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The C2–spectrum Tmf1.3/ and its invertible modules

MICHAEL A HILL

LENNART MEIER

We explore the C2 –equivariant spectra Tmf1.3/ and TMF1.3/ . In particular, we
compute their C2 –equivariant Picard groups and the C2 –equivariant Anderson dual
of Tmf1.3/ . This implies corresponding results for the fixed-point spectra TMF0.3/

and Tmf0.3/ . Furthermore, we prove a real Landweber exact functor theorem.

55N34, 55P42

1 Introduction

The spectrum TMF of topological modular forms comes in many variants. While TMF
itself arises from the moduli stack of elliptic curves Mell , there is also a spectrum Tmf
associated with the compactification Mell . Finally, tmf is defined as the connective
cover of Tmf. It has been the spectrum tmf and its cohomology that have been so far
most relevant to applications (see eg Behrens, Hill, Hopkins and Mahowald [9] and
Behrens and Pemmaraju [12] for applications to generalized Toda–Smith complexes
and Ando, Hopkins and Rezk [2], Mahowald and Hopkins [45] and Hill [26] for
applications to string bordism).

It is often simpler to work with topological modular forms with level structures. Among
the many possibilities, the most relevant for us will be TMF1.n/ and TMF0.n/ corre-
sponding to the moduli stacks M1.n/ and M0.n/. The former stack classifies elliptic
curves with a chosen point of exact order n and the latter elliptic curves with a chosen
subgroup of order n. Note that for n� 2, the spectrum TMF1.n/ is Landweber exact,
while TMF0.n/ is not in general, as will be explained in Section 4.1.

Besides providing simpler variants of TMF, there are several reasons to care about
TMF with level structures. First, we mention the Q.l/–spectra defined by Behrens
(see Behrens [7] and Behrens and Ormsby [10]), which are built from TMF with level
structures and provide approximations of the K.2/–local sphere. Second, as shown in
Behrens, Ormsby, Stapleton and Stojanoska [11], there is an injective map

�� TMF^TMF!
Y

i2Z;j�0

�� TMF0.3
j /��� TMF0.5

j /;
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important in the study of cooperations of TMF and tmf. As a last point, we mention
that Lurie defines in [40] a sheaf of E1–ring spectra on the n–torsion of the universal
elliptic curve over Mell whose global sections provide the value of Cn –equivariant
TMF at a point; if we invert n, this can be analyzed in terms of the TMF1.k/ for k j n.

In each of these cases, it would be interesting to have compactified and connective
variants. As a first step, Hill and Lawson overcame in [29] certain technical obstacles
to define E1–ring spectra Tmf1.n/ and Tmf0.n/ corresponding to the compactified
moduli stacks M1.n/ and M0.n/. One can then define tmf1.n/ and tmf0.n/ as the
connective covers of these spectra and they form good connective models for TMF1.n/

and TMF0.n/ if n is small. The aim of this article is to explore these spectra in the
case nD 3 with methods from real homotopy theory.

Real homotopy theory is the study of genuine equivariant C2 –spectra, also sometimes
known as real spectra. The theory has its origins in Atiyah’s article [4] on real K-theory
and came to new prominence through the work of Hu and Kriz [32] and the work of
Hill, Hopkins and Ravenel [28] on the Kervaire invariant one problem.

The spectra TMF1.3/ and Tmf1.3/ inherit C2 –actions from an algebrogeometrically
defined C2 –action on M1.3/. We will view them as cofree C2 –spectra (as explained
in Sections 2.2 and 4.1) so that

TMF1.3/
C2 ' TMF1.3/

hC2 ' TMF0.3/

and
Tmf1.3/

C2 ' Tmf1.3/
hC2 ' Tmf0.3/:

We define the C2 –spectrum tmf1.3/ as the C2 –equivariant connective cover of Tmf1.3/.

Mahowald and Rezk [46] have already computed the homotopy groups of TMF0.3/ and
a similar computation actually produces the RO.C2/–graded C2 –equivariant homotopy
groups of tmf1.3/ and hence TMF1.3/. Using this computation, we show that tmf1.3/

has a real orientation and is more precisely a form of BPRh2i. This implies in particular
that there exists a form of BPRh2i that is a strictly commutative C2 –spectrum, while
it was not known before that there is a form of BPRh2i with any kind of ring structure.

Moreover, we show that TMF1.3/ is real Landweber exact in the sense that there is an
isomorphism

MRF.X /˝MU2�
TMF1.3/2�! TMF1.3/FX;

natural in a C2 –spectrum X . Here MRF.X / denotes the RO.C2/–graded C2 –
equivariant homology groups of X with respect to the real bordism spectrum MR and
similarly for TMF1.3/FX .
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As M1.3/ is proper over Spec Z
�

1
3

�
, one expects a manifestation of Serre duality in

Tmf1.3/. A suitable duality to look for in the topological setting is Anderson duality, an
integral version of Brown–Comenetz duality. For example, Stojanoska computed in [60]
that Tmf

�
1
2

�
is Anderson self-dual in the sense that IZŒ 1

2
� Tmf

�
1
2

�
'†21 Tmf

�
1
2

�
. We

want to compute the C2 –equivariant Anderson dual IZŒ 1
3
� Tmf1.3/ of Tmf1.3/. While

it is an easy calculation that nonequivariantly IZŒ 1
3
� Tmf1.3/ ' †9 Tmf1.3/, this

equivalence does not hold C2 –equivariantly. Rather, we get the following:

Theorem There is a C2 –equivariant equivalence

IZŒ 1
3
� Tmf1.3/'†

5C2� Tmf1.3/;

where � denotes the regular representation of C2 . It follows that

IZŒ 1
3
� Tmf0.3/' .†

5C2� Tmf1.3//
hC2 :

Thus, the self-duality of Tmf0.3/ is not fully apparent in the integer-graded homotopy
groups

�� Tmf0.3/Š �
C2
� Tmf1.3/;

but only in the RO.C2/–graded homotopy groups �C2
F Tmf1.3/. Likewise, the resulting

universal coefficient sequence uses RO.C2/–graded homotopy groups. Indeed, for
C2 –spectra X the theorem implies a short exact sequence

0!Ext1
�
R

C2

.a�6/C.b�2/�
.X /;Z

�
1
3

��
!R

aCb�
C2

.X /!Hom
�
R

C2

.a�5/C.b�2/�
.X /;Z

�
1
3

��
!0

with RD Tmf1.3/ and Hom and Ext computed over Z
�

1
3

�
. We prove the theorem by

an application of the slice spectral sequence. There has been similar work by Ricka [56]
on Anderson duality of integral versions of Morava K-theory; our results have been
obtained independently.

Next we turn to the topic of Picard groups. Given an E1–ring spectrum R, its Picard
group Pic.R/ is defined as the group of invertible R–module spectra up to weak
equivalence. From the perspective of Bunke and Nikolaus [14], these are the global
twists of the associated cohomology theory and define a natural grading of R–homology
groups. The Picard group was first introduced into stable homotopy theory by Hopkins;
recent work of Mathew and Stojanoska [51] then significantly extended our toolbox for
its computation. They show that all invertible TMF–modules are suspensions of TMF
so that Pic.TMF/ Š Z=576. In contrast, they show that Pic.Tmf/ contains exotic
elements that are not suspensions of Tmf and compute Pic.Tmf/Š Z˚Z=24.
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We will use their methods to understand Pic.TMF0.3// and Pic.Tmf0.3//, but add a
dash of equivariant homotopy theory. The maps

Tmf0.3/! Tmf1.3/ and TMF0.3/! TMF1.3/

are faithful C2 –Galois extensions in the sense of Rognes; see Mathew and Meier [50,
Theorem 7.12]. As explained in Section 6.1, Galois descent then shows that

Pic.Tmf0.3//Š PicC2
.Tmf1.3// and Pic.TMF0.3//Š PicC2

.TMF1.3//;

where PicC2
.Tmf1.3// denotes the group of invertible C2–module spectra over Tmf1.3/

and similarly for PicC2
.TMF1.3//. First we prove:

Theorem Every invertible TMF0.3/–module is an (integral) suspension of TMF0.3/.
Thus,

PicC2
.TMF1.3//Š Pic.TMF0.3//Š Z=48:

The analogous theorem for Tmf0.3/ is not true, but we have the following equivariant
refinement:

Theorem Every invertible C2 –equivariant Tmf1.3/–module is an equivariant suspen-
sion †V Tmf1.3/, for an element V 2 RO.C2/. The corresponding homomorphism

RO.C2/! PicC2
.Tmf1.3//; V 7!†V Tmf1.3/

is thus surjective and has kernel generated by 8� 8� , for � the sign representation.
Therefore,

Pic.Tmf0.3//Š PicC2
.Tmf1.3//Š Z˚Z=8:

We remark that invertible modules over TMF with level structure occur in the study of
equivariant TMF, for example those defined by representation spheres. We hope that
our results on Picard groups may have relevance there.

We give a short overview of the structure of this article. Section 2 discusses preliminaries
from equivariant homotopy theory. In particular, it is about the passage from spectra with
G–action to genuine G–spectra and to their connective covers and how a commutative
multiplication under this passage is preserved; furthermore, we discuss the RO.G/–
graded homotopy fixed point spectral sequence and the slice spectral sequence. Section 3
is about real orientability and the real Landweber exact functor theorem; it concludes
with the definition and basic properties of forms of BPRhni and ER.n/. Section 4
introduces the main characters Tmf0.3/ and Tmf1.3/ and their variants, discusses their
relationship and computes the RO.C2/–graded homotopy groups of tmf1.3/; here we
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also present our applications to forms of BPRh2i and ER.2/. Section 5 computes the
slices of Tmf1.3/ and applies this to compute its equivariant Anderson dual. Section 6
is about computations of Picard groups, especially those of TMF0.3/ and Tmf0.3/.
As a step, we prove a generalization of a result of Baker and Richter [5] to give a
conceptual computation of Pic.TMF1.3//. Note that Sections 5 and 6 are independent
and also independent of Section 3.

Conventions For a scheme X with an action by a group scheme G , we denote
by X=G the stack quotient. Furthermore, for a (pre)sheaf F of spectra, ��F will
always denote the sheafified homotopy groups, ie the sheafification of U 7! ��.F.U //.

Acknowledgements We thank John Greenlees, Akhil Mathew and the referee for their
comments on earlier versions of this article. We also thank the Hausdorff Institute for
its hospitality during the time when the first version of this article was completed. Hill
was supported by NSF DMS-1307896 and the Sloan Foundation. Meier was supported
by DFG SPP 1786.

2 G –spectra and equivariant homotopy

After giving some basics on (genuine) G–spectra, we will treat in detail how to go
from a spectrum with a G–action to a genuine G–spectrum, why this move preserves
commutative multiplications and why the same is true for the passage to connective
covers. After this, we will discuss the RO.G/–graded homotopy fixed point spectral
sequence and the slice filtration.

2.1 Conventions on equivariant spectra

We work in the category of genuine G–spectra for a finite group G , and our particular
model will be orthogonal G–spectra. These were introduced by Mandell and May [47],
though we draw heavily from [28] and also recommend [58] for a slightly different
point of view on the same subject matter. In particular, a G–spectrum will always
mean an orthogonal G–spectrum indexed on a complete G–universe, and morphisms
are equivariant maps.

For each H �G and for each G–spectrum X , we have stable homotopy groups

�H
n .X /D colimV ŒS

VCRn

;X.V /�H ;

where the colimit is taken over the finite dimensional representations of G (or more
simply, over the cofinal subsystem of sums of the regular representation), and for any
representation V , the space SV is the 1–point compactification. Recall finally that a
map is a weak equivalence if it induces an isomorphism on these equivariant stable
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homotopy groups for all H � G . These are the weak equivalences in the standard
model structures on SpG which give the genuine equivariant stable homotopy category;
this extends the ordinary equivariant Spanier–Whitehead category described by Adams.

Since we are considering the genuine model structure, the homotopy objects are
naturally Mackey-functor valued: for any two G–spectra X and Y , the assignment

T 7! ŒTC ^X;Y �G

extends to an additive functor from the Burnside category of finite G–sets to abelian
groups. In general, we will denote the obvious Mackey functor extension of classical
objects like homotopy groups with an underline. In particular, we can rephrase the
above condition on weak equivalences as simply that a map f W X ! Y is a weak
equivalence if it induces an isomorphism of homotopy Mackey functors ��X ! ��Y .

2.1.1 RO.G /–grading and distinguished representations Since we are working
genuine equivariantly, the representation spheres SV are elements of the Picard group
of the homotopy category Ho.SpG/. In particular, all of our Z–graded homotopy
groups extend to RO.G/–graded homotopy groups, and similarly for Mackey functors,
via the assignment

T 7! ŒTC ^SV
^X;Y �G :

We will use this combined structure extensively, and when X D S0 , we will simply
denote these groups by �V .Y /. Note that to be precise, we have to choose (once
and for all) for every element of RO.G/ an actual invertible G–spectrum and not just
a class in the Picard group and by abuse of notation we will denote it also by SV

for V 2 RO.G/. Every such choice results in �F being a lax symmetric monoidal
functor by [38, Appendix A].

We single out several representations.

Notation 2.1 (1) Let � denote the regular representation of G .

(2) Let N� denote the quotient of � by the trivial summand.

(3) Let � denote the nontrivial 1–dimensional real representation of C2 .

There are several distinguished homotopy classes of maps between representation
spheres we shall need. If V is a representation of G with no fixed points, then let

aV W S
0
! SV

denote the inclusion of the fixed points into the V sphere. This map is not null, and no
iterate of it is null. However, its restriction to any subgroup H such that V H ¤ f0g is
null-homotopic. This shows the following standard fact in equivariant stable homotopy
theory.
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Lemma 2.2 Given a G–spectrum X , the geometric fixed points of X can be computed
as the G–fixed points of

X Œa�1
N� �D hocolim.X a N�

�!† N�X
a N�
�!� � � /:

Proof The homotopy colimit

S1N� D hocolim.S0 a N�
�!S N�

a N�
�!� � � /

is a model for the space zEP , where P is the family of proper subgroups of G . The
geometric fixed points are computed by smashing X with zEP and taking fixed points,
from which the result follows.

2.1.2 G –equivariant homology theories

Definition 2.3 Let G be a finite group. An (ungraded) G–equivariant homology
theory is an exact functor h0W Ho.SpG/! Ab to the category of abelian groups (or
any other abelian category) that sends (possibly infinite) coproducts to direct sums.

To such an ungraded homology theory we can associate an RO.G/–graded version
as follows: For a given element V 2 RO.G/, we consider the chosen invertible
G–spectrum SV and define hV .X / as h0.S

�V ^X /. The resulting functor is also
called an RO.G/–graded homology theory. We will write hV for hV .S

0/.

For a G–spectrum E , we can define a G–equivariant homology theory by

X 7!E0.X /D �
G
0 .E ^X /;

and we clearly get a natural isomorphism EF.X /Š�
G
F .E ^X / of the RO.G/–graded

theories as well.

