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ABSTRACT. We completely compute the slice spectral sequence of the Cy-
spectrum BP(C4)(2). After periodization and K (4)-localization, this spec-
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duced from the Goerss—Hopkins—Miller theorem. In particular, our computa-
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1. INTRODUCTION

Chromatic homotopy theory is a powerful tool to study periodic phenomena
in stable homotopy theory by analyzing the algebraic geometry of smooth one-
parameter formal groups. More precisely, the moduli stack of formal groups has
a stratification by height, which corresponds to localization with respect to the
Morava K-theories K(n), n > 0. As the height increases, this stratification car-
ries increasingly more information about the stable homotopy category, but also
becomes increasingly harder to understand.

At height 0, localizing with respect to K (0) corresponds to rationalization. At
height n > 1, the K (n)-local sphere L (,,)S is equivalent to E/'~ [DH04], where E,
is the height-n Lubin—Tate theory and G,, is a profinite group called the Morava
stabilizer group. One can analyze E®» by further decomposing it into smaller
building blocks of the form E"® where G is a finite subgroup of G,,.

n
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At height 1, the K(1)-local sphere Lg(1)S is completely understood via this
method by works of Adams [Ada63], [Ada65al [Ada65bl [Ada66l, [Ada68]. At height
2, the K(2)-local sphere Ly (2)S has been the subject of extensive research in the
past twenty years, starting from the computation of topological modular forms (an
important building block of L (2)S) by Hopkins and Mahowald [HM98] and the
resolution of the K (2)-local sphere at the prime p = 3 by Goerss, Henn, Mahowald,
and Rezk [GHMRO5].

Classically, the homotopy fixed point spectra E"¢ are computed by using the
homotopy fixed point spectral sequence. However, when p = 2 and the height n is
bigger than 2, the spectra E“ are very difficult to compute: there is no convenient
description of the G-action on 7, FE),, so it is hard to compute the F>-page of its
homotopy fixed point spectral sequence. In fact, the only known cases before our
result in this paper are when |G| = 2¢, where £ = 1 (mod 2). Even worse, the G-
action on E,, is constructed purely from obstruction theory [Rez98| [GH04], so there
is no systematic method to compute the differentials. There have been attempts
to understanding this by using topological automorphic forms [BL10], but with
limited computational success.

The main result of this paper is the first height 4 computation of a building block
to the K(4)-local sphere Lk 4)S at the prime p = 2. Our computation uses Hill-
Hopkins—Ravenel’s slice spectral sequence in equivariant homotopy theory, which
is a crucial tool in their solution of the Kervaire invariant one problem [HHR16].

Theorem 1.1. There exists a height-4 Lubin—Tate theory E4 such that the Cy4-
equivariant orientation BP(YY) — By factors through BP(C(2)

Bp(Ca) s B,

.
.
.
.
.
P
p
.

BP((C4))<2>
Furthermore, after inverting the element
Dy := N(04)N(73)N (75 + 73(773) + (7773)°) € m4, BP(O)2)

and applying K (4)-localization, there is an equivalence

h Gal(F,4 /F3)x C
(Lg@)®)“* ~ E, (Fat[F2)xChz

where

U .= D;'BP(C4)g),

Theorem 1.2. We compute all the differentials in the slice spectral sequence of
BP((C4))<2> (see Figure . The spectral sequence terminates after the Egy-page and
has a horizontal vanishing line of filtration 61.

Theorem 1.3. After inverting the element Do € 7r24p4BP((C4))<2> in Theorem (1.1
the Cy-spectrum W has three periodicities:

(1) SPPr AT ~ U,

(2) 5247240 AT ~ \I/,'

(3) SS2+320’—32/\ AU~ .
Together, these three periodicities imply that ¥+ and EZC” are 384-periodic the-
ories.
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FIGURE 1. The slice spectral sequence of BP(C4)(2).

The spectrum EZC” is one of the building blocks of the K'(4)-local sphere L (4)S,
in a sense that we will make precise in Section[I.I} Our approach bypasses the previ-

ously mentioned difficulties surrounding the homotopy fixed point spectral sequence

These equivariant
Roughly speaking, the

equivariant spectra BP(“4) and BP(“4)(2),
spectra exploit the connections between the geometry of Real bordism theories and

the obstruction-theoretic actions on Lubin—Tate theories.

by using the Cy-

Cy-spectrum BP((C“))(Z) encodes the universal example of a height-4 formal group

law with a Cy-action extending the formal inversion action.
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At height 2, Hill, Hopkins, and Ravenel [HHR17] studied the slice spectral se-
quence of the spectrum Dy 'BP(C4)(1). They showed that Dy *BP(“4)(1) is 32-
periodic and is closely related to a height-2 Lubin—Tate theory, which has also been
studied by Behrens-Ormsby [BO16] as TMF(5).

The spectrum ¥, which is 384-periodic, is a height-4 generalization of DleP((C“))(l).
This can be viewed as a different approach than that of Behrens and Lawson [BL10]
to generalizing TMF with level structures to higher heights, with the advantage of
being completely computable.

1.1. Motivation and main results. In 2009, Hill, Hopkins, and Ravenel [HHRI0]
proved that the Kervaire invariant elements 6; do not exist for j > 7. A key con-
struction in their proof is the spectrum €2, which detects all the Kervaire invariant
elements in the sense that if §; € my;+1_5S is an element of Kervaire invariant 1,
then the Hurewicz image of 6; under the map 7.S — m,.{) is nonzero (see also
[Mil11l [HHRI0, [HHRII] for surveys on the result).

The detecting spectrum {2 is constructed using equivariant homotopy theory as
the fixed points of a Cs-spectrum g, which in turn is a chromatic-type localization
of MU(©8)) .— Ngzs MUg. Here, Ngj (—) is the Hill-Hopkins—Ravenel norm functor
and MUy is the Real cobordism spectrum of Landweber [Lan68|, Fujii [Fuj76], and
Araki [Ara79]. The underlying spectrum of MUy is MU, with the Cs-action coming
from the complex conjugation action on complex manifolds.

To analyze the G-equivariant homotopy groups of MU((G)), Hill, Hopkins, and
Ravenel generalized the Cy-equivariant filtration of Hu—Kriz [HK01] and Dugger
[Dug05] to a G-equivariant Postnikov filtration for all finite groups G. They called
this the slice filtration. Given any G-equivariant spectrum X, the slice filtration
produces the slice tower {P*X }, whose associated slice spectral sequence strongly
converges to the RO(G)-graded homotopy groups ’/TEX .

For G = Csn, the G-spectrum MUY are amenable to computations. Hill,
Hopkins, and Ravenel proved that the slice spectral sequences for MU and its
equivariant localizations have especially simple E5-terms. Furthermore, they proved
the Gap Theorem and the Periodicity Theorem, which state, respectively, that
7%Q0g = 0 for —4 < i < 0, and that there is an isomorphism 7C5Qg = ﬂf_iQSGQ@.
The two theorems together imply that

C
7TQ_j+1_QQ = 7T2j8+1_29@ = 0

for all j > 7, from which the nonexistence of the corresponding Kervaire invariant
elements follows.
The solution of the Kervaire invariant one problem gives us a motivating slogan:

Slogan. The homotopy groups of the fized points of MU g4 |G| grows are in-
creasingly good approximations to the stable homotopy groups of spheres.

To explain the slogan some, we unpack some of the algebraic geometry around
MU when G = Cyn. The spectrum underlying MU ig the smash product of
2"~ !_copies of MU, and so the underlying homotopy ring co-represents the functor
which associates to a (graded) commutative ring a formal group law and a sequence
of (2! — 1) isomorphisms:

fon—1_
ELNY LN N
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The underlying homotopy ring has an action of Cy», and by canonically enlarg-
ing our moduli problem, we can record this as well. We extend our sequence of
isomorphisms by one final isomorphism from the final formal group law back to
the first, composing the inverses to the isomorphism already given with the formal
inversion. This gives us our moduli problem: maps from the underlying homotopy
of MU(C2)) ¢4 4 graded commutative Con-equivariant ring R are given by a formal
group law F' together with isomorphisms

firr: AT F 5 yTE 0<i<2n -

such that the composite of all of the f; is the formal inversion on F'.

If F'is a formal group law over a ring R that has an action of Cy: extending
the action of Cy given by formal inversion, then F' canonically defines a sequence
of formal groups as above. Simply take all of the maps f; to be the identity unless
we pass a multiple of 2"~*, in which case, take the corresponding element of Cyx.
In this way, we see that the stack Spec(r¢MU(C2")) //Ch. provides a cover of the
moduli stack of formal groups in a way that reflects the automorphisms groups
which extend the formal inversion action and which are isomorphic to subgroups of
Con.

As an immediate, important example, we consider the universal deformation I',,
of a fixed height-m formal group law F,, over an algebraically closed field k£ of
characteristic p. Lubin and Tate [LT66] showed that the space of deformations is
Ind-representable by a pro-ring abstractly isomorphic to

W(k)[us, . .- ,um,l]][uil] =:E,,.,

over which T, is defined. Here, W(k) is the p-typical Witt vectors of k, |u;| = 0,
and |u| = 2.

By naturality, the ring F,,, is acted on by the Morava stabilizer group G,,, the
automorphism group of F},. Hewett [Hew95] showed that if m = 2"~1(2r+1), then
there is a subgroup of the Morava stabilizer group isomorphic to Ca». In particular,
associated to I',, and the action of a generator of Csn, we have a Can-equivariant
map

reMu(©@) s g

Topologically, this entire story can be lifted. The formal group law I';,, is Landwe-
ber exact, and hence there is a complex orientable spectrum FE,,, which carries the
universal deformation T',. The Goerss—Hopkins-Miller Theorem [Rez98| [(GH04]
says that E,, is a commutative ring spectrum and that automorphism group of
FE,, as a commutative ring spectrum is homotopy equivalent to the Morava stabi-
lizer group. In particular, we may view FE,, as a commutative ring object in naive
G-spectra. The functor

X — F(EG4+,X)

takes naive equivalences to genuine equivariant equivalences, and hence allows us
to view E,, as a genuine G-equivariant spectrum. The commutative ring spectrum
structure on E,, gives an action of a trivial E-operad on F(EG,, E,,). Work of
Blumberg-Hill [BHT5|] shows that this is sufficient to ensure that F(EG, E,,) is
actually a genuine equivariant commutative ring spectrum, and hence it has norm
maps.

The spectra ET}ZG are the building blocks of the p-local stable homotopy category.
In particular, the homotopy groups 7. E*“ assemble to the stable homotopy groups
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of spheres. To be more precise, the chromatic convergence theorem [Rav92] exhibits
the p-local sphere spectrum S, as the inverse limit of the chromatic tower

-++—Lg, S— Lg, ,S— -+ — Lg,S,
where each Lg, S is assembled via the chromatic fracture square

Lg,,S ——— Lg@m)S

| |

LEm71S — LEm,lLK(m)S

Here, K(m) is the mth Morava K-theory.

Devinatz and Hopkins [DHO04] proved that Ly (,,)S ~ E!'Sm and, furthermore,
that the Adams—Novikov spectral sequence computing L (,,)S can be identified
with the associated homotopy fixed point spectral sequence for E"Cm. One may
further analyze L (,,,)S by using the spectra {E'? |G C G, finite}.

A finite resolution of L (,,)S of length d is a tower of fibrations

Ly (m)S Xa—1 E X Xo
Eidgd Ei(dil)gd_l 27151 &o

such that each & is a finite wedge of suspensions of the spectra of the form E¢ (G
a finite subgroup of G,,). The above resolution gives rise to a strongly convergent
spectral sequence

Ef’t =m& = Wt—sLK(n)S

A comprehensive description of the techniques used to resolve Ly (,,)S can be found
in [Hen07] and [BB19).

At height 1, Efcz is KO4, the 2-adic completion of real K-theory. The Morava
stabilizer group G is isomorphic to ZJ . Adams, Baird, and Ravenel [Rav84] showed
that there is a fiber sequence

LK(I)S E— E?Cz

I

E_lE{ZCQ

where the boundary homomorphism is given by 1® —1 (? is a topological generator
of Zy /{#1} = Zjy). This is a finite resolution of length two for Ly (1)S.

At height 2, the homotopy fixed points E3¢ are the K (2)-localizations of topo-
logical modular forms and variants of topological modular forms with level struc-
tures. Computations of the homotopy groups of these spectra are done by Hopkins—
Mahowald [HM98|, Bauer [Bau08], Mahowald-Rezk [MR09], Behrens—Ormsby [BO16],
Hill-Hopkins—Ravenel [HHR17], and Hill-Meier [HMI17].

Finite resolutions of the K'(2)-local sphere L 2)S have been constructed, start-
ing from the works of Goerss, Henn, Mahowald, and Rezk at the prime p = 3
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[GHMRO5]. In particular, they constructed a tower of fibrations

hG
L (2)S X3 Xo X1 By 24
s phGas n45 24\ 237 g5 P16 s6p)SP16 \ 538 gl SP16 s7E}SP16 v 51 pho2

In the resolution above, Ga4 and SD;g are certain subgroups of G, of orders 24
and 16, respectively, with EQ Gaa — [, k@) TMF. See also works of Goerss—Henn—
Mahowald [GHMO04], Behrens [Beh06], and Henn—Karamanov—Mahowald [HKMT3].

Resolutions for L (2)S have been constructed at other primes as well. See works
of Henn [Hen07] and Lader [Lad13] for p > 5, and works of Beaudry [Beal5l [Beal7],
Bobkova—Goerss [BG18], Beaudry—Goerss—Henn [BGH1§| for p = 2.

For higher heights m > 2 and when p = 2, the homotopy fixed points E"¢ are
notoriously difficult to compute. One of the chief reasons that these homotopy
fixed points are so difficult to compute is because the group actions are constructed
purely from obstruction theory. This stands in contrast to the norms of MUg,
whose actions are induced from geometry.

Recent work of Hahn—Shi [HS17] establishes the first known connection between
the obstruction-theoretic actions on Lubin—-Tate theories and the geometry of com-
plex conjugation. More specifically, there is a Real orientation for any of the E,,:
there are Cs-equivariant maps

MUr — iz«z E,,.

Using the norm-forget adjunction, such a map can be promoted to a G-equivariant
map
MU s N§ it Evy — Ep.

2
By construction, since the original map MUr — FE,, classified I';,, as a Real formal
group law, this G-equivariant map exactly recovers the algebraic map.
As a consequence of the Real orientation theorem, the fixed point spectra (MU((CZ" )))

and Egncffm (m =1 (mod 2)) can be assembled into the following diagram:

Con

i

(MU((C2TL )))CQ71 Ethn

2n—1m

l (1.1)

S , (MU((CS)))CS , Eilgs

|

(MU((C4)))C4 N E;%

|

(NIU]R)C2 _ EgLC2.
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The existence of equivariant orientations renders computations that rely on the
slice spectral sequence tractable. Using differentials in the slice spectral sequence
of MUk and the Real orientation MUr — E,,,, Hahn—Shi computed EZ;QC?, valid for
arbitrarily large heights m.

An example of a Real orientable theory that was previously known is Atiyah’s
Real K-theory. In 1966, Atiyah [Ati66] formalized the connection between complex
K-theory (KU) and real K-theory (KO). Analogous as in the case of MUg, the
complex conjugation action on complex vector bundles induces a natural Cs-action
on KU, and this produces a Cy-spectrum Kp called Atiyah’s Real K-theory. The
theory KR interpolates between complex and real K-theory in the sense that the un-
derlying spectrum of Kg is KU, and its Cs-fixed points is KO. The RO(C5)-graded
homotopy groups Tr%KR has two periodicities: a ps-periodicity that corresponds
to the complex Bott-periodicity, and a 8-periodicity that corresponds to the real
Bott-periodicity.

In [HHRIT], Hill, Hopkins, and Ravenel computed the slice spectral sequence of
a Cy-equivariant height-2 theory that is analogous to K. To introduce this theory,
note that the height of the formal group law I',, is at most m and the ring F,,, is
2-local. We can therefore pass to 2-typical formal group laws (and hence BP), and
our map

BP — E,,

classifying the formal group law descends to a map
E(m) — E,,,

where E(m) is the height-m Johnson—Wilson theory. Equivariantly, we have a sim-
ilar construction, which we review in more detail in Section [2} The Con-equivariant
map

will factor through a localization of a quotient of BP(©2") 1o study the Hurewicz
image, it therefore suffices to study these localizations of quotients, and for these,
it suffices to study the quotients. Hill-Hopkins—Ravenel restricted their attention
to computing the homotopy Mackey functors of

BP((C4))<1>_
There exists a height-2 Lubin-Tate theory E5 such that the C4-equivariant orien-
tation BP(“4) — E, factors through BP(“4)(1):

Bp(Ca) s Fy

A
-
-
-
-
-
-
-

BP((C4))<1>
Furthermore, after inverting the element
Dy = N(t2)N (1) € ma,, BPEN(1)
and applying K (2)-localization, there is an equivalence
(Lic(a Dy "BP(O(1)) G o oy O,

The slice spectral sequence of BP((C4))<1> degenerates after the E13-page and has a
horizontal vanishing line of filtration 13.
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The Cy-spectrum Dy *BP(C4)(1) has three periodicities:
(1) Sv+ A DTBP(C(1) ~ DTIBP(Ca)(1);
(2) %4 A D'BP(@h1) ~ priBP(@o1);
(3) G8+80—8X A D;lBP((C4))<].> ~ D;lBP((C4))<]_>
These three periodicities combine to imply that D7 1BP((C“))@) and ESC“ are 32-
periodic theories.
To this end, the goal of this paper is to give a complete computation of the slice
spectral sequence of the Cy-fixed points of BP((C4))<2>.

Theorem 1.4 (Theorem [1.1). There exists a height-4 Lubin—Tate theory E4 such
that the Cy-equivariant orientation BP(%) — By factors through BP(C4)(2)

Bp(C4s) s E,
7

-
-
-
-
-
-
-
-

BP((C4))<2>
Furthermore, after inverting the element
Dy := N(04)N(73)N (75 + T3(77s) + (173)°) € 724, BP(C(2)

and applying K (4)-localization, there is an equivalence

(Lic(ay¥)C o gy O F /P2

where

U := D;'BP(C4)2),

Theorem 1.5 (Theorem. We compute all the differentials in the slice spectral
sequence of BP((C4))(2> (see Figure . The spectral sequence terminates after the
FEg1-page and has a horizontal vanishing line of filtration 61.

Theorem 1.6 (Theorem . After inverting the element Dy € 7724P4BP((C4))<2>
in Theorem [I.1], the Cy-spectrum W has three periodicities:

(1) SPPr AT ~ U,

(2) 524—240 AT ~ \I/,'

(3) SS2+320’—32/\ AU~ .
Together, these three periodicities imply that W€+ and EZC” are 384-periodic the-
ories.

When G = Cy, Li-Shi-Wang—Xu [LSWX17] analyzed the bottom layer of tower (|1.1)
and showed that the Hopf-, Kervaire-, and r-families in the stable homotopy groups
of spheres are detected by the map

S — (MUg)“2.

As we increase the height m, an increasing subset of the elements in these families
is detected by the map
S — EC2,
Since (BP(C4)(1))% is closely related to TMF(5), one can study its Hurewicz
images via the Hurewicz images of TMF (see [BOTI6, [HHRI7]). In particular, there

are elements detected by the Cy-fixed points (BP(“)(1))C that are not detected
by (MUg)“®.
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In general, it is difficult to determine all the Hurewicz images of (BP(%))C,
Computations of Hill [Hil15] have shown that the class n® € 73S is not detected by
(BP(C2")Can for any n > 1. However, this element is detected by (BP(@s))@s,
where Qg is the quaternion group. It is a current project to understand the Hurewicz
images of the G-fixed points of BP(%) and its various quotients when G = Cy» and
Qs.

Note that after inverting a specific generator D € m19,¢, BP(©s) (1), p—1BP(Cs)(1)
is the detecting spectrum Qg of Hill-Hopkins-Ravenel [HHRI16]. Since we have
completely computed the slice spectral sequence of (BP((C4))<2>)C4, the following
questions are of immediate interest:

Question 1.7. What are the Hurewicz images of the Cy-fixed points of BP((C4))<2> ?
Question 1.8. What are the Cy-fized points of BPUCD (n) for n > 37

Question 1.9. What are the Cy-fized points of BP(C8) (1) 2

Question 1.10. What are the Cy-fized points of BP(“) (1) ¢

1.2. Summary of the contents. We now turn to a summary of the contents of
this paper. Section [2| provides the necessary background on MU particular,
we define the Hill-Hopkins—Ravenel theories BP(%)(m) (Defintion , describe
the Fs-pages of their slice spectral sequences, and prove Theorem and Theo-
rem [[L3]

The rest of the paper are dedicated to proving Theorem [1.2] In Section |3 we
review Hill-Hopkins-Ravenel’s computation of SliceSS(BP(“4)(1)). Our proofs for
some of the differentials are slightly different than those appearing in [HHR17]. The
computation is presented in a way that will resemble our subsequent computation
for SliceSS(BP(C4)(2)).

