module, and hence (L.cp)n is a freeS-module, on a basis of cardinality card(Xn)· 

5.8. Andre-Quillen homology and cohomology. The cotangent complex of 'P is 
well-defined up to homotopy of complexes of S-modules, so for each S-module N 
and integer n, the following S-modules are well-defined: 

Dn(SIR;N) = Hn(L."' 0s N) and Dn(SIR;N) = H-n(Homs(L."',N)) 

These are the nth Andre-Quillen homology, respectively, Andre- Quillen cohomology, 
of S over R with coefficients in N. 

The cotangent complex is a complex of free S-modules concentrated in non­
negative degrees, therefore 

Dn(SIR;N) = Tor~(L."',N) and Dn(SIR;N) = Ext3(L."',N). 

Given this interpretation, a standard argument in the homological algebra of com­
plexes, see, for instance, [6, (2.4P), (2.4F)], yields the result below. For any complex 
L of S-modules, fds L is the fiat dimension of L; thus, fds L :s; n means that L is 
quasi-isomorphic to a complex 0 ----> Fn ----> • • · ----> Fi ----> 0 of flat S-modules. The 
number pd5 Lis the projective dimension of L. 

PROPOSITION 5.9. Let n be a non-negative integer. 
One has Di(S I R;-) = 0 fori 2: n + 1 if and only if fds(L.cp) :s; n. 
One has Di(S I R;-) = 0 fori 2: n + 1 if and only if pd5 (£cp) :s; n. D 

Next I describe the cotangent complex in two cases of interest; it turns out that 
these are essentially the only contexts in which one has information in closed form 
on the cotangent complex. 

PROPOSITION 5.10. If S = R[Y], a polynomial ring over R in variables Y, then 
the S -module Os 1 R is free, and 

£cp '::::' OsiR 

as complexes of S-modules. Thus, Dn(SIR; N) = 0 = Dn(SIR; N) for n 2: 1. 

PROOF. The freeness of OsiR is the content of Exercise 2.3. Note that the 
simplicial R-algebra s(S) is itself a simplicial resolution of S over R. Therefore, one 
has the first isomorphism below 

£'1' ~ Os(S)IR ®s(S) S ~ s(OsiR). 

The second isomorphism is verified by inspection. Thus, as a complex of S-modules 
£."', is isomorphic to 

0 1 0 
· · ·-----> OsiR----> OsiR----> OsiR----> OsiR----> 0. 

Hence,£."' is homotopy equivalent to OsiR· The remaining assertions now follow, 
since the S-module OsiRis free. D 

PROPOSITION 5.11. If S = R/(r), where r is a nonzerodivisor in R, and 
'P : R ----> S is the surjection, then 
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PROOF. The proof uses the notation in 4.13 and 4.16. 
It is clear that Lcp, which equals nAIR ®R 8, is a complex of free 8-modules 

beginning in degree 1, and with 
n-1 

for each n ~ 1. 
i=O 

In describing the differential on Ccp, it is useful to introduce the following symbol: 
for each integer n, set 

E(l, m) =I) _ 1)k = {0 ~f m -l ~seven; 
k=l -1 If m - [ IS odd. 

With this notation, using the description of A ensuing from 4.13 and Exercise 2.5, 
one finds that the differential on (Ccp)n is given by 

{
€(1, n)Xn-1,0 

O(Xni) = €(0, i)Xn-1,i-1 + E(i + 1, n)Xn-1,i 
€(0, n- 1)Xn-1,n-2 

The entries of the matrix representing the differential 

On: (Ccp)n ---+ (Ccp)n-1 

fori= 0; 

for 1 ::; i ::; n - 2; 

fori= n -1. 

are either 0 or 1. I claim that Ccp is homotopy equivalent to r:.8. 
Indeed, since the matrices representing the differentials consist of zeros and 

ones, it suffices to verify this assertion when 8 = Z (why?); in particular, we may 
assume 8 is noetherian. A routine calculation establishes that for any homomor­
phism 8 ---+ l, where l is a field, one has 

{
n-2 

rank1(8n ®s l) = ~ 
if n ~ 2 is even; 

if n ~ 3 is odd. 

Therefore, for each integer n ~ 2, one has that 

n = rank1(8n ®s l) + rank1(8n+l ®s l) 

It now remains to do Exercise 5.12 below, noting that H1(£cp) = 8. 0 

EXERCISE 5.12. Let 8 be a noetherian ring and L = {Ln}n;,.1 a complex of 
finite free 8-modules such that for each prime ideal q in 8, one has 

ranks(Ln) = rank1(8n ®s k(q)) + rank1(8n+l ®s k(q)) for n ~ 2. 

Prove that Hn(L) = 0 for n ~ 2, and that Lis homotopy equivalent to r:.H1(L). 

NOTES 5.13. With better machinery one can give more efficient proofs of Propo­
sition 5.11. For instance, writing ~1 for the standard 1-simplex, it is easy to verify 
that Ccp is the free the simplicial 8-module on the simplicial set ~ 1/ 8~ 1, which 
implies the desired statement about its homotopy, see [11, (1.15)]. 

Alternatively, one could note that Ccp is the simplicial complex corresponding to 
the chain complex with 8 in degree 1 (and so zero differential) under the Dold-Kan 
correspondence [11, (4.1)], so its homotopy is 8. 

