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1. Introduction

The purpose of this note is to describe the Ext0 elements of the spectral sequence

(1) E2 = Ext∗BPR⋆BPR
(BPR⋆, BPR⋆) ⇒ (πZ/2

⋆ S0)∧2 .

The spectral sequence (1) was introduced in [9] and [8]. Here, BPR is the Real-
oriented Brown-Peterson spectrum, which was constructed from Landweber’s Real
cobordism spectrum MR [10] by Araki [2]. These are Z/2-equivariant spectra,
indexed on RO(Z/2). The subscript ⋆ refers to the RO(Z/2)-indexing, i. e. all
(bi)degrees k + lα, k, l ∈ Z, where α is the sign representation of Z/2. Thus, the

spectral sequence converges to the 2-primary components of the groups π
Z/2
k+lαS

0 =

π
Z/2
k S−lα.

In the coefficient ring BPR⋆ = BPR
Z/2
⋆ (we will drop the group from the super-

script to simplify the notation, see [9]), there are elements vn, which are analogues
of the usual generators of BP∗. We also have an element a ∈ π⋆S

0
Z/2 defined by the

cofiber sequence

(2) Z/2+ → S0 a
→ Sα

where the first map collapses Z/2 to a single point. In addition to these, there
are periodicity operators on monomials in the generators vn ∈ BPR⋆. We usually
express these operators as powers of a certain symbol σ, which, however, is not itself
an element. The degrees of vn, a, and σ are as follows.

dim(vn) = (2n − 1)(1 + α)(3)

dim(a) = −α(4)

dim(σ) = α− 1.(5)

For further discussion of BPR⋆, see Section 2 below.
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For a set {xi}, let Z{xi} denote the free abelian group on the generators xi. For
an abelian group M , let M{xi} denote M ⊗Z{xi}. The following theorem describes
Ext0BPR⋆BPR

(BPR⋆, BPR⋆).

Theorem 6. As a Z(2)-module,

Ext0BPR⋆
(BPR⋆, BPR⋆)

= Z(2){v0σ
2l | l ∈ Z}

⊕ a · Z/2[a]

⊕ Z/2{vrnσ
l2n+1

at | n, r ≥ 1, l ∈ Z, 2n − 1 ≤ t ≤ 2n+1 − 2}.

The degrees of these elements are determined by (3), (4), and (5).

In degrees k + 0α, the spectral sequence (1) converges to

π
Z/2
k S0 ∼= πkΣ

∞BZ/2+ ⊕ πkS
0.

By a simple computation of degrees, if vrnσ
l2n+1

at has degree k + 0α, then l ≤ 0.
The following table lists the first elements of Ext0-summand of the E2-term of (1)

in degrees k + 0α, of the form vrnσ
l2n+1

at, for n ≤ 4, 0 ≥ l ≥ −7. Following each
element, the number in the parenthesis is the degree of the element.

n = 1 2 3 4
l = 0 v1a(1) v2a

3(3) v3a
7(7) v4a

15(15)
v21a

2(2) v22a
6(6) v23a

14(14) v24a
30(30)

−1 v51σ
−4a(9) v42σ

−8a4(20) v43σ
−16a12(44) v44σ

−32a28(92)
v61σ

−4a2(10)
−2 v91σ

−8a(17) v72σ
−16a5(37) v63σ

−32a10(74) v64σ
−64a26(154)

v101 σ
−8a2(18)

−3 v131 σ
−12a(25) v92σ

−24a3(51) v83σ
−48a8(104) v84σ

−96a24(216)
v141 σ

−12a2(26) v102 σ
−24a6(54)

−4 v171 σ
−16a(33) v122 σ

−32a4(68) v113 σ
−64a13(141) v104 σ

−128a22(278)
v181 σ

−16a2(34)
−5 v211 σ

−20a(41) v152 σ
−40a5(85) v133 σ

−80a11(171) v124 σ
−160a20(340)

v221 σ
−20a2(42)

−6 v251 σ
−24a(49) v172 σ

−48a3(99) v153 σ
−96a9(201) v144 σ

−192a18(402)
v261 σ

−24a2(50) v182 σ
−48a6(102)

−7 v291 σ
−28a(57) v202 σ

−56a4(116) v173 σ
−112a7(231) v164 σ

−224a16(464)
v301 σ

−28a2(58) v183 σ
−112a14(238)

