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ABSTRACT 

If, for a small category C, II C is the homotopy category of the functor 
Q 

category K , where K is the category of simplicial sets, then II is an example 

of a hyperfunctor, taking small categories, functors and natural transforma­

tions to categories, functors and natural transformations. We show that II has 

a number of additional properties, which we take as the axioms of a "homotopy 

theory." From them we recreate much of the familiar structure of homotopy 

theory, including standard theorems on homotopy limits and localization, and 

give a description of algebras-up-to-homotopy designed to illuminate the theory 

of loop-spaces. 
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INTRODUCTION 

1. In the forty-odd years since Eilenberg and Steenrod wrote down the 
axioms for homology theory ([6]) there have been repeated attempts to "do the 
same thing" for homotopy theory: I am myself guilty of one of these ([9]). 
The most fruitful and influential axiomatization is that of Quillen ([21]). 
D. W. Anderson ([2]) discusses at some length why he believes all these efforts 
to be less than adequate. I concur with his remarks and see no need to re­
peat them here. He goes on to propose another, which seems to me to be the 
most promising one yet suggested. Unfortunately this proposal has not been 
fully implemented. Most recently Grothendieck ([8]) has considered a number 
of ways in which homotopy theory might arise, but his interests, if I under­
stand them, are rather at cross purposes with those of homotopy theorists. 

If I venture to put forward yet another axiomatization it is because I 
believe that Andersonfs axioms stop just short of a final desideratum, viz. 
that of characterizing "homotopy theory" in a homotopy-invariant way. Almost 
all descriptions thus far proposed undertake to define the homotopy theory of 
something, with the aim of making that thing sufficiently general to encompass 
all conceivable examples. Thus, for example, classical homotopy theory is the 
homotopy theory of the category of topological spaces, while in [9] I attempted 
to discuss the homotopy theory of cell-complexes, so generalized as to include 
the stable category of spectra, Quillen develops the homotopy theory of model 
categories, Anderson that of categories provided with a fraction-functor. 

In contrast the notion here set forth is absolute rather than preposi­
tional in character: what is considered is "homotopy theory" as opposed to 
"the homotopy theory of ... ." To the best of my knowledge a similar proced­
ure is followed only by Puppe ([20]), in defining "stable categories" (cf. also 
Verdier [27]) which however are not intended to express all the structure of 
homotopy theory. 

The reason that expositions of homotopy theory have had this character 
is not far to seek. The practice of homotopy theory involves essentially 
the making of such geometrical constructions as mapping cones and other 
adjunction-spaces, fibres and other such pullbacks; more general limits and 
colimits in the category of, say, topological spaces equally well occur. But 
homotopy categories typically lack such limits and colimits. It has thus 

Received by the editors December 1986. 
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2 ALEX HELLER 

appeared to be necessary to have some precursor-category in which the construc­
tions can be made, the homotopy theory then appearing as the homotopy theory 
of that precursor. 

To be sure, when homotopy theory meant only the homotopy theory of topo­
logical spaces it might well have been felt that the precursor was indeed the 
primary object of study, and that its presence was therefore not obtrusive. 
The later development of the subject, beginning with simplicial sets, might 
already cast some doubt on the justice of this feeling. The fact, now fami­
liar, that different precursors may give rise to what is palpably the same 
homotopy theory (e.g. spaces, simplicial sets, small categories [15], topo-
genic groupoids [11] etc.) suggests that it might be desirable to study that 
homotopy theory divorced from the accidents of its provenance. To venture an 
analogy, it would be uncomfortable to have to study groups only in terms of 
generators and relations, without an independent definition of the notion of a 
group. 

2. The keys to an invariant definition of homotopy theory are the notions 
of homotopy limit and colimit (cf. [4], [21], [28]). These permit us to make 
the constructions of homotopy theory in a homotopy-invariant way. It was 
Anderson who pointed out (in [27]) the centrality of these notions and who 
supplied an essential step in understanding their role by generalizing them to 
homotopy Kan extensions. 

The plan adopted here is to regard the homotopy Kan extensions, and in 
particular homotopy limits and colimits, as being provided by an additional 
structure on the underlying homotopy category. To see how this works we may 
look briefly at the ordinary theory of Kan extensions in a complete category. 
Associated to such a category we have, for each "diagram-scheme" (i.e. small 
category) a category of diagrams; functors between diagram-schemes give rise 
by composition to functors between diagram categories; Kan extensions are ad-
joints to these functors. 

Since all of this is uniquely determined by the original complete cate­
gory we do not usually think of it as additional structure. In the homotopy 
theory of topological spaces (to consider one example) we deal however not 
with diagram-categories in the homotopy category of spaces but rather with 
homotopy categories of the diagram-categories of spaces. It is these which 
constitute the additional structure in question in the example. More gen­
erally this additional structure will be so characterized that the ordinary 
theory of Kan extensions is a special case or, to put it a little differently, 
that homotopy theory appears as a generalization of the theory of limits and 
colimits in categories. 
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HOMOTOPY THEORIES 3 

The precise description of that structure on a category which is needed 
to characterize a homotopy theory requires certain ideas from category theory 
which are not fully covered in such standard sources as [18]. We include 
therefore in Chapter I brief descriptions of localization and of fibrations 
of categories before passing to the definition of the central notion of hyper-
functors. The chapter concludes with a modest account of the fragment of 2-
category theory needed for the elucidation of their relevant properties. 

In Chapter II we formulate the definition of a homotopy theory or, more 
properly, a left or a right homotopy theory (corresponding to a left-complete 
or a right-complete category) as a hyperfunctor enjoying a list of properties 
which thus serve as the axioms for homotopy theory, and go on to prove that 
the standard homotopy theory, modeled for convenience on simplicial sets, con­
stitutes such a homotopy theory. This requires a substantial argument since 
it subsumes most of the elementary facts about homotopy limits and colimits 
which are reproved here using a technique first introduced by Steenrod in his 
exposition of the Milgram bar construction ([25], cf. also [10], [13]), and 
which recurs in the invariant treatment below. It is necessary to have an 
alternative description of this standard homotopy theory in terms of the cate­
gory of small categories, which is adduced here as well. 

The remaining chapters examine consequences of the axioms set forth in 
Chapter II. In Chapter III the basic techniques for computing with homotopy 
Kan extensions are developed and a density theorem is proved. This theorem, 
itself an essential tool in the further development, is of interest as showing 
that the hyperfunctor which constitutes the homotopy theory on an underlying 
category is in a suitable weak sense generated by that category. 

The standard homotopy theory plays a central role in homotopy theory in 
somewhat the same way that the category of sets does in ordinary category 
theory. Thus any homotopy theory admits the standard theory as "operators" 
both convariantly and contravariantly or, in the jargon of category theory, 
is tensored and cotensored over the standard theory. This structure is the 
subject matter of Chapter IV and provides the context for the discussion there 
of homotopical finality of functors between small categories and its effect on 
homotopy limits. 

Chapters V and VI are devoted to the development within our context of two 
major themes of homotopy theory, viz. the theory of localization and that of 
what we have chosen to call here homotopical algebra, that is to say the ab­
stract version of the homotopy theory of topological algebra. 

We propose a systematic definition of localization and colocalization 
within a homotopy theory, covering not only the cases discussed by Sullivan 
([26]), Adams ([1]) and Bousfield ([3]), but others (e.g. Postnikov systems) 
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4 ALEX HELLER 

as well. A principal result is that localizations and colocalizations of homo­
topy theories are, once more, homotopy theories. 

The use made here of the expression "homotopical algebra" occasions an 
apology to Quillen, whose seminal work on model categories [21] bears that 
title. It seems to me, nevertheless, that it is underutilized and I have 
ventured to steal it from him in order to indicate a homotopical version, due 
in spirit to Segal ([23]), of the description of universal algebra introduced 
by Lawvere ([3.6]) . An appropriate localization theorem shows that in a wide 
class of homotopy theories the homotopical algebras of a given type form a 
localization and thus constitute a homotopy theory. 

The loop-space functor, which may be defined in an arbitrary pointed homo­
topy theory via its cotensor structure, always takes its values in the theory 
of homotopical groups. The theorem of Segal ([23]), in the tradition of 
Stasheff ([24]), shows in fact that, in the classical case, the loop-space is 
an equivalence of the homotopy theory of pointed connected spaces with that of 
homotopical groups. In the same spirit it is possible to define the notion of 
a homotopical multialgebra — not, as in the standard case, reducible to that 
of an algebra -- and to use it to characterize iterated loop-spaces. 

3. Much remains to be worked out. I shall mention some outstanding 
problems without attempting to assign them priorities or suggesting that others 
may not be equally interesting. 

There seems to be little doubt that homological algebra in a complete 
abelian category constitutes, in some way, a homotopy theory. The problem 
here is to determine the most useful way — or ways — of saying this. 

Stable homotopy theory resists immediate subsumption, for what appear to 
be inessential technical reasons. The recent work of Elmendorf ([7]) may 
perhaps provide the necessary information, though at a considerable cost in 
complexity and with an unfortunate restriction to the classical case. An 
interesting possibility is that of inventing, for homotopy theory, an analogue 
of finite completeness and developing a theory of homotopical completion. It 
might be hoped that the homotopy theory of finite spectra would be easily seen 
to be such a finitary homotopy theory and that the full stable homotopy theory 
might be constructed as its homotopical completion. An unstable version of 
this, constructing the standard homotopy theory from a putative finitary 
one, would in itself be of interest. 

A technical problem which seems to be of some importance is that of lift­
ing diagrams in homotopy categories to objects in homotopy categories of 
diagrams. A start is made in III.3 below, but it is clear that this only be­
gins to touch the problem, whose resolution ought to lead to improved repre-
sentability and localization theorems. 
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HOMOTOPY THEORIES 5 

Finally, Segal's result on loop spaces, mentioned above, still needs to 
be formulated within the context of general homotopy theory. Examples show 
that it is not always true; the correct hypothesis is not clear. Segal's re­
sult on infinite loop-spaces might have been treated here in an ad hoc fashion, 
but I have thought it better to omit it until a better understanding of its 
status in axiomatic homotopy theory becomes available. 

Licensed to Univ of Rochester.  Prepared on Sat Jun  6 07:31:54 EDT 2015for download from IP 128.151.13.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CHAPTER I 

CATEGORICAL PRELIMINARIES 

We presuppose a general familiarity with the basic notions of categories 

theory. The purpose of this chapter is to fix terminology and notation, which 

sometimes remains labile in the literature, and to reintroduce, or perhaps in 

one case introduce, some slightly more esoteric ones. 

1. BASIC NOTIONS AND LOCALIZATION 

A graph T consists of a class Tn of nodes, a class V. of arrows and maps 

d ,d,: r, -> Tn, the source and target, such that for any x,y € rn 

(x,y) = (a 6 T} | dQa = x, d ^ = y} 

is a set. We define also ?2 = {(b,a) | a,b € I1-, dQb = d ^ } . The graph T 

is small if T0 is a set; it follows that r, is then also a set. 

A category C is thus a graph provided with certain additional structures, 

viz. a unit map id: CQ -> C and a composition map ^2 -> C , denoted by (g,f) i—> 

gf, satisfying the usual conditions. We adopt the usual course of referring 

to elements of CQ and C. as objects and morphisms of C and dn,d as the domain 

and codomain maps. C is small if its underlying graph is small. We shall 

often denote small categories by bold-face capitals: C. 

The small graphs are the objects of the category Gph, with the evident 

morphisms. The small categories are the objects of the category Cat, whose 

morphisms are functors. Cat is cartesian-closed, the "internal horn1* functor 
r 

being D , the category of functors and natural transformations. 

The forgetful functor Cat -* Gph has a left adjoint. By a free category 

we mean one isomorphic to a value of this left adjoint. Such a category is 

freely generated by the graph whose nodes are the objects of the category and 

whose arrows are those morphisms which are neither identities nor compositions 

of non-identity morphisms. 

A category C is finite if C. (and hence CQ) is finite. A moment's thought 

will show that a finite free category contains no proper endomorphisms: if 

dQf = d f then f = id(dQf). Examples of finite free categories are the dis­

crete categories n = {0,1,. . . ,n-l} and the ordered categories n = {0 -> 1 -• 

••• •* n-1}, for n = 0,1,2,.., , as well as the subcategories 

6 
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HOMOTOPY THEORIES 7 

0,0 

1,0 0,1 
Aop 

f 1,0 0,1 

\ S 
1,1 

of 2 x 2, which is not itself free. Another useful example is P = (0 X 1)• 
A congruence in a category C is an equivalence relation ~ in C, such that 

f ~ g implies d.f = d.g, i = 0,1, which is furthermore preserved by composi­
tion on either side. Thus a functor F: C + V determines a congruence ~ be 

F 
setting f ~ g when d ^ = dig, i = 0,1, and Ff = Fg. A functor F: C + V is a 
quotient functor if any functor G: C -* E such that ~ => ~ factors as HF for a 
unique H: V •+ E. Any congruence is a -_; for a congruence in C, F: C •* V = 
C/~, where P0 = CQ and P. consists of the equivalence classes in C, . 

A functor F: C •+ V is a weak quotient functor if any G: C -+ E such that 
~ 3 ~ is naturally isomorphic to HF for some H: V •* E which is itself unique 
up to natural isomorphism. It is easy to see that F is a weak quotient functor 
is and only if it is full, i.e. all C(X,Y) •+ p(FX,FY) are surjective, and re­
plete, i.e. any W € VQ is isomorphic to some FX. It is then a quotient functor 
if and only if FQ: CQ * PQ. 

For any F: C + V let Ker F be the subcategory of C with (Ker F ) Q = C and 
(Ker F) 1 containing those morphisms which are inverted by F, i.e. those f such 
that Ff is an isomorphism in V. We shall say that F is a fraction functor if 
any G: C + E such that Ker G z> Ker F factors as HF for a unique H: V + E. F 
is a weak fraction functor if any such G is naturally isomorphic to HF for 
some H, itself unique up to natural isomorphism. A weak fraction functor 
F: C •+ V is a fraction functor if and only if F: Cn » ZL. 

A relation in the class C. of morphisms of a category C which refines 
d.f = d.g, i = 0,1 is contained in a smallest congruence, which it is said to 
generate. A subset S of the morphisms C, of a small category C is contained 
in a smallest Ker F for F: C -+• V a fraction functor. The corresponding as­
sertion for categories which are not small is in general false. If such an 
F exists, we write V = C[S~ ] and say that it is the category of fractions with 
respect to_ S. A weak category of fractions with respect to_ S is defined 
analogously. It is easy to see that the existence of the latter guarantees 
the existence of the former. 

2 
If S is a full subcategory of C — which is another way more suited to 

our present purposes of saying a subclass of C- — an object X of C is injec-
tive Clocal) with respect to S if, for all f in 5, C(f,X) is surjective (bi-
jective) . We write inj S (Ic-c $) for the full subcategory of C containing 
these injective (local) objects. It is evident that inj 5, loc S are replete 
subcategories of C as well. 

Licensed to Univ of Rochester.  Prepared on Sat Jun  6 07:31:54 EDT 2015for download from IP 128.151.13.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



ALEX HELLER 

Conversely, if V is a full subcategory of C, we say that an f in C 

injectivizes (localizes) V if, for all X £ VQ, C(f,X) is surjective (bijective). 
The corresponding full subcategories of C are inj*P, loc*P; they are of course 
replete as well. 

Evidently inj, inj* and loc,loc* give Galois correspondences between full 
2 

subcategories of C and C, the Galois-closed subcategories being 
loc loc* loc S = loc S and so forth. 

o 
We shall say that C admits £ localization with respect t o S c C if the 

inclusion J: loc S cz C has a left adjoint Loc, which is then called the locali­
zing functor relative to S. If n is the unit of the adjunction Loc — | J and 
X is in C, the morphism n : X -> Loc X is called the localization of X. It is 
easy to see that Loc is a weak fraction functor with respect to S (regarded 
now as a subclass of C,) so that C admits a category of fractions F: C -*• C[S~ ], 
and that J Loc then factors as GF with F — | G, 

Dualizing, we may introduce the notions of projectivity and colocality 
2 

with respect to a full S c C , with analogous properties. 

2. FIBRATIONS 

We recall that if F: A -*- C, G: B ->• C are functors, the comma-category 
(F i G) has objects (A,B,f) where A G AQ, B € B , f: FA -* GB and morphisms 
(a,b) where 

A H FA 

Fa 

FA' 

GB 

Fb 

GBf «-

H B 

-4 Bf 

f' (Fa) = (Fb)f. If we regard an object C of C as a morphism C: 1 •+• C and let 
C stand for its own identity functor, then such expressions as (C + C), (C 4- C) 
are special cases. We shall prefer them to, e.g., C/C or C\C. 

If P: E -+ B and B € 80, we denote by ED the subcategory of E having ob-
U D 

jects E such that PE = B and morphisms f such that Pf = id . If E and B are 
small, then 

U 
"B 

1 
B 

is a pullback in Cat. E is called the fibre of E (or of P) over B. 
If (B i P), (P + B) are the comma-categories and J, Jf the forgetful func­

tors, then there are functors I, I* such that 
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HOMOTOPY THEORIES 9 

(2.1) 

(P + B) 

id id 
commutes, viz. IE = (B — > B <-» E) , IfE = (E H > B — > B) . 

The functor P is a fibration if, for all B € Bfl the functor I in 2.1 has 
a right adjoint. It is an opfibration if, for each B, the functor I' has a 
left adjoint or, equivalently, if and only if P0^: E°^ -> B°^ is a fibration. 

A fibration or opfibration P is locally small if each ER is small. If 
E is small then P is certainly locally small; if P is locally small and B is 
small then E is small. 

P is a discrete fibration (opfibration) if each ER is a discrete category. 
These are characterized by the unique path-lifting properties: 

•j 
B, 

k 
B 0 

is a pullback precisely when P is a discrete fibration (i = 1) or opfibration 
(i = 0) . For example, for any F: C -+ V and any D € PQ the forgetful functors 
(D 4- F) -»• C, (F + D) -»- C are, respectively, a discrete fibration and a dis­
crete opfibration. 

If we relax our usage of the word "pullback" so as to be able to speak of 
a pullback of (not necessarily small) categories, so that for example E is 
always a pullback as described above, we may record the following phenomenon. 

(2.2) A pullback of a fibration (opfibration) 
of categories is again a fibration (opfibration), 

If F: B —=̂  Cat the category B fc F which we shall, because of the analogy 

with the group-theoretical construction it generalizes, call the left semi-

direct product is defined by setting 

(2.3) 

(B oc F ) 0 = {(B,X) | B € BQ, X € (FB)Q} = ±1 (FB)Q 
B 

(8 « F)((B,X),(B,,X')) = J 1_ (FB'H(Ff)X.X') 
£: B -»- B' 

with composition given by 

(f'. + 'Hf.fl = (ff.cf.'CFfH). 
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10 ALEX HELLER 

The projection P, the functor taking (B,X) to B and (f,(f>) to f is then a loc­
ally small opfibrati 
(P ^ B) is given by 
ally small opfibration. For (B * F ) D = FB. The left adjoint to If: FB -*• 

f 
(P(B',X») -> B) h-^ ((Ff)X'). 

Dually, for F: B o p + Cat we set F * B = (Bop jx F ) 0 p . If P is the projec­
tion of the left semidirect product B P * F, then P , the projection of F x B 
is a locally small fibration. To spell out this definition, 

B 
(F * 8)((B,X),(B',X») = | 1 (FB)(X,(Ff)X«) 

f:B -<- B' 
(f',0')(f,« = (f'f.((Ff)«*«). 