Exercise 6.10 outlines a third approach. The argument presented above was 
intended to show that, sometimes, one can work directly with simplicial resolutions 
and compute cotangent complexes. Unfortunately, this is perhaps the only instance 
when this is possible, unless one is in characteristic zero, see [22, (9.5)]. 
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6. Basic properties 

This section is a precis of basic properties of the cotangent complex; usually, 
they are accompanied by corresponding statements concerning the Andre-Quillen 
homology modules. The analogues for cohomology, which are easy to guess, are 
generally omitted. 

As before, let cp: R ---+ S be a homomorphism of rings. 

6.1. Functoriality. The functor .C'P ®s -, defined on the homotopy category of 
complexes of S-modules, is exact. Therefore, the sequence {Dn(SIR; -)}nEZ is a 
homological functor on the category of S-modules. 

6.2. Normalization. There are isomorphisms of functors 

Da(SIR; -) ~ flsiR ®s- and Dn(SIR;-)=0 foreach n<O, 

where flsiR denotes the S-module of Kahler differentials of S over R. 
Indeed, this is immediate from the right-exactness of 0-IR; see (2.4.1). 

6.3. Base change. Consider a commutative diagram 

R' --------7 S' 

·1 .. 1 
R , (S' ®w R) ~ S 

<p ®nrR=<p 

of homomorphisms of rings. It induces a morphism of complexes of S-modules: 

.c'P' 0 R' R -----> .c'P 

which is well defined up to homotopy. This morphism is a homotopy equivalence 
when Tor~' (S', R) = 0 for n :2 1; for instance, when either cp' or pis flat. In this 
case, one has isomorphisms of functors 

Dn(SIR;-)~Dn(S'IR';-) foreachnEZ, 

where S-modules are viewed asS' -modules via the homomorphismS' 0 R' p: S' ---+ S. 
Indeed, let A' ---+ S' be a simplicial resolution of S' over R'. This induces a 

morphism of simplicial R-algebras: 

A' 0R' R-----> S' 0R' R = S 

Evidently, A' 0 R' R is a free simplicial extension of R. Thus, if A is a simplicial 
resolution of S over R, the lifting property yields a morphism of simplicial R-algebra 
A' 0 R' R ---+ A, well defined up to homotopy, see 4.4 and 4.6. By functoriality, 0_1 R 

induces a morphism of complexes of S-modules: 

fl(A'®n,R)IR ®(A'®n,R) S-----> flAIR 0A S = L'P, 

well-defined up to homotopy of complexes of S-modules. It remains to identify the 
complex on the left, and this is accomplished below: 

n(A'®n,R)IR ®(A'®n,R) s ~ (OA'IR' ®N R) ®(A'®n'R) (S' 0R' R) 

~ (OA'IR' ®N S') 0R' R 
= .c'P' 0R' R 

The isomorphisms are all verified directly. 
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Suppose Tor~' (S', R) = 0 for n::;:: 1. As noted in 4.8, one has an isomorphism 

1rn(A' ®R' R) ~Tor~' (S, R) for each n. 

Therefore, the augmentation A'® R' R ____, S is a weak equivalence, and hence A'® R' R 
is a simplicial resolution of S over R. Thus, the morphism A' ® R' R ____, A is a 
homotopy equivalence, and hence so is the induced morphism £'1', ®R' R----; £'1'. 

Here is a beautiful application, due to Andre, of the preceding property: 

PROPOSITION 6.4. Let u be a multiplicatively closed subset of R, lets= u-l R, 
and let cp: R----; S be the localization map. Then £'1' '::::' 0. 

PROOF. The complex £'1' consists of S-modules, and the functor- ®R Sis the 
identity on the category of S-modules, so one obtains the isomorphism below 

£'1' ~ £'1' ®R S '::::' £'P®RS '::::'£ids '::::' 0 

The first homotopy equivalence holds by Property 6.3, since the homomorphism cp 
is flat, the second one holds because the homomorphism cp ® R S: S ® R S ____, S is 
the identity, while the last one follows, for example, from Proposition 5.10. 0 

6.5. Localization. Fix a prime ideal q inS, set p = Rnq, and denote 'Pq: Rp ____, 
Sq the localization of <p at q. One has a homotopy equivalence 

£'Pq '::::' Sq ®s £'1' 

of complexes of Sq-modules. In particular, for each n E Z, there is an isomorphism 
of functors of S-modules 

Dn(SIR;-)q ~Dn(SqiR;-q) ~Dn(SqiRp;-q) 

See [2] for a proof of these assertions. Alternatively: 

EXERCISE 6.5.1. Prove the assertions above. 

In this context, one has the following useful remark which permits one to reduce 
many problems concerning the vanishing of Andre-Quillen homology to the case of 
homomorphisms of local rings. 

PROPOSITION 6.6. Let <p: R ____, S be a homomorphism of rings. For each 
integer n, the following conditions are equivalent: 

(a) Dn(SI R;-) = 0 on the category of S-modules; 
(b) Dn(Sq I RqnRi-) = 0 on the category of Sq-modules, for each q E SpecS. 0 

The proof of this result is elementary, given property 6.5. Under an additional 
hypothesis on cp, there is a significant improvement to the preceding result; see 
Proposition 8.7. 

6. 7. Transitivity. Each homomorphism of rings '1/J: Q ____, R induces the following 
exact triangle in the homotopy category of complexes of S-modules: 

(S ®R £..p) -----t £rpo..p -----t £'1' -----t E(S ®R £..p) 

This induces an exact sequence of functors of S-modules 

· · · _____, Dn+l(SIR; -) _____, Dn(RIQ; -) _____, Dn(SIQ; -) _____, Dn(SIR; -) _____, · · ·. 

