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Abstract. We present a detailed analysis of 2-complete stable homotopy
groups, both in the classical context and in the motivic context over C. We
use the motivic May spectral sequence to compute the cohomology of the mo-
tivic Steenrod algebra over C through the 70-stem. We then use the motivic
Adams spectral sequence to obtain motivic stable homotopy groups through
the 59-stem. In addition to finding all Adams differentials in this range, we
also resolve all hidden extensions by 2, η, and ν, except for a few carefully
enumerated exceptions that remain unknown. The analogous classical stable
homotopy groups are easy consequences.

We also compute the motivic stable homotopy groups of the cofiber of
the motivic element τ . This computation is essential for resolving hidden
extensions in the Adams spectral sequence. We show that the homotopy groups
of the cofiber of τ are the same as the E2-page of the classical Adams-Novikov
spectral sequence. This allows us to compute the classical Adams-Novikov
spectral sequence, including differentials and hidden extensions, in a larger
range than was previously known.
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CHAPTER 1

Introduction

One of the fundamental problems of stable homotopy theory is to compute
the stable homotopy groups of the sphere spectrum. One reason for computing
these groups is that maps between spheres control the construction of finite cell
complexes.

After choosing a prime p and focusing on the p-complete stable homotopy
groups instead of the integral homotopy groups, the Adams spectral sequence and
the Adams-Novikov spectral sequence have proven to be the most effective tools for
carrying out such computations.

At odd primes, the Adams-Novikov spectral sequence has clear computational
advantages over the Adams spectral sequence. (Nevertheless, the conventional wis-
dom, derived from Mark Mahowald, is that one should compute with both spectral
sequences because they emphasize distinct aspects of the same calculation.)

Computations at the prime 2 are generally more difficult than computations
at odd primes. In this case, the Adams spectral sequence and the Adams-Novikov
spectral sequence seem to be of equal complexity. The purpose of this manuscript
is to thoroughly explore the Adams spectral sequence at 2 in both the classical and
motivic contexts.

Motivic techniques are essential to our analysis. Working motivically instead
of classically has both advantages and disadvantages. The main disadvantage is
that the computation is larger and proportionally more difficult. On the other
hand, there are several advantages. First, the presence of more non-zero classes
allows the detection of otherwise elusive phenomena. Second, the additional mo-
tivic weight grading can easily eliminate possibilities that appear plausible from a
classical perspective.

The original motivation for this work was to provide input to the ρ-Bockstein
spectral sequence for computing the cohomology of the motivic Steenrod algebra
over R. The analysis of the ρ-Bockstein spectral sequence, and the further analysis
of the motivic Adams spectral sequence over R, will appear in future work.

This manuscript is a natural sequel to [13], where the first computational prop-
erties of the motivic May spectral sequence, as well as of the motivic Adams spectral
sequence, were established.

1.1. The Adams spectral sequence program

The Adams spectral sequence starts with the cohomology of the Steenrod alge-
bra A, i.e., ExtA(F2,F2). There are two ways of approaching this algebraic object.
First, one can compute by machine. This has been carried out to over 200 stems
[9] [36]. Machines can also compute the higher structure of products and Massey
products.

1



2 1. INTRODUCTION

The second approach is to compute by hand with the May spectral sequence.
This will be carried out to 70 stems in Chapter 2. See also [40] for the classical
case. See [19] for a detailed Ext chart through the 70-stem.

The E∞-page of the May spectral sequence is the graded object associated to a
filtration on ExtA(F2,F2), which can hide some of the multiplicative structure. One
can resolve these hidden multiplicative extensions with indirect arguments involving
higher structure such as Massey products or algebraic Steenrod operations in the
sense of [31]. A critical ingredient here is May’s Convergence Theorem [30,
Theorem 4.1], which allows the computation of Massey products in ExtA(F2,F2)
via the differentials in the May spectral sequence.

The cohomology of the Steenrod algebra is the E2-page of the Adams spectral
sequence. The next step is to compute the Adams differentials. This will be carried
out in Chapter 3. Techniques for establishing differentials include:

(1) Use knowledge of the image of J [2] to deduce differentials.
(2) Compare to the completely understood Adams spectral sequence for the

topological modular forms spectrum tmf [15].
(3) Use the relationship between algebraic Steenrod operations and Adams

differentials [11, VI.1].
(4) Exploit Toda brackets to deduce relations in the stable homotopy ring,

which then imply Adams differentials.

We have assembled all previously published results about the Adams differentials
in Table 18.

The E∞-page of the Adams spectral sequence is the graded object associated to
a filtration on the stable homotopy groups, which can hide some of the multiplica-
tive structure. The final step is to resolve these hidden multiplicative extensions.
This will be carried out in Chapter 4. Analogously to the extensions that are hid-
den in the May spectral sequence, this generally involves indirect arguments with
Toda brackets. We have assembled previously published results about these hidden
extensions in Table 24.

The detailed analysis of the Adams spectral sequence requires substantial tech-
nical work with Toda brackets. A critical ingredient for computing Toda brackets is
Moss’s Convergence Theorem [35], which allows the computation of Toda brackets
via the Adams differentials. We remind the reader to be cautious about indetermi-
nacies in Massey products and Toda brackets.

1.2. Motivic homotopy theory

The formal construction of motivic homotopy theory requires the heavy ma-
chinery of simplicial presheaves and model categories [34] [23] [12]. We give
a more intuitive description of motivic homotopy theory that will suffice for our
purposes.

Motivic homotopy theory is a homotopy theory for algebraic varieties. Start
with the category of smooth schemes over a field k (in this manuscript, k always
equals C). This category is inadequate for homotopical purposes because it does
not possess enough gluing constructions, i.e., homotopy colimits.

In order to fix this problem, we can formally adjoin homotopy colimits. This
takes us to the category of simplicial presheaves.
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The next step is to restore some desired relations. If {U, V } is a Zariski cover
of a smooth scheme X , then X is the colimit of the diagram

(1.1) U U ∩ V //oo V

in the category of smooth schemes. However, when we formally adjoined homotopy
colimits, we created a new object, distinct from X , that served as the homotopy
pushout of Diagram 1.1. This is undesirable, so we formally declare that X is the
homotopy pushout of Diagram 1.1, from which we obtain the local homotopy theory
of simplicial presheaves. This homotopy theory has some convenient properties such
as Mayer-Vietoris sequences.

In fact, one needs to work not with Zariski covers but with Nisnevich covers.
See [34] for details on this technical point.

The final step is to formally declare that each projection map X × A1 → X is
a weak equivalence. This gives the unstable motivic homotopy category.

In unstable motivic homotopy theory, there are two distinct objects that play
the role of circles:

(1) S1,0 is the usual simplicial circle.
(2) S1,1 is the punctured affine line A1 − 0.

For p ≥ q, the unstable sphere Sp,q is the appropriate smash product of copies of
S1,0 and S1,1, so we have a bigraded family of spheres.

Stable motivic homotopy theory is the stabilization of unstable motivic homo-
topy theory with respect to this bigraded family of spheres. As a consequence,
calculations such as motivic cohomology and motivic stable homotopy groups are
bigraded.

Motivic homotopy theory over C comes with a realization functor to ordinary
homotopy theory. Given a complex scheme X , there is an associated topological
spaceX(C) of C-valued points. This construction extends to a well-behaved functor
between unstable and stable homotopy theories.

We will explain at the beginning of Chapter 3 that we have very good calcu-
lational control over this realization functor. We will use this relationship in both
directions: to deduce motivic facts from classical results, and to deduce classical
facts from motivic results.

One important difference between the classical case and the motivic case is that
not every motivic spectrum is built out of spheres, i.e., not every motivic spectrum
is cellular. Stable cellular motivic homotopy theory is more tractable than the full
motivic homotopy theory, and many motivic spectra of particular interest, such
as the Eilenberg-Mac Lane spectrum HF2, the algebraic K-theory spectrum KGL,
and the algebraic cobordism spectrumMGL, are cellular. Stable motivic homotopy
group calculations are fundamental to cellular motivic homotopy theory. However,
the part of motivic homotopy theory that is not cellular is essentially invisible from
the perspective of stable motivic homotopy groups.

Although one can study motivic homotopy theory over any base field (or even
more general base schemes), we will work only over C, or any algebraically closed
field of characteristic 0. Even in this simplest case, we find a wealth of exotic
phenomena that have no classical analogues.
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1.3. The motivic Steenrod algebra

The starting point for our Adams spectral sequence work is the description of
the motivic Steenrod algebra over C at the prime 2, which is a variation on the
classical Steenrod algebra. First, the motivic cohomology of a point is M2 = F2[τ ],
where τ has degree (0, 1) [44].

The (dual) motivic Steenrod algebra over C is [45] [43] [7, Section 5.2]

M2[τ0, τ1, . . . , ξ1, ξ2, . . .]

τ2i = τξi+1
.

The reduced coproduct is determined by

φ̃∗(τk) = ξk ⊗ τ0 + ξ2k−1 ⊗ τ1 + · · ·+ ξ2
i

k−i ⊗ τi + · · ·+ ξ2
k−1

1 ⊗ τk−1

φ̃∗(ξk) = ξ2k−1 ⊗ ξ1 + ξ4k−2 ⊗ ξ2 + · · ·+ ξ2
i

k−i ⊗ ξi + · · ·+ ξ2
k−1

1 ⊗ ξk−1.

The dual motivic Steenrod algebra has a few interesting features. First, if
we invert τ , then we obtain a polynomial algebra that is essentially the same as
the classical dual Steenrod algebra. This is a general feature. We will explain
at the beginning of Chapter 3 that one recovers classical calculations from motivic
calculations by inverting τ . This fact is useful in both directions: to deduce motivic
facts from classical ones, and to deduce classical facts from motivic ones.

Second, if we set τ = 0, we obtain a “p = 2 version” of the classical odd primary
dual Steenrod algebra, with a family of exterior generators and another family of
polynomial generators. This observation suggests that various classical techniques
that are well-suited for odd primes may also work motivically at the prime 2.

1.4. Relationship between motivic and classical calculations

As a consequence of our detailed analysis of the motivic Adams spectral se-
quence, we recover the analysis of the classical Adams spectral sequence by inverting
τ .

We will use known results about the classical Adams spectral sequence from
[3], [4], [8], [27], and [41]. We have carefully collected these results in Tables 18
and 24.

A few of our calculations are inconsistent with calculations in [24] and [25],
and we are unable to understand the exact sources of the discrepancies. For this
reason, we have found it prudent to avoid relying directly on the calculations in
[24] and [25]. However, we will follow [25] in establishing one particularly difficult
Adams differential in Section 3.3.4.

Here is a summary of our calculations that are inconsistent with [24] and [25]:

(1) There is a classical differential d3(Q2) = gt. This means that classical π56

has order 2, not order 4; and that classical π57 has order 8, not order 16.
(2) The element h1g2 in the 45-stem does not support a hidden η extension

to N .
(3) The element C of the 50-stem does not support a hidden η extension to

gn.
(4) [24] claims that there is a hidden ν extension from h2h5d0 to gn and

that there is no hidden 2 extension on h0h3g2. These two claims are
incompatible; either both hidden extensions occur, or neither occur. (See
Lemma 4.2.31.)
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The proof of the non-existence of the hidden η extension on h1g2 is particularly
interesting because it relies inherently on a motivic calculation. We know of no way
to establish this result only with classical tools.

We draw particular attention to the Adams differential d2(D1) = h2
0h3g2 in the

51-stem. Mark Mahowald privately communicated an argument for the presence
of this differential to the author. However, this argument fails because of the
calculation of the Toda bracket 〈θ4, 2, σ2〉 in Lemma 4.2.91, which was unknown to
Mahowald. Zhouli Xu and the author discovered an independent proof, which is
included in this manuscript as Lemma 3.3.13. This settles the order of π51 but not
its group structure. It is possible that π51 contains an element of order 8. See [22]
for a more complete discussion.

Related to the misunderstanding concerning the bracket 〈θ4, 2, σ2〉, the pub-
lished literature contains incorrect proofs that θ24 equals zero. Zhouli Xu has found
the first correct proof of this relation [46]. This has implications for the strong
Kervaire problem. Xu used the calculation of θ24 to simplify the argument given in
[3] that establishes the existence of the Kervaire class θ5.

We also remark on the hidden 2 extension in the 62-stem from E1 + C0 to R
indicated in [25]. We cannot be absolutely certain of the status of this extension
because it lies outside the range of our thorough analysis. However, it appears
implausible from the motivic perspective. (For entirely different reasons related
to v2-periodic homotopy groups, Mark Mahowald communicated privately to the
author that he was also skeptical of this hidden extension.)

1.5. Relationship to the Adams-Novikov spectral sequence

We will describe a rigid relationship between the motivic Adams spectral se-
quence and the motivic Adams-Novikov spectral sequence in Chapter 6. In short,
the E2-page of the classical Adams-Novikov spectral sequence is isomorphic to the
bigraded homotopy groups π∗,∗(Cτ) of the cofiber of τ . Here τ is the element
of the motivic stable homotopy group π0,−1 that is detected by the element τ of
M2. Moreover, the classical Adams-Novikov spectral sequence is identical to the
τ -Bockstein spectral sequence converging to stable motivic homotopy groups!

In Chapter 5, we will extensively compute π∗,∗(Cτ). In Chapter 6, we will
apply this information to obtain information about the classical Adams-Novikov
spectral sequence in previously unknown stems.

However, there are two places in earlier chapters where we use specific cal-
culations from the classical Adams-Novikov spectral sequence. We would prefer
arguments that are internal to the Adams spectral sequence, but they have so far
eluded us. The specific calculations that we need are:

(1) Lemma 4.2.7 shows that a certain possible hidden τ extension does not
occur in the 57-stem. See also Remark 4.1.12. For this, we use that β12/6

is the only element in the Adams-Novikov spectral sequence in the 58-stem
with filtration 2 that is not divisible by α1 [38].

(2) Lemma 4.2.35 establishes a hidden 2 extension in the 54-stem. See also
Remark 4.1.18. For this, we use that β10/2 is the only element of the
Adams-Novikov spectral sequence in the 54-stem with filtration 2 that is
not divisible by α1, and that this element maps to ∆2h2

2 in the Adams-
Novikov spectral sequence for tmf [5] [38].
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The E2-page of the motivic (or classical) Adams spectral sequence is readily
computable by machine. On the other hand, there seem to be real obstructions
to practical machine computation of the E2-page of the classical Adams-Novikov
spectral sequence.

On the other hand, let us suppose that we did have machine computed data
on the E2-page of the classical Adams-Novikov spectral sequence. The rigid rela-
tionship between motivic stable homotopy groups and the classical Adams-Novikov
spectral sequence could be exploited to great effect to determine the pattern of
differentials in both the Adams-Novikov and the Adams spectral sequences. We
anticipate that all differentials through the 60-stem would be easy to deduce, and
we would expect to be able to compute well past the 60-stem. For this reason, we
foresee that the next major breakthrough in computing stable stems will involve
machine computation of the Adams-Novikov E2-page.

1.6. How to use this manuscript

The exposition of such a technical calculation creates some inherent challenges.
In the end, the most important parts of this project are the Adams charts from
[19], the Adams-Novikov charts from [21], and the tables in Chapter 7. These
tables contain a wealth of detailed information in a concise form. They summarize
the essential calculational facts that allow the computation to proceed. In fact,
the rest of the manuscript merely consists of detailed arguments that support the
claims in the tables.

For readers interested in specific calculational facts, the tables in Chapter 7 are
the place to start. These tables include references to more detailed proofs given
elsewhere in the manuscript. The index also provides references to miscellaneous
remarks about specific elements.

We draw attention to the following charts from [19] and [21] that are of par-
ticular interest:

(1) A classical Adams E2 chart with differentials.
(2) A classical Adams E∞ chart with hidden extensions by 2, η, and ν.
(3) A motivic Adams E2 chart.
(4) A motivic Adams E∞ chart with hidden τ extensions.
(5) A classical Adams-Novikov E2 chart with differentials.
(6) A classical Adams-Novikov E∞ chart with hidden extensions by 2, η, and

ν.

In each of the charts, we have been careful to document explicitly the remaining
uncertainties in our calculations.

We also draw attention to the following tables from Chapter 7 that are of
particular interest:

(1) Tables 8, 20, 21, and 22 give all of the Adams differentials.
(2) Table 16 gives some Massey products in the cohomology of the motivic

Steenrod algebra, including indeterminacies.
(3) Table 18 summarizes previously known results about classical Adams dif-

ferentials.
(4) Table 19 summarizes previously known results about classical Toda brack-

ets.
(5) Table 23 gives some Toda brackets, including indeterminacies.
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(6) Table 24 summarizes previously known results about hidden extensions in
the classical stable homotopy groups.

(7) Table 47 gives a correspondence between elements of the classical Adams
and Adams-Novikov E∞ pages.

These tables include specific references to complete proofs of each fact.

1.7. Notation

By convention, we give degrees in the form (s, f, w), where s is the stem; f is
the Adams filtration; and w is the motivic weight. An element of degree (s, f, w)
will appear on a chart at coordinates (s, f).

We will use the following notation extensively:

(1) M2 is the mod 2 motivic cohomology of C.
(2) A is the mod 2 motivic Steenrod algebra over C.
(3) A(2) is the M2-subalgebra of A generated by Sq1, Sq2, and Sq4.
(4) Ext is the trigraded ring ExtA(M2,M2).
(5) Acl is the classical mod 2 Steenrod algebra.
(6) Extcl is the bigraded ring ExtAcl

(F2,F2).
(7) π∗,∗ is the 2-complete motivic stable homotopy ring over C.
(8) Er(S

0,0) is the Er-page of the motivic Adams spectral sequence converging
to π∗,∗. Note that E2(S

0,0) equals Ext.
(9) For x in E∞(S0,0), write {x} for the set of all elements of π∗,∗ that are

represented by x.
(10) τ is both an element ofM2, as well as the element of π0,−1 that it represents

in the motivic Adams spectral sequence.
(11) Cτ is the cofiber of τ : S0,−1 → S0,0.
(12) H∗,∗(Cτ) is the mod 2 motivic cohomology of Cτ .
(13) π∗,∗(Cτ) are the 2-complete motivic stable homotopy groups of Cτ , which

form a π∗,∗-module.
(14) Er(Cτ) is the Er-page of the motivic Adams spectral sequence that con-

verges to π∗,∗(Cτ). Note that Er(Cτ) is an Er(S
0,0)-module, and E2(Cτ)

is equal to ExtA(H
∗,∗(Cτ),M2).

(15) For x in E2(S
0,0), write x again (or xCτ when absolutely necessary for

clarity) for the image of x under the map E2(S
0,0) → E2(Cτ) induced by

the inclusion S0,0 → Cτ of the bottom cell.
(16) For x in E2(S

0,0) such that τx = 0, write x for a pre-image of x under
the map E2(Cτ) → E2(S

0,0) induced by the projection Cτ → S1,−1 to
the top cell. There may be some indeterminacy in the choice of x. See
Section 5.1.5 and Table 40 for further discussion about these choices.

(17) Er(S
0;BP ) is the Er-page of the classical Adams-Novikov spectral se-

quence.
(18) Er(S

0,0;BPL) is the Er-page of the motivic Adams-Novikov spectral se-
quence converging to π∗,∗.

(19) Er(Cτ ;BPL) is the Er-page of the motivic Adams-Novikov spectral se-
quence converging to π∗,∗(Cτ).

Table 1 lists some traditional notation for specific elements of the motivic stable
homotopy ring. We will use this notation whenever it is convenient. A few remarks
about these elements are in order:
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(1) See [17, p. 28] for a geometric construction of τ .
(2) Over fields that do not contain

√
−1, the motivic stable homotopy group

π0,0 contains an element that is usually called ǫ. Our use of the symbol
ǫ follows Toda [42]. This should cause no confusion since we are working
only over C.

(3) The element η4 is defined to be the element of {h1h4} such that η3η4 is
zero. (The other element of {h1h4} supports infinitely many multiplica-
tions by η.)

(4) Similarly, η5 is defined to be the element of {h1h5} such that η7η5 is zero.

The element θ4.5 deserves additional discussion. We have perhaps presumptu-
ously adopted this notation for an element of {h2

3h5} = {h3
4}. This element is called

α in [3]. To construct θ4.5, first choose an element θ′4.5 in {h2
3h5} such that 4θ′4.5

is contained in {h0h5d0}. If ηθ′4.5 is contained in {h1h5d0}, then add an element
of {h5d0} to θ′4.5 and obtain an element θ′′4.5 such that ηθ′′4.5 is contained in {B1}.
Next, if σθ′′4.5 is contained in {τh1h3g2}, then add an element of {τh1g2} to θ′′4.5
to obtain an element θ4.5 such that σθ4.5 is detected in Adams filtration at least 8.
Note that σθ4.5 may in fact be zero.

This does not specify just a single element of {h2
3h5}. The indeterminacy

in the definition contains even multiples of θ4.5 and the element {τw}, but this
indeterminacy does not present much difficulty.

In addition, we do not know whether νθ4.5 is contained in {B2}. We know from
Lemma 4.2.73 that there is an element θ of {h2

3h5} such that νθ is contained in
{B2}. It is possible that θ is of the form θ4.5 + β, where β belongs to {h5d0}. We
can conclude only that either νθ4.5 or ν(θ4.5 + β) belongs to {B2}.

For more details on the properties of θ4.5, see Examples 4.1.6 and 4.1.7, as well
as Lemmas 4.2.48 and 4.2.73.

1.8. Acknowledgements

The author would like to acknowledge the invaluable assistance that he received
in the preparation of this manuscript.

Robert Bruner generously shared his extensive library of machine-assisted clas-
sical computations. Many of the results in this article would have been impossible
to discover without the guidance of this data. Discussions with Robert Bruner led
to the realization that the cofiber of τ is a critical computation.

Dan Dugger’s machine-assisted motivic computations were also essential.
Martin Tangora offered several key insights into technical classical May spectral

sequence computations.
Zhouli Xu listened to and critiqued a number of the more subtle arguments

involving delicate properties of Massey products and Toda brackets. Conversations
with Bert Guillou also helped to clarify many of the arguments.

Peter May supplied some historical motivation and helped the author under-
stand how some of the bigger ideas fit together.

Mark Behrens encouraged the author to dare to reach beyond the 50-stem.
Similarly, Mike Hopkins and Haynes Miller were also supportive.

Finally, and most importantly, the author is privileged to have discussed some
of these results with Mark Mahowald shortly before he passed away.



CHAPTER 2

The cohomology of the motivic Steenrod algebra

This chapter applies the motivic May spectral sequence to obtain the cohomol-
ogy of the motivic Steenrod algebra through the 70-stem. We will freely borrow
results from the classical May spectral sequence, i.e., from [29] and [40]. We will
also need some facts from the cohomology of the classical Steenrod algebra that
have been verified only by machine [9] [10].

The Ext chart in [19] is an essential companion to this chapter.

Outline. We begin in Section 2.1 with a review of the basic facts about the
motivic Steenrod algebra over C, the motivic May spectral sequence over C, and
the cohomology of the motivic Steenrod algebra. A critical ingredient is May’s
Convergence Theorem [30, Theorem 4.1], which allows the computation of Massey
products in ExtA(F2,F2) via the differentials in the May spectral sequence. We
will thoroughly review this result in Section 2.2.

Next, in Section 2.3 we describe the main points in computing the motivic May
spectral sequence through the 70-stem. We rely heavily on results of [29] and [40],
but we must also compute several exotic differentials, i.e., differentials that do not
occur in the classical situation.

Having obtained the E∞-page of the motivic May spectral sequence, the next
step is to consider hidden extensions. In Section 2.4, we are able to resolve every
possible hidden extension by τ , h0, h1, and h2 through the range that we are
considering, i.e., up to the 70-stem. The primary tools here are:

(1) shuffling relations among Massey products.
(2) Steenrod operations on Ext groups in the sense of [31].
(3) classical hidden extensions established by machine computation [9].

Chapter 7 contains a series of tables that are essential for bookkeeping through-
out the computations:

(1) Tables 2 and 3 describe the May E2-page in terms of generators and
relations and give the values of the May d2 differential.

(2) Tables 4 through 7 describe the May differentials dr for r ≥ 4.
(3) Table 8 lists the multiplicative generators of the cohomology of the motivic

Steenrod algebra over C.
(4) Table 9 lists multiplicative generators of the May E∞-page that become

decomposable in Ext by hidden relations.
(5) Table 10 lists all examples of multiplicative generators of the May E∞-

page that represent more than one element in Ext. See Section 2.3.6 for
more explanation.

(6) Tables 11 through 15 list all extensions by τ , 2, η, and ν that are hidden
in the May spectral sequence. A few miscellaneous hidden extensions are
included as well.

9
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(7) Table 16 summarizes some Massey products.
(8) Table 17 summarizes some matric Massey products.

Table 16 deserves additional explanation. In all cases, we have been careful to
describe the indeterminacies accurately. The fifth column refers to an argument for
establishing the Massey product, in one of the following forms:

(1) An explicit proof given elsewhere in this manuscript.
(2) A May differential implies the Massey product via May’s Convergence

Theorem 2.2.1.

The last column of Table 16 lists the specific results that rely on each Massey
product. Frequently, these results are just a Toda bracket from Table 23.

Some examples. In this section, we describe several of the computational
intricacies that are established later in the chapter. We also present a few questions
that deserve further study.

Example 2.0.1. An obvious question, which already arose in [13], is to find
elements that are killed by τn but not by τn−1, for various values of n.

The element h2g
2, which is multiplicatively indecomposable, is the first example

of an element that is killed by τ3 but not by τ2. This occurs because of a hidden
extension τ · τh2g

2 = Ph4
1h5. There is an analogous relation τ2h2g = Ph4 that is

not hidden. We do not know if this generalizes to a family of relations of the form

τ2h2g
2k = Ph2k+2

−4
1 hk+4.

We will show in Chapter 3 that h2g
2 represents an element in motivic stable

homotopy that is killed by τ3 but not by τ2. This requires an analysis of the motivic

Adams spectral sequence. In the vicinity of g2
k

, one might hope to find elements
that are killed by τn but not by τn−1, for large values of n.

Example 2.0.2. Classically, there is a relation h3 · e0 = h1h4c0 in the 24-stem
of the cohomology of the Steenrod algebra. This relation is hidden on the E∞-page
of the May spectral sequence. We now give a proof of this classical relation that
uses the cohomology of the motivic Steenrod algebra.

Motivically, it turns out that h3
2e0 is non-zero, even though it is zero classically.

This follows from the hidden extension h0 · h2
2g = h3

1h4c0 (see Lemma 2.4.9). The
relation h3

2 = h2
1h3 then implies that h2

1h3e0 is non-zero. Therefore, h3e0 is non-zero
as well, and the only possibility is that h3e0 = h1h4c0.

Example 2.0.3. Notice the hidden extension h0 ·h2
2g

2 = h7
1h5c0 (and similarly,

the hidden extension h0 · h2
2g = h3

1h4c0 that we discussed above in Example 2.0.2).

The next example in this family is h0 · h2
2g

3 = h9
1D4, which at first does not

appear to fit a pattern. However, there is a hidden extension c0 · i1 = h4
1D4, so

we have h0 · h2
2g

3 = h5
1c0i1. Presumably, there is an infinitely family of hidden

extensions in which h0 · h2
2g

k equals some power of h1 times c0 times an element
related to Sq0 of elements associated to the image of J .

It is curious that c0 · i1 is divisible by h4
1. An obvious question for further study

is to determine the h1-divisibility of c0 times elements related to Sq0 of elements
associated to the image of J . For example, what is the largest power of h1 that
divides g2i1?

Example 2.0.4. Beware that g2 and g3 are not actually elements of the 40-
stem and 60-stem respectively. Rather, it is only τg2 and τg3 that exist (similarly,
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g does not exist in the 20-stem, but τg does exist). The reason is that there are
May differentials taking g2 to h8

1h5, and g3 to h6
1i1. In other words, τg2 and τg3

are multiplicatively indecomposable elements. More generally, we anticipate that
the element gk does not exist because it supports a May differential related to Sq0

of an element in the image of J .

Example 2.0.5. There is an isomorphism from the cohomology of the clas-
sical Steenrod algebra to the cohomology of the motivic Steenrod algebra over C

concentrated in degrees of the form (2s+ f, f, s+ f). This isomorphism preserves
all higher structure, including algebraic Steenrod operations and Massey products.
See Section 2.1.3 for more details.

For example, the existence of the classical element Ph2 immediately implies
that h3g must be non-zero in the motivic setting; no calculations are necessary.

Another example is that h2k−1
1 hk+2 is non-zero motivically for all k ≥ 1, be-

cause h2k−1
0 hk+1 is non-zero classically.

Example 2.0.6. Many elements are h1-local in the sense that they support
infinitely many multiplications by h1. In fact, any product of the symbols h1, c0,
P , d0, e0, and g, if it exists, is non-zero. This is detectable in the cohomology of
motivic A(2) [18].

Moreover, the element B1 in the 46-stem is h1-local, and any product of B1

with elements in the previous paragraph is again h1-local. We explore h1-local
elements in great detail in [14].

Example 2.0.7. The motivic analogue of the “wedge” subalgebra [28] appears
to be more complicated than the classical version. For example, none of the wedge
elements support multiplications by h0 in the classical case. Motivically, many
wedge elements do support h0 multiplications. The results in this chapter naturally
call for further study of the structure of the motivic wedge.

2.1. The motivic May spectral sequence

The following two deep theorems of Voevodsky are the starting points of our
calculations.

Theorem 2.1.1 ([44]). M2 is the bigraded ring F2[τ ], where τ has bidegree
(0, 1).

Theorem 2.1.2 ([43] [45]). The motivic Steenrod algebra A is the M2-algebra

generated by elements Sq2k and Sq2k−1 for all k ≥ 1, of bidegrees (2k, k) and
(2k − 1, k − 1) respectively, and satisfying the following relations for a < 2b:

Sqa Sqb =
∑

c

(

b− 1− c

a− 2c

)

τ? Sqa+b−c Sqc .

The symbol ? stands for either 0 or 1, depending on which value makes the
formula balanced in weight. See [13] for a more detailed discussion of the motivic
Adem relations.

The A-module structure on M2 is trivial, i.e., every Sqk acts by zero. This
follows for simple degree reasons.



12 2. THE COHOMOLOGY OF THE MOTIVIC STEENROD ALGEBRA

It is often helpful to work with the dual motivic Steenrod algebra A∗,∗ [7,
Section 5.2] [43] [45], which equals

M2[τ0, τ1, . . . , ξ1, ξ2, . . .]

τ2i = τξi+1
.

The reduced coproduct in A∗,∗ is determined by

φ̃∗(τk) = ξk ⊗ τ0 + ξ2k−1 ⊗ τ1 + · · ·+ ξ2
i

k−i ⊗ τi + · · ·+ ξ2
k−1

1 ⊗ τk−1

φ̃∗(ξk) = ξ2k−1 ⊗ ξ1 + ξ4k−2 ⊗ ξ2 + · · ·+ ξ2
i

k−i ⊗ ξi + · · ·+ ξ2
k−1

1 ⊗ ξk−1.

2.1.1. Ext groups. We are interested in computing ExtA(M2,M2), which we
abbreviate as Ext. This is a trigraded object. We will consistently use degrees of
the form (s, f, w), where:

(1) f is the Adams filtration, i.e., the homological degree.
(2) s+ f is the internal degree, i.e., corresponds to the first coordinate in the

bidegrees of A.
(3) s is the stem, i.e., the internal degree minus the Adams filtration.
(4) w is the weight.

Note that Ext∗,0,∗ = Hom∗,∗
A (M2,M2) is dual to M2. We will abuse notation

and write M2 for this dual. Beware that now τ , which is really the dual of the τ
that we discussed earlier, has degree (0, 0,−1). Since Ext is a module over Ext∗,0,∗,
i.e., over M2, we will always describe Ext as an M2-module.

The following result is the key tool for comparing classical and motivic compu-
tations. The point is that the motivic and classical computations become the same
after inverting τ .

Proposition 2.1.3 ([13]). There is an isomorphism of rings

Ext⊗M2
M2[τ

−1] ∼= ExtAcl
⊗F2

F2[τ, τ
−1].

2.1.2. The motivic May spectral sequence. The classical May spectral
sequence arises by filtering the classical Steenrod algebra by powers of the augmen-
tation ideal. The same approach can be applied in the motivic setting to obtain the
motivic May spectral sequence. Details appear in [13]. Next we review the main
points.

The motivic May spectral sequence is quadruply graded. We will always use
gradings of the form (m, s, f, w), where m is the May filtration, and the other
coordinates are as explained in Section 2.1.1.

Let Gr(A) be the associated graded algebra of A with respect to powers of the
augmentation ideal.

Theorem 2.1.4. The motivic May spectral sequence takes the form

E2 = Ext
(m,s,f,w)
Gr(A) (M2,M2) ⇒ Ext

(s,f,w)
A (M2,M2).

Remark 2.1.5. As in the classical May spectral sequence, the odd differentials
must be trivial for degree reasons.

Proposition 2.1.6. After inverting τ , there is an isomorphism of spectral se-
quences between the motivic May spectral sequence of Theorem 2.1.4 and the clas-
sical May spectral sequence, tensored over F2 with F2[τ, τ

−1].
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Proof. Start with the fact that A[τ−1] is isomorphic to Acl ⊗F2
F2[τ, τ

−1],
with the same May filtrations. �

This proposition means that differentials in the motivic May spectral sequence
must be compatible with the classical differentials. This fact is critical to the success
of our computations.

2.1.3. Ext in degrees with s+ f − 2w = 0.

Definition 2.1.7. Let A′ be the subquotient M2-algebra of A generated by
Sq2k for all k ≥ 0, subject to the relation τ = 0.

Lemma 2.1.8. There is an isomorphism Acl → A′ that takes Sqk to Sq2k.

The isomorphism takes elements of degree n to elements of bidegree (2n, n).

Proof. Modulo τ , the motivic Adem relation for Sq2a Sq2b takes the form

Sq2a Sq2b =
∑

c

(

2b− 1− 2c

2a− 4c

)

Sq2a+2b−2c Sq2 c.

A standard fact from combinatorics says that
(

2b− 1− 2c

2a− 4c

)

=

(

b− 1− c

a− 2c

)

modulo 2. �

Remark 2.1.9. Dually, A′ corresponds to the quotient F2[ξ1, ξ2, . . .] of A∗,∗,
where we have set τ and τ0, τ1, . . . to be zero. The dual to A′ is visibly isomorphic
to the dual of the classical Steenrod algebra.

Definition 2.1.10. Let M be a bigraded A-module. The Chow degree of an
element m in degree (t, w) is equal to t− 2w.

The terminology arises from the fact that the Chow degree is fundamental in
Bloch’s higher Chow group perspective on motivic cohomology [6].

Definition 2.1.11. Let M be an A-module. Define the A′-module Ch0(M)
to be the subset of M consisting of elements of Chow degree zero, with A′-module
structure induced from the A-module structure on M .

The A′-module structure on Ch0(M) is well-defined since Sq2k preserves Chow
degrees.

Theorem 2.1.12. There is an isomorphism from ExtAcl
to the subalgebra of

Ext consisting of elements in degrees (s, f, w) with s+f−2w = 0. This isomorphism
takes classical elements of degree (s, f) to motivic elements of degree (2s+f, f, s+f),
and it preserves all higher structure, including products, squaring operations, and
Massey products.

Proof. There is a natural transformation

HomA(−,M2) → HomA′(Ch0(−),F2),

since Ch0(M2) = F2. Since Ch0 is an exact functor, the derived functor of the
right side is ExtA′(Ch0(−),F2). The universal property of derived functors gives
a natural transformation ExtA(−,M2) → ExtA′(Ch0(−),F2). Apply this natural
transformation to M2 to obtain ExtA(M2,M2) → ExtA′(Ch0(M2),F2). The left
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side is Ext, and the right side is isomorphic to ExtAcl
since A′ is isomorphic to Acl

by Lemma 2.1.8.
We have now obtained a map Ext → ExtAcl

. We will verify that this map
is an isomorphism on the part of Ext in degrees (s, f, w) with s + f − 2w = 0.
Compare the classical May spectral sequence with the part of the motivic May
spectral sequence in degrees (m, s, f, w) with s+ f − 2w = 0. By direct inspection,
the motivic E1-page in these degrees is the polynomial algebra over F2 generated
by hij for i > 0 and j > 0. This is isomorphic to the classical E1-page, where the
motivic element hij corresponds to the classical element hi,j−1. �

Remark 2.1.13. Similar methods show that Ext is concentrated in degree
(s, f, w) with s + f − 2w ≥ 0. The map Ext → ExtAcl

constructed in the proof
annihilates elements in degrees (s, f, w) with s + f − 2w > 0. Thus, ExtAcl

is
isomorphic to the quotient of Ext by elements of degree (s, f, w) with s+f−2w > 0.

2.2. Massey products in the motivic May spectral sequence

We will frequently compute Massey products in Ext in order to resolve hidden
extensions and to determine May differentials. The absolutely essential tool for
computing such Massey products is May’s Convergence Theorem [30, Theorem
4.1]. The point of this theorem is that under certain hypotheses, Massey products
in Ext can be computed in the Er-page of the motivic May spectral sequence. For
the reader’s convenience, we will state the theorem in the specific forms that we
will use. We have slightly generalized the result of [30, Theorem 4.1] to allow
for brackets that are not strictly defined. In order to avoid unnecessarily heavy
notation, we have intentionally avoided the most general possible statements. The
interested reader is encouraged to carry out these generalizations.

Theorem 2.2.1 (May’s Convergence Theorem). Let α0, α1, and α2 be elements
of Ext such that the Massey product 〈α0, α1, α2〉 is defined. For each i, let ai be a
permanent cycle on the May Er-page that detects αi. Suppose further that:

(1) there exist elements a01 and a12 on the May Er-page such that dr(a01) =
a0a1 and dr(a12) = a1a2.

(2) if (m, s, f, w) is the degree of either a01 or a12; m
′ ≥ m; and m′−t < m−r;

then every May differential dt : E
(m′,s,f,w)
t → E

(m′
−t+1,s−1,f+1,w)

t is zero.

Then a0a12 + a01a2 detects an element of 〈α0, α1, α2〉 in Ext.

The point of condition (1) is that the bracket 〈a0, a1, a2〉 is defined in the
differential graded algebra (Er , dr). Condition (2) is an equivalent reformulation
of condition (*) in [30, Theorem 4.1]. When computing 〈a0, a1, a2〉, one uses a

differential dr : E
(m,s,f,w)
r → E

(m−r+1,s−1,f+1,w)
r . The idea of condition (2) is that

there are no later “crossing” differentials dt whose source has higher May filtration
and whose target has strictly lower May filtration.

The proof of May’s Convergence Theorem 2.2.1 is exactly the same as in [30]
because every threefold Massey product is strictly defined in the sense that its
subbrackets have no indeterminacy.

Theorem 2.2.2 (May’s Convergence Theorem). Let α0, α1, α2, and α3 be
elements of Ext such that the Massey product 〈α0, α1, α2, α3〉 is defined. For each
i, let ai be a permanent cycle on the Er-page that detects αi. Suppose further that:
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(1) there are elements a01, a12, and a23 on the Er-page such that dr(a01) =
a0a1, dr(a12) = a1a2, and dr(a23) = a2a3.

(2) there are elements a02 and a13 on the Er-page such that dr(a02) = a0a12+
a01a2 and dr(a13) = a1a23 + a12a3.

(3) if (m, s, f, w) is the degree of a01, a12, a23, a02, or a13; and m′ ≥ m; and
m′ − t < m− r; then every differential

dt : E
(m′,s,f,w)
t → E

(m−t+1,s−1,f+1,w)
t

is zero.
(4) The subbracket 〈α0, α1, α2〉 has no indeterminacy.
(5) the indeterminacy of 〈α1, α2, α3〉 is generated by elements of the form α1β

and γα3, where β and γ are detected in May filtrations strictly lower than
the May filtrations of a23 and a12 respectively.

Then a0a13 + a01a23 + a02a3 detects an element of 〈α0, α1, α2, α3〉 in Ext.

The point of conditions (1) and (2) is that the bracket 〈a0, a1, a2, a3〉 is defined
in the differential graded algebra (Er, dr). Condition (3) is an equivalent reformu-
lation of condition (*) in [30, Theorem 4.1]. The point of this condition is that
there are no later “crossing” differentials whose source has higher May filtration
and whose target has strictly lower May filtration.

Condition (5) does not appear in [30], which only deals with strictly defined
brackets. Of course, the theorem has a symmetric version in which the bracket
〈α1, α2, α3〉 has no indeterminacy. It is probably possible to state a version of the
theorem in which both threefold subbrackets have non-zero indeterminacy. How-
ever, additional conditions are required for such a fourfold bracket to be well-defined
[20].

Proof. Let C be the cobar resolution of the motivic Steenrod algebra whose
homology is Ext. Let α̃0, α̃1, α̃2, and α̃3 be explicit cycles in C representing α0,
α1, α2, and α3. As in the proof of [30, Theorem 4.1], we may choose an element
α̃01 of C such that d(α̃01) = α̃0α̃1, and α̃01 is detected by a01 in the May Er-page.
We may similarly choose α̃12 and α̃23 whose boundaries are α̃1α̃2 and α̃2α̃3 and
that are detected by a12 and a23.

Next, we want to choose α̃13 in C whose boundary is α̃1α̃23 + α̃12α̃3 and that
is detected by a13. Because of the possible indeterminacy in 〈α1, α2, α3〉, the cycle
α̃1α̃23 + α̃12α̃3 may not be a boundary in C. However, since we are assuming
that 〈α0, α1, α2, α3〉 is defined, we can add cycles to α̃12 and α̃23 to ensure that
α̃1α̃23 + α̃12α̃3 is a boundary. When we do this, condition (5) guarantees that α̃12

and α̃23 are still detected by a12 and a23. Then we may choose α̃13 as in the proof
of [30, Theorem 4.1].

Finally, we may choose α̃02 as in the proof of [30, Theorem 4.1]. Because
〈α0, α1, α2〉 has no indeterminacy, we automatically know that α̃0α̃12 + α̃01α̃2 is a
boundary in C. �

For completeness, we will now also state May’s Convergence Theorem for five-
fold brackets. This result is used only in Lemma 2.4.24. The proof is essentially
the same as the proof for fourfold brackets.

Theorem 2.2.3 (May’s Convergence Theorem). Let α0, α1, α2, α3, and α4

be elements of Ext such that the Massey product 〈α0, α1, α2, α3, α4〉 is defined. For
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each i, let ai be a permanent cycle on the Er-page that detects αi. Suppose further
that:

(1) there are elements a01, a12, a23, and a34 in Er such that dr(a01) = a0a1,
dr(a12) = a1a2, dr(a23) = a2a3, and dr(a34) = a3a4.

(2) there are elements a02, a13, and a24 in Er such that dr(a02) = a0a12 +
a01a2, dr(a13) = a1a23 + a12a3, and dr(a24) = a2a34 + a23a4.

(3) there are elements a03 and a14 in Er such that dr(a03) = a0a13+a01a23+
a02a3 and dr(a14) = a1a24 + a12a34 + a13a4.

(4) if (m, s, f, w) is the degree of a01, a12, a23, a34, a02, a13, a24, a03, or a14;

m′ ≥ m; and m′ − t < m − r; then every differential dt : E
(m′,s,f,w)
t →

E
(m−t+1,s−1,f+1,w)
t is zero.

(5) the threefold subbrackets 〈α0, α1, α2〉, 〈α1, α2, α3〉, and 〈α2, α3, α4〉 have
no indeterminacy.

(6) the subbracket 〈α0, α1, α2, α3〉 has no indeterminacy.
(7) the indeterminacy of 〈α1, α2, α3, α4〉 is generated by elements contained

in 〈β, α3, α4〉, 〈α1, γ, α4〉, and 〈α1, α2, δ〉, where β, γ, and δ are detected
in May filtrations strictly lower than the May filtrations of a12, a23, and
a34 respectively.

Then a0a14 + a01a24 + a02a34 + a03a4 detects an element of 〈α0, α1, α2, α3, α4〉 in
Ext.

Although we will use May’s Convergence Theorem to compute most of the
Massey For a few Massey products, we also need occasionally the following result
[16] [1, Lemma 2.5.4].

Proposition 2.2.4. Let x be an element of ExtA(M2,M2).

(1) If h0x = 0, then τh1x belongs to 〈h0, x, h0〉.
(2) If n ≥ 1 and hnx = 0, then hn+1x belongs to 〈hn, x, hn〉.
We will need the following results about shuffling higher brackets that are not

strictly defined.

Lemma 2.2.5. Suppose that 〈α0, α1, α2, α3〉 and 〈α1, α2, α3, α4〉 are defined and
that the indeterminacy of 〈α0, α1, α2〉 consists of multiples of α2. Then

α0〈α1, α2, α3, α4〉 ⊆ 〈α0, α1, α2, α3〉α4.

Proof. For each i, choose an element ai that represents αi. Let β be an
element of α0〈α1, α2, α3, α4〉. There exist elements a12, a23, a34, a13, and a24 such
that d(ai,i+1) = aiai+1, d(ai,i+2) = aiai+1,i+2 + ai,i+1ai+2, and β is represented by

b = a0a1a24 + a0a12a34 + a0a13a4.

By the assumption on the indeterminacy of 〈α0, α1, α2〉, we can then choose
a01 and a02 such that d(a01) = a0a1 and d(a02) = a0a12 + a01a2. Then

a0a13a4 + a01a23a4 + a02a3a4

represents a class in 〈α0, α1, α2, α3〉α4 that is homologous to b. �

Lemma 2.2.6. Suppose that 〈α0, α1, α2, α3〉 and 〈α1, α2, α3, α4〉 are defined, and
suppose that 〈α1, α2, α3〉 is strictly zero. Then

α0〈α1, α2, α3, α4〉 ∩ 〈α0, α1, α2, α3〉α4

is non-empty.
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Proof. Choose elements ai that represent αi. Choose a01, a12, and a02 such
that d(a01) = a0a1, d(a12) = a1a2, and d(a02) = a0a12 + a01a2. Also, choose a23,
a34, and a24 such that d(a23) = a2a3, d(a34) = a3a4, and d(a24) = a2a34 + a23a4.
Since 〈α1, α2, α3〉 is strictly zero, there exists a13 such that d(a13) = a1a23 + a12a3.

Then

a0a1a24 + a0a12a34 + a0a13a4

represents an element of α0〈α1, α2, α3, α4〉, and it is homologous to

a0a13a4 + a01a23a4 + a02a3a4,

which represents an element of 〈α0, α1, α2, α3〉α4. �

Lemma 2.2.7. Suppose that 〈α0, α1, α2, α3, α4〉 and 〈α1, α2, α3, α4, α5〉 are de-
fined and that 〈α0, α1, α2, α3〉 is strictly zero. Then

α0〈α1, α2, α3, α4, α5〉 ⊆ 〈α0, α1, α2, α3, α4〉α5.

Proof. The proof is essentially the same as the proof of Lemma 2.2.5. �

2.3. The May differentials

2.3.1. The May E1-page. The E2-page of the May spectral sequence is the
cohomology of a differential graded algebra. In other words, the May spectral
sequence really starts with an E1-page. As described in [13], the motivic E1-page
is essentially the same as the classical E1-page. Specifically, the motivic E1-page is
a polyonomial algebra over M2 with generators hij for all i > 0 and j ≥ 0, where:

(1) hi0 has degree (i, 2i − 2, 1, 2i−1 − 1).
(2) hij has degree (i, 2j(2i − 1)− 1, 1, 2j−1(2i − 1)) for j > 0.

The d1-differential is described by the formula:

d1(hij) =
∑

0<k<i

hkjhi−k,k+j .

