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DWYER-KAN LOCALIZATION REVISITED

VLADIMIR HINICH

To the memory of Daniel Kan

Abstract. A version of Dwyer-Kan localization in the context of∞-categories
and simplicial categories is presented. Some results of the classical papers
[DK1, DK2, DK3] are reproven and generalized. We prove that a Quillen
pair of model categories gives rise to an adjoint pair of their DK localizations
(considered as ∞-categories). We study families of ∞-categories and present
a result on localization of a family of ∞-categories. This is applied to local-
ization of symmetric monoidal ∞-categories where we were able to get only
partial results.

Introduction

This paper was devised as an appendix to [H.R] intended to describe necessary
prerequisites about localization in (∞, 1)-categories. The task turned out to be
more serious and more interesting than was originally believed. This is why we
finally decided to present it as a separate text.

The paper consists of three sections. In Section 1 we present a version of Dwyer-
Kan localization in the context of ∞-categories 1 and simplicial categories. The
original approach of Dwyer and Kan [DK1, DK2, DK3] is replaced, in the con-
text of ∞-categories, with a description using universal property. We compare
the approaches showing that the homotopy coherent nerve carries hammock lo-
calization of fibrant simplicial categories to a localization of ∞-category in our
universal sense.

A very important example of Dwyer-Kan localization is the underlying ∞-
category of a model category. We reprove the classical result [DK3], Proposition
5.2, and prove a generalization of [DK3], 4.8, giving various equivalent descrip-
tions of this localization. Our approach is based on Key Lemma 1.3.6 which gives

a convenient criterion for a functor f : C̃ → C between (conventional) categories
to be a DK localization.

Applying Key Lemma to the case C̃ is a category of resolutions of objects in
C, we are able to easily deduce most of the results about equivalence of different
descriptions of the underlying ∞-category of a model category.

1in the sense of Lurie [L.T]
1
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Another result of Section 1 is Proposition 1.5.1 saying that a Quillen pair of
model categories gives rise to an adjoint pair of their underlying ∞-categories.
This was previously proven for a simplicial Quillen adjunction, see [L.T], 5.2.4.
In Section 2 of the paper we present a way to simultaneously localize a family

of∞-categories. Under some conditions described in 2.1.1, localization of a fiber
of f : C → D is equivalent to the homotopy fiber of the map of localizations.
This result is applicable when one studies the ∞-category of pairs (A,M)

where A is a dg algebra and M is A-module, as (co)fibered over the ∞-category
of dg algebras. This is how we use it in [H.R].
In the last Section 3 we make an attempt to understand the universal mean-

ing of SM ∞-category underlying a SM model category. Let C be a symmet-
ric monoidal model category. The homotopy category Ho(C) has a symmetric
monoidal structure with the tensor product defined as the left derived fucnctor
of the tensor product in C. The canonical localization functor C ✲ Ho(C) is
lax symmetric monoidal. It is not difficult to produce a SM ∞-category whose
homotopy category is equivalent to Ho(C): one defines it as a DK localization
of the full subcategory Cc ⊂ C spanned by the cofibrant objects of C (see Lurie
[L.HA], 4.1.3). However, it is not clear in general how to present the passage
from C to the DG localization of Cc as a universal construction.
We suggest to define a right SM localization (of a SM ∞-category C with

respect to a collection W of arrows) as a lax SM functor C ✲ D carrying
W to equivalences, universal with respect to this property, and equivalent to
the usual DK localization once the SM structure is forgotten. In a special case
C is the category of complexes over a commutative ring we are able to prove
the existence of right localization, see 3.3.3. We do not know general conditions
which would ensure its existence.

Acknowledgements. Parts of this paper were written during author’s visit to MIT
and IHES. I am grateful to these institutions for hospitality and excellent work-
ing conditions. I am very grateful to the referee for numerous corrections and
suggestions.

1. ∞-Localization. ∞-category of a model category

In 1.1 we present the notion of ∞-localization in the context of ∞-categories.
We work in the setting of ∞-categories as defined and developed in [L.T] and
[L.HA]. Localization of an ∞-category along a collection of arrows is defined by
a universal property; it can be easily expressed in terms of fibrant replacement
in the model category of marked simplicial sets, [L.T], Chapter 3.
A more explicit construction of∞-localization can be given in terms of Dwyer-

Kan localization of simplicial categories. The equivalence of two approaches



3

is ”almost obvious”. This is why we prefer to extend the name ”Dwyer-Kan
localization” to include the ∞-localization of ∞-categories. 2

We use the notion of ∞-localization to define the underlying ∞-category of
an arbitrary model category. This notion generalizes the notion of an underlying
∞-category of a simplicial model category as defined in [L.T], A.2.

In Section 1.4 we study weak simplicial model categories. These are model
categories with a structure of a simplicial category which is compatible in a weak
sense with the model structure, see Definition 1.4.2. Such sort of compatibility
has, for instance, the category of complexes, or the category of commutative DG
algebras over a field of characteristic zero.

Our Proposition 1.4.3 extends to weak simplicial model categories Theorem
4.8 from [DK3] saying, in particular, that the underlying ∞-category in this case
is equivalent to the nerve of the simplicial category of fibrant cofibrant objects.

In 1.5.1 we show that a Quillen pair of model categories gives rise to an adjoint
pair of functors between the respective underlying ∞-categories. The result was
previously known for a simplicial Quillen adjunction (see [L.T], 5.2.4) and, in the
language of simplicial categories, for a Quillen equivalence, see [DK2].

1.1. Dwyer-Kan localization in ∞-categories.

1.1.1. Total localization. The ∞-category of spaces S is the full subcategory of
Cat∞ spanned by ∞-categories whose all arrows are equivalences. The tautolog-
ical embedding

i : S ✲ Cat∞

has both left and right adjoints which we will denote L and K respectively.
The existence of adjoints can be shown as follows. We can realize Cat∞ as the

∞-category underlying the simplicial model category sSet+ of marked simplicial
sets, and S as underlying the category sSet+ endowed with a localized model
structure, see [L.T], 3.1.5.6.

Thus, the fully faithful embedding i : S → Cat∞ admits a left adjoint L :
Cat∞ → S which defines a localization in the sense of Lurie, [L.T], 5.2.7.2.

The right adjoint functor K assigns to an ∞-category X the maximal Kan
subcomplex K(X).

This formally implies that the composition L = i ◦ L is left adjoint to the
composition K = i ◦ K. The unit of adjunction defines a canonical map X →
L(X). The functors L and L are total ∞-localization functors. If C is an ∞-
category, L(C) is presented by a Kan fibrant replacement of C.