It is called the Jacobi-Zariski sequence arising from the diagram Q ----; R ____, S. It 
extends (2.4.1) to a long exact sequence of S-modules. 

For a proof of this assertion, see [11, (4.32)], or [22, (5.1)]. 
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ANDRE-QUILLEN HOMOLOGY 223 

Use the transitivity sequence to solve the following exercises. 

ExERCISE 6.8. Let U c 8 be multiplicatively closed subset, and rt= 8 ~ u-18 
the localization map. Prove that one has a homotopy equivalence 

c'YJO<p ~ u-1 8 ®s Ccp 

of complexes of u-18 modules. 

EXERCISE 6.9. Let '¢: 8 ~ R be a homomorphism of rings such that the map 
cp'¢: 8 ~ 8 equals id8 ; said otherwise, 8 is an algebra retract of R. 

Prove that one has a homotopy equivalence of complexes of 8-modules: 

Ccp ~ L.(C..p ®R 8). 

In particular, Dn(8/R; -) ~ Dn-1(R/8; -)as functors of 8-modules. 

EXERCISE 6.10. Use the preceding exercise, and the discussion in Construction 
4.16, to prove Proposition 5.11. 

6.11. Finiteness. Suppose R is noetherian and cp is essentially of finite type. 
The complex Ccp is then homotopic to a complex 

· · · ---t Ln ---t Ln-1 ---t · · · ---t L1 ---t Lo ---t 0, 

where for each n, the 8-module Ln is finitely generated and free. Thus, when the 
8-module N is finitely generated so are Dn(8/R;N) and Dn(8/R;N). 

Indeed, by hypothesis cp admits a factorization 

R ~ u-1R[YJ L 8 

with card(Y) finite, U a multiplicatively closed subset of R[Y], and cp' a surjective 
homomorphism of rings. Since rt factors as R ~ R[U] ~ u-1 R[Y], it follows from 
Proposition 5.10 and Exercise 6.8 that£"~ is equivalent to a complex of finitely gen­
erated free u-1 R[Y] modules. On the other hand, Proposition 4.12 and Remark 5.7 
imply that the complex Ccp' consists of finitely generated free modules 8-modules. 
Now the desired result is a consequence of 6.7, applied to the diagram above. 

6.12. Low degrees. As usual, low degree cohomology modules admit alternative 
interpretations. First, a piece of notation: 8 ~ N denotes the ring with being 8 EB N 
the underlying abelian group and product given by (s, x)(t, y) = (st, sy + tx). 

To begin with, the 8-module D0 ( 8 / R; N), which is Der R ( 8 ; N), is the set of 
R-algebra homomorphisms a: 8 ~ N ~ 8 ~ N extending the identity map both on 
Nand on 8, that is to say, such that the following diagram commutes: 

O~N~8~N~8-----+0 

II la II 
o~N~8~N~8~o. 

Here E is the canonical surjection. This claim is not hard to verify; see [19, §25]. 
The 8-module D1 (8/R; N) is the set of isomorphism classes of extensions of 

R-modules 
o~N~s~8~o, 

where E is a homomorphism of R-algebras with Ker(E)2 = (0), and the given 8 
module structure on N coincides with the one induced by ~; see [2, Chapter XVI] 
for a proof. 
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When S = R/I, one has Do(SIR;N) = 0 = D0 (SIR;N), see 6.2, and 

(6.12.1) D1(SIR;N) = (I/I2 ) 0s N and D1(SIR;N) = Homs(I/I2 ,N) 

These claims are justified by Proposition 7.1. 

7. Andre-Quillen homology and the Tor functor 

In this section we discuss the relationship between the Andre-Quillen homology 
modules {Dn(SI R; N)}, where N is an S-module, and the S-modules {Tor~(S, N)}. 

Let E: A _, S be a simplicial resolution of the R-algebra S, and let J denote 
the simplicial ideal Ker(A 0R S _, s(S)); see Exercise 5.5. 

One has an exact sequence of simplicial S-modules 

0 _, J _,A 0R S _, s(S) _, 0. 

Since s(S)n = S for each n, applying -0s N preserves the exactness of the sequence 
above, so passing to the homology long exact sequence yields 

1fn(J 08 N) = {Ker(S 0R N _, N) when n = 0; 
Tor~(S, N) when n 2:: 1. 

Here one is using Remark 4.8. 
The morphism J _, JjJ2 induces a morphism J 0s N _, (J/P) 0s N of 

simplicial modules. In homology this yields, keeping in mind Exercise 5.5 and the 
preceding display, homomorphisms of S-modules: 

Tor~(S, N)--+ Dn(SIR; N) for n 2:: 1. 

Naturally, the properties of this map are determined by those of the simplicial ideal 
J, which in turn reflects properties of the R-algebra structure of S. The following 
result, which justifies the claim in (6.12.1), is one manifestation of this phenomenon. 

PROPOSITION 7.1. Assume that rp is surjective, and set I = Ker( rp). One has 
natural isomorphisms of S -modules 

D1(SIR; N) ~ Tor~(S, N) ~ (I/I2 ) 0s N. 

PROOF. Since rp is surjective, one may choose a simplicial resolution A of S 
with A0 = R. Set B =A 0R S. The crucial point in the proof is the following 

Claim. Ho(J2 ) = 0 = H1(J2). 
Indeed, by choice of A, one has J0 = 0, which explains the first equality. 

