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HOMOTOPY THEORY OF COMODULES OVER A HOPF

ALGEBROID

MARK HOVEY

Abstract. Given a good homology theory E and a topological space X,
E∗X is not just an E∗-module but also a comodule over the Hopf algebroid
(E∗, E∗E). We establish a framework for studying the homological algebra
of comodules over a well-behaved Hopf algebroid (A,Γ). That is, we con-
struct the derived category Stable(Γ) of (A,Γ) as the homotopy category of
a Quillen model structure on Ch(Γ), the category of unbounded chain com-
plexes of Γ-comodules. This derived category is obtained by inverting the
homotopy isomorphisms, NOT the homology isomorphisms. We establish the
basic properties of Stable(Γ), showing that it is a compactly generated tensor
triangulated category.

Introduction

Given a commutative ring k, a Hopf algebroid over k is a cogroupoid object
in the category of commutative k-algebras. That is, a Hopf algebroid is a pair
(A,Γ) of commutative k-algebras, so that, given a commutative k-algebra R, the
set k-alg(A,R) is naturally the objects of a groupoid with morphisms k-alg(Γ, R).
This gives several structure maps of which we remined the reader below. The reason
for our interest in Hopf algebroids is that, if E∗(−) is a well-behaved homology
theory on topological spaces, then E∗X is naturally a comodule over the Hopf
algebroid (E∗, E∗E), though Hopf algebroids have also arisen in algebraic geometry
in connection with stacks [FC90]. In particular, the study of comodules over the
Hopf algebroid BP∗BP led to the Landweber exact functor theorem [Lan76], a
result of fundamental importance in algebraic topology. When (E∗, E∗E) is a Hopf
algebroid, the E2-term of the Adams spectral sequence based on E is the bigraded
Ext in the category of E∗E-comodules.

Thus we would like to understand the homological algebra of comodules over
a Hopf algebroid. The simplest kind of Hopf algebroid is a discrete Hopf alge-
broid (A,A). The associated groupoid has no non-identity maps, and a comodule
over (A,A) is the same thing as an A-module. One of the most useful tools in
studying the homological algebra of A-modules is the unbounded derived category
D(A), obtained by inverting the homology isomorphisms in the category Ch(A) of
unbounded chain complexes of A-modules. The goal of this paper is to construct
D(A,Γ), the derived category of a Hopf algebroid (A,Γ). We stress that homology
isomorphisms are NOT the right thing to invert to form D(A,Γ). This is already
clear in case (A,Γ) is a Hopf algebra over a field k, such as the Steenrod alge-
bra. In this case, D(A,Γ) was constructed by the author in [Hov99, Section 2.5]
and studied by Palmieri [Pal01]. The idea is that chain complexes of comodules
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2 MARK HOVEY

are like topological spaces; they have homotopy as well as homology, and it is the
homotopy isomorphisms we should invert, not the homology isomorphisms. For a
discrete Hopf algebroid (A,A), homotopy and homology coincide, but not in gen-
eral. To avoid confusion, we refer to D(A,Γ) as the stable homotopy category of

Γ-comodules, and denote it by Stable(Γ).
We want Stable(Γ) to have all the usual properties of D(A) or the stable ho-

motopy category; it should be a triangulated category with a compatible closed
symmetric monoidal structure, and there should be a good set of generators. In
fact, we want Stable(Γ) to be a stable homotopy category in the sense of [HPS97].
We also want

Stable(Γ)(S0A,S0M)∗ ∼= Ext∗Γ(A,M)

for a comoduleM , where S0N denotes the complex consisting of N in degree 0 and
0 everywhere else. This will guarantee that we recover the E2-term of the Adams
spectral sequence based on E.

The axioms for a stable homotopy category, or, indeed, even for a triangulated
category, are so painful to check that the best way to construct such a category is as
the homotopy category of a Quillen model structure [Qui67]. One of the main goals
of [Hov99] was to enumerate the conditions we need on a model structure so that its
homotopy category is a stable homotopy category. We also point out that there are
many advantages of a model structure over its associated homotopy category; the
model structure allows one to perform constructions, such as homotopy limits and
colimits, that are inaccessible in the homotopy category, and allows one to make
comparisons with other model categories.

Thus, the bulk of this paper is devoted to constructing a model structure on
Ch(Γ) in which the weak equivalences are the homotopy isomorphisms. We ex-
pect that the associated stable homotopy category Stable(Γ) will have many good
properties and will provide insight into homotopy theory, as Palmieri’s work [Pal01,
Pal99] on the Steenrod algebra has done. We have in fact shown that Stable(E∗E)
is a Bousfield localization of Stable(BP∗BP ) for any Landweber exact commuta-
tive ring spectrum E in [Hov02a]; this then gives rise to a general change of rings
theorem containing the change of rings theorem of Miller-Ravenel [MR77] and the
author and Sadofsky [HS99a]. The construction of the model structure is compli-
cated enough that we do not discuss such applications in this foundational paper.
We do establish some beginning properties of Stable(Γ) in Section 6. In particular,
we show that Stable(Γ) is monogenic when Γ = BP∗BP or Γ = E∗E for E any
Landweber exact homology theory over BP .

In order to establish our model structure, we need to first study the structure
of the abelian category Γ-comod of Γ-comodules, which we do in Section 1. Most
of the results in this section seem to be new, at least in the generality in which we
give them, and of independent interest. For example, we study duality in Γ-comod,
showing that a comodule is dualizable if and only if it is finitely generated and
projective as an A-module.

We follow the usual plan to construct our model structure. That is, we start
by building an auxiliary model structure in Section 2 called the projective model
structure. This model structure is easy to construct, but has too few weak equiva-
lences (unless the Hopf algebroid is discrete). So we must localize it by making the
homotopy isomorphisms weak equivalences. This first necessitates a study of the
homotopy isomorphisms in Section 3 and a reminder, with a few new results, about
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localization of model categories in 4. We finally construct the desired model struc-
ture in 5, and study some of the basic properties of Stable(Γ) in the aforementioned
Section 6.

We should note that our results do not apply to an arbitrary Hopf algebroid. We
need our Hopf algebroid to be amenable, defined precisely in Definition 2.3.2. All of
the amenable Hopf algebroids we know are in fact Adams Hopf algebroids, defined
in [GH00] but implicit in Adams’ blue book [Ada74, Section III.13]. If E is a ring
spectrum that satisfies Adams’ condition, which we call topologically flat, that E
be a minimal weak colimit of finite spectra Xα such that E∗Xα is finitely generated
and projective over E∗, then (E∗, E∗E) is an Adams Hopf algebroid (Section 1.4).
To make sure our results apply in cases of interest, we must check that interesting
ring spectra E are topologically flat. We prove in Theorem 1.4.9 that if R is
topologically flat and E is Landweber exact over R, then E is topologically flat.

The author has been trying to prove the results in this paper since 1997, when
Doug Ravenel strongly encouraged him to build a stable homotopy category of
BP∗BP -comodules. It is a pleasure to acknowledge the author’s debt to Neil Strick-
land, who constructed Stable(BP∗BP ) in a fairly ad hoc way, without a model
structure, about 1997. The crucial input that finally enabled the author to build
the model structure came from the paper of Paul Goerss and Mike Hopkins [GH00].

1. The abelian category of comodules

We begin with a fairly comprehensive study of the category Γ-comod of comod-
ules over a Hopf algebroid (A,Γ). Some of these results are well-known, but others
are apparently new.

Before we begin, we establish notation and remind the reader of some of the
basic structure maps of Hopf algebroids. The symbol (A,Γ) will always denote a
Hopf algebroid [Rav86, Appendix 1], and the symbol ⊗ always denotes ⊗A, the

tensor product of A-bimodules. Given an A-bimodule M , M̃ denotes M with the
A-actions reversed.

With these conventions, the structure maps of (A,Γ) include maps of commuta-
tive k-algebras ηL : A −→ Γ corepresenting the source of a morphism, ηR : A −→ Γ
corepresenting the target of a morphism, and ε : Γ −→ A corepresenting the identity
maps of the groupoid. This makes Γ into an A-bimodule, with ηL giving the
left A-action and ηR giving the right A-action. There are then additional struc-

ture maps of k-algebras χ : Γ −→ Γ̃ corepresenting the inverse of a morphism, and
∆: Γ −→ Γ⊗ Γ corepresenting the composition of a pair of morphisms. Of course,
these maps must satisfy some relations assuring that we get a groupoid. For exam-
ple, εηR = εηL = 1A, since the source and target of the identity map at x are both
x. The remaining relations can be found in [Rav86, Appendix 1].

1.1. Basic structure. Recall that a left Γ-comodule is a left A-moduleM equipped
with a map ψ : M −→ Γ⊗M satisfying a coassociativity and counit condition. There
is an obvious notion of a map of comodules.

Lemma 1.1.1. Suppose Γ is flat as a right A-module. Then the category Γ-comod

is a cocomplete abelian subcategory of A-mod.

Proof. Since the tensor product commutes with colimits, the A-module colimit of
a diagram of comodules is again a comodule, and is the colimit in Γ-comod. That
Γ-comod is abelian when Γ is flat is proved in [Rav86, Theorem A1.1.3]; we require
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flatness in order to conclude that the A-module kernel of a comodule map is again
a comodule. �

Because of this lemma, we will assume throughout the paper that (A,Γ) is a
flat Hopf algebroid; that is, that Γ is flat as a right A-module. Note that the
conjugation χ defines an isomorphism between the left A-module Γ and the right
A-module Γ, so Γ is also flat as a left A-module.

Lemma 1.1.2. The category Γ-comod is a symmetric monoidal category. We

denote the symmetric monoidal product by M ∧N .

Proof. We define M ∧ N = M ⊗ N , the tensor product of left A-modules, with
comodule structure given by the composite

M ⊗N
ψ⊗ψ
−−−→ (Γ⊗M)⊗ (Γ⊗N)

g
−→ Γ⊗M ⊗N,

where g(x ⊗ m ⊗ y ⊗ n) = xy ⊗ m ⊗ n. We leave it to the reader to check that
this does define a map from the tensor product, and that the composition above is
a comodule structure. Note that the multiplication map µ : Γ ⊗k Γ −→ Γ does not
factor through Γ ⊗ Γ, and this is why we use g. The unit of the tensor product is
A, with comodule structure given by ηL. �

We now point out that the category of comodules is natural. Recall that a map
Φ: (A,Γ) −→ (B,Σ) of Hopf algebroids is a pair of ring homomorphisms Φ0 : A −→ B
and Φ1 : Γ −→ Σ that corepresents a natural morphism of groupoids. This means
that Φ0ǫ = ǫΦ1, Φ1ηL = ηLΦ0, Φ1ηR = ηRΦ0, and (Φ1 ⊗ Φ1)∆ = ∆Φ1.

Lemma 1.1.3. A map Φ: (A,Γ) −→ (B,Σ) induces a symmetric monoidal functor

Φ∗ : Γ-comod −→ Σ-comod.

Proof. Define Φ∗M = B⊗AM . The Σ-comodule structure on B⊗AM is given by
the composite

B ⊗M
1⊗ψ
−−−→ B ⊗ Γ⊗M −→ Σ⊗M ∼= Σ⊗B (B ⊗M),

where the map B ⊗ Γ −→ Σ takes b⊗ x to bΦ1(x). �

In light of this lemma, the following definition is natural.

Definition 1.1.4. A map Φ: (A,Γ) −→ (B,Σ) is a weak equivalence if Φ∗ is an
equivalence of categories.

Note that weak equivalences are a fundamentally new feature that arises in
studying Hopf algebroids; any weak equivalence of discrete Hopf algebroids is nec-
essarily an isomorphism, but there are many examples of weak equivalences of Hopf
algebroids that are not isomorphisms given in [Hov02b] and [HS02]. The author
used a different definition of weak equivalence in [Hov02b], but the two definitions
are in fact equivalent [HS02].

A particular example of a map of Hopf algebroids is the map ǫ : (A,Γ) −→ (A,A)
that is the identity on A and the counit ǫ on Γ. Geometrically, this is the inclusion of
the identity maps of a groupoid into the whole groupoid. The functor ǫ∗ is just the
forgetful functor from Γ-comodules to A-modules. As is well known [Rav86, A1.2.1],
this functor has a right adjoint that takes an A-moduleM to the Γ-comodule Γ⊗M ,
with structure map ∆ ⊗ 1. This is called the extended comodule on M ; in case M
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is itself a free A-module on the set S, then Γ⊗M is called the cofree comodule on
M . We have a natural isomorphism

A-mod(M,N) −→ Γ-comod(M,Γ⊗N)

for Γ-comodules M and A-modules N . This natural isomorphism takes a map
f : M −→ N ofA-modules to the map of comodules (1⊗f)ψ, and a map of comodules
g : M −→ Γ⊗N to the map (ǫ ⊗ 1)g of A-modules.

It is less well-known that the extended comodule functor M 7→ Γ ⊗ M itself
has a right adjoint R : Γ-comod −→ A-mod, defined by RN = Γ-comod(Γ, N). The
A-module action on RN is defined by (af)(x) = f(xηR(a)).

Note that, if M is itself a comodule, then we can form the extended comodule
Γ⊗M and the tensor product Γ ∧M . The following lemma is well-known.

Lemma 1.1.5. Suppose (A,Γ) is a flat Hopf algebroid, M is an A-module, and N
is a Γ-comodule. Then there is a natural isomorphism of comodules

(Γ⊗M) ∧N −→ Γ⊗ (M ⊗N).

In particular, when M = A, we get a natural isomorphism of comodules

Γ ∧N −→ Γ⊗N.

Proof. We first note that (Γ⊗M)∧N is the tensor product of the left A-modules
Γ⊗M and N . There is a natural comodule map

fMN : (Γ⊗M) ∧N −→ Γ⊗ (M ⊗N)

adjoint to ε ⊗ 1 ⊗ 1. For fixed N , this is a natural transformation of right exact
functors ofM that commutes with direct sums. Since every A-module is a quotient
of a map of free A-modules, it suffices to show that fAN is an isomorphism.

In fact, we construct an inverse g = gAN to fAN . We define g to be the composite

Γ⊗M
1⊗ψ
−−−→ Γ⊗ Γ⊗M

(µ◦(1⊗χ))⊗1
−−−−−−−−→ Γ ∧M,

which is, a priori, only a map of A-modules. Note that, though the multiplication µ
does not factor through Γ⊗Γ, the composite µ◦(1⊗χ) does do so, since χ switches
the left and right units. A diagram chase shows that g and fAN are inverses (and
therefore that g is a comodule map). �

It is tempting to think that, given an A-module M , one can think of M as
a trivial Γ-comodule, via the map ηL ⊗ 1: M −→ Γ ⊗ M . This is wrong; for
example, v−1

n BP∗ cannot be given the structure of a BP∗BP -comodule [JY80,
Proposition 2.9]. The difficulty is that ηL is not a map of A-bimodules. However,
there is a symmetric monoidal trivial comodule functor from the category of abelian
groups to Γ-comodules that takes the abelian group M to A⊗ZM with the trivial
comodule structure given by ηL ⊗Z 1. This functor has a right adjoint that takes
the comodule N to the abelian group of primitive elements in N .

1.2. Limits. In general, right adjoints such as limits are difficult to construct for
comodules, because the forgetful functor from Γ-comodules to A-modules does not
preserve products, though it does preserve kernels. We give a general (and appar-
ently new) method for constructing right adjoints, involving resolutions by extended
comodules.

