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Introduction

This paper arose from attempting to understand Bousfield localization fun-
ctors in stable homotopy theory. All spectra will be p-local for a prime p
throughout this paper. Recall that if E is a spectrum, a spectrum X is E-
acyclic if E∧X is null. A spectrum is E-local if every map from an E-acyclic
spectrum to it is null. A map X → Y is an E-equivalence if it induces an
isomorphism on E∗, or equivalently, if the fibre is E-acyclic. In [Bou79],
Bousfield shows that there is a functor called E-localization, which takes
a spectrum X to an E-local spectrum LEX, and a natural transformation
X → LEX which is an E-isomorphism. Studying LEX is studying that part
of homotopy theory which E sees.

These localization functors have been very important in homotopy theory.
Ravenel [Rav84] showed that finite spectra are local with respect to the wedge
of all the Morava K-theories

∨
n<∞ K(n). This gave a conceptual proof of the

fact that there are no non-trivial maps from the Eilenberg-MacLane spectrum
HFp to a finite spectrum X.

Hopkins and Ravenel later extended this to the chromatic convergence
theorem [Rav92]. If we denote, as usual, the localization with respect to the
first n+1 Morava K-theories K(0)∨· · ·∨K(n) by Ln, the chromatic conver-
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gence theorem says that for finite X, the tower . . . πiLnX → πiLn−1X . . .→
πiL0X is pro-isomorphic to the constant tower. In particular, X is the inverse
limit of the LnX.

The major result of this paper is that finite torsion spectra are local
with respect to any infinite wedge of Morava K-theories

∨
i<∞ K(ni). This

has several interesting corollaries. For example, it implies that there are no
maps from the Johnson-Wilson spectra BP 〈n〉 to a finite spectrum. It also
implies that if E is a ring spectrum which detects all finite spectra, so that
E∗(X) 6= 0 if X finite, then LEX is either X or Xp, the p-completion of X,
for finite X. This in turn implies that the only smashing localization which
detects all finite complexes is the identity functor.

In order to prove that finite torsion spectra are
∨

i K(ni) local, I show
that BPp is a wedge summand of

∏
i LK(ni)BPp. This is saying that one does

not have to reassemble the chromatic pieces of BPp into an inverse limit to
recover the homotopy theory of BPp. This result is a BP analogue of the zeta
conjecture of Hopkins. I will describe this conjecture in Section 4, but for now
suffice it to say that the conjecture is that Ln−1Xp is a wedge summand in
Ln−1LK(n)Xp. The zeta conjecture is actually stronger than that, for it also
explains how this splitting occurs, but most of the corollaries I draw from the
zeta conjecture only need the splitting itself. One corollary of the zeta con-
jecture would be that, for finite X, Xp is a wedge summand of

∏
i LK(ni)Xp,

explaining how my result is a BP analogue of the zeta conjecture. I do not
know if Ln−1BPp is a wedge summand of Ln−1LK(n)BPp.

In the first two sections of this paper, I describe some other results about
Bousfield localization functors, this time with respect to spectra E which
kill a finite spectrum. The pedigree of these results is somewhat confusing.
Almost all of the results in Sections 1 and 2 have been known to Hopkins
for some time. Others may have known them as well, but they have not
appeared in print before. I feel that they warrant a larger audience. In
addition, I discovered many of these results independantly, and there are a
couple of new results as well. For example, I show that LK(n) is a minimal
localization functor. That is, if the natural transformation X → LEX factors
through LK(n)X, then LEX is either the zero functor or is LK(n)X itself. I
also provide some new examples of smashing localizations.

The last section of the paper discusses the consequences of the zeta con-
jecture on the homotopy groups of LnS0. We show that, given the zeta
conjecture, each homotopy groups is bounded torsion and a direct sum of
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cyclics, except in dimension 0, where there is an additional free summand,
and in dimension −2n, where there is a Q/Z summand.

This paper is written in the homotopy category of p-local spectra. In
particular, ‘=’ is equality in the homotopy category, namely homotopy equi-
valence. Similarly, I will often write that a map or spectrum is 0, by which
I mean that it is null-homotopic or contractible.

I would like to thank Mike Hopkins for sharing his ideas so freely. I
thank Hal Sadofsky for hundreds of discussions on matters related to this
paper. I also thank David Johnson for helpful discussions, and Paul Eakin
and Avinash Sathaye for convincing me that my original ideas about infinite
abelian groups were too naive.

1 Spectra with finite acyclics

Before describing the results of this section, I need to recall the definition of
the Bousfield class of a spectrum [Bou79].

Definition 1.1 Two spectra E and F are Bousfield equivalent if, given any
spectrum X,

E ∧X = 0 if and only if F ∧X = 0.

Denote the equivalence class of E by 〈E〉. Define 〈E〉 ≤ 〈F 〉 if and only if
E ∧X = 0 implies F ∧X = 0. Define

〈E〉 ∧ 〈F 〉 = 〈E ∧ F 〉

and
〈E〉 ∨ 〈F 〉 = 〈E ∨ F 〉.

There is a minimal Bousfield class 〈∗〉, which we will often denote by 0,
and a maximal Bousfield class 〈S0〉. I remind the reader that it is perfectly
possible to have 〈E〉 ≤ 〈F 〉 while nonetheless 〈E ∧ F 〉 = 0.

In this section we investigate Bousfield classes of spectra E which have
finite acyclics, i.e. there is some finite X with E ∧X = 0. Highlights of this
section include the minimality of the Bousfield class of K(n) (Corollary 1.7)
and the new examples of smashing localizations (Proposition 1.5). We also
show that every BP -module spectrum with finite acyclics has the Bousfield
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class of a wedge of Morava K-theories, and that a vn-periodic Landweber
exact spectrum has the same Bousfield class as E(n).

First, we need to recall some corollaries of the nilpotence theorem [DHS,
HS]. Recall that a finite spectrum X has type n if K(i)∗(X) = 0 for i < n
but K(n)∗(X) 6= 0. Every finite spectrum is of some finite type, and the
periodicity theorem of J. Smith, written up in [Rav92], says that there is a
spectrum of type n for all n. Let Cn denote the class of all finite spectra of
type at least n. Then [HS] any nonempty collection of finite spectra that is
closed under cofibrations and retracts is some Cn.

Lemma 1.2 (Hopkins-Smith) All finite spectra of type n have the same
Bousfield class, which we denote F (n).

Proof: This is an easy application of the nilpotence theorem. Given an
X of type n, let C consist of all finite spectra Y such that 〈Y 〉 ≤ 〈X〉. It is
easy to see that C is closed under retracts, cofibrations, and suspensions, so
must be a Ck for some k. Since X ∈ C, C ⊆ Cn. In particular, if Y is type n,
〈Y 〉 ≤ 〈X〉. Interchanging X and Y completes the proof. 2

A spectrum X in Cn has a vn self-map, that is, a map inducing an iso-
morphism on K(n)∗(X) [HS]. Any two such become equal upon iterating
them enough times, so that there is a well-defined telescope Teln(X). Teln
is actually an exact functor on the category of finite spectra with vn self
maps. This follows from the fact that a map between two such finite spectra
will commute with large enough iterates of the vn self maps. By following a
similar line of proof as in the above lemma, we get

Lemma 1.3 The telescopes of finite spectra of type n all have the same Bous-
field class, which we denote Tel(n).