Moreover, the cycles in N(J2) 1 equal J'f_, and hence a sum of elements of the form 
xy, where x andy are in J 1. However, xy is a boundary: the element 

w = sa(xy)- so(x)sl(Y) 

is an element in N(J2) and d0(w) = xy. Thus, H1 (J2 ) = 0. 
Now, in the exact sequence 0 _, J2 _, J _, JjJ2 _, 0 of simplicial modules, 

for each integer n, the S-module (J/J2 )n is free, so one obtains an exact sequence 

0 _, J 2 0 s N _, J 0 s N _, ( J /12 ) 0 s N _, 0 . 

Passing to homology and applying the claim above yields the first of the desired 
isomorphisms. 

As to the second one: Tor~(S, N) ~ (I/ I 2 ) 0s N, consider the exact sequence 

0--+I--+R--+S--+0 

and apply to it the functor - 0R N. 0 
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ANDRE-QUILLEN HOMOLOGY 225 

The next theorem was proved by Quillen, see [22, (6.12)], [2, Chapter XX, 
(24)]; it extends the proposition above, for when r.p is surjective, the multiplication 
map J-L~: S ®R S--) Sis bijective. 

THEOREM 7.2. If J-L~ is bijective, then Hi(r) = 0 for n 2: 1 and i ~ n -1. 0 

This result is a critical component in proving the convergence of a spectral 
sequence relating AndrE§..Quillen homology and the Tor functor: 

7.3. The fundamental spectral sequence. Suppose that J-L~ is bijective. The 
S-modules underlying the sub-quotients of the filtration · · · ~ J2 ~ J ~ A are free, 
so one obtains a filtration 

· · · ~ (J2 ®s N) ~ (J ®s N) ~ (A ®s N). 

This induces a spectral sequence with 

1Ep,q = ((JqjJq+l) ®s N)p+q 

and abutting to Hp+q(A ®s N) = Tor~q(S, N). It follows from the connectivity 
theorem 7.2 that 

2Ep,q = 1fp+q( ( Jq / Jq+l) ®s N) = 0 for p ~ -1. 

Thus, the spectral sequence converges. Given Exercise 5.5, the 5-term exact se­
quence arising from the edge homomorphisms of the spectral sequence yields 

PROPOSITION 7.4. If J-L~ is bijective, there is an exact sequence of S-modules 

Torf(S, N)--) D3(SJR; N)--) A~ Torf(S, S) ®s N--) · · · 

· · ·--) Tor~(S, N)--) D2(SJR; N)--) 0. 

This result will be used in the study of homomorphisms of noetherian rings, 
which is the topic of the next section. 

8. Locally complete intersection homomorphisms 

The remainder of this article concerns the role of Andre-Quillen homology 
in the study of homomorphisms of commutative rings. The section focuses on 
complete intersection homomorphisms, while the next one is dedicated to regular 
homomorphisms. Henceforth, the tacit assumption is that rings are noetherian. 
Recently, I learned of a new book by Majadas and Rodicio [17] aimed at providing 
a comprehensive treatment of the basic results in this topic. 

8.1. Regular sequences. A sequence r = r 1, ... , r c of elements of R is said to 
be regular if (r) =f. Rand ri is a nonzerodivisor on R/(r1 , ... , ri_1) fori= 1, ... , c. 

For example, in the ring R[y1, ... , Yc], the sequence Y1, ... , Yc is regular. 

REMARK 8.2. Given an element r in R, write K[r; R] for the complex of R­
modules 0 --) R ~ R --) 0, with non-zero modules situated in degrees 0 and 1. 
Given a sequence of elements r = r 1, ... , r c in R, set 

K[r; R] = K[r1; R] ®R · · · ®R K[rc; R] 

This is the K oszul complex on the elements r. 
Koszul complexes were applied to the study of regular sequences by Auslander 

and Buchsbaum who proved: if r is a regular sequence, then Hn(K[r; R]) = 0 for 
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n 2 1, so the augmentation K[r; R]--+ RjrR is a quasi-isomorphism. The converse 
holds when r is contained in the Jacobson radical of R, see [19, (16.5)]. 

8.3. Locally complete intersection homomorphisms. Let <p: R--+ S be a homo­
morphism of noetherian rings. 

When <p is surjective, it is complete intersection if the ideal Ker( rp) is generated 
by a regular sequence; it is locally complete intersection if for each prime ideal q in 
S, the homomorphism <pq: RqnR --+ Sq is complete intersection. 

When <p is a homomorphism essentially of finite type, it is locally complete 
intersection if in some factorization 

R--+ R' ~ S 

of rp where R' is of the form u-1 R[Y], where U is a multiplicatively closed subset 
in R[Y], and rp' is surjective, the homomorphism rp' is locally complete intersection. 
It is not too hard that this property is independent of the chosen factorization; it 
becomes easy, once Theorem 8.4 is on hand. 

A vramov has introduced a notion of a complete intersection homomorphism 
at a prime q in SpecS, and of locally complete intersection homomorphisms, for 
arbitrary homomorphisms of noetherian rings. It is based on the theory of 'Cohen 
factorizations'; see [4, §1]. 

Vanishing of Andre-Quillen homology is linked to the locally complete inter­
section property by following result, which was proved by Lichtenbaum and Sch­
lessinger, Andre, and Quillen in the case when <p is essentially of finite type, and 
by A vramov in the general case. 

THEOREM 8.4. Let <p: R --+ S be a homomorphism of noetherian rings. 
The following conditions are equivalent. 