Section 4| describes the slice filtration of BP(“4)(2).  We organize the slice
cells of BP{)(2) into collections called BPU“4)(1)-truncations and i’éZBP((C“)(l}—
truncations. This is done to facilitate later computations. In Section [} we compute
the Ca-slice spectral sequence of i’(‘szP((C“))(Q).

From Section [6] foward, we focus our attention on computing the Cy-slice spec-
tral sequence of BP(“4)(2).  Section |§| proves that all the differentials in Cy-
SliceSS(BP(C4)(2)) of length < 12, as well as some of the dys-differentials, can be
induced from Cy-SliceSS(BP(“4)(1)) via the quotient map BP(“4)(2) — BP(C4)(1),
In Section [7] we prove all the di3 and d;5 differentials by using the restriction map,
the transfer map, and multiplicative structures.

In Section we prove differentials on the classes usy @y, Usrto, UgrUy, aNd U6\ Ay
by norming up Cy-equivariant differentials in Cy-SliceSS(BP(“4)(2)). Using these
differentials, we prove the Vanishing Theorem (Theorem , which states that
a large portion of the classes that are above filtration 96 on the Fs-page must die
on or before the Egi-page. The Vanishing Theorem is of great importance for us
because it establishes a bound on the differentials that can possibly occur on a
class.

Sections and [[2] prove all of the the remaining differentials in the slice
spectral sequence. The slice spectral sequence degenerates after the Fgi-page and
has a horizontal vanishing line of filtration 61 at the E,.-page. Section [I3] gives a
summary of all the differentials.
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2. PRELIMINARIES

2.1. The slice spectral sequence of MU, Let MUg be the Real cobordism
spectrum, and G be the cyclic group of order 2™. The spectrum MU is defined
as
MU .= N MU,
where NG (—) is the Hill-Hopkins—Ravenel norm functor [HHRI6]. The underlying
spectrum of MU s the smash product of 2"~ !-copies of MU.
Hill, Hopkins, and Ravenel [HHRI6l Section 5] constructed generators
7 € mo2 MU(@)
such that

—1

W%QMU((G)) = Z(Q)[fl,’yfl, R ,7271’ 717‘71,7@, . ]

Here v is a generator of Cyn, and the Weyl action is given by
i JATE o<t =2
cAdF = '
R L
Adjoint to the maps
7 S — i, MU(@)

are associative algebra maps from free associative algebras

SOm) =\ (5%2)™ = ig, MU(@),

7>0

and hence G-equivariant associative algebra maps

S°G - 7] = NG, S[7;] — MU(E).

Smashing these all together gives an associative algebra map

oo
A=8"G 7y,...]= N\ S°IG - 7] = MU,
i=1
For MU() and the quotients below, the slice filtration is the filtration associated
to the powers of the augmentation ideal of A, by the Slice Theorem of [HHRI16].
The classical Quillen idempotent map MU — BP can be lifted to a Cs-
equivariant map
MU — BPR,
where BPr is the Real Brown-Peterson spectrum. Taking the norm Ng2 (—) of this
map produces a G-equivariant map
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Using the techniques developed in [HHR16], it follows that BP(%) has refinement
S°G -7, G -7, G - T, .. | — BPUOD),

We can also produce truncated versions of these norms of BPr, wherein we form
quotients by all of the 7om _1 for all m sufficiently large. For each m > 0, let

Am = /\ SO[G'fQJ_l}.

j=m
Definition 2.1 (Hill-Hopkins-Ravenel theories). For each m >0, let
BP(m) = BP(E A, 50,

The Reduction Theorem of [HHRIO says that for all G, BP()0) = HZ, and
[HHR17] studied the spectrum BP(“)(1) (a computation we review below).

Remark 2.2. Although the underlying homotopy groups of BP((G))<m> is a polyno-
mial Ting:

n—1_1 n—1

7T:]31)((G))<,rn> = Z(Z) [rla Y1y .- 7’72 T1y... 772 _17427”71];

we do not know that BP((G))<m> has even an associative multiplication. It is, how-
ever, canonically an MU((G))-module, and hence the slice spectral sequence will be a

spectral sequence of modules over the slice spectral sequence for MU @,

The same arguments as for BP(%) allow us to determine the slice associated
graded for BP((G))<m> for any m.

Theorem 2.3. The slice associated graded for BP((G))<m) is the graded spectrum
SUG 71, G Tom 1] A HZ,

where the degree of a summand corresponding to a polynomial in the ¥; and their
conjugates is just the underlying degree.

Corollary 2.4. The slice spectral sequence for the RO(G)-graded homotopy of
BP((G))<m> has Es-term the RO(G)-graded homology of SU[G - 71,...,G - Tam_1]
with coefficients in Z, the constant Mackey functor Z.

Since the slice filtration is an equivariant filtration, the slice spectral sequence is
a spectral sequence of RO(G)-graded Mackey functors. Moreover, the slice spectral
sequence for MU g a multiplicative spectral sequence, and the slice spectral
sequence for BP((G))<m> is a spectral sequence of modules over it in Mackey functors.

2.2. The slice spectral sequence for BP((C4»<2>. From now on, we restrict at-
tention to the case G = Cy and BP((C“))(Q). We will use the slice spectral sequence to
compute the integer graded homotopy Mackey functors of BP((C“))(Z). To describe
this, we describe in more detail the Fs-term of the slice spectral sequence.

Notation 2.5. Let o denote the 1-dimensional sign representation of Cy, and let A
denote the 2-dimensional irreducible representation of Cy given by rotation by 7/2.
Let o9 denote the 1-dimensional sign representation of Cy. Finally, let 1 denote
the trivial representation of dimension 1.
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The homology groups of a representation sphere with coefficients in Z are gen-
erated by certain products of Euler classes and orientation classes for irreducible
representations.

Definition 2.6. For any representation V. for which V¢ = {0}, let ay: S° — SV
denote the Euler class of the representation V. Let ay also denote the corresponding
Hurewicz image in m_yv HZ.

Definition 2.7. If V is an orientable representation of G, then let
uy € Haimv (SY;2) 2 Z
be the generator which restricts to the element 1 under the suspension isomorphism
Heimy (ST™V: 7)) = Hy(S%; Z).
For the group (4, these elements satisfy a number of relations:
(1) 2a, = 2a,, = 4ay = 0;
R

These allow us to identify all of the elements in the homology groups of repre-
sentation spheres.

2.3. Tambara structure. A multiplicative spectral sequence of Mackey functors
can equivalently be thought of a a kind of Mackey functor object in spectral se-
quences. In particular, we can view this as being 3 spectral sequences:
(1) a multiplicative spectral sequence computing the Cy-fixed points,
(2) a multiplicative spectral sequence computing the Cs-fixed points, and
(3) a (collapsing) multiplicative spectral sequence computing the underlying
homotopy.

The restriction and transfer maps in the Mackey functors can then be viewed as
maps of spectral sequences connecting these, with the restriction maps being maps
of DGAs, and the transfer maps being maps of DGMs over these DGAs.

For commutative ring spectra like MU((G)), we have additional structure on the
RO(G)-graded homotopy groups given by the norms. If R is a G-equivariant com-
mutative ring spectrum, then we have a multiplicative map

N§: il (R) — andgv(R)

which takes a map
SV —iyR
to the composite
§mdaV = NG(SV) — N§i% R — R,

where the final map is the counit of the norm-forget adjunction. The norm maps
are not additive, but they do satisfy certain explicitly describable formulae which
encode the norms of sums and of transfers. At the level of 7, this data is tradition-
ally called a “Tambara functor”, studied by Brun for equivariant commutative ring
spectra, and more generally, this RO(G)-graded version was used by Hill, Hopkins,
and Ravenel in their analysis of the slice spectral sequence [Bru05, [HHR16, [HHRIT).

In the slice spectral sequence, the norms play a more subtle role. The norm
from H to G scales slice filtration by |G/H|, just as multiplication scales degree.
In particular, it will not simply commute with the differentials. We have a formula,
however, for the differentials on key multiples of norms.
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Theorem 2.8. Let d.(x) =y be a d.-differential in the Cs-slice spectral sequence.
If both aaNg;z and Ng;y survive to the Ey,._1-page, then dgr_l(agNg;x) = Ng;y
in C4-SliceSS(X) (see [HHRIT, Corollary 4.8]).

Proof. The d,-differential can be represented by the diagram
SV —— DA+V) ——— SV
P | |
PRZX —— P2X —— P2 X/PP X.

s+r

Applying the norm functor Ng; (—) yields the new diagram

W DA+ o+ W) ———y StV

C C
lNC; Y l JNC; T

NGP X ——— NGIPHX ——— NEY(PS2X/PH X).

Both rows of the this diagram are no longer cofiber sequences. We can enlarge this
diagram so that both the top and the bottom rows are cofiber sequences:

W s DA+W) SIHW

A 3

SV D40+ W) ——— [ GlHoW

c c
lNC;‘y l J/Nch

P X — > \NEiPSe X ———— NEWPC2X/P2X)

s+r
Tid Tid T \
NEPEEX ——— NGPO2X ——— NEHPOX)/NGHPL,X) PSAX/PSE X

l | I

Plion X ——— P}X ————— PAX/P,, X

The first, fourth, and fifth rows are cofiber sequences. The third vertical map from
the fourth row to the third row is induced by the first two vertical maps. The third
long vertical map from the first row to the fourth row is induced from the first two
long vertical maps.

The composite map from the first row to the fifth row predicts a do,._1-differential
in the Cy-slice spectral sequence. The predicted target is Ng;y. Therefore, this
class must die on or before the Fs,._i-page. If both this class and aGNg;x survive
to the FE5,._1-page, then

dar—1(as NGiz) = NGy,
O
Remark 2.9. The slice spectral sequence is actually a spectral sequence of graded

Tambara functors in the sense that the differentials are actually genuine equivariant
differentials in the sense of [Hill7]. We will not need this in what follows, however.
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2.4. Formal group law formulas. Consider the Cs-equivariant map
BPp — iy, NG*BPy = i, BP(“)

coming from the norm-restriction adjunction. Post-composing with the quotient
map BP(¢4) BP((C4))<2) produces the Cs-equivariant map

BPg — iy, BP(“)2),

Cs

which, after taking 72

(=), is a map
2[617627 .. } — Z[Flv’yflvi’Sa’YﬁS]

of polynomial algebras.

Let S := 7T>?p22 BP(C4)(2) = Z[F, vy, 73, v3]. By an abuse of notation, let 7; € S

denote the image of v; € ﬂgi_l)m BPgr under the map above. Our next goal is to

relate the v;-generators to the 7;-generators.
Let F be the Cy-equivariant formal group law corresponding to the map 7rfpz2 BPr —

W%QBP((C4))<2>. By definition, its 2-series is
2]7(2) =22 45 012° +5 027" +5 0325 +p 0420 + -
Let m; € 2715 be the coefficients of the logarithm of F:
log(Z) =  + my@* + maz* + maz® + myz'® + - -
Taking the logarithm of both sides of the 2-series produces the equation
2log (%) = log 7(2Z) + log(01%2) + log 7 (T2Z) + log 7 (03%%) + - - -

Expanding both sides of the equation using the power series expansion of the log-
arithm and comparing coefficients, we obtain the equations

2my = dmi+ 0 (21)
2my = 16mg + M0 + 2

2ms = 283 + Mol + miTs + U3

2my = 2'%my + matd + Moty + M3 + Uy

Rearranging, we obtain the relation

v; = 2m; (mod Ml) (2.2)
for all i > 1. Here, M; is the S-submodule of 2715 (regarded as a S-module) that
is generated by the elements 2, m1, ma, ..., m;_1. In other words, an element in

M; is of the form
So- 2481 my 4+ sim1mi—y
where s; € Sforall 0 < j <i—1.
Lemma 2.10. Let I; € S denote the ideal (2,01, v;—1). Then
M;NS =1,.
Proof. We will prove the claim by using induction on 7. The base case when ¢ > 1

is straight forward: an element in M; is of the form sq -2, where sy € S. Therefore
MinNS=(2)=15.



16 MICHAEL A. HILL, XIAOLIN DANNY SHI, GUOZHEN WANG, AND ZHOULI XU

Now, suppose that M;_1 NS = I;_y. Furthermore, suppose that the element
m==8g-2+81-my+- -+ 8_1mi—1 € M;
is also in S. From the equations in (2.1, it is straightforward to see that my has

denominator exactly 2* for all k& > 1. In the expression for m, only the last term
s;—1m;_1 has denominator 2¢~1. All the other terms have denominators at most
272, Since m € S, s;_1 must be divisible by 2. In other words, s;_; = 2s;_, for
some s;_; € S. Using equation ([2.2), m can be rewritten as
m = So - 2 + 51 ml + .- + Sifzmifg + 28;7177717;,1

= 502+ 811+ -+ s oMo+ 81 (2Mi1)

€ So 2481 M+ +si_omy_o+8;_q(vi—1+ M;_1)

€ M1+ s 1(vie1+ M;i—1)

= M1+ s;_1vi—1.
Therefore, m = x + s},_jv;—1 for some x € M;_;. Since m € S and s, _jv;,—1 € S,

x € S as well. The induction hypothesis now implies that « € I,_;. It follows from
this that m € I;, as desired. [l

Theorem 2.11. We have the following relations:

v = T1+971 (mod 2),

vy = T+T3+973 (mod 2,7y),

v3 = 71(75 +73(y73) + (v73)?)  (mod 2,7y,7s),
vy = 73(yr3) (mod 2,9y, Ty, v3).

Proof. To obtain the formulas in the statement of the theorem, we need to establish
relations between the generators {7y,~71, 73,773} and the m;-generators. The 7;
generators, by definition, are the coefficients of the strict isomorphism from F' to
F7 (see [HHRIG, Section 5)):

Here, logp, is the logarithm for the formal group law F7, and its power-series
expansion is

logpm (2) = T + (vim1)2® + (vin2)a* + (ving)z® + (yina)z'® + - - .
The commutativity of the diagram implies that
logp(T) = 10gp (T +5y TT° + v TaT")

= logp- (%) +logp (F1Z%) + log - (F5Z*)

Expanding both sides according to the logarithm formulas, we get
T+ % 4+ Mozt + mad® a4 = T4 (ymy +71)32 + (ym
(ym + (yma)7t + (yma)F
(yima + (yims)T] + (yma)7

\/\—/M

+
+
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Comparing coeflicients, we obtain the relations

mip—ym; = 7

Mo —ymy = (ym)r; + 73

_ _ . _ N4 N2
m3 —m3 = (yma)T] + (ymy)r3
My —ymy = (ymg)7s + (yme)7s

We can also apply v to the relations above to obtain more relations

ymy+my = AT

Yimg +me = —m (Y1) + 73
ymg+my = —ma(y)"t —mi(y7s)
iy +my = —ing(yr)® — ma(y7s)?t

These relations together produce the following formulas:

91 = 2m (mod Ml)
= 71+ (mod My);
Uy = QT_YLQ (mod MQ)

= (ym1)7; + 73 +773 (mod M)
= (ymy — M) + 73 +7F3  (mod My)
= —i}+73+775 (mod My)
= T +73+773 (mod My);
U3 = 2ms3 (mod M)
= (yma)F| + (ym1)F5 — ma(yr)* — ma(y7s3)?  (mod Ms)
= (ym)7 + (yma)75  (mod Ms)

= (ying +mo)7t + (ymy +mi)72  (mod Ms)
= (yrs)ri + (yr1)73  (mod Ms)
= 71 ((v73) (73 +73) + 7"3) (mod 2M3)

3=

7175 + T3(y7s) + (v73)?)  (mod Ms);
Uy = 2Mmy (mod My)
(yms)7} + (ymg)7s — ma(yi1)® — ma(y7s)!  (mod My)
(yms)7} + (yme)7s  (mod My)
(ymsz + m3)7S + (ymg +ma)7s  (mod My)
(y73)F5  (mod My).

These formulas, combined with Lemma [2.10} give the desired formulas. (]

2.5. Lubin—Tate Theories. We will now establish the relationship between BP(“ ))<2>
and a specific height-4 Lubin—Tate theory.
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Theorem 2.12. There exists a height-4 Lubin-Tate theory E4 such that the Cy-
equivariant orientation BP9 — B, factors through BP(C)(2):

Bp(C4a) s E,
7

-
-
-
-
-
-
-
-

BP((C4))<2>
Furthermore, after inverting the element
Dy := N(04)N(F3)N (72 + 73(773) + (773)?) € 7aa,, BP(E2)(2)
and applying K (4)-localization, there is an equivalence

(LK(4)D2—1BP((C4))<2>)C4 _ EZ Gal(F,4 /F2)xCra

Proof. Recall that the underlying homotopy group of BP((C4))<2> is
w*“BP((C4))<2> = Z[r1,yr1, 73,773
Consider the map
m.BP — 7uBP(4)(2)
that is induced by taking 7%(—) of the composite map
BPg — ig, BP(C) — ¢, Bp(©a)2).

Using the formulas in Theorem we see that (2,v1,vq,v3) forms a regular
sequence in 7*BP(C)(2). Furthermore, after inverting the element Ds,

WnglBP((C‘*))(Q)/(Q, v1,v2,v3) = Fy [F;E]
After applying the K (4)-localization functor Ly 4)(—) := F(ECsy, Liayiz(—)),
the underlying coefficient ring of LK(4)D2_1BP((C4))<2> is
¢ (Lic(ay Dy "BPUON2)) = Zo[[r1, yr1, 73 + yra]]lri].
Let E4 be the height-4 Lubin—Tate theory with coefficient ring
TuBy = W (Fas)([r1,vr1, 73 + yral][u™]/(u® = rs).
The previous discussion shows that the Cy-equivariant orientation
Bp((C4))<2> — By,

factors through Ly 4y Dy 'BP(C4)(2).

Bp(Ca) = Ey

BP((C4))<2> T

-

’
-
. ’
- ,
// 4
’
i 7

D;'BP(@(2)

7

’
s
s
v
’
s

LDy ' BP()(2)
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There is a Cs-action on E4. The effect of this Cs5-action on the homotopy groups
m«FEy is as follows:

w(u) = wu
wlry)) = nr
w(yry) = n
w(rs) = rs
w(yrs) vr3.

The spectra Ef“* has coefficient ring
m By = W(Fa0)([r1,yr1, 73+ yra]][r3]-

Therefore, it follows from this and our discussions above that

Li(ayDy "BP(C)(2) oy 12t /F2IxC,

In particular, since the spectrum Ly 4Dy I1BP(C4)2) is cofree [HHRI6, Theo-
rem 10.8], there is an equivalence

(LK(4) D2—1BP((C4))<2>)C4 ~ (LK(4) D2—1BP((C4))<2>)hC4

(Ez}f Gal(F,4 /F2)x cg> hC4

2
Eh Gal(Fy4 /F2)XC12
4 .

Theorem 2.13. The spectrum Dy 'BP(C)(2) is 384-periodic.

Proof. This is a direct consequence of the discussion in [HHRIG, Section 9]. There
are three periodicities for Dy *BP(“4)(2):

(1) §%1 A DF'BP(CD(2) ~ DFIBP(C4)(2).

(2) 5% A D IBP(C2) ~ Dy BP(C)2).

(3) 5324320321 o DrIBP(Cali9) ~ D iBP(Ca)().
The first periodicity is induced from N (73), which has been inverted. The second
periodicity follows from the fact that ug, is a permanent cycle in the slice spectral
sequence of BP(C)(2) (sce [HHRIB, Theorem 9.9]). For the third periodicity,
note that that class use,, is a permanent cycle in the Cy-slice spectral sequence of
BP(©4)(2). Therefore, the norm

U32\

N(uzzs,) = s
o

is a permanent cycle in the Cy-slice spectral sequence. Combining these three
periodicities produces the desired 384-periodicity:
32 (3pg) +8-(24 —240) + 3 - (324 320 — 32))
= 32-(3+30+3\)+24-(8—80)+3-(32+ 320 — 32))
= 384.
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Remark 2.14. The careful reader may worry about the choices present in the
construction of BP((C4))<2> or the more general quotients of BP(E) . The terse
answer is that the slice spectral sequence only cares about the indecomposables in
the underlying homotopy ring of BP((G)), not the particular lifts. As a dramatic
example of this, consider the class T3 for Con. This is only well-defined modulo
the ideal generated by 71 and its conjugates and the element 2. Consider now the
differential on the class u3, :

u3, Ngj" F3asazs.
Since multiplication by a, annihilates the transfer, the norm is additive after being
multiplied by a,. Moreover, the norm of 2 is killed by a, and the norm of 71 is

killed by a2, so any possible indeterminacy in the definition of 3 results in the exact
same differentials. Our computation applies to any form of BP((C“))(Q).

3. THE SLICE SPECTRAL SEQUENCE OF BP((C“))(l)
The Cy-equivariant refinement of BP(“4)(1) is
SOy, 4] — BP(@1),

(See [HHRI1G, Section 5.3] for the definition of a refinement.) The proofs of the
slice theorem and the reduction theorem in [HHRI6] apply to BP(C)(1) as well,
from which we deduce its slices:

Tiyri s S AHL, i >0 (dislice),
Fiyrt (7 4F) : Cay A, S@HDP2 AHZ, i>0,j > 1 (induced (4i + 2j)-slice).