The elements in the first row of the table vna
2n−1 and v2na

2n+1−1 are Z/2-equivariant
analogues of the elements hn and h2n in the classical Adams spectral sequence. The
elements in the second row of the table v4nσ

−2n+1

a2
n+1−4, n ≥ 2, are analogues of

the Adams spectral sequence elements gn−1. And in the first column of the table,
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the elements v4l+1
1 σ4la and v4l+2

1 σ4la2 are analogues of the Adams spectral sequence
elements P lh1 and h1P

lh1, respectively [8].
A proof of Theorem 6 was given in [8], but we substantially simplify the argument

here. We also give an interpretation of elements of the type vnσ
l2n+1

a2
n−1 ∈ Ext0

as Hopf invariant one elements in a certain sense. In [8], I also calculated an upper
bound for the 1-line Ext1BPR⋆BPR

(BPR⋆, BPR⋆).
In Section 2 of the note, we recall some facts of Real-oriented homotopy theory used

in constructing the Real Adams-Novikov spectral sequence. Section 3 is devoted to
the proof of Theorem 6. In Section 4, we give the interpretation of the Ext0 elements
vna

2n−1 as Hopf invariant one type elements.

2. The Real-oriented Adams-Novikov Spectral Sequence

In this section, we give a brief overview of the construction of the Real-oriented
Adams-Novikov spectral sequence [9]. Only a small portion of the results from [9]
are needed. We will recall it here in a form as self-contained as possible.

The term Real (with capitalized “R”) was first introduced for K-theory by Atiyah,
who defined a Real bundle ξ to be a complex bundle over an Z/2-equivariant space,
together with an action of Z/2, which is complex antilinear fiberwise [3]. The Real
cobordism spectrum MR, introduced by Landweber and Araki [2, 10], is the Real
analogue of the complex cobordism spectrum MU , and is defined as the Thom spec-
trum of canonical Real bundles. Specifically, the infinite Grassmannian BU(n) has a
Z/2-action by complex conjugation. There is a canonical Real bundle γn of dimension
n over BU(n), giving the map on Thom spaces

Σ1+αBU(n)γn → BU(n + 1)γn+1 .

This is a Z/2-equivariant prespectrum, whose associated spectrum isMR. Thus,MR

is a Z/2-equivariant spectrum indexed on the complete RO(Z/2)-graded universe,
i. e. all degrees k + lα, k, l ∈ Z. We will write the coefficient ring MR⋆, the ⋆
indicating the RO(Z/2)-grading. Unlike the complex-oriented case, MR does not
represent cobordism classes of Real manifolds, i. e. manifolds whose stable normal
bundles admit Real structure, in the sense that MRk+lα is not isomorphic to the
cobordism group of Real manifolds of dimension k+ lα. However, there is still a map
from the cobordism ring of Real manifolds to MR⋆ given by the Pontrjagin-Thom
construction. This map is not an isomorphism due to the lack of transversality (for
further discussion, see [8]).

There is a notion of Real orientation, analogous to the notion of complex orien-
tation. In particular, a Real orientation on a Z/2-equivariant ring spectrum E is
equivalent to ring spectrum map from MR to E.

The following proposition was shown in [9].
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Proposition 7. There is a ring isomorphism MU∗
∼= MR∗(1+α), where MR∗(1+α)

is the subring of MR⋆ consisting of elements in degrees k(1 + α), k ∈ Z. The
isomorphism takes MU2k onto MRk(1+α).

Also, MR is an E∞-ring spectrum. So we can define BPR, the Real-oriented
version of the Brown-Peterson spectrum BP , in the manner of [5] as follows. Consider
MR∗(1+α)

∼= MU2∗
∼= Z[xi | i ≥ 1], where xi is in degree 2i(1 + α). It can be show

that the xi for i 6= 2n−1, ordered in any way, form a regular sequence inMR. Killing
this sequence in MR in the category of MR-modules and localizing at the prime 2
gives BPR. In fact, there is also a more elementary construction using the Quillen
idempotent [2], but that requires a treatment of formal group laws.

We will use the Borel cohomology and Tate spectral sequences [7] to compute the
coefficient ring BPR⋆. Recall the standard cofiber sequence

EZ/2+ → S0 → ẼZ/2.

