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Foreword 

Henri Poincare may be regarded as the father of Topology. Of course many of the ideas 
which he developed originated earlier, with Bemhard Riemann above all. But in his 
monumental "Analysis Situs" Poincare organized the subject for the first time. In the 
centenary year of its publication it seems appropriate to dedicate this Handbook to his 
memory. 

In Poincar6's work the discussion is mainly conducted in geometric terms. It was not 
until much later that the value of a more algebraic approach became recognized. By the 
thirties the terms "Algebraic Topology" and "Geometric Topology" had come into use, 
although the two parts of the subject remained closely related, as they do to this day. 
This Handbook deals only with the algebraic side. 

Since Algebraic Topology is still developing rapidly any attempt to cover the whole 
subject would soon be out-of-date. So instead of a comprehensive overview, which would 
be bound to occupy several volumes, it seemed better to put together a collection of 
articles, dealing with most of the areas in which research is active at the present time. 
Indeed many new results, and new ways of looking at known results, will be found in 
the pages of this volume. Some of the articles are more technical than others but that is 
in the nature of the subject. It did not seem necessary to cover all the topics which can 
be found in the standard textbooks and monographs. 

So this Handbook is addressed to the reader who already has some knowledge of 
Algebraic Topology and wishes to know more about what is happening closer to the 
frontiers of research. Some overlap between different articles cannot be avoided if each 
is to be readable on its own but this has been kept to a minimum. In any case almost 
every article looks at the subject from a somewhat different viewpoint. Some areas of 
the subject are much better understood than others but it is in the latter, of course, that 
research activity tends to be most intense. 

Algebraic topology is very much an international subject and this is reflected in the 
background of the various contributors. When I was first invited to become Editor of this 
volume in the North Holland series of Handbooks I thought it would be a daunting task 
but instead it has been a pleasure, thanks to the willing cooperation of those who have 
contributed to it. 

I.M. James 
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Section 1 Homotopy types 3 

The theory of homotopy types is one of the most basic parts of topology and geometry. 
At the center of this theory stands the concept of algebraic invariants. In what follows we 
give a general introduction to this subject including recent results and explicit examples. 
There are three main topics: 

Homotopy types with nontrivial fundamental group (Sections 2-5). 
Homotopy types with trivial fundamental group (Sections 6-9, 12). 
Stable homotopy types (Sections 10, 11). 

Almost all definitions and notations below are explicitly described and statements of 
results are complete. Prerequisites are elementary topology, elementary algebra and some 
basic notions from category theory. 

1. What are homotopy types 

For each number n = 0 ,1 ,2 , . . . one has the simplex A^ which is the convex hull of the 
unit vectors eo, ei , . . . ,Cn in the Euclidean (n -h l)-space R̂ "*"̂ . Hence AP is a point, 
A^ an interval, A^ a triangle. A? a tetrahedron, and so on: 

A^ A' ^ A' 

The dimension of A'^ is n. A point x e A"^ is given by barycentric coordinates, 

n n 

X = ^ t i e t with y^^t = 1 and U ^ 0. 
t=0 t=0 

The name simplex describes an object which is supposed to be very simple; indeed, 
natural numbers and simplexes both have the same kind of innocence. Yet once the 
simplex was created, algebraic topology had to emerge: 

For each subset a C { 0 , 1 , . . . , n} with a = {OQ < • • • < ar} one has the r-dimensional 
face Aa C A^ which is the convex hull of the set of vertices Cao, • • •, Ca .̂ Hence the 
set of all subsets of the set [n] = { 0 , 1 , . . . , n} can be identified with the set of faces 
of the simplex A^. There are "substructures" S of the simplex obtained by the union of 
several faces, that is, 

S = Aa,UAa,yJ-"UAa,C A"". 
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Finite polyhedra are topological spaces X homeomorphic to such substructures S of 
simplexes A^.n^O. K homeomorphism S « X is called a triangulation of X, Hence 
a polyhedron X is just a topological space in which we do not see any simplexes. We 
can introduce simplexes via a triangulation, but this must be seen as an artifact similar to 
the choice of coordinates in a vector space or manifold (compare H. Weyl, Philosophy of 
Mathematics and Natural Science, 1949: "The introduction of numbers as coordinates ... 
is an act of violence ...")• Finite polyhedra form a large universe of objects. One is not 
interested in a particular individual object of the universe but in the classification of 
species. A system of such species and subspecies is obtained by the equivalence classes 

homotopy types and homeomorphism types. 

Recall that two spaces X, Y are homeomorphic, X ^Y/ii there are continuous maps 
f : X -^ Y and g : Y ^ X such that the composites fg = ly and gf = Ix are 
the identity maps. A class of homeomorphic spaces is called a homeomorphism type. 
The initial problem of algebraic topology - Seifert and Threlfall [82] called it the main 
problem - was the classification of homeomorphism types of finite polyhedra. Up to 
now such a classification was possible only in a very small number of special cases. One 
might compare this problem with the problem of classifying all knots and links. Indeed 
the initial datum for a finite polyhedron is just a set { a i , . . . , ak} of subsets ai C [n] as 
above and the initial datum to describe a link, namely a finite sequence of neighboring 
pairs (z, 2 4-1) or (i -I-1, i) in [n] (specifying the crossings of n H-1 strands) is of similar 
or even higher complexity. But we must emphasize that such a description of an object 
like a polyhedron or a link cannot be identified with the object itself: there are in general 
many different ways to describe the same object, and we care only about the equivalence 
classes of objects, not about the choice of description. 

Homotopy types are equivalence classes of spaces which are considerably larger than 
homeomorphism types. To this end we use the notion of deformation or homotopy. The 
principal idea is to consider 'nearby' objects (that is, objects, which are 'deformed' 
or 'perturbed' continuously a little bit) as being similar. This idea of perturbation is 
a common one in mathematics and science; properties which remain valid under small 
perturbations are considered to be the stable and essential features of an object. The equiv-
alence relation generated by 'slight continuous perturbations' has its precise definition 
by the notion of homotopy equivalence: Two spaces X and Y are homotopy equivalent, 
Jt ~ y , if there are continuous maps f : X -^Y and g :Y -^ X such that the compos-
ites fg and gf are homotopic to the identity maps, fg'2:i\Y and ^/ — Ix- (Two maps 
/ , p : X —> y are homotopic, f c^ g,if there is a family of maps ft'.X-^Y^O^t^ 1, 
with fQ = f^ fi — g such that the map (x, t) »--• ft{x) is continuous as a function of two 
variables.) A class of homotopy equivalent spaces is called a homotopy type. 

Using a category C in the sense of S. Eilenberg and Saunders Mac Lane [35] one has 
the general notion of isomorphism type. Two objects X,Y in C are called equivalent or 
isomorphic if there are morphisms f : X -^Y, g :Y —^ X \n C such that fg=\Y and 
^ / = Ix- An isomorphism type is a class of isomorphic objects in C. We may consider 
isomorphism types as being special entities: for example, the isomorphism types in the 
category of finite sets are the numbers. A homeomorphism type is then an isomorphism 
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type in the category Top of topological spaces and continuous maps, whereas a homotopy 
type is an isomorphism type in the homotopy category Top/ c^i in which the objects are 
topological spaces and the morphisms are not individual maps but homotopy classes of 
ordinary continuous maps. 

The Euclidean spaces W^ and the simplexes A^, n^ I, aW represent different home-
omorphism types but they are contractible, i.e. homotopy equivalent to a point. As a 
further example, the homeomorphism types of connected 1-dimensional polyhedra are 
the graphs which form a world of their own, but the homotopy types of such polyhedra 
correspond only to numbers since each graph is homotopy equivalent to the one point 
union of a certain number of circles S^. 

Homotopy types of polyhedra are archetypes underlying most geometric structures. 
This is demonstrated by the following table which describes a hierarchy of structures 
based on homotopy types of polyhedra. The arrows indicate the forgetful functors. 

real algebraic sets Kaehler manifolds 

semi analytic sets 
(analytic isomorphism) 

complex manifolds 
(complex isomorphism) 

Riemannian manifolds 
(isomctry) 

differentiable manifolds 
(diffeomorphism) 

polyhedra 
(homeomorphism) 

polyhedra 
(homotopy equivalence) 

topological manifolds 
Qiomeomorphism) 

locally finite polyhedra 
(proper homotopy equivalence) 

This hierarchy can be extended in many ways by further structures. Each kind of object 
in the table has its own notion of isomorphism; again as in the case of polyhedra not 
the individual object but its isomorphism type is of main interest. We only sample a few 
properties of these objects. 
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Some of the arrows in the table correspond to results in the literature. For example, 
every differentiable manifold is a polyhedron, see J.H.C. Whitehead [97] or Munkres [72]. 
Any (metrizable) topological manifold is proper homotopy equivalent to a locally finite 
polyhedron though a topological manifold needs not to be a polyhedron, see Kirby and 
Siebenmann [60]. Any semi-analytic set is a polyhedron, see Lojasiewicz [64]. There are 
also connections between the objects in the table in terms of realizability. For example, 
each differentiable manifold admits the structure of a Riemannian manifold, or each 
closed differentiable manifold has the structure of an irreducible real algebraic set (in fact, 
infinitely many birationally non isomorphic structures), see Bochnak and Kucharz [11]. 

The famous Poincare conjecture states that the homotopy type of a 3-sphere contains 
only one homeomorphism type of a topological manifold. Clearly not every finite polyhe-
dron is homotopy equivalent to a closed topological manifold. For this the polyhedron has 
to be, at least, a Poincare complex; yet there are also many Poincar6 complexes which 
are not homotopy equivalent to topological manifolds. By the result of M.H. Freed-
man [39] all simply connected 4-dimensional Poincare complexes have the homotopy 
type of closed topological manifolds, they do not in general have the structure of a 
differentiable manifold by the work of Donaldson [31]. Homotopy types of Kahler man-
ifolds are very much restricted by the fact that their (real) homotopy type is 'formal', 
see Deligne, Griffiths, Morgan and Sullivan [29]. 

Now one might argue that the set given by diffeomorphism types of closed differen-
tiable manifolds is more suitable and restricted than the vast variety of homotopy types 
of finite polyhedra. This, however, turned out not to be true. Surgery theory showed that 
homotopy types of arbitrary simply connected finite polyhedra play an essential role for 
the understanding of differentiable manifolds. In particular, one has the following embed-
ding of a set of homotopy types into the set of diffeomorphism types: Let X be a finite 
simply connected n-dimensional polyhedron, n > 2. Embed X into an Euclidean space 
M +̂̂ , k^ln, and let N{X) be the boundary of a regular neighborhood of X C Ê "̂ .̂ 
This construction yields a well defined function {X} ^-^ {N{X)} which carries homo-
topy types of simply connected n-dimensional finite polyhedra to diffeomorphism types 
of A:-dimensional manifolds. Moreover for fc = 2n -f 1 this function is injective, see 
Kreck and Schafer [61]. Hence the set of simply connected diffeomorphism types is at 
least as complicated as the set of homotopy types of simply connected finite polyhedra. 

In dimension ^ 5 the classification of simply connected diffeomorphism types (up to 
connected sum with homotopy spheres) is reduced via surgery to problems in homotopy 
theory which form the unsolved hard core of the question. This kind of reduction of 
geometric questions to problems in homotopy theory is an old and standard operating 
procedure. Further examples are the classification of fibre bundles and the determination 
of the ring of cobordism classes of manifolds. 

All this underlines the fundamental importance of homotopy types of polyhedra. There 
is no good intuition what they actually are, but they appear to be entities as genuine and 
basic as numbers or knots. In my book [3] I suggested an axiomatic background for the 
theory of homotopy types; A. Grothendieck [45] commented: 

"Such suggestion was of course quite interesting for my present reflections, as I do 
have the hope indeed that there exists a 'universe' of schematic homotopy types..." 
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Moreover J.H.C. Whitehead [101] in his talk at the International Congress of Mathemati-
cians 1950 in Harvard said with respect to homotopy types and the homotopy category 
of polyhedra: 

"The ultimate object of algebraic homotopy is to construct a purely algebraic theory, 
which is equivalent to homotopy theory in* the same sort of way that 'analytic' is 
equivalent to *pure' projective geometry". 

Today, 45 years later, this idea still remains a dream which has not yet come true. The 
full realization seems far beyond the reach of existing knowledge and techniques. Some 
progress in several directions will be described below. 

2. How to buUd homotopy types 

There are many different topological and combinatorial devices which can be used to 
construct the homotopy types of connected polyhedra, for example, simplicial complexes, 
simplicial sets, CW-complexes, topological spaces, simplicial groups, small categories, 
and partially ordered sets. 

Up to now we have worked with finite polyhedra by viewing them as substructures 
of a simplex. One needs also polyhedra which are not finite since for example the 
universal covering space of a finite polyhedron, in general, is not finite, also the Euclidean 
spaces R^, n ^ 1, are nonfinite polyhedra. Infinite polyhedra are defined by 'simplicial 
complexes'. The following abstract notion of a simplicial complex is just a recipe for 
joining many simplexes together to obtain a space which is called the 'realization' of the 
simplicial complex. 

2.1. DEFINITION. A simplicial complex X is a set of finite sets closed under formation 
of subsets. Equivalendy X is a set of finite subsets of a set U such that U is the union 
of all sets in X and for a € X, hCa also h£ X. The set U = X^ \s called the set of 
vertices of X. The simplicial complex X is a partially ordered set by inclusion. 

We obtain the realization of a simplicial complex X by associating with each element 
a € X a simplex Aa which is the convex hull of the set a in the real vector space with 
basis X^. The vertices of Aa are elements of a. For 6 C a the simplex Ai, c Zia is a 
face of Aa. The realization of X is the union of sets 

1̂1 = U -̂ (̂ -̂^ 

with the topology induced by the topology of the simplexes. That is, a subset in \X\ 
is open if and only if the intersection with all simplexes is open. If X is finite we can 
choose a bijection X^ « {0, l , . . . ,Ar} such that \X\ coincides with the substructure 
[j{Aji^a)'> CI € X} in the simplex A^. The realization \X\ is compact if and only if X 
is finite. 

2.3. DEFlNmON. A polyhedron is a topological space homeomorphic to the realization 
of a simplicial complex. 
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Simplicial complexes have the disadvantage that for a subcomplex y C X the quo-
tient space |X| \ |y | is not the realization of a simplicial complex. This is one of the 
reasons to introduce 'simplicial sets' which are considerably more flexible than simplicial 
complexes. Again a simplicial set X is a combinatorial affair, i.e. a family of sets and 
maps between them from which again may be deduced a topological space \X\. There 
is a more general notion of a 'simplicial object' which actually became one of the most 
influential notions of algebraic topology. 

2.4. DEFINITION. The simplicial category A is the following subcategory of the category 
of sets. The objects are the finite sets [n] = { 0 , 1 , . . . ,n} , n > 0, and the morphisms 
^ • N ~^ [m] are the order preserving functions, i.e. x ^ y implies a{x) ^ OL{y). A 
simplicial object X in a category C is a contravariant functor from A to the category 
C; we also write 

X'.A'^^^C 

where A°^ is the opposite category of A. Hence X is determined by objects X[n], 
n ^ 0, in C and by morphisms a* : X\m] —• X[n] one for each order preserving 
function a : [n] —> [m]. Morphisms in the category sC of simplicial objects are the 
natural transformations. 

Hence simplicial sets, simplicial groups and simplicial spaces are the simplicial objects 
in the category of sets. Set, groups, Gr, and topological spaces. Top, respectively. A sim-
plicial set is also a simplicial space by using the discrete topology functor Set C Top. 
A simplicial space X is good if every surjective map a in ̂  induces a 'cofibration' 
a* : X[m]-^ X[n]. For example the inclusion \B\ C \A\ given by a simplicial subcom-
plex JB of a simplicial complex A is a cofibration. We define the realization of a good 
simplicial space X by the following quotient of the disjoint union of products X[n] x A'^ 
in Top, 

\X\ ([jX[n]xAA/^. (2.5) 

Here the equivalence relation is generated by (a, a^x) ~ {a'*a, x) for a : [n] -> [m], a G 
X[7n], X e A^ where a^ : A^ -^ A^ is the restriction of the linear map given on 
vertices by a. For different realizations of simplicial spaces compare the Appendix of 
Segal [81]. 

There are the following basic examples of simplicial sets. For any topological space 
X we obtain the simplicial set 

SX : ̂ - -. Set, { ( ^ ^ ) M = {a : Zl" -> X e Top}, ^^^^ 

which is called the singular set of X. One has the canonical map 

T:\SX\^X, T{a,x) = a{x), 
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which is a homotopy equivalence if X is a polyhedron. Moreover T is a weak homotopy 
equivalence for any space X (that is, T induces isomorphisms of homotopy groups with 
respect to all base points). Clearly the singular set SX is very large. This, however, 
has the advantage that SX is a 'Kan set'; for such Kan sets it is possible to describe 
homotopy theory purely combinatorially, see Curtis [28] and May [67]. 

In the next example we use the morphisms di^Si which generate the category A 
multiplicatively. The maps di are the unique injective maps di : [n-1] -^ [n] ~ {%) C [n], 
and the maps Si are the unique surjectivemaps Si : [n] —• [n— 1] with Si{i) = Si{i~\-\) = 
z € [n - 1]. 

For any small category X we obtain the simplicial set 

Nerve{X) : A''^ -> Set (2.7) 

which is called the nerve of X. Here Nerve{X)[n], n ^ 1, is the set of all sequences 
(Ai, . . . , An) of n composable morphisms 

"Vr ^1 \ r ^n v" 
A o < A i < . . . i An 

in X. Forn = 0 let Nerve{X)[0] be the set of objects of X. The functor Nerve{X) is 
defined on generating morphisms of A by SQ{A) = \A for A E Nerve{X)[0] and 

t̂ (Ai , . . . , An) = (Ai, . . . , Ai_i, 1, At,. . . , An) 

where 1 is the appropriate identity. Moreover 

z = 0, it 2 = 1 , 

for \:A-^ B e iVen;e(X)[l] and forn ^ 2 

d*(Ai,...,An) = < 

(A2,...,An), for 2 = 0, 

(Ai,...,AiAt+i,...,An), for 2 = 1,. 

[ (Ai , . . . ,An-i) , forz = n. 

There is a more formal way to define the simplicial set Nerve(X) as follows. For this 
recall that any partially ordered set has the structure of a small category: objects are the 
elements of the set and there is a unique morphism a —> 6 iff a ^ 6. This way one obtains 
a functor H : A -^ Cat where Cat is the category of small categories and functors. The 
functor H carries the object [n] to the category H[n] given by the ordered set [n]. Using 
H we define the functor 

ya*{a) = aoa* with a^ = H{a), 

which coincides with the definition above; compare Gabriel and Zisman [41]. The real-
ization |iVen;eX| is also called the classifying space of X. 
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Since products in the category Top of topological spaces do not behave well with 
respect to quotient maps we shall use in the next definition the full subcategory Top{cg) 
of spaces whose topology is compactly generated. The product X xY in Top{cg) yields 
the structure of a monoidal category. The usefulness of compactly generated spaces was 
observed by Brown [17] and Steenrod [91]. 

If X is a small topological category, i.e. a category enriched over the monoidal category 
Top{cg), then Nerve{X) is a simplicial space given by Nn = Nerve{X){n] above. For 
n = 0 the set NQ is discrete and Nn^ n^ I, is the union of products X{X\, XQ) X • • X 
X{Xn,Xn^\) where X{A^B) e Top{cg) is the space of morphisms A -^ B in X. In 
particular, if i f G Top{cg) is a topological monoid, i.e. a topological category with a 
single object, then the simplicial space Nerve(H) is the geometric bar construction of 
H, see, e.g., Baues [2]. This is a good simplicial space if the inclusion of the neutral 
element {1} C J? is a closed cofibration (i.e. H is well pointed). For a well pointed 
topological group G G Top{cg) the realization 

B{G) = \Nerve{G)\ (2.8) 

is the classifying space of G which is the Eilenberg-Mac Lane space K{G^ 1) if G 
is discrete, see Milgram [70]. This classifying space is homeomorphic to the infinite 
projective space EPoo,CPoo and WPoo in case the topological group G is Z/2, S^ and 
S^ respectively. 

A simplicial complex X is a partially ordered set and hence also a small category and 
we can form the simplicial set Nerve{X). The realizations 

\X\ « \Nerve{X)\ (2.9) 

are homeomorphic. In fact, \Nerve{X)\ can be identified with the barycentric subdivision 
of \X\, 

Simplicial complexes and simplicial sets both are of combinatorial nature, but they 
tend to be very large objects even if one wants to describe simple spaces like products 
of spheres. J.H.C. Whitehead observed that for many purposes only the 'cell structure' 
of spaces is needed. In some sense 'cells' play a role in topology which is similar to the 
role of 'generators' in algebra. Let 

D" = { x € R " , | | x K l } , 

I )^ = {x G E", ||x|| < 1}, aZ)^ = i?^ - Z)^ = 5 " - \ (2.10) 

be the closed and open n-dimensional disk and the ( n - l)-dimensional sphere. An (open) 
o 

n-cell e, n ^ 1, in a space X is a homeomorphic image of the open disk D^ in X, a 
0-cell is a point in X. As a set a 'CW-complex' is the disjoint union of such cells. A 
CW-complex is not just a combinatorial affair since the 'attaching maps' in general may 
have very complicated topological descriptions. 

2.11, DEFINITION. A CW-complex X with skeleta X° c X^ c X^ C • • C X is a 
topological space constructed inductively as follows: 

(a) X^ is a discrete space whose elements are the 0-cells of X. 
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(b) X^ is obtained by attaching to X^^^ SL disjoint union of n-disks £>̂  via continuous 
functions ipi : 9(i?P) -> X^~\ i.e. take the disjoint union X^"^ ^ UDf and pass to the 

o 

quotient space given by the identifications x ^ ipi{x), x G 9-DJ*. Each Df then projects 
homeomorphically to an n-cell ef of X. The map (pi is called the attaching map of e'^. 

(c) X has the weak topology with respect lo the filtration of skeleta. 
The realization \X\ of a simplicial complex is a CW-complex with the n-cells given by 
elements a €: X with dim{Aa) = n. Also the realization \X\ of a simplicial set is a 
CW-complex with the n-cells given by * non-degenerate' elements in X[n]. Here an 
element is degenerate if and only if it is in the image if one of the functions s* : 
X[n — 1] —> Jf [n], i G [n - 1]. A CW-complex, however, need not be a polyhedron, 
see Metzler [68], but a CW-complex is always homotopy equivalent to a polyhedron. 
A CW-space is a topological space homotopy equivalent to a CW-complex. We now 
describe some of the many ways to create homotopy types of polyhedra. 

2.12. THEOREM. Homotopy types of polyhedra are the same as the homotopy types of 
the spaces in (a ) . . . (f) respectively: 

(a) realizations \X\ of simplicial complexes X, 
(b) realizations \X\ of simplicial sets X, 
(c) realizations \SX\ of singular sets of topological spaces X, 
(d) classifying spaces \Nerve{X)\ of small categories X, 
(e) classifying spaces \Nerve{X, ^ ) | of partially ordered sets {X, ^), 
(f) CW'Complexes, 

CW-complexes X, Y have a compactly generated topology and the product X xY 
in Top{cg) is again a CW-complex (this does not hold for the product in Top). A ON-
monoid is a CW-complex X which is also a monoid in Top{cg) such that the neutral 
element is a 0-cell and such that the multiplication is cellular. For example a simplicial 
group G yields the realization \G\ which is a CW-monoid. Here G, considered as a 
simplicial set, is a group object in sSet with a multiplication G x G -^ G in sSet 
inducing the multiplication |G| x \G\ = \G x G\ -^ \G\ in Top{cg). 

A simplicial group F is called a/ree simplicial group if for each n ^ 0 the group F[n] 
is a free group with a given basis and if all s* carry basis elements to basis elements, 
compare Curtis [28]. 

2.13. THEOREM. Homotopy types of connected polyhedra are the same as the homotopy 
types of the spaces (a) and (b) respectively: 

(a) classifying spaces B{H) = \Nerve{H)\ of CW-monoids H for which the set 
Tro{H) of path components is a group, 

(b) classifying spaces B{\G\) where \G\ is the realization of a free simplicial group. 

Hence free simplicial groups suffice to describe all homotopy types of connected poly-
hedra. This yields a very significant algebraic tool to construct such homotopy types. 
Computations in free simplicial groups, however, are still extremely complicated. It is 
shown in Baues [4] that the complexity of simplicial groups can be reduced considerably 
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in case one studies homotopy types of connected 4-diniensional polyhedra. The connec-
tion between free simplicial groups and CW-complexes was described by Kan [58]: 

2.14. THEOREM. Let X be a CW-complex with trivial 0-skeleton X^ = *. Then there is a 
free simplicial group G with X c:^ B{\G\) such that the set of non-degenerate generators 
in G[n] coincides with the set of {n 4- l)'Cells in X, n ^ 0. 

This illuminates the role of cells as generators in topology. Unfortunately the free 
group G[n] has also all the degenerate generators coming from cells in dimension ^ n. 
Therefore the free group G[n] is very large already for CW-complexes with a few cells. 
We call G difree simplicial group associated to X if X ĉ  B(|G|) as in the theorem. 
There is, in fact, an algebraic homotopy theory of free simplicial groups which via the 
functors G »-> B{\G\) is equivalent to the homotopy theory of connected polyhedra 
(compare Curtis [28] and Quillen [77]). 

2.15. REMARK. Further methods of representing homotopy types were introduced by 
Smirnov [86] (compare also Smith [87]) and Kapranov and Voevodskii [59]. 

3. Whitehead's realization problem 

The main problem and the hard core of algebraic topology is the 'classification' of homo-
topy types of polyhedra. Here the general idea of classification is to attach to each poly-
hedron 'invariants*, which may be numbers, or objects endowed with algebraic structures 
(such as groups, rings, modules, etc.) in such a way that homotopy equivalent polyhedra 
have the same invariants (up to isomorphism in the case of algebraic structures). Such 
invariants are called homotopy invariants. The ideal would be to have an algebraic in-
variant which actually characterizes a homotopy type completely. The fascinating task of 
homotopy theory is thus the investigation of 'algebraic principles' hidden in homotopy 
types. We may be confident that such principles are of importance in mathematics far 
beyond the scope of topology as for example shown by the development of 'homological 
algebra' which now plays a role in ring theory, algebraic geometry, number theory and 
many other fields. A further very recent example is the use of 'operads' outside topology; 
compare, e.g., Getzler and Jones [42] and Ginzburg and Kapranov [43]. 

The main numerical invariants of a homotopy type are 'dimension' and 'degree of 
connectedness'. 

3.1. DEFINITION. The dimension Dim(A') ^ oo of a CW-complex is defined by 
Dim(X) ^ n if X = X^ is the n-skeleton. The dimension Dim(X) of the homo-
topy type {X} is defined by Dim(X) ^ Dim(y) for all CW-complexes Y homotopy 
equivalent to X. 

3.2. DEFINITION. A space X is (path) connected or 0-connected if any two points in 
X can be joined by a path in X, this is the same as saying that any map dD^ —• X 
can be extended to a map D^ -^ X where D^ is the 1-dimensional disc. This notion 
has an obvious generalization: A space X is k-connected if for all n < fc + 1 any map 
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dD^ —• X can be extended to a map D^ -^ X where D^ is the n-dimensional disc. 
The 1-connected spaces are also called simply connected. 

The dimension is related to homology since all homology groups above the dimension 
are trivial, whereas the degree of connectedness is related to homotopy since below 
this degree all homotopy groups vanish. It took a long time in the development of 
algebraic topology to establish homology and* homotopy groups as the main invariants 
of a homotopy type. For completeness we recall the definitions of these groups. 

3.3. DEFINITION. Let Top* be the category of topological spaces with basepoint * and 
basepoint preserving maps. The set [X, Y] denotes the set of homotopy classes of maps 
X —^Y in Top*. Choosing a basepoint in the sphere S^ we obtain the homotopy groups 

7rnW = [5^X] . 

This is a set forn = 0 and a group forn ^ 1, abelian for n ^ 2. The group structure is 
induced by the map fi: S^ -^ S^ W S"^ obtained by identifying the equator of S'^ to a 
point, that is for a, /3 E 7rn(X) we define a -f ^ = (a, ^) o //. The set ITO{X) is the set 
of path components of X and TTI (X) is called the fundamental group of X. An element 
/ € [X, Y] induces /* : iTnX —• iTnY by / • a = f o a so that iTn is a functor on the 
category Top*/ ĉ . 

3.4. DEFINITION. For a simplicial set X let CnX be the free abelian group generated by 
the set X[n] and let 

dn : CnX -* Cn-lX 

be the homomorphism defined on basis elements x £ X[n] by 

n 

t=0 

Then one can check that dn^n+i = 0 so that the quotient group 

HnX = kernel 9n/image 5n+i 

is defined. This is the n-th homology group of X. For a topological space X we define 
the homology HnX = HnSX by use of the singular set. The homology Hn yields a 
functor from the homotopy category Top/ ~ to the category of abelian groups. 

The crucial importance of homotopy groups and homology groups relies on the fol-
lowing results due to J.H.C. Whitehead. 

3.5. THEOREM. A) A connected CW'Space X is contractible if and only if for a basepoint 
in X all homotopy groups iTniX), n^ \, are trivial. 

B) A simply connected CW-space X is contractible if and only if all homology groups 
Hn{X), n^2, are trivial. 
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The theorem shows that homotopy groups and in the simply connected case also 
homology groups are able to detect the trivial homotopy type. In fact, homotopy groups 
and homology groups are able to decide whether two spaces have the same homotopy 
type: 

3.6. WHITEHEAD THEOREM. Let X and Y be connected CW-spaces and let f : X -^Y 
be a map. Then f is a homotopy equivalence in Top/ ~ if and only if, for a basepoint 
in Xy condition A) or equivalently B) holds. 

A) The map f induces an isomorphism between homotopy groups, /* : rCnX = Tr̂ y, 
n ^ 1. 

B) The map / induces an isomorphism between fundamental groups, /* : TTIX = 7r\Y, 
and the induced map f : X -^Y between universal coverings induces an isomorphism 
between homology groups, /* : HnX = HnY, n ^ 2. 

Hence homotopy groups constitute a system of algebraic invariants which, in a certain 
sense, are sufficiently powerful to characterize the homotopy type of a CW-space. This 
does not mean that X c:^Y just because there exist isomorphisms nnX = TTnY for every 
n = 1,2, — The crux of the matter is not merely that TTnX = iTnY, but that a certain 
family of isomorphisms, </>„ : ̂ nX = iTnY, has a geometrical realization f : X —^ Y. 
That is to say, the latter map / induces all isomorphisms 0n via the functor TTn, namely 
(t>n = ^n(/) for n ^ 1. Therefore the emphasis is shifted to the following problem; 
compare Whitehead [101]. 

3.7. REALIZATION PROBLEM OF WHITEHEAD. Find necessary and sufficient conditions in 
order that a given set of isomorphisms or, more generally, homomorphisms, (f)n '- TTn-X" —• 
n-nYy have a geometrical realization X -^Y. 

The Whitehead theorem shows that also the invariants n\X, HnX are sufficiently 
powerful to detect homotopy types. Therefore there is a realization problem for these 
invariants in a similar way. In particular, within the category of simply connected CW-
spaces the functors TT̂  could be replaced by Hn. The realization problem of Whitehead 
above is highly unsolved, and is indeed one of the hardest problems of algebraic topology. 
We shall describe below solutions for some special cases; see 10.11. Using simplicial 
groups Kan gave a purely combinatorial description of Whitehead's realization problem. 
For this we need the following Moore chain complex of a simplicial group. 

3.8. DEFINITION. A chain complex (C, 9) of groups is a sequence of homomorphisms 

• • • > Cn —^ Cn-\ ^ • • •, n € Z, 

in the category of groups with image 6n+i a normal subgroup of kernel 9n. For each n, 
the homology Hn{C,d) is defined to be the quotient group kernel (dn)/iniage(9n-fi). 
For each simplicial group G one has the Moore chain complex, NG, with 

7V,(G)=r|kernel(d:), 
i<n 

9n = dn (restricted to NnG). 
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We define homotopy groups of G by TTnG = Hn{NG). 
A basic theorem of Kan [56] shows that homotopy groups of simplicial groups, in 

fact, correspond exactly to homotopy groups of connected CW spaces: 

3.9. THEOREM. Let G bea simplicial group. Th^n there is a natural isomorphism (n ^ 0) 

7rn(G) = 7rn|G| = 7rn+iB(|G|). 

Hence if Ox is associated to the connected CW-space X, that is Jf = B{\Gx\), we 
can compute 7rn+i(X) = 7rn(Gx) by the Moore chain complex N{Gx)' For example, 
let Gsn+\ be the free simplicial group with only one nondegenerate generator in degree 
n, then G^n+i is associated to the sphere S^'^^ and 

gives us a purely combinatorial description of homotopy groups of spheres. This way Kan 
gave a new proof of Hopf's result w^S^ = Z.ln general, however, free simplicial groups 
are so complicated that this formula was not suitable for computing homotopy groups 
of spheres. Theorem 3.9 leads to the following interpretation of Whitehead's realization 
problem. 

3.10. THEOREM. Let X, Y be connected CW-spaces and let Gx, Gy be free simplicial 
groups associated to X and Y respectively. Then a set of homomorphisms <t>n ' T^nX —> 
-KriY is realizable by a map X -^Y if and only if there is a map f : Gx —* Gy in sGr 
inducing for n^Q the homomorphism 

We say that two simplicial groups G, G' are weakly equivalent if there is a map f :G -^ 
G' in sGr inducing isomorphisms f^'.i^nG^'KnG'. This yields actually an equivalence 
relation for free simplicial groups. As usual a 1-1 correspondence is a function which is 
injective and surjective. The next result is a consequence of 3.10 and 2.13. 

3.11. COROLLARY. There is a 1-1 correspondence between homotopy types of connected 
CW-spaces and weak equivalence classes of free simplicial groups. The correspondence 
is given by X ^-^ Gx yvith the inverse G H-> B ( | G | ) . 

We point out that *weak equivalence' generates an equivalence relation for all simpli-
cial groups and that weak equivalence classes of all simplicial groups are the same as 
weak equivalence classes of free simplicial groups. In fact, for any simplicial group G' 
there is a free simplicial group G and a weak equivalence G —> G' which is called a 
free model of G'. 

3.12. DEFINITION. Let C be a category with a given class of morphisms called weak 
equivalences. Then the localization or homotopy category of C is the category Ho{C) 
together with a functor q : C -^ Ho{C) having the following universal property: For 
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every weak equivalence / the morphism q{f) is an isomorphism; given any functor 
F : C —^ B with F{f) an isomorphism for all weak equivalences / , there is a unique 
functor O : Ho{C) —• B such that Oq = F. Except for set theoretic difficulties the 
category Ho{C) exists, see Gabriel and Zisman [41]. 

3.13. THEOREM. Let spaces be the category of connected CW-spaces with basepoint and 
let spaces/ ~ be the corresponding homotopy category. Then there is an equivalence of 
categories 

Ho{sGr) - ^ spaces/ ĉ  

which carries a simplicial group G to the classifying space B{\G\). 

The results 3.9-3.13 are due to Kan, see Curtis [28] and Quillen [77]. 

4. Algebraic models of n-types 

When studying a CW-complex or a polyhedron X it is natural to consider in succession 
the skeleta X^, X ^ , . . . , where X^ consists of all the cells in X of at most n-dimensions. 
Now the homotopy type of X^ is not an invariant of the homotopy type of X, Therefore 
J.H.C. Whitehead introduced the n-type, this being a homotopy invariant of X, which 
depends only on X'^'^^. There are two ways to present n-types. On the one hand they 
are certain equivalence classes of (n-f l)-dimensional CW-complexes, on the other hand 
they are homotopy types of certain spaces. 

4.1. DEFINITION. Let CW be the category of connected CW-complexes X with basepoint 
* G X^ and of basepoint preserving cellular maps. Let CW^^^ be the fiill subcategory 
of CW consisting of (n -f 1)-dimensional objects. For maps F ,G : X̂ "*"̂  -+ ŷ "*"* 
in CW"^^ let FIX^, G|X^ : X^ -> F^+^ be the restrictions. Then we obtain an 
equivalence relation ^ by setting F ~ G iff there is a homotopy F|X'^ ~ G\X'^ in 
Top*. Let CM/̂ "^V ^ ^^ *^ quotient category. Now an n-type in the sense of J.H.C. 
Whitehead is an isomorphism type in the category CW^^^ / ^. 

4.2. DEFINITION. Recall that spaces is the category of connected CW-spaces with base-
point and pointed maps. Let 

n-types c spaces/ c:̂  

be the full subcategory consisting of spaces X with 7ri(X) = 0 for i > n. Such spaces 
or their homotopy types are also called n-types. 

The two definition of n-types are compatible since there is an equivalence of categories 

Pn : CM/^+V ~ ^ ^ n-types. (4.3) 

We define the functor Pn by use of the following n-th Postnikov functor 

Pn : CW/ ~—• n-types. 
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For X in CW we obtain PnX by 'killing homotopy groups', that is, we choose a 
CW-complex PnX with (n -f l)-skeleton 

and with ^[^{PnX) = 0 for z > n. For a cellular map F \ X -^Y in CW we choose a 
map PF^+» : P^X -^ PnY which extends the restriction F^+^ : X^+* ^ y^^^ of F. 
This is possible since TTiPnY = 0 for i > n. The functor Pn in 4.4 and 4.3 carries A" 
to PnX and carries F to the homotopy class of PnF. Different choices for PnX yield 
canonically isomorphic functors Pn-

Isomorphism types in CW^^^ / ~ were originally called '(n-h l)-types', they are now 
called rir-types since they correspond to homotopy types for which only TTI , . . . , TTn might 
be non trivial. 

There is an important relationship between n-types and homotopy types of {n-\- 1)-
dimensional CW-spaces. Two (n -h l)-dimensional connected CW-spaces X'^'^\ yn+i 
have the same n-type iff one of the following conditions (A) and (B) is satisfied: 

(A) There is a map F : X^'^^ -^ F̂ "̂ ^ which induces isomorphisms 7rt(F) for i ^ n. 
(B) There is a homotopy equivalence PnX^'^^ ĉ  PnY^'^^. 

4.4. THEOREM (J.H.C. Whitehead [103]). L€/ A'^+^ y^+^ be two finite (n -f- 1)-
dimensional CW-complexes which have the same n-type. Then there exist a, 6 < oo 
such that the one point unions 

are homotopy equivalent. 

The theorem shows that each n-type Q determines a connected tree HT(Q, n+1) which 
we call the tree of homotopy types for (Q, n-h 1). The vertices of this tree are the homotopy 
types {X^+^} of finite (n + l)-dimensional CW-complexes with PnX'^^'' :^ Q, The 
vertex {X'^'^^} is connected by an edge to the vertex {y^+^} if ŷ -*-* has the homotopy 
types of X^'^^ V S^'^^. The roots of this tree are the homotopy types {y^^*} which do 
not admit a homotopy equivalence y^^' ĉ  X^'^^ V 5'*"*"̂ . Theorem (4.4) shows that the 
tree HT(Q, n 4-1) is connected. For a proof of theorem (4.4) see II. § 6 in Baues [4]. 

REMARK. There are various results on the tree HT(Q,n -h 1) in case Q — K{IT, 1) is 
an Eilenberg-Mac Lane space of degree 1. In this case the tree is determined by the 
group TT. Results of Metzler [69], Sieradski [84] and Sieradski and Dyer [85] show that 
for n ^ 1 there exist trees HT(-K'(7r, 1), n -h 1) with at least two roots. 

As pointed out by Whitehead [99] one has to consider the hierarchy of categories and 
functors 

l-types ^ 2'types ^ i-types ^ (4.5) 
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where the functor P is given by the Postnikov functor above. Since 1-types are the same 
as Eilenberg-Mac Lane spaces K{'K^ 1) we can identify a 1-type with an abstract group. 
In fact, the fundamental group TTI gives us the equivalence of categories 

TTi : X'types - ^ Gr. (4.6) 

From this point of view n-types are natural objects of higher complexity extending 
abstract groups. Following up on this idea Whitehead looked for a purely algebraic 
equivalent of an n-type, n ^ 2. An important requirement for such an algebraic system 
is *realizability', in two senses. In the first sense this means that there is an n-type which 
is in the appropriate relation to a given one of these algebraic systems, just as there is 
a 1-type whose fundamental group is isomorphic to a given group. The second sense 
is the 'realizability' of homomorphisms between such algebraic systems by maps of the 
corresponding n-types. 

Mac Lane and Whitehead [65] showed that a ^crossed module' is a purely algebraic 
equivalent of a 2-type: 

4.7. DEFINITION. An N-group or an action of a group iV on a group M is a homomor-
phism / from N to the group of automorphisms of M. For x G M, a G iV we denote 
the action by x^ = /(^)(x) where /3 is the inverse of a. Then a pre-crossed module 
9 : M ^ iV is a group homomorphism together with an action of AT on M such that 

a(x") = a-^a(x)Q;, 

that is, 9 is equivariant with respect to the action of N on N by inner automorphisms. 
A Peiffer commutator in M is the element 

{x,y) =x~^y"*x(2/®^) for x,y e M. 

Now 9 is a crossed module if all Peiffer commutators are trivial. A morphism between 
crossed modules (or pre crossed modules) is a commutative diagram in Gr 

M —^—> M' 

N —^ N' 

where g is /-equivariant, that is ^(x") = {gxY^^\ This is a weak equivalence if {f,g) 
induces isomorphisms 7ri(9) = 7ri(9') for z = 1,2 where 7ri(9) = cokemel(9) and 
7r2(9) = kernel(9). 

4.8. THEOREM. Let cross be the category of crossed modules and let Ho{cross) be the 
localization with respect to weak equivalences. Then there is an equivalence of categories 

2'types -—i- Ho{cross). 
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For a proof of this result compare (III.8.2) in Baues [4]. Many further properties of 
crossed modules are described in this book, in particular, crossed modules lead to alge-
braic models which determine the homotopy types of connected 3-dimensional polyhedra. 

Using Kan's result 3.13 a simplicial group G with Tii{G) = 0 for 2 ^ 2 is also an 
algebraic model of a 2-type. The crossed module 5 G associated to G is obtained by the 
Moore chain complex N{G) in (3.8). We have 

dc : Nx {G)/dN2{G) -^ No{G) (4.9) 

with No{G) = G[0]. Here G[0] acts on Ni{G) by x" = 5o(«)~* ' ^ * 4 ( ^ ) so that 
d : N\{G) —> No{G) is a pre-crossed module. The normal subgroup dN2{G) of N\{G) 
contains all Peiffer commutators so that do induced by d is a well defined crossed 
module. Hence 9^ reduces the complexity of the simplicial group G considerably, so 
that a crossed module describes the algebra behind a 2-type more precisely and simply 
than a simplicial group. 

After Step Two in the hierarchy of n-types was achieved by Mac Lane and Whitehead 
in 1950 one had to consider Step Three. The solution for Step Three was obtained recently 
in Baues [4] where 'quadratic modules' are shown to be the appropriate algebraic models 
of 3-types. 

4.10. DEFINITION. A quadratic module a = {w, 6, d) is a diagram of iV-groups and 
iV-equivariant homomorphisms 

satisfying the equations 

'3(5 = 0, 

x-^y-*x(y^^) = 6w{{x} ® {y}), 

a'^b'^ab = w{{6a} ^ {6b}), 

^a^"^ = a' w{{6a} 0 {x} -h {x} (g) {Sa}), 

for a,b e L and x,y £ M. Here C is the abelianization of the quotient group M/P2{d) 
where P2(9) is the subgroup of M generated by Peiffer conunutators (x, y) in the pre-
crossed module 8. The element {x} e C is represented by x E M and the action of 
a e N on the Z-tensor product C (g) C is given by ({x} 0 {y})^ = {x"} 0 {y"*}. A 
morphism 

between quadratic modules with ip = {l,m,n) is given by a commutative diagram in Gr 

C®C —^^^ L — ^ M —^—^ N 

C 0 C' > V > M' > N' 
w' 6' d' 
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where {m^n) is a map between pre-crossed modules which induces cp^ : C —* C 
and where I is n-equivariant. This is a wea/: equivalence if (/? induces isomorphisms 
^* : 7ri(a) = 7ri(a') for z = 1,2,3 where 

7r\{a) = cokernel9, 

7r2 (cr) = kernel 9/image(5, 

3̂(<7) = kernel (5. 

4.11. THEOREM. L̂ r qfaac/ be the category of crossed modules and let Ho{quad) be the 
localization with respect to weak equivalences. Then there is an equivalence of categories 

3-types -^ Ho{quad). 

Compare (IV. § 10) in Baues [4]. In this book many further properties and examples of 
quadratic modules are described, in particular quadratic modules lead to algebraic models 
which determine homotopy types of connected 4-dimensional polyhedra. One can deduce 
from a simplicial group G with 7ri{G) = 0 for i ^ 3 the associated quadratic module OQ 
as follows: We derive from the Moore chain complex N{G) in 3.8 the quadratic module 
ac = {w, (5,9) with 

C 0 C - ^ N2{G)/U -^ Ni (G)/P3(9) - ^ No{G). (4.12) 

Here the action of No{G) = G[0] is obtained by SQ and S*SQ as in (4.9) and 6 and 9 
are induced by the boundary maps in N{G). Moreover P3(9) is the subgroup of Ni{G) 
generated by triple Peiffer commutators (x, (2/,2)) and {{x,y)^z) in the pre crossed 
module 9 = d*, see (4.9). We define for x,y £ N\{G) the formal Peiffer bracket 
{x,y)eN2{G)by 

{x,y) = s*^{x'^y'^x){soxy\s';y){sox). 

Then d2{x,y) = {x,y) holds. Now U is the subgroup of N2{G) generated by formal 
triple brackets (x, (y, z)), ((x, y),z) and by elements dsiu) with u G N^iG). Finally the 
function w is defined by w{{x} <g> {y}) = {{x,y)} where (x,y) is the formal Peiffer 
bracket. See also (TV. B. 11) in Baues [4]. 

Again a quadratic module is a considerable simplification of a simplicial group G 
representing a 3-type. In fact, we restrict G to degrees ^ 2 and we are even allowed to 
divide out triple Peiffer commutators and formal triple Peiffer commutators in the Moore 
chain complex. We therefore say that a quadratic module has 'nilpotency degree two', a 
crossed module has 'nilpotency degree one'. 

REMARK. Theorem 4.8 goes back to the work of J.H.C. Whitehead [100] and Mac 
Lane and Whitehead [65] though they do not formulate the result as an equivalence of 
categories. In the literature there are two ways to generalize crossed modules in order to 
obtain models of n-types, n ^ 2. On the one hand Loday [63] defines algebraic systems 
called 'cat"-groups' (see also Porter [75] and Bullejos, Cegarra and Duskin [20]), on the 
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other hand Conduch6 [26] considers *crossed modules of length 2' representing 3-types 
which were generalized by Carrasco [21] and Carrasco and Cegarra [22] for n-types; 
this approach of Conduch6 and Carrasco describes additional structure for the Moore 
chain complex N{G) which is sufficient to determine the simplicial group G. Moreover 
Brown and Gilbert [18] and Joyal and Tlemey obtained further algebraic models of 
3-types. But the quadratic modules above are* the only models of 3-types which have 
nilpotency degree 2. 

A 'nilpotent' algebraic model for 4-types is not known. For simply connected n-types, 
however, we can use the work of Curtis [27] for the construction of nilpotent models. 

4.13. DEFINITION. For a group G let Tm+iG be the subgroup of all iterated commutators 
of length m -f 1. Then G has nilpotency degree m or equivalendy is a m\{m)'group if 
Fm-^iG is trivial. Let nil{m) be the full subcategory in Gr consisting of nil(m)-groups. 
A free nil(m)-group, i.e. a free object in nil{m), is the same as the quotient F/Fm-^-xF 
where F is a free group. Let snil(m) be the category of simplicial nil(m)-groups with 
weak equivalences defined as in sGr. A free simplicial nil(m)-group is defined in a 
similar way to a free simplicial group, see Section 2. 

Let {a} be the least integer ^ a. 

4.14. THEOREM. For 2 ^ n ^ 1 -h {log2(m -h 1)} let T{n, m) be the full subcategory of 
snil{m) consisting of objects G with -KIG = Ofor i = 0 and i^ n. Then there exists an 
equivalence of categories 

n-types2 - ^ Ho T{n^ m). 

Here the left hand side denotes the full homotopy category of simply connected n-types. 

For m = 2 and n = 3 the result is also a consequence of 4.11. This indicates that 
there might be a suitable generalization of both Theorems 4.11 and 4.14, available for 
n-types which are not simply connected. 

Theorem 4.14, as it stands, is not contained in the work of Curtis.JThe equivalence in 
the theorem carries the n-type X to a free simplicial nil(m)-group Gx with i^iGx = 0 
for i^ n and for which 

Gx = {Gx/Fm-\'\GxT' 

Here both sides denote the corresponding subobjects generated by basis elements in 
degree ^ n. Hence Gx is the 'n-type' of Gx/^m-f iGx in the category snil{m), compare 
the construction of the Postnikov section in 4.4. The result of Curtis [27] implies that 
there is a natural isomorphism (i ^ 0) 

T^i(Gx) =7ri+i(X) 

for all simply connected n-types X. The inverse of the functor X \-^ Gx carries the 
simplicial group G in T{n^m) to the classifying space B{\G\). 
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We have seen that the category l-types has the algebraic model category cross in 4.8. 
This generalizes as follows. 

4.15. DEFINITION. A crossed complex p is a sequence 

cU dj da 
^ P3 > Pi • P i 

of homomorphisms between pi-groups where da is a crossed module and pn^ n ^ 3, 
is abelian and a TTI-module via the action of p \ where TTI = cokemel(d2). More-
over d n - i d n = 0 for n ^ 3. A morphism f : p -^ p^ is a sequence of ho-
momorphisms fn '- Pn -^ Pn which commutc with dn and are / i -equivariant . Let 
7rn(p) = kemel (dn) / in iage(dn+i ) be the homology of p . Then / is a weak equiva-
lence if TTnif) is an isomorphism for all n . Let cross^ be the category of crossed chain 
complexes p with pt = 0 for 2 > n and 7rt(p) = 0 for 1 < i < n so that cross^ = cross. 

The next result is a consequence of the work Huebschmann [54] and of Brown and 
Higgins [19]; see also 3.3.6 in Carrasco and Cegarra [22]. 

4.16. THEOREM. Let K^ C n-types be the full homotopy category of n-types X with 
TTiX = Ofor 1 < z < n, n ^ 2. Then there is an equivalence of categories 

K"^ ^=^Ho{cross'^). 

For n = 2 this is exactly the result in 4.8. The objects in cross"^ which are by 4.16 
models of special n-types have only nilpotency degree 1. In particular 3-types X with 
'K2X have a model in cross^ so that in this case a quadratic module a as in 4.10 is 
not needed to determine the homotopy type. We can associate with a the crossed chain 
complex p(cr), 

Llw{C 0 C) - ^ M/6w{C 0 C) - ^ iV, (4.17) 

obtained by dividing out the 'quadratic part'. If irjicr) = 0 then p(cr) determines the 
homotopy type of a. Therefore the quadratic structure ly of cr is only relevant if 7r2 ^ 0. 
In the next section we study the category K^^ from a different point of view. 

5. Cohomology of groups and cohomology of categories 

We show that the classical cohomology of groups is related to special homotopy types. 
We also introduce the cohomology of categories with coefficients in a natural system, 
which generalizes the cohomology of groups and which turned out to have deep impact 
on homotopy classification. We shall need the cohomology of categories in particular for 
the comparison of Postnikov invariants and boundary invariants; see 8.11 below. 

Let TT be a group. A (right) it-module M, also denoted by the pair (TT, M ) , is an abelian 
group M together with an action of TT on M. As usual the homotopy groups 7rn(-X'), n ^ 
2, are actually 7ri(X)-modules. Let Mod and mod be the following categories. Objects 
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in both are the modules (7r,M) as above. Morphisms (7r,M) -^ {n'.M') are pairs 

(a , / ) = (a : TT -> TT', / : M -^ M') G Mod, 

(6,^) = (6 : TT' -^ TT, g: M -^ M') G mod, 

where a, 6 are maps between groups and / , g are maps between abelian groups such that 
/(x«) = /(x)"(°^) and g{x^^^'^) = ^(x)^ for x E M, a G TT, /3 G TT'. Using homotopy 
groups one has a functor (n ^ 2) 

(7ri,7rn): Top'' -^ Mod, (5.1) 

The cohomology of groups is a functor (see K.S. Brown [16] and 5.12 below) 

H"" : mod -^ Ab (5.2) 

which carries (TT, M ) to i/'^(7r, M). Let 6*M be the Tr'-module M given by x^ = x'̂ (̂ ). 
Then (6,1) : (7r,M) —• (7r',6*M) is a morphism in moc/ which induces b* = H^{b, 1), 

6*:i/^(7r,M)-^ff^(7r',6*M). 

On the other hand (1, / ) : (7r,M) -^ (7r,a*M') in mod induces /* = H'^{\J), 

U : i/^(7r,M) -^ jy^(7r,a*M'). 

We use the cohomology of groups for the definition of the following category, which is 
the 'Grothendieck construction' of the functor H^ in (5.2). 

5.3. DEFINITION. The objects in the category Gro{H'^) are triples (TT, M , k) where (TT, M) 

is a TT-module and k G H'^{'K,M). Morphisms (7r,M, fc) -^ {ir'^M'^k') are maps 
(a , / ) : {'K.M) -^ (TT'JM') in Mod which satisfy the equation 

a*(fc') = /,(fc)Gff^(7r,a*M'). 

Composition is defined as in Mod\ the forgetful functor Gro{H^) -^ Mod is faithful. 

The objects in Gro{H^'^^) are in fact algebraic models of special n-types. 

5.4. THEOREM. For the full homotopy category Kl^ C n-types of n-types X with 
TTiX = Ofor I < i < n there is a functor 

T" : /<r -^ Gro{H''-^^) 

with the following properties: The functor T^ is full and reflects isomorphisms and for 
each object (TT, M , k) in Gro{H^'^^) there is X in K^^ and an isomorphism (TT, M , k) = 
r^(X) in Gro{H''^^), The functor T"" is defined by T^(X) = (7r,(X),7rn(X), fc(X)) 
where k{X) is the k-invariant. 

In consequence of these properties of the functor T^ an object in Gro{H'^'^^) may 
be described as an algebraic equivalent of a n-type in KĴ ; that is, T^ induces a 1-1 
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correspondence between homotopy types in KJ^ and isomorphism types in Gro{H'^'^^). 
Theorem 5.4 is due to Mac Lane and Whitehead [65] for n = 2 and Eilenberg and 
Mac Lane [36] for n ^ 3. It is also a consequence of the Tostnikov tower' of a space, 
see, e.g., Baues [1]. The theorem yields a special solution of Whitehead's realization 
problem 3.7: 

5.5. COROLLARY. Let X,Y be objects in /<,", then <j)^ : n^X -^ n^Y has a geometrical 
realization X -^Y if and only if {(/>], 0n) is a morphism in Mod and the equation 

{<i>irk{Y) = {ct>N)Mx) 

holds where k{X), k{Y) are the k-invariants. 

In view of Theorem 5.4 elements in the cohomology of groups can be considered as 
representatives of special n-types. We now recall the following notation which partially 
already was used in the theorem above. 

5.6. NOTATION. Let F : C -> K be a functor. We say that F is full, resp. faithful if the 
induced map on morphism sets F : C{X, Y) -^ K{FX, FY) is surjective, resp. injective 
for all objects X,Y in C. Moreover F reflects isomorphisms if / in C is an isomorphism 
if and only if F{f) in K is an isomorphism. The functor F is representative if for each 
object F in K there is an object X in C and an isomorphism F{X) = Y. We call X a 
^realization' of Y. We say that F is a detecting functor if F reflects isomorphisms, is full 
and representative. A detecting functor which is faithful is the same as an equivalence 
of categories. 

The properties of the functor T^ in 5.4 just say that T^ is a detecting functor. One 
readily checks that every detecting functor F : C —^ K induces a 1-1 correspondence 
between isomorphism types of objects in C and isomorphism types of objects in K. The 
functor T^ has actually a further nice property which is less well known, namely T^ 
is a 'linear extension' of categories. To this end we recall from Baues [3] the following 
concept of a linear extension which plays a crucial role in topology and algebra. 

5.7. NOTATION. Let C be a category. The category of factorizations in C, denoted by 
FC, is given as follows: Objects are the morphisms / , ^, . . . in C and morphisms f —^ g 
are pairs (a, /3) for which 

A -^^ A' 

4 I' 

commutes in C. Hence af/3 — g is a factorization of g. Composition is defined by 
{a',l3'){a,l3) = (a'a,/3/3'). We clearly have ia,0) = (a, l)(l,,S) = (l,/3)(a, I). A nat-
ural system (of abelian groups) on C is a functor 

D:FC-^Ab 
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from the category of factorizations to the category of abelian groups. The functor D 
carries the object f to Df = D{f) and carries the morphism (a, /3) : / —> y to the 
induced homomorphism 

jD(a,/3) = a./3* : Df -^ Da/p = D^ 

where D{a, 1) = a*, 2?(l,/3) = ^*. We say that 

is a linear extension of C by the natural system D if the following properties hold. The 
categories E and C have the same objects and p is a full functor which is the identity 
on objects. For each morphism / : B —• 4̂ in C the abelian group Df acts transitively 
and effectively on the subset p~^{f) of morphisms in E with p~^{f) C E{B,A). We 
write fo + a for the action of a £ Df on /o G p'^if)- Moreover, the action satisfies the 
linear distributivity law, 

(/o + OL){90 -f /3) = fm + U0 + 9*Ci' 

Two linear extensions E, E' are equivalent if there is an isomorphism e : E = E' oi 
categories with p'e = p and £:(/o -h a) = £:(/o) + a. The extension E is split if there is 
a functor 5 : C —> E with p5 = 1. 

As an example we obtain the natural system 

if" : Mod -^ Ab (5.8) 

which carries the object (a, / ) : (TT, M) —> (TT', M ' ) to the abelian group 

which is the cohomology of TT with coefficients in a*M'. Hence RV'^^^ rx depends on a 
and not on / . Induced maps are given by (a',/')*(x) = {f')*{x) and {a",f"Y{x) = 
(a")*(x) for X € -ffT̂  r%. The natural system H^ on Mod yields also a natural system 
if" on Gro(i7'̂ -̂ -̂ ) via the forgetful functor in 5.3. Using the functor T'̂  in 5.4 we 
identify isomorphism types in K^ and in Gro{H^'^^) so that this way T" is the identity 
on objects. The next result is a consequence of (Vni.2.5) in Baues [3]. 

5.9. THEOREM. The category K^^ is part of a linear extension of categories 

H^ ±^ K^ II, Gro{H''-^^) 

which is not split. 

The result classifies maps in Kĵ  completely in terms of the cohomology of groups. 
Since the functor T" is not split the extension, however, is nontrivial. We now intro-
duce the cohomology of categories which classifies linear extensions. In analogy to the 
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category mod in (5.2) we obtain the category nat of natural systems: Objects are pairs 
(C, D) where £> is a natural system of the small category C. Morphisms are pairs 

{<j>'^,r):{C,D)^{C\D') (5.10) 

where </>: C —> C is a functor and where r :</>*£)—> i?' is a natural transformation. Here 
(t>*D : FC -^ Ab is given by {(t>*D)f = D^j and a* = </>(a)*, /3* = 0(^)*. A natural 
transformation T : D —^ D yields as well the natural transformation (l>*t:(l)*D-^(j>*D. 
Now morphisms in nat are composed by the formula 

(v''^a)(^''^r) = ((.^^,^oV'V). 
The cohomology of categories (introduced in Baues and Wirsching [10] and Baues [3]) 
is the functor 

H'^'.nat^Ab (5.11) 

defined in 5.13 below. One has the full inclusion of categories 

mod C nat 

which carries (TT,M) to {C,D) where C = TT is the category given by the group TT and 
where D is the natural system on C with Df = M for f e n and a* = identity and 
P^{x) = x^ for X G M, ^ E TT. Then the composition of functors 

mode nat ^Ab (5.12) 

coincides with the cohomology of groups in (5.2). In fact, we may consider the coho-
mology of categories as a canonical generalization of the cohomology of groups. 

5.13. DEHNmON. Let X be a small category and let J5 be a natural system on X. The 
n-th cochain group F " is the abelian group of all functions 

/ : Nerve{X)[n] -^ [j Dg 
pGMor(X) 

with / ( A i , . . . , An) G -DAicoAn and f{A) € D\^ for n = 0. The right hand side denotes 
the disjoint union of all abelian groups Dg with g a morphism in X. Addition in F^ 
is given by adding pointwise in the abelian groups Dg. The coboundary 6 = 6"^'^ : 
irn-i _^ pn is defined by the formula 

{6f){X) = X,f{A) - yf{B) for A : A ^ B, n = 1, 

(5/)(Ai, . . . ,An) = (A,)./(A2,...,An) 
n - l 

+ ( - l ) - (An)V(Al , . . . ,An- , ) . 
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One can check that (5<5 = 0 so that the cohomology 

H'^iX.D) = kernel (5^/image (5̂ -̂  

is defined. Induced maps {(t>^^,r)^ = (J)*T^ for*the functor Hn in (5.11) are given by 

i<t>*r.f)(X\,...,X'J=rfof{4,X\,...,4>X'J. 

This completes the definition of the functor H^ in (5.11). 

It is proved in Baues and Wirsching [10] that an equivalence of categories 0 induces 
an isomorphism cj)* for cohomology groups as above. Moreover a crucial property of this 
cohomology is the next result: 

5.14. THEOkEM. Let M{X,D) be the set of equivalence classes of linear extensions 
D -^ E -^ X where X is a small category. Then there is a natural bijection 

(l):M{X,D) = H\X,D) 

which carries the split extension to the trivial element. 

If X = G is a group this is the classical result on the classification of extensions of G. 
We define the bijection 0 as follows. Let 5 : Mor(X) —* Mor(E) be a function with 
ps{f) = / . For (Ai,A2) € Nerve{X)[2] there is a unique element c(Ai,A2) € -DA,A2 

satisfying 

5(AlA2) = s(Ai)5(A2) + c(Ai,A2). 

This defines a cocycle c £ F^ which represents the cohomology class 0{E} = {c}. By 
'change of universe' we can define the cohomology above also in case X is not small 
so that 5.14 remains true. 

As an example we now consider the linear extension 5.9 which represents a nontrivial 
cohomology class (t>{K{^}\ in fact, the functors ff^, iĴ "*"̂  and this cohomology class 
determine the category KJ^ up to equivalence. Pirashvili [74] computed the following 
restrictions of the class 0{jFfp}. 

5.15. THEOREM. Let TT be a finite group and let Gro{H^^^)T^ be the subcategory of 
Gro{H'^^^) consisting of objects (TT, M , A:) and morphisms (ITT, / ) . Moreover let K^ be 
the corresponding subcategory of Kl^. Then one has the linear extension 

H^ ±^K^^ Gro{H''-^^)^ 

which is a restriction of the linear extension 5.9. This extension represents the generator 
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where the right hand side is a cyclic group of order |7r| = number of elements of TT. 
Moreover the cohomology groups 

0 = if^(Gro(if^+\,/f^), i 7̂  2, 

are trivial otherwise. 

These examples may suffice to show that cohomology of groups and cohomology of 
categories are both important ingredients of the homotopy classification problem. Further 
applications of the cohomology of categories above can for example be found in Jibladze 
and Pirashvili [55], Dwyer and Kan [32], Moerdijk and Svensson [71], PaveSic [73]. Basic 
properties are described in Baues and Wirsching [10], Baues [3], Baues [4] and Baues 
and Dreckmann [7]. 

6. Simply connected homotopy types and ^7r-duality 

Any group can be obtained as the fundamental group of a polyhedron. This yields a 
multifaceted relationship between homotopy theory and group theory. There are natural 
restrictions to avoid the full complexity of homotopy theory. For example, one can restrict 
to homotopy types which are determined by the fundamental group; such homotopy types 
are the acyclic spaces for which the universal covering space is contractible. Many basic 
examples in geometry deal with acyclic spaces in which the complexities of higher 
homotopy theory do not arise. From the point of view of homotopy theory acyclic 
spaces are extremely special since they are just 1-types or Eilenberg-MacLane spaces 
K{G,\),Ge Gr. 

In contrast to acyclic spaces it is natural to consider simply connected spaces which 
avoid the complexities of group theory arising from the fundamental group. Indeed, for 
spaces with fundamental group n one has to use the theory of group rings Z[K] and 
Z[7r]-modules which are highly intricate algebraic objects. For simply connected spaces 
only the ring Z and abelian groups are needed. From now on we deal with simply 
connected homotopy types. 

An important feature of the theory of simply connected homotopy types is an 
H'n'duality between homology groups and homotopy groups. Though the definitions of 
these groups are completely different in nature it turned out that they have many proper-
ties which are "dual" to each other. This kind of duality is different from Eckmann-Hilton 
duality discussed in Hilton [51]. We shall describe various examples of iifTr-dual prop-
erties though a complete axiomatic characterization is not known. The starting point is 
again the theorem of Whitehead which yields i/Tr-dual properties as follows: A simply 
connected CW-space X is contractible if and only if its homology groups, or equivalently 
homotopy groups vanish so that 

H.[X) = 0 <=^ 7r*(X) = 0. (6.1) 

Here H^ denotes the reduced homology. A map f \ X -^Y between simply connected 
CW-spaces is a homotopy equivalence if and only if / induces an isomorphism for 
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homology groups, or equivalently homotopy groups, hence 

H^{f) is iso 4==> 7r*(/) is iso. (6.2) 

Moreover for any abelian group A and n ^ 2 there are simply connected CW-spaces 
X , y with 

{Hn{X)^AmAHiX = {) f o r z ^ n , 

\Kn(y) ^ A and niX = 0 for i:/: n. 

The homotopy types of X, Y are well defined by {A, n) and X = M{A, n) is called a 
Moore space and y = if (-A, n) is called an Eilenberg-MacLane space. The next result 
shows that these spaces are important building blocks for simply connected homotopy 
types. First we observe by (6.3) the following realizability result. Let Ai be a sequence 
of abelian groups, i € Z, with Ai = 0 for i ^ I. Then there exist simply connected 
CW-spaces X, Y with 

(Hi(X) = Ai forz^O, 

\iri{Y) = Ai fori^O. 

For this we take 

X= \J M{An,n) 

to be the one point union of Moore spaces and we take 

Y = llK{An,n) 

to be the product of Eilenberg-MacLane space (with the CW-topology). All simply 
connected homotopy types can be obtained by 'twisting* these constructions, see 6.7 
below. 

In the category Top* of pointed spaces one has the notions of fibration and cofibration 
which are Eckmann-Hilton dual to each other. Compare, e.g., Baues [3]. We consider 
pull backs and push outs in Top* respectively, 

X' y X 

Y' y Y 
f 

X > X" 

b push 

Y" 



30 H.-J. Baues Chapter 1 

where a is a fibration and 6 is a cofibration. If X is contractible we call X' -^Y' -^Y 
di fiber sequence and Y -^Y" -^ X" a cofiber sequence. If also Y\ Y" are contractible 
we write 

X' = n{Y) = loop space of Y, 

X" •= S{Y) = suspension of Y. 

We have the J?7r-dual properties 

frM(A,n) = M(An-f 1), 
\nK{A,n)=^K{A,n-\) 

of Moore spaces and Eilenberg-MacLane spaces respectively. Moreover if / and g are 
null-homotopic we get 

X'^Y' xn{Y), 

X"^Y"yS{Y), 

where the right hand side is a product and a one point union respectively. If / and g are 
not null homotopic we consider X' and X" as 'twisted' via / and g. Then / is called a 
classifying map for X' and g is called a coclassifying map for X". 

6.6. DEHNITION. Let A* = {An, n ^ 2) be a sequence of abelian groups. A homotopy 
decomposition associated to A* is a system of fiber sequences (n ^ 3) 

y „ ^ y , _ , -^x (An ,n - f 1) 

with y2 = ii'(i42,2). This implies that Y^ is an n-type and therefore kn induces the 
trivial homomorphism on homotopy groups. A homology decomposition associated to 
A* is a system of cofiber sequences (n > 3) 

Xn^Xn-X^M{An,n-\) 

with X2 == M(i42,2) where A:̂  is required to induce the trivial homomorphism on 
homology groups. 

Homology and homotopy decompositions are H-K-AwdX constructions for which the 
following classical result holds (due to Postnikov [76] and Eckmann and Hilton [34], 
Brown and Copeland [15]). Let lim and lim be the direct and inverse limits in Top. 

6.7. THEOREM. Let X be a simply connected CW-space. Then there exists a homology 
decomposition associated to H^X and a map 

WmXn-^X 
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which induces an isomorphism of homology groups. Moreover there exist a homotopy 
decomposition associated to TT^X and a map 

X —>\imYn 

which induces isomorphisms of homotopy groups. 

Hence each simply connected homotopy type X can be constructed in two ways, either 
by a homology decomposition or by a homotopy decomposition. The space Yn — PnX 
may also be obtained by the Postnikov functor in (4.3). Using the Postnikov decompo-
sition Schon [83] showed that an ^effective' classification of homotopy types of simply 
connected compact polyhedra is possible. The Whitehead theorem 6.2 and Theorem 6.7 
somehow show that a simply connected homotopy type is 'generated' by homology 
groups and in a dual way also by homotopy groups. For this compare also the minimal 
models in 12.9, 12.11 below. Theorem 6.7, however, does not tell us how to compare two 
homology decompositions or two homotopy decompositions respectively, that is, we do 
not know under which condition two such decompositions represent the same homotopy 
type. For this one has to solve Whitehead's realization problem. 

6.8. REMARK. Dwyer, Kan and Smith [33] construct for a graded abelian group A^ (with 
i4i = 0 for z < 1) a space B{A^) which parameterizes all homotopy decompositions 
associated to A^. More precisely the set of path components, 7roB{AS^), coincides with 
the set of all homotopy types X for which there exists an isomorphism A^ = TT* (X). The 
fundamental group of the path component Bx C B{A^), corresponding to X, is the same 
as the group of homotopy equivalences 7roE{X) of X. In fact, the path component Bx 
has the homotopy type of the classifying space B{E{X)) where E{X) is the topological 
monoid of homotopy equivalences of X, i.e. Bx ~ B{E{X)). 

We now consider the functorial properties of Moore spaces and Eilenberg-MacLane 
spaces respectively. Let Ab be the category of abelian groups and forn ^ 2 let 

K", M^ C Top/ - (6.9) 

be the full homotopy categories consisting of spaces K{A, n) and M(A, n) respectively 
with A € Ab. 

6.10. LEMMA. The n-th homotopy group functor 

TTn : K" - ^ Ab 

is an equivalence of categories. The n-th homology group functor 

Hn : M^ —> Ab 

is not an equivalence but a detecting functor, see 5.6. 

6.11. REMARK. In fact there is a functor Ab -^ Top which carries an abelian group A 
to a space K{A,n). For this we observe that the classifying space B{H) of an abelian 
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topological monoid H is again an abelian topological monoid in a canonical way. Hence 
we can iterate the classifying space construction and obtain the n-fold classifying space 

K{A,n) = B.,.B{A). 

Compare Segal [81]. On the other hand there is no functor Ab —> Topj ~ which carries 
A to M{A, n) and which is compatible with the homology /?„• For this we observe that 
there is actually a linear extension of categories 

JE;̂  _, M^ _, Ab 

which represents a nontrivial class in H^{Ab, E^), see Baues [3]. The bifunctor E'^ on 
y46 is given by 

E''{A,B) = Ext{A,r{'B) 

where T/^B = B 0 Z/2 forn ^ 2 and Tf (B) = r{B) is the quadratic construction of 
J.H.C. Whitehead [102]. 

The lemma and the remark describe a lack of if7r-duality. We shall describe many 
further examples of iifTr-dual properties; yet this duality does not cover all important 
features of homotopy groups and homology groups respectively. In particular homology 
is often computable while there is still no simply connected (noncontractible) finite 
polyhedron known for which all homotopy groups are computed. The homotopy groups 
n^M{A^n) of a Moore space are i^Tr-dual to the homology groups H^K{A,n). If 
A is finitely generated it is a fundamental unsolved problem to compute 7r^M{A,n). 
The computation of H^K{A^n), however, was achieved in the work of Eilenberg and 
MacLane [36] and Cartan [23]. For example, we have 

Hn+2K{A,n) = 7rn+,M(A,n) = F^iA) (6.12) 

where we use Tj^ as in 6.11. Recall that [X, Y] denotes the set of homotopy classes of 
pointed maps X —^ Y. The homology H^K{A,n) is used for the computation of the 
groups 

[K{A,nl K{B,m)] 

whose elements are also called cohomology operations. In particular the first nontrivial 
classifying map in a homotopy decomposition is such an operation. Applications of 
cohomology operations are discussed by Steenrod [90]. On the other hand the groups 

[M{A,n), M{B,m)\ 

are not at all understood; for A = B = Z these are the homotopy groups of spheres. 
A further lack of i/7r-duality is the following result on decompositions in 6.7. 

6.13. PROPOSITION. The homotopy decomposition of X can be chosen in Top to be 
functorial in X. The homology decomposition of X cannot be chosen to be functorial 
neither in Top nor in the homotopy category Top/ ~. 
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Using Eilenberg-MacLane spaces and Moore spaces we obtain the groups (n ^ 2) 

H^{X,A)=[X,K[A,n)l 

7rn(AX)=[M(An),X] (6.14) 

which are called the cohomology group of X, resp. the homotopy group of X in dimension 
n with coefficients in the abelian group A. Hence the decompositions of X in 6.7 yield 
elements 

k'^X^k'^£T^n-x{HnX,Xn-x). (6.15) 

Here fcn-X" is actually an invariant of the homotopy type of X in the sense that a map 
f : X -^Y satisfies 

{Pn-lfrknY={7rnf).knX (6.16) 

in H^"^^ {Pn-]X, TTnY). Here we use the Postnikov functor P^-i and the naturality of the 
Postnikov decomposition in 6.13. The element knX in (6.15) is called the n-th k-invariant 
or Postnikov invariant of X. The element k'^X given by a homology decomposition of 
X is not an invariant of X since the homotopy type of Xn is not well defined by the 
homotopy type of X. We shall describe below new invariants of X which are /̂ Tr-dual 
to Postnikov invariants and which we call boundary invariants of X. They are given by 
the 'invariant portion' of the elements k'^X\ see 8.10 below. 

The groups in (6.14) are part of natural short exact sequences which are ifTr-dual to 
each other: 

Ext{Hn^\X,A)^H''{X,A) ^ Hom{HnX,A), 

X)^7rn{A,X) ^ Hom{A,7rnX). (6.17) 

Here the surjection /x carries (p : X -^ K{A, n), resp. ijj : M{A, n) —> X, to the induced 
map 

Hn<p : HnXC -^ HnK{A, n) = A, resp. 

TTni^ : A = TTnM{A, Tl) —• TTnX. 

The exact sequence for H'^{X, A) is always split (unnaturally) while the exact sequence 
for TTniA.X) needs not to be split. We point out that the cohomology H'^{X,A) may 
also be defined by 

H^'iX.A) = [C.X,C,M{A,n)]. (6.18) 

Here C* is the singular chain complex and the right hand side denotes the set of homotopy 
classes of chain maps. Dually we define the pseudo-homology 

Hn{A,X) = [CM{A,n),aX] (6.19) 

which yields a well defined bifunctor Ab^^ x Top —• Ab. This is the analogue of iTn {A, X) 
in the category of chain complexes. As in (6.17) one has the natural short exact sequence 

Ext(A,Hn^iX) >t Hn{A,X) ^ Hom{A,HnX) (6.20) 

which is always split (unnaturally). 
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7. The Hurewicz homomorphism 

Homology groups and homotopy groups are connected by the Hurewicz homomorphism 

h = hnX:7rnX-^HnX. (7.1) 

This is the special case A = Z of the homomorphism 

h^ = hniAX) : TTniA.X) ^ Hn{A X) 

which carries ij;: M{A^ n) —• X to the induced chain map C^xp. These homomorphisms 
are compatible with the short exact A - /i-sequences in (6.17) and 6.7, and they are 
natural in X and hence invariants of the homotopy type of X. In fact, the next result 
shows that the Hurewicz homomorphism has a strong impact on homotopy types. 

7.2. PROPOSITION. Let X be a simply connected CW-space. Then (A) and (B) hold, 
(A) The Hurewicz homomorphism hnX is split injectivefor all n if and only if X has 

the homotopy type of a product of Eilenberg-MacLane spaces. 
(B) Moreover hnX is split surjective for all n if and only if X has the homotopy type 

of a one point union of Moore spaces. 

Properties (A) and (B) form a further nice example of if 7r-duality. 

PROOF. (A) Let rn be a retraction of hnX and let / „ € H'^{X,7rnX) be a map with 
/jL{fn) = Tn, sec (6.17). Then the collection {/n} defines a map 

f:X-^l[K{7rnX,n) 

which is a homotopy equivalence by the Whitehead theorem. 
(B) Let Sn be a splitting of hnX and let gn € iTn{HnX, X) be a map with ^(^n) = Sn-

Then the collection {gn} defines a map 

g: \J M{HnX,n)—. X 

which is a homotopy equivalence by the Whitehead theorem. D 

We now discuss topological analogues of the Hurewicz homomorphism. We consider 
for a simply connected CW-complex X the infinite symmetric product SPoo = lim SPnX 
where 

SPnX = X^'/Sn (7.3) 

is the space of orbits of the action of the symmetric group Sn on the n-fold product 
X^ = X X '" X X obtained by permuting coordinates. The map SPn-\X —• SPnX is 
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induced by the inclusion X"^ ' = X""^ x * c X"^ where * is the base point of X, The 
inclusion 

X = SP^X -^ SPooX 

induces the Hurewicz homomorphism 

hfiX : TTn^ ~* TTnSPooX = HnX 

where the right hand side is the Dold-Thom isomorphism [30]. Let FX be the homotopy 
fiber of X C SPooX so that 

FX SPooX (7.4) 

is a fiber sequence. Using the simplicial group GX there is an alternative way to obtain 
this fiber sequence by the short exact sequence 

F2X y-^GX -^AX (7.40 

where AX is the abelianization and where FiX is the commutator subgroup of GX. Then 
FX c^ B\F2X\ is the classifying space of the realization of F2X and the functor B\ \ 
applied to (7.4') yields (7.4) up to homotopy equivalence. For this compare Kan [57] 
who proved that GX —• AX induces the Hurewicz homomorphism. Using the skeleta 
X^ of a CW-complex J.H.C. Whitehead introduced the T-groups of X given by 

FnX = image(7rn X̂ ""̂  -> TT^X^) (7.5) 

where the homomorphism is induced by the inclusion X^~^ C X^. Moreover we intro-
duce in Baues [6] the T-groups with coefficients Fn{A,X) by the following push-pull 
diagram derived from the A - /i-sequence 6.7. 

Ext{A,rn+iX) -e-
V 

rr,{A,x) ^ 

push 

Ext{A,nn+\X'') 
Y 

Hom{A,rr^X) 

^ 7rn(A;X") 

pull 

- ^ HomiA^TTnX'') 
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Here i : FnX C ^nX^ is the inclusion and (p : 7Tn^\X'^ -^ fn^iX is the projection 
defined by (7.5). 

7.6. PROPOSITION. Let X be a simply connected CW-complex. Then there are natural 
isomorphisms 

(a) FnX = iTnrX. 
(h)rn{AX) = 7rn{Arx), 
(C) HnX = TTnSPoc^X, 

{d)Hn{A,X) = irn{A,SPooX), 
The isomorphisms which we shall use as identifications are compatible with A — fi 

exact sequences above. 

Here (a) and (c) are due to Kan [57] and Dold and Thorn [30], respectively. Hence 
the long exact sequence of homotopy groups for the fiber sequence (7.4) yields by 
identification, as in 7.6, the exact sequences 

. . . - ^ Hn+iX - ^ FnX - U TTnX - ^ Hr,X - ^ . . . and 

. . . - ^ Hn^liAX) ^ FniA^X) ^ 7 rn (A^) ^ Hn{A X) ^ . . . 

(7.7) 

in which all operators are compatible with the ^ - /x exact sequences. We call these 
the F-sequence and the F-sequence with coefficients in A respectively. Hence kernels 
and cokernels of the Hurewicz homomorphisms can be determined by the operators z, b 
in these sequences. Here i and i^ are induced by X"^ C X and b is the secondary 
boundary operator of J.H.C. Whitehead. In Baues [6] (II.3.5) we give also an explicit 
description of the operator b^. The T-sequence coincides with the classical certain exact 
sequence of J.H.C. Whitehead which is the special case, A = Z, of the second exact 
sequence. Clearly both exact sequences are invariants of the homotopy type of X. In 
fact, J.H.C. Whitehead [102] used part of the T-sequence as a classifying invariant of a 
simply connected 4-dimensional homotopy type. 

The definition of FnX in (7.5) shows that this group depends only on the (n — l)-type 
of JY, in fact we have the natural isomorphism 

Fk{X) = FkiPn-^X), fc^n, (7.8) 

induced by a map pn-i '- X ~> Pn-\X which extends the inclusion X'^ C Pn-\X, 
see (4.3). Moreover the map pn-i applied to the jT-sequence of X yields natural iso-
morphisms 

HnPn-\X = Fn_lPn-\X = F^_i{X), 

Hn+lPn-lX = FnPn-\X = Fn{X) (7.9) 

where F^_^X = kernel(rn-iX —• TTn-iX). These groups are used in the following 
result on the 'realizability of Hurewicz homomorphisms\ proved in III.4.7 of Baues [6]. 

7.10. THEOREM. Let Y be a simply connected (n - l)-type and let 

H,-^FnY—^ir-^Ho—^ Fll_,Y -^ 0 (*) 
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be an exact sequence of abelian groups where H\ is free abelian. Then there exists 
an (n -h \)-dimensional complex X and a map p : X ^^ Y inducing isomorphisms 
TTkX = TTkY for k ^ n— \ together with a commutative diagram 

— . nnX —̂ —̂̂  HnX > r;'_,x . 0 

4 4 4'* 
Hn-\-lX 

•1 
Hi 

^ PnX 

-1" 
> FnY . TT . Ho > rl[_,Y > 0 

in which all vertical arrows are isomorphisms. The top row is part of the F-sequence 
of X. The space Y together with the sequence (*) in general does not determine the 
homotopy type of X. 

The result shows exactly what kind of abstract homomorphisms TT -^ Ho between 
abelian groups can be realized as a Hurewicz homomorphism TTU —^ Hn of a space with 
a given ( n - l)-type. It also demonstrates to what extent homotopy groups and homology 
groups depend on each other. 

7.11. EXAMPLE. We may choose for Y in 7.10 an Eilenberg-MacLane space 

Y = K{A, k) with 2 ^ A: ^ n - 1. 

Then the groups, see (7.9), 

rnY = Hn^lK{A,kl 

n_,Y = HnK{A,k) 

are known by the work of Eilenberg, MacLane and Cartan. Hence any exact sequence 

Hi —^ Hn^iK{A, k)-^7r—^Ho—^ HnK{A, k) ^ 0 

with H\ free abelian can be realized as a T-sequence of an (n + l)-dimensional CW-
complex X with Pn-\X = K{A, k). For example, for A: = 5, n = 9 we have 

HioK{A,5) = A^{A) eA*Z/6, 

H9K{A,5) = A^Z/6, 

where A^ is the exterior square and Z/6 is the cyclic group of order 6. Hence for any 
exact sequence 

i/io —> A^{A) ® ^ * Z/6 —^ 7r9 —yHg —>A<S^Z/6 —^ 0 

of abelian groups with H\o free abelian there exists a 10-dimensional CW-complex X 
with TTsX = A, TTi = 0 for 2 < 5 and 5 < i < 9, such that this sequence is part of the 
T-sequence of X. 
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8. Postnikov invariants and boundary invariants 

Recall that the n-th Postnikov invariant of a simply connected space X is an element 

knX£H''^\Pr,-xX,'KnX). (8.1) 

This element is highly related to the T-sequence of X, For this we observe that by (6.17) 
and (7.9) we obtain the natural short exact sequence 

Ext[rll^^X,A) ^ H''•^\Pn^^X,A) ^ Hom{rnX,A). (8.2) 

Each element k e H^'^\Pn-\X,A) yields elements 

k^=fx{k) eHom{rnX,A), 

k^ = A-^q^{k) e Ext{rll_^X,cokK), 

where q: A - ^ cok{k^) is the projection of the cokemel of A;*. A bifunctor in X and A 
is given by {X,A) ^ ff^+^(Pn>iX,>l). 

8.3. THEOREM ON POSTNIKOV INVARIANTS. TO each \-connected CW-space X there is 
canonically associated a sequence of elements (^3,^4,..) w///i 

Gi7"+'(Pn_,X,7r„X) 

such that the following properties are satisfied: 

(a) Naturality: For a map F : X -*Y we have 

{-KnFUknX) = F*{knY) € H^^\Pn-^X,1^nY). 

(b) Compatibility with inX in the T-sequence: 

(fcnX), = inX G Hom{rnX,TTnX). 

(c) Compatibility with the extension HnX in the T-sequence: 

{knX)^ = {HnX} e Ext{rll^,X,COkinX) 

Here the extension element {HnX} is given by the exact F-sequence of Xy 

FnX ^ T^nX -^ HnX -^ T^'.^X -^ 0. 

(d) Vanishing condition: All Postnikov invariants are trivial if and only if X has the 
homotopy type of a product of Eilenberg-MacLane spaces. 

This result which partially seems to be unknown is proved in n.5.10 of Baues [6]. We 
now introduce new invariants which are i/7r-dual to the Postnikov invariants above. For 
this we first define the subgroup 

rii_,{A,x)crn-M,x) (8.4) 
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obtained by all elements a G rn-\{A^X) for which /x(a)(i4) C r^_^X. Hence one has 
the short exact sequence 

Ext{A,rnX) ^ rll_,{A,X) ^ H(ym{A,rll_^X). (8.5) 

Here r^'_, is actually a bifunctor in 4̂ € ^6 and X e Top*/ :̂ . To see this we observe 
that the map Pn~i • X —> Pn-\X induces a binatural isomorphism 

C^,(AX) = HniAPn-lX). (8.6) 

Here the right hand side is the pseudo homology and we use the T-sequence with coef-
ficients in A and (7.9). Since bnX : HnX —> Fn-iX yields a surjection bnX : HnX —> 
r^^^X we see that the boundary operator b"^ in the T-sequence with coefficients maps 
to r^'_j(A,X). Hence we obtain the following commutative diagram which is natural 
in A e Ab and simply connected spaces X. 

Ext{A,Hn^iX) —^—^ Hn{A,X) —5i—^ Ham{A,HnX) 

Ext{A,rnX) —^ r;'_,(A,x) > Hom{A,r;[_^x) 

8.7. DEFlNmON. Consider this diagram for A = HnX and let U e Hn{HnX, X) be an 
element with ^(In) = identity of HnX. Then the coset of b^{\n) modulo the image of 
A{bn-{-\X)^ is the boundary invariant PnX of X, that is 

PnX = {b^iin)} € . ^ r i ^ f ^ ; 5 ^ , . 

We have the short exact sequence 

Ext{A,cokbn^,X) ^ . ^^''!:^'^J, ^ ^ i?om(Ar^'.iX) (8.8) 
2m(^(6n-MA):,) 

which is natural in AG Ab and simply connected spaces X. This sequence is the i?7r-dual 
of the sequence in (8.2) above. Each element 

imiAibn+iX)») 

yields elements 

l3,=tii0)€H(mi{A,r;:_^X), 

/3| = A-^j*il3) 6 Ext{ker0„cokb„+iX) 

where j : ker 0:, C Ais the inclusion of the kernel of /3,. The next result is the i f 7r-dual 
of the 'theorem on Postnikov invariants' in 8.3. 
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8.9. THEOREM ON BOUNDARY INVARIANTS. TO each \-connected CW-space X there is 
canonically associated a sequence of elements (^,/34,...) with 

such that the following properties are satisfied: 
(a) Naturality: For a map F : X -^Y we have 

{Hr,Fy{0nY) = F.{0nX)£ 
j;'-,(^nX,y) 
imA{bn-\-\X)^ ' 

(b) Compatibility with bnX in the T-sequence: 

iPnX), = bnX € Hcmi[HnX,r:i_,X). 

(c) Compatibility with the extension -KnX in the T-sequence: 

(/3nX)| = {TTnX} € Ext[kerhnX,cokhn+\X). 

Here the extension element {'KnX] is determined by the exact F-sequence of Xy 

^n- l -

(d) Vanishing condition: All boundary invariants are trivial if and only if X has the 
homotopy type of a one point union of Moore spaces. 

This result is proved in II.6.9 of Baues [6]. 

8.10. REMARK. The boundary invariants have the following connection with the coclas-
sifying maps k'^ in a homology decomposition of X. For this let X = lim Xn be given 
by a homology decomposition. Then X is a CW-complex with skeleta X"^ and there are 
inclusions 

Moreover the classifying map A:̂  can be chosen such that the following diagram com-
mutes, Hn = HnX. 

Xn-\ 

M(H„,n-l) 

M{Hn,n-l) 

n - l 

n - 2 
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Hence /3 represents an element in rn~\{Hn, X) (using the definition in (7.5)) and this el-
ement represents the boundary invariant /3nX. Therefore 8.9(c) yields an explicit formula 
for deriving TTnX from k!^. 

8.11. REMARK. Let C be a homotopy category of simply connected spaces. Then we 
have the functors 

rn.r::_,:C-^Ab (1) 

which both appear in a dual fashion in the natural exact sequences (8.2) and (8.5). There 
is an obstruction O for the existence of a splitting of (8.2) which is natural in X £ C 
and A e Ab. This obstruction is an element in the cohomology of C, 

O G i f ^ ( C , E x t ( C , r ^ ) ) . (2) 

Here Ext{rll_^, Fn) is the natural system which carries / : X —> y in C to the abelian 
group Ext{r^_^X, FnY). The element O determines the extension (8.2) as a bifunctor 
in X € C, A G Ab up to equivalence. On the other hand there is an obstruction O' 
for the existence of a splitting of (8.5) which is natural in X e C and A e Ab. This 
obstruction also turns out to be an element in the cohomology (2), 

Again O' determines the extension (8.5) as a functor in X £ C, A e Ab up to equiva-
lence. Now the extension (8.2) and (8.5) are dual in the explicit sense that the elements 
(2) and (3) actually coincide; that i^ O = O'. This is proved in III. § 3 of Baues [6]. In 
the next section we use the extensions (8.2) and (8.5) in a crucial way to obtain models 
of homotopy types. 

9. The classification theorems 

We now show that fc-invariants and boundary invariants both can be used to classify 
homotopy types. For this we choose a full subcategory 

C c (n- l ) - types (9.1) 

consisting of simply connected ( n - l)-types. For example we can take for 1 < A: < n the 
category C = K^ = Ab consisting of Eilenberg-MacLane spaces K{A, k) with A G Ab, 
We consider the functor 

Pn : spaces^-^\C) -> n'types{C) (9.2) 

where the left hand side is the full homotopy category of (n-h l)-dimensional CW-spaces 
U for which the (n - l)-Postnikov section Pn-\U is in C, similarly the right hand side 
is the full homotopy category of n-types V for which Pn-iV is in C. The functor Pn 
is the restriction of the Postnikov functor in (4.3). In the next definition we use the new 
word *kype' which is an amalgamation of fc-invariant and type. 

9.3. DEFINITION. Let C be a category as in (9.1). A C-kype 

X = (X,7r,fc,if,6) 
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is a tuple consisting of an object X in C, abelian groups TT, H and elements 

k e i/"+^(X,TT), be Hom{H,FnX) 

such that the sequence 

H -^ FnX - ^ TT 

is exact, see (8.2). A morphism between C-kypes 

(/,^,^) : {X,i^,k,H,b) - . {X\n\k',H\b') 

is given by a map f : X -^ X' in C and homomorphisms (/? : TT —• TT', t/; : i / -^ iJ' 
between abelian groups such that 

{rnf)b=b'tp. 

The C-kype X is freey resp. injective, if if is free abelian, resp. b is an injective ho-
momorphism. Let Kypes{C), resp. /cypes(C) be the categories of free, resp. injective 
C-kypes with morphisms as above. We have the forgetful functor 

(j): Kypes{C) —• kypes{C) 

which carries {X, TT, fc, H, b) to {X, TT, k.H', b') where H' is the image of b and where 6' 
is the inclusion of this image. The functor (j> is easily seen to be full and representative. 

Recall that a ^detecting' functor is a functor which reflects isomorphisms and is full 
and representative. 

9.4. CLASSIFICATION BY POSTNIKOV INVARIANTS. There are detecting functors A, A for 
which the following diagram of functors commutes up to natural isomorphism. 

spaces'^'^^C) — ^ Kypes{C) 

n'types{C) • /cypes(C) 

Here the functor A carries the space X to the free C-kype 

A{X) = {Pn-^X,7^nX,knX,Hn^^X,bn^^X) (9.5) 

given by the Postnikov invariant (8.1), see 8.3. We point out that only the detecting functor 
A is a classical result of Postnikov, the existence of the detecting functor A seems to be 
a new property of ^-invariants which did not appear in the literature. Theorem 9.4 is 
proved in III.4.4 of Baues [6]. 
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Using boundary invariants we obtain the if 7r-dual of the classification theorem above. 
We are now going to use a new word 'bype' which is an amalgamation of boundary 
invariant and type. 

9.6. DEHNITION. Let C be a category as in (9.1). A C-bype 

X = {X,Ho,Hub,/3) 

is a tuple consisting of an object X in Cy abelian groups HQ, H\ and elements 

heH(mi{Hx,rnX), 

^^n_,[Ho,X) 
im{AK) 

Here we use A in (8.5) and 6* : Ext{Ho,H\) -* Ext{Ho^ PnX). Moreover the induced 
homomorphism 

/3. = M(/3) : Ho - n_,X 

is surjective, see (8.5). A morphism between C-bypes 

(/,V>o,Vi): {X,Ho,Hub,P) - {X',Hl„Hl,b',0') 

is given by a morphism f : X —^ X' in C and by homomorphisms (po : Ho —>^ H'Q, ip\ : 
H\ -* H[ such that 

(r„/)6 = 6Vo, 

/.(/?) = ¥'5(/9')-

The C-bype X is free, resp. injective, if H\ is a free abelian group, resp. b is an injective 
homomorphism. Let Bypes{C), resp. bypes{C), be the categories of free, resp. injective, 
C-bypes with morphisms as above. We have the forgetful functor 

(f): Bypes{C) -> bypes{C) 

which carries {X,Ho,H\,b,P) to {H.HQ.H'^.b',P) where H[ is the image of b and 
where 6' is the inclusion of this image. The functor </> is full and representative. 

9.7. CLASSinCATION BY BOUNDARY INVARIANTS. There are detecting functors A', A' for 
which the following diagram of functors commutes up to natural isomorphism. 

spaces''-^\C) — ^ Bypes{C) 

n'types{C) • bypes{C) 
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Here the functor A' carries the space U to the free C-bype 

A'{U) = ( P n - l X , H n X , i f n + , X , b n + l ^ , / 3 n X ) (9.8) 

given by the boundary invariant Pn^ in 8.7, see 8.9. The classification theorem 9.7 is 
proved in III.4.4 of Baues [6]. It shows that boundary invariants can be used in the 
same way as Postnikov invariants for the classification of homotopy types. In the book 
Baues [6] we give many explicit examples of applications for the classification theorems 
above. 

9.9. REMARK. J .H.C. Whitehead [102] obtained for the homotopy category of simply 
connected 4-dimensional CW-spaces two detecting functors. These coincide exactly with 
A and A* above if we take n = 3 and C — K^. This is, in fact, a very simple case of 
the classification theorems above for which we use 

r3ir(A,2) = r (A) , 

r^'K{A,2)^0. 

We leave this as an exercise to the reader, see also 10.8 below. In Baues [6] we use 9.7 
for the classification of simply connected 5-dimensional homotopy types. 

10. Stable homotopy types 

The suspension E is an endofunctor of the homotopy category Top"/ ~ given by the 
quotient space 

r X = / X X / ( {0 } X X U / X * U {1} X X) (10.1) 

where / = [0,1] is the unit interval, see also (6.5). The functor S carries a map / : 
X -^Y io Ef \ EX -^ EY with {Ef){t,x) = ( t , /x ) for t G / , x € X. It is 
easy to see that E carries homotopic maps to homotopic maps. We say that two finite 
dimensional CW-complexes X, Y are stably homotopy equivalent if there is fc ^ 0 
and a homotopy equivalence E^X ~ E*^Y where E^ is the Ar-fold suspension. A 
stable homotopy type is a class of stably homotopy equivalent CW-complexes. Since the 
classification of homotopy types is so hard Spanier and Whitehead [88] supposed that 
stable homotopy types might give a first approximation of the homotopy classification 
problem which is easier to understand. For this the 'stable homotopy theory of spectra' 
was invented which, however, turned out to be still an extremely complicated world, see 
G.W. Whitehead [96]. 

The impact of the suspension operator E comes from a classical result of Freudenthal 
which we state in the following form. 

10.2. FREUDENTHAL SUSPENSION THEOREM. Let spaces^ be the full homotopy category 
in Top*/ ~ consisting of{n'- \)-connected {n-\-k)-dimensional CW-complexes, n ^ 1, 
fc ^ 0. Then the suspension yields a functor 

E : spaces^ —• spaces^_^^ 
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which is an equivalence of {additive) categories for k~\-\ <n and which is a detecting 
functor for A: -f- 1 = n. Moreover for k =^ n this functor is representative. 

Compare, for example, Gray [44]. 
For n ^ 2 the functor E in the theorem reflects isomorphisms. This follows from the 

Whitehead theorem (6.2) since the (reduced) homology of a suspension satisfies 

HnSX = Hn-\X for all n. (10.3) 

As pointed out in Section 3 the main numerical invariants of a homotopy type are di-
mension and degree of connectedness. These invariants are of particular importance in 
the theory of manifolds. Therefore it is natural to consider for given n, A: the properties 
of (n - l)-connected (n -h fc)-dimensional CW-complexes which J.H.C. Whitehead [98] 
called A^'polyhedra. The A^-polyhedra, n ^ 1, are the objects in the homotopy cate-
gories of the sequence 

spaces^ —• spac€S2 —• • • • spaces!^ —> spaces^^i —• (10.4) 

which by Freudenthal's theorem above 'stabilizes' for n ^ A: -h 2. Hence there are only 
A: + 2 different categories in this sequence. This also shows that the stable homotopy 
types of i4^-poIyhedra (n ^ 0) can be identified with the homotopy types in the category 
spaces!^^ n ^ A: -i- 1. We say that i4^-polyhedra are stable if n ^ A: -f 1. 

Each homotopy type of an i4^-polyhedron can be represented by a (reduced) 
CW-complex X with X'^~^ = * and dim{X) = n -\- k. Hence X - {*} has only 
cells in dimension n, n -}- 1 , . . . , n -f A;. For A: = 0 the CW-complex X is thus a one 
point union of n-spheres. This also shows that one has equivalences of categories 

spaces^ = category of fi-ee groups, 

spaces2 = category of free abelian groups (10.5) 

where II coincides with the abelianization functor for groups. For A; > 0 the al-
gebraic models of the categories in (10.4) get more complicated. J.H.C. White-
head [102], [98], [100] studied the case A: = 2 and we study the case A: = 3 
in Baues [4], [6], see 10.8 and 10.11 below. Moreover Unsold [95] considers for 
A: = 4, n > 3 the subcategory of spacesl^ consisting of CW-complexes with finitely 
generated torsion free homology. It would be unreasonable to try and extend these cal-
culations for large values of k. It will, however, increase our knowledge on the nature 
of homotopy types considerably if we are able to discuss in detail homotopy types of 
i4^-polyhedra for small k, say A: ^ 5. This for example includes, for n = 2, simply 
connected 7-dimensional homotopy types. 

10.6. REMARK. M.J. Hopkins [53] discusses new global methods to study stable ho-
motopy types. For this a fundamental filtration of the stable homotopy category Co of 
*p-local finite spectra': 

Co D Ci D • • O Cn D C, n-l-l 

is considered where Cn contains all objects which are acyclic with respect to the Morawa 
/("-theory K{n — 1). The classical dimension filtration of the stable homotopy category, 
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coming from the sequence (10.4), is more related to problems like the classification 
of manifolds in a particular dimension. J.H.C. Whitehead [102] obtained the following 
algebraic models of stable A^-polyhedra, n ^ 3. 

10.7. DEFINITION. An A^-system 

S = {Ho,H2,7:ub2,ri) 

is a tuple consisting of abelian groups HQ, H2, TTI and elements 

r/€ifom(Ho®Z/2, TTi) 

such that the sequence 

H2-^HO®Z/2^T:X 

is exact. A morphism 

(</?o,</?2,<̂ pi) : {Ho,H2,7rub2,v) -^ (ffo»^2»^'b^2i^0 

is given by homomorphisms (pi : Hi —^ H[ for z = 0,2 and (̂ TT : TTI —• TT} such that the 
diagram 

H2 —^-> ifo<8)Z/2 — ^ ^ TT, 

<^2 V>0®Z/2 <̂ ir 

if^ — ^ H'^^ZIl — ^ TT; 

commutes. The A^-system 5 is free, resp. injective, if H2 is free abelian resp. 62 is 
injective. Let A^Systems, resp. ^-systems be the categories of free, resp. injective 
A^-systems with morphisms as above. We have a forgetful functor 

0 : A^'-Systems -^ A^-systems 

which carries (i/o, -^2, TTI , 62, T/) to (i/o, ^̂ 2̂  TTI , 62, vi) where i / j is the image of 62 and 
&2 is the inclusion of this image. 

Let types^ be the full homotopy category of (n - l)-connected (n -f A:)-types and let 

F^ : spaces^ -^ types* 

be the restriction of the Postnikov functor. 



Section 10 Homotopy types 47 

10.8. CLASSIFICATION OF J.H.C. WHITEHEAD. For n ^ 3 there exist detecting functors 
A^Xfor which the following diagram of functors commutes up to natural isomorphism. 

spaces^ • A?^-Systems 

'A V 
types\ • A^'Systems 

This result is an easy application of 9.4, compare 9.9 and (6.12). The functor A carries 
a space X to part of the T-sequence of X, 

Hn-k-lX • Tn-f-lX • TTn-flX 

where Fn^xX = HnX 0 Z/2. Here r/ can be identified with the Postnikov invariant 
7/ = kn+\X, 

Next we describe algebraic models of stable A^-polyhedra, n ^ 4. For this let Z/2 
be the cyclic group of two elements and let 

ifom((g)Z/2, - ) : Ab""^ x Ab-^ Ab 

be the functor which carries H, L to Hom{H ® Z/2, L). Moreover let 

Gro{ifom((g)Z/2,-)) (10.9) 

be the Grothendieck construction of this functor. Objects in the category (10.9) are 
triples rj = (if, L, rj) with rj € Hom{H 0 Z/2, L) and morphisms (^i, -̂ o) :rj -^ rj' are 
homomorphisms V̂ i : L -^ V, 'tl^o : H -* H' with ipirj = //'(-̂ o 0 Z/2). We point out 
that there is an obvious equivalence of categories 

Gro{Hom{i^Z/2, - ) ) - ^ A^-systems. (1) 

For each abelian group A we have the short exact sequence 

A^TLjl^ G{A) -^ A^ljl (2) 

associated to the natural homomorphisms 

TA'- A^ Ijl = {x G A, 2x = 0} c i4 -^ AflA = A ( 

The abelian extension (2) is determined up to equivalence by A (̂2/x ^(x)) = T>I(X) 

for X G i4 * Z/2. Let 

G CG' C Gro(fiom(0Z/2, - ) ) (3) 

be the following subcategories. Objects in G are the triple A = {A, G{A), A) given by (2) 
and morphisms are pairs ((/?,^) which are compatible with (2), that is flip = {(p*Z/2)fx. 
There is a full forgetful functor 

G -^Ab (4) 
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which carries {A,G{A)^A) to A and there is an equivalence G = M'̂ , n ^ 3, where 
M"^ is the homotopy category of Moore spaces in degree n; see (6.9). Moreover G' in 
(3) is the full subcategory consisting of objects 77 = (i7, L, 77) for which there exists a 

factorization 7/: i f (g) Z/2 >—> G{H) -> L. We shall need the group 0(77) defined by the 
push out diagram 

L(8)Z/2 G{v) 

I 
G{H) 

if *Z/2 

(5) 

if *Z /2 

Moreover we shall use a canonical bifunctor 

(6) 

which carries the pair of objects {A, rj) to an abelian group G{A, 77). Here we only define 
this group if A or H is finitely generated; for a complete definition of G see VIII. 1.3 (B) 
in Baues [6]. Using (2) we have the dual extension 

Ext(A,Z/2): •Ham(G(A),Z/4)- -^Ham{A,Z/2) 

Ham{A * Z/2,Z/4) :^ ^ Ham{G{A),Z/A) - • Hom( A (g)Z/2,Z/4) 

which we use in the following push out diagram for the definition of G{A, rj). 

(7) 

Bxt(A,L)^ -^G(A,7i)- - ^ - Hom(A,/f 0Z/2) 

ExtiA,H<g)X/2) 

Ext{A,z/2)<S>H-

push 

- ^ Hom(G(A),Z/4)®H- HoTn(A,z/2)®H 

(8) 

The bottom row is obtained by applying the functor - 0 i f to (7). The top row is short 
exact. Induced homomorphisms for the functor G are defined by 

((̂ , (p)* = Ext{ip, L) © Hom{(p, Z/4) (g) H, 

{ipi, ip)^ = Ext{A,il;x) © fiom(G?(A), Z/4) 0 tjjQ, 

(9) 

Using these constructions of G{rj) and G{A, rj) we are now ready to define the following 
algebraic models of stable A^-polyhedra. 

10.10. DEFINITION. An A^-system 

(1) 
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is a tuple consisting of abelian groups HQ^HI^H^, TTI and elements 

62 ei /om(if2,^0 0 2/2) , 

T] ^ Hom{HQ ®Z/2,nx), 

b3eHom{H3,G{r})), 

PGG{H2,v^y 

Here r/u = -̂4(77 (g) 1) is the composition 

77« : ifo 0 Z /2 ^ TT, 0 Z/2 ^ G(7/) ^ coA:(63) 
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(2) 

(3) 

where g is the quotient map for the cokernel of 63. These elements satisfy the following 
conditions (4) and (5). The sequence 

H2-^Ho^Z/2-^7ri (4) 

is exact and /? satisfies 

/i(i8) = 62 (5) 

where /x is the operator on G in (10.9) (8). A morphism 

(<̂ o, <̂ 2, <̂ 3, ^n, (pr)-S^ 5' (6) 

between >1 -̂systems is a tuple of homomorphisms 

^i : Hi-^ HI {i = 0,2,3), 

V?̂  : TTi - • TTJ , 

[(^r:G(r7)-^G(r7'), 

such that the following diagrams (7), (8), (9) commute and such that the equation (10) 
holds. 

H2 

<P2 

H'2 

Ho<^1/2 

Hi 

TTi 

1̂ ' (7) 

-^ 7r 

TTi (glZ/2 —^ 

UTT®! 

TTJ (g) Z/2 

^ G(r/) - ^ 

- . G ( 

VT 

7̂') — 

-^ Ho*Z/2 

¥"0*1 

—^ H^*Z/2 

(8) 
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H, - ^ ^ G{ri) 

H', > G{rj^) 

Hence (̂ r induces (̂ r • cok{b3) -^ 00/̂ (63) such that {(foi^r) • qA{rj(S>l) -^ 9-4(77'01) 
is a morphism in G' which induces ((po, (/?r)* as in (10.9) (9). We have 

(<Po,^r).(/3) = (<P2,̂ 2)*(/3') (10) 

in G{H2,qA{'q' (g) 1)). In (10) we choose ^2 for (̂ 2- The right hand side of (10) does 
not depend on the choice of ^2-

An i4^-system S as above is free if Hj, is free abelian, and 5 is injective if b^ : H-^ -^ 
G{rj) is injective. Let A^-Systems, resp. A^-systems, be the full category of free, resp. 
injective, i4^-systems. We have the canonical forgetful functor 

(p : A^'Systems —• A^-systems (11) 

which replaces b^ : H3 --^ G{rj) by the inclusion b^iH^) C G(r]) of the image of 63. One 
readily checks that this forgetful functor </> is full and representative. We associate with 
an A^-system S the exact T-sequence 

H3 - ^ G{ri) -> 7r2 -> if2 - ^ Ho^Z/l ^ TTI ^ if 1 -^ 0. (12) 

Here H\ = cok{rj) is the cokernel of rj and the extension 

00^(63) >-> 7r2 ->• ker{b2) 

is obtained by the element /3, that is, the group n2 is given by the extension element 

/Jf € Ext{ker{b2),cok{b7)) defined by 

p^ = A'\un0). 

Here j : ker{b2) C /f2 is the inclusion. 

10.11. CLASSinCATlON THEOREM. For n ^ 4 there exist detecting functors A',X' for 
which the following diagram of functors commutes up to natural isomorphism 

spacesl^ • A^-Systems 

types^ • A^-systems 
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Moreover for S = A'{X)^ X E spaces^y the F-sequence of S describes part of the 
r-sequence of X, that is HQ = HnX and 

H 3 - - ^ G{v) • ^H2 -^/ /o®Z/2- Hi 

- T T n i + l-X" ^^ Hn+lX 

In addition G(i4,77) = Tn+i (A, X). 

In Baues [6] we prove similar theorems also for n = 2,3. We point out that the 
functor A' classilSes all homotopy types Y for which at most the homotopy groups 
TTnF, TTn+iV, T^n^-iY are non trivial, i.e. Y G types^. The functor A' carries X to the 
i4^-system 

{HnX, Hn^lX, Hn^^X, TCn+xX, 6n+2^, V = kn+xX, hn+lX, Pn-i-lX) 

given by the f-sequence of X and the boundary invariant f3n-\-iX. In fact, the classi-
fication theorem 10.11 is an application of 8.9; see VIII. 1.6 in Baues [6] and (4.10) in 
Baues and Hennes [8]. 

10.12. EXAMPLE. Let RP4 be the real projective space of dimension 4. Then the iterated 
suspension E'^^^WP/^ is an object in spaces^ which satisfies 

yl'(i:^-^EP4) = (Z/2,Z/2,0 ,Z/2,0 ,1 ,0 ,^(1)) . 

Therefore G{TJ) = Z / 4 and the extension 

G(v) = Z/4 >-^7r2-^H2 = Z/2 

is nontrivial so that 7r2 = Z/8 . This yields a new proof that 1:^+2^'^ ^'RP^ — 
for example G.W. Whitehead [96]. 

; see 

The classification theorem 10.11 shows exactly what homology homomorphisms are 
realizable by maps between stable A^-polyhedra. Hence 10.11 yields a partial solution 
of Whitehead's realization problem described in 3.7. 

10.13. REMARK. One of the deepest problems of homotopy theory is the computation of 
homotopy groups of spheres 'Kn-\-k{S'^). Ravenel [80] writes 

"The study of the homotopy groups of spheres can be compared with astronomy. 
The groups themselves are like distant stars waiting to be discovered by the determined 
observer, who is constantly building better telescopes to see further into the distant sky. 
The telescopes are spectral sequences and other algebraic constructions of various sorts. 
Each time a better instrument is built new discoveries are made and our perspective 
changes. The more we find the more we see how complicated the problem really is." 
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For us elements of homotopy groups of spheres, a E 'Kn-\-k'-\ (5"̂ )» yield very special 
elementary Ajj-polyhedra 

obtained by attaching via a an (n 4- fc)-cell to the sphere S"^. Such A^-polyhedra with 
fc ^ 2 are determined by the homological condition 

Hi{X) = 0 iox i^ n,n-\-k, 

Hi{X) = Z for i = n,n-\- k, 

and the homotopy type of X essentially can be identified with the homotopy class a. 
Hence the ^telescopes' above are directed to only a very small but distinguished section 
of the universe of homotopy types. In view of Treyd's generating hypothesis' [40] 
one might speculate that the classification of finite stable homotopy types is of similar 
complexity as the computation of all stable homotopy groups of spheres. 

11. Decomposition of stable homotopy types 

Given a class of objects with certain properties one would like to furnish a complete 
list of isomorphism types of such objects. This is an ultimate objective of classification. 
In mathematics indeed many classification problems arise but complete solutions are 
extremely rare. We here describe a complete list of homotopy types of (n - l)-connected 
(n -I- A:)-dimensional polyhedra which are finite and stable with k ^3. This also yields a 
list of all (n - l)-connected (n -f fc)-types with finitely generated homotopy groups and 
A: ^ 2, n^ k + 2. 

Let C be a category with an initial object * and assume sums, denoted by AVB, exist 
in C. An object X in C is decomposable if there exists an isomorphism X = Ay B 
in C where A and B are not isomorphic to *. Hence an object X is indecomposable if 
X = Ay B implies A = * or B ~*. A decomposition of X is an isomorphism 

X^AiV-'-WAn, n < o o , (11.1) 

in C where Ai is indecomposable for all i e { l , . . . , n } . The decomposition of X 
is unique (up to permutation) if B\ V • • V Bm = X = A\ V • • • V An implies that 
m = n and that there is a permutation a with B^^ = Ai for alH. A morphism / in 
C is indecomposable if the object / is indecomposable in the category Pair{C). The 
objects of Pair{C) are the morphisms of C and the morphisms f -^ g in Pair{C) 
are the pairs (a,/3) of morphism in C with ga = /3 / . The sum of / and g is the 
morphism f \/ g = (iif^iig)- In a similar way we define decompositions with respect 
to products in a category C. Below we consider decompositions of CW-spaces in the 
homotopy category C = Top* / c^ where the operation V is either the one point union 
or the product of spaces. The main (and perhaps hopeless) purpose of representation 
theory is the determination of indecomposable objects in the category of i?-modules 
satisfying some finiteness restraint. By the classical Grushko-Neumann theorem each 
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finitely generated group has a unique decomposition with respect to the sum (i.e. free 
product) of groups. In the next result we obtain a unique decomposition of certain spaces 
with respect to the sum (i.e. one point union) in Top*/ ^. 

11.2. THEOREM. Let A: ^ 3 and n ^ k •¥ \ and let X be an {n - \)-connected 
(n -f k)-dimensional finite CW-complex. Then there exists a decomposition X ĉ  Jf i V 
• • • V Xr, r < 00, where the one point union of indecomposable CW-complexes Xi on 
the right hand side is unique up to permutation. 

Hence homotopy types in the theorem admit a unique prime factorization with respect 
to the operation of *one point union'. The prime factors are called indecomposable 
A^-polyhedra, fc ^ 3. For k ^ 4 a unique prime factorization as in the theorem does 
not exist. For this we describe the following example. Let a be the generator of the 
cyclic group nn^sS^ = Z/24 where n ^ 5. Then the spaces Xta = S^ Uta ^^'^^ are 
indecomposable for 0 < t < 24 but there is a homotopy equivalence 

X 2 a V X 3 a C ^ 5 ^ V 5 ^ + ' v X 5 a 

which shows that in this case the decomposition is not unique. The homotopy equivalence 
is obtained in 4.25 of Cohen [25]. In the presence of only one prime such decompositions 
are unique; see 12.12. Below we give a complete list of all indecomposable stable 
i4^-polyhedra, fc ̂  3, which are the prime factors in 11.2. 

General remarks on stable indecomposable polyhedra can be found in Chapter 4 of 
Cohen [25]. 

11.3. THEOREM. Let k ^2 and n^ k-\-2 and let Y be an (n— \)-connected {n-\-k)-type 
with finitely generated homotopy groups. Then there exists a decomposition 

y ~ iiTi X • • • X Kr, r < 00, 

where the product of indecomposable CW-spaces Ki on the right hand side is unique up 
to permutation. 

Thus homotopy types in this theorem admit a unique prime factorization with respect 
to the product operation. We call the prime factors indecomposable a^-types, fc ̂  2. For 
A; ̂  3 a unique prime factorization as in the theorem does not exist. The next result 
shows that the prime factors in 11.2 correspond exactly to the prime factors in 11.3; this 
is a consequence of 4.4. 

11.4. THEOREM. Let k ^3 and n ^ fc -h 1. Then the Postnikov functor Pn+fc-i yields a 
bijection 

/nd(A^)-{5"+'=}«/nd(a^') 

where the left hand side is the set of all indecomposable A^-homotopy types different from 
the sphere S'^'^^ and the right hand side is the set of all indecomposable a^^-homotopy 
types. 
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These results are proved in Chapter X of Baues [6]. 
The elementary Moore spaces are the spheres S^ and the Moore spaces M{'L/p^, m) 

where p* is a power of a prime p. The elementary Eilenberg-MacLane spaces are 
iir(Z,m) and K{'L/p^,m). The following result is easy to prove. 

11.5. PROPOSITION. For fc = 0, n ^ 1 there is only one indecomposable A^-polyhedron 
namely the sphere S"^. For k — \, n^ 2 the indecomposable A\'polyhedra are exactly 
the elementary Moore spaces. For A: = 0, n^ 2 the indecomposable a^-types are the 
elementary Eilenberg-MacLane spaces. 

The first nontrivial case is described in the next result due to J.H.C. Whitehead [102] 
and Chang [24]. For this we define the 

11.6. ELEMENTARY CHANG COMPLEXES. Let r}n be the Hopf map in 7rn+i5^ and let p 
and q be powers of 2. The elementary Chang complex X in the list below is the mapping 
cone of the corresponding attaching map where 21,22 denote the inclusion of 5̂ ,̂ S'^'^^ 
in5^V5^+^ 

X 

X{r)) = 5" U e"+2 
X ( w ) = 5"V5"+'Ue"+2 

X(p7j) = 5"Ue"+'Ue"+2 

XipTjq) = 5" V 5"+' U e"+' U e"+2 

attaching map 

T)n • S"+' -^ 5" 

qii + iirin • 5"+' ^ 5"+' V 5" 
( r , „ , p ) : 5 " + ' v 5 " - . 5 " 

{qh + iiVn^piz) : 5"+' V 5" -^ 5"+' V 5" 

These complexes are also discussed in the books of Hilton [50], [51]. Our notation 
of the elementary Chang complexes above in terms of the "words" rj, rjq, ptj, pTjq is 
compatible with the notation on elementary >1^-complexes below. These words can also 
be visualized by the following graphs where vertical edges are associated with numbers 
p, q and where the edge, connecting level 0 and 2, is denoted by rj. 

m pT) pm 

Hence the elementary Chang complexes correspond to all subgraphs (or subwords) of 
pTjq which contain r/. We shall describe the elementary i4^-polyhedra by subgraphs (or 
subwords) of more complicated graphs. 

11.7. THEOREM. Let n ^ 3. The elementary Moore spaces and the elementary Chang 
complexes furnish a complete list of all indecomposable A^-polyhedra. 

11.8. ELEMENTARY CHANG TYPES. Let p, q be powers of 2 and let r?: Z -> Z/2 —̂  Z/q 

and 77' : Z/p -^ Z/2 —> Z/g be the unique non trivial homomorphisms. The elementary 
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Chang types /C(Z, Z/g, n) and K{IA/P, Z/q, n) are the (n - l)-connected (n -f l)-types 
with A:-invariant r/ and 77' respectively. 

Using 11.4 we get the following application of Chang's theorem. 

11.9. COROLLARY. Let n ^ 3. The elementary Eilenberg-MacLane spaces and the ele-
mentary Chang types furnish a complete list of indecomposable a}^-types. Moreover the 
bijection in 11.4 is given by the following list. 

X 
5" 
5"+' 
M{Z/p,n) 
M(Z/g,n+l) 

x{v) 
XipV) 
X{m) 
x{pm) 

Pn+\X 
K{Z,Z/2,n) 
K{Z,n+\) 
Kiljp.lll.n) 
K{Z/q,n+l) 
K{Z,n) 
KiZ/p,n) 
K{Z,Z/2q,n) 
K{I./p,Z/2q,n) 

Moreover Pn+i carries an elementary Moore space of odd primes in A^ to the corre-
sponding elementary Eilenberg-MacLane space. 

We say that a CW-space X is finite if there is a finite CW-complex homotopy equiva-
lent to X. Let spaces!^ (finite) be the full homotopy category of finite (n - l)-connected 
(n -h fc)-dimensional CW-spaces X. Then Spanier-Whitehead duality [89] is an endo-
functor D of this category with n ^ k -\-2 satisfying DD = identity. We say that the 
space X is self-dual if there is a homotopy equivalence DX ~ X. 

EXAMPLE. Let X = M - * be obtained by deleting a point in an (n — l)-connected 
closed differential manifold M of dimension 2n-\-k with n ^ A; -f 2. Then X is self dual. 
Compare Baues [5] and Stocker [92]. Hence self-dual CW-spaces play an important role 
in the classification of highly connected manifolds. 

Spanier-Whitehead duality carries a one point union to a one point union, i.e. D{X\/Y) 
= D{X) V D{Y), and hence D carries indecomposable polyhedra to indecomposable 
polyhedra. In particular we have the following properties of elementary Chang complexes. 

11.10. PROPOSITION. The Spanier-Whitehead duality functor D \ A]^ = A]^ satisfies 
DX{rj) = X{v), DX[m) = X(,r7), DX{j,r]) = X{r)p\ DX{^m) = X{,rjp). Hence 
the Spanier-Whitehead duality turns the graphs in 11.6 around by 180 degrees. For 
example, X{pr]p), X{r]) and X{prj) V X{r]p) are self-dual. While clearly X[pr}) is not 
self-dual. 

For the description of the indecomposable objects in >4̂ , n ^ 4, we use certain words. 
Let L be a set, the elements of which are called Metters'. A word with letters in L is an 
element in the free monoid generated by L. Such a word a is written a = aia2. •. an 



56 H.-J. Baues Chapter 1 

with af G L, n ^ 0; forn = 0 this is the empty word 0. Let 6 = 6i . . . 6̂ ; be a word. We 
write ti; = . . . 6 if there is a word a with w = ab, similarly we write w = h, ..if there 
is a word c with w = be and we write it; = . . . 6 . . . if there exists words a and c with 
u; = abc. A subword of an infinite sequence . . . a_2a_iaoaia2 . . . with ai £ L, 2 G Z, 
is a finite connected subsequence anttn+i . . . an-i-k, n e Z. For the word a = ai . ..an 
we define the word —a = anttn-i . . . ai by reversing the order in a. 

11.11. DEFINITION. We define a collection of finite words w = W]W2-. .Wk. The letters 
Wi of It; are symbols C, r/,£: or natural numbers t^Si^ri^i G Z, which are powers of 2. 
We write the letters Si as upper indices, the letters r̂  as lower indices, and the letter t in 
the middle of the line since we have to distinguish between these numbers. For example, 
4̂̂ 7̂78 is such a word with t = 4,r] =8 ,5 ] = 2. A basic sequence is defined by 

This is the infinite product a( l )a(2) . . . of words a{i) = ^̂ T̂/r̂ , z ^ 1. A basic word is 
any subword of (1). A central sequence is defined by 

•..'-^er_,r7^->er_,r7trr7nrr7,,... (2) 

A central word w is any subword of (2) containing the number t. Hence a central word 
w is of the form w = atb where —a and 6 are basic words. An £:-sequence is defined by 

An e-word w is any subword of (3) containing the letter e; again we can write w = aeb 
where —a and 6 are basic words. 

A general word is a basic word, a central word or an e-word. 
A general word w is called special if w contains at least one of the letters ,̂ 77 or e: 

and if the following conditions (i), D(i), (ii) and D(ii) are satisfied in case w = aeb is an 
e-word. We associate with b the tuple 

. . ,5m,00,1,1, . . . ) if 6 = . . .^, 

..,Sm, 1 , 1 , 1 , - ) otherwise, 

.. ,r£,oo, 1,1,...) if 6 = ...77, 

..,r£, 1,1,1,.. .) otherwise, 

where s\ ...Sm and r i . . . r̂  are the words of upper indices and lower indices respectively 
given by b. In the same way we get s{-a) = (sf", 5^**,...) and r{-a) = (rf'^, r^",...) 
with 5"*̂  G {s_i,oo, 1} and r~^ G {r_i,oo, 1}, i G N. The conditions in question on 
the e-word w = aeb are: 

b = (j)=^a^^2, (i) 

a = 0 = » 6 ^ V D(i) 

Moreover if a^ cj) and b^ (j) wt have: 

51 = 2 = > r _ , ^ 4 (ii) 
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1 5 '2 ' *2 ' ' 3 ' *3 ' ••,ri ^-" , - --) 

r_| s i ^ 4 D(ii) 

and 

V ^ I j ^ l j 52»^2» ^ 3 ? M ? - - - » ' ^ t » M » - - - y 

*^ V "̂  * ^1 J ^2 ' ^2 »^3 
- a - a _ - a - a _ - a - a _ „ - a \ 
1 J ' 2 ' *2 ' ' 3 ' *3 y-'-f'i ' *x ? • • • ; • 

The index i runs through z = 2 ,3 , . . . as indicated. In (ii) and D(ii) we use the lexico-
graphical ordering from the left, that is (nj, n2,...) < (mi, m2,.. .) if and only if there 
is t ^ 1 with rij = rrij for j <t and rit < rrit. 

Finally we define a cyclic word by a pair {w, (p) where it; is a basic word of the form 

W = e'nr,e'Vn...e''Vr, (4) 

and where v? is an automorphism of a finite dimensional Z/2-vector space V = V{ip). 
Two cyclic words {w, ip) and {w', (p') are equivalent if w' is a cyclic permutation of w, 
that is 

and if there is an isomorphism ^ : V{(p) = V(< '̂) with (p = ^~^ip^^. A cyclic word 
{w, cp) is a special cyclic word if (/? is an indecomposable automorphism and if w is not 
of the form w ^ w'w' ...w' where the right hand side is a j-fold power of a word w' 
with j > 1. 

3 

2 

1 

0 

/Vi /Vi /['i /[^ Ah 
/ \ / \ / \ / \ / \ / 

\ | n \ | ' 2 \ | ' 3 \ | ' 4 XI'S 
basic sequence 

«_2 P \ s-i | \ /\s^ /\si. 

^ / \ / \ A / \ / \ / 
-̂3 1 / '•-2 1/ -̂-1 1/ \l''l \l^2 

central sequence 

S_2 | \ S-l | \ / I S, ^ 5̂  

x / \ / \ / ^ \ / \ / 
'•-J 1/ '•-2 1/ '•-11/ \ |n XLT -̂. 

c-sequence 



58 H.-J. Baues Chapter 1 

The sequences (1), (2), (3) can be visualized by the infinite graphs sketched below. The 
letters Si, resp. r^ correspond to vertical edges connecting the levels 2 and 3, resp. the 
levels 0, 1. The letters T;, resp. ̂ , correspond to diagonal edges connecting the levels 0 and 
2, resp. the levels 1 and 3. Moreover e connects the levels 0 and 3 and t the levels 1 and 2. 
We identify a general word with the connected finite subgraph of the infinite graphs below. 
Therefore the vertices of level 2 of a general word are defined by the vertices of level i of 
the corresponding graph, i G {0,1,2,3}. We also write |x| = i if x is a vertex of level i. 

REMARK. There is a simple rule which creates exacdy all graphs corresponding to 
general words. Draw in the plane R̂  a connected finite graph of total height at most 3 
that altematingly consists of vertical edges of height one and diagonal edges of height 
2 or 3. Moreover endow each vertical edge with a power of 2. An equivalence relation 
on such graphs is generated by reflection at a vertical line. One readily checks that the 
equivalence classes of such graphs are in 1 - 1 correspondence to all general words. 

11.12. DEFINmON. Let 1/; be a basic word, a central word or an e-word. We obtain the 
dual word D{w) by reflection of the graph it; at a horizontal line and by using the 
equivalence defined in the remark. Then D{w) is again a basic word, a central word, or 
an e-word, respectively. Clearly the reflection replaces each letter ^ in ly by the letter rj 
and vice versa, moreover it turns a lower index into an upper index and vice versa. We 
define the dual cyclic word D{w, (p) as follows. For the cyclic word {w,(p) in 11.11 (4) 
let D{w, if) = [w', {^*)~^). Here we set 

and we set ĉ * = Hom{(p,Z/2) with V{ip*) = Hom{V{(p),Z/2). Up to cyclic permuta-
tion w' is just D{w) defined above. We point out that the dual words D{w) and D{w, (p) 
are special if and only if w and {w, (f) are special. 

As an example we have the special words w = iV^^^Vs^^V ^^^ D{w) = Uv^^2V^^^ 
which are dual to each other, they correspond to the graphs 

/\^ A* 
/\y \ / \ 

V N» \ 
2n^fr}%^n 

K ~A 

Diw) = ^r)^2^^ 



Section 11 Homotopy types 59 

Hence the dual graph D{w) is obtained by turning around the graph of w. 
We are going to construct certain i4^-polyhedra, n ^ 4, associated to the words in 2.1. 

To this end we first define the homology of a word. 

11.13. DEHNrnON. Let It; be a general word and let Va-'-rp and 5^ . . . 5,̂  be the words 
of lower indices and of upper indices respectively given by w. We define the torsion 
groups of w by 

To(T/;) = Z / r a e - - - e Z / r ^ , (1) 

T\ (w) = Z/t if I/; is a central word, (2) 

T2H = z/s^0..-ez/5^, (3) 

and we set Ti{w) = 0 otherwise. We define the integral homology of w by 

Hi{w) = Z^*(̂ ) © T i H ® Z^^ '̂̂ ). (4) 

Here /3i{w) = Li{w) -\- Ri{w) is the Betti number of w\ this is the number of end points 
of the graph w which are vertices of level i and which are not vertices of vertical edges; 
we call such vertices x spherical vertices of w. If w has spherical vertices let L{w), resp. 
R{w), be the left, resp. right, spherical vertex of it;. Now we set Li{w) = 1 if \L{w)\ = i 
and Ri{w) = 1 if \R{w)\ = i, moreover Li{w) = 0 and Ri{w) = 0 otherwise. 

Using the equation (4) we have specified an ordered basis Bi of Hi{w). We point out 
that 

A ) H + /?,(w) + (hiw) +/h{w)^ 2. 

For a cyclic word {w, <p) we set 

(5) 

(6) 

where v = dim V(if) and where the right hand side is the t;-fold direct sum of Ti(w). 
As an example we consider the special words 

Riw) 

32 

K~y 
'iw/ \i 3 16 

= ^\^ W ' = 2n^tr)^^ 

The homology of these words is: 
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Hi 

Hi 

Hi 

Ho 
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w = e^^rjs^ 

Z 

Z/32 

0 

zez/8 

w' = 2T]S^%6 

0 

Z/4 

Z/2 

Z / 8 e Z / 1 6 

Chapter 1 

Here it; has 2 spherical vertices while w' has no spherical vertex. We point out that the 
numbers 2^ attached to vertical edges correspond to cyclic groups Z/2'^ in the homology. 
We describe many further examples below. 

For the construction of polyhedra X{w) associated to words w we use the following 
generators. 

11.14. GENERATORS OF HOMOTOPY GROUPS. Let r, 5 be powers of 2. We have the Hopf 
maps 

We use the compositions 

T7 = zr/, : S^^' ^ M{TLlr,n\ i = r?n+ig : M(Z / r , n - f 1) ^ 5"+^ 

which are (2n -f l)-dual. Moreover we have the (2n + 2)-dual groups, n ^ 4 

e2 
^ ' V / . ;j J 2 / 2 e r - f Z / 2 5 r f o r r ^ 4 , 

^ ^ ^ ' '̂ ^ [Z/277« + Z/2e^ for 5 ^ 4 , 

where Sr = i'rf^ and e^ = rŷ g and ^r = Xr^2 and rf = ifxz' Next we use 

r z / 2 ^ | © z / 2 TJI for 5 = r = 2, 

r w / r . , x . . / r . , M Z / 4 ^ | 0 Z / 2 7 7 | f o r 5 ^ 4 , r = 2, 
M(Z/5 ,n - l - l ) ,M(Z/ r ,n ) l = < '̂^ ^^ , '; J 

^ ^ ^ ;' V / , ;j W / 2 ^ 2 ^ 2 / 4 ^ 2 for 5 = 2, r ^ 4, 
[ Z /2^ ; 0 Z /IT)^ 0 Z /2 e? otherwise. 

Here we have ^^ = Xr 6^^ Vr = ^V^Xi and e* = irj^q. We have the [In 4- 2)-dualities 
D(C^) = r7^andD(6^) = £;. 

11.15. DEHNITION. Let n ^ 4 and let it; be a general word. We define the >1^-polyhedron 
A" (it;) = Cf by the mapping cone Cj of a map / = f{w) : A—^ B where 

^ A = M(H3,n + 2 ) V M(i /2 ,n-f 1) V 5?^-\ 

B = M(Ho, n) V 5 ? + W 5^^+^ 
(1) 
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Here Hi = Hi{w) is the homology group above. We set iŜ "*"̂  = S^^^ if û  is a central 
word and we set 5̂ "̂ ^ = * otherwise, moreover we set 5̂ "̂ ^ = 5"̂ "̂ ^ if K; is a basic 
word of the form w = ^... and we set 5^^' = * otherwise. The attaching map 

/ = f{w) : M(if3, n + 2) V M(if2, n + 1) V 5?+^ 

^ M ( i f o , n ) v 5 ^ + W 5 ^ + ^ (2) 

is constructed exactly via the pattern defined by the word w or the associated graph w. 
For this we subdivide the graph of iz; by a horizontal line between level 1 and 2; all 
edges crossing this line are summands in the attaching map f{w). For example consider 
the graphs e^^Tjs^, 2rjs^^rj\e and iV^^^Vs^^V above. Then we get 

Af(Z/32,n-M) 

ne'%0 = 
M(Z/8,n) 

gn + l 

f{2m^\e) = 

M(Z/8,n) 

M(Z/4,n+l) 

M(Z/16,n) 

/(2r/4^'r/8C^) = 

M(Z/2,n) 

M(Z/4,n+l) 

Here ^,rj,€ are the corresponding generators in 11.14. For a cyclic word {w^ip) the 
construction of X{w,(p) is slighdy different; see Baues and Hennes [8]. Clearly the 
homology of X{w) or X{w, ip) is the homology in 11.13. 

11.16. THEOREM. Let n ^ 4. The elementary Moore spaces, the complexes X{w) where 
w is a special word, and the complexes X{w^ (p) where {w, ip) is a special cyclic word 
furnish a complete list of all indecomposable A^-polyhedra. For two complexes X^X' 
in this list there is a homotopy equivalence X c::^ X' if and only if there are equivalent 
special cyclic words 

{w,(p) - {w'.ip') 

with X = X{w, ip) and X' = X{w', ip'). Moreover Spanier-Whitehead duality D satis-
fies 

D{X{w))=X{Dw), 
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D{X{w,^))^X{D{w,^)), 

where the right hand side is given by the dual words in 11.12. 

The proof of this theorem relies on the classification by A^-systems in 10.11. The result 
is then obtained by classifying the indecomposable ^4 -̂systems with finitely generated 
homology; this being a purely algebraic question can be considered as a problem of 
representation theory. For a complete proof see Baues and Hennes [8]. 

11.17. EXAMPLE. Let 

P^=RPn+3/lRPn-l 

be the truncated real projective space. Then one has stable equivalences, n ^ 1, 

{X{2e) for n = 1(4), 
X{'q2i) for n = 2(4), 

X{^rn) for n = 3(4), 

[ 5 ^ V 5 " ^ ^ V M ( Z / 2 , n + l ) forn = 0(4). 

Hence the graphs of these stable spaces are (fc ^ 0) 

/h 
/ 

2I 

Ait+l 

/ /v 
/ 

p3 

[2 

\ 

XI 
^ * + 3 

m 

l\ 

4 

where P̂ ^ with fc ^ 1 is a one point union of Moore spaces. 

We now give an application of the classification theorem 11.16. We describe explicitly 
all indecomposable (n - l)-connected (n + 3)-dimensional homotopy types X, n ^ 4, 
for which all homology groups HiX are cyclic, i ^ 0. 

Let if* = {Ho,H\,H2,H3) be a tuple of finitely generated abelian groups with if3 
free abelian and let N{H^) be the number of all indecomposable homotopy types X as 
above with homology groups Hn-\-i{X) ~ Hi for i G {0,1,2,3}. 

11.18. COROLLARY. Let n ^ 4. The indecomposable (n - \)'Connected (n -h 3)-
dimensional homotopy types X, for which all homology groups Hi{X) are cyclic, are 
exactly the elementary Moore spaces, the elementary Chang complexes, and the spaces 
X{w) where w is one of the words in the following list. 
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H, = (Ho 
Z/r 
Z/r 
Z/r 
Z/r 
Z/r 

Z/r 

Z/r 

Z/r 
Z/r 
Z 
Z 
Z 
Z 
Z 

/?! 
Z/i 
Z/t 
Z/f 

z 
z 

0 

0 

0 
0 

Z/t 
Z/t 

z 
0 
0 

/^2 

Z/s 
Z/s 
0 

z/s 
z/s 

Z/s 

Z/s 

Z 
0 

z/s 
0 

z/s 
z/s 

0 

F3) 

z 
0 

z 
z 
0 

z 

0 

z 
z 
0 

z 
0 
0 

z 

ft 
ft 

N{H,) 
3 
3 
2 
1 
1 

r = s = 2 
r s > 8 

r = s = 2 
r s ^ 8 

1 
2 
2 
1 
1 
2 
1 

w with /f.X(w) = H, 

^rVte, t^'Vrt '^rVtC 

rVt^", t^^Vr, ^^rrjt 

rVt^, irVt 

^'Vr^ 

eir 

r̂£* for rs ^ 8, 

r̂ *. *'7r, iv^^rj) and 
r£* for rs > 8, 

Vr^ 

rS5 r^ 

7?te^ t^'n 

vt^ 
Cv 

v\ r 
e 

The list describes all w ordered by the homology H^ = H^{X{w)). The attaching 
map for X{w) is obtained by 11.15. Let (r, t^ s) be powers of 2. 

All words in the list are special words, except the word (rj^^r^ 1) which is a special 
cyclic word associated to the automorphism 1 of Z/2. 

EXAMPLE. Let n ^ 4 and let if* = {Ho,H\,H2,H3) be a tuple of cyclic groups with 
î B € Z,0. Then it is easy to describe (by use of 11.18) all simply connected homotopy 
types X with ifn-f-i {X) = Hi for 0 ^ i ^ 3 and i > n + 3. In fact all such homotopy 
types are in a canonical way one point unions of the indecomposable homotopy types 
in the list above. For example, for H^ = (Z/6,Z/2,Z/2,0) there exist exactly 9 such 
homotopy types X which are: 

M ( Z / 6 , n ) v M ( Z / 2 , n + l ) v M ( Z / 2 , n - h 2 ) , 
M(Z/6,n)vX(2^2)^ 

M(Z/3, n) V X(2r/2) V M(Z/2, n + 2), 

M(Z/3, n) V X(2^2) y M(Z/2,n + 1), 

M(Z/3, n) V X(2r/2) V M(Z/2, n + 1), 

M(Z/3,n)vX(772^2,l)VM(Z/2,n+l) , 

M(Z/3,n)VX(2772a, 

M(Z/3,n)VX(2^2^), 

M(Z/3,n)vX(2e2r72). 
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Similarly we see that there are 24 homotopy types X for if* = (Z/2,Z/2,Z/2,Z); 
we leave this as an exercise. 

Next we describe explicitly all indecomposable (n - l)-connected (n + 2)-types X, 
n ^ 4, for which all homotopy groups are cyclic. For this we use the bijection 11.4 and 
the computation of T^n-^-iX, TTn+iX, ^nX in 10.11. Let TT* = (7ro,7ri,7r2) be a tuple 
of finitely generated abelian groups and let N{ns) be the number of all indecomposable 
homotopy types X with homotopy groups nn-\-i{X) = TTJ for i = 0,1,2 and 7rj(X) = 0 
otherwise, n ^ 4. 

11.19. COROLLARY. Let n ^ 4. The indecomposable (n - \)'Connected (n -}- 2)-types X 
for which all homotopy groups 'Ki{X) are cyclic are exactly the elementary Eilenberg-
Mac Lane spaceSy the elementary Chang types, and the spaces Pn^2X{w) where w is 
one of the words in the following list. 

TT* = (TTO TTi TTl N{7r.) W with TT^X{w) = TT* 

Z/r 

Z/r 

L/r 

r>4 

Z/r 

0 
0 

0 

0 

z 
z 

z 
z 

Z/s 

Z/s 

z/s 
Z/s 

1 
1 
1 

3 

1 
1 

Z/t z /s 
t>4 s ^ 4 

Z/2 

Z/s 

s>4 

t^4 

Z/2 

Z/2 Z/2 
Z/s 

s ^ 4 

Z/2 Z/2 
r ^ 4 
Z/2 Z/2 Z/2 

2 

1 

2 

T̂jr for s = 2, ^Tjr '̂ for s = 2s' > 4 

(Pn+lS", t = S = 2 

T)t', t = 2t' ^4, s = 2 

e^', t = 2, s = 2s' > 4 

[vt'^'', t = 2t' ^4, s = 2 s ' ^ 4 

\witht = 2t', s = 2s' 

^rVt', t = 2t' 

i ^'^rS and 

^rs'', s = 2s' 

f P„+2M(Z/2,n) for s = 4 and 

*'̂ 2e for s = 2s' ^ 4, and 

«'" for s = 4s" > 8 

{r£ and 
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The list describes all w of the theorem ordered by the homotopy groups TT* = 'K^X(W). 

Let r,^,s ^ 2 be powers of 2 and for t,s^ 4 let 2t' = t and 2s' = s. 
For all tuples of cyclic groups n^ = (TTQ, TTI , 7r2), TTQ 7̂  0, 7r2 7̂  0 which are not in the 

list we have N{7r^) = 0. All words in the list are special words, except the word {rj^^r, 1) 
which is a special cyclic word associated to the identity automorphism 1 of Z/2. 

EXAMPLE. Let n ^ 4 and let TT* = (TTQ, TTI , 7r2) be a tuple of cyclic groups. Then it is easy 
to describe all homotopy types X with 7rn^i{X) = TTJ for 2 = 0,1,2 and TTJX = 0 for 
j <n and j > n -f 2. In fact all such homotopy types are in a canonical way products of 
the indecomposable homotopy types in 11.19. For example, for TT* = (Z/6, Z/2, Z/2) 
there exist exactly 7 such homotopy types X which are 

K{Z/6,n) X A'(Z/2,n+ 1) x K{Z/2,n + 2), 

K{Z/6,n) X i(:(Z/2,Z/2,n+ 1), 

K{Z/3,n) X K{Z/2,Z/2,n) x K{Z/2,n+ 1), 

K{Z/3,n) X K{Z/2,n+ 1) x Pn^iXi^m). 

K{Z/3,n) X i^(Z/2,n+ 1) x P n + 2 ^ ( V ) , 

K{Z/3,n) X K{Z/2,n+ 1) x Pn^2X{ri'i2,1), 

K{Zl3,n)xPn^2X{2e). 

It is clear how to compute the homology Hn, Hn^\ and Hn-\-2 of these spaces and, in 
fact, we can easily describe the >l̂ -system of these spaces. We leave it to the reader to 
consider other cases, for example for TT* = (Z4,Zio, Z) there exist exactly 3 homotopy 
types X with TT* = TT^X. 

Finally we have the following applications of the classification theorem n . l 6 which 
single out spaces which are highly desuspendable. 

11.20. THEOREM. The stable homotopy types of connected compact A-dimensional poly-
hedra coincide with finite one point unions X\\/ • --V Xr where the Xi are elementary 
Moore spaces in A], or the spaces X{ti^), X{t£,), X{(,^), X{^\ and X{re,^). Here 
r,s,t are powers of 2 and r ^ s. 

For this compare V Appendix A in Baues [6]. The theorem shows that only a few 
spaces arise as prime factors in the stabilization of 4-dimensional polyhedra. This, for 
example, has the practical effect that the computation of generalized homology and 
cohomology groups of 4-dimensional polyhedra can be easily achieved by computing 
these groups only for the elementary spaces in n.20. 

11.21. THEOREM. The stable homotopy types of simply connected compact S-dimensional 
polyhedra coincide with finite one point unions Xi V • -VXr where the Xi are elementary 
Moore spaces in A?^ or the elementary spaces X{w), X{w^ if). Here the special words 
satisfy the following conditions (1), (2), 

{\)w^r]^... and w ^ ...^rj, 
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(2) for each subword of the form rfj^ or ^rjr of w (that is, w = ... rTj^ ... or w = 
.. .^rjr ' ") we have 2r < 5. 

See X.7.3 in Baues [6]. 

12. Localization 

A generalized homology theory A:* (as, for example, defined in Gray [44]) can be used 
to define equivalence classes of spaces which are called 'A:*-local homotopy types'. We 
assume that k„ satisfies the limit axiom, namely that for all CW-complexes X the map 
lim A:*(Xa) —* fc^X is an isomorphism where the Xa run over all finite subcomplexes 
of X. We consider mainly the classical homology theory 

K{X) = H.{X, R) = H.{SX ®z R) (12.1) 

given by the homology of X with coefficients in a ring R; compare 3.4. 

12.2. DEHNITION. Let spaces be the full subcategory of Top consisting of CW-spaces. 
A CW'pair {X, A) is a cofibration >! >-> X in Top for which A and X are CW-spaces. 
For example, a CW-complex X together with a subcomplex A is a CW-pair. A map 
f : X -^Y between CW-spaces is a K-equivalence if / induces an isomorphism 

A : k^X) ^ fc.(y). 

A CW-space A is k^-local if each CW-pair {X, A) for which >1 >—> is an fc*-equivalence 
admits a retraction A —* X. A map g :Y —* Ais called a k^-localization if A is A:*-local 
and ^ is a A;̂ -̂equivalence. 

Recall that we introduced the localized category Ho{C) in 3.12. The next result is 
due to Bousfield [12]. 

12.3. THEOREM. For all CW-spaces there exist k^-localizations. Moreover there is an 
equivalence of categories 

Hok^spaces) - ^ spaces^ J :^ 

where the left hand side is the localization with respect to k^-equivalences and the right 
hand side in the full homotopy category in Top/ ~ consisting ofk^^-local CW-complexes. 
The equivalence carries a CW-space to its k^-localization. 

We refer the reader also to L5.10 in Baues [3] where we consider A;*-equivalences as 
weak equivalences in a 'cofibration category'. The A;*-equivalences generate an equiva-
lence relation for CW-spaces as follows. We say that CW-spaces X, Y are k^-equivalent if 
there exist finitely many CW-spaces Xi, i= 1 , . . . , n, together with A:^-equivalences au 

X = X, ^ X2 - ^ X3 ^ . . . Xn = F, 
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where ai and Qi+i have opposite directions. The theorem shows that the corresponding 
A:*-equivalence classes can be identified with the homotopy types of fc*-local CW-spaces 
which are called k^-local homotopy types. The A:*-local homotopy type of a CW-space 
X singles out the /:*-specific properties of X. This turned out to be a very successful 
technique of homotopy theory. 

12.4. THEOREM. Let R be a subring of Q and let X be a simply connected CW-space. 
Then X is H^{—, R)-local if and only if (a) or equivalently (b) is satisfied: 

(a) The homotopy groups TTnX are R-modules. 
(b) The homology groups HnX are R-modules. 

Moreover an H^{—^ R)-localization £ : X ^^ XR induces isomorphisms 

^n{X)^zR = nn{XR), 

HniX)^zR^Hn{XR) 

which carries ^ (8) 1 to ^*(0-

A proof can be found, e.g., in Hilton, Mislin and Roitberg [52]. Spaces as in the 
theorem are also called R-local, these are the rational spaces if i? = Q. Moreover for 
a prime p these are the p-local spaces if iZ = Zp is the subring of Q generated by l/q 
where q runs over all primes different from p. The classification theorems in Section 9 
are actually compatible with i?-localization, RcQ. For this we define for the category 
C in (9.1) the full subcategory 

CRC(n~l)-types (12.5) 

consisting of i?-localizations XR of objects X in C. Let 

be the localization functor. A C/j-kype XR — (XHJTT, A;,il,6) is R-local if TT and 
H are i?-modules, and XR is R-free if ^ is a free /^-module. Similarly a C/?-bype 
Y = (YR, HO, H\ , 6, /3) in R-local if HQ, H\ are i?-modules, and YR is R-free if H\ is 
a free /i-module. Let 

spaces^pl'\CR) 

be the full homotopy category of i?-local CW-spaces X with Pn-\X G CR and with 
Hi{XR) = 0 for 2 > n -I-1 and ifn+i(^ii) a free fl-module. 

12.6. CLASSIFICATION THEOREM. There are detecting functors AR, A'J^ for which the 
following diagrams of functors commute up to natural isomorphism. 

spaces^'^^C) — ^ Kypes{C) 

spBces^^\CR) - ^ ^ KypesR{CR) 
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Here KypeSji{CR) is the category of free R-kypes and £j^ denotes the obvious localization 
functors. 

sp3ces''^\C) - ^ ^ Bypes{C) 

spaces''^\CR) - ^ Bypes^iCR) 

Here BypeSR{CR) is the category of free R-bypes and £j^ denotes again the localization 
functors. 

For the definition of AR, A^J^ we use the T-sequence of XR which coincides with 
(Asequence of X) 0i?. The theorem shows: 

12.7. COROLLARY. The Postnikov invariants of the localization XR are obtained by 
R-localizing the Postnikov invariants of X. The boundary invariants of the localiza-
tion XR are obtained by R-localizing the boundary invariants of X. 

If i i = Q is the ring of rational numbers the theory of Postnikov invariants and 
boundary invariants is completely understood. In fact Postnikov invariants correspond to 
the differential in the 'minimal model of Sullivan' and boundary invariants correspond 
to the differential in the *Quillen minimal model' constructed in Baues and Lemaire [9]. 
Compare Quillen [79], Sullivan [94] and Chapter I in Baues [3]. 

12.8. DEnNFTlON. Let F be a graded Q-vector space with V; = 0 for z ^ 0. Let T{V) = 
0{V®"^, n ^ 0} be the tensor algebra of V which is a Lie algebra by 

The free Lie algebra L{V) is the Lie subalgebra of {T{V),[, ]) generated by V. Let 
[L{V),L{V)] C L{V) be the subset of all brackets [x,y] with x,y G L{V) and let 

d:L{V)^ [L{V),L{V)] C L{V) 

be a Q-linear map of degree - 1 satisfying dd = 0 and d[x,y] = [dx,y] -f (-l)'^'[x,(iy]. 
Then (L{V),d) is called a Quillen minimal model with differential d. A morphism 
between such models is a Q-linear map of degree 0 compatible with brackets and differ-
entials. 

12.9. THEOREM. Homotopy types of l-connected rational spaces X are in 1-1 corre-
spondence with isomorphism types of Quillen minimal models {L{V),d) where Vf = 
Hi^i{X,Q) andHiiL{V),d) = in^iXfori^ 1. 

12.10. DEFINITION. Let F be a graded Q-vector space such that V^ is finitely generated 
and V* = 0 for z ^ 1. Let A{V) be the free graded-commutative algebra generated by 
V, that is 

A{V) = Exterior algebra(y^^) (8) Symmetric algebra(y"^""). 
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Let A(y) • Aiy) be the subset of products x • y with x,y G -4(V), |x|, \y\ ^ 1 and let 

d : ^ ( F ) ^ A{V). I ( y ) C yl(F) 

be a Q-linear map of degree +1 satisfying dd = 0 and d{xy) = (dx)2/ 4- (-l)'^'x(d2/). 
Then {A{V)^d) is called a Sullivan minimal model with differential d. A morphism 
between such models is a Q-linear map of degree 0 compatible with multiplications and 
differentials. 

12.11. THEOREM. Homotopy types of l-connected rational spaces X for which HnX is 
a finitely generated Q-vector space, n G Z, are in 1-1 correspondence with isomor-
phism types of Sullivan minimal models {A{V)^d) where Vj = Hom{7ri{X),Q) and 
WiA{V),d) = Hom{Hi{X),Q) for i ^ 1. 

These minimal models yield solutions of Whitehead's realization problem for rational 
spaces, see 3.7. They illustrate again that homology groups and homotopy groups respec-
tively both 'generate' a homotopy type in a mutually Hn-dudl way. The Baues-Lemaire 
conjecture [9] (recently proved by Majewski [66]) describes the algebraic nature of this 
i/TT-duality. The minimal models allow a deep analysis of the rational properties of a 
simply connected space. For example, we refer the reader to the wonderful torsion gap 
result of Halperin [47] or to the alternative 'hyperbolic-elliptic' for rational spaces in 
Felix [37]. 

There are p-local analogues of A^-polyhedra as follows. We say that a p-local 
CW-space X is a pA!^ polyhedron if X is {n — l)-connected, n ^ 2, and the ho-
mology HiX is trivial for i > n -f fc and is a free Zp-module for z = n -f fc. Moreover 
X is a finite pi4^-polyhedron if in addition all HiX are finitely generated Zp-modules. 
In the stable range we have by 3.6 (2) in Wilkerson [104] unique decompositions as 
follows. 

12.12. THEOREM. Let pbe a prime and n^ k-\-\ > 2. Then each finite pA^-polyhedron 
X admits a homotopy equivalence 

X c ^ X , V- . -VXr 

where the one point union ofp-local indecomposable CW-spaces on the right hand side 
is unique up to permutation. 

12.13. REMARK. Generalizing the result of Chang 11.7 Henn [48] furnished a complete 
list of indecomposable pA^-polyhedra for A: = 4 p - 5 and p odd. Such spaces are detected 
by primary cohomology operations while the ^^-polyhedra in (11.16) are not detected by 
primary cohomology operations. The classification of Henn uses implicitly the boundary 
invariants of X. 

12.14. REMARK. For the ring R-Z/p where p is a prime the i /* ( - , Z/p)-localization 
Xp of a simply connected space X is the p-completion of Bousfield and Kan [14]. If 
in addition X has finite type then Xp is the p-profinite completion for which nnXp is 
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given by the p-profinite completion of TTnA"; compare Sullivan [93] and Quillen [78]. Re-
cently Goerss [46] considered simplicial coalgebras as models of H„(-,F)-local spaces 
where F is an algebraically closed field; see also Kriz [62]. Moreover Bousfield [13] 
and Franke [38] consider algebraic models of A:*-local spaces with fc* = iC-theory; they 
restrict attention, however, to the stable range. 
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1. Introduction 

This paper is an introduction to the theory of "model categories", which was devel-
oped by Quillen in [22] and [23]. By definition a model category is just an ordinary 
category with three specified classes of morphisms, called fibrations, cofibrations and 
weak equivalences, which satisfy a few simple axioms that are deliberately reminiscent 
of properties of topological spaces. Surprisingly enough, these axioms give a reasonably 
general context in which it is possible to set up the basic machinery of homotopy theory. 
The machinery can then be used immediately in a large number of different settings, 
as long as the axioms are checked in each case. Although many of these settings are 
geometric (spaces (§8), fibrewise spaces (3.11), G-spaces [11], spectra [3], diagrams of 
spaces [10] . . . ) , some of them are not (chain complexes (§7), simpHcial commutative 
rings [24], simplicial groups [23] . . . ) . Certainly each setting has its own technical and 
computational peculiarities, but the advantage of an abstract approach is that they can 
all be studied with the same tools and described in the same language. What is the sus-
pension of an augmented commutative algebra? One of incidental appeals of Quillen's 
theory (to a topologist!) is that it both makes a question like this respectable and gives 
it an interesting answer (11.3). 

We have tried to minimize the prerequisites needed for understanding this paper; it 
should be enough to have some familiarity with CW-complexes, with chain complexes, 
and with the basic terminology associated with categories. Almost all of the material 
we present is due to Quillen [22], but we have replaced his treatment of suspension 
functors and loop functors by a general construction of homotopy pushouts and homotopy 
puUbacks in a model category. What we do along these lines can certainly be carried 
further. This paper is not in any sense a survey of everything that is known about model 
categories; in fact we cover only a fraction of the material in [22]. The last section has 
a discussion of some ways in which model categories have been used in topology and 
algebra. 

Organization of the paper. Section 2 contains background material, principally a dis-
cussion of some categorical constructions (limits and colimits) which come up almost 
immediately in any attempt to build new objects of some abstract category out of old 
ones. Section 3 gives the definition of what it means for a category C to be a model 
category, establishes some terminology, and sketches a few examples. In §4 we study 
the notion of "homotopy" in C and in §5 carry out the construction of the homotopy 
category Ho(C). Section 6 gives Ho(C) a more conceptual significance by showing that 
it is equivalent to the "localization" of C with respect to the class of weak equivalences. 
For our purposes the "homotopy theory" associated to C is the homotopy category Ho(C) 
together with various related constructions (§10). 

Sections 7 and 8 describe in detail two basic examples of model categories, namely 
the category Top of topological spaces and the category Ch^ of non-negative chain 
complexes of modules over a ring R, The homotopy theory of Top is of course familiar, 
and it turns out that the homotopy theory of Ch/j is what is usually called homologi-
cal algebra. Comparing these two examples helps explain why Quillen called the study 
of model categories "homotopical algebra" and thought of it as a generalization of ho-
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mological algebra. In §9 we give a criterion for a pair of functors between two model 
categories to induce equivalences between the associated homotopy categories; pinning 
down the meaning of "induce" here leads to the definition of derived functor. Section 10 
constructs homotopy pushouts and homotopy pullbacks in an arbitrary model category 
in terms of derived functors. Finally, § 11 contains some concluding remarks, sketches 
some applications of homotopical algebra, and mentions a way in which the theory has 
developed since Quillen. 

We would like to thank GianMario Besana and Krzysztof Trautman for help in prepar-
ing this manuscript. We are also grateful for the comments of J. McClure, W. Richter 
and J. Smith, which led among other things to simplifications in the statement of 9.7 and 
in the proof of 10.7. 

2. Categories 

In this section we review some basic ideas and constructions from category theory; for 
more details see [17]. The reader might want to skip this section on first reading and 
return to it as needed. 

2 .1 . Categories. We will take for granted the notions of category, subcategory, functor 
and natural transformation [17, I]. If C is a category and X and Y are objects of C, 
we will assume that the morphisms f \ X ^ Y m C form a set Homc(A', F ) , rather 
than a class, a collection, or something larger. These morphisms are also called maps or 
arrows in C from X to Y. Some categories that come up in this paper are: 

(i) the category Set whose objects are sets and whose morphisms are functions from 
one set to another, 

(ii) the category Top whose objects are topological spaces and whose morphisms are 
continuous maps, 

(iii) the category Mod/? whose objects are left J?-modules (where R is an associative 
ring with unit) and whose morphisms are iZ-module homomorphisms. 

2.2. Natural equivalences. Suppose that F, F ' : C —> D are two functors, and that 
t is a natural transformation from F to F'. The transformation t is called a natural 
equivalence [17, p. 16] if the morphism tx ' F{X) —• F'{X) is an isomorphism in D 
for each object X of C. The functor F is said to be an equivalence of categories if there 
exists a functor G : D —• C such that the composites FG and GF are related to the 
appropriate identity functors by natural equivalences [17, p. 90]. 

2.3. Full and faithful A functor F : C —> D is said to h^ full (resp. faithful) if for 
each pair (X, Y) of objects of C the map 

Homc(X,y) -> HomD(F(X),F(y)) 

given by F is an epimorphism (resp. a monomorphism) [17, p. 15]. Kfull subcategory 
C' of C is a subcategory with the property that the inclusion functor z : C' —̂  C is full 



Section 2 Homotopy theories 11 

(the functor i is always faithful). A full subcategory of C is determined by the objects in 
C which it contains, and we will sometimes speak of the full subcategory of C generated 
by a certain collection of objects. 

2.4. Opposite category. If C is a category then the opposite category C^̂  is the cate-
gory with the same objects as C but with one morphism / ° P :Y -^ X for each morphism 
/ : X -^ y in C [17, p. 33]. The morphisms of C^'' compose according to the formula 
ŷ op̂ op ^ (p/)°P. A functor F : C°P -^ D is the same thing as what is sometimes 
called a contravariant functor C -^ D. For example, for any category C the assignment 
{X, Y) y-^ Homc(-^, Y) gives a functor 

H o m c ( - , - ) : C ^ P x C - > S e t 

2.5. Smallness and functor categories. A category D is said to be small if the collection 
Ob(D) of objects of D forms a set, and finite if Ob(D) is a finite set and D has only 
a finite number of morphisms between any two objects. If C is a category and D is 
a small category, then there is a functor category oP in which the objects are functors 
F : D ~* C and the morphisms are natural transformations; this is also called the category 
oi diagrams in C with the shape of D. For example, if D is the category {a —» h} with two 
objects and one nonidentity morphism, then the objects of C^ are exactly the morphisms 
/ : X(a) —> X{h) of C and a map t : / —̂  ^ in C''̂  is a commutative diagram 

X{a) ^ Y{a) 

X{b) - ^ Y{b) 

In this case C*̂  is called the category of morphisms of C and is denoted Mor(C). 

2.6. Retracts. An object X of a category C is said to be a retract of an object Y if 
there exist morphisms i : X -^Y and r :Y -^ X such that ri = idx- For example, in 
the category Mod/? an object X is a retract of Y if and only if there exists a module Z 
such that Y is isomorphic to X ® Z.lf f and g are morphisms of C, we will say that 
/ is a retract of g if the object of Mor(C) represented by / is a retract of the object 
of Mor(C) represented by g (see the proof of the next lemma for a picture of what this 
means). 

2.7. LEMMA. If g is an isomorphism in C and f is a retract of g, then f is also an 
isomorphism. 

PROOF. Since / is a retract of g, there is a commutative diagram 

X 
/ i 
X' 

- U Y 
si 

-^ y 

- ^ X 

/ i 
^ X' 
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in which the composites ri and r'i' are the appropriate identity maps. Since g is an 
isomorphism, there is a map h :Y' —^ Y such that hg = idy and gh = idy/. It is easy 
to check that k = rhi' is the inverse of / . D 

2.8. Adjoint functors. Let F : C —> D and G : D —> C be a pair of functors. An 
adjunction from F to G is a collection of isomorphisms 

ax,y : HomD(F(X), Y) ^ Homc(X, G{Y)), X e Ob(C), Y e Ob(D), 

natural in X and F, i.e. a collection which gives a natural equivalence (2.2) between the 
two indicated Hom-functors C°^ x D -^ Set (see 2.4). If such an adjunction exists we 
write 

F:C4=>D:G 

and say that F and G are adjoint functors or that (F, G) is an adjoint pair, F being the /^^ 
adjoint of G and G the n /̂ir adjoint of F. Any two left adjoints of G (resp. right adjoints 
of F) are canonically naturally equivalent, so we speak of "the" left adjoint or right adjoint 
of a functor (if such a left or right adjoint exists) [17, p. 81]. If / : F{X) —^ Y (resp. 
g : X -* G{Y)), we denote its image under the bijection ax,y by /^ : X -> G{Y) 
(resp. g^ : F{X) ^ F). 

2.9. EXAMPLE. Let G : Mod/e -^ Set be the forgetful functor which assigns to each 
/^-module its underlying set. Then G has a left adjoint F : Set -^ Modî  which assigns 
to each set X the free /2-module generated by the elements of X. The functor G does 
not have a right adjoint. 

2.10. EXAMPLE. Let G : Top —> Set be the forgetful functor which assigns to each 
topological space X its underlying set. Then G has a left adjoint, which is the functor 
which assigns to each set Y the topological space given by Y with the discrete topology. 
The functor G also has a right adjoint, which assigns to each set Y the topological space 
given by Y with the indiscrete topology (cf. [17, p. 85]). 

2.11. Colimits 

We introduce the notion of the colimit of a functor. Let C be a category and D a small 
category. Typically, C is one of the categories in 2.1 and D is from the following list. 

2.12. Shapes of colimit diagrams 

(i) A category with a set J of objects and no nonidentity morphisms. 
(ii) The category D = {a *— 6 —> c}, with three objects and the two indicated 

nonidentity morphisms. 
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(iii) The category Z'^ = {0—> 1 - ~ > 2 - ^ 3 — • . . . } with objects the non-negative 
integers and a single morphism i -^ j for i ^ j . 

There is a diagonal or "constant diagram" functor 

which carries an object X G C to the constant functor A{X) : D -^ C (by definition, this 
"constant functor" sends each object of D to X and each morphism of D to idx). The 
functor A assigns to each morphism f:X-^X'ofCtht constant natural transformation 
t{f) : Ax —̂  Ax' determined by the formula t{f)d = / for each object d of D. 

2.13. DEFINITION. Let D be a small category and F : D -> C a functor. A colimit for 
F is an object C of C together with a natural transformation t : F -^ ^(C*) such that 
for every object X of C and every natural transformation s : F -^ ^(-^)» there exists a 
unique map s' : C -* X in C such that A{s^)t = s [17, p. 67]. 

REMARK. The universal property of a colimit implies as usual that any two colimits for 
F are canonically isomorphic. If a colimit of F exists we will speak of "the" colimit of 
F and denote it colim(F). The colimit is sometimes called the direct limit, and denoted 
limF, MTVPF or colim^F. Roughly speaking, Z\(colim(F)) is the constant diagram 
which is most efficient at receiving a map from F, in the sense that any map from F to 
a constant diagram extends uniquely over the universal map F —* i4(colim(F)). 

2.14. REMARK. A category C is said to have all small (resp. finite) colimits if colim(F) 
exists for any functor F from a small (resp. finite) category D to C. The categories 
Set, Top and Modi? have all small colimits. Suppose that D is a small category and 
F : D -> Set is a functor. Let U be the disjoint union of the sets which appear as 
values of F , i.e., let U be the set of pairs (d,x) where d € Ob(D) and x € F{d). Then 
colim(F) is the quotient of U with respect to the equivalence relation "~" generated 
by the formulas (d^x) ^ (c?',F(/)(x)), where / : d —> d' is a morphism of D. If 
F : D -> Top is a functor, then colim(F) is an analogous quotient space of the space U 
which is the disjoint union of the spaces appearing as values of F . If F : D —> ModR is 
a functor, then colim(F) is an analogous quotient module of the module U which is the 
direct sum of the modules appearing as values of F . 

REMARK. If coIim(F) exists for every object F of C^, an argument from the universal 
property (2.13) shows that the various objects colim(F) of C fit together into a functor 
colim(—) which is left adjoint to A: 

colim :C^ <=>C: A. 

We will now give some examples of colimits [17, p. 64]. 
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2.15. Coproducts. Let D be the category of 2.12(i), so that a functor X : D —> C is 
just a collection {Xi)i^x of objects of C. The colimit of X is called the coproduct of the 
collection and written ]J^ Xi or, if I = {0,1}, Xo JJ Xi. If C is Set or Top the coproduct 
is disjoint union; if C is Modi?, coproduct is direct sum. If J = {0,1}, then the definition 
of colimit (2.13) gives natural maps ino . X^ -^ XQWX\ and ini \ X\ -^ Xo\[X\\ 
given maps /j : X^ -> y (i = 0, 1) there is a unique map J : XQ]XX\ —> y such that 
/ • ini = fi (i = 0, 1). The map / is ordinarily denoted /o H- / i-

2.16. Pushouts. If D is the category of 2.12(ii), then a functor X : D —̂  C is a 
diagram X{a) <— X{b) -* X{c) in C. In this case the colimit of X is called the pushout 
P of the diagram X{a) <^ X{b) -> X{c). It is the result of appropriately gluing X{a) 
to X{c) along X{b). The definition of colimit gives a natural commutative diagram 

Xib) 

n 
X(a) 

t 

i' 

Xic) 
j'i 

P 

Any diagram isomorphic to a diagram of this form is called a pushout diagram; the map 
i' is called the cobase change of i (along j) and the map / is called the cobase change 
of j (along i). Given maps fa : X{a) —• Y and fc : X[c) -^ Y such that faj — fch 
there is a unique map f : P -^Y such that ff = fc and fi' = fa-

2.17. Sequential colimits. If D is the category of 2.12(iii), a functor X : D -^ C is a 
diagram of the following form 

X{0)-^X{\)^ , X ( n ) - > . . . 

in C; this is called a sequential direct system in C. The colimit of this direct system is 
called the sequential colimit of the objects X(n), and denoted colimn-X'(n). If C is one 
of the categories Set, Top or Mod/? and each one of the maps X{n) -^ X{n -\- \) is an 
inclusion, then colimnX(n) can be interpreted as an increasing union of the X{n)\ if 
C = Top a subset of this union is open if and only if its intersection with each X{n) is 
open. 

2.18. Limits 

We next introduce the notion of the limit of a functor [17, p. 68]. This is strictly dual 
to the notion of colimit, in the sense that a limit of a functor F : D —̂  C is the same 
as a colimit of the "opposite functor" F^P : D°P —> C**̂ . From a logical point of view 
this may be everything there is to say about limits, but it is worthwhile to make the 
construction more explicit and work out some examples. 

Let C be a category and D a small category. Typically, C is as before (2.1) and D is 
one of the following. 
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2.19. Shapes of limit diagrams 

(i) A category with a set J of objects and no nonidentity morphisms. 
(ii) The category D = { a — > b ^ c } , with three objects and the two indicated 

nonidentity morphisms. 

Let ^ : C —)̂  C^ be as before (2.11) the "constant diagram" functor. 

2.20. DEFINITION. Let D be a small category and F : D -^ C a functor. A limit for F 
is an object L of C together with a natural transformation t : A{L) -^ F such that for 
every object X of C and every natural transformation s : A{X) -^ F, there exists a 
unique map s' : X -^ L\nC such that tA{s') = 5. 

REMARK. The universal property of a limit implies as usual that any two limits for F 
are canonically isomorphic. If a limit of F exists we will speak of "the" limit of F and 
denote it lim(F). The limit is sometimes called the inverse limit, and denoted l imF, 
limoi^ or limoF. Roughly speaking, ^(lim(F)) is the constant diagram which is most 
efficient at originating a map to F , in the sense that any map from a constant diagram 
to F lifts uniquely over the universal map A{co\im{F)) -^ F. 

2.21. REMARK. A category C is said to have all small (rcsp. finite) limits if lim(F) exists 
for any functor F from a small (resp. finite) category D to C. The categories Set, Top 
and ModR have all small limits. Suppose that D is a small category and F : D -^ Set is 
a functor. Let P be the product of the sets which appear as values of F , i.e., let U be 
the set of pairs (d,x) where d G Ob(D) and x € F(d), q : U -^ Ob(D) the map with 
q{d, x) = d, and P the set of all functions s : Ob(D) —> U such that qs is the identity 
map of Ob(D). For 5 € P write s{d) = (d,5i(c/)), with S]{d) G F{d), Then lim(F) is 
the subset of P consisting of functions s which satisfy the equation s\ (d!) = F{f){s\ (d)) 
for each morphism / : d —> d' of D. If F : D —̂  Top is a functor, then lim(F) is the 
corresponding subspace of the space P which is the product of the spaces appearing as 
values of F . If F : D —> ModR is a functor, then lim(F) is the corresponding submodule 
of the module U which is the direct product of the modules appearing as values of F . 

REMARK. If lim(F) exists for every object F of C*̂ , an argument from the universal 
property (2.20) shows that various objects lim(F) of C fit together into a functor lim(—) 
which is right adjoint to A: 

A:C4=^C^ Aim. 

We will now give two examples of limits [17, p. 70]. 

2.22. Products. Let D be the category of 2.19(i), so that a functor X : D -^ C is 
just a collection { X J i ^ j of objects of C. The limit of X is called the product of the 
collection and written Yli ^i or, if J = {0,1}, XQ x X] (the notation "XQ H X I " is more 
logical but seems less common). If C is Set or Top the product is what is usually called 
direct product or cartesian product. If I = {0,1} then the definition of limit (2.20) gives 
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natural maps PFQ : XQX X\ —^XQ and prj : Xo x X\ -^ X\\ given maps fi'.Y-^Xi 
(i = 0, 1) there is a unique map f :Y -^ XQ x X] such that pr̂  • / = fi (i = 0, 1). The 
map / is ordinarily denoted (/o, f \ ) . 

2.23. Fullbacks. If D is the category of 2.19(ii), then a functor X : D -> Cisadiagram 
X{a) -^ X{b) ^ X{c) in C. In this case the limit of X is called the pullback P of 
the diagram X{a) —> A'(6) <— X{c). The definition of limit gives a natural commutative 
diagram 

p 

n 
X{a) 

I 

i 

X{c) 

n 
X{b) 

Any diagram isomorphic to a diagram of this form is called a pullback diagram', the map 
i' is called the base change of i (along j) and the map / is called the base change of j 
(along i). Given maps fa 'Y —* X{a) and fc'-Y -^ X{c) such that ifa = jfc, there is 
a unique map f :Y -^ P such that z'/ = fc and j ' / = fa. 

2.24. 5ome remarks on limits and colimits 

An object 0 of a category C is said to be an initial object if there is exactly one map from 
0 to any object X of C. Dually, an object * of C is said to be a terminal object if there 
is exactly one map X —• * for any object X of C. Clearly initial and terminal objects 
of C are unique up to canonical isomorphism. The proof of the following statement just 
involves unraveling the definitions. 

2.25. PROPOSITION. Let C be a category, D the empty category (i.e. the category with 
no objects), and F :D -^ C the unique functor Then colim(F), if it exists, is an initial 
object ofC and lim(F), if it exists, is a terminal object ofC. 

Suppose that D is a small category, that X : D —• C is a functor, and that F : C —> C' 
is a functor. If colim(X) and co\im{FX) both exist, then it is easy to see that there 
is a natural map colim(FX) —> F{co\imX). Similarly, if lim(F) and ]im{FX) both 
exist, then it is easy to see that there is a natural map F{\\mX) —̂  \\m{FX). The 
functor F is said to preserve colimits if whenever X : D —> C is a functor such that 
colim(X) exists, then colim(FA') exists and the natural map co\im{FX) -^ F{co\imX) 
is an isomorphism. The functor F is said to preserve limits if the corresponding dual 
condition holds [17, p. 112]. The following proposition is a formal consequence of the 
definition of an adjoint functor pair. 

2.26. PROPOSITION [17, pp. 114-115]. Suppose that 

is an adjoint functor pair Then F preserves colimits and G preserves limits. 



Section 3 Homotopy theories 83 

REMARK. Proposition 2.26 explains why the underlying set of a product (2.22) or pull-
back (2.23) in the category Mod/? or Top is the same as the product or pullback of the 
underlying sets: in each case the underlying set (or forgetful) functor is a right adjoint 
(2.9, 2.10) and so preserves Hmits, e.g., products and pullbacks. Conversely, 2.26 pins 
down why the forgetful functor G of 2.9 cannot possibly be a left adjoint or equivalently 
cannot possibly have a right adjoint: G does not preserve colimits, since, for instance, 
it does not take coproducts of i2-modules (i.e. direct sums) to coproducts of sets (i.e. 
disjoint unions). 

We will use the following proposition in §10. 

2.27. LEMMA [17, p. 112]. Suppose that C has all small limits and colimits and that D 
is a small category. Then the functor category C^ also has small limits and colimits. 

REMARK. In the situation of 2.27 the colimits and limits in C^ can be computed 
"pointwise" in the following sense. Suppose that X : D' —• C is a functor. Then 
for each object d of D there is an associated functor X^ : D' —• C given by the formula 
Xd{d') = {X{d')){d). It is not hard to check that for each d e Ob(D) there are natural 
isomorphisms (colimA')(d) = colim{Xd) and {limX){d) = \im{Xd)-

3. Model categories 

In this section we introduce the concept of a model category and give some examples. 
Since checking that a category has a model category structure is not usually trivial, we 
defer verifying the examples until later (§7 and §8). 

3.1. DEFINITION. Given a commutative square diagram of the following form 

A -U X 
ii Pi (3.2) 

B -^ Y 

a lift or lifting in the diagram is a map h: B -^ X such that the resulting diagram with 
five arrows commutes, i.e. such that hi = f and ph = g. 

3.3. DEFINITION. A model category is a category C with three distinguished classes of 
maps: 

(i) weak equivalences (^) , 
(ii) fibrations (—»), and 

(iii) cofibrations (̂ -•) 

each of which is closed under composition and contains all identity maps. A map which 
is both a fibration (resp. cofibration) and a weak equivalence is called an acyclic fibration 
(resp. acyclic cofibration). We require the following axioms. 

MCI Finite limits and colimits exist in C (2.14, 2.21). 
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MC2 If / and g are maps in C such that gf is defined and if two of the three maps 
/ , g, gf are weak equivalences, then so is the third. 

MC3 If / is a retract of g (2.6) and p is a fibration, cofibration, or a weak equivalence, 
then so is / . 

MC4 Given a commutative diagram of the form 3.2, a lift exists in the diagram in 
either of the following two situations: (i) i is a cofibration and p is an acyclic fibration, 
or (ii) i is an acyclic cofibration and p is a fibration. 

MC5 Any map / can be factored in two ways: (i) / = pz, where z is a cofibration 
and p is an acyclic fibration, and (ii) / = pi, where i is an acyclic cofibration and p is 
a fibration. 

REMARK. The above axioms describe what in [22] is called a "closed" model category; 
since no other kind of model category comes up in this paper, we have decided to leave 
out the word "closed". In [22] Quillen uses the terms "trivial cofibration" and "trivial 
fibration" instead of "acyclic cofibration" and "acyclic fibration". This conflicts with the 
ordinary homotopy theoretic use of "trivial fibration" to mean a fibration in which the 
total space is equivalent to the product of the base and fibre; in geometric examples of 
model categories, the "acyclic fibrations" of 3.3 usually turn out to be fibrations with a 
trivial fibre, so that the total space is equivalent to the base. We have followed Quillen's 
later practice in using the word "acyclic". The axioms as stated are taken from [23]. 

3.4. REMARK. By IMCl and 2.25, a model category C has both an initial object 0 and 
a terminal object *. An object ^ € C is said to be cofibrant if 0 —̂  A is a cofibration 
and fibrant if A —̂  * is a fibration. Later on, when we define the homotopy category 
Ho(C), we will see that HomHo(c)(^5-B) is in general a quotient of Homc{A,B) only 
if A is cofibrant and B is fibrant; if A is not cofibrant or B is not fibrant, then there are 
not in general a sufficient number of maps >l —̂  B in C to represent every map in the 
homotopy category. 

The factorizations of a map in a model category provided by MC5 are not required to 
be functorial. In most examples (e.g., in cases in which the factorizations are constructed 
by the small object argument of 7.12) the factorizations can be chosen to be functorial. 

We now give some examples of model categories. 

3.5. EXAMPLE (see §8). The category Top of topological spaces can be given the struc-
ture of a model category by defining f : X —*Y iobc 

(i) a weak equivalence if / is a weak homotopy equivalence (8.1) 
(ii) a cofibration if / is a retract (2.6) of a map X ^ Y' \n which Y' is obtained 

from X by attaching cells (8.8), and 
(iii) a fibration if / is a Serre fibration (8.2). 

With respect to this model category structure, the homotopy category Ho(Top) is equiv-
alent to the usual homotopy category of CW-complexes (cf. 8.4). 

The above model category structure seems to us to be the one which comes up most 
frequently in everyday algebraic topology. It puts an emphasis on CW-structures; every 
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object is fibrant, and the cofibrant objects are exactly the spaces which are retracts of 
generalized CW-complexes (where a "generalized CW-complex" is a space built up from 
cells, without the requirement that the cells be attached in order by dimension.) In some 
topological situations, though, weak homotopy equivalences are not the correct maps to 
focus on. It is natural to ask whether there is another model category structure on Top 
with respect to which the "weak equivalences" are the ordinary homotopy equivalences. 
There is a beautiful paper of Strom [26] which gives a positive answer to this question. 
If B is a topological space, call a subspace inclusion i \ A -^ B 2i closed Hurewicz 
cofibration if >l is a closed subspace of B and i has the homotopy extension property, 
i.e. for every space Y a lift (3.1) exists in every commutative diagram 

B X 0 U ^ X [0,1] —^ Y 

i i 
B X [0,1] —> * 

Call a map p : X —yY a Hurewicz fibration if p has the homotopy lifting property, i.e. 
for every space A a lift exists in every commutative diagram 

AxO 

i 
I X [ 0 , 1 ] 

— > 

— > 

X 

Pi 
Y 

3.6. EXAMPLE ([26]). The category Top of topological spaces can be given the structure 
of a model category by defining a map / : X —> y to be 

(i) a weak equivalence if / is a homotopy equivalence, 
(ii) a cofibration if / is a closed Hurewicz cofibration, and 

(iii) 2i fibration if / is a Hurewicz fibration. 

With respect to this model category structure, the homotopy category Ho(Top) is equiv-
alent to the usual homotopy category of topological spaces. 

REMARK. The model category structure of 3.6 is quite different from the one of 3.5. 
For example, let W be the "Warsaw circle"; this is the compact subspace of the plane 
given by the union of the interval [—1,1] on the t/-axis, the graph of y = sin(l/x) for 
0 < X ̂  1, and an arc joining (1, sin(l)) to (0, - 1 ) . Then the map from VF to a point is 
a weak equivalence with respect to the model category structure of 3.5 but not a weak 
equivalence with respect to the model category structure of 3.6. 

It turns out that many purely algebraic categories also carry model category structures. 
Let i? be a ring and Chi? the category of non-negatively graded chain complexes over R. 

3.7. EXAMPLE (see §7). The category C\IR can be given the structure of a model cate-
gory by defining a map / : M -> TV to be 

(i) a weak equivalence if / induces isomorphisms on homology groups, 
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(ii) a cofihration if for each A; ^ 0 the map Jk : Mk -^ Nk is Si monomorphism with 
a projective ii-module (§7.1) as its cokernel, and 

(iii) difibration if for each fc ^ 1 the map fk '• Mk —̂  N^ is an epimorphism. 

The cofibrant objects in CYIR are the chain complexes M such that each Mk is a projective 
J?-module. The homotopy category Ho(Ch/?) is equivalent to the category whose objects 
are these cofibrant chain complexes and whose morphisms are ordinary chain homotopy 
classes of maps (cf. proof of 7.3). 

Given a model category, it is possible to construct many other model categories asso-
ciated to it. We will do quite a bit of this in §10. Here are two elementary examples. 

3.8. EXAMPLE. Let C be a model category. Then the opposite category C^^ (2.4) can be 
given the structure of a model category by defining a map / ° P : y —> X to be 

(i) a weak equivalence if / : X —• F is a weak equivalence in C, 
(ii) a cofibration if / : X —> y is a fibration in C, 

(iii) difibration if / : X —̂  F is a cofibration in C. 

3.9. Duality. Example 3.8 reflects the fact that the axioms for a model category are 
self-dual. Let P be a statement about model categories and P* the dual statement obtained 
by reversing the arrows in P and switching "cofibration" with "fibration". If P is true 
for all model categories, then so is P*. 

REMARK. The duality construction in 3.9 corresponds via 3.5 or 3.6 to what is usually 
called "Eckmann-Hilton" duality in ordinary homotopy theory. Since there are interesting 
true statements P about the homotopy theory of topological spaces whose Eckmann-
Hilton dual statements P* are not true, it must be that there are interesting facts about 
ordinary homotopy theory which cannot be derived from the model category axioms. Of 
course this is something to be expected; the axioms are an attempt to codify what all 
homotopy theories might have in common, and just about any particular model category 
has additional properties that go beyond what the axioms give. 

If C is a category and A is an object of C, the under category [17, p. 46] (or comma 
category) AjC is the category in which an object is a map f \ A -^ X m Q. A morphism 
in this category from f : A -^ X io g : A -^ Y '\s di map h : X ^Y m C such that 
hf = 9. 

3.10. REMARK. Let C be a model category and A an object of C. Then it is possible to 
give AiC the structure of a model category by defining h \ {A -^ X) -^ {A -^ Y) \n 
AiC to be 

(i) a weak equivalence if / i : X —> F is a weak equivalence in C, 
(ii) a cofibration if / i : X —> y is a cofibration in C, and 

(iii) difibration if / i : X —• y is a fibration in C. 

REMARK. Let Top have the model category structure of 3.6 and as usual let * be the 
terminal object of Top, i.e. the space with one point. Then *|Top is the category of 
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pointed spaces, and an object X of *iTop is cofibrant if and only if the basepoint of X 
is closed and nondegenerate [25, p. 380]. Thus (3.7) from the point of view of model 
categories, having a nondegenerate basepoint is for a space what being projective is for 
a chain complex! 

3.11. REMARK. In the situation of 3.10, we leave it to the reader to define the over 
category CiA and describe a model category structure on it. If C is the category of spaces 
(3.5 and 3.6), the model category structure on C[A is related to fibrewise homotopy 
theory [15]. 

In the remainder of this section we make some preliminary observations about model 
categories. 

3.12. Lifting properties. A map i : A -^ B \s said to have the left lifting property 
(LLP) with respect to another map p : X -^ Y and p is said to have the right lifting 
property (RLP) with respect to i if a lift exists (3.1) in any diagram of the form 3.2. 

3.13. PROPOSITION. Let C be a model category. 

(i) The cofibrations in C are the maps which have the LLP with respect to acyclic 
fibrations. 

(ii) The acyclic cofibrations in C are the maps which have the LLP with respect to 
fibrations. 

(iii) The fibrations in C are the maps which have the RLP with respect to acyclic 
cofibrations. 

(iv) The acyclic fibrations in C are the maps which have the RLP with respect to 
cofibrations. 

PROOF. Axiom MC4 implies that an (acyclic) cofibration or an (acyclic) fibration has the 
stated lifting property. In each case we need to prove the converse. Since the four proofs 
are very similar (and in fact statements (iii) and (iv) follow from (i) and (ii) by duality), 
we only give the first proof. Suppose that / : X —• L has the LLP with respect to all 
acyclic fibrations. Factor / as a composite K ^-^ L' -^ L as in MC5(i), so i : K —^ L' 
is a cofibration and p : L' —> L is an acyclic fibration. By assumption there exists a 
lifting ^ : L —• L' in the following diagram: 

K 

fl 
L 

- U L' 
Pi 

-ii> L 

This implies that / is a retract of i: 

K ^ K ^ K 

!i ii / i 
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By MC3 we conclude that / is a cofibration. D 

REMARK. Proposition 3.13 implies that the axioms for a model category are overdeter-
mined in some sense. This has the following practical consequence. If we are trying to set 
up a model category structure on some given category and have chosen the fibrations and 
the weak equivalences, then the class of cofibrations is pinned down by property 3.13(i). 
Dually, if we have chosen the cofibrations and weak equivalences, the class of fibrations 
is pinned down by property 3.13(iii). Verifying the axioms then comes down in part to 
checking certain consistency conditions. 

3.14. PROPOSITION. Let C be a model category. 

(i) The class of cofibrations in C is stable under cobase change (2.16). 
(ii) The class of acyclic cofibrations is stable under cobase change. 

(iii) The class of fibrations is stable under base change (2.23). 
(iv) The class of acyclic fibrations is stable under base change. 

PROOF. The second two statements follow from the first two by duality (3.9), so we 
only prove the first and indicate the proof of the second. Assume that i . K ^-^ L \s di 
cofibration, and pick a map f : K —^ K'. Construct a pushout diagram (cf. MCI): 

K -U K' 
t i j i • 
L ^ V 

We have to prove that j is a cofibration. By (i) of the previous proposition it is enough 
to show that j has the LLP with respect to an acyclic fibration. Let p : £ —̂  S be an 
acyclic fibration and consider a lifting problem 

(3.15) 
K' 

n 
L' 

a 

b 

E 
p i 

B 

Enlarge this to the following diagram 

K 
i[ 

L 

I ^ 

9 

K' 

V 

a 

b 

E 

pi 
B 

Since z is a cofibration, there is a lifting /i : L -^ S in the above diagram. By the 
universal property of pushouts, the maps h : L —^ E and a : K' —* E induce the desired 
lifting in 3.15. The proof of part (ii) is analogous, the only difference being that we need 
to invoke 3.13(ii) instead of 3.13(i). D 
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4. Homotopy relations on maps 

In this section C is some fixed model category, and A and X are objects of C. Our goal 
is to exploit the model category axioms to construct some reasonable homotopy relations 
on the set Homc(A, X) of maps from A to X. We first study a notion of left homotopy, 
defined in terms of cylinder objects, and then a dual (3.9) notion of right homotopy, 
defined in terms oi path objects. It turns out (4.21) that the two notions coincide in what 
will turn out to be the most important case, namely if A is cofibrant and X is fibrant. 

4.1. Cylinder objects and left homotopy 

4.2. DEFINITION. A cylinder object for A is an object A/\I oiC together with a diagram 
(MCI, 2.15): 

AY[A^AM^A 

which factors the folding map id^ -f \dA : A [J A —> A (2.15). A cylinder object A/\I 
is called 

(i) a good cylinder object, i f A J J ^ — > i 4 A / i s a cofibration, and 
(ii) a very good cylinder object, if in addition the map A /\I -^ A\s di (necessarily 

acyclic) fibration. 

If A A / is a cylinder object for A, we will denote the two structure maps A-^ AM 
by 2o = i • ino and i\ — i - \r\\ (cf. 2.15). 

4.3. REMARK. By MC5, at least one very good cylinder object for A exists. The notation 
A A / is meant to suggest the product of A with an interval (Quillen even uses the notation 
"i4 X /" for a cylinder object). However, a cylinder object Af\I\s not necessarily the 
product of A with anything in C; it is just an object of C with the above formal property. 
An object AoiC might have many cylinder objects associated to it, denoted, say, A/\I, 
A A r,..., etc. We do not assume that there is some preferred natural cylinder object 
for A; in particular, we do not assume that a cylinder object can be chosen in a way that 
is functorial in A. 

4.4. LEMMA. If A is cofibrant and A/\ I is a good cylinder object for A, then the maps 
zo, 2i : A -^ A /\I are acyclic cofibrations. 

PROOF. It is enough to check this for IQ. Since the identity map \dA : A -^ A factors as 
A ^ A A I ^ A, it follows from MC2 that IQ is a weak equivalence. Since A ]J A is 
defined by the following pushout diagram (2.16) 

0 —> A 

cotibration | ino | 

A ^ AUA 
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it follows from 3.14 that the map ino is a cofibration. Since ZQ is thus the composite 

A'I!%A\IA-^AM, 

of two cofibrations, it itself is a cofibration. D 

DEFINITION. TWO maps / , f̂: ^ —̂  X in C are said to be left homotopic (written f ^ g) 
if there exists a cylinder object 4̂ A / for A such that the sum map f -h g : AlJ[A -^ X 
(2.15) extends to a map H : AAI -^ X, i.e. such that there exists a map H : AAI -^ X 
with H{io 4- ii) = / -f p. Such a map H is said to be a left homotopy from f io g (via 
the cylinder object A A / ) . The left homotopy is said to be good (resp. very good) if 
i4 A / is a good (resp. very good) cylinder object for A. 

EXAMPLE. Let C be the category of topological spaces with the model category structure 
described in 3.5. Then one choice of cylinder object for a space A is the product A x [0,1]. 
The notion of left homotopy with respect to this cylinder object coincides with the usual 
notion of homotopy. Observe that if A is not a CW-complex, ^ x [0,1] is not usually a 
good cylinder object for A. 

4.5. REMARK. If / ~ p via the homotopy H, then it follows from MC2 that the map / 
is a weak equivalence if and only if g is. To see this, note that as in the proof of 4.4 the 
maps io and i\ are weak equivalences, so that if / = Hio is a weak equivalence, so is 
H and hence so is g = Hi\. 

4.6. LEMMA. If f ^ g : A —* X, then there exists a good left homotopy from f to g. If 
in addition X isfibrant, then there exists a very good left homotopy from f to g. 

PROOF. The first statement follows from applying MC5(i) to the map AY[A -^ A A I, 
where A A I is the cylinder object in some left homotopy from / to g. For the second, 
choose a good left homotopy H : A A I -^ X from / to g. By MC5(i) and MC2, we 
may factor ^ A / ^ ^ as 

AAI'^AAT^A. 

Applying MC4 to the following diagram 

AAI - ^ X 

i I 

A AT —^ * 

gives the desired very good homotopy H' \ A Al' -^ X. D 

4.7. LEMMA. If A is cofibrant, then ~ is an equivalence relation on Homc(^, ^ ) . 
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PROOF. Since we can take A itself as a cylinder object for A, we can take / itself as a 
left homotopy between / and f. lutX s . A\[A -^ A\[A ht iht map which switches 
factors (technically, 5 = ini -h ino). The identity {g -^ f) — {f + 9)s shows that if 

f ^ g, then g ^ f. Suppose that f ^ g and g ^ h. Choose a good (4.6) left homotopy 
H : A A I -^ X from f to g (i.e. Hio = f^Hi\ = g) and a good left homotopy 
H' \ AM' -^ X from g to h (i.e. H'i'^ = g, H'i\ = h). Lei A A /" be the pushout of 
the following diagram: 

AAI ^ A ^AAr. 

Since the maps i\ : A ~* A Al and ZQ : A —̂  4̂ A/ ' are acyclic cofibrations, it follows 
from 3.14 and the universal property of pushouts (2.16) that A A I" is a cylinder object 
for A. Another application of 2.16 to the maps H and H' gives the desired homotopy 
H'' :AA r -^ X from f to h. D 

Let 7r^{A,X) denote the set of equivalence classes of Homc(A,-X') under the equiv-
alence relation generated by left homotopy. 

4.8. REMARK. The word "generated" in the above definition of 7r^{A,X) is important. 
We will sometimes consider 7r^{A, X) even if A is not cofibrant; in this case left homo-
topy, taken on its own, is not necessarily an equivalence relation on Homc(^,^). 

4.9. LEMMA. If A is cofibrant and p:Y -^ X is an acyclic fibration, then composition 
with p induces a bijection: 

p,:n\A,Y)-^ir'{A,X), [f]^\pf]. 

PROOF. The map p* is well defined, since if / , 5 : >1 -+ y are two maps and i f is a 
left homotopy from / to g, then pH is a left homotopy from pf to pg. To show that p, 
is onto, choose [/] € 7r'(A, X). By MC4(i), 3i lift g : A —^ Y exists in the following 
diagram: 

0 — . y 

i p i - . 

A ^ X 

Clearly p^[g\ = \pg] = [/]. To prove that p* is one to one, \et f,g : A-^Y and suppose 

that pf ^pg : A -^ X. Choose (4.6) a good left homotopy H : AAI -^ X from pf to 
pg. By MC4(i), a lifting exists in the following diagram 

AUA ^ y 

AM - ^ X 
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and gives the desired left homotopy from f to g. D 

4.10. LEMMA. Suppose that X isfibrant, that f and g are left homotopic maps A —^ X, 

and that h : A' —^ A is a map. Then fh^gh. 

PROOF. By 4.6, we can choose a very good left homotopy H : A M -^ X between / 
and g. Next choose a good cylinder object for A': 

A'JlA'^A'M^A'. 

By MC4, there is a lifting k : A' A I -^ A A I in the following diagram: 

A^UA' ^^^ AUA ^ AAI 

A'AI - ^ A' - ^ A 

It is easy to check that Hk is the desired homotopy. D 

4.11. LEMMA. If X isfibrant, then the composition in C induces a map: 

ii\A\A) X T^\A,X) - . i:\A\X), {[h], [/]) ^ [fh]. 

PROOF. Note that we are not assuming that A is cofibrant, so that two maps A -^ X 
which represent the same element of i^^A.X) are not necessarily directly related by a 

left homotopy (4.8). Nevertheless, it is enough to show that if h ^^ k : A' -^ A and 

f ^ g \ A -^ X then fh and gk represent the same element of -K^A', X). For this it is 

enough to check both that fh^gh:A^-*X and that gh ^ gk \ A' -^ X. The first 
homotopy follows from the previous lemma. The second is obtained by composing the 
homotopy between h and k with g. D 

4.12. Path objects and right homotopies 

By duality (3.9), what we have proved so far in this section immediately gives corre-
sponding results "on the other side". 

DEFINITION. A path object for X is an object X^ of C together with a diagram (2.22) 

X^X^ ^XxX 

which factors the diagonal map (idx, idx) '. X -^ X x X. A path object X^ is called 

(i) a good path object, if X^ —• X x X is a fibration, and 
(ii) a very good path object, if in addition the map X —> X^ is a (necessarily acyclic) 

cofibration. 
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4.13. REMARK. By MC5, at least one very good path object exists for X. The notation 
X^ is meant to suggest a space of paths in X, i.e. a space of maps from an interval into 
X. However a path object X^ is not in general a function object of any kind; it is just 
some object of C with the above formal property. An object X of C might have many 
path objects associated to it, denoted X^, X^\ . . . , etc. 

We denote the two maps X^ -^ X by po = pv^ - p and p\ = pv^ p (cf. 2.22). 

4.14. LEMMA. / / X is fibrant and X^ is a good path object for X, then the maps 
po,p\ : X^ -^ X are acyclic fibrations. 

DEFINITION. TWO maps f,g : A -^ X arc said to be right homotopic (written f ^ g) if 
there exists a path object X' for X such that the product map {f,g) : A -^ X x X lifts 
to a map H : A -^ X^. Such a map H is said to be a right homotopy from f io g (via 
the path object X^). The right homotopy is said to be good (resp. very good) if X^ is a 
good (resp. very good) path object for X. 

EXAMPLE. Let the category of topological spaces have the structure described in 3.5. 
Then one choice of path object for a space X is the mapping space Map([0, l],X). 

4.15. LEMMA. If f '^ g : A -^ X then there exists a good right homotopy from f to g. 
If in addition A is cofibrant, then there exists a very good right homotopy from f to g. 

4.16. LEMMA. If X is fibrant, then ~ is an equivalence relation on Homc{A, X). 

Let 7r̂ (A, X) denote the set of equivalence classes of Homc(v4, X) under the equiv-
alence relation generated by right homotopy. 

4.17. LEMMA. IfX is fibrant and i\ A —^ B is an acyclic cofibration, then composition 
with i induces a bijection: 

z*:7r^(B,X)-^7r^(A^). 

4.18. LEMMA. Suppose that A is cofibrant, that f and g are right homotopic maps from 
A to X, and that h\ X —^Y is a map. Then hf ~ hg. 

4.19. LEMMA. If A is cofibrant then the composition in C induces a map 7r'^{A,X) x 
7r^{X,Y)-^w^iA,Y). 

4.20. Relationship between left and right homotopy 

The following lemma implies that if A is cofibrant and X is fibrant, then the left and 
right homotopy relations on HomdA, X) agree. 

4.21. LEMMA. Let f,g : A-^ X be maps. 
I ^ 

(i) If A is cofibrant and f "^ g, then f '^ g. 
r I 

(ii) If X is fibrant and f ^ g, then f ^ g. 
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4.22. Nomotopic maps. If A is cofibrant and X is fibrant, we will denote the identical 
right homotopy and left homotopy equivalence relations on Home (A, X) by the symbol 
"~" and say that two maps related by this relation are homotopic. The set of equivalence 
classes with respect to this relation is denoted T:{A,X). 

PROOF OF 4.21. Since the two statements are dual, we only have to prove the first one. 
By 4.6 there exists a good cylinder object 

for A and a homotopy H : A A I -^ X from / to g. By 4.4 the map io is an acyclic 
cofibration. Choose a good path object (4.13) 

X^X'^'^^XxX 

for X. By MC4 it is possible to find SL Mft K : A A I -^ X^ in the diagram 

A ^ X' 

k i I (p(),Pi) 

AM ^'-^^ XxX 

The composite Ki\ : A -^ X^ is the desired right homotopy from f io g. D 

4.23. REMARK. Suppose that A is cofibrant, X is fibrant, A A I is some fixed good 
cylinder object for A and X^ is some^zjc^^ good path object for X. Let f,g:A—^X 
be maps. The proof of 4.21 shows that f ^ g if and only if f ^ g via the fixed path 
object X^. Dually, f ^ g if and only if / ~ ^ via the fixed cylinder object A A I. 

We will need the following observation later on. 

4.24. LEMMA. Suppose that f : A -^ X is a map in C between objects A and X 
which are both fibrant and cofibrant. Then f is a weak equivalence if and only if f 
has a homotopy inverse, i.e. if and only if there exists a map g : X -^ A such that the 
composites gf and fg are homotopic to the respective identity maps. 

PROOF. Suppose first that / is a weak equivalence. By MC5 we can factor / as a 
composite 

A ^C ^X (4.25) 

in which by MC2 the map p is also a weak equivalence. Because q : A -^ C is a 
cofibration and A is fibrant, an application of MC4 shows that there exists a left inverse 
for q, i.e. a morphism r : C -^ A such that rq — id^̂ . By Lemma 4.17, q induces 
a bijection Q* : 7r^(C,C) —> 7r''(^,C), \g\ H-> [y^]. Since g*([gr]) = \qrq\ — [g'], we 
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conclude that gr ~ Ic and hence that r is a two-sided right (equivalently left) homotopy 
inverse for q. A dual argument (3.9) gives a two-sided homotopy inverse of p, say 5. 
The composite rs is a two sided homotopy inverse of / = pq. 

Suppose next that / has a homotopy inverse. By MC5 we can find a factorization 
f = pq as in 4.25. Note that the object C is both fibrant and cofibrant. By MC2, in order 
to prove that / is a weak equivalence it is enough to show that p is a weak equivalence. 
Let g : X -^ Abt Si homotopy inverse for / , and H : X Al —^ X a homotopy between 
fg and idx- By MC4 we can find a lift if' : X A / -^ C in the diagram 

X ^ C 

i() i P i . 

XAI - ^ X 

Let s = H'i\, so that ps = idx- The map g is a weak equivalence, so by the result just 
proved above q has a homotopy inverse, say r. Since pq = / , composing on the right 
with r gives p ^ fr (4.11). Since in addition s ^ qg by the homotopy H\ it follows 
(4.11, 4.19) that 

sp ~ qgp ~ qgfv ^ qr '^ idc-

By 4.5, then, sp is a weak equivalence. The commutative diagram 

c '^ c '^ c 
i p i sp [ p 

X -^ C ^ X 

shows that p is a retract (2.6) of sp, and hence by MC3 that the map p is a weak 
equivalence. D 

5. The homotopy category of a model category 

In this section we will use the machinery constructed in §4 to give a quick construction 
of the homotopy category Ho(C) associated to a model category C. 

We begin by looking at the following six categories associated to C. 

Cc - the full (2.3) subcategory of C generated by the cofibrant objects in C. 
C/ - the full subcategory of C generated by the fibrant objects in C. 
Cc/ - the full subcategory of C generated by the objects of C which are both fibrant 

and cofibrant. 
TTCC - the category consisting of the cofibrant objects in C and whose morphisms are 

right homotopy classes of maps (see 4.19). 
TTC/ - the category consisting of fibrant objects in C and whose morphisms are left 

homotopy classes of maps (see 4.11). 
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TTCC/ - the category consisting of objects in C which are both fibrant and cofibrant, 
and whose morphisms are homotopy classes (4.22) of maps. 

These categories will be used as tools in defining Ho(C) and constructing a canonical 
functor C —> Ho(C). For each object X in C we can apply MC5(i) to the map 0 —> X 
and obtain an acyclic fibration px : QX -^ X with QX cofibrant. We can also apply 
MC5(ii) to the map X —> * and obtain an acyclic cofibration ix '- X ^—^ RX with RX 
fibrant. If X is itself cofibrant, let QX = X\\fX is fibrant, let RX = X. 

5.1. LEMMA. Given a map f : X —^ Y in C there exists a map f : QX -> QY such 
that the following diagram commutes: 

QX 
>C i '^ 

X 

-^ QY 
py i ~ 

-U Y 

The map f depends up to left homotopy or up to right homotopy only on / , and is a 
weak equivalence if and only if f is. IfY is fibrant, then f depends up to left homotopy 
or up to right homotopy only on the left homotopy class of f. 

PROOF. We obtain / by applying MC4 to the diagram: 

0 

i 
QX 

-^ QY 
^ I PY . 

fPX y 

The statement about the uniqueness of / up to left homotopy follows from 4.9. For the 
statement about right homotopy, observe that QX is cofibrant, and so by 4.2 l(i) two 
maps with domain QX which are left homotopic are also right homotopic. The weak 
equivalence condition follows from MC2, and the final assertion from 4.11. D 

5.2. REMARK. The uniqueness statements in 5.1 imply that if / = idx then / is right 
homotopic to idgx- Similarly, \i f \ X -^Y and g :Y -^ Z and h — gf, then h is right 
homotopic to gf. Hence we can define a functor Q : C —̂  TTCC sending X -^ QX and 
/ : X - • y to the right homotopy class [/] G 7r^(QX, QY). 

The dual (3.9) to 5.1 is the following statement. 

5.3. LEMMA. Given a map f : X —^ Y in C there exists a map f : RX —> RY such 
that the following diagram commutes: 

X 
tx i ~ 

RX 

-^ Y 
iv i ~ 

X RY 
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The map f depends up to right homotopy or up to left homotopy only on / , and is a weak 
equivalence if and only if / is. If X is cofibrant, then f depends up to right homotopy 
or up to left homotopy only on the right homotopy class of / . 

5.4. REMARK. The uniqueness statements in 5.3 imply that \i f — idx then / is left 
homotopic to IARX- Moreover, \i f \ X -^Y and g :Y -^ Z and h = gf, then h is left 
homotopic to gf, Hence we can define a functor R: C -^ TTC/ sending X —̂  RX and 
/ : X -^ y to the left homotopy class [/] E 7r^{RX, RY). 

5.5. LEMMA. The restriction of the functor Q : C —^ TTCC to C/ induces a functor 
Q' : TTC/ —> TTCC/. The restriction of the functor R: C —^ TTC/ to Cc induces a functor 

cf-R '. TTCQ —̂  TTC, 

PROOF. The two statements are dual to one another, and so we will prove only the second. 
Suppose that X and Y are cofibrant objects of C and that f,g : X -^Y arc maps which 
represent the same map in TTCC; we must show that Rf = Rg. It is enough to do this 
in the special case f ^ g in which / and g are directly related by a right homotopy; 
however in this case it is a consequence of 5.3. D 

5.6. DEFINITION. The homotopy category Ho(C) of a model category C is the category 
with the same objects as C and with 

HomHo(c)(^,i^) = llom^Ccf{R'QX,R'QY) = ir{RQX,RQY). 

5.7. REMARK. There is a functor 7 : C —̂  Ho(C) which is the identity on objects and 
sends a map / : X -^ y to the map R'Q{f) : R'Q{X) -^ R'Q{Y). If each of the objects 
X and Y is both fibrant and cofibrant, then by construction the map 7 : Homc(X, Y) —• 
HomHo(c)(^?5^) is surjective and induces a bijection 7r{X^Y) = HomHo(c)(^i5^)-

It is natural to ask whether or not dualizing the definition of Ho(C) by replacing 
the composite functor R'Q by Q'i? would give anything different. The answer is that it 
would not; rather than prove this directly, though, we will give a symmetrical construction 
of the homotopy category in the next section. There are some basic observations about 
Ho(C) that will come in handy later on. 

5.8. PROPOSITION. If f is a morphism of C, then 7 ( / ) is an isomorphism in Ho(C) 
if and only if f is a weak equivalence. The morphisms of Ho(C) are generated under 
composition by the images under 7 of morphisms ofC and the inverses of images under 
7 of weak equivalences in C. 

PROOE If / : X -4 y is a weak equivalence in C, then R'Q{f) is represented by a map 
/ ' : RQ{X) -^ RQ{Y) which is also a weak equivalence (see 5.1 and 5.3); by 4.24, then, 
the map / ' has an inverse up to left or right homotopy and represents an isomorphism in 
TTCC/. This isomorphism is exactly 7( / ) . On the other hand, if 7 ( / ) is an isomorphism 
then / ' has an inverse up to homotopy and is therefore a weak equivalence by 4.24; it 
follows easily that / is a weak equivalence. 
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Observe by the above that for any object X of C the map 7 ( ^ Q X ) 7 ( P X ) ~ ' in Ho(C) 
is an isomorphism from X to RQ{X). Moreover, for two objects X and Y of C, the 
functor 7 induces an epimorphism (5.7) 

Uomc{RQ{X),RQ{Y)) -. }lomn,ic){RQ{X),RQ{Y)). 

Consequently, any map f : X -^Y in Ho(C) can be represented as a composite 

/ = l{PY)l{iQY)~^lf{f'h{iQxh{px)~^ 

for some map / ' : RQ{X) ^ RQ{Y) in C. D 

Proposition 5.8 has the following simple but useful consequence. 

5.9. COROLLARY. / / F and G are two functors Ho(C) -^ D and t : F^ -^ G^ is a 
natural transformation, then t also gives a natural transformation from F to G. 

PROOF. It is necessary to check that for each morphism h of Ho(C) an appropriate 
diagram D{h) commutes. By assumption D{h) commutes if h = 7 ( / ) or h = ^{g)~^ 
for some morphism / in C or weak equivalence g in C. It is easy to check that if 
ji = h\h2, the D{h) commutes if D{h]) commutes and D{h2) commutes. The lemma 
then follows from the fact (5.8) that any map of Ho(C) is a composite of maps of the 
form 7 ( / ) and 7(p)"^ D 

5.10. LEMMA. Let C be a model category and F : C -^ D be a functor taking weak 
I r 

equivalences in C into isomorphisms inD. If f '^ g : A —^ X or f r^^j g , A —^ X, then 
F{f) = Fig) in D. 

PROOF. We give a proof assuming f ^ g, the other case is dual. Choose (4.6) a good left 
homotopy H : AAI -^ X from / to g, so that ^ A / is a good cylinder object for A: 

AJIA'^'^^'AM^A, 

Since wio = wi\(— id^i), we have F{w)F{io) = F{w)F{i\). Since K; is a weak equiv-
alence, the map F{w) is an isomorphism and it follows that F{io) = i^(*i). Hence 
F{f) = F{H)F{io) is the same as F{g) = F{H)F{U). D 

5.11. PROPOSITION. Suppose that A is a cofibrant object ofC and X is afibrant object 
ofC. Then the map 7 : Homc{A,X) —• HomHo(c)(^?^) '-̂  surjective, and induces a 
bijection 7r{A,X) = llom}io^c){A X). 

PROOF. By 5.10 and 5.8 the functor 7 identifies homotopic maps and so induces a map 
7r{A,X) -> HomHo(c)(^)-^)- Consider the commutative diagram 

T:{RA,QX) 

-rl 
nHo(c){RA,QX) -

7:iA,X) 

7 i 
-• HomHo(c)(^,^) 
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in which the horizontal arrows are induced by the pair {iA^Px)- By 5.8 the lower 
horizontal map is a bijection, while by 4.9 and 4.17 the upper horizontal map is a 
bijection. As indicated in 5.7, the left-hand vertical map is also a bijection. The desired 
result follows immediately. D 

6. Localization of categories 

In this section we will give a conceptual interpretation of the homotopy category of 
a model category. Surprisingly, this interpretation depends only on the class of weak 
equivalences. This suggests that in a model category the weak equivalences carry the 
fundamental homotopy theoretic information, while the cofibrations, fibrations, and the 
axioms they satisfy function mostly as tools for making various constructions (e.g., the 
constructions later on in §10). This also suggests that in putting a model category structure 
on a category, it is most important to focus on picking the class of weak equivalences; 
choosing fibrations and cofibrations is a secondary issue. 

6.1. DEFINITION. Let C be a category, and VK C C a class of morphisms. A functor 
F : C —* D is said to be a localization of C with respect to W if 

(i) F{f) is an isomorphism for each f £W, and 
(ii) whenever G : C —>̂  D' is a functor carrying elements of W into isomorphisms, 

there exists a unique functor G' : D —> D' such that G'F = G. 

Condition 6.1(ii) guarantees that any two localizations of C with respect to W are 
canonically isomorphic. If such a localization exists, we denote it by C -^ W~^C. 

EXAMPLE. Let Ab be the category of abelian groups, and W the class of morphisms 
f : A^ B such that ker(/) and coker(/) are torsion groups. Let D be the category with 
the same objects, but with HomoCA, B) = HomAb(Q ® A, Q ® J5). Define F : Ab -> D 
to be the functor which sends an object A to itself and a map / to Q 0 / . It is an 
interesting exercise to verify directly that F is the localization of Ab with respect to W 
[12, p. 15]. 

6.2. THEOREM. Let C be a model category and W CC the class of weak equivalences. 
Then the functor 7 : C —• Ho(C) is a localization ofC with respect to W. 

More informally, Theorem 6.2 says that if C is a model category and VF C C is the 
class of weak equivalences, then W~^C exists and is isomorphic to Ho(C). 

PROOF OF 6.2. We have to verify the two conditions in 6.1 for 7. Condition 6.1(i) is 
proved in 5.8. For 6.1(ii), suppose given a functor G : C -> D carrying weak equivalences 
to isomorphisms. We must construct a functor G' : Ho(C) —̂  D such that G'7 = G, 
and show that G' is unique. Since the objects of Ho(C) are the same as the objects of 
C, the effect of G' on objects is obvious. Pick a map f : X -^ Y in Ho(C), which 
is represented by a map / ' : RQ(X) - • RQ{Y), well defined up to homotopy (4.22). 
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Observe by 5.10 that G{f') depends only on the homotopy class of / ' , and therefore 
only on / . Define G'{f) by the formula 

G'U) = G{pY)G{iQy)-'G{nG{iQx)G{vx)-y 

It is easy to check that G' is a functor, that is, respects identity maps and compositions. 
If / is the image of a map h: X -^Y oiC, then (5.1 and 5.3) after perhaps altering / ' 
up to right homotopy we can find a commutative diagram 

X £^ QX '^ RQ{X) 

hi hi r i • 

Y ^ QY '-^ RQ{Y) 

Applying G to this diagram shows that G'{f) = G{h) and thus that G' extends G, 
that is, G'j = G. The uniqueness of G' follows immediately from the second statement 
in 5.8 D 

7. Chain complexes 

Suppose that R is an associative ring with unit and let Modî  denote the category of left 
i?-modules. Recall that the category CYiR of (non-negatively graded) chain complexes of 
i?-modules is the category in which an object M is a collection {Mk}k^o of i?-modules 
together with boundary maps 6 : Mk —• Mk-\ (A: ̂  1) such that 9^ = 0. A morphism 
/ : M —• iV is a collection of i?-module homomorphisms fk : Mk -^ Nk such that 
/fc_i9 = 9/fc. In this section we will construct a model category structure (7.2) on 
CYkR and give some indication (7.3) of how the associated homotopy theory is related to 
homological algebra. 

7.1. Preliminaries. For an object M of Chn, define the fe-dimensional cycle module 
Cyj^{M) to be Mo if fc = 0 and ker(3 : Mk -^ Mk-\) if fc > 0. Define the fe-dimensional 
boundary module Bdk{M) to be image(9 : Mfc+i -* Mk). There are homology functors 
Hfc : ChR -^ ModR (fc ^ 0) given by HfeM = Cyf^{M)/Bdk{M) (we think of these 
homology groups as playing the role for chain complexes that homotopy groups do for 
a space). A chain complex M is acyclic if H^M = 0 (fc ^ 0). Recall that an i?-module 
P is said to be projective [6] if the following three equivalent conditions hold: 

(i) P is a direct summand of a free i?-module, 
(ii) every epimorphism / : A —> P of P-modules has a right inverse, or 

(iii) for every epimorphism A -^ B oi P-modules, the induced map 

HomModR {P, A) -^ HomModH (P, B) 

is an epimorphism. 
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The first goal of this section is to prove the following result. 

7.2. THEOREM. Define a map f : M -^ N in CUR to be 

(i) a weak equivalence if the map f induces isomorphisms HkM —^ HkN (k ^ 0), 
(ii) a cofibration if for each k^O the map fk : Mk —̂  Nk is a monomorphism with 

a projective R-module as its cokemel, and 
(iii) a fibration if for each k > 0 the map fk'.Mk^ Nk is an epimorphism. 

Then with these choices Ch/j is a model category. 

After proving this we will make the following calculation. If A is an i?-module, let 
K{A, n) (n ^ 0) denote the object M of Ch^ with Mn = A and Mk = 0 for k :^ n 
(these are the chain complex analogues of Eilenberg-MacLane spaces). 

7.3. PROPOSITION. For any two R-modules A and B and non-negative integers m, n 
there is a natural isomorphism 

HomHo(ch„) {K{A, m), K{B, n)) S Ext^-'"(^, B). 

Here Ext^ is the usual Ext functor from homological algebra [6]. We take it to be 
zero if A: < 0. 

7.4. Proof of MCUMC3 

We should first note that the classes of weak equivalences, fibrations and cofibrations 
clearly contain all identity maps and are closed under composition. It is easy to see that 
limits and colimits in Ch/? can be computed degreewise, so that MCI follows from the 
fact that Modi? has all small limits and colimits. Axiom MC2 is clear. Axiom MC3 
follows from the fact that in Mod/? a retract of an isomorphism, monomorphism or 
epimorphism is another morphism of the same type (cf. 2.7). It is also necessary to 
observe that a retract (i.e. direct summand) of a projective i?-module is projective. 

7.5. Proof of MCAii) 

We need to show that a lift exists in every diagram of chain complexes: 

A 

i i 

B 

-^ X 

~i 
- ^ Y 

(7.6) 

in which i is a cofibration and p is an acyclic fibration. By the definition of fibration, pk 
is onto for fc > 0. But since (po)* : Ho{X) -^ Ho{Y) is an isomorphism, an application 
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of the five lemma [17, p. 198] shows that po is also onto. Hence there is a short exact 
sequence of chain complexes 

0-^K ^X -^Y -^0 

and it follows from the associated long exact homology sequence [6], [25, p. 181] that 
K is acyclic. 

We will construct the required map fk '- Bk —^ Xk by induction on fc. It is easy to 
construct a plausible map /o, since, by 7.1 and the definition of cofibration, the module 
Bo splits up to isomorphism as a direct sum ^o ® Po, where Po is a projective module; 
the map /o is chosen to be ô on the factor AQ and any lifting PQ -^ XQ of the given map 
Po -^ YQ on the factor PQ. Assume that A: > 0 and that for j < k maps fj : Bj —> Xj 
with the following properties have been constructed: 

(i) dfj = fj-\?^. l^j <k, 
(ii) pjfj = hj, 0^j<k, 

(iii) fjij ^Qj, 0^j<k, 

Proceeding as for A; = 0 we can write Bk = Ak ® Pk and construct a map fk : Bk —^ 
Xk with properties (ii) and (iii) above. Let £ : Bk -^ Xk-\ be the difference map 
9/fc — /jfc-i9» so that the map £ measures the failure of fk to satisfy (i). Then 

(a) 9 • f = 0 because fk-\ satisfies (i), 
(b) pk-\ • £ = 0 because pkfk = hk commutes with 9, and 
(c) 5 • z/b = 0 because fkik = 9k commutes with 9. 

It follows that £ induces a map 

£' : Bklik{Ak) = Pk --Cy^_,{K), 

However, the chain complex K is acyclic and so the boundary map Kk —* Cy^_j(ir) 
is an epimorphism. Since Pk is a projective, £' can be lifted to a map £" \ Pk -^ Kk, 
which, after precomposition with the surjection Bk —> Pk and postcomposition with the 
injection Kk -^ Xk, gives a map £'" : Bk —^ Xk. It is straightforward to check that 
setting fk = fk- £'" gives a map Bk —• Xk which satisfies all conditions (i)-(iii). This 
allows the induction to continue. D 

7.7. Proof of MC^iSi) 

This depends on a definition and a few lemmas. Suppose that A is an i?-module. For 
n ^ 1 define the object Dn{A) of Ch/? to be the chain complex with 

DM)k = [\ k ^ n, n — 1, 
k = n, n - 1. 
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The boundary map Dn{A)n —̂  Dn{A)n-\ is the identity map of A. The letter "D" in 
this notation stands for "disk". 

7.8. LEMMA. Let A be an R-module and M an object ofChR. Then the map 

HomchH{Dn[A), M) -> HomModK(̂ ^ ^n) 

which sends f to fn is an isomorphism. 

This is obvious by inspection. In fact, the functor Dn{-) is left adjoint to the functor 
from Chi? to Mod/? which sends M to Mn-

7.9. REMARK. Lemma 7.8 immediately implies that if A is a projective i?-module then 
Dn{A) is what might be called a "projective chain complex", in the sense that if p : 
M -^ N is an epimorphism of chain complexes (or even an epimorphism in degrees 
^ 1 ) , then any map Dn{A) -> N lifts over p to a map Dn{A) -^ M. Similarly, any 
chain complex sum of the form 0 ^ Dn^{Ai) is a "projective chain complex" as long as 
each Ai is a projective /2-module. 

7.10. LEMMA. Suppose that P is an acyclic object of Ch/j such that each Pk is a 
projective R-module. Then each module Cy^P (k ^ 0) is projective, and P is isomorphic 
as a chain complex to the sum 0fc>i i?fc(Cy^_jP). 

PROOF. For fc ^ 1 let P^^^ be the chain subcomplex of P which agrees with P above 
degree A: - 1, contains Bdk-\P in degree A: - 1, and vanishes below degree k - \. 
The acyclicity condition gives isomorphisms p('^)/p('^+0 ^ Djk(Cy^_|P). It is clear 
that Cyo(P) = PQ is a projective i2-module, and so by 7.9 there is an isomorphism 
P = P(^) = P(^) 0 Di(CyQP). Since any direct factor of a projective P-module is 
projective, it follows that P̂ )̂ is a chain complex which satisfies the conditions of the 
lemma but vanishes in degree 0. Repeating the above argument in degree 1 gives an 
isomorphism P̂ )̂ = p(^) 0 DiiCy^P). The proof is now completed by continuing 
along these lines. D 

7.11. REMARK. Lemma 7.10 implies that if P is an acyclic object of Ch/? with the 
property that each Pk is a projective P-module, then P is a "projective chain complex" 
in the sense of 7.9. 

Now we are ready to handle MC4(ii). We need to show that a lift exists in every 
diagram of the form 7.6 in which i is an acyclic cofibration and p is a fibration. By the 
definition of cofibration, the map z is a monomorphism of chain complexes and the cok-
ernel P of z is a chain complex with the property that each Pk is a projective P-module. 
By the long exact homology sequence [6] associated to the short exact sequence 

0 - ^ A-> B - . P - ^ 0 

of chain complexes, P is acyclic. It follows from 7.11 that P is a "projective chain 
complex" in the sense of 7.9, so that B is isomorphic to the direct sum 4̂ 0 P, and the 
desired lift can be obtained by using the map g on the factor A and, as far as the other 
factor is concerned, picking any lift P —> X of the given map P —• F. D 



104 Dwyer and Spalinski Chapter 2 

7.12. The small object argument 

It is actually not hard to prove MC5 in the present case by making very elementary 
constructions. We have decided, however, to give a more complicated proof that works 
in a variety of circumstances. This proof depends on an argument, called the "small object 
argument", that is due to Quillen and is very well adapted to producing factorizations 
with lifting properties. For the rest of this subsection we will assume that C is a category 
with all small colimits. 

Given a functor J5 : Z"*" —> C (2.12(iii)) and an object A of C, the natural maps 
B{n) -^ colimB induce maps Homc(A,B(n)) —• Homc(>l,colimB) which are com-
patible enough for various n to give a canonical map (2.17) 

colimnHomc(^, J5(n)) —> Homc(>l,colimnB(n)). (7.13) 

7.14. DEFINITION. An object A of C is said to be sequentially small if for every functor 
-B : Z"'" —> C the canonical map 7.13 is a bijection. 

7.15. REMARK. A set is sequentially small if and only if it is finite. An fi-module is 
sequentially small if it has a finite presentation, i.e. it is isomorphic to the cokernel of a 
map between two finitely generated free i?-modules. An object M of CYIR is sequentially 
small if only a finite number of the modules Mk are non zero, and each Mk has a finite 
presentation. 

Let T = {fi \ Ai -^ Bi}i^x be a set of maps in C. Suppose that p : X —> Y is a 
map in C, and suppose that we desire to factor p as a composite X -^ X' ^Y \n such 
a way that the map X' -^Y has the RLP (3.12) with respect to all of the maps in T. 
Of course we could choose X' = Y, but the secondary goal is to find a factorization in 
which X' is as close to X as reasonably possible. We proceed as follows. For each i E X 
consider the set S{i) which contains all pairs of maps {g, h) such that the following 
diagram commutes: 

(7.16) 

We define the Gluing Construction G^ {T,p) to be the object of C given by the pushout 
diagram 

TT TT A "̂ t̂l£;'̂ >^ v 

This is reminiscent of a "singular complex" construction; we are gluing a copy of Bi to 
X along Ai for every commutative diagram of the form 7.16. As indicated, there is a 

Ai 

fil 

Bi 

-^ X 

vi 
h ^ Y 
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natural map i\ \ X -^ G\T,p). By the universal property of colimits, the commutative 
diagrams 7.16 induce a map pi : G^[T,p) -^ Y such that p\i\ = p. Now repeat the 
process: for A: > 1 define objects G^{J^,p) and maps pk : G^{T,p) —̂  Y inductively 
by setting G^{J^,p) — G^{!F,pk-\) and pk — (Pfc-i)i. What results is a commutative 
diagram 

X ^ G\T,p) - ^ G^{T,p) ^ . . . - ^ G^{T,p) — . •.. 

p i Pl i P2 i Pk [ 

y - ^ y ^^ y ^^ ... . ^ y ^^ ... 

Let G°°(J*,p), the Infinite Gluing Construction, denote the colimit (2.17) of the upper 
row in the above diagram; there are natural maps Zoo : X —• G^{!F,p) and poo '-
G'^i^T.p) -^ Y such that Poô oo = P-

7.17. PROPOSITION. In the above situation, suppose that for each i £ I the object Ai 
ofC is sequentially small. Then the map poo * G^{T,p) —̂  Y has the RLP (3.12) with 
respect to each of the maps in the family T. 

PROOF. Consider a commutative diagram which gives one of the lifting problems in 
question: 

Ai 

hi 
Bi 

- ^ G°°(^,P) 
P~i 

^ ^ y 

Since Ai is sequentially small, there exists an integer k such that the map g is the 
composite of a map g' : Ai ^ G^{!F,p) with the natural map G^{T,p) —̂  G°°(^,p). 
Therefore the above commutative diagram can be enlarged to another one 

Ai -^ G''{T,p) ^ G^+'(^,p) — G~(J^,p) 

/t i Pk i Pfc+1 i Poo i 

Bi -^ Y ^-^ Y - ^ y 

in which the composite all the way across the top row is g. However, the pair [g',h) 
contributes itself as an index in the construction of G^^^ i^yP) from G^{T,p)\ what it 
indexes is in fact a gluing of Bi to G^{J^,p) along Ai. By construction, then, there exists 
a map Bi -^ G^^^{T,p) which makes the appropriate diagram commute. Composing 
with the map G^'^^{T,p) -^ G'^{T,p) gives a lifting in the original square. D 

7.18. ProofofMCS 

For n ^ 1, let D" (the "n-disk") denote the chain complex Dn{R) (7.7) and forn ^ 0 
let S"^ (the "n-sphere") denote the chain complex K{R, n) (7.3). There is an evident 
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inclusion jn '• 5"̂ "̂  -^ Dn which is the identity on the copy of R in degree (n - 1). 
Let D^ denote the chain complex K{R,0), let S"' denote the zero chain complex, and 
let jo : S~^ -^ D^ he the unique map. Note that the chain complexes V^ and 5̂ ^ are 
sequentially small (7.15). 

The following proposition is an elementary exercise in diagram chasing. 

7.19. PROPOSITION. A map f : X -^Y in Chi? is 

(i) afibration if and only if it has the RLP with respect to the maps 0 —̂  D"^ for all 
n ^ 1, and 

(ii) an acyclic fibration if and only if it has the RLP with respect to the maps jn : 
S'n-i ^D'^foralln^Q. 

To verify MC5(i), let / : X -^ y be the map to be factored, and let T be the set of 
maps {jn}n^o- Consider the factorization of / provided by the small object argument 
(7.12): 

It is immediate from 7.17 and 7.19 that poo is an acyclic fibration, so what we have to 
check is that ZQO is a cofibration. This is essentially obvious; in each degree n, Ĝ "̂ ^ (^, / ) 
is by construction the direct sum of G^{T^ f) with a (possibly large) number of copies 
of R\ passing to the colimit shows that G^{!F,f)n is similarly the direct sum of Xn 
with copies of R. 

The proof of MC5(ii) is very similar: let / : X —> y be the map to be factored, let 
J*' be the set of maps {0 —• Dn}n^\ and consider the factorization of / provided by the 
small object argument: 

xi^G~(^ ' , / )^y 

Again it is immediate from 7.17 and 7.19 that pc» is a fibration. We leave it to the reader 
to check that Zoo in this case is an acyclic cofibration. D 

PROOF OF 7.3. We will only treat the case in which m = 0 and n > 0; the general 
case is similar. Use MC5(i) to find a weak equivalence P ^ K{A,0), where P is some 
cofibrant object of Ch/j. There are bijections 

HomHo(c)(^(^0),K(B,n)) ^HomHo(c)(P,^(B,ri)) ^7r(P,K(B,n)) 

where the first comes from the fact (5.8) that the map P -> K{A,0) becomes an 
isomorphism in Ho(C), and the second is from 5.11. Let X denote the good path object 
for K{B, n) given by 

{ B^B, i = n, 
B, z = n - 1, 

0, otherwise, 
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with boundary map Xn —> Xn-\ sending {hoM) to 61 - 6o- The path object structure 
maps q : K{B,n) ~> X and po,P\ : X —• K{B,n) are determined in dimension n by 
the formulas q{b) = (6,6) and Pi(6o,6i) = 6̂ . According to 4.23, two maps f,g : P —> 
K{B,n) represent the same class in 7r{P^K{B,n)) if and only if they are related by 
right homotopy with respect to X, that is, if and only if there is a map H : P -^ X such 
that poH — f and p\H = g. 

In the language of homological algebra, P is a projective resolution of A. A map 
f : P -^ K{B,n) amounts by inspection to a module map fn : Pn —^ B such that 
/n9 = 0. Two maps f^g : P -^ K{B, n) are related by a right homotopy with respect to 
X if and only if there exists a map h : Pn-1 —> B such that hd = fn — gn- ^ comparison 
with the standard definition of Exi]i{A, - ) in terms of a projective resolution of A [6] 
now shows that 7r{P,K{B,n)) is in natural bijective correspondence with Ext^{A,B). 

D 

8. Topological spaces 

In this section we will construct the model category structure 3.5 on the category Top 
of topological spaces. 

8.1. DEFINITION. A map f : X -^Y of spaces is called a weak homotopy equivalence 
[25, p. 404] if for each basepoint x G X the map /* : iTn{X,x) -^ 7tn{Y,f{x)) is a 
bijection of pointed sets forn = 0 and an isomorphism of groups forn ^ 1. 

8.2. DEFINITION. A map of spaces p: X -^Y is said to be a Serre fibration [25, p. 375] 
if, for each CW-complex A, the map p has the RLP (3.12) with respect to the inclusion 
^ X 0 -> A X [0,1]. 

8.3. PROPOSITION. Call a map of topological spaces 

(i) a weak equivalence if it is a weak homotopy equivalence, 
(ii) a fibration if it is a Serre fibration^ and 

(iii) a cofibration if it has the LLP with respect to acyclic fibrations (i.e. with respect 
to each map which is both a Serre fibration and a weak homotopy equivalence). 

Then with these choices Top is a model category. 

After proving this we will make the following calculation. 

8.4. PROPOSITION. Suppose that A is a CW-complex and that X is an arbitrary space. 
Then the set HomHo(Top)(^j-^) '•$" ^^ natural bijective correspondence with the set of 
{conventional) homotopy classes of maps from A to X. 

REMARK. In the model category structure of 8.3, every space is weakly equivalent to a 
CW-complex. 

We will need two facts from elementary homotopy theory (cf. 7.19). Let D^ (n ^ 1) 
denote the topological n-disk and S"^ (n ^ 0) the topological n-sphere. Let D^ be a 
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single point and S~^ the empty space. There are standard (boundary) inclusions jVi * 
Sr^-^ -^D'' {n^ 0). 

8.5. LEMMA [14, Theorem 3.1, p. 63]. Let p : X -^ Y be a map of spaces. Then p is 
a Serre fibration if and only if p has the RLP with respect to the inclusions D^ —> 
D"" X [0,1], n ^ 0. 

8.6. LEMMA. Let p : X -^ Y be a map of spaces. Then the following conditions are 
equivalent: 

(i) p is both a Serre fibration and a weak homotopy equivalence, 
(ii) p has the RLP with respect to every inclusion A -^ B such that {B,A) is a 

relative CW-pair, and 
(iii) p has the RLP with respect to the maps jn : S^~^ —> D'^ for n ^ 0. 

This is not hard to prove with the arguments from [25, p. 376]. We will also need a 
fact from elementary point-set topology. 

8.7. LEMMA. Suppose that 

XQ -^ X] —• X2 —̂  • • • —> Xn —> • • • 

is a sequential direct system of spaces such that for each n ^ 0 the space X^ is a 
subspace of Xn-^] and the pair {Xn-^],Xn) is a relative CW-complex [25, p. 401]. Let 
A be a finite CW-complex. Then the natural map (7.13) 

colimnHomTop(^,-^n) —̂  HomTop(^,colimnA^n) 

is a bijection {of sets). 

8.8. REMARK. In the situation of 8.7, we will refer to the natural map XQ —* colimnXn 
as a generalized relative ON inclusion and say that colimn^n is obtained from XQ by 
attaching cells. It follows easily 8.6 that any such generalized relative CW inclusion is 
a cofibration with respect to the model category structure described in 8.3. There is a 
partial converse to this. 

8.9. PROPOSITION. Every cofibration in Top is a retract of a generalized relative CW 
inclusion, 

8.10. Proof of MCl-MCS. It is easy to see directiy that the classes of weak equiv-
alences, fibrations and cofibrations contain all identity maps and are closed under com-
position. Axiom MCI follows from the fact that Top has all small limits and colimits 
(2.14, 2.21). Axiom MC2 is obvious. For the case of weak equivalences, MC3 follows 
from functoriality and 2.6. The other two cases of MC3 are similar, so we will deal only 



Section 8 Homotopy theories 109 

with cofibrations. Suppose that / is a retract of a cofibration /'. We need to show that 
a lift exists in every diagram 

A ^ X 

/ i p i (8.11) 

B ^ Y 

in which p is an acyclic fibration. Consider the diagram 

A 

i 
B 

-^ A' 

f I 

M B' 

r 

s 

A 

B 

-^ X 

PI 

-^ Y 

in which maps i, j , r and 5 are retraction constituents. Since / ' is a cofibration, there is 
a lifting h : B' -^ X in this diagram. It is now easy to see that hj is the desired lifting 
in the diagram 8.11. D 

The proofs of MC4(ii) and MC5(ii) depend upon a lemma. 

8.12. LEMMA. Every map p : X -^ Y in Top can be factored as a composite Poô oo, 
where ioo '. X -^ X' is a weak homotopy equivalence which has the LLP with respect 
to all Serre fibrations, and Poo '. X' ^Y is a Serre fibration. 

PROOF. Let J" be the set of maps {D"^ x 0 -> D"" x [0, l]}n^o. Consider the Gluing 
Construction G^{T,p) (see 7.12). It is clear that i\ \ X -^ G^{T,p) is a relative CW 
inclusion and a deformation retraction; in fact, G^{T,p) is obtained from X by taking 
(many) solid cylinders and attaching each one to X along one end. It follows from 
the definition of Serre fibration that the map i\ has the LLP with respect to all Serre 
fibrations. Similarly, for each A: ^ 1 the map /̂k̂ .l : G^{f^p) —> G^'^\J^,p) is a 
homotopy equivalence which has the LLP with respect to all Serre fibrations. Consider 
the factorization 

X j ^ G ° ° ( ^ , p ) - ^ y 

provided by the Infinite Gluing Construction. It is immediate that ioo has the LLP with 
respect to all Serre fibrations: given a lifting problem, one can inductively find compatible 
solutions on the spaces G^{T,p) and then use the universal property of colimit to obtain 
a solution on G^{!F,p) = colimitG'^(^,p). The proof of Proposition 7.17 shows that 
Poo has the RLP with respect to the maps in !F and so (8.5) is a Serre fibration; it is only 
necessary to observe that although the spaces D^ are not in general sequentially small, 
they are (8.7) small with respect to the particular sequential colimit that comes up here. 
Finally, by 8.7 any map of a sphere into G°^{T,p) or any homotopy involving such 
maps must actually lie in G^{T,p) for some k\ it follows that ioo is a weak homotopy 
equivalence because (by the remarks above) each of the maps X —> G^{T,p) is a weak 
homotopy equivalence. D 
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PROOF OF MC5. Axiom MC5(ii) is an immediate consequence of 8.12. The proof of 
MC5(1) is similar to the proof of 8.12. Let p be the map to be factored, let T be the set 

and consider the factorization p = Poô oo of p provided by the Infinite Gluing Construc-
tion G°°(J',p). By 8.6 each map u+i : G^{T,p) -> G^'^^T.p) has the LLP with 
respect to Serre fibrations which are weak homotopy equivalences; by induction and a 
colimit argument the map ioo has the same LLP and so by definition is a cofibration. 
By 8.7 and the proof of 7.17, the map poo has the RLP with respect to all maps in the 
set T, and so (8.6) is a Serre fibration and a weak equivalence. D 

PROOF OF MC4. Axiom MC4(i) is immediate from the definition of cofibration. For 
MC4(ii) suppose that / : A —̂  B is an acyclic cofibration; we have to show that / has 
the LLP with respect to fibrations. Use 8.12 to factor / as a composite pi, where p is 
a fibration and i is weak homotopy equivalence which has the LLP with respect to all 
fibrations. Since f = piis by assumption a weak homotopy equivalence, it is clear that p 
is also a weak homotopy equivalence. A lift ^ : 5 -^ A' exists in the following diagram 

(8.13) 

because / is a cofibration and p is an acyclic fibration. (Recall that by definition every 
cofibration has the LLP with respect to acyclic fibrations.) This lift g expresses the map 
/ as a retract (2.6) of the map i. The argument in 8.10 above can now be used to show 
that the class of maps which have the LLP with respect to all Serre fibrations is closed 
under retracts; it follows that / has the LLP with respect to all Serre fibrations because 
i does. n 

PROOF OF 8.4. Since A is cofibrant (8.6) and X is fibrant, the set HomHo(Top)(^5-^) is 
naturally isomorphic to IT{A, X) (see 5.11). It is also easy to see from 8.6 that the product 
A X [0,1] is a good cylinder object for A. By 4.23, two maps f,g : A —^ X represent the 
same element of 7r{A, X) if and only if they are left homotopic via the cylinder object 
i4 X [0,1], in other words, if and only if they are homotopic in the conventional sense. D 

PROOF OF 8.9. Let / : i4 -> JB be a cofibration in Top. The argument in the proof of 
MC5(i) above shows that / can be factored as a composite pz, where i : A -^ A' is 
a generalized relative CW inclusion and p : A' -^ B is an acyclic fibration. Since / 
is a cofibration, a lift g \ B -^ A' exists in the resulting diagram 8.13, and this lift g 
expresses / as a retract of i. D 

A 

/ i 
B 

- U A' 

P 1 

- ^ B 
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9. Derived functors 

Let C be a model category and F : C —• D a functor. In this section we define the left 
and right derived functors of F\ if they exist, these are functors 

LF,/ZF:Ho(C)-4D 

which, up to natural transformation on one side or the other, are the best possible ap-
proximations to an "extension of F to Ho(C)", that is, to a factorization of F through 
7 : C ^ Ho(C). We give a criterion for the derived functors to exist, and study a 
condition under which a pair of adjoint functors (2.8) between two model categories 
induces, via a derived functor construction, adjoint functors between the associated ho-
motopy categories. The homotopy pushout and homotopy pullback functors of §10 will 
be constructed by taking derived functors of genuine pushout or pullback functors. 