3.1. The Cs-slice spectral sequence. The Cs-spectrum iEQBP«C“»(D has no
odd slice cells, and its (2k)-slice cells are indexed by the monomials

{Fiyr 14,5 = 0, i+ j = k}.
Let v; € 7'('5;2 BPg be the Cy-equivariant lifts of the classical v;-generators for m, BP.
We can also regard them as elements in WS)Z BP((C4))<1> via the map
BPy % i, BP(C) 2, BP(Co)1).
In [HHRI7, Section 7], Hill, Hopkins, and Ravenel proved

71 (mod 2) = 7147,
U2 (mOd 271_)1) = Fil)),
1_)Z‘ (mod 2761,...761_1) = O, 223

In C5-SliceSS(BPR), all the differentials are known. They are determined by the
differentials

d2i+1_1(u2i02) = ﬁiaii;l_l, 1>1,
and multiplicative structures. This, combined with the formulas above, implies
that in Cp-SliceSS(i5, BP(“4)(1)), all the differentials are determined by

d3(uze,) = v1ad, = (71 +771)ad,,
d7(u402) = 172&22 = 77:1)’0,;2,

and multiplicative structures. The class ug,, is a permanent cycle.
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FIGURE 2. The Cy-slice spectral sequence for i, BP(C4)(1).

3.2. Organizing the slices, ds-differentials. We can organize the slices into the
following table

o) | ol | 8} |
o951 | olst | 0%st |- (51)
0957 | ols? | 0383 | - '

where 91 := N(71), and 8} := 7} (1+7) = 7i +77% (note that by an abuse of notation,
5% does not mean (7 + v71)*). The first row consists of non-induced slices and the
rest of the rows are all induced slices. Also note that with the definition above,
res(01) = F1y71.

Theorem 3.1. d3(uy) = 51axa0,.

Proof. The restriction of uy is res(uy) = ug2y,. In the Cy-slice spectral sequence,
the class ua,, supports a nonzero dg-differential

d3 (u20-2) = (Fl + 771)(1302.
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FIGURE 3. ds-differentials within the column containing 9%.

Therefore, uy must support a differential of length at most 3. For degree reasons,
this differential must be a ds-differential. Natuality implies that

d3(uy) = 510700y,

as desired. O

To organize the Cy-slices in table 3.1} we separate them into columns. FEach
column consists of one non-induced slice cell, 9%, and all the induced slice cells of
the form 935, where j > 1.

In light of Theorem [3.1] each column can be treated as an individual unit with
respect to the ds-differentials. More precisely, the leading terms of any of the ds-
differential are slices belonging to the same column. When drawing the slice spectral
sequence of BP((C‘*))(D, we first produce the Fs-page of each column individually,
together with their ds-differentials (See Figure [3| and @ Afterwards, we combine
the Es-pages of every column all together into one whole spectral sequence.

Remark 3.2. Some classes support ds-differentials with target the sum of two
classes. For example, the class 0753us\uz,Uas, in bidegree (12,0) supports the
ds-differential

N2 =2 522 = 32 =3 33 =
d3 (0757 U2\ U0 U20, ) = DB ULN UL, = 51A30, = 0751 U2AU25 030, + 0751 U2\ U250\ oy
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FIGURE 4. d3-differentials within the column containing 3.

because 5% .51 = Ei’ +0151. The first term is in the same column as the source, but

the second term is not (it belongs to a slice cell in the next column).

This ds-differential is introducing the relation 02 53uax o, G35, = 0351 U2\ U205 A0,
after the F3-page. As a convention, when we are drawing the slice spectral sequence,
we only kill the leading term of the target:

d3 (0353 U\ Uno Ung,) = 03 53U U2 U3ey -
Note that both the source and the target are in the same column.
3.3. ds-differentials.
Theorem 3.3. ds(ug,) = 01axa3.

Proof. This differential is given by Hill-Hopkins—Ravenel’s slice differential theorem
[HHRI16, Theorem 9.9]. O

In the integer graded slice spectral sequence, this ds-differential produces all the
ds-differentials between the line of slope 1 and the line of slope 3 (by using the
Leibniz rule).

Theorem 3.4. The class d2uszus, at (8,0) supports the ds-differential

32 53
ds (0T u2)Uzs) = U\ U5 A2\ g -
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FIGURE 5. ds-differential on d%usyus,.

Proof. The restriction of d3usyusgy is res(03ugruay) = 717 314,,, Which supports
the dr-differential

dr(F{y o, ) = MY 070,
in Cy-SliceSS(BP(“)(1)). This implies that the class 92usyug, must support a
differential of length at most 7 in Cy-SliceSS(BP(“4)(1)). The only possible targets

are the classes d03uzuasa2ray at (7,5) and 0351uz,a3x00, at (7,7) (see Figure [5)).
To prove the desired ds-differential, it suffices to show that the d;-differential

=2 =3
d7(du2rU25) = 0751U35A3) 00,

does not exist. For the sake of contradiction, suppose that this d;-differential does
occur. By natuality, this differential must be compatible with the restriction map.
The left-hand side restricts to 72y u4,,, but the right-hand side restricts to

232 3.3/ = 5.2
res(07851Us3,U30 00, ) = FyYTY (F1 + Y1) 070, = 0 # TIVTL 070,

because the ds-differential d3(us,,) = (71 + 771)as,, introduced the relation (7 +
Y71)ass, = 0. This is a contradiction. ]

Corollary 3.5. ds(u2)) = 01urG2) 00 -
Proof. Using the Leibniz rule, we have

ds(Dusause) = 0fusads(uzy) + 03 us,ds(usy)
dugy - 91axazs + Djuseds(u2y)
= O + 6%U20d5 (UQ}\)

= 6%u20d5 (u2)\),
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where we have used the gold relation uyaz, = 2us,ara, = 0. Theorem [3:4] implies
that 02us, ds(ugy) = 03uxU2,a2)0,. Rearranging, we obtain the equality

07u20 (ds(uzn) — dyurazras) = 0,
from which the desired differential follows (multiplication by d3us, is faithful on
the Ej-page). O
All the other ds-differentials are obtained from Theorem via multiplication
with the classes
(1) d1ara, at (1,3) (permanent cycle);
) d1una, at (3,1) (permanent cycle);

(2
(3) Dfugsazy at (4,4) (ds(djuzsazy) = 03azrass,);
(4) dugrugs at (16,0) (ds-cycle).

and using the Leibniz rule (see Figure @

—

There is an alternative way to prove Corollary by using the norm formulas.
Start with the ds-differential

d3(u2e,) = (T1 + V71)a30,

in the Cy-slice spectral sequence. The first formula of Theorem predicts the
ds-differential

U225
However, this prediction is void because the right-hand side is equal to 0:

u
ds (”) = tr(uge, - (F1 + 771)a30,)-

tr(res(uxax)(F1 + V71)aq,) = uraxtr(res(siaq,)) = uray - 251a,, = 0.

This is due to the fact that ds(uy) # 0, and so us) is a dz-cycle.
The second formula, however, predicts the ds-differential

u
ds (aa : uz,\) = NG + 71 )asy
20

in the Cy-slice spectral sequence. Using the Leibniz rule, this formula predicts the
ds-differential

ds(asuzy) = ds <uza <aa . u”)) = ds(ua,) <aa : UZ’\) + Ugds (ao . u2’\>
U220 U206 U225

— U2\ _ _
= (d1aras,) (aa : u2) + NEH(FL + 1) useasa

20
= 0+ NGAH(F1L + 771 )ugeasy
= Ng; (Fl —+ "}/7:1)11,20-&3)\.

To compute Ng: (71 + v71), note that

res(NGH (71 +A71)) = (71 + y71) (771 — 71) = —(7Ff — 77) = —Fiug ' (1 + 7).

Therefore, Ng; (F1+v71) = —tr(Ffu, ), and the target of the normed ds-differential
is

—tr(FAu_g ) Useazy = —tr(FiUgles,) = tr (T UsGeg, )-
The last equality holds because multiplication by 2 kills transfer of classes with
filtration at least 1.
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FIGURE 6. ds-differentials in Cy-SliceSS(BP(“4)(1)).
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To identity this target with a more familiar expression, we add tr (71771 Ue 6o, )
to it and use the Frobenius relation:

tr(f%uga(;az) + tr(F1YF1Uses,) = tr(F1(F1 + Y1) Uo 6oy )

tr(F1ugag,res(tr(Fraq, )asy))

= tr(Flusae, )tr(T1as, ) a2
= 0.

The last expression is 0 on the Ejs-page because d3(uy) = §1a70q, = tr(F1as,)ax.
Therefore,

tr(FPugaee,) = tr(F1YT1Ue06e,)
= tr(res(diusgsasy)) (res(d1) = Fiyriut)
= 201uz,a3)
= Duraarazs (2u2,a) = Upa2)-
It follows that
ay(ds(uzy) — druprazaas) = 0,

and ds(ugy) = d1uxa2xde, as desired.

3.4. d,-differentials.

Theorem 3.6. The classes 203uazuz, at (8,0) and 20 uarussaay at (12, 4) support
the dr-differentials

— <3-
d7(201u2AU20) = 0151U35G3)\0¢,,

~4 <52
d7(20Tu2\Usst2)) = 0751U50A5\0c,-
Proof. Consider the dr-differential
-2 -2 =5 -2 —4_-3
dr(T1Y Udey) = TIYT1A70, = T1VT1 070,

in the Csy-slice spectral sequence (the last equality holds because 7, = 7 after the
ds-differentials). The transfer of the target is

tr(FiyFiars,) = tr(res(03us,asy)F1aqy,) = 0551U30A3)Ag, -

For degree reasons, this class must be killed by a differential of length exactly 7
(see Figure @ Natuality implies that the source is

tr(FayTo sy, ) = tr(res(D3uss iy )) = 203 Usetia).

The second differential is proved using the same method, by applying the transfer
to the dr-differential

4 -4 T4 _ =65
d7(7‘1’yr1u402 @402) =TrT10110, = 717101105 -

Corollary 3.7. The classes 2usy and 2usyus, support the dr-differentials

d7(2u2y) = 0151UsA37 00y,

d7(2uantas) = 0151U30A37U0,-
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FIGURE 7. dy-differential on 202ugyuz, .

Proof. Since the classes 01, u4,, and ay are permanent cycles, the second differential
in Theorem [3.6] can be rewritten as

Tl uarazy (d7 (2uzy) — D151Usa3Na0,) = 0,

from which the first differential follows. The second differential is proven similarly
by using the first differential in Theorem |3.6 O

Remark 3.8. Corollary can also be proved by applying the transfer to the
dr-differential
d7(u402) - 7::1))0702 - 7’%’771‘1702

in the Cs-slice spectral sequence.

Remark 3.9. On the Er-page of Cy-SliceSS(BP(C4)(1)), there is more than one
class at (8,0). They are

(1) 20Fugrugy = tr(res(dfuaruay)) = tr(f Y uss, );

(2) 018%UNUG U0, = (D1UNUG ) (BFU2g,) = tr(res(Diurty ) TiUg, ) = tr(F3yF1te, );

(3) Sfuse, = tr(Flue,)-
Except for class (1), the classes (2) and (3) are “grayed out” on the upper-left of Hill,
Hopkins, and Ravenel’s original computation of C4-SliceSS(D7 ' BP(C4)(1)) [HHRIT,
pg. 4.

On the Es-page, there is more than one class at (7,7) as well:

(1) ¥51ussa37a0, = tr(TiyTlars,);

(2) ¥5{ussaonasy, = tr(F{Vitars,);

(3) 0185usarasy, = tr(Fiyriary,);
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(4) §lary, = tr(Flary,).
Applying transfers to the following ds-differentials in Cy-SliceSS(BP(C4)(1)) yields
ds-differentials in Cy-SliceSS(BP(C4)(1)):

(1) d3(FSu2eyaay,) = 79 (7“1 +q71)al : transfer of this kills (3) + (4);

(2) d3(FSYT1U20yAag,) = Toryry (F1 + 'yrl)a7g2 transfer of this kills (2) + (3);

(3) d3(FiVT2U20,a40,) = TiYT2(F1 + YF1)a74,: transfer of this kills (1) + (2).
These ds-differentials identified the four classes at (7,7). The transfer argument in
Theorem [3.6[shows that each of the three classes at (8,0) supports a d7-differential,
all killing the single remaining class at (7,7).

The proof of Hill-Hopkins-Ravenel’s Periodicity theorem [HHRI16, Section 9]
shows that the class 0§ugyug, at (32,0) is a permanent cycle. For degree reasons,
the following classes are also permanent cycles and survive to the F..-page:

(1) 77 = glaoz at (1 1)

( ) 77 - Sla20'2 at (2 2)7

(3) 7] fblaAa,, at (1,3);
et

(4) o —blazAagg at 6);

( € = DI’U,4UG,4)\ at (8 8)
Their names come from the spherical classes that they detect in m,S [HHRIT,
Theorem 9.8] under the Hurewicz map

7S — 1, BP(C4)(1)Cs
Theorem 3.10. The class ugna, supports the dis-differential
d13(ugrag) = Buggal.
Proof. Applying the second norm formula of Theorem [2.8] to the d-differential
d7(Usg,) = Foars,
in the Cs-slice spectral sequence predicts the d;3-differential

di3(unas) = NG (Fiars,)

=3
= 0jUgs07)

in the Cy4-slice spectral sequence. The target is not zero on the Fj3-page because
multiplying it by the permanent cycle 0jussay gives the nonzero class djug,agy at
(16, 16). Therefore, this dy3-differential exists. O

Multiplying the differential in Theorem by the permanent cycle 0jus,ax
produces a dj3-differential in the integer graded spectral sequence.

Corollary 3.11. The class 5?u4>\u4ga)\ag at (17,3) supports the dis-differential
d13(Busrtgsaray ) = uggagy = €%
Theorem 3.12. The class 0fusruas, at (16,0) supports the dr-differential
d7(01U4)\U4c,) = 5?§1u2>\U50a3>\a02.

Proof. The class = djajas is a permanent cycle. By Corollary the class
d}ugpus, at (16,0) must support a differential of length at most 13. For degree
reasons, the only possible target is D?Eluwu‘rmag)\a@. [l
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Corollary 3.13. The class ugy supports the dr-differential

d7(uan) = 0151U27Us A37 Aoy -

Proof. This follows directly from Theorem [3.12] because
e (d7(usn) — D181U2AUGA37A0,) = 0

and multiplication by 0fuy, is faithful on the E;-page. d

Once we have proven the dr-differentials in Theorem and Theorem all
the other dr-differentials are obtained via multiplication with the classes

(1) d}ugsaqy at (8,8) (permanent cycle);

(2) dtugrug, at (16,0) (Theorem [3.12));
(3) dfugrug, at (32,0) (dr-cycle).

and using the Leibniz rule (see Figure [g).

3.5. Higher differentials.

Fact 3.14. Multiplication by € = 0fus, a4y is injective on the Eo-page. The image
of this multiplication map is the region defined by the inequalities
s > 8,
3(s—8) < t—s-—8.

In other words, this region consists of classes with filtrations at least 8 and these
classes are all on or below the ray of slope 3, starting at (8,8). Starting from the
Es-page, all the classes in this region are divisible by €. Therefore, when r > 5,
multiplication by e induces a surjective map from the whole E,.-page to this region.

Lemma 3.15. Let d,.(z) = y be a nontrivial differential in Cy-SliceSS(BP(C4)(1)).

(1) The class ex and ey both survive to the E,-page, and d,(ex) = ey.
(2) If both x and y are divisible by € on the Es-page, then /e and y/e both
survive to the E,.-page, and d,.(x/e) = y/e.

Proof. We will prove both statements by using induction on r, the length of the
differential. Both claims are true in the base case when r = 3.

Now suppose that both statements hold for all differentials with length k& < 7.
Given a nontrivial differential d,.(x) = y, we will first show that ey survives to the
FE,.-page.

If ey supports a differential, then y must support a differential as well. This
is a contradiction because y is the target of a differential. Therefore if ey does
not survive to the E,.-page, it must be killed by a differential d(z) = ey where
k < r. By Fact z is divisible by €. The inductive hypothesis, applied to the
differential di(z) = ey, shows that dix(z/e¢) = y. This is a contradiction because
d,(xz) = y is a nontrivial d,-differential. Therefore, ey survives to the E,-page.
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FIGURE 8. dy-differentials in Cy-SliceSS(BP(“4)(1)).
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€y
€ ///
dy
z
dy el
z/e€ €x
e
T

If ex does not survive to the E,-page, then it must be killed by a shorter differen-
tial as well. This shorter differential introduces the relation ex = 0 on the E,.-page.
However, the Leibniz rule, applied to the differential d,.(z) = y, shows that

dr(ex) =ey #0

on the E,-page. This is a contradiction. It follows that ex survives to the E,.-page
as well, and it supports the differential

d(ex) = ey.

This proves (1).

To prove (2), note that if y/e supports a differential of length smaller than r,
then the induction hypothesis would imply that y also supports a differential of the
same length. Similarly, if y/e is killed by a differential of length smaller than r,
then the induction hypothesis would imply that y is also killed a by a differential
of the same length. Both scenarios lead to contradictions. Therefore, y/e survives
to the E,.-page.

We will now show that x /e survives to the E,.-page as well. Since  supports a d,-
differential, x/e¢ must also support a differential of length at most r. Suppose that
di(xz/€) = z, where k < r. The induction hypothesis, applied to this dy-differential,
implies the existence of the differential dj(z) = ez. This is a contradiction.

dy
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It follows that x/e survives to the FE,-page, and it supports a nontrivial d,.-
differential. Since y/e also survives to the E,.-page, the Leibniz rule shows that

dr(z/€) = y/e,
as desired. O

Theorem 3.16. Any class © = €2a on the Ea-page of Cy-SliceSS(BP(C)(1)) must
die on or before the F13-page.

Proof. If the class a is a dy3-cycle, then z is a dis-cycle as well. Since €2 is killed
by a dy3-differential by Corollary €2a must be killed by a differential of length
at most 13.

Now suppose that the class a is not a dy3-cycle and it supports the differential
dy(a) = b, where r < 13. Applying Lemma we deduce that the class © = €2a
must support the nontrivial d,-differential

d.(€a) = €%b,
and therefore cannot survive to the Fj3-page. O
Theorem 3.17. The class 0] 31ua\Uu75a5200, at (19,11) supports the dy1-differential
d11 (0] 51U2U70A5700,) = 01 UsoA10AA20-
Proof. The class 01%ug,ai0xra2, at (18,22) is equal to
%g,a10na00 = €2(D2agrans ).

By Theorem [3.16] this class must die on or before the F3-page. For degree reasons,
the only possibility is for it to be killed by a di;-differential coming from the class
0751 U U760 U5 gy U

Corollary 3.18. The class 51u2\U3,05, Supports the dii-differential
d11(51U2\UB0 Cgy) = V3 UseA57 A2, -
Proof. The di;-differential in Theorem can be rewritten as
dTuseasy(di1 (51UaAUBe O, ) — V3 UseA5xA2s) = 0.
Since multiplication by d]u4sasy is injective on the E11-page, the claim follows. [

Corollary 3.19. The class 5?u4>\u60a2>\ at (20,4) is a permanent cycle that sur-
vives to the Eo.-page. In homotopy, it detects the class & € moS.

Proof. For degree reasons, this class is a permanent cycle that survives to the F.-
page. To show this detects &, consider the commutative diagram

TS ——— 7T>.<BP((C“))<1>C4

mBPE? —— m.(ig, BP(@(1))C2
where the bottom horizontal map is the composition

BPy L5 i, BP(C4) 2 Bp(Ca1).
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It is proven in [LSWXIT, Section 6] that % is detected in the Cs-slice spectral
sequence of BPgr by the class vougy,t4s,. Since vy = Ff, K is detected in Csy-
SliceSS(ig,, BP(“(1)) by the class 7 2ugy,a4y,. This is exactly the restriction of
the class 5?u4)\u6ga2,\ because

res(0UgnUgoaar) = TOYT UGy Qary = T12 Uy Gag, -
Therefore, & is detected by 5?u4,\u60a2 A, as desired. O
As shown in Figure EL all the other dj;-differentials are obtained from the dii-
differential in Theorem [3.17] via multiplication with the permanent cycles ¢, &, and
5513u8>\u80 (at (32,0))
Similarly, all the other d;s-differentials are obtained from Corollary by using
multiplicative structures with the classes 7/, €, &, and 0jug)ug, (see Figure .

3.6. Summary of differentials.

(uses Theorem |3.16I)

Differential | Formula Proof

ds ds(uy) = 51a704, Theorem lﬂ' (restriction)
ds(uge,) = 51030,

ds ds(uge) = 01a)034 [HHR16, Theorem 9.9] (Slice Differentials Theorem)

ds ds(uzy) = d1uxa2ras Theorem (3.4 and Corollary [3.5( (restriction)

dy d7(2ugy) = 0151UxA3) A0, Theorem [3.6| and Corollary [3.7| (transfer)
d7(2uoruas ) = 0181U35A3)\ A0, o o

dr7 d7(ugy) = 0151U2)\ U Q37 ey Theorem [3.12| and Corollary [3.13[ (norm)

diq d11(81Ua\ U350y, ) = 03Ussa50a2, | Theorem [3.17|and Corollary [3.18

Theorem |3.10| and Corollary |3.11| (norm)

4. THE SLICE FILTRATION oF BP(%4)(2)
The refinement of BP(“4)(2) is
SO, yir1, 73, yirs) — BPUC(2).
Its slices are the following;:
iy - SGHRe A HY, i,k>0
{ PRy PRy + FAFEFATY « Cuy Aoy SCH3IH+DR NHZ i jor k # 1.