Smashing with BPR and mapping to F (EZ/2+, BPR) gives the Tate diagram

EZ/2+ ∧ BPR

≃

BPR ẼZ/2 ∧BPR

EZ/2+ ∧ F (EZ/2+, BPR) F (EZ/2+, BPR) ẼZ/2 ∧ F (EZ/2+, BPR).

The Borel cohomology of BPR is F (EZ/2+, BPR)⋆, and the Tate cohomology of

BPR is B̂PR⋆ = ẼZ/2 ∧ F (EZ/2+, BPR)⋆. For the RO(Z/2)-graded coefficients,
the Borel cohomology spectral sequence is

(8) H∗(Z/2, BP∗[σ, σ
−1]) ⇒ F (EZ/2+, BPR)⋆

where σ is a periodicity operator of degree α−1 (compare with the Introduction). This
operator represents the (α− 1)-periodicity in the homotopy groups of the spectrum
F (Z/2+, BPR): we have

F (Z/2+, BPR)⋆ = BP∗[σ, σ
−1].

The Tate spectral sequence is

(9) Ĥ∗(Z/2, BP∗[σ, σ
−1]) ⇒ B̂PR⋆

where Ĥ∗ denotes the Tate cohomology of Z/2.
We can also look at the fixed-point version of the Tate spectral sequence

Ĥ∗(Z/2, BP∗) ⇒ (B̂PR)Z/2∗ .

As we shall see, this converges to the homotopy groups of the geometric fixed point

spectrum (ẼZ/2 ∧ BPR)Z/2 of BPR (see [9]). Thus, the spectrum BPR satisfies a
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“strong completion theorem” in the sense that

BPR ≃ F (EZ/2+, BPR).

Hence, the Borel cohomology spectral sequence (8) converges to BPR⋆. The E∞-term
of (8) is the associated graded abelian group to BPR⋆ with respect to the filtration
by powers of the ideal (a). It is the following.

Proposition 10. The E∞-term of the Borel cohomology spectral sequence (8) is

(11) E0BPR⋆ = Z(2)[vnσ
l2n+1

, a | l ∈ Z, n ≥ 0]/ ∼

where the relations are

v0 = 2

(vnσ
l2n+1

)a2
n+1−1 = 0

(vmσ
k2m+1

)(vnσ
l2m−n2n+1

) = vnvmσ
(k+l)2m+1

for n ≤ m.

The elements vnσ
l2n+1

has degree (2n − 1)(1 + α) + l2n+1(α − 1), and a has degree
−α.

Remark: It is shown in [9] that the ring on the right hand side of (11) is actually
isomorphic to BPR⋆. However, we do not need to use this fact in the present note.

The proof of Proposition 10 is given in [9], we paraphrase it here. We have

BPR∗(1+α)
∼= BP∗

∼= Z(2)[v0, v1, . . .]

where v0 = 2, and vn has degree (2n − 1)(1 + α). As remarked above, the element a
is given by the cofiber sequence

Z/2+ → S0 a
→ Sα.

Consider the Tate spectral sequence (9). Its E1-term is

BP∗[a, a
−1, σ, σ−1]

where the filtration degree of a monomial is its degree with respect to a. We have

d1(σ
−1) = v0a = 2a

from the computation of H∗(Z/2, BP∗). We use this notation since it conforms with
the pattern of the higher differentials. One must be careful, however, because the
E1-term is not a graded-commutative ring in any reasonable sense (it has nontorsion
elements in all degrees). Alternatively, the E2-term can be calculated as

E2 = Ĥ∗(Z/2, BP∗[σ, σ
−1]).

The action of Z/2 on BP∗[σ, σ
−1] is as follows. For reasons that will become clear

shortly, we write the generators of BP∗ as v
C

n . For a sequence of nonnegative integers
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R = (r0, r1, . . .), with only finitely many ri > 0, we write the monomial

vCR =
∏

i≥0

(vCi )
ri.

The degree of vCR is |vCR| = Σi≥02ri(2
i − 1). Then the generator of Z/2 acts on vCRσ

l

by (−1)
|vC

R
|

2
+l. This gives

(12) E2 = BP⋆[σ
2, σ−2, a, a−1]/(2a) = BP⋆[σ

2, σ−2, a, a−1]/(2)

where BP⋆ is defined to be Z(2)[vn],

(13) vn = vRn = vCnσ
2n−1.

