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MORITA THEORY FOR HOPF ALGEBROIDS
AND PRESHEAVES OF GROUPOIDS

By MARK HOVEY

Abstract. Comodules over Hopf algebroids are of central importance in algebraic topology. It is
well known that a Hopf algebroid is the same thing as a presheaf of groupoids on Aff, the opposite
category of commutative rings. We show in this paper that a comodule is the same thing as a
quasi-coherent sheaf over this presheaf of groupoids. We prove the general theorem that internal
equivalences of presheaves of groupoids with respect to a Grothendieck topology T on Aff give
rise to equivalences of categories of sheaves in that topology. We then show using faithfully flat
descent that an internal equivalence in the flat topology gives rise to an equivalence of categories of
quasi-coherent sheaves. The corresponding statement for Hopf algebroids is that weakly equivalent
Hopf algebroids have equivalent categories of comodules. We apply this to formal group laws,
where we get considerable generalizations of the Miller-Ravenel and Hovey-Sadofsky change of
rings theorems in algebraic topology.

Introduction. A commutative Hopf algebra is a (commutative) ring A to-
gether with a lift of the functor Spec A: Rings → Set to a functor Rings →
Groups. Here Rings is the category of commutative rings with unity, Set is
the category of sets, Groups is the category of groups, and ( Spec A)(R) =
Rings(A, R). So a Hopf algebra is the same thing as an affine algebraic group
scheme, or a representable presheaf of groups on Aff, the opposite category of
Rings. In the same way, a Hopf algebroid (A, Γ) is an affine algebraic groupoid
scheme, or a representable presheaf of groupoids ( Spec A, Spec Γ) on Aff. Here,
given a ring R, Spec A(R) is the set of objects of the groupoid corresponding to
R, and Spec Γ(R) is the set of morphisms of that groupoid.

Hopf algebroids are very important in algebraic topology, because for many
important homology theories E, the ring of stable co-operations E∗E is a (graded)
Hopf algebroid over E∗ but not a Hopf algebra. In particular, this is true for
complex cobordism MU and complex K-theory. In this case, E∗X is a (graded)
comodule over the Hopf algebroid E∗E.

Of course, not all schemes are affine. One of the essential contributions of
Grothendieck was the realization that it is necessary to study all schemes even
if one is only interested in affine schemes. In the same way, to understand Hopf
algebroids, one should study more general groupoid schemes.
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One of the difficulties is that the standard approach to schemes, involving
covers by open affine subschemes, is not the right one for the algebraic topology
setting. Instead, it is better to use the functorial approach hinted at above in our
definition of Spec A. This approach is well known in algebraic geometry [DG70].
As far as the author knows, it was introduced to algebraic topology in Morava’s
foundational paper [Mor85]. Strickland has written an excellent exposition of this
point of view in [Str99]. In this approach, we study arbitrary presheaves of sets
(or groupoids) on Aff.

Demazure and Gabriel [DG70] show that the category of A-modules is equiv-
alent to the category of quasi-coherent sheaves over the presheaf of sets Spec A on
Aff. Our first goal in this paper is to extend this theorem as follows. Let T denote
a Grothendieck topology on Aff, and let AffT denote the resulting site (we put a
cardinality restriction on rings to make Aff a small category). Given a presheaf
of groupoids (X0, X1) on Aff, we define the category ShT

(X0,X1) of sheaves over
(X0, X1) with respect to T and we define the category Shqc

(X0,X1) of quasi-coherent
sheaves over (X0, X1). Our first main result is then the following theorem, proved
as Theorem 2.2.

THEOREM A. Suppose (A, Γ) is a Hopf algebroid. Then there is an equivalence
of categories between Γ-comodules and quasi-coherent sheaves over ( Spec A,
Spec Γ).

There is a natural notion of an internal equivalence of presheaves of group-
oids on AffT , studied by Joyal and Tierney [JT91] and other authors as well. A
map Φ: (X0, X1)→ (Y0, Y1) of presheaves of groupoids is an internal equivalence
with respect to T if Φ(R) is fully faithful for all R and if Φ is essentially surjec-
tive in a sheaf-theoretic sense, related to T . This is really the natural notion of
internal equivalence for sheaves of groupoids on AffT ; there is a more general no-
tion appropriate for presheaves, introduced by Hollander [Hol01], but we do not
need it.

Our second main result is that the category of sheaves is invariant under
internal equivalence. The following theorem is proved as Theorem 3.2.

THEOREM B. Suppose Φ: (X0, X1) → (Y0, Y1) is an internal equivalence of
presheaves of groupoids on AffT . Then Φ∗: ShT

(Y0,Y1) → ShT
(X0,X1) is an equivalence

of categories.

What we really care about is the category of quasi-coherent sheaves. Faith-
fully flat descent shows that a quasi-coherent sheaf is a sheaf in the flat topology
on Aff. This is often called the fpqc topology; in it, a cover of a ring R is a finite
family {R → Si} of flat extensions of R such that

∏
Si is faithfully flat over R.

A strengthening of faithfully flat descent then leads to the following theorem,
proved as Theorem 4.5.
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THEOREM C. Suppose Φ: (X0, X1) → (Y0, Y1) is an internal equivalence of
presheaves of groupoids on AffT , whereT is the flat topology. Then Φ∗: Shqc

(Y0,Y1) →
Shqc

(X0,X1) is an equivalence of categories.

This theorem is a generalization of [Mor85, Proposition 1.2.3], due to Miller,
who used the trivial topology instead of the flat topology.

In order to apply this theorem to Hopf algebroids, we need to character-
ize those maps of Hopf algebroids that induce internal equivalences in the flat
topology of the corresponding presheaves of groupoids. The following theorem
is proved as Theorem 5.5.

THEOREM D. Suppose f = ( f0, f1): (A, Γ)→ (B, Σ) is a map of Hopf algebroids.
Then f ∗: ( Spec B, Spec Σ)→ ( Spec A, Spec Γ) is a internal equivalence in the flat
topology if and only if

ηL ⊗ f1 ⊗ ηR: B⊗A Γ⊗A B→ Σ

is an isomorphism and there is a ring map g: B ⊗A Γ → C such that g( f0 ⊗ ηR)
exhibits C as a faithfully flat extension of A.

This condition has appeared before, in [Hop95] and [HS99]. We point out
that if we used the more general notion of internal equivalence mentioned above,
Theorem D would remain unchanged, since Spec A is already a sheaf in the flat
topology by faithfully flat descent.

Finally, we apply our results to the Hopf algebroids relevant to algebraic
topology. The following theorem is proved as Theorem 6.2 (and the terminology
is defined in Section 6).

THEOREM E. Fix a prime p and an integer n > 0. Let (A, Γ) denote the Hopf
algebroid (v−1

n BP∗/In, v−1
n BP∗BP/In). Suppose B is a ring equipped with a homo-

geneous p-typical formal group law of strict height n, classified by f : A→ B. Then
the functor that takes an (A, Γ)-comodule M to B ⊗A M defines an equivalence of
categories from graded (A, Γ)-comodules to graded (B, B⊗A Γ⊗A B)-comodules.

As an immediate corollary, we recover a strengthening of the change of rings
theorem of [HS99], which itself is a strengthening of the well-known Miller-
Ravenel change of rings theorem [MR77]. The precise change of rings theorem
we prove is stated below.

The Ext groups that appear in this theorem are relative Ext groups.

THEOREM F. Let p be a prime and m ≥ n > 0 be integers. Suppose M and N
are BP∗BP-comodules such that vn acts isomorphically on N. If either M is finitely
presented, or if N = v−1

n N′ where N′ is finitely presented and In-nilpotent, then

Ext∗∗BP∗BP(M, N) ∼= Ext∗∗E(m)∗E(m)(E(m)∗ ⊗BP∗ M, E(m)∗ ⊗BP∗ N).
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This theorem implies that the chromatic spectral sequence based on E(m) is
the truncation of the chromatic spectral sequence based on BP consisting of the
first n + 1 columns, as pointed out in [HS99, Remark 5.2].

There are several ways in which the results in this paper might be gener-
alized. Most substantively, we do not recover the Morava change of rings the-
orem [Mor85] from our result. The Morava change of rings theorem is about
complete comodules over a complete Hopf algebroid, so one would need to ac-
count for the topology in some way. Secondly, our results will probably hold if
we replace Aff by the opposite category of rings in some topos, as suggested by
Rick Jardine. In fact, we already need to replace Aff by the opposite category of
graded rings in order to cope with the graded Hopf algebroids that arise in alge-
braic topology. This could also be done by considering presheaves of groupoids
with an action of the multiplicative group, but it is easier to avoid this techni-
cal complication. Lastly, there is the aforementioned generalization of the notion
of internal equivalence, due to Hollander [Hol01]. In this generalization, one
would replace “faithful” by “sheaf-theoretically faithful” and “full” by “sheaf-
theoretically full.” We are confident our results will hold for this generalization,
but we would not get any new examples of equivalences of categories of comod-
ules. Nevertheless, this generalization might be useful in other circumstances.