2Another reason is the wish to avoid confusion with much more narrow Lurie’s notion of
localization, see [L.T], 5.2.7, which rather deserves the name Bousfield localization.
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1.1.2. Marked ∞-categories and their ∞-localization. A marked ∞-category is,
by definition, a pair (C,W ) with C an∞-category andW a collection of arrows in
C. A marking W is saturated if there exists a map C → D of ∞-categories such
that W is the preimage of the collection of equivalences in D. Since equivalences
in D are precisely the arrows whose image in the homotopy category Ho(D) is
an isomorphism, a saturated marking of C is always defined by a subcategory
W ⊂ C in the sense of [L.T], 1.2.11. In what follows all markings will be
assumed saturated. Marked ∞-categories form an ∞-category Cat+∞ which is
the full subcategory of Fun(∆1, Cat∞) spanned by arrows W → C determined
by saturated markings W of C.
Given a map f : W → C in Cat∞, one defines L(f) or L(C,W ) as the object

(co)representing the ∞-functor

(1) Map(L(f), X) = Map(C,X)×Map(W,X) Map(W,K(X))

from Cat∞ to S. The definition immediately implies the formula 3

L(f) = L(W )
W∐

C.

1.1.3. Description in terms of marked model structure. Let C be an∞-category.
We will check that the total localization L(C) is represented by a fibrant re-
placement C̃ of the marked simplicial set C♯ = (C,C1). In fact, let X be an
∞-category. We have a commutative diagram

(2)

Map(C̃,K(X))
f
✲ Map(C,K(X))

Map(C̃, X)

g

❄

✲ Map(C,X)
❄

,

where all Map spaces are taken in Cat∞. Note that K(X) is Kan. Therefore,
the source and the target of f can be calculated in sSet+; therefore, f is a weak
equivalence. On the other hand, C̃ is a fibrant replacement of C♯, so is also Kan.
Therefore, g is a bijection. This proves the assertion.
The same is true for a general localization. Let f : W → C be as above.

Choose fibrant replacements W ♯ → W̃ and W̃ ⊔W
♯

(C,W ) ✲ C̃ in the category
of marked simplicial sets. Since the marked model structure is left proper, the
composition (C,W )→ C̃ is a weak equivalence, so that the fibrant replacement

C̃ of (C,W ) represents the localization L(C,W ).
Thus, we have

3Recall that the colimit is meant to be in Cat∞, that is, in the ”infinity sense”.
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Proposition. For (C,W ) ∈ Cat+∞ the ∞-localization L(C,W ) is represented by
a fibrant replacement of (C,W ) considered as marked simplicial set.

Note that one has a tautological map τ : φ ✲ L of functors Cat+∞
✲ Cat∞

where φ is the functor forgetting the marking of a marked ∞-category.

1.2. Dwyer-Kan localization in simplicial categories. Using the model cat-
egory structure on simplicial categories (Bergner model structure), Dwyer-Kan
localization can be described as the derived functor of a conventional localization.

Given a map W → C of simplicial categories, its DK localization can be de-

scribed as represented by a conventional localization C̃[W̃−1] where in the diagram

(3)

W̃
p

✲ W

C̃

ĩ

❄

q
✲ C

i

❄

p and q are cofibrant replacements and ĩ is a cofibration.
The above definition was suggested by Dwyer and Kan in [DK1], with an ex-

plicit choice of cofibrant replacements. In the second paper of the series, [DK2],
another important variant of the definition, hammock localization, weakly equiv-
alent to the above one, was given. It is worth mentioning that the hammock
localization LH(C,W) admits a localization map C → LH(C,W) (the originally

defined localization admitted instead a map from a cofibrant replacement C̃), and
that the simplicial sets MapLH (C,W)(x, y) have an explicit description in terms of
diagrams.

Since simplicial categories provide a legitimate model for (∞, 1)-categories, it
is natural to compare two kinds of localizations. Let us show in what sense DK
localization and the ∞-localization defined in 1.1 ”are actually the same”.

Recall [L.T], 2.2.5.1, that there is a Quillen equivalence

(4) C : sSet ✲
✛ sCat : N

between the category of simplicial sets with Joyal model structure and the cat-
egory of simplicial categories with Bergner model structure. The right Quillen
functor here is the homotopy coherent nerve functor which we will simply call
the nerve. We will denote by RN its derived functor which is calculated as the
nerve functor applied to a fibrant replacement.

Let C be a simplicial category. Its total localization is a map C → C̃ such
that the map of their derived nerves RN(C)→ RN(C̃) is a total localization of
∞-categories in the sense of 1.1.1.

By [DK1], 9.2, the total DK localization C → L(C,C) satisfies the above
property.
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Dwyer-Kan localization represents the∞-localization also in general. To show
this, let f : W ✲ C be a map of ∞-categories defined by a saturated marking
on C. Let L(f) = L(W )

∐W C be the localization. Applying the functor C to
the whole picture, we get a cocartesian diagram

(5)

C(W ) ✲ C(L(W ))

C(C)
❄

✲ C(L(f))
❄

where C(W ) ✲ C(C) is a cofibration of cofibrant simplicial categories. We
already know that the map C(W ) ✲ C(L(W )) is a total localization, so C(L(f))
is a Dwyer-Kan localization of C(C) with respect to C(W ).
The following reformulation of what we have just checked is useful.

1.2.1. Proposition. Let C be a fibrant simplicial category and W a fibrant sim-
plicial subcategory of C with Ob(W) = Ob(C). The map C → LH(C,W) induces
a map of marked simplicial sets

(N(C), N(W)) ✲ RN(LH(C,W))♮

which is a weak equivalence.

1.3. The ∞-category underlying a model category. Dwyer and Kan sug-
gested their localization as a way to retain the important higher homotopy in-
formation in the homotopy category.
Localization of a model category remains the most important application of

the theory.
Recall that if C∗ is a simplicial model category and Ccf

∗ is the full simplicial
subcategory consisting of fibrant cofibrant objects, the nerve N(Ccf

∗ ) is, according
to Lurie, the ∞-category underlying the model category C. Since Ccf

∗ represents
for simplicial model categories the DK localization, see [DK3], 4.8, the following
definition seems appropriate.

1.3.1. Definition. Let C be a model category and W the full subcategory of
weak equivalences. The ∞-category N(C) underlying the model category C (or
the nerve of the model category) is defined as RN(LH(C,W)).

Proposition 1.2.1 implies that the nerve of a model category C can be equiva-
lently defined as a fibrant replacement of the marked simplicial set (C,W).

1.3.2. Properties of a nerve. First of all, note that the map spaces MapLH (C,W)(x, y)
(and, therefore, the map spaces of the nerve) have “the correct homotopy type”
as claims the following theorem.
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1.3.3. Theorem. ([DK3], 4.4) For any cosimplicial resolution x• of x and sim-
plicial resolution y• of y the diagonal of the bisimplicial set HomC(x

•, y•) is ho-
motopy equivalent to MapLH(C,W)(x, y). Moreover, if x is cofibrant, the same
homotopy type has the simplicial set HomC(x, y•). Similarly, if y is fibrant, the
same homotopy type has HomC(x

•, y).

