THE Ext⁰-TERM OF THE REAL-ORIENTED ADAMS-NOVIKOV SPECTRAL SEQUENCE

PO HU

Department of Mathematics University of Chicago Chicago, IL 60637 pohu@math.uchicago.edu

1. INTRODUCTION

The purpose of this note is to describe the Ext^0 elements of the spectral sequence

(1)
$$E_2 = Ext^*_{BP\mathbb{R}_\star BP\mathbb{R}}(BP\mathbb{R}_\star, BP\mathbb{R}_\star) \Rightarrow (\pi^{\mathbb{Z}/2}_\star S^0)^{\wedge}_2$$

The spectral sequence (1) was introduced in [9] and [8]. Here, $BP\mathbb{R}$ is the Realoriented Brown-Peterson spectrum, which was constructed from Landweber's Real cobordism spectrum $M\mathbb{R}$ [10] by Araki [2]. These are $\mathbb{Z}/2$ -equivariant spectra, indexed on $RO(\mathbb{Z}/2)$. The subscript \star refers to the $RO(\mathbb{Z}/2)$ -indexing, i. e. all (bi)degrees $k + l\alpha, k, l \in \mathbb{Z}$, where α is the sign representation of $\mathbb{Z}/2$. Thus, the spectral sequence converges to the 2-primary components of the groups $\pi_{k+l\alpha}^{\mathbb{Z}/2}S^0$ = $\pi_k^{\mathbb{Z}/2} S^{-l\alpha}$

In the coefficient ring $BP\mathbb{R}_{\star} = BP\mathbb{R}_{\star}^{\mathbb{Z}/2}$ (we will drop the group from the superscript to simplify the notation, see [9]), there are elements v_n , which are analogues of the usual generators of BP_* . We also have an element $a \in \pi_* S^0_{\mathbb{Z}/2}$ defined by the cofiber sequence

(2)
$$\mathbb{Z}/2_+ \to S^0 \stackrel{a}{\to} S^{\alpha}$$

where the first map collapses $\mathbb{Z}/2$ to a single point. In addition to these, there are periodicity operators on monomials in the generators $v_n \in BP\mathbb{R}_{\star}$. We usually express these operators as powers of a certain symbol σ , which, however, is not itself an element. The degrees of v_n , a, and σ are as follows.

(3)
$$dim(v_n) = (2^n - 1)(1 + \alpha)$$

$$(4) dim(a) = -a$$

 $dim(a) = -\alpha$ $dim(\sigma) = \alpha - 1.$ (5)

For further discussion of $BP\mathbb{R}_{\star}$, see Section 2 below.

For a set $\{x_i\}$, let $\mathbb{Z}\{x_i\}$ denote the free abelian group on the generators x_i . For an abelian group M, let $M\{x_i\}$ denote $M \otimes \mathbb{Z}\{x_i\}$. The following theorem describes $Ext^0_{BP\mathbb{R}_{\star}BP\mathbb{R}}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star})$.

Theorem 6. As a $\mathbb{Z}_{(2)}$ -module,

$$\begin{aligned} Ext^0_{BP\mathbb{R}_{\star}}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star}) \\ &= \mathbb{Z}_{(2)}\{v_0\sigma^{2l} \mid l \in \mathbb{Z}\} \\ &\oplus a \cdot \mathbb{Z}/2[a] \\ &\oplus \mathbb{Z}/2\{v_n^r \sigma^{l2^{n+1}}a^t \mid n, r \ge 1, \ l \in \mathbb{Z}, \ 2^n - 1 \le t \le 2^{n+1} - 2\}. \end{aligned}$$

The degrees of these elements are determined by (3), (4), and (5).

In degrees $k + 0\alpha$, the spectral sequence (1) converges to

$$\pi_k^{\mathbb{Z}/2} S^0 \cong \pi_k \Sigma^\infty B\mathbb{Z}/2_+ \oplus \pi_k S^0.$$

By a simple computation of degrees, if $v_n^r \sigma^{l^{2n+1}} a^t$ has degree $k + 0\alpha$, then $l \leq 0$. The following table lists the first elements of Ext^0 -summand of the E_2 -term of (1) in degrees $k + 0\alpha$, of the form $v_n^r \sigma^{l^{2n+1}} a^t$, for $n \leq 4$, $0 \geq l \geq -7$. Following each element, the number in the parenthesis is the degree of the element.

	n = 1	2	3	4
l = 0	$v_1 a(1)$	$v_2 a^3(3)$	$v_3 a^7(7)$	$v_4 a^{15}(15)$
	$v_1^2 a^2(2)$	$v_2^2 a^6(6)$	$v_3^2 a^{14}(14)$	$v_4^2 a^{30}(30)$
-1	$v_1^5 \sigma^{-4} a(9)$	$v_2^4 \sigma^{-8} a^4(20)$	$v_3^4 \sigma^{-16} a^{12}(44)$	$v_4^4 \sigma^{-32} a^{28}(92)$
	$v_1^6 \sigma^{-4} a^2(10)$			
-2	$v_1^9 \sigma^{-8} a(17)$	$v_2^7 \sigma^{-16} a^5(37)$	$v_3^6 \sigma^{-32} a^{10}(74)$	$v_4^6 \sigma^{-64} a^{26}(154)$
	$v_1^{10}\sigma^{-8}a^2(18)$			
-3	$v_1^{13}\sigma^{-12}a(25)$	$v_2^9 \sigma^{-24} a^3(51)$	$v_3^8 \sigma^{-48} a^8(104)$	$v_4^8 \sigma^{-96} a^{24}(216)$
	$v_1^{14}\sigma^{-12}a^2(26)$	$v_2^{10}\sigma^{-24}a^6(54)$		
-4	$v_1^{17}\sigma^{-16}a(33)$	$v_2^{12}\sigma^{-32}a^4(68)$	$v_3^{11}\sigma^{-64}a^{13}(141)$	$v_4^{10}\sigma^{-128}a^{22}(278)$
	$v_1^{18}\sigma^{-16}a^2(34)$			
-5	$v_1^{21}\sigma^{-20}a(41)$	$v_2^{15}\sigma^{-40}a^5(85)$	$v_3^{13}\sigma^{-80}a^{11}(171)$	$v_4^{12}\sigma^{-160}a^{20}(340)$
	$v_1^{22}\sigma^{-20}a^2(42)$			
-6	$v_1^{25}\sigma^{-24}a(49)$	$v_2^{17}\sigma^{-48}a^3(99)$	$v_3^{15}\sigma^{-96}a^9(201)$	$v_4^{14}\sigma^{-192}a^{18}(402)$
	$v_1^{26}\sigma^{-24}a^2(50)$	$v_2^{18}\sigma^{-48}a^6(102)$		
-7	$v_1^{29}\sigma^{-28}a(57)$	$v_2^{20}\sigma^{-56}a^4(116)$	$v_3^{17}\sigma^{-112}a^7(231)$	$v_4^{16}\sigma^{-224}a^{16}(464)$
	$v_1^{30}\sigma^{-28}a^2(58)$		$v_3^{18}\sigma^{-112}a^{14}(238)$	

