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We will study equivariant homotopy theory for G a finite group (although this often easily generalizes to compact
Lie groups). The general idea is that if we have two G-spaces X and Y , we’d like to study homotopy classes of
equivariant maps between them:

[X,Y ]G = MapG(X,Y )/htpy,

where MapG(X,Y ) = {f : X → Y |f(gx) = gf(x) for all g ∈ G}. In classical homotopy theory (i.e. when G is
the trivial), we study CW complexes. The first question we should ask ourselves, then, is: What should a “G CW
complex” be?

Classically, a CW complex is a space X equipped with characteristic maps fα : Dn
α → X for α ∈ Sn (an indexing

set) for n = 0, 1, 2, . . ., such that:

•
∐

int Dn
α → X is a bijection;

• f(Dn
α) is contained in a finite union of f(Dm

β ) for m < n;

• X has the weak topology, i.e. whenever X → Y is continuous, then Dn
α → X → Y is continuous.

To generalize this appropriately, there are a few choices to be made. For starters, we need to decide where G
acts. Certainly it should act on X. Then, it might also act on the Dn

α, and moreover it might even act on the Sn.
(The main innovation for the Kervaire invariant problem exploits the interplay between the various choices.) The
standard definition will be that G acts only on Sn and not on the Dn

α.

Example 1. Let G = Z/2 and X = S1 ⊂ C, and G acts on X by conjugation. Then the 0-cells are given by
{±1} ×D0, and the 1-cells are given by G×D1 (with the appropriate attaching maps).

Example 2. Suppose V is a finite-dimensional (real) representation of G. If G is finite, then V necessarily has an
invariant metric, and we can define S(V ), the unit sphere in V , and SV , the one-point compactification of V . In
particular, when G is trivial and V = Rn, then S(V ) = Sn−1 and SV = Sn.

In particular, we can take G = Z/2 and V to be the sign representation (so V = R and G acts by negation).
Then S(V ) = {±1} and SV is our circle with the conjugation action from before.

We have the following small fact.

Proposition 1. In the given situation, S(V ) and SV both admit the structure of a G CW complex.

A theme we’d like to thread through these talks is the difference between an explicitly given G CW complex
and a space that comes with a G action that we simply assert has such a structure. This will be a central idea in
the third lecture, and we’re all very excited about it.

Here are a few classical theorems in homotopy theory.

Theorem 1 (obstruction theory). Suppose X is a CW complex and Y is a space. Suppose that whenever X has
an n-cell, πn(Y ) = 0. Then any map X → Y is homotopic to a constant map.

Theorem 2 (Freudenthal suspension). If X is a CW complex of dimension m and Y is (n − 1)-connected and
m < 2n (give or take), then [X,Y ]

∼−→ [S1 ∧X,S1 ∧ Y ].
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We need equivariant analogues of these notions. Specifically, we need equivariant notions of homotopy groups,
dimension, and connectivity. The easiest way to figure out the right definitions is simply to follow through the
proofs of these theorems and see what we need to say.

In proving the fundamental theorem of obstruction theory, one comes across things like [X(n)/X(n−1), Y ], and
observes that X(n)/X(n−1) =

∨
α∈Sn

Dn
α/∂D

n
α =

∨
α∈Sn

Snα. Thus, [X(n)/X(n−1), Y ] =
∏
α∈Sn

πnY .

When we equivariantify this, we see that we want to regard πnY as a functor G-sets→ AbGrps (for n > 1, or
to Grps for n = 1, or Sets for n = 0). Namely, given T ∈ G-sets, we have T 7→ [

∨
t∈T S

n, Y ]G = [T+ ∧ Sn, Y ]G

(where T+ denotes T with a disjoint basepoint). We can write this as πnY (T ); alternatively, we have the notation
πGn (Y ) = πnY (∗) = [Sn, Y ]G.

Of course, this functor is quite overspecified. Namely, πnY is determined by its value on transitive G-sets (i.e.
those of the form T = G/H for H ≤ G). This is just because

πnY (T1

∐
T2) = πnY (T1)× πnY (T2).

