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FREE INCOMPLETE TAMBARA FUNCTORS ARE ALMOST NEVER

FLAT

MICHAEL A. HILL, DAVID MEHRLE, AND J.D. QUIGLEY

Abstract. Free algebras are always free as modules over the base ring in classical al-
gebra. In equivariant algebra, free incomplete Tambara functors play the role of free
algebras and Mackey functors play the role of modules. Surprisingly, free incomplete
Tambara functors often fail to be free as Mackey functors. In this paper, we determine
for all finite groups conditions under which a free incomplete Tambara functor is free as
a Mackey functor. For solvable groups, we show that a free incomplete Tambara functor
is flat as a Mackey functor precisely when these conditions hold. Our results imply that
free incomplete Tambara functors are almost never flat as Mackey functors. However,
we show that after suitable localizations, free incomplete Tambara functors are always
free as Mackey functors.
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1. Introduction

1.1. Motivation and main theorems. Let k be a commutative ring. The free k-algebra
on a single generator is the polynomial algebra k[x]. This algebra is also a free k-module on
the countable basis 1, x, x2, x3, . . .. We take this fact for granted in classical algebra, where
it is used to great effect in homological algebra.

In this paper, we investigate the analogous property in equivariant algebra, or algebra
where commutative rings are replaced by incomplete Tambara functors [7] and abelian
groups are replaced by Mackey functors. We recall these notions in Section 3. Equivariant
algebra is an important tool in representation theory, number theory, and algebraic topology.

In this more structured version of algebra, free algebras are not always free as modules. If
they are not free, we might ask whether they are projective or flat instead. The goal of this
paper is to understand when the underlying module of a free algebra over an incomplete
Tambara functor is suitable for homological algebra - when it is free, projective, or flat.
Surprisingly, we find that this is almost never the case.

The first author was supported by NSF Grant DMS-1811189.
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The analog of a commutative ring in equivariant algebra was defined by Blumberg and
the first author in [7]. Let G be a finite group. An incomplete Tambara functor R assigns
a commutative ring R(G/H) to each transitive G-set G/H , together with certain structure
maps (conjugations, restrictions, transfers, and norms) which are encoded by a choice of
indexing category O for G.

Blumberg and the first author also introduced free algebras over incomplete Tambara
functors in [7]. Fix a group G, indexing category O, and incomplete Tambara functor R.
For each subgroup H of G, there is an equivariant refinement of a free algebra on one
generator called the free R-algebra on a generator at level G/H , denoted RO[xG/H ]. These
are the free algebras which we study in this paper.

The most fundamental incomplete Tambara functor is the Burnside functor, denoted A,
which plays the role of the integers in equivariant algebra (cf. Remark 3.10). Our first main
theorem provides conditions on pairs of subgroup H and indexing category O under which
the free algebra AO[xG/H ] is free as an A-module.

Theorem A (Theorem 4.10). Let G be a finite group, O an indexing category for G, and
H a subgroup of G. If i∗HO = Otriv and G/H is admissible for O, then the free O-Tambara

functor on a generator at level G/H, AO[xG/H ], is free as an A-module.

Remark 1.1. As in ordinary algebra, base change preserves freeness in equivariant algebra
(Proposition 3.28). Since A is the initial incomplete Tambara functor, there is a map A→ R

for any incomplete Tambara functor R. Theorem A then implies that RO[xG/H ] is free as

an R-module whenever i∗HO = Otriv and G/H is admissible for O.

Theorem A provides sufficient conditions on the pair (O, H) under which AO[xG/H ] is
free. However, since we are interested in homological applications where projectivity or
flatness often suffice, it is natural to ask if AO[xG/H ] is projective or flat as an A-module,
even if it is not free. We prove the following necessary conditions:

Theorem B (Corollary 6.10, Proposition 6.13, and Theorem 6.20). Let G be a finite group,
O an indexing category for G, and H a subgroup of G.

If AO[xG/H ] is flat as an A-module, then

(a) i∗HO
∼= Otriv and

(b) H is a normal subgroup of G.

Moreover, if G/H is solvable, then G/H is admissible for O.

For solvable groups, Theorem A and Theorem B give a complete description of when free
incomplete Tambara functors are free, or equivalently, flat, as Mackey functors.

Corollary C (Theorem 6.20). Let G be a solvable finite group, O an indexing category for
G, and H a subgroup of G. The following are equivalent:

(a) The Mackey functor underlying the free O-Tambara functor on a class at level G/H
is flat.

(b) The Mackey functor underlying the free O-Tambara functor on a class at level G/H
is free.

(c) H is a normal subgroup of G, G/H is admissible, and i∗HO = Otriv.

The conditions on H and O in Theorem B are easy to check, but are quite strict. Empir-
ical evidence for small cyclic groups (cf. Appendix A) suggests that the proportion of free
A-algebras for Cpn which are free as A-modules decreases as n increases. In fact, we prove
a stronger statement:
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Theorem D (Theorem 6.27). Free incomplete Tambara functors for finite groups are almost
never flat as Mackey functors.

Before discussing freeness over other base incomplete Tambara functors, we pause to
discuss our motivation for studying freeness. The fact that free algebras over ordinary
commutative rings are free as modules has an important application in homological algebra:
derived functors, such as the cotangent complex and Shukla homology, can be computed
using polynomial resolutions.

In forthcoming work, the second and third authors investigate an equivariant version of
the Hochschild–Kostant–Rosenberg (HKR) theorem [15, 19] which identifies the cotangent
complex [13, 17] and derived Hochschild homology [5] of certain incomplete Tambara func-
tors. The isomorphism can be shown to hold for free algebras, but the extension to all
incomplete Tambara functors would require the use of resolutions by free algebras. Unfor-
tunately, Theorem D says that resolutions by free A-algebras are almost never resolutions
by free A-modules, so it is unclear if they can be used to compute derived functors.

With that said, the classical HKR theorem can be strengthened to an isomorphism be-
tween de Rham cohomology and cyclic homology if one assumes that the ground ring con-
tains the rational numbers. Similarly, in non-equivariant algebra, a module which is not free
over a commutative ring k may become free after base change to an appropriate localization
of k.

We show that after inverting a single element in A, free incomplete Tambara functors for
different indexing categories are all isomorphic as Mackey functors:

Theorem E (Theorem 7.29). Let S−1A be the Mackey functor obtained from A by inverting
[G/e] ∈ A(G/G). For any indexing category O and subgroup H ≤ G, the free O-Tambara

functor S−1AO[xG/H ] is free as an S−1A-module.

Theorem E has the important consequence that free algebras can be used to compute
nonabelian derived functors for incomplete Tambara functors when working over S−1A.
This suggests that, as in classical algebra, derived functors will be easier to understand
after localization or rationalization.

Unfortunately, however, this localization is a very brutal operation. It essentially destroys
all data that is not already present in the underlying level of the Mackey functor.

Theorem F (Theorem 7.15, Corollary 7.25, and Theorem 7.20). Let S−1A be the Mackey
functor obtained by inverting the class [G/e] ∈ A(G/G).

(a) There is an isomorphism of Tambara functors S−1A ∼= Z[ 1
|G| ].

(b) Any S−1A-module M is isomorphic to the fixed point functor on M(G/e).
(c) There is an equivalence of categories S−1A-Mod ≃ Z[ 1

|G| ][G]-Mod.

Remark 1.2. In representation theory, it is common for many situations to be simplified
by inverting the order of the group. Inverting [G/e] ∈ A(G/G) is the categorification
of this process, where we invert the class of G itself, rather than its image in Z. One
consequence of Theorem F is that S−1A-modules are cohomological A[ 1

|G| ]-modules, where

A[ 1
|G| ] is the Mackey functor obtained from A by inverting |G| ∈ A(G/G). This makes the

decategorification precise, in some sense.

1.2. Outline. In Section 2, we recall indexing categories and categories of polynomials.
In particular, we recall the commutative semiring structure of hom-sets in categories of
polynomials (Theorem 2.14).
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In Section 3, we discuss the main notions relevant for the paper. We first recall Mackey
and incomplete Tambara functors and introduce the Burnside Tambara functor (Definition 3.9).
We then discuss the box product, modules over incomplete Tambara functors, and the no-
tions of freeness, projectivity, and flatness appearing in our main theorems. We conclude
by introducing free incomplete Tambara functors (Definition 3.30).

In Section 4, we recall the norm for Mackey and incomplete Tambara functors from the
work of Hoyer [16] and Blumberg and the first author [7]. We apply the norm to reduce
Theorem A to a special case, which then follows from a result about free Green functors
from [8].

In Section 5, we extend the geometric fixed points functor for Mackey functors (cf. [5])
to incomplete Tambara functors (Definition 5.21) and show that under certain hypotheses,
the geometric fixed points of free Mackey and incomplete Tambara functors are again free
(Theorem 5.24 and Theorem 5.26). The preservation of freeness by the norm and geometric
fixed points are both used crucially in Section 6.

In Section 6, we prove Theorem B and Theorem D. To prove the general part of Theorem B,
we use the geometric fixed points functor to reduce to known cases. We then prove
Theorem D by reducing to solvable groups using a group theory result of Camina–Everest–
Gagen [9]; the result then follows from bounds obtained from Corollary C.

In Section 7, we prove our last two main theorems. We begin by recalling cohomological
Mackey functors and their connection to fixed point functors. We then recall localization for
incomplete Tambara functors and describe certain localizations of the Burnside Tambara
functor. Our main result is Theorem 7.15, which identifies a localization of the Burnside
Tambara functor with a constant Tambara functor. We then study modules over these
localizations, building on a classical result of Greenlees–May [12] and Thévanaz–Webb [25].
Altogether, these results assemble into Theorem F. We then apply this analysis to prove
Theorem E.

In Appendix A, we apply Corollary C to describe which free incomplete Tambara functors
are free as Mackey functors for some small finite groups.

1.3. Conventions.

(1) All groups are finite. Throughout the paper, G is a finite group and H is a subgroup
of G.

(2) All rings are commutative and unital.
(3) We use the symbol < to denote a strict inclusion of subgroups, whereas ≤ denotes

an inclusion that is not necessarily strict.
(4) We will write O for an indexing category.
(5) When an indexing category O and O-Tambara functor R have been fixed, we will

suppress the indexing category O from our terminology. In particular, “R-algebra”
means “R-algebra in O-Tambara functors”.

(6) A denotes the Burnside Tambara functor, or its image under the forgetful functor
to incomplete Tambara functors or Mackey functors.

(7) A G-ring is a ring with an action of the group G by ring homomorphisms. If R is
a G-ring, we write FP(R) for its fixed point Tambara functor (Definition 7.4). If G
acts trivially on R, we write R for FP(R).

1.4. Acknowledgments. The authors thank Scott Balchin, Andrew Blumberg, Guchuan
Li, Vitaly Lorman, Inna Zakharevich, and Mingcong Zeng for helpful discussions. The au-
thors additionally thank Inna Zakharevich for reading early drafts, and Michael Stahlhauer
for catching an omission.



FREE INCOMPLETE TAMBARA FUNCTORS ARE ALMOST NEVER FLAT 5

2. Indexing categories

2.1. Indexing categories. We recall the definition of an indexing category from [7]. Fix
a finite group G.

Definition 2.1. Let C be a category. We say a subcategory D of C is:

(a) wide if it contains all objects,
(b) finite coproduct complete if D has all finite coproducts and coproducts are created

in C,
(c) pullback stable if C admits pullbacks and whenever

A B

C D

f g

is a pullback diagram in C with g ∈ D, the morphism f is also in D.

Definition 2.2 (cf. [7, Section 3]). An indexing category O for G is a wide, pullback stable,

finite coproduct complete subcategory of the category SetG of finite G-sets.

Indexing categories for G form a poset under inclusion. This poset is finite whenever G is
finite. The least element of this poset is the trivial indexing category Otriv, and the greatest
element is the complete indexing category Ocplt.

Definition 2.3. The trivial indexing category Otriv is the wide subcategory of SetG con-
taining all morphisms g : X → Y that preserve isotropy, i.e. for all x ∈ X , the stabilizer of
g(x) is also the stabilizer of x.

We also define the complete indexing category Ocplt := SetG.

