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Abstract

In this paper, we use conformal field theory to construct a generalized cohomology theory

which has some properties of elliptic cohomology theory which was some properties of elliptic

cohomology. A part of our presentation is a rigorous definition of conformal field theory

following Segal’s axioms, and some examples, such as lattice theories associated with a

unimodular even lattice. We also include certain examples and formulate conjectures on

modular forms and Monstrous Moonshine related to the present work.

r 2003 Elsevier Inc. All rights reserved.

MSC: 55N34; 81T40; 17B69; 20C34

Keywords: Elliptic cohomology; Conformal field theory; Vertex operator algebra; Monstrous Moonshine

1. Introduction

The purpose of the present paper is to address an old question (posed by Segal
[37]) to find a geometric construction of elliptic cohomology. This question has
recently become much more pressing due to the work of Hopkins and Miller [19],
who constructed exactly the ‘‘right’’, or universal, elliptic cohomology, called TMF

(the theory of topological modular forms). In the present paper, however, we do not
propose a construction which would give TMF. We do propose what could be called
the ‘‘first rigorous reasonable attempt’’ of constructing geometrically any generalized
cohomology theory which could be called elliptic cohomology. To explain what this
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means, we must say more about what is expected of a theory which could be called
elliptic cohomology, and also what qualifies as a geometric construction: as it turns
out, quite a few general desiderata of such theory can be written down, and finding
simply a candidate which would satisfy them all is a non-trivial goal.
First of all, elliptic cohomology should be related to, and ideally better explain,

Borcherds’ proof [2] of the Moonshine conjectures [5] on the modularity of the
Thompson series, which are character series of a certain graded representation of

the Monster called the Moonshine module Vy [13]. (More precisely, the statement of
the conjectures is that the Thompson series are Hauptmoduln. Much work has been
done on this and related topics; see e.g. [21,25,32,42–44] for reference.) The
Thompson series are characters, i.e. trace series, of a certain graded module of the
Monster F1 [17], known as the Moonshine module [13]

Vy ¼
M

nX�1
Vnqn:

Thus, if one wants to work in homotopy theory, one can interpret V y as a map

BF1-K ½½q��½q�1�; ð1Þ

where K is K-theory. This might suggest K ½½q��½q�1� as the first candidate for
elliptic cohomology. This approach was indeed pursued by Ando [1], and leads to

some valuable conclusions; in particular, K ½½q��½q�1� is the ‘‘homotopical counter-
part’’ of the Tate curve. However, we want to go further: the coefficient ring of the
Tate curve does not consist of modular forms of any kind, so this approach does not
explain the modularity of the Thompson series. Also, homotopy-theoretically,

K ½½q��½q�1� brings no new information beyond K-theory. One way to say in which

direction we want to go is that the q in (1) corresponds to an S1-parameter in an
elliptic curve, and we would like a candidate for elliptic cohomology which would be
modular in the sense that it would not need an a priori specification of such
parameter.
We must go back to the geometry to see where such structure could come from;

the most substantial idea [2], which is at the heart of the very construction of the

Monster [17], is the fact [2,13] that Vy is a vertex operator algebra (VOA). Indeed, F1

is the group of automorphisms of the VOA V y: VOA is a mathematical structure
which is also the first rigorous mathematical encoding of the physical concept of
(chiral perturbative) conformal field theory (CFT). On the other hand, a more
‘‘maximalistic’’ approach to CFT [36] builds in modularity in the form of correlation
functions on elliptic curves. This is not directly visible to VOAs, and the proof [2]
takes a different route. But the modularity of CFT suggests trying to replace

K ½½q��½q�1� with some type of theory which would be based on the structure of CFT.
More specifically, (1) should factor as

BF1!
a

BellV
y !b E !g K ½½q��½q�1�; ð2Þ
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where BellV
y is some type of classifying space associated with CFT, whose

construction would, similarly as the CFT itself, be modular, and E would be the
elliptic cohomology, i.e. some type of generalized cohomology theory based on

BellV
y; whose construction would therefore also be modular; in particular, the map g

in (2), on coefficients, would have a modular image. This is the route we take in the
present paper, although we must point out that we do not quite get (2), since that
involves certain technical aspects of exponentiating vertex operators, which we
cannot resolve. We do, however, get certain simpler analogues, for example one
where F1 is replaced by E8:

To describe this construction, we must first talk about the space BellV
y of (2). This

should be some type of classifying space associated with a CFT (more precisely 1-

CFT—see Section 2 below). Therefore, it is appropriate to talk about BellH
y where

Hy is the 1-CFT completion of V y—see Section 4 below.
In this paper, we give a rigorous construction of BellH for every 1-CFT H: This

construction is, in some sense, analogous to the construction of a classifying space of
a group. The question of existence of the map a of (2) can be phrased in general
terms, whether there always exists a map

a : BðAutðHÞÞ-BellH:

This is at present only a conjecture, but we will give some examples where it is true
(see Sections 6 and 7 below).
Now E should be ‘‘elliptic cohomology’’ in the sense of [37] (see also [41]). Our

approach to the map b of (2) is to define a choice of E based on BellH: In fact, it is a
‘‘free construction’’, obtained by taking the suspension spectrum and formally
inverting, in a suitable sense, certain elements oAp�BellH: Evidence in favor of such
approach is given by a well known result in K-theory, where inverting the Bott class
in SNCPN

þ gives K [39,40]. With this approach to E; the construction of the map g of
(2) becomes a non-trivial problem, more difficult than with homotopy theory-based
definitions of E: The definition of E and construction of the map g are given in
Section 5 below.
To give the reader a preview, the main idea of constructing BellH is to adapt the

idea of a bundle on X (say, X is a compact complex curve) to give a notion of
‘stringy’ bundle B on the loop space LX. The main feature of a stringy bundle should
be that a holomorphic embedding of a rigged surface A into X should induce, up to
scalar multiple, a map

#
in

Hci
-#

out
Hdj

where ci (resp. dj) are the inbound (resp. outbound) boundary components of A; and

Hc is the fiber of the bundle B over c:
An ordinary bundle on X can be trivialized when pulled back to a cover U of X ;

which can be thought of as a 0-equivalencea
U

U-X :
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In case of a stringy bundle, 0-equivalence should be replaced by 1-equivalence. In the
case of a complex curve X ; this essentially amounts to

X � S

where SCX is some finite set of ‘‘punctures’’. The precise definition of stringy
bundle specifies the data at the punctures, and will be given in Section 5 below. Next,
we define BellH as the space of stringy bundles with fiber H on an elliptic curve Et

which are equivariant with respect to the translation action of Et: We call such
stringy bundles elliptic bundles.
A large part of this paper is in doing certain calculations which allow us to come

up with candidates of the class o: This requires reconciling certain standard
computations of characters of CFT and modular forms with the new construction.
The first examples of elements o which can be used to define E are given in Section 6.
These elements are given by ratios of theta functions of suitable lattices. In Section 7,
we give more advanced examples. We give a map

BG-BellHG

for any simply connected simply laced group G where HG is the conformal field
theory on the basic level 1 representation of the loop group LG [33]. For G ¼ E8;
this affords a choice of an element o whose image in K�½½q�� is the discriminant form
D (at least up to a multiplicative constant, i.e. localized, in the sense of homotopy
theory, away from finitely many small primes). We also discuss the example of the
Leech lattice, and formulate a general conjecture about theta functions of lattices.
We also discuss the Moonshine module and the Monster. We show how parts of
Borcherds’ calculations [2] lead to a possible higher homotopy analogue of the
Moonshine conjecture.
Finally, before any of this discussion can begin, we must address the question of a

rigorous definition of conformal field theory (and its variations, such as 1-CFT),
which our theory inherently needs. While the idea of a rigorous definition of CFT is
firmly contained in [36], incredibly, details were never published, or perhaps even
completely worked out, during the last 20 years. In the next three Sections 2–4 we
must undertake the formidable task of, at least partially, remedying this situation.
We divide this task as follows: In Section 2, we give the complete axiomatic
definition of chiral CFT (and related notions needed). This greatly exceeds the rather
limited step taken in [26]. The completely rigorous axioms are quite complicated, and
involve substantially the language of 2-categories and stacks. In Section 3, we give,
also in substantial detail, the construction of 1-CFTs associated with even lattices, as
well as the full CFTs associated with even unimodular lattices. In Section 4, we give,
in somewhat less detail, the construction of the 1-CFT structure on the Hilbert-
completed Moonshine module: this example is important for our motivation, but
much of the main technical discussion of the rest of the paper can be carried out
without it.
Having described the positive features of the theory proposed in this paper, it is

important to also point out its shortcomings. As we said in the beginning of the
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introduction, the theory is only a first attempt, and the properties we control would,
in some sense, have to be shared by any reasonable attempt. Many properties which
would be desired from a more definitive theory, however, are unimplemented in the
present one. This includes, of course, the issue of picking the ‘‘right’’ theory, i.e. one
which would construct TMF, or at least one whose coefficients could be completely
calculated. Further, there should be a better geometric reason for choosing the
classes o: in the present theory, the only evidence in favor of picking particular
classes is that they are certain distinguished modular forms on coefficients. Ideally,
however, one should have an index theory on loop space, as proposed in [36], a
geometric interpretation of the Witten genus, and its twisted form, which would
explain the classes o: Finally, to do that, presumably one needs a better additive
theory than the ‘‘free’’ theory (suspension spectrum).
On some of these points, there have been recent clues. For example, a candidate

additive theory is suggested in [20] via 2-vector spaces, and this theory makes contact
with Rognes’ K-theory of K-theory [34]. A fascinating program has been also
recently revealed by Stolz and Teichner, whereby the elliptic cohomology infinite
loop space should be constructed directly as a ‘‘moduli space of CFTs’’, which would
be directly delooped, without use of additive loop space theory. These topics,
however, exceed the scope of the present paper, and will not be discussed here.

2. Conformal field theory

In this paper, a rigged surface is a two-dimensional smooth manifold with
boundary X and a parametrization diffeomorphism

fc : S1 ¼ fzAC j jjzjj ¼ 1g-c ð3Þ

for every boundary component c of X ; together with a complex structure on X with
respect to which each of parametrizations (3) is analytic. The complex structure
determines an orientation, and with respect to that parametrizations (3) have two
possible orientations, which we will call inbound and outbound. By convention, we
call, for

D ¼ fzAC j jjzjjp1g;

the identity boundary parametrization inbound.
Our first task is to capture fully the structure present on the set C of all rigged

surfaces. The essential point is that there are two operations on rigged surfaces:
disjoint union and gluing. Disjoint union

‘
is obvious. Gluing means that if X

is a rigged surface with one chosen inbound boundary component c and one
chosen outbound boundary component c0; then there is a canonical rigged surface
structure on

X̌ ¼ X=B;
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where B is the smallest equivalence relation on X which identifies

fcðzÞBfc0 ðzÞ

for every zAS1:
In addition, however, one can also consider families of rigged surfaces. Let B be a

complex manifold. Then a family of rigged surfaces over B is, roughly speaking, a
transverse map

p : X-B;

where X is a complex manifold with analytic boundary, where each fiber is a rigged
surface, where the parametrizations vary holomorphically.
The most convenient way to make this precise is to consider the manifold Y

obtained by gluing, locally, solid cylinders to the boundary components of X : Then,
a holomorphic family of rigged surfaces X over a finite dimensional complex
manifold B is a holomorphic map

q : Y-B

transverse to every point, such that dimðYÞ ¼ dimðBÞ þ 1 and B is covered by open
sets Ui for each of which there are given holomorphic regular inclusions

si;c : D � Ui-Y

with

q 3 si;c ¼ IdUi
;

where c runs through some indexing set Ci: Further, if Ui-Uja|; we require that
there be a bijection i : Ci-Cj such that

si;cjD�ðUi-UjÞ ¼ sj;iðcÞjD�ðUi-UjÞ:

Then we let

X ¼ Y �
[

i

[
cACi

si;cððD � S1Þ � UiÞ
 !

:

Then the fiber of X over each bAB is a rigged surface, which vary holomorphically in
b; in the sense we want. (Note that the reason the maps sc cannot be defined globally
in B is that it is possible for a non-trivial loop in p1ðBÞ to permute the boundary
components of X :)

Capturing the mathematical structure contained in the operations
‘
; X̌ and the

notion of holomorphic family of rigged surfaces is a formidable task. To some level
of detail, this was done in [10,26]. Note, for example, that the operation

‘
is not

strictly commutative and associative. Rather, we must consider the set C as a
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groupoid, where the isomorphisms are diffeomorphisms compatible with complex
structure and boundary component parametrizations. This groupoid is then a
symmetric monoidal category with respect to the operation

‘
:

More generally, this leads to the notion of a lax algebraic structure. To define that
notion, however, we need to understand strict algebraic structures completely. In the
most simple (=classical) case, this is accomplished through the notion of a theory

according to Lawvere [27]. A theory is essentially a universal algebra, i.e. the
structure given by a set of algebraic operations, which satisfy certain relations
(identities) between the operations. More precisely, Lawvere defines a theory as a
category with objects N such that n is the product of n copies of 1. It is beneficial to
let, for a theory T ;

TðnÞ ¼ HomT ðn; 1Þ;

and write down specifically the axioms for TðnÞ: In this (equivalent) sense, a theory
T is a functor from the category whose objects are natural numbers N ¼ f0; 1; 2;yg
and morphisms from k to m are maps of sets f1;y; kg-f1;y;mg together with a
distinguished element 1ATð1Þ; a composition operation

g : TðkÞ � Tðn1Þ �?� TðnkÞ-Tðn1 þ?þ nkÞ:

The operation g is associative and unital, and equivariant with respect to the
functorial structure, in the obvious sense. For a set X ; we have the endomorphism

theory EndðX Þ where EndðXÞðnÞ ¼ MapðX�n;X Þ: (In fact, Lawvere’s approach tells
us that any theory is an endomorphism theory, if we replace the category of sets by a
suitable category.) Then a structure of a T-algebra on X is given by a map of theories

T-EndðXÞ:

Note that a universal algebra type is often given by a set of operations O each of
which has an arity, i.e. specified number of input variables, and relations E between
(compositions of) the operations O: This amounts simply to taking the free theory on
the sequence OðnÞ consisting of operations of arity n; factored out by the smallest
congruence (in the category of theories) containing the relation E:
Defining a lax algebra X over a theory T is not difficult. X is a groupoid, and

we set

EndlaxðX ÞðnÞ ¼ FunctorsðX n;X Þ:

Then a structure of a lax T-algebra on X is given by a map

f : T-EndlaxðX Þ

and natural isomorphisms

fð1ÞDId;
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fðgðg; g1;y; gkÞÞDgðfðgÞ;fðg1Þ;y;fðgkÞÞ;

fðTð f ÞðgÞÞDðEndlaxðXÞð f ÞÞðfðgÞÞ:

Note that these coherence isomorphisms correspond to operations of a general theory
(i.e. unit, composition and functoriality). The coherence isomorphisms are subject to
coherence diagrams which must commute. These diagrams correspond to relations

which are satisfied by the operations of a general theory, i.e. the associativity, unit
and equivariance relations mentioned above. We shall not draw these diagrams
explicitly.
We will, however, note that we have a notion of lax morphism

f : X-Y ð4Þ

of lax algebras X ; Y over a theory T which is a functor (4) where for each operation
a (identity, composition and functoriality) of a theory, we have an isomorphism

að f ;y; f ÞDf a: ð5Þ

For each relation of a general theory (composition associativity, unit, equivariance
and functoriality associativity) we then have a coherence diagram closed by
isomorphisms (5) and the coherence isomorphisms of the lax T-algebras X ; Y ; we
require of a lax morphism that all such diagrams commute.
In fact, lax T-algebras form a 2-category [3] in which lax morphisms are

1-morphisms. By a 2-morphism between (4) and

g : X-Y ð6Þ

we shall mean a natural isomorphism

fDg; ð7Þ

we require of isomorphisms (7) to form commutative diagrams with the coherence
isomorphisms of the 1-morphisms f ; g: Therefore, such coherence diagrams will be
indexed over operations of a general theory.
Note that in the 2-category of lax T-algebras, every 2-morphism is an

isomorphism. Furthermore, it is known that this 2-category has lax limits. (We
refer the reader to [10]. A classical reference about 2-categories, which however
contains only some of the relevant results, and uses a slightly different terminology,
is [3].) For any 2-category F which satisfies these two conditions, and any
Grothendieck topology B; we can speak of F-stacks over B: These are
contravariant lax functors B-F which turn Grothendieck covers into lax limits.
Thus, we can speak of stacks of lax T-algebras. We should remark that in CFT,
stacks play an important role for classification (otherwise it appears one could
construct a lot of artificial examples), but a marginal role from the point of view of
characteristics of the structure itself: stacks simply describe how our structure varies
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over spaces which are objects of the indexing site. For example, they provide a
proper axiomatization of the notion of ‘‘holomorphic family of rigged surfaces’’. A
reader uninterested in this detail may simply restrict attention to sections over a
point, and disregard stacks entirely.
Rigged surfaces form a stack of lax commutative monoids over the site of complex

manifolds with Grothendieck topology of open covers, with respect to the operation
of disjoint union. Unfortunately, however, the formalism of lax algebras over a

theory is not general enough to describe the gluing operation X̌; which is indexed by
a choice of pair of inbound and outbound boundary component of X ; we must
consider the set of all inbound and outbound components of X as an attribute of X ;
and be able to index operations by such attributes. The framework of algebras over a
theory, lax or strict, does not allow for that.
What we need is the notion of a 2-theory Y fibered over another theory T :We begin

by discussing the strict structure.
Using Lawvere’s language, a 2-theory consists of a natural number k; a theory

T and a (strict) contravariant functor Y from T to the category of categories (and

functors) with the following properties. Let Tk be a category with the same objects as

T ; and HomTkðm; nÞ ¼ HomT ðm; nÞ�k: Then

ObjðYðmÞÞ ¼
a

n

HomTkðm; nÞ;

for f : m-n in T ; the map ObjðYðnÞÞ-ObjðYðmÞÞ which is a part of YðfÞ is given
by precomposition with ðf;y;fÞ (this axiom was originally missing and the mistake
was found by T. Fiore) and

gAHomTkðm; nÞ

is the product, in YðmÞ; of the n-tuple

g1;y; gnAHomTkðm; 1Þ

with which it is identified by the fact that T is a theory. (We need to allow ka1
because in the example we are interested in, k ¼ 2:)
Again, it is beneficial to write down the axioms of a 2-theory explicitly, by letting

Yðw;w1;y;wnÞ ¼ HomYðmÞððw1;y;wnÞ;wÞ

for wi; wATðmÞ�k where the n-tuple ðw1;y;wnÞ is identified with the corresponding
element of HomTkðm; nÞ:
Let T be a theory, and let kAN be a fixed number. Then, as remarked, for a

number mAN and for any elements

w1;y;wn;wATðmÞ�k;
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we have a set

Yðw;w1;y;wnÞ: ð8Þ

There are the following operations on a 2-theory:

1. A unit 1AYðw;wÞ where wATðmÞ�k is any element.
2. Y-composition

g : Yðw;w1;y;wnÞ �Yðw1;w11;y;w1p1Þ �?�Yðwn;wn1;y;wnpn
Þ

-Yðw;w11;y;wnpn
Þ

where all w; wi; wijATðmÞ�k:

3. Y-functoriality: for a map

i : f1;y; qg-f1;yng;

a map

Yðw;wið1Þ;y;wiðqÞÞ-Yðw;w1;y;wnÞ:

4. T-functoriality: for a map

i : f1;y;mg-f1;y; qg;

a map

Yðw;w1;y;wnÞ-Yði�kw; i�kw1;y; i�kwnÞ:

5. T-substitution: For uiATðkiÞ; i ¼ 1;y;m; and vi ¼ g�kðwi; u�k
1 ;y; u�k

m Þ; v ¼
g�kðw; u�k

1 ;y; u�k
m Þ; a map

Yðw;w1;y;wnÞ-Yðv; v1;y; vnÞ:

The axioms (relations) required of a 2-theory are: associativity and unitality of
Y-composition, associativity of Y-functoriality, Y-equivariance, associativity of
T-functoriality and T-substitution, T-equivariance, and commutativity between T-
substitution and T-functoriality and Y-composition and Y-functoriality. The
meaning of these axioms is clear, and will not be given in detail here (since one
can always use the categorical definition for guidance). Similarly, it is clear what one
means by (strict) morphism