9.1. DEFINITION. Suppose that C is a model category and that F : C —̂  D is a functor. 
Consider pairs (G, s) consisting of a functor G : Ho(C) -^ D and natural transformation 
s : Gj -^ F. A left derived functor for F is a pair {LF, t) of this type which is universal 
from the left, in the sense that if (G, s) is any such pair, then there exists a unique natural 
transformation s' \G —^ LF such that the composite natural transformation 

G7 ^ (LF)7 - ^ F (9.2) 

is the natural transformation s. 

REMARK. A right derived functor for F is a pair {RF, t), where RF : Ho(C) —̂  D is a 
functor and t : F -^ {RF)^ is a natural transformation with the analogous property of 
being "universal from the right". 

REMARK. The universal property satisfied by a left derived functor implies as usual that 
any two left derived functors of F are canonically naturally equivalent. Sometimes we 
will refer to LF as the left derived functor of F and leave the natural transformation t 
understood. If F takes weak equivalences in C into isomorphisms in D, then there is a 
functor F' : Ho(C) —> D with F' = F7 (6.2), and it is not hard to see that in this case 
F' itself (with the identity natural transformation t : F'7 —> F) is a left derived functor 
of F. The next proposition shows that sometimes LF exists even though a functor F' 
as above does not. 

9.3. PROPOSITION. Let Cbea model category and F : C —^D a functor with the property 
that F{f) is an isomorphism whenever f is a weak equivalence between cofibrant objects 
in C. Then the left derived functor {LF,t) of F exists, and for each cofibrant object X 
of C the map 

tx : LFiX) - . F{X) 

is an isomorphism. 
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The proof depends on a lemma, which for future purposes we state in slighdy greater 
generality than we actually need here. 

9.4. LEMMA. Let C be a model category and F : Cc —̂  D (§5) a functor such that 
F{f) is an isomorphism whenever f is an acyclic cofibration between objects of Cc-
Suppose that f^g:A-^Bare maps in Cc such that f is right homotopic to g in C. 
Then F{f) = F(p). 

PROOF. By 4.15 there exists a right homotopy H : A -^ B^ from / to ^ such that B^ 
is a very good path object for B. Since the path object structure map w \ B ^^ B^ 
is then an acyclic cofibration and B by assumption is cofibrant, it follows that B^ 
is cofibrant and hence that F{w) is defined and is an isomorphism. The rest of the 
proof is identical to the dual of the proof of 5.10. First observe that there are equalities 
F{PQ)F{W) = F{p\)F{w) = F(idB) and then use the fact that F{w) is an isomorphism 
to cancel F{w) and obtain F{po) = F{p]). The equality F{f) — F{g) then follows 
from applying F to the equalities / = poH and g = p\H. D 

PROOF OF 9.3. By Lemma 9.4, F identifies right homotopic maps between cofibrant 
objects of C and so induces a functor F' : TTCC —• D. By assumption, if p is a morphism 
of TTCC which is represented by a weak equivalence in C then F'{g) is an isomorphism. 
Recall from 5.2 that there is a functor Q : C —• TTCC with the property (5.1) that 
if / is a weak equivalence in C then g = Q{f) is a right homotopy class which is 
represented by a weak equivalence in C. It follows that the composite functor F'Q 
carries weak equivalences in C into isomorphisms in D. By the universal property (6.2) 
of Ho(C), the composite F'Q induces a functor Ho(C) -^ D, which we denote LF. 
There is a natural transformation t: {LF)j —• F which assigns to each X in C the map 
F{px) : LF{X) = F{QX) -> F{X). If X is cofibrant then QX ^ X and the map tx 
is the identity; in particular, tx is an isomorphism. 

We now have to show that the pair (LF, t) is universal from the left in the sense of 
9.L Let G : Ho(C) —• D be a functor and s : G7 —•Fa natural transformation. Consider 
a hypothetical natural transformation s' : G -^ LF, and construct (for each object X 
of C) the following commutative diagram which in the horizontal direction involves the 
composite of 5' o 7 and t\ 

G{QX) '-^ LF{QX) '̂ -̂ ''* F{QX) 
G{i{px))i i LF(7(px))=id i F ( p x ) 

G{X) ^ LF{X) '^=1^^^ F{X) 

If 5' is to satisfy the condition of 9.1, then the composite across the top row of this 
diagram must be equal to SQX, which gives the equality 5^ = SQXG{JPX)~^ and 
proves that there is at most one natural transformation 5' which satisfies the required 
condition. However, it is obvious that setting s'x = SQxG{'ypx)~^ does give a natural 
transformation G7 -> {LF)j, and therefore (5.9) it also gives a natural transformation 
G-^LF. U 
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9.5. DERNITION. Let F : C -> D be a functor between model categories. A total left 
derived functor LF for F is a functor 

LF : Ho(C) -^ Ho(D) 

which is a left derived functor for the composite 7D • F : C ^ Ho(D). Similarly, a total 
right derived functor RF for F is a functor RF : Ho(C) —> Ho(D) which is a right 
derived functor for the composite 7D • F. 

REMARK. AS usual, total left or right derived functors are unique up to canonical natural 
equivalence. 

9.6. EXAMPLE. Let R be an associative ring with unit, and C\\R the chain complex 
model category constructed in §7. Suppose that M is a right i?-module, so that M 0 -
gives a functor F : Ch/j -^ Chz- Proposition 9.3 can be used to show that the total 
derived functor LF exists (see 9.11). Let AT be a left iJ-module and K{N,0) (cf. 7.3) 
the corresponding chain complex. The final statement in 9.3 implies that LF{K{N,0)) 
is isomorphic in Ho(Chz) to F{P), where P is any cofibrant chain complex with a 
weak equivalence P -^ K{N,0), Such a cofibrant chain complex P is exactiy a pro-
jective resolution of N in the sense of homological algebra, and so we obtain natural 
isomorphisms 

HiLF{K{N,0)) ^ Torf (M, AT), i ^ 0, 

where Torf (M, - ) is the usual f th left derived functor of M (S}R - . This gives one 
connection between the notion of total derived functor in 9.5 and the standard notion of 
derived functor from homological algebra. 

9.7. THEOREM. Let C and D be model categories, and 

F:C<=^D:G 

a pair of adjoint functors (2.8). Suppose that 

(i) F preserves cofibrations and G preserves fibrations. 

Then the total derived functors 

LF : Ho(C) <=» Ho(D) : KG 

exist and form an adjoint pair If in addition we have 

(ii) for each cofibrant object AofC andfibrant object X ofD, a map f : A -^ G{X) 
is a weak equivalence in C if and only if its adjoint f^ : F{A) -^ X is a weak 
equivalence in D, 

then LF and RG are inverse equivalences of categories. 
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REMARK. In this paper we will not use the last statement of 9.7, but this criterion for 
showing that two model categories have equivalent homotopy categories is used heavily 
by Quillen in [23]. There are various other structures associated to a model category 
besides its homotopy category; these include fibration and cofibration sequences [22], 
Toda brackets [22], various homotopy limits and colimits (§10), and various function 
complexes [9]. All such structures that we know of are preserved by adjoint functors that 
satisfy the two conditions above. 

9.8. REMARK. Condition 9.7(i) is equivalent to either of the following two conditions: 

(i') G preserves fibrations and acyclic fibrations. 
(i") F preserves cofibrations and acyclic cofibrations. 

Assume, for instance, that F preserves acyclic cofibrations. Let / : >1 —> B be an acyclic 
cofibration in C and g : X -^Y di fibration in D. Suppose given the commutative diagram 
on the left together with its "adjoint" diagram (2.8) on the right: 

A 
/ i 

B 

-^ G{X) 
G{g)i 

-^ G{Y) 

FiA) - ^ X 
ni) i 9 i 

F{B) - ^ Y 

Since F preserves acyclic cofibrations, a lift w : F{B) —• X exists in the right-hand 
diagram. Its adjoint w^ : B -^ G{X) is then a lift in the left-hand diagram. It follows 
that G{g) has the RLP with respect to all acyclic cofibrations in C, and therefore by 
3.13(iii) that G{g) is a fibration. This gives 9.7(i). Running the argument in reverse and 
using 3.13(ii) shows the converse: if G preserves fibrations then F preserves acyclic 
cofibrations. 

The proof of 9.7 depends on a lemma that is also useful in verifying the hypotheses 
of 9.3. 

9.9. LEMMA (K. Brown). Let F : C —^ D be a functor between model categories. If 
F carries acyclic cofibrations between cofibrant objects to weak equivalences, then F 
preserves all weak equivalences between cofibrant objects. 

PROOF. Let / : A —• JB be a weak equivalence in C between cofibrant objects. By MC5(i) 
we can factor the coproduct (2.15) map / -f id^ : >1 ]J B -^ J5 as a composite pq, where 
q : A]JB -^ C is Si cofibration and p : C -^ J5 is an acyclic fibration. It follows from 
the fact that A and B are cofibrant (cf. 4.4) that the composite maps q ino : A ^ C 
and g • ini : B —• C are cofibrations. Since pq • in̂  is a weak equivalence for i = 0, 1 
and p is a weak equivalence, it is clear from MC2 that q • ini is a weak equivalence, 
2 = 0, 1. By assumption, then F{q • ino), F{q • ini) and F{pq • ini) = F(idj5) are weak 
equivalences in D. It follows that the maps F{p) and hence F{pq • ino) = F{f) are also 
weak equivalences. D 

PROOF OF 9.7. In view of 9.8, 9.9 and the dual (3.9) of 9.9, Proposition 9.3 and its dual 
guarantee that the total derived functors LF and RG exist. Since F is a left adjoint it 
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preserves colimits (2.26) and therefore (2.25) initial objects. Since G is a right adjoint 
it preserves limits and therefore terminal objects. It then follows as in 9.8 that F carries 
cofibrant objects in C into cofibrant objects in D, and that G carries fibrant objects in D 
into fibrant objects in C. 

Suppose that ^ is a cofibrant object in C and that X is a fibrant object in D. We will 
show that the adjunction isomorphism Homc(^, G(X)) = HomD(F(^), X) respects the 
homotopy equivalence relation (4.21) and gives a bijection 

ir{AMX))^7r{F{A),X). (9.10) 

If f,g : A -^ G{X) represent the same class in 7r{A, G{X)), then / is left homotopic 
to g via a left homotopy H \ AM -^ G{X) in which the cylinder object AAI is good 
(4.6) and hence cofibrant (4.4). It then follows from 9.8(i") that F{A A / ) is a cylinder 
object for F{A) and hence that H^ : F{A A / ) —• X is a left homotopy between f^ and 
g^. Thus f^ r^ g^. A dual argument with right homotopies shows that if f^ ~ g^ then 
f ^ g and establishes the isomorphism 9.10. 

Let Q be the construction of 5.2 for C and 5 the construction of 5.4 for D. (We have 
temporarily changed the letter denoting this functor from "JR" to "5" in order to avoid 
confusion with the notation for right derived functors). In view of the construction of 
LF and RG given by the proof of 9.3 and its dual, the isomorphism 9.10 gives for every 
object A of C and object X of D a bijection 

HomHo(c)(^,RG(X)) ^̂ -̂ ^̂  Homnoic){QAG{SX)) 

^llom^o(D){F{QA\SX) ^̂ '̂-̂ ""̂ ^ HomHo(D)(LF(^),^) • 

It is clear that this bijection gives a natural equivalence of functors from Ĉ ^ x D to 
Sets, and the argument of 5.9 shows that it also gives a natural equivalence of functors 
Ho(C)''P X Ho(D) -^ Sets. This provides the adjunction between LF and RG. 

Suppose that condition (ii) is satisfied. Let A be an cofibrant object of C. The map 
zL^x : A —̂  G{SF{A)) is then a weak equivalence in C because its adjoint iF{A) ' 
F(A) —• SF{A) is a weak equivalence in D. Let 

denote the map in Ho(C) which is adjoint to the identity map of IJF{A) in Ho(D). 
It follows from the above constructions that SA is an isomorphism. Since every object 
of Ho(C) is isomorphic to A for a cofibrant object A of C, we conclude that SA is 
an isomorphism for any object A of Ho(C) and thus that the composite (RG)(LF) 
is naturally equivalent to the identity functor of Ho(C). A dual argument shows that 
the composite (LF)(RG) is naturally equivalent to the identity functor of Ho(D). This 
proves that LF and RG are inverse equivalences of categories. D 

9.11. EXAMPLE. Let F : CYIR -^ Chz be the functor of 9.6. In order to use 9.3 to show 
that the total derived functor LF exists, it is necessary to show that F carries weak 
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equivalences between cofibrant objects to weak equivalences. By 9.9 it is enough to 
check this for acyclic cofibrations between cofibrant objects. Let i : A -^ Bht di acyclic 
cofibration between cofibrant objects in Ch/?. The quotient B/A is then an acyclic chain 
complex which satisfies the hypotheses of 7.10, so that by 7.11 there is an isomorphism 
j5 = A 0 [B/A) and (7.10) a further isomorphism between B/A and a direct sum of 
chain complexes of the form Dk{P). Since F respects direct sums we conclude that 
F{B) is isomorphic to the direct sum of F{A) with a number of chain complexes of the 
form F{Dk{P)). By inspection F{Dk{P)) is acyclic, and so F[i) is a weak equivalence. 

10. Homotopy pushouts and homotopy pullbacks 

The constructions in this section are motivated by the fact that pushouts and pullbacks 
are not usually well-behaved with respect to homotopy equivalences. For example, in the 
category Top of topological spaces, let D^ (n ^ 1) denote the n-disk, jn : 5"^"^ -^ D^ 
the inclusion of the boundary (n - 1 )-sphere, and * the one-point space. There is a 
commutative diagram 

i .di i (10.1) 

* <— S""^ —> * 

in which all three vertical arrows are homotopy equivalences. The pushout (2.16) or 
colimit of the top row is homeomorphic to 5^ ,̂ the pushout of the bottom row is the 
space "*", and the map S"^ -^ ^ induced by the diagram is not a homotopy equivalence. 

Faced with diagram 10.1, a seasoned topologist would probably say that the pushout 
of the top row has the "correct" homotopy type and invoke the philosophy that to give 
a pushout homotopy significance the maps involved should be replaced if necessary 
by cofibrations. In this section we work in an arbitrary model category C and find a 
conceptual basis for this philosophy. The strategy is this. Let D be the category {a <^ 
6 -^ c} of 2.12 and C^ the category of functors D -> C (2.5). An object of C*̂  is pushout 
data 

X{a) ^ X{b) -^ X{c) 

in C and a morphism / : X —» Y is a commutative diagram 

(10.2) 

The pushout or colimit construction gives a functor colim : C'̂  —̂  C. We will construct 
a model category structure on C^ with respect to which a weak equivalence is a map / 
whose three components (/a,/6,/c) are weak equivalences in C. As 10.1 illustrates, in 

X{a) 
fa i 

Y{a) 

<— 

^ -

X(6) 
hi 
Yib) 

— » 

— > 

X(c) 

hi 
Y{c) 
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this setting the functor colim(-) is not usually homotopy invariant (i.e. does not usually 
carry weak equivalences in C^ to weak equivalences is C) and so colim(—) does not 
directly induce a functor Ho(C^) —• Ho(C). However, it turns out that colim(-) does 
have a total left derived functor (9.5) 

Lcolim : Ho(C^) -^ Ho(C) 

which in a certain sense (9.1) is the best possible homotopy invariant approximation to 
colim(—). We will call Lcolim the homotopy pushout functor, it is left adjoint to the 
functor 

Ho(zl) : Ho(C) -^ Ho(C^) 

induced by the "constant diagram" (2.11) construction ^ : C*̂  —• C*̂ . By 9.3, computing 
Lcolim(X) for a diagram X involves computing colim(X'), where X' is a cofibrant 
object of C^ which is weakly equivalent to X. It turns out that finding such a cofibrant 
X' involves replacing X{h) by a cofibrant object and replacing the maps X{b) -^ X{a) 
and X{h) -^ X{c) by cofibrations, and so in the end what we do is more or less 
recover, in this abstract setting, the standard philosophy. In fact, it becomes clear (see 9.6) 
that this philosophy is no different from the philosophy in homological algebra that a 
cautious practitioner should usually replace a module by a projective resolution before, 
for instance, tensoring it with something. 

Working dually gives a construction of the homotopy pullback functor. At the end of 
the section we make a few remarks about more general homotopy colimits or limits in C. 

10.3. REMARK. In the above situation, there is a natural functor Ho(C'̂ ) ~> Ho(C)'^, 
but this functor is usually not an equivalence of categories (and much of the subtlety of 
homotopy theory lies in this fact). Consequently, the homotopy pushout functor Lcolim 
does not provide "pushouts in the homotopy category", that is, it is not a left adjoint to 
constant diagram functor 

Z\HO(C) : Ho(C) - . Ho(C)''. 

10.4. Homotopy pushouts 

Let C be a model category, D be the category {a —̂ b —̂  c} above, and C the category 
of functors D ^ C. Given a map / : X -> y of C^ as in 10.2, let ab(/) denote X{b) 
and define objects 9a(/) and 9c(/) of C by the pushout diagrams 

X{b) —^ X{a) 

h i i 
y(6) — Uf) 

X(h) — X{c) 

h i i 
Y{h) —^ Uf) 

(10.5) 
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The commutative diagram 10.2 induces maps iaU) • ^a{f) -^ ^(^)» hU) • ^h{f) —̂  
y(6), and icU) : Mf) - ^(c). 

10.6. PROPOSITION. Call a morphism f : X -^Y in C^ 

(i) a weak equivalence, if the morphisms fay fb ^nd fc are weak equivalences in C, 
(n) a fibration if the morphisms fa, ft ci^d fc are fib rations in C, and 

(iii) a cofibration if the maps ia{f), h{f) ^nd idf) cire cofibrations in C. 

Then these choices provide C^ with the structure of a model category. 

PROOF. Axiom MCI follows from 2.27. Axiom MC2 and the parts of MC3 dealing with 
weak equivalences and fibrations are direct consequences of the corresponding axioms 
in C. It is not hard to check that if / is a retract of y, then the maps ia(/), ib{f) and 
ic{f) are respectively retracts of 2a(p), ihio) and ic[g)> so that the part of MC3 dealing 
with cofibrations is also a consequence of the corresponding axiom for C. For MC4(i), 
consider a commutative diagram 

{A[a) ^ A{h) -> A[c)) —^ {X{a) ^ X{b) -> X{c)) 

/ i P i 
{B{a) ^ B{b)-. B{c)) - > {Y{a)^Y{b)-^Y{c)) 

in which / is a cofibration and p is an acyclic fibration. This diagram consists of three 
slices: 

A{a) —» X{a) 

fa i Pa i 

B{a) -^ Y{a), 

A{b) - . Xib) 
hi Pb i 

B{b) - . y(6), 

A{c) 

fc I 
B{c) 

- . X(c) 
Pc I 

- . y(c) 

Since / is a cofibration and p is an acyclic fibration, we can obtain the desired lifting in 
the middle slice by applying MC4(i) in C; this lifting induces maps u : da{f) -^ ^{O') 
and V : 9c(/) ^ ^(c) . Liftings in the other two slices can now be constructed by 
applying MC4(i) in C to the squares 

a„(/) ^ X{a) 
iaU) i Pa i 

B{a) - ^ Y{a) 

Uf) -^ X{c) 
ic(f) i Pc i 

B(c) -^ Y{c) 

in which each left-hand arrow is a cofibration. The proof of the second part of MC4(ii) 
is analogous; in this case the fact that the maps idf) and ia{f) are acyclic cofibrations 
follows easily from the fact that the class of acyclic cofibrations in C is closed under 
cobase change (3.14). 

To prove MC5(ii), suppose that we have a morphism f : A -^ B. Use MC5(ii) in 
C to factor the map ft : A{b) -^ B{b) as A{b) ^ Y-^B{b). Let X be the pushout of 
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the diagram A{a) ^ A[h) -^ 7 and Z the pushout of Y ^ A{h) -> A{c). There is a 
commutative diagram 

A{a) 

~i 
X 

i 
B{a) 

<— 

<— 

<— 

^(6) 

~i 
Y 

i 
B{b) 

—^ 

- ^ 

—> 

^(c) 

~i 
Z 

i 
Bic) 

in which the lower outside vertical arrows are constructed using the universal property 
of pushouts. Now use MC5(ii) in C again to factor the lower outside vertical arrows as 
X ^ X^-^B{a) and Z <^ Z'--^B{c), It is not hard to see that the object X' <r-Y -^ Z' 
of C'̂  provides the intermediate object for the desired factorization of / . The proof of 
MC5(i) is similar. D 

10.7. PROPOSITION. The adjoint functors 

colim :C^ <=^C: A 

satisfy condition (i) of Theorem 9.7. Hence the total derived functors Lcolim and R^ 
exist and form an adjoint pair 

Lcolim : Ho(C^) ^=> Ho(C) : RZ\. 

PROOF. This is clear from 9.8, since the functor A preserves both fibrations and acyclic 
fibrations. D 

This completes the construction of the homotopy pushout functor Lcolim : Ho(C'̂ ) —> 
Ho(C). According to 9.3, Lcolim(A') is isomorphic to colim(X) if X is a cofibrant 
object of C^; in general Lcolim(X) is isomorphic to colim(A'') for any cofibrant object 
X' of C*̂  weakly equivalent to X. 

10.8. Homotopy pullbacks 

The following results on homotopy pullbacks are dual (3.9) to the above ones on homo-
topy pushouts, so we state them without proof. 

Let C be a model category, let D be the category {a —• 6 -<— c}, and C^ the category 
of functors D —̂  C. Given a map f : X —^Y of CP 

(10.9) 
X{a) -
fa i 
Y{a) -

- X{b) ^ X{c) 
hi fc i 

_ Y{b) ^ Y{c) 



Saif) -^ X{b) 
i hi 

Y{a) -^ 7(6) 

*,(/) — X{b) 
i hi 

Y{c) — Y{b) 
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let h{f) denote X{h) and define objects baU) ^"^ ̂ c{f) of C by the pullback diagrams 

(10.10) 

The comnnutative diagram 10.9 induces maps Pa(/) • X{o) -^ ^aU)^ Pb{f) • X{b) —> 
6t{f), and pc{f):X{c)-^6c{f). 

10.11. PROPOSITION. Call a morphism f : X ̂ Y inC^ 

(i) a weak equivalence, if the morphisms fa, fb cind fc are weak equivalences in C, 
(ii) a cofibration if the morphisms /a, ft and fc are cofibrations in C, and 

(iii) afibration if the maps Pa{f), Pbif) ^f^d pdf) are fibrations in C. 

Then these choices provide C^ with the structure of a model category. 

10.12. PROPOSITION. The adjoint functors 

^ : C*̂  <^^ C : lim 

satisfy condition (i) of Theorem 9.7. Hence the total derived functors Rlim and LA exist 
and form an adjoint pair 

LA : Ho(C'^) ^^=> Ho(C) : Rlim. 

This completes the construction of the homotopy pullback functor Rlim : Ho(C ) —> 
Ho(C'^). According to 9.3, Rlim(A') is isomorphic to lim(A') if X is a fibrant object 
of C^; in general Rlim(X) is isomorphic to lim(X') for any fibrant object X' of C^ 
weakly equivalent to X. 

10.13. Other homotopy limits and colimits 

Say that a category D is very small if it satisfies the following conditions 

(i) D has a finite number of objects, 
(ii) D has a finite number of morphisms, and 

(iii) there exists an integer N such that if 

Ao^ A\ -^ yAn 

is a string of composable morphisms of D with n > AT, then some fi is an identity 
morphism. 

Propositions 10.6 and 10.11 can be generalized to give two distinct model category 
structures on the category C*̂  whenever D is very small. These structures share the same 
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weak equivalences (and therefore have isomorphic homotopy categories) but they differ 
in their fibrations and cofibrations. One of these structures is adapted to constructing 
Lcolim and the other to constructing Rlim. We leave this as an interesting exercise for 
the reader. The generalization of 10.6(iii) is as follows. For each object d of D, let 9d 
denote the full subcategory of D[d (3.11) generated by all the objects except the identity 
map of d. There is a functor jd : 9d -> D which sends an object d' —> d of M to the 
object d' of D. If X is an object of C*̂ , let X\^d denote the composite of X with ja 
and let dd{X) denote the object of C given by colim(X|ad)- There is a natural map 
dd{X) —̂  X{d). If / : X —> y is a map of C^, define 9d(/) by the pushout diagram 

UX) 
i 

UY) 

— > 

— > 

X{d) 

1 
Uf) 

and observe that there is a natural map idU) ' ^d{f) —̂  Yid)- Then the generalization 
of 10.6(iii) is the condition that the map id{f) be a cofibration for every object d of D. 

Suppose that D is an arbitrary small category. It seems unlikely that C has a natural 
model category structure for a general model category C. However, C does have a 
model category structure if C is the category of simplicial sets (11.1) [5, XI, §8]. The 
arguments of §8 can be used to construct a parallel model category structure on Top*̂ . 
In these special cases the homotopy limit and colimit functors have been studied by 
Bousfield and Kan [5]; they deal explicitly only with the case of simplicial sets, but the 
topological case is very similar. 

11. Applications of model categories 

In this section, which is less self-contained than the rest of the paper, we will give a 
sampling of the ways in which model categories have been used in topology and algebra. 
For an exposition of the theory of model categories from an alternate point of view see 
[16]; for a slightly different approach to axiomatic homotopy theory see, for example, [1]. 

11.1. Simplicial sets. Let A be the category whose objects are the ordered sets [nl = 
{ 0 , 1 , . . . , n} (n ^ 0) and whose morphisms are the order-preserving maps between 
these sets. (Here "order-preserving" means that f{i) < f{j) whenever i ^ j). The 
category sSet of simplicial sets is defined to be the category of functors A°^ —̂  Set; 
the morphisms, as usual (2.5), are natural transformations. Recall from 2.4 that a functor 
^op _^ Set is the same as a contravariant functor A —> Set. For an equivalent but much 
more explicit description of what a simplicial set is see [18, p. 1]. If X is a simplicial set 
it is customary to denote the set X([n]) by Xn and call it the set of n-simplices of X. 

A simplicial set is a combinatorial object which is similar to an abstract simplicial 
complex with singularities. In an abstract simplicial complex [21, p. 15], [25, p. 108], 
for instance, an n-simplex has (n-f 1) distinct vertices and is determined by these vertices; 
in a simplicial set X, an n-simplex x e Xn does have n -h 1 "vertices" in XQ (obtained 
from X and the (n -h 1) maps [n] -> [0] in A°^) but these vertices are not necessarily 
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distinct and they in no way determine x. Let An denote the standard topological n-
simplex, considered as the space of formal convex linear combinations of the points in 
the set [n]. If y is a topological space, it is possible to construct an associated simplicial 
set Sing(y) by letting the set of n-simplices Sing(y)n be the set of all continuous maps 
An -^Y\ this is a set-theoretic precursor of the singular chain complex of Y. The functor 
Sing : Top -* sSet has a left adjoint, which sends a simplicial set X to a space l^l 
called the geometric realization of X [18, Ch. Ill]; this construction is a generalization of 
the geometric realization construction for simplicial complexes. Call a map f : X -^Y 
of simplicial sets 

(i) a weak equivalence if | / | is a weak homotopy equivalence (8.1) of topological 
spaces, 

(ii) a cofibration if each map fn'-Xn—^ Yn (n ^ 0) is a monomorphism, and 
(iii) a fibration if / has the RLP with respect to acyclic cofibrations (equivalently, / 

is a Kan fibration [18, §7]). 

Quillen [22] proves that with these definitions the category sSet is a model category. He 
also shows that the adjoint functors 

|?| : sSet <J=^ Top : Sing 

satisfy both conditions of Theorem 9.7 and so induce an equivalence of categories 
Ho(5Set) —> Ho(Top) (this is of course with respect to the model category structure 
on Top from §8). This shows that the category of simplicial sets is a good category of 
algebraic or combinatorial "models" for the study of ordinary homotopy theory. 

11.2. Simplicial objects. There is an obvious way to extend the notion of simplicial 
set: if C is a category, the category sQ of simplicial objects in C is defined to be the 
category of functors A^^ -* C (with natural transformations as the morphisms). The 
usual convention, if C is the category of groups, for instance, is to call an object of 
sC a "simplicial group". The category C is embedded in sQ by the "constant diagram" 
functor (2.11) and in dealing with simplicial objects it is common to identify C with its 
image under this embedding. Suppose that C has an "underlying set" or forgetful functor 
[/ : C -^ Set (cf. 2.9). Call a map / : X -^ y in sC 

(i) a weak equivalence if U{f) is a weak equivalence in sSet, 
(ii) di fibration if U{f) is a fibration in sSet, and 

(iii) a cofibration if / has the LLP with respect to acyclic fibrations. 

In [22, Part II, §4] Quillen shows that in all common algebraic situations (e.g., if C is the 
category of groups, abelian groups, associative algebras. Lie algebras, commutative alge-
bras, . . . ) these choices give sC the structure of a model category; he also characterizes 
the cofibrations [22, Part II, p. 4.11]. 

Consider now the example C = Mod/?. It turns out that there is a normalization functor 
N : sModi? -^ C\iR [18, §22] which is an equivalence of categories and translates the 
model category structure on sMod/? above into the model category structure on Chi? 
from §7. Thus the homotopy theory of sMod/? is ordinary homological algebra over R. 
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For a general category C there is no such normalization functor, and so it is natural 
to think of an object of sC as a substitute for a chain complex in C, and consider the 
homotopy theory of sC as homological algebra, or better homotopical algebra, over C. 
This leads to the conclusion (11.1) that homotopical algebra over the category of sets is 
ordinary homotopy theory! 

11.3. Simplicial commutative rings. Let C be the category of commutative rings. In 
[24] Quillen uses the model category structure on sC which was described above in order 
to construct a cohomology theory for commutative rings (now called Andre-Quillen 
cohomology). This has been studied extensively by Miller [19] and Goerss [13] because 
of the fact that if A" is a space the Andr6-Quillen cohomology of H*(X;^p) plays 
a role in various unstable Adams spectral sequences associated to Jf. In this way the 
homotopical algebra of the commutative ring H*(X; Tp) leads back to information about 
the homotopy theory of X itself; this is parallel to the way in which, if F is a spectrum, 
the homological algebra of Y{*[Y\Tp) as a module over the Steenrod algebra leads to 
information about the homotopy theory of Y. 

We can now answer a question from the introduction. Suppose that fc is a field. Let C 
be the category of commutative augmented A;-algebras and let R be an object of C. Recall 
that C can be identified with a subcategory of sC by the constant diagram construction. 
Topological intuition suggests that the suspension ER of R should be the homotopy 
pushout (§10) of the diagram * ^ i? —• *, where * is a terminal object in sC. Since this 
terminal object is k itself, SR should be the homotopy pushout in sC of fc ^ iZ —> fc. 
It is not hard to compute this; up to homotopy ER is given by the bar construction [19, 
Section 5] [13, p. 51] and the Tth homotopy group of the underlying simplicial set of 
riiisTorf(fc,fc). 

11.4. Rational homotopy theory. A simplicial set X is said to be 2-reduced if Xi has 
only a single point for i < 2. Call a map / : X —̂  Y between 2-reduced simplicial sets 

(i) a weak equivalence if H^(|/ |;Q) is an isomorphism, 
(ii) a cofihration if each map fk'.Xk-^ Yk is a monomorphism, and 

(iii) afibration if / has the RLP with respect to acyclic cofibrations. 

In [23], Quillen shows that these choices give a model category structure on the category 
5Set2 of 2-reduced simplicial sets. A differential graded Lie algebra X over Q is said to 
be 1-reduced if Xo = 0. Call a map f \ X -^Y between 1-reduced differential graded 
Lie algebras over Q 

(i) a weak equivalence if H*(/) is an isomorphism, 
(ii) afibration if fk'.Xk-^ Yk is surjective for each fc > 1, and 
(iii) a cofibration if / has the LLP with respect to acyclic fibrations. 

These choices give a model category structure on the category DGLi of 1-reduced 
differential graded Lie algebras over Q. By repeated applications of Theorem 9.7, Quillen 
shows [23] that the homotopy categories Ho(5Set2) and Ho(DGLi) are equivalent. It is 
not hard to relate the category sSeti to the category Topi of 1-connected topological 
spaces (there is a slight difficulty in that Top, is not closed under colimits or limits and 
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so cannot be given a model category structure). What results is a specific way in which 
objects of DGLi can be used to model the rational homotopy types of 1-connected spaces. 
For a dual approach based on differential graded algebras see [4] and for an attempt to 
eliminate some denominators [7]. There is a large amount of literature in this area. 

11.5. Homology localization. Let ft,* be a homology theory on the category of spaces 
which is represented in the usual way by a spectrum. Call a map f : X ^Y m sSet 

(i) a weak h^-equivalence if /i:^(|/|) is an isomorphism, 
(ii) an h^-cofibration if / is a cofibration with respect to the conventional model 

category structure (11.1) on sSet, and 
(iii) an h^-fibration if / has the RLP with respect to each map which is both a weak 

/i*-equivalence and an ft*-cofibration. 

Bousfield shows [2, Appendix] that these choices give a model category structure on 
sSet, called, say the /i*-structure. The hardest part of the proof is verifying MC5(ii). 
Bousfield does this by an interesting generalization of the small object argument (7.12). 
He first shows that there is a single map i: A -^ B which is both a weak ft*-equivalence 
and a ft,*-cofibration, such that / is a ft*-fibration if and only if / has the RLP with 
respect to i. (Actually he finds a set {ia} of such test maps, but there is nothing lost 
in replacing this set by the single map ] j^ ia-) Now the domain A of z is potentially 
quite large, and so A is not necessarily sequentially small. However, if rj is the cardi-
nality of the set Un^« ^̂  simplices of A, the functor Hom ŝetC ,̂ - ) does commute 
with colimits indexed by transfinite ordinals of cofinality greater than rj, Bousfield then 
proves MC5(ii) by using the general idea in the proof of 7.17 but applying the gluing 
construction C?({i}, - ) transfinitely; this involves applying the gluing construction itself 
at each successor ordinal, and taking a colimit of what has come before at each limit 
ordinal. 

Let Ho denote the conventional homotopy category of simplicial sets (11.1). Say that 
a simplicial set X is /i*-local if any weak ft*-equivalence f : A —^ B induces a bijection 
llomuo{B,X) -^ HomHo(>i,-^)- It is not hard to show that a simplicial set which 
is fibrant with respect to the ft*-structure above is also ft*-local. It follows that using 
MC5(ii) (for the ft*-structure) to factor a map X ^ * as a composite X -̂> X'-^* 
gives an h^-localization construction on sSet, i.e. gives for any simplicial set X a weak 
/i*-equivalence X -^ X' from X to an ft*-local simplicial set X'. Since the factorization 
can be done explicidy with a (not so) small object argument, we obtain an ft,*-localization 
functor on sSet. It is easy to pass from this to an analogous ft*-localization functor on 
Top. These functors extract from a simplicial set or space exactly the fraction of its 
homotopy type which is visible to the homology theory ft*. 

11.6. Feedback. We conclude by describing a way to apply the theory of model cat-
egories to itself (see [8] and [9]). The intuition behind this application is the idea that 
almost any simple algebraic construction should have a (total) derived functor (§9), even, 
for instance, the localization construction (§6) which sends a pair (C, W) to the local-
ized category W~'C. In fact it is possible to construct a total left derived functor of 
(C, VT) -̂> W~^C, although this involves using Proposition 9.3 in a "meta" model cat-
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egory in which the objects themselves are categories enriched over simplicial sets [17, 
p. 181]! If C is a model category with weak equivalences W, let L{C,W) denote the 
result of applying this derived functor to the pair (C, W). The object JL(C, W) is a cate-
gory enriched over simplicial sets (or, with the help of the geometric realization functor, 
a category enriched over topological spaces) with the same collection of objects as C. 
For any pair of objects X,Y e Ob(C) there is a natural bijection 

7roHom^(c,iy)(X,y) ^ HomHo(c)(^,>^) 

which exhibits the set HomHo(c)(-^>i^) as just the lowest order invariant of an entire 
simplicial set or space of maps from X to y which is created by the localization process. 
The homotopy types of these "function spaces" Hom£,(c,w^)(A', Y) can be computed by 
looking at appropriate simplicial resolutions of objects of C [9, §4]; these function spaces 
seem to capture most if not all of the higher order structure associated to C which was 
envisaged and partially investigated by Quillen [22, part I, p. 0.4], [22, part I, §2, §3]. 
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1. Introduction 

Proper homotopy theory is both an old and a fairly new area of algebraic topology. 
Its origins go back to the classification of noncompact surfaces by Kerekjarto in 1923, 
but it is probably fair to say that it *got off the ground' as a distinct area of algebraic 
topology as a result of the geometric work of Larry Siebenmann in 1965. There some of 
the distinctive features of the subject began to emerge: the study of invariants of ends, 
use of proper, not merely continuous, maps, etc. The problem Siebenmann tackled was 
the following: 

If M is a smooth manifold with boundary, 9M, then M \ 9 M is an open manifold. 
Suppose instead that we are given an open manifold, N, is it possible to find a compact 
manifold M with M\dM = TV? If not, why not? Find some obstruction whose vanishing 
will be necessary and sufficient for such an M to exist. 

In his thesis, [66], Siebenmann showed that necessary conditions include that the man-
ifold have a finite number of ends, that the system of fundamental groups of connected 
open neighborhoods of each *end' be 'essentially constant' and that there exist arbitrarily 
small open * neighborhoods of oo' homotopically dominated by finite complexes. When 
the manifold has dimension greater than five and has a single such end, there is an ob-
struction to the manifold having a boundary. It lies in Ko{7r\{oo)), the projective class 
group of the fundamental group at oo. 

Similar ideas had been applied to this *missing boundary problem' slightly earlier 
(cf. Brin and Thickstun [13] for a discussion) but the hypotheses used had not in-
volved invariants of proper homotopy type. Concepts related to proper homotopy and 
proper homotopy invariants were promoted in Siebenmann's further work ([67], [68], 
[69]), by Farrell and Wagoner ([37] and [38]) and then by E.M. Brown [14]. The im-
portance of proper homotopy equivalences became evident about the same time with 
results on non-compact manifolds where the hypotheses were proper homotopy theo-
retic (particularly *at infinity'), but having homeomorphism type conclusions. Brown 
and Tucker [16] cite several papers which are examples of this; their paper is an-
other. 

Proper homotopy theory as such was relatively slow to catch on, but in the period 
after 1972, Chapman published work on infinite dimensional manifolds that was to give 
it a boost, [20], [21], [22]. He proved the topological in variance of Whitehead torsion 
in simple homotopy theory using methods involving the shape theory of Borsuk. He 
then proved a 'complement theorem' which can be interpreted as a sort of duality the-
ory between shape and a weak form of proper homotopy. Borsuk's theory of shape is 
a 'homotopy theory' whose relation to ordinary homotopy theory is that of Cech ho-
mology to singular homology. It is essentially a Cech homotopy theory. The Chapman 
complement theorem gave a homotopy theoretic equivalence reminiscent of Alexander 
or Lefschetz duality. Any compact metric space, X, can be embedded in the Hilbert 
cube 

Q = n 
n=l 

n ' n 
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The subset 

-•'-•: V n n 
n—\ ^ 

of Q is called its pseudo interior. Suppose that X and Y are embedded as compact 
subsets of 5, then they have the same shape (in the sense of Borsuk) if and only if Q\X 
and Q\Y have the same weak proper homotopy type and hence if and only if Q\X 
and Q \ y are homeomorphic. 

The methods and perspectives of shape theory interacted with those of proper homotopy 
theory for the mutual benefit of both. This led, in 1976, to the publication by Edwards 
and Hastings of their lecture notes [28], which laid down a theoretical framework for 
studying proper homotopy theory, that is still actively used today. Their proof that the 
procategory, proTop supported a Quillen model category structure raised the prospect of 
applying many methods from 'classical' homotopy to the proper case via an embedding 
theorem. The repercussions of that work are continuing, as research tries to adapt methods 
from the modem theory of algebraic homotopy (cf. Baues [7]), and results on algebraic 
models for n-types, to attempt to push through proper analogues of J.H.C. Whitehead's 
original program for a 'combinatorial homotopy theory', and to understand the geometry 
behind the structures revealed by the procategorical approach. 

As, later, we go more slowly through this material, what should be noted is the way 
that geometric structure interacts strongly with quite complex algebraic structure, even 
at a quite elementary level. The route we will take is not intended to be historical nor 
exhaustive and many valuable geometric aspects of the earlier development of the subject 
will be omitted, partially through lack of space, but mainly due to lack of sufficient 
expertise in those areas on the part of the author. 

2. Initiation 

(The following section is loosely based on parts of a series of lectures given by Larry 
Siebenmann at Logrono in November, 1991. Any errors are, of course, my own respon-
sibility.) 

The basic hypothesis will be that X is a connected locally compact Hausdorff space, 
which is also locally connected. Later on we will usually consider a-compact spaces, X, 
so that there will be an increasing sequence, {Kn}, of compact subspaces with each Kn 
in the interior of Kn-\-\ and such that 

X=[JKn. 
Tl=0 

These spaces will often be locally finite simplicial complexes, in which case the Kn can 
be taken to be subcomplexes. 
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To illustrate the idea of the ends of a space, X, we note that naively E has two ends 
(i.e. two ways of going to înfinity'), whilst M̂  has really only one as M̂  = 5^ \ {oo} 
via stereographic projection. 

More exactly, consider the system of spaces 

E{X) = {cl{X \ K): K compact C X] 

where d denotes closure. By 'system', we mean *inverse system', since if K, L are 
compact subsets of X, and K C L, then there is an induced inclusion 

d{X\L)-^d{X\K), 

and so the various spaces in the system are linked by maps. 
Applying the connected component functor, TTQ to this system of spaces gives 7Toe{X) = 

{7rod{X \ K): K compact C X} and then taking the inverse limit of 'Koe{X), 

e{X) = lim 7ro£:(-X'), 

we get the set of ends of X. In general, e{X) should be given the inverse limit topology, 
if the information that set contains is to be useful. Before we look at this point in detail, 
note the following result: 

LEMMA 2.1. If X is as above, K is compact in X and U is an open set containing K, 
then only finitely many components of X\K are not contained in U. 

The proof is reasonably simple. The result implies that if 

n'eiX) = {c'{X \ K): K compact C X} 

and c\X \ K) = set of unbounded components of d{X \ K) then lim 'K'e{X) = 
lim 7roe(X). However each c'[X \ K) is a finite set and hence is compact in the discrete 
topology. The inverse limit, e(A'), can thus be formed as a closed subset of the product, 
n c ' ( X \ K), and so e{X) is compact and totally disconnected in this inverse limit 
topology. With this topology, we will say e{X) is the space of (Freudenthal) ends of X. 

EXAMPLES 

1) Let Xs be the figure eight space, the one-point union of two circles, and let X be 
its universal cover. This is an 'infinite Hawthorn bush'. It has infinitely many ends, in 
fact 

e{X)^2^'. 

2) Let M be a compact manifold with boundary 9M and let X = M \ 9M, then 
e{X) = 7ro(aM). 

To investigate whether or not this construction e gives a (useful) invariant, first note 
that e(M) = {-oo,oo}, whilst e of any compact space X is empty, so e cannot be a 
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functor on the category of spaces and continuous maps, as the contracting map E —^ {0} 
is clearly continuous but there is no function from a two-point set to the empty set! The 
problem is that although continuous maps f : X —^Y preserve compactness in as much 
as, if C C X is compact, then so is / (C) , continuity is *really' about inverse images 
and inverse images of compact sets need not be compact, as the above simple example 
shows. 

If, however, we restrict to maps f : X -^ Y, such that if K is compact in Y, then 
f~^{K) is compact in X, these are the proper maps, then not only is our trivial example 
excluded, but / induces a morphism of inverse systems 

e{f):e{X)^e{Y) 

and hence a continuous map of the endspaces, 

e ( / ) : e ( X ) - e ( y ) . 

As we have not yet made precise what is the exact meaning of inverse system, nor of a 
morphism of such things, we cannot be more precise on this just yet. Accepting that for 
the moment, we see that we have a functor e from some category P of spaces and proper 
maps, to the category, Profin, of *profinite' spaces, i.e. compact totally disconnected 
spaces. 

LEMMA 2.2. For any space X, the natural inclusions ofX into Xxl, ei{x) = (x, z), 7 = 
0,1, and the projection map from X x I to X are proper maps. 

We thus can make the obvious definition. 

DEFINITION 2.3. If / , ^ : X —̂  y are proper maps, then a proper homotopy between 
them is a proper map 

H:XxI-^Y 

such that Heo = / , He\ = g. 

All the usual results of elementary homotopy theory go across to the proper case with-
out difficulty once one notes that the composite of proper maps is proper, that home-
omorphisms are proper, and one or two other similar observations. Proper homotopy 
equivalences are defined in the obvious way. 

This is a convenient place to set up the 'Proper Category' and various associated 
categories, before returning to the functor, e. 

DEHNITION 2.4 (cf. Edwards and Hastings [28, p. 214]). Let P be the category of locally 
compact Hausdorff spaces and proper maps and Ho(P) be the associated proper homotopy 
category. Restricting to cr-compact spaces will give corresponding categories Per and 
Ho(P,). 
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Although a proper map J : X -^Y induces a continuous map e( /) : e{X) —> e{Y), 
it is clear that one does not need / to be defined on the whole of X for this to be so. 
We only need / to be defined on a * neighborhood of oo' and this leads to the definition 
of a germ at oo of a proper map. 

Suppose X is a locally Hausdorff space and AcX. The inclusion j \ A -^ X will be 
said to be cofinal if the closure of the complement of A, cl{X \A)/is compact. (We also 
say A is cofinal in X.) In this case the inclusion j is clearly proper and induces an isomor-
phism between e(A) and e{X), since eventually these two inverse systems are the same. 

Let S be the class of all cofinal inclusions in P and let Pcx? = F{S~^), the quotient 
category obtained by formally inverting the cofinal inclusions. This will be called the 
proper category at oo. As (P, E) admits a calculus of right fractions (in the sense of 
Gabriel and Zisman), any morphism from X to F in Poo can be represented by a diagram 

3 f 

X ^ A ^ Y 

with j a cofinal inclusion, i.e. / is defined on some ^neighborhood of the end of X ' . A 
morphism in Poo is called a germ at oo of a proper map. Two diagrams 

'' ^' and '" ^" X ^ A' ^ Y ^"^ X ^ A'' ^ Y 

represent the same germ if f \ A = f \ A for some cofinal subspace A D A' U A" 
of X. Composition is defined in the obvious way. Passing to proper homotopy classes 
gives us Ho(Poo), the corresponding homotopy category. There are also variants Pcr,oo 
and Ho(P^,oo)» obtained by restricting to cr-compact spaces. 

We can now state more neatly the functoriality of e by saying that it is a functor from 
Poo to Profin. In fact, if / , p : X —̂  y are proper homotopic, then since e{X) = e{X x / ) , 
we have e{f) = e{g) up to isomorphism. This is true whether / , g are proper maps or 
merely germs of such, so we have e is a functor from Ho(P), or Ho(Poo), to Profin. 

Given X, one can attempt to sew in e(X) as if it were a boundary to get a compact 
space X, but even if X is a manifold, X may not be one as it may have singularities 
and the study of these singularities reduces to the study of the relationship between X 
and e{X)y i.e. to the study of the various d{X \ K) with K compact. 

REMARK. A tantalizing question is raised by the fact that e[X) is a profinite space. By 
Stone duality, this must be the maximal ideal space of a Boolean ring. Goldman in the 
late 1960's in his Yale thesis, looked at a ring, R, of 'almost continuous maps' from 
X to Z/2Z and showed that Max{R) and e{X) were homeomorphic. This raises a lot 
of interesting questions, especially given the greater understanding of Stone duality and 
*Stone spaces' that there is today. 

As e{X) = lim 7ro(6:(X)) and so uses TTQ, the next obvious 'invariant' to try should 
use TTi. For this, we need a base point in each X\K. For simplicity, we will assume that 
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X has only one end (so X is ^connected at oo'). We will also suppose X is cr-compact 
and will specify an increasing sequence 

K^cKiC" with [JKi = X 

and with each Ki C lnxKi^\, We set Ui=^ X\Ki,UQ = X to get C/Q 3 Ĉ i D • • •• 
Pick a base point Xi in each Ui. Then we can define 7r\{Ui,Xi), but we still cannot 

define an inverse limit group since we do not yet have an inverse sequence of groups. To 
get that, join Xi to Xi^\ in Ut by some arc, ai. Then we get an induced homomorphism 

Q̂id : n\{Ui^uXi^i) -^ 7ri{Ui,Xi) 

and hence an inverse sequence, 5, of groups, (7ri(f/t,Xi),ai(j). We note that the â  
combine to give a proper map a : [0, oo) -^ X, a base ray rather than a base point. 

This 5 is a well defined invariant of X up to (i) passage to a subsequence, and (ii) 
conjugacy, but one still has problems as regards to change of 'base ray' within the end, 
as the following example shows. 

EXAMPLE. Let X be an infinite cylinder with an infinite string of circles attached via a 
proper ray a : [0, oo) -^ X. 

Let Zo be a path once around the circle S^ x {0} and let U be the z* loop of the 
string of circles. Let a' be the base ray that goes along ai-\ then round Zi, then along 
at and so on - it goes along the top of the cylinder in the picture looping once around 
each li as it gets to it. The single Freudenthal end of X is determined by the points 
Xk = Oi{k), k = 1,2,.... By analogy with TTQ of a space, different choices of base 
ray 'should' make no difference to the answer - if e{X) is truly the proper analogue of 
7ro(X). However we can calculate the limits of the inverse systems, S = (TTI {Ui,Xi)^ Qtu), 
and the corresponding S = {7r\{Ui,Xi),a[^). In both cases ir\{Ui^Xi) is the free group 
F{lo, Zi, Zi+i,...) on the set of loops ZQ, plus all Ẑ , for k^ i, but whilst ai^ corresponds 
to the inclusion of 

'o, li-\-\,...—* Zo, Zi, Zi_^.i,..., 

the other 'bonding' homomorphism conjugates by k so ot[^^{lk) = hhll^ for k ^ 
z + 1, and for A; = 0. Comparing the limits of S and 5', we find: 

- lim S = F{IQ) as only the Zo-loop survives to infinity; 



Section 2 Proper homotopy theory 135 

- lim S' = the trivial group, since the only feasible nontrivial element would have been 
that corresponding to IQ, but that cannot be there as its projections to the various terms 
of the sequence would need to be conjugated an infinite number of times. 

This means that lim S is not an invariant of the end. There are however cases where S 
does not depend on the choice of arcs making up the base ray. This occurs if the inverse 
system of groups, S, is Mittag-Leffler, The definition of this condition is well known but 
we will include it for completeness. 

DEFINITION 2.5. An inverse sequence of groups G_ = {Gn,p!^) satisfies the Mittag-
Leffler condition provided that for any n, there is an n' > n such that for any n" > n, 

we have pf (Gn'0=Pn(GnO. 
In other words, in a Mittag-Leffler inverse system, the images of terms from far down 
the sequence do not get smaller. It is well known and easy to prove that if G is a Mittag-
Leffler inverse sequence of groups then it is essentially epimorphic, i.e. it is isomorphic to 
an inverse system of groups which has epimorphic structure maps p^ : Gm -^ Gn- There 
are similar 'internal' conditions equivalent to the system being 'essentially monomorphic' 
or 'essentially constant'. The essentially constant systems are isomorphic to constant 
systems, that is ones in which every object is the same and all the bonding morphisms 
are the identity on that one object. These systems are also called 'stable'. This is discussed 
fully in [26]. 

As a final comment on Freudenthal ends, we mention the Waldhausen boundary. If 
X and Y are locally compact Hausdorff spaces, one cannot form a space of proper 
maps from X to Y in any meaningful way, but one can form a simplicial set, P{X, Y), 
with P(Jf, Y)n = P{X X A^, y) , which acts as if it were the singular complex of the 
mythical space of proper maps from X \QY . The Waldhausen boundary of X is the 
simplicial set P([0, oo),X). There is an epimorphism from 7ro(P([0, oo), X)) to e{X). 
Thus in our example of the cylinder with the string of circles attached, 7ro(P([0, oo), X)) 
is uncountable and 7ri(P([0, oo),X)) maps onto lim S. When X has a single end and 
7ro(£:(X)) is Mittag-Leffler, then 7ro(P([0, oo),X)) is a single point, i.e. all possible base 
rays are properly homotopic. 

As the sequence of fundamental groups TFI , based at a sequence of points, behaves 
less well than one might expect, it is usual to specify a base ray a : [0, oo) -^ X that 
will link the sequence {pL(n) : n G N}. Proper homotopy classes of these correspond to 
components of the Waldhausen boundary and the limiting fundamental group construction 
is a proper invariant of the base-rayed space, (X, a). Clearly there are analogues of 
this construction for other classical base pointed invariants, so we can define the limit 
homotopy groups at infinity by lim 7rn(6:(X),e(a)). 

Just as with Cech homology, one cannot expect limit groups to give exact sequences 
and the other construction we have seen, using the Waldhausen boundary, looks more 
promising. It gives a definition of some homotopy groups of a base-rayed space (X, a) by 
the simple method of taking 7rn(P([0, oo), X)). We will denote these groups by ^n(X, OL). 
Clearly there should be a variant based on germs and that will be denoted '^{X.OL) 

with Poo([0, oo), X) as the corresponding simplicial set. These constructions clearly raise 
some interesting homotopy theoretic questions, but as yet our theoretical framework is 
not properly in place and so these must wait until later. 
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3. Strings of spheres 

Before we set-up a 'framework' for a theoretical analysis of the constructions we have 
glanced at above, we will look at a construction of Ed M. Brown, given in [14]. When we 
examined the set of components of the Waldhausen boundary, it was clear that each of its 
vertices, a, determined an end, i.e. determined an element of the Freudenthal end space, 
e{X). However the end was really determined by much less information, namely the se-
quence {a{n) : 71 6 N} of images of the natural numbers. A 1-simplex in P([0, oo), X) 
is a proper map from [0, oo) xA^ to X and so two vertices in the same component of the 
Waldhausen boundary determine the same end (as we have seen before). However the 
existence of such a 1-simplex is a much stronger condition than is necessary since if a, (3 
are two such vertices, it is sufficient to have arcs a{n) : a(n) —• 0(n) for each n G N 
to ensure that {a(n) : n G N} and {^(n) : n E N} determine the same Freudenthal end. 
This suggests that one might use an infinite ladder 

/ = ( [ 0 , o o ) x a / ) u ( N x / ) 

then a and (3 determine the same end if there is a proper map h : I —^ X such that 
h I [0, oo) X {0} = a, whilst h\ [0, oo) x {1} = /?. More generally, one could form spaces 

^ ^ = ( [ 0 , o o ) x ^ J ) u ( N x Z i ^ ) 

and form the corresponding simplicial set by considering F{A^,X) as its set of 
n-simplices. Then the homotopy groups of this simplicial set would be invariants of 
X. In fact E.M. Brown showed in 1974, [14], that it is easier to define the resulting 
homotopy groups directly. The interaction between them and the homotopy groups of 
the Waldhausen boundary give a lot of insight into the phenomena involved in going 
*out to infinity' in locally compact spaces. 

Let S"^ denote, as always, the n-sphere, which will be considered as being pointed at 
some to. 

DEHNITION 3.1. Let 5'^ denote a half line together with a distinct n-sphere attached at 
each integer point, i.e. SJ" = [0, oo) x {to} U (N x S""). 

The fixed base ray in a *rayed' space will from now on usually be denoted * : [0, oo) -^ 
X. A proper germ of pairs a : {SJ^, [0, oo)) —̂  (X, *) will mean a proper germ a : S_^ -^ 
X so that the germ of a | [0, oo) is *. If /3 is another such, we say that a and /3 are germ 
homotopic rel * if a and /3 have representatives which are proper homotopic rel. * in the 
obvious sense. The set of such germ homotopy classes is denoted TT^ {X, *). It is clear that 

7r~(X, *) - Ho(Poo)((5", [O.oo)), (X, * ) ) ^ . „ . 

With this description, it is clear that TT^ is functorial on based rayed spaces and that it 
only depends on the choice of the class of * within e{X), not on the particular ray used. 
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Brown proved, [14], a Whitehead type theorem for a combination of these groups with 
the classical compactly based groups. 

THEOREM 3.1 ([14]). Let K, L be finite dimensional connected locally finite simplicial 
complexes, then a proper map f : K -^ L is a proper homotopy equivalence if and 
only if. 

(i) e( / ) : e{K) -^ e(L) is a homeomorphism; 
(ii) for each n, 7rn(/) : 7rn(/̂ , *(0)) -^ 7rn(I/, / * (0)) is an isomorphism; 

(iii) for each n, and each base ray *, in K, 7L^{f) : K^{K, *) —^ ]L^{L, /*) is an 
isomorphism. 

Brown points out that if one removes the condition of finite dimensionality, the result 
no longer holds, but claims that the situation can be retrieved by using the space 5°°, 
which is [0, oo) with for each k G N, a copy of 5̂ ^ attached at that integer. This gives 
a group TLooi^^ *) "̂d the necessary amendment to 3 of Theorem 2.2 is claimed to be 
to allow n = oo. There is however a subtie counterexample to this due to Edwards, 
Geoghegan, and Hastings. (A version of the construction of this counterexample is given 
in [28, pp. 195-202]. Several authors have slipped up at exactly this point so that when 
consulting the published literature it is advisable to take care when algebraic invariants 
of infinite dimensional complexes are mentioned.) 

Brown's V-functor 
Suppose given X, * : [0, oo) -^ X. As before we can, theoretically, calculate the inverse 
sequence of groups, 7rn(£:(X)) = {T^n{Uk,*{k)) : A; G N}. Brown gave, again in [14], 
a method that constructs ii^{X, *) from 'Kn{e[X)). The method has an easy derivation 
using categories of inverse sequences, but as we have yet to meet this in detail, we will 
use Brown's original description and return to the other later on. 

Let G = {Gn>P^} be an inverse sequence (tower) of groups with Go = 1 for 
simplicity. Consider all sequences {gk{n)} with pfc(n) ^ Gk{n) where k{n) is a sequence 
of natural numbers such that k{n) —> oo as n —> oo. Given two such sequences, {̂ fc(n)}» 
{^[(n)}' ^^ ^̂ y ^̂ ŷ ^^^ equivalent if there is a third sequence m{n), m{n) —̂  oo as 
n -> oo, m{n) ^ min(fc(n),/(n)) and P̂ ['̂ )£f/fc(n) = P^{n)3'i{n) ^̂ ^ ̂ ^̂  n E N. We let 
V{G) be the set of equivalence classes. It has a natural group structure and one obtains 
the following facts: 

(i) Let X = [jKn, Un = X \ Kn- Suppose * : [0, oo) —• X is chosen so that 
*[n,oo) C Un- Set Gn - T^kiUn.^in)) with Gn —̂  Gn-\ induced by the inclu-
sion and change of base point along *([n - 1, n]). Then 

TL^{X,*)^V{G). 

(ii) For any tower of groups G as above, there is an action of the group £ = 
7ri(5\[0,oo))onP(G). 

(iii) (Chipman [23].) Let G, H, be towers of finitely generated groups, then G is 
isomorphic to H_ if and only if there is an isomorphism from V{Q) to ViJtQ 
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commuting with the operators of £ . (Notice that initially no morphism of towers 
from G to S is given!) 

Grossman's reduced power construction 
Grossman [40] gave an alternative construction of 'P(G) and indeed of V{X) for any 
tower of sets, X. 

Given a set X, let X^ be the set of infinite sequences of elements of X. On X^ put 
the following equivalence relation: 

a = 6 if and only if {i € N : â  ^̂  6i} is finite 

(if X is a group, this determines a normal subgroup of X^, namely iV = {a | a = 1}, 
where 1 is the constant sequence with value the identity, 1, of the group X, hence 
N = {a\ ai ^ \ iox only finitely many i G N}. If X is abelian, N = X^^\ the direct 
sum of a countable family of copies of X,) We write I{X) for the set (group, abelian 
group, etc.) of equivalence classes. 

Grossman proves that if X = {Xs} is a tower of sets (groups, etc) then 

V{X) ^ lim I{Xs). 

Thus if X is a constant tower, V{X) ^ / (Xi) . 
Brown had pointed out, in the original [14], that if M was a compact PL-manifold 

with boundary dM and K = M\ dM, then 

where N is the component of dM determined by *, and xo is a base point in N. It is 
worth noting that a similar reduced power construction is used by Farrell, Taylor, and 
Wagoner in their definition of their ^-homotopy groups in [36]. 

Our last mention of these Brown-Grossman homotopy groups for the moment relates 
to Brown's later work [15]. As the spaces considered are noncompact 3-manifolds, only 
the case n = 1 is needed. Before stating the results which are quite surprising, it is worth 
placing these results in context. 

J.H.C. Whitehead had given in [73], an example of an open contractible 3-manifold, 
which was not homeomorphic to E .̂ His construction was to take one solid torus inside 
another so that the first linked itself around the central hole of the second. 
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Now repeat with the second torus linking inside a third - and so on. Let W be the union 
of all the solid tori. Then W is contractible but is not homeomorphic to E^. McMillan [56] 
generalized Whitehead's construction by putting a knot in the torus before self linking 
it. By varying the knot at each stage, this gives an uncountable family of contractible 
open subsets of E^, no two of which are homeomorphic. In the paper referred to above, 
Brown proved: 

Let M and N he contractible open 3-manifolds which are irreducible and eventually 
end-irreducible. Let f : M -^ N be a proper map which induces an isomorphism 
K\ if) '• 7L\ (A/) -^ 7L\ (N). Then f is properly homotopic to a homeomorphism. 

This to some degree shows the power of these invariants, but fails to say how one 
can gain any useful algebraic information on the Whitehead-McMillan examples, even 
though they are explicitly given. 

4. Categories of proobjects, towers, shape and strong shape 

In this section we will briefly look at some technicalities needed for defining more 
rigorously, some of the ideas we have already met. We also will introduce shape and 
strong shape. Although the treatment will be, of necessity, very cursory, it will be useful 
to refer to this 'dual' theory for comparison. 

Procategories 
Although in practice in proper homotopy theory, one only needs to use towers of objects, 
the generalities of procategory theory indicate how proper homotopy theory relates to 
areas such as the 6tale homotopy theory of Artin and Mazur and the strong shape of 
nonmetric compact spaces. 

Let I be a small category (so the class of objects in I is a set). We say that I is filtering 
if 

(i) given any z, z' e I there is an i" and morphisms 

(ii) given any two maps 

I' 

there is a morphism 7 : i" —• i' such that a^ = ^ 7 : i" -^ i. 
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A proobject in a category C is a functor F : E —• C for some small filtering category, I. 
It will sometimes be convenient to write (I,F) for the proobject F : I -^ C. Later on 
we shall restrict to towers, that is proobjects in which I = N, the filtering category of 
natural numbers with a single morphism from n to m if and only if n ^ m. 

If (I, F) and (J, G) are proobjects in C, the set of morphisms of proobjects between 
them is defined to be 

pro(C)((I,F),(J,G)) = limcoIimC(F(z),G(j)). 

(For a discussion of where the definition (in this form) comes from, see [26, Sec-
tion 2.3].) 

This definition of morphism can be 'domesticated' as follows: 
an element of pro(C)((I,F), (J[,G)) consists of a function 0 : J -> I (not necessarily 
order preserving) and a J-indexed family of morphisms in C, 

{ / , : F e ( j ) - G O ) } . , j 

such that if 

•/ "^ 
3 ^ 3 

is a morphism in J, there is some i and morphisms in I, 

'̂ ^0") 

such that the diagram 

Fe{j) - ^ G(j) 
F(0) 

F{i) G(a) 

^^0'^ F0(f) - ^ G{j') 

is commutative. We write proC or pro(C) for the category of proobjects in C and 
morphisms between them. 
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Examples of morphisms 
(i) Any natural transformation rj: F —^ G of functors from I to C defines a promor-

phism from (I, F) to (I, G) given by: 

6 = identity, fi : F{i) —> G{i) is rj{i). 

We call such a promorphism a /^v^/ map. 
(ii) If I, J are small filtering categories and (/>: JI —> I is a functor, we say that 0 is 

cofinal if: 

^/ven flAi)' 2 m I, there is a j in J and a map (t>{j) -> i in I. 

The functor (̂  induces a morphism from (I, F) to (SjF(j)) for any proobject (I, F ) 
indexed by I. If 0 is cofinal, this morphism is an isomorphism, which will be 
called a cofinality isomorphism. 

(iii) The reindexing lemma (below, cf. Artin and Mazur [1, Appendix]) shows that 
these two types of morphism generate all the promorphisms. 

REINDEXING LEMMA. Given and f : ( I ,F) -^ (J,G) in pro(C), there is a filtering 
category M{f) with cofinal fiinctors 01 : M ( / ) —> l , 0 j : M ( / ) —> J and a natural 
transformation 

rj: F(t)\ -^ Gcf)} 

such that the diagram 

f 
^ G 

F(j)\ >- G<j)} 

is commutative within pro(C), where the vertical arrows are cofinality isomorphisms. 

This result thus says that any promap can be reindexed to give a level map and so 
one can think of pro(C) as being made up of copies of the functor categories, C^ glued 
together by cofinality isomorphisms. 

Towers 
A tower in C is a proobject of the form (N,F), where N is the category of natural 
numbers with a single morphism n -^ m if and only if n ^ m. The full subcategory of 
pro(C) determined by the towers will be denoted tow(C). 
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Key example 
Let X be a locally compact Hausdorff space, then, as before 

e{X) = {cl{X \A)\A compact in X} 

is a proobject in Top. If f . X -^ Y is proper, then the 'recipe' for a promap requires 
that any corresponding £:(/) : e{X) -^ e{Y) consist of a function 

6 : Compacta in y —• Compacta in X 

and for each compacta 5 in F , a continuous map 

fB:cl{X\e{B))-^cl{Y\B). 

The obvious way to do this is to take 6{B) = f~\B) and /B to be / restricted to 
d{X \ f~^{B)). This also works if / is merely a germ of a proper map. 

Conversely, if ( 6 , / B ) : e{X) -^ e{Y) is any promap then, as the structural maps in 
s{X) and e{Y) are inclusions, all the fs are restrictions of / e and 0 must be given by 
6{B) = f^^iB) up to equivalence. We have almost proved (cf. Edwards and Hastings 
[28]) that £: : Pcx) -^ pro(Top) is a full embedding. If we restrict to Pa,oo, we get an 
embedding P̂ ŷ oo -^ tow(Top), by a choice of ascending filtration in each space. A 
different choice gives an equivalent embedding. If we look at those f : X —^ Y which 
are globally defined then we need to specify that f~\0) = 0, i.e. / is everywhere 
defined. The natural way to handle this is then to consider the category (pro(Top),Top) 
with objects the promorphisms ( I ,F) —̂  (1,-^), with codomain a constant object, then 
to a locally compact Hausdorff space, X, one can assign the promap 

6{X) -^ X 

that has ^(1) = 0 G Compacta in X and has f\ = identity. However not only does a 
proper map f : X ^^Y induce a morphism of promaps 

e{X) ^ X 

eif) f 

e{Y) ^ Y 

but conversely any morphism in (pro(Top),Top)((£:X,X), (eY, Y)) comes from a glob-
ally defined proper map and so we get embeddings 

P ^ (pro(Top),Top), 

Pa ^ (tow(Top),Top). 
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Any geometrically minded reader may quite reasonably protest that it would seem that 
the nice 'small' geometric objects of P have thus been put in a very abstract categorical 
setting and ask what is the advantage in such a process. The answer is simply that many 
constructions in homotopy theory require certain limits and colimits of spaces to exist. 
Now P and Va have very few useful limits and colimits, especially the latter, as colimits 
tend to *glue' or 'crush' spaces and this destroys end information, but pro(Top) has all 
filtered limits by construction (see Cordier and Porter [26], for instance). In fact, it is 
a sort of free completion of Top with respect to such constructions. Because of this, 
it is often easier to mimic 'ordinary homotopy theoretic' constructions in pro(Top) or 
(pro(Top),Top), than in Poo or P. The constructions may start with a space or spaces, 
but may lead to an object which 'formally' plays the role of a space, although the 
construction of a space with those properties may be difficult or even impossible. This 
would, for instance, be the case when considering mapping cylinder constructions - one 
can sometimes do it with care in P or Poo, but it is very easy to do it in (pro(Top),Top) 
or pro(Top). 

Conditions on a space X in P̂ ^ can thus be imposed using conditions on the end 
e{X) within pro(Top). Of particular use are the conditions that e{X) be 'movable' 
or 'stable'. These correspond to ensuring that the towers 7rf(e(A')) satisfy the Mittag-
Leffler condition (and hence are essentially epimorphic) or that E{X) is isomorphic in 
Ho(proTop) to a constant proobject. (We refer the reader to [26] for a discussion of 
the algebraic and categorical aspects of these ideas. We will consider some geometric 
aspects later.) 

Returning to proC in more generality, we next turn to the definition of homotopy 
theories on proC or (proC,C) given one on C. We will illustrate this with C = Top. 
The reindexing lemma interprets as saying that proC can be thought of as being made 
up of many copies of various C*' for different filtering categories, J, linked together by 
cofinality isomorphisms. Suppose in each Top*̂ , we invert the level weak equivalences, 
then if (/): I -^ J is a functor, one has an obvious induced functor 

Ho(Top-^) ~>Ho(Top^), 

since reindexing along 0 respects the level weak equivalences. We can thus try to glue 
these homotopy categories together via cofinality. We do this by inverting those promaps 
f : A -^ B_ which are isomorphic (via reindexing) to a level weak equivalence. This 
gives us the category Ho(pro(Top)). Edwards and Hastings [28] showed that if C has a 
reasonably nice Quillen model category structure, then so have proC and (proC,C). In 
particular, this is true for C = Top. Their remarkable deep result was that the embeddings 
mentioned earlier pass to the homotopy category to give 

Mor 
HoP,, 

HoPoo 

—> 
-^ 

—^ 

HoP<,,oo-^ 

Ho(pro(Top),lOpj, 
Ho(tow(Top),Top), 

Ho(proTop), 

Ho(towTop). 
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Thus, for instance, if f : X -^ Y is in F and / is a weak equivalence and e{f) is a 
weak equivalence at the end, then it is a proper homotopy equivalence. (Compare this 
with Brown's version of the Whitehead theorem given earlier.) 

REMARK. The category Ho(proTop) is not the same as the category proHoTop. The 
objects of the second of these are of the form (I ,F) with F \ I —> HoTop and so 
are homotopy commutative diagrams. It is not possible, in general, to replace such a 
homotopy commutative diagram by a commutative diagram in Top. The difficulty comes 
from the choice of the various homotopies. If these can be chosen to be 'coherent' then 
the theory of homotopy coherent diagrams (developed by Vogt [71], Cordier [24], Cordier 
and Porter [25], and in some of the work of Dwyer and Kan, for example, [27]) shows that 
there is an actual commutative diagram with the same homotopy type. By Vogt's result 
[71] (see also [25]) the category Ho(Top") interprets as a category of homotopy coherent 
diagrams. Hence Ho(proTop) and Ho(proTop,Top) have similar interpretations. This 
can be extremely useful for arguments in proper homotopy theory. 

Homotopy limits. The limit lim : proAb —> Ab is right adjoint to the inclusion functor 
Yon : Ab —> proAb. The analogous limit in Top exists, but does not interact well with 
homotopy. To use a limiting construction in homotopy, we turn to the homotopy limit, 

holim : Ho(proTop) -^ HoTop, 

right adjoint to Ho{Yon) : HoTop —• Ho(proTop). 
To the geometrically minded topologist, holim can initially seem an abomination, 

but simple examples of homotopy limits and colimits are well known. In any case the 
construction of homotopy limits can also be domesticated for use in proper homotopy 
theory. Suppose X is a space in P, using the end functor, we get that e:(X) in Ho(proTop) 
is an invariant of its proper homotopy type at infinity. Applying holim gives us a space, 
representing some of that same information. What are the homotopy groups of that space? 

First pick a base ray in X, * : [0, oo) -^ X. Applying e gives £:[0, oo) ~ {xo} in 
Ho(proTop), since each [fc,oo) = d([0, oo) \ [0, A;]) is contractible. Thus the effect of 
having a base ray is the same as that of taking e to have values in Ho(proTopo), the 
analogous homotopy procategory constructed using pointed spaces as starting point and 
pointed maps as morphisms. (In this situation we will use the pointed version of the 
homotopy limit functor.) Now 

TTn {holim e{X))^Ho{TopQ){S'', holim e{X)) 

^Ho(proTopo)(c(5-),£(X)) 

^Ho(proTopo)(£(5" x [0,oo)),e(X)) 

^Ho(Poo,o)(5^x[0,oo),X) 

i.e. the homotopy groups of the homotopy limit of the end of X are the same as those 
of the *germ' version of the Waldhausen boundary, and correspond to proper homotopy 
classes of germs of proper maps from an semi-infinite cylinder, S^ x [0, oo) to X. 
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Shape, strong shape and proper homotopy 
We started this survey by asking questions relating to M \ dM for M a manifold. Many 
examples of noncompact spaces arise by removing compact subsets from a compact 
space. The geometric significance of the subspace that is removed may be that it is 
perhaps a set of singular points in a generalized manifold, or a boundary, or an attractor 
for a dynamical system on the ambient space. In each case, it is not just the ambient 
space, X, that matters, nor the removed subspace, Y, but the combination of both. If 
one avoids problems relating to the embeddings by passing to infinite codimension, and 
one equally well avoids any interaction of the homotopy type of the ambient space by 
restricting to the case when it is contractible, then one is essentially looking at the shape 
theory of Y. 

Any compact metric space, Y can be embedded in the Hilbert cube, Q, so Q\Y gives 
one an instance of the above idea. Borsuk's shape theory of Y works with polyhedral 
neighborhoods of Y within Q, thus attaching to y a system of polyhedra. This enables 
one to find a functor from the category of compact spaces to the category proHo(Top). 
For the details of this approach the book [55] by MardeSic and Segal is a good source. 
Another approach uses the homotopy analogue of the Cech construction from homology 
theory. 

Given a compact space X, and an open cover U of X, we can form a simplicial 
set N{li) or N{X\U) if more precision is required. This 'nerve' of ZY has as a typical 
n-simplex an ordered subset {UQ, . . . , f/n} of the cover U satisfying the condition that it 
has non-empty intersection. If V is a refinement of W, then there is a mapping 4> :V —^U 
such that (j){y) D V for each V in V. This (f) enables one to define a simplicial map 
from N{V) to N{U)\ another choice of mapping 0' will give a different but homotopic 
map. Because of this, if we denote by Cov{X) the ordered set of open covers of X, then 
N gives us a functor from Cov{X) to Ho(Simp), the homotopy category of simplicial 
sets. Somewhat similarly, varying the space along a continuous map, the induced map 
depends, up to homotopy, on the choices made. Thus N gives a functor from Comp.Top. 
to proHo(Simp) and by geometric realization to proHo(Top). In fact analysis of the 
homotopies involved shows that they can be chosen to be coherent. This can also be 
proved using the dual *Vietoris' construction, V{X'M), in which V{X\U)n consists of 
(n-f l)-tuples of points, (XQ, . . . , x^), such that there is some U EU with Xi e U for all i. 
This does behave well under refinement and under continuous mappings and one gets a 
functor V : Comp.Top. -^ Ho(proSimp) and thus to Ho(proTop.). Dowker proved that 
I V{X'M) I and | N{X\U) \ are homotopically equivalent, so the two constructions do 
give the same prohomotopy type. The shape category has compact spaces as its objects 
and, if X and Y are compact spaces, 

Sh(X,y) = proHo(Top)( I N{X; -) |, | N{Y; -)\). 

Edwards and Hastings [28] define the strong shape category by 

StSh(X,y) = Ho(proTop)( | V{X\ -) |, | V{Y\ - ) | ) . 

It is clear that there should be some connection between Strong Shape (for metric spaces) 
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and proper homotopy theory. An analysis of Chapman's complement theorem, [20], made 
by Edwards and Hastings, showed that X and Y had the same strong shape if and only 
if, when embedded in 5, the pseudo-interior of Q, Q\X and Q\Y had the same proper 
homotopy type. Better still, this strong form of the Chapman complement theorem linked 
the proper homotopy category with the strong shape category of compact metric spaces 
(see §6.5 of [28]). 

REMARK. The links between strong shape and proper homotopy theory are exploited 
in the homology of groups. For this see Geoghegan [39]. We will look briefly at this 
connection later in this survey. 

5. Applications of the Edwards-Hastings embedding 

The proof that proTop had a Quillen model category structure together with the embed-
dings of Ho(Pcx)) into Ho(proTop) and of Ho(P) into Ho(proTop,Top) opened up new 
possibilities. The first use of this theory that we will examine clarifies the connections 
between the two main types of proper homotopy groups. 

As we have seen, given a base rayed space, (X, * : [0, oo) —> X), one can study the 
homotopy groups of the Waldhausen boundary, defined by 

^n(X,*) = Ho(Po)(5" X [0,oo),X) 

(where the o in FQ again indicates ^pointed' maps). The study of these groups had 
been suggested by Waldhausen (personal communication) and independently by Cerin 
[19] who called them Steenrod homotopy groups. He proved that they correspond to the 
local homotopy groups of Hu [50] of the Freudenthal compactification of X based at the 
point at infinity determined by the ray *. (The reason for calling them Steenrod homo-
topy groups came from the use of the term Steenrod homotopy theory by Edwards and 
Hastings [28, Chapter 8]. They are related in the Shape context to Steenrod homology.) 

These groups or rather their shape theoretic analogues had earlier (1973) been studied 
by Quigley [64]. He had shown that they were linked with other groups analogous to 
Brown's proper homotopy groups, and with Borsuk's shape groups, in a long exact 
sequence. This Quigley exact sequence was generalized to Ho(proTop) in [62] and thus 
gave, via the Edwards-Hastings embedding, a result in proper homotopy theory linking 
the two main forms of proper homotopy groups. 

The Quigley exact sequence 
(We will assume for simplicity that A" is a locally finite simplicial complex.) 

The description of TTnlA", *) as TTn of a holim of a tower has an immediate conse-
quence. The Bousfield-Kan theory of homotopy limits gives a spectral sequence with 
£^2-term of the form XirvP 'Kq{e{X)). As the indexing category of e{X) is countable, all 
the higher derived limits, lim^, vanish for p > 1 and the spectral sequence collapses to 
the Milnor-type short exact sequence: 

0 -> lim'TTt+i {e{X)) -> E t (^ ) -^ Hm -ntsiX) -> 0. 
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As it stands here, this short exact sequence seems to have httle obvious geometric content, 
but it embeds in the Quigley exact sequence, which is geometric. 

The Steenrod homotopy groups (i.e. the homotopy groups of the Waldhausen bound-
ary) are defined by mapping a semi-infinite cylinder, S^ x [0, oo), into X\ the Brown-
Grossman groups are defined by mapping an infinite string of n-spheres, 5^, into X. 
There is an obvious proper inclusion Vn : S_^ -^ S^ x [0, oo). (Clearly this 'should' be 
a proper cofibration in some homotopy structure, but as yet in this article we have not 
introduced a candidate for such a notion, as the homotopy structure we have introduced 
lives in proTop not in P.) Passing to proTop, using e, we introduce S_^, the prospace 
with 

the infinite wedge of n-spheres, labeled by the natural numbers I ^ A:, where the bonding 
map 

is the obvious inclusion. 
Clearly e{SJ^) c:̂  £ " in proTopo. (There is an obvious level map contracting [fc, oo).) 

We have already noted that s{S^ x [0, oo)) ĉ  c{S^), the constant sequence with 'value' 
5'^, so the proper map 

rn:SJ'-^S''x[0,oo) 

induces the 'fold' map 

e ( r n ) : r " - > 5 " , 

that is the identity on each part of the infinite wedge. 
There are other geometrically defined proper maps around in this situation. There is a 

shift map 

Shift: 5^ -^ 5^ 

that shifts the whole string one place further out towards infinity and there is a quotient 
map, 

g n : 5 ^ x [ 0 , o o ) - ^ 5 ^ + ' 

given by identifying each vertical slice S^ x {k} in 5^ x [0, oo) to the point {k} in 
[0, oo) and then sliding back the resulting (n-h l)-sphere to have contact only at {fc - 1} 
with [0, oo). This is easiest to see in dimension 0: 
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4 

\ \ \ \ \ * * \ * i 

\ 

Q-SL SL SL JL 
» = 

JL JL JL JL J l _ 

THEOREM 5.1 (Quigley exact sequence in the proper category). If X is a base rayed a-
compact space, there is a long exact sequence 

'"'n* Id-Shift 9n* 
. . . ^ ^ n ( X ) ^ 7 r ^ ( X ) ^ 7 r ^ ( X ) ^ Kn-\(X) ^ . . . 

Id-Shifi 9l* , , , ^ 
- ^ 2L,(^) ^ HM) ^ 5o(X) ^ 7ro(X) 

It would be feasible to prove this by direct analysis of the sequence, but this would 
be 'reinventing the wheel'. An efficient proof is to note that / = 5(7-0) : Z^ -^ 5^ in 
Ho(proTopo) leads to a cofibration sequence 

^ ^ 50 ^ Cf ^ E} ^ 5* ^ ^Cf ^ •. • 

in the usual way. It remains only for one to identify C/ ~ Z^\ etc., and to analyze the 
maps (cf. [62] and [63]). 

If we split up this sequence into smaller bits, we first note that 

Ker[Id - Shift) ^ lim7rn£(X), 

whilst 

Coker{Id - Shift) ^ limWne(X), 

This gives one back the Milnor-type short exact sequence we saw earlier but now with 
a geometrical interpretation on the end terms. 

Calculating sets of proper homotopy classes 
Suppose that we have two (j-compact spaces, X and Y, together with chosen proper 
base rays, *x and *y respectively. It is convenient to denote the image of X under the 
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embedding (ejd) : Ho(Pa,o) -^ Ho(proTopo, Topo) by p{X) : 6{X) -^ X, thus 

Ho(P,,o)(^,r)^ 

e{X) 

X 

e{Y) 

PiY) 

JO 

where the zero-suffix indicates the pointed connected version. 
Earlier we briefly mentioned the theory of homotopy coherence and that, by Vogt's the-

orem [71] and the Reindexing lemma, one can interpret elements in this set [p{X)^ P(^)]o 
as diagrams 

e{X) 

P{X) 

e{Y) 

P{Y) 

h 

where f\ is a homotopy coherent map between the proobjects e[X) and eiy), and F 
is a homotopy coherent homotopy between the composites fop{X) and p{Y)f\. Given 
the complex nature of homotopy coherence data, this will in general be impossible to 
handle, however we can immediately see some examples in which it can be simplified. 

(a) Y contractible 
Here we have 

e{X) 

X 

e{Y) e{X) e{Y) 

hence our typical element looks like 

e{X) - ^ e{Y) 
F 

X 
/o 

and we get 

; Ho(P,.«)(X,y)^[£(X),e(y)]„ 
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as we would expect. If either of the ends is stable (i.e. essentially constant and so 
isomorphic to a constant proobject), then further information can be obtained. 

(i) if e{X) is stable and stabilizes to K say, then the set of pointed proper homotopy 
classes is isomorphic to Ho(TopQ)(/f,/io/2m£:(F)). 

(ii) if e{y) is stable, and stabilizes to L, then 

[e{XU{Y)]^ ^ [e{X),L\ ^ colim[X\Xj,L]o, 

(b) X has stable ends. 
The condition that X has stable ends also allows one to get information out even without 
assumptions on Y. Suppose e{X) = K in Ho(proTop^). Then 

eiX) 

X 

e( 

' 
1 

n" 

' 
/-

rsj 

0 

K 

Y 

_ X 

e{' 

\ 
1 

n' 

' 
r 

n>j 

0 

K 

T 

X 

holimeiy) 

p{y) 

- •0 

where piy) : holimeiy) —> F is well defined up to homotopy. Methods from the more 
classical case can then be used to try to calculate this since an element is a homotopy 
class of diagrams 

K 

X 

holime{Y) 

/o 

p{y) ' 

• ^ Y 

As an example, suppose X and Y are open orientable surfaces of genus g{X) and giy) 
respectively and that both have one end. Both spaces have stable ends with homotopy 
type a circle, and X and Y have homotopy types a bouquet of 2g{X) and IgiX) circles 
respectively. Hence we can replace the above calculation by that of finding classes of 
maps and homotopies {fo,f\yF) such that the relevant square is homotopy coherent. 
This is now amenable to an attack by simple obstruction theoretic techniques. 

(c) X contractible 
In this case, one is looking at diagrams 

e{X) e{Y) 

p(y) 

^ Y 
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If we form the homotopy fibre, F(p(Y)), of p{Y) within Ho(proTopo), the construction 
gives a map, F : e{X) -> F{p{Y)) induced by F. This is well defined up to homotopy. 
Then Ho(P^,o)(^,l^) = [e(X),F(p(y))]o. Note that F{p{Y)) is still a proobject. Its 
homotopy type is of geometric importance as it contains the information on the interaction 
between the *space at oo', i.e. eiX), and the homotopy type of Y, 

Proper pointed maps from W^^ to a a-compact space 
Let X be a cr-compact space with base ray * : [0, oo) —• X and use x = *(0) as a base 
point for X. Consider W'^^ as being given the line {(f ,0 , . . . ,0) : t G [0, oo)} as base 
ray. The argument above shows that 

Ho(P, ,o)((r+^, *), {X, *)) ^ KnFpiX). 

Thus Ho(P^,o)((R''"^^, *), {X, *)) is a group and 

KiFp{X)~^Ki{e{X)) 

is a crossed module. The group 'g\Fp{X) was studied by Brin and Thickstun, [12], and 
the general TTn-version by Hemdndez [41] who denoted it by Zn{X,^). It is a 'relative 
Steenrod group' in as much as it is "^ri(X,£(A'))". This group fits into a long exact 
sequence 

> TTn+l {X, X) -^ Zn{X, *) -^ gn{X, *) ~^ TTn(X, x ) -> • • • 

linking the classical homotopy groups with the Steenrod-Cerin homotopy groups. How 
general can these groups be? 

Given any f : A -* B with A, B compact CW-complexes, there is a space with 'KQ{A) 

stable ends such that p{X) is isomorphic to / . In fact take the mapping cylinder, M/, 
of / and glue on a copy of A x [0, oo) to get X. Thus the 'generality' of ZniX, *) is 
at least as great as that of the homotopy groups of homotopy fibres of maps between 
compact CW-complexes. 

Using both the fibration sequence of p[X) and the Quigley exact sequence / cofibration 
sequence, one can get a lattice of exact sequences. For lack of space, the diagrams will be 
left out here and the reader referred to [46] and [47]. Such diagrams have only limited 
use for calculation, but they do provide a very convenient framework for presenting 
the linkage between the homotopy group information *at the end', with that calculated 
globally and the corresponding classical homotopy groups. 

Whitehead theorems, stability and related problems 
One of the advantages of the Edwards-Hastings embedding is that it concentrates atten-
tion on the abstract setting of procategories as a means to understanding the geometric 
problems of P or P^. For instance, to prove that a proper map / : X —> F is a proper 
homotopy equivalence, one need only prove (i) that it is a homotopy equivalence and (ii) 
that e[f) is a homotopy equivalence in proTop. The category proTop and its subcategory 
towTop thus have come in for a lot of attention. (One good reason for proving a result 
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in Ho(towTop) is that one gets at the same time a result on the proper homotopy of 
cr-compact spaces and on the strong shape of metric compacta.) In their lecture notes of 
1976, Edwards and Hastings [28] give a good treatment of several of these abstract results 
together with the relevant applications to shape and proper homotopy. Of particular note 
is the discussion of versions of the Whitehead Theorem and of the Stability Problem. 
Both problems, in the context of proper homotopy theory, were implicit in Siebenmann's 
work. As mentioned earlier, various 'Whitehead theorems' for proper homotopy were 
published in the early 1970's. Within the context of the procategory, proHo(CW), Artin 
and Mazur [1] had proved a general result and had pointed out the difficulty that if a 
CW-complex has an infinite Postnikov system, X^ — {Xn}, then within proHo(CW), 
it is difficult to distinguish the constant system X and the inverse system {Xn}. The 
following version of their result includes extra information due to Edwards and Hastings. 

THEOREM 5.2 ([1] and [28]). Let C^^Q be the category of pointed connected CW-comple-
xes, then if a map f : 2L-^}li'^ proHo(CWo) induces isomorphisms, 

^i{f):M2L)-^7ri{y) 

in pro(Groups)/or z ^ 1, then f induces an isomorphism f^ : X^ -^ Y^ of Postnikov 
systems in proHo(CWo). / / in addition, f : 2L -^ Y. satisfies either of the following 
conditions: 

(a) the dimensions of the Xj and Yk are bounded above; or 
(b) each Xj and each Yk is finite dimensional and f is movable, 

then f is an isomorphism in proHo(CWo). 

Movability is a condition introduced by Borsuk in Shape Theory. It is a condition that 
guarantees that the progroups 7ri(X) and 7ri{Y_) are Mittag-Leffler in a nice consistent 
way, see for instance [26]. 

This result in proHo(CWo) cannot be immediately applied to Ho(towCWo) and so 
does not directly give a result in proper homotopy theory. 

THEOREM 5.3 ([28, p. 226]). Let f : X -^Y be a proper map of one-ended, connected, 
countable locally finite simplicial complexes, which is an ordinary homotopy equivalence 
and induces isomorphisms between 7rie{X) and 7Ti£{Y) in pro(Groups) for i ^ 1, then 
f is a proper homotopy equivalence if either of the following additional conditions is 
satisfied: 

(a) dim Jt < oo and dim Y < oo; 
(b) / is movable. 

Again the reader is referred to [28] for more discussion. 
The Proper Stability Problem is to decide when a space X has stable ends, i.e. e{X) :^ 

c{K) for some space K. (Recall that c{K) is the constant system with value K.) The 
problem again is really a problem that lives in Ho(towTop). Various people worked 
on this problem including the author [58] and for a reasonably full bibliography, see 
any of the books [26], [28] and [55]. Various equivalent solutions have been found. For 
simplicity only one will be given here although a different context might make other 
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forms more appropriate. The point to note is that, if E{X) is to stabilize to anything, it 
should stabilize to holime{X), i.e. to the homotopy type of the Waldhausen boundary 
(provided the space is iocally nice'). The attack is thus to look at the natural map from 
holime{X) to e{X) and then to use the Whitehead Theorem to find when it is an 
isomorphism. To apply this Whitehead theorem, you need the *homotopy dimension' of 
holime{X) to be finite, which explains the domination condition (cf. Wall [72]). 

THEOREM 5.4. Let X be a one ended locally finite simplicial complex and let 
holime{X) -^ s[X) be the canonical map. If TTis{X) is stable / essentially constant 
for each i ^ 1 then h^ is an isomorphism in Ho(towCWo) and e{X) will be stable if 
either X is finite dimensional or e{X) is dominated in proHo(CWo) by an object of 
Ho(CWo). 

Proper n-types 
Clearly a certain amount of effort has gone into analyzing proper analogues of useful 
classical results of algebraic topology, for instance the proper Hurewicz theorem exists 
in several forms, see for instance Extremiana, Hernandez and Rivas [32] and Baues [9]. 
One approach to Proper Homotopy would be to attack the *key' results of classical 
algebraic topology in turn, attempting to prove proper variants of each. The snag is that 
it is not clear if this is always a useful exercise, nor, in any case, which of the myriad 
results should be attacked. However the programme for algebraicizing homotopy theory 
put forward by J.H.C. Whitehead in 1950 gives a possible structured plan that helps 
guide such an approach. One of the key elements in that plan was the use of n-types. 
The proper homotopy analogue of n-types arose first outside of proper homotopy and 
completely independently of any abstract approach to classifying proper homotopy types. 

Before we look at that, it is necessary to counsel caution when it comes to terminology. 
The original definition of n-types, for instance in Whitehead's paper [74], corresponds 
to (n - l)-types in today's usage. For instance the important paper, [54] by Mac Lane 
and Whitehead is on what are there called '3-types', but would now be called '2-types'. 
We give a definition in the modern terminology. 

DEFINITION 5.1. Suppose X, Y are simplicial or CW-complexes, and f,g : X -^ Y 
two maps. We say that / is n-homotopic to g (written / '2±ri g) if for every map (j) of 
an arbitrary CW-complex, P, of dimension < n into X, f(j) is homotopic to g(j). Two 
CW-complexes X and Y are said to be of the same n-type if there are (cellular) maps 

0/ . yn+1 _^ j^n+1 

such that (f)'(j) ~ n 1, 0 0 ' —n 1-

Since in CW, there is a cellular approximation theorem, the n-type is a homotopy in-
variant. (In [49], Hernandez and the author have collected some of the main classical 
results on n-types in a consistent notation.) 
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The analogous definition for proper homotopy theory is almost obvious, but not quite, 
because the proper analogue of the cellular approximation theorem fails in the category of 
locally finite CW-complexes and proper maps. We will therefore restrict to the category 
SC^ of cr-compact locally compact simplicial complexes and proper maps where no 
such difficulty arise. Another solution to this problem might involve strongly locally 
finite CW-complexes. (See Farrell, Taylor and Wagoner [36] for an earlier reference to 
proper n-equivalences and proper cellular approximation.) 

We next look at how this proper notion of n-types arose in combinatorial group 
theory. Consider an infinite but finitely generated group G. Let X be a K{G, 1) with 
finite 1-skeleton, then the 1-skeleton X^ of its universal cover is locally compact and is, 
in fact, the Cayley graph associated with a finite set of generators of G. The cardinality 
of the set of end of X^ is well known to be 1, 2 or infinite. If G is infinite and finitely 
presented, then 'Kp{X^) depends only on G, not on the choice of X. Johnson [51] proves 
in this situation that the proper 1-type of X is independent of the choice of X. More 
generally if X^ can be chosen to be finite (technically G is said to be of type T{n) in 
this case, see Geoghegan [39]) then the proper (n - l)-type of X is independent of the 
choice of X. If G is of type T, i.e. X is finite, then the proper homotopy type of X 
itself is independent of the choice of X, (For more on this area see the above mentioned 
paper by Geoghegan.) 

The theory of n-types and their algebraic models was considered by Whitehead to be 
at the center of his 'algebraic homotopy' approach to algebraic topology. In the category 
of CW-complexes, one can take a space X and, by adding high dimensional cells, one 
can kill off the high dimensional homotopy groups and thus embed X in a space with 
the same n-type, but which is n H- 1-coconnected. 

The proper analogue of this is not clear. Which version of the homotopy groups should 
one use? How does one attach cells to kill elements in, say, 7Lm{X,^)l There are an-
swers, but they are not obvious. Two approaches have been tried. One by Baues and 
his students will be briefly looked at slightly later. Here we embed the problem in the 
procategory and provide an approach using simplicial sets. Both the 'Km{X) and the 
lLm{X) groups can be calculated from the progroups -Krni^iX)). Within the category of 
simplicial sets, the analogue of killing off higher order homotopy groups can be done 
functorially via the coskeleta functors. Combining these two observations one can fairly 
easily prove an embedding theorem of Hon((SCa)cx)) into Ho(ProSS) or HOn(proSS), 
where HOn in each case indicated the category obtained by formally inverting the 
n-homotopy equivalences [49]. This leads to various results such as a Whitehead theo-
rem for proper n-types, and a proof that a proper n-equivalence f : X -^ Y induces 
isomorphisms on gi for i < n and on 7r°° for i ^ n. (If the ends of X and Y are 
movable then / induces an isomorphism on TT^ as well.) This opens the way to finding 
algebraic 'promodels' for proper n-types. The immediate problems in this area are to 
explore the geometric interpretation of these algebraic promodels, and to find efficient 
ways of extracting algebraic models from these promodels, e.g., by versions of the homo-
topy limit spectral sequence or Brown's P-functor. The models for 2-types should most 
probably be crossed modules and here one can hope for progress, but with the many 
different models for 3-types (crossed squares, quadratic complexes, 2-crossed modules. 
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etc.), the situation is less clear. For some classes of spaces, the problem is simpler as the 
algebraic n-type models can be chosen to be truncated crossed complexes (cf. [48] and 
[49]). The resulting theory of the proper analogues of the Jn-complexes of Whitehead 
is quite useful even though of limited generality. 

Extensionsy obstructions and classification of proper maps 
Given the importance of the various forms of obstruction theory in the continuous set-
ting, it is not surprising that analogues have been sought in the proper category. Both 
Hernandez and his coworkers, and Baues and his team, have worked on aspects of this. 
Hernandez has used the Edwards-Hastings embedding and procategories and so his the-
ory most easily fits here. 

In 1985, Hernandez studied the obstruction to extensions [43]. For this he needed to 
develop a new cohomology theory with coefficients in a pro-abelian group for Poo and 
also (for work globally, i.e. in P) in a morphism from a proabelian group to an abelian 
group, i.e. an object of (proAb,Ab). Let S^ denote the usual singular chain complex 
functor and proS^ its extension to a functor from proTop to ProCAb- This gives a 
composite: 

P ^ (proTop,Top) -^ (proCAb,CAb) 

then given an object TT' —• TT in (ProAb,Ab), one can define a cochain complex: 

S*{X) = (proAb,Ab) 

/ proS^eX 

\ 
S,X 

./ \ 

TT 

The cohomology, n'^iX;^' -> TT) = /f^(S'*(X)) is the m^^ cohomology with coeffi-
cients in 7r' —• TT. (This cohomology is related to one defined by myself in 1977, [61]. 
That cohomology had been introduced in order to construct an obstruction theory for 
strong shape. There is a natural transformation from H'^{X;n' —> n) to H^{S€X,7r') 
where SeX is the singular pro-simplicial set associated to eX.) The development of the 
obstruction theory follows a traditional path, but with some surprising twists due to the 
fact that the category of towers of abelian groups has projective dimension 2, see later. 
This upsets attempts to extend classical results like the Universal Coefficient Theorem 
using a direct translation of the classical proofs, cf. [42]. The sort of result obtained by 
Hernandez in [43] is the following: 

THEOREM 5.5. Let K be a second countable, locally compact cell complex and L a 
subcomplex. Writing K"^ for the n-skeleton of K, suppose given a proper map f : 
K^ U L —̂  y where Y is a pathmse connected space with one Freudenthal end (so 
tl(e(y)) = 1). Suppose the progroup 'K\e{Y) acts trivially on T^nS{Y) and that Y is 
n-simple in the classical sense. Then there is an obstruction class 

7"+*(/) € n^^' {K, L; UnSiY) -^ Tr̂ F) 
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such that f can be properly extended to a proper map defined on K"^^^ U L if and only 

Hernandez has applied this theory to calculate the set of proper homotopy classes of 
proper maps from a non-compact connected surface to E ,̂ see [43]. 

The main problem of working with this obstruction theory is the lack of good machin-
ery to calculate the cohomology groups in anything like a general situation. A *top-down' 
approach of imposing conditions so as to improve the computability of the cohomology 
is not that successful, even though conditions such as the spaces having one stable end 
do allow progress to be made. 

Classical obstruction theory is most easily used with CW-complexes and Hernandez 
and his co-workers have suggested an approach which leads to a class of spaces that to 
some extent take the place of CW-complexes in the proper context and for which this 
proper obstruction theory simplifies. They call these spaces proper CW-complexes, but 
as this term is also used by Baues [9] for a wider class of spaces (see later) we will use 
the term PCW-complex instead. 

One of the problems with noncompact locally finite CW-complexes is that infinitely 
many cells need to be used. A simple example of this is [0, oo) itself with its usual cell 
decomposition, yet [0, oo) is the same as [0,1) and that is almost a CW-complex with 
only two cells! The Steenrod-Cerin groups, Kn{X) or K^{X) depend on S'^ x [0, oo) 
and this suggests, by analogy with the classical construction of CW-complexes, that one 
construct spaces using cones on S'^ x [0, oo) in some sense. The resulting class of spaces 
is explored by Extremiana, Herndndez and Rivas in [29], [30], and [33]. The spaces that 
result will not exhaust all proper homotopy types, far from it, but they are combina-
torially defined and therefore allow calculations to be made more effectively than for 
general spaces. The idea is thus to construct spaces by assembling both compact and 
noncompact cells. More precisely such a PCW-complex consists of a space, X together 
with a filtration, (X^). The subspace of vertices, X^, is discrete, and those cells in X"̂ , 
but not in X'^"^ come in two lists. An and Bn- For each a G Any one attaches a copy 
of a closed n-cell, E^, by some characteristic map in the usual way, but if /3 € Bn» 
one attaches a copy of E^~' x [0,1), i.e. a noncompact cell, by a proper map. These 
PCW-complexes have very nice properties. For instance, if X is a finite PCW-complex, 
then its Freudenthal compactification (that is X with e{X) attached) is a finite standard 
CW-complex. If M is a compact PL-manifold, then it is clear that M \ dM has the struc-
ture of a PCW-complex. If K is a compact simplicial complex and L is any subcomplex, 
then K\L is 3. PCW-complex. (In both these examples, a standard decomposition of the 
space would require an infinite number of cells.) Note, a locally compact CW-complex 
is always locally finite, but a locally compact PCW-complex need not be. 

For regular PCW-complexes, unlike for locally finite CW-complexes, there is a cellular 
approximation theorem. It is thus feasible to define homology groups for the former 
spaces using either singular or cellular chains. For both, there are variants using compact 
and/or noncompact generators, and thus one gets homology groups: 

Hq{X) - based on compact oriented cells; 
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Jq{X) - based on all oriented cells; 

E^{X) - based on all noncompact oriented cells. 

There are, of course, singular versions of these, applicable to general spaces. There is a 
long exact sequence, 

which corresponds in homology to the homotopy exact sequence (for * : [0, oo) —> X, a 
base ray): 

that we saw earlier (cf. [65]). 
The advantage of finite regular PCW-complexes is that the corresponding groups are 

more easily computed and this can be important in obstruction theory. The restriction 
to such complexes also allows one to handle some finitely ended spaces. The resulting 
theory is developed in [30] and [33], and is applied to the classification problem for proper 
maps / : X —• y , where X is a finite regular PCW-complex and y is a topological 
space with a finite number of ends. 

Clearly for the obstruction theory described by Hernandez, the restriction to PCW-
complexes simplifies the description greatiy. Firstly, suppose that X is a space. Then to 
keep track of the ends of X when mapping it to a space Y with finitely many ends, 
it is convenient to label the ends of X by a labeling function g \ e{X) -^ F where 
F = {e i , . . . e/b} is a finite set. Then one can form a chain complex with, in dimension 
n, the group Cn{X^g~^{ei)) of singular cubical chains on X eitiier mapping in JE^ or 
mapping the end of E^~^ x [0,1) to g''^{ei). This defines a homology group denoted 
Jn[X,g~'^{ei)). There are similarly defined groups En{X,g~^{ei)) and they are linked 
via a long exact sequence as before. Together with S^{X), the complex of singular 
cubical chains inX, which is contained in all the C*(X,p~^(ei)), this gives a diagram 

C„(X,ff-'(e,)) 

(^,p-'(e2)) 

Sn{X) 

C„(X,5-'(efc)), 
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in which all the objects are abelian groups. Diagrams of this kind form the abelian 
category, Ab^*', where TTK is a cone on a set of fc objects. 

7 r k = 0 

Diagram categories of this kind are quite well understood, cf. Mitchell [57] and cor-
respond to categories of modules over a particular ring of (fc H- 1) x (A: -h 1) matrices 
over Z. 

The basic idea of the resulting obstruction theory should now begin to be clear. If 
(X, A) is a PCW-complex pair, y is a similarly labeled pointed space, and g : e{X) -> 
F C e(y) is a labeling, then the obstructions to extending a proper map f : A -^ Y 
live in cohomology groups of {X,A,g) with coefficients in the diagram, (pniX) over TT̂  
with (t>n{Y){0) = 7rn(F,2/o), 0n(y)(j) = rn{Y,aj) where aj : [O,oo) -> Y satisfies 
aj(0) = t/o and aj represents the j^^ element of F. The simplicity of the category TTk 
means that it is possible to classify proper maps with a certain ease in those situations 
where the theory applies and in particular for A: = 1 and 2. 

REMARKS, (i) It is worth noting that picking a basepoint in Y and a finite set of ends, 
effectively determines a tree within Y, This idea is one of the basic building blocks of 
Baues' work; see later. 

(ii) The use of matrix rings to handle proper homotopy is not new, as it already occurs 
in Farrell and Wagoner's version [37] and [38] of Siebenmann's simple proper homotopy 
theory [69]. We take up this theme in the next section. 

In the last two sections we will briefly look at some very recent developments in 
proper homotopy theory. At the time of writing, not all the results have been published 
and some revision is likely before they are. Because of this, the descriptions will be kept 
fairly brief and general. There are two approaches, and although these are related, the 
exact translation between them is not as yet completely clear. 

6. Monoids of infinite matrices, M-simplicial sets and a proper singular complex 

Although the basic level of the work of Hernandez and Beattie relates to monoids of 
infinite matrices, the more easily approachable aspect of this work is in the additive case, 
where the monoids become rings. This is also the oldest aspect as it already appears in 
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the work of Farrell and Wagoner [37] and [38] on simple proper homotopy theory and 
its link with algebraic if-theory. 

Given a a-compact space X, it is natural to consider not only its tower of homotopy 
groups (assuming a base ray has been given), but also the homology groups of £:(X), 
which will give an object in towAb. This category of towers of abelian groups is an 
abelian category and so it is natural to look for an embedding of this category into a cat-
egory of modules. (Such an embedding is known to exist by the Freyd-Lubkin-Mitchell 
embedding theorem.) If A is an abelian category, the usual method of embedding it in 
a category of the form Mod-i? is to find what is called a faithful projective genera-
tor, P, then to set R = End{P), the endomorphism ring of P. The ring structure on 
End{P) = A(P, P) comes, in part, from the additive structure of the 'hom-set' A(P, P) 
with the multiplication coming from the composition, i.e. the natural monoid structure 
on this set. Thus one looks for a faithful projective generator in towAb. The obvious 
candidate is the object C(Z) defined by 

C(Z), = Z[e^,ei+,,...], 

i.e. the free abelian group on infinitely many generators, {ej : j ^ i}. The bonding 
morphisms, p-"*"* : C(Z)t+i —> C(Z)i are induced by inclusions of the corresponding 
sets of generators. It is worthwhile noting the similarity of this object to the ŝtring of 
spheres' used as a basis for the Brown-Grossman definition of proper homotopy groups. 
There is a close connection. If one prefers to work with (towAb,Ab), so as to get a 
'global' version, one merely notes down C(Z)o as well. 

Now let IZ denote the ring of locally finite matrices over Z, that is, infinite integer 
matrices such that each row and each column has only finitely many nonzero entries. The 
rows and columns are thought of as being indexed by N. This ring of infinite matrices 
has a two sided ideal, mZ, made up of those matrices with all but finitely many entries 
zero. Let /iZ be the quotient ring £Z/mZ. Both Beattie and Hem^dez noted that 

LEMMA 6.1. (i) towAb(C(Z),C(Z)) ^ /xZ, 
(ii) (towAb,Ab)(C(Z),C(Z))^^Z. 

The general abstract theory of embedding an abelian category into a module cat-
egory next points out that for any tower of abelian groups; A, the abelian group 
towAb(C(Z), A) has a natural /xZ-module structure coming from composition. The func-
tor towAb(C(Z), - ) then gives an embedding of towAb into Mod-/xZ. A similar result 
holds of course between (towAb,Ab) and Mod-^Z (see [10] for a detailed elementary 
treatment of this and much more). 

These embeddings are not immediately useful. Much more useful is the fact that the 
finitely presented objects in towAb and (towAb, Ab) form a category equivalent to that 
of the finitely presented modules over fiZ and £Z respectively. The sense of 'finitely 
presented' is well known for modules: M is a finitely presented right i?-modules if there 
is an exact sequence 

i?'^ A fi^ - M -> 0 
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with m, n finite. For towers one merely replaces R by the projective generator, 
P = C(Z). In both cases here, one easily sees that JR 0 /? ^ i? and P © P ^ P , 
so finitely presented objects have presentations with m and n both equal to 1. Certain 
homological properties relevant to the proper homotopy of locally finite simplicial com-
plexes can be explained as being due to the homological algebra of &J or /iZ. For a 
finitely presented abelian group, the short exact sequence above can always be chosen 
to have n a monomorphism. This is conveniently summarized by saying that Z has pro-
jective dimension one. This is important geometrically, since it means that Moore spaces 
are unique up to homotopy. Ayala, Dominguez et al. (see [2] and [3], but beware errors in 
this latter paper; and Beattie [11]) noted that towAb and (towAb,Ab), and thus /xZ and 
£Z, have projective dimension 2. This is related to the fact that lim^ M may be nonzero. 

Let n ^ 4. A finite dimensional locally finite CW-complex is called a proper Moore 
space (in dimension n) if its 1-skeleton is [0, oo) (which will be considered as a base 
ray) and its homology towers all vanish except possibly in dimension n (cf. Beattie [10] 
and [11] and Ayala et al. [2]). Beattie [10] gives a category of algebraic models for such 
proper Moore spaces. The classical models were constructed using presentations of the 
abelian group that was the n^-homology group, and a realization functor using wedges 
of n-spheres modeling the maps of the presentation gave the equivalence between the 
algebraic models and the spaces. If M is a tower, i.e. is in (towAb,Ab), and is isomorphic 
to the n* homology tower of some finite dimensional locally finite CW-complex, then it 
is finitely presented in the sense mentioned earlier. As ^Z has projective dimension 2, it 
has a resolution, 

^ 2 "^ ^ 1 ~* i-O M 

where each P^ is isomorphic to C(Z). Such a resolution allows one to construct a 
Moore space M{M_^ n), however there may be many different proper homotopy types of 
M{M_, ^) for a given M. Beattie shows how to adapt the resolution, augmenting it with 
further data, so that the algebraic category of such gadgets successfully mirrors all the 
Moore spaces for this N, (Ayala et al. give another version of this result in [2]. Beattie 
has given a brief summary of his approach in [11] with a full version in his thesis [10].) 

Returning to more general considerations, it is important to note that 

iowAh{C{Z),A)^V{A), 

where V is Brown's V functor for abelian groups mentioned earlier. Some of the proof 
of the equivalence between (towAb)/p and Mod/p — /xZ is thus related to Grossman's 
results on isomorphisms between towers of (abelian) groups. The fact that both the P -
functor and Grossman's results relate to nonadditive situations as well, suggests that a 
nonadditive version of the above equivalence results should hold, and recent results of 
Hernandez show this to be the case [44] and [45]. 

Let C be any one of the categories: 
Sets of sets. 
Sets* of pointed sets. 
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Grps of groups, 
or 

Ab of abelian groups. 
Then C has a small projective generator, G. These are respectively a singleton, *; a 
'doubleton', 5^; Z as a free group on one element; and Z as a free abelian group on one 
element. Each of these categories has infinite coproducts and so, as previously in Ab, 
we can form C{G) in towC by 

The theory now runs parallel to the additive case. One forms towC(C(G), C{G)) — M. 
If C = Sets, M is a monoid; if C = Sets*, it is a 0-monoid; if C = Grps, it is a 
near ring, and, of course, for C = Ab, M = /xZ, as before. Brown's P-functor is then 
towC(C(G), - ) , and this has a natural action of M on it. This functor V is faithful and 
its restriction to finitely generated towers is also full. (A tower X is finitely generated if 
there is an effective epimorphism Q —^ X with Q a finite coproduct of copies of C{G).) 
In [44], Hernandez analyzes the categorical properties of V, in particular constructing 
left adjoints to V in all the four cases. In the sequel, [45], Hemdndez uses the above to 
relate towSimp to a category of simplicial M-sets. This gives rise to proper singular and 
realization functors. 

The proper singular functor is defined by firsdy considering the monoid M = P(N, N), 
where N is given the discrete topology. This also gives a left M-set structure to N x Zî . 
If X is a space, then its proper singular complex is defined by 

5p(X), = P ( N x ^ ' ' , X ) , 

with the obvious face and degeneracy maps. The simplicial set S^{X) has a natural 
M-action, so 

5p : P -^ Simp(SetSM) 

Using an equivariant singular functor from TopM to Siinp(SetSM), Hernandez shows 
that P(N,X), denoted Xp, can be interpreted as a subspace of X^, where X is the 
Alexandroff one-point compactification of X, similarly for N and the c denotes that the 
compact-open topology is given to the set of continuous functions from N to X. The 
functor 5p is then a composite of the functor ( )^ and an equivariant singular functor on 
TopM. 

Suppose one defines a 'new' g-th proper homotopy group of a space X based at a 
proper map, cr: N —• X, to be 

7rg(X, or) = TTqSpX 

where Sp is the underlying simplicial set of the simplicial M-set, 5p. Then 7£q{X, a) for 
a : [0, oo) -> X, is isomorphic to P7rg(A', a | N). If a and (3 are two rays, which coincide 
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on N then they determine the same end, and 'E.q{X, a) = 7r^(A', /?) as groups. Of course, 
the action of 7rg(5^, *) on the two groups may differ, leading to the sort of phenomenon 
that was noted earlier with the infinite cylinder with S} attached. In particular the shift 
map may not be the same. 

Using these proper homotopy groups, Herndndez proves a proper Hurewicz theorem 
relatively simply. This proper singular functor, Sp, therefore looks to have great potential, 
but only the beginnings of its development are available at the time of writing. This whole 
M-set approach of Hernandez also suggests links with equivariant homotopy theory. This 
may introduce a new set of tools for handling proper homotopy problems. 

7. Proper algebraic homotopy theory 

The other approach to proper homotopy theory currently being developed is based on the 
Algebraic Homotopy Theory of Baues [7] and [8]. Baues himself has collected up material 
from earlier sources, together with a wealth of new material, in a draft manuscript [9]. 
The main points of this approach include: 

- the use of the language and results of the theory of cofibration categories; 
- the use of strongly locally finite CW-complexes; 
- the important role played by trees; 
- the use of the theory of algebraic theories as a means of managing the large quantity 

of algebraic structure in this new setting. 

The main source for this theory is Baues' manuscript [9] which is, at the time of writing, 
about 160 pages long. There is not room here to give an adequate treatment of this, but we 
will briefly look at the four aspects mentioned above. Certain of these are also handled in 
the thesis of J. Zobel [75] and in papers by Ayala, Dominguez and Quintero [4] and [5]. 

We have already mentioned Quillen's axiomatization of homotopy theory in connec-
tion with the results of Edwards and Hastings [28]. Quillen's axiom system involved 
three classes of morphisms the weak equivalences, the fibrations and the cofibrations. 
K. Brown [17] introduced a weakened form of axiom system involving weak equivalences 
and fibrations only. This theory, or rather the dual theory involving weak equivalences 
and cofibrations, formed the theoretical underpinning for the development of the obstruc-
tion theory in proKano mentioned earlier; see [59], [60], and [61]. This dual theory was 
adapted by Baues as the foundation of his algebraic homotopy theory [7] which attempts 
to complete Whitehead's programme. Baues' definition of a cofibration category is as 
follows: 

A cofibration category is a category C with an additional structure (C, cof, w.e.), 
subject to axioms C1-C4 below. The notation c(9/stands for a class of morphisms called 
cofibrations, and w.e for a class of morphisms called w^eak equivalences. 

(CI) Composition Axiom: The isomorphisms in C are both weak equivalences and 
cofibrations. For two maps 

B 
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if any two of / , g and gf are weak equivalences, then so is the third. The composite of 
cofibrations is a cofibration. 

(C2) Pushout Axiom: For a cofibration 

i:By-^A 

and map f : B -^Y, there is a pushout in C, 

/ 
B ^ Y 

Y 
C 

^ AUBY 

and 2 is a cofibration. Moreover 
(a) if / is a weak equivalence, so is / , 
(b) if 2 is a weak equivalence, so is i. 
(C3) Factorization Axiom: For a map / : B -* y in C, there is a factorization f = gi 

with i a cofibration and g a weak equivalence. 
(C4) Axiom on Fibrant Models: For each object X in C, there is a trivial cofibration 

(i.e. a cofibration that is also a weak equivalence) X —• i?X, where RX is fibrant in C. 
More exactly, RX is such that each trivial cofibration i : RX —> Q in C admits a 
retraction r : Q -* i iX, rz = MRX-

In [7], Baues gives a large number of examples of cofibration categories arising nat-
urally within algebraic topology. He also discusses, in detail, the comparison of this 
structure with that of Quillen. The classical topological example of a cylinder based ho-
motopy theory generates an 'obvious' cofibration category structure with cof being the 
class of closed cofibrations and w.e. the class of homotopy equivalences. This is related 
to the Quillen structure given by Str0m [70]. Baues introduces a notion of a category 
with a natural cylinder, based on ideas of Kan [53] which were extensively developed 
by Kamps in a series of articles, (see the bibhography of the forthcoming book [52]). 

An /-category is a category C with the structure (C,co/, 7,0), where cofh a class 
of morphisms in C, called cofibrations, / is a functor C —> C together with natural 
transformations zo, i\ and p, and 0 is the initial object in C. This data is to satisfy 
5 axioms (to be found on pp. 18 and 19 of [7]). Such /-category structures induce 
cofibration categories structures. 

An /-category structure for the category of spaces and perfect maps, based on the 
obvious cylinder functor has been given by Ayala, Domiguez and Quintero [5]. In fact as 
they work with perfect rather than proper maps, their results only apply to proper maps 
when the spaces concerned are locally compact Hausdorff. (A map is perfect if inverse 
images of points are compact.) This is probably not a serious restriction in applications, 
but must be kept in mind. Cabeza, Elvira and Hernandez [18] have given a different 
cofibration category structure for the category P of spaces and proper maps. 
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As a consequence of this cofibration category structure, for a fixed space, A, the 
category, (P'^)c, also has such a structure. This category has as objects the proper cofi-
brations, i : A-^ X and has the obvious morphisms, namely \{ i' : A -^ X', f \ i -^ i' 
is to be a proper map f : X -^ X' such that fi — {', The most interesting case is 
when >1 = T, an infinite tree. Baues [9] studies in detail the properties of such trees 
following ideas already introduced briefly by Farrell and Wagoner. If X is a space then a 
proper map T —> X determines a closed subset of e{X). The category (P^)c is a proper 
analogue of the category of well pointed spaces. From this perspective, the base rayed 
spaces considered earlier in this survey are a very special case. 

The analogues of the Brown-Grossman groups E.k{X,^) can be defined using the 
spherical objects, 5^, under T. Here a : £ —> T^ is a finite-to-one function onto the 
nodes of T and {5^ : e G J5} is a collection of n-spheres, S"^ = S"^. S^ is obtained by 
gluing each S^ to the node a{e) of T. (Thus 5"̂ , the string of n-spheres used earlier, is 
a special case of this.) This gives proper homotopy groups n^[X) if X is in (P^)c. 

The n-dimensional spherical objects under T and proper homotopy classes of maps 
(under T) between them form a category with finite sums. It forms a theory of cogroups, 
a particular type of a many sorted algebraic theory [6]. Baues exploits the general ideas of 
algebraic theories, developing descriptions of the categories of models of such 'theories of 
cogroups' as models of proper homotopy types. Abelianization and various other natural 
operations are generalized to this context and Zobel [75] also considers analogues of 
crossed module structures that occur naturally in this context. These theories encode 
many important geometrically defined operations and their study is clearly one of the 
most important areas for future research in this subject. 

As this gives a wide range of tree-based algebra and, in particular, a large number 
of subtly interrelated homotopy groups, based on spherical objects, it is natural that the 
*CW-complexes' in this context are built up with proper cones on spherical objects. The 
resulting T-CW-complexes provide models for all proper homotopy types (under T) of 
connected strongly locally finite CW-complexes. These T-CW-complexes allow for the 
generalization of many results from 'classical' CW-complex theory, for instance results 
using the proper Blakers-Massey theorem, and proper T-analogues of exact sequences 
due to Whitehead. Invariants such as the higher homotopy groups, that, for classical 
theory, are abelian groups, here take on the structure of abelian group-valued models of 
the algebraic theory. They thus correspond to modules over ringoids, i.e. rings with many 
objects. 

The overall structure of both this theory and that of Hernandez sketched out earlier, 
therefore, corresponds to a change of perspective. In the procategory theory approach, 
homology towers of abelian groups are thought of as sequences of invariants; here they 
are modules over a 'ringoid'. This more global perspective would seem to have important 
consequences for proper homotopy theory. It may 'feed back' into other areas of algebraic 
topology as well. As yet it has led to no surprising results or calculations, and mostly has 
produced new elegant versions of old theorems, but it is clearly a conceptual clarification 
and simplification of the foundations of the subject. Much work is still being done in this 
area, both by Hernandez and his team and by Baues, together with others in Germany, 
Spain and the UK. 
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Further reading and acknowledgements 
Much of this survey resulted from discussions with Baues, Beattie, Hernandez, Sieben-
mann and Zobel at the Workshop on Proper Homotopy Theory, Colegio Universitaria 
de La Rioja (November 1991). I have extensively used the survey written for the work-
shop by Extremiana, Hernadez and Rivas [34] but have deliberately chosen to emphasize 
other aspects. That source contains an extensive and valuable bibliography and is to be 
recommended. The authors were also the organizers of the Workshop and edited the 
proceedings [35] which also contains articles by Beattie and myself on this area. 

I would like to thank them and also Hans Baues, Joe Zobel and Larry Siebenmann for 
their help. I should also thank the organizations who provided financial assistance for 
that meeting. 

Finally I should point out once again that this article does not claim to be inclusive 
and the work of several other authors could have justifiably been described. In particular 
Mihalik's work on applications to combinatorial and homological group theory, Cerin's 
ideas on conditions related to movability of ends, and the whole area of simple proper 
homotopy theory have been omitted. To some extent, these areas are described in [34], 
and the relevant papers are listed in the bibliography of that article. 
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As a subject in its own right fibrewise homotopy theory is quite a recent development. 
It dates back to around 1970 when several people independently realized its value, in 
particular Becker [1], [2], Dold [12], [13], McClendon [23], Smith [29] and myself 
[15]. Since then research activity in the theory has been fairly continuous so that a 
comprehensive account would be far too long for the present volume. What follows, 
therefore, is simply an introduction. 

Ideally any exposition of fibrewise homotopy theory should be based on a fibrewise 
version of topology, as in [18], but for our limited purposes ordinary topology will 
be sufficient. Elsewhere in this volume Dwyer and Spalinski, developing earlier ideas of 
Quillen, have shown that it is possible to work in a general framework which encompasses 
equivariant homotopy theory, fibrewise homotopy theory and much else. At our level, 
however, it seems better to give a self-contained account rather than appeal to this general 
theory for what are, for the most part, rather elementary results. 

1. Fibrewise spaces 

Let us work over a base space B. A fibrewise space over B consists of a space X 
together with a map p : X -^ B, called the projection. Usually X alone is sufficient 
notation. We regard any subspace of X as a fibrewise space over B by restricting the 
projection. When p is a fibration we describe X as fibrant, and this class of fibrewise 
spaces has special properties. 

We regard B as a fibrewise space over itself using the identity as projection. We regard 
the topological product T x B, for any space T, as a fibrewise space over B using the 
second projection. 

Let X be a fibrewise space over B. For each point 6 of B the fibre over h is the subset 
Xh = p~^b oi X\ fibres may be empty since we do not require p to be surjective. Also 
for each subspace B' of B we regard XB' = p~*B' as a fibrewise space over B' with 
projection p' determined by p. 

Fibrewise spaces over B are the objects of a category with the following notion of 
morphism. Let X and Y be fibrewise spaces over B with projections p and g, respectively. 
A fibrewise map of X to y is a map 0 : X —• y in the ordinary sense such that qo(j) =z p, 
in other words such that (l)Xb C Yb for each point b of B. The fibrewise map 0 is said 
to he fibrewise constant if 0 = t op for some section t : B —^ Y. Equivalences in the 
category of fibrewise spaces are called fibrewise topological equivalences or fibrewise 
homeomorphisms. 

If (j) : X —*Y is a fibrewise map over B then the restriction (t)B' : XB' —^ YB' is a 
fibrewise map over B' for each subspace B' of B. Thus a functor is defined from the 
category of fibrewise spaces over B to the category of fibrewise spaces over B'. 

Given an indexed family {Xj } of fibrewise spaces over B the fibrewise product Y[B ^j 
is defined, as a fibrewise space over B, and comes equipped with a family of fibrewise 
projections 

^i • F I B ^ J "^ ^3' 
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The fibres of the fibrewise product are just the products of the corresponding fibres of 
the factors. The fibrewise product is characterized by the following cartesian property: 
for each fibrewise space X over B the fibrewise maps 

correspond precisely to the families of fibrewise maps {</>j}, where 

(t>j = TTj o (j): X —^ Xj. 

For example if Xj = X for each index j the diagonal 

A'.X-^UBX 

is defined so that TTJ o A = idx for each j . 
If {Xj} is as before the fibrewise coproduct U B ^ J ^̂  '̂̂ ^ defined, as a fibrewise 

space over B, and comes equipped with a family of fibrewise insertions 

^j • ^j "^ 11B ^3-

The fibres of the fibrewise coproduct are just the coproducts of the corresponding fibres 
of the summands. The fibrewise coproduct is characterized by the following cocartesian 
property: for each fibrewise space X over B the fibrewise maps 

correspond precisely to the family of fibrewise maps {i/'j}, where 

i/jj = xj; o Gj : Xj —> X. 

For example if Xj = X for each index j the codiagonal 

V : U B ^ - ^ 

is defined so that V o cr̂  = idx for each j . 
The notations X XBY and X + B ̂  are used for the fibrewise product and fibrewise 

coproduct in the case of a family {X, Y} of two fibrewise spaces, and similarly for finite 
families generally. When X = Y the switching maps 

X XBX^XXBX, X-\-BX -^X-^BX 

are defined with components (7r2,7ri) and (a2,cri), respectively. 
Given a map X : B' -^ B, for any space B\ we can regard B' as a fibrewise space 

over B. For each fibrewise space X over B we denote by X*X the fibrewise product 
XXBB', regarded as a fibrewise space over B' using the second projection, and similarly 
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for fibrewise maps. Thus A* constitutes a functor from the category of fibrewise spaces 
over B to the category of fibrewise spaces over B'. When B' is a subspace of B and A 
the inclusion this is equivalent to the restriction functor mentioned earlier. 

A fibrewise space X over B is said to be trivial if X is fibrewise homeomorphic to 
T X S for some space T, and then a fibrewise homeomorphism cf): X -^TxB is called 
a trivialization of X. A fibrewise space X over B is said to be locally trivial if there 
exists an open covering of B such that Xy is trivial over V for each member V of the 
covering. A locally trivial fibrewise space is the simplest form of fibre bundle, or bundle 
of spaces. 

As Dold [12] has shown the theory of fibre bundles is improved if it is confined to 
the class of numerable bundles, i.e. bundles which are trivial over each member of some 
numerable covering of the base. Derwent [7] and tom Dieck [9] have pointed out that 
such a covering may be taken to be countable, thus facilitating inductive arguments. 

A more sophisticated form of the notion of fibre bundle involves a topological group 
G, the structural group. A principal G-bundle over the base space 5 is a locally trivial 
fibrewise space P over B on which G acts freely. Moreover the action is fibre-preserving, 
so that each of the fibres is homeomorphic to G. Such a principal G-bundle P over B 
determines a functor P# from the category of G-spaces to the category of fibre bundles 
over JB. Specifically P# transforms each G-space A into the associated bundle P XQ A 
with fibre A, and similarly with G-maps. We refer to P# as the associated bundle functor. 

The theory of fibre bundles is dealt with in the standard textbooks, such as Steenrod 
[31], where a large variety of examples are discussed. Some of these will be appearing 
later in this article. 

From our point of view it is only natural to proceed a stage further and develop 
a fibrewise version of the theory of fibre bundles as in [22]. Thus let X and T be 
fibrewise spaces over B. By a fibrewise fibre bundle over X, with fibrewise fibre T, 
we mean a fibrewise space E together with a fibrewise map p : E -^ X which is 
fibrewise locally trivial, in the sense that there exists a covering of X such that Ey is 
fibrewise homeomorphic to V XB T over J5, for each member V of the covering. This 
is the simplest form of the definition, but of course there is a more sophisticated form, 
involving a fibrewise structural group. Details will be found in [22]. 

Various solutions have been given, in the literature, to the problem of constructing a 
right adjoint to the fibrewise product. Specifically, the problem is to find an appropriate 
topology for the fibrewise mapping-space 

map^(X, ^) = U map(X6, Z^), 
beB 

where X and Z are fibrewise spaces over B. Although this can be done in general as in 
[17], the case when X = T x B admits simpler treatment. In fact maps of T x {b} into 
Zb can be regarded as maps of T into Z, in the obvious way. and so map^(T x B, Z) 
can be topologized as a subspace of map(r, Z), with the compact-open topology. It is 
easy to check that for any fibrewise space Y over B a fibrewise map 

TXY = {TXB)XBY -^Z 
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determines a fibrewise map 

Y - ^ m a p 5 ( r x B , Z ) , 

through the standard formula, and the converse holds when T is compact Hausdorff. 

2. Fibrewise homotopy 

Fibrewise homotopy is an equivalence relation between fibrewise maps. Specifically 
consider fibrewise maps 9,(j): X -^Y, where X and Y are fibrewise spaces over B. A 
fibrewise homotopy of 9 into (/> is a homotopy in the ordinary sense which is a fibrewise 
map at each stage. If there exists a fibrewise homotopy of 6 into (p we say that 6 is 
fibrewise homotopic to (j). In this way an equivalence relation is defined on the set of 
fibrewise maps from X to Y, and the set of equivalence classes is denoted by TTB{X, Y). 

Formally TTĴ  constitutes a binary functor from the category of fibrewise spaces to the 
category of sets, contravariant in the first entry and covariant in the second. 

Recall from §1 that for each principal G-bundle P over B, where G is a topological 
group, the associated bundle functor P# is defined from the category of G-spaces to the 
category of fibrewise spaces over B. This not only transforms G-maps into fibrewise 
maps but also transforms G-homotopies into fibrewise homotopies. 

The operation of composition for fibrewise maps induces a function 

7rB(y,Z)x7rB(X,y)- .7rB(X,Z) , 

for any fibrewise spaces X,Y and Z over B. Postcomposition with a fibrewise map 
ip :Y ^i' Z induces a function 

^.:7rB{X,Y)^7rB{X,Z), 

while precomposition with a fibrewise map (j>: X —^Y induces a function 

(t>':nB{Y,Z)-^7rB{X,Z), 

The fibrewise map </> : X —• y is a fibrewise homotopy equivalence if there exists a 
fibrewise map xp :Y -^ X such that xp o (j) is fibrewise homotopic to idx and (poip \s 
fibrewise homotopic to idy. Thus an equivalence relation between fibrewise spaces is 
defined; the equivalence classes are the fibrewise homotopy types. 

A fibrewise homotopy into a fibrewise constant is 2i fibrewise nulhomotopy. A fibrewise 
space is said to be fibrewise contractible if it has the same fibrewise homotopy type as 
the base space, in other words if the identity is fibrewise nulhomotopic. A subspace 
of a fibrewise space is said to be fibrewise categorical if the inclusion is fibrewise 
nulhomotopic. 

Lei (j) : X -^ Y md xp : Y -^ X bt fibrewise maps such that T/; o 0 is fibrewise 
homotopic to idx- Then ^ is a left inverse of 0, up to fibrewise homotopy, and (/> is a 
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right inverse of V̂ , up to fibrewise homotopy. If (f) admits both a left inverse ^ and a 
right inverse t/;', up to fibrewise homotopy, then ij) is fibrewise homotopic to il)' and so 
0 is a fibrewise homotopy equivalence. 

Examples can easily be given of fibrewise maps which are homotopic as ordinary 
maps but are not fibrewise homotopic. Thus take X = (/ x {0,1}) U ({0} x / ) and 
B = I, with the first projection. Although X is contractible, as an ordinary space, it is 
not fibrewise contractible since the fibres over points of (0,1] are not contractible. 

It can be shown, however, that for a large class of fibrewise spaces X there exists an 
integer m such that for each fibrewise map (f): X -^ X which is nulhomotopic on each 
fibre the m-fold composition 0 o . . . o 0 is fibrewise nulhomotopic. Details are given in 
[10] and [24]. Another result which might be mentioned here concerns the group G{X) 
of fibrewise homotopy classes of fibrewise homotopy equivalences of X with itself. 
Under similar conditions it is shown, in [17] and [24], that G]{X) is nilpotent of class 
less than m, where G] {X) denotes the normal subgroup of G{X) consisting of fibrewise 
homotopy equivalences which are homotopic to the identity on each fibre. 

3. Fibrewise pointed spaces 

A fibrewise pointed space over B consists of a space X together with maps 

B^X^B 

such that po s = ids. In other words X is a fibrewise space over B with section s. 
Note that the projection is necessarily a quotient map and the section is necessarily an 
embedding. To simplify the exposition in what follows let us assume, once and for all, 
that the embedding is closed, as is always the case when X is a Hausdorff space. We 
regard any subspace of X containing the section as a fibrewise pointed space in the 
obvious way; no other subspaces will be admitted. 

A fibrewise pointed space reduces to a pointed space or space with basepoint when 
the base space is just a point. It is not customary to require that subspaces must contain 
the basepoint but from our point of view this is an essential condition. It is also not 
customary to require the basepoint to be closed. 

Let X be a fibrewise pointed space over B, as above. For each subspace B' of B 
we regard XB' as a fibrewise pointed space over B' with section SB' • In particular we 
regard the fibre over a point 6 of J5 as a pointed space with basepoint s{b). 

Fibrewise pointed spaces over B are the objects of a category with the following notion 
of morphism. Let X and Y be fibrewise pointed spaces over B with sections s and t 
respectively. A fibrewise pointed map of X to y is a fibrewise map (p : X -^Y which 
is section-preserving in the sense that <̂  o 5 = t in other words such that 06 : X^ —̂  
Yb is a pointed map for each point b of B. Equivalences in the category of fibrewise 
pointed spaces are ca\\&d fibrewise pointed topological equivalences or fibrewise pointed 
homeomorphisms. 

If (/>: X -^ y is a fibrewise pointed map over B then the restriction (J)B> '• XB' —̂  YB' 
is a fibrewise pointed map over B' for each subspace B' of B. Thus a functor is defined 
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from the category of fibrewise pointed spaces over B to the category of fibrewise pointed 
spaces over B'. 

For each fibrewise pointed space X over B the pull-back A*X is regarded as a fibrewise 
pointed space over B\ in the obvious way, for each space B' and map \: B' -^ B, and 
similarly for fibrewise pointed maps. Thus A* constitutes a functor from the category 
of fibrewise pointed spaces over B to the category of fibrewise pointed spaces over B'. 
When B' is a subspace of B and A the inclusion this is equivalent to the restriction 
functor of the previous paragraph. 

Let X be a fibrewise space over B and let ^ be a closed subspace of A". We can 
define the fibrewise quotient space X/B^oi X -^-B B by identifying points of A with 
their images under the projection. We refer to XjBA as ihtfibremse collapse of A in 
X. If A is closed in X the fibrewise collapse XjBA becomes a fibrewise pointed space 
with section given by B = AjBA —• XjBA. 

Let X and Y be fibrewise pointed spaces over B with sections s and t, respectively. 
We regard the fibrewise product X x 5 F as a fibrewise pointed space with section given 
by 6 h-̂  (5(6), t(6)). The subspace 

is denoted by X V^ y and called the fibrewise pointed coproduct (or fibrewise wedge 
product) of X and F, while the fibrewise collapse 

XABY = {XXBY)/B{XWBY) 

is called the fibrewise smash product. Of course these constructions are functorial in 
nature. The fibrewise smash product distributes over the fibrewise wedge product. Unlike 
the fibrewise wedge product the fibrewise smash product is not in general associative. 
However associativity holds for a reasonably large class of fibrewise pointed spaces (see 
[17]). 

In particular we may consider the fibrewise smash product with X of a fibrewise 
pointed space of the form T x jB, where T is pointed space. When T = I, the unit 
interval, with {0} as basepoint, this is called the (reduced)^^rî ww^ cone on X, denoted 
by r§{X). When T = / / / , the circle, this is called the (reduced) fibrewise suspension 
of X, denoted by E^{X). Of course these constructions are functorial. 

A fibrewise pointed space X over B is said to be trivial if X is fibrewise pointed 
homeomorphic ioT x B for some pointed space T, and then a fibrewise pointed home-
omorphism (f): X -^T x B is called a trivialization of X. A fibrewise pointed space X 
over B is said to be locally trivial if there exists an open covering of B such that Xy 
is trivial over V for each member V of the covering. A locally trivial fibrewise pointed 
space is the simplest form of sectioned fibre bundle or bundle of pointed spaces. 

A more sophisticated form involves a structural group G. A principal G-bundle P 
over B determines a functor P# from the category of pointed G-spaces to the category 
of sectioned fibre bundles over B. Specifically P# transforms each pointed G-space A 
into the associated bundle P XQ A with fibre A and similarly with pointed G-maps. 
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If X is a sectioned fibre bundle over B then X*X is a sectioned fibre bundle over B' 
for each space B' and map X: B' —^ B. The triviality covering in the case of B' is just 
the pull-back of the triviality covering in the case of B. 

We may refer to a sectioned fibre bundle, as above, as a bundle of pointed spaces. The 
question naturally arises as to whether a bundle of (nonpointed) spaces which admits a 
section is then a bundle of pointed spaces. When the fibre is a manifold an affirmative 
answer can be given, as shown in [6]: 

PROPOSITION 3.1. Let B be a space and let X be a fibre bundle over B with a manifold 
as fibre. If X admits a section then X {with this section) is locally trivial as a fibrewise 
pointed space. 

In other words a sectionable bundle of spaces with fibre a manifold is equivalent, as 
a fibrewise pointed space, to a bundle of pointed spaces. Moreover the complement of 
the section is a fibre bundle with fibre the punctured manifold. 

The fibrewise mapping-space, as in §1, serves as an adjoint to the fibrewise product, for 
the category of fibrewise spaces. The fibrewise pointed mapping-space, to be defined here, 
serves as an adjoint to the fibrewise smash product, for the category of fibrewise pointed 
spaces. Specifically, let X and Z be fibrewise pointed spaces over B. Disregarding the 
sections, for a moment, the fibrewise mapping-space 

map5(X,Z)=]][map(Xb,Zfe) 
beB 

is defined, as a fibrewise space. The subspace 

map|(X, Z) = ] J map,(X6, Zt), 
beB 

where map^ denotes the pointed maps, has a section given by the constant map in each 
fibre. In this way the fibrewise pointed mapping-space is defined. 

As explained in §1 the case X = T x B, for any T, admits of simple treatment. 
Taking T to be pointed it is easily seen that for any fibrewise pointed space Y over B 
a fibrewise pointed map 

{TxB)^BY -^Z 

determines a fibrewise pointed map 

y - > m a p | ( T x 5 , Z ) , 

through the standard formula, and the converse holds when T is compact Hausdorff. 
Two special cases should be noted. When T is the unit interval / , with basepoint {0}, 

the fibrewise pointed mapping-space mapf (/ x jB, Z) is called iht fibrewise path-space 
of Z and denoted by AB{Z). When T is the circle / / / the fibrewise pointed mapping-
space is called the fibrewise loop-space of Z and denoted by OB{Z). Thus AB is adjoint 
to the fibrewise cone FQ and i?B to the fibrewise suspension E§. 
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4. Fibrewise pointed homotopy 

Fibrewise pointed homotopy is an equivalence relation between fibrewise pointed maps. 
Specifically \tt O^cj): X -^ Y be fibrewise pointed maps, where X and Y are fibrewise 
pointed spaces over B. A fibrewise pointed homotopy of 6 into 0 is a homotopy ft : 
X —^Y oi 6 into 0 which is fibrewise pointed for all t e I. 

If there exists a fibrewise pointed homotopy of 9 into 0 we say that 6 is fibrewise 
pointed homotopic to </>. In this way an equivalence relation is defined on the set of 
fibrewise pointed maps of X into Y, and the pointed set of equivalence classes is denoted 
by 7r§{X,Y). Formally n^ constitutes a binary functor from the category of fibrewise 
pointed spaces to the category of pointed sets, contravariant in the first entry and covariant 
in the second. 

The operation of composition for fibrewise pointed maps induces a function 

7rf(y,Z)x7r|(X,y)-.7r|(X,Z) 

for fibrewise pointed spaces X,Y,Z over B. Postcomposition with a fibrewise pointed 
map ip \Y -^ Z induces a function 

t/;.:7rf(X,F)--7rf(X,Z), 

while precomposition with a fibrewise pointed map (j): X -^Y induces a function 

<A*:7rf(y,Z)-.7r|(X,Z). 

The fibrewise pointed map (/): X -^ Y is called a fibrewise pointed homotopy equiv-
alence if there exists a fibrewise pointed map ijj : Y -^ X such that i/; o (/> is fibrewise 
pointed homotopic to idx and </> o i/; is fibrewise pointed homotopic to idy. Thus an 
equivalence relation between fibrewise pointed spaces is defined; the equivalence classes 
are called fibrewise pointed homotopy types. 

A fibrewise pointed homotopy into the fibrewise constant is called ^L fibrewise pointed 
nulhomotopy. A fibrewise pointed space is said to be fibrewise pointed contractible if 
it has the same fibrewise pointed homotopy type as the base space, in other words if 
the identity is fibrewise pointed nulhomotopic. For example, the fibrewise cone F^iY) 
and fibrewise path-space AsiX) on a fibrewise pointed space Y are fibrewise pointed 
contractible. A subspace of a fibrewise pointed space is said to be fibrewise pointed 
categorical if the inclusion is fibrewise pointed nulhomotopic. 

Let (p: X -^Y and t/^: y —> X be fibrewise pointed maps such that V̂o</> is fibrewise 
pointed homotopic to idx- Then t/; is a left inverse to 0, up to fibrewise pointed homotopy, 
and (/) is a right inverse to ip, in the same sense. If 0 admits both a left inverse ijj and a 
right inverse %p', up to fibrewise pointed homotopy, then ^p and rp' are fibrewise pointed 
homotopic and so (/> is a fibrewise pointed homotopy equivalence. 

Of course the associated bundle functor P# discussed earlier transforms pointed G-
homotopy classes of pointed G-maps into fibrewise pointed homotopy classes of fibrewise 
pointed maps, for each principal G-bundle P over B. 
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Given a fibrewise pointed space X over B a fibrewise pointed map m: X XBX ^^ X 
is called a fibrewise multiplication. If m is fibrewise pointed homotopic to mot, where 
t : X XB X ^ X XB X switches factors, we say that m is fibrewise homotopy-
commutative. If 

mo (m X id), mo (id x m) : X XB X XB X -^ X 

are fibrewise pointed homotopic we say that m is fibrewise homotopy-associative. If 

m,o[idx c)o A, mo [c x id) o A: X -^ X 

are fibrewise pointed homotopic to idx we say that m is a fibrewise Hopf structure on 
X and that X, with this structure, is di fibrewise Hopf space. 

Of course the associated bundle functor P# transforms Hopf structures in the equiv-
ariant sense into Hopf structures in the fibrewise sense. 

Cook and Crabb [5] have studied the problem of the existence of fibrewise Hopf 
structures in the case of sectioned g-sphere-bundles over a given base. This is only 
possible when q= 1, 3 or 7, since otherwise the fibre S^ does not admit Hopf structure. 
Cook and Crabb show that the fibrewise suspension of an orthogonal {q - l)-sphere 
bundle always admits fibrewise Hopf structure when g = 1, does so when g = 3 provided 
the bundle is orientable, and does so when ^ = 7 provided the structural group of the 
bundle can be reduced to the exceptional Lie group G2. These observations depend on 
the properties of the classical Hopf structure on S^ in these dimensions. In the case of 
S^ this is given by complex multiplication, which is 0(l)-equivariant, in the case of 
S^ by quatemionic multiplication, which is S0(3)-equivariant, and in the case of S^ by 
Cayley multiplication, which is G2-equivariant. 

K fibrewise homotopy right inverse for a fibrewise multiplication m on X is a fibrewise 
pointed map u\ X -^ X such that the composition 

X^XXBX'^XXBX^X 

is fibrewise pointed nulhomotopic. Fibrewise homotopy left inverses are defined similarly. 
When m is fibrewise homotopy-associative a fibrewise homotopy right inverse is also a 
fibrewise homotopy left inverse, and the itrm fibrewise homotopy inverse may be used. 

A fibrewise homotopy-associative fibrewise Hopf space for which the fibrewise multi-
plication admits a fibrewise homotopy inverse is called di fibrewise group-like space. For 
example the topological product T x B is fibrewise group-like for each group-like space 
T. For another example the fibrewise loop-space QBiX) on a fibrewise pointed space 
Y is fibrewise group-like. 

A fibrewise multiplication on the fibrewise pointed space Y over B determines a 
multiplication on the pointed set 7r^(X,y) for all fibrewise pointed spaces X. If the 
former is fibrewise homotopy-commutative than the latter is commutative, and similarly 
with the other conditions. Thus 7rf (X ,y ) is a group if Y is fibrewise group-like. 

In this area of fibrewise homotopy theory the formal duality of Eckmann-Hilton op-
erates satisfactorily. Thus given a fibrewise pointed space X over B a fibrewise pointed 
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map m: X -^ X^B X \s called a fibremse comultiplication. If m is fibrewise pointed 
homotopic to t o m, where t : X VB X —> X VB X switches factors, we say that m is 
fibrewise homotopy-commutative. If (m V id) o m, {idy m) o m \ X -^ X WB X yB X 
are fibrewise pointed homotopic we say that m is fibrewise homotopy-associative. If 

V o (zd V c) om, V o{c\/id)om\X -^ X 

are fibrewise pointed homotopic to idx we say that m is a fibrewise coHopf structure 
on X and that X, with this structure, is di fibrewise coHopf space. 

Of course the associated bundle functor transforms coHopf structures in the equivari-
ant sense into coHopf structures in the fibrewise sense. The problem of the existence 
of fibrewise coHopf structures has been studied by Sunderland [32] and myself [19], 
particularly in the case of sectioned sphere-bundles over spheres. 

A fibrewise homotopy right inverse for a fibrewise comultiplication m is a fibrewise 
pointed map u\ X -^ X such that the composition 

X V B X ' ^ - X ' X V B X ^ X 

is fibrewise pointed nulhomotopic. Fibrewise homotopy left inverses are defined similarly. 
When m is fibrewise homotopy-associative a fibrewise homotopy right inverse is always 
a fibrewise homotopy left inverse, and the term fibrewise homotopy inverse may be used. 

A fibrewise homotopy-associative fibrewise coHopf space for which the fibrewise 
comultiplication admits a fibrewise homotopy inverse is called 2i fibrewise cogroup-like 
space. For example the topological product T x B is fibrewise cogroup-like for each 
cogroup-like space T. 

A fibrewise comultiplication on the fibrewise pointed space X over B determines a 
multiplication on the pointed set 7r§{X,Y) for all fibrewise pointed spaces Y. If the 
former is fibrewise homotopy-commutative then the latter is commutative, and similarly 
with the other conditions we have mentioned. Thus 7rf (X, Y) is a group if X is fibrewise 
cogroup-like. 

If X is a fibrewise coHopf space and y is a fibrewise Hopf space then the mul-
tiplication on 7r^{X,Y) determined by the fibrewise comultiplication on X coincides 
with the multiplication determined by the fibrewise multiplication on Y. Furthermore the 
multiplication is both commutative and associative. 

By the distributive law for the fibrewise smash product a fibrewise comultiplication on 
X determines a fibrewise comultiplication on X ABY for all fibrewise pointed spaces 
y . If the former is fibrewise homotopy-commutative then so is the latter, and similarly 
with the other conditions. Thus X AB Y is fibrewise cogroup-like if X is fibrewise 
cogroup-like. 

For example, take X = S^ x B, which is fibrewise cogroup-like since S^ is cogroup-
like. We see that the fibrewise suspension SBO^) ^^ fibrewise cogroup-like for all fibre-
wise pointed spaces Y. 
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5. Fibrewise cofibrations 

Let u : A -^ X bt di fibrewise pointed map, where A and X are fibrewise pointed 
spaces over B. Suppose that for each fibrewise pointed space E, fibrewise pointed map 
f : X —^ E, and fibrewise pointed homotopy gt : A -^ E of fou, there exists a fibrewise 
homotopy ht : X —^ E of f such that htou = gt. Then we say that u is 2ifibrewise 
cofibration. For example the identity X -> X is a fibrewise cofibration, also the section 
s \ B -^ X, A fibrewise cofibration is not necessarily a cofibration in the ordinary sense. 

It is not difficult to show that a fibrewise cofibration is necessarily an embedding, so 
that the case when A is a subspace of X and u the inclusion is typical. Moreover we 
have 

PROPOSITION 5A. Let X be a fibrewise pointed space over B and let A be a closed 
subspace of X. The inclusion A -^ X is a fibrewise cofibration if and only if ({0} x 
X) U (/ X A) is a fibrewise retract of I x X. 

This characterization enables us to see that the associated bundle functor P# transforms 
cofibrations in the equivariant sense into cofibrations in the fibrewise sense. Specifically, 
let P be a principal G-bundle over B. Let X be a pointed G-space and let -A be a closed 
invariant subspace of X. Suppose that the inclusion A -^ X is a. G-fibration. Then the 
inclusion P#i4 —• P^X is a fibrewise cofibration. 

Unsurprisingly there is a fibrewise version of the well-known Puppe sequence. This 
concerns sequences 

v / l V- -̂ 2 v-
A ] • A 2 • A 3 —»•••• 

of fibrewise pointed spaces and fibrewise pointed maps, over the given base space B. 
We describe such a sequence as exact, in this context, if the induced sequence 

n^iXuE) JL ^B^^X2,E) JL ^ | ( X 3 , E ) ^ - - -

is exact for all fibrewise pointed spaces E. 
Given a fibrewise pointed map (f) : X -^ Y, where X and Y are fibrewise pointed 

spaces over B, the fibrewise mapping-cone r^{(l)) of 0 is defined to be the push-out of 
the cotriad 

r^{X)DX^Y, 

Now r^{(j)) comes equipped with a fibrewise embedding 

cl>':Y^ rEi4>), 

and we easily see that the sequence 

ni{X,E) S- ^|(y,E) ^ n§{r§{4>),E) 
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is exact, for all fibrewise pointed spaces E. Obviously the procedure can be iterated so 
as to obtain exact sequences of unlimited length, but that in itself is not of great interest. 

To understand the situation better consider the case of a fibrewise cofibration u: A -^ 
X, where A and X are fibrewise pointed spaces over B. Then the natural projection 

p: ri{u) ^ ri{u)/BrE{A) = XJBA 

is a fibrewise pointed homotopy equivalence. Moreover if vJ is derived from u in the 
way that (\J above is derived from 0 then po u' \ X -^ X/BA is just the fibrewise 
collapse. 

Returning to the general case, where 0 : X —̂  y , we observe that the embedding 
(j)' : Y -^ rj^{(l>) is a fibrewise cofibration. In fact the embedding X -^ ^^{X) is 
a fibrewise cofibration, from first principles, and so the conclusion follows from the 
observation that the push-out of a fibrewise cofibration is again a fibrewise cofibration. 

By combining these last two results we see that the fibrewise mapping-cone r§{(j)') 
is equivalent to the fibrewise suspension 

r f (X) = ri{<i>)iBY = rE{<j>')iBrE{4>\ 

up to fibrewise pointed homotopy equivalence. In the process, moreover, ((/>')' is trans-
formed into the fibrewise pointed map 

<t>": r f (<̂ ) -^ r f (X). 

Repeating the procedure we find that rsicp')' is equivalent to the fibrewise suspension 
I!§{Y), in the same sense. In the process, moreover, {{(p'YY is transformed into the 
fibrewise suspension 

E§{<P) : EiiX) - sEiY) 

of 0, precomposed with the fibrewise reflection in which (t,x) i-̂  (1 — t^x). This last 
does not affect the exactness property and so we arrive at an exact sequence of the form 

x^Y-. ri{<i>) - rKx) ""^^ s^^iy) - • • • 

When the given fibrewise pointed map 0 is varied by a fibrewise pointed homotopy 
the exact sequence varies similarly. In particular, if 0 is fibrewise pointed nulhomotopic 
the sequence has the same fibrewise pointed homotopy type (in an obvious sense) as in 
the case of the fibrewise constant, where the sequence reduces to the form 

x-^Y ^Y^B ^Eix) ^ r f (X) -^. . . 
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6. Fibrewise fibrations 

Let p: E -^ XbtdL fibrewise pointed map, where E and X are fibrewise pointed spaces 
over B. Suppose that for each fibrewise pointed space A, each fibrewise pointed map 
f : A —* E and each fibrewise pointed homotopy gt : A -^ X such that go = P^ f there 
exists a fibrewise pointed homotopy ht : A -^ E of f such that gt = poht. Then we 
say that p is a fibrewise fibration. For example the second projection T x ̂  X -^ X is 
a fibrewise fibration for each fibrewise pointed space T. In particular take X = B; we 
see that for every fibrewise pointed space T over B the projection T -^ B is a fibrewise 
fibration. 

Consider the fibrewise path-space 

ylB(X) = m a p | ( / x B , X ) . 

By evaluating at t € / we obtain projections 

pt : AB{X) ^ X. 

It is a formal exercise in the use of adjoints to show that pt is a fibrewise fibration for 
t = 0 ,1 . To fix ideas let us prefer po, in this situation. Then for any fibrewise pointed 
space E and fibrewise pointed map p : £ —• X the corresponding fibrewise pointed map 

P'AB{X) -^ E 

is a fibrewise fibration. Now by the cartesian property of pull-backs we have a fibrewise 
pointed map 

k:AB{E)-^p'AB{X), 

with components AB{P) and po. The following characterization of fibrewise fibrations is 
fundamental. 

PROPOSITION 6.1. Let p . E -^ X be a fibrewise pointed map, where E and X are 
fibrewise pointed spaces over B. Then p is a fibrewise fibration if and only if the fibrewise 
pointed map k : AB{E) —̂  p'^ABiX) admits a right inverse. 

We can use this to show that the associated bundle functor transform fibrations in 
the equivariant sense into fibrations in the fibrewise sense. Again this is just a routine 
exercise in the use of adjoints. 

At a formal level the Eckmann-Hilton duality between fibrewise cofibrations and 
fibrewise fibrations is a useful guide. Thus we find a fibrewise version of the Nomura 
exact sequence which is dual to the fibrewise version of the Puppe exact sequence 
described in §5. More significant, however, are the results which do not dualize, such as 

PROPOSITION 6.2. Let p: E ~^ X be a fibrewise fibration, where E and X are fibrewise 
pointed spaces over B. Let 6,4) : X' -^ X be fibrewise pointed maps, where X' is 
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fibrewise pointed over B.IfO and (f> arefibrewise pointed homotopic then 6*E and (/)*£ 
have the same fibrewise pointed homotopy type over X'. 

COROLLARY 6.3. Let p : E -^ X be a fibrewise fibration, where E and X arefibrewise 
pointed spaces over B. Let 0 : X' —^ X be a fibrewise pointed nulhomotopic map, where 
X' is fibrewise pointed over B. Then 0*E is equivalent to X' XB T, in the sense of 
fibrewise pointed homotopy type over X', where T is the fibrewise fibre of X. 

7. Special types of fibrewise space 

In the Quillen model a special role is played by cofibrant objects. In the case of a 
fibrewise pointed space X over B cofibrant means that the section s : B -^ X is SL 
cofibration, in the ordinary sense. We use the terms well-sectioned or fibrewise well-
pointed, in preference to cofibrant. For example B is always fibrewise well-pointed, as a 
fibrewise space over itself. For another example, suppose that the inclusion u: A-^ X 
is a fibrewise cofibration, where X is a fibrewise space over B and A is a subspace of 
X. Then the fibrewise collapse X/BA is fibrewise well-pointed. 

The associated bundle functor, as before, transforms well-pointed spaces in the equiv-
ariant sense into well-pointed spaces in the fibrewise sense. 

Fibrewise well-pointed spaces have a number of useful properties. For example, let 
0 : X —> y be a fibrewise map, where X and Y are fibrewise pointed spaces over B 
with sections s and t, respectively. Suppose that </> o s is fibrewise homotopic to t. Also 
suppose that X is fibrewise well-pointed. Then (/> is fibrewise homotopic to a fibrewise 
pointed map. 

This result is just a straightforward application of the homotopy extension property. 
With rather more effort such an argument can be used to prove 

PROPOSITION 7.1. Let X be a fibrewise well-pointed space over B. Let 9 : X —^ X be 
a fibrewise pointed map which is fibrewise homotopic to the identity. Then there exists a 
fibrewise pointed map 6' : X -^ X such that 6' o9 is fibrewise pointed homotopic to the 
identity. 

This leads to the important 

THEOREM 7.2. Let (j). X -^Y be a fibrewise pointed map, where X and Y arefibrewise 
well-pointed spaces over B.Ifcj) is a fibrewise homotopy equivalence then (j) is a fibrewise 
pointed homotopy equivalence. 

This result, which is due to Dold [12], is proved as follows. Let i/j : Y -^ X he SL 
fibrewise map which is an inverse of (j), up to fibrewise homotopy. Since t/^ot = ^o</)os, 
which is fibrewise homotopic to s, we can deform ip into a fibrewise pointed map 
i/j' :Y -^ X by a fibrewise homotopy. Since V̂ ' o 0 is fibrewise homotopic to the identity 
there exists, by (7.1), a fibrewise pointed map ^ " : X —> F such that t/;" o ^ ' o 0 is 
fibrewise pointed homotopic to the identity. Thus (f> admits a left inverse 0' = ip" o ^ ' 
up to fibrewise pointed homotopy. 
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Now (j)' is a fibrewise homotopy equivalence, since </> is a fibrewise homotopy equiv-
alence, and so the same argument, applied to 0' instead of (/>, shows that (j)' admits a 
left inverse (j)", up to fibrewise pointed homotopy. Thus 0' admits both a right inverse (j) 
and a left inverse </>", up to fibrewise pointed homotopy. Hence (})' is a fibrewise pointed 
homotopy equivalence and so 0 itself is a fibrewise pointed homotopy equivalence. 

The class of fibrewise well-pointed spaces has many good properties. For example, 
the fibrewise coproduct of fibrewise well-pointed spaces is fibrewise well-pointed. Less 
obviously, the fibrewise product and fibrewise smash product of fibrewise well-pointed 
spaces are fibrewise well-pointed. 

However, the class of fibrewise well-pointed spaces is too restrictive for some purposes 
and there is another, wider, class which also has some good properties, as follows. 
Consider a fibrewise pointed space X over B with section s : B —> X. We denote by 
XB the fibrewise mapping cylinder of s, regarded as a fibrewise pointed space with 
section the insertion a\. The inclusion a \ X --^ XB is a fibrewise map, in fact a 
fibrewise homotopy equivalence, but not a fibrewise pointed map. The natural projection 
p : XB —* X, which fibrewise collapses I x B, is a fibrewise pointed map as well as a 
fibrewise homotopy equivalence. When p is a fibrewise pointed homotopy equivalence 
we describe X as fibrewise nondegenerate. 

For example, fibrewise well-pointed spaces are fibrewise nondegenerate, by (7.2). It 
can be shown (see §22 of [18]) that the fibrewise product and fibrewise smash product 
of fibrewise nondegenerate spaces are fibrewise nondegenerate. 

When a fibrewise space X over B admits a section, and so can be regarded as a 
fibrewise pointed space, the fibrewise pointed homotopy type will generally depend on 
the choice of section. However if SQ,S\ : B —^ X are vertically homotopic sections 
then the fibrewise mapping cylinders of SQ and s\ have the same fibrewise pointed 
homotopy type. Hence if both the fibrewise pointed spaces obtained from X by using 
these sections are fibrewise nondegenerate then we can conclude that they have the same 
fibrewise pointed homotopy type. When X admits more than one vertical homotopy class 
of section, however, examples can be given to show that the fibrewise pointed homotopy 
type depends on the choice of section; in fact X may be fibrewise Hopf or fibrewise 
coHopf with one choice of section but not with another. 

8. Theorems of torn Dieck and Dold 

There is a well-known theorem of Dold [12] which forms a bridge between fibrewise 
homotopy theory and ordinary homotopy theory. As it stands this is already of great 
significance in fibrewise homotopy theory but from our point of view a fibrewise pointed 
version of Dold's theorem is still more significant, namely 

PROPOSITION SA. Let (j) : X -^ Y be a fibrewise pointed map, where X and Y are 
fibrewise pointed spaces over B. Suppose that B admits a numerable covering such that 
the restriction (j)y : Xy —> Yy is a fibrewise pointed homotopy equivalence over V for 
each member V of the covering. Then (j) is a fibrewise pointed homotopy equivalence 
over B. 
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In the original version of this result there are no sections to be considered. Eggar [14] 
made the modifications to Dold's argument which are necessary for the version given 
here. To be quite accurate it is not Eggar's main result which is relevant but rather the 
second remark after the statement where it is assumed that the base space is paracompact. 
In fact this assumption is unnecessary since numerable coverings can always be shrunk 
in the way required for this purpose. 

When the fibrewise spaces in Dold's theorem are fibrant, as is often the case in the 
applications, the following consequence of the main result is convenient. 

COROLLARY 8.2. Let (j): X -^Y be a fibrewise pointed map, where X and Y arefibrant 
fibrewise pointed spaces over B. Suppose that B admits a numerable categorical cover-
ing. Also suppose that the restriction of<f> to the fibre is a homotopy pointed equivalence. 
Then (j> is a fibrewise pointed homotopy equivalence. 

For let F be a categorical subspace of B. Since X is fibrant the restriction Xy of 
X has the same fibrewise pointed homotopy type over V as V x X^ where b is the 
basepoint of B, similarly Yy has the same fibrewise pointed homotopy type as F x Yi,. 
By hypothesis the restriction <f)b : Xt —* Yb of <f) to the fibres is a homotopy equivalence 
and so it follows that the restriction (l)y : Xy —• Yy is a fibrewise pointed homotopy 
equivalence over V. Since this is true for each member of the numerable categorical 
covering the hypothesis of (8.1) is satisfied and the conclusion of (8.2) is obtained. We 
shall now give a few applications of this key result. 

It is not always easy to decide what is the right fibrewise version of a condition in 
ordinary homotopy theory. Take the condition of path-connectedness, for example. One 
fibrewise version is obviously vertical connectedness, where all sections are required 
to be vertically homotopic. But there is another condition, significandy easier to fulfill, 
which also reduces to path-connectedness when B is a point. Giving preference to the 
latter we describe a fibrewise pointed space X over B as polarized if every section of X 
which does not meet the standard section is vertically homotopic to the standard section. 

PROPOSITION 8.3. Let X be a fibrewise well-pointed space X over B which admits a 
numerable fibrewise categorical covering. Suppose that X is polarized in the above 
sense. Then any fibrewise Hopf structure on X admits a right inverse and a left inverse, 
up to fibrewise pointed homotopy. 

For let m : X X B X -^ X be a fibrewise Hopf structure. By using the fibrewise 
homotopy extension property we may suppose, with no real loss of generality, that the 
section 5 : B -^ X is a strict neutral section for m, in the sense that mo (c x zd) oZ\ = id, 
where c = 5 op is the fibrewise constant. We regard X XB X as a fibrewise pointed 
space over X using the first projection TTI and the section (c x id) o A. Then X XB X 
is fibrant over X since X is fibrant over B. Also X is numerably fibrewise categorical. 
Hence the fibrewise shearing map 

k'.XxsX -^XXBX, 
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where TTI o A: = TTI and 7r2 o A: = m, is a fibrewise homotopy equivalence, by (8.1). Also 
X XB X IS fibrewise well-pointed over X, since X is fibrewise well-pointed over B, 
and so A: is a fibrewise pointed homotopy equivalence, by (8.2). Hence the composition 

X^XXBX ^XXBX^X 

provides a right inverse for the fibrewise Hopf structure, up to fibrewise pointed homo-
topy, where u is given by {id x c) o A and I is the right inverse of k, up to fibrewise 
pointed homotopy. Similarly m admits a left inverse, in the same sense. When m is 
fibrewise homotopy-associative the left and right inverses are equivalent, up to fibrewise 
pointed homotopy. 

Similar ideas are used in the proof of 

PROPOSITION 8.4. Let X be a fibrant fibrewise well-pointed space over B. Suppose that 
B admits a numerable categorical covering. If a Hopf structure on the fibre ofX can be 
extended to a fibrewise multiplication on X then it can be extended to a fibrewise Hopf 
structure. 

For let 0 : X X B-X" —̂  X be a fibrewise multiplication extending a given Hopf structure 
on Xb, where 6 € B is the basepoint. Then the restriction to Xh of the fibrewise pointed 
map 0 ooj : X —^ X (j = 1,2) is pointed homotopic to the identity. Hence 6 o Oj is 
a fibrewise homotopy equivalence by Dold's theorem (8.2) and so a fibrewise pointed 
homotopy equivalence by (7.2). So let aj : X -^ X be an inverse of 0 o aj, up to 
fibrewise pointed homotopy. Then 

0 O ( Q , xa2):XxBX -^X 

is a fibrewise Hopf structure on X which extends the given structure on Xt. This proves 
(8.4). 

Dold's theorem may be compared with a series of results of tom Dieck [10], such as 
the following. 

PROPOSITION 8.5. Let <t) : X -^ Y be a fibrewise map, where X and Y are fibrewise 
spaces over B. Let {Xj} and {Yj} be J-indexed numerable coverings of X and Y, 
respectively, such that (t)Xj C Yj for each index j . Suppose that the fibrewise map 
<i>fj : Xa —> Y(j determined by (j) is a fibrewise homotopy equivalence for each finite 
subset a of J. Then (f) is a fibrewise homotopy equivalence. 

Here we use the convention that X^, for a C J, denotes the intersection OXj, where 
j runs through a, and similarly with Y^ and 0^. 

9. The fibrewise Freudenthal theorem 

In ordinary homotopy theory the class of CW-spaces is adequate for most purposes. 
Stasheff [30] has shown that a fibrant fibrewise space over a CW-space is also a CW-
space if the fibre is a CW-space. For example, a sphere-bundle over a CW-space is a 
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CW-space. In fibrewise homotopy theory certain results can be proved for this class 
of fibrewise spaces using the methods of ordinary homotopy theory. To extend them to 
fibrewise spaces more generally a fibrewise version of the notion of CW-space is required, 
and this is developed in the monograph mentioned above. For present purposes, however, 
the ordinary notion will suffice. 

PROPOSITION 9.1. Let B be a CW-space. Let {K,L) be a fibrant fibrewise pointed pair 
over B with CW fibres. Let {X,Y) be a fibrant pair over B such that 

H^{K,L',nniX,Y))=Q 

for all n. Then every fibrewise pointed map 

f:{K,L)-^{X,Y) 

is fibrewise homotopic, relative to L, to a fibrewise pointed map of K into Y. 

The proof is a straightforward exercise in ordinary obstruction theory. We use (9.1) to 
prove 

THEOREM 9.2. Let B be a CW-space. Let K be a fibrant fibrewise pointed space over B 
with fibre a CW-space. Let u : E ^^ F be a k-connected fibrewise pointed map, where 
E and F are fibrant fibrewise pointed spaces over B. Then the function 

is injective when dim K <k, surjective when dim K ^ k. 

Dimension, here, means cohomological dimension. To deduce (9.2) from (9.1) first 
observe that without real loss of generality we may suppose, after taking the fibrewise 
mapping cylinder, that E C F and u is the inclusion. Surjectivity, in (9.2), follows at 
once from (9.1) applied to the pair (AT, 0) , while injectivity follows from (9.1) applied 
to the pair (/ x K, {0} x K). Of course a relative version of this result can be proved 
in the same way. 

We use (9.2) to prove a fibrewise version of the Freudenthal suspension theorem, as 
follows. 

PROPOSITION 9.3. Let B be a CW-space. Let K be a fibrant fibrewise pointed space over 
B with CW fibres. Let E be a sectioned fibre bundle over B with (m - \)-connected 
fibre. Then the fibrewise suspension 

7r|(x,£;)->7rf(r|(K),i:|(E)) 

is injective for dim K < 2m, surjective for dim K ^ 2m. 

First observe that since JS is a fibre-bundle over B so is X'f (-B) (in fact this is true for 
fibre spaces but is not so obvious) and so the fibrewise loop-space QBSB{E) is fibrant. 
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Since E h {m— l)-connected the classical Freudenthal suspension theorem tells us that 
the adjoint 

u:E-^ QBE^{E) 

of the identity is (2m - l)-connected, and so (9.3) follows at once from (9.2). 

COROLLARY 9.4. Let K be a sectioned k-sphere bundle and L a sectioned l-sphere-
bundle over the CW-complex B. Then for each sectioned sphere-bundle N the fibrewise 
smash product 

N^ : Trf (if, L) ^ Trf (iV AB K, N AB L) 

is injective when 11-k^ dimB -f 2, surjective when 21 ~ k ^ dimB -f 1. 

First recall that if ^ is a Euclidean bundle with fibrewise compactification N there 
exists a Euclidean bundle '̂ with fibrewise compactification N' such that the Whitney 
sum '̂ 0 ^ is equivalent to the trivial q'-plane bundle R̂  x J5, for q sufficiently large, 
and so the fibrewise smash product N' AB N is equivalent to S^~^ x B, as a fibrewise 
pointed space. Therefore the function 

{N' AB iV)# : 7r|(K, L) -^ 7r|(iV' AB N AB K, N' AB N AB L) 

is equivalent to the {q — l)-fold fibrewise suspension, and so is injective when 21 —k^ 
dim J3 + 2, surjective when 21 —k^ dimB -f 1. By associativity of the fibrewise smash 
product we have {N' AB Ar)# = iV̂  o iV#, where 

iV#:7r|(if,L)-^7rf(iVABif, NABL), 

K ' '^B{N AB K, NABL)-^ 7r|(iV' AB A^ AB K, N' AB N AB L). 

Hence Ar# is injective when 21 - k^ dim J5 -f 2, surjective when 21 — k ^ dim B -{- I. 
By repeating this argument with N^ instead of N and {N AB K, N AB L) instead of 

{K,L) we find that Nj^ is injective as well as surjective when 21 - k ^ dimB -h 1. But 
NIf o iV# is surjective when 21-k^ dim B -h 1, as we have seen, and so iV# is surjective 
when 21 — k ^ dimB -f 1. This completes the proof of (9.4). 

Given K and L, as in (9.4), we can always choose N so that the fibrewise smash 
product NABL is trivial (see [8]) and hence express 7r§{K, L), when 2l-k ^ dim-B-f2, 
in terms of cohomotopy sets in the ordinary sense. 

The fibrewise Freudenthal theory leads to a fibrewise version of stable homotopy 
theory and to a notion of fibrewise spectra, as developed by Clapp [3] and Clapp and 
Puppe [4] who prefer the term parameterized spectra. 
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10. Fibrewise homology 

Homology with local coefficients is a concept which dates from the forties if not ear-
lier. However the more general concept of fibrewise homology does not seem to have 
originated before the late sixties, when it was developed by several researchers indepen-
dently, notably Becker [2], Dold [13], Hodgkin (unpublished), Johannson (unpublished) 
and Smith [29]. Later Clapp [3] and Clapp and Puppe [4] developed the theory further. 

The basic ideas of fibrewise homology and cohomology will be presented here; many 
variants are possible. 

Given a category C we denote by C the comma category of C, so that the objects of C 
are the morphisms of C and so on. Let A be an abelian category, for example the category 
of abelian groups. We consider sequences h : {hn : n € N} of functors C -^ A which 
are equipped with sequences 9 = {9n : n € N} of natural transformations having the 

following exactness property: whenever X —• Y -^ Z are morphisms of C the sequence 

hr,^,{^)'^hn{(l>)^ dn 
hnilp O 0) —^ hn{lp) —^ hn-\{(t>) 

is exact. Here, as usual, we write (j>^ and V̂* for the transforms of the commutative 
squares 

x^^^z 

rl)0(f> 

In particular take C to be the category of fibrewise spaces over B. By a fibrewise 
homology functor over B I mean a functor, as above, defined on the comma category C, 
which is invariant with respect to fibrewise homotopy. 

Given a fibrewise homology functor h it is convenient, in the case of a fibrewise pair 
{X^A)y to write h{X^A) in place of h{u), where u : A C X. For 4̂ = 0 we write 
h{X^ 0) = h{X). Thus if (/): X —• y is a fibrewise map, where X and Y are fibrewise 
spaces, we have an exact sequence of the form 

> hn^M) - hn{X) h hn{Y) ^ hn{(t>) - K-x{X) - ^ • • • 

Examples of fibrewise homology functors can easily be constructed. One may simply 
take h{X), for the fibrewise space X, to be the singular homology of X, as an ordinary 
space, and similarly for fibrewise maps. More generally one may choose a fibrewise space 
T and then take h{X) to be the ordinary homology of the fibrewise product X XBT. 

The excision condition, for fibrewise homology functors, is defined in the same way as 
for ordinary homology functors, so that fibrewise relative homeomorphisms, satisfying 
appropriate conditions, induce isomorphisms of the relative fibrewise homology. Mayer-
Vietoris exact sequences arise in the usual way. Note that if h is constructed out of 
singular homology as above then h satisfies the excision condition. 
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If /i is a fibrewise homology functor over B then for each family {Xj} of fibrewise 
spaces we have a homomorphism 

Y[KXi)-^h{]XsX^) 

induced by the standard insertions of the coproduct. If the homomorphism is an isomor-
phism for finite families we describe h as additive. In fact the excision condition implies 
additivity. If the homomorphism is an isomorphism for all families we describe h as 
strongly additive. Note that if h is constructed as before by taking the singular homology 
of the fibrewise product with a given fibrewise space then h is strongly additive. 

There is one more condition we need to discuss. Following Becker [2] and Dold [13] 
we call this the cylinder condition. Consider the cylinder / x X on a given space X, 
with the standard maps 

it'.X^IxX {tel) 

given by it{x) = (t, x). If X is a fibrewise space with projection p : X -^ B then I xX 
is regarded as a fibrewise space with projection p o TT, where TT : I x X -^ X is given 
by 7r(t, x) = X. Suppose, however, that / x X is a fibrewise space with some projection 
r : I xX -^ B, Then X may be regarded as a fibrewise space with projection n = roii 
for any t E I.To avoid any possibility that this second situation might be confused with 
the first we refer to / x X in the second case as a cylinder over B. 

CONDITION 10.1. The fibrewise homology fiinctor h over B satisfies the cylinder condi-
tion if for each space X and cylinder I x X over B the inclusion IQ : X -^ I x X has 
trivial fibrewise homology h{io). 

Here, of course, we are regarding A" as a fibrewise space with projection ro, where 
r.IxX—^Bisthc projection of the cylinder. 

For example, if h is derived from singular homology theory by taking fibrewise prod-
ucts XBT with a given fibrewise space T, as above, then h satisfies the condition when 
T is fibrant, although not in general. Essentially this follows from the homotopy property 
of induced fibre spaces. 

When the cylinder condition is satisfied it follows by exactness that the induced ho-
momorphisms 

iu : h{X)-^ h{I X X) {t = 0,l) 

are isomorphisms. Hence an automorphism a = (iu)~' o (io*) of h{X) is defined. Of 
course a depends on the projection r used to represent / x Jt as a fibrewise space. In 
particular if X, at the start, is given as a fibrewise space and r = TT then a is trivial. 
We see, therefore, that the cylinder condition implies fibrewise homotopy invariance. For 
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this reason Clapp [3] and others use the term strong fibrewise homotopy invariance for 
the cylinder condition. 

PROPOSITION 10.2. Let h be a fibrewise homology functor satisfying the cylinder condi-
tion. Let (f): X —^ X' be a fibrewise map, where X and X' are fibrewise spaces over B. 
Suppose that (j> is a homotopy equivalence, in the ordinary sense, of X with X', Then 

0, : h{X) « h{X'). 

For let (j)' : X' —> X be a homotopy inverse of (f), so that f oiQ = id, f oi^ = </> o </>' 
for some homotopy f : I x X' -^ X'. Regard / x X' as a cylinder over B through p'of. 
Then /* is defined, since / is fibrewise, and is an isomorphism, since ZQ* and /* o ZQ* 
are isomorphisms. 

Now consider the map i\ : X" -^ I x X', where X" = X' as a space but is regarded 
as a fibrewise space with projection po (jj rather than p'. Then zi is fibrewise since 
p' o j oix = p' o (j) o ^' — p o ^, and so z^ is defined and is an isomorphism, where 
0' : X" —• X, Thus (t>i,o(j>'^ is an isomorphism, hence 0'̂  is a monomorphism and 0* is an 
epimorphism. Applying the same argument to <j>', instead of 0, which is also a homotopy 
equivalence, we obtain that (j)'^ is an epimorphism, and so 0* is an isomorphism, as 
asserted. 

Among the contractible fibrewise spaces over B a special role is played by those in 
which the total space reduces to a point. When B is path-connected there is just one 
fibrewise homotopy type of these "points over B"; in general there is one type for each 
path-component. 

Given a fibrewise homology functor h over B satisfying the cylinder condition, also 
the excision condition and strong additivity, we may follow procedures closely similar 
to those used in the case of ordinary homology. For example if iC is a CW-complex 
over B we may analyze h{K) through the relative groups h{K^,K^~^) which can be 
computed as follows. 

Consider the pair {D^^S^"^) consisting of the ^-ball D^ and the boundary {q - 1)-
sphere S^~\ Regard {D^,S^~^) as a fibrewise pair by choosing a projection D^ —> 
B, The argument used in the case of ordinary homology shows that h{D^,S^~^) is 
equivalent to h{p), where p € S^~K 

Now for each g-cell ej of K we have a characteristic map 

let {D^,Sj~^) denote (D^,5^"^) regarded as a fibrewise pair through fj. By excision 
the fibrewise relative homeomorphism 

/:(U^I>U5r')-(^'.-^'"')' 

given by / | {D^,Sj~^) = / j , induces an isomorphism in relative fibrewise homology. 
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Therefore h{K^,K^"^) is isomorphic to the direct sum 

where pj is a point of 5J ^ 
To illustrate these remarks we prove 

PROPOSITION 10.3. Let h and k be strongly additive fibrewise homology functors over B 
satisfying the excision and cylinder conditions. Let ̂  : h ^ k bea natural transformation 
which is an equivalence for all points p over B. Then ^ is an equivalence for all CW-
complexes over B. 

This result is due to Dold [13], who calls it the comparison theorem, and uses it to give 
an elegant proof of the Thom isomorphism theorem for vector bundles. Briefly Dold's 
argument is as follows. 

To establish the result in general it is sufficient to establish that ^ gives an equivalence 
in the absolute case, since then the conclusion can be reached by a five lemma argument. 
So let i^ be a CW-complex over B. We prove by induction that 

where K^ is the ^-section of K. The inductive step from q- \ to q amounts to showing 
that 

<f(K^i^^-*) : h{X^,K^^^)^k{K^,K^-^), 

and this follows from the analysis given above. This proves the assertion when K is 
finite dimensional. For the general case we use the telescope technique and it is here 
that strong additivity is required. It should be noted that if B is path-connected then the 
condition in the statement of (10.3) only needs to be verified for one point. 

Turning now to the dual concept, the term fibrewise cohomology functor is defined 
in the obvious way, with appropriate changes of notation, also the dual forms of the 
three conditions we have been discussing. Examples can be constructed by taking the 
singular cohomology of the fibrewise product with a given fibrewise space. The excision 
condition and strong additivity are always satisfied. The cylinder condition is satisfied 
when the given fibrewise space is fibrant. 

Suppose, in particular, that the range category A of our fibrewise cohomology functor 
h is the category of modules over some (commutative) ring A. Then we may require h 
to be multiplicative in the sense that for each pair of fibrewise spaces X, Y there is a 
natural exterior product 

h{X)(S>Ah{Y)'-^h{X XBY) 
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satisfying the standard conditions. Of course the exterior product leads to a natural ring 
structure on h{X) in the usual way. Specifically the product aU/3 € h'P'^^{X) of elements 
a £ h^{X), P e h^{X) is defined to be the image of a (8) /3 under the homomorphism 

induced by the diagonal. 
Examples of fibrewise cohomology theories with this multiplicative structure are ob-

tained by taking the singular cohomology of the fibrewise product with a given fibrewise 
space. 
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0. Introduction 

The homotopy theory of categories of diagrams was studied initially by Edwards and 
Hastings [10]. The homotopy category Ho(Top^) of the diagram category Top^ for a 
small category / is obtained in their system by inverting those diagram maps which are 
at each level a homotopy equivalence. A disadvantage of this definition is that through 
the formality of the morphisms the geometric meaning associated with composition and 
inverse is obscured. For a ^concrete' description of the morphisms of Ho(Top^) one 
may apply a theorem of Vogt to the effect that Ho(Top^) is equivalent to a category of 
homotopy coherent diagrams and homotopy classes of homotopy coherent maps between 
them. Vogt proved this result in 1973 (cf. [26]). Cordier [5] simplified Vogt's description 
of homotopy coherent diagrams and with Porter [6] provided a new and simpler proof of 
Vogt's main result. Meanwhile the first author [11], [12] had already observed that the 
coherent approach in the special case / = 1, the ordered set {0 < 1}, yielded a simple and 
natural alternative to the pair homotopy theory of Eckmann and Hilton [9]. It seemed that 
it would be advantageous to embark on a systematic study of (homotopy theoretic aspects 
of) the simplest diagram categories, partly with the view to the light their properties might 
throw on more complex categories, but also with a view to studying their interrelations 
in the hope that feedback of results would eventually yield new techniques for study of 
Ho(Top) itself. 

The category TopB of spaces over a fixed space B can be regarded as a (nonfull) 
subcategory of the category of pairs TopK Some interest is attached to the associated 
homotopy category Ho(TopB), which is obtained by inverting the maps over B that are 
homotopy equivalences in their own right. Although it seems not to be possible to deduce 
the fact from Vogt's theorem (at least in its present formulation), it turns out [16] that 
HO(TOPB) is also equivalent to a category HE whose objects are spaces over B and 
whose morphisms are coherent homotopy classes of homotopy equivalent triangles with 
sink vertex B. In this article we discuss principally these examples but try to exhibit 
features that they share generally with other coherent homotopy categories. 

We lay a special emphasis on the coherent homotopy theory over B and show how 
the basic ingredients of elementary homotopy theory, as for example Dold's theorem on 
fibre homotopy equivalences, the homotopy theorem for fibrations and model categorical 
properties, arise in this theory in a very natural and transparent way. 

For convenience of the reader we work in the category Top of topological spaces. 
However the methods and results can be transferred to pointed topological spaces, or 
indeed to abstract homotopy theory in any category C which is equipped with a suitable 
cubical enrichment, see, e.g., [19], [20], [15]. 

1. The coherent homotopy categories 

Let JB be a fixed space. The classical homotopy category over B (fibre homotopy cate-
gory), TOPBK is a quotient category of the category TapB of spaces over B. Thus the 
objects of TopBh are the spaces over JB, i.e. the maps f : X -^ B with codomain B and 
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the morphisms of Topsh are represented by maps over B, h: f —* g, i.e. commutative 
triangles 

X ^E 

B 

Two maps over B, h,h' : f -^ g, represent the same element of TapsK if they are 
homotopic over B (fibrewise homotopic) that means if there is a homotopy over J5, 
hi : h ~B h', i.e. a homotopy ht'.h^iih' such that ght = / . 

The coherent analogue, HB, the track category over B is defined as follows. The 
objects of HB are the spaces over B. (Thus HB and TopBh have the same objects.) If 

f :X -^ B and g : E -^ B 

are spaces over B, then the set HB{f,g) of morphisms f -^ g (also denoted 7r(/, g/B)) 
is obtained from the set of squares of the form 

^ ^ > j ; 

4 { ^ 0 / | . , (1.2) 
B==B 

where {/it} is the track (relative homotopy class) of a homotopy ht : f ^ gK by factoring 
out by the equivalence relation 

X^^E II ^^'^}/ II 
B — B f\ ^^'1/ Ji 9 

B — B 

where /ij : /i ~ /i' is a homotopy and the diagram on the right is the composite in the 
obvious sense of the two squares. To simplify the notation we henceforth omit the curly 
brackets from representations of squares such as (1.2). We use the abbreviated notation 
{h,ht) for the element represented by the square (1.2). 

If A is a fixed space, then we have a classical homotopy category under A, Tap^h, as 
well as a coherent analogue, the track category under A, H^. The morphisms of Top^h 
are represented by commutative triangles of the form 

- ^ y 
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whereas the morphisms of Ti^ are represented by homotopy commutative squares of the 
form 

4 '̂"î  Ĵ , 
->-y 

where {/it} is the track of a homotopy ht : hi ~ j . Recall that two maps under A, 
h,h' :i -^ j , represent the same element of Top^h if they are homotopic under A, that 
is if there is a homotopy ht'.hr^ih' such that hfi = j . 

The objects of W', the category of homotopy pairs (our coherent version of Ho(Top^) 
mentioned in the introduction), are the maps of Top. Analogously, if 

f-.X^Y and f':X'-*Y' 

ace two maps, a morphism / —> / ' is an equivalence class of squares of form 

^X' 
f\ t^'i/ J/' , (1.3) 

where ht : kf ~ f'h, under the relation 

X-

t ' 
•Y' 

X—^^ X' 

— ^ y 

We use the notation {k, h, ht} for the element represented by the square (1.3). 

REMARK. In the definition of the categories HB and H"^ the category Top of topological 
spaces can be replaced by an arbitrary groupoid enriched category, i.e. any 2-category 
with invertible 2-cells. 

In particular we can replace the category Top by the category Tpp^ and fix an object 
b of Top"^, i.e. a map b: A-^ B. The resulting track homotopy category over b can be 
described as a partially coherent homotopy category Ht, under A and over B. An object 
of Hb is a factorization (cr, p) of 6, i.e. a diagram 

-^X 
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where cr, p are maps of spaces such that pa = 6. An arrow from (cr, p) to (r, 77) in Hh is 
an equivalence class {u, pt) of a diagram of the form 

A=-A 

'\ I' 

B — B 

(1.4) 

where the upper square commutes (i.e. tx is a map under A from a to r ) and {pt}^ is the 
rrac^ Mw<ier A (relative homotopy class under A) of a homotopy under A pt : p cf "̂  ryu. 
If we write (u, {pt}"^) for the diagram (1.4) then the equivalence relation is given by 
the formula 

{u,{pt}^)r^{u',{pt-^riut}'^) 

whenever Ut : u c:̂ "̂  u' is a homotopy under A. Here -f refers to the usual track addition 
of homotopies. 

Note that in the case 6 = 1^, our category Hb provides a (partially) coherent version 
of the category of ex-spaces (see also [1]). 

2. Vogt's lemma and the characterization of isomorphisms 

In order to characterize the isomorphisms in our categories the following result due to 
Vogt [25] is invaluable. 

2.1. LEMMA. Let f : X -^ Y, g : Y --^ X be homotopy inverses and let ht \ gf i^^lx 
be a homotopy. Then there exists a homotopy kt \ fg ':::i Xy such that {fht} = {ktf} 
and {htg} = {gh}. 

PROOF. By hypothesis there is a homotopy rpt : fg — W- The trick is to choose fct = 
il^x-tfg -{- fhtg -f ipt. Then the lemma is a consequence of 2-categorical properties of 
the track composition. For the rectangle 

X 

X 

^Y 

'̂ -y î  x^ ^-^ 

4 V II 
Y—^X 
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certainly represents the track {fh\-t + hf}- However, examining it one sees that the 
tracks can be cancelled so that {fht} = {ktf}- Next, by making various internal can-
cellations we see that the following two squares represent the same composite track. 

Y — 

4 
Y 

^X 

^Y 

^^-±^X=—X-^Y 

^ ' - ^ 4 '^ II '"•- i^ I'' 

Y — Y-^-*X 

4 v* II "̂-y \f 

X—r^Y — Y 

Y—^-^X-

II ^-y i/ 
1-

^x- ^x 
However, by cancelling the central square of the left diagram with the square immediately 
below it, we find that the left diagram represents the track {gkt -h h\-tg}. Since the right 
hand square cancels to the trivial track, we have proved that 

{gkt} = {htg}, 

as required. D 

We now turn to the characterization of isomorphisms in our coherent homotopy cate-
gories. 

2.2. PROPOSITION. Let {h^ht} £ TiBifyg) ^^ represented by the homotopy commutative 
square (1.2). Then {/i,/it} is an isomorphism of HB if and only if h is a homotopy 
equivalence. 

PROOF. If {/i',/ij} is inverse to {/i,/it} in HE then certainly h' is a homotopy inverse 
of h. Conversely, suppose that /i is a homotopy equivalence. Then by Vogt's lemma we 
may choose a homotopy inverse h' of h and homotopies 

ktih'hc^ Ix, k[:hh' ^IE 

such that {hkt} = {k^h}. Then the diagram 

= X E-^X-

^-t/f 

E-

h.\-th 

E 

•B- •B 

represents an element of Hsig,/) which is inverse to {h,ht}. This can be seen by 
composing diagrams, observing that in the square 
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X 
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we may first cancel hkt and k[_^h, and then ht and h \-t' 

2.3. COROLLARY. {d)lf f,f' \ X -^ B are spaces over B such that / ^ / ' then f and 
f are isomorphic in KB- (b) Every object in HB is isomorphic to afibration. 

PROOF, (a) Choose a homotopy ht : f c::^ f and consider diagram (1.2) with /i, E and g 
replaced by lx> X and /' . (b) In the mapping track factorization of f : X —^ B 

X- -^E- -^B 

(see, e.g., [7, (5.27)]) j is a homotopy equivalence and p is a fibration. Now consider 
diagram (1.2) with h and g replaced by j and p, ht being the constant homotopy. D 

REMARK. Proposition 2.2 allows us to relate the track homotopy category over B, HB, 

and the homotopy category HO{TOPB) mentioned in the introduction. By definition 
HO{TOPB) is the category of fractions obtained from the category TopB of spaces over 
B by formally inverting those maps over B, h : f --^ g (see diagram (1.1)) such that 
h: X -^ E is 2Ln ordinary homotopy equivalence. 

Let 7 : TopB -^ HB be the functor which is the identity on objects and which maps 
a commutative diagram (1.1) into the class of the corresponding diagram (1.2) with the 
track of the constant homotopy / ĉ^ / . Then by Proposition 2.2 and the universal property 
of a category of fractions we obtain an induced functor 

7 : HO{TOPB) -^ HB 

which is the identity on objects. It has been proved [16] that 7 is an isomorphism of 
categories. 

In the next proposition we characterize the isomorphisms of W^ 

2.4. PROPOSITION. Let {k,h,ht} € H\f,f) be represented by the homotopy commu-
tative square (1.3). Then {fc, /i, ht} is an isomorphism ofH^ if and only if k and h are 
homotopy equivalences. 

PROOF. If {fc', k', h[} is inverse to {fc, /i, ht} in H^ then certainly k' and /i' are homo-
topy inverses of k and h respectively. Conversely, suppose that k and h are homotopy 
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equivalences. Then by Vogt's lemma we may choose homotopy inverses A:' and h' of k 
and h respectively and homotopies 

<̂ t : A^A:'̂  l y , <;̂ ': A;'A: :^ ly , ipt ' hh'c^ Ix', tpt'-h'h c:^ Ix 

such that {(l>tk} = {A;0J} and {t/^th} = {hijj[}. Then an inverse for {k,h,ht} is given 
by the square 

as can be seen by composing diagrams and cancelling tracks appropriately in an argument 
similar to that given in the proof of Proposition 2.2. D 

2.5. COROLLARY, (a) If f,f : X -^Y are maps such that f ĉ  / ' , then f and f are 
isomorphic as objects ofV}. (b) Every object f in V} is isomorphic to afibration. (c) 
Every object f inV} is isomorphic to a cofibration. 

The proof is similar to that given for Corollary 2.3, except that for part (c) we have to 
use the mapping cylinder factorization of / into a cofibration followed by a homotopy 
equivalence (see, e.g., [7, (1.27)]). 

Finally the isomorphisms in Hb are characterized as follows. 

2.6. PROPOSITION. An arrow {u^pt} ofHt represented by diagram (1.4) is an isomor-
phism in Hb if and only if u, viewed as a map under A, u : a -^ r, is a homotopy 
equivalence under A (i.e. u represents an isomorphism ofTap^h). 

REMARK. For a general investigation of homotopy equivalences in 2-categories we refer 
to Marcum [21]. 

3. Coherent homotopy over B and fibrewise homotopy 

In this section we describe the relation between our coherent homotopy categories and 
the corresponding 'rigid' homotopy categories based on strictly commutative diagrams. 

Let JB be a topological space. The functor 7 : Taps —* WB described in Section 2 
induces a functor 

G : TapBh -^ HB-



204 K.A. Hardie and K.H. Kamps Chapter 5 

If we denote the set of morphisms in Topsh from / to p by [ / , ^ ] B and write [h]B for 
the element of [f,g]B represented by (1.1), then G is given by the formula 

0[h]B = {hJ}, 

where / denotes also the (track of) the constant homotopy f ':^ f. 

3.1. PROPOSITION. If g : E -^ B is afibration, then, for any space over B, f the map 
O :[f,g]B -^ T^B{f,g) is a bijection. 

For the proof we need the following fundamental lemma. 

3.2. LEMMA. In the diagram 

h 
XE 

h' 

let h^h! : f ^^ g be maps over B. Suppose g is a fibration. Then if h c^ h' via a 
homotopy ht : hc=i h' such that {ght} = { /} it follows that h ~ B h'. 

PROOF. Let Ht^s : XxIxI-^Bhta homotopy of homotopies such that 

Ht,o = ght, Ht,\ = Ho,s — H\^s — /• 

Since ^ is a fibration we can lift Ht^s to a homotopy 

Kt^s'-XxIxI^E 

such that Ktfi = ht. Then we have homotopies over B, KQ^S • h c::tB ^o,b ^t,i • 
Ko^i c^B Ki^u Ki^i.s : i^i,i ^ B h'. It follows that h ~ B h\ D 

PROOF OF 3.1. Let {/i, ht} € HB{f,g) be represented by the square (1.2). Since p is a 
fibration there exists a homotopy /ij : /IQ ~ /i such that gh[ = ht. Then [h'^JB € [/»p]i5 
and we have 

e[K]B = {h^j} = {Kht} 

by definition of the relation ~ in Section 1. This proves that 0 is surjective. To see that 
e is injective let [/I]B, [h']B G [ / , ^ ] B and suppose 9[h]B = 9[h^]B- Then by definition 
of ~ there exists a homotopy ht : h:^ h' such that {ght} = { / } . Since ^ is a fibration, 
we can apply Lemma 3.2 and obtain [/I]B = [h']B' O 

REMARK. Both Lemma 3.2 and Proposition 3.1 hold under the weaker assumption that 
g is an /i-fibration (see [7, (6.4)]). 
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As a corollary to (2.2) and (3.1) we obtain a proof of a theorem of Dold ([8, 6.1]) 
separating arguments involving homotopy equivalences from arguments using fibrations 
in a transparent way. 

3.3. COROLLARY. Let 

^E' 

B 

be a commutative diagram of maps and suppose that p and p' are fibrations. Then if h is 
a homotopy equivalencey h is a fibre homotopy equivalence {i.e. \h]B is an isomorphism 
ofTopBh). 

PROOF. We have to prove that the set maps 

WB^ ' \P^P]B -^ \P,P']B, [hJB* : \P\P]B \p\p'] 

induced by composition of maps over B are bijective. In the case of the first we may 
argue that in the commutative diagram of sets 

\P.P]B 
[hU 

\P,P']B 

nB{p.p)j^nB{p.p') 

where the bottom map is induced by composition in HB^ the other three arrows are 
bijections. The proof of the second bijection is similar. D 

Finally, by Corollary 2.3(b) and Proposition 3.1 we obtain: 

3.4. COROLLARY. Let Tsh denote the full subcategory ofTapsh whose objects are all 
spaces over B which are fibrations. Then the functor 0 : Topsh —• HB restricts to an 
equivalence of categories Tsh —> HB-

The rigid analogue of the category Ti^ is the classical pair-homotopy category Top^h. 
The assignment which sends a commutative square of maps to the corresponding homo-
topy commutative square (endowed with the track of the constant homotopy) induces a 
functor 

e.Top^h-^n^ 

which is the identity on objects. We list some properties of O obtained by arguments 
similar to those given above. 
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3.5. PROPOSITION, e : Top^h{f, f) -^ H\f, f) is a bijection if either f is afibration 
or f is a cofibration. 

3.6. COROLLARY. Let Topjrh (resp. Topl^h) denote the full subcategory ofTop^h whose 
objects are all fibrations (resp. cofibrations). Then the functor 0 restricts to an equiva-
lence of categories Top]ph -^ V} {resp. Top^h -^V}). 

Ifb'.A-^B'isdi map and 

are objects of H^ (so that pa — rfr = b), then we have a canonical map 

e : [(a,p),(r,r7)]^^Wfc((a,p),(r,r7)), (3.7) 

where [(cT,p), {T^rj)]^ denotes the classical homotopy set under A and over B (see [7, 
(0.26)]). As before 0 is induced by an assignment which views a commutative diagram 
of the form 

^Y (3.8) 

as a homotopy commutative diagram. The following result corresponds to 3.1 and 3.5. 

3.9. PROPOSITION. If {ax Ijo î], r/), hence also (a, 77) has the CHEP {covering homotopy 
extension property), then the map 0 in (3.7) is a bijection. 

Recall that a pair of maps (a, r/), cr : i4 —> X, 77: y —> JB, is said to have the CHEP 
if for any map f : X -^Y and any pair of homotopies {(t>ti'^t) such that <j)t'. fa c:i (t>\, 
rfjt : 7]f c:i ^1 and 7}(l>t = il)t(T there exists a homotopy $t : / :̂  $1 such that ^t^ = ^t 
and rj^t = -0^ 

Note that by a result of Str0m ([24, Theorem 4]) a pair (a, r}) has the CHEP if a is a 
closed cofibration and r; is a fibration. Further examples are listed in [3, 2.2]. 

Combining Proposition 2.6, the Eckmann-Hilton dual of Corollary 3.3 and Proposition 
3.9, the method of proof of Corollary 3.3 leads to the following comparison (bridging) 
theorem. 

3.10. COROLLARY. Let (3.8) be a commutative diagram in Top such that cr, r are closed 
cofibrations and p, rj are fibrations. Then ifu is a homotopy equivalence, u is a homotopy 
equivalence under A and over B. 
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4. Model categorical aspects 

In this section we show how certain model categorical properties (cf. Quillen [23], 
K.S. Brown [4], Baues [2]) of topological spaces arise in our theory in a natural and 
transparent way. 

4.1. PROPOSITION. Let 

(4.2) 

be a pullback with p afibration. Then (a) ifp is a homotopy equivalence, so is p'; (b) if 
a is a homotopy equivalence, so is (3. 

Baues [2, Chapter 1], shows that 4.1(a) and 4.1(b) are equivalent in the presence of 
his axioms (Fl) and (F3). We shall see that 4.1(a) is a consequence of Dold's theorem 
3.3 whereas 4.1(b) follows from Vogt's lemma 2.1. (An alternative proof of 4.1(b) based 
on homotopy pullback theory will be given in Section 5.) 

Let a: B' ^ B bt 2i map. Then by choosing a pullback p' = a*(p) : E' ^ B' for 
each object p : E —* B of Tops we obtain a functor 

a* :TopB-^TopB'. 

Note that a* transforms a homotopy over B into a homotopy over B\ Hence there is 
an induced functor a* : Topsh —• TopB'h. Consider the diagram 

E ^ - 5 

B 

If p is a homotopy equivalence and a fibration, then by Corollary 3.3, p : p —> 1^ is 
a fibre homotopy equivalence, i.e. [P]B is an isomorphism of Topsh. It follows that in 
diagram (4.2) p' is a fibre homotopy equivalence, in particular a homotopy equivalence. 

PROOF OF 4.1(b). Let a ' : S -^ B ' be a homotopy inverse of a. By Vogt's lemma there 
are homotopies 

(l>t : \B - Oia', (j)[ : \B' — OL'OL 

such that {oL(j)[] = {(t)ta}. Since p and hence p' are fibrations, there are homotopies 

tjJt'.ExI -^E, il;[:E' xl -^E' 
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such that V'o = l^;, V'o = ^£?'' P^t = ^tP> P''^t = ^'tP'- Since p^i — (jy^p — aa'p, by 
the pullback property, we have an induced map 

such that /3/3' = V̂ i and p'/?' = a'p. We claim that 0' is a homotopy inverse of /?. Since 
^^ ' = -01 ~ -00 = l£; it remains to show that (i'0 ĉ  l^;/. We compare (30'(3 and /Si/;'!. 
We observe that 

p/3/3'/3 = ap'0'0 = aa'p/3 = aa'ap' = a^ip ' = apVi = P/3^i-

Hence 0(3'(3 and ^^{ can be viewed as maps over B. Choose a homotopy 

Then we have 

{P7t} = {p^x-t0^p0^lj't} = {0i-tP/3 -f apV;} = {01-tap' + a^Jp'} 

= {aa'ap'}. 

Since p is a fibration, it follows by Lemma 3.2 that 00'0 C^B 0'^i' We choose a 
homotopy over B, pt • 00'0 —B 0'^]- By the pullback property we obtain a homotopy 
over B', pj : 0'0 :^B' V̂ J* hence 00' ~ ^J — V̂o "= If^s as required. D 

5. Homotopy puUback 

In this section we explain how homotopy pullbacks can be interpreted as products in 
the category HE. AS a corollary we obtain the homotopy theorem for fibrations (see [7, 
(7.22)]). The notion of a homotopy pullback has been defined in Mather [22]. We slightly 
reformulate the definition in terms of homotopy commutative squares. 

5.1, DEFINITION. A homotopy commutative square 

(5.2) 

where gt: g0 c:^ fa is called a homotopy pullback if the following holds: 
(HPB 1) If 

Y 

{hi}/ 

—^B 

(5.3) 
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is another homotopy commutative square where hi : gv c:̂  fu, then there exists a map 
(f): Z -^ P and a decomposition of (5.3) 

Z — Z—^^X 

{Ot)/A {9tl/ 

(5.4) 

Y- ^B 

(i.e. the track represented by (5.4) is equal to {/it}). 
(HPB 2) If we have another decomposition (5.4') of (5.3) with a map (/)' : Z -^ P and 

homotopies k[ : a<t)' c^ u, j^ : v c^ ^<}>', then there is a homotopy 

such that {oL(^x-t + kt} = {k^} and {jt -h P(t>t} = {ft}. 

Any homotopy commutative square (5.2) gives rise to a diagram 

where h is the composite gP, representing a diagram in WB-

9^ •h-^^f , 

where 'Kg = {/3, /i}, TT/ = {ot^gt}- Then the relevant observation is 

(5.5) 

5.6. PROPOSITION. If (5.2) is a homotopy pullbacK then (5.5) is a product diagram of f 
and g in the category HB-

The proof of Proposition 5.6 is straightforward but lengthy (see [13]). 

Now let p : £? —> JB be a fibration and let a, /3: A —̂  B be maps which are homotopic, 
ac^i 0. Suppose that 

D-^^E 

a*{p) P*{p) 

-^B 

(5.7) 
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are pullbacks. We want to compare the induced fibrations a*(p) and /3*(p). By Corol-
lary 2.3(a), a and /3 are isomorphic objects of HB- (If /it ^ Q: — /3 is a homotopy, then 
{1A,/ i t} : a -^ /? is an isomorphism.) Since p is a fibration, the diagrams (5.7) are 
homotopy pullbacks ([22, Lemma 19]). Thus Proposition 5.6 and the uniqueness prop-
erty of a product in a category together with Proposition 2.2 allows one to deduce the 
existence of a homotopy equivalence u : D -^ F such that the diagram 

is homotopy commutative. It follows by Proposition 2.2 that a* (p) and 0* {p) are iso-
morphic in HA' Hence by Proposition 3.1, they are isomorphic in TOPAK proving the 
homotopy theorem for fibrations. 

Proposition 5.6 can also be applied to give an alternative proof of Proposition 4.1(b). 
Since p is a fibration the diagram (4.2) is a homotopy puUback. So then 

p/3 = a x p « l B X p ? ^ p 

in HB- But this implies that /3 is a homotopy equivalence. 
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0. Introduction 

It is a truism that algebraic topology is a very young subject. In some of its most 
fundamental branches, the foundations have not yet reached a state of shared consensus. 
Our theme will be stable homotopy theory and an emerging consensus on what its 
foundations should be. The consensus is different than would have been the case as 
recently as a decade ago. We shall illustrate the force of the change of paradigm with new 
constructions of some of the most basic objects in modern algebraic topology, namely the 
various spectra and cohomology theories that can be derived from complex cobordism. 
The two following articles will give introductions to completions in stable homotopy 
theory and to equivariant stable homotopy theory. The three papers have a common 
theme: the relationship between commutative algebra and stable homotopy theory, both 
relations of analogy and relations of application. 

Stable homotopy theory began around 1937 with the Freudenthal suspension theorem. 
In simplest terms, it states that, if q is small relative to n, then 7rn4.g(5'̂ ) is indepen-
dent of n. Stable phenomena had of course appeared earlier, at least implicitly: reduced 
homology and cohomology are examples of functors that are invariant under suspension 
without limitation on dimension. Stable homotopy theory emerged as a distinct branch 
of algebraic topology with Adams' introduction of his eponymous spectral sequence and 
his spectacular conceptual use of the notion of stable phenomena in his solution to the 
Hopf invariant one problem. Its centrality was reinforced by two related developments 
that occurred at very nearly the same time, in the late 1950's. One was the introduction of 
generalized homology and cohomology theories and especially iiT-theory, by Atiyah and 
Hirzebruch. The other was the work of Thorn which showed how to reduce the problem 
of classifying manifolds up to cobordism to a problem, more importantly, a solvable 
problem, in stable homotopy theory. 

The reduction of geometric phenomena to solvable problems in stable homotopy theory 
has remained an important mathematical theme, the most recent major success being 
Stolz's use of Spin cobordism to study the classification of manifolds with positive scalar 
curvature. In an entirely different direction, the early 1970's saw Quillen's introduction 
of higher algebraic i^-theory and the recognition by Segal and others that it could be 
viewed as a construction in stable homotopy theory. >\̂ ith algebraic if-theory as an 
intermediary, there has been a growing volume of work that relates algebraic geometry 
to stable homotopy theory. With Waldhausen's introduction of the algebraic iiT-theory of 
spaces in the late 1970's, stable homotopy became a bridge between algebraic X-theory 
and the study of diffeomorphisms of manifolds. Within algebraic topology, the study of 
stable homotopy theory has been and remains the focus of much of the best work in 
the subject. The study of nilpotence and periodic phenomena by Hopkins, Mahowald, 
Ravenel, and many others has been especially successful. 

We shall focus on the study of structured ring, module, and algebra spectra. This study 
plays a significant role in all of the directions of work that we have just mentioned and 
would have been technically impossible within the foundational consensus that existed a 
decade ago. 

Stable homotopy theory demands a category in which to work. One could set up the 
ordinary Adams spectral sequence ad hoc, as Adams did, but it would be ugly at best to 
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set up the Adams spectral sequence based on a generalized homology theory that way. 
One wants objects - called spectra - that play the role of spaces in unstable homotopy 
theory, and one wants a category in which all of the usual constructions on spaces are 
present and, up to homotopy, the suspension functor is an equivalence. At this point, we 
introduce a sharp distinction: there is a category of point-set level objects, and there is 
an associated derived category. There has been consensus on what the latter should be, 
up to equivalence of categories, since the fundamental work of Boardman in the 1960's. 
The change in paradigm concerns the point-set level category that underlies the stable 
homotopy category. There is a growing recognition that one needs a good point-set level 
category in order to study stable topological algebra seriously. 

There is an analogy with algebra that is fundamental to an understanding of this area 
of mathematics. Suppose given a (discrete) commutative ring R, It has an associated cat-
egory ^R of (Z-graded) chain complexes, there is a notion of homotopy between maps 
of chain complexes, and there is a resulting homotopy category h^R. However, this is 
not the category that algebraists are interested in. For example, if ii-modules M and N 
are regarded as chain complexes concentrated in degree zero, then, in the derived cate-
gory, the homology of their tensor product should be their torsion product Torf (M, N). 
Formally, the fundamental invariants of chain complexes are their homology groups, 
and one constructs a category that reflects this. A map of chain complexes is said to 
be a quasi-isomorphism if it induces an isomorphism of homology groups. The derived 
category SR is obtained by adjoining formal inverses to the quasi-isomorphisms. The 
best way to make this rigorous is to introduce a notion of cell J?-module such that every 
quasi-isomorphism between cell i?-modules is a chain homotopy equivalence (Whitehead 
theorem) and every chain complex is quasi-isomorphic to a cell ii-module. Then SR is 
equivalent to the ordinary homotopy category of cell iZ-modules. See [15], [21]. This is 
a topologist's way of thinking about the appropriate generalization to chain complexes 
of projective resolutions of modules. 

We think of the sphere spectrum S as the analog of R. We think of spectra as analogs 
of chain complexes, or rather as a first approximation to the definitive analogs, which 
will be 5-modules. We let S^ denote the category of spectra. There is a notion of 
homotopy of maps between spectra, and there is a resulting homotopy category hy. 
The fundamental invariants of spectra are their homotopy groups, and a map of spectra 
is a weak equivalence if it induces an isomorphism of homotopy groups. The stable 
homotopy category, which we denote by hy, is obtained by formally inverting the weak 
equivalences. This is made rigorous by introducing CW spectra. A weak equivalence 
between CW spectra is a homotopy equivalence and every spectrum is weakly equivalent 
to a CW spectrum. Then hy is equivalent to the ordinary homotopy category of CW 
spectra. 

Now the category J^R has an associative and commutative tensor product. If we 
regard i? as a chain complex concentrated in degree zero, then i? is a unit for the tensor 
product. A differential i?-algebra A is a chain complex with a unit R —> A and product 
A^RA —• A such that the evident associativity and unity diagrams commute. It is 
commutative if the evident commutativity diagram also commutes. These are, obviously 
enough, point-set level structures. Algebraists would have trouble taking seriously the 
idea of an algebra defined in &R, with unit and product only defined in that category. 
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The category y has a smash product but, in contrast with the tensor product, it 
is not associative, commutative, or unital. The induced smash product on the stable 
homotopy category hy is associative and commutative, and it has S as unit. Topologists 
routinely study ring spectra, which are objects E of hy with a unit r] : S —> E 
and product (j) : E A E —> E such that the evident unit diagrams commute; that is, 
</> o (r/ A id) = id = (/> o (id AT/) in hy. Similarly, E is associative or commutative if the 
appropriate diagrams commute in hy. Given that the point-set level smash product is 
not associative or commutative, it would seem at first sight that these up to homotopy 
notions are the only ones possible. 

It is a recent discovery that there is a category ^s of 5-modules that has an associative, 
commutative, and unital smash product A5 [11]. Its objects are spectra with additional 
structure, and we say that a map of 5-modules is a weak equivalence if it is a weak 
equivalence as a map of spectra. The derived category ^s is obtained from ^ 5 by 
formally inverting the weak equivalences, and ^5 is equivalent to the stable homotopy 
category hy. Again, this is made rigorous by a theory of CW S'-modules that is just 
like the theory of CW spectra. 

In the category ^ 5 , we have a point-set level notion of an 5-algebra R that is 
defined in terms of maps rj : S —> R and (f) : R As R —• R in JK's such that the 
standard unit and associativity diagrams commute on the point-set level; we say that 
R is commutative if the standard commutativity diagram also commutes. There were 
earlier notions with a similar flavor, namely the A^o and Eoo ring spectra introduced 
in [19], [20]. Here "i4oo" stands historically for "associative up to an infinite sequence 
of higher homotopies"; similarly, "J5oo " stands for "homotopy everything", meaning 
that the product is associative and commutative up to all higher coherence homotopies. 
With the definitions just given, the higher homotopies are hidden in the definition of the 
associative and commutative smash product in ^ 5 , but these definitions are essentially 
equivalent to the earlier ones, in which the higher homotopies were exhibited in terms of 
an "operad action". It is tempting to simply call these objects associative and commutative 
ring spectra, but that would be a mistake. These terms have long established meanings, 
as associative and commutative rings in the stable homotopy category, and the more 
precise point-set level notions do not make the older notions obsolete: there are plenty 
of examples of associative or commutative ring spectra that do not admit structures of 
Aoo or Eoo ring spectra. It is part of the new paradigm that one must always be aware of 
when one is working in the derived category and when one is working on the point-set 
level. 

Now fix an 5-algebra R. An ii-module M is an 5-module together with a map 
II : R As M —> M such that the evident unit and transitivity diagrams commute. 
Let ^R be the category of J?-modules. Again we have a homotopy category hJ^R 
and a derived category QR that is obtained from it by inverting the weak equivalences, 
by which we mean the maps of i?-modules that are weak equivalences of underlying 
spectra. The construction of ^R is made rigorous by a theory of cell /?-modules, the one 
slight catch being that, unless R is connective, in the sense that its homotopy groups are 
zero in negative degrees, we cannot insist that cells be attached only to cells of lower 
dimension, so that our cell i?-modules cannot be restricted to be CW i?-modules. These 
categories enjoy all of the good properties that we have described in the special case 



218 A.D. Elmendorf et ai Chapter 6 

R = S. There is an associative, commutative, and unital smash product over R. We can 
therefore go on to define H-algebras and commutative J?-algebras A in terms of point-set 
level associative, unital, and commutative multiplications A ARA —> A. We can also 
define derived category level associative and commutative i?-ring spectra A, exactly like 
the classical associative and commutative ring spectra in the stable homotopy category. 

It is the derived category &R that we wish to focus on in describing the current state 
of the art in stable homotopy theory. We can mimic classical commutative algebra in 
this category. In particular, for an ideal / and multiplicatively closed subset Y in the 
coefficient ring R^ = 7r*(i2), we will show how to construct quotients M/IM and 
localizations M[y~^]. When applied with R taken to be the representing spectrum MU 
for complex cobordism, these constructions specialize to give simple constructions of 
various spectra that are central to modem stable homotopy theory, such as the Morava 
X-theory spectra. Moreover, we shall see that these spectra are MU-ring spectra. 

This account is largely a summary of parts of the more complete and technical pa-
per [11], to which the reader is referred for further background, detailed proofs, and 
many more applications. 

1. Spectra and the stable homotopy category 

We here give a bare bones summary of the construction of the stable homotopy category, 
referring to [16] and [11] for details and to [22] for a more leisurely exposition. We aim to 
give just enough of the basic definitional framework that the reader can feel comfortable 
with the ideas. 

By Brown's representability theorem [6], if E* is a reduced cohomology theory on 
based spaces, then there are CW complexes En such that, for CW complexes X, E^{X) 
is naturally isomorphic to the set [X, En] of homotopy classes of based maps X —> En. 
The suspension isomorphism E^{X) = E^'^^ i^X) gives rise to a homotopy equivalence 
dn : En —> f2En-\-\. The object E = {En.oTn} is called an i7-spectrum. A map 
/ : E —> E' of i7-spectra is a sequence of maps /n : En —• E'^ that are compatible 
up to homotopy with the equivalences dn and a'^. The category of i?-spectra is equivalent 
to the category of cohomology theories on based spaces and can be thought of as an 
intuitive first approximation to the stable homotopy category. However, this category does 
not have a usable theory of cofibration sequences and is not suitable for either point-set 
level or homotopical work. For that, one needs more precise objects and morphisms that 
are defined without use of homotopies but that still represent cohomology theories and 
their maps. More subtly, one needs a coordinate-free setting in order to define smash 
products sensibly. The nth space En relates to the n-sphere and thus to E^. Restricting 
to spaces En is very much like restricting to the standard basis of W^ when doing linear 
algebra. 

A coordinate-free spectrum is indexed on the set of finite dimensional subspaces V 
of a "universe" [/, namely a real inner product space isomorphic to the sum E°° of 
countably many copies of E. In detail, writing W -V iox the orthogonal complement 
of V in VF, a spectrum E assigns a based space EV to each finite dimensional subspace 



Section 1 Modem foundations for stable homotopy theory 219 

V of f/, with (adjoint) structure maps 

when V CW, where Q^X is the function space F ( 5 ^ , X) of based maps S^ —^X 
and S^ is the one-point compactiiScation of W. The structure maps are required to 
satisfy an evident transitivity relation when V C W C Z, and they are required to be 
homeomorphisms. A map of spectra f : E —^ E' is SL collection of maps of based spaces 
fv : EV —> E'V for which each of the following diagrams commutes: 

EV ^ E'V 

crv,w ^v,w 

n^-VEW -^ ^^^ Q^-^E^W 

We obtain the category y = yU of spectra indexed on f/. We obtain an equivalent 
category if we restrict to any cofinal family of indexing spaces. If we drop the requirement 
that the maps av,w be homeomorphisms, we obtain the notion of a prespectrum and the 
category ^ = ^U of prespectra indexed on U. The forgetful functor £ : y —^ ^ has 
a left adjoint L. When the structure maps a are inclusions, {LE)(y) is just the union of 
the spaces Q^-^EW for F C Ŵ . We write a : S^'^EV —> EW for the adjoints 
of the maps a, where S^X = X AS^. 

EXAMPLES 1.1. Let X be a based space. The suspension prespectrum U^X is the pre-
spectrum whose Vth space is E^X\ the structure maps a are the evident identifica-
tions E^-^E^X ^ E^X. The suspension spectrum of X is E°^X = L77~X. Let 
QX = \Jfi^E^X, where the union is taken over the inclusions obtained from the 
adjoints of the cited identifications. Then {E'^X){V) = Q{E^X). The functor E°^ 
from based spaces to spectra is left adjoint to the functor that assigns the zeroth space 
EQ = ^({0}) to a spectrum E. More generally, for a fixed subspace Z c U, define 
n^^X to be the analogous prespectrum whose Vth space is S^~^X if Z C V and a 
point otherwise and define E^^X = LIIz^X. Then i7^ is left adjoint to the functor 
that sends a spectrum to its Zth space EZ\ these functors are generally called "shift 
desuspensions". 

Functors on prespectra that do not preserve spectra are extended to spectra by applying 
the functor L. For example, for a based space X and a prespectrum E, we have the 
prespectrum E AX specified by {E A X){V) = EV A X. When E is a spectrum, the 
structure maps for this prespectrum level smash product are not homeomorphisms, and 
we understand the smash product i^ AX to be the spectrum L{£EAX). Function spectra 
are easier. We set F{X,E){V) = F{X,EV) and find that this functor on prespectra 
preserves spectra. If we topologize the set y{E, E') as a subspace of the product over 
V of the function spaces F{EV, E'V) and let 3^ be the category of based spaces with 
sets of maps topologized as function spaces, then there result homeomorphisms 

y[EAX,E') ^ 3r{x,y{E,E')) ^ y[E,F[x,E')). 
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Recall that a category is said to be cocomplete if it has all colimits and complete if it 
has all limits. 

PROPOSITION 1.2. The category y is complete and cocomplete. 

PROOF. Limits and colimits are defined on prespectra spacewise. Limits preserve spectra, 
and colimits of spectra are obtained by use of the left adjoint L. D 

We write 1+ for the union of a space Y and a disjoint basepoint. A homotopy in the 
category of spectra is a map EAl^ —• E'. We have cofibration and fibration sequences 
that are defined exactly as on the space level (e.g., [29]) and enjoy the same homotopical 
properties. Let [E, E'] denote the set of homotopy classes of maps E —y E'\ we shall 
later understand that, when using this notation, E must be of the homotopy type of a 
CW spectrum. For based spaces X and Y with X compact, we have 

[S^^X^E'^Y] ^colim [E''X,S''Y]. 

Fix a copy of E°° in [/. In the equivariant generalization of the present theory, it is 
essential not to insist that R°° be all of [/, but the reader may take U = M°° here. We 
write E^ = S^n. For n ^ 0, the sphere spectrum 5^ is E'^S'^, For n > 0, the sphere 
spectrum 5"'^ is E^S^. We write S for the zero sphere spectrum. The nth homotopy 
group of a spectrum E is the set [S^, E] of homotopy classes of maps S'^ —• E, and 
this fixes the notion of a weak equivalence of spectra. The adjunctions of Examples LI 
make it clear that a map / of spectra is a weak equivalence if and only if each of its 
component maps fz is a weak equivalence of spaces. The stable homotopy category hy 
is constructed from the homotopy category of spectra by adjoining formal inverses to the 
weak equivalences, a process that is made rigorous by CW approximation. 

The theory of CW spectra is developed by taking sphere spectra as the domains of 
attaching maps of cells CS'^ = S'^ A I [16, I§5]. The one major difference from the 
space level theory of CW complexes is that we have to construct CW spectra as unions 
E = UEny where EQ is the trivial spectrum and where we are allowed to attach cells 
of arbitrary dimension when constructing JSn+i from jEn. There results a notion of a 
cell spectrum. We define a CW spectrum to be a cell spectrum whose cells are attached 
only to cells of lower dimension. Thus CW spectra have two filtrations, the sequential 
filtration {En} that gives the order in which cells are attached, and the skeletal filtration 
{E^}, where E^ is the union of the cells of dimension at most q. We say that a map 
between CW spectra is cellular if it preserves both filtrations. In fact, by redefining the 
sequential filtration appropriately, we can always arrange that the sequential filtration is 
preserved. We have three basic results, whose proofs are very little different from their 
space level counterparts. 

THEOREM 1.3 (Whitehead). IfE is a CW spectrum and f : F —> F' is a weak equiv-
alence of spectra^ then /* : [£*, F] —> [E^ F'] is an isomorphism. Therefore a weak 
equivalence between CW spectra is a homotopy equivalence. 

THEOREM 1.4 (Cellular approximation). Let A be a subcomplex of a CW spectrum E, let 
F be a CW spectrum, and let f : E —• F be a map whose restriction to A is cellular 
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Then f is homotopic relative to A to a cellular map. Therefore any map E —> F 
is homotopic to a cellular map, and any two homotopic cellular maps are cellularly 
homotopic. 

THEOREM 1.5 (Approximation by CW spectra). For a spectrum E, there is a CW spec-
trum FE and a weak equivalence 7 : FE —> E. On the homotopy category hy, F is 
a functor such that 7 is natural. 

It follows that the stable category hy is equivalent to the homotopy category of 
CW spectra. Homotopy-preserving functors on spectra that do not preserve weak equiv-
alences are transported to the stable category by first replacing their variables by weakly 
equivalent CW spectra. 

Observe that there has been no mention of space level CW complexes in our devel-
opment so far. The total lack of hypotheses on the spaces and structural maps of our 
prespectra allows considerable point-set level pathology, even if, as usual in modern al-
gebraic topology, we restrict attention to compactly generated weak Hausdorff spaces. 
Recall that a space X is weak Hausdorff if the diagonal subspace is closed in the com-
pactly generated product XxX. More restrictively, a space X is said to be LEC (locally 
equiconnected) if the inclusion of the diagonal subspace is a cofibration. We record the 
following list of special kinds of prespectra both to prepare for our discussion of smash 
products and to compare our definitions with those adopted in the original treatments of 
the stable homotopy category. 

DEHNITION 1.6. A prespectrum D is said to be 

(i) JC-cofibrant if each a : S^'^DV -* DW is a based cofibration (that is, satisfies 
the based homotopy extension property), 

(ii) CW if it is i7-cofibrant and each DV is LEC and has the homotopy type of a 
CW complex, 

(iii) strictly CW if each DV is a based CW complex and the structure maps a are the 
inclusions of subcomplexes. 

A spectrum E is said to be i7-cofibrant if it is isomorphic to LD for some i7-cofibrant 
prespectrum D\ E is said to be tame if it is of the homotopy type of a i^-cofibrant 
spectrum. 

If JS is a spectrum, then the maps a are homeomorphisms. Therefore the underlying 
prespectrum £E is not i7-cofibrant unless it is trivial. However, it is a very weak condition 
on a spectrum that it be tame. We shall see that this weak condition is enough to avoid 
serious point-set topological problems. If Z) is a i7-cofibrant prespectrum, then the maps 
a are inclusions and therefore LD{V) is just the union of the spaces f2^~^DW. We 
have the following relations between CW prespectra and CW spectra. Remember that 
CW spectra are defined in terms of spectrum level attaching maps. 

THEOREM 1.7. IfD is a CW prespectrum, then LD has the homotopy type of a CW 
spectrum. If E is a CW spectrum, then each space EV has the homotopy type of a CW 
complex and E is homotopy equivalent to LD for some CW prespectrum D. Thus a 
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spectrum has the homotopy type of a ON spectrum if and only if it has the homotopy 
type of LD for some CW prespectrum D. 

In particular, spectra of the homotopy types of CW spectra are tame. 
Implicitly or explicitly, early constructions of the stable homotopy category restricted 

attention to the spectra arising from strict CW prespectra. This is far too restrictive for 
serious point-set level work, and it is also too restrictive to admit a sensible equivariant 
analogue. Note that such a category cannot possibly be complete or have well-behaved 
point-set level function spectra. 

One reason for focusing on IJ-cofibrant spectra is that they are built up out of their 
component spaces in a simple fashion. 

PROPOSITION 1.8. If E = LD, where D is a E-cofibrant prespectrum, then 

E ^ colim E?^DV, 
V ^ 

where the colimit is computed as the prespectrum level colimit of the maps 

E^a : E^DV ^ E^E^-^DV —^ E^DW. 

That is, the prespectrum level colimit is a spectrum that is isomorphic to E. The maps 
of the colimit system are shift desuspensions of based cofibrations. 

Another reason is that general spectra can be replaced functorially by weakly equivalent 
i7-cofibrant spectra. 

PROPOSITION 1.9. There is a functor K : ^U —> ^U, called the cylinder functor, such 
that KD is E-cofibrantfor any prespectrum D, and there is a natural spacewise weak 
equivalence of prespectra KD —• D. On spectra E, define KE = LKiE. Then there 
is a natural weak equivalence of spectra KE —• E. 

In practice, if one is given a prespectrum D, perhaps indexed only on integers, and 
one wishes to construct a spectrum from it that retains homotopical information, one 
forms E = LKD. Then 

-KniE) = colim -Kn-^-qDq, 
Q 

If D is an i7-spectrum that represents a given cohomology theory on spaces, then E = 
LKD is a genuine spectrum that represents the same theory. 

2. Smash products and twisted half-smash products 

The construction of the smash product of spectra proceeds by internalization of an "ex-
ternal smash product". The latter is an associative and commutative pairing 
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for any pair of universes U and U'. It is constructed by starting with the prespectrum 
level definition 

{E A E') {V e V) =EV h E'V. 

The structure maps fail to be homeomorphisms when E and E' are spectra, and we apply 
the spectrification functor L to obtain the desired spectrum level smash product. 

In order to obtain smash products internal to a single universe [/, we exploit the 
"twisted half-smash product". The input data for this functor consist of two universes 
U and U\ an unbased space A with a given map a : A -^ ^{U, C/'), and a spectrum 
E indexed on [7. The output is the spectrum A K £?, which is indexed on f/'. It must 
be remembered that the construction depends on a and not just on A, although different 
choices of a lead to equivalent functors on the level of stable categories. When A is a 
point, a is a choice of a linear isometry / : JJ —• C/' and we write /* for the twisted 
half-smash product. For a prespectrum J9, 

{UD){y') = Diy) A S^'-^^^\ where V = f'^ {y' n im/ ) . 

For a spectrum E, f^E is obtained by application of L to the prespectrum level con-
struction. The functor /* is left adjoint to the more elementary functor /* specified by 
(/*£")(F) = E'{f{V)). For general A and a, the intuition is that AK E is. obtained 
by suitably topologizing the union of the ot{a)^{E), Another intuition is that the twisted 
half-smash product is a generalization to spectra of the "untwisted" functor Â _ A X on 
based spaces X. This intuition is made precise by the following "untwisting formula" 
relating twisted half-smash products and shift desuspensions. 

PROPOSITION 2.1. For a map A —y J{U,U') and an isomorphism V = V\ where 
V CU and V C U\ there is an isomorphism of spectra 

A K E^X ^ A+ A E^.X 

that is natural in spaces A over ^{U, U') and based spaces X. 

The twisted-half smash product functor enjoys essentially the same formal properties 
as the space level functor AJ^ A X. The functor A ^ E is homotopy-preserving in 
E, and it therefore preserves homotopy equivalences in the variable E. However, it 
only preserves homotopies over ^{U^U') in A. Nevertheless, it very often preserves 
homotopy equivalences in the variable A. The following central technical result is an 
easy consequence of Propositions 1.8 and 2.1. 

THEOREM 2.2. Let E e yU be tame and let A be a space over J{U, U'). If(j>\A' —^ 
A is a homotopy equivalence, then (̂  K id : A' K J5 —^ A^E isa homotopy equivalence. 

Since AK E\s di CW spectrum if A is a CW complex and £J is a CW spectrum, this 
has the following consequence. 
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COROLLARY 2.3. Let E £ yU be a spectrum that has the homotopy type of a CW 
spectrum and let A be a space over J(J], U') that has the homotopy type of a CW 
complex. Then A^ E has the homotopy type of a CW spectrum. 

Now, as before, restrict attention to a particular universe U and write y = yU; again, 
the reader may think of U as R°°. We are especially interested in twisted half-smash 
products defined in terms of the following spaces of linear isometrics. 

NOTATIONS 2.4. Let W be the direct sum of j copies of U and let y{j) = y{W, U). 
The space -^(0) is the point z, where i : {0} ~> [/, and y{\) contains the identity map 
1 = id̂ r : U -^ U. The left action of Sj on U^ by permutations induces a free right 
action of Sj on the contractible space y{j). Define maps 

by 

7: y{k) X y{j,) X.. . X y{jk) — y{ji + • • • + j^) 

7(^;/i,..-,/fc) = ^o(/ i©---e/fc) . 

The spaces -Sf (j) form an operad [18, p. 1] with structural maps 7, called the hnear 
isometrics operad. Points / € J5f (j) give functors /* that send spectra indexed on U^ to 
spectra indexed on U. Applied to a j-fold external smash product E\ A-- - A Ej, there 
results an internal smash product f^{E\ A--- A Ej). AW of these smash products become 
equivalent in the stable category hy, but none of them are associative or commutative 
on the point set level. More precisely, the following result holds. 

THEOREM 2.5. Let yt C y be the full subcategory of tame spectra and let hyt be 
its homotopy category. On y^ the internal smash products f^{E A E') determined by 
varying / € -Sf (2) are canonically homotopy equivalent, and hyt is symmetric monoidal 
under the internal smash product. For based spaces X and tame spectra E, there is a 
natural homotopy equivalence E A X c:^ f^{E A S^X). 

This implies formally that we have arrived at a stable situation. As for spaces, the 
suspension functor E is given by EE = E AS^ and is left adjoint to the loop functor 
n given by QE = F{S\E). The cofibre Of of a map f : E —^ £" of spectra is the 
pushout E' U/ CE. 

THEOREM 2.6. The suspension functor E : hyt —> hyt is an equivalence of categories. 

A cofibre sequence E—^E' —> Of in yt gives rise to a long exact sequence of 
homotopy groups 

. ^^[E) ^ 7r,{E') - . n,{Cf) — n.^E) —>•••. 

PROOF. For based spaces X, E°°X is naturally isomorphic to {E^X) A 5* because the 
structural homeomorphisms a : EQ —> QE\ on spectra give an isomorphism between 
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their right adjoints. Thus, for tame spectra E, the previous theorem gives a natural 
homotopy equivalence 

E = EAS^c^ f.{EAi:°°S^) ^ f,{EAi:^S^) A S\ 

Therefore E is an equivalence of categories with inverse obtained by smashing with the 
(-l)-sphere spectrum S~^ = Ef^S^. It follows categorically that f2E c^ f^E A S'^) 
and that the unit and counit 

r):E —> nSE and e : SQE —^ E 

of the adjunction are homotopy equivalences. The last statement is a standard conse-
quence of the fact that maps can now be desuspended. D 

Note that only actual homotopy equivalences, not weak ones, are relevant to the last 
two results. For this reason among others, hyt is a technically convenient halfway house 
between the homotopy category of spectra and the stable homotopy category. 

3. The category of L-spectra 

We need a category of spectra with a canonical smash product. The category of Lr 
spectra that we introduce here will be shown in the next section to have an associative 
and commutative smash product Aj^. This product is not quite unital, but there is a 
natural unit weak equivalence A : 5 Aj^ M —• M. The 5-modules will be the Lrspectra 
such that A is an isomorphism. 

For / G J^{j) and Ei E S^u Theorem 2.2 implies that the inclusion {/} C ^{j) 
induces a homotopy equivalence 

/ . ( £ , A . . . A Ej) —^ i f (j) K (£, A . . . A Ej). 

The proof of Theorem 2.5 above is entirely based on the use of such equivalences. It 
therefore seems natural to think of 

^{3)^{ExA'"AEj) 

as a canonical j-fold smash product. It is still not associative, but it seems closer to 
being so. However, to take this idea seriously, we must take note of the difference 
between E and its "1-fold smash product" ^ ( 1 ) K E. The space -Sf(l) is a monoid 
under composition, and the formal properties of twisted half-smash products imply a 
natural isomorphism 

^ ( 1 ) K (^(1) KE)^ ( ^ (1 ) X ^ ( 1 ) ) K E, 

where, on the right, J^(l) x ^ ( 1 ) is regarded as a space over J f (1) via the composition 
product. This product induces a map /x : (^ (1) x Jf (1)) K E —> J^(l) x E, and the 
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inclusion {1} —^ ^ ( 1 ) induces a map ry : E —^ ^ ( 1 ) ix E, Thus it makes sense 
to consider spectra E with an action ^ : ^ ( 1 ) K £" —> E of the monoid jSf (1). It is 
required that the following diagrams commute: 

(jsf(i) X j^(i)) K £ - ^ 1 - ^ ^ ( 1 ) K JE; 

Y 

-^£; 

£ ; - - ^ ^ i f ( i ) K £ ; 

and 

DEFINITION 3.1. An L-spectrum is a spectrum E together with an action ^ of -^(1). 
A map f : E —^ E' oi L-spectra is a map of spectra such that the following diagram 
commutes: 

i f ( l ) K E ^^^^""^ > ^ ( 1 ) K JS' 

C£; 

E-

^ E / 

F 

We let c5̂ [L] denote the category of L-spectra. 

A number of basic properties of the category of spectra are directly inherited by the 
category of Lrspectra. 

THEOREM 3.2. The category of h-spectra is complete and cocomplete, with both limits 
and colimits created in the underlying category y. If X is a based space and M is an 
h-spectrum, then MAX and F{X, M) are h-spectra, and the spectrum level fibre and 
cofibre of a map of h-spectra are h-spectra, 

A homotopy in the category of L-spectra is a map MAl^ —> M'. A map of L-spectra 
is a weak equivalence if it is a weak equivalence as a map of spectra. The stable homotopy 
category hy[h] is constructed from the homotopy category of Lrspectra by adjoining 
formal inverses to the weak equivalences. There is a theory of CW L-spectra that is 
exactly like the theory of CW spectra, and, again, the construction of hy\h] is made 
rigorous by CW approximation. We have a free functor L from spectra to L-spectra 
specified by LB = JSf(l) K £;. The "sphere L-spectra" that we take as the domains 
of attaching maps when defining CW L-spectra are the free L-spectra hS^. Using the 
freeness adjunction 

y[h]{hE,M)^y{E,M), 

it is easy to prove Whitehead, cellular approximation, and approximation by CW 
Lrspectra theorems exactly like those stated for spectra in Section 1, and hy\h] is 
equivalent to the homotopy category of CW L-spectra. There is one catch: although 5 
and all other suspension spectra are Lrspectra in a natural way, using the untwisting 



Section 4 Modem foundations for stable homotopy theory 227 

isomorphism of Proposition 2.1 and the projection JSf(l) —> {*}, S does not have the 
homotopy type of a CW L-spectnim. However, it is not hard to see that the categories 
hy and hy[L] are equivalent. 

THEOREM 3.3. The following conclusions hold. 

(i) The free functor h'.y —> y[L] carries CW spectra to CW h-spectra. 
(ii) The forgetful functor y[L] —> y carries Lrspectra of the homotopy types of 

CW Lrspectra to spectra of the homotopy types of CW spectra. 
(iii) Every CW h-spectrum M is homotopy equivalent as an h-spectrum to hE for 

some CW spectrum E. 
(iv) IfEeyu for example ifE is a CW spectrum, then r/: E —> LB is a homotopy 

equivalence of spectra. 
(v) If M has the homotopy type of a CW h-spectrum^ then ^ : LM —> M is a 

homotopy equivalence of h-spectra. 

Therefore the free and forgetful functors establish an adjoint equivalence between the 
stable homotopy categories hy and hy[L]. 

4. The smash product of L-spectra and function L-spectra 

One of the most surprising developments of recent years is the discovery of an associative 
and commutative smash product Aj^ in the category of L-spectra. We proceed to define 
it. To begin with, observe that the monoid JSf (1) x JSf (1) acts from the right on J5f (2) 
and acts from the left on jSf (z) x y{j), via instances of the structural maps 7 of the 
linear isometries operad. Another instance of 7 gives rise to a map 

7 : if(2) x^( , )^^( , ) i f ( i ) X i f 0 ) - ^ i f ( i + j). (4.1) 

The space on the left is the balanced product (formally a coequalizer) of the two spec-
ified actions by J^(l) x J^(l) . The essential, elementary, point is that this map is a 
homeomorphism if i ^ I and j ^ 1. To see this, choose linear isometric isomorphisms 
s : U —• [/* and t : U —• U^. Composition on the right with 5 0 t gives vertical 
homeomorphisms in the commutative diagram 

^ ( 2 ) X^(i)xJ5f(,)^(i) X ^ ( j ) - ^ - ^ ^ ( 2 + j ) 

^{2) xj^mj^w -^(1) X y{i)^^L^y{2) 

and the lower map 7 is clearly a homeomorphism. Note also that J^(l) acts from the 
left on y{2) and that this action commutes with the right action of -Sf (1) x .if (1). 