Similar to the slices of BP(%)(1), we organize the slices for BP(“4)(2) in order to
facilitate our computation.

Consider the monomial 7y757¥~7. When i = j, this monomial can be written
as 057¥yrl. Fix an non-negative integer i. After the ds-differentials, the classes of
filtration > 3 that are contributed by these slices cells are exactly the same as the
classes on the Es-page of Cy-SliceSS(BP(C4)(1)), truncated at the line (£ —s)+s =
12i. For this reason, we will call this collection of slices 95BP(C4)(1). Figure
shows the truncation lines for the slices 95BP(“4)(1) and Figures andillustrate
the classes contributed by the slices in 95BP(“4)(1) and 92BP(¢4)(1).
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FIGURE 13. Truncations lines for the slices 9;BP(“4)(1).
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FIGURE 16. Truncation lines for the slices 5§§§iEQBP«C4»<1>.

When i # j, the monomial fé’yﬁ%?’f’yfll contributes an induced slice of the form
FiATi TR Pl + Fiyrirl 4. By symmetry, let i < j. The ds-differential ds(uas,) =
51a3, = (71 +~71)al, identifies 7 and 47 when the filtration is at least 3. By an

abuse of notation, we can rewrite this slice cell as
e B s R G e BV A B —j—iNzk ol _ ~izi—ik -l
TRV + Ty Ty = (P ) (P34 g )Ty = 0583 Ty

For a fixed pair {7, j} with ¢ < j, the classes of filtration > 3 that are contributed
by these slice cells after the ds-differentials are exactly the same as the classes on
the Es-page of C’Q—SliceSS(iaBP((C“))(l)), truncated at the line (¢t —s)+s = 6i+65.
For this reason, we will call this collection of slices 5%5?,;1'32 BP(©(1). Figure
shows the truncation lines for these slices. Figures and [19] illustrate the
classes contributed by some of these slices.

All the slices of BP(“)(2) are organized into the following table, where the
number inside the parenthesis indicates the truncation line. For convenience, we
will refer to each of the collections on the top row as a BP((C‘*))<1>-truncation7 and

each of the other collections as a if, BP(©4)(1)-truncation.
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FIGURE 17. Classes contributed by the slices in §3i’62BP((C4))(1>.

09BPC(y —(0) | aiBP@D) —(12) | 93BP(D1) —(24) |-

095Liy, BP(OI(1) — (6) | dlskizr, BP(@(1) — (18) | 23sliz, BP(“)(1) — (30)
0952ir, BP(@(1) — (12) | d483ig, BP(“)(1) — (24) | 925%i, BP(P(1) — (36)

(4.1) .

5. THE C2-SLICE SPECTRAL SEQUENCE OF i*CQBP((C“))(Q)

In this section, we will compute the Cs-slice spectral sequence for i, Bp(€4) (2).
The composition map

BPy, 53 iz, BP(C) iz, BP(Ca)g)
induces a map

Co-SliceSS(BPg) — C»- SliceSS (i, BP(“4)(2))
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F1GURE 18. Classes contributed by the slices in §§i52BP((C4))(1>.

of Cy-slice spectral sequences. The formulas in Theorem [2.11] translate the differen-
tials in Cp- SliceSS(BPg) to the following differentials in C- SliceSS(if, BP(“)(2)):

d3(uge,) = (714 7771)@32
d7(uso,) = (7} +75+773)al,
dis(uso,) = T1(73 + 7373 + 773 )a
d3i(u160,) = f§77’3a§i

The class uss,, is a permanent cycle.
On the Es-page, the refinement

SO[F1,yT1, T3, T3] — i*C2BP((C4))<2>

implies that all the slice cells are indexed by monomials of the form Févf&?’f’yfﬁ,
where 4,5, k,1 > 0.
We now give a step-by-step description of the surviving classes after each differ-
ential:
(1) After the ds-differentials, the relation 71 = 7 is introduced for classes with
filtrations > 3. Therefore, the slice cells corresponding to these classes can
be written as a sum of monomials from the set {F4y7375 |4, 7,k > 0}.
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FIGURE 19. Classes contributed by the slices in EgiEQBP«C“»(D
or 938345, BP(@(1).

After the d-differentials, the relation 7§ + 75 + 473 = 0 is introduced for
classes with filtrations > 7. Therefore given a class with filtration at least
7, depending on its bidegree, its corresponding slice cell can be written as
a sum of monomials from the set {F4y737 4,5 > 0}, {Fiy747t i, j > 0}, or
(et 7 s |4, 5 > 0.

After the djs-differentials, the relation 7(72 + 73y73 + v73) = 0 is in-
troduced for classes with filtrations > 15. Given a class with filtration
at least 15, depending on its bidegree, its corresponding slice cell can be
written as a sum of monomials from the set {74t y7s7, Fyiary, |i > 4},
{5y rsid, T3t i > 4}, or {75 yrgi, ryyrard, vy i > 45,

After the ds;-differentials, the relation F§7F3 = 0 is introduced for classes
with filtrations > 31. Since all the classes with filtrations > 31 have slice
cells divisible by 7373 on the Esj-page, they are all wiped out by the
dsz1-differentials. The spectral sequence collapses afterwards and there is a
horizontal vanishing line with filtration 31 on the E..-page.
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Example 5.1. Consider all the classes at (31,31). On the Ep-page, their names
are of the form - az1,,, where z is a sum of slice cells of the form {Fiyr47¥~yil | 3i+
3j +k+1=31}.
(1) After the ds-differentials, x can be written as a sum of slice cells from the
set {FiymirY | 3i + 35 + k = 31}.
(2) After the dr-differentials, x can be written as a sum of slice cells from the
set {Fiyrary |i +j = 10}.
(3) After the d;5-differentials,  can be written as a sum of slice cells from the
set {F3yTsry, TYTF3T )
(4) After the dg;-differentials, all the remaining classes are killed.
Example 5.2. Consider all the classes at (33,33). On the Es-page, their names
are of the form - a33,,, where z is a sum of slice cells of the form {Fiyr47¥~yrl | 3i+
3j+k+1=33}
(1) After the ds-differentials, x can be written as a sum of slice cells from the
set {Fiy Py | 3i + 35 + k = 33}.
(2) After the dr-differentials, x can be written as a sum of slice cells from the
set {Fivyrars, #0473 | i + j = 10}.
(3) After the dy5-differentials, 2 can be written as a sum of slice cells from the
set {77?)777377%’ ’Fg'yf%f%v 77?{0’77:3}'
(4) After the dg;-differentials, all the remaining classes are killed.

6. INDUCED DIFFERENTIALS FROM BP(¢4)(1)

In section {4} the slices of BP((C“))(Q) are subdivided into collections of the form
24BP(@)(1) (BP(C4)(1)-truncation) and 955} '*‘CQBP((C“))(l) (i*CQBP((C“))<1>—t1funcation)7
where ¢ > 0 and j > 1. On the FEs-page of the Cjy-slice spectral sequence, the
classes contributed by the slices in 6§BP((C4))<1> is a truncation of the Ej-page of
Cy- SliceSS(BP(C4)(1)), and the classes contributed by the slices in 6%5%1’32 BP(C4)1)
is a truncation of the Fy-page of Co- SliceSS(z’*@BP((C“))(l)).

Recall that in the computation of SliceSS(BP(“)(1)), we have also divided the
slices into collections (they are the columns in Table. The computation was sim-
plified by treating each collection individually with respect to the ds-differentials.
After the ds-differentials, we combined the Es-pages of every collection together to
form the Ejs-page of SliceSS(BP(C4)(1)).

In light of this simplification for SliceSS(BP{)(1)), it is natural to expect that
in SliceSS(BP(“4)(2)), each collection can be treated individually with respect to
differentials of lengths up to 13 (the longest differential in BP(4)(1)). Knowing
this will allow us to compute the E73-page of each collection individually, and then
combine them together to form the Eys-page of SliceSS(BP(C4)(2)).

Definition 6.1. A predicted differential is a differential whose leading terms for
the source and the target belong to slices in the same collection and the posi-
tion of that differential matches with a differential in Cy- SliceSS(BP(C4)(1)) or
C,-SliceSS (g, BP(@4(1)).

For example, all of the differentials whose source and target are on or above the
truncation lines in Figures are predicted differentials.
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Definition 6.2. An interfering differential is a differential whose source and target
are in different collections.

Given the definitions above,

Theorem 6.3. The collections can be treated individually with respect to differen-
tials of lengths up to 13. More specifically:
(1) For 3 < r < 11, all the predicted d,-differentials occur and there are no
interfering d,.-differentials.
(2) All the predicted dys3-differentials occur.

6.1. ds-differentials. The quotient map BP(“+)(2) — BP(“4)(1) induces a map
SliceSS(BP(C4)(2)) —s SliceSS(BP(C4)(1))

of Cy-slice spectral sequences. In SliceSS(BP(“4)(1)), the ds-differentials are gen-
erated under multiplication by

dg(U)\) = S1a)\00,-

For natuality and degree reasons, the same differential occurs in SliceSS(BP(“4)(2))
as well. Moreover, by considering the restriction map

Ci-SliceSS(BP(“)(2)) — (- SliceSS (i, BP(“4)(2)),
we deduce the ds-differential
d3(u20,) = 51030,
as well. (even though we are working with a Cy-slice spectral sequence, this dif-
ferential applies to some of the classes in i*c2BP((C“))(l)—truncations because of our

naming conventions). All the predicted differentials are generated by these two
differentials. Afterwards, there are no more ds-differentials by degree reasons.

6.2. ds-differentials. In SliceSS(BP(“4)(1)), all the ds-differentials are generated
under multiplication by the differentials

ds(uzs) = d1axa3,
and
d5(u2)\) = 61uAa2>\aa.
In SliceSS(BP(“4)(2)), the first differential still exists by Hill-Hopkins Ravenel’s

Slice Differential Theorem [HHRI6, Theorem 9.9]. To prove that the second differ-
ential exists as well, consider again the map

SliceSS(BP(©4)(2)) — SliceSS(BP(C4)(1)).

For natuality reasons, us) must support a differential of length at most 5 in
SliceSS(BP((C4))<2>). Since uy supports a nonzero ds-differential, us) is a ds-cycle.
This implies that uo) must support a ds-differential whose target maps to d1uyazxa
under the quotient map (which sends 73 and 73 to zero). It follows that the
only possible target is 0juxa2xas, and the same ds-differential on usy exists in
SliceSS(BP(C4)(2)).

All the predicted ds differentials in SliceSS(BP(“4)(2)) are generated by these
two differentials.

It remains to show that there are no interfering ds-differentials. There are two
cases to consider:
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(1) The source is in a iEQBP((C“))(l}—truncation. Every class in a iaBP«C“»(l}—
truncation is in the image of the transfer map

Cy-SliceSS (if,, BP(C4)(2)) 1 0y- SliceSS(BP(C4)(2)).

On the Ejs-page of Cy- SliceSS(ig,, BP(“)(2)), every class is a ds-cycle because there
are no ds-differentials. Therefore after applying the transfer map, all the images
must be ds-cycles as well.

(2) The source is in a BP(C(1)-truncation. If the source is in the image of the
transfer, then by the same reasoning as above, it must be a ds-cycle. If the source
is not in the image of the transfer, then it can be written as 9509 u$uba§ad for some
i,j,a,b,c,d > 0. The only possibilities are the blue classes in Figure 20} These
classes might support ds-differentials whose targets are classes in i’&zBP((C“))(l)—
truncations. However, using the differentials ds(ugy) = 01urasraes and ds(uzy) =
D1a)a3., we can easily show that all of these classes are ds-cycles.

6.3. dr-differentials. In the slice spectral sequence for BP(“)(1)  the d;-differentials
are generated under multiplicative structure by three differentials:

(1) d7(2u2x) = 0151Us A3\ 00y
(2) dr(2uzruze) = 0151U30UA GGy
(3) d7(ugn) = 0151U2\U25A37 00y -

Using the natuality of the quotient map
SliceSS(BP(©4)(2)) — SliceSS(BP(C4)(1)),

we deduce that the classes 2usy, 2usyuas, and ugy must all support differentials of
length at most 7 in SliceSS(BP(“4)(2)). The formulas for the ds-differentials on
ug) and ug, imply that all three classes above are ds-cycles. Therefore, they must
all support dr-differentials. It follows by natuality that we have the exact same
dr-differentials in SliceSS(BP(“)(2)). These differentials generate the predicted
dr-differentials in all the BP(“)(1)-truncations.

All of the predicted dr-differentials in i, BP(©4)(1)-truncations are obtained by
using the transfer map

Cs- SliceSS(BP(C4)(2)) 1 Cy- SliceSS(BP(C4)(2)).

More precisely, the transfer map takes in a dr-differential in BP((C“))(?), which is
generated by d7(usy,) = (73 + Y73 + 73)ars, = (83 + 75)ars,, and produces a
corresponding dr-differential in a i*02BP((C“))(l)—truncation.

Note that in the Cy-slice spectral sequence for BP()(1), the dr-differentials
are generated by dr(uss,) = 7a7,,, whereas in the Co-slice spectral sequence for
BP(©4)(2) they are generated by dr(uss,) = (53 4+ 7)a7e,. The readers should be
warned that strictly speaking, the dr-differentials are not appearing independently
within each g, BP((C4))<1>—truncations, but rather identifying classes between dif-
ferent ig, BP((C4))(1>—truncations. The exact formulas for this identification will be
discussed in Section [7] Nevertheless, since the leading terms are independent, the
dr-differentials do occur independently within each ig, BP(©)(1)-truncation.

It remains to prove that there are no interfering dr-differentials. There are two
cases to consider.
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FIGURE 20. Possible sources in BP(“)(1)-truncations that could
support ds-interfering differentials. The magenta lines indicate the
locations of the classes in ig,, BP(“(1)-truncations.
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(1) The source is in the image of the transfer (in other words, the source is produced
by an induced slice cell). Denote the source by tr(z), where z is a class in the Cs-
slice spectral sequence. If tr(x) supports a dy-differential in the Cjy-slice spectral
sequence, then natuality of the transfer map implies that in the Cs-slice spectral
sequence, r must support a differential of length at most 7. This means that x
either supports a ds-differential or a d,-differential.

If 2 supports a ds-differential d3(z) = y, then since the transfer map is faithful
on the E3-page, applying the transfer to this dsz-differential yields the nontrivial
ds-differential

ds(tr(z)) = tr(y)
in the Cjy-slice spectral sequence. This is a contradiction to the assumption that
dr (tr(z)) # 0.

Therefore,  must support a dr-differential d7(x) = y in the Cs-slice spectral
sequence. Applying the transfer map to this dr-differential gives dr(tr(x)) = tr(y),
which must be the dr-differential on tr(z) by natuality. However, this will not be
an interfering d7-differential because it is a predicted d7-differential that is obtained
via the transfer.

Example 6.4. In Figure there is a possibility for a dr-interfering differential
with source a class at (11,3) coming from a BP(“4)(1)-truncation (it is supposed
to support a predicted dq;-differential), and the target a class at (10,10) coming
from g, BP(©)(1)-truncations (a ).

The two possible sources at (11,3) are 0351us)\U357\0g, = t7(T3Y73T1U40,030,)
and 5§§1u2,\u30a>\a02 = tr(ﬁ*vf?uwz ass, ). By the discussion above, if any of these
two classes support a dr-differential hitting a class in the image of the transfer, then
this differential must be obtained by applying the transfer map to a dr-differential
in the Cs-slice spectral sequence.

In the Cs-slice spectral sequence, the relevant differentials are the following:

d7(F3yP3T1Ua0,030,) = T3yPsT1(T3 + T3 + 75)a110,
dr (P U0, 030,) = 7177 (T3 + 973 +79) 110,
The transfer of the targets are (035331 + 0357 )asra4y, and (033351 + 0357)azra4o,,
respectively. They are both 0 on the E7-page because they are targets of ds-
differentials. It follows that the dr-interfering differentials do not occur at (11, 3).

The same argument also shows that there are no dr-interfering differentials with
sources at (19,11), (23,15), (31,7), ....

(2) The source is not in the image of the transfer (in other words, the source is
produced by a regular, non-induced slice cell). As shown in Figure for degree
reasons, there are possible interfering d7-differentials with sources at

(1) (20,4), (28,12), (36,20), ...;

(2) (32,0), (40,8), (48,16), .. .;

(3) (52,4), (60,12), (68,20), .. .;

To prove that these dr-differentials do not exist, it suffices to prove that all the
classes at (20,4) are dy-cycles. Once we prove this, all the other possible sources
above will be dr-cycles as well by multiplicative reasons.

The quotient map SliceSS(BP(“4)(2)) — SliceSS(BP{4)(1)) shows that both

classes at (11,3), ﬁi’EluQAu;;aa)\aag and 0351U2)\U30A)0,, MUst support nontrivial
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dq1-differentials. Multiplication by the permanent cycles at (8,8) (0301u4,a4) and
d}uy,aqy) implies that all three classes at (19,11) (coming from the slice cells
020131, 030151, and 075;) must support nontrivial dq;-differentials. In fact, these
are the predicted dy;-differentials.

There are three classes at (20,4): 03ugyUsra2x, 0305 UsoUarazy, and 0§UpyUsrA2) -
If any of these classes supports a nontrivial dr-differential, the target would be a
classes at (19,11), which, as we have shown in the previous paragraph, supports
a nontrivial dj;-differential. This is a contradiction because something killed on
the d7-page becomes trivial on the d;i-page, and cannot support a nontrivial d;1-
differential.

6.4. dpi-differentials. For degree reasons, there are no possible dg-differentials.
The next possible differentials are the d;-differentials.

In the slice spectral sequence for BP((C4))<1>7 all the dy;-differentials are generated
by the single d;;-differential

d11 (51U2AU3000,) = D Usea5AA20
under multiplication. Using the quotient map
SliceSS(BP(©4)(2)) — SliceSS(BP(C4)(1)),

we deduce that the class 5;u2 ussa,, must support a differential of length at most
11 in SliceSS(BP(“4)(2)).

Our knowledge of the earlier differentials implies that this class is a d,.-cycle for
r < 10, and hence it must support a dj;-differential. Furthermore, the formula of
the dj;-differential is of the form

_ =3
d11(51U2AU3000y) = 0 U4eA5\A25 +

“ ”

where indicates terms that go to 0 under the quotient map (which sends
73,773 +— 0). All of the predicted d;;-differentials are obtained using this dii-
differential under multiplication.

Similar to situation of the dy-differentials, strictly speaking, the d;;-differentials
do not necessarily occur within each BP((C4))(1>—truncation. For instance, in the
formula above, the “--” could be d3ussasra9,. If this happens, the d;;-differential
would be identifying the two classes, 5‘;’U4ga5 A\G2s and d3ussas)as,, which are lo-
cated in different BP((C4))(1>—truncations. Given this, we can kill off the leading
term and assume that the rest of the terms remain. This will give us the same dis-
tribution of classes after the dy;-differentials and will not affect later computations.

It remains to show that there are no dy;-interfering differentials. Figure[22]shows
all the possible d;;-interfering differentials. We will prove that none of them exist.
(1) Blue differentials. These differentials have sources at
{(27,11),(39,23), (51,35),...};

{(35.3), (47,15), (59,27), .. .};
{(55,7),(67,19), (79,31),...};
{(75,11), (87,23), (99, 35),...};

The sources of these differentials are in the image of the transfer map. Their pre-
images in the Cs-slice spectral sequence are all dii-cycles (more specifically, they
all support differentials of length at least 15). Therefore, their images under the
transfer map cannot support nontrivial dy;-differentials.
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FIGURE 21. The dashed red lines are the possible dr-interfering
differentials.

The cyan classes are the ds-truncation classes,
the magenta classes are the dr-truncation classes, and the

are classes in i¢, BP((C4))<1>—truncati0ns after the predicted
dr-differentials.

The green differentials are the predicted dy;-
differentials which all occur.
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(2) Gray differentials. These differentials have sources at

(43,19), (67, 43), (91,67),...};
(63,23), (87,47), (111,71),...};
(59,3), (83,27), (107,51),...};
(79,7), (103, 31), (127,55),...};
(99,11), (123, 35), (147,59), ... };
(119, 15), (143, 39), (167,63),...};
(

{
{
{
{
J{(
{ 139,19), (163, 43), (187,67),...};

Each of the sources is a dr-truncation class. If any of these differentials exist, we
will obtain a contradiction when we multiply this differential by the classes at (8, 8)
(either 0301 usyasx OF DFUsr gy ).

For example, suppose the class at (43, 19) supports a nontrivial d;;-differential.
The target (a class at (42, 30)), when multiplied by the class dju4sa4y, is a nonzero
class at (50,38). The source, however, becomes 0. This is a contradiction.