ðY;TÞ-ðS;SÞ;

where Y is a 2-theory fibered over T and S is a 2-theory fibered over S:
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Now consider a set I and a map

X : Ik-Sets:

To such data there is assigned a 2-theory EndðXÞ fibered over the theory EndðIÞ: let

Yðw;w1;y;wnÞ

consist of the set of all possible simultaneous choices of maps

Xðw1ði1;y; imÞÞ �?� Xðwnði1;y; imÞÞ-X ðwði1;y; imÞÞ; ð9Þ

where ij range over elements of I : A structure of an algebra over the 2-theory Y
fibered over T is given by a morphism

ðY;TÞ-ðEndðXÞ;EndðIÞÞ:

To define a lax algebra over ðY;TÞ; let I be a groupoid, and let X be a strict

functor from I to groupoids. We have already defined EndlaxðIÞ: To define

EndlaxðX Þðw;w1;y;wnÞ;

we take the set of simultaneous choices of functors (9) for each ðijÞjAIm; which are

strictly natural transformations (where X ðwiði1;y; imÞÞ is a functor in Im using the
strict functoriality of X ; and the usual functoriality of Hom’s).
Now a lax algebra over ðY;TÞ consists of a lax algebra I over T (i.e. in particular

a map f : T-EndlaxðIÞ), a strict functor X from I to groupoids, and a map

Yðw;w1;y;wnÞ-EndlaxðX ÞðfðwÞ;fðw1Þ;y;fðwnÞÞ ð10Þ

together with a natural coherence isomorphism for each operation 1;y; 5 of a
2-theory, and a commutative coherence diagram for each relation among the
operations of a general 2-theory (see above for the list of such relations).
Note that, similarly as above, lax algebras over a 2-theory in this sense form a

2-category where every 2-morphism is an iso and lax limits exist. Therefore, we can
talk about stacks of ðY;TÞ-algebras.
Note that it is possible to talk about ðY;TÞ-algebras in an even more lax sense,

which, however, would lead us into the realm of 3-categories and 2-stacks. We shall
not pursue this here, although another remark in this direction will be made later.
The example is related to the following 2-theory Y fibered over T ; which we will

call the 2-theory of commutative monoids with cancellation (CMC): T is the theory of
commutative monoids with an operation þ: We set k ¼ 2: The 2-theory Y has three
generating operations, addition (or disjoint union)

þ : Xa;c � Xb;d-Xaþb;cþd ;
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unit

0AX0;0

and cancellation (or gluing)

?̌ : Xaþc;bþc-Xa;b:

(In this notation, X is a general CMC, i.e. algebra over the 2-theory of CMCs.) The

axioms are commutativity, associativity and unitality for þ; 0, transitivity for ?̌

(note that the cancellation operation of c þ d uses T-substitution) and distributivity

of ?̌ under þ:

(similarly, note that in this diagram, T-substitution is used).
Now we are not interested in any actual examples of CMCs, but we will be

interested in lax CMCs (LCMCs). In our basic example, I is the category of finite
sets and isomorphisms, where þ is disjoint union, and Xa;b is the set of all rigged

surfaces x together with bijections

finbound boundary components of xgDa;

foutbound boundary components of xgDb:

As usual, morphisms of rigged surfaces are diffeomorphisms preserving complex
structure and boundary parametrizations. The reader can check that with this
definition, Xa;b is a strict functor in a; b; and the other axioms of LCMC are also

easily verified.
Even further, we are interested in the fact that C has, in fact, the structure of a

stack of LCMCs. Here the Grothendieck topology is the category B of finite-
dimensional complex manifolds, where coverings are coverings by open subsets.
To describe a stack of LCMCs, note that we have to first describe the underlying
stack of lax T-algebras, in our case lax commutative monoids. This is simply the
stack of covering spaces: the set of sections over BAB is the set of all covering spaces
of B with locally finitely many sheets. Note that if we look at the map of
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Grothendieck topologies

i : �-B;

this stack of covering spaces can be, in the appropriate sense, described as a universal
construction, which we may call

Q ¼ lax i#S;

where S is the lax commutative monoid of finite sets (this notation has precise
meaning as lax adjoints in 2-categories, see [10]).
Now the set of sections of the stack of LCMCs C over BAB and over a pair s; t of

covering spaces of B is the set of all holomorphic families x of rigged surfaces over B

together with a choice of isomorphisms between the covering spaces of B consisting
of inbound and outbound boundary components of x; and s; t; respectively. Again, it
is easily checked that C with this structure is an LCMC, and this is the total structure
on C we are interested in.

Example. To illustrate these notions, we give at least a couple of the coherence
diagrams which the above formalism implies. Suppose, for example, we have three
rigged surfaces x; y; z where x has one inbound and one outbound boundary
component. Let x̌ be obtained by gluing those two boundary components.

Analogously, we obtain rigged surfaces ðxNyÞ3; ðxNzÞ3; etc. by gluing the same

two boundary components. (Note: we use X3 in the same meaning as X̌; the former
notation is preferable when X is a longer expression.) Then we have, for example, the
following two commutative coherence diagrams (the isos are coherence isos supplied
by the lax structure):

ð11Þ

ð12Þ
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If the reader wishes to consider stacks, we may replace x; y; z by holomorphic
families of rigged surfaces.

While coherences (11) and (12) are certainly obvious geometrically, note that it is
by no means obvious how one would write down all such coherences naively.
It is also impossible to develop a model for C where all the arrows of diagrams such
as (11), (12) would be identities: it is well known that even for the category of finite
sets, there is no consistent set theory where the operation N would be strictly

commutative associative unital. Thus, lax structures must be considered.
In the theory and 2-theory formalism, the trick of reducing all coherence diagrams

such as (11) and (12) to a uniform shape is to consider composite operations in the
theory or 2-theory. For example, in (11), we may consider composite operations
xNyNz; x̌Ny; x̌NyNz: We omit parentheses to distinguish these from compositions
of operations, as one must in a lax algebra. Thus, for example, the composite
operation x̌NyNz is to be distinguished from ðx̌ÞNyNz which is the composition of
gluing followed by ?N?N?: Now from this point of view, diagram (11) is broken up
into 2-theory coherence diagrams

ð13Þ

All squares in (13) are coherence diagrams corresponding to the associativity of
composition in 2-theories. Diagram (12) can be broken up analogously, but this
time we would also need to use 2-theory coherence diagrams coming from the
Sk-equivariance of 2-theories.
Finally, we would like to point out that while it is possible to follow these

examples, it is also apparent that in diagram (13), our notation was already

becoming awkward. This is due to the fact that ?̌ was just an abbreviation for a
whole system of operations, indexed by the incoming and outgoing boundary
components to be glued. The notion of 2-theory is precisely designed to capture such
indexing of operations. Therefore, these examples should help explain why what may
have seemed as esoteric definitions above are in fact abstractions forced by the
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structure present: any rigorous axiomatization of the structure of C must include
these, or equivalent, abstractions.
There is one generalization of C which will be also useful. Let K be some finite set.

Then instead of the groupoid S of sets, we can consider the groupoid SK of finite sets
over K ; i.e. whose objects are maps

a-K

where a is a finite set, and maps are maps a-b which commute with the maps to K :
We think of K as a set of labels. Then we can consider, in the same sense as above,
the stack over B

QK ¼ lax i#SK ; ð14Þ

or, explicitly, the stack of covering spaces with locally finitely many sheets, labelled
locally constantly by elements of K : Then we denote by CK the fiber product
of stacks

C�Q�Q ðQK � QKÞ;

i.e. stack of LCMCs, consisting of (families of) rigged surfaces with boundary
components labelled by elements of K :
It is tempting to go even further and consider the case when K would be a

groupoid; such structures would be useful in encoding conformal field-like theories
corresponding to vertex intertwining algebras [23]. However, note that then sets over
K form a 2-category. The appropriate fully lax analogue of (14) gives, as sections
over an object B ofB; the set of all gerbes on a covering space of B:Gerbes, however,
do not form a stack, but rather a 2-stack; which is the right analogue of stack over a
3-category (whose objects are 2-categories). While this is an interesting direction, we
shall not pursue it any further here.
We now proceed to use the notion of LCMC to define conformal field theory. Let

H1;y;Hn be complex (separable) Hilbert spaces. Then on H1#?#Hn; there is
a natural inner product

/a1#?#an; b1#?#bnS ¼ /a1; b1S/a2; b2S?/an; bnS:

The Hilbert completion of this inner product space is called the Hilbert tensor

product

H1
##? ##Hn: ð15Þ

Now an element of (15) is called trace class if there exist unit vectors eijAH where

j ¼ 1;y; n and i runs through some countable indexing set I such that

x ¼
X
iAI

miðei1#?#einÞ
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and X
iAI

jmijoN:

The vector subspace of (15) of vectors of trace class will be denoted by

H12?2Hn: ð16Þ

Note that (16) is not a Hilbert space. We have, however, canonical maps

2 : ðH12?2HnÞ#ðHnþ12?2HmþnÞ-H12?2Hmþn

and, if H� denotes the dual Hilbert space to a complex Hilbert space H;

tr :H2H�2H12?2Hn-H12?2Hn:

This allows us to define a particular example of stack of LCMCs based onH; which
we will call H: The underlying stack of lax commutative monoids (T-algebras) is Q:
Now let BAB: Let s; t be sections of the stack Q over B; i.e. covering spaces of B

with finitely many sheets. Then we have an infinite-dimensional holomorphic bundle
over B

ðH�Þ2s2H2t: ð17Þ

What we mean by that is that there is a well defined sheaf of holomorphic sections of
(17) (note that it suffices to understand the case when s; t are constant covering
spaces, which is obvious). Now a section of H over a pair of sections s; t of Q is
a global section of (17) over b; the only automorphisms of these sections cover-

ing Ids � Idt are identities. The operation +, ?̌ are given by the operations 2; tr

(see above).
We can also define a variation of this LCMC for the case of labels indexed over a

finite set K : We need a collection of Hilbert spaces

HK ¼ fHk j kAKg:

Then we shall define a stack of LCMCs HK : The underlying stack of T-algebras
(commutative monoids) is QK : Let s; t be sections of QK over BAB: The place of (17)
is taken by

ðH�
KÞ

2s2H2t
K : ð18Þ

By the sheaf of holomorphic section of (18) when B is a point we mean that
2-powers of Hk (or H

�
k) for each label kAK are taken according to the number of

points of GðtÞ (resp. GðsÞ); when s and t are constant covering spaces B; the space
of sections of (18) is simply the set of holomorphically varied elements of the spaces
of sections over points of B (which are identified). This is generalized to the case of
general s; t in the obvious way (using functoriality with respect to permutations of
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coordinates). As above, the only automorphisms of these sections covering Ids � Idt

are identities.
Now by an abstract chiral conformal field theory (CFT) on a stack of LCMCs D

with underlying stack of commutative monoids Q we mean a Hilbert space H
together with a map of stacks of LCMCs

f :D-H ð19Þ

over the map of underlying stacks of commutative monoids

Id : Q-Q: ð20Þ

More generally, by an abstract CFT with set of labels K we mean a stack of LCMCs
with underlying stack of commutative monoids QK ; a collection of Hilbert spaces
HK and a map of stacks of LCMCs

f :D-HK ð21Þ

over the map of underlying stacks of commutative monoids

Id : QK-QK : ð22Þ

Since we did not specify above explicitly what we mean by a morphism of stacks of
LCMCs, we should say that here we are referring to strict morphisms. Note,
however, that in the present cases, there is no ambiguity, since the target has only
one morphism over the identity on each section of the underlying stack over an
object BAB:
For our purposes, however, we should like to be much more specific about the

stack of LCMCs D which is the source of maps (19) and (21). We shall start with the

notion of C�-central extension (or, equivalently, one-dimensional modular functor) on
an LCMC D: This is a strict morphism of stacks of LCMCs

c : *D-D ð23Þ

over (20) with the following additional structure: For each object B of B; and each
pair of sections s; t of Q over B; and each section a of D over s; t;B;B0-B;

c�1ðajB0 Þ ð24Þ

with varying B0 is the space of sections of a complex holomorphic line bundle over B:

Furthermore, functoriality maps supplied by the structure of stack of LCMCs on D̃

are linear maps on these holomorphic line bundles. Regarding the operation +, we
require that the map induced by +

c�1ðajB0 Þ � c�1ðbjB0 Þ-c�1ððaþ bÞjB0 Þ ð25Þ
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be a bilinear map, which induces an isomorphism of holomorphic line bundles

c�1ðajB0 Þ#OB0c
�1ðbjB0 Þ-c�1ððaþ bÞjB0 Þ ð26Þ

(OB is the holomorphic structure sheaf on B).

Regarding the operation ?̌; we simply require that if a is a section of D over s þ u;
t þ u; B where u is another section of Q over B; and $a is the section over s; t; B which

is obtained by applying the operation ?̌ to a; then the map of holomorphic line
bundles coming from LCMC structure

c�1ðajB0 Þ-c�1ð$ajB0 Þ ð27Þ

ðB0-BÞ be an isomorphism of holomorphic line bundles.
By a chiral CFT with one-dimensional modular functor over D we shall mean a CFT

f : D̃-H ð28Þ

where *D is a C�-central extension of D which has the property that f is a linear map
on the spaces of sections (24).
This concept is easily generalized to CFTs with general modular functors: For a

finite set of labels K ; and a stack of LCMCs D with underlying stack of commutative
monoids Q; let

DK ¼ D�Q�Q ðQK � QKÞ

be the corresponding stack of LCMCs with underlying stack of commutative

monoids QK : Then a modular functor *DK over DK is a strict morphisms of LCMCs

*DK-DK

over (22) with the following additional structure: For each object B of B; and each
pair of sections s; t of QK over B; and each section a of DK over s; t;B;B0-B; (24)
with varying B0 is the space of sections of a complex holomorphic (finite-
dimensional) bundle over B: Furthermore, functoriality maps supplied by the

structure of stack of LCMCs on D̃K are linear maps on these holomorphic
bundles. Regarding the operation +, we require that map (25) induced by + be
a bilinear map, which induces an isomorphism of holomorphic bundles (26),
as before.

The operation ?̌ is slightly more complicated in the present general modular
functor case: suppose u is a section of Q which is a constant covering space, b is a
section over s; t; B; and the image of b; s; t in D (resp. Q) is g; resp. p; r: Now assume
that a is a section of D over p þ u; r þ u; B such that g is obtained from a by the

gluing operation ?̌: Assume further that for each lift v of u to QK ; aðvÞ is the
section of DK over s þ v; t þ v; B such that b is obtained from aðvÞ by the gluing

operation ?̌ (note that because of our definition of DK ; aðvÞ is necessarily uniquely
determined). Then we require that the map of holomorphic line bundles coming from
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LCMC structure M
v

c�1ðaðvÞjB0 Þ-c�1ðbjB0 Þ ð29Þ

ðB0-BÞ is an isomorphism of holomorphic bundles, where the sum runs over all lifts
v of u to QK :
By a chiral CFT with modular functor over DK we mean a CFT

f : D̃K-HK ð30Þ

which has the property that f is a linear map on the spaces of sections (24). If we set

D ¼ C;

this is the rigorous version of CFT following the outline in [36]. With the caveat that
this notion does not capture super-CFTs or twisted CFTs (field-theoretic notions
corresponding to intertwining vertex algebras), this definition is from many points of
view the correct one.
The authors have been asked what is the improvement of the present definition

over the definition of Segal [36]. The answer is that this is the wrong question: the
concepts we describe are (up to some possible variations some of which will be
discussed below) precisely what one gets when including all the desired features
outlined in [36] and all the details not given in [36]. It seems meaningless to consider
notions where some of these axioms would be omitted (for example, a notion of
modular functor M where a coherence isomorphism MxNyDMx#My would be

required, but the corresponding coherence diagrams would not). Therefore, rather
than improving on the definition [36], what we claim to have done is just writing the
whole definition down in detail.
We remark that while it is important for foundational reasons to have the full

force of maps (28) and (30), the stack notation is awkward, and it is usually sufficient
to refer to fibers over a point. Thus, e.g. in (28), for a rigged surface X ; we usually
speak simply of the element of

##
in

H� ## ##
out

H

given by (28) (the products are over inbound resp. outbound boundary components
of X ). In this notation, the element is usually denoted by UX and call the vacuum

vector or field operator, depending on context.
There are several reasons why we do not precisely follow this definition here, and

rather introduce several modifications. The main reason is that there are at the
present time still very few examples of CFTs in which the full structure of CFT with
modular functor, as defined above, can be proven rigorously. Still unknown cases
include for example the completed Moonshine module CFT and the higher level
chiral WZW models (not discussed here). A CFT associated with an even lattice L is
now known. However, the general construction of lattice CFTs requires a detailed
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discussion of the labels which is beyond the scope of the present paper and will be
described elsewhere. In this paper, we will only describe the lattice CFT in the case of
even unimodular lattice L (see the next section) and use a weaker notion for a general
lattice. A similar weaker structure for the completed Moonshine module will be
discussed in Section 4.
However, there is another, less pragmatic reason why we do not consider the full

CFT structures with modular functor: in our construction of elliptic cohomology
theory (see Section 5 below), it is apparent that only modularity with respect to the
genus 1 mapping class group (=modular group) is relevant to the modular in-
variance of our theory. Thus, it makes perfect sense to restrict our consideration to
rigged surfaces of genus p1: This gives field-theoretic concepts corresponding to
rational vertex operator algebras (see next section for more details). Also, although in
this paper we focused, following [36], on a ‘‘stringy’’ approach to CFT, in physics
however there is an alternate quantum field theory approach using Schwinger
functions, which can be considered entirely one worldsheet at a time.
Even at genus p1; however, modular functor considerations involve labels, which

present an additional complication; since the main purpose of this paper is to present
some examples of rigorously defined elliptic cohomology theories based on CFT, we
seek to define alternative concepts of CFT on rigged surfaces of genus p1; which do
not require labels. These considerations lead to the following definitions:
Let nAN: Then by Cn we mean the substack of C whose section over BAB; s; t

sections of Q over B; consist of all those families of rigged surfaces over B whose
fiber over each point has connected components of genus pn (the genus of a rigged
surface x with boundary is the genus of the closed surface obtained by gluing disks to

the boundary components of x). Let, also, Cþ
0 denote the substack of C0 consisting

of families of rigged surfaces whose each connected component has exactly one

outbound boundary component, and let Cþ
1 denote the substack of C1 consisting of

families of rigged surfaces whose each connected component of genus i has exactly

1� i outbound boundary components, i ¼ 0; 1: Note that, curiously, Cþ
1 is actually

an LCMC. On the other hand,

Cn;C
þ
0 ð31Þ

are not LCMCs, but the operation + (disjoint union) is still well defined on (31), and

the operation ?̌ is partially defined by the operation C; defined precisely when it
produces a section of the respective stack (31).
By a stack of partial LCMCs over (31) we shall mean a map f of stacks over Q

from a D to (31) where D has an operation + and a partial operation ?̌ defined if
and only it is defined in the target of f; and satisfies all the axioms of LCMC we
defined. Now a partial CFT over a stack of partial LCMCs D over (31) is a map
D-H which satisfies the axioms of map of LCMCs, whenever operations in the
source are defined. Similarly, one defines the notions of one-dimensional modular

functor on a stack of partial LCMCs over (31) and partial CFT with one-dimensional

modular functor on a stack of partial LCMCs over (31).
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We shall be only concerned with n=0,1 here. By a 0-CFT (resp. directed 0-CFT )
we shall mean a partial CFT with one-dimensional modular functor over C0 (resp.