The elements in the first row of the table $v_n a^{2^{n-1}}$ and $v_n^2 a^{2^{n+1}-1}$ are $\mathbb{Z}/2$ -equivariant analogues of the elements h_n and h_n^2 in the classical Adams spectral sequence. The elements in the second row of the table $v_n^4 \sigma^{-2^{n+1}} a^{2^{n+1}-4}$, $n \geq 2$, are analogues of the Adams spectral sequence elements g_{n-1} . And in the first column of the table,

the elements $v_1^{4l+1}\sigma^{4l}a$ and $v_1^{4l+2}\sigma^{4l}a^2$ are analogues of the Adams spectral sequence elements P^lh_1 and $h_1P^lh_1$, respectively [8].

A proof of Theorem 6 was given in [8], but we substantially simplify the argument here. We also give an interpretation of elements of the type $v_n \sigma^{l2^{n+1}} a^{2^n-1} \in Ext^0$ as Hopf invariant one elements in a certain sense. In [8], I also calculated an upper bound for the 1-line $Ext^1_{BP\mathbb{R}_*BP\mathbb{R}}(BP\mathbb{R}_*, BP\mathbb{R}_*)$.

In Section 2 of the note, we recall some facts of Real-oriented homotopy theory used in constructing the Real Adams-Novikov spectral sequence. Section 3 is devoted to the proof of Theorem 6. In Section 4, we give the interpretation of the Ext^0 elements $v_n a^{2^n-1}$ as Hopf invariant one type elements.

2. The Real-oriented Adams-Novikov Spectral Sequence

In this section, we give a brief overview of the construction of the Real-oriented Adams-Novikov spectral sequence [9]. Only a small portion of the results from [9] are needed. We will recall it here in a form as self-contained as possible.

The term Real (with capitalized "R") was first introduced for K-theory by Atiyah, who defined a Real bundle ξ to be a complex bundle over an $\mathbb{Z}/2$ -equivariant space, together with an action of $\mathbb{Z}/2$, which is complex antilinear fiberwise [3]. The Real cobordism spectrum $M\mathbb{R}$, introduced by Landweber and Araki [2, 10], is the Real analogue of the complex cobordism spectrum MU, and is defined as the Thom spectrum of canonical Real bundles. Specifically, the infinite Grassmannian BU(n) has a $\mathbb{Z}/2$ -action by complex conjugation. There is a canonical Real bundle γ_n of dimension n over BU(n), giving the map on Thom spaces

$$\Sigma^{1+\alpha} BU(n)^{\gamma_n} \to BU(n+1)^{\gamma_{n+1}}.$$

This is a $\mathbb{Z}/2$ -equivariant prespectrum, whose associated spectrum is $M\mathbb{R}$. Thus, $M\mathbb{R}$ is a $\mathbb{Z}/2$ -equivariant spectrum indexed on the complete $RO(\mathbb{Z}/2)$ -graded universe, i. e. all degrees $k + l\alpha$, $k, l \in \mathbb{Z}$. We will write the coefficient ring $M\mathbb{R}_{\star}$, the \star indicating the $RO(\mathbb{Z}/2)$ -grading. Unlike the complex-oriented case, $M\mathbb{R}$ does not represent cobordism classes of Real manifolds, i. e. manifolds whose stable normal bundles admit Real structure, in the sense that $M\mathbb{R}_{k+l\alpha}$ is not isomorphic to the cobordism group of Real manifolds of dimension $k + l\alpha$. However, there is still a map from the cobordism ring of Real manifolds to $M\mathbb{R}_{\star}$ given by the Pontrjagin-Thom construction. This map is not an isomorphism due to the lack of transversality (for further discussion, see [8]).

There is a notion of Real orientation, analogous to the notion of complex orientation. In particular, a Real orientation on a $\mathbb{Z}/2$ -equivariant ring spectrum E is equivalent to ring spectrum map from $M\mathbb{R}$ to E.

The following proposition was shown in [9].

Proposition 7. There is a ring isomorphism $MU_* \cong M\mathbb{R}_{*(1+\alpha)}$, where $M\mathbb{R}_{*(1+\alpha)}$ is the subring of $M\mathbb{R}_*$ consisting of elements in degrees $k(1 + \alpha)$, $k \in \mathbb{Z}$. The isomorphism takes MU_{2k} onto $M\mathbb{R}_{k(1+\alpha)}$.

Also, $M\mathbb{R}$ is an E_{∞} -ring spectrum. So we can define $BP\mathbb{R}$, the Real-oriented version of the Brown-Peterson spectrum BP, in the manner of [5] as follows. Consider $M\mathbb{R}_{*(1+\alpha)} \cong MU_{2*} \cong \mathbb{Z}[x_i \mid i \ge 1]$, where x_i is in degree $2i(1+\alpha)$. It can be show that the x_i for $i \ne 2^n - 1$, ordered in any way, form a regular sequence in $M\mathbb{R}$. Killing this sequence in $M\mathbb{R}$ in the category of $M\mathbb{R}$ -modules and localizing at the prime 2 gives $BP\mathbb{R}$. In fact, there is also a more elementary construction using the Quillen idempotent [2], but that requires a treatment of formal group laws.