Regard y{\) x J f ( l ) as a space over J^(f7^,f7^) via the direct sum of isometries 
map. If M and N are Lspectra, then JSf(l) x i f (1) acts from the left on the external 
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smash product M A iV via the map 

^ : (^(1) X ̂ (1 ) ) K ( M A iV) ^ (^(1) K M) A (^(1) K AT) 

^ M A i V . 

The operadic smash product of M and N is simply the balanced product (again, formally 
a coequalizer) 

MA<^N = ^ ( 2 ) K^(i)^^(i) (M A N). (4.2) 

The left action of ^ ( 1 ) on i f (2) induces a left action of jSf (1) on M Ajjf AT that gives 
it a structure of L-spectrum. Use of the transposition a e S2 and the commutativity of 
the external smash product easily gives a commutativity isomorphism 

T:M A^N — y N A ^ M . 

More substantially, there is a natural associativity isomorphism 

(M AsfN)A^P^M As {N A^ P). 

In fact, using the case z = 2 and 7 = 1 of the homeomorphism 7, we obtain isomorphisms 

( M A^ N) Aj^ P^-Sf (2) K-̂ (1)2 

(^(2) .<^(,)2 ( M A iV)) A (jSf (1) K^(,) P) 

^ (if(2) x^(|)2 ^{2) X if(1)) x^(,)3 (MANAP) 

^ i f (3 )^<^ ( , )3MAA^AP. 

The symmetric argument shows that this is also isomorphic to MA^f {N A^ P). In view 
of the generality of the homeomorphisms (4.1), the argument iterates to give 

MxA^'-'A^ Mj ^ i f (j) Kj^dp (M, A .. • A Mj), (4.3) 

where the iterated smash product on the left is associated in any fashion. 
On passage to the derived category hy[h], the smash product of L-spectra just con-

structed can be used interchangeably with the internal smash product on the stable cat-
egory hS^. To see this, one defines the latter by use of a linear isometric isomorphism 
/ : U^ —• U (not just an isometry). With this choice, it is not hard to check the 
following result. 

PROPOSITION 4.4. For spectra E and P, there are isomorphisms ofh-spectra 

LE AsfhF = if(2) xEAF^Lf.{EAF). 

For CW Lrspectra M and N, M Ase N is a CW h-spectrum with one (p -f q)-cell for 
each p-cell of M and q-cell of N. 
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However, we need a deeper result, one that depends on the fine structure of the linear 
isometries operad, to complete the comparison of smash products. By arguments like 
those in the proof of Theorem 2.6, its first statement implies its second statement. 

PROPOSITION 4.5. For h-spectra N, there is a natural weak equivalence of h-spectra 
(jj : hS t\se N —^ N, and S : 7rn{N) —> 7rn-{.\{SN) is an isomorphism for all 
integers n. Therefore the unit rj : Â  —> HEN and counit e : EQN —> N of the 
(X", Q)-adjunction are weak equivalences and any cofibre sequence 

iV-^iV' —. Cf 

of Lrspectra gives rise to a long exact sequence of homotopy groups 

. 7r,(iV) - > ir,{N') -^ -K.iCf) - ^ ^,_, (iV) - . • • •. 

It is a pleasant technical feature of the theory that this result holds whether or not the 
given JSf-spectra are tame. In particular, we have the following consequence, which is 
the Lrspectrum analog of the algebraic statement that, when computing torsion products, 
one need only resolve one of the tensor factors by a projective resolution. 

PROPOSFTION 4.6. If M is a CW Irspectrum and 0 : N —> N' is a weak equivalence of 
Lr spectra, then id Ajjf̂  : M l\se N —y M t\<£ N' is a weak equivalence of h-spectra. 

The previous results lead easily to the promised comparison between the internal smash 
product of spectra and the operadic smash product of L-spectra. 

THEOREM 4.7. For h-spectra M and N, there is a natural map of spectra 

a:f4MAN)—^MAsfN, 

and a is a weak equivalence when M is a CW h-spectrum and N is a tame spectrum. 
For any h-spectrum N, the functors (?) Aĵ f N arui /*(? A N) from hy[h] to hy are 
naturally isomorphic. 

Thus, under the forgetful functor, the operadic smash product in /i^[L] agrees with 
the internal smash product in hy. 

There is a function L-spectrum functor to go with the operadic smash product. The 
twisted half-smash product functor Ax E has SL right adjoint twisted function spectrum 
functor F[A^ E') and the external smash product has a right adjoint function spectrum 
functor. Using these functors and appropriate equalizer diagrams, dual to the coequalizer 
diagrams that were implicit in the definition of Aĵ f, we obtain the following result. 

THEOREM 4.8. There is a function h-spectrum functor F^{M, N) such that 

y[h]{M A^ N,P) ^ y[h]{M,F^{N,P)) 

for h-spectra M, N, and P. 
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Given the adjunction, we can deduce the homotopical behavior of F^ from that of 
Aj^. There is an internal function spectrum functor F that is induced from the external 
spectrum functor by use of our chosen linear isometric isomorphism / : U^ —> U. Our 
function jSf-spectrum functor gives a canonical substitute. 

PROPOSITION 4.9. If M is a CW h-spectmm and (f): N -^ N' is a weak equivalence of 
Lrspectra, then 

Fj^(id,0) : Fy[M,N) —^ F^{M,N') 

is a weak equivalence ofh-spectra. 

THEOREM 4.10. For Lrspectra M and N, there is a natural map of spectra 

a : Fy{M,N) —^ F{M,rN), 

and a is a weak equivalence when M is a CW h-spectrum. The forgetful functor 
hy[L] —> hy carries the function h-spectrum functor F^ to the internal function 
spectrum functor F. 

We must still address the question of units. 

PROPOSITION 4.11. For L-spectra N, there is a natural unit map ofh-spectra A : S Aj^ 
N —> N. It is a weak equivalence for any N, and it is a homotopy equivalence of 
Lr spectra if N is a CW h-spectrum. 

PROOF. Consider the map 7 of (4.1). It is a nontrivial property of the linear isometrics 
operad that 7, although not a homeomorphism, is a homotopy equivalence when i = 0 
and j > 0. When N is the free S-module L£ = J^(l) r< E generated by a spectrum E, 
X is given by the map 

SAshE=y{2) K^(,)^^(,) (^(0) K 5«) A (^(1) K E) 

^ (^(2) x^(,),^(,) y{0) X if(1)) K (5^ A £;) 

^ ^ ( 1 ) K £ = L E . 

Since 7 is a homotopy equivalence, Theorem 2.2 implies that A is a homotopy equivalence 
when E e y^ For general N, the map just constructed for hN induces the required 
map for iV by a comparison of coequalizer diagrams. Although the arguments are not 
transparent, the rest can be deduced from this. D 

There is one important case when A is an isomorphism. It turns out that the map 7 
of (4.1) is a homeomorphism when i = j = 0; that is, nonobviously since J^(l) is a 
monoid but not a group, the domain Jif (2)/J5f (1) x JSf (1) of (4.1) is then a point. This 
implies that S A^ S = S. More generally, it implies that the smash product over y 
precisely generalizes the smash product of based spaces, in the sense that 

s'^x A<e r°°y ^ r~(x A y). 
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5. The category of ^-modules 

Here, finally, is the promised definition of S'-modules. 

DEHNITION 5.1. Define an 5-module to be an Lrspectrum M which is unital in the sense 
that A : S /\^ M —> M is an isomorphism. Let ^s denote the full subcategory of 
y[h] whose objects are the 5-modules. For 5-modules M and A ,̂ define 

MAsN = MA^N and Fs{M,N) = S Ay F^[M,N). 

The justification for the name "iS-module" is given by the commutative diagrams 

SAsSAsM^^^ShsM M-^^SAsM 

idAA A and 

SASM ^M 

We consistently retain the notation M A<£ N when the given L-spectra M and N art 
not restricted to be 5-modules. We have the following examples of 5-modules. 

PROPOSITION 5.2. For any based space X, E°^X is an S-module, and 

S^X As S'^Y ^ E'^iX A Y). 

For any S-module M and any L-spectrum N, M A<e N is an S-module. In particular, 
S Ay N is an S-module for any Lr spectrum N. 

We have the following categorical relationship between y[h] and ^s-

LEMMA 5.3. The functor 

SAy{?):y[L] —^Jts 

is left adjoint to the functor Fy{S^ ?) : J^s —^ -^M ^^^ ̂ %^^ adjoint to the inclusion 

This implies that to lift right adjoint functors from .^[L] to ^ 5 , we must first forget 
down to c^[L], next apply the given functor, and then apply the functor 5 Ay (?). For 
example, limits in Ms are created in this fashion. 

PROPOSITION 5.4. The category of S-modules is complete arui cocomplete. Its colimits 
are created in y[h]. Its limits are created by applying the functor S As (?) to limits in 
y[L]. If X is a based space arui M is an S-module, then M AX is an S-module, and 
the spectrum level cofibre of a map of S-modules is an S-module. For a based space X 
and S-modules M and N, 

JisiM AX,N)^ J(s{M, S Ay F[X, N)). 
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MoreoveVy 

MAX^MAsS'^X and S A^f F{X,M) ^ Fs{S'^X,M). 

Lemma 5.3 also explains our definition of function 5-modules. Its second adjunction 
and the adjunction of Theorem 4.8 compose to give the adjunction displayed in the 
following theorem. 

THEOREM 5.5. The category Ms is symmetric monoidal under As, and 

Ms{M As iV, P) ^ Ms(M, Fs{N, P)) 

for S-modules M, iV, and P. 

A homotopy in the category of 5-modules is a map M A /+ —y N. A map of 
5-modules is a weak equivalence if it is a weak equivalence as a map of spectra. The 
derived category ^s of 5-modules is constructed from the homotopy category hMs by 
adjoining formal inverses to the weak equivalences; again, the process is made rigorous 
by CW approximation. We define sphere 5-modules 

52 = 5Aj5fLS" (5.6) 

and use them as the domains of attaching maps when defining cell and CW 5-modules. 
From here, the theory of cell and CW 5-modules is exactly like the theory of cell and CW 
spectra and is obtained by specialization of the theory of cell i?-modules to be discussed 
shortly. A weak equivalence of cell 5-modules is a homotopy equivalence, any 5-module 
is weakly equivalent to a CW 5-module, and &s is equivalent to the homotopy category 
of CW 5-modules. Again, the 5-module 5 does not have the homotopy type of a CW 
5-module. When working homotopically, we replace it with Ss = S^-

The following comparison between CW 5-modules and CW L-spectra establishes an 
equivalence between &s and hS^[h] and thus between &s and hS^. It is largely a 
recapitulation of results already discussed. 

THEOREM 5.7. The following conclusions hold. 

(i) The functor S A<£ (?) : cĴ fL] —> Ms carries ON Lrspectra to CW S-modules. 
(ii) The forgetful functor Ms —• c^[L] carries S-modules of the homotopy types of 

CW S-modules to h-spectra of the homotopy types of CW h-spectra. 
(iii) Every CW S-module M is homotopy equivalent as an S-module to S As N for 

some CW h-spectrum N. 
(iv) The unit A : 5 A^ M —• M is a weak equivalence for all h-spectra M and 

is a homotopy equivalence of h-spectra if M has the homotopy type of a CW 
h-spectrum. 

The functors S A<e (?) and the forgetful functor establish an adjoint equivalence between 
the stable homotopy category /ic5̂ [L] and the derived category ^s- This equivalence of 
categories preserves smash products and function spectra. 
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When doing classical homotopy theory, we can work interchangeably in any of the 
categories hy, /ic^[L], or ^5. These three categories are equivalent, and the equiv-
alences preserve all structure in sight. When working on the point set level, we have 
reached a nearly ideal situation with our construction of ^ 5 , and the rest of the article 
will describe how to exploit this. 

6. 5-algebras and their categories of modules 

Intuitively, .S-algebras are as near to associative rings with unit as one can get in stable 
homotopy theory, and commutative 5-algebras are as near as one can get to commutative 
rings. 

DEFINITION 6.1. An 5-algebra is an 5-module R together with maps of 5-modules 77 : 
S —• R and <t>: R/\sR ^^ R such that the following diagrams of 5-modules commute: 

SAsR^^^^RAsR^^^^RAsS RASRASR'^^^RASR 

and 0Asid| 

R^ RAsR ^R 

R is commutative if the following diagram also commutes: 

RAsR ' ^ RAsR 

We shall not review the older definitions of Aoo and Eoo ring spectra. It turns out 
that they are equivalent to the structures that are given by the definition above, with the 
single exception that the unit map A of an Aoo or Eoo ring spectrum need not be an 
isomorphism. In other words, the natural ground category for Aoo and Eoo ring spectra is 
the category of L-spectra rather than the category of S'-modules. We state this formally. 

THEOREM 6.2. An S-algebra or commutative S-algebra is an Aoo or Eoo ring spectrum 
which is also an S-module. If A is an Aoo ring spectrum, then S /\y A is a weakly 
equivalent S-algebra. If A is an Eoo ring spectrum, then S Ay A is a weakly equivalent 
commutative S-algebra. 

This means that we can use the older theory to construct examples. For example, the 
classical Thom spectra occur in nature as Eoo ring spectra, and [20] gives a machine 
for manufacturing Aoo and £"00 ring spectra from space level data. It shows that the 
Eilenberg-MacLane spectrum Hk of a ring k is an Aoo ring spectrum and is an Eoo ring 
spectrum if k is commutative and that the algebraic A -̂theory spectrum Kk of a com-
mutative ring fc is an Eoo ring spectrum. Similarly, the spectra ko and ku that represent 
real and complex connective A'-theory are Eoo ring spectra. 

Since it is very convenient to have strict units, we shall always work with S'-algebras. 
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DEHNITION 6.3. Let R be an 5-algebra. A (left) i?-module M is an 5-mociule together 
with a map /x : J? A5 M —> M of S'-modules such that the following diagrams commute: 

S^sM^^^^R^sM RASR/\SM'-^^^RASM 

and 
T 

RAsM- •^M 

A map / : M —> M' of /^-modules is a map of 5-modules such that the following 
diagram commutes: 

RAsM^^^RAsM' 

M-

r 
Y 

We let ^R denote the category of iZ-modules. 

If R is commutative, then an jR-module is the same thing as a left module over R 
regarded as an 5-algebra, exactly as in algebra. From here, we can mimic vast areas of al-
gebra, one particularly striking direction being the development of topological Hochschild 
homology. However, we shall concentrate on the generalized analog of stable homotopy 
theory that we obtain by studying the homotopy theory of ii-modules for a fixed com-
mutative S'-algebra R. Everything that makes sense is also true in the nonconunutative 
case. 

THEOREM 6.4. The category of R-modules is complete and cocomplete, with both limits 
and colimits created in the underlying category Ms- Let X be a based space, K be an 
S-module, and M and N be R-modules. Then the following conclusions hold, where the 
displayed isomorphisms are obtained by restriction of the corresponding isomorphisms 
for S-modules. 

(i) MAX is an R-module and the spectrum level cofibre of a map of R-modules is 
an R-module. 

(ii) S Asf F{X, N) is an R-module and 

J^R{M AX,N)^ J^R[M,S Ay F{X,N)). 

(iii) M As K and Fs{K, N) are R-modules and 

^R{M AS K,N) ^ ^R{M,FS{K,N)). 

(iv) Fs{M^K) is an R-module. 
(v) As R-modules, 

MAX^MAsS'^X and 5 Ajj. F(X, AT) ^ F5 ( r~X, AT). 
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A homotopy in the category of iJ-modules is a map M M^ —> M'. A map of 
ii-modules is a weak equivalence if it is a weak equivalence as a map of spectra. The 
derived category ^R is constructed from the homotopy category h^R by adjoining 
formal inverses to the weak equivalences; again, the process is made rigorous by the 
approximation of general /i-modules by cell i?-modules. 

Cell theory is based on the free J?-module functor ¥R from spectra to i?-modules that 
is specified by ¥RX = RAS FSX, where FsX = SAsf hX. The term "free" is a slight 
misnomer, in view of the following result. 

PROPOSITION 6.5. The functor ¥R: y —> MR is left adjoint to the functor that sends 
an R-module M to the spectrum Fy{S,M), and there is a natural map of R-modules 
^ : ¥RM —y M whose adjoint M —• F^{S^M) is a weak equivalence of spectra. 
Therefore 

7rn{M)^hMR{FRS^,M). 

In the stable homotopy category ftc^, FRX is naturally isomorphic to the internal smash 
product R/\X when X is tame. 

Thus ¥R is left adjoint to a functor that is weakly equivalent to the obvious forgetful 
functor. This is the price to be paid for insisting on strict units, and it introduces no serious 
complications in the theory. Homotopically, the functor ¥R behaves as one would expect. 
Generalizing (5.6), we define sphere /?-modules by 

5S = Ffl5", (6.6) 

and we use them as the domains of attaching maps when developing the cell theory of 
il-modules. For cells, we note that the cone functor CE = E A I commutes with ¥R, 
so that CS"^ = ¥RCS'^. Thus, via the adjunction, maps out of sphere /?-modules and 
their cones are induced by maps on the spectrum level. Using this, we can simply parrot 
the theory of cell spectra in the context of /^-modules, reducing proofs to the spectrum 
level via adjunction. We easily obtain the Whitehead theorem for cell i?-modules, and 
the approximation theorem to the effect that any i?-module is weakly equivalent to a cell 
i?-module. The category &R is equivalent to the homotopy category of cell iZ-modules. 
If R is connective, but not otherwise, we obtain the cellular approximation theorem when 
we restrict attention to CW iZ-modules, namely cell ii-modules such that cells are only 
attached to cells of lower dimension. 

The category ^R has all homotopy limits and colimits; the former are created as the 
corresponding constructions on the underlying diagrams of spectra; the latter require 
application of the functor S A<£ (?). Thus we have enough information to quote the 
categorical form of Brown's representability theorem given in [6]. Adams' analog [3] 
for functors defined only on finite CW spectra also applies in our context, with the same 
proof. 

THEOREM 6.7 (Brown). A contravariant functor k : ^R ^ Sets is representable in the 
form k[M) = ^R{M,N) for some R-module N if and only if k converts wedges to 
products and converts homotopy pushouts to weak pullbacks. 
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THEOREM 6.8 (Adams). A contravariant group-valued functor k on the homotopy cate-
gory of finite cell R-modules is representable in the form k{M) = ^R{M, N) for some 
R-module N if and only if k converts finite wedges to direct products and converts 
homotopy pushouts to weak pullbacks of underlying sets. 

In fact, Brown's theorem is the kind of formal result that can be derived in any (closed) 
model category in the sense of Quillen (see [8] for a good exposition), and we have the 
following result. Serre fibrations of spectra are maps that satisfy the covering homotopy 
property with respect to the set of cone spectra 

{E^CS''\ g ^ O a n d n ^ O } . 

Relative cell ii-modules M —• N are constructed exactly like cell iZ-modules, except 
that one starts the inductive construction of N = UNn with iVo = M. 

We write gf-cofibrations and g-fibrations here to avoid confusion with cofibrations 
(HEP) and fibrations (CHP); the ambiguous use of the same term for both the classical 
and the model theoretic concepts is one of the banes of the literature. 

THEOREM 6.9. The category of R-modules is a model category. Its weak equivalences 
are the maps of R-modules that are weak equivalences of spectra. Its q-cofibrations are 
the retracts of relative cell R-modules. Its q-fibrations are the maps M —• N such that 
F^{S, M) —> F^{S, N) is a Serre fibration of spectra. 

7. The smash product of i?-modiiles and function A-moduIes 

Continuing to work with our fixed commutative 5-algebra i?, we mimic the definition 
of tensor products of modules over algebras. 

DEFINITION 7.1, For ii-modules M and AT, define M ARN to be the coequalizer dis-
played in the following diagram of S-modules: 

M ASRASN ; M AsN ^ M ARN 
id Asi/ 

where /x and u are the given actions of i? on M and N. Then M Ai? iV has a canonical 
J?-module structure induced from the i?-module structure of M or, equivalently, N. 

Of course, 5 is a commutative 5-algebra and our new M AsN coincides with our old 
M As N. The functor A^ preserves colimits in each of its variables, and smash products 
with spaces commute with AH, in the sense that 

XA{MARN)^{XA M) AR N. 

Therefore the functor AR commutes with cofibre sequences in each of its variables. We 
have analogous relations with smash products over S and an adjunction that can be 
thought of as completing Proposition 5.4. 
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PROPOSITION 7.2. For an S-module K, 

K As (M AR N) ^ {K As M) AR N 

and 

JKS{MARN,K)^J^R[N,FS{M,K)). 

The associativity, commutativity, and unity of the smash product over S is inherited 
by the smash product over R, 

THEOREM 7.3. Under the smash product over R, the category ofR-modules is symmetric 
monoidal with unit R. 

We can deduce not only formal but also homotopical properties of AR from cor-
responding properties of A5. As in Section 4, we use an isomorphism of universes 
/ : C/ 0 [/ —> 17 to define the internal smash product /•(-£ A F). 

PROPOSITION 7.4. Let X and Y be spectra and let N be an R-module. There is a natural 
isomorphism of R-modules 

FRXARN^FSXASN, 

There is also a natural isomorphism of R-modules 

FRXARFRY^FRf^XAY). 

IfM and N are cell R-modules, then M ARN is a cell R-module with one {p + q)-cell 
for each p-cell of M and q-cell of N. 

THEOREM 7.5. IfM is a cell R-module and (j) : N —• N' is a weak equivalence of 
R-modules, then 

idAR(t) :M ARN —^ M ARN' 

is a weak equivalence of R-modules. 

We construct AR as a functor ^R X SIR —> QR by approximating one of the variables 
by a cell i?-module. 

We have a function spectrum functor FR to go with our smash product. It is defined as 
the equalizer of a certain pair of maps Fs{M, N) —> Fs{R As M, N). The details are 
dictated by the expected adjunction. Again, FR{M, N) inherits a structure of i?-module 
from M or, equivalentiy, N. 

PROPOSITION 7.6. For R-modules N and P and an S-module K, 

^R{K AS N,P) ^ ^S{K.FR{N,P)). 
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If M is an R-module, then 

^R{M ARN,P)^^R{M,FR{N,P)). 

Therefore 

FR{MARN,P)^FR{M,FR{N,P)). 

Formal arguments from the adjunction, as in algebra, give a natural associative and 
unital composition pairing 

TT: FR{N, P) AR FR{M, N) -^ FR{M, P). {1.1) 

Parenthetically, we note that this gives rise to a host of examples of 5-algebras; in 
fact, R itself need not be commutative in the following result. 

PROPOSITION 7.8. For an R-module M, FR{M, M) is an S-algebra; For R-modules M 
andN, FR(M,N) is an {FR{N,N),FR{M,M))-bimodule. 

PROPOSITION 7.9. Let X be a spectrum and M be an R-module. There is a natural 
isomorphism of R-modules 

FR{¥RX,M)^FS{¥SX,M). 

The functor FR{M,N) converts colimits and cofibre sequences in M to limits and 
fibre sequences. It preserves limits and fibre sequences in N. Using the previous result 
to deal with sphere ii-modules, we obtain the analog of Theorem 7.5. 

PROPOSITION 7.10. IfM is a cell R-module and (j): N —> N' is a weak equivalence of 
R-modules, then 

FR{id,(f>) : FR{M,N) —. F H ( M , AT') 

is a weak equivalence of R-modules. 

In the derived category ^R, FR{M,N) means FR{rM,N), where FM is a cell 
approximation of M. 

Sunmiarizing, we obtain the following derived category level conclusion. 

THEOREM 7.11. The derived category &R is symmetric monoidal under the product de-
rived from AR, and 

QR{MARN,P)^9R{M,FR{N,P)). 

There is a formal theory of duality (explained in [16, Chapter III]) that now applies 
to SIR. We define the dual of an fl-module M to be DRM = FR{M, R). We have an 
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evaluation map e : DRM AR M —• R and a map rj : R -^ FR{M,M), namely the 
adjoint of A : J? Aî  M —• M. There is also a natural map 

1/: FR{L,M) ARN—^ FR{L,MAR N). (7.12) 

By composition with FRiid, A), v specializes to a map 

V : DRM ARM —^ FR{M, M). (7.13) 

We say that M is "strongly dualizable" if it has a coevaluation map f) : R —^ M AR 
DRM such that the following diagram commutes in SIR: 

R ^ — ^ M ARDRM 

•n (7.14) 

FR{M, M) ^ - ^ DRM AR M 

The definition has many purely formal implications. The map v of (7.12) is an iso-
morphism in ^R if either L or TV is strongly dualizable. The map v of (7.13) is an 
isomorphism if and only if M is strongly dualizable, and the coevaluation map fj is then 
the composite riy^^rj in (7.14). The natural map 

p:M —> DRDRM 

is an isomorphism if M is strongly dualizable. The natural map 

A : FR{M,N) AR FR{M\N') - ^ FR{M AR M\N AR N') 

is an isomorphism if M and M' are strongly dualizable or if M is strongly dualizable 
and N = R. 

Say that a cell iZ-module N is a wedge summand up to homotopy of a cell i?-module 
M if there is a homotopy equivalence of i?-modules between M and NvN' for some cell 
i?-module AT'. We say that N is semi-finite if it is a wedge summand up to homotopy of 
a finite cell i?-module. In contrast with the usual stable homotopy category, a semi-finite 
ii-module need not have the homotopy type of a finite cell i?-module. 

THEOREM 7.15. A cell R-module is strongly dualizable if and only if it is semi-finite. 

The analogy with finitely generated projective modules in algebra should be clear. 

8. Tor and Ext in topology and algebra 

Still restricting for definiteness to a commutative 5-algebra R and its modules, we define 
Tor and Ext groups as the homotopy groups of derived smash product and function 
modules. 
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DEFINITION 8.1. For i?-modules M and N, define 

Tor^(M,Ar) = 7r„(MARiV) 

and 

ExtS(M,iV) = 7r_n(Ffi(M,iV)). 

Note that Torf (M, N) and Extfi(M, N) are 7r*(/?)-modules. 

We emphasize that the smash product and function spectra are understood to be taken in 
the derived category QR. At this point in our exposition, we act as traditional topologists, 
taking it for granted that all spectra and modules are to be approximated as cell modules, 
without change of notation, whenever necessary. Various properties reminiscent of those 
of the classical Tor and Ext functors follow direcdy from the definition and the results 
of the previous sections. The intuition is that the definition gives an analogue of the 
differential Tor and Ext functors (alias hyperhomology and cohomology functors) in the 
context of differential graded modules over differential graded algebras. In particular, the 
grading should not be thought of as the resolution grading of the classical torsion product, 
but rather as a total grading that sums a resolution degree and an internal degree; this 
idea will be made precise by the grading of the spectral sequences that we shall describe 
for the calculation of these functors. 

PROPOSITION 8.2. Torf(M,iV) satisfies the following properties. 

(i) IfRM, and N are connective, then Tor^(M, N) =Oforn< 0. 
(ii) A cofibre sequence N' —^ N —^ N'^ gives rise to a long exact sequence 

. . . ^ Tor^(M, N') -^ Tor^(M, N) ^ Tor^(M, AT") 

^Tor^_i(M,iV')--••• . 

(iii) Torf (M, R) ^ 7r (̂M) and, for a spectrum X, 

Torf(M,FX)^7r,(MAX). 

(iv) The functor Torf (M, ?) carries wedges to direct sums. 

The commutativity and associativity relations for the smash product imply various 
further properties. We content ourselves with the following examples: 

Torf (M, N) ^ Torf (AT, M) 

and 

Torf (M AR AT, P) ^ Torf (M, N AR P). 

Say that a spectrum N is coconnective if 7rn{N) = 0 for n > 0. 
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PROPOSITION 8.3. Ext;^(M, Â ) satisfies the following properties. 

(i) If R and M are connective and N is coconnective, then Ext^(M, TV) = 0 for 
n < 0 . 

(ii) Fibre sequences N^ -^ N -^ N" and cofibre sequences M' -^ M -^ M" give 
rise to long exact sequences 

> Ext^(M, N') -^ ExtS(M, N) ~> Ext^(M, N") 

-4Ext]^+^(M,iV')-^..-

and 

> Ext^(M", N) -> ExtS(M, N) -^ Ext^(M', N) 

-^Ext;^-^^(M",iV)->.... 

(iii) Ext;j;2(i?, N) ^ -K-^iN) and, for a spectrum X, 

Ext^(F;s:,7V)^7r_.(F(X,iV)). 

(iv) The functor Ext^(?, N) carries wedges to products. 

Passing to homotopy groups from the pairings (7.7), we obtain the following further 
property. As usual, for a spectrum E, abbreviate 

En=7rn{E) = E-^. 

PROPOSITION 8.4. There is a natural, associative, and unital system of pairings of R*-
modules 

TT* : Extj2(M, N) ^R. ExtĴ CL, M) - ^ ExtJe(L, AT). 

The formal duality theory of the previous section implies the following result, together 
with various other such isomorphisms. 

PROPOSITION 8.5. For a finite cell R-module M and any R-module N, 

TOX^{DRM, N) ^ Ext^^(M, N). 

Thinking of the derived category ^R as a stable homotopy category, we may change 
notations and reinterpret the functors Tor and Ext as prescribing homology and coho-
mology theories in this category. 

DEFINITION 8.6. Let M and E be fi-modules. Define 

E^{M) = nniEARM) and E^M) = ir.n{FR{M,E)). 

The properties of Tor and Ext translate directly to statements about homology and co-
homology. All of the standard homotopical machinery is available to us, and the previous 
result now takes the form of Spanier-Whitehead duality. 
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COROLLARY 8.7. For a finite cell R-module M and any R-module E, 

Since the equivalence between the classical stable homotopy category and the derived 
category of 5-modules preserves smash products and function spectra, we obtain all of 
the usual homology and cohomology theories by taking R = S. 

We also obtain the classical algebraic Tor and Ext groups as special cases, by special-
ization to Eilenberg-MacLane spectra. Thus let i? be a discrete commutative ring for a 
moment. Recall that HE denotes a spectrum whose zeroth homotopy group is R and 
whose remaining homotopy groups are zero. It follows from multiplicative infinite loop 
space theory [20] that the Eilenberg-MacLane spectrum HR = K{R,0) is an EQQ ring 
spectrum. Analogously, if M is an i?-module, then HM can be constructed as an HR-
module. We shall see a quick and easy construction shortly. Granting this, we have the 
following result. 

THEOREM 8.8. For a discrete commutative ring R and R-modules M and N, 

Torf (M, N) ^ Torf ̂ (if M, HN) 

and 

EXCR{M, N) ^ Exi*fjj^{HM, HN). 

Under the second isomorphism^ the topologically defined pairing 

Ext*HR{HM, HN) ^R Exi*HR{HL, HM) —^ EXCHR{HL, HN) 

coincides with the algebraic Yoneda product. 

The proof is clear enough: we just check the axioms for Tor and Ext. 
We can elaborate this result to an equivalence of derived categories. Recall from [28] 

or [15, Chapter III] that the derived category ^R is obtained from the homotopy category 
of chain complexes over jR by formally inverting the quasi-isomorphisms, exactly as we 
obtained the category ^HR from the homotopy category of i/i?-modules by inverting 
the weak equivalences. The algebraic theory of cell and CW chain complexes over R in 
the latter source makes the analogy precise and gives a treatment of tensor products and 
Hom functors in &R that exactly parallels our treatment of AHR and FHR. The proof of 
the equivalence is quite easy. The category ^HR is equivalent to the homotopy category 
of CW if/i-modules and cellular maps. It is a simple matter to see that CW HR-modu\cs 
have associated chain complexes. This gives a functor &HR —^ ^R- An inverse functor 
^ is obtained by applying Brown's representability theorem. Indeed, for a given chain 
complex X, the functor k on ^HR specified by k{M) = S'R{C^{M),X) satisfies the 
hypotheses of that result, and we let ^{X) represent this functor. Specialization to R-
modules regarded as chain complexes concentrated in degree zero gives the promised 
construction of Eilenberg-MacLane if i?-modules from i?-modules. 
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THEOREM 8.9. The cellular chain functor C* on HR-modules induces an equivalence of 
categories ^HR —^ ^R- The functor C^ satisfies H^{C^{M)) = 7r*(M) and carries 
the functors AHR cind FHR to the functors (S)R and UomR. The inverse equivalence $ 
satisfies TT^{^{X)) = H^{X) and carries the functors ^R and Horn/? to the functors 
^HR and FHR. 

PROOF. By construction, we have an adjunction 

^R{a{M),X) ^ ^HR[MMX)), 

and one checks that its unit and counit are isomorphisms. The statements relating AHR 
and FHR to 0/2 and Hom/? are all consequences of the fact that if M and N are CW 
if/i-modules, then M AHR iV is a CW HR-modu\c such that 

a{M AHRN) ^ C^M) ^Ra{N). 

9. Universal coefficient and Kiinneth spectral sequences 

Returning to our general commutative 5-algebra i?, we find spectral sequences for the 
calculation of our Tor and Ext groups that are analogous to the Eilenberg-Moore (or 
hyperhomology) spectral sequences in differential homological algebra. Compare [9], 
[13], [15]. They may be viewed as giving universal coefficient and Kiinneth spectral 
sequences for homology and cohomology theories on /^-modules, and they specialize to 
give such spectral sequences for homology and cohomology theories on spectra. 

THEOREM 9.1. For R-modules M and N, there are natural spectral sequences of differ-
ential R^-modules 

El^ = Tor«-(M., AT.) ^ Tor^ , (M, N) 

and 

E f ^ = Ext^?(M*, AT*) =:> Ext^-^^(M, N). 

Moreover, the pairing FR{M, N) AR FR{L^ M) -^ FR{L, N) induces a pairing of spec-
tral sequences that coincides with the algebraic Yoneda pairing 

Ext;̂ : (M*,iv*) ^R. Exq:{L\M^) -^ Ext;^:(L%iv*) 

on the E2-level and that converges to the induced pairing of Ext groups. 

The Tor spectral sequence is of standard homological type, with 

^r . pr rpr 
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It lies in the right half-plane, and it converges strongly. The Ext spectral sequence is of 

standard cohomological type, with 

It lies in the right half plane. In the language of Boardman [5] (see also [12, App. B]), it 
is conditionally convergent. It therefore converges strongly if, for each fixed (p, g), there 
are only finitely many r such that dr is nonzero on E^'^. 

Setting M = FRX in the two spectral sequences of Theorem 8.1, we obtain a universal 
coefficient spectral sequence. We have written the stars to indicate the way the grading 
is usually thought of in cohomology. 

THEOREM 9.2 (Universal coefficient). For an R-module N and any spectrum X, there 
are spectral sequences of the form 

and 

Tor^;(i l . (X), iV,)=>iV.(X) 

Ext^:(i?_.(X),iV*) => N*{X). 

Of course, replacing R and N by Eilenberg-MacLane spectra HE and HN for a ring 
R and jR-module N, we obtain the classical universal coefficient theorems. Replacing 
N by FRY and by FR{FRY,R) in the two universal coefficient spectral sequences, we 
arrive at Kiinneth spectral sequences. 

THEOREM 9.3 (Kiinneth). For any spectra X and Y, there are spectral sequences of the 
form 

ToT^;,{R,{X),R.{Y)) =^ R^X AY) 

and 

Ext*ji:{R.,{X),R*{Y)) =^R*{XAY). 

Adams [1] first observed that one can derive Kiinneth spectral sequences from uni-
versal coefficient spectral sequences, and he observed that, by duality, the four spectral 
sequences of Theorems 9.2 and 9.3 imply two more universal coefficient and two more 
Kiinneth spectral sequences. He derived spectral sequences of this sort under the hy-
pothesis that his given ring spectrum E is the colimit of finite subspectra E^ such that 
H*{Ea',E*) is JS*-projective and the Atiyah-Hirzebruch spectral sequence converging 
from H*{Ea\E*) to E*{Ea) satisfies E2 = Eoo- Of course, this is an ad hoc calcu-
lational hypothesis that requires case-by-case verification. It covers some cases that are 
not covered by the results above, and conversely. The cited paper of Adams, and his 
later book [2], are prime sources for the first flowering of stable homotopy theory. While 
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some of their foundational parts may be obsolete, their applications and calculational 
parts certainly are not. 

The following generalized Kiinneth theorem admits a number of variants; see [11]. 

THEOREM 9.4. Let E and R be commutative S-algebras and M and N be R-modules. 
Then there is a spectral sequence of differential E^{R)'modules of the form 

Tor^W(£;.(M), £.(iV)) = ^ JE;p+,(M A/̂  AT). 

10. Algebraic constructions in the derived category of i2-modules 

If we replace the pair (5, R) by a pair {R, A) in Definition 6.1, we arrive at the notion of 
an algebra A over a commutative S'-algebra R. For example, the S-algebras FR{M, M) 
of Proposition 7.8 are actually iZ-algebras. Again, if A is an algebra over a discrete 
commutative ring R, then HA is an ifi?-algebra. Proceeding in this line, we can, for 
instance, construct i?-modules whose homotopy groups realize the Hochschild homology 
of A with coefficients in (̂ 4, i4)-bimodules. 

However, we now proceed in a more homotopical direction, thinking of the derived 
category of i?-modules as an analog of the stable homotopy category. From this point of 
view, we have the notion of an -R-ring spectrum, which is just like the classical notion 
of a ring spectrum in the stable homotopy category. 

DEFINITION 10.1. An ii-ring spectrum A is an i?-module A with unit r]: R —> A and 
product (t> \ A /\RA —• A in &R such that the following left and right unit diagram 
commutes in @R. 

RhRA^^i^AKRA^^AKRR 

A is associative or commutative if the appropriate diagram commutes in ^R. 

LEMMA 10.2. If A and B are R-ring spectrum, then so is A AR B. If A and B are 
associative or commutative, then so is A AR B. 

By neglect of structure, an i?-ring spectrum A is a ring spectrum in the sense of 
classical stable homotopy theory; its unit is the composite of the unit of R and the unit 
of A and its product is the composite of the product of A and the canonical map 

AAA'::^AASA —y AARA. 

Similarly, for an iZ-algebra A, we have the evident homotopical notion of an A-module 
spectrum. These structures play a role in the study of QR analogous to the role played by 
ring spectra and their module spectra in classical stable homotopy theory. When R = S, 
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S'-ring spectra and their module spectra are equivalent to classical ring spectra and their 
module spectra. 

We show in this section how to construct quotients M/IM and localizations M[y~^] 
of modules over a commutative S-algebra R and indicate in the next section when these 
constructions inherit a structure of /Z-ring spectrum from an i?-ring spectrum structure 
on M. When specialized to MU, these results give highly structured versions of spectra 
that in the past were constructed by means of the Baas-Sullivan theory of manifolds with 
singularities or the Landweber exact functor theorem. At least at odd primes, the results 
give an entirely satisfactory, and very simple, treatment of MU-xmg structures on the 
resulting Mf/-modules. 

We are interested in homotopy groups, and we make use of the isomorphisms 

Mn = hy{S'',M) ^ hJ^s[S^.M) ^ h^R{S'k,M) (10.3) 

to represent elements as maps of it-modules. For x e Rn, the composite map of it-
modules 

SlAj^M^^^^RAaM^^^M (10.4) 

is a module theoretic version of the map x- : S'^M —• M, and we agree to write 
S'^M for 5g AR M in this section. By Proposition 7.4, 5^ AR M is isomorphic as 
an it-module to S^ As M and, by Theorem 4.7, Sg As M is weakly equivalent as a 
spectrum to 5'̂  A M. Therefore, the it-module S^M is a model for the spectrum level 
suspension of M. 

DEFINITION 10.5. Define M/xM to be the cofibre of the map (10.4) and let p : M —^ 
M/xM be the canonical map. Inductively, for a finite sequence { x i , . . . , Xn} of elements 
of it*, define 

M/{xu...,Xn)M = N/xnN, where N = M/{xu... ,Xn-\)M. 

For a (countably) infinite sequence X = {xi}, define M/XM to be the telescope of the 
M/{x\ ,...,Xn)M, where the telescope is taken with respect to the successive canonical 
maps p. 

Clearly we have a long exact sequence 

. 7r^_n(M)^7r,(M)-^7r,(M/xM) —^ 7r,_n-, (M) - ^ • • •. 
(10.6) 

If X is not a zero divisor for 7r*(M), then p* induces an isomorphism of it*-modules 

7r*(M)/x • 7r*(M) ^ n,{M/xM). (10.7) 



Section 10 Modem foundations for stable homotopy theory 247 

If { x i , . . . , Xn] is a regular sequence for 7r*(M), in the sense that xi is not a zero divisor 
for 7r*(M)/(xi,... ,Xt_i)7r*(M) for 1 ^ i ^ n, then 

7r.(M)/(xi,.. . ,Xn)7r.(M) ^ 7r.(M/(x,, . . . ,Xn)M), (10.8) 

and similarly for a possibly infinite regular sequence X — {xi}. The following result 
implies that M/XM is independent of the ordering of the elements of the set X. We 
write R/X instead of R/XR, 

LEMMA 10.9. For a set X of elements of R^, there is a natural weak equivalence 

(R/X) ARM —^ M/XM. 

In particular, for a finite set X = {x\,..., Xn}, 

R/{x],...,Xn) ::̂  W^i) AR-"AR {R/xn). 

If / denotes the ideal generated by X, then it is reasonable to define 

M/IM = M/XM. (10.10) 

However, this notation must be used with caution since, if we fail to restrict attention to 
regular sequences X, the homotopy type of M/XM will depend on the set X and not 
just on the ideal it generates. For example, quite different modules are obtained if we 
repeat a generator Xi of / in our construction. 

We next construct localizations of iZ-modules at countable multiplicatively closed 
subsets Y of iJ*. Let {yi} be any cofinal sequence of y , with yi G Rm, so that every 
y eY divides some yt. We may represent yi by an i?-map S^ —• ^R^'^ which we also 
denote by yi. Let go = 0 and, inductively, Qi = qi-\ -i-rii. The i?-map 

represents yi-. Smashing over R with Sj^ * ,̂ we obtain a sequence of i2-maps 

5^^^-' ARM —^ S^^' ARM. (10.11) 

DEFINITION 10.12. Define the localization of M at Y, denoted M[y~^], to be the tele-
scope of the sequence of maps (10.11). Since M = S%ARM in &R, we may regard the in-
clusion of the initial stage S^ARM of the telescope as a natural map A : M —y M[Y~^]. 

Since homotopy groups commute with localization, we see immediately that A induces 
an isomorphism of fl«-modules 

7r*(M[r-^])^7r.(M)[y-'] . (10.13) 

As in Lemma 10.9, the localization of M is the smash product of M with the local-
ization of R. 
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LEMMA 10.14. For a multiplicatively closed set Y of elements of R^, there is a natural 
equivalence 

R\Y-^] ^RM -^ M[Y-^]. 

Moreover, R\Y^^] is independent of the ordering of the elements ofY. For sets X and 
y, R[{X U Y)~^] is equivalent to the composite localization R[X~^]\Y~^\. 

11. i2-ring structures on localizations and on quotients by ideals 

The behavior of localizations with respect to ii-ring structures is immediate. 

PROPOSITION ll.l. Let Y be a multiplicatively closed set of elements of R^. If A is an 
R-ring spectrum, then A[Y~^] is an R-ring spectrum such that A : A —^ ^[y~^] is a 
map of R-ring spectra. If A is associative or commutative, then so is A\Y~^]. 

PROOF. By Lemmas 10.2 and 10.14, it suffices to observe that i?[y~^] is an associative 
and commutative i?-ring spectrum with unit A and product the equivalence 

R\Y-^]^RR[Y-^] - i ? [ r - ^ ] [ r - ^ ] - i ? [ F - ^ ] . 

n 

This doesn't work for quotients since {R/X)/X is not equivalent to R/X. However, 
we can analyze the problem by analyzing the deviation, and, by Lemma 10.9, we may 
as well work one element at a time. We have a necessary condition for R/x to be an 
ii-ring spectrum that is familiar from classical stable homotopy theory. 

LEMMA 11.2. Let A be an R-ring spectrum. If A/xA admits an R-ring spectrum struc-
ture such that p : A —> AjxA is a map of R-ring spectra, then x : AjxA —^ AjxA 
is null homotopic as a map of R-modules. 

Thus, for example, the Moore spectrum 5/2 is not an 5-ring spectrum since the map 
2 : 5/2 —^ 5/2 is not null homotopic. To give a criterion for when J?/x does have an 
i?-ring spectrum structure, we first note an easy formal lemma. 

LEMMA 11.3. Let p : R —> M be any map of R-modules. Then 

(/o A id) o p ~ (id Ap) o p: R —^ M AH M. 

THEOREM 11.4. Let x G Rrn and assume that 7TfYi^\{^R/x) = 0 and 7r2m+i 

{R/x) = 0. 
Then R/x admits a structure of R-ring spectrum with unit p : R —• R/x. Therefore 
A/XA admits a structure of R-ring spectrum such that p : A —> A/XA is a map of 
R-ring spectra for every R-ring spectrum A and every sequence X of elements of R^ 
such that TTm+i {R/x) - 0 and 7r2m+i {R/x) = OifxeXhas degree m. 
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PROOF. Consider the following diagram in the derived category ^R\ 

\x 

Y 

r^+^i?—^—^s j i 

J, ^ T Y 

S'^iR/x) - ^ ^ R/x ^ ^ (iZ/x) Aii (R/x) ^^r^ i;^+^ (i?/x) - ^ ^ SiR/x) 

S^m-^^R. 
(11.5) 

The map x is that specified by (10.4). The bottom row is the cofibre sequence that results 
from the equivalence 

{R/x) AR {R/X) ~ {R/x)/x 

of Lemma 10.9, and the column is also a cofibre sequence. The composite x o p is null 
homotopic since pox is null homotopic and the square commutes. Therefore there is a map 
V such that TTOV — p, and v is unique since TTm-f i(i?/x) = 0. Since irovox = pox — 0, 
vox factors through a map E^'^^^R —> R/x. Since 7r2m+i(^/^) = 0, such maps 
are null homotopic. Thus i/ o rr is null homotopic. Therefore there is a map CF such that 
a o p = u. Now noaop = 7roi/ = p, hence (TT o cr — id)p = 0. Therefore TT o a - id 
factors through a map E'^'^'^'^R —> ^'TI+I (^jijx). Again, such maps are null homotopic. 
Therefore TT o a = id. Thus the bottom cofibre sequence splits (proving in passing that 
X : E'^{R/x) —• R/x is null homotopic, as it must be). A choice <̂  of a splitting 
gives a product on R/x. The unit condition 0 o (p A id) = id is automatic. To see that 
(j) o (id Ap) = id, we observe that, by the lemma, 

(j) o (id Ap) - id) o p = </) o (id Ap - p A id) o p = 0. 

Therefore 0 o (id Ap) - id factors through a map E'^^^R —^ R/x. Again, such maps 
are null homotopic, hence (j) o (id Ap) = id. This completes the proof that R/x is an 
fi-ring spectrum with unit p. The rest follows from Lemmas 10.9 and 10.2. D 

The product on R/x can be described a little more concretely. The wedge sum 

(pAid) V(7 : {R/x)yE'^^\R/x) -^ {R/x) AR {R/X) (11.6) 

is an equivalence. The product 0 restricts to the identity on the first wedge summand 
and to the trivial map on the second wedge summand. Thus the product is determined 
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by the choice of a, and two choices of a differ by a composite 

r ^ + ^ i J / x ) - ^ i ;2^+2^ ^[R/x) AH [R/X). (11.7) 

By the splitting (10.6) and the assumption that TTm-f i [R/x) = 0, we can view the second 
map as an element of 7r2m-[-2{R/x). If x is not a zero divisor, then 7r||, = 0 on homotopy 
groups and any two products have the same effect on homotopy groups. 

For an i?-ring spectrum A and an element x as in the theorem, we give A/xA ĉ  
{R/x) AR A the product induced by one of our constructed products on R/x and the 
given product on A. We refer to any such product as a "canonical" product on A/xA. 
Observe that, by first using the product on A, the product on A/xA can be factored 
through 

0 AH id : (R/x) AH {R/X) ARA —^ {R/x) AR A. 

This allows us to smash any diagram giving information about the product on R/x with 
A and so obtain information about the product on A/xA. Obviously any diagram so 
constructed is a diagram of right i4-modules via the product action of A on itself. This 
smashing with A can kill obstructions. Clearly, a map of A-modules S^A —> M is 
determined by its restriction S^ —^ M along the unit of A regarded as a map of spectra 
(or 5-modules), which is just an element of 7rg(M). This leads to the following result. 

THEOREM U.S. Let X E Rm and CLSSunie that 'KfYi-^\{R/x) — 0 and 7r2m-{-\ 
{R/x) = 0. 

Let A be an R-ring spectrum and assume that 'K2m^2{A/xA) = 0. Then there is a unique 
canonical product on A/xA. If A is commutative, then A/xA is commutative. If A is 
associative and 'K'>,m-\-2>{A/xA) = 0, then A/xA is associative. 
PROOF. The second arrow of (11.7) becomes zero after smashing with A since it is then 
given by an element of 'K2m^2{A/xA) = 0. This proves the uniqueness statement. The 
commutativity statement follows since if 0 is a canonical product on A/xA, then so is 
(jyr. The associativity statement requires consideration of the restriction of the iterated 
product to the wedge summands of A/xA AR A/XA AR A/XA. The details are similar 
to, but simpler than, those in the proof of Theorem 11.4. D 

Iterating and observing that passage to telescopes can kill obstructions, we arrive at 
the following fundamental conclusion. 

THEOREM 11.9. Assume that Ri =Oifi is odd. Let X be a sequence of nonzero divisors 
in R^ such that 7r^{R/X) is concentrated in degrees congruent to zero mod 4. Then 
R/X has a unique canonical structure of R-ring spectrum, and it is commutative and 
associative. 

12. The specialization to ML^-modules and MU-ring spectra 

The classical Thom spectra arise in nature as Eoo ring spectra. In fact, it was inspection 
of their prespectrum level definition in terms of Grassmannians that first led to the theory 
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of Eoo ring spectra [19]. Applying the functor S A^ (?), we obtain models for Thorn 
spectra which are commutative 5-algebras. Of course, the homotopy groups of MU are 
concentrated in even degrees, and every nonzero element is a non zero divisor. Thus the 
results above have the following immediate corollary. 

THEOREM 12.1. Let X be a regular sequence in MU^, let I be the ideal generated by X, 
and let Y be any sequence in MU^. Then there is an MU-ring spectrum {MU/X)\Y~^] 
and a natural map of MU-ring spectra {the unit map) 

77:MC/—>(MC7/X)[y-^] 

such that 

77*:MC/. —>7r.((M[//X)[y-*]) 

realizes the natural homomorphism of MU ̂ -algebras 

MU.-^[MU./I)\Y-^]. 

If MUi^/I is concentrated in degrees congruent to zero mod 4, then there is a unique 
canonical product on [MU/X)\Y~^]y and this product is commutative and associative. 

In comparison with earlier constructions of this sort based on the Baas-Sullivan theory 
of manifolds with singularities or on Landweber's exact functor theorem (where it ap-
plies), we have obtained a simpler proof of a substantially stronger result. We emphasize 
that an MU-nng spectrum is a much richer structure than just a ring spectrum and that 
commutativity and associativity in the M[7-ring spectrum sense are much more stringent 
conditions than mere commutativity and associativity of the underlying ring spectrum. 

We illustrate by explaining how BP appears in this context. Fix a prime p and write 
(?)p for localization at p. Let BP be the Brown-Peterson spectrum at p. We are thinking 
of Quillen's idempotent construction [24], and we have the splitting maps i : BP —> 
MUp and e : MUp —^ BP. These are maps of commutative and associative ring spectra 
such that e o 2 = id. Let / be the kernel of the composite 

MU. -^MUp, —^BP,. 

Then / is generated by a regular sequence X, and our MU/X is a canonical integral 
version of BP. For the moment, let BP' = {MU/X)p. Let ^ : BP —> BP' be the 
composite 

BP-^^MUp-^!^BP'. 

It is immediate that ^ is an equivalence. In effect, since we have arranged that rjp has 
the same effect on homotopy groups as e, ^ induces the identity map of {MU./I)p 
on homotopy groups. By the splitting of MUp and the fact that self-maps of MUp are 
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determined by their effect on homotopy groups [2, II.9.3], maps MUp —^ BP are 
determined by their effect on homotopy groups. This implies that ^ o e = 77p : MUp —> 
BP'. The product on BP is the composite 

BPABP-^^^MUpAMUp-^^MUp-^^BP. 

Since rjp is a map of MU-ring spectra and thus of ring spectra, a trivial diagram chase 
now shows that the equivalence ^ : BP —> BP' is a map of ring spectra. 

We conclude that our BP' is a model for BP that is an MU-ving spectrum, commu-
tative and associative if p > 2. The situation for p = 2 is interesting. We conclude from 
the equivalence that BP' is commutative and associative as a ring spectrum, although 
we do not know that it is commutative or associative as an MU-nng spectrum. 

Recall that 7r^{BP) = Z(^p)[vi\deg{vi) = 2(p* - 1)], where the generators Vi come 
from 7r*(MC/) (provided that we use the Hazewinkel generators). We list a few of the 
spectra derived from BP, with their coefficient rings. Let Fp denote the field with p 
elements. 

BP{n) Z(p)[vu...,vn] E{n) Z^p)[vu> • ^ ,Vn.v^^] 

P{n) Fp[vn,t;n+i,...] B{n) Fp[t;-^t;n,^'n+l>• • •] 
Hn) Fp[vn] K{n) Fp[v 

By the method just illustrated, we can construct canonical integral versions of the 
BP{n) and E{n). All of these spectra fit into the context of Theorem 11.1. If p > 2, 
they all have unique canonical commutative and associative MU-hng spectrum struc-
tures. Further study is needed when p = 2. In any case, this theory makes it unnecessary 
to appeal to Baas-Sullivan theory or to Landweber's exact functor theorem for the con-
struction and analysis of spectra such as these. 

With more sophisticated techniques, the second author [14] has proven that BP can be 
constructed as an commutative 5-algebra, and in fact admits uncountably many distinct 
such structures. There is much other ongoing work on the construction and application 
of new commutative 5-algebras, by Hopkins, Miller, McClure, and others, and we have 
recently proven that the periodic /f-theory spectra KO and KU can be constructed as 
commutative 5-algebras. The enriched multiplicative structures on rings and modules 
that we have discussed are rapidly becoming a standard tool in the study of periodicity 
phenomena in stable homotopy theory. 
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0. Introduction 

Localization and completion are among the fundamental first tools in commutative alge-
bra. They play a correspondingly fundamental role in algebraic topology. Localizations 
and completions of spaces and spectra have been central tools since the 1970's. Some 
basic references are [3], [17], [24]. These constructions start from ideals in the ring of 
integers and are very simple algebraically since Z is a principal ideal domain. Localiza-
tions and completions that start from ideals in the representation ring or the Bumside 
ring of a compact Lie group play a correspondingly central role in equivariant topol-
ogy. These rings are still relatively simple algebraically since, when G is finite, they are 
Noetherian and of Krull dimension one. A common general framework starts from ideals 
in the coefficient ring of a generalized cohomology theory. We shall explain some old 
and new algebra that arises in this context, and we will show how this algebra can be 
mimicked topologically. The topological constructions require the foundations described 
in the previous article, which deals with the algebraically familiar theory of localization 
at multiplicatively closed subsets. We here explain the deeper and less familiar theory of 
completion, together with an ideal theoretic variant of localization. There is a still more 
general theory of localization of spaces and spectra at spectra, due to Bousfield [1], [2], 
and we shall see how our theory of localizations and completions with respect to ideals 
in coefficient rings fits into this context. 

Consider an ideal / in a commutative ring A and the completions Mj" = lim M/I^M 
of iZ-modules M. The algebraic fact that completion is not exact in general forces 
topologists to work with the derived functors of completion, and we shall explain how 
topological completions of spectra mimic an algebraic description of these derived func-
tors in terms of "local homology groups". These constructs are designed for the study 
of cohomology theories, and we will describe dual constructs that are designed for the 
study of homology theories and involve Grothendieck's local cohomology groups. There 
are concomitant notions of "Cech homology and cohomology groups", which fit into 
algebraic fibre sequences that we shall mimic by interesting fibre sequences of spectra. 
These lead to a theory of localizations of spectra away from ideals. When specialized 
to MfZ-module spectra, these new localizations shed considerable conceptual light on 
the chromatic filtration that is at the heart of the study of periodic phenomena in stable 
homotopy theory. 

1. Algebraic definitions: Local and Cech cohomology and homology 

Suppose to begin with that A is a commutative Noetherian ring and that / = ( a i , . . . , an) 
is an ideal in A. There are a number of cases of topological interest where we must deal 
with non-Noetherian rings and infinitely generated ideals, but in these cases we attempt 
to follow the Noetherian pattern. 

We shall be concerned especially with two naturally occurring functors on i4-modules: 
the /-power torsion functor and the /-adic completion functor. 
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The /-power torsion functor Fj is defined by 

M I—> ri{M) = {x € M I /'^x = 0 for some positive integer k}. 

It is easy to see that the functor / / is left exact. 
We say that M is an /-power torsion module if M = T/M. This admits a useful 

reinterpretation. Recall that the support of M is the set of prime ideals p of A such that 
the localization Mp is nonzero. We say that M is supported over / if every prime in the 
support of M contains / . This is equivalent to the condition that M[l /a] = 0 for each 
a G / . It follows that M is an /-power torsion module if and only if the support of M 
lies over / . 

The /-adic completion functor is defined by 

MH—.M/ '^ l imMZ/^M, 

and M is said to be /-adically complete if the natural map M —> Mj" is an isomor-
phism. The Artin-Rees lemma states that /-adic completion is exact on finitely generated 
modules, but it is neither right nor left exact in general. 

Since the functors that arise in topology are exact functors on triangulated categories, 
it is essential to understand the algebraic functors at the level of the derived category, 
which is to say that we must understand their derived functors. The connection with 
topology comes through one particular way of calculating the derived functors WFi 
of Fj and Ll of /-adic completion. Moreover, this particular method of calculation 
provides a connection between the two sets of derived functors and makes available 
various inductive proofs. 

In this section, working in an arbitrary commutative ring A, we use our given finite 
set {a\,..., an} of generators of / to define various homology groups. We shall explain 
why a different set of generators gives rise to isomorphic homology groups, but we 
postpone the conceptual interpretations of our definitions until the next section. 

For a single element a, we may form the flat stable Koszul cochain complex 

K*{a) = {A-^A[l/a]), 

where the nonzero modules are in cohomological degrees 0 and 1. The word stable is 
included since this complex is the colimit over s of the unstable Koszul complexes 

K:{a) = {a':A-. A). 

When defining local cohomology, it is usual to use the complex K*{a) of flat modules. 
However, we shall need a complex of projective A modules in order to define certain 

dual local homology modules. Accordingly, we take a projective approximation PK*{a) 
to K*{a). A good way of thinking about this is that, instead of taking the colimit of the 
Ks{a), we take their telescope [13, p. 447]. This places the algebra in the form relevant 
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to the topology. However, we shall use the model for PK*{a) displayed as the upper 
row in the quasi-isomorphism 

A e A[x\ 

(1,0) 

(1,QX-1) 
— ^ ^ i x l 

r 

•A[lla] 

where g^x^) = l / a \ because, like K*{ot), this choice of PK*{a) is nonzero only in 
cohomological degrees 0 and 1. 

The Koszul cochain complex for a sequence a = ( a i , . . . , an) is obtained by tensoring 
together the complexes for the elements, so that 

and similarly for the projective complex PK*{a). 

LEMMA 1.1. If P is in the ideal I = {a\,ai^... ,an), then K*{OL)[\/P] is exact. 

PROOF. Since homology commutes with colimits, it suffices to show that some power 
of /? acts as zero on the homology of Kg{a) = A'J(ai) 0 • • 0 Kg{an). However, 
{aiY annihilates H*{K^{ai)), and it follows easily that (ai)^^ annihilates H*{K^{cx)). 
Writing /3 as a linear combination of the n elements ai, we see that (3^^^ is a linear 
combination of elements each of which is divisible by some (ai)^*, and the conclusion 
follows. D 

Note that, by construction, we have an augmentation map 

e : K^{a) —> A, 

COROLLARY 1.2. Up to quasi-isomorphism, the complex K*{OL) depends only on the 
ideal I. 

PROOF. The lemma implies that the augmentation K*{OL,(3) —> K*{OL) is a quasi-
isomorphism if P G I. It follows that we have quasi-isomorphisms 

K^{a) ^— K^{OL) 0 K%a') — ^ K^{OL') 

if a' is a second set of generators for / . D 

We therefore write K*{I) for K*{OL). Observe that K*{OL) is unchanged if we replace 
the elements ai by powers {ciiY, Thus K*{I) depends only on the radical of the ideal 
/ . Since PK*{a) is a projective approximation to K*{a), it too depends only on the 
radical of L We also write K*{I) = Ar*(ai) (8) • • • 0 Kg (an), but this is an abuse of 
notation since its homology groups do depend on the choice of generators. 
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The local cohomology and homology of an i4-module M are then defined by 

H^{A',M) = H*[PK%I)®M) 

and 

Hi {A\ M) = H^{ Horn [PK^ (!), M)) . 

We usually omit the ring A from the notation. In particular, we write Hj {A) = Hj {A\ A). 
Note that we could equally well use the flat stable Koszul complex in the definition of 
local cohomology, as is more common. It follows from Lemma 1.1 that Hj{M) is 
supported over / and is thus an /-power torsion module. 

We observe that local cohomology and homology are invariant under change of base 
ring. While the proof is easy enough to leave as an exercise, the conclusion is of con-
siderable calculational value. 

LEMMA 1.3. If A —y A' is a ring homomorphism, I' is the ideal I • A' and M' is an 
A'-module regarded by pullback as an A-module, then 

H} (A; M') ^ Hp {A'; M') and Hi {A\ M') ^ Hi' {A'\ M'). 

We next define the Cech cohomology and homology of the A-module M. We will 
motivate the name at the end of the next section. Observe that e : K*{OL) —> A is an 
isomorphism in degree zero and define the flat Cech complex (?•(/) to be the complex 
i:(kere). Thus, if z ^ 0, then &{I) = K'"'^ (/). For example, if / = (a, /3), then 

C-(/) = (A[l/a] e A[l//3] — A[\/{a0)]). 

The differential K^{I) —^ K^{I) specifies a chain map A —^ C*{I) whose fibre is 
exacdy K*{I)\ see [11, pp. 439, 440]. Thus we have a fibre sequence 

K*{I) —^A—^ C*{I) 

We define the projective version PC*{I) similarly, using the kernel of the composite 
of e and the quasi-isomorphism PK*{I) —• K*{I)', note that PC*{I) is nonzero in 
cohomological degree - 1 . 

The Cech cohomology and homology of an A-module M are then defined by 

Cif; {A-, M) = H* [PC* (/) 0 M) 

and 

CHi{A\M) = H.{Yiom{PC*[I),M)). 

The Cech cohomology can also be defined by use of the flat Cech complex and is zero 
in negative degrees, but the Cech homology is usually nonzero in degree - 1 . 
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The fibre sequence PK*{I) —• A —• PC* {I) gives rise to long exact sequences 
relating local and Cech homology and cohomology. These reduce to 

0 —^ H/(M) —> M —^ CH^j{M) —^ H]{M) —> 0 

and 

0 —^ H{{M) —> CH^iM) —. M - ^ H^{M) —^ CHL^{M) —> 0, 

together with isomorphisms 

H}{M)^CHi-\M) and HI{M)^CHI_^{M) for Z ^ 2. 

Using the Cech theory, we may splice together local homology and local cohomology 
to define "local Tate cohomology" Hj{A\M), which has attractive formal properties; 
we refer the interested reader to [9]. 

2. Connections with derived functors; calculational tools 

We gave our definitions in terms of specific chain complexes, but we gave our motivation 
in terms of derived functors. The meaning of the definitions appears in the following two 
theorems. 

THEOREM 2.1 (Grothendieck [15]). If A is Noetherian, then the local cohomology groups 
calculate the right derived functors of the left exact functor M i—> ri{M). In symbols, 

HY{A\M) = {R^ri){M), 

Since ri{M) is clearly isomorphic to colimr (Hom(i4//^,M), these right derived 
functors can be expressed in more familiar terms: 

{RTi){M) ^ colim E x t ^ ( A / r , M ) . 
r 

THEOREM 2.2 (Greenlees and May [13]). If A is Noetherian, then the local homology 
groups calculate the left derived functors of the {not usually right exact) I-adic comple-
tion functor M I—• Mj". In symbols, 

Hi(A;M) = {Lni-)^){M). 

The conclusion of Theorem 2.2 is proved in [13] under much weaker hypotheses. 
There is a notion of "pro-regularity" of a sequence a for a module M [13, (1.8)], and 
[13, (1.9)] states that local homology calculates the left derived functors of completion 
provided that A has bounded a^ torsion for all i and a is pro-regular for A. Moreover, 
if this is the case and if a is also pro-regular for M, then HQ{A',M) = Mj" and 



262 J.RC. Greenlees and J.P. May Chapter 7 

Hl{A\ M) = 0 for 2 > 0. We shall refer to a module for which the local homology is its 
completion concentrated in degree zero as tame. By the Artin-Rees lemma, any finitely 
generated module over a Noetherian ring is tame. 

The conclusion of Theorem 2.1 is also true under similar weakened hypotheses [10]. 
An elementary proof of Theorem 2.1 can be obtained by induction on the number of 

generators of / . This uses the spectral sequence 

/ f ; ( i / } (M))=:^i f ,V^(M) 

that is obtained from the isomorphism PK*[I 4- J) = PK*{I) 0 PK*{J). This means 
that it is only necessary to prove the result when / is principal and to verify that if Q 
is injective then FiQ is also injective. The proof of Theorem 2.2 can also be obtained 
like this, although it is more complicated because the completion of a projective module 
will usually not be projective. 

One is used to the idea that /-adic completion is often exact, so that LQ is the most 
significant of the left derived functors. However, it is the top nonvanishing right derived 
functor of / / that is the most significant. Some idea of the shape of these derived 
functors can be obtained from the following result. Observe that the complex PK*{OL) 

is nonzero only in cohomological degrees between 0 and n. This shows immediately that 
local homology and cohomology are zero above dimension n. A result of Grothendieck 
usually gives a much better bound. Recall that the Krull dimension of a ring is the length 
of its longest strictly ascending sequence of prime ideals and that the /-depth of a module 
M is the length of the longest regular M-sequence in / . 

THEOREM 2.3 (Grothendieck [14]). If A is Noetherian of Krull dimension d, then 

Hf{M) = 0 and i7^(M) = 0 ifn>d. 

Let depthj(M) = m. With no assumptions on A and M, 

HJ{M) = 0 if Km, 

If A is Noetherian, M is finitely generated, and IM ^ M, then 

Hf{M) ^ 0. 

PROOF. The vanishing theorem for local cohomology above degree d follows from the fact 
that we can re-express the right derived functors of Fj in terms of algebraic geometry 
and apply a vanishing theorem that results from geometric considerations. Indeed, if 
X = Spec{A) is the affine scheme defined by A, Y is the closed subscheme determined 
by / with underlying space V{I) = {p\p D / } C X, and M is the sheaf over X 
associated to M, then FiiM) can be identified with the space FY{M) of sections of M 
with support in Y. For sheaves ^ of Abelian groups over X, the cohomology groups 
HyiX',^) are defined to be the right derived functors {R*FY){^), and we conclude 
that 

H}{A;M)^H;r{X;M). 
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The desired vanishing of local cohomology groups is now a consequence of a general 
result that can be proven by using flabby sheaves to calculate sheaf cohomology: for any 
sheaf ^ over any Noetherian space of dimension d, H^{X\^) = 0 for n > d [14, 
3.6.5] (or see [16, in.2.7]). The vanishing result for local homology follows from that 
for local cohomology by use of the universal coefficient theorem that we shall discuss 
shortly. 

The vanishing of local cohomology below degree m is elementary, but we give the 
proof since we shall later make a striking application of this fact. We proceed by induction 
on m. The statement is vacuous if m = 0. Choose a regular sequence {/3i,... ,/3m} in 
/. Consider the long exact sequence of local cohomology groups induced by the short 
exact sequence 

0 —^ M A M —> M/l3xM —^ 0. 

Since {/32,... ,/?m} is a regular sequence for M/P\M, the induction hypothesis gives 
that H}{M/0\M) = 0 for i < m - 1. Therefore multiplication by (3\ is a monomor-
phism on H}{M) for i < m. Since Hj{M)[l/j3i] = 0, by Lemma 1.1, this implies 
that H}{M) = 0. The fact that HJ^iM) ^ 0 under the stated hypotheses follows 
from standard alternative characterizations of depth and local cohomology in terms of 
Ext [20, §16]. D 

It follows directly from the chain level definitions that there is a third quadrant universal 
coefficient spectral sequence 

E'/=Exi\{H]-\A),M) =^ ffi,_,(A;M), (2.4) 

with differentials dr : Ep^ —y i? '̂̂ '*'*"'"^^ This generalizes Grothendieck's local duality 
spectral sequence [15]; see [13] for details. 

We record a consequence of the spectral sequence that is implied by the vanishing 
result of Theorem 2.3. Recall that the nicest local rings are the regular local rings, whose 
maximal ideals are generated by a regular sequence; Cohen-Macaulay local rings, which 
have depth equal to their dimension, are more common. The following result applies in 
particular to such local rings. 

COROLLARY 2.5. If A is Noetherian and depth/(-4) = dim{A) = d, then 

LiM = Exi'^-' {Hf {A), M). 

For example, if >1 = Z and / = (p), then H^p){Z) = ^(p)(Z) = Z/p°°. Therefore the 
corollary states that 

4 ^ ) M = Ext(Z/p°°,M) and LJ^W = Hom(Z/p°^,M), 

as was observed in Bousfield and Kan [3, VI.2.1]. 
There is a precisely similar universal coefficient theorem for calculating Cech homol-

ogy from Cech cohomology. Together with Theorem 2.3, this implies vanishing theorems 
for the Cech theories. 
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COROLLARY 2.6. If A is Noetherian of Krull dimension d ^ 1, then CH\{M) is only 
nonzero ifO ^ z ^ d - 1 and CHl{M) is only nonzero if -I ^ i ^ d - I. If d = 0 the 
Cech cohomology may be nonzero in degree 0 and the Cech homology may be nonzero 
in degrees 0 and - 1 . 

When R is of dimension one, the spectral sequence (2.4) can be pictured as follows: 

i 

0 

1 

, 

0 

® \ ^ 

m 

1 

® 

2 3 

Here the two boxes marked 0 contribute to HQ, and that marked S is H{. Since 
there is no local homology in negative degrees, the first of the 2̂ differentials must be 
an epimorphism and the remaining d2 differentials must be isomorphisms. Thus we find 
an exact sequence 

0 -> Ext̂  {H}{A), M) -^ Hl{M) -> Hom {H^j{A), M) 

^ExX^[H\{A),M) -^0 

and an isomorphism 

Hl{M)^\{om[H\{A),M). 

Another illuminating algebraic fact is that local homology and cohomology are in-
variant under the completion M —• Mf of a tame module M. This can be used in 
conjunction with completion of A and / in view of Lemma 1.3. However, all that is 
relevant to the proof is the vanishing of the higher local homology groups, not the 
identification of the zeroth group. 

PROPOSITION 2.7. / / H^{M) = 0 for q > 0, then the natural map M —> H^{M) 
induces isomorphisms on application of Hf{') and Hl{'). 

PROOF. The natural map e* : M —• Hom(Pi(r*(/),M) induces a quasi-isomorphism 

Hom [PK^{I), M) —^ Hom {PK*{I), Hom [PK%I), M)) 

^ Hom(PX*( / )0Pi ( :*( / ) ,M) 
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since the projection PK*{I) 0 PK*{I) —• PK*{I) is a quasi-isomorphism of projec-
tive complexes by Corollary 1.2. We obtain a collapsing spectral sequence converging 
from E^q = Hp{Hq{M)) to the homology of the complex in the middle, and the 
invariance statement in local homology follows. 

For local cohomology we claim that e also induces a quasi-isomorphism 

K%I) 0 M —* K*{I) 0 Hom {PK*{I), M). 

The right side is a double complex, and there will result a collapsing spectral se-
quence that converges from £2'^ — H^{{HLq{M)) to its homology. This will give 
the invariance statement in local cohomology. The fibre of the displayed map is 
K*{I) 0 Hom(PC'*(/),M), and we must show that this complex is exact. How-
ever K*{I) is a direct limit of the finite self-dual unstable Koszul complexes K*{I) 
so it is enough to see that Hom(PC*(/) 0 Kg{I),M) is exact. Since the complex 
PC* {I) 0 Kg{I) is projective, it suffices to show that it is exact. However, it is 
quasi-isomorphic to C*(/) 0 K^{I), which has a finite filtration with subquotients 
A[l//3] (g) K*{I) with /3 G L ^t saw in the proof of Lemma 1.1 that some power 
of P annihilates the homology of K^{I). Therefore the homology of A[l/P]<Si Kl{I) is 
zero and the conclusion follows. D 

We must still explain why we called C*(/) a Cech complex. In fact, this complex 
arises by using the Cech construction to calculate cohomology from a suitable open 
cover. More precisely, let Y be the closed subscheme oi X = Spec{A) determined by 
/ , as in the proof of Theorem 2.3. The space V{I) = {p\p D 1} decomposes as V{I) = 
V{a\) n • • n V{an), and there results an open cover of the open subscheme X — Y as 
the union of the complements X -Yi of the closed subschemes Yi determined by the 
principal ideals (QI) . However, X - 1 ^ is isomorphic to the affine scheme Spec{A[l/ai]). 
Since affine schemes have no higher cohomology, 

H*{Spec{A[l/ai])) = H°{Spec{A[l/ai])) = A[l/ai]. 

Thus the E\ term of the Mayer-Vietoris spectral sequence for this cover collapses to the 
chain complex (?•(/), and if*(X -Y\M)^ CH*j{M). 

3. Topological analogs of the algebraic definitions 

We suppose given a commutative 5-algebra R, where S is the sphere spectrum. (As 
explained in [7], this is essentially the same thing as an Boo ring spectrum, but adapted 
to a more algebraically precise topological setting.) We imitate the algebraic definitions 
of Section 1 in the category of i?-modules to construct a variety of useful spectra. 
Here we understand i?-modules in the point-set level sense discussed in the preceding 
article [7]. The discussion in this section and the next is exactly like that first given 
for the equivariant sphere spectrum in [11], before the appropriate general context of 
modules was available. 
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For P e TTr^R, we define the Koszul spectrum K{/3) by the fibre sequence 

K{P)—^R^R[l/(3]. 

Here 

R[\/0] = hocolim (fl - ^ i? - ^ . . . ) 

is a module spectrum and the inclusion of iZ is a module map, hence K{l3) is an 
i?-module. Analogous to the filtration at the chain level, we obtain a filtration of the 
i?-module K{(3) by viewing it as 

S-^{R[1/0]UCR). 

Next we define the Koszul spectrum for the sequence Ŝi, • . . , /3n by 

Kil3u... ,/3„) = Ki0i) AR • • • AR K{l3n). 

The topological analogue of Lemma 1.1 states that if 7 e J then 

A : ( / 3 , , . . . , / 3 „ ) [ 1 / 7 ] ^ * ; 

this follows from Lemma 1.1 and the spectral sequence (3.2) below (or from Lemma 
3.6). We may now use precisely the same proof as in the algebraic case to conclude 
that the homotopy type of K{f3\,... ,/3n) depends only on the radical of the ideal J = 
( A , . . . , /3n). We therefore write K{J) for K{Px,..., /3n). 

We should remark that we are now working over the graded ring i?* = T:^{R). All 
of the algebra in the previous two sections applies without change in the graded setting, 
but all of the functors defined there are now bigraded, with an internal degree coming 
from the grading of the given ring and its modules. As usual, we write Mq — M~^. 

With motivation from Theorems 2.1 and 2.2, we define the homotopy J-power tor-
sion (or local cohomology) and homotopy J-completion (or local homology) modules 
associated to an it-module M by 

rj{M)=:K{J)ARM and M^ = FR{K{J),M). (3.1) 

In particular, rj{R) = K{J). 
Because the construction follows the algebra so precisely, it is easy to give methods 

of calculation for the homotopy groups of these it-modules. We use the product of the 
filtrations of the K{Pi) given above and obtain spectral sequences 

Kt = Hy^~\R*\M.) ^ TTs^tirjM) (3.2) 

with differentials cT : JSĴ  —̂  JSJ.^^^^., and 

E'/ = H\_,{R^'.M^) ^ n_^s-,t){M!^) (3-3) 
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with differentials dr : E^^^ -^ £;5+r,t-r-fi 
Similarly, we define the Cech spectrum by the cofibre sequence 

K{J) —^R—^ C{J) (3.4) 

With motivation deferred until Section 5, we define the homotopical localization (or Cech 
cohomology) and Cech homology modules associated to an i?-module M by 

M[J-^]=C{J)ARM and A-^iM) = FR{C{J),M). (3.5) 

In particular, R[J~^] = C{J). Once again, we have spectral sequences for calculating 
their homotopy groups from the analogous algebraic constructions. 

We can now give topological analogues of some basic pieces of algebra that we 
used in Section 1. Recall that the algebraic Koszul complex K*{J) is a direct limit of 
unstable complexes K*{J) that are finite complexes of free iJ*-modules with homology 
annihilated by a power of J. We remind the reader that, in contrast with K*{J), the 
homology of the modules Kg (J) depends on the choice of generators we use. We say 
that an i?-module M is a J-power torsion module if its i?^-module M* of homotopy 
groups is a J-power torsion module; equivalendy, M* must have support over J. 

LEMMA 3.6. The R-module K[J) is a homotopy direct limit of finite R-modules Ks{J), 
each of which has homotopy groups annihilated by some power of J. Therefore K{J) is 
a J-power torsion module. 

PROOF. It is enough to establish the result in the principal ideal case and then take smash 
products over R. Let 

KsiP) = E-'R/P' 

denote the fibre of P^ : R —> R, and observe that its homotopy groups are annihilated 
by (3'^^. Now observe that 

{R —^ R[l/0]) = hocolim {R -^ R), 

and so their fibres are also equivalent: 

i(^(^)~ hocolim ii:,(/3). 
s 

D 

The following lemma is an analogue of the fact that C*{J) is a chain complex which 
is a finite sum of modules R[l/0] for (3 £ J. 

LEMMA 3.7. The R-module C{J) has a finite filtration by R-submodules with subquo-
tients that are suspensions of modules of the form iZ[l//3] with P E J. 
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These lemmas are useful in combination. 

COROLLARY 3.8. If M is a J-power torsion module then M AR C{J) Ĉ  *; in particular 
K{J) AR C{J) ~ *. 

PROOF. Since M[l//3] ĉ  * for /3 € J, Lemma 3.7 gives the conclusion for M. Q 

We remark that the corollary leads via [9, B.2] to the construction of a topological 
J-local Tate cohomology module tj{M) that has formal properties like those of its 
algebraic counterpart studied in [9]. 

4. Completion at ideals and Bousfield localization 

As observed in the proof of Lemma 3.6, we have K{0) = hocolimg Z'~*i?//3* and 
therefore 

M(^) = F i^(hocol im^- ' i^ /^^M) = holimM//3^ 

If J= ( /3 ,7 ) , t hen 

M^ = FR{K{P) ARK{^\M) = FR{K{P),FR{K{J\M)) = (M^^))^^), 

and so on inductively. This should help justify the notation Mj = FR{K{J), M). 

When i? = 5 is the sphere spectrum and p G Z = 7ro(5), iir(p) is a Moore spectrum 
for Z/p°° in degree —1 and we recover the usual definition 

X^ = F{S-'/p°°,X) 

of p-completions of spectra as a special case. The standard short exact sequence for 
the calculation of the homotopy groups of X^ in terms of *Ext completion' and 'Hom 
completion' follows directly from Corollary 2.5. 

Since p-completion has long been understood to be an example of a Bousfield lo-
calization, our next task is to show that completion at J is a Bousfield localization in 
general. The arguments are the same as in [11, §2], which dealt with the (equivariant) 
case R = S. 

We must first review definitions. They are usually phrased homologically, but we shall 
give the spectrum level equivalents so that the translation to other contexts is immediate. 
Fix a spectrum E. A spectrum A is E-acyclic if A A J5 ~ *; a map / : X —> Y is 
an E-equivalence if its cofibre is £?-acyclic. A spectrum X is E-local if J5 A T ĉ  * 
implies F(T, X) ĉ  *. A map Y —• LEY is a Bousfield E-localization of Y if it is 
an ^^-equivalence and LEY is EAocdX. This means that Y —> LEY is terminal among 
E-equivalences with domain Y, and the Bousfield localization is therefore unique if it 
exists. Bousfield has proved that LEY exists for all E and Y, but we shall construct the 
localizations that we need directly. 
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We shall need two variations of the definitions. First, we work in the category of 
i?-modules, so that A and F(-, •) are replaced by AR and FR{-,-). It is proven in [8] that 
Bousfield localizations always exist in this setting. Second, we allow E to be replaced 
by a class S' of i?-modules, so that our conditions for fixed E are replaced by conditions 
for each E e S'. When the class ^ is a set, it is equivalent to work with the single 
module given by the wedge of all E £ S. Bousfield localizations at classes need not 
always exist, but the language will be helpful in explaining the conceptual meaning of 
our examples. The following observation relates the spectrum level and module level 
notions of local spectra. 

LEMMA 4.1. Let S be a class of R-modules. If an R-module N is ^-local as an R-
module, then it is S'-local as a spectrum. 

PROOF. Let F be the free functor from spectra to /2-modules. If E A T ~ * for all E, 
then £; Afl FT ĉ  * for all E and therefore F(T, N) c^ ^^(Fr, N) c^ *. D 

The class that will concern us most is the class J-Tors of finite J-power torsion R-
modules M. Thus M must be a finite cell ii-module, and its i?*-module M* of homotopy 
groups must be a J-power torsion module. 

THEOREM 4.2. For any finitely generated ideal J ofR^ the map M —• Mj is Bousfield 
localization in the category of R-modules in each of the following equivalent senses: 

(i) with respect to the R-module rj{R) = K{J). 
(ii) with respect to the class J-Tors of finite J-power torsion R-modules. 

(iii) with respect to the R-module Ks{J) for any s ^ \. 

Furthermore, the homotopy groups of the completion are related to local homology groups 
by a spectral sequence 

El,=Hl,(M,)=^n,+tiM^). 

IfR^ is Noetherian, the E'^ term consists of the left derived functors ofJ-adic completion: 
Hi{M,) = L/(M.). 

PROOF. The statements about calculations are repeated from (3.3) and Theorem 2.2. We 
prove (i). Since 

FR{T,M!^) ^ FR{T ARK{J),M), 

it is immediate that Mj is K{J)'\oc2i\. We must prove that the map M —> Mj is a 
i<'(J)-equivalence. The fibre of this map is F{C{J), M), so we must show that 

F{CiJ\M)ARK{J)c^*. 

By Lemma 3.6, K{J) is a homotopy direct limit of terms Ks{J). Each Ks{J) is in 
J-Tors, and we see by their definition in terms of cofibre sequences and smash products 
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that their duals DRKS{J) are also in J-Tors, where DR{M) = FR{M, R), Since Ks{J) 
is a finite cell ii-module, 

FR{C{J),M) ARKS{J) = FR{C{J) ARDRKS{J),M), 

and C{J) ARDRKS{J) ~ * by Corollary 3.8. Parts (ii) and (iii) are similar but simpler. 
For (iii), observe that we have a cofibre sequence R//3^ —> R/P^^ —> R/P^, so 
that all of the Kjs{J) may be constructed from Ks{J) using a finite number of cofibre 
sequences. D 

5. Localization away from ideals and Bousfield localization 

Bousfield localizations include both completions at ideals and localizations at multiplica-
tively closed sets, but one may view these Bousfield localizations as falling into the types 
typified by completion at p and localization away from p. Thinking in terms of Spec{R^), 
this is best viewed as the distinction between localization at a closed set and localization 
at the complementary open subset. We dealt with the closed sets in the previous section, 
and we deal with the open sets in this one. Observe that, when J = (/3), M[J~^] is 
just i?[/3"^] ARM = M[/3~^]. However, the nonvanishing of higher Cech cohomology 
groups gives the construction for general finitely generated ideals a quite different al-
gebraic flavor, and M[J~^] is generally not a localization of M at a multiplicatively 
closed subset of R^. To characterize this construction as a Bousfield localization, we 
consider the class J-Inv of it-modules M for which there is an element P G J such that 
P : M —> M is an equivalence. 

THEOREM 5.1. For any finitely generated ideal J = (/3i,..., Pn) of R^, the map M —> 
M[J~^] is Bousfield localization in the category of R-modules in each of the following 
equivalent senses: 

(i) with respect to the R-module R[J~^] = C{J). 
(ii) with respect to the class J-Inv. 

(iii) with respect to the set {R[\/Pi],..., R[\/Pn]}, 

Furthermore, the homotopy groups of the localization are related to Cech cohomology 
groups by a spectral sequence 

El, = CH-/'-\M,) =^ 7r,+e(M[J-']). 

If R^ is Noetherian, the E'^ term can be viewed as the cohomology of Spec{R^) \ V{J) 
with coefficients in the sheaf associated to M*. 

PROOF. The spectral sequence is immediate from the construction of M[J~^], and the 
last paragraph of Section 2 gives the final statement. 
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To see that M[J~^] is local, suppose that T AR C{J) ~ *. We must show that 
FR{T,M[J~^]) ~ *. By the cofibre sequence defining C{J) and the hypothesis, it 
suffices to show that FR{K[J) AR T, M[J'^]) ~ *. By Lemma 3.6, 

FR{K{J) AR T,M[J-']) :^ ho\imFR{Ks{J) AR T,C{J) AR M). 

Observing that 

FR{KS{J) AR T, C{J) AR M) ~ FR{T, DRKS{J) AR C{J) AR M), 

we see that the conclusion follows from Corollary 3.8. The map M —> M[J~^] is a 
C(J)-equivalence since its fibre is rj{M) = K{J) AR M and K{J) AR C{J) ~ * by 
Corollary 3.8. Parts (ii) and (iii) are proved similarly. D 

Translating the usual terminology, we say that a localization L on i?-modules is smash-
ing if L{N) ~ AT AH L{R) for all i?-modules N. The following fact is obvious. 

LEMMA 5.2. Localization away from J is smashing. 

It is also clear that completion at J will not usually be smashing. 
We complete the general theory with an easy, but tantalizing, result that will specialize 

to give part of the proof of the Chromatic Convergence Theorem of Hopkins and Ravenel 
[23]. It well illustrates how the algebraic information in Section 2 can have nonobvious 
topological implications. Observe that if J' = J -h (/3), we have an augmentation map 
e : K{J') ^ K{J) AR K{P) —> K{J) over R. Applying FR{',M), we obtain an 
induced map 

A comparison of cofibre sequences in the derived category of i?-modules gives a dotted 
arrow ( such that the following diagram commutes: 

Fj^iM) ^M ^M[f'^] ^UFriM) 
I 
IC 
Y 

rj{M)—^M—^M[j-'] ^urj{M) 

Here the cofibre of e is rj{M)[p-^] and the cofibre of C is Iirj{M)[0-^]. If an ideal 
^ is generated by a countable sequence {f3i} and Jn is the ideal generated by the first 
n generators, we may define 

M^ = hocolimMj^ and M\j-^]= hoHmMfJ-'l. 

We say that ^ is of infinite depth if depthj^(i?*) —^ oc; this holds, for example, if 
{/3i} is a regular sequence. 
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PROPOSITION 5.3. if M is a finite cell R-module and J is of infinite depth, then M 2:̂  

PROOF. It suffices to prove that holinin rj^{M) ~ *, and, since M is finite, it is enough 
to prove this when M = it. We show that the system of homotopy groups n^{K{Jn)) is 
pro-zero. This just means that, for any n, there exists q > n such that the map K{Jq) —y 
K{Jn) induces zero on homotopy groups, and it implies that both limn7r*(i(r(Jn)) = 
0 and limJ^7r*(i(r(Jn)) = 0. By the lim' exact sequence for the computation of the 
homotopy groups of a homotopy inverse limit, this will give the conclusion. Since J„ is 
finitely generated, there is a d such that i7} (R^) = 0 for z ^ d. By hypothesis, we may 
choose q such that depthj (/?*) > d. Then, by Theorem 2.3, H} (R^) = 0 for i ^ d. 
Now the spectral sequence (3.2) for 7T„{K{Jn)) is based on the filtration 

. . . C F _ , C F _ , + , C . . . F , CFo = iT,{K{Jn)) 

in which F-s is the group of elements arising from Hj^{R^) for i > s. The map 
K{Jq) —y K{Jn) is filtration preserving, hence the filtration corresponding to 5 = d is 
mapped to 0. By the choice of q, this filtration is all of 'K^{K{Jq)). U 

6. The specialization to ideals in MU^ 

We specialize to the commutative 5-algebra R = MU in this section, taking [7, §11] 
as our starting point. Recall that MU^ = Z[xi\i ^ 1], where degxi — 2i, and that 
MU^ contains elements Vi of degree 2(p' - 1) that map to the Hazewinkel generators 
of BP^ = Z(p)[vi|z ^ 1]. We let /„ denote the ideal {vo,v\,... ,Vn-\) in 7r*(MC/), 
where VQ = p; we prefer to work in MU rather than BP because of its canonical 5-
algebra structure. As explained in [7, §11], BP is an MfZ-ring spectrum whose unit 
MU —• BP factors through the canonical retraction MU(^p) —• BP. We also have 
MU'Ting spectra E{n) such that E{0)^ = Q and 

if n > 0. The Bousfield localization functor Ln = LE(n) on spectra plays a fundamental 
role in the "chromatic" scheme for the inductive study of stable homotopy theory, and 
we have the following result. 

THEOREM 6.1. When restricted to MU-modules M, the functor Ln coincides with local-
ization away from In-^i'-

LnM:^M[l-l,]. 

PROOF. By [23, 7.3.2], localization at E{n) is the same as localization at BP[{vn)~^] or 
at the wedge of the K{i) for 0 ^ 2 ^ n. This clearly implies that localization at E{n) 
is the same as localization at the wedge of the BP[{vi)~^] for 0 < z ^ n, and this is 
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the same as localization at the wedge of the MU[{vi)~^] for 0 ^ i ^ n. By Lemma 4.1, 
we conclude that M[/~|j] is £^(n)-local. To see that the localization M —> M[I~^^] 
is an Mf/[(i'i)~^]-equivalence for 0 ^ 2 < n, note that its fibre is 77^ ,̂ (M) and 
//n+,(M)[ti;-^] ĉ  * for any w e /n+i- Consider MU^MU) = {MU A MU)^ as a 
left MC/*-module, as usual, and recall from [23, B.5.15] that the right unit MU^ —^ 
{MU A MU)^ satisfies 

rjR{vi) = Vi mod U • MU^MU), hence mi'^i) ^ h-^i ' MU^MU). 

We have 

r/„^, (M) A MC/ ~ A„^, (M) AMCI {MU A MU) 

and can deduce inductively that //^^,(M) A MU[w~^] ~ * for any w e 7̂ +1 since 
77̂ +1 (M)[i(;~^] ~ * for any such w. D 

When M = BP, this result is essentially a restatement in our context of Ravenel's 
theorem [23, 8.1.1] (see also [21, §§5, 6] and [22]) on the geometric realization of 
the chromatic resolution for the calculation of stable homotopy theory. To explain the 
connection between our constructions and his, we offer the following dictionary: 

NnBPc^E^rj^BP, 

MnBPc,E^ri^BP[{vnr% 

LnBP::.BP[l-l,]. 

In fact, for any spectrum X, Ravenel defines MnX and NnX inductively by 

NoX = X, MnX = LnNnX, 

and the cofibre sequences 

NnX -^ MnX —. Nn^iX. (6.2) 

He also defines CnX to be the fibre of the localization X —> LnX (where, to start 
inductions, L-\X = * and C-\X = X). Elementary formal arguments given in [21, 
5.10] show that the definition of Bousfield localization, the cofibrations in the definitions 
just given, and the fact that LmLn = Lm for m ^ n [21, 2.1] imply that 

NnX = E'^Cn-xX 

and there is a cofibre sequence 

E-^MnX -^ LnX —> Ln-xX, (6.3) 
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The claimed identifications follow inductively from our description of LnBP and the 
fact (implied by Lemma 1.1) that, for any MC/-module M, 

In fact, the evident cofibrations of Mf/-modules 

E^Fi^BP —. E^rj^BP[vn''] — E^^'ri^^,[BP) 

and 

r,„BP[(t;„)-'] - . 5 P [ ( / „ + , ) - ' ] - > 5 P [ ( 7 „ ) - ' ] 

realize the case X = BP of the cofibrations displayed in (6.2) and (6.3). Moreover, it is 
immediate from our module theoretic constructions that the homotopy groups are given 
inductively by 

{NoBP), = BP., (MnBP), = {NnBP).[{vn)-']^ 

and the short exact sequences 

0 -^ {NnBP). —^ {MnBP). -^ {Nn+iBP% —> 0. (6.4) 

Ravenel's original arguments were substantially more difficult because, not having the 
new category of MC7-modules to work in, he had to work directly in the classical stable 
homotopy category. 

Although BP is not a finite cell M[/-module, the retraction from Mi7(p) makes it 
clear that the proof of Proposition 5.3 applies to give the following conclusion. 

PROPOSITION 6.5. Let J be generated by {vi\i ^ 0}. Then 

BP ĉ  J5P[j^-^] ~ holimLnBP. 

The chromatic filtration theorem of Hopkins and Ravenel [23, 7.5.7] asserts that a 
finite p-local spectrum X is equivalent to holim LnA"; the previous result plays a key 
role in the proof (in the guise of [23, 8.6.5]). 

We close with a result about completions. We have the completion M —• Mj^ on the 
category of MC/-modules M. There is another construction of a completion at In which 
extends to all p-local spectra, and the two constructions agree when both are defined. 
We recall the other construction. For a sequence i = (zo,zi,... ,2n-i)» we may attempt 
to construct generalized Toda-Smith spectra 

M; = M{p'",vi',...vt-;) 

inductively, starting with S, continuing with the cofibre sequence 
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and, given L = M(io,ii,...,in-2)' concluding with the cofibre sequence 

Mi - ^ L ""^ L. 

Here M| is a finite complex of type n and hence admits a i;n-self map by the Nilpotence 
Theorem [5], [17], [19], and vĵ ^ is shorthand for such a map. These spectra do not exist 
for all sequences i, but they do exist for a cofinal set of sequences, and Devinatz has 
shown [4] that there is a cofinal collection all of which are ring spectra. These spectra are 
not determined by the sequence, but it follows from the Nilpotence Theorem that they 
are asymptotically unique in the sense that hocolim,- Mj is independent of all choices. 
Hence we may define a completion for all p-local spectra X by 

X^^=F{hoco\imMuX). 

We shall denote the spectrum hocolim,-Mj by rj^{S), although its construction is con-
siderably more sophisticated than that of our local cohomology spectra. 

PROPOSITION 6.6. Localize all spectra at p. Then there is an equivalence of MU-modules 

MUArijs)^ri^{MU). 

Therefore, for any MU-module M, there is an equivalence of MU-modules between the 
Wo completions Mj"^. 

PROOF (Sketch). It is proven in [8] that localization at p, and indeed any other Bousfield 
localization, preserves commutative 5-algebras. The second statement follows from the 
first since 

FMU{MU^^I^{S),M) ^ F{rj^{S),M) 

as MC/-modules. It suffices to construct compatible equivalences 

MU AMiC^ MU/p^ AMU MU/V\' AMU • • • /\MU MU/V^ 
I n - l 

-1 • 

By [7, 9.9], the right side is equivalent to MU/Ii, where /i = (p^,i;j\ . . . , v'^'l) C In-
A Vn'Self map v : X —> X on a type n finite complex X can be characterized as a map 
such that, for some z, BP^{v^) : BP^{X) —y BP^{X) is multiplication by v^^ for some 
j . Since MU^X) = MU^ (S)BP. MU^X), we can use MU instead of BP. Using MU, 
we conclude that the two maps of spectra id Av^ and v^^ A id from MU A X to itself 
induce the same map on homotopy groups. The cofibre of the first is MU A Cv^ and the 
cofibre of the second is MU/{vj^) A X. In the case of our generalized Moore spectra, 
a nilpotence technology argument based on results in [19] shows that some powers of 
these two maps are homotopic, hence the cofibres of these powers are equivalent. The 
conclusion follows by induction. D 
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0. Introduction 

The study of symmetries on spaces has always been a major part of algebraic and 
geometric topology, but the systematic homotopical study of group actions is relatively 
recent. The last decade has seen a great deal of activity in this area. After giving a brief 
sketch of the basic concepts of space level equivariant homotopy theory, we shall give an 
introduction to the basic ideas and constructions of spectrum level equivariant homotopy 
theory. We then illustrate ideas by explaining the fundamental localization and completion 
theorems that relate equivariant to nonequivariant homology and cohomology. 

The first such result was the Atiyah-Segal completion theorem which, in its sim-
plest terms, states that the completion of the complex representation ring R{G) at 
its augmentation ideal / is isomorphic to the fC-theory of the classifying space BG\ 
R{G)^ = K{BG). A more recent homological analogue of this result describes the 
K-homology of BG. As we shall see, this can best be viewed as a localization theorem. 
These are both consequences of equivariant Bott periodicity, although full understanding 
depends on the localization away from / and the completion at / of the spectrum KG 
that represents equivariant ii'-theory. We shall explain a still more recent result which 
states that a similar analysis works to give the same kind of localization and comple-
tion theorems for the spectrum MUQ that represents a stabilized version of equivariant 
complex cobordism and for all module spectra over MUG- We shall also say a little 
about equivariant cohomotopy, a theory for which the cohomological completion theo-
rem is true, by Carlsson's proof of the Segal conjecture, but the homological localization 
theorem is false. 

1. Equivariant homotopy 

We shall not give a systematic exposition of equivariant homotopy theory. There are 
several good books on the subject, such as [12] and [17], and a much more thorough 
expository account will be given in [53]. Some other expository articles are [49], [1]. We 
aim merely to introduce ideas, fix notations, and establish enough background in space 
level equivariant homotopy theory to make sense of the spectrum level counterpart that 
we will focus on later. 

The group 
We shall restrict our attention to compact Lie groups G, although the basic unstable 
homotopy theory works equally well for general topological groups. To retain the home-
omorphism between orbits and homogeneous spaces we shall always restrict attention to 
closed subgroups. 

The class of compact Lie groups has two big advantages: the subgroup structure is 
reasonably simple ('nearby subgroups are conjugate'), and there are enough representa-
tions (any sufficiently nice (7-space embeds in one). We shall sometimes restrict to finite 
groups to avoid technicalities, but most of what we say applies in technically modified 
form to general compact Lie groups. The reader unused to equivariant topology may find 
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it helpful to concentrate on the case when G is a group of order 2. Even this simple case 
well illustrates most of the basic ideas. 

G'Spaces and G-maps 
All of our spaces are to be compactly generated and weak Hausdorff. 

A G-space is a topological space X with a continuous left action by G\ a. based 
G-space is a G-space together with a basepoint fixed by G. These will be our basic 
objects. We frequently want to convert unbased G-spaces Y into based ones, and we do 
so by taking the topological sum of Y and a G-fixed basepoint; we denote the result 
byy+. 

We give the product X x Y of G-spaces the diagonal action, and similarly for the 
smash product X A F of based G-spaces. We use the notation map(X, Y) for the G-space 
of continuous maps from X to Y, G acts via (7/)(a:) = jfi^y^^x); we let F{X^Y) 
denote the subspace of based maps. The usual adjunctions apply. 

A map of based G-spaces is a continuous basepoint preserving function which com-
mutes with the action of G. A homotopy of based G-maps /o ĉ  / i is a G-map 
X A I^ —> Y whose composites with the inclusions of X A {0}-|- and X A {l}^. 
are /o and f\. We use the notation [X,y]G to denote the set of homotopy classes of 
based G-maps X —> Y, 

Cells, spheres, and G-CW complexes 
We shall be much concerned with cells and spheres. There are two important sorts 
of these, arising from homogeneous spaces and from representations, and the interplay 
between the two is fundamental to the subject. 

Given any closed subgroup if of G we may form the homogeneous space G/H and 
its based counterpart, G/H^. These are treated as 0-dimensional cells, and they play a 
role in equivariant theory analogous to the role of a point in nonequivariant theory. We 
form the n-dimensional cells from these homogeneous spaces. In the unbased context, 
the cell-sphere pair is 

(G/ i7xZ)^,G/ i7x5^"^) , 

and in the based context 

(G/ f f+AD^,G/ i /+A5^-*) . 

We shall always use different notation for different actions, so that when we write D^ 
and S^ we understand that G acts trivially. 

Starting from these cell-sphere pairs, we form G-CW complexes exactly as nonequiv-
ariant CW-complexes are formed from the cell-sphere pairs {D'^, S^~^). The usual the-
orems transcribe directly to the equivariant setting, and we shall say more about them 
below. Smooth compact G-manifolds are triangulable as finite G-CW complexes, but 
topological G-manifolds need not be. 

We also have balls and spheres formed from orthogonal representations V of G. We 
shall be concerned especially with the one-point compactification S^ of V, with oo as 
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the basepoint; note in particular that the usual convention that n denotes the trivial n-
dimensional real representation gives S'^ the usual meaning. We may also form the unit 
disc 

D{V) = {v&V\\\v\\^\], 

and the unit sphere 

s{y) = {v€V\\\v\\ = \)-

we think of them as unbased G-spaces. There is a homeomorphism S^ = D{V)/S{V). 
The resulting cofibre sequence 

can be very useful in inductive arguments since there is an equivariant homotopy equiv-
alence DiV)^ - S^. 

Fixed points and quotients 
There are a number of ways to increase or decrease the size of the ambient group. If 
/ : G\ —> G2 is a group homomorphism we may regard a G2-space F as a Gi -space 
f*Y by pullback along / , and we usually omit /* when the context makes it clear. The 
most common cases of this are when G\ is a subgroup of G2 and when G2 is a quotient 
of G\; in particular every space may be regarded as a G-fixed G-space. 

The most important construction on G-spaces is passage to fixed points: 

X" = {xeX\hx = xfor all h e H}. 

For example, F{X, Y)^ is the space of based G-maps X —> Y. It is easy to check 
that the fixed point spaces for the conjugates of H are all homeomorphic; indeed, mul-
tiplication by g induces a homeomorphism g : X^ ^^ —y X^. In particular X^ is 
invariant under the action of the normalizer NG{H), and hence it has a natural action 
of the Weyl group WciH) = NG{H)/H. Passage to if-fixed point spaces is a functor 
from G-spaces to WG{H)spaccs. 

Dually, we have the quotient space X/H of X by H. This is actually a standard abuse 
of notation, since H\X would be more consistent logically; for example, we are using 
G/H to denote the quotient of G by its right action by H. Again, multiplication by 
g gives a homeomorphism X/g'^Hg —> X/H. Thus X/H also has a natural action 
of the Weyl group, and passage to the quotient by H gives a functor from G-spaces to 
WG(-ff)-spaces. 

If A/̂  is a normal subgroup of G, then it is easy to verify that passage to N-fixcd points 
is right adjoint to pullback along G —> G/N and that passage to the quotient by N is 
left adjoint to this pullback. 

LEMMA 1.1. For G-spaces X and G/N-spaces Y, there are natural homeomorphisms 

G-map(y,X) ^ G/A^-map(y,X^) 
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and 

G/iV-map(X/iV,y) ^ G-map(X,y), 

and similarly in the based context 

The particular case 

G-map(G/ i f ,X)^X^ 

helps explains the importance of the fixed point functor. 

Isotropy groups and universal spaces 
An unbased G-space is said to be G-free \iX^ = 0 whenever H ^l.A based G-space 
is G'free if X" = * whenever H ^ I. More generally, for x E X the isotropy group 
at X is the stabilizer G ;̂ given any collection ^ of subgroups of G, we say that X is 
an c^-space if Gx ^ ^ for every non-basepoint x e X. Thus a G-space is free if and 
only if it is a {1 }-space. It is usual to think of a G-space as built up from the G-fixed 
subspace X^ by adding points with successively smaller and smaller isotropy groups. 
This gives a stratification in which the pure strata consist of points with isotropy group 
in a single conjugacy class. 

A collection ^ of subgroups of G closed under passage to conjugates and subgroups 
is called a family of subgroups. For each family, there is an unbased c^-space E^, 
required to be of the homotopy type of a G-CW complex, which is universal in the sense 
that there is a unique homotopy class of G-maps X —• E,^ for any c^-space X of 
the homotopy type of a G-CW complex. It is characterized by the fact that the fixed 
point set (E^)^ is contractible fox H e ^ and empty for H ^ ^. For example, if ^ 
consists of only the trivial group, then E{\} is the universal free G-space EG, and if 
^ is the family of all subgroups, then EAll = *. Another case of particular interest is 
the family ^ of all proper subgroups. If G is finite, then 

E^=\J S{kV), 

where V is the reduced regular representation of G, and in general E^ = colimy S{V) 
where V runs over all finite dimensional representations V of G such that V^ = {0}; 
to be precise, we restrict V to lie in some complete G-universe (as defined in the next 
section). Such universal spaces exist for any family and may be constructed either by 
killing homotopy groups or by using a suitable bar construction [20]. In the based case 
we consider E^^, and a very basic tool is the isotropy separation cofibering 

E^^ —^S^-^E^\, 

where the first map is obtained from E<^ —^ * by adding a disjoint basepoint. Note 
that the mapping cone E^ may alternatively be described as the join S^ * E^\ it is 
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c^-contractible in the sense that it is i?-contractible for every if G c^. We think of this 
cofibering as separating a space X into the ^^-spsLce E^^ A X and the c^-contractible 
space E^ A X. 

Induced and coinduced spaces 
We can use the fact that G is both a left and a right G-space to define induced and 
coinduced G-space functors. If /f is a subgroup of G and Y is an i/-space, we define 
the induced G-space G x /f F to be the quotient of G x F by the equivalence relation 
{QK y) ^ (PJ %) tor g e G, y e Y, and h G H; the G-action is defined by ^[g, y] = 
bfg^y]-

Similarly the coinduced G-space mapf/(G, Y) is the subspace of map(G, Y) consisting 
of those maps / : G —• Y such that f{hg) - hf{g) for h e H and g £ G\ the 
G-action is defined by {'yf){g) = /(^7). When these constructions are applied to a 
G-space, the actions may be untwisted, and it is well worth writing down the particular 
homeomorphisms. 

LEMMA 1.2. If X is a G-space then there are homeomorphisms 

GXHX^G/HXX and mapH(G,X) ^ map(G//f,X), 

natural for G-maps of X. 

PROOF. In the first case, the maps are [g,x] •—> {gH.gx) and [g^g^^x] <— {gH,x). 
In the second case, / i—• a(/) , where a{f){gH) = gf{g~^), and h{f') <— /', where 
Hf'){9) — 9f'{9~^H). We encourage the reader to make the necessary verifications. D 

The induced space functor is left adjoint to the forgetful functor and the coinduced 
space functor is right adjoint to it. 

PROPOSITION 1.3. For G-spaces X and H-spaces Y, there are natural homeomorphisms 

G-map{G XHY,X) = H-mapiY.X) 

and 

H-maLp{X,Y) = G-map(X,mapH(G,F)). 

PROOF. The unit and counit for the first adjunction are the i?-map rj : Y —> G xjjY 
given by y •—> [e,y] and the G-map e : G XH X —^ X given by [g,x] i—^ gx. For 
the second, they are the G-map r/: X —> mapH(G, X) given by 'r]{x){g) — gx and the 
ff-map e : map//(G, Y) —^ Y given by £:(/) = /(e). We encourage the reader to make 
the necessary verifications. D 

Analogous constructions and homeomorphisms apply in the based case. If F is a based 
if-space, it is usual to write G^ A// Y or G K // F for the induced based G-space, and 
FH(G-|-,y) or FH^.Y) for the coinduced based G-space. 
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Homotopy groups, weak equivalences, and the G-Whitehead theorem 
One combination of the above adjunctions is particularly important. To define i/-equi-
variant homotopy groups, we might wish to define them G-equivariantly as [G/H^ A 
S^,']G, or we might wish to define them i/-equivariantly as [S'^, • ] / / ; fortunately these 
agree, and we define 

n^iX)=[G/H+AS'',X]^^[S'',X]^^[S^,X"]. 

Using the second isomorphism, we may apply finiteness results from nonequivariant 
homotopy theory. For example, if X and Y are finite G-CW complexes and double 
suspensions, then [X, y jo is a finitely generated abelian group. 

A G-map / : X —> Y is a weak G-equivalence if f^ : X^ —^ Y^ is a weak 
equivalence for all closed subgroups H. As in the nonequivariant case one proves that 
any G-CW pair has the homotopy extension and lifting property and deduces that a 
weak equivalence induces a bijection of [T, -]G for every G-CW complex T. The G-
Whitehead theorem follows: a weak G-equivalence of G-CW complexes is a G-homotopy 
equivalence. Similarly, the cellular approximation theorem holds: any map between G-
CW complexes is homotopic to a cellular map, and any two homotopic cellular maps are 
cellularly homotopic. Also, by the usual construction, any G-space is weakly equivalent 
to a G-CW complex. 

The generalization to families <^ is often useful. We say that a G-map / is a weak 
c^-equivalence if f" is a weak equivalence for if G c^; the principal example of an 
c^-equivalence is the map E^^ A X —• X. A based c^-CW complex is a G-CW 
complex whose cells are all of the form G/H^ A S"" for H e ^; note that an J^-CW 
complex is an c^-space. The usual proofs show that a weak c^-equivalence induces a 
bijection of [T, •]G for every c^-CW complex T and that any G-space is c^-equivalent 
to an c^-CW complex. 

To state a quantitative version of the G-Whitehead theorem, we consider functions 
n on the set of subgroups of G with values in the set { -1 ,0 ,1 ,2 ,3 , . . . ,00} that are 
constant on conjugacy classes. For example if X is a G-space, we can view dimension 
and connectivity as giving such functions by defining dim{X){H) = dim{X^) and 
conn{X){H) to be the connectivity of X^. The value - 1 allows the possibility of empty 
or of nonconnected fixed point spaces. Now the standard proof gives the following result. 

THEOREM 1.4. IfT is a G-CW complex and f : X —^ Y is n-connected, then the 
induced map 

/ . : [ T , X ] G — [ T , y ] c 

is surjective ifdim{T") ^ n[H) for all H C G, and bijective ifdim{T") ^ n{H) - 1. 

The G-Freudenthal suspension theorem 
In the stable world, we shall want to desuspend by spheres of representations. Accord-
ingly, for any orthogonal representation V, we define the Fth suspension functor by 
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TXX = X AS^. This gives a map 

We shall be content to give the version of the Freudenthal Theorem, due to Hauschild 
[36], that gives conditions under which this map is an isomorphism. However, we note 
in passing that the presence of S^ gives the codomain a richer algebraic structure than 
the domain, and it is natural to seek a theorem stating that E^ may be identified with an 
algebraic enrichment of the domain even when it is not an isomorphism. L.G. Lewis [38] 
has proved versions of the Freudenthal Theorem along these lines when X is a sphere. 

Just as nonequivariantly, we approach the Freudenthal Theorem by studying the adjoint 
map rj:Y —^ fi^E^Y. 

THEOREM 1.5. The map rj : Y —> QYnyy is an n-equivalence if n satisfies the fol-
lowing two conditions: 

(1) n{H) ^ 2conn{Y^) + 1 for all subgroups H with V^ ^ 0, and 
(2) n{H) ^ conn[Y^) for all pairs of subgroups K CH with V^ i- V". 

Therefore the suspension map 

YX •.[X,Y]G-^[TyX,TyY]^ 

is surjective ifdim{X^) ^ n{H) for all H, and bijective if dim{X^) < n{H) — 1. 

This is proven by reduction to the nonequivariant case and obstruction theory. When 
G is finite and X is finite dimensional, it follows that if we suspend by a sufficiently 
large representation, then all subsequent suspensions will be isomorphisms. 

COROLLARY 1.6. IfG is finite and X is finite dimensional, there is a representation 
Vo — Vo{X) such that, for any representation V, 

TX : [E^»X,S^«y]g ^ [E^»®^X,E^''®''y]^ 

is an isomorphism. 

If X and Y are finite G-CW complexes, this stable value [E^^X, E^'Fjc is a finitely 
generated abelian group. If G is a compact Lie group and X has infinite isotropy groups, 
there is usually no representation VQ for which all suspensions E^ are isomorphisms, 
and the colimit of the [E^X, E^yjc is usually not finitely generated. 

The direct limit colimv[5^,5^]G is a ring under composition, and it turns out to 
be isomorphic to the Burnside ring A{G). When G is finite, A{G) is defined to be the 
Grothendieck ring associated to the semiring of finite G-sets, and it is the free Abelian 
group with one generator [G/H] for each conjugacy class of subgroups of G. When G 
is a general compact Lie group, A{G) is more complicated to define, but it turns out to 
be a free Abelian group, usually of infinite rank, with one basis element [G/H] for each 
conjugacy class of subgroups H such that WGH is finite. 
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Eilenberg-MacLane G-spaces and Postnikov towers 
The homotopy groups 7r^(X) of a G-space X are related as H varies, and we must take 
all of them into account to develop obstruction theory. Let & denote the orbit category of 
G-spaces G/H and G-maps between them, and let h& be its homotopy category. By our 
first description of homotopy groups, we see that the definition 7£^{X){G/H) = 7r (̂-X') 
gives a set-valued contravariant functor on h^; it is group-valued if n = 1 and Abelian 
group-valued if n ^ 2. An Eilenberg-MacLane G-space K{7i, n) associated to such a 
contravariant functor TT on h& is a G-space such that 7r (̂iir(7r, n)) = TT and all other 
homotopy groups of K{7i, n) are zero. Either by killing homotopy groups or by use of a 
bar construction [20], one sees that Eilenberg-MacLane G-spaces exist for all n and n. 

Recall that a space X is simple if it is path connected and if 'K\{X) is Abelian and 
acts trivially on iTniX) for n ^ 2. More generally, X is nilpotent if it is path connected 
and if '^\{X) is nilpotent and acts nilpotently on iTn{X) for n ^ 2. A G-space X 
is said to be simple or nilpotent if each X^ is simple or nilpotent. Exactly as in the 
nonequivariant situation, simple G-spaces are weakly equivalent to inverse limits of 
simple Postnikov towers and nilpotent G-spaces are weakly equivalent to inverse limits 
of nilpotent Postnikov towers. 

Ordinary cohomology theory; localization and completion 
We define a "coefficient system" M to be a contravariant Abelian group-valued func-
tor on h^. There are associated cohomology theories on pairs of G-spaces, denoted 
HQ{X,A;M). They satisfy and are characterized by the equivariant versions of the 
usual axioms: homotopy, excision, exactness, wedge, weak equivalence, and dimension; 
the last states that 

H^{G/H;M)^M{G/H), 

functorially on h^. This is a manifestation of the philosophy that orbits play the role 
of points. There are also homology theories, denoted H^{X,A\N), but these must be 
defined using covariant functors N : h^ —• S2/b. 

By the weak equivalence axiom, it suffices to define these theories on G-CW pairs. 
The cohomology of such a pair {X, A) is the reduced cohomology of X/A, so it suffices 
to deal with G-CW complexes X. These have cellular chain coefficient systems that are 
specified by 

C„(X)(G//f) = Hn{{X^)", {X^-')";Z); 

the differential dn is the connecting homomorphism of the triple 

{{X^f,{X^-'f,{X^'Y), 

The homology and cohomology groups of X are then calculated from chain and cochain 
complexes of Abelian groups given by 

C,{X)<8)hi^N and Hom,,^ (G,(X) ,M). 
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Here Hom/i^(C^(X),M) is the group of natural transformations C_^{X) —> M, and 
the tensor product over h& is described categorically as a coend of functors. 

Alternatively, for based G-CW complexes X, one has the equivalent description of 
reduced cohomology as 

H''{X;M)= [X,KiM,n)] 
G' 

From here, it is an exercise to transcribe classical obstruction theory to the equivariant 
context. This was first done by Bredon [11], who introduced these cohomology theories. 

One can localize or complete nilpotent G-spaces at a set of primes. One first works out 
the construction on iir(7r,n)'s, and then proceeds by induction up the Postnikov tower. 
See [55], [57]. When G is finite, one can algebraicize equivariant rational homotopy 
theory, by analogy with the nonequivariant theory. See [63]. Bredon cohomology is the 
basic tool in these papers. 

While the theory we have described looks just like nonequivariant theory, we empha-
size that it behaves very differently calculationally. For example, a central calculational 
theorem in nonequivariant homotopy theory states that the rationalization of a connected 
Hopf space splits, up to homotopy, as a product of Eilenberg-MacLane spaces. The 
equivariant analogue is false [64]. 

2. The equivariant stable homotopy category 

The entire foundational framework described in [22] works equally well in the presence of 
a compact Lie group G acting on all objects in sight. We here run through the equivariant 
version of [22], with emphasis on the new equivariant phenomena that appear. From both 
the theoretical and calculational standpoint, the main new feature is that the equivariant 
analogs of spheres are the spheres associated to representations of G, so that there is a 
rich interplay between the homotopy theory and representation theory of G. The original 
sources for most of this material are the rather encyclopedic [42] and the nonequivariandy 
written [22]; a more leisurely and readable exposition will appear in [53]. 

By a G-universe C7, we understand a countably infinite dimensional real inner product 
space with an action of G through linear isometries. We require that U be the sum of 
countably many copies of each of a set of representations of G and that it contain a 
trivial representation and thus a copy of R°°. We say that U is complete if it contains a 
copy of every irreducible representation of G. At the opposite extreme, we say that U is 
G-fixed if U^ = U, When G is finite, the sum of countably many copies of the regular 
representation RG gives a canonical complete universe. We refer to a finite dimensional 
sub G-inner product space of U as an indexing space. 

A G-spectrum indexed on U consists of a based G-space EV for each indexing space 
V mU together with a transitive system of based G-homeomorphisms 

a : EV^Q^'^EW 
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for V CW. Here fi^X = F ( 5 ^ , X ) oxidW -V is the orthogonal complement of 
V mW. K map of G-spectra f : E -^ E^ is a collection of maps of based G-spaces 
fv : EV -> E'V which commute with the respective structure maps. 

We obtain the category Gy = GyU of G-spectra indexed on U. Dropping the 
requirement that the maps ay^w be homeomorphisms, we obtain the notion of a G-
prespectrum and the category G^ = G^U of G-prespectra indexed on U. The forgetful 
functor £ : Gy —• G^ has a left adjoint L. When the structure maps a are inclusions, 
{LE){V) is just the union of the G-spaces Q^-^EW for F C W. We write a : 
S^-^EV —> EW for the adjoint structure maps. 

EXAMPLES 2.1. Let X be a based G-space. The suspension G-prespectrum 11^X has 
Vth space S^X, and the suspension G-spectrum of X is E°°X = 111°^ X. Let QX = 
\jn^S'^X, where the union is taken over the indexing spaces V CU, a. more accurate 
notation would be QuX. Then {E'^X){V) = Q{E^X). The functor 17^ is left adjoint 
to the zeroth space functor. More generally, for an indexing space Z CU, let U^X have 
Vth space E^-^X if Z C F and a point otherwise and define EfX = LllfX. The 
"shift desuspension" functor E^ is left adjoint to the Zth space functor from G-spectra 
to G-spaces. 

For a G-space X and G-spectrum E, we define G-spectra E^X and F{X, E) exactly 
as in the nonequivariant situation. There result homeomorphisms 

Gy{EAX,E') ^G^{X,y{E,E'))^Gy{E,F{X,E')), 

where G^ is the category of based G-spaces. 

PROPOSmON 2.2. The category Gy is complete and cocomplete. 

A homotopy between maps E —> F of G-spectra is a map E A I^ —• F. Let 
[E, F]G denote the set of homotopy classes of maps E —• F. For example, if X and 
Y are based G-spaces and X is compact, then 

[E'^X, E'^Y]^ ^ colim [E^X, E^Y]^. 

Fix a copy of R^ in U and write E^ = rg°n. For n ^ 0, the sphere G-spectrum 
S"" is r°°5^. For n > 0, the sphere G-spectrum 5"^ is T^S^. We shall often write 
SG rather than S^ for the zero sphere G-spectrum. Remembering that orbits are the 
analogues of points, we think of the G-spectra G/H^ A 5" as generalized spheres. 
Define the homotopy groups of a G-spectrum E by 

A map / : E —y F of G-spectra is said to be a weak equivalence if /* : 7r^{E) —> 
n^{F) is an isomorphism for all H. Here serious equivariant considerations enter for 
the first time. 
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THEOREM 2.3. A map f : E —• F of G-spectra is a weak equivalence if and only if 
fv ' EV —• FV is a weak equivalence of G-spaces for all indexing spaces V dU. 

This is obvious when the universe U is trivial, but it is far from obvious in general. 
To see that a weak equivalence of G-spectra is a spacewise weak equivalence, one sets 
up an inductive scheme and uses the fact that spheres S^ are triangulable as G-CW 
complexes [42,1.7.12]. 

The equivariant stable homotopy category hGS^ is constructed from the homotopy 
category hGy of G-spectra by adjoining formal inverses to the weak equivalences, a 
process that is made rigorous by G-CW approximation. The theory of G-CW spectra 
is developed by taking the sphere G-spectra as the domains of attaching maps of cells 
G/HJ^ A CS"^, where CE = E Al [42, I§5]. This works just as well equivariantly as 
nonequivariantly, and we arrive at the following theorems. 

THEOREM 2.4 (Whitehead). / / E is a G-CW spectrum and f : F —^ F' is a weak 
equivalence of G-spectra, then /* : [E,F]G —• [E,F^]G is an isomorphism. Therefore 
a weak equivalence between G-CW spectra is a homotopy equivalence. 

THEOREM 2.5 (Cellular approximation). Let Abe a subcomplex of a G-CW spectrum E, 
let F be a G-CW spectrum, and let f : E —> F be a map whose restriction to A 
is cellular Then f is homotopic relative to A to a cellular map. Therefore any map 
E —> F is homotopic to a cellular map, and any two homotopic cellular maps are 
cellularly homotopic. 

THEOREM 2.6 (Approximation by G-CW spectra). For a G-spectrum E, there is a G-
CW spectrum FE and a weak equivalence 7 : FE —> E. On the homotopy category 
hGy, r is a functor such that 7 is natural. 

Thus the stable category hGy is equivalent to the homotopy category of G-CW 
spectra. As in the nonequivariant context, we have special kinds of G-prespectra that 
lead to a category of G-spectra on which the smash product has good homotopical 
properties. Of course, we define cofibrations of G-spaces via the homotopy extension 
property in the category of G-spaces. For example, X is G-LEC if its diagonal map is 
a G-cofibration. 

DEFINITION 2.7. A G-prespectrum D is said to be 

(i) Z'-cofibrant if each cr : E^'^DV —• DW is a based G-cofibration. 
(ii) G-CW if it is i7-cofibrant and each DV is G-LEC and has the homotopy type 

of a G-CW complex. 

A G-spectrum E is said to be Z'-cofibrant if it is isomorphic to LD for some Z-cofibrant 
G-prespectrum D\ E is said to be tame if it is of the homotopy type of a Z-cofibrant 
G-spectrum. 

There is no sensible counterpart to the nonequivariant notion of a strict CW prespec-
trum for general compact Lie groups, and any such notion is clumsy at best even for 
finite groups. The next few results are restated from [22]. Their proofs are the same 
equivariantly as nonequivariandy. 
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THEOREM 2.8. IfD is a G-CW prespectmm, then LD has the homotopy type of a G-CW 
spectrum. If E is a G-CW spectrum, then each space EV has the homotopy type of a 
G-CW complex and E is homotopy equivalent to LD for some G-CW prespectrum D. 
Thus a G-spectrum has the homotopy type of a G-CW spectrum if and only if it has the 
homotopy type of LD for some G-CW prespectrum D. 

In particular, G-spectra of the homotopy types of G-CW spectra are tame. 

PROPOSITION 2.9. IfE = LD, where D is a E-cofibrant G-prespectrum, then 

E ^ colim E^DV, 

where the colimit is computed as the prespectrum level colimit of the maps 

S^a : E^DV ^ E^E^-^DV —> E^DW. 

That is, the prespectrum level colimit is a G-spectrum that is isomorphic to E. The maps 
of the colimit system are shift desuspensions of based G-cofibrations. 

PROPOSITION 2.10. There is a functor K : G^U —^ G^U such that KD is E-
cofibrantfor any G-prespectrum D, and there is a natural spacewise weak equivalence 
of G-prespectra KD —• D. On G-spectra E, define KE = LK£E. Then there is a 
natural weak equivalence of G-spectra KE —• E. 

For G-universes U and U\ there is an associative and commutative smash product 

Gyu X Gyu' -^Gy{ue u'). 

It is obtained by applying the spectrification functor L to the prespectrum level definition 

{E A E') {V 0 V) =EV ^ E'V. 

We internalize by use of twisted half-smash products. For G-universes U and U\ we 
have a G-space ^{U, U') of linear isometrics U —• U', with G acting by conjugation. 
For a G-map a : A —> </{U, U'), the twisted half-smash product assigns a G-spectrum 
A\< E indexed on U' to a G-spectrum E indexed on U, While the following result is 
proven the same way equivariantly as nonequivariantly, it has different content: for a 
given V cU, there may well be no V C U' that is isomorphic to V, 

PROPOSITION 2.11. For a G-map A —• J^[U, U') and an isomorphism V = V, where 
V CU and V C U', there is an isomorphism of G-spectra 

A^E^X^A^AE^,X 

that is natural in G-spaces A over ^{U, U') and based G-spaces X. 
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Propositions 2.9 and 2.11 easily imply the following fundamental technical result. 

THEOREM 2A2. Let E e GyU be tame and let A be a G-space over J{JJ, U'), where 
the universe U' contains a copy of every indexing space V C U. If (f) : A' —> A is a 
homotopy equivalence, then (p^id: A' ^ E —> A\< E is a homotopy equivalence. 

If A is a G-CW complex and £̂  is a G-CW spectrum, then AKE is a G-CW spectrum 
when G is finite and has the homotopy type of a G-CW spectrum in general, hence this 
has the following consequence. 

COROLLARY 2 A3. Let E £ GyU have the homotopy type of a G-CW spectrum and let 
A be a G-space over ^{U, U') that has the homotopy type of a G-CW complex. Then 
A^ E has the homotopy type of a G-CW spectrum. 

We define the equivariant linear isometries operad -Sf by letting ^{j) be the G-space 
J^{W,U), exactly as in [22, 2.4]. A G-linear isometry f : W —^ U defines a G-map 
{*} —• -Sf 0 ) and thus a functor / • that sends G-spectra indexed on U^ to G-spectra 
indexed on U. Applied to a j-fold external smash product E\ A-- • AEj, there results an 
internal smash product f*{E] A--- A Ej). 

THEOREM 2.14. Let Gyt C Gy be the full subcategory of tame G-spectra and let hGyt 
be its homotopy category. On Gyt, the internal smash products fi^{E A £") determined 
by varying f : U^ -^ U are canonically homotopy equivalent, and hGyt is symmetric 
monoidal under the internal smash product. For based G-spaces X and tame G-spectra 
E, there is a natural homotopy equivalence E AX '^ f^{E A E°^X). 

We can define E^E = EAS^ for any representation V. This functor is left adjoint to 
the loop functor i?^ given by f}^ E = F{S^ ,E). For V CU, and only for such V, we 
also have the shift desuspension functor Ey" and therefore a (—V)-sphere S~^ = Ey^S^. 
Now the proof of [22, 2.6] applies to show that we have arrived at a stable situation 
relative to U. 

THEOREM 2.15. For V C U, the suspension functor E^ : hGyt —• hGyt is an 
equivalence of categories with inverse given by smashing with S~^. A cofiber sequence 

E—yE' —> Cf in Gyt gives rise to long exact sequences of homotopy groups 

From here, the theory of L-spectra, 5-modules, 5-algebras, and modules over S-
algebras that was summarized in [22, §§3-7] applies verbatim equivariantly, with one 
striking exception: duality theory only works when one restricts to cell i?-modules that 
are built up out of sphere i?-modules G/H^ A 5g such that G/H embeds as a sub 
G-space of U. We shall focus on commutative Sc-algebras later, but we must first 
explain the exception just noted, along with various other matters where considerations 
of equivariance are central to the theory. 
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3. Homology and cohomology theories and fixed point spectra 

In the previous section, the G-universe U was arbitrary, and we saw that the formal 
development of the stable category hCyU worked quite generally. However, there is 
very different content to the theory depending on the choice of universe. We focus 
attention on a complete G-universe U and its fixed point universe U^. We call G-
spectra indexed on U^ "naive G-spectra" since these are just spectra with G-action in 
the most naive sense. Examples include nonequivariant spectra regarded as G-spectra 
with trivial action. Genuine G-spectra are those indexed on [/, and we refer to them 
simply as G-spectra. Their structure encodes the interrelationship between homotopy 
theory and representation theory that is essential for duality theory and most other aspects 
of equivariant stable homotopy theory. 

RO{G)'graded homology and cohomology 
Some of this interrelationship is encoded in the notion of an iiO(G)-graded cohomology 
theory, which will play a significant role in our discussion of completion theorems. To be 
precise about this, one must remember that virtual representations are formal differences 
of isomorphism classes of orthogonal G-modules; we refer the interested reader to [53] 
for details and just give the idea here. For a virtual representation i/ = VF - V, we 
can form the sphere G-spectrum S^ = E^S~^. We then define the homology and 
cohomology groups represented by a G-spectrum E by 

E^{X)=[S^,EhX]^ (3.1) 

and 

EUX) = [S-" ^X,E]^= [5 -^ F(X, E)]^. (3.2) 

If we think just about the Z-graded part of a cohomology theory on G-spaces, then 
iiO(G)-gradability amounts to the same thing as naturality with respect to stable G-
maps. 

Underlying nonequivariant spectra 
To relate such theories to nonequivariant theories, let i : U^ —> U be the inclusion. 
We have the forgetful functor i* : GyU —> GyU^ specified by i^'EiV) = E{i{V)) 
for V C U^\ that is, we forget about the indexing spaces with nontrivial G-action. The 
"underlying nonequivariant spectrum" of E is i*E with its action by G ignored. Recall 
that r has a left adjoint i* : GyU^ —> GyU that builds in nontrivial representa-
tions. Using an obvious notation to distinguish suspension spectrum functors, we have 
i^S^cX = Efj'X. These change of universe functors play a critical role in relating 
equivariant and nonequivariant phenomena. Since, with G-actions ignored, the universes 
are isomorphic, the following result is intuitively obvious. 

LEMMA 3.3. For D e GyU^. the unit G-map rj: D —> i*uD of the (u,z*) adjunc-
tion is a nonequivariant equivalence. For E G GyU, the counit G-map e : i^i*E —> E 
is a nonequivariant equivalence. 
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Fixed point spectra and homology and cohomology 
We define the fixed point spectrum D^ of a naive G-spectrum D by passing to fixed 
points space wise, D^{V) = (DV)^. This functor is right adjoint to the forgetful functor 
from naive G-spectra to spectra (compare Lemma 1.1): 

GyU^{C,D) ^ yU^{C,D^) for C G yU^and D G GyU^. (3.4) 

It is essential that G act trivially on the universe to obtain well-defined structural home-
omorphisms on D^. For E e GyU, we define E^ = {CE)^. Composing the (u, i*)-
adjunction with (3.4), we obtain 

GyU{uC, E) ^ yU^{C, E^) for C £ yU^ and E e GyU. (3.5) 

The sphere G-spectra G/H^ A S^ in GyU are obtained by applying u to the cor-
responding sphere G-spectra in GyU^. When we restrict (3.1) and (3.2) to integer 
gradings and take H = G, v/t see that (3.5) implies 

E^iX)&n4iEAXf) (3.6) 

and 

E:^{X)^7r^n{F{X,Ef). (3.7) 

Exactly as in (3.7), naive G-spectra D represent Z-graded cohomology theories on 
naive G-spectra, or on G-spaces. In sharp contrast, we cannot represent interesting ho-
mology theories on G-spaces X in the form n^{{D A X)^) for a naive G-spectrum 
D: smash products of naive G-spectra commute with fixed points, hence such theories 
vanish on X/X^. For genuine G-spectra, there is a well-behaved natural map 

E^A{E'f-^{EAE'f, (3.8) 

but, even when E' is replaced by a G-space, it is not an equivalence. Similarly, there is 
a natural map 

r~(X^) —^{S'^xf, (3.9) 

which, by Theorem 3.10 below, is the inclusion of a wedge summand but not an equiv-
alence. Again, the fixed point spectra of free G-spectra are nontrivial. We shall shortly 
define a different G-fixed point functor that commutes with smash products and the 
suspension spectrum functor and which is trivial on free G-spectra. 

Fixed point spectra of suspension G-spectra 
Because the suspension functor fi-om G-spaces to genuine G-spectra builds in homotopi-
cal information from representations, the fixed point spectra of suspension G-spectra are 
richer structures than one might guess. The following important result of tom Dieck [18] 
(see also [42, V§11]), gives a precise description. 
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THEOREM 3.10. For based G-CW complexes X, there is a natural equivalence 

where WH = NH/H and Ad{WH) is its adjoint representation; the sum runs over all 
conjugacy classes of subgroups H. 

Quotient spectra and free G-spectra 
Quotient spectra D/G of naive G-spectra are constructed by first passing to orbits space-
wise on the prespectrum level and then applying the functor L from prespectra to spectra. 
This orbit spectrum functor is left adjoint to the forgetful functor to spectra: 

yU^{D/G, C) ^ GyU^{D, C) for C G yU^ and D £ GyU^. 
(3.11) 

Commuting left adjoints, we see that {E°^X)/G = S°^{X/G). There is no useful 
quotient functor on genuine G-spectra in general, but there is a suitable substitute for 
free G-spectra. 

Recall that a based G-space is said to be free if it is free away from its G-fixed 
basepoint. A G-spectrum, either naive or genuine, is said to be free if it is equivalent to 
a G-CW spectrum built up out of free cells G^ A CS"^. The functors 

E'^'.^—^GyU^ and u : G^U^—^ GyU 

carry free G-spaces to free naive G-spectra and free naive G-spectra to free G-spectra. In 
all three categories, X is homotopy equivalent to a free object if and only if the canonical 
G-map EG-\. A X —^ X is an equivalence. A free G-spectrum E is equivalent to i^D 
for a free naive G-spectrum D, unique up to equivalence; the orbit spectrum D/G is the 
appropriate substitute for E/G. A useful mnemonic slogan is that "free G-spectra live 
in the G-fixed universe". For free naive G-spectra D, it is clear that D^ = *. However, 
this is false for free genuine G-spectra. For example. Theorem 3.10 specializes to give 
that (S'^X)^ ĉ  (i:^^(^)X)/G if X is a free G-space. Thus the fixed point functor on 
free G-spectra has the character of a quotient. 

More generally, for a family c^, we say that a G-spectrum E is .^-free, or is an 
^^-spectrum, if E is equivalent to a G-CW spectrum all of whose cells are of orbit 
type in ^. Thus free G-spectra are {l}-free. We say that a map / : D —^ E is an 
.^-equivalence if f^ : D^ —• E" is an equivalence for all H e ^ or, equivalently 
by the Whitehead theorem, if / is an if-equivalence for aA\ H e ^. 

Split G-spectra 
It is fundamental to the passage back and forth between equivariant and nonequivariant 
phenomena to calculate the equivariant cohomology of free G-spectra in terms of the 
nonequivariant cohomology of orbit spectra. To explain this, we require the subtle and 
important notion of a "split G-spectrum". 
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DEFINITION 3.12. A naive G-spectrum D is said to be split if there is a nonequivariant 
map of spectra C, : D —> D^ whose composite with the inclusion of D^ in D is 
homotopic to the identity. A genuine G-spectrum E is said to be split if z*E is split. 

The K-ihtoxy G-spectra KG and KOG are split. Intuitively, the splitting is ob-
tained by giving nonequivariant bundles trivial G-action. Similarly, equivariant Thom 
spectra are split. The naive Eilenberg-MacLane G-spectrum HM that represents Bre-
don cohomology with coefficients in M is split if and only if the restriction map 
M[G/G) —• M{G/\) is a split epimorphism; this implies that G acts trivially on 
M{G/l), which is usually not the case. The suspension G-spectrum S°^X of a G-space 
X is split if and only if X is stably a retract up to homotopy of A^̂ , which again is 
usually not the case. In particular, however, the sphere G-spectrum S = E^S^ is split. 
The following consequence of Lemma 3.3 gives more examples. 

LEMMA 3.13. IfD e GyU^ is split, then uD € GyU is also split. In particular, UD 
is split if D is a nonequivariant spectrum regarded as a naive G-spectrum with trivial 
action. 

The notion of a split G-spectrum is defined in nonequivariant terms, but it admits the 
following equivariant interpretation. 

LEMMA 3.14. If E is a G-spectrum with underlying nonequivariant spectrum D, then E 
is split if and only if there is a map of G-spectra i^D —> E that is a nonequivariant 
equivalence. 

THEOREM 3.15. If E is a split G-spectrum and X is a free naive G-spectrum, then there 
are natural isomorphisms 

E^{uX)^En{{E^'^^^^X)/G) and E^{uX) ^ E^'iX/G), 

where Ad(G) is the adjoint representation of G and E^ and E* denote the theories 
represented by the underlying nonequivariant spectrum of E. 

The cohomology isomorphism holds by inductive reduction to the case X = G-(-. The 
homology isomorphism is deeper, and we shall say a bit more about it later. 

Geometric fixed point spectra 
There is a "geometric" fixed-point functor 

<f ̂ : Gyu —̂  yu^ 

that enjoys the properties 

E°^{X^) - <P^(r°°X) (3.16) 

and 

^^[E) A ^^{E') - ^^[E A E'). (3.17) 
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It is trivial on free G-spectra and, more generally, on ,^-spectra, where ^ is the family 
of proper subgroups of G. Recall that, for a family ^, E^ is the cofibre of the natural 
map EG J, —> 5^. We define 

<^^{E) = {EAE^f, (3.18) 

where ^ is the family of proper subgroups of G. Here E A E^ is if-trivial for all 
H e ^. The isomorphism (3.16) is clear from Theorem 3.10. 

We call ^^ the "geometric" fixed point functor because its properties are like those of 
the space level G-fixed point functor and because it corresponds to the direct prespectrum 
level construction that one is likely to think of first. Restricting to finite groups G for 
simplicity and indexing G-prespectra on multiples of the regular representation, we can 
define a prespectrum level fixed point functor ^^ by {^^D){W) = (D(nEG))^. If 
D is tame, then {^^){LD) is equivalent to L^^D. Therefore, if we start with a G-
spectrum E, then ^^{E) is equivalent to L^^{K£E), where K is the cylinder functor. 
This alternative description leads to the proof of (3.17). It also leads to a proof that 

[E,FAE^]G = [<P^(£;),<P^(F)] for G-spectra E and F. (3.19) 

Euler classes and a calculational example 
As an illuminating example of the use of i?0(G)-grading to allow descriptions invisible 
to the Z-graded part of a theory, we record how to compute E^{X A E^) in terms of 
E^{X) for a ring G-spectrum E and any G-spectrum X. When X = S/ii specializes 
to a calculation of 

E^{E^) = 7r,{^'^E). 

The example may look esoteric, but it is at the heart of the completion theorems that we 
will discuss later. We use the Euler classes of representations, which appear ubiquitously 
in equivariant theory. For a representation V, we define the Euler class xv ^ E^y = 
E^{S^) to be the image of 1 € E^ci^^) - ^ G (-5^) under e{V)\ where e{V) : S^ —^ 
S^ sends the basepoint to the point at oo and the non-basepoint to 0. 

PROPOSITION 3.20. Let Ebea ring G-spectrum and X be any G-spectrum, Then E^{XA 
E^) is isomorphic to the localization of the E^-module E^{X) obtained by inverting 
the Euler classes of all representations V such that V^ = {0}. 

PROOF. A check of fixed points, using the cofibrations S{V)^ —> D{V)+ —^ S^^ 
shows that we obtain a model for E^ by taking the colimit Y of the spaces S^ as V 
ranges over the indexing spaces V C U such that V^ = {0}. The point is that if H is 
a proper subgroup of G, then V^ ^ {0} for all sufficiently large V, so that Y^ c^ *. 
Therefore 

E^{X A E^) ^ colim E^^{X A S^) ^ co\mE^_y{X). 
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Since the colimit is taken over iterated products with xv^ it coincides algebraically with 
the cited localization. D 

4. Change of groups and duality theory 

So far, we have discussed the relationship between G-spectra and 1-spectra, where 1 is 
the trivial group. We must consider other subgroups and quotient groups of G. 

Induced and coinduced G-spectra 
First, consider a subgroup H. Since any representation of NH is a summand in a 
restriction of a representation of G and since a VT/f-representation is just an H-fixed 
iVif-representation, the if-fixed point space U^ of our given complete G-universe U is 
a complete VF/f-universe. We define 

E^ = {i*E)^, i'.U^cU. (4.1) 

This gives a functor GyU —^ {WH)yU". For D G {NH)yU", the orbit spectrum 
D/H is also a VT/f-spectrum. 

Exactly as on the space level, we have induced and coinduced G-spectra generated by 
an J^-spectrum D G HyU. These are denoted by 

G^HD and FH[G,D). 

The "twisted" notation K is used because there is a little twist in the definitions to take 
account of the action of G on indexing spaces. As on the space level, these functors are 
left and right adjoint to the forgetful functor GyU —> HyU: for D e HyU and 
E € GyU, we have 

GyU{G ^HD,E)^ HyU{D, E) (4.2) 

and 

HyU[E,D) ^ GyU{E,FH[G,D)). (4.3) 

Again, as on the space level, for a G-spectrum E, we have 

Gt<HE^{G/H)^AE (4.4) 

and 

FH[G,E)^F{G/H^,E). (4.5) 

We can now deduce as on the space level that 

7r^{E)=[G/H^AS-,E]^^[S^,E]^^7rn{E''). (4.6) 
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We also have a geometric if-fixed point functor ^^. It is obtained by regarding 
G-spectra as NH-spectrsL and setting 

^"{E)= [EAE^IH])", 

where <^[H] is the family of subgroups of NH that do not contain H. Again, ^^E is 
an iV/f-spectrum indexed on U^. While the Whitehead theorem appeared originally as 
a statement about homotopy groups and thus about the genuine fixed point functors, it 
implies a version in terms of the ^-fixed point functors. 

THEOREM 4.7. Let f : E —^ F be a map between G-CW spectra. Then the following 
statements are equivalent. 

(i) / is a G-homotopy equivalence. 
(ii) Each f^ is a nonequivariant homotopy equivalence. 

(iii) Each ^^ f is a nonequivariant homotopy equivalence. 

Subgroups and the Wirthmiiller isomorphism 
In cohomology, the isomorphism (4.2) gives 

Eh{G^HD)^EUD). (4.8) 

We shall not be precise, but we can interpret this in terms of RO{G) and RO{H) 
graded cohomology theories. The isomorphism (4.3) does not have such a convenient 
interpretation as it stands. However, there is an important change of groups result, called 
the Wirthmiiller isomorphism, which in its most conceptual form is given by a calculation 
of the functor FH[G, D). It leads to the following homological complement of (4.8). Let 
L{H) be the tangent if-representation at the identity coset of G/H. Then 

£;f (G ^H D) ^ E^{E^^"^D). (4.9) 

THEOREM 4.10 (Generalized Wirthmiiller isomorphism). For H-spectra D, there is a 
natural equivalence of G-spectra 

FH[G,E^^"^D)^G^HD. 

Therefore, for G-spectra E, 

The last isomorphism complements the isomorphism from (4.2): 

[G^HD,E]G^[D,E]H. (4.11) 

We deduce (4.8) by replacing E in (4.9) by a sphere, replacing D by E AD, and using 
the generalization G KH {D A E) '^ {G >:H D) A E of (4.4). 
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Quotient groups and the Adams isomorphism 
Now let iV be a normal subgroup of G with quotient group J. In practice, one is often 
thinking of a quotient map NH —• WH rather than G —> J. There is an analogue of 
the Wirthmiiller isomorphism, called the Adams isomorphism, that compares orbit and 
fixed-point spectra. It involves the change of universe functors associated to the inclusion 
i : U^ —> U and requires restriction to AT-free G-spectra. We emphasize that U^ is 
not a complete G-universe. We have generalizations of the adjunctions (3.4) and (3.11): 
for D e jyU^ and E G GyU^, 

GyU^{D,E) ^ jyU^{D,E^) (4.12) 

and 

jyU^{E/N,D) ^ GyU^{E,D), (4.13) 

Here we suppress notation for the pullback functor jyU^ —• GyU^. An iV-free 
G-spectrum E indexed on U is equivalent to i^D for an iV-free G-spectrum D indexed 
on U^y and D is unique up to equivalence. Thus our slogan that "free G-spectra live 
in the G-fixed universe" generalizes to the slogan that "iV-free G-spectra live in the 
AT-fixed universe". This gives force to the following version of (4.12). It compares maps 
of J-spectra indexed on U^ with maps of G-spectra indexed on U. 

THEOREM 4.14. Let J = G/N. For N-free G-spectra E indexed on U^ and J-spectra 
D indexed on U^, 

[EIN,D]J^[UE,UD]G. 

The conjugation action of G on iV gives rise to an action of G on the tangent space of N 
at e; we call this representation Ad(iV), or Ad(iV; G). The following result complements 
the previous one, but is considerably deeper. When N — G/\i is the heart of the proof 
of the homology isomorphism of Theorem 3.15. 

THEOREM 4.15 (Generalized Adams isomorphism). Let J = G/N. For N-free G-spect-
ra E G GyU^, there is a natural equivalence of J-spectra 

Therefore, for D G jyU^, 

[D,E/N]j ^ [uD,i:-''^^^h,E]^. 

The last two results admit homological and cohomological interpretations, like those 
of Theorem 3.15, that are based on a generalization of the notion of a split G-spectrum. 
We shall not go into that here; see [42, Chapter 11]. 
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Spanier-Whitehead and Atiyah duality 
Recall that the dual of a G-space or G-spectrum X is DX = F{X, S). This is defined for 
any universe, but we observe the striking fact that if we work over U^, then the sphere 
S has trivial G-action and F{X, S) = F{X/G, S); in particular, the dual of every orbit 
G/H^ is S. We must therefore work in the complete universe U to give useful content 
to the formal theory of duality, and the first thing we must do is to identify the duals 
of orbits. In fact, this identification is the real content of the Wirthmiiller isomorphism, 
which implies that 

D{G/H^) ^G^H S-^^"l (4.16) 

In particular, orbits are self-dual if G is finite. 
It follows that finite G-CW spectra are strongly dualizable, and the Spanier-Whitehead 

duality theorem is a formal consequence. 

THEOREM 4.17 (Spanier-Whitehead duality). IfX is a wedge summand of a finite G-CW 
spectrum and E is any G-spectrum, then 

iy:DXAE^F{X,E) 

is an isomorphism in JiGyU. Therefore, for any virtual representation v, 

E^iDX) ^ Ea'iX). 

By developing a space level analysis of how to identify dual G-spectra, one can 
generalize the identification of duals of orbits to an identification of the duals of smooth 
G-manifolds. Working on the space level, one has a notion of F-duality between spaces 
X and Y. It involves evaluation and coevaluation maps YAX —• S^ and S^ —> XAY 
and implies that E-^E'^Y is dual to Z'^X. 

THEOREM 4.18 (Atiyah duality). / / M is a smooth closed G-manifold embedded in a 
representation V with normal bundle i/, then M^ is V-dual to the Thom complex Tv. 
If M is a smooth compact G-manifold with boundary 9M, V = V' ®% and (M, 9M) 
is properly embedded in (V x [0, oo), V x {0}) with normal bundles v' of dM in V 
and u of M in V, then M/dM is V-dual to Tv, M+ is V-dual to Tv/Tv', and the 
cofibration sequence 

Tv' —^Tv—^ Tv/Tv' —> ETv' 

is V-dual to the cofibration sequence 

i:(aM)4- ^— M/aM 4— M + ^— (aM)+. 

We display the coevaluation map ry : S^ —• M^ A Tv explicitly in the closed case. 
By the equivariant tubular neighborhood theorem, we may extend the embedding of M in 
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V to an embedding of the normal bundle u and apply the Pontryagin-Thom construction 
to obtain a map t : S^ —> Tu. The diagonal map of the total space of v induces the 
Thom diagonal A : Tu —> M^ A Tv, and r] is just the composite Aot. 

Specializing to M = G/H, we have 

T = GXHL{H) and TT = G^ AH S^^^l 

If G/H is embedded in V with normal bundle u and W is the orthogonal complement 
to L{H) in the fiber over the identity coset, then u = G XHW and therefore Sy'Tu ~ 
G ^H S~^^^\ Observe that we have a composite map 

S^-UTV - ^ T{v © r) ^ G/H^ A 5^ . (4.19) 

This is called the "transfer map" associated to the projection G/H —^ *. 
We can deduce equivariant versions of the Poincare and Lefschetz duality theorems by 

combining Spanier-Whitehead duality, Atiyah duality, and the Thom isomorphism. How-
ever, the results are more subtle and less algebraically tractable than their nonequivariant 
analogs because G-manifolds are not homogeneous: they look locally like G XHW for 
a subgroup H and /f-representation W, which means that there is generally no natural 
"dimension" in which the orientation class or fundamental class of a manifold should 
lie. We refer the reader to [42, Chapter III] for discussion. 

5. Mackey functors, K[M,n)\ and i?0(G)-graded cohomology 

We have considered the ordinary cohomology HQ{X;M) of a G-space X with coeffi-
cients in a coefficient system M. We can construct an additive category Z[h^] from the 
homotopy category h^ of orbits by applying the free Abelian group functor. The result-
ing category is isomorphic to the full subcategory of naive orbit spectra E°^G/H^ in the 
stable homotopy category JiGJ^U^ of naive G-spectra. Clearly, a coefficient system is 
the same thing as an additive contravariant functor Z[h^] —> £/b. Just as nonequivari-
antly, we can construct naive Eilenberg-MacLane G-spectra HM = K{M, 0) associated 
to coefficient systems M and so extend our cohomology theories on G-spaces to coho-
mology theories on naive G-spectra. 

It is natural to ask when these cohomology theories can be extended to iiO(G)-graded 
cohomology theories on genuine G-spectra. The answer is suggested by the previous 
paragraph. Define h^y to be the full subcategory of orbit spectra E°°G/H^ in the 
stable homotopy category hGyU of genuine G-spectra. Define a Mackey functor to 
be an additive contravariant functor M : h&y —> s^h\ we abbreviate M(G/H) = 
M{E^G/H^). This is the appropriate definition for general compact Lie groups, but 
we shall describe an equivalent algebraic definition when G is finite. It turns out that the 
cohomology theory HQ{',M) can be extended to an i?0(G)-graded theory if and only 
if the coefficient system M extends to a Mackey functor [40]. 
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The idea can be made clear by use of the transfer map (4.18). If HQ{'\ M) is RO{Gy 
gradable, then, for based G-spaces X, the transfer map induces homomorphisms 

(5.1) 

H^{X;M)^H^-^^{E^X\M) 

Taking n = 0 and X = 5^, we obtain a transfer homomorphism 

M{G/H) —> M{G/G). 

An elaboration of this argument shows that the coefficient system M must extend to a 
Mackey functor. 

Algebraic description of Mackey functors 
For finite groups G, calculational analysis of the category h&y leads to an algebraic 
translation of our topological definition. Let c^ denote the category of finite G-sets and 
G-maps and let h^^ be the full subcategory of the stable category whose objects are the 
E°^XJ^ for finite G-sets X. Then hG^ embeds as a full subcategory of h3^y, and every 
object of h^y is a finite wedge of objects of hG^. Since an additive functor necessarily 
preserves any finite direct sums in its domain, it is clear that an additive contravariant 
functor hCy —> s^h determines and is determined by an additive contravariant functor 
h^y —> jz/b. In turn, an additive contravariant functor h^y —> £/b determines and 
is determined by a Mackey functor in the algebraic sense defined by Dress [19]. Precisely, 
such a Mackey functor M consists of a contravariant functor M* and a covariant functor 
M* from finite G-sets to Abelian groups. These functors have the same object function, 
denoted M, and M converts disjoint unions to direct sums. Write M*a = a* and 
M^a — a*. For pullback diagrams of finite G-sets 

it is required that a* o^^ = (5̂  07*. For an additive contravariant functor M : h^y —> 
jz/b, the maps induced by the projections G/H —> G/K forHcK and the corre-
sponding transfer maps specify the contravariant and covariant parts of the corresponding 
algebraic Mackey functor, and conversely. The algebraic notion has applications to many 
areas of mathematics in which finite group actions are studied. 

In the compact Lie case it is hard to prove that an algebraically defined coefficient 
system extends to a Mackey functor, but there is one important example. 

PROPOSITION 5.2. Let G be any compact Lie group. There is a unique Mackey functor 
Z : h&y —y jz/b such that the underlying coefficient system ofZ is constant at Z and 
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the homomorphism % —^ Z induced by the transfer map E°°G/K^ —^ E°°G/H^ 
associated to an inclusion H C K is multiplication by the Euler characteristic xi^/H). 

Construction of RO{G)-graded cohomology theories and K{M,Qi)'s 
Returning to our original problem of constructing an i?0(G)-graded ordinary cohomol-
ogy theory and thinking on the spectrum level, we see that we want to construct a 
genuine Eilenberg-MacLane G-spectrum HM = K{M^ 0). It is clear that the coefficient 
system M — i£^{HM) must be a Mackey functor since, by our homotopical definition 
of Mackey functors, the homotopy group system iLni^) "̂ ust be a Mackey functor for 
any G-spectrum E. The following result was first proven in [40]. 

THEOREM 5.3. For a Mackey functor M, there is an Eilenberg-MacLane G-spectrum 
HM = K{M, 0), unique up to isomorphism in hG<y. For Mackey functors M and M\ 
[HM, HM']G is the group of maps of Mackey functors M —> M'. 

We prove this by constructing a Z-graded cohomology theory on G-spectra. By 
Brown's representability theorem, its degree zero part can be represented. The repre-
senting G-spectrum is our HM, and, since it is a genuine G-spectrum, it must of course 
represent an /?0(G)-graded theory. The details that we use to construct the desired coho-
mology theories are virtually identical to those that we used to construct ordinary theories 
in the first place. 

We start with G-CW spectra X. They have skeletal filtrations, and we define a Mackey-
functor valued cellular chain complex by setting 

C„(X) = 7r„(X"/X"-'). (5.4) 

Of course, X'^/X'^'^ is a wedge of n-sphere G-spectra G/H^ A 5"̂ , and the connecting 
homomorphism of the triple (X^, X^~\X'^~^) specifies the required differential. For a 
Mackey functor M, we define 

Ca(X; M) = Hom^ (CJX), M) with 6 = Hom^(rf, Id). (5.5) 

Then CQ{X;M) is a cochain complex of Abelian groups. We denote its cohomology 
by HQ{X;M). The evident cellular versions of the homotopy, excision, exactness, and 
wedge axioms admit exactly the same derivations as on the space level, and we use 
G-CW approximation to extend from G-CW spectra to general G-spectra: we have a 
Z-graded cohomology theory on GyU. It satisfies the dimension axiom 

H^{E'^G/H^',M) = Hl{E'^G/H^\M) = M{G/H), (5.6) 

and these isomorphisms give an isomorphism of Mackey functors. The zeroth term is 
represented by a G-spectrum HM, and we read off its homotopy groups from (5.6): 

7r^{HM) = M and 7Ln{HM) = 0 ifriy^O. 

The uniqueness of HM is evident, and the calculation of [HM,HM']G follows easily 
from the functoriality in M of the theories HQ{X\M). 
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We should observe that spectrum level obstruction theory works exactly as on the space 
level, modulo connectivity assumptions to ensure that one has a dimension in which to 
start inductions. 

For G-spaces X, we have now given two meanings to the notation HQ{X; M): we can 
regard our Mackey functor as a coefficient system and take the ordinary cohomology of 
X as in §1, or we can take our newly constructed cohomology. We know by the axiomatic 
characterization of ordinary cohomology that these must in fact be isomorphic, but it is 
instructive to check this direcdy. At least after a single suspension, we can approximate 
any G-space by a weakly equivalent based G-CW complex, with based attaching maps. 
The functor S°° takes based G-CW complexes to G-CW spectra, and we find that the 
space level and spectrum level chain complexes are isomorphic. Alternatively, we can 
check on the represented level: 

The Conner conjecture 
Lest this all seem too abstract, let us us retrieve a direct and important space level 
consequence of this machinery, namely the Conner conjecture. 

THEOREM 5.7 (The Conner conjecture). Let X be a finite dimensional G-space with 
finitely many orbit types, where G is any compact Lie group, and let A be any Abelian 
group, IfH*{X;A) = 0, then H*{X/G;A) = 0. 

This was first proven by Oliver [60], using Cech cohomology and wholly different 
techniques. It was known early on that the conjecture would hold if one could construct 
a suitable transfer map. It is now easy to do so [40]. 

THEOREM 5.8. Let X be a G-space and TT : X/H —> X/G be the projection, where H C 
G. For any n ^ 0 and any Abelian group A, there is a natural transfer homomorphism 

T : H'^iX/H'^A) -^ H''{X/G\A) 

such that r o TT* is multiplication by the Euler characteristic x{G/H). 

PROOF. Tensoring the Mackey functor Z of Proposition 5.2 with A, we obtain a 
Mackey functor A whose underlying coefficient system is constant at A, The map 
A{G/H) —> A{G/G) associated to the stable transfer map G/G^ —^ G/H^ is 
multiplication by x{G/H). By the axiomatization, the ordinary G-cohomology of a G-
space X with coefficients in a constant coefficient system is isomorphic to the ordinary 
nonequivariant cohomology of its orbit space X/G: 

and 

i /g (X;A)^ / f^{X/G;A) 

H^{G/H X X;A) ^ i7^(X; Al^) = H'^iX/H-.A). 
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Taking M = A, (5.1) displays the required transfer map. D 

How does the Conner conjecture follow? Conner [15] proved it when G is a finite 
extension of a torus, the methods being induction and use of Smith theory: one proves that 
both X^ and X/G are A-acyclic. For example, the result for a torus reduces immediately 
to the result for a circle. Here the "finitely many orbit types" hypothesis implies that 
X^ = X^ for C cyclic of large enough order, so that we are in the realm where 
classical Smith theory can be applied. Assuming that the result holds when G is a finite 
extension of a torus, let N be the normalizer of a maximal torus in G. Then N is a finite 
extension of a torus and x(G/A/̂ ) = 1. The composite 

T o TT* : F^(X/G; A) —> H'^iX/N; A) -^ ^^(X/G; A) 

is the identity, and that's all there is to it. 

The rational equivariant stable category 
Exactly as for simple spaces and for spectra, we can use our Eilenberg-MacLane G-
spectra to show that any G-spectrum can be approximated as the homotopy inverse limit 
of a Postnikov tower constructed out of K{M, n)'s and fc-invariants, where K{M, n) = 
E^HM. For finite groups, the A:-invariants vanish rationally. 

THEOREM 5.9. Let G be finite. Then, for rational G-spectra E, there is a natural equiv-

alence E-^ n K{iL^{E), n). 

Counterexamples of Triantafillou [64] show that, unless G is cyclic of prime power 
order, the conclusion is false for naive G-spectra. A counterexample of Haeberly [34] 
shows that the conclusion is also false for genuine G-spectra when G is the circle group, 
the rationalization of KUQ furnishing a counterexample. 

The proof of Theorem 5.9 depends on two facts, one algebraic and one topological. 
Assume that G is finite. 

PROPOSITION 5.10. All objects are projective and injective in the Abelian category of 
rational Mackey functors. 

The analogue for coefficient systems is false, and so is the analogue for general compact 
Lie groups. One of us has recently studied what does happen for compact Lie groups 
[27]. The following result is easy for finite groups and false for compact Lie groups, as 
we see from Theorem 3.10. 

PROPOSITION 5A\. For H CG andn^{), 7L^{G/H^) 0 Q = 0. 

Let ^ = J{\G\ denote the Abelian category of Mackey functors over G. For G-
spectra E and F, there is an evident natural map 

9 : \E,F\G — YL^omjt {TL^{E\TL^(F)). 
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Let F be rational. By the previous result and the Yoneda lemma, 6 is an isomorphism 
when E = E^G/H^ for any H. Clearly, we can extend 0 to a graded map 

e : F^{E) = [E^Fj^a = [S-<'E,F]G -^ n H ^ " " - ^ (7r„(i;-«£;),7r„(F)). 

It is still an isomorphism when E is an orbit. We obtain the same groups if we replace E 
and the Mackey functors 7r„(Z'"'^E) by their rationalizations. Since the Mackey functors 
7r^(F) are injective, the right hand side is a cohomology theory on G-spectra E. Clearly 
0 is a map of cohomology theories and this already implies the following result. With 
F = YlK{ri^{E),n), Theorem 5.9 is a direct consequence. 

THEOREM 5.12. Let G be finite. If F is rational then 0 is a natural isomorphism. 

This classifies rational G-spectra and one can go on to classify maps between them 
and so obtain a complete algebraization of the rational equivariant stable category. We 
refer the reader to [30, App. A]. 

6. Philosophy of localization and completion theorems 

We shall work with reduced homology and cohomology theories in the rest of this article. 
It is natural to want to know about the homology and cohomology of classifying 

spaces, as invariants of groups, as homes of characteristic classes, and as groups of 
bordism classes of G-manifolds. 

One reason that it is difficult to calculate k*{BG^) or K[BG^) is that BGJ^ is an 
infinite complex. The conventional approach to calculation is based on the skeletal filtra-
tion of BG^, which gives rise to Atiyah-Hirzebruch spectral sequences.^One problem 
with this approach is that ordinary cohomology is not the most natural way to look at 
BG, and much of its good behaviour when viewed by other cohomology theories is 
invisible to ordinary cohomology. 

An attractive alternative is to consider equivariant forms of A:-theory. We shall say 
that A:^() is an equivariant form of A:*() if it is represented by a split G-spectrum kc 
whose underlying spectrum k represents A:*(). This means in particular that there is a 
map k* —• kg and also that for any free G-spectrum X there is a natural isomorphism 
k*a{X) = k*{X/G). 

Typically, there will be many equivariant versions of k*{'), and some will serve our 
purposes better than others. Perhaps the most obvious version is ufc, but that is usually 
not the most useful version. We suppose that one particular version has been chosen in the 
following discussion. For example, the nicest equivariant form of topological jRT-theory 
is the Atiyah-Segal equivariant K-theory defined using equivariant bundles [62]. 

The point of thinking equivariantly is that 

fcJ(£;G+) = A:*(BG+) and k^{EG^) = k.{EG+Ac S^"^^^^), 

so that we have moved the problem into the equivariant world: we have to understand 
the homology and cohomology of free G-spectra, and we may hope to do so in general, 
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allowing effective use of finite G-CW complexes to obtain information about our infinite 
G'CW complex EG. To carry out this idea, we introduce a parameter G-space X. By 
introducing equivariance, we have made available the comparison map 

IT* : fcJ(X) —> k*G{EG^ AX) = k*{EG^ Ac X), 

induced by the projection TT : EG^ —y S^. It is appropriate to think of X as finite, so 
that the domain is easily calculated, whilst the codomain is the cohomology of an infinite 
complex. The motivating case X = S^ gives the map 

TT* : A:£ - ^ k*G{EG^) ^ k*{BG^). 

It is only slightiy over-optimistic to hope that this is an isomorphism, as we now explain. 
To obtain some algebraic control, we assume that k*{-) and /i:J() are ring theories, 

and that the splitting map is a ring map. More generally, we assume given module 
theories m*() and m^() over fc*() and fc^(), with suitable splitting maps. Then all 
groups m^(X) are modules over the coefficient ring k^. It turns out that the ideal 
theoretic geometry of the fcj-module mQ{X) is the controlling structure. We discussed 
the algebra that we have in mind in the previous article [31]. 

Consider the augmentation ideal 

J = ker {resf : A:̂  = ifc (̂5 )̂ —^ k^{G+) ^ Jk*), 

which by definition acts as zero on A;̂ (G+) and therefore on m^(G-f). Since any free 
G-spectrum is constructed from cells S'^ A G-j. it follows that a power of J acts as 
zero on mQ{X) whenever X is finite and free. We emphasize that we are thinking 
about Z'graded, but RO{G)-gradable, equivariant cohomology theories. If we allowed 
i?0(G)-grading in our definition of J, the discussion would still make sense, but the 
results would often be trivial to prove and useless in practice. 

Now observe that EG^ is a direct limit of finite free complexes and consider its 
cohomology. If there are no lim^ problems, m (̂jE'G-i-) is an inverse limit of J-nilpotent 
modules, and therefore the nicest answer we could hope to have is that n* is completion, 
so that 

However the algebra has already warned us against this: the topology guarantees that the 
left hand side is an exact functor of X, whereas the right hand side is only known to be 
exact when kQ is Noetherian and m^(A') is finitely generated. The solution is to replace 
J-completion by the associated functor on the derived category: this will be exact in 
a suitable sense and its homology groups will be calculated by left derived functors of 
completion. We gave the relevant descriptions of derived functors in [31]. 

NICEST PossmLE ANSWER 6.1. For any G-spectrum X, mQ{EG^ A X) is the 'homo-
topical J-completion' of the kQ-module m^(X) and hence there is a spectral sequence 

E*'* = H^{m};{X)) = > m};{EG+ A X). 
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If this nicest possible answer is the correct answer we say that the completion theorem 
holds for rn*Q{'). 

Now consider the situation in homology. In any case, m^{EG^) is a direct limit of 
J-nilpotent modules. The nicest functor of this form is the J-power torsion functor, but 
we saw in the previous article that this is rarely exact, and so even in the best cases we 
need to take derived functors into account. 

NICEST POSSIBLE ANSWER 6.2. For any G-spectrum X, m^{EG^ A X) is the 'homo-
topical J-power torsion' of the m^-module m*Q{X) and hence there is a spectral se-
quence 

El, = H*j{m<:{X)) => m^{EG+ A X). 

If this nicest possible answer is the correct answer we say that the localization theorem 
holds for mf (•). 

One of us used to call this a *local cohomology theorem' [24]. We shall explain in 
the next section why we now understand it to be a 'localization theorem'. We shall 
also recall what we mean by *homotopy J-completion' and *homotopy J-power torsion' 
and describe how one can hope to prove that theories rn'Q[') and mf (•) enjoy such 
good behaviour. However, the statements about spectral sequences are perfectly clear 
as they stand; the initial terms of the spectral sequences are local homology and local 
cohomology groups, respectively, as defined in [31, §1]. 

The entire discussion just given applies equally well to the calculation of m^(£^c^^-) 
and m^{E^j^) for an arbitrary family ^, provided that the ideal J is replaced by 

JJ^ = P I ker(A:£ —y k]j). 

This case cannot usually be reduced to a nonequivariant statement, but it often has its 
own applications. For example, it leads to calculations of the cohomology and homology 
of equivariant classifying spaces and thus to determinations of equivariant characteristic 
classes. 

We consider the alternative methods of calculation available to us in the following 
schematic diagram, restricting attention to our given ring theory A:^(). 

In this picture, the conventional (Atiyah-Hirzebruch) homological algebra route takes 
as input the nonequivariant fc-theory together with the group structure on G; it results 
in a calculation of infinite homological dimension and with infinitely many extension 
problems. Where it applies, the more favorable route through commutative algebra takes 
as input the equivariant augmented coefficient ring fc^ —> k*\ the calculation usually 
has finite homological dimension, and in favorable cases the spectral sequences collapse 
and there are no extension problems. 

There is an undefined term here, namely the Tate theory t(fc)^ [30]. It fits into a 
long exact sequence whose other two terms are K{BG^) and k*{BG-\-). Returning to 
the context of module theories and remembering that every theory is a module theory 
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kh{') 
Equivariant k theory 

KQ 

Coefficient ring 

A:-homology of G 

• ^ - ^ 

:<-5: 
k^{BG^) 

A:-cohomology of G 

-^^ 

k\').G 
k theory and a group | 

t(k)h \ 
A:-Tate theory of G 

over stable cohomotopy, we have the following remarkable relationship between our two 
Nicest Possible Answers. 

THEOREM 6.3. Let G be finite and let J be the augmentation ideal of the Bumside ring 
A{G). Regard a G-spectrum mo as a module over the sphere G-spectrum SG ci^ recall 
that A{G) = 'K§{SG)' The localization theorem for the calculation ofm^{BG^) is true 
if and only if the completion theorem for the calculation ofm*{BG^) is true and t{m)Q 
is rational. 

The Tate theory is relatively easy to compute. It is a direct consequence of Theorem 
3.10 that the Tate theory t{S)Q is not rational, so that one cannot hope to prove the 
localization theorem in stable homotopy, although the completion theorem is true in stable 
cohomotopy. We shall say no more about the Tate theory here, referring the interested 
reader to [30]. 

7. How to prove localization and completion theorems 

We now outline a strategy for proving that the Nicest Possible Answer applies in both 
homology and cohomology [24]. One limitation of the method is obvious: it cannot apply 
to theories like stable homotopy. 

The calculational restriction that we will shortly place on our homology theory and 
that will rule out stable homotopy is that the theory should have Thom isomorphisms for 
complex representations V: 

i i f (5^AX)Si?f(Sl^lAX) (7.1) 
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as iZ^-modules, where \V\ denotes the real dimension of V. The point is that localization 
theorems are often automatic, by arguments like the proof of Proposition 3.20, if one 
grades over the representation ring. Thom isomorphisms allow us to reinterpret that result 
in terms of integer grading. 

There are two further assumptions. The first is fundamental to the general strategy: 
we assume that we are working in the category of modules over a commutative 5^-
algebra RG with underlying nonequivariant commutative 5-algebra R. (Remember that 
commutative Sc-algebras are essentially the same things as Eoo ring G-spectra.) We 
have switched notation from A: to i? to emphasize this assumption. Without it, we cannot 
make the constructions we need except under very favorable circumstances. 

The second is made solely to simplify the exposition: we assume that the ring RQ is 
Noetherian. If this is not the case, the outline of the argument is the same but its imple-
mentation is considerably more complicated since one must use topological arguments 
to show that the relevant ideals can be replaced by finitely generated ones; at present, 
these arguments only apply to the trivial family ^ = {1}. 

The idea of the proofs is to model the algebra in topology; the model is so chosen 
that formal arguments imply that constructions on isotropy types are directly related to 
constructions on ideals in commutative rings. The necessary topological constructions 
are described in [31, §3]. 

We restrict attention to the augmentation ideal 

J = ktT{resf :i2f -^i?*) 

and consider the canonical map 

K' : J5G+ A K{J) ^ S^ A K{J) 

of iJc-modules. The module K{J) = FjiRc) encodes homotopical J-power torsion. 
By our Noetherian assumption, we may take J = {l3\,..., /3n)- Then K{J) is the smash 
product over RG of the fibers K{/3i) of the localizations RG —' {RG)[l/Pi]. Since the 
/3i are trivial as nonequivariant maps, we have the following observation. 

LEMMA 7.2. The natural map K{J) -> RG is a nonequivariant equivalence. 

Thus EGJ^ A K{J) ~ EGJ^ A RG and K' induces a map of /?G-niodules 

K : EG., ARG —> K{J) (7.3) 

The homotopy groups of RG A EG-^ are Rf{EG^). More generally, we consider an 
i?G-niodule MG with underlying nonequivariant i?-module M, and we have 

{EG^ A RG) /\Ra MG ^ EG^ A MG 

and 

FR^{EG^ARG,MG) ^ F{EG^,MG)-
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Recall the definitions 

rj{MG) = K{J) ^R^ MG and {MQTJ = FR^{K{JIMG). 

The homotopy groups of these modules may be calculated by the spectral sequences [31, 
(3.2) and (3.3)]. Clearly the map K induces maps 

EG^ AMG —^ rj{MG) and {Mcrj F{EG^,MGI 

and these maps are equivalences if K is an equivalence. Therefore, if we can prove 
that /c is a homotopy equivalence, we can deduce the spectral sequences of the Nicest 
Possible Answers for both M^{EG+) and MQ{EG^) for all iZ^-modules M^. Given 
a G-spectrum X, we can replace MG by X A MG and F{X, MG) and so arrive at the 
the Nicest Possible Answers as stated in 6.1 and 6.2. 

We pause to describe the role of localization away from J. We have the cofibre 
sequence 

K[J) —^RG-^ C{J). 

Smashing over RG with MGy recalling that MG[J~^] = C[J) AR^ MG, and using a 
standard comparison of cofibre sequences argument in the category of iic-niodules, we 
obtain a map of cofibre sequences 

EG+ A MG ^ MG -

id 

T Y 

-^EG AMG 

^MG[J-^] 

Clearly the left arrow is an equivalence if and only if the right arrow is an equivalence. 
This should be interpreted as stating that the 'topological' localization of MG away from 
its free part is equivalent to the 'algebraic' localization of MG away from J. This is why 
we call our Nicest Possible Answer in homology a localization theorem. The parallel with 
the completion theorem, which states that the 'algebraic' completion Mj is equivalent 
to the 'topological' completion F{EG^,MG) of MG at its free part, is now apparent. 

The strategy for proving that the map K of (7.3) is an equivalence is an inductive 
scheme. To set it up, we need to know that if we restrict Kio a subgroup H, we obtain 
an analogous map of if-spectra. We have 

K{P,.,.,Pn)\H = K{P,\H....,Pn\H)'. 

the latter is defined with respect to RH = RG IH- That is, if we write JG instead of J, 
as we shall often do to clarify inductive arguments. 

rja{RG)\H^rr,,^j^){RH), 
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where res : R^ —• R^ is restriction. It is rarely the case (even for cohomotopy, when 
one is looking at Bumside rings) that res( JG) = JH^ but these ideals do have the same 
radical. 

THEOREM 7.4. Assume that G is finite and each {RH)* is Noetherian. Then 

>/res(Jc?) = V J ^ 

fi)r all subgroups H C G. 

We therefore have the equivalence of if-spectra 

rja{RG)\H^rj„RH. 

SKETCH PROOF OF THEOREM 7.4. For theories such as cohomotopy and jFf-theory, where 
we understand all primes of R^, this can be verified algebraically. 

In general, if G acts freely on a product of spheres, one may check that JG is the 
radical of the ideal generated by all Euler classes and deduce the result. This covers the 
case when G is a p-group, and general finite groups can then be dealt with by transfer. 

The argument just sketched requires considerable elaboration, and it can be the main 
technical obstruction to the implementation of our strategy when we work more generally 
with compact Lie groups and non-Noetherian coefficient rings. 

THEOREM 7.5 (Localization and completion theorem). Assume that G is finite and each 
(RH)* IS Noetherian. If all of the theories R^{') admit Thom isomorphisms (7.1), then 
the map of Rc-module G-spectra 

K:EG^ARG-^K{J) 

is an equivalence. Therefore, for any Rc-module MQ and any G-spectrum X, there are 
spectral sequences 

and 

El, = H}{R^; M f (X)) => M?iEG+ A X) 

E;'' = H^{R'a;M^{X)) ^ M^{EG+AX). 

PROOF. Write JG instead of J, and observe from the original construction of K' that the 
cofibre of K is EG A K{JG)- We must prove that this is contractible. 

We proceed by induction on the order of the group. By Theorem 7.4, we have 

{EG A K{JG)) \HC^EHA K{JH), 

and so our inductive assumption implies that 

G/H+ A EG A K{JG) ^ * 
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for all proper subgroups H C G. 
We now use the idea in Proposition 3.20 and its proof. We take E^ = colimy 5 ^ , 

where the colimit is taken over indexing G-spaces V C U such that V^ = {0}. Since 
G is finite, we may restrict attention to copies of the reduced regular representation of 
G. Since (E^)^ = 5^, E^/S^ is triangulable as a G-CW complex whose cells are of 
the form G/H^ A 5"" with H proper. Therefore 

E^/S^AEGAK{JG):^* 

by the inductive assumption, hence 

EG A K{JG) C^E^AEGA K{JG)-

Since E^ A S^ —> E^ A EG is an equivalence, we have established the following 
useful reduction. 

LEMMA 7.6 (Carlsson's reduction). It suffices to show that E^ A K{JG) ^ *. O 

Now recall that we have Euler classes xv ^ R-vi*^^) obtained by applying e(V)*, 
e{V) : 5^ —> 5 ^ , to the unit 1 G E^{S^) ^ E^{S^), At this point, our Thorn 
isomorphisms (7.1) come into play, allowing us to move these Euler classes into integer 
gradings. Thus let x(^) ^ ^ - iv i ^^ ^^^ image of xv under the Thom isomorphism. 
When V ^ {0}, e{V) is nonequivariantly null homotopic and therefore xiV) is in 
JG' Via the Thom isomorphism. Proposition 3.20 implies that, for any G-spectrum X, 
7r^{E^ A X) is the localization of IT^{X) obtained by inverting the Euler classes 
x{V). Here we may restrict everything to lie in integer gradings. With X = K{JG), the 
localization is zero since the x (^ ) are in J G [31, 1.1]. From the spectral sequence [31, 
(3.2)], we see that 

TV^{E^AK{JG)) = 0 . 

Since E^ is /f-equivariandy contractible for all proper subgroups H, this shows that 
E^ A K{JG) — *, as required. D 

8. Examples of localization and completion theorems 

The discussion in the previous section was very general. In this section we consider a 
number of important special cases in a little more detail. In each case, we give some 
history, state precise theorems, discuss their import, and comment on wrinkles in their 
proofs. We refer the reader to [53] for precise descriptions of the representing G-spectra 
and more extended discussions of these results and their proofs. 
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8.1. K-theory 

Historically this was the beginning of the whole subject. Atiyah [5] first proved the 
completion theorem for finite groups, by the conventional homological algebra route. 
Full use of equivariance appeared in the 1969 paper of Atiyah and Segal [8], which gave 
the completion theorem for compact Lie groups in essentially the following form. Let / 
be the augmentation ideal of the representation ring R(G). 

THEOREM 8.1 (Atiyah-Segal). If G is a compact Lie group and X is a finite G-CW 
complex, then 

Kh{X)'i^Kh{EG+AX). 

Their proof, like any other, depends fundamentally on the equivariant Bott periodicity 
theorem, which provides Thom isomorphisms via isomorphisms 

KG{S^X) ^ KG[X) 

for complex representations V. The coefficient ring is KQ = KQ[P,P~^], and KQ = 
R{G). Since nonequivariant iiT-theory is also periodic, the augmentation ideal is J = 
I[l3,P~^], and the completion theorem is therefore stated using / . The ring R{G) is 
Noetherian [61], and Theorem 7.4 holds for all compact Lie groups G. 

Atiyah and Segal used an inductive scheme in which they first proved the result for 
a torus, then used holomorphic induction to deduce it for a unitary group, and finally 
deduced the general case from the case of unitary groups. A geodesic route from Bott 
periodicity to the conclusion, basically a cohomological precursor of the homological 
argument sketched in the previous section, is given in [2]. That paper also gives the gen-
eralization of the result to arbitrary families of subgroups in G. A remarkable application 
of that generalization has been given by McClure [57]: restriction to finite subgroups 
detects equivariant iiT-theory. 

THEOREM 8.2 (McClure). For a compact Lie group G and a finite G-CW complex X, 
restriction to finite subgroups F specifies a monomorphism 

î sw —II^FW-

It is not known that KG is a commutative Sc-algebra in general, although recent work 
shows that this does hold when G is finite [23]. Therefore the techniques of the previous 
section do not apply in general. The arguments in [8] and [2] prove the isomorphism of 
Theorem 8.1 directly in cohomology. The trick that recovers enough exactness to make 
this work is to study pro-group valued cohomology theories. 

A pro-group is just an inverse system of (Abelian) groups. There is an Abelian category 
of pro-groups, and the inverse limit functor is exact in that category. For a cohomology 
theory fc^ on G-CW complexes, one obtains a pro-group valued theory fe^ by letting 
k};{X) be the system {A;J(Xa)}, where Xa runs through the finite subcomplexes of X. 
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Working with pro-groups has an important bonus: for a finite G-CW complex X, the 
system {KQ{X)/I'^} clearly satisfies the Mittag-Leffler condition. One proves that this 
system is pro-isomorphic to the system kQ{EG^ A X), and one is entitled to conclude 
that 

K^{EG^ AX)^ lim K*G{EGI A X). 

That is, the relevant lim^ term vanishes. 
Various people have deduced calculations of the iiT-homology of classifying spaces 

for finite groups using suitable universal coefficient theorems, but the use of local coho-
mology and the proof via the localization theorem were first given in [24]. 

THEOREM 8.3. If G is finite, then the localization and completion theorems hold for 
equivariant K-theory. Therefore, for any G-spectrum X, there are short exact sequences 

0 - ^ H]{Kf{i:X)) —^ K^{EG^AX) —^ H^{K^{X)) -^ 0 

and 

0 —> L{K^{EX) —^ K^{EG^ A X) - ^ LiK^{X) - ^ 0. 

In [24], the strategy of the previous section was applied to KG regarded as an 5 G -
module: we have the permutation representation homomorphism A{G) —> R{G), and 
the completion of an i?(G)-module at the augmentation ideal of R{G) is isomorphic to 
its completion at the augmentation ideal of A{G) [28, 4.5]. Using the new result that KG 
is a commutative Sc-algebra when G is finite, the strategy can now be applied directly: 
Theorem 8.3 is an application of Theorem 7.5. The collapse of the relevant spectral 
sequences to short exact sequences results from the fact that A{G) and R{G) have Krull 
dimension 1 when G is finite. 

There is an alternative strategy. In view of Theorems 6.3 and 8.1, one can prove 
Theorem 8.2 by proving directly that the Tate theory t{K)G is rational. This approach 
is carried out in [30]. It has the bonus that the topology carries out the commutative 
algebra of calculating the local cohomology groups, leading to the following succinct 
conclusion. Let CG be the regular representation of G; the ideal it generates in R{G) is 
a free abelian group of rank 1, and the composite / —> R{G) —^ R{G)/{CG) is an 
isomorphism. 

THEOREM 8.4. Let G be finite. Then Ko{BG) = Z, with generator the image of CG, 
and 

Ki(BG) ^ {R{G)/{€G)) J ® (Q/Z). 

When G is a p-group, /-adic and p-adic completion agree on / = i?(G)/(CG), and 
explicit calculations in both K-homology and iiT-cohomoIogy are easily obtained. 

For general compact Lie groups, these strategies all fail: we do not know that KG is 
a commutative S^-algebra, and the alternative based on use of SG fails since A{G) has 
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Krull dimension 1 and is non-Noetherian in general, whereas R{G) is Noetherian but 
has Krull dimension r -f 1, where r is the rank of G [61]. The localization theorem is 
not known to hold in general. 

8.2. Bordism 

The case of bordism is the greatest success of the method outlined in Section 7. The cor-
rect equivariant form of bordism to use is tom Dieck's homotopical equivariant bordism 
[16]. A completion theorem for the calculation of MU*{BG) for Abelian compact Lie 
groups was proven by Loffler [46], [47] soon after the Atiyah-Segal completion theorem 
appeared, but there was no further progress until quite recendy. 

It is easy to describe the representing G-spectrum MUG- Consider the usual model for 
the prespectrum with associated spectrum MU. The spaces comprising it are the Thom 
complexes of the Grassmannian models for universal vector bundles. Now carry out the 
construction using indexing spaces in a complete G-universe. The Fth space is defined 
using |y | dimensional subspaces of the appropriate Grassmannian and therefore, up to 
G-homeomorphism, depends only on the dimension of V. This fact leads to the Thom 
isomorphisms required by our general strategy. Moreover, the explicit construction leads 
to a quick proof that the Thom G-spectrum MUG is in fact a commutative 5c;-algebra. 
Our general strategy applies [32]. 

THEOREM 8.5 (Greenlees-May). Let G be finite. Then the localization and completion 
theorems hold for any module MG over MUG- Thus there are equivalences 

MG A EG^ - rj{MG) and F{EG^,MG) ^ {MG)^ 

and, for any G-spectrum X, there are spectral sequences 

El, = H'j{MU^;M^iX)) => M^{EG+AX) 

and 

£*'* = Hi{MUh\ M^{X)) =^ M^{EG+ A X). 

We have several comments on this theorem, beginning with comments on its proof. 
An immediate difficulty is that MUQ is certainly not Noetherian. Furthermore, we have 
no good reason to think that the augmentation ideal J C MUQ is finitely generated 
unless G is abelian. We modify our strategy accordingly, proving the theorem for any 
sufficiently large finitely generated subideal of J. By definition, the stated constructions 
based on J mean the relevant constructions based on such a sufficiently large subideal. 
When G is a p-group, the arguments of the previous section apply to ideals generated 
by a finite number of Euler classes. Rather elaborate multiplicative transfer and double 
coset formula arguments allow us to deduce the result for general finite groups using 
ideals that are generated by the transfers of the Euler classes from all p-Sylow subgroups 
and finitely many more elements. We expect that the result for an arbitrary compact Lie 
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group can be proved by similar methods, but we do not yet see how to use these methods 
to give the result for arbitrary families. 

Next we comment on the meaning of the theorem. Its most striking feature is its 
generality. The methods explained in [22, §11] apply to give equivariant forms of all of 
the important modules over MU, such as ku, K, BP, BP{n), E{n), P{n), B{n), k{n) 
and K{n). The equivariant and nonequivariant constructions are so closely related that we 
can deduce MUc-nng spectrum structures on the equivariant spectra from the MU-ring 
spectra structures on the nonequivariant spectra. There are a variety of nonequivariant 
calculations of the homology and cohomology of classifying spaces with coefficients 
in one or another of these spectra in the literature, and our theorem gives a common 
framework for all such calculations. 

We should comment on the specific case of connective K-theory. Here it is known that 
the completion theorem is false for connective equivariant AT-theory: ku*{BG^) is not 
a completion of fcu^ at its augmentation ideal. However the theorem is consistent, since 
the equivariant form of ku constructed by the methods of [22, §11] is not the connective 
cover of equivariant iiT-theory. Indeed connective equivariant /^-theory does not have 
Thom isomorphisms and is therefore not a module over MUG-

We should also note that the coefficient ring MUQ is only known in the abelian case, 
and even then only in a rather awkward algebraic form. On the other hand, M*{BG^) is 
known in a good many other cases, and in reasonably attractive form. Thus the theorem 
does not at present give a useful way of calculating M*{BGJ^). However, there are 
several ways that it might be used for calculational purposes. For example, in favorable 
cases, such as M = MU for Abelian groups G, one can work backwards to deduce 
that MQ is tame, in the sense that its local homology is its completion concentrated in 
degree zero. The local cohomology of MQ is then the same as that of its completion 
[31, 2.7], hence one can hope to calculate its local cohomology as well and to use this 
information to study M*(J5G+). The point is that, nonequivariantly, the calculation of 
homology is often substantially more difficult than the calculation of cohomology. Again, 
if M is an MU-vrng spectrum, then one can use in variance under change of base [31, 
1.3] to calculate the local cohomology and local homology over MQ\ it sometimes turns 
out that MQ is a ring of small Krull dimension, and this gives vanishing theorems that 
make calculation more feasible. 

These comments are speculative: the theorem is too recent to have been assimilated 
calculationally. Certainly it renews interest in the connection through cobordism between 
algebraic and geometric topology. 

8.3. Cohomotopy 

Soon after the Atiyah-Segal theorem was proved, Segal conjectured that the analogous 
result would hold for stable cohomotopy, at least in degree 0. In simplest terms, the idea 
is that the Burnside ring A{G) plays a role in equivariant cohomotopy analogous to the 
role that R[G) plays in equivariant iiT-theory and should therefore play an analogous 
role in the calculation of the nonequivariant cohomotopy groups of classifying spaces. 
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We restrict attention to finite groups G. Then the elements of positive degree in the 
homotopy ring 7r|p are nilpotent, so that it is natural to take its degree zero part n^ = 
A{G) as our base ring; A(G) is Noetherian, and we let / denote its augmentation ideal 
ker(i4(G) —> Z). Theorem 7.4 applies. 

Segal's original conjecture was simply that A{G)^ = TT^{BG^). However, it quickly 
became apparent that, to prove the conjecture, it would be essential to extend it to a 
statement concerning the entire graded module 'K*{BGJ^). In view of Theorem 3.10, we 
have enough information to formulate the conjecture in entirely nonequivariant terms 
[41], but it was the equivariant formulation that led to a proof. 

In accordance with our philosophy we make a spectrum level statement and take the 
algebraic statement as a corollary, although the proofs proceed the opposite way. 

THEOREM 8.6 (Carlsson). For any finite group G and any G-spectrum X there is an 
equivalence of G-spectra 

{DX)'^-^D{EG^AX). 

If X is finite, then 

in general, there is a short exact sequence 

0 —> L[7r^(SX) —> 7r^(£;G+ A X) ^ U^hi^) —> 0. 

We have already remarked that the localization theorem for stable homotopy fails and 
that cohomotopy does not have Thom isomorphisms. Therefore the strategy of proof 
must be quite different from that presented in Section 7. We first note that the generality 
of our statement is misleading: it was observed in [28, 4.1] that the statement for general 
X is a direct consequence of the statement for X = SQ- One reason for working on the 
G-spectrum level is to allow such deductions. 

Taking X = SQ. it suffices to prove that the map e : SG —^ D{EG^) induced by the 
projection EG^ —> S^ induces an isomorphism on homotopy groups. Proceeding by 
induction on the order of G and using Theorem 7.4, we may assume that the homotopy 
groups 7T^ for proper subgroups H are mapped isomorphically, so that we need only 
consider the groups n^. As with the Atiyah-Segal theorem, we think cohomologically 
and control exactness by working with pro-groups. We find that it suffices to show that 
e induces an isomorphism of pro-groups 

At this point, a useful piece of algebra comes into play. In the context of Mackey 
functors, there is a general framework for proving induction theorems, due to Dress [19]. 
An induction theorem for /-adically complete Mackey functors was proven in [54], and 
it directly reduces the problem at hand to the study of p-groups and p-adic completion. 
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A more sophisticated reduction process, developed in [3], shows that the generalization 
of the Segal conjecture to arbitrary families of subgroups of G also reduces to this same 
special case. 

This reduces the problem to what Carlsson actually proved [13]. Fix a p-group C?, 
assume the theorem for all proper subgroups of G, and write I^Q{X) and [X, Y]^ for 
the pro-group valued, p-adically completed, versions of these groups, where p-adic com-
pletion is understood in the pro-group sense. We replace G-spaces by their suspension 
G-spectra without change of notation. What Carlsson proved is that 

is a pro-isomorphism. 
A first reduction (see Lemma 7.6) shows that it suffices to prove that 'KQ{E^) — 

\E^^ ^\Q is pro-zero. The cofibre sequence EGJ^ —> S^ —• EG gives rise to a long 
exact sequence 

. [ £ ^ , EG^\% ^ [J5^, S^Ya - - [E^. EG]% 

- ^ [ E ^ , £ ; G + ] S ^ ^ . . . . . . 

The EG terms carry the singular part of the problem; the EG^ terms carry the free part. It 
turns out that if G is not elementary Abelian, then both [E^, EG^]Q and [E^, EG]Q 
are pro-zero. This is not true when G is elementary abelian, but then the connecting 
homomorphism 6 is a pro-isomoiphism. 

The calculation of the groups [E^, EG]Q involves a functorial filtered approximation 
with easily understood subquotients of the singular subspace SX of a G-space X. Here 
SX consists of the elements of X with nontrivial isotropy groups; it is relevant since, 
on the space level, 

[X,EGAY]G = [SX,Y]G. 

A modification of Carlsson's original approximation given in [14] shows that SX depends 
only on the fixed point spaces X^ for elementary Abelian subgroups E of G, and this 
analysis reduces the vanishing of the [E^, ^G]Q when G is not elementary Abelian to 
direct application of the induction hypothesis. 

Recall the description of E^ as the union U '̂̂ ,̂ where V is the reduced regular rep-
resentation of G. One can describe [S^^ ̂ EG^]Q as the homotopy groups of a nonequiv-
ariant Thom spectrum BG~^^ (see [52]) and so translate the calculation of the free part 
to a nonequivariant problem that can be attacked by use of an inverse limit of Adams 
spectral sequences. The vanishing of [E^,EG^]Q when G is not elementary abelian 
is an Euler class argument: a theorem of Quillen implies that x{V) G H*{BG;Fp) is 
nilpotent if G is not elementary Abelian, and this implies that the E2 term of the relevant 
inverse limit of Adams spectral sequences is zero. 

When G is elementary Abelian, it turns out that all of the work in the calculation 
of [E^, EG^]Q hes in the calculation of the E2 term of the relevant inverse limit of 
Adams spectral sequences. When G is Z2 or Zp, the calculation is due to Lin [44], [45] 
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and Gunawardena [33], respectively, and they were the first to prove the Segal conjecture 
in these cases. For general elementary Abelian p-groups, the calculation is due to Adams, 
Gunawardena and Miller [4]. While these authors were the first to prove the elementary 
Abelian case of the Segal conjecture, they didn't publish their argument, which started 
from the nonequivariant formulation of the conjecture. A simpler proof within Carlsson's 
context was given in [14], which showed that the connecting homomorphism 6 is an 
isomorphism by comparing it to the corresponding connecting homomorphism for a 
theory, Borel cohomology, for which the completion theorem holds tautologously. 

The Segal conjecture has been given a number of substantial generalizations, such as 
those of [40], [3], [56]. The situation for general compact Lie groups is still only partially 
understood; Lee and Minami have given a good survey [43]. One direction of application 
has been the calculation of stable maps between classifying spaces. The Segal conjecture 
has the following implication [40], [51], which reduces the calculation to pure algebra. 

Let G and U be finite groups and let A{G, U) be the Grothendieck group of i7-free 
finite {G x i7)-sets. Observe that A{G, 77) is an A(G)-module. 

THEOREM 8.7. There is a canonical isomorphism 

AiG.n)"^ ^ [E^BG^.S^Bn^]. 

Many authors have studied the relevant algebra [59], [48], [35], [10], [65], which is 
now well understood. One can obtain an analog with 77 allowed to be compact Lie [56], 
and even with G and 77 both allowed to be compact Lie [58]. 

8.4. The cohomology of groups 

We have emphasized the use of ideas and methods from commutative algebra in equiv-
ariant stable homotopy theory. We close with a remark on equivariant cohomology which 
shows that ideas and methods from equivariant stable homotopy theory can have inter-
esting things to say about algebra. 

The best known equivariant cohomology theory is simply the ordinary cohomology of 
the Borel construction: 

H*G{X) = H*{EG^AGX;k), 

where we take A: to be a field. The coefficient ring is the cohomology ring HQ{S^) = 
H*{G) of the group G, and the augmentation ideal J consists of the elements of positive 
degree. Of course, this theory can be defined algebraically in terms of chain complexes. 
As far as completion theorems are concerned, this case has been ignored since the 
cohomology ring is obviously complete for the J-adic topology and the completion 
theorem is thus a tautology. 

However, once one has formulated the localization theorem, it is easy to give a proof 
along the lines sketched above, using either topology or algebra. We give an algebraic 
statement proven in [26]. 
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THEOREM 8.8. For any finite group G and any bounded below chain complex M of 
kG-modules there is a spectral sequence with cohomologically graded differentials 

EP-" = H^y^H*{G;M)) = ^ i/_(p+,)(G;M). 

It would be perverse to attempt to use the theorem to calculate H^[G\M), but if we 
consider the case when the coefficient ring is Cohen-Macaulay, so that the only nonvan-
ishing local cohomology group occurs for d — dim H*{G), we see that the theorem for 
M = k states that 

/ f n ( G ) = i / j ' - " - ^ ( i / * ( G ) ) . 

In particular, using that H*{G) is the fc-dual of H*{G), this duality theorem implies that 
the ring H*{G) is also Gorenstein, which is a theorem originally proven by Benson and 
Carlson [9]. 

References 

[1] J.F. Adams, Prerequisites (on equivariant stable honuHopy) for Carlsson's lecture, SLNM 1051, Springer, 
Beriin (1984), 483-532. 

[2] J.F. Adams, J.-P. Haeberiy, S. Jackowski and J.P. May, A generalization of the AtiyahSegal completion 
theorem. Topology 27 (1988), 1-6. 

[3] J.F Adams, J.-P. Haeberiy, S. Jackowski and J.P. May, A generalization of the Segal conjecture. Topology 
27(1988), 7-21. 

[4] J.F. Adams, J.H. Gunawardena and H.R. Miller, The Segal conjecture for elementary abelian p-groups, /, 
Topology 24 (1985), 435-460. 

[5] M.F. Adyah, Characters and cohomology of finite groups, Inst. Hautes Etudes Sci. Publ. Math. 9 (1961), 
23-64. 

[6] M.F, Atiyah, Bott periodicity and the index of elliptic operators. Quart. J. Math. Oxford 19 (1968), 
113-140. 

[7] M.F. Atiyah and R. Bott, On the periodicity theorem for complex vector bundles. Acta Math. 112 (1964), 
229-247. 

[8] M.F. Atiyah and G.B. Segal, Equivariant K-theory and completion, J. Differential Geom. 3 (1969), 1-18. 
[9] D.J. Benson and J.F Carlson, Projective resolutions and Poincari duality complexes. Trans. Amer. Math. 

Soc. 342 (1994), 447^88. 
[10] D.J. Benson and M. Feschbach, Stable splitting of classifying spaces of finite groups. Topology 31 (1992), 

157-176. 
[11] G.E. Bredon, Equivariant Cohomology Theories, SLNM 34, Springer, Beriin (1967). 
[12] G.E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York (1972). 
[13] G. Carlsson, Equivariant stable homotopy and Segal's Bumside ring conjecture, Ann. Math. 120 (1984), 

189-224. 
[14] J. Caruso, J.P. May and S.B. Priddy, The Segal conjecture for elementary abelian p-groups, II, Topology 

26 (1987), 413-433. 
[15] P. Conner, Retraction properties of the orbit space of a compact topological transformation group, Duke 

Matfi. J. 27 (1960), 341-357. 
[16] T. torn Dieck, Bordism of G-manifolds and integrality theorems. Topology 9 (1970), 345-358. 
[17] T. torn Dieck, Transformation Groups, W. de Gniyter, Beriin (1987). 
[18] T. torn Dieck, Transformation Groups and Representation Theory, SLNM 766, Springer, Beriin (1979). 
[19] A. Dress, Contributions to the theory of induced representations, SLNM 342, Springer, Beriin (1973), 

183-240. 



322 J.RC. Greenlees and J.R May Chapter 8 

[20] A.D. Elmendorf, Systems affixed point sets. Trans. Amer. Math. Soc. 277 (1983), 275-284. 
[21] A.D. Elmendorf, J.RC. Greenlees, I. Kiiz and J.R May, Commutative algebra in stable homotopy theory 

and a completion theorem. Math. Res. Lett. 1 (1994), 225-239. 
[22] A.D. Elmendorf, I. Kriz, M.A. Mandell and J.R May, Modern foundations of stable homotopy theory. 

Handbook of Algebraic Topology, I.M. James, ed., North-Holland, Amsterdam (1995), 213-253. 
[23] A.D. Elmendorf, I. Kriz, M.A. Mandell and J.R May, Rings, modules, and algebras in stable homotopy 

theory. Preprint (1995). 
[24] J.RC. Greenlees, K homology of universal spaces and local cohomology of the representation ring. 

Topology 32 (1993), 295-308. 
[25] J.RC. Greenlees, Tate cohomology in commutative algebra, J. Pure Appl. Algebra 94 (1994), 59-83. 
[26] J.RC. Greenlees, Commutative algebra in group cohomology, J. Pure Appl. Algebra (to appear). 
[27] J.RC. Greenlees, Rational Mackey functors for compact Lie groups. Preprint (1993). 
[28] J.RC. Greenlees and J.R May, Completions of G-spectra at ideals of the Burnside ring, Proc. Adams 

Memorial Symposium, vol. II, CUP (1992), 145-178. 
[29] J.RC Greenlees and J.R May, Derived functors of I-adic completion and local homology, J. Algebra 149 

(1992), 438-453. 
[30] J.RC Greenlees and J.R May, Generalized Tate cohomology, Mem. Amer Math. Soc. 113, no. 543 (1995). 
[31] J.RC. Greenlees and J.R May, Completions in algebra and topology. Handbook of Algebraic Topology, 

I.M. James, ed., North-Holland, Amsterdam (1995), 255-276. 
[32] J.RC Greenlees and J.R May, Localization and completion theorems for MU-module spectra. In prepa-

ration. 
[33] J.H. Gunawardena, Cohomotopy of some classifying spaces, PhD Thesis, Cambridge University (1981). 
[34] J.-R Haeberly, For G = S^ there is no Chem character, Contemp. Math. vol. 36 (1985), 113-118. 
[35] J. Harris and N. Kuhn, Stable decompositions of classifying spaces of finite Abelian p-groups. Math. Proc. 

Cambridge Phil. Soc. 103 (1988), 427^W9. 
[36] H. Hauschild, Aquivariante Homotopie, I, Arch. Math. 29 (1977), 158-165. 
[37] S. Jackowski, Families of subgroups cmd completions, J. Pure Appl. Algebra 37 (1985), 167-179. 
[38] L.G. Lewis, Equivariant Eilenberg-MacLane spaces and the equivariant Seifert-van Kampen and sus-

pension theorems. Topology Appl. 48 (1992), 25-61. 
[39] L.G. Lewis, The equivariant Hurewicz map. Trans. Amer Math. Soc. 329 (1992), 433-472. 
[40] G. Lewis, J. P. May and J. McClure, Ordinary RO{G)-graded cohomology. Bull. Amer Math. Soc. 4 

(1981), 208-212. 
[41] G. Lewis, J. P. May and J. McClure, Classifying G-spaces and the Segal conjecture, CMS Conf. Proc. 2 

(1982), 165-179. 
[42] L.G. Lewis, J.R May and M. Steinberger (with contributions by J.E. McClure), Equivariant stable homo-

topy theory, SLNM 1213, Springer, Berlin (1986). 
[43] CN. Lee and N. Minami, Segal's Burnside ring conjecture for compact Lie groups, MSRI 22 (1994), 

133-161. 
[44] W.H. Lin, On conjectures of Mahowald, Segal and Sullivan, Math. Proc. Cambridge Phil. Soc. 87 (1980), 

449^58. 
[45] W.H. Lin, D.M. Davis, M.E. Mahowald and J.F. Adams, Calculations of Lin's Ext groups. Math. Proc. 

Cambridge Phil. Soc. 87 (1980), 459^169. 
[46] P. Loffler, Equivariant unitary bordism and classifying spaces, Proc. Int. Symp. Topology and Its Appli-

cations, Budva, Yugoslavia (1973), 158-160. 
[47] P. Leffler, Bordismengruppen unitdrer Torusnumnigfaltigkeiten, Manuscripta Math. 12 (1974), 307-327. 
[48] J. Martino and S. Priddy, The complete stable splitting for the classifying space of a finite group. Topology 

31 (1992), 143-156. 
[49] J.R May, Equivariant homotopy and cohomology theory, Contemp. Math. vol. 12 (1982), 209-217. 
[50] J.R May, Equivariant completion. Bull. London Math. Soc. 14 (1982), 231-237. 
[51] J.R May, Stable maps between classifying spaces, Contemp. Math. vol. 37 (1985), 121-129. 
[52] J.R May, Equivariant constructions of nonequivariant spectra. Algebraic Topology and Algebraic K-

theory, Princeton Univ. Press, Princeton (1987), 345-364. 



Equivariant stable homotopy theory 323 

[53] J.P. May, Equivariant homotopy and cohomology theory, NSF-CBMS Regional Conference Proceed-
ings (to appear). 

[54] J.P. May and J.E. McClure, A reduction of the Segal conjecture, CMS Conf. Proc. 2 (1982), 209-222. 
[55] J.P May, J.E. McClure and G. TriantafiUou, Equivariant localization. Bull. London Math. Soc. 14 (1982), 

223-230. 
[56] J. P. May, V. P. Snaith and P. Zelewski, A further generalization of the Segal conjecture. Quart. J. Math. 

Oxford (2) 40 (1989), 457-473. 
[57] J.E. McClure, Restriction maps in equivariant K-theory. Topology 25 (1986), 399-409. 
[58] N. Minami, The relative Bumside module and stable maps between classifying spaces of compact Lie 

groups. Trans. Amer. Math. Soc. (to appear). 
[59] G. Nishida, Stable homotopy type of classifying spaces of finite groups, Algebraic and Topological Theories 

(1985), 391-404. 
[60] R. Oliver, A proof of the Conner conjecture, Ann. Math. 103 (1976), 637-644. 
[61] G.B. Segal, The representation ring of a compact Lie group, Inst. Hautes Etudes Sci. Publ. Math. 34 

(1968), 113-128. 
[62] G.B. Segal, Equivariant K-theory, Inst. Hautes Etudes Sci. Publ. Math. 34 (1968), 129-151. 
[63] G. TriantafiUou, Equivariant minimal models. Trans. Amer. Math. Soc. 274 (1982), 509-532. 
[64] G. TriantafiUou, Rationalization of Hopf G-spaces, Math. Z. 182 (1983), 485-500. 
[65] P. Webb, Two classifications of simple Mackey functors with applications to group cohomology and the 

decomposition of classifying spaces, J. Pure Appl. Algebra 88 (1993), 265-304. 



This Page Intentionally Left Blank



CHAPTER 9 

The Stable Homotopy Theory of Finite 
Complexes 

Douglas C. Ravenel 
University of Rochester, Rochester, NY 14627, USA 

e-mail: drav @ troi. cc. rochester edu 

Contents 
1. Introduction 327 
2. The main theorems 328 

2.1. Homotopy 328 
2.2. Functors 329 
2.3. Suspension 330 
2.4. Self-maps and the nilpotence theorem 332 
2.5. Morava /f-theories and the periodicity theorem 333 

3. Homotopy groups and the chromatic filtration 336 
3.1. The definition of homotopy groups 336 
3.2. Classical theorems 337 
3.3. Cofibres 338 
3.4. Motivating examples 340 
3.5. The chromatic filtration 344 

4. Mt/-theory and formal group laws 348 
4.1. Complex bordism 348 
4.2. Formal group laws 349 
4.3. The category C r 352 
4.4. Thick subcategories 356 
4.5. Morava's picture of the action of T on L 358 
4.6. Morava stabilizer groups 359 

5. The thick subcategory and periodicity theorems 361 
5.1. Spectra 361 
5.2. Spanier-Whitehead duality 364 
5.3. The proof of the thick subcategory theorem 367 
5.4. The periodicity theorem 367 

6. Bousfield localization and equivalence 372 

Partially supported by the National Science Foundation 

HANDBOOK OF ALGEBRAIC TOPOLOGY 
Edited by I.M. James 
© 1995 Elsevier Science B.V. All rights reserved 

325 



326 DC Ravenel Chapter 9 

6.1. Basic definitions and examples 372 
6.2. Bousfield equivalence 374 
6.3. The structure of (MU) 378 
6.4. Some classes bigger than (MU) 379 
6.5. £?(n)-localization and the chromatic filtration 380 

7. The proof of the nilpotence theorem 383 
7.1. The spectra X{n) 384 
7.2. The proofs of the first two lemmas 386 
7.3. The proof of the third lemma 389 

References 393 



Section 1 Stable homotopy theory 327 

1. Introduction 

The object of this chapter is to describe some recent progress in one of the oldest and 
most difficult problems of algebraic topology, that of computing the stable homotopy 
groups of a finite complex. While these groups are elementary to define, there is still 
no nontrivial example of a finite complex for which they are completely known! The 
situation with unstable or ordinary homotopy groups is essentially the same; with the 
exception of some spaces (such as S^ and surfaces other than S^ and RP^) which are 
known to be K{'K^ 1)'S, there is no example for which the problem has been completely 
solved. 

There are numerous computational techniques (most notably the Adams spectral se-
quence) for getting partial information about this problem. For a given finite dimensional 
space X and a given integer k, one can often find 7rfc(X) if k is not too large and one is 
willing to work hard enough. It is not our purpose here to discuss these methods here. 

Our focus instead will be on the overall structure of these groups. This is a new 
and promising field of study, although one cannot hope to pursue it without a working 
knowledge of the computational methods that we are suppressing. Thus this chapter 
should be regarded as an illustration of what these methods can lead to without an 
explanation of the methods themselves. Our rationale for this approach is that the time 
allotted is enough to cover either the methods or the conclusions (but not both), and the 
latter are of interest to a wider audience. 

Twenty years ago nobody suspected that stable homotopy groups had any general 
structure. Published results in the subject did not admit to any systematic interpretation. 
The first hints of such were Adams' work [2] on the J-homomorphism in the 1960's 
and the work of Toda [80] and L. Smith [70] on periodic families in the 1970's. That 
such families are the rule rather than the exception was suggested in an algebraic context 
by [48]. 

In 1977 the author made several conjectures concerning the stable homotopy theory 
of finite complexes [58]. By 1986 all but one of these had been proved, mainly by the 
remarkable work of Devinatz, Hopkins and J. Smith [22], [27] and [29]. This work is the 
main subject of this chapter 

The one conjecture not proved by Hopkins et al. was the telescope conjecture (6.5.5). 
It was disproved by the author in 1990, and we will discuss it briefly in §6. 

In §2 we will give the elementary definitions in homotopy theory needed to state the 
main results, the nilpotence theorem (2.4.2) and the periodicity theorem (2.5.4). The 
latter implies the existence of a global structure in the homotopy groups of many spaces 
called the chromatic filtration. This is the subject of §3, which begins with a review of 
some classical results about homotopy groups. 

The nilpotence theorem says that the complex bordism functor reveals a great deal 
about the homotopy category. This functor and the algebraic category (Cr , defined in 
4.3.2) in which it takes its values are the subject of §4. This discussion is of necessity 
quite algebraic with the theory of formal group laws playing a major role. 

In c r it is easy to enumerate all the thick subcategories (defined in 4.4.1). The thick 
subcategory theorem (4.4.3) says that there is a similar enumeration in the homotopy 
category itself. This result is extremely useful; it means that certain statements about a 
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large class of spaces can be proved by verifying them only for very carefully chosen 
examples. 

The thick subcategory theorem is derived from the nilpotence theorem in §5. In §5.4 
we prove that the set of spaces satisfying the periodicity theorem forms a thick subcat-
egory; this requires some computations in certain noncommutative rings. This thickness 
statement reduces the proof of the theorem to the construction of a few examples; this 
requires some modular representation theory due to Jeff Smith. Details can be found in 
[61, Chapter 6]. 

In §6 we introduce the concepts of Bousfield localization (6.1.1 and 6.1.3) and Bous-
field equivalence (6.2.1). These are useful both for understanding the structure of the 
homotopy category and for proving the nilpotence theorem. The proof of the nilpotence 
theorem itself is outlined in §7, a more complete account can be found in [22] and in 
[61, Chapter 9]. 

This manuscript is an abbreviated version of the author's book [61], which the inter-
ested reader should consult for more background and detailed proofs. 

2. The main theorems 

The aim of this section is to state the nilpotence and periodicity theorems (2.4.2 and 
2.5.4) with as little technical fussing as possible. Readers familiar with homotopy theory 
can skip the first three subsections, which contain some very elementary definitions. 

2 .1 . Homotopy 

A basic problem in homotopy theory is to classify continuous maps up to homotopy. 
Two continuous maps from a topological space X to F are homotopic if one can be 
continuously deformed into the other. A more precise definition is the following. 

DEFINITION 2.1.1. Two continuous maps /o and f\ from X to Y are homotopic if there 
is a continuous map (called a homotopy) 

X X [0,1] - ^ y 

such that for t = 0 or 1, the restriction of /i to X x {t} is /«. If f\ is a constant map, i.e. 
one that sends all of X to a single point in Y, then we say that /o is null homotopic and 
that /i is a null homotopy. A map which is not homotopic to a constant map is essential. 
The set of homotopy classes of maps from X to F is denoted by [X, Y]. 

For technical reasons it is often convenient to consider maps which send a specified 
point xo G X (called the base point) to a given point yo G Y, and to require that 
homotopies between such maps send all of {xo} x [0,1] to yo- Such maps and homotopies 
are said to be base point preserving. The set of equivalence classes of such maps (under 
base point preserving homotopies) is denoted by [(X,xo), {Y,yo)]-
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Under mild hypotheses (needed to exclude pathological cases), if X and Y are both 
path-connected and Y is simply connected, the sets [X,Y] and [(X,xo), (y,T/o)] are 
naturally isomorphic. 

In many cases, e.g., when X and Y are compact manifolds or algebraic varieties over 
the real or complex numbers, this set is countable. In certain cases, such as when Y is 
a topological group, it has a natural group structure. This is also the case when X is a 
suspension (2.3.1 and 3.1.2). 

In topology two spaces are considered identical if there is a homeomorphism (a con-
tinuous map which is one-to-one and onto and which has a continuous inverse) between 
them. A homotopy theorist is less discriminating than a point set topologist; two spaces 
are identical in his eyes if they satisfy a much weaker equivalence relation defined as 
follows. 

DEFINITION 2.1.2. Two spaces X and Y are homotopy equivalent if there are continuous 
maps f'.X -^Y and g:Y -^ X such thatgf and fg are homotopic to the identity maps 
on X and Y. The maps / and g are homotopy equivalences. A space that is homotopy 
equivalent to a single point is contractihle. Spaces which are homotopy equivalent have 
the same homotopy type. 

For example, every real vector space is contractihle and a solid torus is homotopy 
equivalent to a circle. 

2.2. Functors 

In algebraic topology one devises ways to associate various algebraic structures (groups, 
rings, modules, etc.) with topological spaces and homomorphisms of the appropriate sort 
with continuous maps. 

DEFINITION 2.2.1. A covariant functor F from the category of topological spaces T to 
some algebraic category A (such as that of groups, rings, modules, etc.) is a function 
which assigns to each space X an object F{X) in A and to each continuous map f:X -^ 
Y a homomorphism F{f):F{X) -^ F{Y) in such a way that F{fg) = F{f)F{g) and 
F sends identity maps to identity homomorphisms. A contravariant functor G is similar 
function which reverses the direction of arrows, i.e. G{f) is a homomorphism from G{Y) 
to G{X) instead of the other way around. In either case a functor is homotopy invariant 
if it takes isomorphic values on homotopy equivalent spaces and sends homotopic maps 
to the same homomorphism. 

Familiar examples of such functors include ordinary homology, which is covariant and 
cohomology, which is contravariant. Both of these take values in the category of graded 
abelian groups. Definitions of them can be found in any textbook on algebraic topology. 
We will describe some less familiar functors which have proved to be extremely useful 
below. 

These functors are typically used to prove that some geometric construction does not 
exist. For example one can show that the 2-sphere 5^ and the torus T^ (doughnut-shaped 
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surface) are not homeomorphic by computing their homology groups and observing that 
they are not the same. 

Each of these functors has that property that if the continuous map / is null homotopic 
then the homomorphism F{f) is trivial, but the converse is rarely true. Some of the best 
theorems in the subject concern special situations where it is. One such result is the 
nilpotence theorem (2.4.2), which is the main subject of this chapter. 

Other results of this type in the past decade concern cases where at least one of the 
spaces is the classifying space of a finite or compact Lie group. A comprehensive book 
on this topic has yet to be written. A good starting point in the literature is the J.F. 
Adams issue of Topology (Vol. 31, No. 1, January 1992), specifically [16], [23], [32], 
[46], and [10]. 

The dream of every homotopy theorist is a solution to the following. 

PROBLEM 2.2.2. Find a functor F from the category of topological spaces to some al-
gebraic category which is reasonably easy to compute and which has the property that 
F{f) = 0 if and only if f is null homotopic. 

We know that this is impossible for several reasons. First, the category of topological 
spaces is too large. One must limit oneself to a restricted class of spaces in order to 
exclude many pathological examples which would otherwise make the problem hopeless. 
Experience has shown that a reasonable class is that of CW-complexes. A definition is 
given in [61, A. 1.1]. This class includes all the spaces that one is ever likely to want 
to study in a geometric way, e.g., all manifolds and algebraic varieties (with or without 
singularities) over the real or complex numbers. It does not include spaces such as the 
rational numbers, the p-adic integers or the Cantor set. An old result of Milnor [50] (see 
[61, A. 1.4]) asserts that the space of maps from one compact CW-complex to another is 
homotopy equivalent to a CW-complex. Thus we can include, for example, the space of 
closed curves on a manifold. 

The category of CW-complexes (and spaces homotopy equivalent to them) is a conve-
nient place to do homotopy theory, but in order to have any chance of solving 2.2.2 we 
must restrict ourselves further by requiring that our complexes he finite, which essentially 
means compact up to homotopy equivalence. 

It is convenient to weaken the problem somewhat further. We need another elementary 
definition from homotopy theory. 

2.3. Suspension 

DEFINITION 2.3.1. The suspension of X, EX is the space obtained from X x [0,1] by 
identifying all of X x {0} to a single point and all of X x {1} to another point. Given 
a continuous map f:X -^Y, we define 

X X [0,1] X y X [0,1] 
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by f{x^t) = ( /(x),t). This / is compatible with the identifications above and gives a 
map 

SX ^ EY. 

This construction can be iterated and the z-th iterate is denoted by 17*. If 17* / is null 
homotopic for some i we say that / is stably null homotopic; otherwise it is stably 
essential. 

One can use the suspension to convert [X,Y] to a graded object [X, y]* , where 
[X,y]i = [E^X^Y]. (We will see below in 3.1.2 that this set has a natural group 
structure for i > 0.) It is also useful to consider the group of stable homotopy classes of 
maps, 

[A:,y]f = iim[r*+^Xi:^y]. 

If X has a base point XQ, we will understand SX to be the reduced suspension, which 
is obtained from the suspension defined above by collapsing all of {xo} x [0,1] to (along 
with X X {[} and X x {0}) a single point, which is the base point of EX. (Under mild 
hypotheses on X, the reduced and unreduced suspensions are homotopy equivalent, so 
we will not distinguish them notationally.) 

Thus EX can be thought of as the double cone on X. If S^ (the n-sphere) denotes 
the space of unit vectors in R '̂'"\ then it is an easy exercise to show that ES"^ is 
homeomorphic to S"^^^. 

Most of the functors we will consider are homology theories or, if they are contravari-
ant, cohomology theories; the definition can be found in [61, A.3.3]. Ordinary homology 
and cohomology are examples of such, while homotopy groups (to be defined below in 
3.1.1) are not. Classical K-theory is an example of a cohomology theory. Now we will 
point out the properties of such functors that are critical to this discussion. 

A homology theory E^ is a functor from the category of topological spaces and 
homotopy classes of maps to the category of graded abelian groups. This means that 
for each space X and each integer i, we have an abelian group Ei{X). E^{X) denotes 
the collection of these groups for all i. A continuous map f : X ^^ Y induces a 
homomorphism 

EiiX) -̂iH> Ei{Y) 

which depends only on the homotopy class of / . 
In particular one has a canonical homomorphism 

E^X)-U E.ipt), 

called the augmentation map, induced by the constant map on X. Its kernel, denoted 
by ^^{X), is called the reduced homology of X, while E^{X) is sometimes called the 
unreduced homology of X. 
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Note that the augmentation is the projection onto a direct summand because one always 
has maps 

pt. —^ X —^ pt. 

whose composite is the identity. E^{pi.) is nontrivial as long as £"* is not identically 
zero. A reduced homology theory vanishes on every contractible space. 

One of the defining axioms of a homology theory (see [61, A.3.3]) implies that there 
is a natural isomorphism 

Ei{X) ^Ei^iiEX). (2.3.2) 

A multiplicative homology theory is one equipped with a ring structure on £'*(pt.) 
(which is called the coefficient ring and usually denoted simply by E^), over which 
E^{X) has a functorial module structure. 

PROBLEM 2.3.3. Find a reduced homology theory E^ on the category of finite CW-
complexes which is reasonably easy to compute and which has the property that 
E^{f) = 0 if and only if E^f is null homotopicfor some i. 

In this case there is a long standing conjecture of Freyd [25, §9], known as the 
generating hypothesis, which says that stable homotopy (to be defined in 3.2.3) is such 
a homology theory. A partial solution to the problem, that is very much in the spirit of 
this book, is given by Devinatz in [21]. 

(The generating hypothesis was arrived in the following way. The stable homotopy 
category FH of finite complexes is additive, that is the set of morphisms between any two 
objects has a natural abelian group structure. Freyd gives a construction for embedding 
any additive category into an abelian category, i.e., one with kernels and cokemels. It is 
known that any abelian category is equivalent to a category of modules over some ring. 
This raises the question of identifying the ring thus associated with FH. It is natural to 
guess that it is 7rf, the stable homotopy groups of spheres. This statement is equivalent 
to the generating hypothesis.) 

Even if the generating hypothesis were known to be true, it would not be a satisfactory 
solution to 2.3.3 because stable homotopy groups are anything but easy to compute. 

2.4. Self-maps and the nilpotence theorem 

Now suppose that the map we want to study has the form 

for some d ^ 0. Then we can iterate it up to suspension by considering the composites 

• • • r^^x > r^^x ' r^x > X. 
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For brevity we denote these composite maps to X by / , /^, /^, etc. 

DEHNITION 2.4.1. A map f'.S'^X -^ X is a self-map of X. It is nilpotent if some 
suspension of /* for some t > 0 is null homotopic. Otherwise we say that / is periodic. 

If we apply a reduced homology theory E^ to a self-map / , by 2.3.2 we get an 
endomorphism of E„{X) that raises the grading by d. 

Now we can state the nilpotence theorem of Devinatz, Hopkins and Smith [22]. 

THEOREM 2.4.2 (Nilpotence theorem, self-map form). There is a homology theory MU^ 
such that a self-map f of a finite CW-complex X is stably nilpotent if and only if some 
iterate of MUi,{f) is trivial 

Actually this is the weakest of the three forms of the nilpotence theorem; the other 
two (5.1.4 and 7.0.1) are equivalent and imply this one. 

The functor Mf/*, known as complex bordism theory, takes values in the category of 
graded modules over a certain graded ring L, which is isomorphic to MI7*(pt.). These 
modules come equipped with an action by a certain infinite group T, which also acts 
on L. The ring L and the group F are closely related to the theory of formal group 
laws. MU*{X) was originally defined in terms of maps from certain manifolds to X, 
but this definition sheds little light on its algebraic structure. It is the algebra rather than 
the geometry which is central to our discussion. We will discuss this in more detail in 
§4 and more background can be found in [59, Chapter 4]. In practice it is not difficult to 
compute, although there are still plenty of interesting spaces for which it is still unknown. 

2.5. Morava K-theories and the periodicity theorem 

We can also say something about periodic self-maps. 
Before doing so we must discuss localization at a prime p. In algebra one does this 

by tensoring everything in sight by Z(p), the integers localized at the prime p; it is the 
subring of the rationals consisting of fractions with denominator prime to p. If A is a 
finite abelian group, then A 0 Z(p) is the p-component of A. Z(p) is flat as a module 
over the integers Z; this means that tensoring with it preserves exact sequences. 

There is an analogous procedure in homotopy theory. The definitive reference is [14]; a 
less formal account can be found in [4]. For each CW-complex X there is a unique A'(p) 
with the property that for any homology theory E^, E^{X(^p)) = E^{X)^Z^py We call 
X(p) the p-localization of X. If X is finite we say X(p) is a p-local finite CW-complex. 

PROPOSITION 2.5.1. Suppose X is a simply connected CW-complex such that H„{X) 
consists entirely of torsion. 

(i) If this torsion is prime to p then X(p) is contractible. 
(ii) If it is all p-torsion then X is p-local, i.e. -X'(p) is equivalent to X. (In this case 

we say that X is a p-torsion complex.) 
(iii) In general X is homotopy equivalent to the one-point union of its p-localizations 

for all the primes p in this torsion. 
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If X is as above, then its p-localization will be nontrivial only for finitely many primes 
p. The cartesian product of any two of them will be the same as the one-point union. 
The smash product (defined below in 5.1.2) 

X(p) A X(g) 

is contractible for distinct primes p and q. 
The most interesting periodic self-maps occur when X is a finite p-torsion complex. 

In these cases it is convenient to replace MC7« by the Morava X-theories. These were 
invented by Jack Morava, but he never published an account of them. Most of the 
following result is proved in [34]; a proof of (v) can be found in [58]. 

PROPOSITION 2.5.2. For each prime p there is a sequence of homology theories K{n)^ 
for n ^ 0 with the following properties. (We follow the standard practice of omitting p 
from the notation.) 

(i) K{0%{X) = if*(X;Q) and K{0)^{X) = 0 when H^{X) is all torsion. 
(ii) K{\),^{X) is one ofp - 1 isomorphic summands of mod p complex K-theory. 

(iii) i(:(0)*(pt.) = Q and for n > 0, K(n)*(pt.) = Zl{p)[vn,v~^] where the dimen-
sion ofVn is Ip"^ — 2. This ring is a graded field in the sense that every graded 
module over it is free. K{n)^{X) is a module over K{n)^{pi.). 

(iv) There is a Kunneth isomorphism 

K{nUX xY)^ KinUX) ®K(n).{pi.) K{nUY). 

(v) Let X be a p-local finite CW-complex. If K{n),{X) vanishes, then so does 
K{n-lUX). 

(vi) If X is as above then 

K{n)SX) = K{n),{pi.) 0 /f .(X;Z/(p)) 

for n sufficiently large. In particular it is nontrivial if X is simply connected and 
not contractible. 

DEFINITION 2.5.3. A p-local finite complex X has type n if n is the smallest integer such 

that K{n)^{X) is nontrivial. If X is contractible it has type oo. 

Because of the Kunneth isomorphism, K{n)^{X) is easier to compute than MU^{X), 
Again there are still many interesting spaces for which this has not been done. See [64] 
and [28]. A corollary of the nilpotence theorem (2.4.2) says that the Morava iiT-theories, 
along with ordinary homology with coefficients in a field, are essentially the only ho-
mology theories with Kunneth isomorphisms. 

The Morava AT-theories forn > 0 have another property which we will say more about 
below. Suppose we ignore the grading on K{n)^{X) and consider the tensor product 

i(:(n)*(X)0K(n).(pt.)Fpn 
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where Fpn denotes the field with p^ elements, which is regarded as a module over 
i^(n)*(pt.) by sending î n to 1. Then this Fpn-vector space is acted upon by a certain 
p-adic Lie group Sn (not to be confused with the n-sphere S'^) which is contained in a 
certain p-adic division algebra. 

The Morava iC-theories are especially useful for detecting periodic self-maps. This is 
the subject of the second major result of this book, the periodicity theorem of Hopkins 
and Smith [29]. The proof is outlined in [27] and in §5.4. 

THEOREM 2.5.4 (Periodicity theorem). Let X and Y be p-local finite CW-complexes of 
type n (2.53) for n finite. 

(i) There is a self-map f: S'^'^'X -^ S'X for some i ^ 0 such that K{n)^{f) is an 
isomorphism and K[m)^[f) is trivial for m > n. (We will refer to such a map 
as a Vn-map; see p. 53. When n = 0 then d = 0, and when n > 0 then d is a 
multiple of Ip^ - 2 . 

(ii) Suppose h:X -^ Y is a continuous map. Assume that both have already been 
suspended enough times to be the target of a Vn-map. Let g: S^Y -^ Y be a 
self-map as in (i). Then there are positive integers i and j with di = ej such that 
the following diagram commutes up to homotopy. 

jjdix 

r 
X 

E'^'h 
^diy 

(The integers i and j can be chosen independently of the map h.) 

Some comments are in order about the definition of a Vn-ma.p given in the theorem. 
First, X is not logically required to have type n, but that is the only case of interest. 
If X has type > n, then the trivial map satisfies the definition, and if X has type < n, 
it is not difficult to show that no map satisfies it (4.3.11). Second, it does not matter if 
we require K(m)^(f) to be trivial or merely nilpotent for m > n. If it is nilpotent for 
each m > n, then some iterate of it will be trivial for all m> n. For d> 0 this follows 
because some iterate of H^(f) must be trivial for dimensional reasons, and 

K(m),(f) = K(m). 0 / /*(/) for m > 0. 

The case d = 0 occurs only when n = 0, for which the theorem is trivially true since 
the degree p map satisfies the definition. 

The map h in (ii) could be the identity map, which shows that / is asymptotically 
unique in the following sense. Suppose g is another such periodic self-map. Then there 
are positive integers i and j such that /^ is homotopic to gK If X is a suspension of Y 
and / is a suspension of g, this shows that / is asymptotically central in that any map 
h commutes with some iterate of / . 
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3. Homotopy groups and the chromatic filtration 

In this section we will describe the homotopy groups of spheres, which make up one of 
the messiest but most fundamental objects in algebraic topology. First we must define 
them. 

3 .1 . The definition of homotopy groups 

The following definition is originally due to Cech [18]. Homotopy groups were first 
studied systematically by Witold Hurewicz in [30] and [31]. 

DEFINITION 3.1.1. The n-th homotopy group ofX, 7rn{X) is the set of homotopy classes 
of maps from the n-sphere 5^ (the space of unit vectors in R'̂ "*"̂ ) to X which send a 
fixed point in S'^ (called the base point) to a fixed point in X. (If X is not path-connected, 
then we must specify in which component its base point XQ is chosen to lie. In this case 
the group is denoted by 7rn{X, XQ).) TTI (X) is tht fundamental group of X. 

We define a group structure on nn{X) as follows. Consider the pinch map 

pinch gn , gn y gn 

obtained by collapsing the equator in the source to a single point. Here X WY denotes 
the one-point union of X and Y, i.e. the union obtained by identifying the base point in 
X with the one in Y. We assume that the base point in the source S"^ has been chosen 
to lie on the equator, so that the map above is base point preserving. 

Now lei a,l3 eiTniX) be represented by maps f.g'.S'^ -^ X. Define a • /3 G 7rn(X) 
to be the class of the composite 

pinch fyg gn , gn y gn , ^ 

The inverse a~^ is obtained by composing / with a base point preserving reflection 
map on 5'^. 

It is easy to verify that this group structure is well defined and that it is abelian for 
n > 1. 

It is easy to construct a finite CW-complex of dimension < 2 whose TTI is any given 
finitely presented group. This means that certain classification problems in homotopy 
theory contain problems in group theory that are known to be unsolvable. 

REMARK 3.1.2. In a similar way one can define a group structure on the set of base point 
preserving maps from EX to Y for any space X (not just X = 5^"^ as above) and 
show that it is abelian whenever X is a suspension, i.e. whenever the source of the maps 
is a double suspension. 

These groups are easy to define but, unless one is very lucky, quite difficult to compute. 
Of particular interest are the homotopy groups of the spheres themselves. These have been 
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the subject of a great deal of effort by many algebraic topologists who have developed 
an arsenal of techniques for calculating them. Many references and details can be found 
in [59]. We will not discuss any of these methods here, but we will describe a general 
approach to the problem suggested by the nilpotence and periodicity theorems known as 
the chromatic filtration. 

3.2. Classical theorems 

First we need to recall some classical theorems on the subject. 

THEOREM 3.2.1 (Hurewicz theorem, 1935). The groups nn{S'^) are trivial for n < m, 
and TTfiiS'^) = Z; this group is generated by the homotopy class of the identity map. 

The next result is due to Hans Freudenthal [24]. 

THEOREM 3.2.2 (Freudenthal suspension theorem, 1937). The suspension homomorphism 
(see 2.3.1) 

a:7rn+fc(5")->7rn+fc+i(5"+^) 

is an isomorphism for k < n- \. The same is true if we replace 5" by any (n — 1)-
connected space X, i.e. any space X with 7ri{X) = Ofor i < n. 

This means that iTn^ki^^X) depends only on fc if 72 > fc -I- 1. 

DEHNITION 3.2.3. The fc-th stable homotopy group ofX, Trf (X), is 

TTn-^ki^^'X) forn> fc-hl. 

In particular Trf (5^) = 7rn^k{S'^), for n large, is called the stable k-stem and will be 
abbreviated by 7rf. 

The stable homotopy groups of spheres are easier to compute than the unstable ones. 
They are finite for fc > 0. The p-component of 7rf is known for p = 2 for A: < 60 and for 
p odd for A: < 2p^(p — 1). Tables for p = 2,3 and 5 can be found in [59]. Empirically 
we find that logp K̂ rf )(p)| grows linearly with k. 

The next result is due to Serre [66] and gives a complete description of IT^{S'^) mod 
torsion. 

THEOREM 3.2.4 (Serre finiteness theorem, 1953). The homotopy groups of spheres are 
finite abelian except in the following cases: 

7rn(S"')^Z and 

where Fm is finite abelian. 
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Before stating the next result we need to observe that Trf is a graded ring. If a € 7rf 
and /3 enf are represented by maps / : S'^'^^ -> S"^ and g: 5"*"̂ ^ -^ S"", then a/3 G 7rf̂ ^ 
is represented by the composite 

This product is commutative up to the usual sign in algebraic topology, i.e. Pa = 

The following was proved in [54]. 

THEOREM 3.2.5 (Nishida's theorem, 1973). Each element in TT̂  for k > 0 is nilpotent, 
i.e. some power of it is zero. 

This is the special case of the nilpotence theorem for X = S'^.li also shows that 7rf 
as a ring is very bad; it has no prime ideals other than (p). It would not be a good idea to 
try to describe it in terms of generators and relations. We will outline another approach 
to it at the end of this section. 

The following result was proved in [17]. 

THEOREM 3.2.6 (Cohen-Moore-Neisendorfer theorem, 1979). Forp odd and fc > 0, the 
exponent of 'ir2n-\-\-\-k{S^^^^)(p) is p^, i.e. there are no elements of order p^'^K 

3.3. Cofibres 

By the early 1970's several examples of periodic maps had been discovered and used to 
construct infinite families of elements in the stable homotopy groups of spheres. Before 
we can describe them we need another elementary definition from homotopy theory. 

DEFINITION 3.3.1. Let / : X —> y be a continuous map. Its mapping cone, or cofibre, 
Cf, is the space obtained from the disjoint union of X x [0,1] and Y by identifying all 
of X X {0} to a single point and (x, 1) E X x [0,1] with f{x) € Y. 

If X and Y have base points XQ and yo respectively with /(xo) = yo, then we define 
Cf to be as above but with all of {xo} x [0,1] collapsed to a single point, which is 
defined to be the base point of Cf. (This Cf is homotopy equivalent to the one defined 
above.) 

In either case, y is a subspace of C/, and the evident inclusion map will be denoted 
by i. 

The following result is an elementary exercise. 

PROPOSITION 3.3.2. Let i:Y -^ Cf be the map given by 3.3.1. Then d is homotopy 
equivalent to EX. 

DEFINITION 3.3.3. A cofibre sequence is a sequence of spaces and maps of the form 

X -LY -UCf -^SX ^EY —^•'-
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in which each space to the right of Y is the mapping cone of the map preceding the map 
to it, and each map to the right of / is the canonical inclusion of a map's target into its 
mapping cone, as in 3.3.1. 

If one has a homotopy commutative diagram 

X 

9\ 

X' 
f 

92 

Y' 

Cf 

Cf 

then the missing map always exists, although it is not unique up to homotopy. Special 
care must be taken if / ' is a suspension of / . Then the diagram extends to 

X 

r^x 
E*^j 

92 

r^y 
E'^i 

Cf 

\93 

{-\)''s''j 

EX 

\^9\ 

and the sign in the suspension of j is unavoidable. 
Now suppose ^: y —• Z is continuous and that gf is null homotopic. Then g can be 

extended to a map g\ Cf —> Z, i.e. there exists a g whose restriction to Y (which can 
be thought of as a subspace of C/) is g. More explicitly, suppose h\ X x [0,1] -^ Z h 
a null homotopy of gf, i.e. a map whose restriction to X x {0} is constant and whose 
restriction to X x {1} is gf. Combining h and g we have a map to Z from the union of 
X X [0,1] with y which is compatible with the identifications of 3.3.1. Hence we can 
use h and g to define g. 

Note that g depends on the homotopy h\ a different h can lead to a different (up to 
homotopy) g. The precise nature of this ambiguity is clarified by the following result, 
which describes three of the fundamental long exact sequences in homotopy theory. 

PROPOSITION 3.3.4. Let X and Y be path connected CW-complexes. 
(i) For any space Z the cofibre sequence of 3.3.3 induces a long exact sequence 

r [X,Z]^[Y,Z]^[Cf,Z] [rx,z]£^ [EY,z] 

Note that each set to the right of [Cf, Z] is a group, so exactness is defined in the usual 
way, but the first three sets need not have group structures. However each of them has a 
distinguished element, namely the homotopy class of the constant map. Exactness in this 
case means that the image of one map is the preimage of the constant element under the 
next map. 

(ii) Let E* be a homology theory. Then there is a long exact sequence 

J* "F h EmiX) - ^ Em{Y) ^ EmiCf) .W h 
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(iii) Suppose X and Y are each {k - \)-connected (i.e. their homotopy groups vanish 
below dimension k) and let W he a finite CW-complex (see [61, A. 1.1]) which is a 
double suspension with top cell in dimension less than 2k-\. Then there is a long exact 
sequence of abelian groups 

[W,X] - ^ [W,Y\ - ^ [W,Cf] - ^ [W,EX] ^ [W,EY] —^ • • •. 

This sequence will terminate at the point where the connectivity of the target exceeds the 
dimension of W. 

COROLLARY 3.3.5. Suppose X as in the periodicity Theorem 2.5.4 has type n. Then the 
cofibre of the map given by 1.5.A has type n -f 1. 

PROOF. Assume that X has been suspended enough times to be the target of a Vn-vc^^V 
f and let W be its cofibre. We will study the long exact sequence 

'-^K{m\{S''X) ^ K{m\iX) - ^ K{m\{W) 

for various m. 
For m <n, K{Tn)^{X) = 0, so K(m)^{W) = 0. For m = n, f:^ is an isomorphism, 

so again K{7n)^{W) = 0. For m > n, / . = 0 and K{m)^{X) 7̂  0 by 2.5.2(v). It 
follows that 

SO W has type n + 1. D 

3.4. Motivating examples 

The following examples of periodic maps led us to conjecture the nilpotence and peri-
odicity theorems. 

EXAMPLE 3.4.1 (The earliest known periodic maps), (i) Regard S^ as the unit circle in 
the complex numbers C. The degree p map on S^ is the one which sends z to z^. This 
map is periodic in the sense of 2.4.1, as is each of its suspensions. In this case n (as in 
the periodicity theorem) is zero. 

(ii) Let V{0)k (known as the mod p Moore space) be the cofibre of the degree p map 
on S^. Adams [2] and Toda [77] showed that for sufficiently large k there is a periodic 
map 

E^V{Oh ^ V{0)k 

where g is 8 when p = 2 and 2p - 2 for p odd. In this case the n of 2.5.4 is one. The 
induced map in K{\)^{V{0)k) is multiplication by v\ when p is odd and by v^ for p = 2. 
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For p = 2 there is no self-map inducing multiplication by a smaller power of v\. One 
could replace the mod 2 Moore space by the mod 16 Moore space and still have a map 
a as above. 