This lemma was also known to Hopkins and Smith, and it appears in
[MS] as well.

Recall the lemma of [Rav84]: if f is a self-map of X and Tel(X) is its
telescope and Y its cofibre, then 〈X〉 = 〈Tel(X)〉 ∨ 〈Y 〉. Applying this
repeatedly using vn self maps, we get

〈S0〉 = 〈Tel(0)〉 ∨ · · · ∨ 〈Tel(n)〉 ∨ 〈F (n + 1)〉. (1)
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This decomposition is the key to most of our results in this section. Note
that it is orthogonal, in the sense that Tel(m)∧Tel(n) = Tel(m)∧F (n) = 0
if m < n. This is proven in [MS].

Given any spectrum E, let

FA(E) = {X|X is finite and E ∧X = 0}.
In this section, we will discuss spectra which have finite acyclics, so that we
assume FA(E) 6= {∗}. It is easy to see that FA(E) is closed under cofibrations
and retracts, so it must be Cn+1 for some n. We then have the following
observation.

Lemma 1.4 If FA(E) = Cn+1, then

〈E〉 = 〈E ∧ Tel(0)〉 ∨ · · · ∨ 〈E ∧ Tel(n)〉.
In particular, 〈Tel(0) ∨ · · · ∨ Tel(n)〉 is the largest Bousfield class with finite
acyclics Cn+1, and therefore localization with respect to it, denoted Lf

n, is
smashing.

Proof: Just smash equation (1) with E. To see Lf
n is smashing, note

that for any spectrum E, FA(LES0) = FA(E). Thus,

〈Lf
nS

0〉 ≤ 〈Tel(0) ∨ · · · ∨ Tel(n)〉.
This implies by Prop. 1.27 of [Rav84] that Lf

n is smashing. 2

Lf
n has been investigated by many authors [Bou92, MS, Mil, Rav92a].

All of them noticed that it is smashing, though I think this is the most
transparent proof. The telescope conjecture is usually stated as saying that if
X is type n then LK(n)X = Tel(X). This is equivalent to 〈Tel(n)〉 = 〈K(n)〉,
and also to Lf

n = Ln. (For details, see [MS] or one of the other cited papers
above.) This conjecture is now known to be false for n = 2 [Rav92b, MRS],
and is presumed to be false for larger n as well.

As an amusing example of what the failure of the telescope conjecture
means, we include the following proposition.

Proposition 1.5 Localization with respect to

Tel(0) ∨ · · · ∨ Tel(m) ∨K(m + 1) ∨ · · · ∨K(n)

is smashing.
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Proof: Call this localization functor Lm,n. We have that

〈Tel(0) ∨ · · · ∨ Tel(m)〉 ≤ 〈Lm,nS0〉 ≤ 〈Tel(0) ∨ · · · ∨ Tel(n)〉.

We need to show that 〈Lm,nS0 ∧ Tel(i)〉 = 〈K(i)〉 if m < i ≤ n. Note that

〈Lm,nS
0 ∧ Tel(i)〉 = 〈Lm,nS0 ∧ F (i) ∧ Tel(i)〉 = 〈Lm,nF (i) ∧ Tel(i)〉.

But F (i) is Tel(0) ∨ · · · ∨ Tel(m) acyclic, so Lm,nF (i) = LnF (i). Since Ln

is smashing [Rav86], 〈LnF (i)〉 = 〈K(i) ∨ · · · ∨K(n)〉, and the result follows.
2

It is an old problem of Bousfield’s to classify all smashing localization
functors. We address another part of this problem in Section 3.

To measure the extent to which the telescope conjecture fails, note that
there is a natural map Lf

nX → LnX. Let AnX be the fibre of this map. Note
that if X is type n, this is also the fiber of the map Tel(X)→ LK(n)(X), for
then Lf

n(X) = Tel(X) ([MS]), and LnX = LK(n)(X).

Proposition 1.6 If X is finite and type n, the Bousfield class of AnX does
not depend on X. We denote it A(n). 〈Tel(n)〉 = 〈K(n)〉 ∨ 〈A(n)〉, and
A(n) ∧K(m) = 0 for all m.

Proof: First note that because Lf
n and Ln are both smashing (see [Rav92]

for Ln), so is An. That is, AnX = AnS
0 ∧ X for all X. In particular, if X

and Y are Bousfield equivalent, so are AnX and AnY . This shows that
〈A(n)〉 is well-defined. The map Lf

nX → LnX is an isomorphism on K(m)
homology for all m, (and also on BP homology as we will see below), so
A(n) ∧ K(m) = 0 for all m. If X is type n, 〈Tel(X)〉 = 〈Tel(n)〉 and
〈LK(n)X〉 = 〈K(n)〉, and it follows that 〈Tel(n)〉 = 〈K(n)〉 ∨ 〈A(n)〉. 2

A(n) behaves very much like MnX, the nth monochromatic layer, which
is the fiber of LnX → Ln−1X. In particular, we have that A(n) ∧ A(n)
is homotopy equivalent to A(n), and LA(n)A(n) is homotopy equivalent to
LA(n)S

0.

Corollary 1.7 〈K(n)〉 is a minimal Bousfield class. That is, if 〈E〉 <
〈K(n)〉, then E is null.
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Proof: Suppose 〈E〉 ≤ 〈K(n)〉. Then

〈E ∧ Tel(m)〉 ≤ 〈K(n) ∧ Tel(m)〉 = 0

if n 6= m. Similarly, 〈E ∧ F (n + 1)〉 ≤ 〈K(n) ∧ F (n + 1)〉 = 0. Thus, from
equation (1), we have that 〈E〉 = 〈E ∧ T (n)〉. But, also

〈E ∧ A(n)〉 ≤ 〈K(n) ∧ A(n)〉 = 0,

so by the preceeding proposition, we have 〈E〉 = 〈E ∧K(n)〉. Since K(n) is
a field spectrum, E ∧K(n) is a wedge of suspensions of K(n), so there are
only two possibilities for 〈E ∧K(n)〉, 0 or 〈K(n)〉. 2

Note that the corresponding result is not true for the other field spectrum,
HFp. Indeed, in the proof of Theorem 2.2 of [Rav84], Ravenel shows that
〈Y 〉 < 〈HFp〉, where Y denotes the Brown-Comanetz dual of BP ∧M(p).

A similar argument to the above shows that if 〈E〉 is less than or equal to
some finite wedge of Morava K-theories, then E must be Bousfield equivalent
to a finite wedge of Morava K-theories. This says in particular that the
chromatic tower is unrefineable. There is no localization functor LE that fits
between Ln and Ln−1.

In the light of this result and the failure of the telescope conjecture, one
might ask if A(n) is also a minimal Bousfield class. This would say that the
telescope conjecture is not so badly wrong. I think this is likely to be true,
but since I have no data, I will not be so bold as to conjecture it.

The following theorem will show that the telescope conjecture is true after
smashing with BP . This has been known to Hopkins, Ravenel, and probably
others, though it has not appeared before. First we need a lemma.

Lemma 1.8 Suppose R is a ring spectrum and the unit map S0 η→ R factors
through some spectrum E. Then 〈E〉 ≥ 〈M〉.