Cþ
0 ). It may seem natural to define a 1-CFT as a partial CFT with one-dimensional

modular functor over C1; but we want to be more general than that, to allow for
modular groups G which are subgroups of PSL2ðZÞ of finite index.
To that end, consider the 2-categories

C1;C0;Cþ
1 ;C

þ
0 ð32Þ

whose objects are stacks of partial LCMCs over

C1;C0;C
þ
1 ;C

þ
0 ð33Þ

(the word ‘partial’ does not apply in the penultimate case). The morphisms
of (32) are lax morphisms of stacks of partial LCMCs. Now consider the forgetful
functors

U : C1-C0; Uþ : Cþ
1 -Cþ

0 : ð34Þ

These functors have lax left adjoints

L : C0-C1; Lþ : Cþ
0 -Cþ

1 ; ð35Þ

and we are going to be interested in the stack of partial LCMCs over C1

DN ¼ LðC0Þ; ð36Þ

and the stack of LCMCs over Cþ
1

Dþ
N

¼ LþðCþ
0 Þ: ð37Þ

Stacks (36) and (37) are not difficult to describe. Note that it suffices to
describe sections over s; t; B where B is an object of B and s; t are constant
sections of Q over B: Now let x be a section of C1 over s; t; B: Clearly, it suffices
to consider the case when the fibers of x over each point of B is connected and of
genus 1. Then the sections of DN over x are equivalence classes of sections y of C0

over s þ e; t þ e where e is a 1-element set, and y̌ ¼ x; two such choices y; y0 are
considered equivalent if over each point c of B; the images of the glued boundary
component from y; y0 in the elliptic curve E obtained from gluing disks to the
boundary components of the restriction of x to c are homotopic when parametrized
suitably. Eq. (37) can be constructed similarly. We see therefore that the fibers of the
forgetful maps

DN-C1; ð38Þ

Dþ
N
-Cþ

1 ð39Þ
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over sections x of the target over constant sections s; t of Q over B are in canonical
bijective correspondence to the set of cosets

PSL2ðZÞ=Z: ð40Þ

Here the subgroup ZCPSL2ðZÞ consists of modular transformations

t/tþ n; nAZ:

Now let G be a subgroup of PSL2ðZÞ of finite index, containing this Z: Then there is
a well defined stack of partial LCMCs over C1 (resp. stack of LCMCs over Cþ

1 )

which we could denote as

DG ¼ DN=G;

Dþ
G ¼ Dþ

N
=G:

In the above situation, i.e. over a section x of C1 (resp. C
þ
1 ) over a pair of constant

sections s; t of Q over B; the sections are the set of orbits of (40) by the action of
GCZ (i.e. these are single, not double cosets).
Now we are ready for our main definition: By a 1-CFT with modularity group G

(resp. a directed 1-CFT with modularity group G) we shall mean a partial CFT with
one-dimensional modular functor on DG (resp. CFT with one-dimensional modular

functor on Dþ
G ).

Remark 1. From a physical point of view, Moore and Seiberg [29] proved a result
which, in the present language, says roughly that every 1-CFT gives rise to a CFT.
However, this result has not yet been checked in the rigorous mathematical
framework, and so, at the moment, from a mathematical point of view is still
conjectural.

Remark 2. We have so far mentioned variants which are weaker than the original
full concept of CFT defined above. However, one can also impose additional
conditions on a CFT. Notably, these include reality conditions (i.e. requiring that the
Hilbert space H; or the system HK ; have a suitable real form) and boundary
convergence conditions for limit worldsheets. In this paper, we shall find one
such (very mild) condition useful: Considering the standard annuli Aq ¼
fzAC j jjqjjpjjzjjp1g with the standard boundary parametrizations z and qz;
these annuli specify an action of the semigroup C�

o1 ¼ fzAC j 0ojjzjjo1g (under

multiplication). One can assume that this extends to a continuous action of C�
p1 by

bounded operators.
This technical condition clearly can be formulated for a 0-CFT (hence also a

1- CFT), and we shall assume it for the rest of this paper.

At least for motivational reasons, it is beneficial to clarify the relationship between
the concepts we introduced and vertex operator algebras (VOAs), which is the same
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as conformal vertex algebras, see [11,12]. First of all, the nature of the relationship is
that both concepts are different mathematical models of related physical structures;
neither structure is in general known to imply presence of the other. Thus, it is
appropriate to speak in terms of analogy, although sometimes, a more direct
connection exists. A vertex algebra is a non-negatively graded complex vector space

V ¼
M
nAN

Vn; ð41Þ

where the degree is called weight, together with series called vertex operators

Yðv; zÞ ¼
X
nAZ

vnz�n�1AHomðV ;VÞ½½z; z�1��: ð42Þ

The operator vn : V-V is of weight m � n � 1 if vAVm: This conforms with the older
(but still used) indexing [11], the newer indexing [12] is shifted. Operators (42) are, of
course, required to obey certain axioms (see [11,12]). This concept is analogous to
our concept of directed 0-CFT. More concretely, let l� : V-V be the linear operator
given by multiplication by ln on Vn: Then given a zAC with

0ojjzjjo1;

we can choose lAC�; mAC� such that the disks lD; mD þ z are disjoint and
contained in the interior of D: Then let Al;m;z be the rigged surface in C whose

parametrized boundary components are S1; lS1; mS1 þ z: Then we may hope that
there exists a directed 0-CFT

HCV̂ ¼
Y

n

Vn

such that, if we rewrite (42), for a given z; (assuming the series converges), as a map

Y : V#V-V̂; ð43Þ

then

Yðl�u; m�vÞ ¼ UAl;m;zðu#vÞ: ð44Þ

In that case, the term vertex operator algebra refers to the presence of a certain
element oAV2 such that the vertex operator associated with o encodes (infinitesimal)
boundary reparametrizations. We refer the reader to [2,11,22] for details. Anyway, in
this case, we may refer to the directed 0-CFTH as a Hilbert completion of the V(O)A
V ; however, note that the Hilbert structure on H plays a marginal role, and, in fact,
can often be varied (for example in the case of bc-systems Segal [26,36]).
Analogously, the axioms of V(O)A call for no inner product on V : Thus, such
‘‘Hilbert completion’’ is not a canonical operation, since it is not always defined, and
if it is defined, is not unique. On the other hand, however, note that if we have an
directed 0-CFT, assuming that for standard annuli Aq (i.e. submanifolds of C where
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the parametrized boundary components are S1 and qS1) we have

lim
q-1

UAq
¼ IdH; ð45Þ

we can always set Vn to be the subspace of H on which UAq
acts by qn: We may

then use (41) to define V : Assume each Vn is finite dimensional. We have HAV̂;
so we may use (44) to define (43). Further, the assumption we made about
holomorphy shows that (43) can be expanded to the form (42). Thus, a directed
0-CFT with some mild assumptions does always give rise to a VOA. Under
such assumptions, similarly a directed 1-CFT gives rise to a rational VOA in the
sense of [9], [47].
One important point in this discussion is the ‘central charge’. A VOA is, in

particular, a representation of the universal central extension of the Lie algebra

VectðS1ÞC of polynomial complex vector fields on S1: such representations have an

important invariant, called central charge, and denoted by c [10]. Accordingly,
assuming (45), a directed 0-CFT is also, in particular, a representation of the group

Diff þðS1Þ of analytic orientation-preserving diffeomorphisms of S1; which also has
an invariant called central charge. We shall use this invariant below. See [26,33,36],
for more details and further relevant discussion.
We may ask what property of vertex algebra corresponds to a 0-CFT (not

directed). Note that in such notion, we must have operators corresponding
to reversing the orientations of boundary components of Al;m;z: We shall consider

the ‘‘infinitesimally thick’’ annulus A� whose both boundary components are S1;
the ‘‘outside one’’ parametrized by z; while the ‘‘inside one’’ parametrized by 1=z

(It is appropriate to think of A� as the limit at q-1 of the annuli Aq;� with

boundary components parametrized by z and q=z; zAS1:). Then we assume there is
an operator in H-H� associated to A�: This corresponds to a bilinear form B

on the complex vector space V : The annulus Aq;� has an involution auto-

morphism reversing its boundary components. Taking the limit q-1 leads to the
assumption that

B is a non-degenerate symmetric bilinear form: ð46Þ

To find the appropriate condition on the symmetric bilinear form V which
correspond to a directed 0-CFT extending to a 0-CPT (not directed), we consider the
fact that if, in a genus 0 connected rigged surface X with 2 inbound and 1 outbound
boundary component we reverse the parametrization of one inbound and one

outbound boundary component (by composing with 1=z : S1-S1), we obtain a
rigged surface of the same kind (i.e. an element of the same connected component of
the moduli space).
The appropriate model case of X to consider in the case of VOAs is Al;m;z:

However, we imagine that l; m-1 (so we, of course, no longer have an actual
surface, although we could consider this as a surface with tubes in the sense of [22]).
The two ‘‘boundary components’’ with identical images are parametrized by IdS1 ; the
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remaining boundary component is parametrized by

t/z þ t: ð47Þ

If we apply the transformation

z/1=z;

(47) becomes

t/
1

z þ t
: ð48Þ

Our condition is that the operator

Y 0ðv; zÞ ð49Þ

obtained by composing with vAVn via the ‘‘surface’’ with two boundary components
IdS1 and a third boundary component (48) (where we insert v) be B-adjoint to

Yðz; vÞ: ð50Þ

To calculate operator (49) in vertex operator algebra terms, we note that

1

z þ t
¼ 1

z
þ ð�t=z2Þ

1þ ð�t=z2Þ � ð�zÞ: ð51Þ

This gives

Y 0ðv; zÞ ¼ ð�z2Þn
Y ezL1v;

1

z

	 

: ð52Þ

Thus, our condition requires that (52) be B-adjoint to (50). Vertex operator algebras
satisfying this condition will be called reflexive. Note that in (52), the right-hand side
converges (is a sum of finitely many factors, since L1 has weight �1). Note that this
condition cannot quite be phrased in the language of VAs, since, at least, one need
an L1 which satisfies the usual Lie relations (of sl2C) with L0; L�1: (Note that this
makes every VOA, or even more generally any Virasoro algebra representation, an
sl2C-representation, but that this representation on a VOA can never be
exponentiated to a Lie algebra representation, since if it did, multiplication by

0 1

�1 0

	 

would reverse weights.)
Note also that if

v ¼ o ¼ L�2ð1Þ
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is the conformal vector, then

L1o ¼ 0;

so reflexivity implies that Ln is B-adjoint to L�n:
Note, finally, that the notion of reflexivity is implicitly introduced in [2, p. 417],

where it is also remarked that VOAs associated with lattices and the Moonshine
module are reflexive. In fact, the condition discussed in [2] is somewhat stronger:
suppose in addition to reflexivity that V ; o; B; Yðv; zÞ are all defined over R:
Assuming V has this property, and, in addition, B is positive-definite, we call the
VOA V reflection-positive.
The corresponding condition on 0-CFT is also called reflection-positivity. It can be

phrased on sections over a point, so the stack language is not needed. The condition

simply says that if %X is the opposite rigged surface to a rigged surface X (i.e. has
opposite complex structure and the same boundary parametrizations), then

U %X; UX

be adjoint. This means that

fðU %XÞ ¼ UX

where, for a Hilbert space K (in our case a Hilbert tensor product of copies of H

and H�),

f : K-K�

is the antiisomorphism given by the inner product.
Note that in the case of a reflection-positive VOA V ; V has a positive-definite

inner product

/u; vS ¼ Bðu; %vÞ;

so we may discuss the canonical Hilbert completion H of V : Further, there is a
canonical candidate for field operators UX on H coming from the VOA structure,
and the question of whether H is a 0-CFT is thus a question of convergence.
A subtle point [2, p. 417] is that VOAs associated with even lattices are not

reflection-positive, because the form B with respect to which they are reflexive is not
positive-definite; it is, in particular, not the ‘‘obvious’’ form. See next section for a more
detailed discussion. On the other hand, the Moonshine module is reflection-positive.

3. Examples of 1-CFTs: lattice theories

Let L be an even lattice, i.e. a free abelian group with a Z-valued quadratic form
such that /x; xS is even for every xAL: We shall denote

T ¼ LC=L:
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By TS1 ; we denote the group of analytic maps S1-T with the topology of uniform
convergence of all derivatives. For a rigged surface X ; we set

T@X ¼
Y
@X

TS1

(the product is over all boundary components of X ). We also denote by

TX

the group of holomorphic maps X-T : We have an map

TX-T@X

(by restriction), which is an embedding if X has no closed connected components.
We consider the topology on TX given by restriction.
We will start by constructing the following data:

1. A central extension T̃S1 of TS1 by C� together with a specific lift of the canonical

action of the group Diff þS1 of analytic oriented diffeomorphisms of S1 on TS1 to

an action on T̃S1 such that, moreover, the central extension induced by an

orientation-reversing diffeomorphism of S1 is opposite.

2. If we denote by T̃@X the induced (product) C�-central extension of T@X ; a

canonical splitting sX of the induced C�-central extension T̃X of TX compatible

with gluing in the sense that when X̌ is obtained from X by gluing and f̌ : X̌-T is
a holomorphic function which pulls back to a holomorphic function f : X-T ;

then sX̌ð f̌Þ is a restriction of sX ð f Þ:

Extracting data (1) and (2) from an even lattice L involves some subtle points, and
is not completely canonical. We follow [36], although the truth is that the authors of
the present paper could not locate a version of [36] complete enough to treat all the
details. Nevertheless, one must assume that all of the information presented in this
section is known to the author of [36].
One begins by choosing a bilinear form

b : L � L-Z=2

which satisfies

bðx; xÞ � 1
2
/x; xSmod 2:

Note that this implied (by considering bðx þ yÞ)

bðx; yÞ þ bðy; xÞ � /x; ySmod 2: ð53Þ
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In the sequel, let

expðzÞ ¼ e2piz:

Let, for a function f : S1-T ; f̃ be a lift of f to LC; i.e. a function

f̃ : ½0; 1�-LC

such that the following diagram commutes:

We set Df̃ ¼ f̃ð1Þ � f̃ð0Þ: Then the group T 0
S1 of all such pairs ð f̃; f Þ is a universal

covering of TS1 : Then a C�-valued 2-cocycle on T 0
S1 is given by

cð f̃; g̃Þ ¼ exp
1

2

I
S1

f̃ dg̃ � Df̃ g̃ð0Þ þ bðDf̃;Dg̃Þ
	 


: ð54Þ

To prove (1), we note that the restriction of c to the subgroup LCT 0
S1 of constant

functions with values in L is 0, so the corresponding C�-central extension T̃0
S1 of T 0

S1

specified by (54) splits canonically when restricted to L: Thus, we get a canonical
homomorphism of groups

LCT̃0
S1 : ð55Þ

Note carefully that we have

cð f̃; kÞ ¼ cðk; f̃ Þ for kAL;

so (55) is a normal subgroup. We then set

T̃S1 : ¼ T̃0
S1=L:

The Diff ðS1Þ-action stated in (1) is then induced by using the obvious invariance of

the cocycle c under the universal cover of Diff þðS1Þ; and projecting the resulting

action down to T̃S1 (using the fact that L is an even lattice).

So far, the summand 1
2

bðDf̃;Dg̃Þ in (54) played no role: the discussion of (1)

would be equally valid without it. The situation is, however, different in the
discussion of (2).
To begin this discussion, select a universal cover

p : X̃-X
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with a fundamental domain X 0: X 0 can be chosen by selecting a simple analytic
curve: ½0; 1�-X such that ImðcÞ-@X consists of a collection of points which are
images of 1 under the boundary component parametrizations. We can then demand

p : interiorðX 0Þ!D X � ð@X,ImðcÞÞ:

Note carefully two details: First, orientation of @X 0 determines orientation of the
parametrizations of the connected components of @X : Reversal of orientation of @X 0

will reverse the orientations of all the parametrizations of connected components of
@X ; but any subset of these orientations may be separately reversed by making a
different selection of c:
The other point is that a selection of c determines an order of the connected

components of @X : Call these boundary components, in this order,

c1;y; cn:

Now let fATX ; let f̃ be a lift to the group TX 0 of holomorphic maps X 0-C: We
would like to compare

cð f̃; g̃Þ

to

exp
1

2

I
@X 0

f̃ dg̃

	 

ð56Þ

which vanishes by Stokes’ theorem (as dð f̃ dg̃Þ ¼ 0). Let f̃i ¼ f̃ci
: One then has

exp
1

2

I
@X 0

f̃ dg̃

	 

¼ exp

1

2

Xn

i¼1

I
ci

f̃i dg̃i � Df̃i
g̃ið0Þ

	 

þ
X
ioj

Df̃i
Dg̃i

 !
: ð57Þ

Since the left-hand side vanishes, comparing (57) and (54) gives that

cð f̃; g̃Þ ¼ exp
1

2

X
ioj

Df̃i
Dgj

þ
Xn

i¼1
bðDf̃i

;Dg̃i
Þ

 !
: ð58Þ

Notice two points. First,

cð f̃; g̃ÞAf�1; 1g:

Second,

cð f̃; g̃Þ ¼ cðg̃; f̃ Þ; ð59Þ
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as, by (53),

cð f̃; g̃Þ
cðg̃; f̃ Þ

¼ exp
1

2

Xn

i¼1
Df̃i

 !2

¼ 1:

We know that a symmetric 2-cocycle with 2-divisible kernel is a coboundary (of

a ¼ 1
2

cðx; xÞ), however, for our purposes, we need a canonical choice of a (subject to

the choices we made thus far).
To this end, choose a lift

b̃ : L � L-Z

of b: We see that

af̃ ¼ exp
Xn

i¼1

1

4
b̃ðDf̃i

;Df̃i
Þ � 1

8
/Df̃i

;Df̃i
S

 !
; ð60Þ

which makes the correct choice of splitting

TX-T̃@X

f/ð f ; af̃Þ: ð61Þ

Obviously, this is independent of the choice of f̃: Note, however, that we can choose

b̃ so that a ¼ 0: For any choice of b̃;

qðx; yÞ :¼ b̃ðx; yÞ þ b̃ðy; xÞ �/x; ySA2Z;

so we may replace b̃ by

b̃ðx; yÞ � 1
2

qðx; yÞ

to make the difference 0. The choice of the lift b̃ of b is still not canonical (it can be
altered by adding any antisymmetric form Sðx; yÞ on Z� Z), but at this point, no
data of our theory depend on it.
Now the recipe for constructing a 0-CFT from data (1), (2) is essentially formal

(as pointed out in [36]). However, certain details must still be handled with care.

First, the Hilbert space H is the basic representation of T̃S1 which is reflection
positive, or, in other words, is a complexification of the basic unitary representation

of gMapMapðS1;LR=LÞ: (We speak here of reflection-positivity of the action of T̃S1 ; the
reader must distinguish it carefully from any reflection-positivity of CFT structure.)

Note also the usual caveat that only the real subgroup of T̃S1 acts by unitary (hence

bounded) operators onH:General elements of T̃S1 send only a dense subspace ofH
toH: The whole story is told in substantial detail in [33], but we can summarize it as
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follows: first, the central extension T̃S1 splits canonically on TD (D is the unit disk),
since that is a special case of (2). Thus, we obtain a canonical representation

T̃D ¼ C� � TD-C� ð62Þ

which is Id on the first factor and trivial on the second. Roughly speaking, one can

think of H as the induced representation from (62) via the embedding T̃DCT̃S1 :
However, one must be more precise about the Hilbert space structure.
This is best done as follows: Consider the subgroup TS1;0 of functions of degree 0,

and the restricted central extension T̃S1;0: Note that there is a canonical short

exact sequence

1-C�-TS1;0-V-1;

where the kernel consists of constant functions, and V is a vector space. Further,
on V ; the cocycle takes the simple and completely canonical form

cð f ; gÞ ¼
I

f̃ dg̃;

thus giving the pulled back central extension Ṽ; which is a Heisenberg group.
Now there is a completely rigorous and developed theory of Heisenberg

representations ([33, 9.5], which is an infinite-dimensional analogue of [31]). The
essential point is that V is identified with the space of analytic functions

f : S1-LC ð63Þ

with I
S1

f ¼ 0: ð64Þ

We may therefore consider the real subspace VR of analytic functions

f : S1-LR

with (64). This real structure gives a complex conjugation, and the choice of isotropic
subspace ACV consisting of all functions holomorphically extending to D uniquely
determines a Heisenberg representation H0 which is a Hilbert space (see [33, 9.5]).
The Hilbert space H then can be defined as

H0
##c2ðLÞ;

and as a representation is

ind
T̃

S1

T̃
S1 ;0

ðH0Þ:
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(This has a clear meaning, since the kernel of the extension over which we are
inducing is the discrete group L:)
To define the 0-CFT structure, consider a rigged surface X with no closed

connected components. Assume first that all n boundary components are oriented
outbound. (We shall specify later what to do in case of reversal of orientation.) Then
we have an identification

T@X ¼
Yn

i¼1
TS1 ;

and therefore a representation of T̃@X on

##
n

i¼1
H: ð65Þ

Note that (65) is L-graded by sum of degrees of factors. Let HX be the subspace
of (65) consisting of all elements of degree 0 invariant under the action of TX

(see property (2)). (We will see that the condition limiting the degree to 0, is, in fact,
not needed, since no elements other than in degree 0 can be invariant; this is,
however, not important.)