We have dim(vn) = (2n − 1)(1 + α), dim(σ) = α− 1, and dim(a) = −α. To explain
this notation, note that the generator of Z/2 acts by 1 on vn. Now for fixed l ∈ Z,
we have

Ĥ i(Z/2,Z(2){vnσ
2l}) =Z/2 for i even

0 for i odd
(14)

and

Ĥ i(Z/2,Z(2){vnσ
2l+1}) =Z/2 for i odd

0 for i even.
(15)

If we consider the action of the class a : S0 → Sα on F (Z/2+, BPR), then (14)
and (15), over all l ∈ Z, combine into

Ĥ∗(Z/2,Z(2){vn}[σ, σ
−1]) = Z/2{vn}[σ

2, σ−2, a, a−1].

We get a similar formula for monomials in the variables vn. Putting together all the
monomials gives (12). Thus, every x ∈ E2 has an RO(Z/2)-degree k + lα. We will
call the number k + l the total degree of x.

Similarly, for the Borel cohomology spectral sequence, we have

H i(Z/2,Z(2){vnσ
2l}) =Z(2) for i = 0

Z/2 for i > 0 even

0 else

and

H i(Z/2,Z(2){vnσ
2l+1}) =Z/2 for i > 0 odd

0 else.

These combine into

H∗(Z/2,Z(2){vn}[σ, σ
−1]) = Z(2){vn}[σ

2, σ−2, a]/(2a).

Hence, the E2-term of the Borel cohomology spectral sequence is

BP⋆[σ
2, σ−2, a]/(2a).
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Now from E2 on, (9) is a spectral sequence of graded commutative rings, where
the grading is by total degree. By sparsity, σ−2n survives to E2n+1−1. There is the
differential

(16) d2n+1−1(σ
−2n) = vna

2n+1−1.

These are primary differentials in the sense that they arise from the Z/2-equivariant
Steenrod operations (see [9]). These differentials determine the entire pattern of
differentials in (9), as follows. For a monomial vR, let sR = min{i | ri > 0}. For a
monomial vRσ

2slak, k, l ∈ Z, l odd, suppose that s ≤ sR. Then vRσ
2slak survives to

E2s+1−1. This is because σ2sl survives to E2s+1−1, and BPR is a ring spectrum, so
there is a multiplication map by vRa

k

Σ|vRak |BPR → BPR

which induces a map of Tate spectral sequences.
Now by (16)

d2s+1−1(vRσ
2slak) = vRd2s+1−1((σ

−2s)−l)ak

= −lvsvR(σ
−2s)−l−1a2

s+1−1+k

= vsvRσ
2s(l+1)a2

s+1−1.

This is not 0 in E2s+1−1 by the previous paragraph, with R replaced by R+∆s, where
∆s = (0, . . . , 0, 1, 0, . . .) with the 1 in the s-th position.

By the same argument, if s ≥ sR + 1, the monomial vRσ
2sRmak, with m even, is

the target of a differential d2sR+1−1. Hence, in the Tate spectral sequence (9), all
elements except Z/2[a, a−1] are wiped out. In particular, in degrees k + 0α, the only

surviving term is Z/2 in degree 0. Thus, the fixed point spectrum of B̂PR is HZ/2,
which is the geometric fixed point spectrum of BPR. Recall that Z/2-equivariant
spectra are equivalent if they are equivalent nonequivariantly and on fixed points. So

B̂PR ≃ ẼZ/2∧BPR. Therefore, BPR ≃ F (EZ/2+, BPR), and we have the strong
completion theorem for BPR.

Now we turn to the Borel cohomology spectral sequence (8). This is the half of
the Tate spectral sequence consisting of elements of filtration degree ≥ 0. By [4], the
differentials in the Borel cohomology spectral sequence are exactly the differentials
in the Tate spectral sequence whose sources and targets both have filtration degree
≥ 0. Hence, the only elements that survive in (8) are the targets of Tate differentials
that originate from negative filtration degrees. The filtration degree of a monomial
vRσ

2slak is k, and a differential dt increases filtration degree by t. So these elements
must be of the form vRσ

2sR+1mak, where k < 2sR+1 − 1, and m is even. This is the
target of the differential

d2sR+1−1(vR′σ2sR (m−1)ak−2sR+1+1) = vRσ
2sRmak



THE Ext
0-TERM OF THE REAL-ORIENTED ADAMS-NOVIKOV SPECTRAL SEQUENCE 8

originating in filtration degree k− 2sR+1− 1 < 0 in the Tate spectral sequence. Here,
R′ denotes the sequence of nonnegative integers (r′0, r

′
1, . . .), where r

′
sR

= RsR − 1,

and r′i = ri for i 6= sR. Thus, vRσ
2sRmak survives as a permanent cycle in the Borel

cohomology spectral sequence. Therefore, the E∞-term of the Borel cohomology
spectral sequence consists of elements of the form vRσ

2sR+1lak, 0 ≤ k < 2sR+1 − 1.