Acknowledgments. This paper arose from trying to understand comments
of Mike Hopkins, and I thank him deeply for sharing his insights. The one-line
summary of this paper is “The category of comodules over a Hopf algebroid only
depends on the associated stack”; I first heard this from Hopkins, but the idea
behind it is in Morava’s paper [Mor85], and is probably due to Miller. It is certain
that Hopkins has proved some of the theorems in this paper. As far as I know,
however, Hopkins approached these theorems by using stacks, which I have
completely avoided. In particular, my definition of sheaves and quasi-coherent
sheaves over presheaves of groupoids is quite different from the definition I have
heard from Hopkins, though the two definitions are presumably equivalent.

I would also like to thank Dan Christensen and Rick Jardine, both of whom
thought that the original version of this paper, dealing as it did with only quasi-
coherent sheaves, was much too specific and must be a corollary of a simpler,
more general theorem.

Notation. We compile the notations and conventions we use in this pa-
per. All rings are assumed commutative, and of cardinality less than some fixed
infinite cardinal κ. Rings denotes the category of such rings, and Aff denotes
its opposite category. We think of Aff as the category of representable functors
Spec A: Rings → Set, where ( Spec A)(R) = Rings(A, R). We will also want to
consider Rings∗, the category of graded rings (of cardinality less than κ) that are
commutative in the graded sense, and its opposite category Aff∗.
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If x, y: A → R are ring homomorphisms, the symbol xRy denotes R with its
A-bimodule structure, where A acts on the left through x and on the right through
y. This is especially useful for the tensor product; the symbol Rx ⊗A yS indicates
the bimodule tensor product, where A acts on the right on R via x and on the left
on S via y. We use this same notation in the graded case as well, where x and y
are tacitly assumed to preserve the grading and the tensor product is the graded
tensor product.

The symbols (A, Γ) and (B, Σ) denote (possibly graded) Hopf algebroids.
We follow the notation of [Rav86, Appendix 1] for the structure maps of a Hopf
algebroid. So we have the counit ε: Γ→ A, the left and right units ηL, ηR: A→ Γ,
the diagonal ∆: Γ→ ΓηR ⊗A ηLΓ, and the conjugation c: ηLΓηR → ηRΓηL .

Capital letters at the end of the alphabet, such as X, Y , and Z, will denote
functors from Rings to Set, or functors from Rings∗ to Set in the graded case.

The symbol Yf ×X gZ will denote the pullback of the diagram Y
f→ X

g← Z.
The symbols (X0, X1) and (Y0, Y1) will denote functors from Rings (or Rings∗)

to Gpds, the category of small groupoids. Here X0(R) is the object set of the
groupoid corresponding to R, and X1(R) is the morphism set of that groupoid.
There are structure maps

id : X0 → X1

dom, codom: X1 → X0

◦ : (X1)dom ×X0 codom(X1)→ X1

inv : X1 → X1

satisfying the relations necessary to make (X0(R), X1(R)) a groupoid.

1. Sheaves over functors. The object of this section is to define the notion
of a sheaf of modules M over a sheaf of sets X on Aff. We will generalize this
in the next section to sheaves of modules over sheaves of groupoids (X0, X1) on
Aff.

We will assume as given a Grothendieck topology T on Aff, and denote the
resulting site consisting of Aff together with T by AffT . For us, the two most
important Grothendieck topologies on Aff will be the trivial topology, where the
only covers are isomorphisms, and the the fpqc, or flat, topology, which will be
discussed later.

Now suppose X: Rings → Set is a functor. We think of X as a presheaf
of sets on AffT . We need to define the category of sheaves over X. We first
define the overcategory AffT /X. An object of AffT /X is a map of presheaves
x: Spec R → X, and the morphisms are the commutative triangles. We call the
opposite category of AffT /X the category of points of X following [Str99]; it
is called the category of X-models in [DG70]. A point of X is a pair (R, x),
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where R is a ring and x ∈ X(R), and a morphism from (R, x) to (S, y) is a ring
homomorphism f : R → S such that X( f )(x) = y. We often abuse notation and
write f (x) for X( f )(x). As an overcategory, AffT /X inherits the Grothendieck
topology T . A cover of (R, x) is a family {(R, x)→ (Si, xi)} such that {R→ Si}
is a cover of R. The category AffT /X also comes equipped with a structure
presheaf O: (AffT /X)op → Rings, where O(R, x) = R.

Definition 1.1. Suppose X: Rings→ Set is a presheaf of sets on AffT . Then
a sheaf of modules over X, often called just a sheaf over X, is a sheaf of O-modules
on AffT /X.

More concretely, a sheaf M is a functorial assignment of an R-module Mx to
each point (R, x), satisfying the sheaf condition. Functoriality means that a map
f : (R, x) → (S, y) induces a map of R-modules θM( f , x): Mx → My, where My

is thought of as an R-module by restriction. We often abbreviate θ( f , x) to θ( f ).
We must have θ(gf ) = θ(g) ◦ θ( f ) and θ(1) = 1. The sheaf condition means that
if {(R, x)→ (Si, xi)} is a cover, then the diagram

Mx →
∏

i

Mxi ⇒
∏
jk

Mxjk

is an equalizer of R-modules, where xjk is the image of x in X(Sj ⊗R Sk). The
maps in this diagram are all maps of R-modules.

We have an evident definition of a map of sheaves over X. To be concrete,
a map α: M → N of sheaves over X assigns to each point (R, x) of X a map
αx: Mx → Nx of R-modules, natural in (R, x). This gives us a category ShT

X of
sheaves over X. A map of sheaves Φ: X → Y induces a functor Φ∗: ShT

Y → ShT
X .

Here, if M is a sheaf over Y and (R, x) is a point of X, we define (Φ∗M)x = MΦx.
Note that all of these definitions work perfectly well in the graded case

as well. We would have a Grothendieck topology T on Aff∗, and a functor
X: Aff∗ → Set. A point of X would be a graded ring R and a point x ∈ X(R). A
sheaf M over X would be as assignment of a graded R-module Mx to each point
(R, x) of X(R), satisfying the functoriality and sheaf conditions. As mentioned
in the introduction, gradings could also be dealt with by introducing an action
of the multiplicative group on X and defining equivariant sheaves, but this is
unnecessarily complex in our setting.

We now consider quasi-coherent sheaves. We only need quasi-coherent
sheaves in the trivial topology, so we will stick to that case. A quasi-coherent
sheaf is supposed to be a sheaf that is locally a quotient of free sheaves. The
salient property of the free sheaf O is that, if (R, x)→ (S, y) is a map of points,
then Oy = S ⊗R Ox, and this should be inherited by sums and quotients. We
therefore make the following definition.

Definition 1.2. Suppose X: Rings → Set is a functor. A quasi-coherent
sheaf M over X is a sheaf over X in the trivial topology such that, given a map
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f : (R, x)→ (S, y) of points of X, the adjoint ρM( f ): S ⊗R Mx → My of θM( f ) is
an isomorphism.

This is the same definition given in [DG70] and [Str99]. We get a category
Shqc

X , which is the full subcategory of sheaves over X in the trivial topology
consisting of the quasi-coherent sheaves. Given a map Φ: X → Y of functors,
Φ∗: ShT

Y → ShT
X restricts to define Φ∗: Shqc

Y → Shqc
X .

The value of this definition of quasi-coherence is shown by the following
lemma.

LEMMA 1.3. Suppose A ∈ Rings, and let Spec A: Rings → Set be the rep-
resentable functor ( Spec A)(R) = Rings(A, R). Then the category of A-modules
is equivalent to the category of quasi-coherent sheaves over Spec A. The equiva-
lence takes an A-module M to the quasi-coherent sheaf M̃ over Spec A defined by
M̃x = Rx ⊗A M for x: A→ R, and its inverse takes a quasi-coherent sheaf N to its
value at 1: A→ A.

This lemma is due to Demazure and Gabriel [DG80, p. 61], who actually show
that the category of quasi-coherent sheaves over a scheme when defined this way
agrees (up to equivalence) with the usual notion of quasi-coherent sheaves on a
scheme. A direct proof can be found in [Str99].

Once again, we note that Lemma 1.3 will work in the graded case as well. The
definition of a quasi-coherent sheaf over a functor X: Rings∗ → Set is similar to
the ungraded case, and the same argument used to prove Lemma 1.3 shows that,
if A is a graded ring, the category of quasi-coherent sheaves over Spec A (now
defined by ( Spec A)(R) = Rings∗(A, R)) is equivalent to the category of graded
A-modules.

It will be useful later to note that, if f : A→ B is a ring homomorphism and
Spec f : Spec B→ Spec A is the corresponding map of functors, then the induced
map ( Spec f )∗: Shqc

Spec A → Shqc
Spec B takes the A-module M to the B-module

B⊗A M.

2. Sheaves over groupoid functors. The object of this section is to prove
Theorem A, showing that a comodule over a Hopf algebroid is a special case of
the more general notion of a quasi-coherent sheaf over a presheaf of groupoids.
This will require us to define the notion of a sheaf M of modules over a presheaf
of groupoids (X0, X1) on AffT .

We will consider a presheaf of groupoids (X0, X1) on AffT . This means that
X0 and X1 are presheaves of sets on AffT , and that (X0(R), X1(R)) is a groupoid
for all R, naturally in R. So we have structure maps as defined in the notation
section. A presheaf of groupoids (X0, X1) is called a sheaf of groupoids when X0

and X1 are sheaves of sets on AffT ; we would be happy to assume our presheaves
of groupoids are in fact sheaves of groupoids, but that assumption is unnecessary.
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Sheaves of groupoids have been much studied in the literature; a stack is a
special kind of sheaf of groupoids, and stacks are essential in modern algebraic
geometry [FC90]. The homotopy theory of sheaves of groupoids has been studied
by Joyal and Tierney [JT91], Jardine [Jar01], and Hollander [Hol01].