Example 2.4. In this example we describe the poset of indexing categories for Cp. If an
indexing category O for Cp contains the projection Cp/e → Cp/Cp, then it contains all
morphisms of finite transitive Cp-sets and, because it is finite coproduct complete, contains
all morphisms of finite Cp-sets. In this case, the indexing category is the complete indexing

category Ocplt = SetCp .
If an indexing category does not contain the morphism Cp/e → Cp/Cp, then the only

morphisms on transitive Cp-sets are the identities. Under finite coproducts, this yields all
morphisms of finite Cp-sets that preserve isotropy, but no more. Thus, the indexing category
must be the trivial indexing category Otriv.

We can also vary the group: if H is a subgroup of G, then for any indexing category O
for G, there is an associated indexing category i∗HO.

Proposition 2.5 ([7, Proposition 6.3]). Let i∗H : SetG → SetH be the restriction functor.
If O is an indexing category for G, the image of the restriction of i∗H to O lands in i∗HO.

Because we will frequently use it later, we record one more definition here.

Definition 2.6. Let O be an indexing category for G. We say that H/K is an admissible
H-set for O if O contains a morphism G/K → G/H .

Example 2.7. In Example 2.4, Cp/e is an admissible Cp-set for Ocplt but not for Otriv.

Remark 2.8. The classification of indexing categories is an open problem for most groups,
but has been completed for cyclic groups of prime power order by Balchin–Barnes–Roitzheim
[1]. Indexing categories for other finite groups are analyzed in [2, 22].
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2.2. Categories of polynomials. To each indexing category O, we associate a category of
polynomials with exponents in O. These categories are the domains of incomplete Tambara
functors.

Definition 2.9. Let D be a wide, pullback stable subcategory of SetG. Let PGD denote
the category of polynomials with exponents in D. Objects are finite G-sets and morphisms
PGD (X,Y ) are polynomials with exponents in D, i.e. equivalence classes of diagrams

[X
f
←− A

g
−→ B

h
−→ Y ]

with g ∈ D. Two such diagrams are equivalent if there is a diagram of the form

A B

X Y

A′ B′

f

g

∼= ∼=

h

g′

f ′ h′

Composition of polynomials is given by [24, Proposition 7.1].

Below, we will describe how to work with the morphisms in this category in a more
practical way. First, we give a few important examples.

Example 2.10. Any wide, pullback stable subcategory of SetG contains the subcategory
SetGiso of finite G-sets and isomorphisms. This subcategory is wide and pullback stable, so
yields a category of polynomials PGiso. Any polynomial of the form X ← A ∼= B → Y is

canonically isomorphic to one of the form X ← A
id
−→ A → Y , and thus the category PGiso

is isomorphic to the category of spans of finite G-sets. The coproduct completion of PGiso is
the Burnside category of G, denoted AG.

Example 2.11. If O is any indexing category, then we get a category PGO of polynomials
with exponents in O.

The fact that PGD is a category is not obvious, and composition can be messy. We define
a generating set of morphisms and describe how to compose them following [7].

Definition 2.12. Let f : X → Y be a morphism of finite G-sets. Define three morphisms
in PGO(X,Y )

Rf := [X
f
←− Y

id
−→ Y

id
−→ Y ]

Nf := [X
id
←− X

f
−→ Y

id
−→ Y ]

Tf := [X
id
←− X

id
−→ X

f
−→ Y ]

Theorem 2.13 (cf. [7, Section 2.1]).

(a) R,N, T give functors from SetG to PGO . R is contravariant; N and T are covariant.
(b) Any morphism in PGO can be written as a composite

Th ◦Ng ◦Rf = [X
f
←− A

g
−→ B

h
−→ Y ].

(c) Given a pullback diagram of finite G-sets

X ′ Y ′

X Y

f ′

g′ g

f
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then we have

Rg ◦Nf = Nf ′ ◦Rg′ ,

Rg ◦ Tf = Tf ′ ◦Rg′ .

(d) Given any diagram isomorphic to one of the form (an exponential diagram)

S A S ×T ΠhA

T ΠhA

h

g f ′

g′

h′

then

Ng ◦ Th = Th′ ◦Ng′ ◦Rf ′ .

Here, ΠhA is the dependent product, right adjoint to the pullback h∗ : SetG/T → Set
G
/S.

There is more structure on the morphism sets of PGO .

Theorem 2.14 ([24, Proposition 7.6]). (PGO(X,Y ),+, ·, 0, 1) is a commutative semiring,
with units

0 = [X ← ∅ → ∅ → Y ],

1 = [X ← ∅ → Y
id
−→ Y ].

The operations are defined on polynomials Σ = [X
f
←− A

g
−→ B

h
−→ Y ] and Σ′ = [X

f ′

←− A′ g′

−→ B′ h′

−→ Y ]
by

Σ + Σ′ =

[
X

∇◦(f⊔f ′)
←−−−−−− A ⊔ A′ g⊔g′

−−−→ B ⊔B′ ∇◦(h⊔h′)
−−−−−−→ Y

]
, and

Σ · Σ′ =

[
X

f̂
←− (A×Y B′) ⊔ (B ×Y A′)

ĝ
−→ B ×Y B′ ĥ

−→ Y

]
,

where

• ∇ : S ⊔ S → S is the codiagonal (fold) morphism,

• f̂ is the morphism given by projecting onto A or A′ then applying f or f ′,
• ĝ is the morphism given by applying g to A or g′ to A′, and

• ĥ is the morphism given by either of the two equivalent morphisms h◦pr1 or h′◦pr2.

Remark 2.15. Note that, although PGO(X,Y ) is a commutative semiring, the additive
completion of PGO is not enriched over rings. This fails because the multiplicative unit

1 = [X ← ∅ → X
id
−→ X ]

in PGO(X,X) is not the identity morphism

idX = [X ← X → X → X ].

Remark 2.16. The Weyl group WGK := NGK/K acts on G/K by conjugation, so each
γ ∈ WGK defines a G-equivariant map cγ : G/K → G/K. This extends to a WGK-action
on PGO (G/H,G/K) by transferring along cγ , i.e.

γ[G/H ← A→ B
h
−→ G/K] = [G/H ← A→ B

cγ◦h
−−−→ G/K].
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3. Incomplete Tambara functors

3.1. Mackey and incomplete Tambara functors. In equivariant algebra, Mackey func-
tors are the analog of abelian groups and incomplete Tambara functors are the analog of
commutative rings. We recall these notions along with some special examples.

Definition 3.1. The Burnside category AG is the group completion of the category of
spans of finite G-sets. Objects are finite G-sets, and each hom-set AG(X,Y ) is the group
completion of the hom-set of spans from X to Y , which is a monoid under disjoint union.

The Burnside category AG is an additive category with direct sums given by disjoint
union of finite G-sets.

Definition 3.2. A Mackey functor is an additive functor M : AG → Ab. A morphism of

Mackey functors is a natural transformation. We writeMackG for the category of Mackey
functors for the group G.

We give another, equivalent, definition of Mackey functors that emphasizes the connection
with incomplete Tambara functors defined below.

Proposition 3.3 ([7, Proposition 4.3]). A Mackey functor for G is a product-preserving
functor M : PGiso → Set such that M(X) is an abelian group for every finite G-set X.

We now define the analog of commutative rings in equivariant algebra.

Definition 3.4 ([6, Definition 4.1]). Let O be an indexing category. An O-Tambara functor
for G is a product-preserving functor R : PGO → Set such that R(X) is an abelian group for
every finite G-set X . An incomplete Tambara functor is an O-Tambara functor for some O.

A morphism of O-Tambara functors is a natural transformation. We write O- T ambG
for the category of O-Tambara functors for the group G.

Because any Tambara functor R is product-preserving, and disjoint union is the cat-
egorical product in PGO , it suffices to give the value of R on each transitive finite G-set
G/K. Moreover, because any morphism in the category PGO may be written as a composite
Th ◦ Ng ◦ Rf , it suffices to define the Tambara functor on morphisms of the form Th, Ng,
and Rf .

Definition 3.5. We write trh := R(Th), nmg := R(Ng), and resf := R(Rf ). These are the
transfer, norm, and restriction of R, respectively. In the case when π : G/K → G/H is the
canonical projection, we write trHK := trπ, nm

H
K := nmπ and resHK := resπ .

The data of an O-Tambara functor is equivalent to the following:

• A collection of commutative WGH-rings R(G/H), one for each subgroup H of G;
• restriction homomorphisms (of non-unital commutative rings)

resHK : R(G/H)→ R(G/K);

• transfer homomorphisms (of abelian groups)

trHK : R(G/K)→ R(G/H);

• and multiplicative norm morphisms

nmH
K : R(G/K)→ R(G/H)

whenever H/K is an admissible H-set for O.

These data are subject to some conditions [24, Section 2].
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Example 3.6 ([7, Section 4]). There are two special classes of incomplete Tambara functors
which appear in equivariant algebra:

(a) An Otriv-Tambara functor is a Green functor.
(b) An Ocplt-Tambara functor is a Tambara functor.

Proposition 3.7 ([7, Corollary 4.4]). Every O-Tambara functor R : PGO → Set has an
underlying Mackey functor given by restricting the domain of R to the category PGiso.

Proposition 3.8 ([7, Proposition 5.14]). Let O and O′ be indexing categories such that
O′ is a subcategory of O. Then every O-Tambara functor R : PGO → Set has an underlying
O′-Tambara functor given by restricting the domain of R to the category PGO′ .

In particular, any O-Tambara functor has an underlying Green functor by restricting the
domain to PGOtriv .

There are several fundamental Tambara functors we will use in this paper. Each can be
regarded as an incomplete Tambara functor by forgetting structure.

Definition 3.9 ([24, Example 3.2]). The Burnside Tambara functor is the Tambara functor
A whose value on a G-set X is the additive group completion of the semiring of isomorphism
classes of G-sets Y overX , with semiring operations given by Cartesian product and disjoint
union.

When X = G/H , A(G/H) is the group completion of the monoid of finite H-sets under
disjoint union. The restriction resHK is given by pullback, transfer trHK is induction, and
norm nmH

K is coinduction.

Remark 3.10. The Burnside Tambara functor is the initial incomplete Tambara functor,
just like Z is the initial commutative ring. Modules over A, or Mackey functors, are the
equivariant analog of abelian groups, while algebras overA are incomplete Tambara functors.

Example 3.11. We examine the structure of the Cp-Burnside functor.
At the underlying level, A(Cp/e) is generated by isomorphism classes of finite Cp-sets

over Cp/e. Such a Cp-set must be a disjoint union of orbits isomorphic to Cp/e. Hence,

A(Cp/e) ∼= Z

At level A(Cp/Cp), generators may be any finite Cp-set since Cp/Cp = ∗ is terminal. Any
Cp-set is a disjoint union of the transitive Cp-sets, Cp/e and Cp/Cp. Let t be the class of
Cp/e. We have a relation

t · t = [Cp/e× Cp/e] =

[
p⊔

i=1

Cp/e

]
= p t.

Therefore,

A(Cp/Cp) ∼= Z[t]/(t2 − pt)

The restriction map sends the class of Cp/e to its underlying finite set, and is therefore
determined by t 7→ p. The transfer is induction and is given by multiplication by t. When
A is considered as an incomplete Tambara functor, norms that exist are coinduction and
are given by [20, Example 1.4.6]:

nmCp
e (a) = a+

(
ap − a

p

)
t.
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Example 3.12. For G = Cp, with p a prime, we consider the Mackey functor defined by

Z(G/H) = Z,

with the restriction map given by the identity, the transfer map given by multiplication by
p, and the Weyl group acting trivially. This is the constant Mackey functor Z, written Z.

Example 3.13. For G = Cp, with p a prime, we consider the Mackey functor defined by

Z
∗(G/H) = Z,

with transfer map given by the identity, the restriction map given by multiplication by p,
and the Weyl group acting trivially. This is the dual to the constant Mackey functor Z,
written Z

∗.

3.2. Modules over incomplete Tambara functors.

Definition 3.14 ([18]). Let M and N be Mackey functors. The box product M ⊠N is the
Mackey functor obtained by left Kan extending the tensor product of abelian groups along
the functor

× : PGiso × P
G
iso → P

G
iso

given on objects by (T, T ′) 7→ T × T ′.