We will use the Borel cohomology and Tate spectral sequences [7] to compute the coefficient ring $BP\mathbb{R}_{\star}$. Recall the standard cofiber sequence

$$E\mathbb{Z}/2_+ \to S^0 \to \widetilde{E\mathbb{Z}/2}.$$

Smashing with $BP\mathbb{R}$ and mapping to $F(E\mathbb{Z}/2_+, BP\mathbb{R})$ gives the Tate diagram

$$\begin{split} E\mathbb{Z}/2_+ \wedge BP\mathbb{R} & \longrightarrow BP\mathbb{R} & \longrightarrow \widetilde{E\mathbb{Z}/2} \wedge BP\mathbb{R} \\ & \downarrow & & \downarrow \\ E\mathbb{Z}/2_+ \wedge F(E\mathbb{Z}/2_+, BP\mathbb{R}) & \longrightarrow F(E\mathbb{Z}/2_+, BP\mathbb{R}) & \longrightarrow \widetilde{E\mathbb{Z}/2} \wedge F(E\mathbb{Z}/2_+, BP\mathbb{R}). \end{split}$$

The Borel cohomology of $BP\mathbb{R}$ is $F(E\mathbb{Z}/2_+, BP\mathbb{R})_*$, and the Tate cohomology of $BP\mathbb{R}$ is $\widetilde{BP\mathbb{R}}_* = \widetilde{E\mathbb{Z}/2} \wedge F(E\mathbb{Z}/2_+, BP\mathbb{R})_*$. For the $RO(\mathbb{Z}/2)$ -graded coefficients, the Borel cohomology spectral sequence is

(8)
$$H^*(\mathbb{Z}/2, BP_*[\sigma, \sigma^{-1}]) \Rightarrow F(E\mathbb{Z}/2_+, BP\mathbb{R})_*$$

where σ is a periodicity operator of degree $\alpha - 1$ (compare with the Introduction). This operator represents the $(\alpha - 1)$ -periodicity in the homotopy groups of the spectrum $F(\mathbb{Z}/2_+, BP\mathbb{R})$: we have

$$F(\mathbb{Z}/2_+, BP\mathbb{R})_{\star} = BP_{*}[\sigma, \sigma^{-1}].$$

The Tate spectral sequence is

(9)
$$\widehat{H}^*(\mathbb{Z}/2, BP_*[\sigma, \sigma^{-1}]) \Rightarrow \widehat{B}P\mathbb{R}_*$$

where \widehat{H}^* denotes the Tate cohomology of $\mathbb{Z}/2$.

We can also look at the fixed-point version of the Tate spectral sequence

$$\widehat{H}^*(\mathbb{Z}/2, BP_*) \Rightarrow (\widehat{BP\mathbb{R}})^{\mathbb{Z}/2}_*$$

As we shall see, this converges to the homotopy groups of the geometric fixed point spectrum $(E\mathbb{Z}/2 \wedge BP\mathbb{R})^{\mathbb{Z}/2}$ of $BP\mathbb{R}$ (see [9]). Thus, the spectrum $BP\mathbb{R}$ satisfies a

"strong completion theorem" in the sense that

$$BP\mathbb{R} \simeq F(E\mathbb{Z}/2_+, BP\mathbb{R}).$$

Hence, the Borel cohomology spectral sequence (8) converges to $BP\mathbb{R}_{\star}$. The E_{∞} -term of (8) is the associated graded abelian group to $BP\mathbb{R}_{\star}$ with respect to the filtration by powers of the ideal (a). It is the following.

Proposition 10. The E_{∞} -term of the Borel cohomology spectral sequence (8) is

(11)
$$E_0 BP\mathbb{R}_* = \mathbb{Z}_{(2)}[v_n \sigma^{l2^{n+1}}, a \mid l \in \mathbb{Z}, n \ge 0] / \sim$$

where the relations are

$$v_0 = 2$$

$$(v_n \sigma^{l2^{n+1}}) a^{2^{n+1}-1} = 0$$

$$(v_m \sigma^{k2^{m+1}}) (v_n \sigma^{l2^{m-n}2^{n+1}}) = v_n v_m \sigma^{(k+l)2^{m+1}} \text{ for } n \le m.$$

The elements $v_n \sigma^{l2^{n+1}}$ has degree $(2^n - 1)(1 + \alpha) + l2^{n+1}(\alpha - 1)$, and a has degree $-\alpha$.

Remark: It is shown in [9] that the ring on the right hand side of (11) is actually isomorphic to $BP\mathbb{R}_{\star}$. However, we do not need to use this fact in the present note.

The proof of Proposition 10 is given in [9], we paraphrase it here. We have

$$BP\mathbb{R}_{*(1+\alpha)} \cong BP_* \cong \mathbb{Z}_{(2)}[v_0, v_1, \ldots]$$

where $v_0 = 2$, and v_n has degree $(2^n - 1)(1 + \alpha)$. As remarked above, the element *a* is given by the cofiber sequence

$$\mathbb{Z}/2_+ \to S^0 \stackrel{a}{\to} S^{\alpha}.$$

Consider the Tate spectral sequence (9). Its E_1 -term is

$$BP_*[a, a^{-1}, \sigma, \sigma^{-1}]$$

where the filtration degree of a monomial is its degree with respect to a. We have

$$d_1(\sigma^{-1}) = v_0 a = 2a$$

from the computation of $H^*(\mathbb{Z}/2, BP_*)$. We use this notation since it conforms with the pattern of the higher differentials. One must be careful, however, because the E_1 -term is not a graded-commutative ring in any reasonable sense (it has nontorsion elements in all degrees). Alternatively, the E_2 -term can be calculated as

$$E_2 = \widehat{H}^*(\mathbb{Z}/2, BP_*[\sigma, \sigma^{-1}]).$$

The action of $\mathbb{Z}/2$ on $BP_*[\sigma, \sigma^{-1}]$ is as follows. For reasons that will become clear shortly, we write the generators of BP_* as $v_n^{\mathbb{C}}$. For a sequence of nonnegative integers

 $R = (r_0, r_1, \ldots)$, with only finitely many $r_i > 0$, we write the monomial

$$v_R^{\mathbb{C}} = \prod_{i \ge 0} (v_i^{\mathbb{C}})^{r_i}.$$

The degree of $v_R^{\mathbb{C}}$ is $|v_R^{\mathbb{C}}| = \sum_{i \ge 0} 2r_i(2^i - 1)$. Then the generator of $\mathbb{Z}/2$ acts on $v_R^{\mathbb{C}}\sigma^l$ by $(-1)^{\frac{|v_R^{\mathbb{C}}|}{2}+l}$. This gives

