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1. Introduction

In a previous paper [5], the authors investigated extensively the
Landweber-Araki Real cobordism spectrum MR ([1, 7]), and its sta-
ble summand at p = 2 called BPR. An Adams-like spectral sequence
based on BPR was constructed, and homotopy groups of many spectra
related to BPR were calculated.
The goal of the present note is to begin investigating the question as

to how BPR-theory contributes to the known information about stable
homotopy groups of spheres. This question is not easy. The dimension
to which stable stems have been calculated to date is, (if somewhat
hazy), certainly high enough to make calculating past that point from
scratch a substantial challenge for any new method. At this point, the
authors did not get far enough in calculating with BPR to get any new
information that way. On the other hand, any effort to compare the
BPR-based spectral sequence with other known spectral sequences is
frought with the usual difficulty: elements can get renamed.

Nevertheless, there is one basic case when a rigorous comparison can
be made, namely on the edge of a spectral sequence. To illustrate this,
assume we have a series of cofibrations

(1.1) Xn−1 → Yn−1 → Xn

where X−1 = S0. Then we have a spectral sequence

(1.2) E1 = π∗Yn−1 ⇒ π∗S
0.

An element ω ∈ π∗Yn−1 is a permanent cycle if it lifts to π∗Xn−1. Now
however it may not even be easy to know π∗Yn−1 explicitly, and suppose
we use the Adams-Novikov spectral sequence to calculate it. Suppose
further that in this spectral sequence, ω has filtration degree 0, i.e.
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has non-trivial Hurewicz homomorphism image ω0 ∈ BP∗Yn. Suppose
further that in BP -homology, (1.1) induce short exact sequences, so
we cannot use BP to obtain a necessary condition for ω to lift. But
now we have a factorization of the unit 1 ∈ π∗BP of the form

S0 // BPR
κ

// BP

(actually, BPR is a Z/2-equivariant spectrum, so we should really write
BPRZ/2, but that is a detail for now). Suppose we can completely
calculate the map

(1.3) BPR∗Xn → BPR∗Yn

and suppose we know that no element ω1 ∈ BPR∗Yn with κ∗ω1 = ω0

is in the image of (1.3). Then ω cannot be a permanent cycle in the
spectral sequence (1.2).
On the other hand, suppose we know that there is a lift ω2 ∈

BPR∗Xn, and that further any such lift (of any choice of ω1) has the
property that

δ∗ω2 6= 0

where δ∗ : BPR∗Xn−1 → ΣnBPRR∗S
0 is the connecting map. Then

the in particular the same must hold for any ω2 which lifts to stable
homotopy, and we conclude that ω cannot be a target of a differential
in (1.2).

In this note, we shall apply this simple method to the geometric
chromatic spectral sequence, where we shall see that strikingly, it does
give new information on possible permanent cycles in all families of
Greek-letter elements, thus generalizing, and in fact even somewhat
explaining, the numerology of the known permanent cycles in α, β, γ.
This signals that however difficult to extract it may be, BPR does
contain new useful information about the stable stems. Throughout
this note, we work locally at the prime 2, as BPR is just BP at odd
primes. Nevertheless, algebraic cobordism (cf. [6]) gives tantalizing
hints of some possible analogues of the present method at odd primes.
Such extension, however, at present is unknown, as is the equally inter-
esting question of possible connections of BPR with the root invariant.

To state our results, we must recall the chromatic spectral sequence
of Miller-Ravenel-Wilson [8]:
(1.4)

E1 = ⊕
n

ExtBP∗BP (BP∗, v
−1
n BP∗/(v

∞

0 , ..., v
∞

n−1)) ⇒ ExtBP∗BP (BP∗, BP∗).
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In the E1-term (1.4), an element ofExt0BP∗BP (BP∗, v
−1
n BP∗/(v0, ..., vn−1))

represented by

(1.5)
vkn

v
in−1

n−1 v
in−2

n−2 · ... · vi00
mod (v0, ..., vn−1)

is denoted by

(1.6) α
(n)
k/in−1,in−2,...,i0

where α(n) is the n-th Greek letter. If the numbers i0, ...iℓ−1 are equal
to 1, they are omitted.
In [9], Ravenel constructed BP -local spectra Yn such that

BP∗Yn = v−1
n BP∗/(v

∞

0 , ..., v
∞

n−1),

and a geometric chromatic spectral sequence

(1.7) E1 = ⊕
n

π∗Yn ⇒ π∗(S
0)∧2 .