PGiso × P
G
iso Ab×Ab Ab

PGiso

M×N

×

⊗Z

M⊠N

Theorem 3.15 ([18]).

(a) The box product makes the category of Mackey functors into a symmetric monoidal
category with unit the Burnside Mackey functor.

(b) Green functors are monoids for this symmetric monoidal structure on the category
of Mackey functors.

The box product also plays a special role for Tambara functors.

Theorem 3.16 ([23, 7]). If R and R′ are O-Tambara functors, then R⊠ R′ has a natural
structure as an O-Tambara functor.

The natural maps R → R ⊠ R′ ← R′ are maps of O-Tambara functors and witness the
box product as the coproduct.

Definition 3.17. If R is a Green functor with unit η : A → R and multiplication µ :
R ⊠ R → R, then an R-module M is a Mackey functor M together with a homomorphism
of Mackey functors ν : R ⊠M →M such that the the following diagram commutes:

R⊠R⊠M R⊠M M

R⊠M M.

µ⊠1

1⊠ν ν

η⊠1

1
ν
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A morphism of R-modules f : M → N is a homomorphism of Mackey functors such that
the following diagram commutes:

R⊠M M

R⊠N N.

νM

id⊠f f

νN

If R is an O-Tambara functor, an R-module M is a module over the underlying Green
functor of R. Likewise with right R-modules.

Denote the category of R-modules by R-Mod.

Definition 3.18. If M and N are R-modules, we define the relative box product:

M ⊠R N := coeq(M ⊠R⊠N M ⊠N).
νM⊠idN

id⊠νN

Proposition 3.19 ([18]).

(a) The relative box product ⊠R makes the category R-Mod into a symmetric monoidal
category with unit R.

(b) R-Mod is an abelian category.

Remark 3.20. This notion of module is the extension of Strickland’s notion of naive mod-
ule [23, Definition 14.1] to incomplete Tambara functors. Strickland points out that this
definition only uses the underlying Green functor structure of R and proposes a new notion
of module in [23, Definition 14.3] which incorporates extra Tambara structure. The first
author showed in [13] that Strickland’s genuine modules are the abelian group objects in
the category of R-Tambara functors. We will not consider these more refined notions of
modules here and refer the reader to [13] for further discussion.

Definition 3.21. Let T be a finite G-set. The free Mackey functor on a generator at level
T , denoted A{xT }, is the Mackey functor defined by

A{xT } := P
G
Iso(T,−)

+,

where the superscript + denotes group completion.
Let R be an incomplete Tambara functor. The free R-module on a generator at level T ,

denoted R{xT }, is defined by
R{xT } := R ⊠A{xT }.

Example 3.22. The free R-module on a single generator at level G/G is R itself:

R{xG/G} = R.

Definition 3.23. A free R-module is any R-module M with

M ∼=
⊕

i∈I

R{xTi
}

where each Ti is a finite G-set.

Remark 3.24. As R{xT }⊕R{xT ′} ∼= R{xT⊔T ′}, any finitely generated free R-module has
the form R{xU} for a single finite G-set U . Importantly, this is not the case if the free
R-module is infinitely generated. Nevertheless, if a free R-module is infinitely generated, it
is a direct limit of finitely generated free R-modules.

Free modules enjoy the following universal property.
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Lemma 3.25. Free R-modules on a single generator represent evaluation:

R-Mod(R{xT },M) ∼= M(T ).

Definition 3.26. An R-module M is projective if it is a summand of a free R-module.
An R-module M is flat if the functor −⊠R M : R-Mod→ R-Mod is exact.

Free, projective, and flat modules interact in the way one would expect from classical
homological algebra.

Proposition 3.27. Projective R-modules are flat.

Proposition 3.28. Let f : R→ S be a morphism of O-Tambara functors. The base change
functor

S ⊠R (−) : R-Mod→ S-Mod

takes free (resp. projective resp. flat) R-modules to free (resp. projective resp. flat) S-
modules.

Proof. The functor S ⊠R (−) commutes with direct sums and direct limits, so S ⊠R (−)
takes free R-modules to free S-modules.

Alternatively, let M be an S-module. We have

S-Mod(S ⊠R R{xT },M) ∼= R-Mod(R{xT },M) ∼= M(T ),

so S ⊠R R{xT } represents evaluation at T .
If P is projective over R, then there is some Q such that P ⊕ Q is free over R. Then

(S ⊠R P )⊕ (S ⊠R Q) is free over S, and S ⊠R P is projective over S.

If M is flat over R, then (S ⊠R M) ⊠S (−) is naturally isomorphic to M ⊠R (−), and
therefore exact. �

Flatness is a surprisingly subtle concept for Mackey functors. The following example will
be used often.

Lemma 3.29. For G = Cp with p a prime, neither Z nor Z∗ is flat.

Proof. We have two exact sequences

0→ Z
∗ → A

p−t
−−→ A→ Z→ 0

and

0→ Z→ A{xCp
}

1−γ
−−−→ A{xCp

} → Z
∗ → 0,

where γ is a generator of Cp. Splicing these together gives a projective (even free) resolution
of either Z or Z∗.

If we consider the augmentation ideal I, the kernel of the map A→ Z, then this has the
property that the restriction to the trivial group is zero. This means that I ⊠A{xCp

} = 0.

This together with the projective resolution shows that while Z∗
⊠ I is zero, Tor2(Z∗, I) ∼= I

is not. �

3.3. Free incomplete Tambara functors. We now introduce free incomplete Tambara
functors, which are the main object of study in this work.

Definition 3.30 ([7, Definition 5.4]). For a finite G-set T , define

AO[xT ] := P
G
O(T,−)+

be the group completion of the functor represented by T . We will refer to this as the free
O-Tambara functor on a generator at level T .
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More generally, if R is an O-Tambara functor, the free R-algebra on a generator at level
T , denoted R[xT ], is defined by

R[xT ] := R⊠AO[xT ].

Remark 3.31. The free O-Tambara functor AO[xT ] represents evaluation at T :

O- T amb(AO[xT ], R) ∼= R(T ).

The norm, transfer, and restriction of a free incomplete Tambara functor are given by
post-composition, i.e. applying Tφ ◦−, Nφ ◦−, or Rψ ◦− to a polynomial Σ = Th ◦Ng ◦Rf .
For the transfer and restriction, simple descriptions of this operation are possible.

Proposition 3.32. Let

Σ = [G/H
f
←− A

g
−→ B

h
−→ Y ] ∈ AO[xG/H ](Y ) = PGO(G/H, Y )+

be a generator of AO[xG/H ](Y ). If j : Y → Z is a map of G-sets, then

trj(Σ) = [G/H
f
←− A

g
−→ B

j◦h
−−→ Z].

If k : Z → Y is a function of G-sets, then

resk(Σ) = [G/H
f◦πA
←−−− A×Y Z

g×id
−−−→ B ×Y Z

πZ−−→ Z].

Proof. The transfer along j is pre-composition with Tj :

trj(Σ) = Tj ◦ Σ = Tj ◦ (Th ◦Ng ◦Rf ) = Tj◦h ◦Ng ◦Rf .

Restriction along k is pre-composition with Rk:

resk(Σ) = Rk ◦ (Th ◦Ng ◦Rf ).

Using Theorem 2.13, we may commute Rk with Th and Ng in turn. The diagram

B ×Y Z Z

B Y

πZ

πB k

h

demonstrates that Rk ◦ Th = TπZ
◦RπB

, and the diagram

A×Y Z B ×Y Z

A B

g×id

πA πB

g

demonstrates that RπB
◦Ng = Ng×id ◦RπA

. Therefore,

resk(Σ) = Rk ◦ (Th ◦Ng ◦Rf )

= TπZ
◦RπB

◦Ng ◦Rf

= TπZ
◦Ng×id ◦RπA

◦Rf

= TπZ
◦Ng×id ◦Rf◦πA

. �

Corollary 3.33. For any orbits G/H and G/K, we have that

PGO(G/H,G/K)+

is the free abelian group with basis given by isomorphism classes of polynomials of the form

G/H
f
←− S

g
−→ G/J

h
−→ G/K
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Note that the map h in Corollary 3.33 is recording the transfer from G/J to G/K applied
to the polynomial

G/H
f
←− S

g
−→ G/J

=
−→ G/J.

The transfer maps may identify diagrams of this form, since in general, there are more
isomorphisms of diagrams

G/H
f
←− S

g
−→ G/J

h
−→ G/K.

Note however, that this simply takes basis vectors to other basis vectors.

4. Norms and sufficiency

For any subgroup H , the G-set G/H is in the image of the induction functor on H-
sets, and this functor extends to polynomials with exponents in various indexing categories.
Precomposition with the induction functor

G×H (−) : PHi∗
H
O → P

G
O

is a model for the restriction functor

O- T ambG → i∗HO- T ambH .

This functor has a left-adjoint, given by left Kan extension.

Definition 4.1 ([7, Definition 6.8]). Let

nGH : i∗HO- T ambH → O- T ambG

be the left adjoint to the restriction to H .

Proposition 4.2. There is an isomorphism of O-Tambara functors

nGHAi
∗

HO[xH/H ] ∼= AO[xG/H ].

Proof. It suffices to show that nGHAi
∗

HO[xH/H ] represents evaluation at G/H in O-T ambG.
We compute:

O-T ambG
(
nGHAi

∗

HO[xH/H ], R
)
∼= i∗HO- T ambH

(
Ai

∗

HO[xH/H ], i∗HR
)

∼= i∗HR(H/H)

∼= R(G/H). �

Example 4.3. When H = e, we have nGe (Z[x])
∼= AOcplt

[xG/e].

When G/H is an admissible G-set, then the underlying Mackey functor for nGHR can be
computed as a functor of the underlying Mackey functor of R. This is a key step in forming
the “external” or “G-symmetric monoidal” description of Tambara functors.

Definition 4.4 ([16, Section 2.3]). The norm

NG
H :MackH →MackG,

is defined by left Kan extension along the coinduction functor SetH(G,−) : PHiso → P
G
iso.

Proposition 4.5. The norm

NG
H :MackH →MackG

takes free H-Mackey functors to free G-Mackey functors.
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Proof. If a free H-Mackey functor A{xT } is finitely generated, we have

NG
HA{xT } ∼= A{xSetH (G,T )}

by definition. If it is not finitely generated, it can be written as a direct limit of finitely
generated ones. The norm commutes with direct limits, so again the norm is free. �

Proposition 4.6 ([16, Theorem 2.3.3], [7, Theorem 6.15]). If G/H is an admissible G-
set for O, then we have a natural isomorphism of functors from i∗HO-Tambara functors to
G-Mackey functors:

U ◦ nGH ∼= NG
H ◦ U.

Corollary 4.7. If G/H is an admissible G-set for O, then we have a natural isomorphism
of Mackey functors

U
(
AO[xG/H ]

)
∼= NG

H

(
Ai

∗

HO[xH/H ]
)
.

Combined with Proposition 4.5, we deduce some guarantees for free underlying Mackey
functors.

Corollary 4.8. If G/H is an admissible G-set for O, and if the Mackey functor underlying

Ai
∗

HO[xH/H ] is free, then the Mackey functor underlying AO[xG/H ] is free.

There is one case where we can easily show that the underlying Mackey functor is free:
the free Green functor on a fixed generator.

Proposition 4.9. The free Green functor on a fixed generator, AOtriv

[xG/G], is free as a
Mackey functor.

Proof. By [8, Corollary 2.11], there is an isomorphism of Mackey functors

AOtriv

[xG/G] ∼= Z[x] ⊗A,

where E ⊗ A is the Mackey functor which sends a G-set T to E ⊗ A(T ), for an abelian

group E. This implies that AOtriv

[xG/G] is the direct sum of infinitely many copies of A, so

AOtriv

[xG/G] is free as a Mackey functor. �

Applying this to Corollary 4.8, we deduce a class of free Tambara functors that are free
as A-modules.

Theorem 4.10. Let O be an indexing category for a finite group G and let H be a subgroup
of G. If i∗HO = Otriv and G/H is admissible for O, then AO[xG/H ] is free as an A-module.