For a comodule M , the adjoint to the identity map is the map ψ : M −→ Γ⊗M ,
which we now think of as a map of comodules, giving Γ⊗M the extended comodule
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structure. The map ψ is of course an embedding, since it is split over A by ǫ⊗1. In
particular, if p : Γ⊗M −→ N denotes the cokernel of ψ, which is itself a comodule,
then we have a natural diagram

(1.2.1) M
ψ
−→ Γ⊗M

ψp
−−→ Γ⊗N

expressing M as the kernel of a map of extended comodules.
Now, if R is a right adjoint, then R will have to preserve kernels, so R is com-

pletely determined by its restriction to the full subcategory of extended comodules.
We first use this idea to show that Γ-comod is complete.

Proposition 1.2.2. Suppose (A,Γ) is a flat Hopf algebroid. Then Γ-comod has

products, and so is complete.

Proof. Let us denote the comodule product we are trying to construct by
∏Γ
i Mi.

Adjointness shows that, if {Mi} is a set of A-modules, then

Γ∏

i

(Γ⊗Mi) ∼= Γ⊗
∏

i

Mi.

Now suppose we have a set of comodule maps fi : Γ ⊗Mi −→ Γ ⊗ Ni. We need to

define the comodule product
∏Γ
i fi. We define it to be the composite

Γ⊗
∏

Mi
∆⊗1
−−−→ Γ⊗ Γ⊗

∏
Mi

1⊗α
−−−→ Γ⊗

∏
(Γ⊗Mi)

1⊗
∏
fi

−−−−−→ Γ⊗
∏

(Γ⊗Ni)
1⊗

∏
(ǫ⊗1)

−−−−−−−→ Γ⊗
∏

Ni,

where α is the evident natural transformation. The reader can then check that this
is a good definition of the product on the full subcategory of extended comodules,

and, in particular, that
∏Γ
i (1⊗ gi) = 1⊗

∏
gi for A-module maps gi.

The definition of the product for a family of general comodules Mi is now forced
on us, as explained in the paragraph preceding this proposition. To wit, given a set
of comodules Mi, we have left exact sequences

0 −→Mi
ψ
−→ Γ⊗Mi

ψpi
−−→ Γ⊗Ni,

and so we define
∏Γ
i Mi by the left exact sequence

0 −→
Γ∏

i

Mi −→ Γ⊗
∏

i

Mi

∏
Γ

i
(ψpi)

−−−−−→ Γ⊗
∏

i

Ni.

We leave to the reader the proof that
∏Γ
i Mi is indeed the product in Γ-comod. �

Remark. An alternative approach to the category of Γ-comodules that is some-
times used (e.g., by Boardman [Boa82]) is to establish an equivalence of categories
between Γ-comodules and a subcategory of Γ∗-modules. Here Γ∗ = Homr

A(Γ, A),
the A-bimodule of right A-module maps from Γ to A. It turns out that Γ∗ is a
(noncommutative) algebra over k and there is a map of algebras A −→ Γ∗. There is

a map Γ ⊗M
α
−→ HomA(Γ

∗,M). Using this map, any Γ-comodule becomes a Γ∗-
module, and this clearly defines a faithful functor from Γ-comodules to Γ∗-modules.
However, this functor will not in general be full, because the map α need not be
injective. If Γ is projective over A, then α is injective, but Γ is not projective over
A for many of the Hopf algebroids we are interested in. If Γ is projective over A,
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one can establish an equivalence between Γ-comodules and a full coreflective sub-
category of Γ∗-modules. This means that the inclusion functor from Γ-comodules
to Γ∗-modules has a right adjoint R. Indeed, if M is a Γ∗-module, let us denote by
µ∗ : M −→ HomA(Γ

∗,M) the adjoint to the structure map of M . Then

RM = {x ∈M |µ∗(x) = α(y) for some y}.

We refer to RM as the largest subcomodule ofM . One can then define the product
of a set of comodules {Mi} to be the largest subcomodule of the A-module product.

Building on the remark above, note that, for a set of comodules {Mi}, there is
the natural commutative diagram of A-modules below.

∏Γ
i Mi −−−−→ Γ⊗

∏
iMi −−−−→ Γ⊗

∏
iNi

α

y α

y
∏
iMi −−−−→∏

i
ψ

∏
i(Γ⊗Mi) −−−−→∏

i
ψpi

∏
i(Γ⊗Ni).

This means that there is a natural induced map of A-modules
∏Γ
i Mi −→

∏
iMi.

This map is injective when α is injective, which is certainly true if Γ is projective
over A. It is an isomorphism when α is so, which is true if Γ is finitely generated
and projective over A.

Since the product is right adjoint to the exact diagonal functor, the product is
left exact. But it need not be exact in general. Indeed, let A = Q and Γ = A[x],
thought of as a primitively generated Hopf algebra over A. Let Xn = Γ/(xn) for
n ≥ 1, and let Yn = A. There is a surjection Xn −→ Yn that sends xn−1 to 1 and

every other power of x to 0. But one can check that
∏Γ

Yn ∼=
∏
n Yn, and that

there is no element of
∏Γ

Xn that hits (1, 1, . . . , 1, . . . ). Indeed,
∏Γ

Xn consists of
those elements (f1, f2, . . . ) of

∏
Xn such that the degrees of fi are bounded.

We can also use this technique of constructing right adjoints to prove the follow-
ing proposition.

Proposition 1.2.3. Suppose Φ: (A,Γ) −→ (B,Σ) is a map of Hopf algebroids.

Then the functor Φ∗ : Γ-comod −→ Σ-comod has a right adjoint Φ∗.

Proof. An adjointness argument shows that we must define

Φ∗(Σ⊗B N) = Γ⊗N

when N is a B-module. Given a comodule map f : Σ⊗B N −→ Σ⊗B N ′, we define
Φ∗(f) : Γ⊗N −→ Γ⊗N ′ as the following composite.

Γ⊗N
∆⊗1
−−−→ Γ⊗ Γ⊗N

1⊗α
−−−→ Γ⊗ Σ⊗B N

1⊗f
−−−→ Γ⊗ Σ⊗B N

′ 1⊗ǫ⊗1
−−−−→ Γ⊗N ′.

Here the map α is defined by α(x ⊗ n) = Φ1(x) ⊗ n. We leave it to the reader
to check that this definition is functorial, so that we have defined Φ∗ on the full
subcategory of extended comodules.

As usual, given an arbitrary Σ-comodule N , we write N as the kernel of

ψp : Σ⊗B N −→ Σ⊗B N
′,

where p : Σ⊗B N −→ N ′ is the cokernel of ψ. We then define Φ∗(N) as the kernel
of

Γ⊗N
Φ∗(ψp)
−−−−→ Γ⊗N ′.

We leave to the reader the check that Φ∗ is right adjoint to Φ∗. �
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1.3. Duality and finite presentation. We now show that Γ-comod is in fact a
closed symmetric monoidal category, and we characterize the dualizable comodules.

Theorem 1.3.1. If (A,Γ) is a flat Hopf algebroid, then the category Γ-comod is

closed symmetric monoidal. Furthermore, the closed structure F (M,N) is left exact
in N and right exact in M .

Proof. An adjointness argument shows that we must define

F (M,Γ⊗N) = Γ⊗HomA(M,N).

Suppose we have a map f : Γ⊗N
f
−→ Γ⊗ N ′ of extended comodules. We need to

define the map F (M, f) : Γ ⊗ HomA(M,N) −→ Γ ⊗ HomA(M,N ′). This map will
be adjoint to a map

Γ⊗HomA(M,N) −→ HomA(M,N ′)

of A-modules, which will in turn be adjoint to the composite

Γ⊗HomA(M,N)⊗M
1⊗Ev
−−−→ Γ⊗N

f
−→ Γ⊗N ′ ǫ⊗1

−−→ N ′.

We leave to the reader the check that this definition is functorial, so that we have
defined F (M,−) on the full subcategory of extended comodules. We also leave to
the reader the check that there is a natural isomorphism

Γ-comod(L, F (M,Γ⊗N)) ∼= Γ-comod(L ∧M,Γ⊗N),

where naturality refers to an arbitrary map of extended comodules Γ⊗N −→ Γ⊗N ′.
We then have no choice but to define F (M,N) as the kernel of

Γ⊗Hom(M,N)
F (M,ψp)
−−−−−−→ Γ⊗Hom(M,N ′)

where p : Γ⊗N −→ N ′ is the cokernel of ψ. The necessary adjunction isomorphism
follows immediately.

Since F (M,−) is right adjoint to the right exact functor M ⊗−, it is left exact.
Now suppose we have a right exact sequence

M ′ −→M −→ M ′′ −→ 0.

Then we have a right exact sequence

L ∧M ′ −→ L ∧M −→ L ∧M ′′ −→ 0,

and so a left exact sequence of abelian groups

0 −→ Γ-comod(L ∧M ′′, N) −→ Γ-comod(L ∧M,N) −→ Γ-comod(L ∧M ′, N).

Applying adjointness, we find that F (M ′′, N) has the universal property character-
izing the kernel of F (M,N) −→ F (M ′, N). �

It would be nice to have a better understanding of F (M,N). The following
proposition is helpful.

Proposition 1.3.2. Suppose (A,Γ) is a flat Hopf algebroid, and M and N are

Γ-comodules.

(a) There is a natural map F (M,N)
τMN−−−→ HomA(M,N) of A-modules.

(b) If M is finitely generated over A, then τMN is injective.

(c) If M is finitely presented over A, then τMN is an isomorphism.
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Proof. Consider the natural diagram below.

F (M,N) −−−−→ Γ⊗HomA(M,N) −−−−→ Γ⊗HomA(M,N ′)
y

y

HomA(M,N) −−−−→ HomA(M,Γ⊗N) −−−−→ HomA(M,Γ⊗N ′)

The vertical arrows take x ⊗ f to the map that takes m to x ⊗ f(m). It is not
obvious that this diagram is commutative, but a careful diagram chase shows that
it is. The rows both express their left-hand entry as a kernel, the first row by
definition, and the second row by applying HomA(M,−) to diagram 1.2.1. Thus,
there is a natural induced map F (M,N) −→ HomA(M,N), proving part (a).

Parts (b) and (c) will follow if we can show that the vertical maps are injections
whenM is finitely generated and isomorphisms whenM is finitely presented. Since
Γ is flat as a right A-module, we can write Γ = colimCi, where the Ci are finitely
generated projective A-modules. The natural map

Ci ⊗HomA(M,N) −→ HomA(M,Ci ⊗N)

is therefore an isomorphism. Hence, the map

Γ⊗HomA(M,N) ∼= colimiCi ⊗HomA(M,N) −→ colimiHomA(M,Ci ⊗N)

is also an isomorphism. When M is finitely generated over A, the map

colimiHomA(M,Ci ⊗N) −→ HomA(M,Γ⊗N)

is injective; when M is finitely presented over A, it is an isomorphism. Parts (b)
and (c) follow. �

We now recall that an objectM in a cocomplete category C is called λ-presented,
for a regular cardinal λ, if C(M,−) commutes with λ-filtered colimits (See [Bor94,
Section 6.4]). When λ = ω, we get the usual notion of a finitely presented object.
An A-module M is λ-presented if and only if it is a quotient of a map of free
modules, each of which has rank < λ.

Proposition 1.3.3. Suppose (A,Γ) is a flat Hopf algebroid, M is a Γ-comodule,

and λ is a regular cardinal. Consider the following three statements.

(a) M is λ-presented as a Γ-comodule.

(b) M is λ-presented as an A-module.

(c) The functor F (M,−) commutes with λ-filtered colimits.

Then (a) and (b) are equivalent, and (c) implies (a). In particular, M is κ-presented
for some κ.

Proof. We first show that (a) implies (b). So suppose that M is λ-presented as a
Γ-comodule, and we have a λ-filtered diagram of A-modules Ni. Then

colimHomA(M,Ni) ∼= colimΓ-comod(M,Γ⊗Ni)

∼= Γ-comod(M, colim(Γ⊗Ni)) ∼= Γ-comod(M,Γ⊗ colimNi)

∼= HomA(M, colimNi).

We now show that (b) implies (a). Suppose that M is λ-presented as an A-
module, and we have a λ-filtered diagram of comodules Ni. We must show that
the map

colimΓ-comod(M,Ni) −→ Γ-comod(M, colimNi)
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is an isomorphism. It is obviously injective, since the forgetful functor to A-modules
is faithful, and M is λ-presented as an A-module. On the other hand, suppose we
have a map f : M −→ colimNi of comodules. As a map of A-modules f factors
through some map g : M −→ Ni for some i. The difficulty is that g may not be a
map of comodules, since ψg may not be equal to (1 ⊗ g)ψ. But they are equal as
maps to

Γ⊗ colimNj ∼= colim(Γ⊗Nj),

so they must be equal in some Γ⊗Nj . It follows that the composite

M
g
−→ Ni −→ Nj

is the desired factorization of f .
We now show that (c) implies (a). So suppose that F (M,−) commutes with

λ-filtered colimits, and we have a λ-filtered diagram of comodules Ni. Then

colimΓ-comod(M,Ni) ∼= colimΓ-comod(A,F (M,Ni))

∼= Γ-comod(A, colimF (M,Ni)) ∼= Γ-comod(A,F (M, colimNi))

∼= Γ-comod(M, colimNi),

where the second isomorphism holds because A is finitely presented. �

In any closed symmetric monoidal category with unit A, we define DM =
F (M,A). There is always a natural map DM ∧ N −→ F (M,N). When this map
is an isomorphism for all N , M is called strongly dualizable, which we generally
abbreviate to dualizable. The author does not know to whom this concept is due;
perhaps Puppe [Pup79]. An excellent reference is [LMSM86, Chapter III], and the
basic properties of dualizable objects are summarized in [HPS97, Theorem A.2.5].

Proposition 1.3.4. Suppose (A,Γ) is a flat Hopf algebroid. Then a Γ-comodule

M is dualizable in Γ-comod if and only if M is finitely generated and projective as

an A-module.

Proof. First suppose that M is finitely generated and projective as an A-module.
We need to check that the map F (M,A) ∧ N −→ F (M,N) is an isomorphism.
But F (M,A) ∼= HomA(M,A) and F (M,N) ∼= HomA(M,N) by Proposition 1.3.2.
It is well known and easy to check that the natural map HomA(M,A) ⊗ N −→
HomA(M,N) is an isomorphism when M is a finitely generated projective.

Now suppose that M is dualizable. Then the functor F (M,−) commutes with
colimits, since it is isomorphic to F (M,A) ∧ (−). Proposition 1.3.3 then implies
that M is finitely presented as an A-module. We now show thatM must in fact be
projective over A. Indeed, the functor F (M,−) is always left exact, and because
M is dualizable, F (M,−) ∼= F (M,A) ∧ (−) is also right exact. Hence F (M,−) is
an exact functor on the category of Γ-comodules. But Proposition 1.3.2 tells us
that F (M,−) ∼= HomA(M,−) since M is finitely presented over A. Now suppose
E is an exact sequence of A-modules. Then HomA(M,Γ⊗ E) is again exact. But,
since M is finitely presented,

HomA(M,Γ⊗ E) ∼= Γ⊗HomA(M,E)

by the argument of Proposition 1.3.2. Since Γ is faithfully flat over A, we conclude
that HomA(M,E) is exact, so M is projective over A. �
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1.4. Generators and Adams Hopf algebroids. We have just seen that the
category of Γ-comodules has many good properties when (A,Γ) is a flat Hopf al-
gebroid. But those properties are still not enough for us, because we need a good
set of generators for the category of Γ-comodules. Recall that a set of objects G in
an abelian category C is said to generate C when C(P, f) = 0 for all P ∈ G implies
that f = 0.

For much of the sequel, we will require that the dualizable comodules generate
the category of Γ-comodules. The main advantage of this hypothesis is the following
proposition.