Definition 2.1. Suppose (X0, X1) is a presheaf of groupoids on AffT . A sheaf
over (X0, X1) is a sheaf M over X0 together with an isomorphism ψ: dom∗ M →
codom∗ M of sheaves over X1 satisfying the cocycle condition. To explain the
cocycle condition, note that, if α is a morphism of X1(R), ψα is an isomorphism
of R-modules ψα: Mdomα → Mcodomα. The cocycle condition says that if β
and α are composable morphisms, then ψβα = ψβ ◦ ψα. A quasi-coherent sheaf
over (X0, X1) is a sheaf M over (X0, X1) in the trivial topology such that M is
quasi-coherent as a sheaf over X0.

We also get a notion of a map τ : M → N of sheaves over (X0, X1). Such a
map is a map of sheaves over X0 such that the diagram

Mdomα

ψM
α−−−→ Mcodomα

τdomα

�
�τcodomα

Ndomα −−−→
ψN
α

Ncodomα

commutes for all points (R,α) of X1(R). We then get categories ShT
(X0,X1) and

Shqc
(X0,X1).

Note that a map Φ: (X0, X1) → (Y0, Y1) induces a functor Φ∗: ShT
(Y0,Y1) →

ShT
(X0,X1) and Φ∗: Shqc

(Y0,Y1) → Shqc
(X0,X1). Indeed, we define ψΦ∗M

α = ψM
Φα.

Also note that all of the comments above work perfectly well for presheaves
of groupoids on Aff∗. In this case, ψα: Mdomα → Mcodomα will be an isomor-
phism of graded R-modules.

A Hopf algebroid [Rav86, Appendix 1] is just a pair of commutative rings
(A, Γ) such that ( Spec A, Spec Γ) is a sheaf of groupoids (in the trivial topology).
Ravenel credits this observation to Miller, though I believe the first appearance
of this idea in print is in Landweber’s paper [Lan75]. The structure maps of a
Hopf algebroid (listed in the notation section) are therefore dual to the structure
maps of a presheaf of groupoids; for example, the diagonal ∆: Γ→ ΓηR ⊗A ηLΓ
is dual to the composition map (X1)dom ×X0 codomX1.

It is useful to recall the composition in the groupoid ( Spec A, Spec Γ)(R) from
this point of view. Suppose β,α: Γ→ R are ring homomorphisms with αηL = x,
αηR = βηL = y, and βηR = z, so that α is a morphism from x to y and β is
a morphism from y to z. The composition β ◦ α: Γ → R is defined to be the
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composite

Γ ∆→ ηLΓηR ⊗A ηLΓηR

α⊗β
−−→ xRy ⊗A yRz

µ→ xRz.

Just as a quasi-coherent sheaf over Spec A is the same thing as a module
over A, so a quasi-coherent sheaf over ( Spec A, Spec Γ) is the same thing as a
comodule over (A, Γ). The following theorem is Theorem A of the introduction.

THEOREM 2.2. Suppose (A, Γ) is a Hopf algebroid. Then there is an equiva-
lence of categories between Γ-comodules and quasi-coherent sheaves over ( Spec A,
Spec Γ).

This theorem will also hold in the graded context: if (A, Γ) is a graded Hopf
algebroid, then the category of graded Γ-comodules is equivalent to the category
of quasi-coherent sheaves over the presheaf of groupoids ( Spec A, Spec Γ) on
Aff∗. The proof is the same as the proof below.

Proof. We first construct a functor from quasi-coherent sheaves over ( Spec A,
Spec Γ) to (A, Γ)-comodules. Suppose that M̃ is a quasi-coherent sheaf over
( Spec A, Spec Γ). Then M̃ is in particular a quasi-coherent sheaf over Spec A,
so corresponds to an A-module M. Then if α: Γ→ R is a point of Spec Γ defined
over R, with αηL = x and αηR = y,

( dom∗ M̃)α = Rx ⊗A M and ( codom∗ M̃)α = Ry ⊗A M.

Let us denote by ψ̃ the isomorphism of sheaves dom∗ M̃ → codom∗ M̃. Then, ψ̃
defines an isomorphism

ψ̃α: Rx ⊗A M → Ry ⊗A M

of R-modules. Taking α to be the identity map 1 of Γ, we define ψ: M → ΓηR⊗AM
to be the composite

M = A⊗A M
ηL⊗1
−−−→ΓηL ⊗A M

ψ̃1−−→ΓηR ⊗A M.

We must show that ψ is counital and coassociative. Note first that ε: Γ→ A,
thought of as a morphism in the groupoid ( Spec A, Spec Γ)(A), is the identity mor-
phism of the object 1A: A→ A, and so in particular is idempotent. The cocycle
condition implies that ψ̃ε is also idempotent, and since it is an isomorphism, it fol-
lows that ψ̃ε is the identity of M. Now, ε defines a map from the point (Γ, 1) to the
point (A, ε) of Spec Γ. Since ψ̃ is a map of sheaves over Spec Γ, we conclude that

1⊗ ψ̃1: A⊗Γ (ΓηL ⊗A M)→ A⊗Γ (ΓηR ⊗A M)

is the identity map. From this it follows easily that ψ is counital.
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To see that ψ is coassociative, let α: Γ→ Γ⊗A Γ denote the map that takes
t to t ⊗ 1. Let β denote the map that takes t to 1⊗ t. Then we have

βηR(a) = ηRa⊗ 1 = 1⊗ ηLa = αηL(a),

and so β ◦α makes sense. A calculation shows that β ◦α = ∆, the diagonal map.
If (R, γ) is an arbitrary point of Spec Γ with γηL = x and γηR = y, there is a
map from (Γ, 1) to (R, γ). Since ψ̃ is a map of sheaves, we find that ψ̃γ is the
composite

Rx ⊗A M ∼= Rγ ⊗Γ ΓηL ⊗A M
1⊗ψ̃1−−−→Rγ ⊗Γ ΓηR ⊗A M ∼= Ry ⊗A M.

This description allows us to compute ψ̃β and ψ̃α, and so also their composite. We
find that ψ̃β ◦ ψ̃α takes 1⊗ 1⊗m to (1⊗ ψ)ψ(m). Similarly ψ̃∆ takes 1⊗ 1⊗m
to (∆ ⊗ 1)ψ(m). The cocycle condition forces these to be equal, and so ψ is
coassociative.

We have now constructed a comodule M associated to any quasi-coherent
sheaf M̃ over ( Spec A, Spec Γ). We leave to the reader the straightforward check
that this is functorial.

Our next goal is to construct a functor from (A, Γ)-comodules to quasi-
coherent sheaves over ( Spec A, Spec Γ). Suppose M is a Γ-comodule with struc-
ture map ψ: M → ΓηR ⊗A M. Then, in particular, M is an A-module, so there
is an associated quasi-coherent sheaf M̃ over Spec A, defined by M̃x = Rx ⊗A M,
where x: A → R is a ring homomorphism. Given a point α: Γ → R of Spec Γ
with αηL = x and αηR = y, we have

( dom∗ M̃)x = Rx ⊗A M and ( codom∗ M̃)x = Ry ⊗A M.

We define ψ̃: dom∗ M̃ → codom∗ M̃ by letting ψ̃α be the composite

Rx ⊗A M
1⊗ψ
−−→Rx ⊗A ηLΓηR ⊗A M

1⊗α⊗1
−−−−→Rx ⊗A xRy ⊗A M

µ⊗1
−−→Ry ⊗A M.

We leave to the reader the check that ψ̃ is a map of sheaves.
It remains to show that ψ̃ satisfies the cocycle condition and is an isomor-

phism. We begin with the cocycle condition. Suppose that α,β: Γ→ R are ring
homomorphisms with αηL = x, αηR = βηL = y, and βηR = z. Consider the fol-
lowing commutative diagram, in which all tensor products that occur are taken
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over A, and Γ = ηLΓηR .

Rx ⊗ M
1⊗ψ

−−−−−→ Rx ⊗ Γ ⊗ M
1⊗α⊗1
−−−−−→ Rx ⊗ xRy ⊗ M

µ⊗1
−−−−−→ Ry ⊗ M

1⊗ψ
� 1⊗1⊗ψ

� 1⊗1⊗ψ
� 1⊗1⊗ψ

�
Rx ⊗ Γ ⊗ M

1⊗∆⊗1
−−−−−→ Rx ⊗ Γ ⊗ Γ ⊗ M

1⊗α⊗1⊗1
−−−−−−→ Rx ⊗ xRy ⊗ Γ ⊗ M

µ⊗1⊗1
−−−−−→ Ry ⊗ Γ ⊗ M

1⊗1⊗β⊗1

� 1⊗β⊗1

�
Rx ⊗ xRy ⊗ yRz ⊗ M

µ⊗1⊗1
−−−−−→ Ry ⊗ yRz ⊗ M

1⊗µ⊗1

� µ⊗1

�
Rx ⊗ xRz ⊗ M

µ⊗1
−−−−−→ Rz ⊗ M.