Proof: Since R is a ring spectrum, the composite

R = S0 ∧R
η∧1→ R ∧R→ R

is the identity. Since η factors through E, the identity map on R factors
through E ∧R. So if E ∧ Z is null, so is R ∧ Z. 2

Recall that P (n) is a BP -module spectrum whose homotopy is

π∗P (n) = BP∗/(p, v1, . . . , vn−1).
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The first part of the following theorem is Ravenel’s theorem 2.1(g) in [Rav84].
We reprove it so as to make the second part clearer.

Theorem 1.9

〈BP ∧ F (n)〉 = 〈P (n)〉
and

〈BP ∧ Tel(n)〉 = 〈K(n)〉.
Proof: If there were a spectrum V (n− 1) with

BP∗V (n− 1) = BP∗/(p, v1, . . . , vn−1),

it would be type n and we would have BP ∧ V (n − 1) = P (n), so the re-
sult would be obvious. In general, there are not such spectra, but there
are appropriate substitutes M(pi0 , vi1

1 , . . . , v
in−1

n−1 ) constructed by Devinatz
in [Dev]. These exist for sufficiently large (i0, i1, . . . , in−1), they are finite
of type n, and they have the evident BP -homology. Furthermore, BP ∧
M(pi0 , vi1

1 , . . . , v
in−1

n−1 ) can be constructed from P (n) using cofibre sequences,
in the same way that the mod pn Moore space can be constructed from the
mod p Moore space. Therefore

〈BP ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )〉 ≤ 〈P (n)〉.
Note that there is a natural map of BP -module spectra

BP ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )→ P (n).

The unit map S0 → P (n) of the ring spectrum P (n) factors through this
map, so by the proceeding lemma,

〈BP ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )〉 ≥ 〈P (n)〉.
It can actually be shown using a variant of the Landweber exact functor
theorem and Lemma 2.13 of [Rav84] that P (n) is a module spectrum over
BP ∧M(pi0 , vi1

1 , . . . , v
in−1

n−1 ), but we do not need this.
To see that 〈BP ∧ Tel(n)〉 = 〈K(n)〉, we proceed similarly. A vn self

map on M(pi0 , vi1
1 , . . . , v

in−1

n−1 ) induces multiplication by a power of vn on BP -
homology, so

BP ∧ Tel(M(pi0 , vi1
1 , . . . , v

in−1

n−1 )) = v−1
n (BP ∧M(pi0 , vi1

1 , . . . , v
in−1

n−1 )).
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The maps that build BP ∧ M(pi0 , vi1
1 , . . . , v

in−1

n−1 ) from P (n) by cofibre se-
quences can all be chosen to be BP module maps. Thus they will also build
v−1

n (BP ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )) from v−1
n P (n). Thus

〈BP ∧ Tel(n)〉 ≤ 〈v−1
n P (n)〉 = 〈K(n)〉.

The latter equality comes from Theorem 2.1 of [Rav84].
The unit map of v−1

n P (n) factors through v−1
n (BP∧M(pi0 , vi1

1 , . . . , v
in−1

n−1 )),
so we also have 〈BP ∧ Tel(n)〉 ≥ 〈K(n)〉. 2

Corollary 1.10 BP ∧A(n) = 0, so that the natural map Lf
nX → LnX is a

BP equivalence.

Proof:

〈BP ∧ A(n)〉 = 〈BP ∧ Tel(n) ∧ A(n)〉 = 〈K(n) ∧ A(n)〉 = 0.2

Corollary 1.11 Every BP -module spectrum with finite acyclics is Bousfield
equivalent to a finite wedge of Morava K-theories.

Proof: Suppose E is a BP -module spectrum with FA(E) = Cn+1. Since
E is a BP module spectrum, E is a retract of BP ∧ E, so

〈E〉 = 〈BP ∧ E〉 = 〈BP ∧ E ∧ Tel(0)〉 ∨ · · · ∨ 〈BP ∧ E ∧ Tel(n)〉.

But 〈BP ∧ E ∧ Tel(n)〉 = 〈K(n) ∧ E〉. Since K(n) is a field spectrum,
〈K(n) ∧ E〉 is either 0 or 〈K(n)〉. 2

A particularly good kind of BP -module spectrum is a Landweber exact
spectrum [Land]. Recall that E is Landweber exact if the natural map

BP∗(X)⊗BP∗ E∗ → E∗(X)

is an isomorphism. The most common examples are E(n) and elliptic coho-
mology. Call E vn-periodic if vn ∈ BP∗ maps to a unit in E∗/(p, v1, . . . , vn−1).

Corollary 1.12 If E is a vn-periodic Landweber exact spectrum, then

〈E〉 = 〈E(n)〉 = 〈K(0) ∨ · · · ∨K(n)〉.
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Proof: Recall that if E is vn-periodic and Landweber exact then vj is
not a zero-divisor mod (p, v1, . . . , vj−1) for j < n, and vn is a unit mod
(p, v1, . . . , vn−1) [Land]. It suffices to show that E ∧K(j) 6= 0 for j ≤ n, and
that E ∧ F (n + 1) = 0. Since E is a BP -module spectrum, 〈E ∧K(j)〉 =

〈E ∧ Tel(j)〉, it suffices to show that E ∧ v−1
j M(pi0 , vi1

1 , . . . , v
ij−1

n−1) 6= 0. But

the homotopy of E ∧ v−1
j M(pi0 , vi1

1 , . . . , v
ij−1

n−1) is v−1
j E∗/(pi0 , vi1

1 , . . . , v
ij−1

j−1 ),
which is not 0 by Landweber exactness.

Similarly, the homotopy of E∧M(pi0 , vi1
1 , . . . , vin

n ) is E∗/(pi0 , vi1
1 , . . . , vin

n ).
We know that vn is a unit mod (p, v1, . . . , vn−1), and it follows that vn is also
a unit mod (pi0 , vi1

1 , . . . , v
in−1

n−1 ), so the homotopy is 0. 2

2 Localizations with respect to finite spec-
tra

In this section we consider what localization with respect to a finite spectrum
looks like. We also determine the K(n)-localization of BP . All of the results
in this section are known to Hopkins and possibly others. Special cases of
some of these results have appeared in [MS].

We have already used the M(pi0 , vi1
1 , . . . , v

in−1

n−1 ) in the previous section.
We need them again here, and we need to know that they exist for sufficiently
large (i0, . . . , in). Furthermore, there are natural maps

M(pj0 , vj1
1 , . . . , v

jn−1

n−1 )→M(pi0 , vi1
1 , . . . , v

in−1

n−1 )

for jk sufficiently large compared to ik, which induce the evident map on
BP -homology. Notice that these maps fix the bottom cell.

The following result says that localization with respect to F (n) is com-
pletion at p, v1, . . . , vn−1.

Theorem 2.1 For arbitrary X, the map X → lim← (X∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 ))

induced by inclusion of the bottom cell is F (n)-localization.