The category F * B is of course the right semidirect product. 
Identifying sets with discrete small categories functors F: B P •*• Sets, 

F: B -> Sets give rise to locally small discrete fibrations and opfibrations. 
Indeed this process gives rise to an equivalence. For if P: E -*• B is a locally 
small discrete fibration, then FB = ED defines a functor B P •* Sets, the ef­ts 
feet on morphisms being determined by the unique path-lifting property, and 
F x B * E. An analogous treatment of nondiscrete fibrations is also avail­
able, but takes us further into the domain of 2-category theory than we have 
occasion to penetrate. 

The semidirect products have more-or-less evident functorial properties. 
If F,G: B •> Cat and <J>: F -*• G is a natural transformation, then B * <f>: B * F -*• 
B * G is defined in the obvious way, as also, for F,G : B°P -* Cat, A: F + G, 

t? 

is <j> x B: F x B -> G x B. If B is a small category, then BK-: Cat -*- Cat and 
g°P 

- x B: Cat -*- Cat are functors. 
Finally, if W: B° P x C -* Cat, we may construct C * W: B° P •* Cat and 

W ^ B : C + Cat and thus C * (W x B), (C x W) * B. These are easily seen to be 
isomorphic and we are led to write C * W x B for both. The projections 

pi pu 
(2.4) C < — C * W xi B — > B 

are, respectively, an opfibration and a fibration. 
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HOMOTOPY THEORIES 11 

3. HYPERFUNCTORS 

The fundamental notion with which we shall be occupied below is that of a 
hyperfunctor. Indeed, a homotopy theory will be defined as a hyperfunctor 
satisfying a number of conditions to be set forth in II§1. Similar objects 
have been introduced before, most notably by Lawvere [17] , who has used the 
name "hyperdoctrine" for his variant. The term "hyperfunctor" has been adopted 
here in deference to that usage. 

Our modest assumptions about set theory prevent us from adopting the com­
pendious definition of a hyperfunctor as a strict 2-functor from Cat ̂  to some 
category of "large" categories. We adopt the more conservative course of say­
ing that a hyperfunctor is a function T which assigns 

(i) to each small category C a category TC, 
(ii) to each functor F: C -*• D a functor TF: TD -> TC, 

(iii) to each natural transformation <J>: F -> G a natural transformation 
T<|>: TF + TG, 

in such a way that identity functors are taken to identity functors, identity 
natural transformations are taken to identity natural transformations, and all 
compositions are preserved. Thus if 

-> D 

is a diagram of functors and natural transformations, then 

T(GF) = (TF)(TG): TD + TC 

T(<f>f<f>) = W K T c ) ) ) : TF + TF" 
( 3 . 1 ) 

T(i|/F) = (TF)enj;): T(GF) + T(G'F) 

T(G<|>) = (T<f))(TG): T(GF) + T(GF') . 

The most obvious example is that of a representable hyperfunctor. For any 
r 

category C, C )—> C defines a hyperfunctor with, for functors F and natural 
transformations <j), TF and Tcf> defined by composition. To forestall misunder­
standing let us say right now that interesting homotopy theories are not for 
the most part such representable hyperfunctors. 
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12 ALEX HELLER 

If T is a hyperfunctor and C is a small category, then D I—> T(C x -Q) 

is once more a hyperfunctor which we denote by T[C], so that T[C]D = 

T(C x D) , T[C]F = T(C x F) and so forth. Here C plays the role of a parameter. 

We shall not have to consider the analogous notions with the variance in 

functors and/or natural transformations reversed. Note, however, that if T 

is a hyperfunctor, then 

(3.2) C + (T(C°P))°P = T*C 

gives another hyperfunctor, the bidual of T. 

Let us adduce here some elementary properties of hyperfunctors. 

PROPOSITION 3.3: 

(i) If F: C •> D, G: D •+• C and r\, e are the unit and counit of an ad­

junction F — | G, then for any hyperfunctor T, Te and Tn are the 

unit and counit of an adjunction TG 1 TF. 

(ii) If 1: 1 + C is initial, then, for any D, Tpr — | T(D x J_) . Dually, 

if J: 1 + C is terminal, then T(D x J) — | Tpr... 

This is an immediate consequence of 4.1. 

For any hyperfunctor T evaluation defines, for each C> D , a functor 
r 

D x T D + TC with naturality properties clear from 4.1. Taking C = 1 and 

transposing we get dgm_ : TD -* (Tl) . The naturality properties of these 

functors are again evident: if F: C -> D, then 

TD 
TF 

dgnu 

(TD)J 

-^ TC 

dgnV 

cnr 
where F* = (Tl) commutes. 

If X is in TD we shall call dgm- X the underlying diagram of X and shall 

allow ourselves to write X, instead of (dgm^ X) , for d in D. 

Writing t: D •* 1 for the unique functor, Tt is denoted by T-const^ . The 

diagram of T-const-. X is the constant diagram const-. X with value X. 

It is perhaps worthwhile to record an alternate description of dgm X. 

If d: 1 •> D is an object of D, then [dgm X ) , = (Td)X. If <b: c + d is a mor-

phism of D, i.e. a natural transformation 

then X. = T<J): X 
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HOMOTOPY THEORIES 13 

If T and Tf are hyperfunctors, a strict hypernatural transformation $: 
T -*- Tf is a function which assigns to each small category C a functor $r: 
TC -> TfC in such a way that for any F: C -> D the diagram 

TD 

TF 

TC 

-> T'D 

T'F 

T»C 

commutes. These will not exhaust the possibilities for "morphisms" between 
hyperfunctors, but they are exemplified by the inclusions of subhyperfunctors, 
S being a subhyperfunctor of T if, indeed, each SC is a subcategory of TC, 
the inclusion being a strict hypernatural transformation. 

The notions of full or replete subhyperfunctors are self-defining. We 
shall say that a subhyperfunctor S of T is maximal if it is maximal among those 
S1 c T for which Sfl = SI, that is to say X (or f) is in SC if and only if, 
for each d: 1 -*• D, X, (or f,) is in SI. Thus the maximal (full, replete) sub­
hyperfunctors of T correspond bijectively to the (full, replete) subcategories 
of Tl. 

We shall also have occasion to speak of hyperfunctors of several vari­
ables. A hyperfunctor T of two variables, for example, assigns to each pair 
C, D of small categories, a category T(C, D), to each pair of functors 
F: Cf + C, G: D* -> D a functor T(F,G): T(Cf, D') -* T(C,D ) and to each pair 
of natural transformations <j>: F + F*, ty: G -* G* a natural transformation 
T(c|),^): T(F,G) -*T(Ff,Gf), respecting all identities and compositions in 
Cat x Cat. For example, if T is a hyperfunctor of one variable, then C> D -* 
T(C x D) and C,D I—> TC x TD are both hyperfunctors of two variables. 

We could have subsumed this notion under that of hyperfunctors of one 
variable by generalizing to hyperfunctors defined on 2-categories, but we 
shall not need this generalization. 

4. WEAK COMMUTATIVITY 

In order to state precisely many of the results below, we are forced to 
immerse ourselves in the icy waters of 2-category theory. We shall make the 
plunge as shallow as possible. 

A commutative square 

X - > x< 

£ f 
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14 ALEX HELLER 

in a category C may usefully be thought of as a morphism (x,y): f •* f! in C 
2 or, as we shall say, a morphism in C. It may equally well be thought of as a 

2 2 
morphism (f,ff): x -> y. Analogy would then give us M functors" for similar 
diagrams of categories and functors. But in this case commutativity may well 
be an excessive demand. If we are given a square 

(4.1) 

A 

4 
8 

-> A' 

S^ 
B 

,F* 
> Bt 

where <}>: BF -*• F'A is a natural transformation we shall say that the square is 
2 

weakly commutative and that (A,B,(j>) is a weak left functor (A,B,<f>) : F —r-^ Ff 
2 or equivalently that (F,Ff,<f>) is a weak right functor (F,F,,(j)): A —r-> B. 

———~. ___________ ^ 
If <f> is a natural isomorphism, we say that the square is strongly commutative 

2 
and that (A,B,((0, (F,Ff,(j>) are strong left and right functors. Strict com-

2 
mutativity and strict functors constitute the special case FfA = BF, 
cf> = id F'A* 

If also ( A 1 ^ * , ^ ) : Ff F,f, the composition (ASB'^') o (A,B,<j>): 
F -=-> F" is defined to be (AfA,B'B, (<f>fA) (B '<f>)) . Composition of right weak 
2 functors is defined analogously. Both compositions are associative with 

2 
evident units. Compositions of strong functors are again strong. 

2 If (A~, BQ, <f>0), (A, ,B-,$.) : F -y> Ff a natural transformation, (a,8): 
(A0,B0,<j>0) -* (A-,B .,<}>,) is a pair of natural transformations a: A« -*• A*, 

6: B, ft - B1 such that (Ffa)$0 - cj)-, (BF) * These, of course, compose in the 
obvious way. 

NOW suppose tnat tA,B,<f>J : F —r-> Ff and that F and Ff are provided with 
left adjoints F* — | F, F£ — | F', the adjunction being specified by units r\9 

nf and counits e, ef. Let $* be the composition 

(4.2) 
FIBn 

FIB -» FIBFF. 
* „ * * « 

-> F»FfAF4 

e'AFA 
-> AF. 

We then have the weakly commutative square 

B 8 

* N | / 

» Bf 

,Ff 

-» A* 

so that (B,A,<(>*) : FA We write (B,A,<(>*) = (A,B,<j>)̂  and call it the 

left adjoint of (A,B,<|>) with respect to the given adjunctions. 
Similarly, if (A,B,(j>): F Ff and F, F' are supplied with right ad­

joints F*, Ff* we construct \p*: AF* + Ff*B and (A,B,<}0* = (B,A,<j)*) : F* 
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HOMOTOPY THEORIES 15 

Of course ((A,B,<f>)J* = (A,B,<)>) . 

PROPOSITION 4.3. If CA,B,4>): F — Ff, (Af ,B» ,cj>f) : F' -^-> F" and F, F», 
Fft are provided with left adjoints, then 

((A',B',cf>') o (A,B,*))* = (A',B',<f)')* P (A,B,cj>)*. 

This results from a tedious but entirely straightforward computation, 
as does the next statement. 

PROPOSITION 4.4. If (A^B^cf^) : F -^> Ff, i = 0,1 and (a,3) : (A0>Bo'*(P " 
(A,,Bj,<(>,), and if F and F* are supplied with left adjoints, then ($,a) : 

( V W * * CAi'Bi'*iJ*' 
Now suppose that (A,B,(j)) : F —r-> Ff and that F, Ff are supplied with two 

sets of left adjoints, F*, FJ and F„, ?l, the latter with units and counits, 
let us say ru, n#> £#> £#• Corresponding to the latter we also have 
(B,A,$») : F„ —^> F| with cj>„ constructed as in 4.2 or, equivalently, 
(F#,F|,cj)#): A - ^ B. But (eF J (F#n) : F# + F* and (e'FJ) (F£n') : F£ + FJ are 
isomorphisms (this expresses the uniqueness of adjoints), giving a natural 
isomorphism (F#>F#><f>#) "* (F**?*^*) • Thus if $* is an isomorphism so also is 
4>». In other words, the property, that <j>* be an isomorphism, is independent 
of the choice of adjoints. We shall, accordingly, say that the square 4.1 has 
the Beck-Chevalley property, or is a B - C square, when <j>* is an isomorphism. 

It might seem that we ought to distinguish between left and right B - C 
squares, 4.1 being a right B - C square if A and B have right adjoints and <(>* 
is an isomorphism. In fact this distinction is unnecessary. For suppose we 
are given adjunctions F* — | F, FJ — | Ff, A — ( A*, B —| B*. These will 
give rise to adjunctions FJB — | B*F', AF* — | FA* and thus to a bijective 
"transposition" 

F»B FA* 

( 5 e « — * * ( ) 
AFA B*F' 

PROPOSITION 4.5. If (A,B,<j>): F -j~> Ff and A, B, F, Ff have adjoints as 
indicated above, then <|)* = <j>*. 

This is, once again, the result of a straightforward computation. It im­
plies, of course, that such a square has the Beck-Chevalley property in either 
sense if and only if it has it in the other. 

It was indicated above that the notion of strict hypernatural transfer-
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16 ALEX HELLER 

mation between hyperfunctors was not adequate to the applications to follow. 
We now have the apparatus with which to generalize it. If T and T? are 
hyperfunctors, a left weak hypernatural transformation $: T —r-> T' is a 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ j^ 

function which associates to each small category a functor $ • T r -*• T* and 
to each functor F: C -* D a natural transformation $r: (<30TF) •* (T'F) ($_J , 

r C D 
so that (<S> ,$r ,<!> ) : TF —r-> TfF, in such a way as to preserve composition, 
so that if also G: D •+ W then 

(T(GF),T»(GF),$GF) = (TG,T«G,*G) o (TF,T»F,$p). 

Right weak hypernatural transformations, and left and right strong hyper­
natural transformations are defined by analogy. 

If $: T -=-> Tf, F: C -*• D and both TF and T F have left adjoints, we may 
say that $ preserves the left adjoint at F if ( $ , $ , $ ) has the Beck-Chevalley 
property. The notion that a f : T — ^ Tf preserve right adjoints is of course 
dual. Properly speaking it does not make sense to assert of a $, as above, 
that it preserves right adjoints. But if $ is a strong left hypernatural 
transformation, then, using the $~ , we may in the obvious way define a right 

r 
hypernatural transformation of which the assertion can be made. 
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CHAPTER II 
HOMOTOPY THEORIES 

In this chapter we shall define the notion of a homotopy theory and show 
that the standard homotopy theory is a homotopy theory in this sense. We shall 
for this purpose describe the standard theory by means of simplicial sets. 
This is a matter of convenience; topological spaces would have done as well 
since they give rise to the same homotopy theory. Indeed the same may be said 
of small categories, and we shall, in the interest of later applications, see 
just how the homotopy theory of Cat is the same as that of simplicial sets. 

1. LEFT AND RIGHT HOMOTOPY THEORIES 

Homotopy theory is a sort of generalization of the theory of complete 
categories and like that theory comes in two dual forms. Thus we shall define 
dual notions of left and right homotopy theories, a homotopy theory being both 
a left and a right homotopy theory. 

Let us begin by listing a number of conditions on a hyperfunctor T. 

(HO) For any family {C } of small categories, the canonical functor 

T( 1 1 C ) -> 11 TC is an isomorphism, 
ot ot ^ c 

CHI) For any C the functor dgnu: TC •* (Tl) reflects isomorphisms, i.e. if 
dgmrf is an isomorphism then so also is f. 

F 
(H2) If F is a finite free category, then, for any C, dgm : T(C x F) -> (TC) 

is a weak quotient functor. 

So far, these conditions are self-dual. The remaining ones come in dual 
pairs. 

(H3L) For any F: C •> D, TF has a left adjoint LTF. 
(H4L) IfP: E + B is a discrete fibration, then TP has a right adjoint R,J>, 

B E P*: (Tl) -»• (Tl) has a right adjoint (conventionally called Ranp) and 
the strictly commutative square 

has the Beck-Chevalley property. 

17 
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18 ALEX HELLER 

Conditions H3R and H4R are the strict duals of H3L and H4L. Thus: 

(H4R) IfP: E + B is a discrete opfibration, then TP has a left adjoint L_P, 

P* has a left adjoint (Lanp) and the square above, with the identity 

natural transformation reversed, has the Beck-Chevalley property. 

We shall say that a hyperfunctor T is a left homotopy theory if it satis­

fies the conditions H0,1,2,3L,4L and a right homotopy theory if it satisfies 

H0,1,2,3R,4R. If it is both a left and a right homotopy theory, it is a homo­

topy theory. 

The left adjoints L-J7 and right adjoints RTF, when they exist, will be 

referred to as homotopy Kan extensions and the subscripts will often be dropped 

when they can be inferred from the context. Like ordinary Kan extensions these 

are of course determined only up to isomorphism. This is the reason for the 

material of I§4. The homotopy Kan extensions along the unique functors C -* 1, 

when they exist, are called homotopy colimit and homotopy limit and are de­

noted by T-colim_ and T-linu. 

We see immediately that the ordinary theory of completeness in cate­

gories is subsumed under homotopy theory. 

PROPOSITION 1.1. The representable hyperfunctor D i-> CD is a left 

(right) homotopy theory if and only if C is closed under colimits and products 

(limits and coproducts). 

In this case each dgnu is the identity, LF = Lan_, RF = Ran„. The nec-C r F 
essity is obvious. For the sufficiency, it is enough to observe that if 

P: E -*• B is a discrete fibration and X: E -*• C, then (RanpX), = | | X . 
V D Pc=b c 

To this we may add the following immediate consequence of the definition. 

PROPOSITION 1.2. If T is a left homotopy theory, then so also, for each 

C, is T[C], while the bidual T* of T is a right homotopy theory. 

2. THE STANDARD EXAMPLE 

In order no conform with the traditional notation, we write n = [n - 1] 

for n = 1,2,... . The full subcategory of Cat containing these is A, the 

simplicial index category. The functor category K = Sets— is the category 

of simplicial sets. A morphism f in K is called a weak equivalence if its 

geometric realization |f| is a homotopy equivalence of topological spaces. 
r 

More generally, for any small category C a morphism f of K is a weak 

equivalence if, for each c € C0, f is a weak equivalence of K. 

PROPOSITION 2.1. For each small category C, K admits a category of 
r 

fractions Ho(K ) with respect to its weak equivalences. 
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HOMOTOPY THEORIES 19 

This is a standard theorem (cf. for example Kan-Bousfield [4]). It is 
also a corollary of Theorem 4.5 below. 

D C If F: C •** D then F*: K -*• K preserves weak equivalences and thus induces 
a functor HoF*: Ho(fCj -> Ho(K ) . Making the evident observation about natural 

r 
transformations, we see that C I—> Ho(K ) is a hyperfunctor which we denote 
henceforth by II. 

THEOREM 2.2. II is a homotopy theory. 

The proof of this theorem will occupy most of Chapter II. We shall refer 
to n_ as the standard homotopy theory. 

There are a number of reasons for dignifying IT with this adjective. Most 
immediately, III = HoK is indeed the homotopy category which still occupies 
the attention of homotopy theorists, while n̂  itself should be thought of as 
containing the generalized theory of limits in HoK. 

To this must be added its surprising ubiquity. Suppose C is a category 
provided with a class of morphisms to be referred to as "weak equivalences". 

If it satisfies the conclusion of 2.1, it gives rise to a hyperfunctor C I—> 
r 

Ho(C ) which may be fortunate enough to be a homotopy theory; this is, approxi­
mately, the notion of homotopy theory proposed by D. W. Anderson [2]. What 
is surprising is how often this "new" homotopy theory turns out to be equi­
valent to IL 

The prime example is of course the original one. If Top is the category 
of topological spaces and S: Top -»• K is the singular-complex functor, so that 
| | —| S, a weak (homotopy) equivalence in Top is a map f such that |Sf| is 
a homotopy equivalence. The unit and the counit of the adjunction are weak 
equivalences, so that, for any C> S and | | induce inverse equivalences of 
the hyperfunctor C |— Ho (Top ) with II. 

