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Abstract. In the present paper, we construct a Z/p-equivariant
analog of the Z/2-equivariant spectrumBPR previously constructed
by Hu and Kriz. We prove that this spectrum has some of the
properties conjectured by Hill, Hopkins, and Ravenel. Our main
construction method is an Z/p-equivariant analog of the Brown-
Peterson tower of BP , based on a previous description of the Z/p-
equivariant Steenrod algebra with constant coefficients by the au-
thors. We also describe several variants of our construction and
comparisons with other known equivariant spectra.

1. Introduction

Hill, Hopkins, and Ravenel [7] conjectured that there exists a Z/p-
equivariant structure on BP ∧(p−1) for p > 2 such that the geometric
fixed point spectrum is HZ/p. This equivariant spectrum is expected
to have a number of properties. The purpose of this paper is to give a
construction of such a spectrum and prove some of the properties. Our
construction is based on a mild extension of the computation of the
Z/p-equivariant Steenrod algebra with respect to the constant Mackey
functor Z/p [9, 16]. Following Sankar-Wilson [16], we denote by T the

second desuspension of the Z/p-equivariant degree p map

Sβ → S2

where β is the basic irreducible representation of Z/p. Denoting by

L̃p−1 the Z/p-Mackey functor whose non-equivariant part is the reduced
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regular representation Lp−1 of Z/p and the Z/p-fixed part is 0, there is
a map of Z/p-equivariant spectra

(1) HZ→ Σ2pn−1+(pn−pn−1−1)βHZ ∧ T
(which comes from the fact that after smashing with HZ, the right-
hand side of (1) becomes a summand of the left-hand side as an HZ-
module. Now we also have a “connecting map”

HZ ∧ T → Σβ−1HL̃p−1
(see the cofibration sequence (21) below). Composing with (1), we get
a map

(2) Q′n ∶HZ→ Σ2pn−1−1+(pn−pn−1)βHL̃p−1
(see formula (22) below). This map is a Z/p-equivariant analog of the
integral Qn-elements which form the first k-invariant of the Brown-
Peterson construction of BP [3].

The approach of our construction is to construct a Z/p-equivariant
spectrum BPR by mimicking, in a minimal way, the Brown-Peterson
construction [3] in the category of Z/p-equivariant spectra. It is impor-
tant to note that the appearance of the non-constant Mackey functor
occurring on the right-hand side of (2) is a reflection of the fact that
in (BPR{e})∗, vn lies in a copy of the representation Lp−1. We denote
the generator of this representation by rn. In fact, in the equivariant
analogue of the BP tower, a key feature is the interplay between the
Mackey functors Z, L̃p−1 and the Mackey functor Lp, which is the prin-
cipal projective Mackey functor on a fixed element (i.e. has the integral
regular representation as the non-equivariant part, and Z as the fixed
points).

The non-equivariant spectrum underlying our “minimal” BPR fol-
lowing the Brown-Peterson construction is somewhat smaller than the
⋀p−1BP conjectured by Hill, Hopkins, and Ravenel [7]. In fact, at
each vn, we are forced to put into the non-equivariant coefficients the
representations

(3) (Z⊕Lp−1rn ⊕ r2nLp[rn]) ⊗Z[Nrn]
where Lp is the integral regular Z/p-representation and N denotes the
multiplicative norm (see formula (9) below).

The non-equivariant spectrum conjectured by Hill, Hopkins, and
Ravenel [7] (which we denote by BPRHHR) should have, instead of
(3),

(4) Sym(Lp−1 ⋅ rn).
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This, in fact, coincides with (3) for p = 3. For p ≥ 5, (4) is bigger, but
one can construct a candidate for the spectrum BPRHHR by forming
a wedge of BPR with a wedge of even suspensions of copies of the
multiplicative norm of BP from {e} to Z/p. (See Section 5 below.)

We should remark that we can currently only make the equivariant
analogue of the Brown-Peterson construction in the category of Borel-
complete spectra. In this category, the obstructions to continuing the
construction are either non-equivariant (and vanish for the same reason
as in [3], i.e. evenness), or are non-torsion with respect to multiplication
by the class represented by the inclusion

S0 → Sβ,

which can therefore be treated on the level of geometric fixed points.
On geometric fixed points, however, the equivariant Brown-Peterson
tower splits into a wedge equivalences on summands, which is why
those obstructions also vanish.

The fact that we work in the Borel-complete category, however,
should not be a substantial restriction, since the spectrum BPR should
be Borel-complete anyway (similarly as for p = 2). In fact, we have a
Z/p-equivariant analog of the Borel cohomology spectral sequence [8],
which we present in Section 3. This allows us to calculate the RO(Z/p)-
graded coefficients BPR⋆ completely (Theorem 2 below). Not having a
“genuine” version of equivariant Brown-Peterson construction amounts
to not having, at the moment, an analogue of the slice spectral se-
quence.

In Section 5, we also discuss analogues of the BPR construction on
Johnson-Wilson-type spectra. Using the obstruction theory of Robin-
son [15] and Baker [2], we construct a Z/p-action related to BPR on
a completion of the smash product of (p − 1) copies of E(n) (or its
variants, such as En). We conjecture that there is an “orientation”
map from BPRHHR to these spectra (however, we do not yet have a
ring structure on the source).

It is also known that Z/p acts on En when (p−1) ∣ n via the subgroup
of the Morava stabilizer group. The case n = p − 1 has been especially
studied (see [13, 17]). It is reasonable to conjecture that BPRHHR

maps into this equivariant En in a way which is identity on the Lp−1
containing vn in the non-equivariant coefficients, for which we give
evidence on the level of formal group laws.

The present paper incorporates numerous observations, suggestions,
and references communicated to us by Guchuan Li.
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2. Preliminary computations

We will use the integral trivial, regular resp. reduced regular rep-
resentation L1, Lp, Lp−1 of Z/p. Note that all are isomorphic to their
duals integrally. In case of Lp−1, we have an isomorphism

Zp/(1,1, . . . ,1) → {(a1, . . . , ap) ∈ Zp ∣ ∑ai = 0}
by sending

(1,0, . . . ,0) ↦ (1,−1,0, . . . ,0).
We will work with integral Mackey functors here. We denote by Z = L1
the constant Mackey functor, and by L̃p−1 the Mackey functor equal
to the integral reduced regular representation on the free orbit and
0 on the fixed orbit. We also have the co-constant Mackey functor
L1 where again both the non-equivariant and fixed parts are Z and
the corestriction is 1 while the restriction is p. We have short exact
sequences

(5) 0→ L1 → Lp → L̃p−1 → 0

(6) 0→ L̃p−1 → Lp → L1 → 0.