Proposition 1. If X is a connected rigged surface of genus 0, then HX is a one-

dimensional complex vector space, and moreover consists of trace-class elements.

Granting this for the moment, HX defines the C�-central extension *C0 and the

embedding of HX into (65) defines the 0-CFT supported on *C0: To make that
complete, we must discuss the case when some boundary components of X are
oriented inbound. To this end, define an involution a : TS1-TS1 by

að f ÞðzÞ ¼ f ð1=zÞ: ð66Þ

Then one notices that (on universal covers) the resulting cocycle is the exact
reciprocal of cocycle (54). This means that the two central extensions are opposite
(their product, pushed to the same kernel, canonically splits). This gives an
isomorphism

HDH�; ð67Þ

as the basic representations with opposite cocycles are dual Hilbert spaces. Now
simply reverse the parametrization of any inbound boundary components of X by
(66), find the ray HX ; and apply iso (67) on factors (65) which correspond to
boundary components with reversed parametrizations. The desired behaviour ofHX

under gluing now follows from Properties 1 and 2 (see the beginning of this section).
It remains to be shown that the 0-CFT we have defined extends to a 1-CFT, but in
view of [47], this follows from the results of [8]; some discussion of modularity of the
lattice 0-CFTs will be carried out below in Section 6 in connection with y-series.
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To relate this to the discussion in [2, p. 417] regarding reflection-positivity, it is
appropriate to discuss, in more detail, the symmetric bilinear form B associated with
isomorphism (67), and specifically compare it with the ‘‘standard’’ bilinear form B0:
First of all, to define B0; we point out that H has a real structure: it suffices to

specify that on H0: Recall that we have

H0 ¼ dSymSymðAÞ; ð68Þ

where A is the space of holomorphic functions f : D-LC with average 0. Then let AR

be the real vector subspace of A consisting of functions which map real numbers to
LR: This induces the desired real structure on (68). As usual, we obtain an associated
symmetric bilinear form

B0ðx; yÞ ¼ /x; %yS:

(We make the convention that inner products on complex inner product spaces are
linear in first coordinate and antilinear in second.) Note that B0 coincides with the
inner product when restricted to HR; and hence is positive-definite.
Now recall that the map

y : f/� f

on T 0
S1 preserves our cocycle, and thus defines an involution automorphism

*y : T̃S1-T̃S1 :

Consequently, we obtain an automorphism

y0 :H-H

defined up to scalar multiple; we normalize it by requiring

y0ð1Þ ¼ 1;

where 1 is the vacuum vector. Then y0 is an involution. Now we have

Lemma 2. Let B be the symmetric bilinear form on H associated with isomorphism

(67). Then

Bðx; yÞ ¼ B0ðx; y0yÞ:

Proof. We shall confine ourselves toH0; the discussion of the general degrees is then
standard and we omit it.
On H0; the advantage is that our discussion becomes restricted to Heisenberg

groups, and the choice of lattice L does not matter. We may restrict attention to
L :¼ Z: In fact, let us study iso (67). First, recall the iso

a : T̃S1-T̃S1
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by (66). This reverses the cocycle, and therefore acts by 1=z on the kernel of the

central extension T̃S1 : Composing the representationH with a gives a representation

W of T̃S1 of level �1; another representation of the same group of level �1 is the

dualH� of the representationH: Then classification of representations of T̃S1 shows
that we must have an iso of representations

WDH�:

Up to scalar multiple, this is (67), which we use to define B: We can normalize the
iso by

Bð1; 1Þ ¼ 1:

Now we study the dual representation H�: for fAH�; a dual representation in
general acts by

gð f ÞðxÞ ¼ f ðg�1ðxÞÞ;

so in our case, for gAA;

gð f ÞðxÞ ¼ f ð�gðxÞÞ: ð69Þ

We can, however, take

gð?Þ ¼ B0ð?; yÞ

for some yAH0: Then using (69), our statement reduces to

B0ðgðxÞ; yÞ ¼ B0ðx; aðgÞðyÞÞ: ð70Þ

In turn, it suffices to show this for gAAR; where (70) coincides with

/gðxÞ; yS ¼ /x; %gðyÞS;

ð %? : A- %AÞ; which is the reflection-positivity (unitarity) formula for the Heisenberg
representation. &

Proof of Proposition 1. The argument that

dimðHX Þp1 ð71Þ

is carried out in [33, Section 8.11]: If X has n boundary components, the double
coset space

TX \T@X

Yn

i¼1
TD

,
ð72Þ

ARTICLE IN PRESS
P. Hu, I. Kriz / Advances in Mathematics 189 (2004) 325–412358



is the moduli space of holomorphic T-bundles on P1; which is discrete and
isomorphic to L (by degree). Hence, TX acts transitively on

T@X

Yn

i¼1
TD

, !
0

; ð73Þ

the part of degree 0. Now (65) can be interpreted as a certain space of functions on
the N-dimensional complex manifold (73) (a suitable subspace of the space of
holomorphic functions). In any case, a TX -invariant holomorphic function on (73) is
determined by its value on a single point, hence (71). (In fact, we see that on the
bottom weight vector in non-zero degrees the action of TCTX is non-trivial, which is
why the degree 0 condition is unnecessary.)
To show that

dimðHX ÞX1; ð74Þ

we grade (65) by Ln; considering degrees of all individual factors. Let

Ln
0 ¼ ðl1;y; lnÞ

X
li ¼ 0

���n o
:

We shall construct a non-zero element xAHX as

x ¼
X
kALn

0

xk; ð75Þ

where degðxkÞ ¼ k: From this point of view, it suffices to construct x0; as we
may set

xk ¼ fkðx0Þ;

where fkATX is any holomorphic function of degree k (although we then must show
that sum (75) converges and is trace class).
But now x0 does not depend on the lattice L; and can be obtained by a method

called boson-fermion correspondence. This means that the 0-CFTH0 is isomorphic to
the Hilbert tensor product of dimðLÞ copies of the degree 0 part F0 of the bc-system

F associated with the space of 1/2-forms O1=2ðS1;CÞ: The CFT F is defined on a

C�-central extension of the stack of LCMCs Cspin of rigged surfaces with spin, and is

treated in detail in [26]. At any rate, what is important for us is only that its degree 0
part F0 is a 0-CFT, and the tensor product of dimðLÞ copies of its vacuum vector
over X is the element x0 we seek. The required properties of x0 easily follow from
properties of the boson-fermion correspondence (cf. [33]).
To be a little more specific, recall [33] that the projective representation of TS1

on H0DF0 is induced by the action of TS1 on GrresO1=2ðS1;CÞ: Thus, it is obvious
that the vacuum vector x0 is invariant under that projective action. However, that
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amounts only to saying that for fATX ; ðdegð f Þ ¼ 0Þ;

f ðx0Þ ¼ lf x0 ð76Þ

for some constant lf : we must show that

lf ¼ 1: ð77Þ

To this end, we note that obviously

lfNg ¼ lf lg; ð78Þ

but also

l
f̌
¼ lf : ð79Þ

(Note: To prove (79) in the case boundary parametrizations of arbitrary orientation,

we need the fact that the action of T̃S1 on F is B-adjoint to the action obtained
by reversing parametrization where B is the symmetric bilinear form involved
in reflexivity. But restricting to real forms of both group and representation,
this follows from the fact that the real form of the representation is orthogonal, see
[33, Chapters 10, 12, 13].)
Anyway, in view of (78), (79), it suffices to prove (77) for annuli and the standard

disk. The statement for the standard disk is tautological (on any Heisenberg

representation, the action of %A on the vacuum is the identity). For annuli, the
statement essentially amounts to saying that H0; F are the same representations ofgDiffDiff þðS1Þ: That follows from the fact that these representations have the same
invariants: central charge c ¼ 1 and rotation number 0 ([26,36]).
Thus, we have reduced the proof of Proposition 1 to the following statement. &

Lemma 3. The element xA
Q

L H0 constructed above is an element of H; and is

trace class.

We first prove that x0 is of trace class. To this end, we make a brief excursion to
the theory F: The state space of this theory is

K ¼ #̂ ðO1=2S1
þ"O1=2S1

�Þ; ð80Þ

where O1=2S1
þ is the closed subspace of O1=2S1 spanned by zndz1=2 for nX0; and

O1=2S1
� is its orthogonal complement. Let X be as above, and let

uXA ##
in

K� ## ##
out

K

be the vacuum vector where the tensor products are over inbound and outbound
boundary components of X ; as above. Assume, without loss of generality, that X
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only has outbound boundary components, so

uXA ##K :

In admissible basis notation ([26,33]), uX is of the form^
pi; ð81Þ

where pi ranges over boundary values of a basis of the space of 1/2-forms on X

which are zndz1=2 on one boundary component ci; nX0: However, if we choose a
number 0olo1 such that for each boundary component c of X ; an annulus

Aq; jjqjj ¼ l can be mapped conformally to X so that S1 maps to c by the

parametrization, and the other boundary component of Aq maps into the interior of

X ; then

pi ¼ ðzni dz1=2Þci
þ fi;

where jj fijjplniþ1=2: This implies that (81) is trace class, and hence so is x0:
We now need the following

Lemma 4. Let X be a genus 0 rigged surface with all boundary components c1;y; cn

oriented outbound. Let d1y; dnAZ;
P

di ¼ 0: Then there exists a holomorphic

function f : X-C� such that

degð f jciÞ ¼ di; ð82Þ

jj f ðzÞjj is constant on zAci: ð83Þ

Proof. Recall that there exists a harmonic function

hi : X-½0; 1�

where 0,1 are regular points,

ðhiÞ�1ð0Þ ¼ ci; ð84Þ

ðhiÞ�1ð1Þ ¼
a
jai

cj : ð85Þ

Such function is a solution to the Dirichlet problem (see [24, 8.7]).
Now if we denote by Hol; Harm the sheaves of holomorphic and real harmonic

functions, and by
%
R;

%
Z the constant sheaves, we have a short exact sequence

0-R-Hol-Harm-0 ð86Þ
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(The second map is f/f þ %f; the first map is l/il:) We have, in effect, a diagram

ð87Þ

The top right map is

f/expð f Þ;

the right column f is

f/lnð f Þ þ lnð %f Þ ¼ lnð f %f Þ ¼ 2 lnjj f jj: ð88Þ

Let Hol�X ¼ GX Hol�; HolX ¼ GX Hol; HarmX ¼ GX Harm: Then (87) gives a

diagram with exact rows

ð89Þ

Note in (89) that any function f such that

fð f ÞA/h1;y; hnS

has, by (88), constant modulus on each ci:
Now we shall study the map d for the standard annulus A1�e where 0oeo1:

Then

H1ðA1�e;RÞ ¼ R;

and it is easy to see that, with suitable normalization, dð f Þ has the same sign asI
S1

f ðzÞ
z

dz �
I
ð1�eÞS1

f ðzÞ
z

dz:

Consequently, returning back to X ; if di is the composition

HarmX !d H1ðX ;RÞ-H1ðX ; ciÞ;

then by (84) and (85),

signðdihiÞ
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is opposite to

signðdjhiÞ; jai:

This implies that

rankð/dh1;y; dhnSÞXn � 1;

and hence

/dh1;y; dhnS ¼ H1ðX ;RÞ:

Now choose l1;y; lnAR such that

l1dh1 þ?þ lndhn ð90Þ

is any element of H1ðX ;ZÞ: Then, by (89), (90) is in the image of b; say, equal to
bð f Þ: Then f is the desired function. &

We now return to the proof of Lemma 3. We first prove a weaker statement. Let
jjxkjj1 be the infimum of

P
jjgijj where xk ¼

P
gixk1#?#xkn:

Lemma 5. jjxkjj1 grows at most exponentially in jjkjj:

Proof. Use finitely many functions f1;y; fd of Lemma 4, d ¼ dimðLÞ; whose degrees
generate Ln

0: Then fiðx0Þ can be calculated by first calculating by the constant loop

(equal to the modulus), which acts trivially on each factor of x0; then by the map of
modulus 1 (which preserves norm), and then by a central term, which, by definition
of the cocycle, grows at most exponentially as specified. &

But now let Y be such that X is obtained from Y by gluing on a standard annulus
Aq to each boundary component. Then if yk are the analogues of xk with X replaced

by Y ; the action of these annuli on yk multiplies norm by pjjqjj
1
2
jjkjj2 (since the

k-graded summand of (65) has energy X
1
2
jjkjj2). Replacing x by y in Lemma 5 gives

the statement of Lemma 3. &

The reader may ask what is missing in the above discussion that would allow us to
define a full CFT associated with an even lattice L; instead of just a 1-CFT. The
answer is that we would need a discussion of the labels. The situation is actually
quite simple: The labels correspond to elements of L0=L where L0 is the dual lattice,
and the ‘‘Verlinde algebra’’ (cf. [45], also [36]) is just the group algebra C½L0=L�:
However, since the rest of this paper avoids labels, we do not want to introduce them
here, and will therefore discuss the CFT associated with a general lattice elsewhere.
On the other hand, there is one case which does not need labels, namely the case
of L even unimodular. We therefore state the following
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Proposition 6. If L is an even unimodular lattice, then the 1-CFT associated with L

constructed above in this section extends to a CFT with one-dimensional modular

functor, as defined in the previous section.

Proof. We shall make use of the fact that every rigged surface can be obtained from
a genus 0 rigged surface by gluing. We can use this to construct a canonical splitting

of the restriction of the central extension T̃@X to TX for rigged surfaces X of genus
40 by cutting X via non-separating curves into a surface of genus 0, and using the
fact that on boundary components with opposite orientation, the cocycle has
opposite signs.
There is, however, a subtle point. Suppose X has genus g40 and we cut X into a

genus 0 rigged surface X1 using a complete system of non-separating curves c1;y; cg:

Now take holomorphic functions f ; g : X-T ; which then give rise to functions

f1; g1 : X1-T and functions f̃1; g̃1 into LC on the universal cover of @X1; as above.
We have

cð f̃1; g̃1Þ ¼ 0

so we would like to say the same thing for their restrictions f̃; g̃ to the universal cover
of @X : It may indeed seem that the cocycle summands corresponding to the two
copies c1;y; cg; c01;y; c0g of the cutting curves of opposite orientations relative to X

will cancel. This is almost true, but not exactly. The problem is that the values of the

function f̃1 (resp. g̃1) on ci; c0i may differ by a constant. Keeping track of these

constants, we find that

cð f̃; g̃Þ ¼ exp
Xg

i¼1

1

2
ðDai

f̃
Dbi

g̃ � Dai

g̃ D
bi

f̃
Þ; ð91Þ

where a1; b1;y; ag; bg form a hyperbolic basis of H1ðX ; dX ;ZÞ and Da
? denotes the

degree of ? along a: (For example, ai may come from ci and bi from a dual cutting

system d1;y; dg:) Note that this implies cð f̃; g̃ÞAf1;�1g and does not depend on the
choice of lifts.
Therefore, we have found that while a splitting

TX-T̃@X ð92Þ

cannot be defined by the same formula as in the genus 0 case (which was f/f̃ Þ; (92)
can be defined by the corrected formula

f/ð f̃; cð f̃; f̃ ÞÞ; ð93Þ

where the second coordinate is in the center. One then sees from (91) that (93) is a

homomorphism of groups TX-T̃@X : Then (91) also shows that this is the correct
splitting needed for compatibility with gluing, which in addition does not depend on
the choice of cutting curves c1;y; cg:
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Thus, we may speak of the space HX ¼ HTX as above for every rigged surface X

without closed connected components. Indeed, using Proposition 1, we can construct
a non-zero trace class element

xAHX

for any such X :
What is then left is showing that (71) generalizes to surfaces with higher genus.

Let, to this end, Y be the closed surface obtained by gluing standard disks to
the boundary components of X : As before, we may form space (72) which is
isomorphic to

H1ðY ;HolT Þ; ð94Þ

where HolT is the sheaf of T-valued holomorphic functions on Y : There is a degree
map from (94) to L; and constants act by the character equal to degree, so it suffices
to consider the subgroup

H1
0 ðY ;HolT Þ ð95Þ

of (94) of elements of degree 0AL: Now (95) is the set of C-points of an abelian
variety E and the statement we must prove is that the space of sections of the line

bundle L on E corresponding to the C�-principal bundle

TX \T̃@X=
Yn

i¼1
TD

is one-dimensional.
But the line bundle L can be identified. Indeed, as above, by compatibility with

gluing, the line bundle remains canonically isomorphic when we cut along additional
curves, so we may cut Y along a complete system of non-separating curves c1;ycg

instead. Then we know an element of (95) can be represented by a system of constant

transition functions

constzi
: ci-T ; i ¼ 1;y; g: ð96Þ

Now zi and zi þ oij represent the same point in (95) where (o1j;y;ogj) is the period

of Y corresponding to degrees hj ¼ ð0;y; 0; h; 0;y; 0Þ; hAL; (h is the jth entry)

along c1;y; cg:

How do sections of L transform under this shift? It will be by multiplication by a

certain ljAC�: To find lj ; let Y1 be, again, the genus 0 rigged surface obtained by

cutting Y along c1;y; cg: We must consider a holomorphic function f : Y1-T of

degree hj along c1;y; cg: The number lj is the central term obtained by commuting

the constant zj past the function of degree hj! But it is well know that if z ¼ e2pit;
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tALC; the commutation number is

lj ¼ e2pi/t;hjS

(see e.g. [33, Proposition 4.7.1] for an equivalent statement). We have therefore
identified L as a theta-bundle on (95).
However, to identify the sections, we need to be a bit more explicit. To this end,

first consider the case L ¼ Z (this is not an even lattice, but this part of the discussion
is not affected). Then the Jacobian of Y can be identified with

JðY Þ ¼ Cg=ðZg"OZgÞ;

where O is a symmetric matrix (the period matrix) and we have that ImðOÞ is positive
definite. Then the space of sections of the theta-bundle on JðYÞ is one-dimensional
and generated by the theta-function

yðzÞ ¼
X
xAZg

epiðxTOxþ2zT xÞ: ð97Þ

However, (95) is isomorphic (as an abelian group) to JðYÞ#L: In this situation, the

space of sections of the theta-bundle L described above is jL0=Ljg-dimensional, and
generated freely by the theta-functions

yaðzÞ ¼
X

xAZg#Lþa

epiðxTOxþ2zT xÞ ð98Þ

for aAZg#ðL0=LÞ: (The exponents in (98) are calculated by contracting, for
z; xACg#L; by the matrix product in the Cg-coordinate, and the L-inner product in
the L-coordinate.) For more discussion of theta-functions, see Section 6 below.
For an even unimodular lattice L; we have L0 ¼ L; so the space of sections of L is

1-dimensional, thus proving

dimðHX Þp1

for genus g40; as desired. We have not explicitly discussed Y closed, but in that case
the Hilbert space is just C; so the discussion reduces to defining the modular functor
section HY : We see that the above discussion forces

HY ¼ GðLÞ

which is one-dimensional for L unimodular, as needed. Our proof of Proposition 6 is
complete. &

Comment. The CFTs associated with the even unimodular lattices Eð8Þ � Eð8Þ and
Eð16Þ of dimension 16 are used in the construction of the heterotic string theories;
thus, Proposition 6 contributes to mathematical foundations of those theories. It is
worth mentioning that implicit in string theory is a conjecture stating that these are
the only chiral CFTs with one-dimensional modular functor and central charge 16.
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4. An example of 1-CFT: the completed Moonshine module

We will now give an outline of how to extend the techniques of the previous
section to constructing a (reflection-positive) 1-CFT which is a Hilbert completion of
the Moonshine module. This is needed because we wish to discuss the Moonshine
module 1-CFT (and, in fact, make conjectures about it). On the other hand, for the
main definition of this paper, which will be presented in the next section, this
example is not necessary: it is merely important that some examples exist, which we
have already shown. Because of this, we will proceed in somewhat less detail than
above. We shall use some ideas implicit in [7]. First of all, we will restrict ourselves

to the 0-CFT structure on Hy: Second, we will only construct the Hilbert version of
the twisted module HT where H is the lattice 1-CFT associated with an even lattice
L—we are thinking of the Leech lattice, but that does not matter. The point is that, if

we think of the construction of Hy as a convergence question of vertex operators in

V y (as discussed at the end of Section 2), then these are the only convergence results

we need; the remaining 0-CFT operators of Hy arise by means of averaging with
respect to y0; composition and reversals of orientation of boundary components. For
a good discussion of this from the VOA point of view, see [21].