We remarked that we will not need to use the exact ring structure of BPR⋆ (as
opposed to E0BPR⋆). However, we will need the following basic fact.

Lemma 17. Suppose x ∈ BPR⋆ has total degree ≥ 0, and x is not a unit in
BPR0+0α. If xak has total degree < 0 for some k ≥ 0, then xak = 0.

Proof. By the Borel cohomology spectral sequence, the only nontrivial elements in
BPR⋆ with total degree < 0 are ar, r ≥ 0. For k + l < 0, multiplication by a is an
isomorphism from BPRk+lα to BPRk+(l−1)α. If k + l = 0, 2 = v0 in BPR⋆, so the
isomorphism holds only modulo 2. Also, 2a = 0. Suppose that xaj has total degree
0, i. e. dim(xaj) = k − kα, and that xaj+1 6= 0. Then xaj+1 = a. In particular,
k = 0. Further, xaj is not divisible by 2, or else xaj+1 would be divisible by 2a = 0.
Therefore, xaj is an odd multiple of unity in BPR0+0α = Z(2). If j = 0, then x
is a unit in BPR0+0α. If j > 0, this implies a is invertible in BPR⋆. This is a
contradiction, since if 1 is a multiple of a, then it would vanish nonequivariantly. �

By the theory of Real orientations, we also have

BPR⋆BPR = BPR⋆[ti |i ≥ 1].

The elements ti are in degrees (2i − 1)(1 + α), and are the Real analogues of the
generators of BP∗BP . Then (BPR⋆, BPR⋆BPR) is a Hopf algebroid, where

ηR(a) = a(18)

ηR(vnσ
l2n+1

) = ηR(vn)σ
l2n+1

.(19)

The second formula follows from reasons of degree (see [9], Theorem 4.11). The
formulas for the structure maps on vn are the same as the formulas for the Hopf
algebroid (BP∗, BP∗BP ). This is because by formal group law theory, the Hopf
algebroid (BP∗, BP∗BP ) maps to (BPR⋆, BPR⋆BPR) [9].

The Hopf algebroid (BPR⋆, BPR⋆BPR) is flat. So by a construction similar to
that for the classical Adams-Novikov spectral sequence, we get the Real-oriented
Adams-Novikov spectral sequence (1).

3. Elements in Ext0

In this section, we prove Theorem 6. First, we get an upper bound on

Ext0BPR⋆BPR(BPR⋆, BPR⋆).
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Let ηL and ηR be the left and right unit maps of the Hopf algebroid

(BPR⋆, BPR⋆BPR).

We can think of Ext∗BPR⋆BPR
(BPR⋆, BPR⋆) as the cohomology of the cobar complex

CobarBPR⋆
(BPR⋆, BPR⋆BPR, BPR⋆),

whose n-th term is

BPR⋆BPR⊗BPR⋆
· · · ⊗BPR⋆

BPR⋆BPR

with n factors. The cobar differentials are the alternating sums of the left unit, the
coproducts, and the right unit. So Ext0 ⊆ BPR⋆ is the kernel of the first cobar
differential

d1 = ηL − ηR = 1− ηR : BPR⋆ → BPR⋆BPR.

We have the filtration of (BPR⋆, BPR⋆BPR) by powers of the ideal (a). Since
ηR(a) = ηL(a) = a, this is indeed a filtration on the Hopf algebroid, and induces
a filtration on Ext0BPR⋆BPR

(BPR⋆, BPR⋆). This filtration results from the Borel
cohomology spectral sequence (8), which we used to compute BPR⋆.

Define
BPA⋆ = BP⋆[a]/(vna

2n+1−1 | n ≥ 0)

(see 13). Then

E0BPR⋆ = Z(2)[vnσ
l2n+1

, a | n ≥ 0, l ∈ Z]/(v0 = 2, vna
2n+1−1 = 0) ⊆ BPA⋆[σ, σ

−1].

Also, let
BPA⋆BPA = BPA⋆[ti | i ≥ 1].