(12)
$$E_2 = BP_{\star}[\sigma^2, \sigma^{-2}, a, a^{-1}]/(2a) = BP_{\star}[\sigma^2, \sigma^{-2}, a, a^{-1}]/(2a)$$

where BP_{\star} is defined to be $\mathbb{Z}_{(2)}[v_n]$,

(13)
$$v_n = v_n^{\mathbb{R}} = v_n^{\mathbb{C}} \sigma^{2^n - 1}.$$

We have $dim(v_n) = (2^n - 1)(1 + \alpha)$, $dim(\sigma) = \alpha - 1$, and $dim(a) = -\alpha$. To explain this notation, note that the generator of $\mathbb{Z}/2$ acts by 1 on v_n . Now for fixed $l \in \mathbb{Z}$, we have

(14)
$$\widehat{H}^{i}(\mathbb{Z}/2, \mathbb{Z}_{(2)}\{v_{n}\sigma^{2l}\}) = \mathbb{Z}/2 \text{ for } i \text{ even} \\ 0 \text{ for } i \text{ odd}$$

and

(15)
$$\widehat{H}^{i}(\mathbb{Z}/2, \mathbb{Z}_{(2)}\{v_{n}\sigma^{2l+1}\}) = \mathbb{Z}/2 \text{ for } i \text{ odd}$$
$$0 \text{ for } i \text{ even.}$$

If we consider the action of the class $a : S^0 \to S^{\alpha}$ on $F(\mathbb{Z}/2_+, BP\mathbb{R})$, then (14) and (15), over all $l \in \mathbb{Z}$, combine into

$$\widehat{H}^*(\mathbb{Z}/2, \mathbb{Z}_{(2)}\{v_n\}[\sigma, \sigma^{-1}]) = \mathbb{Z}/2\{v_n\}[\sigma^2, \sigma^{-2}, a, a^{-1}].$$

We get a similar formula for monomials in the variables v_n . Putting together all the monomials gives (12). Thus, every $x \in E_2$ has an $RO(\mathbb{Z}/2)$ -degree $k + l\alpha$. We will call the number k + l the *total degree* of x.

Similarly, for the Borel cohomology spectral sequence, we have

$$H^{i}(\mathbb{Z}/2, \mathbb{Z}_{(2)}\{v_{n}\sigma^{2l}\}) = \mathbb{Z}_{(2)} \text{ for } i = 0$$
$$\mathbb{Z}/2 \text{ for } i > 0 \text{ even}$$
$$0 \text{ else}$$

and

$$H^{i}(\mathbb{Z}/2, \mathbb{Z}_{(2)}\{v_{n}\sigma^{2l+1}\}) = \mathbb{Z}/2 \text{ for } i > 0 \text{ odd}$$

0 else.

These combine into

$$H^*(\mathbb{Z}/2, \mathbb{Z}_{(2)}\{v_n\}[\sigma, \sigma^{-1}]) = \mathbb{Z}_{(2)}\{v_n\}[\sigma^2, \sigma^{-2}, a]/(2a).$$

Hence, the E_2 -term of the Borel cohomology spectral sequence is

 $BP_{\star}[\sigma^2, \sigma^{-2}, a]/(2a).$

Now from E_2 on, (9) is a spectral sequence of graded commutative rings, where the grading is by total degree. By sparsity, σ^{-2^n} survives to $E_{2^{n+1}-1}$. There is the differential

(16)
$$d_{2^{n+1}-1}(\sigma^{-2^n}) = v_n a^{2^{n+1}-1}.$$

These are primary differentials in the sense that they arise from the $\mathbb{Z}/2$ -equivariant Steenrod operations (see [9]). These differentials determine the entire pattern of differentials in (9), as follows. For a monomial v_R , let $s_R = min\{i \mid r_i > 0\}$. For a monomial $v_R \sigma^{2^{s_l}} a^k$, $k, l \in \mathbb{Z}$, l odd, suppose that $s \leq s_R$. Then $v_R \sigma^{2^{s_l}} a^k$ survives to $E_{2^{s+1}-1}$. This is because $\sigma^{2^{s_l}}$ survives to $E_{2^{s+1}-1}$, and $BP\mathbb{R}$ is a ring spectrum, so there is a multiplication map by $v_R a^k$

$$\Sigma^{|v_R a^k|} BP\mathbb{R} \to BP\mathbb{R}$$

which induces a map of Tate spectral sequences.

Now by (16)

$$d_{2^{s+1}-1}(v_R \sigma^{2^{s}l} a^k) = v_R d_{2^{s+1}-1}((\sigma^{-2^s})^{-l}) a^k$$

= $-lv_s v_R (\sigma^{-2^s})^{-l-1} a^{2^{s+1}-1+k}$
= $v_s v_R \sigma^{2^s(l+1)} a^{2^{s+1}-1}$.

This is not 0 in $E_{2^{s+1}-1}$ by the previous paragraph, with R replaced by $R + \Delta_s$, where $\Delta_s = (0, \ldots, 0, 1, 0, \ldots)$ with the 1 in the s-th position.

By the same argument, if $s \geq s_R + 1$, the monomial $v_R \sigma^{2^{s_R} m} a^k$, with m even, is the target of a differential $d_{2^{s_R+1}-1}$. Hence, in the Tate spectral sequence (9), all elements except $\mathbb{Z}/2[a, a^{-1}]$ are wiped out. In particular, in degrees $k + 0\alpha$, the only surviving term is $\mathbb{Z}/2$ in degree 0. Thus, the fixed point spectrum of \widehat{BPR} is $H\mathbb{Z}/2$, which is the geometric fixed point spectrum of $BP\mathbb{R}$. Recall that $\mathbb{Z}/2$ -equivariant spectra are equivalent if they are equivalent nonequivariantly and on fixed points. So $\widehat{BPR} \simeq \widetilde{E\mathbb{Z}/2} \wedge BP\mathbb{R}$. Therefore, $BP\mathbb{R} \simeq F(E\mathbb{Z}/2_+, BP\mathbb{R})$, and we have the strong completion theorem for $BP\mathbb{R}$.

