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Abstract

In this paper, we use conformal field theory to construct a generalized cohomology theory
which has some properties of elliptic cohomology theory which was some properties of elliptic
cohomology. A part of our presentation is a rigorous definition of conformal field theory
following Segal’s axioms, and some examples, such as lattice theories associated with a
unimodular even lattice. We also include certain examples and formulate conjectures on
modular forms and Monstrous Moonshine related to the present work.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of the present paper is to address an old question (posed by Segal
[37]) to find a geometric construction of elliptic cohomology. This question has
recently become much more pressing due to the work of Hopkins and Miller [19],
who constructed exactly the “right”, or universal, elliptic cohomology, called TMF
(the theory of topological modular forms). In the present paper, however, we do not
propose a construction which would give TMF. We do propose what could be called
the “first rigorous reasonable attempt’ of constructing geometrically any generalized
cohomology theory which could be called elliptic cohomology. To explain what this
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means, we must say more about what is expected of a theory which could be called
elliptic cohomology, and also what qualifies as a geometric construction: as it turns
out, quite a few general desiderata of such theory can be written down, and finding
simply a candidate which would satisfy them all is a non-trivial goal.

First of all, elliptic cohomology should be related to, and ideally better explain,
Borcherds’ proof [2] of the Moonshine conjectures [5] on the modularity of the
Thompson series, which are character series of a certain graded representation of
the Monster called the Moonshine module V* [13]. (More precisely, the statement of
the conjectures is that the Thompson series are Hauptmoduln. Much work has been
done on this and related topics; see e.g. [21,25,32,42-44] for reference.) The
Thompson series are characters, i.e. trace series, of a certain graded module of the
Monster F; [17], known as the Moonshine module [13]

Vi= @ V"

n=-—1
Thus, if one wants to work in homotopy theory, one can interpret V* as a map
BFy~K([q]llg™"], (1)

where K is K-theory. This might suggest K[[¢]][¢"'] as the first candidate for
elliptic cohomology. This approach was indeed pursued by Ando [1], and leads to
some valuable conclusions; in particular, K[[¢]][¢~!] is the “homotopical counter-
part” of the Tate curve. However, we want to go further: the coefficient ring of the
Tate curve does not consist of modular forms of any kind, so this approach does not
explain the modularity of the Thompson series. Also, homotopy-theoretically,
K[[q]][¢""] brings no new information beyond K-theory. One way to say in which
direction we want to go is that the ¢ in (1) corresponds to an S'-parameter in an
elliptic curve, and we would like a candidate for elliptic cohomology which would be
modular in the sense that it would not need an a priori specification of such
parameter.

We must go back to the geometry to see where such structure could come from;
the most substantial idea [2], which is at the heart of the very construction of the
Monster [17], is the fact [2,13] that V% is a vertex operator algebra (VOA). Indeed, F;
is the group of automorphisms of the VOA V*. VOA is a mathematical structure
which is also the first rigorous mathematical encoding of the physical concept of
(chiral perturbative) conformal field theory (CFT). On the other hand, a more
“maximalistic”’ approach to CFT [36] builds in modularity in the form of correlation
functions on elliptic curves. This is not directly visible to VOAs, and the proof [2]
takes a different route. But the modularity of CFT suggests trying to replace
K[[g]llg""] with some type of theory which would be based on the structure of CFT.
More specifically, (1) should factor as

BF, % Bav* L E L Kq]]lg 7). (2)
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where By V" is some type of classifying space associated with CFT, whose
construction would, similarly as the CFT itself, be modular, and £ would be the
elliptic cohomology, i.e. some type of generalized cohomology theory based on
B, V*, whose construction would therefore also be modular; in particular, the map y
in (2), on coefficients, would have a modular image. This is the route we take in the
present paper, although we must point out that we do not quite get (2), since that
involves certain technical aspects of exponentiating vertex operators, which we
cannot resolve. We do, however, get certain simpler analogues, for example one
where F is replaced by Eg.

To describe this construction, we must first talk about the space By V* of (2). This
should be some type of classifying space associated with a CFT (more precisely 1-
CFT—see Section 2 below). Therefore, it is appropriate to talk about By #° where
A" is the 1-CFT completion of V*—see Section 4 below.

In this paper, we give a rigorous construction of Be# for every 1-CFT . This
construction is, in some sense, analogous to the construction of a classifying space of
a group. The question of existence of the map a of (2) can be phrased in general
terms, whether there always exists a map

o : B(Aut(#)) — B H .

This is at present only a conjecture, but we will give some examples where it is true
(see Sections 6 and 7 below).

Now E should be ““elliptic cohomology™ in the sense of [37] (see also [41]). Our
approach to the map f of (2) is to define a choice of E based on B . In fact, it is a
“free construction”, obtained by taking the suspension spectrum and formally
inverting, in a suitable sense, certain elements w € 7, B¢ # . Evidence in favor of such
approach is given by a well known result in K-theory, where inverting the Bott class
in 2 CPY gives K [39,40]. With this approach to E, the construction of the map y of
(2) becomes a non-trivial problem, more difficult than with homotopy theory-based
definitions of E. The definition of E and construction of the map y are given in
Section 5 below.

To give the reader a preview, the main idea of constructing B is to adapt the
idea of a bundle on X (say, X is a compact complex curve) to give a notion of
‘stringy’ bundle B on the loop space LX. The main feature of a stringy bundle should
be that a holomorphic embedding of a rigged surface 4 into X should induce, up to

scalar multiple, a map
R H-> Q #y

out

where ¢; (resp. d;) are the inbound (resp. outbound) boundary components of 4, and
A . 1s the fiber of the bundle B over c.

An ordinary bundle on X can be trivialized when pulled back to a cover % of X,
which can be thought of as a 0-equivalence

]_[ U-X.

u



328 P. Hu, I. Kriz | Advances in Mathematics 189 (2004) 325-412

In case of a stringy bundle, 0-equivalence should be replaced by 1-equivalence. In the
case of a complex curve X, this essentially amounts to

X-S

where ScX is some finite set of “punctures”. The precise definition of stringy
bundle specifies the data at the punctures, and will be given in Section 5 below. Next,
we define B as the space of stringy bundles with fiber # on an elliptic curve E;
which are equivariant with respect to the translation action of E,. We call such
stringy bundles elliptic bundles.

A large part of this paper is in doing certain calculations which allow us to come
up with candidates of the class w. This requires reconciling certain standard
computations of characters of CFT and modular forms with the new construction.
The first examples of elements w which can be used to define E are given in Section 6.
These elements are given by ratios of theta functions of suitable lattices. In Section 7,
we give more advanced examples. We give a map

BG — B

for any simply connected simply laced group G where # ' is the conformal field
theory on the basic level 1 representation of the loop group LG [33]. For G = Eg,
this affords a choice of an element w whose image in K.[[¢]] is the discriminant form
A (at least up to a multiplicative constant, i.e. localized, in the sense of homotopy
theory, away from finitely many small primes). We also discuss the example of the
Leech lattice, and formulate a general conjecture about theta functions of lattices.
We also discuss the Moonshine module and the Monster. We show how parts of
Borcherds’ calculations [2] lead to a possible higher homotopy analogue of the
Moonshine conjecture.

Finally, before any of this discussion can begin, we must address the question of a
rigorous definition of conformal field theory (and its variations, such as 1-CFT),
which our theory inherently needs. While the idea of a rigorous definition of CFT is
firmly contained in [36], incredibly, details were never published, or perhaps even
completely worked out, during the last 20 years. In the next three Sections 2—4 we
must undertake the formidable task of, at least partially, remedying this situation.
We divide this task as follows: In Section 2, we give the complete axiomatic
definition of chiral CFT (and related notions needed). This greatly exceeds the rather
limited step taken in [26]. The completely rigorous axioms are quite complicated, and
involve substantially the language of 2-categories and stacks. In Section 3, we give,
also in substantial detail, the construction of 1-CFTs associated with even lattices, as
well as the full CFTs associated with even unimodular lattices. In Section 4, we give,
in somewhat less detail, the construction of the 1-CFT structure on the Hilbert-
completed Moonshine module: this example is important for our motivation, but
much of the main technical discussion of the rest of the paper can be carried out
without it.

Having described the positive features of the theory proposed in this paper, it is
important to also point out its shortcomings. As we said in the beginning of the
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introduction, the theory is only a first attempt, and the properties we control would,
in some sense, have to be shared by any reasonable attempt. Many properties which
would be desired from a more definitive theory, however, are unimplemented in the
present one. This includes, of course, the issue of picking the “right” theory, i.e. one
which would construct TMF, or at least one whose coefficients could be completely
calculated. Further, there should be a better geometric reason for choosing the
classes w: in the present theory, the only evidence in favor of picking particular
classes is that they are certain distinguished modular forms on coefficients. Ideally,
however, one should have an index theory on loop space, as proposed in [36], a
geometric interpretation of the Witten genus, and its twisted form, which would
explain the classes w. Finally, to do that, presumably one needs a better additive
theory than the “free” theory (suspension spectrum).

On some of these points, there have been recent clues. For example, a candidate
additive theory is suggested in [20] via 2-vector spaces, and this theory makes contact
with Rognes’ K-theory of K-theory [34]. A fascinating program has been also
recently revealed by Stolz and Teichner, whereby the elliptic cohomology infinite
loop space should be constructed directly as a “moduli space of CFTs”, which would
be directly delooped, without use of additive loop space theory. These topics,
however, exceed the scope of the present paper, and will not be discussed here.

2. Conformal field theory

In this paper, a rigged surface is a two-dimensional smooth manifold with
boundary X and a parametrization diffeomorphism

fe: 8" ={zeCllz]| = 1} >c (3)

for every boundary component ¢ of X, together with a complex structure on X with
respect to which each of parametrizations (3) is analytic. The complex structure
determines an orientation, and with respect to that parametrizations (3) have two
possible orientations, which we will call inbound and outbound. By convention, we
call, for

D = {zeC[|z[[<1},

the identity boundary parametrization inbound.

Our first task is to capture fully the structure present on the set 4 of all rigged
surfaces. The essential point is that there are two operations on rigged surfaces:
disjoint union and gluing. Disjoint union [] is obvious. Gluing means that if X
is a rigged surface with one chosen inbound boundary component ¢ and one
chosen outbound boundary component ¢/, then there is a canonical rigged surface
structure on

X=X/~



330 P. Hu, I. Kriz | Advances in Mathematics 189 (2004) 325-412

where ~ is the smallest equivalence relation on X which identifies
Je(2)~fe(2)

for every ze S'.

In addition, however, one can also consider families of rigged surfaces. Let B be a
complex manifold. Then a family of rigged surfaces over B is, roughly speaking, a
transverse map

p:X—-B,

where X is a complex manifold with analytic boundary, where each fiber is a rigged
surface, where the parametrizations vary holomorphically.

The most convenient way to make this precise is to consider the manifold Y
obtained by gluing, locally, solid cylinders to the boundary components of X. Then,
a holomorphic family of rigged surfaces X over a finite dimensional complex
manifold B is a holomorphic map

q:Y—>B

transverse to every point, such that dim(Y) = dim(B) 4+ | and B is covered by open
sets U; for each of which there are given holomorphic regular inclusions

Sic : Dx U—Y
with
qosic = 1Idy,
where ¢ runs through some indexing set C;. Further, if U;n U;#0, we require that
there be a bijection 1 : C;— C; such that
Si,c|Dx(U,-m U) = Sia(e) |D><(U,vr'w U)*

Then we let

X=vY- (U U sic((D—8") x U,~)>.

i ce C,’

Then the fiber of X over each be B s a rigged surface, which vary holomorphically in
b, in the sense we want. (Note that the reason the maps s, cannot be defined globally
in B is that it is possible for a non-trivial loop in 7;(B) to permute the boundary
components of X.)

Capturing the mathematical structure contained in the operations [], X and the
notion of holomorphic family of rigged surfaces is a formidable task. To some level
of detail, this was done in [10,26]. Note, for example, that the operation ][ is not
strictly commutative and associative. Rather, we must consider the set ¥ as a
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groupoid, where the isomorphisms are diffeomorphisms compatible with complex
structure and boundary component parametrizations. This groupoid is then a
symmetric monoidal category with respect to the operation [].

More generally, this leads to the notion of a lax algebraic structure. To define that
notion, however, we need to understand strict algebraic structures completely. In the
most simple (=classical) case, this is accomplished through the notion of a theory
according to Lawvere [27]. A theory is essentially a universal algebra, i.e. the
structure given by a set of algebraic operations, which satisfy certain relations
(identities) between the operations. More precisely, Lawvere defines a theory as a
category with objects N such that n is the product of n copies of 1. It is beneficial to
let, for a theory T,

T(n) = Homp(n, 1),

and write down specifically the axioms for T'(r). In this (equivalent) sense, a theory
T is a functor from the category whose objects are natural numbers N = {0, 1,2, ...}
and morphisms from k to m are maps of sets {1, ...,k} > {1, ...,m} together with a
distinguished element 1€ 7(1), a composition operation

y: T(k) x T(n) x - X T(g)>T(m + -+ + ng).

The operation y is associative and unital, and equivariant with respect to the
functorial structure, in the obvious sense. For a set X, we have the endomorphism
theory End(X) where End(X)(n) = Map(X*", X). (In fact, Lawvere’s approach tells
us that any theory is an endomorphism theory, if we replace the category of sets by a
suitable category.) Then a structure of a T-algebra on X is given by a map of theories

T - End(X).

Note that a universal algebra type is often given by a set of operations Q each of
which has an arity, i.e. specified number of input variables, and relations E between
(compositions of) the operations Q. This amounts simply to taking the free theory on
the sequence Q(n) consisting of operations of arity n, factored out by the smallest
congruence (in the category of theories) containing the relation E.

Defining a lax algebra X over a theory T is not difficult. X is a groupoid, and
we set

Endy, (X )(n) = Functors(X", X).
Then a structure of a lax T-algebra on X is given by a map
¢ : T— Endj(X)
and natural isomorphisms

o(1)=1d,
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4)("/(9, g1, agk)) 2“/(@5(9), ¢(gl)a 7¢(gk))v
(T (f)(9)) = (Endiax(X)(1))(¢(9))-

Note that these coherence isomorphisms correspond to operations of a general theory
(i.e. unit, composition and functoriality). The coherence isomorphisms are subject to
coherence diagrams which must commute. These diagrams correspond to relations
which are satisfied by the operations of a general theory, i.e. the associativity, unit
and equivariance relations mentioned above. We shall not draw these diagrams
explicitly.

We will, however, note that we have a notion of lax morphism

f:X->Y (4)

of lax algebras X, Y over a theory T which is a functor (4) where for each operation
o (identity, composition and functoriality) of a theory, we have an isomorphism

alf,....[)=fo. (5)

For each relation of a general theory (composition associativity, unit, equivariance
and functoriality associativity) we then have a coherence diagram closed by
isomorphisms (5) and the coherence isomorphisms of the lax 7T-algebras X, Y; we
require of a lax morphism that all such diagrams commute.

In fact, lax T-algebras form a 2-category [3] in which lax morphisms are
I-morphisms. By a 2-morphism between (4) and

g:X-Y (6)

we shall mean a natural isomorphism
/=g, (7)

we require of isomorphisms (7) to form commutative diagrams with the coherence
isomorphisms of the 1-morphisms f', g. Therefore, such coherence diagrams will be
indexed over operations of a general theory.

Note that in the 2-category of lax T-algebras, every 2-morphism is an
isomorphism. Furthermore, it is known that this 2-category has lax limits. (We
refer the reader to [10]. A classical reference about 2-categories, which however
contains only some of the relevant results, and uses a slightly different terminology,
is [3].) For any 2-category % which satisfies these two conditions, and any
Grothendieck topology %, we can speak of Z-stacks over %4. These are
contravariant lax functors 4 —.% which turn Grothendieck covers into lax limits.
Thus, we can speak of stacks of lax T-algebras. We should remark that in CFT,
stacks play an important role for classification (otherwise it appears one could
construct a lot of artificial examples), but a marginal role from the point of view of
characteristics of the structure itself: stacks simply describe how our structure varies
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over spaces which are objects of the indexing site. For example, they provide a
proper axiomatization of the notion of “holomorphic family of rigged surfaces”. A
reader uninterested in this detail may simply restrict attention to sections over a
point, and disregard stacks entirely.

Rigged surfaces form a stack of lax commutative monoids over the site of complex
manifolds with Grothendieck topology of open covers, with respect to the operation
of disjoint union. Unfortunately, however, the formalism of lax algebras over a
theory is not general enough to describe the gluing operation X, which is indexed by
a choice of pair of inbound and outbound boundary component of X; we must
consider the set of all inbound and outbound components of X as an attribute of X,
and be able to index operations by such attributes. The framework of algebras over a
theory, lax or strict, does not allow for that.

What we need is the notion of a 2-theory O fibered over another theory T. We begin
by discussing the strict structure.

Using Lawvere’s language, a 2-theory consists of a natural number k, a theory
T and a (strict) contravariant functor @ from T to the category of categories (and
functors) with the following properties. Let T* be a category with the same objects as

T, and Homypi(m,n) = Homy(m,n)*. Then

Obj(O(m)) = H Hompi(m,n),

n

for ¢ : m—nin T, the map Obj(O(n)) - Obj(©(m)) which is a part of () is given
by precomposition with (¢, ..., ¢) (this axiom was originally missing and the mistake
was found by T. Fiore) and
ye Homyx(m, n)

is the product, in @ (m), of the n-tuple

Vis ey VY € Homp (my 1)
with which it is identified by the fact that T is a theory. (We need to allow k#1
because in the example we are interested in, k = 2.)

Again, it is beneficial to write down the axioms of a 2-theory explicitly, by letting

O(w;wi, ..., wy) = Homg(uy (W1, ..., W), w)

for w;, we T(m)Xk where the n-tuple (wy, ..., w,) is identified with the corresponding
element of Homp«(m,n).

Let T be a theory, and let keN be a fixed number. Then, as remarked, for a
number meN and for any elements

Wi, oo, W, we T(m) ¥,
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we have a set
O(w;wi, ..., Wy).
There are the following operations on a 2-theory:

1. A unit 1€ @ (w; w) where we T(m)** is any element.
2. ®-composition

P OW W, o, W) X QW Wi, oo, Wip, ) X oo X O(Wpy Wat, ooy Wap,)
—>@(W; w11, ...,W,,p“)

where all w, w;, wj e T(m)**.