Then
E0BPR⋆BPR ⊆ BPA⋆BPA[σ, σ

−1].

Thus we can define a flat Hopf algebroid structure on

(BPA⋆[σ, σ
−1], BPA⋆BPA[σ, σ

−1])

by setting

(20) ηR(σ) = ηL(σ) = σ

and ηR(a) = ηL(a) = a. The coproduct structure formulas on vi, i ≥ 0 are the
same as in BP∗BP . By (20), (BPA⋆, BPA⋆BPA) is a flat sub-Hopf algebroid of
(BPA⋆[σ, σ

−1], BPA⋆BPA[σ, σ
−1]), and

Ext0BPA⋆BPA[σ,σ−1](BPA⋆[σ, σ
−1], BPA⋆[σ, σ

−1])

= Ext0BPA⋆BPA(BPA⋆, BPA⋆)[σ, σ
−1]

⊆ BPA⋆[σ, σ
−1].

From the map of Hopf algebroids, we also get a map

Ext0E0BPR⋆BPR
(E0BPR⋆, E0BPR⋆)

f
→ Ext0BPA⋆BPA(BPA⋆, BPA⋆)[σ, σ

−1].
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We have the following commutative diagram

Ext0E0BPR⋆BPR
(E0BPR⋆, E0BPR⋆)

i

f

E0BPR⋆

j

Ext0BPA⋆BPA(BPA⋆, BPA⋆)[σ, σ
−1]

k
BPA⋆[σ, σ

−1].

Since all the three maps i, j and k are inclusions, f is also an inclusion. This gives

Ext0BPA⋆BPA(BPA⋆, BPA⋆)[σ, σ
−1] ∩ E0BPR⋆

as an upper bound for Ext0BPR⋆BPR
(BPR⋆, BPR⋆).

To calculate Ext0BPA⋆BPA(BPA⋆, BPA⋆), consider the cobar complex

CobarBPA⋆
(BPA⋆, BPA⋆BPA,BPA⋆).

Since a = ηL(a) = ηR(a), the coproduct formula on a is

ψ(a) = a⊗ 1 = 1⊗ a.

Thus, the cobar complex is graded by powers of a. For n ≥ 0, let In ⊂ BP∗ be the
ideal (v0, . . . , vn−1). In degrees t where 2n−1 ≤ t < 2n+1−1, vma

t = 0 for all m < n,
so

⊕2n+1−2
t=2n−1CobarBPA⋆

(BPA⋆,BPA⋆BPA,BPA⋆)t

∼= ⊕2n+1−1
t=2n−1CobarBP∗(BP∗, BP∗BP,BP∗/In){a

t}.
(21)

Thus,

Ext0BPA⋆BPA(BPA⋆, BPA⋆) = ⊕n≥0(⊕
2n+1−1
t=2n−1Ext

0
BP∗BP (BP∗, BP∗/In){a

t}).

By the Morava-Landweber theorem [10, 11],

Ext0BP∗BP (BP∗, BP∗) = Z(2)

and

Ext0BP∗BP (BP∗, BP∗/In) = Z/2[vn]

for n ≥ 1. So in degree 0, Ext0BPA⋆BPA(BPA⋆, BPA⋆) is Z(2), generated over Z/2 by
v0 = 2. In degrees t where 2n − 1 ≤ t < 2n+1 − 1, n ≥ 1, it is

⊕2n+1−1
t=2n−1(Z/2[vn]){a

t}.

This gives that the upper bound on Ext0BPR⋆BPR
(BPR⋆, BPR⋆) is generated as a

Z(2)-module by elements of the form

(22) at, t ≥ 0 and vrnσ
l2n+1

at

where r ≥ 0, l ∈ Z and 2n − 1 ≤ t ≤ 2n+1 − 2.
To finish the proof of Theorem 6, we need to show that elements of the above form

are in fact in Ext0BPR⋆BPR
(BPR⋆, BPR⋆). Regardless of the exact multiplicative
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structure of BPR⋆, we can choose a set of generators for the Z(2)-module spanned
by (22), consisting of elements of the form

(23) x = (vnσ
l12n+1

) · · · (vnσ
lt2n+1

)at, 2n − 1 ≤ t ≤ 2n+1 − 1.