Now we turn to the Borel cohomology spectral sequence (8). This is the half of the Tate spectral sequence consisting of elements of filtration degree ≥ 0 . By [4], the differentials in the Borel cohomology spectral sequence are exactly the differentials in the Tate spectral sequence whose sources and targets both have filtration degree ≥ 0 . Hence, the only elements that survive in (8) are the targets of Tate differentials that originate from negative filtration degrees. The filtration degree of a monomial $v_R \sigma^{2^{s_l}} a^k$ is k, and a differential d_t increases filtration degree by t. So these elements must be of the form $v_R \sigma^{2^{s_R+1}m} a^k$, where $k < 2^{s_R+1} - 1$, and m is even. This is the target of the differential

$$d_{2^{s_R+1}-1}(v_{R'}\sigma^{2^{s_R}(m-1)}a^{k-2^{s_R+1}+1}) = v_R\sigma^{2^{s_R}m}a^k$$

originating in filtration degree $k - 2^{s_R+1} - 1 < 0$ in the Tate spectral sequence. Here, R' denotes the sequence of nonnegative integers (r'_0, r'_1, \ldots) , where $r'_{s_R} = R_{s_R} - 1$, and $r'_i = r_i$ for $i \neq s_R$. Thus, $v_R \sigma^{2^{s_R}m} a^k$ survives as a permanent cycle in the Borel cohomology spectral sequence. Therefore, the E_{∞} -term of the Borel cohomology spectral sequence consists of elements of the form $v_R \sigma^{2^{s_R+1}} a^k$, $0 \leq k < 2^{s_R+1} - 1$.

We remarked that we will not need to use the exact ring structure of $BP\mathbb{R}_{\star}$ (as opposed to $E_0BP\mathbb{R}_{\star}$). However, we will need the following basic fact.

Lemma 17. Suppose $x \in BP\mathbb{R}_{\star}$ has total degree ≥ 0 , and x is not a unit in $BP\mathbb{R}_{0+0\alpha}$. If xa^k has total degree < 0 for some $k \geq 0$, then $xa^k = 0$.

Proof. By the Borel cohomology spectral sequence, the only nontrivial elements in $BP\mathbb{R}_{\star}$ with total degree < 0 are a^r , $r \ge 0$. For k + l < 0, multiplication by a is an isomorphism from $BP\mathbb{R}_{k+l\alpha}$ to $BP\mathbb{R}_{k+(l-1)\alpha}$. If k + l = 0, $2 = v_0$ in $BP\mathbb{R}_{\star}$, so the isomorphism holds only modulo 2. Also, 2a = 0. Suppose that xa^j has total degree 0, i. e. $dim(xa^j) = k - k\alpha$, and that $xa^{j+1} \ne 0$. Then $xa^{j+1} = a$. In particular, k = 0. Further, xa^j is not divisible by 2, or else xa^{j+1} would be divisible by 2a = 0. Therefore, xa^j is an odd multiple of unity in $BP\mathbb{R}_{0+0\alpha} = \mathbb{Z}_{(2)}$. If j = 0, then x is a unit in $BP\mathbb{R}_{0+0\alpha}$. If j > 0, this implies a is invertible in $BP\mathbb{R}_{\star}$. This is a contradiction, since if 1 is a multiple of a, then it would vanish nonequivariantly. \Box

By the theory of Real orientations, we also have

$$BP\mathbb{R}_{\star}BP\mathbb{R} = BP\mathbb{R}_{\star}[t_i \mid i \ge 1].$$

The elements t_i are in degrees $(2^i - 1)(1 + \alpha)$, and are the Real analogues of the generators of BP_*BP . Then $(BP\mathbb{R}_*, BP\mathbb{R}_*BP\mathbb{R})$ is a Hopf algebroid, where

(18)
$$\eta_R(a) = a$$

(19)
$$\eta_R(v_n \sigma^{l2^{n+1}}) = \eta_R(v_n) \sigma^{l2^{n+1}}$$

The second formula follows from reasons of degree (see [9], Theorem 4.11). The formulas for the structure maps on v_n are the same as the formulas for the Hopf algebroid (BP_*, BP_*BP) . This is because by formal group law theory, the Hopf algebroid (BP_*, BP_*BP) maps to $(BP\mathbb{R}_*, BP\mathbb{R}_*BP\mathbb{R})$ [9].

The Hopf algebroid $(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star}BP\mathbb{R})$ is flat. So by a construction similar to that for the classical Adams-Novikov spectral sequence, we get the Real-oriented Adams-Novikov spectral sequence (1).

3. Elements in Ext^0

In this section, we prove Theorem 6. First, we get an upper bound on

 $Ext^{0}_{BP\mathbb{R}_{\star}BP\mathbb{R}}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star}).$

Let η_L and η_R be the left and right unit maps of the Hopf algebroid

 $(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star}BP\mathbb{R}).$

We can think of $Ext^*_{BP\mathbb{R}_{\star}BP\mathbb{R}}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star})$ as the cohomology of the cobar complex $Cobar_{BP\mathbb{R}_{\star}}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star}BP\mathbb{R}, BP\mathbb{R}_{\star}),$

whose n-th term is

 $BP\mathbb{R}_{\star}BP\mathbb{R} \otimes_{BP\mathbb{R}_{\star}} \cdots \otimes_{BP\mathbb{R}_{\star}} BP\mathbb{R}_{\star}BP\mathbb{R}$

with *n* factors. The cobar differentials are the alternating sums of the left unit, the coproducts, and the right unit. So $Ext^0 \subseteq BP\mathbb{R}_{\star}$ is the kernel of the first cobar differential

$$d_1 = \eta_L - \eta_R = 1 - \eta_R : BP\mathbb{R}_\star \to BP\mathbb{R}_\star BP\mathbb{R}$$

We have the filtration of $(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star}BP\mathbb{R})$ by powers of the ideal (a). Since $\eta_R(a) = \eta_L(a) = a$, this is indeed a filtration on the Hopf algebroid, and induces a filtration on $Ext^0_{BP\mathbb{R}_{\star}BP\mathbb{R}}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star})$. This filtration results from the Borel cohomology spectral sequence (8), which we used to compute $BP\mathbb{R}_{\star}$.