Proof: First we verify that the right-hand side is F (n)-local. Suppose Z
is F (n)-acyclic. Then

[Z, X ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )] = [Z ∧DM(pi0 , vi1
1 , . . . , v

in−1

n−1 ), X],
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where DY denotes the Spanier-Whitehead dual of Y . Since

K(i)∗(DY ) = K(i)∗(Y ) = HomK(i)∗(K(i)∗(Y ), K(i)∗),

DM(pi0 , vi1
1 , . . . , v

in−1

n−1 ) also has type n. Thus

Z ∧DM(pi0 , vi1
1 , . . . , v

in−1

n−1 ) = 0,

so X ∧ M(pi0 , vi1
1 , . . . , v

in−1

n−1 ) is F (n)-local. Then the inverse limit of X ∧
M(pi0 , vi1

1 , . . . , v
in−1

n−1 ) is also F (n)-local.
Now we must check that the map is an F (n)-isomorphism. By Spanier-

Whitehead duality, it suffices to show that

[F (n), X]→ [F (n), lim← (X ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 ))]

is an isomorphism. We have an exact sequence

lim←
1
[F (n), X∧M(pi0 , vi1

1 , . . . , v
in−1

n−1 )] ↪→ [F (n), lim← (X∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 ))]

→ lim← [F (n), X ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )]→ 0.

There is a dimension shift on the lim←
1

term, but we will show it is 0 so that

will not matter.
So we need to investigate [F (n), X∧M(pi0 , vi1

1 , . . . , v
in−1

n−1 )], or equivalently,

[F (n) ∧DM(pi0 , vi1
1 , . . . , v

in−1

n−1 ), X]. Note that DM(pi0 , vi1
1 , . . . , v

in−1

n−1 ) is just

a desuspension of M(pi0 , vi1
1 , . . . , v

in−1

n−1 ), so that the top cell is in degree 0.

(This is easy to see from the construction of the M(pi0 , vi1
1 , . . . , v

in−1

n−1 ).) Also

note that if X is type n, X ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 ) is a wedge of copies of
X, for large enough indices (i0, . . . , in−1). Indeed, at each stage of the con-
struction of M(pi0 , vi1

1 , . . . , v
in−1

n−1 ), one takes the cofiber of a vj self map on

M(pi0 , vi1
1 , . . . , v

ij−1

n−1). Since X is type n, that vj self map must be nilpotent

on X ∧M(pi0 , vi1
1 , . . . , v

ij−1

n−1), so that if we take large enough indices, it will
be null.

Thus [F (n), X∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )] is a direct sum of copies of [F (n), X]

in dimensions corresponding to the cells of DM(pi0 , vi1
1 , . . . , v

in−1

n−1 ). The maps
in the inverse system are all multiplication by a vj to some power, except on
the top cell, which is fixed. So they are nilpotent, and for large enough indices
will be 0. Hence lim← [F (n), X∧M(pi0 , vi1

1 , . . . , v
in−1

n−1 )] = [F (n), X] as required.

Furthermore, the system is Mittag-Leffler, so the lim←
1

term vanishes as well.
2
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Corollary 2.2

LF (n)∧EX = LF (n)LEX.

Proof: The map X → LF (n)LEX is an F (n) ∧ E-isomorphism, so it
suffices to show that LF (n)LEX is F (n) ∧ E-local. Since

LF (n)LEX = lim← (LEX ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )),

it will suffice to show that LEX ∧ M(pi0 , vi1
1 , . . . , v

in−1

n−1 ) is F (n) ∧ E-local.
Suppose Z is F (n) ∧ E-acyclic, and consider

[Z, LEX ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )] = [Z ∧DM(pi0 , vi1
1 , . . . , v

in−1

n−1 ), LEX].

DM(pi0 , vi1
1 , . . . , v

in−1

n−1 ) is type n, so Z ∧DM(pi0 , vi1
1 , . . . , v

in−1

n−1 ) is E-acyclic,
since Z is F (n) ∧ E-acyclic. Thus this group is 0 as required. 2

Note that if X is finite,

LF (n)LEX = lim← (LEX ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 ))

= lim← (X ∧ LEM(pi0 , vi1
1 , . . . , v

in−1

n−1 )).

In particular, recalling from [MS] that

LTel(n)M(pi0 , vi1
1 , . . . , v

in−1

n−1 ) = Tel(M(pi0 , vi1
1 , . . . , v

in−1

n−1 )),

and taking E = Tel(0) ∨ · · · ∨ Tel(n), we recover their result that

LTel(n)S
0 = lim← (Tel(M(pi0 , vi1

1 , . . . , v
in−1

n−1 ))).

We can use a similar argument to calculate LK(n)BP .

Lemma 2.3

LK(n)BP = LF (n)(v
−1
n BP ) = lim← (v−1

n BP ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )).

Proof: Note that v−1
n BP is Landweber exact and vn periodic, so has

Bousfield class 〈K(0) ∨ · · · ∨K(n)〉. As a ring spectrum, it is self-local, so
Ln(v−1

n BP ) = v−1
n BP . Thus

LK(n)(v
−1
n BP ) = LF (n)Ln(v−1

n BP ) = LF (n)(v
−1
n BP ).

12



So it suffices to show that BP → v−1
n BP is a K(n)-isomorphism, or

equivalently that BP
×vn→ BP is a K(n)-isomorphism. (We have left out the

evident suspension). Since K(n) is a field spectrum and so has a Kunneth
isomorphism, it will suffice to show that

BP ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )
×vn→ BP ∧M(pi0 , vi1

1 , . . . , v
in−1

n−1 )

is a K(n)-isomorphism.
Note that ×vn induces multiplication by ηRvn on BP∗BP or K(n)∗BP .

Here ηR is the right unit, discussed in [Rav86], where it is shown that

ηRvn ≡ vn mod (p, v1, . . . , vn−1).

Thus, ×vn is an isomorphism on K(n)∗P (n). But BP ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )
can be built from P (n) using cofiber sequences where the maps are BP -
module maps. Thus ×vn is also an isomorphism on

K(n)∗(BP ∧M(pi0 , vi1
1 , . . . , v

in−1

n−1 )).2

The homotopy of LK(n)BP is then easily calculated to be (v−1
n BP∗)In ,

the completion of v−1
n BP∗ at the ideal In = (p, v1, . . . , vn−1). Note that vn is

not a unit in LnBP , but becomes one upon completion at In. In particular,
one sees that LK(n)BP is Landweber exact, so we have

Corollary 2.4

〈LK(n)S
0〉 = 〈K(0) ∨ · · · ∨K(n)〉

Proof: 〈LK(n)S
0〉 ≤ 〈LnS

0〉, sice LK(n)S
0 is an LnS0 module spectrum.

Since Ln is smashing, 〈LnS0〉 = 〈K(0) ∨ · · · ∨K(n)〉. On the other hand,
ÃLK(n)BP is an LK(n)S

0-module spectrum, and since LK(n)BP is Landweber
exact,

〈LK(n)BP 〉 = 〈K(0) ∨ · · · ∨K(n)〉.2

3 Ring spectra without finite acyclics

In this section we prove our BP -version of the zeta conjecture and use it to
deduce that finite torsion spectra are local with respect to any infinite wedge
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of Morava K-theories. A corollary of this is that localization with respect to
a ring spectrum that has no finite acyclics must be the identity functor or
p-completion on finite complexes.

Recall that all spectra are p-local, and Xp denotes the p-completion of
X. Throughout this section (ni) will be an infinite increasing sequence of
nonnegative integers.

Theorem 3.1 The natural map

BPp →
∞∏

i=1

LK(ni)BPp

is the inclusion of a wedge summand.