2.3.2. The May E2-page. We now describe the E2-page of the motivic May
spectral sequence. As explained in [13], it turns out that the motivic E2-page is
essentially the same as the classical E2-page. The following proposition makes this
precise.

Recall that Gr(A) is the associated graded object of the motivic Steenrod alge-
bra with respect to powers of the augmentation ideal. Similarly, let Gr(Acl) be the
associated graded object of the classical Steenrod algebra with respect to powers
of the augmentation ideal.

Proposition 2.3.1 ([13]). There are graded ring isomorphisms

(a) Gr(A) ∼= Gr(Acl)⊗F2
F2[τ ].

(b) ExtGr(A)(M2,M2) ∼= ExtGr(Acl)(F2,F2)⊗F2
M2.

In other words, explicit generators and relations for the E2-page can be lifted
directly from the classical situation [40].

Moreover, because of Proposition 2.1.6, the values of the May d2 differential
can also be lifted from the classical situation, except that a few factors of τ show
up to give the necessary weights. For example, classically we have the differential

d2(b20) = h3
1 + h2

0h2.
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Motivically, this does not make sense, since b20 and h2
0h2 have weight 2, while h3

1

has weight 3. Therefore, the motivic differential must be

d2(b20) = τh3
1 + h2

0h2.

Table 2 lists the multiplicative generators of the E2-page through the 70-stem,
and Table 3 lists a generating set of relations for the E2-page in the same range.
Table 2 also gives the values of the May d2 differential, all of which are easily
deduced from the classical situation [40].

2.3.3. The May E4-page. Although the E2-page is quite large, the May d2
differential is also very destructive. As a result, the E4-page becomes manageable.
We obtain the E4-page by direct computation with the d2 differential.

Remark 2.3.2. As in [40], we use the notation B = b30b31 + b21b40.

Having described the E4-page, it is now necessary to find the values of the May
d4 differential on the multiplicative generators. Most of the values of d4 follow from
comparison to the classical case [40], together with a few factors of τ to balance
the weights. There is only one differential that is not classical.

Lemma 2.3.3. d4(g) = h4
1h4.

Proof. By the isomorphism of Theorem 2.1.12, we know that h4
1h4 cannot

survive the motivic May spectral sequence because h4
0h3 is zero classically. There

is only one possible differential that can kill h4
1h4.

See also [13] for a different proof of Lemma 2.3.3. �

Table 4 lists the values of the d4 differential on multiplicative generators of the
E4-page.

2.3.4. The May E6-page. We can now obtain the E6-page by direct com-
putation with the May d4 differential and the Leibniz rule.

Having described the E6-page, it is now necessary to find the values of the May
d6 differential on the multiplicative generators. Most of these values follow from
comparison to the classical case [40], together with a few factors of τ to balance
the weights. There are only a few differentials that are not classical.

Lemma 2.3.4.

(1) d6(x56) = h2
1h5c0d0.

(2) d6(Px56) = Ph2
1h5c0d0.

(3) d6(B23) = h2
1h5d0e0.

Proof. We have the relation h1x56 = c0φ. The d6 differential on φ then
implies that d6(h1x56) = h3

1h5c0d0, from which it follows that d6(x56) = h2
1h5c0d0.

The arguments for the other two differentials are similar, using the relations
h1 · Px56 = Pc0 · φ and h1B23 = e0φ. �

Lemma 2.3.5. d6(c0g
3) = h10

1 D4.

Proof. Lemma 2.4.24 shows that c0 · i1 = h4
1D4. Since h6

1i1 = 0, we conclude
that h10

1 D4 must be zero in Ext. There is only one possible differential that can hit
h10
1 D4. �
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Remark 2.3.6. The value of d6(∆h2
0Y ) given in [40, Proposition 4.37(c)] is

incorrect because it is inconsistent with machine computations of ExtAcl
[9]. The

value for d6(∆h2
0Y ) given in Table 5 is the only possibility that is consistent with

the machine computations.

Table 5 lists the values of the May d6 differential on multiplicative generators
of the E6-page.

2.3.5. The May E8-page. We can now obtain the May E8-page by direct
computation with the May d6 differential and the Leibniz rule. Once we reach the
E8-page, we are nearly done. There are just a few more higher differentials to deal
with.

Having described the E8-page, it is now necessary to find the values of the May
d8 differential on the multiplicative generators. Once again, most of these values
follow from comparison to the classical case [40], together with a few factors of τ
to balance the weights. There are only a few differentials that are not classical.

Lemma 2.3.7.

(1) d8(g
2) = h8

1h5.
(2) d8(w) = Ph5

1h5.
(3) d8(∆c0g) = Ph4

1h5c0.
(4) d8(Q3) = h4

1h
2
5.

Proof. It follows from Theorem 2.1.12 that h8
1h5 must be zero in Ext, since

h8
0h4 is zero classically. There is only one differential that can possibly hit h8

1h5.
We now know that Ph9

1h5 = 0 in Ext since h8
1h5 = 0. There is only one

differential that can hit this. This shows that d8(w) = Ph5
1h5.

Using the relation c0w = h1 · ∆c0g, it follows that d8(h1 · ∆c0g) = Ph5
1h5c0,

and then that d8(∆c0g) = Ph4
1h5c0.

Since h4
0h

2
4 is zero classically, it follows from Theorem 2.1.12 that h4

1h
2
5 must be

zero in Ext. There is only one differential that can possibly hit h4
1h

2
5. �

Table 6 lists the values of the May d8 differential on multiplicative generators
of the E8-page.

2.3.6. The May E∞-page. Most of the higher May differentials are zero
through the 70-stem. The exceptions are the May d12 differential, the May d16
differential, and the May d32 differential. All of the non-zero values of these differ-
entials are easily deduced by comparison to the classical case [40].

Table 7 lists the values of these higher differentials on multiplicative generators
of the higher pages. There are no more differentials to consider in our range, and
we have determined the May E∞-page.

The multiplicative generators for the E∞-page through the 70-stem break into
two groups. The first group consists of generators that are still multiplicative
generators in Ext after hidden extensions have been considered; these are listed in
Table 8. The second group consists of multiplicative generators of the E∞-page
that become decomposable in Ext because of a hidden extension; these are listed
in Table 9.

It is traditional to use the same symbols for elements of the E∞-page and for
the elements of Ext that they represent. Generally, there is no ambiguity with this
abuse of notation, but there are several exceptions. These exceptions occur when a
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multiplicative generator for the E∞-page lies in the same degree as another element
of the E∞-page with lower May filtration.

The first such example occurs in the 18-stem, where the element f0 of the E∞-
page represents two elements of Ext because of the presence of the element τh3

1h4

of lower May filtration. This particular example does not cause much difficulty.
Just arbitrarily choose one of these elements to be the generator of Ext. The
element disappears quickly from further analysis because f0 supports an Adams d2
differential.

However, later examples involve more subtlety and call for a careful distinction
between the possibilities. There are no wrong choices, but it is important to be
consistent with the notation in different arguments. For example, the element u′ of
the E∞-page represents two elements of Ext because of the presence of τd0l. One
of these elements is killed by τ , while the other element is killed by h0. Sloppy
notation might lead to the false conclusion that there is a multiplicative generator
of Ext in that degree that is killed by both τ and by h0.

Table 10 lists all such examples of multiplicative generators of the E∞-page
that represent more than one element in Ext. In many of these examples, we have
given an algebraic specification of one element of Ext to serve as the multiplicative
generator, sometimes by comparing to ExtA(2) [18]. In some examples, we have
not given a definition because an algebraic description is not readily available, and
also because it does not seem to matter for later analysis. The reader is strongly
warned to be cautious when working with these undefined elements.

The example τQ3 deserves an additional remark. Here we have defined the
element in terms of an Adams differential. This is merely a matter of convenience
for later work with the Adams spectral sequence in Chapter 3.

2.4. Hidden May extensions

In order to pass from the E∞-page to Ext, we must resolve some hidden ex-
tensions. In this section, we deal with all possible hidden extensions by τ , h0, h1,
and h2. We will use several different tools, including:

(1) Classical hidden extensions [9].
(2) Shuffle relations with Massey products.
(3) Steenrod operations in the sense of [31].
(4) Theorem 2.1.12 for hidden extensions among elements in degrees (s, f, w)

with s+ f − 2w = 0.

2.4.1. Hidden May τ extensions. By exhaustive search, the following re-
sults give all of the hidden τ extensions.

Proposition 2.4.1. Table 11 lists all of the hidden τ extensions through the
70-stem.

Proof. Many of the extensions follow by comparison to the classical case as
described in [9]. For example, there is a classical hidden extension h0 · e0g = h4

0x.
This implies that τ2 · h0e0g = h4

0x motivically.
Proofs for the more subtle cases are given below. �

Lemma 2.4.2.

(1) τ · τh2g
2 = Ph4

1h5.
(2) τ · τh0g

3 = Ph4
1h5e0.
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Proof. Start with the relation h1 · τg + h2f0 = 0, and apply the squaring
operation Sq4. One needs that Sq3(τg) = Ph2

1h5 [10]. The result is the first
hidden extension.

For the second, multiply the first hidden extension by e0. �

Lemma 2.4.3.

(1) τ · B8 = Ph5d0.
(2) τ · h2

1B21 = Ph5c0d0.
(3) τ · B8d0 = h4

0X3.

Proof. There is a classical hidden extension c0 · B1 = Ph1h5d0 [9]. Motivi-
cally, there is a non-hidden relation c0 · B1 = h1B8. It follows that τ · h1B8 =
Ph1h5d0 motivically.

For the second hidden extension, multiply the first hidden extension by c0.
Note that c0B8 = h2

1B21 is detected in the E∞-page of the May spectral sequence.
For the third hidden extension, multiply the first hidden extension by d0, and

observe that Ph5d
2
0 = h4

0X3, which is detected in the E∞-page of the May spectral
sequence. �

Lemma 2.4.4.

(1) τ · Pu′ = h5
0R1.

(2) τ · P 2u′ = h9
0R.

(3) τ · P 3u′ = h6
0R

′
1.

Proof. We first compute that 〈τ, u′, h3
0〉 = {Q′, Q′ + τPu}. One might try to

apply May’s Convergence Theorem 2.2.1 with the May differential d2(b20b
3
30h0(1)) =

τu′, but condition (2) of the theorem is not satisfied because of the “crossing” May
differential d4(P∆h0h4) = P 2h0h

2
4.

Instead, note that h0 · u′ = τh0d0l by comparison to ExtA(2) [18], so we have

that 〈τ, u′, h3
0〉 = 〈τ, τh0d0l, h

2
0〉. The latter bracket is given in Table 16.

Next, Table 16 shows that Pu′ = 〈u′, h3
0, h0h3〉, with no indeterminacy. Use

the previous paragraph and a shuffle to get that τ ·Pu′ = h0h3Q
′. Finally, there is

a classical hidden extension h3 ·Q′ = h4
0R1 [9], which implies that the same formula

holds motivically.
The argument for the second hidden extension is similar, using the shuffle

τ · P 2u′ = τ〈u′, h3
0, h

5
0h4〉 = 〈τ, u′, h3

0〉h5
0h4 = h5

0h4Q
′.

The first equality comes from Table 16. Also, we need the classical hidden extension
h4 ·Q′ = h4

0R [9], which implies that the same formula holds motivically.
The argument for the third hidden extension is also similar, using the shuffle

τ · P 3u′ = τ〈u′, h3
0, h

3
0i〉 = 〈τ, u′, h3

0〉h3
0i = h3

0iQ
′.

The first equality comes from Table 16. Also, we need the classical hidden extension
i ·Q′ = h3

0R
′
1 [9]. �

Lemma 2.4.5. τ · k1 = h2h5n.

Proof. First, Table 16 shows that k = 〈d0, h3, h
2
0h3〉, with no indeterminacy.

It follows from [32] that Sq0 k = 〈Sq0 d0, Sq0 h3, Sq
0 h2

0h3〉, with no indeterminacy.
In other words, Sq0 k = 〈τ2d1, h4, τ

2h2
1h4〉. From the classical calculation [10],

Sq0 k also equals τ3h2h5n.



22 2. THE COHOMOLOGY OF THE MOTIVIC STEENROD ALGEBRA

On the other hand, Table 16 show that k1 = 〈d1, h4, h
2
1h4〉, with no indetermi-

nacy.
This shows that τ4 · k1 = τ3h2h5n in Ext, from which it follows that τ · k1 =

h2h5n. �

Remark 2.4.6. In the 46-stem, τ · u′ does not equal τ2d0l. Similarly, in the
49-stem, τ · v′ does not equal τ2e0l. This is true by definition; see Table 10.

2.4.2. Hidden May h0 extensions. By exhaustive search, the following re-
sults give all of the hidden h0 extensions.

Proposition 2.4.7. Table 12 lists all of the hidden h0 extensions through the
70-stem.

Proof. Many of the extensions follow by comparison to the classical case as
described in [9]. For example, there is a classical hidden extension h0 · r = s. This
implies that h0 · r = s motivically as well.

Several other extensions are implied by the hidden τ extensions established in
Section 2.4.1. For example, the extensions τ · Pu′ = h4

0S1 and τ · τh0d
2
0j = h5

0S1

imply that h0 · Pu′ = τh0d
2
0j.

Proofs for the more subtle cases are given below. �

Lemma 2.4.8.

(1) h0 · u′ = τh0d0l.
(2) h0 · v′ = τh0e0l.
(3) h0 · Pv′ = τh0d

2
0k.

(4) h0 · P 2v′ = τh0d
3
0i.

Proof. These follow by comparison to ExtA(2) [18]. �

Lemma 2.4.9.

(1) h0 · h2
2g = h3

1h4c0.
(2) h0 · h2

2g
2 = h7

1h5c0.
(3) h0 · h2

2g
3 = h9

1D4.

Proof. For the first hidden extension, use the shuffle

h3
1h4〈h1, h0, h

2
2〉 = 〈h3

1h4, h1, h0〉h2
2.

Similarly, for the second hidden section, use the shuffle

h7
1h5〈h1, h0, h

2
2〉 = 〈h7

1h5, h1, h0〉h2
2.

For the third hidden extension, there is a hidden extension c0 · i1 = h4
1D4 that

will be established in Lemma 2.4.24. Use this relation to compute that

h9
1D4 = h5

1i1〈h1, h
2
2, h0〉 = 〈h5

1i1, h1, h
2
2〉h0.

Finally, Table 16 shows that h2
2g

3 = 〈h5
1i1, h1, h

2
2〉. �

Lemma 2.4.10.

(1) h0 · gr = Ph3
1h5c0.

(2) h0 · lm = h6
1X1.

(3) h0 ·m2 = h5
1c0Q2.

Remark 2.4.11. The three parts may seem unrelated, but note that lm = e0gr
and m2 = g2r on the E8-page of the May spectral sequence.
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Proof. Table 16 shows that e0r = 〈τ2g2, h2
2, h0〉. Next observe that

h2 · e0r = 〈τ2g2, h2
2, h0〉h2 = 〈τ2g2, h2

2, h0h2〉 = 〈τ2h2g
2, h2, h0h2〉.

None of these brackets have indeterminacy.
Use the relation Ph4

1h5 = τ2h2g
2 from Lemma 2.4.2 to write

h2 · e0r = 〈Ph4
1h5, h2, h0h2〉 = Ph3

1h5〈h1, h2, h0h2〉 = Ph3
1h5c0.

The last step is to show that h2 · e0r = h0 · gr. This follows from the calculation

h0 · gr = h0〈h3
1h4, h1, r〉 = 〈h0, h

3
1h4, h1〉r = h2e0 · r,

where the brackets are given in Table 16. This finishes the proof of part (1).
For part (2), we will prove below in Lemma 2.4.14 that h3

1X1 = Ph5c0e0. So
we wish to show that h0 · lm = Ph3

1h5c0e0. This follows immediately from part (1),
using that lm = e0gr.

The proof of part (3) is similar to the proof of part (1). First, lm equals
〈τ2g3, h2

2, h0〉. As above, this implies that h2lm = 〈τ2h2g
3, h2, h0h2〉. Now use the

(not hidden) relation τ2h2g
3 = h6

1Q2 to deduce that h2lm = h5
1c0Q2. The desired

formula now follows since h2l = h0m. �

Lemma 2.4.12. h0 · h2
0B22 = Ph1h5c0d0.

Proof. This follows from the hidden τ extension τ · h3
1B21 = Ph1h5c0d0 that

follows from Lemma 2.4.3, together with the relation τh3
1 = h2

0h2. �

2.4.3. Hidden May h1 extensions. By exhaustive search, the following re-
sults give all of the hidden h1 extensions.

Proposition 2.4.13. Table 13 lists all of the hidden h1 extensions through the
70-stem.

Proof. Many of the extensions follow by comparison to the classical case as
described in [9]. For example, there is a classical hidden extension h1 · x = h2

2d1.
This implies that there is a motivic hidden extension h1 · x = τh2

2d1.
Proofs for the more subtle cases are given below. �

Lemma 2.4.14.

(1) h1 · τh1G = h5c0e0.
(2) h1 · h1B3 = h5d0e0.
(3) h1 · τPh1G = Ph5c0e0.
(4) h1 · h2

1X3 = h5c0d0e0.

Proof. Table 16 shows that τh1G = 〈h5, h2g, h
2
0〉. Shuffle to obtain

h1 · τh1G = 〈h5, h2g, h
2
0〉h1 = h5〈h2g, h

2
0, h1〉.

Finally, Table 16 shows that c0e0 = 〈h2g, h
2
0, h1〉. This establishes the first hidden

extension.
For the second hidden extension, Table 16 shows that 〈h5c0e0, h0, h

2
2〉 equals

h1h5d0e0. From part (1), this equals 〈τh2
1G, h0, h

2
2〉, which equals h2

1〈τG, h0, h
2
2〉

because there is no indeterminacy. This shows that h5d0e0 is divisible by h1. The
only possible hidden extension is h1 · h1B3 = h5d0e0.

For the third hidden extension, start with the relation h1 · τPG = Ph1 · τG
because there is no possible hidden relation. Therefore, using part (1),

h3
1 · τPG = Ph1 · h2

1 · τG = Ph1h5c0e0.
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It follows that h1 · τPh1G = Ph5c0e0.
For the fourth hidden extension, use part (1) to conclude that h5c0d0e0 is

divisible by h1. The only possibility is that h1 · h2
1X3 = h5c0d0e0. �

Lemma 2.4.15. h1 · h2
1B6 = τh2

2d1g.

Proof. Table 16 shows that d1g = 〈d1, h3
1, h1h4〉. Using the hidden exten-

sion h1 · x = τh2
2d1 [9], it follows that τh2

2d1g = 〈h1x, h
3
1, h1h4〉, which equals

h1〈x, h3
1, h1h4〉 because there is no indeterminacy. Therefore, τh2

2d1g is divisible by
h1, and the only possibility is that h1 · h2

1B6 = τh2
2d1g. �

Lemma 2.4.16. h1 · h1D11 = τ2c1g
2.

Proof. Begin by computing that h1D11 = 〈y, h2
1, h

2
1h4〉, using May’s Conver-

gence Theorem 2.2.1, the May differential d4(g) = h4
1h4, and the relation ∆h2

3g =
∆h2

1d1. Also recall the hidden extension h1 ·y = τ2c1g, which follows by comparison
to the classical case [9].

It follows that

h2
1D11 = 〈h1y, h

4
1, h4〉 = 〈τ2c1g, h4

1, h4〉

because there is no indeterminacy. Finally, Table 16 shows that τ2c1g
2 equals

〈τ2c1g, h2
1, h

2
1h4〉. �

Lemma 2.4.17. h1 · C0 = 0.

Proof. The only other possibility is that h1 · C0 equals h0h5l.
First compute that C0 belongs to 〈h0h

2
3, h0, h1, τh1g2〉 using May’s Conver-

gence Theorem 2.2.2 and the May differentials d4(ν) = h2
0h

2
3 and d4(x47) = τh2

1g2.
The subbracket 〈h0h

2
3, h0, h1〉 is strictly zero. On the other hand, the subbracket

〈h0, h1, τh1g2〉 equals {0, τh0h2g2}. Condition (5) of May’s Convergence Theorem
2.2.2 is satisfied because the May filtration of τh2g2 is less than the May filtration
of x47.

Because 〈h1, h0h
2
3, h0〉 is zero, the hypothesis of Lemma 2.2.5 is satisfied. This

implies that h1 · C0 belongs to 〈h1, h0h
2
3, h0, h1〉τh1g2. For degree reasons, the

bracket 〈h1, h0h
2
3, h0, h1〉 consists of elements spanned by f0 and τh3

1h4. But the
products h1 · f0 and h1 · τh3

1h4 are both zero, so 〈h1, h0h
2
3, h0, h1〉τh1g2 must be

zero. Therefore, h1 · C0 is zero. �

Lemma 2.4.18. h1 · r1 = s1.

Proof. This follows immediately from Theorem 2.1.12 and the classical rela-
tion h0 · r = s. �

Lemma 2.4.19. h1 · h2
1q1 = h4

0X3.

Proof. Apply Sq6 to the relation h2r = h1q to obtain that h3r
2 = h2

1 Sq
5(q).

Next, observe that Sq5(q) = h1q1 by comparison to the classical case [10].
By comparison to the classical case, there is a relation h3r = h2

0x + τh2
2n, so

h3r
2 = h2

0rx. Finally, use the hidden extension h0 · r = s and the non-hidden
relation sx = h3

0X3. �
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2.4.4. Hidden May h2 extensions. By exhaustive search, the following re-
sults give all of the hidden h2 extensions.

Proposition 2.4.20. Table 14 lists all of the hidden h2 extensions through the
70-stem.

Proof. Many of the extensions follow by comparison to the classical case as
described in [9]. For example, there is a classical hidden extension h2 · Q2 = h5k.
This implies that the same formula holds motivically.

Also, many extensions are implied by hidden h0 extensions that we already
established in Section 2.4.2. For example, there is a hidden extension h0 · h2

2g =
h3
1h4c0. This implies that there is also a hidden extension h2 · h0h2g = h3

1h4c0.
Proofs for the more subtle cases are given below. �

Remark 2.4.21. We established the extensions

(1) h2 · e0r = Ph3
1h5c0

(2) h2 · lm = h5
1c0Q2

in the proof of Lemma 2.4.10. The extension h2 · km = h6
1X1 follows from Lemma

2.4.10 and the relation h2k = h0l.

Lemma 2.4.22. h2 · h2B2 = h1h5c0d0.

Proof. Table 16 shows that h2B2 = 〈g2, h3
0, h

2
2〉, with no indeterminacy. Then

h2 ·h2B2 equals 〈g2, h3
0, h

3
2〉, because there is no indeterminacy. This bracket equals

〈g2, h3
0, h

2
1h3〉, which equals 〈g2, h3

0, h1〉h1h3 since there is no indeterminacy. Table
16 also shows that the bracket 〈g2, h3

0, h1〉 equals B1.
We have now shown that h2 · h2B2 equals h1h3 · B1. It remains to show that

there is a hidden extension h3 ·B1 = h5c0d0. First observe that B1 · h2
1d0 = h3

1B21

by a non-hidden relation. This implies that B1 · τh2
1d0 = Ph1h5c0d0 by Lemma

2.4.3.
Now there is a hidden extension h3 ·Ph1 = τh2

1d0, so B1 ·h3 ·Ph1 = Ph1h5c0d0.
The only possibility is that h3 ·B1 = h5c0d0. �

Lemma 2.4.23. h2 · B6 = τe1g.

Proof. Table 16 shows that 〈τ, B6, h
2
1h3〉 = h2C0 with no indeterminacy. This

means that 〈τ, B6, h
3
2〉 = h2C0. If h2 · B6 were zero, then this would imply that

〈τ, B6, h2〉h2
2 = h2C0. However, h2C0 cannot be divisible by h2

2. �

2.4.5. Other hidden May extensions. We collect here a few miscellaneous
extensions that are needed for various arguments.

Lemma 2.4.24.

(1) c0 · i1 = h4
1D4.

(2) Ph1 · i1 = h5
1Q2.

(3) c0 ·Q2 = PD4.

Proof. Start by computing that h2
1D4 belongs to 〈c0, h2

4, h3, h
3
1, h1h3〉; we will

not need to worry about the indeterminacy. One can use May’s Convergence Theo-
rem 2.2.3 and the May d2 differential to make this computation. All of the threefold
subbrackets are strictly zero, and one of the fourfold subbrackets is also strictly zero.
However, 〈c0, h2

4, h3, h
3
1〉 equals {0, h2

1h5e0}. Condition (7) of May’s Convergence
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Theorem 2.2.3 is satisfied because h2
1h5e0 = 〈h5c0, h3, h

3
1〉, and the May filtration

of h5c0 is less than the May filtration of h1h0(1, 3).
The hypothesis of Lemma 2.2.7 is satisfied because 〈h3, h

3
1, h1h3, h

2
1〉 is strictly

zero. Therefore, h4
1D4 is contained in c0〈h2

4, h3, h
3
1, h1h3, h

2
1〉. The main point is

that h4
1D4 is divisible by c0. The only possibility is that c0 · i1 = h4

1D4. This
establishes the first formula.

For the second formula, compute that h1Q2 equals 〈h4, h
2
1h4, h4, Ph1〉 with

no indeterminacy, using May’s Convergence Theorem 2.2.2 and the May differen-
tials d4(ν1) = h2

1h
2
4 and d4(∆h1) = Ph1h4. The subbracket 〈h2

1h4, h4, Ph1〉 equals
{0, Ph3

1h5}. Condition (5) of May’s Convergence Theorem 2.2.2 is satisfied because
the May filtration of h2

1h5 is less than the May filtration of ν1.
Next, compute that i1 = 〈h4

1, h4, h
2
1h4, h4〉 with no indeterminacy, using May’s

Convergence Theorem 2.2.2 and the May differentials d4(g) = h4
1h4 and d4(ν1) =

h2
1h

2
4. The subbracket 〈h4

1, h4, h
2
1h4〉 equals {0, h6

1h5}. Condition (5) of May’s Con-
vergence Theorem 2.2.2 is satisfied because the May filtration of h2

1h5 is less than
the May filtration of ν1.

The hypothesis of Lemma 2.2.6 is satisfied because 〈h4, h
2
1h4, h4〉 is strictly

zero. Therefore,

h4
1〈h4, h

2
1h4, h4, Ph1〉 = 〈h4

1, h4, h
2
1h4, h4〉Ph1,

and h5
1Q2 = Ph1 · i1. This establishes the second formula.

The third formula now follows easily. Compute that Ph1·c0 ·i1 equals Ph1·h4
1D4

and also c0 · h5
1Q2. �

Remark 2.4.25. Part (3) of Lemma 2.4.24 shows that the multiplicative gen-
erator PD4 of the E∞-page becomes decomposable in Ext by a hidden extension.

Lemma 2.4.26. c0 · B6 = h3
1B3.

Proof. Table 16 shows that h3
1Q2 = 〈τ, B6, h

4
1〉. This bracket has no inde-

terminacy. It follows that h3
1c0Q2 = 〈τ, B6 · c0, h4

1〉, since this bracket also has no
indeterminacy.

The element h3
1c0Q2 is non-zero by part (3) of Lemma 2.4.24. Therefore,

〈h4
1, B6 · c0, τ〉 is not zero, so B6 · c0 is non-zero. The only possibility is that it

equals h3
1B3. �

Lemma 2.4.27. c0 ·G3 = Ph3
1h5e0.

Proof. Start with the relation h2
1G3 = h2gr. This implies that h2

1d0G3 =
h2d0gr, which equals h6

1X1 by Table 14. Therefore, c20G3 is non-zero, which means
that c0G3 is also. The only possibility is that c0G3 equals Ph3

1h5e0. �

Lemma 2.4.28. h2
0B4 + τh1B21 = g′2.

Proof. On the E∞-page, there is a relation h2
0B4 + τh1B21 = 0. The hidden

extension follows from the analogous classical hidden relation [9]. �

Remark 2.4.29. Through the 70-stem, Lemma 2.4.28 is the only example of a
hidden relation of the form h0 · x+ h1 · y, h0 · x+ h2 · y, or h1 · x+ h2 · y.



CHAPTER 3

Differentials in the Adams spectral sequence

The main goal of this chapter is to compute the differentials in the motivic
Adams spectral sequence. We will rely heavily on the computation of the Adams
E2-page carried out in Chapter 2. We will borrow results from the classical Adams
spectral sequence where necessary. Tables 18 and 19 summarize previously estab-
lished results about the classical Adams spectral sequence, including differentials
and Toda brackets. The tables give specific references to proofs. The main sources
are [3], [4], [8], [27], [41], and [42].

The Adams charts in [19] are essential companions to this chapter.

The motivic Adams spectral sequence. We refer to [13], [17], and [33]
for background on the construction and convergence of the motivic Adams spec-
tral sequence over C. In this section, we review just enough to proceed with our
computations in later sections.

Theorem 3.0.1 ( [13] [17] [33] ). The motivic Adams spectral sequence takes
the form

Es,f,w
2 = Exts,f,wA (M2,M2) ⇒ πs,w,

with differentials of the form dr : Es,f,w
r → Es−1,f+r,w

r .

We will need to compare the motivic Adams spectral sequence to the classical
Adams spectral sequence. The following proposition is implicit in [13, Sections 3.2
and 3.4].

Proposition 3.0.2. After inverting τ , the motivic Adams spectral sequence
becomes isomorphic to the classical Adams spectral sequence tensored over F2 with
M2[τ

−1].

In particular, Proposition 3.0.2 implies that motivic differentials and motivic
hidden extensions must be compatible with their classical analogues. This compar-
ison will be a key tool.

Outline. A critical ingredient is Moss’s Convergence Theorem [35], which al-
lows the computation of Toda brackets in π∗,∗ via the differentials in the Adams
spectral sequence. We will thoroughly review this result in Section 3.1.

Section 3.2 describes the main points in establishing the Adams differentials.
We postpone the numerous technical lemmas to Section 3.3.

Chapter 7 contains a series of tables that summarize the essential computational
facts in a concise form. Tables 8, 20, 21, and 22 give the values of the motivic
Adams differentials. The fourth columns of these tables refer to one argument that
establishes each differential, which is not necessarily the first known proof. This
takes one of the following forms:

(1) An explicit proof given elsewhere in this manuscript.

27
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(2) “image of J” means that the differential is easily deducible from the struc-
ture of the image of J [2]. indexJ@J !image of

(3) “tmf ” means that the differential can be detected in the Adams spectral
sequence for tmf [15].

(4) “Table 18” means that the differential is easily deduced from the analogous
classical result.

(5) “[11, VI.1]” means that the differential can be computed using the rela-
tionship between algebraic Steenrod operations and Adams differentials.

Table 23 summarizes some calculations of Toda brackets. In all cases, we have
been careful to describe the indeterminacies accurately. The fifth column refers to
an argument for establishing this differential, in one of the following forms:

(1) An explicit proof given elsewhere in this manuscript.
(2) A Massey product (which appears in Table 16) implies the Toda bracket

via Moss’s Convergence Theorem 3.1.1 with r = 2.
(3) An Adams differential implies the Toda bracket via Moss’s Convergence

Theorem 3.1.1 with r > 2.

The last column of Table 23 lists the specific results that rely on each Toda bracket.

3.1. Toda brackets in the motivic Adams spectral sequence

We will frequently compute Toda brackets in the motivic stable homotopy
groups in order to resolve hidden extensions and to determine Adams differentials.
The absolutely essential tool for computing such Toda brackets is Moss’s Conver-
gence Theorem [35, Theorem 1.2]. The point of this theorem is that under certain
hypotheses, Toda brackets can be computed via Massey products in the Er-page of
the motivic Adams spectral sequence. For the reader’s convenience, we will state
the Convergence Theorem in the specific forms that we will use.

The E2-page of the motivic Adams spectral sequence possesses Massey prod-
ucts, since it equals the cohomology of the motivic Steenrod algebra. Moreover,
since (Er , dr) is a differential graded algebra for r ≥ 2, the Er+1-page of the mo-
tivic Adams spectral sequence also possesses Massey products that are computed
with the Adams dr differential. When necessary for clarity, we will use the nota-
tion 〈a0, . . . , an〉Er+1

to refer to Massey products in the Er+1-page in this sense.
Similarly, 〈a0, . . . , an〉E2

indicates a Massey product in Ext.

Theorem 3.1.1 (Moss’s Convergence Theorem). Let α0, α1, and α2 be ele-
ments of the motivic stable homotopy groups such that the Toda bracket 〈α0, α1, α2〉
is defined. Let ai be a permanent cycle on the Adams Er-page that detects αi for
each i. Suppose further that:

(1) the Massey product 〈a0, a1, a2〉Er
is defined (in Ext when r = 2, or using

the Adams dr−1 differential when r ≥ 3).
(2) if (s, f, w) is the degree of either a0a1 or a1a2; f

′ < f −r+1; f ′′ > f ; and

t = f ′′ − f ′; then every Adams differential dt : E
(s+1,f ′,w)
t → E

(s,f ′′,w)
t is

zero.

Then 〈a0, a1, a2〉Er
contains a permanent cycle that detects an element of the Toda

bracket 〈α0, α1, α2〉.
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Condition (2) is an equivalent reformulation of condition (1.3) in [35, Theorem

1.2]. When computing 〈a0, a1, a2〉, one uses a differential dr−1 : E
(s−1,f−r+1,w)
r →

E
(s,f,w)
r . The idea of condition (2) is that there are no later “crossing” differentials

dt whose source has strictly lower Adams filtration and whose target has strictly
higher Adams filtration.

Example 3.1.2. Consider the differential d2(h4) = h0h
2
3. This shows that

〈η, 2, σ2〉 intersects {h1h4}. In fact, Table 23 shows that the bracket equals {h1h4} =
{η4, η4 + ηρ15}.

Example 3.1.3. Consider the Massey product 〈h2, h3, h
2
0h3〉. Using the May

differential d4(ν) = h2
0h

2
3 and May’s Convergence Theorem 2.2.1, this Massey prod-

uct contains f0 with indeterminacy τh3
1h4. However, this calculation tells us noth-

ing about the Toda bracket 〈ν, σ, 4σ〉. The presence of the later Adams differential
d3(h0h4) = h0d0 means that condition (2) of Moss’s Convergence Theorem 3.1.1 is
not satisfied.

Example 3.1.4. Consider the Toda bracket 〈θ4, 2, σ2〉. The relation h3
4+h2

3h5 =
0 and the Adams differentials d2(h5) = h0h

2
4 and d2(h4) = h0h

2
3 show that the

expression 〈h2
4, h0, h

2
3〉E3

is zero. This implies that 〈θ4, 2, σ2〉 consists entirely of
elements of Adams filtration strictly greater than 3. In particular, the Toda bracket
is disjoint from {h2

3h5}. See Lemma 4.2.91 for more discussion of this Toda bracket.

One case of Moss’s Convergence Theorem 3.1.1 says that Massey products in
ExtA(M2,M2) are compatible with Toda brackets in π∗,∗, assuming that there are
no interfering Adams differentials. Thus, we will use many Massey products in
ExtA(M2,M2), most of which are computed using May’s Convergence Theorem
2.2.1.

We will also need the following lemma.

Lemma 3.1.5. If 2α is zero, then τηα belongs to 〈2, α, 2〉.

Proof. The motivic case follows immediately from the classical case, which is
proved in [42]. �

3.1.1. Toda brackets and cofibers. The purpose of this section is to estab-
lish a relationship between Toda brackets of the form 〈α0, . . . , αn〉 and properties
of the stable homotopy groups of the cofiber Cα0 of α0. This relationship is well-
known to those who use it. See [42, Proposition 1.8] for essentially the same result.

Suppose given a map α0 : Sp,q → S0,0. Then we have a cofiber sequence

Sp,q α0 //S0,0 j
//Cα0

q
//Sp+1,q α0 //S1,0

where j is the inclusion of the bottom cell, and q is projection onto the top cell.
Note that π∗,∗(Cα0) is a π∗,∗-module.

Proposition 3.1.6. Let α0, α1, and α2 be elements of π∗,∗ such that α0α1

and α1α2 are zero. Let α1 be an element of π∗,∗(Cα0) such that q∗(α1) = α1. In
π∗,∗(Cα0), the element α1 · α2 belongs to j∗(〈α0, α1, α2〉).

Proof. The proof is described by the following diagram. The composition
α1α2 can be lifted to S0,0 because α1α2 was assumed to be zero. This shows that
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α1 · α2 is equal to j∗(β). Finally, β is one possible definition of the Toda bracket
〈α0, α1, α2〉.

S0,0

j

��
Cα0

q

��
S∗,∗

α2

//

β

;;
✇

✇

✇

✇

✇

✇

✇

✇

✇

✇

✇

S∗,∗
α1

//

α1

;;
✈
✈
✈
✈
✈
✈
✈
✈
✈

Sp+1,q
α0

// S1,0

�

Remark 3.1.7. We have presented Proposition 3.1.6 in the context of stable
motivic homotopy groups, but the proof works in the much greater generality of
a stable model category. For example, the same result holds for Massey products,
where one works in the derived category of a graded algebraA, and maps correspond
to elements of Ext groups over A.

Remark 3.1.8. Proposition 3.1.6 can be generalized to higher compositions.
Suppose that 〈α0, . . . , αn〉 is defined. Then the bracket 〈α1, α2, . . . , αn〉 is contained
in j∗(〈α0, . . . , αn〉). The proof is similar to the proof of Proposition 3.1.6, using the
definition of higher Toda brackets [39, Appendix A].

3.2. Adams differentials

The E2-page of the motivic Adams spectral sequence is described in Chapter
2 (see also [13]). See [19] for a chart of the E2-page through the 70-stem. A list of
multiplicative generators for the E2-page is given in Table 8.

Our next task is to compute the Adams differentials. The main point is to
compute the Adams dr differentials on the multiplicative generators of the Er-
page. Then one can compute the entire Adams dr differential using that dr is a
derivation.

3.2.1. Adams d2 differentials. Most of the Adams d2 differentials are lifted
directly from the classical situation, in the sense of Proposition 3.0.2. We provide
a few representative examples of this phenomenon.

Example 3.2.1. The classical differential d2(h4) = h0h
2
3 immediately implies

that there is a motivic differential d2(h4) = h0h
2
3.

Example 3.2.2. Unlike the classical situation, the elements hk
1d0 and hk

1e0 are
non-zero in the E2-page for all k ≥ 0. The classical differential d2(e0) = h2

1d0
implies that there is a motivic differential d2(e0) = h2

1d0, from which it follows

that d2(h
k
1e0) = hk+2

1 d0 for all k ≥ 0. Technically, these are “exotic” differentials,
although we will soon see subtler examples.

Example 3.2.3. Consider the classical differential d2(h0c2) = h2
1e1. Motivi-

cally, this formula does not make sense because the weights of h0c2 and h2
1e1 are 22

and 23 respectively. It follows that there is a motivic differential d2(h0c2) = τh2
1e1.

Then h2
1e1 is non-zero on the E3-page.
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Proposition 3.2.4. Table 8 lists some values of the motivic Adams d2 differen-
tial. The motivic Adams d2 differential is zero on all other multiplicative generators
of the E2-page, through the 70-stem.

Proof. Table 8 cites one possible argument (but not necessarily the earliest
published result) for each non-zero differential on a multiplicative generator of the
E2-page. These arguments break into several types:

(1) Some differentials are consequences of the image of J calculation [2].
(2) Some differentials follow by comparison to the Adams spectral sequence

for tmf [15].
(3) Some differentials follow by comparison to an analogous classical result.
(4) One differential follows from the relationship between Adams differentials

and algebraic Steenrod operations [11, VI.1].
(5) The remaining differentials are proved in Section 3.3.1.

For the differentials whose values are zero, Section 3.3.1 includes proofs for the
cases that are not obvious. �

In order to maintain the flow of the narrative, we have collected the technical
computations of miscellaneous d2 differentials in Section 3.3.1.

The E2 chart in [19] indicates the Adams d2 differentials, all of which are
implied by the calculations in Table 8.

Remark 3.2.5. Lemma 3.3.3 establishes three differentials d2(h3g) = h0h
2
2g,

d2(h3g
2) = h0h

2
2g

2, and d2(h3g
3) = h0h

2
2g

3. Presumably there is an infinite family
of exotic differentials of the form

d2(h3g
k) = h0h

2
2g

k.

Remark 3.2.6. The differential d2(X1) = h2
0B4 + τh1B21 is inconsistent with

the results of [25].

Remark 3.2.7. In the 51-stem, we draw particular attention to the Adams dif-
ferential d2(D1) = h2

0h3g2. Mark Mahowald privately communicated an argument
for the presence of this differential to the author. However, this argument fails
because of the calculation of the Toda bracket 〈θ4, 2, σ2〉 in Lemma 4.2.91, which
was unknown to Mahowald. Zhouli Xu and the author discovered an independent
proof, which is included in Lemma 3.3.13. See [22] for a full discussion.

Remark 3.2.8. As noted in Table 10, the element τQ3 is defined in Ext such
that d2(τQ3) = 0.

Remark 3.2.9. Quite a few of the d2 differentials in this section follow by com-
parison to the Adams spectral sequence for tmf, i.e., the Adams spectral sequence
whose E2-page is the cohomology of the subalgebra A(2) of the Steenrod algebra.
See [15] for detailed computations with this spectral sequence.

Presumably, there is a “motivic modular forms” spectrum that is the motivic
analogue of tmf. If such a motivic spectrum existed, then the E2-page of its Adams
spectral sequence would be the cohomology of motivic A(2), as described in [18].
Such a spectral sequence would help significantly in calculating the differentials in
the motivic Adams spectral sequence for S0,0 that we are considering here.
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3.2.2. Adams d3 differentials. See [19] for a chart of the E3-page. This
chart is complete through the 70-stem; however, the Adams d3 differentials are
complete only through the 65-stem.

The next step is to compute the Adams d3 differential on the multiplicative
generators of the E3-page.

Proposition 3.2.10. Table 20 lists some values of the motivic Adams d3 dif-
ferential. The motivic Adams d3 differential is zero on all other multiplicative
generators of the E3-page, through the 65-stem, except that d3(D3) might equal B3.

Proof. Table 20 cites one possible argument (but not necessarily the earliest
published result) for each non-zero differential on a multiplicative generator of the
E3-page. These arguments break into several types:

(1) Some differentials are consequences of the image of J calculation [2].
(2) Some differentials follow by comparison to the Adams spectral sequence

for tmf [15].
(3) Some differentials follow by comparison to an analogous classical result.
(4) The remaining differentials are proved in Section 3.3.2.

For the differentials whose values are zero, Section 3.3.2 includes proofs for the
cases that are not obvious. �

In order to maintain the flow of the narrative, we have collected the technical
computations of miscellaneous d3 differentials in Section 3.3.2.

The E3 chart in [19] indicates the Adams d3 differentials, all of which are
implied by the calculations in Table 20. The differentials are complete only through
the 65-stem. Beyond the 65-stem, there are a number of unknown differentials.

Remark 3.2.11. The chart in [25] indicates a differential d3(D3) = B3. How-
ever, we have been unable to independently verify this differential. Because of the
relation h1B3 = h4B1 and because {B1} contains ηθ4.5, we know that h1B3 detects
〈ηθ4.5, σ2, 2〉, as shown in Table 23. It follows that B3 detects 〈θ4.5, σ2, 2〉 and that
h1B3 detects η4θ4.5. We have so far been unable to show that either 〈θ4.5, σ2, 2〉 or
η4θ4.5 is zero.

Remark 3.2.12. We draw attention to the differential d3(h1h5e0) = h2
1B1. This

can be derived from its classical analogue, which is carefully proved in [3]. Lemma
3.3.30 provides an independent proof. This proof originates from an algebraic
hidden extension in the h1-local cohomology of the motivic Steenrod algebra [14].

Remark 3.2.13. The differential d3(Q2) = τ2gt given in Lemma 3.3.37 is incon-
sistent with the chart in [25]. We do not understand the source of this discrepancy.

Remark 3.2.14. We claim that d3(r1) is zero; this is tentative because our
analysis is incomplete in the relevant range. The only other possibility is that
d3(r1) equals h2

1X2. However, we show in Lemma 4.2.12 that h2
1X2 supports a

hidden τ extension and must therefore be non-zero on the E∞-page.

3.2.3. Adams d4 differentials. See [19] for a chart of the E4-page. This
chart is complete through the 65-stem. Beyond the 65-stem, because of unknown
earlier differentials, the actual E4-page is a subquotient of what is shown in the
chart.
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The next step is to compute the Adams d4 differentials on the multiplicative
generators of the E4-page.

Proposition 3.2.15. Table 21 lists some values of the motivic Adams d4 dif-
ferential. The motivic Adams d4 differential is zero on all other multiplicative
generators of the E4-page, through the 65-stem, with the possible exceptions that:

(1) d4(τh1X1) or d4(R) might equal τ2d0e0r.
(2) d4(C

′) or d4(τX2) might equal h2B21 or τh2B21 respectively.

Proof. Table 21 cites one possible argument (but not necessarily the earliest
published result) for each non-zero differential on a multiplicative generator of the
E4-page. These arguments break into several types:

(1) Some differentials are consequences of the image of J calculation [2].
(2) Some differentials follow by comparison to the Adams spectral sequence

for tmf [15].
(3) Some differentials follow by comparison to an analogous classical result.
(4) The remaining differentials are proved in Section 3.3.3.

For the differentials whose values are zero, Section 3.3.3 includes proofs for the
cases that are not obvious. �

The E4 chart in [19] indicates the Adams d4 differentials, all of which are
implied by the calculations in Table 21. The differentials are complete only through
the 65-stem. Beyond the 65-stem, there are a number of unknown differentials.

Remark 3.2.16. The chart in [25] indicates a classical differential d4(h1X1) =
d0e0r. However, we have been unable to independently verify this differential.

Because of the differential d5(τPh5e0) = τd0z from Lemma 3.3.55, we strongly
suspect that τ2d0e0r is hit by some differential, but there is more than one possi-
bility.

Note that τ2d0e0r detects τ2ηκ3.

Remark 3.2.17. The chart in [25] indicates a classical differential d4(C
′) =

h2B21. However, we have been unable to independently verify this differential.
Because B21 detects κθ4.5, we know that h2B21 detects νκθ4.5. If we could

show that νκθ4.5 is zero, then we could conclude that there is a differential d4(C
′) =

h2B21.

3.2.4. Adams d5 differentials. Because the d4 differentials are relatively
sparse, [19] does not provide a separate chart for the E5-page.

The next step is to compute the Adams d5 differentials on the multiplicative
generators of the E5-page.

Proposition 3.2.18. Table 22 lists some values of the motivic Adams d5 dif-
ferential. The motivic Adams d5 differential is zero on all other multiplicative
generators of the E5-page, through the 65-stem, with the possible exceptions that:

(1) d5(A
′) might equal τh1B21.

(2) d5(τh1H1) might equal τh2B21.
(3) d5(τh

2
1X1) might equal τ3d20e

2
0.

Proof. The differential d5(h
22
0 h6) = P 6d0 follows from the calculation of the

image of J [2]. The differential d5(h1h6) = 0 follows from the existence of the
classical element η6 [26].

The remaining cases are computed in Section 3.3.4. �
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The chart of the E4-page in [19] indicates the very few d5 differentials along
with the d4 differentials.

Remark 3.2.19. The chart in [25] indicates a classical differential d5(A
′) =

h1B21. However, we have been unable to independently verify this differential.
Because B21 detects κθ4.5, we know that h1B21 detects ηκθ4.5. We have so far been
unable to show that ηκθ4.5 is zero.

Remark 3.2.20. We suspect that d5(τh1H1) equals zero, not τh2B21. This
would follow immediately if we knew that d4(C

′) = h2B21 (see Proposition 3.2.15
and Remark 3.2.17).

Remark 3.2.21. We show in Lemma 3.3.58 that τ3d20e
2
0 is hit by some differen-

tial. We suspect that d5(τh
2
1X1) equals τ

3d20e
2
0. The other possibilities are d9(τX2)

and d10(τh1H1).