Define

$$BPA_{\star} = BP_{\star}[a]/(v_n a^{2^{n+1}-1} \mid n \ge 0)$$

(see 13). Then

$$E_0 BP\mathbb{R}_{\star} = \mathbb{Z}_{(2)}[v_n \sigma^{l2^{n+1}}, a \mid n \ge 0, \ l \in \mathbb{Z}]/(v_0 = 2, v_n a^{2^{n+1}-1} = 0) \subseteq BPA_{\star}[\sigma, \sigma^{-1}].$$

Also, let

$$BPA_{\star}BPA = BPA_{\star}[t_i \mid i \ge 1].$$

Then

$$E_0 BP\mathbb{R}_* BP\mathbb{R} \subseteq BPA_* BPA[\sigma, \sigma^{-1}].$$

Thus we can define a flat Hopf algebroid structure on

$$(BPA_{\star}[\sigma, \sigma^{-1}], BPA_{\star}BPA[\sigma, \sigma^{-1}])$$

by setting

(20)
$$\eta_R(\sigma) = \eta_L(\sigma) = c$$

and $\eta_R(a) = \eta_L(a) = a$. The coproduct structure formulas on $v_i, i \ge 0$ are the same as in BP_*BP . By (20), (BPA_*, BPA_*BPA) is a flat sub-Hopf algebroid of $(BPA_*[\sigma, \sigma^{-1}], BPA_*BPA[\sigma, \sigma^{-1}])$, and

$$Ext^{0}_{BPA_{\star}BPA[\sigma,\sigma^{-1}]}(BPA_{\star}[\sigma,\sigma^{-1}],BPA_{\star}[\sigma,\sigma^{-1}])$$

= $Ext^{0}_{BPA_{\star}BPA}(BPA_{\star},BPA_{\star})[\sigma,\sigma^{-1}]$
 $\subseteq BPA_{\star}[\sigma,\sigma^{-1}].$

From the map of Hopf algebroids, we also get a map

$$Ext^{0}_{E_{0}BP\mathbb{R}_{\star}BP\mathbb{R}}(E_{0}BP\mathbb{R}_{\star}, E_{0}BP\mathbb{R}_{\star}) \xrightarrow{J} Ext^{0}_{BPA_{\star}BPA}(BPA_{\star}, BPA_{\star})[\sigma, \sigma^{-1}].$$

We have the following commutative diagram

Since all the three maps i, j and k are inclusions, f is also an inclusion. This gives

$$Ext^{0}_{BPA_{\star}BPA}(BPA_{\star}, BPA_{\star})[\sigma, \sigma^{-1}] \cap E_{0}BPR_{\star}$$

as an upper bound for $Ext^0_{BP\mathbb{R}_{\star}BP\mathbb{R}}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star})$.

To calculate $Ext^{0}_{BPA_{\star}BPA}(BPA_{\star}, BPA_{\star})$, consider the cobar complex

$$Cobar_{BPA_{\star}}(BPA_{\star}, BPA_{\star}BPA, BPA_{\star}).$$

Since $a = \eta_L(a) = \eta_R(a)$, the coproduct formula on a is

$$\psi(a) = a \otimes 1 = 1 \otimes a.$$

Thus, the cobar complex is graded by powers of a. For $n \ge 0$, let $I_n \subset BP_*$ be the ideal (v_0, \ldots, v_{n-1}) . In degrees t where $2^n - 1 \le t < 2^{n+1} - 1$, $v_m a^t = 0$ for all m < n, so

(21)
$$\bigoplus_{t=2^{n-1}}^{2^{n+1}-2} Cobar_{BPA_{\star}}(BPA_{\star}, BPA_{\star}BPA, BPA_{\star})_{t} \\ \cong \bigoplus_{t=2^{n-1}}^{2^{n+1}-1} Cobar_{BP_{\star}}(BP_{\star}, BP_{\star}BP, BP_{\star}/I_{n})\{a^{t}\}.$$

Thus,

$$Ext^{0}_{BPA_{\star}BPA}(BPA_{\star}, BPA_{\star}) = \bigoplus_{n \ge 0} (\bigoplus_{t=2^{n-1}}^{2^{n+1}-1} Ext^{0}_{BP_{\star}BP}(BP_{\star}, BP_{\star}/I_{n})\{a^{t}\})$$

By the Morava-Landweber theorem [10, 11],

$$Ext^0_{BP_*BP}(BP_*, BP_*) = \mathbb{Z}_{(2)}$$

and

$$Ext^{0}_{BP_{*}BP}(BP_{*}, BP_{*}/I_{n}) = \mathbb{Z}/2[v_{n}]$$

for $n \ge 1$. So in degree 0, $Ext^0_{BPA_{\star}BPA}(BPA_{\star}, BPA_{\star})$ is $\mathbb{Z}_{(2)}$, generated over $\mathbb{Z}/2$ by $v_0 = 2$. In degrees t where $2^n - 1 \le t < 2^{n+1} - 1$, $n \ge 1$, it is

$$\oplus_{t=2^n-1}^{2^{n+1}-1}(\mathbb{Z}/2[v_n])\{a^t\}.$$

This gives that the upper bound on $Ext^0_{BP\mathbb{R}_{\star}BP\mathbb{R}}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star})$ is generated as a $\mathbb{Z}_{(2)}$ -module by elements of the form

(22)
$$a^t, t \ge 0 \text{ and } v_n^r \sigma^{l2^{n+1}} a^t$$

where $r \ge 0$, $l \in \mathbb{Z}$ and $2^n - 1 \le t \le 2^{n+1} - 2$.

To finish the proof of Theorem 6, we need to show that elements of the above form are in fact in $Ext^{0}_{BP\mathbb{R}_{\star}BP\mathbb{R}}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star})$. Regardless of the exact multiplicative structure of $BP\mathbb{R}_{\star}$, we can choose a set of generators for the $\mathbb{Z}_{(2)}$ -module spanned by (22), consisting of elements of the form

(23)
$$x = (v_n \sigma^{l_1 2^{n+1}}) \cdots (v_n \sigma^{l_t 2^{n+1}}) a^t, \ 2^n - 1 \le t \le 2^{n+1} - 1.$$

By (19), when we apply η_R to each of the factors $v_n \sigma^{l_i 2^{n+1}}$, we obtain $v_n \sigma^{l_i 2^{n+1}}$ plus multiples of elements of the form $v_m \sigma^{l_i 2^{n+1}}$, with m < n. However, by Lemma 17, these extra terms are annihilated by $a^{2^{m+1}-1}$, which divides a^j . Thus, $\eta_R(x) = x$, as claimed.