To prove this theorem, we use Brown-Comanetz duality. Recall that the
Brown-Comanetz dual of a spectrum X is the spectrum IX which represents
the functor Y → Hom(π0(X ∧ Y ),Q/Z). In particular, if X has finitely
generated homotopy groups, then I2X = Xp. Recall as well that a map
Y → X is called f-phantom if, for all finite Z and maps Z → Y , the composite
Z → Y → X is null. Recall the following lemma, on page 66 of [Mar].

Lemma 3.2 For any spectrum X, any f-phantom map into IX is null.

Let F be the fibre of BPp → ∏∞
i=1 LK(ni)BPp. Since BPp = I(I(BP )),

we will have proved the theorem if we can show that the map F → BPp is
f-phantom.

First we remove the p-completion.

Lemma 3.3 Let F ′ be the fibre of

BP →
∞∏

i=1

LK(ni)BP.

If F ′ → BP is f-phantom, then F → BPp is null.

Proof of lemma: Let C be the fiber of BP → BPp. Then C is a rational
space, so LK(n)C = ∗ , and LK(n)BP = LK(n)(BPp) for n > 0. Consider the
following diagram.

14



C1

?

C

?

C2

?

- -

F ′

?

BP

?

∏
LK(ni)BP

?

- -

F BPp

∏
LK(ni)BPp

- -

We consider two cases. If LK(0) appears in the product, then

C2 = fiber(LK(0)BP → LK(0)(BPp)) = C,

so that F = F ′. Then if F ′ → BP is f-phantom, so is F → BPp, and so it is
null.

On the other hand, if LK(0) does not appear in the product, then C2 = 0,
and we have a cofiber sequence

F ′ → F → ΣC.

If F ′ → BP is f-phantom, then F ′ → BP → BPp is null, so F → BPp

factors through ΣC. But C is M(p)-acyclic and BPp is M(p)-local, so the
map must be null. 2

So to complete the proof of the theorem, it will suffice to prove:

Lemma 3.4 If X is finite, the map BP ∗(X)→ (LK(n)BP )∗(X) is injective
for large n.
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Proof: By using Spanier-Whitehead duality, it suffices to prove the
lemma in homology rather than cohomology. Recall from the preceeding
sections that LK(n)BP∗ = (v−1

n BP∗)In , where In = (p, v1, . . . vn−1) as usual.
Note that LK(n)BP clearly satisfies the hypotheses of the Landweber exact
functor theorem, so that

(LK(n)BP )∗(X) = BP∗(X)⊗BP∗ LK(n)BP∗.

The Landweber filtration theorem [Land] says that BP∗(X) has a finite fil-
tration by BP∗BP subcomodules Mi for i = 1, . . . , m, such that the quotient
Mi+1/Mi is isomorphic to BP∗/Imi

for some mi. Choose n larger than all
the mi. Then BP∗/Imi

injects into BP∗/Imi
⊗BP∗ (v−1

n BP∗)In . The proof of
the Landweber exact functor theorem actually shows that (v−1

n BP∗)In is flat
in the category of BP∗BP comodules which are finitely generated over BP∗.
Now an easy induction on the Mi using the 5-lemma completes the proof. 2

Corollary 3.5 BPp is local with respect to E =
∨

K(ni) for any infinite
sequence (ni) of integers. BP is E-local if and only if the sequence contains
0.

Proof LK(ni)BPp is certainly E-local, and any product of local spectra is
local. Thus BPp is a retract of a local space, so is local. We have the cofiber
sequence C → BP → BPp, where C is rational. Thus, BP is E-local if and
only if C is E-local if and only if HQ is E-local. This is true if and only if
0 is in the sequence. 2

It is natural to ask if the analogue of chromatic convergence holds. Define
Xj = LK(n0)∨...∨K(nj)BPp. One would then ask if BPp is the inverse limit X
of the Xj. I don’t know the answer to this question. Note though that the
map from BPp → ∏

LK(ni)BPp factors through X, so that BPp is a retract
of X.

Theorem 3.6 Suppose R is a ring spectrum with no finite acyclics. If HQ∧
R 6= ∗, then LRX = X for all finite X. If HQ∧R = ∗, then LRX = Xp for
all finite X.

First we show

Lemma 3.7 Suppose E is any spectrum such that LEX = X for some finite
X. Then if If HQ∧E 6= ∗, then LEX = X for all finite X. If HQ∧E = ∗,
then LEX = Xp for all finite X.
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Proof: Consider the class C of all finite X that are local with respect to E.
It is easy to see that C is closed under retracts, suspensions, and cofibrations.
It is nonempty by hypothesis, so it must be a Cn for some n. Suppose n > 1,
and let X be a space of type n − 1. Then X has a vn−1-self map f , which
must be of positive degree d. In the cofiber sequence ΣdX → X → Y , Y has
type n so is E-local. Thus, if Z is E-acyclic, any map Z

g→ X factors through
ΣdX. Repeating this process, we find that g factors through the inverse limit
of the ΣkdY , which is null. Thus X is E-local, which is a contradiction.

Thus C ⊇ C1. In particular, the Moore space M(p) is E-local. Consider

the cofiber sequence S0
p

×p→ S0
p → M(p). Again, if Z is E-acyclic, any map

Z → S0
p factors through the inverse limit of the times p map on the p-

complete sphere, which is null. So S0
p is E-local.

Now consider the cofibre sequence

F → S0 → S0
p .

F is a rational space, so it is either E-acyclic or E-local according to whether
E ∧HQ is trivial or not. Localizing the cofibre sequence at E completes the
proof of the lemma. 2

Thus to prove the theorem, we only need to show that some finite X is
R-local. A corollary of the nilpotence theorem [Hop] tells us that any ring
spectrum must be detected by one of the K(n), for 0 ≤ n ≤ ∞. If R is
detected by K(∞) = HFp then the Bousfield class of R is at least as big as
that of HFp. Since the Moore space M(p) is HFp-local, it is also R-local,
and we are done.

So suppose that R ∧ HFp is null. I claim that R ∧ K(n) must then be
nonzero for infinitely many n <∞. Indeed, for all n, there is a ring spectrum
Yn of type n. (see [Dev] for specific examples). Then R ∧ Yn is also a ring
spectrum, which is nonzero since R has no finite acyclics. It is not detected
by any K(i) with i < n or i = ∞, so it must be detected by some K(i) for
i ≥ n.

This means by [Rav84, Thm 2.1] that the Bousfield class of R is as least
as big as that of some infinite wedge of Morava K-theories. Thus it will
suffice to show that M(p) is local with respect to such a wedge, for then it
will be R-local as well. To do this we follow the argument of [Rav84, Thm
4.4]. We know already that BPp is local. It follows that any locally finite
wedge of suspensions of BP ∧M(p) is local. We then use the Adams tower
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based on BP homology to write M(p) as an inverse limit of spaces Ks of the
form BP ∧ BP

∧s ∧M(p). Here BP is the fiber of the unit map S0 → BP .
Since BP ∧ BP is a locally finite wedge of suspensions of BP , each Ks is
local. Then M(p), as the inverse limit of local spectra, is also local. 2

Corollary 3.5 and Theorem 3.6 can be used to show that some map-
ping groups are 0. For example, they imply that [BP 〈n〉, BPp] = 0 and
[BP 〈n〉, Xp] = 0, where X is finite. Indeed, BP 〈n〉 has no K(i) homology
for i > n.

Recall the problem of Bousfield, mentioned in Section 1, which asks for a
classification of smashing localization functors.