2.2 Passage from naive to genuine

The spectra which arise from algebraic geometry machines are almost never given to
us as orthogonal G–spectra for some group G . Instead, they will be commutative ring
spectra together with an action of G . There is a natural, homotopically meaningful way
to prolong this to a genuine G–spectrum in a way which respects the multiplicative
structure: passage to the cofree spectrum. It is easiest to explain this in two steps:
extending a naive G–spectrum to a genuine one and then controlling the multiplicative
structure.

2.2.1 Additive structure Denote by SpG
u the category of orthogonal spectra with

G–action. We consider an equivariant map X ! Y to be an equivalence if it is a stable

Algebraic & Geometric Topology, Volume 17 (2017)



1960 Michael A Hill and Lennart Meier

equivalence of the underlying nonequivariant orthogonal spectra. Since the inclusion
of trivial representations of G into a complete universe induces an equivalence

I W SpG
u ! SpG

of categories [47, Theorem V.1.5], we may consider any spectrum with a G–action
as an orthogonal G–spectrum indexed on a complete universe. The functor I is not
homotopical, however.

In contrast, the functor

SpG
u ! SpG ; X 7! IF.EGC;X /

preserves weak equivalences and defines therefore a derived functor for I W SpG
u !SpG .

Here F.�;�/ is understood to be the derived function spectrum so that it includes a
fibrant replacement of X . We call G–spectra cofree if they are up to weak equivalence
in the image of IF.EGC;�/.

In particular, using the cofree functor IF.EGC;�/, we may view any spectrum with a
G–action as a genuine G–spectrum. We will use this to view TMF1.3/ and Tmf1.3/

as C2 –spectra.

2.2.2 Multiplicative concerns The homotopical behavior of the cofree functor on
commutative ring spectra is most easily understood via an operadic approach using
instead E1–ring spectra. Let O be an E1 operad (for example, the linear isometries
operad). As the model category of orthogonal spectra fulfills the monoid axiom by [48,
Theorem 12.1], [59, Theorem 4] implies that the category of O–algebras in orthogonal
spectra with G–action has a projective model structure. Thus, if R is an O–algebra
with G–action, there exists an O–algebra with G–action that is fibrant as a spectrum
and weakly equivalent to R.

The equivalence of categories I above is strong symmetric monoidal, so in particular,
it takes O–algebras to O–algebras in orthogonal G–spectra indexed on a complete
universe. Here, the group G acts trivially on the operad, so this is the prototypical
example of a naive N1 operad in the sense of [13]. Applying IF.EGC;�/ takes R

to IF.EGC;R/, which is an algebra over F.EGC;O/ if R is fibrant. However, this
operad is a G-E1 operad [13, Theorem 6.25]. In particular, since the category of
algebras over a G-E1 operad is Dwyer–Kan equivalent to the category of equivariant
commutative ring spectra by [13, Theorem A.6], we conclude the following.

Theorem 2.4 If R is a commutative ring spectrum with a G–action via commutative
ring maps, then IF.EGC;R/ is an equivariant commutative ring spectrum. More pre-
cisely, one can functorially associate to R an equivariant commutative ring spectrum R0

such that R0 and IF.EGC;R/ are equivalent as E1–algebras.
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In particular, this will immediately imply that TMF1.3/ and Tmf1.3/ can actually be
viewed as C2 –equivariant commutative ring spectra. Deducing a similar result for
the equivariant connective cover of Tmf1.3/ will require a simple result undoubtedly
known to the experts. The proof is also standard; we include it for completeness. Before
proceeding, recall the following result about the connectivity of symmetric powers.

Lemma 2.5 If X is a .k�1/–connected equivariant spectrum with k � 0, then for
all n� 1,

Symn.X /DX^n=†n

is also .k�1/–connected.

Proof This follows from the weak equivalence

EG†nC ^†n
X^n

! Symn.X /:

As in [28, (B.171) and (B.177)], we can reduce the statement of the lemma by this
equivalence to the following statement: the G–spectrum

V
G=H S l is .k�1/–connected

for all H �G and all l � k . This is clear, as
V

G=H S l Š S indG
H

l and indG
H contains

an l –dimensional trivial summand.

Remark 2.6 If X is .k�1/–connected for k > 1, then we do not always get a bump
in the connectivity of the symmetric powers as happens classically. For n sufficiently
large, the nth symmetric power is more highly connected than X , but for low values
of n, they are often equally connected. The reason for this is the norm: if ŒG WH �Dm,
then there is a canonical homotopy class of maps

N G
H i�H X ! Symm.X /

coming from any inclusion of G � †m=� into EG†m , where � is the graph of
the homomorphism G! †m defining G=H as a G–set; see [28; 13]. In particular,
if �G

H
is the representation IndG

H R and if N�G
H

is the quotient of �G
H

by the trivial
summand, then for any class x 2 �G

k
.X /, we have an element

ak

N�G
H

N G
H i�H .x/ 2 �

G
k .Symm.X //:

Checking on the case of spheres shows that these maps are generically nontrivial. This
is the only complicating factor in the proof of the following theorem, since it means that
the k th homotopy Mackey functor of the free commutative ring spectrum on something
.k�1/–connected is strictly larger than

�kS0
˚�k.X /:
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Theorem 2.7 If R is a G–equivariant commutative ring spectrum, then there is a
commutative ring spectrum structure on the .�1/–connected cover r of R such that
the canonical map r !R is a map of commutative ring spectra.

Proof We will inductively build a series of .�1/–connected commutative ring spectra
rk over R for �1�k such that the induced map on homotopy groups �j .r

k/!�k.R/

is an isomorphism for 0� j � k (this condition is vacuous when k D�1). Let r�1

denote the zero sphere, which maps to R via the unit.

Assume that we have built rk�1!R as above. We can assume that rk�1 is cofibrant
in the positive model structure on equivariant commutative rings as in [28, Proposition
B.130]. To build rk , we first choose a surjective mapM

i2Ik

AG=Hi
! �k.R/;

where AG=Hi
is the Mackey functor �k.G=HiC ^Sk/. Any such surjective map can

be realized topologically as a mapW
i2Ik

G=HiC ^Sk jk
�!R;

and this induces a map of commutative ring spectra

ek D P
�W

i2Ik
G=HiC ^Sk

�
!R;

where P denotes the free commutative ring spectrum functor. Smashing this with the
map rk�1!R gives a map

ek ^ rk�1 Jk
�!R:

This is the correct derived smash product by [28, Proposition 2.30]. The map S0! ek

induces an isomorphism in homotopy groups through dimension .k�1/ by Lemma 2.5,
and the Künneth spectral sequence of Lewis and Mandell [38] implies that the map Jk

induces an isomorphism in homotopy in dimensions between 0 and .k � 1/ and a
surjection in dimension k .

At this point, the argument is classical. Let Fk denote the fiber of ek ^ rk�1! R,
and let fk denote the .�1/–connected cover of Fk . Since the map ek ^ rk�1!R

was a map of commutative ring spectra, the composite

Symn.fk/! Symn.Fk/! ek ^ rk�1
!R
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is null for all n> 0. In particular, if we let rk denote the pushout in commutative ring
spectra

P .fk/ //

��

ek ^ rk�1

��

S0 // rk

then we have an extension of Jk over rk . Note that rk is actually equivalent to
the derived smash product S0 ^P.fk/.ek ^ rk�1/ because S0 is a cofibrant P .fk/–
module with respect to a monoidal model structure [28, Proposition B.137].

We have a cofiber sequence P .fk/!P .fk/!S0 . Because rk is a retract of ek ^ rk�1,
this induces short exact sequences

0! � i.P .fk/^P.fk/.ek ^ rk�1//! � i.ek ^ rk�1/! � i.r
k/! 0

for every i 2 Z. Since P .fk/Š
W

n�1Symn.fk/, Lemma 2.5 implies that P .fk/ is
.k�1/–connected. By the Künneth spectral sequence, P .fk/^P.fk/.ek ^ rk�1/ is
thus also .k�1/–connected. Therefore, � i.ek ^ rk�1/! � ir

k is an isomorphism
for i � k � 1 and hence so is � ir

k ! � iR.

For the analysis of �k , consider the diagram:

�k.P .fk//

��

// �k.fk/

��

�k.P .fk/^P.fk/.ek ^ rk�1//
��
// �k.ek ^ rk�1/

.Jk/�
// �k.R/

We know that �k.fk/ surjects onto the kernel of .Jk/� . As fk is a summand of P .fk/,
�� also must surject onto the kernel of .Jk/� . Thus, �krk Š coker.��/ maps injectively
into �kR and also surjectively because already .Jk/� is surjective. Now define r as
the colimit of the rk . Clearly, r is connective and the maps rk !R extend to a map
r !R that induces an isomorphism in �i for i � 0.

2.3 The RO.G /–graded homotopy fixed point spectral sequence

If V is a virtual representation of G , then by tracing through the adjunctions, we see
that

�G
V F.EGC;X /Š ŒS

V
^EGC;X �

G
Š �G

0 F.EGC;S
�V
^X /:

For a G–spectrum E denote by HF.E/ the homotopy fixed point spectral sequence
for E (as constructed eg in [18, Section 6]). Let V1; : : : ;Vn be representatives of the
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isomorphism classes of nontrivial irreducible real representations of G . We define the
RO.G/–graded homotopy fixed point spectral sequence for E as

HFRO.G/.E/D
M
ai2Z

HF.a1V1C � � �C anVn;E/;

where

HF.a1V1C � � �C anVn;E/D HF.S�a1V1 ^ � � � ^S�anVn ^E/:

We can use the twisting isomorphisms of the symmetric monoidal structure on G–
spectra to define isomorphisms

S�a1V1^ � � � ^S�anVn^S�b1V1^ � � � ^S�bnVn Š S�.a1Cb1/V1^ � � � ^S�.anCbn/Vn :

As in [18], a multiplication E ^E!E then defines multiplicative pairings

HF.a1V1C � � �C anVn;E/˝HF.b1V1C � � �C bnVn;E/

! HF..a1C b1/V1C � � �C .anC bn/Vn;E/:

As explained in [38, Appendix A], we can choose the isomorphisms above so that this
actually defines an associative and commutative multiplication on HFRO.G/.E/. We
summarize in the following proposition.

Proposition 2.8 If E is a G–spectrum with a multiplication up to homotopy, then
there is a multiplicative RO.G/–graded spectral sequence

E
s;V
2
DH s.GI�0.S

�V
^E// H) �G

V�sF.EGC;E/:

In particular, the Leibniz rule states that for elements x 2 E
s;V
r and y 2 E

t;W
r with

V D a0C a1V1C � � �C anVn , we have dr .xy/D dr .x/yC .�1/a0xdr .y/.

Note that while the RO.G/–graded homotopy fixed point spectral sequence decomposes
additively in infinitely many summands, we package them into one spectral sequence
for the sake of a more efficient multiplicative presentation. In our later computations,
our generating permanent cycles will sit in nonintegral degrees.

2.4 The C2–equivariant slice filtration

The C2 –equivariant slice filtration was introduced by Dugger in his study of Atiyah’s
real K–theory. This was generalized by Hopkins, Ravenel and Hill [28] to arbitrary
finite groups in the solution to the Kervaire invariant one problem. We will recall some
of the basic properties here. A more detailed treatment can be found in [28] or [27].
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Proposition 2.9 [28, Proposition 4.20 and Lemma 4.23] For any C2 –equivariant
spectrum E , the odd slices are determined by the formula

P2n�1
2n�1 .E/D†

n��1H�n��1E:

Corollary 2.10 If R is a C2 –spectrum such that �n��1R D 0, then all odd slices
of R vanish.

For the even slices, there is a similar formula involving homotopy Mackey functors of E .

Definition 2.11 If M is a C2 Mackey functor, let P0M denote the maximal quotient
of M in which the restriction map M .C2=C2/!M .C2=e/ is injective.

There are several equivalent formulations, one of which is to notice that we can
build a Mackey functor out of the kernel of the restriction by declaring that the value
at C2=C2 is the kernel of the restriction map and that the value at C2=feg is trivial.
The functor P0M is then the quotient of M by this sub-Mackey functor.

The second reformulation requires an endofunctor on Mackey functors.

Definition 2.12 If T is a finite C2 –set and M is a Mackey functor, then let M T be
the Mackey functor defined by

S 7!M .T �S/:

The restriction map defines a map of Mackey functors

M !M C2
;

and P0M is simply the image of this map.

Proposition 2.13 [27, Corollary 2.16] For any C2 –equivariant spectrum E , the even
slices are determined by the formula

P2n
2n .E/D†

n�HP0�n�.E/:

In particular, if �n�.E/ is constant, we have

P2n
2n .E/D†

n�H�2n.E/:

Knowledge of the slices is important because of the slice spectral sequence

E
s;t
2
D � t�sP t

t X H) � t�sX;

which we will always depict in Adams notation, where E
s;t
2

is in the spot .t � s; s/.
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We need several Mackey functors. We will define them via a Lewis diagram, stacking
the value of the Mackey functor at C2=C2 over that of C2=feg and then drawing in
the restriction map, the transfer map, and the action of the nontrivial element of the
Weyl group.

Definition 2.14 Let G , Z� and Z� be the Mackey functors defined by the following:

M .C2=C2/W

res
��

Z=2

--

0

,,

Z

2

,,M .C2=e/W

tr

]]



VV
0

ii

YY
Z

mm

�

YY
Z

1

ll

1

YY

M W G Z� Z�

Lemma 2.15 If X is a C2 –spectrum such that

(1) �n��1X D 0 for all n, and

(2) �n�X D Z˝�2nX , where �2nX has no 2–torsion,

then we have

�k�C1X DG˝Z �2kC2X; �k�X D Z˝Z �2kX;

�k��1X D 0; �k��2X D Z�˝Z �2k�2X:

Proof To simplify notation, let Ak D �2kX , let Ak D Z˝Ak , let A�
k
D Z�˝Ak ,

and let Bk DG˝Ak . By assumption, we have P2k�1
2k�1

X ' � and

P2k
2k X ' Sk�

^H.Ak/:

Smashing the slice tower for X with S�k� gives the slice tower for †�k� ^X , and
this again has the property that the odd slices vanish and the even ones are of the above
form. It therefore suffices to prove this for k D 0. The homotopy Mackey functors
in question are all especially simple, as they are in the region where the can be no
differentials in the slice spectral sequence, as we will see.

By the connectivity of the regular representation spheres, the .2m/th slice does
not contribute to � iX for i D �2, �1, 0, 1 and m < �2 or m > 1. Similarly,
H�2.S

�2�IZ˝Ak/D 0 for any abelian group Ak (this is the essential part of the gap
theorem in [28]), so the .�4/th slice does not contribute to these homotopy Mackey
functors either. The cell structures for representation spheres then show that the slice
E2–term has the form depicted in Figure 1.
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2

0

�2

�3 �1 1

BkC2

BkC1

A�
k�1 Ak A�

kC1

Figure 1: The slice E2–term for S�k� ^X , which is Adams graded, with a
group in position .t � s; s/ recording � t�s.P

t
t S�k� ^X /

In particular, there is no room for differentials or extensions in the range considered,
and the result follows.