By (19), when we apply ηR to each of the factors vnσ
li2

n+1

, we obtain vnσ
li2

n+1

plus

multiples of elements of the form vmσ
li2

n+1

, with m < n. However, by Lemma 17,
these extra terms are annihilated by a2

m+1−1, which divides aj. Thus, ηR(x) = x, as
claimed.

This shows that Ext0BPR⋆BPR
(BPR⋆, BPR⋆) is generated by elements of the form

(22). For n = 0, the elements v0σ
2l generate copies of Z(2) since in the classical case,

v0 generates a copy Z(2). For n ≥ 1, the elements generate copies of Z/2 since they
contain nontrivial powers of a, and 2a = 0. Likewise, at, t > 1 generate copies of
Z/2. This proves Theorem 6.

4. Hopf Invariant One Type Elements

In this section, we will consider the class of Ext0 elements vnσ
l2n+1

a2
n−1. For l = 0,

the element vna
2n−1 is in degree (2n−1)+0α. In Propositions 7.13 and 7.14 of [9], it

was shown that there is a filtration on BPR⋆, such that there is an algebraic Novikov
spectral sequence with E2-term ExtP⋆[a](Z/2[a], E0BPR⋆), converging to the E2-term
of the Real Adams-Novikov spectral sequence, where P⋆[a] is a certain Hopf algebra
over Z/2[a]. There is also a Cartan-Eilenberg spectral sequence with the same E2-
term, and converging to the E2-term of the Z/2-equivariant Adams spectral sequence
of Greenlees [6]. (This is the Adams spectral sequence based on the Borel cohomology
Steenrod algebra (Hc

⋆, A
cc
⋆ ). Here, H is the equivariant Eilenberg-MacLane spectrum

indexed on the complete Z/2-universe, obtained by applying the universe change
functor to nonequivariant HZ/2, considered as a fixed spectrum over the trivial Z/2-
universe. Then

Hc
⋆ = F (EZ/2+, H)⋆

Acc
⋆ = F (EZ/2+, H ∧H)⋆. )

Also, in degrees k + 0α, the nonequivariant Adams spectral sequence E2-term is a
summand of the Z/2-equivariant Adams spectral sequence E2-term (see [8], Propo-
sition 6.12). In this sense, the Real Adams-Novikov E2-elements vna

2n−1 correspond
to the Hopf invariant one element hn in the classical (nonequivariant) Adams spec-
tral sequence [8, 9]. Recall from [1] that for n ≤ 3, hn is a permanent cycle, and

represents the Hopf invariant one maps S2n+1−1 → Sn. Also by [1], one can say that
nonequivariantly, the Hopf invariant one property holds for n if S2n−1 is parallelizable.

The Hopf invariant one property in the Z/2-equivariant category can be interpreted
as follows. For any n, consider the free unit sphere S(2nα) in the representation 2nα.
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The tangent bundle of S(2nα) has the property that

τS(2nα) ⊕ 1 = 2nα.

The Z/2-equivariant Hopf invariant one property can be formulated to say that
S(2nα) is parallelizable, i. e. τS(2nα) ∼= 2n − 1, which is true if and only if n ≤ 3. So
in this case, we have

2n|S(2nα) ∼= 2nα|S(2nα).

Stably, this gives

S(2nα)+ ≃ Σ2n(α−1)S(2nα)+.

Consider the usual cofiber sequence

S(2nα)+ → S0 a2
n

→ S2nα.

The Hopf invariant one map, as an element of the stable homotopy groups of spheres,
is the composition

S2nα−1 → S(2nα)+
≃
→ Σ2n(α−1)S(2nα)+ → S2n(α−1)

where the last map collapses S(2nα). This is an element of degree (2n− 1)+0α, and
by the comparison with the Adams spectral sequence, it is represented by vna

2n−1

for n ≤ 3 (see [8], Section 6.2).
By the previous section, we also have the elements

vnσ
l2n+1

a2
n−1 ∈ Ext0BPR⋆BPR

(BPR⋆, BPR).

To see these elements, note that for n ≤ 3, we can iterate the periodicity of S(2nα)+
to get families of Hopf invariant one maps

(24) S2nα−1 → S(2nα)+
≃
→ Σl2n(α−1)S(2nα)+ → Sl2n(α−1).

Proposition 25. For l even, the map (24) is represented by 0 in

Ext0BPR⋆BPR
(BPR⋆, BPR⋆).

For l odd, (24) is represented by vnσ
l2n+1

a2
n−1 in Ext0BPR⋆BPR⋆

(BPR⋆, BPR⋆).