Moreover, it is not hard to see that

πnY (G/H) = [(G/H)+ ∧ Sn, Y ]G = [Sn, Y ]H = [Sn, Y H ] = πnY
H

(where in the second set H acts trivially, and Y H = {y ∈ Y |hy = y for all h ∈ H} are the H fixed points). So, one
can think of equivariant homotopy groups more pragmatically as remembering the fixed point sets. Of course, G/H
is more than just a transitive G-set; it has a chosen basepoint H/H. This is how we obtained the above equality in
the first place, but on the other hand one might prefer to be agnostic about one’s G-sets. In fact, this small point
can make many formulas much more complicated than they need to be.

Let us turn to the Freudenthal suspension theorem. Suppose X is a G CW complex, say X =
∐
Sn ×Dn/ ∼,

where G y Sn. Then XH =
∐
SHn × Dn/ ∼, and in particular XH is a CW complex. So, whatever sort of a

gadget dimGX is, it needs to remember dimXH for all H ≤ G. Thus, dimGX is a function {H ≤ G} → N (which
is of course conjugation-invariant). Similarly, for connectivity we define the connectivity of Y to be the function
CG(Y ) : {H ≤ G} → N picking up the connectivity of Y H . With these definitions in hand, many of the classical
facts go through.

But actually, the equivariant analogue of Freudenthal is quite complicated – so complicated, in fact, that we’re
not even going to state it, at least not carefully.1 Roughly, it says that if dimGX < κ · CG, then for all V ,
[X,Y ]G → SV ∧X,SV ∧ Y ]G is a bijection. Here, κ is an equivariant generalization of the number 2.

The proofs of all these fundamental theorems run fairly elementarily, the way a classical homotopy theorist might
expect. The proofs all tend to be reductions to classical homotopy theory rather than truly equivariant proofs.

The equivariant Freudental suspension theorem is the motivation for the category in which we do equivariant
stable homotopy theory, the equivariant Spanier-Whitehead category, denoted A W G. The objects are the finite G
CW complexes, and the morphisms are denoted and defined as

{X,Y }G = colimV [SV ∧X,SV ∧ Y ]G,

where V runs over all representations of G. Now, note that this colimit is also attained at a “finite stage”, just as
in the classical case. A nice way to see this that every representation occurs inside of the regular representation ρG,
a |G|-dimensional representation given by ⊕

G

R ∼= {f : G→ R}.

Then,
{X,Y }G = colimn→∞[SnρG ∧X,SnρGY ]G,

and this is attained at a finite stage.

One can ask for an analogue of the degree of a map, and in particular one can ask for {S0, S0}G. For this,
we introduce the Burnside category, denoted BurnG, whose objects are finite G-sets and whose morphisms are
correspondences. An example of a correspondence is a roof diagram S ← S′ → T in G-sets; these admit an
obvious notion of equivalence. The set of equivalence classes is a commutative monoid under coproduct, and we
define BurnG(S, T ) to be its group completion. This leads us to the following beautiful theorem.

1reference: Adams, Prerequisites for Carlsson’s work
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Theorem 3 (Segal, tom Dieck). The endofunctor S 7→ S+ on G-sets defines a functor BurnG → S W G, and this
functor is fully faithful.

This implies that BurnG(∗, ∗) ∼−→ {S0, S0}G, where the source is the Burnside ring of G, i.e. the Grothendieck
group of finite G-sets. This is kind of the answer one might expect. Namely, recall that classically, the degree can be
defined by looking at the preimage of a regular value. This technique can indeed be proved in this method, although
it’s tougher because the idea of “transversality” is touchier. However, this theorem should also be surprising, because
it exactly plays off these two points of view. The target is totally built up out of things like SV , whereas the source
is totally built up out of the category of finite G-sets.

2

Today we’ll explain the proof of the above theorem. The reason is that this will allow us to explore many new
aspects of equivariant stable homotopy theory, and in particular it will bring up perhaps the one truly surprising
thing in the field.

