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LIE ALGEBRA MODELS FOR UNSTABLE HOMOTOPY

THEORY

GIJS HEUTS

Abstract. Quillen showed how to describe the homotopy theory of simply-
connected rational spaces in terms of differential graded Lie algebras. Here
we survey a generalization of Quillen’s results that describes the vn-periodic
localizations of homotopy theory (where rational corresponds to n = 0) in
terms of spectral Lie algebras. The latter form an extension of the theory of

Lie algebras to the setting of stable homotopy theory. This is a chapter written
for the Handbook of Homotopy Theory edited by Haynes Miller.
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1. Introduction

Write Ho(S∗) for the homotopy category of pointed spaces. The tools of algebraic
topology often amount to studying spaces by applying a variety of functors

F : Ho(S∗)→ Ho(A),

for A a homotopy theory which is ‘algebraic’ in nature. A typical example of such
an F is the functor C∗(− : R) taking cochains with values in a commutative ring
R. In this case A can be taken to be (the opposite of) the category of differential
graded algebras over R, using the cup product of cochains as multiplication. If one
wishes to take the rather subtle commutativity properties of the cup product into
account, a more refined choice for A would be the category of E∞-algebras over R.

An optimist might hope to choose A cleverly enough so that one can construct a
functor F which is an equivalence of categories. If one restricts the domain of F to

the homotopy category Ho(S≥2
Q ) of simply-connected rational pointed spaces, then

there is the following landmark result [73]:
1
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2 GIJS HEUTS

Theorem 1.1 (Quillen [73]). There are equivalences of categories

Ho(S≥2
Q )

Ho(Lie(ChQ)
≥1) Ho(coCAlg(ChQ)

≥2),

LQ CQ

where Lie(ChQ)
≥1 denotes the category of connected differential graded Lie algebras

over Q and coCAlg(ChQ)
≥2 the category of simply-connected differential graded

cocommutative coalgebras over Q.

The functor CQ is essentially a version of the rational chains; in particular, the
homology of the underlying chain complex of CQ(X) is the rational homology of
the space X and the coproduct is the usual one arising from the diagonal map of
X . The functor LQ is perhaps more surprising. It refines the collection of rational
homotopy groups of X , in the sense that there is a natural isomorphism

H∗(LQ(X)) ∼= (π∗+1X)⊗Q.

The induced Lie bracket on H∗(LQ(X)) corresponds to the classical Whitehead
product on the (rational) homotopy groups of X .

Theorem 1.1 is a very satisfying result in itself. In conjunction with Sullivan’s
approach to rational homotopy theory using minimal models [81] it has led to many
interesting developments within homotopy theory, as well as striking applications
to geometry (see [35, 36] for an overview). Moreover, it raises a number of natural
questions. Are there subcategories of Ho(S∗) other than that of rational spaces
which can be described in terms of Lie algebras and/or coalgebras? Even better,
does the entire category Ho(S∗) admit such an algebraic model? This survey mostly
concerns an answer to the first question, although we include some discussion of
the second one at the very end of Section 8.

Rationalization is the first step in a hierarchy of localizations of S∗, which we will
refer to as the vn-periodic localizations . For each prime p there is a family of
these, indexed by the natural numbers n ≥ 0. The case n = 0 is precisely rational
homotopy theory. The vn-periodic localizations are in a precise sense the most
elementary (or ‘prime’) localizations of homotopy theory. Our main objective will
be to discuss the following generalization of Quillen’s Theorem 1.1 (see [45]):

Theorem 1.2. There is an equivalence of homotopy theories

Lvn : Svn −→ Lie(Spvn
),

with Svn denoting the vn-periodic localization of S∗ and Lie(Spvn
) the vn-periodic

localization of the homotopy theory of spectral Lie algebras.

Explaining this result will of course require a discussion of spectral Lie algebras,
a concept that has only recently surfaced. It has several promising applications
within homotopy theory and interesting connections to derived algebraic geometry.

We now give an overview of the contents of this chapter. In Section 2 we review
Quillen’s rational homotopy theory. In particular, we will highlight the relation
between the Lie algebra model LQ(X) and the coalgebra model CQ(X), which can
be expressed in terms of Koszul duality. Since it plays an important role in this
survey, we devote Section 4 to a general discussion of this duality. It is preceded by
Section 3, which gives a short summary of monads and their algebras. In Section 5
we discuss spectral Lie algebras and their connection with the Goodwillie tower of
the identity functor of S∗. In Section 6 we turn to periodic phenomena in homotopy
theory. We describe the general philosophy of stable chromatic homotopy theory, in
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analogy with the theory of localizations in algebra, and its application to unstable
homotopy theory through the Bousfield–Kuhn functors. In Section 7 we come to
Theorem 1.2. The reader might note the absence of coalgebras in its statement.
There does exist a coalgebra model for Svn , but unlike the rational case it turns
out that the Lie algebra model plays a preferred role for n > 0. Loosely speaking,
coalgebras can only be used to describe a certain completion of Svn , rather than
this homotopy theory itself. We will discuss this point in Section 7 as well. In
the final Section 8 we discuss examples and several open questions which deserve
further investigation.

We stress that the style of this survey is rather informal. To counter this we include
many pointers to the literature, where most of our statements and their proofs can
be found with a more technically precise treatment. Still, we provide sketches
of the proofs of most major results (sometimes from a non-standard perspective),
hoping to make this chapter self-contained enough to convey to the reader all of
the essential ideas involved. The reader might also be interested in the survey of
Behrens–Rezk [13], which concerns some of the same topics we describe here.

Conventions and notation. Thus far we have not been specific about the formalism
for homotopy theory we use. Most statements in this survey are sufficiently generic
for the reader to adapt to their preferred setting. However, for convenience we work
in the setting of ∞-categories [51, 65]. This handbook also includes an expository
account by Groth. Thus S∗ and Sp will denote the ∞-categories of pointed spaces

and of spectra respectively. We write S
≥n
∗ for the full subcategory of S∗ on the

(n− 1)-connected spaces. We will use the standard notation

S∗ Sp
Σ∞

Ω∞

for the adjunction between the suspension spectrum Σ∞ and the zeroth space Ω∞.
All limits and colimits are to be thought of as∞-categorical ones (unless explicitly
stated otherwise); in other words, they are homotopy limits and colimits. For ∞-
categories C and D we denote by Fun(C,D) the ∞-category of functors between
them. Our reference for algebra in the setting of ∞-categories is [66]. When
discussing coalgebras we will often use the adjective commutative (rather than
cocommutative) when no confusion can arise, i.e., when we are not simultaneously
considering an algebra structure.

2. Rational homotopy theory

The results of Quillen and Sullivan on rational homotopy theory have been exten-
sively documented [73, 81, 21, 35, 63]; we will therefore feel free to give a somewhat
non-traditional exposition with an eye towards the results of later sections.

A map f : X → Y of simply-connected pointed spaces is a rational equivalence if
it induces an isomorphism on rational homotopy groups, i.e., if for every n ≥ 2 the
map

πnf ⊗Q : πnX ⊗Q→ πnY ⊗Q

is an isomorphism. Equivalently, f induces an isomorphism on rational homology.
A simply-connected pointed space X is said to be rational if for each n ≥ 2 the
abelian group πnX is uniquely divisible, i.e., is a vector space over Q. Equivalently,
each homology group Hn(X ;Z) is a rational vector space (with n ≥ 2 again). We

write S
≥2
Q for the full subcategory of S≥2

∗ on the rational spaces.

Every simply-connected space admits a rationalization ηX : X → XQ, which is a
map satisfying the following two properties:
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(1) The space XQ is rational.
(2) The map ηX is a rational equivalence.

Moreover, the assignment X 7→ XQ can be made functorial and ηX can be made
a natural transformation. The following terminology is convenient to describe the
situation:

Definition 2.1. Suppose C is an ∞-category and W a class of morphisms in C. A
functor L : C → D is called a localization of C at W if L sends each morphism in
W to an equivalence in D and is universal with this property. More precisely, if
E is any other ∞-category then precomposition by L determines an equivalence of
∞-categories

L∗ : Fun(D,E)→ FunW (C,E),

where the codomain denotes the full subcategory of Fun(C,E) of functors sending
elements of W to equivalences. A localization L : C → D is called reflective if L
admits a fully faithful right adjoint.

Thus, a localization of C at W is the universal solution to inverting the elements of
W . If the localization is reflective, then D can be thought of as a full subcategory
of C. Such reflective localizations are closely related to left Bousfield localizations
in the context of model categories.

In the setting of interest to us here, the existence of rationalizations described above
implies that the functor

S
≥2
∗ → S

≥2
Q : X 7→ XQ

is a reflective localization of S≥2
∗ at the class of rational equivalences. An entirely

analogous procedure produces the localization

Sp→ SpQ : E 7→ EQ

of the ∞-category of spectra at the rational equivalences. One can explicitly iden-
tify the latter functor as EQ ≃ HQ⊗E. The ∞-category SpQ is in fact equivalent
to the ∞-category ChQ of rational chain complexes and this equivalence respects
the usual symmetric monoidal structures (cf. [79] and Theorem 7.1.2.13 of [66]).
Under these identifications, the rational spectrum (Σ∞X)Q corresponds (up to nat-

ural equivalence) to the reduced rational chains C̃∗(X ;Q). Applying the universal

property of S≥2
Q , the functor

S
≥2
∗ → SpQ : X 7→ (Σ∞X)Q

factors over a functor for which we write

Σ∞
Q : S≥2

Q → SpQ.

We will not drag the equivalence between SpQ and ChQ along and use Σ∞
Q as our

version of the (reduced) rational chains functor.

The ∞-category S
≥2
Q carries two evident symmetric monoidal structures, namely

the Cartesian product and the rationalization of the smash product, although the
second structure does not have a unit (since we insisted that our spaces be simply-
connected). Any rational space X is a commutative coalgebra with respect to
the Cartesian product using the diagonal. The natural map from product to smash
product then also makesX a commutative coalgebra with respect to smash product
(although without a counit). Since Σ∞ is a symmetric monoidal functor with
respect to smash product, we conclude that Σ∞

Q may be factored as a composition

S
≥2
Q

C̃Q
−−→ coCAlgnu(SpQ)→ SpQ,
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where the second arrow is the forgetful functor. The middle term denotes the
∞-category of commutative coalgebras without counit in the symmetric monoidal
∞-category SpQ. For us a commutative coalgebra without counit in a symmetric
monoidal∞-category C is by definition a non-unital commutative algebra object of
Cop (cf. Definition 5.3 of [45] or Definition 3.1.1 of [64]).

Remark 2.2. There are often good 1-categorical models for ∞-categories of com-
mutative algebra objects; for example, the ∞-category CAlg(Sp) of commutative
ring spectra can be built from a model category of commutative monoids (in the
usual 1-categorical sense) in any good symmetric monoidal model category of spec-
tra. The situation for coalgebras is much less pleasant; we will ignore the issue and
work with the above definition.

We say a coalgebra in SpQ is n-connected if its underlying spectrum is n-connected.
One half of Theorem 1.1 may then be rephrased as follows:

Theorem 2.3 (Quillen [73]). The functor C̃Q gives an equivalence of ∞-categories

S
≥2
Q → coCAlgnu(SpQ)

≥2.

We will describe two proofs of this theorem; the first is close to the traditional
proofs, the second uses Goodwillie calculus and does not appear to be in the liter-
ature.

Sketch of first proof of Theorem 2.3. To check that C̃Q is fully faithful, first note
that it admits a right adjoint MapcoCAlg(HQ,−), where HQ is equipped with the

trivial coalgebra structure. We will argue that for any X ∈ S
≥2
Q the unit map of

this adjunction

X → MapcoCAlg(HQ, C̃QX)

is an equivalence. Here and above, the mapping spaces refer to those in the ∞-
category coCAlgnu(SpQ).

We work by induction on the Postnikov tower of X . Write τ≤nX for the nth
Postnikov section. Since X is simply-connected, its Postnikov tower consists of
principal fibrations of the form

τ≤nX → τ≤n−1X → K(πnX,n+ 1).

