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The homology of BPO

Po Hu and Igor Kriz

1. Introduction

The goal of this note is to calculate H.BPO = H,(BPO,Z/2) where BPO =
BPRZ/2, Here, BPR is the 2-local Z/2-equivariant irreducible summand of Landwe-
ber’s Real cobordism spectrum MR (see [9],[3]). The spectrum MR was investi-
gated in [6], where we also give a calculation of its coefficients, and hence also of
m«BPO. Our main interest in these spectra is motivated by the possibility of in-
vestigating an Adams-type spectral sequence based on them. This will be pursued
elsewhere. However, the calculation of H* BPO contains some surprizing compli-
cations, and is of independent interest. This will be our main focus here.

To describe H* BPO, recall the cofibration
(1.1) (BPR A EZ/2,)%? - BPO — ®%/2BPR

where ®%/2 denotes geometric fixed points ([10]). This gives a long exact sequence
of the form
(1.2)

H.((BPRAEZ/2,)*?) —— H,BPO ——— H,(9%/2BPO)
la
H,_1((BPR A EZ/2,)%/?),

THEOREM 1.3. H,BPO = Ker(0) @ Coker(9) as comodules over the dual A,

of the Steenrod algebra. Moreover,
Ker(0) = 7/2,

with generator 1.

To interpret this result, we must describe the map 8 explicitly. We have

H.(®*?BPR) & H,H = A, = 7,/2/(1, (s, ...].

We will recall in the next section that we may write
(1.4) SH,((BPRAEZ/2,)%?) = Z/2[by, by, .. ][r 1 {r '}

The authors are supported by the NSF.
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where dim(r~!) = 1, dim(b;) = 2(2* — 1). By our convention, square brackets
denote polynomial generators, while braces denote an additive generator, typically
used for comparison with other structures, and dimensional shift.

THEOREM 1.5. The map & can be characterized by the formula
¢G) = Zb%’_jrz Lgdtlyg
=

where the formula is to be interpreted as multiplicative on the generators, while in
the result, all non-negative powers of v are set to 0.

Remark: In particular, we actuéilly have B(Ci) = rl=2",

The result can be extended to calculate also the homology of
H,((Z"*BPR)%/?)

as an A,-comodule, for an arbitrary n € Z, where « is the real sign répresentation
of Z/2. In this case, the long exact sequence (1.2) takes on the form

H.(("*BPR A EZ/2,)%/?) ————> H.((S"*BPR)%/?)

l

H,(®%/?BPO)

Jo

H,_1((S"*BPR A EZ/2,)%/?)

since ®22E = ®Z/25*F. It turns out that
SH,((S"*BPR A EZ/24)?) = Z/2[b1, by, - )~ H{r ™77,

so O, is given by the same formula as 8, where in the result, however, all powers of
r greater or equal than —n are set to 0.

THEOREM 1.6. K er(On) is 0 if n. < 0, and is spanned by monomials in the
conjugates (1, C2,... of degree < n (where each ¢; is counted as having degree 1).
Moreover, H,((£"*BPR)?/2) = Ker(8,) ® Coker(0n) as Ax-comodules.

To make use of the statements about A,-comodules structure, we ‘need to under-
stand the A,-comodule structure on Hy((BPRA EZ/24)%/%). When done directly,
this is surprizingly complicated. First of all, we have

SH,RP® = Z/2[rY){r"'} C H.((BPR A EZ/2,)%/?).
Recall that the A,-comodule structure on H,RP* is given by

(1.7) , r ks (3 @)

£>0
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with non-negative powers of 7 set to 0. As it turns out, the formula for b; is

bii—>
L A ,
Lo X T R0 8 (P e+
(1.8) 7=0 \ k=0 £20
(2 2l (D et
k<i—j 220

This is, again, understood as a, multiplicative formula together with (1.7), with non-
negative powers of r set to 0. The formula is analogous for the case of suspension
by ¥™*, with the difference that we set to 0 all powers of r greater or equal to —n.