A very important property of the homotopy category Ho(C) of a model category
C says that it can be described in different ways: as the localization of C with
respect to weak equivalences in C; as the localization of the full subcategory Cc

(resp., Cf or Ccf) spanned by cofibrant (resp., fibrant or fibrant cofibrant) objects
of C, with respect to weak equivalences in this subcategory.

Equally important is the existence of different presentations of the∞-category
underlying a model category. In this paper existence of different presentations
of the underlying ∞-category is indispensable in proving Proposition 1.5.1 below
which asserts that a Quillen pair of model categories gives rise to an adjoint pair
of the respective underlined categories.

Some of such presentations are given in [DK3], 5.2 and 4.8. Here they are.

1.3.4. Proposition. ([DK3], 5.2) Let C be a model category, Cc (resp., Cf or Ccf)
the full subcategory spanned by the cofibrant (resp., fibrant or fibrant cofibrant)
objects. Then the following canonical morphisms of hammock localizations (with
respect to weak equivalences) are equivalences of simplicial categories.

(6) LH(Cf ) ✲ LH(C) ✛ LH(Cc).

1.3.5. Proposition. ([DK3], 4.8) Let C∗ be a simplicial model category. Then
the canonical morphisms of the following simplicial categories are equivalences.

(7) C
cf
∗

✲ LH(Ccf
∗ ) ✲ LH(C∗) ✛ LH(C)

We would like to have an analog of Proposition 1.3.5 for model categories with
simplicial structure, more general that simplicial model categories.

We think we have found an easy way of proving all equivalences of this sort.
It is based on Key lemma presented below.

The lemma is formulated in the language of∞-localization as presented in 1.1.
The proof uses presentation of (∞, 1)-categories with complete Segal spaces. 4

1.3.6. Key lemma. Let C,D be categories, f : C ✲ D be a functor. For x ∈ D

we denote as Cx the fiber {(c, θ)|c ∈ C, θ : f(c)
∼
→ x}.

More generally, for n-simplex σ ∈ Nn(D) we denote as Cσ the fiber of the
functor f [n] : C[n] ✲ D[n] at σ.

Here and below we denote C[n] the category of functors [n] → C where [n] is
the category consisting of n consecutive arrows.

4We are grateful to the referee who found an error in the original proof, and suggested an
idea of the present proof.
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Lemma. Let f : C → D be a functor. Assume that for any σ ∈ N(D) the
fiber Cσ has a weakly contractible nerve. Then the functor f presents D as an
∞-localization of C with respect to W = {a|f(a) is an isomorphism}.

Proof. We start with a simple observation. Let C and D be categories. Assume
that a functor f : C ✲ D has fibers Cd, d ∈ D, whose nerves N(Cd) are weakly
contractible.
Put W = {α ∈ Mor(C)|f(α) is invertible}. This is a subcategory of C. We

claim that the induced map of the nerves

N(W ) ✲ N(K(D)),

where, as usual, K(D) is the maximal subgroupoid of D, is a weak equivalence.
In fact, we can replace D with K(D) and C with the respective preimage W since
this does not alter the fibers. In this way the claim can be immediately reduced
to the case D = BG, the groupoid with one object and automorphism group G.
The contractible fiber of this map is, by definition, the base change of C → BG
with respect to the universal covering EG→ BG. Thus, N(C) has a contractible
Galois covering with group G, so the map N(C)→ N(BG) is a weak equivalence.

Going back to our lemma, we apply the above observation to the functors
f [n] : C[n] → D[n]. They have weakly contractible fibers, so for each n one has a
weak equivalence

(8) N(C,W )n ✲ N(K(D[n]))

from the n-th space of the classification diagram N(C,W ) defined as in [R], 3.3,
to the nerve of the maximal subgroupoid of D[n].
These equivalences define a Reedy equivalence N(C,W ) ✲ N(D, K(D)),

the latter being the classifying diagram of D in the language of [R], 3.5. The
following argument due to C. Schommer-Pries is borrowed from Mathoverflow
discussion [SP].
Look at the diagram comparing three models for ∞-categories, that of rela-

tive categories (Barwick-Kan, [BK1, BK2, BK3]), simplicial categories with the
Bergner model structure, and simplicial spaces with complete Segal space struc-
ture.

(9)

RelCat ✲ ssSet

sCat

N
C
S
S

✲

L H

✲
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Here the horizontal arrow is the classification diagram functor (C,W ) 7→ N(C,W ),
LH is the hammock localization and NCSS is the composition of homotopy co-
herent nerve functor sCat → sSet and the functor i! : sSet → ssSet de-
fined as in Joyal-Tierney [JT]. Barwick and Kan prove that the hammock lo-
calization LH : RelCat → sCat and the Rezk classification diagram functor
(C,W ) 7→ N(C,W ) induce an equivalence between the respective ∞-categories.

We have to verify the functor NCSS◦LH induces a functor isomorphic to Rezk’s
classification diagram on the ∞-categorical level. Since all the functors involved
are equivalences, this follows from the uniqueness result of Toen [T]: the only
nontrivial automorphism of Cat∞ is the passage to the opposite. So, to prove that
our two functors are isomorphic, it is enough to verify that they both preserve
the initial vertex of the category [1]. �

1.3.7. Proof of 1.3.4. Here is the proof of 1.3.4 based on the Key Lemma.

Denote C̃ the category whose objects are X̃
p
✲ X where X̃ is cofibrant and

p is a weak equivalence. The functor f : C̃ ✲ C carries p : X̃ → X to X .
We will check that the requirements of the Key lemma are met, so the functor f
is an ∞-localization. This immediately implies that f induces an equivalence of

DK localizations LH(C̃, W̃) ✲ LH(C,W).

On the other hand, the functor g : C̃ ✲ Cc carrying X̃ → X to X̃ , has a
left adjoint, so that the unit and the counit are in W. Thus, this functor induces
an equivalence of the hammock localizations. Finally, there is a morphism of
functors i ◦ g ✲ f , where i : Cc → C, which belongs to W, so i should also
induce an equivalence of the hammock localizations.

In order to check the requirements of the Key lemma, we will use the recipe
presented in [H.DSA], A.3. First of all, we check that the categories in question
have a simply connected nerve; then, using Proposition A.3.3 of [H.DSA], prove
that the reduced homology of their nerves vanish.

Let σ = (X0 → . . .→ Xn).

N(C̃σ) is connected.
It is convenient to use the model structure on C[n] with componentwise weak

equivalences and cofibrations, and with the fibrations defined by the right lifting
property with respect to trivial cofibrations.

An object

(10)

P0
✲ . . . ✲ Pn

X0

p0

❄

✲ . . . ✲ Xn

pn

❄
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of C̃σ is called special the map p : P → X is a trivial fibration in the model
category structure on C[n] described above.
In more detail, this means that pn is trivial fibration and the commutative

squares

(11)

Pi−1
✲ Pi

Xi−1

pi−1

❄

✲ Xi

pi

❄

induce a fibration Pi−1
✲ Xi−1 ×Xi

Pi.