(a) rp: R --+ S is locally complete intersection. 
(b) Dn(SIR;-)=Oforn22. 
(c) D2 (sIR; -) = 0 0 

Condition (b) may be restated as: fds .C'P :::; 1; see Proposition 5.9. 
We prove the theorem above when <p is essentially of finite type. In that case, 

the implication (c) ===* (a) is reduced to the more general result below. 

THEOREM 8.5. Let rp: (R, m, k) --+ (S, n, l) be a local homomorphism, essen­
tially of finite type. If D2 (SIR; l) = 0, then <p is locally complete intersection. 

REMARK 8.6. The hypothesis that <pis essentially of finite type is needed: the 
local homomorphism (: ( R, m, k) --+ (R, mR, k), where R is the m-adic completion 
of R, is flat, so base change along R --+ k yields, by 6.3, the isomorphism below: 

Dn(RIR; k) ~ Dn(klk; k) = 0 for each n. 

However, ( is locally complete intersection if an<!_ only if the formal fibers of R, that 
is to say, the fibres of the homomorphism R --+ R, are locally complete intersection 
rings, in the sense of 8.13, and this is not always the case; see [18] and [24]. 

PROOF OF THEOREM 8.5. By hypothesis, rp can be factored as R ~ R' ~ S, 
where R' = R[Y]q, with card(Y) finite, q is a prime ideal in R[Y], and rp' is a 
surjective homomorphism. Proposition 5.10 and Exercise 6.8 yield Dn(R' I R;-) = 0 
for n 2 2, so the Jacobi-Zariski sequence 6.7 yields isomorphisms 

D2(SIR';l) ~ D2(SIR;l) = o. 
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Therefore, replacing R' by R, one may assume 'Pis surjective. In particular, k = l. 
Suppose Ker(tp) is minimally generated by r = r 1, ... , rc, so S = R/(r)R. We 

prove, by an induction on c, that the sequence r is regular. 
When c = 1, so that S = R/rR, Proposition 7.4, specialized toN= k, yields 

an exact sequence 

----t A2 Torf(S, S) ®s k ----t Tor~(S, k) ----t D2(SIR; k) ----t 0. 

Note that Torf(S, S) = (r)/(r2), so Torf(S, S) ®s k ~ k, and hence 

t\2 Torf(S, S) ®s k ~ A2k = 0. 

Thus, since D2(SIR; k) = 0, the exact sequence above implies Tor~(S, k) = 0. The 
ring R is local and R-module S is finitely generated, so the last equality implies 
pdR S :<:; 1, see [19, §19, Lemma 1]. Since the complex 

0----tR.!:....R----tO 

is the beginning of a minimal resolution of S, one deduces that it is the minimal 
resolution. In particular, r is a nonzerodivisor on R, as required. 

Suppose the result has been proved whenever Ker( tp) is minimally generated 
by c- 1 elements. Set R' = R/(r1, ... , rc_1)R. The Jacobi-Zariski sequence 6.7 
arising from the diagram R ----t R' ----t S yields an exact sequence 

----) D2(SIR; k)----) D2(SIR'; k)----) Dl(R' IR; k)----) Dl(SIR; k)----) Dl(SIR'; k)----) 0 

It follows from Proposition 7.1 that 

D1(R'IR;k) ~ kc-1, D1(SIR;k) ~ kc, and D1(SIR';k) ~ k. 

Thus, since D2(SIR; k) = 0, the exact sequence above yields an exact sequence 

0 ----7 D2 ( S I R'; k) ----7 kc-l ----7 kc ----7 k ----7 0 

Therefore, D2(SIR'; k) = 0, and since S = R' /rcR' the basis of the induction 
implies rc is a nonzerodivisor on R'. In particular, D3 (SIR'; k) = 0, by Proposition 
5.11. Given that D2(SIR; k) = 0, the Jacobi-Zariski sequence 6.7 yields 

D2(R'IR;l) ~ D2(SIR;l) = 0 

Consequently, D2(R'IR;k) = 0. Thus, the induction hypothesis implies these­
quence r 1, ... , rc-l is regular on R. This is as desired, since rc is regular on R'. D 

Here is another simplification which results in the theory of Andre-Quillen 
homology when the homomorphism under consideration is essentially of finite type. 

LEMMA 8. 7. Let tp: R ----t ( S, n, l) be a local homomorphism essentially of finite 
type. The complex of S -modules .C'P is homotopic to a complex 

· · · ----+ Ln ----+ Ln-1 ----+ · · · ----+ L1 ----+ Lo ----+ 0 

of finite freeS-modules, and with o(L) ~ nL. 
In particular, for each integer n, one has ranks(Ln) = rankt Dn(SI R; l), so 

that ifDn(SIR; l) = 0, then Dn(SIR;-) = 0 on the category of S-modules. 

PROOF. One way to prove this result is to note that, since tp is essentially of 
finite type, .C'P is homotopy equivalent to a complex L = · · · ----t L1 ----t L 0 ----t 0 
of finite free S-modules, see 6.11. Since S is local, L is homotopic to one with 
o(L) ~ nL; for instance, see [5, (1.1.2)]. The desired claim is now clear. D 
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PROOF OF THEOREM 8.4. We give the argument when <pis essentially of finite 
type; see [4] for the general case. All three conditions are local properties: condition 
(a) by inspection, and conditions (b) and (c) by Lemma 8.7. Thus, one may assume 
<p: (R, m, k)---+ (S, n, l) is a local homomorphism. 