The convergence of the homological Eilenberg–Moore spectral sequence for this

fibration implies that C̃Q sends this fiber sequence to a fiber sequence of coalgebras.
The reader might be more familiar with the dual statement that the cohomological
version of this spectral sequence gives, for a suitable fibration F → E → B, an
equivalence of commutative HQ-algebras

HQ⊗C∗(B;Q) C
∗(E;Q)→ C∗(F ;Q),

but working with cochains would require us to introduce finite type hypotheses. In
any case, we may now use induction to reduce to the case where X is an Eilenberg–

MacLane space K(V, n) for V a rational vector space. Then C̃Q(K(V, n)) is the
cofree commutative coalgebra (without counit) generated by ΣnHV (see Remark
2.4), the latter denoting the rational spectrum whose single nonvanishing homotopy
group is V in dimension n. But clearly

MapcoCAlg(HQ, cofree(ΣnHV )) ≃ MapSpQ
(HQ,ΣnHV ) ≃ K(V, n),

so that C̃Q is indeed fully faithful.

To see it is essentially surjective, one observes that coCAlgnu(SpQ)
≥2 is generated

under colimits by a trivial coalgebra C2 on a single generator in degree 2; indeed,
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any simply-connected coalgebra can be built from ‘cells’ (where in this case cell
means trivial coalgebra on a generator in degree ≥ 2) in the same way that a space

can be built from spheres. Since C̃Q preserves colimits and C2 is the image of the
rational 2-sphere S2

Q, this completes the argument. �

Remark 2.4. In general cofree coalgebras are rather hard to understand, in con-
trast to the case of free algebras (for which there is a simple formula). The difference
can be traced back to the fact that the smash product of spectra or tensor product
of chain complexes commutes with colimits in each variable separately, but not
with limits. However, for degree reasons the cofree commutative coalgebra on a
connected rational spectrum E is described by the ‘naive’ formula

cofree(E) ∼=
∨

k≥1

(E⊗k)hΣk .

Note that since we work over the rational numbers, it is not important whether
we use homotopy fixed points or orbits on the right-hand side. Also note that
if E = ΣnHV for a rational vector space V , this formula describes precisely the
rational homology of K(V, n). This fact was used in the argument above.

Sketch of second proof of Theorem 2.3. We now outline an alternative argument
using Goodwillie calculus and some ideas from the theory of descent (or comonadic-
ity). We refer to the chapter of Arone–Ching in this volume for background on
Goodwillie calculus. A short reminder on monads and comonads can be found in
Section 3. The following sets the tone for some of the techniques we will employ in
Section 7.

The adjoint pair (Σ∞
Q ,Ω∞) between S≥2

Q and SpQ in particular gives a comonad
Σ∞

Q Ω∞ on SpQ, and Σ∞
Q gives a comparison functor

S
≥2
Q → coAlgΣ∞

Q
Ω∞(SpQ).

The right-hand side denotes the ∞-category of coalgebras (sometimes also called
left comodules) for the comonad Σ∞

Q Ω∞. In fact, this comparison functor is an
equivalence; one says that the adjunction is comonadic. This follows immediately

(by the dual of Lemma 3.3 below) from the fact that for any X ∈ S
≥2
Q , the limit of

the cosimplicial object (Ω∞Σ∞
Q )•+1X (which may be thought of as the Bousfield–

Kan HQ-resolution) recovers X , meaning that the natural map

X Tot
(
Ω∞Σ∞

Q X (Ω∞Σ∞
Q )2X · · ·

)

is an equivalence. Indeed, for an Eilenberg-MacLane space X = K(V, n), the
fact that X = Ω∞ΣnHV implies that this cosimplicial object admits an extra
codegeneracy (sometimes called a contracting codegeneracy). For general simply-
connected X the conclusion follows from induction on its Postnikov tower.

The forgetful-cofree adjoint pair between coCAlgnu(SpQ)
≥2 and SpQ is comonadic

as well, the relevant comonad in this case being the cofree coalgebra functor de-
scribed in Remark 2.4. The universal property of the cofree coalgebra and the fact
that the functor Σ∞

Q takes values in commutative coalgebras imply that the counit
ε : Σ∞

Q Ω∞ → idSpQ
induces a natural transformation

γ : Σ∞
Q Ω∞ → cofree.

To prove the theorem it suffices to show that γ is an equivalence. This follows
easily from the well-known calculation of the homogeneous layers (or derivatives)
of Σ∞

Q Ω∞, which states

Dn(Σ
∞
Q Ω∞)(E) ≃ (E⊗n)hΣn

,
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together with the fact that the Goodwillie tower of Σ∞
Q Ω∞ converges on connected

spectra (see for example Section 3.2 of [55] and Example 2.14 of [5]). Alternatively,
the fact that γ is an equivalence is easily deduced from Theorem 2.28 of [56].

�

Remark 2.5. In our argument involving homogeneous functors we tacitly used
again that (E⊗n)hΣn ≃ (E⊗n)hΣn

in the ∞-category SpQ of rational spectra. This
equivalence between fixed points and orbits will turn out to be a crucial feature
when establishing variations on rational homotopy theory later on.

Remark 2.6. The argument above works just as well to prove the integral state-
ment

S
≥2
∗ ≃ coAlgΣ∞Ω∞(Sp)≥2.

It is only in order to explicitly identify the comonad Σ∞
Q Ω∞ as the cofree commu-

tative coalgebra that we used we are working over the rational numbers.

Remark 2.7. So far we have taken a rather abstract perspective. However, much
of the power of rational homotopy theory derives from its computability. The

linear (or Spanier-Whitehead) dual of the functor CQ gives a functor from S
≥2
Q to

the ∞-category of commutative HQ-algebras or, equivalently, the ∞-category of
rational commutative differential graded algebras (cdga’s). The latter functor can
be described explicitly using Sullivan’s functor APL of polynomial differential forms
[81]. Moreover, every cdga arising in this way is equivalent to a minimal cdga A,
which is one whose underlying graded commutative algebra is free and for which
the differential takes values in decomposable elements. Two such minimal cdga’s
are equivalent if and only if they are isomorphic, making the theory very rigid.
For a rational space X , a minimal replacement of APL(X) is called a minimal
model for X . These minimal models are a very powerful tool; for example, the
rational homotopy groups of a space X of finite type can be computed directly as
the linear dual of the indecomposables of the corresponding minimal model, with
the Whitehead bracket determined by the differential via a simple procedure.

The other half of Theorem 1.1 concerns differential graded Lie algebras and arises
as follows. If g∗ is a differential graded Lie algebra, then one can associate to
it the (reduced) Chevalley–Eilenberg complex CE(g∗) computing its Lie algebra
homology. The underlying graded vector space of CE(g∗) is

Sym≥1(g∗[1]) :=
⊕

n≥1

Symn(g∗[1]),

where g∗[1] is the shift defined by gi[1] := gi−1. Here Sym
n(V ) is the nth symmetric

power (V ⊗n)Σn
in the graded sense, i.e., it behaves like the exterior power on odd

degree elements. The differential dCE is constructed from the differential d of g
and the Lie bracket (see Appendix B.6 of [73]). In fact, Sym≥1(g∗[1]) carries an
evident coalgebra structure that is compatible with the differential just defined, in
which the primitive elements are precisely g∗[1] ⊆ Sym≥1(g∗[1]). (An element x of a
coalgebra without counit is primitive if ∆x = 0.) This makes CE(g∗) a differential
graded commutative coalgebra without counit. It is not hard to verify that the
functor CE preserves quasi-isomorphisms of differential graded Lie algebras. The
following then establishes the remaining half of Theorem 1.1:

Theorem 2.8 (Quillen [73]). The functor

CE: Lie(ChQ)
≥1 → coCAlgnu(ChQ)

≥2

is an equivalence of ∞-categories.
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We will place this theorem in a more general context in Section 4. The inverse
functor takes the derived primitives of a commutative coalgebra (shifted down in
degree by 1). We conclude this section by highlighting one observation about
Theorem 1.1. Let us write

Φ0 : S
≥2
Q → Sp≥1

Q

for the composition of the functor LQ with the forgetful functor from differential
graded Lie algebras to SpQ (which we have identified with ChQ). Also, write Θ0

for its left adjoint, which is the composition of the free Lie algebra functor with the
inverse of the equivalence LQ. The reason for this seemingly strange notation is an
analogy with the Bousfield–Kuhn functor, which we discuss in Section 6. We now
have two different adjunctions between the ∞-categories of rational spaces and of
rational spectra, summarized in the following diagram (left adjoints on top):

Sp≥1
Q S

≥2
Q Sp≥2

Q .
Θ0

Φ0

Σ∞

Q

Ω∞

The horizontal composition from right to left computes the derived primitives of
the cofree coalgebra, shifted down by one. In fact it is rather easy to see that for
a rational vector space V , the primitives of cofree(V ) are precisely V . From this
one can deduce that Φ0Ω

∞ is precisely the functor Σ−1 that shifts down by one.
Consequently, the composition of left adjoints Σ∞

Q Θ0 is Σ, the functor shifting up by
one. Alternatively, one can verify directly that the Chevalley–Eilenberg homology
of a free Lie algebra on a chain complex V is quasi-isomorphic to V [1]. Variations
on these observations will play an important role in Sections 6 and 7.

3. Monads and their algebras

As shown by the second proof of Theorem 2.3, the yoga of monads and comonads
can be very useful when attempting to ‘model’ a given ∞-category C by some
homotopy theory of algebras or coalgebras. We already used it to identify the
∞-category of simply-connected pointed spaces with that of coalgebras for the
comonad Σ∞Ω∞. Later on, we will relate localizations of the ∞-category of spaces
to algebras over the spectral Lie operad using similar techniques. To help the reader
we offer this short section, which collects some basic facts about (co)monads and the
associated (co)simplicial objects. We will make systematic use of these throughout
the rest of this survey. More background can be found in Section 4.7 of [66] and in
[77].

Let C be an ∞-category. Then the ∞-category Fun(C,C) admits a monoidal
structure, with tensor product given by composition of functors. A monad (resp.
comonad) is a monoid (resp. comonoid) in this monoidal ∞-category. If

C D
F

G

is an adjoint pair, with F left adjoint, then the composite GF gives a monad on
C (and dually the functor FG gives a comonad on D). Writing η : idC → GF for
the unit and ε : FG→ idD for the counit of the adjunction, the multiplication and
unit maps of GF are given by

GFGF
GεF
−−−→ GF and idC

η
−→ GF.

In ordinary category theory these maps would then have to satisfy an associativity
and a unitality condition. In the setting of ∞-categories, these constraints become
extra data rather than properties; a monoid object can be encoded by a certain
diagram of shape ∆op, cf. Section 4.1 of [66].
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A typical example to have in mind is the one where D is the∞-category of commu-
tative algebras in C (and we assume C to be a sufficiently nice symmetric monoidal
∞-category), with G the forgetful functor and F the free commutative algebra
functor. The monad GF then assigns to an object X of C the underlying object of
the free commutative algebra on X . An important example of a comonad, already
used in the previous section, is the functor Σ∞Ω∞ on the ∞-category of spectra.

If T is a monad on an ∞-category C, one can speak of T -algebras in C. Such an
algebra is an object X which is first of all equipped with an ‘action’

µ : TX → X.

Again, in ordinary category this map would then have to satisfy an associativity
condition (with respect to the multiplication of T ) and a unitality condition (using
the unit map of T ). Working with ∞-categories means one has to encode these
constraints in a coherent way; we refer to Section 4.2 of [66] for details. One impor-
tant point for us is that any T -algebra X in particular gives rise to an augmented
simplicial object in the ∞-category of T -algebras of the form

· · · T 2X TX X.

The degeneracy maps use the unit of T , while the face maps describe the monoid
multiplication of T and the action map TX → X . This augmented simplicial object
is canonically contractible when considered as a diagram in the underlying ∞-
category C. Indeed it admits ‘extra degeneracies’ X → TX , and similarly T •X →
T •+1X , given by the unit of T . It follows that the diagram above expresses X
as the colimit of the simplicial object T •+1X , thus describing X as a colimit of a
diagram of free T -algebras. We write AlgT (C) for the ∞-category of T -algebras
in C. Dually, if Q is a comonad on C, we write coAlgQ(C) for the ∞-category of
Q-coalgebras.

Remark 3.1. The definition of a T -algebra is really a special instance of the
definition of a left module M in an ∞-category C for an associative algebra A in
some monoidal∞-category D that acts on C. In our case T plays the role of A and
D = Fun(C,C). In fact, this interpretation as modules also inspires some notation
which will be useful. For an associative algebra A with a right module M and
left module N one can form the two-sided bar construction, which is the simplicial
object

· · ·M ⊗A⊗2 ⊗N M ⊗A⊗N M ⊗N

for which we write Bar(M,A,N)• := M ⊗A⊗• ⊗N . The face maps use the action
of A on M and N for the outer faces and the multiplication of A for the inner
faces. The colimit of Bar(M,A,N)• computes the relative tensor product M ⊗AN .
With this notation, the simplicial object we used above the remark can be written
Bar(T, T,X)•.