To describe HT ; one must discuss the twisted loop group T
1=2

S1 : This is the group

of (analytic) maps

f : ½0; 1�-T ¼ LC=L

such that f ð0Þ ¼ 1
f ð1Þ: Of course, we need a central extension of T

1=2

S1 : To this end, we

consider the group T
1=2

S1 of maps

f : ½0; 1�-LC; Df :¼ f ð0Þ þ f ð1ÞAL:

We have a short exact sequence

0-L-T
1=2

S1 -T
1=2

S1 -0:

(Note that unlike the untwisted case, where the kernel consisted of functions f with
Df ¼ 0; here we know only Df A2L when f is in the kernel.)

As before, on starts by defining a C�-values 2-cocycle on T
1=2

S1 ; which can, in fact,

be defined by using (with a changed meaning) formula (54). Similarly as before, the

cocycle is 0 when restricted to L; and if T̃
1=2

S1 is the corresponding C�-central

extension, we obtain a short exact sequence

0-L-T̃
1=2

S1 -T̃
1=2

S1 -0:

Now HT is the basic reflection-positive Hilbert representation of the twisted loop

group T̃
1=2

S1 : As before, care is needed to describe this accurately, but we note that
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T
1=2

S1 contains the subgroup

V 1=2 ¼ f f : ½0; 1�-LC j f ð0Þ ¼ �f ð1Þg: ð99Þ

In fact, we have a short exact sequence

0-L=2L-T
1=2

S1 -V1=2-0: ð100Þ

Now (99) is a vector space and the induced central extension is a Heisenberg group.
Since we also have a choice of isotropic space (at least up to a choice of Grres; see
[33, Chapter 7]), we therefore have a canonical associated Heisenberg representation
[33, 9.5], which we will denote byHT ;0:We letHT be the induced representation via

(100). Note that this is somewhat simpler than in the untwisted case, since the kernel
is finite.
Note at this point also that, similarly to the twisted case, there is an auto-

morphism

y1=2 : T
1=2

S1 -T
1=2

S1

given by y1=2ð f ÞðzÞ ¼ 1=f ðzÞ: This preserves the cocycle and kernel, and hence lifts to
an automorphism

*y1=2 : T̃
1=2

S1 -T̃
1=2

S1 :

Thus, we obtain an isomorphism of the HT with the representation obtained by

composition with *y1=2:

y1=20 : HT-HT : ð101Þ

If dimðLÞ ¼ 24; the usual normalization is

y1=20 ð1Þ ¼ �1 ð102Þ

whereby y1=20 becomes an involution. Reasons for this choice will become apparent

later.
Now consider a genus 0 connected rigged surface X whose boundary components

are decorated 0 or T ; where the number of components decorated T is even. Assume
( just for simplicity of notation) that all boundary components of X are oriented
outbound. Consider the covering space

X 1=2-X

corresponding to the map

r : p1X-Z=2
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where rðaÞ ¼ 1 (resp. 0) on elements a conjugate to the parametrizations of

boundary components decorated T (resp. 0). We denote by T
1=2
X the space of all

holomorphic functions f : X 1=2-T where

f ðiðxÞÞ ¼ 1

f ðxÞ;

i : X 1=2-X 1=2 being the non-trivial deck transformation. Analogously as above,
we can consider

f : T
1=2
X -

Y
0

TS1 �
Y

T

T
1=2

S1 ; ð103Þ

where on the right-hand side the products are over boundary components of X

decorated 0 resp. T :
Analogously as above, the pullback of the cocycle via f is 0, so we can consider

the T
1=2
X -fixed subspace

H
1=2
X ð104Þ

of the basic representation

##
0

H ## ##
T

HT ð105Þ

of the right-hand side of (103). We will restrict ourselves here to showing the
following

Proposition 7. If X is a genus 0 connected rigged surface with two boundary

components decorated T and the other boundary components decorated 0, then H
1=2
X is

1-dimensional, and its elements are trace class.

Remark. This amounts to saying that HT is a ‘‘reflexive version’’ of twisted module
over 0-CFTH: The reader can fill in the details of that definition. A ‘‘non-reflexive’’
version of module over a directed 0-CFT would be obtained if we require that all
boundary components of X be oriented inbound except one which is oriented
outbound and labelled T (of course, the obvious gluing properties are required in
both cases). The word ‘‘twisted’’ comes from the fact that we must choose sheets

of X 1=2 when considering the T̃
1=2

S1 -action on the copies of HT corresponding to the

T-labelled boundary components of X ; but loops in the moduli space of the surfaces

X may permute the sheets of X 1=2:
The Hilbert-completed Moonshine module is

Hy :¼ Hy0"Hy1=2
0 :
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The operators UX are obtained from averaging elements of H
1=2
X over the direct

product of Z=2’s generated by y0’s and y1=20 ’s over boundary components of X

decorated 0 and T ; respectively. If X has more than 2 boundary components
decorated T ; we use gluing. Obviously, a consistency discussion with respect to
gluing is needed, but this follows by noting that Proposition 7 is just a convergence
theorem for (twisted) vertex operators, where the discussion has been thorough in
the literature (see e.g. [13,21]).
Finally, note that this point of view elucidates choice (102) of the normalization of

y1=20 : when X is an annulus with one inbound and one outbound boundary

component decorated T ; then Proposition 7 gives, in particular, a representation of a

C�-central extension of Diff þðS1Þ: Such central extensions are characterized by
central charge and rotation number; the rotation number characterizes the pullback

of the central extension to the subgroup S1 of rigid rotations. This determines the
weight of the vacuum vector. The point is that in the case of the twisted moduleHT ;
that weight comes out to be

dimðLÞ=16;

which, in the case dimðLÞ ¼ 24 becomes 3/2. Hence, (102).

Proof of Proposition 7. With a slick moduli argument analogous to the untwisted
case not readily available, we use a more pedestrian argument for uniqueness: if X is
an annulus, the statement follows from the irreducibility of the representationHT of

T̃
1=2

S1 (for example, by turning X into a standard annulus with reparametrized

boundary components). In the general case, one shows that

closure
Y
0

TD�

 !-Y
0

TS1 �
Y

T

T
1=2

S1

,
closure

Y
T

T
1=2
X

 !

is equal to T
1=2

S1 (where, as usual, the products are over boundary components

decorated 0 and T as indicated, and D� is the outside of the unit circle in C,fNg).
This reduces the proof to the annulus case.

We shall now turn to the extension theorem, which is the more interesting part. As
in the previous section, the key is showing an analogous statement of the Proposition
with H replaced by H0 and HT replaced by HT ;0 (the parts of degree 0), i.e.

constructing an element

x0A
#Y
0

H0
## ##

T
HT ;0 ð106Þ

invariant under the vector subspace of holomorphic functions X 1=2-T intersected

with the corresponding Heisenberg groups. The desired element xAH
1=2
X can then be
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obtained again by summing the images of x0 under a suitable series of holomorphic
functions; same arguments as in the previous section can be used to establish
convergence (note the finiteness of the twisted part).
Thus, we shall focus on the right-hand side of (106), i.e. on the pair of

Hilbert spaces

H0; HT ;0: ð107Þ

The striking property of these spaces is that they are Heisenberg representations, and
hence, once again, are independent of the particular lattice L: Thus, for the purposes
of constructing x0; one may replace L by Z: In that case, it is provocative to ask
whether we may, again, use some type of boson-fermion correspondence which
would explain the (super)-CFT structure on (107).
Such boson-fermion correspondence does, indeed, exist. We begin by giving

a ‘‘fermionic’’ description of HT (for L ¼ Z). Consider the Hilbert space K

spanned by

/zndz1=2 j nA1
2
ZS: ð108Þ

Here the elements (108) shall form an orthonormal basis. We shall call the subspace
of K spanned by

/zndz1=2 j nAZS

Keven and the subspace spanned by

/zndz1=2 j nAZþ 1
2
S

Kodd: We then have a symmetric bilinear form B on K given by

BðZ; xÞ ¼

H
Zx if Z; xAKeven;

�
H
Zx if Z; xAKodd;

0 else:

8><>: ð109Þ

The purpose of this is to consider the subgroup

V
1=2
þ CV 1=2

consisting of loops of the form

1þ h1=2z
1=2 þ h1z

1 þ h3=2z
3=2 þ?; hnAC ð110Þ

where

ð1þ h1=2z
1=2 þ h1z

1 þ h3=2z
3=2 þ?Þð1� h1=2z

1=2 þ h1z
1 � h3=2z

3=2 þ?Þ ¼ 1:

ð111Þ
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(Note that condition (111) is the right condition to assure that (110) belongs to the

twisted loop group.) The group V 1=2 embeds to GLres (with the usual polarization)
by sending (110) to the matrix

? ? ? ? ? ? ?

? 1 h1=2 h1 h3=2 h2 ?

? 0 1 h1=2 h1 h3=2 ?

? 0 0 1 h1=2 h1 ?

? 0 0 0 1 h1=2 ?

? ? ? ? ? ? ?

0BBBBBBBB@

1CCCCCCCCA
(the rows corresponding to zndz1=2; nA1

2
Z in order), which, by (111), is inverse to

? ? ? ? ? ? ?

? 1 �h1=2 h1 �h3=2 h2 ?

? 0 1 �h1=2 h1 �h3=2 ?

? 0 0 1 �h1=2 h1 ?

? 0 0 0 1 �h1=2 ?

? ? ? ? ? ? ?

0BBBBBBBB@

1CCCCCCCCA
which, however, by (109) is B-adjoint. Thus, we obtain a map

V
1=2
þ -SOresK :

The cocycle splits on V
1=2
þ ; so the map lifts to SpinresK (see [33, Chapter 12]) so V

1=2
þ

acts naturally on the Spin-representation of SpinresK ; which is

#̂
zndz1=2 j no0; nA

1

2
Z

! "
: ð112Þ

Defining the group V1=2
� in the same way as V

1=2
þ with zn replaced by z�n; we

obtain an analogous action, with the appropriate commutation relation, so we
get a map

Ṽ1=2-SpinresK ;

and a representation of Ṽ1=2 on (112).

Now because the Heisenberg representation HT ;0 of Ṽ1=2 is irreducible, we obtain

an isometry i from HT ;0 to (112) which hence must be an iso, since both sides have

equal partition functionsY
nAN

ð1� qnþ1=2Þ�1 ¼
Y
nAN

ð1þ qn=2Þ:
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Thus, (112) is the desired fermionic description ofHT ;0: To construct the field theory
operator x0; recall from the previous section thatH0 can be described as the degree 0
part of the spinor of the space

HC ¼ HR#C ¼ H"H�: ð113Þ

where H is Hilbert completion of the space of antiperiodic analytic 1/2-forms on S1:

Then HDH� (using the symmetric bilinear form
H
Zx). Denote the right-hand side

of (113) as Heven"Hodd:
Thus, the field operator of the fermionic model of (107) (L ¼ Z) can be

characterized as the Pfaffian line of the maximal isotropic space

Heven
X "Hodd

X C
M
0

Heven"Hodd"
M
T

Keven"Kodd

where Heven
X is the closure of the subspace of all 1/2-forms on X antiperiodic

on all boundary components and Hodd
X is the closure of the subspace of all 1/2-forms

on X antiperiodic on all boundary components labelled 0 and periodic on all
boundary components labelled T : Note (cf. [26]) that to get isotropy, the formula for
B on H is

Bðx; ZÞ ¼
H
Zx if Z; xAHeven;

�
H
Zx if Z; xAHodd:

(

Remark. Actually, to have this theory behave exactly right, it appropriate to take
(112) for one half of the T-labelled boundary components and

#̂
zndz1=2 j np0; nA

1

2
Z

! "
for the other half. As remarked by Deligne (cf. [26]), the resulting structure is

not a CFT even on any C�-central extension of the stack of LCMCs Cspin; but

rather a still more complicated object, which we may call a ‘‘CFT twisted by the
super-Brauer group of C’’. However, this is not relevant here, since we are
considering only the degree 0 (Heisenberg) part of the theory, where the distinction is
not visible.

5. Stringy bundles

Comment. The referee pointed out that some material of this paper overlaps with
previous work of Brylinski, Segal and McLaughlin.
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Let H be a 1-CFT. Let V :¼ ðH� f0gÞ=C�: We call the 1-CFT H regular if H
satisfies (45) (so central charge is defined) and

UA : H#k-H;

for a connected genus 0 rigged surface A with k inbound and 1 outbound boundary
component induces a map

V�k-V:

This means that UAðx1#?#xkÞa0 if x1;y; xka0: Note that it follows from the
discussion in Sections 3 and 4 that the 1-CFTs associated with even lattices, as well
as the Hilbert-completed Moonshine module, are regular. In the rest of this paper,
we shall assume that H is a regular 1-CFT.
Let X be a closed complex curve (=conformal surface). A stringy bundle B on X

consists of the following data:

1. A (finite) discrete set S of points on X ; called punctures.
2. For every holomorphic embedding h : A-X where A is a genus 0 rigged surface

with k outbound and one inbound boundary component with hð@AÞ-S ¼ |;
a map

Uh : V�k-V

coming from a projective operator H#k-H: These maps are compatible under
gluing of A; and continuous with respect to the analytic topology on the space
of embeddings. In more detail, by compatibility under gluing we mean that

if h1;y; hk : A1;y;Ak-X ; hið@AiÞ-S ¼ |; are holomorphic embeddings
which glue with h to an embedding j : B-X (B is obtained by gluing
A1;y;Ak;A), then

Uj ¼ Uh3ðUh1 ;y;Uhk
Þ:

3. If hðAÞ-S ¼ |; then Uh ¼ UA; the vacuum operator coming from the conformal
field theory structure on H:

Clearly, it suffices to specify elements

UhAV

for holomorphic embeddings h : D-X where D is the unit disk and hðDÞ contains
exactly one puncture.
TwoH-stringy bundles on X are considered equal if they coincide upon enlarging

the finite set of punctures S: A topology on the space B̃XH of H-stringy bundles on
X is given as follows:

ARTICLE IN PRESS
P. Hu, I. Kriz / Advances in Mathematics 189 (2004) 325–412374



Let, for a conformal surface X (not necessarily compact), L0ðXÞ denote the space
of analytic Jordan curves in X (analytic injective maps S1-X ). On L0ðXÞ; we
consider the analytic topology.

Now choose a compact set KCL0ðXÞ and an open set UCV: Let IðK ;UÞ denote
the set of stringy bundles on X which can be written as ðS;Uh) for a finite set of
punctures S such that

KCL0ðX � SÞ and UhAU for hAK:

Then we let all the sets IðK ;UÞ form a subbasis of the space B̃XH:

Proposition 8. There is a canonical homotopy class of maps p1 : B̃XH-KðZ; 4Þ
(which we will call the first Pontrjagin class).

The idea is that B̃XH can be thought of as a space of particles decorated by
VCCPN; the particles collide according to the 1-CFT structure. To get the
Pontrjagin class, we look at the ‘‘relative’’ space of particles, suppressing particles

which are outside a fixed disk in X : This relative space is B2CPN: The details of this
proof will be given in the appendix.
Now a map of stringy bundles (or stringy homomorphism) ðS;UhÞ-ðS0;U 0

hÞ
consists of the following data:

1. A set of punctures T in X which contains both S and S0; and for each Jordan
curve c in X � T ; a projective map

fc : V-V

(i.e. such that fc is induced by a bounded linear map H-H); fc is required to
depend on c continuously.

2. If h : A-X is a holomorphic embedding of a genus 0 rigged surface A with
inbound boundary components c1;y; ck and outbound boundary component d;

hð@AÞ-T ¼ |; then

U 0
h3ðfc1

;y;fck
Þ ¼ fd3Uh;

where UA is the vacuum vector interpreted as a map H#k-H#c defined up to
scalar multiple.

Two maps of H-stringy bundles are considered the same if they coincide for some
choice of punctures T (possibly larger than the original choices). We have a topology
on the set of all maps of stringy bundles, which is similar to the topology on the set
of stringy bundles:
Let LðX Þ be the space of all analytic Jordan curves in X ; with analytic topology.

Choose a compact set QCLðXÞ and an open set WCMapðV;VÞ: Let JðQ;WÞ
consist of all maps of string bundles which can be written as (f;T), f :
ðS;BÞ-ðS0;B0Þ; T*S

‘
S0 such that KCLðX � TÞ and fcAW for cAQ:
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We let the sets JðQ;WÞ; along with the subbasis sets IðK ;UÞ for the spaces of
source and target stringy bundles, be the subbasis of topology on the space of all
maps of H-stringy bundles on X : Note that the maps, as well as their sources and
targets, are allowed to vary.
Let Et ¼ C=/1; tS be an elliptic curve. Then Et acts on itself holomorphically

by translation. An elliptic bundle on Et is a stringy bundle B on Et together
with maps

fe : e�B-B; eAEt: ð114Þ

Here e� denotes the stringy bundle induced by composition with the given
holomorphic self-map of Et in the obvious sense. We require that (114) be a
continuous map from Et to the space of maps of stringy bundles, and that

fe2
e�2ðfe1

Þ ¼ fe2e1
ð115Þ

(compatibility under composition). Furthermore, we shall require a ‘positive energy
condition’ on an elliptic bundle (S;B) on Et: To formulate this condition, consider a

compact 1-parametric subgroup S1DTCEt: This 1-parametric subgroup can also be
considered as a Jordan curve, which we will denote by c: Then

ðfeÞc3Ue : V-V; eAT ð116Þ

specifies a projective action of S1 on H: Here Ue is the limit of UA as A tends to an
infinitesimally thin annulus with one inbound and one outbound boundary
component, where the boundary parametrizations are linear and differ by a rigid

rotation by e (using the identification isomorphism S1DT). Recall (Remark 2 of
Section 2) that we assume as a part of the definition of 1-CFT that such operators
exist and are bounded. To see that (116) indeed specifies a projective action, let
e; fAT : Then the fact that fe is a stringy isomorphism gives

ðfeÞcUf ¼ Uf ðfeÞc�f :

(By c � f we mean the Jordan curve c shifted by �f :) Now compute

ðfeÞcUeðff ÞcUf ¼ ðfeÞcðff ÞcþeUeUf ¼ ðfeþf ÞcUeþf :

The last equality follows from (115).
Now the positive energy condition states that this action is induced by a genuine

action of T on H; whose weight spaces are finite-dimensional, and the weights are
non-negative, with bottom weight space one-dimensional.
A morphism of H-elliptic bundles on Et is a map of stringy bundles compatible

with the translation maps. Also, note that by methods analogous with above we get a
canonical topology on the space of all H-elliptic bundles on Et: This space will be
denoted by

BEtH:
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In a variant, we can also take a union of those spaces over tAH ¼ fzAC j Im ðzÞ40g
with the obvious topology. We shall call the resulting space

BellH:

Then Proposition 8 gives a canonical map

p1 : BellH-KðZ; 4Þ

(the first Pontrjagin class).
Now let F be a set of representatives of elements of a set of isomorphism classes of

1-CFTs. We assume that # is defined and is strictly associative on F: This is not a
big assumption, as in all the examples considered in this paper in Sections 6 and 7
below (see in particular the Remark at the end of Section 6), F is just a set of the
form

fH ##n1
1

##? ##H
##nk

k j n1;y; nkANg ð117Þ

for some fixed 1-CFTs H1;y;Hk; we can just use given representatives of elements

(117), and redefine tensor products of elements of (117) using the coherences of ## to
achieve strict associativity. Then we have canonical maps

# : BellH1 � BellH2-BellH1
##H2:

Thus, if we put

BellF ¼
a
HAF

BellH;

then BellF is a strictly associative unital H-space with respect to #: We let

*E ¼ OBðBellFÞ:

There will be two distinguished cohomology classes on *E: First, each H comes with
a central charge cHAQ: Letting ACQ be the additive subgroup generated by all cH
with HAF; we get a map of (1-fold) loop spaces

c : *E-KðA; 0Þ ¼ A: ð118Þ

We denote by

%E

the homotopy fiber of (118). Next, the Pontrjagin class is additive with respect to#;
and hence we get a map

p1 : %E-KðZ; 4Þ: ð119Þ
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Let

E

be the fiber of (119). We shall pick certain classes

oAp2kSNEþ ð120Þ

(for some k) and define

E ¼ o�1SNEþ: ð121Þ

To explain this notation, note that SNEþ is an AN ring spectrum. Thus,
multiplication by (120) defines a self-map

S2kSNEþ-SNEþ: ð122Þ

Then (121) is defined as the telescope of the map (122).
(A reader in need of a quick introduction to homotopy theory is referred to [28].)
For motivation, we look at the following classical example. Consider the inclusion

h : S2 ¼ CP1CCPN:

Then h specifies a homotopy class

bAp2SNCPN

þ :

Since SNCPN

þ is an EN ring spectrum, b�1SNCPN

þ is well defined. Furthermore,

however, if we take the map

CPN-K ð123Þ

given by the identical representation of S1; then (123) maps b to the Bott class, and
hence induces a map

f : b�1SNCPN

þ -K : ð124Þ

Then we have the following well known result [39,40].