5. Geometric fixed points

Studying the converse to Theorem 4.10 requires such to also be able to “restrict” along
quotient maps. Additively, this is the geometric fixed points functor, but we also need to
understand this on Tambara functors.

Throughout this section, N is a normal subgroup of G and Q := G/N is the quotient
group.
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5.1. Cleaving Indexing System.

Notation 5.1. If N is a normal subgroup of G, then let

FN = {H ≤ G | N 6⊂ H}

be the family of subgroups of G which do not contain N .

Associated to FN , we have a universal indexing category.

Definition 5.2. Let ONgen be the wide subgraph of SetG such that f : S → T is in ONgen if
and only if the canonical map

SN → S ×T TN

is an isomorphism.

We record two useful reformulations of ONgen.

Proposition 5.3. The following statements hold:

(a) A map is in ONgen if and only if the inclusion

SN ⊂ f−1(TN )

is the identity.
(b) A map of orbits G/K → G/H is in ONgen if and only if one of two things hold:

(i) K contains N or
(ii) H does not contain N .

Proof. Part (a) follows from the observation that the canonical map in Definition 5.2 is the
natural one

SN → f−1(TN).

Part (b) follows from the identifications

(G/H)N ∼=

{
∅ N 6⊂ H

G/H N ⊂ H,

and part (a). �

Recall that families of subgroups are the same thing as sieves in the orbit category.
Given any normal subgroup N , we have a quotient map q : G→ Q = G/N . This gives us a
fully-faithful embedding

(5.4) q∗ : OrbQ →֒ OrbG .

The intersection of ONgen with the orbit category of G is then

FN ∐Orb
Q .

Remark 5.5. Thinking of an indexing category as parameterizing transfers, we can rein-
terpret this as saying that we have no transfers from subgroups in the family to those not
in the family. We think of this as a chasm, cleaving the groups that contain N from those
that do not. In particular, intersecting any indexing category with this one gives a universal
way to remove any transfers that bridge from the family to the complementary cofamily.

Theorem 5.6. The wide subgraph ONgen is an indexing subcategory of SetG.
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Proof. We first show that it is a subcategory. It is clear that for any finite G-set T , the
identity map on T satisfies the conditions of Definition 5.2. Now let

U
f
−→ S

g
−→ T

be morphisms in ONgen. By assumption, we then have

UN = f−1(SN ) = f−1
(
g−1(TN)

)
= (g ◦ f)−1(TN ),

as desired. Thus ONgen is a subcategory. By assumption, this is a wide subcategory. We
apply [7, Lemma 3.2]. The maps ∅ → ∗ and ∗ ∐ ∗ → ∗ visibly satisfy the conditions of
Definition 5.2. We therefore only have to show pullback stability. Let

(5.7)

S1 S

T1 T

g1 g

be a pullback diagram in SetG with g a map in ONgen. Since fixed points are a limit, this
gives a pullback diagram

(5.8)

SN1 SN

TN1 TN

g1 g

Consider now the natural map

SN1 → S1 ×T1
TN1 .

By assumption on the diagram and associativity, we have natural isomorphisms

S1 ×T1
TN1
∼= (S ×T T1)×T1

TN1
∼= S ×T TN1

∼= S ×T (TN ×TN TN1 ).

By assumption on the map g, we have a further natural isomorphism

(S ×T TN)×TN TN1
∼= SN ×TN TN1 .

(5.8) then shows this to be isomorphic to SN1 via the natural maps, as desired. �

5.2. Incomplete Tambara functors and nullifications. Classically, the N -geometric
fixed points are the composite of two functors:

(1) the nullification which annihilates anything induced from those H in FN , and
(2) the “restriction” along the surjection q : G→ Q.

Both of these can be realized in Mackey functors, cf. [5, Section 5.2].

Definition 5.9. Let EFN be the sub-Mackey functor of A generated by A(G/H) for all H

in FN . Let ẼFN be the quotient of A by EFN .

Since we are working with the Burnside Mackey functor, we can be more explicit.

Proposition 5.10. We have for all H ⊂ G

EFN(G/H) = Z ·
{
[H/K] | K ∈ FN

}
,

so the inclusion

EFN (G/H) →֒ A(G/H)

is inclusion of a direct summand.
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Note in particular that if H 6∈ FN , then every generator of EFN (G/H) is the transfer of
an element (in fact, a generator) from EFN (G/K) with K ∈ FN .

Definition 5.11 ([7, Definition 5.6]). If R is an O-Tambara functor, then an O-ideal is a
sub-Mackey functor J such that

(a) the multiplication on R makes J an R-module, and
(b) if f : S → T is in O and is surjective, then J is closed under Nf .

The surjective condition allows for ideals that don’t contain units 1 ∈ R(T ) for each T ;
see [7, Remark 5.7].

Theorem 5.12. For any normal subgroup N of G, the sub-Mackey functor EFN is an
ONgen-ideal.

Proof. That this is a Mackey ideal follows from the Frobenius relation: the transfers from
a family form an ideal by the double coset formula.

It remains to show that this is closed under norm maps parameterized by ONgen: if x ∈

EFN (G/K), then any norm parameterized by ONgen applied to x is again in EFN . For this,
we first recall that for any element x ∈ A(G/K) is actually in EFN (G/K) if and only if
there is a finite G-set T with two properties:

(1) the N -fixed points of T are empty and
(2) there is a map h : T → G/K such that x is in the image of the transfer along h.

If K ∈ FN , then the only norms from G/H parameterized by ONgen are those along maps
G/K → G/H with H also in FN . The values of EFN and A agree at these groups, so there
is nothing to check.

Now if H contains N , then admissibility says that K must as well by Proposition 5.3.
We are therefore reduced to understanding the composite

Ng ◦ Th,

where g : G/K → G/H is arbitrary and h : T → G/K is the map above describing some
element x ∈ EFN (G/K). We have an exponential diagram

G/K T (h′)∗G/K

G/K G×H Set
K(H,T ′),

g

h f ′

g′

h′

where T ′ is the K-set h−1(eK). Closure under the norm associated to g is then equivalent
to (

G×H Set
K(H,T ′)

)N
= ∅.

Since H and K both contain N , it suffices to check
(
SetK(H,T ′)

)N
= ∅.

Both N -fixed points and coinduction are right adjoints, and since the corresponding left
adjoints commute, we can swap these:

(
SetK(H,T )

)N ∼= SetK/N
(
H/N, TN

)
.

By assumption T , and hence T ′, has no N fixed points. �

Applying [7, Proposition 5.11], we obtain:
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Corollary 5.13. If O is any indexing category contained in ONgen, then for any O-Tambara

functor R, ẼFN ⊠R is an O-Tambara functor and the natural map

R→ ẼFN ⊠R

is a map of O-Tambara functors.

5.3. Changing Groups. Let N be a normal subgroup of G and q : G → Q = G/N the
quotient homomorphism. The functor q∗ on orbit categories (5.4) induces a fully-faithful
functor on their coproduct completions

q∗ : SetQ → SetG .

The essential image of q∗ is the full subcategory of G-sets T for which T = TN .
The functor q∗ actually gives us a map the other way on indexing subcategories.

Proposition 5.14. Given an indexing subcategory O of SetG, the intersection with SetQ

gives an indexing subcategory of SetQ.

Proof. Since SetQ is fully-faithfully embedded in SetG via q∗ and since O is wide and finite-
coproduct complete, so is the intersection with SetQ. Pullback stability follows from noting
that we can compute pullback via the fully-faithful embedding, where this is immediate. �

Definition 5.15. If O is an indexing category for G, then let q∗O be the corresponding
indexing category for Q.

We can extend this to maps on Burnside categories and categories of polynomials PGO .

Proposition 5.16. The natural inclusion SetQ → SetG extends to a faithful, but not full,
product-preserving embedding

q∗ : AQ → AG.

If O is an indexing category for Q and if O′ is any indexing category for G such that
O ⊆ q∗O′, then we have a faithful product preserving embedding

q∗ : PQO → P
G
O′ .

In both cases, we take a diagram in SetQ to itself, viewed as a diagram in SetG via q∗.

Proof. We begin by noting that q∗ preserves pullback diagrams. This gives the first embed-
ding immediately.

For the second, we need slightly more: we need that q∗ preserves not only pullback
diagrams but also dependent products. This follows from computing the N -fixed points. �

Remark 5.17. The failure of fullness arises from the image of q∗ not being a sieve. For
example, if Q = e, then this is the usual embedding of Set into SetG. For any non-trivial
G,

A(G) = AG(∗, ∗) 6= Ae(∗, ∗) = Z.

Since the functor q∗ is product preserving, precomposition with it gives a functor on
Mackey functors and appropriate incomplete Tambara functors.

Definition 5.18. If O is an indexing category for G, then let

q∗ : O-T ambG → q∗O- T ambQ

be the functor given by precomposition with q∗, and similarly for Mackey functors.

Remark 5.19. Unpacking the functor q∗, we see that it is really formalizing two procedures:
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(a) Forget R(G/H) for any H that does not contain N , and also
(b) Forget any norms or transfers up from groups which do not contain N .

The heart of Proposition 5.16 is that this actually gives an incomplete Tambara functor on
Q.

Remark 5.20. Our functor q∗ is the 1-categorical shadow of an identically defined map of
∞-categories from Barwick’s Burnside ∞-category for Q to that for G [4]. Precomposition

with this ∞-categorical q∗ gives a model for the N -fixed points as a functor SpG → SpQ.

This is the final piece of our geometric fixed points.

Definition 5.21 (cf. [5, Section 5.2]). Let O be an indexing category for G such that
O ⊆ ONgen. The Tambara geometric fixed points

Φ̃N : O- T ambG → q∗O- T ambQ

are the composite

q∗ ◦
(
ẼFN ⊠ (-)

)
.

The Mackey geometric fixed points

ΦN : MackG →MackQ

are the composite

q∗ ◦
(
ẼFN ⊠ (-)

)
.

Remark 5.22. Note that for any Mackey functorM , the Mackey functor ẼFN⊠M vanishes
when evaluated on G/H with N 6⊂ H . In particular, we see that on the essential image of

the localization functor given by boxing with ẼFN , q∗ throws away no real information.

Note that the embedding

PGiso →֒ P
G
O

is compatible with the map q∗: for any G indexing category O, we have a commutative
diagram

PQiso PQq∗O

PGiso PGO .

q∗ q∗

Precomposition with the inclusion PGiso →֒ P
G
O gives the underlying Mackey functor of a

Tambara functor (Example 2.10).

Proposition 5.23. The underlying Mackey functor of the Tambara geometric fixed points
is the Mackey geometric fixed points of the underlying Mackey functor, i.e.

U ◦ Φ̃N ∼= ΦN ◦ U.

5.4. Geometric fixed points of frees and flats. Let T be a finiteG-set. We now compute
the geometric fixed points of the free Mackey or O-Tambara functor on T . The key feature
here is that since N is a normal subgroup, TN is actually a G-equivariant summand of T ,
and hence we have a natural inclusion of G-sets TN → T .
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Theorem 5.24. The map

AQ{xTN} → ΦN
(
A{xT }

)

corresponding to the element

[T ← TN → TN ] ∈
(
ẼFN ⊠A{xT }

)
(TN)

is an isomorphism.

Proof. We analyze more directly the quotient ẼFN⊠A{xT }. A generic element ofA{xT }(G/H)
is a span of the form

T ← S → G/H.

If N 6⊂ H , then this span was automatically set to zero by the quotient, so it suffices to
study N ⊂ H . Breaking S into orbits

∐
G/Ki, we can write the element as the sum of

elements

T ← G/Ki → G/H.

If N 6⊂ Ki, then this element is in the image of the transfer from A{xT }(G/Ki) with
Ki ∈ FN , and hence is set equal to zero in the quotient. Thus the image under the quotient
map is

T ← SN → G/H.

In particular, we see that a basis for the free abelian group ẼFN ⊠ A{xT }(G/H) is given
by isomorphism classes of spans

T ← G/K → G/H

with N ⊂ K. Since (G/K)N = G/K, the map G/K → T actually factors through TN →֒ T .