3. O-functoriality: for a map

{1, g {1 Lnd
a map

O(W;Wy(1), «oes Wiq)) = O(W; W1, oy W),

4. T-functoriality: for a map

AL my—= {1, . gt

a map
. xk. . .. xk xk
OW; Wiy ooy wy) > O Wy 7wy, o 7 wy).
5. T-substitution: For w;eT(k;), i=1,...,m, and v; = p*(wi;ui*, ..., u*
Pk, k), a map
Ow;wi, ..o, wy) > O(v;01, ..., 0p).

)7U:

The axioms (relations) required of a 2-theory are: associativity and unitality of
®-composition, associativity of @-functoriality, @-equivariance, associativity of
T-functoriality and T-substitution, 7-equivariance, and commutativity between 7-
substitution and 7-functoriality and @-composition and @-functoriality. The
meaning of these axioms is clear, and will not be given in detail here (since one
can always use the categorical definition for guidance). Similarly, it is clear what one

means by (strict) morphism
(0,7)-~(2,5),

where @ is a 2-theory fibered over 7 and X is a 2-theory fibered over S.
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Now consider a set I and a map
X : IF > Sets.
To such data there is assigned a 2-theory End(X) fibered over the theory End(I): let
O(W;wi,y ..y wy)
consist of the set of all possible simultaneous choices of maps
X(wi(ity eonyim)) X oo X X (W1, oovyim)) = X (Wi, o0y i), 9)

where J; range over elements of /. A structure of an algebra over the 2-theory ©
fibered over T is given by a morphism

(0, T)— (End(X), End(I)).

To define a lax algebra over (@,T), let I be a groupoid, and let X be a strict
Sfunctor from [ to groupoids. We have already defined Endj,(I). To define

Endig (X)(w;wiy .oy wy),

we take the set of simultaneous choices of functors (9) for each (ij)jel'", which are
strictly natural transformations (Where X (w;(iy, ...,iy)) is a functor in I"™ using the
strict functoriality of X, and the usual functoriality of Hom’s).

Now a lax algebra over (O, T') consists of a lax algebra I over T (i.e. in particular
amap ¢ : T — Endj,.(I)), a strict functor X from 7 to groupoids, and a map

O(w;wi, ..., wy) = Endy (X)) (@ (w); d(w1), ..., p(wy)) (10)

together with a natural coherence isomorphism for each operation 1,...,5 of a
2-theory, and a commutative coherence diagram for each relation among the
operations of a general 2-theory (see above for the list of such relations).

Note that, similarly as above, lax algebras over a 2-theory in this sense form a
2-category where every 2-morphism is an iso and lax limits exist. Therefore, we can
talk about stacks of (@, T')-algebras.

Note that it is possible to talk about (@, T')-algebras in an even more lax sense,
which, however, would lead us into the realm of 3-categories and 2-stacks. We shall
not pursue this here, although another remark in this direction will be made later.

The example is related to the following 2-theory @ fibered over T, which we will
call the 2-theory of commutative monoids with cancellation (CMC): T is the theory of
commutative monoids with an operation +. We set k = 2. The 2-theory © has three
generating operations, addition (or disjoint union)

+: Xa,c X Xb‘d_’Xa+hﬁc+d7
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unit
Oe X(),o

and cancellation (or gluing)

?: Xa+(?,b+c_’ ab-

(In this notation, X is a general CMC, i.e. algebra over the 2-theory of CMCs.) The
axioms are commutativity, associativity and unitality for 4, 0, transitivity for ?

?
Xa+c+d,b+c+d I Xa+c,b+c

L)

Xa.b

(note that the cancellation operation of ¢ 4+ d uses T-substitution) and distributivity
of 7 under +:

+
Xa+c‘b+c X Xc./ I Xa+c+c.b+c+f

+
Xap X Xeyf ——— Xavebtf

(similarly, note that in this diagram, 7-substitution is used).

Now we are not interested in any actual examples of CMCs, but we will be
interested in lax CMCs (LCMCs). In our basic example, 7 is the category of finite
sets and isomorphisms, where + is disjoint union, and X, is the set of all rigged
surfaces x together with bijections

{inbound boundary components of x}=x~a,

{outbound boundary components of x}=b.

As usual, morphisms of rigged surfaces are diffeomorphisms preserving complex
structure and boundary parametrizations. The reader can check that with this
definition, X, is a strict functor in a, b, and the other axioms of LCMC are also
easily verified.

Even further, we are interested in the fact that % has, in fact, the structure of a
stack of LCMCs. Here the Grothendieck topology is the category # of finite-
dimensional complex manifolds, where coverings are coverings by open subsets.
To describe a stack of LCMCs, note that we have to first describe the underlying
stack of lax T-algebras, in our case lax commutative monoids. This is simply the
stack of covering spaces: the set of sections over Be 4 is the set of all covering spaces
of B with locally finitely many sheets. Note that if we look at the map of
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Grothendieck topologies
i x> %,

this stack of covering spaces can be, in the appropriate sense, described as a universal
construction, which we may call

Q = lax i#S,

where S is the lax commutative monoid of finite sets (this notation has precise
meaning as lax adjoints in 2-categories, see [10]).

Now the set of sections of the stack of LCMCs % over Be 4 and over a pair s, ¢ of
covering spaces of B is the set of all holomorphic families x of rigged surfaces over B
together with a choice of isomorphisms between the covering spaces of B consisting
of inbound and outbound boundary components of x, and s, ¢, respectively. Again, it
is easily checked that @ with this structure is an LCMC, and this is the total structure
on % we are interested in.

Example. To illustrate these notions, we give at least a couple of the coherence
diagrams which the above formalism implies. Suppose, for example, we have three
rigged surfaces x, y, z where x has one inbound and one outbound boundary
component. Let X be obtained by gluing those two boundary components.
Analogously, we obtain rigged surfaces (xLly)", (xIIz)", etc. by gluing the same
two boundary components. (Note: we use XV in the same meaning as X the former
notation is preferable when X is a longer expression.) Then we have, for example, the
following two commutative coherence diagrams (the isos are coherence isos supplied
by the lax structure):

i () I (y I 2) .
(10 (y I 2))V (#)Oy) Oz (11)
((w}; 2)” - ((wy)li I12),
i (@) Oy i
y1I(2) (z1y)¥ (12)

IR
IR
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If the reader wishes to consider stacks, we may replace x, y, z by holomorphic
families of rigged surfaces.

While coherences (11) and (12) are certainly obvious geometrically, note that it is
by no means obvious how one would write down all such coherences naively.
It is also impossible to develop a model for ¥ where all the arrows of diagrams such
as (11), (12) would be identities: it is well known that even for the category of finite
sets, there is no consistent set theory where the operation II would be strictly
commutative associative unital. Thus, lax structures must be considered.

In the theory and 2-theory formalism, the trick of reducing all coherence diagrams
such as (11) and (12) to a uniform shape is to consider composite operations in the
theory or 2-theory. For example, in (11), we may consider composite operations
xylz, Xy, xIIyllz. We omit parentheses to distinguish these from compositions
of operations, as one must in a lax algebra. Thus, for example, the composite
operation XIIyIlz is to be distinguished from (X)IIyIlz which is the composition of
gluing followed by ?LI71I?. Now from this point of view, diagram (11) is broken up
into 2-theory coherence diagrams

ylz) () LUylz

)/gu(\; \

(z 1 (y I 2))V Myllz () Iy)Oz
(z Uyl z)Y (zOy)V 2 (ZUy) 2
(zOy) T 2)Y (z I y)V) I 2.

(13)

All squares in (13) are coherence diagrams corresponding to the associativity of
composition in 2-theories. Diagram (12) can be broken up analogously, but this
time we would also need to use 2-theory coherence diagrams coming from the
2r-equivariance of 2-theories.

Finally, we would like to point out that while it is possible to follow these
examples, it is also apparent that in diagram (13), our notation was already
becoming awkward. This is due to the fact that 7 was just an abbreviation for a
whole system of operations, indexed by the incoming and outgoing boundary
components to be glued. The notion of 2-theory is precisely designed to capture such
indexing of operations. Therefore, these examples should help explain why what may
have seemed as esoteric definitions above are in fact abstractions forced by the
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structure present: any rigorous axiomatization of the structure of % must include
these, or equivalent, abstractions.

There is one generalization of ¥ which will be also useful. Let K be some finite set.
Then instead of the groupoid S of sets, we can consider the groupoid Sk of finite sets
over K, i.e. whose objects are maps

a—-K

where «a is a finite set, and maps are maps ¢ — b which commute with the maps to K.
We think of K as a set of labels. Then we can consider, in the same sense as above,
the stack over #

Ok = lax iy Sk, (14)

or, explicitly, the stack of covering spaces with locally finitely many sheets, labelled
locally constantly by elements of K. Then we denote by %k the fiber product
of stacks

% xgx0 (Ok % Qk),

i.e. stack of LCMCs, consisting of (families of) rigged surfaces with boundary
components labelled by elements of K.

It is tempting to go even further and consider the case when K would be a
groupoid; such structures would be useful in encoding conformal field-like theories
corresponding to vertex intertwining algebras [23]. However, note that then sets over
K form a 2-category. The appropriate fully lax analogue of (14) gives, as sections
over an object B of 4, the set of all gerbes on a covering space of B. Gerbes, however,
do not form a stack, but rather a 2-stack, which is the right analogue of stack over a
3-category (whose objects are 2-categories). While this is an interesting direction, we
shall not pursue it any further here.

We now proceed to use the notion of LCMC to define conformal field theory. Let
Hy, ..., A, be complex (separable) Hilbert spaces. Then on #| ® --- ® #,, there is
a natural inner product

<al®"'®ambl®"'®bn> = <a17bl><a2;b2>'“ <an7bn>'

The Hilbert completion of this inner product space is called the Hilbert tensor
product

HN® - @Ay (15)

Now an element of (15) is called frace class if there exist unit vectors e; € # where
j=1,...,n and i runs through some countable indexing set / such that

x=>" plen® - ®ein)

iel
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and

Z | < o0

iel
The vector subspace of (15) of vectors of trace class will be denoted by
AR RA . (16)
Note that (16) is not a Hilbert space. We have, however, canonical maps
(O RA ) (A1 B RA ) > AR RA g
and, if #* denotes the dual Hilbert space to a complex Hilbert space #,
tr: ARA KA K- RA > A K- KA,

This allows us to define a particular example of stack of LCMCs based on s, which
we will call #. The underlying stack of lax commutative monoids (7-algebras) is Q.
Now let Be#. Let s, t be sections of the stack Q over B, i.e. covering spaces of B
with finitely many sheets. Then we have an infinite-dimensional holomorphic bundle
over B

()R (17)

What we mean by that is that there is a well defined sheaf of holomorphic sections of
(17) (note that it suffices to understand the case when s, ¢ are constant covering
spaces, which is obvious). Now a section of # over a pair of sections s, ¢ of Q is
a global section of (17) over b; the only automorphisms of these sections cover-
ing Id, x Id, are identities. The operation +, 7 are given by the operations X, #r
(see above).

We can also define a variation of this LCMC for the case of labels indexed over a
finite set K. We need a collection of Hilbert spaces

Hy = {#r | kek.

Then we shall define a stack of LCMCs # . The underlying stack of 7-algebras
(commutative monoids) is Qk. Let s, ¢ be sections of Qg over Be 4. The place of (17)
is taken by

()W RA. (18)

By the sheaf of holomorphic section of (18) when B is a point we mean that
X -powers of ' (or #}) for each label k€ K are taken according to the number of
points of I'(z) (resp. I'(s)); when s and ¢ are constant covering spaces B, the space
of sections of (18) is simply the set of holomorphically varied elements of the spaces
of sections over points of B (which are identified). This is generalized to the case of
general s, ¢ in the obvious way (using functoriality with respect to permutations of
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coordinates). As above, the only automorphisms of these sections covering Id, x Id;
are identities.

Now by an abstract chiral conformal field theory (CFT) on a stack of LCMCs &
with underlying stack of commutative monoids Q we mean a Hilbert space #
together with a map of stacks of LCMCs

b D->H (19)
over the map of underlying stacks of commutative monoids
Id: Q- 0. (20)

More generally, by an abstract CFT with set of labels K we mean a stack of LCMCs
with underlying stack of commutative monoids Qg, a collection of Hilbert spaces
H g and a map of stacks of LCMCs

b T Ay (21)
over the map of underlying stacks of commutative monoids
Id: Qg — Ok. (22)

Since we did not specify above explicitly what we mean by a morphism of stacks of
LCMCs, we should say that here we are referring to strict morphisms. Note,
however, that in the present cases, there is no ambiguity, since the target has only
one morphism over the identity on each section of the underlying stack over an
object Be 4.

For our purposes, however, we should like to be much more specific about the
stack of LCMCs & which is the source of maps (19) and (21). We shall start with the
notion of C*-central extension (or, equivalently, one-dimensional modular functor) on
an LCMC Z. This is a strict morphism of stacks of LCMCs

VD9 (23)

over (20) with the following additional structure: For each object B of 4, and each
pair of sections s, ¢t of Q over B, and each section o of & over s,t, B, B'— B,

v (o) (24)

with varying B’ is the space of sections of a complex holomorphic line bundle over B.
Furthermore, functoriality maps supplied by the structure of stack of LCMCs on D
are linear maps on these holomorphic line bundles. Regarding the operation +, we
require that the map induced by +

v (ep) x ¥ (Blp) =y (e + Bl ) (25)
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be a bilinear map, which induces an isomorphism of holomorphic line bundles

U (o) @, ¥ (Blp) =¥ (@ + B)lp) (26)

(Op 1s the holomorphic structure sheaf on B).

Regarding the operation 7, we simply require that if o is a section of Z over s + u,
t + u, B where u is another section of Q over B, and 4 is the section over s, ¢, B which

is obtained by applying the operation ? to o, then the map of holomorphic line
bundles coming from LCMC structure

Y (o) =9 (dlg) (27)

(B> B) be an isomorphism of holomorphic line bundles.
By a chiral CFT with one-dimensional modular functor over & we shall mean a CFT

¢: D> (28)

where  is a C*-central extension of & which has the property that ¢ is a linear map
on the spaces of sections (24).

This concept is easily generalized to CFTs with general modular functors: For a
finite set of labels K, and a stack of LCMCs 2 with underlying stack of commutative
monoids Q, let

Dk =2 Xoxo (Ok *x Qk)

be the corresponding stack of LCMCs with underlying stack of commutative
monoids Q. Then a modular functor Zx over Z is a strict morphisms of LCMCs

QK_’@K

over (22) with the following additional structure: For each object B of %, and each
pair of sections s, ¢ of Qg over B, and each section o of Y over s,t, B, B — B, (24)
with varying B is the space of sections of a complex holomorphic (finite-
dimensional) bundle over B. Furthermore, functoriality maps supplied by the
structure of stack of LCMCs on Dk are linear maps on these holomorphic
bundles. Regarding the operation +, we require that map (25) induced by + be
a bilinear map, which induces an isomorphism of holomorphic bundles (26),
as before.

The operation 7 is slightly more complicated in the present general modular
functor case: suppose u is a section of Q which is a constant covering space, f§ is a
section over s, t, B, and the image of 8, s, ¢ in & (resp. Q) is y, resp. p,r. Now assume
that o is a section of & over p + u, r + u, B such that y is obtained from o by the
gluing operation 7. Assume further that for each lift v of u to Qk, a(v) is the
section of Yk over s+ v, t+ v, B such that f is obtained from «(v) by the gluing

operation 7 (note that because of our definition of Z, a(v) is necessarily uniquely
determined). Then we require that the map of holomorphic line bundles coming from
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LCMC structure

D Y (o(v) p) =¥ (Blg) (29)

(B' - B) is an isomorphism of holomorphic bundles, where the sum runs over all lifts
v of u to Q.
By a chiral CFT with modular functor over g we mean a CFT

¢:Dg— Ay (30)
which has the property that ¢ is a linear map on the spaces of sections (24). If we set
9=,

this is the rigorous version of CFT following the outline in [36]. With the caveat that
this notion does not capture super-CFTs or twisted CFTs (field-theoretic notions
corresponding to intertwining vertex algebras), this definition is from many points of
view the correct one.

The authors have been asked what is the improvement of the present definition
over the definition of Segal [36]. The answer is that this is the wrong question: the
concepts we describe are (up to some possible variations some of which will be
discussed below) precisely what one gets when including all the desired features
outlined in [36] and all the details not given in [36]. It seems meaningless to consider
notions where some of these axioms would be omitted (for example, a notion of
modular functor M where a coherence isomorphism M, =~ M,® M, would be
required, but the corresponding coherence diagrams would not). Therefore, rather
than improving on the definition [36], what we claim to have done is just writing the
whole definition down in detail.

We remark that while it is important for foundational reasons to have the full
force of maps (28) and (30), the stack notation is awkward, and it is usually sufficient
to refer to fibers over a point. Thus, e.g. in (28), for a rigged surface X, we usually
speak simply of the element of

R A*® ®t H
given by (28) (the products are over inbound resp. outbound boundary components
of X). In this notation, the element is usually denoted by Uy and call the vacuum
vector or field operator, depending on context.

There are several reasons why we do not precisely follow this definition here, and
rather introduce several modifications. The main reason is that there are at the
present time still very few examples of CFTs in which the full structure of CFT with
modular functor, as defined above, can be proven rigorously. Still unknown cases
include for example the completed Moonshine module CFT and the higher level
chiral WZW models (not discussed here). A CFT associated with an even lattice L is
now known. However, the general construction of lattice CFTs requires a detailed
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discussion of the labels which is beyond the scope of the present paper and will be
described elsewhere. In this paper, we will only describe the lattice CFT in the case of
even unimodular lattice L (see the next section) and use a weaker notion for a general
lattice. A similar weaker structure for the completed Moonshine module will be
discussed in Section 4.

However, there is another, less pragmatic reason why we do not consider the full
CFT structures with modular functor: in our construction of elliptic cohomology
theory (see Section 5 below), it is apparent that only modularity with respect to the
genus 1 mapping class group (=modular group) is relevant to the modular in-
variance of our theory. Thus, it makes perfect sense to restrict our consideration to
rigged surfaces of genus < 1. This gives field-theoretic concepts corresponding to
rational vertex operator algebras (see next section for more details). Also, although in
this paper we focused, following [36], on a “‘stringy” approach to CFT, in physics
however there is an alternate quantum field theory approach using Schwinger
functions, which can be considered entirely one worldsheet at a time.