(3) Black differentials. These differentials have sources at

18,6), (26,14), (34,22),...};
2),(38,10), (46,18),...};
6), (58,14), (66,22),...};
2), (70, 10), ( )

o {(
o {(
o {(
. {( ,(70,10), (78,18), .. .};

30,
5,
67

It suffices to show that all of the classes in the first set are di;-cycles. Once we

have proven this, multiplication by the class ugyus, (di1-cycle), the three classes

at (20,4) ((03,030 0$)ugruesazy, all dij-cycles), and the two permanent cycles at

(8,8) ((0301,0 )u40a4,\) will show that all the other classes are di;-cycles as well.
Now, for the first set, the names of the classes at each of the possible sources are

as follows:

(18,6): 2(6%,536 ) USA\UGr A3\ = (03,0301,0 )u4,\U40a2,\a20

(26, 14): 2(6%61, .. 6 )U3)\U100G7A = (0301, .. 01 )U4>\u80a6>\a20

(34, 22)2 2(6§6%, 6 )U3)\U140a11)\ = (6%6% .. Dl )U4,\U120a10,\agg

The names can all be written as products of the following di1-cycles: 01, 03, ay, ao,
ugna, (supports djz-differential), and wuy, (supports djs-differential). Therefore,
there are no dii-interfering differentials in this case.
(4) Red differentials. These differentials have sources at
o {(14,2),(22,10),(30,18),...};
{(34,6), (42, 14), (50,22), ... };
{(46,2), (54,10), (62, 18), .. .};
{(66 6), (74,14), (82,22),...};

Similar to (3), it suffices to show that all of the classes in the first set are di;-cycles.
Afterwards, all the other classes can be proven to be di-cycles via multiplication
by the class ugyusy, the classes at (20, 4), and the classes at (8,8) (all of which are
dq1-cycles).

Now, for the first set, the classes at (22, 10), (30, 18), (38, 26), ... are all d11-cycles
because they can be written as products of classes at (20,4) and classes at (2,6),
(10,14), (18,22), ... (all of which are dy;-cycles). Afterwards, we deduce that the
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classes at (14, 2) are dj1-cycles as well because if they are not, then multiplying the
dq1-differential by the classes at (8,8) would produce a nontrivial d;;-differential
on the classes at (22,10). This is a contradiction because we have just proven that
all the classes at (22,10) are dyi-cycles.

6.5. Predicted d;s-differentials. In the slice spectral sequence of BP(“4)(1), all
the djs-differentials are generated by diz(usnas) = 03ussary under multiplica-
tion. This differential was proven by applying the norm formula (see Theorem [2.8
Theorem and Corollary . In fact, we can also prove this differential in
SliceSS(BP(©4)(2)) by using the norm formula, and we will do so in Sectionwhen
we discuss the norm in depth.

Alternatively, we can analyze the quotient map

SliceSS(BP(C4)(2)) — SliceSS(BP(C4)(1))

again. Since ugya, supports a djz-differential in SliceSS(BP((C4))<1>), it must sup-
port a differential of length at most 13 in SliceSS(BP(“4)(2)). Our knowledge of the
earlier differentials implies that usya, must be a dy;1-cycle, and hence must support
a di3-differential. More specifically, we can deduce this fact by analyzing the class
5§U4,\u8ga5)\ag at (25,11). If ugra, supports a d,-differential of length r < 13, then
5§u4 AUSe 570y Mmust support a d.-differential as well, which is impossible by degree
reasons.

Since the dy3-differential on u4)a, respects natuality under the quotient map, it
must be of the form

=3
di3(Uarnae) = juspary + -+,

where “--” denote terms that go to 0 under the quotient map sending 73, y7s — 0

(in particular, it could contain d3us,azy, as we will see in Section . All the
predicted dq3-differentials are generated by this differential under multiplication.

Similar to the cases for d; and d;-differentials, the readers should be warned that
the d;3-differentials are not necessarily occurring within each BP((C4))<1>—truncation.
The above formula identifies the leading term, 03u4, a7y, with the rest of the terms
(possibly none). Therefore, we can kill off the leading term and assume that the
rest of the terms remain.

6.6. Ey3-page of SliceSS(BP(“4)(2)). Figureshows the Ey3-page of SliceSS(BP(C4)(2))
with the predicted d;3-differentials already taken out. The truncation classes are
color coded as follows:
(1) Cyan classes: ds-truncation classes;
) Magenta classes: dr-truncation classes;
) Green classes: dqi-truncation classes;
) : dis-truncation classes;
) LG, BP(©)(1)-truncation classes.

(2
(3
(4
(5

7. HIGHER DIFFERENTIALS I: di3 AND d;5-DIFFERENTIALS

In this section, we prove all the di3 and d;5-differentials in the slice spectral
sequence of BP(C)(2)  as well as differentials between i’ézBP((C“))(l}—truncation
classes.
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FIGURE 22. The dashed lines are the possible dy1-interfering differ-
entials. The cyan classes are the ds-truncation classes, the magenta
classes are the d7-truncation classes, and the are classes
in iaBP((C“))(l)—truncations after the predicted dr-differentials.
The green differentials are the predicted d;;-differentials and the
orange differentials are the predicted dq3-differentials.
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FIGURE 23. The Ejs-page of SliceSS(BP(C)(2)) with the pre-
dicted d;3-differentials already taken out. The cyan classes are ds-
truncation classes, the magenta classes are dr-truncation classes,
the green classes are dji-truncation classes, the

are dyz-truncation classes, and the are ingP((C“))(l)—
truncation classes.

7.1. dy3-differentials.
Proposition 7.1. The class u4, supports the dys3-differential

di3(uss) = 03a3ra7,-
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Proof. This is an immediate application of Hill-Hopkins—Ravenel’s Slice Differential
Theorem [HHRI6, Theorem 9.9]. O

The d;3-differential in Proposition [7.1] generates all the dy3-differentials between
the line of slope 1 and the line of slope 3 under multiplication (see Figure .

Proposition 7.2. The class 5§u4)\u60a2)\ at (20,4) supports the dys-differential
d13(5§u4>\u6ga2)\) = 5§uAu80agAag.
Proof. We will prove this differential by using the restriction map
res : Cy-SliceSS(BP(@)(2)) — O-SliceSS (i, BP(“)(2)).

The restriction of d3us\ues a2y iS T3YT3U8,A40, In the Ca-slice spectral sequence,
this class supports the d5-differential

—2_ -2 R S R =2
d15(T37 75U, Aa,) =  T3T3T1(T3 + T35 + V73)a190,
=3, =3 -2 2.2 2\
= F3YF3T10190, + T35 (T3 + Y75 )F101905 -
This implies that in the Cy-slice spectral sequence, d2usyug,azy must support a

differential of length at most 15.

If d15(03uszusa2y) = o, then by natuality,

res(r) = FayTFaT1a100, + T3YT3 (T2 + Y3) 710190, -

This is impossible because while the class 73773 (73 +7732)71a195, has a pre-image on
the E15-page (5§§§7’1a6>\a702), the class 773773771(1190-2 does not. The closest thing to
its possible pre-image is 5§§1a9 A0, , Which restrictions to 0 in the Cs-slice spectral
sequence because it is killed by a ds-differential.

Therefore, the class d3uszug, a2y must support a diz-differential. There is one
possible target, which is the class du)ug,agrao at (19,17). This proves the desired
differential. [l

Consider the following classes:

(1) d3uprussazxas at (7,5). This class is a permanent cycle by degree reasons.
(2) d3urussasra, at (19,17). This class is a permanent cycle (it is the target
of the djs-differential in Proposition .
(3) ddugsagra, at (17,19). This class is a permanent cycle by degree reasons.
(4) djuiasaiay at (24,24). This class supports the dy3-differential dy3(d3uia,a12)) =
62“80015,\6170.
Using the Leibniz rule on the differential in Proposition with the classes above
produces all the d;3-differentials under the line of slope 1 (see Figure .

7.2. Differentials between igzBP((C4))<1>-truncation classes. Using the restric-
tion map

res : Cy- SliceSS(BP(9)(2)) — Oy-SliceSS(if, BP(“4)(2))
and the transfer map

tr : Cy-SliceSS(ig., BP(“)(2)) — C4- SliceSS(BP(“4)(2)),

we can prove all the d3, d7, di5, and d3;-differentials between i, BP((C‘*))(l)—truncation
classes ( ).

The general argument goes as follows: suppose tr(a) and tr(b) are two i, BP(C)1)-
truncation classes on the E,-page, and d,.(a) = b in Cs-SliceSS(BP(“4)(2)). We
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FIGURE 24. ds-differentials in SliceSS(BP(C4)(2)).

want to prove the differential d,.(tr(a)) = tr(b) in Cy-SliceSS(BP(“4)(2)). Since
d.(a) = b, tr(b) must be killed by a differential of length at most r (natuality).
Moreover, if res(tr(a)) and res(tr(b)) are both nonzero on the E,.-page, d.(a) =b
implies d-(res(tr(a))) = res(tr(b)). By natuality again, tr(a) must support a differ-
ential of length at most r. In all the cases of interest, either our complete knowledge

of all the shorter differentials (when r = 3, 7, and 15) or degree reasons will deduce
our desired differential.

paa
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Convention 7.3. From now on, we will only specify the bidegrees and the name
of their slice cells for g, BP((C4))<1>—truncati0n classes. This reduces cluttering of
notations. For example, instead writing out the full name §§F%ugg2a1202, we will
write 3§72 at (28,12) instead. It is unnecessary to write down their full names for
computations and our convention improves the readability of our formulas.

Example 7.4. On the Ej5-page, there are three classes at (28,12) (5577, 035475,
035371) and five classes at (27, 27) (53, 0353, 0353, 0353, 0353) coming from if, BP(C4)(1)-
truncations. In the Cs-slice spectral sequence, there are d;5-differentials

di5(3573) = 5577 - 71(03 + 53) = 5553(03 + 53)
= 035953 + (035553 + 3553) = 5555 = 53 + 0355,
di5(035577) = 038371 - 71 (03 + 53) = 035353(03 + 53) = 0353 - 55 = 0354 + 0333,
di5(0355375) = 03537 - 71(03 + 53) = 035353(03 + 53) = 0353 - 53 = 0355 + 0353.

This implies that the three classes 3575, 035475, 03537 all support differentials
of length at most 15 in the Cy-slice spectral sequence. Since we have complete
knowledge of all the shorter differentials, the d;5-differentials above must occur.
Alternatively, we can use the transfer. The first differential can be rewritten as
dus (tr(T571)) = tr(3 + 75773).
In the Cs-slice spectral sequence, we have the dy5-differential
dis(F377) = T3t - T1(03 + 53)

= 7953(03 +53)

= 035375 + (035575 + 7553)

- s

7§ + Ty7s.

Applying the transfer shows that the class tr(7 + 7$y75) must be killed by a
differential of length at most 15. Our knowledge of the previous differentials again
proves the desired differential. The other two differentials above can be proved in
the same way by using the transfer.

The formulas in Sectiondescribe explicitly the surviving i, BP((C4))<1>—truncation
classes on each page. The ds-differentials introduce the relation 7, = ~7; for
ic, BP(“)(1)-truncation classes with filtrations at least 3. After the ds-differentials,
their slice cells can all be written as

035471,
where 5 > 0.

The dr-differentials introduce the relation 75 + 73 + 73 = 0 for classes with
filtrations at least 7. In other words, ¥} = 33 for igzBP((C“))(l}—truncation classes
with filtrations at least 7. After the d7-differentials, their corresponding slice cells
can all be written as o

035477,
where 7 > 0 and 0 < k < 2. Figure shows the dr-differentials between
i, BP(“)(1)-truncation classes.

Proposition 7.5. After the di5-differentials between ig, BP((C4))(1>—truncatz'0n classes,
the following relations hold for the classes in filtrations at least 15:
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FIGURE 25. dr-differentials between i*02BP((C“))(l)—truncation classes.

(1) 537 = 5377 = 0;

(2) 55 =03m53 for allm > 0;
(8) 35m+2 =03m52 for allm > 0;
(4) 85" =03m53 for all m > 0;
(5) 85" =318 for allm > 0;
(6) 55m™+5 =03 *255 for allm > 0;
(7) 8§™ = 203™ for all m > 1.

Proof. The dis-differential in the Cs-slice spectral sequence multiplies the slice cell
of the source by 71 (73 + 73yF3 + 773) = 71 (03 + 53).
(1) We have the equality
75 + 73 = (T3 +v73)(F5 + T377s + 775) = 53(03 + 53).
Therefore,
res(53r1) = (73 +~75)T
= (73 +73) P15 + T3y7s +73)
= res(tr(rs)) - 71 (73 + F3yPs +Y73).
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Consider the class Tsusg,, in the Co-spectral sequence. It supports the dy5-differential
d15 (7‘_3’[1,802) = 1:3 . ?:1 (’F% + 7:3’77:3 + ”yf%)am@
= (T3 + FanyPafy + F3yTar1)a150,

(Fg)’Fl + 7‘68(635371))@1502 .

Applying the transfer to this djs-differential and using natuality implies the dy5-
differential
d15(§3) = ﬁT(fgfla1502) =+ tT(T68(63§37710,1502)) = §§771

in the Cy-slice spectral sequence. Therefore, Egﬁ = 0 after the d;5-differentials.
For 5377, the proof is exactly the same. The exact same argument as above

shows the di5-differential

di5(5371) = 5577
in the Cy-slice spectral sequence.
(2) The statement holds trivially when m = 0. When m > 1, we have the equality
Fomtl 4 p8m=24 58 — p0m=2(73 4 r3). This implies the di5-differential

d15( re" T%u&fz) = (fgm+1 + Fgm 27T§)a1502
in the Cs-slice spectral sequence. Applying the transfer and using natuality, we
obtain the dj5-differential
d15( 6m— 27‘%) —tT( 6m+1) +tT( —6m— 2’YT§) 6m+1 +03 -6m—>5

in the Cy-slice spectral sequence. This produces the relation

ggm-i-l _ 6§§§m—5

for all m > 1. Induction on m proves the desired equality.

(3) The statement holds trivially when m = 0. When m > 1, we have the equality

—6m+2 —6m—1 —6m—1
+ 7§y = PN 4 A7),

This implies the dy5-differential
dis (g™ " P ug,,) = (Fg ™2 + 7" Iy s,

in the Cs-slice spectral sequence. Applying the transfer and using natuality pro-
duces the d;5-differential

d15( —6m— 17“%) _tT( 6m+2) —‘rt?‘( —6m— l,wjg) _ ng+2 +03 —6m—4
in the Cy-slice spectral sequence. Induction on m proves the desired equality.

(4) The statement holds trivially when m = 0. When m > 1, we have the equality

gm+3+r6m =6m (

v = 73" (73 + 7).

This implies the d;5-differential

( —6m+3

—6m 2 —6m . =3
di5(73" T use,) = (73" + 73973 a150,

in the Cs-slice spectral sequence. Applying the transfer and using natuality pro-
duces the d;5-differential

di5(55™73) = tr(F 6er?’) + tr(FSmyTs) = 6m+3 + 03 gom=3

in the Cy-slice spectral sequence. Induction on m proves the desired equality.
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(5) We have the equality

—6m—+4 —6m+1 6m+1
T3 +73 (73

Vs = + 7).
This implies the dy5-differential

m+1 6m+-4 + fﬁm-i-l
3

Piuss,) = (73 V73) @150,
in the Cs-slice spectral sequence. Applying the transfer and using natuality pro-

duces the d;5-differential
d15( 6m+1r%) _ t’l“( 6m+4) + t’l"( 6m+1’}/fg)

in the Cy-slice spectral sequence. When m = 0, the target is 53 + 035%, from which
we get the relation 55 = 935%. For m > 1, the target is 55" 4+ 9355™ 2, from
which we get the relation 56m+4 = 0355 5om= 2. Induction on m proves the desired
equality.

d15(fg

(6) We have the equality

—6m+5 +776m+2’yf§ 7‘6m+2(7'3 +’77’3)
This implies the d5-differential

d15( —6m-+2 -2 )_( —6m-+5 47 —6m+2

3
T1U80, VT5) G150,

in the Cy-slice spectral sequence. Applying the transfer and using natuality pro-
duces the dis-differential

dla( 6m+2r%) _ tr( 6m+o) -‘rt?“( 6m+2,w;3)

in the Cy-slice spectral sequence. When m = 0, the target is 53 + 0333, from which
we get the relation 55 = 9353. For m > 1, the target is 55™7° 4 9355™!, from
which we get the relation 55"*° = 9355~ 1. Induction on m proves the desired
equality.

(7) Since
T TSy = T (R 4 4),
there is the d15—different1al

-3 =6m—3

dis(F§" P ugo,) = 7572 (73 4+ v78)a1s0,

in the Ca-slice spectral sequence. Applying the transfer and using natuality pro-
duces the d;5-differential

dis(85707) = tr(§™) + (P SE) = S5 (7§
in the Cy-slice spectral sequence.
We will now use induction on m. When m = 1, the target is 55 + 203, from
which we deduce 58 = 253 When m > 1, the target is 5™ + 0355 °, from which

we deduce 55" = 0355™ 7%, Induction on m shows that 5§ = 203™.

O

Warning 7.6. The class 53 is not 0 after the d;5-differentials between ic, BP((C‘*))(l)—
truncation classes. In particular, the classes 0353 at (15,15), 0353 at (21,21),
0353 at (27,27), ... are not targets of djs-differentials with sources coming from
z*czBP((C4))<1>—truncation classes. However, some of these classes (0353 € (27,27)
and 0153 € (51,51), for example) are still targets of dys-differentials with sources
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FIGURE 26. d;s-differentials between iaBP((C4))<1>—truncation classes.

coming from BP((C“))(l)—truncation classes. We will discuss this in the next subsec-
tion.

Figuresandillustrate the dy5-differentials between i}}zBP((C“ ))<1)—truncation
classes.

7.3. All the other d;s-differentials and some d3;-differentials. We will now
prove the rest of the dy5-differentials (see Figure .

180 184 188 192 196 200
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FIGURE 27. djs-differentials between if, BP(©4)(1)-truncation
classes. The targets of the blue differentials have two surviving
classes instead of one.

Proposition 7.7. The class 203uszugoazy at (20,4) supports the dys-differential
d15(203usrtip, a2)) = 035109700, -
(Under our naming convention, the target is abbreviated as 035, at (19,19)).

Proof. In the Co-slice spectral sequence, the restriction of the class d3ugyug, azy at
(20,4) supports the d;5-differential

373 - P1(T3 + T3YT3 4+ 7)
0271 (03 + 53)
037 + 02537

0371 + res(tr(057571)).

dis(res(3usruesasy))
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FIGURE 28. The rest of the dy5-differentials.

Applying the transfer map shows that the class

tr(0371) + tr(res(tr(d37371))) = 0551 + 2 - tr(d37571) = 035,

44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200

must be killed by a differential of length at most 15. By degree reasons, the differ-

ential must of length 15, and the source must be

tr(res(V2usnucoazy)) = 205UsrUps Ao

by natuality. This proves the desired differential.
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Using the exact same method as the proof of Proposition [7.7] we can prove
dy5-differentials on the following classes:
(1) {(20,4), (32,16), (44,28),...}, {(116,4), (128,16), (140, 28),...}, .. .
(2) {(48,0),(60,12), (72,24),...}, {(144,0), (156, 12), (168,24),.. .}, .. ..
(3) {(88,8),(100,20),(112,32),...}, {(184,8), (196, 20), (208, 32), ...}, ....

Remark 7.8. The restrictions of the classes 0303uszugo a2y and 0Suszug,azy at

(20,4) support the following d;s-differentials in the Ca-spectral sequence:

dis(Fayisiy) = Ta3yTars - 71 (75 + Faryig + y7a) = 0355 - 71(55 + 03) = (0353 + 0353)71,
di5(71%) = 712 71(72 + F3yig + y73) = 53 - 71(52 + 03) = (0355 + 0252 + 55)71.

3

In the formulas above, we used the relation ¥ = 75 + 73 = 53.) By natuality and
1 v

degree reasons, there exist dj5-differentials
d15(0307) = (0355 + 0353)71
and
d15(0%) = (9355 + 0355 + 55)71
in the Cy-slice spectral sequence.
We also have the following d;5-differentials on the classes 0353 and 54 at (20,4):

di5(035%) = (0252 + 0354)71,
di5(53) = (0355 + 0252 4 55)7.
After the dy5-differentials, the surviving classes at (20,4) are 20303, 207, 0303 +
0352, and 0% + 53. There is a slight subtlety here because from the way we are
organizing the d;s-differentials, the surviving leading terms should be 0303, 20303,

99, and 20$. Our presentation of the surviving classes will not affect later compu-
tations.