We also note that for a non-trivial irreducible representation β of Z/p
(p > 2), we have

(7) HL1 = Σ2−βHL1.
We also have

(8) HL̃p−1 ∧HZ HL̃p−1 =HL1 ∨ ⋁
p−2

HLp.

We will work p-locally, so whenever we say “Z,” we mean Z(p). Then
all equivariant spectra are (β − β′)-periodic for non-trivial irreducible
Z/p-representations β, β′. This is due to the fact that there exists a
Z/p-equivariant map of spaces

Sβ → Sβ′

of some degree k ∈ Z/p×, which is a p-local equivalence (cf. [16]).
Thus, instead of RO(Z/p)-grading, we can consider R-grading where
R = Z{1, β} for a chosen non-trivial irreducible Z/p-representation β.
This is also true for ordinary Z/p-equivariant homology with coefficients
over a Z-Mackey module for a different reason (see [9]).

Proposition 1. 1. The R-graded coefficients of HL1 are Z in degrees
2k − kβ, k ≥ 0 and Z/p in degrees 2k − ℓβ with 0 ≤ k < ℓ (this is called
the good wedge) and Z in degrees 2k − kβ, k < 0 and Z/p in degrees
−1 − 2k + ℓβ where 2 < 2k + 1 < 2ℓ (this is called the derived wedge).
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Figure 1. The coefficients HZ⋆

Figure 2. Shorthand notation for HZ⋆

2. The R-graded coefficients of HL̃p−1 are Z/p in degrees 2k + 1− ℓβ
where 0 < 2k + 1 < 2ℓ (this is the good wedge) and Z/p in degrees
−2k + ℓβ where 0 < k ≤ ℓ (this is the derived wedge).

(In the remaining R-dergrees, the coefficients are 0.)

◻

The pattern of the R-graded coefficients of HL1 = HZ is shown in
Figure 1 below (where a solid dot means a copy of Z/p and an empty
square means a copy of Z.

In our tower illustration, we shall use the shortcut for this pattern
shown in Figure 2.

Figure 3 shows the pattern of the R-graded coefficients of Σβ−1HL̃p−1.
The shift is so that the corner of the “good wedge” is at the (0,0)-point.

Figure 4 shows the shortcut we use for this pattern.
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−6−5−4−3−2−1 0 1 2 3 4 5 6

−3β

−2β

− β

β

2β

3β

Figure 3. The coefficients (Σβ−1HL̃p−1)⋆

Figure 4. Shorthand notation for (Σβ−1HL̃p−1)⋆

Figure 5 shows the R-graded coefficients of HZ/p.
Our shortcut for this pattern is shown in Figure 6.
Figure 7 shows theR-graded coefficients of Σβ−1HL̃p−1 = Σβ−1H(L̃p−1/p).
Our shorthand for this pattern is shown in Figure 8.

3. The Borel cohomology spectral sequence

The Borel cohomology F (EZ/p+,X) for a Z/p-equivariant spectrum
X will be denoted by Xc. Coefficients of HLc1, HL̃cp−1 are obtained
by inverting σ−2 in the good wedge in Proposition 1 (which acts by
isomorphism wherever dimensionally possible).

Homotopy classes in a summand of the non-equivariant homotopy
groups of a Z/p-equivariant spectrum which is isomorphic to Lp is called
negligible. Such classes cannot receive or support differentials in the
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−6−5−4−3−2−1 0 1 2 3 4 5 6
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Figure 5. The coefficients HZ/p
⋆

Figure 6. Shorthand notation for HZ/p
⋆

Borel cohomology spectral sequence because of the theory of Mackey
functors.

We will completely calculate the Borel cohomology spectral sequence
ofBPR at an odd prime pmodulo negligibleBP -summands inBPR{e}.
Modulo negligible BP -summands, (BPR{e})∗ can be written as

(9) B =⊗
n>0
(L1 ⊕Lp−1 ⋅ rn ⊕ r2nLp[rn])[Φ(vn)]

where Φ(vn) has the same dimension as vpn and rn is a generator of a
Lp−1-subrepresentation which contains vn.

Recall that in [8], Hu and Kriz started with the E1-term of the
Borel cohomology spectral sequence and included d1 in the differential
pattern. This has the advantage of allowing to treat v0 on the same
level as the other vn’s, which makes the pattern more natural.
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−6−5−4−3−2−1 0 1 2 3 4 5 6
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−2β

− β

β
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3β

Figure 7. The coefficients (Σβ−1H(L̃p−1/p))⋆

Figure 8. Shorthand notation for (Σβ−1H(L̃p−1/p))⋆

To describe the appropriate analog for p odd, we preview the slightly
more complicated assortment of elements and differentials (14), (15),
(16) we will encounter. From the point of view of this pattern, the
most natural way to start is to put

(10) p = Φ(v0),

and include the second, but not the first, differential of (14) for n = 0.
Thus, the elements v0, σ

2
p
−2 of fractional degrees

∣v0∣ =
2

p
− 1 − β

p
, ∣σ

2
p
−2∣ = β(1

p
− 1) − 2

p
+ 2

are not present in our spectral sequence, but the exterior generator

v0σ
2
p
−2
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of degree

∣v0σ
2
p
−2∣ = 1 − β

is included, making the E1-term

B[σ2, σ−2][b] ⊗Λ(v0σ
2
p
−2).

The d1 differential has
d1(v0σ

2
p
−2) = pb,

but also takes group cohomology on (9). This gives E2-term

(11) E2 = B′[σ2, σ−2][b]/pb
where if we put

(12) vI =∏ vinn , I = (i1, i2, . . . ), in ∈ {0,1},
(note that v2n is negligible), and

(13) ∣I ∣ = ∑
n

in,

then
B′ = (Z{vI ∶ I even} ⊕Z/p{vI ∶ I odd})[Φ(vn)].