For any adjoint pair

C D,
F

G

giving a monad T := GF on C, the functor G can canonically be factored as

D
ϕ
−→ AlgT (C)

forget
−−−→ C.

Indeed, for X ∈ D the object G(X) has a natural T -algebra structure with action
map given by

TG(X) = GFG(X)
Gε
−−→ G(X).
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One says that the adjoint pair (F,G) is monadic if the comparison functor ϕ : D→
AlgT (C) is an equivalence of∞-categories. The Barr–Beck theorem is a surprisingly
useful recognition criterion for monadic adjunctions, generalized to higher category
theory by Lurie [66] (see [77] for an alternative approach):

Theorem 3.2 (Barr–Beck, Lurie). An adjoint pair F : C ⇄ D : G is monadic if
and only if the following two conditions are satisfied:

(a) The functor G is conservative, i.e., a morphism f in D is an equivalence
if and only if G(f) is an equivalence.

(b) If X• is a simplicial object in D such that G(X•) is split (i.e., admits an
augmentation with extra degeneracies), then the colimit of X• exists in D

and is preserved by G.

Condition (b) might seem cryptic at first sight: however, it is automatically satisfied
if D admits all geometric realizations (i.e., colimits of ∆op-shaped diagrams) and
G preserves these, which will suffice for our applications. We usually denote the
colimit of a simplicial object X• by |X•|. The typical split simplicial object to have
in mind is the diagram above Remark 3.1 describing T •+1X .

Any adjoint pair F : C ⇄ D : G gives rise to a simplicial resolution of the identity
functor of D. To be precise, it gives a simplicial object (FG)•+1 with an augmen-
tation to idD:

· · · (FG)2 FG idD.ε

In the notation of bar constructions this simplicial object can be written as Bar(F,GF,G)• .
The degeneracy maps use the unit η : idC → GF , the face maps use the counit ε.
A dual comment applies to give a cosimplicial resolution of the identity functor of
C. We used exactly this resolution, associated to the adjunction (Σ∞,Ω∞), in the
second proof of Theorem 2.3. The following is a useful criterion for monadicity:

Lemma 3.3. Suppose F : C ⇄ D : G is an adjoint pair and that D admits colimits
of G-split simplicial objects. Then this pair is monadic if and only if for every
object X of C, the map

|(FG)•+1|(X)→ X

arising from the simplicial resolution described above is an equivalence.

4. Koszul duality

The duality between Lie algebras and commutative coalgebras expressed by Theo-
rem 2.8 is a special case of what is usually called Koszul duality or bar-cobar duality.
We will begin this section with a discussion of this duality for associative algebras
and coalgebras. In the setting of differential graded algebras this goes back at least
to the work of Adams [1], Priddy [72], and Moore [68]; we will phrase it in a more
general context following Lurie (Section 4.3 of [62]). The remainder of the section
is a discussion of Koszul duality in the generality of (co)algebras for (co)operads.
References for this material are [40, 41, 60] in the differential graded context, [25] in
the context of stable homotopy theory, and [37] for a discussion at the more general
level of ∞-categories.

For the purposes of this discussion, let C be a symmetric monoidal ∞-category.
We will assume it admits limits and colimits. Suppose A is an associative algebra
object of C equipped with an augmentation ε : A → 1 to the unit of C. Then the
bar construction of A, denoted Bar(A), is the relative tensor product 1⊗A1, which
by definition is the colimit of the simplicial object

· · ·A⊗A A 1.
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The degeneracy maps of this simplicial object are constructed from the unit of A,
whereas the face maps use the multiplication A⊗ A→ A for the ‘inner’ faces and
the augmentation ε for the ‘outer’ faces. In the notation of Remark 3.1 it can be
written as Bar(1, A,1)•.

The object Bar(A) admits a comultiplication, using the maps

1⊗A 1 ≃ 1⊗A A⊗A 1
ε
−→ 1⊗A 1⊗A 1→ (1⊗A 1)⊗ (1⊗A 1).

(The last map arises from the universal property of the colimit defining the term
1⊗A 1⊗A 1; under the additional assumption that the tensor product on C com-
mutes with geometric realizations in each variable, it is always an equivalence.)
However, the situation is much better than just this: the object Bar(A) can be
upgraded to a homotopy-coherent associative coalgebra object of C equipped with
a coaugmentation. Write Algaug(C) for the ∞-category of augmented associative
algebras in C and

coAlgaug(C) := Algaug(Cop)op

for the ∞-category of coaugmented associative coalgebras. The generality of the
following statement is first articulated by Lurie in [62], but its essential form traces
back to Moore [68]:

Theorem 4.1. There is an adjoint pair of functors (in which Bar is left adjoint)
as follows:

Algaug(C) coAlgaug(C).
Bar

Cobar

Here Cobar is the bar construction applied to the opposite category, i.e., it sends a
coaugmented coalgebra C to the totalization of the cosimplicial object

1 C C ⊗ C · · · .

The proof of Theorem 4.1 proceeds by showing that the two mapping spaces
MapAlgaug(C)(A,Cobar(C)) and MapcoAlgaug(C)(Bar(A), C) are both equivalent to

the space of lifts of the pair (C,A), thought of as an augmented algebra object
of the ∞-category C

op × C, to an augmented algebra object of the twisted arrow
category TwArr(C). This is closely related to the more classical notion of twisting
cochains.

The aim of the rest of this section is to apply this general setup for bar-cobar duality
to the case of operads and cooperads. We write SymSeq(C) for the ∞-category of
symmetric sequences in C; its objects are sequences of objects O = {O(n)}n≥1 of C
where the nth term O(n) is equipped with an action of the symmetric group Σn.
To any such sequence we associate a functor

FO : C→ C : X 7→
⊕

n≥1

(O(n)⊗X⊗n)hΣn
.

The ∞-category SymSeq(C) carries a monoidal structure, called the composition
product and usually denoted by ◦, which is essentially characterized by the fact
that the assignment

SymSeq(C)→ Fun(C,C) : O 7→ FO

is monoidal (see Section 4.1.2 of [22] or [43]). Here the ∞-category on the right is
monoidal via the composition of functors. The unit for the composition product is
the symmetric sequence 1, which has the monoidal unit of C as its first term and
all other terms equal to 0. In these terms, an operad (resp. a cooperad) in C is a
monoid (resp. a comonoid) in SymSeq(C) with respect to the composition product.
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Since we excluded the case n = 0 from our definitions above, all operads and
cooperads we consider here are in fact non-unital. If O is an operad, then the
associated functor FO has the structure of a monad (and dually for a cooperad).
One can then define an O-algebra in C to be precisely an FO-algebra.

Remark 4.2. Consider a cooperad O. Observe that coalgebras for the comonad
FO are objects X of C equipped with a ‘comultiplication map’

X →
⊕

n≥1

(O(n)⊗X⊗n)hΣn

and further data recording its coassociativity and counitality. In the special case
where O is the commutative cooperad (which as a symmetric sequence has O(n)
equal to the monoidal unit of C for each n ≥ 1), this notion of coalgebra is generally
not the same as that of a commutative coalgebra. One important difference is that
the n-fold comultiplication of a commutative coalgebra C gives a map

C → (C⊗n)hΣn ,

but this map need not factor through (C⊗n)hΣn
. For this reason, the coalgebras for

the comonad FO are sometimes called conilpotent divided power O-coalgebras (cf.
[37]). The adjective conilpotent refers to the direct sum, the term divided powers
refers to the fact that FO involves coinvariants for the symmetric groups, rather
than invariants.

If f : O → P is a map of operads in C, one obtains an adjunction between the
corresponding ∞-categories of algebras:

AlgO AlgP.
f!

f∗

Here the right adjoint f∗ is restriction along f . Informally, the left adjoint is
the relative tensor product P ◦O −, using the analogy between operads with their
algebras and rings with their modules. More precisely, one first observes that f!
sends free O-algebras to free P-algebras. As we described in Section 3, any O-algebra
X admits a natural simplicial resolution in terms of free O-algebras, namely the
bar construction Bar(FO, FO, X)•. Then f!X can be computed as the colimit of
the simplicial object

(
· · ·FPF

2
O
X FPFOX FPX

)
=: Bar(FP, FO, X).

Let us specialize to the case where the ∞-category C is stable and O is reduced,
meaning O(1) is the monoidal unit of C. The latter assumption gives essentially
unique morphisms of operads i : 1→ O and p : O→ 1, including the first term and
projecting onto it respectively. Note that we may identify Alg1(C) with C itself,
since F1 is the identity functor of C. Then i∗ is the forgetful functor and i! the free
O-algebra functor. The functor p∗ can be identified with the trivial algebra functor
trivO, equipping an object X of C with the O-algebra structure for which all maps

(O(n)⊗X⊗n)hΣn
→ X

are zero when n > 1 (recall that C is stable, so has a zero object). The left adjoint
p! computes the derived indecomposables of an O-algebra X . We will denote it by
TAQO, which stands for topological André–Quillen homology. The reason for this
terminology is that in the special case O = Com, this functor is closely related to
the homology of commutative rings as defined in terms of the cotangent complex
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by André and Quillen [74]. The two adjunctions just discussed give a diagram

C AlgO(C) C
freeO

forget

TAQ
O

trivO

in which both horizontal composites are equivalent to the identity (because pi = id).

In fact the functor TAQO can be characterized by a universal property:

Theorem 4.3 (Basterra–Mandell [10], Lurie [66, Theorem 7.3.4.7]). Suppose the
symmetric monoidal ∞-category C is stable, presentable, and the tensor product
preserves colimits in each variable separately. Then the adjoint pair (TAQO, trivO)
exhibits C as the stabilization of AlgO(C). In other words, TAQO is the initial
colimit-preserving functor from AlgO(C) to a presentable stable ∞-category.

Sketch of proof. Take the diagram above the statement of the theorem, stabilize
the ∞-category AlgO(C), and replace the functors by their linearizations (or first
derivatives) to obtain the following diagram:

C Sp(AlgO(C)) C.
∂freeO

∂forget

∂TAQ
O

∂trivO

The chain rule ∂(G ◦ F ) ∼= ∂(G) ◦ ∂(F ) guarantees that the horizontal composites
are still equivalent to the identity. Moreover, it is a general fact (and not hard
to verify) that the stabilization of a monadic adjunction is monadic, so that the
pair of functors on the left exhibits Sp(AlgO(C)) as monadic over C. The relevant
monad is the linearization of the functor forget ◦ freeO; the latter is explicitly given
by assigning to X ∈ C the object

⊕

n≥1

(O(n)⊗X⊗n)hΣn
.

The linearization of this clearly is the monad

X 7→ O(1)⊗X ∼= X,

from which it follows that ∂freeO : C→ Sp(AlgO(C)) is an equivalence. This implies
the theorem. �

Remark 4.4. One can paraphrase Theorem 4.3 by saying that TAQO is the univer-
sal homology theory for O-algebras. For specific choices of O it reproduces familiar
notions of homology. As an example, take C to be the ∞-category ChZ of chain
complexes of abelian groups. As alluded to above, TAQCom reproduces André–
Quillen homology of commutative rings. For associative algebras it gives a degree
shift of Hochschild homology (when working over a field) or of Shukla homology
(for general rings). For Lie algebras it produces a degree shift of the Chevalley–
Eilenberg homology already discussed in Section 2. The fact that TAQO preserves
colimits, together with the equivalence TAQO ◦ freeO

∼= idC, makes this homol-
ogy theory a useful tool to understand the ‘cell structure’ of an algebra, meaning
the way that X can be built from free algebras on generators of C (the cells) by
pushouts (the cell attachments). This is similar to how singular homology can be
used to investigate the minimal cell structure of a topological space. In case O is
the operad En of little n-discs, this perspective is used to great effect in [39] and
its sequels.