3.2.5. Higher Adams differentials. At this point, we are almost done.

Proposition 3.2.22. Through the 59-stem, the E6-page equals the E∞-page.

Proof. The only possible higher differential is that d6(h5c1) might equal
Ph2

1h5c0. However, we will show in the proof of Lemma 3.3.45 that Ph2
1h5c0

cannot be hit by a differential. �

The calculations of Adams differentials lead immediately to our main theorem.

Theorem 3.2.23. The E∞-page of the motivic Adams spectral sequence over
C is depicted in the chart in [19] through the 59-stem. Beyond the 59-stem, the
actual E∞-page is a subquotient of what is shown in the chart.

3.3. Adams differentials computations

In this section, we collect the technical computations that establish the Adams
differentials discussed in Section 3.2.

3.3.1. Adams d2 differentials computations. The first two lemmas estab-
lish well-known facts from the classical situation. However, explicit proofs are not
readily available in the literature, so we supply them here.

Lemma 3.3.1. d2(P
ke0) = h2

1P
kd0.

Proof. Because of the relation 2κ = 0, there must be a differential d2(β) =
h0d0 in the Adams spectral sequence for tmf. Here β is the class in the 15-stem as
labeled in [15]. Then d2(h2β) = h2

0e0.
Now f0 maps to h2β, so it follows that d2(f0) = h2

0e0 in the classical Adams
spectral sequence for the sphere. The same formula must hold motivically.

The relation h0f0 = τh1e0 then implies that d2(e0) = h2
1d0. This establishes

the formula for k = 0.
The argument for larger values of k is similar, using that d2(P

kh2β) = P kh2
0e0

in the Adams spectral sequence for tmf; P kh0j maps to P k+1h2β; and P kh2
0j =

τP k+1h1e0. �

Lemma 3.3.2. d2(l) = h0d0e0.

Proof. The differential d2(k) = h0d
2
0 follows by comparison to the Adams

spectral sequence for tmf. The relation h2k = h0l then implies that d2(l) = h0d0e0.
�
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Lemma 3.3.3.

(1) d2(h3g) = h0h
2
2g.

(2) d2(h3g
2) = h0h

2
2g

2.
(3) d2(h3g

3) = h0h
2
2g

3.

Proof. Table 33 indicates that ση4 is contained in {h4c0}. Therefore, h3
1h4c0

detects η3ση4. However, η
3η4 is zero.

This means that h3
1h4c0 must be zero on the E∞-page. The only possible

differential is d2(h3g) = h3
1h4c0. Finally, note that h3

1h4c0 = h0h
2
2g in the E2-page.

This establishes the first differential.
The argument for the second differential is essentially the same. The product

η6ǫη5 is detected by h7
1h5c0. Since η3σ = η2ǫ, we get that η7ση5 is also detected

by h7
1h5c0. However, η

7η5 is zero, so h7
1h5c0 must be hit by some differential.

For the third differential, Table 15 shows that c0i1 = h4
1D4 on the E2-page.

This implies that η5ǫ{i1} is contained in {h0h
2
2g

3} in π66,40. Using that η3σ = η2ǫ,
we get that η6σ{i1} is contained in {h0h

2
2g

3}. However, η6{i1} equals zero, so some
differential must hit h0h

2
2g

3. �

Lemma 3.3.4. d2(e0g) = h2
1e

2
0.

Proof. First note that Ph1 · e0g = h1d
2
0e0 + h4

1v; this is true in the May
E∞-page. Now apply d2 to this formula to get

Ph1 · d2(e0g) = h3
1d

3
0 + h6

1u.

In particular, it follows that d2(e0g) is non-zero. The only possibility is that
d2(e0g) = h2

1e
2
0. �

Lemma 3.3.5.

(1) d2(u
′) = τh0d

2
0e0.

(2) d2(Pu′) = τPh0d
2
0e0.

(3) d2(P
2u′) = τP 2h0d

2
0e0.

(4) d2(P
3u′) = τP 3h0d

2
0e0.

(5) d2(v
′) = h2

1u
′ + τh0d0e

2
0.

(6) d2(Pv′) = Ph2
1u

′ + τh0d
4
0.

(7) d2(P
2v′) = P 2h2

1u
′ + τPh0d

4
0.

Proof. The first four formulas follow easily from the relations h0u
′ = τh0d0l,

h0 · Pu′ = τd20j, h0 · P 2u′ = τPh0d
2
0j, and h0 · P 3u′ = τP 2h0d

2
0j.

For the fifth formula, start with the relation c0v = h1v
′, which holds already

in the May E∞-page. Apply d2 to obtain h2
1c0u = h1d2(v

′). We have c0u = h1u
′

(also from the May E∞-page), so h1d2(v
′) = h3

1u
′. It follows that d2(v

′) equals
either h2

1u
′ or h2

1u
′ + τh0d0e

2
0. Because of the relation h0v

′ = τh0e0l, it must be
the latter.

The proofs of the sixth and seventh formulas are essentially the same, using
the relations Ph1 · v′ = h1 · Pv′, P 2h1 · v′ = h1 · P 2v′, h0 · Pv′ = τh0d

2
0k, and

h0 · P 2v′ = τh0d
3
0i. �

Lemma 3.3.6. d2(G3) = h0gr.

Proof. The argument is similar to the proof of Lemma 3.3.3.
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Let α be an element of {Ph1h5} such that η3α is contained in ν{τ2g2}. Now
ǫα is contained in {Ph1h5c0}. Using that η3σ = η2ǫ from Table 34, we get that
η2ǫα = η3σα, which is contained in νσ{τ2g2}. This is zero, since νσ is zero.

This means that Ph3
1h5c0 = h0gr must be zero on the E∞-page of the Adams

spectral sequence, but there are several possible differentials. We cannot have
d2(τgn) = h0gr, since τg · n is the product of two permanent cycles. We cannot
have d3(h2B2) = h0gr, since we will show later in Lemma 3.3.29 that B2 does not
support a d3 differential. We cannot have d4(h

2
0h3g2) = h0gr, d5(h0h3g2) = h0gr,

or d6(h3g2) = h0gr, since we will show later in Lemma 3.3.50 that g2 is a permanent
cycle.

There is just one remaining possibility, so we conclude that d2(G3) = h0gr. �

Lemma 3.3.7. d2(B6) = 0.

Proof. The only other possibility is that d2(B6) equals h1h5c0d0. If this were

the case, then d2(B6) would equal h1h5·c0d0 in the motivic Adams spectral sequence
for the cofiber of τ analyzed in Chapter 5. This is impossible because h4

1 · B6 = 0
while h5

1h5 · c0d0 is non-zero. �

Lemma 3.3.8. d2(i1) = 0.

Proof. The only other possibility is that d2(i1) = h4
1h5e0. However, we will

see below in Lemma 3.3.30 that h4
1h5e0 must survive to the E3-page. �

Lemma 3.3.9. d2(gm) = h0e
2
0g.

Proof. This follows easily from the relation h0gm = h2e0m and the differen-
tial d2(m) = h0e

2
0. �

Lemma 3.3.10.

(1) d2(Q1) = τh2
1x

′.
(2) d2(U) = Ph2

1x
′.

(3) d2(R2) = h0U .
(4) d2(G11) = h0d0x

′.

Proof. First note that d2(R1) = h2
0x

′, which follows from the classical case as
shown in Table 18. Then the relation h2R1 = h1Q1 implies that d2(Q1) = τh2

1x
′.

This establishes the first formula.
Next, there is a relation τh1U = Ph1Q1, which is not hidden in the motivic

May spectral sequence. Therefore, τh1d2(U) equals τPh3
1x

′. It follows that d2(U)
equals Ph2

1x
′. This establishes the second formula.

For the third formula, start with the relation h2
0R2 = τh1U . This implies that

h2
0d2(R2) equals τPh3

1x
′, which equals h3

0U . Therefore, d2(R2) equals h0U .
For the fourth formula, start with the relation h0G11 = h2R2. This implies

that h0d2(G11) equals h0h2U , which equals h2
0d0x

′. Therefore, d2(G11) equals
h0d0x

′. �

Lemma 3.3.11.

(1) d2(H1) = B7.
(2) d2(D4) = h1B6.
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Proof. First note that classically h2
3H1 equals h4A

′ [9]. Therefore, h2
3d2(H1)

equals h0h
2
3A

′+h4d2(A
′) classically, which equals h0h

2
3A

′ because h4d2(A
′) must be

zero. This implies that d2(H1) is non-zero classically. The only motivic possibility
is that d2(H1) equals B7. This establishes the first formula.

Next, consider the relation h2
1H1 = h3D4, which is not hidden in the motivic

May spectral sequence. It follows that h3 · d2(D4) = h2
1B7. The only possibilities

are that d2(D4) equals h1B6 or h1B6 + τh2
1G.

Table 15 gives the hidden extension c0·i1 = h4
1D4. Since d2(i1) = 0 from Lemma

3.3.8, it follows that d2(h
4
1D4) = 0. Then d2(D4) cannot equal h1B6 + τh2

1G since
h4
1 · τh2

1G is non-zero. This establishes the second formula. �

Lemma 3.3.12.

(1) d2(X1) = h2
0B4 + τh1B21.

(2) d2(G21) = h0X3.
(3) d2(τG) = h5c0d0.

Proof. First consider the relation h3R1 = h2
0X1 [9]. Table 18 shows that

d2(R1) = h2
0x

′, so h2
0d2(X1) equals h2

0h3x
′. There is another relation h2

0h3x
′ =

h4
0B4, which is not hidden in the May spectral sequence. It follows that d2(X1)

equals either h2
0B4 or h2

0B4 + τh1B21.
Next consider the relation h2

1X1 = h3Q1 [9]. We know from Lemma 3.3.10
that d2(Q1) equals τh2

1x
′, so h2

1d2(X1) equals τh2
1h3x

′. There is another relation
τh2

1h3x
′ = τh3

1B21, which is not hidden in the May spectral sequence. It follows
that d2(X1) equals either τh1B21 or τh1B21 + h2

0B4.
Now combine the previous two paragraphs to obtain the first formula.
For the second formula, start with the relation h2

0G21 = h3X1 + τe1r from [9].
Then d2(h

2
0G21) equals h3d2(X1) = h2

0h3B4, which equals h3
0X3 [9]. The second

formula follows.
For the third formula, Table 13 gives the relation Ph1 · τG = h2

1X1. The first
formula implies that Ph1 · d2(τG) = τh3

1B21, which equals Ph1h5c0d0 by Table
11. �

Lemma 3.3.13. d2(D1) = h2
0h3g2.

Proof. This proof is due to Z. Xu [22].
Start with the Massey product τG = 〈h1, h0, D1〉. The higher Leibniz rule

[35, Theorem 1.1] then implies that d2(τG) = 〈h1, h0, d2(D1)〉 because there is no
possible indeterminacy. We showed in Lemma 3.3.12 that d2(τG) equals h5c0d0.
This means that d2(D1) is non-zero, and the only possibility is that d2(D1) equals
h2
0h3g2.

In fact, note that h2
0h3g2 = h2

2h5d0 and that h5c0d0 = 〈h1, h0, h
2
2h5d0〉, but this

is not essential for the proof. �

Remark 3.3.14. The proof of Lemma 3.3.13 relies on the Massey product
τG = 〈h1, h0, D1〉. One might attempt to prove this with May’s Convergence
Theorem 2.2.1 and the May differential d2(h2b22b40) = h0D1. However, there
is a later differential d4(∆1h1) = h1h3g2 + h1h5g, so the hypotheses of May’s
Convergence Theorem 2.2.1 are not satisfied.

This bracket can be computed via the lambda algebra [22]. Moreover, it has
been verified by computer calculation.
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Lemma 3.3.15.

(1) d2(D2) = h0Q2.
(2) d2(A) = h0B3.
(3) d2(A

′′) = h0X2.

Proof. There is a classical relation e0D2 = h0h3G21 [9]. Since d2(G21) =
h0X3 by Lemma 3.3.12, it follows that e0d2(D2) equals h

2
0h3X3, which is non-zero.

The only possibilities are that d2(D2) equals either h0Q2 or h5j.
Next, there is a classical relation iD2 = 0 [9]. It follows that id2(D2) equals

Ph0d0D2, which is non-zero. The only possibilities are that d2(D2) equals either
h0Q2 or h0Q2 + h5j.

We obtain a classical differential d2(D2) = h0Q2 by combining the previous
two paragraphs. The same formula must hold motivically. This establishes the
first claim.

For the second claim, use the first claim together with the relations h2D2 = h0A
and h2Q2 = h0B3.

For the third claim, use the second claim together with the relations h0A
′′ =

h2(A+A′) and h2B3 = h0X2. �

Lemma 3.3.16.

(1) d2(B4) = h0B21.
(2) d2(B22) = h2

1B21.

Proof. There is a relation Ph2B4 = iB2, which is not hidden in the May spec-
tral sequence. It follows that Ph2d2(B4) equals Ph0d0B2, which equals Ph0h2B21.
Therefore, d2(B4) equals h0B21. This establishes the first formula.

Now consider the relation h0h2B4 = τh1B22, which is not hidden in the May
spectral sequence. This implies that τh1d2(B22) equals h2

0h2B21, which equals
τh3

1B21. It follows that d2(B22) equals h
2
1B21. �

Lemma 3.3.17. d2(C
′) = 0.

Proof. First note that h1C
′ = τd21 is a permanent cycle. Therefore, h1d2(C

′)
must equal zero, so d2(C

′) does not equal h2
1B3. �

Lemma 3.3.18.

(1) d2(X2) = h2
1B3.

(2) d2(D
′
3) = h1X3.

Proof. Note that h1B3 = h4B1. We will show in Lemma 4.2.48 that {B1}
contains ηθ4.5. As shown in Table 23, {h1B3} intersects the bracket 〈ηθ4.5, 2, σ2〉. In
fact, 〈ηθ4.5, 2, σ2〉 is contained in {h1B3} because all of the possible indeterminacy is
in strictly higher Adams filtration. This shows that θ4.5〈η, 2, σ2〉 intersects {h1B3}.

For the first formula, note that {h3
1B3} intersects 〈η2θ4.5, η, 2〉σ2. This last

expression must be zero for degree reasons. Therefore, h3
1B3 must be killed by

some differential. The only possibility is that d2(h1X2) = h3
1B3, which implies that

d2(X2) = h2
1B3.

For the second formula, note that h2
1X3 = h1c0B3 = h4c0B1. Lemma 4.2.83

says that h4c0 detects ση4. Therefore, h
2
1X3 detects ηση4θ4.5. The Adams filtration

of η4θ4.5 is at least 8; the Adams filtration of ηη4θ4.5 is at least 11; and the Adams
filtration of ηση4θ4.5 is at least 12. Since the Adams filtration of h2

1X3 is 11, it
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follows that h2
1X3 must be hit by some differential. The only possibility is that

d2(h1D
′
3) equals h

2
1X3. �

Lemma 3.3.19.

(1) d2(τG0) = h2C0 + h1h3Q2.
(2) d2(h2G0) = h1C

′′.

Proof. We work in the motivic Adams spectral sequence for the cofiber of τ
of Chapter 5, where we have the relation h1h3 ·D4 = τG0. From Table 39, we know
that d2(D4) = h1 · B6 + Q2. It follows that d2(h1h3 · D4) = h2

1h3 · B6 + h1h3Q2.
Finally, observe that h2

1h3 ·B6 = h3
2 ·B6 = h2C0. This establishes the first formula.

For the second formula, use the first formula together with the relations τ ·
h2G0 = h2 · τG0 and h2

2C0 = τh1C
′′. �

Lemma 3.3.20.

(1) d2(τB5) = τh2
0B23.

(2) d2(D
′
2) = τ2h2

0B23.
(3) d2(P (A+A′)) = τ2h0h2B23.

Proof. Classically, there is a relation iB5 = 0 [9]. Using that d2(i) = Ph0d0,
we get that id2(B5) equals Ph0d0B5 classically, which is non-zero. The only possi-
bility is that there is a motivic differential d2(τB5) = τh2

0B23. Note that the Ph5j
term is eliminated because of the motivic weight. This establishes the first formula.

Classically, there is a relation iD′
2 = 0 [9]. As in the previous paragraph, we

get that id2(D
′
2) equals Ph0d0D

′
2 classically, which is non-zero. However, this time

the motivic weights allow for two possibilities. It follows that d2(D
′
2) equals either

τ2h2
0B23 or τ2h2

0B23 + Ph5j.
We know from [10] that classically, Sq4(q) is non-zero, and Sq5(q) is a mul-

tiple of h1. From [11, VI.1], we have that d2(Sq
4(q)) = h0 Sq

5(q), which is zero.
From the previous two paragraphs, it follows that Sq4(q) must be B5 +D′

2 classi-
cally, and d2(D

′
2) must be h2

0B23. The motivic formula d2(D
′
2) = τ2h2

0B23 follows
immediately. This establishes the second formula.

For the third formula, there is a classical relation iP (A+A′) = 0 [9]. As before,
we get that id2(P (A + A′)) equals P 2h0d0(A + A′), which is non-zero. It follows
that d2(P (A+A′)) equals τ2h0h2B23 or h4

0G21. The relation h2D
′
2 = h0P (A+A′)

and the calculation of d2(D
′
2) in the previous paragraph imply that d2(P (A+A′))

equals τ2h0h2B23. �

Lemma 3.3.21. d2(P
3v) = P 3h2

1u.

Proof. We will show in Lemma 3.3.40 that d3(τ
2P 2d0m) = P 3h1u. Since

h1 · τ2P 2d0m is zero, h1 · P 3h1u must be zero on the E3-page. Therefore, some d2
differential must hit it. The only possibility is that d2(P

3v) = P 3h2
1u. �

Lemma 3.3.22. d2(X3) = 0.

Proof. Start with the relation h1X3 = B3c0. This shows that h1d2(X3) is
zero. Therefore, d2(X3) cannot equal h1c0Q2. �

Lemma 3.3.23. d2(R
′
1) = P 2h0x

′.
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Proof. First, there is a relation h6
0R

′
1 = τP 3u′, as shown in Table 11. Lemma

3.3.5 says that d2(P
3u′) = τP 3h0d

2
0e0, so h6

0d2(R
′
1) equals τ2P 3h0d

2
0e0. There is

another relation τ2P 3h0d
2
0e0 = P 2h7

0x
′, as shown in Table 11. It follows that d2(R

′
1)

equals P 2h0x
′. �

The next lemma computes a few d2 differentials on decomposable elements. In
principle, these differentials are consequences of the previous lemmas. However,
the results of the calculations are unexpected because of some extensions that are
hidden in the motivic May spectral sequence.

Lemma 3.3.24.

(1) d2(e
2
0g) = h7

1B1.
(2) d2(c0e

2
0g) = h8

1B8.
(3) d2(e0v) = h5

1x
′.

(4) d2(e0v
′) = h4

1c0x
′ + τh0d0e

3
0.

Proof. In the first formula, we have d2(e0 · e0g) = h2
1d0 · e0g + e0 · h2

1e
2
0. This

simplifies to h7
1B1, as shown in [14].

The second formula follows immediately from the first formula, using that
B1c0 = h1B8.

For the third formula, start with the relation Ph1 · B1 = h2
1x

′. Since h7
1B1 is

hit by a d2 differential, it follows that h9
1x

′ must also be hit by a d2 differential.
The only possibility is that d2(e0v) = h5

1x
′.

For the fourth formula, h5
1c0x

′ must be hit by the d2 differential, since h5
1x

′

is hit by the d2 differential. The only possibility is that d2(h1e0v
′) = h5

1c0x
′.

Therefore, d2(e0v
′) equals either h4

1c0x
′ or h4

1c0x
′ + τh0d0e

3
0. The extension h0 ·

e0v
′ = τh0d0e0m implies that the second possibility is correct. �

3.3.2. Adams d3 differentials computations.

Lemma 3.3.25. d3(h4c0) = 0.

Proof. The only other possibility is that d3(h4c0) equals c0d0. Table 39 shows
that Pd0 is hit by a differential in the Adams spectral sequence for the cofiber
Cτ of τ . Therefore, {Pd0} must be divisible by τ in the homotopy groups of
S0,0. The only possibility is that c0d0 is a non-zero permanent cycle and that
τ · {c0d0} = {Pd0}. �

Lemma 3.3.26.

(1) d3(τe0g) = c0d
2
0.

(2) d3(τd0v) = Ph1u
′.

(3) d3(τ
2gm) = h1d0u.

(4) d3(τe0g
2) = c0d0e

2
0.

(5) d3(τgv) = h1d0u
′.

(6) d3(τPd0v) = P 2h1u
′.

Proof. For the first formula, there is a classical differential d4(e0g) = Pd20
given in Table 18. Motivically, there must be a differential d4(τ

2e0g) = Pd20. This
shows that τe0g cannot survive to E4.

The arguments for the remaining formulas are similar, using the existence of
the classical differentials d4(d0v) = P 2u, d4(gm) = d20j + h5

0R1, d4(e0g
2) = d40,

d4(gv) = Pd0u, and d4(Pd0v) = P 3u. All of these classical differentials can be
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detected in the Adams spectral sequence for tmf [15], except for the third one,
which is an easy consequence of d4(e0g) = Pd20. �

Lemma 3.3.27.

(1) d3(τPd0e0) = P 2c0d0.
(2) d3(τP

2d0e0) = P 3c0d0.
(3) d3(τP

3d0e0) = P 4c0d0.
(4) d3(τP

4d0e0) = P 5c0d0.

Proof. For the first formula, we know that d3(τd0e0) = Pc0d0 by comparison
to the classical case. Therefore, d3(τPh1d0e0) = P 2h1c0d0. The desired formula
follows immediately. The arguments for the second, third, and fourth formulas are
essentially the same. �

Lemma 3.3.28. d3(Ph5c0) = 0.

Proof. The only other possibility is that d3(Ph5c0) = τd0l + u′. However,
c0(τd0l+ u′) = h1d0u is non-zero, while Ph5c

2
0 = Ph2

1h5d0 = 0 since Ph5d0 = τB8

by Table 11. �

Lemma 3.3.29. d3(B2) = 0.

Proof. First, B21 cannot support a d3 differential, so h2B21 = d0B2 cannot
support a d3 differential. This implies that d3(B2) cannot equal e0r, since d0e0r is
non-zero on the E3-page. �

Lemma 3.3.30.

(1) d3(h1h5e0) = h2
1B1.

(2) d3(h5c0e0) = h2
1B8.

(3) d3(Ph5e0) = h2
1x

′.
(4) d3(h1X1 + τB22) = c0x

′.

Proof. We pass to the motivic Adams spectral sequence for the cofiber of τ ,

as discussed in Chapter 5. Note that h6
1h5 · h2

1e0 = τe0g
2 in the E2-page for the

cofiber of τ . Also, h6
1 · h3

1B1 = c0d0e
2
0 in the E3-page for the cofiber of τ .

Now d3(τe0g
2) = c0d0e

2
0 on the E3-page for S0,0, as shown in Lemma 3.3.26.

It follows that d3(h5 · h2
1e0) = h3

1B1 on the E3-page for the cofiber of τ , and then
d3(h

2
1h5e0) = h3

1B1 for S0,0 as well. This establishes the first formula.
After multiplying by h1, the second and third formulas follow easily from the

first.
For the fourth formula, start with the relation Ph5c0e0 = h3

1X1 from Table 13.
Multiply the third formula by c0 to obtain the desired formula. �

Lemma 3.3.31.

(1) d3(gr) = τh1d0e
2
0.

(2) d3(m
2) = τh1e

4
0.

Proof. We have d3(τgr) = τ2h1d0e
2
0 because d3(r) = τh1d

2
0. The first formula

follows immediately.
For the second formula, multiply the first formula by τg and use multiplicative

relations from [9] to obtain that d3(τm
2) = τ2h1e

4
0. The second formula follows

immediately. �
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Lemma 3.3.32. d3(τ
2G) = τB8.

Proof. From Table 25, the product τǫκ belongs to {Pd0} in π22,12. Since
h1h5c0d0 = 0 in the E∞-page by Lemma 3.3.12, we know that η5ǫκ is either zero
or represented in E∞ in higher filtration. It follows that τη5ǫκ = η5{Pd0} is
either zero or represented in E∞ in higher filtration. Now Ph1h5d0 = τh1B8 by
Table 11, so τh1B8 must be hit by some differential. The only possibility is that
d3(τ

2G) = τB8. �

Lemma 3.3.33.

(1) d3(e1g) = h1gt.
(2) d3(B6) = τh2gn.
(3) d3(gt) = 0.

Proof. Start with the differential d3(e1) = h1t from Table 18. Then d3(τe1g)
equals τh1tg, which implies the first formula. The second formula follows easily,
using that τe1g = h2B6 from Table 14.

For the third formula, we know that d3(τgt) = 0 because d3(τg) = 0 and
d3(t) = 0. Therefore, d3(gt) cannot equal τh1e

2
0g. �

Lemma 3.3.34.

(1) d3(h5i) = h0x
′.

(2) d3(h5j) = h2x
′.

Proof. We proved in Lemma 3.3.30 that d3(h5c0e0) = h1B8. This implies

that d3(h5c0e0) = h2
1B8 in the motivic Adams spectral sequence for the cofiber of

τ , which is discussed in Chapter 5. The hidden extensions h0 · h5c0e0 = h5j and

h0 · h2
1B8 = h2x

′ then imply that d3(h5j) = h2x
′ for the cofiber of τ , which means

that the same formula must hold for S0,0. This establishes the second formula.
The first formula now follows easily, using the relation h2h5i = h0h5j. �

Lemma 3.3.35. d3(B3) = 0.

Proof. The only other possibility is that d3(B3) = B21. On the E3-page,
h2B3 is zero while h2B21 is non-zero. �

Lemma 3.3.36. d3(τg
3) = h6

1B8.

Proof. Start with the hidden extension τη2 ·{τg2} = {d30}, which follows from
the analogous classical extension given in Table 24. This implies that τη2{τg2}κ =
{τd20e20}. In particular, η2{τ2g3} must be non-zero.

Either τg3 or τg3+h4
1h5c0e0 survives the motivic Adams spectral sequence. In

the first case, there is no possible non-zero value for a hidden extension of the form
η2{τg3}. The only remaining possibility is that τg3 + h4

1h5c0e0 survives, in which
case η2{τg3 + h4

1h5c0e0} = {h6
1h5c0e0} is a non-hidden extension. �

Lemma 3.3.37.

(1) d3(C0) = nr.
(2) d3(E1) = nr.
(3) d3(Q2) = τ2gt.
(4) d3(C

′′) = nm.
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Proof. There are relations C0 = h2
2 · B6 and nr = h2

2 · τh2gn in the motivic
Adams spectral sequence for the cofiber of τ , as discussed in Chapter 5. From
Lemma 3.3.33, we know that d3(B6) = τh2gn. The first formula now follows easily.

For the second formula, note that gE1 = gC0 classically, and that gnr is non-
zero on the E3-page [9]. We already know that d3(gC0) = gnr classically, so it
follows that d3(E1) also equals nr classically. The motivic formula is an immediate
consequence.

For the third formula, there are classical relations wQ2 = g2C0 and wgt = g2nr
[9]. We already know that d3(g

2C0) = g2nr, so it follows that wd3(Q2) = w · gt.
The desired formula follows immediately.

For the fourth formula, there is a classical relation gC′′ = rQ2 [9]. The d3
differentials on r and Q2 imply that d3(gC

′′) = grt classically, which equals gnm
[9]. The desired formula follows immediately. �

Lemma 3.3.38.

(1) d3(τh1X1) = 0.
(2) d3(R) = 0.

Proof. We have classical relations h1rX1 = 0 and h2
1d

2
0X1 = 0 [9]. Therefore,

rd3(h1X1) = 0 classically. On the other hand, rc0x
′ is non-zero on the E3-page [9].

This shows that d3(h1X1) cannot equal c0x
′ classically, which establishes the first

formula.
An identical argument works for the second formula, using that rR = 0 and

h1d
2
0R = 0. �

Lemma 3.3.39. d3(τgw) = h3
1c0x

′.

Proof. There is a hidden extension η · {τw} = {τd0l+u′}, which follows from
the analogous classical extension given in Table 24. This implies that η{τ2gw} =
{τ2d0e0m}. If τgw were a permanent cycle, then η · {τgw} would be a non-zero
hidden extension. But there is no possible value for this hidden extension. �

Lemma 3.3.40. d3(τ
2P 2d0m) = P 3h1u.

Proof. Note that P 2d0m supports a d4 differential in the Adams spectral se-
quence for tmf [15]. However, P 2d0m cannot support a d4 differential in the classical
Adams spectral sequence for the sphere. Therefore, P 2d0m cannot surive to the
E4-page. The only possibility is that there is a classical differential d3(P

2d0m) =
P 3h1u, from which the motivic analogue follows immediately. �

Lemma 3.3.41. d3(τ
2B5 +D′

2) = 0.

Proof. Classically, (B5+D′
2)d0 is zero while d0gw is non-zero on the E3-page

[9]. Therefore d3(τ
2B5 +D′

2) cannot equal τ
3gw. �

Lemma 3.3.42. d3(X3) = 0.

Proof. The only other possibility is that d3(X3) equals τnm. However, gnm
is non-zero on the classical E3-page, while gX3 is zero [9]. �

Lemma 3.3.43. d3(h2B23) = 0.

Proof. This follows easily from the facts that d3(τB23) = 0 and that h2 ·
τB23 = τ · h2B23. �
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Lemma 3.3.44.

(1) d3(h2B5) = h1B8d0.
(2) d3(τe0x

′) = Pc0x
′.

Proof. We will show in Lemma 3.3.48 that d4(τh2B5) = h1d0x
′. This means

that h2B5 cannot survive to E4. The only possibility is that d3(h2B5) = h1B8d0.
This establishes the first formula.

The proof of the second formula is similar. We will show in Lemma 3.3.48
that d4(τ

2e0x
′) = P 2x′, so τe0x

′ cannot survive to E4. The only possibility is that
d3(τe0x

′) = Pc0x
′. �

3.3.3. Adams d4 differentials computations.

Lemma 3.3.45. d4(C) = 0.

Proof. The other possibility is that d4(C) equals Ph2
1h5c0. We will show that

Ph2
1h5c0 survives and is non-zero in the E∞-page.
Let α be an element of {Ph1h5c0}. From Table 23, the bracket 〈η2, α, ǫ〉 con-

tains the element {Ph3
1h5e0}. In order to compute this bracket, we need the relation

c0 ·G3 = Ph3
1h5e0 from Table 15. Note that the bracket has indeterminacy gener-

ated by η2{D11}.
If Ph2

1h5c0 were hit by a differential, then ηα would be zero. Then η〈η, α, ǫ〉
would equal 〈η2, α, ǫ〉. But {Ph3

1h5e0} cannot be divisible by η. By contradiction,
Ph2

1h5c0 cannot be hit by a differential. �

Lemma 3.3.46.

(1) d4(h0h5i) = 0.
(2) d4(C11) = 0.

Proof. The only non-zero possibility for d4(h0h5i) is τd0u. However, d0u
survives to a non-zero homotopy class in the Adams spectral sequence for tmf [15].
This implies that τd0u survives to a non-zero homotopy class in the motivic Adams
spectral sequence. This establishes the first formula.

The proof of the second formula is similar. The only non-zero possibility for
d4(C11) is τ

3d0e0m, but d0e0m survives to a non-zero homotopy class in the Adams
spectral sequence for tmf [15]. �

Lemma 3.3.47. d4(τ
2e0g

2) = d40.

Proof. First note that d4(τ
2e0g) = Pd20, which follows from its classical ana-

logue given in Table 18. Multiply this formula by h1d
2
0 to obtain that d4(τ

2h1d0e
3
0)

equals Ph1d
4
0. Finally, note that τ

2h1d0e
3
0 equals Ph1 ·τ2e0g2. The desired formula

follows. �

Lemma 3.3.48.

(1) d4(τ
2h1B22) = Ph1x

′.
(2) d4(τh2B5) = h1d0x

′.
(3) d4(τ

2e0x
′) = P 2x′.

Proof. In the classical situation, d0 · Ph1x
′ is non-zero on the E4-page, and

d0 · h1B22 = (d0e0 + h7
0h5) · B1 [9]. Using that d4(d0e0 + h7

0h5) = P 2d0, it follows
that there is a classical differential d4(h1B22) = Ph1x

′. The motivic differential
follows immediately.



3.3. ADAMS DIFFERENTIALS COMPUTATIONS 45

The arguments for the second and third differentials are similar. For the second,
use that Pd0 · h1d0x

′ is non-zero on the E4-page; Pd0 · h2B5 = h1x
′ · e0g [9]; and

d4(e0g) = Pd20 classically.
For the third formula, use that h1d0 · P 2x′ is non-zero on the E4-page; h1d0 ·

e0x
′ = Pd0 ·h1B22 [9]; and d4(h1B22) = Ph1x

′ classically from the first part of the
lemma. �

Lemma 3.3.49. d4(τ
2m2) = d20z.

Proof. First note that d4(τ
2gr) = ij, which follows by comparison to tmf [15].

Multiply by τg to obtain that d4(τ
3m2) = τd20z, using multiplicative relations from

[9]. The desired formula follows. �

3.3.4. Adams d5 differentials computations.

Lemma 3.3.50. d5(g2) = 0.

Proof. The only non-zero possibility is that d5(g2) equals τ
2h2g

2. However,
e0 · g2 is zero in the E5-page, while e0 · τ2h2g

2 is non-zero in the E5-page. �

Lemma 3.3.51. d5(B2) = 0.

Proof. The only other possibility is that d5(B2) equals h1u
′. Recall from

Table 24 that there is a classical hidden extension η{d0l} = {Pu}. This implies
that η{τd0l+u′} is non-zero motivically. Therefore, h1u

′ cannot be zero in E∞. �

Our next goal is to show that d5(τPh5e0) = τd0z. We will need a few prelimi-
nary lemmas. This approach follows [25, Theorem 2.2], but we have corrected and
clarified the details in that argument.

Lemma 3.3.52. 〈{q}, 2, 8σ〉 = {0, 2τκ2}.

Proof. Table 16 shows that 〈q, h0, h
3
0h3〉 equals τh1u. Then Moss’s Conver-

gence Theorem 3.1.1 implies that 〈{q}, 2, 8σ〉 contains {τh1u}. Table 27 shows that
{τh1u} equals 2τκ2. Finally, use Lemma 4.2.87 to show that 2τκ2 = τǫ{q} is in
the indeterminacy of the bracket. �

Lemma 3.3.53. The bracket 〈2, 8σ, 2, σ2〉 contains τνκ.

Proof. The subbracket 〈2, 8σ, 2〉 is strictly zero, as shown in Table 23. We
will next show that the subbracket 〈8σ, 2, σ2〉 is also strictly zero. First, the shuffle

〈8σ, 2, σ2〉η = 8σ〈2, σ2, η〉
implies that the subbracket is annihilated by η. This rules out Pd0. Moss’s Con-
vergence Theorem 3.1.1 with the Adams differential d2(h4) = h0h

2
3 implies that the

subbracket is detected in Adams filtration strictly greater than 5. This rules out
τh2c1. The only remaining possibility is that the subbracket contains zero, and
there is no possible indeterminacy.

We will work in the motivic Adams spectral sequence for the cofiber C2 of 2.
We write E2(C2) for ExtA(H

∗,∗(C2),M2), i.e., the E2-page of the motivic Adams
spectral sequence for C2. The cofiber sequence

S0,0 2 //S0,0 j
//C2

q
//S1,0
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induces a map q∗ : E2(C2) → Σ1,0E2. Let h3
0h3 be an element of E2(C2) such that

q∗(h3
0h3) equals h3

0h3, and let {h3
0h3} be the corresponding element in π8,4(C2).

Then j∗〈2, 8σ, 2, σ2〉 equals 〈{h3
0h3}, 2, σ2〉 in π23,12(C2) by Remark 3.1.8.

Because of the Adams differential d2(h4) = h0h
2
3, we know that 〈{h3

0h3}, 2, σ2〉
is detected by h4 · h3

0h3 in E∞(C2). Here we are using a slight generalization of
Moss’s Convergence Theorem 3.1.1, in which one considers Toda brackets of maps
between different objects (see [35] for the classical case).

Finally, we need to compute h4 ·h3
0h3 in E2(C2). This equals j∗〈h4, h

3
0h3, h0〉 by

Remark 3.1.7 (see also Proposition 5.0.1 for an analogous result). Table 16 shows
that 〈h4, h

3
0h3, h0〉 equals τ2h2g. �

Lemma 3.3.54. 〈ǫ, 2, σ2〉 = {ση4, ση4 + 4νκ}.
Proof. Using the Adams differential d2(h4) = h0h

2
3 and Moss’s Convergence

Theorem 3.1.1, we know that 〈ǫ, 2, σ2〉 intersects {h4c0}.
Lemma 4.2.83 shows that ση4 is contained in {h4c0}. The indeterminacy of

{h4c0} is generated by τh2g, τh0h2g, and Ph1d0. By Lemma 4.2.17, the indeter-
minacy consists of multiples of νκ. Therefore, {h4c0} consists of elements of the
form ση4 + kνκ for 0 ≤ k ≤ 7.

Note that 〈ǫ, 2, σ2〉2 equals ǫ〈2, σ2, 2〉, which is zero because 〈2, σ2, 2〉 contains
0 by Table 23. Therefore, if ση4 + kνκ belongs to 〈ǫ, 2, σ2〉, then k equals 0 or 4.

We now know that either ση4 or ση4+4νκ belongs to 〈σ2, 2, ǫ〉. But τηǫκ equals
4νκ by Lemma 4.2.17 and the hidden τ extension from h1c0d0 to Ph1d0 given in
Table 25, so 4νκ belongs to the indeterminacy of the bracket. It follows that both
ση4 and ση4 + 4νκ belong to the bracket. �

Lemma 3.3.55. d5(τPh5e0) = τd0z.

Proof. By Lemma 4.2.55, τηκκ2 is detected by d0z. On the other hand,
ν{q}κ equals τηκκ2, by Table 24. We will show that τν{q}κ must be zero. It will
follow that some differential must hit τd0z, and there is just one possibility.

From Lemma 3.3.53, we know that τν{q}κ is contained in {q}〈2, 8σ, 2, σ2〉,
which is contained in 〈α, 2, σ2〉 for some element α in 〈{q}, 2, 8σ〉. By Lemma
3.3.52, the two possible values for α are 0 and 2τκ2.

First suppose that α is zero. Then τν{q}κ is contained in 〈0, 2, σ2〉, which is
strictly zero.

Next suppose that α is 2τκ2. By Lemma 4.2.87, we know that ǫ{q} equals
{h1u}, which equals 2κ2 by Table 27. Therefore, the element τν{q}κ is contained
in 〈τǫ{q}, 2, σ2〉. This bracket has no indeterminacy, so it equals τ{q}〈ǫ, 2, σ2〉.
Using that 4νκ · τ{q} is zero, Lemma 3.3.54 implies that τν{q}κ equals ση4 · τ{q}.

We will show in the proof of Lemma 4.2.87 that σ{q} equals ν{t}. So ση4 ·τ{q}
equals τνη4{t}, which is zero because νη4 is zero. �

Lemma 3.3.56. d5(r1) = 0

Proof. The only other possibility is that d5(r1) equals h2B22. However, h2r1
is zero, while h2

2B22 is non-zero in the E5-page. �

Lemma 3.3.57. d5(τh2C
′) = 0.

Proof. We do not know whether d4(C
′) equals h2B21, so there are two situ-

ations to consider (see Proposition 3.2.15 and Remark 3.2.17).
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In the first case, assume that d4(C
′) = 0. Then C′ survives to the E5-page,

and d5(C
′) must equal zero because there are no other possibilities. It follows that

d5(τh2C
′) = 0.

In the second case, assume that d4(C
′) equals h2B21 Then d4(h2C

′) = h0h2B22,
but τh2C

′ survives to the E5-page.
The only possible non-zero value for d5(τh2C

′) is τ4gw. However, gw survives
to a non-zero homotopy class in the classical Adams spectral sequence for tmf [15].
Therefore, gw survives to a non-zero homotopy class in the classical Adams spectral
sequence for S0. This implies that τ4gw cannot be hit by a motivic differential. �

Our next goal is to show that the element τ3d20e
2
0 is hit by some differential.

We include it in this section because it is likely hit by d5(τh
2
1X1).

Lemma 3.3.58. The element τ3d20e
2
0 is hit by some differential.

Proof. Classically, η2κ2 is detected by d30 because of the hidden η extension
from g2 to z and from z to d30 shown in Table 24. This implies that motivically,
τ2η2κ3 is detected by τ3d20e

2
0. Therefore, we need to show that τ2η2κ3 is zero.

Compute that 〈κ, 2ν, ν〉 equals {ηκ, ηκ+νν4}, using Moss’s Convergence Theo-
rem 3.1.1 and the Adams differential d2(f0) = h2

0e0. It follows that 〈κ, 2, ν2〉 equals
either ηκ or ηκ + νν4. Using Moss’s Convergence Theorem 3.1.1 and the Adams
differential d3(h0h4) = h0d0, we get that 〈κ, 2, ν2〉 is detected in Adams filtration
strictly greater than 4. Therefore, 〈κ, 2, ν2〉 equals ηκ.

This means that τ2η2κ3 equals τ2ηκ2〈κ, 2, ν2〉. We showed in the proof of
Lemma 3.3.55 that τ2ηκκ2 is zero. Therefore, τ2η2κ3 is contained in 〈0, 2, ν2〉,
which is strictly zero. �





CHAPTER 4

Hidden extensions in the Adams spectral sequence

The main goal of this chapter is to compute hidden extensions in the Adams
spectral sequence. We rely on the computation of the Adams E∞-page carried out
in Chapter 3. We will borrow results from the classical Adams spectral sequence
where necessary. Table 24 summarizes previously established hidden extensions in
the classical Adams spectral sequence. The table gives specific references to proofs.
The main sources are [3], [4], and [27].

The Adams E∞ chart in [19] is an essential companion to this chapter.

Outline. Section 4.1 describes the main points in establishing the hidden ex-
tensions. We postpone the numerous technical proofs to Section 4.2.

Chapter 7 contains a series of tables that summarize the essential computational
facts in a concise form. Tables 25, 27, 29, and 31 list the hidden extensions by τ , 2,
η, and ν. The fourth columns of these tables refer to one argument that establishes
each hidden extension, which is not necessarily the first known proof. This takes
one of the following forms:

(1) An explicit proof given elsewhere in this manuscript.
(2) “image of J” means that the hidden extension is easily deducible from the

structure of the image of J [2].
(3) “cofiber of τ” means that the hidden extension is easily deduced from

the structure of the homotopy groups of the cofiber of τ , as described in
Chapter 5.

(4) “Table 24” means that the hidden extension is easily deduced from an
analogous classical hidden extension.

Tables 33 and 34 give some additional miscellaneous hidden extensions, again with
references to a proof.

Tables 26, 28, 30, and 32 give partial information about hidden extensions in
stems 59 through 70. These results should be taken as tentative, since the analysis
of Adams differentials in this range is incomplete.

4.1. Hidden Adams extensions

4.1.1. The definition of a hidden extension. First we will be precise about
the exact nature of a hidden extension. The most naive notion of a hidden extension
is a non-zero product αβ in π∗,∗ such that α and β are detected in the E∞-page
by a and b respectively and ab = 0 in the E∞-page. However, this notion is too
general, as the following example illustrates.

Example 4.1.1. Consider {h2
3} in π14,8, which consists of the two elements σ2

and σ2 + κ. We have h1h
2
3 = 0 in E∞, but η(σ2 + κ) is non-zero in π15,9.

49
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This type of situation is not usually considered a hidden extension. Because
of the non-zero product h1d0 in E∞, one can see immediately that there exists an
element β of {h2

3} such that ηβ is non-zero.
However, it is not immediately clear whether β is σ2 or σ2 + κ. Distinguishing

these possibilities requires further analysis. In fact, ησ2 = 0 [42].

In order to avoid an abundance of not very interesting situations similar to
Example 4.1.1, we make the following formal definition of a hidden extension.

Definition 4.1.2. Let α be an element of π∗,∗ that is detected by an element
a of the E∞-page of the motivic Adams spectral sequence. A hidden extension by
α is a pair of elements b and c of E∞ such that:

(1) ab = 0 in the E∞-page.
(2) There exists an element β of {b} such that αβ is contained in {c}.
(3) If there exists an element β′ of {b′} such that αβ′ is contained in {c}, then

the Adams filtration of b′ is less than or equal to the Adams filtration of
b.

In other words, b is the element of highest filtration such that there is an α
multiplication from {b} into {c}. Consider the situation of Example 4.1.1. Because
η{d0} is contained in {h1d0} and the Adams filtration of d0 is greater than the
Adams filtration of h2

3, condition (3) of Definition 4.1.2 implies that there is not a
hidden η extension from h2

3 to h1d0.

Remark 4.1.3. Condition (3) of Definition 4.1.2 implies that b′ is not divisible
by a in E∞. This allows one to easily reduce the number of cases that must be
checked when searching for hidden extensions.

Lemma 4.1.4. Let α be an element of π∗,∗. Let b be an element of the E∞-page
of the motivic Adams spectral sequence, and suppose that there exists an element β
of {b} such that αβ is zero. Then there is no hidden α extension on b.

Proof. Suppose that there exists some element β′ of {b} such that αβ′ is in
{c}. Then α(β + β′) is also in {c}, and the Adams filtration of β + β′ is strictly
greater than the Adams filtration of β′. This implies that there is not a hidden α
extension from b to c. �

Lemma 4.1.5. Let α be an element of π∗,∗ that is detected by an element a
of the E∞-page of the motivic Adams spectral sequence. Suppose that b and c are
elements of E∞ such that:

(1) ab = 0 in the E∞-page.
(2) α{b} is contained in {c}.

Then there is a hidden α extension from b to c.

Proof. Let β be any element of {b}, so αβ is contained in {c}. Let b′ be an
element of the E∞-page, and let β′ in {b′} be an element such that αβ′ is also
contained in {c}.

Since both αβ and αβ′ are contained in {c}, their sum α(β+ β′) is detected in
Adams filtration strictly greater than the Adams filtration of c. Therefore, β + β′

is not an element of {b}, which means that the Adams filtration of b′ must be less
than or equal to the Adams filtration of b. �
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Example 4.1.6. The conditions of Lemma 4.1.5 are not quite equivalent to the
conditions of Definition 4.1.2. The difference is well illustrated by an example. We
will show in Lemma 4.2.48 that there is a hidden η extension from h2

3h5 to B1,
so there exists an element β of {h2

3h5} such that ηβ is contained in {B1}. Now let
β′ be an element of {h5d0}, so β + β′ is an element of {h2

3h5} because the Adams
filtration of h5d0 is greater than the Adams filtration of h2

3h5.
Note that ηβ′ is contained in {h1h5d0}. The Adams filtration of h1h5d0 is less

than the Adams filtration of B1, so η(β+β′) is contained in {h1h5d0}. This shows
that the conditions of Lemma 4.1.5 are not satisfied.

The difference between Definition 4.1.2 and Lemma 4.1.5 occurs precisely when
there are “crossing” α extensions. In the chart of the E∞-page in [19], the straight
line from h2

3h5 to B1 crosses the straight line from h5d0 to h1h5d0.

Example 4.1.7. Through the 59-stem, the issue of “crossing” extensions occurs
in only two other places. First, we will show in Lemma 4.2.73 that there is a hidden
extension from h2

3h5 to B2. In the E∞ chart in [19], the straight line from h2
3h5 to

B2 crosses the straight line from h5d0 to h2h5d0. Therefore there exists an element
β of {h2

3h5} such that νβ is not contained in {B2}.
Second, we will show in Lemma 4.2.46 that there is a hidden extension from

h1f1 to τh2c1g. In the E∞ chart in [19], the straight line from h1f1 to τh2c1g
crosses the straight line from h2

1h5c0 to h3
1h5c0. Therefore, there exists an element

β of {h1f1} such that ηβ is not contained in {τh2c1g}.