2.1 Duality

Suppose C is a symmetric monoidal category (for example, C = Vect with the usual tensor product, or C = S W G

with smash product, or C = BurnG with cartesian product). We say that an object X ∈ C is dualizable if there is
some Y ∈ C and maps X ⊗ Y → 1 and 1→ Y ⊗X such that in the diagram

X ⊗ 1 - X ⊗ Y ⊗X

1⊗X,
?

∼

-

the diagonal map is the composite functorial isomorphism X ⊗ 1 ∼= X ∼= 1⊗X, and similarly for the diagram

1⊗ Y - Y ⊗X ⊗ Y

Y ⊗ 1.
?

∼

-

Now, if X is dualizable, then C(X ⊗W,Z) ∼= C(W,Y ⊗ Z) and C(Y ⊗W,Z) ∼= C(W,X ⊗ Z). So for instance, if
C = Vect then dualizable is equivalent to finite-dimensional.

Remark 1. We remark that this formulation is slightly misleading. One might have instead said that the functor
W 7→ C(X ⊗W, 1) is representable (by Y ). The point is that being dualizable is a condition, not a collection of
extra data.

Proposition 2. A symmetric monoidal functor preserves dualizability.

Now, let’s return to our supposed functor BurnG → S W G. We know we’ve got S 7→ S+, but what do we do

with a morphism S
f←− U

g−→ T in BurnG? We need to send this to some SV ∧ S+ → SV ∧ T+ for some V >> 0.
This comes from a Pontryagin-Thom style argument. Namely, we choose an equivariant embedding i : U ↪→ V (e.g.
V =

⊕
u∈U R). This gives an embedding (i, f) : U ↪→ V × S, and now we apply the Pontryagin-Thom collapse: we

take a small disk around each point of U in V ×S and collapse everything else, and this gives us SV ∧S+ → SV ∧U+.
We then compose this with 1 ∧ g : SV ∧ U+ → SV ∧ T+.

Exercise 1. Check that this is compatible with composition.

Observe that in BurnG, every object is dualizable; in fact, every object is self-dual. This is defined by the

morphisms T × T ∆←− T → ∗ and ∗ ← T
∆−→ T × T . This implies that the object T+ ∈ S W G is self-dual as well.
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Remark 2. The Spanier-Whitehead category, as we’ve constructed it, has two properties: it satisfies stability with
respect to representation spheres (i.e. {X,Y } ∼−→ {SV ∧X,SV ∧ Y }), and finite G-sets are self-dual.

Now, suppose we wanted to do “equivariant homotopy theory” in an arbitrary category. It seems that the
stability property is specially suited to topology, whereas the self-duality property is easy to generalize: {S+, X}G =
{S0, S+ ∧X}. This is essentially saying that

∨
s∈S X →

∏
s∈S X is a weak equivalence. To do this, we need to be

working in an additive category, in which the map from a finite coproduct to a finite product is an isomorphism.
So, we should think of this self-duality as an equivariant version of additivity in which G acts on the indexing set.

In fact, the stability and the self-duality are roughly equivalent. We give the following “theorem”:

stability w/r/t Sn + self-duality of finite G-sets ⇔ stability w/r/t SV .

If we had chosen to stabilize only with respect to ordinary spheres, we would have arrived at a different, less correct
notion.

Exercise 2. In S W G, we have duality maps T+ ∧ T+ → S0 and S0 → T+ ∧ T+. One of these exists as a map
of G CW complexes, while the other only exists stably. Which is which, and what is the map? Relate this to the
previous remark.

Sketch of proof of the Segal-tom Dieck theorem. The first obvious thing we could do is use duality to rewrite both
sides of the map, as BurnG(S×T, ∗)→ {S+∧T+, S

0}G. Thus, we may assume that T = ∗. Next, we can decompose
S into orbits; both sides take disjoint unions (in the S-variable) to direct sums, so we can reduce to the case where
S is a transitive G-set, i.e. BurnG(G/H, ∗)→ {G/H+, S

0}G.