These formulas, however, seem almost too complicated to be useful. We will
show in the next section how they can be understood in a different light by using
the equivariant language, and considering all the suspensions "¢, n, ¢ Z, at the
same time,

N 2. The equivariant language

i

The Adamns isomorphism gives

(2.1) (BPRAEZ/24)*? = BPR Ay 5 EZ,/2,.
Thus,
(2.2) H((BPRA EZ/24)%?) = (H A (BPR Agyy EZ/2,)), /

= ((Hz/2 A BPR) Agja EZ/24), = (Hgjy A BPR),.

On the right hand side, Hz/; denotes Z/2-equivariant Mackey cohomology with
constant coefficients, but could alternately denote for example the Borel cohomol-

ogy theory.
The right hand side notation refers to the Tate cofibration sequence [5]
(2.3) - EBf 5 E° L B ”

for any Z/2-equivariant RO(Z/2)-graded spectrum E. The first map (also known
as the norm map) is the map '

E! = EAEZ/2, ~ F(EZ/2,,E) ANEZ/2, — F(EZ/2,,E),= E°

induced by the collapse EZ/2; — S°. The Tate spectrum E* is then defined simply
as the cofiber of this map.

Now for E = Hy, /2 A BPR, the long exact sequence associated with the cofi-
bration sequence (2.3) has been completely calculated in [6]. Recall our coefficient
convention: for a Z/2-equivariant spectrum E, E, = (E%/ ?)., while E, denotes the
complete system of coefficients

Eptea = [SFH B

Then, for E'= Hz/, A BPR, (2.3) gives a short exact sequence
(2.4) 0 — (Hz/2 A BPR); — (Hz/y A BPR)! — S(Hyzs A BPRY — 0

which has the form
(2.5)
0= Z/2(&, p,p™" 6l — Z/20s, p, 07 al} a7 = a7 B/20s, 9, p7 Y a7 — 0,
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Here the element p is of dimension o — 1, the element a is of dimension —a and
the element ¢; is of dimension (2¢ — 1)(1 + «). To compute the right A,-comodule
structure, we further compare (2.5) with the analogous sequence for Hy/, using the
Thom reduction

Thus, we obtain a diagram of the form

0 0
Z/Q[ﬁi,p, p_17 a]:z\ - Z/z[Ci’ U»‘T—l’ a](/l\ = (H A H)i

(2.7) /2[00 al 0t — > 2/2[Gi, 0,071, )]

a~1Z/2[£i)p7 p—la a'—l] _—f—1~> a_1Z/2[Ci> g, 0—1, a_l]

0 0

Here the A,-comodule structure on the bottom row is determined by the (a)-
complete Z/2[a]-Hopf algebroid structure on (H A H)S. This is described in [6].
We have -

(2.8) P(G) =Y &7 @G
j=0
and
(2.9) nr(o) = ZCiU2ia2i_1-
0

Similarly, to determine the vertical maps (2.7), it suffices to consider the middle

map f.
Referring to [6], we have

f(p) = nr(0),
and the images of the &;’s are given by the recursion
(2.10) S)=1
' F&) = 3 (i + G+ L) i > 1.

Remark: If we are only interested in the coefficients in dimensions % 4 O, this

already gives the formulas from the previous section: Put

bi = §ip1_2i:

2.11
(211) 7 = pa.
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This gives (1.4). To compute the Steenrod coaction, we shall use the map f, and
the fact that :
Y(nr(o) = 1 ®nr(0),

YFE) = X fE-)” ®F(E)
=0 ‘
(see [6]). Along with (2.11), by expanding the formula (2.10) to explicit form in

the f(&;)’s, we obtain the formula (1.8).
It will also be useful for us to make formula (2.10) explicit in the ¢;’s.