The starting point of Koszul duality from the point of view of operads, which
originates in [41] and [40], is the following. Again consider an operad O for which
O(1) is the monoidal unit of C, so that projection to this term gives an augmentation
ε : O → 1. Then O becomes an augmented associative algebra in SymSeq(C) and
thus it makes sense to speak of its bar construction Bar(O), which is a cooperad.
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Example 4.5. One of the most important examples is the duality between the
commutative operad and the Lie operad. To be precise, the results of Ginzburg–
Kapranov [41] and Getzler–Jones [40] show that the cobar construction of the com-
mutative cooperad in chain complexes of R-modules (for some commutative ring
R) give the Lie operad with a degree shift. Dually, the bar construction of the Lie
operad produces the commutative cooperad, again with a shift. In Section 5 we
will return to a variant of this example in the context of stable homotopy theory
in order to define spectral Lie algebras. Another example is the bar construction
of the associative operad, which is the linear dual of the associative operad with
a degree shift. More generally, Fresse [38] proves that the bar construction of the
operad given by the singular chains of the little discs operad En is the cooperad
C∗E∨

n (shifted n times). This is what is often referred to as the self-duality of the
En-operad. Conjecturally this self-duality already holds for the operad Σ∞

+ En in
the ∞-category of spectra. At the time of writing this has not yet been resolved,
but at least the underlying symmetric sequence of the cooperad Bar(Σ∞

+ En) has
the expected homotopy type [25].

Remark 4.6. In fact, for operads and cooperads in a stable∞-category C for which
the tensor product is exact in each variable separately, the process of forming bar
and cobar constructions is invertible; the unit and counit maps

O→ Cobar(Bar(O)) Bar(Cobar(Q))→ Q

are equivalences (cf. [37] and [25]).

We write coAlgdpBar(O)(C) for the ∞-category of conilpotent divided power Bar(O)-

coalgebras (cf. Remark 4.2). More briefly, this is the ∞-category of coalgebras for
the associated comonad FBar(O).

Theorem 4.7 (Francis–Gaitsgory [37]). The functor TAQO factors as a composite

AlgO(C)
BO−−→ coAlgdpBar(O)(C)

forget
−−−→ C.

In other words, for any O-algebra X the object TAQO(X) naturally admits the
structure of a conilpotent divided power Bar(O)-coalgebra. Moreover, the functor
BO admits a right adjoint CBar(O).

Sketch of proof. As explained in Section 3, the fact that TAQO is left adjoint for-
mally implies that it factors through the∞-category of coalgebras for the comonad
TAQO ◦ trivO. Thus it suffices to identify this comonad with FBar(O). To do this,
recall that we may resolve any O-algebra X by free algebras and get an equivalence

|Bar(FO, FO, X)| ≃ X.

Hence

TAQO(trivOX) ≃ TAQO|Bar(FO, FO, trivOX)|

≃ |Bar(idC, FO, idC)|(X)

≃ FBar(O)(X).

The existence of the right adjoint CBar(O) can be deduced from the adjoint functor
theorem. Alternatively, it may be constructed explicitly as the derived primitives
of a Bar(O)-coalgebra, which is a construction formally dual to that of the derived
indecomposables functor TAQO. �

The real challenge in understanding Koszul duality lies in identifying appropriate

subcategories of AlgO(C) and coAlgdpBar(O)(C) on which the functors BO and CBar(O)

give an equivalence of ∞-categories. Francis and Gaitsgory [37] describe several
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cases and generally conjecture that it should suffice to restrict to what are called
pro-nilpotent algebras and ind-conilpotent coalgebras. A partial result goes as
follows:

Theorem 4.8 (Ching–Harper [26]). Let R be a commutative ring spectrum and O

an operad in the ∞-category ModR of R-module spectra with O(1) = R. Assume
that R and the terms O(n) are connective. Then the restriction

AlgO(ModR)
≥1 coAlgBar(O)(ModR)

≥1
BO

CBar(O)

of the adjunction of Theorem 4.7 to connected objects is an equivalence of ∞-
categories.

Remark 4.9. In the presence of a useful notion of connectivity (such as a t-
structure on C), the strategy of proof of Theorem 4.8 goes through much more
generally.

In particular, one may apply Theorem 4.8 to the case where R = HQ and O is the
Lie operad to retrieve Quillen’s theorem 2.8.

5. Spectral Lie algebras

In this section we describe an extension of the theory of Lie algebras to the ∞-
category Sp of spectra. This extension has only recently begun to be exploited and
promises to be very useful.

The non-unital commutative operad Com in the ∞-category of spectra is the op-
erad parametrizing non-unital commutative ring spectra: it has Com(n) = S, the
sphere spectrum, in every degree n ≥ 1. The relevant structure maps

Com(n)⊗Com(k1)⊗ · · · ⊗Com(kn)→ Com(k1 + · · ·+ kn)

are the canonical equivalences determined by the fact that S is the unit of the smash
product. We can take the termwise Spanier–Whitehead dual Com∨ to obtain the
non-unital commutative cooperad, which of course still has every term equal to the
sphere spectrum S. The following definition is inspired by the duality between the
Lie operad and the commutative cooperad in chain complexes described in Example
4.5:

Definition 5.1. The spectral Lie operad L is the cobar construction Cobar(Com∨).
We write Lie(Sp) for the ∞-category of L-algebras in Sp and refer to its objects as
spectral Lie algebras.

Remark 5.2. The commutative cooperad can be constructed in any symmetric
monoidal ∞-category C, since it only uses the unit of the symmetric monoidal
structure. Hence one can make the above definition of Lie algebras in essentially
any context, although one should usually require C to be stable for this to be useful.

The operad L was first constructed by Salvatore [78] and Ching [24]. The spectra
L(n) can be described very explicitly as the Spanier–Whitehead duals of certain
finite simplicial complexes, which we will now explain. These descriptions originate
in the work of Johnson on the Goodwillie derivatives of the identity [49] (on which
we will have more to say below) and were reformulated in the form we present
below by Arone–Mahowald [7]. Write P(n) for the set of partitions of (meaning
equivalence relations on) the set {1, . . . , n}. We regard P(n) as a partially ordered
set under refinement of partitions. It has a minimal (resp. maximal) element,
namely the trivial partition with only one equivalence class (resp. the discrete
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partition). We write P+(n) (resp. P−(n)) for the subset of P(n) obtained by
discarding the minimal element (resp. the maximal element). Also, we write P±(n)
for the intersection P+(n) ∩ P−(n). Note that the symmetric group Σn naturally
acts on P(n), as well as on the various subsets we have defined.

Definition 5.3. The nth partition complex Πn is the Σn-space |P
±(n)| obtained

as the geometric realization of the nerve of the poset P±. Furthermore, we define

Kn := |P(n)|/(|P+(n)| ∪ |P−(n)|).

The space Kn is homotopy equivalent to the double suspension ΣSΠn of the par-
tition complex. Here S denotes unreduced suspension, whereas Σ denotes reduced
suspension, with SΠn regarded as pointed at one of the two cone points.

Example 5.4. The space Π2 is empty, so that K2 is S
1 with trivial Σ2-action. The

space Π3 is discrete and has three points, corresponding to the partition (12)(3) and
its permutations. As a Σ3-space it is isomorphic to Σ3/Σ2. Hence K3 is homotopy
equivalent to a wedge of two 2-spheres, although this identification disregards the
Σ3-action. The space Π4 is a one-dimensional simplicial complex homotopy equiv-
alent to a wedge of six circles, so that K4 is equivalent to a wedge of six 3-spheres.
Again one should be careful that this is an identification of the homotopy type of
the underlying space, disregarding the action of Σ4.

The connection between the cohomology of partition complexes and Lie algebras
goes back to work of Hanlon [42], Stanley [80], Joyal [50], and Barcelo [8]. Ching [24]
established a topological refinement of this connection; to be precise, he observed
that the terms of the cobar construction of the commutative cooperad are precisely
the Spanier–Whitehead duals of the Kn:

L(n) ∼= (Σ∞Kn)
∨.

The operad structure of L is reflected in a cooperad structure on the collection
of spaces {Kn}≥1. Roughly speaking it can be described by observing that Kn

is homeomorphic to a certain space of weighted rooted trees with n leaves, with
comultiplication defined by decomposing trees into smaller subtrees grafted along
a common edge. In general the space Kn is homotopy equivalent to a wedge of
(n− 1)! spheres of dimension n− 1. Detailed results on the equivariant topology of
the partition complexes can be found in the works of Arone–Dwyer [4] and Arone–
Brantner [6].

Write Lie for the usual Lie operad in abelian groups. Taking the integral homology
of the spectra L(n) gives an operad in graded abelian groups, which is precisely
a degree shift of Lie thought of as sitting in homological degree zero. Indeed, as
graded abelian groups one has

H∗L(n) ∼= Lie(n)[1− n],

but it is better to write

H∗L(n) ∼= (Lie(n)[1])⊗ (Z[−1])⊗n

to make the action of Σn explicit. It acts by permuting the n factors of Z[−1]
on the right-hand side; said differently, the Σn-action on H∗L(n) is the same as
the action on Lie(n) twisted by the sign representation. These identifications are
compatible with the operad structures on both sides. One way to prove these facts
is to relate the homology of the cobar construction that defines L to the algebraic
cobar construction for the commutative cooperad in graded abelian groups.
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Remark 5.5. This shifting of degree for an operad is a rather harmless procedure.
Indeed, endowing a graded abelian group M with the structure of an algebra for
the operad H∗L is the same thing as giving M [−1] the structure of a graded Lie
algebra. The occurrence of these shifts also explains the degree shift occurring in
Theorem 2.8.

A direct connection between the spectral Lie operad and the homotopy theory of
spaces (and indeed, one of the original motivations for studying this operad) is given
by the Goodwillie derivatives of the identity. We refer to the chapter of Arone and
Ching in this same volume for a survey of Goodwillie calculus, but let us summarize
what is relevant for us here. The Goodwillie tower of the identity functor on the
∞-category S∗ gives, for each pointed space X , a tower of spaces interpolating
between X and its stable homotopy type:

...

P3X

P2X

X P1X = Ω∞Σ∞X.

The fiber DnX of the map

PnX → Pn−1X

is called the nth homogenous layer of the tower. It turns out to be an infinite loop
space DnX = Ω∞DnX associated with a spectrum DnX which can be written as

DnX ≃ (∂nid⊗ Σ∞X⊗n)hΣn

for some spectrum ∂nid with Σn-action called the nth derivative of the identity
functor.

The connection to spectral Lie algebras is that ∂nid can be identified with L(n).
The homotopy type of ∂nid was first determined by Johnson [49]. We follow a
line of reasoning due to Arone–Ching [5], because it relates directly to our earlier
discussion of cobar constructions. They prove that the map

id→ Tot
(
Cobar(Ω∞,Σ∞Ω∞,Σ∞)•

)

arising from the cosimplicial resolution of the identity functor via Ω∞Σ∞ (see Sec-
tion 3) induces an equivalence of derivatives

∂∗id ≃ Tot
(
Cobar(∂∗Ω

∞, ∂∗(Σ
∞Ω∞), ∂∗Σ

∞)•
)
.

To interpret the right-hand side, one uses that the functors Ω∞ and Σ∞ are linear
(in Goodwillie’s sense), that the derivatives of Σ∞Ω∞ can be identified with the
commutative cooperad Com∨ (with the cooperad structure corresponding to the
fact that this functor is a comonad), and that the chain rule for functors from the
∞-category Sp to itself states

∂∗(GF ) ≃ ∂∗G ◦ ∂∗F.

The right-hand side denotes the composition product of symmetric sequences.
Putting these ingredients together gives

∂∗id ≃ Tot
(
Cobar(1,Com∨,1)•

)
= Cobar(Com∨)
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and the right-hand side is precisely our definition of L. Thus, the Goodwillie tower
produces a spectral sequence converging to the homotopy groups of X , starting
from the homotopy groups of the spectrum

⊕

n≥1

(L(n) ⊗ Σ∞X⊗n)hΣn
,

which is the free spectral Lie algebra on the suspension spectrum of X . This
Goodwillie spectral sequence has been used very succesfully by Behrens [11], who
combines it with the EHP sequence to reproduce a significant part of Toda’s cal-
culations of unstable homotopy groups of spheres.

A starting point for most calculations with the Goodwillie tower is the homology
of the spectra DnX , which has been studied in great detail by Arone–Mahowald
[7] and Arone–Dwyer [4] in the case where X is a sphere. For example, when this
sphere is of odd dimension then the layers DnX are contractible whenever n is not
a power of a prime. When n = 2k, its cohomology with coefficients in F2 is free

over the subalgebra A∗
k−1 of the Steenrod algebra A∗ generated by Sq1, . . . , Sq2

k−1

(and a similar statement holds at odd primes). This has very useful consequences
for the analysis of the vn-periodic homotopy groups of the Goodwillie tower. Also,
the spaces Πpk are closely related to Tits buildings for the groups GLk(Fp), and
using this Arone–Dwyer relate the calculation of the mod p homology of Dpk(X)
to that of GLk(Fp) with coefficients in the Steinberg module. The reader can find
a much more elaborate discussion of these results in the chapter of Arone–Ching
in this same volume. These homology calculations also lead to a theory of power
operations for spectral Lie algebras; we refer to Behrens [11] and Antoĺın-Camarena
[3] for the case of F2-coefficients, Kjaer [52] for Fp-coefficients with p > 2, and
Brantner [22] for the case of Morava E-theory (in particular including p-complete
complex K-theory).