(iii) For p > 5, let V{\)k denote the cofibre of the map in (ii). Larry Smith [70] and 
H. Toda [80] showed that for sufficiendy large k there is a periodic map 

S^p'-^V{\)k-^V{\)k 

which induces multiplication by V2 in i^(2)-theory. 
(iv) For p ^ 7, let V{2)k denote the cofibre of the map in (iii). Smith and Toda showed 

that for sufficiently large k there is a periodic map 

which induces multiplication by v^, in /C(3)-theory. We denote its cofibre by F(3)A;. 

These results were not originally stated in terms of Morava /C-theory, but in terms of 
complex iiT-theory in the case of (ii) and complex bordism in the case of (iii) and (iv). 
Attempts to find a self-map on V(3) inducing multiplication by v/^ have been unsuccess-
ful. The Periodicity Theorem guarantees that there is a map inducing multiplication by 
some power of v^, but gives no upper bound on the exponent. References to some other 
explicit examples of periodic maps can be found in [59, Chapter 5]. 

Each of the maps in 3.4.1 led to an infinite family (which we also call periodic) of 
elements in the stable homotopy groups of spheres as follows. 

EXAMPLE 3.4.2 (Periodic families from periodic maps). 
(i) We can iterate the degree p map of 3.4.l(i) and get multiples of the identity map 

on S^ by powers of p, all of which are essential. 
(ii) With the map a of 3.4.1(ii) we can form the following composite: 

gk+qt _x r^*F(o)fc - ^ v{o)k - ^ 5^+' 

where i]:S^ —• V{0)k and j \ : V{0)k —̂  S^^^ are maps in the cofibre sequence associated 
with the degree p map. (We are using the same notation for a map and each of its 
suspensions.) This composite was shown by Adams [2] to be essential for all t > 0. The 
resulting element in 7r̂ _̂i is denoted by at for p odd and by a^ for p = 2. 

(iii) Let 22:^(0)^ -> ^(1)^ and J2'-V{\)k -^ ^^"^^ (̂0)̂ : denote the maps in the 
cofibre sequence associated with a. Using the map /3 of 3.4.1 (iii) for p ^ 5 we have the 
composite 

gk+2{p^-\)t ni^ i:'^+2(p2-l)ty/|X _ ^ V(\)k ^ 5^+2p 

which is denoted by ft G 7T2{p'^~\)t-2p' Smith [70] showed it is essential for all ^ > 0. 
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(iv) For p^l there is a similarly defined composite 

Chapter 9 

which is denoted by 7t. It was shown to be nontrivial for alH > 0 in [48]. 

In general a periodic map on a finite CW-complex leads to a periodic family of elements 
in Trf, although the procedure is not always as simple as in the above examples. Each 
of them has the following features. We have a CW-complex (defined in [61, A. 1.1]) X 
of type n with bottom cell in dimension k and top cell in some higher dimension, say 
k + e. Thus we have an inclusion map io : S^ —^ X and a pinch map jo : X —* S^'^^. 
Furthermore the composite 

ck-\-td j^td^ r X 30 gk-^e (3.4.3) 

is essential for each t > 0, giving us a nontrivial element in Tr^.g. This fact does not 
follow from the nontriviality of / ^ in each case a separate argument (very difficult in 
the case of the 7t) is required. 

If the composite (3.4.3) is null, we can still get a nontrivial element in TT^^^ (for some 
e between e and - e ) as follows. At this point we need to be in the stable range, i.e. 
we need A: > td -h e, so we can use 3.3.4(iii). This can be accomplished by suspending 
everything in sight enough times. 

For k^r^s^k-\-e, X^ will denote the cofibre of the inclusion map X^"^ -^ X^. 
In particular, XJ^'^^ = X and X^ is a wedge of 5-spheres, one for each s-cell in X. We 

will use the letter i to denote any inclusion map X^ —> X^ 
j to denote any pinch map X^ —• X^, with s ^ r' > r. 

Now let fe = P and consider the diagram 

with s' > 5, and the letter 

r̂ x̂ 
fe xj^-^' = X 

• . / e - l 

fe-2 '•. 
^ . ^ e - 1 

yk-\-€-2 

-^— X;̂ +," = S^^' 

vfc+e-1 
^fc+e-1 

- x^atzi 

(3.4.4) 
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If the composite j /e is null, then by 3.3.4(iii) there is a map /e-i with z/e-i = /e-
Similarly if jfe-\ is null then there is a map fe-2 with ife-2 = /e-i- We proceed in 
this way until the composite 

^ ^ ^ ̂ k ' ^A:+e, 

is essential. This must be the case for some t\ between 0 and e, because if all of those 
composites were null, then 3.3.4(iii) would imply that /* is null. 

Now let 0̂ = j/ei and consider the diagram 

E'^Xl — ^ E'^X ^ ^ ^IXI\ 
^4 

9\ 

Y^tdyk-^2 i y^tdY'k•^e 

(3.4.5) 

This time we use 3.3.4(i) instead of 3.3.4(iii). It says that if g^i is null then there is 
a map g\ with gxj — go- Similarly if g\i is null there is a map p2 with g\ = g2J. The 
composites gmi for 0 < m ^ e cannot all be null because ô is essential. Let ei be the 
integer between 0 and e such that pe:̂  is essential. 

Summing up, we have a diagram 

jjtdx 

k+ei 

/ eL 

9e, 

X k-^ei X 
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where z/e, = /*. The source and target of ge2i are both wedges of spheres, so this is the 
promised stable homotopy element. Its dimension is td + 62- e\ with 0 ^ ei,62 < e. 

The simplest possible outcome of this procedure is the case e\ = e and 62 = 0; this 
occurs in each of the examples in 3.4.2. In any other outcome, the construction is riddled 
with indeterminacy, because the maps /g, and pe2 are not unique. 

In any case the outcome may vary with the exponent t. In every example that we have 
been able to analyze, the behavior is as follows. With a finite number of exceptions (i.e. 
for t sufficiently large), the outcome depends only on the congruence class of t modulo 
some power of the prime p. 

3.5. The chromatic filtration 

These examples led us to ask if every element in the stable homotopy groups of spheres 
is part of such a family. In [48] we explored an algebraic analog of this question. The 
Adams-Novikov spectral sequence ([61, A.6.3]) is a device for computing Trf and its 
£2-term was shown there to have such an organization using a device called the chromatic 
spectral sequence(see [61, B.8]), which is also described in [59, Chapter 5]. In [58] we 
explored the question of making this algebraic structure more geometric. It was clear that 
the periodicity theorem would be essential to this program, and that the former would be 
false if there were a counter example to the nilpotence theorem. Now that the nilpotence 
and periodicity theorems have been proved, we can proceed directly to the geometric 
construction that we were looking for in [58] without dwelling on the details of the 
chromatic spectral sequence. 

Suppose F is a p-local complex and y e TTkiY) is represented by a map g: S'^ —> Y. 
If all suspensions of y have infinite order, then it has a nontrivial image in Trf (F) (g) Q. 
In the case where y is a sphere, this group can be read off from^ 3.2.4. In general this 
group is easy to compute since it is known to be isomorphic to H^{Y; Q). 

On the other hand, if some suspension of y has order p\ then it factors through the 
cofibre of the map of degree p̂  on the corresponding suspension of S^, which we denote 
here by Vr(l). For the sake of simplicity we will ignore suspensions in the rest of this 
discussion. The map from W{\) to Y will be denoted by g\. 

The complex W(l) has type 1 and therefore a periodic self-map 

f,:S^^W{\)-^W{\) 

which induces a iir(l)*-equivalence. Now we can ask whether pi becomes null homotopic 
when composed with some iterate of f\ or not. If all such composites are stably essential 
then g\ has a nontrivial image in the direct limit obtained by taking homotopy classes of 
maps from the inverse system 

w{i) J^ r^w(i) J^ r2 '̂W(i) 
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which gives a direct system of groups 

is /r s /r [i^(i),y]^ ^ [r^w(i),y]^ ^ [E'^^'W{\),Y] i5 /r 
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(3.5.1) 

which we denote by i;j"̂  [W(l), y]f. Note that the second part of the periodicity theorem 
implies that this limit is independent of the choice of f\. 

This group was determined in the case when F is a sphere for the prime 2 by Mahowald 
in [43] and for odd primes by Miller in [47]. More precise calculations not requiring any 
suspensions of the spaces in question in the case when Y is an odd-dimensional sphere 
were done for p = 2 by Mahowald in [44] and for p odd by Thompson in [76]. In general 
it appears to be an accessible problem. For more details, see [7], [8], [9], [19] and [20]. 

There is a definition of t;f^7r*(y) which is independent of the exponent i. We have 
an inverse system of cofibre sequences 

gk ^—E nk ^ . . . 

ck ^ ck -^ 

Cpi -^— Cpi+i -•-

which induces a direct system of long exact sequences 

^ [C^,^Y] ^ 7rfc(y) - ^ 7rfc(y) 

[Cpi+.,y] - - 7rfc(y) - ^ - 7r,(y) ^ 

The limit of these is a long exact sequence of the form 
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where 

7rfc(y)/(p~) = l ini[ i :- 'Cp. ,y] . 

Note that since Y is p-local, 

p-Vfc(y) = 7r , (y )0Q. 

We can define i;j~V*(y)/(p°°) by using some more detailed information about 
i>i-maps on the Moore spaces C^i, For sufficiently large k (independent of z), there 
are t;i-maps 

^ 2 p - > ( p - l ) ^ h,^ 
Cpi 

such that the following diagram commutes. 

/ l . i + l i:V(p-i)Cp,+, Cpi+i 

2;V(P- 'K^ 'p' 

This means we can define the groups v^^[Cpi,Y]^ compatibly for various i, and their 
direct limit is Vj" V*(y)/(p°°). More details of this construction can be found in [20]. 

Returning to (3.5.1), suppose that some power of f\ annihilates g\, i.e. some composite 
of the form g\f\^ is stably null homotopic. In this case, let W{2) be the cofibre of f\^ 
and let gi be an extension of g\ to W{2). 

Then W{1) has type 2 and therefore it admits a periodic self-map 

2:^2^(2) - ^ W{1) 

which is detected by K{2)^. This leads us to consider the group 

v^'[W{2),Y]t 

This group is not yet known for any Y. There is some machinery (see 6.5) available for 
computing what was thought to be a close algebraic approximation. The relation of this 
approximation to the actual group in question was the subject of the telescope conjecture 
(6.5.5), which has recently been disproved by the author. (It is known to be true in the 
v\ case.) The algebraic computation in the case where y is a sphere, W(\) is a mod p 
Moore space and p ^ 5 has been done by Shimomura and Tamura in [67] and [68]. 
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Summing up, we have a diagram 
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-k ^ E_ 
wv. 

•. • . ^1 

, , \ W(\) = C^i JL. S^^W{\) 

W{2) = C^i, ^ ^ c f . ^ ( 2 ) 

One could continue this process indefinitely. At the n-th stage one has an extension gn 
of the original map p to a complex W{n) of type n which has a periodic self-map /„. 
Then one asks if Qn is annihilated stably by some iterate of /„ . If the answer is no, then 
the process stops and Qn has a nontrivial image in the group v~^\W{n)^Y]l. On the 
other hand, if Qn is annihilated by a power of fn then we can move on to the (n -I- l)-th 
stage. 

In view of this we make the following definitions. 

DEFINFTION 3.5.2. If an element y G Trf (F) extends to a complex W{n) of type n as 
above, then y is Vn-x-torsion. If in addition y does not extend to a complex of type 
n -f 1, it is Vn'periodic. The chromatic filtration of i^fiY) is the decreasing family of 
subgroups consisting of the Vn-torsion elements for various n ^ 0. 

We use the word 'chromatic' here for the following reason. The n^ subquotients in 
the chromatic filtration consists of ?;n-periodic elements. As illustrated in 3.4.2, these 
elements fall into periodic families. The chromatic filtration is thus like a spectrum in 
the astronomical sense in that it resolves the stable homotopy groups of a finite complex 
into periodic families of various periods. Comparing these to the colors of the rainbow 
led us to the word 'chromatic' 

The construction outlined above differs slightly from that used in 3.4.2. Suppose for 
example that we apply chromatic analysis to the map 
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for an odd prime p. This element in 7r̂ _ j has order p so the map extends to the mod p 
Moore space V{0)m-{-q-\, which has the Adams self-map a of 3.4.1(ii). We find that all 
iterates of a when composed with a\ are essential, so ct] is vi-periodic. The composite 

is the map ai^\ of 3.4.1(ii). In the chromatic analysis no use is made of the map 

More generally, suppose g'.S'^—^Y is Vn-periodic and that it extends to pn* W{n) -^ 
Y. There is no guarantee that the composite 

S^ _ i^ r ^ - W ( n ) - ^ Win) ^ Y 

(where e is the inclusion of the bottom cell in W{n)) is essential, even though gnfn 
is essential by assumption. (This is the case in each of the examples of 3.4.2.) If this 
composite is null homotopic then pn/A extends to the cofibre of e. Again, this extension 
may or may not be essential on the bottom cell of Cg. However, gnfn "^^^t be nontrivial 
on one of the 2^ cells of W{n) since it is an essential map. (To see this, one can make 
a construction similar to that shown in (3.4.4) and (3.4.5).) Thus for each i we get some 
nontrivial element in Trf (F). 

DEFINITION 3.5.3. Given a t;n-periodic element y € 7rf (y), the elements described above 
for various z > 0 constitute the Vn-periodic family associated with y. 

One can ask if the chromatic analysis of a given element terminates after a finite 
number of steps. For a reformulation of this question, see the chromatic convergence 
theorem, 6.5.7. 

4. MU'theory and formal group laws 

In this section we will discuss the homology theory MU* used in the nilpotence the-
orem. MU^{X) is defined in terms of maps of manifolds into X as will be explained 
presently. Unfortunately the geometry in this definition does not appear to be relevant 
to the applications we have in mind. We will be more concerned with some algebraic 
properties of the functor which are intimately related to the theory of formal group laws. 

4 . 1 . Complex bordism 

DEFINITION 4.1.1. Let M\ and Mi be smooth closed n-dimensional manifolds, and let 
/ i : Mi —> X be continuous maps for z = 1,2. These maps are bordant if there is a map 
f'.W -^ X, where W is a compact smooth manifold whose boundary is the disjoint 
union of M\ and M2, such that the restriction of / to Mi is fi. f is a bordism between 
f\ and /2. 
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Bordism is an equivalence relation and the set of bordism classes forms a group under 
disjoint union, called the n-th bordism group of X. 

A manifold is stably complex if it admits a complex linear structure in its stable normal 
bundle, i.e. the normal bundle obtained by embedding in a large dimensional Euclidean 
space. (The term stably almost complex is often used in the literature.) A complex analytic 
manifold (e.g., a nonsingular complex algebraic variety) is stably complex, but the notion 
of stably complex is far weaker than that of complex analytic. 

DEFINITION 4.1.2. MUn{X), the n-th complex bordism group ofX, is the bordism group 
obtained by requiring that all manifolds in sight be stably complex. 

The fact that these groups are accessible is due to some remarkable work of Thom in 
the 1950's [75]. More details can be found in [61, B.2]. A general reference for cobordism 
theory is Stong's book [74]. 

The groups MU^{X) satisfy all but one of the axioms used by Eilenberg and Steenrod 
to characterize ordinary homology; see [61, A.3]. They fail to satisfy the dimension 
axiom, which describes the homology of a point. If X is a single point, then the map 
from the manifold to X is unique, and MC/*(pt.) is the group of bordism classes of 
stably complex manifolds, which we will denote simply by MC7*. It is a graded ring 
under Cartesian product and its structure was determined independently by Milnor [51] 
and Novikov ([55] and [56]). 

THEOREM 4.1.3. The complex bordism ring, MU* is isomorphic to 

Z[2;i,X2,...] 

where dim Xi = 2i. 

It is possible to describe the generators Xi as complex manifolds, but this is more trou-
ble than it is worth. The complex projective spaces CP* serve as polynomial generators 
of Q0MC/^. 

Note that MU„(X) is an Mf/*-module as follows. Given x G Mf/=^(X) represented 
by f:M -^ X and A G MU^ represented by a manifold N, \x is represented by the 
composite map 

MxN —^M -^X. 

4.2. Formal group laws 

DEFINITION 4.2.1. K formal group law over a commutative ring with unit i? is a power 
series F(x, y) over R that satisfies the following three conditions. 

(i) F(x,0) = F(0,x) = X (identity), 
(ii) F(x, y) = F{y, x) (commutativity) and 

(iii) F{F{x,y),z) = F{x,F{y,z)) (associativity). 
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(The existence of an inverse is automatic. It is the power series i{x) determined by the 
equation F{x,i{x)) = 0.) 

EXAMPLE 4.2.2. 

(i) F(x, y) = x-\-y. This is called the additive formal group law. 
(ii) F{x^y) = X -\- y -{• xy — {\ -{• x)[\ -V y) — \. This is called the multiplicative 

formal group law. 

1 - ex^y^ 
where 

R{x) = 1 - 26x'^ -h ex\ 

This is the formal group law associated with the elliptic curve 

2/2 = R{x), 

a Jacobi quartic, so we call it the elliptic formal group law. It is defined over 
Z[l/2][(5, e]. This curve is nonsingular mod p (for p odd) if the discriminant A = 
e{6^ - e)2 is invertible. This example figures prominently in elliptic cohomology 
theory; see [38] for more details. 

The theory of formal group laws from the power series point of view is treated compre-
hensively in [26]. A short account containing all that is relevant for the current discussion 
can be found in [59, Appendix 2]. 

The following result is due to Lazard [39]. 

THEOREM 4.2.3 (Lazard's theorem), (i) There is a universal formal group law defined 
over a ring L of the form 

G{x,y) = ^2^hj^^y^ ^^^^ ^hj ^ L 
hj 

such that for any formal group law F over R there is a unique ring homomorphism 0 
from L to R such that 

F{x,y) = Y,^{aij)x'y^. 
»J 

(ii) L is a polynomial algebra Z[xi,X2,...]. If we put a grading on L such that aij 
has degree 2(1 - i - j) then xi has degree —2i. 

The grading above is chosen so that if x and y have degree 2, then G{x,y) is a 
homogeneous expression of degree 2. Note that L is isomorphic to M{7« except that the 
grading is reversed. There is an important connection between the two. 
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Associated with the homology theory MU^, there is a cohomology theory MU"^. This 
is a contravariant functor bearing the same relation to MU^ that ordinary cohomology 
bears to ordinary homology. When X is an m-dimensional manifold, MU*{X) has 
a geometric description; an element in MU^{X) is represented by a map to X from 
an (m — A:)-dimensional manifold with certain properties. The conventions in force in 
algebraic topology require that Mf7*(pt.) (which we will denote by Mf/*) be the same 
as MC/*(pt.) but with the grading reversed. Thus MU* is isomorphic to the Lazard 
ring L. 

This isomorphism is natural in the following sense. MU*{X), like H*{X), comes 
equipped with cup products, making it a graded algebra over MU*. Of particular interest 
is the case when X is the infinite-dimensional complex projective space CP^. We have 

Mf/*(CP°°)^Mf/*[[x]] 

where dim x = 2, and 

MU*{CP°^ X CP°°) ^ MC7*[[x(^ 1,1 0x] ] . 

The space CP°° is an abelian topological group, so there is a map 

C P ~ X CP°° - ^ CP°° 

with certain properties. (CP°° is also the classifying space for complex line bundles and 
the map in question corresponds to the tensor product.) Since MU* is contravariant we 
get a map 

MC/*(CP~ X CP°°) ^ M[/*(CP~) 

which is determined by its behavior on the generator x G MU^{CP°°). The power series 

/*(x) = P(x(8)l,l(8)a;) 

can easily be shown to be a formal group law. Hence by Lazard's theorem 4.2.3 it 
corresponds to a ring homomorphism 6:L -^ MU*. The following was proved by 
Quillen [57] in 1969. 

THEOREM 4.2.4 (Quillen's theorem). The homomorphism 

e.L-^MU* 

above is an isomorphism. In other words, the formal group law associated with complex 
cobordism is the universal one. 

Given this isomorphism (and ignoring the reversal of the grading), we can regard 
MU^{X) as an L-module. 



352 D.C. Ravenel Chapter 9 

4.3. The category Cr 

Now we define a group F which acts in an interesting way on L. 

DEFINITION 4.3.1. Let r be the group of power series over Z having the form 

7 = X -f b\x^ + b2X^ -\ 

where the group operation is functional composition. F acts on the Lazard ring L of 
1.5 as follows. Let G{x,y) be the universal formal group law as above and let ^ E F. 
Then ^~^{G{'y{x)^j{y))) is another formal group law over L, and therefore is induced 
by a homomorphism from L to itself. Since 7 is invertible, this homomorphism is an 
automorphism, giving the desired action of F on L. 

For reasons too difficult to explain here, F also acts naturally on MU„{X) compatibly 
with the action on MC/*(pt.) defined above. (For more information about this, see [61, 
B.3 and B.4].) That is, given x € MU^{X), 7 E T and A G L, we have 

7(Ax) = j{X)7{x) 

and the action of F commutes with homomorphisms induced by continuous maps. 
For algebraic topologists we can offer some explanation for this action of F. It is 

analogous to the action of the Steenrod algebra in ordinary cohomology. More precisely, 
it is analogous to the action of the group of multiplicative cohomology operations, such as 
(in the mod 2 case) the total Steenrod square, X)i>o ^̂ *- ^^^^ ̂  operation is determined 
by its effect on the generator of H^{RP°°;Z/{2)). Thus the group of multiplicative 
mod 2 cohomology operations embeds in /̂ z/(2)» the group of power series over Z/(2) 
analogous to F over the integers. 

DEHNITION 4.3.2. Let CF denote the category of finitely presented graded L-modules 
equipped with an action of F compatible with its action on L as above, and let FH denote 
the category of finite CW-complexes and homotopy classes of maps between them. 

Thus we can regard Mf/* as a functor from FH to CF. The latter category is much 
more accessible. We will see that it has some structural features which reflect those of FH 
very well. The nilpotence, periodicity and chromatic convergence theorems are examples 
of this. 

In order to study CF further we need some more facts about formal group laws. Here 
are some power series associated with them. 

DEFINITION 4.3.3. For each integer n the n-series [n](x) is given by 

[l]{x)==x, 

[n] (x) = F(x, [n - 1] (x)) forn > 1 and 

[-n](x) = 2([n](x)). 
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These satisfy 

[n] (x) = nx mod (x^), 

[m -f n] (x) = F ( [m] (x), [n] (x)) and 

[mn](x) = [m]([n](x)). 

For the additive formal group law 4.2.2(i), we have [n](x) = nx, and for the multiplica-
tive formal group law, [n](x) = (1 -h x)"̂  - 1. 

Of particular interest is the p-series. In characteristic p it always has leading term ax^ 
where q=ph for some integer h. This leads to the following. 

DEFINITION 4.3.4. Let F(x, y) be a formal group law over a ring in which the prime p 
is not a unit. If the mod p reduction of [p](x) has the form 

[p](x) = ax^ -h higher terms 

with a invertible, then we say that F has height h at p. If [p](x) = 0 modp then the 
height is infinity. 

For the additive formal group law we have [p](x) = 0 so the height is oo. The 
multiplicative formal group law has height 1 since [p](x) = x^. The mod p reduction 
(for p odd) of the elliptic formal group law of 4.2.2(iii) has height one or two depending 
on the values of 8 and e. For example, if (5 = 0 and e = 1 then the height is one for 
p = 1 mod 4 and two for p = 3 mod 4. (See [59, pages 373-374].) 

The following classification theorem is due to Lazard [40]. 

THEOREM 4.3.5 (Classification of formal group laws). Two formal group laws over the 
algebraic closure of¥p are isomorphic if and only if they have the same height. 

Let Vn € L denote the coefficient of x^"" in the p-series for the universal formal group 
law; the prime p is omitted fi*om the notation. This Vn is closely related to the Vn in the 
Morava K-theories (2.5.2); the precise relation is explained in [61, B.7]. It can be shown 
that Vn is an indecomposable element in L, i.e. it could serve as a polynomial generator 
in dimension 2p'̂  - 2. Let Ip^n C L denote the prime ideal (p, v i , . . . Vn-\). 

The following result is due to Morava [53] and Landweber [36]. 

THEOREM 4.3.6 (Invariant prime ideal theorem). The only prime ideals in L which are 
invariant under the action of F are the Ip^n defined above, where p is a prime integer 
and n is a non-negative integer, possibly oo. {Ip^oo is by definition the ideal (p, î i, f2, • • •) 
and Ipfi is the zero ideal) 

Moreover in L/Ip^n for n > 0 the subgroup fixed by F is Z/{p)[vn]. In L itself the 
invariant subgroup is Z. 

This shows that the action of T on L is very rigid. L has a bewildering collection 
of prime ideals, but the only ones we ever have to consider are the ones listed in the 
theorem. This places severe restriction on the structure of modules in CF. 
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Recall that a finitely generated module M over a Noetherian ring R has a finite 
filtration 

0 = FoM C FxM C FiM C • • • FkM = M 

in which each subquotient FiM/Fi-\M is isomorphic to R/U for some prime ideal 
li C R. Now L is not Noetherian, but it is a direct limit of Noetherian rings, so finitely 
presented modules over it admit similar filtrations. For a module in Cr, the filtration 
can be chosen so that the submodules, and therefore the prime ideals, are all invariant 
under F, The following result is due to Landweber [37]. 

THEOREM 4.3.7 (Landweber filtration theorem). Every module M in CF admits a finite 
filtration by submodules in CF as above in which each subquotient is isomorphic to a 
suspension {recall that the modules are graded) of L/Ip^n for some prime p and some 
finite n. 

These results suggest that, once we have localized at a prime p, the only polynomial 
generators of MC/« which really matter are the v^ = Xpn_i. In fact the other generators 
act freely on any module in CF and hence provide no information. We might as well 
tensor them away and replace the theory of L-modules with T-action by a corresponding 
theory of modules over the ring 

yp = Z(p)h,t;2,...]. (4.3.8) 

This has been done and the ring Vp is commonly known as BP^, the coefficient ring 
for Brown-Peterson theory. There are good reasons for doing this from the topological 
standpoint, from the formal group law theoretic standpoint, and for the purpose of making 
explicit calculations useful in homotopy theory. Indeed all of the current literature on 
this subject is written in terms of BP-theory rather than Mf/-theory. 

However it is not necessary to use this language in order to describe the subject 
conceptually as we are doing here. There is one technical problem with J5P-theory 
which makes it awkward to discuss in general terms. There is no BP-theoretic analogue 
of the group F, It has to be replaced instead by a certain groupoid, and certain Hopf 
algebras associated with MC/-theory have to be replaced by Hopf algebroids (see [61, 
B.3]). 

The following are easy consequences of the Landweber filtration theorem. 

COROLLARY 4.3.9. Suppose M is a p-local module in CF and x e M. 

(i) If X is annihilated by some power of Vn, then it is annihilated by some power of 
Vn-\, soifv~^M = 0, Le. if each element in M is annihilated by some power 
ofvn, then Vn^^M = 0. 

(ii) Ifx is nonzero, then there is an n so that vf^x ^ Ofor all fc, so if M is nontrivial, 
then so is v^^M for all sufficiently large n. 

(iii) If v~]_^M = 0, then there is a positive integer k such that multiplication by v!^ 
in M commutes with the action of F. 
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(iv) Conversely^ ifv~]_^M is nontrivial, then there is no positive integer k such that 
multiplication by v^ in M commutes with the action of F on x. 

The first two statements should be compared to the last two statements in 2.5.2. In 
fact the functor v~^M[/*(A')(p) is a homology theory (see [61, B.6.2]) which vanishes 
on a finite p-local CW-complex X if and only if K{n)^{X) does. One could replace 
K{n)„ by v~^MU(p)^ in the statement of the periodicity theorem. The third statement 
is an algebraic analogue of the periodicity theorem. 

We can mimic the definition of type n finite spectra (2.5.3) and i;n-maps (2.5.4) in 

cr. 
DEFINITION 4.3.10. A p-local module M in CF has type n if n is the smallest integer 
with v~^M nontrivial. A homomorphism / : S^M —> M in CF is a Vn-map if it induces 
an isomorphism in t;~^M and the trivial homomorphism in v^^M for m^n. 

Another consequence of the Landweber filtration theorem is the following. 

COROLLARY 4.3.11. If M in CF is a p-local module with v~[^M nontrivial, then M 
does not admit a Vn-map. 

SKETCH OF PROOF OF 4.3.9. (i) The statement about x is proved by Johnson and Yosimura 
in [35]. The statement about M can be proved independently as follows. The condition 
implies that each subquotient in the Landweber filtration is a suspension of L/Ip^rn for 
some m > n. It follows that each element is annihilated by some power of Vn-\ as 
claimed. 

(ii) We can choose n so that each Landweber subquotient of M is a suspension of 
L/Ip^rn for some m ^n. Then no element of M is annihilated by any power of Vn-

(iii) If v^l^M = 0, then each Landweber subquotient is a suspension of L/Ip^rn for 
m ^ n. It follows that if the length of the filtration is j , then M is annihilated by /^^. 
For any 7 € T we have 

7{vn) =Vn-\-e with e G Ip^n-

It follows easily that 

l{vt'') = (vn + ef-' = vt' + e' with e' € /^,„. 

This means that multiplication by v^ is T-equivariant in L/I^.^ and hence in M. 
(iv) Suppose such an integer k exists. Then multiplication by v^ is T-equivariant on 

each Landweber subquotient. However by 4.3.6 this is not the case on L/Ip^rn for m <n. 
It follows that v~[^M = 0, which is a contradiction. D 

PROOF OF 4.3.11. Suppose M has type m for m < n. This means that each Landweber 
subquotient of M is a suspension of L/Ip^k for some k^ m. Hence we see that v^^M, 
v~^M and hence v:;^^v~^M are all nontrivial. On the other hand, if / is a Vn-map, then 
v^^v~^f must be both trivial and an isomorphism, which is a contradiction. D 
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4.4. Thick subcategories 

Now we need to consider certain full subcategories of CF and FH. 

DEFINITION 4.4.1. A full subcategory C of CF is thick if it satisfies the following axiom: 
If 

0 —> M' —> M —> M" —> 0 

is a short exact sequence in CF, then M is in C if and only if M' and M" are. (In other 
words C is closed under subobjects, quotient objects, and extensions.) 

A full subcategory F of FH is thick if it satisfies the following two axioms: 
(i)If 

X - ^ y —> C/ 

is a cofibre sequence in which two of the three spaces are in F, then so is the third, 
(ii) If X V y is in F then so are X and Y. 

Thick subcategories were called generic subcategories by Hopkins in [27]. 
Using the Landweber filtration theorem, one can classify the thick subcategories of 

cr(p). 

THEOREM 4.4.2. Let C be a thick subcategory of CF(^p) (the category of all p-local 
modules in CF). Then C is either all of CF(^p), the trivial subcategory (in which the 
only object is the trivial module), or consists of all p-local modules M in CF with 
v~\^M — 0. W? denote the latter category by Cp,n-

We will give the proof of this result below. 
There is an analogous result about thick subcategories of FH(p), which is a very useful 

consequence of the nilpotence theorem. 

THEOREM 4.4.3 (Thick subcategory theorem). Let Y be a thick subcategory of FH(p), 
the category of p-local finite CW-complexes, Then F is either all o/FH(p), the trivial 
subcategory (in which the only object is a point) or consists of all p-local finite CW-
complexes X with v~}_^MU^{X) = 0. We denote the latter category by Fp̂ n-

The condition v^[^MU^{X) = 0 is equivalent to K{n- 1)^{X) - 0, in view of 
2.5.2(v) and 6.3.2(d) below. 

Thus we have two nested sequences of thick subcategories, 

FH(P) = Fp,o D Fp,i D Fp,2 • • • {pt.} (4.4.4) 

and 

Cr(p) = Cp,o D Cp,i D Cp,2 • • • {0}. (4.4.5) 
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The functor Mt/*() sends one to the other. Until 1983 it was not even known that 
the Fp,n were nontrivial for all but a few small values of n. Mitchell [52] first showed 
that all of the inclusions of the Fp,n are proper. Now it is a corollary of the periodicity 
theorem. 

In §4.5 we will describe another algebraic paradigm analogous to 4.4.3 discovered in 
the early 70's by Jack Morava. It points to some interesting connections with number 
theory and was the original inspiration behind this circle of ideas. 

In §5 we will derive the thick subcategory theorem from another form of the nilpotence 
theorem. This is easy since it uses nothing more than elementary tools from homotopy 
theory. 

In §5.4 we will sketch the proof of the periodicity theorem. It is not difficult to show 
that the collection of complexes admitting periodic self maps for given p and n forms 
a thick subcategory. Given the thick subcategory theorem, it suffices to find just one 
nontrivial example of a complex of type n with a periodic self-map. This involves some 
hard homotopy theory. There are two major ingredients in the construction. One is the 
Adams spectral sequence, a computational tool that one would expect to see used in such 
a situation. The other is a novel application of the modular representation theory of the 
symmetric group described in as yet unpublished work of Jeff Smith. 

PROOF OF THEOREM 4.4.2. Note that Cp,o = ^I^{p) by convention and we have a de-
creasing filtration 

Cr(p) = Cp,o D Cp,i D • • • Cp,n D • • • 

with 

n ^V'-={0} 

by Corollary 4.3.9(ii). 
Now suppose C C CPjp) is thick. If C ^̂^ {0}, choose the largest n so that Cp̂ n D C. 

Then C ^ Cp^n+\, and we want to show that C = Cp^n, so we need to verify that 

Let M be a comodule in C but not in Cp,n+i. Thus t̂ ^̂ M̂ = 0 for m < n but 
v~^M j^O. Choosing a Landweber filtration of M in Cr, 

0 = FQM C FiM C • • C FkM = M, 

all FgM are in C, hence so are all the subquotients 

F,M/F,>,M = r^-M[7.//p,^,. 

Since v" ̂  M 7»̂  0, we must have 

v-\MU,/Ij>,m,)¥^0 
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for some s, so some m^ is no more than n. This m^ must be n, since a smaller value 
would contradict the assumption that C C Cp^n- Hence we conclude that 

MU./Ip^n e C. (4.4.6) 

Now let N be in Cp^n'', we want to show that it is also in C. Then v~],^M — 0, so 
each subquotient of a Landweber filtration of iV is a suspension of MU^/Ip^rn for some 
m^n. Since MU^/Ip^n € C by (4.4.6), it follows that MU^/Ip^n € C for all m^n. 
Hence the Landweber subquotients of N are all in C, so N itself is in C. D 

4.5. Morava's picture of the action of F on L 

The action of the group F on the Lazard ring L (4.3.1) is central to this theory and 
the picture we will describe here sheds considerable light on it. Let HzL denote the 
set of ring homomorphisms L —• Z. By 4.2.3 this is the set of formal group laws over 
the integers. Since L is a polynomial ring, a homomorphism 6 € HzL is determined 
by its values on the polynomial generators Xi G L. Hence HzL can be regarded as an 
infinite dimensional affine space over Z. The action of T on L induces one on HzL. 
The following facts about it are straightforward. 

PROPOSITION 4.5.1. Let HzL and the action of the group F on it be as above. Then 

(i) Points in HzL correspond to formal group laws over 7J. 
(ii) Two points are in the same F-orbit if and only if the two corresponding formal 

group laws are isomorphic over Z. 
(iii) The subgroup of F fixing point 6 € HzL is the strict automorphism group of the 

corresponding formal group law. 
(iv) The strict automorphism groups of isomorphic formal group laws are conjugate 

inF. 

We have not yet said what a strict automorphism of a formal group law F is. 
An automorphism is a power series f{x) satisfying 

f{F{x,y)) = F{f{x),f{y)) 

and f{x) is strict if it has the form 

/ (x) = X -h higher terms. 

The classification of formal group laws over the integers is quite complicated, but 
we have a nice classification theorem (4.3.5) over fc, the algebraic closure of Fp. Hence 
we want to replace Z by A: in the discussion above. Let HkL denote the set of ring 
homomorphisms L -^ fc; it can be regarded as an infinite dimensional vector space over 
k. Let Fk denote the corresponding group of power series. Then it follows that there is 
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one Tjt-orbit for each height n. Since 6{vi) G fc is the coefficient of x^i in the power 
series [p](x), the following is a consequence of the relevant definitions. 

PROPOSITION 4.5.2. The formal group law over k corresponding to 6 G HkL has height 
n if and only if 6{vi) = 0 for i < n and 0{vn) ^ 0. Moreover, each Vn G L is 
indecomposable, i.e. it is a unit (in Z(p) j multiple of 

Xpn^] -f decomposables. 

Let Yn C HkL denote the height n orbit. It is the subset defined by the equations 
Vi = 0 for i < n and Vn 7̂  0 for finite n, and for n = 00 it is defined by t;i = 0 for all 
n < 00. Let 

SO we have a nested sequence of subsets 

HkL = X, D X2 D X3 • • -^oo (4.5.3) 

which is analogous to (4.4.4) and (4.4.5). 

4.6. Morava stabilizer groups 

Now we want to describe the strict automorphism group Sn (called the n-th Morava sta-
bilizer group) of a height n formal group law over fc. It is contained in the multiplicative 
group over a certain division algebra Dn over the p-adic numbers Qp. To describe it we 
need to define several other algebraic objects. 

Recall that Fpn, the field_with p^ elements, is obtained from Fp by adjoining a primitive 
{p^ — l)-st root of unity C» which is the root of some irreducible polynomial of degree 
n. The Galois group of this extension is cyclic of order n generated by the Frobenius 
automorphism which sends an element x to x^. 

There is a corresponding degree n extension W (̂Fpn) of the p-adic integers Zp, ob-
tained by adjoining a primitive [p^ — l)-st root of unity C (whose mod p reduction is 
C), which is also the root of some irreducible polynomial of degree n. The Frobenius 
automorphism has a lifting a fixing Zp with cr(C) = Ĉ  and 

a(x) = x^ mod p 

forany x € W(Fpn). 
We denote the fraction field of W(Fpn) by Kn', it is the unique unramified extension 

of Qp of degree n. Let Kn{S) denote the ring obtained by adjoining a noncommuting 
power series variable S subject to the rule 

Sx = a{x)S 
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for X e Kn. Thus S commutes with everything in Qp and S'^ commutes with all of Kn-
The division algebra Dn is defined by 

Dn = Kn{S)/{S^-p). (4.6.1) 

It is an algebra over Qp of rank n^ with center Qp. It is known to contain each degree n 
field extension of Qp as a subfield. (This statement is 6.2.12 of [59], where appropriate 
references are given.) 

It also contains a maximal order 

En = W[V^r.){S)l{S^^p). (4.6.2) 

En is a complete local ring with maximal ideal {S) and residue field Fpn. Each element 
in a £ En can be written uniquely as 

O^i^n-l 

with ai G W(Fpn), and also as 

a = Y,^iS' (4.6.4) 

where each ê  E W(Fpn) satisfies the equation 

ef -ei = 0, 

i.e. ei is either zero or a root of unity. The groups of units E^ C En is the set of 
elements with eo 7̂  0, or equivalently with OQ a unit in W(Fpn). 

PROPOSITION 4.6.5. The full automorphism group of a formal group law over k of height 
n is isomorphic to E^ above, and the strict automorphism group Sn is isomorphic to 
the subgroup of E^ with eo = 1. 

If we regard each coefficient ê  as a continuous Fpn-valued function on Sn, then it 
can be shown that the ring of all such functions is 

S{n) = Fpnld'A^ l]/(ef - a). (4.6.6) 

This is a Hopf algebra over Fpn with coproduct induced by the group structure of Sn-
It should be compared to the Hopf algebra E{n) of ([61, B.7.5]). This is a factor of 
K{n)^{K{n)), the Morava iiT-theory analog of the dual Steenrod algebra. Its multiplica-
tive structure is given by 

E{n) = K{nUtut2,...]/{tf-v?;-Hi). 
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Hence we have 

S{n) = 17(71) (8)K(n). Fpn 

under the isomorphism sending U to ti and !;„ to 1. 
Now we will describe the action of Sn on a particular height n formal group law Fn-

To define Fn, let F be the formal group law over Z(p) with logarithm 

in 

Fn is obtained by reducing F mod p and tensoring with Fpn. 
Now an automorphism e of Fn is a power series e(x) over Fpn satisfying 

6(Fn(x,2/))=Fn(e(x),e(y)). 

For 

(with eo = 1) we define e(a:) by 

e{x) = Yj^^eiX^\ (4.6.8) 

More details can be found in [59, Appendix 2]. 

5. The thick subcategory and periodicity theorems 

In this section we will derive the thick subcategory theorem 4.4.3 from a variant of the 
nilpotence theorem (5.1.4 below) with the use of some standard tools from homotopy 
theory, which we must introduce before we can give the proof. The proof itself is identical 
to the one given by Hopkins in [27]. 

Then in §5.4 we will explain the relevance of the thick subcategory theorem to the 
periodicity theorem. 

5.1 . Spectra 

First we have to introduce the category of spectra. These objects are similar to spaces 
and were invented to avoid qualifying statements (such as Definition 2.4.1) with phrases 
such as *up to some suspension' and *stably'. Since the category was introduced around 
1960 [41], it has taken on a life of its own, as will be seen later in this chapter. We 
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will say as little about it here as we can get away with; for more details see [61, A.2]). 
The use of the word 'spectrum' in homotopy theory has no connection with its use in 
analysis (the spectrum of a differential operator) or in algebraic geometry (the spectrum 
of a commutative ring). It also has no direct connection with the term 'spectral sequence'. 

Most of the theorems in this paper that are stated in terms of spaces are really theorems 
about spectra that we have done our best to disguise. However we cannot keep up this 
act any longer. 

DEFINITION 5.1.1. A spectrum Â  is a collection of spaces {Xn} (defined for all large 
values of n) and maps SXn -^ Xn-^] • The suspension spectrum of a space X is defined 
by Xn = S^X with each map being the identity. The sphere spectrum S^ is the suspen-
sion spectrum of the space 5^, i.e. the n-th space is S'^. The z-th suspension E^X of X 
is defined by 

for any integer i. Thus any spectrum can be suspended or desuspended any number of 
times. 

The homotopy groups of X are defined by 

TTkiX) = lim7rn+fe(Xn) 

and the generalized homology E^{X) is defined by 

Ek{X) = Mm En^k{Xn)\ 

note that the homology groups on the right are reduced while those on the left are not. 
In the category of spectra there is no need to distinguish between reduced and unreduced 
homology. 

In particular, 7rk{S^) is the stable A;-stem 7rf of 3.2.3. 
The generalized cohomology of a spectrum can be similarly defined. 
A spectrum X is connective if its homotopy groups are bounded below, i.e. if 

7T^k{X) = 0 for fc > 0. It has finite type if 7rfc(A') is finitely generated for each k. 
It is finite if some suspension of it is equivalent to the suspension spectrum of a finite 
CW-complex. 

The homotopy groups of spectra are much more manageable than those of spaces. For 
example, one has 

7:k{S'E)=7rk.i{E) 

for all k and 2, and a cofibre sequence (3.3.3) of spectra leads to a long exact sequence of 
homotopy groups as well as the usual long exact sequence of homology groups (3.3.4). 

It is surprisingly difficult to give a correct definition of a map E -^ F of spectra. 
One's first guess, namely a collection of maps En —• Fn forn > 0 making the obvious 
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diagrams commute, turns out to be too restrictive. While such data does give a map of 
spectra, there are some maps one would dearly like to have that do not come from any 
such data. However this naive definition is adequate in the case where E and F are 
suspension spectra of finite CW-complexes, which is all we will need for this section. A 
correct definition is given in [61, A.2.5]. 

Next we need to discuss smash products. For spaces the definition is as follows. 

DEFINITION 5.1.2. Let X and Y be spaces equipped with base points xo and t/o- The 
smash product X AY is the quotient of XxY obtained by collapsing X x {yo}u{xo} x Y 
to a single point. The fc-fold iterated smash product of X with itself is denoted by X^^\ 
For / : X -> y , f^^^ denote the evident map from X^^^ to Y^^\ The map / is smash 
nilpotent if /̂ '̂ ^ is null homotopic for some k. 

The fc-fold suspension E^X is the same as S^ A X. For CW-complexes X and Y 
there is an equivalence 

E{x X F) - r x V r y V E{X A Y). 

Defining the smash product of two spectra is not as easy as one would like. If E is 
a suspension spectrum, then there is an obvious definition of the smash product E A F, 
namely 

{EAF)n = EoAFn. 

A somewhat more flexible but still unsatisfactory definition is the following. 

DEFINITION 5.1.3. For spectra E and F, the naive smash product is defined by 

{EAF)2n=EnAFn, 

{E A F)2n+1 = EEn A Fn 

where the map 

SEn A EFn = U{E A F)2n+1 -^{EA F)2n+2 = ^n+l A F^+l 

is the smash product of the maps EEn —> Fn+i and UFn —• Fn-i-i-

However the correct definition of the smash product of two spectra is very difficult; we 
refer the interested reader to the lengthy discussion in Adams [3, III.4]. In this section 
at least, the only smash products we need are with finite spectra, which are always 
suspension spectra, so the naive definition is adequate. 

The nilpotence theorem can be stated in terms of smash products as follows. 

THEOREM 5.1.4 (Nilpotence theorem, smash product form). Let 

F-^X 
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be a map of spectra where F is finite. Then f is smash nilpotent if MU A / (i.e. the 
evident map MU A F -* MU A X) is null homotopic. 

Both this and 2.4.2 will be derived from a third form of the nilpotence theorem in §7. 
A more useful form of it for our purposes is the following, which we will prove at the 
end of §5.2, using some methods from §6. 

COROLLARY 5.1.5. Let W, X and Y be p-local finite spectra with f:X -^ Y. Then 
W A /(^) is null homotopic for A; » 0 if K{n)^{W A / ) = Ofor all n ^ 0. 

It is from this result that we will derive the thick subcategory theorem. 

5.2. Spanier-Whitehead duality 

Next we need to discuss Spanier-Whitehead duality, which is treated in more detail in 
[3, III.5]. 

THEOREM 5.2.1. For a finite spectrum X there is a unique finite spectrum DX {the 
Spanier-Whitehead dual of X) with the following properties. 

(i) For any spectrum Y, the graded group [X, Y\^ is isomorphic to T[^{DX /\Y), and 
this isomorphism is natural in both X and Y. In particular, DS^ = S^. We say that 
the maps S^ -^ DX A Y and E^X -* Y that correspond under this isomorphism are 
adjoint to each other In particular when Y = X, the identity map on X is adjoint to a 
mape:S^ ^DX A X. 

(ii) This isomorphism is reflected in Morava K-theory, namely (since K{n)^{X) is free 
over K{n)^) 

HomK(n). (i^(n).(X), K{nUY)) ^ K(n).(DX A Y). 

In particular for Y = X, K(n)„{e) ^^ 0 when K(n)^(X) j^ 0. Similar statements hold 
for ordinary mod p homology. For X = S^, this isomorphism is the identity. 

(iii) DDX c^ X and [X,Y]. ^ [DY.DX]^. 
(iv) For a homology theory E^, there is a natural isomorphism between Ek{X) and 

E-^{DX). 
(v) Spanier-Whitehead duality commutes with smash products, i.e. for finite spectra 

X and y , D{X AY) = DX A DY. 
(vi) The functor X H-̂  DX is contravariant. 

The Spanier-Whitehead dual DX of a finite complex X is analogous to the linear 
dual V* = Hom(V, A:) of a finite dimensional vector space V over a field k. 5.2.l(i) is 
analogous to the isomorphism 

Hom{V,W)^V*^W 

for any vector space W. 5.2.1(iii) is analogous to the statement that {Vy = V and 
5.2.l(v) is analogous to the isomorphism 

(v^wy^v''(S)W\ 
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The geometric idea behind Spanier-Whitehead duality is as follows. A finite spectrum 
X is the suspension spectrum of a finite CW-complex, which we also denote by X. The 
latter can always be embedded in some Euclidean space R^ and hence in S^. Then 
DX is a suitable suspension of the suspension spectrum of the complement S^ — X, 
5.2.1(iv) is a generalization of the classical Alexander duality theorem, which says that 
Hk{X) is isomorphic to /f^-J-^(5'^ _ x). A simple example of this is the case 
where X — S^ and it it linearly embedded in S^. Then its complement is homotopy 
equivalent to S^~^~^. The Alexander duality theorem says that the complement has the 
same cohomology as S^'^''^ even when the embedding of S^ in 5 ^ is not linear, e.g., 
when k = 1, n = 3 and 5* C S^ is knotted. 

Before we can proceed with the proof of the thick subcategory theorem we need 
an elementary lemma about Spanier-Whitehead duality. For a finite spectrum X, let 
f:W-^S^ be the map such that 

W S' DX AX 

is a cofibre sequence. In the category of spectra, such maps always exist. W in this case 
is finite, and Cf = DX A X. 

LEMMA 5.2.2. With notation as above, there is a cofibre sequence 

Cfik) —^ Cfik-i) - ^ EW^^-'^ A Cf 

for each fc > 1. 

PROOF. A standard lemma in homotopy theory says that given maps 

X -^Y -^Z 

there is a diagram 
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in which each row and column is a cofibre sequence. Setting X — W^^^, Y — W^^~^^, 
Z = S^ and g = f^^'^K this diagram becomes 

W^^-^^ ACf 

M/'(fc-i) 
/•(fc-i) 

f^ fc) 

pt. 

5^ 

5« 

i:iy(^-i) AC/ 

-̂  c y(fc-l) 

-^ C /(fc) 

and the right hand column is the desired cofibre sequence. D 

PROOF OF COROLLARY 5.1.5. Let i? = DW A W and \eie: S^ -^ R be the adjoint of the 
identity map. i2 is a ring spectrum ([61, A.2.8]) whose unit is e and whose multiplication 
is the composite 

DWADeAW r. 
RAR = DW AW ADW AW ^ DW AS^AW = R. 

The map f : X -^ Y is adjoint to / : S^ -^ DX AY, andW Af is adjoint to the 
composite 

gO± eADXAY 
DXAY ^ RADX AY = F, 

which we denote by g. The map W A /̂ *̂  is adjoint to the composite 

S^ ^ F(^) = i?(̂ ) A DX^'^ A y(^) -^RA DX^^ A Y^^, 

the latter map being induced by the multiplication in R. 
By 5.1.4 it suffices to show that MU Ag^^ is null for large i. Let Ti = RADX^^ AF^^) 

and let T be the direct limit of 

oO 9 ^ rp T]Af rp TiAf _ 

The desired conclusion will follow from showing that MU A T is contractible, and our 
hypothesis implies that K{n) A T is contractible for each n. 

Now we need to use the methods of §6. Since we are in a p-local situation, it suffices to 
show that BPAT is contractible. Using 6.3.2 and the fact that K{n)AT is contractible, 
it suffices to show that P{m) AT is contractible for large m. 
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Now for large enough m, 

K{m).{W A / ) = K{m), 0 H,{W A / ) 

and 

P{m),{W A / ) = P{m). 0 H.[W A / ) . 

Our hypothesis implies that both of these homomorphisms are trivial, so P{m) A T is 
contractible as required. D 

5.3. The proof of the thick subcategory theorem 

Let C C FH(p) be a thick subcategory. Choose n to be the smallest integer such that C 
contains a p-local finite spectrum X with /C(n)*(X) ^ 0. Equivalently (by 6.3.2(d) and 
2.5.2(v)), n is the smallest integer such that C contains an X with v~^BP^{X) ^ 0. We 
want to show that C = Fp̂ n- It is clear from the choice of n that C C Fp,n, so it suffices 
to show that C D Fp,n. 

Let y be a p-local finite CW-spectrum in Fp,n. From the fact that C is thick, it follows 
that X A F is in C for any finite F, so X A DX A F (or C/ A y in the notation of 5.2.2) 
is in C. Thus 5.2.2 implies that Cj^k) A F is in C for all fc > 0. 

It follows from 5.2.1(ii) that K[i)^{f) = 0 when K{i)^{X) ^ 0, i.e., for i ^ n. Since 
K(i\{J) = 0 for z < n, it follows that K{i\{y A / ) = 0 for all i. Therefore by 5.1.5, 
Y A /(^^ is null homotopic for some A: > 0. 

Now the cofibre of a null homotopic map is equivalent to the wedge of its target and 
the suspension of its source, so we have 

F A C ^ W -yv(i :yAi^( '^)) . 

Since C is thick and contains Y A Cj{k), it follows that Y is in C, so C contains Fp,n 
as desired. D 

5.4. The periodicity theorem 

In this section we will outline part of the proof of the periodicity theorem (Theorem 
2.5.4). Recall that a î n-map / : E^X -> X on a p-local finite complex X is a map such 
that K{n)^{f) is an isomorphism and K{m)^{f) = 0 for m ^ n. The case n = 0 is 
uninteresting; Theorem 2.5.4 is trivial because the degree p map, which is defined for 
any spectrum (finite or infinite), is a t;o-map. Hence we assume throughout this section 
that n > 0. 

Let \n denote the collection of p-local finite spectra admitting such maps. If 
K{n)^{X) = 0, then the trivial map is a Vn-Tmip, so we have 

Vn D Fp,„_|_i. 
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On the other hand, we know for algebraic reasons (4.3.11) that X cannot admit a Vn-map 
if K ( n - l ) , ( X ) 7 ^ 0 , so 

The periodicity theorem says that Vn = Fp,„. The proof falls into two steps. The first 
is to show that Vn is thick; this is Theorem 5.4.5. Thus by the thick subcategory theorem, 
this category is either Fp,n, as asserted in the periodicity theorem, or Fp^n+i-

The second and harder step in the proof is to construct an example of a spectrum of 
type n with a z;n-map. We will outline this at the end of this section; for details we refer 
the reader to [61, Chapter 6]. 

Now we will prove that V^ is thick. We begin by observing that a self-map / : E^X —̂  
X is adjoint to / : 5 ^ -> DX AX. We will abbreviate DX AX by R. Now /? is a ring 
spectrum; see [61, A.2.8] for a definition. The unit is the map e: S^ —̂  DX A X adjoint 
to the identity map on X (5.2.1). Since DDX = X and Spanier-Whitehead duality 
commutes with smash products, e is dual to 

XADX^S^. 

The multiplication on R is the composite 

DXADCAX ^ 

DXAXADXAX > DX A S^ AX = DX AX. 

Now we will state four lemmas, the second and fourth of which are used directly in 
the proof of 5.4.5. They will be proved below, and each one depends on the previous 
one. 

LEMMA 5.4.1. For a Vn'fnap f as above, there is an i > Q such the map induced on 
K{n):^{X) by p is multiplication by some power ofvn. 

LEMMA 5.4.2. For a Vn-map f as above, there is an i > 0 such that p is in the center 
ofn.iR). 

LEMMA 5.4.3 (Uniqueness of Vn-maps). If X has two Vn-maps f and g then there are 
integers i and j such that p = g^. 

LEMMA 5.4.4 (Extended uniqueness). IfX and Y have Vn-maps f and g, then there are 
integers i and j such that the following diagram commutes for any map h:X-^Y. 

E'X — ^ E'Y 

f 9' 

X—^—y 
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Note that 5.4.3 is the special case of this where h is the identity map on X. However, 
we will derive 5.4.4 from 5.4.3. 

THEOREM 5.4.5. The category Vn C FH(p) of finite p-local CW-spectra admitting Vn-
maps is thick. 

PROOF. Suppose X V Y is in Vn and 

i:d(xvy)^xvy 

is a i>n-niap. By 5.4.2 we can assume that / commutes with the idempotent 

and it follows that the composite 

r^x _ E'^ix yY)-^xyY —^x 
is a Vn-map, so X is in Vn-

Now suppose h'.X -^ Y where X and Y have i;n-maps / and g. By 5.4.4 we can 
assume that hf ~ gh, so there is a map 

E Ch —^ Ch 

making the following diagram commute. 

X 

r^x jjdy 

CH 

S^'CH 

The 5-lemma implies that K(n)^{£) is an isomorphism. 
We also need to show that K{m)^{£) = 0 for m ^ n. This is not implied by the facts 

that K{m)^{f) = 0 and K{m)^{g) = 0. However, an easy diagram chase shows that 
they do imply that K{m)^{f-) ~ 0, so (^ is the desired i;n-niap on CH- It follows that 
Ch is in Vn, so Vn is thick. D 

Now we will give the proofs of the four lemmas stated earlier. 

PROOF OF LEMMA 5.4.1. The ring K{n)^{R) is a finite-dimensional K{n)^-algebra, so 
the ungraded quotient K{n)^{R)/{vn - 1) is a finite ring with a finite group of units. It 
follows that the group of units in K{n):,{R) itself is an extension of the group of units 
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of K{n)^ by this finite group. Therefore some power of the unit /* is in K{n)^, and the 
result follows. D 

PROOF OF LEMMA 5.4.2. Let A be a noncommutative ring, such as 7r*(i?). Given a G A 
we define a map 

dA{a)\A —y A 

by 

ad(a)(6) = ab- ba. 

Thus a is in the center of A if ad(a) = 0. 
There is a formula relating ad(a*) to ad^(a), the j * iterate of ad(a), which we will 

prove below, namely 

ad(a^)(x) = ^ ( J ad^(a)(x)a*-^'. (5.4.6) 

(This is proved in [61, 6.1].) Now suppose ad(a) is nilpotent and p^a = 0 for some k. 
We set i = p^ for some large N. Then the terms on the right for large j are zero because 
ad(a) is nilpotent, and the terms for small j vanish because the binomial coefficient is 
divisible by p^. Hence ad(a*) = 0 so a* is in the center of A. 

To apply this to the situation at hand, define 

. ad(/) 
r^i? y R 

to be the composite 

5^ A i? > RAR > RAR ^ R 

where T is the map that interchanges the two factors. Then for x G 7r*(i?), 
7r*(ad(/))(a:) = ad(/)(x). By 5.4.1 (after replacing / by a suitable iterate if neces-
sary), we can assume that K{n)„{f) is multiplication by a power of Vn, so K{n)^{f) 
is in the center of K{TI)^{R) and K{n)^{ad{f)) = 0. Hence 5.1.5 tells us that ad(/) is 
nilpotent and the argument above applies to give the desired result. D 

PROOF OF LEMMA 5.4.3. Replacing / and g by suitable powers if necessary, we may 
assume that they commute with each other and that K{m)^{f) = K{m)^{g) for all m. 
Hence K{Tn)„{f - g) =0 so f - g is nilpotent. Hence there is an z > 0 with 

if-g/ =0. 
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Since / and g commute, we can expand this with the binomial theorem and get 

/P = P̂* mod p 

from which it follows that 

for any A: > 0, so for sufficiently large k the two maps are homotopic. Q 

PROOF OF LEMMA 5.4.4. Let W = DX AY,SO h is adjoint to an element h G n^iW). 
W has two t;n-maps, namely DX A g and Df A Y, so by 5.4.3, 

DXAg^ :^Df AY 

for suitable i and j . 
Observe that Ŵ  is a module spectrum over DX A X, and the product 

Ph = {DfAY)h 

is the adjoint of hp. Moreover g^h is adjoint to {DX Ag^)h. Since these two maps are 
homotopic, the diagram of 5.4.4 commutes. D 

Now we will outline the construction, due to Jeff Smith [71], of a type n finite complex 
which admits a Vn-map. 

Let X^^"^ denote the fc-fold smash product of a finite p-local spectrum X. The sym-
metric groups Sk acts by permutation of coordinates. Since we are in the stable category 
we can take Z(p)-linear combinations of maps, so we get an action of the p-local groups 
ring S = Z^p)[Ek] on X^'^l Now suppose e E 5 is idempotent (e^ = e). Then 1 ~ e is 
also idempotent and for any 5-module M (such as 7r*(X(^))) we get a splitting 

M ^ e M e ( l -e)M, 

in which one of the summands may be trivial. 
There is a standard construction in homotopy theory which gives a similar splitting of 

spectra 

X^^^^eX^^^eil-e)X^^\ 

Thus each idempotent element e e S leads to a splitting of X^^^ for any X. We will 
use this to construct a a finite spectrum Y of type n that can be shown to admit a Vn-map, 
starting with a well known X. 

Now suppose that V is a finite dimensional vector space over Z/(p), such as 
H^{X;Z/{p)). Then W = V®^ is an 5-module, so we have a splitting 

W^eWe{\ -e)W. 
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and the rank of eW is determined by that of W. There are enough idempotents e to give 
the following, which is due to Jeff Smith. 

THEOREM 5.4.7. For each positive integer r there is an idempotent 

tr E Z(p) [Ek] 

{where k depends on r) such that the rank of eW above is nonzero if and only if the 
rank of V is at least r. 

Smith has generalized this result to graded vector spaces with permutations subject to 
the usual sign conventions. 

For any spectrum F , H*{Y\ Z/{p)) is a module over the Steenrod algebra A; the best 
reference for this is the classic [73]. Using the Adams spectral sequence, it can be shown 
that of Y is finite and its cohomology is free over a certain subalgebra of A, then it has 
type n and admits a Vn-map. 

To obtain such a Y, one starts with a finite X satisfying much milder conditions. An 
appropriate skeleton of the classifying space BZ/{p) will do. Then one a applies a Smith 
idempotent to an appropriate smash power of X and the resulting summand Y = eX^^^ 
has the required properties. 

This completes our outline of the proof of the periodicity theorem. 

6. Bousfield localization and equivalence 

In this section we will discuss localization with respect to a generalized homology theory. 
We attach Bousfield's name to it because the main theorem in the subject is due to him. 
He did invent the equivalence relation associated with it. It provides us with a very 
convenient language for discussing some of the concepts of this subject. A general 
reference for this material is [58]. 

6 .1 . Basic definitions and examples 

DEHNITION 6.1.1. Let £"* be a generalized homology theory ([61, A.3]). A space Y is 
E^'local if whenever a map / : X\ —̂  X2 is such that E^{f) is an isomorphism, the map 

[XuY\^ ^̂  [X2^Y] 

is also an isomorphism. (For spectra, this is equivalent to the following condition: Y is 
E'^-local if [X,Y]^ = 0 whenever E^{X) = 0.) 

An E^-localization of a space or spectrum X is a map 77 from X to an £J*-local 
space or spectrum XE (which we will usually denote by LEX) such that £'*(ry) is an 
isomorphism. 
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It is easy to show that if such a localization exists, it is unique up to homotopy 
equivalence. The following properties are immediate consequences of the definition. 

PROPOSITION 6.1.2. For any homology theory E^: 

(i) Any inverse limit ([61, A.5]) of E^-local spectra is E^-local. 

(ii) / / 

W —^X—^Y -^EW 

is a cofibre sequence and any two ofW, X and Y are E^-local, then so is the 
third. 

(iii) IfXMY is E^-local, then so are X and Y. 

On the other hand, a homotopy direct limit of local spectra need not be local. 
The main theorem in this subject, that localizations always exist, was proved by Bous-

field for spaces in [11] and for spectra in [13]. 

THEOREM 6.1.3 (Bousfield localization theorem). For any homology theory E^ and any 
space or spectrum X, the localization LEX O/6.1.1 exists and is functorial in X. 

The idea of the proof is the following. It is easy to see that if LEX exists, then for any 
map f:X -^ X' with E^{f) an isomorphism (such a map is called an E^-equivalence), 
the map r/:Jt —> LEX extends uniquely to X'. In other words the map 7] is terminal 
among £^*-equivalences out of X. This suggests constructing LEX as the direct limit of 
all such X'; this idea is due to Adams. Unfortunately it does not work because there are 
too many such X'', they form a class rather than a set. Bousfield found a way around 
these set theoretic difficulties. 

If E^ is represented by a connective spectrum E (i.e. all of its homotopy groups below 
a given dimension are trivial), and if X is connective spectrum or a simply connected 
space, then the localization is relatively straightforward; it is the same as localization or 
completion with respect to some set of primes. The homotopy and generalized homology 
groups of LEX are arithmetically determined by those of X. 

If either E or X fails to be connective, then LEX is far more mysterious and deserving 
of further study. We offer two important examples. 

EXAMPLE 6.1.4. (i) X is the sphere spectrum S^ and E^ is the homology theory associ-
ated with classical complex K-theory. LKS^ was described in [58, Section 8] and it is 
not connective. In particular 7r_2(L/<:5 )̂ = Q/Z. 

(ii) Let £?* be ordinary homology H^. Let A" be a finite spectrum (such as one of the 
examples of 3.4.1) satisfying K{n)^{X^ ^ 0 with a Vn-map f (2.5.4) and let X be the 
telescope obtained by iterating / , i.e., X is the direct limit of the system 

X -U r-^x -A E-'^^x • • •. 

Then LHX is contractible since i/*(/) = 0 and therefore H^{X) = 0. On the other 
hand X is not contractible since 

K{n).{X)^K{n).{X)i^Q. 
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LEMMA 6.1.5. If E is a ring spectrum ([61, A.2.8]) then E A X is E^-local for any 
spectrum X. 

PROOF. We need to show that for any spectrum W with E^{W) = 0, 

[W,EAX]=0. 

Given any map / : W —• £J A X, we have a diagram 

W EAX 

rjAW 
^ ^ ^ EAX 

TJAEAX 

EAW ^ , " EAEAX rr^ E AX 
EAJ mAX 

Since E AW is contractible, / is null. D 

DEFINITION 6.1.6. For a ring spectrum E, the class of E-nilpotent spectra is the smallest 
class satisfying the following conditions. 

(i) E is £^-nilpotent. 
(ii) If N is E-nilpotent then so is AT A A" for any X. 

(iii) The cofibre of any map between £'-nilpotent spectra is E-nilpotent. 
(iv) Any retract of an E-nilpotent spectrum is E-nilpotent. 

A spectrum is E-prenilpotent if it is E*-equivalent to an E-nilpotent one. 

The definition of an E-nilpotent spectrum generalizes the notion of a finite Postnikov 
system; we replace Eilenberg-MacLane spectra by retracts of smash products E A X. 
The following ([13, 3.8]) is an easy consequence of 6.1.5. 

PROPOSITION 6.1.7. Every E-nilpotent spectrum is E^-local. 

6.2. Bousfield equivalence 

Recall the smash product X AY was defined in 5.1.2 and the wedge XMY was defined 
in 3.1.1. 

DEFINITION 6.2.1. Two spectra E and F are Bousfield equivalent if for each spectrum 
X, EAX \s contractible if and only if E A X is contractible. The Bousfield equivalence 
class of E is denoted by (E). 

(E) ^ (E) if for each spectrum X, the contractibility of E AX implies that of E AX. 
We say (E) > (E) if (E) > (E) but (E) ^ (E). 

(E) A (E) = (E A E) and (E) V (E) = {EW F). (We leave it to the reader to verify 
that these classes are well defined.) 
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A class {E) has a complement {EY if {E) A {EY = (pt.) and (E) V (i;)^ = (5^), 
where S^ is the sphere spectrum. 

The operations A and V satisfy the obvious distributive laws, namely 

{{X) V {¥)) A (Z) = {{X) A (Z» V ((y) A (Z)) 

and 

((X) A {¥)) V {Z) = ((X) V (Z)) A {{¥) V (Z)). 

The following result is an immediate consequence of the definitions. 

PROPOSITION 6.2.2. The localization functors LE and Lp are the same if and only if 
{E) = (F). / / {E) ^ {F) then LELF — LE and there is a natural transformation 
Lp —> LE-

Notice that for any spectrum E, 

( 5 « ) > ( ^ ) ^ ( p t . ) , 

{^)A{E) = {E), 

{^)s/{E) = {^), 

{pt.)V {E) = {E), and 

(pt.)A(E} = (pt.), 

i.e. (5^) is the biggest class and (pt.) is the smallest. 
Not all classes have complements, and there are even classes (E) which do not satisfy 

{E) A {E) = {E). (6.2.3) 

The following definition is due to Bousfield [12]. 

DEFINITION 6.2.4. A is the collection of all Bousfield classes. DL (for distributive lattice) 
is the collection of classes satisfying (6.2.3). BA (for Boolean algebra) is the collection 
of classes with complements. 

Thus we have 

BA C DL C A 

and both inclusions are proper. (Counterexamples illustrating this can be found in [58].) 
If E is connective then (E) G DL, and if E is a (possibly infinite) wedge of finite 
complexes, then (E) € BA. A partial description of BA is given below in 6.2.9. 

Let S^Q denote the rational sphere spectrum, 5? x the p-local sphere spectrum, and 

S^/{p) the mod p Moore spectrum. Then we have 
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PROPOSITION 6.2.5. 

(5|',)> = {5«Q)v<5«/(p)), 

<5«Q>A<5°/(p)> = (pt.), 

(5°/(9)) A (5«/(p)) - (pt.) /or p^q. and 

(5«> = (5«Q)vV<5«/(p)). 
P 

In particular each of these classes is in BA. 
The following result is proved in [58]. 

PROPOSITION 6.2.6. (i) // 

is a cofibre sequence (3.3.3), then 

{W)^{X)y{Y). 

(ii) If f is smash nilpotent (5.1.2) then 

{W)=={x)y{Y). 

(iii) For a self-map f: E'^X —^ X, let Cf denote its cofibre and let 

7 

be the telescope obtained by iterating / . Then 

(X) = {X) V {Cf) and 

{X)A{Cf) = {pt.). 

Two pleasant consequences of the thick subcategory theorem (4.4.3) are the following, 
which were the class invariance and Boolean algebra conjectures of [58]. 

THEOREM 6.2.7 (Class invariance theorem). Let X andY he p-localfinite CW-complexes 
of types m and n respectively (2.5.3). Then (X) = (Y) if and only if m = n, and 
{X) < {Y) if and only ifm>n. 

PROOF. Let Cx and Cy be the smallest thick subcategories of FH(p) containing X and 
Y respectively. In other words, Cx contains all finite complexes which can be built up 
from X by cofibrations and retracts. Hence each X' in Cx satisfies 

{X') < {X). 
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Since K{m — 1)*(X) = 0, all complexes in Cx strc K{m — l)*-acyclic, so Cx is 
contained in Fm. On the other hand, Cx is not contained in Fm+i since K{m)^{X) ^ 0. 
Hence Cx must be Fm by the thick subcategory theorem. Similarly, Cy = Fn-

It follows that if m = n then Cx = Cy so {X) = (Y) as claimed. The inequalities 
follow similarly. D 

For a p-local finite CW-complex Xn of type n (2.5.3), the periodicity theorem (2.5.4) 
says there is a i;n-niap / : S^Xn —• Xn. We define the telescope Xn to be the direct 
limit of the system 

Xn - ^ r^^Xn -^ S-^'^Xn " ^ ' ' ' (6.2.8) 

Since any two choices of / agree up to iteration (5.4.3), this telescope is independent of 
the choice of / . Moreover, 6.2.7 implies that its Bousfield classes (Xn) and (Xn) are 
independent of the choice of Xn, for a fixed n and p. 

THEOREM 6.2.9 (Boolean algebra theorem). Let FBA C BA be the Boolean subalgebra 
generated by finite spectra and their complements, and let FBA(p) C FBA denote the 
subalgebra of p-local finite spectra and their complements in {S? \). Then FBA(p) is the 
free (under complements, finite unions and finite intersections) Boolean algebra generated 
by the classes of the telescopes {Xn) defined above for n^O. In particular, the classes 
represented by finite spectra are 

(Xn) ^ /\ {x,r. 

In other words FBA(p) is isomorphic to the Boolean algebra of finite and cofinite sets 

of natural numbers, with (Xn) corresponding to the set {n}. 

Note that this is very similar to the Boolean algebra conjecture of [58, 10.8], in which 
(Xn) was replaced by {K{n)). The recently disproved telescope conjecture (6.5.5) says 
that these two classes are the same, and 6.2.9 is phrased so that it is independent of 6.5.5. 

PROOF OF 6.2.9. 6.2.6(iii) gives 

{Xn) = {Xn)y{Xn^i) and 

(Xn)A(Xn+l) = {pt.). 

This implies that 

(Xn) = {Xn>A(Xn+,)^ 

SO FBA(p) contains the indicated Boolean algebra. 
On the other hand, 6.2.6(iii) also implies that 

{Sf^)) = {Xo) = {Xn)W V {Xi), 
0<t<n 
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from which the identification of (Xn) follows. Hence the indicated Boolean algebra 
contains FBA(p). D 

6.3. The structure of (MU) 

The spectrum MU is described in [61, B.2]. It is known that its p-localization MU(p) 
splits into a wedge of suspensions of a 'smaller' spectrum BP, which is described in 
[61, B.5]. It follows that {MU(p)) = (BP) and 6.2.5 implies that 

{MU) = V(M[/(p)) = \/{BP) 

where the wedge on the right is over the BP's associated with the various primes p. 
The class (BP) can be broken up further in terms of various spectra related to BP. 

A detailed account of this can be found in Section 2 of [58]. The relevant spectra for 
our purposes are all module spectra (see [61, A.2.8]) over BP, which means that they 
are characterized by the structure of their homotopy groups as modules over JSP*. First 
we have P{n) with 

7r . (P(n) )=BP. / /n . 

In particular P(0) is BP by definition. Wurgler [81] has shown that each P{n) is a ring 
spectrum. Using the construction of [61, A.2.10], we can form the telescopes v~^BP 
and v~^P{n), which is denoted in the literature by B(n). Closely related to these are 
E{n) and K{n) (Morava K-theory) with 

E{n)^ = Z(p) [v\ ,V2,...,Vn,v^^] and 
(6.3.1) 

Finally we have i?/(p) the mod p Eilenberg-MacLane spectrum representing ordinary 
mod p homology. 

The following result was proved in [58]. 

THEOREM 6.3.2. With notation as above: 
(a) (B(n)) = {K{n)), 
(b){v-'BP) = {E{n)), 
(c)(P(n)) = ( i^(n)>V(P(n+l)) . 
(d)(J5(n))=Vr=o(^W). 
(e) {K{m)) A {K{n)) = (pt.) form^n and {H/{p)) A {K{n)) = (pt). 
(f) For E = K{n) or E = H/{p) and for any X, {X) A {E) is either (E) or (pt.). 
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6.4. Some classes bigger than (MU) 

For some time after conjecturing the nilpotence theorem, we tried to prove it by showing 
that {MU) = (S^). Eventually we disproved the latter by producing a nontrivial spectrum 
X with MU^{X) = 0. The main tool in this construction is Brown-Comenetz duality, 
which was introduced in [15]. Their main result is the following. 

THEOREM 6.4.1 (Brown-Comenetz duality theorem). Let Y be a spectrum with finite ho-
motopy groups. Then there is a spectrum cY {the Brown-Comenetz dual ofY) such that 
for any spectrum X, 

[X, cY]-i = HomimiX A F), R/Z). 

In particular, 7r^i{cY) = Hom(7ri(y), R/Z) and cH/{p) = H/(p). Moreover c is a 
contravariant functor on spectra with finite homotopy groups which preserves cofibre 
sequences and satisfies ccY = Y. 

From this it easily follows that if [X, cY] = 0, then TT^X A ccY) = 7r*(X A Y) = 0. 
Replacing Y by cY we see that if [X,Y] = 0 then TT^X A cY) = 0. Now if F is a 
finite complex with trivial rational homology and X = MU, one can show by Adams 
spectral sequence methods that [X, Y] = 0, so we conclude that 

PROPOSITION 6.4.2. If Y is a finite complex with trivial rational homology then 
MU4cY)=0. 

More details can be found in [58]. 
The existence of a nontrivial spectrum cY with MUi^{cY) = 0 means that {MU) < 

(5«). 
Actually the situation is more drastic, as the following result (also proved in [58]) 

indicates. 

THEOREM 6.4.3. There are spectra X{n)for 1 ^ n ^ oo with X{\) = S^ and X(oo) = 
MU such that 

{Xin))^{Xin+l)) 

for each n, with 

<x(p'=-i)(,))>(x(p%)> 

for each prime p and each fc ̂  0. 

The spectra X{n) also figure in the proof of the nilpotence theorem, so we will 
describe them now. They are constructed in terms of vector bundles and Thom spectra. 
Some of the relevant background is given in [61, B.l]. Let SU denote the infinite special 
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unitary group, i.e. the union of all the 5C/(n)'s. The Bott periodicity theorem gives us a 
homotopy equivalence 

nsu —̂  Bu 

where BU is the classifying space of the infinite unitary group. Composing this with the 
loops on the inclusion of SU{n) into SU, we get a map 

nSU{n) -^ BU, 

The associated Thorn spectrum is X{n). A routine calculation gives 

i? . (X(n) )=Z[6i , . . . ,6n- i ] 

where |6i| = 2i and these generators map to generators of the same name in H^{MU) 
as described in [61, B.1.15]. 

6.5. E{n)'localization and the chromatic filtration 

Bousfield's theorem gives us a lot of interesting localization functors. Experience has 
shown that the case E = E{n) (6.3.1), or equivalently (by 6.3.2(b)) v'^BP, is particu-
larly useful. 

DEFINITION 6.5.1. LnX is LE{n)X and CnX denotes the fibre of the map X -> LnX. 

The following result enables us to compute BP^{LnX) in terms of BP^{X). 

THEOREM 6.5.2 (Localization theorem). For any spectrum Y, 

BPALnY = YALnBP. 

In particular, ifv:^[^BP^{Y) = 0, then 

BPALnY = Y Av-^BP, 

i.e.BP4LnY) = v-'BP.{Y). 

The proof of this theorem and a description of LnBP will is given in [61, Chapter 8]. 
Using 6.2.2 and 6.3.2(d) we get a natural transformation Ln —> i>n-i-

DEFINITION 6.5.3. The chromatic tower for a p-local spectrum X is the inverse system 

LQX <— L]X <— LjX <— • • • X. 

The chromatic filtration of 7r*(-X') is given by the subgroups 

ker(7r.(X)-^7r. (LnX)). 
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This definition of the chromatic filtration is not obviously the same as the one given in 
3.5.2, which was in terms of periodic maps of finite complexes. The two definitions are 
equivalent if the telescope conjecture 6.5.5 is true. We will refer to these as the geometric 
(3.5.2) and algebraic (6.5.3) definitions of the chromatic filtration. 

The geometric definition is the more natural of the two. The advantage of the algebraic 
one is that there are methods of computing T^^[LnX), In particular, suppose A" is a p-
local finite CW-complex of type n (2.5.3) with i;n-map / . Let X be the telescope as 
in (6.2.8). Then K{n)^{f) is an isomorphism. The same is true of K{i)„{f) for z < n 
since K{i)^{X) = 0. Hence E{n)^{f) is an equivalence by 6.3.2(d). This means that 
the map X —> L^X factors uniquely through the telescope X, i.e. we have a map 

X ^ LnX. (6.5.4) 

Moreover 

BP.{LnX) = v-'BP.{X) 

and A is a BP*-equivalence. 

CONJECTURE 6.5.5 (Telescope conjecture). Let X be a p-local finite CW-complex of type 
n. Then the map A of {6.5A) is an equivalence. 

For n = 0 this statement is a triviality. The map / can be taken to be the degree p 
map and it is clear that X = Lo for any p-local spectrum X. 

For general n it is clear that the collection of p-local type n finite complexes satisfying 
6.5.5 is thick, so by the thick subcategory theorem it suffices to prove or disprove it for 
a single such complex. For n = 1, it was proved for the mod p Moore spectrum by 
Mahowald [44] for p = 2 and by Haynes Miller [47] for p > 2. The author has recentiy 
disproved it for the type 2 complex V(l) for p ^ 5; see [62] and [63]. In light of this, 
there is no reason to think it is true for n > 2. 

Now the Vn-torsion subgroup of T^*{X) as defined geometrically in 3.5.2 is the kernel 
of the map to 7r*(-X'), while the corresponding subgroup defined algebraically by 6.5.3 
is the kernel of the map to 'K^{LnX). These two subgroups would be the same if the 
telescope conjecture were true. 

What can we say when the telescope conjecture is false? The existence of the map 
A of (6.5.4) means that the algebraically defined subgroup contains the geometrically 
defined one. However we do not know that 7r#(A) is either one-to-one or onto. 

The localization LnX is much better understood than the telescope X. It was shown 
in [60] that in general Tx^{LnY) can be computed with the Adams-Novikov spectral 
sequence. This is particularly pleasant in the case of a type n finite complex X. In that 
case there is some nice algebraic machinery for computing the £?2-term of the Adams-
Novikov spectral sequence. Indeed, it was this computability that motivated this whole 
program in the first place. 
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We will illustrate first with the simplest possible example. Suppose our finite complex 
X is such that 

BP4X)^BP./In. 

Then BP^LnX) = v'^BFJIn and the £;2-term is 

ExtBP^(BP){BP.,v-'BP,/In). 

This is known to be essentially the mod p continuous cohomology of the n-th Morava 
stabilizer group Sn, described in 4.6. This isomorphism is the subject of [59, Chapter 6] 
and a more precise statement (which would entail a distracting technical digression here) 
can be found there and in the change-of-rings isomorphism of [61, B.8.8]. 

More generally, if X is a p-local finite complex of type n, then the Landweber filtration 
theorem 4.3.7 tells us that BP^{X) has a finite filtration in which each subquotient is a 
suspension of BP^/In^i for i ^ 0. When we pass to v~^BP^{X), we lose the subquo-
tients with i>0 and the remaining ones get converted to suspensions of v~^BP^/In-

Hence the Landweber filtration leads to a spectral sequence for computing the Adams-
Novikov spectral sequence jE2-term, 

ExiBP^(BP){BP.,BP4LnX)), 

in terms of i/*(5n). It is possible to formulate its E -̂term as the cohomology of Sn 
with suitable twisted coefficients. 

Finally, we remark that the nature of the functor Ln is partially clarified by the fol-
lowing. 

THEOREM 6.5.6 (Smash product theorem). For any spectrum X, 

LnX^XMn^. 

This will be proved in [61, Chapter 8]. We should point out here that in general LEX 
is not equivalent to X A LES^. Here is a simple example. Let E = H, the integer 
Eilenberg-MacLane spectrum. Then it is easy to show that LHS^ = S^. On the other 
hand we have seen examples (6.1.4(ii)) of nontrivial Y for which LH is contractible, so 

LHX^XALHS^ 

in general. 
The smash product theorem is a special property of the functors Ln- They may be 

the only localization functors with this property. The spectrum L\S^ is well understood; 
its homotopy groups are given in [58]. Its connective cover is essentially (precisely at 
odd primes) the spectrum J. 7r^{LnS^) is not known for any larger value of n. The 
computations of Shimomura-Tamura ([67] and [68]) determine 7r*(L2^(0)) for p ^ 5, 
where V{0) denotes the mod p Moore spectrum. 
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A consequence of the smash product theorem is the following, which is also proved 
in [61, Chapter 8]. 

THEOREM 6.5.7 (Chromatic convergence theorem). For a p-local finite CW-complex X, 
the chromatic tower of 6.53 converges in the sense that 

X - l i m L n X 

7. The proof of the nUpotence theorem 

In this section we will outline the proof of the nilpotence theorem; a more detailed 
account is given in [61, Chapter 9]. We have previously stated it in two different guises, 
in terms of self-maps (2.4.2) and in terms of smash products (5.1.4). For our purposes 
here it is convenient to give a third statement, namely 

THEOREM 7.0.1 (Nilpotence theorem, ring spectrum form). Let R he a connective ring 
spectrum of finite type and let 

7r,{R)-^ MU,{R) 

be the Hurewicz map ([61, A.3.4]). Then a G 7r*(jR) is nilpotent ifh{a) = 0. 

In [22] it is shown that the two previous statements are consequences of the one above. 
To show that 7.0.1 implies 2.4.2, let X be a finite complex and let R = DXAX. Recall 
that a self-map / : E'^X - • X is adjoint to a map / : S"^ -^ R. We claim that h{f) is 
nilpotent if MU„{f) is. 

To see this, observe that if MUi^{f) = 0, then MU A f~^X is contractible, where 
f~^X denotes the homotopy direct limit of 

X JU r-^x -^ r-̂ ^x -^ •... 

Since X is finite, this means that for large enough m, the composite 

^mdj^ JZ^X —^MUAX 

is null. Then / i( /^) = / i ( / )^ = 0, so h{f) is nilpotent. 
Theorem 2.4.2 is a special case of the following statement, which is derived from 7.0.1 

in [22]. Suppose we have a sequence of maps of CW-spectra 

Y •'"• Y Jn-\-\ Y 
' ' ' ^ -^n ^ -^n+1 ^ ^n-l-2 ^ * ' * 

with MU*{fn) = 0 for each n, and suppose there are constants m ^ 0 and b such that 
each Xn is (mn-f6)-connected. Then the homotopy direct limit lim_ Xn is contractible. 
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PRCX)F THAT 7.0.1 IMPLIES 5.1.4. (In the following argument, MU could be replaced by 
any ring spectrum for which 7.0.1 holds.) In the former we are given a map 

with F finite. It is adjoint to a map 

S^MxADF 

where DF is the Spanier-Whitehead dual (5.2.1) of F. Now / is smash nilpotent if and 
only if / is, and MU A / is null if and only if MU A / is. 

This means that it suffices to prove 5.1.4 for the case F = S .̂ The hypothesis that 
MU A / is null is equivalent (since MU is a ring spectrum) to the assumption that the 
composite 

S^ -^X > MUAX 

is null. Since X is a homotopy direct limit of finite subspectra Xa ([61, A.5.8]), both 
the map / and the null homotopy for the composite above factor through some finite 
Xa, i.e. we have 

S^ -^Xa ' MU A Xa 

and the composite is null. 
Now let Y = S^Xa, where n is chosen so that Y is 0-connected. Let 

R=\/Y^^^, 

this is a connective ring spectrum of finite type with multiplication given by concatena-
tion. Theorem 7.0.1 tells us that the element in 7r*(i2) corresponding to / is nilpotent. 
This means that / itself is smash nilpotent, thereby proving Theorem 5.1.4. D 

7.1. The spectra X{n) 

Recall the spectrum X{n) of 6.4.3, the Thom spectrum associated with QSU{n), It is a 
ring spectrum so we have a Hurewicz map 

h{n) 

TT.iR) ^ X{nUR). 

In particular X ( l ) = S^ so /i(l) is the identity map. The map X{n) -^ MU is a 
homotopy equivalence through dimension 2n - 1. It follows that if h{a) = 0, then 
h{n){a) — 0 for large n. Hence, the nilpotence theorem will follow from 
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THEOREM 7.1.1. With notation as above, ifh{n -h l)(a) = 0 then h{n){a) is nilpotent. 

In order to prove this we need to study the spectra X{n) more closely. Consider the 
diagram 

nSU{n) nSU{n-\-\) fi52n+i 

nsu{n) Bk 

(7.1.2) 

JkS In 

in which each row is a fibration. The top row is obtained by looping the fibration 

SU{n) -^ SU{n 4- 1) - ^ 5̂ "+̂  

where e is the evaluation map which sends a matrix m € SU{n -f 1) to mu where 
u e C^^^ is fixed unit vector. 

The loop space QS^^"^^ was analyzed by James [33] and shown to be homotopy 
equivalent to a CW-complex with one cell in every dimension divisible by 2n. JkS^^ 
denotes the fc* space in the James construction on 5^", which is the same thing as the 
2nfc-skeleton of i?5̂ '̂ "^^ It can also be described as a certain quotient of the Cartesian 
product {S'^'')^. The space Bk is the pullback, i.e. the i?5l7(n)-bundle over JkS'^'' 
induced by the inclusion map into HS^'^'^K 

PROPOSITION 7.1.3. H^{fiSU{n)) = Z[6i,62,• • • ,&n-i] ^ith \bi\ = 2i, and 

H,{Bk)cH,{nSU{n+l)) 

is the free module over it generated by b\ for 0 ^i ^k. 

Now the composite map 

Bk —> nSU{n ^\)—^BU (7.1.4) 

gives a stable bundle over Bk and we denote the Thom spectrum by Fk. Thus we have 
FQ = X{n) and F^o = A'(n -h 1). We will be especially interested in Fpj_i, which we 
will denote by Gj. These spectra interpolate between X{n) and X{n'\- 1). 

The following three lemmas clearly imply 7.1.1 and hence the nilpotence theorem. We 
will prove the first two. 

LEMMA 7.1.5 (First lemma). Let a~^R be the telescope associated with a € '7T^{R). If 
a~^RAX{n) is contractible then /i(n)*(a) is nilpotent. 

LEMMA 7.1.6 (Second lemma). lfh{n -h l)(a) = 0 then Gj A a'^R is contractible for 
large j . 



386 D.C Ravenel Chapter 9 

The following is the hardest of the three and is the heart of the nilpotence theorem. 
We refer the reader to [61, Chapter 9] for the proof. 

LEMMA 7.1.7 (Third lemma). For each j > 0, (Gj) = {X{n)), In particular (Gj) = 
(G,-f,). 

PROOF OF THEOREM 7.1.1. We will now prove 7.1.1 assuming the three lemmas above. 
If h{n 4- l)(a) = 0, then the telescope a~^RA Gj is contractible by 7.1.6. By 7.1.7 
this means that a~^RA X{n) is also contractible. By 7.1.5, this means that h{n){a) is 
nilpotent as claimed. D 

7.2. The proofs of the first two lemmas 

First we will prove 7.1.5. The map a: 5^ —> /? induces a self-map 

r^fi - ^ R, 

The spectrum a''^RAX{n) is by definition the homotopy direct limit of 

aAX(n) aAX(n) 
RAX{n) ^ r-^iZAX(n) ^ ••• 

It follows that each element of X{n)^{R), including h{n){a), is annihilated after a finite 
number of steps, so h{n){a) is nilpotent. 

We will now outline the proof of 7.1.6. It requires the use of the Adams spectral 
sequence for a generalized homology theory. It is briefly introduced in [61, A.6], and a 
more thorough account is given in [59]. Fortunately all we require of it here is certain 
formal properties; we will not have to make any detailed computations. 

We need to look at the Adams spectral sequence for 7r*(y) based on X{n-{- l)-theory, 
fovY — RA Gj, Gj and R. They have the following properties: 

(i) The E2-term, E2^{Y) can be identified with a certain Ext group related to 
X(n -f l)-theory, namely 

Ext^U) .{X(n+. ) ) (^("+ l ) . , ^ ( n + l ) . ( n ) -

This follows from the fact (proven in [22]) that X(n -h 1) is a flat ring spectrum 
([61, A.2.9]). 

(ii) E2^{Y) vanishes unless s is non-negative and t - s exceeds the connectivity of 
Y 

(iii) a corresponds to an element x G E2^'^^{R) for some 5 > 0. This follows from 
the fact ([61, A.6.5]) that h{n -f l)(a) = 0. The group of permanent cycle in 
£^'*(y) is precisely the Hurewicz image of 7r*(y) in X{n -h \)*{Y). 

In addition we have the following property. 
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LEMMA 7.2.1. E^'^Gj) and El'\R A Gj) vanish for all {s,t) above a certain line of 
slope 

1 
Ip^n - 1 

(This is called a vanishing line.) 

E^'' 

We will prove this at the end of this section. 
The situation is illustrated in the following picture, which is intended to illustrate 

{RAGJ). AS usual the horizontal and vertical coordinates are ^-5 and s respectively. 
The powers of x all lie on a line through the origin with slope s/d. The broken line 
represents the vanishing line for E2. E^'^ = 0 for all points (s, t) above it. For large 
enough j , the vanishing line has slope less than s/d and the two lines intersect as shown. 
It follows that X and hence a A Gj are nilpotent, thereby proving 7.1.6. 

PROOF OF LEMMA 7.2.1. We will construct a noncanonical X{n -h l)-based Adams 
resolution for Gj, i.e. a diagram of the form 

Gj = Xo ^ 

'•I 
90 

K, 

X2 

K2 

(7.2.2) 

as in [61, A.6.1], such that the spectrum Kg is {Isp'n - s)-connected. This will give 
the desired vanishing line for £2(0j). We can get a similar resolution for R A Gj by 
smashing (7.2.2) with R, thereby proving the vanishing line for £^(7? A Gj). 
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Recall that Gj is the p-local Thorn spectrum of the bundle over B^j-x, which is the 
puUback of the fibre square 

B, y - i nsu{n-^\) 

Jp^^iS^"" ns'-''^' 
H 

- QS^^""^^ 

QS^rPn^x 

(7.2.3) 

The space Jpj^i S^^ is known (after localizing at p) to be fibre of the Hopf map H as 
shown. It follows that the same can be said of Bpj^\. 

The map /o of (7.2.2) is the Thomification of the map IQ of (7.2.3). We will obtain 
the other maps fs of (7.2.2) in a similar way. Let 

Lo = nSU{n+l), 

Y\ =Cio. 

For 5 ^ 0 we will construct cofibre sequences 

Ys —* La —> Vs+i 

which will Thomify to 

fs 

(7.2.4) 

^s+l (7.2.5) 

where Kg is a wedge of suspensions of X(n -f 1) with the desired connectivity. 
Our definitions of Ys and Lg are rather long winded. For simplicity let 

X = Bpj_i, 

E = nSU{n+l), 

B = ns^^""-^^ 
and for 5 ^ 0 let 

S factors 

Gs = ExBX'"X B, 

Define maps it : Gs —• Gs^\ for 0 ^ t ^ s + 1 by 

it{e,b\,b2,"''>bs) = < 

(e,6i,62,-*-,b5,*) 

[(e,/(e),6i,62,---,&5) 

if t = 0, 

-bs) if I ^t^s, 

if t = 5 + 1. 



Section 7 Stable homotopy theory 389 

(The astute reader will recognize this as the cosimplicial construction associated with the 
Eilenberg-Moore spectral sequence, due to Larry Smith [69] and Rector [65].) 

Then for 5 ^ 1 we define 

Ys =Gs-i/im 2o Uim 2i U • • • Dim is-\, 

Ls = Gs/im zoUim ii U • • • Uim is-\-

Then for 5 ^ 0, î  induces a map Ys —• Lg giving the cofibre sequences of (7.2.4). For 
5 > 0 there are reduced homology isomorphisms 

This shows Lg has the desired connectivity. 
Projection onto the first coordinate gives compatible maps of the Gg to E, and hence 

a stable vector bundle over each of them. This means that we can Thomify the entire 
construction. We get the cofibre sequences (7.2.5) defining the desired Adams resolution 
by Thomifying (7.2.4). D 

One can also prove this result by more algebraic methods by finding a vanishing line 
for the corresponding Ext groups; this is the approach taken in [22]. The slope one 
obtains is 

1 
p^+^n- 1 

which is roughly 2/p times the slope obtained above. In particular there is an element 

i^n,j 

which is closely related to a self-map of Gj to be defined below (7.3.3). (Proving the 
third lemma amounts to showing that this map is nilpotent.) All that we need to know 
about the slope here is that it can be made arbitrarily small by increasing n. 

7.3. The proof of the third lemma 

In this subsection we will outline the proof of the third lemma, 7.1.7. We need to show 
that (Gj) = (Gj-i-i). Recall that Gj = Fpj^u and H^{Fk) is the free module over 
H,^{X{n)) generated by 6Ĵ  for 0 ^ 2 ̂  A;. One has inclusion maps 

X{n) = Fo^Fi ^F2^-" 

with cofibre sequences 

Fk^,-^Fk—^E^'-X{n), 
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From this it follows immediately that 

(Ffc) ^ (X(n)> 

for all fc ^ 0. 
It can also be shown that (after localizing at p) there is a cofibre sequence 

In particular we have 

Gj = Fpj_i ^ f2pj-i "-* •••F(p^i)pj_i ^ Fpj+i-i = Gj^i 

where the cofibre of each map is a suspension of Gj. This shows that 

(Gj) > (G^+i). (7.3.1) 

It is also straightforward to show that there is a cofibre sequence 

Gj — • Gj+i — • £" " -F(p-i)pj-i 

which induces a short exact sequence in homology. Thus we can form the composite 
map 

Gj+i —^ E ^^F(p_i)pj_i —• E '^^Gj+i 

in which the first map is surjective in homology while the second is monomorphic. We 
denote this map by Vn^j-

Then there are cofibre sequences 

Gj+, ''— » r2"'^G,+, - ^ /Cnj (7.3.2) 

and 

The first of these shows that 

(G,+,) > {Knj). (7.3.4) 

Using 6.2.6(iii), we see that if the telescope b~jGj is contractible then we will have 

(i^n,,) = {Gj) SO 

(G,+,) = {Gj) by (7.3.4) and (7.3.1). 



Section 7 Stable homotopy theory 391 

Thus we have reduced the nilpotence theorem to the following. 

LEMMA 7.3.5. Let 

be the map of {133). It has a contractible telescope for each n and j . 

This is equivalent to the statement that for each finite skeleton of Gj, there is an iterate 
of bn,j whose restriction to the skeleton is null. 

PROOF. We need to look again at (7.1.2) for A: = p̂  - 1. The map 

is known (after localizing at p) to be the inclusion of the fibre of a map 

Thus the diagram (7.1.2) can be enlarged to 

t t " 
nSUin) nSU{n+l) 1252"+' 

t t t 
nSU{n) Bpj_, Jpi^iS^"" 

1 t 
^252np^+l ^ ^2^2np^ + l 

in which each row and column is a fibre sequence. 
Of particular interest is the map 

We can think of the double loop space fi'^S^'^^'^^ as a topological group acting on the 
space Bpj^i, so there is an action map 

Recall that Gj is the Thom spectrum of a certain stable vector bundle over Bpj_i. 
This means that (7.3.6) leads to a stable map 

S'^n^S^^^-^^ A Gj - ^ Gj. (13.1) 
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Here we are skipping over some technical details which can be found in [22, §3]. 
The space Q'^S^'^^'^^ was shown by Snaith [72] to have a stable splitting. After 

localizing at p, this splitting has the form 

i>0 

where each Di is a certain finite complex (independent of n and j) with bottom cell in 
dimension 0. Moreover there are maps 

S^ = Do-^Di-^D2 — 

of degree 1 on the bottom cell, and the limit, lim_^ Di, is known to be the mod p 
Eilenberg-MacLane spectrum H/{p). 

In [22, Proposition 3.19] it is shown that our map bnj is the composite 

and 6JĴ j is the composite 

Thus we get a diagram 

Gj ^J^—. Dx A Gj ^^^^ » D2 A Gj 

±-i—. r-î -̂ 'G,- ^^^^ r-̂ î -̂ iG,-

(7.3.8) 

This means that the map 

Gj —* b^^Gj 

factors through Gj A H/{p). 
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Now consider the diagram 

Gi 

ftn.i 

r-i''"'̂ 'G,-

-*G^^H|{p) 

b„,jAH/{p) 

K]fii 

K]fi, 

The middle vertical map is null because 6n,i induces the trivial map in homology. Passing 
to the limit, we get 

KlPi pt. K]fii 

with the composite being the identity map on the telescope b^jGj. This shows that the 
telescope is contractible as desired. D 
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1. Introduction 

The problem we want to discuss is that of calculating the homotopy groups of spheres. 
We will give a somewhat historical approach to this problem. We will not give detailed 
calculations but will discuss the methods which yield such calculations. The emphasis 
will be on general theorems rather than particular detailed calculations. 

The difference between stable and unstable calculations is a consequence of the 
Freudenthal suspension theorem, one of the early general results. 

THEOREM \A.Ifk<n-\, then i^k^niS^) is independent ofn. 

These groups, 7rk^n{S^)y for n - 1 > A:, are usually called the stable stems. Work of 
Adams produced methods to study these groups as a separate problem. This work was 
one of the important ingredients in the development of the stable category and spectra. 
Our emphasis will be on the connection between the unstable groups and the stable 
groups. The Adams spectral sequence will be discussed in connection with Theorem 1.9 
and in other parts of this book. 

Historically, the next major step was the introduction of the EHP sequence first intro-
duced by James at the prime 2 and by Toda at odd primes. 

THEOREM 1.2 (James). There is a 2 primary fibration 

To state Toda's result we need a modified definition of an even sphere. Let 

This is a CW-complex with p - 1 cells, one in each dimension divisible by 2n up to 
2 n ( p - l ) . 

THEOREM 1.3 (Toda). There are p primary fibrations 

The proofs of these results are easy calculations with the Serre spectral sequence. They 
represent an early success of the Serre spectral sequence technique. 

We can piece together these exact sequences to get the EHP spectral sequence which 
is the spectral sequence of the filtration 

n^s^ -> 12252- . . . . r?^5^->.. . (1.1) 

Toda and James' theorems allow us to identify the E\ term of this spectral sequence. 
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THEOREM 1.4. Forp = 2 there is a spectral sequence converging to 7r^{QS^) with 

^f'" = 7r„+fc(52"-'). (1.2) 

For odd primes we have 

and 

In both cases the indexing is such that 

dr : ^ ^ " -^ £;fc-l.n-r 

and E^"" is the associated graded group for nk{QS^) filtered by sphere of origin, i.e. by 
the images of 7r)k(f2^5'*) (with 5̂ "̂  replaced by S^"^ when p is odd). 

When 

a€nk{QS^) 

corresponds to an element 

then a desuspends to the n-sphere and we will call /3 the Hopf invariant of a. We use 
the equation 

HI(a) = /3 

to represent this connection; /3 can also be regarded as a coset in E\. 
There are several general results about this spectral sequence. 

THEOREM 1.5. At all primes El'^ is a Fp vector space. 

For p odd this follows from early work of Toda. For p = 2 it follows from work of 
James although not so directly. The details are in [5]. 

Theorem 1.5 has the following obvious corollary. 

THEOREM 1.6. Let S'^{n) be the n-connected cover of S"^. Then 

p2n^^^52n+l(2n+l})=0. 

Cohen, Moore and Neisendorfer have improved this result to the following. 

THEOREM 1.7. Forp odd, P^TT (̂5^^+ (̂271 -f 1)) = 0. 
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Gray [22] has shown that this is the best possible by constructing elements of the 
appropriate order. 

In Section 4 we will discuss the 2-primary exponent question in some detail. 
In [4] Adams shows that it makes sense to localize BSp, the classifying space of the 

symmetric group, at a prime p. If p = 2 then BE2 is already 2-local and is just the real 
projective space P, If p is odd, then we will denote this space by B, As a CW-complex, 
B has one cell in each dimension congruent to 0, - 1 mod q, where Q' = 2(p - 1). We 
will use Bl to denote the subquotient of B with top cell in dimension t, and bottom cell 
in dimension b. If ^ = 00, then we will omit the superscript. If 6 = ^ - 1, then we will 
omit the subscript. 

The following is due to Toda. We will discuss the proof in Section 2 where we give 
some additional applications of these results to embedding homotopy spheres. 

THEOREM 1.8. \)Atp = 2, the partial filtrations {Q'^S'^-^^, Q^'-^'S''-^^-^) admit a map 

which is a homotopy equivalence through dimension 3(n + 1 - fc) - 3. 
ii) At p odd, the partial filtrations (/22n-i52n^ ^2n-2*52n-2*+i) ^^^^ a map 

(f22"-'52",r22n-2A:5.2n-2fc+l) _ , ( Q ( r B , 7 „ - ' , ^ , ) _ , ) , *) 

which is a homotopy equivalence through dimension 2{n — k -\- l){p^ — I) — 2. 

The Adams spectral sequence has turned out to be a powerful tool in studying 7r*(5^), 
the stable groups. The main result is the following. For a fixed prime p, let A denote the 
mod p Steenrod algebra. 

THEOREM 1.9. There is a spectral sequence with 

and such that 

where Zp is the p-adic integers. 

Novikov extended these ideas to other spectra and in particular, MU. This work has 
been extremely influential in subsequent work. This work is discussed in some detail in 
Ravenel [46]. We will concentrate on other approaches. 

There have been several approaches to the problem of an unstable version of the 
Adams spectral sequence. There was the work of Massey and Peterson in [42] and [43], 
the approach based on the restricted lower central series taken in [9], and the most general 
approach carried out in [10]. 
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The main unstable result for spheres is the following: 

THEOREM I.IO. For each n there is a spectral sequence with 

^2 =Ext^'^(Fp,Fp) 

and such that 

{E'/}^7rt-s{n''S'')^zZp. 

The difference between this and 1.9 is that H*{S'^\ Fp) = Fp is to be regarded as an 
object in the category of unstable A-modules and the Ext group is taken in this category. 
Refer to [42], [43], and [10] for a study of unstable A-modules. The construction given 
in [9] provides an explicit £i-term for the sphere in terms of a certain graded Fp algebra 
called the Lambda algebra. This will be described in more detail in section 2. In particular 
this description of an £ î-term immediately leads to the following result which extends 
the unstable Adams spectral sequence for spheres to the EHP sequence. See [15]. 

THEOREM l . l l . There is a map of unstable Adams spectral sequences 

At EQO this map is compatible with the suspension homomorphism and at E2 it fits into 
the following long exact sequence of F^i-terms: 

^ El'^S"") -^ E'/{S''^^) ^ E'f^''-''-^ (5^^+^) -^ El'^^'\S'') ^ •. • 

In Section 4 we will discuss the applications of this result and the connection with 
Theorem 4.4. 

Another important direction has been localizations. These ideas will require the in-
troduction of several additional notions. We begin with the following two contrasting 
theorems. 

THEOREM 1.12 (Nishida). If a £ '^j{S^) and j ^ n then some smash product of a, 

SJk ^ s""^ is inessential. 

THEOREM 1.13 (Adams). Let 5^ - ^ 5^ be the suspension of the Hopfmap. Let 

be an extension ofrj. Then all smash products (L^P^)^ —• S^^ are essential. 

The first theorem suggests that, as a ring, 7r*(S )̂ will be very bad. The second theorem 
says that [M*(2), S^] has a chance of being nicer. This suggests the following definition. 
We let M^{p) denote the mod p Moore space with top cell in dimension j . 
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DEnNiTlON 1.14. Let irj{X;Z/p) be the homotopy classes of maps from M^{p) into 
X. Let V : M-̂ "*"̂ (p) -* M^{p) be a map such that all iterates of v are essential. Let 
v-^7r,{X;Z/p) = i^,{X\Z/p) ^z[v] Z\v,v-\ 

Adams constructed such a map in [1]. It is denoted by A or v\ (v\ if p = 2). All iterates 
of v\ are essential due to the fact that this map induces an isomorphism in if-theory. 
Clearly t;f V*( ; Zjp) is a homotopy theory in the sense that it is exact under fibrations 
and satisfies the other axioms for a homotopy theory. When we apply this theory to the 
EHP sequence we get complete answers. We will discuss this in Sections 4 and 5. 

2. The A algebra 

In [9], the authors construct the A algebra. This has been a very powerful tool in under-
standing EHP phenomena. We will give its definition and some properties. In addition, 
we conclude with a new result illustrating how it can be used to get EHP information. 

The A algebra, for p = 2 is a bigraded F2 algebra generated by elements, \i with 
z = 0 , 1 , . . . with bigrading given by 

|Ai| = (1,2+1) 

and which satisfy the relations 

for j > li. A monomial is admissible if lik ^ ijfc+i and the relations imply that A has a 
F2 basis consisting of admissible monomials. 

In A there is a boundary operator given by 

[n/2] , _ .. 

THEOREM 2.1. The A algebra satisfies 

if^'*=Ext7(F2,F2). 

This is the E2 term of the Adams spectral sequence. 

Let A{n) C Aht the subspace generated by admissible monomials Ai , , . . . , Â^ with 
ii ^ n. Then we have: 

THEOREM 2.2. The subspace A{n) is closed under the differential and 
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In addition there is a short exact sequence of chain complexes 

0-^A{n-\)-^ A{n) -^ \nA{ln) -^ 0 

which gives rise to an EHP long exact sequence 

For p odd the Lambda algebra is a generated over Fp by elements At, i ^ 1, and fii, 
2 ̂  0, of bidegrees {l,qi-l) and (1,gi), respectively. Here q stands for the ubiquitous 
integer 2(p— 1). There are Adem relations analogous to those for the prime 2 (only a little 
more complicated to state - see [9]), and the result is that, as an Fp vector space, there 
is a basis consisting of admissible monomials. A monomial is considered admissible if, 
whenever XiXj or At/Xj occurs, then j < pi, and whenever p^iXj or fii/ij occurs, then 
j < pi. There is a differential analogous to the one for p = 2, and again we have 
subcomplexes A{n) defined as follows. A{2m) is the subcomplex with basis consisting 
of admissible monomials beginning with Xi, i ^ m, or /Xi, i < m. A{27n -h 1) is the 
subcomplex with basis consisting of admissible monomials beginning with Xi, i ^ m, 
or /Xi, z ^ m. 

The theorem is as follows. Note the difference in indexing from the prime 2 case. 

THEOREM 2.3. The subspace A{n) is closed under the differential and 

H*'*{A{n),d)=E;''{S^) 

(actually S^^ ifn = 2m). There are short exact sequences of chain complexes 

0 -> A{2n - 1) -^ A{2n) -> XnA{2pn - 1) -^ 0, 

0 -> A{2n) -^ A{2n + 1) -> finA{2pn 4-1) -> 0 

which give rise to EHP long exact sequences 

^E^^^^^S^"") - . . . . 

The original paper [9] and Tangora's Memoir [48] are good places to follow up on the 
A algebra. 

We close this section with a new result. For simplicity, we let p = 2. This is concerned 
with Toda's theorem [52]. M. Barratt constructed a map from QS^ —> QE^Pn which 
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factors through {QS"^, S"^) and is a homotopy equivalence in the Toda range. It is clear 
that this map can not be filtered so as to give a map of Adams spectral sequences. We 
can prove the following result. This is one of main results of [31] except that the range 
there is only t - s < 2n - 2. 

THEOREM 2.4. There is a mapping for t — s <3n — 3 

Ext'/{F2, F2) - . Ext^'-'-' {H*{Pn), F2) 

which projects to Toda's map. 

PROOF. We begin with 

A{n-l)-*A-^A/A{n-l). 

This gives a long exact sequence 

• • • -^ ^2*-' (5") -^ Ext^' (F2, F2) -* H''' {A/A(n - 1), d) 

-»E2'*"'''(5") -^•••. 

We write 

A/Ain-l) = ^XiA{2i). 

We also have a A algebra complex for the stable homotopy of Pn, 

The differential in A{Pn) is given by 

and the differential in A/A{n - 1) is given by 

dXjXj = XjdXj + y . ( jXj-iXi-iXj. 

The difference between these two differentials is that when expressions like ej^iXi^iXj 
are made admissible, the ej-i does not change while in expressions like Xj-iXi-\Xi the 
leading Xj-i might change. To complete the proof we need only look at those dimensions 
where this change can not happen. This gives the theorem. H] 
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3. The calculation of some Whitehead products 

In this section we will show how the main theorem of the last section can be used to 
calculate some Whitehead products. We begin with the following commutative diagram 

1 i 1 
5 " y QS"" y (Q5^,5^) 

This shows that the boundary homomorphism in the long exact sequence in homotopy 
induced by the top row, usually denoted by P , factors through the boundary homomor-
phism of the bottom row. Thus P is the composite 

The map P has a connection with the Whitehead product which we now define. 
Let a G 7rp^\{X) and (3 G 7rq^\{X) be two homotopy classes. Choose representatives 
/ : EP-^^, dEP-^^ -^X,*andg: E'^^^, dE^^* -^ X, *. Let 

5 = E^^ X dE"^-^^ U dEP-^^ x f;^+^ 

Let ft : 5 -^ X be defined by h{x,y) = f{x) if x E E^-^^ and y e dE"^-^^ and 
h{x, y) = g{y) otherwise. The homotopy class of h represents a class 

[a,/3]G7rp^,+,(X). 

This class is called the Whitehead product. For some properties see [53]. 
Let L E T^n[S'^) be a generator and let /3 € T^jiS^) be some other class. We have the 

following result. 

PROPOSITION 3.1. ///3 is a suspension class then the Whitehead product [6,/3] is equal 
to the composite Ŝ "̂ """̂  -^ Q'^S'^'^'^^ -* 5"* where the first map is the n - I fold 
suspension of /3. 

Putting together what we have so far gives us the following. 

PROPOSITION 3.2. Suppose j < 2n-\anda e 7rj{S''). If the composite S^ ^ 5"" -> Pn, 
where the first map is a and the second is the inclusion map, is inessential, then [L, a] = 0. 

It would be nice if this would be necessary and sufficient but it is not. A complete set 
of necessary and sufficient conditions are not known. We will give some which allow 
one to settle most of the cases involving the first few stems. 

PROPOSITION 3.3. If there isak <n-\ such that the composite S^ -^ S"^ -^ Pn is not 
in the image of the pinch map Pn-k —* Pn considered as a stable map, then [t, a] ^ 0. 
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We can apply these two results to the generator of the stable three stem, v. We are 
only looking at the 2-primary part of the calculation too. The tables in [31] show that 
the map S^^^ —^ Pn representing v is nonzero except if n = 7 (mod 8). Thus in 5^*~^ 
[i, I/] = 0. A further look shows that in the remaining cases, with the exception of 
n = 5 (mods), the map 5'̂ "'"̂  -^ Pn representing v is not in the image of Pn-A —̂  Pn 
and so in these cases [i,v\ ^ 0. This leaves the troublesome case of n = 5 (mod 8). 
We have the following theorem which illustrates how to use Theorem 2.4 in answering 
questions like this. 

THEOREM 3.4. Suppose n = 5 (mod 8). Then [L, U] G 7r2n+25''' is not 0 unless n = 2' - 3 
and hih\ is a permanent cycle in the Adams spectral sequence. In this case it is 0. 

PROOF. Suppose n = 5 (mod 8). Then the map S'^'^^ —• Pn representing u is essential and 
so we have to consider the boundary homomorphism 9 : 'Kn-\-^{QS'^, S^) —̂  iTn^iS^. It is 
enough to show that the map S^'^^ —• Pn representing i/ either is or is not in the image 
of 7rn-f.3(Q5 )̂ -^ 7rn+3(QS"",S'̂ ). To settle this we use 2.4. The map 5^+^ -^ Pn 
representing i/ has Adams filtration 1 and so if it is in the image of TTn-^-^iQS^) -> 
TTn-^^iQS'^, 5'̂ ) there must be a class in Ext̂ '̂*" (̂F2, F2) which could map to this class 
in Exi^f''^'^{H*{Pn),F2). By Adams' calculation, this happens only if n = 2̂  - 3. It 
is easy to verify that in this case hih\ maps to the class in Ext]^'^^{H*{Pn),F2). It 
remains to show that hih\ is a permanent cycle in the Adams spectral sequence. That 
argument is the content of the paper [35]. D 

The work of Hsiang, Levine and Szczarba [27] gives some additional applications of 
these ideas. Consider the following diagram. 

Vn — ^ BO{n) — ^ BO 

'̂4 "̂4 '4 
FVn — ^ BF{n) —̂ ^̂ ~-> BF 

The top row is the usual fibration for vector bundles. The bottom row is the corresponding 
fibration for spherical fibrations. We use the facts that QBF is homotopically equivalent 
to the 1 component of QS^ and QBFn is homotopically equivalent to the 1 component 
of Q^S'^. Then the work of the preceding section shows the following. 

PROPOSITION 3.5. In the above commutative diagram the map Vn —^ FVn is a homotopy 
equivalence through dimension 2n ~ 2. 

We can characterize the various spaces in this diagram by the following geometric 
properties: 

- The space Vn classifies stably trivial n-plane bundles with a given trialization. 
- The space BO{n) classifies n-plane bundles. 
- The space BO classifies stable vector bundles. 
- The space FVn classifies stably trivial (n - l)-spherical fibrations with a given trivi-

alization. 
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- The space BFn classifies (n — l)-spherical fibrations. 
- The space BF classifies stable spherical fibrations. 

Consider a homotopy class 5-̂  -^ 5̂ ^ —• Ki, which we will call a. If j <2n- I then 
j \ ^ is an isomorphism. By a result of Barratt and Mahowald [6], zu is a monomorphism 
(for j > 15). So if ji^iuict) = 0, then a represents a stably trivial n-plane bundle 
over S^ which is fiber homotopically trivial. One of the main results of [27] is that such 
bundles are normal bundles to embedded exotic spheres. In particular, since ji* is an 
isomorphism in this range, we see that there is a classes a G 7rj^\{BF) ~ Trj{QS^). 
Kervaire and Milnor [28] have shown that each homotopy class in 7rj{QS^) corresponds 
to an exotic sphere or to a manifold with Kervaire invariant one. Let Ea be the exotic 
sphere associated with a. The main result of [27] in this setting is the following. 

THEOREM 3.6. The exotic sphere E^ embeds in BT'^^ with normal bundle iu{a). If a 
is essential, then this normal bundle is essential. 

From the EHP sequence point of view we translate this result to the following. Let 
/? G nj{QS^) desuspend to 7rĵ _n-fi(5''̂ "*'̂ ) where it has a non trivial Hopf invariant 
HI(/3) G TTj^n^iiS^'''^^). This gives the following diagram: 

1 1 ••! 1 

1 1 
0(n) » O > K —^-^ BO{n) 

1 I 
0{n) ^ O(Ti-fl) ^ 5" -^-^ BO{n) 

First note that 2u(HI(/3) ^ 0. If we assume that j < 2 n - 1 , then 12* is an isomorphism 
and thus 0 defines a class (ziiJ*)*(HI(^)) G 7rj(Ki). Finally, di is a monomorphism 
and so /3 with the above properties defines an n-plane bundle 7 = (9iiii^^)(HI(/3)). The 
Hsiang, Levine and Szczarba theorem asserts that if the exotic sphere is embedded in 
W'^^ then the normal bundle to that embedding is 7 as constructed above. At the time 
of their work, there were only a few examples of this. The results of [35] give a large 
number of interesting examples. In particular, each class r]j e ^23 (QS^) corresponds to 
a class which desuspends to S^^"^ where it has }ll{rjj) = 1/ G 7r2j+i_2(5'̂ '̂̂ ^~ )̂- Thus 
the exotic sphere associated to 77̂ , Er^j is of dimension 2 .̂ It embeds in R^^ "^ with 

a nontrivial normal bundle classified by the composite S^^ -—^ S^^~^ - ^ B0{2^ — 3) 
where r is the tangent bundle. 

There is an interesting problem connected with these results. The bundle 7, associated 
with /3, does not have geometric dimension 3 by a result of Massey [41]. We want to 
find the minimal k such that the bundle over 5^ factors through 7rj{BO{k), It is clear 
that 3 < fc < [j/2]. 
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4. The v\ EHP sequence 

In this section we wish to look at the EHP sequence in vi-periodic homotopy theory 
which is defined in Section 1. (See 1.14.) At odd primes the result is quite simple. We 
have the result of Thompson [50]. First we recall that for any space there is a James-
Hopf map jp : fi^E^X -^ QDk^pX where Dk,pX is the equivariant half smash product 
of X with a certain configuration space. See [13], [14] for a precise construction of jp. 
In the special case where X is S^ and fc = 2n-h 1, we have that jD2n+i,p'S^ = B^^ after 
localizing at p. 

THEOREM 4.1. There is a James-Hopf map 

jp : 122^+^52^+^ —>Q(B^^) 

which induces an isomorphism in v\ -periodic homotopy. 

We wish to combine this with the following stable result [16]. 

THEOREM 4.2. There is a stable map M(p^) —> B^^ which induces an isomorphism in 
v\ -periodic homotopy. 

Using these two isomorphisms we have an isomorphism of the vj-periodic homotopy 
of i72'^+i52n+i ^^^ ^^^ stable Moore space M^{p'^). Call this isomorphism </)„• 

THEOREM 4.3. The isomorphism (j)n induces an isomorphism in v\-periodic homotopy in 
the EHP sequence and the Bockstein sequence as in the following diagram: 

7r.(M0(p)) > 7 r . ( M V ~ M ) ^ ^ . (^^(p^) ) 

This observation summarizes the calculations of Thompson [50]. It gives a conceptual 
picture of the the unstable p-primary homotopy in spheres which is i;i-periodic. It gives 
some intuition about how homotopy exponents occur and why the image of J is of 
maximum order. It is useful to think of the sphere, 5^""^^ as such a Moore space 
M^(p") with the zero cell being considered the stable cell. It is the one which stabilizes 
to the sphere as n —• 00. We think of the other cell as the unstable cell. It is the one on 
which the Bockstein spectral sequence is operating. 

Next we want to look at the 2-primary version. The following theorems are analogous 
to the two preceding ones. 

THEOREM 4.4 (Mahowald [34]). There is a James-Hopf map 

which induces a v\ -periodic homotopy equivalence. 
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THEOREM 4.5 ([18]). There are maps M^(2^^) -^ P^^ and M^(2^^-^) -^ P«^-2 which 
are v\ -periodic homotopy equivalences. 

The analogue of the odd primary case is the following eight fold suspension version 
of the EHP sequence. 

7r,(M0(2^"-^)) . 7r.(M^(2^")) . M^(16) 

This shows that the unstable sphere ^̂ n-i-i ^̂  i;,-equivalent to the stable Moore space, 
M^[2^^). We think of the cell in dimension zero as the stable cell since in the above 
diagram it stabilizes to the stable sphere. The cell in dimension — 1 is the unstable cell 
and the EHP sequence acts on that cell. The order of the identity map of M^{2^'^) is 2^'^. 
The order of the maximum homotopy class in the vi-periodic homotopy of M^{2^'^) is 
also 2^"". 

It is quite interesting to see just how to fill in the four intermediate parts. As above, 
we want to think of 5^""^ as M^{2^'^~^) with the zero cell being the stable cell. The 
cell in dimension - 1 is the unstable cell. To go from S^'^~^ to 5̂ "̂̂ ^ we again have a 
mod 2 Bockstein sequence in v\ -periodic homotopy 

M^(2^n-i^ ^ M^(2^^) -^ M-\2), 

To see just what is happening in the other cases we need to introduce a new notion, 
called Brown-Comenetz duality [11]. 

The Brown-Comenetz dual IF of a finite spectrum F represents the functor 

y H->Hom(7roy A F,(5/Z). 

If / denotes the Brown-Comenetz dual of S^, then there is a weak equivalence IF « 
Map[F,/]. 

For connected spectra like S^, the Brown-Comenetz dual is a very strange spectrum. 
Some properties are discussed in [45]. If F is periodic, like v^^P^"^, then IF is not so 
strange. In particular we have the following. 

THEOREM 4.6. The Brown-Comenetz dual ofv:[^P^'' is v:^^E'^P^'^^^. 

There are four things a Z/2 Moore space can do to such a complex. In going from 
g%n-i ^Q gSn-5 ^g change the unstable cell to the Brown-Comenetz dual cell. This 
increases the order of the identity map of the corresponding "Moore space" by 4. It does 
not increase the vi-periodic homotopy order at all. 

To go from S^^~^ to S^'^"^ we do an ordinary Bockstein on the unstable (Brown-
Comenetz dual) cell. This increases the order of the identity map by 2 and the ?;i-periodic 
homotopy by 2. 

To go from 5 '̂̂ -̂  to S^^'^ we change the unstable Brown-Comenetz dual cell back 
to an ordinary unstable cell. This does not change the order of the identity map but 
increases the order of the t;i-periodic homotopy by 4. 
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Finally, to go from 5^^"^ to S^"^^^ we do an ordinary Bockstein on the unstable cell. 
This increases the order of the self map by 2 and increases the order of the vi-periodic 
homotopy by 2. 

After having done four steps we have increased both the order of the identity map and 
the maximum order of elements in the image of J by 16. This leads to the following 
conjecture which is attributed to Barratt and Mahowald in several places in the literature 
and is sometimes not correctly stated. 

CONJECTURE 4.7. The order of the self map o/l72^-^^52"+^(2n-f 1) is 2 -̂̂ -̂ where an 
is defined modulo 4 and w 0,1,1,0 for n = 0,1,2,3 (mod 4). 

It is easy to see that the order of the self map of i7̂ '̂ "̂ 5̂̂ '̂ "̂ * {In + 1) is at least the 
conjectured value. 

One would expect that the maximum order of the homotopy would agree with this but 
we know that the maximum order of elements in the image of J on the 5̂ ^̂ +̂  sphere 
is given by the formula 2'̂ "'"'*" where hn is defined modulo 4 and takes on the values 
0 , - 1 , - 1 , 0 for n = 0,1,2,3 (mod4). 

The fact that these two orders are different makes the exponent question very hard at 
the prime 2. 

5. The proof of Theorems 4.1 and 4.4 

In this section we will give a short sketch of the original proof of Theorems 4.1 and 4.4, 
making use of the unstable Adams spectral sequence and the Lambda algebra described 
in the previous sections. These theorems assert that the unstable t;i-periodic homotopy 
groups of spheres are isomorphic to the stable i;i-periodic homotopy groups of certain 
finite complexes, thus we will also review the theory of stable v\ -periodicity, which will 
involve a brief account of Bousfield localization. 

Theorems 4.1 and 4.4 follow easily by induction on n from the following theo-
rem which is concerned with W{n), the fiber of the double suspension map S^'^~^ —• 
Q2g2n+\ usii^g HQpf invariants, a construction is given in [12] and [34] of a so-called 
secondary suspension map W{n) - ^ fP-'PW{n -f 1). This map has degree one on the 
bottom cell which is in dimension 2np - 3. It is also shown that if this map is iterated, 
the mapping telescope of 

W{n) - ^ fi^^Win + 1) ^ ' n^^W{n + 2) -> • • • 

is QM'^'^P"'^. The map W{n) -^ QM^'^P"^ is compatible with the James-Hopf maps 
of 4.1 and 4.4 and we have 

THEOREM 5.1. The map W{n) —• QM'^'^'P''^ induces an isomorphism in vi"̂ 7r*( ; Z/p). 

Note that this theorem describes the unstable (periodic) homotopy groups of a space 
in terms of the stable (periodic) homotopy groups of a certain spectrum. This is a key 
idea in the theory of periodic homotopy groups and has its origins in [31]. 
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The key algebraic result which led to Theorem 5.1 is the following Lambda algebra 
calculation. This was done in [32] for p = 2. The odd primary analogue was done 
in [23]. Let A{W{7i)) denote the quotient chain complex A{2n)/A{2n - 2) for p = 2, 
and A{2n-\- \)/A{2n - 1) for p odd. In either case, A{W{n)) is a chain complex which 
is the Lambda algebra analogue of the space W{n). 

THEOREM 5.2. There is a map 

H''{A{W{n)))^ExiX{Fp^H.{M)) 

which is an isomorphism above a line of slope 1/5 for p = 2, and l/2{p^ — 1) for p 
odd, in the {t — s, s) plane. 

Since v\ can be thought of as having bidegree (2,1) for p = 2, or (g, 1) for p odd, 
in the {t - 5, s) plane, the homomorphism of 5.2 is an isomorphism after inverting v\. 
Thus 5.2 is an algebraic analogue of Theorem 5.1. 

In order to deduce 5.1 from 5.2 it is necessary to analyze unstable Adams resolutions 
and their behaviour with respect to fibrations. We have the following definition from [34]. 

DEFINFFION 5.3. A resolution of a space X is a tower of fibrations under X 

X ^ - ^ X ^ ^ — X ^-^— •• 

/oj /.| f.[ 
V- PO V Pi V P2 

XQ i X\ < X2 ^ • • • 

such that the fibers of the maps ps are generalized Z/p Eilenberg-Mac Lane spaces. 
The resolution is called proper if ker p* = ker /* in cohomology. If, in addition, the 
maps /a : X —> Xg are surjective in cohomology, we say the resolution is an Adams 
resolution. 

Applying the functor TT* to a resolution yields a spectral sequence in the usual man-
ner. Note that if we loop a resolution, the resulting tower of fibrations will again be a 
resolution, but looping need not preserve the properties of being proper or Adams. It is 
easy to see that if we are given a map f : X —^ Y, and resolutions of X and Y such 
that the resolution of the source is a proper Adams resolution, then there is a map of 
resolutions covering / . Given resolutions of the source and target and given a map of 
resolutions covering the map / , a construction is given in [34] and [37] of a resolution 
of the homotopy fiber of / which yields a long exact sequence of £?2-terms with one of 
the maps corresponding to / . 

We may apply this to the double suspension map S'̂ ""* —> fi^S^'^^^, where we take 
the canonical Adams resolution for the source and double loops on the canonical Adams 
resolution of S^'^^^ for the target. By the above remarks we get a resolution of the fiber 
W{n) which has if*'*(yl(VF(n))) as the J52-term. 

The next step is to construct a map of resolutions covering the secondary suspension 
map W{n) - ^ fP-'^W{n -h 1). We take the resolution described above for the source. 
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and the 2p-fold loops on this resolution for the target. The resolution for W{n) can be 
shown to be proper, but it is not an Adams resolutions. In order to construct a map of 
resolutions covering the map c, it is necessary to directly analyze the obstructions to 
constructing such a map. This analysis is carried out in [34], [39] and [50]. The key idea 
is to show that at each stage in the resolutions, the highest dimensional homotopy group 
in the resolution of the target is within the range for which the map fs is surjective in 
cohomology in the resolution for the source. The fact that one can start with an Adams 
resolution, loop it down, and then obtain precise upper bounds on the range through which 
the maps fs are surjective in cohomology, is the topic of [24]. This delicate analysis is 
carried out for the sphere 5*^ at p = 2 in [34], and at all primes for any nice space 
in [24]. 

The final step is to show that the map of resolutions so constructed induces the isomor-
phism of 5.2. It is shown that the map of resolutions covering c is essentially unique on 
£2-terms. Again this follows from the analysis of [34] and [24] and some upper bounds 
established in [39] and [50]. 

In light of the fact that the preceding results describe unstable periodic homotopy 
in terms of stable periodic homotopy, we will now describe the theory which is used 
to compute the stable vi-periodic homotopy groups mod p, of a spectrum. Thus in the 
remainder of this section we will be working in the stable homotopy category. 

The key result of this stable theory is the computation, due to Mahowald for p = 2 
[33] and Miller [44] for p odd, of the mod p vi-periodic homotopy groups of the sphere 
spectrum. For p odd this is the same as the homotopy groups of the mapping telescope 
of the diagram 

M - ^ r - ^ M - ^ r-2^M - ^ . •. 

where A denotes the Adams self map of a mod p Moore spectrum M (which corresponds 
to v\). For p = 2 we have the mapping telescope of 

M - ^ E-^M -^ U^^^M - ^ . • • 

where A corresponds to v^. We denote this telescope by v^^M, Mahowald's method 
of computing 7r*vj"*M consists of using the Adams spectral sequence based on bo, the 
connective X-theory spectrum. Miller's method consists of using the classical Adams 
spectral sequence, in conjunction with the algebraic Novikov spectral sequence. The 
answer is stated in the following theorem. For convenience, we will describe a modified 
version of the Adams map for p = 2 which results in a unified description of the mapping 
telescope for all primes. Let y = M A (S^ Ur, e^). Then Y admits an Adams self map 

Y —y E~^Y which corresponds to v\. 

THEOREM 5.4 (Mahowald, Miller), i) Forp=2, n^v^^Y = Z/2[vuv{^](S}E{a) where 
E denotes an exterior algebra and the dimension of a is 1. 

ii) Forp odd, 7r*i>j~̂ M = Z/p[t;i,t;f^] (g) E{a) and the dimension of a is q - \. 

We will now indicate how to use this computation of the i;i-periodic homotopy groups 
of the sphere spectrum, mod p, to obtain the î i-periodic homotopy groups of an arbitrary 
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spectrum X. For this we invoke Bousfield localization. In [2], Adams described a program 
for localizing the homotopy category with respect to any spectrum E\ in other words, 
formally inverting the morphisms which are E^ isomorphisms. In [8] Bousfield carried 
this out, and discussed the example oi E = K, complex i^-theory, in some detail. 

DEFINITION 5.5. Let £ be a spectrum. A spectrum X is called J5-local if, for any spec-
trum Y for which E^Y = 0, we have \Y,X] = 0. For any X, the E-localization of X 
is an E*-equivalence X -^ LEX, where LEX is JE-local. 

LE can be thought of as an idempotent functor from the stable homotopy category to 
itself, equipped with a natural transformation from the identity to it. LEX is unique up 
to homotopy and represents that part of X which is detected by the homology theory E^. 
The main theorem of [8] is that, for any J5, the functor LE exists. 

Setting E = K, complex periodic /C-theory, Bousfield shows in [8] that the map 
is in fact localization with respect to K. There is a map v^^M —^ LKM 

by the universal properties of the localization. Bousfield calculates the homotopy groups 
of LKM, and compares this with Mahowald and Miller's calculation of -K^V'^^M and 
observes a homotopy equivalence. He also proves the convenient fact that for any spec-
trum X, LKX is just given by L^S^ A X, i.e. localization with respect to if-theory is 
just smashing with the K local sphere spectrum. (This fact was proved independently in 
[45].) It follows that for any spectrum X, LK{M AX) = V^^^M A X. 

The following theorem is an immediate corollary of the above remarks. Ravenel's 
telescope conjecture, now known to be false for n > 1 ([47]), is the generalization of 
this statement to Vn, for all n. 

THEOREM 5.6. A map of spectra f : X -^ Y induces an isomorphism in mod p, stable 
v\-periodic homotopy groups if and only if it induces an isomorphism in mod p, complex 
K-theory. 

Having described the link between vi-periodicity and /f-theory localization, we de-
scribe the link between these and the J-homomorphism. Recall that the J-homomorphism 
is a homomorphism from the (unstable) homotopy groups of the space SO to the stable 
homotopy groups of the sphere spectrum. The image of this homomorphism is one of 
the main topics of [1]. This image can be describe in purely stable terms by constructing 
a spectrum J which is the fiber of a certain primary operation in connective iiT-theory. 
That is, there is a fibration sequence 

J —> ku —> E^ku 

where ku is connective complex i^-theory and 0 is a map constructed from certain 
readily described Adams operations. 

There is a unit map S^ -^ J which is an isomorphism in Jf-theory and maps the image 
of the J-homomorphism onto TT* J. The most complete way to describe the connection 
between J and the above discussion of localization is by means of the following result 
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from [19], which is an extension of the above described results of Bousfield, Mahowald, 
Miller and Ravenel. 

PROPOSITION 5.7. A spectrum X is K-local if and only if the J homology Hurewicz 
homomorphism TT^^X -^ J^X is an isomorphism. 

Combining all of the above results yields the following. 

THEOREM 5.8. For any spectrum X, 

v^^7r4X;Z/p) = 7r,{v;^MAX) = 7r,(v;^M AX A J) ^ v^^ J.{X\Z/p). 

Thus the t;i-periodic homotopy groups of a spectrum can be calculated as the 
J-homology groups with v\ inverted, and these in turn can be calculated readily from 
the iiT-theory, by means of the fibration sequence J -^ ku -^ U^ku. Doing this for the 
skeleta of BSp, localized at p, is a good exercise and yields the unstable ?;i-periodic 
homotopy groups of spheres by Theorems 4.4 and 4.1. 

6. Unstable periodization 

A natural question arising from the preceding discussion is this: to what extent is Theorem 
5.6 true unstably? An example which provides evidence of an unstable analogue of 
Theorem 5.6 was proved in [49], namely that the Adams map itself M "̂̂ ^ —> Af ,̂ as 
an unstable map of spaces, induces an isomorphism in i;i-periodic homotopy groups. 
(Note that this is not immediate from the definitions.) Further results along these lines 
were proved in [51] and [38]. By far, the most definitive answer to this question is 
given by Bousfield in [7]. In order to approach this, Bousfield studies the notion of 
the periodization of a space. In order to describe this we start with some preliminary 
definitions. 

We are working in Ho*, the homotopy category of pointed CW-complexes. Let 
map^(X, Y) denote the space of pointed maps from XioY. 

DEFINITION 6.1. For a given map / : A —• J3 we say that a space X is /-local if the 
induced map map^{B,X) —• ma.p^{A,X) is a homotopy equivalence. A map X —• 
Y is called an /-equivalence if it induces a homotopy equivalence ma.p^{Y,W) —> 
map^(X, W) for all /-local spaces W. An /-localization of a space X is an /-equivalence 
into an /-local space. 

THEOREM 6.2. Given f : A —^ B and X, there exists an f-localization of X. 

This is proved in [7], and also in [21]. We denote the /-localization of J>C by X -> 
LfX. We can think of L/ as a co-augmented, idempotent functor on Ho*. Note that 
LfX is unique up to homotopy. 

Bousfield localization with respect to a generalized homology theory £?*, described in 
the previous section, is a special case of this construction. Just take the map / to be the 
wedge of all E^ equivalences. 
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Another important special case occurs when the map / is the constant map VF -^ * for 
some space W. In this case the /-localization of a space X is called the W-periodization 
of X, or the W -̂nuUification of X, and is denoted PwX. An /-equivalence is called a 
W-periodic equivalence. The functor Pw has been studied in depth in [7] and [20]. We 
are interested in the following special case: 

DEFINITION 6.3. Let V\ denote the cofiber of the Adams self map of a Z/p-Moore space. 
Letting W = Vi, the resulting localization functor associates to any space X a space 
which will be denoted by Pv^X and called the vi-periodization of X. 

The space P^^X is a space whose mod p homotopy groups are all vi-periodic, as is 
readily verified from the definitions. Roughly, Pv^X is constructed by taking the mapping 
cones of all maps of V\ into X, and then iterating this ad infinitum. Since V\ is iC-theory 
acyclic, it is immediate from the construction that X -^ Py^X induces an isomorphism 
in if-theory. It is not so obvious that X -^ P^^X should induce an isomorphism in 
v^\^{ ; Z/p), and we will sketch a proof of this fact. 

For simplicity assume that p is odd. The following result is from [51]. This result 
is strengthened and generalized in [7]. Later in this section we will discuss Bousfield's 
result. 

THEOREM 6.4 (2.1 of [51]). Let X and Y be 3-connected spaces. Suppose f : X --^Y is 
a map such that Q^f : Q^X —> Q^Y induces an isomorphism in K^, for fc = 0,1,2,3. 
Then / induces an isomorphism in vf V*( ; Z/p). 

PROOF. The Adams map induces a map 

map, {M^, X) ^ map, (M*=-+-̂ , X) . 

By adjointness, 7rjmap,(M'^,A') = [M'̂ "*"-',X] = TTjj^k{X\ Z/p) and v\ induces the 
action of v\ on 7r*(X; Z/p), since X is 3-connected. 

Let V{X) denote the mapping telescope of the following diagram: 

map, (M^ X) ^ map, [M^^\ X) ^ map, (M +̂ ĝ̂  X) - ^ • • • 

Note that map,(M -̂̂ *̂=9,X) = fi'=«map,(M^X), and that V{X) is an infinite loop 

1 space which satisfies TT*V(X) = v, ^^^{X; Z/p) for * > 0. We need to show that 

V[X) ^-^ V{Y) 

is an equivalence. We have the following lemmas, where / is the evident induced map. 

LEMMA 6.5. Under the hypothesis of Theorem 6.4, the map 

/ : map. ( M ^ X ) ^ map. (M^y) 

induces an isomorphism in K^{). 
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PROOF. The pointed mapping space functor converts a cofiber sequence in the first variable 
to a fiber sequence. Since map^(5'', X) = n^X, there is a mapping of principal fiber 
sequences: 

n^X . n^X y map^(M^X) 

—• map^(M^,y) 

Since the maps on the fiber and total space induce isomorphisms in K^{) by hypoth-
esis, the induced map of ilT-theory bar spectral sequences is an isomorphism and so the 
right hand vertical map is SL K^{) isomorphism. D 

LEMMA 6.6. The space V{X) is K-local, hence the map i : map^(M^X) -> V{X) 
extends to a map i: [map^{M^,X)]K —• V{X). 

PROOF. Since V{X) is a periodic infinite loop space, write V{X) = f2'^T{X), where 
T{X) is a periodic spectrum. Using Theorem 5.6, a criterion is given in [8] for deciding 
when a spectrum is iiT-local: 

A spectrum Z is if-local if and only if the mod p homotopy groups of Z are periodic 
under the action of the Adams map. Since this is true for the space V{X) by construction, 
it is true for the spectrum T{X), at least in positive dimensions. But T{X) is a periodic 
spectrum, so it is true for 7r^T{X) in all dimensions, hence T(X) is a X-local spectrum. 
Since i?°° of a if-local spectrum is a J^-local space, V{X) is A'-local. D 

After these preliminaries, we can complete the proof of Theorem 6.4. Consider the 
following diagram: 

map,(M^X) - ^ ^ [m^p,{M\X)]K — ^ V{X) 

f[ ^[IK [VU) 

map,(M^y) > [map,(M^y)]K . ViY) 
•n i 

By Lemma 6.6, i exists and the horizontal composites are the inclusions into the 
mapping telescopes. By Lemma 6.5, the middle vertical map //<- is an equivalence. The 
right hand square commutes by the commutativity of the outer rectangle, the fact that 
V{Y) is AT-local, and the fact that 

map,(M^X)-> [map,(M^X)]^ 

is a iC equivalence. 
We will construct an inverse to the homomorphism of mod p homotopy groups 

V{f). : 7r.(F(X);Z/p) - - 7r.{V{Y);Z/p). 

Since 7r^y(A') and 7r^V{Y) are Z/p vector spaces, this implies that V{f) is a ho-
motopy equivalence. To construct V(/)~^ let a : M^ —• V{Y) be an element in 
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7r*(y(F);Z/p). There exists j such that a lifts M'' - ^ map^(M^+«P^y). By the 
results of [25] (see also [26]), the following diagram is homotopy commutative: 

1= I-

Thus vf^a lifts to a map d : M*=+«P -^ map,(M^ Y). 
Define V(/)r ' (a) to be t;-"(i . o / - ' o 77.(5)). It is now straightforward to check 

that V(/)~* is well defined, and that V(/)« and F(/)~^ are inverse isomorphisms of 
one another. This completes the proof of 6.4. D 

Next we need to say something about the periodization of a loop space. It is very 
important to observe that the functor Pw, while we have been viewing it as a functor 
on the pointed homotopy category Ho*, can be constructed as a functor on the category 
of spaces, which passes to a functor on the homotopy category. 

The following is Proposition 3.1 of [7] and also Theorem B of [20]. 

PROPOSITION 6.7. There is a natural homotopy equivalence 

X : PwinX) ^ n{PEwX), 

PROOF. (Brief sketch.) The proof uses G. Segal's idea of a 'special simplicial space', 
which is a way of recognizing loop spaces. See [3]. Let X . be a simplicial space. For 
each n there are maps ik : Xn -* X\, I ^ k ^ n, corresponding to the various ways of 
embedding E^ as an edge of E^. The product of these is a map Xn -^ XixXyX---xXi. 
If this map is homotopy equivalence for each n, XQ = *, and noX\ is a group, then we 
say that X. is a special simplicial space. If X. is special, then X\ is a loop space, and 
the geometric realization of X . satisfies î H-X"*!! = X\. Furthermore, for any space X, 
the loop space fiX is X\ for some special simplicial space X., 

Now consider PwfiX. Let G. be a special simplicial space such that G\ = f2\\G.\\ = 
nX. Since Pw is a functor on the category of spaces which preserves products up to 
homotopy, PwG. is a special simplicial space, hence PwOX = PwG\ is the loop space 
on the classifying space ||/VG«||. It is now formal to identify this classifying space as 
PrwX and the periodization map fiX —> Pw^X as loops on the periodization map 
X -* P^wX. D 

Now we can show that the vi-periodization map induces an isomorphism in 
t>j~*7r*( \Z/p). This exposition arose in work of the second author and D. Blanc. As-
sume that we are periodizing with respect to a cofiber V\ of an Adams map which is 
at least a three fold suspension. Then for a 3-connected space X consider i?^ applied 
to the periodization: Q^X -^ Q^Py^X, By iterating Proposition 6.7 this is just the pe-
riodization Pz-^yy applied to the space Q^X. Since the periodization map induces an 
isomorphism in iiT-theory, we can apply Proposition 6.4 to conclude that X -^ Py^X is 
a t;i~V*( \ZIP) isomorphism. 
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Putting this all together we have proved the following (weak) version of Bousfield's 
theorem: 

THEOREM 6.8 (Bousfield). Let H03 denote the homotopy category of ^-connected spaces. 
Let i? denote the functor from H03 to itself given by taking the three connected cover of 
the loop space functor. Given a map f : X —^Y in H03 the following are equivalent: 

i) / is a P̂ i -equivalence. 
ii) / is a rational equivalence and induces an isomorphism in mod p v\-periodic 

homotopy groups. 

iii) fi^f induces an isomorphism in K-theory for all k. 

iv) O^f induces an isomorphism in K-theory. 

PROOF. What remains is to show that ii) implies i) and that ii) implies iii). If X -^ y 
induces an isomorphism in t;i-periodic homotopy groups then, by the above, so does 
Pv^X —* PviY. But these latter spaces are i;i-periodic which means that their periodic 
homotopy groups are their homotopy homotopy groups, hence Pv^X —• Py^Y is an 
equivalence. Finally, by the above, we have that an isomorphism in t;i-periodic homotopy 
groups is a iiT-theory isomorphism. Looping an isomorphism of homotopy groups is again 
an isomorphism of homotopy groups, so ii) implies iii). D 

By going into a much deeper analysis of the effect of periodization on fibrations Bous-
field's actual results in [7] are sharper than the above in the following significant ways. 
First, the restriction to p odd is unnecessary. Second, Bousfield considers periodization 
with respect to any cofiber of an Adams map, not just one that is a three-fold suspension. 
Thirdly, he generalizes to all n ^ 1. Finally, in the case where n = 1, the 3 in part iv) 
is lowered to 2. We will say more about this in the next section. 

Theorem 6.8 has a number of striking applications. For instance, since maps inducing 
isomorphisms in vi-periodic homotopy groups also induce isomorphisms in /if-theory, 
it follows that the James-Hopf maps of 4.1 and 4.4 induce isomorphisms in X-theory, 
something that had been conjectured by Miller and Ravenel. Extending the calculations 
in [40], Lisa Langsetmo uses 6.8 to calculate the A -̂theory of f2^S^ for all A: < n [29]. 

Bousfield's theorem suggests another approach to computing unstable periodic ho-
motopy groups, along somewhat different lines than those described in Section 5. For 
example, in [30], a proof is given of Theorem 4.1 which is based on Theorem 6.8. Let 
F^^+* denote the fiber of the James-Hopf map QŜ "̂̂ ^ -^ Qi:^"+*Bg(n+i)-i. There 
is an evident map t : 5̂ '̂ "̂ * —• F^^'^K It can be shown that the vi-periodic homotopy 
groups of the target are those of the target of the map in 4.1, thus by 6.8 it suffices to 
show that Q^L is a K'-theory isomorphism. Details can be found in [30] or in [17] of this 
volume. 

7. Higher periodicity 

In this section we will briefly discuss some generalizations of the double suspension 
sequence and some calculations of unstable 7;2-periodic homotopy groups made in [39]. 
We will also describe the generalization to higher periodicity of Theorem 6.8. 
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For concreteness, assume p = 2. In order to define V2-periodic homotopy groups 
analogously to the definition of (mod 2) v\ -periodic homotopy groups, we need a self 
map of a finite complex analogous to the Adams map. The following result describes the 
particular finite complex used in [39]. The large number of cells is a technical necessity 
due to the method of proof. K{n) denotes the Morava /f-theory spectrum. Recall that 
K{l)is just ordinary K-theory, mod p. A\ denotes a spectrum whose mod 2 cohomology 
is isomorphic, as an A module, to -4(1), the subalgebra of the Steenrod algebra generated 
by Sq^ and Sq^. 

THEOREM 7.1. There exists a finite complex M with the following properties: 

i) / f ( l )*M = 0, K{2)^M ^ 0 and M admits a V2 self map, i.e. there is a map 
S^^M -+ M which induces an isomorphism in K[1)^M and is nilpotent in 
K{n)Mfornj^2. 

ii) Let V2^M denote the mapping telescope of the self map ofi). Then V2^M AA\ 
is a wedge of suspensions of eight copies ofv2^M. In particular it follows that 
t;^*7r«(Ai;M) is a direct sum of eight copies of 7r^{v2^ M). 

iii) V2^M is aflat ring spectrum. 

In Section 4 we described the double suspension spectral sequence with v\ inverted. 
That is, QS^^~^ is filtered by double suspension, and V^^TT„{ \Z/p) is applied to this 
filtration to obtain an exact couple, hence a spectral sequence. This spectral sequence 
was then explicitly described. To extend this picture, use the secondary suspension map 
to filter the stable Moore space: 

W{\) C n^W{2) C n^W{3) C . • • C Q(M). 

Apply VJ V* ( ; M) to this filtration to obtain the secondary suspension spectral sequence. 
The homotopy of W(\) (the 3-sphere) is slightly anomalous in this picture. To simplify 

things, consider the filtration of the pair (QM, W(l)): 

{ffWill W{\)) C (r2'M^(3), 1^(1)) C ••• C (0(M), W{\)). (7.1) 

The complex A\, whose cohomology is A(l), can be constructed from P as follows. 
The degree 2 map P^ —• P^ extends to a map P^ -* P^. This map in turn lifts to a map 
P^ ~* i ^ and Ai is the cofiber P^ U CP^. This gives a filtration of spectra: 

Pi U CPl C P f U CPl'^ C • • • C P3 U CPs (7.2) 

and the subquotients are copies of Ai. The following is one of the main theorems of [39]. 

THEOREM 7.2. i) The spectral sequence obtained by applying the homotopy theory 
v^V#( ;M) to 7.1 is isomorphic to the stable spectral sequence obtained by apply-
ing t;^Vf( ;M) to 1.2. 

ii) i;̂ ^7rf (P3 UCP5; M) is isomorphic to a direct sum of four copies of 7r^{v2^ M) 
which pull back to v^ V f (Pĵ  U CP^; M). 
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iii) V2^7r^{P^'^~^UCP^^;M) consists of eight copies of 7r*(i;^^M), four of 
which are described above, and four of which are in the kernel of the inclusion 
to t;2"Vf(i^^+^UCJ^^+^M). The latter four map nontrivially to v:^^irf {P^^Zs U 

iv) The spectral sequence collapses at E2. 

The proof of this theorem involves essentially the same techniques as the proof of 
Theorems 4.1 and 4.4. With some extensions and adaptions. It would be interesting to 
know if this were some sort of Bockstein spectral sequence, analogous to the double 
suspension spectral sequence with v\ inverted. 

Finally, we will briefly describe one of the main results of [7], which is the general-
ization of Theorem 6.8, to !;„-periodicity for all n. Localize at any prime p. First notice 
that in the proof of Theorem 6.4 we used Theorem 5.6. Ravenel has recently shown 
that the generalization of 5.6 for n > 1 is false [47]. Thus we need to replace K{n) 
by a spectrum which is designed to make 5.6 true. We can construct such a spectrum 
as follows. For each i such that 0 ^ i ^ n, let Mi be a type z, finite complex. That is 
K{j)^Mi = 0 for j < i and K{i)„Mi y^ 0. Let fi be a Vi self map of Mi. Such self 
maps always exist by [26]. Let Ti denote the mapping telescope of fi. Finally, let 

n 

Ein) = \/Ti. 
1=0 

Now it can be shown (see, for example, [36]), that a map of spectra induces an iso-
morphism in £^(n)*( ) if and only if it induces an isomorphism in stable, mod Mi, 
t;i-periodic homotopy groups, for all i from 0 to n. This fact is the natural generaliza-
tion of Theorem 5.6 for n > 1. In [7], Bousfield defines an integer c{n) which is the 
dimension of the bottom cell of SWn, where Wn is essentially a type n -f 1 space with 
minimal connectivity. The actual value of c{n) is not known. It is known that c(l) = 3, 
and generally c{n) ^ n 4- 2. Let Py^ = PsWn- There is the following: 

THEOREM 7.3 (Bousfield). Let Hoc(n) denote the homotopy category of c{n)'Connected 
spaces. Let Q denote the functor from HOc(n) to itself given by taking the c{n)-connected 
cover of the loop space functor Given a map f : X ^^ Y in HOc(n) the following are 
equivalent: 

i) / is a Py^-equivalence. 
ii) For 0 ^i ^n, f induces an isomorphism in Vi-periodic homotopy groups. 

iii) f2^f induces an isomorphism in E^{ ) for all k. 

iv) fi^f induces an isomorphism in E^{ ). 
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0. Introduction 

Classical if-theory has many applications to geometry and homotopy theory, e.g., the 
e-invariant of Adams and Toda, the J-homomorphism, the J(X)-groups or i;i-periodicity 
in stable homotopy. These applications are all related in some way to the kernel or coker-
nel of "^^ - k^ where ^^ is the usual unstable Adams operation in /(^-theory. Rationally, 
that is as subspace of K*{X)<S)Q, the eigenspace ker{^^ - k'^) is a cohomology theory 
(on compact spaces), namely ordinary rational (Cech-) cohomology. This is no longer 
true over the integers or p-locally since ker{^^ - k^) is not exact. To get something 
close to ker{^^ - k'^) and coker{^^ - k^) one may proceed as follows. Taking k~^^^ 
on the 2n-th term of the spectrum X(p) of p-local complex periodic /(T-theory induces 
the stable Adams operation IIJ^. Represent ^'^ - 1 as a stable self map on Ki^p) and define 
the spectrum Ad as its fibre. Thus Ad fits into the (co-) fibre sequence of spectra 

^Ad-^ii:(p)^-^^ii:(p) ^EAd—^. 

Here p is a fixed prime and k is chosen as an integer which for p odd reduces to a 
generator of {Tj/p^)* whereas for p = 2 one can take k — 'i. This choice gives the smallest 
eigenspaces ker{^^ -k^) = ker{il)^ - 1) on p-torsion classes in K^'^{X)ijy). Because of 
its close relation to the image of the classical J-homomorphism the generalized homology 
theory defined by Ad is called /m( J)-theory. 

This "secondary" cohomology theory Ad"" may now be used to formulate and derive the 
applications of ii'-theory mentioned above in a much more systematic and conceptional 
way. For example, the e-invariant is nothing but the Ad-theory Hurewicz or degree map, 
elements of small skeletal filtration in Adn{X) are always stably spherical, and the 
result of Mahowald (p = 2) and Miller {p^2)on die v\ -localization of stable homotopy 
becomes simply 

i ; rVf (X;Fp)^Ad*(X;Fp) . 

Ad-theory is also closely related to the /C(p)-theory localization LKS^ of S^\ for p^l 
Ad and LKS^ differ only in one homotopy group. This implies that for spectra X with 
H^{X\ Z(p)) consisting of torsion, LKX is the same as Ad A X. 

The purpose of this article is to give an introduction to /m(J)-theory, to supply 
elementary proofs for some basic properties of Ad-theory and to study some examples. 
The main applications of /m( J)-theory are contained in [11] to which we refer simply 
as part II. In more detail, the contents are as follows: 

We begin with the definition of Ad as a cofibre spectrum, describe its coefficient 
groups and introduce the Chern-Dold character for Ad-theory. In Section 2 we construct 
splittings of /^(p) A Ad and Ad A Ad. The result is 

Ad^Ad'::=LAdy E-'^AdQ. 

We give a short but nonelementary proof using the relation of Ad to LK^ and a 
somewhat longer but direct proof using well-known results on K^{K). A third approach 
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for computing i4d*(K(p)) using i4d*(PooC) and Snaith's theorem PooC[a;~^] ~ JC is 
carried out in Section 6. Because of its close connection to Ad^{K(p)) we give a short 
discussion of the Ad-groups of the spectrum of connective AT-theory hu and the Brown-
Peterson spectrum BP at this place. Section 3 contains the universal coefficient formula 
for i4d-theory 

0 - ^ Extz^^^ {Adn^2{X), Z(p)) - ^ Ad^{X) 

-^ Homz^^, (Adn-i(X),Z(p)) —> 0. 

This gives an easy computation of Ad*{Ad), the cohomology operations of v4d-theory. 
Section 5 contains the proof that Ad is a commutative ring spectrum. We show that 
the map ^ACL : Ad A Ad —* Ad appearing in the splitting of Ad A Ad is associative, 
commutative and has a two-sided unit. As long as we restrict to finite spectra the proof 
for this is very easy, but in the general case there are some technical difficulties caused 
by phantom maps. 

The next three sections collect some examples where /m( J)-groups are known: As 
a basic and instructive example i4d*(PooC) is treated in detail in Section 6. Because 
of their appealing number-theoretical interpretation we discuss in Section 7 the even di-
mensional Ad-groups of the classifying space BT^ of an m-torus. The close connection 
between representation theory and X-theory leads to a complete description of the groups 
Ad^{BG) for a finite group G. This is reviewed in Section 8. 

There is a section dealing with /m( J)-theory of torsion-free spaces or spectra which 
belongs thematically to this article but is put at the end of part II since it is from there 
that it draws its examples. 

As long as we work with complex /m(J)-theory there is no significant difference 
between p = 2 and p odd. At p = 2 the real version of /m( J)-theory is closer to 
geometry but we shall leave the necessary changes for deriving the corresponding results 
at p = 2 to the interested reader. 

Detailed proofs are given for the universal coefficient formula, the splitting of Ad A Ad 
and the multiplicative properties of Ad since there is no published account of this. For 
the better documented results, such as the computation of Ad* {BG) for a finite group G 
or Ad2n{BT^), proofs are only indicated or omitted entirely. The proofs for the main 
properties of /m( J)-theory such as the splitting of Ad A Ad, the universal coefficient 
formula or the product structure may be skipped at first reading. 

We shall always work at a fixed prime p and mostiy suppress the symbol for 
p-localization from the notation, i.e. Hom{A,B) will mean Homz^^^{A,B). All (co-) 
homology theories are taken as reduced. With the exception of Section 1 we shall assume 
that p is odd. 

1. Definition of /m( J)-theory 

As in the Introduction we shall define Ad-theory as the cofibre theory of ^'^ - 1. There 
is a bundle-theoretic approach to Ad-theory due to Seymour [25] aiming to produce also 
a product structure, but there are serious problems with this, see [26]. 
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Let p be a fixed prime, choose A: G N generating {7^/p^Y (resp. fc = 3 for p = 2) and 
let '(j)^ : K —y K be the stable Adams operation in p-local complex iiT-theory. Then the 
spectrum Ad for p-local nonconnected /m( J)-theory is defined by the cofibre sequence 

—^Ad'^K'^'^K-^ SAd —^. (1.1) 

For the definition of Ad the simplest notion of a spectrum will be sufficient; the spectrum 
maps En : SAdn -^ Adn-f i may be defined as fill-in maps. But for any serious inves-
tigation of multiplicative structures, it is much more convenient to work in a suitable 
stable category of CW-spectra such as that described in [28], [2] or [20]. Therefore we 
shall work from now on in the category of CVF-spectra ([28]) and assume that Ad is 
given as a CW-spectrum with the additional property that it is an i7-spectrum. 

From the known action of ip^ on K2n{S^) and the long exact sequence induced 
by (1.1) we easily deduce the coefficient groups AdmiS^Y On K2n{S^) the stable Adams 
operation ip^ is multiplication by k^. Denote by i^pin) the power of p in the prime 
factorization of n. By elementary number theory we have 

fin IN J l + ^ p W ifn = O m o d p - l i/Jk^ - 1) = .̂  ^̂  ' for p 7«̂  2 
^̂  ^ I 0 ifn^Omodp-1 

and 

I 1 if n ^ 0 modp 

Define 6 : Ad —> EAd to be 5 = AoD, let i € Ado{S^) = Z(p) and i-x e Ad-i{S^) = 
Z(p) be generators satisfying D{i) = 1 € Ko{S^) and i_i = 6^{i). Then for p odd with 

Ado{S^) = Z(p) generated by i, 

i4d_i(S^) ^Z(p) generated by z_i, 

Ad^t-i(5^) = Z/p*+ '̂'(*) teZ- {0}, 

Adi(S^) = 0 otherwise. 

This shows that /m(J)-theory is not a periodic theory like iiT-theory. However with 
mod p^ coefficients, periodicity shows up again. This will be discussed in part II. For 
example, /m( J)-theory with coefficients in Z/p is periodic with period q (p y^ 2) and 
the coefficients have the simple structure 

yld.(5^;Z/p)=Fp[a]0£(5) 

with a G Adq{S^;Z/p) and 6 G Adg.i{S^;Z/p). 
The dependence of Ad on the choice of k is discussed in Section 2. 
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For an abelian group G denote the associated Moore spectrum by M{G) and the 
Eilenberg-MacLane spectrum by HG, Ad-theory with coefficients in G will be denoted 
by AdG ^Ad^ M{G). From (1.1) and 

10, n odd, 

(e.g., see [28]) we easily deduce 

10, otherwise. 

The canonical generators of H^{Ad\Q) and H~^{Ad\Q) induce the Chern-Dold char-
acter for Ad-theory. We shall denote its components by 

Ko = ch^'^: Ad—^HQ, 

The Chern-Dold character induces an isomorphism 

Denote by chzi E H'^^{K;Q) the 2i-th component of the classical Chem character. By 
definition of K and ch the following diagrams will commute 

AdniX) ^ ^ Kn{X) Kn{X) ^ ^ A d n - l ( X ) 

(1.2) 

and therefore K^\ O6 = KQ, KOO6 = 0. 

REMARK. The usual integrality theorem for the Chem character on torsion-free spaces 
implies that KQ is integral on Adn{X) for X with p-torsion-firee homology. Examples 
(e.g., see below) show that this is quite different for K^\. 

We close this section with some comments on the definition of nonconnective Im{J)-
theory. 

A variant of the definition for Ad is sometimes useful: By well-known work of Adams 
([3]) p-local X-theory splits into p - 1 pieces 

^(p) ^ V ^'*G 
i=0 
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with G*(5^) = Z(^p)[v\,v^^] , \v\\ = q. Since the Adams operation IIJ^ commutes with 
the splitting maps, ip^ -1 restricts to a self map of G, Because ip^-l : Ki{S^) -^ Ki{S^) 
is an isomorphism for z ̂  0 mod q it follows easily that we may equally well define Ad 
by replacing iiT by G in (1.1): 

To /m( J)-theory Ad as defined above there is associated a connective theory A. For a 
CW-complex Y with n-skeleton Y^^"^ it may be defined by 

An{Y) := im{Adn{Y^^^) - Adn{Y^^^'^)). (1.3) 

This generalized homology theory gives the important connection to algebraic K-thcory: 
If one chooses the number A: in the definition of Ad to be a prime power, then A is nothing 
but the ;?-localization of Quillen's algebraic i^-theory of the finite field F̂ ; {p ^2). Let 
d : An{Y) -* Adn{Y) denote the canonical map. In general d is neither injective nor 
surjective. Also A^{Y) is usually much harder to calculate than Ad*(y). In this article 
we shall concentrate on nonconnective /m( J)-theory. 

The relation of Ad to the iir(p)-localization LKS^ of S^ is discussed in detail in [8]. 
Here we only note the basic cofibre sequence (p ^ 2). 

THEOREM 1.4 ([8]). 

is a cofibre sequence of spectra. 

So far we have seen three possibilities for the construction of /m(J)-theory: as the 
cofibre spectrum of V̂ '̂  - 1, the bundle-theoretic approach and as a cofibre of a map 
E^^HQ —̂  LKS^' But one can also construct AdQ/Z without reference to J^-theory 
at all as the direct limit of maps 

F . r>oo . Doo 
• ^nq-l ' ^(n-l)g-l 

see part II, Section 4. This is similar to Snaith's theorem for JFf-theory or the result that 
i4d-theory with Z/p"-coefficients is the t;i-localization of mod p°' stable homotopy (part 
II, Section 3). If one considers connective /m( J)-theory A as being the basic theory one 
may construct Ad-theory by gluing A to its Anderson dual VA by a map 

r-^vA —̂  A 

with cofibre Ad (for the Anderson dual see, e.g., [30]). 
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2. The splitting of Ad A Ad 

In this section we construct the spUtting of Adt\Ad. We begin with a splitting of AdAK. 
Let KQ denote rational K-theory, KQ = K AM(Q) = K A HQ md fj,: K AK -^ K 
the product map for K. 

THEOREM 2.1. The maps AdAK ^ KAK -^ K and AdAK "^^ E-^HQAK -
S'^KQ induce a splitting 

AdAK:^K\/S-^KQ. 

The essential step in the proof is to determine the groups Ad^{K): 

Ad2n{K) = Z(p), Ad2n^l{K) = Q. (2.2) 

This may be done by computing the exact sequence 

Ad2n{K) - ^ K2n{K) ^-^^ K2n{K) -^ Ad2n-X (K) (2.3) 

or using the relation between Ad and LKS^, the jFf-theory localization of S^. 
We shall give both arguments, the one using LKS^ is short but nonelementary (and 

works only for odd primes) whereas the other is elementary but somewhat longer. A 
third approach using Snaith's theorem is carried out in Section 6. 

FIRST PROOF OF 2.1. If X is a K-local spectrum, then X A LKS^ - X [8] and since K 
itself is jfi'-local we have LKS^ AK c^i K. The cofibre sequence (1.4) smashed with K 
gives 

LKS^AK ^AdAK ^S-^HQAK 

and the map ^.AdAK —y KAK - ^ K provides a splitting. • 

SECOND PROOF OF 2.1. Denote by n € K2{S^) the Bott element and define v := 
hxiu) ^ K2{K) where HK : T^n{K) —• Kn{K) is the AT-theory Hurewicz map. 
Then K^{K;Q) = Q[u,u''\v,v'''^] and by [4] we have 

a) K,^{K) - ^ K^{K\ Q) is injective and the image consists of all Laurent-polynomials 
f(u,v) satisfying 

/ ( a 't,h't)£ Z(p) [t, r^] for all a, 6 G Z^p), (2.4) 
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b) the binomial polynomial (^)ti'^, w = v/u, is in K2n{K). 

Since Ki{K) = 0 the sequence (2.3) shows Ad2n{K) ^ fcer(^*^ - 1). From ip''{u) = 
k ' It, ip^{v) = ?; we have il)^f{u,v) — f{k • tx,?;). If 

is in ker{xlj^ - 1) it follows f{u,v) = ao,n '̂̂  and, since /(0,1) = ao,n ^ Z(p) by (2.4), 

we see that ker{^p^ -" 1) = Z(p) and /I* : Ad2n(^) —̂  ^271(5^) induces an isomorphism. 

To compute Ad2n-\{K) observe first that 

K_i : Ad2n-i{K) —> H2n{K;Q) - Q 

is onto. This is easily seen using (1.2) and evaluating cho on {^)u^ € K2n{K). We 
have 

'k=E 
and therefore 

\ \ rn J J mi 

Here 5(m, i) is a Stirling number of the first kind (e.g., see [10, §5.5]). Since for n fixed 
and m > n the denominator of s{m, n)/m\ becomes arbitrarily large, «_i must be onto. 

The last step is to prove injectivity of K_I : Ad2n-\{K) —• H2n{K\Q). Assume 
K_i o A{f{u,v)) = chof{u,v) = 0 with 

f{u,v) = ^ aiju' • v^, aij £ Q. 

Since chQf{u,v) = ao,n we have ao,n = 0. We may also assume that / is a polynomial 
in u, V since multiplication by w or v is bijective. Define 

f{u,v):= 2^ ^._^ eK2n{K',Q). 

Then (i/;̂  - \){f{u,v)) = f{u,v). We show /(n,t;) G K2n{K) using (2.4): For a,6 G 
Z(p) write a = fc* 4- Ca • p" ,̂ 6 = fc"* -f ĉ  • p"*, r < s, with m large enough to ensure 
p^aij/{k'' - 1) E Z(p) for all ij. This is possible since A: generates the p-adic units. 
Then f{at, bt) and f{k^t, k'^i) differ by a polynomial in u, v with coefficients in Z(p) 
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and it suffices to show f{k^t, k^t) € Z(p)[t]. But 

Chapter 11 

(US'i _ urx\un-ri 

5—r—1 s—r—\ 

(i=0 i,j d=0 

and this is in Z(p) [t] since / (n , v) € K2n{K). Therefore K-\ is injective too and induces 
an isomorphism Ad2n-\{K) = Q. Since !^_,\Ad2n{K) = 0 and Ji\Ad2n-i{K) = 0 the map 

induces an isomorphism on coefficients, hence is an equivalence. 

We now turn to the splitting of Ad A Ad: 

D 

LEMMA 2.5. The following diagram commutes. 

AdAK ^''^'^' ^^ > AdAK 

K-
'tt)^-\ 

•^K 

PROOF. The multiplicative properties of the Adams operations imply that 

KAK- -^KAK 

K-
xl)^-\ 

-^K 

commutes. But V'*̂  A -0*= - 1 = (V̂ ^ - 1) A (1/;*= - 1) -f (t/;̂  - 1) A 1 -h 1 A (̂ ''̂  - 1) and 
{^^ - l ) o D = : Ogive that 

AdAK ^-^AdAK 

DAI 

KAK-

commutes. Since /x = /x o (D A 1), this proves (2.5). D 
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Smashing the defining cofibre sequence (1.1) for Ad with Ad gives the diagram 

AdAAd > AdAK -^ ^ AdAK > EAdAAd 

Ad-
tp^-X 

(2.6) 

T 

^ l^ :: ^ ^ X ^ z:Ad 

and since the middle square commutes, there is a fill-in map Li. 

REMARK. Later on we shall see that this fill-in map fiAd '= L\ is unique and defines a 
commutative, associative multiplication ^Ad for >ld-theory. 

COROLLARY 2.7. The maps 

IXAd '. Ad/\Ad —> Ad 

and 

K.^^\:Ad^Ad-^ S-^HQ AAd = E-^dQ 

define a splitting 

AdAAdc^AdVE-'^AdQ. 

PROOF. The maps ^XAd and /c_i A 1 fit into the commutative diagram 

AdAAd- -^AdAK- -^AdAK- - ^ UAd A Ad 

T 

AdW E-^AdQ 

A V K _ I A 1 

^KV S-^KQ >- K V E-^KQ, ^ SAd V AdQ 

and the 5-lemma implies the result. D 

Let A denote (-l)-connected /m(J)-theory (p ^ 2) and bu (—l)-connected p-local 
K-theory. Then similar arguments give A A K ~ K and A A Ad ~ Ad, and may be 
used to determine Ad A bu. 

We only give the result for Ad A bu, which follows also directly from the computation 
of Lxbu in [22] by using (1.4). 

PROPOSITION 2.8 ([22]). a) Ad2n{bu) = Z(p), n ^ 0, 
b) Ad2n^\{bu) = Q, n ^ 0, 
c) Ad2n{bu) = 0 , n < 0, 
d) Ad2n-\{bu) = Q/Z(p), n < - 1 . 

PROOF. The cases a) and b) are handled as in (2.1). For d) and n ^ - 1 note that 

^p-(p- l )+n 
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is in ker(ip^ - 1 ) = Ad2n{bu; Q/Z(p)) C Kinibu; Q/Z(p)), where v = /IK(^) ^ K2{bu) 
is as in the proof of (2.1). It is easy to see that this gives all elements in Ad2n{bu; Q/Z(p)) 
and since Ad2n(bu',Q/Z(^p)) = Ad2n-\{bu) the result follows. D 

REMARK. The case of Ad^{BP) where BP is the Brown-Peterson spectrum at the prime 
p is similar: Likewise in [22] the K-theory localization LKBP of BP is determined, 
giving Ad^{BP) by (1.4). One may also use Lemma 4 in [17], where Ad^{BP;Q/Z) 
is shown to be isomorphic to v^^BP^{S^\Q/Z) giving Ad^{BP) by the Bockstein 
sequence. 

We close this section by giving as an application of the splitting result a proof that 
/m( J)-theory does not depend on the particular value of k appearing in the defining 
cofibre sequence (LI). For connective /m(J)-theory this was first proved in [27]. 

PROPOSITION 2.9. Let p be an odd prime, fci, fca integers generating (Z/p^)* and denote 
the fibre spectrum of ip^' - I by Ad{ki). Then there exists a canonical equivalence 
e : Ad{k\) —> Ad{k2) such that 

Ad{kx) ^K 

Ad{k2)- ^K 

commutes. 

PROOF (sketch). Using the periodicity properties of Adams operations (e.g., see [1]) and 
that k\ generates (Z/p^)* one easily shows that for arbitrary 2̂ the composition 

is zero. Then the same proof as for (2.5) shows that 

Ad{ki)AK-

|1A(V''2-1) 

T 

Ad{kx)AK—^ 

^K 

xl)^2-\ (2.10) 

-^K 

commutes. As in (2.6) we obtain a fill-in map L making Ad{k2) into an ^d(A:i )-module 
spectrum. Define now e : Ad{k\) —^ Ad{k2) by composing L with Ad{k\) A S^ -^ 
Ad{k\) A Ad{k2). If also fe generates (Z/p^)*, then e induces an isomorphism on 
coefficient groups, hence is an equivalence. This may be seen as follows. On TTQ and 7r_i 
we get this from (2.10). On mod-p*-homotopy groups e induces an isomorphism by an 
argument using the fact that /2 A idM{z/p^) is an equivalence (2.1). D 
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3. The universal coefficient formula for Ad-theory 

In this section we derive the universal coefficient formula for Ad-theory: 

THEOREM 3.1. For every CW-spectrum X the following sequence is exact. 

0 — . Extz^^^ {Adn-2{Xl Z(p)) —^ Ad^iX) 

^ Homz,^^ [Adn-i (X), Z(p)) —> 0. 

There are corresponding universal coefficient formulas for other coefficient groups and 
also for Adi^{X) when X is a finite spectrum. 

Let G be one of the abelian groups Q, Q/Z(p) or Z(p) and consider the Kronecker 
product 

( , )Ad : Ad^{X;G) ® Adn-^{X) —. Ad. , (5^;G) = G (3.2) 

which is induced by the pairing HAd = L\ from (2.6) in the usual way. Then kAd '-
Ad^{X) —• Hom{Adn^i{X),Z(^p)) is the homomorphism adjoint to (3.2). 

We start with G = Q/Z(p) or Q and let M = M{G). The pairing ^Ad was defined 
as a fill-in map L\ in (2.6). Let Li be a fill-in map induced by the middle commutative 
square in 

Ad/\Ad - -^KAAd 
{i>^-\)^\ 

^KAAd- - ^ EAdAAd 

Ad- -^K 

/x(lAD) M(IAD) (3.3) 

-^K- -^EAd 

Then 

LEMMA 3.4. L\ MM '^ L2/\\M '- Ad^Ad^M — • Ad A M. 

LEMMA 3.5. (L2A1M)O(TA1M) - L\MM for the switch map r : AdAAd —• AdAAd. 

LEMMA 3.6. L\ /\\M is associative, i.e. L\{L\ A 1 ) A 1 M — L\{\ A L\) /WM-

PROOF. We first consider the case G = Q/Z(p) and use Ad A Ad A M ~ Ad A M. 
The maps L\ A 1M and L2 A 1M are elements in AdP{Ad A Ad AM; G). The universal 
coefficient formula for i^-theory gives K~^{Ad A Ad A M; G) = 0 which implies that 

D:AcP{AdAAdAM;G) —> K^{Ad AAd AM;G) 

is injective. But D oL\ =/jLoDAD = DoL2y hence 

{D A 1M) O ( L , A 1M) ^{DA 1M) O (L2 A 1M). 
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This proves (3.4) for G = Q/Z(p). If G = Q we use the facts that Li - L2 = ^(c) with 
c€ K-\AdhAd) and 

K-\Ad^Ad)'^K-\Ad^Ad\(i) 

is zero since 

K-\Ad A Ad) ^ Ext{Ko{Ad A Ad), Z(p)) 

and Ext{-,Q) = 0. This gives 

L, - L 2 : > l d A A d ^ AdAM(Q) 

and since M(Q) is an associative ring spectrum we get Li A 1M — L2 A IM- This 
proves 3.4 for G = Q. The proofs for 3.5 and 3.6 are entirely analogous. D 

PROPOSITION 3.7. The Kwnecker product (3.2) with G = Q or G =^ Q/Z(p) satisfies 

{a,A{y))^^^A{D{a),y)j^, 

{A{a),b)^^ = A{y,D{b))^, 

where ( , )K is the K-theory Kronecker product analogous to (3.2). 

PROOF. This follows from (3.3), (2.6), 3.4 and the definition of { , ). D 

The main step in the proof of 3.1 is 

PROPOSITION 3.8. For every CW-spectrum X and G = Q or G = Q/Z(p) the homo-
morphism kAd ' Ad^{X\G) —• Hom{Adn-\{X),G) induced by the Kronecker pairing 
(3.2) is an isomorphism. 

PROOF. We deduce this from the well-known statement that 

kK : ii:^(X;G) —^ H(mi{Kn{X),G) 

is an isomorphism for X and G as above. 
Let cil)^ be the operation which is adjoint to ij)^ with respect to ( , )K^ ie . 

{cfil^^x, y)K = {x, il^^y)K' Then cip^ = IIJ^^^ = ('0'̂ )"^ which follows from ip^{a, b)K = 
{ilj^a,tp^b)K and -0*̂  = 1 on Ko{S^). By definition of cil)^ the following diagram com-
mutes: 

X^(X;G)- •^iC^(Jt;G) 

(3) 

Hom{Kn{X),G) ^^(^' -^'^) , Hcmi{Kn{X),G) 

(3.9) 
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Denote by Ad the cofibre spectrum of ajj^ - 1. The following commutative diagram 

Adr{X\G) • — ^ A'"(A';G) —^ U - A : ^ ( X ; G ) • 

(1) -V,* 

- ^ ^'Ad!^^\X\G) 

(2) 

Ad'*(X;G) ^ ^ A : " ( X ; G ) —"^ 1 -^ /C^(X;G) ^ ^ Ad^+V^;^) 

where F is induced by a fill-in map, shows that Ad and Ad are equivalent. We extend 
diagram (3.9) as follows: 

Ham{Adn^x (X), G) ̂ ^ Ad-(X; G) — ^ Id"(X; G) 

from(ii:n(J:), G) < ^^ K^{X; G) 

'Hom{cil)^,\) 

Hom{Kn{X),G)^ 
(3) 

Hom{Kn{X),G)^ 

'K^{X\G) 

•ir^(X;G) 

(6) 

K'^iX'^G) 

Hom{Adn{X\ G) ̂ -^^ Ad^^'(X; G) - ^ JT^'{X; G) 

This diagram commutes: (1), (2), (3) have already appeared, (4) comes from {ip'^x, y)K = 
(x, cil;^y)K and (5), (6) follow from 3.7. 

For G = Q or G = Q/Z(p) the left vertical sequence is exact since G is Z(p)-injective. 
Since kx is an equivalence the result follows from the 5-lemma. 

We may now complete the proof of 3.1 in the usual way: 



440 K. Knapp 

Consider the Bockstein sequence associated to Z(p) —• Q —• Q/^{P) • 

Chapter 11 

A(r(X,Q) • -^Aci-(X;Q/Z(p)). 

Si U2 

P -^Ad^-^*(X)—^ 

Hom(Adn-i(X),Q) ^^(^>;)ifom(Adn-i(X),Q/Z(p)) ^ Ext»(Adn-i(A:),Z(p)) • 

/3 
^ A(r+*(X) ^ ^ A<r+»(X;Q) • -^Ad'*+»(X;Q/Z(p)) 

fc2 

0 ^ Hom(Adn(A'),Z(p)) ^ Hom(Adn(X),Q) ^ Hom(Adn(X),Q/Z(p)) 

Since k\,k2 are isomorphisms a diagram chase shows kAd to be onto and ker{kAd) = 
fcer(z) ^ 2m(^) = cofcer(r) ^ cofcer(ifom(l,r)) = f;xt(>ldn-i(A:),Z(p)). D 

4. i4d-theory cohomology operations 

The universal coefficient formula 3.1 together with the splitting of Ad A Ad easily gives 
Ad*Ad: 

Recall that 6 = AoD:Ad-^K-^ EAd and denote the group Extz^^^ (Q, Z(p)) = 
Zp/Z(p) by P . Note that P is torsion-free and divisible, hence a Q-vector space. Then 
AdP{Ad) ^ PeZ(p) • id, Ad̂  (Ad) ^ Ad^(>ld) • 6 and Ad*+9*(Ad) = Z/p^+'̂ p^*) where 
g = 2p — 2, 17«̂  0 and iyp{t) denotes the power of p in t. All other groups are zero. 

Note that the subgroups P C AdP{Ad) and P • 6 C Ad^{Ad) consist of phantom 
operations, i.e. every F e P induces the zero map F : Ad*{X) —> Ad*{X) if X is a 
finite complex (if X is finite, every x £ Ad*{X) factorizes through a finite subspectrum 
Ad̂ "*) of Ad, but since AdP{Ad^''^) is finitely generated over Z(p), the restriction map 
Adf^{Ad) —* Ad^(i4d(^)) must be zero on P). Hence up to phantom operations all 
operations in Ad-theory are given by multiplication with elements in the coefficient 
ring: e.g., 6 is induced by multiplication with 2_i G Ad_i(S^) and the generator in 

Ad^+*«(Ad) is given by AdA^^'-^^ ^-^ Ad A Ad-^ Ad where a E Ad_i_tg(S^) is 
a generator. 

This is exactly the result one expects from the close relation of Ad to LKS^-

5. The product structure on Ad 

In this section we investigate the properties of fiAd- The proof that 11 Ad is commu-
tative, associative with unit is straightforward but somewhat long. The reason is that 
D : A(P{Ad A Ad) -+ K^{Ad A Ad) is not injective but has a nontrivial kernel consist-
ing of phantom maps. If we ignore phantom maps, i.e. work only with finite complexes, 
then associativity and commutativity of /lAd becomes more or less trivial. 
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To compute K''{X) for X a product of copies of Ad and K we use the universal 
coefficient formula for /(̂ -theory and the splittings of K t\ Ad, Ad A Ad. 

PROPOSITION 5.1. fiAd is commutative and associative up to phantom maps. 

PROOF. ^Ad - i^Ad o r is in 

ker {D : AdP{Ad A Ad) -^ K^{Ad A Ad)) 

hence comes from K^^{AdAAd). But this group is isomorphic to P := Ext{Q, Z(p)) and 
consists of phantom maps (e.g., see Section 4). The same argument applies to associativity 
up to phantom maps. D 

REMARK. In the same way one may show that the product induced on p-complete 
/m( J)-theory AdZ^ is commutative and associative. 

PROPOSITION 5.2. i e AdQ{S^) is a two-sided unit for IIAd-

PROOF. The three maps 

idAd^ I^Ad o (i A id), fiAdi^d Ai) £ Adf^{Ad) 

are all mapped to D under D : AdP{Ad) —• K^{Ad), hence they are equal since 
K~^{Ad) = 0 implies that D is injective. D 

Next we show that fXAd is uniquely determined by being a fill-in map in (2.6). 

PROPOSITION 5.3. There is only one fill-in map in (2.6). 

PROOF. The difference of two fill-in maps may be written as A{F) for a phantom map 
F £K-\AdA Ad) ^ P. Denote by g the map 

g: Ad A Ad " " ^ - ^ IJ-^HQ A IJ-'HQ - ^ Z-^HQ. 

Then g^ : K-2{AdAAd) —> K-.2{S~^HQ) is onto and the universal coefficient formula 
implies 

g*:K\Hq>)-^K-\AdAAd) 

is an isomorphism. That A{F) is the difference of two fill-in maps implies also 

{\AAyA{F)=0. 
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We show that (1 A Ay{AF) = 0 implies F = 0. This follows from the commutative 
diagram 

K-^(AdAAd) "^^ y K-\AdAE-^K) ^ A(f{AdAE-^K) 

A(f(AdAAd) 

K-\A\* 

^K^(HQAK)-

K _ l A l * 

• A(f{E-^HQAK) 

Ad^iHQ) ^ Ad^{HQAK) • ••Ad^(HQAK) 

Here cho 0 Q : KQ ~ AT A -fiTQ -* i f Q is the rational Chem character and square 
(a) conMnutes because of (1.2). That cho 0 Q and K-\ A \ induce monomorphisms 
follows from the fact that both maps are splitting maps. It is also easy to see that 
A : K^ (HQ) —^ A(fi{HQ) is injective. D 

To prove conmiutativity and associativity we construct an equivalence 

5 : S-^AdQ \/Ad—^ Ad A Ad 

which is well behaved with respect to the map riAdAAd-^AdA Ad. 

Step 1: The group [Ad, Ad A Ad] 
From the commutative diagram (with /x = /i^d, M = M(Q/Z(p)), r = reduction mod 
Q, /3 = Bockstein map) and the splitting of Ad A Ad 

' [S^^AdAAd] 

Z(p)eP=[Ad,Ad] -^ ^— [Ad,AdAAd]=Z(p)eP©Q -^-1-^ [5-\AdAAd]=Z(p)eQ 

P=[AdQ,Ad] -<-

0. 

[AdQ^r-^AdAM]^^ 

- [AdQ,AdAAd]=PeQ—^^^ [i;-^MQ,AdAAd]==P®Q 

[AdQ,i:-'AdAAdAMl 

we derive a direct sum decomposition of [Ad, Ad A Ad] as Z(p) • (i A1) 0 P 0 Q ( i A1 - 1 Ai) 
satisfying: P = Ext{Q,Z(^p)) = im{r*P^) and ker(/i«) = Q(z A 1 - 1 Az) with r acting 
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on ker(/i*) as multiplication by - 1 . Since (/i A 1M) O (T A 1M) ^ M A 1M (3.5) we see 
that r acts on P as the identity. We choose a generator A; of ker(/i*) in [AdQ, Ad A Ad] 
with r*{k) = (i A_l - 1 A z) and r{k) = -A: (r* is injective and z A 1 ~ 1 A z 7«̂  0). 
Denote i*_i{k) by k in [iT'^MQ,i4d Ayld]. Since zlj is an isomorphism we must have 
ko K_i = k. 

Step 2: The equivalence S 
Define R:= ko8 ^\ ^bo E-\k) : ̂ - U d Q —^Ad^Ad and let 5 := i? V (i A 1) : 
r - U d Q V Ad —> ^d A yld. 

LEMMA 5.4. S is inverse to ^y K^I A\ : Ad/\Ad —y AdV E'^AdQ. 

PROOF. ^ O S = id Ad V 0 follows from /i o (z A 1) = id Ad and /i o R = 0 since 
/x(l A 5) = 6o/ji and /x o fc = 0. Then «:_ iAlo5 = 0Vzd follows from /c_i o z = 0 and 
(«_i A 1) o i? = zd. The last equation is seen by restricting to z: S~^MQ •^ E~^AdQ 
and z«i : T-^MQ ^ r ~ U d Q . D 

5rep i.- The group [S'^Ad, Ad A Ad\ 
By using the splitting of Ad A Ad one easily derives the exactness of the sequence 

0 —^ [Ad, Ad A Ad] - ^ [ r - U d , Ad A Ad] ^ [ 5 - ^ Ad A Ad] —^ 0 

with 7r_2(Ad A Ad) = Q(z_i A z_i). 
1. /x(l Az_i) = /i(z-.i A 1) 
Since z-_i A 1 — 1 A z_i is in ker(z!.,) we may write 

z_i A 1 - 1 A z_i = a(z A 1) o 5 -h F o (5 -f c(z A 1 - 1 A z) o <̂  

with F £ P. Restricting to [5~^ Ad A Ad] and applying /x shows a = 0. The action of r 
implies IF-S = 0. But P is torsion-free, hence F6 = 0, and z_i A1 - 1 Az_i G ker(/i„) 
since /i(z A 1 - 1 A z) = 0 by (5.2) 

2. /i((5 A z) = iji{i A (5) 
We have 6 Ai -i A6 = (5*(1 A z - z A 1) and the claim follows again from (5.2). 
4. / / (zA(5- 1 Az_i) = 0 
This follows easily from the defining diagram for /x. 
5. Now ker(/i*) in [i7~Md, Ad A Ad] is the 2-dimensional Q-vector space with basis 

z_i A 1 — 1 Az_i and iA6-\Ai-\. This is seen by applying z* and zip In particular, 
ker(/i*) is invariant under r. 

LEMMA 5.5. (1 A (5) o A: = ((5 A 1) o fc. 

PROOF. Using the universal coefficient formula we see that the composition r* o 
(«:_i)* : [iJ-^MQ, Ad A Ad] —> [E'^ Ad, Ad A Ad] is injective. Therefore ker(/i=,) C 
[r~^MQ, Ad A Ad] is invariant under r and r_acts by multiplication with - 1 . Since 
{I A 6) ok ^ker(/i*) we_see that -To(lA<5)ofc = - 6 A l o r o f c = 5Alofc and this 
is (1 A (5) o fc. From fc = fc o /c-i the lemma follows. D 
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PROPOSITION 5,6. TOR= -R. 

PROOF. By definition R\=kod^-{\ ^6)o E-\k), therefore 

ToR=:^ko6-^6A\oE-^ (rk) =-{ko6-\-{\ A6) o E'^ {k)) 

by 5.5. D 

COROLLARY 5.7. fiAdor = iiAd-

PROOF. Under the equivalence S the projection pr : S~^AdQ V Ad —> Ad corresponds 
to jjLAd' pr = /XAd o S. Now 

r o 5 = -J? V (1 A z) = 5 - (2i? V (z A 1 - 1 A z)) 

by 5.6 and therefore 

fJ'Ad o r o 5 = fiAd oS - fiAd{'2.R V (z A 1 - 1 A z)) = fiAd o 5 - 0, 

hence /x^d ^T = ^Ad- • 

COROLLARY 5.8. p.Ad is associative. 

PROOF. Define maps / i , / 2 by the following diagram (/x = fiAd)'-

Ad A{Ad AAd) l^Ad /\{Ad\/ E-^AdQ) ^Ad A AdW Ad A S-^AdQ 

II / l i / 2 X i 
{Ad A Ad) A Ad ^{Ad V r - U d Q ) AAd^AdAAdW E^^AdQ A Ad 

i /i A 1 ipr 

Ad A Ad = Ad A Ad 

Associativity of /i follows from /i o /i = /[x and /i o /2 = 0. 
a) / i = id 
1 A 5 restricted to Ad A Ad is Ad A S^ A Ad ^^^ Ad A Ad A Ad. By definition / i is 

the restriction of 1 A 5 to Ad A Ad composed with pr o [S A l)~^ = / x A l and this is 
(/iA l ) o ( l AzAl ) = id. 

b)/xo/2 = 0 
1 A 5 restricted to AdAT'^AdQ is 1 AiJ. We have to compute /xo (/x A 1) o (1 AiJ), 

which is determined by its restrictions to S^ A E'^AdQ and S~^ A E'^AdQ. For the 
first restriction we have 

jUo(/iA l )o(zAi?) = /io(/xA l )o(z Al A\)o{\so AR) = / i O i? = 0 . 

The second restriction is reduced to this by 

/i o (/i A 1) o (z_, A /?) = /x o (/x A 1) o (1 A iZ) o ((5 A l)(z A 1) 
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= / i o ( / x A l ) o ( 5 A l o l A / ? o 2 A l 

= < 5 o ( / i o / x A l o l A i 2 o z A l ) = 0. 

We have used /io((5Al) = /xo(lA(5) = (5o/x which follows from 5.7 and 2.6. D 

REMARK. If J5 is a commutative ring spectrum then its (-l)-connected cover is again 
a commutative ring spectrum. Hence (-l)-connected /m(J)-theory A is a commutative 
ring spectrum. 

This follows also from the facts that p-localized Quillen iif-theory of a finite field, 
K¥k, k chosen as a prime power, is a model for A (p^l) and K¥k is a commutative 
ring spectrum. It also follows from the facts that Li<̂ Ŝ  is a commutative ring spectrum 
and A is the (-l)-connected cover of LKS^- A direct proof that -4 is a ring spectrum 
based on the Adams spectral sequence (but without convergence considerations) may be 
found in [29]. 

Denote by / the Adams summand in p-local (-l)-connected A'-theory, U{S^) = 
Z(p)[i;i], with v\ = vP"^, and let Q be the operation with v\oQ = if)^ - \ . Then A may 
also be defined by the cofibre sequence 

and the multiplication ^A'- A/\A 

DAl 

A fits into the commutative diagram 

QAl ^ A l 
*- EAAA • 

(5.9) 

^EA-

This is also proved in [29]. The proof that the middle square in (5.9) conmiutes is similar 
to (2.5) using in addition the cofibre sequence 

EH I HZ, (p)-

Then we may define /XA as a fill-in map in (5.9). To compare /x^ with the product /x^ 
induced from Ad (and thus proving associativity and commutativity for ^A) we use 

D. 
LEMMA (see [29]). [A ^A,A]—^[A^ A, I] is injective. 

This may also be proved using the splitting of Z A >1 [16] for computing [A A A, 
E^^H] = 0 (and thus avoiding all convergence problems). Since /x^ satisfies D/x^ = 
DfiA we must have /x'̂  = ^A-

6. Ad.(PooC) 

In this section we treat as an example the /m(7)-groups of the complex projective space 
Ad^{PooC). This computation is contained implicidy in [14] and also follows from the 
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determination of LK{PCX>C) in [22]. Recently Hesselholt and Madsen [13] have given 
a computation of AdC'[PooC). One possible approach for computing Ad* (PooC) is to 
approximate PooC by -BZ/p'" and use the computation of Ad^{BZ/p^) [18], see §8. This 
is the method used in [13] or [14]. We give a direct calculation. 

Let X = / f - 1 G K^{PooC), H the Hopf line bundle, and denote by hn G 
K2n[PooC) the element dual iox^Aia £ TTI (PooC) = Z is a generator, then hK{cr) = b] 
up to sign. Denote /lAd(^) ^ AdiiPooC) by b\, then 

LEMMA 6.1. Ad2n(PooC) ^ Z(p) • ftf /c7r n > 0. 

PROOF. The n-th power of b\ in the Pontryagin ring structure generates a subgroup 
Z(p) • 6" of i4d2n(PooC) of maximal rank since Ad2n{P<x>C;Q) = Q.lfbi=C'zin 
Ad2n{PooC) then {X,D{Z))K € Z(p) implies 

hence the result. D 

Let (,)/<: : ii'^(A') 0 i(:o(A';Q/Z(p)) -> Q/Z(p) be the Kronecker product, then 

LEMMA 6.2. Any element z € ker(;^^ - 1) ^ ^2n(-PooC;Q/Z(p)) is completely deter-
mined by the Kronecker products 

^i{z):={H^\z)j^, i = 0 , l , 2 , . . . . 

Note first that on Ko{X\Q) the eigenspace of ifj^ with respect to the eigenvalue j'^ is 
independent of j as long as j 7̂  i l . On Ko{X\ Q/Z(p)) we only have ker{\l)^ — k^) C 
ker{il;^ -j^) as long as j ^ 0(p) and A; generates (Z/p^)*. This follows easily from the 
periodicity properties of Adams operations discussed in [1]. 

If we identify K2n{X) with Ko{X) then under this isomorphism ker{ip'^ — 1) is the 
same as ker{xl;^ - k^'^) = ker{k'^\l)^ - 1). 

PROOF OF 6.2. Let z E iiro(PmC;Q/Z(p)) be given. Since ii:o(f'mC+;Q/Z(p)) is iso-
morphic to Hom{K^{PmC^)\ Q/Z(pA), z is determined by the Kronecker products with 
l ,x ,x^, . . . jX"̂ . But instead of l ,x ,x^, . . .^x^ we may use the basis l,H,H^,... , iP^. 
Write j =p^ 'S, s^ 0(p) and assume z G Ko{PooC;Q/Z(p)) is in ker{il;^ - k~'^) (i.e. 
z is in ker{ip'^ ~ 1) if z is viewed as element in K2n{PooC\Q/Z(^p))). Then 

Here c0* is adjoint to ^* as in Section 3 and by the remark above ct/;̂  = T/;*/* acts by 
multiplication with s^ on ker{il}^ - fc"*^). D 
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Denote by cj : S'^APQOC —• PooC the (stable) map inducing multiplication by a. Then 
by Snaith's theorem (for an easy proof see [5]) the mapping telescope of cj, PooCfo;"" ]̂, 
is complex î T-theory 

PooC[a;-*]2.K (6.3) 

We now first rejM-ove the splitting of Ad A K (2.1) using 6.2. 
Since u^{b\) = 6|~̂ ^ 6.1 implies 

Ad2n{PooC)[u;:'] = Ad2n{PooC[u-']) = Ad2n{K) = Z(p). 

Also the map 

Ad2n{PooC) - U Ad2n{K) - ^ K2n{K) ^ K2n{S') 

is an isomorphism since Dl{b^) = hKiu^)-
Next, «_! : Ad2n-\{Pcx^C) —• H2n{PooC;Q) is onto. This is seen by evaluating K^\ 

on A{bmu''-'^): 
From b\ •bn = nbn • ?x 4- (n -h l)6n-fi in K2n-\-2{PooC) it follows that 

bn=[''l;y (6.4) 
and therefore 

with 5(m, fc) as in Section 2. Then 

/c_i4(6^u"--) = c/io(6mtx"-"^) = 
5(m, n)n! 

m! 

and the claim follows as in Section 2. 
The Bockstein sequence associated to Z(p) —• Q -* Q/Z(p) induces an exact sequence 

Ad2n(PooC;Q) -^yld2n(PooC;Q/Z(p)) - ^ Ad2n-l(PooC) 

^ Q ^ O . (6.5) 

We show, that if 2 = /3(y) in Ad2n-i(i^ooC), then a;i(2;) = 0 for z large enough. For 
this, it is enough to show uKy) G iTn{r) for i large. Since 

D : Ad2n(PooC;Q/Z(p)) -^ K2n{PooC;Q/Z^p)) 

is injective we may use the 7t-sequences of 6.2 to check this. 
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LEMMA 6.6. li{u^.{y)) ^ p'li{y) for y e i^o(PooC;Q/Z(p)). 

PROOF. U*{H^') = p* • if̂ * implies this statement. D 

Given y G Ad2n(-Pcx>C;Q/Z(p)), then for t large enough, only 7o(^*(2/)) = 7o(2/) can 
be nonzero. On the other hand ^{{b^/p^) = p^'^/p^, hence for n large enough (compared 
with 5) 7t(6i*/p*) = 0 for t > 0, too. This implies ui{y) € im(r*) = Q/Z(p) -fcf finishing 
the proof of 2.1. 

It is now easy to complete the computation of Ad^{PooC): 
We would like to construct elements Zr,b € KQ{POOC\ Q/Z(p)) in ker{ip^ - k"^) with 

7t-sequence 

lii^r.b) = 6i,r/p^ i^i^r Kroneckcr symbol). 

If ^Ms "dual" to if* then 

Zr,b = 4 XI '̂'̂ ''''' 6 > 0, r ^ 0, (6.7) 
^ i?^0(p) 

would be the right element. To make this precise identify K^{PooC^) with Z(p) [[x]] and 
define C by the exact sequence 

O^Z(p)[x]-UZ(p)[[x]]-.C^O. 

Since Hom{-,Q/Z^p)) is exact we get an exact sequence 

0 ^ iirom(Z(p)[x],Q/Z(p)) vi^ /fom(Z(p)([i]],Q/Z(p)) 

^-/rom(C7,Q/Z(p))^0. 

Let 

Home(Z(p)[[x]], Q/Z(p)) : = limHom{K°{PmC+), Q/Z^p)) 

^Ao(PooC+;Q/Z(p)). 

Then the canonical inclusion 

ifomc(Z(p)[(xl],Q/Z(p)) - . /fom(Z(p)[[x]],Q/Z(p)) 

composed with i* gives an injection 

5 : ifomc(Z(p)[[x]],Q/Z(p)) - ^ ifom(Z(p)[x],Q/Z(p)). (6.8) 

Note that IP/p^ defines a well defined element in ifomZ(p)(Z(p)[x],Q/Z(p)) namely 
the map 

{x\w/p») = {-iy^^Qp-K 
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Also 

5 3 rff^PVp'^Hom(Z(p)[x],Q/Z(p)) 
i^O(p) 

is well defined since 

(x^ 5: i " s - v / ) - E (-i)̂ " '̂''Gpr)̂ "/p' 

involves only finitely many values of i. 
Define numbers 

Prin,s):= T{-iy+'^i.\y (6.9) 
imp) ^'P^ 

for r G N, n G Z and denote the power of p in m E N by iyp{m). We need 

LEMMA 6.10. lim i/p(Pr(n, 5)) = oo. 
s—*oo 

PROOF. For Z > 0, ^ > 0,5 > 0 and r ^ 0 let 

Then it is easy to see - and carried out, for example, in (2.11) [18] - that 

lim i^p(ar(i,t,s)) = 00. 

But 

Pr(n,5) / /= 5Z ar(i,^5)2Vp^modZ 
t = l 

t5^0(p) 

hence Pr(n, s)/p^ € Z(p) for 5 large enough and the lemma is proved. D 

REMARK. More precise information on the numbers Pr{n,s) is contained in [15]. 

Now 

t^O(p) 
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therefore only finitely many x^ evaluate nontrivially on Zr,6- Hence Zr^b belongs to 

i/omc(Z(p)[[x]],Q/Z(p)) = ii:o(PocC4-;Q/Z(p)). 

With respect to the usual basis we have 

r̂,6 = J]Pr(n,5).6,y. (6.11) 
s 

LEMMA 6.12. {cil)^ - k'^){zr,h) =Oand ^i{zr,b) = ^i.rlv^-

PROOF. Since the map 5 of (6.8) is injective it is enough to show 

<^^(cV*-fc")(z . ,6)>^=0 

for all j > 0. In i/om(Z(p)[x],Q/Z(p)) we may use 

i?SO(p) 

as a description of Zr,6. We have 

If j / sp'", s ^ 0(p), then this is trivially zero. If j = sp^, s ^ 0(p), then 

/H'"P^ - fc"fl-*P', 5 ] i^W^'^/p'') = ((its)" - fc" • s")/p'' = 0. 

For7j(2;r,6) we get 

Consider now Zr,b as an element in J^2n(^ooC;Q/Z(p)), then 6.12 means (-0*̂  -
l){zr,b) = 0 (see proof of 3.8). Since D : Ad2n{PooC;Q/Z(p)) ^ K2n{PooC;Q/Z(p)) 
is injective, 2r,6 defines a well-defined element in Ad2n(-PooC;Q/Z(p)), which we shall 
also denote by 2r,b-

PROPOSITION 6.13. 

Mn(PooC;Q/Z(p)) = 0 Q / Z ( p ) 
i=0 
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and the r-th summand is generated by the elements Zr^b, 6 G N. 

PROOF. Let nip : PQOC —̂  PooC be the p-th power map in the if-space structure of 
PooC. Then m;HP' = m'^' implies: 

mp*(zr,6) = >̂ r~i,6 foF r ^ 1 and mp*(̂ o,6) = 0. 

Hence there are no relations between the elements Zr^t- Any z e Ad2n{PooC\ Q/Z(p)) is 
determined by its 7f-sequence ^i{z) = {H'P\D{Z))K ^ Q/^{p) and only finitely many 
7i(z) can be nonzero. Write ^i{z) = ai/p^\ ai € Z(p), then Yl^i' ^iM and z must be 
equal since they have the same 7t-sequence. D 

COROLLARY 6.14. 

oo 

Ad A PooC A M(Q/Z(p)) - V KQ/Z(p). 
t=0 

PROOF. The slant product with H^' (after applying D : Ad -^ K) defines a map Ad A 
POOCAM(Q/Z(P)) -* KAM{Q/Z(^P)) which induces the invariant 7t of 6.2 in homotopy. 
In order to get a map to 

V^Q/Z(P) 
i=0 

we have to make a change of basis and use the slant products with x^' where x = H-l. 
Since xfp ^ c::̂  0 for z larger than n the maps x̂ * : PnC -* K may be added up to give 
maps 

oo 

PnC^\/K 

with inverse limit 

oo 

PooC-^\/K. 
t=0 

The slant product with this map gives 

Ad A PooC A M(Q/Z(p)) —^ V ii:Q/Z(p) 
t=0 

which induces an isomorphism in homotopy groups by 6.13. D 
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The exact sequence (6.5) implies: 

COROLLARY 6.15. 

Ad2n{PooC) = Z(p), n > 0 , 

Ad2n{PooC) = 0 , n < 0, 

Ad2n-i(PooC) = Q e 0 Q / Z ( p ) , n > 0, 
r = l 

^ d 2 n - l ( P o o C ) = 0 Q / Z ( p ) , n ^ 0. 

r=0 

The Pontryagin ring structure on Ad* (Poo C) now follows trivially. 
Only products with powers of h\ can be nontrivial. The result of 6f • 2 is easily derived 

from the fact that h\ • z = u)^[z) and the knowledge of a;* on Ad*(PooC) 6.6 and 
H.{PooC\Q), 

The Ad-cohomology groups Ad* (PooC) follow easily from 3.1. 
The spectra Ad A PooC and Ad A im are related as follows. Let e : PooC -^ E^bu 

denote the canonical map. An easy consequence of 6.15 and 2.8 is that e* : Ad^ (PooC) —> 
Ad^{E'^bu) is onto. A result of Ravenel [22, (9.2)] identifies the fibre of 1 A e : Ad A 
PooC-^ AdAT^fm. 

THEOREM 6.16 ([22]). There exists a map 

0 0 

g : V S-'KQ/Z^j,) ^ Ad A PooC 
1=1 

such that 

0 0 

y S-^KQ/Z^p) ^ Ad A PooC - ^ Ad A E^bu (6.17) 
t = i 

is a cofibre sequence. 

In [22] this is stated in terms of K-Xhtory localization, but LKPQOC —^Lj^S^bu and 
Ad A PooC —> Ad A E^bu have the same fibre, since e is a rational equivalence. Later 
on we shall see that (6.17) does not split. 

PROOF OF 6.16. We may deduce (6.17) from 6.14 as follows: Let S~^F be the fibre of 
the map 1 A e : Ad A PooC —̂  Ad A E^bu. Then, since e: is a rational equivalence, F is 
also the fibre of 

1 A e A 1 : Ad A PooC A ]Vl(Q/Z(p)) -> Ad A E^bu A M(QZ(p)). 
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Mapping Ad and S'^bu into K and then using multiplication induces an equivalence /a 

Ad A S^bu A M(Q/Z(p)) ĉ  KQ/Zf^p), 

The composition of this equivalence with 1 A e A 1 is nothing but the slant product with 
X = H — \. This shows that we have a commutative diagram 

Ad A PooCAM(Q/Z(p)) LA£Ai_^ ^^ ^ ^2^ ^ M(Q/Z(p)) 

V ^Q/Z(p) ^ -i^Q/Z(p) 

where f\ is the equivalence of 6.14 and jyrx the canonical map onto the first wedge 
summand. But clearly the fibre of pri is Vi^i ^Q/^{p)- • 

7. Ad^iBT"^) 

Let BT^ denote the classifying space of an m-torus. In this section we discuss the groups 
Ad2n{BT'^), which admit a nice combinatorial and number-theoretic interpretation. 

Call - as in [24] - a polynomial f{x], X2, • . . , Xm) € Q[x\, X2, . . . , Xm] numerical if 
f{k\k2,..., km) € Z for all fct € Z and define 

jV(m) .^ {^ ^ Q [2;j, a;2,..., Xm] I / is numerical}. 

It is well known that the usual binomial polynomials (̂ ) G Q[x] constitute a Z-basis for 
iV(^\ the ring of rational polynomials which take integer values on integers. Similarly 
the products 

fx\\fX2\ fXm\ 

\n\J V^2/ \nmj 

give a Z-basis for N^'^\ Then the basic observation (6.4) 

6 n = Q ) inKo(PooC) 

implies Ko{PooC^) = N^^^ and similarly Ko{BT^) ^ iV "̂*). This is an isomorphism 
of rings, where Ko{BT^) has the usual Pontryagin ring structure. The proofs are easy 
and references may be found, for example, in [7]. 

The p-local version is 

ii:o(BT;^)(p^^iV(^'P): = { /EQ[x, ,X2, . . . ,Xm]| / (A: i , fc2 , . . . ,M^Z(p) 

ifallA:i€Z(p)}. 
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In the following we shall work purely p-locally, call elements in N^^'^^ p-numerical (or 
even numerical) and suppress the symbol for localization from the notation. 

Let Xi have degree 1. 

PROPOSITION 7.1. Ad2n{BT^) = { / € AT^^'P) | / is homogeneous of degree n} with 
Pontryagin multiplication on 

0Mn(BIT) 

corresponding to polynomial multiplication. 

PROOF. The defining sequence (1.1) for X = J5T^ shows 

Ad2n(BT^) = ker{i^^ - l) C K2n{BT^). 

But A:er(̂ *̂  - 1) on K2n{BT^) is nothing but the eigenspace of -0*̂  on KQ{BT'^) 

with respect to the eigenvalue k~^. On î o(-PooC)(p) we have ip'^{b\) = k~^b\ hence 
t/;* (̂xi) = fc-^Xi. Therefore only homogeneous polynomials of degree n are in ker{il)^ — 
A:-") C Ko{BT^). D 

The group Ad2n(BT!^) is a free Z(p)-module of rank (^^^^70 ^^^ ^^ ^^y ^̂ ^ *^ 
following question. 

PROBLEM. Construct a Z^pybasis of the free Z(py module 

{f ^ Q[x\ ,X2,...,Xm]\ f{k\,..., /cm) e Z(p) for all hi G Z(p) an^ / 

is homogeneous of degree n}. 

The case m = 1 is trivial and has already appeared in 6.1. The case m = 2 was 
solved independently by L. Schwartz in [24] and the present author (unpublished, 1980, 
see [15]) and will be described below. Although this problem is formulated completely 
in elementary terms, a solution for m > 2 seems not to be known. Computations for 
three variables at the prime 3 forn ^ 27 do not suggest any reasonable answer. 

To describe the solution for m = 2 we identify Ad2n{BT^) with the group of homo-
geneous polynomials in x and y which are p-numerical. For / € Ad2n{BTl) and n > 1 
define as in [14] 

Q(/):=(/^-/-Mx,y))/p 

where hn{x,y) := X^P"" )̂̂  + yip-^)n _ rj.{p-\)y{p-\){n-\) jj^^ polynomial hn has the 
property that hn{s^ t) = 1 mod p for s, t € Z not both 0 mod p. Any other polynomial 
with this property will also do. To prove that Q{f) is p-numerical, let s,t e Z(p) be 
given. If both s and t are divisible by p we are done since / is homogeneous. If 5 ^ 0 
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or t ^ 0 mod p then hn{s,t) = 1 mod p and f{s,ty = /(5,f) mod p proves that 
P - f ' hn is divisible by p. 

REMARK. Operators Q : Ad2n{BT'^) -> >ld2np(J5T^) for m > 2 may be defined 
similarly. 

Define now a series of p-numerical polynomials 

Pi{x,y) G Ad2n{BT^), n = (p4- i y - \ 

inductively by 

P\ ( ,̂ 2/) = (̂ '̂'y - xy^)/Pi 

Pi{x,y)=^Q{Pi.,{x,y)), 

and for 

= E"^^p'~' m 

with 0 < mt < p let 

P{m) := P^' • ^2"^ •' • Pr e Ad2nipMBT'). 

Then 

THEOREM 7.2 ([24], [15]). a) x,y,Pi,P2, • •-Pi,-• • ên r̂ar̂  ^^^^AdjuiBT^) as a 
ring, or 

b) {P(m)x"2/^ I m ^ 0, a ^ p - l i / t > 0} /i- a Z(py basis of^^^^ Ad2n{BT^l or 

c) WhYe n = m{p -h 1) -f Z, 0 ^ Z ^ p. Hfe have (l 4- 1) polynomials 

P{m)y\ P{m)xy^-\.,.,P{m)x^ 

and for every s with 0 ^ 5 < m ( p - f l ) polynomials 

P{s)y\ P{s)xy'-\...,P{s)x^-'y'-^^\ P{s)x' 

with t = n — s{p -f 1). These are exactly n -h 1 = (p -f- l)m -h Z -f 1 polynomials, which 
are a Z(^pybasis of Ad2n{BT^) for n > 0. 

For a proof, that given by Schwartz in [24] or [7] is recommended, it is much shorter 
than that in [15]. Applications of the polynomials Pi{x,y) or 7.2 may be found in [7], 
[9] or [14]. 

The computation of Ad2n{BT'^) may now be used to show that the cofibre se-
quence (6.17) 

y r-^XQ/Z(p) —^Ad^ PooC - ^ v4d A E^ba 
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does not split. For example, let p = 3 and n = 10 then 

Ad2n{PooC A PooC) ^ - ^ Ad2n-2{PooC A bo) 

is not onto and coker e^ is a nontrivial finite group. Since 

PooC A 6u ĉ  Y S^'bu 

the groups Adin^iiPooC A bu) are known by (2.8). In odd dimensions, the cofibre 
sequence (6.17) reduces to 

0 -^ coker e . - ^ 0 K2n (PooC; Q / Z ( p ) ) ^ A d j n - l (PooC A PooC) 

-> Ad2n-3(PooC ^hu)-^0 

giving a description of Ad2n-\ {BT^). 
The description of the elements of Ad2n{BT^) by numerical polynomials has been 

extended by L. Schwartz to the case of a compact connected Lie group G, see [21]. 

8. Ad^{BG) for a finite group G 

The close connection between the representation ring R{G) and the iiT-theory of the 
classifying space of a finite group G extends to 7m( J)-theory. The /m( J)-homology 
groups j4d* {BG) of BG are much simpler to write down than for example their ordinary 
homology groups. We only give a short review, details and proofs may be found in [18]. 

We shall concentrate on the Ad-homology groups, the groups Ad* {BG) are then given 
by the universal coefficient formula 3.1, e.g., for n ^ 0 .4d^+^^(BG) ^ Ad2n-\ {BG). 
There is also a direct and different approach to Ad!^{BG) forn ^ 0 due to Rector [23]: 
Since the p-localization of Quillen's /f-theory K¥k of the finite field F^, where k is 
now chosen as a prime power, is isomorphic to connective /m( J)-theory A we have 
isomorphisms 

K¥\{BG)(j,) ^ A\BG) ^ Ad'{BG) 

for 2 ^ 0. Let RFk{G) denote the Grothendieck group of finitely generated F;k[G]-
modules, I the augmentation ideal of -RFfc(G) and i?Ffc(G)̂  the J-adic completion of 
J?Ffc(G). Then Rector proves an analogue of Atiyah's theorem (8.1): 

Kli{BG)^RF,{G)^ 

and KFl'{BG) = 0 for i < 0. 
Let R{G) be the complex representation ring of the finite group G, EG a contractible 

GW-complex with fi*ee cellular G action and BG = EG/G. Define a map a : R{G) —> 
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ii:̂ (jBG!p) by a{V -W) = EG"^ y^cV - EG^ XQW iox complex representations 
V, W of G. For spaces like BG we have 

K\BG)^\mK*{BG'^) 

and a extends to a map 

a : R{G) —^ K\BG^). 

The close relation between R{G) and K*{BG) is then given by Atiyah's theorem [6] 

K\BG^) ^ R{G)^, K\BG^) = 0. (8.1) 

Here 

R{G)'' = lim R{G)/I{Gr 

is the completion of R{G) with respect to the augmentation ideal /(G) = ker(dim : 
R{G) —> Z) and the isomorphism in (8.1) is induced by a. Note that for G a p-group, 
/(G)-adic completion is simply p-adic completion, i.e. K^{BG) = I{G)p\ for general 
G the completion process is more complicated. 

There is a corresponding result in if-homology, which may be deduced from (8.1) by 
duality as follows (for a direct approach see [12]): 

The usual Kronecker pairing 

(, )R:R{G)®R{G)^Z 

defined by {\,^i)R := dim/fom''(A,/x) is nonsingular and induces an isomorphism 

LR : R(G) ® Q/Z —^ Hcmi{R{G), Q/Z). 

From the iiT-theory Kronecker product 

{,)K: K\X) ® Ki{X;Q/Z) -^ Q/Z 

we have a map 

L : KiiX;Q/Z) -^ Hom{K\X),Q/Z). 

The map S'G dual to a is defined by the composition 

^G •• Ko{BG+;Q/Z) h Hom{K°{BG),Q/Z) ^ H(ym{R{G),Q/Z) 

i^R{G)® Q/Z. 
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PROPOSITION 8.2. !?G is a natural monomorphism and K\ {BG\ Q/Z) vanishes. For a 
p-group G the monomorphism ̂ G is also surjective after localization at p. 

The Bockstein sequence then gives easily K„{BG), in particular Ko{BG) = 0. As a 
consequence we have the exact sequence 

A Ad2n^2{BG) -> 0. 

Since R{G) is a A-ring, Adams operations !f * on R{G) are defined in the usual way. 
For 2 ^ 0 mod p define ^ j ^ := i'̂ l?* on R{G) ® Q/Z(p). Then ^G O i'' = '^2n ° ^G 
on if2n(5G+;Q/Z)(p) provided i ^ 0 mod p and (|G|,0 = 1 and we may compute 
the groups Adm{BG^\ Q/Z) by means of R{G) 0 Q/Z(p) and t/;̂ .̂ From now on 
we shall assume that k is chosen to be prime to the group order of G. An immediate 
consequence is 

PROPOSITION 8.3. Fom^O we have: Ad2n-2{BG) = Oand Ad2n-\{BG) is finite with 
n\G\'Ad2n^\{BG)=0. 

REMARK. Note the wrong sign in the definition of ^Jn ^^ n^» P- ^^ '̂ ^^^1' which 
fortunately does not cause any serious problems. 

EXAMPLE 8.4. Let p be an odd prime and G = Z/p". Then R{G) = Z[A]/(AP" - 1) 
with A the canonical 1-dimensional complex representation. For z = 0 , . . . ,a — 1 let 
Si = {p- l)p^-*~^ Define 

< := ^ k^^' XP'^'/p^-i-^^pM. 

s=0 

It is easy to see that this gives all elements in ker{ilj2n - 1) ^ d therefore forn 7«̂  0 

a - l 

Mn-i (BZ/P-) = 0 (Z/p"-+-'>(-)) . x; 
1=0 

and 

a - l 

Ad^i (BZ/p-) ^ Ad^2{BZlp^) ^ 0 Z / p ° ° . 
i=0 

Note that the set of representations {A *̂, Â * , Â * , . . . } involved in the definition 
of x\ is closed under the action of ^Q • This is a general fact. The key observation is that 
if (fc, |G|) = 1 then V'Q maps irreducible representations into irreducible representations, 
i.e. V̂o acts as a permutation on the set Irr{G) of irreducible representations of G. The 
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orbits of this action of T/̂Q on Irr{G) may now be used to describe the elements of 
Ad^{BG) as follows: 

Let first G be a p-group. Denote by 

v; = {/oi'\pi*\...,pW}, i = o,...,w, 

the orbits of the action of ^Q on Irr{G). By renumbering we may assume 'ipoipm) = 
p^!^, for m < Si and ̂ o (P«» ) = Pi • ̂ ^ ^^^^ assume py = 1, the trivial representation 
and define the numbers Si and w in this way. For an orbit V = {pi, ^ , . . . , p^} of the 
action of ipQ on Irr{G) define 

1 4=̂  , . . , . 1 

j=o i=i 

as an element in R{G) 0 Q/Z^p) = K2n{BG^\Q/Z(p)), Then Xn{V) e keritp^^ - 1) 
and since we may write 

ii:2n(BG+;Q/Z(p))= 0 Z/p-.A 
A6/rr(G) 

one gets: 

PROPOSITION 8.5. Let G be a p-group. Then for n^O 

w 

Ad2n.l{BG) ^ 0 (Z(p)/(fc--^ - 1)) . XniVi). 

For a p-group G and i > 0 the numbers $i are divisible by p - 1, so that i/p{k^'^^ - 1) = 
^piri' Si) + 1. 

Let C{G) be the set of conjugacy classes of G and let X/JQ act on C(G) as the A;-th power 
map. It turns out that the two 'tpQ-sets C{G) and Irr{G) are equivariantly isomorphic. 
This implies that the numbers Si and w which describe the abelian group structure of 
Ad^{BG) may also be computed from the action of the A:-th power map on C{G). Let 

W, = {cW,4'),...,c«}, i = 0,...,r, 

be the orbits of the fc-th power map on C{G) with the convention that Cj = {!}. Then 
up to renumbering hi = Si and r = w. 

This setting generaUzes to an arbitrary finite group as follows: 
Let G be a finite group with p-Sylow subgroup Gp and define 

P := im{res : R{G) —y R{Gp)) 
(p) 
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where res is the restriction homomorphism induced by the inclusion Gp C G. Then 

/fo(BG+;Q/Z(p))^P®Q/Z(p). 

Now Q̂ acts on P and if P is a permutation representation with respect to this action, 
then the same argument as for a p-group can be made to work. That P is indeed a 
permutation representation with respect to the group action induced by ipQ is proved by 
Kuhlshammer in [19]. The proof in [19] is an existence proof, so except in special cases 
it is still not obvious how to construct a permutation basis of P. Nevertheless it is enough 
to deduce the group structure of Ad^{BG) (how to construct elements in Ad,^{BG) is 
described in [18]): Namely if Cp{G) denotes the set of conjugacy classes of p-elements 
of G (i.e. elements whose order is a power of p), and S a permutation basis of P then 
Cp{G) and S have the same orbit structure with respect to the ^Q-action and we may 
use the explicit permutation basis of Cp{G) to describe Ad^{BG). 

THEOREM 8.6. Let G be a finite group and Cp{G) the set of conjugacy classes of 
p-elements of G, Denote by 

B^ f , : = { c « , c ( ^ \ . . . , c W } , z = 0 , . . . , r , 

the orbits of the k-th power map on Cp{G) with the convention that Cj = {1}. Then 
forn^O 

Ad2n-l(BG)-0(Z(,)/(fc-^^-l)) 
t = l 

and 

Ad.i{BG) ^ Ad^2{BG) ^ 0 Z / p ~ . 

EXAMPLE 8.7. Let G = D\o be the dihedral group of order 20 and p = 5. Then there are 
two conjugacy classes of elements of order 5 in D\o, which are permuted by V'Q • Hence 
we have one orbit of length 2 (besides the orbit of {1}), so forn 7«̂  0 

For applications of the computation of Ad^{BG) see [18]; we mention here only the 
main result of [18] giving the stably spherical classes in K\{BG) up to low dimen-
sional exceptions, namely for every finite group G and odd prime p there exists a 
constant no(G,p) G N such that for n ^ no(C?,p) the image of the Hurewicz map 
hK : '^2n-\{BG)(p) -* if2n-i(BG)(p) is the subgroup fcer(^'^ - 1) ^ Ad2n-i{BG). 
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Section 0 Applications of nonconnective Im(J ) - theory  

0. Introduction 

This survey article is the continuation of "Introduction to nonconnective Im(J)-theory" 
[24] which we shall refer to simply as part I. As explained there the applications of 
Im(J)-theory arise as applications of K-theory. The applications we present here are, 
except perhaps for desuspension of I m ( J ) ,  all well known but usually not formulated in 
terms of Im(J)-theory. Only a small part of this material has appeared in text books up 
to now. The basic references are the "On the groups J (X)"  papers of Adams and work 
of Mahowald [26]. 

We begin with applications to stable homotopy and recall in 51 some of the most 
important different definitions of the classical e-invariant of Adams and Toda. The 
e-invariant is closely related to the Adams-Novikov spectral sequence based on K-theory 
and we show how the &-term of this spectral sequence may be expressed and computed 
in terms of Im(J)-theory. The next section discusses the classical J-homomorphism and 
its extension to Im(J)-theory provided by a solution of the Adams conjecture. It is this 
extended J-map 

which leads to the most interesting applications and makes the vl-periodic part of stable 
homotopy very special: there is not only a detective device, the e-invariant or Ad-theory 
Hurewicz map hA, but also a constructive device, namely jA.  The computation of the 
composition of e-invariant and J-homomorphism then has the simple reformulation that 
hA o jA is a bijection. 

As the first application of the existence of the jA-map (and thus of the Adams conjec- 
ture) we discuss the Mahowald-Miller theorem on the vl -localization of stable homotopy 
as presented in [13]. The original proofs used quite different techniques and seem to be 
more complicated but may have the advantage of being better suited for a generalization 
to the vi situation for i > 1. The im(jA)-technique used here connects the vl-torsion 
order with the desuspendability properties of a stable map f and leads to an estimate of 
the number of iterates needed for vf. . f to vanish. 

Our main application of the jA-map is the construction of desuspensions of im(J) -  
classes. The original result at p = 2 is due to M. Mahowald [26] and used a quite 
different metkod. The odd primary case was first proved in [12] and is still unpublished. 
The approach presented here is a shortened version of [12]. 

The next section treats the relation of Im(J)-theory to the classical J-groups J ( X ) .  
We work out the orientability condition for Ad-theory and derive as a consequence at 
odd primes the isomorphism 

A discussion of the examples J(c~*P,c)(,) follows. In the last section we consider 
the special case of torsion-free spaces or spectra. This section belongs thematically to 
part I but is placed here since it draws its examples mostly from part 11. 
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We assume that the reader knows the basic properties of /m( J)-theory Ad and we 
shall use the notation, definitions and results introduced in part I without comment. 

1. The e-invariant 

The e-invariant was introduced by Adams [3] and Toda [30] in the early 60's and has 
turned out to be a very useful tool in stable homotopy. There are several different defi-
nitions of the e-invariant and we begin by recalling some of the most well known. We 
shall work stably although there are also unstable versions and applications. We shall 
also work in the cohomology setting; one then gets the homology versions by 5-duality. 
In addition there are more refined versions using the connective theories. Those capture 
vi-torsion phenomena, but we shall not go into this. The same applies to the real ver-
sions. Since we have defined /m( J)-theory only p-locally it seems to be more natural in 
this section to work p-locally throughout (without indicating this in the notation). Most 
definitions make sense over the integers. 

Suppose X is a finite spectrum and / : X -> 5^ is a stable map, i.e. an element of 
7r^(X). The case of a map g : Z -^ S^ may be reduced to the former case by using 
X = E~'^Z. We assume that / induces the trivial map in complex periodic iiT-theory. 
This is the same as assuming that / is in the kernel of the Hurewicz map 

Consider the cofibre sequence of / 

Since /* = 0 this sequence induces the short exact sequence 

0 ^ K-\X) - ^ K'^iCf) - ^ K^{^) -^ 0 (1.1) 

in /(T-theory. The e-invariant describes this extension. 

DEFINITION 1. Let 1 G K^{Cf) be a preimage for 1 G K^{S^), As in part I we write 
i/j^ for the stable Adams operation. Then (t/̂ '̂  - l)( i) = j*{x) for some x G K~\X) 
since ip'^il) = 1. The residue class of x in K-^{X)/{i;^ - \)K-^{X) is well defined 
and independent of the choice of 1. Then define 

e(/) := class of x in K^\X)/{IIJ'' - l)K'\X). 

EXAMPLE 1.2. The cofibre of the classical Hopf map r/ : 5^ - • 5^ is the complex 
projective plane Crj = PjC and (1.1) becomes (at p = 2): 

0 _ K-' {S') ^ K\E'^P2C) - ^ K\^) - ^ 0. 
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With K^{P2C) = Z [x] /x^ and u the Bott element we have 1 = W^x and 

(̂ 0̂  - l){u''^x)=u'\x/j^ ~ l){x) = u^\k-^^^ - l)(x) 

= u-'{k-\{x^\f-\)-x), 

which gives for p = 2 and A: = 3 

{^^-\)\=fu-^x'^. 

Then e(r/) ^ 0 in K^{S^)/{IIJ^ - l)i(:0(52) = Z/2. 

DEFINITION 2. The extension (1.1) defines an element in a certain group of extensions 
which is denoted by Ext^{K^{S^),K^{SX)) in [3]. As mentioned in [29] (see also 
[8]), this group can be identified with Ext]^^f^{K^{X),K^{S^)) which belongs to the 
Ĵ z-term of the Adams-Novikov spectral sequence based on periodic complex iiT-theory. 
Then the e-invariant may be defined as the canonical map 

ker{hK) = F'4{X) ^ElcE\ = Ext'j,^j,{K4X),K.{S^)), 

This is discussed in detail (for X a sphere) in [29] and [3]. The equivalence of Defini-
tions 1 and 2 is proved at the end of this section. 

DEFlNmON 3. Let ch be the classical Chem character and c/io its component in 
H^{X'yQ). Using the following commutative diagram with t = ch- cho 

0- -K^iSX)- •K\Cf)- •K\S^) -^0 

0- ^H*{EX^Q) ^H*{Cf\Q) ^H*{^\Q) ^0 

we obtain a class f\ch - c/io)(i) in H''{EX;Q)/{ch - cho)K^{UX). This is the 
functional Chem character definition of the e-invariant. 

To see how it is related to the first definition let us define a natural transformation 
T: K^{Z) ̂  H*{Z;Q)/H^{Z;Q) by T2n{z) := {k^ - l)~^c/i2n(^) in H^^{Z;Q) for 
n^O, Let e{f) be the e-invariant as given in definition 1. Then T{e{f)) is just j * ~ ^ {ch— 
c/io)(i). Hence the invariant of Definition 1 determines the invariant of Definition 3, and 
if X is torsion-free the converse is true. 

DEFINITION 4. The following commutative diagram 

^ 7rJ^(X;Q) ^ n-\X-Q/Z) ^ n%{X) - •7rO(X;Q) 

K-\X)- 'K-'{X;Q)- •K-\X-Q/Z)- • K^{X) • 
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defines a map from ker{hK) C 4 ( X ) into K-\X\(i)l{K-\X) -f H-\X\Q)) 
which may be called the functional Hurewicz map. The equivalence of Definitions 3 
and 4 will also be proved later. 

REMARK 1.3. The functional Hurewicz map defined by using BP or MU, the spec-
trum of complex bordism, is determined by the invariant of Definition 4 provided X is 
torsion-free. This is an application of the Hattori-Stong theorem. Now the Mt/-theory 
functional Hurewicz map determines the £ -̂theory functional Hurewicz map for any 
complex-oriented cohomology theory E. This shows that the e-invariant defined with a 
complex-oriented cohomology theory E is determined by the /^-theory e-invariant for 
torsion-free X. 

Since bordism has a more natural geometric interpretation than cobordism we turn to 
homology for the last definition of the e-invariant. 

DEHNFFION 5. The cofibre sequence of spectra S^ -> MU -^ MU/S^ induces the well 
known exact sequence of bordism groups [11]: 

-. nf^ix) - f2^(x) -^ fi^^^^ix) ^ fiii,{x) -.. 

Here f2t{X) ^ TT^(X .̂) is framed bordism, n^{X) complex bordism and Q^'^^'iX) 
bordism of stably almost complex manifolds with framed boundary. To an element y 
in i?^"^^(X) represented by [(V,aVK),/, ($,a)] where / : VF -^ X is a map, ^ an 
almost complex structure for the stable normal bundle v oiW and a a framing of i/|aw ,̂ 
associate the homology class 

n - l 

T'{y) := h{[W,^iW] n {Todd{u/a) - l)) € 0 i f i ( X ; Q ) . 
i=0 

Here Todd{i//a) is the Todd polynomial of the vector bundle u/a on W/dW defined 
by the clutching construction with the stable trivialization aondW and fl is the relative 
cap-product Hn{W,dW)^H''{W,dW\Q) -> H,{W;Q). The map T restricted to 
r?^(X) gives T([M,/,<^]) = M[M]nTodd{uM)) G i / . (X;Q). For x G ^i'i.iX), 
the bordism-theoretic definition of the e-invariant is then given by 

r{d-'x) in H.{X;Q)/{T{nli{X)) + Hn{X;Q)). 

The case X = S^ is discussed in detail in [11]. The advantage of this definition is that it 
is sometimes easier to find a bounding manifold W than to work with the cofibre of / . 

If X is torsion-free, then Definition 5 is equivalent to Definition 3. In general, the 
e-invariant of Definition 5 is determined by that of Definition 3, but may have a smaller 
range of definition. (It is only defined if /* = 0 in i7^() and this is in general stronger 
than the condition f^ =0 in K^{).) The proof is left to the reader. 

The secondary cohomology theory Ad may now be used to turn the secondary invariant 
e into a primary one: 
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PROPOSITION 1.4. The following diagram commutes: 
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ker{hK) 

K-\X)/{^''-\)K-\XY 

Aix) 

•A(f{X) 

Since (V** - \)K~^{X) = ker{A), the j4d-theory Hurewicz map hAd describes the 
e-invariant completely. Since also D o hAd = /lic, the j4d-theory Hurewicz map hAd 
combines the two invariants hK and e into one invariant. 

PROOF OF 1.4. Consider the following staircase built up by exact sequences induced by 
the cofibre sequence of / and exact sequences defining Ad-theory: 

K^iSfi) * - i ^ K°{Cf) ^ 

V*-i 

K^S^) ^ K^iCf) * ^ ^ K~^ {X) ^ 0 

•A(P{X)- r •A(f{S^) 

asm 
T 

In such a situation, as we recall below, one has 

e(/) ^r-'iv-* -1) i*"'(i) = A-'rD-\i). (1.5) 

This equation holds in K ' (X) modulo the indeterminacy (V" -l)K ' {X). If we apply 
A to (1.5) we obtain 

zi(e(/)) = rD-'(i)-r(i) = /iAd(/), 
so proving 1.4. 

The equation (1.5) is a special case of the following more general result. 
Given three stable maps 

satisfying go f c:^0 and hog :^0 v/t can define the (stable) Toda bracket 

{h,gJ):EA—^D. 
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There are three equivalent ways of constructing elements in {h^g,f), depending on 
which map among {/, g, h} is chosen to define the cofibre sequence which is used. We 
indicate these three possibilities in the diagrams below using the following notation. If 

Q 0 

X -^Y ^^ Z is 2L cofibre sequence in the stable category and h :Y —^W is a map with 
/i o a ~ 0, then h : Z —^W denotes an extension of /i, whereas g: V ^ X denotes a 
coextension of a map g :V -^Y satisfying /3 o ̂  ĉ  0. 

^EA 

(1.6) 

hoge {h,gj) 

-^c-

EA 

(1.7) 

hoEfe{h,gJ) 

-^D 

(1.8) 

SC-^^ED 

EgEf£{h,gJ) 

The theorem on Toda brackets then says that the indeterminacy in all three constructions 
is the same and that all three define the same element modulo this indeterminacy (at least 
up to sign). 

Returning to the proof of (1.5), appropriately chosen data in definition (1.6) give 
e(/) = j*-i(V;^ - \)i*-\\), whereas definition (1.8) produces A-^fD-^l). D 
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We now compare the Definitions 3 and 4. Let e^{f) be the e-invariant of / according to 
r 

Definition 4. Replacing the coefficient sequence Z —• Q —• Q/Z in that definition by Z —> 
Z -^ Z/p^ with p^ • / ~ 0, we obtain a class e\{f) in K-\X)/p''K-\X) 4- TT^^CX). 

It is the stable Toda bracket belonging to 

with the cofibre of p^ used in the construction. We have e^if) == e'^{f)/p'^ in K~^{X; Q). 
By the theorem on Toda brackets e^4{f) can also be constructed using the cofibre of / . 
Apply the transformation t to this construction, incorporating the factor p~^. Then an 
easy diagram chase shows that we obtain the functional Chem character of Definition 3. 
This is the essential step in establishing the equivalence of the two definitions. 

We conclude this section with a short discussion of the if*-Adams-Novikov spectral 
sequence which is related to the e-invariant by Definition 2. The Adams-Novikov spectral 
sequence defined by p-local periodic iî -theory has Ei-terms 

Exflj,{K,{X),K.{Y)) 

which vanish for 5 > 2 and converges to [LKX, L^y]*, if X is finite. Since localization 
with respect to iiT-theory is usually a rather drastic process, the groups [LKX^ LKY]* are 
in most cases a long way from [X,y]*, and one does not expect this spectral sequence 
to have many direct applications to stable homotopy. But it is an important tool in 
the investigation of the homotopy types of K-local spectra, see [8]. The close relation 
between /m( J)-theory and this spectral sequence comes from the fact that the set of 
primitives in Kn{X) is given by D{Adn{X)). Assume p^2. 

PROPOSITION 1.9. For a spectrum X we have 

^DAdn{X) = ker{^''-\). 

PROOF. The group Hom^^j^{K^{S^), K^{X)) may be identified with the set of coaction 
primitives 

PrnK.iX) = {x£ Kn{X) |t/;(x) = 1 0 x } . 

Here ^ : K^{X) -^ K^{K) 0 K^{X) is the usual coaction map, e.g., see [29]. With 
r}j^,r)j^: K -^ K AK the two standard maps, a simple reformulation is 

PrnK^iX) = ker{rjj^ - rj^ : Kn{X) - . Kn{K A X)). 

Since stable K-theory operations are Kronecker dual to the elements of K* (K) and I/J^ -1 
is in K^{K) and different from id we must have {il;^ - l)x = 0 for x G PrnK^{X). 
Hence PrnK^X) C ker{il;^ - 1) = D{Adn{X)). 
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To prove the converse, assume that A" is a finite spectrum and consider the commutative 
diagram 

Adn{X) iLZHf^ Adn{Ad A X) 

D DAD 

Kn{X) "h^lH^-^ Kn{K A X) 

Using the splitting of Ad A Ad and properties of /lAd : Ad A Ad -^ Ad the map 
rjj^ - r]j^ : Ad -^ Ad A Ad c:! Ad \/ E'^AdQ is easily seen to have vanishing first 
component and a nontrivial second component in E'^AdQ. But D A D restricted to 
E'^AdQ must vanish for X finite. The general case follows by taking direct limits. 

Alternatively one may construct a splitting of G AG into a wedge of copies of G 

S.GAG^ V G 
m=0 

such that the resulting operations prm o 5 o rŷ  : G —> G are given by 

(^fc - fc-[^l) o (^p'^ - ik^-t^l) o . . . o (^'^ - 1) o (^^ - fc) 

for m > 0 (where k = k^^^). Formulated slightly differently this means that every stable 
operation of degree 0 in G-theory which vanishes on 1 G G^{S^) has '̂̂  - 1 as factor. 
From the identity 

we immediately see that x is primitive if and only if (il^^ - l)x is zero. 

Let K be the cofibre of the unit map 5^ —> K. Then the short exact sequence 

0 ^ K4X)^K,{K AX)-^K,gKAX)^0 

induces the long exact £xt-sequence in the following commutative diagram. 
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Prn+iK.(KAX)-

\D 

Adn+iiKAX)-
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•Prn+iK^KAX)-
A 

-^ Ext'^''^'(K.{S^),K.{X)) • • ^ 0 

-Adn^^iKAX)-
A 

Kn^iiKAX) -

d2 •-^AdniX)-

A 

U 
d3 -^ATn + l W 

•^Adn(A:AX) 

(1.10) 

Define 

if : Ext^j^1'^\K^{S^),K,{X)) —^Adn{X) by (̂  := 82 o Z)"^ o 3" 

Since the maps D are onto by 1.9 and 83 = 0 this map is well defined and clearly 
injective. Its image is the same as ker{ij;) which is isomorphic to 

ker{D + /c_, : Adn{X) —> KniX) © Hn^i{X\Q)), 

as can be seen by using again the splittings of Ad A Ad, Ad A K and AdQ ~ HQ V 
E~^HQ. We have proved: 

PROPOSITION 1.11. 

^ ^ 4 ? K (^*(S^) ' ^ * ( ^ ) ) = feer(D + /i_i : Adn(^) 

A similar but easier argument gives 

PROPOSITION 1.12. Ext^^1'^{K^{S^),K^{X)) is isomorphic to ker{D 4- /«-i) on 
Adn-^i(KAX). 