3 Real orientations and real Landweber exactness

In this section, we will first treat some basics about real orientations. Then we will
prove a real version of the Landweber exact functor theorem, both in classical and in
stack language. In the last subsection, we define what we mean by forms of BPRhni
and ER.n/ and apply the real Landweber exact functor theorem to the latter.

3.1 Basics

Given a C2 –spectrum ER, we denote by ERF.X / the value of the associated RO.C2/–
graded homology theory on a C2 –spectrum X and we set ERF DERF.pt/. This is
the value at C2=C2 of the associated Mackey functor valued homology.

Definition 3.1 A C2 –spectrum ER is even if �k��1ER D 0 for all k 2 Z. It is
called strongly even if additionally �k�ER is a constant Mackey functor for all k 2Z,
ie if the restriction

�C2
k�ER! �e

k�ERŠ �e
2kER

is an isomorphism.

For example, by Hu and Kriz [32, Theorem 4.11], the real bordism spectra MR and
BPR are strongly even (see also Appendix A of [22] for an alternative exposition).
These C2 –spectra were introduced by Landweber [36] and Araki [3] and modern
treatments can be found in [32, Section 2] and [58, Example 2.14].
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Recall the following definition:

Definition 3.2 Let X be a C2 –spectrum. A real orientation for ER is a class

x 2ER�.CP1/D ŒCP1;S� ^ER�C2 ;

restricting to the class in ER�.CP1/Š ŒCP1;S� ^ER�C2 corresponding to

1 2 ŒS0;ER�C2 Š ŒS�;S� ^ER�C2

under the (chosen) isomorphism S� DCP1 . Here, we view CPn as a C2 –space via
complex conjugation.

By [32, Theorem 2.25], real orientations of commutative C2 –ring spectra are in one-to-
one correspondence with homotopy classes of maps MR!ER of C2 –ring spectra,
where ring spectra are understood to be up to homotopy. Another point of view uses the
notion of a real vector bundle, ie a complex vector bundle pW V !X on a C2 –space
together with an antilinear involution such that p is C2 –equivariant. If E is real
oriented, then every real vector bundle carries a canonical E–orientation.

Lemma 3.3 Every even C2 –spectrum ER is real orientable.

Proof We have cofiber sequences

S .nC1/��1
!CPn

!CPnC1:

The long exact sequence in cohomology then shows that the map

ER�.CPnC1/!ER�.CPn/

is surjective. The Milnor sequence gives the result.

It is part of our philosophy that the Mackey functor �k� behaves often much better
than the integral Mackey functor �2k . The following is a weak version of a Whitehead
theorem using �k� . We will formulate it in the language of equivariant homology
theories as this will be convenient for our use in the real Landweber exact functor
theorem.

Lemma 3.4 Let f W ER!FR be a natural transformation of C2 –equivariant homol-
ogy theories. Denote the underlying homology theories by E and F . Assume that f
induces isomorphisms

ERk�! FRk� and Ek ! Fk

for all k 2 Z. Assume furthermore that ERk��1! FRk��1 is mono for all k 2 Z
(this is the case, for example, if ERk��1 D 0). Then f is a natural isomorphism.
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Proof It is well known that it is enough to show that Ek ! Fk and ERk !ERk

are isomorphisms for all k 2 Z. As the former is true by assumption, it is in particular
enough to show that faCb� W ERaCb� ! FRaCb� is an isomorphism for all a; b 2Z.
This is true for aD b again by assumption.

Smashing the cofiber sequence

.C2/C! S0
! S�

with SaCb� gives the cofiber sequence

.C2/C ^SaCb�
! SaCb�

! SaC.bC1/� :

We have a map between the associated long exact sequences:

EaCbC1
//

Š

��

ERaC.bC1/�
//

faC.bC1/�

��

ERaCb�
//

faCb�

��

EaCb
//

Š

��

ER.a�1/C.bC1/�

f.a�1/C.bC1/�

��

FaCbC1
// FRaC.bC1/�

// FRaCb�
// FaCb

// FR.a�1/C.bC1/�

The weak five lemma implies the following statements:

(M1) If faC.bC1/� is mono, then faCb� is mono.

(M2) If f.aC1/Cb� is epi and faCb� is mono, then faC.bC1/� is mono.

(E1) If faCb� is epi, then faC.bC1/� is epi.

(E2) If f.a�1/C.bC1/� is mono and faC.bC1/� is epi, then faCb� is epi.

These imply the following four statements in turn:

(1) By hypothesis faCa� D fa� is epi for all a, and hence repeated application
of E1 shows that faCb� is epi for b � a.

(2) By hypothesis f.a�1/Ca� D fa��1 is mono for all a, and hence faCb� is mono
for b � aC 1 by repeated application of M1.

Note that the regions in which faCb� is epi and mono overlap in two diagonals,
allowing us to proceed.

(3) By repeated application of E2 we conclude that faCb� is epi for all a, b .

(4) By repeated application of M2 we conclude that faCb� is mono for all a, b .

Accordingly faCb� is both epi and mono for all a, b and the proof is complete.
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3.2 Real Landweber exactness

In this section, we want to prove a version of the Landweber exact functor theorem
using the real bordism spectrum MR.

The restriction maps MRk�!MU2k are isomorphisms by [32, Theorem 2.28]. This
defines a graded ring morphism MU2�!MRF along the morphism

2Z! RO.C2/; 2k 7! k�

of the monoids indexing the grading. In particular, MRF becomes a graded MU2�–
module in a suitable sense.

Definition 3.5 Let ER be a strongly even C2 –spectrum with underlying spectrum E .
Then ER is called real Landweber exact if for every real orientation MR!ER the
induced map

MRF.X /˝MU2�
E2�!ERF.X /

is an isomorphism for every C2 –spectrum X .

Here, the gradings can be parsed in the following way: For every k 2 Z, we have
a 2Z–graded MU2�–module MRkC��.X / in the way described above so that the
expression MRkC��.X /˝MU2�

E2� makes sense in the world of 2ZD �Z–graded
MU2�–modules. Now observe that RO.C2/ is a free abelian group generated by �
and 1; thus an RO.C2/–graded abelian group is an equivalent datum to a Z–graded
Z�–graded abelian group and this expresses what MRF.X /˝MU2�

E2� means.

Theorem 3.6 (real Landweber exact functor theorem) (a) Let E2� be a graded
Landweber exact MU2�–algebra, concentrated in even degrees. Then

X 7!MRF.X /˝MU2�
E2�

is a C2 –equivariant homology theory.

(b) Let ER be a strongly even C2 –spectrum whose underlying spectrum E is
Landweber exact. Then ER is real Landweber exact.

Let us shortly recall how Landweber exactness is treated nonequivariantly from the
stacky point of view. Good sources are, for example, [20], [30] or Lectures 11 and 15
of [41].

The stack associated to the graded Hopf algebroid .MU2�;MU2�MU / is MFG , the
moduli stack of formal groups. This implies that the category of quasicoherent sheaves
on MFG is equivalent to that of evenly graded .MU2�;MU2�MU /–comodules (see
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for example [54, Remark 34]). The graded comodule MU�C2 corresponds to a line
bundle ! on MFG . This allows us to define the graded global sections �2�.F/
of a quasicoherent sheaf F on MFG as �.F ˝ !˝�/. Likewise, the category of
quasicoherent sheaves on .Spec E2�/=Gm is equivalent to that of evenly graded
modules over E2� ; more precisely, a quasicoherent sheaf F on .Spec E2�/=Gm

corresponds to the graded module �2�.F/D �.F ˝!˝�E
/, where !E corresponds to

the graded module E2�C2 . We remind the reader here that .Spec E2�/=Gm denotes
(as always) the stack quotient.

An MU2�–algebra E2� is Landweber exact if and only if the composite

f W Spec E2�=Gm! Spec MU2�=Gm!MFG

is flat (if the Landweber exactness criterion is phrased classically using the vi , this is the
nonformal part of the proof). Given a spectrum X , define quasicoherent sheaves FX

i

for i D 0, 1 on MFG corresponding to the graded .MU2�;MU2�MU /–comodules
MU2�CiX . These are functors in X and define ungraded homology theories on spectra
with values in quasicoherent sheaves on MFG . Because f is flat and thus f � is exact,
the functors

X 7! f �FX
i

define homology theories with values in quasicoherent sheaves on .Spec E2�/=Gm .
We want to identify �2�.f

�FX
i / with MU2�Ci.X /˝MU2�

E2� . The following lemma
provides this identification and thus completes the proof of nonequivariant Landweber
exactness.

Lemma 3.7 Let F be a quasicoherent sheaf on MFG . Then

F.Spec MU2�/˝MU2�
E2� Š �2�..Spec E2�/=GmIf

�F/;

where we view F.Spec MU2�/ as an evenly graded MU2�–module. These isomor-
phisms are natural in F .

Proof We have a commutative diagram:

Spec MU2�=Gm

q

��

Spec E2�=Gm

g
66

f
//MFG

By definition, q�F corresponds to the evenly graded MU2�–module F.Spec MU2�/.
Therefore, we have that f �F Šg�q�F corresponds to the evenly graded E2�–module
F.Spec MU2�/˝MU2�

E2� , proving the lemma.
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Now we turn to the proof of Theorem 3.6. Part (a) of it can be proven analogously to
Landweber exactness in the motivic setting as in [55], though we follow their approach
only loosely. The crucial fact about MR is the following lemma, which was already
implicitly treated in [32] and can also be found in [28].

Lemma 3.8 The restriction

.MR��;MR��MR/! .MU2�;MU2�MU /

defines an isomorphism of Hopf algebroids.

Proof It is clear that restriction defines a morphism of Hopf algebroids. It is left to
show that MR��MR!MU2�MU is an isomorphism.

Let C be the class of all pointed C2 –spaces and Cst the class of all (genuine) C2 –
spectra X such that

MR��.X /!MU2�.X /

is an isomorphism and

MR���1.X /!MU2��1.X /

is a monomorphism, where homology is understood to be reduced in the unstable case.
Observe first that S0 2 C and X 2 C if and only if †1X 2 Cst . Furthermore, we have
the following closure properties:

� Both C and Cst are closed under weak equivalences and filtered homotopy
colimits.

� If X 2 Cst and Sk��1! X is a map, then its cofiber is also in Cst as follows
by the five lemma and from MR being strongly even.

� If X 2 C and V !X is a real vector bundle, then the Thom space X V is also
in C , as MR is real-oriented.

� If X 2 Cst , then †k�X 2 Cst for every k 2 Z as well.

We will demonstrate that these properties imply that MR 2 Cst .

Depending on the model of MR of choice it is either easy to see or a theorem [28,
(B.252)] that we can write MR as a directed homotopy colimit over †�n�MU.n/,
where MU.n/ is the suspension spectrum of the Thom space BU.n/

n

C with the
C2 –action by complex conjugation (which gives the universal bundle n the structure
of a real bundle). The Grassmannian BU.n/ is a directed homotopy colimit of finite
dimensional Grassmannians, which are built of cells of dimension k� D kC by the
theory of Schubert cells. Thus, MR is in Cst .
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Proof of Theorem 3.6 We begin by defining, given a C2 –spectrum X , quasicoherent
sheaves FX

i for i 2 Z on MFG corresponding to the graded .MU2�;MU2�MU /Š

.MR��;MR��MR/–comodules MR��CiX . As above, the FX
i are C2 –equivariant

homology theories with values in quasicoherent sheaves on MFG . Thus, the pullbacks
f �FX

i are homology theories with values in quasicoherent sheaves on Spec E2�=Gm .
By Lemma 3.7, the associated graded module is MR��Ci.X /˝MU2�

E2� , which
is thus a homology theory as well; this proves part (a) of real Landweber exactness.
Note that as MR��Ci.X /˝MU2�

E2� has suspension isomorphisms for arbitrary
(virtual) representations, it is isomorphic to the RO.C2/–graded theory associated to
its degree-0 part.

For the proof of (b), choose a real orientation MR!ER, which exists by Lemma 3.3.
By Lemma 3.4 it is now enough to show that the induced maps

MR��˝MU2�
E2�!ER��

and
MU2�˝MU2�

E2�!E2�

are isomorphisms (as the odd groups are zero anyhow). The latter is clear and the
former is true since both ���MR and ���ER are constant.

By the following proposition, the real Landweber exact functor theorem can actually
be used to produce C2 –spectra.

Theorem 3.9 Any (ungraded) G–equivariant homology theory can be represented by a
G–spectrum, ie for every G–equivariant homology theory h0 , there is a G–spectrum E

such that there are isomorphisms �G
0
.X ^E/ Š h0.X /, natural in a G–spectra X .

Note that this implies natural isomorphisms �G
F .X ^E/Š hF.X / as well.

Moreover, any transformation of G–equivariant homology theories can be represented
by a map of G–spectra.

Proof By [31, Corollary 9.4.4], the homotopy category of genuine G–spectra is a
Brown category, which means exactly the statement of our proposition.

In the rest of the section, we will give some reformulations of the stacky point of view
on Landweber exactness to show that two real Landweber exact spectra are equivalent
if and only if their underlying spectra are equivalent. The following easy lemma will
be useful.
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Lemma 3.10 Let f W X ! Y be an affine morphism of algebraic stacks (in the sense
of [54, Definition 6]) and F be a quasicoherent sheaf on X and G be a quasicoherent
sheaf on Y . Then the canonical homomorphism

f�F ˝OY G! f�.F ˝OX f
�G/

is an isomorphism.

Proof We can assume that Y is affine and hence also X . Then it is clear.

Recall the notation FX
i from the proof of (real) Landweber exactness above.

Proposition 3.11 (a) Let E be an even Landweber exact spectrum. The associated
graded formal group on E2� defines a map

f W .Spec E2�/=Gm! .Spec MU2�/=Gm!MFG :

Then given a spectrum X , we have

E�.X /Š �2�.MFG IFX
� ˝OMFG

f�O.Spec E2�/=Gm
/:

(b) Let ER be an even real Landweber exact spectrum. The associated graded
formal group on ER�� ŠE2� (for E the underlying spectrum) defines a map

f W .Spec E2�/=Gm!MFG

as above. Then given a C2 –spectrum X , we have

ERF.X /Š �2�.MFG IFX
� ˝OMFG

f�O.Spec E2�/=Gm
/;

where �2n.MFG IFX
i ˝ � � � / is in degree n�C i .

Proof We will prove only part (a); the proof of part (b) only needs change in notation.
As in the proof of Landweber exactness, the left-hand side decomposes into two pieces
of the form �2�.f

�FX
i /Š �2�.f�f

�FX
i /. Thus, we only have to show that

f�f
�FX

i Š FX
i ˝OMFG

f�O.Spec E2�/=Gm
;

which follows directly from Lemma 3.10 with F DO.Spec E2�/=Gm
and G D FX

i .

In particular, we see that the values of a (real) Landweber exact theory do not depend
on the MU2�–module structure of E2� , but only on the graded quasicoherent sheaf
f�O.Spec E2�/=Gm

on MFG defined by E2� . This sheaf has an alternative description:

Lemma 3.12 Let E be an even Landweber exact spectrum and f W Spec E2�=Gm!