Proof. For l = 0, the map (24) is 0 since it is just the composition of the two maps
of the cofiber sequence

S2nα−1 → S(2nα)+ → S0.

For general l, recall the construction of the element vnσ
2n+1

([9], Comment after
Theorem 4.11). Namely, consider the cofiber sequence

(26) S((2n+1 − 1)α)+ → S0 a2
n+1−1

−→ S2n+1−1.

Applying BPR⋆ gives the connecting map

δ : BPR⋆S((2n+1 − 1)α)+ → BPR⋆+1−(2n+1−1)α.
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Since vna
2n+1−1 = 0, there is an element

s ∈ BPR2n(α−1)S((2n+1 − 1)α)+

such that δ(s) = vn. Consider the analogue of the Borel cohomology spectral sequence

(2n+1−1)E, converging to

F (S((2n+1 − 1)α)+, BPR)⋆
obtained by replacing EZ/2+ by S((2n+1 − 1)α)+ in the construction of the spectral
sequence (8). This has the same E2-term as the E2-term of the Borel cohomology
spectral sequence (8) for BPR, but restricted to filtration degrees t, with 0 ≤ t ≤
2n+1 − 2. The differentials are exactly the differentials of (8) whose sources and
targets are both in filtration degrees t, 0 ≤ t ≤ 2n+1 − 2. We compare the Borel
cohomology spectral sequences for F (S((2n+1 − 1)α)+, BPR) and for BPR. Recall
the differential

d2n+1−1σ
−2n = vna

2n+1−1

in the Borel cohomology spectral sequence (8) for BPR (see 16). But in the spectral
sequence (2n+1−1)E discussed above, the target does not exist, and the differential
turns into the connecting map δ. Thus, the invertible element σ−2n in the Borel
cohomology spectral sequence for F (S((2n+1 − 1)α)+, BPR) is a permanent cycle,
and is realized by the element s ∈ BPR⋆S((2n+1 − 1)α)+. In particular, s is an
invertible element of BPR∗S((2n+1 − 1)α)+, whose inverse is represented by σ2n .
Comparing Tate spectral sequences for S((2n+1 − 1)α)+ ∧ BPR and BPR, one sees
that BPR⋆(S((2

n+1−1)α)+) is in fact 2n(α−1)-periodic, and the periodicity operator
is realized by cap product with the cohomology class s. Also, s2 corresponds to the
periodicity operator σ2n+1

in BPR⋆ on monomials containing viσ
l2i+1

, i ≤ n.
Now compare the cofiber sequences (26) for S(2nα)+ and for S((2n+1 − 1)α)+ via

the inclusion
S(2nα)+ → S((2n+1 − 1)α)+.

We have the commutative diagram

BPR⋆S((2n+1 − 1)α)+
δ

BPR⋆+1−(2n+1−1)α

a2
n−1

BPR⋆S(2nα)+
δ

BPR⋆+1−2nα.

Let s′ denote the image of the class s ∈ BPR⋆S((2n+1 − 1)α)+ in BPR⋆S(2nα)+. If
Hopf invariant one holds (i. e. for n ≤ 3), then we compare the spectral sequences

(2n)E and (2n+1−1)E for F (S(2nα)+, BPR) and F (S((2
n+1 − 1)α)+, BPR). In partic-

ular, by arguments similar to that for F (S((2n+1 − 1)α)+, BPR), we find that σ2n is
a permanent cycle in the Borel cohomology spectral sequence for F (S(2nα)+, BPR),
and is realized by s′. So s′ is an invertible element. It is the only element in
BPR2n(α−1)S(2nα)+, so it realizes the 2n(1 − α)-periodicity of S(2nα)+. This iden-
tifies Real Adams-Novikov spectral sequence representatives of all the individual
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maps in (24). Namely, for l odd, we see that the map (24) is represented by the
element σ(l−1)2nvna

2n−1 ∈ Ext0BPR⋆BPR
(BPR⋆, BPR⋆). For l even, the Hopf in-

variant one map (24) is represented by 0 in Ext0BPR⋆BPR
(BPR⋆, BPR⋆). This is

because (24) is 0 when smashed with BPR⋆, since as shown in [9], the elements
vnσ

l2na2
n−1 ∈ BPR⋆S(2

nα)+ map to 0 in BPR⋆ for l odd. �
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