Even at genus <1, however, modular functor considerations involve labels, which
present an additional complication; since the main purpose of this paper is to present
some examples of rigorously defined elliptic cohomology theories based on CFT, we
seek to define alternative concepts of CFT on rigged surfaces of genus <1, which do
not require labels. These considerations lead to the following definitions:

Let neN. Then by %, we mean the substack of ¥ whose section over Be 4, s,t
sections of Q over B, consist of all those families of rigged surfaces over B whose
fiber over each point has connected components of genus <# (the genus of a rigged
surface x with boundary is the genus of the closed surface obtained by gluing disks to
the boundary components of x). Let, also, ¢ denote the substack of % consisting
of families of rigged surfaces whose each connected component has exactly one
outbound boundary component, and let %, denote the substack of % consisting of
families of rigged surfaces whose each connected component of genus i has exactly
1 — i outbound boundary components, i = 0, I. Note that, curiously, | is actually
an LCMC. On the other hand,

Cn, Gy (31)

are not LCMCs, but the operation + (disjoint union) is still well defined on (31), and
the operation 7 is partially defined by the operation %, defined precisely when it
produces a section of the respective stack (31).

By a stack of partial LCMCs over (31) we shall mean a map ¢ of stacks over Q

from a Z to (31) where 2 has an operation + and a partial operation ? defined if
and only it is defined in the target of ¢, and satisfies all the axioms of LCMC we
defined. Now a partial CFT over a stack of partial LCMCs Z over (31) is a map
9 — A which satisfies the axioms of map of LCMCs, whenever operations in the
source are defined. Similarly, one defines the notions of one-dimensional modular
Sfunctor on a stack of partial LCMCs over (31) and partial CFT with one-dimensional
modular functor on a stack of partial LCMCs over (31).
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We shall be only concerned with n=0,1 here. By a 0-CFT (resp. directed 0-CFT)
we shall mean a partial CFT with one-dimensional modular functor over % (resp.
%¢). It may seem natural to define a 1-CFT as a partial CFT with one-dimensional
modular functor over %, but we want to be more general than that, to allow for
modular groups I' which are subgroups of PSL,(Z) of finite index.

To that end, consider the 2-categories

Ci, Co, Cf, Cf (32)
whose objects are stacks of partial LCMCs over
€\, 60,%],%, (33)

(the word ‘partial’ does not apply in the penultimate case). The morphisms
of (32) are lax morphisms of stacks of partial LCMCs. Now consider the forgetful
functors

U:Ci»Cy, U':Cf->C. (34)
These functors have lax left adjoints
L:Cy—»Cy, L*Y:Cj-Cf, (35)
and we are going to be interested in the stack of partial LCMCs over 4
25 = L(%)), (36)
and the stack of LCMCs over 4
7%, = L (). (37)

Stacks (36) and (37) are not difficult to describe. Note that it suffices to
describe sections over s, ¢, B where B is an object of %4 and s, ¢t are constant
sections of Q over B. Now let x be a section of €, over s, t, B. Clearly, it suffices
to consider the case when the fibers of x over each point of B is connected and of
genus 1. Then the sections of &, over x are equivalence classes of sections y of €
over s+ e, t + e where e is a l-element set, and y = x; two such choices y, ) are
considered equivalent if over each point ¢ of B, the images of the glued boundary
component from y, y' in the elliptic curve E obtained from gluing disks to the
boundary components of the restriction of x to ¢ are homotopic when parametrized
suitably. Eq. (37) can be constructed similarly. We see therefore that the fibers of the
forgetful maps

Dy >, (38)

i (39)
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over sections x of the target over constant sections s, ¢ of Q over B are in canonical
bijective correspondence to the set of cosets

PSIL,(2)/Z. (40)
Here the subgroup Z< PSL,(Z) consists of modular transformations
T—T+n, nez.

Now let I' be a subgroup of PSL,(Z) of finite index, containing this Z. Then there is
a well defined stack of partial LCMCs over %, (resp. stack of LCMCs over %)
which we could denote as

Dy =TT,
9% =9 T.

In the above situation, i.e. over a section x of ; (resp. ¢|) over a pair of constant
sections s, ¢ of Q over B, the sections are the set of orbits of (40) by the action of
I'cZ (i.e. these are single, not double cosets).

Now we are ready for our main definition: By a 1-CFT with modularity group T’
(resp. a directed 1-CFT with modularity group I') we shall mean a partial CFT with
one-dimensional modular functor on % (resp. CFT with one-dimensional modular
functor on Z})).

Remark 1. From a physical point of view, Moore and Seiberg [29] proved a result
which, in the present language, says roughly that every 1-CFT gives rise to a CFT.
However, this result has not yet been checked in the rigorous mathematical
framework, and so, at the moment, from a mathematical point of view is still
conjectural.

Remark 2. We have so far mentioned variants which are weaker than the original
full concept of CFT defined above. However, one can also impose additional
conditions on a CFT. Notably, these include reality conditions (i.e. requiring that the
Hilbert space #, or the system #g, have a suitable real form) and boundary
convergence conditions for limit worldsheets. In this paper, we shall find one
such (very mild) condition useful: Considering the standard annuli A4, =
{zeC||lql|<||z]|<1} with the standard boundary parametrizations z and gz,
these annuli specify an action of the semigroup C*, = {zeC|0<]||z[|< 1} (under
multiplication). One can assume that this extends to a continuous action of C_; by
bounded operators.

This technical condition clearly can be formulated for a 0-CFT (hence also a
1- CFT), and we shall assume it for the rest of this paper.

At least for motivational reasons, it is beneficial to clarify the relationship between
the concepts we introduced and vertex operator algebras (VOAs), which is the same
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as conformal vertex algebras, see [11,12]. First of all, the nature of the relationship is
that both concepts are different mathematical models of related physical structures;
neither structure is in general known to imply presence of the other. Thus, it is
appropriate to speak in terms of analogy, although sometimes, a more direct
connection exists. A vertex algebra is a non-negatively graded complex vector space

V= @ Vn; (41)

neN

where the degree is called weight, together with series called vertex operators

Y(v,2) = v,z " e Hom(V, V)[[z,2]]. (42)

neZ

The operator v, : V' — V is of weight m — n — 1 if ve V,,,. This conforms with the older
(but still used) indexing [11], the newer indexing [12] is shifted. Operators (42) are, of
course, required to obey certain axioms (see [11,12]). This concept is analogous to
our concept of directed 0-CFT. More concretely, let A, : " — V" be the linear operator
given by multiplication by 2" on V,. Then given a ze C with

0<|izll<t,

we can choose 1eC*, neC* such that the disks AD, uD + z are disjoint and
contained in the interior of D. Then let 4;, . be the rigged surface in C whose
parametrized boundary components are S', 2S', uS' + z. Then we may hope that
there exists a directed 0-CFT

%CV:H | &

such that, if we rewrite (42), for a given z, (assuming the series converges), as a map
Y:VV-V, (43)

then
Y (Awu, pv) = UA/Z_M':(LI@U). (44)

In that case, the term vertex operator algebra refers to the presence of a certain
element w e V; such that the vertex operator associated with w encodes (infinitesimal)
boundary reparametrizations. We refer the reader to [2,11,22] for details. Anyway, in
this case, we may refer to the directed 0-CFT 5 as a Hilbert completion of the V(O)A
V'; however, note that the Hilbert structure on J# plays a marginal role, and, in fact,
can often be varied (for example in the case of bc-systems Segal [26,36]).
Analogously, the axioms of V(O)A call for no inner product on V. Thus, such
“Hilbert completion” is not a canonical operation, since it is not always defined, and
if it is defined, is not unique. On the other hand, however, note that if we have an
directed 0-CFT, assuming that for standard annuli 4, (i.e. submanifolds of C where
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the parametrized boundary components are S' and ¢S') we have

lim Uy, = Idy, (45)
q—>1

we can always set V, to be the subspace of # on which Uy, acts by ¢". We may

then use (41) to define V. Assume each V), is finite dimensional. We have # eV,
so we may use (44) to define (43). Further, the assumption we made about
holomorphy shows that (43) can be expanded to the form (42). Thus, a directed
0-CFT with some mild assumptions does always give rise to a VOA. Under
such assumptions, similarly a directed 1-CFT gives rise to a rational VOA in the
sense of [9], [47].

One important point in this discussion is the ‘central charge’. A VOA is, in
particular, a representation of the universal central extension of the Lie algebra
Vect(S"). of polynomial complex vector fields on S': such representations have an
important invariant, called central charge, and denoted by c¢ [10]. Accordingly,
assuming (45), a directed 0-CFT is also, in particular, a representation of the group
Diff +(S") of analytic orientation-preserving diffeomorphisms of S!, which also has
an invariant called central charge. We shall use this invariant below. See [26,33,36],
for more details and further relevant discussion.

We may ask what property of vertex algebra corresponds to a 0-CFT (not
directed). Note that in such notion, we must have operators corresponding
to reversing the orientations of boundary components of A4, , .. We shall consider
the “infinitesimally thick” annulus 4_ whose both boundary components are S',
the “outside one” parametrized by z, while the “inside one” parametrized by 1/z
(It is appropriate to think of 4_ as the limit at g—1 of the annuli 4,_ with
boundary components parametrized by z and ¢/z, ze S'.). Then we assume there is
an operator in # — #* associated to A_. This corresponds to a bilinear form B
on the complex vector space V. The annulus 4,_ has an involution auto-
morphism reversing its boundary components. Taking the limit ¢— 1 leads to the
assumption that

B is a non-degenerate symmetric bilinear form. (46)

To find the appropriate condition on the symmetric bilinear form } which
correspond to a directed 0-CFT extending to a 0-CPT (not directed), we consider the
fact that if, in a genus 0 connected rigged surface X with 2 inbound and 1 outbound
boundary component we reverse the parametrization of one inbound and one
outbound boundary component (by composing with 1/z:S'—S'"), we obtain a
rigged surface of the same kind (i.e. an element of the same connected component of
the moduli space).

The appropriate model case of X to consider in the case of VOAs is A4, .
However, we imagine that A, u—1 (so we, of course, no longer have an actual
surface, although we could consider this as a surface with tubes in the sense of [22]).
The two “boundary components’ with identical images are parametrized by Ids:, the
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remaining boundary component is parametrized by

t—z+t. (47)
If we apply the transformation
z—1/z,
(47) becomes
o (48)
Our condition is that the operator
Y'(v,2) (49)

obtained by composing with ve ¥}, via the “surface” with two boundary components
Idg and a third boundary component (48) (where we insert v) be B-adjoint to

Y(z,v). (50)

To calculate operator (49) in vertex operator algebra terms, we note that

1 (—1/2)
el e ey ey .
This gives
Y'(v,z) = (—22)”Y(€ZL1U,§>. (52)

Thus, our condition requires that (52) be B-adjoint to (50). Vertex operator algebras
satisfying this condition will be called reflexive. Note that in (52), the right-hand side
converges (is a sum of finitely many factors, since L; has weight —1). Note that this
condition cannot quite be phrased in the language of VAs, since, at least, one need
an L; which satisfies the usual Lie relations (of s/,C) with Ly, L_;. (Note that this
makes every VOA, or even more generally any Virasoro algebra representation, an
shC-representation, but that this representation on a VOA can never be
exponentiated to a Lie algebra representation, since if it did, multiplication by

(51 o)
-1 0
would reverse weights.)

Note also that if
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is the conformal vector, then
Llw = 0,

so reflexivity implies that L, is B-adjoint to L_,,.

Note, finally, that the notion of reflexivity is implicitly introduced in [2, p. 417],
where it is also remarked that VOAs associated with lattices and the Moonshine
module are reflexive. In fact, the condition discussed in [2] is somewhat stronger:
suppose in addition to reflexivity that V, @, B, Y(v,z) are all defined over R.
Assuming V' has this property, and, in addition, B is positive-definite, we call the
VOA V reflection-positive.

The corresponding condition on 0-CFT is also called reflection-positivity. It can be
phrased on sections over a point, so the stack language is not needed. The condition
simply says that if X is the opposite rigged surface to a rigged surface X (i.e. has
opposite complex structure and the same boundary parametrizations), then

U)_(7 UX
be adjoint. This means that
¢(Uz) = Uy

where, for a Hilbert space K (in our case a Hilbert tensor product of copies of H
and HY),

¢:K—>K*

is the antiisomorphism given by the inner product.
Note that in the case of a reflection-positive VOA V', V' has a positive-definite
inner product

Cu,v) = B(u, 7),

so we may discuss the canonical Hilbert completion # of V. Further, there is a
canonical candidate for field operators Uy on # coming from the VOA structure,
and the question of whether s is a 0-CFT is thus a question of convergence.

A subtle point [2, p. 417] is that VOAs associated with even lattices are not
reflection-positive, because the form B with respect to which they are reflexive is not
positive-definite; it is, in particular, not the “obvious” form. See next section for a more
detailed discussion. On the other hand, the Moonshine module is reflection-positive.

3. Examples of 1-CFTs: lattice theories

Let L be an even lattice, i.e. a free abelian group with a Z-valued quadratic form
such that {x,x) is even for every xe L. We shall denote

T=L¢/L.
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By T, we denote the group of analytic maps S' — T with the topology of uniform
convergence of all derivatives. For a rigged surface X, we set

nX:IInl

X
(the product is over all boundary components of X). We also denote by
Ty
the group of holomorphic maps X — 7. We have an map
Tx— Tyx

(by restriction), which is an embedding if X has no closed connected components.
We consider the topology on Ty given by restriction.
We will start by constructing the following data:

1. A central extension T of T by C* together with a specific lift of the canonical
action of the group Diff S of analytic oriented diffeomorphisms of S! on T to
an action on T such that, moreover, the central extension induced by an
orientation-reversing diffeomorphism of S' is opposite.

2. If we denote by Tyy the induced (product) C*-central extension of Tyy, a
canonical splitting sy of the induced C*-central extension Ty of Ty compatible
with gluing in the sense that when X is obtained from X by gluing and f :X->Tis
a holomorphic function which pulls back to a holomorphic function f: X - T,

then sy( f) is a restriction of sx(f).

Extracting data (1) and (2) from an even lattice L involves some subtle points, and
is not completely canonical. We follow [36], although the truth is that the authors of
the present paper could not locate a version of [36] complete enough to treat all the
details. Nevertheless, one must assume that all of the information presented in this
section is known to the author of [36].

One begins by choosing a bilinear form

b:LxL—>Z/2
which satisfies
b(x,x) =3{x,x) mod 2.
Note that this implied (by considering b(x + y))

b(x,y) +b(y,x) = {x,y) mod 2. (53)



352 P. Hu, I. Kriz | Advances in Mathematics 189 (2004) 325-412

In the sequel, let

exp(z) = ™.

Let, for a function f:S' > T, fbe a lift of f to Lc, i.e. a function

fl [0, 1]—>L@

such that the following diagram commutes:

0,1] = ¢

empl lproj.

Sl ——T.

!

We set AJ;:f(l) —£(0). Then the group T, of all such pairs (f.f) is a universal
covering of Tgi. Then a C*-valued 2-cocycle on T, is given by

()= ewy( f 7da- 2700+ b4z 4. (54)

To prove (1), we note that the restriction of ¢ to the subgroup Lc Ty, of constant
functions with values in L is 0, so the corresponding C*-central extension TSI of T él

specified by (54) splits canonically when restricted to L. Thus, we get a canonical
homomorphism of groups

LcT. (55)
Note carefully that we have
c(fik) = c(k,f) for keL,
so (55) is a normal subgroup. We then set
Tg:=Tgu/L.

The Diff (S")-action stated in (1) is then induced by using the obvious invariance of
the cocycle ¢ under the universal cover of Diff *(S'), and projecting the resulting
action down to T'qi (using the fact that L is an even lattice).

So far, the summand %b(zlj;7 44) in (54) played no role: the discussion of (1)
would be equally valid without it. The situation is, however, different in the
discussion of (2).

To begin this discussion, select a universal cover

T:X->X
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with a fundamental domain X’. X’ can be chosen by selecting a simple analytic
curve: [0, 1] - X such that Im(c)OX consists of a collection of points which are
images of 1 under the boundary component parametrizations. We can then demand

n: interior(X') S X — (0X UIm(c)).

Note carefully two details: First, orientation of X’ determines orientation of the
parametrizations of the connected components of 9X. Reversal of orientation of X’
will reverse the orientations of all the parametrizations of connected components of
0X, but any subset of these orientations may be separately reversed by making a
different selection of c.

The other point is that a selection of ¢ determines an order of the connected
components of 9X. Call these boundary components, in this order,

Cly.eeey e

Now let fe Ty, let f be a lift to the group Ty of holomorphic maps X’ —»C. We
would like to compare

(/. 9)

ews(f ) (56)

which vanishes by Stokes’ theorem (as d(fdg) =0). Let f; :ﬁ One then has

exp%(fgx/ fdg) = exp%(i (ﬁf;dg} - Af;g;(O)) + Af;Ag,) (57)

1<j

to

Since the left-hand side vanishes, comparing (57) and (54) gives that

c(fig) = exp= (Z A:4,, + Z b(4 ) (58)

i<j

Notice two points. First,

Second,

(/,9) = ¢(g.f); (59)
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as, by (53),

We know that a symmetric 2-cocycle with 2-divisible kernel is a coboundary (of

a = 1c(x,x)), however, for our purposes, we need a canonical choice of a (subject to

the choices we made thus far).
To this end, choose a lift

h:LxL—Z
of b. We see that
1~ 1
a;= exp Z} 7045 47) = 545,455 ), (60)
which makes the correct choice of splitting
Tx—Tox
fe(f,ap. (61)

Obviously, this is independent of the choice of f Note, however, that we can choose
b so that a = 0: For any choice of b,

q(x,y) = b(x,) + b(y,x) — {x,y) €2Z,

so we may replace b by

b(x,y) = 34(x,y)
to make the difference 0. The choice of the lift b of b is still not canonical (it can be
altered by adding any antisymmetric form S(x,y) on Z x Z), but at this point, no
data of our theory depend on it.