With these propositions the reader may try to compute the Ext-groups for X = S^ or 
X = JBG, the classifying space of a finite group G. 

From diagram (1.10) it is also clear that the e-invariant of Definition 2 composed 
with the map (p is just the Ad-theory Hurewicz map hAd- This shows the equivalence 
of Definitions 1 and 2. 

2. The J-homomorphism 

Im{J) is the best understood part of stable homotopy. It is the J-homomorphism which 
makes the vi-periodic part of stable homotopy special. The J-map was first defined by 
G.W. Whitehead in 1942 in its unstable form: 

J : 7 r i ( 5 0 ( n ) ) - ^ 7 r n + i ( 5 " ) . 
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We consider here its stable (complex) version 

J:K-\Z)-^'K%{Z+). (2.1) 

Here and in the rest of this section Z is a connected finite CW-complex (not a spectrum), 
and p-localization is indicated when needed. Define J{z) as follows. 

Represent 2: by a map / : Z -^ C/(n) and let / : Z x C -> C be its adjoint 
f{x,v) = f{x){v). Then / induces a map on Thom spaces 

T( f) . Z^^ - ^ ^ ^ ' ^ _ J ^ - 52n 

We identify Ẑ "" with S'^'^{Z^). The stable map represented by T{f) is independent 
of all choices and defines J{z) in 7r^{Z^). Note that J(z) restricted to a point in Z is 
always a map of degree 1, hence J{z) is in the group of units 1 -f 7r^(Z), and we define 

J{z) :^ J{z) - 1 € 4(Z) . 

There are variants of this definition: for example, one may apply the Hopf construction 
to / : Z X 52^-^ -^ 52^-* to get a map H{f) : Z * S^""-^ - T^^Z ̂  TS^^"^ - 5^^. 
After stabilization this map is equivalent to J{z); for a detailed discussion see, e.g., [18]. 

For X = 5" one has the well-known geometric description of J by reframing spheres. 
More precisely, the n-sphere with its standard framing 0 coming from 5̂ ^ C R'̂ "'"̂  
represents the trivial element in framed bordism, i.e. with [M,^] denoting the framed 
bordism class of a closed manifold M with framing ^ 

o=[s^,e]enf:{*)^7rl{s^). 

Given a G [5'^, U{m)] we may twist the framing 6 by a (compose the stable trivializa-
tion 6 : z/5^ -> 5^ x C" with a). With the new framing 6a we have 

J ( a ) = [ 5 ^ 0 a ] . 

It is well known and follows easily from the definition above that J is exponential, i.e. 
satisfies 

J{x + 2/) = J{x) . J{y) or J{x + y) = J{x) + J{y) + J(x) • J(y). (2.2) 

In particular, if Z = iTY is a suspension then J is a homomorphism of additive groups. 
By (2.2) we have an obvious extension of J to a map J : K~^{Z)(^p) —> 1 -f n^g{Z)(p) 
on p-localizations. 

The other important property of J{z) is that it figures in the following cofibre sequence 
of spectra 

zMs^^ {EZf' - ^ EZ ""-̂ ^ 5̂ . (2.3) 
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Here Ez is the vector bundle on EZ defined by using z \ Z -^ U{m) as a clutching 
function and Ez — Ez-m, i.e. Ez represents z in K^{EZ) and (SZ)^' is the Thorn 
spectrum of z (e.g., see [29, 19.27]). The map i is the standard inclusion of the Thorn 
spectrum of Ez restricted to a point. This cofibre sequence allows us to compute the 
composition hAd o J- Recall the Bott characteristic class p*(0? which is defined by the 
equation 

where UK{^) is the standard Thorn class of the complex vector bundle .̂ 

PROPOSITION 2.4. We have hAd oJ = Ao{p''-l), that is the diagram 

i<:-'(2)(p)-U4(z)(p) 

K-'{Z\j,^^^A<P{Z) 

commutes. 

Because Aoe = hAd this result describes also the values of the e-invariant on Im{J) 
(see [3]). 

PROOF. Since Ez is i(r*-orientable i : S^ -^ (SZ)^' induces a surjection in fC-theory 
and (2.3) induces the short exact sequence 

0 - ir-'(Z)(p) C K<>(iEZf')^^^ i : i^(5«)(p) - . 0. 

This implies hK{J{z)) = 0, so that the e-invariant of J{z) is defined. The result will 
follow from e[J{z)) — p^{Ez) - 1 by 1.4. Using the relative version of the Thom 
isomorphism it easily follows that g*{x) = a: U UK{EZ). Since we may choose 1 = 
UK{EZ) we have by definition of the e-in variant 

e(J(z))=5-'(V''=-l)( i) = p ' ( ^ z ) - l , 

finishing the proof. D 

COROLLARY 2.5. The Hurewicz map hAd • '^ni^){p) ~* •AdniS'^) is onto for n > 0 and 

PROOF. It is enough to show that hAd • '^si^^^~^)(p) ~* A(f{S^^~^) is onto for t > 0. 
By 2.4 this will follow from the fact that p* - 1 : K^{S^^)(p) -^ /i:<'(5«')(p) is an 
isomorphism. Now ch o p*̂ (u2') = ±{k^' - l)Bi/2i • w*' for v?' G K^iS*') and w'^' € 
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^4t^^4i.2) generators and Bi the i-th Bernoulli number (see [2]). Since Up{Bi/2i) = 
1 -f- ^p(i) if i = 0 mod(p — l ) /2 the map p^ - \ is multiplication by a number which is 
nonzero mod p. D 

Our next aim is to describe the factorization of the J-map through Ad-theory. For this 
we need the description of the J-map as a forgetful map from vector bundles to spherical 
fibrations. More details are to be found, for example, in [27, Chapter 3]. 

As before let Z be a finite connected complex and SG{n -h 1) the space of degree 
1 homotopy equivalences of the n-sphere. There are canonical inclusions of SG{m) 
in SG{m H- 1) and we put SO = lim SG{m). Then 5G(m) has a classifying space 

BSG{m) and with BSG = lim BSG{m) we have that the homotopy set [Z, BSG] is 

in one to one correspondence with the set of stable fibre homotopy classes of oriented 
spherical fibrations over Z. Let SF{n) be the homotopy fibre of the evaluation map 
E : SG{n -h 1) -> S"" and set SF = lim SF{m). Since SF{n) is homotopy equivalent 

to the 1-component of the n-fold loop space Q^S^ of the n-sphere we have bijections 
of based homotopy sets 

[Z, SFin)]^ ^ [Z, /?r5"]o s [r"Z, 5"]^, (2.6) 

[z, SF]^ ^ [z, nrs°°], ^ [z, nrs°°]o = ^siz)-

The fibre of the evaluation map E : SO{n -h 1) —̂  5̂ ^ for the special orthogonal 
group is SO{n) and the natural inclusion of SO{n 4- 1) into SG{n + 1) induces a map 
SO{n) —̂  SF{n) on fibres. Taking direct limits we get a map 

J'.SO—^ SF. 

If we compose J with U —• SO and use the bijections (2.6) we obtain a map 

K-\Z) = [Z,[7] ^ [Z,C/]o — [Z,5F]o = 7r^(Z) 

which can be identified with the J-map of (2.1). The maps U -^ SF and BU -^ BSF 
will also be denoted by J. Since the connectivity of the inclusion SF{n) —• SG{n -f 1) 
grows with n to infinity, we have SF ĉ^ SG and BSF ~ BSG. Now SG classifies stable 
spherical fibrations over SZ, and BSG those over Z and we may view J as a forgetful 
map from vector bundles to spherical fibrations. As such it is an H-map (the bijections 
in (2.6) change the i/-space structure), so there is a map on p-localizations. Denote the 
homotopy fibre of J : 5C/(p) -> BSF(^p) by SF(^p)/U(^p). The Adams conjecture in its 
p-local form is the statement that Jo(^'^ - 1 ) is null homotopic (e.g., see [4, Chapter 5]). 
This was established in the early 70's and so we may set up the following commutative 



Section 2 Applications of nonconnective Im{ J)-theory 

diagram of fibrations of classifying spaces (localized at p): 
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(2.7) 

BSF 

Here ImJ is the homotopy fibre of V'̂  
/m( J)-theory has the property 

[ZJmJ]Q^AdP{Z). 

1 which by our choice for the spectrum of 

The existence of a lift a of '̂̂  - 1 comes from the solution of the Adams conjecture. 
(There are explicit constructions for a; in the complex case a may be chosen as an 
/f-map.) Let JA : ImJ —• SF be the induced map on fibres. For the following fix 
a choice for a and JA- If we compose the maps J and JA with the identifications 
SF ~ i?f°5°° ~ n^S"^ from (2.6) we obtain the required factorization of the J-map 
through /m(J)-theory: the following diagram commutes 

K-\Z)(,y •A(f{Z) 

(2.8) 

^liZ\p) 

Note that if Z is a suspension, then JA iŝ a homomorphism of additive groups. Observe 
also that im{JA) can be larger than im{J)\ an example is discussed below. 

Next consider the composition hAd^JA-

THEOREM 2.9 ([31]). Let Z be a connected CW-complex. Then for an odd prime p the 
composition 

is hijective. 

PROOF. From 2.5 we know that hAd o 3A is onto for Z = 5'̂ , n ^ 1, hence bijective 
since A(P{S'^) is finite. Therefore the corresponding map of classifying spaces is a weak 
homotopy equivalence proving the result. D 

Since JA is not a natural transformation of cohomology theories, there is no 7,4-map 
in homology. For if there were such a J-map (defined on connective /m( J)-theory JA • 
An{X) -^ Trf (X)(p) with HAOJA bijective) then this would imply Trf (S^)(p) = A^{S^). 
(Use the cofibre sequence S^ -^ BP -^ iBP -> 5*, the convergence of the Adams-
Novikov spectral sequence for S^ and that for X torsion-free HA detects all elements of 
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Adams-Novikov filtration 1, see §7.) But by using 5-cluality and desuspension results 
one may, for example, deduce the following weak homology form of the existence of j ^ ^ 

PROPOSITION 2.10. Let X be a O-connected P'local spectrum with finite Im-skeleton 
X(2^). Ifx e Ad2n-\{X) is in im{Ad2n-\{X^^'^'^) -^ Ad2n-\{X)) andpm ^ n{p- 1) 
then X G im{hA)' 

For the easy proof and applications see [23]. 

3. 17]-periodicity 

In this section we give a short review of the Mahowald-Miller theorem on the v\-
localization of stable homotopy following [13]. Recall that Adams [3] constructed stable 
self maps 

Ba : S'^'^^Ma —^ Ma 

of the mod p"-Moore spectrum Ma = S^ Upa e^ inducing isomorphisms in 
iiT-theory. Here 5(a) is defined as s{a) = 2{p - \)p''~^ for p ^̂̂  2. On G^{Ma) = 
Z/p"[v\ ,v^^] the map Ba induces multiplication by v^ , hence the name v\-periodicity. 
The Moore spectrum is used to introduce mod p"-coefficients into a cohomology 
theory E by using the spectrum E A M .̂ Then Ba operates on E*(X;Z/p^) and 
E*{X\Z/p°')[B~^] is defined. Observe that simply by the 5-lemma Ba induces an 
isomorphism on Ad*(X;Z/p«), hence Ad*{X',Z/p^)[B-^] ^ ^d*(X;Z/p"). The 
Mahowald-Miller theorem as interpreted by Bousfield [9] computes E A Ma [B~ ̂  ]: 

THEOREM 3.1 ([26], [28] for a = 1). The Ad-theory Hurewicz map induces an isomor-
phism 7rJ(X;Z/p«)[B-'] ^ Ad*{X;Z/p-). 

We shall here restrict to the case of an odd prime; the 2-primary case is only technically 
more involved. 

Adams constructed his maps Ba as extensions and coextensions of a generator of the 
image of the J-homomorphism in TT̂  a-i_i(S'^)(p)- One extension or coextension can 
be saved by using the fact that except for p = 2 and a = 1 the Moore spectrum has 
a product structure. Here we shall construct Ba as an element in im{JA), where JA is 
the factorization of the J-map through Ad-theory provided by a solution of the Adams 
conjecture (2.7). It is an example of a case where im{JA) is larger than im{J), since Ba 
is in im{JA) but not in i7n{J). This construction has the advantage that one gets control 
over compositions of Ba and a bound on the order of the vi-torsion in 7r'^{X;Z/p°'). 
Thus, if X G 7rJ(A';Z/p") is an element in ker{hAd)i one can estimate the number of 
iterates needed for Bl{x) to vanish. 

The map Ba is an element in {Z:^^''^Ma,Ma} = 'K%{E'^'''^Ma\Z/p'')\ therefore it 
is convenient to introduce a ĵ -̂map with mod p°^-coefficients. The Moore spectrum is 
self dual up to a suspension: D{Ma) ĉ  E~^Ma, and we choose a fixed 5-duality map 
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for it. This induces an isomorphism Da : E\X\Z/p'') ^ E'^^^X A Ma) for every 
cohomology theory E. Define for z ̂  2 and Z a finite CVF-complex 

j \ : Ad-^(Z;Z/p^) ^" AS-\Z A EMa) - ^ 7r|-^(Z A EMa) 

Note that SMa, and hence Z A SMa, is a space, so that JA is defined. The properties 
of 3% are as follows. The map j \ : AdP{W\ Z/p") - • 7r̂ (H ;̂ Z/p") is defined if T1̂  is a 
double suspension and a map f :W -^Y between double suspensions commutes with 
j ^ if / A iMa • Ŵ  A EMa —• y A EMa desuspends twice. 

For the construction of Ba consider the following diagram (t ^ 1). 

Ad-*^(«)(Ma;Z/p^) 

k 
7r5'*(")(Ma;Z/p«) 

>ld-t«(a)(M„;Z/p") S ^G-'»(°)(Ma;Z/p") 

Then G-'*(")(Ma;Z/p") = {r'̂ -̂ ^^M .̂A/a A G} ^ Z/p» is generated by v := idM, A 
Vj and £) is an isomorphism. Since hAd^3\ is an isomorphism too, 2.9, there exists 
a unique element *6a E Adr^^^°'\Ma\'Llp^) mapping to v under D o /i^^ o JS- For 
t ^ 1 define internal operators ^Ba := j^C^^a)' Ba =" ^Ba and external operators by 

-̂fold composition B* := Ba o •" o Ba- By construction it is clear that ^Ba and BQ 
operate on G*{ ;Z/p^) by multiplication with powers of v\, hence induce isomorphisms 
in G*{ ;Z/p^) and Ad^{ ;Z/p^). 

Suppose now that x 6 7r5(A';Z/p") is represented by the stable map f : X -^ E^Ma-
Then ^Ba{x) is simply the composition 

^ts{a)-jj^ r*^<^^(/) ^tsia)j^^ [B^ j ^ ^ 

Consider *Ba € 'K%{E^^^^'^Ma\Z/p^) as an element in im{j\) with / operating on it. 
If now i;*^(^)-^(/) : i:*^(")-^X —> i:* (̂̂ )Ma commutes with the mod p" J-map j % 
which is the case if the {ts[a) — 1 - j)-fold suspension of / A l^a is induced by a map 
between spaces, then the composition *Ba o E^^^^^~^{f) must be in zm(J5) too: 

'B„(x) = r CB„) = / • oj%{%) = f^ o r{%). (3.2) 

Hence the effect of ^Ba on x can be controlled in /m( J)-theory. 
To obtain unstable maps representing a given stable map we use the following desus-

pension result (e.g., see [13]): 
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LEMMA 3.3. Let p be an odd prime, Z a finite CW-complex of dimension n, and m ^ 1. 
Then the stabilization map 

is onto provided n ^ Imp — 4. 

Using this, we easily get 

THEOREM 3.4. Ifx is in 74(Z;Z/p") and t satisfies t • s{a) - j - 4 ^ 0 and (p - 1) • 
s{a) • t ^ dimZ - j -h 3 then ^Ba{x) G im{j\), 

A first consequence of 3.4 is: 

PROPOSITION 3.5. *Ba = Blfort^\. 

PROOF. Apply Theorem 3.4 to the case of x = Ba and use J5*(*6a) = *"̂ &̂a. The 
necessary desuspensions are provided by 3.3. D 

We can then deduce 

COROLLARY 3.6. Ifx is in ker{hAd • 74(Z;Z/p^) -> Ad^(Z;Z/p")) and t satisfies 
t • s{a) - j -4^0 and {p-\)- s{a) • t ^ dimZ - j H- 3 r/î n *jBa(x) = B* (x) = 0. 

PROOF. I fx is in ker{hAd), then /* : Ad*{Ma\Z/p'') —> Ad*{Z\Z/p'') is zero, since 
Ad is a ring spectrum. Therefore /*(*6a) = 0 and by (3.2) we must have ^Ba{x) = O.D 

Now Theorem 3.1 is proved as follows: 
By 3.6 it follows that B^ annihilates the kernel of /i>id, and the existence of the j J-map 

shows that 

hAd : 4(Z;Z/p^) — . Ad^Z;Z/p^) 

is onto for j ^ —3. D 

For an application of 3.1 see [14]. 
We close this section with some comments on spaces or spectra X with vanishing Ad-

theory. Beside most Eilenberg-MacLane complexes K{7r;n), n > 2, the Adams maps 
Bi produce the most important examples of such spectra. Let V(l) be the cofibre of the 
Adams map B\ : E^M\ -^ M\ then V'(l) is a CVT-spectrum with four stable cells and 
vanishing /m(J)-theory: 

A d A y ( l ) - * . 

Other examples are given by the cofibres of the map F introduced in §4. Let H{7r) 
denote the Eilenberg-MacLane spectrum of a countable torsion abelian group n then 

Ad A if (TT) ~ * 
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and the vanishing of [H{'K),Ad\^ or [Ad,H{'K)]^ follows directly from 

Ad^H{¥p)c^Ad^H{Z)^M^ ~ * 

by induction. But the triviality of Ad A H{¥p) is a direct consequence of the existence 
of Bi. For the map B\ induces an isomorphism on 7r^{AdAH{Fp)) but the zero map in 
mod p homology (since it is a stable cohomology operation of negative degree for mod 
p cohomology). 

4. Desuspension of the image of J 

In this section we discuss applications of /m(J)-theory to unstable homotopy. To 
be exact, we consider the problem of desuspending elements in the image of the 
J-homomorphism JA ' AcP{Z) —> 7r^{Z)(^p) for an odd prime p. Maximal desuspensions 
for the elements in Im{J) C 7r^(S''̂ ) at p = 2 were first constructed by M. Mahowald 
(see [26] and references there). For p odd and x e Im{J) B. Gray [19] constructed maxi-
mal desuspensions of stable homotopy classes having the same e-invariant as x. Here we 
shall follow the method introduced in [12] which is slightly different but much simpler 
(provided one accepts the Adams conjecture) than the original methods at p = 2 which 
used 6o-resolutions and unstable computations with the lambda algebra. Nevertheless the 
principal idea, namely the use of periodicity operators on stunted projective spaces (lens 
spaces for p odd), originates in work of M. Mahowald. The main new ingredient in [12] 
is, as in §3, the use of the extension of the J-map given by the Adams conjecture. Instead 
of the more geometrically defined periodicity operators used in [12] we choose the by 
now more familiar periodicity operators F introduced in [19]. 

Let BSp be the classifying space of the symmetric group Sp, By [5] there is a simply 
connected CW-complex B which is (stably) p-equivalent to BSp and has one cell in each 
dimension congruent to 0 or — 1 mod q. Note also that EB is contained in UBZ/p as a 
retract. We shall use B as ap-local substitute for BEp. Define B^^_^ := ^^9/^^9-2 foj. 
a ^ 6 > 0 where B^ is the m-skeleton of B. The S-dual DB^^_^ of B^^_^ is a spectrum 
with bottom cell in dimension -aq and top cell in dimension 1 - bq. It may be identified 
with EBZal-i where B^'^lt^'' for n < 0 is defined by fii'Jlt^^ = i:(^-'')^B^;+t^^ with 
r = n mod p^ and r positive (see, for example, [7, Chapter V, §2]), but this identification 
is not used here. 

The reduced transfer or Kahn-Priddy map tr : BSp -> S^ (e.g., see [5]) induces a 
stable map 

A : B ^ 9 _ ^ 5 ^ (4.1) 

and it is shown in [19], proof of Theorem 9, that A is induced by an honest map after 
2r -f 1 suspensions 
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Next we recall from [19] the construction of a map F : E^B -^ S^B as a compression 
of the multiplication by p map on E^B. Since the identity of E'^^Mx is of order p, the 
composition 

is null homotopic. A null homotopy H defines a coextension 

Fm : r^B^^ = C + r S ^ ^ U C - T B ^ ^ "^^ E'^'^M^ Uj CEB"^^ 

such that the lower triangle in 

^2p(m-\)q 

commutes up to homotopy. The upper triangle commutes, since it does so if we compose 
with the inclusion into E^B^^'^^^^ and we can deform the homotopy into E^B'^^. Thus 
the maps Fm fit together to define F. 

From this we obtain maps 

F : S'B[ttl^^l, - . E'Bt^_, (4.2) 

which are easily seen to induce isomorphisms in A -̂theory. If a = 6 then B^^_^ is a 
suspension of the mod p Moore spectrum and F is exactly the Adams map B\ of §3. 
Hence F acts as a vi-periodicity map between the Moore space pieces of B^^_^J^_^ 

REMARK. Let V be the p - 1 dimensional complex vector bundle on BEp corresponding 
to the orthogonal complement of a copy of C with trivial action in the permutation 
representation of Ep on C^. Then one may form the Thom spectrum B^^ for s e Z. 
By considering B~*^/*~^^, 5 < 0, instead of B one can define (stable) versions of the 
map F with a = oo and b negative 

F . poo ^ poo 

• ^bq-\ ' ^{b-\)q-\' 

lt is then shown in [15], [16] that the mapping telescope of 

F?oo ^ V poo ^ , poo ^ , pcx) ^ ^ 
^q-\ ' ^-\ ' ^-q-\ ' ^-2q-\ ' * * ' 

B := lim(B^^g_J, F) is fiT-local, from which it easily follows that B represents Im{jy 

theory with Q/Z-coefficients: B = E~^AdQ/Z. To desuspend stable maps and spectra 
we shall use the following p-local desuspension results: 
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THEOREM 4.3 (see [6]). Let X and Z be finite connected complexes such that X is d—\ 
connected, d ̂  1, and dim Z ^pd- 1. Then the stabilization map 

[EZ,EX^j,)\ —> {^,X(p)} 

is surjective. 

THEOREM 4.4 (see [20]). Suppose 2L is a 2n ~ 2 connected p-local spectrum and 
dim 2L < 2np - 1. Then there is a space X such that S'^X ĉ  X 

One may also work with the classical global versions of these desuspension theorems ob-
taining slightly weaker estimates in the desuspension theorem for im{jA)-C\2LSSQS below. 
We still need one piece of notation. For spectra X and Y denote the group of spec-
trum maps {X,Y A Ad}^ also by Ad*{X;Y}. For Z finite with S-dual D{Z) we have 
Ad*{X; Z) = Ad*{X A D{Z)). The transfer map A of (4.1) induces a homomorphism 

A. : Ad*{X;B^^} —. Ad^{X',S^} = Ad*{X). 

THEOREM 4.5 ([12]). Let Z be a finite complex of dimension m, X := S^Z^ and suppose 
X e Adf^{X) is in the image of K : AdP{X\B^'^) -> AdP[X). Then x desuspends to 
[E'^s-^^X,S'^'^%) provided 

n{p-\)-m^ 2s{p^ - (p - 1)) + 3p. 

PROOF. The main step is to establish commutativity of the basic diagram: 

(4.6) 

[i:2'+»x,r2-+»B<*+f/;_,] —j= ^ [r^'+^x.r^'+'B'l,] 

r y p(3+fc)9 \ {^'^r-.}-

{^ADB{::r^P^^} 
{DF*y 

- ^ { X A D B j ^ p S * } -

^A 

{^ADB[;:f>,̂ „Ad} ^^7^ ' ' {XADB-„A4 

{^^B[iX';^,:..^Ad}- •^{X,B^^!.,AAd}-

A. 

A* 

DA* 

DA* 

[r2«+'x,52*+'] 

• {x,s^} 

{X,5«} 
A 

- ^ {X,Ad} 

-^ {X,Ad} 

(4.7) 
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As already noted, A is induced by a map A : i;2«+i^«g _> 523+1 Q̂ Ĵ̂ ^̂  ^̂ g upper right 
hand square (2) commutes. Since F : E^B —̂  E^B is induced by a map the upper left 
hand square (1) commutes as well. The squares of the second and fourth row commute by 
S-duality. The j^-maps in the lower squares exist only if the spectra X A Z)-B1^^^?^_J for 
a = 0 , . . . , A: are equivalent to spaces and the corresponding squares commute provided 
DF^ and D\ are induced by maps between these spaces. This will be guaranteed by 
numerical conditions on fc, n and m, which we shall work out next using 4.3 and 4.4. 

First of all, the stability map (3) will be onto provided 

kpq ^n-^m-qs — qp-\-p-\-\. (4.8) 

To desuspend 

DF : r^DBg+;-^)^ —. r^DBJ;^;}^., for z = 1 , . . . , fc 

we impose the condition 

kq{p - 1) ^ (P - l)n - sqp - (p - 1) - 2. (4.9) 

This implies also that E^'^DB^^'!^]'^^^, i = 1 , . . . , fc -f 1, is realizable by a space and, 
hence, that all the jf̂ -̂maps in (4) are defined. Since (4.9) is satisfied only if qk ^ 
n — 2sp — 2 we need a value for k with 

n-\-m-'qs — qp-\-p-\-l ^ kpq < jm - 2p^s - 2p. 

We can find such a A: if {pn — 2p^s — Ip) — {n-^m — qs - qp-^p-^- I) ^ pq — 1. This 
gives 

n (p - 1) - m ̂  2s{p^ - (p - 1)) + 3p. (4.10) 

To desuspend DX: S"" —> E'^DB^'^^ and to realize E'^'^DB^'i^ by a space we need 
{p - l)n ^ pqs -hp which is already implied by (4.10). Hence under condition (4.10) 
diagram (4.7) will commute and the stabilization map in (3) will be onto. Note that 
F being a i^-theory equivalence implies that F^ is an Ad-theory equivalence as well. 
This together implies that every x e imX^ : A(P{X\Bq^_^} —> A(f{X) desuspends to 

We next investigate the transfer condition x e im{\„ : A(f{X;B^^^} -^ Acf{X)) 
for desuspendability. Define the spectrum R^^-^^ by the upper cofibre sequence in the 
diagram 

(4.11) 
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Then x G im A* if and only if u[x) = 0 in AdP{X\ RJ^^^^]. We leave it as an exercise 
to compute jFi:*(J?"̂ 9+̂ ): 

;^.(flm,+ l ) ^ fZ(p), 2 = 0, 
[ 0 , z= 1, 

and to check that 2* is of degree p^. lip^ denotes the stable map inducing multiplication 
by p" ,̂ then j op'^ ~ 0 in (4.11) since the identity of B"^^ is stably of order p^. Hence 
there is a coextension (t> : R^^^^ —> 5^ in (4.11). Simple degree considerations imply 
that (j)^ : K^{R^'i-^^) -^ K^{S^) is an isomorphism and that 0 o z ~ p^. Hence the 
same is true in /m( J)-theory and we have the commutative diagram 

AcP{X; ff^^,} ^ ^ AS{X) '—^ A^{X\ ii^^+i} 

COROLLARY 4.12. im{K : i4d^{X;5^V -^ A(i^{X)) = {x £ Adt^[X) \ p'^x = 0}. 

Up to some low dimensional exceptions this and 4.5 give the maximal desuspension 
of elements in Im{J) c Trf (5^)(p): 

COROLLARY 4.13. Assume Vp{t)^ s - \ ^ 0 and let x E i4d^(5^*"^) be an element of 
orderp\ Then JA{X) G 7r|t-i('^)(p) desuspends to [S^'-^^^'^'-^S^'+^p). 

PROOF. Choose X = S^. With the exceptions 

5 = 1, t = 1, all p, 

5 = 1, t = 2 for p = 3, 

5 = 2, t = 3 for p = 3, 

which have to be proved by other means, Theorem 4.5 gives all the required desuspen-
sions. D 

Another application of 4.5 is a desuspension of the Adams periodicity operators Ba 
of §3 by choosing as X a suitable suspension of Ma A D{Ma) (again with some low 
dimensional exceptions). 

REMARKS. The case p = 2 is similar but more complicated, see [12]. Necessary conditions 
for desuspendability are given by the Hopf invariant; for a discussion of this topic in 
conjunction with 4.5 see also [12]. It turns out that in the range of (4.6) the transfer 
condition x GimX^ : Ad^{X;Bgl,} -> Ad^(X) is also a necessary condition. 
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The material of this section is all contained, implicitly or explicitly, in the J(X)-papers 
of Adams. We assume p^2 and begin by studying Ad*-orientability for complex vector 
bundles. The condition for a complex vector bundle ^ to be orientable for Ad-iheory turns 
out to be strong, namely 

THEOREM 5.1. Let ^ be an n-dimensional complex vector bundle on Z and [̂ ] its class 
in K^{Z)(j,). Then \ has an Ad-theory Thorn class if and only if A{[i]) = 0 in Ad\Z). 

REMARK. The cofibre sequence (2.3) already shows quite^learly the interplay between 
the class of ^ represented in Ad-theory (here given by hAd{J{0)^ which is A{^) up to the 
bijection hAd^JA) and >ld*-orientability: i* is onto (which is equivalent to orientability) 
if and only if hAd{J{0) = 0-

Preparing for the proof we derive the basic p'̂ -diagram for the Adams summand 
G^{Z) of p-local JFC-theory. Let Z be a finite connected CW-complex, choose a multi-
plicative Thom class UG{0 ^^^ complex vector bundles in G-theory and define the Bott 
characteristic class PQ{^) € G^{Z^) by the equation 

Then PQ extends from Vect'^{Z) to K^{Z) since k is invertible in G^{Z^). The canonical 
extension of pQ to K^{Z)(^p) can be restricted to Gfi{Z) to define an exponential class 

,fc . 
PG :Gfi{Z)—^\+Gfi{Z). 

LEMMA 5.2. Let Z be a finite connected CW-complex. Then pQ is bijective and the 
following diagrams are commutative: 

G^{Z)- -^ Cf{Z) 

1-|-G°(Z)® • V^Vl 
1+G°(Z)® 1+G^(Z)®" 

V^Vl 

(5.3) 

•H-G^(Z)® 

PROOF. The (8)-sign indicates that we consider 1 -h G^{Z) multiplicatively, that is as 
a subgroup of the units in (^{Z^). By the splitting principle and the fact that p^ is 
exponential the proof for il)^p% = p%il)^ is reduced to the case of a line bundle L. But 
on PooC the Adams operation t/̂ *̂  may be induced by the map rrik : Poo^ —•PCXJC which 
represents multiplication by k in the i/-space structure. The result follows by naturality 
of p%. 

To see that p^ is bijective on G^(Z), it is enough to prove this for Z = 5^*, t > 0, 
because then p^ induces a weak homotopy equivalence between classifying spaces. 
Instead of doing the somewhat long calculation for p% on G^{S^^) directly we shall, 
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recalling Remark 1.3, reduce to the well known case of p^ on K^{S^^), which was used 
already in 2.5: 

G-i(5<,t-.) c i^-'(5''-')(p) ^ - 4 ( 5 ' * - ' ) ( p ) 

Here ec denotes the e-invariant defined using G-theory. Commutativity is proved in the 
same way as (2.4) is established. This shows that p^ — 1 is surjective on (3^(5^*) = Z(p), 
hence bijective. D 

PROOF OF THEOREM 5.1. 

"=^" Let [ / A ( 0 e AcP^'iZ^) be a Thom class for ^ Then D{UA{0) is a Thorn class 
in G^^(Z^) since Z? : ^^^^(5^") -> G'^''{S'^'^) is an isomorphism. Now two Thom 
classes for the same bundle differ by a unit, that is we have 

eVJD{UA{i)) = UG{i) (5.4) 

where UG{0 is the Thom class used above and e € 1 -h (^{Z) is a unit. Apply il)^ to 
this equation to obtain with ^ = ^ - n 

in 1 -h G^(Z). Write now | = ^^ -h ̂ ^ with ^^ € G^(Z) and ^^ in the complementary 
summand (^{Z)^. Since *̂̂  - 1 is bijective on G^{Z)^ there is an element ZR with 

(̂ ^ - 1)(^^) = e^. From P (̂̂ G +e«) = P%iiG)'pUiR) = ^'i^)/^ î  fo"ows by 5.2 
that 

p'oi^c) = (^Vl)(e-P^(-^H)) = (^VI)P^W = P (̂(V '̂ - I H 

for some w; G G^(Z). But then ^^ = {IJJ^ - l)w, and A{C) = 0 follows. 
"^" If A{i) = 0 we can write ^ = {^p^ - l)z for some 2 G K^{Z). Apply p'̂  to this 

equation 

/ ( O = / ( ^ ^ ^ - )̂ = p\i^''z)lp\z) = rP^p^izyp^iz) 

and define U'^ii) := p*(-2) • [^A:(|) G /T^C^^). Then 

V f̂/̂ d) = i'^pH-z) • pHi) • UKU) = PH-Z) • UKU) = u'Ai). 

Hence U'^ii) € ker{rp'' - 1) and tiiere exists a class {7^(1) with r>(C/>i(|)) = [/^(|). 
Then f/^d) is a Thom class for ^ in Ad-theory. D 
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REMARK. Let ^ be Ad-theory orientable with Thorn class UA{0- Then a reformulation 
of the Adams conjecture is that this implies that UA{0 Ŝ stably spherical. 

It is now easy to clarify the relation between the groups J{X) of stable fibre-homotopy 
equivalence classes of sphere bundles of vector bundles and /m( J)-theory. Here we use 
the convention that J{Z) means the reduced J-group of Z, i.e. J(*) = 0. 

THEOREM 5.5. For an odd prime p and Z a finite connected CW-complex there is a 
natural isomorphism 

J{Z\j,)^im{A)cAd\Z). 

PROOF. Define J' : im{A) -^ J{Z)^p) by J'{z) = J{A-\z)). This map is well defined 
as a consequence of the Adams conjecture. It is trivially surjective. Assume now J'(^) = 
0 and choose a complex vector bundle ^ such that z = A{^)y ^ — ̂  — dim .̂ Then 
J{0 — 0 means that ^ is stably fibre homotopy trivial at p. From this we easily get a 
Thom class for ^ in p-local stable cohomotopy. But then ^ is Ad*-orientable and by 5.1 
this implies A{^) = 0, so proving injectivity. D 

COROLLARY 5.6. For a complex vector bundle ^ the following statements are equivalent. 
1) ^ is stably fibre homotopy trivial at p. 
2) ^ is orientable for TTJ/ x. 
3) ^ is orientable for Ad*. 

REMARKS. 1. The proof of Theorem 5.1 may be translated into the commutative diagram 

C^{Z) ^^ ^G^{Z) ^coker{ilj^ - \) ^0 

V'Vi 
^G 

1 + G^(Z)® ^^^—^ 1 + G^(Z)® ^cofcer(t/;Vl) ^0 

Now the groups coker{xp^ - 1) and coker{tp^/\) are precisely the groups J"{Z)i^p) 
and J'{Z)(p) fi-om the J(X)-papers of Adams which served as upper and lower bounds 
for J{Z)(p), and 5.5 is a translation of the squeezing technique used there to determine 

2. Observe that for the conclusion of Theorem 5.5 one requires the Adams conjecture 
only for the particular space Z and not in full generality. In the case where K^{Z) is 
generated by line bundles the proof of the Adams conjecture is short and easy and already 
contained in [1]. 

3. Spherical fibrations at an odd prime p split into Im{J) and coker{J) parts. It 
may be shown that coA:er(J)-spherical fibrations are orientable for -4d-theory, and this 
shows the difference between Ad-theory and stable cohomotopy orientability. For Z a 
suspension this immediately follows from the sequence (2.3). 

4. The statement J(Z)(g)Q = 0 for a connected finite complex Z now follows trivially 
fTomAd^{Z)^Q^H^{Z\Q)eH'^{Z',Q). 
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6. Examples of J-groups 

In this section we discuss as an example the J-groups of suspensions of complex pro-
jective spaces S^^PnC at an odd prime p. Observe first that since K^{PnC) = 0 
Theorem 5.5 implies that 

j(i:2^PnC)(pj ^ Ad^-^^(PnC). (6.1) 

We begin by recalling what is known about J(PnC)(p). The group order of Ad}{PnC) 
follows directly from the defining sequence of Ad-theory (see part I) by computing the 
determinant of t/;*̂  - 1, which is 

U,{\AdHPnC)\) = ^ (1 + l^M = MitP)^) 

with t = [-^j] and [x] denoting the greatest integer not exceeding x. The same argument 
shows that 

Ad^(PnC)^Ad^(P,(p_,)C) 

where n = t • (p - 1) -f 5 with 0 ^ s ^p-2. 
The number of cyclic summands in the abelian group Ad^ (PnC) was computed in [21] 

and is equal to 

log(n-fl) 

logp 

(that is r, where p^ ^ n -f 1 < p^^*). The argument is as follows. Assume n = 
t{p - 1). By the universal coefficient formula (§3, part I) Ad^{PnC) and Ad-i{PnC) 
have the same number of summands, which is the dimension of Ado{PnC;Fp). But 
dim Ado{PnC;Fp) — dim Ad2n{PnC;Fp) by vi-periodicity (§3). Then the dimension 
of Ad2n{PnC;Fp) is found by working out the skeleton filtration of the elements Zr,i 
defined in §6 of part I. For this one only has to determine the mod p values of the 
numbers Pr{n, s) introduced there. 

Denote by H = Hn the Hopf line bundle on PnC. Since A{{ip^ - l)x) = 0 for z ^ 0 
mod p, the classes A{HP' - 1), z = 0 , . . . , [logp n], form a generating set of Ad^ (PnC). 
The order of J{H - 1) = A{H - 1) is the well known Atiyah-Todd number 

^p(|j(ifn - 1)1) = max {r-fi/p(r) I 0 < r ^ [ n / ( p - 1 ) ] } . 

The simplest derivation of this seems to be the argument given by Lam in [25] where 
the order of J{HP' - 1) is also determined as 

iyp{\j{H^' - 1)1) = max {r + i/p(r) | 0 ^ r ^ [n/p^(p_ i)]} =: dn.i). 
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The generating set {J{H^ - 1) | z ^ 0} is in general not a basis for Ad}{PnC): there 
can be nontrivial relations between these elements. Let Cn be the direct sum of cyclic 
groups of order p̂ ("'*) and generators hi. Then the obvious map ^n'-Cn ^ Ad} (PnC) 
with (pn{hi) = ^{HJP - 1) is always onto, but may have a nontrivial kernel. Comparing 
the orders of both groups gives the values of n where ipn is an isomorphism. For example 
if n = p^ — 1, or more generally if n = t • (p - 1) and 

*=E"«p' 
i=0 

with 0 ^ Qi < p ~ 1 and all â  ^ 0, the map ipn is injective. As a consequence the 
relations among the generators A{H^* - 1) in Ad^{PnC) are always given by linear 
combinations of A{{H — \)^) with b € {n -h 1 , . . . , c}, where c is the next value larger 
than n for which ipc is injective. Besides the cases where ipn is bijective there are other 
values of n where one can determine the group structure of Ad^ (-PnC), but in general the 
problem of determining Ad\PnC) becomes combinatorially more and more involved as 
n grows and no general formula is known. 

We now turn to J{S^'^PnC)(^p) ^ Ad^'^'^iPnC) for m ^ 1. The group order is 
determined by the same method as for m = 0 and is given by 

i.p(|^d>-2-(P„C+)|) = X]r.p|Ad'-2—2^(5«)| 
5=0 

=E 
Also the number of cyclic summands in Ad^'~^'^{PnC) may be computed by the method 
above. But the order functions for J(ii^(i/P'* - 1)) € J{IJ'^'^PnC)^j^y where u denotes 
Bott periodicity, follow a slightly different pattern. 

PROPOSrriON 6.2. The order ofu'^iHn - I) in JiS^'^PnC)^^^^ is given by 

n + m 

P"(P-1) . -E 
r>0 

' m — 1 ^ 

Vp\Au"^{Hn - 1)1 = n + m -vj,{(m-\y)-fm{n) 
p-l 

where n »—> /m(^) is a periodic function. 

In the case m = 1, which seems to be known, we have fm{'^) = 0? so that 

For the proof of (6.2) we reformulate the orientability condition for /m( J)-theory in 
terms of rational characteristic classes as in [2]. Choose a complex orientation e for 
p-local iiT-theory. Associated to e we have a formal group F with logarithm / and a 
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multiplicative Thorn class C / F ( 0 ^^ complex vector bundles. Denote the Euler class 
belonging to UpiV) by 6^(0 ^^^ ^^^ Unii) be the usual cohomology Thom class of (,. 
Define the characteristic class Toddpi^ by the equation 

chUF{i) = ToddF{i)yjUH{e) 

in H*{Z^\Q) and set 

Bhpii) := ch-^ToddpiO e K^{Z^;Q). (6.3) 

Then Bhp is an exponential characteristic class and the standard proof applies to give 

LEMMA 6.4. BhpiL) = eF{L)/f{eF{L))fora line bundle L. 

PROPOSITION 6.5. Suppose Z is a connected finite complex with H*{Z\ Z(p)) torsion-free 
and let i be a complex vector bundle on Z. Then ̂  is orientable for Im{J)-theory at 
the odd prime p if and only if EHFH) is integral. 

PROOF. If UA{0 'S an 7m(J)-theory Thom class for ^ we must have C/ID(C/A(0) == 
UH{0^ hence the equation UF{0 = BhpiO U DUA{0 shoves that EhpiO is integral. 
Conversely, if EhpiO is integral, then UF{O^B^^F{^)~^ is in ker{ilj^ - 1) and defines 
a Thom class in /m( J)-theory. D 

Using the formal group F a straightforward calculation computes 

BhF{u{L)) = BhF{{Hx - 1) 0 L) = BhF{Hx 0 L)/BhF{\ ® L) 

and shows: 

PROPOSITION 6.6. Let L be a complex line bundle on Z then 

BhF{u{L-\)) 

= ' + < T O v H l ) ) - r a ) •'•'̂ (̂ ^̂ -̂ «)- <"> 
Note that both summands involve negative powers of eF{L), but the first summand 
eF{L)^^ ' f'{eF{L))~^ is an integral Laurent polynomial. 

EXAMPLE. The usual multiplicative formal group gives with x = H — \ 

Bh{uH) = 1 + t,f 1 ^ 1 - _ _ L _ ^ in /i:^(r2p^C+;Q). (6.8) 
V ^ log(x-fl)/ ^ ' 

Better suited for p-local computations is a p-typical formal group. Let G denote the 
formal group with logarithm 

oo 

i=0 
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Then UG{0 ^^^ ^G{0 ^^ already contained in the Adams summand G*{ ) of p-local 
iiT-theory and we have 

BhG{u{H-\)) 

= 1 -f ^ 
[eciH). (1 + eG{H)P-^ + eG{H)p'-^ + • • •) log^(eG(ff)))' 

To extend this to m > 1 we shall use the stable map 

u:S^^PnC^—^Pn-^^C 

defined by taking the relevant components of ^(/x) on 

S{S^ X PnC) - 5^ A PnC V 5^ V SPnC 

for fjL the restriction of the product map on PooC. Then a;*(ffn+i - 1) = '^{Hn) in 
iiT-theory. In homology u„ is multiplication with the generator b\ G HiiPnC) in the 
Pontryagin ring structure. Dually we find that a;* is differentiation with respect to the gen-
erator g e H^{PnC). Therefore u* acts as differentiation with respect to g = /{epiH)) 
in K*{PnC;Q). By induction we get 

COROLLARY 6.9. 

im-l)\ 
BhF{vr{Hn-\)) = \^vr r(e )̂ + (-ir fiepy 

in X^(i7^"*PnC-|.;Q), where r{ep) is a p-integral Laurent polynomial in e^. 

Now the order of AvJ^Hn is given by the smallest number c such that BhF[cu^Hn) — 
Bhriu^HnY is integral. But on a suspension all reduced products vanish, hence c is 
the smallest number c such that c • BhF{u^Hn) is integral. Therefore we have 

COROLLARY 6.10. The order of Au^Hn is given by the maximal denominator of the 
coefficients in the polynomial part of (m — \)\/f {eG{Hn))'^-

Proposition 6.2 follows from this corollary by an investigation of the combinatorial 
properties of the denominators of the coefficients in the series /(CG)""^-

For the p-typical formal group G define hp by 

^ = /^p{x-'/p). 

Then hp is a power series with integral coefficients and the denominator of the coefficient 
x*(p-0 in hp{xP~^/p) is thus bounded by p*. Modulo p we have hp{y) = 1+2/. This 
gives the mod pP~^ values of the coefficients ar in 

oo 

/ip(x''-'/p)~'" = 5^a(.'")x^(''-')/p" (6.11) 
r=0 
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in terms of binomial coefficients. For m = 1 we get 
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4^) = ( j ^ 0 modp 

and hence 

iyp\j{uHn)\ = 
n-\- 1 

p - 1 

Let now m ^ 1. Then the exponent of p in the denominator of Bhciu^Hn) is bounded 
by 

n-\-m 
p - i j 

Define / „ by 

fm{n) := 

i / p ( (m- l ) ! ) . 

n-{-m 
1 

- i / p ( ( m - l ) ! ) - i / p | j ( u - i / n ) | . 

Then fm{t{p - 1) - m) = 0 if and only if a^ ^ 0 mod p. Suppose fm{t{p - 1) -
m) ^ 5. Since /m((^ 4- 1)(;? - 1) - m) ^ fm{t(p - 1) - m) H- 1 all the coefficients 
aj"^\ ajl^j, . . . , â !?ĵ i must be zero mod p. But there are at most m — 1 consecutive 
coefficients in (1 H-y)"'^ which are all congruent to 0 mod p. Therefore fm is bounded by 
m - 1 (at least for n ^ m(p - 1)). To investigate fm the coefficients ar may therefore 
be reduced mod p'^. But then the usual periodicity properties of binomial coefficients 
mod p'^ imply that ar mod p"̂  is periodic; hence the same must be true for fm- This 
finishes the proof of 6.2. 

Similar arguments show that the exponent of the order function for J{u'^H^) may 
be written as the difference of the monotonic function 

n -h mp^ 

[{p-\)p-
- ^ p ( ( m - l ) ! ) 

and a function periodic in n. The mod p^"^ information for the coefficients in (6.11) is 
sufficient to determine fm explicitly for m small. 

Although the order functions for J{u^Hl^) are more regular formal than for 
m = 0, the remarks concerning the group structure of J(i7^'^PnC)(p) apply also for 
m ^ 1. An exception is perhaps the case m = 1. If n is of the form n = p^{p - 1) - 1, 
then we have 

J {S^PnC) (p) S 0 Z/p-' With Oi = 

This is presumably true for all n. 

71+ 1 

P^{p-\) 
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Other examples where J-groups are known include the lens spaces L'^(p"), see, for 
example, [17], suspensions of stunted lens spaces and some spherical space forms. 

7. /m( J)-theory for torsion-free spaces 

7m( J)-theory for torsion-free spaces is easier to handle than for general spaces. In this 
section we discuss some aspects of the theory for torsion-free spaces. It is, in general, 
much easier to compute in ker{\j;^ ~ 1) C K^{X) than to work with coker{ip^ - 1), 
that is with classes in im{A). We first show how to switch from i'm{A) to ker{ip^ — 1) 
in the torsion-free situation by introducing Q/Z coefficients. Then we show that Im{J)-
theory detects Adams-Novikov filtration one elements in 7r^(X)(p) if X has torsion-free 
homology. The last topic is the Atiyah-Hirzebruch spectral sequence. Since this spectral 
sequence collapses for K-theory on a torsion-free space there is not much room for 
nontrivial differentials in the corresponding spectral sequence for Ad-theory. We give a 
formula for the remaining nontrivial differentials in terms of the Chern character. 

PROPOSITION 7.1. Suppose X is a finite spectrum and that x G Ad^'^^ {X) is in her D fl 
kerq. Then D0-\x) G K'^iX'/Q/Z) is given by r o {xjj^ - 1)"^ o ^ o A-^{x) mod 
r o D{Ad^{X)), where the maps are from the following commutative diagram built up 
by Bockstein sequences and defining sequences for Im{J)'theory. 

K'*(X;Q)- - ^ / C ^ ( A : ; Q ) - - ^ A d " + ' ( X ; Q ) 

K^{X)' -^Ad'^-^'iX) 

Ad'^(X;Q/Z) - •i<:^(A';Q/Z) 

PROOF. This follows from the relation 

= r-^oDo/3~^ mod qK^'iX) -f DAd^{X\Q) (7.2) 

by applying r to both sides. The equivalence (7.2) may be proved as follows. Replacing 

the sequence of coefficients in the diagram above by Z ^ Z —• Z/p'^ one has the 
corresponding relation 

( ^ ' ^ - l ) " o p « o ^ - ^ =r-^oDop-^ mod p''K''{X)+DAd^{X), (7.3) 
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which is proved by applying the theorem on Toda brackets (see §1) to the sequence of 
maps 

Then (7.2) follows by taking direct limits. D 

EXAMPLE 1. From part I, §6, we know that elements in Ad2n-i (^ooC) can be described 
by their 7i-sequences. Recall that 

7i:Ad2n(PocC;Q/Z)-^Q/Z 

is defined by the Kronecker product 

^,{z) = {H^\D{z))^. 

If X in Ad2n-\{PooC) is given as A{bmu'^)^ where 1,61,62?-•-^^n is the basis of 
KQ{PnC) dual to the basis l , x , x ^ . . . ,x" of K^{PnC), then 7.1 applied to the S'-dual 
of PnCy together with 6.4 in part I for m < n, gives 

7 . ( r ' ^ 6 . . " ) = 7 . ( r o (V̂ -̂  - 1)-' o ,(6„«")) = ± J ] f g l f i - ^ 

modulo 7f(rDAd2n(i^ooC;Q)). Here s{m,3) is as in part I, §2, Ad2n{PooC\Q) ^ Q-67 
and 7i(67/p^) = p"-^+^\ 

REMARK. This leads to a description and computation of A2n-\{PooC), the connective 
/m( J)-theory groups of PooC, see [22]. 

EXAMPLE 2. If £? is an m-dimensional complex vector bundle on EZ where Z is a finite 
connected complex with torsion-free homology, then hAd o J{E) ^ A(f{Z) is defined 
and by (2.4) equal to A{p^{E - n) - 1). To write hAd o J{E) as /3(t/) consider the 
rational characteristic class 

BhF{E-n)eK^{SZ^;Q) 

introduced in (6.3). From the equality 

{^^ - \)BhF{E - n) = p%{E -n)-\ 

on a suspension and 7.1 it follows that 

Do(j-^ o hAd o J[E) = ro BhpiE -n)-\ 

in K'^{Z\Q/Z). The indeterminacy is zero. 



496 M.C. Crabb and K. Knapp Chapter 12 

A special case of this is the 5^-transfer map tr G TT^^POOC-^)- The stable map tr 
may be identified with J{uH) (e.g., see [21]) and hence (6.8), or more generally (6.7), 
gives the e-invaiiant or the Hurewicz image hAd{tr) of tr: 

Do(i-'hAd{tr) = ^ 
1 

=:2Gi^-'(PooC;Q/Z). 
X log(x -f 1) 

We can use this to compute 

tr : Adn{X A PooC^) —^ Adn^i (X) 

for torsion-free X: it is determined by the commutative diagram 

Adn{X A PocC+) '-^ Adn^l {X) 

(7.4) 

Adn^2{X;Q/Z) 

V .ii:n+2(X;Q/Z)(p) ii:n(XAPooC+)(p) 

with z defined in (7.4). 

EXAMPLE 3. Again let X be a connective torsion-free CVF-spectrum and / : 5^ —• X a 
stable map with cofibre C/ inducing the trivial map in fJT-theory. Suppose we know the 
action of the Steenrod powers P* on i/*(X; Fp) and want to describe the extension 

0 -> H4X;Fp) A i/.(C/;Fp) ^ if.(5"-^^Fp) - . 0 (7.5) 

as a module over the mod p Steenrod Algebra Ap {p ^ 2). This information can be 
obtained from the e-invariant hAd{f) as follows. It is enough to determine x^*(l), 
where x is the canonical anti-automorphism of Ap and 1 G Hn^\{Cf;Fp) maps to the 
generator in Hn-^\{S^'^^\Fp) under u. 

For the corresponding exact sequence in /̂ '-theory 

0 -^ K,{X) h K.iCf) ^ K.(5^+^) -> 0 

we know by (1.5) 

{^|;^ - 1)1 = Mz) with A{z) = hAdU)- (7.6) 

We now use the well-known integrality theorem for the Chem character, namely the 
fact that p^chqi{z) is p-integral with its mod p reduction equal to xP^{^fM){z)) in 
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Hn-\-\-qi{X\Yp). Note that chQ{z) is integral since X is torsion-free. Applying p^chqi 
to (7.6) gives 

XV\\) = j * ored, 
/ p'chgijz 

In §1 we studied the relation between /m(J)-theory and the if-theory Adams spectral 
sequence. Better suited for applications to stable homotopy than this spectral sequence 
is the BP or M[7-Adams-Novikov spectral sequence. We denote the associated Adams 
filtration by Fgp. For torsion-free spectra we show that /m(J)-theory may be used to 
describe elements in Ext^^*p^Qp{BP^,BP„{X)) (see also Remark 1.3). 

The Todd map T : BP —• G induces a map between spectral sequences and thus a map 

= Ext's:G{G*,G,{X)). 

From 1.11 and diagram (1.10) we have a monomorphism 

Ext'£-^\K„K,{X))^^^ C AdniX). 

Let e denote the composition of these two maps. The equivalence of Definitions 1 and 
2 in §1 together with 1.4 imply that the composition of the natural map 

F^BP^^iX^j,) -^ £xt^XBp(BP. ,BP.(X)) 

with e is the ^d-theory Hurewicz map hAd-

PROPOSITION 7.7 (see Lemma 3.7 in [21]). Let X bea connective spectrum with torsion-
free homology. Then 

e : £;xt^'^;^^p(BP.,BP.(X)) —> Adn{X) 

is injective and hAd • ̂ jBP^n(-^)(p) ~^ Adn{X) has kernel F^p. 

PROOF. Denote by PrnE^{X) the coaction primitives for the homology theory E. Then 
we have a commutative diagram 

Prn+iBP.(X;Q)-

Prn+xK.(X,Q) • 

.Prn+,BP.(X;Q/Z)- 'Ext'^l-''^{BP.,BP,{X))-

T, 

.Prn+i/<:.(X;Q/Z)(p) ^ Ext';Jl^^\K.,K4X))f^p) ^ 0 

and it is enough to show that To is injective. An easy application of the Hattori-Stong 
theorem is that for torsion-free spectra X the /('-theory Hurewicz map 

he : BP.(X;Q/Z) - ^ G.{BP AX;Q/Z) 
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is injective. (Consider the collapsing Atiyah-Hirzebruch spectral sequences for both 
groups.) In the following diagram, with /i = /x o 1 A T,pr : BP —> BP the cofibre 
map of S^ —> BP and Y = X ^ M(Q/Z), the squares commute. 

PTnBP,{Y) ^BPn{Y)- -^BPniBPAY) 

Gn{BP A Y) —^^^^l^-^Gn{BP ABPAY) 

Gn{Y)- ^GniBPAY) 

id 

pr^ 

/xAprAU 
T 

-^GniBPAY) 

This shows that he maps PrnBP^{Y) injectively into i^Gn{Y) and defines TQ. Since 
/I is a splitting for u , we see that this map is the restriction of T. But clearly 
T{PrnBP.{Y)) C PvnG^Y). D 

REMARK. A complete description of J5xt^p^^p(BP«, BP„(X)) for a torsion-free spec-
trum X by /m(J)-theory is possible with connective /m(J)-theory A. The map e 
factorizes through An{X) and its image is the kernel of u : An{X) —̂  An{BP A X) 
with i the unit map i : S^ -* BP. 

REMARK. We note without proof another property of torsion-free spectra. The canonical 
map 

d : An{X) -^ Adn{X) 

from connective /m( J)-theory A to nonconnective /m( J)-theory is always injective. 

The last topic of this section is the Atiyah-Hirzebruch spectral sequence for Ad*(X) 
with X a connective torsion-free spectrum. Homology and K-theory are localized at p 
without indication in the notation. We shall use the exact couple 

Ad^X.X')^ •Ad,{X,X'-^) 

Ad,{X',X'-^) 

to set up the Atiyah-Hirzebruch spectral sequence for Ad^{X). By comparing the 
Atiyah-Hirzebruch spectral sequences for Ad,^{X) and K^{X) one finds that only dif-
ferentials of the type 

dr : E^Q E\ s - r , r - l 

can be nontrivial. As a consequence there is only one value of t for which E\.^ can 
be the target of a nontrivial differential, namely t = m 4 - l = r - l - l . Hence dr is 
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and defined on a subgroup of Hs{X;Z) with target Hs-r{X;Adr-\{S^)) = £^J_r,r-i 
£'rj'r,r-i = ^5°^r,r-i- Since r ^ 2 the Bockstein map /? : Adr(S'^;Q/Z) -> ^dr_i(5^) 
is an isomorphism and we may change the target of dr as follows. For r even, identify 
Kr{S^\Q/Z) with Q/Z(p) and define 

dr : ^J^o HsMX',Q/Z) 

as dr := 1 0 i5 o (1 (g) /?)"' o d .̂ Since H^{X\Z) is torsion-free and \<S)D is injective, 
dr determines dr completely. The canonical map from the cycles in the cellular complex 
to homology 

iiT, (X^-^ X^-^-^ Q/Z) ^/f^-r (X^'^ X'"''"^ Q/Z) 

Dkerdi ^ f f , _ r ( X ; Q / Z ) 

will be denoted by </?. Note that for X with only even cells the differential d\ of the 
cellular complex vanishes so that Ks{X^''',X^'"^'^\Q/Z) is canonically isomorphic 
to Hs^r{X;Q/Z). The proof of the following result simplifies if one uses the fact that 
every X with torsion-free homology is homotopy equivalent to a complex with d\ = 0. 

THEOREM 7.8. Let X be a connective CW-spectrum with torsion-free homology and 
X e Hs{X;Ado{S^)) a class such that dr{x) is defined with r even. Take c/i~*(x) in 
Ks{X, X^~'^~^;Q) and reduce mod Z(p). The resulting class redch~^{x) is in the image 
of 

j . : iC,(X^-^X^-'-»;Q/Z) - . K,(X,X^-^-^Q/Z) 

and any class y with j^ (y) = red ch"^ (x) represents dr{x) under the map cp. In diagram 
form: 

dr 
-^Hs-r(X'.Q/Z) 

•;Q) 
red 

KsiX.X" ';Q/z)- •Ks{x 9 — r Y^~''—' ;Q/z) 

We give only the outline of a proof. 
By definition dr is given by the diagram 

Hs(X\Ado)' 
dr 

•^ Hs-r(XAdr-x) 

Ads(X\X''-') B~r y s —r —1\ ".X 

Ad,(X,X*-') A- AdsiX.X'-'') 
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with (p defined only on ker d\. The first step consists in showing that 9 is given by the 
diagram: 

Ads{X,X'--)- -^AdsiX'-^^X'-"^-^) 

Ad, {X, X"--; Q) Ads {X'-^, X''^''; Q/Z) (7.9) 

s - r - 1 . i\\ y'crf 

rr' 
Ads{X,X''--';Q)-^^^^Ads{X,X'-^-';Q/Z) 

The proof is similar to that in 1.9 for comparing different definitions of stable Toda 
brackets; the only problem is to handle the indeterminacy. 

For the next step we map a part of this diagram into iiT-theory 

\D 

Ks{X,X''-''-'-Q) -^^^ KsiX^X'-'-'^Q/Z) -^-^^ KsiX'-'-^X'-'-'-Q/Z) 

\ch 

Y 
HsiX,Q) Hs-AX;Q/Z) 

showing that dr{x) is given by ^o{jl''^)~^ oredoDoi^ ^ oq{x\) where x\ is a class in 
Ads{X,X'-'') with il-\xi) = j.ip-^{x) in Ads{X',X'-^). In the last step naturality 
is used to show that ch~\x) represents Doi~^ oq{x\). Q 

Theorem 7.8 applies easily to spectra such as PooC, JBT ,̂ BP for which the Chern 
character is known explicitly. Observe that ch~^ is determined by ch : K*{X) —^ 
H*{X\Q) via Kronecker duality if one chooses bases in a compatible way. 

EXAMPLES. 

1. X = PooC. 
With KoiPooC^) = Z(p)(l,6,,62,...) and ff.(PocC+) = Z(p)(l, [P,C], [P2C],...) 

we find ch~^{[PiC]) = Yl^tj^j where 

... = / T ^ O/ii — \ X' '^aijbjj = chlx> ,'Y^aijbj\ = (c/i(x^), [PiC])^ 

= ((e» - l ) ^ [PiC])^ = coefficient of g' in (e^ - l ) ^ 
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Since 

oo 

with 5(j , n) a Stirling number of the second kind (e.g., see [10]) it follows 

• 1 ^ • 

and 

d2r{m . [P.C]) = m. -̂ (̂ ^̂  ^̂ )(̂  ''^•[P.-.C] G i/2.-2r(PooC;Q/Z). 

2. X = J5P. 
This case illustrates another method for computing c/i~^ We have 

i f . (BP) = Z(p)[m,,m2,...], BP.BP = BP.[t , , t2, . . . ] , 

BP. = Z(p)h,i;2,...], K.{BP) = K4tut2,...], 

with U G K^BP) the image of U G BP^BP under the Todd map T : BP ^ K. From 
the well known formulas 

n—1 n 

t = l 1=0 

Vi = -U''"^ if 2 = 1, 

0 i f 2 > l , 

we get 

T{mn)=p-'''vr' 

so that the composition 

H. {BP\ Q) ^ 5 P . 0 Q ^ BP. (SP; Q) - ^ K. {BP; Q) 

maps mn to 

t=0 
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But if we identify if*(JBP;Q) with BP^ 0 Q the composition T o 77̂  is nothing but 
ch~\ hence 

i=0 ^ 

REMARK. This also gives all differentials in the Atiyah-Hirzebnich spectral sequence 
for A^{BP), the connective /m(J)-theory of BP^ and is the first step in an approach to 
describing Trf (5^) by computing the Atiyah-Hirzebruch spectral sequence for Trf (BP) 
where the JB°°-terms are known but the £̂ -̂terms involve the unknown groups Trf (S^). 
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1. Introduction 

Homology theory has been a very effective tool in the study of homotopy invariants 
for topological spaces. An important reason for this is the fact that it is often easy to 
compute homology groups. For instance, if one is given a finite simplicial complex, 
computing its homology becomes a straightforward problem in the linear algebra of 
finitely generated free modules over the integers. More generally, homology groups admit 
long exact Mayer-Vietoris sequences, which describe the homology, if*(X), of a space 
X which is a union of open subsets U and V in terms of H^{U), H^{V), and H^{Ur\V). 
In addition, under quite general circumstances when A C X is a. closed subspace, there 
is a long exact sequence 

. Hi^i{X/A) -^ Hi{A) -> Hi{X) ^ Hi{X/A) -^ Hi^M) ^ • • • 

where X/A denotes the result of identifying 4̂ to a point. Iterated applications of these 
long exact sequences are quite effective in computing the homology of many spaces. 

Homotopy groups are much more difficult to compute. For instance, there are no finite 
CVF-complexes except for the classifying spaces of certain infinite groups, for exam-
ple bouquet of circles or compact closed surfaces, whose homotopy groups are known 
completely. The difficulty in carrying out this calculation can be traced in part to the 
nonexistence of an excision theorem for homotopy groups, and the consequent nonexis-
tence of long exact Mayer-Vietoris sequences and long exact sequences of cofibrations. 

It turns out to be possible, using a theorem of Freudenthal [17], to modify the homotopy 
groups a bit via a process of stabilization, so as to allow excision. The stabilization 
procedure goes as follows. For any space X, we have a homomorphism a : 'Ki{X) —> 
'Ki^\{SX), where EX denotes the suspension oi X. a applied to an element in TTi{X) 
is obtained by suspending a representing map, and identifying SS'^ with 5*"^^ One can 
repeat this process and obtain a directed system 

. -Ki^kiE^'X) —^ 7r,+,+,(i:'^+^X) — . .. • 

whose direct limit is defined to be r̂f (X), the z-th stable homotopy group of X. Freuden-
thal's theorem is that this limit is actually attained at a finite stage, in fact at A: = z. A con-
sequence of Freudenthal's theorem is that given a cofibration sequence A —^ X —^ X/A, 
one obtains a long exact sequence 

> ^UMIA) — K{A) — Tf(X) - . ^i{x/A) - . -KUiA) - * • • • 

of stable homotopy groups, just as one would in the case of homology. For this reason, Trf 
is referred to as a generalized homology theory, since it now satisfies all the Eilenberg-
Steenrod axioms for a homology theory with the exception of the dimension axiom, 
which identifies the value of the theory on a point. The generalized homology theory 
property is quite useful. It permits the construction of the Adams spectral sequence [3] 
and its variants, which are effective computational methods for stable homotopy groups. 
For instance, they have allowed the calculation of stable homotopy groups in a far larger 
range of dimensions than is currently possible for unstable groups. 
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The stabilization procedure described above for homotopy groups can also be carried 
out on the level of spaces, rather than groups. For any based space X, let QX denote 
the loop space of X, i.e. the set of based maps from the circle to X, equipped with the 
compact open topology (see [27]). Then suspension gives rise to maps a : Q^E^X —> 
Q^+^S^-^^X, and hence homomorphisms 

i^i{a) : i:i{n^E^X) — . 7^i{n^^'E^^'X). 

Via the standard adjoint identification 'Ki{Q^X) = -Ki^kiX), we obtain a homomorphism 
'Kij^ki^^X) —> 'Ki^k^\{E^^^X), which is easily seen to be equal to the map in the 
directed system defining 7r|(X). Freudenthal's theorem can now be interpreted as a 
statement about the connectivity of the inclusion Q^E^X —^ Q^'^^E^'^^X. 

It has turned out to be possible to obtain very detailed information about the spaces 
Q^E^X. In fact one can give an explicit description of H^{Q^E^X) as a functor of 
H^{X), and produce explicit combinatorial constructions which are homotopy equivalent 
to the spaces Q^E^X. This line of work began with the James construction [19] for the 
case A; = 1, and was extended to the case of all k by Milgram [24]. An alternate version, 
based on Boardman's "little cubes", was worked out by J.P. May [22]. Barratt and Eccles 
[6] developed a simplicial version for the limiting case A: = oo, and J. Smith [30] gave 
a simplicial version valid for all k. 

The case A: = oo, i.e. lim^ fi^E^X, is usually denoted Q{X). It is called an "infinite 
loop space" since it is a A;-fold loop space for all fc ̂  0. Of course infinite loop spaces 
need not arise only in this way. What one needs are spaces Zk, k = 0 , 1 , 2 , . . . , and 
identifications Zk ~ fiZk-\.\. The collection of spaces {Zk}k^o forms a spectrum. It turns 
out that a spectrum determines a generalized homology theory in the above sense. The 
spectrum {Q{S'^)}k^o determines stable homotopy theory. Other spectra determine well 
known generalized homology theories such as X-theory, the various bordism theories, 
and of course ordinary singular homology theory. 

The theory of iterated loop spaces described above can be used to give a structure on 
a space which assures that the space is the zeroth space in some spectrum. The relevant 
structure turns out to be a homotopy theoretic version of an abelian group structure. 
In particular, topological abelian groups are always infinite loop spaces. This result is 
J.P. May's "recognition principle" for the case fc = oo. It in turn allows the construction 
of spectra and hence generalized homology theories [11] out of category theoretic data, 
specifically from categories with a coherently commutative and associative sum operation. 
The category of finite sets gives stable homotopy theory under this construction. 

In this chapter we discuss these ideas. The second section outlines the general homo-
topy theoretic information we will need. The third section gives a proof of Freudenthal's 
theorem and the generalized homology theory property of stable homotopy. Section 4 
studies Spanier-Whitehead duality, which can be though of as a space level version of 
Lefschetz duality. Section 5 contains the James construction as well as results of Adams 
and Hilton [1] and Adams [2] concerning the structure of loop spaces of general spaces 
(not necessarily suspensions). In Section 6 we give a detailed discussion of double loop 
spaces. This serves to motivate and clarify the work in the following chapter, and the 
case k = 2 contains all the essential difficulties that occur for arbitrary k. Section 7 
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contains an extended discussion of all the models mentioned above for Q^E^X. Finally, 
in Section 8 we sketch May's recognition principle as well as Segal's T-space version, 
and describe the necessary category theoretic data for constructing spectra. 

2. Prerequisites 

We summarize some basic material from homotopy theory which we will be using. We 
assume the reader has the standard knowledge of homology theory, as well as of the 
definitions and elementary properties of homotopy groups. 

2.1. Basic homotopy theory 

Recall that the Hurewicz homomorphism hn : 7rn(X, *) —• Hn{X) is given by /in([/]) = 
Hn{f){in) where in is the standard generator for HniS"^)- Throughout this paper [x] 
will denote the equivalence class of x in various contexts. It should not create confusion. 

DEFINFTION 2.1.1. A space X is said to be n-connected if ni{X) = 0 for z < n. A map 
/ : X —• F is said to be n-connected if 7rt(/) is an isomorphism for z ^ n and TTn+i (/) 
is suijective. A pair (X, Y) is said to be n-connected if the inclusion Y —^ X is. 

THEOREM 2.1.1 (Hurewicz, Absolute case). If nn{X,*) = 0 for 0 < n< N, and X is 
connected, then Hn{X) = Ofor 0 < n < N, and h^ is an isomorphism if N ^ 1. If 
N = 1,/iiv is just abelianization. Note that this also implies that ifX is simply connected 
and Hn{X) = Qfor 0<n<N, then 7rn(X, *) = Ofor 0<n<N. 

We shall also need the relative form of this theorem. First, recall the notion of the 
homotopy group (or set if n = 1) of a pair (A, B). 

DEFINITION 2.1.2. Let {A,B) be a pair of spaces, i.e. JB is a subspace of A. Then by 
TTniA, B), we mean the set of homotopy classes of maps of the standard n-cube which 
carry the boundary into B (and the bottom face to the basepoint). This is a set if n = 1, a 
(perhaps non-abelian) group if n = 2, and an abelian group if n ^ 3. We have a relative 
Hurewicz homomorphism hn{A^B) : 7rn{A^B) —• Hn{A, B)dQfinQd in the obvious 
way. 

We can now formulate the relative version of the Hurewicz theorem. 

THEOREM 2.1.2 (Hurewicz, Relative form). Suppose A and B are connected, N ^ 2 
and TTn^A.B) = Ofor 0 < n< N, Then, if N ^ 3, Hn{A,B) =: 0 for 0 < n< N 
and hN '- nN{A,B) —• HN[A,B) is an isomorphism, and if N = 2, /12 : 7r2(A, B) —̂  
H2{A,B) is abelianization. 

COROLLARY 2.1.1 (Whitehead). Let X andY be CW complexes, and let f : X -^Y 
be a continuous map^. IfX and Y are simply connected, and Hn{f) is an isomorphism 

Actually, all our maps are continuous so from here on we will simply call them maps. 
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for 0 < n < N, with N ^ 3, then TTnif) is an isomorphism for 0 < n < N — I. 
Conversely, ifi^nU) is an isomorphism for 0 <n< N, then Hn{f) is an isomorphism 
forO<n<N -h 

We also record the following standard result about CW complexes. Recall that a 
continuous map f : X ^^Y is said to be a weak equivalence if iTnif) is an isomorphism 
for all n. 

THEOREM 2.1.3. Let X and Y be CW complexes, and suppose f : X —> Y is a weak 
equivalence. Then f is a homotopy equivalence. Also, suppose X and Y are simply 
connected, and suppose Hn{f) is an isomorphism for all n. Then f is a homotopy 
equivalence. 

2.2. Hurewicz fibrations 

We recall some parts of the theory of Hurewicz fibrations. 

DEFINITION 2.2.1. A map p: E —• JB is a Hurewicz fibration if for every pair of spaces 
( X , y ) , and every commutative diagram 

Xx{0 , l }uy x / 

H 

Xxl —> B 

there is a map H : X x I —^ E making both triangles commute. If F = p~^{b), for a 
point b £ B, and B is path connected, we obtain a long exact sequence on homotopy 
groups, 

Equivalently, 'Ki{E,F) —• 7ri(B,6) is an isomorphism. 

For us, a fibration will mean a Hurewicz fibration. In the case of a path-connected 
base space B, it follows directly from this definition that if bo and b\ are points of J5, 
then p""H^) ^ d P~U^i) ^^ homotopy equivalent. 

DEFINITION 2.2.2. Let X be a space. By a space over X we mean a space E together 

with a reference map E—^X.lfEx—^X and E2-^X dut spaces over X, then a map 
over X from {E\, ri)to {Ei, T2) is a map f : E\ —* E2 so that ri = r2 o / . 

For any space (E^r) over X, we have the space {E x I,r ops), over X, where 
PE ' E X I —^ E is iht projection. With this construction, homotopies over X are 
defined in the evident way, as are homotopy equivalences. 

- Note that a map / over X from {E\,r\) to (E2,r2) gives rise to a map Cyl{f) from 
the mapping cylinder Cyl{r\) on r\ to the mapping cylinder Cyl{r2) on r2, and an 



Section 2 Homotopy and loop spaces 511 

induced map C{f) from the mapping cone C{r\) on r\ to the mapping cone C(r2) 
on rj. 

- If / is a homotopy equivalence over X, then C{f) is a homotopy equivalence. 

DEFINITION 2.2.3. Let X and Y be spaces, and suppose {E,r) is a space over Y. Then 
if / : X —> F is a continuous map, the pullback f*{E, r) is the space (/*£^, /*r) over 
X, defined by letting f*E be the subspace of X x E given by 

r E = { ( x , e ) | / ( x ) = r(e)}, 

and letting f*r be the composite f*E —> X x E^^X. If r is a fibration, then so is f*r. 

The pullback operation has an important homotopy invariance property when r is a 
fibration. 

PROPOSITION 2.2.1. Suppose (JS, r) is a space over Y, with r a fibration. Let f,g : X -^ 
Y be homotopic continuous maps. Then f*{E, r) and g*{E, r) are homotopy equivalent 
spaces over X. 

PROOF. Let Hhea homotopy from / to g, and consider the space H*{E, r) over X x I. 
ilH\E,r) ^ r{E,r) and i\H*{E,r) ^ p*(E,r) as spaces over X. The homotopy 
lifting property for fibrations applied to the canonical homotopy from IQ io i\ gives a 
map a from ilH*{E^r) to i*H*{E,r) of spaces over X, and similarly we obtain a 
map /3 : z* H*{E,r) —> ij H*{E,r), also over X. We must show that a/3 and /3a are 
homotopic to the identity over X. Consider /3a. From the way in which a and /3 were 
constructed, it is clear that there is a map h : IQ H''{E,r) x / —> H*{E,r), so that the 
composite H^r o h is equal to ^ o (ij H*r x id), where ^ i X x / — ^ X x / i s given 
by g{x, t) = (x, 2t) for 0 ^ t ^ ,̂ and ^(x, t) = {x,2 - 2t) for \ ^ t ^ I, and so that 
h I ZQ H*{E^r) X 0 is the inclusion, and H \ i^ H*{E,r) x I is Pa composed with the 
inclusion. In view of the fact that there is an evident homotopy from g to the constant 
homotopy g'^^g'^ix, t) = (x, 0), we may use the homotopy lifting property again to obtain 
a map h fi-om i^ H^iE.r) x / -> H*{E,r), so that h \ i^ H*{E,r) x OUzJ H*{E,r) x 
1 = /i I i5 H'^iE^r) X 0 U iS H*[E,r) x 1 and so that H*r o h = g o {{^ H^'r x id), 
h is now the required homotopy over X from the identity on ij H*{E,r) to /3a. The 
procedure works similarly for a/3. D 

COROLLARY 2.2.1. Let X be a space, and let {E, r) be a space over X, with r a fibration. 
Suppose X is contractible. Then for any x £ X, {E, r) is homotopy equivalent over X 
to the space {X x r~^ (x), TTX) over X. 

PROOF. This is an easy application of the preceding result. D 

PROPOSITION 2.2.2. Let X be a CW-complex, and let A be a subcomplex. Let Y be 
a space. Let F(X, Y) denote the space of maps from X to Y, with the compact open 
topology (see [27]), then the restriction map F{X, Y) —> F{A, Y) is a Hurewicz fibra-
tion. Moreover, the inverse image of the constant map from A to Y is identified with 
F{X/A,Y). 
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PROOF. This fact follows directly from the fact that inclusions of subcomplexes of CW-
complexes have the homotopy extension property, which is a dual condition to the ho-
motopy lifting property characterizing Hurewicz fibrations. It states that if we are given 
a map / : X —• Y and a homotopy H : Ax I —• Y so that H \ AxO = f \ A, then 
there exists an extension H : X x I —• Y so that H \ X xO = f and H \ Ax I = H. 
That this property holds in the case of the inclusion of a subcomplex of a CW^-complex 
is proved in [21]. D 

REMARK. Generally, a map having the homotopy extension property is referred to as a 
cofibration. 

2.3. Serre fibrations 

A Serre fibration has the same definition as an Hurewicz fibration except the spaces X 
and Y are restricted to being finite polyhedral complexes. These are particularly useful 
when we are dealing with mapping spaces X^ = {f :Y —̂  X \ f continuous } which 
are assumed, as in 2.2.2, to have the compact-open topology. 

Given any continuous map f : Y —^ X v/e have the associated Serre fibration 

Eyj^ —^X where X is the mapping cone of / , E^^ is the space of paths in C that 

start in A, end in B and TT : E^Q —> B is projection onto the endpoint. The fiber of TT 

over the point x is the subspace Ey^, and we have the commutative diagram 

f\x) ^ Y -^ X 

(2.1) 

Ey.x ^ E^j^ —y X 

where i includes y £Y SLS the constant path at y. 

2.4. Quasifiberings 

DEFINITION 2.4.1. A continuous map / : y —> X is a quasifibration if and only if, for 
all X e X, the map i above restricted to f~^{x) is a weak homotopy equivalence. 

Using the 5-lemma this is equivalent to the condition 

LEMMA 2.4.1. f : Y —y X is a quasifibration if and only if, for all x e X and y G 
/~^(x), the induced map of homotopy groups 

/ .:7r.(y,/-'(x),y)-^7r.(A:,x) 

is an isomorphism. 
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Basically, it turns out that the difference between quasifibrations and Hurewicz fibra-
tions is that with an Hurewicz fibration one can lift homotopies "on the nose", however, 
in a quasifibration, the weak equivalence condition limits the homotopies to finite cell 
complexes and homotopies can be lifted, but only "up to a homotopy". A good example 
to keep in mind is the map 

(2.2) 

which is a quasifibration but not an Hurewicz fibration. 
One has notions of the equivalence of two quasifibrations, principal quasifibrations, 

and the equivalence of principal quasifibrations similar to those for bundles. However, 
the construction of "associated quasifibrations" is more difficult. 

P v' 
DERNITION 2.4.2. (i) Two quasifibrations, JS—^5 and E' —^B' are said to be equivalent 
if there are weak homotopy equivalences f : E —^ E\ f : B —* B' so that the following 
diagram commutes: 

E E' 

B' 

(ii) A quasifibration p : E —y B is a. (left)-principal M-quasifibration if M is an 
associative, unitary i7-space and there is a map ^ : M x E —̂  E so that 

a) /jL^mm',e) = /x(m,/i(m',e)) for all m,m' e M, e G E, (associative action). 
b) /i(l, e) = e all e € J5 where 1 G M is the unit, (unitary action). 
c) p{iji{m, e)) = p(e) for all e G £?, m € M, (fiber preserving). 
d) / / ( - , e) : M —• P~^p{e) is a weak homotopy equivalence for each e e E. 
(iii) Two principal M-quasifibrations p : E —^ B and p' \ E' -—^ B' are called 

structurally equivalent if they are equivalent via / , / where / preserves the M-structure. 

The best references for the structure of quasifibrations are [16], [15], [32] and we 
summarize the results from [16, §2] that we will need in the sequel now. 

The main tool for constructing lifts up to homotopy is the following result. 

LEMMA 2.4.2. Let p : F —* U be continuous, V C U and G = p ^ {V). Let K be an 
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r-cell (r ^ 0) and assume that for all x eU, y G p~^{x) we have 

J pr '- T^r{F-> G, y) > TTriU, V, x) Is a monomorphism, 
\ pr+i : ^r+i {F, G, y) • TT̂ +I {U, V, x) is an epimorphism. 

Then p has the following homotopy lifting property: suppose that we are given three 
maps 

(i) H:{KxI,Kx 1)-^{U,V), 
(ii) h:{KxOUdKxI,dKx 1 ) ->(F,G) , 

(iii) d:{{KxOUdKxI) xI,{dKx I)xl)-^U,V) 

with d{z,t,0) = H{z,t\ d{z,t, 1) =poh{z,t) for all z e K, t £ K. Then there is a 
map 

H:{KxI,Kx 1) —y{F,G) 

with H\K X 0 U dK x 1 equal to h, and a homotopy 

D:(KxIxI,Kx\xI) —y {U,V) 

filling in d in the sense that 

D\{KxOUdKx 1) x / = d, 

D(z,t,0) = H{z,t), 

D{z,t,\) = poH{z,t). 

PROOF, h defines an element a G 7rr(F, G) with /(a) = 0 G 7rr(?7, V) using H and d to 
construct the trivializing homotopy. 

poh 

poh 

K 
d 

\z 

d 1 

H 

d 

(2.3) 

po h 

But since we assume that /* on 7rr(F, G,y) is a monomorphism, it follows that a = 0, 
and there is a trivializing homotopy 

H' :{KxI,Kx 1) —^{F,G) 

with H\{K xO) = h. Adding the image of if' to the map in fig. 2.3, we have a map 
H'' :{KxIxOUd{KxI)xI)-^U with H''\d{K x I) x \ contained in V. H" in 
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turn defines an element 7 E TTr+i ([/, V, x) which may not be zero. However, we are free 
to modify the homotopy H' by any element /3 € 7rr-i-i(F,G,2/), and this will change 7 
to 7 -f p*(i9). Consequently, since pr+i is onto, we can assume 7 represents 0 and the 
existence of the desired homotopy follows. Q 

We now give some geometric conditions which will guarantee that a map / is a 
quasifibration. 

DEHNITION 2.4.3. Let / : X —> y be a continuous map, and C/ C F be any subset. We 
say that U is distinguished for f if f : f~^{U) —> f/ is a quasifibration. 

LEMMA 2.4.3. Suppose that f : X —^Y is a continuous map. Suppose that Y' cY is 
distinguished for f with X' = f~^{Y'). Suppose that there are deformations 

D:Ix {X,X') ^ (X,X') , 

d:Ix {Y,Y') -> (y ,y ' ) 

so that Do = id, do = id, im{D\) C X', im{d\) cY', f o D\ = d\ o / , and finally, 
for every x £ X, D]^ : 7r*(/~^(x)) —* 7r^{f~^{d\{x))) is an isomorphism. Then Y is 
distinguished for f, i.e. f is a quasifibration. 

PROOF. d\ and D\ are deformations so du and Du induce homotopy equivalences. Now, 
from the induced maps of pairs (X,/~^(y) —> {X^,f~^{d\{y))) and the five-lemma we 
have that n^XJ-^y)) ^ 7T^{X'/f-^{d]{y))). But since F' is distinguished for / we 
know 7r*(X',/~*(y')) = 7r*(y',T/'), and d\ shows that these groups are isomorphic to 

Perhaps the most important method of showing that / is a quasifibration is the fol-
lowing result. 

THEOREM 2.4.1. Let f : X —̂  Y be a continuous map, and suppose that there is a 
family y of distinguished open sets for f, UiCY with the following two properties: 

- The sets Ui Gy cover Y. 
- For every pair Ui,Uj e y andy € UifM/j there is a Uy G y with y eUy C UidUj. 

Then Y is distinguished for f. 

(The idea of the proof is to modify the standard proof of (polyhedral) homotopy lifting 
for f if y was a family of open sets for which f~^{Ui) = Yi x Uu ie. the map 
has a local product structure. One covers the homotopy on the base by distinguished 
neighborhoods, and then refines the polyhedral decomposition so that each polygon has 
the form Pi x [a, b] and is contained in one of the distinguished neighborhoods. One then 
constructs the extension over skeleta, one cell at a time. The only difference here is that 
the lifting is not exact but involves a second homotopy. The homotopy extension lemma 
above provides the necessary tool.) 
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2.5. Associated quasifibrations 

For ordinary (local product) fibrations one can associate a (left)-principal fibration to any 
p 

fibration F —^ E ^^ B, which we can write H —> S —> B with fiber a subgroup 
H C Aut{F), the group of homeomorphisms of F. Then given any Y with if-action 
Y X H —>Y, there is an associated fibration 

Y -^YXH£->B. 

However, for quasifibrations this construction may not always result in a quasifibration. 
For one thing, since M is not a group in general, the operation XM is not directly 
an equivalence relation. For another, even taking the associated equivalence relation, 
the local structure may be sufficiently bad that the map of the quotient to B is not a 
quasifibration. 

The problem was studied by Stasheff in [32] and he introduced a classifying space 
construction there which made sense of the notion of associated quasifibrations. Basically, 
given a left M-space E, and a right M-space X, he constructs a space E{X, M, E) with 
the following properties: 

- E{X, M, E) is natural in all three variables. For example, if h: X —> X' is a map of 
right M-spaces then there is an induced map 

E{h,l,\):E{X,M,E) -^E{X',M,E) 

and similarly for the other variables which satisfy the expected naturality proper-
ties. Also, if the maps are weak homotopy equivalences, then the resulting maps of 
E{X, M, E) are also. 

- E\X, M , M) ~ X, E{M, M, E) - E. 
- If fj —• B is a principal quasifibering then E{M, M, E) —^ E(*, M, E) is a principal 

quasifibering which is structurally equivalent io E -^ B. 
- If £J —> B is a principal quasifibering, then E{X, M, E) —> £?(*, M, E) is a quasi-

fibering with fiber X. 

An important example to keep in mind is the loop-path Serre fibration 

nx -^E^x-^X' 

These spaces are constructed as a limit over n of spaces constructed from the products 
G^ X X X M^ X E hy introducing the equivalence relation 

( t , X, 7712, . . . , ^ n - f l » e ) ^ ( t , x ' , 7712, "-> ^ n + l ' ^ 0 

where rriimi^] = m[m[_^^ if U = 0, the U are barycentric coordinates for the simplex a'^ 
and in this relation x = mi, e = mn-\-2' One must be a bit careful with the topologies here. 
In particular Stasheff, following [15], gives the quotients a topology just strong enough for 
certain maps to be continuous. However, one can use the compactly generated topology 
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in the quotient, and this will work as well. (For a complete study of the properties of 
this topology see [33].) 

The construction has the property that it is graded and En - En-\ is a product Y x 
lni{(j'^) X N"^ X X where N = M -*, and that there is a neighborhood Un of En-\ in 
En together with a deformation retraction, J9, of Un onto En-\ so that for any point 

(x , t ,n2 , . . . ,nn+i ,y) eUn{En - En-\) 

D\{x, t, 722,...,7in+i,y) lies in a product neighborhood Ej - Ej^\ for a unique j and 
there has the form (rrmi, t ' ,n2, . . . ,n^_ î,77122/) ^^^h 77ii, 7712 independent of x, y. In 
particular each fiber X x F is mapped by a translation of the form (x, y) »-> (XTTII , 1/7712) 
and if we assume that the actions M xY -^ Y, X x M — • X give rise to weak 
homotopy equivalences y ^ my, x ^-^ xm for all 771 G M then the results of Dold and 
Thom above show that the construction gives a quasifibration. 

There is one more property of these spaces which will be useful to us. If X also has 
a left A^-action, then the space E{X^ M, E) becomes a left N-spact from the action on 
passing to quotients. (The compactly generated topology again seems better here than 
Stasheff's original topology.) 

3. The Freudenthal suspension theorem 

The computation of homotopy groups is a notoriously difficult problem. Even for spheres, 
our knowledge is quite spotty compared with what might have been expected over forty 
years ago, when work on them began in earnest. An important simplification was made by 
Freudenthal, who proved his famous suspension theorem, which asserts that forkKn 
the suspension homomorphism a : iTn^kiS^) —* ^n+A:-fi(5'̂ '*"*) is an isomorphism. 
On can therefore compute the value of infinitely many homotopy groups of spheres by 
computing one stable group, i.e. one group of the form 7rn+ife(5^), k <n. 

Let E denote the reduced suspension functor. For any based space {X,a), we may 
define a suspension homomorphism 

a : 7ri{X,x) —^ 7ri^\{SX,x) 

and consequently, a directed system of groups {7ri^i{S^X,x)}i'^o hy the requirement 
that (j[f] = [27/]. lim7rt_|./(i7'X,x) is now an abelian group valued functor of spaces, 

which we denote by 7rf{X,x). It will follow from Freudenthal's result that this system 
eventually stabilizes, i.e. that for sufficiently large Z, the suspension homomorphism 
7ri^i{i:^X,x) —• 'Ki^i^\{E^'^^X,x) is an isomorphism. It also turns out that the graded 
group valued functor 7rJ(—) is a generalized homology theory in X. This means that 
many of the methods used to compute integral homology so successfully also apply to 
stable homotopy theory; the only obstacle is that one cannot compute its value on a point. 

In this section we will outline proofs of these fundamental results. We will assume 
that the reader is familiar with the standard theory of Hurewicz fibrations, presented in 
Section 2.2. 
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LEMMA 3.1. Let p : E —> B be a Hurewicz fibration, where B is a path connected 
CW complex with preferred base point b. Suppose further that B is obtained from a 
subcomplex BQ by attaching a single n-cell along a based map / : 5"""̂  —> B, so 
B = BQU e". Finally, suppose F = p~^{b) is k-connected. Then the map of pairs 
{E,p'~^{Bo)) —^ {B, BQ) induces isomorphisms on Hj for j ^n-\- k. 

PROOF. Let f^ C e'̂  denote the closed disc of radius ^ centered at the origin. It is clear 
o 

that BQ is a deformation retract of B - / " . It is therefore a direct consequence of the 
o 

homotopy lifting property that p^^{Bo) is also a deformation retract of p~^{B - f ^ ) . 

Consequently, the inclusions (B,5o) -^ {B.B-f'') and {E,p-^{Bo)) —̂  {E,p-\B-
o 

f^)) induce isomorphisms on relative homology. It therefore suffices to show that the 
o o 

homomorphism Hj{E,p~^{B - f^)) —̂  Hj{B,B - f^) is an isomorphism when 
0 ^ j < n -h fc. Let df^ denote the boundary of f^. It is a direct consequence of 

o 

the excision theorem for homology that the inclusions {f^.df^) —̂  {B,B - f^) and 
o 

(p'"*(/'^),p"*(5/'^)) —• {E,p~\B - f^)) induce isomorphisms on relative homology, 
Hi, for all i. It consequently suffices to show that the homomorphism 

Hj{p-'{r),p-'{dr)) -^ Hj{r,dr) 
is an isomorphism for 0 ^ j ^ n -f fc. 

Lei V e f^ denote the center of the ball. Note that since B is path connected, it 
follows from the fact that F is fc-connected that p~^{v) is. Since f^ is a contractible 
space, we have a homotopy equivalence over X from p''\f^), with the restriction of p 
as reference map, to fn x p" {v), with projection on the first factor as reference map. It 
now follows that it suffices to show that the projection homomorphism 

Hj{fnXp-'{v),dfnXp-'{v)) —^Hjifn^dfn) 

is an isomorphism for 0 < j ^ n -h fc. But this follows from the Kunneth formula and 
the Hurewicz theorem. D 

p 
COROLLARY 3.1. Suppose, as before, that we have a Hurewicz fibration E—^B, where 
B is a CW complex equipped with a preferred base point 6 E JB. Suppose that F is 
k-connected and B is n-connected. Then the natural map of pairs {E,F) —> {B,b) 
induces isomorphisms on Hj for 0 ^ j ^ n 4 - f c - l - l . 

PROOF. It is standard homotopy theory that there is a based homotopy equivalence 

(B, 6) —»̂  (B', 6'), where B' is a CW complex with a unique 0-cell b\ and which has no 
Z-cells for 0 ^ Z ^ n. By pulling back E along a homotopy inverse to 0, we obtain from 
Proposition 2.2.1 an equivalent fibration JS' over B'. 

We are therefore free to suppose that B has b as unique 0-cell, and that B has no 
Z-cells for 0 ^ Z ^ n. Let B *̂) denote the t-skeleton of B. We will show induc-
tively that the homomorphisms Hj{p~^{B^^^),F)) —̂  Hj{B^^\b) are isomorphisms 
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for 0 ^ j ^ n -f A: -h 1, and all I, For / = 0, this is trivial since 5̂ ^̂  = 0 and there-
fore p"*(5(^^) = F, so both target and source of the homomorphisms in question are 
trivial groups. Now suppose the result is known for Z, and we attempt to show that 
i?j(p-^(B(^+^)),F) -^ Hj{B^^-^^\b) is an isomorphism for 0 < j < n -f A: + 1. Con-
sider the following commutative diagram 

V-i l/>2 V-J 

^ 4 

if,(B('+'),5(')) 

V^5 

J/,-,(5('),6) 

It is just an induced map of homology long exact sequences induces by p. Suppose 
I < n. Then, since B '̂) = B^'-'^^^ = 6, it follows directly from this sequence that 
Hj{p-^{B^^-^^'^),F) = Hj{B(^-^^\b) = 0, which gives the result in this case. If / = n, 
then ^̂ 2 and ips are both isomorphisms since their domains and images are trivial groups. 
On the other hand, t/;i and t/̂ s are isomorphisms by Lemma 3.1. The five lemma now 
shows that ^p2 is an isomorphism. Finally, if / > n, then ^̂ 2 and ips are isomorphisms by 
the inductive hypothesis, and ip\ and ip4 are again isomorphisms by 3.1. This gives the 
result. D 

We now wish to use these results to give proofs of Freudenthal's theorem and of 
the generalized homology theory property of TT̂ . Let t : {Y.yo) —> {X.XQ) be a based 
cofibration, let Cyl{i) and C[i) denote the reduced mapping cylinder and reduced map-
ping cone construction on i, respectively. Thus, Cyl{i) = F x [0,1] U X/ c^, where r̂  
is the equivalence relation generated by {y,0) ~ i{y), and {yo,t) :::: XQ for all t, and 
C{i) = C2/Z(z)/Image(y). Let E denote the space of maps cf) : [0,1] —̂  C{i) such that 
(j){0) € X, with the compact open topology. We have a projection map p : E -^ C{i), 
given by p(</>) = (^(1); it is a Hurewicz fibration. Let F denote the fibre over XQ of p; 
thus, F is the space of maps 0 : [0,1] —• C{i) such that 0(1) = xo and (̂ (0) G X. 
We now define a map X : Y -^ F by X{y) = V'y, where V^y(t) = [2/, 1 - t]. Let 
j : F —• £ be the inclusion; note that the composite j o A is homotopic, rel yo, to the 
map ii\Y -^ E which sends y to the constant path with values i{y). The homotopy is 
given by H{s, y) = [y, 1 - st]. Of course, /x extends to a map p,: X -^ E, which sends x 
to the constant path with value x. We therefore have a map y x [0,1] —> X —• £?, which 
is if on y X [0,1] and is fi on X, and which respects the equivalence relation defining 
Cyl{i). Since the map restricts to A on the image of y x 0, we have a map of pairs 
{Cyl{i),Y) -^ {E,F). Further, the composite {Cyl{i),Y) -> (J5,F) -> (C(z),xo) is 
just the identification map Cyl{i) —• C{i), which shrinks y to a point. 
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THEOREM 3.1. Let X, Y, and i be as above. Suppose that Y is k-connected and C{i) is 
l-connected, with fc > 0, Z > 1. Then the map X :Y —^ F induces isomorphisms on TTJ 
forO^j^k-^L 

PROOF. We know by Lemma 3.1 and Corollary 3.1 that the homomorphism Hj{E, F) —̂  
Hj{C{i), xo) is an isomorphism for 0 ^ j ^ fc 4- / -h 1. By the above description of the 
composite 

{Cyl{i),Y)^{E,F)^{C{i),xo), 

and the excision theorem, we conclude that 

Hj{Cyl{i),Y) — Hj{E,F) — Hj{C{i),xo) 

is an isomorphism for all j , and hence that Hj{Cyl{i),Y) —• Hj{E,F) is an isomor-
phism for 0 ^ j ^ fc -f Z 4- 1. Now consider the commutative diagram below 

Hj^i{Cyl{i)) 

Hj^iiE) 

Hj^,{Cyl{i),Y) Hj{Y) 

Hj^,{E,F) - . Hj{F) 

^ Hj{Cyl{i)) ^ Hj{Cyl(^),Y) 

Hj{E) Hj{E,F) 

It is easy to check that the map Cyl{i) —> E is a homotopy equivalence, so a and 6 are 
isomorphisms for j ^ k-\-l. I3 and e are also isomorphisms, from the above discussion. 
The five lemma now shows that 7 is an isomorphism. It follows easily from the long 
exact homotopy sequence of the fibration F —• J5 —> C{i) that F is simply connected. 
Therefore, the relative Hurewicz theorem asserts that 7rj{Y) —> nj{F) is an isomorphism 
for 0 < j ^ fc -h Z. D 

Let X be any connected CW complex. Define a based map J : X —y QEX, where 
SX denotes the reduced suspension of X by x •-> [x] where [x]{t) = [x,t] E EX. 

THEOREM 3.2 (Freudenthal). If X is k connected then the homomorphism 

7ri{J)'.iri{X)-^7ri{nEX) 

is an isomorphism for 0 ^ z < 2fc 4- 1. 

PROOF. Apply Theorem 3.1 to the inclusion X ^ CX\ X in this case is J. D 
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COROLLARY 3.2. Let o : 7ri(X, *) —> 7ri4.i(i7X, *) be the suspension homomorphism. 
Suppose X is k'Connected and 2 < 2fc -f- 1. Then a is an isomorphism. 

PROOF. Standard adjointness identifies 7ri^\{SX,*) with 7ri(i7i7X,*); it is not hard to 
see that after this identification, a corresponds to 7ri(J). D 

We now prove the cofibration property. 

THEOREM 3.3. Let i :Y —^ X be a cofibration and let C{i) denote its reduced mapping 
cone. Then there is a long exact sequence 

• • • - <+. {C{i)) - <{Y) - < ( X ) - . TTf (C(f)) ^ < _ , ( y ) - • • • 

PROOF. Consider the map E^i : S^Y —• E^X. From the definitions, it is clearly seen 
that E^C{i) is naturally homeomorphic to C{E^i). Let E{E^i) denote the space of maps 
<t): [0,1] -^ C{EH) with (/>(0) G E^X\ as before, the map p : E{E^i) -^ C{EH) is 
a fibration and we let F{E^i) denote the inverse image of the basepoint. There is an 
evident map EF{EH) —̂  F[E^^H). 

We therefore obtain a directed system of groups {Kij^kiFiE^i))}. It now follows from 
the long exact sequences of the fibrations F{E^i) —> E{E^i) —> C{E^i) that we have 
a long exact sequence 

. Iim7r,+fc+i [C[EH)) -^Gi-^ < ( X ) - \\m'Ki^k[C[EH)) -> • • • 

From the identification E^C{i) c:^ C{E^i), we see that WmkT^i^k{C{E^i)) = 7r,̂ (C(z)). 
On the other hand, there are maps E^Y —̂  F{E^i) which give a homomorphism of 
directed systems of abelian groups 

and hence a homomorphism 

< ( y ) —> lim7ri^,(F(i:'^i)) = Gi. 
k 

Theorem 3.1 now shows that for sufficiently laige A;, TVi^k[E^Y) —• 'Kij^k{F{E^i)) is 
an isomorphism, hence so is the homomorphism 7rf (F) —̂  Gi. This gives the required 
result. D 

We obtain a corollary concerning the homology of iterated loop spaces. 

COROLLARY 3.3. Consider the iterated loop space Q^S^ where k < N. We have the 

map S^-^-^n^S^. adjoint to the standard identification r^S'^-^-^5^. Then X 
induces isomorphisms on Hj for j < 2{N - fc — 1). 
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PROOF. Consider TTj-(A) : 7rj{S^-^) -^ iTj{n''S^) ^ -Kj^kiS^)- -^jW is identified with 
the fc-fold suspension homomorphism, which is an isomorphism if j < 2{N — k) — I 
by Corollary 3.2. Thus, by the Whitehead theorem Hj{X) is an isomorphism if j < 
2{N — k) —2, which is the required result. D 

4. Spanier-Whitehead duality 

4.1. The definition and main properties 

Let X be a based finite complex. One may consider the function space of based maps 
X —^ S^, F{X, S^), as usual in the compact open topology. This space does not have 
the homotopy type of a finite complex. However, for N sufficiendy large, there is a 
finite complex Y and a map Y —• F{X, S^) which induces isomorphisms on homotopy 
groups in dimensions less than 2N - 2k. One could also state the result as follows. We 
have natural suspension maps I!F{X, S^) —* F{X, S^'^^), and hence a directed system 
of abelian groups {iri^k{F{X, S^-^''))}k^o^ We also have maps S^Y -^ F{X, S^-^^), 
and these maps are compatible with respect to suspensions. This gives a homomorphism 
of abelian groups 

lim{7r,+fc(2:'^y)},^, — . Iim7r,+,(F(X,5^+^)). (4.1) 
k ^ k 

The statement will be that this homomorphism is in fact an isomorphism. This theorem 
and the general development is due to Spanier and Whitehead; see [31]. 

To study this situation, we first consider any two based CW complexes X and Y. Let 
Si,X and S^Y denote the complexes of singular chains on X and Y respectively. We 
have the evaluation map e : X A F{X, Y) —• Y. Therefore we have a chain map 5*e : 
S,{X A F{X, Y)) -^ S.Y. Let a : S,{X) (g) 5.(F(X, Y) ^ 5 . (X x F{X, Y)) be any 
chain inverse to the Alexander-Whitney homomorphism, e.g., the shuffle homomorphism. 
5*e o cr is now a homomorphism S*{X) (8) 5*(F(A', Y) —> S*{Y) and we may take its 
adjoint 

S.{F{X,Y)f-^Hom{S.{X),S.{Y)). 

Now let Y = 5^, and fix a generating cocycle c for H^{S^) = Z. c now gives a chain 
map which we also call c fi-om C*(5^) to the chain complex D^ with Di = 0 when 
i ^ N, and DN = Z, and c induces an isomorphism on H^. c o a{X, S^) is now a 
homomorphism from S^{F{X, S^) to H(miiS.{X), D,), and Hi{H(mi{S,{X),D^)) ^ 
H^~'^{X), as contravariant functors in X. 

THEOREM 4.1.1. Let X be a finite complex of dimension i. Then co a{X,S^) induces 
an isomorphism on Hj for 0 < j < 2N -2i~2. 

PROOF. We first study the situation where X is an i-sphere. In this case, 
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for * < 2(iV — i — 1). In the range in question then, we are only required to verify that 
coa{X, S^) induces an isomorphism Hisf-i{F{X, S^)) = Z. But from the definitions, 
this is equivalent to the assertion that 

is a perfect pairing. Note further that if the composite 

P'.S'A S^^' —^ 5̂  A F{S\ S^) - ^ 5^ 

is the standard identification, then the homomorphism 

yields a perfect pairing. This gives the result for spheres in view of Corollary 3.3. 
To deal with a general complex, we work by induction on the dimension i. The case 

2 = 0 is trivial. Suppose the result is known for complexes of dimension < i, and 
consider an z-dimensional complex X. Let X^^"^^ denote the (z - l)-skeleton. Then we 
have a fibration 

F{X^i-^\S^) 

where A is an indexing set for the collection of z-cells in X, and the vertical arrow 
is restriction to the z ~ 1 skeleton. F{X^'~'^\S^) is {N - ^-connected and f2^S^ is 
N - i — I connected, so, by Corollary 3.1, we have exact sequences 

aeA 

for j < 2{N - z) - 1. These exact sequences map to the corresponding long exact 
sequences 

.if^-^(X'-')-.F^-^-'( V S') 

^ Q 6 A 

^OL^A 
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associated to the pair {X, X^ ^). The five lemma and the inductive hypothesis now give 
the result. D 

D 

Now, suppose we have two based finite complexes X and Y, with a map X AY —^ S^. 
Consider the composite 

c,{x)^c,{Y) —. a{XAY) —> a (5̂ ) 

where the left hand arrow is the same chain inverse to the Alexander-Whitney map 
which we chose earlier. We therefore obtain an adjoint chain map 

a(y)^i/om(a(x),a(5^)). 
We say the map D is an S-duality map if ^ is a chain equivalence, i.e. induces an 
isomorphism on homology, and we refer to Y as an S-dual to X. 

PROPOSmON 4.1.1. Suppose D : X AY -^ S^ is an S-duality map. Consider the 
adjoint map adj{D) : Y —• F{X, S^). Then, if X is i-dimensional adj{D) induces an 
isomorphism on Hj for j < IN — 2i — 2, and hence on TTJ for j < 2N — 22 — 3. 

PROOF. We have the following commutative diagram of chain complexes 

a{x)(^c.{Y) —. c^XAY) —> a(5^) 

^ 2 

a.{x)^c4F{x,s^)) a{XAF{X,S^)) a(5^) 

where Zi is the chain map C^{id) 0 C^{adj{D)) and I2 is C^{id A adj{D)). Therefore, 
we have another commutative diagram 

C.{Y) 

a(F(x,5^)) 

/ fom(a(5) ,a(5^)) 

Hom{C,{X),C,{S^)) 

where the upper horizontal arrow induces isomorphisms on Hj for all j , and the lower 
horizontal arrow induces isomorphisms on Hj for j < 2{N - i) -2. The result is now 
immediate. D 

4.2. Existence and construction of S-duals 

We must address the question of whether or not there exists an 5-dual for a given finite 
complex X and some N. We first examine what happens when we attach one cell. 
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PROPOSITION 4.2.1. Suppose we have an S-duality XAY -^ S^, and a map / : 5^ —> 
X. Let X' = X U/ e^+^ Suppose further that dim{Y) < 2{N - d) - 1. Then there is a 
finite based complex Y\ of dimension ^ max{dim{Y) + l,N -d-\-l) and an S-duality 

PROOF. We first consider the sequence of maps 

Y - F[X,S''f-^^^Q'^S^ ^F{S^,S^) :;N-d 

Here the left arrow is the adjoint to the original 5-duality, and the right one is the adjoint 

to the identification S^ A 5^"^ ~ ^ 5 ^ . Since dim{Y) < 2{N - d) - 1, there is a map 

0, Y—^S^~^ which makes the diagram commute up to homotopy. Equivalently, we 
have a commutative diagram 

Y —> FiX,S^) 

:!N-d ^ Cym F{S^,S^) 

where Cyl((t)) is the mapping cylinder of (f) and the left vertical map is the inclusion on 
one end of the cylinder. Now consider the diagram 

Y 

Cym 

F{X,S^) 

Fifes'") 

F{S^,S^) 

nF{x,s^-^^) 

nF{s^s^-^^) 

F{XUfe^^\S^^') 

where the right hand vertical sequence is the fibration sequence obtained via Proposition 
2.2.2 by applying F ( - , 5^+^) to the inclusion 

X U/ ê +̂  —> X U/ ê +̂  U CX - ES"^ - S^+ .̂ 

Since the composite 

is null homotopic, the map Y —• F{X U/ ê '*"̂ 5̂ '*"̂ ) is null homotopic, and there-
fore the composite CyZ(0) -^ /2F(5^,S^-^^) -^ F{X U/ e^+^S^+l) extends over 
Cyl{(t)) U CY. We therefore have a commutative diagram 
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F{S^^\S^^^) {= QF[S^,S^^^)) 

F(XU/e^+^5^+^) 

D' 
Let Y' = Cyl{(l))UcY, with a map X'AY^-^S^'^^ given as the adjoint of a. We claim 
D' is an 5-cluality map. To see this, it is only required to show that the associated maps 

Hi{Y')—>H^-^^'^{X') 

are isomorphisms. But this follows from the 5-lemma and the following diagram of long 
exact sequences: 

HkiY) 

F^+'-*(X) 

HkiCyim 

Hk-i{Y) 

Hk{Y') 

HN+^-k^X') 

Hk-xiCyim 

REMARK. 5-duals are also unique in the following sense. Suppose we have a finite 
complex X, and 5-duality maps D : X hY -* S'^ and D' : X AY' ^ S^'. 
Suppose N' > N. Then, for sufficiently large I there is a homotopy equivalence 

^N -w+iy _^2;'y'. Furthermore, it is characterized by the requirement that 

XAT^' -^+ 'y 
-.AT'-A^-f-I 

X A r ' y 

commutes up to homotopy. 

It is also possible to describe the 5-dual in a very concrete fashion. Let X be a finite 
CW complex. It is well known that it is possible to embed X in Euclidean space, R^, 
and from now on we view X as a subspace of R^. Let Y denote the complement 
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R^ - X. For any pair of distinct points v,w ^ R^, let l{v, w) :R -^ R^ be given by 
l{v, w){t) = (I -t)v-\- tw. Notice that since v and w are distinct, if we view 5^ as the 
one point compactification of R^, then l{v, w) defines a loop in S^. I may therefore be 
viewed as a map from E CR^ xR^, E = {{v,w) \ v ^ w}, to f2S^. Let i:X -^R^ 

and j : y —> R^ be inclusions, then X x Y —*R^ x R^ factors through E, and we 

call the composite X xY —^ E—^ fiS^ the (preliminary) duality map, D. Since X is 
compact, X is contained in some ball, B, in R^. Choose a basepoint y for Y outside 
that ball. Observe that D\X x y extends over Bxy, since y ^ B. Since B is contractible, 
we obtain an extension D from X xYVJ C{X x y) to QS^. X xY V) C{X x y) is 
homotopy equivalent to X xY/{X x y), which, in turn, is homeomorphic to X^ A Y, 
where X^ denotes X with a disjoint basepoint added. Let D : EX^ A Y —> 5^ denote 
the adjoint. 

THEOREM 4.2.1. D is an S-duality map. 

PROOF. For any finite subcomplex X C R^, with Y = R^ -X, let Dx denote the map 
constructed above. (Here, a point y is chosen once and for all, and will be contained 
in the complements of all the subcomplexes we deal with.) We will show that if Dx^, 
DxiJ and DxxnXi are 5-duality maps for subcomplexes X\ and X2 of R^ which are 
contained in a ball which does not contain y, then DxiuX2 is also an ̂ -duality map. Let 
Yi = R^ - Xi. Note that we have a pullback square of fibrations 

F(X,UX2+,5^) F(^ i+ ,5^) 

F(X2+,5^) — F(XinX2+,5^) 

We suppose, for the moment, that N is sufficiently large that the natural maps 

a ( F ( X , UX2+, 5^)) -^Hom(d(Xi UX2+),Z) 

and C*(F(Xt+,5^)) -—• Hom{C„{Xi^),Z) induce isomorphism on homology for 
* ^ N. Note also that from the definitions, we have a commutative diagram 

Yi 072 .F(X,+ UX2+,5^) 

-F(Xi+,5^) 

F(X,nX2^,5^) 
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and therefore a commutative diagram 

c.(y,nF2) -^ a(yi)ec.(F2) -

Chapter 13 

C*(X,UX2+) C'(X,+)®C-(X2+) 

a ( y i u y 2 ) 

c*(x,nx2+) 
This gives rise to a commutative diagram of Mayer-Vietoris sequences, which in the 
relevant range is 

HdMY,UY2) Hd{YinY2) 

-^ ifA^-d-i(x, nX2+) -^ i/^-'^(x, UX2+) -^ 

i/d(yi)©i/d(i"2) -> 

where the vertical arrows are all adjoints to the duality maps. 
Since DxinXjy Dx^, and Dxi all induce isomorphisms on homology, so does DxiuXi-

To obtain a proof of the required result, we must now show that the result holds for a 
single point. But for a single point, the complement has the homotopy type of S^~\ and 

the map S^ A S^-^ -^f2S^ is easily seen to be equal to the map J : S^'^ —̂  fiS^ 
from Section 3, whose adjoint is the identity map of S^. This gives the result. D 

If one wants to give a duality map for X itself (rather than for X^), one must only 
adjoin the point at infinity to Y. More generally, let X\ C X2 be an inclusion of 
subcomplexes of R^, and let Y\ D Y2 denote the complements. 

COROLLARY 4.2.1. In the above situation, there is an S-duality map 

D:E{X2/XiAYi/Y2)-^S^ 

When X is a compact closed manifold, we obtain the following geometric description. 
See [5] and [31]. 

COROLLARY 4.2.2 (Spanier, Atiyah). Let X be a compact closed smooth manifold, and 
suppose X is smoothly embedded in R^. Let N denote the normal bundle to the 
embedding, and let T{N) denote its Thom complex. Then there is an S-duality map 
X A T{N) -> 5^. 

PROOF. Let B{X) denote a small tubular neighborhood of X. Via the exponential map on 
the normal bundle, it is homeomorphic to the open unit disc bundle of N.liY = R^ — X, 
we have the 5-duality map 
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But, R^/Y is naturally homotopy equivalent to SY, since it is homotopy equivalent to 
the mapping cone on the inclusion Y —^ R^, and R^ is contractible. On the other hand, 
let B denote the closure of B; then R^ /Y is homeomorphic to B/dB, which in turn 
is homeomorphic to the quotient of the closed unit disc bundle of N by the unit sphere 
bundle. This is the definition of the Thom complex of N. D 

5. The construction and geometry of loop spaces 

To understand stabilization a bit better it is useful to be able to compute the homology 
of loop spaces, and in particular loop spaces of suspensions. This was first carried out by 
I.M. James for the case of f2SX. Soon afterwards J.F. Adams and P. Hilton constructed 
a model for QX when X is any simply connected CW complex with one zero cell 
and no one cells.^ In both cases explicit models for the loop spaces were constructed. 
Later developments, particularly the construction of the Eilenberg-Moore spectral se-
quences made these original constructions less compelling for homology calculations 
but nonetheless, the geometry of f2X reveals a great deal about the structure of X, so 
explicit constructions still play a vital role in the theory. 

Both the James and Adams-Hilton models had a multiplicative structure and were even 
free associative monoids with unit. In fact more was true, each was a CW complex and 
the multiplication was cellular, so that the cellular chain complex was a tensor algebra 
with one generator in each dimension (n -1 ) for each cell in dimension n of X. However, 
while in the James model for QEX, the boundary map was explicitly determined by 
the boundary map for EX, in the Adams-Hilton model the boundary map was not 
determined at all initially. In a following paper Adams determined the boundary map 
for their construction in the case where X is a simplicial complex with the 1-skeleton 
collapsed to a point. 

This work was of seminal importance in the theory and, though, as indicated, we can 
today replace most of it using the techniques of Eilenberg-Moore and classifying space 
theory, in this section we will describe the techniques and results of James, Hilton and 
Adams, much in the spirit in which they had originally been developed. 

5.1. The space of Moore loops 

It will first be necessary to describe a space homotopy equivalent to the usual loop 
space, the space of "Moore loops", i7^(X, *). Let F(R,X) denote the space of all 
maps 0 : R —> Jf, in the compact open topology. Let Q^{X, *) C F(R, X) x [0, oo) 

^ The construction given here is first described in the proof of Theorem 2.1 of [1]. However, the actual 
geometric construction is secondary to their objectives there. What they do is to construct a chain map of the 
cellular chain complex of this model into the singular cubical complex of Q^ (Y) and show, by chain level 
arguments, that the resulting embedding induces isomorphisms in homology. 

In later work S.Y. Husseini directly constructs this model for 17^ (K) as a special case of his general notion 
of a "relation in r-variables, Mr{Xy\ [18]. 
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denote the subspace of all pairs (0, r) for which (j){0) = * and for which <p{t) = * for 
all t^r. Note that the standard loop space i7(X, *) can be identified with the subspace 
of all pairs of the form (</>, 1) with (/)(t) = * for t ^ 1. 

PROPOSITION 5.1.1. i?(^,*) is a deformation retract of Q^[X,^). 

PROOF. First consider i7(X,*) C i7^(X,*), the subspace of all (<;/),t) with t ^ \. 
A deformation retraction, H, of Q^ {X, *) to i7(X, *) is given by the following formulae. 

i f (s , (0,r)) = (0,r + s) when r •\- s ^ 1, 

H{s., {(p^r)) = (0,1) when r ^ 1 and r •{• s ^ 1, 

H[sy{<p,r)) = (0,r) when r ^ 1. 

Now we give a deformation retraction G from i?(X, *) to i7(X, *) by the formula 

G(s,((/),r)) = ( ( / )„ ( l - s ) r + s), 

where 

*•<') = <((rr7F?7)')-
This gives the required deformation retraction. D 

We now remark that i?^(X, *) is actually a topological monoid, where the multipli-
cation is given by (0, r) • (-0,5) = (0 * i/;, r -h s) and 

0 • ^(t) = </)(t) when 0 ^ t < r, 
(f) * ̂ (t) = '0(t - r) when r ^ t ^ r -f s, (5.1) 
(f) :ic ^(t) = * when t^ r -\- s. 

The point (*,0), where * denotes the constant loop with value 0, is the identity element. 

5.2. Free topological monoids 

We now discuss the construction of the free monoid on a based topological space. First, 
if we have a based set {X, *), recall that the free monoid on {X, *) consists of all the 
"words" in X, with * set to the identity. Formally this can be described as 

U^V- , (5.2) 

where ~ is the equivalence relation generated by all relations of the form 

(Xi, . . . , X i - 1, *, Xi+i , . . . , Xn) ~ (Xi, . . . , Xi_ 1, Xi+ i , . . . , Xn). (5.3) 
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Multiplication is now just juxtaposition of words. This construction can now be applied 
equally well to based topological spaces, since one can construct the quotient space asso-
ciated to an equivalence relation. Let the resulting construction be denoted by M(X, *). 
It has the following universality property. 

PROPOSITION 5.2.1. Let (X,*) be a based space, and let f \ X —^ M be any map 
to a topological monoid, M, with /(*) = e. Then there is a unique homomorphism 
f : M{X, *) —> M of topological monoids so that the composite 

(X,*)->M(X,*)-^M 

is equal to f. 

REMARK. When dealing with quotient spaces and products there is sometimes trouble, 
since the quotient of a product is not usually a product, even if only one of the two 
spaces is quotiented. However, with the compactly generated topology this difficulty is 
avoided, and we always assume that we are using this topology from now on. (See the 
remarks at the end of 2.5.) 

5.3. The James construction 

Let (X, *) be any based space. Recall the definition of the "James map", 

J : (X, *) -^ f2{SX, *), J{x){t) = [t, x] e EX, 

If we compose this map with the inclusion into f2^{EX, *), we obtain a map, J, which 
does not carry the basepoint to the identity. Let 

i-^xUfo.i]/-, 

where ~ is generated by 1 ~ *, and define an extension J of J to X by J{s) = (*, 5), 
where 0 ^ 5 ^ 1, and * denotes the constant map with value *. Of course, if X is a CW-
complex, then X and X are based homotopy equivalent. This now becomes a pointed map 
if we let 0 be the basepoint for X. Since we have a based map J : X -^ f2^{EX, *), 
we obtain a homomorphism J : M{X, 0) —̂  Q^{EX, *). The theorem of James is that 
this map is a homotopy equivalence when X is a connected CW-complex. 

Before proving this theorem we need to do some preliminary work on the homology of 
both spaces involved. For simplicity, we will consider homology with field coefficients 
(Fp, p a prime, or Q). For any topological monoid M, the homology groups of M form 
a graded, associative algebra with unit via 

H,{M) (8) i f . (M) ^H,{Mx M) ^/f*(M) (5.4) 
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where /x : M x M —̂  M is the multiplication map. Thus the graded groups H^ (M(X, 0)) 
and H^{n^{X, *)) have the structure of graded rings, and this additional structure will 
be quite useful in describing the homology. 

We recall the notion of the tensor algebra of a vector space V, T{V). If V is a graded 
vector space, T{V) obtains a natural grading where v\ ^ -- - <S) Vn has grading XlILi ^i 
if Vi has grading af. The tensor algebra has the universal property that if V is a graded 

A 

vector space and V—^Aisa, map from a graded vector space into a graded algebra, then 
A extends uniquely to a homomorphism of graded algebras A : T{V) —̂  A. 

Now consider M{X,0); it is filtered by subspaces Mn(X,0), where Mn{X,0) is 
the image of X^ in Mn(X,0). Thus Mn{X,0) consists of the "words of length less 
than or equal to n" in the free monoid on (X,0). From the definition of the equiva-
lence relation defining M{X,0) it is clear that the subquotient Mn{X,0)/Mn-\{X,0) 
is homeomorphic to the smash product 

The Kiinneth formula now tells us that 

n 

H.{XA'"AX)^(^H.{X) 
1=1 

where the tensor product denotes tensor product of graded vector spaces. Let us now 
examine the collapse map 

Mn{X,0) —^ Mn{X,0)/Mn-l{X,0). 

We claim that it is surjective on homology. To see this, note that we have a map X'^ —• 
Mn{X,0), given as the composite of the inclusion X^ —> X'^ with the identification 
map X" —• Mn(X,0). The composite 

X - — ^ M n ( X , 0 ) —>Mn(je ,0) /Mn-i (X,0) 

is the equivalence X^ —> X^ composed with the collapse of the product to the smash 
product. The Kiinneth formula shows that this is surjective, hence the result. We conclude 
that 

n 

H,{M{X,0)) S F p © 0 0 „ F . ( X ) . 

Now, the inclusion X —* M{X,0) induces a map of graded vector spaces 

H.{X)-^H,{M{X,0)), 
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and hence a homomorphism of graded algebras A : T{H^[X)) —• H^{M{X,G)). 

PROPOSITION 5.3.1. A is an isomorphism of graded algebras. 

PROOF. For any graded vector space V, let TniY) = F 0 • • 0 V̂ . It now follows from 
the above analysis that under A, Tn{H{X)) has image in H^{Mn{X,0)), and that it 
surjects to 

^.(Mn(X,0)/Mn<,(je ,0)) ^ ( g ) ^ . ( X ) . 

Since we have a surjective map of isomorphic vector spaces, it is an isomorphism, and 
hence A is an isomorphism. D 

We must now perform a similar analysis for H^{Q^{EX, 0)) ^ H^{nSX, *). Note 
that nS is equipped with its own loop sum operation /x, defined by /i(0, I/J) = (/>* ijj, 
where <t>*'ip{t) = ^{2t) forO ^ t ^ 1/2, and (/>* (̂t) = '0(2t-l) for 1/2 < t ^ 1. /xis not 
associative, but is homotopic to the restriction of the multiplication map on i?^(A', *) 
to i?(X, *) and is therefore homotopy associative. In particular, fi gives H^{ni!X) 
the structure of an associative graded algebra. Let E denote the space of maps <̂  : 
[0,1] —̂  EX with 0(0) = *. The evaluation map p : E ^ EX, p{(j>) = 0(1) is a 
Hurewicz fibration, and the fibre over the point * is clearly homeomorphic to the standard 
loop space n{EX, *). Let C^X denote the image of [\, 1] x X in EX, and similarly 
C-X will be the image of [0, ]̂ x X. Both these spaces are contractible, and their 
intersection is X. By Corollary 2.2.1, it follows thatp~^ [CJ^X) (respectively p~^ {C-X)) 
is homotopy equivalent as a space over C^X (respectively C^X) to C^X x QEX 
(respectively C-X x QEX), We obtain explicit homotopy equivalences as follows. 
Let H± : C±X x I -^ C±X be the standard deformation retraction of C±X to *. 
Define maps 9±p^^{C±X) —• C±X x QEX by setting 9±{(t>) = (p(0),'0±), where 
'^±{t) = (t){2t) for 0 ^ t < ^ and il;±{t) = H±{p{(t)),2t - 1) for ^ ^ t ^ 1. One 
readily checks that these are homotopy equivalences over C±X. When we restrict 6± to 
X C C±X, we obtain two distinct homotopy equivalences 

p-\X)-^XxQEX. 

We also define homotopy inverses rj± to 6± over X as follows. r)±{x,(f>) = (x,^±), 
where ^±{t) = 2tfoT0^t^\ and ^±{t) = H{x, 2-2t) for y ^t ^ I. Consider the 
composite 0- or}^ \ X x QEX -^ X x QEX. It is given by 6- or]^{x,(f)) = (x, C)* 
where ( is described by the following formulae: 

( at) = (t>{4t) f o r O < t ^ | , 
I C{t) = H+{x,2-4t) for\^t^ _ 
[ C(t) = H-{x,2t - 1) for ^ ^ t ^ 1. 

4' 
1 
2' 
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Note that after suitable reparameterization, 6^r]^ becomes equal to the composite 

X X QEX-^X X nSX X nSX—^X X QEX 

where a(x, </>) = (x, J{s)^ (j>) and ^(x, (t>\, ^2) = (2̂ 5 M o (</̂ i ? <^))- Here J \ X —^ QEX 
is the James map and /i is the loop sum multiplication on flEX. Now consider the 
Mayer-Vietoris sequence for the covering of E by p~^{C^X) and p~^{C-X). It has 
the form 

H.{QEX)^H.{V-'{U.)) 
9 

H.[XxQEX) C © ]>^ ^*(^) 

H,{nEX)^H,{p-\U.,)) 

If we identify p^^{X) with X x i?X'X via -̂|., then / is just the homomorphism induced 
by projection, g, on the other hand, is given by the composite 

H.{X X nEX)^-^H^{QEX x QEX)^H^{QEX). 

If we identify H^{X x QEX) with if*(X) 0 H^{QEX), then the map is given by 

H.(J)®Id H.(/x) 
i / , (X) (g) H.{QEX) >H,{QEX) 0 ff.(r2i:X) ^if , ( /2rX). 

Since H^{E) is trivial we conclude that the map 

is an isomorphism of graded vector spaces. Further, 

H^{X X QEX) ^ [H4X)(S)H4QEX)]®H4QEX), 

and / is just the projection on the second factor. It follows that the map H^{X) (g) 
H^{QEX) —• H^{QEX) is an isomorphism. Therefore, if we let K = H^{X) and A* 
be the algebra Hi,{QEX), and let A denote the ideal of positive dimensional elements, 
then K ® A* —> A* is an isomorphism. We claim this characterizes A* completely. 

PROPOSmON 5.3.2. Let A* be a graded algebra with Ao afield, and let A* denote the 
ideal 

(g)A,. 
i = l 
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i _ 

Let K —* A* he a map of graded vector spaces. Suppose the multiplication map K 0 
A^ —^ At, is an isomorphism of graded vector spaces. Then the algebra homomorphism 
i : T#(F) —> A^ which restricts to i on K is an isomorphism. 

PROOF. We first show that i is surjective. i is clearly an isomorphism in dimension 0. 
We now proceed by induction. Consider any a G An, and suppose it is known that 
all elements in An-\ are in the image of i. Since K 0 A* —• A^ is an isomorphism, 
any homogeneous element a can be written in the form X̂ t̂ t ® Q!i, where Vi G K 
and ai e A^. Since the Vi's all have grading greater than 0, the a '̂s all have grading 
less than n and hence are in the image of i. The Vi's are clearly in the image of z, so 
therefore is a. To prove injectivity, we observe that i is an isomorphism in dimension 
0. Now consider an element r of minimal grading n on which i vanishes. Since r is of 
positive grading, it lies in the image of V (8) T{V) in T{V), i.e. r = Svi 0 U, where 
each ti has grading less than n. Therefore, ^Vi<S)i{ti) 7«̂  0 in K 0 ^*. But since the 
multiplication map K 0 ^ * —• A^ is an isomorphism, we conclude that 2(r) ^ 0, which 
is a contradiction. D 

COROLLARY 5.3.1. Let J : X -^ fiEX be the James map. Then the natural homomor-
phism T{H^{X)) —̂  H^[QEX) is an isomorphism of graded algebras. 

COROLLARY 5.3.2. If X is a connected CW complex, the map 

J : M ( X , 0 ) ^Q^{EX,Q) 

induces an isomorphism on homology groups. Hence, J is a homotopy equivalence. 

PROOF. The homology statement is clear since we have a commutative diagram 

T{H.{X)) 

H.{M{X,0)) ^ ^H.ifi^iSX.O)) 

where we have proved that both diagonal arrows are isomorphisms. 
This shows that H„ (J) induces isomorphism on H^ ( ; Q) and if* (; Fp). The universal 

coefficient theorem then gives the result for H^{ ;Z). The relative Hurewicz theorem 
now gives the result for homotopy groups. M{X,0) has a natural cell structure coming 
from the cell structures on the products X^, so M{X, 0) is a CW complex. By a theorem 
of Milnor, [25], n^iSX.O) has the homotopy type of a CW complex. Theorem 2.1.3 
now applies. D 

5.4. The Adams-Hilton construction for QY 

We now build a model for Q^Y where y is a simply connected CW complex but not 
necessarily a suspension. 
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The model for the construction we are about to present is James' result above. Note that 
J{X) ~ QEX is a free, associative, unitary monoid with a natural CW decomposition 
provided that the base point * is a vertex ,̂ coming from the natural decomposition of 
X^ as a product CW complex. Thus, J[X) has the following three properties: 

- every element v £ J{X) has a unique expression v = * or v = x\X2 " • Xn, Xi G X — * 
for 1 ^ z < n, 

- xi • • • Xn is contained in a unique cell of J{X), the cell Ci x C2 x • • x Cn where Xi € 
Int(Ct), 1 < i ^ n, so in particular, no indecomposable cell contains decomposable 
points, 

- the cell complex has the form of a tensor algebra r(C#(X)), where the subcomplex 
C#(X) is exactly the indecomposables, and the generating cells in dimension i are in 
1-1 correspondence with the cells in dimension z -h 1 of SX. 

THEOREM 5.4.1 (Adams-Hilton). Let Y be a CW complex with a single vertex and no 
\-cells: 

Y = *Ue]ue^U-- -Ue^Ue^U-- - . 

Then there is a model for n^{Y) which is a free associative CV/ monoid, with * the only 
vertex, the generating cells f\,... ,fl^.. .in dimension i are in 1-1 correspondence with 
the (i -f I)-dimensional cells of Y and it satisfies condition (2) above. {For (3) there is 
no reason to assume that 9 of an indecomposable cell consists only of indecomposable 
terms.) 

PRCX)F. The proof essentially goes by noting the way in which the loop space changes 
as we add cells to our space Y. 

In particular, the 2-skeleton, 

sk2{Y) = *U e]u eju ' •' U el ^y S^ = E\/ S\ 

is a suspension and the theorem is James' result. So what we need is a device for doing 
an inductive step. 

DEFINITION 5.4.1. Let M be an associative, unitary monoid with base point the identity, 
and suppose that f : X —• M is a based map. Then the prolongation P{M,f,cX) is 
the associative, unitary monoid 

U(MU/cXr/^ 
n=l 

with multiplication induced by juxtaposition, and where ~ is the equivalence relation 

\X\, • . . , Xfi) '^ \X\, . . . , Xi, XfXt-|_i, . . . , Xn) 

if and only if both Xi and Xi+i are contained in M or one of x ,̂ Xi_|_i is the unit *. 

^ Using the compactly generated topology so that products behave well. 
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P{M^ / , cX) has obvious universality properties: it is universal for maps of M U/ cX 
into associative unitary monoids, which are multiplicative on M. Additionally, if X is 
a sphere 5^, / is cellular, and M has a CW multiplication, then P(M, / , cX) has a 
CW multiplication, and Cn{P{M, / , cX)) has the form T(A, e^+ )̂ where A is the CW 
complex of M. 

Now, we suppose that a principal M-quasifibering has been constructed M —^ E —^ B 
with E contractible which is sufficientiy structured that we can build the associated prin-
cipal P{M^ / , cX) quasifibering over B by just replacing the fiber M by P{M, / , cX), 
so we have, by a minor abuse of notation, the quasifibering 

P{MJ,CX)—^P{MJ,CX)XME—^B. 

This extends to a quasifibering 

{P{MJ,cX) XM E} U {P{MJ,CX) X c{cX)}/ yBUcSX (5.5) 

where ~ is the identification (p,0, {t,x}) ~ {p,t,f{x)) where (t , /(x)) is the track of 
the contracting homotopy in E on the image of f{x) € M. 

The base of this quasifibration is B Ujjf cEX and it is not hard to show that the 
total space is again contractible if say X is a sphere 5̂ ,̂ n ^ 1, and / is cellular. This 
can be verified by using the contracting homotopy in C#(JE) together with the obvious 
contraction of the new cell e^^^ in the new part to build a contraction on the entire 
cellular chain complex. Moreover, in our situation it will also be direct to check that 
the resulting quasifibering has sufficient structure that we can again build an associated 
principal quasifibration from it. 

We now proceed with the construction, starting with the trivial M = * over *. The 
next step attaches e^'s, one for each 2-cell of Y via the unique map f :\J S^ —^ *. The 
resulting quasifibering has the form J(\ / S^) U J(V S^) x c(V S^) where 

{X{ • ' ' Xr, 1, x ) ~ Xi • • • Xr • X, (X] • • • Xr, 0 , x ) ~ X] • • • X^, 

and (xi • • Xr, t, *) ~ xi • • • Xr as well. The base is, of course, sk2{Y) c::̂  V S^. 
At each stage, the space P{M, / , cX) has the homotopy type of f2^{BUcSX) where 

the attaching map is Sf : EX —> B. Consequendy, assuming that B is the homotopy 
type of ski{Y), we can assume EX = \/ S\ one sphere for each {i -f l)-cell in Y, 
with Ef restricted to 5j the j-th attaching map, and the base for P{M,f^cX), using 
the construction above has the homotopy type of ski^\ {Y). (It should be noted that the 
attaching maps in M are uniquely determined since the total space of the quasifibration 
at the {i — \y^ stage is assumed to be contractible, and that the images of the traces of 
the contraction on / in the base will be the attaching maps for ski^] {Y).) D 

This is the Adams-Hilton model for fi^X. Of course, since the prolongation con-
struction is universal it is not always the most efficient way to build a model for the loop 
space. 
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EXAMPLE 5.1. CP^ = 5^ U e"* where the attaching map is the classical Hopf map h : 
S^ —> 5^. There is a fibration 5* —• 5^ —• CP^, and hence, taking loops, a fibration 

We claim that this fibration splits up to homotopy type as the product Q^{S^) x 5 ^ 

From the long exact sequence of homotopy groups for the fibration, we see that 

7r,(r?^Cp2) ^7 r , (5^ ) = Z 

is an isomorphism. Consequently, mapping S^ —> i?^CP^ so as to represent a generator 
of7r,(r?^Cp2),and using the homotopy lifting property, we can map 5^ —> Q^CV^ so 
that the composite S^ —> i?^CP^ —• 5^ is the identity. Now, using the multiplication in 
i ? ^ , we have a map of the product [Q^S^) x S^ -^ Q^CV^ which gives the asserted 
homotopy equivalence. 

This shows i?^CP" has the homotopy type of a CW complex with one cell in each 
dimension congruent 0 and 1 mod 4 and no other cells. Furthermore, the fact that the 
bottom circle splits off implies that the boundary map in the cellular chain complex is 
identically zero. 

On the other hand, the Adams-Hilton theorem gives as a model for Q^CV^ the 
prolongation P{f2^S^, Qh, e^) which has a cell decomposition given by the prolongation 
of 

(e^Ue2ue^U. . - )Ur7( / , ) /^ 

Thus, P has cells of the form 

This cellular decomposition of i?^CP^ is much bigger than the one obtained above 
by splitting off the circle and therefore there must be a massive number of nontrivial 
boundary maps here. For example, e^ = e^*e^ so 9(e^) = 0, but since H2{fi^CP^) = 0 
we must have 9(/^) = e^. Using the multiplication in the cell complex this boundary 
map now determines all the boundary maps. 

EXAMPLE 5.2. We know from James' construction that 

nS""-^^ =S''U e^"" U e^"" U ê "̂  U e^^ U • • •. 

Thus, the Adams-Hilton construction implies that, for n ^ 2, there is a cell decomposition 

The results in Sections 6 and 7 determine the boundary maps which are quite complex 
and begin to reflect some of the deeper structure of S'̂ "̂ .̂ For example, it turns out that 

d{e^^'')=2[S^-']*[S^-']. 
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In general the examples above show that it is quite difficult to understand the boundary 
maps in the cell decomposition provided by the Adams-Hilton theorem. However, in the 
special case that Y is given as a simplicial complex with no edges, and consequendy 
only one vertex Adams built an explicit model with an explicit d map and we discuss 
his results next. 

5.5. The Adams cobar construction 

To compute the boundary in the chain complex of AH{X) for general X is a major 
problem in homotopy theory. (If one knows how to do this sufficiendy well it gives as a 
special case reasonable algorithms for determining the 7rJ(5'̂ ) for example.) For certain 
special types of complexes this has been done, though, and here we follow J.F. Adams, 
[2], and assume that X is, in fact, an ordered simplicial complex with the 1-skeleton 
collapsed to the base point *. This is actually only a weak restriction on X since we 
have 

LEMMA 5.5.1. Let X be a connected, locally finite simplicial complex with 'K\{X) — 0, 
then there is a finite 2-dimensional subcomplex, C2 C X, containing the entire X-skeleton, 
sk\{X\ with H^{C2,Z) = 0 and the quotient map p : X —^ X/Ci is a homotopy 
equivalence. 

PROOF. sk\ {X) has the homotopy type of a wedge of circles, \J^ S^, and there is a 
cofibering 

X—>Xlskx{X)—>\J S^ 

Since Hi{X) = 0 for z = 0,1, the homology long exact sequence for the cofibering 
implies that 

w. :H2(X/ski{X);Z) ^ H,{Sski{X);Z) 

is onto. On the other hand, a basis for H2{X/sk\{X);Z) can be chosen which consists 
only of the Hurewicz images of the fundamental classes of embeddings, 0(cr /̂9cr^) —> 
X/sk\{X), where the a^ run over a subset of the 2-simplexes of X. Consequently the 
same is true for im{w^). That is to say, there are m 2-simplexes cr^ . . . , cr^ in sk2{X) 
so that 

m 

sk^{X)u[ja^j = C2 
1 

has trivial reduced homology. Now, 7ri(C2) need not be zero, so C2 need not be con-
tractible. However, in the cofibering 

p 
C2 —^ X —^ X/C2 
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we must have TTI {X/C2) = 0, since C2 contains the entire 1-skeleton oiX. Consequently, 
p is a homotopy equivalence. D 

The simplicial structure of X/C2 is sufficiently rigid to allow us to systematically 
compute the boundary map 5 in AH{X/C2)' Similarly, we will consider the problem 
when X is given as a cubical complex. 

In both cases the idea is to make an explicit model consisting of paths from an initial 
to a final vertex in the simplex or the cube, via acyclic models types of techniques to 
describe each generating n — 1 cell in AH{X) for every cell e^ C X. 

To begin consider the ordered triangle (0,1,2) 

Boundary path {0,2) 

(5.6) 
Internal paths 

Fig. 1 

The paths we construct will start at the vertex (0) and end at (2). To begin we consider 
paths along the boundary. There are two ways of moving along edges from 0 to 2. The 
first path, which we denote (0,1) * (1,2), moves linearly along the bottom edge from 
0 to 1 and then from 1 to 2. The second path, which we denote (0,2) moves linearly 
along the hypotenuse from 0 to 2. Now let / be the line connecting 1 to the midpoint^ 
of the path from 0 to 2. For each t € / there is the straight line path from 0 to t to 2 and 
this gives a one parameter family of paths from 0 to 2 connecting the two edge paths, 
(0,1) * (1,2) and (0,2). If we order the vertices of X, then each 2-simplex is linearly 
identified with (0,1,2) and we can use this identification to associate to each 2-simplex 
a^ a 1-simplex in the path space on a^. 

(0 , ,2) . •(0,1)(1,2) 

Fig. 2 

Moreover, since, by assumption, X has only a single vertex, these paths actually are all 
in fi^X, and we have constructed a correspondence from the 2-cells of X to 1-cells 
in Q^X. In the Adams-Hilton construction, what was important to show that the cells 
there were "correct", was that the evaluation map 

eval: (/ x e ^ - \ a / x e^"') -> {skn[X),skn-x{X)) 

^ The notation is chosen to emphasize that this path is actually the composition of two paths, the first from 0 
to 1 and the second from 1 to 2. Its length is 2, so we are naturally working here in the space of Moore loops. 
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have degree one to the corresponding cell in X. In the case here the evaluation map is 
explicit and evidently of degree one. 

(5.7) 

Fig. 3 

To continue we need to study the analogous construction for higher dimensional sim-
plexes. Thus, consider the tetrahedron (0,1,2,3) 

(5.8) 

To begin, we know how to fill in paths along the two faces (0,1,3) and (0,2,3) containing 
both vertices 0 and 3 by using the previous construction for o^. Moreover, along their 
intersection (0,3), the paths agree. On the face (1,2,3) we know how to construct 
paths from 1 to 3, and to construct paths from 0 to 3 we simply compose with the 
path (0,1)! Thus, here the paths are of the form (0,1) * (̂ t- Moreover, the boundary 
paths are (0,1) * (1,3) which is also a boundary path for the paths in (0,1,3), and 
(0,1)* (1,2)* (2,3). 

Also, the paths in (0,2,3) have boundary paths (0,3) which is already accounted for, 
and (0,2) * (2,3). Note that this implies that we should fill in the paths along the final 
face (0,1,2) so that they have the form (ft * (2,3). 

Thus we have extended the construction above to fill in paths from 0 to 3 along all 
four of the faces of the tetrahedron using four intervals connected together in the form 
of the boundary of the square, and, since the map is degree one on each face, it clearly 
gives a degree one map, on evaluation 

eval: (/ x ^ / ^ a / x df) . (^a^{0,3}). 

Now, contracting a^ to (0,3) extends our construction of paths to a three-dimensional 
analog of the previous construction. 

h2:{l\M'-)-^{E(„E^^') 
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which is again degree one on evaluation, 

eval: (/^^) —> {a\d) 

by filling in the following diagram 

(0,2)* (2,3) (0,1)* (1,2)* (2,3) 

Chapter 13 

(0,3) 

(5.9) 

Fig. 5 
(0,1)* (1,3) 

With these preliminary constructions in mind, we can describe the general case. 

THEOREM 5.5.1 (Adams). For each positive integer n, n = 2 , 3 , . . . , there is a map 

so that pnldl^"^ has image contained in E^^ and the evaluation map 

eval{pn) : ( ^ , 3 ^ ) —^ (^^,3^") 

has degree one. Moreover, the pn fit together in the sense that Pn restricted to the 
boundary consists of maps of the form pj *pn-j- i ^here * represents juxtaposition of 
paths. 

PROOF. The proof is by induction. To begin, we assume the pj are defined for j ^ n - 1, 
and, since we have already constructed the maps forn = 1,2,3, we might as well assume 

Each point in 9(7'̂ "^) can be regarded as an n-tuple ( t i , . . . , tn) where at least one of 
the tt's is either zero or one. We can assign to every vertex the edge path in 6cr" from 
0 to n — 1 given by 

(0 , , . . . , i i>*( i i , . . . , f c i - l,fci,...,^2>*••• 

where we have cut (0 , . . . , n) at every ij where Uj = 0 by inserting a . . . , î ) ( z j , . . . and 

dropped the vertices corresponding to every tkj = I- Once again, we can fill in this map 

over the faces of /'^~^ so that, over the face Jj\l[[]lY^ (where U^ = 0 while tj^ = 1), we 

havep/, *Pi2*"'*Pir+x' 
To be precise, pi^ maps to the paths on the face (zt, . . . , j s , . . . , it+i) C cr'̂ , from it 

to it^\, where the js are deleted from {it,it + 1, • • ^h-\-\ - l,^t+i} for each js with 
H < js < h-\-\- Clearly, this definition is consistent and defines Pn on dl'^~\ Moreover, 
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evaluation is degree one on each of the n - 1 faces J/, 1 ^ Z ^ n - 1, as well as 
on the faces J' and J'̂ "̂  and their images lie in distinct (n - 1) faces of cr'̂ , by the 
inductive assumptions and the construction. Also, the images of the remaining faces all 
lie in the (n - 2) skeleton of cr". Hence, it follows that evaluation has degree one on 
97'^"^ and hence, from the 5-lemma, also has degree one for Pn- This completes the 
inductive step. D 

Thus, we see that the boundary of the cell I"^'^ corresponding to the simplex a"^ C X 
is a union of products of lower dimensional cells under the loop sum operation in the 
Moore loop space, as well as a piece corresponding to the original boundary of a"^. 
Formally, on the complex 

T(X) = T ( e l , . . . , e ^ . . . , e r ^ . . . ) ' 

remembering that 9((7'̂ ) = S(-l)*7^t(cr^)» we have 

Here 

- fj{cr^) = (0, . . . ,j) is the map on the front j face, 
- Ijicr"^) = 0 , . . . , n) is the map on the back n- j face. 

The second term in (5.7) formally corresponds to the the Alexander diagonal approx-
imation, A, which is given on simplices as 

and induces a chain map on simplicial complexes and singular complexes: 

A.:a{x) —> a(x)0a(x), 
so Ad = d^A. It is also easy to check 

PROPOSITION 5.5.1. The Alexander chain map is coassociative. That is, 

{Ax\)oA = (1 X A ) o A 

Moreover, A is chain homotopic to the diagonal map 

C.{X)^C.{X)^C,{X) 

in the singular chain complex of X. 
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Dualizing, we have 

PROPOSITION 5.5.2. The dual Alexander map 

A^ :C%X)^C*{X) —> C\X) 

is an associative cochain map. Moreover, the induced pairing on cohomology i f *(X; F ) 0 
H*{X\¥) -^ H*{X;F) is just the cup product. 

Summarizing, we have identified the second summand in 5.7, 

£ e ( / , ( a - ) ) e ( / , ( a - ) ) , (5.11) 
3=2 

and at the cohomology level, it is directly tied in to the cup product. In particular, if the 
cup product structure for H*{X;F) is nontrivial, then this piece must be present. 

PROPOSITION 5.5.3. If X is a suspension, say X = SZ, then all cup products in 
H*{X\A) are zero. 

PROOF. Consider the homotopy of the diagonal map 

EX^SXxSX 

defined by 

H{r, {t,x}) = ({(r + l ) t ,x} , {(1 + r)t - T , X } ) 

where TTI = m if m ^ 0, and is 0 if m ^ 0, while m = m if O ^ m ^ 1 and is 1 if 
m ^ 1. When r = 1 it has image contained in EX V EX C EX x EX, and the result 
follows. D 

This partially explains why we can replace the general Adams-Hilton model by the 
James model for f2X in case X is a suspension. 

To actually compute we note that given a j-cell a^ in X we have constructed a j — 1 
cell e{(7^) in AH{X). We denote the dual cochain by Icr-'l. Thus, given a product cell 

in AH{X) we label the dual cochain, which is of dimension YlJi ~^ ^V 

\cT^'\a^'\'-'\(j^'\. 

Thus, dualizing 5.7 we can write the coboundary map 

t^ (5.12) 
- J^(-1)* |CT^'I • • • \a^' Ua^'I • • • \(T^'\. 
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Here 

- \8{G^^)\ is shorthand for the coboundary on |a^*|, the dual of e(cr^*), 
- \a^^ U (j^*| is shorthand for the cup product on the obvious dual co-cells, 
- the sign in the second sum is given by setting 5 equal to the number of bars plus the 

sum of the dimension of the cells that are passed over. 

This is just the Bar construction on the associative chain algebra C^{X)\ We can 
filter C^{AH{X)) by the number of bars describing a (dual) cell and (5.12) shows 
that 6Ti{AH{X)) C !Fi{AH{X)). Consequently, we obtain a spectral sequence for 
computing H*{nX;F), with £2-term 

^^^/f'(X;F)(F,F), (5.13) 

where the ring structure on i7*(A';F) is obtain from the cup product. As an example 
/f*(CP°°;F) = F[6], a polynomial algebra on a two dimensional generator, and 

the exterior algebra on a one dimensional generator. Hence, in this case the spectral 
sequence collapses. But the spectral sequence does not always collapse, and the higher 
differentials measure the difference between the information given by the chain level 
Alexander diagonal approximation and the cup product. 

REMARK. One other reason for the close connection between the diagonal map and QX 
is the fact that the fiber of the Serre fibration 

X-^XxX 

is fix. 

6. The structure of second loop spaces 

In Section 5 we showed that for a connected CW complex with no one cells one may 
produce a CW complex, with cell complex given as the free monoid on generating 
cells, each in one dimension less than the corresponding cell of X, which is homotopy 
equivalent to QX. To go further one should study similar models for double loop spaces, 
and more generally for iterated loop spaces. 

In principle this is direct. Assume X has no 2-ceIls for 1 < i ^ n then we can iterate 
the Adams-Hilton construction of Section 5 and obtain a cell complex which represents 
fi^X. However, the question of determining the boundaries of the cells is very difficult 
as we already saw with Adams' solution of the problem in the special case that X is 
a simplicial complex with sk]{X) collapsed to a point. It is possible to extend Adams' 
analysis to fi^X, but as we will see there will be severe difficulties with extending it to 
higher loop spaces except in the case where X = S'^Y. 
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6.1. Homotopy commutativity in second loop spaces 

Chapter 13 

Given a based CW complex X, elements in fP^X can be thought of as maps from I^ to 
X, so that 9(/^) is sent to the base point. There are two notions of loop sum in n^X\ 
we consider the one coming from the loop structure in the first variable, and call it /x; 
thus 

* . « - ' ) = Cf,̂ !.',,,) if O ^ s ^ ,̂ 
if ^ ^ s ^ 1. 

It is typically shown in first year topology that 7r2(X) is abelian for any complex X. 
From the usual adjointness considerations this is equivalent to the assertion that 7ro(i?^X) 
is abelian. This suggests that p. itself should, in some sense, be commutative, at least up 
to homotopy. The formal version of this statement is that if we let 

T: n^x X Q^x -4 n^x X n^x 

be the twist map, T(</)i,^2) = (</>2,0i), then poT is homotopic to p. The homotopy, H, 
is given by the following figure. 

<A V' 
* 

<i> 

vH 
* 

(6.1) 

nr 
* 

* 

<A 
V- •A 

Thus, two fold loop spaces are "homotopy commutative". One might now guess that 
Q^E^X should be homotopy equivalent to the free commutative monoid on X, as 
QEX is equivalent to the free monoid on X. This naive guess fails, however, as one 
can see from the Dold-Thom theorem, which asserts that if SP°°{X) denotes the infinite 
symmetric product on X (i.e. the free abelian monoid), then ir^{SP^{X)) = H^{X). 
Thus, TT^iSP^iS^)) = 0 for * > 2, while ir^ifi^E^S^) = 7r5(5 )̂ = Z/2, generated by 
the double suspension of the Hopf map 77: 5^ —• 5^. 

It turns out that there are "degrees" of homotopy commutativity which must be encoded 
in our models, and that f2^X is, in a sense, minimally homotopy commutative and f2^X 
becomes more and more highly homotopy commutative as fc goes to infinity. But even 
within the second loop space there are levels of homotopy commutativity which must 
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be distinguished. For example there are two ways of using homotopy commutativity to 
pass from a * 6 * c to c * 6 * a. We have 

a*b*c 

b* a* c 

a* c* b 

b * c* a 

c* a* b 

c*b*a, 

c* b* a 

corres corresponding to the relation (1,2)(2,3)(1,2) = (2,3)(1,2)(2,3) = (1,3) in the sym-
metric group 53. Gluing together the three homotopies above give two maps i/;,!? : 
^̂  1̂ - {n^xf -^ n^X where [0,3] 

^(0 X {n^x)') = ip{o X (n^xf), v̂ (3 x {n^xf) = ^{3 x (n^xf), 

and hence a map G : D x {f2^Xy —> Q^X where D is the boundary of a hexagon, 
C{2) and the map on each interval represents one of the homotopies. 

LEMMA 6.1.1. The map G may be filled in so as to give a map A2 : C{2) x {fP-XY —^ 
Q^X which agrees with G on D x {n'^Xf. 

PROOF. Note that a * 6 * c is a map of P to X with 8/^ mapping to * and three smaller 
rectangles specified on which the map is, respectively a, 6, and then c. What we did in 
the original homotopy of commutation was shrink these rectangles and move them past 
each other, then increase their size. So what we do is to shrink them even smaller and 
slide them past each other in an appropriate way so as to move from the first homotopy 
to the second. We can specify the motion by specifying the centers and sizes of the 
rectangles and then moving the centers. 

The following diagram shows the movement of the respective centers in I^ as we 
move from the a * 6 * c to c * 6 * a in the three stages indicated and in the two distinct 
manners indicated. The first is a\a20\ and the second is a2(T\(J2 where a\ exchanges the 
first and second while 02 exchanges the second and third. 

. „ . . . 

...z\.._. X 
. _ _ _ / \ / \ _ . . 

X 
(6.2) 

G\ 020 \ <J2<7l (T2 

The two homotopies are described in (6.2), but, as asserted, (6.2) also makes it clear that 
the first can be deformed to the second without introducing any self intersections and 
without moving the points at the top or bottom of the two "braids". This deformation 
fills in the hexagon. D 
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In the next section we generalize this construction and extend the ideas of Section 5 to 
create a good model for the second loop space. Additionally, the point of view developed 
in the analysis here, in Section 7 becomes the key to developing good models for Q'^E'^X 
for all n. 

6.2. The Zilchgon model for Q^X 

Adams replaced simplices, a'^, by cubes, /""^ in building an explicit model for the 
Adams-Hilton construction of fiX when X is a simplicial complex with its one skeleton 
collapsed to a point. It is natural to try to generalize this. Thus, suppose that y is a cubical 
CW complex where the one skeleton has again been collapsed to a point. It is certainly 
possible to find combinatorial cells C{n— 1) which will replace each I^ in Y in building 
an explicit model for the Adams-Hilton construction. If this can be done in a sufficiently 
natural manner then, for X is a simplicial complex with sk2{X) collapsed to a point, 
this would give an explicit construction for f2^X. This, in fact turns out to be possible 
and we describe the construction now. 

We begin by looking at the edge paths starting at ( 0 , . . . , 0) G I'^ and ending at 
( 1 , . . . , 1). An edge has the form (e:i,..., Sr, t, Sr^-i^ • • •, 6:n) where each Ei is either a 
zero or a one. Then, we can specify the edge path by specifying which coordinates are 
moved in which order. So E(X)E(^)E{^) for /^ would mean the path which first moves 
the first coordinate, then goes from (1,0,0) to (1,0,1) by using the third coordinate, 
and finally goes from (1,0,1) to (1,1,1) using the second coordinate. It follows that 
these edge paths are indexed by the elements in the symmetric group ^3, and for I"^, by 
the symmetric group Sn- So we look for a polyhedron of dimension n — 1 with vertices 
indexed by Sn to model paths in l'^. 

We now introduce a family of combinatorial cells which do just this, the Zilchgons, 
(also called permutahedra by combinatorialists), C[n). This will allow us to build explicit 
models for QX where Â  is a cubical complex with sk\{X) ~ * or fP-X where X is 
a simplicial complex with 5̂ 2 (X) ~ *. But any attempt to continue this process will 
require many different combinatorial cells in each dimension ^ 2. 

Let e = (1 ,2 , . . . , n) e R*̂  and let C(n - 1) be the convex hull of the translates of e 
by the usual permutation action of the symmetric group Sn on R'̂ . Note that the convex 
hull spanned by a set S is the set of points 

\Y^iiSi l O ^ t i , ^ t i = l, Si^s\. 

In particular C(n - \) C A^ ^ where A!^ ^ is the (n - 1) dimensional affine plane in 
R'̂  with equation 

^ X i = n(n-h l) /2. 
1=1 



Section 6 Homotopy and loop spaces 549 

EXAMPLE 6.1. C(l) is the line segment from (1,2) to (2,1) in R^ while C(2) is the 
convex hull spanned by the six points (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), and 
(3,2,1), or projecting onto the plane through the origin parallel to the plane x-^y-\-z = 6, 
with coordinates (-1,0,1) , (-1,1,0) , (0 , -1 ,1) , (0 ,1 , -1) , (1 , -1 ,0) (1 ,0 , -1 ) . 

(1 , -1 ,0) 

(1 ,0 , -1) 

.(0,-1,1) 

(0 ,1 , -1) 
The space C(2) 

(-1,0,1) 

(-1,1,0) 

(6.3) 

It will turn out that C(l) represents the homotopy of commutativity, while C{2) rep-
resents the homotopy of a\a20\ to ajcyxcri discussed in the last section. The higher 
dimensional C(r)'s will give all the possible ways, involving r -f 1 loops, of homotopy 
commuting the homotopies of commutation in the previous constructions involving fewer 
loops. 

We now show that C{n - 1) is topologically a closed (n - 1) ball in R'̂ "̂  with 
boundary given as the union of products of lower dimensional C(j)'s. 

LEMMA 6.2.1. Let a e Sn be the cycle (1 ,2 ,3 , . . . , n), then the n vectors e, (7(e),. . . , 
cr'^~^{e) are linearly independent in A^~^ and consequently span an embedded n — \ 
dimensional simplex there. 

PROOF. It suffices to show that the n - 1 vectors 

(7*(e) — e = (n — z , . . . , n — z, - 2 , . . . , -i) 

are linearly independent for 1 ^ 2 ̂  n - 1. But this is clear by looking at the last n - 1 
columns of the array. D 

COROLLARY 6.2.1. C{n - I) is topologically a closed n - 1 disk D^"^ with boundary 

PROOF. C{n - 1) is certainly closed and convex. It is also compact since it is contained 
in the cube [0,n]^. The lemma above shows that it has a nonempty interior, so, by a 
standard result it is topologically a closed disk. D 

Actually more is true. C{n - 1) is a polyhedron with faces determined as the convex 
hulls of subsets of the points { a ( l , . . . , n) | cr G 5n}. (This is a general property of the 



550 G. Carlsson and RJ. Milgram Chapter 13 

convex hulls of finite point sets.) We now determine these faces and show that they are 
closely connected with certain subgroups of 5n. 

LEMMA 6.2.2. Let Hr = Sr x Sn-r C 5n, I ^r ^ n - \, be the subgroup preserving 
the first r and the last n - r coordinates. Then the convex hull of the points cr{e), 
a e Hr is an n - 2 dimensional face of C{n - 1) and, as a polyhedron, is isomorphic 
toC{r- 1) x C ( n - r - 1). 

PRCX)F. Consider the map 

r 

Prl R^~>R+, Pr{h) = J2hj, 
I 

where hj is the j-th coordinate of h. Then for every point h of 

C ( n - l ) p . ( / i ) > ^ ^ ^ ^ . 

Moreover, equality occurs if and only if h is contained in the convex hull generated by 
the points (j(e), a G Hr. It follows that this polyhedron is contained in the topological 
boundary of C{n - 1). Finally, as the two subgroups Sr and Sn-r act independently and 
on disjoint sets of coordinates the remainder of the lemma is clear. D 

Note that e = (1 ,2 ,3 , . . . ,n) is the intersection of C{n - 1) and the hyperplanes, 
i^r = { / i |Pr ( / i )=r (r - f l ) /2} , 

e=.C{n- \)nK\ nK2n-"nKn-] 

and, since faces of faces are faces, e is a vertex of C{n-1). All the vertices of C{n— 1) are 
contained among the elements <T(e), a € Sn, since C{n - 1) is the convex hull spanned 
by the points cr(e). But the symmetric group, 5n, acts as a group of transformations 
on C{n - 1), taking faces to faces. It follows that the vertices of C{n - 1) are in 1-1 
correspondence with the elements of Sn and are precisely the vectors cr(e). 

Similarly, for each r with 1 ^ r ^ n - 1 we have distinct faces of C{n - 1) corre-
sponding to the cosets of Sr x Sn-r in Sn- We now describe coset representatives for 
the cosets of Sr x Sn-r C Sn, which thus label the (n - 2) faces of C{n - 1) which 
we have found so far. 

Let (ji, J2, • • • , > ) , ji^ ^, Z) jt = n, be an ordered partition of n. Define 

Shuff{jij2,'--Jr) 

as the set of cr G 5n so that cr{i) < cr{j) whenever i and j belong to the same block in 
the partition, i.e. when there is a A: so that 

Y^js <i<j^ Yl^'' 0^k<r. 



Section 6 Homotopy and loop spaces 551 

When r = 2 this corresponds to an ordinary shuffle of a deck of cards and likewise 
gives representatives for the cosets of 5 ,̂ x Sn-jx in 5n. For larger r it corresponds to 
breaking the deck into r pieces and then successively shuffling them together, and gives 
coset representatives for the cosets of 5 ,̂ x • • • x Sj^ in Sn-

We note the straightforward but important 

LEMMA 6.2.3. L /̂ 5 G shuff{j\^J2) and s' G shuff{j\ -\- J2,J3i" - ijr)- Then the 
composite s's G shuff{j\,J2,J3,..., jr) where s G Sj^^j2 and Sj^^j^ is embedded in 
Sn with 

»=E ̂3s 
1 ' 

as the subgroup fixing the last n — {j\ -h J2) points. 

LEMMA 6.2.4. The collection of all the n-2 dimensional faces ofC(n — 1) consists of 
those elements enumerated above in 1-1 correspondence with the union of the (r, n — r) 
shuffles, 1 ^ r ^ n - 1. 

PROOF. The proof is by induction. Note to begin with that the interiors of the (n - 2) 
dimensional faces in the lemma are disjoint since they lie in distinct hyperplanes. Now 
consider an (n-3)-face of one of these subcomplexes. By the inductive assumption it has 
t h e f o r m a ( C ( / - l ) x C ( r - Z - l ) ) x C ( n - r - l ) o r C ( r - l ) x c 7 ( C ( 5 ~ l ) x C ( n - r - s - l ) ) 
since dAxB = (dA) xBuAx (dB). 

Assume the face is of the first type. It can be uniquely written as the face of an 
appropriate shuffle of C{1 — 1) x C{n — Z - 1), and in the second case it is uniquely the 
face of an appropriate shuffle of C{r -\- s - I) x C{n - r - s - 1). Thus, each n - 3 
face is incident to precisely two of the n — 2 dimensional faces listed and it follows 
that the sum of these faces forms a closed cycle mod (2). But this implies that we have 
enumerated all the n -- 2 dimensional faces and completes the proof. D 

COROLLARY 6.2.2. The complete set of faces ofC(n -\) is indexed by ordered pairs con-
sisting of first an ordered partition ofnp= ( j i , . . . , Jt/;) (X) Ji — ^) ^^^ ̂  {jx-,' • -^jw) 
shuffle s. Such a face has dimension n — w. 

EXAMPLE 6.2. C(3) has as its faces 4 copies of C(2) x 1, 4 copies of 1 x C{2) and 6 
copies of C(l) X C(l). It has 36 edges corresponding to 12 copies each of 1 x 1 x C(l), 
1 X C(l) X 1, and C(l) x 1 x 1. Finally, it has 24 vertices. It can be realized by taking 
the tetrahedron, T, and cutting out 6 small tetrahedra about the six vertices of T. 

REMARK. The lowest dimensional faces of C{n) which do not have a fixed coordinate, 
i.e. are not translates of a face corresponding to a partition with one or more I's in it. 
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such as 5n-3 X 5i X 52, correspond to 
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52 X • . . X 52 if n is even 

n/2 times 

52 X • • • X 52 x53 if n is odd. 
^ V ' 

V, [n/2] times 

Hence they have the form /""/̂  or /I'̂ /̂ l x C(2). This leads to "stabilization" results in 
constructions which use Zilchgons. 

Let bn G C{n - 1) be the barycenter, 

/ n - h l n - h l \ 

Then, for h E C{n - I), h ^ bn, there are unique points v G 5C(n - 1), t G [0,1), so 
that /i = t6n + (1 - t)v. Suppose that a map 

is defined so that the image consists of linearly parameterized, piecewise linear paths. 
Then 4> can be extended to (j): C{n - 1) —> El^\ by the rule 

(l>{tbn + {\-'t)v){T) 

(I-O^(T^) r<{\~t)l{cl>{v)), 
{r-{\-t){l{ct>{v))-\))x {\-t)l{cl>{v))^r 

andr ^^ + (1 - t)/(0(v)), 
1 T ^ t - f ( l -t)l{(t){v)). 

(6.4) 

Note that Z(0((1 ~ t)v + tbn) = ^ + (1 - t)l{(j){v)), and that the path is again linearly 
parameterized and piecewise linear. Indeed, it is the original path, but in the smaller 
cube, [0, (1 -1)]^, and then the diagonal path from the diagonal point (1 - tY to l'̂ . 

Now, let us suppose that </)j : C{j - 1) —̂  J^O'I ^̂  defined for all j < n. We define 

4>n\ Cr(CO'i - 1) X • . . X C{jr - 1)) XT {(t>j, * * ' ' * (t>jr) (6.5) 
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where * denotes juxtaposition of paths and a € shuff(j\,..., > ) . 
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\{b2 + Hh2)) 
\{b2 + {h2)) 

Sample paths in P 

These two steps combine to define (pn : C{n - 1) —> E^^^^^ for all n ^ 1 so that 

(i) eval{(j)n) : (/ x C{n - 1), 3(7 x C{n - 1))) -^ (7^, 37^) has degree one. 
(ii) </>n I 9C(n - 1) consists of two parts, the first, on the cells 

shuff{\,n - \)C{n - 2), shuff{n - 1, \)C{n - 2), 

which corresponds to 97^, and the second, on the 

shuff{r,n-r){C{r - 1) x C{n-r- 1), 2 ^ r ^ n - 2, 

which corresponds to 

a^shuf f{r,n—r) 

the usual chain approximation to the diagonal on F, 
(iii) The paths in (l>n{C(n - 1)) are piecewise linear, and linearly parameter-

ized, and have the property that over each linear segment there is a sub-
set of W = {1,2, . . . , n } and the points of the segment have the form 
(e i , . . . , tt^,,..., ti,;2'...). More precisely, the i*'^ coordinate is either 0 or 1 if 
i ^ W, and is t if z € W. 

This allows us to iterate the Q construction, as promised to construct Q^X when X 
is a simplicial complex with skiiX) collapsed to a point. 

REMARK. This was the original motivation of the second author when, in 1964, he 
first constructed the C(n)'s. When he told W. Browder about the construction, Browder 
suggested that it might be possible to modify it to study Q'^E'^X since there are huge 
numbers of "cubes" in J{E^~^X), n ^ 2. (See the discussion in the next section.) 

In order to push this suggestion through, the second author had to introduce degen-
eracies into the C(n)'s and construct systematic methods of reparameterizing paths to 
account for the effects of the base point identifications introduced in the James model. 
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In the writeup of these results in [24] only the construction of Q'^E'^X was dis-
cussed however, and in the interim several students have written theses pointing out the 
connection with Q^X. 

6.3. The degeneracy maps for the Zilchgon models 

We now describe the degeneracy maps di : C{n - 1) —> C{n - 2). First, there are 
"degeneracy" maps for the symmetric groups, di : Sn —^ 5n-i , 1 ^ i ^ n defined by 

di{cT){j) = I 

i cr(j) if j < (T-^{i), (T{J) < z, 
cr(j-h 1) if j ^a-^{i),a{j) < i, 
a{j)- 1 if j <a-^{i),a{j) > i, 

[ a{j + 1) - 1 if j ^ a-^(i), (T{j -f 1) > 2. 

(6.6) 

If one writes a as the array 

1 2 ..• a-^{i) ..• n \ 
a{\) a{2) . . . i . . . a{n)) 

then di deletes the cr~\i) column and reindexes to get an element in Sn-i-
These correspond to the maps 

Pi'.P —^ P~ , Pi{t\ ,...,tn) = {t\,...,ti, tt-t-i, . . . , in), 

that deletes the z-th coordinate. The image of an edge path under pi is an edge path in 
7"̂ "', at least as a point set, though the parameterization is changed, since, when we 
come to what should have been movement along the z-th coordinate the path stays fixed 
in the image. 

Note that if cr G shuff{j\,...^jr) and z belongs to the block jk, then di{a) G 
shuff{j\,. •., jfc - 1 , . . . , jr), where, if j ^ = 1, we simply delete that block. It follows 
that if cri(e),. ..,crr(e) are contained in a face, (j{C{j\ - 1) x . . . x C{jr - 1)), of 
C{n - 1) then di{a\ ( e ) ) , . . . , di{ar{e)) are contained in the face 

di{(j){C{3x - 1) X . . . X C{3k - 2) X . . . X C(> - 1)). 

Now, by mapping fern's to 6m''s and extending linearly, we have geometric maps 

di : C{n - 1) -^ C(n - 2), 1 ^ z ^ n, 

which satisfy the usual condition for degeneracies: 

_ j djdi-i if z > j , 
"^'"^^-{djdi if j^i. 

When we compose with the (/>n, and use pi, collapsing the z-th coordinate, as the corre-
sponding degeneracy on 7^, we obtain that (t)n-\di{w) is a path which has as its image 
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the same point set as Pi(t>n{'w), but the parameterizations are different. However, that is 
easily handled since we have the following result. 

LEMMA 6.3.1. The space of nondecreasing maps of the unit interval onto itself is convex 
and so is the subspace of piecewise linear maps. 

(1,3,2) (3,1,2) 

(3,2,1) 

jd2 (2,3,1)/ 

The degeneracies for C(2) 

(6.7) 

6.4. The Zilchgon models for iterated loop spaces of iterated suspensions 

To explain these models consider again the James model, M(i7X,0), 

Since ^ collapses the fat wedge, 

Wn{SX) = {(2/1,. ..,yn)e ( rX)^ I 2/t = * for some i, 1 ^ i ^ n} , 

onto {EX)'^'^ it follows that we have subspaces 

n 

M„(i7X,0) = ]J(i7X)V~ 
fc=i 

and 

n^E^Xc:tf2'^MiSX,0)= Urn (nMn{SX,0)). 

On the other hand, {EXY = /"" x X^/Tl where 7e is a relation on 3(7") x 
X^ U /n X Wn{X) which has the property that ( (0 , . . . ,0), (x i , . . . ,Xn)) and 
( ( 1 , . . . , 1), (x i , . . . ,Xn)) are both identified with (*,..., *). 
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From this we get a map 

C{n-\)xX'' -^ n^E^X (6.8) 

by simply using the map C[n — 1) -^ E^^^ constructed in (6.4), (6.5). Inductively, we 
can assume that we have used this construction to build Q^Ms{T,X,^) for s <n, and 
we can use Lemma 6.3.1 together with the map in (6.8) to obtain the following model 
for/?^Mn(rX,0): 

J2,n(X) ĉ  r2Mn(i:X,0) = P(J2,n-i(X), / ,C(n - 1) X X^) (6.9) 

where P ( — , - , - ) is the Prolongation functor introduced in Definition 5.4.1 with 
the obvious modification that we are identifying a subspace of C{n — 1) x X^, 
a(C(n - 1)) X X^ U C(n - 1) X Wn(X), with a piece of J2,n-i(-^). The introduction 
here of models for the loop spaces n{Ms{SX, 0)) is similar to some of Husseini's ideas 
in [18]. 

EXAMPLE 6.3. J2,\{X) = M(X,0), the James construction on X. Then Jiai^) is ob-
tained by adjoining I x X^ where we have the identifications 

(0,xi,a:2) ~ (xi,X2) G J2,i(X), 

(l ,Xi,X2) ~ (X2,xi) e J2,\{X), 

(t ,Xi,*) ~ Xi, 

(t, *,X2) ~ X2. 

Thus we can think of J2;i{X) as the free gadget which makes M{X,Q) homotopy 
commutative. 

J2,3(X) is obtained from Jiai^) t>y adjoining C(2) x X^ where we make the iden-
tifications 

(cr(C(l) X C(0)),(X1,X2,X3)) ~ { C ( l ) X (x^-i(l) ,X^-i(2))}*X^-i(3), 

(a(C(0) XC(1)),(X1,X2,X3)) ~ X ^ - i ( i ) * { C ( l ) X (x^-i(2),X^-i(3))}, 

(i;,(*,X2,X3)) ~ {di(v) ,(x2,X3)} G C ( 1 ) X X ^ 

and similarly in the case when X2 or X3 is the basepoint *. 
The general case should now be clear, 

00 

n^s^x ~ J2{x) = JJ c(fc -1) X x''/n (6.10) 
fc=i 

where TZ identifies points of d{C{k - 1)) x X'' with products 

C(jl - 1) X X '̂ * • • • * C{jr - 1) X X > 
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where the coordinates are shuffled according to the shuffle associated with the face, and, 
on Wk{X) makes identifications using the degeneracies on C{k - 1). 

To go further, note that (6.10) allows us to write 

J2{X)= lim (J2,n(X)) 

where 

and 

^2,nW = ^C(fc-l)xXV7^^ 

J2,n(i:X) = J2,n-\{SX)uC{k - 1) X 7̂= X X^/Tl', (6.11) 

Once more we can use prolongation to iteratively build models for f2^{J2,n{^X)). Here 
the piece that is added at stage k is the product C{k-\)xC{k-l)xX^. However, when 
we make identifications they are a bit more complex than those at the previous level: on 
a face in 5(C(fc - 1)) x C{k - 1) x X^, we act on the second C{k - 1) and the X^ by 
the shuffle associated with the face, however, on a face C{k - 1) x 9(C(fc - 1)) x X^, 
we must use degeneracies on the first C{k - 1) to project it onto an appropriate product 
C(ji - 1) X .. • X C{jr - 1). Finally, on C{k - 1) x C{k - 1) x Wk{X) we use the 
appropriate dg x dg on C{k - 1) x C{k - 1). 

At this stage we have seen all the steps needed to define the general construction 

J^{X) = TT C(fc - 1) X . . . X C(A: ~ 1) xX^/n (6.12) 

(n—1) times 

which gives a model for fi'^E'^X for any connected CW complex X. 

REMARK. The explicitness of this model allows us to make chain level calculations to 
study the homology of Q^S^X, In particular, it is not hard to see that at each step 
passing from H^^^S^X to f2^~^'^^S'^X the co^or-spectral sequence of 5.13 collapses 
and we obtain an effective method for determining H^{n^E^X;F) for any n > 0 and 
any connected CW complex X. Further discussion of the actual results will be given 
in 7.3. 

It should be noted that the decompositions of J2{X) via the J2,n{^) and the J2,n are quite distinct. 
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7. The structure of iterated loop spaces 

Given any map into an iterated loop space, / : X —> i?^(X), it factors through an 
n-fold loop map in the following way: 

o^Adru) 

where i \ X —> fi^E^X is the usual inclusion: 

Thus, the structure of the category of n-fold loop spaces and n-fold loop maps is closely 
reflected by the properties of the spaces fi'^S'^X, which play a role here analogous to 
the role of Eilenberg-MacLane spaces for ordinary spaces and maps. 

It was conjectured in the 1950's that the homology of Q'^E'^X should depend in a 
functorial way only on H,^{X), and these homology classes will represent homology 
operations in the category. In this section we discuss the explicit construction of small 
models for the spaces fi^E'^X much as was done in Section 6, but here the models 
have better naturality properties which make aspects of the structure of Q'^E'^X more 
transparent, in particular the proof of the conjecture above. They also allow a convenient 
passage to the limit, Q(X) = Q^E°^X, under the natural inclusions 

An important feature of these models is that they permit the explicit description of 
H^{n^E^X, F) as a functor of H^{X, F), where F is a field. This description is implicit 
in [24] but is carried out in detail in [14]. It turns out that if one considers the cate-
gory of spaces which are fc-fold loop spaces and maps which are fc-fold loop maps, the 
Fp-homology groups admit certain operations, some of which are stable and yield opera-
tions on infinite loop spaces (Dyer-Lashof operations) and some which are not (Browder 
operations), and the homology groups H^{Q^E^X\¥p) can roughly be described as a 
free Hopf algebra on H^{X\¥p) over an algebra involving these operations. The reader 
should see [14] for precise formulations and proofs of these results. 

We have looked at Milgram's original Zilchgon model in Section 6.4. The models we 
will discuss now together with their various advantages are the May-Milgram configu-
ration space model, Barratt-Eccles simplicial model for Q{X), and J. Smith's unstable 
versions of the Barratt-Eccles construction. 
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7.1. Boardman's little cubes 

In order to describe these models efficiently we will introduce some terminology. 

DEFINITION 7.1.1. Let I^ denote the category whose objects are the sets n = {1,2, 
. . . , n} forn = 0 , 1 , 2 . . . , and where the morphisms from m to n are the injective maps. 

For n = 0, this is understood to mean the empty set 0 , and it is understood that for 
every object n of i^, there is a unique morphism from 0 to n and that for every n > 0, 
the set of morphisms from n to 0 is empty. 

DEFINITION 7.1.2. An O-space will be a contravariant functor from I^ to the category 
of topological spaces. 

This is the same as saying that an O-space is a family of spaces Xn, n ^ 0, so that 
for each n, Xn is acted on by the symmetric group Sn, and where for each n, we have 
maps 6i : Xn —* Xn-\, 1 ^ i ^ n, so that 6i6j = 6j6i^\ if i ^ j , and so that for 
any permutation a € <Sn-i-i, Sia = (7<5 -̂i(j), where a is characterized by the equations 
in (6.6). 

DEFINITION 7.1.3. If C = {Cn}n>o is an O-space, and X is a based CW complex, we 
define C[X] to be 

where ~ is the equivalence relation generated by relations of the form 

(a(e),Xi,.. . ,Xn) ^ (e, 3:̂ (̂1),--.,̂ (7(71)) 

and 

(^e, X i , . . . , Xi—\, * , Xi_)_i, • . . , Xn j ~ \^i^i ^15 • • • ? ^t—1) •^i+l 1 ' ' ' ^ ^n)' 

Next we need morphisms of O-spaces. 

DEHNITION 7.1.4. A morphism of O-spaces is a natural transformation of functors 
on r^p. 

A morphism f :C,-^ C! induces a map C[X] —^C'[X]. 

DEFINITION 7.1.5. An O-space C = {Cn}n^i is said to be free if each Cn is a free 
5n-space. 

C[X] is also equipped with an increasing filtration F/C[X], where 

FiC[X] = image[ ] J Cn x xA. (7.1) 
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REMARK. The definition of an C>-space is just a part of J.P. May's definition of an operad 
[22]; we retain only what is needed to make the construction C\X]. 

EXAMPLE 7.1. Here are some examples. 
(A) C = {Cn}n>o, Cn = * for all n, where all permutations and all (5i's are identity 

maps. This C7-space is not free. If X is a based CW complex, C[X\ ^ SP'^i^X), the 
free abelian monoid on X. 

(B) £ = {-fn}n^o, where Fn is the set of total orderings on the set n = { 1 , 2 , . . . , n}. 
Sn acts on Fn in an evident way. 6i : F^, —^Fn-\ is given by restricting an ordering on n 
to an ordering on {1,2 , . . . , z - l , z - | - l , . . . ,n} and identifying {1 ,2 , . . . , z - l , z - | - l , . . . ,n} 
with { 1 , 2 , . . . , n — 1} via the unique order preserving bijection. £ is a free O-space. In 
this case it follows easily from the definitions that Z_[X] is homeomorphic to the James 
construction M(X, *) in Section 5.3. 

(C) Fix k ^ 1 and let C(fc) = {Cn(fc)}n>o be defined as follows. Cn{k) is the space 
of ordered n-tuples of distinct points in R , i.e., Cn{k) C (R'^)^ is the set of n-tuples 
( x i , . . . , ajn) with Xi ^ Xj if i ^ j . Sn acts by permuting the vectors, and 6i deletes the 
i-th vector. C(fc) is a free O-space. In this case it can be shown that C(fc)[X] is naturally 
equivalent to Q^E^X for connected, based CW complexes X, 

(D) Fix A: ^ 1 and d ^ 1. Let Cf'ik) = {C^(fc)}n^o be defined as follows. C^{k) will 
be the space of ordered n-tuples of vectors in R'̂  so that no vector occurs more than d 
times in the n-tuple. If d = 1 we are in the situation of (C). If d > 1, this is no longer 
a free operad. It is not known what C^{k)[X] is. The case d = 2 has been studied by 
Karageuezian [20]. 

We record a useful technical result concerning these constructions. Both results are 
proved in the context of operads in [22]; the proofs in our setting are identical, and we 
omit them. 

PROPOSITION 7.1.1 ([22, p. 14]). Let C be an O-space, Then the subquotients 

FiC[X\IFi,xC[X\ 

are homeomorphic to the quotients Ci cx^^X^ '̂̂  {Recall that if X and Y are spaces, 
and y eY then X txY denotes the *'half smash product" X x Y/X x y. If X and Y 
are G-spaces, where G is a group, and G fixes y, then X txcY denotes the orbit space 
of the diagonal action of G on X txY.) 

We then have 

PROPOSITION 7.1.2 ([22, p. 22]). Let f : C -^ C! be a map of O-spaces. Suppose that 
fn • Cn —̂  C'n is a homotopy equivalence for all n ^ 0, and that both C and C are free 
O-spaces. Then f[X] : C[X] —> C^[X] is a weak equivalence for all based connected 
CW complexes, X. 

We now wish to describe the relationship between the constructions C{k)[Xj and the 
spaces Q^E^X. We first define a modified version of C(A:), which we denote C(A:), and 
call "Boardman's little cube" O-space. 
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For any vector v e^^ and positive real number R, let Cu{v, R) denote the open k-
cube centered at v, HlLi (Vi -R^Vi-^ R)- We define Cn{k) to be the space of ordered n-
tuples {{vi,..., Vn), (J?i,..., Rn))y foT which the cubes Cu[vi, Ri) are pairwise disjoint. 
Note that Cn{k) is acted on freely by 5n, by permuting coordinates in both n-tuples. 

There is an evident forgetful map 0n : Cn{k) —• Cn{k), 

(t>n{{V], . . . ,Vn),{R\, . • . , Rn)) = {v\,...,Vn)' 

These maps (̂ ^ assemble into a map ^ : Q{k) —> C(A;). Further, 0n admits a section 
ĉ n : Cn{k) —̂  CnCî ), defined by 

(Tn{v\, . . . , t;n) = (( i ; i , . . . , l /n), ( i? , • • • , i ? ) ) 

where i i = R{v\,... ,Vn) is the maximal number for which the open cubes Cu{vi,R) 
are pairwise disjoint. (Note that i? is a real valued function on Cn{k).) 

LEMMA 7.1.1. The map (pn is a homotopy equivalence for all n. 

PROOF. Since (pn^^n = id, it will suffice to produce a homotopy from the identity map 
on Cn{k) to (7n</>n- We proceed as follows. For {x,y,t) £ R ,̂ define 

( X{x,y,t) = x if X ^y, 

\ A(x,y,t) = {I -t)x-\-ty \ix^ y, 

and similarly 

f PL{X, y,t)=x lix^y, 

\ /i(x, y,t) = {\-'t)x-\-ty if X ̂  y. 

The homotopy is now defined by the following formulae: 

h{(v\,...,Vn), {R\,...,Rn),t) = 

{{vu •.. ,Vn)AHRuR,2t),... ,X{Rn,R,2t)) 
for0^t^\, 

/ i ( ( i ; i , . . . , i ;n) , ( / 2 i , . . . , i ?n ) , t ) = 
( ( ^ , , . . . , i ; n ) , ( / i ( i ^ l , i ^ , 2 t - l ) , . . . , / i ( / ^ n , i ^ , 2 t - l ) ) 
for ^ ^ t ^ 1. 

D 

Since each (̂ n is a homotopy equivalence we can now record the following conse-
quence of Proposition 7.1.2. 

PROPOSITION 7.1.3. # induces a homotopy equivalence ^[X] : C{k)[X] -^ C{k)[X] for 
all connected, based CW complexes X. 
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7.2. The May-Milgram configuration space models for Q'^E'^X 

Chapter 13 

It is on the model C{k)[X] that one can define a map to Q^E^X, The construction goes 
as follows. First, for any cube Cu{v, i? i , . . . , Rk). we have a canonical identification 

Cu[v,R^,...,Rk) > [0 , l ]^ 

which is given by 

( \ ( ^^ \ ^ ^̂  ^2 1 V2 Xk , i _ '̂ fc 
2R2"''2Rk 2 2RkJ 

Also, we have an identification [0,1]^ x X/d{[0, l]^) x X U [0,1]^ x * ^ E^X. For any 

(((t;,,...,T;n),(i?i,...,i?n)),a:i,...,a;n) e Cn{k) x X", 

we define a map 6n, 

by letting 

n 

<9n = * onR^-(JCix(t;i , i?i) , 

and on Cu{vi,Ri), we set 0n equal to the composite 

Cu{vi,Ri) y [0,1]*= > [0,1]*= X X —y S''X 

where ĉ  is the constant map with value x. This is best explained by the following picture 

Xi 

X3 
X2 (7.2) 

Note that since 9n takes the value * on the complement of a sufficiently large ball, 6n 
extends to a map from the one point compactification of R^, S^, to E^X. Further, since, 
in this extension, oo is sent to *, we actually have an element in Q^E^X. 

It is not hard to check that this procedure gives a map 

Cn{k) X x^ ^ n^E^x. 
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It is also not hard to check that the O^s respect the equivalence relation and we obtain 
a map 0 : C{k)[X] -^ Q^E^X. 

THEOREM 7.2.1. For connected X, the map O is a homotopy equivalence. 

PROOF. The proof of this result is too long and technical to present in its entirety here. 
We will, however, give a brief outline. 

Sketch proof of the homotopy equivalence G : C{k)[X] —• Q'^S'^X 
The first observation is that we have a map TT of (9-spaces from C(l) —̂  £ , where 
T_ is the C7-space of 7.1(B). On Cn(l), it is given by the observation that an {n-\- 1)-
tuple of distinct points in R̂  determines an ordering on that set of points, and hence 
on { 0 , . . . ,n} . This correspondence gives a map TTn : Cn(l) —̂  F^, and it is easy to 
see that the TTn's give a map of (9-spaces. Further, one checks that the inverse image 
of the standard ordering on { 1 , . . . ,n} is homeomorphic to R x (0, l)'^~^ via the map 
{r\, r2 , . . . , Tn) —^ {r\, r\ -l-r2,... ,r\-\ l-rn). Since this inverse image is contractible, 
so is the inverse image of any other ordering, and we conclude that TTn is a homotopy 
equivalence. It now follows from Proposition 7.1.2 that 7r[X] : C(1)[X] —> T\X] is a 
homotopy equivalence. Since we have already observed that £{X] is homeomorphic to 
the James construction, we conclude that C(1)[A'] is homotopy equivalent to QEX, and 
it isn't hard to check that the diagram 

c(i)[x] ^ nsx 

commutes up to homotopy, where the right hand diagonal map is the James map. The 
result for fc = 1 thus follows from James' theorem. 

The idea of the rest of the proof is to use induction on k. We have the loop-path 
fibration from Section 2.2. Furthermore, the existence of a fibration or quasifibration 
with contractible total space, base space X, and fibre Y shows that Y ~ QX. If we 
apply this to the space O^E^^^X = fi^E^{EX), we obtain a fibration sequence 

Qk^\Sk-^\X —> E{Q^E^{EX)) 

(7.3) 

n^E^{EX) 

Suppose we have already proved the desired result for k, and all spaces X, and wish to 
prove it for A: -f 1. If we could construct a space £{k)[X], which is contractible, and so 
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that we have a fibration sequence 

c{k-\-i)[x] —̂  e{k^i)[x] 
(7.4) 

C{k){EX) 

which maps to the fibration sequence (7.3), with the map on base spaces being 6{k) and 
the map on fibres being 6{k -f-1), the result would be proved for fc -f 1, via the long exact 
sequence of a fibration, and the induction could proceed. It is not possible to construct a 
fibration as in (7.4), but it is possible to construct a quasifibration with the desired maps 
on base spaces and fibres. This suffices. 

We conclude our outiine by describing £_{k)[X]. To make this definition, it is best to 
make a more general construction £!{k)[X,A], where >1 C X is a based subcomplex 
of X. £![X, A] will be defined as a subspace of C{k)[X]. First, let TT : R ' ' -> R^"^ denote 
projection on the first k~\ coordinates. For any point ( r i , . . . , r^) G R'^, let r'^{v) denote 
the ray { ( n , . . . ,rfc_i,rfc -f t) | t ^ 0}. For any n, let Zn{k) C Cn{k) x X'^ be the 
subspace of points (VQ, . . . , fn, XQ, . . . , Xn) so that, if Xi ^ A, then Vj ^ r~^{vi) for all 
j ^ i. Zn{k) is a closed subspace of Cn{k) x X'^, and we define £!{k)[X, A] to be the 
identification space obtained by restricting the equivalence relation defining £,{k)[X] to 

U„^0-^n(fc). 
We will define a map 

p:£'{k-^\)[X,A]-^C{k)[X/A]. 

To do this, note first that Zn{k) is the union of a family of closed subsets Z^{k), 
parameterized by subsets S C. {1,2,. . . , n } , where 

Z^{k) = {{vu •'' ,Vn),{xx,... ,Xn) \ Xi £ A for z ^S diVidvi ^r-^{vj) 

for any j e S,iy^ j} . 

p is now defined as follows. For a fixed n ^ 0 and S C {1 ,2 , . . . , n}, consider a point 
{vu...,Vn,xu...,Xn) in Z^{k-{- 1) C Zn{k-\- 1). We define p|Z^(/c + 1) by setting 
p{v],..., i;n, x i , . . . , Xn) equal to {IT{VS), XS) where vs is the #(5)-tuple consisting 
of the Vj's, j € 5, in increasing order, and where xs is the #(S')-tuple consisting of 
the Xj's, j E 5, also in increasing order. The fact that TT(VS) G C#(5)_i(fc) follows 
from the definition of Z^{k + 1). One now checks that the definition of P on the 
various Z^{k -f l)'s fit together to give a map Zn{k -h 1) —> C{k)[X/A], and that these 
maps respect the equivalence relation defining f'(fc -h 1)[A', A], so we obtain a map 
£!{k -f 1)[X, A] —y C_{k)[X/A]. It is now possible to show that when applied to the pair 
(CX, X) , £_{k -h 1)[CX, X] is contractible, and p is a quasifibration, 

p:£{k-\- \)[cX,X] -> C{k)[EX], 

Further, it also isn't hard to check that p~^(*) is equal to the subspace C{k -\- \)[X] C 
£{k + \)[CX,X]. We set S{k)[X] = S!{k)[CX,X]. and obtain the desired quasifibra-
tions. To get the map to the fibration sequence (7.3), one replaces £^{k -f 1)[CX, X] 
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by a homotopy equivalent version S_{k -h \)[CX,X], by analogy with the construction 
C{k^\)\X], u 

7.3. The homology of Q^'E^'X 

We now wish to discuss how these constructions can be used to obtain homological 
calculations. Originally, as was remarked in (6.12), the Zilchgon model was used in [24] 
to show that at each level m < n and for any field F the Coior-spectral sequence with 
E2'ttnn 

which converges to H^{Q^'^^E'^X;F) collapses for any connected CW complex X. 
Furthermore, it was shown there that H^{f2^'^^E^X; F) is a primitively generated Hopf 
algebra as long as m -h 1 < n. 

This makes the computation effective since we can start with 

H.{nS''X',F) = T ( i / . ( r ^ - ^ X ; F ) ) , 

the primitively generated Hopf algebra. Here, using the Poincare-Birkhoff-Witt theorem, 
one finds that H*{QE'^X\¥) is a tensor product of exterior algebras on (explicit) odd 
dimensional generators and C(F)-truncated algebras on (explicit) even dimensional gen-
erators. (Here C(F)-truncated means the free polynomial algebra on even dimensional 
generators bi, subject only to the relation 6f = 0 where p is the characteristic of F.) 

Then, since 

ExtA^B (F, F) = Ext A (F, F) 0 EXIB (F, F) 

we are reduced to considering Ext for an exterior algebra E(e2n+i) - which is F[&2n] -
and for a C(F)-truncated polynomial algebra, F[&2n+2]/^ - where it is E(e2n-i-i) if R 
is empty and E{e2n-\-\) ®F\!>ip{n-\-\)-2\ otherwise. Since these are primitively generated 
if n > 1, the dual of F[62n] is a tensor product of C(F)-truncated algebras and one can 
repeat the calculation to obtain the homology of each successive stage. 

REMARK. A special case is when F has characteristic zero. Then, for each n there is 
the natural inclusion i : E^X —^ SP^{E^X), Passing to loop spaces and noting that 
nrigpoo^^nx^) ^ SP°^{X) by the Dold-Thom theorem, in the limit we have a map 
ioo * Q{X) —> SP^{X). Then, from the discussion above it is direct to see that 

Zoo* : H*{SP^{X);F) —^ H*{Q{X);¥) 

is an isomorphism of rings for X a connected CW complex. 

There are, of course many other paths to these results. But having the homology is 
not quite the same thing as understanding what it means. 
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To this end, initially J. Moore, then W. Browder, Araki and Kudo and finally Dyer 
and Lashof, [26], [10], [4], [15], constructed families of homology operations in Q^X, 
Q{X), and Fred Cohen showed, using the results of [24], that these operations together 
with loop sum, completely describe the homology of fi^E'^X for X a connected CW 
complex. 

From another point of view V. Snaith proved that stably, we obtain a splitting 

S^C{k)[X] o^S'^y Ci{k) txs.X A n 

A : = l 

where E^ denotes "suspension spectrum"; see Section 8 for the definition of this concept. 
This is a direct consequence of the following result. 

THEOREM 7.3.1. There is a homotopy equivalence 

oo 

Q{C{k)[X])c.]lQ{Ci{k)^s,X^^). 

(See, e.g., [8] for details of a very slick proof due to F Cohen.) 

COROLLARY 7.3.1. 

iJ*(f?^i:"X; A) = 0 i / * ( a ( A : ) tX5,X''''; A) 

for arbitrary untwisted coefficients A. 

Using Snaith splitting and the calculations above one can easily obtain the homology 
of the spaces Q(fc) tKs^X^^ for any connected CW complex X and arbitrary fc, /. This 
has had very important applications recently in many areas of mathematics. For example, 
in [9], it is the crucial input needed in the proof of the Atiyah-Jones conjecture. 

7.4. Barratt-Eccles simplicial model and J. Smith's unstable version 

The first two constructions we have exhibited work in the category of topological spaces. 
This has many advantages, for instance that the relationship of the combinatorial con-
structions with the iterated loop spaces is very explicit. It is also possible, as shown by 
Barratt and Eccles, to make the constructions for fc = oo entirely inside the category 
of simplicial sets. Their construction has three main advantages. One is that the proofs 
become simpler. For instance, the analogue of the map p which could only be shown 
to be a quasifibration in the configuration space model is a surjective homomorphism 
of simplicial groups in this context, and hence automatically a Kan fibration. A second 
advantage is that in the Barratt-Eccles context, there is a natural extension of the result 
which applies to nonconnected simplicial sets. The third is that the loop sum operation 
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arises as the multiplication operation in a simplicial group, hence is strictly associative. 
This is not the case for C[X\. 

J. Smith in his thesis, [30], constructed simplicial versions of the finite stage construc-
tions C{k)[X]. We will examine these at the end of this section. 

The Barratt-Eccles model begins by constructing a simplicial version of the O-space 
C(oo). 

DEFINITION 7.4.1. An O-simplicial set is a contravariant functor from the category I^ 
of Definition 7.1.1 to the category of simplicial sets, which takes 0 to the one point 
simplicial set *. 

An example is the O-space £ of 1.7(B), in which Fn can be viewed equally well 
as a discrete topological space and as a discrete simplicial set. We also note that we 
have a functor e from the category of sets to the category of simplicial sets, given by 
e[X)n = X^+^ where di : X""-^^ —> X"" deletes the i-th coordinate for 0 ^ i ^ n, 
and where Si repeats the z-th coordinate. It is readily checked that e{X) is always 
a contractible simplicial set. We now consider the (9-simplicial set B defined as the 
composite 

£ e 
r^P — , Sets —^ Simplicial sets. (7.5) 

For any O-simplicial set C, and based simplicial set, X, we define the simplicial set 
C[X] to be 

]JCnXX7^, 

where = is the equivalence relation generated by relations of the following two forms 
(a) (c,xi, . . . ,Xn) = (ac,x^(i),...,Xe,(n)), where a ^Sn^ 
(b) (C, Xi, . . . , Xt_ 1, *, Xi4.i, . . . , Xn) = (<5*C, Xi, . . . , Xi_ 1, Xi+1, . . . , Xn). 

Of course, these relations are precisely analogous to those used in defining the topological 
version. 

One of the advantages of the construction is made apparent by the following proposi-
tion. 

PROPOSmON 7.4.1 ([6]). For any based, simplicial set X., B[X] is a free simplicial 
monoid, in such a way that the natural map £\X] —• B[X] is a homomorphism of 
monoids, where £.[X.] is identified with the free monoid on X, 

PROOF. We first observe that we have maps Z ^ x £ „ —̂  I^-m^n^ t̂ y assigning to a 
pair of orderings (<m, <n) on { 1 , . . . , n} and { 1 , . . . , m}, respectively, the ordering on 
{ 1 , . . . ,m -f- n} which we obtain by identifying { 1 , . . . ,m} U { 1 , . . . ,n} with { 1 , . . . , 
m -h n}, where { 1 , . . . , m} is sent into { 1 , . . . , m -h n} by adding m to each element of 
{ 1 , . . . , n } . Since e preserves products, we get maps e ( { l , . . . , m}) x e ( { l , . . . , n } ) —• 
e({ 1 ,2 , . . . , m -h n}). This gives a family of maps 
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and one checks that these maps respect the equivalence relations involved, to yield the 
required multiplication map. It is easy to check associativity, and the basepoint acts as 
an identity element. It is also easy to check freeness. D 

This functor from simplicial sets to simplicial monoids is referred to by Barratt and 
Eccles as r"*"(X). They also compose F^ with the group completion functor from sim-
plicial monoids to simplicial groups, and call the result r{X), r{X) is a free simplicial 
group. Their main theorem now reads as follows. 

THEOREM 7.4.1 ([6]). (a) For any connected, based simplicial set X., the natural in-
clusion F'^{X) —> F[X) is a weak equivalence of simplicial sets. 

(b) For any simplicial set X., \r{X.)\ has the homotopy type of Q{\X.\). 

PROOF. Part (a) is a standard fact about group completions of simplicial monoids. See [13] 
for details. It is essential here that r'^{X) be a levelwise free simplicial monoid. To prove 
7.4.1(b), one first proves that if A. -̂̂  X. is an inclusion of simplicial sets, then the natural 
map r{A.) —> Ker(r(X.) —> F{X./A.), is a homotopy equivalence. This is proved in 
two steps. The first is to observe that F carries disjoint unions of based discrete simplicial 
sets to products, in the sense that the natural homomorphism F{X\/Y) —> F{X) x F{Y) 
is a weak equivalence of simplicial sets for all based sets X and Y. ( Note that this is a 
special case of the required result, since it shows that Ker{F{X V Y) —> ^{X)) has 
the homotopy type of F{Y)). One first proves the analogous result for the monoid valued 
construction T"̂ , and concludes the result for F via a general comparison theorem for the 
homology of a simplicial monoid with that of its group completion. The second step is to 
prove that this special case suffices. Specifically, let T be any functor from the category of 
based sets to simplicial groups, and let T^ be the functor from simplicial sets to simplicial 
groups obtained by applying T levelwise and taking diagonal simplicial groups. Then 
Barratt and Eccles prove that if the natural map T{X W Y) —> T{X) x T{Y) is a 
homotopy equivalence for all X and y , then for all pairs of simplicial sets {X., A.) the 
natural homomorphism T*(A.) —> Ker{T^{X.) —• T^{X./A.)) is a weak equivalence 
of simplicial sets. Since F'^ is of the form T*, this gives the result. 

Since surjective homomorphisms of simplicial groups are Kan fibrations, applying the 
above discussion to the inclusion X —• CX shows that | r (X) | c:̂  f2\FEX\, since 
CX/X - EX. Iteratively, \F{X.)\ ^ n^\FE^X\ for all k. On the other hand, if a 
simplicial set is /-connected, it is easy to check that the inclusion X. —> F'^{X.) is 
{21 - l)-connected, consequently, the map i?'|X.| —̂  f2^\F'^{X.)\ is (Z - l)-connected. 
Therefore the inclusion {F^E'^Xl —̂  n''\FI!''X\ is (A: - 1) connected. Thus, there is a 
map 

f2^\E^X\^f2^\F{i:^X)\-^\F{X.)l 

where 0 is a homotopy inverse to the inclusion \FX.\ —> n^\FE^X\, where /3 is 
(fc - 1) connected, hence 6 o /3 is {k - 1) connected. Letting k —̂  oo shows that 
|r(x)|^Q(|X|). D 

This then gives a simplicial construction when k = oo. For finite A:, we have J. Smith's 
models [30]. Smith produces simplicial submonoids r(^)+(X.) C r+(X.) C F{X.), 
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whose realizations both give n'^E'^{\X.\) when X. is connected and so that \r^'^\X,)) = 
r 2 ^ r ^ | X | for arbitrary X.. First, we examine r('^)-+-(X). r ( " ) + ( X ) is constructed 
as By^'[X.], where B^^^ is a certain sub-O-simplicial set of B above, which we now 
describe. Let B = {B/}/^o» and consider the simplicial set Bi. Its fc-simplices are {k-\-\)-
tuples of orderings on { 1 , . . . , / } . For any pair (z, j ) , with 1 ^ 2, j ^ Z, we have the 
restriction map from the set of orderings on {1 , . . . , / } to the set of orderings on {i,j}, 
which we identify with {1 , . . . ,2} via i —> l,j —> 2. This yields a simplicial map 
0ij : Bi —> B2. Now, B2 can be filtered by skeleta. It turns out that \sknB2\ = 5* ,̂ and 
the 52-action is identified with the antipodal action on S^. Now define Bi to be 

n ct>r^'{sknB2l 

Bf''^^ becomes a sub O-simplicial set, and B^^^[X] is a subsimplicial monoid of B[X]. 
r(^)+(X.) is defined to be B^^'^X.], and r(^)(X.) is defined to be its group completion. 

THEOREM 7.4.2 (Smith). If X. is connected, then | r(")+(;f.) | and | r(^)(X.) | are ho-
motopy equivalent to / ? " r ^ | X | . In general \r^''\X.)\ ^ / 2 ^ r ^ | X i . 

It is not known that the realizations of Smith's simplicial O-sets are equivalent to the 
(9-spaces C{n) although one suspects that they will be. 

8. Spectra, infinite loop spaces, and category theoretic models 

By the homotopy category Ho of based spaces, we mean the category whose objects 
are based spaces (X, x), and where the morphisms from {X, x) to (F, y) are given by 
[X, y]o, the based homotopy classes of maps from X to Y. Similarly, one could define 
the stable homotopy category Ho^ as the category whose objects are based spaces (X, x), 
and where the morphisms from {X, x) to (y, y) are given by 

{x,y} = iim[i:-x,r-y]^. 
n 

It is proved in [3] that for any fixed X, the graded set A^(X) = {E'^X, Y} for n ^ 0, 
and A^(A') = {X^S^^Y} for n < 0, is actually a graded abelian group, and yields 
a long exact sequence of graded abelian groups when applied to a cofibration sequence 
X\ -^ X2 -^ X2/X\. AX is referred to as a generalized cohomology theory, i.e. a 
graded abelian group valued functor which satisfies all the Eilenberg-Steenrod axioms 
except the dimension axiom which asserts that .4^(5^) = 0 for n ^̂  0, Ao(S^) = Z. 

Generalized cohomology theories have turned out to be extremely useful in stable 
homotopy theory. iiT-theory and various bordism theories have been particularly so. These 
theories, and also singular cohomology theory are not, however of the form A^ for any 
y in the above Ho^. One says they are not representable in Ho^. It turns out, though, 
that by enlarging Ho^ a bit, one can make these theories representable. Moreover, by 
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a theorem of E.H. Brown, [11], one can obtain a precise criterion for when a graded 
abelian group valued functor is representable. 

To see how to construct this enlargement we consider the case of ordinary integral 
cohomology, H*{\Z).ln Ho the functor X i-^ H'^{X',Z) is representable. Let K{Z,n) 
be an Eilenberg-MacLane space, i.e. 

t Z, 2 = n. 

Then there exists a class in G H^{K{Z, n)) so that the homomorphism [X, K{Z, n)] —> 
H'^{X\Z), given by / K-* H^{f){Ln), is an isomorphism of functors. 

Although H'' is defined on Ho\ it is not the case that {X,K{Z,n)} ^ Jf^(X,Z), 
as one can easily check. The point is that, e.g., H'''^^{EX\Z) ^ [EX,EK{Z,n)] in 
general, since EK{Z,n) ^ jK'(Z,n -(- 1). What this suggests is that one wants to allow 
objects which, in a sense, contain all of the A'(Z,n)'s at once. We therefore introduce 
the concepts of prespectra and spectra. 

8.1. Prespectra, spectra, triples, and a delooping functor 

DEFINITION 8.1.1. (a) A prespectrum X is a family of based spaces {Xi}i^o, together 
with "bonding maps" ai : EXi —• Xi^\. 

(b) A morphism / from a prespectrum X = {Xi} to Y = {¥{} is a family of based 
maps fi'. Xi —^ Yi, so that /tcrjl, = (jy_^fi-\ for all i. 

(c) A prespectrum is an i7-spectrum if, for each i ^ 0, the adjoint to ai, 

Ad{(7i) : Xi -^ nXi^i 

is a homeomorphism. 
(d) If X is any based space, the suspension prespectrum of X, X!°°X, is given by 

{E^X}i^o, with the evident bonding maps. 

Note that given any prespectrum X = {Xi}i^o» and based space Z, one can form a 
new prespectrum X A Z = {Xi A Z}i^o where the i-th bonding map is ai A idz- In 
particular, we can let Z = 7"̂ , the unit interval with a disjoint basepoint added, and 
declare that two maps / , ^ : X —• Y of prespectra are homotopic if there is a map 
if : X A / + ->Ysothat i / |XAO+ -^ Y = / and if|X A 1+ -> Y = p, where XAO+ 
and X A l"*" are identified with X in the obvious way. By letting X be the suspension 
spectrum E°°{S^), we now obtain a definition of the homotopy groups 7rn(Y) for any 
prespectrum Y, and of the homotopy classes of maps [X, Y] for any pair of spectra. 

EXAMPLE 8.1. Let K(Z, n) denote the prespectrum whose i-th entry is K{Z, n -f z), and 
where cji : EK{Z,n -\- i) —^ K{Z,n -f- z -h 1) is the map representing a generator in 
^n+i+i(^l^(2:,n + z);Z) ^ Z. K(Z,n) can be taken to be an i7-spectrum, and 

f7ro(K(Z,n))=Z, 

l7ri(K(Z,n)) = 0 if i ^ n. 
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More generally, [r°°X, K(Z, n)] ^ i/^(Jf;Z), so, in this enlarged category i /^ ( - ,Z) 
is representable. 

REMARK. The above mentioned definition of [X, Y] does not, in fact, have good properties 
when Y is not an i?-spectrum. The actual definition of [X, Y] can be carried out as in 
[3] or by replacing [X, Y] with [X,cx;(Y)], where a; is a functorial construction of an 
i7-spectrum from Y. We will not dwell on this point. 

From the definitions, if X is an i?-spectrum, it is clear that 7rt(X) is isomorphic 
to 7ri(Xo), the ordinary i-th homotopy group of the zeroth space of the spectrum X. 
Consequently, the homology and other invariants of XQ are of interest. Further, each Xi 
is an "i-fold delooping" of Xo in the sense that XQ Ĉ  H^Xi via a composite of adjoints 
to the bonding maps, so XQ is referred to as an infinite loop space. We also obtain maps 

6i : n'E\Xo) ^ Q'Xi ^ Xo. 

Further, the Oi's are compatible in the sense that 6i^\ orji = 0i, where 

rji:Q'S\Xo) ^ n'+'S^^'iXo) 

is the inclusion, and so we obtain a map 

QiXo)^Xo. 

It will turn out that this map i/ will, in the case of connective i?-spectra, determine the 
entire spectram X up to homotopy equivalence. We will now discuss this fact. 

DEHNITION 8.1.2. A triple on a category C is a functor T:C ^^C, together with natural 
transformations n:T^-^T and 77: /d —+ T, so that the following diagrams commute 
for all X e C. 

TX 
Tri(X) 

'T^X' 
V{TX) 

TX 

MCX) 

TX 

T^X 

T^X 

M(TX) 

M(X) 

T^X 

TX 
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EXAMPLE 8.2. (a) Let C be the category of based sets, and let F be the functor from C 
to C which assigns to each based set, X, the free group on X with the basepoint set to 
the identity. (Note that a group is, via a forgetful functor, a set). F is a triple, since any 
set includes in the free group on that set as the words of length 1, and /x is obtained by 
evaluating a "word of words" as, simply, a word. 

(b) Again, let C denote the category of based sets, and let F°'^ denote the free abelian 
group functor, with basepoint set to 0. F^^ is also a triple on C. 

(c) Let C be the category of based spaces, and let T be the functor fiE. There is the 
James inclusion X —̂  QEX, which is the natural transformation 77. To construct /x, we 
first observe that there is a natural transformation e : EQ —> Id, which is given by 
e{t A 0) = < (̂t). PL{X) is now given by the composite 

Q{e{i:x)) 
QEf2E{X) > fioldo E{X) = nE{X). 

With this choice of /i and ry, QE becomes a triple. 
(d) Again, C will be the category of based spaces, and we let T = Q^E^.T becomes 

a triple by a construction identical to that in example (c). Even 

Q = \\mQ^E^ 

also becomes a triple on C. 

DEFINITION 8.1.3. An algebra (X,^) over a triple T is an object X G C and a map 
^ : TX -^ X so that the diagrams below commute. 

r){X) 
X —y TX TTX y TX 

id\ n ^ 

X TX —y X 

Morphisms of T-algebras are defined as morphisms in C making the evident diagrams 
commute. Also, for any object X in C, {TX,fj) is an algebra over the triple T, to be 
thought of as the free T-algebra on X. 

This is quite a useful notion. For instance, the reader should verify that if F is the 
triple in Example 8.2(a), an F-algebra structure on a based set X is the same thing as 
a group structure on X, where the basepoint is the identity. Similarly, if F^^ is as in 
8.2(b), an F"^-algebra structure on X is the same thing as an abelian group structure on 
X, where the basepoint is equal to zero. Also, any loop space has an algebra structure 
over the triple fiE in 8.2(c), given by 

n{e{Z)) 

nEQz y nz, 
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and similarly, any fc-fold loop space is an algebra over the triple Q^S^ of 8.2(d). In fact, 
by analogy with 8.2(a) and (b), we view Q^E^ as the "free k-fo\d loop space" functor, 
and it can be shown that i?'̂ i7'̂ -algebra structures on a space X are the same thing (up 
to an obvious notion of homotopy equivalence) as A:-fold deloopings Z of X, i.e. spaces, 

Z, together with an equivalence X —^f2^Z. This result is originally due to Beck [7]. We 
will indicate a proof of the A; = oo version, i.e. we will show that a Q-algebra structure 
on a space X determines an infinite family of deloopings, with certain compatibility 
conditions, i.e. a spectrum with X as zeroth space. 

We first discuss some generalities. Let T be a triple on a category C, and let {X, ^) be 
a T-algebra. We define a simplicial object T,{X, )̂ in C by setting Tk(X, ^ = T^^^ (X), 
and letting the face and degeneracies be given by the following formulae. 

di : T^-^\X) —^ T^{Xy. = T'fjiiT^-'-^X) fovO^i^k-l, 
4 : T ^ + i ( X ) — . r ' ^ ( X ) : = T'=(0, 
Si : r*+^ {X) — . T^-^\X): = T^ '̂ (r/(T^~*X)) forO^i^k. 

(8.1) 

One easily checks that T.{X,^) is a simplicial object in the category of T-algebras. In 
fact T.{X,^) should be viewed as a simplicial resolution of (X,^) by free T-algebras 
in C. Note that there is a map of simplicial objects a : T.{X, ^) —^ X., where X. is the 
constant simplicial object with value X, given in level k by the composite 

^oT{(,)o...oT''-\(,)oT>'{i). 

PROPOSITION 8.1.1 ([22]). Let C be the category of based topological spaces, and T a 
triple. Then the map |T.(X,^)| —̂  X induced by a is a weak equivalence. 

PROOF. This is proved in [22, Proposition 9.8, p. 90]. D 

To produce deloopings we must also use the interaction of the suspension functor with 
the triple in question. We formalize this as follows. 

DEFINITION 8.1.4. Let T be a triple on a category C. By an intertwiner S for T, we 
mean a functor E . C ^^ C together with a natural transformation C • ^T —> TE, so 
that the following diagrams commute. 

C(TX) T(CX) 
ET^X V TETX > T^EX 

id CW 
ETX —> ETX —y TEX 
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EX • ETX 

r,(EX) ax) 

TEX - ^ TEX 

DEFINITION 8.1.5. Given any intertwiner E for T, and T-algebra (X,^), we construct a 
simplicial object T^{X,^) by setting 

T^{X,0 = TET''X, 

and declaring that the faces and degeneracies are given by the following formulae: 

do: TET''x —»rrr*-'x 
di : TET''X —y TET''-^X 
Si : ri7T*X —y TET^'+^X 

= M(r'=-'x)or(c(r'=-'x)) 
=r rrT'-V(T*-*- 'x) for I > 0. 
= TET'T)(T''-'X) 

Note that T^{X, ^) is a simplicial object in the category of T-algebras. We also note 
that there is a morphism 

where EX. is the constant simplicial object with value SX, There is also a map u : 
ST.{X, 0 —̂  T.^(X, 0» given in level k by ((^'''X). T̂ ^ is a functor from the category 
of T-algebras to the category of simplicial T-algebras. 

We now apply this to our situation, where T = Q and C is the category of based CW 
complexes. 27 is now ordinary suspension. To define a map C(^) • EQX —> QEX, we 
define, for / : 5^ -> 5^ A X and s G 5^, ^ G [0,1], 

aX)[tJ]{s)=[tJ[s)\ (8.2) 

where t is the suspension coordinate and 5" A EX is identified with E{S'^ A X). It is 
easy to check that with this definition, the pair {E, C) forms an intertwiner for Q. Thus, 
for any Q-algebra [X,£), we obtain a simplicial Q-algebra Q.^{X,^), and a map of 
spaces 

If we consider the adjoint ad{\) : X -^ Q\Q.^{X,Cj\^ then |(5.^(JV,^)|, is a candidate 
for a first delooping for X. 

PROPOSITION 8.1.2. Let X be any Q-algebra. Then ad{\) is a weak equivalence. Further, 
if X is k-connected, then \Q.^{X,^)\ is {k-\- \)'Connected. 
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PROOF. We first observe that A factors as 

where the left arrow is S'qiX) : EX —> EQ[X) = SQo{X,0' It is an equiv-
alence by Theorem 8.1.1. It consequently suffices to show that the adjoint to i^iX), 
ad{iy{X)) : \Q.{X,^)\ —• fi\Q'^{X,^)\, is an equivalence. Secondly, it is stan-
dard in this case (where 7ro(Qf (X,^)) is a group for all k) that the natural map 
\nQ.^{X,^)\ -^ n\Q.^{X,^)\ is an equivalence. See [12] for details. It therefore 
suffices to show that the adjoint to ({Q^X) : SQ^'^^X —• QSQ^X is an equivalence, 
and for this it clearly suffices to show that ad{({X)) is an equivalence for all X. But 
the adjoint of C(^) is the inclusion QX —• QQEX, which is easily checked to be an 
equivalence. The connectivity statement is easy. D 

Let !̂  denote the functor {X^Q —• Q^{X^() from Q-algebras to simplicial 
Q-algebras. Applying ^ level wise to Q^, we obtain a functor ^\1\ from Q-algebras 
to bisimplicial Q-algebras, and by iteration of this procedure functors Ĵ [A:] to fc-fold 
simplicial Q-algebras. By applying Proposition 8.1.2 levelwise, one obtains a natural 
(on the category of Q-algebras) equivalence |«P [̂fc](X,̂ )| ĉ  n\^[k -f 1](X,^)|. In other 
word, we have constructed a functor 5 from the category of Q-algebras to the category 
of i?-spectra. It is not hard to check that the functor actually takes its values in the full 
subcategory of connective spectra. Further, S is homotopy invariant in the sense that if 
/ : (Xi,^i) —y {Xi.ii) is a morphism of Q-algebras, so that / : X\ —> Xi is a weak 
equivalence of spaces, then S{f) is a weak equivalence of spectra. 

8.2. The May recognition principle for fi-spectra 

We wish to use the O-space constructions C[X] to minimize the amount of data required 
to construct the deloopings. As it stands, for a general (P-space, C, X —• Q.[X] is not a 
triple on the category of based spaces. To have the triple structure requires that C actually 
be an "operad" in the sense of May. We now describe this notion. In order to simplify 
the definition a bit, we introduce some terminology. By a graded topological space, we 
mean a space C equipped with a decomposition 

C=]lCn. 
n>0 

If X is a space, we will write 

Fc{X) = llCnxX^. 
n>0 
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This is of course functorial on the category of spaces. If 

Chapter 13 

is a graded space, then Fc{X) becomes a graded space, with 

Fc{X)n = U U Q X X,, X •.. Xj, C Fc{X). 

DEFINITION 8.2.1. Let C be an O-space. 

C=l[Cn 

is viewed as a graded set. An operad structure on £ is a natural transformation of functors 
H: Fc o Fc —> Fc, satisfying the following requirements, 

(a) The diagrams 

FcoFcoFc{X)-
FcMX)) 

•Fc o Fc(X) 

l^iFciX)) 

FcoFciX)-
M ( X ) 

M(Jf) 

FciX) 

commute for all X, 
(b) /i(*) gives maps Ck x Cj^ x • • • x Cj^ —• Cj, where j = ji -\ h jk- Since 

C_ is an O-space, Cj is equipped with an action by the symmetric group 5^. On the 
other hand, C^ x Cj, x • • x Cj^ is equipped with an action of 5j, x • • • x 6^ ,̂ with 
each synmietric group acting on its corresponding factor, and all acting trivially on Ck. 
Let p : Sj^ X • • • X Sj^ —> Sj be the homomorphism which views 5 ,̂ as acting on 
{ l , . . . , j i } , Sj2 as acting on {j\ -h 1,...,J2}» etc. We require that /i(*) restricted to 
Ck X Cj^ X • • • X Cj^ be equivariant with respect to p, i.e. 

fi{*){c; a i c i , . . . , akCk) = p{cTi,..., aifc)/x(*)(c; c i , . . . , Cfc). 

(c) Let j i , . . . , jk be given, with ji + • -f j ^ = j . Note that { j i , . . . , jfc} determines 
a partition 

-f jik-i -f l , . . . , j i +. . .4-jfc} 

of { 1 , . . . , j } , with A; blocks. For any a G Sk let 6 = 6{(j\j\,... ,jk) be the unique 
permutation of { 1 , . . . , j } which is order preserving on each block {j\ -f . . . -f js-\ 4-
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1 , . . . , ji -f . . . -h js}, and so that a{s) > a{t) implies that 9 carries elements of {ji 4-
. . . + js-\ -f 1,. •., Ji + . . . js} to elements which are strictly greater than all elements 
in {ji + . . . + j t ~ i 4 - l , . . . , j i + . . . + j t } . T h e n 

/i(*)(ac; c i , . . . Cfc) = e{a\ji,..., jfc)/x(*)(c; c^(i),. . . , c (̂fc)). 

(d) There exists an element 1 G C\, so that /x(*)(c; 1 , . . . , 1) = c for all c G Ck-

k factors 

PROPOSITION 8.2.1. An operad structure on an O-space gives a triple structure on the 
functor X —^ C[X]. 

(The proof is a direct but tedious verification. See [22] for details.) 
Not all O-spaces described in Section 7.1 extend to operad structures. For instance, 

C.{k) does not, nor does the O-space C^{k) of Example 7.1(D). However, let £_ be the 
O-space of 7.1(B). £ extends to an operad structure as follows. Let ji -f . . . -f- jfc = j . 
and let -B5 C { 1 , . . . , j } be the subset 

{n|ji -h . . . -h js-i + 1 ^ n ^ ji -f . . . H- j j . 

The structure map /x(*) : FA; x F̂ , x • • • x Fj^ —• Fj is given by assigning to a (/c + 1)-
tuple (^, ^ 1 , . . . , ^fc) of orderings the unique ordering on { 1 , . . . , j } which restricts to 
the ordering ^5 on Bg, when Bg is identified with { 1 , . . . , js} in an order preserving 
way, and so that if m € -B5 and n E Bt» with s ^ t, m < n if and only if s < t 

Also, recall the Barratt-Eccles O-simplicial set B from Section 7. Here, Bn was defined 
as e{F^), where e was a product preserving functor from sets to simplicial sets. The 
above defined operad structure map for £ now defines similar maps e{Fk) x e{Fj^) x 

• • X e{Fj^) —• e{Fj). Applying geometric realization gives an operad structure on the 
O-space {|Bn|}n>o. 

With simple modifications one can modify C_{k) into an O-space with operad structure. 
We define C,^{k) = {C^(A:)}n>o by letting C^(fc) be the space of disjoint n-tuples 
of open n-cubes in [0,1]^. It is understood that these are cubes with sides parallel 
to the coordinate axes. C,^{k) now admits an operad structure. For any {k + l)-tuple 
(c;ci,.. .,cz) with ĉ  G C^^{k), and c G Cf{k), say c = {Cu\^... ,Cui), we have 
the identification At : [0,1]^ —> Cuu which is an affine linear map and carries sides 
parallel to a coordinate axis to sides parallel to the same coordinate axis. The j^-tuple 
of cubes in [0,1]*^ specified by Cg is identified with a new js-tuple of disjoint cubes 
Xs{cs) contained in Cug. The j-tuple of cubes {Ai(ci) , . . . , A / ( Q ) } consists of disjoint 
cubes, since the Cui's are disjoint. This gives the operad structure. We also remark that 
C (̂fc) includes in C{k) as a sub-0-space, and that this inclusion satisfies the hypothesis 
of Proposition 8.1.1. It follows that C^[X] and C{X] are weakly equivalent for all based 
CW-complexes X. 

Let T^ denote the triple X —• C^[X]. We observe that there is a functor from the 
category of connective spectra to Q-algebras, which assigns to each connective spectrum 
its zeroth space. There is a natural transformation of triples T^ —^ Q, which means that 
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any Q-algebra can be viewed as a T^-algebra, and hence we obtain a composite functor 
U from the category of connective spectra to the category of T^-algebras. In order to state 
our theorem, we also define a weak natural transformation of functors to the category of 
spaces (or spectra, or T-algebras, where T is a triple) from a functor F^ to a functor F^ 
to be a sequence of functors {Go, • • ? ^2^}, with Go = Fo and G2k = F\^ together with 
natural transformations G2/+1 —^ G2/-1.2 and natural transformations G2Z+1 —> G21 
which are weak equivalences for all objects in the domain category. A weak natural 
transformation is said to be a weak equivalence if in addition the natural transformations 
G2i-\-\ —^ G2H-2 are weak equivalences when evaluated on any object in the domain 
category. Note that a morphism of T-algebras is said to be a weak equivalence if the 
map on spaces is a weak equivalence in the usual sense. 

The May recognition principle is now stated as follows. 

THEOREM 8.2.1. There is a functor S from the category of T^-algebras to the category 
of connective spectra, satisfying the following properties. 

(a) / / / : (X,C) —^ [X',i') is a map of T^-algebras, and the map f . X —> X' is 
a weak equivalence, then S{f) is a weak equivalence of spectra. 

(b) There is a natural weak equivalence of functors on the category of connective 
spectra from SoU to the identity functor. 

(c) There is a weak natural transformation of functors on the category of T^-algebras 
from the identity toUoS, which is a weak equivalence on T^-algebras (X, i) for which 
TToC-X") is a group. {Note that in general, if {X,^) is a T^-algebra, we have a map 

C^xXxX —^X, 
S2 

and hence by choosing a point in cf a map X x X —• X. Consequently, X is an 
H-space, and the multiplications are independent of the choice of point up to homotopy. 
Thus, 7ro(X) is given a well-defined monoid structure.) 

We do not give a proof of this theorem, but refer to [22] or [29]. However, we do give 
a description of S. We first note that the suspension functor E acts as an intertwiner for 
T^. The map EC^[X] —> C^[EX] is induced by the evident maps 

r (Gn(00) X X^) — . Gn(oo) X Sn{EXr, 
Sn 

after factoring out the equivalence relation defining C^[-]. Consequently, we may con-
struct the simplicial T^-algebra T^(X,^), and iterate this construction level wise, to 
obtain spaces S{X^^)k, with maps 

I:S{X,Ok^S{X,()k+^. 

Here, 5(X,^)o = X. One is able to show that the adjoint of Â  is an equivalence if 
fc ̂  1, and if X is connected so is the adjoint to AQ. In any case, we obtain a functor 
to connective spectra. Requirement (a) is clearly satisfied, since T^ preserves weak 
equivalences. 
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8.3. G. Segal's construction of fi-spectra 

There is another point of view on these ideas, due to G.B. Segal. He enlarges the category 
of finite ordered sets and order preserving maps to a larger category T, so that (roughly) 
given a simplicial space X., i.e. a functor A^^ —• X., an extension of X. to F gives 
rise to a connective spectrum with zeroth space homotopy equivalent to X. 

We outline his ideas. We first define a category F to have objects the finite sets 
7n = {Ij • • • ,^} for n > 0, and 70 = 0 . A morphism ip : jn —^ 7k is a function 
^ • ^(7n) —^ Vi^k) (where P{X) denotes the power set of X), so that ^(F UW) = 
^{V) U (?(VF) and ^{V -W) = ^{V) - ^{W). The first condition shows that # is 
determined by the sets $({z}) 1 ^ i ^ n, and the second condition shows it is equivalent 
to ^{{i}) n^({j}) = 0 ifi ^ j . 

Given morphisms v:?: 7n —̂  7m and ip : P(7m) —̂  Pilk) corresponding to maps 

^ : V{7n) —> :P(7m) 

and ^ : P(7m) —̂  Pilk)^ then ^ o (̂  corresponds to 0 : P(7n) —̂  Phk), where 

There is an isomorphism of categories from the opposite of the category of based finite 
sets { 0 , 1 , . . . , n} (0 is the basepoint) and based maps to F given by 

{ 0 , l , . . . , n } > ^ { l , . . . , n } 

and (/ : { 0 , 1 , . . . , n} —• { 0 , 1 , . . . , m}) —• <p/. Here iff corresponds to the map 

^ / : P (7m)- -P(7n) , where <f/(y) = r » ( y ) , 

for any V C {!,. . . , m } . 
There is also a functor i : A —> F, where A is the category whose objects are the 

sets { 0 , 1 , . . . , n}, equipped with their standard ordering, and whose morphisms are the 
order preserving maps. To define i, we first define, for p,q e { 0 , 1 , . . . ,n} , \p,q] = 
{r € { 0 , 1 , . . . , n} I p ^ r < g}. Note that if g < p, [p, q\ — 0. i is now defined on 
objects by i ( { 0 , 1 , . . . , n}) = { 1 , . . . , n}, and on morphisms by i ( / : { 0 , 1 , . . . , n} —̂  
{0 ,1 , . . . ,m}) = iff, where (/?/ corresponds to the function ^ / : P(7n) —• P{lm) 
defined by ^ / ( [ l , . . . , , r]) = [1 , . . . , /(r)]. This gives, for instance, 

^/(W) = [/('--i)-i./W]n{i,...,m}. 

By a r-space, we mean a contravariant functor from F to topological spaces. By restric-
tion to A, we obtain a simplicial topological space. In particular, we may define |$| for 
any T-space. 

Let At : {1} —> { 1 , . . . , n} be the morphism in F corresponding to 

A : P { { l } ) - . P ( { l , . . . , n } ) 
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given by ilt({l}) = {i}. Then, given any T-space ^ we have the map 

$({l,. . . ,n})'illl_:. n^(0}) (8-3) 
t=l 

for each n. 
$ is said to be special if (8.3) is a weak homotopy equivalence for each n and if 

$ ( 0 ) ĉ  *. Segal then proves the following result. 

THEOREM 8.3.1. Let X be any F-space. Then there is a sequence of functors B^ from 
the category of F-spaces to itself and natural transformations 

which are weak equivalences if $ is special In particular, the sequence 

\^\,B\^lB^\^\,..., 

form an fi-spectrum, and we obtain a functor B from special spaces to Q-spectra. Fur-
ther, there is a functor A from Q-spectra to F-spaces, together with natural equivalences 
BA -^ Id and AB -^ Id, 

One can go a bit further. In any simplicial space X. with XQ contractible, one has a 
well defined homotopy class of maps from EX\ to \X.\. Let /x : {1} —> {1,2} be the 
morphism in F given by {1} —* {1-2}. Also, let 

T : # ( { 1 } ) X <?({!})- .<P({1,2,}) 

be the inverse to the weak equivalence occurring in the definition of the notion of a 
special T-space. Then ^{p) o r gives an if-space structure on ^({1}). 

THEOREM 8.3.2 (Segal). The adjoint to the inclusion ^^({1}) —> |^| is a weak equiva-
lence if the above described H-space structure admits a homotopy inverse. In particular, 
this holds ( /$({!}) is connected. 

8.4. The combinatorial data which build Q-spectra 

These constructions also allow one to construct spectra from purely combinatorial data. 
To understand this, we recall the nerve construction, which associates to any category, 
C, a simplicial set, AT.C, and hence a topological space. The fc-simplices are composable 
fc-tuples of arrows 

/i fi h fk 
x o — • X ] — y x 2 — • • • • — • X j f e 
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in C if A: > 0, and are simply objects in C if fc = 0. The face maps are given by the 
following formulae. 

do^xo—*x\ —> • 

ai[XQ—^x\ — • • 

afc(xo—*xi —»• 

/- h 
S i ( X o — > X i — » • 

V 

• -^Xk) 

• —^Xk) 

• -^Xk) 

= 

= 

= 

= 

[X\ - - > X 2 — • • •• 

/. h 
(xo—>xi —> . . . 
for 1 < z < A:, 

/I /2 
( X Q — ^ X i —•X2 

/ . /2 

( X Q — • X i —> • • • 

/ i+ i 

>Xi-L.l —^ 

/ t + i o / t 

Xi-\ ^Xi_|-i 

•• — ^ X k - \ ) , 

fi id 
^ X^—\ ' Xi 

••• —>Xfc). 

/fc 
Xfc) 

This is often a convenient way to construct spaces and maps, since it is clear that functors 
induce maps of simplicial sets. Indeed, any simplicial complex is homeomorphic to the 
nerve of a category, hence any CW complex has the homotopy type of the nerve of a 
suitable category. It is reasonable to ask what additional structure on the category allows 
one to construct a spectrum from N.C in the same way as the Q or T^-algebra structures 
allowed one to construct spectra out of a space X. In order to describe this structure, we 
need a definition. 

DEFINITION 8.4.1. A permutative category is a triple {C,Q,c), where C is a category, 
0 : C x C -^ Cisa functor, and c is a natural isomorphism of functors, from 0 to 0 or, 
where r : C x C —• C x C is the "reverse coordinates" map, subject to the following 
conditions. 

(a) 0 is associative in the sense that 

0 o ( / d x © ) = 0 o ( 0 x / d ) . 

(b) c{y, x) o c(x, y) = ^x,y) for all (x, y) eC xC. 
(c) The diagram 

AeBeC- - ^ C 0 A 0 B 

AeceB 
commutes. 

(d) c{A 0 *) = MA. 

The nerve of a permutative category becomes a simplicial monoid. Further, its realiza-
tion is a Sf-algebra, where B£ is the triple corresponding to the Barratt-Eccles (9-space 
\B\. To see this, one observes that B[|iVC]| can itself be described as the realization of 
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the nerve of a category, what one might call the free permutative category on C (see [34] 
or or [23]). One can now use the above described space level constructions to arrive at 
a connective spectrum Spt{C). 

THEOREM 8.4.1. Spt defines a functor from the category of permutative categories to the 
category of connective spectra. Further, the zeroth space of Spt{C) has the homotopy 
type of the group completion of the monoid NQC. 

The last part of the statement is crucial for computations. It has as a corollary the 
well-known theorem of Barratt, Priddy and Quillen. 

COROLLARY 8.4.1 ([28]). Let Soo denote the infinite symmetric group, i.e. 

Iim5n, 
n 

where Sn is included in Sn-\-\ in the evident way. Let BS^ denote Quillen's plus construc-
tion on BSSoo, which abelianizes the fundamental group without affecting homology. 
Then Q{S^) = BS^ x Z. In particular, ifQ{S^)o denotes the component consisting of 
maps of degree 0, H^{Q{S^)o;Z) ^ H^{BSoo\Z). 

PROOF. The Barratt-Eccles monoid valued construction on S ,̂ which is the nerve of a cat-
egory with two objects * andp, and only identity morphisms, is isomorphic to Un>o ̂ *̂ n» 
equipped with an associative multiplication, carrying BSn x BSm into BSn-^m- It is not 
hard to see that the group completion is homotopy equivalent to BSoo x Z. The result 
now follows from the above results. D 

We conclude with some examples. 
(A) The category of finite sets can be given the structure of a permutative category, 

with the sum operation corresponding to disjoint union. The resulting spectrum is the 
sphere spectrum. 

(B) Let G be a finite group, and consider the category of finite sets with G-action. 
As in (A) above, we obtain a permutative category, which corresponds to Segal's G-
equivariant sphere spectrum. It is a bouquet of spectra parameterized by the conjugacy 
classes of subgroups K of G, where the summand corresponding to the conjugacy class 
of K is the suspension spectrum of the classifying space of the group NG{K)/K. 

(C) Let A be any abelian group. View it as a category whose objects are the elements of 
A, and whose only morphisms are identity maps. The addition in A makes this category 
into a permutative category, in which c is actually an identity map for all pairs of objects 
in the category. The associated spectrum is the Eilenberg-MacLane spectrum K{A,Q>). 

(D) Let R be any ring, and consider the category of all finitely generated projective 
it-modules. This can be given the structure of a permutative category, where the sum 
operation corresponds to direct sum of modules. The corresponding spectrum is Quillen*s 
algebraic AT-theory spectrum for the ring R. 
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Section 1 Stable cohomology operations 587 

1. Introduction 

For any space X, the Steenrod algebra A of stable cohomology operations acts on the 
ordinary cohomology H*{X;Fp) to make it an ^-algebra. Milnor discovered [22] that 
it is useful to treat H*{X\Fp) as a comodule over the dual of A, which becomes a 
Hopf algebra. Adams extended this program in [1], [3] to multiplicative generalized 
cohomology theories E*{-), under appropriate hypotheses. The coefficient ring J5* is 
now graded, and E*{X) is an jB*-algebra. 

Our purpose is to describe the structure of the stable operations on £*(-) in a manner 
that will generalize in [9] to unstable operations. Unlike some treatments, we impose no 
finiteness or connectedness conditions whatever on the spaces and spectra involved, only 
a single freeness condition on E. We emphasize universal properties as the appropriate 
setting for many results. An early version of some of the ideas is presented in [8], which 
is limited to ordinary cohomology, MU, and BP, 

For general E, the stable operations form the endomorphism ring A = E*{E, 6) of E 
(in our notation). For each x £ E*{X), we have the £̂ *-module homomorphism x*:A-^ 
E*(X) given by x*r = ±rx. The key idea is (roughly) that given an jB*-module M, we 
define SM as the set of all E*-module homomorphisms A -^ M; this is to be thought 
of as the set of candidates for the values of all operations on a typical element of M. 

Generally, we encode the action of ,4 on a stable module M as the function 
PM'M —^ SM given by {pMx)r = ±rx. There is an J5*-module structure on SM 
(different from the obvious one) that makes pM a homomorphism of E*-modules. This 
is not yet enough; composition of operations makes the functor S what is known as a 
comonad, and we need {M,PM) to be a coalgebra over this comonad. When M is an 
E'̂ -algebra, so is SM, and we can similarly define stable algebras. 

This work serves as more than just a pattern for the promised unstable theory of [9]. To 
compare unstable structures with the analogous stable structures, we shall there construct 
suitable natural transformations; this is far easier to do when both theories are developed 
in the same manner. Much of the basic category theory is the same for either case; we 
keep it all here for convenience. Finally, we need specific stable results for later use. 

Outline. In Section 2, we introduce five assorted ring spectra E, which will serve 
throughout as our examples. We review some elementary category theory and set up 
notation. 

In Sections 3 and 4, we study J5-(co)homology in enough detail to suggest what 
categories to use. In Section 9, we consider (co)homology in the stable homotopy category 
of spectra. It is essential for us to work in the correct categories, in order to make our 
categorical machinery run smoothly; otherwise it does not run at all. We therefore take 
pains in Section 6 to say precisely what our categories are. 

In Section 7, we discuss the various kinds of algebraic object, such as group, module, 
and ring, that we need in general categories. In Section 8, we rework the definition of a 
module over a ring until we find a way that will generalize to the unstable context. 

In Section 10, we discuss stable modules from several points of view. We introduce 
the comonad 5, and define a stable module as an 5-coalgebra. Theorem 10.16 shows 
that E*{X) is (more or less) a stable module. 
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In Section 11, we make the homology E^{E,o) a coalgebra (in a sense), provided 
only that it is a free E*-modu\t. A stable module then becomes a comodule over it; 
indeed. Theorem 11.13 shows that the theories of stable modules and stable comodules 
are entirely equivalent. Theorem 11.14 provides a useful universal property of JS*(J5, o). 
Theorem 11.35 shows that our structure on E^{E,o) agrees with that introduced by 
Adams [1]. 

Everything mentioned so far works for spectra X, too. In Section 12, we take account 
of the multiplication present on E*{X) when X is a space by making SM an E*-algebra 
whenever M is. This leads to the definition of a stable algebra. Again, there is an 
equivalent comodule version. 

All our examples of jB-cohomology come with a complex orientation. This has stan-
dard implications for the structure of E*{CP°°) etc., which we review in Section 5. In 
Section 13, we study the consequences for operations. 

In Section 14, we present the structure on E^{E,o) in detail for each of our five 
examples E, We do not actually construct the operations, which are all well known. It 
is clear that many other examples are available. 

In Section 15, we study the special case of BP-cohomology in greater depth. For a 
general introduction, see Wilson [37]. Stable BP-operations are well established; a short 
early history would include Landweber [17], Novikov [28], Quillen [30], Adams [3], 
Zahler [41], [42], Miller, Ravenel and Wilson [21], and more recently, Ravenel's book 
[31]. We review Landweber's filtration theorem, for imitation in [9]. 

An index of symbols is included at the end. 