At this point, relatively little is known about the spectral sequence
(1.7). However, call the element (1.5) a geometric Greek letter element
if it is the image of an element of π∗Yn via the Hurewicz map π∗Yn →
BP∗Yn, i.e. an element of the E1-term of the geometric chromatic
spectral sequence (1.7). In that case, we also use the notation (1.6) for
that element. Then the main results of this paper are:

Theorem 1.8. If α
(n)
k/in−1,in−2,...,iℓ

is a geometric Greek letter element

which is a permanent cycle in the geometric chromatic spectral se-
quence, then there exists a j, 0 ≤ j ≤ ℓ (we can have ℓ = n) such
that

k(2n − 1) ≡

n−1
∑

m=0

im(2
m − 1) + 2j − 1 mod 2j+1.

Theorem 1.9. Let

kn =
n+ 2 if n is even
2n + n + 2 if n is odd.

Then a geometric Greek letter element α
(n)
k is not a target of a differen-

tial in the geometric chromatic spectral sequence if k ≡ kn mod 2n+1,
and supports a differential in the geometric chromatic spectral sequence
if k ≡ kn + 2n mod 2n+1.

For n = ℓ = 1, Theorem 1.8 says that if αk is a permanent cycle
then k is not congruent to 3 mod 4, which is well known.



4 PO HU AND IGOR KRIZ

For n = ℓ = 2, Theorems 1.8, 1.9 imply that βk is not a permanent
cycle when k is divisible by 8. For n = 2 and ℓ = 1, Theorem 1.8
says that if βk/i1 is a permanent cycle, then k + i1 is not congruent to
1 mod 4. Doug Ravenel points out that the first examples of these
elements are β8 and β8/5, and conjectures that we have d3(β8) = η3β8/3
and d3(β8/5) = η3η5 in the Adams-Novikov spectral sequence.

For n = ℓ = 3, Theorem 1.8 implies that if γk is a permanent cycle,
then k is not congruent to 5 mod 16. The first element excluded is γ5,
in dimension 59.

Theorems 1.8, 1.9 should not be thought of as results directly about
the stable 2-stems (π∗S

0)(2), since they do not give any sufficient con-
dition when the said elements are permanent cycles in the geometric
chromatic spectral sequence. However, the nilpotence and periodicity
theorems of Devinatz, Hopkins and Smith [2], [3] give a general exis-
tence theorem for geometric Greek letter elements as elements of stable
2-stems. There was, as far as we know, no detection theorem for such
elements beyond the γ family, and this was a well known problem (al-
though it is usually phrased in terms of the Adams-Novikov spectral
sequence). The present paper does contribute to answering this ques-
tion. The difficulty is that the existence theorems [2],[3] are phrased
globally, and as far as we know, concrete names of elements which these
theorems construct have not been worked out. Therefore we still do
not know what, if any, is the intersection between the existence and
uniqueness theorems.

The present paper is organized as follows: Preliminaries, including
the construction of the spectra Yn, are recalled in Section 2. The neces-
sary BPR-homology calculations are presented in Section 3, and proofs
of Theorems 1.8, 1.9 following the method we outlined are deduced.
The BPR-calculations are proved in Section 4.

2. Preliminaries

First we shall recall the construction of the spectra Yn in (1.7) ([9]).
We refer the reader to [3] for the definition of vn−1-spectra and vn-self
maps.

Lemma 2.1. Let f : V → V ′ be any map of vn−1-spectra (see [3]). Let
v : ΣkV → V , v′ : ΣkV ′ → V ′ be vn-self maps. Then there exists an N
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such that the following diagram commutes up to homotopy:

(2.2)

ΣNkV
f

//

vN

��

ΣNkV ′

v′N

��

V
f

// V ′.

Proof: Consider the two maps

Dv ∧ 1, 1 ∧ v′ : ΣkDV ∧ V ′ → DV ∧ V ′.

They are both vn-self maps, so by Hopkins-Smith [3], there is an N
such that

(Dv ∧ 1)N ≃ (1 ∧ v′)N .

Therefore, considering f as an element of π∗(DV ∧ V ′), we have

(2.3) (Dv ∧ 1)N∗ (f) = (1 ∧ v′)N∗ (f).

But the two sides of (2.3), considered as maps ΣNkV → V ′, are the
two ways around the diagram (2.2). �

Now Ravenel’s construction is essentially as follows: One constructs
a spectrum X ′

n−1 as a telescope of vn−1-spectra

(2.4) Vn−1,1
fn−1,1

// Vn−1,2
fn−1,2

// Vn−1,3
fn−1,3

// . . .