Now the recipe for constructing a 0-CFT from data (1), (2) is essentially formal
(as pointed out in [36]). However, certain details must still be handled with care.
First, the Hilbert space # is the basic representation of Tqi which is reflection
positive, or, in other words, is a complexification of the basic unitary representation
of @(S ' Lg/L). (We speak here of reflection-positivity of the action of Tgi; the
reader must distinguish it carefully from any reflection-positivity of CFT structure.)
Note also the usual caveat that only the real subgroup of Tsi acts by unitary (hence
bounded) operators on .#. General elements of 7’1 send only a dense subspace of #
to . The whole story is told in substantial detail in [33], but we can summarize it as
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follows: first, the central extension T'si splits canonically on T (D is the unit disk),
since that is a special case of (2). Thus, we obtain a canonical representation

Tp=C*x Tp—C* (62)

which is Id on the first factor and trivial on the second. Roughly speaking, one can
think of # as the induced representation from (62) via the embedding Tp < T.
However, one must be more precise about the Hilbert space structure.

This is best done as follows: Consider the subgroup T of functions of degree 0,

and the restricted central extension Tgi,. Note that there is a canonical short
exact sequence

1-C > T 9>V -1,

where the kernel consists of constant functions, and V' is a vector space. Further,
on V, the cocycle takes the simple and completely canonical form

f.9) = § 7

thus giving the pulled back central extension V, which is a Heisenberg group.

Now there is a completely rigorous and developed theory of Heisenberg
representations ([33, 9.5], which is an infinite-dimensional analogue of [31]). The
essential point is that V is identified with the space of analytic functions

fiS'sLe (63)

with
f=0. (64)
Sl

We may therefore consider the real subspace Vi of analytic functions
‘f : Sl - LR

with (64). This real structure gives a complex conjugation, and the choice of isotropic

subspace 4 <V consisting of all functions holomorphically extending to D uniquely

determines a Heisenberg representation # which is a Hilbert space (see [33, 9.5]).
The Hilbert space # then can be defined as

HoRHL),
and as a representation is

ind S (Ho).

sto
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(This has a clear meaning, since the kernel of the extension over which we are
inducing is the discrete group L.)

To define the 0-CFT structure, consider a rigged surface X with no closed
connected components. Assume first that all » boundary components are oriented
outbound. (We shall specify later what to do in case of reversal of orientation.) Then
we have an identification

T =] Ts.
i=1

and therefore a representation of Tyy on

Rr=

. (65)

Note that (65) is L-graded by sum of degrees of factors. Let #y be the subspace
of (65) consisting of all elements of degree 0 invariant under the action of Ty
(see property (2)). (We will see that the condition limiting the degree to 0, is, in fact,
not needed, since no elements other than in degree 0 can be invariant; this is,
however, not important.)

Proposition 1. If X is a connected rigged surface of genus 0, then #x is a one-
dimensional complex vector space, and moreover consists of trace-class elements.

Granting this for the moment, /#y defines the C*-central extension %, and the
embedding of #y into (65) defines the 0-CFT supported on %,. To make that
complete, we must discuss the case when some boundary components of X are
oriented inbound. To this end, define an involution a: Tq1 — T'qi by

a(f)(z) =f(1/z2). (66)

Then one notices that (on universal covers) the resulting cocycle is the exact
reciprocal of cocycle (54). This means that the two central extensions are opposite
(their product, pushed to the same kernel, canonically splits). This gives an
isomorphism

H= A (67)

as the basic representations with opposite cocycles are dual Hilbert spaces. Now
simply reverse the parametrization of any inbound boundary components of X by
(66), find the ray # 'y, and apply iso (67) on factors (65) which correspond to
boundary components with reversed parametrizations. The desired behaviour of J# x
under gluing now follows from Properties 1 and 2 (see the beginning of this section).
It remains to be shown that the 0-CFT we have defined extends to a 1-CFT, but in
view of [47], this follows from the results of [8]; some discussion of modularity of the
lattice 0-CFTs will be carried out below in Section 6 in connection with 0-series.
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To relate this to the discussion in [2, p. 417] regarding reflection-positivity, it is
appropriate to discuss, in more detail, the symmetric bilinear form B associated with
isomorphism (67), and specifically compare it with the ““standard” bilinear form B.

First of all, to define By, we point out that # has a real structure: it suffices to
specify that on . Recall that we have

Ho = Sym(A), (68)

where A4 is the space of holomorphic functions f : D— L¢ with average 0. Then let Ag
be the real vector subspace of A consisting of functions which map real numbers to
L. This induces the desired real structure on (68). As usual, we obtain an associated
symmetric bilinear form

B()()C,y) = <X7}7>.

(We make the convention that inner products on complex inner product spaces are
linear in first coordinate and antilinear in second.) Note that By coincides with the
inner product when restricted to #'r, and hence is positive-definite.

Now recall that the map

O0:ft—>—f
on Ty, preserves our cocycle, and thus defines an involution automorphism
0:Tg—>Ts.
Consequently, we obtain an automorphism
Oo: H —H
defined up to scalar multiple; we normalize it by requiring
0o(1) =1,
where 1 is the vacuum vector. Then 6, is an involution. Now we have

Lemma 2. Let B be the symmetric bilinear form on # associated with isomorphism
(67). Then

B(x,y) = Bo(x,0py).

Proof. We shall confine ourselves to #; the discussion of the general degrees is then
standard and we omit it.

On ), the advantage is that our discussion becomes restricted to Heisenberg
groups, and the choice of lattice L does not matter. We may restrict attention to
L = 7. In fact, let us study iso (67). First, recall the iso

a:fsl%’fsl
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by (66). This reverses the cocycle, and therefore acts by 1/z on the kernel of the
central extension 7T'si. Composing the representation # with a gives a representation
W of T of level —1; another representation of the same group of level —1 is the
dual #* of the representation .#. Then classification of representations of T'si shows
that we must have an iso of representations

W=,

Up to scalar multiple, this is (67), which we use to define B. We can normalize the
iso by

B(1,1)=1.

Now we study the dual representation #*: for fe#*, a dual representation in
general acts by

g(f)(x) =f (g7 (%)),

so in our case, for ge A4,

We can, however, take
9(?) = Bo(?,y)
for some ye #y. Then using (69), our statement reduces to
By(g(x),») = Bo(x,a(g)(»))- (70)
In turn, it suffices to show this for g€ A, where (70) coincides with
Cg(x),y> =<x,30)>,

(?: A— A), which is the reflection-positivity (unitarity) formula for the Heisenberg
representation. [J

Proof of Proposition 1. The argument that
dim(A# x)<1 (71)

is carried out in [33, Section 8.11]: If X has n boundary components, the double
coset space

TX\TaX/ﬁ Tp (72)

i=1
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is the moduli space of holomorphic 7T-bundles on P', which is discrete and
isomorphic to L (by degree). Hence, Ty acts transitively on

(Tax/ﬁ TD) ) (73)

the part of degree 0. Now (65) can be interpreted as a certain space of functions on
the oco-dimensional complex manifold (73) (a suitable subspace of the space of
holomorphic functions). In any case, a Ty-invariant holomorphic function on (73) is
determined by its value on a single point, hence (71). (In fact, we see that on the
bottom weight vector in non-zero degrees the action of 7 < Ty is non-trivial, which is
why the degree 0 condition is unnecessary.)

To show that

dim(A y) =1, (74)

we grade (65) by L", considering degrees of all individual factors. Let

> ki=0}.

We shall construct a non-zero element xe #y as

X = Z Xk, (75)

keL!

Lg:{(zl,...%)

where deg(x;) = k. From this point of view, it suffices to construct xp, as we
may set

Xk = fr(x0),

where f; € Ty is any holomorphic function of degree k (although we then must show
that sum (75) converges and is trace class).

But now xy does not depend on the lattice L, and can be obtained by a method
called boson-fermion correspondence. This means that the 0-CFT 4 is isomorphic to
the Hilbert tensor product of dim(L) copies of the degree 0 part 7 of the bc-system
Z associated with the space of 1/2-forms Ql/z(Sl7 C). The CFT & is defined on a
C*-central extension of the stack of LCMCs @i, of rigged surfaces with spin, and is
treated in detail in [26]. At any rate, what is important for us is only that its degree 0
part Z# is a 0-CFT, and the tensor product of dim(L) copies of its vacuum vector
over X is the element xy we seek. The required properties of x( easily follow from
properties of the boson-fermion correspondence (cf. [33]).

To be a little more specific, recall [33] that the projective representation of Tg
on # =% is induced by the action of Ty on GrresQl/z(Sl,C). Thus, it is obvious
that the vacuum vector X is invariant under that projective action. However, that
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amounts only to saying that for f'e Ty, (deg(f) = 0),
S (xo0) = 4rxo (76)

for some constant As: we must show that

Jr=1 (77)
To this end, we note that obviously
g = A1 2g, (78)
but also
A=Ay (79)

(Note: To prove (79) in the case boundary parametrizations of arbitrary orientation,
we need the fact that the action of T on % is B-adjoint to the action obtained
by reversing parametrization where B is the symmetric bilinear form involved
in reflexivity. But restricting to real forms of both group and representation,
this follows from the fact that the real form of the representation is orthogonal, see
[33, Chapters 10, 12, 13].)

Anyway, in view of (78), (79), it suffices to prove (77) for annuli and the standard
disk. The statement for the standard disk is tautological (on any Heisenberg
representation, the action of A4 on the vacuum is the identity). For annuli, the
statement essentially amounts to saying that #y, & are the same representations of

DAifj’ +(S"). That follows from the fact that these representations have the same
invariants: central charge ¢ = 1 and rotation number 0 ([26,36]).
Thus, we have reduced the proof of Proposition 1 to the following statement. [

Lemma 3. The element xe [[; # constructed above is an element of A, and is
trace class.

We first prove that x is of trace class. To this end, we make a brief excursion to
the theory #. The state space of this theory is

k= A\@s @a'’sh), (80)

where Q'/2S! is the closed subspace of Q'/2S' spanned by z"dz'/? for n>0, and
Q'/28" is its orthogonal complement. Let X be as above, and let

uye ® K'® ® K

out

be the vacuum vector where the tensor products are over inbound and outbound
boundary components of X, as above. Assume, without loss of generality, that X
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only has outbound boundary components, so
Uy € ® K.

In admissible basis notation ([26,33]), uy is of the form

/\pia (81)

where p; ranges over boundary values of a basis of the space of 1/2-forms on X
which are z"dz'/? on one boundary component ¢;, n>0. However, if we choose a
number 0<A<1 such that for each boundary component ¢ of X, an annulus
Ay, |lqll = 4 can be mapped conformally to X so that S' maps to ¢ by the
parametrization, and the other boundary component of 4, maps into the interior of
X, then

pi= (Znidzl/2)q _|_f“

where || f;|| <A"*!/2. This implies that (81) is trace class, and hence so is xo.
We now need the following

Lemma 4. Let X be a genus 0 rigged surface with all boundary components cy, ..., c,
oriented outbound. Let d...,d,€Z,> d;=0. Then there exists a holomorphic
function f : X —C* such that

deg(fci) = d; (82)
[|f(2)|| is constant on zec;. (83)

Proof. Recall that there exists a harmonic function

hi: X—10,1]
where 0,1 are regular points,
(h)~'(0) = c, (84)
()" (1) =T &- (85)
j#i

Such function is a solution to the Dirichlet problem (see [24, 8.7]).
Now if we denote by Hol, Harm the sheaves of holomorphic and real harmonic
functions, and by R, Z the constant sheaves, we have a short exact sequence

0—R— Hol— Harm—0 (86)
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(The second map is f'+f + f, the first map is A+ il.) We have, in effect, a diagram

0 z Hol Hol*X ——0
l l= lzﬁ (87)
0 R Hol Harm —— 0.
The top right map is
Sexp(f),

the right column ¢ is
f=In(f) +1In(f) = In(ff) = 2] /|- (88)

Let Hol§ = I'yHol*, Holy = I'yHol, Harmy = I'yHarm. Then (87) gives a
diagram with exact rows

Holx —> Hol} —2> H'(X,7) — H\(X, Hol)

T N

Holx —> Harmx —>> H'(X,R) — H(X, Hol).
Note in (89) that any function f such that
Od(f)elhyy . coshy)
has, by (88), constant modulus on each ¢;.
Now we shall study the map ¢ for the standard annulus 4;_, where 0<e<1.
Then
Hl (Alfz:a R) = Ra

and it is easy to see that, with suitable normalization, d( /") has the same sign as

/(2 /(2
—dz — j({ls)S‘ —dz.

Sl z z

Consequently, returning back to X, if §; is the composition
Harmy > H'(X,R) > H'(X,¢;),

then by (84) and (85),

sign(d;h;)
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is opposite to
sign(6;h;), j#I.
This implies that
rank({ohy, ...,0h, ) =n—1,
and hence
(Ohy, ..., b,y = H'(X,R).
Now choose A, ..., 4,€R such that
A1ohy + -+ + A,0h, (90)

is any element of H'(X,Z). Then, by (89), (90) is in the image of f, say, equal to
p(f). Then f is the desired function. [

We now return to the proof of Lemma 3. We first prove a weaker statement. Let
[|xk]|; be the infimum of > ||y,|| where xx = > y;x%1 ® -+ & Xpp-

Lemma 5. ||xk||, grows at most exponentially in ||k||.

Proof. Use finitely many functions fi, ..., f; of Lemma 4, d = dim(L), whose degrees
generate L. Then fi(xo) can be calculated by first calculating by the constant loop
(equal to the modulus), which acts trivially on each factor of xy, then by the map of
modulus 1 (which preserves norm), and then by a central term, which, by definition
of the cocycle, grows at most exponentially as specified. [

But now let Y be such that X is obtained from Y by gluing on a standard annulus
A, to each boundary component. Then if y; are the analogues of x; with X replaced

LR

1
by Y, the action of these annuli on y; multiplies norm by <|\q||§| (since the

k-graded summand of (65) has energy >1 ||k||*). Replacing x by y in Lemma 5 gives
the statement of Lemma 3. [

The reader may ask what is missing in the above discussion that would allow us to
define a full CFT associated with an even lattice L, instead of just a 1-CFT. The
answer is that we would need a discussion of the labels. The situation is actually
quite simple: The labels correspond to elements of L'/L where L' is the dual lattice,
and the “Verlinde algebra” (cf. [45], also [36]) is just the group algebra C[L'/L].
However, since the rest of this paper avoids labels, we do not want to introduce them
here, and will therefore discuss the CFT associated with a general lattice elsewhere.
On the other hand, there is one case which does not need labels, namely the case
of L even unimodular. We therefore state the following
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Proposition 6. If L is an even unimodular lattice, then the 1-CFT associated with L
constructed above in this section extends to a CFT with one-dimensional modular
functor, as defined in the previous section.

Proof. We shall make use of the fact that every rigged surface can be obtained from
a genus 0 rigged surface by gluing. We can use this to construct a canonical splitting
of the restriction of the central extension Tyy to Ty for rigged surfaces X of genus
>0 by cutting X via non-separating curves into a surface of genus 0, and using the
fact that on boundary components with opposite orientation, the cocycle has
opposite signs.

There is, however, a subtle point. Suppose X has genus g >0 and we cut X into a
genus 0 rigged surface X using a complete system of non-separating curves c, ..., ¢g.
Now take holomorphic functions f,g: X — T, which then give rise to functions
fi,91 : X1 — T and functions f}, §, into L¢ on the universal cover of X, as above.
We have

C(ﬁagl) =0

so we would like to say the same thing for their restrictions f, § to the universal cover
of 0X. It may indeed seem that the cocycle summands corresponding to the two
copies 1, ..., ¢g, ¢}, ..., ¢, of the cutting curves of opposite orientations relative to X
will cancel. This is almost true, but not exactly. The problem is that the values of the
function f; (resp. §i) on ¢;, ¢; may differ by a constant. Keeping track of these

constants, we find that
(f,9) = fjl A4AY — A% A% 91
c(f,g) = exp 2( 7o Fi f*)v (91)
i=1

where a1, b1, ...,a4,b, form a hyperbolic basis of H,(X,0X;7Z) and 45 denotes the
degree of ? along a. (For example, ¢; may come from ¢; and b; from a dual cutting
system di, ...,d,.) Note that this implies c(fN, g)e{l,—1} and does not depend on the
choice of lifts.

Therefore, we have found that while a splitting

Tx—Tox (92)

cannot be defined by the same formula as in the genus 0 case (which was f+—f), (92)
can be defined by the corrected formula

[ (fre(f 1), (93)

where the second coordinate is in the center. One then sees from (91) that (93) is a
homomorphism of groups Ty — Tyy. Then (91) also shows that this is the correct
splitting needed for compatibility with gluing, which in addition does not depend on
the choice of cutting curves cy, ..., ¢,.
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Thus, we may speak of the space # y = #7% as above for every rigged surface X
without closed connected components. Indeed, using Proposition 1, we can construct
a non-zero trace class element

XEEWX

for any such X.

What is then left is showing that (71) generalizes to surfaces with higher genus.
Let, to this end, Y be the closed surface obtained by gluing standard disks to
the boundary components of X. As before, we may form space (72) which is
isomorphic to

Hl(YaH_OlT)a (94)

where Hol is the sheaf of T-valued holomorphic functions on Y. There is a degree
map from (94) to L, and constants act by the character equal to degree, so it suffices
to consider the subgroup

Hy(Y, Holy) (95)

of (94) of elements of degree 0e L. Now (95) is the set of C-points of an abelian
variety E and the statement we must prove is that the space of sections of the line
bundle .# on E corresponding to the C*-principal bundle

n
Tx\Tox/ H Tp
i1

is one-dimensional.

But the line bundle ¥ can be identified. Indeed, as above, by compatibility with
gluing, the line bundle remains canonically isomorphic when we cut along additional
curves, so we may cut Y along a complete system of non-separating curves ci, ...c,
instead. Then we know an element of (95) can be represented by a system of constant
transition functions

const;, :¢c;—»T, i=1,..,¢. (96)
Now z; and z; + wj; represent the same point in (95) where (wyj, ..., @) is the period
of Y corresponding to degrees #; = (0, ...,0,4,0,...,0),heL, (h is the jth entry)

along ci, ..., ¢,

How do sections of .# transform under this shift? It will be by multiplication by a
certain 4;C*. To find /;, let Y, be, again, the genus 0 rigged surface obtained by
cutting Y along ¢, ...,c,. We must consider a holomorphic function /' : Y1 —» T of
degree h; along ¢y, ..., ¢,. The number /; is the central term obtained by commuting
the constant z; past the function of degree 4;! But it is well know that if z = €™,
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t€L¢, the commutation number is

;Lj — eZm’(r.h,-)

(see e.g. [33, Proposition 4.7.1] for an equivalent statement). We have therefore
identified .# as a theta-bundle on (95).