A variant of this is furnished by the original notion of "semi-simplicial 
complexes". If J: A_ c A is the inclusion of the subcategory containing the 
injective maps, then the unit and counit of the adjunction Lan 1 J*: 

A # 0 p 
K -> Sets— are both weak equivalences and the hyperfunctor C H> 

#opxC 
Ho (Sets— ) is again equivalent to II. 

A number of interesting examples might be adduced (cf. for example [11]), 
but are beyond the scope of our present interests, except for the one pro­
vided by the category of small categories itself. The functor "nerve", 
N: Cat •* K may be used to define a notion of weak equivalence in Cat, viz. 
F: C -*• D is a weak equivalence if NF is one in K, and thus in each of the 
categories Cat . It was apparently first observed by D. Latch [15] that Cat 
has a category of fractions HoCat respect to these and that HoN: HoCat •+ HoK 
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20 ALEX HELLER 

is an equivalence of categories. We shall see in §6 below that this statement 
c c c 

is true for all Ho (Cat ) •+ Ho(K ) so that C -*• Ho(Cat ) is again a homotopy 

theory equivalent to IL 

A final reason for calling II_ "standard" is investigated in Chapter IV 

below. It appears that ]I "acts on" homotopy theories, on the left for left 

homotopy theories, on the right for right homotopy theories, the two actions 

on a homotopy theory being adjoint; we shall adopt the terminology of category 

theory by saying that a (left, right) homotopy theory T is (tensored, co-

tensored) over IL In the ordinary theory of complete categories, the category 

of sets plays the analogous role. The suggestion is that II occupies the same 

central position in homotopy theory that Sets does in category theory. 

3. CLOSED QUILLEN MODEL CATEGORIES 

We review here the notion of a closed model structure in the sense of 

Quillen [21,22] and see how it is exemplified in the category of simplicial 

sets. 

In any category we shall say that morphisms u: A -* X, p : E - * B are trans­

verse and write u M — p if for any f: A -* E, g: X + B such that pf = gu there 

is an h: X -* E with hu = f, ph = g. We extend the notion to transversality of 

classes of morphisms, A H — 8 having the obvious interpretation, and write also 

A1"*""" = {p | A M — p} and ̂ 8 = {u | u M — 8}. Thus A H — B, A c *~*~B, 

A' ' 3 B are equivalent. The classes A' ! , 8 contain all isomorphisms, are 

closed under composition and retraction (in the morphism category) and under 

various limits and colimits. For example A is closed under pullback and 

products, ^""6 under pushouts and coproducts. 

If C is a finitely complete and cocomplete category, by a class of weak 

equivalences in C, we mean a class E of morphisms closed under retraction (in 
2 

C ) and under composition and cancellation, i.e. such that any two of f, g, fg 

in E implies that the third is as well. By a closed Quillen model structure 

in C, relative to a_ class E o£ weak equivalences, we mean a pair of classes 

of morphisms, Cof, Fib, whose members are called, respectively, cofibrations 
2 

and fibrations, each closed under retraction in C , and such that 

(Ql) Cof H - Fib D E, Cof n E H — Fib. 

(Q2) Any morphism in C has a left factorization ffff with f" € Fib, 

ff € Cof fl E and a right factorization g"gf with g" € Fib n E, g1 € Cof. 

A category C supplied with such a structure is a closed Quillen model 

category or CQMC. If further the factorizations of Q2 are given by functors 

L,R: C2 -* C3, say 
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HOMOTOPY THEORIES 21 

Cf: X + Y) 

T » f /s T I f f 

Lf = (X -±-±> Lf - = - £ » Y) 

Rf = (X > Rf K > Y ) , 

then C has the structure of a functorial CQMC. 

PROPOSITION 3.1. In a CQMC 

Fib = CCof fl E)1"*""" ^ ^ Fib = Cof n E 

Cof = ̂ +~~ (Fib n E) Cof*4"" = Fib 0 E. 

A proof may be found in [21]; in fact it is an easy exercise. 

PROPOSITION 3.2 ([21]): If C is a CQMC it possesses a category of frac­
tions HoC = C[E~ ] with respect to the weak equivalences. 

We shall not repeat the proof here, but rather recall its ingredients. 
If 0, * are the initial and terminal objects of C and object X is fibrant 
(cofibrant, bifibrant) if X -* * is a fibration (0 -*• X is a cofibration, both). 
A congruence, ~, called homotopy, may be introduced in the full subcategory of 
bifibrant objects of C, in analogy with the familiar construction in topology. 
The corresponding quotient category is then a weak fraction category, whose 
existence implies that of a fraction category. 

AOP 

In the category K = Sets— of simplicial sets, with E the class of sim-
plicial maps f whose geometric realizations |f| are homotopy equivalences in 
the category of topological spaces, one takes for Cof the class of injective 
simplicial maps and sets Fib = (Cof fl Ey* . 

THEOREM 3.3 CQuillen [21]): K has the structure of a functorial CQMC. 

A left factorization is given by Kan's Ex functor and a right factoriza­
tion is deduced from this, using the classical mapping cylinders. A central 
point in the argument is the fact that Fib = where H is the (countable) 
set of inclusions A c A_C->[n]), the "horn" inclusions. 

H 
This fact is of course implicated in several of the following properties 

of K. These come in dual pairs. 

PROPOSITION 3.4. In K, 

(o) If for any family {f. : X. -*• Y.) of weak equivalences each X. and Y. 
is cofibrant, then | | f. : | | X. -* 1 | Y^ is a weak equivalence. 

(i) If f. = X. -> Y. and each f. € Cof fl E, then II f. € Cof fl E. 
v J i l l I - u - l 

( i i ) I f X,X f: N •> K are sequences of c o f i b r a t i o n s , f: X •> X' and each 
f. : X. -* X.1 i s a weak equivalence, then colim f: colim X •* colim X1 i s 
a weak equivalence . 
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22 ALEX HELLER 

(iii) If X: N p •> K, A •+ X is a limit cone and each A -*• X. is a cofibration, 
then so also is A -*• lim X. 

Dually, 

(o*) If {f.: X. -*• T.} is a family of weak equivalences and each X., Y. is 
fibrant, then 11 f. : | | X. -> | | Y. is a weak equivalence. 

(i*) If each f. is in Fib fl E, then H T f • € Cof fl E. 
(ii*) If X,X»: N 0 p •* K are sequences of fibrations, f: X + Xf and each f. 

is a weak equivalence, then so also is lim f: lim X -*• lim Xf. 

(iii*) If X: N •> K, X -* B is a colimit cone and each X. -* B is a fibration, 
then so also is colim X •> B. 

(In some instances, e.g. (o), we have added redundant hypotheses to empha­
size the duality.) 

4. MODEL STRUCTURE IN KC 

If C is a small category, then, as indicated in §2, we define the class 
Q 

Ec of weak equivalences in K to consist of those f such that each f is a weak 
equivalence in K. The classes Fib of weak fibrations and Cof of weak 

w w 
cofibrations consist respectively of those f which for each c have f € Fib 
(resp. f € Cof). The left and right factorizations L and R in K give rise by 

c C 
composition to factorizations in K which we again denote by L and R, Thus 

r 
for f in K , Lff € Cof fl E-, L"f € Fib with R having the dual properties. 

If C is discrete then Cof, Fib , L, R give to K the structure of a 
functorial CQMC and we drop the subscript w. In general, we go on to define 
the classes Fib of strong fibrations and Cof of strong cofibrations by 

Fibs = (Cofw n E C ) H ~ , Cofs = *~~ (Fibw fl Ec) . 

We shall see that each of the pairs (Cof ,Fib ) and (Cof ,Fib ) belong to func­
torial CQMC structures relative to Er, the left and right model structures in 
K . These structures will require factorizations, L and R for the left, and 
R R L, R for the right structure, which we now proceed to construct. The idea 
behind their construction goes back to Steenrod [25]; we shall accordingly 
refer to them as the Steenrod factorizations. They will also occur in the 

proof in §5 of Theorem 2.2. 
We begin by constructing R and from it L. The remaining factorizations, 

R R L and R are constructed dually, so that an explicit description will not be 

necessary. 

LEMMA 4.1. If c: 1 -• C is an object of C, then Lan Cof c Cof , 

Lanc(Cof fl E) H — Fibw, Lanc(Cof fl E) c EQ. 
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HOMOTOPY THEORIES 23 

The first two assertions are direct consequences of the adjunction 
Lan 1 c*, c* being of course evaluation at c. The third follows from 
3.4(o) and the observation that (Lan cX), is C(c,d) x X, the C(c,d) copower of 
X. 

Let J: C Q -* C be the inclusion and write r\, z for the unit and counit of 
Lan.. 

LEMMA 4.2. Suppose that X is in K , that f: J*X + A is a cofibration and 
that 

LanjJ*X 
Lan j f 

-> LanjA 

is a pushout in K . Then (J*v)nA: A -> J*Xf is a cofibration. 

It will be sufficient to evaluate at an arbitrary c € Cfl. The map 
(Lan,f) factorizes as in the second row of the diagram 

«j c 

-* A 

_LL xduxc 
4>: d -*-c 

<* i ) 

lUf 
(_LL X,)UA 

* 1 

<*' 1) 

-*• A 

(i_LfJ)ui 

c Ac 

A c 

<|>: d->-c 
* * 1 

A.UA d c 

c 

in which the maps from the first row to the second are right injections, ty 
and ip* are, respectively, given by ty inj, = <fr,^f inj. = f <j> and both squares 
at the bottom are pushouts. The morphisms ( |[ f,)| |1, as a coproduct of 

cofibrations, is a cofibration, hence also v (nA) = ((J*v)nA) . 
We have eschewed here a shorter argument in favor of one that dualizes. 
The factorization R arises by iteration of the following basic construc-

tion. If f: X -** Y in K the following commutative diagram is determined by 
demanding that the left-hand square be a pushout and that wv = Eg-. 
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24 ALEX HELLER 

LanTJ*R'f 
* LanjJ Y 

Iterating this construction we arrive at a sequence X = X -> X, 

— ^ > X2 -> ••• together with morphisms f = fQ: XQ -> Y, f 1: X -> Y, f2: X2 ->• Y, 

giving it the structure of a colimit cone, by setting X . = Xf, f , = f1, 
— L/s L n I * n n 

xR = fn. We set Rf = colim(XQ + X + • • •) with Rff: X + Rf the inject ion 
and R"f: Rf -> Y the colimit of {f }, giving a factorization R. 

LEMMA 4.4. All x n are in Cofg; also R'f € Cof . R"f G Fib fl Er. If w u 
f is a weak equivalence, then also R'f € E r and Rff H — Fib . 

o W 
That x € Cof follows from 4.1; the closure properties of Cof imply 

that R'f € Cof . The same lemma implies the last assertion as well. s L 
To see that RMf € Fib n E- we apply J* to the basic construction 4.3 

w C r r 

and add the units of the adjunction to get 

J*X J*Rf 

J X 

J* Lan J*X 

-+ J*Rf J*R"f 

J*Rf 

J* Lan J*Rf 

-* J*Y 

J Y 

-+ J* Lanj Y 

Using this we may interpolate terms in the result of applying J* to the 

colimit cone defining R to get in K the colimit cone below in which each 

J*RMf is both a fibration and a weak equivalence. By Lemma 4.2 all the mor­

phisms in the top row are cofibrations. Thus by 3.4(ii), (iii*), J* RMf is 

both a fibration and a weak equivalence, which implies our assertion. 
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HOMOTOPY THEORIES 25 

J*R'fn ( J > j * R f n J*R'f 
J*xQ 2-+ j*Rf0 2 — j* X l L_* j*Rfi -

J*f J*R"f0 J*f, |j*R,,f1 

J*Y 1 • J*Y • J*Y 

In particular, R is a right factorization for (Cof ,Fib ) . A left fac­
torization L may be obtained by taking, for f: X -* Y, 

LL£ = (x _ W ^ %,,f CL"f)(LR"L'f)3 y ) 

r T 

Finally, if u is a strong cofibration in K , then u is a retract of R!u. 
From 4.4, if u is also a weak equivalence, then Rfu M — Fib , hence also 
u M - Fibw. 

THEOREM 4.5. L, LR give to (Cof ,Fib ) the structure of a functorial 
R R S W 

CQMC relative to EQ. Dually, L, R give to (Cofw,Fibs) the structure of a 
functorial CQMC, again relative to Ep. 

5. II AS A HOMOTOPY THEORY 

We proceed, finally, to the proof of Theorem 2.2. To begin with, Proposi-
r 

tion 2.1 follows from 3.2 and Theorem 4.5, so that ITC = Ho(K ) is well defined. 
We shall show that II is a left homotopy theory; since all the arguments dualize, 
we conclude that it is a right homotopy theory as well. 

Axioms HO and HI are immediate consequences of the definition. For H2 it 
is convenient to introduce the following convention. Suppose F is a finite 
free category whose generating graph is r. For a functor X: F -*- K we con­
sider the condition 

(*) For any c € CQ 

K 
I I X , > X 

is a cofibration, where 5 inJv
 = X . 

PROPOSITION 5.1. If F is a finite free category, then 

(i) If X has the property (*), then X is strongly cofibrant (i.e. 0 •*- X is 
in CofJ. 

F 
(ii) For any Y in K there is an X -̂  Y in Fib 0 E such that X has the 

property (*). 
(iii) Thus X is strongly cofibrant if and only if it has the property (*). 
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26 ALEX HELLER 

(iv) For any W: F •> HoK there is a cofibrant X with dgm X * W. 
(v) If X is strongly cofibrant and Y is weakly fibrant, then 

K C(X,Y) + (HoK)F(dgm X, dgm Y) is surjective. 

With the exception of (iii), which follows immediately from (i) and (ii), 
all these assertions may be proved by induction on the number of objects of F. 
If there is only one, then F * 1 and there is nothing to prove. In general F n 

is ordered by setting d <_ c when F(d,c) t 0. Choosing some maximal c, let Ff 

be the full subcategory containing the remaining objects and, in general, de­
note by ( ) f the restriction to F f. 

For (i) the inductive step goes as follows. Suppose p: E •+ B is in 
Fib H E . and f: X -> B. We must show that there is a g: X •+ E with pg = f. 
By the hypothesis of induction, there is an h: X1 -*- E ! with p !h = ff. In K 
we have, then, the commutative square 

I I X d > Ec 
y : d -*• c 

Pc 

X c > Bc 

where <f> inj = E h , . But then there i s a g : X + E with g £ = <f>>pg = f > 
y y u \* \~ c c C C C 

completing the construction of g. 
The inductive steps in (ii), (iv) and (v) are all of this general pattern 

and need not be detailed here. Axiom H2, of course, follows immediately. 
E B 

Now suppose P: E •* B is a discrete fibration. Then Ran p: K •*• K is 
given by (RanpX), = | | X. Let (K ) and (K ) be the full subcategories of 

P£=b 
E* B F # B # 

K and K containing the weakly fibrant objects. Then (Kr) + TIE and (K ) + 
IIB are weak fraction categories. Both P* and Ran restrict to these categories 
and, since they preserve weak equivalences, define functors on the fraction 
categories, viz. IIP: IIB + ITE and, say, RP: IIE •* IIB. The unit and counit of 
P* 1 Ran p, similarly restricted, then define the unit and counit of 
IIP 1 RP, thus proving H4L. 
~~ C C 

We turn finally to the proof of H3L. For any C we may define T: K -* K 
by TX = LR(0 ** X) . Then T x = LR"(0 + X) : TX •* X is a weak equivalence. 

C D LEMMA 5.2. If F: C -> D then Lan T: K -+ K preserves weak equivalences. 
We refer to the construction of R in §4. If g: X + Y is a weak equi-

r 
valence in K , then Tg is the colimit of a diagram in which the successive g 
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HOMOTOPY THEORIES 27 

0 = Xn Al -> X0 

are determined by commutativity in the diagrams 

LanTJ*X J . n 

LanTJ*Y J n 

Lan, J x J n 

Lan JJ*y n 

n+1 

yn+l 

-* Lan TJ Rx J n 
LanJJ*R(gn,g)^ 

-* LanTJ Ry J 'n 

-+ Y n+1 

n+1 

in which the horizontal arrows are cofibrations and the two squares are push-
outs. Inductively, g and hence LanTJ*g are weak homotopy equivalences. Since n J n 
g is a weak equivalence, so also is 6(g ,g), and thus LanTJ*$(g ,g) as well. 

n «j n 
It follows that g , is a weak equivalence for each n. 

If we write K: D Q + D for the inclusion, then KF Q = FJ so that J*F* = 
F£K* and Lan-LanT = Lan„Lan_ 0 F J K F0 

Since (Lan_ X) , 
F 0 d 

J X , Lanp preserves 

weak equivalences, hence also Lan Lan.. Thus, applying Lan_ to 5.3 we see 
that Lan g is a weak equivalence for all n, hence also (by 3.3 ii) LanpTg. 

We should remark parenthetically here that the statement MLan p preserves 

weak equivalences" dualizes to "Ran., preserves weak equivalences between 
F 0 

weakly fibrant objects1', which is sufficient to prove the dual of 5.2. 
Thus LanJT induces a functor LF: Ho(KC) •* Ho(K D). We assert that it is 

r 
left adjoint to IIF = HoF*. For the composition 

LanFTF* 
LanrTF* - > Lan_F* 

F F 
-> id 

induces a natural transformation e: (LF) (IIF) 

formation n: HoT -* (IIF) (LF) and x a natural isomorphism x: HoT •* 1 

id . , nT a natural trans-
Ho(KD) 

ri = fix" , then n and e are the unit and counit of LF IIF. 
Ho(K C)' 

If 
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28 ALEX HELLER 

6. THE STANDARD THEORY VIA SMALL CATEGORIES 

We recall that A is a full subcategory of Cat. We may thus define 

N: Cat -> K, the nerve, by (NC) = Cat([n],C) . An F: C -> D in Cat is a weak 

equivalence if NF is a weak equivalence in K. More generally, we shall say 
r 

that a morphism F in Cat is a weak equivalence if F is a weak equivalence 

in Cat for all c € C. 

THEOREM 6.1. 
C C 

(i) For each C, Cat admits a category of fractions Ho(Cat ) with respect 
r 

to its weak equivalences, so that C •-> Ho(Cat ) is a hyperfunctor. 
C C C 

( i i ) Ho(N ) : Ho (Cat ) -* Ho(K ) = ITC i s a s t r i c t hypematu ra l t ransformat ion 
which for each C i s an equivalence of c a t e g o r i e s . 

r 

We may paraphrase this by saying that C i-> Ho(Cat ) is a homotopy theory 

equivalent to II. 

The proof will begin with the definition of T: K + Cat by TX = A° P o< X 

(cf. I§3. We might note that T is not the left adjoint of N, which loses too 

much information for our purposes.) Then 

(6.2) (Nrx) = x n 
n u:-TnT^A°P u0 

so that an element inj x of (NTX) gives rise to the data 

uO < — 

uO 

X0 ' 

ul < -

> Y 
ul 

*> X-i * " 

• . 

1 > 

' <-
• — 

1 — 

— un 

^ X u n 

-^ xn 

in A 

in Sets 

If a): [m] -> [n] in A then (Nrx)^ injux = inj^x^. 