Proposition 9. The map f of (124) is an equivalence.

We proceed to define a map

*E-K ½½q�� ð125Þ
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which induces a map

g : E-K ½½q��½q�1�;

as desired.
Let (S;B) be an elliptic bundle on Et: Let, for lA½0; 1�; cl be a Jordan curve in Et

of the form

e2pit/ltþ t:

Now the action of S1DT ¼ ½0; 1�CEt by ðfeÞcl
3Ue; eAT ; specifies an S1-action on

H: (Recall (114) for the definition of fe:) Moreover, if

0ol0o?olno1; ð126Þ

we have, by (115)

ðfl1�l0Þcl0
yðfln�ln�1Þcln�1

ðfl0�ln
Þcln

¼ Id:

Thus, choosing (126), B specifies an element

ððfl1�l0Þcl0
jyjðfln�ln�1Þcln�1

ÞABn

Y
mX0

fGLGLðdimðHðmÞÞÞ

where HðnÞ is the weight decomposition of H with respect to the T-action (in

particular, we have assumed dimðHðnÞÞoN), and fGLGLðkÞ is the category of C-vector
spaces of dimension k and their isomorphisms.
Now the choice of (126) is arbitrary (including the number n), subject to the

condition that no puncture lie on any litþ ½0; 1�: Thus, we see that the set of possible
choices of (126) is directed under the ordering by inclusion, and hence its simplicial
realization is contractible. Roughly speaking, this gives a map

BB
ellH-B

Y
nX0

fGLGLðdimðHðnÞÞÞ
 ! ,

C�

!
ð127Þ

where BB
ellHCBellH is the connected component containing the stringy bundle B:

Taking the quotient by C� comes from the fact that the maps fe are only determined
up to scalar multiple in our setup.
More precisely, to construct map (127), we must consider an intermediate object

which contains information on both punctures and the points (126) as parts of
its data. The correct object is a simplicial space whose nth stage consists of an
(n þ 1)-tuple (126) along with an elliptic bundle on Et which has a representative

with no punctures on the curves cl0 ;y; cln
: Let %BB

ellðHÞ be the simplicial realization

of this simplicial space. Then our construction gives a variant of the map (127) with
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source %BB
ellðHÞ: Along with this, we obtain a projection

%BB
ellðHÞ-BellðHÞ: ð128Þ

We need to show that (128) is an equivalence. Clearly the fibers of (128) are
contractible. In addition to this, one shows that (128) is a quasifibration. This can be

done using the Dold–Thom criterion; the kth stratum is the closed subset of %BellðHÞ
consisting of bundles which can be written as (S;B) with jSjpk:
Now put

fGLGLðNÞ ¼ lim
-
fGLGLðkÞ:

Then stabilizing, we clearly get a multiplicative map

BellF-B
Y
nX0

fGLGLðNÞ
 !

=C�

 !
CBðU ½½q��=S1Þ: ð129Þ

Here U ½½q�� ¼
Q

N

n¼0 U where the tuples ðu0; u1;yÞA
Q

N

n¼0 U are written as u0 þ
u1q þ u2q

2 þ? Since we assumed dim Hð0Þ ¼ 1 for HAF; p0BellF is #-invertible
in the target of (129), and thus we get a map

*E-BðU ½½q��=S1Þ:

When inverting the Bott class, the projective factor disappears, and we get the
map (125).
In more detail, the Bott element

bAp2BðU ½½q��=S1Þ

(induced from the usual element of p2BU ½½q�� which is a product of the classical Bott
elements of p2BU) gives a map

BðU ½½q��=S1Þ-O2BðU ½½q��=S1Þ: ð130Þ

This gives rise to a generalized cohomology theory, but note that this theory is just
K ½½q��; since

O4BðU ½½q��Þ-O4BðU ½½q��=S1Þ

is an equivalence.

Comment. This construction of map (125) was at the root of the motivation of our
definition of BellðHÞ: Consider the group G of invertible maps H-H: Then G is

S1-equivariant (by conjugation), and to get
Q

AutðHðnÞÞ from G; we apply S1-fixed
points. Then we take the bar construction on the resulting group to get, roughly, a
model of (a part of) K-theory. One can attempt to model this construction by first

ARTICLE IN PRESS
P. Hu, I. Kriz / Advances in Mathematics 189 (2004) 325–412380



forming the cyclic bar construction (Hochschild homology) of G; and then applying

S1 � S1- (or E-) fixed points (recall that the cyclic bar construction is a model of
LBG). The definition of BellðHÞ came from searching for a modular-invariant
construction which would map into LBG: Note, however, that the LBG approach
can be taken only metaphorically, and not literally, since Hochschild homology does

not provide a correct model for the S1-fixed points of LBG:
Note also that the construction BellH makes sense for a 0-CFT H; in fact even

for a directed 0-CFT. However, for a 1-CFT with modular group GCPSL2Z; the
entire structure of H is invariant under the action of G; which is what we mean
by saying that the construction of BellH is manifestly modular. We could ask if
this automatically implies that the image of the map g constructed above is contained
in the ring of G-modular forms. This, however, is not so simple. The difficulty is
that the target of the map g is itself not G-invariant, so we cannot use a simple
transport of structure argument. We do not, in fact, have a theorem of this nature
in general, although in the examples we shall compute in the subsequent sections,
the conclusion holds (see also the Comment under the Conjecture in the next
section).
The attentive reader has noticed that in order to give a concrete example of our

elliptic cohomology theory E; we must make a choice of F; and of the element o:
Such choice depends on calculations, which are the content of the remainder of this
paper (excluding the appendix).

6. Theta elements

In this section, we shall construct first examples of elements of p�BellH; giving rise
to first examples of E: LetH be a 1-CFT constructed from an even lattice L: Assume
there is an element aAL be such that /a; aS ¼ 2: Then we have a map

ca : H1-H;

whereH1 is the 1-CFT which is the basic representation of gLSUð2ÞLSUð2Þ: (In the language
of Section 3, we can consider H1 as the 1-CFT associated with the root lattice of
SU(2). While not using the language of CFT, a considerable amount of information
about H1 can be found in [33].) The main point is that the loop group LSU(2) acts
projectively onH1 and the action extends, in fact, to an action onH (see Chapter 13
of [33]). We shall now construct a map

X : CPN-BellH: ð131Þ

Identify CPN with the space C of principal divisors on Et: (This is a standard fact,
which follows for example from the fact that the space of all divisors is the free
abelian group on Et—see the appendix for more on this.) Then for a divisor DAC;

we obtain a stringy bundle BD by choosing a function f with divisor D; letting the set
of punctures be jDj; and letting for a Jordan curve c in Et � jDj bounding a rigged
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disk in Et; BD
c be the image of the vacuum under f jcALS1; which is embedded in

LSU(2) by a fixed embedding of a maximal torus

S1CSUð2Þ: ð132Þ

Note that the function f is only determined up to scalar multiple, but the choice does
not matter, since multiplication by a constant loop preserves the vacuum.

Note, further, that the restriction of X to CP2 canonically factors through S4:

ð133Þ

Here the map CP2-S4 is of degree 1, i.e. collapse to the top cell. To see this,

consider S2CCPN represented by

½0� � ½l� � ½mt� þ ½lþ mt�; l; mA½0; 1�:

Then the restriction of X to S2; by varying the maximal torus (132), extends to a map

L : S4-BellH

which is easily seen to satisfy (133) (by considering the space of SU(2)-bundles
on Et).
It is natural to conjecture that X factors through a map BSUð2Þ-BellH: This is

indeed true, as we shall prove in the next section. In fact, more generally, we have

Conjecture 1. For every regular 1-CFT H; there is a canonical map

a : B AutðHÞ-BellH

such that the diagram

commutes, where t is the character map (note that an automorphism of H preserves

grading).

In Section 7, we prove this conjecture in the case when H ¼ HG is the
1-conformal field theory associated with the root lattice of a simply connected simply
laced compact Lie group G:
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One can go somewhat further with this conjecture. Denote by Str(1) the space of
stringy isomorphisms 1-Z (for some Z). Clearly, any such stringy iso gives rise to an
elliptic bundle, an automorphisms of H give rise to stringy isos 1-1; and trivial
elliptic bundles. We have, therefore, a map

a0 : Strð1Þ=AutðHÞ-BellH;

and one could ask if Strð1Þ is always contractible. That seems to be a difficult
question in general, but the results of next section will be obtained by finding suitable
contractible subspaces of Strð1Þ:

Comment. The above discussion points out the need for a method of constructing
stringy isos 1-Z; i.e. elements of Strð1Þ: We point out that there exists a general
approach to obtaining maps which have the properties of stringy isos at least locally
(although we merely outline the construction and shall not discuss convergence).
To this end, we need to recall the language of vertex operator algebras. Let

V ¼
M
nAN

HðnÞ;

where HðnÞ is the summand of H of vectors of energy n (i.e. on which rigid
rotations act by q/qn). We then assume that the 0-CFT structure on H is, indeed
obtained from a vertex operator algebra structure on V (see comments at the
conclusion of Section 2). This means that for vAV ; there is assigned a vertex
operator

Y ðv; zÞ ¼
X
nAZ

vnz�n�1AHomðV ;VÞ½½z; z�1��

with certain properties (see [13]). Set

Yþðv; zÞ ¼
Xv

nAN

z�n�1; Y�ðv; zÞ ¼ Y ðv; zÞ � Yþðv; zÞ:

Recall our setup from Section 2: 0ojjzjjo1; and 0ojjljj; jjmjjo1 such that

Blð0Þ-BmðzÞ ¼ |; Blð0Þ,BmðzÞCinteriorðDÞ (we set BeðpÞ ¼ fxAC j jjx � pjjoeg).
Recall that A ¼ Al;m;z is the closure of D � ðBlð0Þ,BmðzÞÞ with boundary

components parametrized by 1 : S1-S1; l � 1; m � 1: Let also l� : V-V be defined

as ln on HðnÞ: We denote by ð?Þl conjugation by l� : f
l ¼ l�1� fl�: Then we have

the formula

UAðð1þ Yþðv; zÞl
�1

dtÞu; 1þ m�v dtÞ ¼ ð1þ Y�ðv; zÞ dtÞðl�1� uÞ: ð134Þ

This means that we expand both sides of (134) in dt; and both sides of (134) are
required to agree up to linear terms in dt: Formula (134) can be interpreted as saying
that vertex operators incorporate renormalization of CFT structure.
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Anyway, (134) has a generalization: we have

UAðð1þ Yþðv; rÞl
�1

dtÞu; ð1þ Y�ðv; r � zÞm dtÞwÞ ¼ ð1þ Y�ðv; zÞ dtÞUAðu;wÞ ð135Þ

(in (134), w ¼ 1). Analogously, if jjzjj41;

UAðð1þ Yþðv; rÞl
�1

dtÞu; ð1þ Yþðv; r � zÞm dtÞwÞ ¼ ð1þ Yþðv; zÞ dtÞUAðu;wÞ; ð136Þ

and (135), (136) can be readily generalized, at least up to scalar multiple, to any pair
of pants A with general boundary parametrizations, by conjugating by elements of

Diff þS1:
We see from (136) that if jjzjj41; then granted appropriate convergence, a

stringy iso 1-Z on D (without puncture) can be defined on a Jordan curve c in
interiorðDÞ as

eYþðv;zÞAc

; ð137Þ

where Ac is the rigged annulus with boundary S1; c: (We set, as usual, e f ¼P
nANð1=n!Þf n; where the exponent denotes composition.) Similarly, for jjzjjo1;

we can define (granted convergence) a stringy iso 1-Z with puncture at z by (137)
when indzðcÞ ¼ 0 and

eY�ðv;zÞAc ð138Þ

when indzðcÞ ¼ 1:
It is notable that the actions of simply laced groups on the VOAs associated with

their lattices, as well as the action the Monster on the Moonshine module, are
constructed (essentially) by this method.
We would need to control convergence of formulas (137) and (138), and find a

sufficiently large contractible space of compositions of operators (137), (138) which
are meromorphic on Et in order to use this to develop an approach to Conjecture 1.

Remark. The previous comment points us in yet a new direction: It suggests the
possibility of a completely internal (i.e. quantized) version of the concept of Bell:
From that point of view, in our present setting, the base of a stringy bundle is not
quantized, while the fiber is: one could try to quantize both. At the present time, we
can formulate these ideas only vaguely, and in the language of physics. We drop,
therefore, at least for the purpose of this Remark, the rigorous standards applied
elsewhere in this paper, and use the language of physics with liberty. Recall
(cf. Zoumolodchikov–Fateev [46]) that there is, at least in physics, a notion of
moduli space of CFTs; one can start trying to understand such moduli spaces by
means of local deformation of conformal field theories, using truly marginal
operators, or (1;1)-fields [16]. Note that the type of conformal field theoriesH we are
considering is chiral (holomorphic), and hence their moduli space would be discrete.
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However, this is not the kind of moduli space we see. Instead, the fully quantized
version of BellH should be a moduli space of bundles of CFTs with fiber isomorphic
to H over s-models of elliptic curves. Recall that the moduli space of s-models of
elliptic curves fully reflects the geometry of the moduli space of elliptic curves, (it has
the same tangent space), and in fact gives its compactification.
What is, however, a bundle of CFTs over another CFT? Roughly speaking, a

bundle of CFTs over a base CFT V should be given by a Hilbert basis ei; iAI ; of V ;
and Hilbert spaces Hi; iAI : For a rigged surface X with k inbound and c outbound
boundary components, we would be given a matrix

ðui1;y;ik ; j1;y; jcÞi1;y;ik ; j1;y; jcAI

where

ui1;?;ik ; j1;y; jcAHi1#?#Hik#Hj1#?#Hjc :

Of course, suitable axioms are needed.
But one can see how, in this (at present unrigorous) language, a tensor product

of CFTs is a special case of bundle of CFTs, and, moreover, one can see that an
H-stringy isomorphism meromorphic on an elliptic curve E should give a bundle of

CFTs over the s-model V of E which is a deformation of V ##H:
Knowing at least what the trivial bundle is, we could try a ‘‘perturbative

approach’’, i.e. look for local data which would allow an infinitesimal deformation

of the trivial CFT bundle V ##H (we mean, again, a deformation in the direction of
the bundle structure, not a deformation of the base). In the case of the s-model V of
E; the above comments suggest that before quantizing E; the data we need is
essentially a map

LE-H ð139Þ

which would be equivariant under the semigroup E of holomorphic embeddings
f : D-D; f ð0Þ ¼ 0 (D is the unit disk). Thus, the quantized version of (139), and
therefore an infinitesimal deformation of the trivial quantized stringy bundle, should
be a map of E-representations

V-H:

Note that this is potentially a much more far reaching approach, since instead
of s-models of elliptic curves, we could consider moduli spaces of s-models of
Calabi–Yau varieties [16], and hence we can speak of

Bk�CYH;

which is the (coarse) moduli space of 2-CFTs with fiber H over s-models of
k-dimensional Calabi–Yau varieties.
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However, let us return to the theta elements, and to the rigorous discussion prior
to the Remark and the Comment. Let Xa ¼ CaX; La ¼ CaL (recall (131)). Now
recall the theta series

yLðt; uÞ ¼
X
xAL

q
1
2
jjxjj2e2pi/u;xS

for uALC: As usual, q ¼ e2pit; and for future reference also z ¼ e2piu: Then the
partition function of H satisfies

ZHðtÞ ¼ trUHðAtÞ ¼ qc=24ZðtÞ�cyðt; 0Þ;

where c ¼ rankðLÞ (cf. [2,13]).
Now consider the map we constructed

G : BellH-K ½½q��:

Recall that

K�CPN ¼ k�½½z � 1��; ð140Þ

where z stands for the identical representation of S1:

Proposition 10. Under correspondence (140), the element

GXaA K ½½q���CPN

corresponds to

qc=24ZðtÞ�cyLðt; uaÞ: ð141Þ

Proof. For this purpose, we start with a slightly different model of trivial bundles x
on Et: Consider a sequence (126). For l1ol2; 0ol2 � l1o1; consider the annulus

Al1;l2 ¼ fltþ ½0; 1� j l1plpl2gCEt:

We will assume that the bundle is trivial on each Ali�1;li
ði ¼ 0;y; n; l�1 ¼ lnÞ; and

that constant transition functions zi are given from sections on Ali�1;li
to Ali ;liþ1 : This

means that for an analytic function on x given by a function on Ali�1;li
; to be

analytically continued to Ali ;liþ1 ; it must be multiplied by zi on Ali ;liþ1 : The triviality

of x requires that Yn

i¼0
zi ¼ 1:

Then the space of all possible choices of the zi’s for all possible sequences (126) is the
bar construction

BC�CCPN:
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Further, for these bundles, we get canonical identification of (H; with canonical
rotation action) with (H; with action induced by the equivariance of x): the identity.
Now the function ðfli�1;li

Þcli
in this setting is simply multiplication by constant

loops, the character of which are well known to be the theta functions (see [33]).
Now to link the space B of trivial bundles on Et in this sense with the space Z0½Et�

of principal divisors, introduce a space *Z0½Et� which maps into both. The space

*Z0½Et�

consists of choices (126), and (finite) degree 0 divisors Di on IntðAli�1;li
Þ for each

i ¼ 0;y; n such that X
eðDiÞ ¼ 0;

where e is augmentation to the covering group of Et corresponding to p1ðTÞ where T

is the image of [0, 1] in Et: Then we have an obvious forgetful map

*Z0½Et�-Z0½Et�;

which is an equivalence (by comparison of homotopy types). On the other hand,
there is a map

*Z0½Et�-B

by making the transition function at litþ ½0; 1�eðDiÞ: Now we see that on *Z0½Et�; the
map to Bðð

Q fGLGLðdimðHðnÞÞÞÞ=C�Þ; defined via projections to Z0½Et�; B coincide.