However, to identify the sections, we need to be a bit more explicit. To this end,
first consider the case L = Z (this is not an even lattice, but this part of the discussion
is not affected). Then the Jacobian of Y can be identified with

J(Y) =T/ (20 @Q217),

where Q is a symmetric matrix (the period matrix) and we have that Im(Q) is positive
definite. Then the space of sections of the theta-bundle on J(Y) is one-dimensional
and generated by the theta-function

9(2) _ Z eni(xTQx+22Tx). (97)

xez?

However, (95) is isomorphic (as an abelian group) to J(Y) ® L. In this situation, the
space of sections of the theta-bundle .# described above is |L'/L|?-dimensional, and
generated freely by the theta-functions

0, (Z) — Z eni(.xTQx+2sz) (98)

xeZ® L+ua

for aeZ/®@ (L'/L). (The exponents in (98) are calculated by contracting, for
z,xeCY ® L, by the matrix product in the C?-coordinate, and the L-inner product in
the L-coordinate.) For more discussion of theta-functions, see Section 6 below.

For an even unimodular lattice L, we have L' = L, so the space of sections of .Z is
1-dimensional, thus proving

dl'm(%x) < 1

for genus g >0, as desired. We have not explicitly discussed Y closed, but in that case
the Hilbert space is just C, so the discussion reduces to defining the modular functor
section S y. We see that the above discussion forces

Hy=T(2L)

which is one-dimensional for L unimodular, as needed. Our proof of Proposition 6 is
complete. [

Comment. The CFTs associated with the even unimodular lattices E(8) x E(8) and
E(16) of dimension 16 are used in the construction of the heterotic string theories;
thus, Proposition 6 contributes to mathematical foundations of those theories. It is
worth mentioning that implicit in string theory is a conjecture stating that these are
the only chiral CFTs with one-dimensional modular functor and central charge 16.
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4. An example of 1-CFT: the completed Moonshine module

We will now give an outline of how to extend the techniques of the previous
section to constructing a (reflection-positive) 1-CFT which is a Hilbert completion of
the Moonshine module. This is needed because we wish to discuss the Moonshine
module 1-CFT (and, in fact, make conjectures about it). On the other hand, for the
main definition of this paper, which will be presented in the next section, this
example is not necessary: it is merely important that some examples exist, which we
have already shown. Because of this, we will proceed in somewhat less detail than
above. We shall use some ideas implicit in [7]. First of all, we will restrict ourselves
to the 0-CFT structure on #°. Second, we will only construct the Hilbert version of
the twisted module # 1 where J is the lattice 1-CFT associated with an even lattice
L—we are thinking of the Leech lattice, but that does not matter. The point is that, if
we think of the construction of #* as a convergence question of vertex operators in
V¥ (as discussed at the end of Section 2), then these are the only convergence results
we need; the remaining 0-CFT operators of " arise by means of averaging with
respect to 0y, composition and reversals of orientation of boundary components. For
a good discussion of this from the VOA point of view, see [21].

To describe # 1, one must discuss the twisted loop group Tsll/ 2. This is the group
of (analytic) maps

£00,1]>T =Le/L

such that f(0) :ﬁ. Of course, we need a central extension of T;l/z. To this end, we

consider the group T;l/ 2 of maps
fi0.1)>Le, 47 :=£(0) +f(1)eL.

We have a short exact sequence

0—-L— T;,/z—> ;,/2—>0.
(Note that unlike the untwisted case, where the kernel consisted of functions f* with

Ay =0, here we know only A,e€2L when f is in the kernel.)

As before, on starts by defining a C*-values 2-cocycle on T’ ;1/ 2, which can, in fact,

be defined by using (with a changed meaning) formula (54). Similarly as before, the
cocycle is 0 when restricted to L, and if T 1/12

o~ is the corresponding C*-central
extension, we obtain a short exact sequence

0—-L— f;/lzﬁ NIS/|2—>O.

Now # 7 is the basic reflection-positive Hilbert representation of the twisted loop
group TIS/,Z. As before, care is needed to describe this accurately, but we note that
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T;l/ ? contains the subgroup

V2= {f 10,11 > Le | £(0) = = (1)}. (99)
In fact, we have a short exact sequence
0—>L/2L—>T51,1/2—> V12 50. (100)

Now (99) is a vector space and the induced central extension is a Heisenberg group.
Since we also have a choice of isotropic space (at least up to a choice of Grys, see
[33, Chapter 7]), we therefore have a canonical associated Heisenberg representation
[33, 9.5], which we will denote by # ' o. We let # 1 be the induced representation via
(100). Note that this is somewhat simpler than in the untwisted case, since the kernel
is finite.
Note at this point also that, similarly to the twisted case, there is an auto-

morphism

0% T > Ty
given by 0'/2(f)(z) = 1/f(2). This preserves the cocycle and kernel, and hence lifts to
an automorphism

0 7L,
Thus, we obtain an isomorphism of the 7 with the representation obtained by
composition with 0'/2:

0, A7 A (101)
If dim(L) = 24, the usual normalization is

0y (1) = —1 (102)

whereby 9(1)/ ? becomes an involution. Reasons for this choice will become apparent
later.

Now consider a genus 0 connected rigged surface X whose boundary components
are decorated 0 or 7', where the number of components decorated T is even. Assume
(just for simplicity of notation) that all boundary components of X are oriented
outbound. Consider the covering space

xXV2ox
corresponding to the map

p:mX—>2Z)2
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where p(a) =1 (resp. 0) on elements o conjugate to the parametrizations of

boundary components decorated 7' (resp. 0). We denote by T )1(/ % the space of all
holomorphic functions f : X'/> > T where

1: X2 X2 being the non-trivial deck transformation. Analogously as above,
we can consider

¢: T > T 15 < [ 747 (103)
0 T

where on the right-hand side the products are over boundary components of X
decorated O resp. 7.
Analogously as above, the pullback of the cocycle via ¢ is 0, so we can consider

the T )1(/ >-fixed subspace

P (104)
of the basic representation
(? H® (? Hr (105)

of the right-hand side of (103). We will restrict ourselves here to showing the
following

Proposition 7. If X is a genus 0 connected rigged surface with two boundary

components decorated T and the other boundary components decorated 0, then 3’/;(/2 is

1-dimensional, and its elements are trace class.

Remark. This amounts to saying that 57 is a “reflexive version” of twisted module
over 0-CFT . The reader can fill in the details of that definition. A ““non-reflexive”
version of module over a directed 0-CFT would be obtained if we require that all
boundary components of X be oriented inbound except one which is oriented
outbound and labelled T (of course, the obvious gluing properties are required in
both cases). The word “‘twisted” comes from the fact that we must choose sheets
of X'/2 when considering the 7' IS/lz-action on the copies of # 1 corresponding to the
T-labelled boundary components of X, but loops in the moduli space of the surfaces
X may permute the sheets of X1/2.
The Hilbert-completed Moonshine module is

# = @
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The operators Uy are obtained from averaging elements of %}{/2 over the direct
product of Z/2’s generated by 6y’s and 9(1)/ s over boundary components of X
decorated 0 and T, respectively. If X has more than 2 boundary components
decorated T, we use gluing. Obviously, a consistency discussion with respect to
gluing is needed, but this follows by noting that Proposition 7 is just a convergence
theorem for (twisted) vertex operators, where the discussion has been thorough in
the literature (see e.g. [13,21]).

Finally, note that this point of view elucidates choice (102) of the normalization of
0(])/ *: when X is an annulus with one inbound and one outbound boundary
component decorated 7', then Proposition 7 gives, in particular, a representation of a
C*-central extension of Diff *(S'). Such central extensions are characterized by
central charge and rotation number; the rotation number characterizes the pullback
of the central extension to the subgroup S' of rigid rotations. This determines the
weight of the vacuum vector. The point is that in the case of the twisted module # 7,
that weight comes out to be

dim(L)/16,
which, in the case dim(L) = 24 becomes 3/2. Hence, (102).

Proof of Proposition 7. With a slick moduli argument analogous to the untwisted
case not readily available, we use a more pedestrian argument for uniqueness: if X is
an annulus, the statement follows from the irreducibility of the representation # 7 of
7:;/12 (for example, by turning X into a standard annulus with reparametrized
boundary components). In the general case, one shows that

closure (H TD)\H Tg X H T;,/z/closure (H T)l(/2>
0 0 T T

is equal to T;l/z (where, as usual, the products are over boundary components
decorated 0 and T as indicated, and D~ is the outside of the unit circle in Cu {0 }).
This reduces the proof to the annulus case.

We shall now turn to the extension theorem, which is the more interesting part. As
in the previous section, the key is showing an analogous statement of the Proposition
with 2 replaced by ¢ and 1 replaced by # 1y (the parts of degree 0), i.e.
constructing an element

XOEH Ho® @T\) AT (106)
0

invariant under the vector subspace of holomorphic functions X'/ — T intersected
with the corresponding Heisenberg groups. The desired element x € #° ;(/2 can then be
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obtained again by summing the images of xy under a suitable series of holomorphic
functions; same arguments as in the previous section can be used to establish
convergence (note the finiteness of the twisted part).

Thus, we shall focus on the right-hand side of (106), i.e. on the pair of
Hilbert spaces

Ho, Hro. (107)

The striking property of these spaces is that they are Heisenberg representations, and
hence, once again, are independent of the particular lattice L. Thus, for the purposes
of constructing x, one may replace L by Z. In that case, it is provocative to ask
whether we may, again, use some type of boson-fermion correspondence which
would explain the (super)-CFT structure on (107).

Such boson-fermion correspondence does, indeed, exist. We begin by giving
a “fermionic” description of #'r (for L = Z). Consider the Hilbert space K
spanned by

(dz'* |\ nelZy. (108)

Here the elements (108) shall form an orthonormal basis. We shall call the subspace
of K spanned by

(dz? |nez
K" and the subspace spanned by
(dM? |neZ Jr%}
K°4. We then have a symmetric bilinear form B on K given by

$né if np,Ee Ko,
B(n,&) = ¢ —¢né if n,Ee Ko, (109)
0 else.

The purpose of this is to consider the subgroup
Vl/2 c 2
consisting of loops of the form
U hypz' 2 4zt + hy 2?2+ ) hyeC (110)
where

(1 +/’l1/221/2 +h121 +h3/223/2 + )(1 —h1/221/2+h121 —h3/223/2 + ) =1.
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(Note that condition (111) is the right condition to assure that (110) belongs to the

twisted loop group.) The group V''/? embeds to GL,es (with the usual polarization)
by sending (110) to the matrix

hyp Mmoo My b
L hyp ho hyp
0 1y b
0 0 1 Ay

S O O =

(the rows corresponding to z"dz!'/?, nel Z in order), which, by (111), is inverse to

I ~hyp o —hyy
0 1 —hy ) I —h3)»
0 0 1~y
0

0 0 1 —hp

which, however, by (109) is B-adjoint. Thus, we obtain a map
V25 S0K.

The cocycle splits on Vi/ 2, so the map lifts to Spin,sK (see [33, Chapter 12]) so VJlr/ .
acts naturally on the Spin-representation of Spin..sK, which is

/A\<z”dzl/2|n<0,ne%Z>. (112)

Defining the group V!/2 in the same way as Vl/ 2 with 2 replaced by z7", we
obtain an analogous action, with the appropriate commutation relation, so we
get a map

/RN Spines K,

and a representation of V''/2 on (112).

Now because the Heisenberg representation o of P1/2 is irreducible, we obtain
an isometry 1 from # 1, to (112) which hence must be an iso, since both sides have
equal partition functions

H (1 7qn+1/2)71 _ H (1 Jrqn/Z)'

neN neN
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Thus, (112) is the desired fermionic description of 3# 1. To construct the field theory
operator Xy, recall from the previous section that 5, can be described as the degree 0
part of the spinor of the space

He = Ho®C=H@H". (113)

where H is Hilbert completion of the space of antiperiodic analytic 1/2-forms on S'.
Then H =~ H* (using the symmetric bilinear form § n¢). Denote the right-hand side
of (113) as H®"*" @ H°%,

Thus, the field operator of the fermionic model of (107) (L =7) can be
characterized as the Pfaffian line of the maximal isotropic space

H;(ven @H;dd - @ Feven @Hodd @ @ Keven @Kodd
0 T

where HY" is the closure of the subspace of all 1/2-forms on X antiperiodic
on all boundary components and H is the closure of the subspace of all 1/2-forms
on X antiperiodic on all boundary components labelled 0 and periodic on all
boundary components labelled 7. Note (cf. [26]) that to get isotropy, the formula for
Bon H is

) $ne ifp e H,
B(év”/)_{f’/’i ifi/[,fGHOdd.

Remark. Actually, to have this theory behave exactly right, it appropriate to take
(112) for one half of the T-labelled boundary components and

/\<z”dzl/2 |n<0,ne%2>

for the other half. As remarked by Deligne (cf. [26]), the resulting structure is
not a CFT even on any C*-central extension of the stack of LCMCs %, but
rather a still more complicated object, which we may call a “CFT twisted by the
super-Brauer group of C”. However, this is not relevant here, since we are
considering only the degree 0 (Heisenberg) part of the theory, where the distinction is
not visible.

5. Stringy bundles

Comment. The referee pointed out that some material of this paper overlaps with
previous work of Brylinski, Segal and McLaughlin.
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Let # be a 1-CFT. Let ¥~ = (# — {0})/C*. We call the 1-CFT A regular if #
satisfies (45) (so central charge is defined) and

Uy: #%5 7,

for a connected genus 0 rigged surface 4 with k inbound and 1 outbound boundary
component induces a map

Pk,

This means that Uy(x; ® -+ ® x5 ) #0 if x1, ..., xx #0. Note that it follows from the
discussion in Sections 3 and 4 that the 1-CFTs associated with even lattices, as well
as the Hilbert-completed Moonshine module, are regular. In the rest of this paper,
we shall assume that s is a regular 1-CFT.

Let X be a closed complex curve (=conformal surface). A stringy bundle B on X
consists of the following data:

1. A (finite) discrete set S of points on X, called punctures.

2. For every holomorphic embedding /& : 4 - X where 4 is a genus 0 rigged surface
with k& outbound and one inbound boundary component with 2(94)nS =0,
a map

Up: 9 sy

coming from a projective operator # ®¥ — #. These maps are compatible under
gluing of 4, and continuous with respect to the analytic topology on the space
of embeddings. In more detail, by compatibility under gluing we mean that
it Ay, e o Ay, Ag—> X, hi(04;) S =0, are holomorphic embeddings
which glue with /& to an embedding j: B—X (B is obtained by gluing
Ay, ..., Ag, A), then

Ui = Upe(Uy,, ..., Up,).
3. If h(4) S = O, then U, = Uy, the vacuum operator coming from the conformal
field theory structure on J#.
Clearly, it suffices to specify elements
Uy,e?”

for holomorphic embeddings /# : D— X where D is the unit disk and &(D) contains
exactly one puncture.

Two # -stringy bundles on X are considered equal if they coincide upon enlarging
the finite set of punctures S. A topology on the space By # of # -stringy bundles on
X is given as follows:
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Let, for a conformal surface X (not necessarily compact), L°(X) denote the space
of analytic Jordan curves in X (analytic injective maps S'— X). On L°(X), we
consider the analytic topology.

Now choose a compact set K = L°(X) and an open set % = ¥". Let I(K,%) denote
the set of stringy bundles on X which can be written as (S, Uj) for a finite set of
punctures S such that

KcL’(X —S) and U,e% for heK.

Then we let all the sets I(K, %) form a subbasis of the space By # .

Proposition 8. There is a canonical homotopy class of maps py: By # —K(Z,4)
(which we will call the first Pontrjagin class).

The idea is that By # can be thought of as a space of particles decorated by
¥ ~CP%; the particles collide according to the 1-CFT structure. To get the
Pontrjagin class, we look at the “‘relative” space of particles, suppressing particles
which are outside a fixed disk in X. This relative space is B>CP* . The details of this
proof will be given in the appendix.

Now a map of stringy bundles (or stringy homomorphism) (S, U,)— (S, U;)
consists of the following data:

1. A set of punctures 7 in X which contains both S and §’, and for each Jordan
curve ¢ in X — T, a projective map

GV >V

(i.e. such that ¢, is induced by a bounded linear map # — #); ¢, is required to
depend on ¢ continuously.

2. If h: A—» X is a holomorphic embedding of a genus 0 rigged surface 4 with
inbound boundary components ¢y, ..., ¢ and outbound boundary component d,
h(0A)NT = 0, then

U/;O(d)cl? ~--1¢ck) = d)dOUhv

where U, is the vacuum vector interpreted as a map # ®% - #®/ defined up to
scalar multiple.

Two maps of # -stringy bundles are considered the same if they coincide for some
choice of punctures T (possibly larger than the original choices). We have a topology
on the set of all maps of stringy bundles, which is similar to the topology on the set
of stringy bundles:

Let L(X) be the space of all analytic Jordan curves in X, with analytic topology.
Choose a compact set Q< L(X) and an open set # < Map(¥", 7). Let J(Q, ")
consist of all maps of string bundles which can be written as (¢, 7), ¢:
(S,B)— (S, B), ToS]]S such that KcL(X — T) and ¢,e# for ce Q.
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We let the sets J(Q, #"), along with the subbasis sets I(K, %) for the spaces of
source and target stringy bundles, be the subbasis of topology on the space of all
maps of #-stringy bundles on X. Note that the maps, as well as their sources and
targets, are allowed to vary.