Proposition 1.4.1. Suppose (A,Γ) is a flat Hopf algebroid for which the dualizable

comodules generate the category of Γ-comodules. Then the category of Γ-comodules

is a locally finitely presentable Grothendieck category. Furthermore:

(a) Every comodule is a quotient of a direct sum of dualizable comodules.

(b) If M is a comodule and x ∈M , then there is a dualizable comodule P and

a map P −→M of comodules whose image contains x.
(c) Every comodule that is finitely generated over A is a quotient of a dualizable

comodule.

(d) Every comodule is the union of its subcomodules that are finitely generated

over A.
(e) Every comodule is a filtered colimit of finitely presented comodules.

Most of these facts are true in a general locally finitely presentable Grothendieck
category; see [Ste75] for details. We therefore give only a sketch of the proof.

Proof. The first statement is true because there is only a set of isomorphism classes
of dualizable comodules, and dualizable comodules are finitely presented. For
part (a), let G denote a set containing one element from each isomorphism class
of dualizable comodules, and let T be the set of all maps f with dom f ∈ G and
codom f =M . Consider the map

α :
⊕

f∈T

dom f −→M,

and let β denote the cokernel of this map. Then Γ-comod(P, β) = 0 for all dualizable
P , so β = 0. Hence α is surjective.

Part (b) is an immediate corollary of part (a), and part (c) and part (d) follow
easily from part (b). For part (e), we choose a small skeleton F of the category of
finitely presented comodules and consider the category F/M consisting of all maps
from an element of F to M . There is an obvious map

colimf∈F/M dom f −→M.

One can readily verify that F is filtered, and that this map is a monomorphism,
for any flat Hopf algebroid (A,Γ). If the dualizable comodules generate, then it is
an epimorphism by part (b). �

We also have the following corollary, which answers the question left open by
Proposition 1.3.3.

Corollary 1.4.2. Suppose (A,Γ) is a flat Hopf algebroid for which the dualizable

comodules generate the category of Γ-comodules, M is a Γ-comodule, and λ is a

regular cardinal. If M is λ-presented, then F (M,−) commutes with λ-filtered col-

imits.
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Proof. Suppose we have a λ-filtered system of comodules Ni. We need to show that

colimF (M,Ni)
α
−→ F (M, colimNi)

is an isomorphism. Because the dualizable comodules generate, it suffices to show
that Γ-comod(P, f) is an isomorphism for all dualizable comodules P . Since dual-
izable comodules are in particular finitely presented, we have

Γ-comod(P, colimF (M,Ni)) ∼= colimΓ-comod(P, F (M,Ni))

∼= colimΓ-comod(P ∧M,Ni) ∼= colimΓ-comod(M,DP ∧Ni)

∼= Γ-comod(M, colim(DP ∧Ni)) ∼= Γ-comod(M,DP ∧ colimNi)

∼= Γ-comod(M ∧ P, colimNi) ∼= Γ-comod(P, F (M, colimNi)).

�

We now owe the reader some examples of flat Hopf algebroids for which the du-
alizable comodules generate the category of Γ-comodules. We learned the following
definition from [GH00], but it is implicit in [Ada74, Section III.13].

Definition 1.4.3. A Hopf algebroid (A,Γ) is said to be an Adams Hopf algebroid

when Γ is the colimit of a filtered system of comodules Γi, where Γi is finitely
generated and projective over A.

In particular, any Adams Hopf algebroid is flat, since the colimit of projective
modules is flat. Thus the Γi are dualizable comodules. The following proposition
is a restatement of [GH00, Lemma 3.4].

Proposition 1.4.4. If (A,Γ) is an Adams Hopf algebroid, then the dualizable co-

modules generate the category of Γ-comodules.

Proof. Suppose (A,Γ) is Adams, and M is a Γ-comodule. Then we have:

M ∼= HomA(A,M) ∼= Γ-comod(A,Γ⊗M)

∼= Γ-comod(A,Γ ∧M) ∼= Γ-comod(A, colimΓi ∧M)

∼= colimΓ-comod(A,Γi ∧M) ∼= colimΓ-comod(DΓi,M).

The result follows. �

We now give some examples of Adams Hopf algebroids. Most of the ones we
are interested in come from algebraic topology. Recall the notion of minimal weak
colimit from [HPS97, Section 2.2].

Definition 1.4.5. A ring spectrum R is called topologically flat if R is the minimal
weak colimit of a filtered diagram of finite spectra Xi such that R∗Xi is a finitely
generated projective R∗-module.

This definition is based on [Ada74, Condition III.13.3].

Lemma 1.4.6. Suppose R is a ring spectrum that is topologically flat and such

that R∗R is commutative. Then (R∗, R∗R) is an Adams Hopf algebroid.

Proof. Write R as the minimal weak colimit of the Xi. Then R∗R = colimR∗Xi.
In particular, R∗R is flat over R∗ (and this is the reason for the term “topologically
flat”) and satisfies the Adams condition. �
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The reason for the hypothesis that R∗R be commutative is that there could well
be non-commutative ring spectra R, such as Morava K-theory K(n) at the prime
2, where R∗R is nevertheless commutative.

Adams gave several examples of topologically flat ring spectra in [Ada74, Propo-
sition III.13.4], which we restate here.

Theorem 1.4.7. The ring spectra MU , MSp, K, KO, HFp, and K(n) are topo-

logically flat.

Adams did not of course consider K(n), since it had not been discovered yet,
but his proof for HFp works for any field spectrum.

We can add another case to this list as well. Recall that BP is the Brown-
Peterson spectrum, andBP∗

∼= Z(p)[v1, v2, . . . ]. Given an invariant regular sequence

J = (pi0 , vi11 , . . . , v
ik−1

k−1 ) in BP∗, there is a spectrum BPJ with BPJ∗ ∼= BP∗/J
studied in [JY80].

Proposition 1.4.8. Let J = (pi0 , vi11 , . . . , v
ik−1

k−1 ) be an invariant regular sequence

of length k in BP∗. Then BPJ is topologically flat.

Proof. Write BP as a minimal weak colimit of spectra Xα, where Xα is a finite
spectrum with cells in only even degrees. Then BPJ ∧ BP is the minimal weak
colimit of the BPJ ∧Xα. On the other hand, we claim that BPJ ∧BPJ is a wedge
of 2k copies of BPJ ∧BP . Indeed, BPJ∗BPJ is a free module over BPJ∗BP , and
so we choose generators for the free module and use them to construct the desired
splitting.

Hence BPJ ∧BPJ is the minimal weak colimit of BPJ∧Yα, where Yα is a finite
wedge of copies of Xα. Since each BPJ∗(Yα) is a free module, this completes the
proof. �

The following theorem, generalizing Proposition 2.12 of [HS99b], gives us many
other examples of topologically flat ring spectra. Recall that, if R is a ring spectrum
and E is an R-module spectrum, then E is said to be Landweber exact over R if
the natural map

E∗ ⊗R∗
R∗X −→ R∗X

is an isomorphism for all spectra X .

Theorem 1.4.9. Suppose R is a topologically flat ring spectrum, and E is a

Landweber exact R-module spectrum. Then E is topologically flat.

Proof. The proof is much like that of Proposition 2.12 of [HS99b]. Write R as the
minimal weak colimit of finite spectra Xi such that R∗Xi is finitely generated and
projective over R∗. Then E∗Xi is finitely generated and projective over E∗. We
show that E is the filtered colimit of a diagram of finite wedges of suspensions of
Xi. To do so, consider the category F/E of all maps of finite spectra to E, and
consider the full subcategory F ′/E of such maps whose domain is a (variable) finite
wedge of suspensions of the Xj . We claim that this is cofinal in F/E. Since E is
the minimal weak colimit of the obvious functor from F/E to spectra, it will follow
that E is the minimal weak colimit of the restriction of this functor to F ′/E.

To show that F ′/E is cofinal in F/E, it suffices to show that any map f from a
finite spectrum Z to E factors through a finite wedge of suspensions of the Xi. By
Spanier-Whitehead duality

E∗(Z) ∼= E∗ ⊗R∗ R∗Z.
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We can thus write f =
∑m

i=1 bi ⊗ ci. Because R is the minimal weak colimit of the
Xj, each map ci has a factorization

ci = (Z
gi
−→ Σ−|ci|Xi

ei−→ Σ−|ci|R).

Let Y =
∨m
i=1 Σ

−|ci|Xi, let g : Z −→ Y be the map with components gi, and let
h : Y −→ E be the map with components bi ⊗ ei ∈ E∗ ⊗R∗ R∗Xi

∼= E∗(Xi). This
gives the desired factorization. �

Of course, there are algebraic examples of Adams Hopf algebroids as well.

Proposition 1.4.10. Suppose Γ is a Hopf algebra over a field k. Then (k,Γ) is

an Adams Hopf algebroid.

Proof. By Lemma 9.5.3 of [HPS97], every Γ-comodule is the filtered colimit of its
finite-dimensional sub-comodules. In particular, this is true for Γ itself. �

Proposition 1.4.11. Suppose (A,Γ) is an Adams Hopf algebroid, I is an invariant

ideal in A, and v is a primitive element in A. Then (A/I,Γ/I) and (v−1A, v−1Γ)
are Adams Hopf algebroids.

Proof. Suppose that Γ ∼= colimΓj , where each Γj is finitely generated and projective
over A. Then Γ/I = colimΓj/I and Γj/I is finitely generated and projective over
A/I. Similarly, v−1Γ = colim v−1Γj . �

Despite all these examples of Adams Hopf algebroids, there is a theoretical dif-
ficuly with the notion.

Question 1.4.12. Suppose Φ: (A,Γ) −→ (B,Σ) is a weak equivalence of Hopf

algebroids. Is it true that (A,Γ) is Adams if and only if (B,Σ) is Adams?

Note that if Φ is a weak equivalence, then the dualizable Γ-comodules generate
if and only if the dualizable Σ-comodules generate.

2. The projective model structure

In this section, we establish a preliminary model structure on Ch(Γ), the category
of unbounded chain complexes of Γ-comodules.

2.1. Construction and basic properties. We recall the results of [CH02]. Be-
ginning with a set of objects S in a cocomplete abelian category A, there is a
projective class (P , E), where E consists of all maps f such that A(P, f) is onto
for all P in S, and P consists of all retracts of direct sums of elements of S. The
elements of P are called relative projectives, and the maps of E are called relative

epimorphisms. This is [CH02, Lemma 1.5], but it is also easy to see.
The main result of [CH02] associates a model structure on Ch(A), the category

of unbounded chain complexes in A, to a projective class (P , E), given some hy-
potheses. We recall that a chain map φ is a fibration in this model structure when
A(P, φ) is a degreewise surjection for all P ∈ P , and a weak equivalence when
A(P, φ) is a homology isomorphism for all P ∈ P .

The hypothesis needed is that functorial cofibrant replacements exist. This is
automatic, by [CH02, Proposition 4.2], when A is complete and cocomplete, there
are enough κ-small P-projectives for some cardinal κ, and functorial P-resolutions
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exist. When P is generated by a set S as above, then functorial P-resolutions
obviously exist, since there is a functorial P-epic

⊕

P∈S

⊕

f∈A(P,M)

P −→ M

for anyM ∈ A. When each object of S is λ-small for some λ, then there are enough
κ-small P-projectives (take κ to be the supremum of the λ’s).

Now, ifA happens to be a Grothendieck abelian category, then it is automatically
complete and cocomplete, and every object in A is κ-presented, and so a fortiori

κ-small, for some κ. This latter statement is an immediate corollary of the fact that
Grothendieck abelian categories are locally presentable [Bek00, Proposition 3.10],
but a direct proof can be found in the Appendix to [Hov01].

We thus have the following result, which was inexplicably not stated in [CH02].

Theorem 2.1.1. Suppose A is a Grothendieck abelian category, and S is a set of

objects in A. Then there is a model structure on Ch(A) in which the fibrations are

the maps φ such that A(P, φ) is a surjection for all P ∈ S and the weak equivalences

are the maps φ such that A(P, φ) is a homology isomorphism for all P ∈ S. More

generally, this model structure exists when A is complete and cocomplete, but not

necessarily Grothendieck, as long as every object of S is κ-small for some κ.

Now we return to the case at hand, when A is the category of Γ-comodules and
(A,Γ) is a Hopf algebroid. In the light of the results of Section 1.4, we should take
S to be the set of dualizable Γ-comodules.

Definition 2.1.2. Suppose (A,Γ) is a flat Hopf algebroid. Let S be a set containing
one comodule from each isomorphism class of dualizable Γ-comodules. We refer to
the retracts of direct sums of elements of S as relatively projective comodules, and
to the maps f of comodules such that Γ-comod(P, f) is surjective for all P ∈ S
as relative epimorphisms. The resulting model structure on Ch(Γ) obtained from
Theorem 2.1.1 is called the projective model structure. Thus, a map φ is a projective

fibration if φ is a degreewise relative epimorphism, and φ is a projective equivalence

if Γ-comod(P, φ) is a homology isomorphism for all P ∈ S. The map φ is a projective
cofibration, or simply a cofibration, if φ has the left lifting property with respect
to all projective trivial fibrations. We refer to an chain complex F as projectively

trivial if 0 −→ F is a projective equivalence.

Goerss and Hopkins [GH00] put a model structure on the category of nonnega-
tively graded chain complexes over an Adams Hopf algebroid. Their model structure
gave us the idea for the projective model structure, but it is not the same, as they
took S to be the set of all the DΓi (under the assumption that Γ = colimΓi). One
obvious advantage of our definition is that the dualizable comodules are canonically
attached to the symmetric monoidal category of Γ-comodules, while the DΓi are
not.

We point out that we do not need (A,Γ) to be an Adams Hopf algebroid, or
even for the dualizable comodules to generate, for the projective model structure
to exist. Also note that every relatively projective comodule is projective as an
A-module, but we do not know if the converse holds.

Note also that because the elements of S are finitely presented in the category
Γ-comod (see Proposition 1.3.3), filtered colimits of projective equivalences (resp.
projective fibrations) are again projective equivalences (resp. projective fibrations).
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We then have the following theorem describing some of the properties of the
projective model structure.

Theorem 2.1.3. Suppose (A,Γ) is a flat Hopf algebroid. Then the projective model

structure on Ch(Γ) is proper, finitely generated, stable, and symmetric monoidal.

A map φ is a cofibration if and only if it is a degreewise split monomorphism whose

cokernel is cofibrant. A chain complex X is cofibrant if and only if it is a retract of

a colimit of complexes

X0 −→ X1 −→ · · ·Xα · · ·

where each Xα −→ Xα+1 is a degreewise split monomorphism whose cokernel is a

complex of relative projectives with no differential. The homotopy relation between

cofibrant objects is the usual chain homotopy relation.

Proof. This all follows from the results of [CH02]. The characterization of cofibrant
objects follows from Corollary 4.4 of [CH02], and the characterization of cofibrations
follows from Proposition 2.5 of [CH02]. The fact that the model structure is proper
is [CH02, Proposition 2.18], and stability is [CH02, Corollary 2.17] and obvious.
The fact that homotopy is the usual chain homotopy is [CH02, Lemma 2.13].

The generating cofibrations for the projective model structure are Sn−1P −→
DnP for P ∈ S, and the generating trivial cofibrations are 0 −→ DnP for P ∈ S.
Here Sn−1P denotes the complex which is P in degree n − 1 and zero elsewhere,
and DnP denotes the complex which is P in degrees n and n− 1 and 0 elsewhere.
This is proved in Section 5 of [CH02]. Each of Sn−1P , 0, and DnP are finitely
presented, so the projective model structure is finitely generated.