Corollary 3.8 If the localization functor LE is smashing and E has no finite
acyclics, then LE is the identity functor.

Proof: If LE is smashing, then 〈E〉 = 〈LES0〉, which is a ring spectrum.
Since E has no finite acyclics, neither does LES0. So the proceeding theorem
tells us that LES0, which is LLES0S0, is either S0 or S0

p . But S0
p has the same

Bousfield class as the sphere itself. Indeed, suppose S0
p ∧ X is zero. Then,

using the cofibre sequence
F → S0 → S0

p

we find that X is a rational space. But S0
p ∧HQ is not zero, so S0

p ∧X can’t
be either. Thus 〈E〉 = 〈LES0〉 = 〈S0〉, as required. 2

This also proves the following conjecture in the case that E is a ring
spectrum with no finite acyclics. Hopkins and possibly others have made
this conjecture independantly.

Conjecture 3.9 If E is arbitrary, then LES0 is smashing.

This brings us to the question of localization with respect to an arbitrary
spectrum with no finite acyclics. I make the following conjecture.

Conjecture 3.10 If E has no finite acyclics, then LES0 is either the sphere
itself or S0

p .

Our method above relied on showing that BPp is E-local. This will
certainly not be true in general. There are E with no finite acyclics such
that BP ∧ E is zero. An example of such a spectrum is IS0, the Brown-
Comanetz dual of the sphere. It is a consequence of sections 2 and 3 of
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[Rav84] that BP ∧ IS0 = 0. However, torsion finite spectra are local with
respect to IS0. In fact I2X is always IX-local, since

[Z, I2X] = [Z, F (IX, IS0)] = [Z ∧ IX, IS0].

So S0
p = I2S0 is local with respect to IS0.

4 The zeta conjecture

In this section, we describe Hopkins’ zeta conjecture and deduce some corolla-
ries of it. I believe that all of the results in this section except Corollary 4.6
are known to Hopkins.

The conjecture is concerned with the fibre of the map LnS
0 → LK(n)S

0.
The following lemma is a generalization of a lemma of Hopkins.

Lemma 4.1 Suppose E, F are spectra such that F ∧LES0 is null. Then for
arbitrary X, the fibre of the natural map LE∨F X → LF X is the function
spectrum F (LES0, LE∨F X).

Proof: Let Y denote the fibre. Then Y is E ∨F local and F acyclic. We
claim that Y is therefore E local. Consider the map Y → LEY . This is an
E isomorphism, and F∗Y = 0. Now LEY is an LES0 module spectrum, so
since F ∧LES0 is null, so is F ∧LEY . Thus the map Y → LEY is an E ∨F
isomorphism. Since both sides are E∨F local, it is therefore an equivalence,
so Y is E local.

To show that Y is F (LES0, LE∨F X), it will suffice to show that Y has
the same universal property, i.e. that

[Z, Y ] = [Z ∧ LES0, LE∨F X].

Since Y is E local, and the natural map Z → Z∧LES0 is an E isomorphism,
we have [Z, Y ] = [Z ∧ LES0, Y ]. Since LES0 is F acyclic, so is Z ∧ LES0.
Applying [Z, ] to the cofibre sequence

Y → LE∨F X → LF X

we see that [Z ∧ LES0, Y ] = [Z ∧ LES0, LE∨F X], as required. 2
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The main example we are interested in here is the cofibre sequence

F (Ln−1S
0, LnX)→ LnX → LK(n)X.

To describe the zeta conjecture, I must briefly describe some work of
Hopkins-Ravenel and Hopkins-Miller based on Morava’s philosophy. Un-
fortunately, little of this work has appeared, though some of it may be in
[Rav92]. The idea is this: the Morava stabilizer group Sn is essentially the
group of automorphisms of the formal group law over K(n)∗. This is not
quite true: it is actually the automorphisms of the same formal group law,
but considered over the ring Fpn [u, u−1]. Here u has degree 2 and is a pn−1-
fold root of vn. It is technically advantageous to use u instead of vn. The
work of Lubin and Tate gives an action of Sn on a complete ring whose
residue field is Fpn [u, u−1]. We take this ring to be the flat E(n)∗-module

En∗ = W (Fpn)[[u1, . . . , un−1]][u, u−1].

Here the ui have degree 0, u has degree 2, and W (Fpn) is the Witt vectors
of the field with pn elements. The map

E(n)∗ = Z(p)[v1, . . . , vn, v
−1
n ]→ En∗

takes vi to uiu
pi−1 and vn to upn−1. The residue field of the complete local ring

En∗ is then Fpn [u, u−1]. Now given an element of Sn, it lifts to an isomorphism
from the formal group F over En∗ to a possibly different formal group F ′. The
work of Lubin-Tate [LT] shows that there is a well-defined automorphism of
the ring En∗ taking F ′ to a formal group law which is ∗-isomorphic to F, i.e.
isomorphic by an isomorphism which reduces to the identity on the residue
field Fpn [u, u−1]. This gives an action of Sn on En∗ .

Now, En∗ is actually the homotopy of a spectrum En. In fact, En∗ is a
flat E(n)∗-module, so one can simply tensor with it. In [HM] it is shown that
Sn actually acts on the spectrum En, in fact by E∞ maps. They show that
the homotopy fixed point spectrum of this action is LK(n)S

0. (Actually, one
has to cope with the Galois group Z/n of the extension W (Fpn) over Zp as
well.) There is then a homotopy fixed point set spectral sequence

E2 = H∗,∗(Sn; En∗)
Z/n =⇒ π∗(LK(n)S

0).

This spectral sequence was known before the work of [HM]: I believe it is
due to Hopkins-Ravenel, and a brief description of it appears in [MS2].
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There is a determinant map Sn → Zp, where we are thinking of Zp

as a subgroup of the group of units of Zp. If we think of Sn as acting
trivially on Zp, this is a crossed homomorphism, so a cohomology class in
H1(Sn; Zp). This gives rise (by reduction to Fp and then including into
Fpn [u, u−1]) to a canonical element in H1(Sn; Fpn [u, u−1]) known as ζn, where
Sn is acting trivially here as well. This element survives all the Bockstein
spectral sequences used in calculating H∗(Sn; En∗) and is Galois invariant.
One of the corollaries of the work of Hopkins-Miller [HM] is that ζn actually
comes from a homotopy class

ζn : S−1 → LK(n)S
0.

Noting that LK(n)S
0 is p-complete, and that LK(n)S

0 = LK(n)S
0
p for po-

sitive n, we can compose with the map

LK(n)S
0
p → ΣF (Ln−1S

0, LnS
0
p)

to get a map
ζn : S−2

p → F (Ln−1S
0, LnS

0
p).

Finally, noting that F (Ln−1S
0, LnS

0
p) is Ln−1-local, we get

ζn : Σ−2Ln−1S
0
p → F (Ln−1S

0, LnS0
p).

Conjecture 4.2 (Hopkins’ zeta conjecture) The map

ζn : Σ−2Ln−1S
0
p → F (Ln−1S

0, LnS
0
p)

is a homotopy equivalence for positive n.

I thank Hal Sadofsky for pointing out the following

Proposition 4.3 If the zeta conjecture is true, then

F (LiS
0, LnS0

p) = Σ−2(n−i)LiS
0
p

for i ≤ n.