Associated with any u: [n] -> A°P in Cat is a morphism u": [n] -> uO in A^ 

defined by 

(6.3) 

3 i 

m 
[n] 

> 0 i 

m 
uj 

> uj 

m 
uO 

I t i s easy to see t ha t for co: [m] -»• [n] the diagram 

[m] 

CO 

- > UOJO 

Licensed to Univ of Rochester.  Prepared on Sat Jun  6 07:31:54 EDT 2015for download from IP 128.151.13.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



HOMOTOPY THEORIES 29 

in A_ commutes. Thus we may define $x: Nrx •> X by 3xinj x = X-x, yielding a 
natural transformation $: Nr -* id^. 

LEMMA 6.4. For any X in K, $ is a weak equivalence. 

In fact the functor Nr is the "barycentric subdivision1'. We need only 

make this explicit. Now A(-,[n]) is the simplicial set corresponding to the 
ordered n-simplex and NrAJ>,[n]) the simplicial set corresponding to its bary-
centric subdivision. Since both are weakly contractible, 8A/. r ,v is cer-
tainly a weak equivalence. From 6.2 we see that Nr preserves cofibrations, 
i.e. infective simplicial maps, and coproducts. Thus, writing Xn for the n-

skeleton of X, A for the n-1 skeleton of A(-,[nl) and Xf for the set of non-—n — L n 
degenerate n-simplices of X, we may construct in K the commutative diagrams 

xf x N m 
n n 

" n n 

Nrx n-1 

Xf x A n n 

t.n-l 

-* X; x NTA(-f[n]) 

x;x3A(-,[n]t 

-+ X^ x A(-,[n]) 

Nrx1 

in which both squares are pushouts and the horizontal arrows are cofibrations. 

Inductively, the other instances of B being weak equivalences, so also is 3 
xn 

and thus, finally, $y as well. 
On the other hand, (TNC)n = {v: [n] -»• C} the morphisms being all of the 

form v •+ VOJ for OJ: [m] -+ [n] in A. Thus we may define y : TNC •*» C by yv = vO, where y(v •+ vu)) : vO •* vo)0 is extracted from vO 
natural transformation y: TN ->- idr . 

uat 

vl vn, yielding a 

LEMMA 6.5. Ny = 3N. Thus, for all C, Y c is a weak equivalence. 

For (NrNC)n = 1 1 

diagram 

{v: uO •> C} so that an element inj v is a 
A°P U 

uO ul 

in Cat, whence g inJu
v = vu. But CNy)i^J v is obtained by evaluating each of 

the compositions uj 
by vu. 

uO -*- C at 0 so that, referring to 6.3, it is also given 
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30 ALEX HELLER 

Theorem 6.1 now follows immediately. 

We may recall at this point the familiar fact that, since N preserves 
products and N2 = A_(-,[l]), natural transformations in Cat become homotopies 
in K. In particular, if C has an initial or a terminal object then NC is 
weakly contractible. 

An alternate description of the nerve functor at the homotopy level 
shows strikingly how homotopy theory can differ from the ordinary theory of 
limits. 

PROPOSITION 6.6. For any small category C, NC * II - colim * 

By * we mean here the constant functor with value A_(-,[0]), the terminal 
object of IIC. 

Let us consider the functor N C = N(C^-) : C -** K. Since id is terminal 
# # c 

in (C*c) all (N C) are weakly contractible and N C -»• * is a weak equivalence. 
# c C # 

But N C is strongly cofibrant in K . For ((N C) ) consists of diagrams 
u 

Y = (cfl •* c. -*• ••• -*• c — > c) in C, and if v: c -*• cf then 
(N C) y = (cQ -* c -•...-*• c — > cf) . Thus every Y has a unique representa­
tion in the form y = (N C) y where y is of the special type 
( c 0 - C l - ••• - c n ^ c n ) . 

But this readily translates into the assertion that for each n > 0 

Lan^C^C)11"1 > LanTJ*(N#C)n 

(HV-1 » (N»0" 

is a pushout, where J: Cn •* C is the inclusion, and the cofibrancy of (N C ) n 

# follows inductively using 4.2, hence that of N C as well. 
Thus II - colimr* s colimrN C. But this colimit is just NC, the injec-

# tions (N C) -* NC being given by (cQ •> • • • -*• c -> c) f-> (CQ -+ • • • -> cn) . 
Let us conclude by adducing some homotopical relations between the 

several symmetries in our categories. In Cat, C»-> C ̂  is such a symmetry, 
that is to say an automorphism of period 2. If i : [n] + [n] is the order 
reversing map, then a symmetry \: A_ •*- A_ is defined by [n] H > [n], 0) *-> l

n
(1)l

m 

for w: [m] -> [n], giving rise, by composition, to a symmetry in K which we 
write Xi-> X1. 

The following relations between these are immediate 

N(C°P) = CNC)1 

(6.6) 
0prx = (TX)op, where 0prx = X * A (recall TX = A o p « x) . 

To these we may add 
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HOMOTOPY THEORIES 31 

(6.7) T(Xl) * TX, whence rNCop * TNC, 

the isomorphisms being given by the identity on objects and u) *-> ico on 
morphisms. 

Together with 6.4.5 they lead to the following conclusions 

PROPOSITION 6.8. 
(i) C and C ^ are naturally isomorphic in HoCat. 
(ii) X and X are naturally isomorphic in HoK. 
(iii) Hor and Ho(opr) : HoK -*• HoCat are naturally isomorphic. 
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CHAPTER III 
PROPERTIES OF HOMOTOPY THEORIES 

We begin here to explore the consequences of our axioms for homotopy 
theory, viz. conditions HO - H4L,R of II§1. The subject matter is accordingly 
rather technical than conceptual. But the density theorem, 4.2 below, while 
it will have important applications, also is of interest as supporting the 
intuition that a homotopy theory T ought to be thought of as consisting of 
extra structure on its underlying homotopy category Tl. It asserts in effect 
that the objects of Tl, in a suitable homotopical sense, generate all of the 
categories TC. 

1. LIMITS AND WEAK LIMITS 

If T is a left homotopy theory and C is a discrete category, then T-constr: 
Tl -»» TC has a left adjoint by H3L and since C -* 1 is a discrete fibration, a 
right adjoint by H4L. In view of HO this implies that Tl is supplied with 
both coproducts and products. Since T[D] is again a left homotopy theory, 
the same is true of TD. The conclusion being self-dual, we conclude that it 
holds for right homotopy theories as well. We shall adopt the convention of 
writing 0, * for the initial and terminal objects of the categories TC. 

Other limits and colimits are however often absent. We may at the risk 
2 f 2 of pedantry, observe that in ni - Ho (Top) the diagram * < — S — > S where f 

is of degree 2 lacks a pushout. For if P were a pushout then, cohomology 
being representable, the cohomology of P with coefficients Z and Z/2 would 
violate the universal coefficient theorem. 

On the other hand, if T is a left homotopy theory and F is a finite free 
category, then for any diagram W: F -> Tl there is an X in TF with dgm X * W. 

PROPOSITION 1.1. If F is a finite free category and X is in TF, then 

T - colim-X is a weak colimit of dgm-X. 

This is implied by the fact that for any A in Tl 

dgmF F 

Tl(T-colimpX,A) * TF(X,T-constpA) Z-> (TirCdgnyX, constpA) 

is surjective. 
This supplies a weak colimit for W. It is not of course functorial in W. 

But if also dgm Y « W, then there is an f: X -* Y such that dgm f is an 

32 

Licensed to Univ of Rochester.  Prepared on Sat Jun  6 07:31:54 EDT 2015for download from IP 128.151.13.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



HOMOTOPY THEORIES 33 

isomorphism and T-colim-Y * T-colim-X. In other words the weak colimits pro­
vided by this construction are unique up to non-canonical isomorphism. We 
shall refer to them as privileged weak colimits. 

In particular, taking F = A_, we see that each TC has privileged weak 
pushouts or, as we shall sometimes say, homotopy pushouts. We have already 
seen that it has coproducts. 

PROPOSITION 1.2. If T is a left homotopy theory, then any diagram in any 
TC has a weak colimit. 

Dual results hold of course for right homotopy theories. 
Let us take the time to insist on the special character of privileged weak 

2 colimits in the case F = TV. Writing J: A. -*• 2 for the inclusion, a privileged 
2x2 weak pushout or homotopy pushout is an X in (Tl) isomorphic to some 

dgm(LJ))r. 

LEMMA 1.3. 
(i) If X and Y are homotopy pushouts and f: J*X * J*Y, then f = J*f for some 

f: X * Y. 
(ii) If in the commutative diagram 

X„ > X, > X 1 2 

Y0 * Yl > Y2 

in Tl both squares are homotopy pushouts, then so also is the rectangle. 
If the rectangle and the left-hand square are homotopy pushouts, then so 
is the right-hand square. 

Both (i) and (ii) are familiar properties of genuine pushouts, but are in 
general false for weak pushouts. 

The next proposition will often be used below. Here it will serve to give 
us some insight into the existence of genuine limits and colimits in a homo­
topy theory. 

PROPOSITION 1.4. If T is a left homotopy theory and d: 1 -»• D, then 

Td: TD -* Tl has a right adjoint Rd and, for X in Tl, dgmD(Rd)X * X ^ " ' ^ . 
J -

For we may factor d as 1 •* (D4d) — > D where | = id, is terminal and J, 
the forgetful functor, is a discrete fibration. Then by (1.3.3, ii) Ty has a 

right adjoint, viz. T-const.-,,. , while RJ exists by H4L. The computation of 
dgmD(Rd)X now follows from the fact that {w € (D*d)0 | Jw = d1} = D(d',d). 

Thus Td, having adjoints on both sides, preserves whatever limits and 
colimits may exist in TD. Since Td = d*dgm_ and limits and colimits in (Tl) 
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are computed "pointwise11, we conclude that dgm- preserves limits and colimits 
too. Axiom HI asserts moreover that it reflects isomorphism. 

PROPOSITION 1.5. If T is a left homotopy theory and TC is closed either 
r 

under limits or under colimits, then dgm : TC -* (Tl) is faithful. 

For in this case two morphisms are equal if and only if their equalizer 
or coequalizer is an isomorphism. 

Thus a left or a right homotopy theory T such that each TC is either 
complete or cocomplete is imbedded in the representable hyperfunctor C t-> 
(Tl) . When C is finite and free, the imbedding is of course an equivalence. 

2. COMPUTING WITH HOMOTOPY KAN EXTENSIONS 

If F: C + D, d: 1 •>- D we may construct, as in I§5, the weakly commutative 
square 

t 

with 4> ™ ^ j c,u: FOd 
diagram to get 

(2.1) 

u. If T is a left homotopy theory, we may apply it to the 

TD 

TF 

TC 

Td H> 1 

TJ > T(F+d) 

Tt = T-const (F+d) 

PROPOSITION 2.2. The square 2.1 has the Beck-Chevalley property. 

This observation is central to the understanding of the homotopy Kan 
extension, yielding, for example, the analogue of the computation of the ordin­
ary Kan extension in terms of limits. 

What we are primarily interested in is the statement that (T<j>)̂  is an 
isomorphism. But Td also has a right adjoint by 1.4, and TJ has a right 
adjoint since J is a discrete fibration. Thus by 1.4.5 it is sufficient to 
show that (T<())* is an isomorphism. We recall that (T(j))* is the composition 

C2.3) (TF)(Rd) Tl(TF)(Rd)> ( R J) ( T J) ( T F) (Rdj (RJ)<t>(Rd) > (Rj) (Tt) (Td) (Rd) 

(RJ)(Tt)e » (RJ)CTt) 

where n and e are the appropriate unit and counit. 
Let us choose an A in Tl and a c € CQ. Then, using the computations of 

right adjoints given by 1.4 and H4L, we may apply the sequence (2.3) of 
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functors and natural transformations to A and evaluate at c, getting 

AD(Fc,d) 

with morphisms given by 

uf < f (uf,u) 

D(Fc,d) x D(Fc,d) .D(d,d) x D(Fc,d) &B(Fc,d) 

(1,10 

D(Fc,d) ^ D(Fc,d) x D(Fc,d) <-

(vu,u) < 

D(d,d) x D(Fc,d) <-

f (v,u) . 

H u 

D(Fc,d) 

But the composition of these is the identity. 

COROLLARY 2.4. If X is in TC then ((LF)X) (T-colim(m))(TJ)X. 

In other words we can express not (LF)X, but at least its underlying 
diagram, in terms of homotopy colimits. 

COROLLARY 2.5. A left homotopy theory satisfies H4R. 

The existence of the left adjoint follows of course from H3L, while 2.4 
tells us how to compute it. For if P: E -*• B is a discrete opfibration and, for 
b € B0, I: Eh + (P^b) is the canonical injection, then T-colinu,, * 
(T-colim_ ) (TI) . But E, is discrete, so that T-colim_ is just the coproduct. 

Kan extensions were so named because, along the inclusion of a full sub­
category, they yield genuine extensions. The same conclusion is true for 
homotopy Kan extensions. 

PROPOSITION 2.6. If T is a left homotopy theory and U: C -* J) is a full 
inclusion, then the unit TI: 1 T C -* (TU) (LU) is an isomorphism. 

For if c € CQ then U+c has terminal object 1 . Thus, by 2.4, ((LU)X)c * 
X so that the conclusion follows from HI. c 

PROPOSITION 2.7. Let 

-> E 

B' -> B 

be a pullback with P an opfibration. If T is a left homotopy theory, then 

^ > TB» 

U p i 

TB 

TP 

TE ^ 
TG 

T E i 

has the Beck-Chevalley property. 
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(Compare Anderson [2], where the same conclusion is asserted under dif­
ferent hypothesis.) 

Let us treat first the special case B' = 1 — > B , Ef = E,. Here 
T-colimp^b = (T-coliiv ) (TI) where I: E, -* (P4-b) is the canonical injection. 

b 
By 2.4, (Tb)(LP) * (T-colim^^J (TJ) * (T-colimE )T(JI) , while JI: Eb •* E 
is of course the inclusion, i.e. the pullback of b along P. 

For the general case we consider the diagram 

G 
EFb = Eb -^ Ef 

Pf 
v 

-^ B' 

-> E 

-> B 

leading to 

TB 

TP 

TE 

TF -> TB' 

I TP f 

-> TE' 

-> Tl 

>*i v^ const-, 
-^ Tl H 

in which both the rectangle and the right-hand square, for all b € B have 
the Beck-Chevalley property. It follows from HI that the left-hand square 
has it as well. 

PROPOSITION 2.8. If F: C -* D and Ef: C + D!, and T is a left homotopy 
theory, then 

T(D><Df) 

T(FxD') 
N 

T(CxD!) 

T(DxFf) -^ T(DxC) 

> T(CxCf) 

T(FxCf) 

T(CxF') 
is a Beck-Chevalley square. 

For d € Dn consider the diagrams 

T(D x Ff) T<d Cf> 
T(D x Df) > T(D x C') ^ TC 

T(FxD') 
\ 

T(C x D!) 
T(C x F!) 

|T(FxC») |Tprpf 
1 ^? \ T t * x C ! ) ^ ^ 

T((F+d) x C') -^ T(C x Cf) 
T(J x C1) 
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T<d D!> TF» 
T(D x D») ^ TD1 > TCf 

T(FxD') 
TC^D 1) 

> " 

i»tD , 

• ^ 

TPrc, 

T(C x Df) *> T((F+d) xD') >- T((F+d) x Cf) 
T(JxD») T((F+d) x Ft) 

whose compositions, of course, coincide. The right-hand square of the first 

and the left-hand square of the second are both B-C squares, by 2.2 applied, 
respectively to T[C] and T[Df] while, since projection is an opfibration, 
2.7 implies that the right-hand square of the second also has the B-C property. 
By HI, then, applied to T[C!], the left-hand square shares it as well. 

Note the symmetry in F and F'. Important special cases are those in 
which C = 1 or D = 1. 

3. SEQUENTIAL HOMOTOPY COLIMITS 

Let us turn our attention to the special case T-colinL.: TN -*- Tl, where T 
is a left homotopy theory. A functor <J>: N -*• N is just an order-preserving 
map; it is final if it is unbounded. If so, we may define I|J: N •*• N by 
tyh = sup{m | <\>m <_ n} and ij; is right-adjoint to <f>, so that L<|> -Ti);. Thus 
T-colimN = (T-colimN) (L<j)) = (T-colimN) Dty) . But # = idN. 

PROPOSITION 3.1. If <j>: N + N is final, then (T-colim ) (T(f>) » T-colimN. 

We shall see generalizations of this in IV 4. 
The state of affairs in the bounded case is summed up in the following 

lemma. 

LEMMA 3.2. 
(i) If W: N •* Tl is eventually constant, then W s dgHL,X for some X in TN. 
(ii) If dgmNX, dgmNY are eventually constant, then 

TN(X,Y) + (Tl)N(dgmNX,dgmNY) is surjective. 
(iii) If dgmNX is eventually constant, then T-colim^X is its eventual value. 

Suppose that W , + W -*•••• are all isomorphisms. Let u: n + N be the 
" n-l n 

inclusion and v its left adjoint vj = min(n-l,j). By H2 there is an X* in Tn 
with dgmnXf = (WQ + ••• + W x) . But then, if X = (Tv)Xf, dgmNX * W. But 
also, HI implies that X * (Tv)(Tu)X from which (ii) follows at once. Finally, 
since Tu = Lv, T-colimNX * (T-colimN)(Tu)(Tv)Xf * T-colin^X1 = X _^. 

Next we shall give a computation of T-colinL-X, due in essence to Milnor 
((the "Milnor telescope1', cf. [19]), in terms of coproducts and homotopy 
pushouts. 

Let A , n = 0,1,... be the ordered category 
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bl b2 b 

/ \ / \ ^ " *" * ^ \ 
a0 al a2 an-l an 

and B c A , n = 1,2,... the subcategory omitting a , and write J: B •> A > 
J1: A , •* B for the inclusions. n-1 n 

LEMMA 3.3. If X, in TAn, has the diagram 

X. X 
1 • n Hd ••• id/ \ id 

A^ A- A - X 
0 1 n-1 n 

then T-colimA X z Xn. An ° 
The proof is by induction, starting with Aft * 1. First, J has a right 

adjoint S, with SaR = b , so that TS = LJ. But X = (TS)(TJ)X * (LJ)(TJ)X, 
so that (T-colinu )(TJ)X * (T-colimA )(LJ)(TJ)X z T-colim. X. 

n % An 
On the other hand, J1 has a left adjoint S!, with Sfb = a ,, so that 

J n n-1 
TJ' = LSf. Thus (T-colim^ )(TJ)X « (T-colim )(LSf)(TJ)X s 

n n-1 
(T-colim )T(JS!)X, completing the induction. 

n-1 
Now set A = UA and define W: A -* N by Wa. = Wb. = j, for all j. 
LEMMA 3.4. (LW) (TW) * icL... 

IN 

We observe first that, for n € NQ, (W4*0 * A , while if X is in TN its 
image under TN ->• TA •*• T(W4n) satisfies the hypothesis of 3.1 with the num­
bering reversed, so that its homotopy colimit is X . The conclusion now 
follows from 2.4. 

Now let us write M: A + .A for the functor, i.e. the order-preserving 
map, b »—> (0,0), a2 <—*- (0,1), a2 . i-> (1,0). This is a discrete opfib-
ration. Thus if X is in TN we may compute dgm. (LM) (TW)X as 

" x -L^ ILv 
n n n 2n 

U 
X n 2n+l 

with £ inj 2 n + 1 = inj 2 n + 1, % inj 2 n = inj 2 n + 1 n X ^ ^ and r just reversing 
the parity. 