Finally, the fact that the projective model structure is symmetric monoidal fol-
lows from Corollary 2.21 of [CH02], the fact that A, the unit of ∧, is a relative
projective, and the fact that relative projectives are closed under ∧. �

Note that, when (A,Γ) is discrete, a Γ-comodule is the same thing as an A-
module. In this case, the relative projectives are just the projective A-modules,
and we see that the projective model structure agrees with the usual projective
model structure on Ch(A), in which the fibrations are the surjections and the weak
equivalences are the homology isomorphisms.

We point out that there is another model structure on Ch(Γ) given by [CH02,
Example 3.4] called the absolute model structure. In this model structure, the
weak equivalences are the chain homotopy equivalences, the cofibrations are the
degreewise split monomorphisms, and the fibrations are the degreewise split epi-
morphisms. Since the generating cofibrations of the projective model structure
are degreewise split monomorphisms, and the generating trivial cofibrations are
chain homotopy equivalences, we conclude that the identity functor is a left Quillen
functor from the projective model structure to the absolute model structure. In par-
ticular, a trivial cofibration in the projective model structure is a chain homotopy
equivalence, and all chain homotopy equivalences are projective equivalences.

The symmetric monoidal product behaves particularly well with respect to the
projective model structure.

Proposition 2.1.4. Suppose (A,Γ) is a flat Hopf algebroid. Then the projective

model structure satisfies the monoid axiom. Furthermore, if X is cofibrant and f
is a projective equivalence, then X ∧ f is a projective equivalence.
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This proposition is important because of the work of Schwede and Shipley [SS00],
who introduced the monoid axiom. As a consequence of their work and Proposi-
tion 2.1.4, given a monoid R in Ch(Γ), which is just a differential graded comodule
algebra, there is a model structure on (differential graded) R-modules in which
the fibrations are underlying projective fibrations and the weak equivalences are
underlying projective equivalences. There is also a similar model structure on
differential graded comodule algebras, and a projective equivalence R −→ R′ of dif-
ferential graded comodule algebras induces a Quillen equivalence from R-modules
to R′-modules.

Proof. The monoid axiom, introduced by Schwede and Shipley in [SS00], asserts
that, if K is the class of maps {j ∧ X} where j is a generating trivial cofibration
and X is arbitrary, then all transfinite compositions of pushouts of maps of K are
projective equivalences. In the case at hand, j is one of the maps 0 −→ DnP , where
P ∈ S. It follows easily that j ∧X is a dimensionwise split monomorphism and a
chain homotopy equivalence, so a trivial cofibration in the absolute model struc-
ture. Thus, all transfinite compositions of pushouts of maps of K are also trivial
cofibrations in the absolute model structure, and so in particular chain homotopy
equivalences. Hence they are also projective equivalences.

Now suppose f : Y −→ Z is a projective equivalence and X is cofibrant. We want
to show that X ∧ f is a projective equivalence. Since X is cofibrant, X is a retract
of a colimit of a sequence of complexes {Xi}i<λ, where Xi −→ Xi+1 is a degreewise
split monomorphism whose cokernel Ci is a complex of relative projectives with
zero differential. Since projective equivalences are closed under filtered colimits,
it suffices to show that Xi ∧ f is a projective equivalence for all i ≤ λ, where
Xλ = colimXi. We prove this by transfinite induction on i. We assume the base
case i = 0 for the moment. The limit ordinal case follows from the fact the filtered
colimits of projective equivalences are projective equivalences. For the sucessor
ordinal case, we have the commutative diagram below.

0 −−−−→ Xi ∧ Y −−−−→ Xi+1 ∧ Y −−−−→ Ci ∧ Y −−−−→ 0

Xi∧f

y Xi+1∧f

y
yCi∧f

0 −−−−→ Xi ∧ Z −−−−→ Xi+1 ∧ Z −−−−→ Ci ∧ Z −−−−→ 0

The rows of this diagram are degreewise split and short exact, since Xi −→ Xi+1 is
degreewise split. Now apply the functor Γ-comod(P,−) to this diagram for a fixed
P ∈ S. The rows of the resulting diagram will still be short exact. The induction
hypothesis tells us that Γ-comod(P,Xi∧f) is a homology isomorphism, and the base
case of the induction (which we have postponed) tells us that Γ-comod(P,Ci∧f) is
a homology isomorphism. The long exact sequence in homology then implies that
Γ-comod(P,Xi+1 ∧ f) is a homology isomorphism.

We are left with showing that C ∧ f is a projective equivalence, where C is a
complex of relative projectives with zero differential. Then C ∼=

⊕
n S

nCn. Again
using the fact that the objects in S are finitely presented, we find that it suffices to
show that SnCn ∧ f is a projective equivalence. But Cn is a retract of a direct sum
of elements of S. Another use of the fact that objects in S are finitely presented
reduces us to showing that SnQ∧ f is a projective equivalence, for Q ∈ S. Assume
P ∈ S. Then, since Q is strongly dualizable in Γ-comod by Proposition 1.3.4, we
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have
Γ-comod(P, SnQ ∧ f) ∼= Σ−nΓ-comod(P ∧DQ, f)

which is a homology isomorphism since P ∧DQ is also (isomorphic to something)
in S. �

An obvious drawback with the projective model structure is that is difficult to
tell what the weak equivalences look like. We do have the following proposition.

Proposition 2.1.5. Suppose (A,Γ) is a flat Hopf algebroid for which the dualizable

Γ-comodules generate the category of Γ-comodules. Then every projective fibration

is surjective, and every projective equivalence is a homology isomorphism.

Proof. Suppose p : X −→ Y is a projective fibration, and y ∈ Yn. By Proposi-
tion 1.4.1, there is a comodule P in S and a map f : P −→ Yn whose image contains
y. Suppose f(t) = y. Since p is a projective fibration, there is a map g : P −→ Xn

such that pg = f . In particular, pg(t) = y, so p is surjective.
Now suppose p is a projective equivalence. We wish to show that p is a homology

isomorphism. Every projective trivial cofibration is a chain homotopy equivalence,
so a homology isomorphism. We can thus assume that p is a projective trivial
fibration. In particular, p is surjective. Thus it suffices to show that ker p is exact.
We know that ker p −→ 0 is a projective trivial fibration, so Γ-comod(P, ker p) is
exact for all P ∈ S. Suppose that x is a cycle in ker pn. Let Zn denote the
comodule of cycles in ker pn. Then there is a P ∈ S, a t ∈ P , and a comodule
map f : P −→ Zn such that f(t) = x, by Proposition 1.4.1. The map f is a cycle
in Γ-comod(P, ker p), so there is a map g : P −→ ker pn+1 such that dg = f . In
particular, dg(t) = x, so x is a boundary. �

2.2. Naturality. We now show that the projective model structure is natural in
(A,Γ).

Proposition 2.2.1. Suppose Φ: (A,Γ) −→ (B,Σ) is a map of flat Hopf algebroids.

Then Φ induces a left Quillen functor Φ∗ : Ch(Γ) −→ Ch(Σ) of the projective model

structures.

Proof. We have seen in Proposition 1.2.3 that Φ induces an adjunction

(Φ∗,Φ
∗) : Γ-comod −→ Σ-comod.

This prolongs to an adjunction (Φ∗,Φ
∗) : Ch(Γ) −→ Ch(Σ) by defining Φ∗ and

Φ∗ degreewise. Since Φ∗ is symmetric monoidal, it preserves dualizable comodules.
This is easy to see directly in this case, since ifM is finitely generated and projective
over A, then B ⊗M is finitely generated and projective over B. It follows easily
that Φ∗ takes the generating (trivial) cofibrations of the projective model structure
on Ch(Γ) to (trivial) cofibrations in the projective model structure on Ch(Σ). �

Note that there is a map of Hopf algebroids Φ: (A,Γ) −→ (A,A) which is the
identity on A and ǫ on Γ. The functor Φ∗ is just the forgetful functor from Γ-
comodules to A-modules, and the right adjoint Φ∗ is the extended comodule functor.
Hence, if f is a homology isomorphism of complexes of A-modules, then Γ⊗ f is a
projective equivalence.

Theorem 2.2.2. Suppose Φ: (A,Γ) −→ (B,Σ) is a weak equivalence of flat Hopf al-

gebroids. Then Φ∗ : Ch(Γ) −→ Ch(Σ) is a Quillen equivalence of the projective model

structures. In fact, both Φ∗ and Φ∗ preserve and reflect projective equivalences.
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Proof. Since Φ∗ is a right Quillen functor, it preserves weak equivalences (between
fibrant objects, but everything is fibrant). Since Φ∗ is an equivalence, the unit
X −→ Φ∗Φ∗X is an isomorphism, so Φ∗ reflects projective equivalences. On the
other hand, Φ∗ is a symmetric monoidal left adjoint since Φ∗ is an equivalence of
categories. In particular, Φ∗ preserves dualizable comodules. Thus Φ∗ is a left (and
right) Quillen functor of the projective model structures. Hence Φ∗ is also a left
and right Quillen functor, so Φ∗ preserves projective equivalences. Thus Φ∗ reflects
projective equivalences.

To show that Φ∗ is a Quillen equivalence, we need to show that, for X cofibrant
and Y fibrant, a map f : Φ∗X −→ Y is a projective equivalence if and only if its
adjoint g : X −→ Φ∗Y is a projective equivalence. Recall that g is obtained from f
as the composite

X −→ Φ∗Φ∗X
Φ∗f
−−→ Φ∗Y.

The first map in this composite is an isomorphism. Thus g is a projective equiva-
lence if and only if Φ∗f is so. But Φ∗ preserves and reflects projective equivalences,
so Φ∗f is a projective equivalence if and only if f is so. �

2.3. The cobar resolution. The projective model structure is clearly not the
model structure we want, because

hoCh(Γ)(S0A,S0A)∗ ∼= A

concentrated in degree 0, because A is both cofibrant and fibrant in the projective
model structure. Recall that we want

Stable(Γ)(S0A,S0A)∗ ∼= Ext∗Γ(A,A).

Therefore, we have to get an injective resolution of A involved.
The injective resolution we choose is the cobar resolution [Rav86, A1.2.11],

though we offer a simpler construction of it. Suppose M is a Γ-comodule. Then ψ
is a natural comodule embedding M −→ Γ ⊗M of M into an extended comodule,
which is split over A by ǫ ⊗ 1. We can iterate this to construct a resolution of M
by extended A-comodules. The most important case is when M = A. We begin
with the A-split short exact sequence of comodules

0 −→ A
ηL
−−→ Γ −→ Γ −→ 0.

Here Γ is of course the cokernel of ηL, but it is easily seen to be isomorphic to ker ǫ.
When we think of it as ker ǫ, the coaction is defined by ψ(x) = ∆(x) − x ⊗ 1. We

can then tensor this sequence with Γ
∧s

to get the A-split short exact sequence of
comodules

0 −→ Γ
∧s

−→ Γ ∧ Γ
∧s

−→ Γ
∧(s+1)

−→ 0.

We splice these short exact sequences together to obtain a complex LA, where

(LA)−n = Γ ∧ Γ
∧n

for n ≥ 0 and (LA)−n = 0 for n < 0, and the differential is the
composite

Γ ∧ Γ
∧n

−→ Γ
∧(n+1)

−→ Γ ∧ Γ
∧(n+1)

.

In particular, there is a homology isomorphism S0A −→ LA induced by ηL, so that

LA is a resolution of A, and the cycle comodule Z−n(LA) is isomorphic to Γ
∧n

for
n > 0 (and A for n = 0). Furthermore, the A-splittings patch together to show
that S0A −→ LA is a chain homotopy equivalence of complexes of A-modules.
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The complex LA will be very important in the rest of this paper, but LA is not
cofibrant in the projective model structure, since (LA)0 = Γ is not even projective
over A in general. The following proposition is then crucial for us.

Proposition 2.3.1. Suppose that (A,Γ) is a flat Hopf algebroid, that the dualizable

Γ-comodules generate the category of Γ-comodules, and that Γ ∧ X is projectively

trivial when X is so. Let LA denote the cobar resolution of A.

(a) If p is a projective fibration, then LA ∧ p is a projective fibration.

(b) If p is a projective equivalence, then LA ∧ p is a projective equivalence.

Note that, for part (a), it is sufficient to assume that dualizable comodules
generate.

In view of Proposition 2.3.1, we make the following definition.

Definition 2.3.2. A Hopf algebroid (A,Γ) is amenable when it is flat, the dual-
izable Γ-comodules generate the category of Γ-comodules, and Γ ∧ (−) preserves
projectively trivial complexes.

For Proposition 2.3.1 to be of use, we need to know that amenable Hopf alge-
broids do exist.

Proposition 2.3.3. Every Adams Hopf algebroid is amenable.

The rest of this section will be devoted to proving Propositions 2.3.1 and 2.3.3.
Proposition 2.3.3 is an immediate consequence of the following lemma and Propo-
sition 1.4.4.

Lemma 2.3.4. Suppose (A,Γ) is a flat Hopf algebroid.

(a) If M is a filtered colimit of dualizable comodules, then M ∧ (−) preserves

projectively trivial complexes.

(b) If (A,Γ) is Adams, then Γ is a filtered colimit of dualizable comodules.

Proof. For part (a), recall that filtered colimits of projective equivalences are projec-
tive equivalences. We can therefore assume that M itself is a dualizable comodule.
Suppose then that X is projectively trivial. We must show that Γ-comod(P,M∧X)
has no homology for all dualizable comodules P . But

Γ-comod(P,M ∧X) ∼= Γ-comod(P ∧DM,X)

since M is dualizable. Furthermore, P ∧ DM is again dualizable, so since X is
projectively trivial, we are done.

For part (b), since (A,Γ) is an Adams Hopf algebroid, we have Γ = colimi∈I Γi
for a filtered small category I of arrows i : Γi −→ Γ such that Γi is dualizable. Let J

denote the category of factorizations A −→ Γi
i
−→ Γ of ηL through an arrow of I. By

abuse of notation, we write the map A −→ Γi as ηL as well; note that this ηL must
be a split monomorphism of A-modules, since the usual ηL is so. We claim that J
is filtered and that the obvious functor from J to I is cofinal (see Definition 2.3.8
of [HPS97] for a reminder of what this means). This is a straightforwad consequence
of the fact that A is itself finitely presented as a Γ-comodule. It follows then that
colimj∈J Γj ∼= Γ, and therefore that colimΓj ∼= Γ, where Γj = coker ηL. Each Γj
is finitely generated and projective over A, and hence dualizable. �

Part (a) of Proposition 2.3.1 is an immediate consequence of the following lemma
and Proposition 2.1.5.
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Lemma 2.3.5. Let (A,Γ) be a flat Hopf algebroid.

(a) If M is an extended comodule, then M ∧ (−) takes surjections of comodules

to relative epimorphisms.

(b) If X is a complex of extended comodules, then X ∧ (−) takes surjections of

complexes to projective fibrations.

Proof. Suppose f is a surjection of complexes, and M ∼= Γ ⊗ N is an extended
comodule. Let P be a dualizable comodule. Then, using Lemma 1.1.5, we have

Γ-comod(P,M ∧ f) ∼= Γ-comod(P, (Γ ⊗N) ∧ f)

∼= Γ-comod(P,Γ⊗ (N ⊗ f)) ∼= HomA(P,N ⊗ f).

Since f is surjective, so is N ⊗ f . Since P is projective over A, HomA(P,N ⊗ f) is
also surjective, so M ∧ f is a relative epimorphism.

Now suppose X is a complex of extended comodules. Then, in degree n, we have

(X ∧ f)n ∼=
⊕

m

Xm ∧ fn−m.