21



Proof: We proceed by induction on n − i, using the result of Hopkins
and Ravenel that Ln is smashing. We have

F (Li−1S
0, LnS

0
p) = F (Li−1(LiS

0), LnS0
p) = F (Li−1S

0 ∧ LiS
0, LnS0

p)

= F (Li−1S
0, F (LiS

0, LnS0
p)) = F (Li−1S

0, Σ−2(n−i)LiS
0
p)

= Σ−2(n−i)Σ−2Li−1S
0
p .2

In particular, this would say that F (HQ, LnS
0
p) = Σ−2nHQp. This is why

we need to complete the sphere. If we did not, there would also be maps
Σ−1HQ→ LnS0 coming from the fiber of the natural map LnS

0 → LnS0
p .

This corollary of the zeta conjecture also determines some of the structure
of π∗LnS0. The proof of this gets into some side issues, so I defer it to an
appendix.

Corollary 4.4 If the zeta conjecture is true, then

Ln−1LK(n)Xp = Ln−1Xp ∨ Σ−2Ln−1Xp

for finite X.

Proof: Applying Ln−1 to the cofibre sequence given to us by the zeta
conjecture and Lemma 4.1, we have a cofibre sequence

Ln−1S
0
p → Ln−1LK(n)S

0
p → Σ−2Ln−1S

0
p .

Note, however, that the map

S−2
p

ζn→ LK(n)S
0
p → Ln−1LK(n)S

0
p

extends to
Σ−2Ln−1S

0
p → Ln−1LK(n)S

0
p ,

giving a splitting of the cofibre sequence. Smashing with X completes the
proof. 2

Theorem 4.5 If the zeta conjecture is true, and if f : X → Y is a map
between two finite spectra such that LK(n)f : LK(n)X → LK(n)Y is null for
infinitely many n, then f is null.

22



Proof: It suffices to show that f : X → Yp is null. Note that LK(n)Yp =
LK(n)Y if n > 0. We have the diagram

X Yp

?

LK(n)Yp

?

- -

Ln−1Yp Ln−1LK(n)Yp-

By the preceeding result, Ln−1Yp is a summand of Ln−1LK(n)Yp. Thus if
X → LK(n)Yp is null, so is X → Ln−1Yp. The chromatic convergence theorem
says that the tower Ln−1Y is pro-isomorphic to the constant tower. It is easy
to see that Ln−1Yp is also pro-isomorphic to the constant tower. Thus, since
X → Ln−1Yp is null for a cofinal sequence of n’s, X → Yp is null. 2

We can use the results in the previous section to prove that such a map
must at least be null upon smashing with BP .

Proposition 4.6 If f : X → Y is a map between two finite spectra such
that LK(n)f is null for infinitely many n, then the composite

X → Y → BP ∧ Y

is null. In particular, if E is a BP -module spectrum, E∗(f) : E∗(X) →
E∗(Y ) is zero.

Proof: First note that infinite products commute with smashing with
finite spectra, by Spanier-Whitehead duality. Thus, BPp ∧ Y is a retract of∏

LK(ni)BPp ∧ Y, for any infinite sequence (ni). Since the map X → Y →
BPp∧Y becomes null on localizaing with respect to K(n) for infinitely many
n, it is null. It follows from general facts about p-completions of spectra of
finite type that the map

X → Y → BP ∧ Y

is null (see Chapter 9 of [Mar]). Smashing with E, we find that the composite

E ∧X → E ∧ Y → E ∧BP ∧ Y
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is null. But if E is a BP -module spectrum, then E is a wedge summand of
E ∧BP , so in fact E ∧X → E ∧ Y is null. 2

For several years, Hopkins has been saying that one does not need to
reassemble the monochromatic parts of X to recover the homotopy theory of
finite spectra. The following corollary indicates a precise sense in which this
is true.

Corollary 4.7 If the zeta conjecture is true, then the natural map Xp →∏
LK(ni)Xp is the inclusion of a summand. In particular, if Y is arbitrary,

and Y → X is a map such that the composite Y → X → LK(n)X is null for
infinitely many n, then Y → X → Xp is null.

Proof: By the preceeding theorem, the map Xp → ∏
i LK(ni)Xp is injec-

tive on maps from finite complexes. Thus , if F denotes the fibre, the map
F → Xp is f -phantom. Since there are no f -phantom maps to Xp, it is null.
2

5 Appendix: The p-completion

In this appendix, we investigate the consequences that the zeta conjecture
would have on the structure of π∗LnS0. In particular, we show that the only
divisible summand is in dimension −2n, and except for that summand and
the free one in dimension 0, π∗LnS0 is a direct sum of cyclic groups which
have bounded torsion in each dimension.

Throughout this section, we assume n ≥ 1. Let X = LnS0
p . Recall from

Proposition 4.3 that the zeta conjecture would tell us that F (HQ, X) =
Σ−2nHQp. Lemma 4.1 tells us that this function spectrum is the fibre of the
map

X → LK(1)∨···∨K(n)S
0
p .

Since
LK(1)∨···∨K(n)S

0
p = LM(p)X,

we have a cofibre sequence

Σ−2nHQp → X → Xp.

Now there are two things we need to do. First, we need to know something
about how the homotopy groups of Xp are related to the homotopy groups
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of X. One might like them to be the p-completions of the homotopy groups
of X. This is false in general, but the following proposition says that they
are close to being p-complete. That something like this proposition might be
true was first suggested to me by Hal Sadofsky.

For an abelian group G, let p∞G =
⋂

pnG.

Proposition 5.1 For arbitrary X, Y , [Y,Xp] is a module over Zp, has no
divisible summands, and [Y, Xp]/p∞[Y, Xp] is the p-completion of [Y,Xp].

Proof: We can assume X = Xp and Y = Yp. Then Y is a module
spectrum over S0

p , so maps out of it are a module over π0S
0
p = Zp. We will

first show that [Y,X] has no divisible summands. Consider the system of
cofibre sequences whose nth and n− 1st terms are displayed below.

X

?

×p

X

?

=

X ∧M(pn)

?

-×pn
-

X X X ∧M(pn−1)-×pn−1
-

If f ∈ [Y, X] generates a divisible summand, there are maps fn ∈ [Y, X]
for all n, such that pfn = fn−1, where f0 = f. These will define a map into the
inverse limit Z = lim← (×p : X → X) of the left column in the above diagram.

Now inverse limits do not behave very well in general, but the inverse limit
of cofibre sequences is still a cofibre sequence, as we will prove below. Thus
we get a cofibre sequence

Z → X → lim← (X ∧M(pn)) = LM(p)X.

Since X is already M(p)-local, Z must be null. Since f factors through Z,
f is null too.

Now we will show that the map

[Y, X]→ [Y, X]p = lim← [Y, X]/pn[Y, X]

is surjective. The proposition will then follow, since the kernal of the map
A → Ap for abelian groups A is always p∞A. Suppose (fn) ∈ [Y,X]p, so
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fn ∈ [Y,X]/pn[Y, X]. Let A = [Y, X] and B = [Y, ΣX], and denote the
elements of B killed by ×pn by B(pn). Then, using the cofibre sequence

X
×pn→ X

i→ X ∧M(pn),

we get a diagram of short exact sequences

A/pnA

?

[Y, X ∧M(pn)]

?

B(pn)

?