The outer clockwise composite in this diagram is ψ̃β ◦ ψ̃α, and the outer
counterclockwise composite is ψ̃β◦α, using the description of β ◦α given above.
Thus ψ̃ satisfies the cocycle condition.

We must still show that ψ̃α is an isomorphism for all α: Γ → R. Since ψ̃
satisfies the cocycle condition and α is itself an isomorphism, it suffices to show
that ψ̃1x is an isomorphism, where 1x is the identity morphism of x: A→ R. That
is, 1x is the composite

Γ ε→ A x→ R.

But one can check, using the fact that ψ is counital, that ψ̃1x is the identity
of Rx ⊗A M. This completes the proof that M̃ is a quasi-coherent sheaf over
( Spec A, Spec Γ). We leave to the reader the check that it is functorial in M.

We also leave to the reader the check that these constructions define inverse
equivalences of categories.

Maps of Hopf algebroids ( f0, f1): (A, Γ) → (B, Σ) are defined in [Rav86,
Definition A1.1.7]; they are, of course, maps such that Φ = ( Spec f0, Spec f1) is
a map of sheaves of groupoids. According to Theorem 2.2, ( f0, f1) will induce
a map Φ∗ from (A, Γ)-comodules to (B, Σ)-comodules. This map takes the Γ-
comodule M to B ⊗A M. In order to define the structure map of B ⊗A M, recall
from [Rav86, Definition A1.1.7] that the definition of a map of Hopf algebroids
requires

ηLf0 = x = f1ηL and ηRf0 = y = f1ηR.

We then define the structure map of B⊗A M to be the composite

Bf0 ⊗A M
1⊗ψ
−−→ B⊗A ηLΓηR ⊗A M

ηL⊗f1⊗1
−−−−→Σx ⊗A xΣy ⊗A M

µ⊗1
−−→ Σy ⊗A M ∼= ΣηR ⊗B (Bf0 ⊗A M).
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3. Internal equivalences yield equivalences. The object of this section
is to prove Theorem B, showing that if Φ: (X0, X1) → (Y0, Y1) is an internal
equivalence of presheaves of groupoids on AffT , then

Φ∗: ShT
(Y0,Y1) → ShT

(X0,X1)

is an equivalence of categories. This statement essentially says that the category
of sheaves is a homotopy-invariant construction.

We begin by defining an internal equivalence. Internal equivalences are the
weak equivalences in the model structure on sheaves of groupoids considered by
Joyal and Tierney in [JT91].

Definition 3.1. Suppose Φ: (X0, X1) → (Y0, Y1) is a map of presheaves of
groupoids on AffT . The essential image of Φ is the subfunctor of Y0 consisting of
all points (R, y) of Y0 such that there exists a point (R, x) of X0 and a morphism
α ∈ Y1(R) from Φx to y. The sheaf-theoretic essential image of Φ is the subfunctor
of Y0 consisting of all points (R, y) such that there exists a cover {fi: R → Si}
of R in the topology T such that yi = fiy is in the essential image of Φ for all i.
The map Φ is called an internal equivalence if Φ(R) is full and faithful for all R,
and if the sheaf-theoretic essential image of Φ is Y0 itself.

For example, Φ is an internal equivalence in the trivial topology if and only
if Φ(R) is full, faithful, and essentially surjective for all R, so that Φ(R) is an
equivalence of groupoids for all R.

Our goal is then to prove the following theorem, which is Theorem B of the
introduction.

THEOREM 3.2. Suppose Φ: (X0, X1) → (Y0, Y1) is an internal equivalence of
presheaves of groupoids on AffT . Then Φ∗: ShT

(Y0,Y1) → ShT
(X0,X1) is an equivalence

of categories.

As usual, our proof of this theorem will work in the graded case as well.
We point out that there should be a model structure on presheaves of group-

oids extending the Joyal-Tierney model structure. The weak equivalences in this
model structure would be the maps Φ which are sheaf-theoretically fully faithful
and whose sheaf-theoretic essential image is all of Y0. Theorem 3.2 should then
be a special case of the more general theorem that a weak equivalence of pre-
sheaves of groupoids induces an equivalence of their categories of sheaves. We
have not considered this more general case, because Spec A is already a sheaf in
the flat topology, and Spec A is our main object of interest.

We will prove this theorem by showing that Φ∗ is full, faithful, and essentially
surjective. The proof of each such step will be long, but divided into discrete
steps very much like a diagram chase. In general, we are trying in each case to
construct something for every point (R, y) of Y0. So first we do it for points (R, y)
in the essential image of Φ. This generally involves choosing a point (R, x) of X0
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and a morphism α: Φx → y, so we generally have to prove that which choice
one makes is immaterial. Then we show that every property we hope for in the
construction is true on the essential image of Φ. Next we extend the definition
to all points (R, y) in the sheaf-theoretic essential image of Φ by using a cover.
Once again, this depends on the choice of cover, so we have to show the choice
is immaterial. For this, it is enough to show that refining the cover makes no
difference, since any two covers have a common refinement. Finally, we show
that the properties we want are sheaf-theoretic in nature, so that since they hold
already on the essential image of Φ, they also hold on the sheaf-theoretic essential
image of Φ.

PROPOSITION 3.3. Suppose Φ: (X0, X1) → (Y0, Y1) is an map of presheaves of
groupoids on AffT whose sheaf-theoretic essential image is all of Y0. Then

Φ∗: ShT
(Y0,Y1) → ShT

(X0,X1)

is faithful.

Proof. Suppose τ : M → N is a map of sheaves on (Y0, Y1) such that Φ∗τ = 0.
This means that τΦx = 0 for all points (R, x) of X0. We must show that τy = 0 for
all points (R, y) of Y0. We first show that τy = 0 for all y in the essential image
of Φ. Indeed, suppose α is a morphism from Φx to y. Then, since τ commutes
with the structure map ψ, we get the commutative diagram below:

MΦx

ψM
α−−−→ My

τΦx

�
�τy

NΦx −−−→
ψN
α

Ny.

It follows that τy = 0.
Now suppose (R, y) is a general point of Y0. Since y is in the sheaf-theoretic

essential image of Φ, we can choose a covering {fi: R → Si} such that yi =
Y0( fi)(y) is in the essential image of Φ for all i. Thus τyi = 0 for all i. We then
have a commutative diagram:

My −−−→
∏

Myi

τy

�
�∏ τyi

Ny −−−→
∏

Nyi .

The horizontal arrows are monomorphisms, since M and N are sheaves in T , so
τy = 0 as well.
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Note that we have actually shown, more generally, that if τ : M → N is
a morphism of sheaves over (Y0, Y1) such Φ∗τ = 0, then τ restricted to the
sheaf-theoretic essential image of Φ is also 0.

PROPOSITION 3.4. Suppose Φ: (X0, X1) → (Y0, Y1) is an map of presheaves of
groupoids on AffT whose sheaf-theoretic essential image is all of Y0 and such that
Φ(R) is full for all R. Then Φ∗: ShT

(Y0,Y1) → ShT
(X0,X1) is full.

Proof. Suppose we have a map τ : Φ∗M → Φ∗N. This means we have
maps τx: MΦx → NΦx for all points (R, x) of X0. We need to construct maps
σy: My → Ny for all points (R, y) of Y0 such that σΦx = τx. Suppose first that y
is in the essential image of Φ, so that there is a morphism α from Φx to y for
some point (R, x) of X0. If σ were to exist, then we would have the commutative
diagram below,

MΦx

ψM
α−−−→ My

τx

�
�σy

NΦx −−−→
ψN
α

Ny

so we define σy = ψN
ατx(ψM

α )−1.
We claim that this definition of σy is independent of the choice of α. Indeed,

suppose β ∈ Y1(R) is a morphism from Φx′ to y. Then β−1α is a morphism from
Φx to Φx′, and so, since Φ is full, there is a morphism γ ∈ X1(R) from x to x′

such that Φγ = β−1α. Since τ is a map of sheaves, τx′ψ
M
Φγ = ψN

Φγτx. On the other
hand, by the cocycle condition we have ψΦγ = (ψβ)−1ψα. Combining these two
equations gives

ψN
ατx(ψM

α )−1 = ψN
β τx′(ψ

M
β )−1,

so σy is independent of the choice of α. In particular, if y = Φx, we can take α
to be the identity map of Φx. The cocycle condition implies that ψM

α and ψN
α are

identity maps, and so σΦx = τx.
We now show that σ commutes with the structure maps of M and N on the

essential image of Φ. Suppose that f : (R, y) → (S, y′) is a map of points of Y0,
and that y is in the essential image of Φ. Choose a morphism α from Φx to y for
some point (R, x) of X0. Let α′ = Y1( f )(α), so that α′ is a morphism from Φx′

to y′, where x′ = X0( f )(x). Since τ is a map of sheaves, we get the commutative
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square below:

MΦx
τx−−−→ NΦx

θM( f ,Φx)

�
�θN ( f ,Φx)

MΦx′ −−−→
τx′

NΦx′ .

We would like to know that the square below is commutative:

My

σy
−−−→ Ny

θM( f ,y)

�
�θN ( f ,y)

My′ −−−→
σhy

Ny′ .

We claim that there is an isomorphism from the top square to the bottom square,
and so the bottom square must be commutative. Indeed, in the upper left corner
this isomorphism is ψM

α , in the upper right corner it is ψN
α , in the lower left

corner it is ψM
α′ , and in the lower right corner it is ψN

α′ . All the required diagrams
commute to make this a map of squares. This uses the fact that ψM and ψN are
maps of sheaves and the well-definedness of σ.