For n = 0, let X ′
−1 = S0 = V−1,i for all i, where the maps f−1,i are

equal to the identity. Provided (2.4) is constructed, we next construct
a spectrum Y ′

n−1 and a cofibration sequence of the form

(2.5) X ′

n−1 → Y ′

n−1 → X ′

n.

Concretely, by Lemma 2.1, we can inductively find vn-self maps

vn,i : Σ
kn−1,iVn−1,i → Vn−1,i

and numbers Nn−1,i > 1 such that

kn−1,i+1 = Nn−1,ikn−1,i

and the following diagrams commute:

Σkn−1,i+1Vn−1,i

fn−1,i
//

(vn,i)
Nn−1,i

��

Σkn−1,i+1Vn−1,i+1

vn,i+1

��

Vn−1,i

fn−1,i
// Vn−1,i+1.
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Then consider the diagram
(2.6)

Vn−1,1
fn−1,1

//

vn,1

��

Vn−1,2
fn−1,2

//

vn,2

��

Vn−1,3
fn−1,3

//

vn,3

��

. . .

Σ−kn−1,1Vn−1,1
f ′n−1,1

// Σ−kn−1,2Vn−1,2
f ′n−1,2

// Σ−kn−1,3Vn−1,3
f ′n−1,3

// . . . .

where

f ′

n−1,i = fn−1,i(vn,i)
Nn−1,i−1.

The cofiber of the vertical rows of (2.6) is, by definition,

(2.7) Vn,1
fn,1

// Vn,2
fn,2

// Vn,3 // . . . .

Now let Y ′
n−1 be the telescope of the bottow row (2.6), and let X ′

n

be the telescope of (2.7). Thus, we have (2.5). One easily proves by
induction that when smashing (2.5) with BP , one obtains the cofiber
sequence of MU -modules

(2.8) BP/(v∞0 , ...v
∞

n−1) → v−1
n BP/(v∞0 , ..., v

∞

n−1) → BP/(v∞0 , ..., v
∞

n ).

Now absent a proof of the telescope conjecture, we do not know that
the Adams-Novikov spectral sequence converges for X ′

n, Y
′
n, n > 1.

However, Ravenel [9] proved that if we denote by Xn, Yn the Bous-
field localizations of X ′

n, Y
′
n at BP , then the Adams-Novikov spectral

sequence

(2.9) ExtBP∗BP (BP∗, v
−1
n BP∗Yn−1/(v

∞

0 , ..., v
∞

n−1)) ⇒ π∗(Yn−1)

converges. We call (2.9) the Chromatic Adams-Novikov spectral se-
quence). Also, since stable Bousfield localization preserves cofibration
sequences, we have cofibrations

(2.10) Xn−1
αn−1

// Yn−1
γn−1

// Xn.

Applying π∗ to (2.10), we obtain an exact couple, which leads to the
spectral sequence (1.7). Ravenel [9] proved that this spectral sequence
converges. Note that we now have the following diagram of spectral
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sequences
(2.11)

⊕ExtBP∗BP (v
−1
n BP∗/(v

∞
0 , ...v

∞
n−1))

px ✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐

CANSS,E2

'/
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱

CSS,E1

⊕π∗Yn−1

&.❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯

GCSS,E1

ExtBP∗BP (BP∗)

ow ❤❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤

❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤

ANSS,E2

(π∗S
0)∧2 .

The superscript of each arrow indicates the abbreviated name of the
spectral sequence, and its initial term. The Greek letter elements (1.6)
are native in the top corner of (2.11). Geometric Greek letter elements
are those which are permanent cycles in the CANSS, and therefore
live in the left corner of (2.11). Theorems 1.8, 1.9 concern aspects of
the behaviour of these elements in the GCSS, caused by Real cobor-
dism. This will be discussed in the next section. Note, however, that
the statements of the Theorems would be stronger if we could phrase
them in terms of Greek letter elements of the Adams-Novikov spectral
sequence, i.e. those which are permanent cycles of the CSS, and there-
fore live in the right corner of (2.11). The reason this would be better
is that the CSS is purely algebraic, and hence in principle completely
computable. Unfortunately, we were unable to prove such stronger re-
sults using the present methods. Without referring to the methods, we
can say that is possible for renaming to occur in the ANSS, so that
elements labelled as Greek letters do not correspond to such elements
in the GCSS.