MFG as above. Then we have an isomorphism f�O.Spec E2�/=Gm
Š FE

0
.
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Proof This was proven in the even-periodic context in the proof of [50, Proposition 2.4].
The general case is similar.

Proposition 3.13 Let ER and FR be two (strongly even) real Landweber exact
C2 –spectra, whose underlying spectra E and F are equivalent. Then ER and FR are
equivalent.

Proof Assume E ' F . Then E and F define isomorphic graded quasicoherent
sheaves FE

0
and FF

0
on MFG . Since ER and FR are real Landweber exact,

Proposition 3.11 and Lemma 3.12 imply the following chain of isomorphisms, natural
in a C2 –spectrum X :

ER0.X /Š �.MFG IFX
0 ˝OMFG

FE
0 /

Š �.MFG IFX
0 ˝OMFG

FF
0 /

Š FR0.X /:

Thus, the (ungraded) C2 –equivariant homology theories defined by ER and by FR
are isomorphic. By Theorem 3.9, a natural isomorphism of C2 –equivariant homology
theories induces an equivalence of the representing C2 –spectra.

3.3 Forms of BPRhni and ER.n/

Fix a prime p .

Definition 3.14 Let E be a complex oriented p–local commutative and associative
ring spectrum (up to homotopy). The p–typification of its formal group law defines a
ring morphism BP�!E� .

(a) We call E a form of BP hni if the map

Z.p/Œv1; : : : ; vn�� BP�!E�

is an isomorphism. This does not depend on the choice of vi .

(b) We call E a form of E.n/ if there is a choice of indecomposables v1; : : : ; vn2BP�
with jvi j D 2.pi � 1/ such that the image of vn under the homomorphism

Z.p/Œv1; : : : ; vn�� BP�!E�

is invertible and the induced morphism Z.p/Œv1; : : : ; vn; v
�1
n �!E� is an isomorphism.

Spectra as in (a) are also sometimes called generalized BP hni (see [37, Definition 4.1]).
There is a real analogue, where we specialize to p D 2:
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Definition 3.15 Let ER be an even real oriented 2–local commutative and associative
C2 –ring spectrum (up to homotopy). This induces a formal group law on ER� [32,
Theorem 2.10]; its 2–typification defines a map BP2� Š BPR��!ER�� .

(a) We call ER a form of BPRhni if the map

Z.2/Œv̄1; : : : ; v̄n�� ���BPR! ���ER

is an isomorphism of constant Mackey functors. This does not depend on the choice
of v̄i .

(b) We call ER a form of ER.n/ if there is a choice of indecomposables v̄1; : : : ; v̄n 2

BPR�� with jv̄i j D .2
i � 1/� such that the image of v̄n under the homomorphism

Z.2/Œv̄1; : : : ; v̄n�� BPR��!ER��

is invertible and the induced morphism Z.2/Œv̄1; : : : ; v̄n; v̄
�1
n �! ���ER is an isomor-

phism of constant Mackey functors.

Note that a form ER.n/ is always real Landweber exact by Theorem 3.6 as it is
strongly even and its underlying spectrum is Landweber exact.

Proposition 3.16 If for two forms of ER.n/ their underlying spectra are equivalent,
then they are equivalent as C2 –spectra.

Proof As every form of ER.n/ is real Landweber exact, this follows directly from
Proposition 3.13.

4 TMF1.3/ and friends

In this section, we will first define the versions of TMF we are after and com-
pute �� Tmf1.3/. In Section 4.2, we will run the homotopy fixed point spectral
sequence for tmf1.3/

hC2 and apply this to see that tmf1.3/ is a form of BPRh2i. In
Section 4.3, we will discuss the relationship between the C2 –spectra tmf1.3/, Tmf1.3/

and TMF1.3/. In particular, we will show that TMF1.3/ ' tmf1.3/Œ�
�1� and how

this implies the real Landweber exactness of TMF1.3/.

4.1 Basics

Denote by Mell the moduli stack of elliptic curves and by Mell its compactification.
Mapping an elliptic curve to its formal group defines a flat map Mell!MFG to the
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moduli stack of formal groups. By [29] (extending earlier work by Goerss, Hopkins
and Miller), the induced presheaf of even-periodic Landweber exact homology theories
refines to a sheaf of E1–ring spectra Otop on the log-étale site of Mell .

Denote by M1.n/ the moduli stack of elliptic curves with one chosen point of exact
order n and by M1.n/ its compactification, whose definition we will now review. In
the compactification we have to allow not only (smooth) elliptic curves, but generalized
elliptic curves, which can have as fibers also Néron m–gons for m j n. These are
obtained by gluing m copies of P1 , where 0 in the i th P1 (for i 2Z=mZ) is attached
to1 in the .iC1/st . For precise definitions see Deligne and Rapoport [17, Section II.1].

Definition 4.1 [17, IV.4.11–4.15; 16] We define the stack M1.n/ to classify gen-
eralized elliptic curves pW E ! S over a base S with n invertible, together with an
injection of group schemes Z=nZ!Eı from the constant group scheme Z=nZ over S

into the smooth locus of E such that

(1) each geometric fiber Spec xk �S E of p is either smooth or a Néron m–gon for
some m j n, and

(2) the image of Z=nZ intersects each irreducible component in every geometric
fiber of E nontrivially.

We define
TMF1.n/DOtop.M1.n//;

Tmf1.n/DOtop.M1.n//;

tmf1.n/D ��0 Tmf1.n/:

We remark that the last definition should only be considered appropriate for n � 2

if tmf1.n/ is even and �2n tmf1.n/ is isomorphic to the ring of integral holomorphic
modular forms H 0.M1.n/I!

˝�/. The second assumption is always fulfilled, but in
general there can be a nontrivial �1 tmf1.n/, which is isomorphic to H 1.M1.n/I!/ (as
already remarked in [29, Remark 6.4]). Luckily, there are no such problems for tmf1.3/

as we will see at the end of this subsection.

The following lemma is well known:

Lemma 4.2 The spectrum TMF1.n/ is Landweber exact for n� 2.

Proof Throughout the proof, we will use the notations ! and FX
i (for i D 0, 1 and

X a spectrum) from Section 3.2.

First, we prove that for Spec A!Mell étale such that the pullback of ! to Spec A is
trivial, E DOtop.Spec A/ is Landweber exact: By the descent spectral sequence, E is
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even periodic. Thus, we can choose a complex orientation MU ! E . This defines
a formal group law on AD �0E . By construction (see Behrens [8]), the composite
morphism gW Spec A!Mell !MFG classifies the underlying formal group. As
g is flat, a version of the Landweber exact functor theorem (see Lemma 3.7 or [41,
Lecture 15]) implies that the source of

.X 7!MU�.X /˝MU� E�/! .X 7!E�.X //

is a homology theory and thus the depicted morphism is a natural isomorphism. This
proves that E is Landweber exact. Furthermore, it provides a natural isomorphism
between �2k�i.Otop ^X / and the pullback of FX

i ˝!
˝k to Mell for i D 0, 1.

For n� 4, the stack M1.n/ is represented by an affine scheme [34, Corollary 2.7.3 and
Scholie (4.7.0)]. For nD 2, 3 we have the slightly weaker statement that only M1

1
.n/

is of the form Spec A, where M1
1
.n/ classifies elliptic curves where we choose not

only a point of order n, but also a nowhere vanishing invariant differential; we recover
M1.n/ as Spec A=Gm . This can either be shown along the same lines as the previous
statement or deduced from concrete presentations (see eg [46, Proposition 3.2] and [7,
Section 1.3]). In particular, the global sections functor

�W QCoh.M1.n//! AbelianGroups

on quasicoherent sheaves is exact. Indeed, QCoh.Spec A=Gm/ is by Galois descent
equivalent to the category of graded A–modules (where the grading comes from the
Gm –action). The global sections functor corresponds to M� 7!M0 , which is clearly
exact.

In particular, we see that the descent spectral sequence

H s.M1.n/I h
�!˝t / H) �2t�s TMF1.n/

is concentrated in the 0–line, where hWM1.n/!MFG classifies the formal group.
Thus, M1.n/ ' .Spec�2� TMF1.n//=Gm . By the same argument we get a natural
isomorphism

TMF1.n/2k�i.X /ŠH 0.M1.n/I h
�.FX

i ˝!
˝k//

for spectra X . Now Lemma 3.7 implies that we have isomorphisms

MU�.X /˝MU� TMF1.n/Š TMF1.n/�.X /;

again natural in X .

Sending the point x of order n to Œk�x for k 2 .Z=n/� defines a .Z=n/�–action
on M1.n/. In particular, this induces .Z=3/�DC2 –actions on TMF1.3/ and Tmf1.3/.
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Thus we will view these spectra as cofree C2 –spectra as in Section 2.2. We define the
C2 –spectrum tmf1.3/ as the C2 –equivariant connective cover of Tmf1.3/ so that

tmf1.3/
C2 D ��0.Tmf1.3/

hC2/:

Note that this spectrum is not cofree as

��0.Tmf1.3/
hC2/' ��0.tmf1.3/

hC2/;

which follows formally from the C2 –homotopy fixed point spectral sequence, and
tmf1.3/

hC2 has negative homotopy groups as we will see in the next subsection.

Denote by M0.n/ the moduli stack of elliptic curves with a chosen subgroup of order n

and by M0.n/ its compactification, defined as follows:

Definition 4.3 We define M0.n/ for n squarefree1 to classify generalized elliptic
curves pW E! S over a base S with n invertible, together with a subgroup G � EıŒn�
such that

(1) each geometric fiber of p is either smooth or a Néron m–gon for some m j n,

(2) G is étale locally isomorphic to Z=nZ, and

(3) G intersects each irreducible component in every geometric fiber of E nontriv-
ially.

We define

TMF0.3/DOtop.M0.3// and Tmf0.3/DOtop.M0.3//:

The forgetful maps

M1.n/!M0.n/ and M1.n/!M0.n/

are .Z=n/�–Galois coverings for n squarefree, as checked in [50, Theorem 7.12]. In
particular, this implies that Tmf0.3/' Tmf1.3/

hC2 and TMF0.3/' Tmf1.3/
hC2 . If

we define tmf0.3/D ��0 Tmf0.3/, then it follows that tmf0.3/' tmf1.3/
C2 .

Next, we will study M1.3/ in more detail. The following lemma essentially says that
there can be only one reasonable compactification of our moduli stacks.

Lemma 4.4 Let f W Y !X be a map of Deligne–Mumford stacks (over some base
scheme S ) and assume that X is locally noetherian. Let xf1; xf2W Y 1;Y 2!X be finite
morphisms from normal Deligne–Mumford stacks (over S ) such that Y sits inside Y 1

and Y 2 as a dense open substack and xfi jY D f for i D 1, 2. Then Y 1' Y 2 as stacks
over X .

1For the subtleties for nonsquarefree n see [15].
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Proof The same argument as in [21, Corollary 12.2] shows that it is enough to show
that . xf1/�OY 1

Š . xf2/�OY 2
as both xf1 and xf2 are affine. In particular, it is enough

to show the existence of a natural isomorphism between Y 1 and Y 2 if X D Spec A

is affine. Then Y 1 D Spec B1 and Y 2 D Spec B2 are also affine. The inclusions
Y � Spec B1 and Y � Spec B2 induce bijections of the sets of connected components.
As all these schemes are normal and locally noetherian, all connected components are
irreducible [21, Remark 6.3.7]. Thus, we can assume that Y 1 and Y 2 are irreducible
and hence B1 and B2 are normal integral domains. Write C D �.OY /. As Y is open
in Y i , the map from Bi into its fraction field factors over C . In particular, Bi injects
into C and is integrally closed in it. As it is also finite and thus integral over A, it
consists exactly of those elements in C that are integral over A. In particular, we have
a canonical isomorphism B1 Š B2 of A–algebras.

Note that M1.n/!Mell
�

1
n

�
and M0.n/!Mell

�
1
n

�
(if n is squarefree) are finite

morphisms from normal (even regular) Deligne–Mumford stacks and M1.n/�M1.n/

and M0.n/�M0.n/ are open dense inclusions (see [17, IV.3.4] or [16, Theorem 4.1.1];
note that the complement of an effective Cartier divisor is open and dense). Thus, we
can apply the previous lemma to approach the following well-known result (see eg [37])
that has to the knowledge of the authors not appeared with full proof in print.

Proposition 4.5 We have equivalences

M1.3/' Spec
�
Z
�

1
3

�
Œa1; a3�Œ�

�1�
�
=Gm;

M1.3/'
�
Spec

�
Z
�

1
3

�
Œa1; a3�

�
n f0g

�
=Gm DW PZŒ 1

3
�.1; 3/;

where:

� The Gm –action on Spec
�
Z
�

1
3

�
Œa1; a3�

�
is induced by the grading with ja1j D 1

and ja3j D 3.

� �D a3
3
.a3

1
� 27a3/.

� f0g denotes the common vanishing locus of a1 and a3 .

� PZŒ 1
3
�.1; 3/ is often called the weighted (stacky) projective line with weights

1 and 3.

Proof The first equivalence follows from [46, Proposition 3.2].

Set A D Z
�

1
3

�
Œa1; a3�. The equality PZŒ 1

3
�.1; 3/ D .Spec A n f0g/=Gm is just the

definition of the weighted projective line. This is a proper and smooth Deligne–Mumford
stack over Spec Z

�
1
3

�
by [53, Proposition 2.1, Remark 2.2]. Note furthermore that

M1.3/� PZŒ 1
3
�.1; 3/ is a dense open substack.
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To apply Lemma 4.4, we need to construct a finite morphism

PZŒ 1
3
�.1; 3/!M

�
1
3

�
that extends the morphism

M1.3/!Mell
�

1
3

�
�Mell

�
1
3

�
:

The equation y2Ca1xyCa3yDx3 defines a cubic curve over Spec A=Gm . We want to
show that this equation actually defines a generalized elliptic curve E over PZŒ 1

3
�.1; 3/.

For this, we have to check that for no map f W Spec k! PZŒ 1
3
�.1; 3/ for k a field (of

characteristic ¤ 3), the pullback f �E has a cusp. Equivalently, we have to show
that for any values a1; a3 2 k for which c4 D a4

1
� 24a1a3 and �D a3

3
.a3

1
� 27a3/

vanish, a1 and a3 also vanish. First observe that if c4 D�D 0, then a1 D 0 implies
a3 D 0 and vice versa. If � D 0, either a3 D 0 or a3

1
D 27a3 . In the second case,

27a1a3 D a4
1
D 24a1a3 and thus a1 D 0 or a3 D 0.

Therefore, we obtain a map pW Spec A=Gm!Mcub
�

1
3

�
to the moduli stack of cubic

curves that restricts to a map PZŒ 1
3
�.1; 3/!Mell

�
1
3

�
, which in turn extends the map

M1.3/!Mell
�

1
3

�
�Mell

�
1
3

�
.

As computed in the beginning of Section 7 of [6], the map p is surjective and we
have Spec A=Gm�Mcub Spec A=Gm' .Spec AŒs; t �=.f;g//=Gm , where f and g are
polynomials in s and t such that AŒs; t �=.f;g/ is a finite flat A–module. As finiteness
can be checked after fpqc-base change, the map p is finite and hence so is its restriction
PZŒ 1

3
�.1; 3/!Mell

�
1
3

�
, which is the base change p�McubŒ

1
3
�Mell

�
1
3

�
. Thus, the result

follows by Lemma 4.4.