We now check that σ commutes with ψ, on the essential image of Φ. Suppose
we have a morphism β: y → y′ in (Y0(R), Y1(R)), and that y is in the essential
image of Φ. Let α be a morphism from Φx to y for some point (R, x) of X0.
Consider the following diagram:

MΦx

ψM
α−−−→ My

ψM
β

−−−→ My′

τx

� σy

�
�σy′

NΦx −−−→
ψN
α

Ny −−−→
ψN
β

Ny′ .

By definition of σ, the left-hand square is commutative. The cocycle condition
implies that ψβ ◦ ψα = ψβα, so the definition of σ also implies that the outside
square commutes. Since the horizontal maps are isomorphisms, the right-hand
square must also be commutative.

We now extend the definition of σ to an arbitrary point (R, y) of Y0. The sheaf-
theoretic essential image of Φ is all of Y0, so we can choose a cover {fi: R→ Si}
of R in the topology T such that yi = Y0( fi)(y) is in the essential image of Φ for
all i. Let yjk denote the image of y in Y0(Sj ⊗R Sk). We then have a commutative
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diagram:

My −−−→
∏

Myi −−−→
∏

Myjk

∏
σyi

�
�
∏
σyjk

Ny −−−→
∏

Nyi −−−→
∏

Nyjk ,

where the right-hand horizontal maps are the difference of the two restriction
maps. Thus each row expresses its left-hand entry as a kernel. The diagram
commutes since σ is a map of sheaves on the essential image of Φ. Thus, there
is a unique map σy: My → Ny making the diagram commute.

We now check that σy is independent of the choice of cover. It suffices to
show that σy is unchanged if we replace the cover {R → Si} by a refinement
{R → Tj}, since any two covers have a common refinement. If we denote the
map coming from the refinement by σ′y, then we would have to have σ′yi

= σyi ,
since some of the Tj form a cover of Si and σ is a map of sheaves on the essential
image of Φ. Then the sheaf condition forces σ′y = σy as well. In particular, if y is
already in the essential image of Φ, then we can take the identity cover to find
that the new definition of σ is an extension of our old definition.

We now show that σ is a map of sheaves over Y0. Suppose we have a map
f : (R, y) → (S, y′) of points of Y0. Choose a cover {gi: R → Ti} of R such that
yi = Y0(gi)(y) is in the essential image of Φ for all i. Then there is an induced
cover {hi: S → Ui = S ⊗R Ti} of S. The map f induces corresponding maps
fi: (Ti, yi) → (Ui, y′i), where y′i = Y0(hi)(y′). Since σ is a map of sheaves on the
essential image of Φ, we have the commutative diagram below:

Myi

σyi−−−→ Nyi�
�

My′i
−−−→
σy′

i

Ny′i
.

The sheaf condition and the definition of σ then show that the diagram

My

σy
−−−→ Ny

�
�

My′ −−−→
σy′

Ny′

is commutative, and so σ is a map of sheaves over Y0.
The proof that σ commutes with ψ, and so is a map of sheaves over (Y0, Y1),

is similar.



MORITA THEORY FOR HOPF ALGEBROIDS 1305

Finally, we show that Φ∗ is essentially surjective.

PROPOSITION 3.5. Suppose Φ: (X0, X1) → (Y0, Y1) is an internal equivalence
of presheaves of groupoids on AffT . Then Φ∗: ShT

(Y0,Y1) → ShT
(X0,X1) is essentially

surjective.

Proof. Suppose that N is a sheaf over (X0, X1). We must construct a sheaf
M over (Y0, Y1) and an isomorphism Φ∗M → N of sheaves. We first construct
My for y in the essential image of Φ, and show that it has the desired properties
there. For every point (R, y) in the essential image of Φ, choose a point (R, x(y))
of X0 and a morphism α(y) from x(y) to y. Note that this only requires choosing
over a set, since Aff is a small category. Define My = Nx(y).

We now construct the restriction of the structure map θM to the essential
image of Φ. Suppose that we have a map f : (R, y) → (S, y′) between points of
Y0, where (R, y) is in the essential image of Φ. Let α′ = Y1( f )(α(y)), so that
α′ is a morphism from Φx′ to y′, where x′ = X0( f )(x(y)). Then α(y′)−1α′ is a
morphism from Φx′ to Φx(y′). Since Φ is full and faithful, there is a unique
morphism γ of X1(S) from x′ to x(y′) such that Φγ = α(y′)−1α′. We then define
θM( f , y): My → My′ to be the composite

My = Nx(y)
θN ( f ,x(y))
−−−−→Nx′

ψN
γ

−−→Nx(y′) = My′ .

We must check the functoriality conditions for θM (restricted to the essential
image of Φ). First of all, if f is the identity map, then Φγ will be the identity
morphism of y. Since Φ is faithful, it follows that γ is the identity morphism of
x(y). The cocycle condition forces ψN

γ to be the identity map, and so θM(1, y) is
the identity as required. If g: (S, y′) → (T , y′′) is another map of points of Y0, a
diagram chase involving the cocycle condition for ψN and the fact that ψN is a
map of sheaves shows that θM(gf , y) is the composition θM(g, y′)θM( f , y).

We now show that M is a sheaf on the essential image of Φ. Indeed, suppose
(R, y) is a point in the essential image of Φ, and {R→ Si} is a cover of R in T .
We must check that

My →
∏

Myi ⇒
∏

Myjk

is an equalizer diagram. We have an equalizer diagram

My = Nx(y) →
∏

Nx(y)i ⇒
∏

Nx(y)jk

since N is a sheaf. We construct an isomorphism from the bottom diagram to
the top, from which it follows that the top is also an equalizer diagram. The
morphism α(y): Φx(y) → y induces a morphism α(y)i: Φx(y)i → yi. We also
have the morphism α(yi): Φx(yi)→ yi. The composition (α(yi))−1 ◦α(y)i = Φγ
for a unique γ: x(y)i → x(yi), since Φ is full and faithful. Then ψγ : Nx(y)i →
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Nx(yi) = Myi defines the desired isomorphism
∏

Nx(y)i →
∏

Myi . One constructs
the isomorphism

∏
Nx(y)jk →

∏
Nx(yjk) =

∏
Myjk in the same manner, using the

morphisms α(y)jk: Φx(y)jk → yjk and α(yjk). The proof that the diagram below

Nx(yi) = Myi −−−→ Nx(yij) = Myij�
�

Nx(y)i −−−→ Nx(y)ij

is commutative is a computation using the fact that ψN is a map of sheaves, the
cocycle condition, and the fact that Φ is faithful.

We now construct the restriction of the map ψM to the essential image of Φ.
Suppose β is a morphism from y to y′, where y is in the essential image of Φ. Then
α(y′)−1βα(y) is a morphism from Φx(y) to Φx(y′). Since Φ is full and faithful,
there is a unique morphism γ from x(y) to x(y′) such that Φγ = α(y′)−1βα(y).
Hence we can define ψM

β = ψN
γ . We leave to the reader the diagram chase showing

that ψ is a map of sheaves.
We now construct the desired isomorphism of sheaves τ : Φ∗M → N. (Since

Φ∗M is determined by the restriction of M to the image of Φ, we can do this even
though we have not completed the definition of M.) Suppose (R, x) is a point of
X0. Then α(Φx) is a morphism from Φ(x(Φx)) to Φx. Since Φ is full and faithful,
there is a unique morphism β from x(Φx) to x such that Φβ = α(Φx). We define

τx = ψN
β : MΦx = Nx(Φx) → Nx.

Obviously τx is an isomorphism, but we must check that it is compatible with the
structure maps. We leave these checks to the reader; both are diagram chases.

We have now defined a sheaf M on the essential image of Φ, and to complete
the proof we need only extend it to a sheaf on all of (Y0, Y1). For each point
(R, y) of Y0, choose a cover C(y) = {fi: R→ Si} such that yi = Y0( fi)(y) is in the
essential image of Φ for all i, making sure to choose the identity cover when y
is already in the essential image of Φ. Once again, we can do this since Aff is a
small category. We then define My as we must if we are going to get a sheaf, as
the equalizer of the two maps of R-modules

∏
i

Myi ⇒
∏
jk

Myjk .

This definition of My will of course depend on the choice of cover C(y).
Suppose D = {R → Tm} is some other cover such that ym is in the essential
image of Φ for all m. We claim that there is a canonical equalizer diagram

My →
∏

Mym ⇒
∏

Mynp .
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To see this, let MD
y denote the pullback of the two arrows

∏
m

Mym ⇒
∏
np

Mynp .

We claim that there is a canonical isomorphism MD
y → My. It suffices to check

this when D is a refinement of C(y), since any two covers have a common
refinement. In this case, there is a diagram

My →
∏
m

Mym ⇒
∏
np

Mynp ,

where the first map is induced by first mapping to Myi , and then using the structure
maps of M restricted to the essential image of Φ to map further to Mym . It suffices
to prove that this diagram is an equalizer. It is easy to check that My maps into
the equalizer. If t ∈ My maps to 0 in each Mym , then, using the fact that M
restricted to the essential image of Φ is a sheaf, we find that t maps to 0 in each
Myi . By definition of My, then, t = 0. Similarly, suppose (tm) ∈ ∏

Mym is in the
equalizer. Again using the fact that M restricted to the essential image of Φ is
a sheaf, we construct an element (ti) ∈

∏
Myi . The images of ti and tj in Myij

coincide, since they coincide after restriction to the induced cover. Thus we get
an element t ∈ My restricting to the ti. It follows that t restricts to the tm as well,
and so My is the desired equalizer.