By naturality, the map AQ{xTN } → ΦN (A{xT }), when evaluated at G/H with N ⊂ H ,
takes a diagram

TN
f
←− S

g
−→ G/H = Tg ◦Rf

(
TN ← TN → TN)

with S = SN to the diagram

Tg ◦Rf (T ← TN → TN) = T
f
←− S

g
−→ G/H.

In particular, this takes a basis to a basis, and hence is an isomorphism. �

Corollary 5.25. The N -geometric fixed points functor preserves projective Mackey func-
tors.

Proof. Recall that any projective is a retract of a free. Since any functor preserves retract
diagrams, and since geometric fixed points of free Mackey functors are free, the geometric
fixed points of a projective Mackey functor are projective. �

The argument for incomplete Tambara functors is almost identical.

Theorem 5.26. Let O be an indexing category for G for which O ⊆ ONgen. The map

Aq∗O[xTN ]→ Φ̃NAO[xT ]

corresponding to the element

[T ← TN → TN → TN ] ∈
(
ẼFN ⊠Aq∗O[xT ]

)
(TN),

is an isomorphism.
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Proof. The proof proceeds almost identically to the Mackey functor case. Using the same

reductions as before, we find that a basis for the quotient ẼFN ⊠AO[xT ] at G/H is given
by isomorphism classes of polynomials of the form

T ← A
g
−→ G/K → G/H,

with again N ⊂ K,H and now g ∈ O. Here our assumption on O enters: we have no maps
G/J → G/K in ONgen if J does not contain N . In particular, we deduce that A = AN , and
hence it is in the image of q∗. The rest of the proof follows identically. �

More generally, the geometric fixed points functor preserves flat objects. We begin with
an observation linking this to another well-studied functor: inflation.

Definition 5.27 ([26, Section 5]). Given a Q-Mackey functor M , we define a G-Mackey

functor InfGQM called the inflation of M from Q to G by

InfGQM(G/H) =

{
0 if H ∈ FN ,

M(H/N) if H 6∈ FN .

Thévanaz–Webb show also that this functor has both adjoints. Unpacking our definition
of geometric fixed points shows that it agrees with the left adjoint of inflation.

Proposition 5.28. The N -geometric fixed points on Mackey functors is left adjoint to the
inflation functor InfGQ.

In fact, we can do better. Inflation actually gives a section of the N -geometric fixed
points (which reflects an underlying recollement for the family FN ).

Proposition 5.29. The canonical natural transformation

InfGQ(-)
∼= A⊠ InfGQ(-)⇒ ẼFN ⊠ InfGQ(-)

is an isomorphism, and the composite ΦN ◦ InfGQ is naturally isomorphic to the identity.

Proof. For any G-Mackey functor M , the canonical quotient map A → ẼFN allows us to
identify

ẼFN ⊠M

with the quotient of M by the sub-Mackey functor generated by M(G/H) for all H ∈ FN .

By definition, if H ∈ FN , then InfGQM(G/H) = 0, so we are forming the quotient by the
zero Mackey functor. �

Identifying the geometric fixed points as the left-adjoint to inflation gives another refor-
mulation of it.

Definition 5.30. Let FixN : SetG → SetQ denote the N -fixed point functor.

Proposition 5.31. The functor FixN extends to a product-preserving functor

AG → AQ

which commutes with Cartesian products.

Proof. The composition in AG is given by pullback, and since FixN is a limit, it commutes
with pullbacks. The compatibility with the Cartesian product is identical. For the categor-
ical product, we observe that the fixed points of a disjoint union are the disjoint union of
the fixed points. �
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The following is immediate from the definition of inflation.

Proposition 5.32. The functor InfGQ is naturally isomorphic to the precomposition with
FixN:

InfGQ(M) ∼= M ◦ FixN .

Corollary 5.33. The N -geometric fixed points are given by the left Kan extension along
FixN.

Corollary 5.34. The N -geometric fixed points functor is strong symmetric monoidal.

Proof. Since both the box product and the N -geometric fixed points are given by left Kan
extensions, it suffices to show that the underlying diagram

AG ×AG AG

AQ ×AQ AQ,

×

FixN FixN

×

expressing the ways we can take the iterated Kan extensions, commutes. This is the fact
that FixN is strong symmetric monoidal for the Cartesian product. �

Theorem 5.35. The N -geometric fixed points preserves flat Mackey functors.

Proof. We must show that if M is a flat Mackey functor, then the box product with ΦNM
is an exact functor on Q-Mackey functors. We show this by rewriting it several ways. Let N
be a Q-Mackey functor. Then using Proposition 5.29 and Corollary 5.34, we have a natural
(in N) isomorphism

N ⊠ ΦNM ∼= ΦN
(
InfGQN ⊠M

)
.

The definition of geometric fixed points allows us to further rewrite this, now using the first
clause of Proposition 5.29:

ΦN
(
InfGQN ⊠M

)
∼= q∗

(
InfGQN ⊠M

)
.

Now, the inflation functor and q∗ are both exact, since both are given by precomposition
with an additive functor and exactness is checked objectwise. We deduce that if M is flat,
then the functor

N 7→ q∗
(
InfGQN ⊠M

)
∼= N ⊠ ΦN (M)

is exact. �

6. Necessary conditions for freeness

6.1. The restriction functor from G-Mackey functors to H-Mackey functors. To
give necessary conditions for flatness, we must first establish some properties of the restric-
tion functor. Recall that i∗H : MackG → MackH for H ≤ G is defined by precomposition
with the induction functor

G×H (−) : AH → AG.

We first introduce its adjoints.

Definition 6.1 ([26, Section 4]). Given an H-Mackey functor N , we define a G-Mackey

functor IndGH(N), the induction of N , by

IndGH N = N ◦ i∗H ,

where i∗H is the restriction functor from finite G-sets to finite H-sets.
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Lemma 6.2 ([26, Proposition 4.2]). The restriction functor is both left and right adjoint to
the induction functor.

Both restriction and induction are exact functors, as again, exactness is checked object-
wise.

Proposition 6.3. For any subgroup H, both restriction i∗H and induction IndGH preserve
projective objects.

Proof. This follows from each having an exact right adjoint. �

We can moreover identify the restriction of free Mackey functors.

Proposition 6.4. There is an isomorphism of Mackey functors

i∗HAG{xT } ∼= AH{xi∗
H
T }.

Moreover, i∗H sends free Mackey functors to free Mackey functors.

Proof. It suffices to show that i∗HA
G{xT } represents evaluation at i∗HT in H-Mackey func-

tors. We compute:

MackH(i∗HAG{xT }, N) ∼=MackG(AG{xT }, Ind
G
H N)

∼= IndGH N(T )

∼= N(i∗HT ).

If a free Mackey functor is finitely generated, the calculation above shows that its restriction
is again free. Otherwise, it is a direct limit of finitely generated ones, and i∗H preserves direct
limits because it is a left adjoint. �

As with geometric fixed points, it is a bit more work to show that this functor preserves
flat objects.

Lemma 6.5. The restriction functor i∗H is strong symmetric monoidal.

Proof. Because restriction is left adjoint to a functor IndGH given by precomposition with

i∗H , it is given by a left Kan extension along i∗H : SetG → SetH . Then this follows nearly

identically to Corollary 5.34, replacing instances of FixN by i∗H . Note that i
∗
H : SetG → SetH

is a right adjoint and so preserves limits, and so extends to a product-preserving functor
AG → AH which commutes with Cartesian products as in Proposition 5.31. �

Theorem 6.6. If M is a flat G-Mackey functor, then i∗HM is a flat H-Mackey functor.

Proof. Since induction and restriction are exact functors, if M is a flat G-Mackey functor,
then the functor

N 7→ i∗H
(
IndGH(N)⊠M

)

is exact. By the Frobenius relation, we have an isomorphism

IndGH(N)⊠M ∼= IndGH
(
N ⊠ i∗HM

)
.

Finally, the unit of the forget-induction adjunction

N 7→ i∗H IndGH N

is naturally a split inclusion. This follows from noting the that right-hand side is the functor

T 7→ N
(
i∗H(G×H T )

)
,
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and the inclusion of H into G is the inclusion of an H-H-biset summand. We deduce that
the functor

N 7→ N ⊠ i∗HM

is a retract of an exact functor, and hence is exact. �

6.2. Necessity of triviality of the restriction. We begin by proving that i∗HO
∼= Otriv

is a necessary condition for freeness. We start here with a technical observation:

Lemma 6.7. If O is an indexing category for G, then there is a smallest subgroup N such
that

(a) G/N is admissible.
(b) If G/H is admissible, then N ≤ H.
(c) If H/K is an admissible H-set with N ≤ H, then N ≤ K.
(d) N is normal in G.

Proof. Let S = {H ≤ G : G/H is admissible}. Let N =
⋂
H∈S H . Then N satisfies (a) and

(b):

(a) G/N is admissible since G/(H ∩ H ′) is admissible whenever G/H and G/H ′ are
admissible.

(b) By definition, N ≤ H for every H such that G/H is admissible.

Now, suppose H/K is an admissible H-set and N ≤ H . By restriction, N/(N ∩K) is an
admissible N -set, and since admissibles are closed under self-induction, G/(N ∩ K) is an
admissible G-set. Minimality of N implies that N ∩K = N , and hence N ⊂ K.

Finally, the closure under conjugacy of admissibles implies by minimality that N is ac-
tually normal. �

As in Section 5, we write Q for G/N .

Remark 6.8. Lemma 6.7 shows that if N is the normal subgroup associated to O, then

O ∩ONgen = O.

In particular, we can take geometric fixed points and not lose information we might have
wanted to preserve.

Proposition 6.9. Let O be an indexing category. If AO[xG/G] is flat, then O = Otriv.

Proof. Let N be the (normal) subgroup from Lemma 6.7, and take the N -geometric fixed
points. This gives

ΦN
(
AO[xG/G]

)
∼= AON

[xQ/Q],

which is flat by Theorem 5.35. Note that now we have norms from N/N = {e} to all larger
subgroups of Q.

If N 6= G, then we can choose a Cp in Q for some prime p. Restricting down to Cp, we
get

i∗Cp
Aq∗O[xQ/Q] ∼= AOcplt

[xCp/Cp
],

since there are only two indexing categories for Cp and we have a non-trivial norm. This is
not flat by [7, Lemma 3.6], which implies that the augmentation ideal of A → Z (which is
not flat) is a summand. We conclude that N = G and hence G/G is the only admissible
transitive G-set for O.

To show that the admissible H-sets are also all trivial, we note that we have a natural
isomorphism

i∗HA
O[xG/G] ∼= Ai

∗

HO[xH/H ].
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By Theorem 6.6 restriction preserves flats, so induction on the subgroup lattice shows then
that O = Otriv. �

Corollary 6.10. Let O be an indexing category and let H ≤ G be a subgroup. If AO[xG/H ]

is flat, then i∗HO = Otriv.

Proof. Write i∗HG/H = H/H ∐ T for some H-set T . If AO[xG/H ] is flat, then so is the
restriction to H . This is given by

Ai
∗

HO[xi∗
H
G/H ] ∼= Ai

∗

HO[xH/H ]⊠Ai
∗

HO[xT ].

If this is flat, then so are both box factors since they are also summands. The result then
follows from Proposition 6.9. �

6.3. Necessity that H is normal in G. In fact, the decomposition in the proof of
Corollary 6.10 implies that H is a normal subgroup of G. Consequently, all of the fac-
tors in that decomposition are the same (and the Weyl action permutes them). To show
this, we need to analyze exactly when Green functors are free.

Theorem 6.11. If AOtriv

[xG/H ] is flat, then H = G.

The free Green functor on a class at level G/H can be equivalently described as the
ordinary symmetric algebra on A{xG/H}:

AOtriv

[xG/H ] ∼=
⊕

n≥0

Symn(A{xG/H}).

For a general finite G-set T , the n-th symmetric power on A{xT } is a quotient of a free:

Symn(A{xT }) ∼=
(
A{xT×n}

)
/Σn.

Here we use that T×n is a G× Σn-set, or equivalently, a Σn-object in G-sets.
Theorem 6.11 will follow immediately from a more precise statement.