Now, the right side is
{G/H+, S

0}G = colim[SV ∧G/H+, S
V ]G = [SV , SV ]H ,

and it is easy to check that the same is true on the other side: BurnG(G/H, Y ) ∼= BurnH(∗, Y ). (More generally,
this participates in a pair of adjoint functors relating BurnG and BurnH .)

This reduces us to the case where S = T = ∗. That is, we only must prove that BurnG(∗, ∗) → {S0, S0}G is
an isomorphism. This we will prove by induction on G. When G is trivial, this is just the fact that πnS

n = Z for
n ≥ 1. Next, it’s easy to check that this map is a monomorphism. Indeed, the source is the free abelian group on
the set of transitive G-sets, or equivalently a direct sum of copies of Z indexed by the conjugacy classes of subgroups

H ≤ G. Then, given H ≤ G, we can restrict to H-fixed points to get [SV , SV ]G → [SV
H

, SV
H

] = Z (by induction).
This shows that the lower map in

BurnG(∗, ∗) - {S0, S0}G

⊕
H up to conjugacy

Z

wwwwwwwww
-

∏
H up to conjugacy

Z
?

is a monomorphism.

Lastly, we show that our map is an epimorphism. But since we’re almost out of time, we’ll only do it for
G = Z/2. (This is the surprising fact/tool that we alluded to earlier.) To do this, we examine an interesting cofiber
sequence. Write σ for the sign representation of Z/2 on R, so that Sσ is the circle with the complex conjugation
involution. Thus we have the cofiber sequence Z/2+ → S0 → Sσ. This gives us the exact sequence

{S0,Z/2+}G - {S0, S0}G - {S0, Sσ}G

BurnG(∗, ∗)

6

and we want to show that the vertical map is an epimorphism. By induction, we know that {S0,Z/2+}G ∼=
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{Z/2+, S
0}G ∼= {S0, S0}. By this isomorphism, we get

{S0,Z/2+}G - {S0, S0}G - {S0, Sσ}G

BurnG(∗,Z/2)

o
6

- BurnG(∗, ∗),

6

which a diagram chase allows us to reduce the problem to showing that the diagonal map of

{S0, S0}G - {S0, Sσ}G

BurnG(∗, ∗)

6 -

is an epimorphism. Now, its target is {S0, Sσ}G = colim[SV , SV ∧ Sσ]G. Let us write V0 ⊂ V for the invariants.
Restricting then gives us

[SV , SV ∧ Sσ]G → [SV0 , SV ∧ Sσ]G = [SV0 , SV0 ∧ S0] = [SV0 , SV0 ] = Z,

and WE WILL SEE THAT THIS MAP IS AN ISOMORPHISM...... except that we won’t, because it would take
too much time away from the third and final talk.

3

There is a problem with the Spanier-Whitehead category S W G – it doesn’t have enough objects! For instance,
mapping cones don’t exist; e.g. a morphism X → Y might only actually come from a function SV ∧X → SV ∧ Y .
However, we can add these in. We do this by forming the category of G-spectra, denoted S G, where instead of
adding in negative-dimensional spheres, we add in virtual-representation spheres. We will denote homotopy classes
of maps again by square brackets; then [X,S−V ∧ Y ]G = {SV ∧X,Y }G. Every object of S G can be (functorially)
written as a filtered colimit of the form colimV S

−V ∧XV .

In the equivariant homotopy theory of spaces, we decided to think of πn as a functor from finite G-sets to abelian
groups; this is additive in the sense that it takes disjoint unions to direct sums (i.e. it preserves coproducts). In
S G, we now have, for a finite G-set T , the group πnX = [Sn, X]G and more generally πnX(T ) = [Sn ∧ T+, X]G.
By the above theorem that we didn’t quite finish proving, BurnG(S, T )

∼−→ {S+, T+}G = [S+, T+]G, then πnX is a
contravariant additive functor BurnG → AbGrps. Such a functor is called a Mackey functor.