Proposition 7.9. The class 5%51u4>\u100a6)\ at (28,12) supports the dy5-differential
d15(0301UsAU100G6x) = 0555092000, -
Proof. The restriction of the class 0301u4x\u100 a6 Supports the djs-differential
dis(res(0301usna100a6))) = 0371 - 71(d3 + 53)
= 353(03 + 52)
= 0383 + 0383 + 0355
- 3l
in the Cs-slice spectral sequence. This implies that the class ﬁgﬁlu@\uloaaw must
support a differential of length at most 15 in the Cy-slice spectral sequence. For

degree reasons, it must support a djs-differential, and the target must be 0353 by
natuality. |

The proof of Proposition [7.9] can be used to prove d;s-differentials on the follow-
ing classes:
(1) {(28,12),(52,36),(76,60),...}, {(124,12), (148, 36), (172,60), ...}, .. ;
(2) {(68,20),(92,44),(116,68),...}, {(164,20), (188,44), (212,68),...}, .. ;
(3) {(84,4),(108,28),(132,52),...}, {(180,4), (204, 28), (228,52), ...}, ....

Proposition 7.10. The class diugxuiz,aax at (40,8) supports the dys-differential

=4 =5
d15(03UsAUI20GaN) = 0351 UaAU155011A Doy -
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Proof. In the Cy-slice spectral sequence, the restriction of d3ug)ui2,a4) Supports
the dsq-differential

d31(res(djusauinsaan)) = 03 - (9573) = 575,

This implies that the class 5§u8>\u120a4,\ must support a differential of length at
most 31 in the Cy-slice spectral sequence. By degree reasons, the target can either
be at (39,39) (ds;-differential) or at (39, 23) (d;5-differential).

There are two classes at (39,39) — 0553 and 0353. Since neither class restricts
to 0373, the target cannot be at (39,39) by natuality. The only possibility left is
the class 0357 at (39,23). This is the desired differential. O

Proposition 7.11. The class 25§u8>\u120a4>\ at (40, 8) supports the ds1-differential
d31(205usrU12004\) = 03550300, -
Proof. As in the proof of Proposition we have the differential
d31(res(5§u8>\u120a4,\)) = 5% . (63??) = 6gf§
in the Cy-spectral sequence. Applying the transfer to the target of this differential
shows that the class tr(9373) = 0353 must be killed in the Cy-slice spectral sequence
by a differential of length at most 31.

For degree reasons, the target can only be killed by a differential of length 31.
Therefore, by natuality, the source must be

tr(res(Vdugatiogasy)) = 25§u8,\u120a4,\.

]

The proofs of Proposition [7.10] and [7.11] can be used to prove dys and ds;-
differentials on the following classes:

(1) {(40,8), (64,32), (88,56), ...}, {(232,8), (256,32), (280,56),...}, .. ;
(2) {(96,0), (120,24), (144,48), ...}, {(288,0), (312,24), (336,48),.. .}, ..
(3) {(176,16), (200, 40), (224, 64), ...}, {(368, 16), (392, 40), (416,64),...}, . ...

Remark 7.12. All the other classes at (40, 8) support dz;-differentials hitting the
same target, 0$53. In the formulas below, we use the relation 75 = 473, which is
produced by the di5-differentials, as well as Proposition

(1) @21(7"68(5%?)) = dz1(res(0353)) = 0355 - (0573) = 05(75 + 7§y73) = 0353 =

03353.

(2) 5121(7“68(5%5(15)) = d31 (res(0353)) = 0353 - (0373) = 03(75 + 7373) = 0355 =

2%5s.

(3) dai(res(0509)) = dyi(res(d5(53)°)) = 035353 - (0373) = 03(0355 + 53) -

(0373) = 035375 + 035573 = 0353 + 0353 = 0553 + 0 = 0353, )

(4) dsi(res(0?)) = dsi(res(53)) = 55(0373) = 03(73" + 73775) = V353" = 0§53,
This, combined with Proposition shows that both remaining ig, BP((C“))(l)—
truncation classes (0553 and 03353) at (39,39) are killed by ds;-differentials. The
same phenomenon occurs at the following bidegrees as well:

(1) {(39,39),(63,63), (87,87),...}, {(231,39), (255, 63), (279,87),...}, .. ;

(2) {(95,31),(119,55),(143,79),...}, {(287,31), (311,55), (335,79), ...}, .. ;

(3) {(175,47),(199,71),(223,95),...}, {(367,47),(391,71), (415,95),.. .}, .. ..

Now we turn to prove the nonexistence of dis-differentials on classes.
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Proposition 7.13. There is no dis-differential on the class 9503us\u145a10) at
(36,20). In other words, the class 3303us\uissaion is the leading term of a dys-
cycle.

Proof. The restriction of 930%u4\u140a10x sSupports the dys-differential

di5(res(950Tusaura0a107)) = 0571 - 71 (33 + 53)
= 035371 (03 + 53)
= 03857 + (058577 + 035577)
= 0357
The class 0555772 is also killed by the d;5-differential supported by the i*(}zBP((C“))(l}—
truncation class 03537

d15(6§§37’_1) = 5%53?1 - (63 + §§)
= 055371 + (035371 + 03557%)

54232
035377

Technically, after these two djs-differentials, the surviving class is 0307 + 03537;.
However, since the second differential has already been accounted for, there is no
more dq5-differential on the class 0503 uq\ 145010 O

The proof of Proposition [7.13] can be used to show that there are no dis-
differentials on the following classes:
(1) {(36,20),(60,44), (84,68),...}, {(132,20), (156,44), (180,68), ...}, .. ;
(2) {(52,4),(76,28),(100,52),...}, {(148,4),(172,28), (196, 52), ...}, .. ;
(3) {(92,12), (116, 36), (140,60), ...}, {(188,12), (212, 36), (236,60),...}, . ...

Proposition 7.14. There is no dys-differential on the class §§§1u@\u90a5>\a62 at
(27,11).

Proof. The class 8351u4)\Ug,5)00, is in the image of the transfer because 0351 =
tr(0371). In the Co-slice spectral sequence, the class 037 supports the d;5-differential

dy5(0571) = 037y - 71 (05 + 53) = 0377 + 038575
If the class 033; does support a dys-differential, then by natuality, the target must
be
tr(0577 + 035377) = tr(d371) + tr(038575) = 0387 + 0 = 0357.
This is impossible because the class 0357 is killed by a ds-differential and no longer

exists on the dj5-page (the only class left at (26,26) is 0353). O

The proof of Proposition can be used to show that there are no dis-
differentials on the following classes:

(1) {(27,11),(39,23), (51,35),...}, {(123,11), (135,23), (147,35), ...}, . . .
(2) {(55,7), (67,19), (79,31),...}, {(151,7), (163,19), (175,31),...}, .. .;
(3) {(83,3),(95,15), (107,27),...}, {(179,3), (191, 15), (203,27),...}, ...
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8. HIGHER DIFFERENTIALS II: THE NORM

In this section, we will use Theorem to “norm up” differentials in Cs-
SliceSS(BP(©4)(2)) to differentials in Cy-SliceSS(BP(C4)(2)).

Recall that in the Cy-slice spectral sequence of BP(Y4)(2)  all the differentials
are generated under multiplication by the following differentials:

d3(uzs,) = V1035, = (71 +V71)a30,
d7(Use,) = V2070, = (F} + 75 + V73)a70,
di5(uso,) = U3a150, = 71 (T3 + T37T3 + V73)a150,
ds31(Ut60y) = T4G310, = T37T30310,

Theorem 8.1. In the Cy-slice spectral sequence of BP((C4))<2>, the class usyaq
supports the ds-differential

ds(uanay) = 201uz,a3x.

Proof. Applying Theorem to the ds-differential ds(u2s,) = (71 + ¥71)ass, pre-
dicts the ds-differential
U
ds <2)\aa> = N(71 + 771)asx.
U20
If this differential exists, then applying the Leibniz rule yields the differential

U2)\0g U2\ A U2\ A
ds(uoras) = ds <Uzo : ) ds(u2s) - + Ugs - ds ( )
U20 U20 U2

3 U2XCo

pa

= dDara + Uz - N(T1 + y71)asy

U2
0+ N (71 +971)uz0a3x (Uraze = 2uz,a7a5 = 0)
N (71 +y71)u2sa3)
In fact, the existence of these two ds-differentials are equivalent, and it suffices to
prove the ds-differential on usya, .
Since u)y supports a dz-differential, us) is a ds-cycle and the class usya, survives
to the Es-page. To identify the target, note that
res(N(ri+~1)) = (F1+~m) (7 —71)
= (i —7})
= _f%ufo'(l + 7)
This implies that N(7; + v71) = —tr(#3u_,). Note that res(u;') = 1. We need
to include this term because N (71 + 1) is in degree 1 + o + A. If we apply the
transfer to 72, which is in degree 2 + 209, we would obtain something in degree

2+ A. This does not match the degree of N (71 + v71). Applying the transfer to
72u ! yields matching degrees.
The target of the predicted differential is
—tr(Fiu; Dugeasy = —tr(Figaee,) = tr(Fie e, )-
To identify this with 20,ussa3), consider the equality
tr(F2Ugpgy ) + T (FIVT1U6A60y) =  tr(F1(F1 4 Y1) Ue 6oy )
= tr(Flusae,res(tr(Fiay, )asy))

= tr(FlUuee, )tr(T105, ) Q2.
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The last expression is 0 because d3(uy) = §1a\0y, = tr(F1a4,)ay. It follows that

tr(Fiuy, A6s,) = —tr(F1YF1UcG60y)

This class is not zero on
exists.

= tr(F1Y71Uc 6oy )
= tr(res(diuzy,asy))
= 201u2,a3).

the Es-page. Therefore, the ds-differential on wusyas
O

Remark 8.2. In the integer graded spectral sequence, the normed ds-differential
can be seen on the class 03us\us,ara, at (9,3):

33 N4
d5 (D u2rU2,A0 Q) = 20]UgrnA4 -

This is the product of the differential in Theorem and d3ug,ay. An alternative,
perhaps easier way to identify the target is to note that

=3 2
VU2 AT (FL U 6oy )

tr(res(03ugear )y 6y, )

= tr(finTias,,)

= tr(F{y7iass,) (F1 =~ after the ds-differentials)

= tr(res(djussasy))

=4
= 20]u4sax.

Theorem 8.3. In the Cy-slice spectral sequence of BP((C‘*))(Q), the class ugpaq
supports the dys3-differential

d13(wanao ) = Dugyary + tr(F3usa140, ).

Proof. Applying Theorem to the dy-differential d7(u4.,) = (7§ + 73 + Y73)a70,
predicts the djs-differential

UgN i _ _
di3 (4%) = N(7} + 75 + y73)arx.

U4o

Since d13(u4s) = 03a3xa7,, multiplying the source of this differential by u4, gives

Ugx Ugx Ugx
di3(usras) = dis <U4o . aa) = di3(Uae)  —G5 + Use - di3 (%)
Uqo U4 U4o
= U4\ 3 _
= 03a3)\a7s * 7’11, Uy + Ugy - N(Tl + 73+ ’W‘g)ap\
4o

= 04 Usy - N(Fi’ + 73 + 73)arn (Urnase = 2ussara, = 0)
= N(F} + 73 + V73)useary.

The existence of these two differentials are equivalent. To prove that the differential
on u4)a, exists, it suffices to show that the predicted target is not zero on the Fi3-

page.
The restriction of N (73

res(N (7 + 73 +73)) =

—+ fg —+ ’}/7‘_3) iS
(73 + 75 + 73) (V75 + 73 — T'3)
PV + (YPsTs + Tayis ) + (ysy Ty — T37) — (75 — 773)
res(d7) + T u_s0 (1 +7) + Faviu_so (1 +7) — F3u_3,(1+7)
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The predicted target of the differential on ugya, is

N(F} 4T3 + 4T3 )useary = uagary + tr(VsFiteQiag, ) + 1T (YF3VF i Up 140y ) — 7 (F3U4 G140,
= Wugoary + tr(VisFiuy a140,) + tr(YFsFitea14e,) + tr(Fatea140,)
= Wugoary + 2r(VP3FiUe U140, ) + 7 (Fale G140,)
= Wuspary + tr(F3u,a140,)

To show that this is not zero, we multiply the predicted differential on ugya, by

5?u8,,a5 A (and use the Leibniz rule) to bring it to the integer-graded part of the
slice spectral sequence:

d13(0usAUso a50 A0 ) = D Ussasy - (V3uspary + tr(Fausa1as,))-

The source of this new predicted differential is at (25,11) and the target is at
(24,24). Once we verify that the target of this new differential is not zero on the
Fh3-page, we can then conclude that the target of the original differential on ugya,
is also not zero on the Fi3-page. Indeed,

59 23 2
0 Ugsasy - (07Uso a7 + 11 (T5UcA145,))
312 59 —2

= 0 U125a12) + tr(res(d]Uusyas) ) F3UsA140,)
<12

= 0. Ui20012) + T ’I“3’/‘1’}/’I"1£L2402)

<12 ~
01 ur25a12) + tr a2402)

P =75 +73)

(7§ + 73Y75 + 75075 4+ V78)a24,)
1 2ur95a19x + tr(F3YT30240, ) + tr(FSa4s, ) + tr((FSYFa + FayTs)aode, )

5%2u120a12>\ + tT(T@S(D3U120-a12)\)) + tr(r3ag4g2) + tr(res(b3u6ga6,\tr(r3a1202))

=12
01 U125a12) + 1

(
(P37
512U120012>\ + tr(r g(’f’g + 'yrg) a24g2) (in the Cs-spectral sequence, T
(73
(

~12 <4 _8 =2 4

= 01°U125a12) + 205U120a12) + 85 + 205Ugs AeALT (F501245,)
<12 <4 8

= 01" U125G12) + 203U125A12) + 53,

which is not zero on the Fq3-page. Therefore, the normed dj3-differential on ugya,
exists. 0

Remark 8.4. The term tr(#3uy,ai14,,) in the expression of the target can also be
rewritten as

tr(Fugaias,) = tr(T3(Ts + Y73)Uo@ag, + T3YT3UA14,,)
tr(res(suspary)) + tr(res(tr(F3ase, )asn)T3le 30, )

= 253u40a7,\ + tT(F3uUa302)tr(f3a302)a4>\.

Intuitively, this is saying that after the d;3-differentials,
07 = 205 + terms in iy, BP(“4)(1)-truncations.
This intuition will be useful in the proof of the next theorem.

Theorem 8.5. In the Cy-slice spectral sequence of BP((C4))<2>, the class ugxaqy
supports the dog-differential

dog(ugras) = 53611‘80@15)\ + tr(FgF%Uaalf))\)'
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Proof. Applying Theorem to the dis-differential di5(us,,) = 71(73 + 73773 +
’yv_’%)aw@ predicts the dag-differential

Us\ _ _ _
dag (u8a0> = N(71(75 + T37T3 + 773))aisa.
8o

If this dyo-differential exists, multiplying it by us, (a permanent cycle) yields the
dog-differential

dag(usrao) = N(F1(F5 + T3YT3 + 773))aisn.
In fact, the existence of these two differentials are equivalent, and it suffices to show
that the second differential exists. We will identify its target and show that it is
not zero on the Fsg-page.
The restriction of N (71 (72 + r3yrs + v73)) is
res(N(r1(r + 73973 +973))) = 71(F5 + 73973 +973) - 471 (V75 — Tyy7s + 75)
= (Psy7s) Py + (P +73) P
= res(0201) + FFyFiu_70 (1 + 7).
Therefore, the target of the normed differential on ugya, is
0301usoa15x + tT(F4T1YT1U 70 ) UsoQ15n = 0301UseA15x + 1T (P57 Us 300, ).

To show that this target is not zero, we will multiply it by 0502u;6, a9y to bring it
to the integer graded part of the spectral sequence. After this multiplication, the
predicted dog-differential becomes

d29 (9507 UugAU166A9ATe) = D503 U240 A2ax + 0503 U160 AoNET (F3TTUS U300, )
The source of this differential is at (49,19) and the target is at (48,48) (see Fig-
ure . Once we verify that the target of this new differential is not zero on the
Fsg-page, we can then conclude that the original target is also not zero on the
Es9-page, and the normed differential exists.
The new target is equal to
0503 uz45a24x + 0307 U165aoA LT (F4TS Ue G300, )
= 0%03unusanax + tr((F3y73) P FaTINT2 Gage, )
= 6§6§U240a24)\ —|—t’l”(( 3T ) 7"37’1(14802)
0503 ugspa0an + tr((Fayis) 73 (73 + V73)%aage,) (in the Co-spectral sequence, 7 = 73 + y73)

0503 Unaaan + tr((F3y7s) 5180, ) + tr((FsyTs) T3 73 s, )

= 0301114240&24)\ + 0553 + 0353

To further simplify the target, take the dy3-differential on u4ya, and multiply it
by d%uggsai7x. This produces the diz-differential
di3(D5usnuo00a1700r) =  ViUs0,a17x(D3Ussary + tr(F3us 140, ))
= D usspasax + tr((F3y7s) T3 aas0,)
= 050ussoaz4x + 0553
This is a differential with source at (49, 35) and target (48,48), and it introduces

the relation 0503u24,a04x + 0552 = 0 after the Fj3-page. Therefore, the target of
our dag-differential is 0335 = tr((737y73)°55a480, )-
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We will now show that 0353 # 0 on the Egg-page. Recall that in the Ch-slice
spectral sequence, we have the d;5-differential
di5((FsyTs) T3  Uso, 0330,) =  (F3yT3) TaTy - T1 (75 + T3y + V73 ) duse,
= (Fa7s)°T5 - (Fs +7s) (75 + 73773 + V773 ) Gasos
= (Fa73) T3 (73 +773)aaso,
= (F3773) TS ause, + (F3773) Ao,
Applying the transfer to this differential yields the ds-differential
d15(035577) = 0355 + 205u240 241

in the Cy-spectral sequence (cf. Proposition [7.5). Therefore, the target of our
normed dgo-differential can be identified with the class 205ug4, a4 on the Eag-
page, which is not zero. This completes the proof of the theorem. (Il

Theorem 8.6. In the Cy-slice spectral sequence of BP((C4))<2>, the class uigrao
supports the dgi-differential

=5
de1(U16200) = 03U1665A31 -

Proof. Applying Theorem to the d3;-differential ds1(u16,,) = 737730310, Dre-
dicts the dgi-differential

U16) 4 =

de1 ( ao) = N(F3773)asin = 03a31x.
U160

To show that this differential exists, it suffices to show that the target is not 0 on

the Eg1-page. Multiplying this differential by the permanent cycle u16, gives

=5
de1(U16200) = D3U165A31 -

If the target of this new differential is not zero on the Egi-page, then the original
target will also not be zero, and both dg;-differentials will exist.

Now, we will multiply the predicted dg;-differential on uigra, by d5'uss, a7y to
move it to the integer graded spectral sequence:

~11 =16
de1 (05 U162 U320 017200 ) = 03 U4gsA48A-

This is a predicted dg;-differential with source at (97,65) and target at (96,96). It
suffices to show that the target of this differential is no zero on the Fgi-page.
Theorem [B:5] shows that there is a dag-differential

<1352 =16
d29(05°07UsA U405 033700 ) = 203" UsgsUagA-

For degree reasons, if the class 53 U48,048) 18 zero on the Fgi-page, then the only
possibility is for it to be killed by a dgi-differential (see Figure . This is impossi-
ble by conmdermg the class 037u4g,a510030, = 035Usg,aus) - 03a3ra3, at (99,105). If
the class 03 U485 043 18 indeed zero after the dsi-differentials, then 03 U485 A51 1030
will also be zero after the F3q- page (this is because d3a3)a3, is a permanent cycle).
However, by degree reasons, 03 U48,051 003, cannot be killed by a differential of
length at most 31.

Therefore, the class 035uys,a48) is not zero on the Fgi-page and the normed
dg1-differential on ugya, exists. O
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FIGURE 29. Normed dog and dg;-differentials.

9. HIGHER DIFFERENTIALS III: THE VANISHING THEOREM

9.1. a and o?. Let a be the class 5§ug4ouQ4>\ at (48,48). Theorem and Theo-
rem show that

(1) The class « is a permanent cycle that survives to the Fo.-page;
(2) The class a? = 03%uyg,aqsx at (96,96) is killed by the dg1-differential

N11 2
de1(03" U16AU325A1700y) = Q7.

180 184 188 192 196 200
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In the Cy-slice spectral sequence of BP()(2) o will be playing the role of €
in C4-SliceSS(BP(©4)(1)). The following lemma is the higher height analogue of
Lemma and is proven using the exact same method.

Lemma 9.1. Let d,.(z) = y be a nontrivial differential in Cy-SliceSS(BP(C4)(2)).

(1) The class ax and oy both survive to the E,.-page, and d.(ax) = ay.
(2) If both x and y are divisible by a on the Fa-page, then x/a and y/« both
survive to the E.-page, and d,.(z/a) = y/a.

Proof. We will prove both statements by using induction on r, the length of the
differential. Both claims are true when r < 15.

Now, suppose that both statements hold for all differentials of length smaller
than r. Given a nontrivial differential d,.(xz) = y, we will first show that ay survives
to the E,.-page.

If ay supports a differential, then y must support a differential as well. This is
a contradiction because y is the target of a differential. Therefore if ay does not
survive to the F,-page, it must be killed by a differential d(z) = ay, where k < r.

We claim that z is divisible by a. If k¥ < 15, then this is true because we have
characterized completely all the differentials of length < 15, and in all the cases z
will be divisible by a. If k > 15, then k will be divisible by « as well because it is a
class on or under the line of slope 1 with filtration at least 48, and all such classes
are divisible by « starting from the Fjg-page.