Acknowledgements. We thank Dave Johnson and Steve Wilson for making this paper 
necessary. As noted, it serves chiefly as a platform for [9]. It incorporates several sug-
gestions of Steve >\^lson, especially the use of corepresented functors in Section 8. We 
also thank Nigel Ray for pointing out some useful references. 

2. Notation and five examples 

Our five examples of commutative ring spectra E are: 

H{¥p) The Eilenberg-MacLane spectrum, for a fixed prime p ^ 2, which represents 
ordinary cohomology H*{-;Fp) and is a ring spectrum (see, e.g., Switzer [34, 
13.88]); 

BP The Brown-Peterson spectrum, for a fixed prime p ^ 2 (which is suppressed 
from the notation), a ring spectrum by Quillen [29]; 

MU The unitary (or complex) cobordism Thom spectrum, which is a ring spectrum 
(see, e.g., Switzer [34, 13.89]); 

KU The complex Bott spectrum (often written K), which represents topological com-
plex K-theory and is a ring spectrum [ibid., 13.90]; 

K{n) The Morava ff-theory spectrum, for a fixed prime p > 2 (again suppressed 
from the notation), and any n ^ 0. (We take p > 2 in order to ensure that 
the multiplication is commutative as well as associative; see Morava [26], and 
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especially Shimada and Yagita [33, Corollary 6.7] or Wurgler [38, Theorem 2.14]. 
See [16] for background information.) In particular, K{G) = -ff(Q) (for any p), 
and i(r(l) is a summand of /^[/-theory mod p. 

Indeed, all our ring spectra are understood to be commutative. Each E defines a 
multiplicative cohomology theory E*[X) and homology theory E^[X), which we discuss 
in Sections 3 and 4. They have the same coefficient ring E*. 

Because we deal almost exclusively in cohomology, we assign the degree n to coho-
mology classes in Ei^{X) and elements of E^\ this forces homology classes in En{X) 
to have degree - n . Note that under this convention, elements of BP* and M[7* are 
given negative degrees. 

For any space X, E*{X) and E^{X) are E*-modules. We therefore adopt E* as our 
ground ring throughout, and all tensor products and groups Hom(M, N) are taken over 
E* unless otherwise specified. Except for (co)homology, we generally follow the practice 
of [25] in writing a graded group with components M^ as M rather than M*. When 
we do write M* (e.g., E* as above), we mean the whole graded group, not a typical 
component. 

All our rings and algebras are associative and are presumed to have a unit element 1, 
which is to be preserved by homomorphisms. Dually, coalgebras are assumed to be 
coassociative. 

Summations are often understood as taken over all available values of the index. 
We do not attempt to give each construct a unique symbol. For example, all multipli-

cations are named </>, which we decorate as (ps etc. only as needed to distinguish different 
multiplications. All actions are named A and all coactions are named p. To compensate, 
we generally specify where each equation takes place. 

Signs. We follow the convention that a minus sign should be introduced whenever two 
symbols of odd degree become transposed for any reason. As explained in [7], this is a 
purely lexical convention, which depends only on the order of appearance of the various 
symbols, not on their meanings. The principle is that consistency will be maintained 
provided one starts from equations that conform and performs only "reasonable" ma-
nipulations on them. The main requirement is that each symbol having a degree should 
appear exactiy once in every term of an equation. 

Category theory. Our basic reference is MacLane's book [20], which also provides most 
of our notation and terminology. 

In any category A, the set of morphisms from X to F is denoted A{X^ F), or oc-
casionally Mor(Jf, F). If >l is a graded category (always assumed additive), A^{X, Y) 
denotes the abelian group of morphisms from Jt to F of degree n. Unmarked arrows 
are intended to be the obvious morphisms. We write 

pr.XxY-^X and pi'.XxY-^Y 

for the projections from the product X xY io its factors, and dually i\:X -^ XHY 
and 12: y -^ X II y for coproducts. We also write q:X -^T for the unique morphism 
to a terminal object T. 
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We denote by I: A -^ A the identity functor of A. We sometimes find it useful to 
write a natural transformation a between functors F,F'\A-^B as 

a:F-^F':A^B. 

If A and B are graded, we can have deg(a) = m 7»̂  0; in this case, we require aY oFf = 
(^-I'j^^Bif)F'f oaX for each morphism f:X —• Y. In contrast, our graded functors 
invariably preserve degree. 

If a':F' -^ F" is another natural transformation, we have the composite natural 
transformation a'oa:F —> F". There is the identity natural transformation \:F -^ F. 
Given also G:B -^ C, we denote the composite functor as GF.A -> C (never GoF), 
and define the natural transformation Ga.GF -> GF^:A -^ C by {Ga)X = G{aX). 
Similarly, given 0: G -^ G', we define (3F: GF -^ G'F\ A-^Chy {PF)X = /3(FX). 
We also have /3a = PF' o Ga = G'a o PF: GF -^ G'F': ^ ^ C (or ± G'a o /3F in the 
graded case). 

We make incessant use of Yoneda's Lemma [20, III.2]. 

Adjoint functors. It should be no surprise that we have numerous pairs of adjoint functors. 
Suppose given a functor V\B -^ A (which is usually, but not necessarily, some forgetful 
functor) and an object A in A. 

DEHNITION 2.1. We call an object M in iB V-free on A, with basis i\A -^ VM, a 
morphism in A, if for each B in B, any morphism f:A^ VB in A "extends" to 
a unique morphism g:M -^ B in B, called the left adjunct of / , in the sense that 
Vgoi^f.A^VB. 

In the language of [20, III.l], i is a universal arrow, which induces the bijection 
B{M,B) = A{A, VB). The free object M is unique up to canonical isomorphism, but 
there is no guarantee that one exists. In the favorable case when we have a free object 
FA for each A in A, with basis rjA: A —> VFA, there is a unique way to define Fh for 
each morphism h in A to make rj natural; then F becomes a functor and the isomorphism 

B{FA,B)^A{A,VB) (2.2) 

is natural in both A and B. Explicitly, we recover f:A-^ VB from g: FA -^ B SLS 

f=^Vgor]A:A ^ VFA y VB in A. (2.3) 

For any B, we define eB.FVB -^ B in B as extending l:VB ^ VB. Then 
e: FV -^ / is also natural, and we may construct the left adjunct p of / as 

g = eBo Ff: FA > FVB >B in B. (2.4) 

The fact that this is inverse to eq. (2.3) is neatly expressed by the pair of identities 

(i) VeorjV = \:V >V:B > A, 
' (2.5) 

(ii) eFoF7]= \:F >F:A ^ B. 
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We summarize the basic facts about adjoint functors from [20, Theorem IV. 1.2]. 

THEOREM 2.6. The following conditions on a functor V:B —^ A are equivalent: 

(i) V has a left adjoint F:A^ B; 
(ii) V is a right adjoint to some functor F.A-^ B; 

(iii) There is a functor F\A-^B and an isomorphism (2.2), natural in A and B; 
(iv) For all A in A ^e can choose a V-free object FA and a basis rjA of it; 
(v) There is a functor F:A—^B with natural transformations rj:I -^ VF and 

e: FV -^ I that satisfy eqs. (2.5). 

In view of the symmetry in (v), or between (i) and (ii), we have the dual result, which 
we do not state. Nevertheless, we do give the dual to Definition 2.1. 

DEFINITION 2.7. The object N in B is V-cofree on A, with cobasis p: VN -> A, a 
morphism in A, if for each B in B, any / : VB -^ Am A "lifts" uniquely to a morphism 
g:B ^ N in B, called the right adjunct of / , in the sense that poVg — f. 

3. Generalized cohomology of spaces 

In this section and the next, we review multiplicative cohomology theories £?*(-) and 
their associated homology theories E^{-) in sufficient depth to decide what objects our 
categories should contain. We also establish much of our notation. 

Spaces, We find we have to work mostly with unbased spaces. The most convenient 
spaces are CW-complexes. We denote by T the one-point space. It is sometimes useful 
to allow also spaces that are homotopy equivalent to CW-complexes, so that we can form 
products and loop spaces directly. A pair {X, A) of spaces is assumed to be a CW-pair 
(or homotopy equivalent, as a pair, to one). 

Ungraded cohomology. For our purposes, an ungraded cohomology theory is a 
homotopy-invariant contravariant functor / i (-) that assigns to each space X an abelian 
group h{X), and satisfies the usual two axioms: 

(i) h{-) is half-exact: IiX — AuB, where A and B are well-behaved 
subspaces (e.g., subcomplexes of a CW-complex X), and y € h{A) 
and z G h{B) agree in h{A fl B), there exists x E h{X) (not in 
general unique) that lifts both y and z\ 

(ii) h{-) is strongly additive: For any topological disjoint union X = 
U^ Xa, the inclusions X^cX induce h{X) ^ Y[^ /i(Xa). 

For a space X with basepoint o € X, we may define the reduced cohomology h[X^ a) 
by the split short exact sequence 

0 > h{X, a) ^ h{X) y /i(o) ^ 0. (3.2) 
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We recover the absolute cohomology h{X) by constructing the disjoint union X'^ of 
X with a (new) basepoint; by (ii), h{X'^) = h{X) 0 h{o) and the inclusion X C X+ 
induces an isomorphism 

h{X-^,o)^h{X). (3.3) 

For a good pair (X, A) of spaces, we may define the relative cohomology as 

h{X,A)=^h{X/A,o), (3.4) 

and these groups behave as expected. We generalize eq. (3.2). 

LEMMA 3.5. If A is a retract of X, we have the split short exact sequence 

0 y h{X, A) y h{X) y h{A) > 0. 

If A has a basepoint o, we have also the split short exact sequence 

0 > h{X, A) y h{X, o) y h{A, o) y 0. 

With no basepoints, we have to be a little careful in representing h{—). Let Ho be the 
homotopy category of spaces that are (homotopy equivalent to) CW-complexes. 

THEOREM 3.6. Let h{-) be an ungraded cohomology theory as above. Then: 

(a) h{—) is represented in Ho by an H-space H, with a universal class L G h{H, o) C 
h{H) that induces an isomorphism Ho{X, H) = h{X) of abelian groups by f ^-^ h{f)i 
for all X; 

(b) For any cohomology theory k{—), operations 6:h{-') —> k{-) correspond to 
elements 6i G k{H). 

PROOF. What Brown's representation theorem [10, Theorem 2.8, Example 3.1] actually 
provides is a based connected space {H', o), which represents h{—,o) on based connected 
spaces (X, o) only. Then West [35] shows that / i ( - , o) is represented on all based spaces 
by the product space 

H = h{T) X H\ (3.7) 

where we treat the group h{T) as a discrete space. By eq. (3.3), H also represents h{-) 
in the unbased category Ho. 

The map UJ\T ^ H that corresponds to 0 G h{T) furnishes H with a (homotopically 
well-defined) basepoint, and the exact sequence (3.2) shows that t € h{H,o). Yoneda's 
Lemma represents the addition 

Ho{X,HxH) ^ h{X) X h{X) - ^ h{X) = Ho{X,H) 
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by an addition map ^:H x H -^ H which makes H an if-space, and also gives (b). 
(Lemma 7.7(a) will tell us much more about H.) D 

Example. KU. For finite-dimensional spaces X, the ungraded cohomology theory 
KU{X) is defined (e.g., Husemoller [15]) as the Grothendieck group of complex vector 
bundles over X. The class of the vector bundle ^ is denoted [̂ ], and every element of 
KU{X) has the form [̂ ] — [77]. The trivial n-plane bundle is denoted simply n. Addition 
is defined from the Whitney sum of vector bundles, [̂ ] + [77] = [^©r/], and multiplication 
from the tensor product, [̂ ][?7] = [̂  0 r/]. In particular, KU{T) = Z, as a ring. 

Let {X^o) be a based connected space, still finite-dimensional. Because any vector 
bundle ^ over X has a stable inverse 7/ such that ^ 0 77 is trivial, every element of 
KU{X, o) can be written in the form [̂ ] - n for some n-plane vector bundle ,̂ provided 
n is large enough. The bundle ^ has a classifying map X -> BU{n) C BU, which leads 
to the representation Ho{X,BU) = KU{X^o). As in the proof of Theorem 3.6, this 
extends to an isomorphism Ho{X,ZxBU) = KU{X), valid for all finite-dimensional 
spaces X. 

To extend KU{-) to all spaces as an ungraded cohomology theory, we must define 
KU{X) = Ho{X,ZxBU). It remains true that any vector bundle ^ over X defines 
an element [(] € KU{X), but in general, not all elements of KU{X) have the form 

Splittings. All our splittings depend on the following elementary result. 

LEMMA 3.8. Assume that 6:h{-) —• h{-) is an idempotent cohomology operation, 
6o9 = 0. Then the image 6h{-) also satisfies the axioms (3.1). 

PROOF. For (i), given y e 6h{A) and z £ 6h{B) that agree in h{A 0 B), the half-
exactness of h yields an element x G h{X) that lifts y and z. Because 6 is idempotent, 
6x 6 0h{X) also lifts y and z, to show that (i) holds. 

For (ii), we need only the naturality of .̂ Given elements Xa = Ox'^ G 9h{Xot), axiom 
(ii) for h provides x' E h{X) that lifts each x'^. Then x = 0x^ e 0h{X) lifts each Xa, 
and is unique because h satisfies (ii). D 

We immediately deduce the standard tool for constructing splittings. Theorem 3.6(b) 
allows us to write the identity operation as t. 

LEMMA 3.9. Let 0 be an additive idempotent operation on the ungraded cohomology 
theory h{-). Then: 

(a) L — 0 is also idempotent; 

(b) We can define ungraded cohomology theories 

h'{X) = Ker [0: h{X) y h{X)] = Im [t - 9: h{X) y h{X)] 

and 

h"[X) = Ker [i - 9: h{X) > h{X)] = Im [0: h{X) ^ h{X)]; 
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(c) We have the natural direct sum decomposition h{X) = /i'(A') © h"{X); 

(d) If the H-spaces H' and H" represent h'{-) and h"{-) as in Theorem 3.6(a), then 
H' X H" represents h{-). 

For future use in [9], we extend this result to certain nonadditive idempotent operations. 
To emphasize the nonadditivity, we retain the parentheses m 6{-). 

LEMMA 3.10. Assume the nonadditive operation 0 on the ungraded cohomology theory 
h{-') satisfies the axioms: 

(i)e(0) = 0; 
(ii) 0{x + y-9{y)) = e{x)foranyx,yeh[X). ^ ^ 

Then: 
(a) 6 and t- 6 are idempotent; 

(b) We can define the kernel cohomology theory h'{—) = KtrO = lm{i—6) as a 
subgroup of h{—); 

(c) We can define the coimage cohomology theory h"{X) = Coim^ = h{X)/h\X) 
as a quotient ofh[X\ with projection n: h{X) —> h"{X); 

(d) We have the natural short exact sequence of ungraded cohomology theories 

0 > h\X) - ^ h{X) - ^ h"{X) > 0; (3.12) 

(e) 0 induces a nonadditive operation 0:h"{X) -^ h{X) which splits (3.12) and 
induces the bijection of sets h"{X) = Coime ^ Im[fl: h{X) -^ h{X)]; 

(f) The short exact sequence (3.12) is represented by a fibration of H-spaces and 
H-maps 

H' >H y H" 

in which H -> H" admits a section {not an H-map) and H '^ H' x H" as spaces. 

REMARK. Note the asymmetry of the situation. It is necessary to distinguish (cf. [20, 
Vin.3]) between the coimage of 9, which is a quotient group of h{X), and the image 
of 6, which in interesting cases is only a subset of h{X), not a subgroup (otherwise 
Lemma 3.9 would be available). 

PROOF. For (a), we put x = 6{y) in (ii) to see that 0 is idempotent. If we put x = 0 
instead, we see that 6{y - 0{y)) = 0, which implies that 6 - 0 is idempotent. 

For (b), we have just seen that Im(^-^) C KeiO. The opposite inclusion is trivial, 
because if 0{x) = 0, we can write x = {L—6){X). 

To see that h'{X) is a subgroup, we first note that 0 G h^{X) by (i). Take any 
z G h'{X), which we may write as z = y - 6{y). Then by (ii), x -}- z £ h!{X) if and 
only if X e h'{X). Therefore by Lemma 3.8 (which did not require 6 to be additive), 
/i'(-) is a cohomology theory. 
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This allows us to define the coimage h"{X) in (c) as an abelian group. By (ii) and 
(b), 6 in (e) is well defined and provides the inverse bijection to Im^ C h{X) -^ h"{X), 
By Lemma 3.8, Im^ and hence h"{-) satisfy the axioms (3.1), and h" is a cohomology 
theory. Then (d) combines (b) and (c). 
_̂  For (f), we represent TT by a fibration H —* H'\ which is an ff-map of if-spaces. Then 
9 is represented by a section. It follows from the short exact sequence (3.12) that the 
fibre of TT represents h', D 

Graded cohomology. A graded cohomology theory E*{—) consists of an ungraded coho-
mology theory J5^(-) for each integer n, connected by natural suspension isomorphisms 

E: E^{X) ^ ET^^ {S^ xX.oxX) (3.13) 

of abelian groups, much as in Conner and Floyd [12, §4]. By Lemma 3.5, there is a split 
short exact sequence 

0 > E^-^\S^ xX.oxX) y E^^\S^xX) ^ Er^\oxX) y 0. (3.14) 

For a based space {X, o), S induces, with the help of eq. (3.4), the commutative diagram 
of split exact sequences 

E-{X,o) 

E'^^^EX.o) -^ E"-^ 

E^{X) - Er{o) 

- E^+\S^xo,o) 

(3.15) 

whose bottom row comes from Lemma 3.5, where the suspension of X is 

5'xA" 5 ' x X 
SX = S' hX = 

5 ' V X oxX 
S'xo. 

We deduce the more commonly used reduced suspension isomorphism E: E^{X,o) = 
£"•*"'(i7X, o). In view of eq. (3.3), we recover eq. (3.13) as a special case. 

By iteration of eq. (3.13), or analogy, there are fc-fold suspension isomorphisms for 
all Jfc > 0 

i:'':Er{X) ^ £;«+*(5* xX,oxX). (3.16) 

THEOREM 3.17. Any graded cohomology theory E*{-) is represented in Ho by an 
i7-spectrum n *-> E.„, consisting of H-spaces E.„ equipped with universal elements 
Ln ^ E^iEn^o) C E^iEn) ^"^ isomorphisms (in Ho) of H-spaces E^'^ ^E_n+f 
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PROOF. Theorem 3.6 provides the if-spaces E_^ and elements in. Then as a functor of 
X, the sequence (3.14) is represented by the fibration of if-spaces 

(which is not to be confused with the path space fibration). In particular, 

£ ^ + ^ ( 5 ^ x X , o x X ) ^ Wo(X,r2£^+,), (3.18) 

and eq. (3.13) is represented by the desired isomorphism E_^ ~ fiE,^^^. D 

Similarly, E^ in eq. (3.16) is represented by the iterated homotopy equivalence E,^ c=i 

We find it more convenient to work with the left adjunct SE,^ -^ E.n-\-\ ^^ ^̂ ^ 
isomorphism. We introduce a sign, which is suggested by Section 9. 

DEFINITION 3.19. For each n, we define the based structure map fn'- EE_^ —^JE^_^.^ by 

f^in^^ = {-irSin in E^^'{SE^,o). (3.20) 

Theorem 3.17 gives a 1-1 correspondence between cohomology classes and maps. We 
suspend in both senses and compare. 

LEMMA 3.21. Given a based space X, suppose that the class x G E'^{X, o) corresponds 
to the based map xu'X -^ E_^. Then the map fn^Sxu'-SX —> SE_^ —> E^^^ 
corresponds to the class {-\)''Ex € E^'-^^iLX.o) (see diag. (3.15)). 

PROOF. In E*{EX,o), we have {ExuYfni^n-^\ = {-lT{Exu)*ELn = {-\)''Ex. D 

Multiplicative graded cohomology. The cohomology theory £"*(-) is multiplicative if 
E*{X) is naturally a commutative graded ring (with unit element Ix and the customary 
signs) and eq. (3.13) is an isomorphism of £^*(-X')-modules of degree 1, where we use the 
projection pz'.S^ x X —• X to make (3.14) a short exact sequence of J5*(X)-modules. 
Explicitly, E{xy) = {-\Y{p^x)Uy for x G E'{X) and y £ £'*(X). The coefficient ring 
is defined as JB* = JE;*(T). 

The natural ring structure on E*{X) is equivalent to having natural cross product 
pairings 

x:E^{X) X E'^iY) > £^+^(X x Y) 

that are biadditive, commutative, associative, and have IT ^ E*{T) as the unit. They 
may be defined in terms of the ring structure as x x y = (p*x)(p22/); conversely, given 
x,y G -B*(X), we recover xy = A*{x x y), using the diagonal map A:X -^ X x X. 

By means of X = TxX, J5*(X) becomes a module over E* = E*{T), and we may 
rewrite the x-product more usefully as 

x: £;*(X) 0 E*{Y) . E^X x Y), (3.22) 
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where the tensor product is taken over E*. On the rare occasion that this is an isomor-
phism, it is called the cohomology Kunneth isomorphism. 

DEFlNmON 3.23. We define the canonical generator u\ G E\S^,o) C E\S^) as cor-
responding to E\T e E^{S^ xT.oxT)^ £"(5^o), by taking X = T in eq. (3.13). 

Then by naturality, for any x e E'^{X) wc have 

Sx = uixx in £^+^(5* xX,oxX). (3.24) 

Similarly, E'^x = u/t x x in eq. (3.16), where the canonical generator Uk G E^{S^,o) 
corresponds to î ^ l̂̂ . 

THEOREM 3.25. A multiplicative structure on the graded cohomology theory E*{-) is 
represented by multiplication maps <j):KkXE_^ -* Ek^S-m "̂  Ek-hm ^^ ^ ^^^^ '̂ ^P 
ri:T ^ EQ, such that: 

(a) The cross product ofxe E^{X) and y e £"^(y) is 

xxy:XxY ^ ^ RkXE^-^ Ek^^\ (3.26) 

(b) The unit element of E^'i^X) is \x ='Hoq-.X ~^T -^ EQ; 

(c) Given v G E^, the module action v\E^{-) -> E^'^^{-) is represented by the map 

^v'.E^^T X E, -^^ Ef,x E, - ^ Ef,^^; (3.27) 

(d) The structure map SE_n -^ E.n^\ of Definition 3.19 IJ 

fn:EE^ = S' AE^ >E, AE^ > E^^,. (3.28) 

PROOF. We take ik x im ^ E^-^^^iE^xE^) as 0 and IT € E^{T) as rj; then (a) 
and (b) follow by naturality. By definition, vx corresponds to t̂  x x G E^'^^(TxX). 
Thus by eq. (3.26), scalar multiplication by v in E*{X) is represented by eq. (3.27); 
equivalently, we use the identity vx = {vl)x in E*{X). By eq. (3.24), the map (3.28) 
takes Ln-\-\ to {-l)^I!Ln and is therefore /n- D 

From now on, we shall assume that £ * ( - ) is multiplicative. We shall have much more 
to say (in Corollary 7.8) about the spaces £ ^ , once we have the language. 

Example. KU. The key to making a graded cohomology theory out of KU{-) is 
Bott periodicity, in the following form. (See Atiyah and Bott [6] or Husemoller [15, 
Chapter 10] for an elegant proof that is close to our point of view.) It gives us everything 
we need to build a periodic graded cohomology theory. 
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THEOREM 3.29 (Bott). The HopfUne bundle ^ over CP^ = S'^ induces an isomorphism 

([̂ ] - 1) X -:KU{X) ^ KU{S^xX,oxX) 

for any space X. 

DEFINITION 3.30. We define the graded cohomology theory KU*{-) as having the rep-
resenting spaces KU2n = Z x BU and KUin\-\ = U for all integers n, so that 
KC/2^(X) = Ho{X,ZxBU) = KU(X) and Kf/^^+H^) = Ho{X,U). 

In odd degrees, we use the suspension isomorphism 

KU^n+\X)^ KU^''^^{S^xX,oxX)^ Ho{X,n{ZxBU)) (3.31) 

represented by C/ ~ QBU = fiiZxBU). In even degrees, rather than specify 
E:KU'^''{X) ^ KU'^'^^\S^xX,oxX) directly, we use the double suspension iso-
morphism ShKU^'^iX) ^ KU^^'-^^iS^xX.oxX) provided by Theorem 3.29. 

The ring structure on KU{X) makes KU*{X) multiplicative, with the help of 
eq. (3.31). (The only case that presents any difficulty is 

KU^m-^\X) X KU^''^\X) ^ ii:f/2(^+"+^)(X), 

which requires another appeal to Theorem 3.29.) 
The coefficient ring is clearly Z [ti, u~ \ where we define u G KU-^ = KU{T) = Z 

as the copy of 1. To keep the degrees straight, all we have to do is insert appropriate 
powers u^ everywhere. (It is traditional to simplify matters by setting it = 1, thus making 
KU*{-) a Z/2-graded cohomology theory; however, this strategy is not available to 
us, as it would allow only operations that preserve this identification.) For example, 
Theorem 3.29 provides the canonical element 

U2 = u-\[^] - 1) in KU^{S\o) C KU^S^), (3.32) 

The skeleton filtration. The cohomology E*{X) is usually uncountable for infinite X, 
which makes Kiinneth isomorphisms (3.22) unlikely without some kind of completion. 
This suggests that it ought to be given a topology. 

Given any space X (which we take as a CW-complex), the skeleton filtration of E*{X) 
is defined by 

F'E*{X) = Ker [E*{X) y E*{X'^^)] = Im [E*{X,X'-^) ^ E'^iX)] (3.33) 

for 5 ^ 0 , where X^ denotes the n-skeleton of X, and this filtration is natural. It is a 
decreasing filtration by ideals, 

E^X) = F^E*{X) D F^E'^iX) D F^E*{X) D • • • . 

Moreover, it is multiplicative, 

(F'E^X)) {F^E*{X)) c F'^'E*{X) (for all 5, t), (3.34) 
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because X^~^ xX I) XxX^~^ contains the (5+t-l)-skeleton of X x X, as in [34, 
Proposition 13.67]. 

When X is connected, with basepoint o, we recognize F^E*{X) from the exact 
sequence (3.2) as the augmentation ideal 

F^E*{X) = E*{X,o) = Ker [E*{X) > E\o) ^ E^]. (3.35) 

Filtered modules. We need to be somewhat more general. 

DEFINITION 3.36. Given any jB*-module M filtered by submodules F°'M, the associated 
filtration topology on M has a basis consisting of the cosets x -\- F^M, for all x € M 
and all indices a. 

For this to be a topology, we need the directedness condition, that given F°-M and 
F^M, there exists c such that F^M C F"M n F^M, 

We consider the projections M -* M/F°'M, We observe that M is Hausdorff if 
and only if the induced homomorphism M —• lima M/F^M is monic, and that M is 
complete (in the sense that all Cauchy sequences n^-* Xn € M converge) if and only if 
it is epic. (A Cauchy sequence is one that satisfies Xm—Xn —̂  0. However, its limit is 
unique only if M is Hausdorff.) 

DEFINITION 3.37. We define the completion of the filtered module M as M = 
liiriaM/F^M. The projections M —• M/F^M lift to define the completion map 

We shall observe in Section 6 that M has a canonical filtration that makes it complete 
Hausdorff. 

In particular, we have the skeleton topology on E*[X). It is of course discrete when 
X is finite-dimensional. Since E*{X)/F^E*{X) C E*{X^-^), Milnor's short exact 
sequence [24, Lemma 2] 

0 ^ lim^E^-^ (X') ^ E'^iX) > limE^fX^) > 0 (3.38) 
s s 

may be written in the form 

0 ^ F°°E^{X) > E^{X) y \imE^{X)/F'E^{X) y 0, (3.39) 
5 

where 

F^E^{X) = f]F'E\X) 
s 

and we recognize the limit term as the completion of E^{X). Thus the skeleton filtration 
is always complete, but examples show that it need not be Hausdorff. The elements of 
F°°E^{X) are caWcd phantom classes. In this case, the completion is simply the quotient 
of E^{X) by the phantom classes. 
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REMARK. The terminology is unfortunate, but standard. The word "complete" is some-
times understood to include "Hausdorff', which would leave us with no word to describe 
our situation. Here, completion is really Hausdorffification. 

4. Generalized homology and duality 

Associated to each of our multiplicative cohomology theories £?*(—) is a multiplicative 
homology theory £ * ( - ) , whose coefficient ring E^{T) we can identify with E*{T) = 
E*. In this section, we study the relationship between them. We shall see in Section 9 that 
the situation is quite general. In line with a suggestion of Adams [1], we have two main 
tools: a Kiinneth isomorphism. Theorem 4.2, and a universal coefficient isomorphism. 
Theorem 4.14. (Wth our emphasis on cohomology, we never write J5* for E* or E-n 
for E^, as is often done.) 

Homology too has external cross products 

x'.E.{X)^E.{Y) ^E.{XxY), (4.1) 

that make E^{X) an £*-module. This is more often than (3.22) an isomorphism. 

THEOREM 4.2. Assume that E^{X) or E^{Y) is a free or flat E^-module. Then the pairing 
(4.1) induces the Kunneth isomorphism E^{XxY) = E^{X) (8) E^iX) in homology. 

PROOF. See Switzer [34, Theorem 13.75]. Assume that E^{Y) is flat. The idea is that 
as X varies, (4.1) is then a natural transformation of homology theories, which is an 
isomorphism iox X = T and therefore generally. D 

This is particularly useful for E = K{n) or H{¥p), for then all E*-modules are free. 
When E^{X) is free (or flat), we can define the comultiplication 

^l^:E^{X) - ^ E,{X xX)^^ E,{X)®E.{X), (4.3) 

which, together with the counit e = q^:E^{X) -^ E^{T) = E* induced by q:X -^ T, 
makes E^{X) an jEJ*-coalgebra. 

The homology analogue of Milnor's exact sequence (3.38) is simply [24, Lemma 1] 

En{X) = colm En{X'). (4.4) 
s 

Duality. Our only real use of homology is the Kronecker pairing 

{-,^):E*{X)^E,{X) >E\ 

which is £J*-bilinear in the sense that {vx,z) = v{x,z) = {-l)^'{x,vz) forx € E'{X), 
z 6 £»(X), and v G E'^. We convert it to the right adjunct form 

d:E*{X) vDE.(X) (4.5) 
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by defining {dx)z = {x,z). Here, DM denotes the dual module Hom*(M, ^*) of any 
£;*-module M, defined by [DMY = Hom'̂ CM, JS*). (But we still like to write the 
evaluation as ( - , -):DM ® M -^ E*.) This is the correct indexing to make DM an 
£'*-module and d a homomorphism of E^-modules. It is reasonable to ask whether d is 
an isomorphism. We shall give a useful answer in Theorem 4.14. 

There is an obvious natural pairing C^D'. DM 0 DN —> D{M<S)N), defined by 

{CD{f^9).x^y) = (-l)'^^^")^«^^^(/,x)(^,2/) in E\ (4.6) 

All these structure maps fit together in the commutative diagram 

E^X)®E^Y) - ^ DE4X)^DE4Y) ^ D{E,{X) (^ E^Y)) 

\DX (4.7) 

J5*(X X Y) DE^X X Y) 

which, algebraically, states that (xxy^axb) = ±{x,a){y,b). Its significance is that if 
any four of the maps are isomorphisms, so is the fifth. 

We need more. We need a topology on DE^{X) to match the topology on E*{X). 
There is an obvious candidate. (We stress that the homology E^{X) invariably has the 
discrete topology.) 

DEFINITION 4.8. Given any E*-module M, we define the dual-finite filtration on DM = 
Hom*(M,£^*) as consisting of the submodules F^DM = Ker[jDM -^ DL], where L 
runs through all finitely generated submodules of M. It gives rise by Definition 3.36 to 
the dual-finite topology on DM. 

This filtration is obviously Hausdorff, and we see it is complete by writing DM — 
WitiL DL, the inverse limit of discrete £*-modules. It certainly makes d continuous, 
because any finitely generated L C E^{X) lifts to E„{X^) for some 5, by eq. (4.4). 

The profinite filtration. The skeleton filtration is adequate for discussing spaces of finite 
type (those having finite skeletons), but not all our spaces have finite type. We need a 
somewhat coarser topology that has better properties and a better chance of making d in 
(4.5) a homeomorphism. 

DEFINITION 4.9. Given a CW-complex X, we define the profinite filtration of E*{X) as 
consisting of all the ideals 

F^E^{X) = Ker [E%X) > E*{Xa)] = Im [E'{X,Xa) ^ E*{X)], 

where Xa runs through all finite subcomplexes of X. We call the resulting filtration 
topology (see Definition 3.36) the profinite topology. 
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The particular indexing set is not important and we rarely specify it. The ideals 
F°'E*{X) do form a directed system: given F" and F^, there exists Xc such that 
F^ C F« n F\ namely Xc = Xa U X^. 

This is our preferred topology on E*{X), for all spaces X. It is natural in X: given 
a map f:X -^Y, f*:E'*{Y) -^ E*{X) is continuous, because for each finite Xa C X, 
there is a finite Yh CY for which fXa C Yt, so that /*(F^) C F". Indeed, it is the 
coarsest natural topology that makes E*{X) discrete for all finite X. 

Of course, it coincides with the skeleton topology when X has finite type. However, 
it has one elementary property that the skeleton topology lacks. 

LEMMA 4.10. For any disjoint union X = Ua"^"' ^̂ ^ profinite topology makes 
E^{X) ^ Ha E^i^a) a homeomorphism. 

DEFINITION 4.11. For any space X, we define its completed E-cohomology E*{Xy as 
the completion of E*{X) with respect to the profinite filtration. 

A result of Adams [2, Theorem 1.8] shows that the profinite topology is always 
complete, that 

E*{X) > limF*(X)/F"F*(X) C \imE*{Xa) 
a a 

is surjective, which allows us to identify canonically 

E^Xy = E*{X)/nF''E*{X) ^ Vim E^Xa) (4.12) 
a 

for all spaces X. This completed cohomology is not at all new; it was discussed at some 
length by Adams [ibid.]. 

As before, the topology on E*[X) need not be Hausdorff. The intersection 
fl^ F^E''{X) (which contains F°°F*(X)) need not vanish, and its elements are called 
weakly phantom classes. In practice, one hopes there are none, so that E* {Xy = F* (X). 

Strong duality. We note that the morphism d in eq. (4.5) remains continuous with the 
profinite topology on E*{X). 

DEFINITION 4.13. We say the space X has strong duality if d:E*{X) -> DE^{X) in 
(4.5) is a homeomorphism between the profinite topology on E*{X) and the dual-finite 
topology on DE^{X) (see Definition 4.8). 

THEOREM 4.14. Assume that F*(X) is a free E*-module. Then X has strong duality, i.e. 
d:E*{X) = DE^{X) is a homeomorphism between the profinite topology on E*{X) 
and the dual-finite topology on DE^[X). In particular, E*{X) is complete Hausdorff. 

This is best viewed as a stable result, and will be included in Theorem 9.25. 
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Kunneth homeomorphisms. The cohomology Kunneth homomorphism (3.22) is rarely an 
isomorphism, but our chances improve if we complete it. Generally, given £J*-modules 
M and N filtered by submodules F°'M and F^N, we filter M^N hy the submodules 

F"'^(M (g) iV) = Im [(F"M(8)iV) e {M^F^N) > M ® N] 
(4.15) 

= Ker [M (8) AT > (M/F^'M) 0 (A^/F^iV)] 

where the second form follows from the right exactness of 0 . (Often, but not always, 
F^M^N and M^F^N are submodules of M<S)N.) We construct the completed tensor 
product M§)N as the completion of M ^ N with respect to this filtration. 

The filtration makes x-multiplication (3.22) continuous, because given Zc C Z = 
XxY, the inverse image of F''E*{Z) contains F^'^(£;*(X)(8)JE;*(y)), provided Zc C 
Xa X yj,. We may therefore complete it to 

X'.E*[X)^E%Y) y E*{X x YY (4.16) 

and ask whether this is an isomorphism. Again, we need more than a bijection. 

DEFINITION 4.17. If the pairing (4.16) is a homeomorphism and E*{XxYy = 
E*{XxY), we call the resulting homeomorphism E*{XxY) ^ E*{X)§>E''{Y) a 
Kunneth homeomorphism. (Note that we require E*{XxY) to be already Hausdorff.) 

Similarly, C^D'.DM ® DN —• D{M<S)N) is continuous. We therefore complete 
diag. (4.7) to 

E*{X)^E'{Y) - ^ DE.{X)^DE4Y) ^ D{E.{X) ^ E,{Y)) 

Dx (4.18) 

E*{XxY) DE^{XxY) 

THEOREM 4.19. Assume that E^[X) and E^{Y) are free E^-modules. Then we have the 
Kunneth homeomorphism E*{XxY) = E*{X)^E*{Y) in cohomology. 

PROOF. The hypotheses, with the help of Theorems 4.2 and 4.14, make (4.18) a diagram 
of homeomorphisms. (For CD» we may appeal to Lemma 6.15(e).) D 

5. Complex orientation 

All five of our examples of cohomology theories E*{--) are equipped with a complex 
orientation. This will provide Chern classes and a good supply of spaces with free 
^-homology. 
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The Chem class of a line bundle. Denote by M(^) the Thorn space of a vector bundle ̂ . 
A complex orientation (for line bundles) assigns to each complex line bundle 6 over any 
space X a natural Thorn class t{6) € E^{M{0)), such that for the line bundle 1 over a 
point, t(l) = U2 eE^{S'^). 

REMARK. We assume here a specific homeomorphism between S^ and the one-point 
compactification of C, as determined by some orientation convention. In some contexts, 
it is useful to allow the slightly more general normalization t(l) = Au2, where X e E* 
may be any invertible element; but then X~^t{6) is a Thom class in the stricter sense. 
We have no need here of this extra flexibility. 

For our purposes, a closely related concept is more useful. 

DEFINITION 5.1. Given £*, a line bundle Chem class assigns to each complex line bundle 
9 over any space X a class x{d) G E^{X), called the (first) E-Chem class of 6, that 
satisfies the axioms: 

(i) It is natural: Given a map / : X' ^ X and a line bundle 0 over X, for the induced 
line bundle fO over X' we have x{re) = f*x{e) in E^{X')\ 

(ii) It is normalized: For the Hopf line bundle ^ over CP* = 5^, we have x(^) = 
tX2 G £"^(5^), the canonical generator of E*{S^). 

It is easy to see that x{0) = i*t{6) satisfies the axioms, where i:X c M{6) denotes 
the inclusion of the zero section. (Conversely, Connell [11, Theorems 4.1, 4.5] shows 
that every line bundle Chem class arises in this way, from a unique complex orientation.) 

For E — KU, it is obvious from eq. (3.32) that 

x{e) = u-\[e] - 1) G KU^{X) (5.2) 

is a line bundle Chern class. 

Complex projective spaces. Of course, Chern classes need not exist for general E. 
As the Hopf line bundle ^ over CP°° = BU{1) is universal, it is enough to have 
X = x ( 0 € E 2 ( C P ° ° ) . We start with CP^. 

LEMMA 5.3 (Dold). Assume that the Hopf line bundle ^ over CP^ has the Chern class 
X = x{0 e E^iCP""), where n^O. Then: 

(a) E*(CP^) =E*[x: x^+^ = 0], a truncated polynomial algebra over E*; 
(b) We have the duality isomorphism d: £'*(CP^) = DE^iCP""); 
(c) £;*(CP^) is the free E*-module with basis {/3o, A.i^i , . . . ,/3n}, where Pi G 

E2i{CP'^) is defined as dual to x\ 

PROOF. See Adams [3, Lemmas II.2.5, II.2.14] or Switzer [34, Propositions 16.29, 16.30]. 
The idea is that the presence of x forces the Atiyah-Hirzebruch spectral sequences for 
both £;*(CP^) and £;*(CP") to collapse. (There is of course no topology on £;*(CP^) 
to check.) One has to verify that x'̂ '̂ ^ = 0 exacdy. In terms of the skeleton filtration, 
X G F^E^iCP""). Then by eq. (3.34), x^+^ € p2n+2^*(cpn) ^ Q. D 
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The result for CP°° follows immediately, by eq. (4.4) and Theorem 4.14, and also 
clarifies exactly how nonunique a complex orientation is. Similarly named elements 
correspond under inclusion. 

LEMMA 5.4 (Dold). Assume that we have the Chem class x = x{^) £ E'^{CP°^). Then: 
(a) jE*(CP°°) = ^*[[a:]], the algebra of formal power series in x over E*, filtered by 

powers of the ideal (x); 
(b) We have strong duality d: £;*(CP°°) ^ DE.iCP'^); 
(c) £'^(CP°°) is the free E*-module with basis {/3b,/3i,/32,/?3, • • •}, >^here f3i G 

JS2i(CP°°) is dual to x' for i ^ 0. 

Chem classes of a vector bundle. We proceed to BU by way of CP"^ = BU{1) C BU. 
A useful intermediate step is the torus group T{n) = C/(l) x ••• x 17(1), for which 
BT{n) = BU{1) X • • • X BU{\). We have Kunneth isomorphisms 

E^{BT{n)) ^ E^(CP~) 0 E, (CP°^) 0 • • • (g) B*(CP°°) 

in homology by Theorem 4.2, and 

E\BT{n)) = E%xx,X2,.. ,,Xn]] ^ E*{CP^) 0 • • • §£;*(CP~) (5.5) 

in cohomology by Theorem 4.19, where Xi — p*x(^) = x(p*^). 

LEMMA 5.6. Assume E has a line bundle Chem class. Then: 

(a) E*{BU) = £*[[ci,C2,C3,...]], where Ci e E'^''{BU) restricts to the ith elemen-
tary symmetric function of the Xj G E*{BT{n)) for any n ^ i, and E*{BU(ri)) = 
E* [[c\, C2,..., On]] is the quotient of this with Ci = 0 for all i > n; 

(b) We have strong duality d:E*{BU) ^ DE^BU) and d'.E*{BU{n)) ^ 
DE^{BU{n)), and in particular, E*{BU) and E*{BU{n)) are Hausdorff; 

(c) E^(BU) = £;*[/3i,/32,/33,...], vv/iere A is inherited from A E jB2t(CP°°) by 
CP°° = BU{\) C BU and ^ ^ I and E^{BU(n)) C E^{BU) is the E*-free 
submodule spanned by all monomials of polynomial degree ^ n in the /Si. 

PROOF. See Adams [3, Lemma IL4.1] or Switzer [34, Theorems 16.31, 16.32]. D 

From this it is immediate, as in Conner and Floyd [12, Theorem 7.6], Adams [3, 
Lemma n.4.3], or Switzer [34, Theorem 16.2], that general Chem classes exist. The 
axioms determine them uniquely on J5T(n), and this is enough. 

THEOREM 5.7. Assume E has a complex orientation. Then there exist uniquely £?-Chern 
classes Ci(̂ ) G E'^^{X), for i > 0 and any complex vector bundle ^ over any space X, 
that satisfy the axioms: 

(i) Naturality: Ci{f*^) = f*Ci{^) € E'^^X') for any vector bundle ^ over X and 
any map f: X' —• X; 
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(ii) For any n-plane bundle ,̂ Ci{^) = 0 for all i > n; 
(iii) For any line bundle ,̂ c\ (̂ ) = a:(^); 
(iv) For any vector bundles ^ and rj over X, we have the Cartan formula 

fc-i 

The unitary groups. We study the unitary group U by means of the Bott map b: S{Z x 
BU) -> [/, one of the structure maps of the i7-spectrum KU. The Hopf line bundle 9 
over CP^~^ defines the unbased inclusion 

(^pn-\ ^ ^poo ^ ^f^^j) cBU^lxBU CZ xBU, (5.8) 

Its fibre over the point A € CP'^"^ is Homc(A,C), where we also regard A as a line 
inC^. 

When we apply Bott periodicity as in Theorem 3.29, we obtain the element 

([C]-l) X [0] = [ ( e ^ 0 ) e 0 ^ ] - n in K[7(52xCP^-*), 

where 0-^ denotes the orthogonal complement bundle having the fibre Home (A-*-, Q over 
A e CP""""*. The n-plane bundle (^00) © 9-^ is, by design, trivial over D^ x CP'""^ 
for any 2-disk D^ C S^, and its clutching function 

h:S^ xCP"-^ >U{n) (5.9) 

induces the Bott map 6, restricted as in (5.8). Here, 5^ C C is to be regarded as the 
circle group. We read off that (for suitable choices of orientation) h{z, A): C* —> C^ is 
the well-known map that preserves A-^ and on A is multiplication by z; explicitly, on 
any vector y G C*, it is 

h{z,A)Y==Y + {z-l){Y,X)X inC ,̂ (5.10) 

where X is any unit vector in A. (From the group-theoretic point of view, the image of 
h is the union of all the conjugates of [/(I) C U{n).) 

In [40], Yokota used (essentially) this map h and the multiplication in U{n) to con-
struct explicit cell decompositions of SU{n) and hence C/(n), and deduce their ordinary 
(co)homology. The method works equally well for JS-(co)homology. 

LEMMA 5.11. Assume that E has a line bundle Chern class. Then E^{U{n)) is a free 
E^-module with a basis consisting of all the Pontryagin products 7i,7i2 -- 'lik> ^here 
n > i] > i2 > . "ik ^ 0, k ^ 0 (we allow the empty product 1), 7i = h^{zx/3i) G 
E2i^\{U{n)) with h as in eq. (5.9), and z G E\{S^) is dual to u\. 

PROOF. Because we are decomposing U{n) rather than SU{n), we use a slightly 
different (and simpler) decomposition. We regard U{n) as a principal right [ / (n-1)-
bundle over S'̂ '̂ ~̂  with projection map 7r:f7(n) —• S^"^"^ given by ng = gen, where 
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en = (0,0, . . . ,0,1) € C^ and we recognize C/(n-l) as the subgroup of U{n) that 
fixes en. Given p G Z7(n) - C/(n-l), so that 7rp 7»̂  en, it is easy to solve eq. (5.10), 
as in [40], for a unique pair (z, A) such that h{z, A)en = i^g, which allows us to write 
g = h{zjA)g' for some g' G C/(n-l). Moreover, z ^ 1 and A ^ CP""^; in other 
words, TTo/i identifies the top cell of S^ x CP"^'^ with 5̂ """' - en-

It follows that the map 

S^ xCP^-^ X U{n-\) -^^ U{n) X U{n-\) -^ U{n) 

induces the isomorphism in the commutative square 

E,{S'xCP''-')^E,{U{n-\)) E.{U{n)) 

1 . 1 
E,{S^ xCP^'-^K) ^E4U{n-l)) -^^ E.(C/(n),C/(n-l)) 

where K = S^ x CP^'^ U 1 x CP'^'K From Lemma 5.3, we deduce that both vertical 
arrows are split epic and obtain the decomf)osition 

E.{U{n)) ^ E.{U{n-l)) e^n^iE^iUin-l)) 

of E^{U{n)) as the direct sum (with a shift) of two copies of J5*([/(n-l)), as the 
multiplication by 7n-i is an embedding. The result now follows by induction on n, 
starting from U{1) = S\ 

Alternatively, we apply the Atiyah-Hirzebruch homology spectral sequence to the 
map ft, to deduce that the spectral sequence for E^{U{n)) collapses whenever that for 
^/(CP^-^) does. D 

COROLLARY 5.12. Assume that E has a line bundle Chem class, and that E* has no 
2'torsion. Then E^{U) = ii(7o, 71,72? • • •). cin exterior algebra on the generators 7̂  = 
K{zx(3i), where b: E{'LxBU) -^ U denotes the Bott map and /3i € E2i{1xBU) is 
inherited from CP°° by the inclusion (5.8). 

PROOF. We let n —• cx) in the Lemma and use eq. (4.4). The homotopy commutativity 
of U gives 7j7t = -7 i7j and hence 7^ = 0. D 

The formal group law. Conspicuous by its absence is any formula for Ci{^ 0 77). For 
line bundles, the universal example is Pi^^P2^ over CP"^ x CP"^, where ^ denotes 
the Hopf line bundle. In view of eq. (5.5), there must be some formula 

x(e 0 7/) = x(0 + x{rj) + X^a ,̂,- xiO'xivY = F{x{a x{v)) (5.13) 



608 J.M. Boardman Chapter 14 

that is valid in the universal case, and therefore generally, where 

F(x,y) = a: + 2/-f J ^ a i j x V in E%x,y]] (5.14) 
t , j 

is a well-defined formal power series with coefficients ai^j G ^-2i-2j+2 for i > 0 and 
j > 0. (In the common case that the series is infinite, it may be necessary to interpret 
eq. (5.13) in the completion E*{Xy ofE*{X),) By use of the splitting principle (working 
in BT{n)) and heavy algebra, one can in principle determine formulae for Ci{^ (8) rj) for 
general complex vector bundles. 

The series F{x, y) is known as ihQ formal group law of E (or more accurately, of its 
Chem class x ( - ) ) . It satisfies the three identities: 

(i) F(x,y) = F(y,x); 
(ii) F(F(x ,y) ,z) = F(x,F(2/,^)); (5.15) 

(iii) F(x,0) = x. 

The first two reflect the commutativity and associativity of 0 . The last comes from 
^ (g) £ ^ ^ for a trivial line bundle e, and shows that F(x, y) has no terms of the form 
ai^ox^ other than x. 

In the case E = KU, we can write down 

x{^ (8) 77) = x ( 0 + x{r]) 4- ux{Ox{v) in KU*{X) (5.16) 

directly from eq. (5.2), since x(^ 0 r/) = ^^~H[^]W ~ !)» ^" ^^^^ words, the formal 
group law for KU is F(x, y) = x -f y -f uxy. 

6. The categories 

In this section we introduce the major categories we need, based on the discussion in 
Section 3. We also fix some terminology and notation. Our basic reference for cate-
gory theory is MacLane [20]. The ground ring throughout is our coefficient ring £?*, a 
commutative graded ring. 

^°P denotes the dual category of any category A. It has a morphism / ° P : F —> X for 
each morphism f\X--^Y\nA.lfA is graded (and therefore additive), deg(/°P) = 
deg(/) and composition in ^ ° P is given by / °PO^°P = (_i)deg(/)deg(p)(^^y)op 

Set denotes the category of sets. Cartesian products serve as products and disjoint 
unions as coproducts. The one-point set T is a terminal object, and the empty set is an 
initial object. 

Ho denotes the homotopy category of unbased spaces that are homotopy equivalent to a 
CW-complex. This will be our main category of spaces. Milnor proved [23, Proposition 3] 
that it admits products XxY, with never any need to retopologize. The one-point space T 
is a terminal object. Arbitrary disjoint unions serve as coproducts; in particular, any space 
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is the disjoint union of connected spaces. We identify E^{X) = Ho{X,JEf^) according 
to Theorem 3.17. 

Of course, any equivalent category will serve as well. We reserve the option of taking 
any specific space to be a CW-complex, extending constructions to the rest of Ho by 
naturality. 

Ho' denotes the homotopy category of based spaces as in Ho, where the basepoint 
o is assumed to be nondegenerate; all maps and homotopies are to preserve the base-
point. Although this category is more common, we use it only rarely. Milnor proved 
[23, Corollary 3] that the loop space f2X of such a space X again lies in the category. 
Finite cartesian products remain products, but the one-point space T becomes a zero 
object and arbitrary wedges (one-point unions) serve as coproducts. The exact sequence 
(3.2) identifies E^{X,o) = Ho'{X,Ef^). 

Stab denotes the stable homotopy category (in any of various equivalent versions, 
e.g., [3]). It is an additive category, and has the point spectrum as a zero object. Arbitrary 
wedges of spectra serve as coproducts. It is equipped with a stabilization functor Wo' -^ 
Stab, which we suppress from our notation. There is a biadditive smash product functor 
A: Stab x Stab —^ Stab, which (up to coherent isomorphisms) is commutative and 
associative, has the sphere spectrum T"*" as a unit, and is compatible with the smash 
product in Ho', We define the suspension EX = S^ AX, which is therefore compatible 
with S: Ho' -^ Ho', 

Stab* denotes the graded stable homotopy category; it has the same objects as Stab, 
with maps of any degree as morphisms. It is a graded additive category. We write 
Stab'^{X,Y) = {X,Y}^ for the group of maps of degree n (in the conventions of 
Section 2). Given a fixed choice of one of the two isomorphisms 5^ ~ T"*" in Stab* of 
degree 1, we define the canonical natural desuspension isomorphism 

EX = S^ AX^T-^AXc^X (6.1) 

of degree 1 for any spectrum X, (We do not give it a symbol.) Composition with it 
yields isomorphisms, for any n ^ 0: 

{x^s'^Y} ^ {x,y} ;̂ {x,Yy ^ {r^x,y}; 

which express Stab* in terms of Stab and E, 
However, there is a difficulty with smash products. Given maps f\X -^ X' and 

p: y -> y of degrees m and n, the diagram 

fAY 
XAY X' AY 

XAg ( - ir X'Ag 

fAY' 
XAY' X' A Y' 
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commutes only up to the indicated sign (-1)^"^, owing to the necessity of shuffling 
suspension factors. Consequently, the graded smash product is a functor defined not on 
Stab* X Stab*, but on a new graded category (which might be called Stab* 0 Stab*) 
with the biadditivity and signs built in. All we need to know is how to compose: given 
also / ' : X' -^ X" of degree m' and g': Y' -> Y\ we have 

{g' A / ' ) o{g A / ) = (- l)- '-(p'op) A {f'of):X ^Y > X" ^ Y". (6.2) 

From the topological point of view, this is the source of the principle of signs (see 
Section 2). For example, a map f:X -^Y of degree n induces, for any W and Z, the 
homomorphisms of graded groups of degree n: 

UStab*{W,X) - . Stab*{W,Y) given by Ug = fog; 
(6.3) 

f*:Stab*{Y,Z) ~> Stab*{X,Z) given by f^g = (-l)^^g(^)^o/. 

Ab denotes the category of abelian groups. It is the prototypical abelian category and 
needs no review here. 

Ab* denotes the graded category of graded abelian groups, graded by all integers 
(positive and negative). 

Mod denotes the additive category of (necessarily graded) E*-modules, in which the 
morphisms are -B*-module homomorphisms of degree 0. Degreewise direct products 
Ha Ma and sums 0 ^ Ma serve as products and coproducts. It is equipped with the 
biadditive functor 0: Mod x Mod —^ Mod (taken over E*), which is associative, com-
mutative, and has E* as unit (up to coherent isomorphisms). 

We note that the homology functor E^{-): Ho -^ Mod preserves arbitrary coproducts, 
i.e. is strongly additive. 

Mod* denotes the graded category of J5*-modules, in which homomorphisms of 
any degree are allowed. That is, Mod*{M,N) is the graded group whose component 
Mod'^{M,N) in degree n is the group of £^*-module homomorphisms f:M -^ N of 
degree n, with components /*:M* —• N^-^^ that satisfy p'^^{vx) = {-l)^^v{px) for 
X £ M* and v £ E^. The sign must be present if the algebra is to imitate the topology. 

Moreover, Mod*{M,N) is an £?*-module in the obvious way, with vf defined by 
{vf)x = v{fx) = ±f{vx) for V G E". Given £*-module homomorphisms g:V —> L 
and h:M ^ M\ we define Hom(^, h): Mod*{L, M) -^ Mod*{L', M') by 

Hom{g,h)f = Mod*{g,h)f = (-l)^«e(^)(*^e(^)+^e('^))/io/o^:L' > M', (6.4) 

to make it a homomorphism of £?*-modules. Similarly for tensor products: given mor-
phisms f:L -^ V and g:M—* M', we define the morphism f ® g\L® M -^ L' ® M' 
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in Mod* by 

If also /': V -> L" and g': M' —̂  M", composition is given, like eq. (6.2), by 

[g'^n o{g^f) = (-l)^s(^')^^s(^)(p'o^) ^ ( / 'o/): L 0 M . L" 0 M". (6.5) 

We imitate the suspension isomorphisms (3.13) and (3.16) algebraically by introducing 
suspension functors into Mod and Mod*. 

DEFINITION 6.6. Given an £'*-module M and any integer fc, we define the k-fold suspen-
sion S^M of M by shifting everything up in degree by k: [E^MY is a formal copy of 
M* '̂̂ , consisting of the elements E^x for x G M^~^, 

To make the function E^:M —• E^M an isomorphism of -B*-modules of degree fc, 
we must define the action of v e E^ on E'^M by 

v{E^x) = (-l)'**=i:'^(t;x) in E^M. (6.7) 

Further, E^:M = E^M becomes a natural isomorphism I = E^ of degree k of functors 
on Mocy* if we define E^f:E^M -^ E^N by {E^f){E^x) = (-l)*^^i:*^(/x) on a 
morphism / : M —> AT of any degree n. (Here, Z" denotes both a natural isomorphism 
and a functor.) 

^/^ denotes the category of commutative JS*-algebras. It admits arbitrary degreewise 
cartesian products HQ ^a as products. The tensor product A(S) B of algebras serves as 
the coproduct of A and B, and E* is the initial object. 

Categories of filtered objects. The discussion in Sections 3 and 4 strongly suggests that 
for cohomology, we need filtered versions of A/foc/, Mod*, and Alg. 

FMod denotes the category of complete Hdiusdoxff filtered E'̂ -modules and continuous 
£^*-module homomorphisms of degree 0. An object M is an J5J*-module M, equipped with 
a directed system of f^*-submodules F°'M, and hence a topology as in Definition 3.36. 
(We do not require the indexing set to be the integers, or even countable.) These are 
required to satisfy M = lima M/F°'M, to make the topology complete Hausdorff. The 
category remains an additive category. 

The forgetful functor V: FMod —• Mod simply discards the filtration. Conversely, 
any £*-module M may be treated as a discrete filtered module by taking 0 as the only 
submodule F^M; this defines an inclusion Mod C FMod. Generally, a filtered module 
M is discrete if and only if some F°'M is zero. 

We frequently encounter filtered £'*-modules M that are not complete Hausdorff. We 
defined the completion M = lima M/F^M of M in Definition 3.37. The completion 
map M —> M is monic if and only if M is Hausdorff, and epic if and only if M is 
complete. Each M -^ M/F°'M is epic, because M -> M/F°'M is. 
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We filter M in the obvious way, by F"M = Ker[M -^ M/F'^M]. This filters the 
completion map and induces isomorphisms M/F^M = M/F^M\ it is now obvious 
that M is indeed complete Hausdorff (as the terminology demands) and so an object of 
FMod. If M happens to be already complete Hausdorff, M -> M is an isomorphism 
in FMod. We make frequent use of the expected universal property: given an object TV 
of FMod, any continuous £^*-module homomorphism M —^ N factors uniquely through 
a morphism M -^ N m FMod. In the language of Definition 2.1, M is F-free on M, 
with the completion map M —̂  M as a basis. 

If F"M C F^M, we can write F^M/F^'M = Ker[M/F^M -> M/F^M]. If we 
now fix F^M and apply the left exact functor lima, we see that the completion of F^M, 
filtered by those F^M contained in it, is just Ker[M —> M/F^M] = F^M, as expected. 

None of the above facts requires the filtration to be countable. 
The obvious filtration (4.15) on the tensor product M (8) iV is rarely complete, even 

when M and N are. We therefore complete it to define the completed tensor product 
M§)N in FMod. In view of the second form of (4.15), it may usefully be written 

M g AT = lim [{M/F^M) 0 {N/F^N)]. (6.8) 
a,b 

This makes it clear that M 0 AT = M § N, that it does not matter whether we complete 
M and N first or not. (We continue to write / 0 p rather than / 0 ^ for the completed 
morphisms, leaving it to the context to indicate that completion is assumed.) 

FMod* denotes the graded category of complete Hausdorff filtered E*-modules, in 
which continuous -B*-module homomorphisms of any degree are allowed. 

We give the jB-cohomology E*{X) of a space X the profinite topology from Defini-
tion 4.9, and complete it to E*{Xy as in Definition 4.11 if necessary; by Lemma 4.10, 
the functor £?*(-)": Hô ^ —• FMod takes arbitrary coproducts in Ho to products in 
FMod. Thus cohomology remains strongly additive in this enriched sense. 

As noted in Section 4, the profinite topology on £^-cohomology makes cup and cross 
products continuous,which suggests our other main category. 

FAIg denotes the category of complete Hausdorff commutative filtered E*-algebras A, 
with multiplication (j>:A(^ A -^ A and unit 77: E* —> A. We filter objects as in FMod, 
except that the filtration is now by ideals F^A. Then 0 is automatically continuous, 
and it is sometimes useful to complete it to A§i A -^ A. Wc have the forgetful functor 
FAIg -> FMod. 

Degreewise cartesian products serve as products, and we note that the cohomology 
functor E*{-y: Ho°^ —> FAIg takes coproducts in Ho to products in FAIg. The initial 
object is just £* itself. Coproducts in FAIg arc less obvious. 

LEMMA 6.9. The completed tensor product A%B of algebras serves as the coproduct 
in the category FAIg. 
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PROOF. We first consider the uncompleted tensor product A^B, made into an jE"'-algebra 
in the standard way, filtered as in (4.15) by the ideals 

F^'^^iA (g) B) = Im [(F">l(g)5) 0 {A®F^B) > A^B]. 

We define continuous injections i:A —̂  A® B and j : B -^ A ® B by ix — x (® \ 
and J2/ = 1 0 y. Given continuous homomorphisms f:A—^C and g\B-^C, where 
C is any object in FAIg, there is a unique homomorphism of algebras h\A<®B-^C 
satisfying hoi = f and hoj = g, defined by h{x 0 2/) = {f^){9y)^ thanks to the 
commutativity of C. It is also continuous: given F^C C C, choose F°-A and F^B such 
that / (F"^) C F^C and p(F^B) C F^C; then h{F^^\A(®B)) C F^C. Because ^ 0 B 
is rarely complete, we complete it, and the homomorphism /i, to obtain the desired unique 
algebra homomorphism h\ A^B -^ C m FAIg. D 

Although E*{-y does not in general take products in Ho to coproducts in FAIg, it 
does in the favorable cases when we have the Kiinneth homeomorphism JS* (XxY) = 
E*{X)§}E*{Y) as in Definition 4.17. 

The module of indecomposables. If [A, 0,77, e) is a (completed) algebra with counit (or 
augmentation) e: i4 -> £"* (which is required to be a morphism of algebras as in, e .g.^ 
Hopf algebra), the augmentation ideal A = Kere splits off^san^F*-module, A = E*_^A. 
One can define the module ofjndecomposables QA = A/A A, i.e. Coker[0: yl (g) ^ —> 
yl] (or Coker[0: i4 0 i4 —• A] in the completed case). A cleaner way to write this 
categorically is 

QA = Coker[0 -A<^e-e(S^A:A(S)A > .4] in Mod, (6.10) 

as we see by using the splitting of A; the homomorphism here is zero on ^ 0 1 and 
1 0 A and - 1 on J5* = F* 0 E\ 

LEMMA 6.11. The functor Q, defined on {completed) E*-algebras with counit, preserves 
finite coproducts: Q{A (S)B)^QA®QB (or Q{A §)B)^QAe QB) and QE'' = 0. 

PROOF. For C = A 0 S (and similarly A 0 JB) we have the direct sum decomposition 

C = ( A 0 l ) 0 ( l 0 B ) e ( ] 4 0 B ) . 

Then <^C0C) contains A A 0 1 from ( A 0 l ) 0 ( A 0 l ) , 1 0 B B similarly, and A 0 B 
from (i40l) 0 (l0jB). The image is the direct sum of these, because the other six pieces 
of C 0 C give nothing new. This allows us to read off the cokernel. D 

Coalg denotes the category of cocommutative F*-coalgebras, with comultiplication 
IIJ:A—* A® A and counit e: A —> E*. 

When E^{X) is a free JS*-module, eq. (4.3) and q^:E^{X) -^ E* make it an object 
in Coalg. 
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LEMMA 6.12. In the category Coalg: 

(a) The tensor product A<^ B of two coalgebras is again a coalgebra (see, e.g., [25, 
§2]), and serves as the product; 

(b) E* is the terminal object; 

(c) Arbitrary direct sums 0 ^ A^ of coalgebras serve as coproducts. 

There are also the slightly more general completed coalgebras A, where A is filtered 
as above and we have instead \l)\A-^A®A.\iA and B are completed coalgebras, so 
is i40J3. 

The module of primitives. If {A^il^^e^T]) is a (completed) coalgebra with unit (e.g., a 
Hopf algebra), where 7/: £?* -^ A is required to be a morphism of coalgebras, we can 
define, dually to eq. (6.10), the module of coalgebra primitives 

PA = Ker[^ -A(S)Tj-rjiSiA:A • A(SiA]c A (6.13) 

in Mod (or FMod, with A^A'm place of A (g) A), a submodule of A. The dual of 
Lemma 6.11 holds. 

LEMMA 6.14. The functor P, defined on {completed) coalgebras with unit, preserves 
finite products: P{A (S)B)^PAePB (or P{A § J5) ^ PA 0 PB) and PE" = 0. 

Dual modules. We warn that the con.pleted tensor product § does not make FMod a 
closed category (as - 0 M admits no right adjoint). Nor do we attempt to topologize 
FMod{M, N) in general. 

Nevertheless, we found it useful in Definition 4.8 to filter the dual DM = 
Mod*{M,E*) of a discrete E*-module M by the submodules F^DM = Ker[DM -> 
DL], where L runs through all finitely generated submodules of M. Then DM = 
lim ,̂ DL in FMod, where each DL is discrete; in particular, DM is automatically com-
plete Hausdorff. 

The dual Df: DN —• DM of any homomorphism / : M —• AT is continuous, because 
{Df)~^{F^DM) - F^^DN. In the important case when M is free, we obtain topo-
logically equivalent filtrations by taking only those L that are (i) free of finite rank, or 
(ii) free of finite rank, and a summand of M, or (iii) generated by finite subsets of a 
given basis of M. 

LEMMA 6.15. Let M, Ma. and N be discrete E^'-modules. Then: 

(a) The canonical isomorphism D{M ® iV) = DM 0 DN = DM x DN is a 
homeomorphism; 

(b) The canonical isomorphism D{^^ Ma) = H Q DMa is a homeomorphism; 

(Q) If f:M -^ N is epic, then the dual Df:DN —+ DM is a topological embedding; 

(d) The functor D takes colimits in Mod to limits in FMod; 

(e) CD: DM § DN ^ D{M 0 N) in FMod, if M or N is a free E^-module. 
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PROOF. In (a), D{M ®N)-^ DM x DN is continuous because D is a functor. Given 
a basic open set F^D{M © TV) C D{M ® N), where L C M®N is finitely generated, 
there are finitely generated submodules P C M and Q C N such that L c P 0 Q; 
then F^DM^F^DN C F^D{M^N) shows that we have a homeomorphism. More 
generally, we get (b). 

In (c), we can lift any finitely generated submodule L C N to a finitely generated 
submodule K cM such that fK = L. Then F^DN = DN D F^DM in DM, 

If C = Coker[/: M -^ iV], we have DC = Ker[D/: DN -^ DM] as an E^-module. 
By (c), the topology on DC is correct, so that D sends cokernels to kernels. This, with 
(b), gives (d). 

In (e), we may assume M is free. Equality is obvious for M = E* and therefore, 
by additivity, for M iree of finite rank. By (d) and eq. (6.8), the general case is the 
limit in FMod of the isomorphisms DL <S) DN = D{L 0 AT) as L runs through the free 
submodules of M of finite rank that are summands of M. D 

The evaluation e:DL (Si L -^ E*, which we write as e(r (g) c) = {r,c), is standard. 
The dual concept, of a homomorphism E* —• DL 0 L for suitable L, is far less known, 
even for finite-dimensional vector spaces. 

LEMMA 6.16. Let L be a discrete free E^-module. We can define the universal element 
u^UL ^ DL §}L by the property that for any r G DL = Mod*{L, E*), the homomor-
phism 

DL§}{r,-):DL§)L ^DL^E* ^ DL 

takes u to r. It induces the following isomorphisms of E*'modules: 

(a) Mod*{L,M) ^ DL%M for any discrete E*-module M, by f ^ {DL 0 f)u, 
with inverse r<g}x^[c^ (_|)deg(c)deg(x)̂ y,̂  ^̂  ^ ] . 

(b) FMod*{DL,N) '^ N%L for any object N of FMod, by g ^ [g ® L)u, with 
inverse y (g) c »-• [r K-> (-l)^(r,c)2/], where e = deg(r)deg(c) -f deg(r) deg(2/) -f 
deg(c) deg(y); 

(c) FMod*(DL,E*) ^ E" <S) L ^ L, by g ^-^ c where c = {g ^ L)u and gr = 

REMARK. We are not claiming to have isomorphisms in FMod. Indeed, for reasons 
already mentioned, we do not even topologize FMod*{DL,N) etc. In any case, the 
obvious -B*-module structures are the wrong ones for our applications. 

PROOF. In terms of an J5*-basis {ca'. a e A} of L, u is given by 



616 J.M. Boardman Chapter 14 

where c* denotes the linear functional dual to c^, given by {c*^,Ca) = 1 and {c*^,c^) = 0 
for (3 ^ a. In effect, (a) generalizes the definition of n, and is clearly an isomorphism 
when L has finite rank, with inverse as stated. 

For general L, we let K run through all the free submodules of L of finite rank. The 
functor Mod*{-,M) automatically takes the colimit L = colim^iir to a limit. On the 
right, the functor - §)M preserves the limit DL = lim^ DK by eq. (6.8). 

Similarly, (b) is obvious when L has finite rank and N is discrete. For general L and 
discrete iV, any continuous homomorphism DL —> N must factor through some DK, 
so that on the left, we have the colimit colim/c Mod*{DK,N). On the right, we also 
have a colimit, N (^ L = colim^ N (^ K (SLS no completion is needed). This gives (b) 
for discrete N and general L. For general N, we observe that both sides preserve the 
limit TV = limtN/F^N, with the help of eq. (6.8). 

In the special case (c) of (b), the defining property of u implies by naturality that 
gr = ±(r, {g (8) L)u) for any r G DL and any g: DL -^ E*. D 

It will be convenient to rearrange the signs in (b). 

COROLLARY 6.17. The general element 

^ ( _ l ) d e g ( y a ) d e g ( c . ) ^ ^ ^ ^ ^ E iV § L 

of degree k corresponds to the general morphism DL —^ N of degree k given by 

r^{-l)'"^iir)J2{r,Ca.)ya. 
a 

7. Algebraic objects in categories 

It has been known for a long time (e.g., Lawvere [19]) how to define algebraic objects 
in general categories. We are primarily interested in abelian group objects and general-
izations, especially jEJ*-module and £?*-algebra objects, where £J* is a fixed commutative 
graded ring. We review the material on categories we need from MacLane's book [20, 
Chapters VI, VII]. 

Group objects. Let C be any category having a terminal object T and (enough) finite 
products. (Recall that T is the empty product.) 

A group object in C is an object G equipped with a multiplication morphism fi:G x 
G —* G, a unit morphism UJ:T —^ G, and an inversion morphism v\G —^ G, that satisfy 
the usual axioms, expressed as well-known commutative diagrams (which may be viewed 
in [32, §1]). Then for any object X, C{X,G) becomes a group (as we see generally in 
Lemma 7.7), whose unit element is u o q: X -^ T ^ G. In the group C(G, G), v is the 
inverse of IG-

An abelian group object G has /x commutative (another diagram); in this case, we call 
/i the addition and LJ the zero morphism. Then the group C{X, G) is abelian. 
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If H is another group object in C, a morphism f:G -^ H is SL morphism of group 
objects if it commutes with the three structure morphisms; as is standard for sets and 
true generally (again by Lemma 7.7), it is enough to check /x. Thus we form the category 
Gp(C) of all group objects in C; one important example is Gp{Ho). 

EXAMPLE. In the category Set, one writes the structure maps of an abelian group object 
as /i(x, y) = X -\-y, u{a) = 0, and u{x) = —x, where T = {a}. Then the axioms take 
the form (x -f y) -h 2 = x -f (2/ + 2), x -h 0 = x, x -h ( -x) = 0, and x -\- y =^ y -^ x, the 
usual axioms for an abelian group. 

EXAMPLE. An (abelian) group object A in Coalg is a cocommutative Hopf algebra over 
E*, with (commutative) multiplication (l):A(S)A—^A and unit 77: E* —• A; the canonical 
antiautomorphism x- ^ ~^ ^ is by [25, Definition 8.4] the inversion u. (Recall from 
Lemma 6.12(a) that A^ A'ls the product in Coalg.) 

Dually, a cogroup object in C is simply a group object G in the dual category C°P. That 
is, we use coproducts instead of products, an initial object / instead of T, and reverse all 
the arrows; so that G is equipped with a comultiplication G —• G II G, counit G -^ I, 
and inversion G -^ G, satisfying the evident rules. 

EXAMPLE. A commutative Hopf algebra A over E* may be regarded as a cogroup object 
in Alg with comultiplication xp:A-^A^A, counit e:A-^E*, and inversion x'.^-^A. 
(As in Lemma 6.9, A(S> A is the coproduct.) 

EXAMPLE. In the based homotopy category Ho\ the circle S\ and hence the suspension 
SX, are well-known cogroup objects. 

In any additive category, we have abelian group objects for free. 

LEMMA 7.1. In a (graded) additive category C: 

(a) Every object admits a unique structure as abelian group object and as abelian 
cogroup object; 

(b) Every morphism is a morphism of abelian (co)group objects; 

(c) The (graded) abelian group structure on C(X, Y) resulting from the group object 
Y or the cogroup object X is the given one. 

PROOF. The zero object is terminal, which forces a; = 0. The sum G®G serves as both 
product and coproduct. The axioms force /x = pi H-p2 and v = -IG'.G -^ G, and these 
choices work. The dual of an additive category is again additive. D 

The product G x H of two group objects is another group object, with the obvious 
multiplication 

fx'.GxHxGxH^GxGxHxH - ^ ^ ^ G x H, (7.2) 
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unit uXLj'.T^TxT-^GxH, and inversion uxu:GxH—*GxH. This serves as 
the product in the category Gp{C). The trivial group object T, with the unique structure 
morphisms, serves as the terminal object. 

This allows one to define group objects in Gp{C), as follows. To say that G is an object 
of Gp{C) means that it is equipped with a multiplication /iG» unit UG, and inversion I/G 
that make it a group object in C. In diag. (7.2) we made G x G an object of Gp{C). 
Then G is a group object in Gp{C) if it is equipped also with morphisms p>:GxG —^ G, 
Lj'.T -^ G, and i/:G —> G in Gp{C) that satisfy the axioms. The following useful result 
is well known. 

PROPOSITION 7.3. Let G be a group object in the category Gp{C). Then the two group 
structures on G coincide and are abelian. 

PROOF. Lemma 7.7 will show that it is sufficient to consider the case C = Set, where 
the result is a standard exercise (e.g., [20, Example ni.6.4]). D 

Module objects. A graded group object M in C is a function n »—• M" that assigns to 
each integer n (positive or negative) an abelian group object M^ in C. (Note that the 
infinite product J7„ M^ and coproduct are irrelevant.) 

An E*'module object in a (graded) category C is a graded group object n i-> M^ that 
is equipped with morphisms ^v: M^ -^ M^'^^ of abelian group objects (of degree h) 
for all V e E* and all n, where h = deg(i;), subject to the axioms: 

(i) ^{v+v') = ^v-{- ^v' in the group CiM"", M^+'^), for v, v' G E^; 
(ii) {{vv') = ^vo^v' for all v,v' G E*\ (7.4) 

(iii) ei = 1:M" -^M^. 

It follows that the inversion i/ = ^(~1) = - 1 in C{M'',M''). 
In an additive category, Lemma 7.1 shows that all we need is a graded object n ^-^ M^ 

equipped with morphisms ^v: M^ —* M^^^ that satisfy the axioms (7.4). If C is graded, 
we often (but not always) have only a single object M, with M"̂  = M for all n; then 
the definition reduces to a graded ring homomorphism :̂ E'^ —• Endc(M). 

In a graded category, the concept of £*-module object is self-dual, thanks to the 
commutativity of J5* (provided we watch the signs and indexing): n •-> M'̂  is an E*-
module object in C, with v acting by ^v: Af^ -> M^'^^, if and only if n i-> M~'^ is 
an ^"-module object in C°P, with v acting by {^vY^'.M''-^^ -> M'^ in C°P. (But we 
note that this observation fails in general in ungraded additive categories, because the 
required signs are absent.) 

Algebra objects. A (commutative) monoid object in C is an object G equipped with a 
multiplication morphism (l):G x G -^ G and a unit morphism rj:T ^ G that satisfy the 
axioms for associativity, (commutativity,) and unit. Apart from the lack of inverses and 
a change in notation, this is like a group object. 

A graded monoid object is a graded object n i-> M^, equipped with multiplications 
(t>: M^ X M'^ —> M^"^^ and a unit 77: T -> M^, that satisfy the axioms for associativity 
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and unit. (There is a problem in defining commutativity for graded monoid objects, 
because extra structure is needed to handle the signs.) 

An E*'algebra object in C is an £?*-module object that is also a graded monoid object, 
with the two structures related by three commutative diagrams that interpret the two 
distributive laws and {vx)y = v{xy) = ±x{vy). It is commutative if yx = dbxy, 
interpreted as another diagram. Here, the sign (-1)*^ becomes ^((~1)^). 

It is often useful to replace the v-action ^v: M^ -> M^'^^ in an £'*-algebra object by 
the simpler morphism rfy = ^vor]:T —^ M^, so that r]\ = rj; the diagram 

TxM"" M^xW M^ X M^ 

shows that we can recover î; from r]^ as the composite 

iv:M^'^TxM'' "̂ """̂  ) M^xM"" - ^ M"""'^. (7.5) 

Equivalenfly, we have interpreted the identity vx = {vl)x. 

General algebraic objects. Other kinds of algebraic object can be defined similarly, 
provided they are (or can be) described in terms of operations a: G^^^^^ -^ G subject to 
universal laws, where G^^ — GxGx-xG, with n factors. Frequently, our algebraic 
object lies in the dual category C°P and is the corresponding coalgebraic object in C. 
Our general results extend without difficulty (except notationally) to the dual and graded 
variants, and we omit details. 

The following observation is quite elementary but extremely useful. 

LEMMA 7.6. Let G be an algebraic object in C that is equipped with operations 
a:G^^(^) -^G.andV'.C-^Vbea functor. 

(a) If V preserves {enough) finite powers of G, then VG is an algebraic object in V 
of the same kind, equipped with the operations 

a: (FG)''''(") ^ y (G^^(^)) - ^ VG\ 

(b) If f'. G -* H isa morphism of algebraic objects in C, where H is another algebraic 
object of the same kind, and V preserves {enough) powers ofG and H, then Vf: VG —> 
VH is a morphism of algebraic objects in V; 

{Q) If O'.V -^ W is a natural transformation, where W:C ^ V is another functor 
that preserves {enough) powers ofG, then 0G: VG -> WG is a morphism of algebraic 
objects in V. 
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More precisely, V and W do not need to preserve all finite powers, only the powers 
of G and H that actually appear in the operations and laws (including the terminal object 
T, if used). 

EXAMPLE. AS 5̂  is a cogroup object in Ho', (a) shows that the loop space QX on 
any based space X becomes a group object in Ho', and hence in Ho. \{ X is already 
a group object in Ho', (a) provides a second group object structure on QX\ but by 
Proposition 7.3, these two group structures coincide and are abelian. 

One common case where this lemma applies trivially is when V is an additive func-
tor between additive categories. There are other functors of interest that automatically 
preserve products: for any object X in C, the corepresented functor C(X, —):C —> Set 
preserves products by definition, and dually, C[-,X) = C ° P ( X , - ) : C ° P -> Set takes 
coproducts in C to products in Set. Then Lemma 7.6 gives parts (a), (b), and (c) of the 
following. 

LEMMA 7.7. Let G and H be fixed objects in the category C, and V and W be the 
contravariant represented fiinctors C{-,G),C{-iH):C°^ —• Set {or dually, covariant 
corepresented functors C{Gj —)^C{H, -):C —• Set). 

(a) If G is a {co)algebraic object in C, then for any object X in C, VX is naturally 
an algebraic object in Set of the same kind\ 

(b) With G as in (a), then for any morphism f:X -^Y in C, Vf\ VY -^ VX {or 
Vf: VX —• VY) is a morphism of algebraic objects in Set; 

(c) Any morphism f:G -^ H of {co)algebraic objects in C induces a natural morphism 
C{X, / ) : VX -^ WX {or C{f, X): WX -^ VX) of algebraic objects in Set, 

(d) Conversely, if VX has a natural algebraic structure, it is induced as in (a) by a 
unique {co)algebraic structure on G of the same kind, provided the necessary {co)powers 
of G exist in C; 

(e) Any natural transformation of algebraic objects VX -^ WX {or WX -^ VX) in 
Set is induced as in (c) by a unique morphism f:G -^ H of {co)algebraic objects in C. 

PROOF. In (d), we may identify C{X, G)"""" with C{X,G^''). Then by Yoneda's Lemma, 
each natural transformation a: C(- , G)^^ -^ C(--, G) is induced by a unique morphism, 
which we also call a:G^^ —> G; the uniqueness shows that the same laws apply, thus 
making G an algebraic object. Part (e) is similar. D 

This allows us to clarify Theorem 3.17. 

COROLLARY 7.8. We have the E^-algebra object n i-̂  E^ in the category Ho; in 
particular, each £ „ is an abelian group object in Ho. Moreover, each equivalence 
E_n^ QKn-\-\ ^^ ^^ isomorphism of group objects. 

PROOF. We apply (d) and (e) to the cohomology functors E'^{-)\ Ho^^ —̂  Set, repre-
sented according to Theorem 3.17 by the spaces E,^. Part (e) also gives the last assertion; 
by Proposition 7.3, the group structure on i7£^^| is well defined. D 
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Symmetric monoidal categories. The theory presented so far is not general enough. In 
order to express the multiplicative structures, we need symmetric monoidal categories. 
We review the few basic facts we need from MacLane [20, Chapter VII]. 

A {symmetric) monoidal category (C, (g), K) is a category C equipped with a bifunctor 
^'.CxC -^ C and unit object K = KQ. (But if C is graded, we need a more general kind 
of bifunctor 0 that is biadditive and includes signs, with composition as in eq. (6.5).) 
It is understood (but suppressed from our notation) that the specification includes [ibid.] 
coherent natural isomorphisms for associativity, (commutativity, with signs if C is graded) 

As examples, we have (>46,(g)z,Z), {Mod,(S),E*), {FMod,§),E*), (Stafc,A,r+), 
the graded versions of all these, and the dual (C°P,(8), iiT) of any symmetric monoidal 
category. The original example was (C, x , r ) , for any category C that admits finite 
products (including the empty product T). 

EXAMPLE. We define the symmetric monoidal category (5et^, x, T) of graded sets. For 
this purpose, the graded set n ^ A^ is best treated as the disjoint union A = JJ^ A^, 
equipped with the degree function A -^ Z given by deg(i4'^) = n. The product A x B 
is given the degree function deg((x, y)) = deg(x) -I- deg(y). The unit object is the set T 
consisting of one point in degree zero. 

The purpose (for us) of a (symmetric) monoidal category is to extend the definition 
of monoid object. A {commutative) monoid object in ( 0 , 0 , K) is an object M of C 
that is equipped with a multiplication morphism (j):M (^ M —* M and a unit morphism 
rj:K -^ M (both of degree 0 if C is graded) that satisfy the usual axioms for associativity, 
(commutativity,) and left and right unit. In {Set, x , r ) , this reduces to the usual concept 
of (commutative) monoid; more generally, in {C,x,T), it reduces to the concept of 
(commutative) monoid object as before. 

A graded monoid object in (C, 0 , K) is a graded object n H-> M'^ in C equipped 
with multiplications (j>\ M^ 0 M^ -^ M^'^^ and unit rj.K ^ M^ (with degree 0) that 
satisfy the axioms for associativity and two-sided unit. (Again, we defer the discussion 
of commutativity.) Morphisms of monoids are defined in the obvious way. 

A {symmetric) monoidal functor 

{F, CF, ZF): (C, 0 , Kc) ^ (P, 0 , Kv) 

between (symmetric) monoidal categories consists of a functor F:C -^V, together with 
a natural transformation (p: FX 0 FY —• F{X 0 Y) and a morphism zp'- Kv —̂  FKc 
in V. Of course, CF and zp are required to respect the isomorphisms for associativity, 
(commutativity,) and unit. If M is a (commutative) monoid object in C, FM will be one 
in P, equipped with the obvious multiplication 

CF(M,M) F(f> 

0: FM 0 FM y F{M 0 M) y FM 

and unit Frj o zp- K-o —• FKc -^ FM. 
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We do not require QF and zp to be isomorphisms (but if they are, so much the better). 
One example is the duality functor 

defined by DM = Mod*{M, E*) and filtered in Definition 4.8, where ZD: E* ^ DJB* is 
obvious and CD was originally defined in eq. (4.6) and completed later for diag. (4.18). 
By Lemma 6.15(e), CD is sometimes an isomorphism. Another example is the symmetric 
monoidal functor 

(C(X,-) ,C,z):(C,x,T) ^(Set ,x ,r ) 

used in Lemma 7.7 to map an algebraic object in C to the corresponding algebraic object 
in Set\ in this case, ^ and z are automatically isomorphisms. 

Monoidal functors compose in the obvious way. Given another (symmetric) monoidal 
functor (G, CGJ^G)* (^, <̂ ,-f̂ x>) -^ {S,^,Ks), the composite (symmetric) monoidal 
functor (GF, CGF, ^GF)* (C, 0 , -K'C) —̂  (£, 0 , -RTf) uses the natural transformation 

CGF: GFX 0 GFY - ^ G{FX 0 FY) - ^ ^ GF{X ® Y) 

and morphism 

ZGF'. Ke - ^ GKv —^ GFKc. 

Given two (symmetric) monoidal functors 

(F, CF, ZF), (G, CG, ZG): (C, 0 , Kc) > (P, 0 , Kv), 

a natural transformation 0:F —^ G is called monoidal if there are commutative diagrams 

FX 0 F y GX 0 G y i^i? 

CF(x,y) CG(X,Y) 

e{X(S)Y) 
F{X (8) y ) G(X 0 y ) SKc 

FKc GKc 

Thus if X is a monoid object in C, OX: FX —• GX will be a morphism of monoid 
objects in V. 

We adapt Lemma 7.7 to monoidal functors. 

LEMMA 7.9. Given a graded monoid object ny-^ C^ in the {graded) monoidal category 
(C°P, 0 , K\ write {FM^ = C(G^, M) for any object M in C. Then: 

(a) We can make F a monoidal functor 

{F,CF,ZF):{C,^,K) ^{Set'',x,Ty, (7.10) 
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(b) If the graded monoid object n >-^ D^ defines similarly the monoidal fiinctor G, 
then a morphism h:C —* D in C°P of graded monoid objects induces a monoidal natural 
transformation O.F —^ G. 

PROOF. Let the multiplications and unit of C be 0: C* (g) C"̂  -^ Ĉ "̂ "̂  and r)\K -^C^ 
(in C°P). We defined FM as a graded set. Given / E (FM)^ and g G {FN)'^, we define 

C F ( / , P ) e F(M^iV)'^+^ = C(C'^+^, M 0 iV) 

as the composite 

^/c+m ,C*^0C"^ yM^N inC. (7.11) 

The morphism ZF:T -^ {FKf = C{C^,K) has r/°P:C^ -^ i(̂  as its image. In (b), we 
define 

(flM)": (FM)^ = C(C^, M) . CiD^'^M) = [GM^ 

as composition in C with /i°P: D'̂  -> C^. The necessary verification is routine. Q 

Additive symmetric monoidal categories. We need a slightly more general categorical 
structure, arranged in two layers. If the category C is both monoidal and additive, it will 
be appropriate to use the monoidal structure (C, 0 , K) to define multiplication, but to 
return to the additive structure of C to define addition. In this situation, we require the 
bifunctor 0 to be biadditive. Rather than strive for great generality, we limit attention to 
the cases we actually need. (We do not attempt to define the tensor product of jB*-module 
objects.) 

Because C is additive, an F*-module object reduces simply to a graded object n »-> M'^ 
equipped with morphisms ^v: M^ —* M"^^^ for all v £ E* and all n (where h = deg(v)) 
that satisfy the axioms (7.4). Further, we can now define commutative graded monoid 
objects n »—• M", including the expected sign. 

DEFINITION 7.12. A (commutative) E*-algebra object in the (possibly graded) additive 
(symmetric) monoidal category (C, 0 , K) is a graded object n -̂> M^ equipped with: 

(i) morphisms ^v: M^ -* M^'^^, for all n, /i, and v e E^, that make it an J?*-module 
object in C; 

(ii) morphisms (0, rj) that make it a graded (commutative) monoid object; 

in such a way that the diagrams commute up to the indicated sign: 

(7.13) 
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In the commutative case, the two diagrams are equivalent. 

EXAMPLE. An jB*-algebra object in {Ab, 0z? Z) is just an E*-algebra. 

We can again simplify the structure by replacing the i;-actions (^v by the single mor-
phism Tjy = ^vorj'.K ^ M^ for each t; G -B'̂ ; as in eq. (7.5), we recover ^v from rjy 
as the composite 

LEMMA 7.14. Let n y-^ C^ be a {commutative) E*-algebra object in the {graded) ad-
ditive {symmetric) monoidal category ( C ^ P , ^ , / ^ ) . Then the functor (7.10) becomes a 
{symmetric) monoidal functor 

(F, CF, ZFY (C, 0 , K) . {Mod, 0 , E*) (or {Mod\ 0 , E*)). 

PROOF. For fixed L, the functor C{-,L): C°P -^ Ab (or Ab*) takes the £;*-module object 
C in C°P to the £*-module FL, by Lemma 7.7(a). The action of v e E^ on FL is the 
composition Mor(($v)°P,L):FI/ -> FL with (^I;)°P:C'^'' -> C" (including signs as 
in eq. (6.4) if C is graded). As L varies, F takes values in Moc/ by Lemma 7.7(b); 
diags. (7.13) show that C^F'.FLX FN - • F{L<S)N) is F*-bilinear, allowing us to write 
CF: FL(S)FN -^ F(L0iV). We define ZF: E* ^FK on ve E^ as 

^FViC'̂  >C^ ^K inC, (7.15) 

to make it an F*-module homomorphism. D 

8. What is a module? 

In this section, we study the relationship between the category i?-MoGf of left J?-modules 
and the category Ab of abelian groups from several points of view, in order to abstract 
and generalize it to cover all our main objects of interest in a uniform manner. The 
central theme is the classical construction by Eilenbcrg and Moore [13] (or see MacLane 
[20, Chapter VI]) of a pair of adjoint functors by means of algebras in categories, except 
that the less familiar (but equivalent) dual formulation, in terms of comonads, turns out 
to be appropriate. 

This will serve as a pattern for our definitions. There are of course variants for graded 
categories and graded objects. Graded categories can be handled by replacing the graded 
group A*{X,Y) by the group ^^A^{X,Y), or sometimes even the disjoint union of 
the sets A^{X,Y). Graded objects can be handled by working in the category A^ of 
graded objects n »—> Xn in A. We omit details. 

The ring R is usually not commutative. Like all our rings, it is understood to have a 
multiplication 0 and a unit element \R\ we define the unit homomorphism rj: Z -^ R by 
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7/1 = \R. The associativity and unit axioms on jR take the form of three commutative 
diagrams in Ab\ 

R(^R(^R ^ R<S^R 

R^<i) 

i?0/? 

(i) 

TJ<S)R 

R ^ R(S}R R 
R<S)rj 

R 
R 

(8.1) 

(ii) (iii) 

In this section (only), all tensor products 0 and Hom groups are taken over the integers Z. 

First Answer The standard definition of a left i?-module (e.g., [25, Definition 1.2]) 
equips an abelian group M with a left action AM- iZ 0 M —> M in Ab. It is required to 
satisfy the usual two axioms, which we express as commutative diagrams: 

fl0i?(g)M ^ R(S>M 

(i) \R<S>XA 

R^M -
A M 

M 

(ii) 

,<S)M ^ R<^M 

M 

(8.2) 

Second Answer We make our First Answer more functorial by introducing the functor 
T = i?(g) -:>46 -^ >4t. We define natural transformations (j)\TT -^T and ry:/ -^ T on 
Ahy ^A = (f)R^A\R^R®A-^ R^AdiXid [r]A)x = \^x e R^A. The action on 
M is now a morphism AM* TM —> M, and the axioms (8.2) take the cleaner form 

<t>M 
TTM TM 

(i) T A A 

TM 

r)M 
M TM 

(ii) 

M 

A M (8.3) 

M 

Third Answer We have so far attempted to describe a module structure over a ring 
without first properly defining a ring structure. In particular, we have not yet mentioned 
the fact that R is itself an i?-module, as is evident by comparing axioms (8.2) with two 
axioms of (8.1). The function of the other axiom (8.1)(iii) is to ensure that R is difree 
module on one generator \R\ given x € M, there is a unique module homomorphism 
f:R-^ M that satisfies /Ij? = x, since fr = /{TIR) = rf\R — rx. 
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The three axioms on R translate into commutative diagrams of natural transformations 
in Ab\ 

(t>T rp ^ rprp rp ^ j . j . 

J'J'J' ^ J-y 

( . 1 
TT 

T(f> 

4> 

<i> ( i i ) <i> ( i i i ) (8.4) 

Thus a ring structure on R is equivalent to what is known as a monad (or triple) structure 
(0,77) on the functor T. By analogy, we call 0 the multiplication and 77 the unit of the 
monad T. We recognize an ii-module as being precisely what is known as a T-algebra, 
namely, an object M equipped with an action morphism XM'TM -^ M that satisfies 
the axioms (8.3). 

Fourth Answer More generally, the first two axioms of (8.4) show that for any abelian 
group A, the action 0A: TTA —> TA makes TA an i?-module, which we call FA\ this 
defines a functor F:Ab -^ R-Mod. We thus have the factorization T = VF, where 
V:R-Mod —• Ab denotes the forgetful functor. We similarly factor (f) = VeF.TT — 
V{FV)F -^VF = T, where e:FV -^ I is defined on the iZ-module M SLS eM = 
XM' i i 0 M —̂  M ; by axiom (8.3)(i), eM lies in R-Mod. In this formulation, axiom 
(8.4)(i) simply defines the natural transformation 

VeeF: TTT = V{FVFV)F -^VF^T, 

while the other two reduce to the identities (2.5) relating rj and e. 
All this works in any category A, as an application of Theorem 2.6(v). 

THEOREM 8.5 (Eilenberg-Moore). Given a monad (T, 0, rj) in A, let B be the category 
ofT-algebras, V:B -^ A the forgetful functor, and F:A—^B the functor that assigns to 
each A in A the T-algebra FA = {TA, (t>A). Then F is left adjoint to V, B{FA, M) ^ 
A{A, VM) for any M in B, and FA is V-free on A with basis rjA: A —> TA = VFA 
(in the language of Definition 2.1). 

PROOF. We have already outlined most of the proof in the special case when A = Ab 
and T = i? 0 ~, and can apply Theorem 2.6. For further details, see Eilenberg and 
Moore [13, Theorem 2.2] or MacLane [20, Theorem VI.2.1]. D 

The image of F is known as the Kleisli category of all F-free objects. 

Fifth Answer The problem with our answers so far is that they rely heavily on the tensor 
product, which really has little to do with modules. While tensor products are (as we 
shall see) convenient for computation, they are simply not available in the nonadditive 
context of [9]. 
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We therefore replace the functor T = J? 0 - by its equivalent right adjoint H = 
Hom(ii, -):Ab -^ Ab. The right adjoint of 0: TT -^ T is the comultiplication ^p:H -^ 
HH, which is given on A as the homomorphism 

il;A: Hom(i2, A) > Horn {R, Hom(i?, A)) 

that sends f:R -^ A io s \-^ [r ^ /(^s)]- The right adjoint of 77:/ —• T is the counit 
e:H -^ I, where eA: Hom(i?, A) -^ A is simply evaluation on 1 .̂ The axioms (8.4) 
dualize to 

(i) 

HH HHH 

which state that (i?, tp, e) is what is known as a comonad in Ab. 
Similarly, we replace the action AM on a module M by the right adjunct coaction 

PM:M -^ HM = Hom(/2, M). 

This is given explicitly by {PMX)T — f^, which also shows us how to recover the action 
from PM' The way to think of Hom(i?, M) is as the set of all possible candidates for 
the ii-action on a typical element of M; then PM selects for each x E M the action 
r H-̂  rx. The action axioms (8.3) become 

PM 
M - HM 

( i ) PM ipM 

HpM 

HM • HHM 

PM 

M HM 

(ii) eM (8.7) 

M 

which state that M is what is called a coalgebra over the comonad H. Occasionally, it 
is useful to evaluate the right side of (i) on a typical r £ R, to yield the commutative 
square 

M 
ru 

M 

pM PM (8.8) 
Hom(r%M) 

Hom(i2,M) Hom(i?,M) 

where TM'-M -^ M denotes the action of r on M and r*:R 
multiplication by r. 

R denotes right 



628 J.M. Boardman Chapter 14 

A homomorphism f:M -^ N of i?-modules is now a morphism in Ab for which we 
have the commutative square 

M 

N 
PN 

HM 

iHf 
f 

HN 

(8.9) 

This description successfully avoids all tensor products. It too works quite generally. 

THEOREM 8.10. Given a comonad H in A, let C be the category of H-coalgebras, V: C -> 
A the forgetful functor, and C:A—^C the functor that assigns to each A in A the H-
coalgebra HA with the coaction ipA: HA —> HHA. Then C is right adjoint to V, 
A{VM, A) ^ C{M, CA) for all M in C, and CA = {HA, xjjA) is V-cofree on A with 
cobasis sA: HA = VCA -* A (in the language of Definition 2.7). 

PROOF. This is just Theorem 8.5 in the dual category ^°P. D 

Sixth Answer The previous answer is certainly elegant, but we shall need an alternate 
description of i?-modules that does not use ip and e. The key to achieving this is not to 
take adjuncts of everything. 

Given an element x G M, we put / = PM^'- R -^ M (given by fr = rx). Then 
commutativity of the square 

R 

M 
PM 

HR 

HM 

(8.11) 

expresses the law {sr)x = s{rx). In other words, f:R 
i?-modules. The law IRX = a: is expressed as /l/? = x. 

M is a homomorphism of 

Seventh Answer The first level of abstraction in category theory is to avoid deaHng with 
the elements of a set. The next level is to avoid dealing with the objects in a category. 
We have not yet used the fact that / / is a corepresented functor. Given any functor 
F: Ab -^ Ab, Yoneda's Lemma (dualized) yields a 1-1 correspondence between natural 
transformations 6:H -^ F and elements {6R)idR G FR, where 6R:llom{R,R) -
HR —> FR and id^ e HR denotes the identity morphism of R. For example, ip-.H-^ 
HH corresponds to pR e HHR, the coaction on the i?-module i?, and e:H —^ I 
corresponds to IR^ R = IR. We note that PR\R = idR. 

To this end, we replace the object M by the corepresented functor FM = 
Hom{M,-):Ab -> Ab. (We already did this for M = i?, to get FR = H.) We re-
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place the coaction morphism PM'M —> HM by the equivalent natural transformation 
PM' FM -^ FMH: Ab -* Ab; explicitly, PMN: F^N -^ FMHN is 

H Hom(pM,l) 

PMN\ Hom(M, N) v Hom(iJM, HN) y Hom(M, HN). (8.12) 

The axioms (8.7) translate into equivalent commutative diagrams of natural transforma-
tions 

PM 

(i) PM FM^ (ii) \ FMC (8.13) 

FMH - ^ FMHH 

We observe that if we take M = R, these reduce to axioms (8.6)(i) and (ii). 

Eighth Answer In our applications, we do not have the luxury of starting out with a 
comonad; we have to construct it. Consequentiy, we are not able to invoke Theorem 8.10 
directiy. Instead, we generalize our Sixth Answer. We have to treat modules and rings 
together. 

We assume that ^ is a category of sets with structure in the sense that we are given 
a faithful forgetful functor W:A-^ Set. We assume given: 

(i) A functor H: A -^ A\ 
(ii) An object R in A that corepresents H in the sense that WHM = 

A{R,M), naturally in M; 
(iii) An element \R of the set WR; (8.14) 
(iv) A morphism PR'.R -^ HR in A, which we call the pre-coaction 

on R, such that WpR.WR -^ WHR = A{R,R) in Set carries 
IR € WR to the identity morphism id/?: R ^ R of R. 

We impose no further axioms at this point. In fact, we call any morphism pM-M -^ HM 
a pre-coaction on M, and a morphism f:M -^ N a. morphism of pre-coactions if it 
makes diag. (8.9) commute. To see what it takes to make PM a coaction, we consider 
the function 

WpM: WM > WHM = A{R, M) in Set. 

DEHNITION 8.15. Given an object M of A a coaction on M is a pre-coaction pM'M-^ 
HM such that for any element x G WM, the morphism / = {WPM)X: R -^ M in A 
satisfies: 

(i) / makes diag. (8.11) commute, i.e. is a morphism of pre-coactions; 
(ii) Wf: WR -^ WM sends IRGWRIOXE WM. 
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We do not assume yet that pn is itself a coaction. Lemma 8.20 will show that in the 
presence of suitable additional structure, this definition does agree with previous notions 
of what a coaction should be. 

Ninth Answer. We generalize our Seventh Answer to the category A as above. We 
convert everything to corepresented functors. We make no claims to elegance, only that 
the machinery does what we need. 

We replace an object M by the corepresented functor FM = A{M, -)\A-^ Set, 
and a pre-coaction pM'-M -^ HM by the equivalent natural transformation pM'- FM —* 
FMH'.A^ Set. Explicitly, PMN: FMN -* FMHN is (cf. eq. (8.12)) 

H A{pM,HN) 
PMN:A{M,N) y A{HM,HN) > A{M,HN). (8.16) 

In particular, we convert the pre-coaction pn to the natural transformation PR: WH —> 
WHH, where PRN'. WHN -^ WHEN is 

PRN: A{R, N) — A{HR, HN) ^^'''''"^^ > A{R, HN). (8.17) 

Similarly, if p: M —> iV is a morphism of pre-coactions, we obtain the natural trans-
formation Fg-.FN —> FM and from diag. (8.9) the commutative square 

FN -^^ FNH 

[n [F.H (8.18) 
FM FMH 

We now assume that H is equipped with natural transformations: 

(i) ip:H -^ HH such that Wip: WH -4 WHH is the natural transfor-
mation PR of eq. (8.17); 

(ii) e:H -^ I such that WeR: WHR = A{R, R) -^ WR sends id^ to 
1H. 

(8.19) 

We assume no further properties of t/; and e. In particular, (i) implies (and by naturality 
is equivalent to) the statement that 

A[R, R) = WHR > WHHR = A{R, HR) 

takes IAR to the morphism pR. 

LEMMA 8.20. Assume we have a category A equipped with W, H, R, xjj, and e, satisfying 
the axioms (8.14) and (8.19). Then given an object M of A a pre-coaction pM' M —> 
HM is a coaction in the sense of Definition 8.15 if and only if it makes diags. (8.7) 
commute. 
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PROOF. Since W  is faithful, we may apply W  to diags. (8.7) and work with diagrams 
of sets. Thus (i) becomes 

W P M  - 
WM - WHM - A(R, M )  

W P M  1 W H P M  1 ~ ( R , P M  ) 
- WGM -. 

- A(R, HM) d(R1M) - WHM - WHHM - 
We evaluate on any x E WM and put f = (WpM)x :  R  -+ M. The upper route gives 
PM o f :  R  4 HM, while the lower route gives H  f o p ~ :  R  -, HM by axiom (8.19)(i). 
These agree if and only if f is a morphism of pre-coactions as in diag. (8.1 1). 

For diag. (8.7)(ii) we consider 

W P M  W H f  
WM - WHM - WHR 

The element f E WHM = d ( R ,  M)  lifts to idR E W H R  = A(R, R), which by axiom 
(8.19)(ii) maps to lR E WR. Thus ( W f ) l R  = x is exactly what we need. 

As in our Seventh Answer, we convert the objects in diags. (8.7) to corepresented 
functors. 

COROLLARY 8.21. The pre-coaction p ~ :  M  -+ HM is a coacrion (in the sense of Defi- 
nition 8.15) if and only i f  the associated natural transformation p~ : FM -+ FM H :  A  -+ 

Set makes diags. (8.13) commute. 

Now we can recover the full strength of Theorem 8.10. 

LEMMA 8.22. Assume that p ~ :  R  4 H R  is a coaction in the sense of Definition 8.15, 
and that 11, and e satisfy axioms (8.19). Then: 

(a) 1C, and E make H a comonad in A; 

(b) A pre-coaction P M :  M  + HM makes M  an H-coalgebra if and only i f  it is a 
coaction in the sense of Definition 8.15. 

PROOF. The first two axioms of (8.6) are just axioms (8.13) for M  = R, which we have by 
Corollary 8.21. For the third, we have to show that WEHN o W$N: WHN -, WHN 
is the identity. We evaluate on g E WHN = A(R, N) .  From eq. (8.17), (W$N)g = 
Hg o p ~ .  We consider the diagram in fig. 1 ,  which commutes merely because e: H  -+ I is 
natural. We start from idR E d ( R ,  R), which maps to H g o p ~  E A(R, HN), 1~ E WR,  
 id^ E d ( R ,  R) (by axiom (8.14)(iv)), and hence to g E d (R ,  N) .  

Part (b) is then a restatement of Lemma 8.20. 
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A{R,R) ^ — WHR — ^ ' ^ - WR 

WHPR WpR 

A{R,HR) - ^ - WHHR "^'""^ WHR — ^ — A{R,R) 

^A(R,H9) \wHHg IwHg \A(R,9) 

A{R,HN) - ^ - WHHN -̂ ^^^^^ WHN - ^ — A{R,N) 

Figure 1. Diagram for the comonad H. 

Change of categories. Now assume A' is a second category, equipped similarly with W, 
H\ xj)^ etc. satisfying axioms (8.14) and (8.19). We assume that A and A' are connected 
by a somewhat forgetful functor V:A -^ A' such that W'V = W. Then given an 
object M of A, there is an obvious natural transformation uy: FM —̂  FVMV: A -> Set, 
defined on iV in ^ as V: A{M, N) -^ AOyM, VN). 

We assume that H and H' are related by a natural transformation 6: VH —̂  H'V: A -^ 
A'. If PM'- M —• / fM is a pre-coaction on M in A, we give F M the pre-coaction 

PVM: VM "̂"̂  ) VHM - ^ i f V M in ^'. (8.23) 

This we convert to the commutative diagram of natural transformations 

FM —^^^— FMH 

FVMVH 

IFVMO 
PVMV 

FVMV FVMH'V 

Because WH is corepresented by R, the natural transformation W'O.WH = 
W'VH —• W'H'V is determined by a certain morphism ix: iJ' —> Fi? in >l' (which will 
be obvious in applications); explicitly, given M in A, W'OM'. WHM — WVHM -^ 
W'H'VM is 

W'QM\A{RM) — A^(yR,VM) ^ "̂"̂ ^̂ ^ ) J^{R!,VM). 

LEMMA 8.24. Assume that u satisfies: 

(i) u: R' —> VR is a morphism of pre-coactions (this uses eq. (8.23)); 
(ii) W'u: W'R' -^ W'VR = WR sends \R^ to \R. 
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Then 6: VH —> H^V is a natural transformation ofcomonads, in the sense that we have 
commutative diagrams 

VH ^ VHH 

(i) H'VH 

\H'e 
tp'V 

H'V H'H'V 

VH 

PROOF. We apply W and expand all the definitions. D 

9. JEJ-cohomology of spectra 

In this section, we adapt the results and techniques of Sections 3 and 4 to the graded stable 
homotopy category Stab* of spectra. Our general reference is Adams [3]. Many results 
become simpler and most are well known, apart from the topological embellishments. 

Cohomology. Any based space (X, o) may be regarded as a spectrum, via the stabilization 
functor Ho' —• Stab. Given a spectrum E, whether X is a based space or a spectrum, 
we define the reduced E-cohomology of X as E*{X, o) = {X, EY = Stab*{X, E), the 
graded group of morphisms in Stab* from X to E that has the component E^{X, o) = 
{X, E}^ in degree k. The universal class LG £^{E, o) is thus the identity map of E. 

The suspension isomorphism E*{X^ o) = E*{SX, o) is that induced by the canonical 
desuspension map EX ~ X of degree 1 in Stab* given by (6.1) (with signs as in 
eq. (6.3)). Equivalently, given x E E^{X, o), the class Ex G E^'^^ {X, a) is the composite 
of the maps EX ~> EE and EE c^ E (with no sign). 

This cohomology is the only kind available in the stable context. For compatibility 
with the unstable notation of Section 3, we always write the cohomology of a spectrum 
X, redundantly but unambiguously, as E*{X,o). 

The skeleton filtration of E*{X^o) can be defined exactly as unstably, in eq. (3.33). 
It is quite satisfactory for spectra of finite type (those with each skeleton finite), which 
include many of our examples, but is wildly inappropriate for non-connective spectra 
such as KU. We therefore give E*{X,o) the profinite filtration and topology, exactly 
as in Definition 4.9. If necessary, we complete it as in Definition 4.11 to the completed 
cohomology E*{X^ oy. 

A map r:E —^ E in Stab* of degree h induces the stable cohomology operation 
r^:E^{X^o) —• E^^^{X^o). It commutes with suspension up to the sign (-1)^ as in 
fig. 2. 

Spaces. For a space X, it is more useful, whether or not X is based, to work with the 
absolute E-cohomology of X defined by E*(X) = E*{X'^, o), as suggested by eq. (3.3). 
The absolute theory is thereby included in the reduced theory. In particular, the coefficient 
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EHX,O) E''+*'{X,o) 

(-1)" 

E''+\i:x,o) - ^ £;*=+"+'(rx,o) 

Figure 2. Operations and suspension. 

group of £^-cohomology is £?* = E*{T) = £^*(T" ,̂o) = 7rf{E,o). Conversely, every 
graded cohomology theory on spaces has this form. 

THEOREM 9.1. L̂ r E*{-) be a graded cohomology theory on Ho in the sense 
of Section 3. Then: 

(a) There is a spectrum E, unique up to equivalence, that represents E*{—) as above; 

(b) Any sequence of cohomology operations r̂ : E^{X) —̂  E^'^^{X), that are defined 
and natural for spaces X and commute with suspension up to the sign {-\Y as in fig. 2, 
is induced by a map of spectra r:E -^ E of degree h. 

SKETCH PROOF. The representing spaces £ „ provided by Theorem 3.17 and the structure 
maps fn'-URn -^ £n+i from Definition 3.19 are used to construct the spectrum E 
for (a). In (b), Theorem 3.6(b) provides a representing map rk'-K^ ~^ ^k-^h ^^^ ^̂ ^̂  
operation r .̂ We take X = £ ^ in fig. 2 and evaluate on the universal class tk. By 
Lemma 3.21, the class (—1)*=+'̂  I^Vkik corresponds to the upper route fk-\-h © ^^k in the 
square 

^Kk ^ ̂ E.k-\-h 

fk fk+h in Ho (9.2) 

Meanwhile, by Definition 3.19, rk^\ ofk corresponds to the class {-l)^rk-\-\Sik' Thus 
the square commutes, and we may take the maps r̂  as the raw material for construct-
ing the desired map of spectra r: E -^ E. (However, r need not be unique.) A similar 
construction gives the uniqueness in (a). Further details depend on the choice of imple-
mentation of Stab*. D 

Stabilization. In Theorems 3.17 and 9.1 we have two ways to represent ^-cohomology, 
in the categories Ho and Stab*. Thus for any space X, we may identify: 

(i) The cohomology class x £ E^{X)\ 
(ii) The map of spectra xs: X'^ —• E, of degree fc, defined by x = x*gi; 
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(iii) The map of spaces X(/: X —• E^, defined by a; = x^^ .̂ 

We compare the two maps by taking x = Lk'\n (ii). 

DEFINITION 9.3. For each integer A:, we define the stabilization map of spectra (Jk'.E_k ~^ 
E by alt = tk e E'^iE^, o) C E^{E_k)' It has degree k. 

It follows immediately that for any x € E^{X), xs is the composite 

X + 
U . , „ CTk xs: X+ > Ek 'Ef, . E in Stab\ (9.4) 

If X is based, i.e. x G E^{X, o), we can simplify this to 

xs: X - ^ Ef, - ^ E in Stab*. (9.5) 

In practice, we normally omit the suffixes s and u and write x for all three. (On occasion, 
this can cause some difficulty with signs, as x and xs have degree k, while xu is a map 
of spaces and has no degree.) 

LEMMA 9.6. The structure maps f^: SE_f^ -^ Kk-\-\ ^^^ ̂ ^^ stabilization maps Ek are 
related by the commutative square 

^E.k ^ £/k+i 

Ek 
<^k 

<yfc+i in Stab* 

in which we use the canonical desuspension map (6.1). 

PROOF. The upper route in the square corresponds to the class /^^A:+I = (-1)'^ Eik G 
E*{EE^f^,o). If we write g: HE^i^ ~ £ ^ for the desuspension, the lower route corre-
sponds to {akogyt = ( - l ) V ^ ^ = (- l)V^fc = (-l)*^^fc. D 

These maps display E as the homotopy colimit in Stab* of the based spaces E,^. The 
relevant Milnor short exact sequence (cf. diag. (3.38)) is 

0 >lim^E^-\E^,o) ^E^{E,o) • limjE;*^(£^,o) > 0. (9.7) 
n n 

Moreover, the profinite topology makes the map from E^{E, o) an open map and there-
fore a homeomorphism whenever it is a bijection. (Take the basic open set F°'E*{E, o) 
defined by some finite subspectrum Ea C E. This inclusion lifts (up to homotopy) to a 
map of spectra (of degree - n ) Ea —> £ „ 5 C Rn for some n and some finite subcomplex 
E^t, of E^. Then the image of F^'E^iE, o) contains F^E*{EJ.) 

The maps an also relate the stable and unstable operations in Theorem 9.1(b). Suppose 
the stable operation r of degree h is represented stably in Stab* by a map of spectra 
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rs'.E-^Eoi degree /i, and unstably in Ho by the maps rk'.E_k ~^ E-k-^h- These maps 
are related by the commutative square 

E.k ^ £fc+/i 

Ufc Lfc+H in Stafc* (9.8) 
rs 

E E 

because by the definition of cr„, both routes represent the class rtk G E*{E_)^,o). Coho-
mologically, 

air = (-l)^Voafc = (-l)'^Vfc in E^^^iE.^o). (9.9) 

(Without the sign, r »-> r̂  is not in general an £?*-module homomorphism.) 

Ring spectra. Now let £ be a ring spectrum, i.e. a commutative monoid object in the 
symmetric monoidal category {Stab, A,T"*"), with multiplication (j):EAE^E and unit 
rj: T"̂  —> E. (All our ring spectra are assumed commutative.) 

Given x e E*{X,o) and y G E*{Y,o), we define their cross product x x y E 
E^'iX AY,o)eiS 

xAy (t> 

xxy.X AY ^ EAE y E. 

These products are biadditive, commutative, associative, and have 77 E E*{T'^, o) as the 
unit in the sense that under the isomorphism 

E*{T^ AX,o) ^ E*{X,o) (9.10) 

induced by X ~ T^ AX, rj x x corresponds to x. 
The coefficient group E^ = E*{T'^,o) = 7rf(fJ,o) becomes a commutative ring, 

using X-products and T+ ~ T"̂  A T"̂  for multiplication; its unit element is l^ = r] e 
E^{T^,o). Then E*{X,o) becomes a left E^-module if we define vx £ E*{X,o) for 
t; G £̂ * and x G E*{X,o) as corresponding to i; x x G E*{T'^ A X,o) under the 
isomorphism (9.10); expanded, this is 

. vAx <t> 
vx'.Xc^T"' AX > EAE ^E, 

Rearranging slightly, we see that scalar multiplication by v on E*{-,o) is represented 
by the map 

^v:E~T+AE *EAE *E inStab*, (9.11) 

as in eq. (3.27). The map ^v corresponds to the class vi. We apply Lemma 7.7(d). 
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LEMMA 9.12. The actions (9.11) make the ring spectrum E an E^-module object in 
the graded category Stab*, which represents the E*-module structure on cohomology 
E'{-,o). 

Now that X-products are known to be £'*-bilinear, we can write them in the more 
familiar and useful form 

x:E\X,o)®E*{Y,o) ^E*{X^Y,o). (9.13) 

Together with the definition z: E* = E*(T" ,̂ o), they make £?-cohomology a symmetric 
monoidal functor 

(E*(-,o),x,^):(Stab*°P,A,r+) > {Mod\^,E*). (9.14) 

For spaces X and Y, we have X'^ A F"*" = (X x y)"*", and we recover the unstable 
X-pairing (3.22) as a special case of (9.13). The reduced diagonal map A'^'.X'^ -> 
{X X X)'^ = X"̂  AX+ and projection q'^: X"*" -^ T^ make X^ a commutative monoid 
object in Stab^^j so that -B*(X) = E*{X'^,o) becomes a conunutative monoid object 
in Mod, i.e. a commutative £*-algebra. We have a multiplicative graded cohomology 
theory in the sense of Section 3. 

The stable and unstable multiplication maps are related by the commutative diagram, 
similar to eq. (9.5), 

Ek X E,m ^ E-k+m 

I 1 = 
E^AE^ . E,^^ in Stab'. (9.15) 

^ <t>S ^ 

EAE ^ E 

However, there is a technical difficulty in extending Theorem 9.1 to make E a ring 
spectrum. 

THEOREM 9.16. Assume there are no weakly phantom classes in the groups l^{E,o), 
E^{EAE,O) and E^{EAEAE,O). Then any natural multiplicative structure that is 
defined on E*{X) for all spaces X (as in Section 3) is induced by a unique ring 
spectrum structure on E. 

PROOF. Theorem 3.25 provides a compatible family of unstable multiplications (t>u-Kk^ 
Rrn ^ E.k-\-m ^"^ ̂ ^ "̂ ^̂  Vu'-'T -* KQ-^^ immediately recover 775 from rju by taking 
X = I e E*{T) in eq. (9.4), but there is a problem with 05. We may regard E AE SLS 
the homotopy colimit in Stab* of the spaces Kn^E-n ^^^ obtain the Milnor short exact 
sequence 

0 >\\m^E-\E^AE^,o) VEP{EAE,O) >\\mEP{E^AE^,o) >0 
n n 
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analogous to (9.7). It shows that there exists a lifting (ps that makes diag. (9.15) commute 
for all k and m, but it is not unique in general. Our hypotheses simplify the diagrams 
for E^{E, o), EP{EAE, O), and the analogue for E^{EAEAE, O) to the limit term only, 
to ensure respectively that ^s'- (i) has 7/5 as a unit; (ii) is unique and commutative; and 
(iii) is associative. D 

Homology. The companion homology theory to £"*(-) is easily defined (see G.W. White-
head [36] or Adams [3]) in the stable context. The reduced E-homology of a spectrum 
or based space X is simply 

E,{X,o) = {T-^,EAXy = ir^{EAX,o), (9.17) 

the stable homotopy of E AX. (We observe that 7rf ( - ,o ) is itself the homology theory 
given by taking E = T'^, but we do not wish to write it T^(- , o).) It has the component 
Ek{X,o) = {T-^^E A Xy'' = Trf ( £ A X,o) in degree -k. Again, we have the 
suspension isomorphism Ek{X,o) = Ek-\-\{SXy0), induced by (the inverse of) the 
canonical desuspension (6.1). 

For a space X, we have the absolute E-homology 

E.{X) ^ E.{X^,o) = {T^,E AX^}\ 

as suggested by eq. (3.3) for cohomology, and it satisfies axioms dual to (3.1). The 
coefficient group is 

E,{T) = E,{T^,o) = [T^.EAT^Y ^ [T^.E]* = E* = Trf (£;,o), 

the same as -E-cohomology. (But we note that Ek{T) = E~^.) 
When E is a ring spectrum, it too is a symmetric monoidal functor 

(E.( - ,o) ,x ,z) : (Sta6%A,r+) > {Mod\®,E^), (9.18) 

with an obvious x-product pairing 

x:£;,(X,o) 0 E , ( y , o ) ^ E,{XAY,o), (9.19) 

if we use the above identification z: E* = E^{T'^, 0). We can ask whedier eq. (9.19) is 
an isomorphism. The following two results provide all the homology isomorphisms we 
need. 

THEOREM 9.20. Assume that E^{X, o) or E^{Y, o) is a free or flat E'^-module. Then the 
pairing (9.19) induces the Kunneth isomorphism E^{X A y, o) = E^{X, 6) 0 E^{Y, o) 
in homology. 

PROOF. The proof of Theorem 4.2 works just as well for spectra. D 
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LEMMA 9.21. For E = H{¥pl K{nl MU. BP, or KU, E^E, o) is a free E*-module. 

REMARK. For E = KU, this is a substantial result of Adams and Clarke [4, Theorem 2.1]. 

PROOF. For E = H{Fp) or K{n), all £*-modules are free. For E = MU or BP, the 
result is well known [3]. For KU, we defer the proof until we have a good description 
of KU:, {KU, a), in Section 14. D 

The homology version of the Milnor short exact sequence (9.7) is simply 

E^{E,o) = colimE*(£^,o), (9.22) 
n 

analogous to eq. (4.4). More generally, from the definition (9.17), 

E^X.o) = colim E^Xa^o) (9.23) 
a 

for any X, where Xa runs over all finite subspectra of X. 

Strong duality. The Kronecker pairing {-,-):E*{X,o) 0 E^{X,o) -^ E* is easily 
constructed for spectra E and X, direcdy from the definitions. As in Section 4, it makes 
sense to ask whether the right adjunct form 

d: E* {X, o) ^ DE, (X, o) (9.24) 

is an isomorphism, or better, a homeomorphism. Again, one theorem is all we need. It 
includes the unstable result Theorem 4.14. 

THEOREM 9.25. Assume that E^{X,o) is a free E*-module. Then X has strong duality, 
i.e. d in (9.24) is a homeomorphism between the profinite topology on E*{X, o) and the 
dual-finite topology on DE^{X,o). In particular, E*(X,o) is complete Hausdorff. 

E-modules. To establish Theorem 9.25, we must take £?-modules seriously. An E-module 
is a spectrum G equipped with an action map XG'E A G -^ G in Stab that satisfies the 
usual two axioms (8.3), using the functor T = E A -. Everything is formally identical 
to the ii-module case, with the monoid object R in the symmetric monoidal category 
{Ab, (g), Z) replaced by E in {Stab*, A, T"*"). We form the category E-/Wodof-E-modules, 
and the graded version E-Mod*. 

THEOREM 9.26. The forgetful functor ViE-Mod* -^ Stab* has the free functor E A 
- : Stab* -^ E-Mod* as a left adjoint, and for any spectrum X and E-module G, we 
have a natural homeomorphism 

G*{X) = Stab*{X, VG) ^ E-Mod*{E A X, G). (9.27) 
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PROOF. Theorem 8.5 provides the isomorphism. We make it trivially a homeomorphism 
by topologizing E'Mod*{E A X, G), not as a subspace of G*{E A X), but by filtering 
it by the submodules 

F^E-Mod*{EAX,G) = Ker [E-Mod*{EAX,G) > E-Mod*{EAXa,G)], 

where Xa runs through the finite subspectra of X. D 

COROLLARY 9.28. Let g:EAX -^ EAY be an E-module morphism (not necessarily of 
the form EAf). Then for any E-module G, g'':E'Mod*{EAY, G) -> E'Mod*{EAX, G) 
is continuous. 

PROOF. The right adjunct of p is a map f:X ^ EAY of spectra. Given a finite Xa C X, 
we choose a finite Yb C Y such that f\Xa factors through E AY^; then by taking left 
adjuncts, g restricts to a morphism of jE-modules E A Xa ^ E AYb. It follows that 
g*{F^) C F^, in the notation of the Theorem. D 

The desired theorem follows directly, as in Adams [3, Lemma 11.11.1]. 

PROOF OF THEOREM 9.25. We choose a basis of E^ {X, o) consisting of maps 5^° -* EA 
X of degree zero, and use them as the components of a map f'-W = \/^ 5̂ ** -^ EAX. 
By Theorem 9.26, the left adjunct of / is a morphism of iJ-modules g:EAW—^EAX. 
By construction, g induces an isomorphism g^:E^{W,o) = E^{X,o) on homotopy 
groups, and is therefore an isomorphism in Stab. It follows formally that g is also 
an isomorphism in E-Mod. We factor d to obtain the commutative diagram 

d'.E^'iX^o) - ^ E-Mod'iEAX^E) ""-^^ DE.{X,o) 

lMor(p,£;) [Og. 
c. * 7rf(-,o) * 

d:E*{W,o) — ^ - E-Mod'iEAW.E) DE^W.o) 

Theorem 9.26 provides the two marked homeomorphisms. By Corollary 9.28, Mor(p, E) 
is a homeomorphism. It is clear from Lemma 4.10 that W has strong duality. We have 
a diagram of homeomorphisms. D 

Kunneth homeomorphisms. As the Kunneth pairing (9.13) is continuous, we can complete 
it to 

x:E*{X,o)%E*[Y,o) yE*{XAY,o)\ (9.29) 

and the symmetric monoidal functor (9.14) to another one, 

( £ * ( - , o ) ^ x ,z) : (Stab*'̂ ,̂ A,T+) ^ [FMod\%,E^), (9.30) 
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for completed cohomology. As in Theorem 4.19, we combine Theorem 9.25 with Theo-
rem 9.20 to deduce Kiinneth homeomorphisms. 

THEOREM 9.31. Assume that E^{X, 6) and E^{Y, 6) are free E'^-modules. Then the pair-
ing (9.29) induces the cohomology Kiinneth homeomorphism 

E*{X A y, o) ^ E\X, o) g E*{Y, o). 

10. What is a stable module? 

In this section, we give various interpretations of what it means to have a module over the 
stable operations on jB-cohomology, with a view to future generalization in [9] to unstable 
operations. We are primarily interested in the absolute cohomology E*{X) = E*{X'^, o) 
of a space X, and state most results for this case only. Nevertheless, we sometimes need 
the more general reduced cohomology E*[X^ o) of a spectrum X. 

An operation r:E*{-,o) -* E*{-,o) is stable if it is natural on Stab*. It is au-
tomatically additive. Stab* being an additive category, but need not be an E*-module 
homomorphism. 

Recall from Section 3 (or Section 9) that the profinite filtration makes E'^{X) (or 
E*{X,o)) a filtered E*-module. When Hausdorff, it is an object of FMod*. We remind 
that all tensor products are taken over the coefficient ring E* = E*{T) = E*{T'^,o) 
unless otherwise indicated, where T denotes the one-point space and T"*" the sphere 
spectrum. 

First Answer. Since E-cohomology E*{-,o) is represented in Stab* by the spectrum 
E, Yoneda's Lemma identifies the ring A of all stable operations with the endomorphism 
ring End(E) = {E^E}* = E*{E,o) of E. Its unit element is L, the universal class of 
E. It acts on E*{X) = £;*(X+,o) by composition, 

Xx:A^E*{X) = E*{E,o)^E*{X) > E*{X). (10.1) 

In particular, for each v £ E^ v/c have the scalar multiplication operation x *-^ vx 
on E*{X), which by Lemma 9.12 is represented by the map of spectra ^v:E-^E of 
degree h in eq. (9.11) or the element vt e E^{E, a). This defines an embedding of rings 
(usually not central) 

i'. E* > E*{E, o) = A, (10.2) 

which we used already in eq. (10.1) to make A an £?*-bimodule under composition and 
Ax a homomorphism of £^*-modules. 

Notation. Standard notation for tensor products is ambiguous here, and will soon become 
hopelessly inadequate for coping with the future plethora of bimodules and multimodules. 
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When it is necessary to convey detailed information about the many jB*-actions involved, 
we rewrite Ax as 

Xx'.EV[E2,o)^2E2*{X) >EV{X), (10.3) 

which we call the E^-action scheme of Xx- Here, Ei denotes a copy of E tagged for 
identification, and 0 i indicates a tensor product that is to be formed using the two 
f?*-actions labeled by z. If desired, we can add information about the degrees by writing 

\x:EV{E2,o) 02 E2^{X) y El'-^^iX). 

For example, the composition 

A(^A = E^E,o)^E*{E,o)-^E^{E,o)=A (10.4) 

has action scheme E\*{E2,o) 02 E2''{E3,o) -> E\*{E3,o). We promise to use this 
over-elaborate notation sparingly. 

The important special case X = T of the action (10.1) gives 

XT:A^A(S^E* yE\ (10.5) 

which encodes the action of A on the coefficient ring E* = E*{T). 
The action (10.1) satisfies the usual two laws: 

{sr)x = s(rx); ix = x; (10.6) 

for any operations s and r and any x E E*{X). This suggests that a stable module 
structure on a given £7*-module M should consist of an action XM'A 0 M ^ M 
that satisfies these laws and is a homomorphism of left ^*-modules. Because the tensor 
product is taken over E*, this implies that AM extends the given module action of E* 
on M. 

Unfortunately, this description is inadequate even for finite X. In the classical case 
E = H{Fp), A is the Steenrod algebra over Fp, which is generated by the Steenrod 
operations subject to explicitly given Adem relations. In general, A is uncountable, 
which suggests that we should make use of the profinite topology on it. We described a 
filtration for tensor products in eq. (4.15). However, the tensor product in the action (10.1) 
is formed using the right E*-action on A, for which we have not defined a filtration; 
worse, the usual J5*-module structure on the tensor product is not the one that makes Ax 
an £?*-module homomorphism. We have to find something else. 

Second Answer. In [1], [3], Adams suggested that for suitable ring spectra E, one could 
avoid the various limit problems and infinite products that are inherent in cohomology by 
replacing the action (10.1) by the dual coaction on homology. Stably, the only difference 
between homology operations and cohomology operations is the possibility of weakly 
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phantom cohomology operations; in practice, these usually do not exist. Unstably, how-
ever, the difference is vast. Our ignorance of unstable homology operations in general 
forces us to learn to live with cohomology. We therefore dualize only partially. We defer 
the details until Section 11. 

If £?*(£, 6) is a free £?*-module, we can convert the action Ax in (10.1) into a coaction 
(after completion) 

px'E^X) ^ E*{X)^E.{E,o) (10.7) 

(whose action scheme is E2*{X) —> E\*{X)%\ J?U(£'2,o)). There is much structure 
on E*{E^o), as explicated in [1], [3]. Dual to the composition (10.4) with unit (10.2) in 
£?*(-£, o), there is a coassociative comultiplication with counit 

^ = ^s:E.{E,o) > E.{E,o)®E,{E,oy, e = ssiE^iE.o) > E^; 

on E^{E,o). The action axioms (10.6) on Xx translate into the diagrams 

Px E%X) JE;*(X)0E.(JS,o) 

(i) PX \®rps 

E*{X)^E^{E,o) E\X)^E.{E,o)^E^{E,o) 
(10.8) 

E-{X) ^-^^ E'{X)^E.{E,o) 

(ii) I U(S>es 

E^{Xy ^-^ E*{X)^E^ 

These are in effect the usual axioms for a comodule coaction over E^{E, o) on E'^{Xy, 
the only novelty being the two distinct B*-actions on E^{E, 6). 

Historically, the original example was developed by Milnor [22] in the case E = 
H(Fp), to give a description of the Steenrod operations that is both elegant and more 
informative; we summarize it in Section 14. Even in this case, the completed tensor 
product is needed in the coaction (10.7) when X is infinite-dimensional. For finite spaces 
or spectra X, one can use Spanier-Whitehead duality to switch between homology and 
cohomology. This leads to Adams's coaction on homology [1, Lecture 3], except that 
he used a left coaction in an attempt to make the £?*-actions easier to track. It turns out 
that in cohomology, the right coaction, even with its notational difficulties, is both more 
customary and more convenient. 

Third Answer We rewrite our Second Answer in a more categorical form in order to 
allow generalization. We still leave the details to Section 11. 

As the target of px is complete, we lose nothing if we complete the cohomology 
£;*(-) to E*{-y everywhere. We define the functor S': FMod* -^ FMod"" by S'M = 
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M<^E^{E,o). Then we can use 1/̂ 5 and ss to define natural transformations 

IIJ'SM = M(^IPS- S'M -> S'S'M, e'gM ^M^^ss^ S'M -> M. 

The coalgebra properties of il^s and ss will supply the necessary axioms (8.6) to make 
S' a comonad in FMod*. 

We rewrite the coaction (10.7) as a morphism p'x'>E*{Xy -> 5'(£'*(X)^) in the 
category FMod*, This converts the axioms (10.8) into diags. (8.7), which then state that 
E*{Xy is precisely an S'-coalgebra in FMod*. 

We have condensed our answer down to the single word S'-coalgebra. 

Fourth Answer We are not done rewriting yet. The problem with our Third Answer 
is that it still depends heavily on the tensor product, an essentially bilinear construction 
that is simply unavailable for operations that are not additive (not that this has stopped 
us from trying). 

We therefore go back to our First Answer and convert Ax to adjoint form, as suggested 
by Section 8. We treat x e E*{X) as a map of spectra x: X'^ -^ E, and note that the 
£^*-module homomorphism x*:A = E*{E,o) —^ E*{X) is continuous. (There is the 
usual sign, x V = (-l)d^g(^)d«gWrox = (-l)deg(x)deg(r)^^^ fj.Qjĵ  gq (5 3)) 

For convenience, we assume that A is Hausdorff and work in FMod*, Given any 
complete Hausdorff filtered £?*-module M (i.e. object of FMod), we define 

SM=FMod*{A,M) = FMod*{E*{E,o),M). (10.9) 

Then for any space X, we define the coaction 

px:E*{X) y S{E^Xy) = FMod*{A, E*(Xy) (10.10) 

on X G E*{X) by pxx = x*:A = E''{E,o) —• E*{Xy, completing as necessary. In 
the important special case X = T, we find 

PT'.E* = E*{T) y FMod*{A,E*{T)) = SE*{T) = SE*. (10.11) 

Similarly, we have px:E*{X, o) —• S{E*{X, ay) for spectra and based spaces X. 

THEOREM 10.12. Assume that the E*-module A = E''{E, o) is Hausdorff {di^ is true for 
E = i f (Fp), MU, BP, KU, or K{n) by Lemma 9.21 and Theorem 9.25). Then we can 
make the functor S defined in eq. (10.9) a comonad in the category FMod of complete 
Hausdorff filtered E*-modules, 

Now that we have a suitable comonad, the definition of stable module is clear. This 
is the answer that will generalize satisfactorily. 

DEFINITION 10.13. A stable (E-cohomology) module is an 5-coalgebra in FMod*, i.e. a 
complete Hausdorff filtered £J*-module M that is equipped with a morphism 

PM'- M ^ SM in FMod* (10.14) 
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that is £*-linear and continuous and satisfies the coaction axioms (8.7). We then define 
the action ofreA^ = E^{E,o) on x e M^ by rx = {-\Y^{pMx)r € M. 

A closed submodule L C M is called {stably) invariant if pM restricts to pi'.L —> SL. 
Then the quotient M/L also inherits a stable module structure. 

The group SM may be thought of as the set of all candidates for the action of A on 
a typical element of M. Then PM selects for each x e M an appropriate action on x. 
The axioms (8.7) translate into the usual action axioms (10.6). If we evaluate the first 
only partially, we obtain the commutative square 

M ^ M 

PM (10.15) I ' " 1 
SM ^ SM 

where the natural transformation Ur is defined on / E SM as 

{uJrM)f = (-l)^8W^s(^)/or*:>t > M, 

using r*:A = E*{E,o) —• E*{E,o) = A It may be viewed as the analogue of 
diag. (8.8). 

THEOREM 10.16. Assume that the E^-module A = E*{E,o) is Hausdorff{as is true for 
E = H{¥p), MU, BP, KU, or K{n) by Lemma 9.21 and Theorem 9.25). Then: 

(a) We can factor px {defined in eq. (10.10)) through E*{Xy as px:E*{Xy -^ 
S{E*{Xy), to make E*{Xy a stable module for any space X (and similarly E*{X, ay 
for spectra); 

(b) p is universal: given an object N of FMod*, any transformation 

eX'.E*{X,o) > FMod*{N,E*[X,oy) 

{or eX: E*{X, oy -> FMod*{N, E*{X, o)^)) of any degree, that is defined for all spec-
tra X and natural on Stab*, is induced from px by a unique morphism f:N -^ A in 
FMod* as the composite 

Px 

eX:E*{X,o) . SE*{X,oy = FModUA,E*{X,o)^) 

y FMod* (iV, E* {X, oy). 

PROOFS OF THEOREMS 10.12 AND 10.16. The discussion in Section 8 is intended to 
suggest that these two proofs are interlaced. The main proof is in seven steps. Lemma 9.12 
provides the £?*-module object E in Stab*. We find it useful to vmte id^ for the identity 
map A—^ A, considered as an element of SA. 
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Step 1. We introduce an E*-module structure (different from the obvious one) on the 
graded group SM defined by eq. (10.9); by hypothesis, A is an object of FMod* and S 
is defined. By Lemma 7.6(a), the additive functor 

E^i-^oY „̂ Mor(-,M) 
FMod^{E*{-,o)\M):Stab* ^ FMod^""^ ^ Ab' 

takes the £?*-module object E to an £'*-module object in Ab*, i.e. makes SM an 
£?*-module. (By Lemma 7.1(a), the additive structure on SM must be the obvious 
one.) As M varies, Lemma 7.7(b) shows that SM is functorial, and we have a functor 
S: FMod* —̂  Mod*. We enrich it later, in Step 3, to take values in FMod*. 

Step 2. We show that px is an £?*-module homomorphism. Given a spectrum (or 
space) X, the cohomology functor J5*(-,o)^:Sta6*°^ -^ FMod* induces the natural 
transformation of additive functors 

Stab*{X,-) y FMod*{E*{-,oy,E*{X,oy): Stab* >Ab*. 

We apply this to the jE?*-module object E in Stab*; then Lemma 7.6(c) shows that px 
is a homomorphism of £?*-modules. 

Step 3, In order to make 5 and px take values in FMod*, we must filter SM. 
If M is filtered by the submodules F^M, we filter SM in the obvious way by the 
F°'{SM) = S(F'^M), which are E'̂ -submodules because 5 is a functor. We trivially 
have the exact sequence 

0 ^ SF^M ^SM y S{M/F''M), 

which we use to rewrite the filtration in the more useful form 

F^'SM = Ker [SM ^ S{M/F^M)]. (10.18) 

(In fact, there is a short exact sequence in all our examples. However, we do not exploit 
this fact because (a) it requires a stronger hypothesis on E, but more importantiy, (b) it 
does not generalize correctly.) 

It is not difficult to see directly that SM is complete Hausdorff. Because M is complete 
Hausdorff, we have the limit M = lima M/F^M, which is automatically preserved by 
5. This yields by eq. (10.18) the inclusion 

,. SM ,. , 
"HI „ ^,^ = limlm 
a F^SM a 

SM - ^ S , ^ 
F^M 

ClimS-^ = SM 
a F^'M 

in Ab*. But this inclusion is visibly epic and therefore an isomorphism, which makes 
SM complete Hausdorff. 

We have now defined 5 as a functor taking values in FMod* as required. Our choice 
of the profinite topology on E*{X,o) and the naturality of p make it clear that px is 
continuous and factors as asserted in Theorem 10.16(a). 
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Step 4. We convert the object E*{Xy of FMod* to the corepresented functor 
Fx = FMod^E^Xy.-y.FMod'' -> Ab* (and similarly E*{X,oy for spectra X). 
As suggested by eq. (8.16), we also convert the coaction px to the natural transforma-
tion px' Fx —• FxS: FMod* —* Ab*. Given M, the homomorphism 

pxM'.FxM = FMod*{E*{Xy,M) > FMod*{E*{Xy,SM) = FxSM (10.19) 

is defined by {pxM)f = Sfopx:E*{Xy ~> 5(J5;*(X)^) -^ SM. 
Step 5, We define the natural transformation ^piS -^ SS by taking X — E in 

eq. (10.19), so that 

i)M:SM = FMod*(A,M) ^ FMod*{A,SM) = 5 5 M (10.20) 

is given on the element / : ^ —• M of SM as the composite 

(V'M)/: A = £;*(E, o) - ^ SE*{E, o) = 5>l ^ ^ SM. 

(In terms of elements, this is r »-> [5 K-. f{r*s) = (-l)^s(^)^e(^)/(5r)].) When we 
substitute the J5*-module object E for X in diag. (10.19), Lemma 7.6(c) shows that 
V'M takes values in Mod*. Naturality in M shows that ^ is filtered and takes values in 
FMod*, as required. 

Step 6. The other required natural transformation, 

eM: SM = FMod* {A, M) y M, (10.21) 

is defined simply as evaluation on the universal class t e A, i.e. {eM)f = ft. Once again, 
naturality in M shows that eM is filtered, but we have to verify that eM is an £J*-module 
homomorphism. (All proofs involving e are necessarily somewhat computational, because 
the definition is.) Additivity is clear. Take any v E E^. By Lemma 9.12, the structure map 
^v:E —* E induces {^VYL = vt in E''{E,o). Given an element f:A = E*{E,o) -^ M 
of SM, we defined vf = ± /o(^v)* in Step 1; then 

e{vf) = ±e{fo{ivy) = ±f{^vyi = ±f{vi) - vfi = vef, 

using the given JSMinearity of / . 
Step 7. We show that 5 is a comonad and that E*{Xy is an S'-coalgebra. Naturality 

of p with respect to the map of spectra x: X"*" -^ E for any x e E* {X) shows that px is 
a coaction on E*{Xy in the sense of Definition 8.15, using R = A = E*{E, o), pR = 
PE, and IR = t. By Lemma 8.20, px makes E*{Xy (or E*(X,o)") an 5-coalgebra; 
we constructed t/; and e to satisfy the conditions (8.19). Finally, 5 is a comonad by 
Lemma 8.22(a). 

Yoneda's Lemma gives Theorem 10.16(b) for 6. Because £"*(-, o) is represented by E, 
6 is classified by the element / = {9E)L e FMod* {N, A) and so given by eq. (10.17). If 
we are given 9 instead, we compose with E*{X, o) —• E*{X, ay to obtain 6. Conversely, 
any 6 factors through 0 by naturality. D 
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11. Stable comodules 

Although the Fourth Answer of Section 10, in terms of stable modules, is the cleanest 
and most general, the Second Answer, in terms of stable comodules, is usually available 
and more practical in the cases of interest. (One could argue that this feature is what 
makes these cases interesting.) At least for E = MU or BP, such comodules are called 
cobordism comodules. This is the context for Landweber theory, as developed in [17], 
[18] and discussed in Section 15 for BP. 

Rather than develop the Second and Third Answers from scratch, we deduce them from 
the Fourth Answer by comparing the algebraic structures on E* {E, o) and £"* {E, o). This 
section is entirely algebraic in the sense that the only spectrum we study in any depth 
is E. In Theorem 11.35 we show that the structure maps 77 ,̂ 1/̂ 5, and es on E^{E^o) 
agree with those of Adams. 

We assume later in this section that E^{E, o) is a free E*-module, which is true for our 
five examples by Lemma 9.21. The duality d: E^{E, o) ^ DE^E, o) in Theorem 9.25 
allows us to identify the following, with only slight abuse of notation: 

(i) The cohomology operation r on £*{—) (or J5*(-, o)); 
(ii) The class n e E*{E,o), which we also write simply as r; n 1 n 

(iii) The map of spectra r:E -^ E, a morphism in Stab*; 
(iv) The EUinear functional (r, - ) : E^{E, o) -^ E*. 

The degree of r is the same in any of these contexts (once we remember that Ei{E, 0) 
has degree — i). 

The bimodule algebra E^{E,o). As E^{E,o) is better understood and smaller than 
E*{E,o), (iv) is the preferred choice in (11.1). There is much structure on E^{E,o). 
First, like all -E-homology, it is a left £^*-module. 

When we apply the additive functor J E * ( - , O ) to the £^*-module object E in 
Lemma 9.12, we obtain by Lemma 7.6(a) the £J*-module object E^{E,o) in Mod, 
equipped with the £*-module homomorphism (^v)* of degree h for each v G E^. 
To extract a bimodule as commonly understood, we define the right action by 

c-v= {^l)^^{^v),c for v£E^,ce EmiE.o), 

to ensure that v'{c • v) = {v'c) • v, with no signs. Nevertheless, we find it technically 
convenient to keep all functions and operations on the left and work with {^v)^. 

The ring spectrum structure (</>, 77) on E induces the multiplication 

4> = (j>s\E^{E,o) 0 E^{E,o) - ^ E^{E A E,o) — ^ E^{E,o) 

and left unit 

77 = 775: E* ^ E.(T-^, o) - ^ E^E, o) 

for £* (£ , o). In particular, we have the unit element 1 = 7/1 € Eo{E, o). 
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The equation vc = v[\c) = {v\)c= {rjv)c describes the left E*-action in terms of (f) 
and rj, and implies that ry is a ring homomorphism. We shall see presently that the right 
action is similarly determined by its effect on 1. 

DEFINFTION 11.2. We define the right unit function TJR.E* -> E^{E,o) on v £ E* = 
E*{T'^, o) by 7]RV = V*1, using the homology homomorphism 

v.:E*^E.{T^,o) >E.{E,o) 

induced by the map v:T^ -^ E in Stab*. 

We summarize all this structure. We recall that in general, the left and right units and 
E*-actions on E^{E,o) are quite different. 

PROPOSITION 11.3. In E^{E, o), for any ring spectrum E: 

(a) E^{E,o) is an E*-bimodule; 

(b) The unit element 1 =77! = r//el is well defined; 

(c) The multiplication (j) makes E^{E,o) a commutative E^-algebra with respect to 
the left or right E*'action; 

(d) 77: £?* —• Ei,{E, 0) and rjR: E* —̂  E^{E, 0) are ring homomorphisms; 

(e) The left action ofvEE'*' is left multiplication by vl; 

(f) The right action ofvEE* is right multiplication by r]RV. 

PROOF. For (c), we apply the £?-homology symmetric monoidal functor (9.18) to the com-
mutative monoid object E in Stab, to obtain the commutative monoid object E^ {E, o) 
in Mod, i.e. commutative £*-algebra, with respect to the left JB*-action. 

We trivially have (b), because the map rjiT'^ -^ E is IT € E^{T). For (f), we apply 
E-homology to eq. (9.11), which expresses iv in terms of the multiplication. This implies 
that 7]ii is a ring homomorphism. D 

REMARK. There is a well-known conjugation 

X'E.{E,o) ^E.{E,o) 

which interchanges the left and right £7*-actions. We avoid it because it does not gener-
alize to the unstable situation. 

The functor S'. Duality and Lemma 6.16(b) provide the natural isomorphism 

S'M = M^E.{E,o) ^ FMod*{E*{E,o),M) = SM (11.4) 

for any complete Hausdorff filtered £J*-module M, with action scheme 

{S'M)2 = Ml §1 EU{El,o) ^ FMod^{EV{E2,o),Ml) = {SM)2. 
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The functors S and 5" are those of Section 10. Moreover, this is an isomorphism of 
filtered £*-modules in FMod if we filter S*M as in eq. (4.15), which is the same as 
filtering it by the submodules S'F°'M. (We remind that E^{E,o)y like all homology, 
invariably carries the discrete topology.) Explicitly, with the help of Proposition 11.3, the 
isomorphism of jB*-actions is expressed by 

{ro{vi),c) = {r,{riRv)c) for r E E'^iE^o), veE\ce E^E.o). (11.5) 

In view of the proliferation of J?*-actions, one must be careful in applying duality; the 
correct way to establish all properties of S' is to deduce them from the corresponding 
properties of S in Section 10 by applying the isomorphism (11.4). (Once our equivalences 
are well established, we shall normally omit the ' everywhere.) 

The coalgebra structure on E^{E^o). The comonad structure (tl^Si^s) on S in Theo-
rem 10.12 corresponds under eq. (11.4) to a comonad structure on S' consisting of natural 
transfomiations t/;'M: S^M -^ S'S'M and e'M\ S'M —> M. By naturality and the case 
M = E*, tp'M must take the form M 0 V' for a certain well-defined comultiplication 

^ = xl;s:E4E,o) > E.{E,o) ^E^E.o) (11.6) 

(with action scheme El^{E3, o) —> El^{E2, o)(S>2E2*{E3, o)). It is not cocommutative 
(in any ordinary sense). Similarly, e'M must have the form 

M(g)es:S"M = Mg£;*(£•,o) > M (S^ E"" ^ M 

for some well-defined counit 

e=^es:E4E,o) ^ E\ (11.7) 

(Here and elsewhere, the isomorphism M 0 £* = M always involves the usual sign, 
x(^v^ (-l)deg(x)deg{t;)^3,) g^^ ^^ „̂̂ j ^^ ^^ morphisms of £;*-bimodules. 

LEMMA 11.8. Assume that E^{E,o) is a free E^-module. Then the homomorphisms ^5 
and es in diags. (11.6) and (11.7) make Ei,{E^o) a coalgebra over E*, 

PROOF. By taking M - E*, the comonad axioms (8.6) for 5' translate into the coasso-
ciativity of ^5, 

E,{E,o) "1^ E,{E,o)^E,{E,o) 

i>s K^rPs (11.9) 

i/;o(g)l 

E,{E, o) <8)E,{E, o) • E,{E,o)<^ E,{E,o)® E,(E, o) 

and the two counit axioms on es: 
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E^{E,o) E^{E,o)^E^{E,o) E^[E,o) ^ E^{E,6)^E^{E,o) 

(i) (ii) 
(11.10) 

These commutative diagrams express precisely what we mean by saying that Ei^{E,o) 
is a coalgebra. D 

Comodules, We are now ready to convert Definition 10.13 of a stable module and Theo-
rem 10.16, by means of the isomoqjhism (11.4). The coaction pM'M—> SM in (10.14) 
on a stable module M corresponds to a coaction PM'- M —• S'M = M 0 E^{E^ o). 

DEFINITION 11.11. A stable (E-cohomology) comodule structure on a complete Haus-
dorff filtered f?*-module M (i.e. object of FMod) consists of a coaction PM'-M ^ 
M(^E^{E,o) that is a continuous morphism of filtered £^*-modules (i.e. morphism in 
FMod, with action scheme M2 —• Ml ®i £'U(£^2,o)) and satisfies the axioms 

M 
PM 

PM 

M%E^{E,o) 
PM01 

— ^ M®E^{E,o) 

M®E^{E,o)%E^{E,o) 

(i) 

PM 
M%E^{E,o) 

M^E'' 
(11.12) 

(ii) 

THEOREM 11.13. Assume that E^{E,o) is a free E*'module (which is true for E = 
H(Fp), BP, MU, KU, or K{n) by Lemma 9.21). Then given a complete Hausdorff 
filtered E^-module M (Le. object of FMod), a stable module structure on M in the sense 
of Definition 10.13 is precisely equivalent under eq, (11.4) to A stable comodule structure 
on M in the sense of Definition 11.11. 

PROOF. The axioms (11.12) are just the axioms (8.7) interpreted for S'. D 

THEOREM 11.14. Assume that E^{E,o) is a free E'^-module (which is true for E = 
H{Fp), BP, MU, KU, or K{n) by Lemma 9.21). Then: 

(a) For any space (or spectrum) X, there is a natural coaction 

Px:E*{X) >E*{X)^E4E,o) (11.15) 
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{or px: £?*(X, o) -^ E*{X, o) g E^E, o)) in FMod that makes E*{Xy {or E*{X, o ) l 
a stable comodule, which corresponds by Theorem 11.13 to the coaction px of Theo-
rem 10.16; 

(b) p is universal: given a discrete E^-module N, any transformation OX: E*{X^ o) —• 
£;*(X, o)%N {or eX\ E*{X, oY -> E*{X, oY § N), that is defined and natural for all 
spectra X, is induced from px by a unique morphism f: E^{E^ o) —^ N of E^-modules, 
as 

9X:E*{X,o) - ^ E*{X,o)^E,{E,o) -^^ E*{X,o)^N. (11.16) 

PROOF. For (a), we combine Theorem 11.13 with Theorem 10.16(a). 
However, (b) is not a translation of Theorem 10.16(b), although the proof is similar. 

Because £•*(-,o) is represented in Stab* by E, 0 is determined by the value {9E)L G 
E*{E^ o) 0 N, which corresponds to the desired homomorphism / : E„{E, o) —^ N under 
the isomorphism £;* (J5, o)§iN^ Mod* {E^ {E,o), N) of Lemma 6.16(a). D 

REMARK. The universal property (b) shows that diags. (11.12), with M = E*{X,o), 
may be viewed as defining i/js and es in terms of p. Three applications of the uniqueness 
in (b) then show that t/̂ 5 is coassociative and has 6:5 as a counit. 

REMARK. From a purely theoretical point of view, one should write the coaction (11.15) 
as px''E*{XY —̂  E*{XY^E^{E,o), using three completions, in order to stay inside 
the category FMod of filtered modules at all times. This seems excessive. The way we 
are writing px, using just the § (and that only when necessary) and leaving the other 
completions implicit, conveys exactly the same algebraic and topological information 
after completion. But we warn that in using diag. (11.12)(ii), M^E* = M is valid if 
and only if M is complete Hausdorff. In particular, E*{X) can only be a stable comodule 
if it is already Hausdorff. 

Linear functionals. Theorem 11.13 establishes the equivalence between stable modules 
and stable comodules. For applications, we need to make this correspondence explicit. 
Given a stable comodule M, we recover the action of r G E*{E, o) on the stable module 
M from PM as 

PM XV Af®(r,--) 

r:M ^M®E,{E,o) ^M®E'^M, (11.17) 

by means of the isomoTphism (11.4), whose details are supplied by Lemma 6.16(b). 
To make everything explicit, we choose x G Af * and write 

PMa; = ^(-l)*8(»=a)*8(ca)3.^(g,c^ \nM®E,{E,o), (11.18) 

where the sum may be infinite. (We introduce signs here to keep other formulae cleaner. 
It is noteworthy that in the explicit formulae of Section 14, these signs are invariably 
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+ 1.) Then from Corollary 6.17, the corresponding element x* G FMod^{E*{E,o),M) 
is given by 

a;V = (- l )**8W5;;(r ,c„)x , , 
a 

and conversely. We rewrite this more conveniently as 

rx = 7 j (r , Ca) Xa in M, for all r (11.19) 
a 

(with no signs at all!), where we emphasize that the Ca and Xa depend only on x, not 
on r. The sums here may be infinite, but will converge because eq. (11.18) does. 

The statement that pM is an £*-homomorphism may be expressed as 

r{vx) = /^(T", {VR'^)ca) Xa in M, for all r, (11.20) 

for any v G £*, with the help of eq. (11.5). 
It is important for our purposes not to require the Ca to form a basis of -B*(-B, o), or 

even be linearly independent; but if they do form a basis, the Xa are uniquely determined 
by eq. (11.19) as Xa = c*x, where c* denotes the operation dual to CQ. 

As es is dual to :̂ E* -* E*{E, o), we see that 

{L,^)=es:E4E,o) ^ E\ (11.21) 

which is obvious by comparing diag. (11.12)(ii) with eq. (11.17). In other words, the 
functional £s corresponds to the identity operation L in the list (11.1). In practice, es 
is always easy to write down; it is ips that causes difficulties. Of course, ips is dual to 
composition (10.4), as we make explicit later in eq. (11.34). 

The cohomology of a point. Our first test space is the one-point space T. We have 
enough to determine the stable structure of E*{T) completely. 

PROPOSITION 11.22. Let r be a stable operation on E-cohomology and v e E*. Assume 
that E^{E,o) is a free E^-module, Then in the stable comodule E*{T) = E"": 

(a) The action of the operation r is given by 

rv = (r,7]Rv) in E*{T) = E^\ (11.23) 

(b) The coaction pr'.E* - • E* 0 E^{E, o) = E^{E, o) coincides with the right unit 
r)R'E*-^E,{E,o); 

(c) If we write E* = 7rf (JE, O) and regard r:E -^ E as a map of spectra, the induced 
homomorphism r^\E* —> £?* on stable homotopy groups is given by r^^v — (r, r]Rv). 
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PROOF. If we regard v as a map v\T^ -^ E and use Definition 11.2, we find 

rv = ± v*r = ± {v*r, 1) = (r, i;* 1) = (r, TJRV), 

which is (a). We compare eq. (11.19) with eq. (11.18) to rewrite this as prv = 1 0 VR'^^ 
which gives (b). Parts (a) and (c) are equivalent, because both rv and r^v are the same 
morphism rov:T'^-^E-*Ein Stab*. D 

The cohomology of spheres. Our second test space is the sphere S^. By definition, stable 
operations commute up to sign with the suspension isomorphism, as in fig. 2 in Section 9. 
In view of the multiplicativity of E and eq. (3.24), this reduces to 

psuk = Uk®\ in E*{S^,o)^E^{E,o) (11.24) 

for all integers k (positive or negative), where S^ denotes the fc-sphere spectrum and 
Ufc € E*̂ (5*=, o) ^ £^ the standard generator. Equivalently, from eqs. (11.18) and (11.19), 
the action of any operation r is given by 

rtxfc = (r,l)ufc mE\S\o). (11.25) 

Both formulae then hold in E*{S^) for the space S^, which exists for k ^ 0, Also, 
eq. (11.20) gives r{vuk). 

Homology homomorphisms. In some applications, it is useful to regard the element 
X G E^{X, o) as a map of spectra x:X -^ E and compute the homomorphism induced 
on JS-homology. 

PROPOSITION 11.26. Assume that E^[E,o) is a free E^-module. Given x G E*(X,o), 
suppose that rx is given by eq. (11.19). Then the E-homology homomorphism 
x^:E^{X,o) —• E^{E,o) induced by the map of spectra x:X -^ E is given on 
zeEm{X,o) by 

X,Z = ^(-l)^^S(^-)(*^S(^-)+^)(Xa,Z>Ca. (11.27) 
Q 

PROOF. For a general operation r, we have 

{r.x^z) = ±{x*r,z) = {rx,z) 

a ^ a ' 

where Va = (xa, z). Since this holds for all r, eq. (11.27) follows by duality. Q 

Conversely, we can recover pxx from x» when X is well behaved. 
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PROPOSITION 11.28. Assume that E^{X) is a free E^-module, Take x G E*{X). Then un-
der the isomorphism E*{X)%E^{E,o) ^ Mod*{E^{X),E^{E,o)) ofUmma 6.16(a), 
the element pxx corresponds to the homomorphism x^:E^{X) —• E^{E,o) of 
E*'modules. 

PROOF. We apply Lemma 6.16(a) to eq. (11.18), using the strong duality E*{X) ~ 
DE^{X) of Theorem 9.25, and compare with eq. (11.27). D 

Similarly, it is important to know the £'-homology homomorphism r,^:E^{E,o) —̂  
Ei,{E^o) induced by an operation r, regarded as a map r:E -^ E of spectra. This 
provides a convenient faithful representation of the operations on E^{E, o), as it is clear 
that t* = id and (sr)^ = s*or*. From diag. (10.15) and the isomorphism (11.4) we 
deduce the commutative square 

M -^ M 

PM 

M^E^{E,o) 
M^r^ 

PM (11.29) 

M §£*(£•, o) 

We need to know how to pass between (r , -} and r„. From the identity {r,c) 
{r*L^c) = {iyV^c) and eq. (11.21), we easily recover the functional (r, - ) from r^ as 

{r,-):E.{E,o) - ^ E^E^o) - ^ E\ (11.30) 

The following result gives the reverse direction. 

LEMMA 11.31. Let r G E*{E,o) be an operation and assume that E^{E^o) is a free 
E*-module. Then: 

(a) The diagram 

E.(E,o) E,{E,o) 

l®r. 

(11.32) 

E4E,o)(S)E4E,o) ^ E^{E,o)(^E^{E,o) 

commutes; in other words, r* is a morphism of left E^{E^ o)-comodules; 

(b) r^:E^{E,o) —• E^{E,o) is the unique homomorphism of left E*-modules that 
satisfies eq. (11.30) and is a morphism of left E^{E, o)-comodules as in (a); 

(c) The homomorphism r* is given in terms of the functional (r, —) as 

U'.E^E.o) 
^s 

E4E,o)^E^{E,o) 

l®(r,-) 
(11.33) 

E4E,o)(^E*^E4E,o). 
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PROOF. After applying M 0 - , diag. (11.32) corresponds under eq. (11.4) to the square 

SM SM 

tpsM rps^^ 

OrSM 
SSM SSM 

where Or'.S -^ S is defined on / € 5M = FMod*{A,M) by {0rM)f = 
(_l)deg(r)dcg(/)y jjy.* (Note that Or only takes values in Ab*, because it fails to preserve 
the preferred £J*-module structure on SM.) Since 5 is corepresented by A, commutativity 
of this diagram reduces to the equality 

PEor* = Sr* opE:A = E*{E,o) ySE*{E,o) = SA 

in SSA, which expresses the naturality of p. (Explicidy, (sr)* = ± r* o 5* for all 5 € A 
which is the associativity t{sr) = {ts)r for fixed r.) 

If we compose diag. (11.32) with 

1 0 es: E^{E,o) 0 E„{E,o) y E^{E, o) 0 £•* ^ E^{E,o) 

and use eq. (11.30) and diag. (11.10)(ii), we obtain (c). This also estaWishes the unique-
ness of r* in (b). D 

To summarize, eqs. (11.30) and (11.33) express r* and (r, - ) in terms of each other, 
with the help of ips and es- Conversely, these equations may be viewed as characterizing 
ips and es in terms of the r* and (r, -) for all r. 

We can at last make explicit how i/js is dual to the composition (10.4). It is immediate 
from eq. (11.30) that {sr, - ) = (5, - ) or*. We substitute eq. (11.33) to obtain 

fps 

{sr,-):E^{E,o) > E^{E,o)^ E,{E,o) 
(11.34) 

y E,{E,o)(^E* ^ E4E,o) ^ E\ 

(Note that we cannot simply write (5, - ) 0 (r, - ) here, which is undefined unless {5, —) 
happens to be right £*-linear.) 

REMARK. From a more sophisticated point of view, several of our formulae may be 
explained by noting that ips makes E,^{E^o) a stable comodule, provided we use the 
right J5*-module action. The comodule axioms are (11.9) and (11.10)(ii). Then by com-
paring eq. (11.33) with eq. (11.17), we see that the action of r on E^{E,o) is just r*, 
and diag. (11.32) becomes a special case of diag. (11.29), which in turn comes from 
diag. (8.8). 
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Compatibility. It is clear that eqs. (11.30) and (11.33) determine es and ips uniquely, and 
that eq. (11.23) determines 'qR. We now show that they agree with the homomorphisms 
introduced by Adams [3,111.12]. 

THEOREM 11.35. Assume that E^{E,o) is a free E^'-module (which is true for E = 
if(Fp), BP, MU, KU, or K{n) by Lemma 9.21). Suppose that E^{E,o) is equipped 
with il;s and ss that satisfy eqs. (11.30) and (11.33), and TJR as in Definition 11.2. Then: 

(a) rjR must be 

JS* = Trf (JS, o) ^ TrfiT-^ A E, o) > vrf ( £ A £?, o) = E^E, o); 

(b) 6 s must be 

7r^(<^,o) 

es'.E^{E,o) = 'Kf{E^E,o) —^ ^7rf(£;,o) = £;*; 

(c) '(1)3 fnust be 

E^{rfAE) 

il)s'E^{E,o) ^ E^{T-^AE,o) ^ E.{EAE,O) ^ E^{E,o)^E.{E,o), 

where we use the twisted Kunneth isomorphism with action scheme 

El^{E2 A E3,o) ^ El^{E2,o) ^2 E2^{E3,o). 

PRCX)F. The definition rjnv = v^l expands to 

. V . EAv 

T+ yE^EAT-^ > EAE. 

We prove (a) by rearranging this as 

T^ yE^T-^AE > EAE. 

Given r G E*{E, o) and c € E^{E, o), we may construct (r, c) as the composite 

. c rAE 4> 

(r,c):T^ > EAE > EAE y E. 

If we take r = L and compare with (11.30), we obtain (b). 
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The commutative diagram 

E.{E,o) 

E,{E,o) 

(riAE). 
•*- E^{EAE,o) 

(EAr)^ 

(VAE). 

E,{E,o)®E.{E,o) 

l(8)r* 

-^ E^{EAE,o) -̂ =̂— E^{E,o)^E^[E,o) 

E.{E,o) 

shows, with the help of eq. (11.30), that r» is the composite of 1 0 (r, - ) with Adams's 
t/;, which appears as the top row. (Here, both Kiinneth isomorphisms are twisted.) Since 
this holds for all r, comparison with eq. (11.33) gives (c). D 

12. What is a stable algebra? 

In Section 10, we gave four answers for the structure of a module over the ring A = 
E*{E, 6) of stable operations in jB-cohomology, to encode the algebraic structure present 
on the jEJ*-module E*{X) or E*{X, o) for a space or spectrum X. When X is a space, 
E*{X) is an £J*-algebra. In this section, we enrich each answer and theorem to include 
this multiplicative structure. 

The organizing principle of this section is to make everything symmetric monoidal. We 
have three symmetric monoidal categories in view: {Stab*, A,T"^), {Mod*,^, J5*), and 
the filtered version {FMod*^^.E""), We also have three symmetric monoidal functors: 
jEJ-cohomology (9.14), completed J5-cohomology (9.30), and £'-homology (9.18). 

In this section, we generally assume that E,„{E,o) is a free E*-module; then 
Theorem 9.31 provides Kiinneth homeomorphisms E*{EAE,O) = A§)A and 
E'^iEAEAE.o) ^ A§)A§iA. 

First Answer For a spectrum X, we have the action (10.1) 

Xx:A(S)E*{X,o) yE*{X,o). 

Given an operation r, we would like to have an external Cartan formula 

r{xxy) = Y^±r'^x x r'^y in E*{X AY,O) (12.1) 
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for suitable choices of operations r^ and r^ (and signs). For a space X, this leads to the 
corresponding internal Cartan formula, 

r{xy) = Y^±{r',x){r'^y) in E*{X). (12.2) 

For the universal example X = Y = E, with x = y = L, cq. (12.1) reduces to 

0V = ^ r ; x r : : in E^iE A E,o). 

This requires </)*r to lie in the image of the cross product (9.13) 

x:E*{E,o)(S)E%E,o) yE*{EAE,o), 

which rarely happens. However, the pairing becomes an isomorphism if we use the 
completed tensor product and so allow infinite sums. This is another reason to topologize 
E'{X). 

From this point of view, a stable algebra should consist of a filtered jE*-algebra M 
equipped with a continuous £?*-linear action XM'-A(S)M-^M that satisfies eq. (12.2) 
for all r. We must not forget the unit 1M of the algebra M, for which eq. (11.23) requires 
rlM = (r, 1>1M. 

In the classical case E = H{Fp), there is a good finite Cartan formula, and this 
description is adequate for many applications. For MU and BP, however, this approach 
is not very practical and must be reworked. 

Second Answer, We have the coaction px: E*{X) -^ £'*(X) g E^E, o) fi-om (10.7). 
We shall find that the rather opaque Cartan formula (12.1) translates (for spaces) into the 
commutative diagram 

E*{X)^E*{Y) 
PX®PY 

{E*{X)®E,{E,o))®{E'{Y)®E,{E,o)) 

E*{X)®E*{Y)®{E,{E,o)®E,{E,o)) (12.3) 

E*{X X Y) 
PXxY 

E\XxY)%E.{E,o) 

By taking F = X, we deduce that px is a homomorphism of £'*-algebras. This includes 
the units, which come from 1 G E^{T), since pr is given by Proposition 11.22(b). 

Explicitly, given x G £*(X) and y G E*{Y), assume that rx and ry are given as in 
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eq. (11.19) by 

a (3 

for suitable elements Xa G E*[X), yp G jE*(y), and Ca,d/3 € E^{E,o). Evaluation of 
diag. (12.3) on x 0 y using eq. (11.18) yields the external Cartan formula 

r(xxy) = ^^(-l)^^sWdeg(x.)^^^^^^^^^^^^^ i^E'iXxYY (12,4) 

for all r. This works too for x e E*{X, o), y € E*{Y, o), and x x y G £*(X A F, o), 
where X and F are based spaces or spectra. For a space X, we can take Y = X and 
deduce the internal Cartan formula 

r{xy) = ^^(-l)^'^(^^^^s(^"^(r,Cad^)xay/3 in E*{X)\ for all r. (12.5) 

All this makes it clear what the definition of a stable comodule algebra should be. The 
following lemma makes it reasonable. As in Section 10, we defer most proofs until we 
have our preferred definitions, at the end of the section. 

LEMMA \2.6. Assume that E^{E,o) is a free E*-module. Then the comultiplication 
ip = xpS'E^{E,o) -^ E^{E,o) (8) E^{E,o) and counit e = es:E^{E,o) -^ E* are 
homomorphisms of E*-algebras. 

As an immediate corollary of t/;l = 1 O 1, we have 

ips{vw) =v^w in E^{E,o) (g)E^{E,o) 

for any v £ E* and w € TJRE*. If we combine this with eq. (11.33), we obtain 

r^{vw) = vrjR{r,w) in E^{E,o) 

for any stable operation r. What makes these formulae useful is that the elements vw 
always span E^{E^o) 0 Q as a Q-module. Thus in the important case when E* has 
no torsion, these innocuous equations are powerful enough to determine Vs and r* 
completely. 

DERNITION 12.7. We call a stable comodule M in the sense of Definition 11.11 a stable 
(E-cohomology) comodule algebra if M is an object of FAIg and its coaction PM is a 
morphism in FAIg. 

In detail, M is a complete Hausdorff filtered E'̂ -algebra equipped with a coaction 
PM'M-^M§)E^ (JS, o) that is a continuous homomorphism of E*-algebras and satisfies 
the coaction axioms (11.12), which are now diagrams in FAIg. 
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THEOREM 12.8. Assume that E^{E, o) is a free E*-module (which is true for E = H{¥p), 
BP, MU, KU, or K{n) by Lemma 9.21). Then: 

(a) For any space X, the coaction px in (11.15) makes E*{Xy a stable comodule 
algebra; 

(b) p is universal: given a discrete commutative E*-algebra B, any multiplicative 
transformation eX:E*{X,o) -> E''{X,o)^B {or eX:E\X,oy -> E*{X,o)%B) 
that is defined for all spectra X and natural on Stab* is induced from px by a unique 
E*-algebra homomorphism f: E*{E,o) -^ B as 

0X:E*{X,o) - ^ E*{X,o)§)E.{E,o) -^^ E*{X,o)§)B. 

Third Answer We restate our Second Answer in terms of the functor 5'M = 
M%E^[E,o) introduced in Section 11. What we have really done is construct the 
symmetric monoidal functor 

{S\Cs',zs'):{FMod,^,E*) . [FMod,^,E*) (12.9) 

where Cs': S'M % S'N -^ S'{M§) N) is given by 

M§>E^{E,o) §)N§iE^{E,o) ^ M§)N^ (E^E^o) (S) E^{E,o)) 

y M®N^E^{E,o) 

and zs>: E* -^ S'E* is just r//?: E* -^ E^{E, o). We saw Cs' in diag. (12.3). 

We can now reinterpret Lemma 12.6 as saying that the natural transformations il)''.S' —> 
S'S' and e': S^ -* I art monoidal, thus making 5' a comonad in FAIg. Then diag. (12.3) 
simply states that p is monoidal. Since E* = E*{T) by definition, the other needed 
axiom reduces to px = zs', which we have by Proposition 11.22(b). 

Fourth Answer We enrich the object SM = FMod*{A,M) in Section 10 to include 
the multiplicative structure. 

THEOREM 12.10. Assume that E^{E,o) is a free E^-module (which is true for E = 
H{Fp), BP, MUy KU, or K{n) by Lemma 9.21). Then we can make S a symmetric 
monoidal comonad in FMod and hence a comonad in FAIg. 

The definition of stable algebra is now clear. 

DEHNITION 12.11. A stable (E-cohomology) algebra is an 5-coalgebra in FAIg, i.e. a 
complete Hausdorff filtered E*-algebra M equipped with a continuous homomorphism 
pM'-M —^ SM of £^*-algebras that satisfies the coaction axioms (8.7). 

If a closed ideal L C M is invariant (see Definition 10.13), then M/L inherits a stable 
algebra structure. 
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THEOREM 12.12. Assume that E^{E,o) is a free E^'-module (which is true for E = 
if(Fp), BP, MU, KU, or K{n) by Lemma 9.21). Then given a complete Hausdorff 
filtered E^-algebra M (i.e. object of FAIg), a stable comodule algebra structure on M 
in the sense of Definition 12.7 is equivalent to a stable algebra structure on M in the 
sense of Definition 12.11. 

THEOREM 12.13. Assume that E^{E,o) is a free E^-module (which is true for E = 
H{Fp), BP, MU, KU, or K{n) by Lemma 9.21). Then: 

(a) The natural transformation p:E*{-y —> S{E*{-y) defined on spaces by 
diag. (10.10) {or p:E*{-,oy —• S{E*{-,oy) for spectra) is monoidal and makes 
E*{Xy a stable algebra for any space X; 

(b) p is universal: given a cocommutative comonoid object C in FMod, any multi-
plicative transformation 

eX:E*{X,o) > FMod*{C,E*{X,o)) 

(or eX: E*{X, oy -^ FMod*(C, E*(X, o)^)) that is defined for all spectra X and nat-
ural on Stab is induced from px by a unique morphism f'.C —^ A of comonoids in 
FMod as 

Px 
eX'.E*(X,o) y S{E*(Xy) = FMod^{A,E*{Xy) 

Hom(/,I) 

—-> FMod*{C,E*(Xy). 

PROOF OF THEOREMS 12.10 AND 12.13. In proving Theorem 10.12, we made A = 
E*(E,o) an E*-module object. We add the necessary monoidal structure to 5 = 
FMod*(A^ —) in five steps. 

Step 1. We construct the symmetric monoidal functor 

(5,C5,^5):(FMocy*,§,£;*) >(Mod\®,E*). (12.14) 

We start from the ring spectrum E, with multiplication (t>:EAE-^E, unit TJ:T"^ —> E, 
and t;-action ^v: E -* E, and note that it is automatically an £'*-algebra object in the 
symmetric monoidal category (Sta6*, A,T" )̂ in the sense of Definition 7.12. We apply 
the £'-cohomology functor (9.14) to make A an £^*-algebra object in FMod*^^, with the 
comultiplication 

7jjA'A = E*(E,o) yE''(EAE,o)^A§>A 

and counit e^ = 77*:^ = E*{E,o) -^ J5*(T+,o) = E*. Then Lemma 7.14 produces 
the desired functor (12.14), with zs: E* -^ 5J?* given onv e E* by eq. (7.15) as 

zsv = 77* o(^vy =v*:A= E''(E,o) ^ E*{T-^,o) = E\ (12.15) 
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This identifies zs with T;̂ . Then S takes monoid objects in FMod* (i.e. objects of FAIg) 
to monoid objects in Mod* (i.e. jB*-algebras). 

Step 2. To prove that p:E*{—,o) —• 5(£'*(-,o)") is monoidal, we need to check 
commutativity of the diagram in Mod 

E*{X,o)(^E*{Y,o) 
PX^PY 

E*{XAY,o) 

^ SiE'iX,oy)0SiE*iY,oY) 

S{E*{X,oy^E*{Y,oy) (12.16) 

\sx 

'-^^ S{E*{XhY,oy) 

By naturality, it is enough to take X = Y = E and evaluate on the universal element 
6 (g) t. By construction, p£?t = id^ G 5^4. By the definition (7.11) of Cs, the upper route 
gives i/jA € S(A(SiA), which by definition corresponds under Sx to (/>* e SE*{EAE, O) 
as required. 

Because fJ* = E*{T^,o), the other needed diagram reduces to zs = PT» which we 
have by eq. (12.15). 

Step 3. For later use, we combine diag. (12.16) (still in the case X = Y = E) with 
the commutative square 

E*{E,o) 
PE 

SE*{E,o) 

\s<t>* 

E*{EAE,o) - ^ ^ ^ SE*{EAE,o) 

and the definition of 'ipA to obtain the following commutative diagram, which involves 
only A, 

PE 

^A 

SA 

\srl>A (12.17) 

^ PE®PE ^ ^S ^, ^ . . ,^ 

A®A SA(^SA S{A®A) 

Step 4. The monoidality of t/̂  is a formal consequence of that of p. The two commu-
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tative diagrams to check are 

xbM®\bN 

SM®SN > SSM®SSN 

Cs{M,N) S{SM§)SN) 

\sCs{M,N) 

^ i/>{M(8>iV) _ 
S{M®N) — SS{M®N) 

(i) 

E* SE* 

zs Szs 
(12.18) 

SE* SSE* 

(ii) 

where we again leave some tensor products uncompleted. 
As (i) is natural in M and N, we may work with the universal example M = N = A 

and evaluate on id^ ® id>i. The upper route gives the element 

^ V'.A , ^ , PE0PE ^ , ^ ^ , CS ^, , ^ ,. 

A > AiS>A y SA(S}SA > S{A(SiA) 

of SS{A^A), The lower route gives 

A > SA y S{A(S^A), 

which we just saw in diag. (12.17) is the same. 
Since zs = PT, (ii) reduces to axiom (8.7)(i) for the 5-coalgebra E* = E*{T). 
Step 5. We next check that e is monoidal; this too is formal. As ever, there are two 

diagrams: 

SM<SiSN E* 

£^e 
(i) C5(M,iV) (ii) (12.19) 

SE"" —^-^ E* 

Again we take M = AT = ^ in (i) and evaluate on id>t ® id^. The lower route gives 
i)A^ = (̂S)̂ , by the definition of V'̂ . This agrees with e®e, since S'IAA = i- For (ii), it 
is clear from eq. (12.15) that ezsv = v. 

In Theorem 12.13(b), we are given a comonoid object C, equipped with morphisms 
il)c''C -^ C§}C and Ec'.C -^ E* in FMod*. Let us write (VXv.zv) for the sym-
metric monoidal functor with V = FMod*{C, - ) that results from Lemma 7.9. Theo-
rem 10.16(b) provides the unique morphism /: C —̂  -4 in FMod* that induces V from 
S'asineq. (10.17). 

We compare diag. (12.16) and a similar diagram with V in place of 5. Evaluation of 
the universal case X ^Y = E on i®L shows that {f®f)oipc = '^A''f''C-^A<S>A. 
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Since OT^ takes 1 G £"* = E*{T) to the unit element zy G VE*, eq. (10.17) shows 
that EC =eA°f' U 

Comodule algebras. We can now fill in the missing proofs on comodule algebras. By 
construction, the isomorphism S'M = SM in (11.4) transforms the symmetric monoidal 
structure (12.9) on S' into the symmetric monoidal structure (12.14) on S. Also, p' is 
monoidal and we have diag. (12.3). 

PROOF OF LEMMA 12.6. If we replace S by S' in the four diagrams (12.18) and (12.19) 
for M = iV = E*, we obtain exactly the diagrams we need. D 

PROOF OF THEOREM 12.12. Tlie isomorphism S'M ^ SM is now an isomorphism of 
algebras, and the two definitions agree. D 

PROOF OF THEOREM 12.8. For (a), we combine Theorem 12.13(a) with Theorem 12.12. 
In (b), Theorem 11.14(b) provides the unique homomorphism f:E^{E,o) -^ B of 

E*-modules that induces 0 from p as in eq. (11.16); it corresponds to the element {9E)L 
under the isomorphism E*{E,o)§}B = Mod*{E^{E,o),B) of Lemma 6.16(a). If we 
evaluate 6{T'^) on 1, we see that / I = 1. The multiplicativity of 6 is expressed as a 
diagram resembling (12.3) with B in place of JE*(J5, o). We evaluate it in the universal 
case X = Y = E on i(S)t and again use Lemma 6.16(a) to convert elements of 
E* {EAE,O)^B to module homomorphisms E^ {E, o) 0 E^ (E, o) -^ B, with the help 
of E*{E AE,O)^ D{E^{E,O) 0 E^{E,6)) from Theorems 9.20 and 9.25. The upper 
route yields (J)B ^{f^fY E^{E,o) (g) £*(J5,o) -> B. Since L x L = (j) £ E*{E A E, o), 
the lower route yields 

E^{E,o)(S>E^{E,o) -^E^{EAE,o) —^E„{E,o) > J5. 

Thus / is multiplicative and so is an £?*-algebra homomorphism. D 

13. Operations and complex orientation 

In this section, we show how a complex orientation on E determines the elements 
bi e E^ (E, 6) from our point of view. We assume that E^ {E, 6) is free, so that Sections 11 
and 12 apply. We pay particular attention to the p-local case, and the main relations that 
apply there. 

Complex projective space. We recall from Definition 5.1 that a complex orientation 
for E yields a first Chern class x{6) G E'^{X) for each complex line bundle 6 over 
any space X. As the Hopf line bundle ^ over CP°° is universal, we need only study 
X = x ( 0 e £;^(CP~). Thus CP~ is our third test space. Since £'*(CP°^) = E'^Wx]] 
by Lemma 5.4, the coaction p on E*{CP°°) is completely determined by px, multiplica-
tivity, j5*-linearity, and continuity. 
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DEFINITION 13.1. Given a complex orientation for E, we define the elements bi G 
E2(i-i){E, 6) for alH ^ 0 by the identity 

px = h{x) = ^ x ^ 06 i in E*{CP°^)%E^{E,o) ^ E4E,o)[[x]l (13.2) 
i=0 

where b{x) is a convenient formal abbreviation that will rapidly become essential. 

Equivalentiy, according to eq. (11.19), the action of any operation r G A^ E*{E^ o) 
on X is given as 

oo 

rx = ^ (r ,hi ) x' in i;*(CP°°) = E*[[x]], (13.3) 
i=0 

REMARK. Our indexing convention is taken from [32]. We warn that hi is often written 
bi-i (e.g., in [3]), as its degree suggests; the latter convention is appropriate in the current 
stable context, where 6o = 0 (see below), but less so in the unstable context of [9], where 
(our) fco does become nonzero. 

Since the Hopf bundle is universal, eqs. (13.2) and (13.3) carry over by naturality to 
the Chem class x{6) of any complex line bundle 0 over any space X (except that when 
X is infinite-dimensional and E*{X) is not Hausdorff, the infinite series force us to 
work in the completion E*{Xy). 

PROPOSITION 13.4. The elements hi e E2{i-^\){E,o) have the following properties: 

(a) 6o = 0 and b\ = 1, so that b{x) = x<g)l -h x̂ (8)62 + x^^fcs H / 

(b) The Chem class x £ E^{CP°°,ol regarded as a map of spectra x: CP°° —> E, 
induces x^f3i = bi e E^ {E, o), where 0i € En {CP^) is dual to x* (as in Lemma 5.4(c)); 

(c) ipsbk is given by 

^sbk = ^B(z,A:) 0 6 i in E^{E,o) (S)E^{E,o), 
1=1 

where B{i^ k) denotes the coefficient of x^ in 6(x)*, or, in condensed notation, il^sb{x) = 

(d) esbi = Ofor all i> \, so that esb{x) = x. 

PROOF. We prove (a) by restricting to CP^ = 5^ and comparing with eq. (11.24). Part 
(b) is an application of Proposition 11.26, using eq. (13.3). For (c) and (d), we take 
M = £;* (CP^) in diags. (11.12) and evaluate on x. D 
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The formal group law. Now CP°° = K{1L^ 2) is an //-space, whose multiplication map 
/x: CP~ X CP~ -> CP~ may be defined by fjTi = p*^ ̂ p j ^ for the Hopf bundle .̂ 
We therefore have from eq. (5.13) 

/i*x = F{xx 1, Ixx) = x x l -h I x x - l - ^ a i j x ' x x - ^ , (13.5) 

where F(x^y) denotes the formal group law (5.14). When we apply p and write x for 
X X 1 and t/ for 1 x x, we obtain from eq. (13.2) and naturality 

6(P(x,y)) = FR{h{x\ 6(2/)) = h{x) -f 6(y) + J]6(x)^ b(y)^ mai^j (13.6) 

in jE?*(JE, o)[[x,t/]], which is difficult to express without using the formal notations 6(x) 
and P(x, y). On the right, FR{X, Y) is another convenient abbreviation. (In the language 
of formal groups, the series h{x) is an isomorphism between the formal group laws F 
and PR.) 

The P'local case. The above rather formidable machinery does simplify in conunon 
situations. When the ring E* is p-Iocal, most of the bi are redundant. 

LEMMA 13.7. Assume that E* is p-local. Then if k is not a power of p, the element 
bk G -B*(-E, o) can be expressed in terms of E*, TJRE*, and elements of the form bpi. 

PROOF. Consider the coefficient of x^y^ in eq. (13.6), where i -f j = A:. On the left, there 
is a term (^)6A: from 6fc(x-h2/)*, and all other terms involve only the lower 6's. On the 
right, no b beyond bi or bj occurs. If (̂ ) is not divisible by p and so is a unit in £**, 
we deduce an inductive reduction formula for 6 .̂ This can be done whenever k is not a 
power of p, by choosing i = p^ and j = k-p^, where m satisfies p^ < k < p^'^^. D 

We therefore reindex the 6's. 

DEFINFFION 13.8. When E* is p-local, we define 6(i) = bpi for each i ^ 0. 

We still need to use the internal details of Lemma 13.7 to express each tpb(^k) induc-
tively in terms of the 6(t), aij, and rj^aij. 

The main relations. In the p-local case, it is appropriate to study instead of /x the much 
simpler p-th power map (: CP°° —> CP°° constructed from /i. In cohomology, it must 
induce 

C x = [p](x) = px + X!^ta:^+^ in J5*(CP°°) ^ E*[[x]] (13.9) 
t>0 

for suitable coefficients gi € -B"̂ * (which are usually written â ; but we need to avoid 
conflict with certain other elements also known as â  that appear in Section 14). The 
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formal power series [p](x) is known as the p-series of the formal group law. The bundle 
interpretation is C*̂  = ^^^, so that 

x{e^p) =px{e) + "^Qixiey^^ in E*{zy (13.10) 
i > 0 

for any line bundle 6 over any space Z. (Again, completion is not necessary for finite-
dimensional Z, or if the series [p\{x) happens to be finite.) 

When we apply p, we obtain 

b{\p]{x))=\pU{b{x))=pb{x)-^Y.b{xy^'m9i inE.{E,o)[[x]], (13.11) 

where \P]R{X) denotes the formal power series pX -f- X)t(^H^i)^*'''^- We extract the 
relations we need. 

DEFINITION 13.12. For each A: > 0, we define the kih main stable relation in E^{E,o) 
as 

[TlkY L{k) = R{k) in E^E.oy (13.13) 

where L{k) and R{k) denote the coefficient of x^ in 6([p](x)) and \p]R{b{x)) respec-
tively. 

The results of Section 14 will show that, despite appearances, the relations (TZk) 
contain all the information of eq. (13.6), with the understanding that the latter is used 
only to express (inductively) each redundant bj in terms of the 6(i), E*, and TJRE*, in 
accordance with Lemma 13.7. 

14. Examples of ring spectra for stable operations 

In Section 10, we developed a comonad 5 that, for favorable E, expresses all the structure 
of stable E-cohomology operations. In Section 11, we described an equivalent comonad 
5 ' in terms of structure on the algebra E^{E,o). In this section, we give the complete 
description of E^{E,o) for each of our five examples, namely E = H{Fp), MU, BP, 
KU, and K{n). (The first splits into two, and we break out the degenerate special case 
if (Q) = K{0) merely for purposes of illustration.) 

All the results here are well known, but serve as a guide for [9]. Our purpose is to 
exhibit the structure of the results, not to derive them. As Milnor discovered [22] in the 
case E = H{¥p), the most elegant and convenient formulation of stable cohomology 
operations is the Second Answer of Sections 10 and 12, consisting of the multiplicative 
(i.e. monoidal) coaction (10.7) 

Px:E\X) ^E%X)%E,{E,o) 
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for each space X (or on E*{X, o), for a spectrum X). 
The point is that the knowledge of px on a few simple test spaces and test maps is 

sufficient to suggest the complete structure of E^{E^o). The test spaces studied so far 
include the point T in Proposition 11.22, the sphere S^ in eq. (11.24), and complex 
projective space CP^ in eq. (13.2). 

In each case, we specify (when not obvious): 

(i) The coefficient ring E*\ 
(ii) The £;*-algebra £?*(£•, o); 

(iii) 7}R\ E* —• E^{E,o), the right unit ring homomorphism; 
(iv) 7p: E^{E, o) -^ E^{E,o) (S> E^{E,o), the comultiplication; 
(v) e: E^{Ey o) --^ E*, the counit. 

(See Proposition 11.3 for E^{E,o) and TIR. By construction and Lemma 12.6, ^ and 
€ are homomorphisms of jE?*-algebras and of E*-bimodules.) In most cases, the results 
allow us to express the universal property of E*{E, o) very simply. 

Example. H{¥2). We take E = H = i?(F2), the Eilenberg-MacLane spectrum repre-
senting ordinary cohomology with coefficients F2. The main reference is Milnor [22], 
and many of our formulae, diagrams and results can be found there. The appropriate test 
space is 1RP~ = K{¥2,1), an ff-space with multiplication /x: 1FLP~ x RP°° -> RP~, 
and we use a mod 2 analogue of complex orientation. We have H*{RP'^) = F2 [t], with 
a polynomial generator t G H^{MP°^)y and p,*t = tx\ -{- Ixt is forced. By analogy 
with Proposition 13.4(a), we must have 

pt = tm -^Yl^'i^Ci in ff*(lRP«^)®//*(if,o) ^ H4H,o)[[t]] 

for certain coefficients Q G H^{H, O). The analogue of eq. (13.6) is simply 

(t+u)(g)l-h]^(t-fn)*(8)Ci = t(8)l -f^t*(g)Ci-|-u(8)l -i-^u*(g)Ct 
t>l t>l i>\ 

in if*(if, o)[[t,u]]. Because the left side contains the terms Q)t*~̂ zî  0 Ci, we must 
have Ct = 0 unless i is a power of 2. Imitating Definition 13.8, we write î = C2i E 
H2i^\{Hyo) for i > 0, so that now 

0 0 

pt = t(^\ -\-^f'(S)^i in i /*( lP~) §// .( i / ,o) ^ H.{H,o)[[t]]. (14.1) 

Because S , = RP^, this formula is valid for every t e H\X), for all spaces X. It is 
reasonable to define also 0̂ = ci = 1. Milnor proved that this is all there is. 

THEOREM 14.2 (Milnor). For the Eilenberg-MacLane ring spectrum H = if (Fa).' 
(a) H^{H,o) = F2[^I,^2>6J-••]> ^ polynomial algebra over ¥2 on the generators 

iieH2i-x[H,o)fori>0; 
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(b) In the complex orientation for H{F2), 6(t) = Ci for all i > 0, 6(o) = 1, and bj = 0 
if j is not a power of 2; 

(c) ^ is given by 

k-\ 

1=1 

(d)e^k = Oforallk>0. 

PROOF. Milnor proved (a) in [22, App. 1]. The complexified Hopf line bundle over 
EP°° has Chem class t̂ . We compare pt^ with eq. (13.2) and read off (b). (For i not a 
power of 2, this is a stronger statement than Lemma 13.7 provides.) For (c) and (d), we 
substitute M = /f*(RP°°) into diags. (11.12) and evaluate on t. D 

COROLLARY 14.3. Let B be a discrete commutative graded F2'algebra, Assume that the 
operation 0: H*{X, o) —• H*{X, o) 0 JB is multiplicative (i.e. monoidal) and natural on 
Stab*. Then on t € /f*(RP~,o) = fl^^(IRP~), 6 has the form 

et = t 0 l 4- ̂ i^'0Ct' in /f*(IRP~) g B ^ B[[t]], 
1=1 

where the elements -̂ G B~(2*~̂ ) determine 0 uniquely for all X and may be chosen 
arbitrarily. 

PROOF. We combine the universal property Theorem 12.8(b) of H^{H,o) with the 
universal property of the polynomial algebra F2 [̂ i, 2̂? • • •]• • 

Example, H{Fp) (for p odd). We take E = H = H{¥p), the Eilenberg-MacLane 
spectrum that represents ordinary cohomology with coefficients Fp. The main reference 
is still Milnor [22]. 

We have a complex orientation, therefore by Definition 13.8 the elements 6(i) € 
H2(pi-\){H,o)\ 6(t) is normally written î for i ^ 0, where 0̂ = (̂o) = 1. As in 
the previous example, eq. (13.6) simplifies to show that bj = 0 whenever j is not a 
power of p, so that for the Chem class x = x{0) e H'^{X) of any complex line bundle 
0 over X, eq. (13.2) reduces to 

CX) 

pxx = X01 -^Y^x^'^^i in H''{X)§}H^{H,o). (14.4) 

We need one more test space, the infinite-dimensional lens space L = K{Fp,\), 
which contains S^ and is another if-space. The cohomology H*{L) = Fp[x] 0 A{u) has 
an exterior generator u e H^{L) which restricts to u\ E H^{S^), As the polynomial 
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generator x G H'^{L) is the Chern class of a certain complex line bundle, p^x is given 
by eq. (14.4). This leaves only piUy which must take the form 

PLU = 2^^^^^i + /^ux^(^Ci 
i i 

for certain well-defined coefficients ai.Ci e H^{H,o). By restricting to 5^ C L and 
comparing with eq. (11.24), we see that CQ = 1 and OQ = 0. 

The multiplication fi on L induces fi*u = uxl -\- Ixu and /i*x = x x l - f l x x . 
Expansion of p>*pLU = PLxLf^*u = (PLU) X 1 -f 1 X (piu) yields 

^ ( x x l 4- lxx)*(g)ai + ^ ( i x x l 4- 1 xu)(a:xl -f 1 xrr)*0Ct 
t i 

= ]^ (x ' X l)(g)at -f ^(txa:* X l)0Ct + ^ ( 1 xx*)(S)at -f ^ ( 1 Xixx*)0Ci. 
i i i i 

For i > 0, there is no term with u x x^ on the right, but there is on the left, which 
forces Ct = 0 for i > 0. When we take coefficients of x* x x ,̂ we find as in Lemma 13.7 
that Ot = 0 unless i is a power of p. Again we reindex, defining r̂  = Cpi € H2pi-\{H, 6) 
for alH ^ 0, so that now 

CX) 

PLU = U01 -h ̂ xP'(g)ri in H''{L)§)H4H,o). (14.5) 
t=0 

Again, the elements n̂ and Tn give everything. 

THEOREM 14.6 (Milnor). For the Eilenberg-MacLane ring spectrum H = H{¥p) with 
p odd: 

(a) As a commutative algebra over Fp, 

/f .( /f ,o) = Fp[ei,6,6, . . . ](^^(ro,T,,r2, . . . ) , 

with polynomial generators ^i = 6(i) € H2(pi^\){H, o)for i ^ 1 an<i exterior generators 
Ti€H2pi-i{H,o)fori^0; 

(b) T/̂ : if.(/f, o) -^ if,(/f, o) ® /f.(if, o) w îv^n Z?y 

fc-i 

^^k=a^i+X^ef-t^^i+i^^fc» 
t = l 

A; - l 

t=0 

(c) eCk = O/or allk>0 and STk = Ofor all k ^ 0. 



672 J.M. Boardman Chapter 14 

PROOF. Part (a) is Theorem 2 of Milnor [22]. Parts (b) and (c) comprise Theorem 3 
[ibid.], but also follow by substituting pi into diags. (11.12) and evaluating on x and u. 
(Proposition 13.4 also gives -0^^ and e^k-) D 

We have the analogue of Corollary 14.3. 

COROLLARY 14.7. Let B be a discrete commutative graded ¥p-algebra. Assume that the 
operation 6: H*{X^ 6) —̂  H*{X^ o)^B is multiplicative and natural on Stab*. Then on 
H*{L) = ¥p[x] 0 A{ul e has the form 

oo cx> 

0x = x(g)l -f ^xP*(g)^-; Bu = u(S)l -f ^xP*(g)ri; 
t = l t=0 

where the elements -̂ E fi-^^P*"^) and T[ G B-^^P'"^) determine 6 uniquely for all X 
and may be chosen arbitrarily. 

Example. H{Q). We take E = H = H{Q), the Eilenberg-MacLane spectrum that 
represents ordinary cohomology with rational coefficients Q. There are no interesting 
stable operations. 

THEOREM 14.8. For the Eilenberg-MacLane ring spectrum H = H{Q), we have 
H.{H,o) = H.{H{Qlo)=Q. 

Example. MU. Our main reference is Adams [3, n.§l 1]. The coefficient ring is MU* = 
Z[x\,X2,X3,...], with polynomial generators Xn in degree - 2 n that are not canonical. 
We have complex orientation, almost by definition, and therefore the elements bn E 
MU2n^2{MU,0). 

The good description of MU* was given by Quillen [30, Theorem 6.5], as the universal 
formal group: it is generated as a ring by the coefficients aij E MU* that appear in 
the formal group law (5.14), subject to the relations (5.15). Hence the elements rjRaij 
determine TJR. 

THEOREM 14.9. For the unitary cobordism ring spectrum MU: 

(a) As a commutative MU^-algebra, MU^{MU, o) = MC/*[62, ̂ 3, &4, • • •], ^ith poly-
nomial generators hi G MU2(i-.\){MU, o) for i> I; 

(b) VR^id ^ MU^{MU,o) is determined by eq. (13.6); 

(c) ip is given by 

k 

#fc = 6^01 -\-Y^B{i,k)^bi in MU^MU.o) ^ MU^MU.o), 

where B{i, k) denotes the coefficient of x^ in 6(x)*; 

{A)£bk =0forallk^2. 
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PROOF. Part (a) is standard. In (b), the coefficient of x*ŷ  in eq. (13.6) provides an 
inductive formula for rjRaij. Proposition 13.4 provides (c) and (d). D 

As MU^{MU^o) is a polynomial algebra, Corollary 14.3 carries over to this case. 

COROLLARY 14.10. Let B be a discrete commutative MV-algebra. Assume that the 
operation 0:MU*{X^o) —̂  MU*{X,o)§)B is multiplicative and natural on Stab*. 
Then on x e Mf7^(CP~), 9 has the form 

(X) 

fe = x(8)l + ^x'(S)b[ in MC7*(CP~) §iB^ B[[x]l 

where the elements b[ € B""̂ (*~*) determine 0 uniquely for all X and may be chosen 
arbitrarily. 

In other words, there are no relations over MU* between the hi. The dual 
MU*{MU,o) is known as the Landweber-Novikov algebra. The results for i/j are no 
longer amenable to explicit expression as in Theorems 14.2 and 14.6. 

Example. BP, The main reference is still Adams [3, n.§16]. The coefficient ring is 
now BP* = Z(p)[vi,t;2, V3,...], a polynomial algebra on Hazewinkel's generators Vi of 
degree —2(p* —1) for i > 0, (One could instead use Araki's generators [5] or any other 
system of polynomial generators, with only slight modifications.) 

We still have complex orientation, but because BP* is p-local, we need only the 
generators fe(i) from Definition 13.8, where 6(o) = 1. Moreover, it is sufficient to work 
with the p-series (13.9), because its coefficients gi generate BP* as a Z(p)-algebra (as 
we shall see in more detail in Section 15). We write Wi = TjRVi e BP^{BP, a). 

THEOREM 14.11. For the Brown-Peterson ring spectrum BP: 

(a) As a commutative BP*'algebra, BP^{BP,o) — BP*[6(i), 6(2), b(3),.. ], y^ith poly-
nomial generators b(^i^ = bpt € J3P2(p*-i)(-SP, o) for each i > 0; 

(b) The nth main relation {Tin) in eq. (13.13) provides an inductive formula for 
Wn=VR'^neBP4BP,o); 

(c) tj; is given by 

'^b(k) = b^k)^^ + ^B{i,p^)iS)bi in BP^BP^o) (S>BP^{BP,o), 
1=2 

where B{i^ p^) denotes the coefficient ofx^ in 6(x)* (and Lemma 13.7 is used to express 
b{x) and bi in terms of the b(j) and BP*); 

(d)e6(fc) =Oforallk>0. 

We shall find that the generators b^i) are better suited to [9] than Quillen's original 
generators U, or their conjugates hi, which were used in [8]. We have the analogue of 
Corollary 14.10. 
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COROLLARY 14.12. Let B be a discrete commutative BP*-algebra. Assume the operation 
0:BP*{X,o) -^ BP*{X,o)%B is multiplicative and natural on Stab*. Then on x G 
BP2(CP~), 0 has the form 

oo 

0x = x(8)l -f ^x*(g)6'^ in BP*{CP'^)§iB^ B[[x]] 
t=2 

for certain elements b[ G B~^(*~^). The elements 6̂ x = b', for i ^ 1 determine 0 
uniquely for all X and may be chosen arbitrarily. 

Example. KU. We take E = KU = K, the complex Bott spectrum, which we con-
structed in Sections 3 and 9. Its coefficient ring is the ring Z[u, u~^] of Laurent polyno-
mials in IX G KU'^y and one writes v = TJRU. The complex orientation (5.2) furnishes 
elements bi G KU^{KU,o), of which b\ = 1. We computed its formal group law 
F(x, 2/) = X + y -f uxy in eq. (5.16); thus eq. (13.6) reduces to 

6(x 4- y -f uxy) = b{x) -f b{y) -h b{x)b{y)v. (14.13) 

This is small enough for explicit calculation. The coefficient of xy^ yields the relation 

{i-^l)bi^i -f iubi = biV (14.14) 

since on the left, 

bj(x + y + uxyY = bjy^ -h jbjy^~^x{l -f uy) mod x^. 

(Compare [3, Lemma II.13.5].) This includes the special case 262 + li = v for i = 1. 

Generally, for i > 1 and j > 1, the coefficient of x^y^ yields the relation 

which serves to reduce any product of 6's to a linear expression. Thus the general 
expression c in our generators may be assumed linear in the 6's. Further, for large 
enough m, cv'^ will have no negative powers of v; if we use eq. (14.14) to remove all 
the positive powers of v, c takes the form 

C = U^{XiU-^ -h X2U-% -f \3U-% -h . . . + XnU-''bn)v~'^ (14.16) 

for some integers Ai, n, and q. This suggests part (a) of the following. 

LEMMA 14.17. In KU^{KU,o): 

(a) Every element can be written in the form (14.16); 

(b) The element c in eq. (14.16) is zero if and only if Xi = Ofor all i. 
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This, with eq. (14.14), is a complete description of KU^{KU, o). We shall give a proof 
in [9]. 

THEOREM 14.18. For the complex Bott spectrum KU: 

(a) As a commutative algebra over KU* = Z[tx,u~^], KU^{KU,o) has the genera-
tors: 

v = mueKU2{KU,o); 
v-^^r)RU''^eKU.2{KU,o); 
bi€KU2i^2{KU,o)fori> 1; 

subject to the relations (14.14) and (14.15); 

(b) As a KU*-module, KU^{KU,o) is spanned by the monomials v^ and biV^, for 
alli> I and n € Z, subject to the relations (14.14) (multiplied by any v^); 

(c) 'tp is given by 

k 

#fc = 6ib0l + ^B{i,k)(^bi in KU.{KU,o) ® KU,{KU,o), 

where B{i^ k) denotes the coefficient of x^ in bixf; 

(d) e is given by ebi = Oforatli > 1. 

PROOF. Parts (a) and (b) follow from Lemma 14.17. Parts (c) and (d) are included in 
Proposition 13.4. D 

Although we no longer have a polynomial algebra, we still have part of Corollary 14.10. 

COROLLARY 14.19. Let B be a discrete commutative KU^-algebra. Then any operation 
0: KU*{X, o) —• KU*{Xj o) ® B that is multiplicative and natural on Stsb* is uniquely 
determined by its values on if[/*(CP°°). 

The module KU^{KU, o). What makes the description (14.16) unsatisfactory is that m 
is not unique; we can always increase m and use eq. (14.14) to remove the extra v's 
to obtain another expression of the same form that looks quite different. For example, 
(63 + 1x62)72 = (264 4- 3ub3 -h v?'b2)v~^ e KU^{KU,o), in spite of the denominator 
2. It is notoriously difficult to write down stable operations in KU*{—) (equiyalently, 
linear functionals KU^{KU,o) -^ KU*) other than ^^ = id and ^'^[C] = [C] (the 
complex conjugate bundle). Following Adams [3], we develop an alternate description 
from which the freeness of KU^{KU, 0) will follow easily. 

First, we note that Lemma 14.17 implies that KU„{KU,o) has no torsion, which 
allows us to work rationally and consider 

KU*[v,v-^] C KU.{KU,o) C KU^[v,v-^]^Q. 

The key idea is that if we localize at a prime p, we have available (algebraically) the 
Adams operation ^^ for any invertible fc E Z(p). Rationally, we have ^^ for all nonzero 
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A: G Q. It is characterized by the properties that it is additive, multiplicative, and satisfies 
^fc[0] ^ [0®fc] ^ [0]fc for any line bundle 0. 

To compute ^^u, we rewrite eq. (3.32) as uu2 = [̂ ] - 1 and apply ^^. As stability 
requires ^^U2 = n2, and ^2 = 0, we find 

{^^U)U2 = [^]^ - 1 = (1 -f- UU2)^ - 1 = kuU2. 

Hence ^'^u = ku. Then eq. (11.23) becomes 

{^^,v) = ^^u = ku. (14.20) 

The linear functional {^'', - ) : KU^{KU, o) - • KU* (8)Q is multiplicative because l?'' is, 
as can be seen by expanding ^'^{LXL) by eq. (12.4). (These are precisely the multiplicative 
linear functionals.) 

We apply {^'^^ - ) to eq. (14.14) to obtain, by induction starting from 6i = 1, 

{^',bn) = k-'(J]u^'K (14.21) 

Alternatively, for any n > 1 we can write formally 

n! 

and replace v by ku everywhere. 

LEMMA 14.23. An element c E KU*[v,v~^ 0 Q lies in KU^{KU,o) if and only if 
{^^,c) e KU*(SiI*(p)for all primes p and integers k > 0 such that p does not divide k. 

From this we deduce the freeness of KU^{KU, o). 

PROOF OF LEMMA 9.21 FOR E = KU. Denote by Fm,n the free i(rC7*-module with basis 
{t;^, -ym+i ^ ^ ^n} î  ig enough to show that for any m, KU^{KU, o)n(F_m,m<8)Q) is a 
free A'?7*-module; then any basis extends to a basis of KU^{KU, o)n(F_m-i,m+i 0Q)» 
and thence by induction to a basis of KU^{KU,o). We may multiply by v^ and work 
with Fo,2Tn instead. 

We therefore work in degree zero and take any element 

c = Ao -f All/; -h A2t/;̂  + • • • -f Xn-iw""-^ (14.24) 

in KUo{KU, o) n (Fo,n-i 0 Q), where each Ai G Q and we write w = u~^v. We have 
only to find a common denominator A that guarantees ^A, € Z for all i. 

Given any prime p, we choose n distinct positive integers fci, fci, • • fcn» not divisible 
by p; then by eq. (14.20), 

t=0 
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We solve these n linear equations for the Xi in terms of the {\^^^,c), which requires 
division by the Vandermonde determinant 

A{p)== del {k^')= n (fci-^.)-

Then A{p)Xi € Z(p) for alH. If p > n, the obvious choices kj = j yield Â  G Z(p), 
because then p does not divide ^(p). We take A = flp^n ^(p)- O 

Before we establish Lemma 14.23, we need a result [3, Lemma 11.13.8] which explains 
the role of the 6's. 

LEMMA 14.25. Let c be an element of KU*[v,v~^] 0 Q. Then c is a KU*'linear com-
bination of the elements 1, t; = h\v, biv, 631;,... if and only if {^^^ c) G KU* for all 
integers k> Q. 

PROOF. Necessity is clear from eq. (14.21). We may reduce sufficiency to the case when 
c has degree 0 and write c as a Laurent series in it; = u~ t̂;. By taking fc very large, it 
is clear that c has no negative powers of w\ this allows us to write (see eq. (14.22)) 

for some n and suitable coefficients Â  € Q. By eq. (14.21), 

By induction on k from 1 to n -f 1, {^^,c) G Z yields-A^ = (~l)''Ao modZ. But 
An+i = 0. Therefore Ao € Z, and At € Z for all i. D 

PROOF OF LEMMA 14.23. Again, necessity is clear. For sufficiency, we assume given c in 
the form eq. (14.24). Let m be the maximum exponent of any prime in the denominators 
of the Ai, so that p^Xi E Z(p) for all i and all primes p. Then p^{^^, c) G Z(p) for all 
integers fc > 0 and all primes p. 

If p does not divide fc, we have {^^.cw"^) = k^{^^,c) G Z(p) by hypothesis. If 
fc = pq, we have instead k'^{^^,c) = q^p'^{^^,c) E Z(p), by our choice of m. Thus 
for each fc > 0, 

(«i^*,c«;->enZ(p) = Z. 

Then Lemma 14.25 shows that cw'^ e KU^{KU, 0). D 

Example, K{n). The coefficient ring is now the p-local ring K{n)* = ¥p[vn,v:^^], 
still with deg(i;n) = - 2 ( p ^ - l ) , where p is odd. We write Wn — rjR'^n^ as we did 
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for BP. We have a complex orientation, and therefore elements 6(i) for z > 0, where 
6(0) = 1. Although the formal group law remains complicated, it is well known [32, 
Theorem 3.11(b)] that over Fp, the p-series (13.9) reduces to exactly 

Cx = VnX^^ in i^(n)*[[x]], (14.26) 

so that eq. (13.11) simplifies drastically to b{vnX^'') = b{xY''wn' The coefficient of x^"" 
yields Wn = Vn, and the coefficient of x̂ "* * then yields 

^) = ̂ t~\i) in K{nUK{n), o). (14.27) 

LEMMA 14.28. Assume that k is not a power of p. Then: 

(a) bk G K{n)2k-2{K{n),o) can be expressed in terms ofvn and the b(^i); 

(h)bk^Oifk<p^. 

PROOF. Part (a) comes from Lemma 13.7. For (b), we trivially have aij = 0 whenever 
i + j < p^\ in this range, eq. (13.6) behaves exactly as in Theorem 14.6 for i/(Fp). D 

We need one more test space. The infinite lens space L is not appropriate, as 
K(ny{L) = K(ny[x : x^" = 0], where x is inherited from C P ~ . (Because C 
is trivial on L, we must have x^"^ = 0, which makes the structure of the Atiyah-
Hirzebruch spectral sequence clear.) Instead, we use the finite skeleton Y = L?-^""'^, the 
orbit space of the unit sphere in CF"" under the action of the group Z/p C 5^ C C. 
The spectral sequence for K{nY{y,o) collapses because it can support no differential, 
to give K(nY{Y) = A{u) 0 K{ny[x : x"" = 0], where u € K{ny{X) restricts 
to u\ G K{ny{S^). (This fails to define u uniquely, because we can replace u by 
u' = u-\- hvnux^''^^ for any /i G Fp.) 

We know pyx is given by eq. (13.2). We write 

PYU = ^ x''<^ai -f ^ ux*(8)Ci, (14.29) 
i=0 t=0 

which defines elements at,Ci G K{n)^{K{n),o). (They are independent of the choice 
of u.) By restriction to 5* C y , we see that oo = 0 and co = 1. 

Unfortunately, Y is no longer an if-space. The multiplication on L restricts (after a 
noncanonical deformation) to a partial multiplication on skeletons p.:L^^^^ x L̂ "̂  ~> 
£̂ 2(fc+m)-hi ^ Y, whenever fc -f- m = p" - 1. Clearly, 

K{ny[L^^^') = A{u) ® K{ny [x : x'̂ ^̂  = O], 

with the coaction p obtained from py by truncation; and similarly for K{ny{L^'^), 
except that ux"^ = 0 also. 
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As X is inherited from L, we have /x*x = xx 1 -h 1 xx, for lack of any other possible 
terms in degree 2. For u, we must have 

fi'u = wX 1 4-1 X w -f Xvnux^ Xx'^ 

for some A € Fp. (The third term disappears if we replace uhy u + {-lYXvnUx'P^"^, 
but in any case is harmless.) We apply p to /i, bearing in mind that Wn = ^̂n» and carry 
out exactly the same algebra as for E = H{^p)\ the coefficients of n x x^ and x* x x^ 
show that Cj = 0 for all j > 0 and that a/i = 0 for h not a power of p. We therefore 
reindex, as usual. 

DEHNrriON 14.30. We define a(i) = a^i £ K{n)2pi-\{K{n),o), for 0 < i < n. 

There is no a^^) because u does not lift to the next skeleton L^P"'^^ In the new 
notation, eq. (14.29) becomes 

n - l 

pyw = U01 -f 5]) ^ '̂ ^^(0 "̂ ^ W ( ^ ) <̂  i^(n)*(K(n), o). (14.31) 
i=0 

Having odd degree, the a^i) satisfy O/̂ x = 0. 

THEOREM 14.32 (Yagita). For the Morava K-theory ring spectrum K{n): 

(a) The commutative K{nY'algehra K{n)*{K{n),o) has the generators: 

a^i) e K{n)2pi-\{K{n), o), forO^i < n; 
b(i) G K{n)2(pi-.i){K{n), o), for i > 0; 
subject to the relations (14.27); 

(b) m is given by rjRVn = Wn = Vn e K{n)^{K{n), o); 

(c) ij) is given by: 

fc-i 

^a(/b) = a(k) ^ ^ "̂  ^ ^(k-i) ̂ ^W •*" ^ ^^{k) forO^k <n; 
t=0 

#(/fe) = t(A:)<̂ l + 5Z B{i,p^)^hi -f- l(8)6(fc) /c7r A; > 0; 
1=2 

w/iere B{i,p^) denotes the coefficient of x^ in b{xy (and we use Lemma 14.28 to 
express b{x) and bi in terms of the 6(i) and Vn)', 

(d) e:a(;t) = Ofor 0 ^ k < n and eb(^k) = 0/or fc > 0. 

PR(X)F. The whole theorem is essentially due to Yagita [39], who used different gener-
ators. We proved (b) above. For (c) and (d), we substitute py in diags. (11.12) as usual 
and evaluate on u and x. D 
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COROLLARY 14.33. Let B be a discrete commutative K{nY-algebra, Then any opera-
tion 6:K{ny{X,o) -^ K{ny{X,o)§iB that is multiplicative and natural on Stab* is 
uniquely determined by its values on K{n)*{CP°^) and K{ny{Y). 

REMARK. For low k, the formula for V̂ 6(fc) simplifies by Lemma 14.28(b) to 

k-\ 

#(fc) = b(k) ^ 1 + X^ ^A:-t) ^ hi) + ^ ^ (̂fc) for 0 < fc ^ n. 

15. Stable BP-cohomology comodules 

In this section we study stable modules in the case E = BP in more detail. We find it 
more practical to work with stable comodules, which by Theorem 11.13 are equivalent. 
This is the context in which Landweber showed [17], [18] that the presence of a stable 
comodule structure on M imposes severe constraints on its BP*-module structure. 

We recall that BP* = Z(p)[t;i, V2,t;3,...], a polynomial ring on the Hazewinkel gen-
erators Vn of degree -2{p'^-l) (see [14]). It contains the well-known ideals 

/n = (p,t;i,i;2,...,t;n-i)c£EP* (15.1) 

for 0 ^ n ^ 00 (with the convention that loo = (p, ̂ 1,^2, • • •)» I\ = (p)» and /Q = 0). 
We show in Lemma 15.8 that they are invariant under the action of the stable operations 
on BP*{T) = BP*. Indeed, Landweber [17] and Morava [27] showed that the In for 
0 < n < oo are the only finitely generated invariant prime ideals in BP*. 

Nakayama's Lemma. The fact that BP* is a local ring with maximal ideal loo is extremely 
useful. The advantage is that once we know certain modules are free, many questions 
can be answered by working over the more convenient quotient field BP* /loo — Fp- We 
say a BP*-module M is of finite type if it is bounded above and each M^ is a finitely 
generated Z(p)-module. (Remember that deg(t;t) is negative.) 

LEMMA 15.2. Assume that f:M -^ N is a homomorphism of BP*'modules of finite type, 
with N free. Then: 

(a) / is an isomorphism if and only r/ / 0 Fp: M 0 Fp —> iV 0 Fp is an isomorphism; 

(b) / is a split monomorphism of BP*'modules if and only if f ®¥p is monic; 

(c) If the conditions in [b) hold, both M and Coker/ are BP*-free; 

(d) / is epic if and only if f (S>Fp is epic (even if N is not free). 

PROOF. The "only i f statements are obvious. For the "if statements, we first con-
sider f/p: M/pM —• N/pN. We filter M/pM and N/pN by powers of the ideal 
{v\,V2,V3,'-'), so that for the associated graded groups, Gr(//p):Gr(M/pM) —> 
GT{N/PN) is a module homomorphism over the bigraded ring Gr(J5P*/(p)) = 
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Fp bi, ^2, t;3,...], with Gx{N/pN) free. As M and iV are bounded above, these filtrations 
are finite in each degree. It follows that if / (8) Fp is epic (or monic), so is f /p. 

Then the standard Nakayama's Lemma, applied to Z(p)-modules in each degree, gives 
(d). If f IP is monic and N is free, we must have Ker/ C p^M for all n; as M is of 
finite type, / must be monic, which gives (a) and some of (b). To see that in (c), M must 
be free, we lift a basis of M 0 Fp to M and use the liftings to define a homomorphism 
of BP*-modules p: L —> M, with L free, that makes p 0 Fp an isomorphism. Then fog 
is monic by what we have proved so far, and g is epic by (d); therefore g must be an 
isomorphism. 

To finish (b) and (c), we choose an Fp-basis of Coker(/ (8) Fp), lift it to iV, and use it 
to define a homomorphism h:K-^Nof jBP*-modules with K free. We use / and h to 
define M®K -^ N, which by (a) is an isomorphism and identifies Coker/ with K. Q 

The main relations. We need to make the structure of BP^ {BP^ 6) more explicit than 
in Theorem 14.11. The first few terms of the formal group law for BP in terms of the 
Hazewinkel generators are easily found: 

F{x,y) ^x-^-y-V]X^~^y mod {x^,y^). (15.3) 

Also, the p-series for BP begins with 

\p]{x) = px + (1 -pP'-^)vixP + •. • . (15.4) 

All we need to know about \p]{x) beyond this is the standard fact (e.g., [32, Theo-
rem 3.11(b)]) that 

\p]{x) = px -h ̂  ViX^* mod /^ . (15.5) 
i>0 

For lack of alternative, bi = 0 whenever i - l is not a multiple of p—l, so that 
b{x) = X -h 6(i)xP -h • •. The first main relation is well known and readily computed 
from Definition 13.12, with the help of eq. (15.4), as 

(Til): v\ =p6(i) +W], (15.6) 

or more easily, as the coefficient of x^~^y in eq. (13.6), expanded using eq. (15.3). 
Subsequent relations (72.̂ ) are far more complicated and answers in closed form are not to 
be expected. To handle the right side fl(fc), we introduce the ideal 2U = (p, w\, W2,...) C 
BP^{BP,o), the analogue of /oo for the right BP*-action. The right side of eq. (13.11) 
simplifies by eq. (15.5) to 

pb{x) -h Y^ b{xywi mod W'^ 



682 J,M. Boardman Chapter 14 

When we expand 6(X)P* , all cross terms may be ignored, because they contain a factor 
p G 211, and we find 

fc-i 

R{k) = pb^k) + Yl ^fc-i)^» + ^^ "'^^ 2n^ (15.7) 
t=i 

With slightly more attention to detail, we obtain a sharper, more useful result. It also 
implies that W = IooBP„{BP, o), so that 20 is redundant. 

LEMMA 15.8. For any n>0,we have Wn = Vn mod InBP^{BP, o). 

PROOF. We show by induction on n that the relation (7^) simplifies as stated, starting 
from eq. (15.6) forn = 1. If the result holds for all z < n, we have Wi = Vi = 0 mod /„ 
for i <n. Then R{n) = Wn from eq. (15.7), as W^ contains nothing of interest in this 
degree. Meanwhile, the left side L{n) = Vn by eq. (15.5). D 

Recall from Definition 10.13 and Theorem 11.13 that an ideal J C BP* is invariant 
if it is a stable subcomodule of JSP* = BP*{T)\ in view of Proposition 11.22(b), the 
necessary and sufficient condition for this is TJRJ C JBP^{BP, O). In this case, we have 
the quotient stable comodule BP*/J. For example. Lemma 15.8 shows that the ideals 
In are invariant, and we have the stable comodules BP*/In = Fp[vn,Vn-\-\,Vn-h2i• -] 
(for n > 0) and BP*/Io = BP\ 

Primitive elements. The key idea is to explore a general stable comodule M by look-
ing for comodule morphisms BP* —• M from the (relatively) well understood stable 
comodule BP*{T) = BP*. A BP*-module homomorphism f:BP* -^ M is obviously 
uniquely determined by the element x = / I € M, since fv = f{vl) = vf\ — vx, and 
we can choose x arbitrarily. In BP*, we clearly have pi = 1 0 1, which suggests the 
following definition. 

DEFlNmON 15.9. Given a stable comodule M, we call an element x € M stably primitive 
if PMX = X(8) 1. 

This is the necessary and sufficient condition for the above homomorphism / : BP* —* 
M to be a stable morphism. It then induces an isomorphism of stable coniodules 
BP*/Kcrf = {BP*)x. In particular, Ker/ = Ann(x), the annihilator ideal of x, must 
be an invariant ideal. We are therefore interested in finding primitives. 

The primitive elements of M^ clearly form a subgroup. Moreover, there is a good 
supply of primitives; if M is bounded above, axiom (11.12)(ii) forces every element 
X G M of top degree to be primitive. (This may be viewed as an algebraic analogue of 
Hopf's theorem, that for a finite-dimensional space X, n'^iX) = H^{X\Z) in the top 
degree.) If x is primitive, the BP*-linearity of pM gives PM{VX) = X 0 TJRV for any 
V G BP*. It follows that the comodule structure on BP*/J is unique if the ideal J is 
invariant (and none exists otherwise). Landweber [17] located all the primitive elements 
in the stable comodule BP*/In' 
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THEOREM 15.10 (Landweber). For 0 ^ n < oo, the only nonzero primitive elements in 
the stable comodule BP*/In are those of the form: 

(i) Xv\, where i^OandXeFp(ifn> 0); or 
(ii) A, where A € Z(p) (ifn = 0). 

It follows easily as in [17, Theorem 2.7] that the In are the only finitely generated 
invariant prime ideals in BP*. This suggests that the BP*/In should be the basic building 
blocks for a general stable comodule. This is the content of Landweber's filtration theorem 
(cf. [17, Lemma 3.3] and [18, Theorem 3.3']). 

THEOREM 15.11 (Landweber). Let M be a stable BP-cohomology (co)module that is 
finitely presented as a BP*-module (e.g., BP*{X) for any finite complex X). Then M 
admits a finite filtration by invariant submodules 0 = Mo C Mi C M2 C • • • C Mm = 
M, in which each quotient Mi/Mi^i is generated, as a BP*-module, by a single element 
Xi such that Ann(xt) = I^ for some Ui ^ 0. 

We oudine Landweber's proof [18] for reference. For nonzero M, Ass(M), which 
here may be taken as the set of all prime annihilator ideals of elements of M, is a 
finite nonempty set of invariant finitely generated prime ideals of BP*. The recipe for 
constructing a filtration of M is: 

(a) Let In be the maximal element of Ass(M); 
(b) Construct the j5P*-submodule N = 0:In of M, which is defined as {T/ G M : 

InV = 0}, and prove it invariant; 
(c) Take a nonzero primitive x\ e N (e.g., any element of top degree), so that the 

maximality of In forces Ann(xi) = In; 
(d) Put Ml = {BP*)x\, so that Mi is invariant and isomorphic to BP*/In\ 
(e) Replace M by M/M\ and repeat, as long as M is nonzero, making sure that the 

process terminates (which requires some care). 

REMARKS. 1. The filtration of M is never a composition series. The module BP^jIn is 
not irreducible, because we have the short exact sequence 

0 ^ BP*IIn - ^ BPyin ^ BPyin-^i ^ 0 

of stable comodules. Thus we have no uniqueness statement. 
2. We cannot expect to arrange n\ ^ ni ^ • •, since in (e), Ass(M/Mi) need not be 

contained in Ass(M). 

Index of symbols 

This index lists most symbols in roughly alphabetical order (English, then Greek), with 
brief descriptions and references. Several symbols have multiple roles. 

A augmentation ideal in algebra A. A = E*{E^o), Steenrod algebra for E, §10. 
A etc. generic category. Ab, Ab* category of (graded) abelian groups, §6. 
A^^ dual category of A, §6. Alg category of £J*-algebras, §6. 
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a(i) stable element for K(n), (14.31). 
ai^j coefficient in formal group law, (5.14). 
BG classifying space of group G. 
B{i,k) coefficient in 6(x)*, Proposition 13.4. 
BP Brown-Peterson spectrum, §2. 
6 Bott map. Corollary 5.12. 
bi stable element. Proposition 13.4. 
6(i) accelerated bi. Definition 13.8. 
6(x) formal power series, (13.2). 
C cofree functor. Theorem 8.10. 
€ the field of complex numbers. 
£pn £poo complex projective space. 
Coalg category of £?*-coalgebras, §6. 
Ci(C) Chem class of vector bundle ?, Theorem 5.7. 
DM dual of jE;*-module M, Definition 4.8. 
d duality homomorphism, (4.5), (9.24). 
E generic ring spectrum. 
E* coefficient ring of E-(co)homology, §§3, 4. 
£?*(-) JS-cohomology, Theorem 3.17. 
E*(—y completed £?-cohomology. 

Definition 4.11. 
E„{~) E-homology, (9.17). 
E ^ nth space of ri-spectrum E, Theorem 3.17. 
e evaluation on DL 0 L, §6. 
Ci basis element of C*. 
F free functor. Theorems 2.6, 8.5. 
F(x^y) formal group law, (5.14). 
F^M generic filtration submodule. 

Definition 3.36. 
FAIg category of filtered £?*-algebras, §6. 
F^DM filtration submodule of DM, 

Definition 4.8. 
FM etc. corepresented functor, §8. 
FMod, FMod* (graded) category of filtered 

J5*-modules, §6. 
¥p field with p elements. 
FR{X, Y) right formal group law, (13.6). 
F^£;*(X) skeleton filtration, (3.33). 
/ etc. generic map or homomorphism. 
/* , /* homomorphism induced by map / , (6.3). 
fn structure map of spectrum E, Definition 3.19. 
G etc. generic group (object), §7. 
G E-module spectrum. Theorem 9.26. 
Gp(C) category of group objects in C, §7. 
Qi coefficient in p-series, (13.9). 
H generic comonad, (8.6). 
if, H(R) Eilenberg-MacLane spectrum, §§2, 14. 
Ho, Ho' homotopy category of (based) spaces, §6. 
h{-) generic ungraded cohomology theory, §3. 
h Yokota clutching function, (5.9). 
/ identity functor 
In, loo ideal in BP*, (15.1). 
ii, 12 injection in coproduct, §2. 

id identity morphism. 
Kc unit object in (symmetric) monoidal category 

C, §7. 
K{n) Morava /('-theory, §2. 
KU complex K"-theory Bott spectrum, §2, 

Definition 3.30. 
L infinite lens space, §14. 
M etc. generic (filtered) module or algebra. 
M", M completion of filtered M, Definition 3.37. 
Mod, Mod* (graded) category of £?*-modules, §6. 
MU unitary Thom spectrum, §2. 
a generic basepoint, point spectrum. 
-«p categorical dual, §6. 
PA the primitives in coalgebra A, (6.13). 
p fixed prime number. 
Pi. P2 projection from product, §2. 
\p]{x) p-series, (13.9). 
Iplnix) right p-series, (13.11). 
QA the indecomposables of algebra A, (6.10). 
Q the field of rational numbers. 
q map to one-point space T, §2. 
R generic ring. 
R'Mod category of R-modules, §8. 
]RP°° real projective space, 
r etc. generic cohomology operation. 
(r, ~ ) jÊ *-linear functional defined by operation r, 

(11.1). 
S stable comonad. Theorem 10.12. 
S' stable comonad, (11.4). 
- 5 (subscript) stable context. 
5 ' unit circle, as space or group. 
S^ unit n-sphere. 
Stab, Stab* (graded) stable homotopy 

category, §6. 
Set category of sets, §6. 
Sef' category of graded sets, §7. 
T monad, (8.4). 
T the one-point space. 
T+ O-sphere, T with basepoint added. 
T(n) torus group. 
t € HnRP°°) , generator of / f * ( E P ~ ) , 

(14.1). 
U, U{n) unitary group. 
-u (subscript) unstable context. 
u e KU-'^, after Definition 3.30. 
u € E\L), exterior generator of E*{L), §14. 
u € E\Y), exterior generator of E*{Y), §14. 
u universal element of DL ig) L, Lemma 6.16. 
u 1 canonical generator oi E*(S^), 

Definition 3.23. 
tin canonical generator of E*{S'^), §3. 
V generic (often forgetful) functor. 
V generic element of E*. 
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V = -qjiu e KU2{KU,o). Theorem 14.18. 
vn Hazewinkel generator of BP*, K(ny, §14. 
W forgetful fiinctor, §8. 
20 ideal in BP^BP, o\ §15. 
w =u-^ve KUo{KU,o). Lemma 14.23. 
Wn = VRVn. §14. 
X etc. generic space or spectrum. 
X'^ space X with basepoint adjoined. 
X generic cohomology class or module element. 
X eE* (CP°°), Chem class of Hopf line 

bundle, Lenrnia 5.4. 
x{d) Chem class of line bundle 6, Oefinition 5.1. 
Y skeleton of lens space L, §14. 
Z the ring of integers. 
Z/p the group of integers mod p. 
Z(p) Z localized at p. 
zp morphism for a (symmetric) monoidal functor 

F , §7. 
Q etc. generic index. 
Q generic algebraic operation, §7. 
Pi € E2i (CP**), Lenrnia 5.3. 
7t € E2i^i{U(n)), Lemma 5.11. 
A:X —* X X X diagonal map. 
e generic counit morphism. 
e: FV —> / natural transformation, §2. 
C pth power map on CP°°, (13.9). 
CF pairing for (synunetric) monoidal functor F, 

§7. 
•q generic monoid unit morphism. 
rj'.I —* VF natural transformation, §2. 
77 generic vector bundle. 
VR right unit, Definition 11.2. 
0 generic anything. 
6 complex line bundle, §5. 
6 cohomology operation (usually 

idempotent), §3. 

Si 

L e h{H), universal class. Theorem 3.6. 
L € E^{Ey o), universal class, §9. 
Ln e E^{E^^), universal class, Theorem 3.17. 
yl(—) exterior algebra. 
A generic action. 
A numerical coefficient. 
/i addition or multiplication in generic group 

object, §7. 
u inversion morphism in generic group 

object, §7. 
Hopf line bundle over CP". 
generic line or vector bundle. 
stable element for H(F2), (14.1). 
stable element for /f(Fp), (14.4). 
action of v on F*-module, (7.4). 

7r*(X) homotopy groups of space X. 
7r^(X, 0) stable homotopy groups of X. 
p generic coaction. 
P M coaction on module M. 
px coaction on E*{X) or E*{Xy. 
E, E^ suspension isomorphism, (3.13), 

Definition 6.6. 
EX, E^X suspension of space X. 
EM, E^M suspension of module M, 

Definition 6.6. 
[k—^E stabilization. Definition 9.3. 
stable element for if(Fp), (14.5). 
generic monoid multiplication. 
canonical antiautomorphism of Hopf algebra. 
Adams operation, (14.20). 
generic comultiplication. 

loop space on based space X. 
zero morphism of generic group object, §7. 

n 

X 

QX 
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Section 1 Unstable cohomology operations 689 

1. Introduction 

A multiplicative generalized cohomology theory E*{-) on spaces is represented by 
the spaces E_n ^^ ^̂ s /?-spectrum, as described in detail in [8, Theorem 3.17]. We de-
note its coefficient ring by E*. Our five examples are ordinary cohomology if*(—;Fp), 
unitary cobordism MU*{-), Brown-Peterson cohomology BP*{-), complex if-theory 
KU*{-), and Morava /C-theory K{ny{-). (They were properly introduced in [8, §2].) 
Recent work [25] shows that a sixth example, the cohomology theory P(n)*( - ) , also 
satisfies our hypotheses. 

We are interested in three kinds of cohomology operation: stable operations, which 
form the endomorphism ring E*{E,o) of E (in our notation) and were studied in [8]; 
unstable operations, defined on E^{X) for spaces X and fixed n, which form E*{E^); 
and additive unstable operations r on E^{-) (that satisfy r{x-\-y) = r(a:) -t-r(y)), which 
form the subset PE*{E,^). Since a stable operation restricts to an additive unstable 
operation on any degree, these are related by 

E*{E,o) >PE\E^)cE\E^). 

Each of these is an £?*-module in the usual way, by {r-\-s){x) = r{x) -f s{x) and 
(yr){x) = vr{x) (for any v E E*). We can compose, {sr){x) — {sor){x) — s{r{x)), 
whenever the sources and targets match. We can also multiply unstable operations to-
gether by (r w s){x) = r{x)s{x). 

In the classical case E = H{Fp), for which E*{E^o) is the Steenrod algebra, it is 
true that: (a) every additive operation comes from a stable operation; (b) the additive 
operations generate multiplicatively all the unstable operations. Our difficulties stem from 
the fact that for MU and BP, both (a) and (b) arc false. (See [27] for more discussion 
of the differences.) We propose to describe completely the algebraic structure that has to 
be present on an JS*-module or i?*-algebra to make it an unstable object, with particular 
attention to the case E = BP. Our definitions lead to structure theorems. 

Stable BP-operations have been available for quite some time and are well established. 
Less has been done with unstable jBP-operations, owing to their complexity, but we do 
have the work [4], [5] of Bendersky, Curtis, Davis, and Miller. The algebraic structure 
on an additively unstable module is described in [27] and (without proofs) in [6]. 

Our major task, therefore, is to set up precise algebraic descriptions of the unstable 
structures we need on modules and algebras, along the lines of the stable structures in [8]. 
Part of the difficulty is that one is forced to work in the unfamiliar context of nonadditive 
operations; but the real problem turns out to be Theorem 9.4, that unstable modules (as 
distinct from unstable algebras) simply do not exist compatibly with our other objects! 
When we limit attention to the less exotic additive operations, this difficulty does not 
arise and we have both modules and algebras. 

In fact, there is a huge amount of data to be codified in an unstable algebra. The key 
idea is that given an E*-algebra M, we define {UMY for each fc as the set of all algebra 
homomorphisms E*{E,i^) —* M; each such homomorphism may be thought of as a 
candidate for the values of all operations on a typical element of M^. Apparentiy merely 
a graded set, UM becomes an fJ*-algebra for suitable E, thanks to extra structure on 
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the spaces E_^. Then an unstable structure on M is a homomorphism pM'M -^ UM of 
f?*-algebras, which selects for each x G M^ the function PM{X)'' E*{E_J^) -> M ; then we 
define r{x) = PM{'X)T. This is not enough; in order to compose operations correctly, it is 
necessary to know the f^-cohomology homomorphism r*: i?*(£^) —> -B*(£^) induced 
by each operation r:E^{-) —> E'^{-). This extra structure makes the functor U a 
comonad, and (M, PM) ^ coalgebra over this comonad. We have a similar construction 
for additive operations, and can compare with the stable constructions of [8]. 

This is our elegant but extremely terse answer, and we do not believe that it can 
be efficiently expressed without using comonads. But it does have the effect that the 
work consists largely of definitions. In Section 10, we translate this answer into practical 
language, in the context of Hopf rings, that we can use for computation. This includes 
Cartan formulae for r{x+y) as well as r(xy), and related formulae for r*(6*c) and 
r^{boc) that we use to compute the induced £?-homology homomorphism r^:E^{E,^) —• 
£;*(£^) dual tor*. 

Landweber filtrations. We recall that BP* = BP*{T), the jBP-cohomology of the one-
point space T, is the polynomial ring I^{p)[v\,V2,V3'-•], with deg(7;n) = -2{p^--\) 
(under our degree conventions). It contains the well-known ideals 

In = (p,VuV2,...,Vn-l)CBP^ (1.1) 

for 0 < n ^ oo (with the convention that loo = (p, v\, '̂2) • • •)» h = (p)» and IQ = 0). 
The significance [8, Lemma 15.8] of In is that it is invariant under the action of the 

stable operations on BP*{T). Indeed, Landweber [15] and Morava [20] showed that 
the Jn for 0 ^ n < oo are the only finitely generated invariant prime ideals in BP*. 
Landweber used this fact to show (see [16, Theorem 3.3'] or [8, Theorem 15.11]) that a 
stable (co)module M that is finitely presented as a SP*-module, including BP*{X) for 
any finite complex X, admits a finite filtration by invariant submodules 

0 = Mo C M, C M2 C • • • C Mni = M (1.2) 

in which each quotient Mi/Mi^\ is generated (as a £iP*-module) by a single element Xi 
whose annihilator ideal Ann(xi) = 1^ for some Ui. Thus Mi/Mi-\ = BP^/Im-

The first unstable result on BP-cohomology, due to Quillen [22] (see Theorem 20.2), 
was that for a finite complex X, BP*{X) is generated, as a jBP*-module, by elements 
of non-negative degree. What started this project was the observation that if an unstable 
object M is generated by a single element x, there is an unstable operation (see Proposi-
tion 1.14 or the Remark following Corollary 20.9) that takes VnX to x, provided deg(x) 
is small enough; it follows that VnX ^ 0 and that M cannot be isomorphic to BP*/In-^\. 

The proof of Landweber's theorem depends on the concept of primitive element in a 
comodule M. Given any x € M, there is the obvious homomorphism of JSP*-modules 
/ : BP* —> M, defined by fv = vx. It is a morphism of stable modules if and only if 
X is primitive, and if so, we have the isomorphism BP*/Ann{x) = {BP*)x C M of 
stable modules. An important example (see [8, Theorem 15.10]) is that the only nonzero 
primitives in BP*/In, for n > 0, are the (images of the) elements AvĴ , where A G Fp, 
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A 7̂  0, and i ^ 0. For additive unstable operations, the appropriate definition of primitive 
becomes more restrictive. 

THEOREM 1.3. (This is included in Theorem 20.10.) Let M be the BP*-module generated 
by a single element x with Ann(x) = /n, where n > 0. Then M admits an additively 
unstable module structure (as defined in Section 5) if and only if deg(x) ^ / (n) - 2, 
and it is unique. 

The only nonzero primitive elements in M are those of the form Xv\^x, where A € Fp, 
and deg(t;^x) ^ / (n) ifi>0. 

Here, and everywhere, we need the numerical function 

/(„)=M!iM = afcii)=2(p"-'+p"-^+...+p+i) (1.4) 
p — I p — 1 

for n > 0; it is reasonable to define also /(O) = 0. 
We use this result in Theorem 20.11 to construct a Landweber filtration (1.2) of an 

appropriate module M, including BP*{X) for any finite complex X, in which each 
quotient Mi/Mi^x has the form in Theorem 1.3 (or is BP*-free). Once our machinery is 
in working order, we are able to give a one-line proof of Theorem 20.3, the weak form 
of Quillen's theorem. 