LEMMA 2.12. Identifying f(&) with & and p with nr(c), we have
7 -1
i—3 i—3 i i~F41 4 i—i— _ot—gj~1 _9i—7
Gom Y7 pTE G I ook N T g1
j=0 =0

Proof: Induction. For ¢ = 0, the statement is obviously correct. Processing the
second formula of (2.10) gives

¢ = GZi_lfi + fi—ld‘zi_laMI +¢p e
By the induction hypothesis, the right hand side is
a? g + Lo Tl
o g ) g,
This is the induction step. v ]

Now (2.10) completely determines the map f. We shall use this to completely
determine the connecting map 0 of (1.2). As a first step, we will find the following
statement useful:

LEMMA 2.13. Let E be a spectrum (i non-e}]uivariant) and let X be a G-spectrum
indexed over the G-complete universe. Let i be the inclusion from trivial to complete
G-universe. -Then we have a natural equivalence

(i+E pigea A X)€ =~ E A (X)),

where Ffizeq denotes E thought of as a fized G-equivariant spectrum indezed over
the trivial universe.

Proof: We will construct a map
¢:EN(XC) = (1xEfigea A X)C.

By adjunction, this is equivalent to having a map

ix(E N (X)) fized = ixEfizea N X.
We have

Z*((E A (XG)fiwed) = 14 (Efimed) Ny (XG)fia:ed;
so it suffices to have a map
'I;*((XG)fimed) — X.

We choose this to be the adjoint to the identity X¢ — X©. To show that ¢ is an
equivalence, it suffices to consider the case E = S°. In this case the procedure we
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described starts with the identity X¢ — X € and adjoins it forth and back, to get

back the identity. ]
By Lemma 2.13, our goal is equivalent to computing

2.14) (i.HZ/2 A BPR)..

Remark: In [6], it was incorrectly claimed that i HZ/2 is Real-oriented (which
would trivialize this problem). However, the statement about i.H Z/2 is given only
as a curiosity in [6], while the homology theory used in the applications is Hz/s.
Consequently, other results of [6] are unaffected by the mistake.

To calculate (2.14), we will consider the diagram
®2/2(3, HZ/2 A BPR) —% S(i. HZ/2 A BPR A BZ/2)

l lz

i HZ]3 N BPR ——> S(i.HL A BPR A EZ/2).

On coefficients, this is
7./2[(iy 0,07t — % ya17/20, 07 07
| |-
220 pr 07t a0 Y] — Ta T /2 0,07 07
Theorems (1.3), (1.5) can now be restated as follows:

THEOREM 2.15. The map g (and hence the map 8) is given by
: j _od i__ojt+1
g(G) = &l p e A
=0

Moreover, in twist 0, the kernel of the map 0 is Z/2{1}. (The maps f,g are maps
of rings.) ‘
The proof of the Theorem hinges on the following result:

LEMMA 2.16. gf(¢:) = > (oa) 27
j=0

Proof that Lemma 2.16 implies Theorem 2.15: Similarly as in the proof of
Lemma 2.12, we suppress, for the moment, f from the notation (this is OK since
f is injective). ;From the statement of Lemma 2.16, we now notice that

9(G) = (0a) 2 g(Gim1) + &i-

Thus, by induction, to prove the formula of Theorem 2.15, it suffices to prove that

i i—1

i i1 2t—gitlyy 2! 9i=1 it giml._2itiyy
Zgi—jp a = (0a) Zgi—j—lp a + &
=0 i==()

This is Lemma 2.12.
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To prove the injectivity of 8, let r = oa, u; = gf({;). Thus, we have
i

wi=gf(G) =Y r ¢

j=0

Notice that on the right hand side, all summands involve a negative power of r,
except the summand ¢;. Our statement is now equivalent to the following result.
O

Cram 2.17. Suppose p(u1,us,...) = q((1,{2,...) where p, q are polynomials
with coefficients in Z/2. Thenp=q=1 or 0.