6. Periodic unstable homotopy theory

In this section we discuss some fundamental concepts of chromatic homotopy theory
and emphasize their role in unstable homotopy theory. The reader can find a much
more thorough exposition of the chromatic perspective on stable homotopy theory
in the chapter of Barthel and Beaudry in this volume or consult some of the standard
references [32, 46, 48, 75, 76].

The rational homotopy groups of a pointed spaceX are the result of considering the
homotopy classes of maps [Sk, X ]∗ from spheres toX and subsequently inverting the
action of the degree pmaps p : Sk → Sk for all primes p. As demonstrated by Serre’s
calculation of the rational homotopy groups of spheres and the rational homotopy
theory of Quillen and Sullivan, these rational homotopy groups are surprisingly
tractable invariants.

If one wants to move beyond rational homotopy theory, a natural starting point is
the ‘mod p homotopy groups’ [Sk/p,X ]∗ =: πk−1(X ;Z/p), where Sk/p denotes the
cofiber of the degree p map on Sk (i.e. a mod p Moore space). These are groups
when k ≥ 2, which are abelian if k ≥ 3. The complexity of calculating them is
on par with that of the usual homotopy groups. However, it turns out one can
again invert the action of a certain map to make the problem more tractable. To
be precise, there is a certain map

α : ΣdSk/p→ Sk/p

seemingly due to Barratt, described by Adams in [2]. Here for p odd one has
d = 2(p − 1) and k ≥ 3, and for p = 2 one should take d = 8 and k ≥ 5. The
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crucial feature of this map is that it induces an isomorphism on complex K-theory.
In particular, any number of iterates of (suspensions of) α is not null-homotopic.
In fact, α induces multiplication by the (p − 1)st power of the Bott class (for p
odd) or its fourth power (for p = 2). As such one can think of it as a geometric
manifestation of Bott periodicity. The map α provides an action of the graded ring
Z[α] (with |α| = d) on the graded abelian group π∗(X ;Z/p) (with ∗ ≥ 2) and one
defines the v1-periodic mod p homotopy groups of X to be

v−1
1 π∗(X ;Z/p) := Z[α±1]⊗Z[α] π∗(X ;Z/p).

The rational and v1-periodic homotopy groups of spaces form the beginning of
a hierarchy of vn-periodic homotopy groups, which we will define shortly. This
hierarchy is closely related to the sequence of ‘prime’ localizations LHQ, LK(1),
LK(2), . . ., of stable homotopy theory at the Morava K-theories, which play the
role of prime fields in the ∞-category of spectra. The latter picture is discussed in
detail in the chapter of Barthel–Beaudry in this volume. While the focus for them
is mostly on these chromatic localizations (and the closely related localizations
Ln), for us the fundamental ingredient of chromatic homotopy theory will be the
periodicity results of Hopkins and Smith [48] (and the finite localizations Lf

n). We
begin with a brief recollection of the thick subcategory theorem.

From now on we fix a prime p and work in the ∞-categories of p-local spectra and
spaces. We will often leave the adjective p-local implicit. We say a spectrum X
is of type ≥ n if K(i)∗X = 0 for i < n, and we say X is of type n if it is of type
≥ n and additionally K(n)∗X 6= 0. It turns out that if a finite spectrum X has
K(n − 1)∗X = 0 then also K(i)∗X = 0 for i < n − 1, so that the former is a

sufficient condition for X to be of type ≥ n. Write Spfin(p) for the ∞-category of

p-local finite spectra and Spfin≥n for the subcategory of those X which are of type
≥ n. This subcategory is thick : if two terms in a cofiber sequence are contained
in it, then so is the third, and moreover it is closed under retracts. These thick
subcategories form a nested sequence

· · · ⊆ Spfin
≥n+1 ⊆ Spfin≥n ⊆ · · · ⊆ Spfin≥0 = Spfin(p).

The fact that these are proper inclusions is a highly nontrivial result of Mitchell
[67]: for every n there exists a finite spectrum of type n. The following explains
the fundamental importance of this notion for stable homotopy theory:

Theorem 6.1 (The thick subcategory theorem, Hopkins–Smith [48]). Every thick

subcategory of Spfin(p) is of the form Spfin≥n for some n.

The filtration of the∞-category of finite p-local spectra above also gives a filtration

· · · ⊆ Sp≥n+1 ⊆ Sp≥n ⊆ · · · ⊆ Sp≥0 = Sp(p)

of the∞-category of all (not necessarily finite) p-local spectra by localizing subcat-

egories. Here we write Sp≥n for the smallest subcategory of Sp which contains Spfin
≥n

and is closed under colimits. As with any filtration, the goal is now to understand
its ‘associated graded’ and subsequently investigate how the layers fit together. In
this survey we will be almost exclusively concerned with the first aspect.

To define what we mean by associated graded, first observe that the tower of sub-
categories above gives a corresponding tower of localizations

· · · → Lf
nSp→ Lf

n−1Sp→ · · · → Lf
0Sp = SpQ.

Here Lf
nSp is the localization (in the sense of Definition 2.1) of Sp(p) at the set

of maps f : X → Y whose cofiber is contained in Sp≥n+1. Said differently, it is
the quotient Sp(p)/Sp≥n+1 computed in the ∞-category of stable∞-categories and
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exact functors. Since Sp≥n+1 is closed under colimits in Sp(p), all these localizations

are reflective. We write Lf
n : Sp(p) → Sp(p) for the composite of the localization

functor Sp(p) → Lf
nSp and its right adjoint. With this notation we have natural

transformations Lf
n → Lf

n−1. As a consequence of the thick subcategory theorem,

one can in fact characterize Lf
n as the localization functor which kills a single finite

type n+1 spectrum V . The layers of our filtration can now be described as follows:

Definition 6.2. The∞-category Spvn
of vn-periodic spectra is the quotient Sp≥n/Sp≥n+1,

meaning it is the universal stable ∞-category which receives an exact functor from
Sp≥n which is identically zero on the subcategory Sp≥n+1.

This definition might seem abstract, but we will recast it in more concrete (and
perhaps more familiar) terms using another fundamental result of Hopkins and
Smith. To state it we need some terminology. A vn self-map of a p-local spectrum
X is a map v : ΣdX → X , for some integer d ≥ 0, with the property that K(n)∗v is
an isomorphism and K(m)∗v is nilpotent whenever m 6= n. If n = 0 one always has
d = 0 and one should require that v acts by multiplication by a rational number
on K(0)∗X = H∗(X ;Q). For general n ≥ 1, replacing v by a sufficiently high
power if necessary one can always arrange that on K(n)∗X it acts by a power of
vn ∈ K(n)∗ and by zero on K(m)∗X for m 6= n. The typical examples to keep
in mind are the following: multiplication by p is a v0 self-map (and exists for
any spectrum), whereas the Adams map α is a v1 self-map of the mod p Moore
spectrum, which is of type 1.

Theorem 6.3 (The periodicity theorem, Hopkins–Smith [48]). If X is a finite
spectrum of type ≥ n, then it admits a vn self-map. Furthermore, vn self-maps are
asymptotically unique in the sense that for f : X → Y a map of finite spectra and
vn self-maps v, w of X,Y respectively, there exist M,N ≫ 0 for which the square

ΣMdX ΣNeY

X Y

vN

f

wM

f

commutes up to homotopy, where d and e are the degrees of v and w respectively. In
particular, taking f to be the identity, any two vn self-maps on X become homotopic
after sufficiently many iterations.

Now suppose V is a finite spectrum of type n and v : ΣdV → V is a vn self-map.
For any spectrum X we can define its v-periodic homotopy groups by

v−1π∗(X ;V ) := Z[v±1]⊗Z[v] π∗Map(V,X).

An equivalent description is as follows. Since V is finite, the mapping spec-
trum F (V,X) is equivalent to the smash product V ∨ ⊗X , with V ∨ the Spanier–
Whitehead dual of V . Form the telescope

v−1V ∨ := lim
−→

(V ∨ v∨

−−→ Σ−dV ∨ v∨

−−→ · · · ).

Then v−1π∗(X ;V ) ∼= π∗(v
−1V ∨ ⊗X).

Definition 6.4. A map of spectra is a vn-periodic equivalence if it induces an
isomorphism on v-periodic homotopy groups.

This definition only depends on n; indeed, the thick subcategory theorem implies
that it is independent of the choice of V , whereas the asymptotic uniqueness of
vn self-maps gives independence of the choice of v. It is common to write T (n) =
v−1V ∨, so that a vn-periodic equivalence is by definition a T (n)∗-equivalence. The
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notation is a little ambiguous, because T (n) depends on choices. However, the
associated notion of equivalence does not. The basic facts to keep in mind are the
following:

(a) As a consequence of the periodicity theorem, any vn self-map of a finite
spectrum of type ≥ n is a vn-periodic equivalence.

(b) If W is a finite spectrum of type ≥ n + 1, then W → 0 is a vn-periodic
equivalence. This is immediate from (a) and the fact that the null map

W
0
−→W is a vn self-map.

We now characterize Spvn in terms of the vn-periodic equivalences and describe two
ways in which it can be realized as a full subcategory of Sp(p):

Proposition 6.5. The∞-category Spvn of vn-periodic spectra is the localization (in
the sense of Definition 2.1) of Sp(p) at the vn-periodic equivalences. It is equivalent
to the following two subcategories of Sp(p):

(1) The full subcategory SpT (n) of T (n)-local spectra in the sense of Bousfield.

(2) The full subcategory Mf
nSp of spectra of the form Mf

nX, where Mf
n denotes

the fiber of the natural transformation Lf
n → Lf

n−1.

Furthermore, the functors

Mf
nSp SpT (n)

LT (n)

Mf
n

are mutually inverse equivalences.

Sketch of proof. The∞-category SpT (n) is the localization at the vn-periodic equiv-

alences (which equal T (n)∗-equivalences) by definition. The equivalence between
SpT (n) and Mf

nSp follows from the fact that all of the maps in the diagram

X

Mf
nX Lf

nX LT (n)X

are vn-periodic equivalences. Finally, Spvn is equivalent to Mf
nSp. Indeed, by

construction Spvn is the essential image of Sp≥n in Lf
nSp, which we identify with

the full subcategory of Sp(p) consisting of Lf
n-local spectra. This essential image is

contained in Mf
nSp, because for V ∈ Sp≥n the spectrum Lf

n−1V is null. It is also

all of Mf
nSp, since the fiber of the map X → Lf

n−1X is a colimit of spectra of type
≥ n. �

Remark 6.6. The spectra Mf
nX are often called the monochromatic or monocular

layers of X (the latter term is used by Bousfield [20], who attributes it to Ravenel).
The equivalence between Mf

nSp and SpT (n) is analogous to the equivalence between

p-primary torsion and (derived) p-complete objects of the derived category D(Z).

We now proceed to the unstable case. The theory of localizations of unstable
homotopy theory was developed by Bousfield [17, 18, 20] and Dror-Farjoun [34].
More details on the material we discuss below can also be found in [45] and [61].

A pointed space V is of type ≥ n precisely if its suspension spectrum is. Similarly,
a vn self-map of such a space is a self-map v such that Σ∞v is a vn self-map of the
suspension spectrum Σ∞V . Like before, one now defines the v-periodic homotopy
groups of another pointed space X by inverting the action of v on the homotopy
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groups of the mapping space Map∗(V,X). A vn-periodic equivalence of spaces is
a map which induces isomorphisms on these periodic homotopy groups. Again we
would like to formally invert the vn-periodic equivalences of pointed spaces. One
can deduce from results of Bousfield that this is possible:

Theorem 6.7 (See [20] and [45]). The localization of S∗ at the vn-periodic equiva-
lences (in the sense of Definition 2.1) exists; we denote it by M : S∗ → Svn . It has
the following properties:

(1) The functor M preserves finite limits and filtered colimits.
(2) The ∞-category Svn is compactly generated. If V is any pointed finite type

space of type n, then M(ΣV ) is a compact object and generates Svn under
colimits.

(3) The stabilization of Svn is equivalent to Spvn .