Each map fn−m is surjective, so part (a) assures us that Xm ∧ fn−m is a relative
epimorphism. Since the dualizable complexes are finitely presented, direct sums of
relative epimorphisms are again relative epimorphisms. Hence X ∧f is a projective
fibration. �

We are left with proving part (b) of Proposition 2.3.1. Our approach is similar
to that of Lemma 2.3.5.

Lemma 2.3.6. Suppose (A,Γ) is a flat Hopf algebroid.

(a) Suppose N is a flat A-module. Then (Γ ⊗N) ∧ (−) takes exact complexes

to projectively trivial complexes.

(b) Suppose X is a bounded below complex such that Xn ∧ (−) preserves pro-

jectively trivial complexes for all n. Then X ∧ (−) preserves projectively

trivial complexes.

(c) Suppose X is a complex of comodules such that Xn ∧ (−) and ZnX ∧ (−)
preserve projectively trivial complexes for all n. Then X ∧ (−) preserves

projectively trivial complexes.

Here ZnX denotes the cycles in degree n, as usual.

Proof. For part (a), suppose Y is a projectively trivial complex and P is a dualizable
comodule. Then, using Lemma 1.1.5, we have

Γ-comod(P, (Γ⊗N) ∧ Y ) ∼= Γ-comod(P,Γ⊗ (N ⊗ Y )) ∼= HomA(P,N ⊗ Y ).

Since Y is exact and N is flat, N ⊗ Y is also exact. Since P is projective over A,
HomA(P,N ⊗ Y ) is also exact, as required.

For part (b), let Y be a projectively trivial complex. Without loss of generality,
we can assume that Xn = 0 for n < 0. Suppose P ∈ S, and z : P −→ (X ∧ Y )n is a
cycle in Γ-comod(P,X ∧ Y ). Since P is finitely presented as a Γ-comodule,

Γ-comod(P, (X ∧ Y )n) ∼=

∞⊕

i=0

Γ-comod(P,Xi ∧ Yn−i).

We can therefore write z = (z0, z1, . . . , zi, . . . ), where zi : P −→ Xi∧Yn−i and zi = 0
for large i. Define the degree of z to be the largest i such that zi is nonzero. We will
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show that every cycle z is homologous to a cycle of smaller degree; since there are
no cycles of degree −1 this will complete the proof. Indeed, suppose z has degree
k. Then zk has to be a cycle in the complex Xk ∧ Y . By assumption, Xk ∧ Y is
projectively trivial, so zk must be a boundary in this complex. This means that
there is a w : P −→ Xk ∧Yn−k+1 such that (1∧d)w = zk. But then z is homologous
to z′ = z + (−1)k+1dw, and one can easily check that w has degree < k.

For part (c), again assume that Y is projectively trivial. Let X i be the subcom-
plex of X such that X i

n = Xn for n > −i, X i
n = 0 for n < −i, and X i

−i = Z−iX . By

part (b), each of the complexes X i ∧ Y is projectively trivial. But X = colimX i,
so X ∧ Y = colimX i ∧ Y . Since filtered colimits of projective equivalences are
projective equivalences, X ∧ Y is therefore projectively trivial. �

We can now prove Proposition 2.3.1(b).

Proof of Proposition 2.3.1(b). We need to show that LA ∧ (−) preserves projec-
tive equivalences. Since the projective trivial cofibrations are in particular chain
homotopy equivalences, LA ∧ (−) certainly takes them to projective equivalences.
It therefore suffices to show that LA ∧ (−) preserves projective trivial fibrations.
By part (a), LA ∧ (−) preserves projective fibrations, so it suffices to show that
LA ∧ (−) preserves projectively trivial complexes.

In view of Lemma 2.3.6, it suffices to show that (LA)n ∧ (−) and ZnLA ∧ (−)

preserve projectively trivial complexes. Since (LA)−n = Γ ∧ Γ
∧n

for n ≥ 0, and Γ
is flat as an A-module since Γ is so, Lemma 2.3.6(a) guarantees that (LA)n ∧ (−)

preserves projectively trivial complexes. On the other hand, Z−n(LA) ∼= Γ
∧n

for
n ≥ 0. The amenable assumption guarantees that Γ ∧ (−) preserves projectively
trivial complexes, and then iteration shows that Z−n(LA)∧(−) does so as well. �

3. Homotopy groups

When the dualizable Γ-comodules generate the category of Γ-comodules, we
know from Proposition 2.1.5 that projective equivalences are homology isomor-
phisms. But homology is not the most important functor of complexes of comod-
ules; homotopy is. In this section we define and study the homotopy groups of
a chain complex of comodules. We show that these homotopy groups are closely
related to Ext in the category of Γ-comodules and have similar properties. When
(A,Γ) is amenable, every projective equivalence is a homotopy isomorphism and
every homotopy isomorphism is a homology isomorphism. The object of Section 5
will then be to construct a model structure on Ch(Γ) in which the weak equivalences
are the homotopy isomorphisms.

3.1. Relatively injective comodules. To explain homotopy groups, we need to
remind the reader of some of the basic results on relatively injective comodules.
Some of this can be found in [Rav86, Appendix 1].

Definition 3.1.1. Suppose (A,Γ) is a flat Hopf algebroid. A comodule I is called
relatively injective if Γ-comod(−, I) takes A-split short exact sequences to short
exact sequences.

Lemma 3.1.2. Suppose (A,Γ) is a flat Hopf algebroid. The relatively injective

comodules are the retracts of extended comodules. In particular, there is a natural

A-split embedding of any comodule into a relatively injective comodule.
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Proof. We have Γ-comod(−,Γ ⊗ N) ∼= HomA(−, N). Thus extended comodules,
and so also retracts of extended comodules, are relatively injective. Conversely, if I

is a relative injective, the map I
ψ
−→ Γ⊗ I must have a retraction, since it is a map

of comodules that is split over A by ǫ⊗ 1. Thus I is a retract of Γ⊗ I. The natural
A-split embedding of the statement of the lemma is just ψ : M −→ Γ⊗M . �

Of course, there are (absolutely) injective comodules as well. A similar argument
shows that the injective comodules are retracts of extended comodules Γ⊗I, where I
is an injective A-module. But relatively injective comodules are much easier to work
with than injective comodules, partly because injective A-modules are complicated,
and partly because of the following lemma.

Lemma 3.1.3. Suppose (A,Γ) is a flat Hopf algebroid.

(a) Relatively injective comodules are closed under coproducts and products.

(b) If M is an arbitrary comodule and I is relatively injective, then I ∧M and

F (M, I) are relatively injective.

Proof. For part (a), it suffices to show that extended comodules are closed under
coproducts and products. But we have

⊕
(Γ⊗Mi) ∼= Γ⊗ (

⊕
Mi) and

Γ∏
(Γ⊗Mi) ∼= Γ⊗ (

∏
Mi),

the latter by the construction of products in Proposition 1.2.2.
For part (b), we first prove that F (M, I) is relatively injective. We must show

that Γ-comod(−, F (M, I)) takes A-split short exact sequences to short exact se-
quences. But Γ-comod(−, F (M, I)) is naturally isomorphic to Γ-comod(−∧M, I),
so this is clear.

To show that I∧M is relatively injective, note that I∧M is a retract of (Γ⊗I)∧M ,
which is isomorphic to Γ ∧ I ∧M by Lemma 1.1.5. On the other hand, another
use of Lemma 1.1.5 shows that Γ ∧ I ∧M is isomorphic to the extended comodule
Γ⊗ (I ⊗M), completing the proof. �

Relatively injective comodules can be used to compute Ext when the source is
projective over A.

Lemma 3.1.4. Suppose (A,Γ) is a flat Hopf algebroid, P is a Γ-comodule that is

projective over A, and I is a relatively injective comodule. Then ExtnΓ(P, I) = 0 for

all n > 0. Hence, if I∗ is a resolution of M by relatively injective comodules,

ExtnΓ(P,M) ∼= H−n(Γ-comod(P, I∗)).

Proof. The second statement is an immediate consequence of the first. It suffices
to prove the first statement for I = Γ⊗N , since every relatively injective comodule
is a retract of an extended comodule. Let J∗ be an injective resolution of N in the
category of A-modules. Then Γ⊗J∗ is an injective resolution of Γ⊗N in Γ-comod,
since Γ is flat over A. Hence

ExtnΓ(P,Γ⊗N) ∼= H−n(Γ-comod(P,Γ⊗ J∗)) ∼= H−nHomA(P, J∗) ∼= ExtnA(P,N).

Since P is projective over A, this group is 0 for n > 0. �
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3.2. Homotopy groups. Now recall that LA denotes a specific resolution of A by
relatively injective comodules, defined in Section 2.3, such that the map S0A −→ LA
is a chain homotopy equivalence over A. It follows that LA∧M is a resolution ofM
for any comoduleM . It is in fact a resolution by relative injectives by Lemma 3.1.3.
Thus we have

ExtnΓ(P,M) ∼= H−n(Γ-comod(P,LA ∧M))

for any comodule P that is projective over A.
We now extend this definition, replacing M by a complex X .

Definition 3.2.1. Suppose (A,Γ) is a flat Hopf algebroid, X ∈ Ch(Γ), P ∈ S,
and n ∈ Z. Define the nth homotopy group of X with coefficients in P , πPn (X), by
πPn (X) = H−n(Γ-comod(P,LA ∧X)).

We need to say a few words about grading. We have essentially two choices; we
can grade homotopy as if it were the homotopy groups of a space, or we can grade it
as if it were the Ext groups of a comodule. Either way has problems; grading it like
Ext means the exact sequences on homotopy go up instead of down in dimension,
but grading it like homotopy means the homotopy groups of A will be concentrated
in negative degrees. Following Palmieri’s work on the Steenrod algebra [Pal01], we
choose to grade it like Ext. This extends to bigrading as well; if (A,Γ) is a graded
Hopf algebroid, as it always is in algebraic topology, we define

πPs,t(X) = H−s,t(Γ-comod(P,LA ∧X)).

The homotopy groups are of course functorial inX , and they satisfy the expected
properties, correcting for the strange grading.

Lemma 3.2.2. Suppose (A,Γ) is a flat Hopf algebroid.

(a) A short exact sequence of complexes

0 −→ X −→ Y −→ Z −→ 0

induces a natural long exact sequence

· · · −→ πPn (X) −→ πPn (Y ) −→ πPn (Z) −→ πPn+1(X) −→ · · ·

(b) If X is a filtered colimit of complexes X i, then πPn (X) ∼= colimπPn (X
i).

Proof. For part (a), since LA is degreewise flat over A, the sequence

0 −→ LA ∧X −→ LA ∧ Y −→ LA ∧ Z −→ 0

remains exact. By Lemma 3.1.3, LA∧X is a complex of relative injectives. There-
fore, the sequence of complexes

0 −→ Γ-comod(P,LA ∧X) −→ Γ-comod(P,LA ∧ Y ) −→ Γ-comod(P,LA ∧ Z) −→ 0

remains exact, by Lemma 3.1.4. The long exact sequence in homology of this short
exact sequence finishes the proof of part (a).

For part (b), we simply note that LA ∧ −, Γ-comod(P,−), and homology all
commute with filtered colimits. �
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3.3. Homotopy isomorphisms. A chain map φ is called a homotopy isomorphism

if πPn (φ) is an isomorphism for all n ∈ Z and all P ∈ S. Note that φ is a homotopy
isomorphism if and only if LA ∧ φ is a projective equivalence. We claim that
homotopy isomorphisms are the natural notion of weak equivalence in Ch(Γ).

Proposition 3.3.1. Suppose (A,Γ) is an amenable Hopf algebroid. Then every

projective equivalence is a homotopy isomorphism, and every homotopy isomor-

phism is a homology isomorphism.

Proof. Suppose p is a projective equivalence. Then Proposition 2.3.1 tells us that
LA ∧ p is also a projective equivalence, so p is a homotopy isomorphism. Now
suppose p : X −→ Y is a homotopy isomorphism. Then LA ∧ p is a projective
equivalence, and hence a homology isomorphism by Proposition 2.1.5. But A −→ LA
is a chain homotopy equivalence over A, so X −→ LA∧X and Y −→ LA∧Y are also
chain homotopy equivalences over A, and in particular homology isomorphisms.
Hence p is a homology isomorphism. �

Homotopy isomorphisms have the properties one would hope for in a collection
of weak equivalences.

Proposition 3.3.2. Suppose (A,Γ) is a flat Hopf algebroid.

(a) Homotopy isomorphisms are closed under retracts and have the two out of

three property.

(b) Homotopy isomorphisms are closed under filtered colimits.

(c) If f is an injective homotopy isomorphism, and g is a pushout of f , then g
is an injective homotopy isomorphism. Dually, if f is surjective homotopy

isomorphism, and g is a pullback of f , then g is a surjective homotopy

isomorphism.

(d) If f is a homotopy isomorphism, then any pushout of f through an injective

map is again a homotopy isomorphism. Dually, any pullback of f through

a surjective map is again a homotopy isomorphism.

(e) Suppose f : X −→ Y is an injective homotopy isomorphism, and g : A −→ B
is a cofibration. Then the pushout product

f � g : (X ∧B) ∐X∧A (Y ∧ A) −→ Y ∧B

is an injective homotopy isomorphism.

Proof. We leave part (a) to the reader. Part (b) is immediate from the fact that ho-
motopy groups commute with filtered colimits. For part (c), suppose g is a pushout
of the injective homotopy isomorphism f . Then g is injective, with cokernel coker f .
Since f is a homotopy isomorphism, the long exact sequence of Lemma 3.2.2 shows
that coker f has zero homotopy. Another use of that long exact sequence shows
that g is a homotopy isomorphism. The dual case is similar.

For part (d), suppose that g : B −→ D is the pushout of the homotopy isomor-
phism f : A −→ C through the injection i : A −→ B. Then we have the map of short
exact sequences below.

0 −−−−→ A
i

−−−−→ B −−−−→ X −−−−→ 0

f

y g

y
∥∥∥

0 −−−−→ C −−−−→ D −−−−→ X −−−−→ 0
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The long exact sequence in homotopy and the five lemma show that g is a homotopy
isomorphism. The dual case is similar.

For part (e), note that parts (b) and (c) imply that injective homotopy isomor-
phisms are closed under pushouts and filtered colimits, hence transfinite composi-
tions. Thus it suffices to prove part (e) when g is one of the generating cofibrations
Sn−1P −→ DnP of the projective model structure, by Lemma 4.2.4 of [Hov99]. We
leave to the reader the check that f � g is injective in this case, and just prove
it is a homotopy isomorphism. Since f is a homotopy isomorphism, LA ∧ f is a
projective equivalence. Therefore, (LA ∧ f) ∧ Sn−1P is a projective equivalence
by Proposition 2.1.4, and so f ∧ Sn−1P is a homotopy isomorphism. Similarly,
f ∧ DnP is a homotopy isomorphism. Both such maps are also injective, since P
is flat over A. Part (c) implies that the pushout

X ∧DnP −→ (X ∧DnP ) ∐X∧Sn−1P (Y ∧ Sn−1P )

is also an injective homotopy isomorphism. The two out of three property for
homotopy isomorphisms then implies that f � g is a homotopy isomorphism. �

Our next goal is to give some useful examples of homotopy isomorphisms that
are not projective equivalences. We begin with the following lemma.

Lemma 3.3.3. Let (A,Γ) be a flat Hopf algebroid. Suppose X ∈ Ch(Γ) is bounded
above and contractible as a complex of A-modules, and Y ∈ Ch(Γ) is a complex of

relatively injective comodules. Then every chain map f : X −→ Y is chain homotopic

to 0.