The geometric fixed points of BPR areHZ/p, so we need a resolution
with respect to the dual of the polynomial algebra Z[σ−2], which is a
divided power polynomial algebra. This implies two sets of differentials

(14) σ−2p
n−1 ↦ vnb

?, vnσ
−2(p−1)pn−1 ↦ Φ(vn)b?.

To figure out the exact power of b in (14), we need to need to figure out
the exact equivariant degree of vn. The Z-graded component must be
2pn−1−1 in order for the differential (14) to decrease degree by 1. Given

the fact that vn sits in a L̃p−1, and given Proposition 1, its equivariant
degree should be of the form k + ℓβ where k + 2ℓ = ∣vn∣ − 1 = 2pn − 3.
Thus, we conclude that

(15) ∣vn∣ = 2pn−1 − 1 + (pn − pn−1 − 1)β.
Similarly, given the fact that Φ(vn) sits in a copy of L1, we have

(16) ∣Φ(vn)∣ = 2pn − 2 + (pn − 1)(p − 1)β.
From this, we conclude that the differential pattern is

(17) σ−2p
n−1 ↦ vnb

pn−1, vnσ
−2(p−1)pn−1 ↦ Φ(vn)b(p

n−1)(p−1)+1.

(The differentials on σ−2kp
n−1

for 2 ≤ k ≤ p − 1 are determined by the
Leibniz rule.) This is called the even differential pattern.

The reason this does not tell the whole story is that we have (8), so

vI sits in a σ2ℓ-shifted copy of L̃p−1 resp. L1 depending on whether ∣I ∣
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is even resp. odd. In fact, working out the shifts precisely, one gets
that

(18) ∣vI ∣ = ∑
in=1
(2pn−1 − 1) + (∑

in=1
(pn − pn−1) − ⌈ ∣I ∣

2
⌉)β.

When multiplying (17) by vI with in = 0 and ∣I ∣ odd, the σ−2-power will
be in a copy of L̃p−1, (so non-equivariantly, its dimension goes down
by 1), while the vn will be in a copy of L1, so non-equivariantly, its
dimension goes up by 1. Since the non-equivariant dimension of b is
−2, we then obtain the odd differential pattern

(19) σ−2p
n−1 ↦ vnb

pn , vnσ
−2(p−1)pn−1 ↦ Φ(vn)b(p

n−1)(p−1).

Of course, in the spectral sequence, the differential of every monomial
has multiple summands, and we must select the summand which gen-
erates lowest b-torsion. Since, luckily,

pn < (pn − 1)(p − 1)
and

(pn − 1)(p − 1) + 1 < pn+1 − 1,
the lowest b-torsion is always generated by vn or Φ(vn) with the lowest
n. For this reason, the Tate spectral sequence (obtained by inverting
b) converges to Z/p[b, b−1] and similarly as in the case of p = 2, writing
monomials

vIΦ(vJ)
where I is as above and J = (j1, j2, . . . ), jn ∈ N0,

Φ(vJ) =∏
n

Φ(vn)jn ,

letting r = r(I) resp. s = s(J) be the lowest n for which in ≠ 0 resp.
jn ≠ 0, (set to ∞ when not applicable), we obtain the following

Theorem 2. Modulo negligible BP∗[σ2, σ−2]-summands, the R-graded
coefficients of BPR are a sum of

Z(p)[b],
“even-pattern summands” where ∣I ∣ is odd and r ≤ s:

⊕
ℓ≢−1 mod p

Z/p ⋅ vIΦ(vJ) ⋅ σ2pr−1ℓ[b]/(bpr−1)

or ∣I ∣ is even, I ≠ 0 and r > s:

⊕
ℓ∈Z

Z(p) ⋅ vIΦ(vJ) ⋅ σ2psℓ[b]/(b(ps−1)(p−1)+1, pb)
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and “odd-pattern summands” where ∣I ∣ is even and I ≠ 0 and r ≤ s:

⊕
ℓ≢−1 mod p

Z(p) ⋅ vIΦ(vJ) ⋅Σ2pr−1ℓ[b]/(bpr , pb)

or ∣I ∣ is odd and r > s :

⊕
ℓ∈Z

Z/p ⋅ vIΦ(vJ) ⋅ σ2psℓ[b]/(b(ps−1)(p−1)).

◻

4. Construction

In this section, we will construct BPR at an odd prime p by realizing
spectrally a Z/p-equivariant analog of the Brown-Peterson resolution.
Throughout this section, we will work in Borel cohomology, and omit
this from the notation. With this convention, the integral homology of
BPR, modulo negligible copies of

HZ∗BP [σ2, σ−2],
is

HZ[θ1, θ2, . . . ] ∧HZ ΛHL̃p−1
[ξ̂1, ξ̂2, . . . ].

(The second term denotes the exterior algebra.) The k-invariants are
defined as cohomological operations (in Borel cohomology), and our job
is to prove that they can be realized spectrally (i.e. on the realization
of the partial resolution at each step).

While introducing some negligible terms is necessary, the correspond-
ing non-equivariant homology will remain even-degree and non-torsion,
and there is therefore no obstruction to spectral realization of the neg-
ligible k-invariants, by Brown-Peterson’s “even-odd argument” [3]. On
the other hand, the non-negligible k-invariants are non-torsion either
rationally or non-torsion with respect to b and hence the obstruction
to spectral realization is 0 because it vanishes rationally, resp. on geo-
metric (i.e., in our case, Tate) fixed points.

The Borel cohomology version of the Z/p-equivariant Brown-Peterson
resolution is essentially described as a product over HZ of the following
sequences:

Starting with HZ, we have
(20)
HZ ∧HZ =
⋀n≥1(HZ ∨ (HZ ∧ T{ξ̂nξkn ∣ k = 0, . . . , p − 2}) ∨HZ/p{ξ̂nξp−1n

})[θn].
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The HZ/p arises, in the notation of [9], as two copies of HZ stuck
together by p-multiplication, in other words from the fact that

β(µ
n
) = θn.