This shows that $Ext_{BP\mathbb{R}_{\star}BP\mathbb{R}}^{0}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star})$ is generated by elements of the form (22). For n = 0, the elements $v_0 \sigma^{2l}$ generate copies of $\mathbb{Z}_{(2)}$ since in the classical case, v_0 generates a copy $\mathbb{Z}_{(2)}$. For $n \ge 1$, the elements generate copies of $\mathbb{Z}/2$ since they contain nontrivial powers of a, and 2a = 0. Likewise, a^t , t > 1 generate copies of $\mathbb{Z}/2$. This proves Theorem 6.

4. Hopf Invariant One Type Elements

In this section, we will consider the class of Ext^0 elements $v_n \sigma^{l2^{n+1}} a^{2^n-1}$. For l = 0, the element $v_n a^{2^n-1}$ is in degree $(2^n - 1) + 0\alpha$. In Propositions 7.13 and 7.14 of [9], it was shown that there is a filtration on $BP\mathbb{R}_{\star}$, such that there is an algebraic Novikov spectral sequence with E_2 -term $Ext_{P_{\star}[a]}(\mathbb{Z}/2[a], E_0BP\mathbb{R}_{\star})$, converging to the E_2 -term of the Real Adams-Novikov spectral sequence, where $P_{\star}[a]$ is a certain Hopf algebra over $\mathbb{Z}/2[a]$. There is also a Cartan-Eilenberg spectral sequence with the same E_2 term, and converging to the E_2 -term of the $\mathbb{Z}/2$ -equivariant Adams spectral sequence of Greenlees [6]. (This is the Adams spectral sequence based on the Borel cohomology Steenrod algebra $(H_{\star}^c, A_{\star}^{cc})$. Here, H is the equivariant Eilenberg-MacLane spectrum indexed on the complete $\mathbb{Z}/2$ -universe, obtained by applying the universe change functor to nonequivariant $H\mathbb{Z}/2$, considered as a fixed spectrum over the trivial $\mathbb{Z}/2$ universe. Then

$$H^c_{\star} = F(E\mathbb{Z}/2_+, H)_{\star}$$
$$A^{cc}_{\star} = F(E\mathbb{Z}/2_+, H \wedge H)_{\star}.$$

Also, in degrees $k + 0\alpha$, the nonequivariant Adams spectral sequence E_2 -term is a summand of the $\mathbb{Z}/2$ -equivariant Adams spectral sequence E_2 -term (see [8], Proposition 6.12). In this sense, the Real Adams-Novikov E_2 -elements $v_n a^{2^n-1}$ correspond to the Hopf invariant one element h_n in the classical (nonequivariant) Adams spectral sequence [8, 9]. Recall from [1] that for $n \leq 3$, h_n is a permanent cycle, and represents the Hopf invariant one maps $S^{2^{n+1}-1} \to S^n$. Also by [1], one can say that nonequivariantly, the Hopf invariant one property holds for n if S^{2^n-1} is parallelizable.

The Hopf invariant one property in the $\mathbb{Z}/2$ -equivariant category can be interpreted as follows. For any *n*, consider the free unit sphere $S(2^n\alpha)$ in the representation $2^n\alpha$. The tangent bundle of $S(2^n\alpha)$ has the property that

$$\tau_{S(2^n\alpha)} \oplus 1 = 2^n \alpha.$$

The $\mathbb{Z}/2$ -equivariant Hopf invariant one property can be formulated to say that $S(2^n\alpha)$ is parallelizable, i. e. $\tau_{S(2^n\alpha)} \cong 2^n - 1$, which is true if and only if $n \leq 3$. So in this case, we have

$$2^n|_{S(2^n\alpha)} \cong 2^n \alpha|_{S(2^n\alpha)}.$$

Stably, this gives

$$S(2^n\alpha)_+ \simeq \Sigma^{2^n(\alpha-1)} S(2^n\alpha)_+.$$

Consider the usual cofiber sequence

$$S(2^n\alpha)_+ \to S^0 \stackrel{a^{2^n}}{\to} S^{2^n\alpha}.$$

The Hopf invariant one map, as an element of the stable homotopy groups of spheres, is the composition

$$S^{2^n\alpha-1} \to S(2^n\alpha)_+ \xrightarrow{\simeq} \Sigma^{2^n(\alpha-1)}S(2^n\alpha)_+ \to S^{2^n(\alpha-1)}$$

where the last map collapses $S(2^n\alpha)$. This is an element of degree $(2^n - 1) + 0\alpha$, and by the comparison with the Adams spectral sequence, it is represented by $v_n a^{2^n-1}$ for $n \leq 3$ (see [8], Section 6.2).

By the previous section, we also have the elements

$$v_n \sigma^{l2^{n+1}} a^{2^n-1} \in Ext^0_{BP\mathbb{R}_\star BP\mathbb{R}}(BP\mathbb{R}_\star, BP\mathbb{R}).$$

To see these elements, note that for $n \leq 3$, we can iterate the periodicity of $S(2^n \alpha)_+$ to get families of Hopf invariant one maps

(24)
$$S^{2^n\alpha-1} \to S(2^n\alpha)_+ \xrightarrow{\simeq} \Sigma^{l2^n(\alpha-1)}S(2^n\alpha)_+ \to S^{l2^n(\alpha-1)}.$$

Proposition 25. For l even, the map (24) is represented by 0 in

$$Ext^{0}_{BP\mathbb{R}_{\star}BP\mathbb{R}}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star}).$$

For l odd, (24) is represented by $v_n \sigma^{l2^{n+1}} a^{2^n-1}$ in $Ext^0_{BP\mathbb{R}_{\star}BP\mathbb{R}_{\star}}(BP\mathbb{R}_{\star}, BP\mathbb{R}_{\star})$.