Now (c) ==? (a) follows from Theorem 8.5, while (b) ==? (c) is obvious. 
(a) ==? (b). Arguing as in the proof of Theorem 8.5, one may reduce to 

the case where <p is surjective. Suppose Ker( <p) is minimally generated by elements 
r = r 1 , ... , rc; thus S = R/rR. An elementary induction on c, using Proposition 
5.11 and Property 6.7, yields C'P ~ r:.Sc. Therefore, Dn(S!R; -) = 0 for n ~ 2. 0 

Now the following exercise should not be too taxing. 

EXERCISE 8.8. Suppose <p is essentially of finite type. Prove that when <p is 

locally complete intersection, in any factorization R ---+ u-1 R[Y] ~ S of <p, where 
<p1 is surjective, the homomorphism <p1 is locally complete intersection. 

Here is an exercise which illustrates the flexibility afforded by the characteri­
zation in Theorem 8.4. To better appreciate it, try to solve it without using the 
machinery of Andre-Quillen homology. 

EXERCISE 8.9. Let <p: R ---+ S be a homomorphism of noetherian rings, essen­
tially of finite type, and let R ---+ R' be a flat homomorphism. 

Prove that if <p is locally complete intersection, then so is the induced homo­
morphism <p ®R R': R'---+ (S ®R R'), and that the converse holds when R---+ R' is 
faithfully flat. Hint: for the converse, use the going-down theorem, see [19, (9.5)]. 

8.10. Extensions of fields. Let ¢: k---+ l be a homomorphism of fields. 

EXERCISE 8.10.1. Prove that when the field l is finitely generated over k, the 
homomorphism ¢ is locally complete intersection. 

It is easy to check that ¢ is locally complete intersection in general, in the 
sense of [4]. Thus, Dn(ll k;-) = 0 for n ~ 2, by Theorem 8.4. The l-vectorspace 
D1 (llk;l) is called the module of imperfection, and denoted fzlk; see [19, §26]. 

When h ---+ k is another homomorphism of fields, the Jacobi-Zariski sequence 
6. 7 arising from the diagram h ---+ k ---+ l yields an exact sequence of l-vectorspaces: 

o---+ rklh ®k l---+ rzlh---+ rzlk---+ nklh ®k l---+ nllh---+ nzlk---+ o 

Computing ranks one obtains the Cartier equality, see [19, (26.10)]. 

8.11. Regular local rings. A local ring (R, m, k) is regular if the ideal m has 
a set of generators that form an R-regular sequence. This condition translates to: 
the surjection R ---+ k is complete intersection, in the sense of 8.3. The following 
result is a corollary of Theorems 8.4 and 8.5. 

PROPOSITION 8.12. Let R be a local ring, with residue field k. The following 
conditions are equivalent. 

(a) R is regular; 
(b) Dn(k!R;-) = 0 for n ~ 2; 
(c) D2 (k!R; k) = 0. 

When R is regular, m its maximal ideal, and E: R ---+ k is the canonical surjection, 
then£'"~ (m/m2). 0 
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This result is a homological characterization of the regularity property, akin to 
the one by Auslander, Buchsbaum, and Serre: R is regular iff every R-module has 
finite projective dimension iff k has finite projective dimension, see [19, §19]. 

8.13. Complete intersections. Let (R, m, k) be a local ring, and let R denote the 
m-adic completion of R. Cohen's structure theorem provides a surjection c Q ~ R 
with Q a regular local ring; see [19, (29.4)]. Such a homomorphism E is said to be 
a Cohen presentation of R. 

The local ring R is complete intersection if in a Cohen presentation E: Q ~ R, 
the ideal Ker(E) is generated by a regular sequence; that is to say, E is a complete 
intersection homomorphism. It is known, and is implicit in the proof of the result 
below, that when R is complete intersection, any Cohen presentation of R is a 
complete intersection homomorphism. 

PROPOSITION 8.14. Let R be a local ring, with residue field k. The following 
conditions are equivalent. 

(a) R is complete intersection; 
(b) Dn(k[R; -) = 0 for n ~ 3; 
(c) D3(k[R; k) = 0. 

PROOF. Since k is a field, and Dn(k[R; -) commutes with arbitrary direct 
sums (check this), condition (b) is equivalent to: 

(b') Dn(k[R; k) = 0 for n ~ 3. 

The homomorphism R ----+ R is fiat, see [19, (8.8)], so base change along it yields 
isomorphisms 

Dn(k[R; k) S:! Dn(k[R; k) for n E Z. 

Therefore, we may assume that R is complete, and hence that there is a surjection 
E: Q ----+ R, where Q is a regular local ring, see 8.13. 

Proposition 8.12 yields Dn(k[Q; k) = 0 for n ~ 2, so the Jacobi-Zariski sequence 
6. 7 applied to the diagram Q ----+ R ----+ k provides isomorphisms 

Dn(k[R; k) S:! Dn-l(R[Q; k) for n ~ 3. 

Now, when R is complete intersection, there is a choice of E which is complete 
intersection. Then Theorem 8.4 implies Dn(Rf Q;-) = 0 for n ~ 2; note that, since 
E is surjective, we are applying the theorem in a case where it was proved. Thus, 
the isomorphisms above imply condition (b'). 

Conversely, given (c), one obtains Dn(R[Q; k) = 0 for n = 2, by the displayed 
isomorphisms. Now Theorem 8.5 yields that E is complete intersection. Hence, R 
is complete intersection. D 

EXERCISE 8.15. Let (R, m, k) be a local ring, and c Q ~ R a surjective homo­
morphism with Q a regular local ring. Prove that the ring R is complete intersection 
if and only if the homomorphism E is a complete intersection. 