By checking the gradings, we see that p�! ŠO.1/ for pW PZŒ 1
3
�.1; 3/!Mell

�
1
3

�
the

restriction of the morphism constructed in the proof above. (Here, ! denotes the line
bundle �2Otop on Mell , which is also the pullback of the line bundle on MFG we
have denoted before by ! .) Thus, we have

H s.M1.3/I!
˝�/Š

8<:
Z
�

1
3

�
Œa1; a3� for s D 0;

Z
�

1
3

�
Œa1; a3�=.a

1
1
; a1

3
/ for s D 1;

0 for s � 2;

as shown, for example, in [53, Proposition 2.5]. Here, Z
�

1
3

�
Œa1; a3�=.a

1
1
; a1

3
/ denotes

the Z
�

1
3

�
Œa1; a3�–torsion module with Z

�
1
3

�
–basis given by the monomials 1=ai

1
a

j
3

,
where i; j �1. Thus, the descent spectral sequence for Tmf1.3/ collapses. In particular,
we see that �� tmf1.3/D Z

�
1
3

�
Œa1; a3�.

Algebraic & Geometric Topology, Volume 17 (2017)



1982 Michael A Hill and Lennart Meier

4.2 RO.C2/–graded homotopy of tmf1.3/

Our goal in this subsection is to understand the C2 –equivariant RO.C2/–graded homo-
topy groups of tmf1.3/. We will compute this via an RO.C2/–graded homotopy fixed
point spectral sequence, as described for general G in Section 2.3. When G D C2

there are two important simplifications. The first allows us to identify the E2–term
more transparently:

Lemma 4.6 Let E be a C2 –spectrum. Then

��.E ^S��1/Š ��E˝ sgn

as C2 –modules.

Proof This follows from the fact that the action map t W S� ! S� has degree �1.

Corollary 4.7 If E is a C2 –spectrum, then the RO.C2/–graded homotopy fixed point
spectral sequence has the form

H s.C2I�t .E/˝ sgn˝r / H) �
C2

t�sC.��1/r
F.EC2C;E/:

The differential di goes from degree .r; s; t/ to .r; sCi; tCi�1/. The tridegree .r; s; t/
corresponds to the bidegree ..t � r/C r�; s/ in representation grading.

If E is even with �2n flat over Z and the group C2 acts on �2nE via .�1/n , then the
E2–term is isomorphic to

�2�E˝ZŒu˙1
2� ; a� �=2a�

with ju2� j D .2� 2�; 0/ and ja� j D .��; 1/. Here, �2nE is the group �2nE , but not
in degree 2n, but in degree nC n� .

Proof The first part is clear. For the second, note that the RO.C2/–graded C2 –
representation �FE is isomorphic to �2�E ˝

L
r2Z sgn˝r with sgn˝r in degree

r.1� �/. The first tensor factor is invariant under the C2 –action and can thus be pulled
out of the cohomology group. For the second one, we have H�.C2I

L
r2Z sgn˝r /Š

ZŒu˙1; a�=2a with u 2H 0.C2I sgn˝2/ and a 2H 1.C2I sgn/.

The second C2 simplification is a recasting of the RO.C2/–graded homotopy fixed
points spectral sequence in a way that allows us to read off permanent cycles. Recall
that there is a C2 –equivariant map

a� W S
0
! S�

which is essential but for which the restriction is null. The following is undoubtedly
well known to experts.
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Lemma 4.8 The RO.C2/–graded homotopy fixed points spectral sequence for a C2 –
spectrum X coincides with the a� –Bockstein spectral sequence for X .

Proof The map an
� fits in a cofiber sequence

S.n�/C! S0 an
��!Sn� ;

where S.n�/ is the unit sphere in the representation n� . Applying F.�;X /, we
deduce a cofiber sequence of spectra

†�n�X
an
��!X ! F.S.n�/C;X /:

The space S.n�/C is also the .n�1/–skeleton of the standard model for EC2C as the
infinite sign sphere, and the map on function spectra induced by the inclusion of the
.n�1/–skeleton into the n–skeleton coincides with the obvious map of cofibers:

†�.nC1/�X
a

nC1
�
//

a�

��

X //

1

��

F.S..nC 1/�/C;X /

��

†�n�X
an
�

// X // F.S.n�/C;X /:

Thus the filtration by powers of a� and the filtration by the skeleton of EC2C coincide.

Recall now from Section 4.1 that nonequivariantly

�� tmf1.3/Š Z
�

1
3

�
Œa1; a3� and �� TMF1.3/Š Z

�
1
3

�
Œa1; a3; �

�1�;

with ja1jD 2 and ja3jD 6. By Mahowald and Rezk [46, Proposition 3.4], the group C2

acts by �1 on a1 and a3 in �� TMF1.3/ and hence also in �� tmf1.3/, as �� tmf1.3/

sits inside �� TMF1.3/.

By Corollary 4.7, the RO.C2/–graded homotopy fixed point spectral sequence E2–term
for tmf1.3/

hC2 can be written as

(1) E
�;�
2
D Z

�
1
3

�
Œa� ;u

˙1
2� ; ā1; ā3�=.2a� /

with degrees

ja� j D .��; 1/D .1� �; 1/; ju2� j D .2� 2�; 0/D .4� 2�; 0/;

jā1j D .1C �; 0/D .�; 0/; jā3j D .3C 3�; 0/D .3�; 0/:

We start by identifying the permanent cycles corresponding to � and � in the Hurewicz
image in �� tmf1.3/

hC2 . By [29, Theorem 6.2], there is a C2 –equivariant map

Tmf1.3/! KU

Algebraic & Geometric Topology, Volume 17 (2017)



1984 Michael A Hill and Lennart Meier

of E1–ring spectra into K-theory, inducing a map between the homotopy fixed point
spectral sequences for Tmf1.3/

hC2 and KO'KUhC2 . In the latter, � is of filtration 1,
so it has to be of filtration � 1 in the former. As the homotopy fixed point spectral
sequences of Tmf1.3/

hC2 and tmf1.3/
hC2 agree in nonnegative degrees, � is also of

filtration 1 in the homotopy fixed point spectral sequence for tmf1.3/
hC2 and is thus

detected by a� ā1 .

To identify � , we observe the following lemma:

Lemma 4.9 The composite Tmf
�

1
3

� res
�!Tmf0.3/

tr
�!Tmf

�
1
3

�
is multiplication by 4.

Proof This is true on the level of E2 –terms of homotopy fixed point spectral sequences,
expressing Tmf0.3/ and Tmf

�
1
3

�
as homotopy fixed points of Tmf.3/ (as the index

in GL2.Z=3/ of the subgroup of matrices of the form
�

a
0

b
d

�
is 4). The Tmf

�
1
3

�
–linear

self-maps of Tmf
�

1
3

�
are in one-to-one correspondence to elements in �0 Tmf

�
1
3

�
.

These are all of filtration 0 in the descent spectral sequence by [35, Figure 26] and
thus detected by their action on

�0 Tmf
�

1
3

�
DH 0.GL2.Z=3/I�0 Tmf.3//:

(As the arguments in [35] are computationally involved, we also sketch another
way to arrive at this last result. If there were contributions of positive filtration
to �0 Tmf

�
1
3

�
in the descent spectral sequence, this group would contain torsion.

Because �0 Tmf
�

1
3

�
Š �0 tmf

�
1
3

�
, it suffices to show that �0 tmfŠ Z. It was known

by Hopkins and Miller and is shown in [49, Corollary 5.3] that the Adams–Novikov
spectral sequence for tmf has as E2–term the cohomology of the graded Weierstrass
Hopf algebroid

.AD ZŒa1; a2; a3; a4; a6�; � DAŒr; s; t �/:

Here, jr j D 4, jsj D 2, and jt j D 6. It follows formally from the gradings in the cobar
complex that H i.A; �/D 0 in degrees smaller than 2i and that H 0.A; �/Š Z. The
result follows.)

As 4� in �3 Tmf
�

1
3

�
is nonzero and of filtration 3, we know � D res.�/ 2 �3 Tmf0.3/

is of filtration � 3 and nonzero. For degree reasons, it has to be detected by the
image of a3

� ā3 . As the homotopy fixed point spectral sequences for tmf1.3/
hC2 and

Tmf1.3/
hC2 agree in this range, the same is true for tmf1.3/

hC2 .

Corollary 4.10 The classes ā1 and ā3 are permanent cycles in the RO.C2/–graded
homotopy fixed point spectral sequence for tmf1.3/.
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Proof Since the homotopy fixed point spectral sequence and a� –Bockstein spectral
sequences coincide, we learn that if an a� –multiple of a class is a permanent cycle, then
the class is a permanent cycle. This in particular applies to �D ā1a� and �D ā3a3

� .

Corollary 4.11 The class u2� is the only generator of the E2–term for the RO.C2/–
graded homotopy fixed point spectral sequences for tmf1.3/ (as listed in Equation (1))
that is not a permanent cycle.

Furthermore, the transfer of any element in the underlying homotopy is a permanent
cycle. In particular, we conclude immediately that the classes

v0.k/ WD 2uk
2�

for k 2 Z are all permanent cycles which generate copies of Z. These satisfy an
obvious multiplicative relation

v0.k/v0.j /D 2v0.j C k/:

Next, we will determine the differentials. Note first that for degree reasons all d2k

are 0 for k � 1. While the other differentials could be deduced from [46], we will
derive them independently.

Proposition 4.12 We have the differential

d3.u2� /D a3
� ā1:

Proof Because ā1; ā3 and a� are permanent cycles, d3.u2� /D 0 would imply that
E2 D E5 . On the other hand, we know that � is detected by a� ā1 . As �4 D 0, the
class .a� ā1/

4 must be hit by a differential, which necessarily must be a d3 . Therefore,
d3.u2� /¤ 0. For degree reasons we get that d3.u2� /D a3

� ā1 .

There is no room for a d5 –differential; indeed, a nontrivial d5 –differential would imply
a differential of the form d5.u

2
2�
/D a5

�y with y in the 0–line of degree 3C� , which
is impossible. Thus, E7 DE4 .

Proposition 4.13 We have the differential

d7.u
2
2� /D a7

� ā3:

Proof If dn.u
2
2�
/D an

�x , then x is in degree .7�n/C .n�4/� . As x can be written
as u2m

2�
times a polynomial in ā1 and ā3 , we see that 7� n must be divisible by 8.

As ā1; ā3 , a� and 2u2� are permanent cycles, d7.u
2
2�
/ D 0 would thus imply that
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E7 DE15 . On the other hand, we know that � is detected by a3
� ā3 . As �4 D 0, the

class .a3
� ā3/

4 must be hit by a differential, which necessarily must be a dn with n� 12.
Therefore, d7.u

2
2�
/¤ 0. For degree reasons we get that d3.u

2
2�
/D a7

� ā3 (as a7
� ā3

1
D 0

in E7 ).

The torsion produced by the first differential yields new d7 –cycles:

ā1.k/ WD ā1u2k
2� ;

for k 2 Z. These also participate in the expected multiplicative relations:

ā1.k/ā1.j /D ā1 � ā1.j C k/ and ā1.j /v0.k/D ā1 � v0.kC 2j /:

Remark 4.14 The classes v0.k/ and ā1.j / form families exactly like the families
v0.k/ and v1.j / described by Hu and Kriz is the computation of the homotopy of BPR.

There is no room for further differentials in E8 , which is the subalgebra of

Z
�

1
3

�
Œa� ;u2� ; ā1; ā3�=.2a� ; ā1a3

� ; ā3a7
� /

generated by a� , ā1 , ā3 , v0.1/, v0.2/, v0.3/, ā1.1/ and u˙4
2�

. Indeed, a nontrivial dk –
differential for k�8 would imply a nontrivial differential of the form dk.ā1.1//Dak

�x

or dk.u
4
2�
/Dak

�y for some x or y in the 0–line of degree 4C.k�3/� or 7C.k�8/� ,
respectively; but the only of our generators of the 0–line not killed by ak

� is u˙4
2�

,
whose powers cannot be in degree 4C .k�3/� or 7C .k�8/� . Therefore E8DE1 .

Theorem 4.15 We have

�C2
F F.EC2C; tmf1.3//Š Z

�
1
3

�
Œa� ;u

˙4
2� ; ā1; ā3; v0.k/; ā1.1/�=R;

where the ideal R of relations is generated by

a�v0.k/D 0; v0.kC 4/D v0.k/u
4
2� ; ā1.1/v0.k/D ā1v0.kC 2/;

a3
� .ā1; ā1.1//D 0; v0.k/v0.j /D 2v0.j C k/; ā1.1/

2
D ā1u4

2� ;

a7
� ā3 D 0:

Proof The presentation given was already shown to be a presentation of the E1–
term. We just have to check all the relations also to hold in �C2

F F.EC2C; tmf1.3//.
Observe first that no two torsion classes in different filtrations can converge to the same
bidegree. This implies the first three relations must hold. In the next three relations,
both sides are in the image of the transfer and thus these relations can be checked on
underlying homotopy groups. The last relation holds again since there is no element of
filtration � 1 in this bidegree.
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Remark 4.16 We have �C2
aCb�F.EC2C; tmf1.3//Š �

C2
aCb� tmf1.3/ for all a; b � 0

and �C2
aCb� tmf1.3/D 0 if a< 0 and aCb < 0; this follows from the cofiber sequence

SaC.b�1/�
! SaCb�

! SaCb
^.C2/C:

Is it possible, but more complicated, to describe also the other groups in �C2
F tmf1.3/.

Note that �C2
i F.EC2C; tmf1.3//Š�i tmf1.3/

hC2 can certainly be nontrivial for i < 0

(eg we have a8
�u�4

2�
2 ��8 tmf1.3/

hC2 ) and thus tmf1.3/ 6' F.EC2C; tmf1.3//.

Corollary 4.17 The spectrum tmf1.3/ is strongly even as a C2 –spectrum. In par-
ticular, it is real orientable and thus tmf1.3/.2/ is a form of BPRh2i. Furthermore,
tmf1.3/.2/Œā

�1
3
� is a form of ER.2/.

Proof It follows from Theorem 4.15 and the remark thereafter that tmf1.3/ is even as
a C2 –spectrum and also that the Mackey functor �k� tmf1.3/ is constant for all k 2Z.
We present the argument for evenness and leave the other part to the reader. Let
y D al

�x be a nonzero class in degree k� � 1 with x of filtration 0 and degree
.k � 1/C .kC l/� . Clearly l � 1. In E2 , we can write x as āi

1
ā

j
3
u2m

2�
. We see that

.k�1/�.kC l/D�.lC1/ is divisible by 8; in particular, l � 7. This implies i; j D 0

and leads to a contradiction.