The inductive hypothesis, applied to the differential di(z) = ay, shows that
di(z/a) = y. This is a contradiction because d,.(x) = y is a nontrivial d,.-
differential. Therefore, ay survives to the E,.-page.

ay
ey ///
dj
z
dy il
z/a oz
el ///
x

If ax does not survive to the E,.-page, then it must be killed by a shorter differ-
ential. This shorter differential will introduce the relation ex = 0 on the FE,.-page.
However, the Leibniz rule, applied to the differential d,.(z) = y, shows that

dr(ax) =ay #0

on the E,.-page. This is a contradiction. Therefore, ax must survive to the E,.-page
as well, and it supports the differential

d-(az) = ay.
This proves (1).
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To prove (2), note that if y/« supports a differential of length smaller than r,
then the induction hypothesis would imply that y also supports a differential of the
same length. Similarly, if y/« is killed by a differential of length smaller than r,
then the induction hypothesis would imply that y is also killed a by a differential
of the same length. Both scenarios lead to contradictions. Therefore, y/« survives
to the E,.-page.

We will now show that x/« also survives to the E,-page. Since x supports a d,.-
differential, =/« must also support a differential of length at most r. Suppose that
dr(x/a) = z, where k < r. The induction hypothesis, applied to this dj-differential,
implies the existence of the differential dj(z) = az. This is a contradiction because

d.(z) =y.

LY
<a//’/
y/a az
e ////
e d,
z
di
e ///
z/a

It follows that x/« survives to the E,.-page, and it supports a nontrivial d,-
differential. Since y/a also survives to the E,.-page, the Leibniz rule shows that

dr(z/a) =y/a,
as desired. O

Theorem 9.2 (Vanishing Theorem). Any class of the form o’z on the Ex-page of
C4-SliceSS(BPC)(2)) must die on or before the Eg:-page.

Proof. If  is a dg;-cycle, then the class oz is a dg1-cycle as well. Since o2 is killed
by a dg-differential, a?2z must also be killed by a differential of length at most 61.

Now suppose that the class x is not a dgi-cycle and it supports the differential
d-(z) = y, where r < 61. Applying Lemma 1), we deduce that the class o’z
must support the nontrivial d,-differential

d.(a’z) = o?y.
Therefore, it cannot survive past the Eg;-page. (]
9.2. Important permanent cycles.

Proposition 9.3. The following classes are permanent cycles that survive to the
Eoo-page of Cy-SliceSS(BP(C4)(2)).
n :=01axa, at (1,3);

§ = 03azraz, at (3,9);
€ = at (8,8);

B = ddug,agra, at (17,19).
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FIGURE 30. Ejg-page of SliceSS(BP(C4)(2)). The differentials
shown are the long differentials that cross the vanishing line of
slope 1. The black differentials are the dg;-differentials; the sienna
differentials are the dso-differentials; the plum differentials are the
dss-differentials; and the red-orange differentials are the dys3-
differentials.
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Proof. All the classes are clearly permanent cycles. It is also immediately clear
that 7" and £ survive to the F..-page.

Suppose that ¢ is killed by a differential. For degree reasons, the length of that
differential must be 7. This implies that « - € at (56,56) must also be killed on
or before the E7-page. This is impossible for degree reasons. This shows that ¢’
survives to the E..-page.

Now, suppose that [ is killed by a differential. For degree reasons, the length of
that differential must be 17. This implies that a - 8 at (65,67) must also be killed
on or before the Ej7-page. This is again impossible because of degree reasons. [

In Figure we have drawn some multiplications by & (red structure lines) and
B (blue structure lines). These multiplications will be useful later when we prove
long differentials that cross the vanishing line of slope 1.

Proposition 9.4. Let vy := 03ugpue,azx at (20,4). Then
(1) dlg(’y) = 5gu,\uggag>\aa (d13(20,4) = (19, 17)) 5
(2) di5(v*) = §§§1U4,\U1saa11>\%2 (d15(40,8) = (39,23));
(3) ds1(v") = 0353 = tr(73*Y7ur60,0470,) (d31(80,16) = (79,47));
(4) The class v® = 03%uzaruas,a16x at (160,32) is a permanent cycle.

Proof. (1) and (2) are Proposition [7.2] and Propostion respectively.

To prove (3), note that v* - 8 is the class 0}'uigrusza,airaa, at (97,35), which
supports the dg;-differential killing o?. Therefore v* must support a differential of
length at most 61. The possible targets are the following classes:

0953 at (79,47);

01053 at (79,47);

B3 urusssassras at (79,77);

012527 at (79,79).

We know all the ds;-differentials between 2'*02BP((C“))(l)—truncation classes. In par-
ticular, the class 03°53 at (79,47) supports the dg;-differential

ds1(03053) = 03252 (d31(79,47) = (78,78)),
and the class 032537 at (79, 79) is killed by the ds;-differential
ds1 (0305571 ) = 0325371 (d31(80,48) = (79,79)).

Now, consider the class 5%06%u8>\u320a24,\ at (80,48). The product of this class
with 3 = d3ug,agra, is the class

0370  Uus A U320 Q24 * D3UsEAONTy = D DTUSAUL00 U331 A
at (97,67). This class supports the dag-differential
d29 (6%36§US,\U400(I33,\GU) = 26%6’&480@48)\ (d29 (97, 67) = 2(96, 96))

Therefore, the class 03°0%ug)ugza,a24x must support a differential of length at most
29. The only possibility is the class 033uyuss,azsaa, at (79,77).

It follows that the only possibility for the target of the differential supported by
v is the class 0353 at (79,47). The differential will be the d3;-differential that we
claimed. This proves (3).

For (4), since the classes 035, u32y, t4sy, and ajgy are all permanent cycles, their
product is a permanent cycle as well. O
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Proposition [9.4] shows that whenever we have proved a d,-differential of length
r < 31, we can multiply that differential by o and 4* and use Lemma to
deduce more d,.-differentials. If the length of the differential is > 31, then we can
multiply that differential by (48, 48) and (160, 32) and use Lemma [9.1| to produce
more d,-differentials.

9.3. Long Differentials Crossing the Line of Slope 1.

Theorem 9.5. The following differentials exist:

(1) d61(03 u16>\u;32(,al7>\ag) =a? (de1(97,35) = (96,96));
(2) d61(203 U5 A U425 027N ) = o?p (de1(2(114,54)) = (113,115));

(3) d59( 1u14>\u510a37>\a02) = a?p? (ds9(131,75) = (130, 134));
(4) d53(a 1u12>\u620a50)\) = a?B3 (ds3(148,100) = (147,153));

(5) d53(03 01U12)\U700a59)\aa—) = a?p* (ds3(165,119) = (164,172));
(6) d53(2a3 T uriasosason) = a2B° (ds3(2(182,138)) = (181,191));
(7) d43(03 55) = a?B° (d43(199,167) = (198,210)).

Proof. Since 3 is a permanent cycle, the classes a?3° (1 < i < 6) are all killed on
or before the Fgi-page by differentials of decreasing length. More precisely, if a
d,-differential kills o3¢ and a d,-differential kills CEQﬂi/ with 0 <4 < ¢ <6, then
r>r.

Consider the class a?3%. The shortest differential that can kill this class is a
dy3-differential. Therefore, all the differentials killing the class a?3? for 1 < i < 6
must all be of length at least 43 and at most 61.

(1) follows directly from Theorem

For (2), the only differential that can kill a?f that’s of length 43 < r < 61 is the
claimed dg;-differential.

For (3), the only differential that can kill o232 that’s of length 43 < r < 61 is
the claimed dsg-differential.

For (4), the only differential that can kill a?33 that’s of length 43 < r < 59 is
the claimed dss3-differential.

For (5), the only differential that can kill a?* that’s of length 43 < r < 53 is
the claimed ds3-differential.

For (6), the only differential that can kill a?3° that’s of length 43 < r < 53 is
the claimed ds3-differential.

Lastly, for (7), the only differential that can kill a?3° that’s of length 43 < r < 53
is the claimed dy3-differential. O

Applying Lemma[9.1] to the differentials in Theorem we obtain all the other
long differentials crossing the line of slope 1. These differentials are shown in

Figure [30]
10. HIGHER DIFFERENTIALS IV: EVERYTHING UNTIL THE FE59-PAGE
10.1. do;-differentials.
Proposition 10.1. The following doy -differentials exist:
do1 (03 ugrUgaoUsanas) = 203°03uszuessaesy (do1(143,109) = 2(142,130)),
o1 (03 U UT45AG6ATe) = 205 Dsusasooarra (da1(167,133) = 2(166,154)).
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FIGURE 31. d,.-differentials of lengths 15 < r < 29. The djg-
differentials are shown in lime-green, the dap-differentials are shown
in blue, the doz-differentials are shown in orange, and the dar-
differentials are shown in forest-green.
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Proof. The Vanishing Theorem (Theorem|11.1]) shows that the class 2(142, 30) must
die on or before the Fgi-page. For degree reasons, the only possibility is for it to
be killed. The only possibilities for the source of the differential are the following
classes:

(1) 6§1u9>\u620a54>\ag at (143, 109);

(2) 01853 at (143,79);

(3) 31758 at (143.79).
Class (2) is killed by the class 03°52 at (144,48) by a dg;-differential (this is a
dz-differential between i, BP(“)(1)-truncation classes). Class (3) is killed by the
class 2030ugszuag a4y at (144,48) via a dz;-differential (see the discussion after

Proposition [7.11)).
Therefore, the only possibility for the source is class (1), and we deduce our
desired dsq-differential. O

All the other ds;-differentials are obtained from the differentials in Proposi-
tion by using product structures with the classes « and y* (see the discussion
after Propositon [9.4]). These differentials are the blue differentials in Figure

10.2. dys-differentials.
Proposition 10.2. The following dos-differentials exist:
d23(5351u8)\u160a@) = 5;§1u2>\u210a19>\a02 (d23(48,16) = (47,39)),

d23(5251u8)\l@80a20)\) = 5é1§1u2>\u330a31)\a02 (da3(72,40) = (71,63)).
Proof. We will prove the first dss-differential. The proof of the second do3-differential
is exactly the same. The restriction of the class 5351 UgA U165 A-) 1S Fg'yfgflfyfluw@ G160,
in the Ca-slice spectral sequence. It supports the ds;-differential

d31 (FOYFE 1Y T1UL604 A160, ) = ToYTaTs + (T3YT3)Aa70y = ToVT9T: Q470 -

This implies that in the Cy-spectral sequence, the class 5:5351118 AU16oaGg) Must sup-

port a differential of length at most 31. There are two possible choices for the
target:

(1) 037)5377% at (47, 47) (ds;-differential);
(2) 0551U2xU215A190C0, ab (47,39) (das-differential).
Class (1) is impossible for natuality reasons because the class 05537 does not

restrict to 7377577 a47,,. Therefore, the target must be class (2) and we deduce the
desired dgz-differential. [l

All the other dss-differentials are obtained from the differentials in Proposi-
tion by using product structures with the classes a and y* (see the discussion
after Propositon [9.4]). These differentials are the in Figure

10.3. di9 and dy;-differentials.

Lemma 10.3. The following dog-differentials exist:
(1) d29(26561U7)\U100a3)\) = 555§u16[,a17>\a0 (d29(2(34, )) = (33,35))
(2) d29(0301U8,\U8a) = Dgu,\u14aa14,\aa (d29((32,0)) = (31,29));
(3) dgg( 1u8>\u68aa60>\) = 03 uAu74ga74Aaa (d29((152 120)) = (151 ].49))
(4) d29(0301u8)\u280a21)\a0) = 203 uzeoaszen (dao((73,43)) = 2(72,72));
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(5) d29(5§5$u8>\u160a9,\a0) = 2521@4(7&24)\ (d29((49, 19)) = 2(48,48))
Proof. (1): This follows directly from Theorem

(2): If we multiply the class 0303us\us, at (32,0) by 8 and use Theorem [8.5] we
deduce the dog-differential

dog (0503 U\ U160 G970 ) = 2D3usiqazay (dag(49,19) = 2(48,48)).
Therefore, the class 9203ugyus, at (32,0) must support a differential of length at

most 29. For degree reasons, the only possible target is the class at (31, 29).

(3): Consider the class 6525?u8>\u680a60)\ at (152,120). We will show that this class
must support a differential of length at most 29. Once we have shown this, the only

possible target will be the class 5§5u,\u740a74>\a0 at (151,149).
By Theorem [B5] we have the dag-differential.

dog (35 01 usA U720 aG30a0) = D3 O3usosasor (dag(161,131) = (160, 160)).

If we multiply the target of this differential by €', we get the class 25§8u840a84A
at (168,168). This class must be killed by a differential of length at most 29. For
degree reasons, the only possibility is the dag-differential

<252 =28
d29(03 Olug)\umga(;g)\ag) = 203 U4 A-AN (d29(169, 139) = 2(168, 168))

The source of this differential is equal to 8-(152,120). Therefore, the class 5325?1@ AUGSH AGON
at (152,120) must support a differential of length 29, as desired.

(4): By Theorem [8.5] we have the dag-differential
—8— —102
d29(0301 U8\ U246 Q177 Ce) = D3 D U325G32) (d29(65,35) = (64,64)).

If we multiply the target of this differential by ¢, we get the class 25;2U360a36>\ at
(72,72). Therefore, this class at (72,72) must be killed by a differential of length
at most 29. The only possibility is the dag-differential that we claimed.

(5): This differential is proven in the proof of Theorem O
Lemma 10.4. The following dss-differentials exist:

—17_ —20
d35(03 51U1220U5100300 00, ) = 203 U3AUs0ss7x (d35(127,79) = 2(126, 114)),
o1 —24

d35(b§131U12)\U630a51>\a02) = 20§ uzA\UT20a69x (d3s5(151,103) = 2(150, 138)).
Proof. Consider the target of the first differential. By Theorem [11.1] it must be
killed on or before the Eg;-page. The possibilities for the sources are

(1) 94733 at (127,95);
) 03835 at (127,95);
) §§7§1U12AU510(139AG02 at (127,79);
) 0355572 at (127,63);
) 6;551U18AU4500,27)\G,32 at (127, 55),

(1) is impossible because by Proposition the class 95753 at (127,95) is the
target of the ds;-differential

ds1 (05 wioauasoaz2n) = 04755 (ds1(128,64) = (127,95)).
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(2) is impossible because 03853 at (127,95) supports the dz;-differential
ds1(05%53) = 03°53 (d31(127,95) = (126,126)).

This is a ds;-differential between i, BP((C“))( 1)-truncation classes.
(4) is impossible because 03°5377 “at (127,63) is the target of the dg;-differential

ds1(0575577) = 0375577 (da1(128,32) = (127,63))

between i, BP(©4)(1)-truncation classes.
(5) is impossible because by Proposition this class is the target of the
dos-differential

d23(6é361u24)\u400'a16>\) = 6?3551“18)\“450@27)\@02 (d23(128,32) = (127,63))

It follows that the only possibility for the source is (3), and we deduce our claimed
dss-differential.

The second differential is proven in the exact same way, except that we just
need the extra fact that the class 5?5% at (151,119) supports a dy3-differential
(Theorem [9.5)). O

Theorem 10.5. The following differentials exist:
(1) d19(25§OU5)\u900ag5>\) _63033 (d1o(2(190, 170)) = (189, 189));
d19(203 UsAUzso73)) = 03 53 (d19(166, 146) = (165, 165));
(2) dlg( slu4>\U930a89>\a02) = 032037@60@98)\@20 (dlg 195 179) (194, 198));
dlg(ag 51u4>\u810a77>\a02) = 03801’&340@86)\@20— (d19(171 155) (170, 174)),
(3) d19(2b3 UsAUgGoTo1n) = Do 53 (d19(2(202,182)) = (201,201));
d1o (20, ug,wg%am) _aﬁssg (d19(2(178,158)) = (177,177));
(4) d19(2 u13>\u900a77>\) = 03 83 (dlg( (206, 154)) (205, 173)),
dio (20 ulgw7gaa6w) =33 (19(2(182, 130)) = (181, 149));
(5) dlg(b S1U12A U930 481 Ny ) = 203 01’11,7)\'11,980@91)\ (d19(211,163) = 2(210, 182));
d19(03 51u12>\u810a69>\a02) = 203 0111,7)\11,86”(179)\ (d19(187,139) = 2(186, 158));
(6) d19(203 U13AUg6oag3n) = D2 53 (d19(2(218,166)) = (217, 185));
(20
(@
(03
(
(93

dlg U13,\u84ga71,\) = 0; 83 (d19( (194 142)) (193, 161)),‘
(7) d27 0 1’(1,10,\’119300,83,\&02) = 203 01U3,\U1000(197>\ (d27(207, 167) = 2(206, 194)),‘
d27 slulo,\u810a71,\a02) = 203 01U3,\u8800,g5,\ (d27(183, 143) = 2(182, 170)),‘
(8) da7 1U6>\U990a93>\a02) = 03 01104001060 020 (d27(211,187) = (210, 214));

d27 81u6>\u87ga81>\a02) = 03’ 01’&920@94)\@20 (d27(187, 163) = (186, 190))

Proof. (1): Consider the class 253 UsAUgpsassy at (190,170). By Theorem m
this class must die on or before the Fg-page. If this class supports a differential,
then we are done.

If it is the target of a differential, then for degree reasons, the only possibility
for the source is the class 5§5§§ at (191,127). However, by Proposition and
the discussion afterwards, this class is the target of the ds;-differential

d31(203 ’U,24,\U7gga48,\) = 03 53 (dgl( (192,96)) = (191, 127)).

Therefore, this class cannot be the target of a differential. This proves the first
differential in (1).
The second differential in (1) is proven by the exact same method.
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(2): To prove the first differential in (2), consider the class 5225%960(198,\@0 at
(194, 198). By Theorem this class must die on or before the Eg;-page. For de-

gree reasons, the only possible source is the class 5§1§1U4>\U930a89>\a02 at (195, 179).
This proves the first differential in (2). The second differential is proven in the exact
same way.

(5): For the first differential, consider the class 25225fu7)\u980a91)\ at 2(210,182).
By Theorem this class must die on or before the Egi-page. If this class
is the source of a differential, the target must be the class 5§5u1040a105AaU at
(209,211). This is impossible because we have proven in Theorem that the
class at (209, 211) is the target of a dg;-differential.

Therefore, this class must be killed by a differential of length at most 61. For de-
gree reasons, the only possible source is the class 52151 U122 U935 U811 ey AL (211, 163).
This proves the first differential in (5). The second differential is proven in the exact
same way.

(3): For the first differential, consider the class 5§2§3 at (201,201). By Theo-
rem this class must be killed on or before the Egi-page. For degree reasons,
the only possible sources are the following classes:

o 205 usaugeoaory at (202, 182);

[ ] 26;151/&7)\/&940-0187)\ at (202, ].74)7

o 205 0 upsauseoarix at (202, 142).
If the class 253151 UTAUg4cGg7x at (202, 17%5 the source, then the differential will be

a do7-differential. However, by Theorem the class 25§0u7,\u900a83>\ at (194, 166)
support the dog-differential

d29(2ﬁgou7,\u900¢183,\) = 62251u960a97>\ag (d29(2(194,166)) = (193,195)).

Since 2(194,166) - € = 2(202,174), this is a contradiction.

The class 25;85?u15>\u860a71>\ at (202, 142) cannot be the source either because
it is the target of the dio-differential

<27_ _ 28
d19(0§ 51U20A\ U815 617 0oy ) = 20383?11415)\“8600471)\ (d19(203,123) = 2(202, 142)).
This djg-differential can be deduced from the second differential of (2) by using

multiplicative structures with the classes o and y*.

Therefore, the only possibility for the source is the class 2532u5>\uQ60a91>\ at
(202, 182). This proves the first dyo-differential.

For the second differential, consider the class 5§8§§ at (177,177). By Theo-
rem [L1.1] it must be killed by a differential of length at most 61. The possible
sources are the following classes:

o 205 usaussoazoy at (178,158);

(] 26:237511117)\1@20(175)\ at (178, 150),

(] 26;46?7“5)\117400,59)\ at (178, 118)
By using Lemma|10.3|(1) and multiplicative structures with «, the class 25§8u5 AUSLoATYN
at (178,150) support a dgg-differential, and therefore cannot be the source. The
class 25245?u15>\u740a59>\ at (178,118) is the target of the djg-differential

—23_ 24
d19(D§331u20>\u69aa49>\ag2) = 2D§ D?ul5)\U74ga59)\ (d19(179, 99) = 2(178, 118))
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This djg-differential can be deduced from the first differential of (2) by using mul-
tiplicative structures with the classes o and ~*.

Therefore, there is only one possible source left, and this leads to the desired
dyg-differential.

(4): To prove the first differential in (4), we will first multiply the source by y* and
prove the dig-differential

dig (205 usgru1140as5)) = O3 55 (d10(2(286, 170)) = (285, 189)).