The reader should be warned that the localization M is not reflective; in particu-
lar, it does not arise directly from a left Bousfield localization on the level of model
categories. Rather, one should think of it as the composition of a left and then
a right localization, as will become apparent. Theorem 6.7 is proved by explic-
itly constructing an ∞-category analogous to Mf

nSp in the stable case. A crucial
ingredient is Bousfield’s classification of the localizations associated to ‘nullifying’
a finite space. If A is any space, one calls a space X PA-local (or A-null) if the
evident map

X ≃Map(∗, X)→ Map(A,X)

is a homotopy equivalence. Essentially, the space A is contractible from the point
of view of X . A general space X admits a PA-localization X → PAX , and the
subcategory of S∗ on pointed PA-local spaces is precisely the localization of S∗ with
respect to the map A → ∗. We write 〈A〉 for the collection of spaces Y for which
PAY ≃ ∗ and call it the Bousfield class of A. These are partially ordered; we write
〈A〉 ≤ 〈B〉 if every Y for which PAY ≃ ∗ also satisfies PBY ≃ ∗. One can regard
the following as an unstable analog of the thick subcategory theorem. Its proof
relies on the stable version.

Theorem 6.8 (Bousfield [17, Theorem 9.15]). Let W and W ′ be p-local finite
pointed spaces that are also suspensions. Then the following are equivalent:

(1) 〈W 〉 ≤ 〈W ′〉,
(2) type(W ) ≥ type(W ′) and conn(W ) ≥ conn(W ′), with conn(W ) denoting

the minimal i with πiW 6= 0.

Thus, up to keeping track of connectivity, finite suspension spaces are still classified
by their type, as was the case with finite spectra. Now pick a finite suspension Vn+1

of type n+1. We will denote conn(Vn+1) by dn+1 and the localization functor PVn+1

by Lf
n. The latter is of course slightly abusive, since Lf

n depends not only on n,
but also on the connectivity dn+1 (but no more, according to Theorem 6.8). More
importantly, Theorem 6.8 immediately implies that for any pointed space X , the
vi-periodic homotopy groups of Lf

nX vanish for i > n. Bousfield also proves that
any pointed space X , the map X → Lf

nX is a vi-periodic equivalence for i ≤ n (see
[20]). In the stable case this implication can be reversed. Unstably one has to take
a little care, because Lf

n does not affect the homotopy groups of X in dimensions
below dn+1. However, the following is true:

Proposition 6.9 (Bousfield [20]). A map ϕ : X → Y of dn+1-connected pointed
spaces is a vi-periodic equivalence for every 0 ≤ i ≤ n if and only if Lf

n(ϕ) is an
equivalence of pointed spaces.
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We define Mf
n in analogy with the stable case as the fiber of the natural transfor-

mation Lf
n → Lf

n−1; the latter exists by Theorem 6.8 as long as we have arranged
our choices so that conn(Vn) ≤ conn(Vn+1), which we will always assume to be the
case. For X a pointed space, there are maps

X → Lf
nX ←Mf

nX

that are both vn-periodic equivalences. Moreover, for i 6= n the vi-periodic homo-
topy groups of Mf

nX vanish. Write Mf
n for the full subcategory of S∗ on spaces

of the form (Mf
nX)〈dn+1〉, where the brackets indicate the dn+1-connected cover.

The functor

X 7→ (Mf
nX)〈dn+1〉

is naturally related to the identity by a zig-zag of vn-periodic equivalences; more-
over, a map between spaces in Mf

n is an equivalence if and only if it is a vn-periodic
equivalence. From this one deduces the first statement of Theorem 6.7. For the
remainder of the proof we refer the reader to [45].

We conclude this section with a review of the Bousfield–Kuhn functor and its ad-
joint. We refer to [20] and [58] for a much more thorough discussion. Suppose V
is a finite pointed space of type n with a vn self-map v : ΣdV → V . Then for X a
pointed space, one can define a (pre)spectrum ΦvX with constituent spaces

(ΦvX)0 = Map∗(V,X), (ΦvX)d = Map∗(V,X), . . . , (ΦvX)kd = Map∗(V,X), . . .

and structure maps

(ΦvX)kd = Map∗(V,X)
v∗

−→ Map∗(Σ
dV,X) ∼= Ωd(ΦvX).

This defines the telescopic functor

Φv : S∗ → Sp

associated to v. By construction it satisfies π∗ΦvX ∼= v−1π∗(X ;V ). In fact this
functor takes values in T (n)-local spectra, so that one may replace the codomain
by SpT (n) or, equivalently, Spvn . As a consequence of Theorem 6.3 the telescopic
functor Φv does not really depend on the choice of v, but only on V . We will write
ΦV instead of Φv. In fact, the dependence on V can be made (contravariantly)
functorial using Theorem 6.3. This can be used to conveniently package the various
telescopic functors into one. The Bousfield–Kuhn functor is a functor

Φn : S∗ → Spvn

satisfying the following properties (see [58]):

(1) There are equivalences

V ∨ ⊗ ΦnX ≃ ΦV X,

natural in X and V .
(2) The composition ΦnΩ

∞ is naturally equivalent to the localization functor
LT (n). In particular, the T (n)-localization of any spectrum E depends only
on its zeroth space Ω∞E, regardless of its structure as an infinite loop
space.

The functor Φn is even characterized up to equivalence by property (1). The con-
struction of Φn and the proof of its basic properties rely on the following trick of
Kuhn:

Lemma 6.10 (Kuhn [54]). For any n ≥ 0 there exists a directed system

F (1)→ F (2)→ F (3)→ · · ·
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of finite spectra of type n equipped with a map

lim
−→
k

F (k)→ S

which is a T (m)∗-equivalence for every m ≥ n.

Sketch of proof. In case n = 1 this is familiar from algebra: the colimit lim
−→k

S−1/pk

is equivalent to the sphere spectrum after p-completion, in the same way that the
derived p-completion of Z/p∞[−1] is Zp in the∞-categoryD(Z). The general proof
goes by induction on n: given a finite spectrum V of type n− 1, one picks a vn−1

self-map v. The cofibers Σ−1V/vk of the maps

Σ−1V
vk

−→ Σ−1−kdV

form a directed system with a map to V . The map from the colimit Σ−1V/v∞ to V
is a T (m)∗-equivalence for m ≥ n because the telescope v−1V is T (m)-acyclic. �

To construct Φn one picks a system as in Lemma 6.10 and defines Φn := lim
←−k

ΦF (k).

Property (1) is now fairly easily deduced from the identification

V ∨ ⊗ ΦF (k) ≃ F (k)∨ ⊗ ΦV .

Note also that Lemma 6.10 implies that Φn is completely determined by the functors
F (k)∨⊗Φn, which shows that (1) indeed characterizes Φn up to equivalence. This
characterization also shows that the choice of F (k) is inessential to the definition
of Φn. Property (2), striking as it may be, is quite easily proved as well. Again it
suffices to check it for ΦV . We should argue that for any spectrum E there is a
natural equivalence ΦV Ω

∞(E) ≃ LT (n)V
∨⊗E. Since ΦV Ω

∞ preserves vn-periodic
equivalences, we may without loss of generality assume that E is already T (n)-local.
But then the maps

Map∗(V,Ω
∞E)

v∗

−→ ΩdMap∗(V,Ω
∞E)

are equivalences and the formula we wrote down for ΦV Ω
∞(E) is already an Ω-

spectrum. Even better, it is clearly the Ω-spectrum V ∨ ⊗ E.

Since Φn sends vn-periodic equivalences to equivalences (essentially by construc-
tion), it factors through the localization Svn . We still denote the resulting functor
by

Φn : Svn → Spvn
.

The following will be crucial:

Proposition 6.11 (Bousfield [20]). The functor Φn admits a left adjoint Θn : Spvn →
Svn .

Sketch of proof. An explicit construction of Θn is described in [20] and also in [58].
To argue existence, roughly one can do the following. It suffices to show that for
every spectrum E, the functor

Svn → S : X 7→ Map(E,ΦnX)

is corepresentable by some object Θn(E). Moreover, it suffices to consider a col-
lection of objects E which generate Spvn under colimits, such as the finite spectra
of type n. For such an E, the functor above takes the form X 7→ Ω∞ΦEX . Con-
sidering the definition of the telescopic functor ΦE , one sees that for X ∈ Svn the
colimit defining this functor becomes eventually constant, showing that indeed our
functor is corepresented by (the image in Svn of) a finite type n space E′ for which
Σ∞E′ ≃ E in Spvn . �
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We now have two adjunctions relating the ∞-category Svn of vn-periodic spaces to
its stable counterpart Spvn , organized in the following diagram:

Spvn Svn Spvn .
Θn

Σ∞

vn

Φn Ω∞

vn

The adjunction on the right is the stabilization of Svn , which we already mentioned
in Theorem 6.7. Property (2) of the Bousfield–Kuhn functor in fact implies that
the horizontal composites ΦnΩ

∞
vn

and Σ∞
vn
Θn are both equivalent to the identity

functor of Spvn . In this way the diagram above is very much analogous to the one
at the end of Section 2 and the one right above Theorem 4.3.

7. Lie algebras and vn-periodic spaces

The aim of this section is to outline a proof of Theorem 1.2, relating the∞-category
Svn to the ∞-category of spectral Lie algebras. More details can be found in [45].
We also discuss to what extent there is a ‘model’ for Svn in terms of commutative
coalgebras, Koszul dual to the Lie algebra model provided by Theorem 1.2. This
second model is closely related to recent work of Behrens–Rezk [12], as we will
explain.

The proof of Theorem 1.2 begins with the following, showing that the ∞-category
Svn can indeed be expressed as some kind of algebras in Spvn . Throughout this
section we will use the ∞-categories Spvn and SpT (n) interchangeably.

Theorem 7.1 (Eldred–Heuts–Mathew–Meier [33]). The adjoint pair (Θn,Φn) is
monadic, i.e., the functor

ϕ : Svn → AlgΦnΘn
(Spvn)

induced by Φn is an equivalence of ∞-categories.

Sketch of proof. By Theorem 3.2 it suffices to check that Φn is conservative (which
is essentially immediate from the construction of Svn) and that it preserves geo-
metric realizations (i.e., colimits of simplicial objects). Since a map of T (n)-local
spectra is an equivalence if and only if it is an equivalence after smashing with some
finite type n spectrum, it suffices to show that ΦV preserves geometric realizations,
for V a finite space of type n. This functor can be expressed as the following colimit:

ΦV (X) = lim
−→

(Σ∞Map∗(V,X)→ Σ∞−dMap∗(V,X)→ · · · ).

Therefore it suffices to show that the functor

LT (n)Σ
∞Map∗(V,−) : Svn → SpT (n)

preserves geometric realizations. Generally, a functor of the form Map∗(V,−) only
preserves geometric realizations of diagrams of spaces which are at least dim(V )-
connected. But this will suffice; we can take the dimension of the space Vn+1 used
to define the localization Lf

n to be at least the dimension of V . �

Remark 7.2. Although the proof of Theorem 7.1 is quite formal, the conclusion
is perhaps surprising; it states that the vn-periodic part Svn of unstable homotopy
theory can be completely described in terms of stable homotopy theory, namely the
stable ∞-category Spvn and the monad ΦnΘn.

It now remains to argue that ΦnΘn is in fact the free spectral Lie algebra monad
on Spvn . This will use some special features of the ∞-category of functors from
the ∞-category of T (n)-local spectra to itself. It turns out that in this context the
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relation between operads and monads is much tighter than in a general symmetric
monoidal ∞-category. To explain the situation we introduce some terminology:

Definition 7.3. A functor F : SpT (n) → SpT (n) is coanalytic if it is equivalent to

one of the form FO, with O a symmetric sequence of T (n)-local spectra:

F (X) ≃ LT (n)

⊕

k≥1

(O(k)⊗X⊗k)hΣk
.

We write coAn(SpT (n)) for the full subcategory of Fun(SpT (n), SpT (n)) on the co-
analytic functors.

We discussed the assignment

SymSeq(C)→ Fun(C,C) : O 7→ FO

in Section 4. For general C this is far from fully faithful. However, the T (n)-local
setting is quite special:

Proposition 7.4. The functor above gives an equivalence of∞-categories SymSeq(SpT (n))→

coAn(SpT (n)).