In the following, we localize everywhere implicitly at 2. The map BP�! tmf1.3/�
induced by the 2–typification of the formal group law associated to the Weierstrass
equation y2C a1xyC a3y D x3 sends the Hazewinkel generators v1 and v2 exactly
to a1 and a3 . This implies together with tmf1.3/ being strongly even that tmf1.3/ is
a form of BPRh2i and that tmf1.3/Œā

�1
3
� is a form of ER.2/.

Corollary 4.18 There exists forms of BPRh2i and ER.2/ that are strictly commuta-
tive C2 –ring spectrum.

Proof By Theorem 2.7, the spectrum tmf1.3/ has the structure of a strictly commuta-
tive C2 –ring spectrum. By the last corollary, it is a form of BPRh2i.

As shown in the next section, the spectrum tmf1.3/Œā
�1
3
� is equivalent to Tmf1.3/Œā

�1
3
�

and thus cofree. Thus, we see by Theorem 2.4 that it has the structure of a strictly
commutative C2 –spectrum.

Remark 4.19 We do not know whether the forms of BPRh2i and ER.2/ exhibited
here are equivalent as C2 –spectra to other known forms, as for example defined via the
Hazewinkel generators. Note though that two forms of ER.n/ are equivalent if and
only if their underlying spectra are equivalent by Proposition 3.16. Note further that in
contrast to our result, the existence of any kind of (homotopy unital) multiplication
seems to be unknown for general forms of BPRhni, even for nD 2.
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4.3 The relationship between tmf1.3/, Tmf1.3/ and TMF1.3/

The following is proven in [50, Theorem 7.12].

Proposition 4.20 The map Tmf0.3/! Tmf1.3/ is a faithful C2 –Galois extension in
the sense of Rognes.

Lemma 4.21 Let xf be a nonconstant homogeneous polynomial in ā1 and ā3 . Then

tmf1.3/Œ xf
�1�! Tmf1.3/Œ xf

�1�

is an equivalence.

Proof For some k > 0, we have that a7
�
xf k D 0 in �C2

F F..EC2/C; tmf1.3// and
ja7
�
xf k jD rCs� with r; s� 0. Thus we also have a7

�
xf k D 0 in �C2

F tmf1.3/ and there-
fore ˆC2.tmf1.3/Œ xf

�1�/D 0 by Lemma 2.2. By [28, Corollary 10.6], tmf1.3/Œ xf
�1�

is then cofree. Thus, we have only to show that tmf1.3/Œ xf
�1�! Tmf1.3/Œ xf

�1� is an
equivalence of underlying spectra. As every element of negative degree in �e

� Tmf1.3/

is killed by a1 and a3 , the result follows.

Lemma 4.22 Let xf be a nonconstant homogeneous polynomial in ā1 and ā3 . Denote
by D.f / the nonvanishing locus of the underlying element f 2 H 0.M1.3/I!

�/.
Then there is an equivalence

Tmf1.3/Œ xf
�1�!Otop.D.f //

of C2 –spectra.

Proof Note that the pullback of D.f / along

Spec Z
�

1
3

�
Œa1; a3��f0g ! M1.3/' PZŒ 1

3
�.1; 3/

is Spec Z
�

1
3

�
Œa1; a3�Œf

�1�. By the same argument as in Lemma 4.2, the global sections
functor

�W QCoh.D.f //D QCoh
�
Spec

�
Z
�

1
3

�
Œa1; a3�Œf

�1�
�
=Gm

�
! AbelianGroups

is exact. Therefore, the descent spectral sequence for Otop.D.f // collapses and we
have ��Otop.D.f //Š Z

�
1
3

�
Œa1; a3�Œf

�1�.

Note furthermore that D.f / is C2 –invariant as f 2 is an invariant section. This induces
a C2 –map of ring spectra Tmf1.3/DOtop.M1.3//!Otop.D.f //. We want to show
that the image of xf is invertible in �C2

F Otop.D.f //. It is detected in the homotopy
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fixed point spectral sequence HFPSS.f / for Otop.D.f //hC2 by f uk
2�

for some k .
As f and u2� are invertible, there exists an element

xg 2 �
C2

�j xf j
Otop.D.f //

detected by f �1u�k
2�

. Clearly, the underlying class res. xf xg/2�0Otop.D.f // equals 1.
As HFPSS.f / receives a multiplicative map from the homotopy fixed point spectral
sequence HFPSS for tmf1.3/

hC2 , the identification of ��Otop.D.f // above implies
that HFPSS.f / Š HFPSSŒ xf �1�. In particular, we can deduce that Otop.D.f // is
strongly even as a (cofree) C2 –spectrum. This implies that xf xgD 1 2 �C2

0 Otop.D.f //

so that xf is invertible. Thus, we get an induced map

Tmf1.3/Œ xf
�1�!Otop.D.f //

of C2 –spectra.

By [50, Theorem 7.2] and the proof of [50, Theorem 7.12], the global sections functor

�W QCoh.M1.3/;Otop/! Tmf1.3/–mod

is an equivalence.2 Thus, we can apply [50, Lemma 3.20] to see that

Tmf1.3/Œ xf
�1�!Otop.D.f //

is an equivalence of underlying spectra. As both spectra are cofree, the result follows.

This applies in particular to xf D�. Thus,

tmf1.3/Œ�
�1�' Tmf1.3/Œ�

�1�' TMF1.3/

as C2 –spectra (with � D ā3
3
.ā3

1
� 27ā3//. In particular, TMF1.3/ is strongly even.

Thus, Theorem 3.6 implies:

Proposition 4.23 The C2 –spectrum TMF1.3/ is real Landweber exact in the sense
that there is a natural isomorphism

MRF.X /˝MU2�
TMF1.3/2�! TMF1.3/F.X /

for all C2 –spectra X .

Note that the equivalence tmf1.3/Œ�
�1�'C2

TMF1.3/ also directly implies together
with the computations from the previous sections that �� TMF0.3/ has torsion and
thus TMF0.3/ cannot be Landweber exact.

2We only really need that � commutes with homotopy colimits. As observed in the proof of [50,
Proposition 3.8], this is automatic when the stack has finite cohomological dimension as M1.3/ does.
This circumvents the use of most of the heavy machinery in [50].
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The following fiber square will be useful later.

Proposition 4.24 We have a fiber square:

Tmf1.3/ //

��

tmf1.3/Œā
�1
1
�

��

tmf1.3/Œā
�1
3
� // tmf1.3/Œ.ā1ā3/

�1�

Proof The square

M1.3/ D.a1/oo

D.a3/

OO

D.a1a3/

OO

oo

induces a fiber square

Otop.M1.3// //

��

Otop.D.a1//

��

Otop.D.a3// // Otop.D.a1a3//

(2)

as
M1.3/' PZŒ 1

3
�.1; 3/DD.a1/[D.a3/;

and Otop is a sheaf (see [50, Appendix A] for why the sheaf condition implies this).

By the last two lemmas, this is equivalent to

Tmf1.3/ //

��

tmf1.3/Œā
�1
1
�

��

tmf1.3/Œā
�1
3
� // tmf1.3/Œ.ā1ā3/

�1�

as a square of C2 –spectra.

5 Slices and Anderson duals

In this section, we will compute the slices of TMF1.3/ and Tmf1.3/ and apply this to
compute the Anderson dual of Tmf1.3/.
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5.1 Slices

We can apply the computations of the regular representation homotopy groups of tmf1.3/

and its localizations to determine their slices.

Since all of the odd slices vanish and the even slices are regular representation sus-
pensions of HZ

�
1
3

�
by Section 2.4 and Corollary 4.17, the homotopy groups “near

multiples of regular representations” are easy to compute since the slice spectral
sequence is especially simple here.

To ensure transparency with later notation and gradings, we introduce some notation.
Let R D Z

�
1
3

�
Œa1; a3�Œf

�1� with f homogeneous. If S � R2n is any subset of
homogeneous rational functions of degree 2n, then let S denote the same rational
functions, but with every instance of a1 and a3 replaced with ā1 and ā3 respectively.
This is a notational device to ensure that the reader keep track of the RO.C2/–grading of
barred elements, compared to the underlying Z–grading of unbarred ones. Lemma 2.15
now gives us a description of the homotopy groups of the localizations of tmf1.3/:

Corollary 5.1 Let M be one of

tmf1.3/; tmf1.3/Œā
�1
1 �; tmf1.3/Œā

�1
3 � or tmf1.3/Œ.ā1ā3/

�1�:

For all k , we have

�k�C1M DG˝�u
2kC2

M ; �k�M D Z
�

1
3

�
˝�u

2k
M ;

�k��1M D 0; �k��2M D Z
�

1
3

�
�
˝�u

2k�2
M :

Similarly, naturality of the slice spectral sequence implies that we understand the effect
of the localization maps on homotopy groups in dimensions k�� 2; : : : ; k�C 1.

Corollary 5.2 For k 2 Z and for j D�2, �1, 0, 1, the localization maps

�k�Cj tmf1.3/Œā
�1
i �! �k�Cj tmf1.3/Œ.ā1ā3/

�1�

are induced by the obvious inclusions of graded pieces of these graded rings.

Remark 5.3 We could also have read off these results from the homotopy fixed point
spectral sequence, but the slice spectral sequence approach is both more conceptual
and is easier for Mackey functor computations.

We want now to compute the slices of Tmf1.3/. To that end, we denote by M Œā1; ā3�

the monic monomials in Z
�

1
3

�
Œā1; ā3�.
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Proposition 5.4 The associated graded C2 –spectrum for the slice filtration of Tmf1.3/

is W
P2M Œā1;ā3�

�
S jP j ^HZ

�
1
3

��
_
W

P2M Œā1;ā3�

�
S�jP j�4��1

^HZ
�

1
3

��
:

Proof We use Propositions 2.9 and 2.13 to read the slices out of the RO.C2/–graded
homotopy groups. The long exact sequence in homotopy associated to the fiber square
in Proposition 4.24 and Corollary 5.1 identify the needed homotopy groups. For k < 0,
let Rk denote the degree-2k piece of

Z
�

1
3

�
Œa˙1

1 ; a˙1
3 �=

�
Z
�

1
3

�
Œa˙1

1 ; a3�CZ
�

1
3

�
Œa1; a

˙1
3 �
�
:

We then have isomorphisms

�k� Tmf1.3/DG˝RkC1 and �k��1 Tmf1.3/D Z˝Rk :

The functor P0 applied to the Mackey functor G yields zero, so we conclude by
Proposition 2.13 that there are no negative even slices, and by Proposition 2.9 that all
of the negative odd slices are of the desired form.

This allows us to compute the E2 –term of the slice spectral sequence

E
s;t
2
D �C2

t�sP t
t Tmf1.3/ H) �C2

t�s Tmf1.3/;

where P t
t denotes the t –slice of Tmf1.3/. For t D 2k � 0, we get

�C2

2k�sP2k
2k Tmf1.3/D

M
P2M Œā1;ā3�k�

�C2

2k�sSk�
^HZ

�
1
3

�
D

M
P2M Œā1;ā3�k�

H C2

2k�s

�
Sk�;Z

�
1
3

��
D

M
P2M Œā1;ā3�k�

H C2

k�s

�
Sk� ;Z

�
1
3

��
:

By [28, Example 3.16], we have

H C2

k�s

�
Sk� ;Z

�
1
3

��
D

8<:
Z
�

1
3

�
if 2k � s is divisible by 4 and s D 0;

Z=2 if 0< s � 2k � s and .2k � s/� s is divisible by 4;

0 otherwise.

Similarly, one can reduce the computation for t < 0 to Bredon cohomology and use
that

H k
C2

�
Sd� ;Z

�
1
3

��
D

8<:
Z
�

1
3

�
if d is even and k D d;

Z=2 if k is odd and 1< k � d;

0 otherwise.
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We depict the slice spectral sequence in Figure 2. Here, an unboxed number n denotes
n copies of Z=2, a box denotes a copy of Z

�
1
3

�
and a boxed n denotes n copies

of Z
�

1
3

�
. The vertical coordinate is s and the horizontal one is t � s . In positive

degrees, the differentials follow from those for MUR via the real orientation map, and
these were determined in [28] and in [32]. For the differentials in negative degrees,
we can use that this is a spectral sequence of algebras, so in particular, we have an
action of the slice spectral sequence for tmf1.3/ on that of Tmf1.3/. This reduces
the problem to understanding the differentials on the line L of slope one in Figure 2
passing through the “1” in .�8;�1/. This class is infinitely divisible by � D ā1a�
and � D ā3a3

� . The classes �3 and �3 are hit by a d3 and a d7 respectively in the
slice spectral sequence for tmf1.3/. As a class x on L is not hit by any differential for
degree reasons, ��3x has thus to support a d3 –differential and ��3x a d7 –differential
(if it does not support a d3 –differential). This forces the negative differentials.

5.2 Anderson duality

Let G be a finite group. For an injective abelian group J , the functor

(genuine) G–Spectra! graded abelian groups; X 7! HomZ.�
G
��X;J /

is representable by a G–spectrum IJ , as follows from Brown representability. If
A is an abelian group and A ! J 0 ! J 1 an injective resolution, we define the
G–spectrum IA to be the fiber of IJ 0 ! IJ 1 . Given a G–spectrum X , we define its
A–Anderson dual IAX by F.X; IA/. It satisfies for all k 2Z the following functorial
short exact sequence:

0! Ext1Z.�
G
�k�1X;A/! �G

k IAX ! HomZ.�
G
�kX;A/! 0:

For G D feg we get nonequivariant Anderson duality as explored in [1] and [60]. If
G is (possibly) nontrivial, denote by AG the stable Burnside category, by which we
mean the full subcategory of Ho.SpG/ on the cosets †1.G=H /C . Given again a
G–spectrum X , we see by precomposing with the functor

AG! SpG ; †1.G=H /C 7!†1.G=H /C ^X

that the short exact sequence above refines to a short exact sequence of Mackey functors

0! Ext1Z.��k�1X;A/! �kIAX ! HomZ.��kX;A/! 0:

By smashing X with representation spheres, we see that it even refines to an RO.G/–
graded sequence. Equivariant Anderson duality in the case G D C2 has been explored
in some detail in [56].
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Figure 2: The slice spectral sequence for Tmf1.3/
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One reason to be interested in Anderson (self) duality is the universal coefficient
sequence, relating homology and cohomology. Let E be a G–spectrum, X be another
G–spectrum and A be an abelian group. Then IA.X ^E/ 'G F.X; IAE/ implies
the short exact sequence

0! Ext1Z.EV�1X;A/! .IAE/V X ! HomZ.EV X;A/! 0

for a real G–representation V . In particular, Anderson self-duality implies useful
universal coefficient theorems; for example, IZ KO'†4 KO implies one of the main
theorems of [1].

Our goal in this section is to compute the Z
�

1
3

�
–Anderson dual of Tmf1.3/ as a

C2 –spectrum and then deduce a computation of the Z
�

1
3

�
–Anderson dual of Tmf0.3/.

Observe that HZ� ' S4�2� ^HZ as H 0.S4�2�IZ/ Š Z� , where Z� is as in
Definition 2.14. Thus, Proposition 5.4 implies that the associated graded C2 –spectrum
for the slice filtration of Tmf1.3/ isW

P2M Œā1;ā3�

�
S jP j ^HZ

�
1
3

��
_
W

P2M Œā1;ā3�

�
S�jP j�2��5

^HZ
�

1
3

�
�
�
:

This suggests the following theorem:

Theorem 5.5 There is a C2 –equivariant equivalence IZŒ 1
3
� Tmf1.3/'†

5C2� Tmf1.3/.