Now one has a cofibration sequence

(21) Σβ−2HL̃p−1 →HZ ∧ T → Σβ−1HL̃p−1
(split on R-graded coefficients). Then, there is an operation

(22) Q′n ∶HZ→ ΣβHL̃p−1{vn}
which applies (21) to the ξ

n
-wedge summand of (20). (Here the nota-

tion vn refers to the R-graded indexing of the previous section.)

Comment: The operations Q′n form the first stage of our equivariant
version of the BPR tower. One may wonder how these elements are
identified. To this end, it is beneficial to consider what happens on the
level of geometrical fixed points of homology. We have

(23)

ΦZ/p(HZ ∧BPR)⋆ =
ΦZ/p(HZ) ∧ΦZ/p(BPR)∗[b, b−1] =
A∗[σ−2][b, b−1].

On the other hand, we have

(24)

ΦZ/p(HZ ∧HZ)⋆ =

ΦZ/p(HZ) ∧ΦZ/p(HZ)∗[b, b−1] =

A∗[σ−2, ρ−2][b, b−1].
Thus, to the eyes of mod p homology, to get from HZ to BPR on
geometrical fixed points, we must kill the ρ−2-powers in (24), while
preserving the other generators.

To describe how this is done, let us recall briefly the p = 2 case. As
remarked in [8], for p = 2, a BP-tower construction of BPR on the level
of geometric fixed points is modelled on the cobar complex of Z/2[ρ−2],
which is the same thing as the cohomological Koszul complex of the
divided polynomial power algebra Z/2[ρ−2]∨, which is an exterior alge-
bra. Thus, the generators are in total degrees 2i − 1, i = 1,2, . . . , which
is correct, since the dimension of vi is (2i−1)(1+α), and the α may be
disregarded on the level of geometrical fixed points. In particular, for
p = 2, on geometrical fixed points, the BPR tower is split (i.e. the maps
are equivalences of cancelling wedge summands), and will work for any
choice of Q′n which sends ρ−2

n ↦ 1 (up to multiplying by a power of a).
We also note that modulo possible error terms in the derived wedge,



BPR 13

this condition, together with its dimension, essentially determines Q′n,
since on the good wedge, inverting a is injective.

For p > 2, the construction is precisely analogous (the only difference
being that for p = 2, error terms in the derived wedge do not matter,
since we have an a priori model of BPR coming from MR via spectral
algebra, while for p > 2, no a priori geometric model is known, so we
circumvent the difficulty by working in Borel cohomology).

On the level of geometric fixed points, however, again, the BPR-
tower is modelled on the cohomological Koszul complex of the divided
polynomial power algebra

(25) Z/p[ρ−2]∨.

Now (25) is a tensor product of truncated polynomial algebras of the
form

(26) Z/p[x]/xp

where x is the dual of

(27) ρ−2p
n−1

, n = 1,2, . . .

This means that our primary operation corresponds to an exterior gen-
erator of cohomological degree 1 and topological degree 2pn−1. (The
total degree 2pn−1−1 corresponds to the geometric fixed point version of
vn.) Then there is a secondary generator in cohomological degree 2 and
topological degree 2pn, which gives total degree 2pn − 2, corresponding
to the geometric fixed point version of Φ(vn).

Recalling the short exact sequence of Z-modules

0→ Z→ Lp → L̃p−1 → 0,

when taking geometric fixed points (i.e. inverting b), HL̃p−1 becomes
identified with ΣHZ, so we see that ignoring the β-part, our primary
operation is at least of the right degree 2pn−1.

To assert that we actually have the right element, we need to show
how Q′n cancels the element (25). To this end, we recall the computa-
tion in [9] in Borel cohomology:

ξ
1

= (σ−2 − ρ−2)b1−p
ξ
n+1

= (σ2pn−1−2pnξ
n
− ρ−2ξn)bpn−pn+1 .

The first equation eliminates the term ρ−2 modulo the allowed error
terms in (23), while the first term of the second equation can be simi-
larly used by induction to eliminate ρ−2p

n−1
.
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We will see below how the transpotence also corresponds to Φ(vn).
However, since it is defined by canceling the homology element corre-
sponding to the “Kudo element” xp−1y where x is as in (26) and y is
its Koszul dual, we have no statement on the level of the dual Steenrod
algebra in that case. Similarly as in the p = 2 case, again, on the level
of geometric fixed points, our BPR-tower splits, i.e. is described as a
wedge of equivalences of wedge summands.

We also note that the Borel cohomology pieces we add to our tower
match (9). Therefore, by the calculation of Section 3, adding Borel
cohomology pieces, on the Tate level, we recover the b-non-torsion part
of the coefficients, which matches the above proposed geometric fixed
points. This shows that both constructions correspond correctly.

Now to continue our construction, smashing the cofibration sequence

Sβ−2 → S0 → T

with HL̃p−1, we have a cofibration sequence

(28) HL̃p−1 →HL̃p−1 ∧ T → Σβ−1HL̃p−1.
The ξ

n
-multiple of Q′n kills on the R-graded coefficients of the middle

term of the ∣ξ
n
∣-suspension of (28) everything except the ∣ξ

n
∣-suspension

of a copy of HLp coming from the first term of (28). Thus, we obtain
a k-invariant

(29) Qn ∶HL̃p−1{vn} →HLp{v2n}.
On the other hand, the fiber F of (28) contains a copy of a fiber of

(30) HZ ⋅ µ
n
→HL̃p−1 ∧ T ⋅ ξ̂nξp−2n

which has a factor of HZ. We define a k-invariant

(31) Q′′n ∶ F →HZ ⋅Φ(vn)
isomorphically on that factor.

In more detail, we have a cofibration sequence

(32) HZ→HT → Σβ−1HZ
and thus also

(33) HL̃p−1 →HT ∧HZ HL̃p−1 → Σβ−1HL̃p−1.
On the other hand, we have a cofibration sequence

(34) HL̃p−1 →HLp → Σ2−βHZ,
or

(35) HZ→ Σβ−1HL̃p−1 → Σ−1HLp.
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Taking the derived pullback of (33) via the first map (35), we obtain a
cofibration sequence

(36) HL̃p−1 →HX →HZ.