3. Real cobordism and proof of the main results

We begin by recalling some facts about Real cobordism, proved in [5].
The Real cobordism spectrum MR is a Z/2-equivariant spectrum ob-
tained by considering the Z/2-action on MU by complex conjugation.
This can be taken almost literally, if we consider the usual prespec-
trum defining MU , consisting of Thom spaces of n-dimensional uni-
versal complex bundles. Then complex conjugation acts non-trivially
on both the spaces and structure maps of the prespectrum: denoting
by α the 1-dimensional real sign representation of Z/2, then the 1-point
compactification of C with respect to complex conjugation is S1+α. As
a result, MR is an RO(Z/2)-graded spectrum, or spectrum indexed by
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a complete Z/2-universe. The reader is referred to [5] for details and
other relevant references.
Before proceeding further, we will make certain crucial conventions:

First of all, all Z/2-equivariant spectra will be RO(Z/2)-graded, and we
will use the subscript ⋆ to denote RO(Z/2)-graded coefficients; there-
fore, the possible dimensions represented by ⋆ are k + ℓα, k, ℓ ∈ Z.
We will use the subscript ∗ if we are referring only to the “twist 0”
dimensions, i.e. k + 0α.
Next, we will make notational conventions of certainRO(Z/2)-graded

homotopy and homology elements. First, let a be the element of
π−αS

0
Z/2 represented by the non-trivial unstable map S0 → Sα. Next,

recall from [5] that the Z/2-equivariant Borel cohomology ring with
coefficients in Z/2 is

Z/2[σ, σ−1][a].

The element σ has dimension α− 1. This element does not lift to the
coefficients of S0

Z/2 (or MR), but as we shall see, its powers survive
as multipliers of certain elements of MR⋆. Also, using the fact that
Milnor manifolds are defined over R, we get a map

BP⋆ →MR⋆

where by BP⋆ we mean Z[v1, v2, ...], but where vi is in dimension (2i−
1)(1 + α). We will also denote by In the ideal (v0, v1, ...vn−1) in BP⋆.
We will rely on the ⋆ to indicate the fact that we are working in the
RO(Z/2)-graded dimensions (this notation was also used in [4]).
Araki [1], [5] has developed a theory of Real-oriented Z/2-spectra

very parallel with the classical theory of complex-oriented spectra. In
particular, 2-locally, there is a Quillen-idempotent e :MR →MR. The
spectrum eMR is denoted by BPR, and is easier to work with. When
forgetting Z/2-equivariant structure, BPR becomes just BP , but when
applying the geometric fixed point functor to BPR, one obtains HZ/2.
Recall that a G-spectrum E is called complete with respect to G-action
if the canonical map E → F (EG+, E) is an equivalence. A crucial
result stated in [5] is

Theorem 3.1. The spectrum BPR is complete with respect to Z/2-
action and we have

BPR⋆ =

⊕

ℓ=(2s+1)2n∈Z

Ker(BP⋆[a]/(a
2i+1−1vi|i ≥ 0) →

BP⋆[a]/(v0, ..., vn, a
2i+1−1vi|i ≥ n+ 1)) · σ2ℓ
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In the summand for ℓ = 0, we count n as ∞. Moreover, the multiplica-
tive structure is the obvious one, i.e. as a subring of

BP⋆[σ, σ
−1, a]/(a2

i+1−1vi|i ≥ 0).

�

We now recall from [5] that MR is also a Z/2-equivariant E∞ ring
spectrum, and therefore we can construct cofiber sequences of MR-
modules
(3.2)
BPR/(v∞0 , ..., v

∞

n−1) → v−1
n BPR/(v∞0 , ..., v

∞

n−1) → BPR/(v∞0 , ..., v
∞

n ).

Here we consider vi ∈ BP⋆. The significance of these Z/2-equivariant
spectra for our purposes is in the following

Proposition 3.3. When smashing (2.10) with BPR, we obtain the
cofibration sequence of Z/2-equivariant spectra (3.2).

Our main calculational result on (3.2) is contained in the following

Proposition 3.4. The spectrum BPR/(v∞0 , v
∞
1 , ..., v

∞
n−1) is complete

with respect to Z/2-action and we have
(3.5)

(BPR/(v∞0 , ..., v
∞
n−1))⋆ =

n−1
⊕

k=0

BP⋆/(v0, ..., vk−1, v
∞

k , ...v
∞
n−1)[σ

±2k+1

][a]/(a2
k+1−1)

·{v−1
0 · ... · v−1

k−1σ
−2k+1}

⊕BPR⋆/(σ
2ℓ0v0, σ

4ℓ1v1, ..., σ
2nℓn−1vn−1){v

−1
0 · ... · v−1

n−1σ
−2n+1}.

We should explain that in our notation, when we are writing alge-
bra, elements enclosed in the braces {} indicate additive generators,
while elements enclosed in the brackets [] indicate multiplicative (poly-
nomial) generators. While the notation for the generators in (3.5) indi-
cates their origin in the computation, at the moment the significance of
introducing additive generators is just suspension by their dimension.