Note that this theorem implies the universal coefficient sequence claimed in the intro-
duction. To prove the theorem, we will start with two lemmas.

Lemma 5.6 We have nonequivariantly IZŒ 1
3
� Tmf1.3/'†

9 Tmf1.3/.

Proof By Proposition 4.5, the moduli stack M1.3/ is equivalent to the weighted
projective stack P.1; 3/DPZŒ 1

3
�.1; 3/ and the sheaf ! on M1.3/ corresponds to O.1/

on P.1; 3/. This weighted projective stack has Serre duality in the sense that there is a
class

D D
1

a1a3
2H 1.P.1; 3/IO.�4//

such that

H s.P.1; 3/IF/˝H 1�s.P.1; 3/IF�˝O.�4//!H 1.P.1; 3/IO.�4//Š Z
�

1
3

�
�D

is a perfect pairing for s D 0; 1 for an arbitrary coherent sheaf F .
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Let us write for brevity RD Tmf1.3/. As P.1; 3/ has cohomological dimension 1,
the element D is a permanent cycle in the descent spectral sequence for R and is
represented by a unique element in ��9RŠ Z

�
1
3

�
, which we will also denote by D .

Denote by ı the element in �9IZŒ 1
3
�R with �.ı/.D/D 1, where

�W �9IZŒ 1
3
�R

Š
�!Hom

�
��9R;Z

�
1
3

��
:

The element ı induces a R–linear map yıW †9R! IZŒ 1
3
�R.

We obtain a commutative diagram:

�k�9R˝��kR
yı�˝id

//

��

�kIZŒ 1
3
�R˝��kR

Š

�˝id
// Hom

�
��kR;Z

�
1
3

��
˝��kR

��

��9R
�.ı/

Š
// Z
�

1
3

�
The left vertical map is a perfect pairing because of Serre duality (as described above),
as is the right vertical map by definition. Thus, the map yı�W �k�9R! �kIZŒ 1

3
�R is

an isomorphism for all k . This shows that yı is an equivalence.

The following key lemma uses our information about the slices of Tmf1.3/:

Lemma 5.7 The transfer

��9 Tmf1.3/D �
e
�5�2� Tmf1.3/! �C2

�5�2� Tmf1.3/

is an isomorphism.

Proof The slice spectral sequence for †2� Tmf (as shown in Figure 3, where dots
stand for the Mackey functor G and a box with a cross stands for Z� ) gives an
isomorphism of Mackey functors

��5�2� Tmf1.3/Š ��5�2�S
�4��1

^HZ
�

1
3

�
ŠH 2

�
S2�
IZ
�

1
3

��
Š Z

�
1
3

�
�:

−9 −7 −5 −3 −1 1 3
−2

0

2

�δ� �

Figure 3: The E2–term of the slice spectral sequence for �k�2� Tmf1.3/
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Proof of Theorem 5.5 Consider the following commutative diagram:

�
C2

5C2�
IZŒ 1

3
� Tmf1.3/

res

��

// // Hom
�
�

C2

�5�2�
Tmf1.3/;Z

�
1
3

��
resDtr�Š

��

�9IZŒ 1
3
� Tmf1.3/

Š
// Hom

�
��9 Tmf1.3/;Z

�
1
3

��
By the last lemma, tr� is an isomorphism. This implies that we can refine the element
ı 2 �9IZŒ 1

3
� Tmf1.3/ corresponding to the equivalence †9 Tmf1.3/! IZŒ 1

3
� Tmf1.3/

from Lemma 5.6 to an element zı2�C2
5C2�IZŒ 1

3
� Tmf1.3/. This induces a C2 –equivariant

Tmf1.3/–linear map
†5C2� Tmf1.3/! IZŒ 1

3
� Tmf1.3/

that is an equivalence of underlying spectra. By Proposition 4.20 and [57, Proposition
6.3.3], we know that Tmf1.3/

tC2 ' ˆC2 Tmf1.3/ vanishes and thus Tmf1.3/ and
IZŒ 1

3
� Tmf1.3/ are cofree C2 –spectra by [28, Corollary 10.6]. Thus, the theorem

follows.

This allows us also to compute the Anderson dual of Tmf0.3/. As in [60], we will use
the following lemma:

Lemma 5.8 Let A be an abelian group and X be a spectrum with an action by a finite
group G . Assume that the norm map XhG!X hG is an equivalence. Then there is an
equivalence .IAX /hG ' IA.X

hG/.

Proof We have the following chain of equivalences:

.IAX /hG
' F.X; IA/

hG
' F.XhG ; IA/' F.X hG ; IA/' IA.X

hG/

As noted in the proof of Theorem 5.5, Tmf1.3/
tC2 vanishes. Thus, we get:

Corollary 5.9 There is an equivalence IZŒ 1
3
� Tmf0.3/' .†

5C2� Tmf1.3//
hC2 .

6 The Picard groups

In this section we will compute the Picard groups of TMF0.3/, Tmf0.3/ and related
spectra. We recommend Mathew and Stojanoska [51] for a good introduction to Picard
groups and our techniques are very similar to theirs.
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6.1 Generalities

In the following, we will often use the language of 1–categories. We choose the
same model as [33] and [39], namely quasicategories. For the theory of (symmetric)
monoidal 1–categories see either [44] or [23] for a shorter introduction.

If C is a monoidal category, we denote by Pic.C/ the group of isomorphism classes
of invertible spectra; note that this is a priori a proper class (or large set, depending
on set-theoretic conventions), but will always be a (small) set in our situation. If C
is a monoidal 1–category, we denote by Pic.C/ the maximal 1–subgroupoid (Kan
complex) of the full subcategory of invertible objects. Clearly, �0 Pic.C/ŠPic.Ho.C//.
If C is a symmetric monoidal 1–category, Pic.C/ inherits the structure of a group-like
E1–space; indeed, Pic.C/ is a symmetric monoidal 1–category and thus by [44,
Example 2.1.2.18, Remark 2.4.2.6, Corollary 5.1.1.5] a Comm D E1–algebra in
the 1–category of 1–groupoids, which agrees with that of spaces. Thus, there is a
connective spectrum pic.C/ with �1pic.C/'Pic.C/ by a result of Boardman and Vogt
and of May (see [44, Remark 5.2.6.26] for an 1–categorical treatment). Note that we
have �ipic.C/Š �i Pic.C/ in this situation.

Given an E2 –ring spectrum R, its 1–category R–mod of (left) R–modules has
the structure of a monoidal 1–category [44, Proposition 7.1.2.6]. We define the
Picard group Pic.R/ of R to be Pic.Ho.R–mod// and the Picard space Pic.R/ to
be Pic.R–mod/. If R is an E1–ring spectrum, then R–mod is even a symmetric
monoidal 1–category. We define then pic.R/ to be pic.R–mod/.

For us, a derived stack will be a pair X D .X;Otop/, where X is a Deligne–Mumford
stack and Otop is a sheaf of even-periodic E1–ring spectra with �0Otop isomorphic to
the structure sheaf OX of X . For example, X might be a moduli stack of elliptic curves.
For a derived stack X D .X;Otop/, we write Pic.X / etc for the Picard group, space
or spectrum of the symmetric monoidal 1–category of quasicoherent Otop–modules
QCoh.X / on X . For a short treatment of quasicoherent sheaves in this context see [50,
Section 2.3] and for a full-blown treatment see [42].

Definition 6.1 We call a derived stack X D .X;Otop/ 0–affine if the global sections
functor

�W QCoh.X /!Otop.X /–mod

is an equivalence of symmetric monoidal 1–categories.

Clearly, pic.X / ' pic.Otop.X // if X is 0–affine. It was shown in [50] that the
(compactified) moduli stack of elliptic curves with arbitrary level structure together
with its derived structure sheaf Otop is 0–affine.
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The following Mayer–Vietoris principle will be useful later.

Lemma 6.2 Let X D .X;OX / be a 0–affine derived stack and U;V �X be a covering
by open substacks. Then we have a long exact sequence

� � � ! GL1 �0OX .U \V / @!Pic.OX .X //

! Pic.OX .U //�Pic.OX .V //! Pic.OX .U \V //

of abelian groups.

Proof As shown in [51, Section 3.1], the presheaf Pic defined by

Pic.W !X /D Pic.Otop.W !X //

(where W ! X is étale) is actually a sheaf. Thus, we have a homotopy pullback
square:

Pic.X;OX / //

��

Pic.U;OX jU /

��

Pic.V;OX jV / // Pic.U \V;OX jU\V /

The identification of these Picard spaces with those of OX .X / etc follows from the
fact that X , U , V and U \ V are 0–affine (see [50, Proposition 3.27]). This fiber
square induces the long exact sequence in the lemma.

Remark 6.3 By the last proof the boundary map

GL1 �0OX .U \V /! Pic.OX .X //

is induced by the map

GL1 OX .U \V /'�Pic.OX .U \V //! Pic.OX .U //�
h
Pic.OX .U\V //Pic.OX .V //

of spaces. Thus, it can be described as follows: An element g 2GL1 �0OX .U \V / in-
duces an OX –linear self-equivalence f of OX jU\V . The triple .OX jU ;OX jV ; f / de-
fines an element of the homotopy fiber product Pic.OX.U //�

h
Pic.OX .U\V //

Pic.OX.V //.
As noted above, this gluing datum defines an invertible OX –module on X and this
invertible module represents @.g/.

Let now A! B be a faithful G–Galois extension in the sense of Rognes [57]. Then
by [51, Section 3.3], we have the following theorem:

Theorem 6.4 There is an equivalence pic.A/' ��0pic.B/
hG .
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There is also another equivariant interpretation of the Picard group of A if A!B is a
faithful G–Galois extension. View B ' F.EGC;B/ as a cofree G–spectrum. Denote
the category of equivariant B–modules by G-B–mod. As B is cofree and A! B is
a faithful Galois extension, ˆGB 'BtG is contractible. By [28, Corollary 10.6] every
(equivariant) B–module is thus cofree again. Therefore, a map in G-B–mod is a weak
equivalence if it is an underlying weak equivalence. It is then a consequence of Galois
descent of the form in [52, Lemma 6.1.4, Proposition 6.2.6] that there is a monoidal
equivalence Ho.A–mod/'Ho.G-B–mod/. Thus, Pic.R/ŠPic.Ho.G-B–mod//, the
group of equivariant invertible B–modules. We will denote the latter group by PicG.B/.

6.2 A generalized Baker–Richter theorem

Baker and Richter proved in [5] that the Picard group of an E1–ring spectrum R

is completely algebraic if R is even periodic and �0R is a regular complete local
ring. This applies, for example, to the Lubin–Tate spectra En . Mathew and Stojanoska
generalized this in [51] by dropping the condition that �0R is complete and local (and
also weakened the periodicity requirement). The main purpose of this subsection is to
show that the assumption of periodicity is superfluous.

Let R be an E2 –ring spectrum. Let L be an invertible ��R–module. Then L is
projective over ��R. Thus, there is an R–module L with ��LŠL and this module L

is well defined up to isomorphism in Ho.R–mod/. This defines a map Pic.��R/!
Pic.R/. By the degenerate Künneth spectral sequence, this is a homomorphism.

Let R� be a commutative graded ring. By an element x 2R� we will always mean a
homogeneous element and by an ideal I �R� we will always mean a homogeneous
ideal. We call R� local if it has a unique maximal ideal m. We call a graded local
ring regular if the maximal ideal is generated by a finite regular sequence. We call a
graded local ring complete if the map R�! limk R�=m

k is an isomorphism. We call
an arbitrary commutative graded ring regular if every localization of it at a prime ideal
is regular.

We have the following generalization of [5, Theorem 38].

Theorem 6.5 Let R be an E2 –ring spectrum. Assume that ��R is concentrated in
even degrees and regular. Then the morphism Pic.��R/! Pic.R/ is an isomorphism.

This is not really new as this generalization is just a combination of [5, Remark 39] and
[51, Theorem 2.4.6]. We will sketch a proof anyhow as we introduce one simplification,
avoiding the use of obstruction theory for A1–structures.

Let M be an invertible R–module with M ^R N 'R for some R–module N . It is
enough to show that ��M is a projective ��R–module. For this, it is enough to show
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that the completion .1��M /m is a projective b��Rm–module for every maximal ideal
m� ��R.

The theory from [43, Section 4.2] implies that there is actually an R–module yMm with
�� yMmŠ .1��M /m .3 We have yMm ^ yRm

yNm'
yRm by [43, Remark 4.2.6] and because

N is a finite R–module. Note here that yRm also inherits an E2 –structure.

Let x1; : : : ;xn be a regular sequence generating m. Consider the yRm–module

yRm=x D yRm=x1 ^ yRm
� � � ^ yRm

yRm=xn;

obtained by killing the regular sequence x1; : : : ;xn . Because yRm is even, every xi

acts trivially on yRm=xi and hence on yRm=x . Indeed, the composite

†jxi j yRm!†jxi j yRm=xi
�xi
�! yRm=xi

is zero and thus the second map factors over an yRm–linear map †2jxi jC1 yRm!
yRm=xi ,

which must be zero as well.

By [19, Theorem V.2.6]4 yRm=x has the structure of an yRm–ring spectrum in the sense
that there exists a map

yRm=x^ yRm

yRm=x! yRm=x

that is unital up to homotopy.5 For an arbitrary yRm–module X , set X=xDX ^ yRm

yRm=x.

Claim 6.6 The map

��.X1=x/˝�� yRm
��.X2=x/! ��.X1=x ^ yRm

X2=x/! ��..X1 ^ yRm
X2/=x/

factors over a map

��.X1=x/˝�� yRm=x
��.X2=x/! ��..X1 ^ yRm

X2/=x/;

which is an isomorphism for all yRm–modules X1 and X2 .

Proof It factors as every xi acts trivially on X1=x DX1 ^ yRm

yRm=x .

The map is clearly an isomorphism if X1 D
yRm . Both sides are homological in X1 —

since ��. yRm=x/ is a graded field — and compatible with arbitrary coproducts. Thus,
it is an isomorphism for all X1 2

yRm–mod.

3Lurie only considers ideals in �0R , but the theory also works for homogeneous ideals in ��R under
our assumptions.

4While the source states the result only for E1–ring spectra, the same proof works also for E2 –ring
spectra.

5For our argument, this naive result suffices, while Baker and Richter use that yRm=x has an A1–
structure.
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In particular ��. yMm=x/ is in the Picard group of ��. yRm=x/. Thus, ��. yMm=x/ is a
free ��. yRm=x/–module of rank 1.

As in [5], one can show that ��. yMm=.x
i1

1
; : : : ;x

in
n // is a cyclic �� yRm–module

for i1; : : : ; in�1, using the Nakayama lemma for graded rings. Using the completeness
of �� yRm , one can show as in [5] that �� yMm is a shift of �� yRm . In particular, �� yMm

is projective over �� yRm as we wanted to show.