Now for any pair P,Q ∈ C̃σ with Q special the set Hom
C̃σ
(P,Q) is nonempty.

This proves connectedness of the nerve of C̃σ.

N(C̃σ) is simply-connected. The Poincaré groupoid of N(C̃σ) is the nerve of

the full localization of C̃σ (here we mean the ”conventional” localization in Cat).

For any p : P → X in C̃σ we construct a cylinder object

(12) P ⊔ P
i0⊔i1

✲ P̃
q
✲ P

so that i0 ⊔ i1 is a cofibration and q is a trivial fibration in C
[n].

Now any pair of arrows a0, a1 : P ✲ Q with special Q can be extended to a

map a : P̃ ✲ Q so that aj = a ◦ ij . Finally, given a closed path

(13) P 0 → P 1 ← . . . P n ← P 0

in C̃σ, choose a special Q and an arrow P k → Q for each k. Since all triangles
with vertices P k, P k+1 and Q become commutative in the localization, the image
of the path (13) in the localization is trivial. This proves simply-connectedness

of N(C̃σ).

N(C̃σ) has vanishing reduced homology. Choose a special q : Q → X in C̃σ.
The functor Q : [n]→ C

c gives rise to a simplex in C which we denote τ .

(14) C̃τ
✲ C̃σ

defined by the composition with q. The first category has a final object, so its

nerve is contractible. The fiber of (14) at P → X is of form C̃σ′ with the simplex
σ′ defined by the componentwise fiber product Q×X P . Lemma A.3.3 of [H.DSA]

claims in this case (by induction) that the reduced homology of N(C̃σ) vanishes.
Proposition 1.3.4 is proven.

The following result (proven in [DK2] for model categories with functorial
decomposition) is deduced by precisely the same reasoning.
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1.3.8. Proposition. Let C be a model category. Then the embedding Ccf → Cf

induces an equivalence of hammock localizations.

�

1.4. Model categories with a simplicial structure. We will generalize Propo-
sition 1.3.5 to model categories having a simplicial structure satisfying some (but
not all) properties of a simplicial model category.

A typical example of such simplicial structure on a model category is the one
one the category of complexes C(k) or the one on a category of DG algebras
(over any operad) in case the ground ring k contains the rational numbers. The
structure presented below is not self-dual. So, formally speaking, there is a dual
notion (existence of weak cylinders instead of weak paths). However, we do not
know any meaningful example of such structure, so we will not mention it in the
sequel.

1.4.1. Weak path functors. Let C be a simplicial category.
We will assume that for any simplicial set K the functor

(15) Y 7→ Hom(K,MapC(Y,X))

is representable. The representing object will be denoted XK . Note that the
standard requirement of existence of simplicial path functors is stronger than
what we require: we do not require representability of the functor

Y 7→ Map(K,MapC(Y,X)).

We will call our requirement the existence of weak path functors.
It is enough to require representability of the functors (15) for K = ∆n. Then

one will automatically have XK = limX∆ where X∆ is the functor from the
category of simplices in K to C carrying ∆n → K to X∆n

.
The functors ΛK : X 7→ XK for a fixed K have automatically a structure of

monad coming from the composition law in C. In fact, the composition map

(16) MapC(Y,X)×MapC(Z, Y ) ✲ MapC(Z,X)

yields a collection of maps

(17) HomC(Y,X
K)×HomC(Z, Y

K) ✲ MapC(Z,X
K)

which, applied to Y = XK , yields, in particular, a canonical map

(18) HomC(Z, (X
K)K) ✲ MapC(Z,X

K),

that is, a canonical map ΛK ◦ ΛK → ΛK . The unit of the monad is defined by
the canonical map X → XK .
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Furthermore, the maps ΛK → ΛK×L and ΛL → ΛK×L yield

(19) ΛK ◦ ΛL ✲ ΛK×L ◦ ΛK×L ✲ ΛK×L.

The following lemma is obvious.

Lemma. A simplicial category with weak path functors admits simplicial path
functors (in the sense of Quillen) iff the maps (19) are isomorphisms.

�

1.4.2. Definition. Let C be a model category having a simplicial structure. We
call it a weak simplicial model category if it admits weak path functors and
satisfies the standard (M7) condition of [Hir], 9.1.6:

If i : A→ B is a cofibration in C and p : X → Y is a fibration in C, then
the map of simplicial sets

Map(B,X) ✲ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration which is a trivial fibration if either i or p is a weak equiva-
lence.

Example. The category of complexes C(A) over an associative ring A has a
projective model structure (quasiisomorphisms as weak equivalences, componen-
twise surjective maps as fibrations). It has also a simplicial category structure
so that weak path functors exist: the functor Y 7→ Map(Y,X)n is presented by
the the complex C∗(∆n,Z)⊗Z X , where C∗(∆n,Z) is the complex of normalized
integral cochains on ∆n. This is a weak simplicial model category.

Example. (See, for instance, [H.H], Sec. 4) Let now k ⊃ Q be a commutative
ring and let O be an operad in C(k). The category Alg

O
(C(k)) of O-algebras

with values in C(k) has a simplicial structure with weak path functors given by
the formula

(20) A∆n

= Ωn ⊗ A,

where Ω• is the simplicial algebra of polynomial differential forms

n 7→ Ωn = k[x0, . . . , xn, dx0, . . . , dxn]/(
∑

xi − 1,
∑

dxi).

This is also a weak simplicial model category.

1.4.3. In what follows we denote by C∗ = {Cn} and Ccf
∗ the model category C

considered as a simplicial category and its full simplicial subcategory spanned by
the fibrant-cofibrant objects.

Proposition. Let C∗ be a weak simplicial model category. The following maps
are weak equivalences of simplicial categories.

0. The localization map Ccf
∗

✲ LH(Ccf
∗ ).

1. The maps LH(C0) ✲ LH(Ck) induced by the degeneracy C0 → Ck.
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2. The maps LH(Cf
0)

✲ LH(Cf
k).

3. The maps LH(Ccf
k ) ✲ LH(Cf

k).

The proof will be given in 1.4.4.

Corollary. Let C∗ be a weak simplicial model category. Then the maps of sim-
plicial categories

(21) C
cf
∗

✲ LH(Ccf
∗ ) ✲ LH(Cf

∗) ✲ LH(C∗) ✛ LH(C)

are equivalences.

�

1.4.4. Proof of Proposition 1.4.3.
0. This follows from the description of localization via the universal prop-

erty. Since W cf
∗ is a simplicial groupoid, the map W cf

∗
✲ LH(W cf

∗ ) is a weak
equivalence, and this implies the claim.

1. Define a functor Λk : Ck
✲ C as follows. For X ∈ Ck let Λk(X) be X∆k

.

A map f : X → Y in Ck is given by a map φ : X → Y ∆k

. It yields a composition

X∆k φ∆k

✲ (Y ∆k

)∆
k

✲ Y ∆k

which will be Λk(f). The functor Λk so defined is right adjoint to the unit functor

U : C0 → Ck carrying X to X and f : X → Y to X
f
✲ Y ✲ Y ∆k

. The
unit and the counit of the adjunction being in W , the adjunction induces an
equivalence of DK localizations.