We will thoroughly explore hidden extensions in the sense of Definition 4.1.2.
However, such hidden extensions do not completely determine the multiplicative
structure of π∗,∗. For example, the relation ησ2 = 0 discussed in Example 4.1.1
does not fit into this formal framework.

Something even more complicated occurs with the relation h3
2 + h2

1h3 = 0 in
the E∞-page. There is a hidden relation here, in the sense that ν3 + η2σ does not
equal zero; rather, it equals ηǫ [42]. We do not attempt to systematically address
these types of compound relations.

4.1.2. Hidden Adams τ extensions. For hidden τ extensions, the key tool
is the homotopy of the cofiber Cτ of τ . This calculation is fully explored in Chapter
5. Let α be an element of π∗,∗. Then α maps to zero under the inclusion S0,0 → Cτ
of the bottom cell if and only if α is divisible by τ in π∗,∗.

Proposition 4.1.8. Table 25 shows some hidden τ extensions in π∗,∗, through
the 59-stem. These are the only hidden τ extensions in this range, with the possible
exceptions that there might be hidden τ extensions:

(1) from h1i1 to h1B8.
(2) from j1 to B21.

Proof. Table 25 cites one possible argument for each hidden τ extension.
These arguments break into two types:

(1) In many cases, we know from Chapter 5 that an element of {b′} maps to
zero in π∗,∗(Cτ), where Cτ is the cofiber of τ . Therefore, this element of
{b′} is divisible by τ in π∗,∗, which implies that there must be a hidden τ
extension. Usually there is just one possible hidden τ extension.

(2) Other more difficult cases are proved in Section 4.2.1.
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For many of the possible hidden τ extensions from b to b′, we know from Chapter
5 that none of the elements of {b′} map to zero in π∗,∗(Cτ). Therefore, none of the
elements of {b′} is divisible by τ , so none of these possible hidden τ extensions are
actual hidden τ extensions. A number of more difficult non-existence proofs are
given in Section 4.2.1. �

In order to maintain the flow of the narrative, we have collected the technical
computations of hidden extensions in Section 4.2.1.

Remark 4.1.9. Table 26 shows some additional hidden τ extensions in stems
60 through 69. These results are tentative because the analysis of the E∞-page is
incomplete in this range. Tentative proofs in Section 4.2.1 are clearly indicated.

Remark 4.1.10. We show in Lemma 4.2.5 that there is no hidden τ extension
on h2

1g2. This contradicts the claim in [24] that there is a classical hidden η ex-
tension from h1g2 to N . We do not understand the source of this discrepancy. See
also Remark 4.1.22.

Remark 4.1.11. There may be a hidden τ extension from h1i1 to h1B8. This
extension occurs if and only if d3(h1i1) equals h1B8 in the Adams spectral sequence
for the cofiber of τ (see Proposition 5.2.11). If this extension occurs, then it implies
that there is a hidden relation ν{C}+ τ{i1} = {B8}.

Remark 4.1.12. We show in Lemma 4.2.7 that there is no hidden τ extension
on D11. This proof is different in spirit from the rest of this manuscript because
it uses specific calculations in the classical Adams-Novikov spectral sequence. This
is especially relevant since Chapter 6 uses the calculations here to derive Adams-
Novikov calculations, so there is some danger of circular arguments. We would
prefer to have a proof that is internal to the motivic Adams spectral sequence.

Remark 4.1.13. Remark 3.2.17 explains that the following three claims are
equivalent:

(1) there is a hidden τ extension from j1 to B21.
(2) d4(j1) = B21 in the motivic Adams spectral sequence for the cofiber of τ .

(3) d4(C
′) = h2B21 in the motivic Adams spectral sequence for the sphere.

4.1.3. Hidden Adams 2 extensions.

Proposition 4.1.14. Table 27 shows some hidden 2 extensions in π∗,∗, through
the 59-stem. These are the only hidden 2 extensions in this range, with the possible
exceptions that there might be hidden 2 extensions:

(1) from h0h3g2 to τgn.
(2) from j1 to τ2c1g

2.

Proof. Table 27 cites one possible argument (but not necessarily the earli-
est published result) for each hidden 2 extension. One extension follows from its
classical analogue given in Table 24. The remaining cases are proved in Section
4.2.2.

A number of non-existence proofs are given in Section 4.2.2. �

In order to maintain the flow of the narrative, we have collected the technical
computations of various hidden 2 extensions in Section 4.2.2.
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Remark 4.1.15. Table 28 shows some additional hidden 2 extensions in stems
60 through 69. These results are tentative because the analysis of the E∞-page is
incomplete in this range. Tentative proofs in Section 4.2.2 are clearly indicated.

Remark 4.1.16. Recall from Table 24 that there is a hidden 4 extension from
h2
3h5 to h0h5d0. It is tempting to consider this as a hidden 2 extension from

h0h
2
3h5 to h0h5d0, but this is not consistent with Definition 4.1.2.

Remark 4.1.17. There is a possible hidden 2 extension from h0h3g2 to τgn.
We show in Lemma 4.2.31 that this hidden extension occurs if and only if there is a
hidden ν extension from h2h5d0 to τgn. Lemma 4.2.31 is inconsistent with results
of [24], which indicates the hidden ν extension but not the hidden 2 extension. We
do not understand the source of this discrepancy.

Remark 4.1.18. We show in Lemma 4.2.35 that there is a hidden 2 extension
from h0h5i to τ3e20g. This proof is different in spirit from the rest of this manu-
script because it uses specific calculations in the classical Adams-Novikov spectral
sequence. This is especially relevant since Chapter 6 uses the calculations here to
derive Adams-Novikov calculations, so there is some danger of circular arguments.
We would prefer to have a proof that is internal to the motivic Adams spectral
sequence.

We point out one other remarkable property of this hidden extension. Up to
the 59-stem, it is the only example of a 2 extension that is hidden in both the
Adams spectral sequence and the Adams-Novikov spectral sequence. (There are
several η extensions and ν extensions that are hidden in both spectral sequences.)

4.1.4. Hidden Adams η extensions.

Proposition 4.1.19. Table 29 shows some hidden η extensions in π∗,∗, through
the 59-stem. These are the only hidden η extensions in this range, with the possible
exceptions that there might be a hidden η extension from τh1Q2 to τB21.

Proof. Table 29 cites one possible argument (but not necessarily the earliest
published result) for each hidden η extension. These arguments break into three
types:

(1) Some hidden extensions follow from the calculation of the image of J [2].

(2) Some hidden extensions follow from their classical analogues given in Table
24.

(3) The remaining more difficult cases are proved in Section 4.2.3.

A number of non-existence proofs are given in Section 4.2.3. �

In order to maintain the flow of the narrative, we collect the technical results
establishing various hidden η extensions in Section 4.2.3.

Remark 4.1.20. Table 30 shows some additional hidden η extensions in stems
60 through 69. These results are tentative because the analysis of the E∞-page is
incomplete in this range. Tentative proofs in Section 4.2.3 are clearly indicated.

Remark 4.1.21. We show in Lemma 4.2.47 that there is no hidden η extension
on τh1g2. This contradicts the claim in [24] that there is a classical hidden η
extension from h1g2 to N . We do not understand the source of this discrepancy.
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Remark 4.1.22. The element η2{g2} is considered in [3, Lemma 4.3], where it
is shown to be equal to σ2{d1}. Our results indicate that both are zero classically;
this is consistent with a careful reading of [3, Lemma 4.3].

Motivically, η2{g2} = σ2{d1} is non-zero because they are detected by h2
1g2 =

h2
3d1. However, Lemma 4.2.47 implies that τη2{g2} and τσ2{d1} are both zero.

Remark 4.1.23. We show in Lemma 4.2.52 that there is no hidden η extension
on C. This contradicts the claim in [24] that there is a classical hidden η extension
from C to gn. We do not understand the source of this discrepancy.

4.1.5. Hidden Adams ν extensions.

Proposition 4.1.24. Table 31 shows some hidden ν extensions in π∗,∗, through
the 59-stem. These are the only hidden ν extensions in this range, with the possible
exceptions that there might be hidden ν extensions:

(1) from h2h5d0 to τgn.
(2) from i1 to gt.

Proof. Table 31 cites one possible argument (but not necessarily the earliest
published result) for each hidden ν extension. These arguments break into two
types:

(1) Some hidden extensions follow from their classical analogues given in Table
24.

(2) The remaining more difficult cases are proved in Section 4.2.4.

A number of non-existence proofs are given in Section 4.2.4. �

In order to maintain the flow of the narrative, we have collected the technical
results establishing various hidden ν extensions in Section 4.2.4.

Remark 4.1.25. Table 32 shows some additional hidden ν extensions in stems
60 through 69. These results are tentative because the analysis of the E∞-page is
incomplete in this range. Tentative proofs in Section 4.2.4 are clearly indicated.

Remark 4.1.26. We draw the reader’s attention to the curious hidden ν ex-
tensions on h2c1, h2c1g, and N . These are “exotic” extensions that have no
classical analogues. The hidden extension on N contradicts the claim in [24] that
there is a hidden η extension from h1g2 to N . In addition to the proof provided in
Lemma 4.2.63, one can also establish these hidden extensions by computing in the
motivic Adams spectral sequence for the cofiber of ν. One can show that {h2

1h4c0},
{Ph2

1h5c0}, and {h6
1h5c0} all map to zero in the cofiber of ν, which implies that

they are divisible by ν. indexh4c0@h4c0

Remark 4.1.27. There is a possible hidden ν extension from h2h5d0 to τgn.
We show in Lemma 4.2.31 that this hidden extension occurs if and only if there is a
hidden 2 extension from h0h3g2 to τgn. Lemma 4.2.31 is inconsistent with results
of [24], which indicates the hidden ν extension but not the hidden 2 extension. We
do not understand the source of this discrepancy.

4.2. Hidden Adams extensions computations

In this section, we collect the technical computations that establish the hidden
extensions discussed in Section 4.1.
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4.2.1. Hidden Adams τ extensions computations.

Lemma 4.2.1.

(1) There is a hidden τ extension from h1h3g to d20.
(2) There is a hidden τ extension from h1h3g

2 to d0e
2
0.

Proof. We will show in Lemma 4.2.85 that ǫκ = κ2 in π28,16. Therefore, κ2

is contained in κ〈2, ν2, η〉.
Let Cτ be the cofiber of τ , whose homotopy is studied thoroughly in Chapter

5. Let κCτ be the image of κ in π20,11(Cτ). Then the image of κ2 in π28,16(Cτ)
is contained in κCτ 〈2, ν2, η〉. Because κCτ · 2 is zero, we can shuffle to obtain
〈κCτ , 2, ν

2〉η.
Now π27,15(Cτ) consists only of the element {P 3h3

1}. However, this element
cannot belong to 〈κCτ , 2, ν

2〉 because {P 3h3
1} supports infinitely many multiplica-

tions by η, while the elements in the bracket cannot. Therefore, 〈κCτ , 2, ν
2〉 is zero,

and the image of κ2 in π28,16(Cτ) is zero.
Therefore, κ2 in π28,14 is divisible by τ , and there is just one possible hidden τ

extension. This completes the proof of the first claim.
The proof for the second claim is analogous, using that ǫ{τg2} = κ{e20} from

Lemma 4.2.85. The bracket 〈{τg2}Cτ , 2, ν
2〉 in π47,27(Cτ) must be zero because

there are no other possibilities. �

Lemma 4.2.2.

(1) There is no hidden τ extension on h1d1.
(2) There is no hidden τ extension on h1d1g.

Proof. For the first formula, the only other possibility is that there is a hidden
τ extension from h1d1 to h1q. We will show that this is impossible.

Proposition 6.2.5 shows that the element {d1} of π32,18 is detected in Adams-
Novikov filtration 4. Therefore, {d1} realizes to zero in π32tmf [5], so τη{d1} also
realizes to zero in π33tmf.

On the other hand, {h1e
2
0} realizes to a non-zero element of π35tmf. The

classical hidden extension ν{q} = {h1e
2
0} given in Table 24 then implies that {q}

realizes to a non-zero element of π32tmf. Then {h1q} also realizes to a non-zero
element of π33tmf.

This shows that τη{d1} cannot belong to {h1q}, so it must be zero. Now
Lemma 4.1.4 establishes the first claim.

For the second claim, Table 23 shows that {d1g} = 〈{d1}, η3, η4〉, again with
no indeterminacy. Now shuffle to obtain τη{d1g} = 〈τη, {d1}, η3〉η4. The ele-
ment {τh2e

2
0} is the only non-zero element that could possibly be contained in

〈τη, {d1}, η3〉. In any case, 〈τη, {d1}, η3〉η4 is zero. This shows that τη{d1g} is
zero. Lemma 4.1.4 establishes the second claim. �

Lemma 4.2.3. There is a hidden τ extension from τh0g
2 to h1u.

Proof. Classically, there is a hidden 2 extension from g2 to h1u given in Table
24. This implies that there is a motivic hidden 2 extension from τ2g2 to h1u. The
desired hidden τ extension follows. �

Lemma 4.2.4.

(1) There is a hidden τ extension from τh1g
2 to z.

(2) There is a hidden τ extension from τh1e
2
0g to d0z.
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Proof. There is a classical hidden η extension from g2 to z given in Table 24.
It follows that there is a motivic hidden η extension from τ3g2 to z. The first claim
follows immediately.

For the second claim, multiply the first hidden extension by d0. �

Lemma 4.2.5. There is no hidden τ extension on h2
1g2.

Proof. We will show in Lemma 4.2.47 that there is no hidden η extension on
τh1g2. This implies that there is no hidden τ extension on h2

1g2. �

Lemma 4.2.6. There is no hidden τ extension on τh2d1g.

Proof. The only other possibility is that there is a hidden τ extension from
τh2d1g to d0z. However, we showed in Lemma 4.2.4 that there is a hidden τ
extension from τh1e

2
0g to d0z. Since {τh1e

2
0g} is contained in the indeterminacy

of {τh2d1g}, there exists an element of {τh2d1g} that is annihilated by τ . Lemma
4.1.4 finishes the proof. �

Lemma 4.2.7. There is no hidden τ extension on D11.

Proof. This proof is different in spirit from the rest of the manuscript because
it relies on specific calculations in the classical Adams-Novikov spectral sequence.

There is an element β12/6 in the Adams-Novikov spectral sequence in the 58-
stem with filtration 2 [38]. Using Proposition 6.2.5, if this class survives, then it
would correspond to an element of π58,30 that is not divisible by τ . By inspection
of the E∞-page of the motivic Adams spectral sequence, there is no such element in
π58,30. Therefore, β12/6 must support a differential in the Adams-Novikov spectral
sequence.

Using the framework of Chapter 6, an Adams-Novikov d2r+1 differential on
β12/6 would correspond to an element of π57,r+30 that is not divisible by τ ; that is

not killed by τr−1; and that is annihilated by τr . By inspection of the E∞-page
of the motivic Adams spectral sequence, the only possibility is that r = 1, and the
corresponding element of π57,31 is detected by D11. �

Lemma 4.2.8. There is no hidden τ extension on h2
3g2.

Proof. The only other possibility is that there is a hidden τ extension from
h2
3g2 to h1Q2. However, η{h1Q2} equals {h2

1Q2}, which is non-zero. On the other
hand, {h2

3g2} contains the element σ2{g2}. This is annihilated by η because ησ2 = 0
[42]. It follows that τ{h2

3g2} cannot intersect {h1Q2}. �

Lemma 4.2.9. There is no hidden τ extension on h3d1g.

Proof. The only other possibility is that there is a hidden τ extension from
h3d1g to Ph3

1h5e0. We will argue that this cannot occur.
Let α be an element of {h3d1g}. Note that α equals either σ{d1g} or σ{d1g}+

ν{gt}. In either case, ηα equals ησ{d1g}, which is a non-zero element of {h1h3d1g}.
We know from Lemma 4.2.2 that τη{d1g} is zero, so τηα is zero.

On the other hand, η{Ph3
1h5e0} equals {τ2h0g

3}, which is non-zero. Therefore,
τα cannot equal {Ph3

1h5e0}. �

Lemma 4.2.10. There is a hidden τ extension from Ph3
1h5e0 to τd0w.
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Proof. Table 23 shows that 〈τ, νκ2, η〉 in π45,24 contains the element {τw}.
This bracket has indeterminacy generated by τη{g2}. Table 23 also shows that the
bracket 〈νκ2, η, ηκ〉 equals {Ph4

1h5e0}, with no indeterminacy.
Now use the shuffle τ〈νκ2, η, ηκ〉 = 〈τ, νκ2, η〉ηκ to conclude that τ{Ph4

1h5e0}
equals ηκ{τw}.

There is a classical extension η{w} = {d0l}, as shown in Table 24. It follows
that there is a motivic relation ηκ{τw} = {τd20l+d0u

′}; in particular, it is non-zero.
We have shown that τ{Ph4

1h5e0} is non-zero. But this equals τη{Ph3
1h5e0}, so

τ{Ph3
1h5e0} is also non-zero. There is just one possible non-zero value. �

Lemma 4.2.11. There is no hidden τ extension on τ2c1g
2.

Proof. The only other possibility is that there is a hidden τ extension from
τ2c1g

2 to τd0w. We showed in Lemma 4.2.10 that there is a hidden τ extension from
Ph3

1h5e0 to τd0w. Since {Ph3
1h5e0} is contained in the indeterminacy of {τ2c1g2},

there exists an element of {τ2c1g2} that is annihilated by τ . �

Lemma 4.2.12. Tentatively, there is a hidden τ extension from h2
1X2 to τB23.

Proof. The claim is tentative because our analysis of Adams differentials is
incomplete in the relevant range.

There exists an element of {τB23} that maps to zero in the homotopy groups of
the cofiber of τ , which is described in Chapter 5. Therefore, this element of {τB23}
is divisible by τ . The only possibility is that there is a hidden τ extension from
h2
1X2 to τB23. �

Lemma 4.2.13. Tentatively, there is a hidden τ extension from h4
1X2 to B8d0.

Proof. The claim is tentative because our analysis of Adams differentials is
incomplete in the relevant range.

This follows from the hidden τ extension from h2
1X2 to τB23 given in Lemma

4.2.12 and the hidden η extension from τh1B23 to B8d0 given in Lemma 4.2.60. �

Lemma 4.2.14. Tentatively, there is a hidden τ extension from B8d0 to d0x
′.

Proof. The claim is tentative because our analysis of Adams differentials is
incomplete in the relevant range.

This follows immediately from the hidden τ extension from B8 to x′ given in
Table 25. �

4.2.2. Hidden Adams 2 extensions computations.

Lemma 4.2.15. There is no hidden 2 extension on h2
2h4.

Proof. The only other possibility is that there is a hidden 2 extension from
h2
2h4 to τh1g. However, we will show later in Lemma 4.2.39 that there is a hidden

η extension on τh1g. �

Lemma 4.2.16. There is no hidden 2 extension on h4c0.

Proof. We showed in Lemma 4.2.83 that ση4 belongs to {h4c0}, and 2η4
equals zero. Now use Lemma 4.1.4 to finish the claim. �

Lemma 4.2.17.

(1) There is a hidden 2 extension from h0h2g to h1c0d0.
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(2) There is a hidden 2 extension from τh0h2g to Ph1d0.
(3) There is a hidden 2 extension from h0h2g

2 to h1c0e
2
0.

(4) There is a hidden 2 extension from τh0h2g
2 to h1d

3
0.

Proof. Recall that there is a classical hidden 2 extension from h0h2g to Ph1d0,
as shown in Table 24. This immediately implies the second claim. The first formula
now follows from the second, using the hidden τ extension from h1c0d0 to Ph1d0
given in Table 25.

For the last two formulas, recall that there is a classical hidden extension η2κ2 =
{d30}, as shown in Table 24. This implies that there is a motivic hidden extension
τη3{τg2} = {h1d

3
0}. Use the relation τη3 = 4ν to deduce the fourth formula.

The third formula follows from the fourth, using the hidden τ extension from
h1c0e

2
0 to h1d

3
0 given in Table 25. �

Lemma 4.2.18.

(1) There is no hidden 2 extension on h1h5.
(2) There is no hidden 2 extension on h1h3h5.

Proof. For the first claim, the only other possibility is that there is a hidden
2 extension from h1h5 to τd1. Table 23 shows that the Toda bracket 〈η, 2, θ4〉
intersects {h1h5}. Shuffle to obtain

2〈η, 2, θ4〉 = 〈2, η, 2〉θ4.
This expression equals τη2θ4 by Table 23, which must be zero. Lemma 4.1.4 now
finishes the first claim.

The second claim follows easily since ση5 is contained in {h1h3h5}. �

Lemma 4.2.19. There is no hidden 2 extension on p.

Proof. The only other possibility is that there is a hidden 2 extension from
p to h1q. Table 24 shows that νθ4 is contained in {p}. Also, 2θ4 is zero. Lemma
4.1.4 now finishes the proof. �

Lemma 4.2.20.

(1) There is no hidden 2 extension on h2d1.
(2) There is no hidden 2 extension on h3d1.
(3) There is no hidden 2 extension on h2d1g.
(4) There is no hidden 2 extension on h3d1g.

Proof. These follow immediately from Lemma 4.1.4, together with the facts
that ν{d1} is contained in {h2d1}; σ{d1} is contained in {h3d1}; ν{d1g} is contained
in {h2d1g}; σ{d1g} is contained in {h3d1g}; and 2{d1} and 2{d1g} are both zero.

�

Lemma 4.2.21. There is no hidden 2 extension on h5c0.

Proof. The only other possibility is that there is a hidden 2 extension from
h5c0 to τ

2c1g. Table 23 shows that 〈ǫ, 2, θ4〉 intersects {h5c0}. Now shuffle to obtain
that

2〈ǫ, 2, θ4〉 = 〈2, ǫ, 2〉θ4.
By Table 23, this equals τηǫθ4, which must be zero. Lemma 4.1.4 now finishes the
argument. �
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Lemma 4.2.22. There is no hidden 2 extension on Ph1h5.

Proof. The other possiblities are hidden 2 extensions to τ3g2 or h1u. We will
show that neither can occur.

We already know from Table 24 that there is a hidden 2 extension from τ3g2

to h1u. Therefore, there cannot be a hidden 2 extension from Ph1h5 to h1u.
Table 29 shows a hidden η extension from τ3g2 to z. This implies that τ3g2

cannot be the target of a hidden 2 extension. �

Lemma 4.2.23. There is no hidden 2 extension on h2
0h5d0.

Proof. As shown in Table 24, τw supports a hidden η extension. Therefore,
it cannot be the target of a hidden 2 extension. �

Lemma 4.2.24. There is no hidden 2 extension on h2g2.

Proof. From the relation h2g2 + h3f1 = 0 in the E2-page, we know that
{h2g2} contains σ{f1}. Also, {f1} contains an element that is annihilated by 2,
so {h2g2} contains an element that is annihilated by 2. Lemma 4.1.4 finishes the
argument. �

Lemma 4.2.25. There is no hidden 2 extension on Ph5c0.

Proof. The element Ph5c0 detects ρ15η5 [41, Lemma 2.5]. Also, 2η5 is zero,
so {Ph5c0} contains an element that is annihilated by 2. Lemma 4.1.4 finishes the
proof. �

Lemma 4.2.26.

(1) There is a hidden 2 extension from e0r to h1u
′.

(2) There is a hidden 2 extension from τe0r to Pu.

Proof. Table 24 shows that there is a hidden η extension from τw to τd0l+u′.
Also, from Table 25, there is a hidden τ extension from h1u

′ to Pu. Therefore,
τη2{τw} = {Pu}.

Recall from Table 23 that τη2 = 〈2, η, 2〉. Since 2{τw} is zero, we can shuffle
to obtain

τη2{τw} = 〈2, η, 2〉{τw} = 2〈η, 2, {τw}〉.
This shows that {Pu} is divisible by 2.

By Lemmas 4.2.24 and 4.2.25, the only possibility is that there is a hidden 2
extension from τe0r to Pu. This establishes the second claim.

The first claim now follows from the second, using the hidden τ extension from
h1u

′ to Pu given in Table 25. �

Lemma 4.2.27. There is no hidden 2 extension on h2h5d0.

Proof. There is an element of 2{h5d0} that is divisible by 4, as shown in Table
24. Therefore, there is an element of 2ν{h5d0} that is divisible by 4. However, zero
is the only element of π48,26 that is divisible by 4. �

Lemma 4.2.28. There is no hidden 2 extension on h0B2.

Proof. We will show later in Lemma 4.2.73 that there exists an element α of
{h2

3h5} such that να belongs to {B2}. (We do not know whether α equals θ4.5, but
that does not matter here. See Section 1.7 for further discussion.) Therefore, 2να
belongs to {h0B2}.
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Now 2 · 2να equals τη3α. There is a classical relation η3α = 0 [3, Lemma 3.5],
which implies that η3α equals zero motivically as well. �

Lemma 4.2.29.

(1) There is no hidden 2 extension on h5c1.
(2) There is no hidden 2 extension on h2h5c1.

Proof. Table 23 show that 〈σ, 2, θ4〉 intersects {h5c1}. Now shuffle to obtain

2〈σ, 2, θ4〉 = 〈2, σ, 2〉θ4.
Table 23 shows that 〈2, σ, 2〉 consists of multiples of 2, and 2θ4 is zero. Therefore,
2〈σ, 2, θ4〉 is zero. Lemma 4.1.4 now establishes the first claim.

The second claim follows immediately from the first because h2h5c1 contains
ν{h5c1}. �

Lemma 4.2.30. There is no hidden 2 extension from h0h3g2 to h2B2.

Proof. The element h0h3g2 detects 2σ{g2}. We will show later in Lemma
4.2.75 that h2B2 supports a hidden ν extension. Therefore, none of the elements
of {h2B2} are divisible by σ. �

Lemma 4.2.31. There is a hidden 2 extension on h0h3g2 if and only if there is
a hidden ν extension on h2h5d0.

Proof. Let β be an element of {h5d0}. Table 23 shows that 〈2, η, ηβ〉 intersects
{h2h5d0}, and 〈η, ηβ, ν〉 intersects {h0h3g2}. Now consider the shuffle

2〈η, ηβ, ν〉 = 〈2, η, ηβ〉ν.
The indeterminacy here is zero. �

Lemma 4.2.32. There is no hidden 2 extension on i1.

Proof. The only other possibility is that there is a hidden 2 extension from
i1 to h2

1G3. Because of the hidden τ extension from h2
1G3 to d0u given in Table 25,

this would imply a hidden 2 extension from τi1 to d0u.
However, τi1 detects ν{C}, and 2{C} is zero. Therefore, {τi1} contains an

element that is annihilated by 2. Lemma 4.1.4 implies that there cannot be a
hidden 2 extension on τi1. �

Lemma 4.2.33.

(1) There is no hidden 2 extension on B8.
(2) There is no hidden 2 extension on x′.

Proof. We will show in Lemma 4.2.88 that B8 detects ǫθ4.5. Since 2ǫ is zero,
it follows that {B8} contains an element that is annihilated by 2. Lemma 4.1.4
establishes the first claim.

The second claim follows from the first, using the hidden τ extension from B8

to x′ given in Table 25. �

Lemma 4.2.34. There is no hidden 2 extension on h2gn.

Proof. Note that ν{gn} is contained in {h2gn}, and 2{gn} is zero. Therefore,
{h2gn} contains an element that is annihilated by 2, and Lemma 4.1.4 finishes the
proof. �
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Lemma 4.2.35. There is a hidden 2 extension from h0h5i to τ4e20g.

Proof. This proof is different in spirit from the rest of the manuscript because
it relies on specific calculations in the classical Adams-Novikov spectral sequence.

The class h0h5i detects an element of π54,28 that is not divisible by τ . By
Proposition 6.2.5, this corresponds to an element in the classical Adams-Novikov
spectral sequence in the 54-stem with filtration 2. The only possibility is the element
β10/2 [38].

The image of β10/2 in the Adams-Novikov spectral sequence for tmf [5] is ∆2h2
2.

Since there is no filtration shift, this is detectable in the chromatic spectral sequence.
In the Adams-Novikov spectral sequence for tmf, there is a hidden 2 extension from
∆2h2

2 to the class that detects κκ2. Therefore, in the Adams-Novikov spectral
sequence for the sphere, there must also be a hidden 2 extension from β10/2 to the

class that detects κκ2.
Since β10/2 corresponds to h0h5i, it follows that in the Adams spectral sequence,

there is a hidden 2 extension from h0h5i to τ4e20g. �

Lemma 4.2.36. There is no hidden 2 extension on B21.

Proof. We showed in Lemma 4.2.93 that B21 detects a multiple of κ. Since 2κ
is zero, it follows that {B21} contains an element that is annihilated by 2. Lemma
4.1.4 finishes the proof. �

Lemma 4.2.37.

(1) Tentatively, there is a hidden 2 extension from τ3g3 to d0u
′ + τd20l.

(2) Tentatively, there is a hidden 2 extension from τh0h2g
3 to h1d

2
0e

2
0.

(3) Tentatively, there is a hidden 2 extension from τe0gr to d20u.

Proof. The claims are tentative because our analysis of Adams differentials
is incomplete in the relevant range.

The first formula follows immediately from the hidden τ extension from τ2h0g
3

to d0u
′ + τd20l given in Table 26. The second formula follows immediately from the

hidden τ extension from h2
0h2g

3 to h1d
2
0e

2
0 given in Table 26. The third formula

follows immediately from the hidden τ extension from h0e0gr to d20u given in Table
26. �

4.2.3. Hidden Adams η extensions computations.

Lemma 4.2.38. There is no hidden η extension on c1.

Proof. The only other possibility is that there is a hidden η extension from
c1 to h2

0g. We will show in Lemma 4.2.62 that there is a hidden ν extension on h2
0g.

Therefore, it cannot be the target of a hidden η extension. �

Lemma 4.2.39.

(1) There is a hidden η extension from τh1g to c0d0.
(2) There is a hidden η extension from τ2h1g to Pd0.
(3) There is a hidden η extension from τh1g

2 to c0e
2
0.

(4) There is a hidden η extension from z to τd30.

Proof. There is a classical hidden η extension from h1g to Pd0, as shown in
Table 24. This implies that there is a motivic hidden η extension from τ2h1g to
Pd0. This establishes the second claim.
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The first claim follows from the second claim, using the hidden τ extension
from c0d0 to Pd0 given in Table 25.

Next, there is a classical hidden η extension from z to d30, as shown in Table
24. This implies that there is a motivic hidden η extension from z to τd30. This
establishes the fourth claim.

The third claim follows from the fourth, using the hidden τ extensions from
τ2h1g

2 to z and from c0e
2
0 to d30 given in Table 25. �

Lemma 4.2.40. There is no hidden η extension on p.

Proof. Classically, νθ4 belongs to {p}, as shown in Table 24, so the same
formula holds motivically. Therefore, {p} contains an element that is annihilated
by η. Lemma 4.1.4 finishes the argument. �

Lemma 4.2.41. There is a hidden η extension from h2
0h3h5 to τ2c1g.

Proof. First, τ2c1g equals h1y on the E2-page [9]. Use Moss’s Convergence
Theorem 3.1.1 together with the Adams differential d2(y) = h3

0x to conclude that
{τ2c1g} intersects 〈η, 2, α〉, where α is any element of {h2

0x}.
However, the later Adams differential d4(h0h3h5) = h2

0x implies that 0 belongs
to {h2

0x}. Therefore, {τ2c1g} intersects 〈η, 2, 0〉. In other words, there exists an
element of {τ2c1g} that is a multiple of η. The only possibility is that there is a
hidden η extension from h2

0h3h5 to τ2c1g. �

Remark 4.2.42. Lemma 4.2.41 shows that η{h2
0h3h5} is an element of {τ2c1g}.

However, {τ2c1g} contains two elements because u is in higher Adams filtration.
The sum η{h2

0h3h5}+τσκ is either zero or equal to {u}. Both {h2
0h3h5} and σ map

to zero in π∗,∗(tmf), while {u} is non-zero in π∗,∗(tmf). Therefore, η{h2
0h3h5}+τσκ

must be zero. We will need this observation in Lemmas 5.3.4 and 5.3.8.

Lemma 4.2.43. There is no hidden η extension on τh3d1.

Proof. We know that σ{τd1} is contained in {τh3d1}, and there exists an
element of {τd1} that is annihilated by η. Therefore, {τh3d1} contains an element
that is annihilated by η. Lemma 4.1.4 finishes the proof. �

Lemma 4.2.44. There is no hidden η extension on c1g.

Proof. Since ν{t} is contained in {τc1g}, Lemma 4.1.4 implies that there is
no hidden η extension on τc1g. In particular, there cannot be a hidden η extension
from τc1g to τh2

0g
2. Therefore, there cannot be a hidden η extension from c1g to

h2
0g

2. �

Lemma 4.2.45. There is no hidden η extension on τh1h5c0.

Proof. Table 29 shows a hidden η extension from τ3g2 to z. Therefore, there
cannot be a hidden η extension from τh1h5c0 to z. �

Lemma 4.2.46. There is a hidden η extension from h1f1 to τh2c1g.

Proof. Note that {τh2c1g} contains ν2{t}. Table 23 shows that ν2 = 〈η, ν, η〉.
Shuffle to compute that

ν2{t} = 〈η, ν, η〉{t} = η〈ν, η, {t}〉,
so ν2{t} is divisible by η. The only possibility is that there is a hidden η extension
from h1f1 to τh2c1g. �
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Lemma 4.2.47. There is no hidden η extension on τh1g2.

Proof. We will show in Lemma 4.2.63 that N supports a hidden ν extension.
Therefore, N cannot be the target of a hidden η extension.

For degree reasons, η3{g2} must be zero. Therefore, τη3{g2} must be zero.
This implies that the target of a hidden η extension on τh1g2 cannot support an
h1 multiplication. Hence, there cannot be a hidden η extension from τh1g2 to B1

or to τd0l + u′. �

Lemma 4.2.48. There is a hidden η extension from h2
3h5 to B1.

Proof. This follows immediately from the analogous classical hidden exten-
sion given in Table 24, but we repeat the interesting proof from [41] here for com-
pleteness.

First, Table 16 shows that B1 = 〈h1, h0, h
2
0g2〉. Then Moss’s Convergence

Theorem 3.1.1 implies that {B1} intersects 〈η, 2, {h2
0g2}〉.

Next, the classical product σθ4 belongs to {x}, as shown in Table 24. Since
h3x = h2

0g2 on the E2-page [9], it follows that σ2θ4 equals {h2
0g2}. The same

formula holds motivically.
Now 〈η, 2, σ2θ4〉 is contained in 〈η, 2σ2, θ4〉, which equals 〈η, 0, θ4〉. Therefore,

{B1} contains an element of the form θ4α+ ηβ.
The possible non-zero values for α are η4 or ηρ15. In the first case, θ4α equals

θ4〈2, σ2, η〉, which equals 〈θ4, 2, σ2〉η. Therefore, in either case, θ4α is a multiple of
η, so we can assume that α is zero.

We have now shown that {B1} contains a multiple of η. Because of Lemma
4.2.47, the only possibility is that there is a hidden η extension from h2

3h5 to B1. �

Lemma 4.2.49.

(1) There is no hidden η extension on h1h5d0.
(2) There is no hidden η extension on N .

Proof. We showed in Lemma 4.2.26 that there is a hidden 2 extension on e0r.
Therefore, e0r cannot be the target of a hidden η extension. �

Lemma 4.2.50. There is no hidden η extension on h1B1.

Proof. Classically, there is no hidden η extension on h1B1 [3, Theorem 3.1(i)
and Lemma 3.5]. Therefore, there cannot be a motivic hidden η extension from
h1B1 to τd0e

2
0. �

Lemma 4.2.51. There is no hidden η extension on h5c1.

Proof. Table 23 shows that {h5c1} is contained in 〈ν, σ, ση5〉. Next compute
that

η〈ν, σ, ση5〉 = 〈η, ν, σ〉η5,
which equals zero because 〈η, ν, σ〉 is zero. Therefore, {h5c1} contains an element
that is annihilated by η, so Lemma 4.1.4 says that there cannot be a hidden η
extension on h5c1. �

Lemma 4.2.52. There is no hidden η extension on C.



64 4. HIDDEN EXTENSIONS IN THE ADAMS SPECTRAL SEQUENCE

Proof. Table 23 shows that {C} equals 〈ν, η, τηα〉, where α is any element of
{g2}. Compute that

η〈ν, η, τηα〉 = 〈η, ν, η〉τηα = ν2 · τηα = 0.

This shows that {C} contains an element that is annihilated by η, so Lemma 4.1.4
implies that there cannot be a hidden η extension on C. �

Lemma 4.2.53. There is a hidden η extension from τ2e0m to d0u.

Proof. This follows immediately from the hidden τ extensions from h1G3 to
τ2e0m and from h2

1G3 to d0u given in Table 25. �

Lemma 4.2.54. There is no hidden η extension on τi1.

Proof. Suppose that there exists an element α of {τi1} such that ηα belongs
to {τ2e20g}. Using the hidden τ extension from τ2h1e

2
0g to d0z given in Table 25,

this would imply that τη2α equals {d0z}.
Recall from Table 23 that τη2 = 〈2, η, 2〉. Then the shuffle

τη2α = 〈2, η, 2〉{τi1} = 2〈η, 2, α〉
shows that {d0z} is divisible by 2. However, this is not possible. �

Lemma 4.2.55. There is a hidden η extension from τ3e20g to d0z.

Proof. This follows immediately from the hidden τ extension from τ2h1e
2
0g

to d0z given in Table 25. �

Lemma 4.2.56. There is no hidden η extension on h1x
′.

Proof. We already showed in Lemma 4.2.55 that there is a hidden η extension
from τ3e20g to d0z. Therefore, there cannot be a hidden η extension from h1x

′ to
d0z. �

Lemma 4.2.57. There is no hidden η extension on h2
3g2.

Proof. Note that σ2{g2} is contained in {h2
3g2}, and ησ2 is zero [42]. There-

fore, {h2
3g2} contains an element that is annihilated by η, and Lemma 4.1.4 implies

that there cannot be a hidden η extension on h2
3g2. �

Lemma 4.2.58. There is no hidden η extension from τh1Q2 to τ2d0w.

Proof. Classically, d0w maps to a non-zero element in the E∞-page of the
Adams spectral sequence for tmf [15]. In tmf, this class cannot be the target of an
η extension. �

Lemma 4.2.59.

(1) Tentatively, there is a hidden η extension from τd0w to d0u
′ + τd20l.

(2) Tentatively, there is a hidden η extension from τ3g3 to d0e0r.
(3) Tentatively, there is a hidden η extension from τ2h1g

3 to d20e
2
0.

(4) Tentatively, there is a hidden η extension from d0e0r to τ2d20e
2
0.

(5) Tentatively, there is a hidden η extension from τ2gw to τ2d0e0m.
(6) Tentatively, there is a hidden η extension from τ2d0e0m to d20u.
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Proof. The claims are tentative because our analysis of Adams differentials
is incomplete in the relevant range.

For the first formula, use the hidden τ extensions from Ph3
1h5e0 to τd0w given

in Lemma 4.2.10 and from τ2h0g
3 to d0u

′ + τd20l given in Table 26. The second
formula follows immediately from the hidden τ extension from τ2h1g

3 to d0e0r given
in Table 26. The third formula follows immediately from the hidden τ extension
from h6

1h5c0e0 to d20e
2
0 given in Table 26. The fourth formula follows immediately

from the hidden τ extensions from τ2h1g
3 to d0e0r and from h6

1h5c0e0 to d20e
2
0 given

in Table 26. The fifth formula follows immediately from the hidden τ extension from
h5
1X1 to τ2d0e0m given in Table 26. The sixth formula follows immediately from

the hidden τ extensions from h5
1X1 to τ2d0e0m and from h0e0gr to d20u given in

Table 26. �

Lemma 4.2.60.

(1) Tentatively, there is a hidden η extension from τh1B23 to B8d0.
(2) Tentatively, there is a hidden η extension from τ2h1B23 to d0x

′.

Proof. The claims are tentative because our analysis of Adams differentials
is incomplete in the relevant range.

The first formula follows from the hidden η extension from τh1g to c0d0 given
in Lemma 4.2.39, using that θ4.5{τh1g} is contained in {τh1B23} by Lemma 4.2.94
and that θ4.5{c0d0} is contained in {B8d0} by Lemma 4.2.88.

The second formula follows from the first, using the hidden τ extension from
B8d0 to d0x

′ given in Lemma 4.2.14. �

4.2.4. Hidden Adams ν extensions computations.

Lemma 4.2.61. There is no hidden ν extension on h0h2h4.

Proof. This follows immediately from Lemma 4.2.15, where we showed that
there is no hidden 2 extension on h2

2h4. �

Lemma 4.2.62.

(1) There is a hidden ν extension from h2
0g to h1c0d0.

(2) There is a hidden ν extension from τh2
0g to Ph1d0.

(3) There is a hidden ν extension from h2
0g

2 to h1c0e
2
0.

(4) There is a hidden ν extension from τh2
0g

2 to h1d
3
0.

Proof. These follow immediately from the hidden 2 extensions established in
Lemma 4.2.17. �

Lemma 4.2.63.

(1) There is a hidden ν extension from h2c1 to h2
1h4c0.

(2) There is a hidden ν extension from h2c1g to h6
1h5c0.

(3) There is a hidden ν extension from N to Ph2
1h5c0.

Proof. Table 16 shows that 〈h2, h2c1, h1〉 equals h3g. This Massey prod-
uct contains no permanent cycles because h3g supports an Adams differential by
Lemma 3.3.3. Therefore, (the contrapositive of) Moss’s Convergence Theorem 3.1.1
implies that the Toda bracket 〈ν, νσ, η〉 is not well-defined. The only possibility is
that ν2σ is non-zero. This implies that there is a hidden ν extension on h2c1, and
the only possible target for this hidden extension is h2

1h4c0. This finishes the first
claim.
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The proof of the second claim is similar. Table 16 show that 〈h2, h2c1g, h1〉
equals h3g

2. Since h3g
2 supports a differential by Lemma 3.3.3, Moss’s Convergence

Theorem 3.1.1 implies that the Toda bracket 〈ν, α, η〉 is not well-defined for any α
in {h2c1g}. This implies that there is a hidden ν extension on h2c1g, and the only
possible target is h6

1h5c0. This finishes the second claim.
For the third claim, we will first compute 〈h2, N, h1〉 on the E2-page. The May

differential d2(∆b21h1(1)) = h2N and May’s Convergence Theorem 2.2.1 imply
that 〈h2, N, h1〉 equals an element that is detected by G3 in the E∞-page of the
May spectral sequence. Because of the presence of τgn in lower May filtration, the
bracket equals either G3 or G3 + τgn. In any case, both of these elements support
an Adams d2 differential by Lemma 3.3.6 because τgn is a product of permanent
cycles. Moss’s Convergence Theorem 3.1.1 then implies that the Toda bracket
〈ν, α, η〉 is not well-defined for any α in {N}. This implies that there is a hidden
ν extension on N , and the only possible target is Ph2

1h5c0. This finishes the third
claim. �

Lemma 4.2.64.

(1) There is a hidden ν extension from τh2
2g to h1d

2
0.

(2) There is a hidden ν extension from τh2
2g

2 to h1d0e
2
0.

Proof. These follow from the hidden τ extensions from h2
1h3g to h1d

2
0 and

from h2
1h3g

2 to h1d0e
2
0 given in Table 25. �

Lemma 4.2.65. There is no hidden ν extension on h1h5.

Proof. The only other possibility is that there is a hidden ν extension from
h1h5 to τ2h1e

2
0. We know from Table 24 that {τ2h1e

2
0} contains ν{q}. Since {q}

belongs to the indeterminacy of {h1h5}, there exists an element of {h1h5} that is
annihilated by ν. Lemma 4.1.4 finishes the proof. �

Lemma 4.2.66. There is no hidden ν extension on p.

Proof. Recall that there is a hidden ν extension from h2
4 to p, as shown in

Table 24. If there were a hidden ν extension from p to t, then ν4θ4 would belong
to {τh2c1g}. This is impossible since ν4 is zero. �

Lemma 4.2.67. There is no hidden ν extension on x.

Proof. Recall from Table 24 that there is a classical hidden σ extension from
h2
4 to x. Therefore, σθ4 belongs to {x} motivically as well, so x cannot support a

hidden ν extension. �

Lemma 4.2.68. There is no hidden ν extension on h2
0h3h5.

Proof. The only other possibility is that there is a hidden ν extension from
h2
0h3h5 to Ph2

1h5 or to z. However, from Lemma 4.2.39, both {Ph2
1h5} and {z}

support multiplications by η. Therefore, neither Ph2
1h5 nor z can be the target of

a hidden ν extension. �

Lemma 4.2.69.

(1) There is no hidden ν extension on h1h3h5.
(2) There is no hidden ν extension on h3d1.
(3) There is no hidden ν extension on τ2c1g.
(4) There is no hidden ν extension on h3g2.
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Proof. In each case, the possible source of the hidden extension detects an
element that is divisible by σ. Therefore, each possible source cannot support a
hidden ν extension.

Note that h3q = τ2c1g on the E2-page [9]. �

Lemma 4.2.70. There is no hidden ν extension on h5c0.

Proof. First, Table 23 shows that {h5c0} contains 〈ǫ, 2, θ4〉. Then shuffle to
obtain

ν〈ǫ, 2, θ4〉 = 〈ν, ǫ, 2〉θ4.
Since 〈ν, ǫ, 2〉 is zero, there is an element of {h5c0} that is annihilated by ν. Lemma
4.1.4 finishes the proof. �

Lemma 4.2.71.

(1) There is a hidden ν extension from u to τd30.
(2) There is a hidden ν extension from τw to τ2d0e

2
0.

Proof. First shuffle to compute that

ν〈η, ν, {τ2e20}〉 = 〈ν, η, ν〉{τ2e20} = (ǫ + ησ){τ2e20}.
This last expression equals τ2{c0e20}, which equals {τd30} because of the hidden τ
extension from c0e

2
0 to d30 given in Table 25.

Therefore, {τd30} is divisible by ν. Lemmas 4.2.69 and 4.2.70 eliminate most of
the possibilities. The only remaining possibility is that there is a hidden ν extension
on u. This establishes the first claim.

The proof of the second claim is similar. Shuffle to compute that

ν〈η, ν, τκ2〉 = 〈ν, η, ν〉τκ2 = (ǫ + ησ)τκ2 = τǫκ2.

By Lemma 4.2.85, this last expression is detected by τ2d0e
2
0.

Therefore, {τ2d0e20} is divisible by ν. Because of Lemmas 4.2.72 and 4.2.73,
the only possibility is that there is a hidden ν extension from τw to τ2d0e

2
0. �

Lemma 4.2.72.

(1) There is no hidden ν extension on Ph0h2h5.
(2) There is no hidden ν extension on h0g2.
(3) There is no hidden ν extension on h0h5d0.

Proof. These follow immediately from Lemmas 4.2.23, 4.2.24, and 4.2.27. �

Lemma 4.2.73.

(1) There is a hidden ν extension from h2
3h5 to B2.

(2) There is a hidden ν extension from h0h
2
3h5 to h0B2.