Corollary 3.6. The coimage of the forgetful map

(3.7) (BPR/(v∞0 , ..., v
∞
n−1))⋆

λ // (BP/(v∞0 , ...v
∞
n−1))⋆
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is spanned by the following elements:
(3.8)

n−1
⊕

j=0

BP⋆/(v0, ..., vj−1, v
∞
j , ..., v

∞
n−1){v

−1
0 · ... · v−1

j−1 · σ
−2j+1}[σ±2j+1

]

∞
⊕

j=n

BP⋆/(v0, ..., vj−1){v
−1
0 · ... · v−1

n−1 · vj · σ
−2n+1}[σ±2n+1

]

where, as before, dim(vk) = (2k − 1)(1 + α) and dim(σ) = α− 1.

Proof: It will be obvious from the proof of Proposition 3.4 via the
Borel cohomology spectral sequence (see next section) that the ele-
ments (3.8) map non-trivially, while all other elements are multiples of
a. �

Finally, we shall need information on the connecting maps of the
cofibration sequences (3.2). This is given by

Proposition 3.9. The connecting map

(3.10) ∂n : (BPR/(v∞0 , ..., v
∞

n ))⋆ → Σ(BPR/(v∞0 , ..., v
∞

n−1))⋆

associated with (3.2) is a map of BPR⋆-modules given by

(3.11) ∂n : σ−2nv−1
n 7→ a2

n+1−1

on the last summand (3.5), and by 0 on the other summands.

Propositions 3.4, 3.9, 3.3 will be proved in the next section. We will
now apply these propositions to prove our main results.

Proof of Theorem 1.8: Consider the diagram

(3.12)

π∗Xn−1
ι

//

π∗αn−1

��

BP∗Xn−1 = BP∗/(v
∞
0 , ..., v

∞
n−1)

BP∗αn−1

��

π∗Yn−1
κ

// BP∗Yn−1 = v−1
n BP∗/(v

∞
0 , ..., v

∞
n−1)

where ι, κ are Hurewicz maps. The Greek letter element (1.5) is an
element of BP∗Yn−1. Now assuming that (1.5) is a geometric Greek
letter element is equivalent to the existence of an element y ∈ π∗Yn−1

such that (1.5) is equal to κ(y). Assuming further that y is a permanent
cycle in the GCSS is equivalent to the existence of an element x ∈
π∗Xn−1 such that

π∗αn−1(x) = y.
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Since BP∗αn−1 is injective, this implies that

(3.13) ι(x) =
vkn

v
in−1

n−1 v
in−2

n−2 · ... · viℓℓ vℓ−1 · ... · v0

(provided we are considering the Greek letter element figuring in the
statement of the Theorem).
But now the map ι factors as

(3.14) π∗Xn−1
ν
// BPR∗Xn−1

λ
// BP∗Xn−1.

Therefore, (3.13) must be in the image of λ in twist 0, i.e. of the form

(3.15) λ(z), z ∈ BPR∗+0αXn−1.

Inspecting (3.8), we find that by Corollary 3.6, the leading term of z
must be of the form

(3.16)
vkn

v
in−1

n−1 v
in−2

n−2 · ... · viℓℓ vℓ−1 · ... · v0
σ−2j+1+m·2j+1

with dimensional conventions as in Corollary 3.6. The requirement
that (3.16) be of twist 0 then gives the condition of the Theorem. �

Lemma 3.17. Let z ∈ BPR∗Xn−1 be such that

(3.18) λ(z) =
vkn

vn−1vn−2 · ... · v0

where

(3.19) 2n+1 | k(2n − 1)−
n

∑

m=0

(2m − 1).

Then the image of z under the connecting map

(3.20) δ∗ : BPR⋆Xn−1 → ΣBP⋆Xn−2 → ...→ ΣnBPR⋆S
0

is non-zero.

Proof: Corollary 3.6 implies that under the condition (3.19),

(3.21) z =
vkn

vn−1vn−2...v0
σ−2n+1+m2n+1

mod (a)

for some m ∈ Z. Note that the element on the right hand side of (3.21)
is in the summand of (3.8) which has j = n.
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But by Proposition 3.9,

(3.22) δ∗
(

vkn
vn−1vn−2...v0

σ−2n+1+m2n+1

)

= vknσ
m2n+1

a

n−1
∑

m=0

(2m+1−1)

,

and, moreover,

(3.23) Im(δ∗) ⊂ (a)

n−1
∑

m=0

(2m+1−1)

.