Once we have proven this, we can immediately deduce the first differential.
Consider the class 52%% at (285,189). By Theoremm this class must die on or

before the Fg1-page. For degree reasons, it cannot support a differential (because
the length of that differential must be 15 < r < 61). Therefore, it must be the
target of a differential. For degree reasons, the possible sources are the following
classes:

L] 26§SUQ9,\’LL11406L85)\ at (286, 170),

o 20 Usstinosearsy at (286, 146).
Using the first differential in Lemma and multiplicative structures with ~3,
we deduce that the class 25§6u;35>\u1080a73A at (286, 146) is the target of the dss-
differential

_33_ <36
d35(03 81U44)\'LL9906155)\GU2) = 203 U35 U108 A73N (d35(287, ].].1) = 2(286, 146))

Therefore, the only possible source left is the class 2528@9)@1140%& at (286, 170).
This proves our desired differential.

The proof of the second differential is exactly the same (except near the end we
use the second differential in Lemma and multiplicative structures with 4% and
).

(7): For the first differential, consider the class 253351u3,\u1000a97>\ at (206,194).
By Theorem and degree reasons, this class must be killed on or before the
FEg1-page. The only possibilities for the source are the following classes:

° 6§1§1U10)\UQ3(7G83)\CL02 at (207, 167);

(] 6§QU17)\U8600,70)\(L0 at (207, 141).
Using Lemmam (2) and multiplicative structures with o and «*, we deduce that
the class 5§9u17)\u860a70)\a0 at (207,141) is the target of the dog-differential

d29(5§65?u24,\U800(156,\) = 6§9u17)\u860a70)\ao— (d29(208,112) = (207, 141)).

Therefore, the source must be the class 5§1§1u10>\U930a33>\a02 at (207,167).

The second differential is proven in the exact same way, except near the end
we use Lemma m (3) and multiplicative structures with o and v* to deduce a
dog-differential.

(8): To prove the first differential, consider the class 53551u104ga106,\a26 at (210,214).
By Theorem [11.1} it must be killed on or before the Fg1-page. The only possibilities
for the sources are the following classes:

[ ] 5§3§1u6>\u990a93>\a02 at (211, 187),

[ ] 62151’&12)\11,9300,81)\@02 at (211, 163)
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By (5), the class (211, 163) supports the djo-differential
d19(03 81U12A’LL930-0,81)\CL0-2) = 203 1’UJ7A’ZL980-CL91A (d19(211, 163) = 2(210, 182))

Therefore, the only possibility for the source is the class 5§3§1u6 AUY95A93A A, ab
(211, 187). This proves our desired differential.
The proof of the second differential is exactly the same.

(6): For the first differential, consider the class 03 3 at (217,185). By Theo-
rem [I1.T] this class must die on or before the Eg1-page. If this class supports a

differential, then the only possible target is the class 2036u1080a108)\ at (216, 216).
This is impossible because this class at (216, 216) is the target of the dag-differential

—33-2 —36
d29(03 Dl’u,g)\ulooaagg)\ag) = 203 U085 A108) (d29(217, 187) = 2(216, 216))
We can deduce this differential from Lemma m (4) and multiplicative structures
with a.
Therefore, this class must be killed by a differential of length at most 61. The
only possibilities for the source are the following classes:
[ ] 2632’1,613,\1&960(183,\ at (218, 166),
[ ] 2631611115)\11940&79)\ at (218, 158);
[ 26385§U/23)\Ugﬁo—a63)\ at (218, 126).
The class 2521§1u15>\u946a79>\ at (218,158) is the target of the dor-differential
—29_ 31—
d27(03 81u22)\u870.a65)\a[,2) = 203 D1U15)\UQ40(179)\ (d27(219, 131) = 2(218, 158))
We can deduce this differential from the second differential in (8) and multiplication
with o and +*.
The class 20‘3 ?’LL23)\’U4860(L63)\ at (218,126) is the target of the djg-differential

d19(03 §1U28)\U810(153)\a02) = 203 01UQ3,\U86UCL63,\ (d19(219, 107) = 2(218, 126)).

We can deduce this differential from the second differential in (5) and multiplication
with o and 7*.

It follows that the only possibility left for the source is the class 25§2u13 AUYGo B83N
at (218,166), as desired.
The proof of the second differential is exactly the same. O

All the other dj9- and da7-differentials are obtained from the differentials in
Proposition by using product structures with the classes a and v* (see the
discussion after Propositon . These differentials are the
and the forest-green differentials in Figure [31] respectively.

11. HIGHER DIFFERENTIALS V: dg-DIFFERENTIALS AND d3;-DIFFERENTIALS

11.1. dyg-differentials.

Theorem 11.1. The following dog-differentials exist:
262 =29
(1) dgg(ag 01U3/\u800a72/\) == 03 UNULBsA8EN U (d29(176, 144) = (1757 173)),’

(2) d29(03 US)\Ugoga'rg)\ag) = 0390111,8850,88)\ (d29(177, 147) = (176, 176)),

(3) d29(2b3 Uz s20a75)) _a§9afu8&,a89w0 (dao(2(178,150)) = (177,179));
(4) dgg( 1ug>\u84aa77>\ag) = 03 01u920a92>\ (d29(185, 155) = (184, 184)),

(5) dgg( 1u8>\u8gaa81>\ag) = 203 Ugeoaosx (d29(193,163) = 2(192,192));
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(6) d29(203 U7)\U900a83)\) = 03 01U965a977 00 (d29(2(194,166)) = (193,195));

(7) dog (350> Uy 9200847 ) —033u,\u980agg,\ag (da9 (200, 168) = (199, 197);

(8) d29(03 u8)\’u,920(185)\a0) = 03 Dlulooaalo())\ (d29(201, 171) = (200,200)),’

(9) d29(203 D]_’U/7)\U/94o—a87)\) = 03 Olulooaaml)\ag (d29(2(202, 174)) = (201,203)),‘
(10) dao (05 mw%oaggw(,) = 300 1040 a100x (d2o(209,179) = (208,208));
(11) dgg(ag 01u8,\ulooaa93)\ag) = 2036’&1080&108,\ (d29(217, 187) = 2(216, 216)),
(12) d29(203 ’U,7)\’U,1020a95,\) = 03 Dluloggalog)\ag (d29(2(2187 190)) = (217,219)),
(13) dgg(? u11>\u84ga73>\) = 33 01U4)\UQ00(I87)\6L0 (d29(2(1907 146)) = (189, 175)),
(14) dao(20 3 iUl AUssoa77A) = D3 D1 UanUossAgina, (d2o(2(198,154)) = (197,183));
(15) dag (05 Dluu)\u%gaw}\ag) = 03 0 uarugsoagar (dag(205,159) = (204, 188));
(16) d29(203 U1 A UYGoAS5N) = 02401U4>\u1020a99>\a0 (d29(2(214,170)) = (213,199));
(17) dag (205

(03

(18) dag 01“12,\u1020a91,\aa) = 0360§U4AU1100(1106)\ (d29(229,183) = (228,212)).

Proof. The differentials (2), (3), (5), (10) are immediate from Theorem

(1): Consider the class 5365fu8)\u800a72>\ at (176,144). If we multiply this class by
B, we get the class (193,163), which supports the dgg-differential (5). Therefore,

the class 5365§u8,\u800a72,\ at (176,144) must support a differential of length at
most 29. The only possibility is the dag-differential that we claimed.

(4): This differential follows from (2) via multiplication by €.

(6): Consider the class 52251U960a97>\a(, at (193,195). By Theorem , this class
must be killed by a differential of length at most 61. By degree reasons, the only
possibility is the dyg-differential we claimed.

(8): Consider the class 5§1u8,\uQ20a85,\a0 at (201,171). If we multiply this class by
€/, we get the class 53251u8,\u960a89>\ag at (209,179), which supports differential

(10). Therefore, the class 5§1u8,\U9gga85>\ag at (201, 171) must support a differential
of length at most 29. The only possibility is the differential that we claimed.

(9): This differential follows form (6) via multiplication by €.
(11): This differential follows from (10) via multiplication by €.

(7): Consider the class 5205?118)@920&84)\ at (200, 168). If we multiply this class by
B, we get the class 5:3535?u8,\u1000a93,\a0 at (217,187), which supports differential

(11). Therefore, the class 5305?u8,\u920a84,\ at (200, 168) must support a differential
of length at most 29. The only possibility is the differential that we claimed.

(12): Consider the class 53651111080@09,\% at (217,219). By Theorem , this class
must be killed by a differential of length at most 61. For degree reasons, the only
possible differential is the dag-differential that we claimed.

(13): Consider the class 5@051U4,\u§;00ag7,\a0 at (189,175). By Theorem , this class
must die on or before the Fgi-page. For degree reasons, the only possible way for
this to happen is for the claimed dsg-differential to exist.

% Dlull)\U&OOaaSQ/\) = 025051!4,\1!1060&103,\% (d2o(2(222,178)) = (221,207));



88 MICHAEL A. HILL, XIAOLIN DANNY SHI, GUOZHEN WANG, AND ZHOULI XU

(14): This differential follows from (13) via multiplication by €' (alternatively, we
can also use Theorem ).

(15): Consider the class ﬁgoﬁlulg,\u%(,m%a” at (205, 159). If we multiply this class
by €, we get the class 53152u12,\U940a83,\a,, at (213,167). This class support a ds3-
differential by Theorem Therefore, the class 52051 UT2AUY0, A79N Ay at (205, 159)
must support a differential of length at most 53. For degree reasons, this implies
the dog-differential that we claimed.

(16): Consider the class 52451114)\“1020(199)\&0 at (213,199). By Theorem this
class must die on or before the Fg1-page. For degree reasons, the only way for this
to happen is for the claimed dog-differential to exist.

(17): This differential follows from (16) via multiplication by €.

(18): Consider the class 53451u12,\u1020a91,\a0 at (229,183). If we multiply this
class by n’, we get the class 2534531111,\711040(193)\ at (230, 186). By Theorem
this class supports a dss-differential. Therefore, the class 534511112 AU1020091\0s ab
(229, 183) must support a differential of length at most 53. For degree reasons, we
deduce the claimed dsg-differential. [l

Theorem |11.1} combined with using multiplicative structures on the classes «
and 7%, produces all the dgo-differentials in SliceSS(BP(C4)(2)) (see our discussion
after Proposition . These differentials are shown in Figure

11.2. ds;-differentials. Almost all of the ds;-differentials are induced ds;-differentials
from z‘”ézBP((C4))<1)—truncation classes, and they can be proven by using the transfer
and the restriction map (see Section .
The rest of the ds;-differentials follows from Proposition (and the discussion

afterwards), Proposition and multiplication with the following classes:

e « at (48,48) (permanent cycle);

e 7% at (160, 32) (permanent cycle);

L] 6;QU16)\U36‘7(120)\ at (104, 40) (dgl—cycle).
The d3;-differentials are shown in Figure

12. HIGHER DIFFERENTIALS VI: d35 TO dg1-DIFFERENTIALS

Proposition 12.1. The following dss-differentials exist:
<17_ =20
(1) d35(03 Slulg)\’u,g)lg(lgg)\agz) = 203 UINUG0s A57 N (Clg5(1277 79) = 2(126, 114)),
(2) d35(03 slum)\uﬁggasl)\aaz) = 203 UINUT25 A9\ (d35(1517 103) = 2(150, 138 ))
(3) d35( LS U8\ U630 135700y ) = 203 U9 UT25,a53x (d35(183,71) = 2(182,106));
(4) ds5(3; ) = )

Proof. (1) and (2) are proven in Lemma For (3), consider the class 25§4u19>\un[,a53,\
at (182,106). By Theorem this class must die on or before the Egi-page. For
degree reasons, the only way this can happen is for this class to be killed by the
class 5§1§1u28 AUG3o 0357000, at (183,71). This proves the desired dss-differential.

For (4), first consider the class 25205§u11,\u920a81,\ at (206,162). By Theo-
rem [I1.1] this class must die on or before the Egi-page. For degree reasons, this
class must be killed by the class 5§5§§ at (207,111).

81u28)\U750a47)\a02 = 203 UL9NUS4o U655\ (d35(207, 95) = 2(206, 130 )



THE SLICE SPECTRAL SEQUENCE OF A HEIGHT-4 THEORY 89

- i - - i - o i
” S SiiE i

- e e e e e o i

o il i = i il i
o i il =
w IS SiiE S S

“ =i = =i = il B

o i il i Bl i = i = i il

o - =

. e il il

” e iE e e e e b o i

- SiiE IS S SiiE S SiiE IS e

: . - -

- i e S i

- - - o - o -

- e o o i i i i

o i o

o e i =

= - HE o i EE i

- - i i i - i -

N . o

= IS SiiE SiiE IS

- =i =i - -

e i = i =

- i i i

” S i i B

- i il i il

. - - e -

o i HE i s

- i i i i

. . = i -

=

% i . 5 G i
e i SiiE

s =

- B e i

-

. i

FIGURE 32. dgo-differentials in SliceSS(BP(C+)(2)).
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Now, consider the class 25§8u19 AUs4oUesy at (206,130). By Theorem again,
this class must die on or before the Fg1-page. For degree reasons, this class must
be killed by one of the following classes:

o 3.5 at (207,111);
[ ] 6?551UQ8)\U7500,47)\CL02 at (207,95)
Since we have already shown in the previous paragraph the class 5§5§3 at (207,111)

supports a ds;-differential, the source must be the class 5§5§1u28 AUT55A4TAQe, ab
(207,95). This proves the desired dgs-differential. O

Using product structures with a and +®, the dss-differentials in Proposition m
produce all the other dss-differentials. They are shown in Figure

The d43-differentials follow from Theorem (7) and using product structures
with a. They are shown in Figure

Proposition 12.2. The following dsi-differentials exist:
(1) dsl(a?;Zgg) = 26%26;umu920aw (ds1(207,111) = 2(206, 162));
(2) d51(53 Eg) = 263 61’LL27)\U104U(177)\ (d51(263, 103) = 2(262, 154))

Proof. For (1), consider the class 25205?1;11;@920(181;\ at (206,162). By Theo-
rem this class must die on or before the Eg-page. For degree reasons, the
only way for this to happen is for the claimed ds;-differential to exist.
For (2), consider the class 25345?1@7)@1040@77,\ at (262,154). By Theorem m
again, this class must die on or before the Fg1-page. There are two possibilities:
e This class supports a dg;-differential and kills the class 5395§u12)\u1180a107>\a0
at (261,215);
e This class is killed by a ds;-differential coming from the class d51(5§9§§) at
(263,103).
The first case is impossible because by Theorem (5) and multiplication with «,
the class 52953u12,\u118ga107>\ag at (261, 215) supports a dsz-differential. It follows
that the claimed d5;-differential exists. O

Using product structures with a and +®, the ds;-differentials in Proposition m
produce all the other ds;-differentials. They are shown in Figure

All the dss-differentials are obtained from the dss-differentials in Theorem
and using product structures with a. They are shown in Figure [37]

Proposition 12.3. The following dss-differentials exist:
—24_ —29_
(1) d55(0§8021t28,\u74aa46,\) = Dgzslul4)\u87aa73>\aaz (ds5(204,92) = (203,147));
(2) d55(53 61“44AU86JQ42)\) = 53 51U30A U990 B69N Aoy (d55(2607 84) = (2597 139))'

Proof. For (1), consider the class 5§9§1u14)\u87aa73)\a02 at (203,147). By Theo-
rem this class must die on or before the Eg-page. For degree reasons, the
only way this can happen is for the claimed dss-differential to exist.

For (2), consider the class 5§3§1u30>\uQ90a69>\a02 at (259, 139). By Theorem
this class must die on or before the Ejgi-page. For degree reasons, there are two
possibilities:

e This class supports a dsg-differential to kill the class 25§8u15,\u1140a99 A at
(258,198);
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e this class is killed by a dss-differential from the class 5;85fu414>\u860a42>\ at
(260, 84).
The first case is impossible because by Theorem [9.5| - ) and multiplication with «,

the class 203 U152 U1140000x at (258, 198) supports a dg;-differential. Therefore, the
second possibility must occur, and we get our desired ds5-differential. ([l

Using product structures with o and 8, the dss-differentials in Proposition m
produce all the other dss-differentials. They are shown in Figure [38

Proposition 12.4. The following dsg-differentials exist:

(1) d59(6§:§1u14/\u510a37z\a02) = 5§2g64oa6ﬁ>\a2o (dso(131,75) = (130,134));
(2) ds9(d3 51U30AU630-033700ry) = 205 UisAUT8xG63x (d59(187,67) = 2(186,126)).

Proof. (1) is Theorem [9.5((3). To prove (2), consider the class 26§6u15>\u780a63>\ at
(186,126). By Theorem [11.1} this class must die on or before the Fg;-page. For
degree reasons, the only way this can happen is for the claimed dsg-differential to
exist. (]

Using product structures with a and +®, the dso-differentials in Proposition m
produce all the other dsg-differentials. They are shown in Figure

Proposition 12.5. The following dgi -differentials exist:
(1) d61(26§6u31w780am) 76§1umu920amag (de1(2(218,194)) = (217,155));
(2) de1 03 011&28,\%6820&55,\%) —:?3 O1U12>\U98oa86>\ (de1(221,111) = (220,172));
(3) d61 203 01UQ7)\U920(165)\) = 03 alU12)\’l,L1|:)6,7CL95)\(J,l7 (d61(2(238, 130)) = (237, 191)),

(@
(
(4) de1(03 U32,\U920¢161,\aa) = 036u16)\u1080a92/\ (de1(249,123) = (248,184));
(5) d61(203 T tiono i) = 5 Usoa 1040073000 (de1(2(274,86)) = (273,147));
(6) de1 (35 01u44>\u940a51>\ag) = af; afugswuogaw (de1(277,103) = (276, 164));
(7) d61(203 01u43,\u1040a61,\) = 03 01u28/\U1180—a91)\a0— (d61(2(294, 122)) = (293, 183)),‘
(8) d@l( u4g,\u104ga57>\ag) = 03 U32\U1200 AN (d61 (305, 115) = (304, 176))

Proof. All of these differentials are proven by using the same method: we first
consider the target, which, by Theorem [I1.1] must die on or before the Eg;-page.
Once we know this, then for degree reasons, we deduce the claimed dg;-differential.

O

Using product structures with a and +®, the dg;-differentials in Proposition m
produce all the other dg;-differentials. They are shown in Figure [0}

13. SUMMARY OF DIFFERENTIALS

In this section, we summarize all the differentials in the slice spectral sequence of
BP(Ca)2) (Figure shows all the differentials from dy3 to dg1). To better organize
the differentials visually, Figure shows the dy3 to dis-differentials; Figure
shows the dig to ds;-differentials; and Figure [#4] shows the ds5 to de;-differentials.
The E-page is shown in Figure[I5] We observe that there is a horizontal vanishing
line at filtration 60.
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FIGURE 35. dys-differentials in SliceSS(BP(C+)(2)).
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FIGURE 36. ds;-differentials in SliceSS(BP(C4)(2)).
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FIGURE 38. dss-differentials in SliceSS(BP(C+)(2)).
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FIGURE 39. dso-differentials in SliceSS(BP(C4)(2)).
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Differential

Proof

ds, ds, d7, di1

Induced differentials from Cj- SliceSS(BP(“4)(1)) (Section

[«

dia

Induced differentials from Cj- SliceSS(BP(“4)(1)) (Section 6.5
Norm Formula (Theorem
Hill-Hopkins—Ravenel Slice Differential Theorem (Proposition

Restriction map (Proposition |

dl;

Induced differentials from Cs- SliceSS BP(4)(2) (Section l
Restriction-transfer (Section D

Proven in Proposition [10.5
Proven together with dyr-differentials
Uses the Vanishing Theorem (Theorem [11.1)) and some dsg and dss-differentials

Proven in Proposition [10.1} Uses the Vanishing Theorem (Theorem |11.1I)

Proven in Proposition [10.2] Uses the restriction map

(127

Proven in Proposition [10.5

Proven together with d;o-differentials
Uses the Vanishing Theorem (Theorem [11.1)) and some dog and d3zs-differentials

dag

Proven in Theorem [11.1
Uses the norm Formula (Theorem and the Vanishing Theorem (Theorem [11.1))

Induced differentials from Cs- SliceSS(BP(“4)(2)) (Section ;
Proposition 7.11|; and Section [11.2

Proven in Propositicﬂllll Uses the Vanishing Theorem (Theorem |11.1I)

Proven in Theorem |9.5l Uses the Vanishing Theorem (Theorem |11.1|>

Proven in PropositicﬂlQ.?l Uses the Vanishing Theorem (Theorem |11.1I)

Proven in Theorem |9.51 Uses the Vanishing Theorem (Theorem |11.1|>

Proven in Proposition |12.3] Uses the Vanishing Theorem (Theorem [11.1

Proven in Proposition [12.4l Uses the Vanishing Theorem (Theorem [11.1

Proven in Proposition [12.5
Uses the norm formula (Theorem and the Vanishing Theorem (Theorem [11.1))

[Ada63]
[Ada65al
[Ada65b]
[Ada66]
[Ada68]

2

F. Adams. On the groups J(X)

F. Adams. On the groups J(X). II. Topology, 3:137-171, 1965.

F. Adams. On the groups J(X)

F. Adams. On the groups J(X). IV. Topology, 5:21-71, 1966.

. F. Adams. Correction to: “On the groups J(X). IV”. Topology, 7:331, 1968.
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