×p

-i -

A/pn−1A [Y, X ∧M(pn−1)] B(pn−1)-i -

Since (fn) is a compatible sequence, so is (i(fn)), se we get an element of
lim← [Y,X ∧M(pn)]. The map

[Y, X] = [Y, lim← (X ∧M(pn))]→ lim← [Y, X ∧M(pn)]

is not an isomorphism in general, but it is always surjective. So we get a
map f ∈ [Y, X], and it is easy to see that f maps to (fn) ∈ [Y, X]p.

This completes the proof of the proposition modulo the following lemma,
which I learned from Hal Sadofsky.

Lemma 5.2 The inverse limit of cofibre sequences is a cofibre sequence.

Proof: It is easy to see that products of cofibre sequences are cofibre
sequences. Thus, given cofibre sequences

An

?

Bn

?

Cn

?

- -

An−1 Bn−1 Cn−1
- -
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we get a diagram of cofibre sequences

∏
An

?

∏
Bn

?

∏
Cn

?

- -

∏
An

∏
Bn

∏
Cn

- -

where the vertical arrows are the maps whose fibres are the inverse limits.
Now it is not always true that the fibres in such a situation form a cofibre
sequence, but it is true in this case since the map

∏
Cn → ∏

Cn is induced
by the map

∏
Bn → ∏

Bn. 2

Corollary 5.3 The kernal of the map

[Y,X]→ [Y,Xp]

is precisely the divisible summands in [Y,X].

Proof: Any divisible summand in [Y,X] must map to 0 in [Y,Xp], by
the proposition. To see the converse, note that we showed that the fibre of
X → Xp is the rational spectrum Z = lim← (×p : X → X). So [Y, Z] is a

divisible group, and thus its image in [Y, X] is also divisible. 2

Now the second thing we need to do is to get some kind of control over
the homotopy of LnS

0.

Lemma 5.4 πiLnS
0 is a countable abelian group.

Proof: We will show this using the Adams-Novikov spectral sequence

Es,t
2 = Exts,s+i

BP∗BP (BP∗, BP∗(LnS
0)) =⇒ πiLnS0

This spectral sequence converges in a very strong sense, in that Es,s+i
∞ is 0

for large enough s (and fixed i) [Rav92]. Thus, if Es,s+i
∞ is countable for all

s, t, so is πiLnS
0. However, Es,t

∞ is a subquotient of Es,s+i
2 , so it will suffice

to show that E2 is countable in each bidegree.
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One way to calculate the Ext groups of a BP∗BP comodule M is to use
the cobar complex, made up out of

Ωs(M) = M ⊗BP∗ BP∗BP ⊗BP∗ · · · ⊗BP∗ BP∗BP

where there are s factors of BP∗BP . Note that BP∗BP is countable in
each degree. I claim that if M,N are countable in each degree their tensor
product will be too. Indeed, the degree t part of their tensor product is
a quotient of

⊕
Mk ⊗ Nt−k. The tensor product of two countable abelian

groups is countable, as is the countable direct limit (or sum) of countable
abelian groups. Thus, if M is countable in each degree, so is ΩsM , and thus
also Exts

BP∗BP (BP∗,M).
Thus it will suffice to show that BP∗(LnS

0) is countable in each degree.
Since Ln is smashing, BP∗(LnS0) = π∗(LnBP ). This is calculated by Ravenel
in [Rav84]. His result is that

π∗(LnBP ) = BP∗ ⊕ Σ−nNn+1

for n ≥ 1, where Nn+1 is defined inductively by N0 = BP∗ and the short
exact sequence

0→ Nk → v−1
k Nk → Nk+1 → 0.

If Nk is countable in each degree, so is v−1
k Nk, as it is a direct limit of

countable groups. So by induction, Nn+1 is countable in each degree, so is
BP∗(LnS0) and we are done. 2

Note that there is a sense in which countable torsion groups A are com-
pletely classified (Ulm’s Theorem [Kap]). This classification is complicated,
however, because p∞A may not be 0. One certainly hopes that this compli-
cation does not arise in LnS

0. We will see below that it does not if the zeta
conjecture is true.

Theorem 5.5 Suppose the zeta conjecture is true. Then for all i, πiLnS
0 =

Di ⊕ Ti, where Di = 0 if i 6= 0,−2n, and D0 = Z, D−2n = Q/Z(p), and Ti is
a bounded torsion group which is a countable direct sum of cyclic groups.

Proof: It is clear that D0 = Z, since the composite π0S
0 → π0LnS0 →

π0L1S
0 is the identity. The rest of πiLnS

0 is all torsion. It suffices to prove
the theorem for X = LnS

0
p , which differs from LnS

0 only in that D0 = Zp

instead of Z.
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So we have the cofibre sequence

Σ−2nHQp → X → Xp.

The first thing we prove is that the map π−2n+1Xp → Qp cannot be onto. If
it were, we would have a short exact sequence

0→ A→ G→ Qp → 0

where A = π−2n+1X is a countable torsion group, and G = π−2n+1Xp is a
Zp module with no divisible summands whose p-completion is G/p∞G. This
means that A = Tor(G), and that this is necessarily a short exact sequence
of Zp modules. There is an induced short exact sequence of Zp modules

0→ A/p∞A→ G/p∞G→ H.

The induced map of Zp modules Qp → H is surjective, so H must be either
Qp, Qp/Zp

∼= Q/Z(p), or 0. In any case, H is divisible.
Now, B = A/p∞A is a countable torsion group, and p∞B = 0. Thus, by

Theorem 11 of [Kap], it must be a direct sum of cyclics

B =
⊕

i

Z/pni .

Further, it is sitting inside the p-complete group G/p∞G. Therefore, its p-
completion Bp is also inside G/p∞G. If B is unbounded torsion, one can see
from the direct sum decomposition of B that Bp/B ⊆ H is uncountable, and
in fact even the torsion of Bp/B is uncountable. This is impossible, given the
possibilities for H. Thus B must be bounded torsion, say pNB = 0. But in
that case, we have pNA ⊆ p∞A, and so we can deduce that the times p map
from pNA to itself is surjective. This means pNA is divisible, and since A has
no divisible summands, it must be 0. Therefore A has bounded torsion. But
A = Tor(G), and a torsion subgroup which is bounded torsion always splits
off. Thus G = A⊕Qp, violating the fact that G has no divisible summands.

Therefore, the map π−2n+1Xp → Qp is not surjective. Since its image
is a Zp submodule, its image must be either 0 or isomorphic to Zp. But
it can’t be 0, for then Qp would be a summand of π−2nLnS0, which would
then survive to π−2nL0S

0 = 0. Thus, the image must be Zp, showing that
D−2n = Q/Z(p).
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To see that Ti is bounded torsion, we use a similar argument to the one
above that ruled out surjectivity of the map π−2n+1Xp → Qp. For all i,
Ti is a direct summand in πiXp, and the cokernal is either 0 or Zp, which
occurs when i = −2n + 1, 0. Thus Bi = Ti/p

∞Ti is the torsion subgroup of
the p-complete group πiXp/p

∞πiXp. Also p∞Bi = 0, so Bi is a direct sum
of cyclics. We saw above that a direct sum of cyclics which is unbounded
torsion can never be the torsion subgroup of a p-complete group. So Bi is
bounded torsion. We also saw above that this means that Ti is bounded
torsion as well, so is a direct sum of cyclics. 2
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