Let E. = C/{1,t) be an elliptic curve. Then E; acts on itself holomorphically
by translation. An elliptic bundle on E; is a stringy bundle B on E, together
with maps

¢,:¢*B—>B, ¢€ckE,. (114)

Here e¢* denotes the stringy bundle induced by composition with the given
holomorphic self-map of E; in the obvious sense. We require that (114) be a
continuous map from E; to the space of maps of stringy bundles, and that

Per3(Be,) = Do, (115)

(compatibility under composition). Furthermore, we shall require a ‘positive energy
condition’ on an elliptic bundle (S, B) on E.. To formulate this condition, consider a
compact I-parametric subgroup S' =~ T < E.. This I-parametric subgroup can also be
considered as a Jordan curve, which we will denote by ¢. Then

(o) oUe: ¥V =77, eeT (116)

specifies a projective action of S! on 2. Here U, is the limit of U, as 4 tends to an
infinitesimally thin annulus with one inbound and one outbound boundary
component, where the boundary parametrizations are linear and differ by a rigid
rotation by e (using the identification isomorphism S'=~T7). Recall (Remark 2 of
Section 2) that we assume as a part of the definition of 1-CFT that such operators
exist and are bounded. To see that (116) indeed specifies a projective action, let
e,f€T. Then the fact that ¢, is a stringy isomorphism gives

(d)e)ch = Uf(qse)c—f

(By ¢ — f we mean the Jordan curve ¢ shifted by —f.) Now compute

(¢e)(: UE(d)f)c Uy = (¢e)(:(¢f)¢-+e U.Ur = (¢e+f)c Ueis-

The last equality follows from (115).

Now the positive energy condition states that this action is induced by a genuine
action of 7' on #, whose weight spaces are finite-dimensional, and the weights are
non-negative, with bottom weight space one-dimensional.

A morphism of # -clliptic bundles on E; is a map of stringy bundles compatible
with the translation maps. Also, note that by methods analogous with above we get a
canonical topology on the space of all #-elliptic bundles on E;. This space will be
denoted by

Bg .

T
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In a variant, we can also take a union of those spaces over teH = {zeC | Im (z) >0}
with the obvious topology. We shall call the resulting space

BCH%'
Then Proposition 8 gives a canonical map
P Ban# > K(Z,4)

(the first Pontrjagin class).

Now let @ be a set of representatives of elements of a set of isomorphism classes of
1-CFTs. We assume that ® is defined and is strictly associative on @. This is not a
big assumption, as in all the examples considered in this paper in Sections 6 and 7
below (see in particular the Remark at the end of Section 6), @ is just a set of the
form

(AEM R RAE™ |ny, ..., meN} (117)

for some fixed 1-CFTs J#, ..., #), we can just use given representatives of elements
(117), and redefine tensor products of elements of (117) using the coherences of ® to
achieve strict associativity. Then we have canonical maps

® : By H'\ X BeyHr— B H1 @ H .
Thus, if we put

Ba® =[] Bar,
Hed

then B @ is a strictly associative unital H-space with respect to ®. We let

& = QB(By®).

There will be two distinguished cohomology classes on &. First, each # comes with
a central charge c» € Q. Letting A <@ be the additive subgroup generated by all ¢
with # € @, we get a map of (1-fold) loop spaces

c:6—K(A4,0) = A. (118)
We denote by
&
the homotopy fiber of (118). Next, the Pontrjagin class is additive with respect to ®,
and hence we get a map

p1:E—K(Z,4). (119)
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Let
8
be the fiber of (119). We shall pick certain classes
wemyX*E (120)
(for some k) and define
E=0'x7¢,. (121)

To explain this notation, note that X*&, is an A, ring spectrum. Thus,
multiplication by (120) defines a self-map

SHErE, SEPE,. (122)
Then (121) is defined as the telescope of the map (122).
(A reader in need of a quick introduction to homotopy theory is referred to [28].)
For motivation, we look at the following classical example. Consider the inclusion
h:S*=CP'cCpP”.
Then 4 specifies a homotopy class

[3671’22%(Dpf.

Since X*CP{ is an E,, ring spectrum, gz ZCPL is well defined. Furthermore,
however, if we take the map

CP” >K (123)

given by the identical representation of S', then (123) maps f to the Bott class, and
hence induces a map

¢:p'ZFCPY -K. (124)
Then we have the following well known result [39,40].
Proposition 9. The map ¢ of (124) is an equivalence.
We proceed to define a map

¢ = K{[q]] (125)
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which induces a map

v E-K[[qlllg”"],
as desired.
Let (S, B) be an elliptic bundle on E;. Let, for 1€]0, 1], ¢, be a Jordan curve in E;

of the form

M )t + ¢

Now the action of S'=T = [0, 1] E; by (¢,),,°U,, e T, specifies an S'-action on
. (Recall (114) for the definition of ¢,.) Moreover, if

O<dp< - <Ap<l, (126)
we have, by (115)

(¢;”0_/1”)C/'~n = Id

(G s)e, (b5, )

(f;'nfl

Thus, choosing (126), B specifies an element

(1-20)ey | -+-1 (2,2, )e, )€ B || GL(dim(# (m)))

m=0

Cig

where #(n) is the weight decomposition of # with respect to the T-action (in

particular, we have assumed dim(# (n)) < c0), and éf,(k) is the category of C-vector
spaces of dimension k and their isomorphisms.

Now the choice of (126) is arbitrary (including the number n), subject to the
condition that no puncture lie on any 4;t + [0, 1]. Thus, we see that the set of possible
choices of (126) is directed under the ordering by inclusion, and hence its simplicial
realization is contractible. Roughly speaking, this gives a map

Bﬁ@mg( (H &(dm(%(@))) /@X) (127)
n=0

where BS # = By # is the connected component containing the stringy bundle B.
Taking the quotient by C* comes from the fact that the maps ¢, are only determined
up to scalar multiple in our setup.

More precisely, to construct map (127), we must consider an intermediate object
which contains information on both punctures and the points (126) as parts of
its data. The correct object is a simplicial space whose nth stage consists of an
(n + 1)-tuple (126) along with an elliptic bundle on E; which has a representative
with no punctures on the curves ¢;,, ..., ¢,,. Let BE () be the simplicial realization
of this simplicial space. Then our construction gives a variant of the map (127) with
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source BE (). Along with this, we obtain a projection

BGi(A) = Ban(H). (128)

We need to show that (128) is an equivalence. Clearly the fibers of (128) are
contractible. In addition to this, one shows that (128) is a quasifibration. This can be
done using the Dold-Thom criterion; the kth stratum is the closed subset of Bey(#)
consisting of bundles which can be written as (S, B) with |S|<k.

Now put

GL(o0) = lim GL(k).

Then stabilizing, we clearly get a multiplicative map

en<15—>B<<H GL(% )/CX>23(UH9H/SI)- (129)

n=0

Here Ul[q]] =T],2, U where the tuples (ug,uy,...)e [[,—, U are written as ug+
u1q + uaq* + -+ Since we assumed dim #(0) = 1 for # € @, moBy® is ®-invertible
in the target of (129), and thus we get a map

&—B(U[[g]]/S").

When inverting the Bott class, the projective factor disappears, and we get the
map (125).
In more detail, the Bott element

pemB(U[lq])/S")

(induced from the usual element of 7, BU[[g]] which is a product of the classical Bott
elements of 7, BU) gives a map

B(U[lq]]/S")—2*B(U[q)l/S"). (130)

This gives rise to a generalized cohomology theory, but note that this theory is just
K[[g]], since

Q*B(U[[q]]) > 2*B(U[[4]]/S")
is an equivalence.

Comment. This construction of map (125) was at the root of the motivation of our
definition of B (#). Consider the group ¥ of invertible maps # — #. Then ¥ is
S'-equivariant (by conjugation), and to get [[ Aut(# (n)) from %, we apply S'-fixed
points. Then we take the bar construction on the resulting group to get, roughly, a

model of (a part of) K-theory. One can attempt to model this construction by first
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forming the cyclic bar construction (Hochschild homology) of ¢, and then applying
S! x S'- (or E-) fixed points (recall that the cyclic bar construction is a model of
LB%). The definition of Bg(#) came from searching for a modular-invariant
construction which would map into LB%. Note, however, that the LB% approach
can be taken only metaphorically, and not literally, since Hochschild homology does
not provide a correct model for the S'-fixed points of LB%.

Note also that the construction Bg;# makes sense for a 0-CFT 7, in fact even
for a directed 0-CFT. However, for a 1-CFT with modular group I'c PSL,Z, the
entire structure of # is invariant under the action of I, which is what we mean
by saying that the construction of B # is manifestly modular. We could ask if
this automatically implies that the image of the map 7y constructed above is contained
in the ring of I'-modular forms. This, however, is not so simple. The difficulty is
that the target of the map v is itself not I'-invariant, so we cannot use a simple
transport of structure argument. We do not, in fact, have a theorem of this nature
in general, although in the examples we shall compute in the subsequent sections,
the conclusion holds (see also the Comment under the Conjecture in the next
section).

The attentive reader has noticed that in order to give a concrete example of our
elliptic cohomology theory E, we must make a choice of @, and of the element w.
Such choice depends on calculations, which are the content of the remainder of this
paper (excluding the appendix).

6. Theta elements

In this section, we shall construct first examples of elements of n, Bo#, giving rise
to first examples of E. Let /# be a 1-CFT constructed from an even lattice L. Assume
there is an element o« e L be such that («,a)> = 2. Then we have a map

Y, H 1> H,
where #; is the 1-CFT which is the basic representation of LSU(2). (In the language
of Section 3, we can consider 2#, as the 1-CFT associated with the root lattice of
SU(2). While not using the language of CFT, a considerable amount of information
about 7| can be found in [33].) The main point is that the loop group LSU(2) acts
projectively on | and the action extends, in fact, to an action on # (see Chapter 13
of [33]). We shall now construct a map

= CPOC —>Be||%. (131)

Identify CP* with the space C of principal divisors on E;. (This is a standard fact,
which follows for example from the fact that the space of all divisors is the free
abelian group on E;—see the appendix for more on this.) Then for a divisor De C,
we obtain a stringy bundle B by choosing a function f with divisor D, letting the set
of punctures be |D|, and letting for a Jordan curve ¢ in E; — |D| bounding a rigged
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disk in E;, B? be the image of the vacuum under f] e LS', which is embedded in
LSU(2) by a fixed embedding of a maximal torus

S'eSsU(2). (132)

Note that the function £ is only determined up to scalar multiple, but the choice does
not matter, since multiplication by a constant loop preserves the vacuum.
Note, further, that the restriction of Z to CP? canonically factors through S*:

CP? —> CP® —=> By#

\54'/ (133)

Here the map CP>—S* is of degree 1, i.e. collapse to the top cell. To see this,
consider S>c CP* represented by

[0] — [4] — [ue] + [A+ p1],  A,uel0,1].
Then the restriction of = to S2, by varying the maximal torus (132), extends to a map
A S* > Ba A
which is easily seen to satisfy (133) (by considering the space of SU(2)-bundles
on E,).

It is natural to conjecture that = factors through a map BSU(2)— B . This is
indeed true, as we shall prove in the next section. In fact, more generally, we have

Conjecture 1. For every regular 1-CFT A, there is a canonical map
o: BAut(A)— By A
such that the diagram

BAut(#) = B

Kll4]]

commutes, where T is the character map (note that an automorphism of H# preserves
grading).

In Section 7, we prove this conjecture in the case when # = #g is the
1-conformal field theory associated with the root lattice of a simply connected simply
laced compact Lie group G.
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One can go somewhat further with this conjecture. Denote by Str(1) the space of
stringy isomorphisms 1 — 7 (for some 7). Clearly, any such stringy iso gives rise to an
elliptic bundle, an automorphisms of J# give rise to stringy isos 1—1, and trivial
elliptic bundles. We have, therefore, a map

o 2 Str(1)/Aut(A) > Ba A,

and one could ask if Stzr(1) is always contractible. That seems to be a difficult
question in general, but the results of next section will be obtained by finding suitable
contractible subspaces of Str(1).

Comment. The above discussion points out the need for a method of constructing
stringy isos 1 -7, i.e. elements of Stzr(1). We point out that there exists a general
approach to obtaining maps which have the properties of stringy isos at least locally
(although we merely outline the construction and shall not discuss convergence).
To this end, we need to recall the language of vertex operator algebras. Let

V=@ #M0),

neN

where #(n) is the summand of # of vectors of energy n (i.e. on which rigid
rotations act by g+—¢"). We then assume that the 0-CFT structure on J# is, indeed
obtained from a vertex operator algebra structure on V' (see comments at the
conclusion of Section 2). This means that for veV, there is assigned a vertex
operator

Y(v,2z) = Zvnz_n_l e Hom(V, V)[[Zaz_l]]

neZ

with certain properties (see [13]). Set

Y, (v,z) = Zz’”’l, Y_(v,z) = Y(v,z) — Y (v,2).

neN

Recall our setup from Section 2: 0<]||z||<1, and O0<||A]|,||n|]|]<] such that
B;(0)nB,(z) =0, B,(0)u B,(z) cinterior(D) (we set B,(p) = {xeC|||x — p||<e}).
Recall that 4 =4,,. is the closure of D — (B;(0)uB,(z)) with boundary
components parametrized by 1:S'—>S' 1.1, u-1. Let also A, : V=V be defined
as A" on #(n). We denote by (?)i conjugation by 4, : ¢* = }V:lqs/l*. Then we have
the formula

Ua((1+ YJF(U,Z)Tl dtyu,1 + podt) = (14 Y_(v,z) dt) (2] 'u). (134)
This means that we expand both sides of (134) in d¢, and both sides of (134) are

required to agree up to linear terms in d¢. Formula (134) can be interpreted as saying
that vertex operators incorporate renormalization of CFT structure.
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Anyway, (134) has a generalization: we have
Ua((1+ Y+(U,r)xl dtyu, (1 + Y_(v,r —2)" dt)w) = (1 + Y_(v,2) dt)Us(u,w) (135)
(in (134), w = 1). Analogously, if ||z||> 1,
Ua((1+ Y+(U,r)rl dt)yu, (1 + Y, (v,r — )" dt)yw) = (1 + Y, (v,2) dt) Uy (u, w), (136)

and (135), (136) can be readily generalized, at least up to scalar multiple, to any pair
of pants A with general boundary parametrizations, by conjugating by elements of
Diff+S!.

We see from (136) that if ||z||>1, then granted appropriate convergence, a
stringy iso 1—# on D (without puncture) can be defined on a Jordan curve ¢ in
interior(D) as

Y02 (137)

where A, is the rigged annulus with boundary S', c. (We set, as usual, ¢/ =
> uen(1/n)f" where the exponent denotes composition.) Similarly, for ||z||<1,

we can define (granted convergence) a stringy iso 1 —# with puncture at z by (137)
when ind.(¢) =0 and

e (138)

when ind.(c) = 1.

It is notable that the actions of simply laced groups on the VOAs associated with
their lattices, as well as the action the Monster on the Moonshine module, are
constructed (essentially) by this method.

We would need to control convergence of formulas (137) and (138), and find a
sufficiently large contractible space of compositions of operators (137), (138) which
are meromorphic on E; in order to use this to develop an approach to Conjecture 1.

Remark. The previous comment points us in yet a new direction: It suggests the
possibility of a completely internal (i.e. quantized) version of the concept of B.
From that point of view, in our present setting, the base of a stringy bundle is not
quantized, while the fiber is: one could try to quantize both. At the present time, we
can formulate these ideas only vaguely, and in the language of physics. We drop,
therefore, at least for the purpose of this Remark, the rigorous standards applied
elsewhere in this paper, and use the language of physics with liberty. Recall
(cf. Zoumolodchikov—Fateev [46]) that there is, at least in physics, a notion of
moduli space of CFTs; one can start trying to understand such moduli spaces by
means of local deformation of conformal field theories, using truly marginal
operators, or (1,1)-fields [16]. Note that the type of conformal field theories 5# we are
considering is chiral (holomorphic), and hence their moduli space would be discrete.
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However, this is not the kind of moduli space we see. Instead, the fully quantized
version of B # should be a moduli space of bundles of CFTs with fiber isomorphic
to A# over g-models of elliptic curves. Recall that the moduli space of g-models of
elliptic curves fully reflects the geometry of the moduli space of elliptic curves, (it has
the same tangent space), and in fact gives its compactification.

What is, however, a bundle of CFTs over another CFT? Roughly speaking, a
bundle of CFTs over a base CFT V' should be given by a Hilbert basis ¢;, iel, of V,
and Hilbert spaces &;, iel. For a rigged surface X with k inbound and / outbound
boundary components, we would be given a matrix

(ul'l,--wflm]—l-,-mj/)il,.,.,ik,jl.,...‘_/‘/el

where
Uiy i, juyes i E%[l SO ®%[k ®?11® ®%—1/

Of course, suitable axioms are needed.

But one can see how, in this (at present unrigorous) language, a tensor product
of CFTs is a special case of bundle of CFTs, and, moreover, one can see that an
H-stringy isomorphism meromorphic on an elliptic curve E should give a bundle of
CFTs over the g-model V of E which is a deformation of V ® #.

Knowing at least what the trivial bundle is, we could try a ‘“perturbative
approach”, i.e. look for local data which would allow an infinitesimal deformation
of the trivial CFT bundle V' ® # (we mean, again, a deformation in the direction of
the bundle structure, not a deformation of the base). In the case of the g-model V' of
E, the above comments suggest that before quantizing E, the data we need is
essentially a map

LE—# (139)

which would be equivariant under the semigroup & of holomorphic embeddings
f:D-D, f(0) =0 (D is the unit disk). Thus, the quantized version of (139), and
therefore an infinitesimal deformation of the trivial quantized stringy bundle, should
be a map of &-representations

Vo,

Note that this is potentially a much more far reaching approach, since instead
of g-models of elliptic curves, we could consider moduli spaces of o-models of
Calabi—Yau varieties [16], and hence we can speak of

Bi_cy A,

which is the (coarse) moduli space of 2-CFTs with fiber # over g-models of
k-dimensional Calabi—Yau varieties.
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However, let us return to the theta elements, and to the rigorous discussion prior
to the Remark and the Comment. Let =, = ¥,5, 4, = ¥,A (recall (131)). Now
recall the theta series

GL(‘C, u) = Z q%HXHzehi(u.x)

xelL

for ueLc. As usual, ¢ = e*™*, and for future reference also z = e¢*™. Then the
partition function of # satisfies

Zyp(1) = trUy(A:) = ¢**n() “0(z,0),

where ¢ = rank(L) (cf. [2,13]).
Now consider the map we constructed

I: Beu,}fﬁK[[q]].
Recall that
K'CP* =k*[[z—1]], (140)

where z stands for the identical representation of S'.

Proposition 10. Under correspondence (140), the element
I'E,e K|[[q]]"CP*
corresponds to

g n(t) 0L (1, uo). (141)

Proof. For this purpose, we start with a slightly different model of trivial bundles &
on E;. Consider a sequence (126). For 4; </,, 0<A, — A1 <1, consider the annulus

Ay ={2t+[0,1]| <A<} <E,.