2. The pair (U,Λk) defines also an adjunction of Cf and C
f
k .

3. The proof uses the Key lemma very similarly to the proof of 1.3.4.

The category C̃ consists of the weak equivalences P → X∆k

where X is fibrant
and P is fibrant cofibrant. Morphisms from P → X∆k

to Q→ X∆k

are given by
commutative triangles in Ck.

Let now σ = (X0 → . . . → Xn). We have to prove that the nerve N(C̃σ) is
weakly contractible. We denote by X be object of C[n] corresponding to σ. A

special object in C̃σ is just a trivial fibration q : Q→ X∆k

in C[n] with cofibrant

Q. If p : P → X∆k

is any object in C̃σ, and q : Q → X∆k

a special object,
there exists a map P → Q in C (and so in Ck) making the diagram commutative.

This proves the nerve of C̃σ is connected. We will now verify that any pair of
maps to a special object has the same image in the total localization. Once more,

given P → X∆k

in C̃σ, we construct a cylinder object (12). Now, given two map

a0, a1 : P ✲ Q∆k

in C̃σ with special Q, we can extend it to a map a : P̃ → Q∆k

.

This proves any two arrows to a special object in C̃σ have the same image in the

localization. This implies that the nerve of C̃σ is simply connected. Vanishing of

the reduced homology of C̃σ is proven in the same way as in 1.3.4.
Proposition is proven.
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1.5. Quillen pair. Let F : C
✲

✛ D : G be a Quillen pair. In case of simplicial
model categories and simplicial adjunction, this induces a pair of adjoint functor
between the underlying ∞-categories, see [L.T], Proposition 5.2.4.6. Proposi-
tion 1.5.1 below asserts that one does not really need the simplicial structure
here.
The functor F preserves weak equivalences between cofibrant objects, and G

preserves weak equivalences between fibrant objects. This defines by universality
a pair of functors which we denote for obvious reasons as the derived functors,

(22) LF : N(C)
✲

✛ N(D) : RG.

1.5.1. Proposition. The functors LF and RG form an adjoint pair of functors
between ∞-categories.

Proof. According to [L.T], 5.2.2, a pair of adjoint functors is defined by an ∞-
category which is both cartesian and cocartesian fibration over ∆1.
Define a simplicial category M over ∆1 as follows. The objects of M over 0

are the cofibrant objects of C, and the objects over 1 are the fibrant objects of
D. We denote as c, c′, . . . the objects over 0 and as d, d′, . . . the objects over 1.
In what follows we use the following notation. Let C be a simplicial category.

Applying to all simplicial Hom-sets the functor

X 7→ Sing |X|,

we get a functorial fibrant replacement Cφ of C.
We define MapM(c, c

′) as MapLH (Cc)φ(c, c
′) and MapM(d, d

′) as MapLH (Df )φ(d, d
′).

Furthermore, we put MapM(d, c) = ∅ and MapM(c, d) = MapLH (D)φ(F (c), d).
The composition is defined by the simplicial functors

LH(Df)φ ✲ LH(D)φ and LH(Cc)φ ✲ LH(D)φ,

the first one being an equivalence and second one being induced by F . The
simplicial category M defined above is obviously fibrant.
The fiber of M at 0 is LH(Cc)φ whereas the fiber at 1 is LH(Df)φ.
It remains to check that the functor M→ ∆1 is a cartesian and a cocartesian

fibration.
According to [L.T], 5.2.4.4, we have to find for each object c over 0 an arrow

α : c→ d and for each d over 1 an arrow β : c→ d, so that

• For any c′ over 0 the map MapM(c
′, c) → MapM(c

′, d), induced by β, is
an equivalence.
• For any d′ over 1 the map MapM(d, d

′) → MapM(c, d
′), induced by α, is

an equivalence.

The arrow α : c → d is defined by a fibrant replacement F (c) → d whereas the
arrow β : c→ d is defined by a cofibrant replacement c ✲ G(d) which is chosen
to be a trivial fibration (so that c is in particular fibrant).
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Let us check the requirements. The universality of α is immediate as a weak
equivalence F (c)→ d gives rise to an equivalence of the map spaces in L(D)φ.

Universality of β is slightly less obvious. We have to deduce that the canonical
map

(23) MapM(c
′, c) ✲ Map(F (c′), F (c)) ✲ Map(F (c′), d) = Map(c′, d)

is an equivalence. This is proven as follows. Choose a cosimplicial resolution
P • → c′; We decompose the map F (c) ✲ d adjoint to the cofibrant replacement
c→ G(d), into a trivial cofibration followed by a fibration as shown below.

(24) F (c) ✲ d′ ✲ d.

We have a commutative diagram of simplicial sets

(25)

HomC(P
•, c) ✲ HomD(F (P •), F (c)) ✲ HomD(F (P •), d′)

HomC(P
•, G(d))
❄

=========================HomD(F (P •), d)
❄

which represents a commutative diagram

(26)

MapLH (Cc)φ(c
′, c) ✲ MapLH (D)φ(F (c′), F (c))

MapLH(C)φ(c
′, G(d))

❄

====MapLH (D)φ(F (c′), d)
❄

.

Since the left vertical map is obviously an equivalence, the composition (23) is
also an equivalence as required.

�

1.5.2. Corollary. Let C be a combinatorial model category. Then the underlying
∞-category NC is presentable. The limits and colimits in NC can be calculated
as derived limits and colimits in C. 5

Proof. According to Dugger’s theorem [Dug], Corollary 1.2, any combinatorial
model category is Quillen equivalent to a simplicial combinatorial model cate-
gory whose underlying ∞-category is known to be presentable. Since Quillen
equivalent model categories have equivalent underlying ∞-categories, this proves
presentability of NC in general.

5Presentability of NC is proven in [L.HA], 1.3.4.22. Lurie defines NC as the localization of
C
c which is of course equivalent to our definition.
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Let now I be a category. The category of functors CI has injective and projec-
tive model structures. One has two Quillen pairs,

(27) colim : CI ✲
✛ C : c

and

(28) c : C
✲

✛ C
I : lim,

where the functor c assigns to x ∈ C the constant diagram with value x. In the
first Quillen pair CI is endowed with the injective model structure, and in the
second one with the projective model structure.
It remains to show that the ∞-category underlying CI (in either model struc-

ture) is equivalent to Fun(N(I), N(C)). Here once more we use Dugger’s result.
Any Quillen equivalence C

✲
✛ D of combinatorial model categories gives rise

to a Quillen equivalence C
I ✲
✛ D

I . Thus, having in mind Dugger’s theorem,
Corollary 1.2, one can assume that C is a combinatorial simplicial model category.
In this case the claim is a special case of [L.T], Proposition 4.2.4.4. �

2. Localization in families

Since∞-localization is functorial, it is reasonable to expect its nice behavior in
families. In this section we assert that for a nice family of marked ∞-categories,
localization of the fibers is equivalent to fibers of the map of the localization 6.
The following definition describes a notion of a (marked) family of marked

infinity categories.