Now we can construct the structure maps of M. Suppose (R, y) → (S, z)
is a map of points of Y0. The cover C(y) = {R → Si} of R induces a cover
D = {S→ S⊗R Si} of S, and the restriction zi of z is in the essential image of Φ
for all i, since yi is so. Thus we get a map from

∏
Myi ⇒

∏
Myjk

to
∏

Mzi ⇒
∏

Mzjk ,

and so an induced map My → MD
z on the equalizers. After composing this with the

canonical isomorphism MD
z → Mz, we get the desired structure map θ: My → Mz.

Since we chose the identity cover when y was already in the essential image of
Φ, this extends the definition we have already given in that case. We leave it to
the reader to check the functoriality of θ.

We now show that M is a sheaf. Suppose (R, y) is a point of Y0 and {(R, y)→
(Tm, ym)} is a cover of R. Let C(y) = {(R, y) → (Si, yi)} be the given cover of
R, so that each yi is in the essential image of Φ. Then {Si → Tm ⊗R Si} is a
cover of Si, and each ymi is the essential image of Φ since each yi is. Similarly,
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{Tm → Tm⊗R Si} is a cover of Tm. Thus we get the commutative diagram below:

My −−−→ ∏
m Mym −−−→ ∏

np Mynp�
�

�
∏

i Myi −−−→
∏

mi Mymi −−−→
∏

npi Mynpi�
�

�
∏

jk Myjk −−−→
∏

mjk Mymjk −−−→
∏

npjk Mynpjk .

The subscripts m, n, and p all refer to the Tm, and the subscripts i, j and k all
refer to the Si. So, for example, ynpi is the image of y in Y0(Tn ⊗R Tp ⊗R Si).
The right-hand horizontal arrows are all the differences of the two restriction
maps. This means that the second and third rows express their left-hand entries
as kernels, since M restricted to the essential image of Φ is a sheaf. Similarly, the
bottom vertical arrows are also differences of the two restriction maps. It follows
that each column expresses its top entry as a kernel, since the definition of M
does not depend on which cover we choose, up to isomorphism. A diagram chase
then shows that the top row expresses My as a kernel, which means that M is a
sheaf.

We now construct the isomorphism ψ: dom∗ M → codom∗ M. Suppose
α: y → z is a morphism in Y1(R). Let {R → Si} be the given cover of (R, y),
so that each yi is in the essential image of Φ. It follows that zi is also in the
essential image of Φ for all i. Let αi: yi → zi denote the image of α in Y1(Si),
and similarly let αjk denote the image of α in Y1(Sj ⊗R Sk). Then we have a
commutative diagram

My −−−→
∏

Myi −−−→
∏

Myjk

∏
ψαi

�
�
∏
ψαjk

Mz −−−→
∏

Mzi −−−→
∏

Mzjk .

Here the right-hand horizontal arrows are differences of restriction maps, as usual.
The top row is an equalizer by definition, and we have proved that the bottom
row is also an equalizer diagram. Hence there is a unique map ψα: My → Mz,
necessarily an isomorphism, making the diagram commute. The facts that ψ
satisfies the cocycle condition and is a map of sheaves are the usual sheaf-
theoretic diagram chases, and we leave them to the reader.

4. Quasi-coherent sheaves. The object of this section is to prove Theo-
rem C, showing that if Φ: (X0, X1) → (Y0, Y1) is an internal equivalence of
presheaves of groupoids in the flat topology, then Φ∗: Shqc

(Y0,Y1) → Shqc
(X0,X1) is
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an equivalence of categories of quasi-coherent sheaves. This theorem can be
viewed as a manifestation of faithfully flat descent; we have seen already that
Φ∗: ShT

(Y0,Y1) → ShT
(X0,X1) is an equivalence of categories, and we use faithfully

flat descent to conclude that quasi-coherent sheaves are a full subcategory of
sheaves in the flat topology.

Recall that a cover of R in the flat, or fpqc, topology is a finite collection of
maps {R→ Si} such that each Si is flat over R, and the product

∏
Si is faithfully

flat over R. This also defines the flat topology on Aff∗.
We use faithfully flat descent in the form of the following well-known lemma:

LEMMA 4.1. Suppose {R→ Si} is a cover of R in the flat topology on Aff, and
M is an R-module. Then the diagram

M →
∏

i

Si ⊗R M ⇒
∏
jk

Sj ⊗R Sk ⊗R M

is an equalizer in the category of R-modules.

Of course, the two maps in the equalizer take s⊗m ∈ Si⊗M to (1⊗si⊗m) ∈∏
ji Sj ⊗R Si ⊗R M and to si ⊗ 1⊗ m ∈ ∏

ik Si ⊗R Sk ⊗R M.
As usual, this lemma also works in the graded case, with the same proof.

Proof. Let S =
∏

i Si. Since the product is finite, it suffices to show that

M → S⊗R M ⇒ S⊗R S⊗R M

is an equalizer for all R-modules M. Since S is faithfully flat, it suffices to show
that

S⊗R M → S⊗R S⊗R M ⇒ S⊗R S⊗R S⊗R M

is an equalizer for all M. But, before tensoring with M, this sequence is just the
beginning of the bar resolution of S as an R-algebra; since the bar resolution is
contractible, this diagram remains an equalizer after tensoring with M.

Lemma 4.1 leads immediately to the following proposition, which is also true
in the graded case.

PROPOSITION 4.2. Suppose M is a quasi-coherent sheaf over a presheaf of
groupoids (X0, X1) on Aff. Then M is a sheaf in the flat topology.

Proof. Suppose (R, y) is a point of X0, and {(R, y) → (Si, yi)} is a cover in
the flat topology. We must show that the diagram

Ey =
(

My →
∏

Myi ⇒
∏

Myjk

)
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is an equalizer diagram. But, since M is quasi-coherent, Ey is isomorphic to the
diagram

My →
∏

Si ⊗R My ⇒
∏

Sj ⊗R Sk ⊗R My,

which is an equalizer diagram by Lemma 4.1.

We will also need a lemma about purity of equalizer diagrams.

Definition 4.3. Suppose E is an equalizer diagram of the form

A→ B ⇒ C

in the category of R-modules for some commutative ring R. We say that E is
pure if S⊗R E is still an equalizer diagram for all commutative R-algebras S.

One can also define purity using arbitrary R-modules S. We prefer this defi-
nition because it is the concept we need, but in fact the two definitions are equiv-
alent. Either definition also works in the graded case with the obvious changes.

LEMMA 4.4. Suppose E is an equalizer diagram of R-modules for some com-
mutative ring R. Suppose {Si} is a set of flat commutative R-algebras such that
Si ⊗R E is pure for all i and S =

⊕
i Si is faithfully flat over R. Then E is pure.

Proof. Suppose T is an arbitrary R-algebra. Then (T ⊗R Si) ⊗Si (Si ⊗R E) is
an equalizer diagram since Si ⊗R E is pure, but

(T ⊗R Si)⊗Si (Si ⊗R E) ∼= (T ⊗R Si)⊗T (T ⊗R E).

Thus (T ⊗R S) ⊗T (T ⊗R E) is also an equalizer diagram, being a direct sum of
equalizer diagrams. Since T ⊗R S is faithfully flat over T , it follows that T ⊗R E
is an equalizer diagram.

We can now prove that quasi-coherent sheaves are homotopy invariant in the
flat topology. The following theorem is Theorem C of the introduction.

THEOREM 4.5. Suppose Φ: (X0, X1) → (Y0, Y1) is an internal equivalence of
presheaves of groupoids on AffT , whereT is the flat topology. Then Φ∗: Shqc

(Y0,Y1) →
Shqc

(X0,X1) is an equivalence of categories.

This theorem is also true in the graded case, with the same proof.

Proof. Since Φ∗: ShT
(Y0,Y1) → ShT

(X0,X1) is an equivalence of categories, and
quasi-coherent sheaves are a full subcategory of sheaves in the flat topology by
Proposition 4.2, we find immediately that Φ∗: Shqc

(Y0,Y1) → Shqc
(X0,X1) is full and

faithful. It remains to show that it is essentially surjective.



MORITA THEORY FOR HOPF ALGEBROIDS 1311

Suppose N is a quasi-coherent sheaf over (X0, X1). Because Φ∗: ShT
Y0,Y1

→
ShT

(X0,X1) is an equivalence of categories, there is a sheaf M in the flat topology,
over (Y0, Y1), such that Φ∗M ∼= N. We will show that M is in fact quasi-coherent,
so that Φ∗ is essentially surjective on quasi-coherent sheaves. To do so, we
must show that, if f : (R, y) → (S, y′) is a map of points of Y0, then the adjoint
ρM( f ): S⊗R My → My′ of the structure map of M is an isomorphism.