Theorem 6.12. If n = [G : H ], then Symn(A{xG/H}) is not flat.

Proof. A decomposition of (G/H)×n into G × Σn-sets gives a direct sum decomposition of
Symn(A{xG/H}). We single out some particular summands.

Choose a non-equivariant isomorphism
(
f : {1, . . . , n} → G/H

)
∈ (G/H)×n.

Using f to identify G/H with {1, . . . , n}, the G-action on G/H is the classified by a homo-
morphism

φ : G→ Σn.

Thinking of φ as defining the G-set structure on G/H , we see that the kernel of φ is the
normal subgroup

NH =
⋂

g∈G

gHg−1.

Let φ̃ be the inclusion of G/NH into Σn induced by φ.
We have to understand (

AG×Σn·f

)
/Σn.

By the orbit-stabilizer theorem, as a G× Σn-set, we have

G× Σn · f ∼= G× Σn/Γφ,
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where Γφ is the graph of φ. The underlying Mackey functor is the free Mackey functor

A{xi∗
G
(G×Σn·f)},

and this has a residual Σn-action.
Restricting to G, we use the double-coset formula

i∗G
(
G× Σn/Γφ

)
∼=

∐

G(g,σ)Γφ∈G\G×Σn/Γφ

G/G ∩ (g, σ)Γφ(g, σ)
−1.

The group G ∼= G× {e} is a normal subgroup of G×Σn, so it intersects all conjugates of a
fixed group in conjugates:

G× {e} ∩ ((g, σ)Γφ(g, σ)
−1) = (g, σ)

(
G× {e} ∩ Γφ

)
(g, σ)−1.

By definition of the graph, the intersection

G× {e} ∩ Γφ = {(g, e) | φ(g) = e}

is the graph of φ restricted to its kernel. Since the kernel is normal in G, this is normal in
G× Σn: (

G× {e} ∩ Γφ
)(g,σ)

= NH × {e}.

Therefore we have

i∗G(G× Σn/Γφ) ∼=
∐

G(g,σ)Γφ∈G\G×Σn/Γφ

G/NH .

For the residual Σn-action, we recall that Σn acted freely on G × Σn/Γφ. The quotient
map

G× Σn → G× Σn/Γφ

takes G first to G/NH and then identifies it with the subgroup φ̃(G/NH). This identifies
the double cosets: we have

G\G× Σn/Γφ = Σn/φ̃(G/NH).

Putting this together, the restriction to G of G×Σn/Γφ is just the decomposition of Σn
into G/NH -cosets. As a consequence, we have

(
A{xG×Σn·f}

)
/Σn ∼=

(
A{xG/NH

}
)
/(G/NH),

where G/NH acts on itself via the right action (which is then an isomorphism of left G-sets).
If this summand is flat, then applyingNH -geometric fixed points (and letting Q = G/NH)

shows that the Q-Mackey functor (
AQ{xQ}

)
/Q

is also flat. In other words, without loss of generality, we reduce to the case that NH = {e}
and Q = G.

Since G is finite and G 6= {e}, we can find an element of order p for some prime p. This
gives us a subgroup K ∼= Cp. Restricting to K, we have an isomorphism

i∗K
(
A{xG}

)
/G ∼=

(
A{xK}

)
/K.

The latter we can compute directly: it is the dual to the constant Mackey functor Z. Since
this is not flat, by Lemma 3.29, we deduce that the summand we started with could not be
either. �

This has a surprising consequence.
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Proposition 6.13. Let O be an indexing category, and let H ⊂ G. If AO[xG/H ] is flat,
then H is normal in G.

Proof. Let us again write i∗HG/H = H/H ∐ T for some finite H-set T . We have an isomor-
phism of i∗HO-Tambara functors

i∗HA
O[xG/H ] ∼= Ai

∗

HO[xH/H ]⊠Ai
∗

HO[xT ],

as in Corollary 6.10, and that corollary also shows that i∗HO = Otriv. Since all of the box
factors are also direct summands, Theorem 6.11 shows that they are only free if the set T
is a trivial H-set. This is equivalent to H being normal in G. �

6.4. Connecting freeness to admissibility of G/H. We begin with a further constraint
on the indexing category.

Proposition 6.14. Let O be an indexing category and N a normal subgroup of G such that
i∗NO is trivial. Then

O ∩ONgen = O.

Proof. This follows from pulling back G/H → G/K along G/N → G/K. �

If AO[xG/H ] is flat, then we have already seen that H is normal in G and that i∗HO =

Otriv. We want to study the constraints on O, so we lose no information if we pass to the
H-geometric fixed points. Put another way, we may assume without loss of generality that
H = {e}.

To study the connection between flatness and admissibility, we will compare with an
indexing category where we know that we have flatness: the complete one. We need a small
lemma on how the free incomplete Tambara functors compare.

Lemma 6.15. If O ⊆ O′, then for all T , we have a natural inclusion

AO[xT ] →֒ AO′

[xT ]

adjoint to

[T ← T → T → T ] ∈ AO′

[xT ](T ).

In particular, for any indexing category O, we have an inclusion

φO : AO[xG/e] →֒ AOcplt

[xG/e] ∼= NG
e Z[x]

into the free Tambara functor on an underlying generator.

We will use this map to identify summands of AO[xG/e] by studying their image. If G
is admissible, then we are of course done. So, we describe what happens when G/e is not
admissible.

Definition 6.16. Let

FO = {H : G/e
π
−→ G/H ∈ O},

be the collection of subgroups H for which H is an admissible H-set.

Put another way, these are all of the subgroups for which we have norms from the trivial
group to those subgroups.

Lemma 6.17. The collection of subgroups FO of G is a family.

Proof. The result then follows from pullback stability of O. �
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Proposition 6.18. Consider the summand

A ∼= A{nmG
e (x)} →֒ NG

e

(
Z[x]

)

corresponding to the norm of the (underlying) generator x.
The image of φO in A{nmG

e (x)} is isomorphic to EFO.

Proof. The only polynomials in AO[xG/e] which land in this summand are the linear com-
binations of polynomials of the form

[G/e← G/e×G/H
π
−→ G/H → G/H ], H ∈ FO.

In A · nmG
e (x), the displayed polynomial is the restriction to H of nmG

e (x), so we see that
the image is the sub-Mackey functor generated by A(G/H) with H ∈ FO. The result
follows. �

Proposition 6.19. If G is solvable and G 6∈ FO, then EFO is not flat.

Proof. Assume to the contrary that EFO is flat.
LetH be a minimal subgroup of G that is not in FO. By assumption, all proper subgroups

of H are in FO, and since restriction preserves flat objects (Theorem 6.6), we may without
loss of generality assume that FO is actually the family P of proper subgroups of G.

Since G is solvable, there exists some normal subgroup N of H such that H/N ∼= Cp for
some prime p. Since geometric fixed points ΦN preserve flatness (Theorem 5.35), ΦN (EP)
is flat. However, direct computation shows that

ΦN (EP) ∼= Z
∗,

which is not flat by Lemma 3.29. �

We assemble all of the results here into the solvable case of our general theorem.

Theorem 6.20. Let G be a solvable finite group, O an indexing category for G, and H a
subgroup of G. The following are equivalent:

(a) The Mackey functor underlying the free O-Tambara functor on a class at level G/H
is flat.

(b) The Mackey functor underlying the free O-Tambara functor on a class at level G/H
is free.

(c) H is a normal subgroup of G, G/H is admissible, and i∗HO = Otriv.

Remark 6.21. For more general groups, we notice that if G is not admissible, then we have
a summand of the free O-Tambara algebra on a class at level G that is a proper sub-Mackey
functor of A.

In the non-solvable case, Dress showed that the Burnside rings (and hence the Burnside
Mackey functor) splits into a product of various Green functors, with factors corresponding
to perfect subgroups. This means that there are, in the non-solvable case, sub-Mackey
functors of A that are projective.

For example, let G = A5 and let O be the indexing category OGgen. Then the free O-
Tambara functor at level G is underlying projective. The argument above shows that the
part in A{nmG

e (x)} is EP, which for A5 is actually a direct summand.
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6.5. Asymptotics. The conditions onH in Theorem 6.20 pin down H quite nicely: it must
be the minimal normal subgroup N ≤ G such that G/N is admissible. In particular, it is
uniquely determined by the indexing category.

Proposition 6.22. If G is a solvable group, then for any indexing category O, there is at
most one subgroup H ≤ G such that AO[xG/H ] is flat as an A-module.

If the restriction ofO to the minimal normal subgroupN ≤ G such thatG/N is admissible
is not trivial, then Theorem 6.20 shows that there are no free O-Tambara functors that are
flat as A-modules.

These harsh conditions let us deduce harsh upper bounds on the number of frees that
are underlying flat in general. Our strategy is to bound the proportion of free incomplete
Tambara functors which are flat as Mackey functors in terms of the depth of a finite solvable
group G. We then use a result from group theory to reduce from general finite groups to
finite solvable groups.

Definition 6.23. Let G be a finite group. Let

(a) d(G) denote the depth of the subgroup lattice of G,
(b) n(G) denote the number of indexing categories for G,
(c) T (G) denote the the number of pairs (O, H) of indexing category O for G and

subgroup H ≤ G, and
(d) P (G) denote the number of such pairs for which AO[xG/H ] is flat as a Mackey

functor.

The number P (G)/T (G) is the fraction of free incomplete Tambara functors for G which
are flat as Mackey functors. The following proposition says that as the depth of a solvable
group G increases, this fraction tends to zero.

Proposition 6.24. Let G be a solvable group. Then

P (G)

T (G)
≤

1

d(G)
.

Proof. For any finite group G, we have T (G) ≥ d(G) · n(G). It therefore suffices to show
that when G is solvable, we have P (G) ≤ n(G). This follows from Proposition 6.22. �

Definition 6.25. Let

(a) G (resp. Gs) denote the (countable) set of all finite groups (resp. finite solvable
groups),

(b) G≤d (resp. Gd) the subset of finite groups of depth at most d (resp. precisely d),
(c) Gs≤d (resp. G

s
d) the subset of finite solvable groups of depth at most d (resp. precisely

d).

For any of the sets S above, we write S(−) : N → S for a fixed bijection with the natural
numbers.

Heuristically, the inequality P (G)/T (G) ≤ 1/d(G) says that as depth increases, the
proportion of free incomplete Tambara functors which are flat decreases. To extend this
heuristic to a precise statement for all finite groups, we will need to take sums over infinite
sets of finite groups. This is possible using the following lemma:

Lemma 6.26. Let S be a countable set and let {As}s∈S and {Bs}s∈S be collections of finite
integers. Fix a bijection φ : N→ S between S and the natural numbers. Then

lim
n→∞

∑n
i=1 Aφ(i)∑n
i=1 Bφ(i)

≤ lim sup
n→∞

Aφ(n)

Bφ(n)
.
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Proof. By taking limits, it suffices to show that
∑n

i=1 Aφ(i)∑n
i=1 Bφ(i)

≤ max
1≤i≤n

Aφ(i)

Bφ(i)

for all n. To that end, observe

Aφ(j) =
Aφ(j)

Bφ(j)
Bφ(j) ≤

(
max
1≤i≤n

Aφ(i)

Bφ(i)

)
Bφ(j).

Taking sums, we find

n∑

j=1

Aφ(j) ≤

(
max
1≤i≤n

Aφ(i)

Bφ(i)

)


n∑

j=1

Bφ(j)



 .

Dividing through by
∑

j Bφ(j) yields the desired inequality. �

Theorem 6.27. Free incomplete Tambara functors for finite groups are almost never flat.
More precisely,

lim
n→∞

∑n
i=1 P (G(i))∑n
i=1 T (G(i))

= 0.

Proof. Evidently P (G) and T (G) are positive numbers for all G ∈ G, so

lim
n→∞

∑n
i=1 P (G(i))∑n
i=1 T (G(i))

≥ 0.

We need to show

lim
n→∞

∑n
i=1 P (G(i))∑n
i=1 T (G(i))

≤ 0.