Proof of Claim: Let £ = 1. We have

27L
Up = C'n + Un—1T

Thus, the equation of the Claim reads

(218) p(ul’ ,Un) = q(ul + T, Uy + ulxz, veey Up + un—-lx2n—1)7

since p, g are polynomials with coefficients in Z/2. Separating the terms free of z
on the right, we see that
p=q€ZL/2T1,... 2]

Now grade Z/2[z1, ..., Z»] by giving z; degree 2¢~1. A monomial is given the sum
of degrees of its factors. Let piop be the sum of monomials of p of top degree. We
see that the sum of monomials of
Dlus + T, Ug + 11T, o U+ Un—127 )
carrying the highest power of z is
-1
ptop(x’u1x2,"wun—lx2 )

Thus, (2.18) implies that

-1

2 2
Diop(T, U127, .. U1 T ) =0,

while we know that
Ptop 7é 0.

. . . n—1 . .
This is impossible, since z, u1 22, ..., Un—_12° are algebraically independent. [
¥ b 3 M

3. Real Morava K-theories and the image of (;

The purpose of this secion is to prove Lemma 2.16. Let » = oa. Note that for
any Z/2-equivariant spectrum E, we have an obvious natural map

i H A F(EZ)2.,E) — F(EZ/24,i.H A E)

(indeed, this is adjoint to the map
EZ)24 NisHANE = EZ/2; Ni,HAF(EZ/24,E) - i.HANE
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given by the collapse EZ/2. — 59). Thus, in the right hand column of (2.7),
(H A H)° can be replaced by 4.H A H¢. Passing to twist 0, the bottom square of
(2.7) can be replaced by

H,3%2BPR —2> $H,(EZ/2, A BPR%/?)

(3.1) lf ln

H,8%2(H) —° S H,((EZ/2+ A H®)?/?)
which ‘on coefficients (in twist 0) is

2)2G]) —2— (a=2Z/2[€i, p, P71, 6™ Nwt0a

(3.2) | l? l

Z/2[¢:, Y 3 . r=12/2{¢;, v

Since (3.1) is obtained by applying H. to a diagram of (non-equivariant) spectra,
it is a diagram of right A,-comodules. On the other hand, notice that the bottom
row of (3.2) consists of extended right A.-comodules, that the elements r,r~! are
primitive (since they come from 7, ®Z/2H¢) and that, in fact, the augmentation is

induced by the map
i H N He ——> He p He ~—> H°.
The augmentation takes the form

220G r, Y] —2> 17220, ]

(33) l l

2.)2[r, 7] — 2L s p-17,/2[r Y

where €((;) = 0, €(¢;) = 0 for ¢ > 0. It is then a general fact about extended
comodules that
i
F(G) = ¢e® VY(C) =D ef (G ® Gy
§=0
Thus, we need to show that
ef (G =72t
Since, however, projection in (3.3) is an isomorphism in positive dimensions; we
have reduced the proof of Lemma 2.16 to the following statement.

LEMMA 3.4. €0f((;) #0 fori> 0.

To prove Lemma, 3.4, we will recall certain constructions from [6]. Specifically,
we have constructed a ‘quotient spectrum’ BPR/(%1, ..., ) if 21, ...2n € BPs (non-
equivariant!) is a regular sequence. Let

kR(n) = BPR/(v;,1 # n),
kR(n)/v2 = BPR/(vi,i # n,v2).
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We constructed a cofibration sequence of the form
S -VO+Ig7,/2 N EZ/24
¢

kR(n)/viANEZ/2+

HZJ2 A EZ/2.

Qn

»@* DA+ g7, /9 N EZ/2..

(HZ/2 is Mackey cohomology with constant coefficients, but could be i, HZ/2 or
HZ/2¢)

LeMMA 3.5. Let § be the composition

BPZ A §%% —%- SBPRAEZ/2, —> SHZ/2 AEZ/2,.
Then there exists a lift

@' -DO+) g7,/2 A EZ/2,

/ lQ”

BPR A §%% ————> SHZ/2 A BZ/2,.

Furthermore, if 1: 8% — BPO A §%°% is the unit, then §o(1) # 0.