Proof. The proof is similar in spirit to the proof of Lemma 4.2.48. Table
16 shows that 〈h2, h

2
0g2, h0〉 equals {B2, B2 + h2

0h5e0}. Then Moss’s Convergence
Theorem 3.1.1 implies that 〈ν, σ2θ4, 2〉 intersects {B2}. Here we are using that σ2θ4
belongs to {h2

0g2}, as shown in the proof of Lemma 4.2.48.
This bracket contains 〈ν, σ2, 2θ4〉, which contains zero since 2θ4 is zero. It

follows that {B2} contains an element in the indeterminacy of 〈ν, σ2θ4, 2〉. The
only possibility is that there is a hidden ν extension from h2

3h5 to B2. This finishes
the proof of the first hidden extension.

The second hidden extension follows immediately from the first. �
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Lemma 4.2.74. There is no hidden ν extension on B1.

Proof. We showed in Lemma 4.2.48 that {B1} contains an element that is
divisible by η. Therefore, B1 cannot support a hidden ν extension. �

Lemma 4.2.75.

(1) There is a hidden ν extension from h2B2 to h1B8.
(2) There is a hidden ν extension from τh2B2 to h1x

′.

Proof. As discussed in Section 1.7, σθ4.5 is detected in Adams filtration
greater than 6. Thus, η2σθ4.5 is zero, even though σθ4.5 itself could possibly be
detected by τ2d1g or τ2e0m.

Recall from Table 34 that η2σ + ν3 = ηǫ. Therefore, ν3θ4.5 equals ηǫθ4.5.
Lemma 4.2.88 implies that ηǫθ4.5 is detected by h1B8, so {h1B8} contains an ele-
ment that is divisible by ν. The only possibility is that there must be a hidden ν
extension from h2B2 to h1B8. This establishes the first claim.

The second claim follows easily from the first, using the hidden τ extension
from h1B8 to h1x

′ given in Table 25. �

Lemma 4.2.76.

(1) There is a hidden ν extension from h1G3 to τ2h1e
2
0g.

(2) There is a hidden ν extension from τ2e0m to d0z.

Proof. Table 23 shows that 〈{q}, η3, η4〉 equals {h1G3}, and 〈{τ2h1e
2
0}, η3, η4〉

equals {τ2h1e
2
0g}. Neither Toda bracket has indeterminacy; for the second bracket,

one needs that η4{t} is contained in

〈η, σ2, 2〉{t} = η〈σ2, 2, {t}〉,

which must be zero.
Now compute that

ν{h1G3} = ν〈{q}, η3, η4〉 = 〈ν{q}, η3, η4〉 = 〈{τ2h1e
2
0}, η3, η4〉 = {τ2h1e

2
0g}.

Here we are using that none of the Toda brackets has indeterminacy, and we are
using Table 24 to identify ν{q} with {τ2h1e

2
0}. This establishes the first claim.

The second claim follows easily from the first, using the hidden τ extensions
from h1G3 to τ2e0m and from τ2h1e

2
0g to d0z given in Table 25. �

Lemma 4.2.77. There is no hidden ν extension on τ2d1g.

Proof. We showed in Lemma 4.2.76 that there is a hidden ν extension from
τ2e0m to d0z. Therefore, there cannot be a hidden ν extension from τ2d1g to
d0z. �

Lemma 4.2.78. There is a hidden ν extension from h6
1h5e0 to h2e

2
0g.

Proof. This follows immediately from the hidden τ extension from h6
1h5e0 to

τe20g given in Table 25. �

Lemma 4.2.79. Tentatively, there is a hidden ν extension from h0h2h5i to
τ2d20l.
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Proof. The claim is tentative because our analysis of Adams differentials is
incomplete in the relevant range.

As explained in the proof of Lemma 4.2.35, the class h0h5i dectects an element
of classical π54 that maps to an element of π54tmf that is detected by ∆2h2

2 in
the Adams-Novikov spectral sequence for tmf. Then h0h2h5i detects an element in
π57 that maps that maps to an element of π57tmf that is detected by ∆2h3

2 in the
Adams-Novikov spectral sequence for tmf.

In the classical Adams-Novikov spectral sequence for tmf, there is a hidden ν
extension from ∆2h3

2 to 2g3 [5]. Therefore, the corresponding hidden extension
must occur in the motivic Adams spectral sequence as well. �

Lemma 4.2.80.

(1) Tentatively, there is a hidden ν extension from Ph3
1h5e0 to τd20e

2
0.

(2) Tentatively, there is a hidden ν extension from τd0w to τ2d20e
2
0.

(3) Tentatively, there is a hidden ν extension from τgw + h4
1X1 to τ2e40.

Proof. The claims are tentative because our analysis of Adams differentials
is incomplete in the relevant range.

The second formula follows from the hidden ν extension from τw to τ2d0e
2
0

given in Lemma 4.2.71. The first formula then follows using the hidden τ extension
from Ph3

1h5e0 given in Lemma 4.2.10.
For the third formula, start with the hidden ν extension from τw to τ2d0e

2
0.

Multiply by τg to obtain a hidden ν extension from τ2gw to τ3e40. The third formula
follows immediately. �

Lemma 4.2.81. Tentatively, there is a hidden ν extension from τh2
0g

3 to h1d
2
0e

2
0.

Proof. The claim is tentative because our analysis of Adams differentials is
incomplete in the relevant range.

This follows immediately from the hidden τ extension from h2
0h2g

3 to h1d
2
0e

2
0

given in Table 26. �

Lemma 4.2.82. Tentatively, there is a hidden ν extension from h2c1g
2 to h8

1D4.

Proof. The claim is tentative because our analysis of Adams differentials is
incomplete in the relevant range.

The argument is essentially the same as the proof of Lemma 4.2.63. Table
16 shows that 〈h2, h2c1g

2, h1〉 equals h3g
3. Since h3g

3 supports a differential by
Lemma 3.3.3, Moss’s Convergence Theorem 3.1.1 implies that the Toda bracket
〈ν, α, η〉 is not well-defined for any α in {h2c1g

2}. This implies that there is a
hidden ν extension on h2c1g

2, and the only possible target is h8
1D4. �

4.2.5. Miscellaneous Adams hidden extensions. In this section, we in-
clude some miscellaneous hidden extensions. They are needed at various points for
technical arguments, but they are interesting for their own sakes as well.

Lemma 4.2.83. There is a hidden σ extension from h1h4 to h4c0.

Proof. The product ηǫη4 is contained in {h2
1h4c0}. Now recall the hidden

relation ηǫ = η2σ + ν3 from Table 34. Also νη4 is zero because there is no other
possibility. Therefore, η2ση4 is contained in {h2

1h4c0}. It follows that ση4 is con-
tained in {h4c0}. �
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Lemma 4.2.84. There is no hidden σ extension on h1h3h5.

Proof. The element ση5 belongs to {h1h3h5}. We will show that σ2η5 is zero
and then apply Lemma 4.1.4.

Table 23 shows that η5 belongs to 〈η, 2, θ4〉. Then σ2η5 belongs to

σ2〈η, 2, θ4〉 = 〈σ2, η, 2〉θ4.
Finally, we must show that 〈σ2, η, 2〉 is zero in π16,9. First shuffle to obtain

〈σ2, η, 2〉η = σ2〈η, 2, η〉.
Table 23 shows that 〈η, 2, η〉 equals {2ν, 6ν}, so σ2〈η, 2, η〉 is zero. Since multipli-
cation by η is injective on π16,9, this shows that 〈σ2, η, 2〉 is zero. �

Lemma 4.2.85.

(1) There is a hidden ǫ extension from τg to d20.
(2) There is a hidden ǫ extension from τg2 to d0e

2
0.

Proof. Table 23 shows that ǫ is contained in 〈2ν, ν, η〉. Therefore, ηǫκ equals
〈2ν, ν, η〉ηκ with no indeterminacy. This expression equals 〈2ν, ν, η2κ〉 because the
latter still has no indeterminacy.

Lemma 4.2.39 tells us that we can rewrite this bracket as 〈2ν, ν, {c0d0}〉, which
equals 〈2ν, ν, ǫ〉κ. Table 23 shows that 〈2ν, ν, ǫ〉 equals ηκ.

Therefore, ηǫκ equals ηκ2. It follows that ǫκ equals κ2. This establishes the
first claim.

The argument for the second claim is essentially the same. Start with ηǫ{τg2} =
〈2ν, ν, η〉η{τg2}. This equals 〈2ν, ν, {c0e20}〉, which is the same as {h1d0e

2
0}. This

shows that ηǫ{τg2} equals η{d0e20}, so ǫ{τg2} equals {d0e20}. �

Remark 4.2.86. Based on the calculations in Lemma 4.2.85, one might expect
that there is a hidden ǫ extension from τg3 + h4

1h5c0e0 to e40.

Lemma 4.2.87. There is a hidden ǫ extension from q to h1u.

Proof. This proof follows the argument of the proof of [25, Lemma 2.1], which
we include for completeness.

First, recall from Table 23 that ǫ+ ησ equals 〈ν, η, ν〉. Then (ǫ+ ησ){q} equals
〈ν, η, ν〉{q}, which is contained in 〈ν, η, ν{q}〉. It follows from Table 24 that ν{q}
equals τηκκ, so (ǫ+ ησ){q} belongs to 〈ν, η, τηκκ〉.

On the other hand, this bracket contains 〈ν, η, τηκ〉κ. Table 23 shows that
〈ν, η, τηκ〉 equals {τh0g} = {2κ, 6κ}, and 4κ2 is zero. Therefore, 〈ν, η, τηκ〉κ equals
2κ2.

This shows that the difference (ǫ + ησ){q} − 2κ2 is contained in the indeter-
minacy of the bracket 〈ν, η, τηκκ〉. The indeterminacy of this bracket consists of
multiples of ν.

Each of the terms in (ǫ + ησ){q} − 2κ2 is in Adams filtration at least 9, and
there are no multiples of ν in those filtrations. Therefore, (ǫ + ησ){q} equals 2κ2.

We now need to show that ησ{q} is zero. Because h3q = h2t in Ext, we know
that σ{q}+ ν{t} either equals zero or {u}. Note that κ(σ{q}+ ν{t}) is zero, while
κ{u} = {d0u} is non-zero. Therefore, σ{q} + ν{t} equals zero, and ησ{q} is zero
as well. �
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Lemma 4.2.88. There is a hidden ǫ extension from h2
3h5 to B8.

Proof. First, there is a relation h1B8 = c0B1 on the E2-page, which is not
hidden in the May spectral sequence. Since B1 detects ηθ4.5 by definition of θ4.5
(see Section 1.7), we get that h1B8 detects ηǫθ4.5 and that B8 detects ǫθ4.5. �

On the E∞-page, we have the relation h3
2h5 = h2

1h3h5 in the 40-stem. We
will next show that this relation gives rise to a compound hidden extension that
is analogous to Toda’s relation ν3 + η2σ = ηǫ (see Table 34). the Note that the
element ǫη5 is detected by h1h5c0, whose Adams filtration is higher than the Adams
filtration of h3

2h5 = h2
1h3h5.

Lemma 4.2.89. ν{h2
2h5}+ ηση5 equals ǫη5.

Proof. Table 23 shows that 〈ν2, 2, θ4〉 equals {h2
2h5}. Note that {x} belongs

to the indeterminacy, since there is a hidden σ extension from h2
4 to x as shown in

Table 24.
Similarly, 〈ν3, 2, θ4〉 intersects {h3

2h5}, with no indeterminacy. In order to com-
pute the indeterminacy, we need to know that ηµ9θ4 is zero. This follows from the
calculation

ηθ4〈η, 2, 8σ〉 = 〈ηθ4, η, 2〉8σ = 0.

Table 23 also shows that 〈η, 2, θ4〉 equals {η5, η5 + ηρ31}.
With these tools, compute that

ν{h2
2h5} = ν〈ν2, 2, θ4〉 = 〈ν3, 2, θ4〉

because there is no indeterminacy in the last bracket. This equals 〈η2σ+ ηǫ, 2, θ4〉,
which equals (ησ + ǫ)〈η, 2, θ4〉, again because there is no indeterminacy. Finally,
this last expression equals ηση5 + ǫη5. �

Lemma 4.2.90. There is a hidden ν4 extension from h2
4 to h2h5d0.

Proof. Table 23 shows that 〈σ, ν, σ〉 consists of a single element α contained
in {h2h4}. Then α must be of the form kν4 or kν4 + ηµ17 where k is odd. Since
2θ4 and ηµ17θ4 are both zero, we conclude that 〈σ, ν, σ〉θ4 equals ν4θ4.

Table 24 shows that σθ4 equals {x}. Therefore, ν4θ4 is contained in 〈σ, ν, {x}〉.
Next compute that h2h5d0 = 〈h3, h2, x〉 with no indeterminacy. This follows

from the shuffle

h2〈h3, h2, x〉 = 〈h2, h3, h2〉x = h2
3x = h2

2h5d0.

Then Moss’s Convergence Theorem 3.1.1 implies that the Toda bracket 〈σ, ν, {x}〉
intersects {h2h5d0}. The indeterminacy in 〈σ, ν, {x}〉 is concentrated in Adams
filtration strictly greater than 6, so 〈σ, ν, {x}〉 is contained in {h2h5d0}. This shows
that ν4θ4 is contained in {h2h5d0}. �

Lemma 4.2.91. 〈θ4, 2, σ2〉 is contained in {h0h
2
3h5}, with indeterminacy gen-

erated by ρ15θ4 in {h2
0h5d0}.

Proof. Table 23 shows that ν4 is contained in 〈2, σ2, ν〉. Therefore, ν4θ4
is contained in 〈θ4, 2, σ2〉ν. On the other hand, Lemma 4.2.90 says that ν4θ4 is
contained in {h2h5d0}.
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We have now shown that 〈θ4, 2, σ2〉 contains an element α such that να belongs
to {h2h5d0}. In particular, α has Adams filtration at most 5. In addition, we know
that 2α is zero because of the shuffle

〈θ4, 2, σ2〉2 = θ4〈2, σ2, 2〉 = 0.

Here we have used Table 23 for the bracket 〈2, σ2, 2〉. The only possibility is that
α belongs to {h0h

2
3h5}.

The indeterminacy follows immediately from [41, Corollary 2.8]. �

Lemma 4.2.92. There is a hidden η4 extension from h2
4 to h1h5d0.

Proof. Table 23 shows that η4 belongs to the Toda bracket 〈η, σ2, 2〉. Then
η4θ4 belongs to η〈σ2, 2, θ4〉.

Recall from the proof of Lemma 4.2.91 that 〈σ2, 2, θ4〉 consists of elements α in
{h0h

2
3h5} of order 2. Table 24 shows that there is a hidden 4 extension from h2

3h5

to h0h5d0. It follows that each α must be of the form 2γ − β, where γ belongs to
{h2

3h5} and β belongs to {h5d0}. Then ηα = ηβ must belong to {h1h5d0}. This
shows that η4θ4 belongs to {h1h5d0}. �

Lemma 4.2.93. There is a hidden κ extension from either h2
3h5 or h5d0 to B21.

Proof. The element τh1B21 may be the target of an Adams differential. Re-
gardless, the element h1B21 is non-zero on the E∞-page. Note that h1B21 equals
d0B1 on the E2-page [9]. Since B1 detects ηθ4.5 by definition of θ4.5 (see Section
1.7), d0B21 detects ηκθ4.5. This implies that B21 detects κθ4.5.

Therefore, B21 must be the target of a hidden κ extension. The possible sources
of this hidden extension are h2

3h5 or h5d0. �

Lemma 4.2.94. Tentatively, there is a hidden κ extension from either h2
3h5 or

h5d0 to τB23.

Proof. The claim is tentative because our analysis of Adams differentials is
incomplete in the relevant range.

The element τh1B23 equals τgB1 on the E2-page [9]. Since B1 detects ηθ4.5
by definition of θ4.5 (see Section 1.7), τgB1 detects ηκθ4.5. Therefore, τB23 detects
κθ4.5.

It follows that τB23 is the target of a hidden κ extension. The possible sources
for this hidden extension are h2

3h5 or h5d0. �

Remark 4.2.95. Lemma 4.2.94 is tentative because there are unknown Adams
differentials in the relevant range.



CHAPTER 5

The cofiber of τ

The purpose of this chapter is to compute the motivic stable homotopy groups
of the cofiber Cτ of τ . We obtain nearly complete results up to the 63-stem, and
we have partial results up to the 70-stem. The Adams charts for Cτ in [19] are
essential companions to this chapter.

The element τ realizes to 1 in the classical stable homotopy groups. There-
fore, Cτ is an “entirely exotic” object in motivic stable homotopy, since it realizes
classically to the trivial spectrum.

There are two main motivations for this calculation. First, it is the key to
resolving hidden τ extensions that were discussed in Section 4.1.2. Second, we will
show in Proposition 6.2.5 that the motivic homotopy groups of Cτ are isomorphic
to the classical Adams-Novikov E2-page. Thus the calculations in this chapter will
allow us to reverse-engineer the classical Adams-Novikov spectral sequence.

The computational method will be the motivic Adams spectral sequence [13]
[17] [33] for Cτ , which takes the form

E2 = ExtA(H
∗,∗(Cτ);M2) ⇒ π∗,∗(Cτ).

We write E2(Cτ) for this E2-page ExtA(H
∗,∗(Cτ);M2). See [17] for convergence

properties of this spectral sequence.

Outline. The first step in executing the motivic Adams spectral sequence for
Cτ is to algebraically compute the E2-page, i.e., ExtA(H

∗,∗(Cτ),M2). We carry
this out in Section 5.1 using the long exact sequence

// ExtA(M2,M2)
τ // ExtA(M2,M2) // ExtA(H

∗,∗(Cτ),M2) // .

Some additional work is required in resolving hidden extensions for the action of
ExtA(M2,M2) on E2(Cτ).

The next step is to compute the Adams differentials. In Section 5.2, we use a
variety of methods to obtain these computations. The most important is to borrow
results about differentials in the motivic Adams spectral sequence for S0,0 from
Tables 8, 20, 21, and 22. In addition, there are several computations that require
analyses of brackets and hidden extensions.

The complete understanding of the Adams differentials allows for the compu-
tation of the E∞-page of the motivic Adams spectral sequence for Cτ . The final
step, carried out in Section 5.3, is to resolve hidden extensions by 2, η, and ν in
π∗,∗(Cτ).

Chapter 7 contains a series of tables that summarize the essential computational
facts in a concise form. Tables 35, 36, and 37 give extensions by h0, h1, and h2 in
E2(Cτ) that are hidden in the long exact sequence that computes E2(Cτ). The
fourth columns of these tables refer to one argument that establishes each hidden
extension. This takes one of the following forms:

73
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(1) An explicit proof given elsewhere in this manuscript.
(2) A May differential that computes a Massey product of the form 〈hi, x, τ〉

via May’s Convergence Theorem 2.2.1. This Massey product implies the
hidden extension in E2(Cτ) by Proposition 5.0.1.

Table 38 gives some additional miscellaneous hidden extensions in E2(Cτ), again
with references to a proof.

Table 39 lists the generators of E2(Cτ) as a module over ExtA(M2,M2). Table
40 lists all examples of generators of E2(Cτ) for which there is some ambiguity. See
Section 5.1.5 for more explanation.

Tables 39 and 41 provide the values of d2 and d3 differentials in the Adams
spectral sequence for Cτ . The fourth columns of these tables refer to one argument
that establishes each differential. This takes one of the following forms:

(1) An explicit proof given elsewhere in this manuscript.
(2) “top cell” means that the differential is detected by projection Er(Cτ) →

Er(S
0,0) to the top cell.

(3) Some differentials can be established with an algebraic relation to another
differential that is detected by the inclusion Er(S

0,0) → Er(Cτ) of the
bottom cell.

Table 42 describes the part of the projection π∗,∗(Cτ) → π∗,∗ to the top cell that
are hidden by the map E∞(Cτ) → E∞(S0,0) of Adams E∞-pages. See Proposition
5.2.26 for more explanation.

Table 43 gives the extensions by 2, η, and ν in π∗,∗(Cτ) that are hidden in
E∞(Cτ). The fourth column refers to one argument that establishes each hidden
extension. This takes one of the following forms:

(1) An explicit proof given elsewhere in this manuscript.
(2) “top cell” means that the hidden extension is detected by the projection

π∗,∗(Cτ) → π∗,∗(S
0,0) to the top cell.

(3) “bottom cell” means that the hidden extension is detected by the inclusion
π∗,∗ → π∗,∗(Cτ) of the bottom cell.

Massey products and cofibers. We will rely heavily on Massey products
and Toda brackets, using the well-known relationship between Toda brackets and
hidden extensions in the homotopy groups of a cofiber. See Proposition 3.1.6 for
an explicit statement. We will also need a similar result for Massey products.

Proposition 5.0.1. Let y and z belong to E2(S
0,0) such that τy and zy are

both zero. In E2(Cτ), there is a hidden extension

z · y ∈ 〈z, y, τ〉,

where the Massey product is computed in E2(S
0,0) and then pushed forward along

the map E2(S
0,0) → E2(Cτ).

Proof. The proof is identical to the proof of Proposition 3.1.6, except that we
work in the derived category of chain complexes of A-modules instead of the motivic
stable homotopy category. In this derived category, the cofiber of τ : M2 → M2 is
H∗,∗(Cτ). �
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5.1. The Adams E2-page for the cofiber of τ

The main tool for computing E2(Cτ) = ExtA(H
∗,∗(Cτ),M2) is the long exact

sequence

· · · // E2(S
0,0)

τ // E2(S
0,0) // E2(Cτ) // · · ·

associated to the cofiber sequence

S0,−1 τ // S0,0 // Cτ // S1,−1.

This yields a short exact sequence

0 // coker(τ) // E2(Cτ) // ker(τ) // 0.

The desired E2(Cτ) is almost completely described by the previous short exact
sequence. It only remains to compute some hidden extensions.

5.1.1. Hidden extensions in the Adams E2-page for the cofiber of τ .
We will resolve all possible hidden extensions by h0, h1, and h2 through the 70-
stem. The reader should refer to the charts in [19] in order to make sense of the
following results.

Theorem 5.1.1. Tables 35, 36, and 37 give some hidden extensions by h0, h1,
and h2 in E2(Cτ). Through the 70-stem, all other possible hidden extensions by
h0, h1, and h2 are either zero or are easily implied by extensions in the tables, with
the possible exceptions that:

(1) h2 · τ2h1g2 might equal τw.
(2) h0 · c0Q2 and h2 · c0Q2 are either both zero, or equal D′

2 and P (A + A′)
respectively.

(3) h3
1c0 ·D4 equals either h2B5 or h2B5 + h2

1X3.

Example 5.1.2. In the 14-stem, there is a hidden extension h2 · h2
1c0 = h0d0,

which does not appear in Table 37. This is easily implied by the hidden extension

h0 · h2
1c0 = Ph2, which does appear in Table 35.

Proof. Most of these hidden extensions are established with Proposition 5.0.1,
so we just need to compute Massey products of the form 〈hi, x, τ〉 in E2(S

0,0). Most
of these Massey products are computed using May’s Convergence Theorem 2.2.1.
The fourth columns of Tables 35, 36, and 37 indicate which May differentials are
relevant for computing each bracket.

A few hidden extensions require more complicated proofs. These proofs are
given in the following lemmas. �

5.1.2. Hidden h0 extensions in the Adams E2-page for the cofiber of

τ .

Lemma 5.1.3.

(1) h0 · c0e0 = j.

(2) h0 · P kc0e0 = P kj.
(3) h0 · c0e0g = d0l.
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Proof. We prove the first formula. The proofs for the other formulas are
essentially the same.

By Proposition 5.0.1, we must compute 〈h0, c0e0, τ〉 in E2(S
0,0). We may

attempt to compute this bracket using May’s Convergence Theorem 2.2.1 with
the May differential d2(b30h0(1)

2) = τc0e0. However, the hypothesis of May’s
Convergence Theorem 2.2.1 is not satisfied because of the later May differential
d4(∆h2

1) = Ph2
1h4.

Instead, note that h2
2〈h0, c0e0, τ〉 equals 〈h2

2, h0, c0e0〉τ . Table 16 shows that
the last bracket equals h1d0e0.

Therefore, h2
2〈h0, c0e0, τ〉 equals τh1d0e0. It follows that 〈h0, c0e0, τ〉 equals

j. �

Lemma 5.1.4. h0 · h1d1g = h1h5c0d0.

Proof. By Proposition 5.0.1, we must compute 〈h0, h1d1g, τ〉 in E2(S
0,0). Be-

cause there is no indeterminacy, we have

〈h0, h1d1g, τ〉 = 〈h0, d1, τh1g〉 = 〈h0, d1, h2f0〉 = 〈h0, d1, f0〉h2.

Table 16 shows that h2B2 = 〈h0, d1, f0〉. Finally, use that h2 · h2B2 = h1h5c0d0
from Table 14. �

Lemma 5.1.5. h0 · h2
1B8 = h2x

′.

Proof. By Proposition 5.0.1, we must compute the bracket 〈h0, h
2
1B8, τ〉,

which equals 〈h0, h1, τh1B8〉 because there is no indeterminacy. Table 16 shows
that 〈h0, h1, τh1B8〉 equals h2x

′. Note that τh1B8 = Ph1h5d0 from Table 11. �

5.1.3. Hidden h1 extensions in the Adams E2-page for the cofiber of

τ .

Lemma 5.1.6. h1 · τh0e30 = d0u.

Proof. Using Proposition 5.0.1, we wish to compute the bracket 〈h1, τh0e
3
0, τ〉

in E2(S
0,0). We may attempt to use May’s Convergence Theorem 2.2.1 with the

May differential d4(∆d20) = τ2h0e
3
0. However, the conditions of May’s Convergence

Theorem 2.2.1 are not satisfied because of the later May differential d8(∆
2h4

1) =
P 2h4

1h5.

Instead, Table 36 shows that h1 · τh0d0e20 equals Pv. Next, observe that d0 ·
τh0e30 + e0 · τh0d0e20 is either zero or h2

1U . In either case, h1d0 · τh0e30 must be

non-zero. It follows that h1 · τh0e30 is also non-zero, and there is just one possible
non-zero value. �

Lemma 5.1.7. h2
1h5 · c0d0 = Ph5e0.

Proof. Table 38 shows that

h2
1 · c0d0 + d0 · h2

1c0 = Pe0,

which means that

h5
1h5 · c0d0 + h3

1h5d0 · h2
1c0 = Ph3

1h5e0.

But h3
1h5d0 = 0, so h5

1h5 · c0d0 = Ph3
1h5e0, from which the desired formula follows.

�

Lemma 5.1.8. h2
1 · h5d0e0 = τB23 + c0Q2.
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Proof. Because of Proposition 5.0.1, we wish to compute the Massey product
〈h1, h1h5d0e0, τ〉 in E2(S

0,0). We may attempt to use May’s Convergence Theorem
2.2.1 with the May differential d6(B23) = h2

1h5d0e0.
However, there is a subtlety here. The element τB23 belongs to the May E∞-

page for E2(S
0,0). It represents two elements in E2(S

0,0) because of the presence
of PD4 with lower May filtration. Thus, we have only determined so far that
h2
1 · h5d0e0 equals either τB23 or τB23 + c0Q2.

This ambiguity is resolved essentially by definition. In Table 10, the element
τB23 in E2(S

0,0) is defined such that 〈h1, h1h5d0e0, τ〉 equals τB23 + c0Q2. �

Lemma 5.1.9. h5
1 · h2

1Q2 = τgw + h4
1X1.

Proof. Because of Proposition 5.0.1, we wish to compute the Massey product
〈h5

1, h
2
1Q2, τ〉. We may attempt to use May’s Convergence Theorem 2.2.1 with the

May differential d4(∆h1g
2) = h7

1Q2.
As in the proof of Lemma 5.1.8, there is a subtlety here. The element τgw

belongs to the May E∞-page for E2(S
0,0). It represents two elements in E2(S

0,0)
because of the presence of Ph1h5c0e0 with lower May filtration. Recall that Table
10 defines τgw to be the element of E2(S

0,0) such that h1 · τgw = 0.

We have determined so far that h5
1 · h2

1Q2 equals either τgw or τgw + h4
1X1.

Table 20 gives a non-zero value for the Adams differential d3(τgw). On the

other hand, d3(h2
1Q2) is zero. Therefore, h

5
1 · h2

1Q2 cannot equal τgw. �

Remark 5.1.10. The proof of Lemma 5.1.9 is not entirely algebraic in the sense
that it relies on Adams differentials. We would prefer a purely algebraic proof, but
it has so far eluded us.

Lemma 5.1.11. h3
1c0 ·D4 equals either h2B5 or h2B5 + h2

1X3.

Proof. Because of Proposition 5.0.1, we wish to compute 〈h3
1c0, D4, τ〉. We

may attempt to use May’s Convergence Theorem 2.2.1 with the May differential
d4(φg) = h5

1X2.
As in the proof of Lemma 5.1.8, there is a subtlety here. The element h2B5

belongs to the May E∞-page for E2(S
0,0). It represents two elements in E2(S

0,0)
because of the presence of h2

1X3 with lower May filtration (see Table 10). �

5.1.4. Other extensions in the Adams E2-page for the cofiber of τ .
We finish this section with some additional miscellaneous hidden extensions.

Lemma 5.1.12. h3
1 · B6 + h2 · τh2d1g = h2

1Q2.

Proof. Table 13 gives the hidden extension h1 · h2
1B6 = τh2

2d1g in E2(S
0,0).

This means that h3
1 ·B6 + h2 · τh2d1g belongs to the image of E2(S

0,0) → E2(Cτ).
Next, compute that h3

1Q2 = 〈h4
1, B6, τ〉 using May’s Convergence Theorem 2.2.1

with the May differentials d2(b30b40h1(1)) = τB6 and d2(h
2
1b

2
21b30b31 + h2

1b
3
21b40) =

h4
1B6. Therefore, h4

1 · B6 = h3
1Q2 by Proposition 5.0.1. The desired formula now

follows. �

Remark 5.1.13. Through the 70-stem, Lemma 5.1.12 is the only example of a
hidden relation of the form h0 · x+ h1 · y, h0 ·x+ h2 · y, or h1 · x+h2 · y in E2(Cτ).

Lemma 5.1.14. Ph1 ·B6 = h1q1.
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Proof. Compute that h1q1 is contained in the Massey product 〈Ph1, B6, τ〉
in E2(S

0,0), using May’s Convergence Theorem 2.2.1 with the May differentials
d2(b30b40h1(1)) = τB6 and d2(∆Bh3

1) = Ph1 · B6. The bracket has indeterminacy
generated by τ2h0B23, so it equals {h1q1, h1q1 + τ2h0B23}.

Push forward this bracket into E2(Cτ), where it collapses to the single element
h1q1 since τ

2h0B23 maps to zero in E2(Cτ). Proposition 5.0.1 now gives the desired
result. �

Lemma 5.1.15.

(1) h2
1 · c0d0 + d0 · h2

1c0 = Pe0.

(2) c0 · h2
1e0 + e0 · h2

1c0 = d20.

(3) h2
1 · h1d0u+ d0 · h3

1u = Pv′.

Proof. These formulas have essentially the same proof. We prove only the
first formula.

Table 17 shows that there is a matric bracket

Pe0 =

〈

[

h2
1 d0

]

,

[

c0d0
h2
1c0

]

, τ

〉

.

A matric version of Proposition 5.0.1 gives the desired hidden extension. �

Before considering the next hidden extension, we need a bracket computation.

Lemma 5.1.16. h2
1d

2
0 = 〈c0e0, τ, h4

1〉.
Proof. The bracket cannot be computed directly with May’s Convergence

Theorem 2.2.1 because of the the later May differential d4(∆h2
1) = Ph2

1h4. There-
fore, we must follow a more complicated route.

Begin with the computation h1c0e0 = 〈d0, h3, h
4
1〉 from Table 16. Therefore,

〈h1c0e0, τ, h
4
1〉 = 〈〈d0, h3, h

4
1〉, τ, h4

1〉,
which equals d0〈h3, h

4
1, τ, h

4
1〉 by a standard formal property of Massey products

since there are no indeterminacies.
Next, compute that h3

1d0 = 〈h3, h
4
1, τ, h

4
1〉 using May’s Convergence Theorem

2.2.2 with the May differentials d2(h1b20) = τh4
1, d2(h

2
1b21) = h4

1h3, and d2(h1b30) =
τh2

1b21 + h1h3b20. Note that both subbrackets 〈h4
1, τ, h

4
1〉 and 〈h3, h

4
1, τ〉 are strictly

zero.
We have now shown that 〈h1c0e0, τ, h

4
1〉 equals h3

1d
2
0. The desired formula now

follows immediately. �

Lemma 5.1.17.

(1) h2
1 · c0e0 + e0 · h2

1c0 = d20.

(2) d0 · c0e0 + e0 · c0d0 = h1u.

Proof. For the first formula, by a matric version of Proposition 5.0.1, we wish
to compute that

d20 =

〈

[

h2
1 e0

]

,

[

c0e0
h2
1c0

]

, τ

〉

.

One might attempt to compute this with a matric version of May’s Convergence
Theorem 2.2.1. However, the hypotheses of May’s Convergence Theorem 2.2.1 do
not apply because of the presence of the later May differential d4(∆h2

1) = Ph2
1h4.
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Instead, we will show that
〈

[

h2
1 e0

]

,

[

c0e0
h2
1c0

]

, τ

〉

h4
1

equals h4
1d

2
0, from which the desired bracket follows immediately. Shuffle to obtain

h2
1〈c0e0, τ, h4

1〉+ e0〈h2
1c0, τ, h

4
1〉.

By Table 16, the expression equals h4
1d

2
0 as desired. This completes the proof of the

first formula.
The proof of the second formula is similar. We wish to compute that

h1u =

〈

[

d0 e0
]

,

[

c0e0
c0d0

]

, τ

〉

.

Again, the hypotheses of May’s Convergence Theorem 2.2.1 do not apply.
Instead, we will show that

〈

[

d0 e0
]

,

[

c0e0
c0d0

]

, τ

〉

h4
1

equals h5
1u, from which the desired bracket follows immediately. Shuffle to obtain

d0〈c0e0, τ, h4
1〉+ e0〈c0d0, τ, h4

1〉.
By Table 16, this expression equals h2

1d
3
0 + h2

1e0 · Pe0. Note that e0 · Pe0 equals
d30 + h3

1u; this is already true in the May E∞-page. Therefore, h2
1d

3
0 + h2

1e0 · Pe0
equals h5

1u, as desired. �

Lemma 5.1.18. h2
1e

2
0 · h2

1e0 + d0e0g · h4
1 + h6

1 · h3
1B1 = c0d0e

2
0.

Proof. The relation e30+d0·e0g = h5
1B1 is hidden in the May spectral sequence

[14].
By Proposition 5.0.1, we wish to compute that

c0d0e
2
0 =

〈

[

h2
1e

2
0 d0e0g h4

1

]

,





h2
1e0
h4
1

h3
1B1



 , τ

〉

.

This will follow if we can show that h4
1c0d0e

2
0 equals

〈

[

h2
1e

2
0 d0e0g h4

1

]

,





h2
1e0
h4
1

h3
1B1



 , τ

〉

h4
1.

This expression equals

h2
1e

2
0〈h2

1e0, τ, h
4
1〉+ d0e0g〈h4

1, τ, h
4
1〉+ h4

1〈h3
1B1, τ, h

4
1〉.

The first two terms can be computed with Table 16. The possible non-zero values
for the third bracket are multiples of h0, which means that the third term is zero
in any case.

The desired formula now follows. �

Lemma 5.1.19.
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5.1.5. The Adams E2-page for the cofiber of τ . Having resolved hidden
extensions, we can now state our main theorem about E2(Cτ).

Theorem 5.1.20. The E2-page of the Adams spectral sequence for Cτ is de-
picted in [19] through the 70-stem. Table 39 lists the E2(S

0,0)-module generators
of E2(Cτ) through the 70-stem.

For most of the generators in Table 39, the notation x is unambiguous. In
other words, in each relevant degree, there is just a single element x of E2(Cτ) that
projects to x in E2(S

0,0).
However, there are several cases in which there is a choice of representative for

x because of the presence of an element in the same degree in the image of the map
E2(S

0,0) → E2(Cτ). One such example occurs in the 56-stem with τh0gm. The
presence of h2x

′ means that there are actually two possible choices for τh0gm.
Table 40 lists all such examples of E2(S

0,0)-module generators of E2(Cτ) for
which there is some ambiguity. In some cases, we have given an algebraic spec-
ification of one element of E2(Cτ) to serve as the generator. These choices are
essentially arbitrary, but it is important to be consistent with the notation between
different arguments.

In some cases, we have not given a definition because an algebraic description is
not readily available, and also because it does not seem to matter for later analysis.
The reader is strongly warned to be cautious when working with these undefined
elements.

The generator h1i1 deserves one additional comment. In this case, the presence
of τh1G and B6 means that there are four possible choices for this generator. We
have given two algebraic specifications for h1i1, which determines a unique element
from these four.

5.2. Adams differentials for the cofiber of τ

We have now computed the E2-page of the Adams spectral sequence for Cτ .
See [19] for a chart of E2(Cτ) through the 70-stem.

The next step is to compute the Adams differentials. The main point is to
compute the Adams dr differentials on the Er(S

0,0)-module generators of Er(Cτ).
Then one can compute the Adams dr differential on any element, using the Adams
dr differentials for Er(S

0,0) given in Tables 8, 20, 21, and 22.

5.2.1. Adams d2 differentials for the cofiber of τ .

Proposition 5.2.1. Table 39 lists some values of the motivic Adams d2 dif-
ferential for Cτ . The motivic Adams d2 differential is zero on all other E2(S

0,0)-
module generators of E2(Cτ), through the 70-stem, with the possible exceptions
that:

(1) d2(h1i1) might equal h1h5c0d0.
(2) d2(h1r1) might equal τh1G0.

Proof. We use several different approaches to establish the Adams d2 differ-
entials:

(1) From an Adams differential d2(x) = y in E2(S
0,0), push forward along

the inclusion S0,0 → Cτ of the bottom cell to obtain the same formula in
E2(Cτ).
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(2) From an Adams differential d2(x) = y in E2(S
0,0), use the projection

Cτ → S1,−1 and pull back to d2(x) = y in E2(Cτ), up to a possible error
term that belongs to the image of the inclusion E2(S

0,0) → E2(Cτ) of the
bottom cell.

(3) Push forward a differential from E2(S
0,0) as in (1), and then use a hidden

extension in E2(Cτ). For example, d2(c0d0) = Pd0 because h0 · c0d0 = i
in E2(Cτ) and d2(i) = Ph0d0 in E2(S

0,0).
(4) Work h1-locally. For example, consider the hidden extensions h2

1 · c0e0 +
e0 · h2

1c0 = d20 and h2
1 · c0d0 + d0 · h2

1c0 = Pe0 from Table 38. It follows

that d2(c0e0) = h2
1 · c0d0 + Pe0.

Most of the differentials are computed with straightforward applications of
these techniques. The remaining cases are computed in the following lemmas. �

The chart of E2(Cτ) in [19] indicates the Adams d2 differentials, all of which
are implied by the calculations in Tables 8 and 39.

Lemma 5.2.2. d2(h2
1e0g) = h2

1e0 · h2
1e0 + c0d0e0.

Proof. Table 8 gives the differential d2(h
2
1e0g) = h4

1e
2
0 in E2(S

0,0) Therefore,

d2(h2
1e0g) is either h2

1e0 · h2
1e0 or h2

1e0 · h2
1e0 + c0d0e0. However, d2(h

2
1e0 · h2

1e0) =

h2
1c0d

2
0, so h2

1e0 · h2
1e0 cannot be the target of a d2 differential. �

Lemma 5.2.3. d2(τ2h1g2) = z.

Proof. We will argue that z must be zero in E∞(Cτ). There is only one
possible differential that can kill it.

Table 24 gives a classical extension η · {g2} = {z} in π41. This implies that
there must be a hidden relation τ · {τ2h1g

2} = {z} in π41,22. In particular, {z} is
divisible by τ in π∗,∗. This means that {z} maps to zero in π41,22(Cτ). �

Lemma 5.2.4.

(1) d2(h1d0u) = Pu′.
(2) d2(Ph1d0u) = P 2u′.

Proof. Table 39 implies that d2(d0 · h1v) = d0 · h3
1u. By Lemma 5.1.19, this

equals h2
1 · h1d0u+ Pv′.

Therefore, h2
1 · d2(h1d0u) equals d2(Pv′). By Table 8, d2(Pv′) equals Ph2

1u
′ +

τh0d
4
0 in E2(S

0,0). Therefore, d2(Pv′) equals Ph2
1u

′ in E2(Cτ). It follows that
d2(h1d0u) must equal Pu′. This establishes the first formula.

The second formula follows by multiplying the first formula by Ph1. �

Lemma 5.2.5. d2(D4) = h1 · B6 +Q2.

Proof. Pull back the differential d2(D4) = h1B6 from E2(S
0,0) to conclude

that d2(D4) = h1 · B6 modulo a possible error term that comes from pushing
forward from E2(S

0,0). To establish the error term, use that h0 ·D4 = D2 and that
d2(D2) = h0Q2. �

Lemma 5.2.6. d2(h1c0x′) = Ph1x
′.

Proof. Table 39 implies that d2(e0 ·v′) equals h2
1e0 ·u′+h2

1d0 ·v′+e0 ·τh0d0e20.
Recall from [14] the relation e0u

′ + d0v
′ = h2

1c0x
′, which is hidden in the May

spectral sequence. This implies that d2(e0 · v′) equals h3
1 · h1c0x′ + e0 · τh0d0e20.
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There is a hidden extension h1e0 · τh0d0e20 = Pe0v. Therefore, d2(h1e0 · v′)
equals h4

1 · h1c0x′ + Pe0v, so h4
1 · d2(h1c0x′) must equal d2(Pe0v).

By Table 8, d2(Pe0v) = Ph2
1d0v + Ph2

1e0u in E2(S
0,0). This equals Ph5

1x
′ by

[14]. It follows that d2(h1c0x′) equals Ph1x
′. �

Lemma 5.2.7. d2(c0Q2) = 0.

Proof. Start with the relation h1 ·c0Q2 = Ph1 ·D4, which follows from Lemma
2.4.24. Using Lemma 5.2.5, it follows that h1 · d2(c0Q2) = Ph2

1 · B6 + Ph1Q2.
We know from [9] that Ph1Q2 = h2

1q1, and we know from Lemma 5.1.14 that
Ph2

1 ·B6 = h2
1q1. �

Remark 5.2.8. We emphasize the calculation d2(e0g·h2
1e0) = h6

1 ·h3
1B1+c0d0e

2
0,

which follows from the Leibniz rule and Lemma 5.1.18. This implies that h6
1 ·h3

1B1

equals c0d0e
2
0 in E3(Cτ). This formula is critical for later Adams differentials.

5.2.2. Adams d3 differentials for the cofiber of τ . See [19] for a chart
of E3(Cτ). This chart is complete through the 70-stem; however, the Adams d3
differentials are complete only through the 64-stem.

Remark 5.2.9. There are a number of classes in E2(S
0,0) that do not survive

to E3(S
0,0), but their images in E2(Cτ) do survive to E3(Cτ). The first few

examples of this phenomenon are h0y, h0c2, and h4
0Q

′. These elements give rise to
E3(S

0,0)-module generators of E3(Cτ).

Remark 5.2.10. Note the class in the 55-stem labeled “?”. This class is either
h1i1 or h1i1 + τh1G, depending on whether d2(h1i1) is zero or non-zero. In the
first case, we have that h5

1 · h1i1 = τg3, from which d3(h1i1) would equal h1B8.

In the second case, we have that h5
1 · (h1i1 + τh1G) = τg3 + h4

1h5c0e0, from which
d3(h1i1 + τh1G) would equal zero.

The next step is to compute Adams d3 differentials on the E3(S
0,0)-module

generators of E3(Cτ).

Proposition 5.2.11. Table 41 lists some values of the motivic Adams d3 dif-
ferential for Cτ . The motivic Adams d3 differential is zero on all other E3(S

0,0)-
module generators of E3(Cτ), through the 65-stem, with the possible exception that
d3(h1i1) equals h1B8, if h1i1 survives to E3(Cτ).

Proof. The techniques for establishing these differentials are the same as in
the proof of Proposition 5.2.1 for d2 differentials, except that the h1-local calcula-
tions are no longer useful. The few remaining cases are computed in the following
lemmas. �

The chart of E3(Cτ) in [19] indicates the Adams d3 differentials, all of which
are implied by the calculations in Tables 20 and 41. The differentials are complete
only through the 64-stem. Beyond the 64-stem, there are a number of unknown
differentials.

Lemma 5.2.12.

(1) d3(h1h3g) = d20.

(2) d3(h1h3g2) = d0e
2
0.
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Proof. We showed in Lemma 4.2.1 that both {d20} and {d0e20} are divisible
by τ in π∗,∗. Therefore, the classes d20 and d0e

2
0 of E∞(S0,0) must map to zero

in E∞(Cτ). For each element, there is just one possible differential that can hit
it. �

Lemma 5.2.13. d3(h2
1g2) = 0.

Proof. The only other possibility is that d3(h2
1g2) equals N . We showed in

Lemma 4.2.5 that the elements of {N} are not divisible by τ in π∗,∗. Therefore,
{N} maps to π∗,∗(Cτ) non-trivially. The only possibility is that N is non-zero in
E∞(Cτ). �

Lemma 5.2.14. d3(h1G3) = τh0e30.

Proof. Table 16 shows that h1G3 = 〈h3, h
3
1, Ph2

1h5〉. It follows that c0·h1G3 =
〈c0, h3, h

3
1〉Ph2

1h5. Table 16 shows that 〈c0, h3, h
3
1〉 = h2

1e0.

We have now shown that c0 ·h1G3 = Ph4
1h5e0. It follows that either c0 ·h1G3 =

h2
1 · Ph2

1h5e0 or c0 · h1G3 = h2
1 · Ph2

1h5e0 + h2
1B21. In either case, c0 · h1G3 =

h2
1 · Ph2

1h5e0 in E3(Cτ) since h2
1B21 is hit by an Adams d2 differential.

Since d3(h
2
1 · Ph2

1h5e0) = d0u
′ is non-zero, we conclude that d3(h1G3) is also

non-zero, and there is just one possible non-zero value. �

Lemma 5.2.15. d3(h1d1g) = 0.

Proof. The only other possibility is that d3(h1d1g) = h2
1G3. If this were the

case, then {h2
1G3} in π53,30 would be divisible by τ . If {h2

1G3} were divisible by τ ,
then the only possibility would be that τ{h1d1g} = {h2

1G3}. However, τ{h1d1g} is
zero by Lemma 4.2.2. �

Lemma 5.2.16. d3(h3
1D4) = h1B21.

Proof. Recall from Lemma 5.1.11 that h3
1c0 ·D4 equals either h2B5 or h2B5+

h2
1X3. It follows that c0 · h3

1D4 equals either h2B5 or h2B5 + h2
1X3. However,

these two elements are equal in E3(Cτ) since h2
1X3 is the target of an Adams d2

differential.
We know that d3(h2B5) = h1B8d0 by Table 20. It follows that d3(h3

1D4) is
non-zero, and there is just one possibility. �

Lemma 5.2.17. d3(Ph5c0e0) = h2
1c0x

′ + U .

Proof. First note that either h1·Ph5c0e0 = Ph1·h5c0e0 or h1·Ph5c0e0 = Ph1·
h5c0e0+h2

1q1. In either case, d3(h1 ·Ph5c0e0) = Ph1 ·h2
1B8 since d3(h5c0e0) = h2

1B8

and d3(h
2
1q1) = 0.

Finally, we must compute that Ph1 · h2
1B8 = h1 · h2

1c0x
′ + h1U . Because of

the relation B8 · Ph1 = c0x
′, either Ph1 · h2

1B8 = h2
1 · h1c0x′ or Ph1 · h2

1B8 =

h2
1 ·h1c0x′+h1U . The second case must be correct because this is the element that

survives to E3(Cτ). �

5.2.3. Adams d4 differentials for the cofiber of τ . See [19] for a chart of
E4(Cτ). This chart is complete through the 64-stem. Beyond the 64-stem, because
of unknown earlier differentials, the actual E4-page is a subquotient of what is
shown in the chart.
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The next step is to compute Adams d4 differentials on the E4(S
0,0)-module

generators of E4(Cτ).