First suppose that y is in the essential image of Φ. Then there is an x ∈ X0(R)
and a map α: Φx→ y. Let x′ = f (x) ∈ X0(S), so that f (α) = X1( f )(α): Φx′ → z.
Then we have the commutative diagram below:

S⊗R Nx
ρN ( f )
−−−→ Nx′

∼=
�

�∼=

S⊗R MΦx
ρM( f )
−−−→ MΦx′

1⊗ψα
�

�ψfα

S⊗R My −−−→
ρM( f )

My′ .

The top square of this diagram commutes because Φ∗M ∼= N as sheaves, and
the bottom square commutes because ψ is a map of sheaves. The vertical maps
are isomorphisms, and the top horizontal map is an isomorphism since N is
quasi-coherent. Hence the bottom horizontal map is an isomorphism as well.

In fact, if y is in the essential image of Φ and {R → Si} is a cover of R in
the flat topology, we claim that the equalizer diagram

E = Ey =
(

My →
∏

Myi ⇒
∏

Myjk

)
(4.6)

is pure. Indeed, suppose S is an R-algebra, so we have f : (R, y) → (S, y′). Then
{S→ S⊗R Si} is a cover of S in the flat topology. It follows from what we have
just done (and the fact that covers in the flat topology are finite), that the diagram
S⊗R Ey is isomorphic to Ey′ , and so is still an equalizer diagram.

Now suppose y is an arbitrary point of Y0. Since the sheaf-theoretic essential
image of Φ is all of Y0, we can choose a cover {R → Si} such that each yi is
in the essential image of Φ. There is an induced cover {S→ S⊗R Si} of S, and
maps fi: (Si, yi) → (S ⊗R Si, y′i), so each y′i is also in the essential image of Φ.
We then get the commutative diagram below, which is a map from the diagram
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S⊗R Ey to Ez:

S⊗R My −−−→
∏

S⊗R Myi

1⊗d
−−−→ ∏

S⊗R Myjk

ρf

� ∏
ρ( fi)

�
�∏ ρ( fjk)

Mz −−−→ ∏
Mzi −−−→

d

∏
Mzjk .

Here the map d is the difference between the two restriction maps, so the bottom
row expresses Mz as a kernel. We have already seen that the maps ρ( fi) and
ρ( fjk) are isomorphisms, so if we knew that S⊗R Ey were an equalizer diagram,
we would be able to conclude that ρ( f ) is an isomorphism, and therefore that M
is quasi-coherent.

In particular, if S is flat over R, we conclude that the diagram S ⊗R Ey is
isomorphic to the equalizer diagram Ey′ . In case y′ is in the essential image of Φ,
we have proved that Ey′ is pure. In particular, Si⊗R E is a pure equalizer diagram
for all i. Since

∏
Si is faithfully flat over R, it follows from Lemma 4.4 that the

equalizer diagram E is pure. Thus, for any S, S⊗R E is an equalizer diagram, and
so M is quasi-coherent.

5. Hopf algebroids. In this section, we prove Theorem D of the introduc-
tion, characterizing those maps of Hopf algebroids which induce internal equiv-
alences in the flat topology of the corresponding presheaves of groupoids.

Suppose f = ( f0, f1): (A, Γ)→ (B, Σ) is a map of Hopf algebroids. See [Rav86,
Definition A1.1.7] for an explicit definition of this, though of course f is equiv-
alent to a map Φ = f ∗: ( Spec B, Spec Σ) → ( Spec A, Spec Γ) of sheaves of
groupoids on Aff. A map of Hopf algebroids induces a map

B⊗A Γ⊗A B
ηL⊗f1⊗ηR−−−−−→ΣηLf0 ⊗A f1ηLΣf1ηR ⊗A ηRf0Σ µ→ Σ,

where µ denotes multiplication. Note that µ makes sense since f1ηL = ηLf0 and
f1ηR = ηRf0. By abuse of notation, we denote this map simply by ηL ⊗ f1 ⊗ ηR.

Our goal is to characterize those f for which f ∗ is a weak equivalence. We
begin by determining when f ∗ is faithful.

PROPOSITION 5.1. Suppose f = ( f0, f1): (A, Γ) → (B, Σ) is a map of Hopf al-
gebroids. Then f ∗: ( Spec B, Spec Σ) → ( Spec A, Spec Γ) is faithful if and only if
ηL ⊗ f1 ⊗ ηR: B⊗A Γ⊗A B→ Σ is an epimorphism in Rings.

Recall that an epimorphism in Rings need not be surjective; the map from
the integers to the rational numbers is a ring epimorphism. Also note that the
obvious generalization of this proposition holds for graded Hopf algebroids.
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Proof. Given α,β: Σ→ R,

α ◦ (ηL ⊗ f1 ⊗ ηR) = β ◦ (ηL ⊗ f1 ⊗ ηR)

if and only if α and β have the same domain and codomain when thought of as
morphisms of ( Spec B, Spec Σ)(R) and f ∗α = f ∗β. The proposition follows.

We now determine when f ∗ is full.

PROPOSITION 5.2. Suppose f = ( f0, f1): (A, Γ) → (B, Σ) is a map of Hopf
algebroids. Then f ∗: ( Spec B, Spec Σ) → ( Spec A, Spec Γ) is full if and only if
ηL ⊗ f1 ⊗ ηR: B⊗A Γ⊗A B→ Σ is a split monomorphism of rings.

Once again, the obvious generalization of this proposition is true in the graded
case.

Proof. The map f ∗ is full if and only if every morphism

β: f ∗x→ f ∗y ∈ ( Spec A, Spec Γ)(R)

is equal to f ∗α for some morphism α: x→ y of ( Spec B, Spec Σ)(R). Said another
way, f ∗ is full if and only if every ring homomorphism

x⊗ β ⊗ y: B⊗A Γ⊗A B→ R

can be extended through ηL ⊗ f1 ⊗ ηR to a ring homomorphism Σ → R. This is
equivalent to ηL ⊗ f1 ⊗ ηR being a split monomorphism.

COROLLARY 5.3. Suppose f = ( f0, f1): (A, Γ) → (B, Σ) is a map of Hopf alge-
broids. Then f ∗: ( Spec B, Spec Σ) → ( Spec A, Spec Γ) is fully faithful if and only
if ηL ⊗ f1 ⊗ ηR: B⊗A Γ⊗A B→ Σ is an isomorphism.

Proof. Any map g: R → S of rings that is both a split monomorphism
and a ring epimorphism is an isomorphism. Indeed, Rings(g, T): Rings(S, T)→
Rings(R, T) is monic since g is a ring epimorphism and epic since g is a split
monomorphism, so is an isomorphism for all T .

Finally, we need to determine when the sheaf-theoretic essential image of f ∗

is all of Spec A. For this we need the map f0 ⊗ ηR: A → B ⊗A Γ defined as the
composite

A ∼= A⊗A A
f0⊗ηR−−−→B⊗A Γ.

PROPOSITION 5.4. Suppose f = ( f0, f1): (A, Γ)→ (B, Σ) is a map of Hopf alge-
broids. Then the sheaf-theoretic essential image of

f ∗: ( Spec B, Spec Σ)→ ( Spec A, Spec Γ)
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is all of Spec A if and only if there is a ring map g: B⊗A Γ→ C such that g( f0⊗ηR)
exhibits C as a faithfully flat extension of A.

This proposition is also true in the graded case, with the same proof.

Proof. We first determine when y: A→ R is in the essential image of f ∗. For
this to happen we need an object x: B→ R and a morphism α: Γ→ R from f ∗x
to y. A morphism α from f ∗x to anywhere is equivalent to the composite

B⊗A Γ
x⊗α
−−→Rxf0 ⊗A αηLR

µ→ R,

which we also denote, by abuse of notation, by x⊗α. The codomain of α is the
composite (x⊗ α)( f0 ⊗ ηR): A→ R. Altogether then, y is in the essential image
of f ∗ if and only if there is a map h: B⊗A Γ such that h( f0 ⊗ ηR) = y.

Now, suppose the sheaf-theoretic essential image of f ∗ is all of Spec A. Then
there must be a cover {hi: A→ Si} such that the image of the identity map of A,
namely hi, is in the essential image of f ∗ for all i. By the preceding paragraph, this
is true if and only if there exist maps gi: B⊗A Γ→ Si such that gi( f0⊗ ηR) = hi.
Let C be the product of the Si and let g: B⊗A Γ → C be the product of the gi.
Then g( f0 ⊗ ηR) is the product of the hi, which displays C as a faithfully flat
extension of A since {hi: A→ Si} is a cover of A.

Conversely, suppose there is a ring map g: B ⊗A Γ → C such that h =
g( f0⊗ ηR) exhibits C as a faithfully flat extension of A. Suppose y: A→ R is an
arbitrary point of ( Spec A, Spec Γ)(R). Then

R ∼= A⊗A R
h⊗1
−−→C ⊗A R

is a cover of R. One can easily check that the image of y in ( Spec A, Spec Γ)(C⊗A

R) is the composite

A h→ C ∼= C ⊗A A
1⊗y
−−→C ⊗A R.

Since h = g( f0 ⊗ ηR), the image of y is in the essential image of f ∗, and so y is
in the sheaf-theoretic essential image of f ∗.

Note that the proof of Proposition 5.4 can be easily modified to prove the
known result that f ∗ is essentially surjective if and only if f0 ⊗ ηR: A→ B⊗A Γ
is a split monomorphism.

Altogether then, we have the following theorem, which is Theorem D of the
introduction.