We will assume that the bundle is trivial on each 4,, , 5, (i=0,...,n, A_; = 4,), and
that constant transition functions z; are given from sections on 4, , ;, to 4;, ;,.,. This
means that for an analytic function on ¢ given by a function on 4, ;, to be
analytically continued to A4;, ,,.,, it must be multiplied by z; on A4,, ;,.,. The triviality

Ll
of & requires that
n
H Zi = 1.
i=0

Then the space of all possible choices of the z;’s for all possible sequences (126) is the
bar construction

BC*~CP™.
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Further, for these bundles, we get canonical identification of (#, with canonical
rotation action) with (2, with action induced by the equivariance of £): the identity.
Now the function (¢ AFM’,)% in this setting is simply multiplication by constant
loops, the character of which are well known to be the theta functions (see [33]).

Now to link the space # of trivial bundles on E; in this sense with the space Z,[E,]
of principal divisors, introduce a space Z, [E;] which maps into both. The space

Z0 [Ef}

consists of choices (126), and (finite) degree 0 divisors D; on Int(A4;, , ) for each
i=0,...,n such that

where ¢ is augmentation to the covering group of E; corresponding to 7;(7) where T
is the image of [0, 1] in E;. Then we have an obvious forgetful map

Zo|E.) - Zy[E],

which is an equivalence (by comparison of homotopy types). On the other hand,
there is a map

Zo [ET] —>A

by making the transition function at A, + [0, 1]e(D;). Now we see that on Zy[E;], the
map to B(([] ﬁ(dim(%(n))))/@x), defined via projections to Zy[E;], % coincide.

In more detail, to identify the S'-equivariant Hilbert spaces involved in the
two bar constructions, normalize the elliptic function f* with divisor Y D; so that
it is 1 at the point A,t. At 4;7 + [0, 1], multiply this by the actions of the constant
loop zp - ... - z;. To see that the constant loop actions correspond to the actions
given by the elliptic function f, note that there is a holomorphic function /2 on A4, , ;,
such that

f(u+ /l,' — /li_l)h(u + i,‘ — i,-_l)

= Z;
S (w)h(u) '
for ue i1t +1[0,1]. O
Rationalizing, we get
cry =\/ sg.
n=0

The images of the cells can be detected by taking the Chern character. This
corresponds to taking the logarithm of z in (141) (i.e. considering (141) as a function
of u). Thus, we have proven
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Proposition 11. The image of S in K*'[[q]] under (I'®,), is the coefficient of (141)

atu". O
Now suppose we have lattices Ly, ..., Ly, My, ..., M} where
k k
Z rank(L;) = Z rank(M;), (142)
=1 i=1
and suppose o; € L;, f; € M; satisfy
2 2
ol | = [1B:l|” = 2.
We want to consider the element
Ay oo A
O yene O 27007 e O o
Agy = 7/1/}1 = .Aﬁkem(é). (143)

Note that by (142), element (143) has central charge 0. Note also that the o;’s and f,’s
obviously all have the same Pontrjagin class, and hence element (143) has Pontrjagin
class 0. The product in (143) is the loop product in &.

Now by Proposition 11, the image of (143) in K*[[¢]] is the coefficient at u? in

e _ M (144)
[31,...,[31\» chzl GMI'(T)uﬁi)

Now let I',, « PSL,Z be the subgroup generated by the matrix

(0 1)

and the subgroup I'(m)SL,Z of matrices congruent to Id mod m, for meN.

To recall the modularity properties of function (144) we review some basic facts
about O-functions of lattices [30,31,38]. This is a very special case of the theory of
Siegel modular forms [30], in fact, in some sense, the ““trivial” case, i.e. one which
reduces to the classical context. By a theta series associated with L we mean a
holomorphic function f: H x Lc »>C (H = {zeC | Im(z) >0}) such that

f(r,z+0a)=f(r,z) ael,

f(r,z+ 10) :f(r,z)exp(f%@c,a)rf <z,oc>). (145)

Then f determines a section of a certain holomorphic line bundle ¥ = &, on the
abelian variety

Le/L@®L, (146)
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which is thereby defined. Note that while, of course, (146) is isomorphic to a product
of copies of the elliptic curve E;, the line bundle ¥ does depend on L. Let L’ be the
dual lattice of L. The space of sections V' = I'(¥), which is the C-vector space of
functions (145), has dimension |L’/L| (|7| denotes cardinality), and basis

Oy(t,z2) = Z exp<%||x||2'c—|— <z,x>), ael'/L. (147)
xeL+o

The basic point when investigating the modularity of these theta series is that when
we substitute T by

T,_ar—i—b
T+ d

ad — bc =1,

then we obtain an isomorphic abelian variety
Le/L®TL.

The isomorphism ¢: ze Le/L@tL—z € Le/L@7'L is given by

, z

z Ta+d

(148)

The key point is that the iso ¢ of abelian varieties is also covered by an iso of
line bundles

Lo Lo.
To see this, one applies the “t-scaled Fourier transformation”
f(t,2)—>f(=1/7,7) (149)
(see [38]). Let d be the discriminant of L, n = rank(L). Then, for example,
/2

0(r,2) = \/MzMZ/L0a<f1/r,z'>exp<—<z7z>/2r>. (150)

This shows that the function
exp(—(z,2) /21) (151)

defines an iso 1: %, — ¢* % (covering the identity). Note that the desired iso is
furthermore unique up to C*-multiplication, and can be normalized, say, by saying
that it be 1 at z = 0 (which (149) satisfies). Further, note that ¢ is clearly identified
with Z.; (note that L is even), so we have, indeed, specified an action of the
modular group SL,Z on V, considered as a bundle over H (covering the standard
action of SL,Z on H).

There is another point of view which is also beneficial. The space V' can be viewed
as the Heisenberg representation of a finite Heisenberg group. Let 4, 4 be two copies



390 P. Hu, I. Kriz | Advances in Mathematics 189 (2004) 325-412
of L'/L. We let 4 act on V' by
a()(r,z) =f(r,z —a), aed, (152)
and A4 by
(1), (153)

Then the actions of 4 and 4 do not commute, but rather generate a central extension
of A® A by a finite cyclic group. Extending the kernel to C*, we obtain a Heisenberg
group G:

1-C*>GoA® A1, (154)

where the kernel acts on V' by multiplication. The subgroup A is maximal isotropic,
and V is the Heisenberg representation. In fact, one may replace 4 by L¢ and define
a Heisenberg group

IQCXH{%—)Lc@ECQI,

where the Heisenberg representation is the Hilbert space of rapidly decreasing
holomorphic functions on L¢ (see [31, Chapter 1]). Then L<L¢ is an isotropic
subgroup and L' = L/; then V is the space of functions invariant under L and L,
which, by Mumford [31, Proposition 1.4], is the Heisenberg representation of G.
However, being invariant under L, L turns out to be equivalent to conditions (145),
thus proving V = TI'(%.).

Returning to the question of modularity, now note that we have a canonical action
of SL,Z on A®A=(Z®Z)RzA4 by acting on the first factor. We need to
understand what kind of action this induces on G. In fact, we shall specify an a€ A4,
and look at Z/m= {a) < A; we may study the pullback of (154) to

1 -C*">M->Z/m@Z/m— 1. (155)

Note that the group of automorphisms of M over Id, Im®zm is

H = Hom(Z/m®Z/m,C*). (156)
Consequently, we have an extension

| > H—SLZ - SL,Z—1, (157)

determined by the map SL,(Z)— Aut(Z/m@®7Z/m). This extension is not central.
Rather, SL,Z acts on H in the standard way (by substitution). We may ask if
extension (143) is the trivial element of H?(SL,Z, H) (i.e., a semidirect product). In
our case, this is true: recall that formula (148) gives a lift of the action of SL,Z to an
action on M.
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On the other hand, note that in that case, the set of all lifts to an action of SL,Z
on M forms a torsor T over

H'(SL,Z,H),

i.e. the set of crossed homomorphisms SL,Z — H.

Which particular element of 7" we have is important to us. We can, for example,
ask if I'(m)cSL,Z acts trivially on M (we have a well-defined homomorphism
I'(m)— H which we would like to be 0).

To this end, note that we have not yet specified a cocycle of the Heisenberg group
G; if o is the generator of A4, then a choice of cocycle is specified by a choice of lift of

o+ d (158)

to G. Note that a convenient choice of (158) in G would be

() 159

(the action of SL,Z coming from the projective action on V' determining the
moduarity of 6-series; note that we have

11
(0 1>0g(r,z):exp(é(a,a))Oa(r,z)).

With choice (159) as representative for (158), it is easy to see that the cocycle is the
antisymmetric C*-valued bilinear form

N (160)

Bl—

where S is the commutator. At the same time, we also see that such choice is only
possible if m is odd. If m is even, we can choose cocycle (160) only when we pull back
the central extension (155) to Z/2m@® Z/2m. (Note that the pullback of G is not
a Heisenberg group.) Nevertheless, the action of SI,Z = Sp;Z preserves the
antisymmetric cocycle, so we proved

Lemma 12. I'(m) acts trivially on G when m is odd and I’ (2m) acts trivially on G when
m is even. [

Now let my, be the maximum possible order of an element of L'/L. Let, in (144),
m be the least common multiple of my,, my,. We have

Proposition 13. The function (144) is even in u. The coefficient at u* is T,-
automorphic of weight 2n if m is odd, and I'»,,-automorphic of weight 2n if m is even.
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Proof. When passing to ¢ = (,b;l]“/;kk, the factors (151) cancel out, and so do weight

.....

factors, so

where
, z , at+b
= =—
ct+d ct+d

ad — be = 1 for some character u: SBJZ—NEX. Consequently, a coefficient at z2” is
automorphic of weight 2m. The modular group contains I'(m) if m is odd and I'(2m)

if m is even by Lemma 12, and also obviously ((1) i ) O

Example. If L, is the root lattice of SU(n), then L, is generated by roots ey, ..., e,_1
which, together with 0, form vertices of a regular simplex (these are not simple
roots). Then the dual lattice L], is generated by

1
er, ~~-,€n71,z(€1 + - tent),

so Ll /L,~7/n. We see that m = n, so the modular group is I', if n is odd, and I, if
n is even.

Example. We shall calculate explicitly the image
weK*[q]
of
AZ%”,
where o, € L, 11 is a root of SU(n+ 1), and L, is as above. Then
—7. \/E’

so its theta function is

01 =0p,(t,uay) Zq” z-

neZ
(z = exp(u)). We shall also consider the other basis element

n —ZrH»l
02*91‘ \/—/2‘5 uoy) Zq +

ne”Z

Note that

Ol‘u:O =1, 02'1{:0 =0 (161)
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(because of sign cancellations). Now L3 is the honeycomb lattice which can be
written as

=7 \/_®L2U(Z+ ) \/_®<L2+\f>

Consequently, if we put

a=0, 5(t,0)= qu”

ne”z

b=10(,1 =>q (ns8) :

nez
then we have
0r,(t,uo) = aly + bOs.
Now L, is the three-dimensional sphere packing lattice

Li=L1,Q7Z V2QZ -2+ (L2+“7§)®(Z+%)-f2®(l+%) -2,

Thus, if we put

¢ =02/3022(%,0) = (Zq)(Z )

nez

10 200 = (o) (5o,

neZ nez
then
Or,(t,uas) = ) + dbs.
Thus,
o = Coeff,» (M) . (162)
(ab; + b0>)

Now, as expected, 0, 0, are reciprocal functions in z, and hence even functions of u,
and hence the argument 4 of Coeff,. in (162) is a function of U = u?.
Moreover, such coefficient is obviously determined by applying

_d
T dU U=0
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We have (since zX = > = 1 + iku — K% 1 ...), up to a constant,

t1 = DO, = anq"z,

neZ

1\ (nd)
= D022<n+§> q('l+2)'

neZ
By (161),
c
A(0) = o (163)
Thus, we have
DA
const-w = DA = A(0) 20)

T \0,(0) ' 0,(0) + d0,(0) ab + b0,
:£<[1 n cty —L—dlz _ 2(aty + blz))

a

c . (Dgl cDO, + dD0, aD0, + bDQz)

We need to verify that w#0. To this end, it suffices to verify that

4 50 (164)
C a

The left-hand side is

(2q1/4 +24°4 + ...)(2(11/2 +24°% + )

(142 +2¢*+ - )(1 +2¢> +2¢° + )
2q3/4+2q27/4+
T2 2

The lowest coefficient, at ¢°/# is, indeed, 0. However, the next coefficient, at ¢/,
is —8#0.

Remark. We can use w in (121) if we choose as @, say, the set of all isomorphism
classes of tensor products of the VOAs of the lattices L, L3, L4, thus obtaining a first
concrete example of an elliptic cohomology theory E in the sense of the last section.
Note that we must invert the prime 2 in order for our class w to be invertible, so we
will obtain a map

E-K[[qlll3]
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7. The Coxeter elements, lattices and Moonshine

We shall begin with one more interpretation of map (131). Consider the space of
meromorphic functions f': E; - C™ (i.e. algebraic functions defined on a Zariski open
subset of E;). We consider the topology on spaces of meromorphic functions given as
follows: Choose a compact set L in the source space (in this case E;) and an open set
% in the target space (in this case C*). Let # (L, %) be the set of all meromorphic
functions f* which have no singularities on L and satisfy f(L)=%. We let the sets
A (L,%) be the subbasis of topology on the given space of meromorphic functions.

The topological vector space K of meromorphic functions on E; is oo-
dimensional, and hence K* = K — {0} is contractible. Now any f'e K* determines
a well-defined stringy isomorphism

¢/ :1-B/, (165)

where qbf is the action of the loop f|,€ LC* on # (we fix a torus S! = SU(2); recall
that 2 is an even lattice which contains an element of square length 2), and 1 is the
constant stringy bundle.

Now, however, note that B/ depends only on the divisor D/ of f, so the target of
(165) is invariant under the action of C* on K*. Thus, we get a map

K*/C*— B A . (166)
However, note that the action of C* on K* is given as follows: for A€ C* (a constant
function) we have
¢ 11
and
o = 7o

This means that, while for De K*/C* the stringy isomorphism (165) does depend on
the choice of representative f of D, the isomorphism

¢To(¢!) ek
does not. We conclude that (166) lifts to a map
K*/C* > By A,
which is the map Z. Note, however, that an obvious generalization of this method

now leads to the following

Proposition 14. Suppose # is a 1-conformal field theory, and X" is an E.-equivariant
space such that to every xe A, there is, continuously and E.-equivariantly assigned a
stringy isomorphism of #-bundles on E;

f*: 1> B (167)
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Suppose, further, that an E.-fixed subset G A has a group structure and A has a
structure of a right E -equivariant G-space such that

f9:1-1, (168)
and, for ge G, xe X',
[ =f%f9, xeA, geq. (169)
Then (167) induces a natural map
H|G— By H . (170)

In particular, if A" is contractible, then we have a canonical map BG~A X
EG- A /G, so we get a natural map

E: BG— By .
Proof. By (168), B* is invariant under changing x to xg, g€ G, so we get a map
A |G — { A -stringy bundles on E.},

where /G denotes the orbits of #" under the right G-action. Now the function f*
depends on the choice of representative x of a class e #"/G, but for e E;, we have

eIy = by (169).
oo (T = since G is E,-fixed

PSS =1
so the function fe*x(fx)_1 depends only on «. Thus, we get map (170). O

Example. Let # = |, or more generally, any lattice with a specified point of
square length 2. Then let #" be the set of all ‘meromorphic maps’

E.—SL,C,
i.e. algebraic maps
U-SL,C
for a Zariski open set U< E;. Note that we have a fibration
Mer(E,,C)— A — Mer(E,,C* — {0}),

thus proving that ¢ is contractible. The condition of Proposition 14 are clearly
satisfied, so we get a map

BSU(2)~BSL,C— By #,

as promised in Section 6.
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This method generalizes to other algebraic groups, but not all of them. For
example, the smallest non-trivial irreducible representation of E(8) is the adjoint
representation, so there clearly are no representations ¥ where V' — {0} would be
transitive (cf. [35]). However, all canonical complexifications of compact Lie groups
are rational varieties (by BN-decomposition). We claim that for any rational smooth
variety Z over C, and any complex algebraic curve X, Mer(X,Z) is contractible: if

Z is a Zariski-open set in AX, then Mer(X,Z) is a complement in the infinite-
dimensional vector space Mer(X,AX) of a set of infinite codimension, so it is
contractible. In more detail, given a continuous map

f:S">Mer(X,Z),
f can be approximated by a map
S Mer(X, AF)

whose target is contained in an affine subspace V of finite dimension; if f, /7 are close
enough, #f + (1 — #)f” land in Mer(X,Z) for all 1€[0,1]. But now a generic affine

subspace of finite dimension in Mer(X, A¥) is contained in Mer(X,Z), so V can be
chosen so that f’ is homotopic to a constant through a linear homotopy.

For Z arbitrary, we have Mer(X, Z) covered by a directed system of contractible
open subsets

{Mer(X,U) | UcZ open affine},

so Mer(X,Z) is contractible. Thus, we have

Proposition 15. If o is the root lattice of a simply laced compact Lie group G, then
we have a canonical map

E:BG— By Hg.

Example. The most interesting case of Proposition 15 is G = Eg. Denote the root
lattice of Eg by I's. The degrees [4, Chapter V, Section 6.2] of Eg are

d;=2,8,12,14,18,20,24,30, i=1,...,8
[4, Chapter VI, Section 4.10], so
H*(BEg,@)E@[OQ, ...7068], (171)

where dim(a;) = 2d;, i=1,...,8. By rational homotopy theory, we get classes
@, € my;( BEg) representing certain integral multiples of o;. Put

;i = §;(D;) € Moq, Ban A - (172)
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Concretely,
01 €y Bey A g,
2 €16 Benn A
w3 € 7[243311%58.
Note that

pi(w) =0 fori>0
(by connectivity), we expect the image
@; € Kaq,[[4]]

of w; to be modular. We shall calculate these images explicitly for i = 2, 3.

This can be done by Proposition 10. If T is the maximal torus of Eg, the image of
H,BT in K,[[g]] is linearly spanned by coefficients at monomials in Sym|[I's ® C] of
the theta function

Ory (v, u) € Sym[I's @ Cl[[q]]-

It is quite remarkable that in each dimension, most of these coefficients must be
linearly dependent by (171).