Sketch of proof. The proof consists of two ingredients. First, one needs the fact
that any natural transformation

(O(k)⊗X⊗k)hΣk
→ (P(l)⊗X⊗l)hΣl

between such homogeneous functors is null whenever k 6= l. This follows from the
general theory of Goodwillie calculus when k > l. For the case k < l one needs
the additional fact that Tate spectra associated with the symmetric groups vanish
in the T (n)-local category. This is a fundamental result of Kuhn [55]; a short
alternative proof is provided by Clausen–Mathew [27]. The second ingredient is
that any natural transformation from a k-homogeneous functor

X 7→ (O(k)⊗X⊗k)hΣk

to a coanalytic functor factors through a finite sum of layers. This uses a nilpotence
argument of Mathew, which ultimately relies on Tate vanishing again (see the
appendix of [45]). �

The equivalence of Proposition 7.4 sends the composition product of symmetric
sequences to the composition of functors. Hence we find the following alternative
description of (co)operads in the T (n)-local setting:

Corollary 7.5. The ∞-category of operads (resp. of cooperads) in T (n)-local spec-
tra is equivalent to the∞-category of monoids (resp. comonoids) in the∞-category
coAn(SpT (n)). In other words, a (co)monad on SpT (n) whose underlying functor is

coanalytic corresponds essentially uniquely to a (co)operad in SpT (n).

The obvious example, which is both an operad and a cooperad, is of course the
identity functor of SpT (n). The first nontrivial example is the following:

Theorem 7.6 (Kuhn [57]). For E ∈ SpT (n) there is a natural equivalence

Σ∞
vn
Ω∞

vn
(E) ≃ LT (n)

⊕

k≥1

E⊗k
hΣk

.

In particular the comonad Σ∞
vn
Ω∞

vn
is coanalytic, hence a cooperad.

This result essentially follows from a theorem of Kuhn [57] on the splitting of the
functor LT (n)Σ

∞Ω∞ on a suitable class of spectra. Here we outline a different
approach:
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Sketch of proof. For a commutative ring spectrum R and a spectrum X , there is
the well-known adjunction

MapCAlg(Σ
∞
+ Ω∞X,R) ≃MapΩ∞(Ω∞X,GL1R)

where the right-hand side denotes the space of infinite loop maps from Ω∞X into
the space of units GL1R. A rather straightforward adaptation of this setup to our
context provides an adjunction

MapCAlgnu(Σ∞
vn
Ω∞

vn
E,R) ≃ MapΩ∞(Ω∞

vn
E,M(GL1R))

for a non-unital T (n)-local commutative ring spectrum R and E ∈ SpT (n). HereM :

S∗ → Svn denotes the localization functor. In fact, M(GL1R) can be identified with
Ω∞

vn
R as an object of Svn , but the E∞-structure corresponds to the multiplication,

rather than addition, on R. Applying Φn and using ΦnΩ
∞
vn
≃ id then gives a further

equivalence
MapΩ∞(Ω∞

vn
E,M(GL1R)) ≃Map(E,R),

so that we have found a natural equivalence

MapCAlgnu(Σ∞
vn
Ω∞

vn
E,R) ≃Map(E,R).

On the other hand, the universal property of the free non-unital commutative al-
gebra also provides an equivalence

MapCAlgnu(LT (n)Sym≥1E,R) ≃ Map(E,R)

with
LT (n)Sym≥1E = LT (n)

⊕

k≥1

E⊗k
hΣk

denoting the spectrum of the theorem. The conclusion now follows from the Yoneda
lemma. �

Remark 7.7. Chasing through the proof above gives an explicit description of the
equivalence of the theorem. Applying Φn to the unit map η : Ω∞

vn
E → Ω∞

vn
Σ∞

vn
Ω∞

vn
E

and using ΦnΩ
∞
vn
≃ id gives a natural map

λ : E → LT (n)Σ
∞
vn
Ω∞

vn
E.

Since the right-hand side is a non-unital commutative ring spectrum, this map λ
naturally extends to a map of non-unital commutative rings

LT (n)Sym≥1(E)→ Σ∞
vn
Ω∞

vn
E

which is an equivalence by the theorem.

In fact, as already suggested by the formula of Theorem 7.6, the cooperad Σ∞
vn
Ω∞

vn

really plays the role of the commutative cooperad: the terms of the corresponding
symmetric sequence are (the T (n)-localization of) the sphere spectrum in each de-
gree and one can show (e.g. using Goodwillie calculus) that the cooperad structure
maps are as expected. We will use Theorem 7.6 in two ways. The first is a very
useful characterization of coanalytic functors:

Proposition 7.8. A functor F : SpT (n) → SpT (n) is coanalytic if and only if it
preserves filtered colimits and geometric realizations.

A proof of this result is given in [45] following an argument of Lurie; essentially,
one writes any functor F preserving filtered colimits and geometric realizations as
a colimit of functors closely resembling Σ∞

vn
Ω∞

vn
and uses the fact that a colimit of

coanalytic functors is coanalytic.

Our goal is to analyze the monad ΦnΘn. First, one observes it is actually corre-
sponds to an operad (cf. Corollary 7.5):
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Corollary 7.9. The functor ΦnΘn is coanalytic.

Proof. By Proposition 7.8 it suffices to check that ΦnΘn preserves filtered colimits
and geometric realizations. For Θn there is nothing to check since it is a left
adjoint; for Φn, the fact that it preserves geometric realizations was part of the
proof of Theorem 7.1. For filtered colimits one may reduce to ΦV as usual, where
it is obvious. �

It remains to relate the operad ΦnΘn to the spectral Lie operad. In fact, we will
indicate how to produce a map of operads

γ : ΦnΘn → Cobar(Σ∞
vn
Ω∞

vn
).

The right-hand side is the T (n)-local spectral Lie operad, so we should then prove
that γ is an equivalence. To do this we proceed as follows. As explained in Section
3, the adjoint pair (Σ∞

vn
,Ω∞

vn
) gives a ‘cosimplicial resolution’ of the identity functor

of Svn :

idSvn
Ω∞

vn
Σ∞

vn
Ω∞

vn
Σ∞

vn
Ω∞

vn
Σ∞

vn
Ω∞

vn
(Σ∞

vn
Ω∞

vn
)2Σ∞

vn
· · · .

Now precompose with Θn, postcompose with Φn, and apply the equivalence ΦnΩ
∞
vn
≃

idSpT (n)
≃ Σ∞

vn
Θn to get the coaugmented cosimplicial object

ΦnΘn idSpT (n)
Σ∞

vn
Ω∞

vn
(Σ∞

vn
Ω∞

vn
)2 · · · .

The totalization produces Cobar(Σ∞
vn
Ω∞

vn
), the coaugmentation gives the map γ.

The following is then the final step in the proof of Theorem 1.2:

Theorem 7.10. The map γ is an equivalence, so that ΦnΘn is equivalent to the
T (n)-localization of the spectral Lie operad L.

Sketch of proof. Checking whether a natural transformation between coanalytic
functors is an equivalence can be done at the level of Goodwillie derivatives. On
the left-hand side, the fact that Θn preserves colimits and Φn preserves limits, as
well as filtered colimits, implies that

Dk(ΦnΘn) ≃ Φn ◦DkidSvn
◦Θn.

This reduces the verification to checking that

∂∗idSvn
→ Cobar(1, ∂∗(Σ

∞
vn
Ω∞

vn
),1)

is an equivalence, which is yet another version of the result of Arone–Ching (The-
orem 0.3 of [5]) already mentioned in Section 5. �

Remark 7.11. Theorem 1.2 is proved in the rather abstract setting of T (n)-local
homotopy theory. However, one can specialize it to obtain a version for K(n)-local
homotopy theory as well.

Remark 7.12. After Theorem 1.1 we indicated that the Lie model of a rational
space in particular encodes the Whitehead products on rational homotopy groups.
Similarly, the spectral Lie algebra model of Theorem 1.2 will in particular encode
the Whitehead products on vn-periodic homotopy groups. A concise proof of this
can be given by ‘differentiating’ the Hilton–Milnor theorem.

In the remainder of this section we discuss to what extent there is a model for Svn
in terms of commutative coalgebras, Koszul dual to the Lie algebra model provided
by Theorem 1.2. This is closely related to recent work of Behrens–Rezk [12], as we
will explain.
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As in the rational case (cf. Section 2), one can construct a functor

Cvn : Svn → coCAlgnu(Spvn
)

by observing that each space X ∈ Svn is a non-unital commutative algebra with
respect to smash product (using the diagonal as comultiplication) and that the sus-
pension spectrum functor Σ∞

vn
preserves smash products. Alternatively, identifying

Svn with Lie(Spvn
) as in Theorem 1.2, one can use Theorem 4.7 to produce a func-

tor from Svn to the ∞-category of commutative coalgebras in Spvn . The functor
Cvn admits a right adjoint for which we write Rvn . Its existence follows from the
adjoint functor theorem; alternatively, it can be constructed much more concretely
as the primitives of a coalgebra. For this reason we denote the composite functor
ΦnRvn by

primvn
: coCAlgnu(Spvn)→ Spvn .

We remind the reader that these primitives are computed by a cobar construction,
which is formally dual to the derived indecomposables (or TAQ) of a non-unital
commutative ring spectrum, as discussed in Section 4. The left adjoint of primvn

is the functor which equips a spectrum E ∈ Spvn
with the trivial non-unital com-

mutative algebra structure.

The unit of the adjunction described above is a map

idSvn
→ RvnCvn ,

which admits the following descriptions:

(1) It is the Goodwillie completion, in the sense that the functor RvnCvn is the
limit of the Goodwillie tower of the identity on the ∞-category Svn .

(2) After identifying Svn with the ∞-category Lie(Spvn), it is the pronilpotent
completion of a spectral Lie algebra. This is defined as follows. For every
k ≥ 1 one considers the truncation tk : L→ τ≤kL, which is an equivalence in
arities up to k and has τ≤kL(j) ∼= 0 for j > k. Any L-algebraX then admits
a truncation t∗k(t!)kX , by pushing forward and pulling back along tk. The
inverse limit over k is the pronilpotent completion of X . The connection
with (1) is that the functor t∗k(tk)! is the k-excisive approximation (in the
sense of Goodwillie) of the identity functor of the ∞-category of spectral
Lie algebras. (This perspective originates in [71].)

It is not difficult to construct examples of objects in Lie(Spvn) which are not com-
plete in the above sense (e.g. most free spectral Lie algebras). Consequently, the
functor Cvn cannot be an equivalence of∞-categories. Nonetheless, the comparison
with coalgebras is a very useful way of ‘approximating’ the ∞-category Svn and an
effective method of computing the value of the Bousfield–Kuhn functor Φ on many
spaces of interest, including spheres. We will conclude this section by making this
precise, inspired by the work of Behrens–Rezk [12].

Consider the following diagram of adjoint pairs, with left adjoints on top or on the
left:

S∗

SpT (n) Svn Lf
nS∗ coCAlgnu(SpT (n)).

Lf
n

Θn

Φn M

C
L
f
n

R
L
f
n

Here Lf
n is the localization away from a finite suspension space of type n + 1, as

in the previous section. The functor C
L

f
n
assigns to an Lf

n-local space X the T (n)-

localization of its suspension spectrum LT (n)Σ
∞X , with coalgebra structure using
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the diagonal of X as usual. Recall our slight abuse of notation, writing Φn for the
functor Svn → SpT (n) in the diagram, as well as for the composition

S∗
Lf

n−−→ Lf
nS∗

M
−→ Svn

Φn−−→ SpT (n).

Using the unit of the adjoint pair (C
L

f
n
, R

L
f
n
) we find for every pointed space X the

comparison map

Φn(X)→ ΦnRL
f
n
C

L
f
n
(Lf

nX) ∼= primvn
C

L
f
n
(Lf

nX).

The crucial point is that the right-hand side can be identified with the limit of the
Goodwillie tower

· · · → (P3Φn)(X)→ (P2Φn)(X)→ (P1Φn)(X) ≃ LT (n)Σ
∞X

of Φn. A variant of this idea was established in the work of Behrens–Rezk [12].
The perspective sketched here is discussed in Section 5 of [45].

Definition 7.13. A pointed space X is Φn-good if the map

ΦnX → lim
←−
k

(PkΦn)(X)

is an equivalence. If this map is an equivalence after K(n)-localization, then X is
ΦK(n)-good.

A consequence of the discussion above is therefore:

Theorem 7.14. A pointed space X is Φn-good if and only if the comparison map

Φn(X)→ primvn
C

L
f
n
(Lf

nX)

is an equivalence.