We conclude that the a-multiples in (3.21) map to

(a)

1+

n−1
∑

m=0

(2m+1−1)

by δ∗, and hence cannot cancel the non-zero element (3.22). The
Lemma follows. �

Proof of Theorem 1.9: We begin with the second statement, which
is a consequence of Theorem 1.8. To this end, note that for i0 = ... =
im−1 = 1, the condition of Theorem 1.8 reads

(3.24) 2j+1 | k(2n − 1)−
n−1
∑

m=0

(2m − 1)− 2j + 1

for some 0 ≤ j ≤ n. Processing (3.24) further gives

(3.25) 2j+1 | (k − 1)(2n − 1) + (n+ 1)− 2j.

Note that the subsets of Z/2n+1Z satisfying (3.25) for different j =
0, ..., n are disjoint, and the class for j has 2n−j elements, which form a
congruence class mod 2j+1. It follows that there is precisely one class
q + 2n+1Z which does not satisfy (3.25) for any j = 0, ..., n, and it is

(3.26) q = 2n + k

where k satisfies (3.25) with j = n. To determine k, note that

−(2n + 1) = (2n − 1)−1 ∈ (Z/2n+1
Z)×,

so (3.25) with j = n gives
(3.27)
k − 1 ≡ ((n+ 1)− 2n)(2n + 1) ≡ n+ 1 mod 2n+1 for n even

≡ 2n + n+ 1 mod 2n+1 for n odd.

It follows from (3.26) that q ≡ kn + 2n mod 2n+1, as claimed.
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To prove the first statement of Theorem 1.9, we turn to Lemma 3.17.
The condition 3.19 is clearly equivalent to 3.25 with j = n, and hence
to k ≡ kn mod 2n+1. But under this condition, Lemma 3.17 implies

(3.28) δ∗ν(x) = δ∗(z) 6= 0 ∈ BPR⋆S
0.

Therefore, if we denote also by δ∗ the connecting map

δ∗ : π∗Xn−1 → Σπ∗Xn−2 → ...→ Σnπ∗S
0,

we conclude from (3.28) that

(3.29) δ∗(x) 6= 0 ∈ π∗S
0

(since δ∗ obviously commutes with Hurewicz maps). But (3.29) occur-
ing for every lift xof y is equivalent to y not being hit by a differential
in the GCSS. �

4. BPR-homology calculations

The purpose of this section is to prove Propositions 3.4, 3.9, 3.3. We
begin with Proposition 3.4.

Lemma 4.1. We have

(4.2)
BPR/(v0, ..., vn−1)⋆ =
BPR⋆/(σ

2ℓ0v0, σ
4ℓ1v1, ..., σ

2nℓn−1vn−1) · {1, σ
−1, ..., σ−2n+1}.

On the right hand side of (4.2), we quotient out over all values of ℓi ∈
Z. Moreover, BPR/(v0, ..., vn−1) is a complete spectrum with respect
to Z/2-action, and the differentials of its Borel cohomology spectral
sequence have the form

(4.3) d2m+1−1σ
−2m · q · σ−i = vma

2m+1−1q · σ−i

where 0 ≤ i ≤ 2n − 1, m ≥ n and q = σℓ2
m+1

vR where ℓ ∈ Z and
R = (0, 0, ..., 0, rm, rm+1, ...).

Here we denote

v(r0,r1,...) = vr00 v
r1
1 ...

(of course, only finitely many of the ri’s are allowed to be non-zero).
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Proof: To establish completeness, recall from [5] that BPR is com-
plete with respect to Z/2-action, and that we have cofibrations ofMR-
modules

(4.4)

Σ(2n−1)(1+α)BPR/(v0, ..., vn−1)

vn

��

BPR/(v0, ..., vn−1)

��

BPR/(v0, ..., vn).

The differentials (4.3) are established exactly in the same way as in the
case n = 0, which is done in [5]. �

Proof of Proposition 3.4: First consider the cofibration sequence of
MR-modules (3.2). Recall from [5] that

(4.5) ΦZ/2BPR = HZ/2.

Since multiplication by vi is 0 on (4.5), we conclude inductively that

(4.6) ΦZ/2BPR/(v∞0 , ..., v
∞

n−1) = HZ/2

and

(4.7) ΦZ/2v−1
n BPR/(v∞0 , ..., v

∞

n−1) = 0.