Now concretely, recall from [14] that for a suitable basis xi, ..., xs of I'§®C,
Or,(t,u) = (H@lrx,+H021x,+H931x,+H041x,>
where 0;, i =1, ..., 4 are the Jacobi theta functions
_ Z q% m? e2mimu.
meZ

= Z q% (m_%) 2 627'5[ (l‘ﬂ-‘r%) (u+%)

meZ

_ 3 Hod) o,

meZ

22
2 :qz m-e ’””’ u+2

meZ
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To get rid of some constants, change variables to s = 2zmiu. Then we have

SZk 2k lm2
93=Zm Zm 2",

k=0 m

0, = Szk 2k %('71+%)2

2= Z(zk)! 2. ’
=L

=y (Z( 1)”’m2kq%’”z>

4 = - )
= (2Kk)!\ 4

0 . S2k+l m 1\2k+1 l(WHrl)2
IZlZm Z(—l) (Wl—i—i) q2 2 .

k;O( m

Notice that the functions 0,, 03, 04 are even, while 0; is odd. As it turns out,
0, supplies the coefficients we are interested in. Put

2k+1 2
ar = Z(_l)m (m + %) q%(er%) )

m

Then we have the following theta function coefficients in degrees 8,12 (i.e.
dimensions 16,24).

a8 = A - const,

3 5

—§a5af+§a§a?:const-g2~d. (173)
It follows that the first element (173) is @,, the second is @s3. Thus, if we have
H g, € ®, we can take

w = w3 - (1E3)71 €7T24£J,
where 1, is the constant map from $?* to the trivial # g -elliptic bundle on E;. Then
the image of w in K,[[g]] is the discriminant form, as desired.
However, note that the coefficient ring of the corresponding spectrum E still won’t

be exactly the ‘right’ one: if we look at the element

p=wy- (158)_1 emed,
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then its image in K.[[¢]] is (up to constant)

A/927

which is an automorphic function, but not a modular form, because it has a
singularity. This means that if we consider the coefficients E, as a moduli space, then
it will exclude the elliptic curve which lives at this singularity. One could speculate
that to remove this defect, one must work with the Moonshine module instead of
H k. We shall say more about this below.

First, however, we give another application of Proposition 14.

Proposition 16. For a CFT ' associated with an even lattice L, there is a
natural map

B(T) = B A

Proof. We shall use Proposition 14. We let " = Mer(E,, T) (recall T = L¢/L).
Then to each ge ", there is, equivariantly, assigned a stringy iso

fI:1-B
given on an analytic smooth Jordan curve ¢ in E,—{singularities of g}, by
9 = multiplication by fY|,

(recall from Section 3 that 1 is the basic representation of T'gi). It follows from the
discussion of Section 3 that f¥ is a stringy iso. The conditions of Proposition 14 are
obviously satisfied (see above comments for contractibility of #7). This concludes
our proof. [J

Example. If Conjecture 1 of Section 5 holds, we would get a map
B(CO() I><A@//1) —>Belle}ip/1,

where A is the Leech lattice. One can detect images of elements in
niB(Cogr<Ac/A")g in K.[[g]] using the O-function of A similarly as we did
above for Eg.

For example, using the standard coordinate frame uy,...,uxq ([6]), We can
investigate the coefficient of

24
Oa(v,u) at [] w. (174)
J=1
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If we put

1 n3qn
=—|1+24
ny(1eam 3 )

n=0

1 nSqn
9 =5<—1 +504 ) ; _qn>

n=0
(omitting some 27 powers), then using MAPLE one can verify that
c=(—3-6° g3 —54404) - A*. (175)

Thus, we have a modular form of weight 36, conjecturally an element of 7y By # 4.
However, recalling that

04(z,0) = 172893 — 7204,

17284 = 172893 — 6°43,

we see that the corresponding element in elliptic cohomology would have character

¢ _—5184g —2564 ,
04(,0)  1728¢3 — 7204
3256 ,
- j=1720

We see that this is, again, an automorphic function with some singularities, i.e. not
an automorphic form.

This however suggests a general conjecture about the O-functions of lattices, which
reflects the homotopy situation we suggested, but can be phrased without the use of
any homotopical concepts. Let L be an even lattice of dimension 7, and let G be its
automorphism group. We have conjectured that there is a map

B(Go<(SY")— By A 1.
Now we have
H*(B(Go<(SY)"),Q) = H* ((CP*)", Q)¢ = Qluy, ..., u,)°.

Call the dual 4 of Q[uy, ..., u,] the Q-coalgebra of coefficients. Let PA be the module
of primitives of a Q-coalgebra 4. Recall from rational homotopy theory that if X is a
formal generalized nilpotent space, then the Hurewicz map gives an onto map

H*X@%)PH*X@. (176)
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Thus, at least if we knew that B is formal and rationally nilpotent, then PA
would supply elements in the rational homotopy groups of Be;# ;. Such elements
would have p; =0 provided that they are in dimension 2/>4, and hence their
images in K[[g]]-theory (which are given by theta functions) should be automorphic
of weight 7 + 4. This leads to the following

Conjecture 2. Let L be an even lattice. Note that the coefficients of the theta series
0r(t,u)
give a map
%:A4/G=ARqiQ-Qq]]

Then for a homogeneous element

xeP(4/G)
of degree {>2,
o(x)
is an automorphic form of weight
n
A
+ 2

The modular group is I',, or I'y,, depending on whether m; (the maximal order
of an element of L'/L) is odd or even.

Example. The most interesting case of our discussion is
Bey A"

where #* is the Hilbert completion of the Moonshine module V* (see Section 4
above and [13]). We have

H = (H @), (177)

where A is the Leech lattice, /4 is, again, the basic representation of the loop group
L(G) with

G=Ac)A (178)

and #7 is the basic representation of the twisted loop group L,(G) where « is
the automorphism of G given by a(g) =g~ ' (and L,(G) = {f :[0,1]->G|f(1) =
% (0)})-
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Recall that in (177), 6y is the appropriate lift of the involution x— — x of A. One

can put a 1-conformal field theory structure on #°; some of the main points of that
construction were outlined in Section 4.

There is no analogue of Proposition 16 for #, because the 6,-fixed points destroy

all of these automorphisms. On the other hand, the monster F) acts on # : [13],
so Conjecture 1 of Section 6 would imply the existence of a ‘““‘moonshine map”

BF| — By A", (179)
Composing with the map

Ba#* > K[[q])lg™"] (180)

which is map (125) multiplied by ¢~! (this differs from the normalization of Section 5
by a factor of 4), we obtain an element

xeK([q)llg”"']"BF\ (181)

which, interpreted as a series of Fj-representations by the Atiyah completion
theorem, is the moonshine module V*.

Now drawing a parallel with Conjecture 2 suggests looking at the “‘coefficients”
for element (181). These are characters of the representation F* known as
Thompson series. The Moonshine conjectures [6], proven by Borcherds [2], state that
the Thompson series are Hauptmoduln, in particular they are modular functions
(automorphic of weight 0) with respect to appropriate subgroups of PSL,Z, with a
simple pole at the cusp z = o0, and no other singularities. Although the singularities
are as desired, we see however that the element of 7, B V¥ which we are seeking is
not among the Thompson series, since it is a modular function of positive weight. We
formulate therefore the following

Conjecture 3. (1) There is a positive integer n and an element
X € Tagn Ben #*
whose image under map (181) (on coefficients) is
A" J

(J =j—1744).
(2) Every element of m,,Bai V" is of the form

w-J,

where w is an automorphic form of weight % (with full modular group, no character and
no singularities).
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We could refer to this as the ‘higher homotopy counterpart of the Moonshine
conjectures’. It also suggests the set of tensor powers of V* as a choice of @ from
Section 5.

In fact, one can go a bit further in this direction. The main ingredient of the
proof [2] of the Moonshine conjectures is the construction of a “Monster Lie

algebra” M. Neglecting, for the moment, questions of Hilbert completion, we take
the VOA

H = Vq ® V[]ly], (182)

where 11 ; is the unimodular Lorentzian lattice with matrix (_01 ’01) and Vi, is the
corresponding vertex algebra [2]. Notice that (182) comes with an indefinite inner
product {?,7>. Now (a completion of) M is obtained by taking the vector subspace
P of fields of type (1,0) in the conformal field theory (182) (see [36, Section 9]),
and factoring out the kernel of {? 7> on P. (In fact, it is desirable to consider all of
this in real form, see [2] and Section 3 above.) The no ghost theorem [11,15] asserts
that if we consider the bigrading of M inherited from Vj,,, then the (m,n)-graded
piece is

R? ifm=n=0,

V,n otherwise,

where V,, is the weight m + 1 piece of V*. Further, M is a Lie algebra, and in fact a
(generalized) Kac-Moody algebra of indefinite type with root lattice /1 ;. Using this,
Borcherds proved that

pil/l Z anpmqn = Z Vum - Z anna (183)
m>0 m n
neZ

where we can look at p, ¢ as formal variables, and the coefficients V), are considered
as representations of the Monster. This works because the Monster’s action on V°*
carries through the no ghost theorem. In [2], one then uses (183) to prove Norton’s
replication formulae [32], which constitute the main step in the Moonshine
conjecture proof. More explicitly, one remarks that

A(U) = exp (— > W(U)/z), (184)

i>0

where /' is the Adams operations on a G-representation U (here G = F; is the
Monster), and that further

Tr(gly'U) = Tr(g'|U),
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so we get

plexp| =D > Tr(d | Ve /i

i>0 m>0
neZ
= ZTrg|V ZTrg|V
meZ neZ

which is the Norton formula.
When trying to obtain a higher homotopy analogue of formula (183), the first step
is thinking of the G-representations ¥, as maps

BG—BU(|V,|)—>BU x Z. (185)

In the second map (185), we map into the |V,|th component of BU x Z. Thus,
taking products over m> — 1, (185) gives an element of

K[glllg™'°BG. (186)
Now, on the other hand, Section 5 gives a map
xeK([q]llg '] BarV* (187)

and Conjecture 1 states that there is a map BG— By V* such that (187) factors
through (186). Further, for a homotopy class wemy By V*, aw is the character of w,
i.e., conjecturally some cusp form, e.g. J - 4".

Now in [2], one points out that any graded endomorphism of the vector space V*
acts naturally on the Monster Lie algebra M, although to get (183), we must use the
fact that the no ghost theorem identifies the bigraded pieces of M together with their
G-actions.

We do not know what exactly is the right analogue of the bigraded action for
B.1V?, but the above discussion suggests that the right substitute for ¥, in (183) may
be the element

p =oeK[qllly1)"s* (188)
corresponding by (187) to a homotopy class of By V*. Note that
K°S* = 7@ 7u,

where u = ¥ is the kth power of the Bott element. Given the fact that the mth
coordinate of aw is realized on

U(|Vinl) = BU x {[Vnl},
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we have
p=ow(t) ut+J() (189)

(expressed as a function of ¢ = €*™*). We now write down the left-hand side of (183),
using (184), and substituting

p for Z Vg™,

Define, when applicable, ¢,(¢) by

Then, noting that

the left-hand side of (183) becomes (for k>0)

plexp <_ Z Z (i com (@)t + o (J))Pmiqni/i>

i>0 mn>0
=aw<—§: > ﬁ”mmmmefSU@)—JWD>
i>0 mn>0
=<l—§: > %4qmmmef®>uvo—Jw». (190)
i>0 mn>0

Comments. In the summation, we can put >0 because w is a cusp form. The first
equality is by the denominator formula, which is obtained from (183) by replacing
Vin by its dimension. The second equality is because higher powers of the element
ue K°S?* are 0.

We have no conceptual prediction of what the analogue of the right-hand side
of (183) should be, but (190) can be evaluated. Thus, the proposed higher
homotopy analogue of the Norton formula is given by the following statement.
We specialize to cusp forms w of weight 12s. Every modular form of weight 12s is
of the form

KA, k4t =5, (191)

where 4 = AJ. Let w, = o(t), ¢ = €*™, for any modular form w.
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Proposition 17. We have, for />0,

(J(P) Z Z i 2(k+)— Cmn AkA(’)pmiqm'

i>0 m>0
n>0
_ gk gk /
= AAK( A0 AL — AL D) + (192)

where y is an antisymmetric (with respect to p, q) polynomial in A,, A, 4, 4,
homogeneous of degree k + ¢ in the variables A,, A, and the variables A,, A,, divisible
by 4,4,.

Proof. We have, for any cusp form w of weight 2s,

(J(P) Z Z 12x lcmn w mzqni

i>0 m>0
n>0
(](p) Z Z 1 Cmn/z )pmqn
i>0 mn>0
ilm,n
= (J(p) —i(2) Y Tulwy)p™, (193)
m>0

where T}, is the Hecke operator [38]. Hecke operators preserve the space of modular
forms of a given weight, and also cusp forms, so (193) is of the form

Z (am)qpm7

m=0

where o, i1s a modular form of weight 2k. Moreover, (193) is manifestly
antisymmetric in p,q, and it is easy to check that the coefficients at powers
of p give

Specializing to w = A4’ we see that
ik Tk gl Al ¢l
A, A4,(4,4, — A,47) (194)

satisfies this coefficient condition. Thus, if we subtract this form from (193), we get
an antisymmetric series y, a modular form of weight 12(k + /) in each variable
(when fixing the other variable), with 0 coefficients at the powers of p. Now dividing
u by 4,4,, we decrease the weight by 12. Then repeating the process of subtracting
terms of the form (194) (with varying k,/), and dividing by 4,4,, we can bring the
weight of the remainder term to 0, at which point it vanishes. Thus, u is as
stated. O



408 P. Hu, I. Kriz | Advances in Mathematics 189 (2004) 325-412

Remarks. (1) For k=0, /=1, the only possible choice for u is u=0. For
k=+¢=1, we have

(Jj(p) —Ji(q)) Z Z iBCmn(jA)Pmiqm

i>0 mn>0

= (A, A, +204145924,4,)(4,4, — 4,4,).

(2) Note that in the proof [2] of the denominator formula (Lemma 7.1 of [2]),
which we mimicked exactly, the reason one gets just j(p) —j(g) on the right-hand
side is that a modular form of weight 0 is necessarily constant. Note also that the
absence of higher exponent terms in (192), which came from wuu =0, is
calculationally necessary in the proof of Proposition 17, since otherwise we would
be adding modular forms of different weights in (193).

(3) In discussing the motivation for Proposition 17, we used the cohomology
theory K[[g]][¢"'] and Adams operations. However, it would be nice to phrase
these ideas is in terms of the power operations in elliptic cohomology considered by
Ando [1]. We also refer the reader to [18] for more background and further
considerations.

8. Appendix. Some homotopy theory
The main point of this section is to give a

Proof of Proposition 8. Let D = {zeC |||z||<1}. We shall define a space

Bp.opyH

whose elements are stringy bundles on U for some open set C> U > D (the definition
of stringy bundles extends to non-compact surfaces), with two stringy bundles B, B’
identified if B, = B'L, for every Jordan curve whose image is in D.

Now choose a holomorphic embedding DcX. This clearly determines a
restriction map

By A — Bpop)H .
The proof will be completed if we can construct a map
Bpop)# ~>K(Z,4). (195)
Now consider the set P whose elements are pairs
((B,S),0), (196)

where (B, S)eBS(D@D)Jf and Q is a collection of disjoint Jordan curves in C
homothetic to S' = {zeC|||z|| = 1}; two collections are considered equal if they
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only differ in Jordan curves whose interiors are disjoint from D. We require that for
some choice of S, each element s€.S be contained in the interior of a Jordan curve
ce Q which is minimal in the sense that the interior of ¢ contains the image of no
other element of Q.

Then P is a topological poset with ordering

((B,S),0)<((B,5),Q)
if Q= Q. Let W be the classifying space of P. There is an obvious forgetful map
Vi WHE(D,QD)%. (197)

However, we claim that (197) is a quasifibration with contractible fiber, hence an
equivalence. For example, to show that

v (B, S) is contractible, (198)

look at the poset Pz ) of all possible choices of Q for (B, S) in (196). Then we need
to show that the classifying space of P is contractible. This can be done in two
steps. First consider the subposet P/(B,S) in which each seS§ is contained in the
interior of a different minimal curve. Then

P /(B‘S) =Ps)

induces an equivalence of classifying spaces by Quillen’s theorem A (since we can
always, uniquely up to homotopy, add to Q small minimal curves containing the
individual points of S). On the other hand, the classifying space of P’(B s) is

contractible, because we may omit from qu/( B.S) all curves except the minimal

curves containing points of S.

To finish the proof of (198), one then uses the Dold-Thom criterion, with
k-stratum consisting of all B for which there is a choice of .S with ||S]|<k. We omit
the details.

Now since (197) is an equivalence, it therefore suffices to give a map

W—-K(Z,4). (199)
To this end, let Py be the topological poset consisting of pairs
(Q7 a)?

where Qe P, and « is a map assigning to each minimal curve with interior contained
in D an element of #7; the ordering is

(Q,0)<(Q,)

if Q=@ and for each minimal curve ¢’ in Q' whose interior is contained in D, if
¢y, ...,c, are the minimal curves of Q contained in the interior of ¢/, and A4 is the
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rigged surface with boundary components ¢y, ..., ¢,, ¢/, we have
Ugo(a(er), -y slen)) = £ ().

Then the classifying space W, of Py is a model of the double loop space B>7~ with
respect to the double-loop space structure on ¥~ given by the action of the operad &
of n-tuples of Jordan curves cy, ..., ¢, with disjoint interiors in D homothetic to the
boundary (with identity parametrization). The operad acts by the CFT structure.
(Note that the operad is equivalent to the little 2-cube operad.) In any case, we have
V" ~K(Z,2), so

BV ~K(Z,4),

regardless of the choice of double loop space structure. Thus, it remains to construct
a map

w—-Ww,.
This map is induced by a map of posets

P— Py
which sends ((B, S), Q) to (Q, o) where

a(c) = B.. O
Remark. Recall that the space of divisors on X, or the free abelian group on X, is
homotopically equivalent to
Map(X,K(Z,2))~JX x K(Z,2) x Z,

where JX is the Jacobian on X (here we are just considering the category of
topological spaces, Map denotes the space of continuous maps). It therefore seems
reasonable to ask if

By A ~Map(X,K(Z,4)).

The method of the above proof seems applicable for X of genus 1, since then X
is parallelizable. If X is not parallelizable, the difficulty is that there is no consi-
stent notion of homothety, so one must consider rotations of the boundary
parametrizations.
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