In our main structure theorem, we do one better by allowing all unstable operations 
instead of only the additive ones. One complication is that the unstable analogue of 
Theorem 1.3 has to be stated for algebras only, owing to the nonexistence of unstable 
modules. 

THEOREM 1.5. (This is stated precisely as Theorem 21.12.) Let M be an unstable BP""-
algebra such as BP*(X) for a finite complex X. Then M admits a filtration (1.2) by 
invariant ideals Mi, in which each quotient Mi/Mi-\ is generated, as a BP^-module, 
by a single element Xi such that Ann(xt) = Im for some Ui ^ 0, where deg(xt) ^ 
max(/(ni)- l ,0) . 

Splittings of BP-cohomology. Another application of our machinery yields idempotent 
operations that split unstable BP-cohomology into indecomposable pieces. Such splittings 
were constructed in [26] by means of Postnikov systems. What is new is that explicit 
definitions of everything allow us to carry out computations. Our results are logically 
independent of [26] and rely on it only to recognize the summands as known objects; 
nevertheless, it is a valuable guide as to what the summands look like and where to find 
them. In a sequel [9], two of the authors go on to apply the structure theorems of [25] to 
establish analogous (but slightly different) splitting theorems for the cohomology theory 
P(n)*(-) , whose coefficient ring is BP*/In-

For each n ^ 0, we define the ideal 

Jn = (t;n+l,Vn+2,Vn-f3,--.) C BP*. (1.6) 
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In [26], Baas-Sullivan theory [2] was used to construct a cohomology theory BP{n)*{-) 
having coefficients BP*/Jn = Z(p)[vi,i^2, • • • ,t̂ n]- In particular, £P(0)*(- ) = 
iir*(-;Z(p)). The desired splitting has the form 

BP^{X) ^ BP{n)^{X) e JJ BP{3)^^^^'^-^\X). (1.7) 
j>n 

The representing spectrum BP{n) is (at least) a BP-module spectrum, and comes 
equipped with a canonical map of BP-module spectra that we shall call 7T{n):BP —• 
BP{n). There is also a canonical map TT: BP{j) -^ BP{n) whenever j > n. (Geometri-
cally, BP{n) allows more singularities than BP{j).) Everything we need to know about 
BP{n) is contained in the commutative diagram 

7r(n> 

SPM) 

(1.8) 

of if-spaces and if-maps, where j > n. 
Although the cohomology theory 5P(n)*(- ) may be unfamiliar, in the range of de-

grees of interest it is easily described in terms of BP-cohomology. It is clear by con-
struction that 7r(n)*:BP*(X) -^ BP{nY{X) kills J^BP'^iX). 

THEOREM 1.9. Assume that k ^ /(n-f-1), where n ^ 0, and that X is finite-dimensional. 
Then 7r(n) induces a natural isomorphism of BP*-modules 

BP'^iX) / Y^VjBP^-^^^^-^\X) ^ BP{n)^{X). 
' j>n 

(1.10) 

We derive this below as an immediate consequence of Theorem 1.12. It is best possible, 
as [26] shows that 7r{n)* is not surjective in general for A; > /(n-hi) . 

LEMMA 1.11. (This is included in Lemma 22.1.) Given k < / (n-f l ) , where n ^ 0, there 
is an H-space splitting Or.: BP{n) ^ -> BP,^ of'K{n):BP_j^ -^ BPin) f^ which naturally 
embeds BP{n)^{X) C BP^{X) as a summand (as abehan groups). 

If also k ^ /(n), the H-space BP{n) ^ does not decompose further 

REMARK. The splittings On are not canonical or unique. The ideal J^, unlike /„ , is 
in no way canonical, but depends on the choice of the polynomial generators of BP*. 
Although the BP-module structure of BP{n) obviously depends on Jn, it follows from 
the Lemma that the resulting if-space structure on BP{n) ĵ  is well defined. Even for 
fixed Jn, we find there are many choices for On, and no preferred choice is apparent. 
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We establish Lemma 1.11 in Section 22 by constructing a suitable idempotent operation 
On on BP*{-). The second assertion implies that the first is best possible. We insert these 
splittings into diag. (1.8) to decompose BP-cohomology. 

THEOREM 1.12. Assume n ^ 0. Then: 

(a) For k < f{n+1), the injections On and Vj o Oj from Lemma 1.11 induce the natural 
abelian group decomposition (1.7), which is maximal if k ^ / (^) / 

(b) For k = / (n+1) , we have instead the natural short exact sequence of abelian 
groups 

0 yj{ BP{j)^'^^^^-^\X) > BP^X) Jl^^ BP{n)^{X) > 0, (1.13) 

where none of the groups decomposes further naturally, and 7r{n)* admits a nonadditive 
natural splitting On- BP{n)^{X) —• BP^{X), so that we have eq. (1.7) as a bijection of 
sets. 

REMARK. The simplified description of SP(-)-cohomology in Theorem 1.9 applies 
everywhere (when X is finite-dimensional). These splittings definitely do not preserve 
the J3P*-module structure. We plan to return to this point in future work. 

PROOF OF THEOREM 1.9. For finite-dimensional X, the sum in eq. (1.10) is in fact finite. 
It is clear from eq. (1.7) or (1.13) that the sum contains Ker7r(n)*. On the other hand, 
7r(n)* is a homomorphism of jSP*-modules which kills Jn- D 

Projection to the first factor of the product in eq. (1.7) yields an interesting operation 

r:BP^{X) > BP{n^\f{X) C BP^\X), 

where fc' = A: -f 2(p"'^*-l) = fc -I- (p - l ) / (n -M) , which roughly has the effect of 
dividing by Vn-\.\. Precisely, r(vn^\y) = y whenever y € BP{n-\-\)^ {X) C BP^ {X). 
Given any x € BP^ (X), we can put y = On-\-\x\ then by Theorem 1.12(a), applied to 
BP^ (X), we have y = x mod Jn+i. For convenience, we reindex. 

PROPOSITION 1.14. Ifk < p/(n), there is an operation r: B P ^ - 2 ( P " - 0 ( X ) -^ BP^{X), 

which is additive if k < pf{n), with the property that given any element x G BP^{X), 
where X is finite-dimensional there exists y such that y = x mod JnBP*{X) and 
r{vny) = y. 

Equivalently, we can represent eq. (1.7) by the decomposition of spaces 

j>n 

THEOREM 1.16. Assume n ^ 0. Then: 
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(a) For k < /(n-hl), we have the H-space decomposition (1.15), which is maximal if 
k ^ f{n); 

(b) For k = / (n-f l ) , we have thefibration 

k+2(p3-\) - •^ BPk ^ ^ BPjn), (1.17) 
j>n 

ofH-spaces and H-maps, which admits a section {not an H-map), so that eq. (1.15) holds 
as an equivalence of spaces (but not as H-spaces), and none of the spaces decomposes 
further as a product of spaces. (In other words, BP'^(-) is represented by the right side 
of eq. (1.15), equipped with a different if-space multiplication.) 

We use Lemma 1.11 to prove parts (a) of Theorems 1.12 and 1.16 in Section 22. 
For parts (b), the necessary idempotent 6n has to be nonadditive, and we construct it in 
Section 23. We need the full strength of our machinery just to prove that On is idempotent. 

History. Our real motivation for this study is what is called the Johnson Question, which 
is stated in [24, p. 745]. Rephrased as a conjecture, it is: 

CONJECTURE. If X 7»̂  0 in BPn{X), where X is a space, then vi,x ^ 0 for all i > 0. 

No counter-examples are known, although examples exist [13], [14], [24] where VjX = 
0 for all j < n. It holds if x reduces nontrivially to homology, therefore for n < 2p. We 
hoped to circumvent our lack of knowledge of unstable homology operations by working 
instead with the rather better understood unstable BP-cohomology operations and using 
the (not at all unstable) duality spectral sequence 

ExC^p. (BP*(X),SP*) = ^ BP^{X) 

of Adams [1] (see also [12]). The reason for optimism is that if we substitute E^{BP*IIn) 
for BP*{X), a standard calculation shows that the only surviving Ext group is Ext'̂  = 
E^{BP*/In), with m = / (n) - A: - n; so that k ^ /(n) - 1 implies -m ^ n - 1, almost 
what we want. If we confine ourselves to additive operations, we obtain — m ^ n — 2, off 
by one more. We can hope to work our way up from E^{BP*/In) to a general BP''{X) 
by extension and the filtration (1.2). 

This is all grounds for our suspicion that for a geometric unstable algebra, i.e. M = 
BP*{X) for some space X, the bounds in Theorem 1.5 should be one better (thus giving 
us —m ^ n in the above discussion). Again, there are no known counter-examples, 
although spaces are known which have deg(xi) = /(rii), thus showing that the bounds 
cannot be improved by more than one. 

Recently, with the help of Mike Hopkins, a new approach to the Johnson Question 
has been developed. It requires a much better understanding of the unstable splittings of 
BP. Now that we have so much explicit information on these splittings, this method of 
attack seems promising. 

Outline. There are two main threads running through this work: the theory of additive 
unstable operations, which closely resembles the stable theory of [8], and the theory of 
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all unstable operations, which is radically different. The comonad tent is big enough to 
accommodate both, as well as the stable theory. We have kept the additive material in 
separate sections so that it can be read independently. 

In Section 2, we discuss several classes of cohomology operation. In Sections 3 and 4, 
we study the jB-(co)homology of group objects, in preparation for Sections 5 and 7, 
where we study modules and algebras from the additive point of view. In Section 6, 
we consider additive operations as linear functional. In Sections 12 and 14, we study 
suspensions and complex orientation. In Section 16, we present the additive structure for 
each of our five examples E. 

It turns out that much of the stable machinery does not extend to all unstable operations, 
because it relies too heavily on the bilinearity of tensor products. However, the approach 
in terms of comonads does work, and in Section 8 we develop the requisite comonad 
U. We also show in Section 9 that the corresponding comonad for unstable modules 
does not exist and compare the various stable and unstable structures. In Section 10, we 
convert the categorical elegance into machinery we can use; specifically, cohomology 
operations become linear functional on Hopf rings. In Theorem 10.47, we display in 
full detail the definition of an unstable algebra from this point of view. 

In Sections 11, 13, and 15, we revisit the cohomology of a point, sphere, and complex 
projective space C P ^ from this new Hopf ring point of view. These spaces alone yield 
almost enough generators and relations to specify the Hopf rings for our five examples 
E, as we discuss in detail in Section 17. The case E = KU is used to determine the 
structure of KU^{KU, o), as quoted in [8, §14]. From a sufficiently elevated perspective, 
the results of Section 17, the additive results of Section 16, and the stable results of [8] 
all fit into a grand master plan. 

In Section 20, we restrict attention to the case E = BP and use the additive opera-
tions to recover Quillen's theorem and prove Theorem 20.11. This relies on the relations 
developed in Section 18. In Section 21, we use nonadditive operations to improve The-
orem 20.11 by one dimension to Theorem 21.12, which is Theorem 1.5. 

In Section 22, we construct additive idempotent operations 6n which yield the desired 
factorizations (1.7) in all except the top degree. In Section 23, we finish off Theorems 1.12 
and 1.16 by constructing nonadditive idempotent operations. To do this, it is necessary 
in Section 19 to develop the notion of a Hopf ring ideal. 

An index of symbols is included at the end. 
This work is also notable for what it does not contain. There are no spectral sequences, 

except implicidy in the references. There are no explicit Steenrod operations, except in a 
few examples; in our wholesale approach, most individual operations never even acquire 
names. There are no formal indeterminates anywhere; the elements that are sometimes 
treated as such are really Chem classes x; but when x* = 0, we can no longer take the 
coefficients of x*. 

Notation. We make heavy use of the notation and machinery developed in [8]. Topolog-
ically, we generally work in the homotopy category Ho of unbased spaces. For compat-
ibility with the unstable notation, the E-cohomology and £J-homology of a spectrum X 
are written E*{X, o) and E^{X, o). Algebraically, our most important categories are the 
categories FMod and FAIg of filtered £*-modules and algebras. These and the other cat-
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egories we need were introduced in [8, §6]. We make frequent use of Yoneda's Lemma. 
All tensor products are taken over E* unless otherwise stated. 

For reasons discussed in [8], we always give cohomology E*{X) the profinite topology 
[8, Definition 4.9], and complete it as in [8, Definition 4.11] to £*(X)^ as necessary. In 
contrast, the homology E^{X) is always discrete. Because we emphasize cohomology, 
we invariably assign the degree i to elements of E^{Xy, this forces elements of Ei{X) 
to have degree -i. 

One theorem provides all the duality and Kiinneth isomorphisms we need. 

THEOREM 1.18. Assume that E^{X) is a free E^-module. Then we have: 

(a) d: E*{X) = DE^{X) in FMod, the strong duality homeomorphism; 

(b) E^{XxY) = E^{X) (g) E^{Y), the Kunneth isomorphism in homology; 

(c) E*{XxY) = E*{X)§iE*{Y) in FMod, the Kunneth homeomorphism in coho-
mology provided £'*(y) is also a free E^-module. 

PROOF. We collect Theorems 4.2, 4.14, and 4.19 from [8]. Indeed, (c) follows from (a) 
and (b). D 

Acknowledgements. The genesis of this paper is that the last two authors had worked 
out much of the unstable BP structure theorems, without having a precise definition of 
unstable algebra, when the first author supplied a suitable framework, of which [7] is 
an early version. In fact, this is an oversimplification: the various contributions are more 
intermingled than this might suggest. In the proper context, several of the proofs simplify 
significantly. We thank Martin Bendersky for pointing out Lemma 19.32, which is vastly 
simpler than our previous treatment. 

The last two authors wish to thank the topologists at the University of Manchester and 
the Science and Engineering Research Council (SERC) for support during the summer of 
1985 when this project got its start. The last author wishes to thank Miriam and Harold 
Levy for their hospitality and the peace they provided for the writing of the first draft. 

2. Cohomology operations 

In this section, we consider several kinds of unstable cohomology operation. Yoneda's 
Lemma allows us to identify the following: 

(i) The cohomology operation riE^i-) ~^ E^{'-); 
(ii) The cohomology class r = r{Lk) G E'^{Ej,)\ (2.1) 

(iii) The representing map r:E,f^ —^ £ ^ in Ho, 

We write any of these more succinctly as r: A: —> m. We use all three interpretations. 
Some care is needed with degrees and signs, as (i) has degree m — k and (ii) has degree 
m, while (iii) has no degree at all. 

Based operations. The following mild but useful condition can be interpreted many 
ways. The space T is the one-point space. 
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DEFINITION 2.2. We call the operation r based if r(0) = 0 in £;*(T) = £;*. 

LEMMA 2.3. The following conditions on an operation r:k-^m are equivalent: 

(a) r(0) = 0 m E*{T), i.e. r is a based operation; 

(b) For any based space (X, o), r restricts to the reduced operation 

r: E^{X, o) ^ E'^iX, o); (2.4) 

(c) As a cohomology class, r G E'^{E_k^o) C E'^{Kk)i 

(d) The map r:E_j^ -^ Rm ^^ (homotopically) based. 

PROOF. The short exact sequence [8, (3.2)] shows that (a) and (c) are equivalent, also 
that (a) implies (b); but (c) is the special case of (b) for tk G E^{JEf^,o). Part (d) is just 
a restatement of (a). D 

Given any (good) pair of spaces {X,A), we can use (b) to make based operations 
r:k ^^ m act on relative cohomology as in [8, (3.4)] by 

E'^iX, A) = E^{XIA, o) - ^ E^{X/A, o) = E^{X, A). (2.5) 

Additive operations. An additive operation r:k -^ mis one that satisfies r(x-\-y) = 
r{x) -h r{y) for any x^y £ E^{X). The universal example is 

X = Ef^x Ej^, with X = ik X I, y = \ X Lk, X -\- y = /jLk, (2.6) 

which gives r{fik) = rx 1-f 1 xr in E*{E_j^xE_i^). (The addition map fik'-Ek ^ ^k ~^ 
E_k was defined in [8, Theorem 3.6].) This allows us to recognize additive operations 
three ways. 

PROPOSITION 2.7. The following conditions on an operation r.k-^m are equivalent, 

and define the E^'-submodule PE*{Ef,) C E*{Ek,o) C E*{Ek)-

(a) The operation r: E^{-) -^ E'^{-) is additive; 

(b) The class r G E'^{Ek) satisfies p^^r = pl^r+p^r in E^{Ek^Ek\ i.e. 

PE*{Ek) = Ker [fil - ^ -pl:E^{Ek) — E^{Ek x £ , ) ] ; (2.8) 

(c) The map r:Ek ~^ Em ^^ ^ morphism of group objects in Ho. 

COROLLARY 2.9. Assume that E^{Ek) ^^ ^fr^^ E^-module. Then PE*{Ek) ^^ complete 
Hausdorffand so an object of FMod. 

PROOF. In eq. (2.8), E'^iEk) and E*{Ek>^Ek) are complete Hausdorff by Theo-
rem 1.18. D 
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When E^{E_f^) is free, the Kunneth homeomorphism for £ * ( £ ^ x £ ^ ) makes E*{E,i^) 
a completed Hopf algebra; then (b) agrees with the primitives in the sense of [8, (6.13)], 
completed. However, we need no hypotheses on E to define PE''{E,i^). 

On some spaces, all operations are additive. 

LEMMA 2.10. On the suspension EX of any based space (X, o), we have r{x-\-y) = 
r{x) -\- r{y) in E'^{EX, o) for any based operation r:k-^m and any elements x, 7/ E 
E^{SX,o). 

PROOF. By [8, Lemma 7.6(c)], r: E^{EX, o) -^ E'^{EX, o) preserves the group struc-
ture defined from the cogroup object EX in Ho'. By [8, Proposition 7.3], this structure 
coincides with the given i^-cohomology addition. D 

Products of operations. Given operations r:k -^ m and s: fc -^ n, the product operation 

r -^ s: k ^^ m + n, 

defined by 

(r ^̂  s)x = {rx){sx)^ 

corresponds to the cup product in E*{E_f^), which may be constructed using the diagonal 
map 

A:E,^E,xE,. 

We often wish to neglect such operations; if r and 5 are additive, r --̂  5 is clearly not 
additive, but conveys no new information. 

The map A, together with q.jEf^ —• T, makes £/t a monoid object in the symmetric 
monoidal category {Ho^^, x, T). We therefore dualize eq. (2.8) and introduce the quotient 
E*-modu\Q 

QE*{Ek) = Coker [A* - i \ - il:E*{Ek x E^,) > E^Ek)] (2.11) 

of "indecomposables" of E''{E^f^), where zi and 22 are the inclusions (using the base-
point). (We shall not need a topology on this module.) When E^{E,k) is a free E*-
module, we have by Theorem 1.18(c) a Kunneth homeomorphism for E*{E,k^E-k)^ 
and QE*{JEf^) is the quotient of E*{E,f^,o) by all finite (or infinite) sums of products 
of two based operations. 

Looping of operations. On restriction to spaces, a stable operation r on E*{-,o) of 
degree h induces a sequence of additive operations rk'.k -^ fc-h/i. It is clear from 
[8, fig. 2 in §9] that rk^\ determines r .̂ We generalize this construction to unstable 
operations (but omit the sign, in order to make it a homomorphism of £?*-modules). 
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PROPOSITION 2.12. Given a based unstable operation r:k —^ m, we can define the looped 
operation Qr\ k—\ —• m - 1 in any of three equivalent ways: 

(a) The operation that makes the diagram commute {with no sign), 

E^-'iX) - E^S^xX.oxX) —^— E^{S{X-^),o) 

Qr 

ET-HX) — ^ — ETiSWX.oxX) — = ~ E'^{E{X^),o) 

which we can express algebraically as 

S{Qr)x = rEx\ 

(b) The image ofr under the E*-module homomorphism 

.E^{EE,_,,o)^E^-'{E,_,,o) f2:E^{Ek,o) 

induced by the structure map fk-\:EE.i^_^ —> E^^ <̂ /[8» Definition 3.19]; 

(c) The map 

^r\E^-\ ^^Kk 
(-I)"*-'=/2r 

^nE^^E^^,, 

where we use the right adjunct equivalences to fk-i and fm-i-

PROOF. For a based space X, diag. (2.13) simplifies by naturality to 

E''-\X,o) - ~ E''{ZX,o) 

Er-\X,o) - ^ E"'{EX,o) 

(2.13) 

(2.14) 

(2.15) 

If we evaluate on the universal case ifc_i e E'' '(£n._i,o) by eq. (2.14), we find 

which gives (b). Further, by [8, Lemma 3.21], the class E{Qr)ik-\ e E'{EEk~\^o) 
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corresponds, up to the sign (-1)"^~\ to the lower route in the square 

r) 

k-\ 

' 

m— 

(_l)m-fc 

fm~\ 

• 

E, 

E. 

in Ho (2.16) 

which therefore commutes up to sign. We take adjuncts of this to get (c). D 

We recall from [8, Definition 9.3] the stabilization map (Jk'-Kk -^ E oi spectra. 

COROLLARY 2.17. Qoal = al_^:E*{E,o) -^ £"'(£fc_,,o). 

PROOF. Suppose the stable operation r e E^{E,o) restricts to give the additive op-
erations Tk'.k -^ k^-h and rk-\',k-\ -^ k+h-l. By [8, (9.8)], a^r = {-l)^^rk 
and al_^r = {-\Y^-^^^rk-\. We compare diag. (2.16) with [8, (9.2)] to see that 
f2rk = {-l)^rk-i. D 

COROLLARY 2.18. The loop construction in Proposition 2.12(b) factors as 

n:E^{E,,o) >QE%E,) ^ PE%E,_,) C E^E,_,,o). (2.19) 

PROOF. It is clear from Proposition 2.12(c), or from eq. (2.14) and Lemma 2.10, that fir 
is always additive. The construction factors through QE*{E_k) by Proposition 2.12(b) and 
naturality of Q, since QE*{UE_k-\) - E*{EE_k-\^o). (Loosely, there are no products 
mE''{SX,o).) U 

These results allow us to rewrite the Milnor short exact sequence [8, (9.7)] in the more 
useful form (which does not change any terms) 

0 > lim^P£;*(£fc) • E*[E,o) > WmPE^Ej,) > 0. (2.20) 
k k 

It remains true that the projection from E* (E, o) is an open map, and therefore a home-
omorphism whenever it is a bijection. The fcth component is the £*-module homomor-
phism 

c7l:E^{E,o) >PE*{E^)cE*iE,) (2.21) 

induced by the stabilization map cr̂ . It sends a stable operation r to the induced additive 
operation r̂  on E^{-) (but with a sign; see [8, (9.9)]). 

The factorization (2.19) raises two obvious questions: 

(a) Can every additive operation be delooped? .̂  ̂ .̂ 
(b) Does i7r = 0 imply that r decomposes? 



Section 3 Unstable cohomology operations 701 

Both hold precisely when we have an isomorphism fi:QE*{E_j^) = PE*{Ek-\)' ^^ 
discuss this further in Section 4. 

3. Group objects and E-cohomology 

Before we can discuss additive E-cohomology operations adequately, it is necessary to 
generalize Section 2. We extend Proposition 2.7 by defining the primitives PE'^{X) for 
any group object X in the homotopy category Ho. Dually, we extend the definition of 
the indecomposables QE*{X) to any based space X. 

Coalgebra primitives. We start from the definition (2.8) of PE*[E_^). 

DEFINITION 3.1. Given any group object (or /f-space) X in Wo, with multiplication 
IJL:X X X -^ X, "wt define the JS*-submodule PE*{X) of coalgebra primitives in 
E*{X) as 

PE'{X) = {xe E*{X) : pTx = p\x^plx in E*{XxX)]. 

REMARK. AS in Proposition 2.7(c), the class x € E^{X) is primitive if and only if the 
associated map x: X —• E;̂  is a morphism of group objects in Ho. 

We note that PE*{X) is defined even if E*{X) is not a (completed) coalgebra. Thus 
PE*{-): Gp{Hoy^ —> Mod is a functor defined on the dual of the category of group 
objects in Ho. We topologize PE*{X) as a subspace of E*{X). 

If Y is another group object in Ho, we construct the product group object X xY in 
the obvious way. The one-point space T is trivially a group object, and is terminal in 
Gp{Ho). Lemma 6.14 of [8] carries over to this situation. 

LEMMA 3.2. For the product X xY of two group objects X and Y in Ho, we have 
PE^'iXxY) ^ PE*{X) © PE*{Y) in FMod. Also, PE*{T) = 0. 

In other words, the functor PE*{-) takes finite products in Gp{Ho) to coproducts 
{direct sums) in FMod. 

REMARK. NO Kiinneth formula is needed for this result. 

PROOF. We dualize the proof of [8, Lemma 6.11]. Let us write Z = X x y for the 
product group object and cjy: T —• Y for the unit (or zero) map of Y. We note first that 
the maps jx = \x x^ (J^Y'-X '^ X xT -^ X xY = Z, ji'.Y ^ Z (defined similarly), 
pi: Z = X X y -> X, and p2- Z —• y are all morphisms of group objects and therefore 
send primitives to primitives. Define the map 

f:Z = XxY^ {XxT) x {TxY) y {XxY) x {XxY) = ZxZ 

using ( Ixx^y) x (^xxly)- Then p>z^ f = ^z ^^d Ps^ f = js^ps (for s = 1,2), 
where Ps'.Z x Z -^ Z denotes the projection for Z. Any element z G PE*{Z) satisfies 
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^*^z = P*z -h P2Z, by definition. When we apply /*, we obtain z = p*x + P2y, where 
X = j*z G E*{X) and y = J2Z G E*{Y) must be primitive. Conversely, any primitives 
X and y determine a primitive 2: by this formula. We have a homeomorphism because j * 
and p* are continuous. 

We compute PE*{T) = {v e E"" : v = v-\-v} = 0. D 

Since the unit map u:T -^ X of X is a morphism of group objects, PE*{T) = 0 
implies that PE*{X) C JE;*(X,O). 

The space ^B/t is more than just a group object. By [8, Corollary 7.8], we have the 
jB*-module object n y-^ E_^ in Ho, on which v £ E^ acts by the maps ^v.JEj^-^ Rk-\-h 
that represent scalar multiplication by v. Clearly, ^v is additive. 

LEMMA 3.3. Assume that E*{Kk) ^^ Hausdorjffor all k. Then: 

(a) We have the E^-module object n »-> PE*{E_^) in the ungraded category FMod^^, 
with the action ofv G E^ given by P(Cv)*: P£*(£fc^.;,) -^ PE'^iRf^); 

(b) The object in (a) is related to the stable E^-module object E*{E, 6) of [8, Propo-
sition 11.3] by the following diagram, which commutes up to sign for any v G E^, 

E*{E,o) > E*{E,o) 

'Uh (-1)'' 

PE^iE,^,) ^ H ^ PE^E,) 

(3.4) 

PROOF. In (a), the object n -̂̂  £ ^ is in fact an jB*-module object in Gp{Ho). We apply 
[8, Lemma 7.6(a)] to the functor PE*{-')\ it preserves finite products by Lemma 3.2. 

For (b), we apply E-cohomology to diag. [8, (9.8)], taking r = ^t;. D 

Indecomposables. Dually, we extend eq. (2.11) to any based space X by defining the 
quotient £7*-module 

QE*{X) = Coker [A* ^ i\ - il:E*{XxX) y E*{X)] (3.5) 

of "indecomposables" of E*{X). (We shall not need a topology on it.) 

4. Group objects and £-homology 

We dualize Section 2 by defining the indecomposables QE^{E_f^) and primitives 
PE^{E,^) in f^-homology. This will prove useful because E^{E_^) is usually smaller 
and more manageable than E*{E,k)' As in Section 3, we need to handle more general 
X, However, some properties that were immediate in Section 2 become less intuitive 
and have to be proved. 
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The structure map fk'.SEk —̂  E-k-^i (see [8, Definition 3.19]) of the spectrum E 
induces the important suspension homomorphism 

E^Ef,) ^ E^Ef^.o) ^ E^EEj^.o) - ^ E^Ef^^.^o), (4.1) 

dual (apart from sign) to the looping fi in Proposition 2.12(b). Again, suspended elements 
behave better. We dualize Lemma 2.10. 

LEMMA 4.2. For any elements x,y E E^{EX,o), the induced E-homology homomor-
phisms satisfy 

[x -f- 2/)* = x* -f y^\ E^SX, o) ^ E^Ek, a). 

PROOF. By [8, Lemma 7.6(c)], £^-homology induces a homomorphism 

Ho\EX,Ek) ' Mod{E.{EX,o),E.{Ek,o)) 

of groups, where both group structures are induced by the cogroup structure on SX in 
Ho'. By [8, Proposition 7.3], they agree with the obvious group structures. D 

Indecomposables. We dualize Definition 3.1. 

DEFINITION 4.3. Given any group object (or H-space) X in Ho, we define the E^'-module 
QE^{X) of "indecomposables" of E^{X) as 

QE.iX) = Coker [/i. -pu -pi.:E.{XxX) y E,{X)]. 

It comes equipped with a canonical projection E^{X) -^ QE„{X). 

When E^{X) is free, we have the Kiinneth isomorphism Theorem 1.18(b) for 
E^{XxX) and this agrees with the usual definition for the algebra E„{X). We need 
one easy example. 

LEMMA 4.4. Let G be a discrete abelian group. Then QE^{G) = E* ^zG as an E*-
module. 

PROOF. We recognize E^{G) as the group algebra of G over J5*, with an -B*-basis 
element [g] for each g G G. The correspondence we seek is induced by v[g] <-^ v (S> g, 
and is well defined in both directions. D 

Lemma 3.2 dualizes without difficulty; again, no Kiinneth formula is needed. Then we 
will be able to dualize Lemma 3.3. 

LEMMA 4.5. For the product X xY of two group objects X and Y in Ho, we have 
QE^{XxY) ^ QE^{X) e QE^iX). Also, QE^(T) = 0. In other words, the functor 
QE^{-): Gp[Ho) —> Mod preserves finite products. 
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We have an immediate application to the Hopf bundle. 

LEMMA 4.6. Assume E has a complex orientation. Then the inclusion CP^ —> Z x BU 
(see [8, (5.8)]) defined by the Hopf line bundle ^ over CP°° induces an isomorphism of 
E*-modules 

E,{CP'^) ^ QE,{Z X BU) ^ E*eQE.{BU). 

PROOF. The second isomorphism comes from Lemmas 4.5 and 4.4. We compare Lemmas 
5.4 and 5.6 of [8]; the generators /3i correspond, except that ^ »-> (1,0). D 

LEMMA 4.7. For any ring spectrum E: 

(a) n H-* QE^{E_^) is an E*-module object in the ungraded category Mod of E*-
modules; 

(b) The suspension (4A) factors through QE^{E,i^); 

(c) The stabilization ak*'.E^{E_f^,o) -^ E^{E,o) factors through QE^{Ef^). 

PROOF. The proof of (a) is like Lemma 3.3(a), except that we use the functor QE^{-) 
and Lemma 4.5. 

For (c), we use crĵ t = 6̂  to restate the universal example (2.6) as 

f̂co/ifc = cTfcopi -f Gkop2''Kk ^ E.k ^ ^ ^^ Stab"". 

We apply ^-homology to see that Ok* factors as desired. Similarly for (b), except that 
we use Lemma4.2 with X = S{E,j^xJEi^), x = Ep\, and y — Sp2' U 

Dually to the short exact sequence (2.20), we may use (b) and (c) to rewrite [8, (9.22)] 
in the more convenient form 

E^{E,o) = coY\mE^{E^,o) = coMm QE^{Ek). (4.8) 
k k 

There is a multiplication, analogous to the stable multiplication on E^{E,o). 

LEMMA 4.9. There is a bilinear multiplication 

Q<I>:QE,{E„)®QE,{EJ >QE,{Ek+m), 

which may be defined as a quotient of 

E.iEk)®E.{Em)-^E,{E,xEj^E,{Ek^J. 
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PRCKDF. The only difficulty is to prove that Qcf) is well defined. We express the distributive 
law for the £̂ *-algebra object n^-^ E,^ as the commutative square 

<t>L 

| /xl jp (4.10) 

S-k X E.m ^ £fc+m 

in which f = fi^y 9 = Mfc+m, and (pi has the components 0o(pj x 1) and (j)o{p2 x 1). 
(Cohomologically, 0L represents the operation {x,y^z) i-̂  {xz,yz).) We deduce the 
commutative diagram in homology 

£^*(£;kx£,)0£;,(£j - ^ £;*(£fcXE,x£^) — ^ 1 ^ J5.(£,^^x£,+^) 

/*®i ( / x l ) * y* 

£;,(£fc) «.£;.(£„) . E.{E,xEJ '- ^ E4E,+J 
(4.11) 

By Definition 4.3, we have the exact sequence 

E^iEk X £fc) *'""'"'"'^' . E4E,) —^ Q£;.(£fc) ^ 0. 

After tensoring with E^{E_^), this remains exact. We note that diag. (4.10) and hence 
diag. (4.11) also commute if we take f = p\ and g = pi, or f = p2 and g = p2- Then 
diag. (4.11), with these three choices for / and g, shows that its bottom row induces a 
quotient pairing QE,{Ek) 0 E,{EJ -^ QE,{Ef,^J, 

A second similar step, on the right, uses this pairing to produce Q(f>. D 

Coalgebra primitives. We also dualize eq. (3.5) in the obvious way. If X is a based 
space, we construct the £̂ *-module homomorphism 

A. - iu - i2.: E,{X) > E.{X x X). (4.12) 

DEFINITION 4.13. Given any based space X, we define the E*'Submodule of coalgebra 
primitives PE^{X) = Kcr[A^ - 2^ - 2̂*] C E^{X). 

Again, the definition is meaningful even without a Kiinneth formula for J5*(XxX). 
The companion result to Lemma 4.4 is elementary. 

PROPOSITION 4.14. For any discrete based space X, we have PE^{X) = 0. 

The suspension (4.1) factors, with the help of Lemma 4.7(b), as 

E.{E,,o) >QE.{E,) >PE.{E,^,) C E.(£,^„o). (4.15) 
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Again we ask whether QE^{E,i^) —• PE^{E_k-\-\) î  an isomorphism. 

Duality, Under reasonable assumptions, the sequence (2.19) is dual to (4.15). One can 
see from Lemma 4.17 and Section 17 that this holds for each of our five examples E. 
Moreover, in each case there are isomorphisms QE^{E_f^) = PE^{E,j^_^^) in (4.15), thus 
answering the questions (2.22) affirmatively. 

LEMMA 4.16. Assume that E^{X) is a free E*-module. 
(a) If X is a group object in Ho {or an H-space\ then d induces a homeomorphism 

d: PE*{X) ^ DQE^iX) in FMod; 
(b) If X is a based space and the image of the homomorphism (4.12) splits off both 

E^{X) andE^{XxX\ then d induces a bijection d'.QE^'iX) ^ DFE^X), 

PROOF. In (a), d induces the commutative diagram 

0 PE'iX) ^ > E*{X) JLl^u:^? ^ E'iXxX) 

0 DQE,{X) DE.{X) ^"^ "'' ^^" DE^{XxX) 

whose rows are exact by Definitions 3.1 and 4.3, because D automatically takes co-
kernels to kernels. Strong duality for X and X x X from Theorem 1.18 provides two 
homeomorphisms d. The third d is therefore also a homeomorphism, because DQE^{X) 
has the subspace topology from DE^{X) by [8, Lemma 6.15(c)]. 

The proof of (b) is analogous, except that we assume the splittings to ensure that the 
bottom row of the relevant diagram is (split) exact, use [8, Lemma 6.15(a)] instead, and 
have no topology to check. D 

We clearly need information on when E^{E_f^) is free. 

LEMMA 4.17. For E = if (Fp), BP, MU, K{nl or KU: 
(a) E^{Ek) and QE^{Ek) are free E^-modules for all k; 
(b) E*{Ek) and PE*{Ek) are complete Hausdorfffor all k. 

PROOF. For E = H{Fp) or K{n), all jB*-modules are free and (a) is trivial. 
We consider the remaining three cases together. For odd fc, E^{E,k) ŝ an exterior 

algebra over E* by [23] (for BP or MU) or [8, Corollary 5.12] (for KU, when Ej, = U\ 
and (a) is clear. 

For even fc, we write E_^ = E^ x E^^ as in [8, (3.7)], where E'^ denotes the zero 
component and E^ is treated as a discrete group. Then E^{E!f^) is a polynomial algebra 
over E\ by [23] (for BP or MU) or [8, Lemma 5.6(c)] (for KU, when g^ = BU), so 
that E^{E!k) (and hence E^E^)) and QE^{E!k) are free modules. 

To finish (a), we note that by Lemmas 4.5 and 4.4, 

QE.{E,) = {E^ 0z E'^) eQE.{g , ) . 
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The first summand is free, because E^ = Z (for KU), or is Z-free (for MU), or is 
Z(p)-free (for BP). 

Part (b) is immediate from (a) by Theorem 1.18(a) and Corollary 2.9. D 

5. What is an additively unstable module? 

In this section, we give various interpretations of what it means to have a module over the 
additive unstable operations on £J-cohomology. All four stable answers in [8] generalize. 

We recall from [8, Corollary 7.8] that each £/t is an abelian group object in Ho and 
therefore also in Gp{Ho), and that n •-> JE^ is an JB*-module object in Ho, with v ^ E^ 
acting by the map iv\E_^ -> Kk^h- Prom Proposition 2.7 we have the submodule 
PE*(Rk) of additive operations defined on E^{-). 

We assume throughout that E^{E_i^) is a free E*-module. Then by Corollary 2.9, 
PE*{E_^) is complete Hausdorff and an object of FMod, 

First Answer. The additive operations r:k -*m act on E*{X) by composition 

o: PE^iEk) X E^{X) y E^{X) (5.1) 

in Ho. We recover the stable action [8, (10.1)] by using aĵ : E*{E, o) -^ PE*{Ei,). 
This composition is already biadditive. Given x G E^{X) and v G E^,thc commuta-

tive square 

PE^iEk+h) X E'iX) - ^ PE^{E,+„) X E^+^X) 

P{iv)' XI o (5.2) 

PE^iEk) X E'^iX) E^{X) 

expresses the identity {r'v)x = rvx = r{vx) for operations r:k+h -^ m. It suggests that 
we should make the action (5.1) more closely resemble the stable action by introducing 
a formal shift and rewriting it with a tensor product as 

Ax: E'^PEr{Ek) 0^ E^{X) > £^(X). (5.3) 

(Here, unlike [8], the action scheme is clearly visible: the notation ®k indicates that the 
tensor product is to be formed using the two £*-actions indexed by k.) 

This approach was initiated in [27, §11]. However, it presents even more problems 
than in the stable case, and we do not pursue it further here. 

Second Answer Our hypotheses ensure that PE'^iEk) is dual to QE^{Ek)' ^^ ^ ^ 
convert the action of PE*{Kk) î ô a coaction 

E^{X) > E*{X)%QE.{Ek). 
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These are clearly not the components of an £^*-module homomorphism, because the 
degree varies. 

In Section 6, as suggested by (5.3), we shall shift degrees by introducing Q{E)'^ = 
S^QE^{E_j^), which will allow us to write the coaction as an £'*-module homomorphism 
with components 

px:E^{X) ^E*{X)^Q{E)t (5.4) 

and the same action scheme as stably. We shall construct a comultiplication Q(i/;) and 
counit Q{e) that make Q{E)l a coalgebra and allow us to interpret £J*(A') as a Q(J5)*-
comodule. 

Third Answer. We write our Second Answer more functorially. Given any £'*-module 
M, we construct the graded group A'M having the component 

{A'M)^ = M^^iQiE)^ = (MgQ(£;)J)'' 

in degree k. In Section 6 we shall make A'M an E*-modu\e. Then M 0 Q{ip) and 
M 0 Q{e) define natural transformations ip'iA^ -* A'A' and e''.A' —• /, which will 
make A' a comonad in FMod and E*{Xy an i4'-coalgebra. 

Fourth Answer Still imitating the stable case, we eliminate all tensor products by 
converting the First Answer to adjoint form. This will make everything very much cleaner, 
evidence that this is the natural answer (although the Second Answer is undeniably 
convenient for computation). 

Any element x G E^{X) may be regarded as a map x:X -^ Kk^ which induces the 
morphism x*:E''{E^i^) —• E*{Xy in FMod. Generally, given any object M in FMod, 
we define for each integer k the abelian group 

A^M = FMod{PE*{E^),M) (5.5) 

of all continuous £?*-module homomorphisms PE*{E,^) -> M. (There is no need to 
shift degrees.) Then we convert the action (5.1) to the coaction 

px:E^{X) > A^{E*{Xy) = FMod[PE*{Ej,),E\Xy) (5.6) 

by defining pxx = x*\PE*{Kk)' 
We assemble the A^M, as k varies, to form the graded group AM with components 

[AMY — A^M, and the coactions px into the single homomorphism px''E*{X) -^ 
A{E'^{Xy) of graded groups of degree zero. 

The destabilization a^: £*(£;, o) -> PE*{Ek) (see [8, Definition 9.3]) induces 

A^M = FMod{PE*{Ef^),M) > FMod^{E*{E,o),M) = {SMf, (5.7) 
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if we also assume that E*{E,o) is Hausdorff. As k varies, we take these as the com-
ponents of the stabilization natural transformation aM: AM -^ SM, of degree zero. It 
allows us to compare with the stable case. 

THEOREM 5.8. Assume that E^{E_^) is a free E*-module for all k (as is true for E = 
iJ(Fp), BP, MU, KU, or K{n) by Lemma 4.17(a)). Then: 

(a) We can make the functor A, defined in eq. (5.5), a comonad in the category FMod 
of complete Hausdorff filtered E*-modules; 

(b) If E*{E,o) is also Hausdorff, the stabilization a:A-*S (defined in eq. (5.7)) is 
a morphism of comonads in FMod. 

The relevant definitions are now clear. 

DEFINITION 5.9. An additively unstable {E-cohomology) module is an A-coalgebra in 
FMod, i.e. a complete Hausdorff filtered £?*-module M equipped with a morphism 
PM'-M -^ AM in FMod that satisfies the coaction axioms [8, (8.7)]. We then define the 
action of r G PE^{E,j^) on x E M^ by rx = PM(x)r € M (with no sign). 

A closed submodule L C M is called (additively unstably) invariant if PM restricts 
to give PL'-L -^ AL. Then the quotient M/L inherits an additively unstable module 
structure. 

This is a stronger structure than a stable module (when E*{E, o) is Hausdorff, so that 
stable modules exist). Given a coaction pM as above. Theorem 5.8(b) shows that the 
coaction 

PM <TM 

M y AM > SM (5.10) 

makes M a stable module. 
One may think of i4*̂ M as the set of all candidates for the action of PE*{E,^) on 

a typical element of M^, and pM as the selection of a candidate for each x 6 M^. 
The coaction axioms translate into the usual action axioms {sr)x = s{rx) and UkX = x. 
As stably, it is sometimes useful to fix r: fc -* m and express the first axiom as the 
commutative square 

M^ — ^ ^ M ^ 

PM PM (5.11) 

UirM 

A^M ^ A'^M 

where UrM denotes composition with Pr*:PE*{E^) -> PE*{E,f^). 

THEOREM 5.12. Assume that E^{Ef,) is a free E*-modulefor all k (as is true for E = 
H{Fp), BP, MU, KU, or K{n) by Lemma 4.17(a)). Then: 

(a) px (defined in eq. (5.6)) factors through E*{Xy as px\E*{Xy -^ A(E*(X)0 
to make E'^{XY an additively unstable module for any space X; 
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(b) If E*{E,o) is Hausdorff, we recover the stable coaction in [8, Theorem 10.16(a)] 
from px by diag. (5.10); 

(c) p is universal: given an object N of FMod and an integer fc, any additive natural 
transformation of abelian groups eX:E^\x) — FMod{N,E*{Xy) {oreX:E^{Xy -^ 
FMod{N, E*{Xy)) that is defined on all spaces X is induced from px by a unique 
morphism f:N -^ PE*{E_^) in FMod, as 

eX:E^{X) - ^ A^{E*{Xy) = FMod{PE*{Ej,),E*[Xy) 

Hom(/,l) 
. FMod{N,E*{Xy). 

PROOF OF THEOREMS 5.8 AND 5.12. We prove parts (a) and (b) of both Theorems together, 
in the same seven steps as the stable proof of Theorems 10.12 and 10.16 of [8]. As 
most steps are more or less repetitions of that proof, except for the insertion of indices 
everywhere, we indicate only the substantive changes for (a) and the additions needed 
to handle a for the (b) parts. Instead of 6 E E*{E, o), we have ik G PE''{E_j^). Instead 
of id^, we have the identity map idfc: PE*{E^i^) = PE*{E_^), considered as an element 
of A'^PE^iEk). We write pk for px when X = E^. 

Step 1. We construct an E*-module structure on the graded group AM we de-
fined in eq. (5.5). We start with the E*-module object n ^ PE^'iEJ in FMod""^ 
from Lemma 3.3(a), with v £ E* acting by P(^i;)*. We apply the additive func-
tor Mor(-, M): FMod""^ -> Ab to obtain by [8, Lemma 7.6(a)] the J5*-module object 
n »-> A^M in Ab, i.e. make AM an E*-module. 

Despite appearances, the square (3.4) does commute in the dual category FMod*°^, 
to show that oM: AM —> SM is an JE*-module homomorphism. 

Step 2. We have defined px as a natural transformation of sets. For fixed X, the 
cohomology functor E*{-y:Ho -^ FMod^^ induces the natural transformation 

Ho{X, -) y FMod{PE%-'y,E^{Xy): Gp{Ho) ^ Set. 

We apply [8, Lemma 7.6(c)] to the E*-module object n H-̂  E_^ to see that px is a 
morphism of jB*-module objects, i.e. takes values in Mod. 

For Theorem 5.12(b), we note that given x G E^{X), we have {a{E*{Xy))x1^ = 
xho(Tl = x*s,by[iA9A)]. 

If X is a group object in Ho and x € PE^{X), the associated map x:X —• £ ^ 
is a morphism of group objects (as remarked after Definition 3.1) and so induces 
x*\PE*{Ej^) ^ PE^'iX). If E^'iX) (and hence PE*{X)) is Hausdorff, px restricts 
to define 

Ppx:PE*{X) y APE*{X). (5.13) 

Step 3. We filter AM exactly as we did SM in [8, §10], by the submodules F^(>IM) = 
A{F°'M), using naturality. The proof that AM is complete Hausdorff is formally the 
same as for SM. Our choice of filtrations and the naturality of p clearly make px and 
aM continuous, so that px factors through E*{Xy and a takes values in FMod. 
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Step 4. Whenever X is a group object in Ho and E*{X) is Hausdorff, we convert the 
object PE*{X) of FMod to the corepresented functor 

Fpx = FMod{PE''{X), -):FMod > Ab 

and the coaction Ppx in (5.13) to a natural transformation ppx- Fpx -^ FpxA: FMod —̂  
Ab. Given M, ppxM: FpxM —• FpxAM is the homomorphism 

ppxM: FMod{PE*{X), M) y FMod{PE''{X), AM) (5.14) 

that is defined on / : PE*{X) —• M as the composite 

{ppxM)f:PE\X) - ^ ^ APE^X) —L AM. 

Step 5. To construct ip = ^pA'' A -^ A A, we take X = E,f^ in (5.14) and define 

(X/JM)^: FMod{PE*{Ek),M) > FMod{PE%E^),AM) 

on the element / : PE*{E_i^) -* M of A^M as the composite 

{il;Mff'.PE*{Ej,) - ^ APE*{Ek) — ^ AM. 

When we substitute the -B*-module object n H-> ^ ^ for X in (5.14), [8, Lemma 7.6(c)] 
shows that {ipM)^:A^M —• A'^AM lies in Mod. As k varies, we obtain the natural 
transformation ip:A^y AA. Naturality in M also shows that I/JM is filtered and so lies 
in FMod. 

Step 6. The other required natural transformation, e: A —> / , is defined on M simply 
as the evaluation 

(eM)*^ = {sAMf'.A^M = FMod{PE*{Ef^),M) > M (5.15) 

on ik G PE^{JEf^). It is continuous by naturality. It is compatible with the stable version, 
SA = £s°(^'A —* I, since given / G A^M, we have 

{esM){cjM)f = {{cjM)f)i = fa^i = fik = ( ^ A M ) / . 

Step 7. To see that px is a coaction on E*{X), we use [8, Lemma 8.20] (adapted 
to graded objects). We use R = PE*{EJ (really, the graded object n ^ PE*{E^)), 
Ifl = n̂» and PR = Ppn- By [8, Lemma 8.22], ^ is a comonad in FMod. 
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To see that a: A —• 5 is a morphism of comonads, we apply [8, Lemma 8.24]. The 
first condition on u = aĵ : E*{E, 6) -^ PE*(E^i^) is the commutative diagram 

E^{E,o) PE^-^^iKk) 

\ppk 

\PE FMod{PE^{E,^^lPE*{E,)) 

Hom(a;;^^,l) 

FMod^{E*{E,o),E^E,o)) FMod^^^{E%E,o),PE\Ek)) 

A stable operation rs G E^{E^ 6) restricts to an additive operation ru'-k -^ k-\- h. On 
rsy the lower route gives by diag. [8, (9.8)] 

<^l°r's = {-inrsoakY = (-O^^a.+^orj;)* = (-l)''V&oa^^,. 

This agrees with the upper route, because cr^rs = {-l)^^ru by [8, (9.9)]. The second 
condition needed is a1^L = tk, which holds by the definition of ak-

For Theorem 5.12(c), as in [8, Theorem 10.16(b)], it is enough to consider 9X. Because 
Ei^ represents E^{-), natural transformations 0 are classified by the elements / = 
6ik\N —> E*{E_^), i.e. morphisms in FMod. The additivity 

{eX){x+y) = {eX){x) + {0X){y) 

of 9X on the universal example (2.6) yields 

^lof = p\of^plof:N >E\E^xE^). 

By Proposition 2.7(b), / factors through PE*{Ef,). D 

6. Unstable comodules 

Although the Fourth Answer of Section 5 is the cleanest and most general, the Second 
Answer, in terms of unstable comodules, is usually the most practical and is available 
in the cases of interest. The parallel with the stable theory of [8] is extremely close, in 
spite of the very different provenance of the two theories. Some of the machinery was 
used in [6]; here we supply the missing definitions. 

We assume throughout this section that E^{E_f^) and QE^{E_^) are free E^-modules 
for all ky so that we have available all the results of Section 5. 

The bigraded group Q{E)l. As noted in Section 5, tensor products do not work correctly 
because the groups QE^{E_j^) have the wrong degree; we therefore shift degrees. We 
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also adopt more efficient notation, that hides the details of construction and emphasizes 
the algebraic aspects and the formal similarity to stable comodules. (We remind that 
homology Ei{X) has degree -i under our conventions.) 

DEFINITION 6.1. We define the bigraded group Q{E)l as having the components 
Q{E)![ = QEi{Ei^) (the component of QE^{Ri^) in degree -z), except that we assign 
the degree k-i (instead of -i) to elements of Q{E)^. (This is the degree that governs 
signs in formulae. We thus have the formal isomorphism S^:QE^{E,i^) = Q{E)^ of 
degree k.) 

We define the left action of v e E^ on S^c G Q{E)^, for c E QE^Rk). by 
v{S^c) = {-\)^''S''vc, as in [8, (6.7)], to make 

S':QE.{E,)^Q{E)'^ 

an isomorphism of £'*-modules of degree k. 
We equip Q{E)^ with the projection 

qk:E.{E^) > QE.{E,) — Q{E)l (6.2) 

We define the stabilization 

Q{a): Q{E)1 - ^ QE,{Ek) - ^ ^ E,{E, o), (6.3) 

where Lemma 4.7(c) provides the factorization Qak^ of afc* . 

We thus have the factorization into £*-module homomorphisms 

cJk. = Q{(j)oqi,:E.[E^) . Q(E)^ . E.[E,o), (6.4) 

where we arranged for Q{a) to have degree zero and qk to have degree k. 

DEFINITION 6.5. Given an additive operation r:k -^ m, i.e. an element r^ G PE'^{E_k), 
we define the associated jB*-linear functional 

{TQ, - ) : Q{E)1 -^^ QE^E,) -^^^^ E' (6.6) 

of degree m — k (with no sign). 

Now we can make the degree shift suggested by eq. (5.4). We have the strong duality 

PE^Ef,)^DQE.{E,) 

from Lemma 4.16(a). Given an object M of FMod, we use [8, Lemma 6.16(b)] and the 
freeness of QE^{E_i^) to define the natural isomorphism of degree k 

FMod*{PE*{Ek),M)^M^QE4Ek) yM^Q{E)l (6.7) 
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LEMMA 6.8. Given an additive operation r:k —^ m and an object M of FMod, the 
composite (formed using (6.7)) 

FMod*{PE*{Ef,),M) ^ M0Q(£?)J > M ^ E* ^ M 

coincides with the evaluation homomorphism 

er\ FMod\PE\E^),M) > M 

defined by erf = (-l)^^"s(/)/7.^. 

PROOF. We choose X € M , CG (3 -B«(£^) , and evaluate. D 

With Definition 6.5 in hand, we extend Proposition 2.7 and identify: 

(i) the additive operation r: E''(-) -> E'^(-); 
(ii) the cohomology class r = rA = rtk G PE'^{E_^)\ 

(iii) the morphism of group objects r:E_i^ -^ Em '" ^^'> (̂ -̂ ^ 
(iv) the E*'linear functional ( r , - ) = (rg,-):Q(£?)J —> E*, of degree 

m—k, defined by eq. (6.6). 

(We drop the decorations A and Q on r except when we need to compare different 
versions.) As Q{E)l is smaller than PJS*(£^), (iv) is the preferred choice. We do have 
to be careful with degrees, as (ii) has a different degree from (i) and (iv), while (iii) has 
no degree at all. 

Scholium on signs. We construct the duality diagram in FMod* 

E*iE,o) - ^ ^ PE'iE^) - ^ - E'{E,) 

( -1) ' 

DQ(a) 

k (-1) 

Dqk 

(6.10) 

DE,{E,o) — ^ D{Q{E)^,) — ^ DE.{E^) 
{rs,-) {rQ,-) {ru,-) 

whose center isomorphism is taken as 

PE'iE,) - ^ DQE,{E,) - ^ ^ ^ D{QiE)t). 

Because D is contravariant, each square commutes up to the sign (—1)'̂ . 
On restriction to spaces, a stable operation r of degree h yields an additive unstable 

operation r:k -+ A; -f ft, and we obtain elements rs, VA, and ru lying in the indicated 
groups. From these, we get the linear functional (rs, - ) , {ru, -), and by eq. (6.6) also 
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(rQ, - ) . We note that rs and TQ have degree /i, while TA and ru have degree k -\-h. 
The algebra forces us to work with the element TA and the functional (rg, - ) ; we are 
not really interested in the functional (r^i,—), which appears only in the definition of 
(rg, - ) , and the element TQ will occur nowhere. 

The complication is that these six elements do not all correspond in obvious ways 
under the morphisms of diag. (6.10). The first surprise was [8, (9.9)], that 

^ ^ S = ( - 1 ) ' V A . 

Of course, TA and ru do correspond, because they are the same element regarded as 
being in different groups. The second surprise is that TA does not correspond to (rg, - ) , 
because the definition [8, (6.4)] oi D{E^) requires the sign (-l)'^(^+'=), which is absent 
from Definition 6.5. In fact, matters are simpler if we work with elements and refrain 
from turning everything into JS*-module homomorphisms. 

PROPOSITION 6.11. M diag. (6.10).-

(a) Given a stable operation r, the homomorphism DQ{a) takes (r^, —) to (rg, —), 
or in elements, 

{TQ, C) = {rs, Q{a)c) for c G Q{E)l (6.12) 

and also 

{ru.c) = {rs,(Jk.c) forceE,{Ek); (6.13) 

(b) Given an additive operation r:k -* m, the homomorphism Dqk takes {TQ, -) to 
i^-\)^^^-^){ru, -), or equivalently, in elements, 

{ru.c) = {vQ.qkc) for c G E^^E^). (6.14) 

PROOF. We just proved (a), except for eq. (6.13), which combines eqs. (6.12) and (6.14). 
In (b), (r^i, —) is simply the restriction of {ru, —), so that 

(rc/,c) = {rA^S'^Qkc) = {rq^Qkc). 

But the definition of Dqk adds the unwanted sign 

Q{E)l as an algebra. There is much structure on Q{E)l. First, it is by construction a 
left £*-module. 

PROPOSITION 6.15. For any ring spectrum E, Q{E)l has the properties: 
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(a) Q{E)l is a bigraded E*'algebra, with multiplication Q{(j)) defined by the commu-
tative diagram (6.16) 

E.{E^)®E,{EJ . E,{E^xEj 
<t>U * 

-^ E^{Kk+m) 

Qk®Qrr 

Q{E)':<S>Q{E)T -

Q(ff)®Q(<T) 

E^{E,o)<^E,{E,o) 

QW 

Qk+v 

QiE): k-\-m (6.16) 

E»{EAE,O) 
<t>s. 

Q(<T) 

- E»iE,o) 

and unit Q{ri) defined by the commutative diagram 

E.{T) ^ - * E' - ^ — E,{T+,o) 

vv. Q{v) 

EAEo) 
90 

Q{E)l 
Q(CT) 

vs. (6.17) 

E.{E,o) 

(b) The stabilization Q{a):Q{E)l —• Ei,{E^o) is a homomorphism of E*-algebras. 

PROOF. Q(0) is inherited, with a shift, from the multiplication on QE^{E_^) constructed 
by Lemma 4.9. It thus fills in diag. (6.16), which is derived from [8, (9.15)] by applying 
-B-homology and the factorization (6.4). We simply define Q{r]) = qo^Vu*^ to fill in 
diag. (6.17). This comes from diag. [8, (9.4)] by taking x = IT e E''{T). The algebraic 
properties of Q((̂ ) and Q(r/) are inherited from the E*-algebra object n »~> E_^ in Ho. 
Part (b) is clear from the diagrams. D 

Q{E)l as a bimodule. We also need the right £*-action. By Lemma 4.5, the functor 
QEi,{-): Gp{Ho) -* Mod preserves finite products. We apply [8, Lemma 7.6(a)] to the 
jB*-module object n H-> £ ^ in Gp{Ho), to obtain, for each v G E^, homomorphisms 
Q{^v) that fill in the commutative diagram 

E.{E,) 
Qk 

Q{Et -E.{E,o) 

i^uv). Qi^v) 

„ , „ V Qk-\-h 

E,{E^+h) Q{E)1 

(isv). (6.18) 

f"-^^ ^^^-- E,{E,o) 

and make Q{E)l a module object in Mod", i.e. an £^*-bimodule. This diagram came 
from diag. [8, (9.8)] by taking r = ^v. 
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We have the additive analogue of the stable right unit. 

DEFINITION 6.19. We define the right unit function m'E* -^ Q{E)l on v e E^ = 
E^{T) by r]RV = qhV*^ ^ Q{E)o^ using the homology homomorphism v^:E* = 
E^{T) -^ E^Ef,) induced by the map viT ~> Ef,. 

It is clear from [8, (9.4)] and the factorization (6.4) that composition with Q(cr) yields 
the stable right unit TJR: E* -^ E^{E, 6) of [8, Definition 11.2]. 

PROPOSITION 6.20. For any ring spectrum E, the algebra Q{E)l has the properties: 

(a) // is a bigraded E^-bimodule, with components Q{E)^ = QEi{Ek) ^hich are 
assigned the degree k — i; 

(b) It has the well-defined unit element 1 = Q(r/)1 = TJRI E Q{E)Q; 

(c) The left action ofv £ E^ is left multiplication by vl G Q{E)\; 

(d) The right action ofveE^ is right multiplication by TJRV e Q{E)Q; 

(e) The stabilization Q{(T):Q{E)1 —• E^{E,o) is a homomorphism of E*-bimodules. 

REMARK. Propositions 6.15 and 6.20 are similar to [8, Proposition 11.3], except that 
(5(J5)* is bigraded and the conjugation x is conspicuous by its absence. The examples 
of Section 16 show that x does not exist, at least, not in any obvious sense. (This is why 
we eschewed x i^ [8]) 

PROOF. Most of the proof is formally identical to the stable case [8, Proposition 11.3]. 
For (d), we apply jE-homology to the factorization [8, (3.27)] of ^v. Part (e) is clear 
from diag. (6.18). D 

We write the left and right jE;*-actions as \L:E^ (S) Q{E)^ -> Q{E)^_^ and 
\R: Q{E)^ (8)E^ -^ Q{E)^'^^. Explicitly, the signs for XR are 

XR{C(^V) = C'V = c{mv) = {-l)^'^^^^\vRv)c = {-l)^'^^^''^Q{^v)c, (6.21) 

where v G E^ and c • v denotes the right action. For future use, we rewrite (d) as the 
commutative square 

Q((t>) 

QiEf^^QiE)^ Q(£; )^^ 

Q{iv)®\ Q(iv) (6.22) 

Q{(t>) 
QiEf^-^^^QiE)":^ 0(E)J^^ '̂̂  

Thefiinctor A'. Given an £'*-module M, we define (as promised in Section 5) the graded 
group i4'M as having the components 

(A'M)^ = M'^iQ{E)^ = (M§Q(E)J)^ (6.23) 
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(where the tensor product 0i is formed using the two £'*-actions indexed by i. We 
have no use for the rest of M%Q{E)^ !) We use the isomorphism (6.7) to define the 
isomorphism AM = A'M as having the components 

{AMf = A^M = FMod{PE*{Ek),M) ^ M'%iQ{Efi = {A'M)''. (6.24) 

We use this isomorphism to transfer all the structure of Section 5 from A to A' and make 
A' a comonad, just as we did stably in [8]. (We generally drop the decorations ' except 
when comparing different versions.) 

In particular, we use (6.24) to convert modules to comodules. If M is an additively 
unstable module with coaction PM'M —• AM (as in Definition 5.9), we deduce the 
equivalent coaction p'j^:M ^ A'M with components 

P'M'^M^ . {A'Mf = M'®iQ{E)^i C M®Q{E)l (6.25) 

In particular, for a space X, we convert the action px in (5.6) to 

p'x'^E^'iX) > E'{X)^iQ{E)^ C E^X)^Q{E)l (6.26) 

Q{E)l as a coalgebra. The stable discussion carries over, except that Q{E)l is bigraded. 
The comonad structure {'ip,e) on A translates into a comonad structure {tl^'.e') on A'. 
By naturality and the case M = U'E'', ij^'M: {A'M)^ -> {A'A'M)^ must take the form 
M § V̂  for a certain comultiplication 

^ = QW: Q{E)1 — . Q(E)i ®, Q{E)'^ (6.27) 

(where we sum over j as in eq. (6.23)), and e'M: {A'M)^ —> M^ must take the form 
M § e for a certain counit 

e = Q{e): Q{E)'^ . E'"''. (6.28) 

By construction, these are both JS*-bimodule homomorphisms of degree zero. 

PROPOSITION 6.29. Assume that E^{E_k) and QE^iEk) are free E^-modules for all k. 
Then: 

(a) The homomorphisms xjj = Q{ip) and e = Q{e) in diags. (6.27) and (6.28) make 
Q{E)l a coalgebra over E*; 

(b) If E^{E, 6) is also free, the stabilization Q{a): Q{E)l -> E^{E, o) is a morphism 
of coalgebras (cf. [8, Lemma 11.8]). 
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PROOF. By taking M = E^E*, the comonad axioms [8, (8.6)] for A' yield the coasso-
ciativity 

QiEt 

QW) 

Q{E)i^iQ{E)l 

QW 
Q[E)i^^Q{E)) 

" Q{E)\ ®i Q{E)l ®j QiE)' 

(6.30) 

of Q{ip) and the two counit axioms 

Q(E)|= ^Q{E)i®jQ{E)l QiE)1 

Q(e)®l 

Q{E)t — ^ E^-' ®i QiErj Q{E)1 

Q(-0) 
k^A^Q,^E)\®^Q{E)) 

l®Q(e) 

k J^L^ j?3-i ^ . n( J?\k r,f iP\k ^J^_ Q(^E)i ^j E^-^ 

Part (b) is the translation of Theorem 5.8(b). 

(6.31) 

D 

Comodules. Now that we have the coalgebra Q{E)l, we can convert Definition 5.9 and 
Theorem 5.12. 

DEHNITION 6.32. An unstable (E-cohomology) comodule is an ̂ '-coalgebra in FMod. 

In detail, given a complete Hausdorff filtered -E*-module M (i.e. object of FMod), 
an unstable comodule structure on M consists of a coaction pM'-M --^ A'M, with 
components M^ -^ M* 0 i Q{E)^ as in diag. (6.25), that is a continuous homomorphism 
of J5*-modules (i.e. morphism in FMod) and satisfies the axioms 

M 

M®Q{E)l 

PM 

PM01 

— M%Q{E)l 

M^Q{E)l^Q{E)l 

M 
pM 

M®Q{E)l 

M®Q(e) 

\ 
M^E'' 

(6.33) 

(i) 
(ii) 

This is a stronger structure than a stable comodule (assuming that E*{E, o) is free, so 
that stable comodules can be defined). Given a coaction pM as above. Proposition 6.29(b) 
shows that the coaction 

PM ^ M^Q{a) ^ 

M ^M®Q{E)l y M®E,{E,o) (6.34) 

makes M a stable comodule. 
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REMARK. We regard comodules as essentially additive constructs, as we find no analogue 
in the fully unstable context. We therefore omit the adjective "additive" from comodules. 

THEOREM 6.35. Assume thatE^{Kk) andQE^{E,,) are free E*-modules for all k (which 
is true for E = i?(Fp), JSP, MC/, KU. or K{n) by Lemma 4.17(a).) Then given a 
complete Hausdorff filtered E*-module M (i.e. object of FMod\ an additively unsta-
ble module structure on M in the sense of Definition 5.9 is equivalent to an unstable 
comodule structure on M in the sense of Definition 6.32. 

PROOF. We have the isomorphism AM = A'M in eq. (6.24). The axioms (6.33) are just 
the general coaction axioms [8, (8.7)] interpreted for A'. D 

THEOREM 6.36. Assume that E^{E,f^) and QE^iE^) are free E*-modules for all k (v^hich 
is true for E = H{Fp), BP, MU. KU, or K{n) by Lemma 4.17(a).) Then: 

(a) For any space X, there is a natural coaction 

Px:E*{X) yE*{X)®Q{E): 

that makes E*{Xy an unstable comodule^ which corresponds by Theorem 6.35 to the 
additive module structure given by Theorem 5.12; 

(b) If also E^(E, a) is free, we recover the stable coaction [8, (11.15)] on E*{X)from 
px as in diag. (6.34); 

(c) p is universal: given a discrete E^-module N and an integer fc, any additive natural 
transformation eX:E^{X) -^ E''[X)^N {or eX\E^{Xy ^ E''{Xy%N) that is 
defined for all spaces X is induced from px by a unique homomorphism f: Q{E)^ -^ N 
of E*'modules as 

eX:E^{X) --^ E*{X)^Q{E)^ -^^ E^X)§>N. 

PROOF. We deduce (a) from Theorem 5.12(a) and Theorem 6.35, just as we did stably 
in [8, Theorem 11.14]. In eq. (6.26), we defined the coaction p^ ^̂  corresponding to 
px- In (b), the stabilization Q{a) clearly dualizes to a^: E*{E, 6) —• PE*{Ek)^ which 
we used in eq. (5.7) to define the stabilization cr: 4̂ —• 5 of comonads. 

In (c), the natural transformation 0 is classified by the element u = Otk € 
E*{Kk)^^- Additivity of 6 for the universal example (2.6) states that 

(fil<S)N)u = {p1iSiN)u4- {PI(SIN)U in E*{EkXEk)§iN. 

By [8, Lemma 6.16(a)], u corresponds to a homomorphism f:E^{Kf^) -^ AT of E*-
modules. The above property dualizes to 

fopk. = fopi,-\-fop2,:E,{EkXEk) ÂT, 

which shows that / factors through Q{E)^ as required. D 
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REMARK. Just as stably, (c) allows us to use diags. (6.33) to define Qiip) and Q{e) in 
terms of p. Three applications of the uniqueness in (c) show that Q{ip) is coassociative 
and has Q{€) as a two-sided counit. 

Linear Junctionals. Theorem 6.35 establishes the equivalence between unstable modules 
and comodules. For applications, we need the details. All our formulae stabilize to the 
corresponding formulae of [8, §11] by applying Q{<J), which conveniently has degree 
zero. 

Given an unstable comodule M, we recover the action of the additive operation r:k -^ 
m on M from Lemma 6.8 as 

r: M^ ^ M 0 Q{E)^ > M (S) E* ^ M. (6.37) 

Because (r, - ) has degree m-k, r takes values in Af^. To make this action explicit, 
let us choose x E M^ and write 

PMX = 5^(-l)^"«(^-)^*^s(ca)2.^ ^Ca in M^Q{E)^, (6.38) 

where the sum may be infinite, and of course deg(a:a) = k - deg(ca). (As in [8], we 
insert signs here to keep the next formula simple.) Then 

rx = ^ ( r , Ca) Xa in M, for all r:k -^ m, (6.39) 
a 

where the Ca and Xa depend only on x, not on r. Because M is assumed complete, this 
sum converges if it is infinite. (Recall that Q{E)^ always has the discrete topology.) 

REMARK. It is important for our applications not to require the c^ to form a basis of 
Q{E)^, or even be linearly independent; but if they do form a basis, the Xa are uniquely 
determined by eq. (6.39) as Xa = c*x, where c* denotes the operation dual to Ca-

The fact that pM is an -B*-module homomorphism is expressed by 

r{vx) = Y. (̂ ' imv)ca)xa = 5^(-l)'^^e(^"Hr, Ca VRV) ^a in M, (6.40) 
a a 

for any v £ E^ and all operations r: fc -f /i —• m. 
Because Q{e):Q{E)^ -^ E* corresponds to e in eq. (5.15), which is evaluation on 

Lk, we have immediately 

{ik.-) = Q{e):Q{Et ^ E\ (6.41) 

as is obvious by comparing axiom (6.33)(ii) with eq. (6.37). In other words, in the list 
(6.9), the identity operation ik corresponds to the functional Q{e). 
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The cohomology of a point. Our first test space is the one-point space T. 

PROPOSITION 6.42. In the unstable comodule E*{T) = E*: 

(a) The action of the additive operation r: k -^ m on v £ E^ is given by 

rv = {r,r)Rv) inE\T) = E^\ (6.43) 

(b) The coaction pr', E* -* E* (S) Q{E)l = Q{E)l coincides with the right unit 
7]R: E* -> Q{E)l (see Definition 6.19). 

PROOF. We imitate [8, Proposition 11.22]. The map v:T -^ E^ yields 

rv = (rv, 1) = {v*ru, 1) = {ru^v*^) = (rQ^qkV^l) = {rQ^rjEv), 

by eq. (6.14) and Definition 6.19 of TJR. We compare eqs. (6.38) and (6.39) and rewrite 
this as PTV = 1 (8) TJRV, to give (b). D 

Homology homomorphisms. A class x G E^{X) may be regarded as a map x:X-^ 
E_f^. We need information about the induced homology homomorphism x^:E^{X) —̂  
E.{E,), 

PROPOSITION 6.44. Assume that E^{Ei^) and QE^{Ei^) are free E^-modules for all k. 
Given x G E^{X), suppose that rx is given by eq. (6.39). Then the homomorphism 
Qk^x^: E^{X) —• Q{E)^ induced by the map x:X -^ E_k ^^ gi^^n on z £ Eh{X) by 

gfcX.z = J](-l)'^8(c<.)(deg(x„)+/.)^^^_^^^^^^^^^^^^^^ inQ[E)>l. (6.45) 

a a 

PROOF. For any additive r:k -^ m, we have {rq.qkX^z) — {ru,x,^z) by eq. (6.14). The 
rest of the proof is formally identical to the stable analogue [8, Proposition 11.26]. D 

Conversely, we can recover pxx from x^ when X is well behaved, just as we did 
stably. If E^{X) is free, we have strong duality E*{X) ^ DE^{X) by Theorem 1.18(a), 
and [8, Lemma 6.16(a)] supplies the isomorphism 

£;*(X)0Q(£)J ^ Mod*{E.{X),Q{E)':). (6.46) 

PROPOSITION 6.47. Assume that E^{X), E^{E_k\ ^^ QE^iRk) are free E*-modules 
for all k. Take x G E^{X). Then under the isomorphism (6.46), the element pxx 
corresponds to the homomorphism ĝ  ox*: E^{X) —̂  £*(£^) —̂  Q{E)^. 

PROOF. We apply the isomorphism to eq. (6.38) and compare with eq. (6.45). D 

In particular, it is important to know the homomorphism of £*-modules 

Q(r):Q(£;)J ^ QE,{E,) - ^ QE,(EJ S Q{E)T (6.48) 
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induced by an additive operation r:k —^ m (which by Proposition 2.7(c) is a morphism 
of group objects in Ho). It has degree m-k. The Q{r) provide a convenient faithful rep-
resentation of the additive operations. The translation of diag. (5.11) is the commutative 
square 

M^ ' ^ M ^ 
jpAf |pM (6.49) 

. M(8)Q(r) 

which stabilizes to diag. [8, (11.29)]. 
Just as stably, we easily recover the functional (r, - ) from Q(r) as 

1. Q{r) Q(£) 

(r, - ) : Q{E)t > Q{E)'r ^ E\ (6.50) 

Conversely, we have the additive analogue of [8, Lemma 11.31]. 

LEMMA 6.5L Assume that E^{JEk) ̂ ^ QE^iEk) ctre free E^-modules for all k. If 
r:k -^ m is an additive operation, then the homology homomorphism Q{r): Q{E)^ —> 
QiE)"^ in eq. (6.48) has the properties: 

(a) The diagram 

Q{E)'^ — Q{E)T 

\QW \QM (6.52) 
, l(8)Q(r) * 

QiE):®Q{E)>: " Q{E):®Q{E)T 

commutes; in other words, Q{r) is a morphism of left Q{E)l-comodules; 
(b) Q{r): Q{E)^ —> Q{E)'^ is the unique homomorphism of left E*-modules that 

satisfies eq. (6.50) and is a morphism of left Q{E)l-comodules in the sense of (a); 
(c) Q{r) is given in terms of the functional (r, —) as 

Q{r): Q{E)>: . Q{E)l 0^ Q{E)^ » Q{E)l ®,- E^'^ 

We deduce from (c) that the composite sr:k —* n of the operations r:k —* m and 
s:m -^ n corresponds to the functional 

{sr, - ) : Q{Et . C?(£)f «),• Q{E)) . Q{E)\ ®, E^-' 
(6.53) 

— ^ Q(E)r > E^-\ 
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REMARK. From diags. (6.30) and (6.31)(ii) we observe that for fixed K Qi'ip) makes the 
graded group rih-^ Q^ an additively unstable comodule, if we use the right £'*-module 
action (6.21). Then by (c), the action of r: A: —̂  m is just Q{r), and diag. (6.52) becomes 
a special case of diag. (6.49). 

7. What is an additively unstable algebra? 

In this section, we define an additively unstable algebra by enriching each of the four 
Answers in Section 5 with multiplicative structure. The treatment is closely parallel to 
the stable case [8, §12] and we give only the significant additions. The logical sequence is 
made slightly complicated by the fact that the monoidal structure is most easily described 
in the context of the Second (or Third) Answer, while the comonad structure prefers the 
Fourth Answer. 

In Definition 7.13 we introduce the collapse operation, which detects the connectedness 
of a space. 

We assume throughout this section that £*(E^) and QE^{JEf^) are free E^-modules 
for all k, which is true for our five examples by Lemma 4.17(a). Then by Corollary 2.9, 
PE*{Ei,) is an object of FMod. 

First Answer We have, for any space X, the additively unstable action (5.1) 

o : P E ^ ( E J X E^{X) y E'^{X). 

Given x € E^{X), y € E'^[X), and r € PE*{Ek_^^), we would like to have a Cartan 
formula 

r{xy) = Y.i'-»Ky) i^E'iX), (7.1) 
a 

for suitably chosen operations r^ and r^ (depending on k and m as well as r). For the 
universal example 

X = ]E^x E_^, with X = 6fc X 1, y = 1 X ̂ rn, a:y = (/) = (.fc X 6m, (7.2) 

where (p-.E^x E^ -^ E 
k^rn <icnotes the multiplication map of [8, Theorem 3.25], 

eq. (7.1) reduces to 

rr^Y.'-'-xr: mE'{E,xEJ. 

To ensure that 0*r is expressible in this form, we need to allow infinite sums and use the 
Kunnethhomeomorphismf;*(£;txE^) ^ E^{Ek)§)E*{E^) from Theorem 1.18(c). 
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We need to know more, that r'^^r'l^ G PE*{E_^). We have enough duality isomor-
phisms to dualize the multiplication in Lemma 4.9 and define a comultiplication xl)p by 
the commutative diagram 

PE*{Ef,^J . PE^iE^)^PE*{EJ 

E*{E,^J . E*{E,xEJ ^ ^ ^ E*{E,)®E*{EJ 

(7.3) 

Then we write i/;pr = Y^^ r^ 0 r^, as required. 
We must not forget the unit element \x G E*(X). We define the counit 

spiPE'^iEo) -^ E* as the restriction of r]''\E*{EQ) -^ £'*(T) = £"*, so that 
r\x = {epr)lx in E*{X). 

It is now clear what an additively unstable algebra should be. Given an £'*-algebra 
My we need actions PE^{JEf^) x M*^ —• M^ that compose correcfly, are biadditive 
and E*-bilinear in the sense of diag. (5.2), satisfy the Cartan formula (7.1), and respect 
the unit in the sense that TIM = {SPT)IM' In the classical case E = i?(Fp), there is a 
good Cartan formula and this approach is useful. For more general E, such as MU and 
BP, this structure seems even more impractical than it was stably. 

Second Answer. We have the coaction (6.26), 

Px:E'^{X) >E\X)^iQ{E)l 

In contrast to the Cartan formula of the First Answer, and just as stably in [8], all we 
have to do is observe that as A; varies, px is a homomorphism of jB*-algebras, where we 
use the bigraded algebra structure on Ql = Q{E)l from Proposition 6.15. 

Explicitly, if for particular x,y G E*{X) we have, as in eq. (6.39), 

^^ = X^(^ Ca) ^OL\ ry = Y^{r, dp) yp\ for all r, 

the Cartan formula (7.1) becomes (cf. the stable analogue [8, (12.5)]) 

r(xi/) = 53^(~l)^s(^^)*^e(xa)(^^Cad^)2,^^^ \nE*{X)\fora\\r. (7.4) 
Q (3 

LEMMA 7.5. Assume that E^{Ek) and QE^{E_k) are free E^-modules for all k. Then 
the homomorphisms Q{ip) and Q(e) in (6.27) and (6.28) are multiplicative and respect 
the unit element. 
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We defer the proofs until after Theorem 7.9, as the coalgebra structure on Q{E)l is 
not easily handled directly. The Lemma makes the following definition reasonable. 

DEFINITION 7.6. We call an unstable comodule M in the sense of Definition 6.32 an 
unstable (E-cohomology) comodule algebra if M is a filtered algebra (i.e. object of 
FAIg) and its coaction p^'-M -^ M® Q{E)l is a homomorphism of JB*-algebras. 

In detail, M is a complete Hausdorff commutative filtered £^*-algebra, equipped with 
a structure map pM that is a continuous homomorphism of jB*-algebras and makes 
diags. (6.33) commute. 

THEOREM 7.7. Assume that Ei^{E_f^) and QE^{E,i^) are free E*-modules for all k (which 
is true for E = if (Fp), BP, Mf7, KU. or K{n) by Lemma 4.17(a)). Then: 

(a) For any space X, px makes E*{Xy an unstable comodule algebra in the sense 
of Definition 7.6; 

(b) p is universal: given a (possibly bigraded) discrete E^-algebra B, any natural 
transformation of rings eX:E*{X) -^ E*{X)§>B (or 0X:E*{Xy -^ E*{Xy§^B) 
that is defined for all spaces X is induced from px by a unique homomorphism 
f: Q{E)l -> B of left E^-algebras as 

eX:E\X) - ^ E\X)®Q{Ey, - ^ E*{X)%B, 

PROOF. This will follow from Theorem 7.9 in the same way that the stable result 
Theorem 12.8 followed from Theorem 12.10 in [8]. D 

Third Answer We use the multiplication Q{(t>Y Q^^QT -^ Qj"̂ "" from Proposition 6.15 
to make A' a symmetric monoidal functor {A^^CA'^ZA') in FMod, with 

CA'{M,Ny {A'M)^§){A'N)'^ ^ {A\M^N))'"^^ 

given by 

CA'(M,iV):MgQj§iV§Q::^^M0iVg(gj0Qr) 

M(8)iV0(5: k-\-Tn 
(7.8) 

and ZA' = m-E^ -^ E* ®Q^ = Q^. Thus when M is an J5*-algebra, so is A'M. 
We see that A', equipped with natural transformations %j)'\A' —> A'A' and e':A' -+ / 
constructed from Q{'4)) and Q{e), becomes a symmetric monoidal comonad in FMod 
and therefore a comonad in FAIg. 

Fourth Answer For suitable E, we can make A a comonad in FAIg. 

THEOREM 7.9. Assume thatE^{Ek) andQE^{Ef^) are free E*-modules for all k (which 
is true for E = H{¥p), BP, MU, KU, or K{n) by Lemma 4.17(a)). Then: 
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(a) We can enrich A to make it a symmetric monoidal comonad in FMod and therefore 
a comonad in FAIg; 

(b) If also E^{E,o) is free, the stabilization a: A ^^ S is a monoidal natural trans-
formation in FMod. 

The relevant definition is now clear. 

DEFINITION 7.10. An additively unstable (E-cohomology) algebra is an i4-coalgebra in 
FAIg, i.e. a complete Hausdorff commutative filtered E*-algebra M equipped with a 
morphism pM' M —• AM in FAIg that satisfies the coactioh axioms [8, (8.7)]. 

If the closed ideal L C M is invariant, the quotient algebra M/L inherits a well-
defined i4-coalgebra structure. 

THEOREM 7.11. Assume that E^{E_k) andQE^{E_k) are free E*-modules for all k(v/hich 
is true for E = H{Fp), BP, MU, KU, or K{n) by Lemma 4.17(a)). Then given a 
complete Hausdorff commutative filtered E*-algebra M (i.e. object of FAIg), an unstable 
comodule algebra structure on M in the sense of Definition 7.6 is equivalent to an 
additively unstable algebra structure on M in the sense of Definition 7.10. 

THEOREM 7.12. Assume that E^{E_k) andQE^{E_k) are free E*'modules for all k (which 
is true for E = H[¥p), BP, MU, KU, or K{n) by Lemma 4.17(a)). Then: 

(a) For any space X, the coaction px'^E*{X) —• A{E''{Xy) in diag. (5.6) is a 
homomorphism of E^-algebras and makes E*{Xy an additively unstable algebra; 

(b) p is universal: given a graded monoid object n ^^ C^ in FMod^^, so that (by 
[8, Lemma 7.9]) n K^ G ^ ( X ) = FModiC^.E^iXy) is a graded ring, any natural 
transformation of graded rings 9X: E*{X) -^ G*{X) (or 0X: E*(Xy -^ G*(X)), that 
is defined for all spaces X, is induced from px by a unique morphism in FMod^^ of 
graded monoid objects with components f^'.C^ —• PE*(E,n) ^ri FMod, as 

PX Hoin(/",l) 

eX:E^(X) > FMod(PE*(EJ,E*(Xy) > FMod(C'',E^(Xy). 

PROOF OF THEOREMS 7.9 AND 7.12. The main proof proceeds by the same five steps 
as stably for [8, Theorems 12.10, 12.13], except based on Theorem 5.8 instead of [8, 
Theorem 10.12]. We give only the major changes. We recall the universal class tk € 
E^(Ek), element idjk G A^PE*(Ek), and pk from the proof of Theorem 5.8. 

Step J. We construct the symmetric monoidal functor 

(A, CA^ZAY {FMod, 0 , E*) y (Mod, (8), E*), 

Then A will take monoid objects in FMod (i.e. objects of FAIg) to monoid objects in 
Mod (i.e. E*-algebras). 

By Lemma 4.16(a), we can construct the diagram (7.3) that defines t/̂ p and verify its 
properties, which are dual to those of Q(<l)) in Propositions 6.15 and 6.20. The counit 
ep:PJ5*(£o) -^ E* is the restriction of r/*:jE;*(£o) -^ ^*(^) = ^*- These make 
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n y-^ PE*{E_^) an J5*-algebra object in FMod*"^^, to which we apply [8, Lemma 7.14]. 
The necessary compatibility axiom [8, (7.13)] is the dual of diag. (6.22). As stably, we 
use [8, (7.15)] to identify ZA with PT:E*{T) -> AJ5*(r). 

If E^{E,o) is also free, we can dualize Proposition 6.15(b) to see that the desta-
bilizations a!l^:E*{E,o) -^ PE*{E_^) form a morphism of graded monoid objects in 
{FMod*"^, § , E*). Then [8, Lemma 7.9(b)] shows that a: A-^ Sis monoidal. 

Step 2. The proof that p is monoidal is similar to the stable case. Here, the universal 
example is X = £jb and F = £ ^ , with the element tk^ im- The two elements of 
A^'^'^E*{E^xE^) to be compared are 

PE^E^^J - ^ PE^{E,)^PE%EJ C E^{E,)^E%EJ 

^E%E,xEJ 

and 

PE*{E,^J C E'{E,^^) - ^ E*{E, X EJ. 

These agree by diag. (7.3). The second condition needed is just ZA = PT-

PE^E^^J —^̂ ^̂ ^ PE*{E^)%PE^{EJ 

Ppfc(S>Ppm 

I PPk^m APE*{Ek)§>APE^{EJ 

UA 

Axbp ^ 

APE*{E,^J ^ AiPE'iE,)®PE'iEj) 

Figure 1. Additive operations and comultiplication. 

Step 3. The analogue of diag. [8, (12.17)] for this situation is fig. 1. To establish this, 
we proceed as in [8, Theorem 12.10]. Because p is monoidal and natural, we have the 
commutative diagram fig. 2 (cf. diag. [8, (12.16)]) which includes an isomorphism from 
Theorem 1.18(c). Figure 1 is obtained from this by restriction, using the coaction (5.13) 
and diag. (7.3). 

Step 4, The monoidality of ip follows formally from that of p, just as stably (cf. 
diags. [8, (12.18)]). The universal example is M = PE*{E^) and N = PE^'iEJ, 
with element idm 0 idn- We use fig. 1 instead of diag. [8, (12.17)]. 

Step 5. The proof that e is monoidal is formally the same as stably, except for the 
insertion of indices. 
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E*{E,^m) 

^ Pk®Pm ^ 

E*{E,)®E'iEJ " AE'{E,)®AE*iEJ 

f 

A{E*{E,)§>E*{EJ) 

\AX 
f 

E'iE.xEJ . AE'iE.xEj 
i 1 

Pk+m 
-* AE*{E,^J 

Figure 2. The monoidality of p. 

In Theorem 7.12(b), C has comultiplications ipc:C^'^'^ -^ C^^C^ and a counit 
ec'^C^ -> -E* which make n ^ FModiC^.E^iXy) a graded ring. For each n, The-
orem 5.12(c) provides a morphism f^:C^ —> PE*{E_^) in F/Worf. For the universal 
example (7.2), the multiplicativity {9X){xy) — {{6X)x){(9X)y) reduces to the com-
mutativity of the outside of the diagram in fig. 3. The lower rectangle is diag. (7.3). 
It follows that the upper square commutes, so that / preserves the comultiplication. 
Similarly, (^r)l = 1 yields fig. 4, which shows that / preserves the counit. Q 

fk+rn 

V'C 

^P 
PE*{E^^^) ^ PE\Ek)®PE^{Ej 

E'{E^+m) " E'iEkXEJ 

Figure 3. Comparison of comultiplications. 

PROOF OF THEOREM 7.11. We use the isomorphism (6.7) to translate the monoidal struc-
ture of A to A'. From CA» which is given by [8, (7.11)], we obtain eq. (7.8). We have 
identified both ZA and ZA' with the coaction pr. D 
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°̂ PE*{E^) - ^ E*{Eo) 

Figure 4. Comparison of counits. 

PROOF OF LEMMA 7.5. Theorem 7.9(a) shows in particular that t/;: A-^ AA and e.A-^ I 
are monoidal natural transformations. By the isomorphism (6.24), so are ip^:A' —̂  A'A' 
and E^:A' -> / . Evaluation of the relevant diagrams involving (foTM = N = E* show 
precisely that Q(V') and Q{e) are multiplicative. Since ZA' = VR- ^^ -^ E*^Q{E)^ = 
Q{E)^, the two diagrams involving z show that ^1 = 1 0 1 and e\ = 1, simply because 
7]R\ is the unit element of Q{E)l. D 

PROOF OF THEOREM 7.7. Part (a) follows from Theorem 7.12(a). In (b), Theorem 6.36(c) 
provides for each n the £*-module homomorphism f^:Q{E)^ -^ B that induces 
eXiE'^iX) -* E*{X)§)B. As in the proof of [8, Theorem 12.8(b)], the resulting 
/ : Q{E)l -* B is an i5*-algebra homomorphism. D 

Connectedness, There is a particular operation that is useful for expressing the concept 
of connectedness in a cohomology algebra. It sees only the path components of a space. 

DEFINITION 7.13. For each n, we define the collapse operation ACnin —• n as the map 
K-ri'Kn "^ ^n (̂ ^̂ ^ defined up to homotopy) that sends each path component of £ ^ to 
one point in that path component. 

It is clearly additive, multiplicative {n{xy) = (/cx)(/cy)), unital (/CQIX = lx)» and 
idempotent. It commutes with all operations in the sense that /Cm o ^ = ^ ° '̂ fc- A: —>̂  m for 
all r: A; —• m; in particular, K is J5*-linear. It is zero in any degree n for which E^ = 0. 
In spite of being defined in all degrees, it is not at all stable, as Qhin = 0. All these 
properties carry over to any additively unstable algebra M; in particular, we always have 
the jE*-module decomposition M = Im/c0 Ker/c, with ( ^ * ) 1 M C Im/c. 

For a connected space X with basepoint o, it is clear that the augmentation ideal 
E*{X,o) C E*{X) is precisely Ker«:. In general, Ker«; = F^E*{X) for any space X, 
the first stage of the skeleton filtration. This suggests the following definition. 

DEFINITION 7.14. We call the additively unstable algebra M connected if Im/c = 
{E*)\M' We call M spacelike if it is a product (in FAIg) of connected algebras. 

In particular, for a space X, E*{Xy is always spacelike, and is connected if and only 
if X is connected. 
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8. What is an unstable object? 

In this section, we interpret what it means to have an algebra over all the unstable op-
erations on E-cohomology. Tensor products rapidly become unworkable for nonadditive 
operations, with the effect that only the First and Fourth Answers from Section 5 survive 
intact. 

We generally assume that E^{E_f^) is a free E^-modulefor all k. Then Theorem 1.18 
provides all the Kiinneth and duality isomorphisms and homeomorphisms we need. Of 
course, when we compare with the additive or stable theory, we impose the appropriate 
extra conditions. 

As in (2.1), we identify: 

(i) The cohomology operation r: E^{-~) -^ E^{-); 
(ii) The class r = r{Lk) G E'^{E^)\ 

(iii) The representing map r:E_i^-^ E_^\ 

and write any of these as r: A: ~* m. (We shall retain the parentheses in r{x) whenever 
r is nonadditive.) 

We first deal with the constant operations r: k —^ m, those of the form r{x) = vlx^ 
E'^iX) for all x € E^{X) and all spaces X, where v E E^. 

LEMMA 8.1. Any operation r:k—^m decomposes uniquely as the sum of a based oper-
ation s:k -^ m and a constant operation. 

PROOF. We set v = r(0) G E^{T) = E"^ and define the operation s by s{x) = 
r{x) - vlx in E*{X), to make s(0) = 0. D 

First Answer. Since E^{—) is represented in Ho by £^, we have as in (5.1) the actions 

o: E^iEj,) X E'^iX) > JE;^(X), (8.2) 

except that we cannot write them using tensor products. Instead, we need a Cartan formula 
for r(x-l-y) as well as for r{xy). 

To find r{x-\'y), we consider the abelian group object E^ of Ho provided by [8, 
Corollary 7.8], which is equipped with the addition map fJ-k'-Ek ^ E.k ^ E-k ^^^ ^^^^ 
map ujk'' T —> E^i^. By Lemma 8.1, we may restrict attention to based operations r. The 
group axioms on E^ lead (as in any Hopf algebra) to a formula of the form 

where the r'^ and r'^ are also based. The only novelty is that the sum may be infinite. 
This translates into the desired Cartan formula 

r(x + 2/) = r(x)-f5^r;,(a:)r:i(2/)-fr(2/) \viE*{X) (8.3) 
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for any x^y e E^{X), 
There is a similar Cartan formula for multiplication, given x £ E^{X) and y G 

£;^(X), oftheform 

r{xy) = Y.r'^{x)r';^{y) in E^{X), (8.4) 

for certain (other) based operations r^ and r^ (which depend on A: and m). 
This suggests that an unstable algebra should consist of an £;*-algebra M equipped 

with operations r that compose correctly and satisfy both Cartan formulae. This requires 
knowing the operations r^ and r^ in eqs. (8.3) and (8.4) for all r. In Section 10, we 
shall in effect expand both Cartan formulae explicitly. 

Second Answer. We convert the First Answer to adjoint form, corresponding to the Fourth 
Answer in Section 5. (We skip the Second and Third Answers.) Everything becomes far 
cleaner, more evidence that this is the natural answer. 

Any element x E E^{X), regarded as a map x:X —• E_,^, induces the continuous 
homomorphism x^iE'^iEf,) -^ E*{X) of JS -̂algebras. By Theorem 1.18(a), E*{Ef,) is 
Hausdorff and so in FAIg; we may therefore define, for any object M of FAIg, 

U^M = FAIg{E*{Ek),M), (8.5) 

the set of all continuous E*-algebra homomorphisms E*{E_^) -^ M. This encodes the 
set of all possible actions on a typical element of degree k. We convert the action (8.2) 
to what we continue to call a coaction, 

Px:E\X) > U\E^{Xy) = FAIg{E^E,),E^{Xy), (8.6) 

by defining pxx = x*, completing E*{X) if necessary to get it into FAIg, We assemble 
the sets U^M to form the graded set UM, which has the component {UM)^ = U^M 
in degree fc, and obtain px: E*{X) -> U{E*{Xy), 

We compare UM with the stable and additive versions. Restriction to PE*{E^k) 
induces the natural transformation 

(rMf'.U^M = FAIg{E*{Ef,),M) > FMod{PE*{Ek),M) = A^M. (8.7) 

These form TM: UM —• AM. Composition with aM: AM —• SM (see eq. (5.7)) yields 

U''M=FAIg{E*{Ef,),M) y FMod''{E^E,o),M) = ( 5 M ) ^ 

which is induced by the destabilization a^: E*{E,o) -^ PE*{Kk) ^ ^*(£fc)' 
Apparently only a morphism of graded sets, px has far more structure, thanks to the 

rich structure on the spaces E^. 

THEOREM 8.8. Assume that E^{E_k) ^^ a free E*-module for all k (which is true for 
E = H{¥p), BP, MU, KU, or K{n) by Lemma 4.17(a)). Then: 
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(a) We can make the functor I/, defined in eq, (8.5), a comonad in the category FAIg 
of filtered E*-algebras; 

(b) If QEi^{E_j^) is a free E^-modulefor all k, r:U —^ A (see (8.7)) is a morphism of 
comonads in FAIg; 

(c) If E^{E, o) is a free E^-module, GOT'.U -^ S (see (8.7) and (5.7)) is a morphism 
of comonads in FAIg. 

Our main definition is now clear. 

DEFINmON 8.9. An unstable (E-cohomology) algebra is just a [/-coalgebra in FAIg, 
i.e. a complete Hausdorff filtered £?*-algebra M equipped with a continuous morphism 
PM'-M -^ UM of ^*-algebras that satisfies the coaction axioms [8, (8.7)]. We then 
define the action of r G E*{E_f^) on x € M^ by r{x) = PM{^)T € M. 

A closed ideal J C M is called {unstably) invariant if the quotient algebra M/J 
inherits a well-defined unstable algebra structure from M. 

It follows that the Cartan formulae (8.3) and (8.4) hold in M. The constant operations 
behave correctiy because PM{^) is required to be a morphism of £^*-algebras. We need 
to be able to recognize invariant ideals. 

LEMMA 8.10. Given an unstable algebra M, a closed ideal J C M is unstably invariant 
if and only ifr{y) € J for ally ^ J and all based operations r. 

PROOF. To make PM/J well defined, we need r{x'\-y) = r(x) mod J, for all x € M 
and y £ J. This is trivial for constant operations r, and so by Lemma 8.1, we need only 
check for based r. The stated condition is obviously necessary, by taking a; = 0. It is 
also sufficient, by eq. (8.3). D 

THEOREM 8.11. Assume that E^{E^f^) is a free E*-module for all k (which is true for 
E = H{¥p), BP, MU, KU, or K{n) by Lemma 4.17(a)). nen: 

(a) For any space X, the coaction (S.6) factors through E*{Xy to make E*{Xy an 
unstable E-cohomology algebra; 

(b) We recover the additively unstable coaction (5.6) from px as 

E*{x) -^ u{E\xy) - ^ A{E%xy)\ 

(c) If E*{E,o) is Hausdorff, we recover the stable coaction [8, (\0.10)] from px as 

E*{x) -^ u{E\xy) - ^ A{E*{xy) - ^ s{E%xy)\ 

(d) p is universal: given an object B of FAIg and an integer k, any natural transforma-
tion of sets 6 X:E^[X) -^ FAIg{B,E*[Xy) {or0X:E^{Xy -^ FAIg{B,E*{Xy), that 
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is defined for all spaces X, is induced from px by a unique morphism f:B -^ E*{E_]^) 
in FAIg as 

eX:E^{X) > U{E'{Xy) = FAIg{E*{Ek),E'{Xy) 

Mor(/,l) 
^FAIg{B,E\Xr) 

PROOF OF THEOREMS 8.8 AND 8.11. The proof breaks up into the same seven steps 
as additively (and stably), in Theorems 5.8 and 5.12. However, it is far simpler than 
Theorems 7.9 and 7.12 on algebras, because we are able to treat the multiplicative and 
module structures together. At each step, we also discuss r and r o cr, assuming the extra 
conditions hold. 

Corollary 7.8 of [8] provides the jE *̂-algebra object n »-> £ „ in Ho. We again write 
Pk for Px when X = E^^. 

Step 1. We endow the functor U with an jE'*-algebra structure. For each object M of 
FAIg, we observe that according to [8, Lemma 6.9], the functor 

E*{-y Mor(-,M) 
FAIg{E*{-y,M):Ho ^ F>4/g°P ^ Set 

preserves enough products that by [8, Lemmas 7.6(a), 7.7(a)] it takes the £^*-algebra 
object n »-> E_^ to the -B*-algebra object UM in Set; i.e. UM is an £?*-algebra. It is 
clear that UM is functorial in M. We shall filter it in Step 3. 

To see that TM is a homomorphism of £^*-modules, we apply [8, Lemma 7.6(c)] to 
the £'*-module object n •--• £ ^ in Gp{Ho), using the natural transformation 

FAIg{E*{-)\M) ^ FMod{PE''{-)\M) 

defined by restriction. To see that r is monoidal, we apply [8, Lemma 7.9(b)]. The 
monoidal structure of U is simply the multiplicative part of the algebra structure, and 
diag. (7.3) shows that the inclusions PE*{E,^) C £?*(£„) form a morphism of graded 
monoid objects in FMod^^. The units are correct by definition. For r o a , we bypass 
PE*{E_^) and use the duals of diags. (6.16) and (6.17) instead. 

Step 2. In order to define px (in (8.6)) as a morphism of £*-algebras, we consider the 
Set-valued natural transformation 

Ho(X,-) — FAIg{E^{-)\E\Xr) 

induced by JS*(-)^: HO '̂P -> FAIg. We apply [8, Lemma 7.6(c)] to the £;*-algebra object 
^ »-̂  £n» ô obtain Theorem 8.11(a). Then Theorem 8.11(b) is clear by comparing with 
the additive coaction (5.6), and for Theorem 8.11(c), we combine with Theorem 5.12(b). 

Step 3. For U to take values in FAIg, we must filter UM. If M is filtered by the ideals 
F^M, we filter UM by the ideals 

F^(C/M) = Ker UM \F''MJ\ 



Section 8 Unstable cohomology operations 735 

Just as stably, this filtration is complete Hausdorff and makes px continuous by naturality. 
This allows us to factor px through E*{Xy. Similarly, TM and aM orM are also 
filtered and therefore continuous. 

Step 4. We convert the object E*[Xy of FAIg to the corepresented functor Fx = 
FAIg{E*{Xy, - ) : FAIg -^ Set. For example, when X = Ef,, Fx = U^. As suggested 
by [8, (8.16)], we also convert the coaction px to the natural transformation px'Fx —> 
FxU'.FAIg - • Set. Given M in FAIg, pxM.FxM -> FxUM is thus defined on 
/ G FxM = FAIg{E*{Xy,M) as 

{pxM)f = Ufopx:E*{Xy . U{E*{Xy) > UM, (8.12) 

an element of FxUM. 
Step 5. We define the natural transformation 

I/JM-.U^M = FAIg{E*{Ek),M) ^ FAIg{E*{Ek),UM) = U^UM (8.13) 

by taking X^E^in eq. (8.12). On the element / : E*{E^) -^ M of U^M, it is 

Pfc Uf 

{il)M)f'.E*{E^) ^ UE'iEf,) y UM. 

(In terms of elements, this is r »-> [5 »-> f{r*s) = f{sr)].) If we substitute the £?*-algebra 
object n H-> £ ^ for X in eq. (8.12), [8, Lemma 7.6(c)] shows that tpM takes values in 
Alg. Naturality in M shows that ipM is filtered and so takes values in FAIg as required. 

Step 6. The other required natural transformation, 

eM: U^M = FAIg{E*{Ef,), M) ^ M, 

is defined simply as evaluation ovuk ^ E*{E,k)- ^^ before, naturality in M shows that 
eM is filtered, but we have to calculate that e is an -E*-algebra homomorphism. 

Take any binary operation s ( - , - ) in J5*-algebras (addition, multiplication, or any 
other), represented in Ho by the map s\E_i^ x E^^ —• E^^, which therefore induces 
s*Lq = 5(PJ'^A:JP2^). We need to show that the square 

U^M X C/^M —^— f/^M 

I € X e 
\-

M* X M'^ ^ M^ 

commutes. We evaluate on / € U^M and g E U^M. Because E*{E_k ^E-m) is by [8, 
Lemma 6.9] the coproduct in FAIg, there is a unique h:E*{E_j^xE_^) -^ M in FAIg 
such that /lop* = / and hop'^= g. Then by definition of the algebra structure of UM, 
^(/jp) = hos*:E*{E_^) -^ M. Since h is an algebra homomorphism, 

^s{f,g) = /is*tn = hs{p\ik,P2i^m) = ^(/ipt^fc,/iPi^m) = s{fLk,gim) = s{ef,eg). 
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For unary and O-ary operations, we may adapt the above proof, or simply throw away 
any unwanted arguments. (For example, given v G £?*, we could define the constant 
binary operation s(x, y) = v\ in any £;*-algebra, to deduce that ev = v.) 

Step 7. The proof that £J*(X)Ms a [/-coalgebra and that [/ is a comonad is formally 
identical to the stable case, except that we need versions of [8, Lemmas 8.20, 8.22] for 
graded objects. 

We use [8, Lemma 8.24] to show that T\U —• A is a natural transformation of 
comonads. We take /? as n »-• E*{E_^), R' asn^ PE*{E_^), lî  = 1^ as n »-> tn, and 
u\ PE*{E,j^) C E''{E_^) as the inclusion. The first hypothesis on u is the commutativity 
of the diagram 

PE*{E^) ^ >- E^E,) 

\pk 
y 

\Pp^ FAIg{E^{E,),E*{E,)) 

FMod{PE*{EklPE\E^)) - ^ FMod{PE*{Ef,),E%E,)) 

which is obvious by construction, as r € PE*{E,,^) yields r*\PE*{E_i^). 
The proof of Theorem 8.11(d) is formally the same as stably. Since E^{-) is repre-

sented by Lk G E^iEk). 6 is classified by / = (fl^J^it e FAIg{B, E^'iEf,)). D 

9. Unstable, additive, and stable objects 

In previous sections and [8], we constructed five different kinds of object: stable mod-
ules and algebras, additively unstable modules and algebras, and unstable algebras. In 
this section we compare them all. Unstable modules are conspicuous by their absence; 
Theorem 9.4 will show that they cannot be defined compatibly with our other objects. 

Each kind of object is defined by a comonad. Theorems 8.8(b) and 7.9(b) provide 
natural transformations 

U-^A-^S in FAIg (9.1) 

between the comonads that define unstable, additively unstable, and stable algebras. 
Theorem 5.8(b) provides the natural transformation 

A ^ S in FMod (9.2) 

between the comonads that define additively unstable and stable modules (where we 
temporarily rename the module versions of A and 5 to A and 5). They are related to 
the algebra versions by the forgetful functor V: FAIg —> FMod, so that VA = AV and 
VS = SV. 
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unstable r '"ii^'^^J a stable 
algebras — J^^JJ^ — algebras 

IIS^ -1 «̂ 1̂̂  modules modules 

Figure 5. Five kinds of object. 

We have the category, e.g., £/-coalgebras, of each kind of object. We consider the 
diagram of categories and functors in fig. 5. For example, a stable algebra B with 
coaction PB: J3 ~> SB in FAIg yields the stable module VB with coaction Vps'- VB —> 
VSB = SVB in FMod, 

THEOREM 9.3. Assume that E^[Kk)^ QE^{Kk\ ^^ E^{E,o) are free E^-modules for 
all k (which is true for E = if (Fp), BP, MU, KU, or K{n) by Lemma 4.17(a) and 
[8, Lemma 9.21]). Then we have the diagram fig. 5 of categories and functors. 

For any space X, E*{Xy is an object in each of the five categories, related by these 
functors. 

PROOF. The last assertion combines Theorems 5.12, 7.12, and 8.11 with Theorems 10.16 
and 12.13 of [8]. D 

There is a glaring gap: we have not defined unstable modules. We now show that this 
gap cannot be filled, for rather silly reasons. In fact, the three most natural definitions are 
for stable modules, additively unstable modules, and unstable algebras. We can enrich 
the two kinds of module with multiplicative structure, but it is not possible to remove the 
multiplicative structure from the definition of unstable algebra. This is already strongly 
suggested by the appearance of multiplication in the Cartan formula (8.3) for r{x-\-y). 

We ignore most of the structure and the topology, fix k, and restrict attention to the 
two functors U^:FAIg ~* Ab and A^.FMod —> Ab and the natural transformation 

THEOREM 9.4. Even in the classical case E = H{Fp)^unstable modules do not exist in 
the sense that we cannot insert a suitable comonad U into diag. (9.2). Specifically, for 
fixed k > 0 there do not exist: 

k 

(i) a functor U : FMod -> Ab; 

(ii) a natural isomorphism U V = U'^: FAIg —̂  Ab; 

(iii) a natural transformation T^:U —^A^ of functors FMod —̂  Ab; 
such that on FAIg, r^V:U V -^ A^ agrees with r^:U^ -^ A^. 



738 J.M. Boardman et al. Chapter 15 

PROOF. We assume that U and r*^ exist as stated and derive a contradiction. Given 
any (filtered) graded Fp-module M, we construct the Fp-algebra M"̂  = Fp 0 M with 
the unit element 1 G Fp and xy = 0 for all x, y E M. Then M is a retract in FMod of 
VM"^ and we can compute r^M from the commutative diagram 

FAIg{Ak.M^) 

. I-
U''M " U''VM+ " U''M+ 

A''M " 1 V M + • A''M+ 

I - 1= 
FMod{PAk, M) FMod{PAk, M+) 

where Ak = H*{Iik)' Because M"*" has no decomposables, every homomorphism 
PAk -* M in the image of r^M kills the decomposable elements of PAk (of which 
there are many). 

But for a general algebra J5, r^B: U^B —• A^B does not have this property, e.g., 
{r'^AkYidk £ A^Ak is the inclusion PAk C A - Taking M = VB shows that r^VB 
does not agree with r^B. D 

Objects in ordinary cohomology. Theorem 9.4 demands an immediate explanation of our 
terminology even in the case of ordinary cohomology. We give details for £J = i f (F2); 
the case E = H(¥p) for odd p is similar, with the usual changes. 

The Steenrod algebra A = E*{E,o) is exactly as expected: it is the F2-algebra 
generated by the Steenrod squares Sq* for z > 0, subject to the standard Adem relations. 
It is useful to write Sq^ = L. We note that for E = H{F2): 

(i) al makes PE*{Ef,) a quotient of E*{E, o); 
(ii) £?*(E jt) is a primitively generated Hopf algebra. 

Below, M is to be an object of FMod (or FAlg)^ i.e. a complete Hausdorff filtered 
graded F2-module (or commutative F2-algebra). Topological conditions apply (which we 
ignore for now). We list the five kinds of object we have defined, under our names for 
them: 

(i) A stable module M is an A-modwlt. 
(ii) A stable algebra M is both an F2-algebra and an >l-module that satisfies the 

Cartan formula 

Sq^ {xy) = ^ ( Sq* x) (Sq^"* y) for fc > 0. 
1=0 

It follows by induction that Sq^ 1M = 0 for all A: > 0. 
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(iii) An additively unstable module M is an ^-module that satisfies the extra condition 

Sq* X = 0 for all x G M and all i > deg(x). (9.5) 

Since Sq^ x = x, it follows that M"* = 0 for all n < 0. 
(iv) An additively unstable algebra is a stable algebra that satisfies (9.5). 
(v) An unstable algebra M is a stable algebra that satisfies (9.5) as well as the extra 

condition 

Sq*̂  X = x^ for X G M and k = deg(x). 

The objects normally known as unstable modules appear here as additively unstable 
modules (although the word "additively" could well be omitted, there being no danger 
of confusion with sometiiing that does not exist). 

However, we do have two kinds of unstable algebra. We emphasize that in (iv), the 
squaring operation M^ —• M^^ given by x »-> x^ (which looks additive but from our 
point of view is not, because it is defined only when M is an algebra) is unrelated to Sq*̂ . 

We have equivalent comodule descriptions in terms of E„{E,o) = ¥2[^u^2^^3,-• •] 
and the corresponding bigraded algebra Q{E)l = F2 [̂ 0, Ci»^2, • • •]» which has polynomial 
generators î € Q{E)2i (as we shall see in Theorem 16.2): 

(i) A stable comodule M has a coaction 

PM'.M ^M§£ . (£ ; ,o ) = M § F 2 [ e i , 6 , 6 , - - . ] 

that satisfies the usual axioms [8, (8.7)]. Then Sq* is dual to f̂. 
(ii) A stable comodule algebra M is both a stable comodule and a commutative 

F2-algebra, in such a way that pM is an algebra homomorphism. 
(iii) An unstable comodule M has coactions 

PM'M^ ^M^§,Q(£;)f c M § F 2 [ ^ o , e i , 6 , . . . ] 

that satisfy the coaction axioms (6.33). The unstable operation Sq*: fc —> fc -j- i is 
now dual to ^0*^} for i ^ fc, or is zero if z > A;, 

(iv) An unstable comodule algebra M is an unstable comodule that is also a commu-
tative F2-algebra, in such a way that pM is an algebra homomorphism. 

The special features of if (F2) allow us to handle unstable algebras too: 

(v) For any x G M*', pM^ contains the term x^ (8) f̂. 

REMARK. There is one candidate for an unstable module, but it does not work. One 
could try defining G^M — FMod{E*{E,^),M) for any object M of FMod, witii 
px''E^{X) -^ G^E''{X) defined as usual, by pxx = x*. We would like px to be 
at least additive, but the standard additive structure on FMod does not give this. 

Indeed, it is easy to see that in general no abelian group structure on G^M makes 
Px additive (not even for E = i/(Fp)). By [8, Lemma 7.7(d)], such a structure would 
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have to be induced by some morphism 0:£^*(£;t) -> E*{E,^) © E*{Rf^) in FMod. 
Take any r £ E*{E_j^) and write ^r = {r',r"). Then additivity of px translates into 
r{xi-y) = r'x + r"y for all x^y £ E^{X), which is absurd unless r happens to be 
additive. 

In fact, these objects appear to be particularly devoid of interest. In the case E = 
H{¥2)^ for example, they are modules equipped not only with Steenrod squares Sq* that 
behave as expected, but also operations such as x »-̂  (Sq̂  2:)(Sq^ x), without having cup 
products. 

10. Enriched Hopf rings 

In Definition 8.9 we condensed all the structure of an unstable algebra down to the single 
word U'Coalgebra. In this section, we unpack the information again to give a complete 
description of an unstable algebra in the language of Hopf rings, enriched with certain 
additional structure. This description is summarized in Theorem 10.47, which may be 
regarded as the unstable analogue of Theorem 11.14 of [8] and Theorem 6.36. Indeed, 
we find a whole new paradigm for handling unstable operations, making computations 
with them reasonably practical and efficient. It serves as the true successor to the Second 
Answer of Section 5 and [8, §10]. 

We assume in this section that E^{E,j^) is a free E^-module for all fc, which is true 
for our five examples by Lemma 4.17(a). Thus all the results of Section 8 are available, 
and by [8, Lemma 6.16(c)], the topological dual FMod*{E*{Ef,),E*) of E^'iE,,) is 
EMkY 

We shall consistendy identify (with some abuse of notation): 

(i) the cohomology operation r:E^{-) -^ E^{-)\ 
(ii) the cohomology class r{Lk) € E^{E,i^), which we often write simply 

as r € Er{Ej,)\ (10.1) 
(iii) the representing map of spaces r\E_j^ -^ Km'^ 
(iv) the E*-linear functional {r,-)\E^{E_k)-^E* of degree m. 

REMARK. In some situations, these identifications can obscure the correct signs in for-
mulae. Considered as a cohomology class or functional, r has degree m, while its degree 
as an operation is m-fc, and as a map of spaces, r has no degree at all. 

In any unstable algebra M, including E*{Xy for any space X, Definition 8.9 gives, 
for each x € M*̂ , the homomorphism PM{X): E*{E_J^) -^ M, Then we defined r(x) = 
PM{x)r € M for any operation (i.e. class) r G E*{E_k). In practice, we find it more 
convenient to revert to the First Answer r(x) of Section 8, although the Second Answer, 
in terms of pAf» will continue to inform us as to what to do, even when only implicit. 
Classically, one investigates cohomology operations by studying what happens to r(x) 
when r is fixed and x varies; but it is clear from Section 8 that what we should do is fix 
X and allow r to vary. 
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Linear functionals. We need to develop a computational description of pM in an unstable 
algebra M. We start from the fact that /9M (^) is £'*-linear, i.e. r{x) is jE'*-linear in r. 

DEFINITION 10.2. Let M be an unstable algebra, and fix an element x G M^. We say 
r{x) is written in standard form if 

r{x) = ^ ( T * , CQ) Xa in M (for all r), (10.3) 

for suitable choices Ca € E„(E,f^) and Xa G M, where deg(a;a) = -deg(ca). If the 
sum is infinite, we require each ideal F^M in the filtration of M to contain all except 
finitely many of the Xa-

This is the closest we will come to an unstable replacement for the tensor products 
and homomorphisms of Section 6 arui [8, §11]. Our convention here and in all similar 
formulae is that r runs through all unstable cohomology operations having the correct 
domain degree (different in nearly every formula, and rarely specified) but arbitrary target 
degree. The indexing set for a is often left implicit. 

It is easy to achieve eq. (10.3) in the universal form 

r{x) = y^(r, CQ) ra{x) in M (for all r), (10.4) 

by allowing Ca to run through some basis of E*{JEf^), which forces us to take 
Xa = 7'a(x), where ra denotes the operation (linear functional) dual to Ca. Continu-
ity of PM(^)- E*{E_^) -^ M assures the finiteness condition in Definition 10.2. We may 
therefore always assume that r{x) is written in standard form. 

Where we depart from tradition is in not picking a definite basis of E^{E_j^) in advance. 
We do not even insist on the Ca being linearly independent. Nor do we require the 
Ca to span; we may obviously omit zero terms. This does not affect the linearity of 
eq. (10.3) and allows the flexibility that our formulae require. One consequence is that 
most cohomology operations will never acquire names. 

We have the analogue of Proposition 6.44. 

PROPOSITION 10.5. Given x e E^{X), regarded as a map of spaces x:X -^ Kk* cissume 
that r[x) is given by eq. (10.3). Then x„:E„{X) -^ E^{E_k) is given by 

The nonuniqueness in eq. (10.3) is really not a problem because we are using it to 
describe, not define the structure on M. The real definitions are all in Section 8; here, 
we are only reinterpreting them. Nevertheless, it is easy to convert one standard form to 
another. 
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LEMMA 10.6. Any standard form (10.3) can be transformed into the universal form (10.4), 
and hence into any other standard form, by iterating three kinds of replacement {in either 
direction): 

(i) (r, c -f c') x' = (r, c) x' -f (r, d) x'\ 

(ii) (r,t;c)x' = (-l)^s(c)deg(t;)^^^^^^^/. 

(iii) (r, c) x' + (r, c) x" = (r, c) (x' -f x"). 

(Infinitely many replacements may be needed; however, each F^M contains x' for all 
except finitely many of them.) 

Stabilization, We need to record how eq. (10.3) behaves when we restrict the operation 
r to be additive or stable. We recall from [8, Definition 9.3] the stabilization homo-
morphism CTA:*: J5*(£^) —> E^{E,o) and from eq. (6.2) the algebraic homomorphism 
Qk'. E„{E,k) ~^ Q{E)t^ t>oth of which have degree A: under our conventions. 

LEMMA 10.7. Let M be an unstable algebra, and assume that r(x) is expressed in the 
standard form (10.3), where x G M^. Then: 

(a) The unstable comodule coaction PM- M^ —• M^Q{E)^ is given by 

PMX = 5](-l)^8(xa)(fc-cleg(x.))^^ ^^^^^ ,.„ M%Q{E)l 

a 

provided QE^{E,k) is a free E*-module; 

(b) The stable comodule coaction pM'-M -^ M^E^{E, o) is given by 

PMX = ]^(-l)*^8(xa)(fc-dcg(xa))^^ ^^^^c^ i^ M§E,{E,o), 

a 

provided E*{E,o) is a free E*-module. 

The signs are as expected, once we remember that if deg(xa) = h then deg(ca) = -i 
and deg(gfcCa) = deg(crfĉ Ca) = k - i. 

PROOF. For additive r, Proposition 6.11 converts eq. (10.3) to TAX = Ylai'^Q^^^^ot)xa. 
We deduce pMX in (a) by comparing eqs. (6.38) and (6.39). Part (b) is similar, using [8, 
(11.18), (11.19)] instead. D 

Unstable algebra structure. Our task is to convert all the algebraic structure of an 
unstable algebra M in Definition 8.9 into the current context. There are in effect four 
pairs of axioms: 

(a) Two axioms to make PM{X): E*{E_k) —• M an £'*-algebra homomorphism, rather 
than merely £*-linear: (r ^ s){x) = r{x)s{x) and l(x) = 1MI which will 
become eqs. (10.14) and (10.15); 
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(b) Two axioms to make pM'-M —^ UM £^*-linear: pM{x-\-y) = PM{^) + PM{y) 
and PM{VX) = vpM{x)y which will become eqs. (10.20) and (10.16); 

(c) Two axioms to make PM'-M —̂  UM multiplicative: P M ( 1 M ) = IC/M and 
PM{xy) = PM{x)pM{y)y which will become eqs. (10.41) and (10.34); 

(d) Two axioms to make M a [/-coalgebra: {sr){x) = s{r{x)) and tkX = x, which 
will become eqs. (10.45) and (10.43). 

The natural language for expressing the first three pairs is that of Hopf rings, while the 
last requires some additional structure. 

Hopf rings. We recall from [8, Lemma 6.12] that in Coalg, tensor products of coalgebras 
serve as products and E" is the terminal object. A commutative (graded) ring object in 
Coalg is called a Hopf ring over E*. (The terminology and some of the notation were 
suggested by Milgram [17]; see [23, §1] for a detailed exposition.) 

We start from the jB*-algebra object n \-y E_^ in Ho provided by [8, Corollary 7.8]. 
We apply [8, Lenuna 7.6(a)], using the homology functor £"*(-), which takes values in 
Coalg on the spaces we need and preserves enough products to make n »—• £^*(£^) an 
jE*-algebra object in Coalg, In particular, this is an £^*-module object, and each E^{E_k) 
is an abelian group object in Coalg and thus a Hopf algebra. 

There are seven parts to the Hopf ring structure of n y-^ E^{E_^): two from the 
coalgebra, three from the abelian group object E_j^, and two from the multiplicative 
monoid object, in addition to the underlying £J*-module structure on £?-homology. They 
are as follows (for each A; and m, where relevant): 

(i) tp: E,t^{E,k) -^ E^{E,j^) <Si E^{E_k)^ the comultiplication induced by the diagonal 
map A:^k -^ ^k ^ ^k'^ 

(ii) e:E^{JEf^) -^ E*, the counit for ^, induced by the map q.Rk -^T; 
(iii) ^\ Ei,{E_^) ® E^{E_^.) -^ E^{E_f^), di multiplication, induced by the addition map 

lik:Ej,xE^-^Ej,\ 
(iv) U = ujk* 1 G E(i{E_k)^ ^^ *-unit element, induced by the zero map Uk'- T -^ E_^\ 
(v) X - ^ * ( £ A : ) "^ E^{E_f^), the canonical (anti)automorphism of the Hopf algebra 

E^{Ek)y induced by the inversion map i^k'-Mk ~^ E-k^ 
(vi) o:E^{E,f^) (g) E^{E.^) ~> E^{JEj^j^^), another multiplication, induced by the 

multiplication map (l>:Kk ^ E-m ~~* ^/k+m* 
(vii) [1] =r}^\ £ EO{E_Q), the o-unit element, induced by the algebra unit map Tf.T -^ 

Because n •—• E^{E^^) is an jB*-algebra object rather than merely a ring object, we 
have, for each v e E^, the actions {^v)^:E^{Ei^) —• £^*(£^_,_ )̂. As in Section 6, this 
reduces to a simpler structure. 

DEFINITION 10.8. We define the right unit function TJR'.E* -^ E^iE^)-^^ regard v e 
£h _ E^^T) as a map v:T ~> E^^^, and use the induced homomorphism V:^:E* = 
E^{T) -> Ej{Ef,) to define [v] =v^le Eo{E,,) and rjR{v) = [v]. 

In particular, this includes [1] = 77̂ 1 as in (vii), and [Oĵ ] = ujk*l = U as in (iv). It is 
clear from Definition 6.19 and [8, Definition 11.2] that qh[v] and ah*[v] are the additive 
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and stable versions of 'qnv. The elements [v] determine the ^*-module object structure 
completely, because when we apply JE-homology to [8, (7.5)], we obtain 

{iv)^c = H oc for all c € E^{E^). (10.9) 

For the sake of completeness, we list all 33 laws that a Hopf ring satisfies, beyond the 
usual axioms for an E*-module. (Your count may vary.) Most need no comment. They 
are as follows, where in several we write \l)c = Xlt î ^ '̂/* 

(i) The five operations are (bi)additive: ip{b'\-c) = ipb -\- ipc, e{b-\-c) = eb -\- ec, 
(a+fc) *c = a*c-h 6*c, x(b+c) = x^ + X ,̂ and (a+6)oc = aoc-f- boc; 

(ii) The five operations are jB*-linear: t/̂ (vc) = X)• vc[ 0 c'/, £{vc) = vec, (vb) * c = 
v{b * c), x(^c) = vxc, and (vb) o c = v{boc), for all v E E*; 

(iii) Three coalgebra axioms: ip is coassociative and cocommutative (with the standard 
sign), and e is a counit: ^i{ec'^c'{ = c; 

(iv) The five parts of the ring object structure respect ip: 'ij){b * c) = {il)b) * (V̂ c) 
(where we give E^{E_j^) ® E:^{E_j^) the obvious *-multiplication, with signs), 
'(l){boc) = (#)o(V;c) (similarly), ip\k = U 0 U, -^xc = EiX^- 0 xc'/, and 

(v) The five parts of the ring object structure respect e: e{b*c) = {eb){ec), elk = 1, 
exc = eCy £{boc) = {eb){€c), and £:[1] = 1; 

(vi) Four abelian group object axioms: associativity {a * b) * c = a * {b * c), commu-
tativity 6 * c = (-ly^c * b (where i — deg(6), j = deg(c)), unit lk*c= c, and 
inverse J2i X^i * c'/ = (ec)U; 

(vii) Three axioms for a commutative monoid: associativity (ao6)oc = ao(6oc), 
commutativity, which takes the somewhat complicated form (see [23, Lemma 
1.12(c)(v)]) 

boc=(-l)^^x'''^co6 (10.10) 

for b € Ei(E_^ and c G Ej{E,^) (where x*""̂  = x if ^ and m are odd, and is 
the identity otherwise, as in Proposition 10.12(b) below), and [1] ©c = c; 

(viii) Three ring object axioms to state that - © c respects the abelian group object 
structure: for addition, which yields the distributive law, in the complicated form 
[ibid.(vi)] 

(a * 6) oc = J](-l)*^s(^i)^^s(^)aoc; * boc^; (10.11) 

for the zero, 1^ o c = {ec)\m-\-k [ibid, (ii)]; and for the inverse, x(&© c) = (xb) o c. 

Many standard laws follow from these axioms. In order to simplify notation in eq. (10.11) 
and elsewhere, we give o-multiplication greater binding strength than *-multiplication, so 
that a*b o c always means a*{b o c), never (a*6) o c. In all our Hopf rings, Proposition 11.2 
will provide the laws relating the added elements [v] and identify the useful element x[l] 
with [-1]. 
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PROPOSITION 10.12. In any Hopfring, the operation x has the following properties: 

(a) xc = x[l] ° c, so that x[l] determines x/ 

(b) xxc = c; 

(c) x(a * 6) = xa * X '̂ 

(d)x[l]ox[l] = [l]. 

PROOF. For (a), xc = x([l] °c) = x[l] °c. Since %l)[\] = [1] (8) [1] and hence ^x[l] = 
x[l] ^ x[l]» the distributive law gives (c), by 

X(a * 6) = x[l] °(a * b) = x[l]°a * x[l]^b = X^ * X .̂ 

Also, we have x[l] * [1] = lo and similarly xx[l] * x[l] = lo» which yield 

XX[1] = XX[1] * lo = XX[1] * X[l] * [1] = lo * [1] = [1]. 

But (a) gives xx[l] = x[l] °x[l]» and hence (d) and the general case of (b). D 

Generators. We wish to use the laws to reduce any element of a Hopf ring to some 
standard form. The distributive law (10.11) plays a key role. We shall describe our Hopf 
rings H by specifying two sets of elements: 

(i) the O'generators of H\ 
(ii) the ^'generators of H, each of which is a o-product of o-generators and possibly 

x[l], where we allow the empty o-product [1]. 

We require every element of H to be an £?*-linear combination of *-products of the 
•-generators of H; in other words, the *-generators generate H as an £?*-algebra. For 
each o-generator g, we need formulae for i/^g (so we can expand eq. (10.11)), eg, and 
xg- Although Hopf rings tend to be huge, each of our examples (see Section 17) has a 
convenientiy small set of o-generators. 

Hopf rings over Fp. One can define the Frobenius operator Fc = c*^ in any algebra 
with multiplication *, and it is multiplicative if * is commutative. It is additive if also the 
ground ring has characteristic p. It is most useful when the ground ring is Fp, because it 
is then automatically Fp-linear. Commutativity of *-multiplication implies that Fc = 0 
whenever c has odd degree (unless p = 2). 

Moreover, in a Hopf ring (or cocommutative Hopf algebra) H over Fp, one has dually 
the Verschiebung operator V:H -^ H, defined so that DV = F: DH -> DH in the 
dual Hopf algebra. It divides degrees by p. Then Vc = 0 unless deg(c) is divisible by 2p 
(if p ^ 2). Both F and V preserve all the Hopf algebra structure: F{a *c) = Fa* Fc, 
Flk = U, 'il^Fc = (F (g) F)il;c, eFc = ec, and dually V{a *c) = Va* Vc, V U = U, 
ipVc = {V (SI V)IIJC, and eVc = ec. For o-products, we can iterate eq. (10.11) and obtain 
the identity 

ao(Fc) = F(yaoc) , (10.13) 
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which is useful for reducing elements of the Hopf ring to standard form. (Normally, a 
and c both have even degree.) 

Multiplication of operations. The first pair of axioms on M we listed earlier, that for 
fixed X € M, PM{^) is a homomorphism of £^*-algebras, is easily translated into Hopf 
rings. Because the diagonal map in £ ^ induces both the cup product r ^ s and the 
comultiplication ^ on E^{E_^), we can write down the cup product from eq. (10.3) as 

(r w s){x) = ^ ( T * ^ s, Cy) x^ = ^ ( T ' 0 s, '0c^) x^ in M. 
7 7 

The product r(x)s{x) becomes, after some shuffling, 

r{x)s{x) = ^ J](-I)deg(xa)dcg(x^)^^ (8) 5,Ca ® C )̂ XaX^. 

Since (r -^ s)(x) = r(x)s(x) has to hold for all r and s, we deduce the identity 

7 a /3 

in (E*(E )̂ 0 £* (£ ^)) § M, where the tensor products are formed using only the usual 
left E*-actions. 

The identity element U G E^{Rk) ŝ the constant operation E^{X) -^ E^{X) that 
sends everything to Ix; regarded as a linear functional, it is simply e. In terms of 
eq. (10.3), the axiom U(x) = IM becomes 

5])(eca)xa = 1M inM. (10.15) 
Q 

Linear structure. We next decode the statement that pM'-M -^ UM is linear, namely 
that PMi^-^y) — PM{X) -f PMW) and PM(VX) = VPM{^)' Related to the first is the 
formula for r*(6 * c), which can be shown to be the translation of the statement that 
jpM:UM —• UUM is additive. We assume that r(x) is given by eq. (10.3), where 
x € M''. 

The v-action U^M —• U^^^M was given by composing with {(^vy:E''{E_k-^h) ~^ 
E*{E,j^)\ dually, we use eq. (10.9) to translate PM{VX) = vpMi^) into 

r{vx) — y ^ (r, [v\oCot)xa in M (for all r). (10.16) 

For addition, the idea is that pk'.Rk ^ E.k ~^ E.k induces both the additive structure 
in UM and the *-multiplication in E^{E_^). Of course, r^c is not additive in r. Given 
two operations r,s:k-^7n, their sum may be constructed as 

A rxs Mm „ 
r + s:Ek yE^xE^ y E^ x E„ . E^, 
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as we can check by composing with x\X -^ E_^. When we apply £^-homology, we find 

(r + 5),c = J]r.c' i*5,c; ' mE.{EJ, (10.17) 
t 

if we write ^c = Yl^ c!i®c!l for c G E^{E^j^), (In other words, we add r* and 5« according 
to the group structure on Mod{E^^{E,j^), E*(£y^)) described by Milnor and Moore in [19, 
Definition 8.1], which makes use of the coalgebra structure of E^{E,i^) and the algebra 
structure of JE*(E^) . ) TO add more than two operations, we need iterated coproducts: 
given any finite indexing set A, we write the iterated comultiplication ^^:Ei,{E_^) -^ 

^c = y2®Ci^a in^aeAE.iRf,) (10.18) 

for suitable elements Ci^a ^ E^iKk)- ^^ ^ ^ f̂ course replace E^ by any space for 
which we have the necessary Kunneth formulae. 

THEOREM 10.19. Let M be an unstable algebra and assume that E^{E_j^) is a free E*-
module for all k. Take x^y £ M^ and assume that r{x) is in the standard form (10.3). 
Then: 

(a) We have the Cartan formula for addition 

r{x-\-y) = ^Xar'^{y) for all r: k-* m, (10.20) 
Q 

where for each a, the operation r^: A: —• m-f deg(cQ) is defined as having the functional 

{r'a.c) = (-l)^s(^-)(^+^g(^«))(r,Ca*c) forallceE.{E^)\ (10.21) 

(b) If similarly, r{y) has the standard form 

r{y) = J2i^,d0)y^, (10.22) 

then we have the full Cartan formula for addition, 

r(x+y) = Y^Y^{-l)'^^^^-^^^^'^^Hr,Ca*d0)xay0 (10.23) 
a p 

for all r:k —* m; 

(c) Assume a, be E^{E,f^). Let Ca run through a basis of E^{E_j^), and denote by r'^ 
the operation dual to CQ. Let iPa = ] ^ • (Sa ai,Q and ^b = Ylj ®a &j,a be the iterated 
coproducts of a and b as in eq. (10.18), where in both cases, we ignore those a for which 

Tar^ai^a = (eat,a)l for all i (10.24) 
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(see the Remark following). Then the homology homomorphism r^:E^{E_k) '^ ^^iE-m) 
satisfies 

uia * 6) = E E ̂  * ^a*ai,a or::,6,,a in E.{EJ, (10.25) 
i 3 

where r'^ is defined by eq. (10.21) and the only signs come from shuffling the factors to 
form !?(a x 6). 

REMARK. The formula (10.25) demands some explanation. The proof will show that the 
relevant set of a is in fact finite, so that the iterated coproducts ^a and iP̂ b are defined. 

If a satisfies eq. (10.24), we have 

In the usual (and sufficient) case when ea = eb = 0, we can easily arrange for each 
ai^a and bj^a to be 1 or lie in Kere, by breaking up terms and shuffling as necessary. 
Then the ij-term contributes nothing to r^{a * b) unless ai^a = 1 and bj^a = 1 for all 
a G A that satisfy eq. (10.24). Such an index a may be omitted from the *-product in 
eq. (10.25) and the iterated coproducts ^a and ^b. 

PROOF. We first assume that the Ca form a basis of E^{E^f^), so that XQ = ^a(^) ^̂  ^^ 
eq. (10.4). By the Ktinneth homeomorphism, we can write 

M̂  = ̂ r;xr;: inE'{E,xE,), (10.26) 
a 

for uniquely determined elements r^ E jB*(£fc). In other words, in the diagram 

X 

(10.27) 

E, 

the map r o /î ^ is expressed as the sum of the maps ga — <t> °(^Q >< ^Q)» ^"^ is the universal 
example for computing r(x-l-y), where u:X -* E_^ x E_k has coordinates x: X —• E_k 
and y:X-^E,fc. Evaluation on Ca x c identifies r^ as in eq. (10.21), with the help of 

{fjLlr,CaXc) = {r,iikm{cotXc)) = {r,Ca*c). 

Then eq. (10.20) is induced from eq. (10.26). To deduce (b), we substitute eq. (10.22) in 
eq. (10.20) and watch the signs. 

To remove the requirement that the CQ form a basis, we note that by linearity, 
eq. (10.20) is preserved by each of the replacements listed in Lemma 10.6. (The op-
eration r^ is no longer defined, but appears only in (c).) 
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For (c), we apply homology everywhere. We have to add the homomorphisms pa* in 
the sense of eq. (10.17), using the iterated coproduct ^{a x 6), which is obtained from 
9a X 9b by shuffling. We note that any a£ E^(E^j^) comes from some finite subcomplex 
Y of E,k' All ^^^ finitely many of the r^ vanish on Y, by the strong duality for E.i^; 
these a satisfy eq. (10.24), as we see by computing the iterated coproduct 9a first in Y, 
since the zero operation 0: A: —• m induces 0*c = (ecjlm- D 

Similarly, the zero map Uk'.T -* E,f^ and inversion map i^k'-Rk ~^ Rk ^^E.k yi^id 
the useful formulae 

r{Ok) = {r, U> 1M in M (for all r) (10.28) 

and 

r(~x) = Y^{r, xca) Xa in M (for all r). (10.29) 
a 

For some applications, it is useful to cut out the finiteness argument in the proof of 
Theorem 10.19(c) and work directly in a finite space Y. 

PROPOSFFION 10.30. Let f\Y -^ E^^bea map, where E^{Y) is a free E*-module of finite 
rank, with basis elements ZQ. Let jja G E*{Y) be dual to Za- Then for any a € E,i,{Y), 
b e Ei,{JEk)f and operation r: k —^ rriy 

u{f*a*b) = ^]^±*yQ*at,aor^*tj,Q in E^{E^), 
i 3 

where r'^ik —> m + deg(2:a) denotes the operation having the functional 

(r'^.c) = (-l)^g<^-)(^+*^g(^-))(r,/.z, *c), 

9a and 9b are computed as in eq. (10.18), and we use ya*'- E^{Y) —^ E^{E,'f). 

PROOF. By Theorem 1.18(a), E*{Y) is dual to E^{Y) and y^ is defined. We modify the 
proof of the Theorem by composing the square in diag. (10.27) with f x l:Y x E,/^ —^ 
Ek X Ek' We work in E*{YxEf,) instead of E*{EkXEk) and write 

a 

We evaluate this on z^ x c to determine r^. D 

REMARK. The commutativity of *-multiplication ensures that r{x+y) = r(y-l-x). Con-
versely, one could say that x-{-y = y-\-xmM requires *-multiplication to be com-
mutative. The universal example has M = E*{E,k^E,k)^ x = 6̂  x 1, and y = 1 x tk, 
and Ca and d^ run through bases of E^{Kk)' Then r(x4-t/) = r{y-\-x) for all r implies 
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that Ca=^d(3 = ±di3*Ca for all a and p. The commutativity of * in general follows by 
linearity. 

Similar discussions hold for other laws in a ring. In particular, x-\-0 = x corresponds 
in this way to c * U = c, - ( - x ) = x to XX^ = c, -{x + 2/) = ( -x) -I- {—y) to 
x{a * 6) = xa * x^y and the associativity of -f to the associativity of *. 

Given a prime p, we can iterate eq. (10.23) to get 

r{px) =r{x-\-X-\- • • •+X) = ^ ± { r , C a , * C a 2 * • • • *Cap)Xa,Xa2 "•Xap. 

If the indices â  are not all the same, we can permute them cyclically and obtain p 
distinct terms which by commutativity are all equal, with the same sign. This leaves only 
the terms with ai — a for all z, and we find 

r{px) = Y^{r,Fca) Fxa mod p. (10.31) 

This is particularly useful when E* has characteristic p, so that px = 0, because com-
parison with eq. (10.28) then yields 

^{r, Fca) Fxa = (r, h) 1M in M (for all r). (10.32) 
a 

Multiplicative structure. The multiplication maps (/>:£_k ^ ^m "̂  ^k+m induce both 
the multiplication in UM and the o-multiplication in JE*(£^). This allows us to translate 
the axiom that pM is multiplicative, PAf(xy) = PM{x)PM{y) in UM. 

THEOREM 10.33. Let M be an unstable algebra, and assume that E„{E_i^) is a free E*-
module for all k. Take x G M^ and y G Af^ and assume that r(x) is in the standard 
form (10.3). Then: 

(a) We have the Cartan formula for multiplication 

r{xy) — ^ X a r ^ ( y ) forallr-.k^-m-^ /i, (10.34) 
a 

where for each a, the operation r'l^'.m-^ /i-l-deg(cQ) is defined as having the functional 

{T';,,C) = {-\)^^Mih^^^M)(^r,Caoc) for all c € E^EJ; (10.35) 

(b) If similarly, r{y) is given by eq. (10.22), we have the full Cartan formula for 
multiplication, 

r{xy) = 5]5](-l)*^s(xa)deg(y,)^^^^^^^^)^^^^ (10.36) 

for all r: k -{- m -^ h; 
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(c) Take a G E^{E_^) and b £ E^{E^^). Assume that Ca runs through a basis 
of E^{E_i^), and denote by r^ the operation dual to c .̂ Let ^a — X^^®aai,a cmd 
^b = 5Z,®abj,a be the iterated coproducts of a and b as in eq. (10.18), where in 
both cases, we ignore all a that satisfy eq. (10.24). Then the homology homomorphism 
u:E4Ef,_^J -^ E.{Ef,) satisfies 

u{aob) = J2Y^±'^r',.ai,aor'^^bj,a in E.{EJ, (10.37) 
i 3 

where rĵ  is defined by eq. (10.35) and the only signs come from shuffling the factors to 
form ^{a x b). 

The Remark following Theorem 10.19 applies. 

PROOF. This is formally identical to the proof of Theorem 10.19, with fik'-Kk ^ S.k ~^ 
JEj^ replaced everywhere by (t>:E^f^x E,^ -^ Mk-^-m- D 

By naturality, we can adapt eq. (10.36) to x-products. 

COROLLARY 10.38. Given spaces X and Y and elements x e E^{X) and y e £"^(7), 
assume that r{x) and r{y) are given by eqs. (10.3) and (10.22). Then we have the Cartan 
formula 

r{xxy) = 5 ^ J](-l)*^^(^")^s(^^)(r,Caod^)xaXy^ (10.39) 

a p 

in E^ {X X y ) , for any operation r:k-\-m -^ h. 

We have also the analogue of Proposition 10.30. 

PROPOSITION 10.40. Let f:Y -^ Ef, be a map as in Proposition 10.30. Then for any 
a G E^{Y), b G E^{E,k), and operation r:k + m -^ K 

i 3 

where r'^:m -^ h-\- deg(j2:Q) denotes the operation having the functional 

and ^a and ^b are computed as in eq. (10.18). 

Since the unit element of UM is 

r]Morf:E*[E^)-^E'' ^M, 
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the axiom PM{^M) = It/M translates easily into 

r{\M) = iv^r, 1) 1M = (r,r7,l> 1M = (r, [1]) 1M in M (10.41) 

for all r. 
Just as with addition, certain laws in the Hopf ring correspond to laws in an E*-

algebra M. For example, associativity of o-multiplication corresponds to associativity of 
multiplication in M. Commutativity is slightly trickier: given x e M^ and y G M*^, 
r{yx) = r{{-\)^^xy) leads to the identity (10.10), thus explaining the signs and the 
appearance of x-

The comonad structure. Finally, we translate the two axioms which state that pM makes 
M a f/-coalgebra. Since we have in effect returned to the First Answer of Section 8, 
these are the usual axioms for an action, {sr){x) — s(r{xy) and t^x = x. 

The second is easily handled. From Proposition 6.11, we can use (6.41) to express the 
identity operation i^ as the functional 

{ . , , - ) = Q(£)og,: JE,(E,) . Q{Et ^ E.{E,6) . E\ (10.42) 

When we put r = f̂c, eq. (10.3) expands easily to yield the axiom 

^{Q{^)(lkCo)xo,=x i n M (10.43) 
Q 

for X € M^, We have thus interpreted the counit natural transformation EM\ UM -^ M 
of the comonad f/, which was defined by {eM)f = ftk- The functional es^cJk^ is not 
part of the Hopf ring structure as given so far, so we add it. (It is unrelated to the counit 
e: E^{Ef^) -^ E* of the Hopf algebra E^iE^).) 

It is easy to recover the functional (r, - ) from r*, as in eq. (6.50), in the form 

(r , - ) :£ . (£ , ) - ^ E.iEJ ^^^ E.[E,o) - ^ E\ (10.44) 

by writing {r^c) = {r*im,c) = {im.r^c) and using eq. (10.42). In the additive context, 
the reverse construction of r* from (r, - ) was neatly encoded in the comultiplication 
Q(^) on Q{E)l. Here, we have no such map and must rely on the definition of V^M, 
which explicitly uses r*. In effect, we dualize and use r* instead. 

The first is the most complicated of all the axioms. When we substitute sr and r in 
eq. (10.3) and use 

{sr.Ca) = (r*5,Ca) = {5,r*Ca), 

the axiom {sr){x) = s{r{x)) expands to 

Y^{s,UCa)xa = s{r{x)) = sl ^(r,Ca)xa j in M, (10.45) 
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for all r, s. The right side is to be expanded using eqs. (10.20) and (10.16), and in general 
is extremely complicated. 

Our conclusion is that we need to know the induced homology homomorphism 
r^\E^[Ek) -^ E^{E^) for every operation T\E^{-) -> J5;^(-). This is the final 
piece of structure to add to the Hopf ring. To compute it successfully, we need r^c for 
each o-generator c of E^{E_^), and then use formulae (10.25) and (10.37) for r^{a * b) 
and r*(ao6). 

Summary. We collect the various formulae to form the main theorem of this section. In 
addition to the Hopf ring structure on E^{E,^)y we need: 

(i) The element [v] e Eo{E^) for each v e E* (see Definition 10.8); 
(ii) The augmentation (see eq. (10.42)) 

(10.46) Q{e)oq,:E4E,) ^ Q{E)', rE^E.o) > E^ 

which may be written £5 ocrk̂ ; 
(iii) The homomorphism r^:E^{E_^) -^ E^{E^^) induced by each oper-

ation r:k —^ m. 

These constitute what we mean by an enriched Hopf ring structure. 

THEOREM 10.47. Let M be an object of FAIg, i.e. a complete Hausdorff filtered E*-
algebra, and assume that E^{Ei^) is a free E*-module for all k (which is true for 
E = if(Fp), BP, MU, KU, or K{n) by Lemma 4.17(a)). Then an unstable algebra 
structure on M consists of a value r{x) € M for all x G M and all r G E*{E,f^) (where 
k = deg(x) and r{x) € M"̂  ifrG E^{E,f^)X which is E*'linear in r and therefore (for 
fixed x) expressible in the standard form (10.3) 

r(x) = /^(T", Ca)xa in M (for all r). 
Q 

These values are subject to the following axioms: 

(a) For fixed x G M^, r{x) satisfies the three consistency conditions: 

in(E.{Ek)<S)E4Ef,))§iM; 

(ii) ^{eca)xa = 1M in M; 

(iii) Y^{es(7k*Ca)xa = X in M; 
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(b) As X varies, r{x) satisfies the following identities in M for all r, where we assume 
similarly (as in eq. (10.22)) that r{y) = J^i^ir.d^) yp: 

(i) r{x^y) = ^5^(-l)^^^(^-)^^s^^^)(r,c,, *d^)x«2/;3; 
a (5 

(ii) r[vx) = ^ (r, [v]oCc) Xa\ 
a 

(iii) r{xy) = 5]5](-l)^s(^ '^^^^(^^^(r,Caod^)xay^; 
Q 0 

(iv) r(lM) = <r,[l])lM; 

(c) The composition law 

'^{s,r^Ca)xa = s{r{x)) = si ^ ( r , C a ) x a 1 in M 
a ^ a ^ 

holds for all r, 5, and all x G M; 

(d) For each of the ideals F^M in the filtration of M: 

(i) For fixed x € M, all except finitely many of the XQ lie in F°^M; 
(ii) There exists F^M such that r(x) G F'^M for all x G F^M and all based 

operations r. 

PROOF. The equations in (a) are (10.14), (10.15), and (10.43). Those in (b) are (10.23), 
(10.16), (10.36), and (10.41). The equation in (c) is (10.45). In (d), (i) states that 
PM{^)'' E*{E,f^) -^ M is continuous for each x, while (ii) states that pM'-M ^ UM is 
continuous. D 

REMARK. By (b), an unstable algebra structure on M is determined by the values r(x) 
on a set of (topological) E*-algebra generators x of M. Moreover, the Hopf ring laws 
imply that it is sufficient to verify axioms (a) and (d)(i) on these generators. In practice, 
the topological conditions (d) rarely cause us any distress. 

11. The jEJ-cohomology of a point 

In this section, we study the first of our test spaces, the one-point space T, for which 
E*{T) is by definition the coefficient ring E*. Its unstable structure is completely deter-
mined by eqs. (10.41) and (10.16) as 

r{v) = (r, [v]) in E* = E*{T) (for all r), (11.1) 

which may be taken as an alternate definition of the Hopf ring elements [v], instead of 
Definition 10.8. 
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It is easy to deduce how [v] interacts with each piece of the structure on E^{E_^). 
Much of this can be read off from the Hopf ring structure in Section 10. In particular, 
TjR is still in some sense a ring homomorphism. 

PROPOSITION 11.2. The Hopf ring elements [v] e Eo{Ef,) for each v £ E^ have the 

properties: 

(a) il)[v] = [v] 0 [t;]; 

(b) e[v] = 1; 

(c) [v -f v'] = [v] * [v'] for v' G E^; 

(d) l-v] = xH' 
(e) [vv'] = [v] o[v'] for v' £ E^; 

(f) lm°M = lm+/i; 
{g)r,[v] = [{rM)]iforallr); 
(h)r.U = [(r,U)]; 
(S)qh[v]=mvinQ{E)^; 

(J) ^/i*N = VR'^ ^^ E^h{E^o)y under stabilization. 

PROOF. For (a) and (b) we substitute eq. (11.1) in eqs. (10.14) and (10.15). For (c) and (e), 
we write down the Cartan formulae (10.23) and (10.36) for r(v-\-v') and r(vv') and 
compare with eq. (11.1). For (d), we write down r{-v) from eq. (10.29) and compare with 
eq. (11.1). For (g), we use eq. (11.1) to compute s{r{v)) = (5, [(r, [v])]); by eq. (10.45), 
this must agree with {s,r^[v]) for all s. Since [On] = ln» (f) and (h) are special cases of 
(e) and (g). For (i) and (j), we compare eq. (11.1) with eq. (6.43) and [8, (11.23)], and 
use eqs. (6.14) and (6.13). D 

Constant operations. Constant operations were introduced briefly in Section 8. Although 
they are of no real interest and contain no information, they are undeniably natural and 
we have to be able to recognize them in their several disguises. 

PROPOSITION 11.3. Let r: k —^ m be the constant operation defined by r{x) == vlx for 
all X € E^{X\ where v G JS^. Then: 

(a) As a class, r = vlke E*{Ef^); 

(b) As a map, r is the composite voq:E_j^ -^ T -^ E_^; 

(c) As afunctional (r, c) = {ec)v in E* for all c G E^{E_^^); 

(d) r^:E^{Ek) -^ ^*(£m) '̂  gi^^^ ^y ^•c = {ec)[v] for all c G E.{Ek). 

Based operations. Given a based space (X, o), we consider the naturality of an operation 
r:k -^ m with respect to the inclusion of the basepoint. We augment Lemma 2.3. 

PROPOSITION 11.4. The following conditions on an operation r:k ^^ m are equivalent: 

(a) r(0) = 0 in E*{T) = E*, i.e. r is based in the sense of Definition 2.2; 

(b) r(0) = 0 in E*{X) for all spaces X; 
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(c) The operation r induces r: E^{X, o) -> E'^{X, o) for all X; 

(d) The class r lies in E'^{Ej^,o) c E'^i.E^); 

(e) The map r.E^i^-^ JE^ is based (up to homotopy); 

(f) The linear functional (r, —) satisfies (r, U) = 0; 

(g) The homomorphism r*: E^{E_f^) —̂  E^{E_m) satisfies r^lk = Im-

PROOF. Part (b) is equivalent to (a) by naturality. Because r(0) = {r,lk) Ix by 
eq. (10.28), (f) is equivalent to (b), and with the help of Proposition 11.2(h), to (g). D 

We can generalize (f). 

LEMMA 11.5. Let {X, o) be a based space. Then for any x G E^{X, 6) and any operation 
r:k —^ m, we have r{x) = (r, U ) l x mod E*{X,o). 

PROOF. We use eq. (10.28) and the naturality of r in diag. [8, (3.2)]. D 

It is sometimes useful to be more specific. If we choose a basis of E^{E^i^) consisting 
of U and elements Ca E Kere, then for any x E E^{X, o), eq. (10.4) takes the form 

r(x) = (r, U) Ix + 5^(r ,Ca)xa in E^{Xy (for all r), (11.6) 
Q 

where the elements Xa E E*{X, o)^ 
Formulae are often simpler for based operations, but the case of general r can be 

recovered easily enough by decomposing as in Lemma 8.1. 

LEMMA 11.7. If we write r{x) = s{x)-\-v\xy where s is a based operation and v E E'^, 
the homology homomorphism r^'.E^[E_j^) -^ E^{E_^) is given by r^c = s^c* [v], where 
we recognize t; = r(0) = (r, U). 

PROOF. We write r as the composite 

A \Xq SXV _ Mm „ 

£fc ^Ej,x E^ > EkXT > E^ X E^ > E^ 

and take jB-homology. The first two maps just give Kk—^k^"^- D 

12. Spheres, suspensions, and additive operations 

So far, except for adding an extra grading, our additive results are formally very similar 
to the stable case discussed in [8]. What is new is that suspension is no longer an 
isomorphism, but defines a new element e. The stable results can all be recovered by 
stabilizing, which consists merely of setting e = 1. 

We assume throughout that E„{E_f^), QE^[E_i^), and E^{E, o) are free E^-modules, so 
that we have available the machinery of comodule algebras of Sections 6 and 7 as well 



Section 12 Unstable cohomology operations 757 

as the stable results of [8]. In particular, the coaction px- E*{X) —̂  E*{X) ® Q{E)l is 
a homomorphism of £?*-algebras for any X. 

Spheres. Our second test space, after the one-point space T, is the circle S^. Its cohomol-
ogy J?*(5*, o) is a free E*-module with the basis {I5, i^i}, where the canonical generator 
ui G E^{S\o) is provided by [8, Definition 3.23]. Thus ps: E*{S^) -^ E*{S^)®Q{E)l 
is determined by psu\. 

DEFlNrriON 12.1. We define the suspension element e = eg G Q{E)\ by the identity 

P5IX, =w, (g)e \nE''{S\o)^Q{E)\'^Q{E)\, (12.2) 

It has degree zero. 

More generally, for the fc-sphere S^, E*[S^) is free on the basis {uk, \s}^ where 
UkGE^{S^,o). 

PROPOSITION 12.3. The suspension element e € Q{E)\ has the following properties, 
where k ^ 0; 

(a) psuk = Uk^e^ in E*{S^) ® Q{E)t' 

(b) ruk = (r, e*̂ } Uk in E*{S^) for any additive operation r: k —• m; 

(c) The class Uk € E^{S^\ regarded as a map Uk'.S^ -^ ^f^, induces qkUk*z = e^ e 
Q{E)^, where z € Ek{S^) is dual to Uk; 

(d) In the coalgebra structure on Q{E)l, Q{'4))e = e 0 e arui Q{e)e = 1; 

(e) Q{\l)){ve^w) = ve^ 0 e^w in Q{E)l 0 Q{E)l, for any v e E* and w £ r]RE*; 

(f) Given v £ E* and w e TJRE^, the homomorphism Q{r):Q{E)^-^^ -> Q(-B)^ 
induced on homology by any operation r: fc 4- /i —• m satisfies 

Q{r){ve^w) = ve^mir, e^w) in QiE)":"; 

(g) Under stabilization, Q{a)e = 1 in E„{E,o). 

PROOF. We prove (a) for fc > 0 by induction on fc, starting from eq. (12.2). If it holds 
for A: and m, the multiplicativity of p gives 

p{ukXUm) = (ukXUm) 06*+^ in E*{S^X5^). 

The projection map q: S'^ x S^ —^ gk-^m induces q*Uk^rn = Uk x Um, which gives (a) 
for fc-hm. The result is true also for fc = 0, if we make the obvious identification ê  = 1. 
Then (b) follows by eq. (6.39) and (c) is an application of Proposition 6.44. 

To prove (d), we evaluate both axioms (6.33) for M = E*{S^) on u\. Part (e) follows 
immediately from (d) and the fact that Q(t/̂ ) is a homomorphism of algebras and of E*-
bimodules. Then (f) follows from (e) and Lemma 6.51(c). For (g), we apply 1 0 Q{a) 
to eq. (12.2) and compare with the stable coaction psu\ = ui 0 1 in [8, (11.24)]. D 
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REMARK. AS V, k, and w vary, the elements ve^w span Q{E)l 0 Q as a Q-module. 
(In fact, Q(cr) induces Q{E)'^ (Si Q ^ E^{E,o) (^Q if E is (-A:- l)-connected.) Thus 
in the important case when Q{E)^ has no torsion, the innocuous formulae in (e) and (f) 
are powerful enough to determine Qi'tp) and Q{r) completely. 

COROLLARY 12.4. Let r.k -^ m be an additive operation, regarded as a map ofH-spaces 
r: £ ^ -^ E,^. Then the induced homomorphism on homotopy groups 

E' S 7r.(E„o) - ^ MEm^o) S E* 

is given on v G E"^ by r^v = (r, e^^^rjRv). 

PROOF. We reinterpret r* as the action of the operation r on E^[S^^^, 6). The element 
V corresponds to the class vuk-^-h- From Proposition 12.3(b) and eq. (6.40), 

T(vuk^h) = (r,e^^^rjRv) Uk+h in E*{S^^\o). D 

Suspensions. More generally, the action of the operations on the suspension SX of a 
based space X is easily deduced from the action on X. 

LEMMA 12.5. Given a based space {X,o) and x € E^{X,o), the coaction psx^x is 
the image of pxx under 

E 0 e: E*{X, o) § Q{E)^, y E*{EX, o) g Q(£;)^^, 

where e denotes multiplication by the element e £ Q{E)\. 

PROOF. The projection map 5^ x X - • EX embeds E*{EX, a) in E'^iS^ xX,S^xo). 
Here, Ex corresponds to u\ x x, whose coaction is known. D 

We can mimic this algebraically. We defined the formal suspension EM of any 
J5*-module M in [8, Definition 6.6], merely by shifting all the degrees up one. 

DERNITION 12.6. Given any unstable comodule M, we make the suspension EM of M 
an unstable comodule by equipping it with the coaction p^M defined by the commutative 
square 

M^ ——- M§Q(£;)J 

{EM)^^^ '--- EM®Q{E)^^^ 

The axioms on p^M are readily verified. 
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13. Spheres, suspensions, and unstable operations 

In this section, we continue Section 12 by computing all the unstable operations on 
E*{S^) for the spheres S^, which requires one new Hopf ring element, the suspension 
element e. This leads to the unstable structure of E*{EX) in terms of E*{X). 

We recall that E*{S'^) is a free jB*-module with basis {Is.Uk}, where Uk is the 
standard generator. The algebra structure is given by n | = 0, except that of course 
UQ = UQ. By the Remark after Theorem 10.47, we have only to find r(ufc). Lemma 11.5 
gives partial information. 

We assume that E^[E,i^) is a free E^-module for all k. 

DEHNITION 13.1. We define the suspension element e = eu € E\{E,i) by the identity 

r{ui) = (r, 1,} I5 + (r,e)ni in E*{S^) (for all r). (13.2) 

Here and in similar definitions, we use the ft-eeness of E*{S^) and the duality 
FMod*{E*{Ek),E*) = E^{Ei^) to ensure that e exists and is well defined. We note 
that ee = 0 from eq. (10.15). Rather than develop all the properties of e now, we include 
them below in Proposition 13.7 as the special case e\ = e. 

Suspensions. We deduce from eq. (13.2) the behavior of unstable operations un-
der the suspension isomorphism E:E*{X,o) = E*{EX,o). We take an element 
X e E^{X, o) C E^{X) and assume that r{x) is given by eq. (11.6), so that eca = 0. The 
quotient map q:S^ xX -^EX embeds E*{EX) in E*{S^ xX)^ E*{S^) 0 E*{X); 
under this embedding. Ex corresponds to u\ x x. We compute r{u\ xx) from the Cartan 
formula (10.39) and find 

r{Ex) = (r, U+i) Irx + 5](-l)^s(^«)(r,eoCa) Exa (13.3) 
a 

for all r. The other terms drop out because 11 o c^ = eCa = 0 and e o 1̂  = ee = 0. 
This suggests how the suspension of an unstable algebra should be defined. The treat-

ment is slightly different from the additive version in Section 12. First, we need a 
basepoint. 

DEFINITION 13.4. We call the unstable algebra M based if we are given an augmentation 
M -^ E* of unstable algebras. Then the kernel M is an invariant ideal, and we have the 
splitting M = E* 0 M as E*-modules. 

We define the unstable suspension EuM of M as the subalgebra 

EuM= ( ls0^*)e(ui(8)M) C£7*(S'^)0M. (13.5) 

The action of r is given on txi 0 M by eq. (13.3) and on Is ® E* by eq. (11.1). 

For example, if (X, 0) is a based space, we have the augmentation E*{X) —> E*{o) = 
E*, with kernel E*{X, 6) (as in [8, (3.2)]). Inspection shows that much of the structure 
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on M is not used. The multiplication on M is totally ignored. Indeed, we do not need 
an unstable structure on M at all. 

THEOREM 13.6. Given an additively unstable module M, we can make E* 0 EM an 
unstable algebra, with I £ E* as the unit element and trivial multiplication on EM, 

j^ 

as follows. If X e M and r{x) = J2a(''^Q^^oi)xa for additive operations r, where 
Cot G Q{E)^, we lift each Ca to Ca G E^{E_j^) such that qkCoc = c ,̂ and define the action 
of unstable operations r on Ex by 

r{Ex) = (re/, U+,) 1 + 5](~l)^«(^'*)(rf;,eoCe.> Ex, 

PROOF. Because eo 1 = 0 and eo(6*c) = 0 whenever e6 = 0 and ec = 0, r{Ex) is 
independent of the choices of the Ca^ The definiti^ (with signs) has been chosen so 
that: (a) the additive unstable structure on E* 0 EM restricts to that on EM given by 
Definition 12.6, and (b) it includes eq. (13.5) for a based unstable algebra M. (For (a), 
we note that diag. (6.16) gives g/k+i(ec/ oCa) = (-l)'^eQCQ.) Verification of the axioms 
of Theorem 10.47 is tedious but routine. D 

The elements Cfc. It is convenient to use eq. (13.3) to find the structure of E*{S^), We 
deduce the fundamental properties of the Hopf ring element e. 

PROPOSITION 13.7. We define the Hopf ring elements Ck € Ek{E_k) for k ^ 0 in terms 
ofe£ Ex{E^) by Ck = (-l)*^(*^-')/2e°^/c7r k > 0 (so that e\ = e) and eo = [1] ~ lo-
They have the following properties: 

(a) In E^iS'') we have, for any k ^ 0; 

r{uk) = (r, U) \s + (r, ek) Uk (for all r); (13.8) 

(b) The class itfc, regarded as a map Uk'.S^ ^ Kk* induces Uk^z = ek £ Ek{Rk) ^^ 
homology, where z G Ek(S^) is dual to Uk; 

(c) efc oem = (-If'^ek^m ifk>Oorm>0; 

(d) ^efc = ê :® 1 + 10eA: for all k > 0; 

(e) ecfc = 0 € E* for all k ^ 0; 

(f) x^k = -ek for all k > 0; 

(g) ek o[A] = Xek for all rational numbers X e E^ and all k > 0; 

(h) r*e/k = [(r, U)] * [(r, ek)]oek for all k ^ 0 and all r:k -^ m; 

(i) Qkek = CQ = e*̂  in Q[E)^, for all fc ^ 0, for additive operations; 

G) ^k*ek — 1 in E„(E, o), for all k^O, under stabilization. 

REMARK. The results make it clear that the correct interpretation of e°^ is [1] ~ lo = 
[1] - [Oo], as in [28] and elsewhere, rather than just the element [1]. 



Section 13 Unstable cohomology operations 761 

PROOF. We give extensive details of this proof (only), as a good example of our ma-
chinery in action. 

We establish eq. (13.8) for A: > 0, and thus (a), by induction on k. It holds for A; = 1 by 
definition. We recognize SS^ as S^^^ and Suk as Uk-\-i', then by eq. (13.3), eq. (13.8) 
holds for A: -I-1 if it holds for k, provided that ek-\.\ = (—l)'̂ eoeA:. Our definition of ê  
is designed to do exacdy this. More generally, we have (c). 

For A: = 0, we write E*{S^) = E*®E*. In Alg, this is a product of algebras, with the 
projections induced respectively by the inclusions of the basepoint and the other point. 
In this presentation, UQ = (0,1), and of course I5 = (1,1). By eq. (11.1), the action on 
ILQ is 

r{uo) = r((0,1)) = ((r, IQ), (r, [1])) = (r, lo)(l5 ^ uo)-h (r, [l])uo, 

which gives (a) if we define eo = [1] - lo-
Then (b) is an application of Proposition 10.5. When we substitute eq. (13.8) into 

eq. (10.14), we find, for A: > 0, 

since u^ = 0. This gives (d). (But ^eo acquires the extra term eo 0 eo, because UQ ^ 0; 
this is obvious anyway from Proposition 11.2. Also, (c), (d), and (g) are clearly false for 
A; = m = 0.) Similarly, eq. (10.15) yields I5 -h {eek)uk = I5 (even for k = 0), which 
gives (e). 

For (g), which includes (f) as the special case A = - 1 (by Proposition 10.12(a) and 
Proposition 11.2(d)), the distributive law (10.11) and (d) yield ejko[A4-/x] = eifeo[A] + 
e/ko[/x] for all A,/i G E^. Since e/bo[l] = e ,̂ (g) follows. (We are in effect expanding 
r(Awfc).) 

For (h), we substitute eq. (13.8) into eq. (10.45). On the left, we have 

{sr){uk) = (5, u U) I5 + (s, r^ek) Ufc, 

while on the right, iteration of eq. (13.8) yields, after simplification, 

s{r{uk)) = (5, [(r, U)]) Is + (5, [(r, U)] * [(r, ek)]oek) Uk, 

with the help of eqs. (10.16) and (10.23). Comparison of these gives r^Ck. 
For A: = 1 in (i) and (j), we stabilize eq. (13.2) by Lemma 10.7 and compare with 

Definition 12.1 and [8, (11.24)]. For general A:, we use the multiplicative properties in 
diag. (6.16) of qk and cTki,' D 

We have the analogue of Corollary 12.4. By Lemma 2.3(d), a based operation r:k -^m 
is represented by a based map r:{E_^,o) —> (^^,0) . We need to know its effect on 
homotopy groups. 
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LEMMA 13.9. Given a based operation r:k -^ m, the induced homomorphism on homo-
topy groups 

is given on v e E^~^ for any h^Q by 

r^v= {r,[v]oeh) in ET'^. 

PROOF. Viewed cohomologically, the element v G E^"^ or map v:S^ -^ E^j^ cor-
responds to vuh € E^{S^,o). From eqs. (10.16) and (13.8), we compute r{vuh) = 
(r, ['y]oe/i} tt/i, which simplified because r is based, so that (r, U) = 0. D 

14. Complex orientation and additive operations 

In this section, we study the effect of a complex orientation on additive operations. The 
relevant test space is CP°°, for which E^iCP"^) = J5*[[x]] by [8, Lemma 5.4], where 
X = x(^) is the Chem class of the Hopf line bundle ^. All the stable results carry over, 
almost without change, except that now b\ = ê  instead of 1. 

We assume that E^{E_k\ Q{E)t and E^{E,o) are free E*-modules. 

DEHNITION 14.1. We define elements bi G Q{E)\^ for alH ^ 0 by the identity 

CX) 

px = b[x) = Y^x'^bi in £;*{CP~) %Q{E)l ^ Q{E)l\[x]], (14.2) 
t=0 

where b{x) is a convenient formal abbreviation that rapidly becomes essential. 

We use eq. (6.39) to convert eq. (14.2) to the equivalent form 

oo 

rx = ^ ( r , 6 i ) x * in E^{CP°^) = E*[[x]l for all r. (14.3) 

Since the Hopf bundle is universal, eqs. (14.2) and (14.3) hold for the Chern class 
X = x{0) of any complex line bundle 0 over any space X (after completion, if necessary). 

PROPOSmON 14.4. The elements bi G Q{E)li have the following properties: 

(a) 6o = 0 and b\ = e^ so that b{x) = x^e^ -f x^^bi -f x^063 H ; 
(b) The Chem class x G E'^(CP'^\ regarded as a map of spaces x:CP°° -^ E_2^ 

induces qix^pi = 6i G Q{E)li, where ft G EhiiCP"^) is dual to x\' 

(c) Q{ip)bk is given by 

k 

Q{'il;)bk = X;S(2 , A:) 0 bi in Q{E): 0 Q{E)l 
1=1 
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where B{i,k) denotes the coefficient of x^ in 6(x)*, or formally, 

QWb{x) = f^b{xY®bi; 

(d) Q{e)bk ^Ofork>l or formally, Q{e)b{x) = x; 

(e) The stabilization Q{a):Q{E)l -> E^{E,o) sends the element bi G Q{E)\i to the 
stable element bi € En^iiE.o) o/[8, Definition 13.1]. 

PROOF. For (a), we restrict eq. (14.2) to CP^ = 5^ and compare with eq. (12.2). For 
(b), we apply Proposition 6.44. For (c) and (d), we substitute p into diags. (6.33) and 
evaluate on x. For (e), we compare Definition 14.1 with [8, Definition 13.1]. D 

Still following the stable strategy, we next apply p to the multiplication map /i: CP°° x 
Cpoo _^ cpoo Q̂ Q(J^^ î̂ g fQj.jjĵ  identity 

h{F{x,y)) = FR{b{x)My)) = Kx) -f b{y) + 5]6(x)^ b{yy maij (14.5) 

in Q{E)l[[x, 2/]], which looks exactly like the stable version [8, (13.6)]. Again, FR{X, Y) 
is a convenient abbreviation. The consequences are the same. 

The P'local case. 

LEMMA 14.6. Assume that E* is a p-local ring. Then the generator bk of Q{E)l is 
redundant unless k is a power of p. 

PROOF. The proof of [8, Lemma 13.7] applies without change. D 

We therefore reindex the fe's. 

DEHNITION 14.7. When E* is a p-local ring, we define 6(i) = bpi for each i ^ 0. 

As in [8, §13], we obtain 

b{\p]{x)) = \p]R{b{x)) = pb{x) ^Y^HxY^'mgi (14.8) 
i>0 

in Q(£^)i[[a:]], which looks exactly like the stable version [8, (13.11)] but is in a different 
place. Again, we extract the coefficient of x^ . 

DEFINITION 14.9. For each fc > 0, we define the jfcth main (additively unstable) relation 
as 

{Uk): L{k)^R(k) inQ{E)l (14.10) 
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where L{k) and R{k) denote the coefficient of x^ in the left and right sides of eq. (14.8) 
respectively. 

15. Complex orientation and unstable operations 

In this section, we extend our study of the test space CP°° to all unstable operations. 
Everything we did in Section 14 carries over, with a lot more complication but no 
essential difficulty. Again, it is enough to know r{x) for all operations r, where x — 
x{$) e E'^{CP°^) is the Chem class. 

We assume that E^{E_i^) is a free E*-module for all k. 

DERNITION 15.1. We define elements bi G E2i{E_2) for i ^ 0 by the identity 

oo 

r{x) = ^(r,bi) x' = (r,b{x)) in E^(CP~) = E^[[x]] (15.2) 
1=0 

for all r, where we take x* inside the ( , ) and write formally b{x) = X)i bix\ 

We first determine how the elements bk interact with the Hopf ring structure. 

PROPOSITION 15.3. The elements bk G EikiKi) of the Hopf ring E^{E^) have the 
properties: 

(a) 6o = h cind b\ = 62 = - e°^ so that b{x) = h -f 6(x) if we define 

b{x) = 5]&iX^ in E4E2)[[x]]; (15.4) 
i = l 

(b) The universal Chem class x e E^{CP°°), regarded as a map x:CP°° ~̂  £2, 
induces x^(3k = bk e Eik^Ri). ^here f3k G EzkiCP"^) is dual to x^ (as in [8, 
Lemma 5.4]); 

(c) #fc = Yli^j=k ^i ^ ^3' or formally, ipb{x) = b{x) 0 b{x); 
(d) ebk = 0 if k > 0, and ebo = 1, or formally, eb{x) = 1; 
(e) xb{x) = (I2 + 6(x))*(-^) = I2 - b{x) + 6(x)*2 - 6(x)*3 + . . . ; 

(f) For all rational numbers X € E^, 

b{x) o[X] = (I2 + 6(x))*^ = I2 + Xb{x) 4- ^ ^ ^ b{xy^ + • • •; (15.5) 

(g) For all r, r^bk is given as the coefficient ofx^ in the formal identity 

CX) 

r.6(x) = [(r, I2)] * *j 6(x)°^o[(r,6^)] in E,{E,)¥\Y 
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(h) q2hk = bk £ QiE)^^, the additively unstable element in Definition 14.1; 
(i) (Ji^bk = bk E E2k-2{E,o), the stable element in [8, Definition 13.1]. 

REMARK. The sign in (a) is absent from [23, Proposition 2.4]. The commutativity of 
diag. (6.16) requires 

Q(0)(gi09i)(e0e) = -{q\e){qie) = -Qib^o) = -^262 = qiieoe), 

bearing in mind that deg(gi) = 1. The unexpected sign first appeared in Proposi-
tion 13.7(c). 

PROOF. Naturality for the inclusion S'^ = CP^ C CP°° gives (a), by comparison with 
Proposition 13.7. Part (b) comes fi-om Proposition 10.5. We read off (c) and (d) from 
eqs. (10.14) and (10.15). Part (e) is the special case A = - 1 of (f). For (f), eq. (10.11) 
and (c) give b{x) o[A+/x] = 6(x)o[A] * 6(x)o[/i] for all A, /x G E". Since b{x) o[l] = b{x) 
and we are working in the *-multiplicative group of formal power series over E^{E_2) 
of the form 1 H , which has no n-torsion if 1/n € -B*, the result follows. (We are in 
effect expanding r(Ax); cf. eq. (10.16).) For (g), we apply eq. (10.45) to x G E'^{(CP'^) 
and expand. For (h) and (i), we stabilize eq. (15.2) by Proposition 6.11 and compare 
with the additive and stable versions, eq. (14.3) and [8, (13.3)]. D 

From (c) and eq. (10.11), we deduce the convenient distributive law 

(a * c) o 6(x) = aob[x) * co6(x), (15.6) 

where a and c are allowed to involve x. This formal device will prove extremely useful 
for computations in Hopf rings. We have one immediate application to the Frobenius 
operator F defined by Fc = c* .̂ 

COROLLARY 15.7. For any element c in the Hopf ring E^{E_^), 

(Fc)obk = l ^(^°^^) ^^P' '^* ^P^' 
\0modp, if k is not divisible by p. 

PROOF. By iterating eq. (15.6) we have {Fc)ob{x) = F{cob{x)). We pick out the 
coefficient of x'̂ , working mod p. D 

We next study the naturality of operations with respect to the multiplication //: CP°° x 
Cpoo ^ cpoo YVe expand fx^'rix) = r{p.*x) by the formal group law [8, (13.5)] and 
the Cartan formulae, to obtain the analogue of eq. (14.5). The complicated result is best 
expressed formally as 

6(F(x,y)) = FR{b{x)My)) = b{x)*b{y) * * {b{xy'ob{yy^o[aij]) (15.8) 

as in [23, Theorem 3.8(i)], where FR{X,Y) = X*Y**ij X°^oy°:^o[aij], in the sense 
that the o- and *-multiplications apply only to Hopf ring elements, not to x and y . 
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The p-local case. Lemma 14.6 carries over. 

LEMMA 15.9. Assume that E* is a p-local ring. Then the o-generator bk of the Hopfring 
E*{E_^) is redundant unless k is a power of p. 

PROOF. AS before, we take the coefficient of x^y^ in eq. (15.8), where z 4-j = fc. On the 
left, there is a term (̂ )6fc, from bk{x-\-y)^, and this is the highest b that occurs; on the 
right, no b beyond bi or bj occurs. We choose i and j as in [8, Lemma 13.7], to make 
(̂ ) not divisible by p and therefore invertible, which shows that bk is redundant. D 

We therefore reindex the 6's as usual. 

DEFINITION 15.10. When J5* is a p-local ring, we define 6(i) = bpi for each i ^ 0. 

We extend standard multi-index notation slightly by defining 

6°^ = 6°o^o6°,^o6°^^o6(«o... (15.11) 

for any multi-index / = (ZQ, i\, 22, • • •)• We also need a shift operation. 

DEFINITION 15.12. Given a multi-index / = (20,^1,12, •••)» ^^ define the shifted multi-
index s{I) — (0,io,ii , i2, . . •). We iterate this process h times, for any /i ^ 0, to form 
s^{I) = (0 , . . . ,0,zo,ii,22,-. .)• ^^ ^vc" ^^^^ î ' t>y defining s~^{I) = (11,12,^3,- ••)» 
provided io = 0; our convention is that this is undefined if ZQ ^^ 0. 

This notation allows us to iterate Corollary 15.7 neatly in the form 

(Fc)o6°^ = /^(^°^°'''^^^)"^odP ifio = 0; (15 13) 
^ ^ lOmodp ifzoT^O. 

We follow the stable plan and study instead of /i the much simpler p-th power map 
C:CP°° —• CP°°. Naturality of the general operation r is expressed by C* (̂̂ ) = 
r(C*x). When we substitute the p-series [8, (13.9)] and expand, we obtain, as in [23, 
Theorem 3.8(ii)], 

b(px + Y^Qix'-^^^ = b{xyP * * b{xy'-^^o[gi] (15.14) 

in £^*(£^)[[x]], or, in condensed notation, 6([p](a:)) = \p]R{b{x)). 

DEFINITION 15.15. For each A: > 0, we define the fcth main unstable relation as 

{Tlk): L{k) = R{k) inE4E2l (15.16) 

where L{k) and R{k) denote respectively the coefficient of x^ in the left and right sides 
of eq. (15.14). 
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Thus L{k) is the coefficient of x^ in 6([p](x)), exactly as in Definition 14.9. How-
ever, R{k) is vastly more complicated than before, and we study it in more detail in 
Section 19 in the case E = BP. The work of Ravenel and Wilson [23], which we re-
view in Section 17, implies that, despite appearances, the relations (TZn) contain all the 
information present in eq. (15.8), with the understanding that we use eq. (15.8), by way 
of Lemma 15.9, only to express the redundant bj's (which still appear in V'6(ik), 6(A;) O[A], 
and r^6(^)) in terms of the 6(i). 

16. Examples for additive operations 

In Section 5, we developed a comonad to express all the structure of additive unstable E-
cohomology operations, for favorable E. In Section 6, we developed a bigraded algebra 
Q{E)l that contains equivalent information, where QiE)^ has degree k - i. In this 
section, we describe Q{E)l for each of our five cohomology theories £""(-), namely 
E = H{¥p), MU, BP, KU, and K{n), (The first example splits into two, and we break 
out the degenerate special case if (0) = H{Q),) As stably in [8], our purpose is to exhibit 
the structure of the results, not to derive them. 

All the results here are formally very close to the stable results. By Proposition 12.3(g), 
Q{a)e = 1. As E„{E, o) = colimfc Q{E)^ by eq. (4.8), where the suspensions Q{E)^ —• 
Q{E)^'^^ have been revealed in Lemma 12.5 as simply multiplication by e, we stabilize 
everything merely by setting the suspension element e = 1. In this way, we recover all 
the corresponding stable results. Indeed, in the case E = KU, we have to obtain the 
stable structure this way. 

All four answers of Section 5 are of course available, but the Second Answer remains 
the most practical, consisting as in Theorem 7.7 of the coactions 

pxiE'^iX) . E*{X)§Q{E)t 

These coactions are automatically additive, multiplicative (for cup products and x-
products), and unital (px^x = Ix <8) 1). (We simplify notation by suppressing redundant 
completions and suffixes.) 

We use exactly the same test spaces and test maps as we did stably. The point remains 
that complete knowledge of the behavior of £"*(-) on these is sufficient to suggest the 
correct structure of Q{E)l (except that the case E = K{n) requires some extra work). 
By Proposition 6.42(b), the one-point space T in effect defines the right unit TJR, and the 
circle S^ defines e e Q{E)\ by eq. (12.2). As all our examples have complex orientation, 
we have available the elements 6, of Definition 14.1. 

In each case, we list the generators and relations for the bigraded E*-algebra Q{E)l, 
describe the right unit ry ,̂ and give the values of the algebra homomorphisms ^p = 
Q{7p):Q{E)l ^ Q{E)l ® Q{E): and e = Q{e):Q{E): -> £* on each generator. In 
some cases, we can express the universal property of Q{E)l very simply. The stabilization 
Q(cr) maps each generator to its stable namesake, except that of course Q{(j)e = 1. 
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Example. H{¥2). We take E = H = H(F2), the Eilenberg-MacLane spectrum. Our 
test space is RP"^, for which H*{RP°^) = Fift], a polynomial algebra on the generator 
t e H\RP°°), We define elements a € Q{H)l by the identity 

oo 

pt = Y.^'®Ci in //*(EP-) ®Q(H)i ^ Q{H)l[\t]]. 

Restriction to 5^ = EP^ shows that co = 0 and ci = e. As stably, the multiplication 
p: ]RP°° X IRP~ -* 1RP°° implies that ĉ  = 0 unless i is a power of 2. We therefore 
write î = C2i G Q(H)2t for each i ^ 0, so that 

oo 

pt^Y^F^^i inH'{RP^)^Q{H)l^Q{H)l[[t]l (16.1) 

which looks just like the stable version [8, (14.1)], except that now ô = e. 

THEOREM 16.2. For the Eilenberg-MacLane ring spectrum H = H{¥2): 

(a) Q{H)l = F2[^o,6»6,6, •••]»« polynomial algebra over ¥2 on generators ^i G 
Q{H)2i for i ^ 0, where 0̂ = e; 

(b) In the complex orientation for H{¥2\ 6(t) = ^j for all i ^ 0, and bj -0 if 3 is 
not a power of 2; 

(c) il) is given by 

n 

^Cn=2^t ,®^i inQ{H):^Q{H)U 

(d) £ is given by e^n = Ofor n > 0 and e^o = 1. 

PROOF. Part (a) is of course a reformulation of classical results. For fixed fc, the stabiliza-
tion Q(cr): Q{H)^ - • H^{H, o) is the monomorphism that is dual (with a shift in degree) 
to the well-known epimorphism GI:H*{H,O) -^ PH*{H,k) *^t tells which Steenrod 
operations can act nontrivially on H^[-). The proof of (b) is the same as stably. We 
prove (c) and (d) by taking M = ff*(RP'^) in diags. (6.33) and evaluating on t D 

As stably in [8, §14], we combine the universal property of the polynomial algebra 
F2 [Co, i\, 6» • • •] with Theorem 7.7(b). 

COROLLARY 16.3. Let B be a discrete commutative graded ¥2-algebra. Assume that 
the ring homomorphism 0:H*{X) -* H*{X)®B is natural for spaces X. Then on 
t € H^iRP'^l e has the form 

0 0 

et = ^ f2' ® ^l in H* {UP°°) g B S B[[t\], 
i=0 
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where the elements ^̂  € B~(2*~*) determine 6 uniquely for all X and may be chosen 
arbitrarily. 

Example. H{Fp) (for p odd). We write H = H{¥p), the Eilenberg-MacLane spectrum. 
The complex orientation defines elements ^i = 6(i) for z ̂  0, and, just as stably, bj = 0 
whenever j is not a power of p. The only difference now is that ^Q = bi = e^ instead 
of 1. 

The other test space is the lens space L = K{Fp, 1), for which H*{L) — ¥p[x]<^A{u). 
As X is a Chem class, pix is given by eq. (14.2). This leaves only piu, which reduces 
(as stably) to 

oo 

PLU = u®e-\-Y^x^' ^Ti in H*{L)^Q{H)l (16.4) 

for certain elements r̂  that it defines. 

THEOREM 16.5. For the Eilenberg-MacLane ring spectrum H = H{¥p), with p odd: 

(a) Q{H)l is the commutative algebra over Fp with generators: 

e € Q{H)\, a polynomial generator; 
^i € Q{H)2 i for all i^Qy a polynomial generator for i > 0; 
Ti e Q{H)2pi for all i^O, an exterior generator; 

subject to the relation ô = ^* 

(b) ^ is given by ipe = e^e, 

k 

^^k = J^^ti^^i inQ{H):®Q{H)l (16.6) 
i=0 

and 

k 

ipTk^Tk^e + Y^^C.^ri inQ{H):§>Q{H)U 
1=0 

(c) e is given by ee = 1, e^i =Ofori>0, and en = Ofor all i. 

PROOF. Part (a) is again a reformulation of classical results, which may be recovered 
in this form from [27, Theorem 8.5], in somewhat different notation, by taking the 
indecomposables. We obtain (b) and (c) by substituting pi in diags. (6.33) and evaluating 
on X and u. D 

We have the analogue of Corollary 16.3. 
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COROLLARY 16.7. Let B be a discrete commutative graded Fp-algebra. Assume that 
the ring homomorphism 0:H*{X) —• H*{X)^B is natural for spaces X. Then on 
H*{L) = Fp[x] ® A{u\ e has the form 

0x = x(8)e'̂  4 -^x^*0^- , 

oo 

Ou = w^e' -h ^ x̂ * 0 T / , 

t=0 

where the elements e' G B^ -̂ G J5"2(P*~I)^ ^^^ x̂f ^ 5-(2p*-i) determine 6 uniquely 
for all X and may be chosen arbitrarily. 

Example. H{Q). We write E = H = H{Q), the Eilenberg-MacLane spectram. As 
always, there is the suspension element e G Q{H{Q))\, whose properties we know from 
Proposition 12.3. There is nothing else. 

THEOREM 16.8. For the ring spectrum H = H{Q): 

(a) Q{H)l = Q(e], a polynomial algebra oneG Q{H)\; 

(b) The coalgebra structure is given by tpe^ e^e andee= \. 

Example. MU. The coefficient ring is MU* = Z[xi,X2,X3,...], with a polynomial 
generator Xi in degree -2z for each i. These give rise to the elements r]RXi G Q{MU)Q^^. 

We have complex orientation, almost by definition, and therefore the elements hi G 
Q{MU)2iy with 60 = 0 and 61 = ê . We have the relations (14.5) between the 6's and 
the r)RV, but unlike the stable case, because e is no longer invertible, they do not render 
the generators T^RXI redundant. Implicit in [23, Corollary 4.6(a)] is that this is the whole 
story. 

THEOREM 16.9 (Ravenel-Wilson). For the unitary Thom ring spectrum MU: 

(a) Q{MU)l is the commutative algebra over MU* with generators: 

rjRXi G Q{MU)Q^' (for i > 0); 
e£Q{MU)\; 
bieQ{MU)i(fori^\): 

all of even degree, subject to the relations (14.5) and b\ = e ;̂ 

(b) tp is given by rpe = e<Sie and 

^bk = ^ B(i, k) 0 bi in Q{MU): 0 Q{MU)l , 

where B{i, k) denotes the coefficient of x^ in 6(x)*; 

(c) e is given by ee= \ and ebk = Ofor k > \. 
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Although we no longer have a polynomial algebra, part of Corollary 16.3 carries over. 
It applies equally well to the two following cases, which we include here. 

COROLLARY \6.\0. Let B be a discrete commutative E^'-algebra, where E = MU, BP, 
or KU. Then a ring homomorphism 6: E*{X) —• E*{X) 0 B that is natural for spaces 
X is uniquely determined by its values on E*{S^) and E*{CP^). 

Example, BP. The coefficient ring is now BP* = Z(p)[i;i,^2,1^3,...], with polynomial 
generators Vn in degree ~2(p^- l ) . We have complex orientation, but because BP* is 
p-local, we need only the generators 6(i) G Q{BP)2pi, where 6(0) = ê . Again, [23, 
Corollary 4.6(b)] implies that this is all there is; in particular, eq. (14.5) is redundant, 
except to express the other bj in terms of the b(i) and the elements Vi and Wi = rjRVi. 

THEOREM 16.11 (Ravenel-Wilson). For the Brown-Peterson ring spectrum BP: 

(a) Q{BP)l is the commutative algebra over BP" with generators: 

Wi = mvi ^ Q(BP)o'^^'"'^ (for i > 0); 
eeQ{BP)\; 
6(,)E0(BP)^p, (/bri^O); 

subject to the main relations (Tlk) (from eq. (14.10))/or fc > 0 and 6(o) = e^; 

(b) ^ is given by ilje = e<S>e and 

where B{i,p^) denotes the coefficient ofx^ in 6(x)*; 

(c) e is given by ee= \ and eb(^k) = 0 (for k > 0). 

We discuss the structure of Q(JBP)* in more detail in Section 18. 

REMARK. Alternatively, we could use the generator hi instead of 6(i) as in [6]; however, 
Quillen's element U (see [21] or Adams [1, n.l6]) does not exist in this context for 
i > 1, for lack of conjugation in Q(JBP)*. 

Example, KU. We take E = KU, the complex Bott spectrum, with the coefficient 
ring KU* = Z[%u-^] (where u e KU'\ right unit TJR'.KU* -> Q{KU)l given by 
r}RU = V, and Chem class x given by [8, (5.2)]. The simple form [8, (5.16)] of the formal 
group law reduces eq. (14.5) to 

6(x -h 2/ -f uxy) = h[x) + h[y) -f h{x)h{y)v, (16.12) 
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which looks like the stable version [8, (14.13)], with b{x) — b\x -f bjx^ + b^x^ H , 
except that now bi = e^ ^ I. The coefficient of x^y^ yields the relation 

like [8, (14.15)], except that the case z = 1 now gives the reduction formula 

bibi = (i-fl)bi+ii;-^ -^-iubiv"^ for i > 0. (16.14) 

The results here are much clearer than in the stable case, and there is some overlap with 
the work of tom Dieck [10]. 

THEOREM 16.15. For the complex Bott spectrum KU: 

(a) Q(jK'[7)J is generated as an algebra over KU* = Z[ix, u~^] by the elements: 

v = VRue Q{KU)^l' 
V-' = rjRU-' e Q{KU)l; 
e € Q{KU)\, the suspension element; 
bi e Q{KU)lJor i > 0; 

subject to the relations b\ = e^ and (16.13)/or i > 0, j > 0; 

(b) Q{KU)l is a free KU^-module, with a basis consisting of all monomials of the 
forms v"^, biV^y ev^, and ebiV^, for i > 0 and n G Z; 

(c) ijj is given by ijje^ e(Sie and 

k 

xPbk^J2B{i,k)^bi inQ{KU):^Q{KU)l 

where B{i, k) denotes the coefficient ofx^ in 6(x)*; 

(d) e is given by ee— \ and ebk = O/or all k > \. 

PROOF. We start with (b). We take the Hopf line bundle ^ over CP°° and regard the 
element u'^[^] e KU^CP"^) as a map / : C P ~ -^ KR2 = ZxBU, By Lemma 4.6, 
/ induces an isomorphism of i f f/*-modules 

KU,{CP^) > QKU,{ZxBU) ^ KU* © QKU.[BU), 

which we compute. By the definition [8, (5.2)] of the Chem class x, u~*[^] = tz""̂  -f x 
in KU'^{CP'^)\ geometrically, the components of / are the map CP°° -^ Z with image 
1, andx:CP°° -> 5C/. 

Thus ^2/*A) = y~^ and 92/*A = q2X*^i = bi for i > 0, with the help of Propo-
sition 14.4(b); we have the desired basis of Q{KU)l. For Q{KU)l'^, we multiply by 
v^'^'^^, an isomorphism. 
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For the odd case, the description of KU^{U) in [8, Corollary 5.12] in terms of the 
Bott map b: S{Z x BU) —> U shows that multiplication by e induces an isomorphism 

We have specified enough relations to reduce any monomial in the fe's, e, v, and v~^ 
to a linear combination of the elements in (b), which proves (a). Parts (c) and (d) are 
included in Propositions 14.4 and 12.3. D 

Now that we know the additive situation, we return to finish off the stable case. We 
may discard the odd spaces in eq. (4.8) and write 

KU.{KU,o) = colmQ{KU)l''. 
n 

COROLLARY 16.16. In the stable algebra KU^{KU, 6): 
(a) Every element of KU*{KU,o) of even degree can be written in the form 

for some integers q, m, n, and Xi; 
(b) This element c = 0 if and only ifXi = Ofor all i. 

PROOF. By Theorem 16.15(b), we can write the general element of Q{KU)^'^^ uniquely 
in the form 

: = u f̂ Aov"* -\-Y^XiU''%jv 

2 with integer coefficients. Since e^ = 6i, eq. (16.14) yields 

. n n V 

e^c = u^-^^ I XoW^bi -f ^ ( i -h l)XiU-'-^bi+i -f- Y^ iXiU-% j t;-^-^ 

in Q{KU)l^^, which gives (a). Further, e^c = 0 only if c = 0, which implies (b). D 

Example. K{n). The coefficient ring is K{n)* = Fp[vn^v~^], where Vn G 
K{n)~^^^''~^\ We write Wn = rjRVn, as we did for BP. Obviously, Wn and Vn are 
no longer equal as they were stably, because they lie in different groups. 

We have a complex orientation, and therefore the usual elements bj. Because K{ny 
is p-local, we need only the 6(i) for i ^ 0. (In fact, bj = 0 if j is not a power of p and 
j < p'̂ , for dimensional reasons, but not in general if j > p^.) When we apply p to the 
p-th power map C:CP°° -^ CP°°, which induces C*x = VnX^"^ as in [8, (14.26)], we 

n 

obtain bj Wn = "^n^j^ and therefore 

l^^ = vih(^w-' in Q{K{n)ff (16.17) 
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for i ^ 0. This stabilizes to [8, (14.27)]. 
In particular, IfL. = Vnb{Q)W~^. As always, 6(o) = ê . A more sophisticated analysis, 

involving other cohomology theories as in [28, Proposition l.l(j)]» shows that this relation 
can be desuspended once to give 

eb̂ o)'̂  = Vnew:;,^ in Q[K{n)f^^^\ (16.18) 

The other test space is the skeleton Y = L̂ "̂"̂  of the lens space L, for which 
K{ny{Y) = A{u) (8) K{ny[x:x^ = 0]. We know pyx, because x is inherited from 
CP°°. As stably, we define elements ai,Ct G Q{K{n))l by the coaction 

PYU = ^x' (S^ai-^ ^^ux' (^Ci. (16.19) 
t=0 1=0 

By restriction to S^ C Y, we see that oo = 0 and co = e. Then eq. (16.18) is equivalent 
to the statement pyy = y 0 e, where y = Vnux^'"''^ G K{ny{Y); in other words, y 
behaves like u\ E K{ny{S^). The same partial multiplications /x: L^^-^^ x L^^ —̂  y as 
in [8, §14] show that Ct = 0 for alH > 0 and that Oi = 0 for i not a power of p. We 
therefore reindex, as usual. 

DEFINITION 16.20. We define a^i) = apt e Q(î )2p»» for 0 < z < n. 

In the new notation, 

n - l 

pyw = u0e-h ^xP'®a(i) in K{ny{Y)(S>Q{K{n))\ (16.21) 
t=0 

Having odd degree, the a(t) are exterior generators of Q{K{n))l. This is not all; we 
again appeal to [28, Proposition 1.1 (i)] to find that one more factor e can be squeezed 
out of eq. (16.18) if we first multiply by a(o), to give the relation 

"W^i"'= «na(0)<' inQ{Kin)ff-\ (16.22) 

THEOREM 16.23. For the Morava K-theory ring spectrum K{n): 
(a) (̂̂ "(71))* is the commutative bigradedalgebra over K(n)* = Fp[u„, t)~'], where 

Vn G /ir(n)~^(''"~'), with generators: 

e e Q(iir(n))j; 
a(i)eQ(/<-(n))'p, (/brO<^<n),• 
6(oGQWn))2p, (/bri^O); 

subject to the relations 6(0) = ê . (16.17), (16.18), and (16.22); 
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(b) il) is given by i/je = e <S) e, 

M^b) =a(;b)®e +J]6P^_.^0a(i) in Q{K{n))l^Q{K{n))l, (16.24) 
t=0 

and 

^b(k) = ^B{iy)^bi inQ{K{n))l^Q{K{n))l (16.25) 

where B{i, p^) denotes the coefficient ofx^ in 6(x)* (and Lemma 14.6 is used to express 
b{x) in terms of the b^jy Vn, and Wn); 

(c) e is given by ee = 1, ea^k) = 0 (for k ^ 0), and eb(k) = 0 (for k > 0). 

PROOF. The algebra structure (a) is implicit in the main theorem of [28], by taking 
indecomposables. As always, we obtain t/̂ a(i) and ea(i) by evaluating the coaction axioms 
(6.33) on w G K(nY(y). The rest of (b) and (c) can be obtained similarly, or by appealing 
to Propositions 12.3 and 14.4. D 

COROLLARY 16.26. Let B be a discrete commutative K(nY-algebra, Then a ring ho-
momorphism 0:K(n)*(X) —• K(n)*(X)§}B that is natural for spaces X is uniquely 
determined by its values on K(ny{CP°^) and K(ny{Y). 

REMARK. If A: ^ n, eq. (16.25) simplifies just as in [8, Theorem 14.32] to 

k 

#W = E C i ) ® ̂ « ^̂  Q{K{n))yQ{K(n))l 
t = i 

which resembles eq. (16.6). 

17. Examples for unstable operations 

In this section, we discuss the enriched Hopf ring for each of our five cohomology theories 
£•*(-), namely for E = if(Fp), MC7, BP, KU, and K(n). According to Section 10, 
this is what we need to handle general unstable operations. As in Section 16, we divide 
the case H{¥p) in two and treat K{0) = ff(Q) separately. Even more than before, our 
intent is to exhibit the structure of the results, not to reestablish them. 

Our strategy is the same as in the stable and additive contexts, using exactly the 
same test spaces and test maps. Each E has a complex orientation, which provides by 
Definition 15.1 the elements bi of the Hopf ring, in addition to e and the [v]. We have 
x[l] = [-1] by Proposition 11.2(d), and its properties were listed in Proposition 10.12. 

As pointed out in (10.46), we need more than just the Hopf ring and the elements [v]. 
The elements Q{s)qkC = ssok^c are given by Section 16. We also need r^c for each 
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operation r; by Theorems 10.19(c) and 10.33(c), it is in principle enough to know these 
for each o-generator c. 

Our presentation changes somewhat from Section 16. Each family of ©-generators has 
its own Proposition, which lists all the pertinent information. It is therefore sufficient to 
describe each Hopf ring by listing its o-generators and the defining relations, and to refer 
to these propositions for further details. We recover all the results for additive operations 
merely by taking the indecomposables. 

Example. MU. We recall that Mf/* = Z[xi, X2,X3,...], where deg(xi) = -2z, is better 
described as generated by the elements aij, as in [8, §14]. We have the elements 6t, as 
well as e and [v] = rjR{v). Stably, [8, (13.6)] gave an inductive formula for rjRaij in 
terms of MU* and the 6̂ . Unstably, eq. (15.8) is only a relation between these elements. 
Corollary 4.6(a) of [23] says in effect that this is all there is. 

THEOREM 17.1 (Ravenel-Wilson). For the unitary cobordism ring spectrum MU, 
MUAMU ^) is the Hopf ring over MU* = Z[a:i,X2,a:3,...] with o-generators: 

[xi] e MUfsiMU 2i)P^ ^^ch i > 0 (see Proposition 11.2); 
e € MU\{MR\) (see Proposition 13.7); 
bi € MU^iiMUn) for i ^ 1 (see Proposition 15.3); 

subject to the relations e°^ = —b\ and eq. (15.8). 

Example. BP. The main reference is still [23]. As BP* is p-local. Lemma 15.9 and 
Definition 15.10 apply, to define the elements 6(i) of the Hopf ring. We have as always 
e and the elements [v] for each v E BP*. 

THEOREM 17.2 (Ravenel-Wilson). For the Brown-Peterson nng spectrum BP, BP^{BP^) 
is the Hopf ring over BP* = Z(p)[t;i ,^2,^3,...] with the o-generators: 

[A] e BPo{BPo), for each A € Z(p) (see Proposition 11.2); 
[vi] G BPo(SP_2(pn.i)), fori>0 (see Proposition 11.2); 
e G BP\{BP^) (see Proposition 13.7); 
6(i) G BP'^j.iiBP2) for x ̂  0 (see Proposition 15.3); 

subject to the relations [A] o[A'] = [AA'], [A] * [A'] = [A + A'], eo[A] = Ae, 6(i) o[A] = . . . 
(see Proposition 15.3(f)), e°^ = -6(o)» ci^d the main relations {Tin) for n > 0 as in 
eq. (15.16). 

We implicitly use eq. (15.8), but only to express inductively the 6j, for 3 not a power 
of p, in terms of the 6(t), v, and [v\\ this is needed for computing V'6(i), X^(i)^ \i) °[^y 
and r#6(i). 

PROOF. This is the content of [23, Corollary 4.6(b)]. By Proposition 11.2, each [v] for 
V G BP* can be expressed in terms of the [A] and [vi]\ we have enough generators. 
The listed relations come from Propositions 11.2, 13.7, and 15.3, and eq. (15.16). This 
reduces the *-generators (see Section 10) to three types: 
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(i) b^^o[v^]', 
(ii) eo6°^o[t;-^]; (17.3) 

(iii) [>^v'Y 

in terms of the multi-index notation 6°^ introduced in eq. (15.11). 
For each A:, the *-generators that lie in BP^ (BEk) generate it as a BP*-algebra. Assume 

first that k is even, so that we have only types (i) and (iii). We write BP^ = BP^ x EP^ 
as in Lemma 4.17; then 

BP,{BPk) ^ BP,{BP^) (^BP.{BP:f,), (17.4) 

where we recognize the first factor as the group ring over BP* of the abelian group BP^ 
with basis elements [v] for v € BP^. The type (i) generators lie in BPJBP'j^) and the 
type (iii) in BPi,{BP^), which is described by Lemma 4.4. Because [Xv'^] * [X'v'^] = 
[(A4-A')t;* ]̂, we have enough relations for the type (iii) generators. The work of [23] 
reduces the type (i) generators to certain allowable generators 6°^ ©[t;*̂ ], which form a 
system of polynomial generators BPJBP\). Since this reduction (see Section 19) uses 
only the relations (7^), we have enough relations. 

If k is odd, only generators of type (ii) occur. These reduce similarly to the allowable 
generators of type (ii), which are exterior generators of BPJBPi^). D 

Example. H{Q). This example is of course classical. 

THEOREM 17.5. For the ring spectrum H = -ff(Q), H^iK^) is the Hopf ring over Q 
with generators: 

[A] € HO{KQ) for each A € Q (see Proposition 11.2); 
eeH\{Iii) (see Proposition 13.7); 

subject to the relations [A] o[A'] = [AA'], [A] * [A'] = [A-hA'], andeo[X] = Ae. 

PROOF. For k <0, H^j^^T, and we have only the Q-basis element U. 
For fc = 0, H_Q = Q, regarded as a discrete group, and the group ring H^iKo) = Q[Q] 

has a basis consisting of the elements [A]. The first two relations, from Proposition 11.2, 
show how these multiply. 

For fc > 0, the third relation, from Proposition 13.7(g), reduces us to the single *-
generator e°^ £ Hk{Kk) ^^ H*{lLk)-^^ have the polynomial algebra Q[e° ^] if fc is 
even, or the exterior algebra A{e° *̂ ) if fc is odd. D 

Example, / f (F2). We write H = Hi^i). As ff*(fl; J is a Hopf ring over F2, we have 
the Frobenius operator F and the Verschiebung V. 

We imitate Definitions 15.1 and 15.10 in a mod 2 version, using the same test space 
IRP~ :;= K{¥2,1) as before, for which H^iRP"^) = ¥2[t]. We define a £ Hi{K\) = 
JTi(]RP~) for 2 ̂  0 by the identity 

0 0 

r{t) = Y^{r,Ci)t' = <r,c(t)) in i/*(IRP°°) (for all r), (17.6) 
t=0 
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where we write formally c{t) = ^^ CiV' as in Definition 15.1. In other words, Ci is dual 
to t and the elements Ci form an F2-basis of i /*(f i , ) . 

We are primarily interested in the accelerated elements C(i) = C2i. As before, we 
have the suspension element e. The complex orientation provides elements hi which are 
redundant, as in Section 16. 

PROPOSITION 17.7. The Hopfring elements Ci e Hi{H_\) (for i ^ 0) and C(i) = C2i € 
^2»(dSi) (for i ^ 0) have the following properties: 

(a) CO = li and C(o) = ci = e; 

(b) tpCk = ]Ct+i=/b ^ ^ ^i' or formally, il)c{t) = c(t) (g) c(t); 
(c) Fc(i) = C(i_i) /<7r 2 > 0, and VC{Q) = 0; 

(d) eck = Oifk> 0, am/ eco = 1, or formally, ec{t) = 1; 

(e) xc(t) = c(i)*("*), expanded as in Proposition 15.3(e); 

(f)c,*c, = CtOct+i; 
(g) Fc(i) = C(t) * C(i) = 0; 
(h)6i = CioCi inH2i{K2); 
(i) Ft>r fli/Z r, r^c^ is the coefficient oft^ in the formal identity 

r,c{t) = .* c(t)°^ o [{r,cj)] in / / . (F.)[[t l ] ; 

G) Q\^(i) = Ci '̂̂  Q(^)l» <2nd 9iCj = 0 (f j is not a power of 2; 
(k) tTuC(t) = Ci if^ H^{H^ o), and auCj =Oifj is not a power of 2. 

PROOF. The naturality of r for the multiplication /i:IRP°° x EP°° -^ EP°°, which 
induces /x*t = t x l - f - l x t , yields the identity 

Y,{r.Ck) ( t x l + Ixt)^ = 5 ] ; 5 ^ { r , c *c ,>f xt^ 

in /f*(IRP~ xIRP~) = F2[tx 1,1 xt], with the help of the Cartan formula (10.23). The 
coefficient of t* x t^ gives (f). The special case (g) of (f) also follows from eq. (10.32). 
We expand r(t^) for the Chem class t^ by eqs. (17.6) and (10.36) and compare with 
eq. (15.2); most terms cancel, to give (h). 

The other parts are formally as in Proposition 15.3, with all degrees halved, except 
that (c) is immediate from (b). D 

Just as in Lemma 15.9, except that everything is now explicit in (f), Cj is redundant 
unless j is a power of 2. This leads to the following elegant description of the Hopf ring, 
which is a reformulation of classical results. 

THEOREM 17.8. For the Eilenberg-MacLane ring spectrum H = i f (F2), H^{K^) is the 
Hopf ring over F2 with generators C(i) E H2i{K\) for i ^ Q (see Proposition 17.7), 
subject to the relation [1]*^ = IQ. 
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PROOF. By Proposition 17.7(c), we can write c°^ = yc°*^^) for any multi-index / = 
(20,21,12,...)- Then Fc°^ = F([l]oc°0 = F[l]oc°^(^) = 0 by eq. (10.13), as in 
eq. (15.13), and H^{H_j^) is an exterior algebra on those generators c° ̂  for which Y^^ U = 
k. Here, c°^ is dual to the primitive element Sq*''*̂ ' ik in cohomology (in terms of the 
Milnor basis [18] of H*{H^6)). (The index 2o serves only as padding, to ensure that 
21 + 22 -h 23 H < A:.) D 

Example. H{Fp) (for p odd). We write H = H{Fp), We have, as always, the suspension 
element e. The complex orientation defines elements bi for all 2 ^ 0; but Lemma 15.9 
shows that only the 6(t) = 6p» for 2 ^ 0 are needed. Also, 60 = h and b\ = 62 = -e°^. 
However, the bj for j not a power of p do not vanish, but satisfy bi * bj = (^^^)bi^j, 
which is all that survives from eq. (15.8). In particular, 6?^ = 0 for all 2 > 0, as is also 
clear from eq. (10.32) applied to x. 

For the other test space L = K{¥p, 1), we have H*{L) = ¥p[x] 0 A{u), We only 
need to know r{u). We define elements â  G H2i(K\) and Ci e H2i^\{K\) by 

cx> 00 

r{u) = Yl^T, ai) x' -f 5 ] ( r , c ) ux' in ff*(L), 
t=0 t=0 

which we condense formally to {r^a{x)) -h (r,c(x))u by writing a{x) = X^̂ atX* and 
c(x) = 5̂ ^ CtX*. Thus ttt is dual to x*, Ci is dual to ux*, and the â  and Ci form a basis 
o f i / . ( f i i ) . 

Again, we accelerate the indexing by defining a(£) = api for 2 ^ 0 . 

PROPOSITION 17.9. The Hopfring elements ai e H2i{Ri), a(i) = api e H2pi{IL\\ and 
Ci G H2i^\{K\)> (for 2 ̂  0), /wv^ the following properties: 

(a) oo = li and CO = e; 

(b) V̂ afc = Ei+i=fc «i ® %' 

(c) Va(^i) = a(i-i) /<7r 2 > 0, and Va^o) = 0; 

{d)eak =Oforallk>0; 

(e) x<i(^) = a(x)*̂ ""^^ expanded as in Proposition 15.3(e); 

(f)ai*aj = (*"^ )̂ai+j; 

(g) Fa(,) = al^ = 0; 

(h) Ci = e * at,-

(i) For all r, r^ak is the coefficient of x^ in the formal identity 

T.a{x) = * b{xy'o[{r,ai)] * * a(x)o6(x)°^o[(r,Ci)] in H.{H^)[[x\]-
t=0 ^ t=0 

(j) 5i^(t) == '̂ t ''̂  0(-f^)l» and q\aj =Oifj is not a power ofp; 

(k) (Jua(i) = Ti in H^{H^ o), and (T\^aj =Oifj is not a power ofp. 
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PROOF. We consider naturality of operations with respect to the multiplication fi'.LxL -^ 
L, for which /i*u = ux 1 -f 1 xiz. In condensed notation, we compare 

^i*r(u) = (r, a{xx 1 -h 1 xx) ) -f (r, c(xx 1 -h 1 xx))(ixx 1 -f 1 xu) 

with r{fjL*u), which we expand by eq. (10.23) as 

r{ii*u) ={r,a{xx 1) *a(l xx) ) 4- {r^c{xx 1) *a(l xx))ux 1 

+ (a (xx l ) *c(l xx) ) l XU+ (r ,c (xxl ) *c{\xx))uxu. 

The coefficient of x* x x̂  gives (f), which implies (g). (Alternatively, (g) follows from 
eq. (10.32) applied to u.) The coefficient of ix x x* gives (h). The other parts require no 
new ideas. D 

In particular, all the Ci and most of the ai are redundant. We trivially have the relation 
[l]*p = [p] = [0] = 1, from which it follows, as in the previous example, that (a° ^)*P = 0 
and (6°^)*P = 0 for all / . Once again, this is the whole story. A detailed exposition by 
Ravenel and AMlson from this point of view is presented in [27, Theorem 8.5] (with 
slightly different notation: a^i) is written a(i), and 6(t) is written /3(t)). 

THEOREM 17.10 (Ravenel-Wilson). For the Eilenberg-MacLane ring spectrum H = 
H{¥p), H^{I£^) is the Hopfring over ¥p with the o-generators: 

e£ H\{H_\) (see Proposition 13.7); 
a(i) G H2pi{IL\)f for 2 ^ 0 (see Proposition 17.9); 
b(i) G Hipi^iLi)* for i^O (see Proposition 15.3); 

subject to the relations [1]*'' = lo cind e°^ = ~b(o)-

Example. KU. We recall that KU* = Z[u,it~^]. The complex orientation defines 
elements hi for i > 0. As before, these, along with elements [Xu^] = [A] o[n'̂ ] and e, are 
all we need. 

In view of the formal group law 

F{x,y) = X-f 2/4-uxy, 

the relation (15.8) becomes 

1 -h6(x4-y-fuxy) = (l -hfr(x)) * (1+6(2/)) * (l -^b{x)ob{y)o[u]), (17.11) 

which is more complicated than the additive analogue (16.12), but still manageable. 
Again, we take the coefficient of x*t/̂ . The left side is the same as before. On the right, 
we may choose x^y* with s > 0 and t > 0 from the third factor, which forces us to take 
x*~^ from the first factor and t/̂ ~* from the second; or we can take all of x^y^ from the 
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first two factors. The result, after some rearranging, is 

(17.12) s=l t=l 

i -1 j - 1 

s=l t=l 

This serves as an inductive reduction formula for 6i o6j, for any i > 0 and j > 0. In 
particular, the suspension formula becomes 

^ _ _ (17.13) 

ik=i 

THEOREM 17.14. For the complex K-theory ring spectrum KUy KUJKU ^) is the Hopf 
ring over KU* = Zlu^u"^] with the o-generators: 

[u] £ KU(s(KU 2) (see Proposition 11.2); 
ju" ]̂ G KUo{KR2) (see Proposition 11.2); 
e e KU\(KU^) (see Proposition 13.7); 
bi e KUoAKU^) fori>0 (see Proposition 15.3); 

subject to the relations [u]o[u~^] = [1], x^ = ~-6» X î = • • • (see Proposition 15.3(e)), 
e°^ = --bu and eq. (17.12). 

Explicitly, for the even spaces we have 

-"+•],...], KU^iKU^n) = 0 [ m u - " ] *iiri7'[6,o[u-"+'],62o[u-"+'],63°[u 
Tn€Z 

a direct sum (over m) of polynomial algebras, and for the odd spaces 

KU4KU2^+,) = A{eo[u-"],eobio[u-"+\ecb2o[u-"+%...), 

an exterior algebra over KU* (where we use [mu~"] = [m]o[u~"], [u"] = [u]°", 
[U- ] = [tx-»]°^ K ] = [1], [n] = [ 1 ] - and [-n] = [ - 1 ] - = (x[l])*"). 

PROOF. We computed KU^{BU) in [8, Lemma 5.6]. By Proposition 15.3(b), the Chem 
class x:CP°° ^ KII2 induces x*/3t = bi, so that we may write KU^{0 x J5[/) = 
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KU*\b\,b2,..], For the copy KU^{m x BU), we *-multiply this by [m]. This gives 
KU^{KU2)' For other even spaces, we apply the *-isomorphism - o[u^]. 

For the odd spaces, we quote [8, Corollary 5.12]. 
To see that we have specified enough relations, we note that every *-generator reduces 

to eo[u'̂ ] or eohio[u^] on the odd spaces, or 6io[u^] or [A]o[ix'̂ ] on the even spaces, 
where A E Z. We allow n = 0 and A = 1 and use [vT'] o\u^] = [u^+^] and [A] o[A'] = 
[AA']. In the even case, we need at most one *-factor of the form [A] o[tx'̂ ], and we may 
always insert the redundant factor [0] o[u^\ = l. Thus we can reduce any expression in 
the generators to standard form. D 

Example. K{n). We use the same test spaces as before, CP°° and the finite lens space 
L^P''""\ and follow the same strategy. The main reference is [28]. Some of the algebra 
resembles the case E = H{Fp). 

As usual, the complex orientation determines Hopf ring elements bu where 60 = I2 
and 61 = 62 = -e°^. As K{n) is p-local, Lemma 15.9 shows that the bj other than the 
b{i) = bpi are redundant. If we apply eq. (10.32) to the Chem class x, we obtain the 
identity Ylj{r, Fbj) x^^ = (r, h) 1. This shows that Fbj = 0 for all j > 0; in particular, 

Next, we apply the general operation r to C*x = VnX^ by eq. (15.2) to obtain 
6(i;nxP") = 6(x)°P" o[vn]. Equating coefficients of x̂ "* * yields the relation 

< = < ' « ' « ° k ' ] , (17.15) 

the obvious analogue of eq. (16.17). 
For the other test space Y = L^P'*~^ we have 

K{ny{Y) = A{u) 0 K{ny [x: x^^ = O]. 

The class x is a Chern class, which we know all about. Parallel to eq. (16.19), we use 
u £ K{n)i{¥) to define elements Ui, Ci € K(n)^{K(n)^) for 0 ^ i < p"" by the identity 

r{u) = ^ (r, ai) x'-h ^ (r, Ci) ux' in K{nY{Y) (for all r). 
t=0 i=0 

PROPOSITION 17.16. The Hopf ring elements ai G Kin^oAKin)^) (for 0 ^ i < p""), 
a(i) = V ^ K{n)2pi{Kin).i) (for 0 ^ i < n), and Ci E K{n)2i-^\{K{n)^) (for 
0 ^ z < p^) have the following properties: 

(a) oo = 11 and CQ = e; 

(b) xl^ak = Ei+j=ife o.i ^ %> 
(c) Va^i) = 0(t-.i) for 0 < i < n, and Va^Q) = 0; 

(d)£ak =Oforallk>0; 
(e) xO'k is the coefficient of x^ in a{xY^~^\ expanded as in Proposition 15.3(e); 

(f) ai * a, = CtO«t+j ifi^3< P^; 
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(g) Fa^i) = a*̂  = Ofor 0 < z < n - 1; 

(h) Ci = e * at,-

(i) Fc?r fl// r, r^ak is the coefficient ofx^ in the formal identity 

p"- i P- -1 

r^a[x)^ * 6(x)°*o[(r,ai)l * ^ a(x)o6(a;)°*o[(r,Ci)] 
t=0 t=0 

(J) 9iO(t) = ^(i) ^ QC-K'C )̂)!* ^'^ 9i% = 0 '/J w ^ot a power ofp; 

(k) t7ua(i) = a(t) G ii'(n)*(ii'(n), o), and o\^aj = 0 if j is not a power ofp. 

PROOF. All the proofs are formally identical to those of Proposition 17.9, except that we 
use the space Y instead of L. As in Section 16, the partial multiplications fi'.L'^^'^^ x 
i2m __, Y yield (f) and (h). 

For (g), we apply eq. (10.32) to u and obtain 

Y,{r.Fai)x^' = 0, 
t>0 

But because x^" = 0 already, we are able to deduce that a*̂  = 0 only for 0 < i < p^'^. 
(We shall see in a moment that CLT^^X) T̂  0.) D 

We have to rely on [28, Proposition 1.1] for two facts, just as in Section 16. The first 
is that when z = 0, eq. (17.15) desuspends once, exactly as eq. (16.18) suggests, to 

eoh\^:^-'^Vneo[v:;,']. (17.17) 

In other words, the class y = v^ux'^''^^ G K{ny{Y) still behaves like u\ € K[ny{S^) 
and satisfies eq. (13.2). The second is that when we take account of decomposables, 
eq. (16.22) acquires an extra term, 

^(n-l) = n̂a(O) - «(0) °&(6̂ '*"' ° K ] . (17.18) 

This complements (g). We have the material for the main theorem of [28]. 

THEOREM 17.19. For the Morava K-theory ring spectrum K(n), K{n)JKin)^) is the 
Hopf ring over K{n)* — Fp[vn,Vn^] with the o-generators: 

[vn] G K(n)()lK(n) 2(p" i)) (see Proposition 11.2); 
[v~^] G K(n)n{K(n)2(pn i)) (see Proposition 11.2); 
e e K(n)](K(n)i) (see Proposition 13.7); 
a(i) € K(n)'}j.i(K(n)x). forO^i <n (see Proposition 17.16); 
6(i) € K{n)2pi{KinX2)> for z ^ 0 (see Proposition 15.3); 
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subject to the relations [1]*P = lo, [t̂ n]°[̂ n*] = W' e°^ = -^(1)^ (17.15), (17.17), 
and (17.18). D 

Thus we have the *-generators: 

(i) a° ̂  o 6° -̂  o[v^] in even degrees; 
(ii) e o a° ̂  o 6° "̂  o[v!^] in odd degrees; 

where / = (zo,ii,.. .,Zn-i), with each ẑ  = 0 or 1, and J = {jojiji,-"), with 
0 ^j < p^, and k eZ.ln (ii), we may assume jo < p^ - 1 by eq. (17.17). The relations 
a*P = 0 (for i < n - 1) and b^f^ = 0 (for all i) follow from [1]*P = lo by eq. (10.13), 
as m Theorem 17.10. 

18. Relations for additive BP-operations 

In this section, we discuss relations in the bigraded algebra Q* = Q{BP)l, following 
[23], in preparation for discussing additive unstable operations in BP-cohomology. In 
view of Theorem 16.11(a), Q* is spanned as a BP*-module by the monomials 

e'b^w-^ = e'6ĵ )6fi) • • X X ' ' * * ^ (18.1) 

where € ^ 1 and we use standard notation with multi-indices / = {ioiU^hi- • •) and 
J = {J\yJ2, •. •). We define the length of / as |/| = ^^iu and similarly \J\ = X)* Jt-
We also need the special multi-index 4o = (1,0,0,...). 

The main relations. For E = BP, we easily compute the first main relation from 
Definition 14.9 and [8, (15.4)] (or equivalently from eqs. (14.5) and [8, (15.3)]) as 

(7^,): vib^o) = Phi) + fefo)^i i'̂  Q{BP)l (18.2) 

(Indeed, this is the only candidate that stabilizes correctly to [8, (15.6)].) We still have 
6i = 0 whenever i~ 1 is not a multiple of p - 1 . We can use the p-series [8, (15.5)], just as 
stably, to simplify the higher relations (TZk) by neglecting enough. Denote by 93 and W 
respectively the ideals (p, vi, ̂ 2, • • •) and (p, i^i, i/̂ 2, • •) in Qt» which correspond to the 
left and right actions of the ideal loo- We also need the ideal 9Jl = (e, 6(o), 6(i), 6(2),...) C 
Q*, so that 9Jl + 93 is the obvious augmentation ideal consisting of all the Q^ for i > 0. 
In particular, bi € 9Jl 4- 93 for all i. From Definition 14.9 and [8, (15.7)], the right side 
of (Tlk) has the form 

k-i 

R{k) = Yl^k-i)^i-^^o)^k mod93 + 9Jt2^J^ (18.3) 
1=1 

while the left side L{k) G 93 and will not much concern us here. The new feature is that 
because Wk appears in the form i^Q^^Wk, where 6(o) = ê  is no longer 1, (7?,̂ ) fails to 
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express Wk in terms of the other generators, and W ^V\ this made it necessary to add 
Wk as a new generator of Q* in Theorem 16.11. 

The Ravenel-Wilson basis. The relations (TZk) show that many of the monomials (18.1) 
are redundant. In defining the basis, it is easier to specify which monomials are not 
wanted. 

DEFINITION 18.4. We disallow all monomials of the form 

^(nXi2)"'^in)'^^'' ( i i ^ i 2 ^ - - - < i n , n > 0 ) , (18.5) 

where c stands for any monomial in the 6(i), Wi, and e (c = 1 is permitted). All monomials 
(18.1) nor of this form are declared to be allowable. 

Nevertheless, we need a positive construction of the allowable monomials, and we 
need to know how they behave under suspension. Given any indices 

0 = fco ^ '̂ i ^ h ^ • " ^ kn, where n ^ 0, (18.6) 

we define the monomial 

^' = ^*o)̂ fc,)<) • • • C ) = ho)b'-^. (18.7) 

It is easy to see that every allowable monomial can be written uniquely in the canonical 
form 

where £: = 0 or 1 and M and J satisfy the conditions: 

(i) t < ku implies rrit < p^, for 0 < ix < n; 
(ii) t ^ kn implies rrit < p"*-̂ *; (18.9) 

(iii) jt = 0 for all t ^ n; 

as well as (18.6). In detail, we choose, by induction on u, the smallest ku such that 

t^ki)^k2)''' ^ku) ^̂ î̂ ŝ ̂ ' ̂ ^ make (i) hold for u. If no such ku exists, we set n = tx - 1 
and have (ii). Since c is allowable, it can have no factor Wuj which gives (iii) for t = u. 
(In case n = 0, we have merely c = e^b^w^, (i) and (iii) are vacuous, and (ii) says 
only that rrit <p for all t.) 

The main technical result is that there is only one way the suspension ec of c can fail 
to be allowable. (This is in effect equivalent to the discussion in [23, §5].) We recall 
from Definition 15.12 the shifted multi-index s{I). 

LEMMA 18.10. Assume that the monomial b^ = If!, x&f x • • • bf" \ divides b^b^, where 
(to) M (in) 

b^ (with the same n) is as in eq. (18.7), io ^ ii ^ • • • ̂  n̂, ctrid M satisfies conditions 
(i)and(ii)of(\i.9). Then: 
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(a) iu = ku for 0 ^u ^n, so that H = pL; 

(b) We can write M = {p—\)L-\- s{M'), where M' again satisfies (i) and (ii). 

PROOF. We show first that iu ^ ku for all u. For any t < fc^, we have mt < p^ by (i). 
Then the exponent of 6(t) in 6^6^ is at most 

( l + p + p ^ - f . . . - f p ' ^ - V ( p " - l ) < p " ^ \ 

which shows that t^iu. 
We proceed by induction on n. For n = 0, 6?̂ x divides b^o)b^, where mt <p for all 

t. We must have ZQ = 0 and TTIQ = p - 1, which gives M the required form. 
For n > 0 we must have ẑ  = fcn, since in > kn is forbidden by (ii). Let a ^ 0 be 

the smallest index such that ka = kn\ then we must have ia = Q̂-f i = •. • = in = fcn-
From Ik^ = p" + p""̂ ^ -f . . . -f p^ and mjk̂  < p̂ "̂ ^ we deduce 

^ifen-(P-l)'^n <P"^*-(P-1) (P"+-- -+P") =p"+»-(p-+^-p") = P ^ (18.11) 

If fcn = 0 we clearly have a = 0 and hence mo = (p-l)Zo» and can write M — 
u+\ 

(p~ 1)L -f 5(M'). If kn > 0, we have a > 0. We delete the factors fr^.^^ for a ^u^n 
from both sides of our hypothesis, as well as any factors 6(t) for t > kn, to deduce that 
^M^l)''' ^ i l - i ) î̂ î ^s hko)^{kx)''' K^l'-x)^^"' '̂̂ ^̂ ^ ^ " satisfies (i) and (ii) for 
the sequence (fco? î? * * •, ko,^\). By induction, we deduce that H = pL and that M has 
the form (p- l )L-hs(M') . 

If ^ ^ fcn, we have mj = mt+i < p^"^\ which gives (ii) for M'. To establish 
(i), assume that t < ku. If also ^ + 1 < fcu, we have m[ < m^+i < p^, as desired. 
Otherwise, ku = t -f 1. Let /? be the smallest index such that kp > t + 1, so that 
ku = fcu+i = • • • = fc^-i = -̂h 1. Then mt+i < p^ and Ẑ +i ^ p"" -hp''"̂ ^ -f • • • +p^~^ 
As in eq. (18.11), we find mj = mt+i - (p—l)Zt+i < p"- • 

LEMMA 18.12. In the bigraded algebra Ql = Q{BP)l: 

(a) £v^ry allowable monomial can be written uniquely in the form (18.8), subject to the 
conditions (18.6) and (18.9), and conversely, every monomial of this form is allowable; 

(b) The suspended monomial from eq. (18.8) 

is disallowed if and only if jn+x > 0 and 6(P~^)^ divides b^, in which case we can 
write w-^ = Wn^xw-^' and b^ = I^{P-\)L^S{M')^ ^,Y/I b^-^^b^'w^' allowable; 

(c) Every allowable monomial can be written uniquely in the extended canonical form 

with L as in eq. (18.7), where h^O, either b^P"^^^ does not divide b^ or jfn+i = 0 (or 
both), and conditions (18.6) and (18.9) hold; 
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(d) In (c), the monomial b^b^w^ is allowable. 

PROOF. In (a), we need to establish the converse. If c is disallowed, so is 6(o)C. By 
Lemma 18.10(a), 6(o)C can be disallowed only if H = pL\ but by Lemma 18.10(b), the 
necessary factors 6(o) are not present in c. 

Moreover, 6(o)C is disallowed if and only if it contains IP^Wn+x as a factor (using the 
same n). If so, we write b^ = 1){P-\)L^^S(M')^ ^J^^J.̂  J^L-AO^M'^J' ^̂  allowable by (a). 
This proves (b). 

Parts (c) and (d) follow by induction on h. We take h maximal. D 

LEMMA 18.14. In the stable range defined by i ^ pk, every allowable monomial in 
Qi = Q{BP)i has the form e^b^Q.bV^. • • •, with no factors of the form u4. 

PROOF. For each monomial c € Ql, we define g{c) = i - pk, where c G Q^. We 
compute g from p(6(n)) ^ 0 if n > 0, g{wn) = 2p{p^-\), g{e) = -{p-1), and 
g{b(o)) = - 2 ( p - l ) , using g{ac) = g{a) -f g{c). Thus if c contains Wn as a factor, 
g{c) > 0 unless c contains at least {2p{p^-\) - ( p - l ) } / 2 ( p - l ) factors 6(o)> which 
disallows it. D 

THEOREM 18.15 (Ravenel-Wilson). The allowable monomials (ISA) form a basis of the 
free BP*-module Ql = Q(BP)l 

This is proved in [23, Theorem 5.3, Proposition 5.1]. We content ourselves with show-
ing, as part of Theorem 18.16, that the allowable monomials span Ql, assuming that it 
is spanned by all the monomials (18.1). We shall obtain for each disallowed monomial 
(18.5) a reduction formula that expresses it in terms of other monomials. A finiteness 
argument then implies that the allowable monomials must span. A counting argument is 
needed to show they in fact form a basis. As only the relations (Tlk) and e^ = 6(o) are 
used in the reduction, they constitute sufficient relations in Theorem 16.11. 

Knowing that the allowable monomials form a basis of Ql is not enough. In order to 
work with this basis, we need to know how the ideal 2U looks in terms of the basis. 
We therefore define ^rn for any m ^ 0 as the BP^-submodule of Q* spanned by all 
the allowable monomials e^b^w^ that have 1^0 and \J\ ^ m. Although Stm is not 
an ideal for m > 0, it is convenient for computation, because when an element c € Ql 
is expressed in terms of the basis, it is obvious whether or not it lies in 2lm- We shall 
prove the following parts of the structure of Ql, after developing the necessary reduction 
formula. 

THEOREM 18.16. In the bigraded algebra Ql = Q{BP)l: 

(a) am 4- 5J = 9JIW^ -^Vfor any m> 0(t?r2lo-f2J = 9Jl-f-53 ifm = 0), so that 
the image of^rn in the quotient algebra Q^ (see eq. (18.17)) is an ideal; 

(b) The allowable monomials span Ql = Q{BP)l as a BP^-module. 

Lemma 15.2 of [8] allows us to work mod 93, in the quotient Fp-algebra 

Q : = 0:/93 ^ Q/f.(BP.;Fp). (18.17) 
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Better yet, we may ignore e and work in the subalgebra QJ . 

Higher order relations. As they stand, the relations (Tlk) are not very practical. We derive 
a more useful relation by eliminating the terms that come from b{x)^ Wj for j < n in 
eq. (18.3) from the n relations (7^^,), (Ti^J,..., {Hkjy as in [23, Lemma 5.13]. The 
result is of course a determinant. For ulterior purposes, we make the elimination totally 
explicit. 

DEFINmON 18.18. Given any positive integers ii,i2,-•-j^n* where n ^ 1, we define 

L{i\, 22, • • •, in) and R{i\, 22, •. •, in) as the coefficient of x^ 3^ • • • x^2\ x^"" in 

b ( x , n ( X 2 / . . . 6 ( X n - , ) ' ' ^ " 6 ( [ p ] ( X n ) ) 

and 

respectively. By eq. (14.8), these are equal in Q*. 
Then given any integers 0 < fci < 2̂ < • • • < A:n, where n > 1, we deduce the nth 

order derived relation 

(7^fc,,fc2,...,ikn)- ^ e 7 r i ( 2 l , 2 2 , . . . , i n ) = ^ e ^ i ? ( z i , 2 2 , • • • , ^n) (18 .19) 

in Ql by summing over all permutations n e Eny where e^r denotes the sign of TT and 
we permute the n entries in {i\, 12, • • •, in) = ^(^i ? 2̂? • • • ? ^n)- (For n = 1, it reduces 
to L{ki) = R{ki), which is just (7 f̂c,).) 

We note that this relation lies in QI^^K where the numerical function 

/(„) = 2(i+p + p= + ... + p"-) = a H l ^ . » ^ 
^ p—1 p—1 

was introduced in eq. (1.4). 
The left side of {TlkiM^-.kn) lies in 93 and will be of little interest here. By eq. (18.3), 

the right side reduces to 

E^'^^i,-.)<-2) • • • C-'.-n+.)<n-^)'^i ""^ V + mW\ (18.20) 

where we sum over all permutations TT and all j > 0, and adopt the convention that 
6(i) = 0 for i < 0. However, we have arranged matters so that no (explicit) terms in 
Wj with j < n survive; when we interchange ij and in, we find identical terms having 
opposite signs. The term of most interest is the leading term with n = id, 

b'-Wn = 6^,,.,)bf^^_2) • • • t - i - n - f l)^fcn-n)^n, (18.21) 
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which is thereby expressed in terms of other monomials and hence redundant. (The multi-
index L serves only as a convenient abbreviation, unrelated to eq. (18.7). The indices ku 
are different, too.) 

To make this more precise, we note that all terms h^Wj in the sum (18.20) have 
|/| = \L\ = p-hp^-f.. .-hp" if j = n, or |/| > \L\ if j > n. We order the terms that contain 
Wn by defining the weight of any multi-index / = (io,«'i,i2,-• •) as wt(7) = ^^tit 
(which is not the weight used in [23]). This makes b^Wn the heaviest term with its 
length, because if we improve the ordering of the indices of any other term in (18.20) 
by interchanging v and is, where r < s and ir > is, we increase its weight by 

(2,-r)p'' -h {ir-s)p' - {ir-r)p'' - {is-'s)p' = {ir-is){p'-p'') > 0. 

Thus {T^kiM.-^kn) provides a reduction formula 

b'^n = &^,,_,)<.2) • • • f{,^^n)^n ^ ^ ±b% (18.22) 

in Q^ mod fJJlW^, where the sum is taken over certain pairs (J, j ) with j ^ n, for which 
|/| > |L|, or |/| = \L\ and wt(/) < wt(L). 

The first nth order relation (7ii,2,...,n) is particularly important, as only one term of 
the sum (18.20) is meaningful, namely yf^Wn, where m = / ( n ) / 2 . We observe that 
this monomial lies just inside the stable range of Lenuna 18.14. In this simple case, we 
can do better with a littie more attention to detail, to obtain the direct analogue of [8, 
Lemma 15.8]. 

LEMMA 18.23. In QI^""^ = Q{BP)i^'^^ we have the relation 

h^Wn = Vnb^^) mod InQ{BP)i^''^ 

for each n > 0, where m = f{n)/2 = l - fpH-p^- l h p^"'^ 

PROOF. We proceed by induction on n, starting from eq. (18.2), and work throughout 
mod InQl- On the left side of eq. (14.8) we have 6([p](^)) = b{vnxP^ -h • •)» ^y [8, 
(15.5)]. Then R{j) = L{j) = 0 for all j < n, and the only surviving terms in (72.i,2,. ,n) 
are 6?QxZ/(n) = b^Q>.R{n), where ft = p -j- p^ -h ... -I- p^'K On the left, we clearly have 
L{n) = Vnb^o). On the right, b^Q^Wj = 0 for all j < n, by the induction hypothesis; by 
eq. (18.3) and dimensional reasons, the only surviving term in R{n) is b̂ Qxit̂ n- • 

PROOF OF THEOREM 18.16. We work entirely in the quotient algebra Q^ defined by 
eq. (18.17). We first generalize (18.22) to show that 

ajtau^ c am -h mw^-^^ (I8.24) 

for any m^ 1. As an Fp-module, 9J12U"̂  is generated by those monomials e^b^w^ that 
have \J\ ^ m. These lie in am or 971211'̂ "*'̂  except for the disallowed monomials that 
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have \J\ = m. On comparing the monomial (18.5) with eq. (18.21), we see that each 
such monomial has the form b^WnC, where L is given by eq. (18.21) and c = e^b^w^, 
with I ATI = m - 1. When we multiply eq. (18.22) by c, both orderings are preserved, 
and we express the general disallowed monomial b^WnC as a signed sum of monomials 
with greater length, or the same length and lower weight, mod fSlW^'^K Because there 
are only finitely many monomials in each bidegree, eq. (18.24) follows by induction. 

For any z > m, eq. (18.24) gives 

Then by induction on i, starting from eq. (18.24), 

mw^c^m + mw' 

for all 2 > m. In any fixed bigrading, 9J12IJ* is zero for large i. Thus TIW^ C ^m and 
we have (a) for m > 0. For m = 0, we note that every monomial in 9Jl either lies in 
9J12IJ C ai or is automatically allowable and so lies in a©. 

On reinstating the monomials of the form K;*̂ , which are all allowable, we see that the 
allowable monomials span Q*. Then (b) follows by Nakayama's Lemma in the form [8, 
Lemma 15.2(d)]. D 

The ideals Zn- Just as the ideal loo C BP* led to the introduction of the ideal 20 C QJ, 
the ideal Jn, needed for our splitting theorems, leads to an ideal in Q*. 

DEFINFFION 18.25. We define the ideal Zn = (t/^n4-i,if^n+2,t^n+3,. • ) ^ Ql-

We need to know how Zn sits inside Q*. The answer is remarkably clean, in a certain 
range. 

LEMMA 18.26. Assume n ^ 0. Then: 

(a) Ifk< / (n-f 1), Qj n 3^ is the left BP*-submodule of Qj spanned by all the 
allowable monomials e^b^w^ G Qj that contain an explicit factor wt for some t > n; 

(b) lfk = /(n-hl), Qj n Zn is the left BP^'-submodule of Q^ spanned by all the 
allowable monomials as in (a), together with all disallowed monomials of the form 

where 0 ^i\ < 12 ^ • * ^ in+i-

REMARK. The first disallowed monomial in (b) is b^Wn^x, where m = /(n-f l ) /2 . 
Lemma 18.23 shows it definitely does not lie in the submodule described in (a). 

PROOF. The stated elements obviously lie in Zn- To show the converse, we fix k and a 
large integer m, and prove by downward induction on h that all elements in Qf of the 
form cwh lie in the indicated submodule whenever i < m. This statement is vacuous 
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for sufficiently large h (depending on m and fc). We therefore fix t > n, assume the 
statement for all h> t, and prove it for h =^ t.Wt ignore e^ throughout and assume k 
is even. 

Case 1: c = b^. The number | / | of 6-factors in c is k/2+p^-l. In (a), as A: < / (n - f l ) 
and t>n, this is always less than p-l-p^H f-p*, which makes cwt = b î/;̂  automatically 
allowable. The same holds in (b), except in the extreme case b^Wn-\-]> which may be 
allowable or disallowed; either way, it is in. 

Case 2: c = b^WhW^ allowable, with h ^t Then cwt = b^WhWtW^ remains allow-
able, by the form of Definition 18.4. 

Case 3: c = awh* with h>t, any a. Then cwt = {awt)wh is in by induction, provided 
i <m. 

By Theorem 18.15, these c generate Qjf"^^^ '̂"'̂ ) as a BP*-module. D 

19. Relations in the Hopf ring for BP 

In this section, we develop the unstable analogues of the results of Section 18, working 
in the Hopf ring BPABP^) for BP, By taking account of *-decomposable elements, 
we can improve many of these results by one. The structure of the Hopf ring was 
described briefly in Section 17. Before we can even state some of our results precisely, 
it is necessary to clarify the concept of ideal in a Hopf ring. 