However, (36) must split since there is no essential HZ-module map

HZ→ ΣHL̃p−1
(by dimensional reasons).

This is the even pattern in the Borel cohomology Z/p-equivariant
Brown-Peterson resolution. An illustration is given in Figure 9 of the
Appendix.

The odd pattern is obtained essentially by smashing this over HZ
with HL̃p−1, but the negligible term appears at a slightly different
place.

The first k-invariant comes from composing the “connecting map”

L̃p−1 → Lp
with the second map (28), applied to the ξ̂n-summand of (20) smashed

over HZ with HL̃p−1. This gives a negligible k-invariant

Q ∶HL̃p−1 →HLp{vn}
and its fiber F ′ has a quotient of HZ ⋅ ξ

n
. We obtain a k-invariant

(37) Q′n ∶ F ′ →HZ ⋅ vn
by applying an isomorphism on this quotient. The argument follows
(32)-(36).

On the other hand, we can apply the second map (21) to the ξp−2
n
⋅ ξ̂n

copy in (20) to obtain the k-invariant

Q′′n ∶ F ′′ →HL̃p−1 ⋅Φ(vn)
where F ′′ is the fiber of (37).

An illustration of the odd pattern is given in Figure 10 of the Ap-
pendix.

5. Comparison with Johnson-Wilson spectra

In this section, we shall investigate Johnson-Wilson spectra analogs
of BPR. Denote by In the ideal (p, v1, . . . , vn−1) ⊂ BP∗.

Proposition 3. The spectrum (E(n) ∧ ⋅ ⋅ ⋅ ∧ E(n))∧In is an A∞-ring
spectrum and the space of its A∞-selfmaps is homotopically discrete.
(The same statement holds for other “flavors” of E(n), notably En.)
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Proof. We follow the method of Robinson [15] and Baker [2]. We first
recall that the ideal generated by In by inclusions

BP∗ → (BP ∧ ⋅ ⋅ ⋅ ∧BP )∗
via one of the factors does not depend on the factor. (See [14], Theorem
A2.2.6.)

Next, let

E(n, k) = ⋀
k

E(n),

Σ(n, k)∗ = (⋀
k

E(n))∗/In.

One writes Σ(n)∗ = Σ(n,1)∗. The method of Robinson [15], Baker
[2] formula (3.10) reduces this task to proving a vanishing result for a
certain Ext-group

(38) Exts>0Σ(n,2k)(Σ(n, k),Σ(n, k)) = 0

where s denotes the cohomological degree.
To define the Ext-groups concerned, we denote by E the smash of k

copies of E(n), the ring structore on E∗E is given by the composition

(39) (E ∧E)∗ ⊗ (E ∧E)∗ → (E ∧E ∧E ∧E)∗ → (E ∧E)∗
where the first map is give by sending the first two coordinate to the
first and last coordinate in the target, and the last two coordinates
into the middle two coordinates (without changing order internally),
and the second map is given by multiplication in the first two and
the last two coordinates. The tensor product is over Z.The left E∗E-
module structure on E∗ is defined analogously, replacing the last two
coordinates E ∧ E in the source and middle two coordinates in the
target of (39) by E. It is customary to refer to this construction as
“Hochschild cohomology” ([15]), even though this is not correct in full
generality.

To prove (38), we recall from [15] that

(40) Σ(n)∗ = (⊗
i≥1
)
K(n)∗

⎛
⎝
K(n)∗∏

K(n)∗[ti]
(vntp

n−1
i − vpin )

⎞
⎠

In our present setting, we have duplicate copies of the coordinates ti,
but the essential point is that the E∗E/In = Σ(n,2k) forms a direct
limit of étale extensions of K(n)∗, and thus the given Ext>0 = 0.

◻
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We claim that for all n, there is a Z/p-action on (⋀p−1E(n))∧In com-
patible with the Z/p-action on the non-equivariant spectrum underly-
ing the BPR we constructed above. To this end, we need to make
a couple of remarks. First of all, the conjecture of Hill, Hopkins and
Ravenel concerned the existence of a Z/p-equivariant spectrum, which
we denote by BPRHHR, which would satisfy

(41) BPRHHR
{e} = ⋀

p−1
BP.

Our construction gives the pattern (9) above. We see [1] that this gives
the right answer at the prime p = 3, but is smaller than the coefficients
of (41) for p ≥ 5. One notes however that BPRHHR can be obtained
from BPR by taking a wedge with even suspensions of copies of the
additive norm Z/p+ ∧BP .
Now we claim that our construction determines a Z/p-action on
(⋀p−1BP )∗. which sends the universal formal group law to strictly iso-
morphic formal group laws (recall that a strict isomorphism between
isomorphic formal group laws on a torsion-free ring is uniquely de-
termined). In a graded ring R ⊇ BP∗, maps BP∗ → R which carry
the universal formal group law to an isomorphic formal group law are
characterized by elements ti ∈ R of the same degree as ti, which, when
substituted for ti into ηR(vn), give the image of vn.
In fact, we do not need the whole construction of BPR, its first k-

invariant (22) determines the information we need. Non-equivariantly,
this gives an operation

(42) HZ→ ⋁
p−1

Σ2pn−1HZ.

We know that this operation is just the integral Qn landing in an HZ
wedge summand of the right hand side. It is, further, invariant under
Z/p-action. This identifies the wedge summand which is supported
by vn. In homotopy groups, on Lp−1, it is an element which reduces
modulo p to an element of Lp−1 which is annihilated by 1 − γ where γ
is the generator of Z/p.

Since, however, we also know from [3] that vn is only determined
modulo In, we see that the action on vn given by the Z/p-action on
(42) necessarily sends the universal FGL to isomorphic FGL’s.

Along with (3), this then implies

Theorem 4. There exists a strict action of Z/p (in the “naive” sense)
on

(⋀
p−1

E(n))∧In
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(and its In-complete variants, replacing, for example, E(n) by En) by
morphisms of A∞-ring spectra, which on coefficients coincides with the
action on compositions of (p − 2) strict isomorphisms of FGL’s given
by the first k-invariant (42).