A natural question is: Which Mackey functors occur as homotopy groups? For instance, π0S
0(T ) = [T+, S

0]G =
BurnG(T, ∗). More generally, if S is another finite G-set, then (π0S+)(T ) = BurnG(T, S). That is: every repre-
sentable Mackey functor occurs as homotopy groups. Instead, let’s look at π−iS+ for i > 0. Then

π−iS+ = lim[SV , Si ∧ SV ∧ S+]G.

If you imagine you’ve decomposed SV via an equivariant cell decomposition, then you can compute this on the
skeleta, and these computations look like [G ×H Dm/Sm−1, Si ∧ SV ∧ S+]G (for some m ≤ dimV H). But this is
just

[Dm/Sm−1, Si ∧ SV ∧ S+]H = [Dm/Sm−1, (Si ∧ SV ∧ S+)H ] = [Dm/Sm−1, Si ∧ SV
H

∧ S+] = 0

by the connectivity of spheres. This means that any Mackey functor occurs as a homotopy group. In fact, for M
a Mackey functor we can construct an Eilenberg-MacLane spectrum HM , which is characterized by the property
that π∗HM = M concentrated in degree 0.

Remark 3. Suppose we have an abelian group A, and we want to build a space X with πnX = A. To do this,
one usually writes down a free resolution F1 → F2 → A → 0 and then we get

∨
F1
Sn →

∨
F2
Sn → X. But this

depends on knowing that [Sn, Sn] is a free abelian group and that [Si, Sn] = 0 for i < n. In the above situation,
exactly the same computations arise: in S G, we have that [Sn, Sn ∧ T+]G is a representable (free) Mackey functor
and [Si, Sn ∧T+]G = 0 for i < n. This feels a bit more significant in equivariant homotopy theory, but it’s not until
one reaches motivic homotopy theory that this becomes a truly deep result (due to Morel).
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Now, given our Eilenberg-MacLane spectra, we can talk about homology and cohomology. Suppose X is a
pointed G CW complex. We will also write X for its suspension spectrum. Now if M is a Mackey functor, we can
define Hn

G(X;M) = [X,Sn ∧HM ]G and HG
n (X;M) = [Sn, HM ∧X]G. Just as in ordinary homotopy theory, these

have a rather simple description. Namely, Hn
G(X;M) can be computed as the cohomology groups of the cellular

cochain complex C∗cell(X;M). Explicitly, Cn(X;M) = M(Tn), where Tn is the G-set of n-cells of X. (A priori, this
doesn’t make sense if Tn is infinite, but one can always take an inverse limit over finite G-subsets.)

Exercise 3. Let ρG be the regular representation of G; this contains a trivial representation, and we let ρG its
orthogonal complement. Let X = S(ρG)+ be its unit sphere (with a disjoint basepoint). This actually comes with
a G CW decomposition. Namely, S(ρG) = ∂∆[G], where ∆[G] is the standard simplex with vectors coming from
G. Think through this.

Another thing we do with Eilenberg-MacLane spaces is construct Postnikov towers. Namely, there is a map
from X to the tower · · · → P̃nX → P̃n−1X → · · · , such that the maps πiX → πiP̃

nX are isomorphisms from i ≤ n
and sucht hat πiP̃

nX = 0 for i > n. The fibers of the tower sit as P̃nnX → P̃nX → P̃n−1X, and P̃nnX = Sn ∧HM
for M = πnX.

Now, in classical homotopy theory, an ideal situation occurs when P̃nnX = Sn ∧HF , where F is a free abelian
group. (For example, this happens forMU andKU .) We often try to understand other cohomology theories in terms

of these. You might think that in equivariant homotopy theory, the ideal situation would be when P̃nnX = SnHM
for M a free Mackey functor (i.e. M(S) =

⊕
j Burn

G(S, Tj), so that M = π0T+ for some G-set T ). However, this
isn’t really what comes out for equivariant versions of MU and KU . Luckily, this also isn’t such a natural thing to
want after all, anyways.