If further we take A to P by (i,j) •-> max{i,j} with the two morphisms 
remaing distinct, then the diagram of the image of X becomes 

Licensed to Univ of Rochester.  Prepared on Sat Jun  6 07:31:54 EDT 2015for download from IP 128.151.13.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



HOMOTOPY THEORIES 39 

(3.6) 

with one morphism the identity and the other the familiar "shift". 
But T-colim = (T-colimJ (LM) , with a similar observation for P. This 

nw A 

gives us Milnorfs computation. 

PROPOSITION 3.7. If X is in TN, then T-colim X is a homotopy pushout of 
3.5 and, also, a homotopy coequalizer of 3.6. 

This allows us a gloss on 3.2. 

LEMMA 3.8. IfW: N + T l i s eventually constant, then the homotopy co-

equalizer of | 1 W — i | J W (cf. 3.6) is the eventual value of W (and is 
n n n 

thus, in fact, the coequalizer). 

We are now in a position to observe that the homotopy extension condition 
H2 holds more broadly than for finite free categories. 

PROPOSITION 3.9. If T is a left homotopy theory, then dgnL,: TN •* (T1)N 

is a weak quotient functor. 

Before turning to the proof we might remark that since T[C] is also a left 
N homotopy theory, the same assertion holds for dgro(\|: T(C x N) + (TC) , while if 

T is a right homotopy theory, then T(N *j •* (T1)N°P is a weak quotient functor. 
Now suppose X: N -> Tl. Then by 3.2 we may construct a sequence 

X: N + TN such that dgmktX i s 

dgmN(X0) 

I -

I . 
dgmN(X2) 

Let X be the homotopy coequalizer of _J [_ x — > _j [_ X as in 3.6. Then, 
n n 

using 3.8, we conclude that dgmNX z X. This shows that dgm is surjective, 
up to isomorphism, on objects. An entirely analogous argument shows that it is 
full, once we observe that if dgmNW « X then the evident colimit-cone 
{£ + W} makes W * T-colimMX. n N 

An evident corollary is the existence of privileged weak sequential co-
limits, as for those of finite free categories; we refer to them also as 
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sequential homotopy colimits. 
It is clear that the conclusion of H2 on 3.9 holds for a much larger class 

of categories. It would seem to be worthwhile to investigate this class, but 
this remains still to be done. 

4. STEENROD FACTORIZATIONS AND THE DENSITY THEOREM 

The construction used in II§4 to establish the existence of model-
Q 

structures in the categories K has a counterpart in any homotopy theory, 
giving rise to "infinite factorizations'1 of morphisms into relatively simple 
pieces. These factorizations will be used repeatedly below; we shall also 
derive, using them, a density theorem which asserts that in a sense to be 
made explicit, the underlying homotopy category Tl of a homotopy theory T 
generates the whole of T. 

Suppose that T is a left homotopy theory and that f: X •*• Y in TC. Taking 
J: C0 -*• C for the inclusion of the discrete category of objects, we may con­
struct in TC a commutative diagram 

(LJ)(TJ)X ( U ) ( T J ) f 

(4.1) 

in which the square is a privileged weak pushout and fff = f. Iterating this 
construction we get a sequence X : N -+• TC, 

x = c x 0 — ^ x x — U x 2-*•..) 
together with a colimit cone {f.: X. •> Y} by taking fn = f, f. . = f!, x. = 1.. 

We have moreover morphisms (Tf. n)Tl r T T W: (TJ)Y -* (TJ)X. which, together with 
Tf., interpolate the constant sequence (TJ)Y •> (TJ)Y -> • • • into the sequence 
(TJ)XQ •+ (TJ)X1 -*•••. It follows from 3.1 that T-colimNX# s Y, with the 
colimit cone {f.} giving the isomorphism. This interprets the assertion that 

3 # 
f is the right-infinite composition of the sequence X , which we shall refer 
to as the left Steenrod factorization of f. 

A right homotopy theory has of course right Steenrod factorizations, 
defined dually. 

We remark that the construction of Steenrod factorizations is not func­
torial. It would appear that a functorial factorization could be constructed 
with additional labor; what we have here is sufficient for our present 
purposes. 
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If T is a left homotopy theory and V is a class of objects in TC, then 
there is a smallest full replete subcategory of TC containing V and closed 
under coproducts and homotopy pushouts. It follows from 3.7 that this sub­
category is closed under sequential homotopy colimits as well. We shall say 
that V is dense if the subcategory of TC that it generates in this manner is 
all of TC. The existence of Steenrod factorizations proves, then, our den­
sity theorem. 

THEOREM 4.2, If T is a left homotopy theory and p i s a dense class of 
objects in Tl, then {(Lc)X | X € V, c: 1 -* C} is dense in TC. In particular, 
{(Lc)X | X € (Tl)0, c: 1 -> C> is dense in TC. 

It seems reasonable to say that the (Lc)X are the free objects of TC. 
Thus the density theorem asserts that the free objects of TC are dense in TC. 
This of course is the sense in which Tl generates all of T. 

But it may well happen that TC is generated by something much smaller. 
For example, the singleton {*} is dense in III, so that the set {(L-c)* | 
c: 1 + C} is dense in IIC. ~~ 

5. POINTED HOMOTOPY THEORIES 

A left homotopy theory T is pointed if in Tl the initial and terminal 
objects coincide. Since, by 1.4, for each C and c: 1 -*• C, Tc has both ad-
joints, the same must be true of each TC. By duality, the same conclusion 
holds for right homotopy theories as well. It will sometimes be useful to 
adopt, in pointed theories, the topologists1 convention of writing X v Y, 
V X for coproducts. 

We shall see here how to associate to each left homotopy theory T a 
pointed left homotopy theory T% and a hypernatural transformation T -*• T*. 

T* can be characterized as a subhyperfunctor of T[2]. For each C let 
T'C be the full subcategory of T(2 x C) containing those X for which X is 
terminal in TC. This is clearly stable under all T(2 x F), F: C + D. 

PROPOSITION 5.1. T' is a left homotopy theory. If T is also a right 
homotopy theory, then T* is a right homotopy theory as well. 

The only axiom which does not obviously hold for T" just because it does 
for T, is H3L, which is a consequence of the following lemma. 

LEMMA 5.2. For each C the inclusion U: T'C ->• T(2 x C) has a left adjoint. 

This adjoint we shall call by its classical name of mapping cone. Its 

construction illustrates how, with a little ingenuity, constructions familiar 

in K or Top can in fact be reproduced in a homotopy invariant setting. 
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We may assume, without loss of generality, that C = 1. Consider the 
functors 

2 - ^ A 3—> 2 x 2 ^—- 2 

ii *• (i,0) (i,l) ^ » i 

J being inclusion. Since I is a discrete fibration, Tl has a right adjoint RI, 
which has the property that for X in T2 

dgmA(RI)X = 
X 

Since J is full ((CJ) (RI)X) 1Q = *, so that (TK) (LJ) (RI)X is in T*l. Thus 
(TK)(LJ)(RI) = UM where M: T2 -> T'l. We claim that M —| U. For if Y is in 
T'l then, since RK = T p ^ , (TJ) (RK)Y = (RI)Y. Thus T2(MX,Y) * TA((RI)X, (RI)Y) s 
T2(X,Y) since RI is a full imbedding. 

Since U is the inclusion of a full subcategory, MU is isomorphic to the 
identity. We may recognize the unit of the adjunction in 

dgm2(LJ)(RI)X = (X ^ UMX). 

Returning to 5.1, if F: C -»• D, then the left adjoint L*F of T'F is just 
M_j(LF)Up, the notation being self-explanatory. This means of course that M 
is a left strong hypernatural transformation M: T[2] -* T* which preserves left 
homotopy Kan extensions. 

A "forgetful" strict hypernatural transformation 0: T* -*- T is defined by 
the composition 

U c T(i-xC) 
T'C — * » T(2 x c) - ** TC. 

This composition has the left adjoint M L(i, x C) which, in conformity with 
the topologists usage we denote by X »-->• X . It is easy to see that dgm(X ) = 
(* •> * | | X). Once again this is a left strong hypernatural transformation 
which preserves left homotopy Kan extensions. 

The hypernatural transformation X i-*- X has a universal property whose 
precise statement is made a bit difficult by our somewhat exiguous provision 
of 2-category theory. It does not seem worthwhile, for our present purposes, 
to enlarge this. The idea is straightforward enough if we state it informally. 
Suppose T' is a pointed left homotopy theory and $: 1 •+ T* is a left strong 
hypernatural transformation which preserves left Kan extensions. Then there 
is a V: T' -• Tf with the same properties, essentially unique, such that for any 
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. + X in TC, $> X * H* X . It is more or less evident that such a V is given by 
Mf$[2]U, where Mf is the mapping cone of Tf. In particular, it is certainly 
the case that if T itself is pointed, then 0: T* s T. 

We shall also restrict to an informal comment the observation that if K* 
is the category of pointed simplicial sets, then, following the lines of 
Chapter II, we may define a hyperfunctor C *-»• Ho((K")u), and that this hyper­
functor is essentially the same as IT . 

The following lemmas will be needed below. Let C be a small category 
with initial object J_. Then a functor Q: 2 x C -*• C is defined by Qin = 
constc _[_, Qi- = idc> 

LEMMA 5.3. If X is in T and X. = *, then (TQ)X is in T* and 0(TQ)X = X. 

In other words such an X has automatically the structure of a pointed 
object. 

In a pointed left left homotopy theory, it is natural to introduce the 
construction of the smash product. Classically, this is the mapping cone of 
the canonical map X v Y -> X x Y. In order to get a functorial construction, 
we proceed as follows. 

Suppose T* is a left homotopy theory. Then we may extend the product to 
a strict hypernatural transformation >̂: TC x TD •* T(C x D) by setting X x̂  Y = 
(Tprc)X x Trp-Y. This x̂  is symmetric monoidal, which is to say coherently 
associative, symmetric, with unit * € (Tl)n. It may or may not be the case 
that each Xx̂  - preserves left homotopy Kan extensions. This is true for n_ 
(cf. IV§2), but false in general for pointed theories, in which it does not 
preserve coproducts. 

Now let u: 2 x 2 -*• 2 be given by u(i,j) = ij . We define /̂  : T'C x T*D •+ 
T"(C x D) to be the composition 

T'CxT'D U X U > T(2xC)xT(2xD) - ^ T(2x2xCxD) LCPxCxD)> T(2xCxD) 

- ^ T(CxD) . 
This is evidently a left strong hypernatural transformation. To see that it 
really does the job, it is sufficient to consider the case C = D = 1. If X 
and Y are in T*l, then the diagram of X x Y is 

r 
Yi ^ x i x Y i 

and thus that of (L]i) (X *_ Y) is, by 2.4, just Xl v Y •+ Xx x Y1 as required. 
The proof of the following statement presents no special difficulties 

but we shall nevertheless omit it. 
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44 ALEX HELLER 

PROPOSITION 5.4. If, in a left homotopy theory T, all X*-preserve left 
homotopy Kan extensions, then, in T', /A is symmetric monoidal and each 
XA- preserves left homotopy Kan extensions. 

Let us observe, finally, that all of the observations above dualize to 
right homotopy theories. The mapping cone becomes the "mapping fibre", while 
the pointed theory is T. = T* * *. We might observe that II. is the trivial 
theory; n.C - 1 for all C. The dual smash product, i.e. the mapping fibre 
o f X v Y - > X x Y has never, apparently, attracted to itself either a standard 
name or notation. 
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CHAPTER IV 

TENSOR STRUCTURES 

If C is a category with coproducts, then the category of sets operates 
on the left on C by sending (u,X), where u is a set and X is in C, to the co-
power of X indexed by u. Dually, if C has products, the category of sets 
operates on the right by sending (u,X) to the power of X indexed by u. In the 
jargon of category theory, this is expressed by saying that C is tensored or 
cotensored over the category of sets. 

We shall see that every left homotopy theory is in an analogous way ten-
sored over II and every right homotopy theory cotensored over II. Explicitly, 
if T is a left homotopy theory, we shall define functors 

eQ: IICC x G°P) x T(G x D) ^ T(C x D) 

which for fixed 6 constitute a hypernatural transformation. If T is instead 
a right homotopy theory, we shall have 

Homc: n*(C°P x G) x T(C,D) ^ T(G x D) , 

constituting for fixed C a hypernatural transformation. 

The construction of these occupies §1 and §2. In a homotopy theory both, 
of course, exist and we begin in §3 to study the relations between them. 
Thus we shall cease to speak of left and right homotopy theories, and indeed 
from that point on the rest of this monograph will be concerned with homotopy 
theories instead. 

1. THE FUNCTORS 8 Q 

The tensor functors ®G are obtained from functors £L by passage to a 
category of fractions. We devote ourselves here to the construction of 8 . 

Let T be a left homotopy theory. If W: C x G° P -* Cat, we define W® -: 
TG -*• TC as the composition 

TP" TP* 
TG — L L - ^ T(C * W x» G) — > TC 

where Pf, P" are the opfibration and fibration associated with C * W xj G 

(cf. 1.2.4). (Thus W§r- depends on the choice of the adjoint LP1 but of course 
CxG°P only up to isomorphism.) If f: W •+• V in Cat , then C K f * G : C * W * G - * 

C * V xj G and we may construct the diagram 

45 
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46 ALEX HELLER 

T P t 

(1.1) 

TG 

id 

TG 

T(C*V»G) 
LP' 
v -s> TC 

id 
TP" 

T(C*f*G) 

LP' 
-^ T(C*Wx>G) ^ TC 

id 

in which the left-hand square is strictly commutative while the right-hand 

square is the left adjoint (I§4) of the strictly commutative square got by 

replacing LP1, LP' with TP*, TPf. The composition of the two squares in (1.1) 

gives a natural transformation f®G-: (VGL-) -> (W§r-) , making §r a functor 

TC. 
rxpOp 

8r: Cat u x TG 
b 

Since T[D], for any D, is also a left homotopy theory, we have also constructed 

functors 

rxr°P 
0r: Cat b x T(G x D) 
b 

We investigate next their dependence on C and D. 

T(C x D), 

PROPOSITION 1.2. ®G has the structure of a left strong hypernatural 

transformation. 

We must provide, for F: Cf -** C, K:D f -* D a natural isomorphism as 

exhibited in the diagram 

gG CatCXG XT(G xD) 

(1.3) (FxG°P)* x T(GxK) 

C»xG°P 

^ T(C x D) 

T(F x K) 

Cat xT(G xD») •^ T(Cf x D'). 
®„ 

c°P .op. Suppose W: C x G F + Cat and set W = (F x G F)*W. Then 

$ x K 
( C ! * w» xj G) x D f 

p« x D ' | 

C1 x D f 

^ (C ix W xi G) x D 

P» x D 

F x K • > C x D 

is a pullback in Cat and P' X D is an opfibration. Let us construct (compare 

1.1) the diagram 
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T ( 6 x L) T C P n X D)>' T((C*W*G) xD) L ( P ! X D j > T(C x D) 

(1.4) T(G x K) 
id. 

T(* x K) 

> ^ 

T(F x K) 

T(6f x D) T ( p„ x D r )> T ( ( C W * G ) x D') L(P, x p f )> T(C x D') 

in which id^ is an isomorphism in virtue of (III.2.7). 
The composition is a natural isomorphism (Wf0r-): T(G x K) •* T(F x K)(W0 -) . 

b G 
It remains to be shown that this is natural in W and preserves compositions 
D" •* Df •+ D, C,f + Cf + C. But both of these assertions follow from (1.4.3) . 

We distinguish some special cases. If c: 1 -* C, d: 1 -*• D, then 
(1.5) <l 0G: Wc06Xd * (W0 GX) c > d. 

In the still more special case in which G = 1 and W is discrete, i.e. 
W: C -*• Sets c Cat, we may identify W 0 X, (omitting the subscript in 0/) as 
the W -indexed copower of X, 

v-inrr W» P V G°P 4. fat Wt^ 

strong hypernatural transformation. 
Also a special case, fixing W: C x G°P + Cat, W0 -: T[G] + T[C] is a left 

PROPOSITION 1.6. W0 - preserves left homotopy Kan extensions. 

This means that when C = Cf, F = idp the squares (1.3) have the Beck-
Chevalley property. Referring to (1.4), the left-hand square enjoys it in 
virtue of (III.2.8) and the right-hand square by (1.4.5), the composition thus 
sharing it as well. 

TC. We pass now to consideration of the functors -0rX: Cat C*G 

LEMMA 1.7. -0rX preserves coproducts. 

For C «x ( M wa) * G s JJ_ C ^ W ^ G . The conclusion follows from HO. 
If X is free, say X = (Lg)A for g: 1 + G and A in Tl, then -0GX has a 

simple computation on discrete W. 

LEMMA 1.8, If W: C x G PP Sets, then W8 (Lg)A 
g 

Without loss of generality, we may suppose C = 1. Writing I 
for the inclusion, we may construct the diagram 

Tl ^ ^ TG 

g' 
W •+ W xi G 
g 

W0G-
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48 ALEX HELLER 

where id* is an isomorphism in virtue of (III.2.7) H4L and (1.4.5), and the 
triangle is strictly commutative as a special case of the definition of §_. 
Thus W0G(Lg)A * T-colimWMG(LIg)(T-constw )A * (T-colin^ )(T-constw )A z W § A. 

g g g 
LEMMA 1.9. If W = (WQ1 <*- WQQ -^ w } : A x c x G°P -* Sets and, for all 

c> g* wooc "* woi is i ni e c t i v e> tnen for any x in T(G * D) 

(1.10) (Lan w) S X * L(J x C x D) (W g X), 
^ J xCx G p 

where J: A - ^ 2 x 2 is the inclusion. 

We might assume, without loss of generality, that C = 1 and J) = 1. Let 
us for the moment make only the former assumption. Now both sides of (1.10) 
preserve left homotopy Kan extensions along functors D -*• D f. Thus by the 
density theorem (III.4.2), it is enough to prove that (1.10) is an isomorphism 
in the special case D = 1, X = (Lg)A for g: 1 -* G, A in Tl, i.e. (Lan W ) 8 A * 
(LJ) (W 8 A) . 

But Wg z (WQlg ^ W 0 Q g — W Q O g) U (0 *- 0 ̂  (W1Qg - W 0 0 g)) . 

J * p r i ( w oo g "* ^ l g 3 LJ J *P r o^ - * fwiog " w oo g
} ) - s i n c e £ o r e a c h o f t h e s e 

summands the isomorphisms is clear, it follows in the general case as well. 

2. THE FUNCTORS 8g, HomG 

The principal step in the construction of these functors is made possible 
by Lemma 2.5 below. We need some preliminary observations. Recall (I§4) that 
r: K •*• Cat is the functor V »—*• A° p * V. 

LEMMA 2.1. If T is a left homotopy theory and X is in TG, then 
-~ Pxpop 

(T-) 8rX:K -> TC preserves coproducts. 
rxgOP CxG°P 

It is enough to observe that T: K -> Cat preserves them (compare 

1. 

is 

7) 

; a 
LEMMA 
weak 

2.2. If W 

cofibration, 
= (w0 
then 

*- W00 W1 Q): A x C x G ° P ^ ^ a n d W 0 0 ^ WQ1 

( r Lan ^ W ) 8 r X z L(J x C) (rw 8 r X) . 
V J x C x G° P / G G 

For if V?: A° p x c x G°P + Sets is the transpose of V: C x Gop •* K, then 

(rv) 8gX * (Lprc)(Vf 8gX), where prQ: A° P x C -* C is the projection. The 

lemma now follows from 1.9, applied to W* -*- W' -*- W* . 