◻
It is worth noting that while these considerations produce many

equivalent actions on chains of (p − 2) strict isomorphisms of FGL’s,
for p > 2, there does not appear to be one canonical construction such
as the −iF (x)-series associated with BPR for p = 2.

It makes sense to conjecture that there exists an A∞-structure on
BPRHHR and an A∞-map from BPRHHR into the Z/p-equivariant
Borel-complete spectrum defined by Theorem 4. At the moment, how-
ever, several ingredients are missing toward proving this, the first of
which is the proof of the existence of an A∞-ring structure (or even a
non-rigid ring structure) on our construction of BPRHHR.

It is important to note that there also exists a Z/p-action on Ep−1 in-
duced from the the Z/p-subgroup of the Morava stabilizer group. (For
simplicity, let us assume p ≥ 5.) The Z/p-action on coefficients is dis-
cussed in Nave [13], Symonds [17]. Essentially, from the representation-
theoretical point of view, the non-negligible part is an exterior algebra
on Lp−1, tensored with a polynomial algebra on Nvn. (This is in no
contradiction with the homotopy-theoretical point of view, where we
are dealing with the completion of a Laurent series ring.)

The generating Lp−1 contains all of

(43) u,un−1u, . . . , u1u

where ui are the Lubin-Tate generators (i.e. are related to vi by change
of normalization) and u−1 is a root of vn. In fact, it is proved in [13]
that u generates this Lp−1-representation and the elements (43), in the
order listed, are related by applying 1 − γ.

It was conjectured in [7] that there should be a Z/p equivariant map
from

(44) BPRHHR → (Ep−1)Z/p
which would restict to an isomorphism of the Lp−1-representations be-
tween the Lp−1 containing v1 and the u−p

p−1+1-multiple of (43). Such a
morphism of representations certainly exists, but making this assign-
ment implies that the non-equivariant elements vi in our construction
are sent to 0 for i > 1. This may seem absurd, since the element u−p

p−1+1

is of type vp−1, and is supposed to be inverted. The answer, however,
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is of course that there is no real contradiction, since when dealing with
a chain of p − 2 strict isomorphisms of the universal formal group law,
there could be many elements of type vp−1, incluing some which contain
a summand which is a unit multiple of tp−1. Thus, the element u−p

p−1+1

could be an image of a generator of a separate copy of BP in BPR{e}.
In fact, on the level of non-equivariant coefficients with Z/p-action,
such maps are easily shown to exist. The existence of the comparison
map (44) on the level of Z/p-equivariant spectra is at present still open.

6. Odd prime real orientations and E∞-constructions

One knows (see [11]) that MU is an E∞-ring spectrum. On the other
hand, we have the complex orientation

(45) Σ−2CP∞ →MU.

Thus, (after appropriate discussion of cofibrancy), the universal prop-
erty allows us to extend (45) to an E∞-map

(46) C●Σ
−2CP∞ →MU

where C●E denotes the unital free E∞-ring spectrum on a spectrum E
with unit (meaning a morphism S → E). We remark in fact that (46)
is a retraction (i.e. that in the derived category of spectra, the target
splits off as a direct summand, as an ordinary ring spectrum). This
is due to the fact that C●Σ−2CP∞ is, by definition, complex-oriented,
so the complex orientation gives a section of (46) in the category of
ordinary commutative ring spectra.

A similar story is true, essentially without change, for Real-oriented
Z/2-equivariant spectra: Denoting by S1 the unit sphere in C with the
Z/2-action of complex conjugation, we have a Real orientation

(47) BS1 →MR,

which gives rise to a Z/2-equivariant E∞-map

(48) C●Σ
−2BS1 →MR

which, again, has a section in the category of ordinary Z/2-equivariant
commutative ring spectra (and hence, in particular, splits in the cate-
gory of Z/2-equivariant spectra).
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This raises the question what happens for a prime p > 2. Hahn,
Senger and Wilson [6] defined a version of Real orientations of Z/p-
equivariant spectra for odd primes p as follows. One denotes

T = BZ/pLp−1.
The Z/p-equivariant space T can, indeed, be identified with the subset
of (S1)Z/p consisting of all tuples (z1, . . . , zp) where

p

∏
j=1

zj = 1.

Note that in particular,

(49) TZ/p = Z/p.
Selecting once and for all any (non-equivariant path from 0 to 1 in (49)
specifies a Z/p-equivariant map

(50) Z̃/p→ T,

which, in turn, by adjunction, gives a Z/p-equivariant map

(51) ι ∶ ΣZ̃/p→ BT.

The right-hand side is, again, equivalent whether whether we take BZ/p
or the “naive” Schubert cell construction. In fact, we have the following

Proposition 5. Let T = {(z1,⋯, zp)∣zi ∈ S1,∏ zi = 1} be the Z/p-
equivariant group so that Z/p acts by permuting the coordinates. Then
the equivariant classifying space BZ/pT is equivalent to the fiber of

(52) B((S1)Z/p) → BS1.

In (52), B denotes the bar construction, (S1)Z/p is the {(z1,⋯, zp)∣zi ∈
S1} and the map is induced by multiplying the coordinates.

Comment: The bar construction is equivariant and also preserves the
“multiplicative norm” on space level, so the source of (52) is a product
of p copies of CP∞ with action by permutation of coordinates, while
the target of (52) is a fixed copy of CP∞.