Proposition 5.2.18. The motivic Adams d4 differential for the cofiber of τ is
zero on all E4(S

0,0)-module generators of E4(Cτ) through the 63-stem, except that:

(1) d4(h
15
0 h6) = τP 2h0d20e0.

(2) d4(j1) might equal B21.

Proof. For degree reasons, there are very few possible differentials. The only
difficult cases are addressed in Lemmas 5.2.21 and 5.2.22. �

The chart of E4(Cτ) in [19] indicates the Adams d4 differentials, all of which
are implied by the calculations in Proposition 5.2.18 and Table 21. The differentials
are complete only through the 63-stem. Beyond the 63-stem, there are a number
of unknown differentials.

Remark 5.2.19. Recall that h15
0 h6 does not survive to E4(S

0,0), so this element
is an E4(S

0,0)-module generator of E4(Cτ). This is the reason that the formula for
d4(h

15
0 h6) appears in the statement of Proposition 5.2.18.

Remark 5.2.20. The possible differential d4(C
′) = h2B21 in E4(S

0,0) men-
tioned in Proposition 3.2.15 occurs if and only if d4(j1) = B21 in E4(Cτ). This
follows immediately from the relation h2 · j1 = C′.

Lemma 5.2.21. d4(h0D2) = 0.

Proof. We showed in Lemma 4.2.7 that h0h2h5i detects an element α of π57,30

that is not divisible by τ . Therefore, α maps to a non-zero element of π57,30(Cτ).
The only possibility is that this element of π57,30(Cτ) is detected by h1Q1. In
particular, h1Q1 cannot equal d4(h0D2). �

Lemma 5.2.22. d4(h3d1g) = 0.

Proof. The only other possibility is that d4(h3d1g) equals Ph3
1h5e0. We

showed in Lemma 4.2.9 that the element {Ph3
1h5e0} of π59,33 is not divisible by τ .

Therefore, Ph3
1h5e0 is not hit by a differential in the Adams spectral sequence for

Cτ . �

5.2.4. Higher Adams differentials for the cofiber of τ . At this point,
we are nearly done. There is just one more differential to compute.

Lemma 5.2.23. d5(h2h5) = 0.

Proof. The only other possibility is that d5(h2h5) equals h1q. We showed in
Lemma 4.2.2 that the element {h1q} of π33,18 is not divisible by τ . Therefore, h1q
cannot be hit by a differential in the Adams spectral sequence for the cofiber of
τ . �

The E4(Cτ) chart in [19] indicates the very few d5 differentials along with the
d4 differentials.
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5.2.5. The Adams E∞-page for the cofiber of τ . Using the Adams dif-
ferentials given in Table 39, Table 41, and Proposition 5.2.18, as well as the Adams
differentials for S0,0 given in Tables 8, 20, 21, and 22, we can now directly compute
the E∞-page of the Adams spectral sequence for Cτ .

Theorem 5.2.24. The E∞-page of the Adams spectral sequence for Cτ is de-
picted in [19]. This chart is complete through the 63-stem. Beyond the 63-stem,
E∞(Cτ) is a subquotient of what is shown in the chart.

Through the 63-stem, all unknown differentials are indicated as dashed lines.
Beyond the 63-stem, there are a number of unknown differentials.

In a range, we now have a complete understanding of E∞(Cτ), which is the
associated graded object of π∗,∗(Cτ) with respect to the Adams filtration. In order
to better understand π∗,∗(Cτ) itself, we would like to compute the maps of homo-
topy groups induced by the inclusion j : S0,0 → Cτ of the bottom cell and the
projection q : Cτ → S1,−1 to the top cell.

Proposition 5.2.25. The map j∗ : π∗,∗ → π∗,∗Cτ induced by the inclusion of
the bottom cell is described as follows, through the 59-stem. Let α be an element of
π∗,∗ detected by a in E∞(S0,0).

(1) If a does not equal h0h2h5i, then j∗(α) is detected by j∗(a) in E∞(Cτ).
(2) If a equals h0h2h5i, then j∗(α) is detected by h1Q1 in E∞(Cτ).

Proof. This is a straightforward calculation, using that there is an induced
map E∞(S0,0) → E∞(Cτ). �

It is curious that the Adams filtration hides so little about the map j∗.

Proposition 5.2.26. The map q∗ : π∗,∗Cτ → π∗−1,∗+1 induced by the projec-
tion to the top cell is described as follows, through the 59-stem.

(1) An element of π∗,∗(Cτ) in the image of j∗ : π∗,∗ → π∗,∗(Cτ) (as described
by Proposition 5.2.25) maps to 0 in π∗−1,∗+1.

(2) An element of π∗,∗(Cτ) detected by x in E∞(Cτ) maps to an element of
π∗−1,∗+1 detected by x in E∞(S0,0).

(3) The remaining possibilities are described in Table 42.

Proof. The part of q∗ that is not hidden by the Adams filtration is described
in (1) and (2). The part of q∗ that is hidden by the Adams filtration is described
in Table 42. These are the only possible values that are compatible with the long
exact sequence

· · · //π∗,∗+1
//π∗,∗

//π∗,∗(Cτ) //π∗−1,∗+1
// · · · .

�

5.3. Hidden Adams extensions for the cofiber of τ

Finally, we will consider hidden extensions by 2, η, and ν in the motivic stable
homotopy groups π∗,∗(Cτ) of the cofiber of τ . We will show in Lemma 6.2.4 that
there are no hidden τ extensions in π∗,∗(Cτ).

Recall from Proposition 3.1.6 that a hidden extension by α in π∗,∗(Cτ) is the
same as a Toda bracket in π∗,∗ of the form 〈τ, β, α〉. Many such Toda brackets are
detected in Ext by a corresponding Massey product of the form 〈τ, b, a〉. In this
circumstance, the extension by α is already detected in E∞(Cτ).
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However, there are some Toda brackets of the form 〈τ, β, α〉 that are not de-
tected by Massey products in Ext. In this section, we will study such Toda brackets
methodically.

Proposition 5.3.1. Table 43 shows some hidden extensions by 2, η, and ν in
π∗,∗(Cτ). Through the 59-stem, there are no other hidden extensions by 2, η, and
ν, except that:

(1) there might be a hidden 2 extension from h1d1g to h1B8.
(2) there might be a hidden 2 extension from Q2 to h1Q1.
(3) there might be a hidden 2 extension from h2

1D4 to Ph3
1h5e0.

(4) there might be a hidden η extension from h2
1g2 to h0B2.

(5) there might be a hidden ν extension from B6 to h1D11.
(6) there might be a hidden ν extension from τh2d1g to B21.
(7) if h1i1+ τh1G survives to E∞(Cτ), then there might be a hidden ν exten-

sion from h1i1 + τh1G to h1D11.
(8) if j1 survives to E∞(Cτ), then there might be a hidden 2 extension from

j1 to h1 · h3G3.

Proof. Some of the extensions are detected by the projection q : Cτ → S1,−1

to the top cell, and some of the extensions are detected by the inclusion j : S0,0 →
Cτ of the bottom cell. The remaining cases are established in the following
lemmas. �

Remark 5.3.2. The possible hidden η extension on h2
1g2 is connected to some

of the other uncertainties in our calculations. Suppose that there is a hidden τ
extension from h1i1 to h1B8 in π∗,∗ (see Remark 4.1.11). Then ν{C} + τ{i1} is
detected by B8, and there is a hidden ν extension in π∗,∗(Cτ) from C to B8. If

{h2
1g2}η were zero, then we could further compute that

{B8} = {h2
1g2}ν2 = {h2

1g2}〈η, ν, η〉 = 〈{h2
1g2}, η, ν〉η

in π∗,∗(Cτ). However, {B8} cannot be divisible by η in π∗,∗(Cτ). Therefore,

{h2
1g2}η would be non-zero in π∗,∗(Cτ).

Lemma 5.3.3. There is no hidden ν extension on h4
1h5.

Proof. The only other possibility is that there is a hidden ν extension from

h4
1h5 to u. We will show that the Toda bracket 〈τ, η3η5, ν〉 does not contain {u}.

The bracket contains 〈τη3, η5, ν〉, which equals 〈4ν, η5, ν〉. This bracket contains
4〈ν, η5, ν〉. Note that 〈ν, η5, ν〉 intersects {h1h3h5}, but 4〈ν, η5, ν〉 is zero.

Finally, the bracket 〈τ, η3η5, ν〉 has indeterminacy generated by τ{h3d1} and
τ2{c1g}. Therefore, {u} is not in the bracket. �

Lemma 5.3.4. There is a hidden η extension from h0y to u.

Proof. Table 42 shows that projection to the top cell maps {h0y} to {τh2e
2
0}

in π37,21. The bracket 〈τ, {τh2e
2
0}, η〉 contains 〈{τ2e20}, ν, η〉 which contains {u} by

Table 23.
The indeterminacy of 〈τ, {τh2e

2
0}, η〉 is generated by τσ{d1}, and η{h2

0h3h5}.
Note that τσκ is equal to η{h2

0h3h5}, as shown in Remark 4.2.42. Since {u} is not
in the indeterminacy, the bracket does not contain zero. �

Lemma 5.3.5. There is no hidden ν extension on h0c2.
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Proof. According to Table 42, the projection to the top cell takes the elements
of π41,22(Cτ) detected by h0c2 to elements of π40,23 that are detected by h1h3d1.
These elements of π40,23 must also be annihilated by τ , so they must be ησ{d1}
and ησ{d1}+ {τh2

0g
2}.

It remains to compute the Toda bracket 〈τ, ησ{d1}, ν〉. This bracket contains
〈τ, η{d1}, 0〉, which equals zero. �

Lemma 5.3.6. There is no hidden 2 extension on h0c2.

Proof. We showed in Lemma 5.3.5 that there is no hidden ν extension on
h0c2. Therefore, there cannot be a hidden 2 extension from h0c2 to τh2

0g
2.

There are no other possible hidden 2 extensions on h0c2. �

Lemma 5.3.7. There is no hidden 2 extension on h3 · h2
3g.

Proof. The projection to the top cell detects that h3 · h2
3g is the target of

a hidden η extension from h0c2. Therefore, h3 · h2
3g cannot support a hidden 2

extension. �

Lemma 5.3.8. There is no hidden η extension on τh2c1g.

Proof. The projection to the top cell takes the element {τh2c1g} of π43,23(Cτ)
to an element of π42,24 that is detected by τh2c1g. Two elements of π42,24 are
detected by τh2c1g, but only one element is killed by τ . The relation η{h2

0h3h5} =
τσκ from Remark 4.2.42 implies that νσκ is the element of π42,24 that is killed by
τ and detected by τh2c1g. Therefore, the top cell detects that there is no hidden η
extension on τh2c1g. �

Lemma 5.3.9. There is a hidden ν extension from d0r to h1u
′.

Proof. The inclusion of the bottom cell shows that there is a hidden 2 exten-
sion from e0r to h1u

′ in π47,26(Cτ). The hidden ν extension on d0r is an immediate
consequence. �





CHAPTER 6

Reverse engineering the Adams-Novikov spectral

sequence

In this chapter, we will show that the classical Adams-Novikov E2-page is iden-
tical to the the motivic stable homotopy groups π∗,∗(Cτ) of the cofiber of τ com-
puted in Chapter 5. Moreover, the classical Adams-Novikov differentials and hidden
extensions can also be deduced from prior knowledge of motivic stable homotopy
groups. We will apply this program to provide detailed computational information
about the classical Adams-Novikov spectral sequence in previously unknown stems.

In fact, the classical Adams-Novikov spectral sequence appears to be identical
to the τ -Bockstein spectral sequence converging to stable motivic homotopy groups.
We have only a computational understanding of this curious phenomenon. Our
work calls for a more conceptual study of this relationship.

The simple pattern of weights in the motivic Adams-Novikov spectral sequence
is the key idea that allows this program to proceed. See Theorem 6.1.4 for more
explanation. For example, for simple degree reasons, there can be no hidden τ
extensions in the motivic Adams-Novikov spectral sequence. Also for simple degree
reasons, there are no “exotic” Adams-Novikov differentials; each non-zero motivic
differential corresponds to a classical non-zero analogue.

Outline. Section 6.1 describes the motivic Adams-Novikov spectral sequence
in general terms. Section 6.2 deals with specific properties of the motivic Adams-
Novikov spectral sequence for the cofiber of τ . The main point is that this spectral
sequence collapses. Section 6.3 carries out the translation of information about
π∗,∗(Cτ) into information about the classical Adams-Novikov spectral sequence.

Chapter 7 contains a series of tables that summarize the essential computational
facts in a concise form. Tables 44, 45, and 46 list the extensions by 2, η, and ν that
are hidden in the Adams-Novikov spectral sequence.

Table 47 gives a correspondence between elements of the classical Adams E∞-
page and elements of the classical Adams-Novikov E∞-page. When possible, the
table also gives an element of π∗ that is detected by these E∞ elements.

Tables 48 and 49 list the classical Adams-Novikov elements that are bound-
aries and that support differentials respectively. The tables list the corresponding
elements of π∗,∗(Cτ).

Classical Adams-Novikov inputs. The point of this chapter is to deduce
information about the Adams-Novikov spectral sequence from prior knowledge of
the motivic stable homotopy groups obtained in Chapters 3, 4, and 5. To avoid
circularity, Chapters 3, 4, and 5 intentionally avoid use of the Adams-Novikov
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spectral sequence whenever possible. However, we need a few computational facts
about the Adams-Novikov spectral sequence in Chapter 4:

(1) Lemma 4.2.7 shows that a certain possible hidden τ extension does not
occur in the 57-stem. See also Remark 4.1.12. For this, we use that β12/6

is the only element in the Adams-Novikov spectral sequence in the 58-stem
with filtration 2 that is not divisible by α1 [38].

(2) Lemma 4.2.35 establishes a hidden 2 extension in the 54-stem. See also
Remark 4.1.18. For this, we use that β10/2 is the only element of the
Adams-Novikov spectral sequence in the 54-stem with filtration 2 that is
not divisible by α1, and that this element maps to ∆2h2

2 in the Adams-
Novikov spectral sequence for tmf [5] [38].

Some examples.

Example 6.0.1. Consider the element {h2
1h3g} of π29,18. This element is killed

by τ2 but not by τ .
The Adams-Novikov element α1z28 detects {h2

1h3g} (see the charts in [21]).
Therefore, τ2α1z28 must be hit by some Adams-Novikov differential. This implies
that there is a classical Adams-Novikov d5 differential from the 30-stem to the
29-stem. This differential is well-known [37].

Example 6.0.2. Consider the element {h7
1h5e0} of π55,33. This element is killed

by τ4 but not by τ3.
The Adams-Novikov element α1z54,10 detects {h7

1h5e0} (see the charts in [21]).
Therefore, τ4α1z54,10 must be hit by some Adams-Novikov differential. This implies
that there is a classical Adams-Novikov d9 differential from the 56-stem to the 55-
stem. This differential lies far beyond previous calculations.

6.1. The motivic Adams-Novikov spectral sequence

We adopt the following notation for the classical Adams-Novikov spectral se-
quence.

Definition 6.1.1. Let Er(S
0;BP ) (and E∞(S0;BP )) be the pages of the

classical Adams-Novikov spectral sequence for S0. We write Es,f
r (S0;BP ) for the

part of Er(S
0;BP ) in stem s and filtration f .

The even Adams-Novikov differentials d2r are all zero, so we will only consider
Er(S

0;BP ) when r is odd (or is ∞).
We now describe the motivic Adams-Novikov spectral sequence. Recall that

BPL is the motivic analogue of the classical Brown-Peterson spectrum BP .

Definition 6.1.2. Let Er(S
0,0;BPL) (and E∞(S0,0;BPL)) be the pages of

the motivic Adams-Novikov spectral sequence for the motivic sphere S0,0. We write

Es,f,w
2 (S0,0;BPL) for the part of E2(S

0,0;BPL) in stem s, filtration f , and weight
w.

Our goal is to describe the motivic Adams-Novikov spectral sequence in terms
of the classical Adams-Novikov spectral sequence, as in [17, Theorem 8 and Section
4].

Definition 6.1.3. Define the tri-graded object E2(S
0,0;BPL) such that:

(1) E
s,f, s+f

2

2 (S0,0;BPL) is isomorphic to Es,f
2 (S0;BP ).
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(2) E
s,f,w

2 (S0,0;BPL) is zero if w 6= s+f
2 .

The following theorem completely describes the motivic E2(S
0,0;BPL)-page in

terms of the classical E2(S
0;BP )-page.

Theorem 6.1.4. [17, Theorem 8 and Section 4] The E2(S
0,0;BPL)-page of

the motivic Adams-Novikov spectral sequence is isomorphic to the tri-graded object
E2(S

0,0;BPL)⊗Z2
Z2[τ ], where τ has degree (0, 0,−1).

In other words, in order to produce the motivic E2-page, start with the classical
E2-page. At degree (s, f), replace each copy of Z2 or Z/2n with a copy of Z2[τ ] or

Z/2n[τ ], where the generator has weight s+f
2 .

We will now compare the classical and motivic Adams-Novikov spectral se-
quences. As we have seen in earlier chapters, τ -localization corresponds to passage
from the motivic to classical situations.

Theorem 6.1.5. After inverting τ , the motivic Adams-Novikov spectral se-
quence is isomorphic to the classical Adams-Novikov spectral sequence tensored over
Z2 with Z2[τ

±1].

Proof. The proof is analogous to the corresponding result for the motivic and
classical Adams spectral sequences. See Proposition 3.0.2 and [13, Sections 3.2 and
3.4]. �

6.2. The motivic Adams-Novikov spectral sequence for the cofiber of τ

We will now study the motivic Adams-Novikov spectral sequence that computes
the homotopy groups of the cofiber Cτ of τ .

Definition 6.2.1. Let Er(Cτ ;BPL) (and E∞(Cτ ;BPL)) be the pages of the

motivic Adams-Novikov spectral sequence for Cτ . We write Es,f,w
2 (Cτ ;BPL) for

the part of E2(Cτ ;BPL) in stem s, filtration f , and weight w.

Lemma 6.2.2. E2(Cτ ;BPL) is isomorphic to E2(S
0,0;BPL).

Proof. The cofiber sequence

S0,−1 τ // S0,0 // Cτ // S1,−1

induces a long exact sequence

· · · // E2(S
0,0;BPL)

τ // E2(S
0,0;BPL) // E2(Cτ ;BPL) // · · · .

Theorem 6.1.4 tells us that the map τ : E2(S
0,0;BPL) → E2(S

0,0;BPL) is injec-
tive, so E2(Cτ ;BPL) is isomorphic to the cokernel of τ . Theorem 6.1.4 tells us
that this cokernel is isomorphic to E2(S

0,0;BPL). �

Lemma 6.2.3. There are no differentials in the motivic Adams-Novikov spectral
sequence for τ .

Proof. Lemma 6.2.2 tells us that E2(Cτ ;BPL) is concentrated in tridegrees
(s, f, w) where s+f −2w equals zero. The Adams-Novikov dr differential increases
s+ f − 2w by r − 1. Therefore, all differentials are zero. �

Lemma 6.2.4. There are no hidden τ extensions in E∞(Cτ ;BPL).
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Proof. Let x and y be two elements of E∞(Cτ ;BPL) of degrees (s, f, w) and

(s, f ′, w′) with f ′ > f . Then w′ > w since w = s+f
2 and w′ = s+f ′

2 . For degree
reasons, it is not possible that there is a hidden τ extension from x to y because τ
has degree (0,−1). �

Proposition 6.2.5. There is an isomorphism π∗,∗(Cτ) → E2(S
0;BP ) that

takes the group πs,w(Cτ) into Es,2w−s
2 (S0;BP ).

Proof. Lemma 6.2.2 and Definition 6.1.3 say that E2(Cτ ;BPL) is isomor-
phic to E2(S

0;BP ). Lemma 6.2.3 implies that E∞(Cτ ;BPL) is also isomorphic
to E2(S

0;BP ). As in the proof of Lemma 6.2.4, for degree reasons there can-
not be hidden extensions of any kind. Therefore, π∗,∗(Cτ) is also isomorphic to
E2(S

0;BP ). �

6.3. Adams-Novikov calculations

We will now provide explicit calculations of the classical Adams-Novikov spec-
tral sequence. The charts in [21] are an essential companion to this section.

6.3.1. The classical Adams-Novikov E2-page. We use the traditional no-
tation for elements of the α family, as described in [37]. We draw particular to
attention to α1 in degree (1, 1) and α2/2 in degree (3, 1). These elements detect η
and ν respectively.

For elements not in the α family, we have labelled decomposable elements as
products whenever possible. For elements that are not known to be products, we
use arbitrary symbols of the form zs,f and z′s,f for elements in the s-stem with

filtration f . When there is no amibiguity, we simplify this to zs and z′s.
Our notation is unforutnately arbitrary and does not necessarily convey deeper

structure. However, at least it allows us to give names to every element in the
spectral sequence. Our notation is not compatible with the standard notation for
elements of the Adams-Novikov spectral sequence [37].

Example 6.3.1. Consider the elements in degree (46, 4) in the Adams-Novikov
E2 chart in [21]. From left to right, they are α2

1z44,2, α1z45, α1z
′
45, and α2/2z43,3.

Theorem 6.3.2. The E2-page of the classical Adams-Novikov spectral sequence
is depicted through the 59-stem in the chart in [21]. The chart is complete except
for the uncertainties described in Propositions 6.3.3 and 6.3.4, and the following:

(1) α1z47,3 might equal 2α2/2z
′
45.

(2) If α1z8z
′
45 is non-zero, then 2z54,6 might equal α1z8z

′
45.

(3) α2/2z53 might equal α2
1z54,6.

(4) 2z57 might equal α1z56,2.
(5) α2/2z55 or α2/2z

′
55 might equal α2

1z56,4.
(6) α2/2z56,4 might equal z59,5.

(7) If z60,4 is non-zero, then 2z60,4 might equal α2
1z58,2.

Proof. This follows immediately from Proposition 6.2.5 and the calculation
of π∗,∗(Cτ) given in Chapter 5. The uncertainties are consequences of uncertainties
in the structure of π∗,∗(Cτ). �

Proposition 6.3.3. Modulo elements of the form αn
1αk/b, in the 53-stem, 54-

stem, and 55-stem, either case (1) or case (2) occurs.
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(1) E54,6
2 (S0;BP ) has order four, containing two distinct non-zero elements

z54,6 and α1z8z
′
45 = α3

2/2z
′
45;

E55,5
2 (S0;BP ) is isomorphic to Z/2⊕ Z/2 with generators z55 and z′55;

α1z
′
55 = z56,6;

and α2
2/2z47,3 is zero in E53,5

2 (S0;BP ).

(2) E54,6
2 (S0;BP ) has order two;

E55,5
2 (S0;BP ) has order two;

and α2
2/2z47,3 = z8z

′
45 in E53,5

2 (S0;BP ).

Proof. In the motivic Adams spectral sequence for Cτ , there is a possible d3
differential hitting h1B8 discussed in Proposition 5.2.11. Case (1) of the proposition
corresponds to the possibility that this differential does not occur. Case (2) of the
proposition corresponds to the possibility that this differential does occur. �

Proposition 6.3.4. Modulo elements of the form αn
1αk/b, in the 59-stem and

60-stem, either case (1) or case (2) occurs.

(1) E59,5
2 (S0;BP ) is isomorphic to Z/2 ⊕ Z/2, with generators α2

1z57 and
z59,5;

and E60,4
2 (S0;BP ) has order four, containing two distinct non-zero ele-

ments z60,4 and α2/2z57.

(2) the only non-zero element of E59,5
2 (S0;BP ) is α2

1z57;

and E60,4
2 (S0;BP ) has order two.

Proof. In the motivic Adams spectral sequence for Cτ , there is a possible d4
differential hitting B21 discussed in Proposition 5.2.18. Case (1) of the proposition
corresponds to the possibility that this differential does not occur. Case (2) of the
proposition corresponds to the possibility that this differential does occur. �

Lemma 6.3.5. Assume that case (1) of Proposition 6.3.3 occurs. Then α1z47,3
equals 2α2/2z

′
45.

Proof. Case (1) of Proposition 6.3.3 says that α2
2/2z47,3 is not divisible by α1.

If α1z47,3 were zero, then we could shuffle Massey products to obtain

α2
2/2z47,3 = 〈α1, α2/2, α1〉z47,3 = α1〈α2/2, α1, z47,3〉.

Therefore, α1z47,3 must be non-zero.

Under the isomorphism of Proposition 6.2.5, the element z47,3 of E
47,3
2 (S0;BP )

corresponds to the element h2
1g2 in π47,25(Cτ). We showed in Proposition 5.3.1

that the only possible hidden η extension on h2
1g2 takes the value h0B2, which

corresponds in E48,26
2 (S0;BP ) to 2α2/2z

′
45. �

6.3.2. Adams-Novikov differentials. Having obtained the Adams-Novikov
E2-page, we next compute differentials.

Theorem 6.3.6. The differentials in the classical Adams-Novikov spectral se-
quence are depicted through the 59-stem in the chart in [21]. The chart is complete
except for the following:

(1) if z′55 exists in E55,5
2 (S0;BP ), then d3(z

′
55) = α1z53.

(2) if z60,4 exists in E60,4
2 (S0;BP ), then d3(z60,4) = z′59,7.
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Proof. There is only one pattern of differentials in the motivic Adams-Novikov
spectral sequence that will give the same answer for π∗,∗ that was already obtained
in Chapters 3 and 4. For example, {h2

1h4c0} in π25,15 is annihilated by τ . Therefore,
there must be a motivic Adams-Novikov differential hitting τα2

1α4/4z16. The only

possibility is that d3(z26) = τα2
1α4/4z16.

Having obtained the motivic Adams-Novikov differentials in this way, the clas-
sical Adams-Novikov differentials follow immediately.

The uncertainties in the statement of the theorem are associated with the
uncertainties in Propositions 6.3.3 and 6.3.4. �

6.3.3. The classical Adams-Novikov E∞-page.

Theorem 6.3.7. The E∞-page of the classical Adams-Novikov is depicted in
the chart in [21] through the 59-stem. The chart includes all hidden extensions
by 2, η, and ν. The chart is complete except for the uncertainties described in
Propositions 6.3.9 and 6.3.10, and the following:

(1) There might be a hidden ν extension from α2/2z45 to z51.
(2) There might be a hidden 2 extension from 2α4/4z44 to z51.

Proof. The E∞-page can be computed directly from Theorems 6.3.2 and 6.3.6
because we know the E2-page and all differentials up to some specified uncertainties.

The hidden extensions by 2, η, and ν all follow from extensions in π∗,∗(Cτ), as
computed in Chapter 5. �

Tables 44, 45, and 46 list all of the hidden extensions by 2, η, and ν in the
motivic Adams-Novikov spectral sequence.

Remark 6.3.8. From Lemma 4.2.31, the possible extension (1) in Theorem
6.3.7 occurs if and only if the possible extension (2) occurs.

Proposition 6.3.9. In the 53-stem, 54-stem, and 55-stem, either case (1) or
case (2) occurs.

(1) α1z8z
′′
45 = α3

2/2z
′′
45 is a non-zero element of E54,6

∞ (S0;BP );

E54,8
∞ (S0;BP ) is zero;

α2/2z50 is zero in E53,5
∞ (S0;BP );

and there is a hidden ν extension from z50 to z53.
(2) E54,6

∞ (S0;BP ) is zero;
α1z53 is a non-zero element of E54,8

∞ (S0;BP );
α2/2z50 = z8z

′′
45 in E53,5

∞ (S0;BP );

and there is a hidden ν extension from α2
2/2z

′
45 to α1z53.

Proof. The two cases are associated with the two cases of Proposition 6.3.3.
See also the first uncertainty in Theorem 6.3.6. �

Proposition 6.3.10. In the 59-stem, either case (1) or case (2) occurs.

(1) z59,5 is the only non-zero element of E59,5
∞ (S0;BP );

and z59,7 is the only non-zero element of E59,7
∞ (S0;BP ).

(2) E59,5
∞ (S0;BP ) is zero;

and E59,7
∞ (S0;BP ) has two generators z59,7 and z′59,7.

Proof. The two cases are associated with the two cases of Proposition 6.3.4.
See also the second uncertainty in Theorem 6.3.6. �



CHAPTER 7

Tables

Table 1: Notation for π∗,∗

element (s, w) Ext definition

τ (0,−1) τ
2 (0, 0) h0

η (1, 1) h1

ν (3, 2) h2

σ (7, 4) h3

ǫ (8, 5) c0
µ8k+1 (1, 1) + k(8, 4) P kh1

ζ8k+3 (3, 2) + k(8, 4) P kh2

κ (14, 8) d0
ρ15 (15, 8) h3

0h4

η4 (16, 9) h1h4 η3 · η4 = 0
ν4 (18, 10) h2h4 ν4 = 〈2σ, σ, ν〉
σ (19, 11) c1
κ (20, 11) τg
ρ23 (23, 12) h2

0i
θ4 (30, 16) h2

4

ρ31 (31, 16) h10
0 h5

η5 (32, 17) h1h5 η5 ∈ 〈η, 2, θ4〉, η7 · η5 = 0
θ4.5 (45, 24) h3

4 4θ4.5 ∈ {h0h5d0}, ηθ4.5 ∈ {B1}
σθ4.5 /∈ {τh1h3g2}

Table 2: May E2-page generators

(m, s, f, w) d2 description

h0 (1, 0, 1, 0) h10

h1 (1, 1, 1, 1) h11

h2 (1, 3, 1, 2) h12

b20 (4, 4, 2, 2) τh3
1 + h2

0h2 h2
20

h3 (1, 7, 1, 4) h13

h0(1) (4, 7, 2, 4) h0h
2
2 h20h21 + h11h30

b21 (4, 10, 2, 6) h3
2 + h2

1h3 h2
21

b30 (6, 12, 2, 6) τh1b21 + h3b20 h2
30

h4 (1, 15, 1, 8) h14

95
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Table 2: May E2-page generators

(m, s, f, w) d2 description

h1(1) (4, 16, 2, 9) h1h
2
3 h21h22 + h12h31

b22 (4, 22, 2, 12) h3
3 + h2

2h4 h2
22

b31 (6, 26, 2, 14) h4b21 + h2b22 h2
31

b40 (8, 28, 2, 14) h4b30 + τh1b31 h2
40

h5 (1, 31, 1, 16) h15

h2(1) (4, 34, 2, 18) h2h
2
4 h22h23 + h13h32

h0(1, 3) (7, 38, 3, 20) h2
4h0(1) + h0h2h2(1) h50h11h13 + h40h11h23+

+h20h41h13 + h20h31h23

b23 (4, 46, 2, 24) h3
4 + h2

3h5 h2
23

h0(1, 2) (9, 46, 3, 24) h3h0(1, 3) h30h31h32 + h30h41h22+
+h40h21h32 + h40h41h12+
+h50h21h22 + h50h31h12

b32 (6, 54, 2, 28) h5b22 + h3b23 h2
32

b41 (8, 58, 2, 30) h5b31 + h2b32 h2
41

b50 (10, 60, 2, 30) h5b40 + τh1b41 h2
50

h6 (1, 63, 1, 32) h16

h3(1) (4, 70, 2, 36) h3h
2
5 h23h24 + h14h33

Table 3: May E2-page relations

relation (m, s, f, w)

h0h1 (2, 1, 2, 1)
h1h2 (2, 4, 2, 3)
h2b20 = h0h0(1) (5, 7, 3, 4)
h2h3 (2, 10, 2, 6)
h2h0(1) = h0b21 (5, 10, 3, 6)
h3h0(1) (5, 14, 3, 8)
h0(1)

2 = b20b21 + h2
1b30 (8, 14, 4, 8)

h0h1(1) (5, 16, 3, 9)
h3b21 = h1h1(1) (5, 17, 3, 10)
b20h1(1) = h1h3b30 (8, 20, 4, 11)
h3h4 (2, 22, 2, 12)
h3h1(1) = h1b22 (5, 23, 3, 13)
h0(1)h1(1) (8, 23, 4, 13)
b20b22 = h2

0b31 + h2
3b30 (8, 26, 4, 14)

b22h0(1) = h0h2b31 (8, 29, 4, 16)
h4h1(1) (5, 31, 3, 17)
h1(1)

2 = b21b22 + h2
2b31 (8, 32, 4, 18)

h1h2(1) (5, 35, 3, 19)
h4b22 = h2h2(1) (5, 37, 3, 20)
b20h2(1) = h0h0(1, 3) (8, 38, 4, 20)
h2h0(1, 3) = h0h4b31 (8, 41, 4, 22)
h0(1)h2(1) = h0h4b31 (8, 41, 4, 22)
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Table 3: May E2-page relations

relation (m, s, f, w)

b21h2(1) = h2h4b31 (8, 44, 4, 24)
h0(1)h0(1, 3) = h2

1h4b40 + h4b20b31 (11, 45, 5, 24)
h4h5 (2, 46, 2, 24)
b30h2(1) = h0h0(1, 2) + h2h4b40 (10, 46, 4, 24)
b21h0(1, 3) = h2

1h0(1, 2) + h4b31h0(1) (11, 48, 5, 26)
h4h2(1) = h2b23 (5, 49, 3, 26)
h1(1)h2(1) (8, 50, 4, 27)
b30h0(1, 3) = b20h0(1, 2) + h4b40h0(1) (13, 50, 5, 26)
b23h0(1) = h4h0(1, 3) (8, 53, 4, 28)
h0(1)h0(1, 2) = h4b40b21 + h4b30b31 (13, 53, 5, 28)
h1(1)h0(1, 3) = h1h3h0(1, 2) (11, 54, 5, 29)
b21b23 = h2

1b32 + h2
4b31 (8, 56, 4, 30)

b30b23 = b20b32 + h2
0b41 + h2

4b40 (10, 58, 4, 30)
b22h0(1, 3) = h2

3h0(1, 2) + h0b31h2(1) (11, 60, 5, 32)
b32h0(1) = h4h0(1, 2) + h0h2b41 (10, 61, 4, 32)
b23h1(1) = h1h3b32 (8, 62, 4, 33)
h5h2(1) (5, 65, 3, 34)
b22b23 = h2(1)

2 + h2
3b32 (8, 68, 4, 36)

h5h0(1, 3) (8, 69, 4, 36)

Table 4: The May d4 differential

(m, s, f, w) description d4

P (8, 8, 4, 4) b220 h4
0h3

ν (7, 15, 3, 8) h2b30 h2
0h

2
3

g (8, 20, 4, 12) b221 h4
1h4

∆ (12, 24, 4, 12) b230 τ2h2g + Ph4

ν1 (7, 33, 3, 18) h3b31 h2
1h

2
4

x34 (7, 34, 5, 18) h3
0h2(1) + h0h

2
4b20

x35 (10, 35, 4, 18) h0h3b40 x34

x47 (13, 47, 5, 25) h2b40h1(1) τh2
1g2

x49 (10, 49, 4, 26) h2h0(1, 2) h0h3c2
∆1 (12, 52, 4, 28) b231 h5g + h3g2
Γ (16, 56, 4, 28) b240 ∆h5 + τ2∆1h2

x59 (19, 59, 7, 31) h2b30b40h1(1) τ2e1g
x63 (20, 63, 8, 33) h1b20b30h0(1, 2)+ τh5d0e0

+τh2
1b31b40h0(1)+

+τb20b
2
31h0(1)

x65 (20, 65, 8, 34) h0h3b20b31b40 h3
0A

′′

x68 (16, 68, 6, 36) h2
3b31b40 + τb231h1(1) τs1

ν2 (7, 69, 3, 36) h4b32 h2
2h

2
5

x69 (13, 69, 5, 36) h3b40h2(1) h2
0d2
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Table 5: The May d6 differential

(m, s, f, w) description d6

Pi (23, 31, 11, 16) P 2ν h5
0s

Pr (22, 38, 10, 20) P∆h2
2 h6

0x
Y (16, 45, 6, 24) Bh0(1) h3

0g2
φ (17, 49, 7, 27) Bh1b21 h3

1h5d0
X (23, 54, 9, 28) Bh0b20b30 Ph0h5d0
PQ′ (37, 55, 17, 28) P 2∆h2

0ν h9
0X

x56 (21, 56, 9, 31) Bh1b21h0(1) h2
1h5c0d0

x′
56 (24, 56, 10, 30) PBb21 Ph2

1h5d0
φ′ (23, 57, 9, 30) Bh0b30h0(1) Ph0h5e0
Px56 (29, 64, 13, 35) Ph2

1h5c0d0
Px′

56 (32, 64, 14, 34) P 2h2
1h5d0

B23 (24, 65, 10, 36) Y g h2
1h5d0e0

Pφ′ (31, 65, 13, 34) P 2h0h5e0
c0g

3 (29, 68, 15, 41) h10
1 D4

∆h2
0Y (30, 69, 12, 36) ∆h5

0g2 + h0h5d0i

Table 6: The May d8 differential

element (m, s, f, w) description d8

P 2 (16, 16, 8, 8) h8
0h4

∆h3 (13, 31, 5, 16) h4
0h

2
4

g2 (16, 40, 8, 24) h8
1h5

w (21, 45, 9, 25) ∆h1g Ph5
1h5

∆2 (24, 48, 8, 24) P 2h5

∆c0g (25, 52, 11, 29) Ph4
1h5c0

Q3 (13, 67, 5, 36) ∆1h4 h4
1h

2
5

Γh0h
2
3 (19, 70, 7, 36) h4

0p
′

Table 7: Higher May differentials

element (m, s, f, w) dr value

P 2Q′ (45, 63, 21, 32) d12 Ph10
0 h5i

P 4 (32, 32, 16, 16) d16 h16
0 h5

∆2h4 (25, 63, 9, 32) d16 h8
0h

2
5

P 8 (64, 64, 32, 32) d32 h32
0 h6
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Table 8: Adams E2 generators

element (m, s, f, w) May description d2 reference

h0 (1, 0, 1, 0)
h1 (1, 1, 1, 1)
h2 (1, 3, 1, 2)
h3 (1, 7, 1, 4)
c0 (5, 8, 3, 5) h1h0(1)
Ph1 (9, 9, 5, 5)
Ph2 (9, 11, 5, 6)
d0 (8, 14, 4, 8) h0(1)

2

h4 (1, 15, 1, 8) h0h
2
3 image of J

Pc0 (13, 16, 7, 9)
e0 (8, 17, 4, 10) b21h0(1) h2

1d0 Lemma 3.3.1
P 2h1 (17, 17, 9, 9)
f0 (8, 18, 4, 10) h2ν h2

0e0 tmf
c1 (5, 19, 3, 11) h2h1(1)
P 2h2 (17, 19, 9, 10)
τg (8, 20, 4, 11) τb221
Pd0 (16, 22, 8, 12)
h2g (9, 23, 5, 14)
i (15, 23, 7, 12) Pν Ph0d0 tmf
P 2c0 (21, 24, 11, 13)
Pe0 (16, 25, 8, 14) Ph2

1d0 Lemma 3.3.1
P 3h1 (25, 25, 13, 13)
j (15, 26, 7, 14) h0b30h0(1)

2 Ph0e0 tmf
h3g (9, 27, 5, 16) h0h

2
2g Lemma 3.3.3

P 3h2 (25, 27, 13, 14)
k (15, 29, 7, 16) d0ν h0d

2
0 tmf

r (14, 30, 6, 16) ∆h2
2

P 2d0 (24, 30, 12, 16)
h5 (1, 31, 1, 16) h0h

2
4 image of J

n (11, 31, 5, 17) h2b30h1(1)
d1 (8, 32, 4, 18) h1(1)

2

q (14, 32, 6, 17) ∆h1h3

l (15, 32, 7, 18) e0ν h0d0e0 Lemma 3.3.2
P 3c0 (29, 32, 15, 17)
p (8, 33, 4, 18) h0ν1
P 2e0 (24, 33, 12, 18) P 2h2

1d0 Lemma 3.3.1
P 4h1 (33, 33, 17, 17)
Pj (23, 34, 11, 18) P 2h0e0 tmf
m (15, 35, 7, 20) gν h0e

2
0 tmf

P 4h2 (33, 35, 17, 18)
t (12, 36, 6, 20) τb221h1(1) + h2

1b22b30
x (11, 37, 5, 20) h2b22b30 + h3

2b40
e0g (16, 37, 8, 22) h2

1e
2
0 Lemma 3.3.4

e1 (8, 38, 4, 21) b22h1(1)
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Table 8: Adams E2 generators

element (m, s, f, w) May description d2 reference

y (14, 38, 6, 20) ∆h2
3 h3

0x Table 18
P 3d0 (32, 38, 16, 20)
c1g (13, 39, 7, 23)
u (21, 39, 9, 21) ∆h1d0
P 2i (31, 39, 15, 20) P 3h0d0 tmf
f1 (8, 40, 4, 22) h3ν1
τg2 (16, 40, 8, 23)
P 4c0 (37, 40, 19, 21)
c2 (5, 41, 3, 22) h3h2(1) h0f1 Table 18
z (22, 41, 10, 22) ∆h2

0e0
P 3e0 (32, 41, 16, 22) P 3h2

1d0 Lemma 3.3.1
P 5h1 (41, 41, 21, 21)
v (21, 42, 9, 23) ∆h1e0 h2

1u Table 18
P 2j (31, 42, 15, 22) P 3h0e0 tmf
h2g

2 (17, 43, 9, 26)
P 5h2 (41, 43, 21, 22)
g2 (8, 44, 4, 24) b222
τw (21, 45, 9, 24) τ∆h1g
B1 (17, 46, 7, 25) Y h1

N (18, 46, 8, 25) ∆h2c1
u′ (25, 46, 11, 25) ∆c0d0 τh0d

2
0e0 Lemma 3.3.5

h3g
2 (17, 47, 9, 28) h0h

2
2g

2 Lemma 3.3.3
P 4d0 (40, 46, 20, 24)
Q′ (29, 47, 13, 24) P∆h2

0ν h0i
2 Table 18

Pu (29, 47, 13, 25) P∆h1d0
B2 (17, 48, 7, 26) Y h2

P 5c0 (45, 48, 23, 25)
v′ (25, 49, 11, 27) ∆c0e0 h2

1u
′+ Lemma 3.3.5

+τh0d0e
2
0

P 4e0 (40, 49, 20, 26) P 4h2
1d0 Lemma 3.3.1

P 6h1 (49, 49, 25, 25)
C (14, 50, 6, 27) h2x47

gr (22, 50, 10, 28) ∆h2
2g

Pv (29, 50, 13, 27) P∆h1e0 Ph2
1u Table 18

P 3j (39, 50, 19, 26) P 4h0e0 tmf
G3 (21, 51, 9, 28) ∆h3g h0gr Lemma 3.3.6
gn (19, 51, 9, 29)
P 6h2 (49, 51, 25, 26)
D1 (11, 52, 5, 28) h2x49 h2

0h3g2 Lemma 3.3.13
d1g (16, 52, 8, 30)
i1 (15, 53, 7, 30) gν1 Lemma 3.3.8
B8 (21, 53, 9, 29) Y c0
x′ (24, 53, 10, 28) PY
τG (14, 54, 6, 29) τ∆1h

2
1 h5c0d0 Lemma 3.3.12

R1 (26, 54, 10, 28) ∆2h2
2 h2

0x
′ Table 18
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Table 8: Adams E2 generators

element (m, s, f, w) May description d2 reference

Pu′ (33, 54, 15, 29) P∆c0d0 τPh0d
2
0e0 Lemma 3.3.5

P 5d0 (48, 54, 24, 28)
B6 (17, 55, 7, 30) Bh1h1(1) Lemma 3.3.7
gm (23, 55, 11, 32) g2ν h0e

2
0g Lemma 3.3.9

P 2u (37, 55, 17, 29)
P 4i (47, 55, 23, 28) P 5h0d0 tmf
gt (20, 56, 10, 32)
Q1 (26, 56, 10, 29) ∆2h1h3 τh2

1x
′ Lemma 3.3.10

P 6c0 (53, 56, 27, 29)
D4 (14, 57, 6, 31) h1b21h0(1, 2) h1B6 Lemma 3.3.11
Q2 (19, 57, 7, 30) ∆ν1
D11 (21, 57, 9, 31) ∆h1d1
Pv′ (33, 57, 15, 31) P∆c0e0 Ph2

1u
′+ Lemma 3.3.5

+τh0d
4
0

P 5e0 (48, 57, 24, 30) P 5h2
1d0 Lemma 3.3.1

P 7h1 (57, 57, 29, 29)
D2 (16, 58, 6, 30) h0b30h0(1, 2) h0Q2 Lemma 3.3.15
e1g (16, 58, 8, 33)
P 2v (37, 58, 17, 31) P 2h2

1u Table 18
P 4j (47, 58, 23, 30) P 5h0e0 tmf
j1 (15, 59, 7, 33) h1b21b22b31
B21 (24, 59, 10, 32) Y d0
c1g

2 (21, 59, 11, 35)
P 7h2 (57, 59, 29, 30)
B3 (17, 60, 7, 32) Y h4

B4 (23, 60, 9, 32) Y ν h0B21 Lemma 3.3.16
τg3 (24, 60, 12, 35)
h0g

3 (25, 60, 13, 36)
D3 (10, 61, 4, 32) h4h0(1, 2)
A (16, 61, 6, 32) h2b30h0(1, 2) h0B3 Lemma 3.3.15
A′ (16, 61, 6, 32) h2b30h0(1, 2)+

+h0h3b31b40
B7 (17, 61, 7, 33) Bh1b22
X1 (23, 61, 9, 32) ∆x h2

0B4+ Lemma 3.3.12
+τh1B21

H1 (13, 62, 5, 33) h1(1)h0(1, 2) B7 Lemma 3.3.11
C0 (20, 62, 8, 33) h2x59

E1 (20, 62, 8, 33) ∆e1
B22 (24, 62, 10, 34) Y e0 h2

1B21 Lemma 3.3.16
R (26, 62, 10, 32) ∆2h2

3

P 2u′ (41, 62, 19, 33) τP 2h0d
2
0e0 Lemma 3.3.5

P 6d0 (56, 62, 28, 32)
h6 (1, 63, 1, 32) h0h

2
5 image of J

C′ (17, 63, 7, 34) h2b40h1(1)
2 Lemma 3.3.17

X2 (17, 63, 7, 34) τh1b21b
2
31+ h2

1B3 Lemma 3.3.18



102 7. TABLES

Table 8: Adams E2 generators

element (m, s, f, w) May description d2 reference

+h2
1h3b31b40

h2g
3 (25, 63, 13, 38)

P 3u (45, 63, 21, 33)
A′′ (14, 64, 6, 34) h0b31h0(1, 3) h0X2 Lemma 3.3.15
q1 (26, 64, 10, 33) ∆2h1h4

U (34, 64, 14, 34) ∆2h2
1d0 Ph2

1x
′ Lemma 3.3.10

P 7c0 (61, 64, 31, 33)
k1 (15, 65, 7, 36) d1ν1
τB23 (24, 65, 10, 35)
R2 (33, 65, 13, 34) ∆2h0e0 h0U Lemma 3.3.10
τgw (29, 65, 13, 36)
P 2v′ (41, 65, 19, 35) P 2h2