In more detail, to identify the S1-equivariant Hilbert spaces involved in the
two bar constructions, normalize the elliptic function f with divisor

P
Di so that

it is 1 at the point lnt: At litþ ½0; 1�; multiply this by the actions of the constant
loop z0 �y � zi: To see that the constant loop actions correspond to the actions
given by the elliptic function f ; note that there is a holomorphic function h on Ali�1;li

such that

f ðu þ li � li�1Þhðu þ li � li�1Þ
f ðuÞhðuÞ ¼ zi

for uAli�1tþ ½0; 1�: &

Rationalizing, we get

CPN

Q ¼
_
nX0

S2n
Q :

The images of the cells can be detected by taking the Chern character. This
corresponds to taking the logarithm of z in (141) (i.e. considering (141) as a function
of u). Thus, we have proven
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Proposition 11. The image of S2n
Q in K2n½½q�� under ðGYaÞQ is the coefficient of (141)

at un: &

Now suppose we have lattices L1;y;Lk;M1;y;Mk where

Xk

i¼1
rankðLiÞ ¼

Xk

i¼1
rankðMiÞ; ð142Þ

and suppose aiALi; biAMi satisfy

jjaijj2 ¼ jjbijj2 ¼ 2:

We want to consider the element

La1;y;ak

b1;y;bk
¼ La1 �y � Lak

Lb1 �y � Lbk

Ap4ðEÞ: ð143Þ

Note that by (142), element (143) has central charge 0. Note also that the ai’s and bi’s
obviously all have the same Pontrjagin class, and hence element (143) has Pontrjagin

class 0. The product in (143) is the loop product in *E:

Now by Proposition 11, the image of (143) in K4½½q�� is the coefficient at u2 in

fa1;y;ak

b1;y;bk
¼
Qk

i¼1 yLi
ðt; uaiÞQk

i¼1 yMi
ðt; ubiÞ

: ð144Þ

Now let GmCPSL2Z be the subgroup generated by the matrix

1 1

0 1

	 

and the subgroup GðmÞSL2Z of matrices congruent to Id mod m; for mAN:
To recall the modularity properties of function (144) we review some basic facts

about y-functions of lattices [30,31,38]. This is a very special case of the theory of
Siegel modular forms [30], in fact, in some sense, the ‘‘trivial’’ case, i.e. one which
reduces to the classical context. By a theta series associated with L we mean a
holomorphic function f : H � LC-C ðH ¼ fzAC j ImðzÞ40gÞ such that

f ðt; z þ aÞ ¼ f ðt; zÞ aAL;

f ðt; z þ taÞ ¼ f ðt; zÞexp � 1
2
/a; aSt�/z; aS

& '
: ð145Þ

Then f determines a section of a certain holomorphic line bundle L ¼ Lt on the
abelian variety

LC=L"tL; ð146Þ
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which is thereby defined. Note that while, of course, (146) is isomorphic to a product
of copies of the elliptic curve Et; the line bundle L does depend on L: Let L0 be the
dual lattice of L: The space of sections V ¼ GðLÞ; which is the C-vector space of
functions (145), has dimension jL0=Lj (j?j denotes cardinality), and basis

yaðt; zÞ ¼
X

xALþa

exp 1
2
jjxjj2tþ/z; xS

( )
; aAL0=L: ð147Þ

The basic point when investigating the modularity of these theta series is that when
we substitute t by

t0 ¼ atþ b

ctþ d
; ad � bc ¼ 1;

then we obtain an isomorphic abelian variety

LC=L"t0L:

The isomorphism f: zALC=L"tL/z0ALC=L"t0L is given by

z0 ¼ z

ctþ d
: ð148Þ

The key point is that the iso f of abelian varieties is also covered by an iso of
line bundles

Lt-Lt0 :

To see this, one applies the ‘‘t-scaled Fourier transformation’’

f ðt; zÞ/f ð�1=t; z0Þ ð149Þ

(see [38]). Let d be the discriminant of L; n ¼ rankðLÞ: Then, for example,

yðt; zÞ ¼ in=2ffiffiffi
d

p
tn=2

X
aAL0=L

yað�1=t; z0Þexpð�/z; zS=2tÞ: ð150Þ

This shows that the function

expð�/z; zS=2tÞ ð151Þ

defines an iso i :Lt-f�Lt0 (covering the identity). Note that the desired iso is

furthermore unique up to C�-multiplication; and can be normalized, say, by saying
that it be 1 at z ¼ 0 (which (149) satisfies). Further, note that Lt is clearly identified
with Ltþ1 (note that L is even), so we have, indeed, specified an action of the
modular group SL2Z on V ; considered as a bundle over H (covering the standard
action of SL2Z on H).
There is another point of view which is also beneficial. The space V can be viewed

as the Heisenberg representation of a finite Heisenberg group. Let A; %A be two copies
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of L0=L: We let A act on V by

að f Þðt; zÞ ¼ f ðt; z � aÞ; aAA; ð152Þ

and %A by

iaði�1f Þ: ð153Þ

Then the actions of A and %A do not commute, but rather generate a central extension

of A" %A by a finite cyclic group. Extending the kernel to C�; we obtain a Heisenberg
group G:

1-C�-G-A" %A-1; ð154Þ

where the kernel acts on V by multiplication. The subgroup A is maximal isotropic,
and V is the Heisenberg representation. In fact, one may replace A by LC and define
a Heisenberg group

1-C�-G-LC" %LC-1;

where the Heisenberg representation is the Hilbert space of rapidly decreasing
holomorphic functions on LC (see [31, Chapter 1]). Then LCLC is an isotropic

subgroup and L> ¼ L0; then V is the space of functions invariant under L and %L;
which, by Mumford [31, Proposition 1.4], is the Heisenberg representation of G:

However, being invariant under L; %L turns out to be equivalent to conditions (145),
thus proving V ¼ GðLtÞ:
Returning to the question of modularity, now note that we have a canonical action

of SL2Z on A" %ADðZ"ZÞ#ZA by acting on the first factor. We need to
understand what kind of action this induces on G: In fact, we shall specify an aAA;
and look at Z=mD/aSCA; we may study the pullback of (154) to

1-C�-M-Z=m"Z=m-1: ð155Þ

Note that the group of automorphisms of M over Id
z=m"z=m

is

H :¼ HomðZ=m"Z=m;C�Þ: ð156Þ

Consequently, we have an extension

1-H- gSL2ZSL2Z-SL2Z-1; ð157Þ

determined by the map SL2ðZÞ-AutðZ=m"Z=mÞ: This extension is not central.
Rather, SL2Z acts on H in the standard way (by substitution). We may ask if

extension (143) is the trivial element of H2ðSL2Z;H) (i.e., a semidirect product). In
our case, this is true: recall that formula (148) gives a lift of the action of SL2Z to an
action on M:
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On the other hand, note that in that case, the set of all lifts to an action of SL2Z

on M forms a torsor T over

H1ðSL2Z;HÞ;

i.e. the set of crossed homomorphisms SL2Z-H:
Which particular element of T we have is important to us. We can, for example,

ask if GðmÞCSL2Z acts trivially on M (we have a well-defined homomorphism
GðmÞ-H which we would like to be 0).
To this end, note that we have not yet specified a cocycle of the Heisenberg group

G; if a is the generator of A; then a choice of cocycle is specified by a choice of lift of

aþ %a ð158Þ

to G: Note that a convenient choice of (158) in G would be

1 1

0 1

	 

a ð159Þ

(the action of SL2Z coming from the projective action on V determining the
moduarity of y-series; note that we have

1 1

0 1

	 

yaðt; zÞ ¼ exp 1

2/a; aS
& '

yaðt; zÞÞ:

With choice (159) as representative for (158), it is easy to see that the cocycle is the

antisymmetric C�-valued bilinear form

1
2

S ð160Þ

where S is the commutator. At the same time, we also see that such choice is only
possible if m is odd. If m is even, we can choose cocycle (160) only when we pull back

the central extension (155) to Z=2m"Z=2m: (Note that the pullback of G is not
a Heisenberg group.) Nevertheless, the action of SL2Z ¼ Sp1Z preserves the
antisymmetric cocycle, so we proved

Lemma 12. GðmÞ acts trivially on G when m is odd and Gð2mÞ acts trivially on G when

m is even. &

Now let mL be the maximum possible order of an element of L0=L: Let, in (144),
m be the least common multiple of mLi

; mMi
: We have

Proposition 13. The function (144) is even in u. The coefficient at u2n is Gm-

automorphic of weight 2n if m is odd, and G2m-automorphic of weight 2n if m is even.
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Proof. When passing to f ¼ fa1;y;ak

b1;y;bk
; the factors (151) cancel out, and so do weight

factors, so

fðt0; z0Þ ¼ uðgÞfðt; zÞ;

where

z0 ¼ z

ctþ d
; t0 ¼ atþ b

ctþ d
;

ad � bc ¼ 1 for some character u : gSL2ZSL2Z-C�: Consequently, a coefficient at z2m is
automorphic of weight 2m: The modular group contains GðmÞ if m is odd and Gð2mÞ

if m is even by Lemma 12, and also obviously
1 1
0 1

	 

: &

Example. If Ln is the root lattice of SUðnÞ; then Ln is generated by roots e1;y; en�1
which, together with 0, form vertices of a regular simplex (these are not simple
roots). Then the dual lattice L0

n is generated by

e1;y; en�1;
1

n
ðe1 þ?þ en�1Þ;

so L0
n=LnDZ=n:We see that m ¼ n; so the modular group is Gn if n is odd, and G2n if

n is even.

Example. We shall calculate explicitly the image

oAK4½½q��

of

La1a3
a2
2

;

where anALnþ1 is a root of SUðn þ 1Þ; and Lnþ1 is as above. Then

L2 ¼ Z �
ffiffiffi
2

p
;

so its theta function is

y1 ¼ yL2
ðt; ua1Þ ¼

X
nAZ

qn2z�2n

ðz ¼ expðuÞÞ: We shall also consider the other basis element

y2 ¼ yL1;
ffiffi
2

p
=2ðt; ua1Þ ¼

X
nAZ

q nþ1
2

& '2
z�2nþ1

:

Note that

y1ju¼0 ¼ 1; y2ju¼0 ¼ 0 ð161Þ
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(because of sign cancellations). Now L3 is the honeycomb lattice which can be
written as

L3 ¼ Z �
ffiffiffi
6

p
#L2, Zþ 1

2

	 

�
ffiffiffi
6

p
# L2 þ

ffiffiffi
2

p

2

 !
:

Consequently, if we put

a ¼ yZ�
ffiffi
6

p ðt; 0Þ ¼
X
nAZ

q3n2 ;

b ¼ y
Zþ12
& ' ffiffi

6
p ðt; 0Þ ¼

X
nAZ

q3 nþ1
2

& '2
;

then we have

yL3
ðt; ua2Þ ¼ ay1 þ by2:

Now L4 is the three-dimensional sphere packing lattice

L4 ¼ L2#Z �
ffiffiffi
2

p
#Z � 2þ L2 þ

ffiffi
2

p

2

( )
#ðZþ 1

2
Þ �

ffiffiffi
2

p
# Zþ 1

2

& '
� 2:

Thus, if we put

c ¼ yZ
ffiffi
2

p
#Z�2ðt; 0Þ ¼

X
nAZ

qn2

 ! X
nAZ

q2n2

 !
;

d ¼ y
Zþ1

2

& ' ffiffi
2

p
# Zþ1

2

& '
�2ðt; 0Þ ¼

X
nAZ

q nþ1
2

& '2 ! X
nAZ

q2 nþ1
2

& '2 !
;

then

yL4
ðt; ua3Þ ¼ cy1 þ dy2:

Thus,

o ¼ Coeffu2
y1ðcy1 þ dy2Þ
ðay1 þ by2Þ2

 !
: ð162Þ

Now, as expected, y1; y2 are reciprocal functions in z; and hence even functions of u;

and hence the argument A of Coeffu2 in (162) is a function of U ¼ u2:
Moreover, such coefficient is obviously determined by applying

D ¼ d

dU

����
U¼0

:
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We have (since zk ¼ e2piku ¼ 1þ iku � k2u2

2
þ?Þ; up to a constant,

t1 :¼ Dy1 ¼
X
nAZ

n2qn2 ;

t2 :¼ Dy2 ¼
X
nAZ

n þ 1

2

	 
2

q nþ1
2

& '2
:

By (161),

Að0Þ ¼ c

a2
: ð163Þ

Thus, we have

const � o ¼ DA ¼Að0Þ � DA

Að0Þ

¼ c

a2
� Dy1

y1ð0Þ
þ cDy1 þ dDy2

cy1ð0Þ þ dy2ð0Þ
� 2

aDy1 þ bDy2
ay1 þ by2

	 

¼ c

a2
t1 þ

ct1 þ dt2

c
� 2ðat1 þ bt2Þ

a

	 

¼ c

a2
d

c
� 2

b

a

	 

t2:

We need to verify that oa0: To this end, it suffices to verify that

d

c
� 2

b

a
a0: ð164Þ

The left-hand side is

ð2q1=4 þ 2q9=4 þ?Þð2q1=2 þ 2q9=2 þ?Þ
ð1þ 2q þ 2q4 þ?Þð1þ 2q2 þ 2q8 þ?Þ

� 2
2q3=4 þ 2q27=4 þ?
1þ 2q3 þ 2q12 þ?

:

The lowest coefficient, at q3=4 is, indeed, 0. However, the next coefficient, at q7=4;
is �8a0:

Remark. We can use o in (121) if we choose as F; say, the set of all isomorphism
classes of tensor products of the VOAs of the lattices L2; L3; L4; thus obtaining a first
concrete example of an elliptic cohomology theory E in the sense of the last section.
Note that we must invert the prime 2 in order for our class o to be invertible, so we
will obtain a map

E-K ½½q��½1
2
�:
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7. The Coxeter elements, lattices and Moonshine

We shall begin with one more interpretation of map (131). Consider the space of

meromorphic functions f :Et-C� (i.e. algebraic functions defined on a Zariski open
subset of Et). We consider the topology on spaces of meromorphic functions given as
follows: Choose a compact set L in the source space (in this case Et) and an open set

U in the target space (in this case C�). Let KðL;UÞ be the set of all meromorphic
functions f which have no singularities on L and satisfy f ðLÞCU: We let the sets
KðL;UÞ be the subbasis of topology on the given space of meromorphic functions.
The topological vector space K of meromorphic functions on Et is N-

dimensional, and hence K� ¼ K � f0g is contractible. Now any fAK� determines
a well-defined stringy isomorphism

f f : 1-B f ; ð165Þ

where f f
c is the action of the loop f jcALC� on H (we fix a torus S1CSUð2Þ; recall

that H is an even lattice which contains an element of square length 2), and 1 is the
constant stringy bundle.

Now, however, note that B f depends only on the divisor D f of f ; so the target of

(165) is invariant under the action of C� on K�: Thus, we get a map

K�=C�-B̃EtH: ð166Þ

However, note that the action of C� on K� is given as follows: for lAC� (a constant
function) we have

fl : 1-1

and

fl�f ¼ f f
3fl:

This means that, while for DAK�=C� the stringy isomorphism (165) does depend on
the choice of representative f of D; the isomorphism

fe�f
3ðf f Þ�1; eAEt

does not. We conclude that (166) lifts to a map

K�=C�-BellH;

which is the map X: Note, however, that an obvious generalization of this method
now leads to the following

Proposition 14. Suppose H is a 1-conformal field theory, and K is an Et-equivariant

space such that to every xAK; there is, continuously and Et-equivariantly assigned a

stringy isomorphism of H-bundles on Et

f x : 1-Bx: ð167Þ
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Suppose, further, that an Et-fixed subset GCK has a group structure and K has a

structure of a right Et-equivariant G-space such that

f g : 1-1; ð168Þ

and, for gAG; xAK;

f xg ¼ f x
3f g; xAK; gAG: ð169Þ

Then (167) induces a natural map

K=G-BellH: ð170Þ

In particular, if K is contractible, then we have a canonical map BGCK�G

EG-K=G; so we get a natural map

X : BG-BellH:

Proof. By (168), Bx is invariant under changing x to xg; gAG; so we get a map

K=G-fH-stringy bundles on Etg;

where K=G denotes the orbits of K under the right G-action. Now the function f x

depends on the choice of representative x of a class aAK=G; but for eAEt; we have

f e�ðgxÞð f xgÞ�1 ¼ by ð169Þ:
f e�xf e�gf g�1ð f xÞ�1 ¼ since G is Et-fixed

f e�xf gf g�1ð f xÞ�1 ¼ f e�xð f xÞ�1;

so the function f e�xð f xÞ�1 depends only on a: Thus, we get map (170). &

Example. Let H ¼ H1; or more generally, any lattice with a specified point of
square length 2. Then let K be the set of all ‘meromorphic maps’

Et-SL2C;

i.e. algebraic maps

U-SL2C

for a Zariski open set UCEt: Note that we have a fibration

MerðEt;CÞ-K-MerðEt;C
2 � f0gÞ;

thus proving that K is contractible. The condition of Proposition 14 are clearly
satisfied, so we get a map

BSUð2ÞCBSL2C-BellH;

as promised in Section 6.
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This method generalizes to other algebraic groups, but not all of them. For
example, the smallest non-trivial irreducible representation of Eð8Þ is the adjoint
representation, so there clearly are no representations V where V � f0g would be
transitive (cf. [35]). However, all canonical complexifications of compact Lie groups
are rational varieties (by BN-decomposition). We claim that for any rational smooth
variety Z over C; and any complex algebraic curve X ; MerðX ;ZÞ is contractible: if
Z is a Zariski-open set in Ak; then MerðX ;ZÞ is a complement in the infinite-

dimensional vector space MerðX ;AkÞ of a set of infinite codimension, so it is
contractible. In more detail, given a continuous map

f : Sm-MerðX ;ZÞ;

f can be approximated by a map

f 0 : Sm-MerðX ;AkÞ

whose target is contained in an affine subspace V of finite dimension; if f ; f 0 are close
enough, tf þ ð1� tÞf 0 land in MerðX ;ZÞ for all tA½0; 1�: But now a generic affine

subspace of finite dimension in MerðX ;AkÞ is contained in MerðX ;ZÞ; so V can be
chosen so that f 0 is homotopic to a constant through a linear homotopy.
For Z arbitrary, we have MerðX ;ZÞ covered by a directed system of contractible

open subsets

fMerðX ;UÞ j UCZ open affineg;

so MerðX ;ZÞ is contractible. Thus, we have

Proposition 15. If HG is the root lattice of a simply laced compact Lie group G, then

we have a canonical map

X : BG-BellHG:

Example. The most interesting case of Proposition 15 is G ¼ E8: Denote the root
lattice of E8 by G8: The degrees [4, Chapter V, Section 6.2] of E8 are

di ¼ 2; 8; 12; 14; 18; 20; 24; 30; i ¼ 1;y; 8

[4, Chapter VI, Section 4.10], so

H�ðBE8;QÞDQ½a1;y; a8�; ð171Þ

where dimðaiÞ ¼ 2di; i ¼ 1;y; 8: By rational homotopy theory, we get classes
*oiAp2iðBE8Þ representing certain integral multiples of ai: Put

oi ¼ fið *oiÞAp2di
BellHE8

: ð172Þ
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Concretely,

o1Ap4BellHE8
;

o2Ap16BellHE8
;

o3Ap24BellHE8
:

Note that

p1ðoiÞ ¼ 0 for i40

(by connectivity), we expect the image

%oiAK2di
½½q��

of oi to be modular. We shall calculate these images explicitly for i ¼ 2; 3:

This can be done by Proposition 10. If T is the maximal torus of E8; the image of
H�BT in K�½½q�� is linearly spanned by coefficients at monomials in Sym½G8#C� of
the theta function

yG8
ðt; uÞASym½G8#C�½½q��:

It is quite remarkable that in each dimension, most of these coefficients must be
linearly dependent by (171).
Now concretely, recall from [14] that for a suitable basis x1;y; x8 of G8#C;

yG8
ðt; uÞ ¼ 1

2

Y8
i¼1

y1ðt; xiÞ þ
Y8
i¼1

y2ðt; xiÞ þ
Y8
i¼1

y3ðt; xiÞ þ
Y8
i¼1

y4ðt; xiÞ
 !