By the main theorem of [9], almost all finite groups are solvable. Therefore

lim
n→∞

∑n
i=1 P (G(i))∑n
i=1 T (G(i))

= lim
n→∞

∑n
i=1 P (Gs(i))∑n
i=1 T (G

s(i))
,

so it suffices to prove the theorem for solvable groups.
Now, Gs =

⋃∞
d=0G

s
d so

lim
n→∞

∑n
i=1 P (Gs(i))∑n
i=1 T (G

s(i))
= lim

d→∞
lim
n→∞

∑n
i=1 P (Gs≤d(i))∑n
i=1 T (G

s
≤d(i))

.

Finally, observe that almost all solvable groups of depth at most d actually have depth
precisely d, i.e. almost every element in Gs≤d is actually contained in the subset Gsd. There-
fore

lim
d→∞

lim
n→∞

∑n
i=1 P (Gs≤d(i))∑n
i=1 T (G

s
≤d(i))

= lim
d→∞

lim
n→∞

∑n
i=1 P (Gsd(i))∑n
i=1 T (G

s
d(i))

.

By Proposition 6.24 and Lemma 6.26, we have

lim
d→∞

lim
n→∞

∑n
i=1 P (Gsd(i))∑n
i=1 T (G

s
d(i))

≤ lim
d→∞

lim sup
n→∞

P (Gsd(n))

T (Gsd(n))
≤ lim
d→∞

lim sup
n→∞

1

d
= 0,

which implies the result in view of the previous equalities. �
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Remark 6.28. In the proof of Theorem 6.27, we used the fact that almost all finite groups
are solvable to reduce our analysis to the solvable case. If one restricts further to cyclic
groups of prime power order, one can obtain explicit bounds using the classification of
indexing categories for such groups by Balchin–Barnes–Roitzheim [1]. In fact, the tables in
Appendix A suggested the more general statement of Theorem 6.27.

7. Freeness after localization

In classical algebra, modules often become free when the base ring is enlarged. For
example, base-change from Z to Q (or any field) forces any module to be free. In this
section, we explore what happens to free incomplete Tambara functors after inverting various
elements in the Burnside functor.

7.1. Cohomological and Fixed Point Mackey functors. Before discussing localization,
we discuss two important classes of Mackey functors: cohomological Mackey functors and
fixed point Mackey functors.

Definition 7.1 ([11, Section 1.4]). A Mackey functor M is cohomological if

trHK resHK(x) = [H : K]x

for all x ∈M(G/H) and all subgroups K ≤ H ≤ G.

The name “cohomological” comes from the analogous relations satisfied by restriction
and transfer in group cohomology. Cohomological Mackey functors have a coordinate free
description as well.

Proposition 7.2 ([25, Proposition 16.3]). There is an equivalence between the category of
Z-modules and the full subcategory of cohomological Mackey functors.

In particular, being a Z-module is a property of a Mackey functor, rather than extra
structure. A Mackey functor M is a Z-module if and only if the homomorphism

M ∼= A⊠M → Z⊠M

induced by the unit η : A→ Z is an isomorphism.

Remark 7.3. Base change Z⊠− from A to Z may be calculated levelwise by the formula

(Z⊠M)(G/H) ∼= M(G/H)/([H : K]x− trHK resHK x).

This follows from the fact that Z is a quotient of A and the box product commutes with
colimits in each variable.

We now aim to characterize the free cohomological Mackey functors. To do so, we must
first introduce another class of Mackey functors.

Definition 7.4. Let FP be the right adjoint to the forgetful functor from Mackey functors
to G-modules which sends M to M(G/e) with its Weyl group action. If V is a G-module,
then FP(V ) is called its fixed point Mackey functor.

If k is a G-ring, then FP(k) is a Tambara functor, and we call it a fixed point Tambara
functor of k. Forgetting norms, we obtain fixed point O-Tambara functors.

Explicitly, if V is a G-module, its fixed point Mackey functor FP(V ) is given at level
G/H by FP(V )(G/H) = V H . Restriction is given by inclusion of fixed points, transfer is
given by additive transfer, and norm is given by multiplicative transfer.
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Example 7.5. Consider Z equipped with a trivial G-action. The fixed point Tambara
functor of this G-ring is the constant Tambara functor Z.

Example 7.6. Let H ≤ G. There is an isomorphism of Z-modules

Z{xG/H} ∼= FP(Z[G/H ])

between the free Z-module on a generator at level G/H and the fixed point Mackey functor
(Definition 7.4) of the permutation G-module Z[G/H ].

Remark 7.7. Any Mackey functor M has a canonical homomorphism

M → FP(M(G/e)).

The right-hand side is a Z-module, so this homomorphism factors through the base change
to Z to give another

Z⊠M → FP(M(G/e)).

Proposition 7.8. A free cohomological Mackey functor is of the form FP(V ) where V is a
permutation G-module.

Proof. Any free cohomological Mackey functor M is of the form

M =
⊕

i∈I

Z{xTi
}

where each Ti is a finite G-set. Decomposing these finite G-sets into orbits, we may write
M as a sum of transitive finite G-sets:

M ∼=
⊕

j∈J

Z{xG/Hj
}.

From Example 7.6, each summand Z{xG/Hj
} is a fixed point functor FP(Z[G/Hj ]). The

functor FP commutes with direct sums [25, Proposition 2.3], and direct sums of permutation
modules are again permutation modules. So we are done. �

Remark 7.9. Thevenaz–Webb prove in [25, Theorem 16.5] that every cohomologicalMackey
functor is a quotient of a fixed point functor FP(V ) for some permutation G-module V , but
they do not explicitly describe the free objects.

7.2. Localization. We now discuss localization for incomplete Tambara functors.

Definition 7.10 ([7, Definition 5.21]). Let R be an O-Tambara functor and let S =
{(ai, Ti) | ai ∈ R(Ti), i ∈ I} be a collection of elements in the values of R at various
finite G-sets.

A map φ : R→ R′ of O-Tambara functors inverts S if for all i ∈ I, φ(ai) ∈ R′(Ti)
×.

Let φ : R → S−1R be the initial map of O-Tambara functors which inverts S.1 We will
refer to S−1R as the localization of R at S.

If M is an R-module, define S−1M := S−1R⊠R M .

We consider several important localizations of the Burnside O-Tambara functor.

Example 7.11. Consider the localization of the Burnside Tambara functor A at S =
{(n,G/G) | n ∈ N>0}. The Tambara functor S−1A is the rational Burnside functor AQ. On
a finite G-set T , AQ(T )

∼= A(T )⊗Z Q. A module over AQ is a rational Mackey functor, i.e.
a Mackey functor M such that each M(T ) is a rational vector space.

1This exists by [7, Theorem 5.23].
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Example 7.12. Consider the Burnside Mackey functor A. Let S = {(|G|, G/G)}, and write
A[ 1

|G| ] := S−1A. On a finite G-set T , this Mackey functor is given by

A[ 1
|G| ](T ) = A(T )[ 1

|G| ] = A(T )⊗Z Z[ 1
|G| ].

Modules over this Mackey functor are Mackey functors taking values in Z[ 1
|G| ]-modules

rather than abelian groups.

Instead of inverting the order of G, we could categorify and invert the class of G as a
finite G-set in the Burnside ring A(G/G) of finite G-sets.

Definition 7.13. Write A[ 1
[G/e] ] := S−1A for S = {([G], G/G)}.

Lemma 7.14. For all K ≤ H ≤ G, [H/K] and [H : K] are invertible and equal in
A[ 1

[G/e] ](G/H).

Proof. We show this first at level G/G. By the Frobenius relation

trHK(a) · b = trHK(a · resHK(b)),

we obtain equations
[G/{e}] · [G/H ] = [G/{e}] · [G : H ].

in A(G/G). In the localization inverting [G/{e}], we deduce that for all H ,

[G/H ] = [G : H ].

When H = {e}, this implies that [G/{e}] = |G| and hence that |G| is a unit. Since [G : H ]
divides |G|, it is a unit, and hence for all H , [G/H ] is a unit.

For an arbitrary level G/H , note that

i∗HG/{e} = [G : H ]H/{e},

and hence inverting [G/{e}] at level G/G also inverts [H/{e}]. The result then follows from
the analysis for G/G. �

Consider the homomorphism of Tambara functors A → Z[ 1
|G| ] given by the composite

of A → Z and localization. At level G/H , a finite H-set is sent to its cardinality. In
particular, the image of [G/e] ∈ A(G/G) is a unit. Hence we obtain a homomorphism of
Tambara functors

α : A[ 1
[G/e] ]→ Z[ 1

|G| ]

from the universal property of localization.

Theorem 7.15. The morphism α : A[ 1
[G/e] ]→ Z[ 1

|G| ] is an isomorphism of Tambara func-
tors.

Proof. Since [G/{e}] being a unit implies that |G| is a unit, and since all restriction maps
are ring homomorphisms, both the source and the target of the universal map are actually
Mackey functors in Z[1/|G|]-modules.

As a Mackey functor, the constant Mackey functor Z[1/|G|] is generated by the element
1 at level G/G, and the element 1 is in the image of the map from A, and hence the
localization. This means that the natural map is surjective.

Lemma 7.14 shows that for any subgroup H , the map

A
[

1
|G|

]
→ A

[
1

[G/{e}]

]
(G/H)

factors through the quotient by the ideal generated by [H/K]− [H : K] for all K. This is
the contant Mackey functor Z[1/|G|], and hence the map is an isomorphism. �
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7.3. Modules over A[ 1
|G| ] and A[ 1

[G/e] ]. By Theorem 7.15, modules over A[ 1
[G/e] ] and

modules over Z[ 1
|G| ] are equivalent. By this observation, A[ 1

[G/e] ]-modules are cohomological

A[ 1
|G| ]-modules. We aim to characterize such modules.

We begin by discussing the splitting of the category of rational Mackey functors. Let
Subc(G) denote a set of representatives for conjugacy classes of subgroups of G.

Work of Dress [10] constructs a system of orthogonal idempotents for the rational Burn-
side ring. For each subgroup H of G, define a mark homomorphism φH : A(G/G) → Z by
φH([T ]) = |TH |. Rationally, these assemble into an isomorphism of rings

φ : AQ(G/G)
∼=−→

∏

H∈Subc(G)

Q.

The projections onto individual factors yield a system of orthogonal idempotents {eH}H∈Subc(G)

for AQ(G/G) characterized by the property that

φH(eK) =

{
1 H and K are conjugate in G,

0 otherwise.

Example 7.16. For H = e, e{e} = 1
|G| [G/e] ∈ AQ(G/G) is the desired idempotent. Indeed,

one may verify that e2{e} = e{e}, and

φH

(
1
|G| [G/e]

)
= 1

|G| |G
H | =

{
1 H = e,

0 H 6= e.

Since A(G/G) ∼=MackG(A,A), this system of orthogonal idempotents gives a splitting of
the rational Burnside Mackey functor. We summarize these results in the following theorem:

Theorem 7.17 ([10]). There is a system of orthogonal idempotents {eH}H∈Subc(G) splitting
the rational Burnside Green functor: there is an isomorphism of Green functors

AQ
∼=

⊕

H∈Subc(G)

eHAQ,

where eHA[ 1
|G| ] is the sub-Green functor of A[ 1

|G| ] with

(eHA[ 1
|G| ])(G/K) = resGK(eH) ·A[ 1

|G| ](G/K).

This splitting of the monoidal unit gives a canonical splitting of the category of rational
Mackey functors. Greenlees–May [12, Appendix A] then prove equivalences between eHAQ-
modules and modules over a rational group-ring.

Theorem 7.18 ([12, Theorem A.9]). There are equivalences of categories

UH : eHAQ-Mod ≃ Q[WG(H)]-Mod: FH

where H ranges over a set of representatives for conjugacy classes of subgroups of G. Both
UH and FH are exact functors.

Together, the previous two theorems combine to give an equivalence of categories

AQ-Mod ≃
∏

H∈Subc(G)

Q[WG(H)]-Mod .

This equivalence was independently proven in [12, Appendix A] and [25] using very different
methods – the former approaches the problem from the perspective of stable homotopy
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theory, whereas the latter uses algebraic techniques. A recent exposition of this result can
be found in [3].

A consequence of this theorem is that all rational Mackey functors are projective. Indeed,
by Maschke’s theorem all Q[WG(H)]-modules are projective, and the equivalence of the
previous theorem is by exact functors.