Therefore, the completeness statement of the Proposition will follow if
we can show that

(4.8) (v−1
n BPR/(v∞0 , ..., v

∞

n−1))
∧ = 0

where the hat indicates the Tate spectrum. We will show this by in-
duction on n, jointly with the following

Claim 4.9. The differentials in the Borel cohomology spectral sequence
of

BPR/(v∞0 , ..., v
∞

n−1)

are as follows:
(4.10)

d2k+1−1(v
−1
0 v−1

1 · ... · v−1
k−1v

−ik
k · .. · v

−in−1

n−1 vRσ
−2k+1+1+ℓ2k+1

) =

v−1
0 v−1

1 · ... · v−1
k−1v

−ik+1
k v

−ik+1

k+1 · ... · v
−in−1

n−1 vRσ
−2k+1+ℓ2k+1

a2
k+1−1

where 0 ≤ k ≤ n − 1, ik > 1, ik+1, ..., in−1 ≥ 1, ℓ ∈ Z, R =
(0, ..., 0, rn, rn+1, ...) and

(4.11)
d2m+1−1(v

−1
0 · ... · v−1

n−1vRσ
−2n+1−2m+ℓ2m+1

) =

v−1
0 · ... · v−1

n−1vmvRσ
−2n+1+ℓ2m+1

a2
m+1−1
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where m ≥ n, ℓ ∈ Z, R = (0, ..., 0, rm, rm+1, ...).

More precisely, we will show that the Claim implies (4.8), and also
the Claim with n replaced by n+1. Note that these statements jointly
imply the Proposition, by computing the Borel cohomology spectral
sequence E∞ term via (4.10), (4.11).
Thus, assume the Claim is valid for a fixed n. Then we can compute

the Tate spectral sequence for v−1
n BPR/(v∞0 , ..., v

∞
n−1) by inverting vn

and a (for vn, use theMR-module structure). Note, however, that then
the differential (4.10) wipes out the k-th summand of (3.5), and (4.11)
with m = n wipes out the last summand. Consequently, the Tate
spectral sequence for v−1

n BPR/(v∞0 , ..., v
∞
n−1) collapses to E2n = 0, and

thus (4.8) follows.
To prove the Claim with n replaced by n + 1, we will construct a

map of spectral sequences

(4.12) E ′ ⊕ E ′′ → E

which will be onto each Er-term. To this end, let E ′ be the Borel co-
homology spectral sequence for v−1

n BPR/(v∞0 , ..., v
∞
n−1) where the map

E ′ → E is induced by the second map (3.2). Let, on the other hand, E ′′

be the Borel cohomology spectral sequence for BPR/(v0, ..., vn) with
E ′′ → E induced by the obvious map of MR-modules

{v−1
0 · ... · v−1

n }BPR/(v0, ..., vn) → BPR/(v∞0 , ..., v
∞

n ).

To examine the map (4.12), write, as usual ([4], [5]), the Borel coho-
mology spectral sequence for BPR/(v∞0 , ..., v

∞
n )⋆ in the form

(4.13) E1 = BP⋆/(v
∞

0 , ..., v
∞

n )[a][σ±1] ⇒ BPR/(v∞0 , ..., v
∞

n )⋆.

In this notation, let, for i = 0, ..., n, iE1 be spanned by those monomials
in E1 which involve σs where the exponents of v0, ..., vi−1 are −1, and
in addition either s ≡ −2i+1 mod 2i+1, or s ≡ −2i+1 ≡ 1 mod 2i

and the exponent of vi is < −1.
Let, further, ∞E1 be the summand of E1 spanned by the remain-

ing monomials, i.e. those involving σs where s ≡ −2n+1 + 1 ≡ 1
mod 2n+1, and the exponents of v0, ..., vn are −1.
Now we know inductively that the Borel cohomology spectral se-

quence for

BPR/(v∞0 , ..., v
∞

n−1)

splits as a sum of n+1 summands corresponding to the n+1 summands
on the right hand side of (3.5). Inverting vn, v

−1
n BPR/(v∞0 , ..., v

∞
n−1)

correspondingly splits into n + 1 summands, which we will denote by
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0E
′
r, ..., nE

′
r. Then we find that

iE
′
1

// //
iE1,

where i = 0, ..., n, while

(4.14) iE
′

2i+1
// // H(iE1, d2i+1−1).

On the other hand, recalling Lemma 4.1,

E ′′ = 0E
′′ ⊕ ...⊕ 2n−1E

′′

where iE
′′ is the sub-spectral sequence of E ′′ involving the factor σ−i

in (4.3). We then see that

(4.15) 2n−1E
′′ ≃

//
∞E.