Let’s consider the example of Atiyah’s Real K-theory KR. Recall that this is a Z/2-equivariant cohomology
theory which occurs from trying to look at the complex points of real vector bundles. Namely, KR0(X) is the
Grothendieck group of Real vector bundles over X, where a Real vector bundle is a complex vector bundle equipped
with a Z/2-action covering that on X which is conjugate linear, i.e. τ(λv) = λ · τ(v).

This enjoys the following nice properties.

1. If X = Y × Z/2, then KR(X) = KU(Y ).

2. If X has trivial Z/2-action, then KR(X) = KO(X).

3. There is the periodicity formula KR(X) ∼= KR(SC ∧X), where SC is the 1-point compactification of C with
the conjugation action.

Now, when Atiyah proved the periodicity theorem, he actually just observed that the classical Bott periodicity
theorems still held when stated as facts in algebraic geometry.

Note that C is the sum of a trivial representation and a sign representation, but by changing the basis we can
also view it as the permutation representation; that is, C = ρZ/2. Thus, we can rewrite the periodicity theorem as
KR(X) ∼= KR(SρZ/2 ∧X). Beautifully, Atiyah showed that this actually implies both of Bott’s original periodicity
theorems. Luckily for us, it also admits an obvious generalization.

Now, recall that K = KU has K0(S0) = Z and Ki(X) = Ki(S2∧X). In other words, π0K = Z and S2∧K ' K.

This tells us that P̃ 2n
2nK = S2n ∧HZ and P̃ 2n+1

2n+1K = 0. In other words, K has a filtration whose associated graded
is

∨
n∈Z S

2n ∧HZ. If we want to do the same thing for Real K-theory we run into π0KR, which turns out to be

the constand Mackey functor Z, i.e. Z(S) = MapG(S,Z) = Map(S/G,Z). Given a correspondence S ← U → T ,
we get Z(S) ← Z(U) ← Z(T ): the first map is given by adding up along the fibers, and the second map is just
composition with U → T . That is, if we have f : U → Z then we get f ′ : S → Z by f ′(s) =

∑
x∈p−1(s) f(x) for

p : U → S the projection. So, we write this concisely as P̃ 0
0KR = HZ. But this tells us nothing about the other

levels; Atiyah’s theorem tells us that SρZ/2 ∧KR ' KR, but this is a shift by a representation sphere rather than
an ordinary sphere. This suggests looking for a filtration whose associated graded is

∨
n∈Z S

nρZ/2 ∧HZ.

In fact, this tower exists, and is called the slice tower. We write this as {PnX}. We won’t quite say what
property characterizes it, but we can at least say that the fibers PnnKR are contractible for n odd and SmρZ/2 ∧HZ
for n = 2m.

The case G = Z/2 was done by Dan Dugger in his thesis. The general case was done by HHR in the course of

their work on the Kervaire invariant. The ideal case of the Postnikov tower, recall, was P̃nnX = Sn ∧ HF for F

free abelian. Relatedly, the ideal case of the equivariant Postnikov tower is P̃nnX = Sn ∧HF for F = π0T+ a free
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Mackey functor. But the ideal case of the slice tower is PnnX =
∨
G+∧H SmρH ∧HZ, a bouquet (indexed by G/H)

of certain special representation spheres smashed with HZ. (Here, it must be that n = m · |H|.) In this case, we
say X is pure.

Theorem 4 (HHR). Many geometrically occurring equivariant cohomology theories are pure. (For instance, KR
and the analog of MU are both pure.)

Theorem 5 (HHR). If X is pure (and G 6= Z/3) then πiX(∗) = 0 when i = −3 or i = −1 and πiX(∗) is
torsion-free when i = −2. In fact, usually π−2X(∗) is usually 0.

The first theorem is quite hard, but the second one is actually easy enough that we could’ve proved it here. It
is called the gap theorem. Observe that it occurs for KR, since πiKR(∗) = πiKO, and (beginning at degree −4)
the Bott periodicity clock is

Z 0 0 0 Z Z/2 Z/2 0 Z.

So we could’ve expected those zeros!
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