The work of Behrens–Rezk [12] is in the K(n)-local setting and uses commutative
algebras, rather than coalgebras. The dual of the commutative coalgebra Σ∞X
is the commutative non-unital ring spectrum SX . By taking Spanier–Whitehead
duals, the derived primitives of Σ∞X admit a map

prim(Σ∞X)→ TAQ(SX)∨

to the dual of the derived indecomposables of SX . In this way one gets the com-
parison map of the following result:

Corollary 7.15 (Behrens–Rezk [12]). If X is a pointed space for which LK(n)Σ
∞X

is K(n)-locally dualizable, then X is ΦK(n)-good if and only if the comparison map

LK(n)Φn(X)→ LK(n)(TAQ(SX))∨

is an equivalence.

A discussion of these results from a different perspective is in the chapter of Arone–
Ching in this volume. The use of Corollary 7.15 is that the codomain of the com-
parison map is amenable to explicit calculation, using the techniques developed by
Behrens–Rezk in [12]. Some examples of Φn-goodness are the following:

(1) Spheres are Φn-good. This is a key result of Arone–Mahowald [7]. They
prove something even stronger, namely that the map Φn(X)→ (PkΦn)(X)
is an equivalence if X is a sphere Sl and k ≥ 2pn, or even k ≥ pn if l is
odd.

(2) Spaces of the form Θn(S
l) are Φn-good.

There are also many non-examples. The following were essentially first observed in
[23]:
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(1) Suppose V is a type n space with a vn self-map and write W = Σ2V . Then
W is not Φn-good. Briefly, under these conditions one hasW ≃ Θn(Σ

∞
vn
W ).

Translating to Lie(Spvn), W corresponds to a free spectral Lie algebra. In
particular,

Φn(W ) ≃ LT (n)

⊕

k≥1

(L(k)⊗ Σ∞
vn
W⊗k)hΣk

.

The limit of the Goodwillie tower of Φn evaluated on W will give the direct
product, rather than the direct sum.

(2) A wedge of spheres is not Φn-good. Using the Hilton–Milnor theorem, one
can describe Φn(S

a ∨Sb) as a direct sum of terms of the form Φn(S
l), for l

ranging over an infinite set determined by a and b. Again, the limit of the
Goodwillie tower will instead be the direct product.

There exist more extreme counterexamples of the following kind. Take X to be
the cofiber (in Svn) of a map which is a T (n)∗-equivalence, but not a vn-periodic
equivalence. Such maps were essentially first described for n = 1 by Langsetmo–
Stanley [59], by modifying the Adams self-map of a Moore space. The Goodwillie
tower of Φn evaluated on X will then vanish identically, although X itself is non-
trivial.

8. Questions

In this final section we list several open questions, loosely grouped by subject.

(A) Localization and completion.

The first few questions we list below are closely related to some of those raised by
Behrens–Rezk in their survey [13]. In the ∞-category Svn there are the following
analogues of the usual notions of localization and completion:

(a) Every object X ∈ Svn admits a T (n)-localization. Note that this is the same
as Bousfield localization of objects in Svn with respect to the stabilization
functor Σ∞

vn
: Svn → SpT (n).

(b) The Qvn-completion of an object X ∈ Svn is the limit of the Bousfield–Kan
cosimplicial object

Ω∞
vn
Σ∞

vn
X (Ω∞

vn
Σ∞

vn
)2X · · · .

(c) The Goodwillie completion of an object X ∈ Svn is the limit of the Good-
willie tower

· · · → P3idSvn
(X)→ P2idSvn

(X)→ P1idSvn
(X) = Ω∞

vn
Σ∞

vn
X.

of the identity of Svn evaluated on X . Alternatively, identifying Svn with
Lie(Spvn), the Goodwillie completion is the pronilpotent completion of a
spectral Lie algebra.

If X is Qvn -complete, or Goodwillie complete, then it is also T (n)-local. An ar-
gument of Bousfield can be adapted to show that every H-space in Svn is already
T (n)-local. An object X is Goodwillie complete if and only if it is Φn-good in the
sense of Definition 7.13.

(A1) It is not hard to argue that the class of Φn-good spaces is closed under
finite products. What other general closure properties does this class have?

(A2) Do the Qvn -completion and the Goodwillie completion agree?
(A3) Under what conditions does the T (n)-localization of X agree with its Qvn -

completion or its Goodwillie completion?
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(A4) What is the relation between the spectral sequence associated with the
cosimplicial object of (b) (which is a version of the unstable Adams spectral
sequence for the ∞-category Svn) and the vn-periodic unstable Adams and
Adams–Novikov spectral sequences studied by Bendersky–Curtis–Miller [15],
Bendersky [14], and Davis–Mahowald [31]?

We say a spectral Lie algebra X is nilpotent if it is in the essential image of the
pullback functor

t∗k : Alg(τ≤kL)→ Alg(L)

for some k ≥ 1. With this terminology, the T (n)-local spectral Lie algebras corre-
sponding to spheres are nilpotent, by the results of Arone–Mahowald discussed in
the previous section. We know that these particular examples are Φn-good.

(A5) Is any nilpotent X ∈ Lie(SpT (n)) complete in the sense of either (b) or (c)?

This would provide a large class of examples of Φn-good spaces, since the class
of nilpotent spectral Lie algebras satisfies various closure properties not obviously
shared by the class of Φn-good spaces.

(B) Exponents.

The torsion part of the homotopy groups of Sn has a p-exponent. Better yet,
Cohen–Moore–Neisendorfer [29, 28] prove that the pk-power map of the H-space

Ω2k+1
0 S2k+1 is nullhomotopic. Consequently, the spectrum Φn(S

2k+1) has the
same p-exponent. As usual, one deduces corresponding results for even-dimensional
spheres from this using the EHP sequence. One can speculate about versions of
such results for vi-exponents with i > 0. Wang [83] computes the homotopy groups
of LK(2)Φ2(S

3) at primes p ≥ 5 and shows that v21 acts trivially on them. However,
the situation is more subtle than before, since the element v1 does not act trivially
on the Morava E-theory E∗(Φ2(S

3)).

There are similar results for p-exponents of Moore spaces Sk/pr, with k ≥ 2 and
r ≥ 1. If p is odd, then the work of Cohen–Moore–Neisendorfer [30] and Neisendor-
fer [69] shows that Ω2Sk/pr has null-homotopic pr+1-power map. For p = 2 and
r ≥ 2 there are 2-primary exponent results by Theriault [82]. It seems the re-
maining case Sk/2 is still open. These exponent results for Moore spaces give
corresponding exponents for the spectra Φ1S

k/pr. A possible generalization would
be the following:

(B1) If V is the suspension of a type n space, does the spectrum ΦnV have a
vi-exponent for all i < n?

Here we say that a spectrumX has a vi-exponent if for any finite type i spectrum W
with vi self-map v, the smash product map v⊗X is nilpotent. Under the equivalence
between Svn ≃ Lie(Spvn), the space ΣV corresponds to the free spectral Lie algebra

on the spectrum Σ∞+1V . This allows for a reformulation of (B1) in terms of the
vi-exponents of the underlying spectrum of that free spectral Lie algebra.

(C) The Bousfield–Kuhn functor.

Although T (n)- or K(n)-homology equivalences of spaces behave quite differently
from vn-periodic equivalences, there are still many statements for homology which
have counterparts for vn-periodic homotopy groups. One such example is the
Whitehead theorem: if a map f : X → Y of simply-connected pointed spaces in-
duces an isomorphism in K(n)-homology for each n ≥ 0, then it is a weak homotopy
equivalence. This is proved by Bousfield in [16]; an alternative proof is given by
Hopkins–Ravenel in [47]. There is a version for vn-periodic homotopy groups which
states the following:
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Theorem 8.1 (Barthel–Heuts–Meier, [9]). If a map f : X → Y of simply-connected
finite CW-complexes is a vn-periodic equivalence for every n ≥ 0, then f is a p-local
homotopy equivalence.

Note that this result includes a finiteness hypothesis on X and Y . It is well-known
that a finite spectrum with K(n)∗X = 0 also has K(n−1)∗X = 0. (In fact, another
result of Bousfield [19] states that a space X with K(n)∗X = 0 also hasK(i)∗X = 0
for all 0 < i ≤ n, without assuming finiteness of X .) This inspires the following
question:

(C1) For a finite pointed CW-complex X , does ΦnX ≃ 0 imply ΦiX ≃ 0 for
i < n?

We already discussed the ‘two adjunctions’ diagram

Spvn Svn Spvn
Θn

Σ∞

vn

Φn Ω∞

vn

at the end of Section 6. The adjunction on the right can be characterized by
the universal property of stabilization (in the world of presentable ∞-categories);
the functor Σ∞

vn
is the initial colimit-preserving functor from Svn to a presentable

stable∞-category. A positive answer to the following would give a similar universal
property of the Bousfield–Kuhn functor:

(C2) Is the adjoint pair (Θn,Φn) the costabilization of Svn? In other words, is
Θn the terminal colimit-preserving functor from a presentable stable ∞-
category to Svn?

(D) Beyond monochromatic unstable homotopy theory.

The chromatic approach to homotopy theory involves two aspects: (1) understand-
ing monochromatic layers and (2) assembling those layers to reconstruct a space or
spectrum. So far we have only discussed (1). We will now give a brief discussion of
(2) and pose some questions.

We have seen that for any n there are comparison functors

Svn → coCAlgnu(SpT (n))

that, while not fully faithful in general (except for n = 0), at least behave reasonably
well. Integrally, however, the functor

S∗ → coCAlgnu(Sp)

is quite far from being fully faithful. To get a much better approximation, one
should replace the right-hand side by the∞-category of coalgebras for the comonad
Σ∞Ω∞ (cf. Remark 2.6). The price to pay, though, is that it is in general not so
clear what has to be done in order to upgrade a commutative coalgebra spectrum to
a Σ∞Ω∞-coalgebra. A first step is to consider the pull-back square (see Proposition
1.9 of [55])

P2(Σ
∞Ω∞)(X) (X ⊗X)hΣ2

X (X ⊗X)tΣ2 .
τ2

If a commutative coalgebra X has a compatible coalgebra structure for Σ∞Ω∞,
then the left-hand vertical map has a section. This is equivalent to the existence of
a diagonal lift in the square. In other words, the composite of the comultiplication

δ2 : X → (X ⊗X)hΣ2
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and the canonical map (X ⊗X)hΣ2 → (X ⊗X)tΣ2 is homotopic to the map

τ2 : X → (X ⊗X)tΣ2 .

This latter map exists for any spectrum and is called the Tate diagonal. One can
think of it as the stable (or linear) shadow of the diagonal map of spaces. (See
[53, 44, 70] for much more discussion.) More generally, one can define the notion
of a Tate coalgebra as in [45]. It is first of all a commutative coalgebra, meaning a
spectrum X equipped with maps

δk : X → (X⊗k)hΣk

for k ≥ 2 and a coherent system of homotopies relating the δk for various k. Sec-
ondly, these comultiplications δk have to be compatible with certain generalized
Tate diagonals

τk : X → (X⊗k)tΣk

which are constructed inductively. It is proved in [45] that there is an equiv-

alence between the ∞-category of simply-connected pointed spaces S
≥2
∗ and the

∞-category coAlgTate(Sp)≥2 of simply-connected Tate coalgebras in spectra.

In the ∞-category of T (n)-local spectra, Tate constructions associated with finite
groups are contractible [55]. Hence the theory of Tate coalgebras in SpT (n) reduces
to that of commutative coalgebras. One can think of the Tate diagonals τk above
as determining the ‘attaching data’ between the∞-categories of commutative coal-
gebras in SpT (n) for varying n, which assembles them together into the ∞-category
of Tate coalgebras.

What is less clear is what the Koszul dual side of this picture should be. The ∞-
category of spectral Lie algebras cannot be a good model for S∗ without vn-periodic
localization; these∞-categories have the same stabilization, but the Tate diagonals
on Sp one would associate with the ∞-category Lie(Sp) are zero, as opposed to the
usual Tate diagonals arising as the stabilization of the product on S∗. Said (very)
informally, the k-invariants of the Goodwillie tower of Lie(Sp) are trivial, whereas
they are not for S∗. However, one could hope that it is possible to assemble the
∞-categories Lie(SpT (n)) for varying n in a more interesting way:

(D1) Does there exist a good theory of ‘transchromatic’ spectral Lie algebras,
related to S∗ (or Lf

nS∗) by an adjoint pair, which after vn-periodic local-
ization reduces to the theory of T (n)-local spectral Lie algebras and the
Bousfield–Kuhn functor Φn relating it to Svn?

(D2) If question (D1) admits a reasonable answer, then what is the relation to
Mandell’s p-adic homotopy theory?
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