Proof. We construct a chain homotopy Dn : Xn −→ Yn+1 by downwards induction
on n. Getting started is easy, sinceXn = 0 for large n. Suppose we have constructed
Dn+1 and Dn+2 such that dDn+2 +Dn+1d = fn+2. We need to construct Dn such
that dDn+1 +Dnd = fn+1. One can readily verify that

(fn+1 − dDn+1)d = 0

and so fn+1 − dDn+1 defines a map g : Xn+1/ imd = Xn+1/ kerd −→ Yn+1. On the
other hand, we are given that X is A-contractible, so there are A-module maps
sn : Xn −→ Xn+1 such that ds + sd = 1. In particular, d : Xn+1/ kerd −→ Xn

is an A-split monomorphism. Since Yn+1 is relatively injective, there is a map
Dn : Xn −→ Yn+1 such that Dnd = fn+1 − dDn+1. This completes the induction
step and the proof. �

This gives the following proposition.

Proposition 3.3.4. Let (A,Γ) be a flat Hopf algebroid, and suppose f : X −→ Y is a

map of bounded above complexes in Ch(Γ) that is an A-split monomorphism in each

degree and a chain homotopy equivalence of complexes of A-modules. Then LA∧ f
is a chain homotopy equivalence. In particular, f is a homotopy isomorphism.

Proof. Let Z denote the cokernel of f . Then Z is bounded above and contractible as
a complex of A-modules (one can check this directly, but it also follows because f is
a trivial cofibration in the absolute model structure on Ch(A) [CH02, Example 3.4]).
Therefore LA∧Z is a bounded above complex of relatively injective comodules that
is contractible over A. Lemma 3.3.3 implies that LA∧Z is contractible. Since LA
is degreewise flat over A, LA ∧ Z is the cokernel of LA ∧ f . Furthermore, LA ∧ f
is a degreewise A-split monomorphism of relatively injective comodules, so it is
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a degreewise split monomorphism. It follows that LA ∧ f is a chain homotopy
equivalence. �

Corollary 3.3.5. Suppose (A,Γ) is a flat Hopf algebroid. Then the map

ηL ∧X : X −→ LA ∧X

is a homotopy isomorphism for all complexes X. In fact, LA ∧ ηL ∧X is a chain

homotopy equivalence.

Proof. The map ηL : A −→ LA is a map of bounded above complexes that is a
degreewise A-split monomorphism and an A-chain homotopy equivalence. Propo-
sition 3.3.4 implies that LA ∧ ηL is a chain homotopy equivalence. One can easily
check that this forces LA ∧ ηL ∧X to be a chain homotopy equivalence for any X ,
and so ηL ∧X is a homotopy isomorphism. �

4. Localization

In the next section, we will localize the projective model structure to obtain
a model structure on Ch(Γ) in which the weak equivalences are the homotopy
isomorphisms. To prove that this construction works, we need some general results
about Bousfield localization of model categories. The basic reference for Bousfield
localization is [Hir02], but the results we prove in this section are new.

Suppose we have a model category M and a class of maps T . The Bousfield
localization LT M of M with respect to T is a new model structure on M, with the
same cofibrations as the given one, in which the maps of T are weak equivalences.
Futhermore, it is the initial such model category, in the sense that if F : M −→ N
is a (left) Quillen functor that sends the maps of T to weak equivalences, then
F : LT M −→ N is also a Quillen functor.

The Bousfield localization is known to exist when T is a set, M is left proper,
and, in addition, M is either cellular [Hir02] or combinatorial (unpublished work of
Jeff Smith). The cellular condition is technical, but has the virtue of being written
down and of applying to topological spaces. The combinatorial condition is simpler;
it just means that M is cofibrantly generated and locally presentable as a category.

To describe the localized model structure, it is necessary to recall that any model
category M possesses a unital action by the category SSet of simplicial sets. That
is, there is a bifunctor M × SSet −→ M that takes (X,K) to X ⊗ K described
in [Hov99, Chapter 5]. This is a unital action but is not associative; it induces an
associative action of hoSSet on hoM. In fact, hoM is not only tensored over
hoSSet, but also cotensored and enriched over hoSSet [Hov99, Chapter 5]. The
enrichment is denoted by map(X,Y ) ∈ SSet.

Now, a fibrant objectX in LT M, called a T -local fibrant object, is a fibrant object
X in M such that map(f,X) is a weak equivalence of simplicial sets for all f ∈ T .
Adjointness gives an equivalent description, as follows. Given a map f : X −→ Y in

M, let f̃ : X̃ −→ Ỹ denote a cofibration that is a cofibrant approximation to f . This

means that X̃ and Ỹ are cofibrant, f̃ is a cofibration, and we have the commutative
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diagram below

X̃
f̃

−−−−→ Ỹ
y

y

X −−−−→
f

Y

where the vertical arrows are weak equivalences. Then a horn on f is one of the

maps f̃ � in for n ≥ 0, where in : ∂∆[n] −→ ∆[n] is the standard inclusion of

simplicial sets, and f̃ � i is the pushout product map

(X̃ ⊗∆[n]) ∐X̃⊗∂∆[n] (Ỹ ⊗ ∂∆[n]) −→ Y ⊗∆[n].

These maps are all cofibrations [Hov99, Proposition 5.4.1]. Then Proposition 4.2.4
of [Hir02] says that a fibrant object X is a T -local fibrant object if and only if
X −→ ∗ has the right lifting property with respect to the horns on all the maps of
T .

Having obtained the fibrant objects, one defines a map f to be a T -local equiv-

alence if map(f,X) is a weak equivalence of simplicial sets for all T -local fibrant
objects X . These are the weak equivalences in LT M. The fibrations are then the
maps that have the right lifting property with respect to all maps that are both
cofibrations and T -local equivalences.

If M is a simplicial model category, then one can understand the horns of f by
using the simplicial structure. But unbounded chain complexes are not simplicial.
It is still easy to understand the horns, however. Let ∆[n] be the chain complex

of abelian groups defined by letting ∆[n]k be the free abelian group on the
(
n+1
k+1

)

k + 1-element subsets of {0, 1, . . . , n}, for k ≥ 0. If 1S denotes the generator
corresponding to the set S = {s0 < s1 < · · · < sk}, we define

d(1S) =

k∑

i=0

(−1)i1S−{si}.

This is the obvious chain complex corresponding to the nondegenerate simplices of
∆[n]. Then ∂∆[n]k denotes the subcomplex containing all the 1S except the one

in degree n corresponding to S = {0, 1, . . . , n}. Let in denote the obvious inclusion

∂∆[n] −→ ∆[n].
The following lemma is a consequence of the naturality of the action of hoSSet

on hoM, and can be deduced from [Hov99, Chapter 5].

Lemma 4.1. Suppose M is a Ch(Z)-model category, and f ∈ M with a cofi-

brant approximation f̃ that is a cofibration. Then in the description of Bousfield

localization above, one can replace the horns on f with the maps f̃ � in.

In general, it is difficult to understand the weak equivalences in LT M; certainly
the maps of T become weak equivalences, but many other maps do as well. The
following theorem is of some help.

Theorem 4.2. Suppose M is a left proper model category that is either cellular

or combinatorial, and T is a set of maps in M. Let W be a class of maps in M
satisfying the two out of three property, containing the horns on the maps of T
and every weak equivalence in M, and such that maps that are both cofibrations
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and in W are closed under transfinite compositions and pushouts. Then every weak

equivalence in LT M is in W.

Proof. Suppose f : X −→ Y is a weak equivalence in the Bousfield localization. Let
L : M −→ M denote the functor obtained by applying the small object argument
based on T ∪ J , where J is the set of generating trivial cofibrations of M, to the
map X −→ ∗. Then the maps X −→ LX and Y −→ LY are transfinite compositions of
pushouts of maps of T ∪J . This means that they are weak equivalences in LT M, by
Propositions 3.3.10 and 4.2.3 of [Hir02], and also in W by our hypotheses. Hence
Lf is a weak equivalence in LT M whose domain and codomain are fibrant (by
Proposition 4.2.4 of [Hir02]) in LT M. Thus, by Theorem 3.2.13 of [Hir02], Lf is
a weak equivalence in M itself, and hence is in W . The two out of three property
for W now guarantees that f is in W . �

In general, Bousfield localization causes one to lose control of the set of gener-
ating trivial cofibrations. Even if M itself has a very nice set of generating trivial
cofibrations, all the theory tells you is that LT M has some, possibly gigantic, set
of generating trivial cofibrations. The following proposition is at least of some help
in dealing with this.

Proposition 4.3. Suppose M is a left proper, cellular or combinatorial model

category, and T is a set of maps in M. Assume that M has a set of generating

trivial cofibrations whose domains are cofibrant. Then LT M has a set of generating

trivial cofibrations whose domains are cofibrant.

Proof. Let J be a set of generating trivial cofibrations of M whose domains (and
hence codomains) are cofibrant, and let J ′ be some set of generating trivial cofi-

brations of LT M. For each map j ∈ J ′, choose a cofibration ĵ of cofibrant objects
that is a cofibrant approximation to j, so that we have a commutative square

dom ĵ −−−−→ dom j

ĵ

y
yj

codom ĵ −−−−→ codom j

where the horizontal maps are weak equivalences in M. Let Ĵ ′ denote the set of

those ĵ, and left K = J ∪ Ĵ ′. Then K is a set of trivial cofibrations in LT M
with cofibrant domains. We claim that K is a generating set of trivial cofibrations.
Indeed, suppose p has the right lifting property with respect to K. Then p has the
right lifting property with respect to J , so p is a fibration in M. Since p also has the
right lifting property with respect to Ĵ ′ and M is left proper, Proposition 13.1.16
of [Hir02] implies that p has the right lifting property with respect to J ′, and hence
that p is a fibration in LT M. �

5. The homotopy model structure

The object of this section is to construct a model structure on Ch(Γ), when (A,Γ)
is an amenable Hopf algebroid, in which the weak equivalences are the homotopy
isomorphisms. Proposition 3.3.1 tells us that we need to add more weak equiva-
lences to the projective model structure. We do this by using Bousfield localization,
described in the previous section.
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5.1. Construction and basic properties.

Definition 5.1.1. Suppose (A,Γ) is an amenable Hopf algebroid. Let S denote a
set containing one element from each isomorphism class of dualizable comodules.
Define the homotopy model structure on Ch(Γ) to be the Bousfield localization of
the projective model structure with respect to the maps

ηL ∧ SnP : SnP −→ LA ∧ SnP

for P ∈ S and n ∈ Z.

We have already seen that Γ-comod is a locally (finitely) presentable cate-
gory 1.4.1. It follows easily that Ch(Γ) is also locally (finitely) presentable, so
that Ch(Γ) is a combinatorial model category. Thus the (unpublished) work of Jeff
Smith guarantees that the homotopy model structure exists. In fact, Ch(Γ) is also
cellular, so one can use Hirschhorn’s theory [Hir02] as well.

Note that the cofibrations do not change under Bousfield localization, though the
fibrations and weak equivalences will change. This means that the trivial fibrations
also do not change under Bousfield localization, and therefore that a cofibrant
replacement functor in the projective model structure is also a cofibrant replacement
functor in the homotopy model structure. Since Bousfield localization preserves left
properness [Hir02, Theorem 4.1.1], the homotopy model structure is left proper.

Our first goal is to prove that the weak equivalences in the homotopy model
structure are the homotopy isomorphisms, explaining the name.

Proposition 5.1.2. Let (A,Γ) be an amenable Hopf algebroid. Then every weak

equivalence in the homotopy model structure is a homotopy isomorphism.

Proof. Proposition 3.3.1 and Proposition 3.3.2 tell us that the class of homotopy
isomorphisms has all the properties necessary for Theorem 4.2 to apply. It remains
to check that the horns on ηL ∧ SnP are homotopy isomorphisms. Now Ch(Γ) is a
Ch(Z) model category; in fact, there is a symmetric monoidal left Quillen functor
Ch(Z) −→ Ch(Γ), induced by the trivial comodule functorM 7→ A⊗ZM . Lemma 4.1
implies that the horns on f can be taken to be the maps f � (A ⊗Z in). One can
easily check that each map A ⊗Z in is a projective cofibration. The lemma then
follows from Proposition 3.3.2(e). �

To prove the converse, we need the following proposition.

Proposition 5.1.3. Let (A,Γ) be a flat Hopf algebroid, and suppose C is cofibrant

in Ch(Γ). Then ηL∧C : C −→ LA∧C is a weak equivalence in the homotopy model

structure.

Proof. Factor ηL : S
0A −→ LA into a cofibration i : S0A −→ QLA followed by a triv-

ial fibration q. It suffices to show that i∧C is a trivial cofibration in the homotopy
model structure, because q∧C is a projective equivalence by Proposition 2.1.4. For
dualizable P , ηL ∧ SnP is a weak equivalence in the homotopy model structure by
construction, so i ∧ SnP is a trivial cofibration in the homotopy model structure.
Since C is cofibrant, 0 −→ C is a retract of a transfinite composition

0 = C0 −→ C1 −→ · · ·Ci −→ · · ·

where each map Ci −→ Ci+1 is a pushout of a map Sn−1P −→ DnP , where P ∈ S
and n ∈ Z. It suffices to show that i ∧ Ci is a trivial cofibration in the homotopy
model structure for all i, which we do by transfinite induction. The base case is
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trivial, since C0 = 0. For the successor ordinal step, suppose i ∧ Ci is a trivial
cofibration. We have pushout diagrams

Sn−1P −−−−→ DnP
y

y

Ci −−−−→ Ci+1

and
QLA ∧ Sn−1P −−−−→ QLA ∧DnP

y
y

QLA ∧ Ci −−−−→ QLA ∧ Ci+1

and i induces a map from one of these to the next. This map is a weak equiva-
lence on the upper left corners as mentioned above, a chain homotopy equivalence
on the upper right corners because DnP is contractible, and a weak equivalence
on the lower left corners by the induction hypothesis. It follows from the cube
lemma [Hov99, Lemma 5.2.6] that i ∧ Ci+1 is a weak equivalence as well. Because
the projective structure is monoidal, i ∧ Ci+1 is also a cofibration.

We are left with the limit ordinal step of the induction. So suppose that i ∧ Ci
is a trivial cofibration in the homotopy model structure for all i < α for some
limit ordinal α. Then Proposition 18.10.1 of [Hir02] implies that i ∧ Cα is a weak
equivalence as well, and hence a trivial cofibration. �

Theorem 5.1.4. Suppose (A,Γ) is an amenable Hopf algebroid. Then the weak

equivalences in the homotopy model structure are the homotopy isomorphisms.

Proof. We have already seen that every weak equivalence in the homotopy model
structure is a homotopy isomorphism. Conversely, suppose f : X −→ Y is a homo-
topy isomorphism. By using a cofibrant replacement functor Q in the projective
model structure, we can construct the commutative diagram below,

QX
Qf

−−−−→ QY

qX

y
yqY

X −−−−→
f

Y

where qX and qY are projective equivalences, and QX and QY are cofibrant. In
particular, since projective equivalences are homotopy isomorphisms by Proposi-
tion 3.3.1, Qf is a homotopy isomorphism. Since every projective equivalence is a
weak equivalence in the homotopy model structure, it suffices to show that the ho-
motopy isomorphism Qf is a weak equivalence. Consider the commutative square
below.