Proof. For l = 0, the map (24) is 0 since it is just the composition of the two maps of the cofiber sequence

$$S^{2^n \alpha - 1} \to S(2^n \alpha)_+ \to S^0.$$

For general l, recall the construction of the element $v_n \sigma^{2^{n+1}}$ ([9], Comment after Theorem 4.11). Namely, consider the cofiber sequence

(26)
$$S((2^{n+1}-1)\alpha)_+ \to S^0 \xrightarrow{a^{2^{n+1}-1}} S^{2^{n+1}-1}$$

Applying $BP\mathbb{R}^*$ gives the connecting map

$$\delta: BP\mathbb{R}^*S((2^{n+1}-1)\alpha)_+ \to BP\mathbb{R}^{*+1-(2^{n+1}-1)\alpha}.$$

Since $v_n a^{2^{n+1}-1} = 0$, there is an element

$$s \in BP\mathbb{R}^{2^{n}(\alpha-1)}S((2^{n+1}-1)\alpha)_{+}$$

such that $\delta(s) = v_n$. Consider the analogue of the Borel cohomology spectral sequence $(2^{n+1}-1)E$, converging to

$$F(S((2^{n+1}-1)\alpha)_+, BP\mathbb{R})_\star)$$

obtained by replacing $E\mathbb{Z}/2_+$ by $S((2^{n+1}-1)\alpha)_+$ in the construction of the spectral sequence (8). This has the same E_2 -term as the E_2 -term of the Borel cohomology spectral sequence (8) for $BP\mathbb{R}$, but restricted to filtration degrees t, with $0 \leq t \leq 2^{n+1} - 2$. The differentials are exactly the differentials of (8) whose sources and targets are both in filtration degrees t, $0 \leq t \leq 2^{n+1} - 2$. We compare the Borel cohomology spectral sequences for $F(S((2^{n+1}-1)\alpha)_+, BP\mathbb{R}))$ and for $BP\mathbb{R}$. Recall the differential

$$d_{2^{n+1}-1}\sigma^{-2^n} = v_n a^{2^{n+1}-1}$$

in the Borel cohomology spectral sequence (8) for $BP\mathbb{R}$ (see 16). But in the spectral sequence $_{(2^{n+1}-1)}E$ discussed above, the target does not exist, and the differential turns into the connecting map δ . Thus, the invertible element σ^{-2^n} in the Borel cohomology spectral sequence for $F(S((2^{n+1}-1)\alpha)_+, BP\mathbb{R}))$ is a permanent cycle, and is realized by the element $s \in BP\mathbb{R}^*S((2^{n+1}-1)\alpha)_+$. In particular, s is an invertible element of $BP\mathbb{R}^*S((2^{n+1}-1)\alpha)_+$, whose inverse is represented by σ^{2^n} . Comparing Tate spectral sequences for $S((2^{n+1}-1)\alpha)_+ \wedge BP\mathbb{R}$ and $BP\mathbb{R}$, one sees that $BP\mathbb{R}_*(S((2^{n+1}-1)\alpha)_+))$ is in fact $2^n(\alpha-1)$ -periodic, and the periodicity operator is realized by cap product with the cohomology class s. Also, s^2 corresponds to the periodicity operator $\sigma^{2^{n+1}}$ in $BP\mathbb{R}_*$ on monomials containing $v_i \sigma^{l2^{i+1}}$, $i \leq n$.

Now compare the cofiber sequences (26) for $S(2^n\alpha)_+$ and for $S((2^{n+1}-1)\alpha)_+$ via the inclusion

$$S(2^{n}\alpha)_{+} \to S((2^{n+1}-1)\alpha)_{+}$$

We have the commutative diagram

Let s' denote the image of the class $s \in BP\mathbb{R}^*S((2^{n+1}-1)\alpha)_+$ in $BP\mathbb{R}^*S(2^n\alpha)_+$. If Hopf invariant one holds (i. e. for $n \leq 3$), then we compare the spectral sequences ${}_{(2^n)}E$ and ${}_{(2^{n+1}-1)}E$ for $F(S(2^n\alpha)_+, BP\mathbb{R})$ and $F(S((2^{n+1}-1)\alpha)_+, BP\mathbb{R}))$. In particular, by arguments similar to that for $F(S((2^{n+1}-1)\alpha)_+, BP\mathbb{R}))$, we find that σ^{2n} is a permanent cycle in the Borel cohomology spectral sequence for $F(S(2^n\alpha)_+, BP\mathbb{R})$, and is realized by s'. So s' is an invertible element. It is the only element in $BP\mathbb{R}^{2^n(\alpha-1)}S(2^n\alpha)_+$, so it realizes the $2^n(1-\alpha)$ -periodicity of $S(2^n\alpha)_+$. This identifies Real Adams-Novikov spectral sequence representatives of all the individual maps in (24). Namely, for l odd, we see that the map (24) is represented by the element $\sigma^{(l-1)2^n}v_na^{2^n-1} \in Ext^0_{BP\mathbb{R}_\star BP\mathbb{R}}(BP\mathbb{R}_\star, BP\mathbb{R}_\star)$. For l even, the Hopf invariant one map (24) is represented by 0 in $Ext^0_{BP\mathbb{R}_\star BP\mathbb{R}}(BP\mathbb{R}_\star, BP\mathbb{R}_\star)$. This is because (24) is 0 when smashed with $BP\mathbb{R}_\star$, since as shown in [9], the elements $v_n\sigma^{l2^n}a^{2^n-1} \in BP\mathbb{R}_\star S(2^n\alpha)_+$ map to 0 in $BP\mathbb{R}_\star$ for l odd. \Box

References

- J. F. Adams. On the non-existence of elements of Hopf invariant one. Ann. of Math. 72 (1960), 20-104.
- [2] S. Araki. τ -cohomology theories. Japan J. Math. (N. S.) 4 (1978), no. 2, 363-416.
- [3] M. F. Atiyah. K-theory and Reality. Quarterly J. Math. Oxford Sec. (2), 17 (1966) 367-386.
- [4] A. K. Bockstedt, I. Madsen. Topological cyclic homology of the integers, K-theory. Astérisque No. 226 (1994) 7-8, 57-143.
- [5] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules and algebras in stable homotopy theory, with an appendix by M. Cole. Mathematical Surveys and Monographs 47, AMS, 1997.
- [6] J. P. C. Greenlees. Adams spectral sequences in equivariant topology. Ph. D. thesis, Cambridge University, 1985.
- [7] J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Mem. Amer. Math. Soc. 113 (1995) no. 543.
- [8] P. Hu. Cobordism of Real manifolds and calculations with the Real-oriented Adams-Novikov spectral sequence. Ph. D. thesis, 1998.
- [9] P. Hu and I. Kriz. Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence. To appear in *Topology*.
- [10] P. S. Landweber. Annihilator ideals and primitive elements in complex cobordism. Illinois J. Math. 17 (1973) 273-284.
- [11] J. Morava. Noetherian localisations categories of cobordism comodules. Annals of Math. 121 (1985) 1-39.
- [12] D. Ravenel. complex cobordism and stable homotopy groups of spheres. Academic Press, 1986.