;

where yi; i ¼ 1;y; 4 are the Jacobi theta functions

y3 ¼
X
mAZ

q
1
2

m2

e2pimu;

y1 ¼
X
mAZ

q
1
2 mþ12
& '2

e2pi mþ12
& '

uþ12
& '

;

y2 ¼
X
mAZ

q
1
2

mþ1
2

& '2
e2pi mþ1

2

& '
u;

y4 ¼
X
mAZ

q
1
2

m2e2pim uþ1
2

& '
:
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To get rid of some constants, change variables to s ¼ 2piu: Then we have

y3 ¼
X
kX0

s2k

ð2kÞ!
X

m

m2kq
1
2

m2

 !
;

y2 ¼
X
kX0

s2k

ð2kÞ!
X
mþ1

2

& 'm2kq
1
2

mþ1
2

& '20B@
1CA;

y4 ¼
X
kX0

s2k

ð2kÞ!
X

m

ð�1Þm
m2kq

1
2

m2

 !
;

y1 ¼ i
X
kX0

s2kþ1

ð2k þ 1Þ!
X

m

ð�1Þmðm þ 1
2
Þ2kþ1

q
1
2

mþ1
2

& '2 !
:

Notice that the functions y2; y3; y4 are even, while y1 is odd. As it turns out,
y1 supplies the coefficients we are interested in. Put

ak ¼
X

m

ð�1Þm
m þ 1

2

	 
2kþ1
q
1
2

mþ1
2

& '2
:

Then we have the following theta function coefficients in degrees 8,12 (i.e.
dimensions 16,24).

a81 ¼ D � const;

� 3

2
a5a

7
1 þ

5

2
a23a

6
1 ¼ const � g2 � D: ð173Þ

It follows that the first element (173) is %o2; the second is %o3: Thus, if we have
HE8

AF; we can take

o :¼ o3 � ð1E8
Þ�1Ap24E;

where 1E8
is the constant map from S24 to the trivialHE8

-elliptic bundle on Et: Then
the image of o in K�½½q�� is the discriminant form, as desired.
However, note that the coefficient ring of the corresponding spectrum E still won’t

be exactly the ‘right’ one: if we look at the element

r :¼ o2 � ð1E8
Þ�1Ap16E;
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then its image in K�½½q�� is (up to constant)

D=g2;

which is an automorphic function, but not a modular form, because it has a
singularity. This means that if we consider the coefficients E� as a moduli space, then
it will exclude the elliptic curve which lives at this singularity. One could speculate
that to remove this defect, one must work with the Moonshine module instead of
HE8

: We shall say more about this below.
First, however, we give another application of Proposition 14.

Proposition 16. For a CFT HL associated with an even lattice L, there is a

natural map

BðTÞ-BellHL:

Proof. We shall use Proposition 14. We let K ¼ MerðEt;TÞ ðrecall T ¼ LC=LÞ:
Then to each gAK; there is, equivariantly, assigned a stringy iso

f g : 1-Bg

given on an analytic smooth Jordan curve c in Et�{singularities of g}, by

f g
c ¼ multiplication by f gjc

(recall from Section 3 thatHL is the basic representation of TS1 ). It follows from the
discussion of Section 3 that f g is a stringy iso. The conditions of Proposition 14 are
obviously satisfied (see above comments for contractibility of K). This concludes
our proof. &

Example. If Conjecture 1 of Section 5 holds, we would get a map

BðCo0rLC=LÞ-BellHL;

where L is the Leech lattice. One can detect images of elements in

piBðCo0rLC=L0ÞQ in K�½½q�� using the y-function of L similarly as we did

above for E8:
For example, using the standard coordinate frame u1;y; u24 ([6]), we can

investigate the coefficient of

yLðt; uÞ at
Y24
j¼1

uj: ð174Þ
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If we put

g2 ¼
1

12
1þ 240

X
nX0

n3qn

1� qn

 !
;

g3 ¼
1

63
�1þ 504

X
nX0

n5qn

1� qn

 !

(omitting some 2p powers), then using MAPLE one can verify that

c ¼ ð�3 � 66 � g23 � 5440DÞ � D2: ð175Þ

Thus, we have a modular form of weight 36, conjecturally an element of p48BellHL:
However, recalling that

yLðt; 0Þ ¼ 1728g32 � 720D;

1728D ¼ 1728g32 � 63g23;

we see that the corresponding element in elliptic cohomology would have character

c

yLðt; 0Þ
¼�5184g32 � 256D

1728g32 � 720D
D2

¼�3j � 256

j � 720
D2:

We see that this is, again, an automorphic function with some singularities, i.e. not
an automorphic form.
This however suggests a general conjecture about the y-functions of lattices, which

reflects the homotopy situation we suggested, but can be phrased without the use of
any homotopical concepts. Let L be an even lattice of dimension n; and let G be its
automorphism group. We have conjectured that there is a map

BðGrðS1ÞnÞ-BellHL:

Now we have

H�ðBðGrðS1ÞnÞ;QÞ ¼ H�ððCPNÞn;QÞG ¼ Q½u1;y; un�G:

Call the dual A of Q½u1;y; un� the Q-coalgebra of coefficients. Let PA be the module
of primitives of aQ-coalgebra A: Recall from rational homotopy theory that if X is a
formal generalized nilpotent space, then the Hurewicz map gives an onto map

p�XQ7PH�XQ: ð176Þ
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Thus, at least if we knew that BellHL is formal and rationally nilpotent, then PA

would supply elements in the rational homotopy groups of BellHL: Such elements
would have p1 ¼ 0 provided that they are in dimension 2l44; and hence their
images in K ½½q��-theory (which are given by theta functions) should be automorphic
of weight lþ n

2
: This leads to the following

Conjecture 2. Let L be an even lattice. Note that the coefficients of the theta series

yLðt; uÞ

give a map

a : A=G ¼ A#Q½G�Q-Q½½q��:

Then for a homogeneous element

xAPðA=GÞ

of degree l42;

aðxÞ

is an automorphic form of weight

lþ n

2
:

The modular group is GmL
or G2mL

depending on whether mL (the maximal order
of an element of L0=L) is odd or even.

Example. The most interesting case of our discussion is

BellH
y

where Hy is the Hilbert completion of the Moonshine module V y (see Section 4
above and [13]). We have

Hy ¼ ðHL"HT
LÞ

y0 ; ð177Þ

where L is the Leech lattice,HL is, again, the basic representation of the loop group
LðGÞ with

G ¼ LC=L0 ð178Þ

and HT
L is the basic representation of the twisted loop group LaðGÞ where a is

the automorphism of G given by aðgÞ ¼ g�1 (and LaðGÞ ¼ f f : ½0; 1�-G j f ð1Þ ¼
af ð0ÞgÞ:
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Recall that in (177), y0 is the appropriate lift of the involution x/� x of L: One
can put a 1-conformal field theory structure on Hy; some of the main points of that
construction were outlined in Section 4.

There is no analogue of Proposition 16 forHy; because the y0-fixed points destroy
all of these automorphisms. On the other hand, the monster F1 acts on Hy [13],
so Conjecture 1 of Section 6 would imply the existence of a ‘‘moonshine map’’

BF1-BellH
y: ð179Þ

Composing with the map

BellH
y-K ½½q��½q�1� ð180Þ

which is map (125) multiplied by q�1 (this differs from the normalization of Section 5
by a factor of D), we obtain an element

aAK ½½q��½q�1��BF1 ð181Þ

which, interpreted as a series of F1-representations by the Atiyah completion

theorem, is the moonshine module Vy:
Now drawing a parallel with Conjecture 2 suggests looking at the ‘‘coefficients’’

for element (181). These are characters of the representation V y; known as
Thompson series. The Moonshine conjectures [6], proven by Borcherds [2], state that
the Thompson series are Hauptmoduln, in particular they are modular functions
(automorphic of weight 0) with respect to appropriate subgroups of PSL2Z; with a
simple pole at the cusp z ¼ N; and no other singularities. Although the singularities

are as desired, we see however that the element of p�BellV
y which we are seeking is

not among the Thompson series, since it is a modular function of positive weight. We
formulate therefore the following

Conjecture 3. (1) There is a positive integer n and an element

xAp24nBellH
y

whose image under map (181) (on coefficients) is

Dn � J

ðJ ¼ j � 744Þ:
(2) Every element of pmBellV

y is of the form

o � J;

where o is an automorphic form of weight m
2
(with full modular group, no character and

no singularities).
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We could refer to this as the ‘higher homotopy counterpart of the Moonshine

conjectures’. It also suggests the set of tensor powers of V y as a choice of F from
Section 5.
In fact, one can go a bit further in this direction. The main ingredient of the

proof [2] of the Moonshine conjectures is the construction of a ‘‘Monster Lie
algebra’’ M: Neglecting, for the moment, questions of Hilbert completion, we take
the VOA

H :¼ V y#VII1;1 ; ð182Þ

where II1;1 is the unimodular Lorentzian lattice with matrix 0
�1

�1
0

& '
and VII1;1 is the

corresponding vertex algebra [2]. Notice that (182) comes with an indefinite inner
product /?; ?S: Now (a completion of) M is obtained by taking the vector subspace
P of fields of type (1,0) in the conformal field theory (182) (see [36, Section 9]),
and factoring out the kernel of /?; ?S on P: (In fact, it is desirable to consider all of
this in real form, see [2] and Section 3 above.) The no ghost theorem [11,15] asserts
that if we consider the bigrading of M inherited from VII1;1 ; then the ðm; nÞ-graded
piece is

R2 if m ¼ n ¼ 0;

Vmn otherwise;

where Vm is the weight m þ 1 piece of V y: Further, M is a Lie algebra, and in fact a
(generalized) Kac-Moody algebra of indefinite type with root lattice II1;1: Using this,
Borcherds proved that

p�1L
X
m40
nAZ

Vmnpmqn

0B@
1CA ¼

X
m

Vmpm �
X

n

Vnqn; ð183Þ

where we can look at p; q as formal variables, and the coefficients Vm are considered

as representations of the Monster. This works because the Monster’s action on V y

carries through the no ghost theorem. In [2], one then uses (183) to prove Norton’s
replication formulae [32], which constitute the main step in the Moonshine
conjecture proof. More explicitly, one remarks that

LðUÞ ¼ exp �
X
i40

ciðUÞ=i

 !
; ð184Þ

where ci is the Adams operations on a G-representation U (here G ¼ F1 is the
Monster), and that further

TrðgjciUÞ ¼ TrðgijUÞ;
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so we get

p�1 exp �
X
i40

X
m40
nAZ

TrðgijVmnÞpmiqni=i

0B@
1CA

¼
X
mAZ

TrðgjVmÞpm �
X
nAZ

TrðgjVnÞqn;

which is the Norton formula.
When trying to obtain a higher homotopy analogue of formula (183), the first step

is thinking of the G-representations Vm as maps

BG-BUðjVmjÞ-BU � Z: ð185Þ

In the second map (185), we map into the jVmjth component of BU � Z: Thus,
taking products over mX� 1; (185) gives an element of

K ½½q��½q�1�0BG: ð186Þ

Now, on the other hand, Section 5 gives a map

aAK ½½q��½q�1�0BellV
y ð187Þ

and Conjecture 1 states that there is a map BG-BellV
y such that (187) factors

through (186). Further, for a homotopy class oAp2kBellV
y; ao is the character of o;

i.e., conjecturally some cusp form, e.g. J � Dn:

Now in [2], one points out that any graded endomorphism of the vector space V y

acts naturally on the Monster Lie algebra M; although to get (183), we must use the
fact that the no ghost theorem identifies the bigraded pieces of M together with their
G-actions.
We do not know what exactly is the right analogue of the bigraded action for

BellV
y; but the above discussion suggests that the right substitute for Vm in (183) may

be the element

r ¼ aoAK ½½q��½q�1�0S2k ð188Þ

corresponding by (187) to a homotopy class of BellV
y: Note that

K0S2k ¼ Z"Zu;

where u ¼ bk is the kth power of the Bott element. Given the fact that the mth
coordinate of ao is realized on

BUðjVmjÞCBU � fjVmjg;
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we have

r ¼ oðtÞ � u þ JðtÞ ð189Þ

(expressed as a function of q ¼ e2pit). We now write down the left-hand side of (183),
using (184), and substituting

r for
X

Vmqm:

Define, when applicable, cnðfÞ by

fðtÞ ¼
X

cnðfÞqn:

Then, noting that

ciu ¼ iku;

the left-hand side of (183) becomes (for k40)

p�1 exp �
X
i40

X
m;n40

ðikcmnðoÞu þ cmnðJÞÞpmiqni=i

 !

¼ exp �
X
i40

X
m;n40

ik�1cmnðoÞupmiqniÞðJðpÞ � JðqÞÞ
 !

¼ 1�
X
i40

X
m;n40

ik�1cmnðoÞupmiqniÞ
 !

ðJðpÞ � JðqÞÞ: ð190Þ

Comments. In the summation, we can put n40 because o is a cusp form. The first
equality is by the denominator formula, which is obtained from (183) by replacing
Vm by its dimension. The second equality is because higher powers of the element

uAK0S2k are 0.
We have no conceptual prediction of what the analogue of the right-hand side

of (183) should be, but (190) can be evaluated. Thus, the proposed higher
homotopy analogue of the Norton formula is given by the following statement.
We specialize to cusp forms o of weight 12s: Every modular form of weight 12s is
of the form

%DkDl; k þ l ¼ s; ð191Þ

where %D ¼ DJ: Let oq ¼ oðtÞ; q ¼ e2pir; for any modular form o:

ARTICLE IN PRESS
P. Hu, I. Kriz / Advances in Mathematics 189 (2004) 325–412406



Proposition 17. We have, for l40;

ð jðpÞ � jðqÞÞ �
X
i40

X
m40
n40

i12ðkþlÞ�1cmnð %DkDlÞpmiqni

¼ %Dk
p
%Dk

qð %Dl
pD

l
q � Dl

p
%Dl

qÞ þ m; ð192Þ

where m is an antisymmetric (with respect to p, q) polynomial in Dp; %Dp; Dq; %Dq

homogeneous of degree k þ l in the variables Dp; %Dp and the variables Dq; %Dq; divisible

by DpDq:

Proof. We have, for any cusp form o of weight 2s;

ð jðpÞ � jðqÞÞ �
X
i40

X
m40
n40

i2s�1cmnðoÞpmiqni

¼ ð jðpÞ � jðqÞÞ �
X
i40

X
m;n40
ijm;n

i2s�1cmn=i2ðoÞpmqn

¼ ð jðpÞ � jðqÞÞ
X
m40

TmðoqÞpm; ð193Þ

where Tm is the Hecke operator [38]. Hecke operators preserve the space of modular
forms of a given weight, and also cusp forms, so (193) is of the formX

mX0

ðamÞqpm;

where am is a modular form of weight 2k: Moreover, (193) is manifestly
antisymmetric in p; q; and it is easy to check that the coefficients at powers
of p give

oðpÞ:

Specializing to o ¼ %DkDl; we see that

%Dk
p
%Dk

qð %Dl
pD

l
q � Dl

p
%Dl

qÞ ð194Þ

satisfies this coefficient condition. Thus, if we subtract this form from (193), we get
an antisymmetric series m; a modular form of weight 12ðk þ lÞ in each variable
(when fixing the other variable), with 0 coefficients at the powers of p: Now dividing
m by DpDq; we decrease the weight by 12. Then repeating the process of subtracting

terms of the form (194) (with varying k; l), and dividing by DpDq; we can bring the

weight of the remainder term to 0, at which point it vanishes. Thus, m is as
stated. &
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Remarks. (1) For k ¼ 0; l ¼ 1; the only possible choice for m is m ¼ 0: For
k ¼ l ¼ 1; we have

ð jðpÞ � jðqÞÞ
X
i40

X
m;n40

i23cmnð %DDÞpmiqni

¼ ð %Dp %Dq þ 20414592DpDqÞðDp %Dq � Dq %DpÞ:

(2) Note that in the proof [2] of the denominator formula (Lemma 7.1 of [2]),
which we mimicked exactly, the reason one gets just jðpÞ � jðqÞ on the right-hand
side is that a modular form of weight 0 is necessarily constant. Note also that the
absence of higher exponent terms in (192), which came from u,u ¼ 0; is
calculationally necessary in the proof of Proposition 17, since otherwise we would
be adding modular forms of different weights in (193).
(3) In discussing the motivation for Proposition 17, we used the cohomology

theory K ½½q��½q�1� and Adams operations. However, it would be nice to phrase
these ideas is in terms of the power operations in elliptic cohomology considered by
Ando [1]. We also refer the reader to [18] for more background and further
considerations.

8. Appendix. Some homotopy theory

The main point of this section is to give a

Proof of Proposition 8. Let D ¼ fzAC j jjzjjp1g: We shall define a space

B̃ðD;@DÞH

whose elements are stringy bundles on U for some open set C*U*D (the definition
of stringy bundles extends to non-compact surfaces), with two stringy bundles B; B0

identified if Bc ¼ B
0

c for every Jordan curve whose image is in D:
Now choose a holomorphic embedding DCX : This clearly determines a

restriction map

B̃XH-B̃ðD;@DÞH:

The proof will be completed if we can construct a map

B̃ðD;@DÞH-KðZ; 4Þ: ð195Þ

Now consider the set P whose elements are pairs

ððB;SÞ;QÞ; ð196Þ

where ðB;SÞAB̃ðD;@DÞH and Q is a collection of disjoint Jordan curves in C

homothetic to S1 ¼ fzAC j jjzjj ¼ 1g; two collections are considered equal if they
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only differ in Jordan curves whose interiors are disjoint from D: We require that for
some choice of S; each element sAS be contained in the interior of a Jordan curve
cAQ which is minimal in the sense that the interior of c contains the image of no
other element of Q:
Then P is a topological poset with ordering

ððB;SÞ;QÞpððB;SÞ;Q0Þ

if QDQ0: Let W be the classifying space of P: There is an obvious forgetful map

n : W-B̃ðD;@DÞH: ð197Þ

However, we claim that (197) is a quasifibration with contractible fiber, hence an
equivalence. For example, to show that

n�1ðB;SÞ is contractible; ð198Þ

look at the poset PðB;SÞ of all possible choices of Q for ðB;SÞ in (196). Then we need

to show that the classifying space of PðB;SÞ is contractible. This can be done in two

steps. First consider the subposet P0
ðB;SÞ in which each sAS is contained in the

interior of a different minimal curve. Then

P0
ðB;SÞCPðB;SÞ

induces an equivalence of classifying spaces by Quillen’s theorem A (since we can
always, uniquely up to homotopy, add to Q small minimal curves containing the
individual points of S). On the other hand, the classifying space of P0

ðB;SÞ is

contractible, because we may omit from qAP0
ðB;SÞ all curves except the minimal

curves containing points of S:
To finish the proof of (198), one then uses the Dold–Thom criterion, with

k-stratum consisting of all B for which there is a choice of S with jjSjjpk: We omit
the details.
Now since (197) is an equivalence, it therefore suffices to give a map

W-KðZ; 4Þ: ð199Þ

To this end, let P0 be the topological poset consisting of pairs

ðQ; aÞ;

where QAP; and a is a map assigning to each minimal curve with interior contained
in D an element of V; the ordering is

ðQ; aÞpðQ0; a0Þ

if QDQ0 and for each minimal curve c0 in Q0 whose interior is contained in D; if
c1;y; cn are the minimal curves of Q contained in the interior of c0; and A is the
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rigged surface with boundary components c1;y; cn; c0; we have

UA3ðaðc1Þ;y; aðcnÞÞ ¼ a0ðc0Þ:

Then the classifying space W0 of P0 is a model of the double loop space B2V with
respect to the double-loop space structure on V given by the action of the operad C
of n-tuples of Jordan curves c1;y; cn with disjoint interiors in D homothetic to the
boundary (with identity parametrization). The operad acts by the CFT structure.
(Note that the operad is equivalent to the little 2-cube operad.) In any case, we have
VCKðZ; 2Þ; so

B2VCKðZ; 4Þ;

regardless of the choice of double loop space structure. Thus, it remains to construct
a map

W-W1:

This map is induced by a map of posets

P-P0

which sends ððB;SÞ;QÞ to ðQ; aÞ where

aðcÞ ¼ Bc: &

Remark. Recall that the space of divisors on X ; or the free abelian group on X ; is
homotopically equivalent to

MapðX ;KðZ; 2ÞÞCJX � KðZ; 2Þ � Z;

where JX is the Jacobian on X (here we are just considering the category of
topological spaces, Map denotes the space of continuous maps). It therefore seems
reasonable to ask if

B̃XHCMapðX ;KðZ; 4ÞÞ:

The method of the above proof seems applicable for X of genus 1; since then X

is parallelizable. If X is not parallelizable, the difficulty is that there is no consi-
stent notion of homothety, so one must consider rotations of the boundary
parametrizations.
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