Proof: We consider the diagram

(3.6)
c - C A 5§ b L@ =Nt g7, /9,
'ﬁl lvr l@'n
BPR C BPR A §°°° J SHZ/2;

lvn vlun/\sm" lt

$—(@"-1)(1+a) g pR — $—(2"-1)(1+a) BPR A S0 o 21—(2n_1)(1+a)(kR(n)/U%)f.

The vertical lines of this diagram are cofibration sequences, which defines C'. The
map d; is constructed as follows: By general module-theoretical considerations, we
have a diagram

BE-DA+IER(n) p —— D@D+ (kR (n) fv,) 5

lun lt

kR(n) ? (kR(n)/v2);.
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The map &; is the composition
BPR A 5% ——> SBPR; — SkR(n); — S(kR(n)/v7)1
where the second map is the MR-module theoretic quotient map.
We now turn our attention to the diagram (3.6). In [6], it was proved that
(3.7) vp A S®% = 0.

Thus, t§ = 0, which immediately implies the existence of the map dg.
Now consider the unit 1 € moBPR. Let 1 =1 AS®* € moBPR A §%°%, Note

that since v, A §°¢ = 0, we have
C A §%% = (BPR A §%%) v (5~ "D+~ BPR A §7°%).

Thus, 1 lifts to 1’ € weC A S°. Note that we may define 8y = 6gmw. Thus, the
non-vanishing statement is equivalent to

(3.]_)*1, 96 0.
This is equivalent to saying that 1’ ¢ Im(i) : mC — wpC A 8%, Assume this
was not true, i.e.

(3.8) 1 = ,1”, 1" € mpC.
Recall that 7 : mpBPR — mpBPR A 5% is a mod 2 isomorphism, so we know

that
(1) =1 mod 2.

But note that this is not possible, since by the calculation of 7. BPR ([6}),
vpre#0

for any class e € mpBPR congruent to 1 mod 2. Thus, (3.8) leads to a contradic-

tion and Lemma 3.5 is proved. O

Now recall that we can identify
(3.9) 7 (HZ/2 NEZ/2,) = £ a7 Z/2]0,07 1,07

~ via the quotient map
HZ/2 — SHZ/[2¢

where ITZ?Z* =Z/2[0,0"1,a,a™"]. Using (3.9), Lemma 3.5 implies that
(3.10) (60)e(1) = 0~ a> ",
Now consider the map

(lAQn)t

(i HZ[2 AR~ @D+ HZ[2 A EZ[24)x (iHZ/2 AXHZ[2 AEZ[2,).

¢AId
(i HZ/2 ASEZ/[2})..
In twist 0, this is,‘ by Lemma 2.13,
HZ/2,(S-@-DO+)HZ /2 A EZ/2,) — HZ/2.(SHZ/2 A EZ/2+)

(3:11) ~ \ 1
HZ/2,EZ/2..
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On the upper left corner of (3.11), 7, (X) C H.(X) (where X = £~@"-1D0+e) g7, /9
EZ/24) sits as the submodule of primitives, and

(3.12) HZ/2. X = 1,X ® A,.

By (8.10) and Lemma. 3.5, the statement of Lemma 3.4 in the language of (3.12)
would follow from

(3.13) M a2 @ ¢in) #£0.
Using the short exact sequence
00— nHZ/2° — 71}1?272 — mLHZ[2f — 0,
we may pull 0=2"a2"2""" back to AITZT‘Z*, divide by a2~2""", and pull back to
(HZ/2°),. Considering the composition

(i, HZ)2 A =@ =00+ frz /98T EE248) o A SHZ ),

3.14

(814 \ P
(SHZ/2°),,

the inequality (3.13) would now follow from

(3.15) Mo~ ® (1) #0.

However, we have forgetful maps to non-equivariant coefficients, where (3.14) is

simply the cap product

ULy N )Y

Thus, (3.15) follows from the fact that non-equivariantly,
(Cn+1 n Qn) # 0.

This concludes the proof of Lemma 3.4.