QX
ηL∧QX
−−−−−→ LA ∧QX

Qf

y
yLA∧Qf

QY −−−−−→
ηL∧QY

LA ∧QY

Both of the horizontal maps are weak equivalences in the homotopy model structure
by Proposition 5.1.3. Since Qf is a homotopy isomorphism, LA∧Qf is a projective
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equivalence, and therefore a weak equivalence in the homotopy model structure. It
follows that Qf is a weak equivalence in the homotopy model structure as well. �

Many properties of the homotopy model structure follow immediately from The-
orem 5.1.4.

Theorem 5.1.5. Suppose (A,Γ) is an amenable Hopf algebroid. Then the ho-

motopy model structure is proper, symmetric monoidal, and satisfies the monoid

axiom. Moreover, if C is cofibrant, then C ∧ − preserves weak equivalences.

The monoid axiom and the last statement of this theorem are important because
they guarantee the existence of homotopy invariant model categories of modules and
monoids, as explained following the statement of Proposition 2.1.4.

Proof. Bousfield localization preserves left properness, as has already been ob-
served. The fact that the homotopy model structure is right proper follows imme-
diately from Theorem 5.1.4 and Proposition 3.3.2. The homotopy model structure
is symmetric monoidal by Proposition 3.3.2(e).

Now for the monoid axiom, which we recall states that any transfinite compo-
sition of pushouts of maps of the form f ∧X , where f is a trivial cofibration and
X is arbitrary, is a weak equivalence. Let us suppose we know that f ∧X itself is
a weak equivalence for all trivial cofibrations f and all X . Since cofibrations are
degreewise Γ-split monomorphisms, it follows that f ∧ X is also injective. Since
injective homotopy isomorphisms are closed under pushouts and filtered colimits
by Propostion 3.3.2, the monoid axiom will follow.

We are left with showing that f ∧ X is a homotopy isomorphism for all trivial
cofibrations f in the homotopy model structure and all X . It suffices to show this
for a set of generating trivial cofibrations f , and Proposition 4.3 allows us to assume
those generating trivial cofibrations f have cofibrant domains and codomains. Let
q : QX −→ X be a cofibrant replacement of X , so that q is a projective equvalence
and QX is cofibrant. We have the commutative square below.

dom f ∧QX
dom f∧q
−−−−−→ dom f ∧X

f∧QX

y
yf∧X

codom f ∧QX −−−−−−−→
codom f∧q

codom f ∧X

By Proposition 2.1.4, both the horizontal maps are projective equivalences, and
hence homotopy isomorphisms. Since the homotopy model structure is symmetric
monoidal, f ∧QX is a homotopy isomorphism. It follows that f ∧X is a homotopy
isomorphism as well, completing the proof of the monoid axiom.

Now suppose C is cofibrant, and f is a weak equivalence. Then LA ∧ f is a
projective equivalence. By Proposition 2.1.4, it follows that C ∧ LA ∧ f is still
a projective equivalence. Hence C ∧ f is a homotopy isomorphism, so a weak
equivalence. �

5.2. Fibrations. We now characterize the fibrations in the homotopy model struc-
ture.

Proposition 5.2.1. Suppose (A,Γ) is an amenable Hopf algebroid. Then a map

p is a fibration in the homotopy model structure if and only if p is a projective

fibration and ker p is fibrant in the homotopy model structure.
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Proof. Certainly, if p is a homotopy fibration, then p must be a projective fibration
and ker p must be homotopy fibrant. Conversely, suppose p : X −→ Y is a projective
fibration and ker p is homotopy fibrant. Form the commutative square below by
using factorization,

(5.2.2)

X
iX−−−−→ X ′

p

y
yq

Y −−−−→
iY

Y ′

where iX and iY are trivial cofibrations in the homotopy model structure, X ′ and
Y ′ are homotopy fibrant, and q is a homotopy fibration. We claim that this square
is a homotopy pullback square in the projective model structure. Proposition 3.4.7
of [Hir02] then implies that p is a fibration in the homotopy model structure.

To see that the square 5.2.2 is a homotopy pullback square, let P
q′

−→ Y be the
pullback of q through iY . Then q

′ is a projective fibration, and there is an induced
factorization

X
s
−→ P

t
−→ X ′

of iX . Since t is the pullback of the homotopy isomorphism iY through the surjec-
tion q, Proposition 3.3.2 implies that t is a homotopy isomorphism. Hence s is a
homotopy isomorphism as well. Consider the commutative diagram below

0 −−−−→ ker p −−−−→ X
p

−−−−→ Y −−−−→ 0

r

y s

y
∥∥∥

0 −−−−→ ker q −−−−→ P
q′

−−−−→ Y −−−−→ 0

whose rows are short exact (since projective fibrations are surjective). The long
exact sequence in homotopy implies that r is a homotopy isomorphism. But ker p
is homotopy fibrant by assumption, and ker q is homotopy fibrant since q is a
homotopy fibration. Theorem 3.2.13 of [Hir02] implies that r is a projective equiv-
alence. Applying Γ-comod(Q,−) for Q ∈ S and considering the long exact homol-
ogy sequence shows that s is a projective equivalence as well. This means that the
square 5.2.2 is a homotopy pullback square, completing the proof. �

The characterization of fibrations we have just given would be more helpful if
we knew what the fibrant objects in the homotopy model structure are.

Theorem 5.2.3. Suppose (A,Γ) is an amenable Hopf algebroid. Then the following

are equivalent.

(a) ηL ∧X : X −→ LA ∧X is a projective equivalence.

(b) X is projectively equivalent to some complex of relative injectives.

(c) X is fibrant in the homotopy model structure.

Proof. It is clear that (a) implies (b). To see that (b) implies (c), our first goal is to
show that if X is projectively equivalent to some complex of relative injectives, then
ηL∧X is a projective equivalence (incidentally proving (b) implies (a)). It obviously
suffices to show this for actual complexes of relative injectives X . Any such complex
can be written as the colimit of the bounded above complexes Xn, where Xn

i = 0
for i > n and Xn

i = Xi for i ≤ n. Since colimits of projective equivalences
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are projective equivalences, we can assume that X is a bounded above complex of
relative injectives. In this case, we will show that ηL∧X is in fact a chain homotopy
equivalence. Indeed, since ηL is a degreewise A-split monomorphism, ηL ∧ X is
a degreewise A-split monomorphism between complexes of relative injectives. It
follows that ηL∧X is a degreewise split monomorphism of relative injectives. Let Y
denote the cokernel of ηL ∧X . Then Y is also a bounded above complex of relative
injectives, and Y is contractible as a complex of A-modules since ηL is a chain
homotopy equivalence of complexes of A-modules. Lemma 3.3.3 then implies that
Y is contractible as a complex of comodules. Given this, an elementary argument
then shows that ηL ∧X is a chain homotopy equivalence.

Now suppose that X is projectively equivalent to a complex of relative injectives,
C is cofibrant and π∗C = 0. We claim that every chain map f : C −→ X is chain
homotopic to 0. Indeed, the composite

C
f
−→ X

ηL∧X
−−−−→ LA ∧X

factors through LA ∧ C, which is projectively trivial. Hence the map (ηL ∧X) ◦ f
is 0 in the homotopy category of the projective model structure. Since ηL ∧ X
is a projective equivalence by the previous paragraph, we conclude that f is 0 in
the homotopy category of the projective model structure. Since C is cofibrant and
everything is fibrant in the projective model structure, it follows that f is chain
homotopic to 0.

We can now complete the proof that (b) implies (c) by showing that X −→ 0
has the right lifting property with respect to every cofibration i : A −→ B that is
a homotopy isomorphism. Indeed, suppose f : A −→ X and let C be the cokernel
of i. Since i is a cofibration, it is a split monomorphism in each degree, and so
Bn ∼= An⊕Cn. The differential on B must then be given by d(a, c) = (da+ τc, dc),
where τd = −dτ . Thus τ is a chain map from the desuspension Σ−1C of C to A.
The composition

Σ−1C
τ
−→ A

f
−→ X

must be chain homotopic to 0, since Σ−1C is cofibrant and π∗Σ
−1C = 0. Hence

there are maps Dn : Cn −→ An such that −Dn−1d+ dDn = fτ . Define

g(a, c) = fa+Dnc.

Then g : B −→ C is a chain map extending f , soX −→ 0 has the right lifting property
with respect to i as required.

We now show that (c) implies (a). So suppose X is fibrant in the homotopy
model structure. The map ηL ∧X : X −→ LA ∧X is a homotopy isomorphism by
Corollary 3.3.5. Since X is fibrant, and LA∧X is also fibrant since (b) implies (c),
it follows from Theorem 3.2.13 of [Hir02] that ηL∧X is a projective equivalence. �

Corollary 5.2.4. Suppose (A,Γ) is an amenable Hopf algebroid, and give Ch(Γ)
the homotopy model structure. For any X ∈ Ch(Γ), the map

ηL ∧X : X −→ LA ∧X

is a natural weak equivalence whose target is fibrant.

This follows immediately from Corollary 3.3.5 and Theorem 5.2.3. Note that
ηL ∧X is not normally a cofibration, however.

We also note the following corollary.
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Corollary 5.2.5. Suppose (A,Γ) is an amenable Hopf algebroid, and given Ch(Γ)
the homotopy model structure. Then weak equivalences and fibrations are closed

under filtered colimits.

This corollary is saying that the homotopy model structure behaves as if it were
finitely generated. We do not know if it is in fact finitely generated for a general
amenable Hopf algebroid, though for an Adams Hopf algebroid it is.

Proof. We have seen in Proposition 3.3.2 that homotopy isomorphisms are closed
under filtered colimits. Since homotopy fibrations are just projective fibrations with
homotopy fibrant kernel, and projective fibrations are closed under filtered colimits,
it suffices to show that homotopy fibrant objects are closed under filtered colimits.
This follows from the characterization of homotopy fibrant objects in part (a) of
Theorem 5.2.3, since projective equivalences are closed under filtered colimits. �

5.3. Naturality. Like the projective model structure, the homotopy model struc-
ture is natural.

Proposition 5.3.1. Suppose Φ: (A,Γ) −→ (B,Σ) is a map of amenable Hopf alge-

broids. Then Φ induces a left Quillen functor Φ∗ : Ch(Γ) −→ Ch(Σ) of the homotopy

model structures.

Proof. By Proposition 2.2.1, Φ∗ is a right Quillen functor of the projective model
structures. Thus Φ∗ preserves projective fibrations and projective equivalences
(since everything is fibrant in the projective model structure), and so will also
preserves trivial fibrations in the homotopy model structure, since these coincide
with projective trivial fibrations. Suppose p is a homotopy fibration. Then p is
a projective fibration such that ker p is projectively equivalent to a complex of
relative injectives K, by Proposition 5.2.1 and Theorem 5.2.3. Hence Φ∗p is also a
projective fibration, and kerΦ∗p is projectively equivalent to Φ∗K. We will show
that Φ∗K is a complex of relative injectives. Hence Φ∗p is a homotopy fibration
by Theorem 5.2.3 and Proposition 5.2.1, and so Φ∗ is a right Quillen functor as
required.

We are now reduced to showing that Φ∗ preserves relative injectives. Suppose
I is a relatively injective Σ-comodule, and E is an A-split short exact sequence of
Γ-comodules. Then

Γ-comod(E,Φ∗I) ∼= Σ-comod(Φ∗E, I).

Since Φ∗E = B ⊗A E, Φ∗E is a B-split short exact sequence, so Σ-comod(Φ∗E, I)
is exact. �

The homotopy model structure is also invariant under weak equivalences, but
this is considerably harder to prove. We begin with a definition.

Definition 5.3.2. Suppose (A,Γ) is an amenable Hopf algebroid. Define a Γ-
comodule I to be pseudo-injective if ExtnΓ(P, I) = 0 for all dualizable comodules
P .

Every relative injective is pseudo-injective, by Lemma 3.1.4. The reason for in-
troducing pseudo-injectives is the following lemma, which would be false for relative
injectives.
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Lemma 5.3.3. Suppose Φ: (A,Γ) −→ (B,Σ) is a weak equivalence of flat Hopf

algebroids. If I is a pseudo-injective Γ-comodule, then Φ∗I is a pseudo-injective

Σ-comodule.

Proof. Suppose P is a dualizable Σ-comodule. Because Φ∗ is an equivalence of
categories whose right adjoint is naturally isomorphic to Φ∗, we have

ExtnΣ(P,Φ∗I) ∼= ExtnΓ(Φ
∗P, I).

As explained in the proof of Theorem 2.2.2, Φ∗P is a dualizable Γ-comodule. The
lemma follows. �

Lemma 5.3.4. Suppose (A,Γ) is a flat Hopf algebroid. Any bounded above complex

of pseudo-injectives with no homology is projectively trivial.

Proof. Suppose X is a bounded above complex of pseudo-injectives with no homol-
ogy. We claim that the cycle comodule ZnX is pseudo-injective for all n. This is
obvious for large n, since X is bounded above. We have a short exact sequence

0 −→ ZnX −→ Xn −→ Zn−1X −→ 0

sinceX has no homology. The long exact sequence in Ext∗Γ(P,−) shows that Zn−1X
is pseudo-injective. By induction, ZnX is pseudo-injective for all n. One can then
easily check that Γ-comod(P,X) is exact for all dualizable comodules P . �

Corollary 5.3.5. Suppose (A,Γ) is a flat Hopf algebroid, and f : X −→ Y is a

homology isomorphism of complexes of bounded above pseudo-injectives. Then f is

a projective equivalence.

Proof. Let C denote the mapping cylinder of f , and let Z = C/X denote the map-
ping cone of f . Then f = pi, where i : X −→ C is a degreewise split monomorphism
and p is a chain homotopy equivalence. It therefore suffices to show that the homol-
ogy isomorphism i is a projective equivalence. Since i is degreewise split, it suffices
to show that Z is projectively trivial. But Zn = Yn ⊕ Xn−1, so Z is a bounded
above complex of pseudo-injectives with no homology. Lemma 5.3.4 implies that Z
is projectively trivial. �

Theorem 5.3.6. Suppose Φ: (A,Γ) −→ (B,Σ) is a weak equivalence of Adams

Hopf algebroids. Then Φ∗ : Ch(Γ) −→ Ch(Σ) is a Quillen equivalence of the ho-

motopy model structures. In fact, both Φ∗ and Φ∗ preserve and reflect homotopy

isomorphisms.

Proof. We have seen in Theorem 2.2.2 that Φ∗ is a Quillen equivalence of the
projective model structures, and that Φ∗ and Φ∗ preserve and reflect projective
equivalences. We first show that Φ∗ preserves homotopy isomorphisms, and hence
that Φ∗ reflects homotopy isomorphisms. Indeed, it follows from Proposition 5.3.1
that Φ∗ preserves homotopy trivial cofibrations. Thus it suffices to show that Φ∗p
is a homotopy isomorphism when p is a homotopy trivial fibration. But then p is a
projective equivalence, so Φ∗p is also a projective equivalence.

It is more difficult to show that Φ∗ reflects homotopy isomorphisms. To see this,
we first construct a factorization

B = Φ∗A
Φ∗ηL
−−−→ Φ∗LA

α
−→ LB

of ηL : B −→ LB. We have

(Φ∗LA)n ∼= Φ∗Γ ∧ (Φ∗Γ)
∧n and (LB)n = Σ ∧Σ

∧n
.
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There is a natural map of comodules Φ∗Γ = B ⊗ Γ −→ Σ that takes b ⊗ x to
ηL(b)Φ1(x). This map induces a map Φ∗Γ −→ Σ, which in turn induces the desired
map α : Φ∗LA −→ LB of complexes.

Now Φ∗LA and LB are both complexes of pseudo-injectives, by Lemma 5.3.3.
The map Φ∗ηL is a homology isomorphism, since Φ∗, like any equivalence of abelian
categories, is exact. The map ηL : B −→ LB is a homology isomorphism by con-
struction. Thus, α : Φ∗LA −→ LB is a homology isomorphism of bounded above
complexes of pseudo-injectives, and so a projective equivalence, by Corollary 5.3.5.