1u
′+ Lemma 3.3.5

+τPh0d
4
0

P 6e0 (56, 65, 28, 34) P 6h2
1d0 Lemma 3.3.1

P 8h1 (65, 65, 33, 33)
r1 (14, 66, 6, 36) ∆1h

2
3

τG0 (17, 66, 7, 35) τb221h0(1, 2)+ h2C0+ Lemma 3.3.19
+h1h3b30h0(1, 2) +h1h3Q2

τB5 (24, 66, 10, 35) τb221b
2
30b22+ τh2

0B23 Lemma 3.3.20
+τh2

2b
2
21b30b40+

+h1h3b
3
30b22

D′
2 (24, 66, 10, 34) PD2 +∆h0h3x35 τ2h2

0B23 Lemma 3.3.20
P 3v (45, 66, 21, 35) P 3h2

1u Lemma 3.3.21
P 5j (55, 66, 27, 34) P 6h0e0 tmf
n1 (11, 67, 5, 36) h3b31h2(1) h0r1 [11, VI.1]
τQ3 (13, 67, 5, 35)
h0Q3 (14, 67, 6, 36)
C′′ (21, 67, 9, 37) gx47

X3 (21, 67, 9, 36) ∆1h
2
0ν + τ∆1h1d0 Lemma 3.3.22

C11 (29, 67, 11, 35) ∆2c1
h3g

3 (25, 67, 13, 40) h0h
2
2g

3 Lemma 3.3.3
P 8h2 (65, 67, 33, 34)
d2 (8, 68, 4, 36) h2(1)

2

G21 (20, 68, 8, 36) ∆g2 h0X3 Lemma 3.3.12
h2B23 (25, 68, 11, 38)
G11 (33, 68, 13, 36) ∆2h2e0 h0d0x

′ Lemma 3.3.10
p′ (8, 69, 4, 36) h0ν2
D′

3 (18, 69, 8, 37) h1b20b31h0(1, 3)+ h1X3 Lemma 3.3.18
+h3

1b40h0(1, 3)
h2G0 (18, 69, 8, 38) h1C

′′ Lemma 3.3.19
P (A+A′) (24, 69, 10, 36) τ2h0h2B23 Lemma 3.3.20
h2B5 (25, 69, 11, 38)
τW1 (33, 69, 13, 36) τ∆2h1g
P 2x′ (40, 69, 18, 36)
p1 (8, 70, 4, 37) h1ν2



7. TABLES 103

Table 8: Adams E2 generators

element (m, s, f, w) May description d2 reference

h2Q3 (14, 70, 6, 38)
R′

1 (41, 70, 17, 36) ∆2Ph0d0 P 2h0x
′ Lemma 3.3.23

P 3u′ (49, 70, 23, 37) τP 3h0d
2
0e0 Lemma 3.3.5

P 7d0 (64, 70, 32, 36)

Table 9: Temporary May E∞ generators

element (m, s, f, w) description

s (13, 30, 7, 16) Ph4h0(1) + h3
0b20b31

P 2s (29, 46, 15, 24)
S1 (25, 54, 11, 28) h2

0X
g′2 (23, 60, 11, 32) P∆1h

3
0

τPG (22, 62, 10, 33) τP∆1h
2
1

Ph5i (24, 62, 12, 32)
P 4s (45, 62, 23, 32)
PD4 (22, 65, 10, 35)
s1 (13, 67, 7, 37) h5b

2
21h1(1) + h3

1b21b32
Ph2

5 (10, 70, 6, 36)
τP 2G (30, 70, 14, 37)
P 2S1 (41, 70, 19, 36)

Table 10: Ambiguous Ext generators

element (m, s, f, w) ambiguity definition

f0 (8, 18, 4, 10) τh3
1h4

y (14, 38, 6, 20) τ2h2
2d1

f1 (8, 40, 4, 22) h2
1h3h5

u′ (25, 46, 11, 25) τd0l τ · u′ = 0
B2 (17, 48, 7, 26) h2

0h5e0
v′ (25, 49, 11, 27) τe0l τ · v′ = 0
G3 (21, 51, 9, 28) τgn h2 ·G3 = 0
R1 (26, 54, 10, 28) τPh1h5d0
Pu′ (33, 54, 15, 29) τd20j 〈u′, h3

0, h0h3〉
B6 (17, 55, 7, 30) τh1G τ · B6 = 0
Q1 (26, 56, 10, 29) τ3gt
Pv′ (33, 57, 15, 31) τd20k τ · Pv′ = 0
B4 (23, 60, 9, 32) h0h5k
τg3 (24, 60, 12, 35) h4

1h5c0e0 h2
1 · τg3 = 0

H1 (13, 62, 5, 33) h1D3

R (26, 62, 10, 32) τ2B22, τ
2PG h1 ·R = 0

P 2u′ (41, 62, 19, 33) τPd20j 〈u′, h3
0, h

5
0h4〉

q1 (26, 64, 10, 33) τ2h2
1E1
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Table 10: Ambiguous Ext generators

element (m, s, f, w) ambiguity definition

U (34, 64, 14, 34) τ2km ∆2h2
1d0 in ExtA(2)

τB23 (24, 65, 10, 35) PD4 c0Q2 + 〈h1, h1h5d0e0, τ〉
R2 (33, 65, 13, 34) τ3gw 0 in ExtA(2)

τgw (29, 65, 13, 36) Ph1h5c0e0 h1 · τgw = 0
P 2v′ (41, 65, 19, 35) τd30i τ · P 2v′ = 0
τG0 (17, 66, 7, 35) τh0r1 〈τ, h2

1H1, h1〉
n1 (11, 67, 5, 36) h4

1h6 h1 · n1 = 0
τQ3 (13, 67, 5, 35) τn1 Adams d2(τQ3) = 0
h0Q3 (14, 67, 6, 36) h0n1 τ · h0Q3 = h0 · τQ3

C11 (29, 67, 11, 35) τh2
0X3 h0 · C11 = 0

G21 (20, 68, 8, 36) τh3B7

G11 (33, 68, 13, 36) h5
0G21

h2B5 (25, 69, 11, 38) h2
1X3 h1 · h2B5 = 0

P 2x′ (40, 69, 18, 36) d20z 0 in ExtA(2)

R′
1 (41, 70, 17, 36) τ3d20v 〈τ, P c0x

′, h0〉
P 3u′ (49, 70, 23, 37) τP 2d20j 〈u′, h3

0, h
3
0i〉

Table 11: Hidden May τ extensions

(s, f, w) x τ · x reference

(30, 11, 16) Pc0d0 h4
0s classical

(37, 9, 20) τh0e0g h4
0x classical

(37, 10, 20) τh2
0e0g h5

0x classical
(41, 5, 22) h1f1 h2

0c2 classical
(43, 9, 24) τh2g

2 Ph4
1h5 Lemma 2.4.2

(46, 19, 24) P 3c0d0 P 2h4
0s classical

(53, 9, 28) B8 Ph5d0 Lemma 2.4.3
(53, 17, 28) τPh0d

2
0e0 h7

0x
′ classical

(53, 18, 28) τPh2
0d

2
0e0 h8

0x
′ classical

(54, 10, 29) h1B8 Ph1h5d0 τ · B8

(54, 15, 28) Pu′ h4
0S1 Lemma 2.4.4

(54, 16, 28) τh0d
2
0j h5

0S1 classical
(54, 17, 28) τ2Ph1d

2
0e0 h6

0S1 classical
(58, 8, 30) h1Q2 h2

0D2 classical
(60, 13, 34) τh0g

3 Ph4
1h5e0 Lemma 2.4.2

(61, 12, 33) h2
1B21 Ph5c0d0 Lemma 2.4.3

(61, 13, 32) x′c0 h4
0X1 classical

(62, 13, 34) h3
1B21 Ph1h5c0d0 τ · h2

1B21

(62, 19, 32) P 2u′ Ph7
0h5i Lemma 2.4.4

(62, 20, 32) τPh0d
2
0j Ph8

0h5i classical
(62, 21, 32) τ2P 2h1d

2
0e0 Ph9

0h5i classical
(62, 27, 32) P 5c0d0 P 4h4

0s classical
(64, 8, 34) h1X2 h2

0A
′′ classical
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Table 11: Hidden May τ extensions

(s, f, w) x τ · x reference

(65, 7, 35) k1 h2h5n Lemma 2.4.5
(65, 9, 34) h1h3Q2 h2

0h3D2 classical
(66, 12, 34) h2

1q1 h2
0D

′
2 classical

(67, 13, 36) B8d0 h4
0X3 Lemma 2.4.3

(68, 12, 36) τh0h2B23 h4
0G21 + h5d0i classical

(69, 7, 36) τh2
1Q3 h3

0p
′ classical

(69, 25, 36) τP 3h0d
2
0e0 P 2h7

0x
′ classical

(69, 26, 36) τP 3h2
0d

2
0e0 P 2h8

0x
′ classical

(70, 6, 36) τh2Q3 Ph2
5 classical

(70, 7, 36) τh0h2Q3 Ph0h
2
5 classical

(70, 23, 36) P 3u′ P 2h4
0S1 Lemma 2.4.4

(70, 24, 36) τP 2h0d
2
0j h5

0S1 classical
(70, 25, 36) τP 2h2

0d
2
0j h6

0S1 classical

Table 12: Hidden May h0 extensions

(s, f, w) x h0 · x reference

(26, 7, 16) h2
2g h3

1h4c0 Lemma 2.4.9
(30, 7, 16) r s classical
(46, 11, 28) h2

2g
2 h7

1h5c0 Lemma 2.4.9
(46, 12, 25) u′ τh0d0l Lemma 2.4.8
(46, 15, 24) i2 P 2s classical
(49, 12, 27) v′ τh0e0l Lemma 2.4.8
(50, 11, 28) gr Ph3

1h5c0 Lemma 2.4.10
(54, 16, 29) Pu′ τh0d

2
0j τ · Pu′

(54, 11, 28) R1 S1 classical
(56, 11, 29) Q1 τh2x

′ classical
(57, 16, 31) Pv′ τh0d0e0j Lemma 2.4.8
(60, 8, 32) B3 h5k classical
(60, 16, 33) d0u

′ τh0e
2
0j h0 · u′

(62, 20, 33) P 2u′ τPh0d
2
0j τ · P 2u′

(62, 12, 32) h0R Ph5i classical
(62, 13, 34) h2

0B22 Ph1h5c0d0 Lemma 2.4.12
(62, 23, 32) P 2i2 P 4s classical
(63, 8, 34) X2 h5l classical
(63, 15, 38) h0h2g

3 h7
1h5c0e0 h0 · h2

2g
2

(63, 16, 35) e0u
′ τh0e

2
0k h0 · u′

(64, 8, 34) h2A
′ τ2d21 classical

(64, 15, 34) U Ph2x
′ classical

(65, 20, 35) P 2v′ τh0d
3
0i Lemma 2.4.8

(66, 15, 40) h2
2g

3 h9
1D4 Lemma 2.4.9

(66, 16, 37) e0v
′ τh0e

2
0l h0 · v′

(67, 14, 38) lm h6
1X1 Lemma 2.4.10
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Table 12: Hidden May h0 extensions

(s, f, w) x h0 · x reference

(68, 15, 36) h0G11 τh1d0x
′ classical

(68, 20, 37) Pd0u
′ τh0d

3
0j h0 · u′

(70, 24, 37) P 3u′ τP 2h0d
2
0j τ · P 3u′

(70, 15, 40) m2 h5
1c0Q2 Lemma 2.4.10

(70, 19, 36) h0R
′
1 P 2S1 classical

Table 13: Hidden May h1 extensions

(s, f, w) x h1 · x reference

(38, 6, 21) x τh2
2d1 classical

(39, 7, 21) y τ2c1g classical
(56, 8, 31) τh1G h5c0e0 Lemma 2.4.14
(58, 10, 33) h2

1B6 τh2
2d1g Lemma 2.4.15

(59, 11, 33) h1D11 τ2c1g
2 Lemma 2.4.16

(62, 9, 34) h1B3 h5d0e0 Lemma 2.4.14
(62, 10, 33) X1 τPG classical
(64, 8, 35) C′ τd21 classical
(64, 12, 35) τPh1G Ph5c0e0 Lemma 2.4.14
(67, 7, 37) r1 s1 Lemma 2.4.18
(67, 13, 36) h2

1q1 h4
0X3 Lemma 2.4.19

(68, 10, 38) C′′ d1t classical
(70, 5, 37) p′ h2

5c0 classical
(60, 12, 39) h2

1X3 h5c0d0e0 Lemma 2.4.14
(70, 14, 37) τW1 τP 2G classical

Table 14: Hidden May h2 extensions

(s, f, w) x h2 · x reference

(26, 7, 16) h0h2g h3
1h4c0 h0 · h2

2g
(46, 11, 28) h0h2g

2 h7
1h5c0 h0 · h2

2g
2

(49, 12, 27) u′ τh0e0l h0 · u′

(50, 11, 28) e0r Ph3
1h5c0 Remark 2.4.21

(52, 12, 29) v′ τh0e0m h0 · v′
(54, 9, 30) h2B2 h1h5c0d0 Lemma 2.4.22
(57, 16, 31) Pu′ τh0d0e0j h0 · Pu′

(58, 8, 32) B6 τe1g Lemma 2.4.23
(59, 11, 31) Q1 τh0B21 classical
(60, 8, 32) Q2 h5k classical
(60, 9, 32) h0Q2 h0h5k classical
(60, 16, 33) Pv′ τh0e

2
0j h0 · Pv′

(62, 13, 34) h2
0B21 Ph1h5c0d0 h0 · h2

0B22

(63, 8, 34) B3 h5l classical
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Table 14: Hidden May h2 extensions

(s, f, w) x h2 · x reference

(63, 15, 38) h2
0g

3 h7
1h5c0e0 h0 · h0h2g

3

(63, 16, 35) d0u
′ τh0e

2
0k h2 · u′

(64, 7, 34) A+A′ h0A
′′ classical

(64, 8, 34) h0(A+A′) h2
0A

′′ classical
(64, 8, 35) B7 τd21 classical
(64, 14, 36) km h6

1X1 Remark 2.4.21
(65, 20, 35) P 2u′ τh0d

3
0i h0 · P 2u′

(66, 14, 40) h0h2g
3 h9

1D4 h0 · h2
2g

3

(66, 16, 37) e0u
′ τh0e

2
0l h2 · u′

(67, 15, 36) U h0d0x
′ classical

(68, 10, 37) h2C0 τd1t classical
(68, 14, 36) R2 τh1d0x

′ classical
(68, 20, 37) P 2v′ τh0d

3
0j h0 · P 2v′

(69, 16, 39) e0v
′ τh0e

2
0m h2 · v′

(70, 15, 40) lm h5
1c0Q2 Remark 2.4.21

Table 15: Some miscellaneous hidden May extensions

(s, f, w) relation reference

(59, 12, 33) c0 ·G3 = Ph3
1h5e0 Lemma 2.4.27

(60, 11, 32) h2
0B4 + τh1B21 = g′2 Lemma 2.4.28

(61, 10, 35) c0 · i1 = h4
1D4 Lemma 2.4.24

(62, 12, 35) Ph1 · i1 = h5
1Q2 Lemma 2.4.24

(63, 10, 35) c0 ·B6 = h3
1B3 Lemma 2.4.26

(65, 10, 35) c0 ·Q2 = PD4 Lemma 2.4.24
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Table 16: Some Massey products in Ext

(s, f, w) bracket contains indeterminacy proof used for

(2, 2, 1) 〈h0, h1, h0〉 τh2
1 Proposition 2.2.4 〈2, η, 2〉

(3, 2, 2) 〈h1, h0, h1〉 h0h2 Proposition 2.2.4 〈η, 2, η〉
(6, 2, 4) 〈h1, h2, h1〉 h2

2 Proposition 2.2.4 〈η, ν, η〉
(8, 3, 5) 〈h1, h2, h0h2〉 c0 d2(h0(1)) = h0h

2
2 Lemmas 2.4.9, 2.4.10

= 〈h1, h0, h
2
2〉

(8, 5, 4) 〈h0, h
3
0h3, h0〉 0 〈2, 8σ, 2〉

(9, 4, 5) 〈h0, c0, h0〉 τh1c0 Proposition 2.2.4 〈2, ǫ, 2〉
(9, 7, 7) 〈h4

1, τ, h
4
1〉 0 Lemma 5.1.16

(12, 4, 7) 〈τ, h4
1, h3〉 0 Lemma 5.1.16

(14, 2, 8) 〈h2, h3, h2〉 h2
3 Proposition 2.2.4 Lemma 4.2.90

(15, 5, 9) 〈h0h2, h2, c0〉 h1d0 d2(h0(1)) = h0h
2
2 〈2ν, ν, ǫ〉

(15, 8, 10) 〈h2
1c0, τ, h

4
1〉 0 Lemma 5.1.17

(16, 4, 9) 〈h0h
2
3, h0, h1〉 0 Lemma 2.4.17

(17, 7, 11) 〈h4
1, τ, h

4
1, h3〉 h3

1d0 d2(h1b20) = τh4
1 Lemma 5.1.16

d2(h
2
1b21) = h4

1h3

d2(h1b30) = τh2
1b21 + h1h3b20

(18, 2, 10) 〈h3, h2, h3〉 h2h4 Proposition 2.2.4 〈σ, ν, σ〉
(19, 6, 12) 〈c0, h3, h

3
1〉 h2

1e0 d2(h1b21) = h3
1h3 Lemma 5.2.14

(20, 4, 11) 〈h0, c1, h0〉 0 Proposition 2.2.4 〈2, σ, 2〉
(20, 5, 12) 〈h0, h1, h

3
1h4〉 h0g d4(g) = h4

1h4 Lemmas 2.4.9, 2.4.10
(22, 6, 14) 〈h3, h

3
1, h1h3, h

2
1〉 0 Lemma 2.4.24

(23, 5, 12) 〈h4, h
3
0h3, h0〉 τ2h2g d4(P ) = h4

0h3 Lemma 3.3.53
(24, 9, 15) 〈h2

1e0, τ, h
4
1〉 h2

1c0d0 d2(h1b30h0(1)) = τh2
1e0 Lemma 5.1.18

d2(h1b20) = τh4
1

(25, 7, 15) 〈h2g, h
2
0, h1〉 c0e0 d2(h0(1)

2b21) = h3
2h0(1)

2 Lemma 2.4.14
(26, 8, 16) 〈h4

1, h3, d0〉 h1c0e0 d2(h
2
1b21) = h4

1h3 Lemma 5.1.16



7
.
T
A
B
L
E
S

1
0
9

Table 16: Some Massey products in Ext

(s, f, w) bracket contains indeterminacy proof used for

(27, 5, 16) 〈h2, h2c1, h1〉 h3g d2(b21h1(1)) = h2
2c1 Lemma 4.2.63

(27, 10, 16) 〈c0d0, τ, h4
1〉 Ph2

1e0 d2(b20b30h0(1)) = τc0d0 Lemma 5.1.17
(29, 7, 16) 〈d0, h3, h

2
0h3〉 k d4(ν) = h2

0h
2
3 Lemma 2.4.5

(30, 10, 18) 〈c0e0, τ, h4
1〉 h2

1d
2
0 Lemma 5.1.16 Lemma 5.1.17

(32, 9, 19) 〈h2
2, h0, c0e0〉 h1d0e0 d2(h0(1)) = h0h

2
2 Lemma 5.1.3

(37, 7, 22) 〈h4
1, h4, h

2
1h4〉 0 h6

1h5 Lemma 2.4.24
(39, 3, 21) 〈h2, h1h5, h2〉 h1h3h5 Proposition 2.2.4 〈ν, η5, ν〉
(40, 9, 24) 〈h7

1h5, h1, h0〉 h0g
2 d8(g

2) = h8
1h5 Lemma 2.4.9

(40, 10, 21) 〈q, h0, h
3
0h3〉 τh1u d4(P ) = h4

0h3 Lemma 3.3.52
(42, 8, 23) 〈h2

1h4, h4, Ph1〉 0 Ph3
1h5 Lemma 2.4.24

(45, 9, 24) 〈τ, τ2h2g
2, h1〉 τw d8(w) = Ph5

1h5 〈τ, νκ2, η〉
(46, 7, 25) 〈h1, h0, h

2
0g2〉 B1 d6(Y ) = h3

0g2 Lemmas 2.4.22, 4.2.48
(46, 7, 25) 〈g2, h3

0, h1〉 B1 d6(Y ) = h3
0g2

(47, 6, 25) 〈h0, h1, τh1g2〉 0 τh0h2g2 Lemma 2.4.17
(47, 9, 28) 〈h2, h2c1g, h1〉 h3g

2 d2(b
3
21h1(1)) = h2

2c1g Lemma 4.2.63
(47, 10, 26) 〈τ2g2, h2

2, h0〉 e0r d4(∆h2g) = τ2h2
2g

2 Lemma 2.4.10
(47, 13, 24) 〈τ, u′, h3

0〉 Q′ τPu Lemma 2.4.4 Lemma 2.4.4
(47, 13, 24) 〈τ, τh0d0l, h

2
0〉 Q′ τPu d4(P∆ν) = τ2h0d0l Lemma 2.4.4

(48, 4, 26) 〈h4, h
2
1h4, h4〉 0 Lemma 2.4.24

(48, 6, 26) 〈h3, h2, x〉 h2h5d0 Lemma 4.2.90 Lemma 4.2.90
(48, 7, 26) 〈h2, h

2
0g2, h0〉 B2 h2

0h5e0 d6(Y ) = h3
0g2 Lemma 4.2.73

(50, 4, 27) 〈h2, h3, h1h3h5〉 h5c1 d2(h5h1(1)) = h1h
2
3h5 〈ν, σ, ση5〉

(50, 6, 27) 〈h2, h1, τh1g2〉 C d4(x47) = τh2
1g2 〈ν, η, τη{g2}〉

(50, 7, 28) 〈h5c0, h3, h
3
1〉 h2

1h5e0 d2(h1b21) = h3
1h3 Lemma 2.4.24

(50, 7, 28) 〈c0, h2
4, h3, h

3
1〉 0 h2

1h5e0 Lemma 2.4.24
(50, 10, 28) 〈h3

1h4, h1, r〉 gr d4(g) = h4
1h4 Lemma 2.4.10
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Table 16: Some Massey products in Ext

(s, f, w) bracket contains indeterminacy proof used for

(51, 8, 28) 〈g2, h3
0, h

2
2〉 h2B2 d6(Y ) = h3

0g2 Lemma 2.4.22
(51, 8, 28) 〈h0, d1, f0〉 h2B2 d2(Bh2b21) = f0d1 Lemma 5.1.4
(51, 9, 28) 〈h2, N, h1〉 G3 or G3 + τgn d2(∆b21h1(1)) = h2N Lemma 4.2.63
(52, 8, 30) 〈d1, h3

1, h1h4〉 d1g d4(g) = h4
1h4 Lemma 2.4.15,

〈{d1}, η3, η4〉
(52, 10, 29) 〈q, h3

1, h1h4〉 h1G3 d4(g) = h4
1h4 〈{q}, η3, η4〉

(52, 10, 29) 〈h3, h
3
1, Ph2

1h5〉 h1G3 d8(w) = Ph5
1h5 Lemma 5.2.14

(53, 7, 30) 〈h2
4, h3, h

3
1, h1h3, h

2
1〉 i1 ? Lemma 2.4.24 Lemma 2.4.24

(53, 7, 30) 〈h4
1, h4, h

2
1h4, h4〉 i1 Lemma 2.4.24 Lemma 2.4.24

(54, 6, 29) 〈h1, h0, D1〉 τG Remark 3.3.14 Lemma 3.3.13
(54, 15, 29) 〈u′, h3

0, h0h3〉 Pu′ d4(P ) = h4
0h3 Lemma 2.4.4

(55, 7, 30) 〈h5, h2g, h
2
0〉 τh1G d4(∆1h2) = h2h5g Lemma 2.4.14

(55, 13, 31) 〈τ2h1e
2
0, h

3
1, h1h4〉 τ2h1e

2
0g d4(g) = h4

1h4 〈{τ2h1e
2
0}, η3, η4〉

(56, 11, 30) 〈h0, h1, τh1B8〉 h2x
′ d6(x

′
56) = Ph2

1h5d0 Lemma 5.1.5
(57, 9, 32) 〈x, h2

1, h
2
1h4〉 h2

1B6 Lemma 2.4.15 Lemma 2.4.15
(58, 8, 31) 〈h4, h

2
1h4, h4, Ph1〉 h1Q2 Lemma 2.4.24 Lemma 2.4.24

(58, 10, 32) 〈y, h2
1, h

2
1h4〉 h1D11 d4(g) = h4

1h4 Lemma 2.4.16
(59, 8, 33) 〈c0, h2

4, h3, h
3
1, h1h3〉 h2

1D4 ? Lemma 2.4.24 Lemma 2.4.24
(59, 11, 35) 〈c1g, h2

1, h
2
1h4〉 c1g

2 d4(g) = h4
1h4 Lemma 2.4.16

(60, 10, 33) 〈τ, B6, h
4
1〉 h3

1Q2 d2(b30b40h1(1)) = τB6 Lemma 2.4.26
d2(h

2
1b

2
21b30b31 + h2

1b
3
21b40) = h4

1B6

(61, 8, 33) 〈τG, h0, h
2
2〉 h1B3 Lemma 2.4.14 Lemma 2.4.14

(62, 8, 33) 〈h0h
2
3, h0, h1, τh1g2〉 C0 ? Lemma 2.4.17 Lemma 2.4.17

(62, 19, 33) 〈u′, h3
0, h

5
0h4〉 P 2u′ d8(P

2) = h8
0h4 Lemma 2.4.4

(63, 10, 35) 〈h5c0e0, h0, h
2
2〉 h1h5d0e0 d2(h0(1)) = h0h

2
2 Lemma 2.4.14

(65, 7, 36) 〈d1, h4, h
2
1h4〉 k1 d4(ν1) = h2

1h
2
4 Lemma 2.4.5
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Table 16: Some Massey products in Ext

(s, f, w) bracket contains indeterminacy proof used for

(65, 9, 35) 〈τ, B6, h
2
1h3〉 h2C0 d2(b30b40h1(1)) = τB6 Lemma 2.4.23

d2(Bh1b21h1(1)) = h2
1h3B6

(66, 14, 40) 〈h5
1i1, h1, h

2
2〉 h2

2g
3 d4(g

3) = h6
1i1 Lemma 2.4.9

(67, 13, 40) 〈h2, h2c1g
2, h1〉 h3g

3 d2(b
5
21h1(1)) = h2

2c1g
2 Lemma 4.2.82

(67, 14, 38) 〈τ2g3, h2, h0h2〉 lm d4(∆h2g
2) = τ2h2g

3 Lemma 2.4.10
(70, 23, 37) 〈u′, h3

0, h
3
0i〉 P 3u′ d4(P

3) = h6
0i Lemma 2.4.4

Table 17: Some matric Massey products in Ext

(s, f, w) bracket equals proof used in

(25, 8, 14)

〈

[

h2
1 d0

]

,

[

c0d0
h2
1c0

]

, τ

〉

Pe0
d2(b20h0(1)) = τh2

1c0
d2(b20b21b30) = τc0d0

Lemma 5.1.15

(28, 8, 16)

〈

[

c0 e0
]

,

[

h2
1e0

h2
1c0

]

, τ

〉

d20
d2(h1b30h0(1)) = τh2

1e0
d2(b20h0(1)) = τh2

1c0
Lemma 5.1.15

(28, 8, 16)

〈

[

h2
1 e0

]

,

[

c0e0
h2
1c0

]

, τ

〉

d20 Lemma 5.1.17 Lemma 5.1.17

(40, 10, 22)

〈

[

d0 e0
]

,

[

c0e0
c0d0

]

, τ

〉

h1u Lemma 5.1.17 Lemma 5.1.17

(56, 15, 33)

〈

[

h2
1e

2
0 d0e0g h4

1

]

,





h2
1e0
h4
1

h3
1B1



 , τ

〉

c0d0e
2
0 Lemma 5.1.18 Lemma 5.1.18

(57, 15, 31)

〈

[

h2
1 d0

]

,

[

h1d0u
h3
1u

]

, τ

〉

Pv′
d2(h1b20b

3
30h0(1)

2) = τh1d0u
d2(h1b20b

2
30h0(1)

2) = τh3
1u

Lemma 5.1.15
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Table 18: Classical Adams differentials

(s, f) dr x dr(x) reference

(30, 6) d3 r h1d
2
0 [27, Theorem 2.2.2]

(31, 8) d3 d0e0 Pc0d0 [27, Proposition 4.3.1]
(31, 8) d4 d0e0 + h7

0h5 P 2d0 [27, Corollary 4.3.2]
(34, 2) d3 h2h5 h0p [27, Proposition 3.3.7]
(37, 8) d4 e0g Pd20 [27, Theorem 4.2.1]
(38, 2) d4 h3h5 h0x [27, Theorem 7.3.7]
(38, 4) d3 e1 h1t [8, Theorem 4.1]
(38, 6) d2 y h3

0x [27, Theorem 5.1.4]
(39, 12) d4 Pd0e0 P 3d0 [27, Corollary 4.3.4]
(41, 3) d2 c2 h0f1 [27, Corollary 3.3.6]
(42, 9) d2 v h2

1u [27, Proposition 6.1.5]
(44, 10) d3 d0r h1d

3
0 [27, Corollary 4.4.2]

(45, 12) d4 d20e0 P 2d20 [27, Theorem 4.2.3]
(46, 14) d3 i2 P 2h1d

2
0 [27, Proposition 4.4.1]

(47, 13) d2 Q′ P 2h0r [3, p. 540]
(47, 16) d4 P 2d0e0 P 4d0 [27, Corollary 4.3.4]
(47, 18) d3 h5

0Q
′ P 4h0d0 [3, p. 540]

(49, 6) d3 h1h5e0 h2
1B1 [3, Corollary 3.6]

(49, 11) d3 d0m Ph1u [27, Proposition 6.1.3]
(50, 13) d2 Pv Ph2

1u [27, Corollary 6.1.4]
(53, 16) d4 Pd20e0 P 3d20 [27, Corollary 4.3.3]
(54, 10) d2 R1 h2

0x
′ [27, Proposition 5.2.3]

(55, 20) d4 P 3d0e0 P 5d0 [27, Corollary 4.3.4]
(56, 13) d4 d0v P 2u [27, Proposition 6.1.1]
(57, 15) d3 Pd0m P 2h1u [27, Corollary 6.1.2]
(58, 17) d2 P 2v P 2h2

1u [27, Corollary 6.1.2]
(61, 20) d4 P 2d20e0 P 4d20 [27, Corollary 4.3.3]
(64, 25) d4 P 4h1d0e0 P 6h1d0 [27, Corollary 4.3.5]
(69, 24) d4 P 3d20e0 P 5d20 [27, Corollary 4.3.3]
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Table 19: Some classical Toda brackets

s bracket contains indeterminacy reference

8 〈2, η, ν, η2〉 ǫ = {c0} [41, Lemma 1.5]
8 〈ν, η, ν〉 ησ + ǫ ∈ {h1h3} [42, p. 189]
8 〈ν2, 2, η〉 ǫ = {c0} ησ ∈ {h1h3} [42, p. 189]
9 〈8σ, 2, η〉 µ9 = {Ph1} η2σ ∈ {h2

1h3} [42, p. 189]
ηǫ ∈ {h1c0}

11 〈2σ, 8, ν〉 ζ11 ∈ {Ph2} [42, p. 189]
15 〈ǫ, 2, ν2〉 ηκ ∈ {h1d0} [42, p. 189]
16 〈η, 2, κ〉 0 ηρ15 = {Pc0} [3, Lemma 2.4]
16 〈σ2, 2, η〉 η4 ∈ {h1h4} ηρ15 = {Pc0} [42, p. 189]
17 〈µ9, 2, 8σ〉 µ17 = {P 2h1} µ9ǫ ∈ {Ph1c0} [42, p. 189]
18 〈2σ, σ, ν〉 ν4 ∈ {h2h4} [42, p. 189]
18 〈σ, ν, σ〉 7ν4 ∈ {h2h4} [42, p. 189]
19 〈ζ11, 8, 2σ〉 ζ19 ∈ {P 2h2} [42, p. 189]
19 〈ν, σ, ησ〉 σ ∈ {c1} [42, p. 189]
30 〈σ, 2σ, σ, 2σ〉 θ4 = {h2

4} [27, Theorem 8.1.1]
31 〈ν, σ, κ〉 intersects {n} [4, Proposition 3.1.1]
31 〈σ2, 2, η4〉 ηθ4 ∈ {h1h

2
4} [4, Proposition 3.2.1]

32 〈σ2, η, σ2, η〉 contained in {d1} ηρ31 = {P 3c0} [4, Proposition 3.1.4]
32 〈η, 2, θ4〉 η5 ∈ {h1h5} ηρ31 = {P 3c0} [4, Proposition 3.2.2]
32 〈η, κ2, 2, η〉 contains {q} η5 ∈ {h1h5} [4, Proposition 3.3.1]

ηρ31 = {P 3c0}
33 〈η4, η4, 2〉 contained in {p} [4, Proposition 3.3.3]
34 〈σ, σ, σ〉 ν{n} ∈ {h2n} [8, Corollary 4.3]
34 〈η, 2, η5〉 contained in {h0h2h5} η2η5 ∈ {h2

0h2h5} [4, Corollary 3.2.3]
ηµ33 = {P 4h2

1}
35 〈σ, κ, σ〉 contained in {h2d1} [4, Proposition 3.1.2]
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Table 19: Some classical Toda brackets

s bracket contains indeterminacy reference

35 〈σ2, η, σ〉 contained in {h2d1} [4, Proposition 3.1.3]
36 〈ν, η, ηθ4〉 {t} [8, Corollary 4.3]
36 〈ν, η4, η4〉 {t} [8, Corollary 4.3]
36 〈σ, 2, η4〉 0 [8, Corollary 4.3]
36 〈ǫ + ησ, σ, κ〉 {t} [8, Section 5]
36 〈{n}, η, ν〉 {t} [4, Proposition 3.1.5]
37 〈θ4, 2, ν2〉 {h2

2h5} σθ4 = {x} [4, Proposition 3.2.4]
38 〈ρ15, σ, 2σ, σ〉 contained in {h2

0h3h5} ? [41, Proposition 2.9]
39 〈θ4, 2, ǫ〉 contained in {h5c0} [4, Proposition 3.2.4]
39 〈η, ν, κκ〉 {u} η{h2

0h3h5} ∈ {c1g} [4, Proposition 3.4.4]
40 〈θ4, 2, µ9〉 contained in {Ph1h5} ρ31µ9 = {P 4c0} [4, Proposition 3.2.4]
44 〈νθ4, ν, σ〉 {h0g2} σ2θ4 = {h2

0g2} [4, Proposition 3.5.3]
45 〈2, θ4, κ〉 intersects {h5d0} 2{h2

3h5} ⊆ {h0h
2
3h5} [4, Section 4]

2k{h5d0} ⊆ {h0h5d0}



7. TABLES 115

Table 20: Adams d3 differentials

element (s, f, w) d3 reference

h0h4 (15, 2, 8) h0d0 image of J
r (30, 6, 16) τh1d

2
0 Table 18

h3
0h5 (31, 4, 16) h0r image of J

τd0e0 (31, 8, 17) Pc0d0 Table 18
h2h5 (34, 2, 18) τh1d1 Table 18
τe0g (37, 8, 21) c0d

2
0 Lemma 3.3.26

e1 (38, 4, 21) h1t Table 18
τPd0e0 (39, 12, 21) P 2c0d0 Lemma 3.3.27
i2 (46, 14, 24) τP 2h1d

2
0 Table 18

τP 2d0e0 (47, 16, 25) P 3c0d0 Lemma 3.3.27
h5
0Q

′ (47, 18, 24) P 4h0d0 Table 18
h1h5e0 (49, 6, 27) h2

1B1 Lemma 3.3.30
τ2d0m (49, 11, 26) Ph1u Table 18
gr (50, 10, 28) τh1d0e

2
0 Lemma 3.3.31

τ2G (54, 6, 28) τB8 Lemma 3.3.32
h5i (54, 8, 28) h0x

′ Lemma 3.3.34
B6 (55, 7, 30) τh2gn Lemma 3.3.33
τ2gm (55, 11, 30) h1d0u Lemma 3.3.26
τP 3d0e0 (55, 20, 29) P 4c0d0 Lemma 3.3.27
h5c0e0 (56, 8, 31) h2

1B8 Lemma 3.3.30
Ph5e0 (56, 9, 30) h2

1x
′ Lemma 3.3.30

τd0v (56, 13, 30) Ph1u
′ Lemma 3.3.26

Q2 (57, 7, 30) τ2gt Lemma 3.3.37
h5j (57, 8, 30) h2x

′ Lemma 3.3.34
τe0g

2 (57, 12, 33) c0d0e
2
0 Lemma 3.3.26

τ2Pd0m (57, 15, 30) P 2h1u Table 18
e1g (58, 8, 33) h1gt Lemma 3.3.33
τg3 (60, 12, 35) h6

1B8 Lemma 3.3.36
D3 (61, 4, 32) ?
C0 (62, 8, 33) nr Lemma 3.3.37
E1 (62, 8, 33) nr Lemma 3.3.37
h1X1 + τB22 (62, 10, 33) c0x

′ Lemma 3.3.30
τgv (62, 13, 34) h1d0u

′ Lemma 3.3.26
P 2i2 (62, 22, 32) τP 4h1d

2
0 tmf

h7
0h6 (63, 8, 32) h0R image of J

τP 4d0e0 (63, 24, 33) P 5c0d0 Lemma 3.3.27
τPd0v (64, 17, 34) P 2h1u

′ Lemma 3.3.26
τgw (65, 13, 36) h3

1c0x
′ Lemma 3.3.39

τ2P 2d0m (65, 19, 34) P 3h1u Lemma 3.3.40
C′′ (67, 9, 37) nm Lemma 3.3.37
h2B5 (69, 11, 38) h1B8d0 Lemma 3.3.44
τW1 (69, 13, 36) τ4e40 tmf
m2 (70, 14, 40) τh1e

4
0 Lemma 3.3.31

τe0x
′ (70, 14, 37) Pc0x

′ Lemma 3.3.44
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Table 21: Adams d4 differentials

element (s, f, w) d4 reference

τ2d0e0 + h7
0h5 (31, 8, 16) P 2d0 Table 18

τ2e0g (37, 8, 20) Pd20 Table 18
h3h5 (38, 2, 20) h0x Table 18
τ2Pd0e0 (39, 12, 20) P 3d0 Table 18
τ2P 2d0e0 (47, 16, 24) P 4d0 Table 18
τ2gr (50, 10, 26) ij tmf
τ3gm (55, 11, 29) Pu′ + τd20j tmf
τ2P 3d0e0 (55, 20, 28) P 5d0 Table 18
τ2d0v (56, 13, 29) P 2u Table 18
τ2e0g

2 (57, 12, 32) d40 Lemma 3.3.47
τ2d20r (58, 14, 30) Pij tmf
τh1X1 (62, 10, 32) ?
R (62, 10, 32) ?
τ2gv (62, 13, 33) Pd0u tmf
C′ (63, 7, 34) ?
τX2 (63, 7, 33) ?
τ2h1B22 (63, 11, 33) Ph1x

′ Lemma 3.3.48
τ3d20m (63, 15, 33) P 2u′ + τPd20j tmf
h18
0 h6 (63, 19, 32) P 2h0i

2 image of J
τ2Pd0v (64, 17, 33) P 3u tmf
τ2Pd20r (66, 18, 34) P 2ij tmf
τh2B5 (69, 11, 37) h1d0x

′ Lemma 3.3.48
τ2m2 (70, 14, 38) d20z Lemma 3.3.49
τ2e0x

′ (70, 14, 36) P 2x′ Lemma 3.3.48

Table 22: Adams d5 differentials

element (s, f, w) d5 reference

τPh5e0 (56, 9, 29) τd0z Lemma 3.3.55
A′ (61, 6, 32) ?
τh1H1 (63, 6, 33) ?
τh2

1X1 (63, 11, 33) ?
h22
0 h6 (63, 23, 32) P 6d0 image of J
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Table 23: Some Toda brackets

(s, w) bracket contains indeterminacy proof used in

(2, 1) 〈2, η, 2〉 τη2 = {τh2
1} τh2

1 = 〈h0, h1, h0〉 Lemmas 4.2.18, 4.2.26,
4.2.54

(3, 2) 〈η, 2, η〉 {2ν, 6ν} = {h0h2} 4ν = {τh3
1} h0h2 = 〈h1, h0, h1〉 Lemma 4.2.84

(6, 4) 〈η, ν, η〉 ν2 = {h2
2} h2

2 = 〈h1, h2, h1〉 Lemmas 4.2.46, 4.2.52
(8, 4) 〈2, 8σ, 2〉 0 0 = 〈h0, h

3
0h3, h0〉 Lemma 3.3.53

(8, 5) 〈2ν, ν, η〉 ǫ = {c0} ησ ∈ {h1h3} c0 = 〈h0h2, h2, h1〉 Lemmas 4.2.1, 4.2.85
(8, 5) 〈ν, η, ν〉 ǫ + ησ ∈ {h1h3} Table 19 Lemmas 4.2.87, 5.3.4
(9, 5) 〈η, 2, 8σ〉 µ9 = {Ph1} τη2σ ∈ {τh2

1h3} Ph1 = 〈h1, h0, h
3
0h3〉 Lemma 4.2.89

τηǫ ∈ {τh1c0}
(9, 5) 〈2, ǫ, 2〉 τηǫ ∈ {τh1c0} τh1c0 = 〈h0, c0, h0〉 Lemma 4.2.21
(12, 7) 〈η, ν, σ〉 0 Lemma 4.2.51
(12, 7) 〈ν, ǫ, 2〉 0 Lemma 4.2.70
(15, 8) 〈2, σ2, 2〉 0 {2kρ15} = {h4

0h4} Lemma 3.1.5 Lemmas 3.3.54, 4.2.91
(15, 9) 〈2ν, ν, ǫ〉 ηκ = {h1d0} h1d0 = 〈h0h2, h2, c0〉 Lemma 4.2.85
(16, 9) 〈η, 2, σ2〉 η4 ∈ {h1h4} ηρ15 = {Pc0} d2(h4) = h0h

2
3 Lemmas 3.3.18, 3.3.53,

= 〈η, σ2, 2〉 4.2.48, 4.2.76, 4.2.92
(16, 9) 〈σ2, η, 2〉 0 Lemma 4.2.84 Lemma 4.2.84
(18, 10) 〈2σ, σ, ν〉 ν4 ∈ {h2h4} d2(h4) = h0h

2
3 Lemma 4.2.91

(18, 10) 〈σ, ν, σ〉 intersects {h2h4} h2h4 = 〈h3, h2, h3〉 Lemma 4.2.90
(20, 11) 〈2, σ, 2〉 0 {2kκ} = {τh0g} 0 = 〈h0, c1, h0〉 Lemma 4.2.29
(20, 12) 〈ν, η, ηκ〉 {h0g} ν2κ = {h2

0g} d2(e0) = h2
1d0 Lemma 4.2.87

(21, 12) 〈κ, 2, ν2〉 ηκ ∈ {τh1g} Lemma 3.3.58 Lemma 3.3.58
(22, 12) 〈8σ, 2, σ2〉 0 Lemma 3.3.53 Lemma 3.3.53
(23, 12) 〈2, 8σ, 2, σ2〉 τνκ ∈ {τ2h2g} {2kρ23} = {h3

0i} Lemma 3.3.53 Lemma 3.3.53
{2kτ2νκ} ⊂ {τ2h0h2g}
τση4 ∈ {τh4c0}
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Table 23: Some Toda brackets

(s, w) bracket contains indeterminacy proof used in

?
(23, 13) 〈ǫ, 2, σ2〉 ση4 ∈ {h4c0} 4νκ = {Ph1d0} Lemma 3.3.54 Lemma 3.3.54
(32, 17) 〈η, 2, θ4〉 η5 ∈ {h1h5} ηρ31 = {P 3c0} d2(h5) = h0h

2
4 Lemmas 4.2.18,

4.2.84, 4.2.89, 4.2.84
(37, 20) 〈ν2, 2, θ4〉 {h2

2h5} σθ4 = {x} d2(h5) = h0h
2
4 Lemma 4.2.89

(39, 21) 〈ǫ, 2, θ4〉 contained in {h5c0} d2(h5) = h0h
2
4 Lemmas 4.2.21, 4.2.70

(39, 21) 〈η, ν, τκκ〉 {u} η{h2
0h3h5} ∈ {τ2c1g} Lemmas 4.2.41, 4.2.71 Lemmas 4.2.71, 5.3.4

(39, 21) 〈ν, η5, ν〉 intersects {h1h3h5} τν{t} ∈ {τ2c1g} h1h3h5 = 〈h2, h1h5, h2〉 Lemma 5.3.3
(40, 21) 〈{q}, 2, 8σ〉 0 2τκ2 ∈ {τh1u} Lemma 3.3.52 Lemma 3.3.52
(41, 23) 〈ν, η, {t}〉 contained in {h1f1} Lemma 4.2.46 Lemma 4.2.46
(45, 24) 〈θ4, 2, σ2〉 contained in {h0h

2
3h5} ρ15θ4 ∈ {h2

0h5d0} Lemma 4.2.91 Lemma 4.2.92
(45, 24) 〈η, ν, τκ2〉 {τw} τη{g2} ∈ {τh1g2} Lemma 4.2.71 Lemma 4.2.71
(45, 24) 〈τ, νκ2, η〉 {τw} τη{g2} ∈ {τh1g2} τw = 〈τ, τ2h2g

2, h1〉 Lemma 4.2.10
(47, 25) 〈η, 2, {τw}〉 {τe0r} η{τ2d0l} = {Pu} Lemma 4.2.26 Lemma 4.2.26

τη2θ4.5 ∈ {τh1B1}
(48, 26) 〈2, η, {h1h5d0}〉 intersects {h2h5d0} 2νθ4.5 ∈ {h0B2} d2(h5e0) = h2

1h5d0 Lemma 4.2.31
(50, 27) 〈σ, 2, θ4〉 contained in {h5c1} d2(h5) = h0h

2
4 Lemma 4.2.29

(50, 27) 〈ν, σ, ση5〉 contained in {h5c1} h5c1 = 〈h2, h3, h1h3h5〉 Lemma 4.2.51
Lemma 4.2.84

(50, 27) 〈ν, η, τη{g2}〉 {C} C = 〈h2, h1, τh1g2〉 Lemma 4.2.52
Lemma 4.2.47

(51, 28) 〈η, {h1h5d0}, ν〉 intersects {h0h3g2} ν{B2} ∈ {h2B2} d2(h5e0) = h2
1h5d0 Lemma 4.2.31

?
(52, 29) 〈{q}, η3, η4〉 {h1G3} h1G3 = 〈q, h3

1, h1h4〉 Lemma 4.2.76
(52, 30) 〈{d1}, η3, η4〉 {d1g} d1g = 〈d1, h3

1, h1h4〉 Lemma 4.2.2
(55, 31) 〈{τ2h1e

2
0}, η3, η4〉 {τ2h1e

2
0g} τ2h1e

2
0g = Lemma 4.2.76



7
.
T
A
B
L
E
S

1
1
9

Table 23: Some Toda brackets

(s, w) bracket contains indeterminacy proof used in

= 〈τ2h1e
2
0, h

3
1, h1h4〉

Lemma 4.2.76
(59, 33) 〈η2, {Ph1h5c0}, ǫ〉 {Ph3

1h5e0} η2{D11} ∈ {τ2c1g2} d2(G3) = Ph3
1h5c0 Lemma 3.3.45

(60, 32) 〈θ4.5, σ2, 2〉 intersects {B3} ? Remark 3.2.11 Remark 3.2.11
(60, 34) 〈νκ2, η, ηκ〉 {Ph4

1h5e0} d2(e0) = h2
1d0 Lemma 4.2.10

(61, 33) 〈ηθ4.5, σ2, 2〉 intersects {h1B3} ? d2(h4) = h0h
2
3 Remark 3.2.11

Lemma 3.3.18
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Table 24: Classical Adams hidden extensions

(s, f) type from to reference

(20, 6) ν h2
0g Ph1d0 [27, Theorem 2.1.1]

(21, 5) η h1g Pd0 [27, Theorem 2.1.1]
(21, 6) 2 h0h2g Ph1d0 [27, Theorem 2.1.1]
(30, 2) ν h2

4 p [4, Proposition 3.3.5]
(30, 2) σ h2

4 x [4, Proposition 3.5.1]
(32, 6) ν q h1e

2
0 [4, Proposition 3.3.1]

(40, 8) 2 g2 h1u [4, Proposition 3.4.3]
(40, 8) η g2 z [4, Corollary 3.4.2]
(41, 10) η z d30 [4, Proposition 3.4.1]
(45, 3) 4 h3

4 h0h5d0 [3, Theorem 3.3(i)]
(45, 3) η h3

4 B1 [3, Theorem 3.1(i)]
(45, 9) η w d0l [3, Theorem 3.1(iv)]
(46, 11) η d0l Pu [3, Theorem 3.1(ii)]
(47, 10) η e0r d0e

2
0 [3, Theorem 3.1(vi)]

Table 25: Hidden Adams τ extensions

(s, f, w) from to reference

(22, 7, 13) c0d0 Pd0 cofiber of τ
(23, 8, 14) h1c0d0 Ph1d0 cofiber of τ
(28, 6, 17) h1h3g d20 Lemma 4.2.1
(29, 7, 18) h2

1h3g h1d
2
0 Lemma 4.2.1

(40, 9, 23) τh0g
2 h1u Lemma 4.2.3

(41, 9, 23) τ2h1g
2 z Lemma 4.2.4

(42, 11, 25) c0e
2
0 d30 cofiber of τ

(43, 12, 26) h1c0e
2
0 h1d

3
0 cofiber of τ

(47, 12, 26) h1u
′ Pu cofiber of τ

(48, 10, 29) h1h3g
2 d0e

2
0 Lemma 4.2.1

(49, 11, 30) h2
1h3g

2 h1d0e
2
0 Lemma 4.2.1

(52, 10, 29) h1G3 τ2e0m cofiber of τ
(53, 9, 29) B8 x′ cofiber of τ
(53, 11, 30) h2

1G3 d0u cofiber of τ
(54, 8, 31) h1i1 ?
(54, 10, 30) h1B8 h1x

′ cofiber of τ
(54, 11, 32) h6

1h5e0 τe20g cofiber of τ
(55, 12, 33) h7

1h5e0 τh1e
2
0g cofiber of τ

(55, 13, 31) τ2h1e
2
0g d0z Lemma 4.2.4

(59, 7, 33) j1 ?
(59, 12, 33) Ph3

1h5e0 τd0w Lemma 4.2.10
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Table 26: Tentative hidden Adams τ extensions

(s, f, w) from to reference

(60, 13, 34) τ2h0g
3 d0u

′ + τd20l cofiber of τ
(61, 13, 35) τ2h1g

3 d0e0r cofiber of τ
(62, 14, 37) h6

1h5c0e0 d20e
2
0 cofiber of τ

(63, 15, 38) h2
0h2g

3 h1d
2
0e

2
0 cofiber of τ

(65, 9, 36) h2
1X2 τB23 Lemma 4.2.12

(66, 10, 37) h3
1X2 τh1B23 Lemma 4.2.12

(66, 14, 37) h5
1X1 τ2d0e0m cofiber of τ

(67, 11, 38) h4
1X2 B8d0 Lemma 4.2.13

(67, 13, 37) B8d0 d0x
′ Lemma 4.2.14

(67, 15, 38) h0e0gr d20u cofiber of τ
(68, 14, 41) h1h3g

3 e40 cofiber of τ
(69, 15, 42) h2

1h3g
3 h1e

4
0 cofiber of τ

Table 27: Hidden Adams 2 extensions

(s, f, w) from to reference

(23, 6, 14) h0h2g h1c0d0 Lemma 4.2.17
(23, 6, 13) τh0h2g Ph1d0 Lemma 4.2.17
(40, 8, 22) τ2g2 h1u Table 24
(43, 10, 26) h0h2g

2 h1c0e
2
0 Lemma 4.2.17

(43, 10, 25) τh0h2g
2 h1d

3
0 Lemma 4.2.17

(47, 10, 26) e0r h1u
′ Lemma 4.2.26

(47, 10, 25) τe0r Pu Lemma 4.2.26
(51, 6, 28) h0h3g2 ?
(54, 9, 28) h0h5i τ4e20g Lemma 4.2.35
(59, 7, 33) j1 ?