LEMMA 2.3. For any X in T(C * A°P) the counit e^: (Lpr Q) (Tpr Q)X + X 
is an isomorphism. 
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HOMOTOPY THEORIES 49 

We may remark parenthetically that this generalizes the statement that 
the geometric realization of a constant simplicial space has the homotopy type 
of the constant. 

Without loss of generality, we may assume C = 1. Let u: A -*• A be the 
inclusion of the subcategory containing those co: [m] -*• [n] such that coO = 0. 
Then u has the left adjoint q with q[n] = [n + 1], (qo))0 = 0, (qco) (i + 1) = 

0)i + 1. It follows that (T-colim ) (T-const ) * (T-colim » ) (T-const „ ) . 
# A°P A°P A # 0 p A # o p 

But [0] is initial in Â  , hence terminal in A op. 

LEMMA 2.4. For any n and any X in Tl, 

I\A(-,[n]) 0 X - ^ rA(-,[0]) 8 X 

is an isomorphism. 

For TA(-,[n]) ) 8X*(T-colim )(LPf)(TP»)(T-const ) where 
Aop A° p 

P!: A_ p x A(-,[n]) -* A_ p is the canonical opfibration. But, recalling that 

(A°p x A(-,[n]))n = JJ__ A{[k], [n]), we see that P* has the right adjoint r 
U k 

with r[k]: [k] •> [n] the constant map with value n. Thus LP1 « Tr, 
(LP'HTP1) * id and TA(-,[n]) 8 X * X by 2.3. 

C*G0p 
LEMMA 2.5. If f is a weak equivalence in K and X is in TG, then 

Tf 8 X is an isomorphism. 

In view of (1.5) we may assume without loss of generality that C = 1. 
We begin our argument in the case G = 1. Consider the class of cofibrations f 
in K such that Tf 8 X is an isomorphism. By (2.1,2) it is closed under co-
products, and under pushouts along cofibrations. By (2.4) it contains all 
cofibrations A^(-,[k]) •*• _A(-, [n]). It follows from standard arguments that it 
contains all the anodyne maps of K and thus that the functor (r-) 8 X: K -*• Tl 
inverts all weak equivalences. 

Turning now to the general case, we consider the class of objects X in TG 
G° P 

such that, whenever f is a weak equivalence in K , then Tf 8 X is an isomor­
phism. If g: 1 + G and it is in Tl, then, for V in K 6° P, TV §6 (Lg)A * 
(Lprr)(V! 8 r (Lg)A) « (Lprr)(V! 8 A) * TV 8 A, as in 2.2, but using 1.9. L b ** g g 0 1 
Thus the class contains the free objects of TG. But if X •> X •* • • • is the 
left Steenrod factorization of an arbitrary 0 •* X in TG, then inductively all 
Xn, and hence X itself, lie in the class. 

We may accordingly define the functors 8 by setting W 8 X = TW % X, 
rxr°P on 

Ku to x TG -* H(C x G p) x TG being a fraction functor. 
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50 ALEX HELLER 

THEOREM 2.6. A left strong hypernatural transformation B is uniquely 
defined by commutativity in the diagrams 

K L X 6 x T(G x D) 

^ T(C x D) , II(C x G°P) x T(G x D) 

Furthermore, ®p preserves left homotopy Kan extensions in either variable 

All that remains to be checked is that each -8 X preserves homotopy 

extensions, that is to say, the strongly commutative squares 

II(C x G°P) x TG JlL 

II(F x G°P) x TG 
V 

nCC1 x G°P) x TG 

-** TC 

TF 
; ^ \ 

-^ TCf 

obtained from 1.3, with D = 1, by passing to the fraction categories, has the 
Beck-Chevalley property. 

To see this we appeal once more to the density theorem, applied this time 
to the left homotopy theory I[[G0p]. It follows from (2.1,2) that the class of 
W in n(C' x G ° P ) = II[G0p]Cf such that, for all X in TG, (®jb*: LF(W 8gX) -* 
((LF)W) 8 p X is an isomorphism, is closed under coproducts and homotopy 
pushouts. 

Now suppose A is in IIG and c: 1 •*- C*. Then 

C(IxA) 0 G X ) d a J _ L A 8 6 X s (Lc(A 8g X)) d 
<f>: c-Kl 

so that Lc(A 8 g X) s (LcA) 8 g X. Thus (LF)((Lc)A 8g X) » (LF)(Lc)(A 8g X) * 
(L(Fc)A) 8 G X * C(LF)(Lc)A) 8g X. 

In other words, ($ r)* is an isomorphism for all W = LcA, and thus for 
all W. 

The cotensor structure for a right homotopy theory T is obtained by 
dualization. For T* (recall that T*C = (T(C°P))°P) is a left homotopy theory, 
so that we have functors 

8 : IICC x G0p) x T * ( C ° P x D° P) - T*(C°P x D° P) 
*op — 

op or, denoting (8 ) y by Homr 

Homc: n*CC°P x G) x T(C X D ) •> T(G x D) , 
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HOMOTOPY THEORIES 51 

a right strong hypernatural transformation preserving right homotopy Kan ex­
tensions in either variable so that, for example, if W is in IT(C x G°P) which 
of course has the same objects as n*(C°P x G), and X is in TC, then for any 
F: C + Cf 

Homcf((LF)W,X) * (RF)Homc(W,X). 

We may unpack this rather high-handed definition: suppose that 
W: C x G ° P -* K. Then Honu(W,-) is the composition 

(2.7) TC TP? > T(C * °PrW*G) RP" > TG 

where (I§4) o pr: K + Cat is the functor V H> V » D = (TV)0p. 

In the pointed case we may extend these operations to II". Recall that 
II" is a subhyperfunctor of IT[2], so that we may construct the composition 

II/(C x G°P) x TG — • £(2 x CxG°P) x TG ^ T(2 x C) - ^ T'C 

where M is the mapping cone functor of (III§5). If T is a pointed left homo­
topy theory, so that T* = T, we denote this composition by 8 . 

PROPOSITION 2.8. 0 6 is a left strong hypernatural transformation, pre­
serving left homotopy Kan extensions in either variable. 

This of course follows immediately from the properties of 8« and M. 
We need only mention the dual, 

Horn!: II"*(C0p x G) X T ( C X D) + T(G x D) u 

for a pointed right homotopy theory T, with the expected properties. 
We can of course recover 8_ from 8.. It is easy to see that W 8„ X * 

6 6 6 

W 0 G X; dually Hom*(W ,X) s Homc(W,X) . 
A number of observations remain to be made. We omit the arguments, which 

follow the lines already laid down above 
PROPOSITION 2.9. 

(i) 8: IIC x np -*» n(C x D) is isomorphic to x_. 

(ii) 8: ITC x ITD •* IT' (C x D) is isomorphic to A . 

PROPOSITION 2,10, If V, W are, respectively, in n(C x H o p ) , n(H x Gop) 
and X is in T(G), then CV 8 H W) 8g X * V 8H CW 8g X). The corresponding state­
ment for the pointed case also holds. 
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3. TENSOR AND COTENSOR STRUCTURE IN HOMOTOPY THEORIES 

If T is a homotopy theory, that is to say, is both a left and a right 

homotopy theory, then it has both a tensor and a cotensor structure over II. 

We investigate here the relation between them. 

LEMMA 3.1. If T is a homotopy theory and X is in Tl, then, for any C, 

Yc 0 X: TNC 0 X + C 0 X is an isomorphism. 

(For T, N, yr see (II 5) and recall that C 0- ~ (T-colimJ(T-const.).) L C C 
We may begin by hoting that, for any c € CQ, (c^y-J = rN(c^C), with objects 

(c -> uO -> • • • •> un) : [n + 1] •+ C and morphisms co : (c •* uO -*•••• -• un) + 

(c -* ucoO -**••-> ucam) for co: [m] ->• [n]. Moreover, the fibre (rNC) of yr at c 
c u 

has objects (uO -*•••->• un) : [n] -* C such that uO = c and morphisms 

u>: (uO ->•••-> un) -*• (ucoO -*.•••-> Ucom) such that uO -*» uo)0 is id . The canoni­

cal injection I: (rNC) •* (cfyr) is given by (uO -*...-* un) »-> (C 1 > uO •+ 
+ c 

• ••-»• un) , co i-^ GO . But in an obvious way (c*yr) is included in (rNC) , the 
L C 

inclusion J being left adjoint to I with unit the degeneracy map 

s • u = (uO •*...->• un) -> (c > uO •> • • • -* un) and counit 

d0: (c ^ uO -*- • • • -> un) -*• (uO -•...-* un) . Thus y_ is a fibration. 

Since (c^C) has initial object id , Nfc^C) is weakly contractible, so that 

(T-colim. XT-const. J « N(c*C) 0- * id^. Taking right adjoints, 
(T-limr . O(T-const, . O * id-,.. Since J —I I we have also 

(cnc) (cnc) Tl 

(T-limrrNC. .)(T-const.p p. ) - i^xi* Finally, since y~ is a fibration we have 

for any X in TC 
((Ryc)(Tyc)X)c * ( T - l i m ^ ^ ) ( T - c o n s t ^ ) z X Q , 

or (RYc)CTyc) s idTC. Taking left adjoints, (LyQ)(Tyc) « idTC; (3.1) is an 

immediate consequence. 

CxR°P 
PROPOSITION 3.2. If f: W -*• V is a weak equivalence in Cat , then, for 

any X in TG, f 6L X: W 8. X •> V 0. X is an isomorphism. 

Without loss of generality, we may assume C = 1. It is a consequence of 

(3.1) that TNW 0 X + W 0 X is an isomorphism: first, TNW 0 (Lg)A * 

TNW 0 A * W 0 A x W 0 (Lg)A for g: 1 -*• 6, A in Tl, the general case follow­

ing from the density theorem. 

For W -> V a weak equivalence means that NW -* NV is a weak equivalence. 

Thus by (2.5) NW 0 X = TNW 0 X + TNV 0 X is an isomorphism; (3.2) follows. 

We may remark at this point that we might have defined the tensor product 
CxgOp 

Ho (Cat ) x TG -̂  TC as 0., for T a homotopy theory. We should indeed mention 
G 
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a special case. Suppose W: C x G°P -> Sets. Thinking of Sets as a subcategory 
rxG°P 

of Cat, W is an object of Ho(Cat ); identifying sets with discrete sim-
plicial sets, W becomes an object of JjXC x G°P) . 

PROPOSITION 3.3. If W: C x G°P + Sets, then (W 0 -) * (W 0 -) : TG + TC. 
6 b 

If W: C x G ° P -> Cat we may write °PW for the functor (opW) = (W ) o p . 
c,g c,g' 

PROPOSITION 3.4. (W 8r -) « (°PW 0,.-) : TG -* TC. b b 

For TNW * rN(°PW) by (II.5.7). 

PROPOSITION 3.5. For W in n(C x G°P), (W 0 -) — | Hom^W,-). 

For (W 0G-) = (rw 5 -) * (rNrW § -) s (oprw S - ) • But from (2.7) we can 
write down immediately the left adjoint of Honu(W,-) as the composition 

T C
 Tpff > T(C * °Prw x. G) LPf > TC, 

which is to say, prw 0- -. 
The argument shows in fact that the adjunction is natural in W. If 

f: W •+ W1 then for any X in TG the transpose of (f 0 -) : (W 0 -) -*• (Wf 0 -) is 
just Homc(f,-): Homc(W»,-) -> Homc(W,-). 

If T is a pointed homotopy theory then in analogous fashion if W is in 
IT(C x G°P) then (W *G-} -H Hom^W,-) . 

It is a commonplace that the categories HoK = III and Ho(fC') = II'1 are, 
respectively, cartesian-closed and monoidal-closed. Proposition 3.5, of 
course, specialized to T = II, gives a new proof of this fact as well as of a 
substantial generalization. 

4. TENSOR STRUCTURE AND HOMOTOPY LIMITS 

The tensor and cotensor structures over IT of a homotopy theory T were 
defined in terms of the homotopy Kan extensions. We assemble here some ob­
servations which move in the opposite direction, giving information about the 
latter in terms of the former. First of all is the "generalized homotopical 
Yoneda principle". 

If F: C -* D we may regard the functors D(F-,-) : C°P x D + Sets and 
D(-,F-) : D°P x c •> Sets as objects DF of n(D * C°P) and Dp of n(C x D°P) . 

PROPOSITION 4.1. If T is a homotopy theory and F: C + D, then 
LF * (DF ®c - ) : TC + TD and RF * Homc(Dp,-): TC + TD. 

We need only prove the first assertion, the second being the dual under 
p 

T^-> T*. By 3.3, D 0r - is up to isomorphism, the composition 
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TP,f F TP' 
TC - > T(D * D " C) — > TD. 

F 
But D <x D * C = (F+D) so that its objects are morphisms <|>: Fc -> d while its 

in D. Thus c»-> idpc defines a left adjoint S" of P" and TP" z LS", 
(DF ®c -) * L(P'S"). But P'S" = F. 

The "homotopical Yoneda principle" is the case C = D, F = idr. The 
special case D = 1, on the other hand, gives the following computations. 

COROLLARY 4.2. T-colimc a * 8 C -, T-lim z Horn (*,-) . 

For constant objects in TC we have an even more perspicuous computation. 
If A is in Tl then (T-const )A z * 0 (T-constJA * (IL-const ) 8 A. But - 8 A 
preserves left homotopy Kan extensions. Referring to (II.6.6) we get the 
following results. 

PROPOSITION 4.3. If A is in Tl then (T-colim ) (T-constjA « NC 8 A and 

(T-lim )(T-constc)A * Hom(NC,A). 

In particular if C is weakly contractible, which means NC * * in III, 
this asserts that the homotopy limit and colimit over C of a constant is just 
the constant. We may use this fact to generalize the finality statement 
(111.3.1) . Let us say that a functor F: C -* D is homotopically final if, for 
any d € Dn, (d^F) is weakly contractible. The dual notion is that of a 
homotopically initial functor. (We avoid as confusing the word "cofinal".) 

PROPOSITION 4.4. I f F : C + D i s homotopically final, then 
(T-colimc)(TF) z T-colim-. Dually, if F is homotopically initial, then 
(T-limc)(TF) z T-lin^. 

We need only look at the adjoints. From (III.2.4) it follows that if 

F is homotopically final then (RF) (T-consO z T-const... 
If F is further a fibration or an opfibration, there is a stronger re­

sult. Note that a fibration F: C -*• D is final if and only if each C, is 
weakly contractible. 

PROPOSITION 4.5, If F: C + D i s either a final fibration or an initial 

opfibration, then (LF) (TF) * (RF) (TF) * ic^. 
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5. REGULAR HOMOTOPY THEORIES 

Certain categories, most notably Sets and categories of algebras over 
sets, more generally topoi, have the property that finite limits commute with 
directed colimits: in abelian categories this is Grothendieck's axiom AB5. 
We shall not address the question of what is the correct analogue of this 
condition for a homotopy theory (as, cf. §4, homotopical finality is the 
analogue of finality), but shall rather discuss here a weaker property of the 
same character. 

A homotopy theory T is regular if 

(Rl) T-colimN: TN •* Tl preserves finite products. 
(R2) The square 

Lpr 
TCA°P x N) 4J! ^ T(Aop) 
Rpr, T-lim 

A0? 
TN *• T l 

T-colimN 

commutes up to isomorphism or rather, to be pedantic, the squares to 

which it is left and right adjoint have the Beck-Chevalley property. 

Thus this is not always the case as attested, for example by the repre-
sentable homotopy theory C M>- (Ab p) . The standard example is, however, 
regular. 

PROPOSITION 5.1. H is a regular homotopy theory. 

It is easy to check that a sequence X: N -*• K such that each X •* X . is 
N n n+1 

infective is strongly cofibrant in K , so that colim X represents IT-colim X. 
If X and Y both have this property, then X x Y shares it as well, and 
colimN(X x Y) x (colimNX) x (colimNY), which proves Rl. 

Now any functor A° p x ^ K c an be seen to be weakly equivalent to an X 
such that, for each n, (XQ1 -^ X . -*- X.Q ) is strongly fibrant, which is 
to say, both maps are fibrations in K, and for each i, j the sequence 
(X. .n -* X. .- •* X. .„ -• • • •) is strongly cofibrant. If Y is the limit, i.e. ^ IJO ljl ij2 J b J n 
the pullback of (Xni -> X., -* Xin ) , then Y * T-lim „ fXA1 -* X,. + Xin ) r Oln lln 10n' n .op*- Oln lln l(hr 

and the sequence (Y -* Y -* •••) is again strongly cofibrant. Furthermore, 

in virtue of (III.2.8), colinuX z (Lpr )X. But also colim^X is strongly 

A0p AP 

fibrant in K— ; this follows easily from Kan's criterion for fibrancy. Thus 

(T-colimN)(RprJX « colinL,Y « lim (colimNX z (T-lim ) (T-colin^). 
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Using, once more, (III.28) we see that our rather conservative definition 
of regularity has more liberal consequences. 

PROPOSITION 5.2. If T is a regular homotopy theory, then T" is regular. 
Also, for any C, T[C] is regular. 

In particular, IT is regular. 
We shall want below an internalized version of regularity which is a 

consequence of the definition. 

PROPOSITION 5.3. If T is a regular homotopy theory and K is a finite 
simplicial set, then 

TN 

T-colimN 

Tl 

Hom(K,-) TN 

Hom(K,-) 
T-colim, N 
Tl 

commutes up to isomorphism. 

A finite simplicial set K, i.e. a simplicial set with finitely many non-
degenerate simplices, is of course equal for some n to its n-skeleton K , and 
each skeleton is obtained from the previous one by a pushout 

A(-,[n]) n-1 

K .n-1 

AC-,[n]) 

K" 

where the coproducts, indexed by the nondegenerate simplices, are finite. 
The inductive hypothesis, that the asserted commutativity holds for finite 
simplicial sets of lower dimension, together with Rl, tells us that 
Hom(K " ,-) and HomCj_J_ A_C->[n]) " ,-) commute with T-colim^. Since A_(-,[n]) 
is weakly contractible, HomCA_(-, M) >-) is isomorphic to the identity. Thus, 
by R2, Hom(Kn,-) commutes with T-colini . 

An easy generalization of this is also useful. Let us say that an 
object of IIG is finitary if it is contained in the smallest class containing 
all (Lg)K, g: 1 -* G, K finite and closed under homotopy pushouts (and hence 
under finite coproducts). 

COROLLARY 5.4. If W, in TG, is finitary and T is regular, then 
HornpCW,-) commutes with T-colimN. 

We need hardly state that when T is a pointed homotopy theory, the 
statements analogous to 5.3,4 involving Horn' instead of Horn are true as well. 

Licensed to Univ of Rochester.  Prepared on Sat Jun  6 07:31:54 EDT 2015for download from IP 128.151.13.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CHAPTER V 
LOCALIZATION 

The notion of localization in a category was recalled in (I§1). It adapts 
with little change to a homotopy theory. This is the subject matter of §1, 
which concludes with the theorem that a localization of a homotopy theory is 
once more a homotopy theory. In §2 we present a short list of localizations 
with a few indications of how the localization theorem, i.e. the existence of 
the appropriate adjoint functors, may be proved. 