Now (4.14), (4.15) imply that (4.12) is onto every Er term, completing
the induction step. �

Proof of Proposition 3.9: As noted in the preceding proof, the last
summand of (3.5) (with n replaced by n+1) is in the image of the map

(4.16) {v−1
0 · ... · v−1

n }(BPR/(v0, ..., vn))⋆ → (BPR/(v∞0 , ..., v
∞

n ))⋆,

so the connecting map on these summands can be figured out from the
connecting map of the cofibration sequence
(4.17)

{vn}BPR/(v0, ..., vn−1)
vn

// BPR/(v0, ..., vn−1) // BPR/(v0, ..., vn).

The Borel cohomology spectral sequence gives

(4.18)
(BPR/(v0, ..., vn−1))⋆ =

BPR⋆/(σ
2ℓ0v0, σ

4ℓ1v1, ..., σ
2nℓn−1vn−1){1, σ

−1, ..., σ−2n−1+1}.

The target of the connecting map δn of (4.17) is the kernel of the self

map vn in (4.18), which clearly consists of multiples of a2
n+1−1. Differ-

entials in the Borel cohomology spectral sequence of BPR/(v0, ..., vn−1)
then give the formula

δn : σ−2n 7→ a2
n+1−1(vn)

which remains valid when multiplied by σ−i with 0 ≤ i < 2n, and hence
implies (3.11).
To show that the target of ∂n is in the last summand of (3.5), note

that this target is the direct limit of the targets of connecting maps of
the form

(4.19) {v−kn }BPR/(v∞0 , v
∞

1 , ..., v
∞

n−1, v
k
n)⋆ → ΣBPR/(v∞0 , ..., v

∞

n−1)⋆.



REAL COBORDISM AND GREEK LETTER ELEMENTS 17

But elements in the image of (4.19) must be in the kernel of vkn, which
is clearly injective on all but the last summand of (3.5). �

Proof of Proposition 3.3: Induction on n. Suppose the statement is
true with n replaced by n−1. Consider a Hopkins-Smith vn−1-spectrum
V such that

BP∗V = BP∗/(v
k0
0 , ..., v

kn−1

n−1 ),

and the Hurewicz map

(4.20) η : V → BPR ∧ V.

We shall prove that for a vn-self map v : V → V (ignoring suspensions
in the notation), we have a commutative diagram of the form

(4.21)

V
η
//

v

��

BPR ∧ V

vNn σ
K

��

V η
// BPR ∧ V,

for some N and K, at least when v is replaced by its suitable power.
Similarly as above, this can be done by considering η as an element of
the BPR cohomology of V ∧ DV . The question then becomes what
map in BPR-cohomology the map w = v ∧ Id : V ∧ DV → V ∧ DV
induces. We can assume by Hopkins-Smith [3] that w induces a power
of vn in BP∗. Thus, by the Borel cohomology spectral sequence,

BPR⋆w = vNn σ
K mod (a).

However, considering the structure of BPR⋆ (Theorem 3.1), we see
that for any finite fixed spectrum X , a is nilpotent on elements of
BPRk+ℓαX with k >> 0 (use the Atiyah-Hirzebruch-type spectral se-
quence associated with a finite cell-decomposition of X). Now assume

BPR⋆w = vNn σ
K + at.

Then
BPR⋆w2M = (vNn σ

K)2
M

+ aM t2
M

(since, in BPR⋆, 2a = 0). Now for M >> 0, the second term disap-
pears, thus proving (4.21).
Now passing to homotopy colimit and BP -localization, we get a

commutative diagram

(4.22)

Xn−1
//

��

BPR/(v∞0 , ..., v
∞
n−1)

��

Yn−1
// v−1
n BPR/(v∞0 , ..., v

∞
n−1).
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(Note that

v−1
n BPR/(v∞0 , ..., v

∞

n−1) ≃ (vNn σ
K)−1BPR/(v∞0 , ..., v

∞

n−1),

since each of the elements vn, v
N
n σ

K divides a power of the other.)
Using the ring structure of BPR, we get a diagram

(4.23)

BPR ∧Xn−1
φ

//

��

BPR/(v∞0 , ..., v
∞
n−1)

��

BPR ∧ Yn−1
ψ
// v−1
n BPR/(v∞0 , ..., v

∞
n−1)

where the top horizontal arrow φ is an equivalence, and the bottom hor-
izontal arrow ψ is an equivalence non-equivariantly. But both BPR ∧
Yn−1, v

−1
n BPR/(v∞0 , ..., v

∞
n−1) are free spectra (v induces 0 in homol-

ogy), so ψ is an equivalence. Passing to cofibers of the vertical arrows
of (4.23) gives the induction step. �
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