4. The twisted dimensions
We shall now calculate H, (X"*BPR)%/? for n € Z. Proceeding analogously as
in the twist 0 case, we have the map
On
(4.1) ®2/2(;,HZ/2 A BPR) —> $(2"*,HZ/2 A BPR A EZ/2)%/?

and an extension of the form
(4.2) 0 — Ker(8,) — H,(Z"*BPR)%/? — Coker(8,).

Furthermore,

S(5mi,HZ/2 A BPR A EZ/2,)%? =
S(EmBPR)Y? = r= (7906, &, . ]fr Y.
the map 8, is determined by the map g of Theorem 2.15. Thus, the question

reduces to determining the behaviour of the map 8,, and the extension (4.2) in the

category of A,-comodules.
To this end, let P(n) C A, denote the subgroup generated by all monomials of

order < n in the variables (3, (g, ... (the conjugates of (i, {a,...) where each of the
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variables ; is given the degree 1. Note that P(n) C A, is a right A.-submodule.

Thus, we get a short exact sequence of right A,-modules

(4.3) 0 — P(n) — A, — Q(n) — 0.

Proof of Theorem 1.6: We will begin by considering the geometrically defined
cofibration sequence

(4.4) s-1310 —2 (ZreMR)Y? — (S MR)?/? 2> MO

which in homotopy induces a long exact sequence

(4.5) — Z)2la1, a2, ] = SHL (S MR)}? — SH, (S MR)%? — ...
Recall that the generators a; of H, MO are obtained as elements in the image of
(4.6) H.Z™Y(BO(1))" — H.MO.

We have, of course, ’
BO(1)™ = BZ/2.

Now consider the map

(4.7) in: Z"BO(n)"™ — MO.
By a general principle, di, = 0, so in, lifts to a map
(4.8) byt STBO(R)" = (S MR)??, iy = Aen.

(Geometrically, t, is adjoint to the Thomification of the classifying map of the
complexification of 7y, - which is a Real bundle on the fixed space BO(n) - with
the inclusion of fixed points.)

Thus, we have proven

LEMMA 4.9. The kernel of H.0 contains H,X~"BO(n)", which consists of
monomials of degree < n in the variables a1,a2; ... (where each a; is given degree
1).

O

To relate this to the statement of Theorem 1.6, we need to apply the Quillen
idempotent to (4.4), (4.5), and determine the images of the a;’s in terms of the (;’s.

This is done as follows:
Recall that the a’s are the coefficients of the exponential function of the univer-

sal Formal Group Law on MO, (classifying the FGL's G which satisfy [2]¢ = 0).
In other words, the series
(4.10) Zaixi“"l

) 20
is the functional inverse of the series
(4.11) > matt

i>0

where m; are the coefficients of the logarithm of the universal FGL on MO,. Now
on the coefficients of the logarithm, the Quillen idempotent

(4.12) e: MO — MO
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has the effect

Mgk .y + (g
(4.13) My 0, 62 — 1,

We conclude that in terms of the (i’s, the a;’s are the coefficients of the functional
inverse of the series

(4.14) 37

k>0
In other words, (4.12) sends
ar2lc_1 [aacd Z]:, k - 0, 1, 2, “on

(4.15) a; — 0, i #2F — 1.
Thus, applying now

(4.16) e: MR — MR
to (4.4), (4.5), (4.15) implies that

(4.17) P(n) C Ker(dp).

On the other hand, when examining the image of (x under (4.1), we see from the

‘Ck summand of i that the coefficient of the lowest power of r (=highest power of

r~1), which is 7™, contains the summand
(4.18) ap_1r L

Since the elements (4.18) are algebraically independent (over Z/2), we see that the
image of any polynomial in the (;’s of degree > n will be of degree > n in r~!.

Therefore,

(4.19) Ker(0,) C P(n).

Furthermore, (4.8) shows that P(n) is a right A,-subcomodule of H,(~"*BPR)%/?,

which proves the splitting claimed in the statement of Theorem 1.6. ]
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