8.16. The Quillen conjectures. For homomorphisms of noetherian rings, and 
essentially of finite type, in [22, (5.6), (5. 7)] Quillen made the following conjectures: 

Conjecture I. If fds .C'P and fdR S are both finite, then the homomorphism <p 

is locally complete intersection. 

Conjecture II. If fds .C'P is finite, then fds .C'P ::; 2. 
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Recall that fds£rp ~ n if and only if Di(SIR;-) = 0 fori 2: n + 1, see 
Proposition 5.9, so the Quillen conjectures can be phrased in terms of vanishing of 
Andre-Quillen homology functors. 

Avramov [4] proved the following result, settling Conjecture I in the affirmative: 

THEOREM 8.17. Let i.p: R -+ S be a homomorphism of noetherian rings. 
The following conditions are equivalent. 

(i) i.p is locally complete intersection. 
(ii) Dn(SIR;-) = 0 for n » 0 and fdR Sis locally finite. 

If S has characteristic 0, then they are also equivalent to 

(iii) Dm (SIR;-) = 0 for some integer m 2: 2 and fdR S is locally finite. D 

Jim Thrner [25] gave a different proof of Quillen's conjecture I, in the special 
case when i.p is essentially of finite type, and the residue fields of R are all of positive 
characteristic. 

In [7], Conjecture II is settled for homomorphisms that admit algebra retracts: 

THEOREM 8.18. Let ~.p: R-+ S be a homomorphism of noetherian rings such 
that there exists a homomorphism '1/J: S-+ R with i.p o '1/J = id8 . 

The following conditions are eqnivalent. 

(i) '1/Jp is complete intersection for each jJ E Spec R with jJ ;;;:> Ker( i.p) . 

(ii) Dn(SIR;-) =Oforn»O. 
(iii) Dn(SIR;-)=Oforn2:3. 

If, in addition, S has characteristic 0, they are also equivalent to 

(iv) Dm(SIR;-) = 0 for some integer m 2: 3. D 

The general case of Conjecture II remains open. I should like to note that these 
conjectures are about noetherian rings; they are false if one drops that hypothesis, 
see Planas-Vilanova [21], and also [1]. 

NOTES 8.19. The results in this section, and in the next, involve only the 
homology functors Dn(SIR; -). In view of Proposition 5.9, one can phrase many 
of them also in terms of the cohomology functors Dn (SIR; -). 

9. Regular homomorphisms 

In this section we turn to regular homomorphisms. Regular local rings have 
been encountered already in 8.11. A (not-necessarily local) noetherian ring S is 
said to be regular if the local Sq is regular for each prime ideal q in S. 

A regular local ring is regular, because the regularity property localizes. This 
last result is immediate from the characterization of regularity by Auslander, Buchs­
baum, and Serre referred to earlier, see [19, (19.3)]. 

A homomorphism 1.p: R -+ S of noetherian rings is regular if S is flat over R 
and the ring S !59 R l is regular whenever R -+ l is a homomorphism essentially of 
finite type and l is a field. If in addition i.p is essentially of finite type, then one 
says that i.p is smooth; an alternative terminology is geometrically regular. 

EXAMPLE 9.1. Let X be a finite set of variables. The inclusion R <-+ R[X] is 
smooth, whereas the inclusion R <-+ R[[X]] is regular. 
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EXAMPLE 9.2. An extension of fields k -t l is regular if and only if it is 
separable; this is not too difficult to prove when l is finitely generated as a field 
over k. See [2, Chapter VII] for the argument in the general case. 

The issue with separability is well-illustrated in the following example: when 
k is a field of characteristic p, and a E k does not have a pth root in k, the field 
extension k -t l = k[x]j(xP- a) is not geometrically regular: l®k l is a local ring 
with nilpotents, and hence it is not regular. 

REMARK 9.3. Note that the definition of a regular homomorphism has a dif­
ferent flavour when compared to that of a locally complete intersection homomor­
phism. The one for regularity is due to Grothendieck, and it is in line with his 
point of view that a homomorphism r.p: R -t S is deemed to have a certain prop­
erty (regularity, complete intersection, Gorenstein, Cohen-Macaulay, et cetra), if 
the homomorphism is flat and its fibres have the geometric version of the corre­
sponding property. 

One does not define complete intersection homomorphisms this way for it would 
be too restrictive a notion; for instance, it would preclude surjective homomor­
phisms defined by regular sequences, because they are not flat. 

The content of the next exercise is that a complete intersection homomorphism 
in the sense of Grothendieck is locally complete intersection, as defined in 8.3. 

EXERCISE 9.4. Let r.p: R -t S be a homomorphism of noetherian rings such 
that S is flat over R. Prove that r.p is locally complete intersection if and only if for 
each prime ideal pin R, the fibre ringS 0R ,;(p) is locally complete intersection. 

The definitive criterion for regularity in terms of Andre-Quillen homology is 
due to Andre. 

THEOREM 9.5. Let r.p: R -t S be a homomorphism of noetherian rings. 
The following conditions are equivalent. 

(a) r.p is regular. 
(b) Dn(SIR;-) = 0 for each n ~ 1. 
(c) D1(SIR;-) = 0. 

Once again, I will provide a proof only in the case where r.p is essentially of 
finite type: Under this hypothesis, arguing as in the proof of Theorem 8.4, one may 
deduce Theorem 9.5 from the following result. 

THEOREM 9.6. Let r.p: (R, m, k) -t (S, n, l) be a local homomorphism, essen-
tially of finite type. The following conditions are equivalent. 