2.1. Recall that Cat+∞ is the∞-category of marked ∞-categories (markings are
assumed to be saturated).

2.1.1. Definition. An arrow f : (C, V ) ✲ (D,W ) in sSet+ is called marked

cocartesian fibration 7 if the following properties are fulfilled.

1. f : C → D is a cocartesian fibration of ∞-categories.
2. A cocartesian lifting of a marked arrow in D is marked in C.
3. For any arrow α : d→ d′ in D the functor α! : Cd → Cd′ preserves marked

arrows.
4. If α : d→ d′ is marked then α! induces an equivalence of the localizations

L(Cd, V ∩ Cd) ✲ L(Cd′ , V ∩ Cd′).

2.1.2. Remark. The markings V ⊂ C are uniquely defined by their intersection
with f−1(K(D)) as any marked arrow in C decomposes into a a cocartesian lifting
of its image in D and a marked arrows whose image in D is equivalence.

6A similar result for conventional categories was independently obtained by Haugseng [Hau].
7Caution: our definition differs from [L.G], 1.4.9
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Our main result Proposition 2.1.4 below describes a family of localizations of
the fibers (Cd, Cd ∩ V ). In order to formulate it, we need a more ”homotopy
invariant” version of the notion of cocartesian fibration. This is what Lurie [L.G]
calls “essentially a cocartesian fibration”, and we prefer to call just a cocartesian

fibrations in Cat∞. Here it is.

2.1.3. Definition. A map f : C → D in Cat∞ is called a cocartesian fibration if
it is equivalent to a map represented by a cocartesian fibration f ′ : C ′ ✲ D′

in sSet.

A morphism f : C ✲ D of ∞-categories in sSet represents a cocartesian
fibration in Cat∞ if and only if it can be embedded into a homotopy commutative
diagram

(29)

C
i

✲ C ′

D
✛

gf

✲

,

where g is a cocartesian fibration and i is a categorical equivalence. Moreover, if
f : C → D is a categorical fibration presenting a cocartesian fibration in Cat∞,
it is a cocartesian fibration in sSet, see [L.G], 1.4.5.

Let f : C ✲ D be a cocartesian fibration inCat∞. An arrow α : ∆1 → C
is f -cocartesian if its composition with i : C → C ′ as in the above diagram,
is g-cocartesian. This notion is independent of presentation and f -cocartesian
arrows in C form a subcategory.

We are now able to formulate the main result of this section. This result is
used in [H.R], Section 4.

2.1.4. Proposition. Let f : (C, V )→ (D,W ) be a marked cocartesian fibration.
Then the localization

L(f) : L(C, V ) ✲ L(D,W )

is a cocartesian fibration in Cat∞. Moreover, for any d ∈ D the induced map
from (Cd, V ∩ Cd) to the homotopy fiber of L(f) at d, is an ∞-localization.

The proof is given in 2.1.5—2.2.6 below.

2.1.5. For an ∞-category D we define Coc(D) as the subcategory of (Cat∞)/D
spanned by the cocartesian fibrations C → D, with the maps preserving cocarte-
sian arrows.

Otherwise, Coc(D) can be described as the∞-category underlying the category
sSet+/D endowed with the cocartesian model structure, see [L.T], Chapter 3.
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Similarly, for (D,W ) ∈ Cat+∞, the infinity category Coc+(D,W ) can be defined
as the subcategory of (Cat+∞)/(D,W ) spanned by the marked cocartesian fibrations,
with the maps preserving cocartesian arrows. It will be convenient, however,
to identify Coc+(D,W ) with another subcategory of (Cat+∞)/(D,W ), taking into
account Remark 2.1.2, via the functor

(30) r : Coc+(D,W ) ✲ (Cat+∞)/(D,W )

carrying f : (C, V )→ (D,W ) to r(f) : (C, V ×D K(D))→ (D,W ).

We will use a weak form of straightening/unstraightening equivalence described
in [L.T], Chapter 3. It provides for an ∞-category D an equivalence of ∞-
categories

(31) Coc(D) ≃ Fun(D, Cat∞).

The marked version of the above equivalence is described as follows. First of all,
for (C, V ), (D,W ) ∈ Cat+∞ we denote Fun((C, V ), (D,W )) as the full subcategory
of Fun(C,D) spanned by the functors carrying V to W .
Let Λ be the collection of arrows in Cat+∞ carried by L : Cat+∞

✲ Cat∞ to
equivalence.

2.1.6. Lemma. The equivalence (31) induces an equivalence

(32) Coc+(D,W ) ≃ Fun((D,W ), (Cat+∞,Λ)).

Proof. The right-hand side of (32) is a full subcategory of Fun(D, Cat+∞) which
is a full subcategory of Fun(∆1,Fun(D, Cat∞)) = Fun(∆1, Coc(D)). The latter
is a subcategory of Fun(∆1, (Cat∞)/D).
We identify Coc+(D,W ) with a subcategory of (Cat+∞)/(D,W ) using the functor

r described in (30). The latter is a subcategory of Fun(∆1, (Cat∞)/D).
It remains to note that two sides of the formula (32) determine the same

subcategory of Fun(∆1, (Cat∞)/D).
�

2.2. Proof of 2.1.4. We will use the following simple lemma.

2.2.1. Lemma. Let f : X → S be a cocartesian fibration in Cat∞,
α : I⊲ → (Cat∞)/S be a colimit diagram, and let β : I⊲ → (Cat∞)/X be obtained
from α by a base change along f . Then β is also a colimit diagram.

Proof. We can represent f with a cocartesian fibration of ∞-categories and α
with a cofibrant representative in the projective model structure on Fun(I, sSet),
where sSet is endowed with the Joyal model structure. Then the naive colimit
in sSet of α followed by a fibrant replacement, represents the colimit of α in
(Cat∞)/S. The base change of a cofibrant object is cofibrant, it commutes with
naive colimits, and preserves weak equivalences, see [L.T], 3.3.1.3. This implies
the claim. �
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2.2.2. The marked cocartesian fibration f : (C, V ) → (D,W ) is classified by
a functor F+ : D → Cat+∞ carrying W to Λ. The composition F = φ ◦ F+ :
D ✲ Cat∞ of F+ with the forgetful functor classifies the cocartesian fibration
C over D.

The composition L ◦ F+ : D ✲ Cat∞ carries W ⊂ D to equivalences, so it
extends to a functor

(33) F : L(D,W ) ✲ Cat∞,

which can be converted back to a cocartesian fibration f̂ : X ✲ L(D,W ).
The canonical map of functors F ✲ F|D induced by the∞-localization leads

to a map C → X over D → L(D,W ) carrying V to equivalences. This yields a
canonical map

(34) θ : L(C, V ) ✲ X

over L(D,W ). Our aim is to verify θ is an equivalence. In other words, we have
to verify that for any Y ∈ Cat∞ the map θ defines an equivalence

Map(X, Y ) ✲ Map♯((C,W ), Y ♮).