The remainder of the chapter is devoted to general localization theorems, 
as well as E. H. Brown's representability theorem, which is properly speaking 
out of context here, but patently in the same spirit as the localization 
theorem of Bousfield type which it accompanies. 

1. LOCALIZATION IN A HOMOTOPY THEORY 

Localization theory in a category C begins with Galois correspondences 
2 

inj, inj* between full subcategories of C and C. In a homotopy theory T 
we simply start the same way, using the category Tl for C. Our aim however 
is to understand the relation between the homotopy completeness of Tl wit­
nessed by its occurrence within T and the localization theory of Tl. For 
this purpose it is useful to make the following conventions. Clearly it is no 
significant restriction to confine ourselves to full replete subcategories of 

2 
CT1) . But by HI,2 these correspond bijectively, via dgnu, to full replete 
subcategories of T2 and thus, as in I§3, to full replete maximal subhyper-
functors of T[2]. We shall accordingly, when discussing localization in a 
homotopy theory T, regard the operations inj, inj*, loc, loc* as operating on 
full replete maximal subhyperfunctors of T[2] and T, but recall that these 

2 
are specified by subcategories of T2> or even (Tl) , and Tl, so that the 
definitions of inj , ... remain those of (I§1) . 

We may even carry our conflation one step further and recall that a full 
2 

replete subcategory of (Tl) corresponds to a class of morphisms in Tl. This 
permits us to state informally an observation which has indeed nothing to do 
with homotopy theory, but might have been made in (I§1) . 

PROPOSITION 1.1. Suppose D c T and f, g are composable morphisms in Tl. 

Then 

57 
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(i) if any two of f, g, fg are in loc*D, so also is the third; 
(ii) if f, g are in inj*D, then so is fg; 
(iii) if fg is in inj*D, then so is g. 

To this we may immediately add a closure property which does depend on T 
being a homotopy theory (or at least a left homotopy theory). 

PROPOSITION 1.2. Any inj*D is closed under right-infinite composition. 

For a sequence X 0 * X. ^ ••• in Tl has a homotopy colimit, say X. 
If each x. is in inj*D, then so also is their right-infinite composition 
x0-x. 

Some additional closure properties are immediately to hand. 

PROPOSITION 1.3. 
(i) All inj S and loc S, for S c T[2], are closed under products, 
(ii) All inj*D and loc*D, where D c T, are closed under coproducts. 
(iii) If, in a homotopy pushout in Tl, one of the initial morphisms is in 

inj*D, then so is the one opposite it. 

We shall (obviously) say that inj*D is closed under homotopy pushouts. 
To proceed farther, it is useful to introduce, in a homotopy theory T, 

the generalized Einhangung E: T2 •*• T2. For this purpose, we introduce 
(briefly) the category E consisting of 2 x 2 with a terminal element f 
adjoined, so that (1,1) < "[". Let E* be the subcategory which omits (1,1) and 
J: Ef + E the inclusion and define F: Ef + 2 by F(0,0) = 0, F(1,0) = F(0,1) = 
Fj = 1, G: 2 + E by GO = (1,1), Gl = J. Then E = (TG)(LJ)(TF). If W is in 
T2 then (LF)(TF)W has the diagram 

(1.4) 

in which the square is a homotopy pushout. If W = * then (EW)0 is just the 
classical Einhangung or unreduced suspension. 

The form of this construction makes it clear that E is in fact a left 
strong hypernatural transformation T[2] -*• T[2] preserving left homotopy Kan 
extensions. Its point is the following lemma. 

LEMMA 1.5. If D c T then W is in loc*D if and only if both W and EW are 
in inj*D. 

The utility of E depends on yet another property. 

Licensed to Univ of Rochester.  Prepared on Sat Jun  6 07:31:54 EDT 2015for download from IP 128.151.13.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



HOMOTOPY THEORIES 59 

LEMMA 1 . 6 . Consider the diagrams i n T l , 

w ... ,PIlrt Ew Wn w 1 

1 

(EW), 

(EX), Ex 

If the left-hand one is a homotopy pushout, so also is the right-hand one. 
This follows from (III.1.3), which shows that the left-hand square in 

W 0 
(EW). 

(EX), 

Ew 

is a homotopy pushout. 

Let us say that a full replete maximal subhyperfunctor S cT[2] is stable 
if it is closed under E (equivalently, Si is closed under E). We shall also 
say that D c T is stable if loc*D is stable. 

LEMMA 1.7. 
(i) D c T is stable if and only if loc*D is closed under homotopy pushouts. 
Cii) If S c T[2] is stable, then loc S is stable and loc S = inj S. 

This is an immediate consequence of (1.5,6), 

LEMMA 1.8. If D c T is stable then loc*D is closed under right-infinite 

composition. 

This says that loc*D shares the property of inj*D asserted in (1.2). But 
loc*D is much smaller, and the closure-property correspondingly deeper. 

Suppose X, in TN, has the diagram XQ >• X1 ^ X2 -* 
We may construct a W in T(2 x N) such that dgnUV = 

- •••) and 

with each 

x. in loc*D. 
w0 

(W0 - ^ *! 

dgm2xNW = 

id 

where X^ = T-colinu-X and the {u.} constitute the corresponding colimit cone, 
so that un is the right-infinite composition of the x.. By (1.1) Wn is in 
inj*D so that it is sufficient to show that EWQ is also in inj*D. 
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But E(Wn) is the right-infinite composition of 

(EW ) (EW ) 

(EWQ)0 ^ (EWPo ^ ^ ( E V o ^ "" ' ThuS We need 0nly sh0W 
that each (EW ) is in inj*D. This follows from 1.7, applied to the diagram 

n+1 

n+1 

-* X n+1 

(EVo 

-* A 

n+1 
n+1 

n+1 

-• X 

- < W» +1>0 

(Ew 

-* X 

-+ A 

- (EWn>0 

in which all the squares are homotopy pushouts. 

LEMMA 1.9. If S c T[2] is stable, F is a finite free category and X is 

in (loc S)F, then T-limJC is in (loc S)l. 

We must show that if W is in SI then TlCW^T-liiyX) + Tl(W0,T-lim_X) 

is surjective, By adjointness this is the same as showing that 

TF(T-constpW1,X) -* TF(T-constpX0,X) is surjective. 

Given f, let us construct the homotopy pushout 

T-const W, 0 

T-const W 1 

By (1.7) each x is in loc*loc S. Thus there is a unique morphism dgm-Xf •* 

dgm X, which we may write as dgm r, such that (dgm r) (dgm x) = 1. But then 

rx is an isomorphism and (rx) rf' »-̂ - f. 

In particular, loc S is closed under homotopy pullbacks. The stronger 

statement follows. 

PROPOSITION 1.10. If S c T[2] is stable, then loc S c T is closed under 

right homotopy Kan extensions. 
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It is sufficient to show that if X is in (loc S)C, then T-lim-X is in 
(loc S)l. Let • • • -*- X -> Xx -*- X = * be the right Steenrod factorization of 
X (cf. III§4). Then there are homotopy pullbacks 

X . > X 
n+1 n 

U (Rc)Xc * U (Rc)Xn,c-
so that all X are in (loc S)F and all X in (loc S)l. But (T-lim )(Rc)A = A. 
Thus, inductively, for all n, T-linuX is in (loc S)l. Using the dual of 
(III.3.5) we conclude that this is the case for X, the homotopy limit of 
• • • -*• X1 -*• Xn, as well. 

Let us summarize what we know about the hyperfunctor loc S. 

PROPOSITION 1.11. If S c T[2] is stable then loc S c T satisfies axioms 
HO-2, H3R and H4L. 

HO-2 are true just because loc S is a full replete subhyperfunctor of T, 
while H3R is an immediate consequence of 1.10 and H4L simply a consequence of 
the fact that loc S c T preserves products. 

We shall say that T admits a_ localization with respect to a_ stable 
S c T[2] if each inclusion JC: (loc S)C •*• TC has a left adjoint LocqC. This 
looks stronger than the condition of (I§1), which would ask for an adjoint only 

r 
for C = 1. But notice that for a representable homotopy theory C »-> C 
with C complete and cocomplete the two conditions coincide. 

THEOREM 1.12. If S c T[2] is a stable subhyperfunctor and T admits a 
localization with respect to S then loc S is a homotopy theory. The inclusion 
S c T is a strict hypernatural transformation which preserves right homotopy 
Kan extensions and the localizing functor Locg yields a left strong hyper­
natural transformation which preserves left homotopy Kan extensions. 

All that is left to do is to show that loc S satisfies H3L. But if 
F: C + D then CLocgD) CLF) UC) is left adjoint to (loc S)F, the restriction of 
TF, for if X is in (loc S}C and Y is in (loc S)D then 

(Cloc S)D)CClocsD)(LF)CJC)X,Y) * CTD) C(LF) (JC)X, CJB)Y) 

* CTC)C(JC)X,(TF)(JD)Y) 

* (TC)C(JC)X,(JC((loc S)F)Y) 

« (Cloc S)C)(X,((loc S)F)Y). 
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The notions of colocality and colocalization in a homotopy theory T are 
defined in strictly dual fashion: they are just locality and localization in 
T*. They have of course all the dual properties; in particular a colocaliza­
tion of a homotopy theory is again a homotopy theory. We need not spell out 
the details. Some examples appear immediately below. 

2. EXAMPLES OF LOCALIZATIONS AND COLOCALIZATIONS 

Here is a list of some more-or-less well-known localizations and co-
localizations or, to be more precise, of well-known things which are one or 
the other: it is not perhaps equally well-known that they are localizations 
or that they constitute homotopy theories. In each case we give the subhyper-
functor with respect to which they are (co-) localizations and in most cases 
we make some remarks on the proof of the localization theorem which assures the 
existence of the (co-) localizing functor. 

(2.1) For any homotopy theory T, T* is the localization of T[2] relative to 
the subhyperfunctor S c T[2 x 2] generated by the image of 

T[2]-const? 
T[2]l — - > T[2]2. 

In other words the objects of SI have diagrams 

T-const2V > T-constJV 

(L0)V (LO)W 

Thus S is clearly stable. Since it contains objects of the type just des­
cribed with V = 0, if X is in (loc S)l c T[2]l = T2, then (T2)(T-const W,X) = 
(T1)CW,XQ) * CT2)(0,X). Thus X is terminal. The localizing functor is of 
course just the mapping cone functor of (III§5). 

(2.2) In IT let S be generated by the singleton {* -* S } where S « *+ in II" 1 
is the 0-sphere, Then S is cos table: the homotopy pullback of * -> S with 
itself is just *. It is evident that (coloc S)l, the colocal objects in IV1, 
consists of the pointed connected simplicial sets. The colocalizing functor 
here is just the "component of the basepoint". The homotopy theory of con­
nected pointed simplicial sets thus constructed we denote by |L. 

(2.3) In IL. let S be generated by the maps * •> K(G,1) where G ranges over all 
groups. Since the homotopy pullback in IL. of * -> K(G,1) with itself is once 
more just *, this S is costable. The colocal objects are the pointed simply-
connected simplicial sets. The colocalizing functor is the universal covering 
space. The colocal homotopy theory is IL. 
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(2.4). As a variant of (2.3) we might colocalize with respect to the * -+• K(A,1) 
with A abelian. The colocal objects are the ones with perfect fundamental 
groups and the colocalizing functor is the connected covering corresponding to 
the largest perfect subgroup of the fundamental group. 

(2.5) In IIj take S to be generated by the set {* -* K(a/Z,2), ..., * -* K(a/Z,n)}. 
This is costable because the loop-space of K(a/Z,q) is K(a/Z,q-1). The colocal 
objects are the simply connected simplicial sets with H^(X,a/Z) = 0, q = 
2,...,n, thus the n-connected simplicial sets. For the colocalizing functor 
see (2.7) below. The corresponding homotopy theory is IT . 

(2.6) In ILj, let S be generated by {S -> *| k > n}; its stability is clear. 
The local objects are the pointed connected simplicial sets whose homotopy 
vanishes in degrees greater than n. A localizing functor may be constructed 
by taking a fibrant simplicial set to the image of its canonical map into its 
n coskeleton: this defines a functor which extends to all the functor cate­
gories. The corresponding homotopy theory is IU; the localizing functor 

b : IL± -> n!!l is usually called the ffnt Postnikov base". Indeed l£ is, for 
each n, a localization of IL ; the units of the adjunctions involved consti­
tute the Postnikov system. 

(2.7) The existence of the colocalizing functor in (2.5) may be extracted from 
that of the localizing functor in (2.6). The method of construction described 
there actually gives functors bn: ILC •* IL)(2 * C) such that dgm_(b X) = 
(X -+ b X). The colocalizing functor is then the composition of b with the 
mapping fibre functor, the dual of the mapping cone. 

(2.8) In the same spirit we can construct the homotopy theory II of m-
connected, (n+l)-coconnected simplicial sets which is equally well a localiza­
tion of II or a colocalization of IL. In particular, IL. is equivalent to the 
representable homotopy theory of the category of groups, while H n + is equi­
valent to the representable homotopy theory of the category of abelian groups. 

(2.9) In I[ suppose h is a homology theory satisfying the Eilenberg-Steenrod 
axioms, possibly without the dimension axiom, and Milnor?s infinite-additivity 
axiom. Let S be generated by the class of all maps f such that hf is an 
isomorphism. Its stability is an easy consequence of the properties of homo­
logy theories. The local objects are just the h-local objects in the sense of 
Adams [1], following Sullivan [26]. Bousfield [3] has shown the existence of a 
left adjoint to (loc S)lczIIl. His argument shows equally well the existence 
of adjoints for all C, so that the h-local simplicial sets once more constitute 
a homotopy theory. 
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3. COMPACT OBJECTS, THE LITTLE BOUSFIELD LEMMA AND BROWN'S THEOREM 

If T is a left homotopy theory an object W of Tl is compact if for any 
sequence X0 -*• X •* ••• in Tl with homotopy colimit, say, X the canonical map 

colimMTl(W,Xj > T1(W,X) 

is bijective. An object of TC is compact just when it is compact as an object 
of T[C]1. 

LEMMA 3.1. If W is compact in Tl and c: 1 -> C then (Lc)W is compact in 
TC. 

Thus in ni all finite simplicial sets are compact; in general finitary 
objects of TIC are compact (IV 5) . 

The following lemma, due in spirit to Bousfield [3] allows us to prove in 
some cases the existence of localizing functors. 

LEMMA 3,2. Let T be a homotopy theory and let S c T[2] be a stable sub-
hyperfunctor such that SI is a set with the property that, for every W in SI, 
WQ is compact. Then T admits a localization with respect to S. 

In view of (1.6) and (3.1) it will be sufficient to show that (loc S)l c 
Tl has a left adjoint. But also, loc S = inj S. 

Now suppose X is in Tl. We define an effacement X' of X with respect to S 
by means of a homotopy pushout 

_LL w0 ^ L i wx 

1 E I 
X - > X« 

where the coproducts are over the set of pairs (W,f), W in SI, f: Wn •* X. 
If f: WQ ->• X, then there is an ff: Wx -> Xf with ffw = £f. Moreover, if Y 

is in (loc S)l, then any g: X •* Y extends uniquely to gf : X1 -> Y, i.e. £ is in 
(loc*loc S)l. 

Using this construction we build a sequence X = XQ •* X + v -* • • • with 
X = X*. Since each W , for W in SI, is compact, T-colinL.X = X" is injective 
with respect to SI. But, by 1.8, XQ •> X is in (loc*loc S)l and is consequently 
the reflection of X into (loc S)l. 

This is the little Bousfield lemma because of the compactness condition. 
This can be relaxed, though not eliminated, if some variant condition is im­
posed. It is not quite clear what this should be in general, and we leave the 
question open here. Thus we shall be unable to prove the existence of a 
localization in general in example 2.9. However, the lemma is quite strong 
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enough to serve in 2,6, the Postnikov system case. 
E. H. Brown's representability theorem does not really concern localiza­

tions. Its proof however is remarkably similar to that of the Bousfield lemma 
(or rather, given the history, the latter is similar to the former). We shall 
need some definitions. If a category C has coproducts and weak pushouts, a 
functor F: C o p •* Sets is half-exact if its preserves products and weak pull-
backs, i.e. takes coproducts in C to products and weak pushouts to weak pull-
backs. A set if} € Cn is left-adequate if the representable functors C(W,-), 
W6((l jointly reflect isomorphism, which is to say that all C(W,f) are bijec-
tive if and only if f is an isomorphism. 

LEMMA 3.3. If T is a left homotopy theory and ft/ G (Tl) is a left ade­
quate set, then for any C the set {(Lc)W | W € ft/, c: 1 + C} is left adequate 
in TC. 

THEOREM 3.4. If T is a left homotopy theory such that there is in Tl 
a left adequate set of compact objects, then for any C a functor (TC)°P •+ Sets 
is representable if and only if it is half-exact. 

The proof is in essence that of Brown [5], cf. also [12]. In view of 
(3.1,3) we may without loss of generality suppose C = 1. Let V be a small full 
subcategory of Tl containing ft/. Then we can find an XQ in Tl and a natural 
transformation T1(-,XQ) -*• F, or equivalently by Yoneda's lemma an element of 
FXQ, such that, for all V € VQ, T1(V,FQ) -* FV is surjective. Indeed it is 
sufficient to take Xn = 11 V. 

V€VQ, v€FV 
Now if, for some X, $: T1(-,X) -> F, the kernel-pair (also called the 

equivalence relation) of <j> defines a half-exact functor R and natural trans­
formations R —*• Tl(-,x). We have just seen that there is a Y and a natural 
transformation T(1)(-,Y) -> R with all Tl(V,T) -> RV surjective. Comparing with 
R — i T1(-,X) we have, by Yoneda's lemma, morphisms Y — ^ X. Let X + X 
be their homotopy coequalizer. Then Tl(-,X) + F factors as T1(-,X) •+ 
T1(-,X#)F + F. 

Using this construction we build a sequence XQ •+ X -* • • • with X 1 = X 
and natural transformations Tl(-,Xn) -* F. If X is the homotopy colimit of 
the sequence, then all of these factor through some T1(-,X) -+• F because of 
(III.3.3). It is clear that, for all V € VQ, T1(V,X) + FV is bijective. 

But if V c V' and V yields by the same construction Tl(-,X) •+ F then, 
since W c VQ is left adequate, X z 5T*. In other words X is independent of V, 
so that T1(-,X) * F. 

The conclusion is by no means generally true. It fails for example in II 
([12]). When the hypothesis holds, as it does for example in 3^ when 
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66 ALEX HELLER 

{S | n >_ 1} is by Whitehead's theorem left adequate, if may allow us to con­
clude that categories TC are monoidal closed. Using only the classical case 
we see that for any pointed T, each TC is enriched over ILL We shall not 
however pursue these matters here. 

4. UNIFORM LOCALIZATION 

If T is a homotopy theory and W is a full subcategory of TI(C x 2), we 
shall say that an X in TC is uniformly local with respect to W if it is local 
with respect to W 8 A for all W in W, A in Tl. These X generate the full re­
plete maximal subhyperfunctor uloc W c T[C]. To describe it in another way, 
let S c T[C x 2] be the full replete maximal subhyperfunctor generated by the 
W 0 A, Then uloc It/ = loc S: uniform locality is a special case of locality. 