(a) r.p is smooth. 
(b) Dn(SIR;-) = 0 for each n ~ 1, and the S-module OsiRis finite free. 
(c) D1(SIR; l) = 0. 

Thus, when r.p is smooth, one has that c'P ~ nsiR· 

PROOF. (a) ===} (b). The R-module Sis flat, so base change of r.p along the 
composed homomorphism R ~ S -t l yields an isomorphism 

Dn(SIR; l) ~ Dn(S 0R lll; l) for each n. 

The composed map l-t (S®Rl) -t l equals id1, so Exercise 6.9 yields isomorphisms 

Dn(S 0R lll; l) ~ Dn+l(liS 0R l; l). 
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Since R ----. l is essentially of finite type, smoothness of cp implies the ring S' = S ® R l 
is regular. Let n' be the maximal ideal of S' such that S' /n' = l. Then, the local 
ring S~, is regular, so Corollary 8.11 implies the second isomorphism below 

Dn(liS';l) = Dn(liS~,;l) = 0 for n;::: 2, 

while the first one is by 6.5. Combining this with the preceding displays yields 
Dn(SIR;l) = 0 for n;::: 1. It remains to recall Lemma 8.7. 

Evidently, (b) ==?- (c). 
(c) =* (a). Since D1 (SIR;l) = 0, it follows from Lemma 8.7 that£'~' 

is homotopy equivalent to a complex of finite free S-modules L with L1 = 0. 
Therefore, one has that 

D1 (SIR; S) = H_!(Homs(L, S)) = 0 

This is equivalent to the statement that any R-algebra extension of S by a square­
zero ideal is split; see 6.12. According to a theorem of Grothendieck, this property 
characterizes the smoothness of S smooth over R; see [14]. 0 

9.7. A local-global principle. Let cp: R----. S be a homomorphism of noetherian 
rings, q a prime ideal in S, and set p = q n R. One says that cp is regular at q if cpq 
is flat and the k(p)-algebra (S ®R k(p))q is geometrically regular. 

The exercise below is an important local-global principle for regularity. In it, 
the hypothesis that cp is essentially of finite type is insurmountable; see Remark 
8.6. There is an analogue for the complete intersection property; see [4, §5]. 

EXERCISE 9.8. Let cp: (R,m,k)----. (S,n,l) be local homomorphism, essentially 
of finite type. Prove that if cp is regular at n, then cp is regular. 

Given Theorems 8.4 and 9.5, it is not hard to prove the following result, which 
is a crucial step in the Hochschild-Kostant-Rosenberg theorem that calculates the 
Hochschild homology and cohomology of smooth algebras, see [15], [8, (1.1)]. 

THEOREM 9.9. Let ry: K ----. S be a homomorphism of noetherian rings essen­
tially of finite type, such that S is fiat as an K -module. 

Then ry is smooth if and only if the product map J-L~: S ®K S ----. S is locally 
complete intersection. 

PROOF. Set se = s ®K s. Since "' is essentially of finite type, the ring se is 
noetherian. Let '1/J = "'®K S; it is a homomorphism of rings s ....... se, defined by 
'ljJ ( s) = 1 ® s for s E S. Since S is flat over K, base change yields a homotopy 
equivalence of complexes of se-modules: 

c,,., ® K s ~ C.p . 

The action of se on £"' ® K S is given by ( s ® s') (l ® t) = ( sl ® s't). The composition 

s ~ se.!!:.... s 
is the identity on S, so Exercise 6.9 yields a homotopy equivalence of S-modules 

£1-' ~ r.(C.p ®se S) . 

Combining the two equivalences above, one gets the homotopy equivalence of S­
modules in the following diagram 

£~-' ~ r.((C"' ®K S) ®se S) ~ r.(C"' ®s S) = r.C"'. 
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The isomorphism is justified in the exercise below. Therefore, on the category of 
S-modules, one has isomorphisms 

Dn(SISe; -) ~ Dn+l(SeiS; -) for each n. 

Theorems 8.4 and 9.5 now provide the desired conclusion. 0 

EXERCISE 9.10. Let K --+ s be a homomorphism of rings, set se = s ®K s, 
and let M and N be S-modules. As usual, M ®K N has a natural structure of a 
(right) se-module, with (m ® n).(r ® s) = mr ® sn. View S as an se module via 
the product map J-l: se --+ s. 

Prove that the natural homomorphism of S-modules below is bijective: 

(M ®K N) ®se S--+ M ®s N. 

Extend this result to the case when M and N are complexes of S-modules. Caveat: 
take care of the signs. 

NOTES 9.11. Andre-Quillen homology does not appear in the statement of 
Theorem 9.9. This situation is typical: Andrl§..Quillen theory provides streamlined 
proofs of many results concerning Hochschild homology, and is sometimes indis­
pensable, see [9]. There is a mathematical reason for this, see [22, (8.1)]. 

9.12. Etale homomorphisms. A homomorphism tp: R--+ S of noetherian rings 
and essentially of finite type is said to be etale if it is smooth and unramified. 

EXERCISE 9.13. Let k be a field, and R the polynomial ring k[x1 , ... , xd]· Let 
f be an element in R, and setS= R/(f). Find necessary and sufficient conditions 
on f for the homomorphism R --+ S to be etale. 

EXERCISE 9.14. Formulate and prove analogues of Theorems 9.5 and 9.9 for 
etale homomorphisms. 

If you want to check whether you are on the right track, see [22, (5.4), (5.5)]. 
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