Denote XD = D ×L(D,W ) X . The map XD
✲ D is a cocartesian fibration

classified by the functor L ◦ F+ : D ✲ Cat∞.
An arrow α ∈ V will be called vertical if f(α) is identity. It is called horizontal

if it is a cocartesian lifting of an arrow in W ⊂ D. We denote V hor and V ver the
collection of horizontal, resp., of vertical marked arrows. By definition, the set
V ⊂ C, in a marked cocartesian fibration, is generated by V hor ∪ V ver. One has
natural maps L(C, V ver) ✲ XD and L(XD, V

hor) ✲ X . We will prove that
both are weak equivalences.

2.2.3. The map L(XD, V
hor) → X. First of all, let us verify the claim in the

special case W = D1, that is, (D,W ) = D♯. The localization L(XD, V
hor) can

be interpreted in this case as the colimit of the functor L ◦ F+ : D → Cat∞
classifying the cocartesian fibration XD → D.

Similarly, X can be interpreted as the colimit of the functor F : L(D,D1) →
Cat∞. The map D ✲ L(D,D1) is cofinal [L.T], 4.1.1.1, so the natural map of
colimits is an equivalence.

The case of general marking W ⊂ D1 can now be easily deduced. Denote
W the subcategory of D consisting of the simplices whose all edges are in W .
The localization L(D,W ) is a pushout of the diagram L(W) ✛ W ✲ D.
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According to Lemma 2.2.1, the ∞-categories

(35)

XW
✲ XL(W)

XD

❄

✲ X
❄

defined as pullbacks of W,L(W) and D, also form a pushout diagram with X .
According to the special case verified above, XL(W) is a localization of XW with
respect to V hor. This also implies that X is a localization of XD with respect to
V hor.

2.2.4. The map L(C, V ver) → XD. We will verify the claim for D = ∆n. This
will imply by Lemma 2.2.1 the claim for a general D as both L(C, V ver) and XD

are presented as colimits of their base changes with respect to ∆n → D,

(36) L(C, V ver) = colim∆n→D L(C ×D ∆n, V ver),

(37) XD = colim∆n→D XD ×D ∆n.

The cocartesian fibration C → D classified by a functor ∆n ✲ Cat∞, given
by a sequence C : C0 ✲ . . . ✲ Cn of ∞-categories, is equivalent to its
mapping simplex M(C) whose k-simplices over α : ∆k → ∆n are just the k-
simplices of Cα(0), see [L.T], 3.2.2.7.
Denote V i = V ver ∩ C i. We will mark an edge in M(C) over an edge i→ j of

∆n if it comes from a marked edge in C i. The corresponding marked simplicial
set will be denoted M(C)♮. The cocartesian fibration XD → D is equivalent to
the mapping simplex M(L(C)) where

L(C) : L(C0, V 0) ✲ . . . ✲ L(Cn, V n).

We want to verify that the map M(C)→M(L(C)) induces, for each∞-category

Y , a homotopy equivalence between Map(M(L(C)), Y ) and Map♯
sSet+

(M(C)♮, Y ♮).
This results from the following presentation of the mapping simplex as colimit.

2.2.5. Lemma. Let C : C0 ✲ . . . ✲ Cn be a sequence of ∞-categories.
Then the mapping simplex M(C) can be presented as the colimit of the diagram

(38) C0×∆n ✛ C0×∆n−1 ✲ C1×∆n−1 ✛ C1×∆n−2 ✲ . . . ✲ Cn,

where the forward arrows are defined by the maps C i → C i+1 and the backward
arrows are defined by the 0-th face maps ∆i → ∆i+1.

Proof. Induction in n. �
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2.2.6. Thus, the map θ defined in (34) is an equivalence of∞-categories. There-
fore, it induces an equivalence of homotopy fibers over any d ∈ D. Thus, homo-
topy fiber of L(f) at d is equivalent to Xd = F(d) = L(Cd, V ∩ Cd).

Proposition 2.1.4 is proven.

3. Localization of SM ∞-categories

3.1. Adjoint functors. Let C⊗,D⊗ be SM ∞-categories and let F : C⊗ → D⊗

be a symmetric monoidal functor. Recall that this means, in particular, that
p : C⊗ → NFin∗ and q : D⊗ → NFin∗ are cocartesian fibrations and that the
functor F preserves cocartesian edges.

Denote, as usual, C = C
⊗
〈1〉 and similarly for D.

The following lemma is a special case of [L.HA], 7.3.2.7.

3.1.1. Lemma. The functor F admits a right adjoint if and only if its restric-
tion F |C admits a right adjoint. In this case the right adjoint functor to F is
automatically a morphism of ∞-operads.

Proof. The functor F admits a right adjoint iff for any d ∈ D⊗ the presheaf on
C
⊗ defined as c 7→ Map(F (c), d) ∈ S, is representable.
Assume first that d ∈ D. In this case the above functor is represented by G(d),

where G is adjoint to F |D.
In fact, for c =

⊕
i∈I ci in the standard notation, with ci ∈ C, for any α : I∗ →

〈1〉 in Fin∗ one has

Mapα
C⊗(c, G(d)) ≃ MapC(α!(c), G(d)) ≃ MapC(α!(F (c)), d) ≃ Mapα

D⊗(F (c), d).

For a general d =
⊕

i∈I di the functor c 7→ Map(F (c), d) is represented by⊕
i∈I G(di).
If α : d→ d′ is an inert edge in D⊗, the formula above for G implies that G(α)

is as well inert. This means that G is automatically a map of ∞-operads. �

3.2. Strict SM localization. Let p : C⊗ ✲ NFin∗ be a symmetric monoidal
∞-category [L.HA] with underlying category C and let W be a collection of
arrows in C.

3.2.1.Definition. A (strict) SM localization of the pair (C⊗,W ) is a SM category
D⊗ together with a SM functor f : C⊗ ✲ D⊗ carrying all arrows from W to
equivalences and satisfying the following properties.

• Universality: for any SM ∞-category E the map

FunSM(D,E) ✲ FunSM
W (C,E)

from the space of SM functors D→ E to the space of SM functors C→ E

carrying W to equivalences, is an equivalence.
• The map (C,W ) ✲ D is a Dwyer-Kan localization.
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The marking W of C = C
⊗
〈1〉 defines a marking of each fiber C

⊗
〈n〉 so that the

maps
C
⊗
〈n〉

✲ C
n

are equivalences of marked∞-categories. The subcategory spanned by all marked
arrows will be denoted W⊗. The following result is a direct consequence of 2.1.4.