We can now show that Φ∗ reflects homotopy isomorphisms between cofibrant
objects. Indeed, suppose that f : X −→ Y is a map of cofibrant objects such that
Φ∗f is a homotopy isomorphism. Then LB ∧ Φ∗f is a projective equivalence. But
we have the commutative square below.

Φ∗LA ∧Φ∗X
Φ∗LA∧Φ∗f
−−−−−−−→ Φ∗LA ∧ Φ∗Y

α∧Φ∗X

y
yα∧Φ∗Y

LB ∧ Φ∗X −−−−−−→
LB∧Φ∗f

LB ∧Φ∗Y

Proposition 2.1.4 implies that the vertical maps in this square are projective equiv-
alences. Hence Φ∗LA ∧ Φ∗f ∼= Φ∗(LA ∧ f) is a projective equivalence. But Φ∗

reflects projective equivalences, so LA∧ f is a projective equivalence. Hence f is a
homotopy isomorphism as required.

We now claim that Φ∗ reflects all homotopy isomorphisms, from which it follows
easily that Φ∗ preserves all homotopy isomorphisms. So suppose f : X −→ Y is a
map such that Φ∗f is a homotopy isomorphism. We have the commutative square
below, in which the vertical maps are projective equivalences and QX and QY are
cofibrant.

QX
Qf

−−−−→ QY

qX

y
yqY

X −−−−→
f

Y

Since Φ∗ preserves projective equivalences, we conclude that Φ∗Qf is a homotopy
isomorphism. Since Φ∗ reflects homotopy isomorphisms between cofibrant objects,
Qf is a homotopy isomorphism, and hence f is a homotopy isomorphism as re-
quired.

It now follows easily that Φ∗ is a Quillen equivalence, as in the proof of Theo-
rem 2.2.2. �

5.4. Comparison with injective model structure. When A = k is a field, there
is a model structure on Ch(Γ) in which hoCh(Γ)(A,A)∗ ∼= Ext−∗

Γ (A,A) developed
in [Hov99, Section 2.5]. In this model structure, which we call the injective model

structure, the cofibrations are just the monomorphisms, and the fibrations are the
degreewise surjections with degreewise injective kernels. (Remember that relatively
injective and injective coincide in case A is a field). The weak equivalences are the
homotopy isomorphisms, where homotopy is defined as in Definition 3.2.1 but using
only simple comodules (that is, those comodules with no nontrivial subcomodule)
as the source. For years, the author searched for a generalization of this model
structure to Hopf algebroids without success. The injective model structure is
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NOT a special case of the homotopy model structure. Indeed, cofibrations in the
homotopy model structure are degreewise split over Γ, whereas cofibrations in the
injective model structure are split over A, but not necessarily Γ. However, we have
the following theorem.

Theorem 5.4.1. Suppose Γ is a Hopf algebra over a field k = A. Then the identity

functor defines a Quillen equivalence from the homotopy model structure to the

injective model structure.

Proof. We claim that the two model structures have the same weak equivalences.
If we can prove this, then the identity functor will be a left Quillen functor from the
homotopy model structure to the injective model structure, since every projective
cofibration is a monomorphism. It must be a Quillen equivalence since the weak
equivalences are the same.

Note that the dualizable comodules coincide with the finite-dimensional comod-
ules. Every simple comodule is finite-dimensional by Lemma 9.5.5 of [HPS97]. Thus
every homotopy isomorphism is a weak equivalence in the injective model structure.
To prove the converse, it suffices to prove that if Γ-comod(P,LA∧f) is a homology
isomorphism for all simple comodules P , then it is a homology isomorphism for all
finite-dimensional comodules P . We do this by induction on the dimension of P .
Since every one-dimensional comodule is simple, the base case is easy. Now suppose
we know Γ-comod(P,LA∧ f) is an isomorphism for all P of dimension < n, and P
has dimension n. If P is simple, there is nothing to prove. If P is not simple, there
is a short exact sequence of comodules

0 −→ Q −→ P −→ P/Q −→ 0

with dimQ < n. This sequence is necessarily split over k, since k is a field. There-
fore, the sequence

0 −→ Γ-comod(P/Q,LA∧X) −→ Γ-comod(P,LA ∧X) −→ Γ-comod(Q,LA∧X) −→ 0

is still short exact, as is the corresponding sequence with Y replacing X . The map
f induces a map between the corresponding long exact sequences in homology.
By the induction hypothesis, Γ-comod(Q,LA ∧ f) and Γ-comod(P/Q,LA ∧ f) are
isommorphism. The five lemma implies that Γ-comod(P,LA∧f) is an isomorphism
as well, completing the proof of the induction step. �

6. The stable category

We define the homotopy category of the homotopy model structure on Ch(Γ) to
be the stable homotopy category of (A,Γ), and we denote it by Stable(Γ), follow-
ing Palmieri [Pal01] in the case of the Steenrod algebra. The category Stable(Γ)
is what we should mean by the derived category D(A,Γ) of the Hopf algebroid
(A,Γ). This is consistent with the usual notation, since D(A,A) = D(A), the
usual unbounded derived category of A. However, we must remember that to form
the derived category, we invert the homotopy isomorphisms, not the homology
isomorphisms. It is just that in the case of a discrete Hopf algebroid (A,A), the
homotopy isomorphisms coincide with the homology isomorphisms.

We conclude the paper by establishing some basic properties of Stable(Γ). We
show that it is a unital algebraic stable homotopy category [HPS97]. This means
that it shares most of the formal properties of the derived category of a commutative
ring, or the ordinary stable homotopy category, except that it has several generators
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rather than just one. In certain cases of interest in algebraic topology, such as
Γ = BP∗BP , we show that Stable(Γ) is monogenic, so that (bigraded) suspensions
of BP∗ weakly generate the category. We also show that

Stable(Γ)(S0M,SkN) ∼= ExtkΓ(M,N)

for certain Γ-comodules M and N .
We begin with the following lemma.

Lemma 6.1. Suppose (A,Γ) is an amenable Hopf algebroid, and P is a dualizable

Γ-comodule. Then SnP is dualizable in the homotopy category of the projective

model structure on Ch(Γ) for all n.

Proof. Recall that the symmetric monoidal product in the homotopy category is
the derived smash product X ∧L Y = QX ∧ QY , where Q denotes a cofibrant
replacement functor. Similarly, the closed structure is RF (X,Y ) = F (QX,RY ),
where R is a fibrant replacement functor. To show that X is dualizable, we must
show that the unit

S0A −→ RF (X,X)

factors through the composition map

RF (X,S0A) ∧L X −→ RF (X,X).

In the projective model structure, everything is fibrant, so we may as well take R
to be the identity functor. Furthermore, SnP is cofibrant, so we conclude that

RF (SnP, SnP ) ∼= S0F (P, P ), RF (SnP, S0A) ∼= S−nF (P,A),

and
RF (SnP.S0A) ∧L SnP ∼= S0(F (P,A) ∧ P ).

It is now clear that SnP is dualizable, since P is so. �

Theorem 6.2. Suppose (A,Γ) is an amenable Hopf algebroid. Then the homotopy

category of the projective model structure and Stable(Γ) are unital algebraic stable

homotopy categories. A set of small, dualizable, weak generators is given by the set

of all SnP for P a dualizable comodule and n ∈ Z.

Proof. It is easy to check that the ordinary suspension, defined by (ΣX)n = Xn−1

with dΣX = −dX , is a Quillen equivalence of both the projective and homotopy
model structures. One can also check that it induces the model category theo-
retic suspension on the homotopy categories. This means that both the projective
and homotopy model structures are stable in the sense of [Hov99, Section 7.1],
and therefore that the homotopy category of the projective model structure and
Stable(Γ) are triangulated.

Since the projective and homotopy model structures are symmetric monoidal,
their homotopy categories are also symmetric monoidal in a way that is compatible
with the triangulation (see Chapters 4 and 6 of [Hov99]). In fact, they satisfy much
stronger compatibility relations than those demanded in [HPS97]; see [May01].

The projective model structure is finitely generated, so the results of Sections 7.3
and 7.4 of [Hov99] guarantee that the cofibers of the generating cofibrations, namely
the SnP , form a set of small weak generators for the homotopy category. The
homotopy model structure may not be finitely generated, but fibrations and weak
equivalences are closed under filtered colimits by Corollary 5.2.5, and this is all that
is needed for the arguments of Section 7.4 of [Hov99] to apply. Thus the SnP also
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form a set of small weak generators for Stable(Γ). Lemma 6.1 guarantees that they
are dualizable in the homotopy category of the projective model structure; since
the functor from this category to Stable(Γ) is symmetric monoidal, they are also
dualizable in Stable(Γ). �

We now investigate when the homotopy category of the homotopy model struc-
ture is monogenic. We first recall a definition from abelian categories.

Definition 6.3. A thick subcategory of an abelian category C is a full subcategory
T that is closed under retracts and has the two-out-of-three property. This means
that if

0 −→M ′ −→M −→M ′′ −→ 0

is a short exact sequence, and two out of M ′,M,M ′′ are in T , so is the third. If C
is graded, we also insist that thick subcategories be closed under aribtrary shifts.

The reader used to BP∗BP -comodules will be familiar with the following defi-
nition.

Definition 6.4. Suppose (A,Γ) is an amenable Hopf algebroid, and M is a Γ-
comodule. We say that M has a Landweber filtration if there is a finite filtration

0 =M0 ⊆M1 ⊆ · · · ⊆Mt =M

of M by subcomodules such that each quotient Mj/Mj−1
∼= A/Ij for some ideal Ij

of A that is generated by an invariant finite regular sequence.

We recall that a sequence x1, . . . , xn is an invariant regular sequence if xi is a
primitive nonzero divisor in A/(x1, . . . , xi−1) for all i.

In case (A,Γ) is graded, we allow the filtration quotients Mi/Mi−1 to be isomor-
phic to some shift of A/Ij rather than A/Ij itself.

From a structural point of view, whether or not M has a Landweber filtration is
not important. What matters is whether M is in the thick subcategory generated
by A.

Lemma 6.5. Suppose (A,Γ) is an amenable Hopf algebroid, andM is a Γ-comodule

with a Landweber filtration. Then M is in the thick subcategory generated by A.

Proof. Since thick subcategories are closed under extensions, it suffices to check that
A/I is in the thick subcategory generated by A, where I is generated by a finite
invariant regular sequence x1, . . . , xn. This follows from the short exact sequences
of comodules

0 −→ A/(x1, . . . , xi−1)
xi−→ A/(x1, . . . , xi−1) −→ A/(x1, . . . , xi) −→ 0

and induction. �

Theorem 6.6. Suppose (A,Γ) is an amenable Hopf algebroid, and every dualiz-

able comodule P is in the thick subcategory generated by A. Then Stable(Γ) is

monogenic, in the sense that {SnA} form a set of small weak generators.

In the graded case, we would instead get that {Sn,mA} would form a set of weak
generators.

Corollary 6.7. Let E be a ring spectrum that is Landweber exact over MU or BPJ
for some finite invariant regular sequence J , and suppose that E∗E is commutative.

Then Stable(E∗E) is a bigraded monogenic stable homotopy category.
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Proof. It is shown in [HS02] that every finitely presented E∗E-comodule is a retract
of a comodule with a Landweber filtration, and hence in the thick subcategory
generated by E∗. �

To prove Theorem 6.6, we first need a lemma.

Lemma 6.8. Suppose (A,Γ) is an amenable Hopf algebroid, and

0 −→M ′ f
−→M −→M ′′ −→ 0

is a short exact sequence of comodules. Then

S0M ′ −→ S0M −→ S0M ′′

is a cofiber sequence in Stable(Γ).

Proof. Factor S0f into a projective cofibration i : S0M ′ −→ X followed by a projec-
tive trivial fibration p. Then we have the commutative diagram below, whose rows
are exact.

0 −−−−→ S0M ′ i
−−−−→ S0M −−−−→ C −−−−→ 0

∥∥∥ p

y
yq

0 −−−−→ S0M ′ −−−−→
S0f

S0M −−−−→ S0M ′′ −−−−→ 0

The long exact sequence in homotopy (Lemma 3.2.2) and the five lemma imply that
q is a homotopy isomorphism. Therefore the bottom row is isomorphic in Stable(Γ)
to the top row, which is a cofiber sequence. �

Proof of Theorem 6.6. Suppose that πA∗ (X) = 0. Let us denote maps in the homo-
topy category of the homotopy model structure by [Y, Z]∗, so that [S0A,X ]∗ = 0.
Let T denote the full subcategory of all comodules M such that [S0M,X ]∗ = 0.
We claim that T is a thick subcategory, and therefore contains the dualizable co-
modules. Theorem 6.2 then completes the proof.

It is clear that T is closed under retracts. To show that T is thick, suppose we
have a short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

such that two out of M ′,M,M ′′ are in T . Lemma 6.8 then implies that

S0M ′ −→ S0M −→ S0M ′′

is a cofiber sequence in Stable(Γ). The long exact sequence obtained by applying
[, X ]∗ then shows that the other one is also in T . �

Finally, we study Stable(Γ)(S0M,S0N) for comodules M and N .

Definition 6.9. A full subcategory of an abelian category C is called localizing if
it is a thick subcategory closed under coproducts.

Proposition 6.10. Let (A,Γ) be an amenable Hopf algebroid, and M and N be

Γ-comodules. Then there is a natural map

ExtkΓ(M,N)
αMN−−−→ Stable(Γ)(S0M,SkN).

This map is an isomorphism if M is in the localizing subcategory generated by the

dualizable comodules.
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Note that the Ext groups that appear in this proposition are Ext groups in the
category of Γ-comodules, not relative Ext groups.

Proof. A class in ExtkΓ(M,N) is represented by an exact sequence of comodules

0 −→ N = E0
f0
−→ E1

f1
−→ E2

f2
−→ . . .

fk−1

−−−→ Ek
fk−→ Ek+1 =M −→ 0.

We can split this into the short exact sequences

0 −→ ker fi −→ Ei −→ coker fi −→ 0.

Each such short exact sequence is gives rise to a cofiber sequence

S0(ker fi) −→ S0Ei −→ S0(coker fi) −→ S1(ker fi)

in Stable(Γ) by Lemma 6.8. By composing the maps S0(coker fi) −→ S1(ker fi),
we get a map S0M −→ SkN in Stable(Γ). One can check that this respects the

equivalence relation that defines ExtkΓ(M,N), and is natural.
Note that this map is an isomorphism when M = P is dualizable, for then

Stable(Γ)(S0P, SkN) ∼= πPk (S
0N) ∼= ExtkΓ(P,N)

by Lemma 3.1.4. Let T be the full subcategory consisting of all M such that

αMN : ExtkΓ(M,N) −→ Stable(Γ)(S0M,SkN)

is an isomorphism for all N and all k ≥ 0. We claim that T is a localizing subcat-
egory. Indeed, it is clear that T is closed under retracts and coproducts. To check
that T is thick, we note that a short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

induces a long exact sequence in Ext∗Γ(−, N). Because short exact sequences are
also cofiber sequences in Stable(Γ) by 6.8, we also get a long exact sequence in
Stable(Γ)(−, S∗N). There is a map between these two long exact sequences (one

must check that αMN is compatible with the map ExtkΓ(M
′′, N) −→ Extk+1

Γ (M ′, N)
but the construction of αMN makes this easy to check). The five lemma tells that
that if two out of M ′,M,M ′′ are in T , so is the third. �
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