Proof. Notice that on fixed points, (52) is p ∶ BS1 → BS1, (meaning the
bar construction applied to the p’th power map on S1), so it suffices to
show that (BZ/pT)Z/p ≃ BZ/p, as the underlying level is easy. By [10,
Theorem 10],

(53) (BZ/pT)Z/p ≃∐
[Λ]

BWT⋊Z/p(Λ),
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where the index is over subgroups Λ ⊂ T ⋊ Z/p isomorphic to Z/p and
intersecting T trivially, up to T-conjugation. Write Z/p = ⟨γ⟩ and take
x = ((z1,⋯, zp), γ) ∈ T ⋊Z/p. Then

xp = ((⊓zi,⋯,⊓zi), γp) = e and x−1 = ((z−12 ,⋯, z−1p , z−11 ), γ−1).
This means any element x of T ⋊ Z/p not contained in T generates
a Λ. However, these are all conjugate. Let y = ((y1,⋯, yp), γ) to be
determined. Setting

yxy−1 = ((y1xpy
−1
p , y2x1y

−1
1 ,⋯, ypxp−1y

−1
p−1), γ) = ((1,1,⋯,1), γ),

we obtain

yp/y1 = xp

y1/y2 = x1

⋯
yp−1/yp = xp−1

It is not hard to see that this allows a solution with∏ yi = 1. Now, using
Λ = ⟨((1,1,⋯,1), γ)⟩ without loss of generality, one obtains (BZ/pT)Z/p ≃
BZ/p from (53). ◻

Note that in the proof, the only thing we used about S1 is that it
is an abelian compact Lie group. However, the same argument often
extends to more general groups. For example, we can show that the
fiber of

B(ZZ/p) → BZ
is BZ/pLp−1, recalling Lp−1 = {(a1,⋯, ap)∣zi ∈ Z,∑ai = 0}. In other
words, T ≃ BZ/pLp−1. Although the group Z is non-compact, the for-
malism works in this case, since the family consits of finite subgroups.
Instead of [10, Theorem 10], we use the fact that H1(Z/p,Lp−1) = Z/p,
by the long exact se quence in cohomology induced by the short exact
sequence

0→ Z→ Lp → Lp−1 → 0.

Hahn Senger, and Wilson [6] define a Z/p-equivariant commutative
ring spectrum E to be Real-oriented if the following diagram can be
completed:

(54)

ΣZ̃/p
ι

��

// ΣZ̃/p ∧E

BT

99
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where the horizontal map is the smash of ΣZ̃/p with the unit. If this
happens, one can show that the Schubert-cell spectral sequence con-
verging to E∗BT (see Proposition 5) collapses.

In effect, we claim that for a Real-oriented Z/p-equivariant spectrum
E, modulo ”negligible parts,” i.e. copies of the additive norm from {e}
to Z/p on E{e}, we have

(55) E ∧BT ∼ ⋀
E

(E ∨E ∧ΣZ̃/p) ∧E E[Nx]

(we mean this up to homotopy, not in any coherent sense). In fact, the

E ∧ΣZ̃/p occurs by the definition of Z/p-equivariant Real orientation,
while the class Nx is simply the multiplicative norm (on the level of
spaces) of the complex orientation of E{e} (whose existence also follows
from the definition of Real orientation by forgetting the Z/p-action),
restricted by the inclusion map

BT→ B((S1)Z/p.
By the observation, the ring E∗[Nx] splis off as a canonical summand

of E∗BT. Multiplication on BT then gives rise to a p-valued formal
group law in the sense of Buchstaber [4, 5], see Definition 1.2 of [5].
To recapitulate, Buchstaber defines a p-valued formal group law as a
polynomial of the form

(56) Θ(x, y) = Zp − θ1(x, y)Zp−1 + ⋅ ⋅ ⋅ − θp(x, y)
where θi(x, y) are power series which satisfies the conditions

Θ(x,0) = Zn +
n

∑
i=1
(−1)i(n

i
)xiZn−i,

(57) Θ(Θ(x, y), z) = Θ(x,Θ(y, z)),

Θ(x, y) = Θ(y, x).
The associativity condition (57) requires some explanation.

If F (x, y) is an ordinary formal group law, then a p-valued formal
group law can be obtained as

Θ(x, y) =
n

∏
j=1
(Z − Fj(x, y))

where

Fj(x, y) = expF ((logF x)1/p + ζjp(logF y)1/p)p.
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In the associativity condition, we can similarly write terms in three
variables

(58) Fjk(x, y, z) = expF ((logF x)1/p + ζjp(logF y)1/p + ζkp (logF z)1/p)p

and the multivalued formal sum in three variables should be

(59) Θ(x, y, z) =
n

∏
j,k=1
(Z − Fjk(x, y, z)).

This can be processed in two different ways into expressions involving
only the series θj:

We can write (58) as

Fjk(x, y, z) =
expF ((logF x)1/p + ζjp(((logF y)1/p + ζk−jp (logF z)1/p)p)1/p)p

and thus express (59) in terms of

θi(x,Fj(y, z)).
The resulting expression, however, is symmetrical in the Fj(y, z), which
allows them to be reduced to θs(y, z). Permuting the variables x, y, z
cyclically and doing the same thing gives another expression. The
equality of both expressions is what one means by (57).

For p = 2, Real-oriented spectra produce an ordinary formal group
law due to the fact that the orientation class is a polynomial generator.
As we saw in (55) (and as is, in some sense, the theme of this paper),
however, for p > 2 the orientation class is only an “exterior generator”
from the point of view of representation theory, which is why we have
to restrict to the polynomial ring on the (space-level) multiplicative
norm of the non-equivariant orientation class, which leads only to a
p-valued formal group law. Note that the collapse (55) is necessary to
assure that the ring E∗[Nx] indeed survives as a canonical summand
of the cell spectral sequence given by Proposition 5.

For our present purposes, we recall from [11] that the Z/p-equivariant
Spanier-Whitehead dual of Z̃/p is given by

(60) DZ̃/p = Σ−βZ̃/p.
Thus,

Σ−1−βZ̃/p ∧BT
becomes a unital spectrum via ι and the spectrum

(61) C●Σ
−1−βZ̃/p ∧BT
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becomes Real-oriented in the sense of [6]. It seems therefore reasonable
to conjecture that after localizing at p, BPR will split off (61).

One also notes that since (Ep−1)Z/p is both E∞ and Real-oriented (as
proved in [6]), we do know that there is a Z/p-equivariant E∞-map

C●Σ
−1−βZ̃/p ∧BT→ Ep−1.

7. Appendix: Graphical illustration of the construction
of BPR at p > 2

The purpose of this Appendix is to provide a graphical illustration
of the construction given in Section 4. The even (resp. odd) pattern of
the tower is depicted in Figure 9 (resp. Figure 10). Let us briefly recall
the classical Brown-Peterson BP -tower [3]. Their tower is described by
taking the homology HZ/p∗HZ and killing those elements which are
not supposed to be in HZ/p∗BP . These are, of course, all the copies
of HZ/p∗ = Z/p indexed by a generator ξRτE in Milnor’s notation [12]
where E = (e1, e2, . . . ) ≠ 0, en ∈ {0,1}. In the first stage of the tower, we
attach copies ofHZ along the Milnor primitives Qn, (the corresponding
generators being thus labelled by vn), which sends τn ↦ 1, thereby
killing all these elements, creating, however, “error terms” due to the
relations τ 2n = 0. These are corrected in subsequent stages of the tower,
thus making the generators vn polynomial.