3.2.2. Proposition. Let C⊗ be a SM ∞-category, W be a marking in C, and
W⊗ its extension as described above. Assume that for any active arrow α in
Fin∗ the functor α! preserves markings. Then SM localization of C⊗ exists and
is equivalent to the canonical map L(C⊗,W⊗) ✲ NFin∗.

3.3. Right SM localization. The strict SM localization as defined above sel-
dom exists, as the collection of arrows W is seldom closed under tensor product.
This is why we present below a more practical notion.

3.3.1. Definition. Right SM localization of the pair (C⊗,W ) is a SM category
D⊗ together with a lax SM functor f : C⊗ ✲ D⊗ carrying all arrows from W
to equivalences and satisfying the following properties.

• Universality: for any SM ∞-category E the map

Funlax(D,E) ✲ Funlax
W (C,E)

from the space of lax SM functors D→ E to the space of lax SM functors
C→ E carrying W to equivalences, is an equivalence.
• The map (C,W ) ✲ D is a Dwyer-Kan localization.

Note that under the assumptions of Proposition 3.2.2 the SM localization
L(C⊗,W⊗) satisfies as well the universality with respect to lax SM functors,
that is it is also a right SM localization.
The following proposition describes another context where right SM localiza-

tion exists.

3.3.2. Proposition. Let C⊗ be a SM ∞-category, W be a marking in C, and W⊗

its extension as described above. Assume that there exists a full SM subcategory
C
⊗
0 of C⊗ satisfying the following properties.

• The embedding ι : C0 → C admits right adjoint ρ : C→ C0 (that is, C0 is
a right (Bousfield) localization in terms of Lurie, see [L.T], 5.2.7.2).
• For any active arrow α in Fin∗ the restriction of the functor α! to C

⊗
0

preserves markings.
• Any arrow φ in C such that ρ(φ) is an equivalence, is in W .

Then right SM localization of C⊗ with respect to W exists and is equivalent to
the canonical map L(C⊗

0 ,W
⊗ ∩ C

⊗
0 )

✲ NFin∗.

Proof. Since the left adjoint functor ι : C0
✲ C is a restriction of a SM functor,

its right adjoint ρ extends canonically to a lax SM functor ρ : C⊗ ✲ C
⊗
0 .
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According to 3.2.2, L(C⊗
0 ,W

⊗ ∩ C
⊗
0 ) is a SM localization of C⊗

0 , so one has an
equivalence

(39) Funlax(L(C⊗
0 ,W

⊗ ∩ C
⊗
0 ),D) ✲ Funlax

W∩C0
(C0,D).

It remains therefore to check that the lax SM functor ρ induces an equivalence

(40) Funlax
W∩C0

(C0,D) ✲ Funlax
W (C,D).

The embedding ι : C0 → C yields a map in the opposite direction. Since the
unit and the counit of the adjunction ι : C0

✲
✛ C : ρ belong to W , they prove

the constructed maps are homotopy inverse to each other. �

Let C be a symmetric monoidal category endowed with a structure of model
category. In case the left derived tensor product defines a symmetric monoidal
structure on Ho(C), one has a lax SM functor Q : C ✲ Ho(C), so we would
like to expect that the underlying ∞-category N(C) is a right SM localization of
C. We present below the only case we were able to prove.

3.3.3. Example. The category of complexes C(k) over a commutative ring k is
symmetric monoidal. Let us show that there exists a right SM localization of
C(k) with respect to quasiisomorphisms. Denote C∗(k) the simplicial category
of complexes of k-modules, with the simplicial map space Map(X, Y ) defined as
in 1.4.2.

The category C∗(k) is a fibrant simplicial SM category and the embedding
yields a SM functor ι : C(k) ✲ C∗(k). We will denote by the same letter the
SM functor between the corresponding SM ∞-categories.

The full subcategory Cc
∗(k) of C∗(k) spanned by the cofibrant complexes is

a SM ∞-category and the embedding admits right adjoint. This easily follows

from the fact that for a cofibrant replacement X̃ ✲ X of a complex X and
any cofibrant complex Y the natural map induced by the composition

(41) Map(Y, X̃) ✲ Map(Y,X),

is an equivalence. This yields the lax SM functor C(k) ✲ L(Cc
∗(k)). It is

universal by the same reasoning we used in the proof of Proposition 3.3.2.

References

[BK1] C. Barwick, D. Kan, Relative categories: another model for the homotopy theory of
homotopy theories, Indag. Math. (N.S.) 23 (2012), no. 1-2, 4268.

[BK2] C. Barwick, D. Kan,
[BK3] C. Barwick, D. Kan,
[Dug] D. Dugger, Combinatorial model categories have presentations, Adv. Math.

164(2001), 177-201, arXiv.math/0007068.
[DK1] W. Dwyer, D. Kan, Simplicial localizations of categories. J. Pure Appl. Algebra 17

(1980), no. 3, 267-284.
[DK2] W. Dwyer, D. Kan, Calculating simplicial localizations. J. Pure Appl. Algebra 18

(1980), no. 1, 17-35.



24 VLADIMIR HINICH

[DK3] W. Dwyer, D. Kan, Function complexes in homotopical algebra. Topology 19 (1980),
no. 4, 427-440.

[Hau] R. Haugseng, Rectification of enriched infinity-categories, arXiv:1312.3881.
[H.H] V. Hinich, Homological algebra of homotopy aplebras, Comm. Alg., 25:10 (1997),

3291–3323.
[H.R] V. Hinich, Rectification of algebras and modules, preprint arXiv:1311.4130.
[H.DSA] V. Hinich, Deformations of sheaves of algebras, Adv. Math. 195(2005), no. 1, 102–

164, arXiv:math/0310116.
[Hir] P. Hirschhorn, Model categories and their localizations, Mathematical Surveys and

Monographs, 99. AMS, Providence, RI, 2003. xvi+457 pp.
[JT] A. Joyal, M. Tierney, Quasi-categories versus Segal spaces. Categories in algebra,

geometry and mathematical physics, 277-326, Contemp. Math., 431, Amer. Math.
Soc., Providence, RI, 2007.

[L.HA] J. Lurie, Higher algebra, preprint August 3, 2012, available at
http://www.math.harvard.edu/ lurie/papers/HigherAlgebra.pdf.

[L.T] J. Lurie, Higher topos theory, Annals of Mathematics Studies, 170. Prince-
ton University Press, Princeton, NJ, 2009. xviii+925 pp, also available at
http://www.math.harvard.edu/ lurie/papers/croppedtopoi.pdf.

[L.G] J. Lurie, (∞, 2)-categories and the Goodwillie calculus, I, preprint, October, 2009,
available at http://www.math.harvard.edu/ lurie/papers/GoodwillieI.pdf.

[R] C. Rezk, A model for the homotopy theory of homotopy theories, Transactions AMS,
353 (2001), 973–1007.

[SP] Mathoverflow discussion, http://mathoverflow.net/questions/92916/does-the-classification
[T] B. Toen, Vers une axiomatisation de la théorie des catégories supérieures, K-Theory
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