THEOREM 5.5. Suppose f = ( f0, f1): (A, Γ) → (B, Σ) is a map of Hopf alge-
broids. Then f ∗: ( Spec B, Spec Σ) → ( Spec A, Spec Γ) is an internal equivalence
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in the flat topology if and only if

ηL ⊗ f1 ⊗ ηR: B⊗A Γ⊗A B→ Σ

is an isomorphism and there is a ring map g: B ⊗A Γ → C such that g( f0 ⊗ ηR)
exhibits C as a faithfully flat extension of A.

This characterization of internal equivalences shows in particular that Σ is
determined by (A, Γ) and f0. In fact, if (A, Γ) is any Hopf algebroid, and f : A→ B
is a ring homomorphism, there is a unique (up to isomorphism) Hopf algebroid
(B, Γf ) and map of Hopf algebroids ( f , f1) such that the map ηL ⊗ f1 ⊗ ηR is
an isomorphism. To show existence, we take Γf = B ⊗A Γ ⊗A B and define the
structure maps as follows:

ηL : B ∼= B⊗A A⊗A A
1⊗ηL⊗f
−−−−→B⊗A Γ⊗A B;

ηR : B ∼= A⊗A A⊗A B
f⊗ηR⊗1
−−−−→B⊗A Γ⊗A B;

ε : B⊗A Γ⊗A B
1⊗ε⊗1
−−−→B⊗A A⊗A B ∼= B⊗A B

µ→ B;

c : B⊗A Γ⊗A B
1⊗c⊗1
−−−→B⊗A ηRΓηL ⊗A B τ→ B⊗A ηLΓηR ⊗A B;

∆ : B⊗A Γ⊗A B
1⊗∆⊗1
−−−→B⊗A Γ⊗A Γ⊗A B ∼= B⊗A Γ⊗A A⊗A Γ⊗A B

1⊗1⊗f⊗1⊗1
−−−−−−→B⊗A Γ⊗A B⊗A Γ⊗A B ∼= (B⊗A Γ⊗A B)⊗B (B⊗A Γ⊗A B).

We leave it to the reader to check that this does define a Hopf algebroid. We
define f1: Γ→ Γf to be the composite

Γ ∼= A⊗A Γ⊗A A
f⊗1⊗f
−−−→B⊗A Γ⊗A B.

We leave it to the reader to check that this defines a map of Hopf algebroids, and
also to check our uniqueness claims.

We therefore have the following corollary.

COROLLARY 5.6. Suppose f = ( f0, f1): (A, Γ) → (B, Σ) is a map of Hopf alge-
broids. Then f ∗: ( Spec B, Spec Σ) → ( Spec A, Spec Γ) is an internal equivalence
in the flat topology if and only if (B, Σ) is isomorphic over (A, Γ) to (B, Γf0 ) and
there is a ring map g: B⊗A Γ→ C such that g( f0 ⊗ ηR) exhibits C as a faithfully
flat extension of A.

The conditions in Corollary 5.6 have appeared before, in [HS99, Theorem 3.3]
and in [Hop95]. Of course, in the situation of Corollary 5.6, Theorem 4.5 gives
us an equivalence of categories between (A, Γ)-comodules and (B, Γf )-comodules.
This equivalence of categories takes an (A, Γ)-comodule M to B⊗A M.
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6. Formal groups. In this section, we apply Corollary 5.6 and the theory
of formal group laws to prove Theorem E. We also recover the change of rings
theorems of Miller-Ravenel [MR77] and Hovey-Sadofsky [HS99].

This section requires familiarity with formal group laws and how they are
used in algebraic topology. A good source for this material is [Rav86], espe-
cially Appendix 2 for formal group laws and Chapter 4 for their use in algebraic
topology.

Fix a prime p for use throughout this section. Recall that (BP∗, BP∗BP)
is the universal Hopf algebroid for p-typical formal group laws. Here BP∗ =
Z(p)[v1, v2, . . .], and BP∗BP = BP∗[t1, t2, . . .]; see [Rav86, Section 4.1]. The fact
that (BP∗, BP∗BP) is universal means that a p-typical formal group law over a
ring R is equivalent to a ring homomorphism BP∗ → R, and a strict isomorphism
of p-typical formal group laws over R is equivalent to a ring homomorphism
BP∗BP→ R. In case R is graded, let us call a p-typical formal group law over R
homogeneous if its classifying map BP∗ → R preserves the grading. (An example
of a nonhomogeneous formal group law is the formal group law over Fp whose
classifying map takes vi to 0 for i �= n and vn to 1).

Recall also the invariant ideal In = (p, v1, . . . , vn−1). The element vn is a
primitive modulo In. This means that there is a Hopf algebroid

(A, Γ) = (v−1
n BP∗/In, v−1

n BP∗BP/In).

Definition 6.1. A p-typical formal group law over a ring R is said to have strict
height n if its classifying map factors through v−1

n BP∗/In.

Our application of Theorem 4.5 is then the following theorem, which is
Theorem E of the introduction.

THEOREM 6.2. Fix a prime p and an integer n > 0. Let (A, Γ) denote the Hopf
algebroid (v−1

n BP∗/In, v−1
n BP∗BP/In). Suppose B is a graded ring equipped with a

homogeneous p-typical formal group law of strict height n, classified by f : A→ B.
Then the functor that takes an (A, Γ)-comodule M to B⊗A M defines an equivalence
of categories from graded (A, Γ)-comodules to graded (B, Γf )-comodules.

Proof. Let D = A⊗
Fp[vn,v−1

n ] B. Let x: A→ D denote the ring homomorphism
defined by x(a) = a ⊗ 1, and let y: B → D denote the ring homomorphism
defined by y(b) = 1 ⊗ b. Then x and the composite yf induce two formal group
laws F and G over D, both p-typical and of strict height n. Furthermore, x(vn) =
yf (vn). A result of Lazard, as modified by Strickland [HS99, Theorem 3.4], then
implies that there is a faithfully flat graded ring extension h: D → C and a
strict isomorphism from h∗G to h∗F. This strict isomorphism is represented by
a graded ring homomorphism α: Γ → C. Let g: B → C be the composite hy.
Since the domain of α is h∗G, αηL = gf : A→ C. This means that there is a well-
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defined map

g⊗ α: B⊗A Γ
g⊗α
−−→Cgf ⊗A αηLC

µ→ C.

Furthermore, (g⊗α)◦ ( f ⊗ηR) represents the codomain of α, so is hx. We know
already that h is a faithfully flat ring extension, and we claim that x is also a
faithfully flat ring extension. Indeed, since Fp[vn, v−1

n ] is a graded field, B is a
free Fp[vn, v−1

n ]-module, and so x makes D into a free A-module. Corollary 5.6
and Theorem 4.5 complete the proof.

In particular, we can take B = E(m)∗/In, where m ≥ n and E(m) is the
Landweber exact Johnson-Wilson homology theory introduced in [JW75]. This
leads to the following corollary.

COROLLARY 6.3. Let p be a prime and m ≥ n > 0 be integers. Then the functor
that takes M to E(m)∗ ⊗BP∗ M defines an equivalence of categories

(v−1
n BP∗/In, v−1

n BP∗BP/In)-comodules

→ (v−1
n E(m)∗/In, v−1

n E(m)∗E(m)/In)-comodules.

Using the method of [MR77], we then get the following change of rings
theorem, which is Theorem F of the introduction.

The Ext groups that appear in this theorem are relative Ext groups.

THEOREM 6.4. Let p be a prime and m ≥ n > 0 be integers. Suppose M and N
are BP∗BP-comodules such that vn acts isomorphically on N. If either M is finitely
presented, or if N = v−1

n N′ where N′ is finitely presented and In-nilpotent, then

Ext∗∗BP∗BP(M, N) ∼= Ext∗∗E(m)∗E(m)(E(m)∗ ⊗BP∗ M, E(m)∗ ⊗BP∗ N).

Note that, when M = BP∗, this is the Hovey-Sadofsky change of rings theo-
rem [HS99, Theorem 3.1]. When m = n and M = BP∗, we get the Miller-Ravenel
change of rings theorem [MR77, Theorem 3.10].

Proof. By Lemma 3.11 of [MR77], N is the direct limit of comodules v−1
n N′,

where N′ is finitely presented and In-nilpotent. Since we are assuming either that
M is finitely presented or that N = v−1

n N′, in either case we may as well take N =
v−1

n N′. Then Lemma 3.12 of [MR77] reduces us to the case N = v−1
n BP∗/In. In

this case, one can check using the cobar resolution (as in [MR77, Proposition 1.3])
that we have canonical isomorphisms

Ext∗∗BP∗BP(M, N) ∼= Ext∗∗
v−1

n BP∗BP/In
(v−1

n M/In, N)
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and

Ext∗∗E(m)∗E(m)(E(m)∗ ⊗BP∗ M, E(m)∗ ⊗BP∗ N)

∼= Ext∗∗
v−1

n E(m)∗E(m)/In
(E(m)∗ ⊗BP∗ v−1

n M/In, E(m)∗ ⊗BP∗ N).

Now Corollary 6.3 implies that

Ext∗∗
v−1

n BP∗BP/In
(v−1

n M/In, N)

∼= Ext∗∗
v−1

n E(m)∗E(m)/In
(E(m)∗ ⊗BP∗ v−1

n M/In, E(m)∗ ⊗BP∗ N).

This completes the proof.
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