This construction has an exact analogue in constructing BPR for
p = 2 [8]; while the relation for τ 2n is more complicated, it does not affect
the multiplication rule of the vn’s (this also occurs in the classical BP
tower for p = 2).

In the case of the BPR tower for p > 2 odd, we proceed similarly,
with several complications. One is that unlike the non-equivariant case,
where all the constituent pieces of the tower are suspensions of HZ, or
the BPR at p = 2, where the pieces are RO(Z/2)-graded suspensions of
HZ, in constructing BPR at p > 2, we encounter RO(Z/p)-graded sus-

pensions of several different kinds of pieces, namely HZ, HL̃p−1,HZ/p,
and HLp. Thus, the general plan of our pictures is to depict the homol-
ogy of the generators involved, using the symbols introduced in Figures
2,4,6, while showing the k-invariants killing appropriate parts of their
RO(Z/p)-graded coefficients (depicted by the curved arrows). We re-
mind the reader that while generators of the form HLp are necessary
to complete the tower, such a generator represents a free spectrum,
thus spawning a non-equivariant BP tower, which is considered neg-
ligible and is omitted from the picture. This corresponds to higher
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powers of the vn generators being negligible, thus making the picture
necessarily incomplete. Finally, our pictures depict the good wedges of
the genuine Eilenberg-Mac Lane generators. We see that the primary
k-invariants wipe out the “odd part” of the good wedges of generators
of the equivariant dual Steenrod algebra, as well as the new homology
of the generators arising in the tower, completely. The reader should
recall, however, that due to the presence of the derived wedges, this
“slice version” of the tower at present remains conjectural, and we only
have a Borel cohomology version. The reason we keep the genuine equi-
variant homology picture is to demonstrate in what exact degrees the
generator classes reside.

7.1. Detailed description of the even pattern. In Figure 9, the
illustration is for the prime p = 3. The generator in the bottom left
corner is the bottom element HZ. The triangle it is enclosed in depicts
the fact that this generator survives. The leftmost column of Figure 9
depicts what the first k-invariant does on the factor denoted by Tθ(ti)
in Theorem A of [16] (corresponding to the generator monomials in
(4) of [9]). Going from the bottom, the second icon shows the element

ξ̂n which survives (and hence is encircled in a triangle). The rest of
this copy of HZ∧T (in the notation of [9]) supports the k-invariant Q′n
going to theHL̃p−1 corresponding to the generator vn. (We can imagine
this part of the tower occurring multiplied by a polynomial in Φ(vm)
for any m ∈ N and an even monomial in vm, m > n, occurring in the
first power.) Now for the higher terms of the first column, a different
pattern occurs, since they are not supposed to contain any surviving
coefficient elements. Accordingly, they are taken isomorphically by the
k-invariant Q′n to the corresponding copy of HX (the second icon, from
the bottom, in the second column from the left of Figure 9). We observe
that this leaves a copy of HLp in the target unattended, which supports

a Qn into a negligible part of the tower (not depicted in Figure 9).
Since we are at p = 3, the fourth icon (from the bottom) in the first

column of Figure 9 is already the top term (see (4) of [9]), supporting
an HZ/p according to Theorem A of [16]. This is enclosed in a dashed
triangle, depicting two new phenomena, since only one generator in
homology, denoted in [9] by θn, survives. This element, however, is
integral, and accordingly, is taken by Q′n by a Bockstein to its target,
indicating that no additional negligible term is spawned in this dimen-
sion (since the negligible higher powers of vn are already visible in the
undepicted negligible part of our tower, starting with v2n). Also, we
note that the remainder of third icon (from the bottom) of the second
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β

vn Φ(vn)

Figure 9. The even pattern of the BPR-tower

column from the left of Figure 9 is also matched by Q′n with half of the
coefficients of the top HZ/p term of the first column, thus leaving an
integral surviving pattern.

Finally, Figure 9 depicts a Q′′n matching the top term of the second
column counted from the left with the last column (which has only
one icon). This is the transpotence k-invariant, supporting the Φ(vn)
generator. Note that, again, a copy of HLp is unattended, signifying
another negligible generator in the tower.

This part of the tower is repeated by multiplication by powers of θn.

7.2. Detailed description of the odd pattern. We now turn to
Figure 10. We can think of this as continuation of Figure 9 with n re-
placed by a larger numberm, where the generator vm, i.e. the surviving
bottom icon of the second column of Figure 9 representing an HL̃p−1,
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β

vm vmvn vmΦ(vn)

Figure 10. The odd pattern of the BPR-tower

is moved to the bottom left corner of Figure 10. The next two icons
(from the bottom) of the first column of Figure 10 represent copies of
HX (see Section 4). The differential Q′n matches the coefficients of this
term with the HZ in the bottom of the second column of Figure 10,
leaving a copy of HL̃p−1 in the second icon of the first column, which
survives in the homology of BPR. The third icon from the bottom in
the first column of Figure 10 is again an HX, this time matched by Q′n
with a target HZ ∧ T represented by the second icon from the bottom
of the second column from the left of Figure 10. This time, we see
that there is a seemingly surviving copy of HLp in the source, which,
however, supports another negligible part of the BPR tower, via the

k-invariant Q.
At the top of the first column (counted from the left) of Figure 10, we

have a copy of HL̃p−1/p. This partially survives into a copy of HL̃p−1
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on the θn generator. To achieve this effect, there is a Bockstein into

one HL̃p−1 part of the target HZ∧T in the third icon from the bottom
of the second column of Figure 10, realized by the k-invariant Q′n.

The remaining copy of HL̃p−1 is matched, again, by the “transpo-
tence” differential Q′′n with the icon in the third column of Figure 10,
representing vmΦ(vn).
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