However, if X is uniformly local with respect to W, then for A in Tl, W 
in W, 

Tl(A,Homc(W1,X)) z T C ^ 8 A,X) 

* TC(WQ 8 A,X) 

* Tl(A,Homc(W0,X)). 

In other words, X is uniformly local if and only if, for all W in W, 

Horn (W ,X) -> Homc(WQ,X) is an isomorphism. This will imply that all uniform 

localizations are stable. 

LEMMA 4.1. If, in IIC, v: VQ •»• V. is a homotopy pushout of w: WQ -*- W. and 
X, in TC, is uniformly local with respect to w, then X is also uniformly local 
with respect to v. 

For 

Homc(V1,X) > Homc(W1,X) 

Homc(V0,X) ^ Homc(W0,X) 

is a homotopy pullback in Tl, hence HonuCV^X) s Homc(V X) . 

COROLLARY 4.2. If W c II(C x 2), then uloc W is stable. 

Let W = W U E0/ U E2W U • • • . Since (EW) 8 A s E(W 8 A) , {W 8 A | W € W, 
A £ CTl)n> is stable. But 4.1 implies that uloc W = uloc W. 

COROLLARY 4.3. If W c II(C x 2) is stable then X, in TC, is uniformly 

local with respect to 0/ if and only if, for all W € 0/, Hom^W^X) + Homc(W0,X) 

is a split epimorphism. 
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For then {W 8 A} is stable, and it is sufficient for locality that X be 
injective. 

We are now in a position to prove under modest hypotheses a localization 
theorem for uniform localizations. 

THEOREM 4.4. Let T be a regular homotopy theory and suppose that 
Then 0/ c II(C x 2) is small and that for all W € WQ, W and W. are finitary. 

T[C] admits a uniform localization with respect to W. 
Without loss of generality we may assume that W is stable, since (V, as 

above, satisfies the same hypotheses. The argument will simply "internalize" 
the one used for the Bousfield lemma (3.4). Suppose that Xn is in TC. We 
construct a sequence Xn -> X. -* • • • by means of homotopy pushouts in TC 

1 1 w8Homc(W0,Xn) 

"0 

_ | l W 0 * H o m c ( W 0 , X n ) -41VHomC°VV 

n+1 

where the e are the counits of the adjunctions (Wn 8 -) Homc(W0,-). 
By (III.3.9) there is an X in T(C * N) such that dgm X = (X + X + 

If we construct a homotopy pushout in T(C x N) 

1 1 w8Homr(W ,X) 
Wo0Homc(Wo,X) -k-u--

"0 M W18Homc(W0,X) 

0 

Xf 

•0. 

Xl x2 then induction with respect to n shows that dgm Xf = (X > X? > •••) 
and we may suppose that Xf = T(C x a)X where a: N •> N is the successor func­
tion and that dgm^x = (x0,x.,...). 

For any W, 0 : W. 8 Homr(Wn,X) -• X* has the transpose 0 : Homr(Wn,X) -*-
W i C l* W U U 

Homr(W..,X!). Let us consider the diagram on the following page in which ru* 
ru , en are the appropriate units and counit of the indicated adjunctions. 
The left-hand "square" commutes because of the naturality of the 8- Horn 
adjunction (cf. IV.3.5), the others for evident reasons. Thus, reading across 
the top and bottom 

Homc(W,X»)ew = Homc(W0,x). 

Since T is regular and Wn, W are finitary, we may pass to the colimit 
getting 
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Homc(w,T-colimNXf) (T-colimN6w) z HonuCW ,T-colimNx) . 

But a is final, so that T-colimNx is an isomorphism. Thus 

Homc(W1,(T-colimNx)~ ) (T-colinL.6 ) is a right inverse of Horn (w,T-colim X) and 
T-colimNX is uniformly local. Since each x is clearly in loc*(uloc W), 
Xn »-> (T-colimNX) is the localizing functor required. 

This theorem provides easy generalizations of some of the examples of §2. 
We shall bypass them in favor of an application, which seems to be novel even 
in the classical case, to homotopical algebra. 

REMARK. We might have defined uniform localization with respect to a 
W c IT(C x D° P x 2) , X in TC being uniformly local if it is local with respect 
to W 8. A for all W in W, A in TD. In fact this would provide no greater 
generality, since X has this property if and only if it is uniformly local with 
respect to U II (C x d x 2)W. 

d: 1-*D 
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CHAPTER VI 

HOMOTOPICAL ALGEBRA 

By "homotopical algebra" we mean not what was conveyed by the name of 
Quillets monograph [21] but rather a homotopical version of the notion of 
universal algebra introduced by Lawvere [16]. The basic idea is due to Segal 
(cf. [23]) as is one of the major theorems which we quote below. 

We shall begin with a brief and partial review of Lawvere's algebraic 
theories and algebra categories, define categories of homotopical algebras 
and show, using our uniform localization theorem, that they are again homotopy 
theories. This seems not to be a well-known fact and its consequences 
remain to be explored. 

In §2 we go on to give a brief list of such homotopy theories of homotopi­
cal algebras; in §3 we consider in more detail the theories of homotopical 
groups and state a version of Segal's theorem on "special A-spaces" which 
relates homotopical groups and loop-spaces in the classical theory. We con­
clude with some observations on multiple algebraic structures, leading to a 
modest characterization of iterated loop-spaces. 

It will be clear that this material is still inchoate. Many fundamental 
problems remain unsolved. We attempt no catalogue of them, but shall mention 
one or two in passing. 

1. UNIVERSAL ALGEBRA AND HOMOTOPICAL ALGEBRA 

Let us denote by $ the full subcategory of Sets whose objects are the 
natural numbers 0 = 0 , 1 = {0}, 2 = {0,1}, ... . An algebraic theory is a 
category H with the same objects, containing $ as a subcategory in such a way 
that the inclusion preserves coproducts, so that m + n is the coproduct in 
either category. 

If C is a category with finite products an H-algebra in C is a product-
preserving functor X: H P -* C. For such an X, X z (X ) n . The elements of 
H(l,n) are called the n-ary operations of H; they induce morphisms (X.)n -> X.. 

H°P 
The full subcategory of Cn containing the H-algebras is Alg(H,C); its 
morphism are the algebra-homomorphisms. Evaluation at 1 is a faithful functor. 
If X is an H-algebra, X.. is the underlying object of X. 

The theory H is easily recovered from AlgCH,Sets). The underlying ob­
ject functor has a left adjoint F, the free algebra functor. The category H 

70 
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HOMOTOPY THEORIES 71 

is isomorphic to the full subcategory of Alg(H,Sets) containing the objects 
FO, Fl, F2, ... , the imbedding of $ in H being given by the restriction of F 
to $. 

If C has finite coproducts then an H-coalgebra in C is a functor Y: H -*• C 
preserving coproducts. The corresponding category of coalgebras can be 
identified as (Alg(H,C°P))0p. 

If T is a homotopy theory and H is an algebraic theory, then £ homotopi­
cal H-algebra in T is an object X of T(H°P) such that dgm X: H°P + Tl is an 

H° P 

H-algebra in Tl. Homotopical coalgebras are defined dually. 
We may also characterize these homotopical algebras in another way. 

In T[(H P x 2) let W be the small full stable subcategory generated by those 
objects W such that 

(L * L.*) 
dgnuW z (L* M L * J > L *) 

2 m «—i n m+n J 

where i: m-*m + n, j: n-*m + n are the injections of the coproduct. Since 
Horn (L *,X) = X , it is clear that X, in TH°P is a homotopical algebra if i,op m m r ° 
and only if it is uniformly local with respect to W. We are thus led to de­
fine Hoalg(H,T) not as a category but as the subhyperfunctor uloc W c T[H0p]. 
The subhyperfunctor Hocoalg(H,T) c T[H] is defined dually. 

THEOREM 1.1. If T is a regular homotopy theory and H is an algebraic 
theory, then Hoalg(H,T) is a uniform localization of T[H P] and is thus once 
again a homotopy theory. 

For L * is certainly finitary in IIH p and the hypotheses of the uniform 
localization theorem (V.4.4) are thus satisfied. 

Dualization needs some caution. If T is coregular, i.e. if T* is regular, 
we may conclude that Hocoalg(H,T) is a colocalization. We have no warrant for 
believing that both algebras and coalgebras will be well-behaved in the same 
homotopy theory. 

As a corollary of (1«1) we mav derive the existence of a free homotopical 
algebra functor left adjoint to the underlying-object functor. Let us denote 
by U the inclusion of HoalgCH,T)l in TH°P and by Loc its left adjoint. Then 
CT1)U, i.e. X »-> X., is the underlying object functor and F = Loc (LI): 
Tl -> HoalgCH,X)l is its left adjoint. 

The analogy with ordinary algebra stops at this point. The underlying 
object functor need not be faithful, and it is certainly not to be expected 
that Hoalg(H,T)l should be triplable over Tl, as AlgCH,Sets), for example, is 
triplable over Sets. The homotopical analogue of triplability remains to be 
discovered. 
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72 ALEX HELLER 

One final point should be mentioned. If T is a regular homotopy theory 
and H is an algebraic theory, then the homotopy colimit in T(H°P) of a 
sequence in Hoalg(H,T)l is itself still a homotopical algebra. In other words 
the inclusion U preserves sequential homotopy colimits. But of course it 
preserves finite products and homotopy pullbacks as well. 

PROPOSITION 1.2. If T is regular than Hoalg(H,T) is a regular homotopy 
theory. 

2. SOME SIMPLE CASES 

In spite of the concluding remark of §1, the analogies between algebra 
and homotopical algebra are not to be ignored. For example, $ itself is an 
algebraic theory and, for any C with finite products, Alg($,C) is equivalent 
to C, the equivalence being given by the underlying object functor. The same 
statement is true for homotopical algebras. 

PROPOSITION 2.1. If T is a homotopy theory then Hoalg($,T) z T z 

Hocoalg($,T) . 

The underlying-object functor X #-=- X,, for X in Hoalg($,T)C c T($°P x C) 
has the inverse Rl, since if A is in TC then ((R1)A) * A$°V(n>1) = ^C 1**) = 

A , so that (R1)A is already an algebra, while the unit and counit of the 
adjunction are isomorphisms. 

For the next example let $' be the theory of pointed finite sets. The 
free algebra on n is n = n j [ {*}. 

PROPOSITION 2.2. Hoalg(*',T) s T', HocoalgC*',T) s T.. 

The equivalence in either case is given by the functor p: 2°^ -*• $' 
defined by pO = 0, pi = 1 and p(l -* 0) = X, the unique map 1+ -*• 0 in Sets. 
We need not supply the details. 

Notice that this implies that HoalgC$*,T*) » HoalgC^',T). This, in fact, 
depends only on one property of $'. In any algebraic theory the object 0 is 
initial. A theory is pointed if it is terminal as well. This is equivalent 
to the assertion that there is a unique 0-ary operation X: 1 •+ 0 in the theory. 
Thus <£>* and the theory of monoids are pointed, $ and the theory of rings are 
not, since $ has no 0-ary operations while the theory of rings has one for 
each positive integer. 

PROPOSITION 2,3. If H is a pointed algebraic theory, then Hoalg(H,T) » 

Hoalg(H,T') and H©coalgCH,T) « HocoalgCH,T.} . 

The equivalences are provided by the functors 

<1 idH> q 

H El^ 2 p x H —•*-> H where q(i,n) = in. 
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Next let us fix a monoid M, which we shall also regard as a category with 
one object, and let M be the theory of left M-sets. The free left M-set gen­
erated by n is just n 8 pM, the n copower of the principal left M-set. Thus 
M(m,n) * *(m,n) 0 Mop. 

PROPOSITION 2.4. Hoalg(M,T) s T[M]. 

The isomorphism M(l,l) « M p gives an injection u: M p -*• M and thus 
T(y°P): T(M°P) + TM. But if X is in TO, then ((Ru0p)X)n « Xn, so that the 
restriction of T(u P) to Hoalg(M,T) is an equivalence. 

3. HOMOTOPICAL GROUPS 

Let G be the algebraic theory of groups and let u: 1 -* 2 and X: 1 ->- 0 in 
G be, respectively, the binary operation "multiplication" and the unique 0-ary 
operation "unit". There is an imbedding J: A -*- G, well known from the classi­
cal theory of the bar construction, given by [n] •*• n and 

(3,1) (dY: [n-1] + [n]) i > { (i - 1) + y + (n - 1 - i), i = l,...,n-l Cd»: 

Cj: 

[n-1] - [n]) •• 

[n+1] + [n]) (-

— * • 

— > 

1 <|) + (n - 1) 

1 ( i = 1) + y + (n -

( (n - 1) + <> 

i + X + (n - i ) 

1 -

, i = 0 

• i ) , i = 1 . . 

, i = n 

, i = 0 , . ,,n 

where $: 0 •> 1 is the unique map. 
We may remark parenthetically that, as 3,1 shows, all that is really used 

is the monoid structure. 

Let us now consider LJ: IIA •+ IIG and compute, for n = 0,1,..., ((U)*) = 
Il-colim.-, .*. It is easy to see that (J4n) = TNF where F is the free-group 
functor. Thus, by (II.6.5), ((LJ)*) 2 n-colimc *. In particular ((LJ)*)n * *. 

n - Fn 0 
Thus, if Q: 2 x G -> G is the functor (i,n) ̂ -> in of (III.5.3), (IIQ)(LJ)* € 
HC2 x S ) Q actually lies in ITG. 

Furthermore, ((IKJ) (LJ)*)n, the "classifying space" of Fn, is by classical 
arguments the coproduct in H I of n copies of the circle. We are thus led to 
denote (II(})(LJ)* by S and observe that it belongs to Hocoalg(G,IT)l. In 
other words S is a homotopical cogroup in II", with S * S- v ••• v S-. 

Suppose now that T is a pointed homotopy theory and that X is in TC. 
Then the functor (- 8 X) : n* -*• T[C] preserves coproducts. Thus (S 6 - ) : 
T -* T[G] takes its values in the subhyperfunctor Hocoalg(G,T). The corestric-
tion £: T -> Hocoalg(G ,T) is conventionally called the suspension. 

Dually, Hom*(-,X): IT* •+ T[C] takes coproducts in TT to products in T[C], 
so that Hom'fS1,-): T + T[G°P] has its values in Hoalg(G,T). The corestric-
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tion in this case is the loop-space Q: T -* Hoalg(G,T) . 
Thus the suspension and the loop-space come already endowed with the 

structures of homotopical cogroup and homotopical group. From the properties 
of 8 and Horn* we can read off properties of E and ft. 

PROPOSITION 3.2. The suspension and loop-space are, respectively, left 
and right strong hypematural transformations, preserving on the one hand left, 
and on the other right homotopy Kan extensions. 

We have in fact been a bit pedantic in the last few paragraphs in failing 
to profit from the start from the formal duality between these operations. 
Using subscripts to indicate the homotopy theory in question, we need only to 
have observed that 

(3.3) ZT* = (Op)*, 

Since S 8 - and Hom(S ,-) have adjoints (S 8 -) 1 Hom'(S ,-) and 
(S 8 -) 1 Hom*(S , - ) , the suspension and loop-space also have adjoints, 
viz. the restrictions of these. The left-adjoint B: Hoalg(G,T) •* T of the 
loop-space is conventionally called the bar-construction. The right-adjoint 
of the suspension seems to have no conventional name or notation. Let us de­
note it for the nonce by D: Hocoalg(G,T) -*• T. These may be thought of as, 
respectively, a "formal de-looping11 and a "formal de-suspending" operation. 

Indeed in the standard pointed theory, B is not merely a "formal" deloop­
ing. We may quote in this connection a theorem with a long history, going 
back to Stasheff [24], but in its present form due essentially to Segal [23]. 

THEOREM 3.4. The unit id •* ftB in HoalgCG>IT) is an isomorphism. The 

composition Bft: II* ->• IT is the colocalization at the pointed connected theory 

IIQ. Thus Hoalg(G,IT) » IIQ. 

We shall not give the proof, which is easy given Segal's results. The 

interesting question, which remains open, is for which pointed homotopy 

theories the corresponding statement is true. 

It is apparently false in II'*, where it would assert inter alia that 

ED * id C[14]). 

4. HOMOTOPICAL MULTIALGEBRAS 

If K is an algebraic theory and C is a category with finite products, 
then Alg(K,C) also has finite products and, H being another algebraic theory, 
we may construct the category Alg(H,Alg(K,C)). This category may also be 
identified in the following way. The category H x K is not of course an 
algebraic theory, but is certainly supplied with coproducts (m,n) + (m^n1) = 
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(m + m, n + n') . We may say that X: (H x K)°P + C is an H,K-bialgebra if it 
preserves products. The full subcategory Alg(H,K;C) of (̂  ' containing these 
these is isomorphic to Alg(H,Alg(K,C)). There is an obvious generalization to 
the category AlgCH^.-.^H ;C) of H,,...,H -multialgebra in C. 

In fact all this terminology and notation does not occur in the usual 
expositions of universal algebra for the very good reason that, given H and K; 
there is a unique algebraic theory H • K such that Alg(H,Alg(K,C)) * 
Alg(H • K,C). Possibly the best known example is G « G = A = G ° A, where G 
is the theory of groups and A the theory of abelian groups. 

The situation in a homotopy theory is quite different. Given H, K and a 
regular homotopy theory T, we may first construct Hoalg(K,T), which by 1.2 
is a regular homotopy theory, and thus also HoalgCH,HoalgCK,T)). Taking 
T = n/ we see immediately that this is not in general HoalgCH p K,T). Thus, 
in contrast to the purely algebraic situation, there is some point in defin­
ing, for algebraic theories H,,...,Hn and a homotopy theory T, the category 
Hoalg(H,,...,H;T) of homotopical H-,...,Hn multialgebras as the full replete 
maximal subhyperfunctor of T[H P x ••• x H°P] containing those objects whose 
diagrams are in AlgCH,,...,H ;T1). Homotopical multicoalgebras, 
Hocoalg(H1,...,Hn;T) c T ^ x ••• x H ] are defined dually. 

PROPOSITION 4.1. If T is a regular homotopy theory, then 
HoalgCH,,...,H;T) is a uniform localization of T[H°P x ... x H 0 p ] . It is a 
regular homotopy theory equivalent to HoalgCH^HoalgCH^,...,H ;T)). 

Let us consider the special case H, = ••• - H = G, the theory of groups. 
1 • • 1 ^ 

It is plain that S 8 ••• 8 S (n factors) is a homotopical G,...,G-
multicoalgebra in TV; let us denote it by Sn. Then Hom'CSn,-): T -»» T[G°P x 
••• x G°P] corestricts to Qn: T -** HoalgCG,...,G;T). From the adjointness of 8 
and Horn* CIV.3.5) we see that ftn is in fact the n-fold loop-space 

n -» HoalgCG,T) 2 ^ HoalgCG,6;T) > ••• 

n 
S»8- ^ TP[G0p x G°P] 

Its left adjoint is of course Bn, the iterated bar construction. 
Segal's theorem C3.4) has an evident corollary. 

THEOREM 4.2. In HoalgCG,... ,G;IT) , id -• QnBn is an isomorphism. The 
composition Bnfin: IT •*- II" is the colocalization at II . Thus 
HoalgCG,...,G;IT) * 1^. 
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Theorems of this type have been described as "recognition principles" for 
n-fold loop-spaces. 

Much evidently remains to be done, but we shall end our discussion here. 
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