6.3 The case of TMF1.3/ and Tmf1.3/

Lemma 6.7 We have isomorphisms

Pic TMF1.3/Š Z=6; Pic tmf1.3/Œa
�1
1 �Š Z=2;

Pic tmf1.3/Œa
�1
3 �Š Z=6; Pic tmf1.3/Œa

�1
1 ā�1

3 �Š Z=2:

In all the cases, all the invertible modules are equivalent to suspensions of the ground
ring spectrum.

Proof We will just prove the lemma for TMF1.3/, as the other cases are analogous.
By Theorem 6.5,

Pic TMF1.3/Š Pic.�� TMF1.3//:

An evenly graded �2� TMF1.3/–module is an equivalent datum to a quasicoherent
sheaf on M1.3/ ' Spec Z

�
1
3

�
Œa1; a3�Œ�

�1�=Gm . Furthermore, an arbitrary graded
�� TMF1.3/–module splits into an even and an odd part. Therefore, an invertible
�� TMF1.3/–module has to be either completely even or completely odd. We hence
have a short exact sequence

0! Pic.M1.3//! Pic.�� TMF1.3//! Z=2! 0;

where the first map corresponds to the inclusion of the even part and the map to Z=2
indicates whether the invertible module is even or odd.

Given a line bundle L on M1.3/, we can extend it to the weighted projective stacky line
M1.3/. Indeed, by [53, Lemma 3.2], we can extend L to a reflexive sheaf on M1.3/

and every reflexive sheaf of rank 1 is a line bundle by [25, Proposition 1.9]. Every
line bundle on a weighted projective stacky line is of the form O.k/ for some k 2 Z
as can be seen, for example, along the lines of [53, Proposition 3.4]. As noted after
Proposition 4.5, the line bundle O.k/ restricts to the (pullback of) the line bundle !˝k

on M1.3/. Thus, the map �W Z! Pic.M1.3// sending k to !˝k is surjective.

It follows from the identification of M1.3/ above that

H 0.M1.3/I!
˝�/Š Z

�
1
3

�
Œa1; a3; �

�1�
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with �D a3
3
.a3

1
� 27a3/. As a3 2H 0.M1.3/I!

˝3/ is thus invertible on M1.3/, it
defines a trivialization of !˝3 and thus �.3/D 0. The resulting morphism

x�W Z=3! Pic.M1.3//

is an isomorphism as there is no invertible section of H 0.M1.3/I!
˝i/ for i D 1 or 2.

As the subgroup of Pic TMF1.3/ spanned by the †k TMF1.3/ is isomorphic to Z=6,
the lemma follows.

Proposition 6.8 The extensions

TMF0.3/! TMF1.3/;

.tmf1.3/Œā
�1
1 �/hC2 ! tmf1.3/Œā

�1
1 �;

.tmf1.3/Œā
�1
3 �/hC2 ! tmf1.3/Œā

�1
3 �;

.tmf1.3/Œā
�1
1 ā�1

3 �/hC2 ! tmf1.3/Œā
�1
1 ā�1

3 �

are faithful C2 –Galois extensions in the sense of Rognes.

Proof We obtain these maps of E1–ring spectra by applying Otop to the C2 –Galois
covers of stacks

M1.3/!M0.3/;

D.a1/!D.a1/=C2;

D.a3/!D.a3/=C2;

D.a1a3/!D.a1a3/=C2;

as follows from the results in Section 4.3. Here, D denotes the nonvanishing locus.
By the main result of [50], the derived stack .Mell;Otop/ is 0–affine and by [50,
Proposition 3.29] the same is true for the targets of the above four Galois covers. Then
[50, Theorem 5.6] implies the result.

Theorem 6.9 We have isomorphisms

PicC2
TMF1.3/ Š Pic.TMF0.3// Š Z=48;

PicC2
tmf1.3/Œā

�1
1 � Š Pic..tmf1.3/Œā

�1
1 �/hC2/ Š Z=8;

PicC2
tmf1.3/Œā

�1
3 � Š Pic..tmf1.3/Œā

�1
3 �/hC2/ Š Z=48;

PicC2
tmf1.3/Œā

�1
1 ā�1

3 �Š Pic..tmf1.3/Œā
�1
1 ā�1

3 �/hC2/Š Z=8:

In all the cases, all the (equivariant) invertible modules are equivalent to (integer)
suspensions of the ground ring spectrum.
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Proof We will only prove this in the first case. The other cases are similar. The first
isomorphism follows directly from Proposition 6.8 and the discussion at the end of the
previous subsection.

In the following, we will denote by HFPSS the homotopy fixed point spectral sequence
for the C2 –action on TMF1.3/ and differentials in it will be denoted by dHF . We
will always use the Adams convention that the k th column consists of the groups
H s.C2I�t TMF1.3// with k D t � s .

We have TMF1.3/ 'C2
tmf1.3/Œ�

�1� with � D ā3
3
.ā3

1
� 27ā3/ by the results of

Section 4.3. As � is a permanent cycle, this allows us to deduce from the results of
Section 4.2 all differentials in the HFPSS. For example,  D ā4

3
=� is a permanent

cycle.

It is easy to see that the .�1/st column of the HFPSS for TMF1.3/ is in cohomological
degrees � 7 isomorphic to F2Œ � �b3˚F2Œ � �b7 with b3D a3

� ā1u�1
2�

of cohomological
degree 3 and b7 D a7

� ā3u�2
2�

of degree 7. Recall from Section 4.2 that ā1; ā3 and a�
are permanent cycles while dHF

3
.u2� /D a3

� ā1 and dHF
7
.u2

2�
/D a7

� ā3 . We thus have
the differentials

dHF
3 . kb3/D 

ka3
� ā1u�2

2�
dHF

3 .u2� /D 
kb2

3

and
dHF

7 . kb7/D 
ka7
� ā3u�4

2�
dHF

7 .u2
2� /D 

kb2
7

in the HFPSS.

As TMF0.3/! TMF1.3/ is a faithful C2 –Galois extension, Theorem 6.4 implies an
equivalence pic.TMF0.3//' ��0.pic.TMF1.3///

hC2 . This gives the Picard spectral
sequence

H s.C2I�t pic TMF1.3//

that converges to �t�spic TMF0.3/ for t � s � 0. Differentials in it will be denoted
by dPic .

The Picard group of TMF1.3/ is Z=6 by Lemma 6.7 and GL1 �0 TMF1.3/ is isomor-
phic to Z�Z=2, generated by 1

3
and �1. Thus,

�t pic TMF1.3/D

8<:
Z=6 for t D 0;

Z�Z=2 for t D 1;

�t�1 TMF1.3/ for t � 2:

We are interested in the 0th column of the Picard spectral sequence. We have

H 0.C2IZ=6/D Z=6 and H 1.C2IZ�Z=2/Š Z=2I
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for s � 2 the 0th column of the Picard spectral sequence agrees with the .�1/st column
of the HFPSS. For an element x in the .�1/st column of the HFPSS, denote the
corresponding element in the 0th column of the Picard spectral sequence by x .

If x 2 Es
�;s is in cohomological degree s , then, by [51, Theorem 6.1.1], we have

dPic
s .x/D dHF

s .x/Cx2 . For degree reasons, the first possible differential for  kb3 is
a dPic

3 and this equals . k C  2k/b2
3 . This is zero only if k D 0. Likewise for degree

reasons, the first possible differential for  kb7 is a dPic
7 and this equals . k C  2k/b2

7 .
This is again zero only if k D 0, so that b3 and b7 are the only permanent cycles in
the 0th column of the Picard spectral sequence in cohomological degrees 2� s � 7.

It is easy to check that each element in the .�1/st column of the HFPSS of coho-
mological degree � 8 either supports a d3 – or d7 –differential or is hit by a d3 – or
d7 –differential from an element of degree � 8. By [51, Comparison Tool 5.2.4], this
implies that all nontrivial elements in the 0th column of the Picard spectral sequence in
cohomological degrees � 8 support nontrivial differentials or are hit by differentials.

Thus, Pic.TMF0.3// has at most 6 � 2 � 2 � 2D 48 elements. We just need to show that
the image of the morphism

Z! Pic.TMF1.3//; k 7!†k TMF0.3/

has order 48. This follows easily from the fact that 48 is the smallest period of
�� TMF0.3/ as � is not a permanent cycle in the HFPSS.

Lemma 6.10 Let E be a strongly even C2 E2 –ring spectrum. Then every even
projective ��E module can be realized by a strongly even E–module in a unique way
up to homotopy, giving in particular a well-defined homomorphism

Piceven.�
e
�E/! PicC2.E/:

Proof Let P be an even projective �e
�E–module. We can write P as the image

of an idempotent endomorphism f of a free even ��E–module F . We can write
F D

L
I �

e
�†

2ni E . Define a free E–module F by F D
L
†ni�E . Because E is

strongly even, we have �e
�F Š F and we can lift f to an idempotent endomorphism

of F , whose mapping telescope we denote by P . This is the required realization of P .

If we have another strongly even E–module P 0 with ��P 0 Š P as �e
�E–modules,

we can lift the morphism F ! P to an E–module morphism F ! P 0 and further to
a morphism P ! P 0 that induces an isomorphism on �e

� . By Lemma 3.4, this is an
equivalence.

Thus, we get a well-defined map

Piceven.�
e
�E/! PicC2.E/:
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To show that it is an homomorphism, we have to show that for strongly even projective
E–modules P1 and P2 , the smash product P1 ^E P2 is still strongly even and has
underlying homotopy groups �e

�P1˝�e
�E �

e
�P2 . This is clear by a retraction argument

from the corresponding statement for free modules of the form
L

i2I †
ni�E .

Question 6.11 Let E be a C2 E2 –ring spectrum. Assume that E is strongly even
and that �u

�E is a regular graded ring and an integral domain. Is every invertible E–
module of the form SV ^L, where V 2 RO.C2/ and L is a strongly even E–module
with �e

�L 2 Pic.�e
�E/?

Using the lemma above, the question can be restated as asking for the surjectivity of
the homomorphism

RO.C2/˚Piceven.�
e
�E/! PicC2.E/:

A positive answer to this question would be a real generalization of the theorem by
Baker and Richter given here as Theorem 6.5.

We could provide a similar spectral sequence argument as above for the computation of
PicC2

.Tmf1.3//, but we prefer to use a Mayer–Vietoris style argument instead. This
will demonstrate how the computation of PicC2

.Tmf1.3// follows essentially formally
from the fact that the Picard groups PicC2

.tmf1.3/Œā
�1
1
�/ and PicC2

.tmf1.3/Œā
�1
3
�/ are

generated by the suspension of the ground ring spectrum.

Theorem 6.12 The morphism

RO.C2/! PicC2
.Tmf1.3//; V 7! SV

^Tmf1.3/

is surjective. Its kernel is generated by 8� 8� . Thus,

Pic.Tmf0.3//Š PicC2
.Tmf1.3//Š Z˚Z=8:

Proof By Lemmas 4.21, 4.22 and 6.2, we have an exact sequence:

GL1 �
C2

0
tmf1.3/Œā

�1
1 ��GL1 �

C2

0
tmfŒā�1

3 �
f
!GL1 �

C2

0
tmf1.3/Œā

�1
1 ā�1

3 �

ı
!PicC2

.Tmf1.3//! PicC2
.tmf1.3/Œā

�1
1 �/�PicC2

.tmf1.3/Œā
�1
3 �/

g
!PicC2

.tmf1.3/Œā
�1
1 ; ā�1

3 �/:

By Corollary 5.1, we have �C2
0 tmf1.3/Œā

�1
1

ā�1
3
�Š Z

�
1
3

�
Œ.ā3

1
ā�1

3
/˙1�. Thus,

GL1 �
C2
0 tmf1.3/Œā

�1
1 ā�1

3 �Š Z�Z�Z=2;

generated by 1
3

, ā3
1
ā�1

3
and �1, and coker.f /Š Z, generated by Œā3

1
ā�1

3
�.
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We claim that @.ā3
1
ā�1

3
/' S3� ^Tmf1.3/. Indeed, we have trivializations

ā3W S
3�
^ tmf1.3/Œā

�1
3 �! tmf1.3/Œā

�1
3 �

and
ā3

1W S
3�
^ tmf1.3/Œā

�1
1 �! tmf1.3/Œā

�1
1 �:

Therefore, we get S3� ^Tmf1.3/ by gluing tmf1.3/Œā
�1
3
� and tmf1.3/Œā

�1
1
� by the

map ā3
1
ā�1

3
on tmf1.3/Œā

�1
1

ā�1
3
�.

By Theorem 6.9, ker.g/ŠZ=48. Furthermore, †8�8� Tmf1.3/'C2
Tmf1.3/ as u4

2�

is a permanent cycle. Thus, we get a commutative diagram:

0 // Z

Š

��

3�
// RO.C2/=.8� 8�/

��

// RO.C2/=.8� 8�; 3�/Š Z=48

Š

��

// 0

0 // coker.f / // PicC2
.Tmf1.3// // ker.g/ // 0

Thus, the middle map is also an isomorphism.

Remark 6.13 The map Pic.Tmf/! Pic.Tmf0.3// is not surjective. The former has
been identified with Z˚Z=24 in [51, Theorem B, Construction 8.4.2], where the
summands are generated by †Tmf and by the global sections Otop.I/. Here, I is a
line bundle on the derived compactified moduli stack of elliptic curves .Mell;Otop/

obtained by gluing †24Otop on Mell and †24Otop on MellŒc
�1
4
� via the clutching

function j D c3
4
=�.

We claim that the module Otop.I/^Tmf Tmf0.3/ is 2–torsion in Pic.Tmf0.3//. Indeed,
for pWM0.3/!Mell , we have for an arbitrary locally free sheaf F on .Mell;Otop/

an equivalence

�.F/^Tmf Tmf0.3/' �
�
MellIF ^Otop p�Otop

M0.3/

�
' �

�
MellIp�

�
p�F ^Otop

M0.3/

Otop
M0.3/

��
' �.M0.3/Ip

�F/:
In the first equivalence, we use that .Mell;Otop/ is 0–affine and in the second we use
the projection formula (see [24, Exercise II.5.1d] for the algebraic statement, from
which the topological can be deduced). Thus, Otop.I/^Tmf Tmf0.3/ can be constructed
as Otop.p�I/, where p�I can be constructed by an analogous gluing construction
on M0.3/, gluing †24Otop on M0.3/ and †24Otop on M0.3/Œc

�1
4
� via the clutching

function j D c3
4
=� with c4 D a4

1
� 24a1a3 . There is an equivalence of gluing data

.Otop;Otop; id/! .†48Otop; †48Otop; j 2/
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given by �2W Otop!Otop on M0.3/ and c6
4
W Otop!†48Otop on M0.3/Œc

�1
4
�. Note

here that �2 D �2u12
2�

is a permanent cycle for TMF0.3/. Thus, 2 � ŒI� D 0 2

Pic.M0.3/;Otop/Š Pic.Tmf0.3//.

As not every torsion in Pic.Tmf0.3// is 2–torsion, Pic.Tmf/!Pic.Tmf0.3// is indeed
not surjective.
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