Table 28: Tentative hidden Adams 2 extensions

(s, f, w) from to reference

(60, 12, 33) τ3g3 d0u
′ + τd20l Lemma 4.2.37

(63, 14, 37) τh0h2g
3 h1d

2
0e

2
0 Lemma 4.2.37

(67, 14, 37) τe0gr d20u Lemma 4.2.37

Table 29: Hidden Adams η extensions

(s, f, w) from to reference

(15, 4, 8) h3
0h4 Pc0 image of J

(21, 5, 12) τh1g c0d0 Lemma 4.2.39
(21, 5, 11) τ2h1g Pd0 Lemma 4.2.39
(23, 9, 12) h2

0i P 2c0 image of J
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Table 29: Hidden Adams η extensions

(s, f, w) from to reference

(31, 11, 16) h10
0 h5 P 3c0 image of J

(38, 4, 20) h2
0h3h5 τ2c1g Lemma 4.2.41

(39, 17, 20) P 2h2
0i P 4c0 image of J

(40, 8, 21) τ3g2 z Table 24
(41, 5, 23) h1f1 τh2c1g Lemma 4.2.46
(41, 9, 24) τh1g

2 c0e
2
0 Lemma 4.2.39

(41, 10, 22) z τd30 Lemma 4.2.39
(45, 3, 24) h2

3h5 B1 Lemma 4.2.48
(45, 9, 24) τw τd0l + u′ Table 24
(46, 11, 24) τ2d0l Pu Table 24
(47, 10, 26) e0r τd0e

2
0 Table 24

(47, 20, 24) h7
0Q

′ P 5c0 image of J
(52, 11, 28) τ2e0m d0u Lemma 4.2.53
(54, 12, 29) τ3e20g d0z Lemma 4.2.55
(55, 25, 28) P 4h2

0i P 6c0 image of J
(58, 8, 30) τh1Q2 ?

Table 30: Tentative hidden Adams η extensions

(s, f, w) from to reference

(59, 13, 32) τd0w d0u
′ + τd20l Lemma 4.2.59

(60, 12, 33) τ3g3 d0e0r Lemma 4.2.59
(61, 13, 35) τ2h1g

3 d20e
2
0 Lemma 4.2.59

(61, 14, 34) d0e0r τ2d20e
2
0 Lemma 4.2.59

(63, 26, 32) h25
0 h6 P 7c0 image of J

(65, 13, 35) τ2gw τ2d0e0m Lemma 4.2.59
(66, 11, 36) τh1B23 B8d0 Lemma 4.2.60
(66, 11, 35) τ2h1B23 d0x

′ Lemma 4.2.60
(66, 15, 36) τ2d0e0m d20u Lemma 4.2.59

Table 31: Hidden Adams ν extensions

(s, f, w) from to reference

(20, 6, 12) h2
0g h1c0d0 Lemma 4.2.62

(20, 6, 11) τh2
0g Ph1d0 Lemma 4.2.62

(22, 4, 13) h2c1 h2
1h4c0 Lemma 4.2.63

(26, 6, 15) τh2
2g h1d

2
0 Lemma 4.2.64

(30, 2, 16) h2
4 p Table 24

(32, 6, 17) q τ2h1e
2
0 Table 24

(39, 9, 21) u τd30 Lemma 4.2.71
(40, 10, 24) h2

0g
2 h1c0e

2
0 Lemma 4.2.62

(40, 10, 23) τh2
0g

2 h1d
3
0 Lemma 4.2.62
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Table 31: Hidden Adams ν extensions

(s, f, w) from to reference

(42, 8, 25) h2c1g h6
1h5c0 Lemma 4.2.63

(45, 3, 24) h2
3h5 B2 Lemma 4.2.73

(45, 4, 24) h0h
2
3h5 h0B2 Lemma 4.2.73

(45, 9, 24) τw τ2d0e
2
0 Lemma 4.2.71

(46, 7, 25) N Ph2
1h5c0 Lemma 4.2.63

(46, 10, 27) τh2
2g

2 h1d0e
2
0 Lemma 4.2.64

(48, 6, 26) h2h5d0 ?
(51, 8, 28) h2B2 h1B8 Lemma 4.2.75
(51, 8, 27) τh2B2 h1x

′ Lemma 4.2.75
(52, 10, 29) h1G3 τ2h1e

2
0g Lemma 4.2.76

(52, 11, 28) τ2e0m d0z Lemma 4.2.76
(53, 7, 30) i1 ?
(54, 11, 32) h6

1h5e0 h2e
2
0g Lemma 4.2.78

Table 32: Tentative hidden Adams ν extensions

(s, f, w) from to reference

(57, 10, 30) h0h2h5i τ2d20l Lemma 4.2.79
(59, 13, 32) τd0w τ2d20e

2
0 Lemma 4.2.80

(59, 12, 33) Ph3
1h5e0 τd20e

2
0 Lemma 4.2.80

(60, 14, 35) τh2
0g

3 h1d
2
0e

2
0 Lemma 4.2.81

(62, 12, 37) h2c1g
2 h8

1D4 Lemma 4.2.82
(65, 13, 36) τgw + h4

1X1 τ2e40 Lemma 4.2.80

Table 33: Some miscellaneous hidden Adams extensions

(s, f, w) type from to reference

(16, 2, 9) σ h1h4 h4c0 Lemma 4.2.83
(20, 4, 11) ǫ τg d20 Lemma 4.2.85
(40, 8, 23) ǫ τg2 d0e

2
0 Lemma 4.2.85

(32, 6, 17) ǫ q h1u Lemma 4.2.87
(45, 3, 24) ǫ h2

3h5 B8 Lemma 4.2.88
(30, 2, 16) ν4 h2

4 h2h5d0 Lemma 4.2.90
(30, 2, 16) η4 h2

4 h1h5d0 Lemma 4.2.92
(45, ?, 24) κ h2

3h5 or h5d0 B21 Lemma 4.2.93
(45, ?, 24) κ h2

3h5 or h5d0 τB23 Lemma 4.2.94
(tentative)
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Table 34: Some compound hidden Adams extensions

(s, w) relation reference

(9, 6) ν3 + η2σ = ηǫ [42]
(40, 22) ν{h2

2h5}+ ηση5 = ǫη5 Lemma 4.2.89

Table 35: Hidden h0 extensions in E2(Cτ)

(s, f, w) x h0 · x reference

(11, 4, 6) h2
1c0 Ph2 d2(b20h0(1)) = τh2

1c0
(11, 4, 6) P kh2

1c0 P k+1h2 d2(b
2k+1
20 h0(1)) = τP kh2

1c0
+k(8, 4, 4)

(23, 6, 12) c0d0 i d2(b20b30h0(1)) = τc0d0
(26, 6, 14) c0e0 j Lemma 5.1.3

(26, 6, 14) P kc0e0 P kj Lemma 5.1.3
+k(8, 4, 4)

(39, 14, 20) P 2c0d0 P 2i d2(b
5
20b30h0(1)) = τP 2c0d0

(41, 9, 22) h0 · τh0g2 z d4(∆h0e0) = τ2h2
0g

2

(44, 9, 24) h2 · τh0g2 d0r d4(∆h0g) = τ2h0h2g
2

(46, 10, 26) c0e0g d0l Lemma 5.1.3

(46, 13, 24) h0 · τh0d20e0 i2 d4(P∆h0d0) = τ2h2
0d

2
0e0

(47, 9, 26) τh2
2g

2 e0r d4(∆h2g) = τ2h2
2g

2

(47, 12, 24) h2
0 · u′ Q′ d4(∆h0i) = τ2h2

0d0l

(49, 13, 26) h0 · τh0d0e20 ij d4(P∆h0e0) = τ2h2
0d0e

2
0

(52, 13, 28) h0 · τh0e30 ik d4(P∆h2e0) = τ2h2
0e

3
0

(54, 8, 30) h1d1g h1h5c0d0 Lemma 5.1.4

(55, 13, 30) h0 · τh0e20g il d4(∆h0d0e0) = τ2h2
0e

2
0g

(55, 22, 28) P 4c0d0 P 4i d2(b
9
20b30h0(1)) = τP 4c0d0

(56, 10, 30) h2
1B8 h2x

′ Lemma 5.1.5

(57, 17, 30) h0 · τh0d40 Pij d4(P
2∆h0e0) = τ2h2

0d
4
0

(58, 5, 30) D4 D2 d2(b30h0(1, 2)) = τD4

(58, 13, 32) h0 · τh0e0g2 im d4(∆h0e
2
0) = τ2h2

0e0g
2

(61, 13, 34) h2 · τh0e0g2 jm d4(∆h0e0g) = τ2h2
0g

3

(62, 12, 34) h2 · τh2gm τe0w d4(∆h2gν) = τ2h2
2gm

(62, 21, 32) h0 · τP 2h0d20e0 P 2i2 d4(P
3∆h0d0) = τ2P 2h2

0d
2
0e0

(65, 21, 34) h0 · τPh0d40 P 2ij d4(P
3∆h0e0) = τ2Ph2

0d
4
0

(66, 9, 34) c0Q2 ?

(67, 13, 38) τh2
2g

3 lm d4(∆h2g
2) = τ2h2

2g
3

(68, 6, 36) h1r1 h3(A+A′) d4(x68) = τh1r1
(68, 21, 36) h0 · τPh0d30e0 P 2ik d4(P

2∆h0d
2
0) = τ2Ph2

0d
3
0e0

(69, 9, 36) h1X3 P (A+A′) d2(b
2
20h3b31b40 + τh1b20b30b

2
31)

= τh1X3

(70, 16, 36) Pc0x′ R′
1 d2(P

2Bb20b30) = τPc0x
′
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Table 36: Hidden h1 extensions in E2(Cτ)

(s, f, w) x h1 · x reference

(35, 5, 19) h2
1d1 t d2(h1b30b22) = τh2

1d1
d2(b

2
21h1(1)) = h3

1d1
(39, 7, 22) h3

1h5 · h4
1 τg2 d8(g

2) = h8
1h5

(41, 8, 22) τh0g2 v d4(∆e0) = τ2h0g
2

(44, 8, 23) τ2h2g2 τw d8(w) = Ph5
1h5

(46, 12, 24) τh0d20e0 Pu d4(P∆d0) = τ2h0d
2
0e0

(49, 12, 26) τh0d0e20 Pv d4(∆Pe0) = τ2h0d0e
2
0

(52, 12, 28) τh0e30 d0u Lemma 5.1.6

(55, 8, 29) h1h5 · c0d0 Ph5e0 Lemma 5.1.7

(55, 9, 31) h1 · h1d1g gt d2(h1b30b22g) = τh2
1d1g

d2(h1(1)g
2) = h3

1d1g

(56, 8, 30) τh2d1g D11 d4(∆d1) = τ2h2d1g

(56, 11, 32) h5
1h5 · h2

1e0 τe0g
2 d8(e0g

2) = h8
1h5e0

(57, 16, 30) τh0d40 P 2v d4(P
2∆e0) = τ2h0d

4
0

(59, 11, 34) h4
1 · h1i1 τg3 d4(g

3) = h6
1i1

(60, 10, 32) h1h3 ·G3 nr d4(∆t) = τ3c1g
2

(61, 12, 33) h2
1h5 · Ph2

1e0 τe0w d8(e0w) = Ph5
1h5e0

(62, 20, 32) τP 2h0d20e0 P 3u d4(P
3∆d0) = τ2P 2h0d

2
0e0

(64, 8, 34) h1h3 · B6 h2C0 d2(Bh1b21h1(1)) = h3
1B7

d2(h
2
1b30b22b40) = τh2

1B7

(64, 9, 34) h2
1 · h5d0e0 τB23 + c0Q2 Lemma 5.1.8

(64, 12, 35) h4
1 · h2

1Q2 τgw + h4
1X1 Lemma 5.1.9

(65, 6, 34) h3 ·D4 τG0 d2(h3b30h0(1, 2)) = τh2
1H1

d2(b
2
21h0(1, 2)) = h3

1H1

(65, 20, 34) τPh0d40 P 3v d4(P
3∆e0) = τ2Ph0d

4
0

(68, 8, 37) h1h3 · j1 h0h2G0 d2(h1b
2
21b22b31) = h2

1h3j1
d2(h

2
1h1(1)b22b40) = τh1h3j1

(68, 10, 37) h2
1c0 ·D4 h2B5 or Lemma 5.1.11

h2B5 + h2
1X3

(68, 12, 35) τB8d0 τW1 d8(τ∆
2g) = τh4

0X3

Table 37: Hidden h2 extensions in E2(Cτ)

(s, f, w) x h2 · x reference

(28, 4, 15) h3g n d2(b30h1(1)) = τh3g

(42, 8, 22) τ2h1g2 ?

(43, 7, 23) τh2c1g N d4(∆c1) = τ2h2c1g

(44, 9, 24) h2 · τh0g2 e0r d4(∆h0g) = τ2h0h2g
2

(47, 5, 25) h2
1g2 C d4(h2b40h1(1)) = τh2

1g2
(48, 8, 27) h3g2 gn d2(b

2
21b30h1(1)) = τh3g

2

(54, 8, 30) h1d1g h2
1B6 d2(b

2
21b30b22 + h2

2b
2
21b40) = τh1d1g
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Table 37: Hidden h2 extensions in E2(Cτ)

(s, f, w) x h2 · x reference

(58, 5, 30) D4 A d2(b30h0(1, 2)) = τD4

(58, 10, 31) h2 · τh2gn nr d4(∆h2n) = τ2h2
2gn

(59, 5, 31) h2
3g2 h5n d2(h5b30h1(1)) = τh3h5g

(59, 7, 31) h2 · B6 C0 d4(x59) = τ2e1g
(60, 6, 32) j1 C′ d2(h1(1)

2b40) = τj1
(61, 13, 34) h2e0 · τh2e0g km d4(∆h0e0g) = τ2h2

2e
2
0g

(62, 11, 32) Ph5c0d0 Ph5j d2(Ph5b20h0(1)b30) = τPh5c0d0
(62, 12, 34) h2 · τh2gm τgw d4(∆h2gν) = τ2h2

2gm

(63, 11, 35) τh2c1g2 nm d4(∆c1g) = τ2h2c1g
2

(64, 13, 36) τh0h2g3 lm d4(∆h0g
2) = τ2h0h2g

3

(66, 8, 36) h1d21 h1h3B7 d2(b30b22h1(1)
2) = τh1d

2
1

(66, 9, 34) c0Q2 ?

(67, 13, 38) τh2
2g

3 m2 d4(∆h2g
2) = τ2h2

2g
3

Table 38: Some miscellaneous hidden extensions in E2(Cτ)

(s, f, w) relation reference

(25, 8, 14) h2
1 · c0d0 + d0 · h2

1c0 = Pe0 Lemma 5.1.15

(28, 8, 16) c0 · h2
1e0 + e0 · h2

1c0 = d20 Lemma 5.1.15

(28, 8, 16) h2
1 · c0e0 + e0 · h2

1c0 = d20 Lemma 5.1.17

(40, 10, 22) d0 · c0e0 + e0 · c0d0 = h1u Lemma 5.1.17

(56, 15, 33) h2
1e

2
0 · h2

1e0 + d0e0g · h4
1 + h6

1 · h3
1B1 = c0d0e

2
0 Lemma 5.1.18

(57, 15, 31) h2
1 · h1d0u+ d0 · h3

1u = Pv′ Lemma 5.1.15

(59, 9, 32) h3
1 · B6 + h2 · τh2d1g = h2

1Q2 Lemma 5.1.12
(65, 11, 34) Ph1 · B6 = h1q1 Lemma 5.1.14

Table 39: E2(Cτ) generators

(s, f, w) x d2(x) reference

(5, 3, 3) h4
1

(11, 4, 6) h2
1c0

(5, 3, 3) P kh4
1

+k(8, 4, 4)

(11, 4, 6) P kh2
1c0

+k(8, 4, 4)

(20, 5, 11) h2
1e0 d0 · h4

1 top cell

(23, 6, 12) c0d0 Pd0 h0 · c0d0 = i
d2(i) in bottom cell

(26, 6, 14) c0e0 h2
1 · c0d0 h0 · c0e0 = j
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Table 39: E2(Cτ) generators

(s, f, w) x d2(x) reference

+Pe0 d2(j) in bottom cell
d2(c0e0) in top cell

(28, 4, 15) h3g h1h4 · h2
1c0 top cell

(20, 5, 11) P kh2
1e0 P kd0 · h4

1 top cell
+k(8, 4, 4)

(26, 6, 14) P kc0e0 P kh2
1 · c0d0 h0 · P kc0e0 = P kj

+k(8, 4, 4) +P k+1e0 d2(P
kj) in bottom cell

d2(P
kc0e0) in top cell

(39, 14, 20) P 2c0d0 P 3d0 h0 · P 2c0d0 = P 2i
d2(P

2i) in bottom cell

(40, 9, 23) h2
1e0g h2

1e0 · h2
1e0 Lemma 5.2.2

+c0d0e0
(41, 8, 22) τh0g2 h1u h1 · τh0g2 = v

d2(v) in bottom cell

(42, 8, 22) τ2h1g2 z Lemma 5.2.3

(43, 7, 23) τh2c1g

(43, 11, 23) h3
1u

(44, 8, 23) τ2h2g2

(44, 9, 23) h1v h3
1u top cell

(46, 10, 26) c0e0g h2
1e0 · c0e0 h0 · c0e0g = d0l

+d20e0 d2(d0l) in bottom cell
d2(c0e0g) in top cell

(46, 12, 24) τh0d20e0
(47, 5, 25) h2

1g2
(47, 9, 26) τh2

2g
2

(47, 10, 24) u′ τh0d20e0 top cell

(48, 8, 27) h3g2 h5
1h5 · h2

1c0 top cell

(49, 12, 26) τh0d0e20 Ph1u h1 · τh0d0e20 = Pv
d2(Pv) in bottom cell

(50, 9, 27) h3
1B1

(50, 10, 26) v′ h2
1 · u′ top cell

+τh0d0e
2
0

(51, 15, 27) Ph3
1u

(52, 8, 27) G3 h1h5 · Ph2
1c0 top cell

(52, 12, 28) τh0e30
(52, 13, 27) Ph1v Ph3

1u top cell

(54, 8, 30) h1d1g

(55, 7, 30) h1i1 ?

(55, 9, 29) τh2gn

(55, 13, 29) h1d0u Pu′ Lemma 5.2.4

(55, 22, 28) P 4c0d0 P 5d0 h0 · P 4c0d0 = P 4i
d2(P

4i) in bottom cell
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Table 39: E2(Cτ) generators

(s, f, w) x d2(x) reference

(56, 6, 29) B6

(56, 8, 30) τh2d1g

(56, 10, 30) h2
1B8

(56, 11, 30) τh0gm h0d0 · τh0g2 top cell

(57, 16, 30) τh0d40 P 2h1u h1 · τh0d40 = P 2v
d2(P

2v) in bottom cell
(58, 5, 30) D4 h1 ·B6 +Q2 Lemma 5.2.5

(58, 14, 30) Pv′ Ph2
1 · u′ + τh0d40 top cell

(59, 5, 31) h2
3g2

(59, 11, 32) τh2gm h0e0 · τh0g2 top cell

(59, 19, 31) P 2h3
1u

(60, 6, 32) j1
(60, 8, 31) h2

1Q2

(60, 17, 31) P 2h1v P 2h3
1u top cell

(62, 11, 32) Ph5c0d0
(62, 20, 32) τP 2h0d20e0
(63, 8, 33) h5d0e0
(63, 11, 35) τh2c1g2

(63, 13, 33) h1c0x′ Ph1x
′ Lemma 5.2.6

(63, 17, 33) Ph1d0u P 2u′ Lemma 5.2.4

(65, 11, 35) h2
1B22 B21 · h4

1 top cell

(65, 20, 34) τPh0d40 P 3h1u h1 · τPh0d40 = P 3v
d2(P

3v) in bottom cell

(66, 9, 34) c0Q2 Lemma 5.2.7

(66, 18, 34) P 2v′ τPh0d40 + P 2h2
1 · u′ top cell

(67, 13, 39) τh2
2g

3

(67, 15, 35) h2
1U x′ · Ph4

1 top cell

(67, 23, 35) P 3h3
1u

(68, 6, 36) h1r1 ?

(68, 12, 35) τB8d0
(68, 12, 39) h3g3 h9

1 ·D4 top cell

(68, 21, 35) P 3h1v P 3h3
1u top cell

(69, 9, 36) h1X3

(69, 17, 37) h1d20u
(70, 16, 36) Pc0x′ P 2x′ h0 · Pc0x′ = R′

1

d2(R
′
1) in bottom cell
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Table 40: Ambiguous E2(Cτ) generators

(s, f, w) x ambiguity definition

(55, 7, 30) h1i1 τh1G h5
1 · h1i1 = τg3

B6 c0 · h1i1 = h5
1 ·D4

(56, 11, 30) τh0gm h2x
′

(59, 11, 32) τh2gm h0B21

(62, 11, 32) Ph5c0d0 h0R h0 · Ph5c0d0 = 0

(68, 6, 36) h1r1 τh1Q3

Table 41: Adams d3 differentials for E3(Cτ)

(s, f, w) x d3(x) reference

(29, 5, 16) h1h3g d20 Lemma 5.2.12
(47, 17, 24) h4

0Q
′ P 4d0 d3(h

5
0Q

′) in bottom cell

(49, 9, 28) h1h3g2 d0e
2
0 Lemma 5.2.12

(51, 6, 27) h2
1h5e0 h3

1B1 h6
1h5 · h2

1e0 = τe0g
2

h6
1 · h3

1B1 = c0d0e
2
0 in E3(Cτ)

d3(τe0g
2) in bottom cell

(53, 9, 28) h1G3 τh0e30 Lemma 5.2.14

(54, 7, 28) h5c0d0 x′ h0 · h5c0d0 = h5i
d3(h5i) in bottom cell

(55, 7, 30) h1i1 or ?

h1i1 + τh1G

(56, 6, 29) B6 τh2gn top cell

(57, 7, 30) h5c0e0 h2
1B8 top cell

(59, 10, 31) Ph2
1h5e0 x′ · h4

1 top cell

(61, 8, 33) h3
1D4 h1B21 Lemma 5.2.16

(65, 11, 34) Ph5c0e0 h1 · h1c0x′ + U Lemma 5.2.17

(68, 10, 37) h2
1D4c0 B8d0 h1 · h2

1D4c0 = h2B5

d3(h2B5) in bottom cell

Table 42: Projection to the top cell of Cτ

element of element of
(s, f, w) E∞(Cτ) E∞(S0,0)

(30, 6, 16) r h1d
2
0

(34, 2, 18) h2h5 h1d1
(38, 7, 20) h0y τh2e

2
0

(41, 4, 22) h0c2 h1h3d1
(44, 10, 24) d0r h1d

3
0

(50, 10, 28) gr h1d0e
2
0

(55, 7, 30) B6 h2gn



130 7. TABLES

Table 42: Projection to the top cell of Cτ

element of element of
(s, f, w) E∞(Cτ) E∞(S0,0)

(56, 10, 29) Q1 d0z
(57, 7, 30) Q2 τgt
(58, 7, 30) h0D2 D11

(58, 11, 32) Ph2
1h5e0 τh2e

2
0g

(59, 8, 33) h2
1D4 h2

2d1g

Table 43: Hidden Adams extensions in E∞(Cτ)

(s, f, w) type from to reference

(35, 5, 19) η h2h5 h2
3g top cell

(39, 9, 21) η h0y u Lemma 5.3.4

(41, 9, 22) ν h0y τh2
0g

2 top cell

(42, 6, 23) η h0c2 h3 · h2
3g top cell

(47, 12, 26) ν d0r h1u
′ Lemma 5.3.9

(48, 8, 26) η h2
1g2 ?

(54, 10, 30) 2 h1d1g ?
(57, 11, 30) 2 Q2 ?
(57, 11, 30) ν h0h5i h1Q1 bottom cell

(58, 10, 32) ν h1i1 + τh1G ?
(58, 10, 32) ν B6 ?

(59, 10, 32) ν τh2d1g ?

(59, 9, 31) η h0D2 h3G3 top cell
(59, 12, 33) 2 h2

1D4 ?

(60, 10, 32) ν Q2 h1 · h3G3 top cell
(60, 10, 32) 2 j1 ?

Table 44: Hidden Adams-Novikov 2 extensions

(s, f, w) from to

(3, 1, 2) 4α2/2 τα3
1

(11, 1, 6) 4α6/3 τα2
1α5

(18, 2, 10) 2z18 τα2
1z16

(19, 1, 10) 4α10/3 τα2
1α9

(20, 2, 11) z20,2 τz20,4
(27, 1, 14) 4α14/3 τα2

1α13

(34, 2, 18) 2z34,2 τα2
1z

′
32,2

(35, 1, 18) 4α18/3 τα2
1α17

(40, 6, 23) α4
1z36 τz40,8

(42, 2, 22) 4z42 τα2
1z40,2

(43, 1, 22) 4α22/3 τα2
1α21
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Table 44: Hidden Adams-Novikov 2 extensions

(s, f, w) from to

(51, 1, 26) 2α26/3 τα2
1α25

(51, 5, 28) 4α4/4z44,4 ?
(54, 2, 28) z54,2 τ4z54,10
(59, 1, 30) 4α30/3 τα2

1α29

(59, 7, 33) z′59,7 ?

Table 45: Hidden Adams-Novikov η extensions

(s, f, w) from to

(37, 3, 20) α4/4z30 τα2
2/2z32,4

(38, 2, 20) z38 τ2z39,7
(39, 3, 21) α1z

′
38 τ2z40,8

(41, 5, 23) α1z40,4 τα2/2z39,7
(47, 5, 26) 2z47,5 τ2z48
(58, 6, 32) α2

1z56,4 τ2z59,11

Table 46: Hidden Adams-Novikov ν extensions

(s, f, w) from to

(0, 0, 0) 4 α3
1

(20, 2, 11) z20,2 z23
(32, 2, 17) z32,2 α1z34,6
(36, 4, 20) α2

1z34,2 z39,7
(39, 3, 21) α1z

′
38 α6

1z36
(40, 6, 23) α4

1z36 τz43
(45, 3, 24) α1z44,2 z48
(48, 4, 26) α2/2z45 ?
(50, 4, 27) z50 ?
(51, 5, 28) α2

2/2z
′
45 ?

(52, 6, 29) z52,6 τ2α1z54,10
(56, 8, 32) α2

1z54,6 τz59,11

Table 47: Correspondence between classical Adams and Adams-
Novikov E∞

s Adams Adams-Novikov detects

0 hk
0 2k 2k

1 h1 α1 η
2 h2

1 α2
1 η2

3 h2 α2/2 ν
3 h0h2 2α2/2 2ν
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Table 47: Correspondence between classical Adams and Adams-
Novikov E∞

s Adams Adams-Novikov detects

3 h2
0h2 α3

1 4ν
6 h2

2 α2
2/2 ν2

7 hk
0h3 2kα4/4 σ

8 h1h3 α1α4/4 ησ
8 c0 z8 + α1α4/4 ǫ
9 h1c0 α1z8 + α2

1α4/4 ηǫ
9 h2

1h3 α2
1α4/4 η2σ

8k + 1 P kh1 α4k+1 µ8k+1

8k + 2 P kh2
1 α1α4k+1 ηµ8k+1

8k + 3 P kh2 2α4k+2/3 ζ8k+3

8k + 3 P kh0h2 4α4k+2/3 2ζ8k+3

8k + 3 P kh2
0h2 α2

1α4k+1 4ζ8k+3

14 h2
3 α2

4/4 σ2

14 d0 z14 κ

15 hk+3
0 h4 2kα8/5 2kρ15

15 h1d0 α1z14 ηκ
16 h1h4 z16 η4
8k + 8 P kc0 α1α4k+4/b ηρ8k+7

17 h2
1h4 α1z16 ηη4

17 h2d0 α2/2z14 νκ
8k + 9 P kh1c0 α2

1α4k+4/b η2ρ8k+7

18 h2h4 z18 ν4
18 h0h2h4 2z18 2ν4
18 h3

1h4 α2
1z16 4ν4

19 c1 z19 σ
20 g z20,2 κ
20 h0g z20,4 2κ
20 h2

0g 2z20,4 4κ
21 h2

2h4 α2/2z18 νν4
21 h1g α1z20,2 ηκ
22 h2c1 α2/2z19 νσ
22 Pd0 α2

1z20,2 η2κ
23 h4c0 α4/4z16 ση4
23 h2g z23 νκ
23 h0h2g 2z23 2νκ
23 Ph1d0 4z23 4νκ

23 hk+2
0 i 2kα12/4 2kρ23

24 h1h4c0 α1α4/4z16 ηση4
26 h2

2g α2/2z23 ν2κ
28 d20 z28 κ2

30 h2
4 z30 θ4

31 h1h
2
4 α1z30 ηθ4

31 n z31
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Table 47: Correspondence between classical Adams and Adams-
Novikov E∞

s Adams Adams-Novikov detects

31 hk+10
0 h5 2kα16/6 2kρ31

32 h1h5 z′32,2 η5
32 d1 z32,4
32 q z32,2
33 h2

1h5 α1z
′
32,2 ηη5

33 p α2z30 νθ4
33 h1q α1z32,2
34 h0h2h5 2z34,2
34 h3

1h5 α2
1z

′
32,2 η2η5

34 h2n α2/2z31
34 e20 z34,6 κκ
35 h2d1 α2/2z32,4
35 h1e

2
0 α1z34,6 ηκκ

36 t α2
1z34,2

37 h2
2h5 α2/2z34,2

37 x α4/4z30 σθ4
38 h2

0h3h5 z38
38 h3

0h3h5 2z38
38 h2

2d1 α2
2/2z32,4

39 h1h3h5 z39,3
39 h5c0 z′39,3
39 h3d1 α4/4z32,4
39 h2t z39,7
39 u α1z

′
38

39 P 2hk+2
0 i 2kα20/4 2kρ39

40 h2
1h3h5 α1z39,3

40 f1 z40,4
40 h1h5c0 α1z

′
39,3

40 Ph1h5 z40,2
40 g2 α4

1z36 κ2

40 h1u z40,8 2κ2

41 h1f1 α1z40,4
41 Ph2

1h5 α1z40,2
41 z α5

1z36 ηκ2

42 Ph2h5 2z42
42 Ph0h2h5 4z42
42 Ph3

1h5 α2
1z40,2

42 d30 α6
1z36 η2κ2

44 g2 z44,4
44 h0g2 2z44,4
44 h2

0g2 4z44,4
45 h2

3h5 z′45 θ4.5
45 h0h

2
3h5 2z′45 2θ4.5
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Table 47: Correspondence between classical Adams and Adams-
Novikov E∞

s Adams Adams-Novikov detects

45 h5d0 z45 + 2z′45
45 h1g2 α1z44,4
45 h0h5d0 4z′45 4θ4.5
45 h2

0h5d0 8z′45 8θ4.5
45 w α1z44,2
46 h1h5d0 α1z45
46 B1 α1z

′
45 ηθ4.5

46 N α2/2z43,3
46 d0l α2

1z44,2
47 h2g2 α2/2z44,4
47 Ph5c0 α8/5z

′
32,2

47 h1B1 α2
1z

′
45 η2θ4.5

47 e0r 2z47,5
47 Pu 4z47,5
47 hk+7

0 Q′ 2kα24/5 2kρ47
48 h2h5d0 α2/2z45
48 B2 α2/2z

′
45 νθ4.5

48 h0B2 2α2/2z
′
45 2νθ4.5

48 Ph1h5c0 α1α8/5z
′
32,2

48 d0e
2
0 z48 κ2κ

50 h5c1 z′50
50 C z50
51 h3g2 α4/4z44,4
51 h0h3g2 2α4/4z44,4
51 h2B2 α2

2/2z
′
45 ν2θ4.5

51 gn z51
52 h1h3g2 α1α4/4z44,4
52 d1g z52,8
52 e0m z52,6
53 h2h5c1 α2/2z

′
50

53 h2C z8z
′
45 or z53

53 x′ z8z
′
45 or z53 ǫθ4.5

53 d0u α1z52,6
54 h0h5i z54,2
54 h1x

′ α1z8z
′
45 or α1z53,5

54 e20g z54,10 κκ2

55 P 4hk+2
0 i 2kα28/4 2kρ55

57 h0h2h5i α2/2z54,2
58 h1Q2 α1z57
59 B21 z59,5 or z′59,7 κθ4.5
59 d0w z59,7
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Table 48: Classical Adams-Novikov boundaries

(s, f) boundary π∗,∗(Cτ)

(4, 4) + k(1, 1) αk+4
1 hk+4

1

(10, 4) + k(1, 1) αk+3
1 α4/4 hk+2

1 c0
(12, 4) + k(1, 1) αk+3

1 α5 Phk+4
1

(18, 4) + k(1, 1) αk+3
1 α8/5 hk+2

1 Pc0
(20, 4) + k(1, 1) αk+3

1 α9 P 2hk+4
1

(26, 4) + k(1, 1) αk+3
1 α12/4 hk+2

1 P 2c0
(28, 4) + k(1, 1) αk+3

1 α13 P 3hk+4
1

(34, 4) + k(1, 1) αk+3
1 α16/6 hk+2

1 P 3c0
(36, 4) + k(1, 1) αk+3

1 α17 P 4hk+4
1

(42, 4) + k(1, 1) αk+3
1 α20/4 hk+2

1 P 4c0
(44, 4) + k(1, 1) αk+3

1 α21 P 5hk+4
1

(50, 4) + k(1, 1) αk+3
1 α24/5 hk+2

1 P 5c0
(54, 4) + k(1, 1) αk+3

1 α25 P 6hk+4
1

(58, 4) + k(1, 1) αk+3
1 α28/4 hk+2

1 P 6c0

(25, 5) α2
1α4/4z16 h2

1h4c0
(29, 7) α1z28 h2

1h3g
(33, 5) α1z32,4 h1d1
(34, 6) α2

1z32,4 h2
1d1

(35, 5) α3
1z

′
32,2 h4

1h5

(36, 6) α4
1z

′
32,2 h5

1h5

(37, 7) α5
1z

′
32,2 h6

1h5

(37, 7) α2/2z34,6 h2e
2
0

(38, 8) α6
1z

′
32,2 h7

1h5

(40, 6) α1α4/4z32,4 h1h3d1
(40, 8) 2z40,8 h2

0g
2

(41, 5) α2
1z

′
39,3 h2

1h5c0
(41, 7) α2

1α4/4z32,4 h2
1h3d1

(42, 6) α3
1z

′
39,3 h3

1h5c0
(42, 8) α2/2z39,7 h2c1g
(43, 7) α4

1z
′
39,3 h4

1h5c0
(43, 9) z43,9 h2g

2

(43, 9) 2z43,9 h0h2g
2

(43, 9) 4z43,9 h1c0e
2
0

(44, 8) α5
1z

′
39,3 h5

1h5c0
(45, 9) α6

1z
′
39,3 h6

1h5c0
(46, 6) α2

1z44,4 h2
1g2

(46, 10) α2/2z43,9 h2
2g

2

(49, 5) α2
1α8/5z

′
32,2 Ph2

1h5c0
(49, 11) α1z48 h2

1h3g
2

(53, 9) α1z52,8 h1d1g
(54, 8) ? α1z53 h1i1
(54, 8) α2/2z51 h2gn
(54, 10) α2

1z52,8 h2
1d1g
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Table 48: Classical Adams-Novikov boundaries

(s, f) boundary π∗,∗(Cτ)

(55, 9) α2/2z52,8 h2d1g
(55, 9) α2

1z53 h2
1i1

(55, 11) α1z54,10 h7
1h5e0

(56, 8) α2
1z54,6 gt

(56, 10) α3
1z53 h3

1i1
(57, 5) α1z56,4 D11

(57, 11) α4
1z53 h4

1i1
(57, 11) α2/2z54,10 h2d0g

2

(58, 6) α2
4/4z44,4 h2

3g2
(58, 6) α2

1z56,4 h1D11

(58, 10) α2
2/2z52,8 h2

2d1g

(58, 12) α5
1z53 h5

1i1
(59, 5) α2

1z57 h2
1Q2

(59, 7) ? z′59,7 j1
(59, 9) α4/4z52,8 h3d1g
(59, 11) z59,11 c1g

2

Table 49: Classical Adams-Novikov non-permanent classes

(s, f) class π∗,∗(Cτ)

(5, 1) + k(1, 1) αk
1α3 hk

1 · h4
1

(11, 1) + k(1, 1) αk
1α6/3 hk

1 · h2
1c0

(13, 1) + k(1, 1) αk
1α7 hk

1 · Ph4
1k

(19, 1) + k(1, 1) αk
1α10/3 hk

1 · Ph2
1c0

(21, 1) + k(1, 1) αk
1α11 hk

1 · P 2h4
1

(27, 1) + k(1, 1) αk
1α14/3 hk

1 · P 2h2
1c0

(29, 1) + k(1, 1) αk
1α15 hk

1 · P 3h4
1

(35, 1) + k(1, 1) αk
1α18/3 hk

1 · P 3h2
1c0

(37, 1) + k(1, 1) αk
1α19 hk

1 · P 4h4
1

(43, 1) + k(1, 1) αk
1α22/3 hk

1 · P 4h2
1c0

(45, 1) + k(1, 1) αk
1α23 hk

1 · P 5h4
1

(51, 1) + k(1, 1) αk
1α26/3 hk

1 · P 5h2
1c0

(53, 1) + k(1, 1) αk
1α27 hk

1 · P 6h4
1

(59, 1) + k(1, 1) αk
1α30/3 hk

1 · P 6h2
1c0

(26, 2) z26 h2
1h4c0

(30, 2) z′30 r
(34, 2) z34,2 h2h5

(35, 3) α1z34,2 h2
3g

(36, 2) z36 h4
1h5

(37, 3) α1z36 h1 · h4
1h5

(38, 2) z′38 h0y
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Table 49: Classical Adams-Novikov non-permanent classes

(s, f) class π∗,∗(Cτ)

(38, 4) α2
1z36 h2

1 · h4
1h5

(39, 5) α3
1z36 h3

1 · h4
1h5

(41, 3) z41 h0c2
(41, 3) α2/2z

′
38 τh2

0g
2

(42, 2) z42 h2
1h5c0

(42, 4) α1z41 h3 · h2
3g

(43, 3) α1z42 h1 · h2
1h5c0

(43, 3) z43,3 τh2c1g

(44, 2) z44,2 τ2h2g2

(44, 4) α2
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(58, 6) z′58,6 Ph2
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notation, 92
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c1, 54
c1g, 51, 54, 62
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c2, 30, 82
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cell
bottom, see cofiber of τ

top, see cofiber of τ

cellular motivic spectrum, see motivic
spectrum

chart
Adams, see Adams chart

Adams-Novikov, see Adams-Novikov
chart

Ext, see Ext chart
Chow degree, see degree

Chow group

higher, 13
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non-permanent

Adams-Novikov spectral sequence, see
Adams-Novikov spectral sequence

classical Adams spectral sequence, see
Adams spectral sequence

classical Adams-Novikov spectral sequence,
see Adams-Novikov spectral sequence

classical stable stem, see stable stem

classical Steenrod algebra, see Steenrod
algebra

closed model category, see model category
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cobordism

algebraic, see algebraic cobordism
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homotopy group, see stable stem
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cofiber of τ , 5, 7, 49, 51, 55, 57, 73

Adams chart, see Adams chart
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convergence, 73
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d3, 82, 129
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differential, 73, 74, 80
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Adams-Novikov spectral sequence, 91

ambiguous generator, 80, 129
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compound, 77–79

η, 85
h0, 73, 75, 124

h1, 73, 75, 76, 124

h2, 73, 75, 125

ν, 85

Ph1, 77

two, 85

homotopy group, 73, 85, 89, 92
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of a point, see motivic cohomology of a
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of the Steenrod algebra, see Steenrod
algebra

comparison between Adams and
Adams-Novikov spectral sequence, 131

compound hidden extension, see hidden
extension

computation

machine, see machine computation

convergence

Adams spectral sequence, see Adams
spectral sequence

Convergence Theorem

May, 2, 9, 10, 14, 15, 21, 24–26, 29, 37,
66, 74–79

Moss, 2, 27–29, 45–47, 62, 63, 65–67, 69,
71

cover, see topology

crossing differential

Adams, see Adams spectral sequence

May, see May spectral sequence

crossing hidden extension, see hidden
extension

d0, 30, 75

d2
0
e2
0
, 33, 34

d0e0r, 33

d0z, 33

D1, 31
d1, 54

D11, 52, 86

d1g, 86

D′
2
, 75

D3, 32

D4, 10, 75, 86
degree, 7, 12

Chow, 13

differential

Adams, see Adams spectral sequence

Adams-Novikov, see Adams-Novikov
spectral sequence

cofiber of τ , see cofiber of τ

May, see May spectral sequence
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0
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Er-page

Adams, see Adams spectral sequence
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3
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h5e0, 32, 90
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Adams, see Adams spectral sequence
Adams-Novikov, see Adams-Novikov
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cofiber of τ , see cofiber of τ
May, see May spectral sequence
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higher differential
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homotopy group, see stable stem
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motivic, see motivic homotopy theory

Hopkins, Mike, 8
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Massey product, see Massey product
Toda bracket, see Toda bracket
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motivic homotopy theory, 2

over R, 1
stable, 3
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Nisnevich topology, see topology
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Adams-Novikov spectral sequence, see
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Adams-Novikov spectral sequence, 92
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Massey product, see Massey product
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[15] André Henriques, The homotopy groups of tmf and of its lo-

calizations, Topological Modular Forms, Talbot, 2007, available at
http://math.mit.edu/conferences/talbot/2007/tmfproc/.

[16] Guy Hirsch, Quelques propriétés des produits de Steenrod, C. R. Acad. Sci. Paris 241 (1955),
923–925 (French). MR0073182 (17,396c)

[17] Po Hu, Igor Kriz, and Kyle Ormsby, Remarks on motivic homotopy theory over alge-

braically closed fields, J. K-Theory 7 (2011), no. 1, 55–89, DOI 10.1017/is010001012jkt098.
MR2774158 (2012b:14040)

[18] Daniel C. Isaksen, The cohomology of motivic A(2), Homology Homotopy Appl. 11 (2009),
no. 2, 251–274. MR2591921 (2011c:55034)

[19] , Classical and motivic Adams charts (2014), preprint, available at arXiv:1401.4983.
[20] , When is a fourfold Massey product defined?, Proc. Amer. Math. Soc., to appear.
[21] , Classical and motivic Adams-Novikov charts (2014), preprint, available at

arXiv:1408.0248.
[22] Daniel C. Isaksen and Zhouli Xu, Motivic stable homotopy and the stable 51 and 52 stems

(2014), submitted, available at arXiv:1411.3447.

145

arXiv:1406.7733
http://math.mit.edu/conferences/talbot/2007/tmfproc/
arXiv:1401.4983
arXiv:1408.0248
arXiv:1411.3447


146 BIBLIOGRAPHY

[23] J. F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), no. 1, 35–87, DOI
10.1016/0022-4049(87)90100-9. MR906403 (88j:18005)

[24] Stanley O. Kochman, Stable homotopy groups of spheres, Lecture Notes in Mathemat-
ics, vol. 1423, Springer-Verlag, Berlin, 1990. A computer-assisted approach. MR1052407
(91j:55016)

[25] Stanley O. Kochman and Mark E. Mahowald, On the computation of stable stems, The Čech
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