Corollary 7.19 ([12, Proposition A.2]). All rational Mackey functors are projective.

To prove Theorems 7.17 and 7.18, it turns out that it isn’t necessary to work rationally,
but merely to invert |G|.

Theorem 7.20. There is an equivalence of categories

(7.21) U : A[ 1
|G| ]-Mod ≃

∏

H∈Subc(G)

Z[ 1
|G| ][WG(H)]-Mod: F.

Both U and F are exact functors.

Proof. By a careful analysis of the proofs of Theorems 7.17 and 7.18 in [3], there are only
two places where it is necessary to invert an integer: in the construction of orthogonal
idempotents splitting the Burnside ring in [3, Lemma 2.2] and the isomorphism between
orbits and fixed points in [3, Example 2.9]. In both places, it suffices to invert the orders of
all subgroups of G. Since inverting |G| necessarily inverts all of its divisors, it is sufficient
to work in Z[ 1

|G| ] instead of Q. �

From this theorem, we will discover that the summand of A[ 1
|G| ] corresponding to the

trivial subgroup is A[ 1
[G/e] ], and therefore A[ 1

[G/e] ]-modules are equivalent to modules over

a particular group-ring.

Lemma 7.22. There is an isomorphism of Green functors e{e}A[
1
|G| ]
∼= Z[ 1

|G| ].

Proof. At level G/H , we have
(
e{e}A[ 1

|G| ]
)
(G/H) = resGe (e{e}) · A[

1
|G| ](G/H).

Recall from Example 7.16 that e{e} = 1
|G| [G/e]. Therefore,

resGH(e{e}) =
1

|H| [H/e].

So at level G/H , e{e}A[
1
|G| ] is the Green ideal of A[ 1

|G| ](G/H) generated by [H/e]. In

particular, at the underlying level

(e{e}A[
1
|G| ])(G/e) = A[ 1

|G| ](G/e) = Z[ 1
|G| ].

Therefore, every element in e{e}A[
1
|G| ] at level G/H is a transfer of an element at level G/e.

We conclude that e{e}A[ 1
|G| ] is the sub-Mackey functor of A[ 1

|G| ] generated by the underlying

level, that is,

e{e}A[ 1
|G| ]
∼= Z[ 1

|G| ].

Since each level is a commutative ring, and we have levelwise isomorphisms of commutative
rings, we conclude this is an isomorphism of Green functors. �

We also need a description of the functors UH and FH when H is the trivial subgroup.
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Lemma 7.23 (cf. [3, Proposition 4.5]). When H = {e}, the equivalence

U{e} : e{e}AQ-Mod ≃ Q[G]-Mod: F{e}

is given by functors

U{e}(M) := M(G/{e}) and F{e}(V ) := FP(G).

Corollary 7.24. There is an equivalence of categories

A[ 1
[G/e] ]-Mod Z[ 1

|G| ][G]-Mod,
U

FP

where U(M) = M(G/e) and FP is the fixed point functor, such that

(a) both U and FP are exact functors;
(b) both U and FP are strong symmetric monoidal for the box-product over A[ 1

[G/e] ] on

A[ 1
[G/e] ]-Mod and the tensor product over Z[ 1

|G| ] on Z[ 1
|G| ][G]-Mod.

Proof. By Theorem 7.20, there is an equivalence of categories

e{e}A[ 1
|G| ]-Mod ≃ Z[ 1

|G| ][G]-Mod,

which by Lemma 7.23 is given by functors U and FP as in the statement of the corollary.
By Theorem 7.15 and Lemma 7.22 there are isomorphisms of Green functors

e{e}A[ 1
|G| ]
∼= Z[ 1

|G| ]
∼= A[ 1

[G/e] ],

yielding the desired equivalence of categories.
Exactness follows from exactness in Theorem 7.20. The strong symmetric monoidal prop-

erty follows for U because

U(A[ 1
[G/e] ]) = Z[ 1

|G| ] and U(M ⊠N) = M(G/e)⊗Z N(G/e);

the box product/tensor over the localization is the same as the ordinary box/tensor product.
Then FP becomes strong symmetric monoidal as part of an equivalence. �

Corollary 7.25. Any A[ 1
[G/e] ]-module M is a fixed point functor: M ∼= FP(M(G/e)).

Remark 7.26. In light of this corollary, every restriction in any A[ 1
[G/e] ]-module M is in-

jective – it is the inclusion of fixed points. The condition that all restrictions are injective
appears in several seemingly unrelated places. This is the monomorphic restriction condi-
tion of [21, Definition 4.19]. It is also the condition necessary for a Mackey functor to be a
zero-slice of an equivariant spectrum [14, Proposition 4.50]. This seemingly innocuous con-
dition has many structural consequences for Mackey functors. In general any such functor
satisfying the monomorphic restriction condition is a sub-functor of a fixed point functor,
by [21, Proposition 4.21].

7.4. Underlying freeness after localization. We prove that all free incomplete Tambara
functors over A[ 1

[G/e] ] are free as A[ 1
[G/e] ]-modules. We will write S−1A = A[ 1

[G/e] ], with

S = {([G/e], G/G)} to declutter notation.

Lemma 7.27. Let O be any indexing category, and let H ≤ G be a subgroup. Then as a
Z[ 1

|G| ]-algebra, S
−1AO[xG/H ](G/e) is polynomial on generators ygH for cosets gH ∈ G/H:

S−1AO[xG/H ](G/e) ∼= Z[ 1
|G| ]

[
ygH | gH ∈ G/H

]
.

G acts on the generators by permuting the cosets. In particular, S−1AO[xG/H ](G/e) is a

permutation Z[ 1
|G| ]-module.
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Proof. We have

S−1AO[xG/H ](G/e) = (S−1A⊠AO[xG/H ])(G/e) = PGO(G/H,G/e)+ ⊗Z Z[ 1
|G| ],

so it suffices to describe the ring PGO(G/H,G/e)+.
Consider the polynomials of the form

yg = [G/H
π
←− G/e

g
−→ G/e

id
−→ G/e],

where π is the canonical projection and g is multiplication by g ∈ G. Note that the middle
map is always admissible, for any indexing category O. Two such basic polynomials are
equivalent if the middle map differs by an element ofH , so we have one such basic polynomial
for each coset of G/H .

We claim that {yg} is a generating set for PGO (G/H,G/e) as a ring, where g runs over a
set of coset representatives for G/H . Recall the ring structure from Theorem 2.14.

Given any polynomial

Σ = [G/H
f
←− A

g
−→ B

h
−→ G/e],

first observe that we may write

Σ = [G/H
f
←− A

g
−→ im(g)

h
−→ G/e] + [G/H

f
←− ∅

g
−→ (B \ im(g))

h
−→ G/e],

and this second summand is a sum of copies of 1 = [G/H ← ∅ → G/e
id
−→ G/e]. So we may

assume that g is surjective.
Second, we may decompose

B =
⊔

i∈I

Bi, A =
⊔

i∈I

g−1(Bi)

with Bi ∼= G/e for all i. Then

Σ =
∑

i∈I

[G/H
f
←− g−1(Bi)

g
−→ Bi

h
−→ G/e].

So we may further reduce to the case where B ∼= G/e.
We are left with Σ = [G/H ← A ։ G/e → G/e]. Decompose A =

⊔
j∈J Aj with

Aj ∼= G/e for all j. Then

Σ =
∏

j∈J

[G/H ← Aj → G/e→ G/e]

is a product of polynomials of the form yg. This establishes the claim.
Finally, this polynomial ring is a permutation module because the G-action permutes the

monomials. �

Remark 7.28. The argument above is a stronger form of that used to prove Corollary 3.33.

Theorem 7.29. Let S−1A be the Mackey functor obtained from A by inverting [G/e] ∈
A(G/G). For any indexing category O and subgroup H ≤ G, the free O-Tambara functor

S−1AO[xG/H ] is free as an S−1A-module.

Proof. By Lemma 7.27, the underlying level of S−1AO[xG/H ] is a permutation module. By

Corollary 7.25, S−1AO[xG/H ] is isomorphic to the fixed points of a permutation module as

an S−1A-module. In particular, it is a free module by Proposition 7.8. �

Lemma 7.27 also has another interesting consequence.
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Proposition 7.30. Any two free incomplete S−1A-Tambara functors generated at the same
level G/H are isomorphic as Green functors.

Proof. By Lemma 7.27, they are both isomorphic to the fixed-point functor of the ring
Z[ 1

|G| ][ygH | gH ∈ G/H ]. �

Essentially, the only difference between free incomplete S−1A-Tambara functors is the
norms.

Appendix A. Tables of underlying Mackey functors

The tables below describe the Mackey functors underlying free O-Tambara functors gen-
erated by a single element at level G/H for various combinations G and H . The columns
indicate the level of the generator and the rows indicate the indexing category. An indexing
category O for G is represented by a graph whose vertices are the subgroups of G and edges
K → H indicates that H/K is admissible for i∗HO.

2 Within each cell of the table, the
freeness of the underlying Mackey functor is stated, with the convention that an empty cell
indicates that the Mackey functor underlying is not free.

The values in the tables are deduced from Theorem 6.20. The classifications of all of the
indexing categories for cyclic groups below appear in [1, Theorem 2] and [22, Section 3.2].
The classification of categories for D6 appears in [22, Section 3.2].

Table A.1. This table describes the Mackey functor underlying

AO[xCp/H ]. The table says, for example, that AOcplt

[xCp/e] is free as an

A-module, while AOcplt

[xCp/Cp
] is not free as an A-module.

Cp/e Cp/Cp

Otriv free
Ocplt free

Table A.2. The table below describes the Mackey functor underlying AO[xCp2/H
].

Cp2/e Cp2/Cp Cp2/Cp2

e Cp Cp2 free

e Cp Cp2

e Cp Cp2 free

e Cp Cp2 free

e Cp Cp2 free

2For the reader familiar with [22], the diagrams in the left-hand column are just transfer systems.
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Table A.3. The table below describes the Mackey functor underlying AO[xCp3/H
].

Cp3/e Cp3/Cp Cp3/Cp2 Cp3/Cp3

e Cp Cp2 Cp3 free

e Cp Cp2 Cp3

e Cp Cp2 Cp3

e Cp Cp2 Cp3 free

e Cp Cp2 Cp3

e Cp Cp2 Cp3

e Cp Cp2 Cp3 free

e Cp Cp2 Cp3 free

e Cp Cp2 Cp3

e Cp Cp2 Cp3 free

e Cp Cp2 Cp3 free

e Cp Cp2 Cp3 free

e Cp Cp2 Cp3
free

e Cp Cp2 Cp3
free
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Table A.4. Let p and q be distinct primes and consider the cyclic group
Cpq. The indexing categories for Cpq are given in [22, Figure 2]. The table

below describes the Mackey functor underlying AO[xCpq/H ].

Cpq/e Cpq/Cp Cpq/Cq Cpq/Cpq

e

Cp Cq

Cpq

free

e

Cp Cq

Cpq

e

Cp Cq

Cpq

e

Cp Cq

Cpq

e

Cp Cq

Cpq

free

e

Cp Cq

Cpq

free

e

Cp Cq

Cpq

free

e

Cp Cq

Cpq

free

e

Cp Cq

Cpq

free

e

Cp Cq

Cpq

free
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Table A.5. Consider the dihedral group D6. This group has five proper
subgroups: the trivial subgroup, three conjugate copies of C2, and one
copy of C3. Write H1, H2, H3 for its subgroups of order two and C3 for its
subgroup of order three. The indexing categories for D6 are described in
[22, Figure 4]. The table below describes the Mackey functor underlying

AO[xD6/H ].

D6/e D6/H1 D6/H2 D6/H3 D6/C3 D6/D6

e

H1 H2 H3
C3

D6

free

e

H1 H2 H3
C3

D6

e

H1 H2 H3
C3

D6

e

H1 H2 H3
C3

D6

e

H1 H2 H3
C3

D6

free

e

H1 H2 H3
C3

D6

free

e

H1 H2 H3
C3

D6

free

e

H1 H2 H3
C3

D6

free

e

H1 H2 H3
C3

D6

free
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