Hopf ring ideals. As it is obviously impractical to retain everything in typical Hopf ring 
calculations (the preceding sections should convince), we need to control carefully what 
is thrown away. There is an obvious relevant concept, valid in any Hopf ring H, We 
concentrate on the structure of if as a *-algebra, treating ©-multiplication chiefly as a 
means of creating new •-generators from old. 

DEFINITION 19.1. We call a bigraded iZ-submodule 3 of any Hopf ring H over R a Hopf 
ring ideal if the quotient H/3 inherits a well-defined Hopf ring structure from H (over 
the possibly smaller ground ring R/ed), 

If we ignore the o-multiplication and coalgebra structure, 3 must obviously be a *-ideal 
in the ordinary sense, i.e. an fl-submodule for which 6 * c E 3 whenever b e H and 
c € 3 . 

LEMMA 19.2. Let H be a Hopf ring over R and I C Ran ideal. Let 3 be the *-ideal in 
H generated by the elements Ca- Then 3 is a Hopf ring ideal, with quotient a Hopf ring 
over R/I, if and only if: 

(i) il)Ca e 3(g)if 4- H®3for all a; 
(ii) eca G / for all a; 

(iii) a o Ca G 3 for all a £ H and all a; 
(iv) IH C 3. 

PROOF. The conditions are evidently necessary. Conditions (i) and (ii) ensure that H/3 
inherits a comultiplication ^ and counit €. Condition (iv) shows that H/2 is defined over 
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R/I. For any a, 6 G /f, eq. (10.11) and (iii) show that a o(6 * Ca) G 3; this is enough to 
furnish i f / 3 with a o-multiplication. All the necessary identities in H/3 (see Section 10) 
are inherited from H. D 

REMARK. It is clear from the Lemma that the sum 3 H- 3 of two Hopf ring ideals 
is another Hopf ring ideal. However, their *-product ideal 3 * 3 (defined as the usual 
product of ideals) need not be a Hopf ring ideal, as (i) can fail. We note that (ii) and (iii) 
nevertheless continue to hold for 3 * 3» with the help of eq. (10.11). 

When i? = Fp, we can define a rather more useful ideal. 

DEHNITION 19.3. Given an ideal 3 in a Hopf ring over Fp, we define F 3 as the *-ideal 
generated by {Fx : x G 3}. 

The ideal F3 is far smaller than 3*^, and clearly is a Hopf ring ideal by Lemma 19.2 
whenever 3 is. (We use eq. (10.13) to verify (iii).) 

The redundant generators. We proved in Lemma 15.9 that the generator hi is redundant 
unless z is a power of p. As in (17.3), this implies that BPJBP^) is *-generated as a 
BLP*-algebra by o-monomials of the forms (cf. eq. (18.1)) 

(ii) eo6°^o[t;'^], 

( i i i ) [\v^\ = [\\o[v^Y^^o[v2Y^'o..^, 

in the notation of eq. (15.11). To carry out computations, we need to express the redundant 
bi in terms of these *-generators. 

In order to make the finitejiess of our computations apparent, we write h{x) — I2+b(x) 
as in eq. (15.4) and use 1 ob(x) = 0. Then eq. (15.8) expands to 

l2-f6fx-f2/H-Xl »̂.Ĵ *2/̂  ) 
^ M ^ (19.5) 

= (l2 + &(x)) * (l2 + % ) ) * * {l2 + 6(x)°^o6(2/)°^K,]}. 

As in Lemma 15.9, if n is not a power of p, we take s as the largest power of p less 
than n, and the coefficient of x^y"^'^ then yields a reduction formula for hn- For the low 
6n's we can be explicit; they are no longer trivially zero, as in Section 18. 

LEMMA 19.6. For\^i<pwe have bi = b*^yil 

PROOF. All that is left of eq. (19.5) in this range is b{x-\-y) = b{x) * b{y). Hence b{x) 
must be the exponential series exp(6ia:), expanded using *-multiplication. D 
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Beyond this range, we must settle for inductive formulae in terms of o-monomials of 
the form 

hi,ohi,o...obi,o[v^]. (19.7) 

We expand the formal group law F(x, y) fully, in the form 

summing over appropriate quadruples {X,I,iJ) consisting of a coefficient A G Z(p), a 
multi-index / , and exponents i and j . The right side of eq. (19.5) becomes 

(l2 4-6(x))*(l2 4-6(y))* * {h-\-b{xy'ob{yyJ o[v']y\ 

where {l-h .. .}*^ is expanded by the binomial series as in eq. (15.5). Every element of 
the Hopf ring that appears here is a *-product of elements of the form (19.7). 

This is still not enough! To make the induction succeed, we really need a reduction 
formula for every o-monomial (19.7) that contains a o-factor bn with n not a power of p, 
without relying on iterated appeals to the distributive law (10.11). A reduction formula 
for 6„ o 6;̂ , o6/i2 o • • • obhqy whenever n is not a power of p and the hi are any positive 
integers, will suffice, as - o[v^] is a *-homomorphism and [v^] oft;*̂ ] = [v̂ "*"*̂ ]. 

We therefore o-multiply eq. (15.8) by b{z\) ob{z2) o " -obizq) (and thus work in the 
(9-l-2)-fold product (CP^ )̂̂ "^ )̂. On the right, we use the distributive law (15.6) to move 
all the 6(—)'s inside the *-factors, to obtain 

hq-^2-\-b(x-\-y-{- ^ AvVy^* j o 6(21)0... o6(^g) 

= {l2g-f2 + b{x)ob{zi)o . . . ob{Zg)} ^ j ^ ĝ  

* {hq-^2 + b{y)ob{zi)o . . . ob{zg)} 

* 
A 

* {l2,-f2 + b{xy'ob{yr^ob{zi)o ... ob{zg)o[v'] y 

The coefficient of x^y^~^z^^. ..Zq"* yields the desired reduction formula. Inspection of 
the o-monomials that appear on the right shows that they are all simpler, so that the 
induction makes progress. (In detail, they all have lower height, or the same height but 
more 6-factors, if we define the height of the monomial (19.7) as Ylr ̂ r-) 

None of this is necessary for the other generators, (19.4)(ii). For these it is far simpler 
to start from Lemma 14.6, work in Q{BP)l, and suspend by applying eo - . 

The main relations. As given in Definition 15.15, the main relations are particularly 
opaque. We make eq. (15.14) more useful in our situation by first expanding the p-series 
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[8, (13.9)] for B P m ^ H as 

[p] (x)=px+ ^ Av^x"*, (19.9) 

much as we just did for F{x, y), and summing over appropriate combinations of coeffi-
cient A € Z(p), multi-index / , and exponent m. Then eq. (15.14) becomes 

I2 + bLx^ ^ Xv^xA = {l2-^b{x)y''^ * {l2 + 6(xr"^o[i;^]}'^ (19.10) 

where we again expand {I2 H }*^ by the binomial series as in eq. (15.5). 
The first main relation, the coefficient of x^, simplifies (with the help of [8, (15.4)] 

and Lemma 19.6) to 

(7e,): ^ ib (o )=p6( i )+6(o>h] - (^ f }y7 in BP^iBRi) (19.11) 

(although it is far easier to extract this as the coefficient of x^~^y in eq. (15.8), using [8, 
(15.3)]). Subsequent relations rapidly become extremely complicated and can be handled 
only by neglecting terms wholesale. We need some ideals. 

Let 93 be the ideal {p,v\,V2,...)in BP^{BP^) (more accurately, generated as a graded 
*-ideal by all the elements pU and VnU for each k). We need the unstable analogue 
of the ideals TIW^ of Section 18, coming from the right action of /QO on Q*. It 
is obvious how to handle the generators Vi of /oo- For the generator p, eq. (10.13) 
shows that in the quotient Hopf ring BP^{BP^)/V over Fp = BP*/loo, we may write 
co[p] = co(F[l]) = F(yco[l]) = FVc. Indeed, it is even more convenient to ignore e 
and work in the Hopf subring 

H = 5P.(BPeve„)/5J S i/.(BPeve„; Fp), (19.12) 

using only those elements that do not involve the ©-generator e (though of course we 
keep 6(0) = -e^^). 

DEFINITION 19.13. We define 9Ko as the *-ideal in H generated by all the elements 
6°^ o[t;*̂ ] with / 7̂  0, whether allowable or not. For m > 0, we define SJl̂ i inductively 
as the •-ideal generated by FaTtm-i and all elements b°^ o[v'^] with 1^0, whether 
allowable or not, that have \J\ ^ m. 

Equivalently, Tim is the *-ideal generated by all elements F^{b° ̂  olv^]) with I j^ 0 
and h -{- \J\ ^ m. (Thus 9Jlm is roughly, but not quite, the Hopf ring analogue of the 
right £!P*-action of the ideal /^ . ) We thus have the decreasing sequence of ideals 

7l DWIOD9JII D 0^2 D • • •. 
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We note that TIQ is just the obvious augmentation ideal in H consisting of all the 
Hi(EPevc„;Fp) with2>0. 

LEMMA 19.14. For all m ^ 0.* 

(a) Mm is a Hopfring ideal in the Hopfring H = BP^{BP^^^J/^; 

(b) Mm o[vn] C 9Km-f 1 far all n > 0; 

(c) mm oy]c mm-^i ji; 
{d)mmo\p]cmm^i. 

PROOF. We first prove (b), from which (c) follows by induction. As - o[i;„] is a *-
homomorphism, it is enough to check that co[vn] G 3Hm+i for the generators c of DJlm-
For c = b°^ olv^], we use [v^] o[vn] = [v'̂ Vn]- For c = Fa = a* ,̂ where a G 3Jlrn-i» 
we have co[vn] = F{ao[vn]) by eq. (10.13). This lies in F9Jlm, by induction on m. 

We next apply Lemma 19.2 to prove (a). Clearly, eDJtm = 0. For a generator of 
the form c = b°^olv^], with \J\ ^ m, we have aoc = (ao6°^)o[v*^] £ fJJlm by 
(c), since aob°^ G 3%. Similarly, if we write # ° ^ = X)t^i' ^ ^i^ we find that 
t/;c = Yli ^i°b'^l ® S-'o[t;-̂ ] has the required form, because for each z, either B[ G 9Ko 
or Bf G fJJlo for reasons of degree. 

For a generator Fc with c G SDlrn-i» we use induction on m. By eq. (10.13), a o{Fc) = 
F{Vaoc) G F9Jlm-i. Also, ^Fc = (F(8)F)^c has the required form. 

Because 9Jlm is now known to be a Hopf ring ideal, we have Va G 9Jlm for any 
a G Mm- Then (d) is immediate from eq. (10.13), using [p] = F[l]. D 

We now have the tools to handle eq. (19.10). We work entirely in H, so that by [8, 
(15.5)], the left side is trivial. By Lemma 19.14, 6(x)°"* o[t;̂ ] G SK|/|. Most *-factors on 
the right side of eq. (19.10) are trivial mod aJl2 and we are left with only 

{l2-\-Fb{x)}* * h2-^b{xy^o[vA in :ff [[x]] mod 9W2. 

When we pick out the coefficient of x^ and neglect also certain products, we obtain 

k 

R{k) = F6(fc_i) -^Yl^lif-j) °[^J1 "̂ ^ ^^^ ^ 2 4- 9̂ 1 *9ni, (19.15) 
j = i 

analogous to eq. (18.3). Although the ideal here is not a Hopf ring ideal, (ii) and (iii) of 
Lemma 19.2 still hold, according to the Remark following that lemma. 

The Ravenel-Wilson generators. We lift the allowable monomials of Section 18 via the 
canonical projections qh.BPjBPi^) —• Q(i3P)J, so that multiplication is now to be 
interpreted as o-multiplication. 

DEFINITION 19.16. We disallow all ©-monomials of the form 

^ ( i V ^ ( i 2 ) ° - - - ° ^ £ ° W ° c (2, < 2 2 < - - - ^ i n , n > 0 ) , (19.17) 
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where c stands for any o-monomial in the 6(i), [vj], and e (c = [1] is permitted). All 
o-monomials (19.4)(i) and (ii) not of this form are declared to be allowable. 

It follows from Theorem 18.15 (and local finiteness) that the allowable o-monomials 
generate BP^{BP^), but far more is true, by [23, Theorem 5.3, Remark 4.9]. 

THEOREM 19.18 (Ravenel-Wilson). In the Hopf ring for BP: 

(a) If k is even, denote by BP'j^ the zero component of the space BPf^ (so that 
J3Pfc = BP̂ fe if fc > 0). Then BPJBP'j^) is a polynomial algebra over BP* on those 
allowable o-monomials 6°^o[i;-̂ ] with 1^0 that lie in it. If k ^ 0, BPJBP ^) = 
BP^BP^) iS> BP^{BP\) as in eq. (17.4). 

(b) If k is odd, BPM{BP j^) is an exterior algebra over BP* on those allowable o-
monomials e o 6° ^ o[v*̂ ] that lie in it. 

As in Section 18, we need information on where the disallowed monomials lie. The 
difficulty with eq. (19.15) is that it is hard to tell whether a given element lies in 9Pt2. We 
therefore define analogous ideals in terms of the polynomial generators in Theorem 19.18 
for which this problem does not exist. Again, we ignore e and neglect 93 by working in 
the Hopf ring H over ¥p (see eq. (19.12)). 

DEFINFFION 19.19. We define 2lo as the *-ideal in H generated by all the allowable o-
monomials b° ^ o[t;'̂ ] that have / 7«̂  0. For m > 0, we define %m inductively as the *-ideal 
generated by F%n-\ and all the allowable o-monomials 6°^ ©[t;-̂ ] for which 1^0 and 
\J\ ^ m. 

In other words, Stm is the *-ideal generated by all the elements F^{b° ^ olv^]), where 
6°^ o[t;-̂ ] is allowable, I ^ 0, SLud h-\- \J\ ^ m. 

THEOREM 19.20. For all m ^ 0, a ^ = 9?tm and is therefore a Hopf ring ideal in 
H = BP.{BP,,J/V - /f.(BPe,e„;Fp). 

This result we shall prove in full. For m = 0, it is part of Theorem 19.18. 

Higher order relations. As in Section 18, we derive a more useful relation by elimination 
from the n relations (T /̂t,), (Ti-kz)^ • • •»(^fen)* ^ i * multiplication now interpreted as o-
multiplication. We find it simpler to return to eq. (19.10) rather than try to deal directly 
with eq. (19.15). 

DEFINITION 19.21. Given any positive integers ii, 12, • • •, in, where n ^ 1, we define 

L{i\, 22,. ., in) and R{i\, 22, • * •, in) as the coefficient of Xj* xf • • • ^n '̂  ^^ 

6(xi)°Po6(x2)°P'o---o6(Xn_0°P^''o6([p](Xn)) 

and 

6(x,rPo6(x2rp'o---o6(i„_,rp"''oP(x„) (19.22) 
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respectively, where P{x) denotes the right side of eq. (19.10). 
Then given any integers 0 < fci < fca < • • • < fcn, where n > 1, we define the n-th 

order derived relation 

TT TT 

by summing over all permutations TT € En, where (ii, 22, • • •, n̂) = 7r(fci, A:2,..., fcn)-
(For n = 1, we recover {TZk^).) 

This relation lies in BPJBP f^^^), where / (n) denotes the usual numerical function 
(1.4). To study it, we work in H. The left side of (̂ iki.fci, • .fcn) vanishes, as before. To 
handle the right side, we first rewrite (19.22) just as we did eq. (19.8), by using eq. (15.6) 
to move all the ©-factors b{-) inside the *-factors. The term px of \p]{x) produces the 
•-factor 

{1 + b(x,)°Po6(x2)°P'o . . . o6(Xn«,)°P'^"'o6(Xn)}''' , (19.23) 

and the general term Xv^x^ produces the *-factor 

to be expanded as in eq. (15.5). By the form [8, (15.5)] of the p-series, the only *-factors 
of the latter kind that are not trivial mod 9Jl2 are 

1 -f 6(xi)°Po6(x2)°P'o . . . oh{Xn^xy^^~' ohiXny^ o[vj] (19.24) 

for j > 0. We can now efficiently extract the coefficient i2(ii,i2, •>^n) of 

xf * x^ ̂  • • • xP***. From the factor (19.23) we have the term 

^ (^(in-I) - &(i^2) ^ ^(i2-3) ° • • • ° ^^{i^^-n^ ' 

after some shuffling, while the factor (19.24) yields 

( t l - l ) ( t2-2) ( t n - l - n + 1 ) ' ' ( t n - j ) I Ĵ 

(We continue the convention of Section 18 that meaningless terms, those involving any 
6(i) with i < 0, are treated as zero.) We now sum over TT and j , taking the opportunity 
to permute the ir in the terms with F (which introduces a sign), to obtain (7ifci,fc2, .-.̂ Jn) 
in the desired form 

(-1)"-' J^e, F (6(i,-,) o6(,̂ _2)°• • • °C;n)) 

2 _, (19.25) 

-rr.j 
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in H mod SUI2 -f STli *^\. As before, the terms involving [vj] for j <n cancel: when we 
interchange ij and in, we obtain two identical terms having opposite signs. We therefore 
sum only over j ^ n. The terms of most interest are the two leading terms with TT = id: 

(-ir'F(6°^) = (-ir'F(6(fc,-,)o6(,';_,)0...o6(£':y (19.26) 
and 

for a certain multi-index L (different from Section 18). 

The reduction formula. We obtain a reduction formula for the general disallowed o-
monomial (19.17) in BPJBP^). First, we assume k is even. For any n > 0, 0 < fci < 
k2< '" <kn, and multi-indices M and J, the desired formula is: 

6(,';_,)o6°^l,)0...o6(,'';_„)o6°*^oKt,^] 

TT^tid 

in 5" mod dJih^i -f aW/̂ +i *an/n.i. 
(19.28) 

where we sum over permutations TT € iTn, (̂ 1,̂ 2, •-^^n) = 7r(A:i, A;2,... ,fcn), and 
/i = |J|. (Terms involving s''^{M) with TTIQ 7<̂  0 are to be omitted.) To obtain this, we 
first apply - 0 6 ° ^ to eq. (19.25), using eq. (15.13) to rewrite die terms involving F. 
The suppressed terms lie in 9K2 o 6° ^ c 9JI2 and 

(9Jli*97t,)o6°^C 9711*2711, 

as we know firom Lemma 19.14(a) that 97t2 and 9Ki are Hopf ring ideals. Then we apply 
the *-homomorphism - ©[i;-̂ ] and use Lemma 19.14(c). 

REMARK. Strictly speaking, this is only a reduction formula mod 93, but it meets our 
present needs. One can work modulo the slighdy smaller ideal (vi,i'2, • • •) instead and 
extract a more complicated reduction formula that is valid in BPABP^) itself, without 
recourse to Nakayama's Lemma. 
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For odd A;, the reduction formula takes the far simpler form 

mod 9yt/i-|.2- To see this, one can suspend eq. (19.28) by applying e© - , which kills all 
•-products, including Fc\ but it is far simpler to suspend eq. (18.22) instead. 

PROOF OF THEOREM 19.20. For m > 0, it follows from eq. (19.28) that 

9«rnC2ln.-fa«m+i+Wlni*9Jl^ + F2rtni-i in 5 ,̂ (19.29) 

by using exactly the same orderings of monomials (reinterpreted) as in the proof of 
Theorem 18.16. For m = 0, we clearly have SUlo = 2to + 3Wi because the generators of 
9Wo that are not in SDti are all allowable. 

We show by induction on m that the term FSDlm-i is not needed, that 

aWm C 2lm + an^+l + 9«m*9K„i (19.30) 

for all m ^ 1. This is clear for m = 0. If it holds for m - 1 , applying F yields 

Each term on the right is already included in the other terms of eq. (19.29) and may be 
omitted. 

Next, we dispose of SDlm * 9Km. On •-multiplying eq. (19.30) by SPt** we have 

It follows by induction on i that 

for all i. Since 9)t** is zero in each bigrading for large enough i, we must have Qrtm C 
2tm + SDlm+i- As in the proof of Theorem 18.16, this implies SDtm = %n' D 

The suspension. We can use eq. (19.28) to extract detailed information about the suspen-
sion homomorphism eo - : Q^ -^ PBP^{BP,k-\-\) when k is odd. (When k is even, there 
is nothing to discuss: the allowable monomial b^w^ e Q^ suspends to the allowable 
o-monomial eoft^^ofi;-'] G PBP^BPk^^),) 
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By Lemma 18.12(c), we can write every allowable monomial in Q^ uniquely in the 
extended canonical form 

where 0 = fco ^ fci < 2̂ ^ • * * ^ ^n, n ^ 0, 6^ = b(A:o)̂ fc,) * * * ^iknY ̂  ^"^ ^ satisfy 
the conditions (18.9), and /i ^ 0 is maximal. What happens to e o c is that if /i > 0, it is 
disallowed, as the derived relation iJi^kQ-\-\,k\-{-2,...,kn-¥n->r\) applies, and we pick out the 
leading term (19.26) mod 53. If /i > 1, we can repeat this cycle h times (always with 
the same indices ku)- In all cases, e o c has the leading term 

F'^(6°^o6°^o[i;-^]), (19.31) 

where 6°^ o6°^ o[v-̂ ] is allowable by Lemma 18.12(d) and primitive in "H because 6°^ 
contains the factor 6{o). 

In fact, one can show that every primitive allowable o-monomial in jBP*(BPjt_^i) can 
be written uniquely in the form 6° ^ o 6° ^ °b'̂ l> subject to the conditions (18.9). We have 
a computational verification mod 53 of the isomorphism Q^ = PBPJBPj^^i) induced 
by suspension. 

The first nth order relation. The relation (7ii,2,...,n) is particularly important, as only 
the two leading terms are meaningful. Bendersky has pointed out (during the proof of [3, 
Theorem 6.2]) that with a little more attention to detail, one obtains a sharper version, 
the unstable analogue of Lemma 18.23. 

LEMMA 19.32 (Bendersky). In BP^{BPf^n)) ^^ ^^^ ^^^ relation 

6°o7o[^„] = Vnb\S; + (-ir(b(oT)*'' mod InBP.[BPf^^)), (19.33) 

for each n > 0, where m = / ( n ) / 2 =l-fp-l-p^H f- p^^K 

PROOF. Although this resuh can be extracted from (7Ji,2,...,n) by detailed examination, it 
is far simpler to return to (7^). We proceed by induction on n, starting from eq. (19.11) 
for n = 1. For n > 1, we assume the result for all smaller n, and obtain it for n by 
evaluating b°^^^^ o(7l^) mod /n, where h = f{n-1)/2 = 1 -f p 4- p^ + • • • + p^''^. 

We recall that (Tin) is defined as the coefficient of x^" in eq. (19.10). On the left, we 
have b"^^^^ ob{vnxP^ + • • •) by [8, (15.5)], which provides only the term Vnbl^l''^^. The 
right side simplifies enormously, because /i > 0 and 6(o) © - kills *-decomposables; we 
obtain 

6°of oP(x)=pfe°o^^6(x)+ J2 A6(ofo6(x)°'"o[^^]. 
A,/,m 

By induction, b^^J" o[vj] = 0 mod In for all j < n - 1, since h = / ( n - 1 ) / 2 > f{j)/2. 
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Thus the only terms of interest in \p]{x) in our range of degrees are ynX^"" and 

Vn-\x^ , as it follows from [8, (14.26)] and the map BP -^ K{n-l) of ring spectra 

that any terms in eq. (19.9) of the form Xvl^^^x^ with i > 1 have A divisible by p. The 

term VnX^"" yields 6/Q^ ©6°̂  o[t;„], which is the leading term (19.27). By induction and 

eq. (15.13), Vn-ix^'' yields 

i'(of °<"'°K-.] = (-ir-'i^(6(o^)o<"' = (-ir'i^(6(o^<"'), 
which is the other leading term, (19.26). D 

The ideals Zn- Por the unstable version of our splitting theorems we need the unstable 
analogue of the ideal 3^ of Definition 18.25. 

DEFlNmoN 19.34. For n ^ 0, we define 3n C BP^{BP^) as the *-ideal generated by 
all elements of the form co([vj] - 1 ) , where j > n. 

LEMMA 19.35. Zn is a Hopfring ideal in BP^{^^), 

PROOF. We apply Lemma 19.2; only (i) requires any conmient. It holds for [vj] - 1, by 
the identity 

^[[v] ~ 1) = ( M - 1 ) ® H + 1 0 ( M - 1 ) , (19.36) 

which is valid for any v € BP* by Proposition 11.2(a). We combine this with V̂ c = 
Y,i di ® c'l to obtain 

^(co(M-l))=5;]c',o(H-l)0c^M+^c;ol0c^(H~l), 
(19.37) 

which shows that (i) holds for the typical *-generator of 3n- Q 

LEMMA 19.38. [v] = 1 mod Zn for all v € Jn-

PROOF. Suppose v = v' 4- XvjV^ with j > n. As Zn is a Hopf ring ideal, we have 

[v] = [v'] * [Xv^] o[vj] = [v'] * [At;^] ol = [v'] mod Zn-

The result follows by induction on the number of terms in v. D 

The unstable analogue of Lemma 18.26 requires more detail but no new ideas. 

LEMMA 19.39. For k < /(n-f-1), Zn(^BP^{BPi,) is the *-ideal in BP^BP^) generated 
by all elements that lie in BPABP ^) and have any of the following formSy where v^ 
contains a factor Vj with j > n: 

(i) {if k is even) an allowable monomial b° ^ ©[t;*̂ ]; 
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(ii) (Jf k is odd) an allowable monomial e o 6° ^ ©[v*̂ ]; 
(iii) (ifk^O and is even) [Xv^] - U, mth X € Z(p); 
(iv) (if k = /(n-f 1)) a disallowed monomial 

w/rA 0 < fci < A:2 < • • • < fcn+i. 

REMARK. TO make (i) correct for / = 0, it is necessary to define 6°^ = e°^ = [1] - 1 
as in Proposition 13.7, so that 6°^o[v* ]̂ = [v^] - 1. 

PROOF. Denote by 3 the *-ideal in BPJBP^) generated by the stated elements. It is 
clear from Lenmia 19.38 that 3 C Zn-

To show the converse, we fix k and a large m, and prove by downward induction on 
h that all elements in BPiJBP f^) of the form co([t;/i] - 1 ) lie in 3 whenever i <m. This 
statement is vacuous for sufficiently large h (depending on m and k). We therefore fix 
t> n and assume the statement holds for d\\h>t. 

Case 1: c = [Xv^]. (This includes the degenerate cases [1] and U = [0^].) Then 
co{[vt] — l) = [Av^Vt] - 1 is listed in (iii). 

Case 2: c = e^olf^. As in Lemma 18.26, co{[vt]-\) = e^olf^o\vt] has to be 
allowable, except in the extreme case when fc = / ( n - f l ) and j = n 4- 1; either way, it 
is a listed generator of 3. 

Case 3: c = e^ ob°^ olvhV^] allowable, where h ^ t From the form of Defini-
tion 19.16, codvt]-!) = e^ob°^olvf^vtv^] remains allowable and is thus a listed gen-
erator of 3. 

Case 4: c = e^ ob°^ olvhV^], with /i > t We can write co{[vt] — l) = 
e^ ob°^ olvtV^] o{[vh] - 1 ) , which lies in 3 by induction, provided i <m. 

By Theorem 19.18, we have enough *-generators c. If c = a*d, eqs. (10.11) and (19.36) 
give 

c* (b t ] - l ) = ao{[vt]-l)*do[vt] -fool *do{[vt]-l), 

which shows that the statement holds for c = a * d whenever it holds for a and d. Q 

20. Additively unstable BP-objects 

In this section, we discuss the additively unstable structures developed in Sections 5 
and 7 in the case E = BP, with particular attention to what becomes of the stable results 
of [8, §15]. We easily recover Quillen's theorem, that for any space X, the generators of 
BP*{X) all lie in non-negative degrees. Our main result Theorem 20.11 says in effect 
that there are no relations there either; more precisely, all relations follow from relations 
in non-negative degrees. We apply the theory to Landweber filtrations of an additively 
unstable module or algebra M, and find that the presence of additive unstable operations 
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implies severe constraints on the degrees of the generators of M; this may be viewed as 
a better version of Quillen's theorem. 

By Theorems 6.35 and 7.11, module and comodule structures are equivalent, with 
or without multiplication. The most convenient context remains the Second Answer of 
Section 5, that an additively unstable -BP-cohomology module (algebra) consists of a 
5P*-module (-BP*-algebra) M equipped with coactions 

PM'.M^ . M%Q[BPf, (20.1) 

that (as k varies) form a homomorphism of BP*-modules (BP*-algebras) and satisfy the 
usual coaction axioms (6.33). We continue to abbreviate Q{BP)l to Ql. The bigraded 
algebra Ql was discussed in detail in Section 18. 

Connectedness, The principle is that nothing interesting ever happens in negative degrees. 
The first result in this direction is due to Quillen [22, Theorem 5.1]. 

THEOREM 20.2 (Quillen). For any space X, BP*{Xy is generated, as a BP^-module, 
(topologically if X is infinite) by elements of positive degree and exactly one element of 
degree Ofor each component of X, 

This will be an immediate consequence of Lemmas 4.10 of [8] and 20.5 (below). 
Quillen's proof is geometric; in contrast, Section 6 provides a global algebraic proof of 
the weak form of Quillen's theorem. 

THEOREM 20.3. Given any integer fc < 0, there exist for n^ I: 

(i) additive unstable BP-operations Tn defined on BP^{—), with deg(rn) —̂  oo and 
deg(rn) ^ \k\foralln; 

(ii) elements v{n) E BP*; 

such that in any additively unstable BP-cohomology module M (e.g., BP*{Xy for any 
space X), any x € M^ decomposes as the (topological infinite) sum x = Yl^ v{n)rnX, 
with deg(rnx) ^ Ofor all n. 

In particular, M is generated (topologically) by elements of degree ^ 0. 

PROOF. Let {ci, C2, C3,...} be the Ravenel-Wilson (or any other) basis of the free BP*-
module Qj. By eq. (6.39) and the following Remark, we can write 

X = tkX = Y^{tk, Cn) Xn (20.4) 
n 

with Xn = TnX, wherc Tn denotes the operation dual to Cn. If Cn € Q ,̂ we must have 
j ^ 0; then deg(rn) = - deg(cn) = j - k ^ -k gives (i). We put v(n) = {tk, Cn) and 
note that deg(a:n) = deg(rn) -f deg(x) = j ^ 0. D 

REMARK. The coefficients in eq. (20.4) are readily computed from eq. (6.41) as v(n) = 
Q{e)cn. Thus v{n) = v'^ if Cn = e^bV^^.w'^, and vanishes for monomials Cn not of this 
form, so that many terms in eq. (20.4) are zero. 
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If M is bounded above or X is finite-dimensional, the sum is finite and no topology 
on M is needed. 

To handle the generators in degree 0, we need a stronger hypothesis. 

LEMMA 20.5. Let M be a connected (see Definition 7.14) additively unstable algebra 
(e.g., BP*{Xy for any connected space X). Then as a topological BP*-moduley M is 
generated by \M ^ M^ and elements of strictly positive degree. The generator \M is 
never redundant. 

REMARK. Again, we may ignore the topology on M if M is bounded above or X is 
finite-dimensional. 

PROOF. We choose a basis {ci, C2, C3,...} of QS with ci = 1; then given x G M^, we 
have eq. (20.4) with deg(xn) = - deg(cn) > 0 for all n > 1. Thus x = (to, 1) x\ mod 
L, where L denotes the £tP*-submodule of M generated (topologically) by the elements 
of positive degree. 

For the collapse operation KQ introduced in Definition 7.13, we similarly have KQX = 
(/Co, 1} mod L. But (^, 1) = (/co? 1) = 1. As M is connected, KQX = AIM for some 
A € Z(p), by Definition 7.14. We deduce from Theorem 20.3 that M =^ L-\- {BP*)\M' 

Since ACL = 0 and K{V 1M) = V 1 M for any v € BP*, this is a direct sum decomposition. D 

Primitive elements. We generalize the theory of Landweber filtrations to the additive 
unstable context by following the same strategy as stably. We explore a general unstable 
comodule M by looking for morphisms / : BP*{S^, 0) —> M, for any A: ^ 0. As a BP*-
module, BP*{S^,o) is free on the canonical generator Uk. Thus / is determined, as a 
homomorphism of £LP*-modules, by the element x = fuk € M. Since ps'^k ^Uk^e^ 
by Proposition 12.3(a), the condition we need is clear. 

DEHNITION 20.6. Let M be any unstable comodule. If fc ̂  0, we call x e M^ additively 
unstably primitive if pMX = x (g) e*̂  in M 0 Qj. 

This obviously stabilizes to [8, Definition 15.9], so that the additively unstable primi-
tives of M form a subgroup of the stable primitives of M. We do not define primitives 
in negative degrees, for lack of a space S^, and because e^ is meaningless. In fact, for 
A: < 0, a: (g) 1 does not in general lie in the image of the stabilization 

M®Q{(j):M%Ql ^M%BP^{BP,o). 

(Perhaps it never does?) 

REMARK. One might object that we have abolished primitives in negative degrees by 
simply defining them away, while some alternate definition might work. However, no 
such definition can be satisfactory. 

It is obvious from Definition 12.6 that if x G M is primitive, so is Ex G EM. On 
the other hand, we shall find (nontrivially) in Corollary 20.12 that the only primitive in 
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EM of degree zero is 0 (at least, for the kind of comodule we discuss). It follows, by 
suspending enough, that no definition of primitive can have both these properties and 
produce anything interesting in negative degrees. 

It is immediate from the definition that if x G M^ is primitive, 

PM{VX) = X 0 e^rjRV in M§iQl (for v £ BP*). (20.7) 

We again recall from eq. (1.4) the numerical function 

/(n) = ^MLzlL = 2(p"-' +p"-2 + ... +P+ 1) 

and remind that deg(t;n) = - (p-1) / ( '^) f̂ ^ n > 0. 

LEMMA 20.8. Let x e M^ be a nonzero primitive element of the unstable BP-
cohomology comodule M, and take n > 0. 

(a)Ifk< pf{n), then v^^x ^ Ofor alii > 0 and is not additively unstably primitive; 

(b) If k ^ pf{n) and InX = 0, then v^x is additively unstably primitive. 

COROLLARY 20.9. If the additively unstably primitive element x £ M satisfies I^x = 0 
and is a Vn-torsion element, then: 

(a) dcg{vl^x) ^ pf{n) whenever v\x ^ 0; 

(b) v\^x is additively unstably primitive or zero for all i. 

PROOF. We apply the Lemma to v\^x by induction on i. Part (a) never applies (unless 
v\x = 0); hence (b) must apply, to show that v\^^x is primitive. D 

All this follows easily from Lemma 18.23. 

PROOF OF LEMMA 20.8. From eq. (20.7) we have 

PM{V\X) = x^e^w\. 

In case (a), we note that by Definition 18.4, e^w\ is a basis element of Q*, so that 
Phdivl^x) is clearly nonzero. Even if k ^ 2(p'^-l)2, v^x is not primitive because 
PM{VnX) is different from 

In case (b), we use the same formulae, with z = 1. The difference is that by 
Lemma 18.23, they now coincide, since e^ = 6(o) and InX = 0. D 
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REMARK. For any x € M^, where fc ^ 0, the coaction axiom (ii) of [8, (8.7)] forces 
PM^ to have the form 

PMX = a:(8)e*̂  -f y^Xg 0 C Q , 

where the c^ are other Ravenel-Wilson basis elements and deg(xa) > fc. Assuming that 
k < pf{n), so that e^Wn is a basis element, let r be the operation (or functional) dual 
to it. Proceeding as in the proof of the Lemma, we obtain 

r{VnX) = X -f Y^{r, CaWn) Xa, 

which shows that VnX 7̂  0 if (for example) x is a module generator of M. 

Landweber filtrations. The preceding results allow us to sharpen Theorems 15.10 
and 15.11 of [8]. 

THEOREM 20.10. Let M be the BP^-module with the single generator x E M^ and 
Ann(x) = /n, so that M ^ E^{BP*IInl 

(di)Ifn>0,M admits an unstable comodule structure if and only if k ^ f{n) — 2, 
and it is unique. The additively unstably primitive elements are those of the form AT;̂ X, 

where A G Fp, and k -h deg(<) ^ f{n) ifi>0. 
(b) Ifn = 0, M = E^BP* admits an unstable comodule structure if and only ifk'^0, 

and it is unique. The additively unstably primitive elements are those of the form Ax, 
with A G Z(p). 

REMARK. Unlike the stable case, there are only finitely many primitives for n > 0. Of 
course, our definition forces this by requiring the degree of a primitive element to be 
non-negative. However, the theorem gives a much stronger condition. 

PROOF. By Theorem 20.3, we must have fc ^ 0, the canonical generator x is necessarily 
primitive, and p must be given by eq. (20.7). Thus in (a), p will be well defined if 
and only if e^{'qRv) € InQl whenever v € In- Lemma 18.23 shows that this holds for 
V =^Vi for all i < n, since k ^ / (n) - 2 ^ pf{i)\ this is sufficient. On the other hand, if 
k < f{n) - 2 = pf{n-\). Lemma 20.8(a) (with n replaced by n - 1 ) would contradict 
Vn^\X = 0. 

Because p is a BP*-module homomorphism (when it exists), the coaction axioms [8, 
(8.7)] need only be checked on x, where they are obvious. (Alternatively, S^{BP*/In) 
is a quotient of the geometric comodule BP*{S^,o).) 

Since any additively unstably primitive element is also by design stably primitive, [8, 
Theorem 15.10] restricts the candidates for primitives to Xvi,x. Lemma 20.8 shows, by 
induction on z ^ 0, that v^^^x is additively unstably primitive if and only if deg(vj^x) ^ 
pf{n). This is what we want, since |deg(i;n)| = ( p - l ) / ( n ) . 

The proof of (b) is similar, but far simpler. D 
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With this restriction on the basic building blocks for an unstable module, we obtain 
the expected improvement in [8, Theorem 15.11]. 

THEOREM 20.11. Let M be an unstable BP-cohomology comodule that is finitely pre-
sented as a BP*-module and has the discrete topology. Then there exists a filtration by 
subcomodules 

0 = Mo C Ml C • • • C Mrn = M, 

where each Mi/Mi^x is generated, as a BP'^-module, by a single element Xi, whose 
annihilator ideal Ann(xt) = Im for some riu and deg(xi) > /(rii) - 2 {if Ui > 0), or 
deg(xi)^0 0/ni = 0). 

If further, M is a spacelike BP*-algebra (see Definition 7.14), for example BP*{X) 
for any finite complex X, we can take each Mi to be an invariant ideal in M. At the 
last stage, we may take Xm = 1 and Um =0 or 1. 

Unfortunately, although the statement of the Theorem is exactly as expected, Landwe-
ber's method fails; Lemma 2.3 of [16] does not appear to be available here. (The BP*-
submodule 0: I^ = {y e M: Iny = 0} of M is defined but does not appear to be 
unstably invariant, owing to the dimensional restriction in Lemma 18.23.) Instead, we 
are forced to construct a suitable primitive x\ e M directly. We would have preferred 
Landweber's construction because it guarantees that Ann(xi) is maximal, which is useful 
in applications. 

PROOF. We start with a nonzero element x £ M^ of top degree; by Theorem 20.2, k^O 
and X is automatically primitive. We construct a sequence of nonzero primitive elements 
ya £ M such that Igys = 0, starting with yo = -̂ (Here, it is convenient to write VQ = p.) 
We stop when we reach an element yn that is Vn-torsion-free (vl^yn # 0 for all i > 0) 
and put x\ = yn and n\ = n; this must occur eventually, by Lemma 20.8(a) (e.g., when 
2p^ > k). Assume we have y ,̂ where s ^ 0. If it is v^-torsion-free, we stop; this is 
2/n. Otherwise, take the smallest exponent q such that v^ys = 0 and put y^+i = v^~^ys, 
to get Is^iya-i-i — 0. By Corollary 20.9 (with s in place of n), ys^\ is primitive and 
deg{ys+x)^pf(s). 

We have found a primitive x\ such that InX\ = 0, x\ is Vn-torsion-free, and deg(xi) ^ 
pf{n-l) = / (n) - 2. (If n = 0, there was no induction, and deg(i/o) = k ^ 0.) As 
Ann(xi) is an invariant ideal (in the stable sense), its radical ideal must be a finite 
intersection of invariant prime ideals in JSP*, therefore be Im for some m. That is, 

In C Ann(xi) C ^/Ann(xi) = In 

Since Vn ^ -y/Ann(xi), we conclude that m = n and Ann(xi) = In-
We finish as in the stable case, by setting M\ = (BP*)x\, observing that this submod-

ule is invariant by eq. (20.7), and replacing M by M/M\. The induction continues until 
M = 0, and must terminate (easily, unlike the stable case), because each M^ is a finitely 
generated module over the Noetherian ring Z(p) and we need consider only fc ^ 0. 
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Now assume that M is a spacelike algebra, i.e. a product of connected algebras. This 
product is evidently finite, otherwise M would be uncountable. We easily reduce to 
the case when M is connected, which includes the case when M = BP*{X) for a 
connected finite complex X. By Lemma 20.5, the module {BP*)x is automatically an 
ideal in M; by induction, so is {BP*)ys for each s, in particular M\. At the last step, 
the module M/Mm-\ is also an algebra; we therefore have 1 = vxm and x^ = v'xm 
for some v,v' e BP*. Then Xm = Ixm = vx^ = vv'xm = v'\, which shows that 
Ann(l) = Ann(xm) = Inm^ ^^^ ̂ ^ "̂ ŷ replace the generator Xm by 1. This implies 
Um ̂  1, since / (n) > 2 for n ^ 2. D 

COROLLARY 20.12. For M as in Theorem 20.11, the suspension EM contains no 
nonzero additively unstably primitive elements in degree zero. 

PROOF. We observe that 

0 = TMo C EMx C • • • C EMm = EM 

is a Landweber filtration of EM. By Theorem 20.10, the only unstable comodule of the 
form E^{BP*/In) that has a nonzero primitive in degree zero is BP*, which does not 
occur as a Landweber factor EMi/EMi^\ of EM. D 

21. Unstable EP-algebras 

In this section, we apply the theory of Sections 10 and 19 to an unstable EP-cohomology 
algebra M. Our main application is Theorem 21.12 on Landweber filtrations of M, which 
contains Theorem 1.5 and improves on Theorem 20.11 by one degree. 

Of course, we can always recover an additively unstable algebra from an unstable 
algebra simply by discarding the nonadditive operations. As a general rule, we can 
improve our results by one degree (but never more than one, in view of Theorem 13.6) 
by retaining all operations, at the cost of working in a far more complicated and unfamiliar 
environment. We developed the necessary machinery in Section 10. 

Primitive elements. It is clear from Section 20 that the way to study a general unstable 
algebra M is to look for unstable morphisms / : BP*{S^) -> M from the (relatively) well 
understood object BP*{S^). Since BP*{S^) is a free BP*-module with basis {I5, Wfc}» 
/ is uniquely determined, as a homomorphism of BP*-modules, by /15 = 1M and the 
element x — fuk G M^. We extend the concept of primitive element to the unstable 
context, using Proposition 13.7 as a guide. 

DEHNITION 21.1. We call x e M'' (where fc ^ 0) unstably primitive if 

r{x) = (r, U> 1M + {r,ek)x for all r, (21.2) 

where we interpret eo = [1] - lo (as in Proposition 13.7). 
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This is a necessary and sufficient condition for / to be a morphism of unstable algebras, 
by eqs. (10.41), (10.16), and the Cartan formula (10.23). Among the unstable operations 
is the squaring operation, defined by r{y) = xp- for all y, which implies that / is a 
homomorphism of BP*-algebras (even if fc = 0). When we restrict to additive operations, 
X is automatically additively primitive, and we have available all the results of Section 20. 

Many elementary properties of primitives follow directly from the definition. 

PROPOSITION 21.3. Let M be an unstable algebra. Then: 

(a) Unstable primitives are natural: if x £ M is unstably primitive and f:M -^ N is 
a morphism of unstable algebras, then fx £ N is also unstably primitive; 

(b) The elements 0 E M'̂  (for any k^O) and \M ^^^ unstably primitive; 

(c)Ifx£ M^ is unstably primitive, where A: > 0, then x^ = 0; 

(d) If X E. M^ is unstably primitive, where k > 0, then Xx is unstably primitive for 
any A G Z(p); 

(6)Ifk>0 is odd, the unstable primitives in M^ form a Z(^pysubmodule; 

{f) If k > 0 is even and x, y G M^ are unstably primitive, then x i- y is unstably 
primitive if and only if xy = 0; 

(g) The only nonzero unstable primitive in BP* = BP*{T) is 1; 

(h) Any unstable primitive x G M^ is idempotent, x^ = x; 

(i) If X e M^ is unstably primitive (and therefore idempotent), then the conjugate 
idempotent IM^X is also unstably primitive, but -x is never unstably primitive (unless 
-X = x). 

PROOF. Part (a) is trivial. Part (b) is clear from eqs. (10.41) and (10.28). As noted 
above, / is an algebra homomorphism, which gives (c) and (h). Then (g) follows from 
(b) and (h). 

In (d), eq. (10.16) gives 

r{\x) = (r, U) 1M -I- (r, [A] o e )̂ x. 

Since A: > 0, Proposition 13.7(g) gives [A] oe^ = Aê r, which shows that Ax is primitive. 
We prove (e) and (f) together. If x, y G M^ are primitive, the Cartan formula (10.23) 

yields 

r(x4-y) = (r, U) 1M + (r, tk) x -f (r, e )̂ y -f (-l)''(r, e^ * e )̂ xy, 

which is to be compared with eq. (21.2). The unwanted last term vanishes if fc is odd, 
because e/t is then an exterior generator; but if fc is even, Cfc * Cfc is a basis element of 
BP^{EPik)' For (e), we combine this with (d). 

For (i), we first use eq. (10.29) to compute r ( -x ) = (r, lo) 1M + (̂ , [-1] - lo)x, 
which shows that - x is not primitive. We then use eqs. (10.23) and (10.41) to compute 
r ( l M - x ) = (r, [1]) 1M 4- (̂ , lo - [1]) x, which shows that 1M - x is primitive. D 
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We deduce that the Remark following Definition 20.6 extends to show that unstable 
primitives cannot usefully be defined in negative degrees, even though the unstable 
suspension (see Definition 13.4) had to be defined somewhat differently. 

COROLLARY 2\A.LetM = BP* ^Jl be a based unstable BP-algebra. 

(a) IfxeM is unstably primitive, so is Ex E BP* © EM; 

(b) If M is the kind of algebra considered in Theorem 20.11, there are no unstable 
primitives of degree zero in BP* 0 EM other than 0 and 1 G BP*. 

PROOF. Part (a) is clear from eq. (13.3). For (b), take any primitive y € BP* 0 EM in 
degree 0. By Proposition 21.3(g), its augmentation in BP* must be 0 0£j ; if 1, we use 
Proposition 21.3(i) to replace y by 1 - y. Then y = Ex for some x € M. As y G EM 
is also additively primitive. Corollary 20.12 shows that y = 0. D 

If X is the disjoint union X\ II X2 of two spaces, we have BP*{X) = BP*{X\) 0 
BP*{X2)y a product of unstable algebras. By Proposition 21.3, the elements (1,0) and 
(0,1) are primitive idempotents in BP*{X). The converse is also true, algebraically. 

THEOREM 21.5. / / X E M^ is an unstably primitive element in the unstable algebra M, 
other than 0 and \M, SO that x and \M - ^ cire idempotents, we have the splitting 
M = xM 0 {\M'-X)M of M as a product of unstable algebras. 

PROOF. By Proposition 21.3(i), both x and 1^ - x are primitive and idempotent. We 
define the first projection pK'M -^ K = xM by pxy = xy; since x is idempotent, PK 
is a homomorphism of BP*-algebras. We define PL:M -* L = {IM-X)M similarly, by 
Piy = (lM-a:)y. These will give the desired splitting of M. 

Given y € M, we assume that VMiy) is in the standard form (10.22), where VM 
denotes the operation of r on M. By the Cartan formula (10.36), 

riiiixy) = ^ ( r , lood^)yp 4- Y^{r,dp - hodp)xyp 

= xrM{y) 4- ^ { r , \oodp) (lM-a:)y^. 
P 

Hence xrM{xy) = xrM{y), which shows that pK is an unstable morphism, provided we 
define the action VK- K -^ K of r on K by rxiz) = xrM{z) for z G K C M. All the 
necessary laws are inherited from M. We treat pi similarly. D 

Landweberfiltrations. We repeat the theory of Section 20, with an improvement of one 
in degree. If x G M^ is primitive in the unstable algebra M, where fc > 0, we compute 
fromeq. (10.16) that 

r{vx) = (r, U_/i) IM '^{r,eko[v])x (21.6) 

for any v G BP""''. 
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LEMMA 21.7. Let M be an unstable algebra, and x € M^ an unstably primitive element, 
where A: > 0. Then the BP^-submodule {BP*)x generated by x is an unstably invariant 
ideal in M, provided it is an ideal 

PROOF. We apply Lemma 8.10, with the help of eq. (21.6). D 

It is still true that an element of positive top degree in M is automatically primitive, 
for lack of any other possible terms in r{x). 

We now use the additional structure of the unstable operations to sharpen Lemma 20.8. 
We recall once more from eq. (1.4) the numerical function 

/ (n) = ^ ^ " " / ^ = 2(p"-' +p"-2 + . . . + 1). 
P — 1 

LEMMA 21.8. Let x ^ M^ be a nonzero unstably primitive element of the unstable 
algebra M, and n > 0. 

(2L)Ifk^ pf{n), then v\^x ^ Ofor alii > 0 and is not unstably primitive; 

(b)Ifk> pf{n) and InX = 0, then VnX is unstably primitive. 

COROLLARY 21.9. If the unstably primitive element x £ M satisfies InX = 0 and is a 
Vn-torsion element, where n > 0, then: 

(a) deg(t;JjX) > pf{n) whenever v^^x ^ 0. 

(b) v!^x is unstably primitive or zero for all i. 

PROOF. This is formally the same as for Corollary 20.9. 

PROOF OF LEMMA. Part (a) adds nothing to Lemma 20.8(a) unless k = pf{n), in which 
case we must take i = 1 if we are to have deg(vjjx) ^ 0. 

To test whether or not VnX is primitive, we have to compare 

r{vnx) = (r, Ik-d) 1M + {r, Ck o[vn]) x 

from eq. (21.6) with 

(r, U-d) IM -h (r, e/fc-d) VnX = (r, U«d) IM + {r, VnCk-d) x, 

where we write deg(t;n) = -d. For (a), we take k = 2pm, where m = / (n) /2 . 
Lemma 19.32 expands e2pm°[vn]> to show that r{vnx) has the term ±{r,{b°^^)*^)x. 
As ft/Q^ is a *-polynomial generator of BPJBPnm^^ ^^ deduce that VnX cannot be 
primitive or zero, whatever Ann(x) is. Similarly, for i > 1, r{vl^x) has the term 

Mr, (&(oT)"° K-']>x = ±(r, Wobr'])'")^. 
which shows that v^^x ^ 0. 
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For (b), we apply a further suspension efc-.2pm © - to eq. (19.33), which kills decom-
posables, to yield 

^k-lpm o ̂ Ipm ^bn] = Vn^k-2pm o e2m = VnCk Hiod / „ , 

This shows that VnX is unstably primitive, a stronger statement than Lemma 20.8 pro-
vides. D 

As promised, these two results improve on Lemma 20.8 and Corollary 20.9 by one 
degree. We use them to deduce the main theorems, which likewise improve on Theo-
rems 20.10 and 20.11 by one. 

THEOREM 2\.\Q.LetM be the BP^-module BP* © {BP*)x, where the annihilator ideal 
Ann(x) = In and deg(x) =^ k > 0. If M is made an algebra by taking 1 £ BP* as the 
unit element and setting x^ = 0, then: 

(si) If n > 0, M admits an unstable algebra structure if and only if k ^ f{n) — 1, 
and it is unique. The nonzero unstably primitive elements in M are 1 M ^^ the elements 
Xv^x, where X e¥p {X=^0) and i satisfies i = 0 or dtg{vl^x) > f{n). 

(h)lfn = 0, M admits a unique unstable structure. The nonzero unstably primitive 
elements in M are IM and the elements Xx with A G Z(p) (A 7̂  0). 

PROOF. In (a), we regard M as the quotient of the geometric unstable algebra BP*{S^) 
with J3P*-basis {15,^^} by the ideal InUk. The proof is formally the same as The-
orem 20.10, except that we use Lemma 21.8 instead of Lemma 20.8, Corollary 21.9 
instead of Corollary 20.9, and eq. (21.6) instead of eq. (20.7). 

To determine the primitives in positive degrees, we first note that Ax is primitive by 
Proposition 21.3(d) and apply Lemma 21.8 to Av^x, by induction on i. The primitives 
in degree zero are given already by Proposition 21.3. D 

For completeness, we mention the analogous results for A; = 0. 

PROPOSITION 21.11. For the unstable algebra BP*{T) = BP*: 

(a) BP* has no proper nonzero invariant ideals; 

(b) The unstable algebra BP*{S^) = BP* 0 BP* has the two copies of BP* as its 
only proper nonzero invariant ideals. 

PROOF. In (a), assume J is a nonzero ideal, and take v 7»̂  0 in J. As the elements [v] are 
linearly independent in the Hopf ring, we see from eq. (11.1) that there is an operation 
r such that r{v) = 1 and r(0) = 0. Thus if J is invariant, we must have 1 G J, and 
therefore J = BP*. 

In (b), the operations are given similarly by 

r{{vy)) = ( (r ,M) ,<r ,M)) GBP^eBP*, 
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from which it is easy to see that any invariant ideal J that contains an element {v,v') 
with both V and v' nonzero must contain I5 = (1,1) and therefore everything. For other 
ideals J , we can apply (a). D 

THEOREM 21.12. Given any spacelike (see Definition 7.14) discrete unstable BP-
cohomology algebra M that is finitely presented as a BP*-module (e.g., J3P*(X) for 
any finite complex X), there is a filtration by unstably invariant ideals 

0 = Mo C Ml C • • • C Mm = M 

in which each quotient Mi/Mi^\ is generated, as a BP^-module, by a single element 
Xi, whose annihilator ideal Ann(xi) = 1^ for some 0 < n̂  < 00, and deg(a:t) ^ 
max(/(nt) —1,0). At the last step, rim = 0 ai^ ^^ ^'nay take Xm = 1M-

PROOF. This is formally identical to the algebra case of the proof of Theorem 20.11, 
except that we use the corresponding results from this section instead of Section 20. 
Lemma 21.7 shows that M\ = {BP*)x\ is indeed an invariant ideal. D 

22. Additive splittings of BP-cohomology 

Lemma 22.1 will construct idempotent operations On in BP-cohomology, from which 
Parts (a) of our splitting Theorems 1.12 and 1.16 will follow. In fact, we find a large 
class of 9n, among which none seems to be preferred. At the end of the section, we give 
an example where no choice of On has the obvious image Z(p)[i;i,..., Vn] on homotopy 
groups. 

LEMMA 22.1. Assume that k < /(n-hl), where n ^ 0. Then there exists an additive 
idempotent operation On'k-^k having the following properties: 

(i) The image ofOn'.BP^ —^ BRf^ can be canonically identified with BP{n) ^: 
(ii) The map On factors to yield an H-space splitting Or>\BP{n) j^ —> SP^ of the 

canonical H-map 7r{n):BPf^ —• BP{n) f^: 
(iii) For all spaces X, On naturally embeds BP{n)^{X) C BP^{X) as a summand, 

in the sense ofabelian groups (but not as BP*-modules); 
(iv) If also k ^ /(n), the H-space BP{n) ^ does not decompose further 

REMARK. This result is best possible, in the sense that no additive On exists when 
k ^ / (n -h l ) . (In more detail, choose m so that / (m) < A: < / ( m + 1 ) ; then m> n and 
Om exists. Lemma 22.2 will show that if On exists, we automatically have On^Om = On-
The modified idempotent 0!^ = Om° On satisfies 

On ° ^m = 0„ =z Om^O^ 
n 

and therefore decomposes BPimlk further, contrary to (iv).) For k > /(n-f 1) this is 
obvious, because HJBP{n)^) then has torsion [26]. The borderline case A; = / (n-f 1) 
will be discussed in Section 23, where we find that a nonadditive On does exist. 
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PROOF OF THEOREM 1.12(a) AND THEOREM 1.16(a) (assuming Lemma 22.1). The two 
Theorems are equivalent by [8, Theorem 3.6(a)]. As indicated, we use the splittings 
provided by Lemma 22.1, namely 6r.:BP{n)f^ —• BP^ and, for each j > n, the map 

Oj Vj 

fj'BPjjXk^2(p:i-\) ^^ik+2(p>-l) '^k' 

This 9j exists because 

fc-f 2(p^-l) < f{n+l)^{p-\)f{j)^pf{j) < /(j>l). 

On homotopy groups, 6n induces a splitting of BP* -^ BP*/Jn, while fj induces a 
splitting of Jj-i —> Jj-\/Jj, in view of the commutative diagram 

BPyjj — ^ BP' ^^— Jj-\ 

BPyjj -^^ J3-\lJj 

in which multiplication by Vj induces the isomorphism. 
We use the iif-space structure of BPj^ to multiply the maps On and the fj together 

to form a map f:W -^ BPj^ from the restricted product W (the union of the finite 
subproducts) of BP{n) ^ and the spaces BP{i) ^^2[v^-\) • '^^^ homotopy groups of W 
are the direct sums 

fc+2(pj-i);-

We have enough information to conclude that / induces an isomorphism of filtered groups 
/*: 7r*(W) = -KABP ^). For connectedness reasons, the above sum is in fact a product of 
graded groups, which makes W homotopy equivalent to the desired product of spaces. 
Finally, Lemma 22.1 shows that all factors of W after the first are indecomposable, since 

k^2{pi-\)^2{jP-\) = {p^\)f{3)^f{j). 

If k^ f{n), so is the first. D 

Construction of idempotent operations. To complete the proof, we need an idempotent 
operation 0n. We actually construct the J3P*-linear functional {On, - ) : Q* = Q{BP)^ -^ 
BP* that corresponds to it in the list (6.9). We recall the coalgebra structure (O(V )̂, Q{e)) 
on Ql and the ideal CJn introduced in Definition 18.25. 
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LEMMA 22.2. Assume the linear functional {0n, ->: Qt -^ BP* defined by the additive 
operation On'-k —^ k satisfies the conditions: 

(i) (fln,Ojna,> = 0; 

(ii) {0n,c) = Q{e)c mod Jn for all ceQt 
(22.3) 

Then: 

(a) The homology homomorphism Q{6n):Qt -* Qt satisfies 

(i) Q{0n)Zn = O; 

(ii) Q(0n)= id: Qj-^QSod3n; 

(b) Q{On) induces a splitting of the short exact sequence 

of left BP^'-modules; 

(c) TT{n)oen = 'K{n)\EP^^ -^ BP{n) ^: 

(d) The operation 6n is idempotent arul has the properties listed in Lemma 21 A, 

We shall write Q^/Zn for the tedious but more accurate expression Q^/{Q^ n 3^). 

REMARK. From a more invariant point of view, Q{e) induces the quotient augmentation 
Q{e)'.Q^lZn -^ BP^'/Jn. The conditions (22.3) on {6n, -) are conveniently expressed 
by the commutative diagram 

Qj - BP* 
if I 

(22.4) 

Q(e) 

QtlZn - ^ Bpyj„ 

in which the vertical arrows are the obvious projections. In words, we plan to lift Q{e) to 
a homomorphism of BiP*-modules Qj/3n -* BP* and define (0n, - ) as the composite. 
This is easy if Q^/Zn is a free BP*-module (and in view of (b), impossible otherwise). 

PROOF. We enlarge diag. (22.4) to the commutative diagram 

Qt 

Q*/3n 

QW , I®<#n,-) AR 

QW 

l®ir 

Ql^Q'jZn 
i®Q(e) 

• Q:®BP'/Jn 

Qi 

QllZn 
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of fitP*-module homomorphisms, where Q{il)) and \R are quotients of Q(V') and \R. 
By Lemma 6.51(c), we recover Q{6n) as the top row, while the bottom row reduces 
by diag. (6.31) to the identity homomorphism of Q^/Zn- Thus the diagonal provides a 
splitting j:Q^/Zn -^ Q* such that joTT = Q{9n) and noj = \. 

This is enough to establish (a), that Q{6n) is idempotent with kernel exactly Q^ nZn-
Part (b) is merely a restatement of (a). It follows that 0n also is idempotent. 

By [8, Lemma 3.9], the idempotent operation On is represented in Ho by the idempotent 
map 6n = i2°P2 on the product W = W\ x W2 of if-spaces, where 12'-W2 —• W and 
P2:W —• W2. Corollary 12.4 gives the effect of On on homotopy groups: eq. (22.3)(i) 
shows that ^n*̂ ' = 0 if i; € Jn, while (ii) shows that 

On^v = Q{e){e^-^^rjRv) = vmodJn in 7r,{BPk) ^ BP* 

for all V G BP~^. These two statements identify 7r«(W2) with BP*/Jn\ more precisely, 
the composite / = 7r{n) 022: W2 -> BP/fe —• BP{n) ^ induces the desired isomorphism 
on homotopy groups and is thus an isomorphism of abelian group objects in Ho. 

We need (c) to be sure our identifications are correct. Now that we know BP{n) ^ is 
a summand of BPfc, it is enough to work in QBP^{-). By construction, Q7r{n)^ kills 
Zn'^ this, with (a)(ii), gives Qn{n)„ oQOn* = QTT{n)„. 

We can now define the splitting On = iio f~^:BP{n) j^ -> EP_k of 7r(n), so that 
i^{n)oOn = 1. From (c), we have 7r(n) = 7r(n)o0„ = 7r{n)oi2op2 = /op2, which 
shows that the idempotent On o 7r(n) = ^n Q / op2 = 2̂ oP2 = n̂ is as expected. Now we 
can read off properties (i), (ii), and (iii) of Lemma 22.1. 

Property (iv) was proved in [26], but also follows from Corollary 12.4. Suppose there 
is a splitting 

BPk :̂  VTi X BP{n) fc ::^WixW xW 

of ff-spaces that induces the decomposition £LP* = Jn © G 0 G' on homotopy groups, 
where 1 G G, and let r be the idempotent that splits off W\ so that (r, 1) = 0 and 
(r, Qj nZn) = 0- Suppose that W is {k-\-h- l)-connected, where we must have /i > 0. 
Then (r, c) = 0 for all c G Qf whenever i < k -^ h. 

Choose a nonzero element v € BP~^ that lies in G' and is not divisible by p. Then 
r^v = t; in homotopy and v ^ I\ -\- Jn (recall that I\ = (p)). Obviously, i' G /oo = 
/n-f 1 -l-t/n- There must be some integer m, satisfying 1 ^ m ^ n, such that v E /m-i-i + Jn 
but V ̂  Im-^ Jn- We write 

with z e Jn- Since 

fc -f /i ^ /(n) 4- 2(p^-l) = / (n) + ( p - l ) / ( j ) > p/(j) , 
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we have enough factors e to apply Lemma 18.23 for each j < m, in the form 

(r.e^+^u^jT/flj,,) = (r,t;,e'=+'*-2(p'-')7,ft%> mod Ij 

By Corollary 12.4, r^v = 0 mod /m, which contradicts our choices of v and m. D 

PROOF OF LEMMA 22.1. Lemma 18.26(a) makes it obvious that linear functional {9n, -) 
exist as in diag. (22.4), so that Lemma 22.2 applies. D 

EXAMPLE. Even in the simplest case, namely 0\\BP_2 ~^ ̂ -2 ^^^ p = 2, 6]^ never 
induces the obvious splitting on homotopy groups. (Presumably, this failure is completely 
general.) We compute 6uv] in terms of the Hazewinkel generators [11]. The element 
b\^>w\ € Q\ is not allowable; instead, 

L4 3 12 ^ ^ /̂  3 4 \ 10 21. 4 . 8^ 
(̂0)̂ 1 = - y v i ^ o ) ^ i ) ^ i + I W + 7^2 1 b(o) ~ y^i^(i) - •:jb{o)'^2 - :̂ b(2), 

as can be checked by stabilizing and working in BP^{BP^o). By construction, (^i, - } 
takes the values 1 on 6(o), Xv2 on 6(2) for some A G Z(2), and zero on the other allowable 
monomials that appear. Thus by Corollary 12.4, 

/I 3 3 4 - 8 A 

which always contains a term in V2. 

REMARK. It is often useful to arrange the operations On'.k—*k compatibly as n and 
k vary. However, we emphasize that Theorem 1.12 as stated requires no compatibility 
conditions whatever. 

For fixed n, compatibility in k is easily arranged. Given On'-k —^ k that satisfies 
conditions (22.3), the looped operation QOn'. k—\-^k—\ has the functional 

and clearly again satisfies (22.3). We may choose On'-k -^ k arbitrarily for k = / ( n + l ) -
1 and use this approach for all lower fc. 

For fixed k, we have On for all sufficientiy large n. The compatibility condition 
On^On-\-\ = On (cquivalcntly, Ker^^+i C Ker^n) is automatic, from Lemma 22.2. 
The other condition, &n+i°^n = n̂ (equivalently, ImOn C Im^n+i), does not hold 
in general, but can be arranged for all n simultaneously by replacing each On by 
0'^ = .. .00^^2 0̂ 71+1 o^n- (The infinite composite presents no difficulty, as Q{On) = 
id:Qf -^ Qi for I < k -\- 2(p""*'̂  - 1).) This results in a sequence of commuting 
idempotents On that satisfy On^^Om = Om^On = On whenever n<m. 
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23. Unstable splittings of JSP-cohomology 

In this section, we improve the splitting in Lemma 22.1 by one by allowing the idempotent 
operation On to be nonadditive. We defer the proof until after stating Lemma 23.5. For 
this, we need the more detailed relations in the Hopf ring developed in Section 19. 

LEMMA 23.1. Assume that k = /(n-l-1), where n ^ 0. Then there is a nonadditive 
operation On'.k —* k having the following properties: 

(a) // satisfies the axioms [8, (3.11)] and so is idempotent; 

(b) It has a coimage Coim^n w/i/c/i is represented by the H-space BP{n) f^: 

(c) Its representing map 9n'.^,k "^ SRk factors to yield a section 6.n:BP{n) j^ —^ 
BPf^ (not an H-map) of the canonical H-map n{n):EPi^ —̂  BP{n) .̂ 

PROOF OF THEOREMS 1.12 AND 1.16, FOR k = / (n-h l ) (assuming Lemma 23.1). This 
is almost identical to the proof given in Section 22 for k < / (n -h l ) , except that we 
apply [8, Lemma 3.10] instead of [8, Lemma 3.9]. The maps fj appearing there are still 
jB-maps; only On is not. We can still represent Ker^n by 

j>n 

If any of the spaces decomposed as a product, we could apply the loop space functor i? 
to obtain an /f-space decomposition of BP^_i , using additive operations, which would 
contradict the part of Theorem 1.12 already proved. D 

Of course, we know from Lemma 22.1 that for k = / ( n + 1 ) , On'.k -^ k can never be 
additive and that On is never an /f-map. However, looping gives an additive idempotent 
operation QOn'. A:~ 1 —> fc-1, which will be one of those provided by Lemma 22.1. We 
have the converse, which we prove after stating Lemma 23.5. 

THEOREM 23.2. Let On'.k-l —^ k-\ be any of the additive idempotent operations pro-
vided by Lemma 22.1. Then: 

(SL) If k—l is even, On can be delooped uniquely to an additive idempotent operation 
k —^ k as in Lemma 22.1; 

(b) If k-\ is odd, On can be delooped (not uniquely) to a nonadditive idempotent 
operation k -^ k as in Lemma 23.1. 

The next two lemmas constitute the unstable analogue of Lemma 22.2. They are far 
more complicated, because instead of Q(t/;), we have only the natural transformation 
^ : f/ —> UU. This requires knowledge of the homology homomorphisms r^ induced by 
each operation r, which is provided by Theorems 10.19 and 10.33 and the properties of 
each o-generator of JBP*(EP^). We warn that as a consequence, the form of the proofs 
runs totally counter to traditional proofs involving cohomology operations. We abbreviate 
{r,3^ nBP.(BP J ) to (r,3^), etc. 
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LEMMA 23.3. If the unstable operation r:k -^ m satisfies {r, 3n) = 0, then the homology 
homomorphism r^iBP^iBP^) -> BP^[^^) satisfies r^Zn = 0. 

PRCX)F. Our plan is to show that r*c = 0 in three steps, depending on the form of 
c e Zn^ simultaneously for all operations r:k -^ m that satisfy (r,3„) = 0, where 
c € BPJBPi^) determines k and m is arbitrary. 

Case 1: c ^ [vj] - \, where j > n. By hypothesis, {r,[vj\) = (r, 1). Then by 
Proposition 11.2(g), 

r . ( N - l ) = [<r,N)]-[{r,l)]=0. 

Case 2: c = ao{[vj] — l), where j > n. Thus c is a *-generator of Zn- We apply 
Theorem 10.33(c); the operations r̂  defined by eq. (10.35) satisfy our hypothesis 

{rl,d)^±{r,Caod)=0 for all dGJn 

because Cotod£ 5n» 3n being a Hopf ring ideal by Lemma 19.35. Using eq. (19.36) to 
compute the iterated coproduct lP'([t;j]-1), we see that every term of r^^c in eq. (10.37) 
contains a factor r^*((vj]-l), which vanishes by Case 1. 

Case 3: c = a*b, with b as in Case 2. Since such elements span Zn ^ ^ fiLP*-module, 
this will complete the proof. We apply Theorem 10.19(c); the operations r̂  defined by 
eq. (10.21) satisfy our hypothesis 

(rĵ , d) = ±(r, Ca * d) = 0 for all dedn 

because Zn is a •-ideal. Using eq. (19.37) to compute the iterated coproduct ^b, we see 
that every term of r,t^c in eq. (10.25) contains a factor of the form r'^AV<^{[vj] — l)), 
which vanishes by Case 2. D 

LEMMA 23.4. Let r:k -^ m be an unstable operation. 
(a) Ifr satisfies (r, c) G Jn for all c G BP^{BPf^), then r^c= {€c)lm mod Zn for all 

ceBP^BPk)^' 
(b) Ifr satisfies (r, c) = Q{e)qkC mod Jn for all c G BP^{BP j^), then r^c = c mod 

ZnforallcGBP^BPf,). 

PROOF. We prove (a) in five steps, depending on the form of c, simultaneously for all 
r:k --^ m that satisfy the hypothesis, where c £ BP^{EP_k) determines k and m is 
arbitrary. We work throughout mod 3n» which is a Hopf ring ideal by Lemma 19.35. 

Case I: c= [v], for any v G BP*. By Proposition n.2(g) and Lemma 19.38, r* [v] = 
[{r,[v])] = 1. This includes the special case c = 1 = [0]. 

Case 2: c = e. By Proposition 13.7(h) and Lemma 19.38, r„e = 1 * loe = 1 * 0 = 0. 
Case 3: c = 6i, where i > 0. By Proposition 15.3, working formally in JSP* (EP^)[[x]], 

r,b{x) = [(r, h)] * * b{xY^o[{r,bj)] = * 6(x)°^ol = * e6(x)°̂ ' = 1. 
j>0 j>0 j>0 
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The coefficient of rr* gives r^bi = 0. 
Case 4: c = aob, where b = eorb = bi for some z > 0. We apply Theorem 10.33(c); 

the operations r^ defined by eq. (10.35) satisfy the hypothesis (r^, d) = ±(r, Ca o d) G Jn 
for all d. Then using Proposition 13.7(d) or Proposition 15.3(c) to compute the iterated 
coproduct ^b, we see that every term of r^c in eq. (10.37) contains a factor r'^^e or 
r^^bj with j > 0, which lies in 2n by Case 2 or Case 3. This, with Case 1, takes care 
of all the *-generators (19.4) of BPJBP^). 

Case 5: c = a*d, with d as in Case 4. We apply Theorem 10.19(c) and again find 
that each r^ satisfies our hypothesis (r^, ^) = ±(r, c^ * p) G Jn for all g. In the iterated 
coproduct 

'J,a» 

every term contains a factor dj^a to which Case 4 applies. Thus every term of r^c in 
eq. (10.25) has a factor r^^dj,a = 0. 

As every *-monomial in the o-generators of BP^{BP^) is included in Cases 1 and 5 
(by writing [v] * [v'] = [v-\-v']), this completes the proof of (a). 

For (b), we recall from eq. (10.42) that {ik, c) = Q{e)qkC, so that (a) applies to r - tk^ 
We apply eq. (10.17) to r = {r-ik) -\- ik to deduce that for any 

cG£;*(£fc), r,c^Y.'<^'''iyi=''^ 
i 

where as usual we write t/̂ c = ^^ d^ 0 c//. D 

We need one more result before we prove Lemma 23.1 and Theorem 23.2. The structure 
of BP^{EP_k)/^n is much more opaque when fc = /(n-hl) . We defer the proof until 
after Lemma 23.12. 

LEMMA 23.5. For k ^ /(n-f 1), where n ^ 0.* 

(a) BP4BPk)/Zn is a free BP^-module; 

(b) The homomorphism Q{BP)^~^ /Zn -^ BP^{BPk)/3n induced by suspension is a 
split monomorphism of BP^-modules. 

Note that we have two different ideals 3n here. One is an ideal in the algebra Q* in 
the ordinary sense, while the other is a Hopf ring ideal in JBP*(BP^). 

PROOF OF LEMMA 23.1 (assuming Lemma 23.5). To apply the method of Lemma 22.1, 
we need an operation On'.k ^ k that satisfies B^Zn = 0 and 9^^ = id modZn- In view of 
Lemma 23.3 and Lemma 23.4(b), these conditions are ensured by (and in fact equivalent 
to) the following conditions on the linear functional (̂ r̂  - ) • 

(i) {On.Zn) = 0; 2̂3 6̂  
(ii) (0n, c) = Q{£)qkC mod Jn for all c G BP^{EP_k)' ' 
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Therefore we need to fill in the diagram 

Qt' BP^iBPk) • • • - • " • - BP' 

(23.7) 

g^Van BP.{^^)/Zn BP^/Jr, 

analogous to diag. (22.4) with a lifting BP^{BPk)/3n -^ BP* of the homomor-
phism BP^{J^k)/Zn -* BP*/Jn induced by Q{e)oqk, which then defines {On,-). 
Lemma 23.S(a) makes this easy to do. 

For (a), we must verify the axioms [8, (3.11)] on On- The first holds trivially, for 
dimensional reasons. The second is the identity Onix-^z) = 0n{x)y forz = y- Oniy)-
We assume that the standard form r(x) = ^^^{T', Ca) Xa holds for all r, as in eq. (10.3). 
Then by eq. (10.20), On{x+z) = ^^^oc^ai^)^ where the operation 0'^ is defined as 
having the functional {O'a.c) = {On.Ca * c). Because z = {ik-On){y)y we have only to 
prove that (tk-On)*0'^ = {On,Ca)l in BP*(BP^) for each a. We compute the associated 
linear functional as 

By Lemma 23.4(a), {Lk-6n)*c = {£c)\ mod Zn- As (0n, -> kills Zn by Lemma 23.3 
and On is an ideal, this agrees with {0n,{£c)ca) = {On,Ca)ec. Now we can apply [8, 
Lemma 3.10] to construct the coimage of On-

For (b) and (c), we have to check that 9n acts as desired on homotopy groups. By 
Lemma 13.9, 0n» is given on v E BP"^ ^ T^k-^h{^k) by ^n^v = {On,e''^^^o[v]). For 
V e Jn> we have [v] = 1 mod Zn by Lenuna 19.38, so that 9n*v = 0 by (i). For any v, 
(ii) gives On^v = Q{e)qk{e''^""^o[v\) = v mod Jn. D 

PROOF OF THEOREM 23.2 {assuming Lemma 23.5). Part (a) is trivial and belongs 
in Section 22, as suspension induces an isomorphism Q)r^ = Q^ and preserves the 
conditions (22.3). 

In (b), we must have k ^ /(n-hl) for n̂ to exist. In effect, the lifting 
BP4BPk)/3n -^ BP* in diag. (23.7) is prescribed on Q^'^/Zn- As we have by 
Lemma 23.5(b) a split monomorphism with free cokemel, it is easy to extend the given 
lifting over BP^(BP J/a^. • 

Resolutions. Lemma 23.5 is easy to prove when A; < /(n-hl). In the borderline case 
k = /(n-f 1), the presence of the extra disallowed monomials in Lemma 19.39 makes it 
necessary to do some homological algebra. 

LEMMA 23.8. In the sequence of homomorphisms of BP*-modules 

C2 - ^ Ci — Co - ^ M ^ 0, (23.9) 
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assume that: 

(i) Each Ci is free of finite type; 
(ii) We have exactness at Co and M; 

(iii) 9i o82 = 0 (we do not assume exactness at C\); 
(iv) The sequence 

d2(8>Fp a i 0 F p fir(8)Fp 

Ci (8) Fp y Cx (g) Fp > Co 0 Fp > M 0 Fp (23.10) 

is exact at C\ ® Fp (as well as at Co <S) Fp). 

Then: 

(a) The sequence (23.9) is split exact in the sense that: 

(i) Co splits â  Co = M e 9iCi; 
(ii) Cx splits asC\'^d\C\^ ^iCi; 

(b) M is a free BP*-module; explicitly, if LQ is a free module and the module homo-
morphism go'.Lo-^ Co induces an isomorphism 

90(S>Fp 

LQ (g) Fp ^ Co ® Fp > Coker(ai 0Fp) ^ M 0 Fp, 

the composite eogQ.Lo -^ M is an isomorphism. 

PROOF. We build the following commutative diagram, which includes the projections 
from diag. (23.9) to diag. (23.10), 

1/2 L,\ LQ 

[92 ^ |p. ^ [go 

C2 ^ Ci • ^ Co M 

a2®Fp * di®Fp * e(8)Fp ^ 

C2 0 Fp 1 Cx 0 Fp ^ Co 0 Fp ^ M 0 Fp 

It is easy to construct go as in (b), by lifting a basis of Coker(9i 0 Fp) to Co. Similarly, 
we construct gx'^Lx -^ Cx, with Lx free, that induces an isomorphism 

i i 0 Fp ^ Coker(82 0 Fp) ^ Im(ai 0 Fp), 

and again ^2- L2 —• C2, with L2 free, diat induces L2 0 Fp = Im(92 0 Fp). 
Then by Nakayama's Lemma in the form [8, Lemma 15.2(a)], the homomorphism 

Lo^Lx —̂  Co with components go and 9i 0̂ 1 is an isomorphism, and similarly Lx ®I/2 ~ 
Cx. These allow us to write gi'.Li C Ci for i = 0,1,2, and the isomorphisms simplify 
to Co = I'o © 9iLi and Cx = Lx ® 92^2- The latter gives 9iCi = 9iLi, which shows 
that M = Coker[9i 0Fp] = Lo is free. Moreover, because 9i \Lx is monic, 92C2 = 92I/2 
and we have split exactness at Ci. D 
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For our application, we take a polynomial algebra 

i? = BP*[X1,X2,X3,... ,2/1,2/2,^3, . . .] 

on generators of negative degree, with cleg(xi) —> - o o and deg(2/t) —> —oo as i —> oo, 
to make R a J3P*-module of finite type. We consider the quotient ring M = R/Z as a 
J3P*-module, where the ideal 3 = (x^ - cijxf - C2,...). The elements Ci are to be in 
some sense negligible. We construct what we hope is the beginning (or end) of an ii-free 
resolution of M, 

C2 = @RuiUj - ^ Ci = ^Rui - ^ Co = i? >M ^ 0, (23.11) 
i<3 i 

with /J-linear differentials given by b\Ui = xf-Ct and d2UiUj = (xf-Ci)uj-(x^-Cj)ui. 
This is part of a familiar Koszul-type resolution if the Ci are in fact zero, and the structure 
of M is then clear. Lemma 23.8 supplies conditions under which M has the expected 
size, even when Ct 7«̂  0. 

LEMMA 23.12. Assume that the sequence (23.11) induces an exact sequence (23.10), and 
that the set B of monomials in R of the form 

with it < pfor all t, yields an Fp-basis o/Coker(8i 0 Fp). Then the sequence (23.11) 
is exact, M = i?/3 is a free BP^-moduley and B yields a BP^-basis of it. 

PROOF OF LEMMA 23.5. Nakayama's Lenwna [8, Lemma 15.2] and Lemma 23.12 allow 
us to work mod 9J everywhere. 

For (a), we apply Lemma 23.12 to BP*{BPf^)/Z^. using the detailed information 
on Zn provided by Lemma 19.39. The *-ideal 3^ H BP^{BPf^) c BP^{BPf^) has two 
kinds of generator: the first kind are standard polynomial generators, but the second kind 
(which occur only if k = /(n-h 1)) are disallowed; we express them in terms of allowable 
monomials by means of eq. (19.28), of which the leading term (19.26) is of most interest. 

We therefore classify the Ravenel-Wilson polynomial generators of BPJBP f^) into 
three types: 

(i) The allowable 6°^o[v'̂ ] in which v^ contains some factor Vj with 
j>n\ 

(ii) Monomials of the form 6/̂ x o 6?̂ > o . . . o 6/̂ x̂, where 0 ^ ko ^ k\ ^ (23.13) 

(iii) All other allowable monomials 6°^ ©[i;-̂ ]. 

The first type visibly lie in 3n» ^ d we ignore them, by taking R in Lemma 23.12 as 
the quotient polynomial ring (using *-multiplication, of course) on the second and third 
types, which serve as the Xi and 2/t respectively. The interesting generators of 3n then 
have the form x^ - Ci. 



824 J.M. Boardman et al. Chapter 15 

There are five types of term in the reduction formula (19.28) for the monomial 

(i) 6(i^,) °blCi)"• • • °^(iC-n-i) °K+']: 
(ii)F(6(,,_,)o6°^^_,)0...o6°,^;^,_„_,)); 

(iv) Terms in 2I2; 
(v) Terms in 9L\ * 2li; 

where {i\, 12, . . . , in+i) denotes any nontrivial permutation of (fci, fc2,..., fc^-f-i). 
Because the suffixes in (i) are out of order, (i) is an example of a type (i) generator in 

(23.13), which has been discarded. The term we want is (ii), which is xf. We can take 
care of (iii) and (iv) by filtering R by powers of the ideal (2/1,2/2, • •) and working with 
the associated graded groups; if we have exactness in diag. (23.10) after filtering, we 
had exactness before. In effect, we may ignore the yi's. We take care of (v) by filtering 
again, this time by powers of the ideal 2li + (^1,^x2,.-.) m (23.10). This done, we have 
effectively reduced Cj to zero, when we have exactness. Thus BPABP j^)l^r. is a free 
BP*-module, and we have constructed a basis. 

For (b), we have only to show that we have a monomorphism mod 93. By 
Lemma 18.26(a) and Lemma 18.12(c), Qj~V3n is a free jBP*-module with a basis 
consisting of the monomials of the extended canonical form (18.13) 

that lie in Qj~^ and have no factor Wj with j > n, where 

and the conditions (18.9) on M and J hold. After suspension, we find the leading term 
(19.31), namely F''(6°^o6°^ o[i;'̂ ]), which by Lemma 18.12(d) is the p^th power of 
an allowable monomial. 

There are two cases: 
Case m < n. The element h°^olf^o[v'^] is a generator yi of type (iii) in (23.13), 

and therefore harmless. 
Case m^ n. Since jt = 0 for alH ^ m and t > n, we must have J = 0. Also, h = 0. 

We must have m = n, otherwise we would have A: > / (n- f l ) . We have a generator Xi 
of type (ii), but it is not raised to a power. 

By Lemma 23.12, the elements F^yi and Xi (for certain i) map to part of a basis of 
^ IQ 

H^/Zn^ which is sufficient. (Because fco = 0, it is clear that these elements lie in PH^. 
In view of the suspension isomorphism Qj" V ^ — PH^ in [23, Theorem 5.3], all we 

jt 
really need to know is that enough basis elements of PH^ in each degree remain linearly 

— k 

independent in H^ mod CĴ ) D 
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Index of symbols 

This index lists most symbols in roughly alphabetical order (English, then Greek), with 
brief descriptions and references. Several symbols have multiple roles. 

A additive comonad, Theorem 5.8. 
A' additive comonad, (6.23). 
-ji (subscript) additively unstable context. 
A additive comonad, on modules, §9 (only). 
A augmentation ideal in algebra A. 
A etc. generic category. 
A^P dual category of A [8, §6]. 
A = E*(E, o), Steenrod algebra for E, §2. 
Ak = E*{E^j^), tht operations on dtgKC k, ^2. 
2lm ideal in 0(J3P):, §1_8. 
%m Hopf ring ideal in H, Definition 19.19. 
Ab, Ab* category of (graded) abelian groups, 

[8, §6]. 
Alg category of £?*-algebras, [8, §6]. 
at, a(t) Hopf ring element for i f (Fp), 

Proposition 17.9. 
aiy a(i) Hopf ring element for K{n), 

Proposition 17.16. 
a(i) additive element for K{n), (16.21). 
at,j coefficient in formal group law, [8, (5.14)]. 
BG classifying space of group G. 
B{% k) coefficient in 6(x)*, Proposition 14.4. 
BP Brown-Peterson spectrum, [8, §2]. 
BP{n) modified BP, §1. 
h^ etc. monomial. 
6° ^ etc. o-monomial, (15.11). 
hi additive element, Proposition 14.4. 
hi Hopf ring element. Proposition 15.3. 
6(j) accelerated hi. Definitions 14.7, 15.10. 
h{x) formal power series, (14.2), £)efinition 15.1. 
6(x) series h(x) without the 1 term, (15.4). 
C the field of complex numbers. 
CP^, CP°° complex projective space. 
Coalg category of £?*-coalgebras, [8, §6]. 
c etc. generic Hopf ring element. 
Ci, C(i) Hopf ring element for H(¥2), 

Proposition 17.7. 
a Hopf ring element for H(¥p), 

Proposition 17.9. 
Ci Hopf ring element for K{n), 

Proposition 17.16. 
DM dual of £;*-module M, [8, Definition 4.8]. 
d duality homomorphism, [8, (4.5)]. 
E generic ring spectrum. 
E* coefficient ring of £J-(co)homology, [8, §§3, 

4]. 
E * ( - ) E-cohomology, [8, §3]. 

E*(-y completed £?-cohomology, 
[8, Definition 4.11]. 

E*{-) £;-homology, [8, §4]. 
E ^ nth space of 12-spectrum E, 

[8, Theorem 3.17]. 
e suspension element. Propositions 12.3, 13.7. 
ek unstable A:-fold suspension element, 

Proposition 13.7. 
Fc — c*P, Frobenius operator, §10. 
FJ Hopf ring ideal. Definition 19.3. 
F(x^y) formal group law, [8, (5.14)]. 
F'^M generic filtration submodule, 

[8, Definition 3.36]. 
FAIg category of filtered E*-algebras, [8, §6]. 
F^DM generic filtration submodule of DM, 

[8, Definition 4.8]. 
FM etc. coreprcsented functor, [8, §8]. 
FMod, FMod* (graded) category of filtered 

E*-modules, [8, §6]. 
¥p field with p elements. 
FR(X, Y) right formal group law, (14.5), (15.8). 
F*E*(X) skeleton filtration, [8, (3.33)]. 
/ generic map or module homomorphism. 
/* , / • homomorphism induced by map / , 

[8, (6.3)]. 
/ (n ) numeric function, (1.4). 
G generic group. 
Gp{C) category of group objects in C, [8, §7]. 
gi coefficient in p-series, [8, (13.9)]. 
H^ H(R) Eilenberg-MacLane spectrum, [8, §2]. 
H quotient Hopf ring, (19.12). 
Ho, Ho' homotopy category of (based) spaces, 

[8, §6]. 
/ identity functor. 
/ etc. generic multi-index. 
| / | length of multi-index / , §18. 
In. loo ideal in BP*, (1.1). 
ii, 12 injection in coproduct, [8, §2]. 
id identity morphism or permutation. 
Jn ideal in BP*, (1.6). 
Zn ideal in Q{BP)l, Definition 18.25. 
On Hopf ring ideal. Definition 19.34. 
Kc unit object in (synunetric) monoidal category 

C, [8, §7]. 
K{n) Morava /('-theory, [8, §2]. 
KU complex i< -̂theory Bott spectrum, [8, §2, 

Definition 3.30]. 
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L infinite lens space. 
L{k) left side of main relation (Hk)-
L ( i i , . . . , in) coefficient, Definitions 18.18, 19.21. 
M etc. generic (filtered) module or algebra. 
M", M completion of filtered M, 

[8, Definition 3.37]. 
m ideal in Q{BP)l, §18. 
9Jln Hopf ring ideal. Definition 19.13. 
Mod, Mod* (graded) category of jE?*-nK)dules, 

[8, §6]. 
MU unitary Thorn spectrum, [8, §2]. 
0 generic basepoint, point spectrum. 
PA the primitives in coalgebra A, [8, (6.13)]. 
PE* ( £ fc) ^® additive operations. 

Proposition 2.7. 
PEm(X) the primitives in homology of space X, 

Definition 4.13. 
PE*{X) the primitives in cohomology of 

H-space X, Definition 3.1. 
P(n) modified BP spectrum, §1. 
p fixed prime number, 
pi, p2 projection from product, (8, §2]. 
\p](x) p-series, [8, (13.9)]. 
[p]fl(x) right p-series, (14.8), (15.14). 
—Q (subscript) additive unstable context, shifted 

degree. 
QA the indecomposables of algebra A, [8, (6.10)]. 
QE*{X) the indecomposables of cohomology of 

space X, (3.5). 
QE*(X) the indecomposables of homology of 

if-space Xy £)efinition 4.3. 
Q{E)l bigraded algebra. Definition 6.1. 
Q(r) homology homomorphism induced by 

operation r, (6.48). 
01 = Q(BP)Z, abbreviation. 
QI quotient algebra of QJ, (18.17). 
Q{e) counit of Q(E)l, (6.28). 
QIT}) unit moiphism of Q{E)l, (6.17). 
Qla) stabilization on Q{E)ly (6.3). 
Ql<f)) multiplication in Q(E)l, (6.16). 
Q(V) comultiplication on Q(E)Z, (6.27). 
Q field of rational numbers. 
q map to one-point space T. 
Qk projection to Q(E)^, (6.2). 
RP°° real projective space. 
R(k) right side of main relation (T^it). 
R(ii,..., in) coefficient. Definitions 18.18, 19.21. 
(Uk) fcth main relation, (14.10), (15.16). 
i^ki,...,fcn) '̂ ^̂  order relation. Definitions 18.18, 

'l9.21. 
r generic cohomology operation. 
(r, - ) JÊ *-linear functional defined by operation r, 

(6.9), (10.1). 

S stable comonad, [8, Theorem 10.12]. 
- 5 (subscript) stable context. 
5* unit circle, as space or group. 
S^ unit n-sphere, 
S comonad S on modules, §9 (only). 
Stab, Stab* (graded) stable homotopy category, 

[8, §6]. 
Set category of sets, [8, §6]. 
Sef- category of graded sets, [8, §7]. 
s ( / ) , s^(I) shifted multi-index / , 

Definition 15.12. 
T the one-point space. 
T"*" 0-sphere, T with basepoint added. 
T(n) torus group. 
t eH^ (]RP°°), generator of H*(]RP«^), 

(16.1). 
U unstable comonad. Theorem 8.8. 
-u (subscript) unstable context. 
U, U(n) unitary group. 
u € KU~^, generator. 
u e E^{L)y exterior generator of E*{L), 

§§16, 17. 
til canonical generator of E*{S^), 

[8, Definition 3.23]. 
un canonical generator of E*(S'^)y [8, §3]. 
V generic (often forgetftil) ftmctor. 
V Verschiebung operator, §10. 
<3 ideal in Q{BP)l, §18. 
93 ideal in BP*(BP J , §19. 
V generic element of E*. 
V = TjRU € KUjiKU, o), Theorem 16.15. 
[v] e Eo{EJ, Definition 10.8. 
Vn Hazewinkel generator of BP*, K{n)*, [11]. 
2IJ ideal in Q{BP)l, §18. 
w generic element of 77H^*» Proposition 12.3. 
y^n = 7/flVn, §16. 

wt(/) weight of multi-index / , §18. 
X etc. generic space. 
X'^ space X with basepoint adjoined. 
X generic cohomology class or module element. 
X € E*(CP°°), Chem class of Hopf line 

bundle, [8, Lemma 5.4]. 
x{6) Chem class of line bundle 6, 

[8, Definition 5.1]. 
V skeleton of lens space L, [8, §14]. 
Z the ring of integers. 
Z/p the group of integers mod p. 
Z(p) Z localized at p. 
zp morphism for a (symmetric) monoidal ftmctor 

P, [8, §7]. 
a etc. generic index. 
Pi e E2i(CP'^), [8, Lemma 5.3]. 
7i e E2i^i(U(n)), [8, Leimna 5.11]. 
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A:X -* X X X diagonal map. 
A) = (1 ,0 ,0 , . . . ) , multi-index, § 18. 
e generic counit moiphism. 
C pth power map on CP°° , [8, (13.9)]. 
CF pairing for (symmetric) monoidal functor F , 

[8, §7]. 
rj generic unit morphism. 
•qn right unit, E)eiinitions 6.19, 10.8. 
6 generic anything. 
On idempotent cohomology operation on BP, 

Lenmias 22.1, 23.1. 
dn splitting of 7r{n), Lemmas 22.1, 23.1. 
t € Efi{E,o), universal class, [8, §9]. 
Ln € E^(^^)y universal class, 

[8, Theorem 3.17]. 
Kn collapse operation. Definition 7.13. 
A(-) exterior algebra. 
A 
A 
AL 

M 

Si 

genenc action. 
numerical coefficient. 
left J5;*-action on Q(E)l, §6. 
right £;*-action on Q{E)l, (6.21). 
addition or multiplication in generic group 
object, [8, §7]. 
inversion morphism in generic group object, 
[8, §7]. 
Hopf line bundle over C P " . 
generic line or vector bundle. 
element for ^(F2) . (16.1). 
element for ff(Fp), Theorem 16.5. 
action of v on £?*-module, [8, (7.4)]. 

IT generic permutation in Un. 
nmiX) homotopy groups of space X. 
7r{n): BP - • BP(n) projection, (1.8). 
p generic coaction. 
PM coaction on module M. 
px coaction on E*{X) or E*{Xy. 
E, E^ suspension isomorphism, [8, (3.13), 

Definition 6.6]. 
EX, E^X suspension of space X. 
EM, E^M suspension of module M, 

[8, Definition 6.6]. 
En permutation group on { 1 , 2 , . . . , n } . 
(T:A—*S natural transformation of comonads, 

__ Theorem 5.8. 
a:A'-*S natural transformation of comonads, on 

modules, §9 (only). 
f^k'E.k'^ ^ stabilization map, 

[8, Definition 9.3]. 
T:U -^ A natural transformation of comonads. 

Theorem 8.8. 
Ti element for H(Fp), (16.4). 
0 generic multiplication. 
X canonical antiautomorphism of Hopf algebra. 
"^ iterated coproduct, (10.18). 
tl) generic comultiplication. 
QX loop space on based space X. 
f2r looped operation. Proposition 2.12. 
LJ zero morphism of generic group object, [8, §7]. 
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1. Introduction 

The homotopy theory of topological spaces attempts to classify weak homotopy types 
of spaces and homotopy classes of maps. For a given geometric problem, however, 
it is often sufficient to replace the homotopy theory of spaces by a weaker 'algebraic' 
homotopy theory as described, for instance, in Baues' book [3]. This article will consider 
the specific case when spaces are modeled by the homotopy theory of differential graded 
algebras. 

To be more explicit we require some definitions. We work over a commutative ground 
ring Jfc. Thus linear, bilinear, etc. means with respect to jfc, and we write - 0 - for 
- 0jfe - and Hom(-, - ) for Homjfc(-, - ) . A graded module is a family M = {Mi}i^z 
of Jfe-modules; by abuse of language an element x e M is an element in some Mi and 
X has degree i (degx — i). A linear map / : M —> iV of degree A: is a family of linear 
maps fiiMi-y Ni^k-

A differential in M is a linear map d: M -^ M of degree - 1 such that cP = 0; and the 
quotient graded module H{M^ d) = ker d/Im d is the homology of M; we often simplify 
the notation to H{M). The suspension of (M, d) is the differential graded module s(M, d) 
defined by {sM)i = Mi-i and s{dx) = —d{sx); here x ^-^ sx denotes the identifications 
Mi-\ " > {sM)i. A morphism 0 : (M, d) —> (AT, d) is a family of linear maps 
(j)i\ Mi-^ Ni commuting with the differentials. It induces H{^) : H{M) -> H{N), If 
H{(j>) is an isomorphism (f> is called a quasi-isomorphism and we write (j): M ~ > N. 
A chain equivalence (p : (M,d) —> {N,d) is a morphism such that for a second 
morphism ^ : (iV, d) —• (M, d), 0^ - zd = /id -I- d/i and ij^cf) - id = h'd -\- dh!\ here 
h : N ^^ N and h' : M -^ M arc linear maps of degree 1. A chain equivalence is 
clearly a quasi-isomorphism. 

We shall occasionally use the convention M* = M-i to write M = {M*}i^z; then 
d: M^ —^ M*"̂ *. It will be clear from the context whether *degree' means *upper degree' 
or iower degree'; note however that (-l)*^g^ is unambiguously defined. 

The tensor product of graded modules is defined by 

.(M0iV)n= 0 Mi^Nj. 

If / : M —> M' and g : N —* N^ arc linear maps of degrees k and £ then f (S> g '-
M (S) iV —̂  M' 0 iV' is the linear map of degree k -^ i defined by 

( / 0 p ) ( x 0 1 / ) = ( - l )^eydcgx^(^)^^(^) 

In particular (M, d) (g) (iV, d) is the graded module M^N with differential d(g) l-h 1 (g)d. 
A differential graded algebra, or DGA, is a graded (associative) algebra A = {Ai}i^z 

with an identity 1 € AQ, together with a differential in A satisfying d{xy) = {dx)y -h 
{-l)^^^x{dy). It follows that Imd is an ideal in the graded subalgebra kerd C A. 
Hence H{A) inherits a graded algebra structure: the homology algebra of A. A morphism 
<̂  : {A, d) —> (B, d) of DGA's is a morphism of differential graded modules that preserves 
products and the identity; thus H{(l>) is a morphism of graded algebras. If H{(l>) is 
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an isomorphism, then <̂  is a quasi-isomorphism of DGA 's. We identify two important 
subclasses of DGA's: a cochain algebra is a DGA of the form {A, d) with A = {>l'}f^o 
and a chain algebra is a DGA of the form [A, d) with A = {Ai)i^Q. 

A (left) module over a DGA, {A,d), is a graded differential module {M^d) together 
with a linear map of degree zero A®M-*A, a^my-^a-m, such that 

and 

{aa') 'm = a- {a'' m), \ rn = m 

d(a • m) = da • m 4- (-l)^^«"a • dm. 

A morphism of (A, d^modules is a linear map 0 : (M, d) —̂  (iV, d) such that <̂ (a • m) = 
a • (t>{m). 

The elements of the theory of DGA's are reviewed in §2 and §3. In §2 we consider 
modules over a DGA and their *homological algebra' as introduced by Eilenberg and 
Moore ([10], [14], [16]). Our approach is via the semifree resolutions described in [2] 
and [13]. In §3 we recall the homotopy theory of DGA's. 

In this homotopy theory there is a notion of weak equivalence class, which plays the 
same role as that of weak homotopy type in topological spaces. We define this notion 
more generally in any category, C, of differential graded modules: 

DEFINITION. TWO objects A and B in C are weakly C-equivalent if they are connected 
by a chain of C-quasi-isomorphisms of the form 

A ^-^- A{\) -^-^ <H -̂ A(n) -^-> B. 

Note that in the case of DGA's the homology algebra is an invariant of the weak 
equivalence class. However, it is easy to construct two DGA's that are NOT weakly 
equivalent, but DO have isomorphic homology algebras. In fact, the weak equivalence 
class of {A,d) is a much stronger invariant than the algebra H{A). 

We turn next to modeling the homotopy theory of topological spaces by that of DGA's. 
This will convert weak homotopy types to weak equivalence classes, thereby exhibiting 
weak equivalence classes of DGA's as homotopy invariants of spaces. It will be con-
venient to use C^{X) = C^{X;k) to denote the quotient chain complex obtained by 
dividing the singular chains on X by the degenerate simplices: thus Ck{X) is free on the 
nondegenerate A;-simplices. It is classical (and straightforward) that H{C^{X)) = H^{X) 
and C^pt) =^ Coipt) = k. 

In passing from spaces to algebras we need to convert products of spaces to tensor 
products of chain complexes, and for this we use the standard chain equivalences of 
Eilenberg-Zilber and Alexander-Whitney: 

a w ® a{Y) — cixxY) — a{x)®c.(Y) 



Section 1 Differential graded algebras in topology 833 

(cf. [17, Chapter VIII]). These provide two classical functors from topological categories 
to DGA's. The first functor is the singular cochain algebra C*{X) dual to C*(X), with 
multiplication (cup product) dual to the comultiplication 

AWoC.[A)'.C,{X) >C.{X)^C.{X), 

where A . X —^ X x X h \h& diagonal. The second functor is defined for topological 
monoids G: if /x: G x G —• G is the multiplication, then 

G.(M) O EZ : C.{G) 0 C.{G) > C,(G) 

makes Ci^{G) into a chain algebra. (Note that in each case these assertions require some 
easily established properties - like associativity - for AW or EZ.) 

Clearly both these functors carry weak homotopy equivalences to DGA-quasi-
isomorphisms, so that the weak equivalence class of C*{X) (or C„{G)) depends only on 
the weak homotopy type of X (or G). We shall see in §3 that they also convert homotopy 
classes of maps to homotopy classes of DGA morphisms. 

Just as the computation of the homology of a fibration is an essential tool in homotopy 
theory, so it is important to understand how these invariants behave with respect to 
fibrations. To make this more precise we introduce what we shall call a G-fibration. 
Indeed, for any fibration TT : E -^ X \ct Ex = n~\x) be the fibre at x. Then we make 
the 

DEFINITION. Let G be a topological monoid. A G-fibration consists of a (surjective) 
fibration n : E -^ X and a continuous right action HE ' E x G -^ E satisfying the 
following conditions: 

(i) ExGcEx.xeX. 
(ii) For each z e E the map a ^-^ z - a is a. weak homotopy equivalence from G to 

En(z)-

One important class of such fibrations is that of the Moore path space fibrations 
TT: PX -+ AT [21, p. 111], of a pointed space (AT, XQ). The fibre of TT at xo is the Moore 
loop space f2X, and it is a topological monoid acting from the right on PX. (We recall 
the definitions in §6.) 

This gives a second DGA associated with X: the chain algebra C^{nX). As we shall 
see in Theorem 6.3, the weak equivalence class of the DGC G*(A') can be recovered 
from that of the DGA C„{f2X) - cf. also [12] and [16]. An important result of Adams 
[1] asserts that when X is 1-connected the converse is also true, and in fact Ci^{QX) is 
a DGA quasi-isomorphic to the cobar construction on the differential graded coalgebra 
C^{X) (cf. §4 for the definition of a differential graded coalgebra). 

Now consider a general G-fibration 

TT: E > X, iiE'ExG y E. 
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The principal original contribution of this paper is to show how the weak equivalence 
class of the differential graded coalgebra C*(Jf) can be computed from algebraic data 
on C„{G) and C^{E) reflecting the action fiE-

Indeed, just as the multiplication in G makes C*(G) into a DGA, so the action fiE 
makes C*{E) into a C^(G)-module. More is true, however. As noted by Eilenberg and 
Moore, the differential graded coalgebra structures in C*((3) and C*(-B) are compatible 
with these algebraic structures, so that C* (G) is a differential graded Hopf algebra (DGH) 
and C^{E) is a differential graded coalgebra (DGC) over this DGH. These terms are 
defined in §4, where we show that for any DGC, (C,d), over a DGH, {K,d), the bar 
construction B{C; K) has a natural differential graded coalgebra structure. Using this, 
in §5 we prove our main theorem: 

THEOREM l.l . in the case of a G-fibration the DGC, B{C^{E);C^{G)), is quasi-
isomorphic to C^{X). 

REMARKS. 

1. Theorem 5.1 holds for any commutative coefficient ring Jfc and for any G-fibration. 
In particular there are no restrictions on the connectivity or the fundamental groups of 
G, E and X. 

2. This theorem strengthens the classical Eilenberg-Moore formula, which identifies 

if.(X)=:Tor^^(^)(A,G*(£;)), 

as graded Ic-modules. 
3. In the case of a compact connected Lie group G and a principal G-bundle E -^ X, 

Cartan [7] provides a DGA quasi-isomorphism of the form 

{[S{9*)^A{E)Y,D)^A{X), 

where A ( - ) denotes the commutative DGA of G°°-differential forms on a smooth man-
ifold. The DGA ([S'(^*) 0 A{E)Y,D) now plays a role in theoretical physics, where its 
cohomology is called the BRST cohomology. 

This construction permits one to recover the weak equivalence class of A{X) from the 
action of g on A{E), and it raises the question of whether there is a topological analogue 
for G-fibrations. Theorem 5.1 states that the dual DGA, Hom(B(G*(£?); C^{G)), k), is 
precisely such an analogue. 

When G is a torus, Cartan*s DGA has the form 

(s{g^)^A{E)\ id0d + 5^/ii0 0ij 

where Oi is the substitution operator for the ith fundamental vector field hi and /Xi is 
multiplication by the dual element 6i G p*. As we shall show in §7, when G is a torus 
Hom(B(G:,(-B);G*(G)), Jfc) is naturally quasi-isomorphic with a DGA of the form 

{s{g*)®C\E), i d 0 d + ^ / X i 0 0 i ^ 
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where now 6i is a degree - 1 derivation in {C*{E),d) arising out of the action of G. 
Thus in this case the two constructions are essentially identical. 

In §6 we give a variety of applications. In §7 we consider DGA's (A, d) over {K, d) 
and the DGA BK{A) = }iomK{B{K; K), A). In §8 we show how to construct a DGA, 
BK(^A), starting from any acyclic resolution P of A as a (AT, d)-module. The construction 
of BK{A) is inspired from the AQO-algebras of Stasheff and ideas in the equivariant DGA 
homotopy theory of one of the authors and Hess. We end by showing that BK{A) and 
BK{A) are weakly DGA equivalent. 

2. Semifree modules 

Suppose (i4,d) is a DGA and let (M,d) and {N,d) be (A, d)-modules. Then an 
A'linear map (of degree i) is a linear map / : AT —* M (of degree i) such that 
f{a ' n) = {-ly^^^a • (/(n)). These i4-linear maps form a graded differential mod-
ule (Hom^(Ar,M),d) with differential given by df = d o f ^ {-\)^^ff o d. Sim-
ilarly if (Q, d) is a right (A, d)-module then {Q 0^^ M, d) is the quotient module 
(Q, d) (8) (M, d)/{q •a®m-q(^a' m). 

In studying ordinary modules over ordinary rings R one uses free (or projective) 
resolutions to compensate for the fact that the functors - 0 ^ - and Homi2(—, - ) are 
not exact. Analogously, it turns out that the functors Hom^C-, - ) and - 0 ^ - above do 
not always preserve quasi-isomorphisms. We compensate for this by using the semifree 
resolutions of [2] and [13]. 

First we note that a graded module V hfree if each Vi is a A-free module; the disjoint 
union of bases of the VJ is called a basis for V. Similarly a graded module M over a 
graded algebra A is called A-free if it has the form M = A 0 V with V a free graded 
module; in this case a basis of V is called a basis of the A-module M. 

DEFINITION. (1) An (A,d)-module (P,d) is a semifree extension of an {A.dymodule 
(M, d) if it is the union of an increasing family of (A, d)-submodules 

P ( ~ i ) c P ( 0 ) c . . . , 

such that P ( - l ) = (M,d) and each P{k)/P{k ~ 1), k ^ 0, is A-free on a basis of 
cycles. If M = 0 we say (P, d) is an {A, d)-semifree module. 

(2) Let / : (M, d) —• (iV, d) be a morphism of {A, d)-modules. A semifree resolution 
of / is a semifree extension (P, d) of (M, d) together with a quasi-isomorphism of {A, d)-
modules (P,d) - ^ {N,d) restricting to / in (M,d). 

(3) A semifree resolution of an [A, d)-module {N, d) is a semifree resolution of 0 —• 
(iV,d). 

REMARK. We may consider any differential graded module (M, d) as a module over the 
DGA, (ik,0). If it is a semifree (Ic, 0)-module we shall say it is a Jc-semifree. If M is 
Jfe-free and either M = {Mi}t^o or else * is a principal ideal domain then (M,d) is 
automatically Ic-semifree. 
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The results in this section are well known, and we sketch the proofs only for the 
convenience of the reader. 

PROPOSITION 2.1. (i) Any morphism f : (M^d) -> (iV,d) of {A,d)'modules has a 
semifree resolution {Q, d) ^ ^ (iV, d). In particular, every [A, d)-module has a semifree 
resolution, 

(ii) If {P^d) is {A,d)'Semifree then HomA(-P, - ) preserves quasi-isomorphisms. 

PROOF, (i) Let V{0) and V(l) be the free graded Jfc-modules whose bases are respectively 
the cycles of N and the elements of JV. Set d = 0 in V{0) and extend the differential in 
Â  to a linear map d : F( l ) -> F(0). 

Now set 

Q(o) = (M,d) 0 [{A,d) 0 (y(o) e y ( i ) , d ) ] . 

The obvious maps V{0), V{1) —̂  Â , together with / define a morphism ^(0) : 
((5(0), d) -^ {N,d). Clearly H{g{0)) is surjective. We now construct an increasing 
sequence of morphisms g{k) : {Q{k),d) -> (iV,d). If g{k - 1) is defined, let V{k) be 
the free jfe-module whose basis Vai in degree i is in 1 - 1 correspondence with the cycles 
in [ker{g{k - l))]t-i. Set Q{k) = Q{k - 1) 0 (̂ 4 0 V(fc)), define dvai to be the element 
in [ker̂ (A: - l)]i-i corresponding to Vai and put g{k)vai = 0. Finally, set 

Q = [JQ{k) and g = \\mg[k). 
k k 

(ii) Suppose 77: (M, d) -^ {N, d) is a quasi-isomorphism of {A, d)-modules. Assume 
f : P -^ M and g : P -^ N are A-linear maps of degrees j and j + 1 such that df = 0 
and 97 o / = dp. We shall construct i4-linear maps a : P -^ M and (3 : P --^ N such that 
da = f and rja - g = d0. This implies that HornAiP^v) is a quasi-isomorphism (take 
the case / = 0 and p is a cycle to see that H{HornA{P, V)) is surjective). 

The actual construction of a and /3 is by induction: we assume them constructed in 
P(fc - 1) and extend to P(fc). Now P{k) = P(A: - 1) 0 (A 0 V{k)) with V{k) free 
on a basis Vi such that dvi G P(A: - 1). Thus we need to find elements a(vi) G M and 
P{vi) € N such that 

d(at;0 = /(t;i) + (-l)^«"a(di;i) 

and 

di^Vi) = 77a(t;0 - p(z;0 + (-l)^^g^/3(dt;0. 

Put Ui = f{vi) -h (-l)^^sact(dt;i) and t/;̂  = g{vi) - {-l)^^^0{dvi). Then dm = 0 and 
7/Ui = dwi. Since 77 is a quasi-isomorphism the equations d{avi) = Uj and d{f3vi) = 
r;a(t;t) - wi have a solution. D 
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An equivalence of (̂ 4, d)-modules is a morphism / : (M, d) —> {N, d) such that 
for some second moq)hism / ' : (iV, d) —• (M, d) there are >l-linear maps h : M -^ 
M, h' : N —^ N of degree 1 satisfying 

f'f -id = dh + hd and ff-id = dh'^h'd. (2.2) 

It follows from Proposition 2.1 that a quasi-isomorphism between semifree modules is 
an equivalence. 

PROPOSITION 2.3. Suppose f : (P,d) - ^ (Q,d) w a quasi-isomorphism between (left) 
semifree {A, d)-modules. 

(i) If g : (M, d) ^ ^ (^,d) is a quasi-isomorphism between right {A,d)-modules 
then 

g^f-.M^AP —^ N(SIAQ 

is a quasi-isomorphism. 
(ii) Ifg : (M, d) -=^ (AT, d) is a quasi-isomorphism between left {A, d)-modules then 

Hom(/,p) : HomA(Q,M) —^ HomA(P,iV) 

w a quasi-isomorphism. 

PROOF, (i) Use - 0 - to denote - ®>i ~, and write g <S) f = {idN ® f) ^ {g ^ idp). 
Since P, Q are semifree, / is an equivalence (Proposition 2.1). Let / ' , /i, h! be as in (2.2). 
Since these are A-linear we can form id^ ® / ' , idN 0 h^ idjq 0 h' and these exhibit 
idN 0 / as an equivalence. Hence it is a quasi-isomorphism. 

Write P = Ufc ̂ C^) ^ i'̂  *^ definition of a semifree module. Then g (g) idp : M 0 A 
P(A;) -^ N 0A P(A;). Consider the quotient map 

M ®A P{k)IP(k -\) -^ N^A P{k)/P{k - 1). 

Since P{k)/P{k - 1) = ©a[(^'^) ^ *^a] ^̂ ^ "̂ P̂ ̂ "̂ ^^ identified as 

0 [(M, d) 0 kva '-^ (N, d) 0 kv^]. 
a 

Thus each quotient map is a quasi-isomorphism, and hence so is p 0 idp. 
(ii) Write Hom(/,^) = Hom(/,idiv) o Hom(idQ,^). It follows exactly as in (i) that 

since / is an equivalence so is Hom(/,id7v). Proposition 2.1 asserts that Hom(idQ,^) is 
a quasi-isomorphism. D 

We shall need the following extension of Proposition 2.3 in which: 

(i) (j): {B,d) —* {A,d) is a DGA morphism; 
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(ii) / : (P, d) —• (Q, d) is a morphism from a (-B, d)-semifree module to an (A, d)-
semifree module satisfying f(h • x) = </>(6) • f(x)\ 

(iii) ^ : (M, d) ~> (AT, d) is a morphism from an {A, d)-module to a (J5, d)-module 
satisfying ^(0(6) 'y) = b'g{y), and 

(iv) / i : (5,d) —> (T,d) is a morphism from a (B,d)-module to (A, d)-module satis-
fying h{b' x) = 0(b) • h{x). 

PROPOSITION 2.4. With the notation above, ifcj), / , p, h, are all quasi-isomorphisms so are 

Hom<^(/,g) : HomA(0, Af) —^ HomB(-P,iV), a^ goaof, 

and 

h^^f \S®BP > T(g)A Q. 

PROOF. Put P ' = A (g)̂  P. It is clear that (P',d) is a semifree (A, d)-module, and that 
/ factors as the composite 

with f'{a(g)x) = a • f(x). Proposition 2.3(i) asserts that (/>(8)id is a quasi-isomorphism, 
because 0 is and P is semifree. Hence / ' is a quasi-isomorphism. 

Now write 

Hom0(/,p) = HomB(idp,p) oHom<^(00idp,idM) oHomA(/',idM). 

Note that Hom0(</> 0 idp,idAf) : Homs(P,M) -• Hom^(P',M) is an isomorphism, 
while HomB(idp,p) and Hom>i(/',idAf) are quasi-isomorphisms by Proposition 2.3(ii). 

On the other hand, / i 0 0 / is the composite 

Since h 0 ^ id and id ®A f are quasi-isomorphisms (Proposition 2.3(i)) so is ft (S)<̂  / . D 

3. Homotopy theory of DGA's 

The homotopy theory of DGA's is a 'nonlinear' analogue of the 'linear homotopy theory' 
of modules over a DGA described in §2. We shall sketch it here; for details and proofs 
the reader is referred to [5] and [3, I§7]. These references limit themselves to chain 
algebras and coalgebras, but the arguments and ideas for general DGA's are identical. 

It is straightforward but tedious to construct coproducts 

A-^ AILB ^^ B 
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in the category of graded algebras. However, when B is a tensor algebra TV, 

839 

A1LTV = ^A^{V^A) ®fc 

Jk=0 

with the obvious multiplication. If {A, d) and (JB, d) are DGA's then there is a unique 
DGA of the form {A IL B, d) such that a and yS are DGA morphisms, and [A ±L B, d) 
is then the DGA coproduct of [A, d) and (B, d). 

In §2 we considered semifree modules over a DGA. The nonlinear analogue for DGA's 
is equally important: 

DEFlNrnON. Afree extension is a DGA morphism of the form 

{A,d) -^{AlLTV.d) 

in which 

(i) i is the obvious inclusion, 
(ii) V can be written as the union V = I J ^ Q V{k) of an increasing family V(0) C 

V{\) C • • • of graded submodules such that V(0) and each V{k)/V{k - 1) are 
Jfc-free. 

(iii) d : y(0) ^ A and d : V{k) ^ A IL TV{k ~ 1), fe ^ 1. 

Essentially the same proof as that of Proposition 2.1 (i) gives 

PROPOSITION 3.1. Any DGA morphism {A, d) —> (B, d) factors as 

{A,d) - U {A I I TV,d) - ^ {B,d) 

in which i is a free extension and m is a surjective DGA quasi-isomorphism. 

Applying Proposition 3.1 to the morphism jfc —• Jt • 1 C (A,d) gives a quasi-
isomorphism 

m:{TV,d) -^^{A,d). 

Any such quasi-isomorphism is called Sifree model for {A,d). 
Now consider a commutative diagram of DGA morphisms of the form 

(Ad) a •* {B,d) 

{AlLTV,d) 
<i> 

^ {E,d) 
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in which 77 is a surjective quasi-isomorphism and i is the inclusion of a free extension. 
Write V{k) = V{k - 1) e W{k), with W{k) Ik-free. Then 

A I I TV{k) =[AA± T{V{k - I))] IL TW{k). 

Thus an obvious modification of the proof of Proposition 2.1(ii) gives 

PROPOSITION 3.2. There is a DGA morphism i) : {A 1± TV,d) —> {B,d) such that 
r/t/; = 0 and x/ji = a. 

It is now possible to describe homotopy theory in the category of DGA's. Given a 
DGA {A, d) let {A\ d) and (A", d) be two isomorphic copies and denote by f : a^-^ a\ 
j " : a^-^ a" the obvious morphisms of (̂ 4, d) into 

{A' i l A!\d) = {A\d) 11. {A",d). 

By Proposition 3.1 the morphism 

( id , id ) : (> l ' i l^" ,d) -^(A,d) 

factors as a free extension followed by a quasi-isomorphism: 

{A' 11 A\d) —^ {A' 11 A" 11 TV,d) - ^ (A,d). 

Any free extension {A' 11 A",d) —> {A' 11 A" IL TV,d) obtained this way is 
called a cylinder object for {A,d). 

DEHNFTION. TWO DGA morphisms (t)\<t>" : [A,d) —• (JB,d) are homotopic {<!>' ~ <̂ '') 
if for some cylinder object for {A, d) the morphism 

{4>'A"):{A' lLA!\d) ^iB,d) 

extends to a morphism 

^:{A' IL A'' 11 TV,d) —^ {B,d). 

In this case ^ is called a DGA homotopy from </>' to (/>". Note that if (/>' ~ <̂ " and 
^ : (B,d) —• (C,d) is any DGA morphism then obviously xl;(f>' ~ ip(t>^'. 

LEMMA 3.3. Suppose given DGA morphisms 

5Mc/i //wir ^ w a quasi-isomorphism and ip^ =z id = tp(f)i. Then 0o ~ </̂ i • 
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PROOF. AS in Proposition 3.1, factor 

in the form 

{A\d) i l {A'\d) - U [A' i l A" i l TV,d) - ^ {B,d), 

with i a free extension. Then V̂ m restricts to (zd, id) in A' IL A". Thus i is a cylinder 
object for (A, d) and i/; o m is a DGA homotopy from </)o to (/>i. D 

PROPOSITION 3.4. Fix DGA morphisms (l)',(i)",(j)"' : (A,d) -> (£?,rf). 

(i) If <\J '^ (f)" with respect to some cylinder object then they are DGA homotopic 
with respect to every cylinder object. 

(ii) If the inclusion k ^ A is a k-semifree extension then DGA-homotopy is an 
equivalence relation on morphisms {A, d) —• {E, d). 

(iii) 7/0' - 0" then H{(t)') = H{<!)"). 

PROOF, (i) Proposition 3.2 implies that any two cylinder objects for (A, d) are connected 
by a quasi-isomorphism extending the identity in A' I I A". This gives (i). 

(ii) Reflexivity and symmetry are obvious. Let 

^:{A' ILA" lLTV,d)^E 

be a DGA homotopy from cj)' to (j)" and let 

^:{A" ILA'" l±TW,d)-^E 

be a DGA homotopy from (j)" to (j>"'. The morphisms ^ and ^ define in an obvious way 
a morphism of the form 

(̂ ,« )̂ : {A' IL A" IL A'" I I TF I I TW,d) —^ {E,d), 

Denote this simply by ( ,̂*^) : (JB,d) - • (£^,d). 
Now (^' LL A" IL TV, d) is a cylinder object, and so there is a quasi-isomorphism 

p : {A' LL A!' IL TV, d) —^ {A", d) 

such that pa' = a" and pa" — a". Since [A"' ,d) = {A,d) is a A-semifree extension 
of k, it is easy to see that there is a filtration by graded differential submodules of the 
form k C A"'{1) C • • • with each A"'{k)IA'"{k - 1) free on a basis of cycles. Using 
this a straightforward argument shows first that 

(p,id) : {A' IL A" ILTV IL A'",d) - ^ {A" IL A"\d) 
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and then that 

(p, id, id) : {A' i l A" ILTV IL A'" IL TW, d) 

- ^ {A" IL A'" IL TW,d) - ^ {A,d). 

It follows from Lemma 3.3 that the inclusions i': A = A' C B and i'" : A = A'" C B 
are homotopic. Hence ($, ^) oi' ~ ($, ^) o i'"; i.e. (j)' ~ (p'". 

(iii) This is obvious, since H{j') = H{p)-^ = H{j"), and so Hi<p') = H(^) o 
H{j') = H{<j>"). U 

In the special case of a free model (rV,d) there is a particularly useful cylinder 
object, introduced by Baues and Lemaire in [4] using the suspension sV defined in the 
introduction. This is the DGA {TV _LL TV" IL TsV, d) where d is defined as follows: 
Extend 5 to a map 

S:TV —^TV IL TV" IL TsV 

by the conditions 

Sv = sv^ V e V, 

S{xy) = Sx . y" + (-l)^^^^'. Sy^ x,y £ TV 

Then d is defined by the formulae: 

dx' = (dx)', dx" = {dx)" and dsv = v" - v' - Sdv. 

A straightforward calculation (cf. [4]) shows that a quasi-isomorphism TV LL TV" IL 
TsV —• TV is given by v' H-> 1;, v" ^-^ v and sv >—• 0. Thus this is indeed a cylinder 
object: it permits a useful, second description of DGA homotopy. 

First we note that given graded algebra morphisms <j)',(i>" : A —• B, a (0',0")-
derivation of degree r is a degree r linear map F : A —> B satisfying 

F{x . 2/) = F(x) . <i>"{y) + (-l)-^^s-</>'(x). F{y). 

If (A, d) and (B, d) are DGA's and 0' and 0" are DGA morphisms then the {<{>', (j)")-
derivations form a sub differential graded module of Hom((i4, d), (B, d)). Clearly <!>' -(t>" 
is a (0', <^")-derivation that is a cycle. The next proposition asserts that if {A, d) is a free 
model then <f>^ - cf)" is a boundary if and only <̂ ' ~ ({>": 

PROPOSITION 3.5. Let (t>',(t>" : (TV.d) -^ {B,d) be DGA morphisms from a free model. 
Then (j/ ~ (j>" if and only if there is a {(j)',(j)")-derivation F of degree 1 such that 

(t)' ^(t>" = Fd + dF. 

PROOF. The derivation F and the homotopy 

^ : {TV IL TV" J± TsV.d) -^ {B,d) 
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determine each other by the rule Fv = -$5T; , V eV. 
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D 

The interpretation of homotopy in terms of derivations is useful with regards to lifting 
properties up to homotopy. Consider a homotopy commutative diagram of the form 

{TW,d) 

{TW ILTV.d) 

a {A,d) 

± . {B,d) 

where 7/ is a quasi-isomorphism, (TW, d) is a free model and z is a free extension. 

LEMMA 3.6. a extends to a morphism P : {TW IL TV, d) —• (A, d) such that r]/3 <̂  (/>. 

PROOF. Denote by 7 : TW —^ B an {rja, (̂ 2)-derivation such that d^y + yd = rja - <l)i', 
it exists by Proposition 3.5. Let V{0) C • • • C V{n) C • • • exhibit z as a free extension. 

We define /3 and an (r;/3,0)-derivation 7' extending 7 by induction in each V{n). 
Assume 0 and 7' have been constructed in V{n - 1). Let v be a basis element of 
V{n)/V{n - 1), then /3(dv) and y'{dv) are already defined and 

r)l3{dv) = d{<l>v -h 7'dv). 

Since r/ is a quasi-isomorphism we can find x e A and y E B such that dx = Pdv and 
TJX = (jw -\- y'dv -\- dy. 

Extend /? and 7' to TW IL TV{n) by setting 

I3{v) = X and j\v) = y. 

The maps rjl3 — (f> and d7' -h 7'd are (r;/3, < )̂-derivations. Since they agree on V(n), they 
coincide on TW IL TV{n). This extends a and 7 to all of TW H TV and a second 
application of Proposition 3.5 shows that r}P ^ <j). D 

THEOREM 3.7. Ler 77: (A, d) —> (B, d) ^e A Z)Gi4 quasi-isomorphism and let {T{V), d) 
be a free model. Then rj induces a bijection between homotopy classes of morphisms 

r/.:[(Ty,d),(A,d)] . [(T(V),d),(B,d)]. 

PROOF. Lemma 3.6, applied with W — Q and U = V, shows that r;* is surjective. 
Now, if / ' , / " : (ry,d) —y (A,d) are DGA morphisms such that 77/' -̂  77/", then 

Lemma 3.6 (applied with i the inclusion 

r y 11 TF" -^ T V i l TV" IL TsV, a = / J l / ' , 

and <j) the homotopy between 77/' and 77/") shows that / ' ~ /". D 
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Let T denote the category of topological spaces and 7i the category of topological 
spaces pointed by a nondegenerate basepoint (i.e. the inclusion of the base point is a 
cofibration). Recall from the introduction the functors C* :T ^ DGA and C^fi :% —> 
DGA assigning to a space X the singular cochain algebra C*{X) and the chain algebra 
C.{f2X), 

THEOREM 3.8. The functors C* and C^Q convert weak homotopy equivalences to quasi-
isomorphisms and homotopy classes of maps to homotopy classes of DGA morphisms. 

PROOF. The first assertion simply restates that a weak homotopy equivalence induces 
an isomorphism of singular homology. For the second, consider first C^Q and let H : 
(X, xo) X / —> (y, t/o) be a based homotopy between maps / , g : (X, xo) -^ {Y, yo)-

Let zo,ii : {X^XQ) -^ {X X I/XQ X / , [XQ X /]) be the inclusions at 0 and 1, and 
p : X X I/XQ X / —̂  X be the projection on the first factor. Since Poio = id = PoU and p 
is a weak homotopy equivalence Lemma 3.3 asserts that the DGA morphisms C^{f2io) 
and C„{ni\) are homotopic. The DGA morphisms C^{f2f) and C^{f}g) are therefore 
homotopic because / = Hio and g = Hi\. 

The corresponding property for C* follows in the same way. Let H : X x[0,\] -^Y 
be a homotopy between maps f,g : X -^Y. Denote by A:: X -^ y'^' ' ' the map deduced 
from H by adjunction, by po,P\ • y'^'*' —• Y the evaluation maps at 0 and 1 and by 
5 : y —> yt '̂̂ J the map sending a point y to the constant path at y. Then pos = idy =^ p\s 
and C*{s) is a quasi-isomorphism. Thus by Lemma 3.3, the DGA morphisms C*(po) and 
C*{p\) are homotopic. The DGA morphisms C*{f) and C*{g) are therefore homotopic 
because C*{f) = C*{k) o C*(po) and C*{g) = C*{k) o C*(p,). D 

4. Differential graded Hopf algebras 

Suppose a topological monoid G acts continuously from the right on a space E, Multipli-
cation in C makes C* (G) into an augmented DGA and the action in E makes C* (E) into 
a C*(G)-module. Now the classical bar construction [17] (reviewed below) associates 
a different graded module B{M;A) with any right module (M,d) over any augmented 
DGA, (A,d). In the case of G-action we can form B{C^{E);C4G)). 

As pointed out in the introduction, however, in this *topological situation' we have ad-
ditional structure: C^{G) is a differential graded Hopf algebra and C^{E) is a differential 
graded coalgebra over C^{G), We shall define these terms below and prove 

THEOREM 4.1. //" (G,d) is a differential graded coalgebra over the differential graded 
Hopf algebra (K^d) there is a natural comultiplication in B{C;K) which makes this 
into a differential graded coalgebra. 

We first review the bar construction on a DGA. Then we define differential graded 
coalgebras and differential graded Hopf algebras and recall (Example 4.4) why C*{E) 
is a coalgebra over the Hopf algebra C^{G). Finally, we prove Theorem 4.1. 

An augmented DGA is a DGA, (A, d) equipped with a morphism £A - {A, d) —• Jfe 
(the augmentation). The ideal A = ker̂ y^ is the augmentation ideal. 
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Denote {sA)^^ by T'^{sA) and denote the tensor product of elements sai G sA by 
[sax\-"\sak]GT''{sA). 

The acyclic bar construction on the augmented DGA (̂ 4, d) is then the left (A, d)-
module B{A; A) = {A(^ T{sA), D) in which 

CX5 

(i) T{sA) = e T^{sA), 
A:=0 

(ii) D = D\ -\- D2, with D2 the A-linear map defined by 

k 

D2[sa]I • • • l̂ a/k] = ai[502] • • • \sak] + JZ^"^)^' t̂ ^ '̂' " l^^*-i^*l'" * l̂ ^ l̂' 
t=2 

and 

Aa[sai | • • • \sak] = (da)[5ai| • • • \sak] 
k 

+ 5^(-ir*+^s^a[5a,I.. • \sdai\ • • • \sakY 
t=i 

(Hereei = X)j>:ideg5aj.) 
The acyclic bar construction has an augmentation 

e:B{A\A) > k (4.2) 

defined by e{a 0 1) = 6^(0) and 

e{A^T^{s1))=Q, k^\. 

More generally, if (M, d) is any right {A, d)-module, the differential graded module 

B{M\ A) = (M, d) 0A B{A; A) = {M ^ T{sA), D) 

is called the bar construction with coefficients in (M, d). 
Suppose (j>: (A, d) —> (i4', d) is a morphism of augmented DGA's and V̂  : (M, d) -^ 

(M', d) is a map of differential graded modules. Assume (M, d) and (M', d) are respec-
tively a right (A, d)-module and a right (i4',d)-module and that 

ilj{ma) = ilj{m)<j){a), m £ M^ a G A. 

Use (j) also to denote the map sa »-• s(t>a from sA to sA . Then 

B(V̂ ; <̂ ) = V̂  0 I 0 (8)V I : 5(M; ^) -> B(M'; A') 
\ fc=o / 

is a morphism of differential graded modules. 

LEMMA 4.3. With the notation above, 

(i) e is a quasi-isomorphism. 
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(ii) If{A^d) is k-semifree then B{A\A) is {A, d)-semifree, 

(iii) If (j) and ip are quasi-isomorphisms, and if {A, d) and {A , d) are k-semifree, 
then B{'(l)\ (f>) is a quasi-isomorphism. 

PROOF, (i) is straightforward (cf. [12, Proposition 2.4]). For (ii) we need only show 
that {B{A\A),D) is (^, d)-semifree. Since A is Ic-semifree so is s{A) with differential 
dsa = -sda. It follows that {sA,d)®^ is Ic-semifree and so {A,d) (8) {sA,d)®^ is 
{A, d)-semifree. This identifies the quotients 

[A^T^^{s'A),D)/{A^T<^[s1),D) 

as (A, d)-semifree - whence the desired conclusion. 
Finally, to prove (iii), we note (by (i) and (ii)) that 

B{(j)',(t>)'.B{A\A)-^B{A'\A') 

is a quasi-isomorphism over (j> between semi-free modules. It follows (Proposition 2.4) 
that -B(V̂ ; (t>) = 'ip®<(> B{(f); (t>) is a quasi-isomorphism. D 

We turn next to the definition of a differential graded coalgebra (DGC) and a differential 
graded Hopf algebra (DGH). A differential graded coalgebra is a differential graded 
module (C, d) equipped with two morphisms, the comultiplication A : (C, d) —• (C, d)(8) 
(C, d) and the augmentation e : (C, d) —> k. These are required to satisfy (zl(g)id) ozi = 
(id 0 ^ ) o ^ (associativity) and (e (g) id) o zi = id = (id ^e)o A. 

For the definition of Hopf algebras we need to recall that the tensor product of DGA's 
{A,d) and {A',d) is the DGA (A,d) (g) {A'd) with multiplication given by 

(aOa')(606') = {-\)^^''''^^^ab^a'h'. 

Similarly the tensor product of DGC's (C,d) and (C',d) is the DGC (C,d) 0 (C",d) 
with comultiplication (id 0 a; 0 id) o (^ 0 A'), where 

a;(x0x') = (-l)^s'='*^^'x'0x. 

A differential graded Hopf algebra is a DGA (i^,d) together with DGA morphisms 
A : (X, d) -^ (ii:, d) 0 {K, d) and e : (/T, d) -^ Jk that make (AT, d) into a DGC (i.e. it 
is a coalgebra in the category of DGA's). If (M, d) and (iV, d) are (if, d)-modules then 
the comultiplication in K makes (M, d) 0 (AT, d) into a (if, d)-module as well: 

^ • (m 0 n) = ^p • (m 0 n), g € K, 

where 

(̂ 1 0 P2) • (m 0 n) = (-l)^8<72degm^^ . ^ ^ ^^ . ^ 
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We say K acts diagonally in M 0 TV. 

DEFlNmON. Let {K,d) be a DGH. A {K,d)-algebra is a DGA, (A,d), with a (i^,d)-
module structure such that multiplication A (Si A -^ A and the map Jt —v Jfc. 1 c A are 
morphisms of {K, d)-modules. 

A (if, d)'Coalgebra is a DGC with a (if, d)-module structure for which the comultipli-
cation and augmentation are morphisms of {K, d)-modules. Thus a coalgebra (C, d) with 
a (if, d)-module structure is a (if, d)-coalgebra if and only if the action, C ^ K -^ C, 
of if is a DGC morphism. 

EXAMPLE 4.4. For any topological space X, C^{X) is a DGC with comultiplication 
i4H^ o C^{A) : C*(X) —• C'*(A') (g) C*(A') and augmentation C* (constant map): 
C*(X) —> Cmipt) = Jfc. Moreover it follows from [9, §17] that the Eilenberg-Zilber 
map EZ : C^{X) ® C^{Y) —> C^{X x Y) is a morphism of DGC's. 

Now suppose a topological monoid, G, acts from the right on a space E. The multi-
plication fjLi G X G —^ G defines a multiplication 

a(M) o EZ: a(G) (8) a(G) -^ a(G). 

Since this is also a morphism of DGC's (because EZ is), this multiplication makes 
C#(C?) into a differential graded Hopf algebra. Similarly, the action /IE ' E x G —^ E 
induces 

a(/i£;) o EZ: a ( f ; ) 0 C^G) —^ C^E), 

which makes C^{E) into a right DGC over the DGH, C^{G). 

Note that a DGH (if, d) is, in particular, an augmented DGA. Thus for any (if, d)-
module we can form the bar constructions B{M;K). We are ready to prove our main 
theorem: 

PROOF OF 4.1. We begin by considering the acyclic bar construction B{K;K). Recall 
that a permutation x^(i) , . . . , x^(n) of elements in a graded module is assigned the sign 
e{a,x\,... ,Xn) = (-1)*^, where k = X^degx^(j)degXt and the sum is over all {j,i) 
with a{j) > i. In particular, we can define linear maps of degree zero, 

{sK(S)K)^''(S)B{K;K) yT^{s'K) (S B{K;K), 

^ 1 (8) • • (8) ^fc <8) 1^ »-> ^i ^^'^^k^^, 

by 

(sxi (S)2/i) • • • • • {sxk 02/A:) • ^ = ±[sx]I • • • \sxk] 0 2/1 Vk^, 

where ± is the sign of the obvious permutation of the elements sxi^yi. 
Next note that the comultiplication AK in if determines a linear map 

a : sK > sKiSiK 
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as follows: if x G ^_tfien A'j^x = AKX- \(^X el<^K. Put a(sx) = {$(^id){Aj^x), 
and define A in T{sK) by 

and 

Ail) = 

A[sx\ 1 

Thus if A'j^Xi = 

id[5Xi| 

= 101 , 

• • • \sxk] •-= 1 0 [5x11 ••• \sxk] 

k-\ 

r=l 

-\-a{sx\) • " ' • a{ 

X) ̂ ij ^ ^ij then 

• • • \sxk] 
k 

r=0 j 

'\SX, 

• a ( s X r ) • [sXr^x \" ' \sXk] 

rj] <8) X'ij ' ' ' x'^j[sXr-^\ \"' \sXk] 

Finally, extend A to K 0 T{sK) by the requirement that A{a^) = AxaA^, a G K, 
# E T{sK). 

The associativity of AK, together with the fact that AK is an algebra morphism, 
implies (after a tedious computation) that A is associative. The augmentation s (4.2) is 
K-linear and clearly satisfies {e (8) id) A = id = (id (g) e)A. Thus {B{K\ K), A, e) is a 
graded coalgebra over K. 

Since the differential in K is compatible with both multiplication and comultiplication, 
a short calculation shows that AoD\ = (Di 0 id-I-id (S>D\)oA. A long tedious calculation 
shows that ^ o D2 = (D2 0 id + id 0 D2) o A, Thus {B{K; K), D) is a DGC over the 
DGH, {K,d). 

Now suppose (C, d) is any right DGC over the DGH, {K, d). Then we have the tensor 
product DGC, (C, d) 0 B{K; K). Because C and B{K\ K) are both coalgebras over K, 
the comultiplication and augmentation in C 0 B{K\ K) factor over the surjection 

C®B{K\K) > C®KB[K\K)^B(C\K) 

to define the desired graded coalgebra structure in B{C\ K). D 

Suppose next that 

(t): {K,d) ^ {K\d) and t/̂ : (C,d) > {C\d) 

are respectively a morphism of DGH's and a morphism of DGC's. Assume (C, d) and 
(C",d) are respectively right DGC's over {K,d) and {K\d), and that 

V'(c • x) = '0(c) • 0x, c G C, X E K. 
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PROPOSITION 4.5. With the hypotheses above, 

(i) B{ip;(f)) is a morphism of DGC*s. 
(ii) If {K,d) is h'Semifree and ip and </> are quasi-isomorphisms, so is B{IIJ, (f)). 

PROOF, (i) is immediate from the construction of Theorem 4.1, and (ii) follows from 
Lemma 4.3. D 

EXAMPLE 4.6. Let {A,d) be an augmented DGA. The^augmentation makes k into an 
(A, d)-module, and so we can form B{k\A) = {T{sA),D). This is naturally a DGC, 
with comultiplication 

k 

A : [sa\ I • • • \sak] ^ ̂ [sax I • * • \sai] (g) [sai^\ | • • • \sak]. 

This DGC is called the (reduced) bar construction on {A^dA) and is denoted by BA, 
In the case of a DGH, {K,d), Jt is a differential graded coalgebra over (K, d). 

Thus Theorem 4.1 appears to provide a second DGC structure in T{sK)\ however it is 
immediate from the definitions that these two structures coincide. 

5. The base of a G-fibration 

Fix a G-fibration 

TT: E y X, p^E'ExG ^ E. 

As observed in Example 4.4, C^(X) is then a DGC, C*(G) is a DGH and C^{E) is a 
DGC over the DGH C^{G). In particular we may form the differential graded coalgebra 
B{C^{Ey,C^{G)) of Theorem 4.1. Here we establish 

THEOREM 5.1. For any G'fibration as above there is a natural quasi-isomorphism 

B{C.[E)\C.{G)) - ^ a ( X ) 

of differential graded coalgebras. 

We begin with an observation and a standard proposition. 

LEMMA 5.2. C*(7r) factors as 

c.{E) —. a(E) 0c.(G) * ^ ^ a(x). 

PROOF. This is a straightforward computation using the fact that C* {pi) = k (cf. intro-
duction) and that 7r(e • g) = ire, e e E, g e G. D 
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Lemma 5.2 implies that for any morphism m : M -^ C^{E) of C*(G)-modules, 
C*(7r)m factors to yield m : M ®c^(G) ^ -* C'*(A'). 

PROPOSITION 5.3. There is a C^{G)-semifree resolution m : M — ^ C^{E) such that 
rn : M (8)c*(G) * ^ C'*(X) w fl/5d? a quasi-isomorphism. 

(This follows easily from a theorem of Brown [6]. We include a short proof for the 
convenience of the reader.) 

PROOF OF 5.3. Let Y-^-^X be a weak homotopy equivalence from a CW complex 
and let Ey -^ F be the pull back fibration. Since JSy —• £* is also a weak homotopy 
equivalence, it is sufficient to prove the lemma for Ci,{EY)\ i.e. we may assume X itself 
is a CW complex. 

Denote the n-skeleton of X by Xn and let En-^Xn be the restriction of the fibration 
to Xn- We shall construct a quasi-isomorphism of C*(G)-modules of the form 

m: ( F 0 a ( G ) , d ) -^C.{E) 

satisfying the following four conditions: 

(i) V = {Fn}n^o and Ki = H{Xn,Xn^\) is the free A-module on a basis Va 
indexed by the n-cells D^ of X. 

(ii) C^{G) acts by right multiplication in V (g) C*(G). 
(iii) m restricts to quasi-isomorphisms 

rrin : {V^n^C.{G),d) - ^ C.{En), n ^ 0. 

(iv) Identify [F 0 C*(G),d] <8)c.(C7) * = {V^'d). Then the morphisms 

rnn:(F^n,d) —> a ( X n ) 

induce the identity maps Vn —^^ //^(XnjXn-i). 

Note that M = (F (g) C„{G),d) is obviously G*(G)-semifree. Since (iv) implies that 
m is a quasi-isomorphism, this construction will establish the lemma. 

The construction itself is a simple adaptation of the construction of the cellular chain 
complex for X. Since the existence of mo is obvious it is sufficient to show that a 
morphism rrin-i as above can be extended to a suitable rrin. Let i? = 1 1 D^ be the 

disjoint union of the n-cells of X and put 5 = 1 1 5^"^ Use the characteristic map 
a 

f : (D, S) —> [Xn, Xn-\) to pull the fibration back to a G-fibration TT : {ED, Eg) —> 
(D, S). Since the JÔ  are contractible this fibration has a cross section a : D > ED-
Thus a weak homotopy equivalence {D,S) x G > (ED.ES) is given by {x,g) i-> 
a{x) • g. Composing this with the pullback map defines ^ : (£>, S)xG —^ (£"71, En-i) 
covering / . 
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Now consider the commutative diagram 

851 

a{D,S)®C,{G) 

®C.(G) * 

C,{D,S) 

C,{^)oEZ 

C,{f) 

C^{En,En-]) 

C,{n) 

"̂  C^{Xn,Xn-\) 

Both C*($) and C*(/) are quasi-isomorphisms, by excision. Identify 

H{D,S) = 0F„(D2,5r ') = 0*t;„ = V„. 

Since mn-i is a quasi-isomorphism there are cycles z^ G [V^n-i ® C^{G)]n-\ and 
elements î a E Cn{En) such that 

and 

Z/;Q projects to (C*($) o EZ){va 0 1) in C^{En,En^\), 

dWot = mn-lC-^a)-

Define rrin to be the unique extension of run-x such that d{va 01 ) = -̂ a and mn{va 0 
\) = Wa- Conditions (i), (ii) and (iv) hold by definition. The quotient morphism Vn 0 
C^{G) —> C^{En, En-\) is equivalent to C^{$)oEZ and hence a quasi-isomorphism. 
Thus, by the 5-lemma, rrin is a quasi-isomorphism too. D 

C,{X). PROOF OF 5.1. We first construct the DGC morphism B{C^{E);C»{G)) - ^ 
Note that h is (trivially) a DGC over C(G) . Hence the map of Lemma 5.2, 

a(7r) : C,(E) ®c.(G) * ^ C.(X), 

is in fact a morphism of DGC's. Thus the composite 

5 ( a ( E ) ; a ( G ) ) = C,{E) ®C.(G) B{C,{GYC.{G)) 

is a morphism of DGC's. We shall show it is a quasi-isomorphism. 
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For this, let m : M > C^{E) be a C*(G)-seniifree resolution as in Proposition 5.3. 
Consider the commutative diagram 

M ® a ( G ) 5 ( a ( G ) ; a ( G ) ) 

id(8)£: 

m0id 

Af (S)c.(Gr)* 

id(g)e 

C*(£')(8)c.(G)* 

a(7r) 

a(x) 
m 

Because C*(G) is ic-free and concentrated in degrees ^ 0, it is Jt-semifree. Hence, by 
Lemma 4.3(ii), B{C^[G)\ C^{G)) is C*(G)-semifree. Thus Proposition 2.3(i) asserts that 
m (8) id is a quasi-isomorphism, because m is. 

On the other hand, since M is C*(G)-semifree and e is a quasi-isomorphism 
(Lemma 4.3(i)), a second application of Proposition 2.3(i) shows that id 0 5: is a 
quasi-isomorphism. Finally, m is a quasi-isomorphism by hypothesis. Hence so is 
C(7r) o (id (8) e). D 

6. Examples and applications 

6.1. a(x)-B(a(/?x)) 
Let X be any path connected space. The space of free Moore paths on X is the subspace 
MX C Xl '̂°°) X [0,00) of pairs (a,r) such that a{t) = a{r), t ^ r. The choice of a 
basepoint XQ G X determines the subspaces fiX C PX C MX by the conditions: 

PX = {(a,r)|a(r) = XQ} and QX = {(a,r)|a(0) = a{r) = XQ}. 

These are respectively the Moore loop space and the Moore path space and have the 
homotopy type [21] of the standard loop and path spaces. A continuous map PX x fiX -^ 
PX is then given by (a, r) x (/3, s) H-̂  (a * /3, r -h s) where 

(a*/3)(t) = 
a{t), t^r, 

[0{t-r), t^r. 
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This map when restricted to f2X x fiX makes fiX into a topological monoid, and the 
map itself is an action of fiX on PX ([21]). Since n : PX -> X, (a,r) -̂̂  a(0), is 
easily seen to be a fibration we have 

LEMMA 6.2. Fĉ r any path connected space X, 

1T: PX y X, PX X fiX ^ PX 

/̂  an QX'fibration. 

Now, as promised in the introduction, we establish 

THEOREM 6.3. For any path connected space X, the DGC C^{X) is weakly DGC-
equivalent to the bar construction B{C^{QX)). 

PROOF. AS noted in the proof of Theorem 5.1, B{C^{nX)\C^{nX)) is C*(/?X)-
semifree. Moreover, PX is contractible, and so the constant map PX —> pt induces 
a quasi-isomorphism sp : C„{PX) -^ k of C*(i7X)-coalgebras. Thus, by Proposition 
2.3(i), 

ep(^id: C^PX) ^c.^ax) B(a(/?X);a(/2X)) ^ B{a{QX)) 

is a DGC quasi-isomorphism. On the other hand, Theorem 5.1 gives a DGC quasi-
isomorphism 

a{px)^c.inx)B{a{nx);a{nx)) ^ a w . 

D 

REMARK 6.4. As noted in Example 4.6, the DGC 

B{c4nx)) = (T(sa(fix)),d) 
depends only on the augmented DGA structure of C^{f2X). Thus (cf. Proposition 4.5) 
the weak DGC equivalence class of C^{X) is determined by the weak augmented DGA 
equivalence class of C^{f2X). 

For simply connected spaces this correspondence is a bijection: the weak equiva-
lence DGC class of C*(X) determines the weak augmented DGA equivalence class of 
C^{QX), as follows from Adams' theorem [1] (cf. also [16] and [12]). 
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6.5. Homotopy fibres and models of fib rations 

Chapter 16 

Let (j) : X -^ Y bt any continuous map between path connected spaces. It determines 
the commutative diagram 

XXYMY 

(6.6) 

in which p(x, (a,r)) = a{r) and i{x) = (x, (c<^a;,0)), c^x denoting the constant path 
at 0a:. In this diagram z is a homotopy equivalence and p is a fibration ([21]); we say i 
converts (j> to the fibration p. The fibre, F, of p is called the homotopy fibre of (j>. 

As in 6.1, composition of paths defines a right action of QY on F. This identifies 
the restriction of the projection X Xy MY —> X as an i7y-fibration p: F -* X. Thus 
Theorem 5.1 yields 

PROPOSITION 6.7. Mr/i the notation above C^{X) is weakly DGC equivalent to 
B{a{F);C4nY)). 

Now consider the special case that 

is a fibration with fibre Z. Then the map i (in (6.6)) restricts to a weak homotopy 

equivalence Z • F, hence inducing a DGC quasi-isomorphism C^{Z) > C^{F). 
Thus Proposition 6.7 provides a DGC quasi-isomorphism 

a(F)"0"B(a(r2Y)) ~H^a(x), (6.8) 

where "0" indicates a "twisted" DGC structure and (cf. Theorem 6.3) there are DGC 
quasi-isomorphisms 

a (F) ^^- a(Z) and B{C,{QY)) -^ a{Y). 

This is a DGC analogue of Brown's Theorem [6] and reminiscent of the Dupont-Hess 
models introduced in [9]. 
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6.9. Universal enveloping algebras 

Suppose \ E h and (L, d) is a A-free differential graded Lie algebra. We suppose that 
either 1: is a principal ideal domain or else that L = {Liji^r for some r G Z. 

The universal enveloping algebra of (L,d), U{L,d), is a DGH. Regard UL as a left 
C/L-module and consider the chain complex C*{UL'y L) of chains on L with coefficients 
in UL as defined in [8] in the ungraded case, in [18, Appendix B] for the graded case 
where i: is a field of characteristic zero and in [11] or [15, §1] in general. 

Now C^{L) = C^{k\L) is a DGC (the divided powers coalgebra r{sL)) and 
C^{UL;L) = UL (8) C«(L) can be given the tensor product coalgebra structure. This 
makes C^{UL',L) into a DGC, and left multiplication by UL identifies C^{UL,L) as a 
left C/L-coalgebra. Moreover C^{UL;L) is [7L-semifree and the augmentation to k is 
a quasi-isomorphism. 

For any free graded module W, PW C TW is the subcoalgebra of completely sym-
metric elements. In particular, the inclusion sL C sUL defines a coalgebra inclusion 
r{sL) C T{sUL). This extends to a morphism of [7L-coalgebras 

a:C.{UL\L) = UL^r{sL) ^ UL®T{sTjL) = B{UL\UL). 

It is well known (e.g., [15, Theorem 1.5]) that a is a quasi-isomorphism of [/L-modules, 
whence 

PROPOSITION 6.10. The injection a : C^{UL;L) -> B(UL\UL) is a DGC quasi-
isomorphism. 

Now let (C,d) be a right DGC over UL. We give to C^{C\L) the tensor product 
coalgebra structure, and we consider the induced map 

ac : a ( C ; L ) = C(8)f/L C,{UL\L) - ^ ^ C^UL B{UL;UL) = B{C;UL). 

PROPOSITION 6.11. ac is a DGC quasi-isomorphism. 

PROOF. The hypothesis on L implies that B{UL\ UL) and C,,{UL : L) are i7L-semifree 
modules (cf. Lemma 4.3). The morphism QL is therefore a quasi-isomorphism (Proposi-
tion 2.3(i)). D 

THE BOREL CONSTRUCTION 6.12. Let EG -^ BG be the universal bundle of a topological 
group. If G acts on the right on some space F then the space 

FG^FXGEG 

is called the Borel construction on F. 

Now FG is the base of the principal G-bundle F x EG —• FQ. Since principal bundles 
are (trivially) G-fibrations, Theorem 5.1 provides a DGC quasi-isomorphism 

B ( a ( F X EG);C4G)) - ^ C^FG). 
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On the other hand, the projection F x EG —> F is a G-equivariant weak homotopy 
equivalence. Thus by Proposition 4.5 it induces a DGC quasi-isomorphism 

B ( a ( F X EG)\C.{G)) ^^ B{C.[FYC.{G)). 

This proves: 

PROPOSITION 6.13. The DGC, C^{FG) is weakly DGC equivalent to B{C^F\C^G). 

7. Cochain algebras 

Let (X, d) be a DGH, and suppose {A, d) is a left DGA over [K, d). Then we can form 
the DGA 

BK{A) = HomK{B{K;K),A), 

with multiplication given by (/•^)(^) = ^A^U^Q)^^^^ ^"^ identity 1 : ^ »-> £:(^)1^. 
This construction is functorial in A and contrafunctorial in K\ suppose [A',d) is a 
second DGA over a second DGH, {K\d) and suppose 0 : {K\d) —• (i^,rf) and 
ip : (^, d) —> (>!', d) are respectively a DGH morphism and a DGA morphism such that 
il^{(t)x • a) = X • -0(0), X G /f', a £ A. Then we put 

Ŝ (V )̂ = Hom4B(0;0),V^) : B;,(A) - . BK'{A'). 

From Proposition 2.4 we deduce 

PROPOSITION 7.1. If{K,d) is k-semifree and 0 a/id V̂  are quasi-isomorphisms, then so 
is B^{IIJ). 

For any graded module W, write W^ = Hom(PF, A). Then, as above, the dual of a 
DGC is a DGA, with multiplication given by {f-g){x) = ( /0^) (z ix) . If (C, d) is a right 
DGC over a DGH, {K,d), then {C,dy is a left DGA over {K,d) in the obvious way. 
From Theorem 5.1, Theorem 6.3 and Proposition 6.7, and from the natural isomorphism 
Hom(M (g) iV, - ) = Hom(M, Hom(7V, - ) ) we deduce 

THEOREM 7.2. (\)If7r:E-^X is a G-fibration, then there is a natural DGA-quasi-
isomorphism 

C'{X)-^Bc4G){C*{E)). 

(ii) For any path connected, pointed space X, the DGA, C*{X), is weakly DGA-
equivalent to B(Ci^QXY. 

(iii) Let (f) : X -^ Y be any continuous map between path connected spaces, with 
homotopy fibre F. Then C*{X) is weakly DGA-equivalent to iB(7^(G)(C*(^))-

(iv) For any action of a topological group G on a space F, C*{FG) is naturally 
weakly DGA equivalent to BC,(G){C*{F)). 
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7.3. Torus actions 

In the case of a torus T = 5^ x • • x 5' there is a very simple model for Ci^{T). Indeed, 
the 1-simplex a : t —• ê '̂* is a cycle in C*{S^) satisfying Aa = cr 0 1 + 1 0 cr 
and a^ = 0. Thus a DGH quasi-isomorphism {Aa,0) > C^{S^) is given by a H-> a, 
where ila is the exterior algebra on an element a of degree one. 

Next, a straightforward calculation shows that if r : X x y —> y x X is the map 
(x,y) -^ (y,x), then 

C,{T) o EZ{u^v) = {-\)'^^''-^^''EZ{v ^u). 

Using this it is easy to see that if K and G are topological monoids then 

EZ : a{K)^a{G) y C.{K x G) 

is a DGH quasi-isomorphism. In this way we obtain a DGH-quasi-isomorphism 

n 

(^(ai , . . . ,an),0) - 0 ( ^ a , - , O ) - ^ - > a ( T ) . (7.4) 

In particular, assume T acts from the right on a topological space F. Then C*(F) 
inherits the structure of a yl(ai,.. .,an)-IXjC from the quasi-isomorphism (7.4), and 
dually, C*{F) is a left DGA over A{a\,.. .^an)- Explicidy, this means that aj acts by 
a degree -1 derivation 9j in C*(F) satisfying 

6^61 =-OiOj, e]^0 and dOj-^e^d^O. 

Let /Xj denote multiplication by bj in the polynomial algebra h[b\^... ,bn] in which 
each 6j has (upper) degree 2. 

THEOREM 7.5. The DGA, {k[bx,..., 6n] 0 C*(F), id 0 d -f X̂ -̂ /x̂  (g) Bj) is weakly DGA 
equivalent to C*{FT). 

PROOF. Identify {A{a\,..., an), 0) as the universal enveloping algebra on the submodule 
L — 0 haj. Proposition 6.11 yields a DGC quasi-isomorphism 

C[VL\ V) - ^ B{VL\ UL) (7.6) 

and in this case C{UL\L) ~ yl(ai,... ,an) (8) r (6* , . . . ,6*) where, in particular, 
r(6*, . . . ,6*) is the graded coalgebra dual to l:[6i,... ,6n]- Since (7.6) is a quasi-
isomorphism of semifree f/L-modules, we apply Proposition 2.3(ii) to obtain a dual 
DGA quasi-isomorphism 

Homt/L(C([/L;L),C*(F)) ^ - ^ Hom(/L(B(C/L;C/L),C*(F)). 
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The left hand side is precisely 

{k[bx,...,hn]®C*{F)'M^d-¥^^ij® Oj j 

and Theorem 7.2(iv) gives a DGA quasi-isomorphism from the right hand side to 

8. Stasheff structures and the DGA BK{A) 

An acyclic closure for a DGH, {K, d) is a quasi-isomorphism 7 : P 
modules in which 

kof{K,dy 

P={}P{kl 

as in the definition of semifree in §2, and 7 restricted to P(0) is identified with EK • 
K —^ k. Theorem 4.1 shows that {K,d) admits an acyclic closure 7 : P - ^ -^ k that 
is a {K,d)'DGC (cf. §4). However, in any acyclic closure, it is possible to construct 
a strongly homotopy associative comultiplication in the sense of Stasheff [20], and this 
turns out to be sufficient to construct a DGA, BK{A), in the weak DGA equivalence 
class of BK{A), for any {K, d)-DGA, {A, d). In particular, in a G-fibration -K : E -^ X, 
we can recover the class of C*{X) this way from the C*(G)-DGA, C*(£?). Henceforth 
we shall restrict ourselves to DGH's {K,d) such that {K,d) is jfc-semifree. 

Fix an acyclic closure, 

7 : P - ^ k. 

The identity element of K{= P(0)) is then a cycle Ip e P such that 7 ( lp) = 1. Now 
consider the diagram of (K, d) modules (with K acting diagonally in P 0 P) 

(id, id) 

P^P 

(7 (8) id, id (8) 7) = 77 (8.1) 

PxP 
k 

The vertical arrow, 77, is a surjective quasi-isomorphism. Thus, since P is (K,d) 
semifree, Proposition 2.1 implies that Hom(P,77) is also a surjective quasi-isomorphism. 
Thus we may lift (id, id) through the vertical arrow to a morphism a : P —> P ®P. 
Moreover, because P(0) = K and A : K —• K^K does lift (id, id), we may suppose 
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a\K = ^. Altogether then we obtain a morphism a : P —> P 0 P of (X, d)-modules 
satisfying 

(7 0 id) o a = id = (id (8) 7) o a 

and 

a{\p) = lp(g)lp 

> . (8.2) 

Such a morphism will be called a weak comultiplication in P. 
In fact if a were strictly associative then (P, a, 7) would be a left {K, d)-coalgebra 

with comultiplication a. There is, however, no a priori reason for this to be true. What 
is true is that a is homotopy associative. In fact it follows from (8.2) that 

(a (S) id) o a -- (id 0 a) o a : P —> ker(7 0 7 0 7 ) . 

By hypothesis {K^d) is Jt-semifree. Hence (P,d) is also Jt-semifree, which implies 
(Proposition 2.3(i)) that /f (ker(7 0 7 0 7)) = 0. Since P is {K, d)-semifree it follows 
(Proposition 2.1(ii)) that (a 0 id) o a - (id 0 a) o a ~ 0 as a map of {K, d)-modules. 

Indeed it turns out that there is an infinite sequence of 'higher homotopies' that exhibits 
a as strongly homotopy associative in the sense of Stasheff [20]. It is this sequence that 
forms what we call a Stasheff structure in P. 

More precisely, define the {K,d)-modu\e s~^P by {s~^P)i = Pi+i, d{s~^x) — 
-s-^dx and g • s'^x = {-\)^^^s-\g -x), ge K. Let K act diagonally on {s'^P)®^ 
and let I{k) be the kernel of the /f-linear map 

7fc : (5~^P) —^ k, s~^x\^-"S~^Xk ^ 7{x\)-"j{xk). 

Since P is i:-semifree, H{'yk) is an isomorphism of degree A: (Proposition 2.3(i)) and 

DEFINITION. A Stasheff structure in the acyclic closure P - ^ A of a DGH, {K, d), is a 
sequence of derivations 61,62, ..^ of degree - 1 in the tensor algebra T{s~^P) satisfying: 

(i) (5, = d : 5 ~ ^ P —> s-^P. 
(ii) 62 : s~^P —^ 5~^P0 5~^P and is obtained from a weak comultiplication a as 

follows: if 

ax = ^ X i i 0x12 

then 

62S-'X = J](-l)^S^^'5-^Xi, 0 S-'xi2. 
i 

In particular, 62 is K-linear. 
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(iii) For fc ^ 3, 5fc is a iC-linear derivation satisfying 6k{s~^\p) = 0,6k • s~^P —> 
I{k), and 

PROPOSITION 8.3. If {K,d) is k-semifree then any acyclic closure has a Stasheff struc-
ture. 

PROOF. Use d and an arbitrary weak comultiplication a in P to define 6\ and 62. Suppose 
(5i,..., 6fc are constructed, fc ^ 2. Put 0 = 626k -f 635^-1 -h h 6k62. Thus 

_l„x0/c+l ^ ; 5 - l p _ ( 5 - l p ) 

and 

(5:6.y-/3:.-'p-. © (.-'p) 

The following observations are straightforward: /3 is KT-linear, ^6] = (5i/3,/3(lp) = 0 
andIm;Sc/(ik-f 1). 

Because H{I{k -h 1)) = 0, and P is (AT, d)-semifree there is a (/iT, d)-linear map 
6k-{.\ : 5~^P —^ I{k + 1) such that 6k+\6\ + 6\6k+\ = -p. (cf. Proposition 2.1(ii)). 
Since P begins with P(0) = i^ and since /3(lp) = 0 we may construct (5̂ +1 with 
Sk-^i{s~^lp) = 0. Extend 6k-\-\ (uniquely) to a derivation in T{s~^P). D 

Next, suppose (j) : (/^jd) —• {K',d) is a DGH morphism with both {K,d) and 
(iiT , d) Ju-semifree. Equip acyclic closures P —̂ >̂ ic, P' ~ > Jt with Stasheff struc-
tures. Regard P' as a (iî , d)-module via </> and lift id^ to a morphism 

V ; : P — > P ' , V^(1P) = (1PO 

of (fC, d)-modules. An argument completely analogous to that of Proposition 8.3 estab-
lishes 

PROPOSITION 8.4. There is a sequence of degree zero K-linear maps ipk • s~^P —> 
{s-^P')^^, k^ I such that 

(i) ^ i (5~ 'x ) = s'^i/jx. 

(ii) For fc ^ 2, ilJk{s~^ Ip) = 0 and Im x/jk C /(fc)'. 
(iii) If^k • T{s~^P) -^ T{s~^P'), is the unique algebra morphism extending ipi -h 

h -̂ fc then 

M6i-^"' + h)-{S^+"-^Sk)^k'-s-'P -^ 0 {s-'P'f. 
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Now define a cycle L G Hom/<'(P,A)O by setting L{X) = J{X)IA' Define a map 
e : (Homi<'(P,i4),d) —• Jfc by e / = £:A( / (1P) ) . Then e{t) = 1, so e is surjective. As 
in §4, if / i , . . . , /fc G kerc we denote by [sf\ | • • • \sfk] the element 5/1 0 • • • 0 5/^ in 
T(s(kere)). We regard T(5(kerc)) as a graded coalgebra with comultiplication given by 

k 

i=0 
^[5/11 • • • \sfk] = Yll^f\\' ' ' \sfi] 0 [5/i+ll • • • \sfk]. 

The main step in the construction of BK{A, d) is the definition of a DGC, (r(5(kere)), d), 
with the aid of a Stasheff structure in P. 

Recall that a coderivation 0 : C —• C in a graded coalgebra is a linear map such that 
{9 ^ id -\- id (^ 0) o A = A o 6, Now some notation. Define pairings 

®^ ^ fo-iDl®*^ 

by 

where 

(, ):[sHomK{P,A)]'''x[s-'P] 

([5/1I • • • \sfkl s'^xi 0 ... 0 s-^Xk) = ( - i r / i (^ i ) • • • • • fkM, 

a = Y^dcgsfi'degs x̂̂  + ^ d e g / i . 

Then a iiT-linear map 7 : 5~^P —• (s^^P)®'^ dualizes to the linear map 

7 : [sHomic(P,A)]®^ —4 sHomK(P,A) 

given by 

If 6 is the unique derivation in T{s~^P) extending 7 and if 6 is the unique coderivation 
in T{sHomK{P,A)) lifting 7 then clearly 

{e^,z) = (-l)̂ ^s^"-̂ ^8*(<P,02), z € T{s-'P), <? G r(sHom/c(P, A)). 

We say 6 is the coderivation dual to 6. 
Now choose a Stasheff structure, {<5ik}fĉ i in P as described above. Since —6k is a 

if-linear derivation for A: ^ 2 it dualizes to a coderivation 9^ in T{sliomK{P,A)) and 
dk satisfies 

(afc<?,2)-f ( - l ) ^ e ^ { < P , M = 0 , <fGT(5HomK(P,A)), Z G T ( 5 - ^ P ) . 
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Let 9i be the unique coderivation that preserves tensor length and satisfies disf = —sdf. 
Because 9^ decreases tensor length by A; — 1, the infinite sum 

oo 

3 = ^ 9 ' ^ 
fc=l 

is a well defined coderivation in T(5Hom/<:(P, A)). It follows easily from the defining 
properties of a Stasheff structure that 9̂  = 0 and that 9 restricts to a coderivation in 
T(5 kere). Thus we have constructed a DGC, (T(5kere), 9) as desired. 

This is a supplemented DGC, that is a DGC of the form (C, 9) = ker^c 0 Jk with 
Z\l = 1 0 1 and 9(1) = 0. The reduced diagonal for such a DGC is the map A : 
kerec -^ kerec 0 ktvec given hyAx = x®\-{-\^x-\- Ax. The cobar construction 
on (C, 9) is the DGA 

f2{ad) = {T{s-'kcrec),D) 

defined by 

DS'^X = -S^^dx + ^(- l )^f i^^»5-*Xtl 0 S'^Xi2, 

where Ax = X) ̂ ii ^ ^i2-
Given a Stasheff structure in an acyclic closure of {K, d) and given a {K, d)-algebra 

(A, d) we write 

B^(A) = r2(T(5ker£),9), 

where (T(5ker£),9) is the DGC defined above. Clearly BK{A) depends on the choice 
of acyclic closure and Stasheff structure. We shall see below that its weak equivalence 
class is independent of these choices, and contains the DGA BK{A) of §7. 

First we make the important observation that, as a differential graded module, BK{A) 
is naturally equivalent with Hom/< (̂P, ^4). In fact, given any supplemented DGC of the 
form (TV, 9) with the tensor coalgebra structure, 9 restricts to a differential 9i and V 
and the composite 

{k,0)®s-\V,Q^) ^ s^\T*V,'d) -^ n{TV,d) 

is a quasi-isomorphism by [12, Proposition 2.8(ii)]. Thus writing 

Hom/(:(P, A) = ker e ^k-L 

we have: 

LEMMA 8.5. A quasi-isomorphism A : Hom/<'(P, A) - ^ BK[A) is given by X{f) = 
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PROOF. This is precisely [12, Proposition 2.8(ii)]. Q 

Next, suppose 

(l>: {K\d) —* {K,d) and r : {A,d) —^ (^',d) 

are respectively a DGH morphism and a DGA morphism. Assume (A, d) is a (if, d)-
algebra, {A',d) is a (K'^d) algebra and that 

r{(t>{9) -a) = 9' T{a), a € A, g £ K\ (8.6) 

Assume also that {K,d) and (X ,d) are ic-semifree. Choose acyclic closures P and 
P' for {K, d) and (iiT', d) and equip each with a Stasheff structure. Let 

e\YiomK{P.A) —^ k and e': HomK/(P', A') —^ 1: 

be the augmentations. Let %l): P' —> P be a K-linear lift of id^ and recall the K-linear 
maps 

Vfc : s-'P' —» (s-'P)®* 

of Proposition 8.4. As above these determine linear maps 

ik : (skere)®^ —> skere', fc ^ 1, 

characterized by 

{ik^,s-^x) = r(<f,^fc(5-*x)>, X G P, ?? € (5kere)®^ 

This sequence lifts to a unique morphism ^ : T(5ker6) —• T(5kere') of supple-
mented graded coalgebras and it follows from Proposition 8.4(iii) that 9̂ = 9 ;̂ i.e. ^ is 
a DGC-morphism. Thus i?^ is a DGA morphism, which we denote by 

B^{T) : BK'{A') - . BK{A). 

Note the commutative diagram 

BK{A) 

ViomK{P,A) 

B^{r) 

Hom('0, r) 

BK'{A') 

X' (8.7) 

HomK'(P',A') 
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PROPOSITION 8.8. 

(i) If (j) and r are quasi-isomorphisms so is the DGA-morphism B</>(r). 
(ii) In particular, the weak equivalence class ofBK{A) is independent of the choice 

of acyclic closure and its Stasheff structure. 

PROOF, (i) In view of (8.7) we have only to show that Hom(^, r) is a quasi-isomorphism. 
Since </>, ip and r are quasi-isomorphisms and P, P' are semifree, this is Proposition 2.4. 

(ii) Simply apply (i) with 0 = id, r = id but with two different acyclic closures and 
Stasheff structures. D 

Suppose P is a {K^ d)-acyclic closure with a weak comultiplication a that is strictly 
associative. Then P has a Stasheff structure in which 6] and 62 are derived from d and 
a and 6k = 0, k^3. 

On the other hand, Homi<'(P, A) is itself an augmented DGA with multiplication given 
t̂ y / • ^ = M o (/ ^ ^) o ĉ i M denoting the multiplication in A. Moreover {T{s ker e), 9) 
is simply the bar construction on the augmented DGA Homi<^(P,^). Hence BK{A) = 
f2B{}iomK{P,A)). 

We can now apply [12, Proposition 2.14] to obtain a DGA quasi-isomorphism 

a:BK{A)^HomK{P,A) 

such that a o A = id. If we apply this to the case P = B{K;K) we obtain BK{A) ~ 
BK{A). 
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1. Introduction 

In this chapter, we give an exposition of the Quillan, Sullivan rational homotopy theory 
([14], [18]) and the authors extension of this theory to real homotopy theory ([4], [5], 
[6]). The treatment is via the Sullivan approach emphasizing differential forms. We 
assume the reader is familiar with the standard material in algebraic topology: homology, 
cohomology, Serre spectral sequence, homotopy groups ([16]) and with differential forms 
on manifolds ([22]). In addition, a knowledge of simplicial sets ([13]) would be very 
helpful. 

We give in this introductory section, a quite detailed overall picture of real-rational 
homotopy theory recalling along the way classical deRham cohomology, simplicial sets 
and, in the context of simplicial sets, function spaces, fibrations, the Kan extension 
condition and twisted cartesian products. To fully deal with real homotopy theory, it is 
essential that one uses simplicial spaces and continuous cohomology. We take up these 
issues very briefly at the end of this section and seriously in Section 2. We begin this 
section with deRham cohomology with real coefficients and carry this as far as we can 
without continuous cohomology. To simplify the exposition and still capture the main 
ideas, we then shift to rational coefficients and nilpotent simplicial sets. In this context, we 
develop four theorems which in our view form the foundation of real and rational theory. 
We conclude this section by setting forth our most general setting for this foundational 
material. 

We begin by recalling the deRham cohomology groups of a manifold and their relation 
with singular cohomology ([22]). Suppose M is a smooth manifold and f2*{M) is the 
differential graded algebra of smooth differential forms on M. On a neighborhood of M 
with coordinates xi, X2,. . . , Xn an element LJ G 17^(M) is given by 

X^ 0'iii2...ij,dxi, A dxij A • • • A dxi^ 

where the a's are C°° functions of x i , . . . , Xn and du £ i?̂ "*"̂  (M) is given by 

(j^ = y ^ —!'^^''*" dxj A dxi, A • • • A dxi . 
•^-^ OXj 

Then d^ = 0 and the deRham cohomology group, //J,^(M), is defined by 

^ d R l ^ J - {da\aenP''{M)} ' 

that is, the closed forms modulo the exact forms. The product operation on differential 
forms induces a graded algebra structure on Q''{M) and on H^^{M) and, according to the 
classical deRham Theorem, this latter algebra is isomorphic to the singular cohomology 
algebra, H*{M;R). We next describe a map giving this isomorphism. 
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Let A^ be the standard g-simplex: 

A^ = f{to,U,...,t,)eR^-^'\U^O, Y^^i^lV 

Let A^{M) be the set of C°° maps of A^ into M and C9(M; R) the vector space of all 
real valued functions on A'^{M) with the usual cup product and coboundary operator 
6. Using C^{M;R) and 6 to form cohomology gives the usual singular cohomology. 
Define 

^:nP{M)-^CP{M\R) 

by 

J ATP 

Stokes theorem states that ^d = 6^ and hence ^ induces a mapping 

^.'.Hl^{M)^H^{M-R) 

which the deRham Theorem asserts is an algebra isomorphism. 
In a broad sense, the study of real and rational homotopy theory generalizes the 

application of differential forms in two directions. First of all, real and rational versions 
of n*{X) are defined for arbitrary topological spaces X. The important features of 
these extended deRham complexes is that they have a commutative multiplication (in 
the graded sense) and that the corresponding cohomology algebras are isomorphic to the 
singular cohomology algebras of the space X. The second direction is the study of other 
topological invariants such as homotopy groups and homotopy type using differential 
forms. 

Defining a deRham complex for topological spaces is quite straightforward. By way 
of motivation, we first describe a variant of Hl^{M) utilizing a triangulation of M. 
Suppose K is an oriented simplicial complex (the vertices of each simplex are ordered) 
and t : \K\ ^ M di homeomorphism giving a smooth triangulation of M (t is C^ on 
each simplex |s| C \K\, s E K), Let nf{M) be the set of all functions u which assign 
to each simplex t{\s\) C M a differential p-form (JJ{S) on t{\s\) such that if 5' is a face 
of s and i : ^(|5'|) C t{\s\) is the inclusion, then u{s') = i*uj{s). The differential and 
product operations carry over to Qti^) "taking it into a differential graded algebra and 
its homology (homology always means the quotient of the kernel of the differential by 
the image of the differential) into a graded commutative algebra. Let C^{K;R) be the 
cochain complex of the oriented simplicial complex K. Then we define 

^:nf{M)-^CP{K',R) 
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by 

Jt\s\ t\s\ 

where s is an oriented p-simplex of K. Not surprisingly, ^ can be shown to induce an 
isomorphism in homology. 

Note that fifiM) really depends only on K and could be so expressed by defining 
QP{K) to be all functions assigning to each simplex s £ K di p-form w{s) on\s\ such 
that if s' C 5, then u){s') is the restriction of u{s) to s', This definition does not depend 
on l^l being a manifold. Indeed, ^ makes sense for any simplicial complex, and as we 
will see, induces an isomorphism in homology. We now generalize this idea to arbitrary 
spaces via singular cohomology. 

For any space X, let Aq[X) be the set of all singular g-simplices T : A^ -^ X oi X, 
Let Ci : i\^~^ - • A^ and di : A^'^^ -* Zl̂ , i = 0 , 1 , . . . , g, be the usual face inclusions 
and degeneracy projections, 

ei(to,. . . , tg_i) = (to, . . . , ti_i,0, t t , . . . , tg^i), 

di(t0, . . . ,tg+l) = (to,.. .,tt -f ti_l.l,...,tq_|_l) 

and define face and degeneracy mappings 

hi:A,{X)^Aq^x{X), 

Si'.A,{X)-^Aq^x{Xl 

i = 0 , 1 , . . . , g, by 9tT = T o Cj, SiT = T odi. For G an abelian group, let 

C^(X; G) = {u: Ag{X) -^G\uosi = 0} 

be the singular cochain complex with the usual coboundary and cup product operation 
when G is a ring. Let fi^{X) be the set of all functions a; which assign to each g-simplex 
T e Aq{X) an element uj{T) of Q^iA^), satisfying Lj{diT) = e,^a;(r) and uj{siT) = 
d*uj{T). The differential and product on Q*{A^) give a differential and product on 
Q*{X) making it into a differential graded commutative algebra over R. We define the 
deRham cohomology of X by 

Hl^{X) = H,{n'{X),d). 

Let W : nP{X) -4 C''iX;R) be given by 

!?(a;)(T) = / uj{T) 
JAP 
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for T G Ap{X), Then ^d = 6^ and we have 

THEOREM 1.1. The mapping ^ induces an algebra isomorphism 

H;^{X)^H*{X;R). 

This result follows from Theorem 1.3 below. Thus we have attained our first objective, 
namely, generalizing deRham cohomology to arbitrary spaces. We next transform the 
notions defined above into simplicial set language. The collection of sets, Aq{X), q = 
0 , 1 , 2 , . . . , and operations di, Si is the prototype of a simplicial set. More generally, we 
have the following. 

DEFINITION 1.2. For any category C, a simplicial C is a collection 

N = {Nq,duSi, 9 = 0 ,1 , . . . } 

where each Ng is an object in C and di : Nq —^ iV^-i and Si : Nq -^ Nq^\, 0 ^i ^ q, 
are mappings in C, the face and degeneracy mappings. These mappings satisfy 

SiSj = Sjjf.\Si^ "^ ^ Ji 

diSj = Sj-\di, i < J, 

= identity, i= jj - \ , 

= Sjdi_i, i > j + l. 

(These are just the relations di, Si satisfy on Aq{X).) A simplicial map f : N —^ M is 
a collection fq : Nq -^ Mq commuting with 9t and Si. 

We denote the category of simplicial C's by AC. For any C, A £ C means A is an 
object of C and, for A, B E C, (A, B) is the set of morphisms in C. We let 5 denote the 
category of sets and hence AS denotes the category of simplicial sets. 

Let A be the category of differential non-negatively graded commutative algebras with 
unit over R. Thus ifAeAA^ {A^, d}, A^ = 0, p < 0, the product A^ 0 A^ -^ A^^^ 
satisfies ah = {-ly^ba and d\ A^ -^ A^'^^ is a derivation in the graded sense. Central 
to this theory are the vector spaces i?^ = i?P(4^), the smooth differential p-forms on 
the standard g-simplex A^. The maps ti : A"^'^ -> A"^ and di : A'^'^^ -> A^ define 
operations 

di = e::ni^ni^,, 

Si^dl'.Ql^Ql^, 

making i?^ = {l?P,9i,5i} into a simplicial vector space. On the other hand, ilq = 
{i7P,d} G A and hence fi € AA. With this notation, our previous definition of /?*([/) 
for a space U becomes 

Q^{U)={A{U),f2P), 
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the set of simplicial maps of A{U) into i?^, where A{U) — {^^(C/), 9i,5t} is the 
singular simplicial set of U, The A structure on i?^ carries over to f2''{U) making it an 
object of A. For any X € AS, we define f2*{X) e Ahy 

Q\X)^{X,Q*) 

and Hl^{X) by 

H:^{X) = H.{n\X)), 

Just as above, we obtain a map ?? : Q*{X) -^ C*{X\R) where 

C^iX'.R) = {u : Xg -^ R\ uo Si = 0 all i} 

and 6 : C^{X;R) -^ Ĉ "*"' (X; R) is defined in the usual way using the face mappings. 

THEOREM 1.3. The mapping ^ : H;^fi{X) -^ H*{X\R) is an algebra isomorphism. 

This result follows from Lemma 1.4 below. 
As we will see, the most important feature of this result is that it gives a functorial way 

of defining H*{X\ R) using a cochain complex which has a graded commutative product, 
namely Q*{X). In the remainder of this paper, we will be using simplicial methods and 
X, y , . . . will denote simplicial objects. In preparation for our main constructions, we 
give some of the machinery used to prove Theorem 1.3 above. 

Let A[q] G AS be defined by 

^k]p = {(io,«i,..-,ip) | 0 ^ i o ^zi < ••• ^ i p ^ g } , 

9j(io,--.,ip) = (io, . . . , i j , . . . , i p ) , 

s^(io,...,ip) = ( io , . . . , i j , i j , . . . , ip ) , 

and define ê  : A[q - I] -^ A[q], di : A[q -\- I] —̂  -4[g] to be the unique simplicial 
mapping with 

e i ( 0 , l , . . . , g - 1) = ( 0 , 1 , . . . , z - 1,2-hi , . . . , g), 

d i (0 , l , . . . ,g - f l) = (0 , l , . . . , z ,2 , . . . , g ) . 

For any group (algebra) G, let C*{G) be the simplicial differential group (algebra) 
given by 

C'{G) = {C'{A\q];G),8) 
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with face and degeneracy operations defined using the mappings Ci^di above. Then, for 
XeAS, 

C*(X;G)=(X,C*(G)) 

and in Section 3 we show that ^ above gives a mapping T/; : i?* —• C*{R) and prove: 

LEMMA 1.4. The mapping ij) : Q* -^ C*{R) is a simplicial mapping which preserves 
the grading and commutes with differentials (not multiplicative). Furthermore, there is 
a simplicial mapping ip : C*{R) —• i?* which preserves grading and commutes with 
differentials and simplicial linear mappings 7 : i?^ -* i?^"^ satisfying 

tl)(p = id, d'y -h jd = (f^ — id. 

The map ij): Q* -^ C*{R) induces a map 

^ : n^X) = (X,r?*) -> {X,C*{R)) = C*{X;R) 

by composition, ^{u) = ^ o a;, similarly for (p and 7. It then follows that these map-
pings also satisfy the identities in Lemma 1.4 and hence induce isomorphisms between 
HP{X;R) and H^^{X), which proves Theorem L3. 

We next present a detailed outline of the entire theory in the simplest case, namely, for 
nilpotent simplicial sets of finite type and we work over Q, the rational numbers instead 
of over R. We define i? = i?Q to be the simplicial subalgebra of fi consisting of all 
differential forms 

5Z«t,,...,ipd^t, A'" Adti^ 

where the a's are polynomials in the barycentric coordinates to,t\,.. .,tq of Ag with 
coefficients in Q. The category A consists of differential, graded algebras as before, but 
over Q instead of R, Then everything we have said about i?, A, 9, </?, 7, C*, H* carries 
over for Q. For example: 

THEOREM 1.5. For any simplicial set X, the mapping ip : QQ -^ C*{Q) induces a map 
^ : fiqiX) —• C*{X;Q) which in turn induces an algebra isomorphism 

^.:H.{QQ{X))-^H\X;Q). 

Note that ̂  is defined over Q because the integral of a rational polynomial is a rational 
number. For example, for t\dt\ e i?}, 

V'(tfdf,)((o,i))=y^<fd<,=|^ ' 1 

0 ^ + 1 

We next review the results that we will need about simplicial sets. 
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An analogue of a space of functions in AS can be defined as follows: Suppose X^Y £ 
AS. Then T{X,Y) € AS is defined by 

nX.Y\={A[q]xX,Y) 

where 9t and Si are defined to be composition with the maps ei and di on A[q\. The 
notion of a fibration is defined by the following version of the homotopy lifting property: 
a mapping p \ E -^ B'm AS is si fibration if for b £ Bq and eo,- • • .^j-x^^j+x,- - -.eq G 
Eq-\ such that 

pci = 3̂ 6, i 7̂  j , 

dkCi = 9t-iefc, k<ij, k^ j , 

there exists an e G Eg such that dfC = Ci and pe = 6. A simplicial set X is said to 
be Kan (or to satisfy the Kan extension condition) if X —• pt is a fibration. (We later 
slightiy modify this definition in order to extend it to simplicial spaces.) 

A particularly useful class of fibrations is the twisted Cartesian products (TCP). Let 
B and F be simplicial sets and G a simplicial group acting on F. A twisting function r 
is a sequence of mappings r = Tq : Bq -^ Gq-\ satisfying the following identities: 

T(3,6) = r(ao6)aoT(6), 

T{dib) = di^lT{b), i> 1, 

T{sob) = Ig-i, 

r{sib) = 5t_iT(6), i > 0. 

The twisted Cartesian product B x^ F is the simplicial set with 

{BXrF)q = BqXFq 

and whose face and degeneracy mappings are the product of those in B and F except 
that 

ao(6,/) = (ao6,r(6)3o/) 

(see [13]). The theorems about fibrations which we will have to prove in each of our 
variations are: 

THEOREM 1.6. Ifp: E --^ B is a fibration then p# : J^{X, E) -^ T[X\ B) is a fibration. 
Hence, if Y is Kan, so is f{X^ Y). 

THEOREM 1.7. IfG is a simplicial group then G is Kan. 
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THEOREM 1.8. If F is Kan, then the projection B Xr F -^ B is afibration. 

A homotopy between two maps f,g\X-^Y\sdi map F \ X x A[\\-^Y satisfying 

F(x,5gO)=/(a:), 

F{x,sl\)^g{x) 

for X G Xg or equivalently, F G T{X,Y)\ with 9oF = ^ and 9 iF = / . It follows 
from Theorem 1.6 that homotopy between mappings is an equivalence relation when Y 
is Kan. If y € AS is Kan, one can also define the homotopy groups of Y as follows. 
For 1/0 € Vb, 

^n(y,2/o) = {y^Yn\ diy = SQ''^yo, z = 0,. . . , n } / - ^ 

where y ^ y^ if there is a 2 € Yn+\ with 802: = t/, d\z = y\ and diZ = SQyo, i > 1. In 
particular, the set of homotopy classes of mappings from X to F is given by 

[x,y] = 7ro(^(x,y)). 

We can also define simplicial set analogues of the Eilenberg-MacLane spaces and the 
contractible fibrations over them as follows: 

K{G,n)q = Z^(il[g];G) = {ue C'iG)^ \ 6u = O}, 

E{G,n) = C^{G), 

p:E(G,n) ~^K{G,n-{' 1), pu = 6u. 

Since K{G, n) and E{G, n) are simplicial groups they are Kan. In addition, it is easy to 
check that 

7ri(i(:(G,n))=G, i = n, 

= 0, 17<̂  n , 

7ri(^(G,n))=0, all i. 

In Section 4 we prove: 

LEMMA 1.9. The mapping p : E{G,n) -^ K(G,n-\- \) is a principal TCP with group 
and fibre K{G, n). 

If X e AS and k : X -^ K{G, n), then k may be viewed as a cocycle on X, that 
is, k e (X,C^(G)) = C^(X;G) with 6k{x) = 0 all x G X. One easily sees that this 
correspondence gives the Hopf-Whitney theorem: 

THEOREM I.IO. For X e AS. we have [X,K{G,n)] « i/'^{X;G). 
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¥or k : X -* K{G,n + I), let p : Xk -^ X he the induced fibration with fibre 
K{G,n): 

Xk > E{G,n) 

1 [' 
X — ! ^ K{G,n+\) 

That is, 

{Xk), = {{x,u) eXx C"(^[g],G) I 6u = k{x)}. 

DEFINITION 1.11. We say that X e AS is nilpotent and finite type if there is a sequence 
{Xn}, Xn G {A%r)xQ^ XQ = pt, a sequence 1 ^ mi ^ m2 ^ • • • of integers with 
rrin —• oo as n -^ 00, a sequence {Gn} of finitely generated abelian groups, and a 
sequence of mappings k^'^^ : Xn-\ —> K{Gn, mn -f-1) such that Xn = {Xn-^\)kr^+\ and 
limXn is homotopy equivalent to X. 

Let ^ 5 N F denote the subcategory of AS of such simplicial sets. 

REMARK 1.12. If C/ is a path connected topological space, A{U) is nilpotent and finite 
type if and only if there are 'K\{U) submodules TT̂  of 'Kn{U) such that TT̂  = 7rn(f7), 
TT̂  D TT̂ "̂ ', TT̂  = 0 for £ > iVn and TT̂ /TT̂ ^̂  are finitely generated trivial TTI (C/) modules 
for all i and n ^ 1. In particular this is true if TTI {U) = 0 and -KniU) is finitely generated 
for all n. 

DEFINITION 1.13. A map g: A-^ B'mAhdi weak equivalence if *̂ : H^{A) w H^{B). 
A map / : -X" —> y in id5 is a weak Q-equivalence if i ? / : QY -^ i7X is a weak 
equivalence, or equivalently, /* : i /*(y;Q) « H*{X\Q). 

If X is connected, nilpotent and finite type, a Q localization of X consists of a 
weak Q-equivalence h : X -^ XQ where 7rn{XQ) is uniquely divisably for all n ^ 1 
[11]. If limXn is as in Definition 1.11, then we can define XQ = limXn.Q where 
hn : Xn -^ Xn,Q is a weak equivalence defined by induction on n satisfyTng XO,Q = pt 
and Xn,Q = Xk^ where fcg is such that the diagram 

Xn-\ • K{Gn,rnn) 

Xn-UQ - ^ K{Gn^Q,mn) 

is homotopy commutative. The map hn-\ being a weak equivalence implies WQ exists, 
the commutativity of the above diagram gives the existence of hn and a Serre spectral 
sequence comparison argument shows that hn is a weak equivalence. 

To each 4̂ G A we associate a simplicial set A{A) G AS given by 

A{A)q = (>1, i?g) = morph^(A, i?^). 
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Composition with di and Si on i?g defines the face and degeneracy mappings in A{A)q. 
In general, A{A) is quite mysterious. However, if A is freely generated, then A{A) 
is well understood ([4], [5]). Indeed, a central feature of rational and real homotopy 
theory is that the Q and i?-localizations above can be realized as A{A) where A is 
free. Furthermore, one can choose A so that the differentials of elements of A are 
decomposable, in which case A is said to be minimal ([18]). In this case, A is uniquely 
determined up to isomorphism by XQ, i.e. the set of homotopy types of Q-local nilpotent, 
finite type simplicial sets is in one to one correspondence with the set of isomorphism 
classes of minimal finite type algebras. 

We have defined two contravariant functors f) : AS —> A and A : A -^ AS which 
are, in a sense, adjoints of one another. Let i and j be the mappings 

i:A-^ n{A{A)), i{a){cj) = u(a), 

j:X-^A{n{X)), j(x)(u) = u(x). 

and let a and /? be the mappings 

{A,n{X)) f{X,A{A)) 

where a{h) = A{h)j and /?{/) = n{f)i. Trivial manipulations yield 

THEOREM 1.14. For a, /3 as above, we have aP = id and Pa = id. 

Denote a(/i) by h and 0{f) by / . Let V, VG, VDG and VF denote the categories of 
vector spaces over Q, graded vector spaces over Q, differential graded vector spaces over 
Q, and finite dimensional vector spaces over Q respectively. If V G V, let V{n) G VQ 
be defined by 

V{n)g = V ifg = n, 

= 0 if q^n. 

If F G VG, let S{V) and F"̂  G VG be defined by S{V)g = Vq-i and V^ = HomiVq, Q). 
Let Q{V) G VG be defined as the quotient of the tensor algebra generated by V modulo 
the ideal generated by elements of the form a^b- ( -1)^6 (g) a for a G F^ and 
6 G y^. We also denote Q{V) by Q[V*]. If {vf} is a basis for V\ we will write 
(5[{t;f}] for Q[V*] in which case Q\y*] is the tensor product of the polynomial algebra 
generated by vf, ^ even, with the exterior algebra on vf, g odd. If V G V, A G *A, 
and X \ V* -^ A^"^^ is a linear map with d o A = 0, then A{V, A) G ^ is defined 
to be the algebra A 0 Q{y{n)) with derivation d defined by da = da, a £ A, and 
dv* = A(v*), V* G V\ Let Q{V,n) = Q{V,X) where A : V -^ (5(0)^+^ = 0, that is 
Q{V,n) = Q{V{n)) with d = 0. Note that A* : F -> A^+^ extends uniquely to an A 
map A : 0(V, n -I- 1) -> A giving ^(A) : A{A) -^ A{Q{V, n 4- 1)) and 

A{Q{V,n-^l))={QiV,n^\),n,) 
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= [u : V* ^ /2̂ +̂  \du = 0} 

= {ue r?J-̂ ^ \duj = 0}<S)V. 

Let Zn{f2) e AS be defined by Zn{fi)q = {UJ e Q^ \ duj = 0} and similarly for 
Zn{C*{R)). Then 

Zn{f2)^V = A{Q{V,n)), 

Zn{C^Q))(^V = K{V,n), 

The mapping ̂ ^ and (p from Lemma 1.4 define mapping ̂  : Zn{fi)^V -> Zn(C*(i?)(8)V 
and <̂  in the opposite direction such that ^(^ = identity. In Section 3, we show that the 
mapping 7 of Lemma 1.4 yields a homotopy of (fnp to the identity. Thus A{Q{V^ n)) is 
another model for K{V^n). We also prove the following. 

LEMMA 1.15. The mapping d : ]?„ 0 F ~> Zn+i (i?) (S^V is a principal TCP with group 
and fibre Zn{fi) (8) V. 

Since 

A{AiV,X)) = {AiV,X),n,) 

= {{u,w) 6 A{A) X {V*,Q^) I dw = uX} 

we have: 

THEOREM 1.16. The simplkial set A{A{V, A)) is the total space of the induced fibration 

A{A{V,X)) > Qn®V 

V i 
A{A) ^ ^ A{Q{V, n 4-1)) = Zn+i (fi) ® V 

vv/î ri? p is induced by the inclusion of A in i4(V, A) and Zn{fi) 0 V is its fibre. Hence, 
A{A{V, A)) is a TCP, 

A[A{V, A)) « A{A) Xr {Zn{n) 0 F) . 

DEFINITION 1.17. We say that Ae Ais free, nilpotent and of finite type (FNF) if A is 
the union of subalgebras {An}, An C An-\.\ with Ao = Q and An = An_i (Vn(^n), An) 
where Ki € VF, mi ^ m2 ^ • • • is a sequence of integers with rrin —̂  oo as n —> oo, 
and Xn :V^ -^ -̂ JT-î ^ ^** d o A = 0. We say that A is minimal if, in addition, da is 
decomposable for all a e A. 

A corollary of Theorem 1.16 and Lemma 1.15 is: 

THEOREM IAS. If A is FNF, then A{A) is Kan, nilpotent and finite type. 
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The following is the main theorem in this subject: 

THEOREM 1.19. / / A is FNF, then 

U : HM) « H,{n{AA)) = H*{A{Ay,Q). 

The proof proceeds as follows: The standard Serre spectral sequence argument for 

computing H*{K{Q,n);Q) ([4, Section 8]) applied to the fibration 

yields Theorem 1.19 when A = Q{V, n) by induction on n. The general case then follows 
by proving it for An by induction on n. The inductive step follows from: 

LEMMA 1.20. If i : A -^ QA{A) is a weak equivalence, then the same is true for 
i:A{V,X)-^nAA{V,X), 

To prove Lemma 1.20, filter A{V, A) by letting 

-PP = ^ ^^aiUi ai e A.UiG Q{V) and dimixi > p >. 

Note that dF^ C FP and FP C FP^K Let pP C C*(Z\(^(KA));Q) be the Serre 
filtration for the fibration in Theorem 1.16, that is 

FP = {ueC*{A{A{V,xy,Q))\u{iT-''{A{A)P-'))=0} 

where TT : A{A{V,X)) -^ A{A) is the projection and A{A)P~^ is the {p ~ l)-skeleton 
of A{A). A simple calculation yields: 

LEMMA 1.21. The map 

A{V,X) - U n{AA{V,X))^C*{A{A{V,X));Q) 

is filtration preserving and the induced mapping on spectral sequences is an isomorphism 
at the £2 level. 

Lemma 1.20 now follows from Lemma 1.21. Theorem 1.19 then gives: 

COROLLARY 1.22. If A is FNF, then k. A -^ Q{X) is a weak equivalence if and only 
ifh:X-^ A{A) is a weak Q-equivalence. 

Theorem 1.16 and the exact sequence of homotopy groups for a fibration yield 

THEOREM 1.23. If A = {Q{V), d) is FNF and minimal, then itniAI^A)) = Vnforn> I 
and 

where {F^} is the lower central series for 7r\{A{A)) [5]. 
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In Section 5, Theorem 5.9, we prove 

LEMMA 1.24. Suppose X G AS, A ^ Ay h : A -^ Q{X) is a weak equivalence and 
k: X -^ K{V, n -f 1), where V ^Vv. Let X.V -^ A^'^^ be a map which corresponds 
to [k] under the composite 

{V\ Zn+M)) - . /f„+,(^ ® y ) -> //„+, {Q{X) ® V) 

-^H„+x{C'(X)®V)=H^+\X-V)=[X,K{V,n+l)]. 

Then there exists a weak equivalence h yielding a commutative diagram: 

A — ^ Q{X) 

A{y,\) —^^ n{Xk) 

where Xk is defined just after the statement of Theorem 1.10. 

Applying Lemma 1.24 as above gives the first part of: 

COROLLARY 1.25. If X £ AS is nilpotent and finite type, then there exists a minimal 
FNF A £ A and a weak equivalence h \ A -^ f2{X) and hence a weak Q-equivalence 
h: X -^ A{A). Furthermore A is unique up to an isomorphism. 

The uniqueness of A follows from: 

REMARK 1.26. li Ae A, Ho{A) = Q, H\{A) = 0 and Hn{A) is finite dimensional for 
all n, it is easy to construct a FNF minimal B with a weak equivalence h\ B -^ A. One 
can also show that '\f A ^ A, hi : Bi —^ A, i = 1,2, are weak equivalences with B\ 
and B2 minimal and FNF, then there is an isomorphism g : B\ -^ B2 such that h2g and 
h\ are homotopic ([18]). Thus, in the simply connected case, one does not need Lemma 
1.24. However, we do need Lemma 1.24 to deal with the nilpotent case. In later sections, 
we will have a group acting on everything in sight in which case Lemma 1.24 still holds 
but the algebraic argument above is not available. 

We conclude this description of rational homotopy theory with a discussion of how 
mappings behave under the A functor. For A,B ^ A, define T{A,B) G AS by 
T{A,B)q = (i4,Qq (g)B), For A,B,C e A define the composition mapping 

c : T{A, B) X T[B, C) -^ T{A, C) 

to be the composite 

[A, Qq®B)x (S, Qq 0 C) ' ^ (A, nq^B)x [Qq (^B,Qq® C) 

^{A^Qq^C) 
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where b{u){u;(S)b) = {u}^\){u{b)) and CQ is the usual composition. Taking C = Q, then 
T{A, C) = ^{A) and the adjoint of c gives 

Let a : T{A, fi{X)) -^ T{X, A{A)) be the adjoint of the composite 

T{A, n{X)) xX'^ T{A, n{X)) X T{n{X), Q) ^ T{A, Q). 

DEFINITION 1.27. IfX.Ye AS are Kan, the mapping / : X -> F is a weak equivalence 
if /* • T^n{X,xo) -^ 7rn(y, f{xo)) IS an isomorphism for all xo G XQ and all n ^ 0. 

Theorems 1.16 and 1.17 yield 

THEOREM 1.28. If A,B e A and A is FNF, then T{A,B) is Kan and hence \A,B] = 
7ro{T{A,B)) is defined. 

In Section 6, we prove: 

THEOREM 1.29. If A,B,C,D e A A and B are FNF, X e AS is path connected and 
Kan and g : C -^ D is a weak equivalence, then the following are weak equivalences: 

(i) A:T{AB)^T{A{B),A{A)), 
(ii) a:T{An{X))^T{X,A{A)), 

(ni) g.:T{A,C)-^T{A,Dy 

The proof of Theorem 1.29 has an easy part and a hard part. The easy part is proving 
that 

T{C{V,XlD)^TiC,D) 

is a fibration with fibre J^{Q{V, n), D). Taking A = lim An, one proves the theorem for 
A = An by induction on n and the usual five lemma argument on homotopy groups. 
The hard part is proving the maps A, a and c induce isomorphism on TTQ. Interestingly, 
for A one needs Theorem 1.19 for B as well as A. 

We conclude this introduction by giving our most general setting for these discussions 
and indicate how it specializes to various special cases of interest. 

We view Theorems 1.19, 1.23, 1.25, and 1.29 as constituting the foundation of ratio-
nal homotopy theory for finite type nilpotent simplicial sets. We extend these results in 
two directions. One direction consists in replacing Q by i?, simplicial sets by simpli-
cial spaces, algebras by topological algebras (R with its usual topology) and requiring 
all maps to be continuous. This yields continuous cohomology and the theorems cited 
above carry over more or less unchanged to this new context. Simplicial spaces and con-
tinuous cohomology naturally arise in various situations some of which we describe in 
Section 8 including characteristic classes of foliations. The most convincing motivation 
for this setting is that, when one includes topologies and continuity, a generalized Van 
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Est Theorem holds, namely, H*{K{R, n); R) is a polynomial or exterior algebra on one 
generator in dimension n, according as n is even or odd. The rational and real theories 
are then so similar that we can do them simultaneously. Hereafter, we let R denote R 
or Q. When R = Q our theorems apply to AS and when R = i? to AT where T is 
the category of topological spaces with compactly generated topologies. (See Section 2.) 
We also view simplicial sets as simplicial spaces with the discrete topology so the real 
theory also applies to AS. In Section 8, we compare the real and rational theories on 
AS. They turn out to be substantially different. 

Our second direction for extending this theory is to eliminate the nilpotent requirement. 
We do this by fixing a group TT, considering path connected X e AT with 6 : TTI (X) « TT 
and localizing X by fibrewise localizing the map X to BIT defined by e. The problem is 
then to make sense out of minimal models in this context. A first approximation would 
be to take a minimal model for X, the universal covering of X. However, this is too 
crude. For example, one loses the action of TT on the higher homotopy groups so that X 
and X X B-K would have the same minimal model. Including a TT action on the minimal 
model for X will give a satisfactory definition of a minimal model for X when TT is 
finite. However, this model will not in general, contain enough information to include all 
possible k invariants, for example, for adding Z as -KI to -BTT when TT = Z. A strategy 
that works for all TT is to replace R by a DG algebra AQ with a TT action which models 
fi{E'K) (for all local coefficients). One can then define AT^, QT^ and minimal models so 
that the foundational theorems referred to above hold. (See Section 5.) 

The notion of localization being considered here may also be viewed as localizing 
a category with respect to a set of weak equivalences [14]. For the Quillen-Sullivan 
rational homotopy theory one considers the category Zî Np of nilpotent simplicial sets of 
finite type and as weak equivalences, mappings / : X —> Y inducing an isomorphism 
on rational cohomology. For real homotopy theory one enlarges -4«SNF to ^ T N F . the 
category of nilpotent simplicial spaces of finite type and as weak equivalences, maps 
which induce an isomorphism on continuous cohomology with coefficients in the reals. 
In this paper, we in effect consider Zi5o,F, the category of connected simplicial sets with 
base point and finitely generated homotopy groups and as weak equivalences mappings 
/ : X —• Y which induce isomorphisms on fundamental groups and on cohomology 
with local coefficients in Q vector spaces. We also consider A%j:, the category of 
connected simplicial spaces with base point and locally Euclidean homotopy groups and 
as weak equivalences mappings / : X —^ Y which induce isomorphisms on fundamental 
groups and on continuous cohomology with local coefficients in R vector spaces. 

2. The categories A% and A-n 

In this section, we introduce the important categories A% and A-j^. We also prove a 
basic result (Theorem 2.2) relating function spaces and fibrations in these categories. 

Recall that for a category C, A, J5 G C means A and B are objects of C and {A, B) 
denotes morph(>l,B). We denote by CT^ the category of C objects with TT actions and 
TT-equivariant maps as morphisms. An object of CTT is a pair (A, p) where A ^C and p 
is a homomorphism of TT into {A, A), required to be continuous when the morphisms of 
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C are topologized. If A e CT^, A e C forgets the TT action and, if A has elements, A'^ 
denotes the set of elements fixed under the TT action. If A,B £ CT, then {A, B) has the 
TT action given by gu{a) = g{u{g~^a)), g e TT, u € {A,B). If A e C, then CA and AC 
denote the categories of pairs (B, / ) where / : B —> A and / : A —y B, respectively, 
the morphisms being the obvious commutative diagrams. 

Let Eir —> BTT be the usual model for the universal simplicial 7r-bundle. That is, BTT 
the bar construction on TT and ETTq = TT̂ "̂ ^ with 

9t(po, "',gq) = {go,'--,gi,'- -.gq), 

Si{gQ,"">gq) = {go,"-',gi,gi,"",gq)' 

It is easy to prove that BTT = En/n where n acts diagonally on Eir. 
For a topological space Z, let k{Z) denote Z with its compactly generated topology 

which by definition means that U is open in k{Z) if and only if f/ fl C is open in C for 
each compact subspace C of Z ([17]). Let T denote the category of Hausdorff spaces 
with compacdy generated topology (Z = k{Z)) and continuous maps. Hereafter, we 
assume that TT as a space is in T. We also view the category S of sets as a subcategory 
of T, namely spaces with discrete topology. For spaces X and Y, {X, Y) will denote the 
set of continuous maps of X into Y with the compact open topology. Furthermore, we let 
(X, Y) = k{kX, Y) = k{kX, kY). (See [17].) For X and y E T, the T morphisms will 
be (X, y ) . One defines products in T by 11X^ — k{ncXa) where lie denotes the usual 
cartesian product. If X,Y e AT, we topologize (X,Y) as a subspace of 11 {Xq^ Yq). 

We thus have the category A%. When R = i?, >l will denote the category of dif-
ferential graded algebras over i? as in Section 1 which in addition have a compactly 
generated topology making them topological algebras over R. Thus, \f Ae A, A^ e T. 
Morphisms in A are topologized by viewing {A,B) as a subspace of n{A^,B'P). The 
tensor product of algebras, A 0 S is topologized with the strongest compactly generated 
topology making it a topological algebra and A x B a subspace. When R = Q, ^ is as 
in Section 1. 

We view A[q] and i? as not having TT actions. If X € A% and A € AT,, TT acts on 
A[q] X X and i?g 0 A by acting on the second factor. Then, as in Section 1, 

T{X,Y)q={A[q]xX,Y), 

T{A,B)q = {A,nq^B), 

T{AB) e AT, ^ ( i , B ) E A% and similarly for ^ ( X , y ) . We define Q{X) e A^ 
and A{A) € AT^ by 

A{A) = {A,f2l 

n{x) = {x,n). 

The TT actions are given by gu;{x) == uj{g~^x). It then follows that the maps i : A -^ 
n{AA)) andjf : X -^ A{n{X)) are well defined continuous 7r-equivariant mappings and 
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Theorem 1.14 holds, that is, {A, Q{X)) = (X, A{A)). Theorem 1.29 has two versions in 
this context, one involving function spaces of the form !F{A, B) and the other involving 
function spaces of the form !F{A^ B). In the second of these, the mappings A^ a, and ̂ * 
are equivariant. 

If (X, / ) , (y ,p) G {A%)x, we define T{{XJ),{Y,g% C T{X,Y)q to consist in 
all maps h: A[q]x X -^Y such that the diagram 

A[q] X X — ^ Y 

[m [g 

X — ^ Xo 

is commutative. A similar definition holds for J^ in AQAT- Again, the maps Z\, a and g^ 
are well defined and equivariant when bars are put over the objects. 

The main goal in this section is to define "fibration" in A% so that Theorems 1.6, 1.7 
and 1.8 hold. For the remainder of this section, let K = A%. 

The following is an improved version of the definition of fibration in the category 
/C. (Compare [4, Definition 6.1].) Suppose p : £ -* B is a mapping in K. Let Eqi C 
J?g_, X Bq consist of all elements 

(eo,e i , . . . ,e i , . . . ,eg ,6) € El_^ x Bq 

satisfying ptk = 9^6, 9̂ 6̂  = 9A;~iej, j < fc, j , k ^ i, and let pqi : Eq -^ Eqi be the 
obvious map. Saying pqi has a section for all q and z is the fibration version of the Kan 
extension condition, as described in Section 1. 

DEFINITION 2.1. The mapping p : J5 —> B in /C is a fibration if, for each q and z, pqi has 
a continuous 7r-equivariant section \qi which satisfies 

for all e G jB^-i and all j . A simplicial space (X, / ) € {A%)xo is Kan if f : X —> Xo 
is a fibration in ^7^. In particular, X e AT = ATpt is Kan if X —> pt is a fibration. 

An easy argument shows that the degeneracy requirement is superfluous in AS. 
Theorem 1.6 is now a special case of: 

THEOREM 2.2. Ifp.E —> B is a fibration in A% and X G A%, then J^{X, E) —> 
AT{X, B) is a fibration in A% and T{X, E) —> J^{X, B) is a fibration in AT. 
Furthermore, if f : E —• XQ, g : B —> XQ, h : X —> XQ satisfy gp = / , then 
T{{X,h),{EJ)) —^T{{X,h),{B,g)) is a fibration in AT. 

PROOF. We first give a proof of the first part of the theorem when n = 1 and then describe 
the modifications required to prove the general case. The remaining parts of the theorem 
then follow easily. 
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Suppose p\ E -^ B IS 2i fibration with sections Xqi as above and X € /C. We wish to 
show that 

is a fibration. Let ^̂ [(7,2] be the simplicial subset of A[q] consisting of all simplices 
not having ( 0 , 1 , . . . , i , . . . , g) as a face. For >! c X G /C, let J^{X, A,p) € /C have as 
g-simplices all pairs (/, g) of mapping in K making a commutative diagram: 

A[q] xA — 

1 
A[q\ xX — 

— y E 
f 

v 
—» B 
9 

Let (X, A,p) — T{X, A,P)Q. Then p is a fibration if and only if the mappings 

{A[qlE)^{A[qlA[q^lp) 

have sections Â ^ satisfying XqiPqih — h'\ih — h'dj. The manipulation 

(X, jr(y, z)) ̂  T{x, T{Y, z)\ = T{Y, HX, Z))„ = (y, :r(x, z)) 

transforms the mapping 

{A\q\,J^{X,E)) - . {A[q],A\q,i],HX,p)) 

into 

{X^nm^E)) ^ {X,J^{A[qlA[q,ilp)). 

Hence, it is sufficient to find sections ^iqi of 

J^{A[qlE) -. J^{A[q],A[q,iip) 

satisfying iiqiph —h\ih'\ A[r\ x A[q] —• E and h = h'{id^[p] x di). 

Suppose U,V C X e AS and {U,V n U) « (Zi[g],^[Q,i]). Then the Â ^ give a 
continuous section g which exists and is uniquely defined by the commutative diagram 

{X, V, p) > {X, V,p)xiU,Ur)V, p) 

I' I 
(X,[7uy,p) > {X,V)x{U,E) 

We build A[r] x / from A[r] x {0} UZi[r]* x / (A[rY denotes the boundary of A[r]) by 
adding one (r + 1) simplex at a time which meets the previously constructed subsets in 
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all but one r-face as follows. Let / = A[\\ and ao , . . . , â  € A[r\ x / be the simplices 
defined by 

â  = (5,_^(0, . . . ,r) ,5jsr^(0,l)) 

and let 

Uj = A[r]^ xIUA[q] x OU (J aj 

where a = a and all its faces and degeneracies. Then Uj = C/j_i U aj and 

{aj.Uj^iDaj)^ (zi[r-hl],Z\[r-f l , r - i ] ) . 

Define mappings 

gi : {A[q] x / , A[q]^ x / U A[q] xO)^ {A[q + 1], A[q + 1, i]) 

by 9i{j,0) = i and pi(jf, 1) = ei(j). 
Using induction on |c7|, cr G ^[m] x ^[g] - 4[m] x ^[g]* and moving up cr x / using 

(Jo, fxi,... as above, we first construct the section fj,q in the diagram below and then note 
there are unique sections /Xgi fitting into a commutative diagram 

{A[m] X A[q] x / , A[m] x {A[q]* x / U A[q] x 0),p) —^̂ -̂> {A[m] x A[q] x I, E) 

{A[7n] X A[q^\],A[m] x A[q^-\,i\,p) ^^^U {A[m] x A[q-V\],E) 

By the uniqueness of all the maps involved, it is immediate that the /Xgi commute with 
the maps induced by Cj and dj and hence define a section of 

T[A[q^\],E) ^ T{A[q^\],A[q+\,i],v). 

The degeneracy requirement follows from the fact that if cr € 4[m] x i4[g] -Z\[m] x Zi[g]*, 
(7 = (cr', a"), where cr" = s / (0 , . . . , g). Hence the degeneracy map di : A[q-{-1] —^ A[q] 
will correspond to the degeneracy projection A[q] x / —• ^[^ — 1] x / or the projection 
A[q\ X / —> A[q\ in which cases jiq will yield the desired map. 

Now suppose TT is not trivial. In the above argument replace all occurrences of "^[g]" 
by "TT X A[qY (but not "4[m]") . Note that \i x e X e K, there is a unique map 
ti : TT X A[q] -^ X such that tx{e, ( 0 , . . . , q)) = x. D 

Theorem 2.2 immediately gives: 

COROLLARY 2.3. / / X , r E A%, and Y is Kan, then T{X,Y) and T{X,Y) are Kan. 
If (X, / ) , (y, g) e {A%,)xo and {Y,g) is Kan then T{{X, / ) , {Y, g)) is Kan. 
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The standard argument gives: 

COROLLARY 2.4. IfX,Ye A%r cind Y is Kan, then homotopy is an equivalence relation 
on the set of maps of X into Y. This also holds in {A%)XQ' 

As in Section 1, let [X, Y] = 7ro( J"(A', Y)) denote the homotopy classes of mappings 
from X to Y. Then Theorem 1.7 is a special case of: 

THEOREM 2.5. IfGefCisafC group (the multiplication map is in /C), then G is Kan. 
That is G -* pt is afibration. 

PROOF. Suppose p = (̂ o, • •,Pt, •.,^g) satisfies dk9j = dj-\9k, k < j , k, j j^ i. Define 
hjj = 0,...,q, by 

hj = hj-i{{srdthj-i)~^Sr9j), j > 0, 

where r = t = j - 1 if j < i and t - I =r = q — j-hi if j > i. Induction on j 
yields dkhj = gk for k < j ^ i and dkhj = g^ for j > i, k < i or k ^ q - j -h i. If 
9j = ^jSkg^ then hj = 5 /̂1 ,̂ some hj where hj = g for j < i, j - I ^ k or j > i, 
j ^ k. Then Xq^i{g) — hq has the desired properties. D 

The definition of twisted cartesian product given in Section 1 carries over to /C without 
change where all the objects are required to be in /C and the maps are required to be 
continuous and 7r-equivariant. Theorem 1.8 is a special case of: 

THEOREM 2.6. / / F is Kan and E = B Xr F is a TCP, all in K, then E -* B is a 
fibration in K. 

PROOF. Suppose Xq^i are the sections of Cqi, where c : F -^ pt. Suppose (eo,. • . , ê , 
. . . ,eg ,6) satisfy pcj = djb,djek = dk-i^j, j < k, j,k ^ i, and Cj = {bj.Vj) £ 
Bq^\ X Fq-\. Let Xj G Fg_i, j ^ i, be given by 

Xj=soT{bj)yj, j > 1, 

= r{b)yi, j = l , 

= 2/0, j = 0. 

Then dkXj = dj-\Xky k < j , kj ^ i. Let 

Ag,t(eo,..., e i , . . . , e ,̂ 6) = (6,5or(6)~^ A(xo,.. . , x*,... Xq)). 

Then a straightforward calculation shows that Xq^i{g) has the desired properties. D 

3. The deRham theorem in A% 

Throughout this paper we will be dealing with cochains and differential forms on sim-
plicial spaces with TT actions taking values in 7r-modules; these will always be ordinary, 
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in contrast to equivariant, so that cochain groups are 7r-modules. On the other hand, 
cohomology and homology will always be equivariant. Recall that equivariant cohomol-
ogy is defined as follows. Suppose M is a topological 7r-module. If X G A%, we 
define C^{X\M) to be the continuous, normalized cochains on X with coefficients in 
M, that is, all continuous maps u : Xq —• M such that usi — 0, all i. We topologize 
C^[X\M) as a subset of {Xq,M) and make C^{X;M) into a 7r-module by defining 
{au){x) = a(u(a'~^x)), ae 7r,u G C^{X;M). The coboundary operator 6 is given by 
the usual formula and we define the (7r-equivariant) cohomology of X by 

H^{X;M) = Hq{C*{X;MY,6). 

As in Section 1, for R = iZ, let i7J = f2P{R) be the C°° differential p-forms on 
the standard geometric simplex A^ with the C°° topology. Note that this topology is 
compactly generated since it can be defined from a metric ([17]). When R = Q, j?P = 
0^{Q) as in Section 1 with the discrete topology. In both cases, the algebra f2{X) of 
differential forms on X G AS is defined by 

n{x) = {x,n). 

One can define cochains on X in an analogous fashion. Namely, if M is a topological 
TT-module, let C^{M) = C^{A[q]; M) where TT acts on C^{M) in the obvious way. Then 
there is a 7r-isomorphism: 

CP(X;M) = (X,CP(M)). 

When R = /2 let V be the category of topological vector spaces over R and when 
R = (5, V is the category of vector spaces over Q with the discrete topology. As in 
Section 1, VF, VG, and VDG denote the categories of finite dimensional, graded, and 
differential graded vector spaces. For X G A% and V € VF,7r we define Q{X\V) = 
i7(X) (g) y and the deRham (7r-equivariant) cohomology of X with coefficients in V by 

Hl^{X;V) = H,{n{X;Vr,d). 

We next define and develop the properties of the mapping 

^:n{X;V)-^C''{X\V). 

The proofs of most of the lemmas below are trivial and omitted or presented very briefly. 
We begin with some preliminaries about the simplicial differential graded algebra i?. 
(Compare Dupont [10].) 

Let n{A^ X I) be the C°° differential forms on A^ x I.lf t denotes the coordinate 
function on / , then u £ Q{A^ x ly can be written as a; = a;i(̂ ) 4- uJ2it)dt, where 
uji{t) E f2P and uj2{t) € 12^'^ Define 

fi:n{A''xlY ^QP-^ 
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to be the usual "integration along fibres" mapping, 

fl{uj) = {-If I UJ2{t)dt 
Jo 

A straightforward computation proves the following. 

LEMMA 3.1. Let iQ,i\ : A"^ -^ A^ x I be given by io{x) = (x,0), i\{x) = (x, 1). Then 

dfjL'\- fid = i* - z2, 9t/x = fi{ei x id)*, Sifi = /x(di x id)*. 

Here, d is the exterior differential, 9t, Si are the face and degeneracy mappings, 
and Ci : A^"^ -^ A^, di : A^'^^ -^ A^ are the usual face inclusions and degeneracy 
projections defined in Section 1. 

For the remainder of this section only, we define 17"̂  = R with 9̂  = 5̂  = id and 
d: Qq^ —> f?^ by d{r) = r, the constant function. Let bi : A^ x A^ -* A^ be given by 

hi(x,t) = to-f (1 - t)vi, 

where Vi is the i-th vertex of A^ and let /it : i?J -> i?J"^ be given by 

^^(^)-la;K), P = 0. 

LEMMA 3.2. The functions fXi satisfy the following 

dfjLi -h fiid^^ id, 

^^' \ / i i - i 9 j , z > j , 

^ (sjfii, i ^ j , 
^'^^ l^j/ it- i , i>j-

The proof is trivial. 
For / = ( io , . . . , Zp), let /i/ be defined by 

M/ = MipMip-, •••Mto-

An easy induction proves the following. 

LEMMA 3.3. For I = (zo,.. . , ip) e A[q]p, we have 

d/x,+(-l)^Mid=(-l)^E(-l)'^^^^ 

vv/ieri? dj denotes the j-thface operator in A[q]. 
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If / = ( io , . . . , v ) € A\p]q, let /3i E Ql be defined by 

p 

where to , . . . , ^̂  are the barycentric coordinates in A^. 

LEMMA 3.4. For I G 2:l[g]p ant/ O^j^p.we have 

eiJ=I diJ=I 

The proof is straightforward. 
Define mappings 

by 

7M = E^- E ^i(^)f^^' 

LEMMA 3.5. The mappings ip, (/?, and 7 define simplicial mappings which satisfy the 
following: 

Tpd = Si/j, (p6 = dip, 

ipip — id, d^ -\-jd = if^ — id. 

PROOF. The fact that ^ is simplicial follows immediately from Lemma 3.2. To see that 
if and 7 are simplicial, one uses Lemma 3.2 and 3.4. The equation ^d = -̂̂  is an easy 
consequence of Lemma 3.4. 

To prove that %l)ip — id, we first note that in terms of coordinates, 6̂  : ̂ ^ x / —• Aq 
is given by 

6j(to, ...,tg,t)jk = ttk -\-f>jkiy -t), 

where 6jk = I if j = k and zero otherwise. Hence 

6*/?/ = t^^'Pi +1^{\ - t)dti„... dii,,.. dU^ 
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and 

n.Qj = I ^"^PdkJ^ if for some k, j = u , 
^ 10, ifi^I. 

Thus ^j/3/ = 1/p! if J = / and is zero if J ^ I. Therefore, ^|J(p = id. 
We next show that (p6 = dip. For any tuple J of integers between 0 and q, J = 

0*0, j i , . . . , jp), let /3j = (signa)/3/ where / = (ja(o), • • • Ja{p))^ ja{0) ^ Ja{\) < • • • ^ 
ja{0)' Note that the ambiguity of a does not matter because 0j = 0 if the entries of / 
are not distinct. Then 

A:^/ 

= dtio... dti = —TT^^^ 
p + 1 

and 

d(pix = d^p!u( / ) /3 / = (p-f 1) 5 ] u(/)%,/] 

= Y,u{diJ){-\y{p^i)\Pj = ip6u, 

Using Lemma 3.3 and the above argument, one can show that d^y -{-jd = ip'ip - id. D 

The mapping '0 then defines a mapping 

IP̂  = IP̂ ^ : nP{X) iS)V -^ CP{X;R) 0 V 

for V G VF and hence a mapping 

^. : H'^^{X',V)—^ H^{X',V). 

It follows immediately from Lemma 3.5 that !?* is an isomorphism. Thus we have 

THEOREM 3.6. The map {^^)^ : H^^{X,V) —> i/*(Jf,y) is an isomorphism for all 
X e A% and V £ VF,^. 

Again standard arguments ([4, Theorem 2.2]) yield: 

THEOREM 3.7. IfXe A% the usual map gives a natural equivalence 

[X,K{M,n)] « i7^(X;M) . 

Thus we have natural equivalences 

H*^{X; V) « H^{X; V) « [X, KiV, n)]. 
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We now show that ^^ : H^^{X) —> -ff*(X, R) is an algebra isomorphism for X G AT. 
Let C*'̂  G AT be defined by 

(C^{A[q];ni), O - l , r ^ O , 

I 0, otherwise 

and 

by 

di : Q ^ ^ CJ+ '̂̂  d2 : Q^ - C;'̂ +̂  

d,tz(/) = 5;(-i)^n(a,/), d2u(/) = (-irdK/)). 

Define mappings 

by 

7,(tz)(J) = X^t,tx(j,/), 
j=o 

7 2 ( u ) ( / ) = / X i o l x ( i i , . . . , Z r ) , 

p{u 01;)(/) = w(io,.. . , ir)v{ir,..., «r+i )• 

LEMMA 3.8. The mappings d\, 62, 71, 72, ^ fl'wi /9 defined above are simplicial and 
satisfy the identities 

dj = £̂2 ~ 1̂ ̂ 2 H- 2̂̂ 1 = 0, 

di7i -f 7,di = id, d272 + 72d2 = id, 

xl){dx -f d2) = bii). 

Furthermore, d\ -\- dz is a derivation in the graded sense with respect to the multiplica-
tion p. 

The proof is tedious but straightforward. 
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It follows from Lemma 3.8 that {C^'^;di,d2} is a simplicial double complex. Note 
that C{R)P = CJ'-^ and /?P = C"*'". Let C^ and d : C^ -^ CJ+^ be the simplicial 
chain complex defined by 

and define mappings a: A —^ C, p : C{R) -^ C by 

a = di : C-^'P -^ C '̂P, /3 = d2 : C '̂"^ -^ C^'^ 

For X € T, let C'(X) = (X, C) € A. Composition with the mappings in Lemma 3.8 
gives mappings on C{X) satisfying the same identities. 

PROPOSITION 3.9. In the diagram 

n{x)—^-^c{x) 

^ - ' 
C{X\R) 

one has tpa = ^, V'/? = id, and a and (3 are ring homomorphisms inducing isomorphisms 
on homology. 

PROOF. Using the chain homotopies 71 and 72, we see that, for any p ^ 0, the sequences 

0 -̂  np{x) ~^—> c '̂P - ^ ^ c '̂p -^. • •, 

0-^CP{X,R) — ^ Ĉ 'O —^^—* CP'̂  -> 

are exact. Standard results about double complexes now show that 

a . : H.{f2{X)) ~> H%C), /3. : if .(C(X;i?)) -> i/*(C) 

are isomorphisms. D 

COROLLARY 3.10. The mapping ^ : n{X) -^ C{X\R) induces an algebra isomorphism 

^.'.Hl^{X)-^H^{X',R). 

The computations in cohomology which we need are derived from Serre's computation 
of H*{K{Q,n),Q) ([15]), Van Est's computation of F*(X(i?, l);i?) ([21])andtheSerre 
spectral sequence in A%. The Serre spectral sequence in A% is developed in [3]. The 
results are stated in the next section. 
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4. Postnikov systems and the Serre spectral sequence in ATT^ 

If M is a topological TT module, we form p : E{M, n) —> K{M, n -f 1) in Z\7^ just as 
in Section 1. 

THEOREM 4.1. The mapping p : E{M, n) —> K{M, n-^-l) is a principal TCP in A% 
with group and fibre K{M^ n). Furthermore, E{M, n) is contractible. 

PROOF. TO prove the first part, let p,: CJ+^(M) -• C^iM) be given by 

/ i ( u ) ( z o , . . . , Z n ) = t i ( 0 , Z o , . . . , i n ) 

and let r : K{M^ n -h l)n-i-i -^ K{M, n)n be defined by 

T{a) = ao/x(Qf) - M(9oa). 

Then r is a twisting function and 

L : K{M,n-f 1) x^K{M,n) —^ E{M,n) 

given by L(a, /3) = /i(a) -f 9̂ is an isomorphism commuting with the appropriate pro-
jections. 

For the second part, a contracting homotopy F : J5(M, n) x / —• E{M, n) is given by 
F(U,(T) = {s*v)Uu where u E E{M,n)g, v € C^(/;Z) is given by v{0) = 0,t;(l) = 1, 
and 5 : A[q] —> / is the unique simplicial mapping with 5(0,1, . . . , g) = cr. D 

The same proof yields the following result. Suppose V G VTT so that (i?*0F)'^ G A%. 
Let Zn(/2 0 V)g = {n G (r?̂ / ̂  V)''\du = 0}. 

THEOREM 4.2. The mapping d : (fi (8) F)^ -> Zn+i(i7 0 V) w ̂  TCP with group and 
fibre Zn{f2 0 V). Furthermore, {f2 O V)"^ is contractible. 

The proof of the first part of Theorem 4.2 is the same as the proof of the first part of 
Theorem 4.1 replacing /LX by /xo 0 idv where /io is as in Section 3. To prove (i? 0 V)'̂  
contractible, let F : (1? 0 F)^ x / -> (i? 0 V)^ be the contracting homotopy given by 

If k:X —> K{M, n -f- 1), define Xk to be the total space of the induced TCP, 

Xk > E{M,n) 

X — ! ^ K{M,n-^l) 

where all of the above takes place in A%. 

DEHNITION 4.3. We say that X G {A%)xo has a nilpotent Postnikov system if there is a 
sequence {Xn}, Xn G {A%,)xo,Xo = XQ, a sequence 1 ̂  mi ^ mi < • • of integers 
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with rrin —>̂  oo as n —> oo, a sequence {Mn} of topological 7r-modules in T, and a 
sequence of mappings k^'^^ : Xn-\ -> K{Mn,rnn^\) such that Xn = (Xn~i)fcn+i 
and limXn is homotopy equivalent to X. We say X has a simple Postnikov system if 
Ml = 0 and nin = n for all n. 

Suppose X is a 0-connected Kan simplicial space with 7ri(X) = n and suppose 
p : X —> BIT = -Rr(7r, 1) induces an isomorphism on fundamental groups. Let p : 
X —y £J(7r, 0) = Eir be the induced fibration: 

X — ^ ETT 

[ i 
X —^-^ BIT 

The following is well known: 

THEOREM 4.4. Ifir is discrete and {X,p) E {A%,)E'K is a simplicial set, then {X,p) 
has a simple Postnikov system. 

Within the context of our machinery, one can study all simplicial spaces (sets) through 
the following approach. Let ATT^ be the category of pairs {X, p) where X is a 0-connec-
ted Kan simplicial space (set) with base point and p : X —• Brc is a fibration such that 
p* : 7ri(X) « 7ri(B7r). The category ATT, embeds in {A%)E7r by sending {X,p) to 

DEFINITION 4.5. We say that {X,p) e AT^ has a Postnikov system if (X,p) has a 
simple Postnikov system. 

THEOREM 4.6. If {X, p) e. A% and X is a 0-connected simplicial set (discrete topology) 
then it has a Postnikov system. 

Suppose X = BXrF is ai twisted Cartesian product of B and F with structural group 
G, all in A%r. Let JB^ )̂ be the p skeleton of B, that is, the smallest simplicial subspace 
of B containing all Bq, q^p. Filter C*{X; My by 

F^'^ = {ue C^+^(X;M)-|u(47;) X Fp+,) = O}. 

The usual definitions ([15]) then yield the Serre spectral sequence {E^^^} with its usual 
relation to H*[X\M). Let 

e : CP(B;C^(F;M)) —^ C P + ^ ( X ; M ) 

be given by 
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for (6, / ) G Bp^q X Fp^q. Then 0 induces a map: 

where n acts on C*{F;M) by gu{f) = g{u{g~^f)). Furthermore, doOo = ô<52 where 
(52 is the differential coming from 6 : C^{F\M) —> C9+^(F;M). To compute Ei one 
needs to show that (kernel (52)/(image 2̂) is isomorphic to C'P{B\H^{F\M)Y. When 
R = Q, this is inunediate. When R = i?, the following two conditions insure that this is 
true. 

CONDITION 4.7. As a 7r-space, Bq is homeomorphic to {Bq/n) x TT for g ^ 0. 

CONDITION 4.8. The cochain complex (7*(F;M) is splittable ([4]), that is the maps 
Z^{F;M) —y H^{F,M) and C^~^(F;M) —• B^(F;M) have continuous sections. 

THEOREM 4.9. If X, B and F are as above and satisfy Conditions 4.7 and 4.8, then 6 
induces an isomorphism 

El'^^H^{B\H'^{F\M)) 

in the Serre spectral sequence for H*[X\ M), where H^{F\ M) has the TT action induced 
by the n action on C*{F;M). 

In our applications of this theorem, Condition 4.7 will be true by inspection. For 
Condition 4.8, we will use: 

THEOREM 4.10. The algebra C*{K{R, n), R) is splittable and H*{K{R, n); R) ~ R[x], 
degree x = n. Hence, ifU,Ve VF, then C*{K{V, n), U) is splittable. 

PROOF. We proceed by induction on n. The usual Serre spectral sequence argument 
applied to the TCP 

K{R, n) C C'iR) ^ K{R, n + 1) 

(see Theorem 4.1) yields the desired result if we can show that the Serre spectral sequence 
is applicable. In going from n to n-h 1, we need to know that C*{K{R, n)) is splittable. 
Assume Theorem 4.10 is true for n - 1 and hence, by the Serre spectral sequence, 
H*{K{R,n)) is isomorphic to R[x]. We show B^{K{R,n)) C C^{K{R,n)) is closed. 
By hypothesis, the inclusion K{Z,n) C K{R,n) induces an isomorphism, 

H'^{K{R,n)) ^ H'^{K{Z,n)) ^ Hom{Hq{K{Z,n),R),R), 

Hence for any q for which these groups are nonzero, there is a chain Cq £ Ci,{K{Z^ n)) 
such that evaluation on Cq gives a continuous isomorphism H^{K{R,n)) —> R. Then 
B^ is closed because it is the kernel of the continuous map of Z^{K{R, n)) to R given 
by evaluation on Cq. 
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A topological vector space is said to be Frechet if it is complete, locally convex and 
metrizable. (See [20].) If U and V are Frechet spaces, and W is a locally compact 
topological space countable at infinity, then (VF, V) is Frechet. If 5 C F is closed, then 
S is Frechet, and if / : C/ -+ V is an epimorphism, then it has a continuous section. Thus 
{{K{R,n)q,R)) is Frechet and hence B^ C Z^ C C^ C {K{R,n)q,R) and Z^/B^ are 
all Frechet. Thus C^ -> B^̂ +O and Z^ —> H^ have continuous sections, showing that 
CiKiR, n)) is splittable. D 

5. The main theorems in A% 

Recall in Section 1 we suggested that Theorems 1.8, 1.23, 1.25, and 1.29 formed the 
foundations of rational homotopy theory. In this section we formulate the analogues of 
Theorems 1.19,1.25 and 1.29, namely. Theorems 5.4, 5.9, and 5.6 respectively and prove 
them in this section and in Section 6. The analogue of Theorem 1.23 is immediate. 

Let T = {A%)E-K, AQ e ATT, and suppose that h: AQ ^ Q{E'K) induces an isomor-
phism on if*( ; V) for all F G VFTT- For example, one can take AQ = 0{E'K). However, 
more economical choices can be made in some cases as we demonstrate later in this 
section. Let A =AQ A ^ and define functors fi^ : T —• A and AT^ : A —> T as follows: 
If ( X , / ) € T , then 

nAxj) = {n{x),n{f)h). 
lf{A,g) 

where A 

e A, then 

AAA,g): 

^{A) is the 

^AA) 

I' 
En -

= {MA),f) 

pull back: 

—* 

- ^ An{ETr) > 

A{A) 

j^(.) 
A{Ao) 

Just as in the discussion preceding Theorem 1.13, the identification {W,{Y,Z)) = 
{Y,{W,Z)) in T gives an adjoint isomorphism: r? : {A,f2„{X)) « {X,A„{A)) for 
J4 G A and X GT. Furthermore, T) gives mappings 

i-.A-^fi^A^iA)), 

j : X —^ A„{n^{X)), 

T,: J'iAn^iX)) -^ T(X,A„{A)), 

A : J'iA, B) —. : F ( ^ , ( B ) , A^iA)). 
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For {A,g) G A and V € VF̂ T, we define H^{A,g\V) = H,{A\V). For W G VDGTT 

and V € VFTT define H^{W\ V) = H4{W 0 Vy). Then a mapping f : Wi -^ W2 in 
VDGTT is a weak equivalence if / • : H^{W]; V) -^ /f*(W2; V) is an isomorphism for all 
V £ VF^. 

In Section 1, we described the construction A{V,X). This construction, for A G A^, 
V G VFTT, A : y* —̂  A'̂ '*"* an equivariant map, and Q replaced by R is defined in exactly 
the same way with diagonal group actions on A{V, A) = A (g) R(V, n). 

DEFINITION 5.1. The algebra A G AO-^ is said to be free, nilpotent of finite type over 
Ao if A is the union of subalgebras {An}, An C An+i, with AQ = AQ and An — 
An-xiYri't^n) where Ki € VFTT, ^1 < m2 ^ •• • is a sequence of integers with rrin —̂  00 
as n —* 00, and An : V^ —> -̂ IT-î * ^^^ d o A = 0. In addition, A is minimal if its 
differential d is decomposable. 

Suppose A is FNF. The following provides an inductive procedure for dealing with 
7r*(^(i4)),if*(^(i4);V'), Postnikov systems for A{A),J^{A,B) and for showing that 
-K^^TIA.B)) -^ n^T{A{B),A{A)) is an isomorphism. Recall that A{A) = T{A\R). 

THEOREM 5 .2 . / /A , B £ A^r and V ^ VFTT, then the fibration T{A{V,\),B) -^ 
T{A,B)isaTCP, 

T[A{V,\IB)=T[A,B) x ,:F(R(F,n),B) 

in A%. Thus the fibration T{A{y,\),B) -^ T{A,B) is a TCP in AT, 

J^{A{V,\),B)^J^{A,B) x,:r(R(V,n),B). 

The proof is exactly the same as the proof of Theorem 1.15 with the construction A 
into A{A) = T{A\R) replaced by the construction A into f{A^B). 

COROLLARY 5.3. If A £ AOAT is FNF, then A{A) in {A%)A{AO) ^^^ ^{^^B) in 
{^%):F{AO.B) are Kan. 

THEOREM 5.4. If A G A is FNF over i4o, then i\ A —> nT,{AT,{A)) is a weak equiva-
lence. 

PROOF. Let >1 = \JAn^ An = >ln-i[Ki,An] as above. We prove Theorem 5.4 for 
^ = An by induction on n. When n = 0, ATriAo) = ETT and AQ —• A{AT^{AQ)) is a 
weak equivalence by construction. The inductive step follows from: 

LEMMA 5,5, If A —> QT^{AT^A) is a weak equivalence, then the same is true for 

A[v,\\-*nn{AAA[VM))-

PROOF. The proof of this lemma goes through exactly as in the proof of Lemma 1.19 
using the splittability of K{y, n), D 
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THEOREM 5.6. IfA.BeX are FNF over AQ, then 

^ . :7r.(^(AB)) —>7r.(^(Zi,(B),Zi.(A))) 

is an isomorphism. In particular, in A and T, A^ : [A, B] —> [^TT-B, AT^A] is an 
isomorphism. If in addition, X £T is zero connected, then 

r;. :7r.(j-(A,/2,(X))) — 7r.(^(X,Z\,(A))) 

is an isomorphism. Finally, if f : B —> C is a weak equivalence in A, then the induced 
map 

7r.(:F(A5))—7r.(:F(AC)) 

is an isomorphism. 

The proof of this theorem is given in Section 6. 

DERNITION 5.7. Let G be a topological n module and let G* = Hom{G, R) e V^ be 
the vector space of all continuous homomorphisms of G into R with the compact open 
topology. We define the ^-completion G of G by G = (G*)*. 

THEOREM 5.8. IfG is locally Euclidean, that is, a finite sum of cyclic groups, copies of 
S\ and copies of R, then the inclusion G —• G induces an isomorphism 

H*{K{G,n)\R) —^H*{K{G,n);R). 

Furthermore, C*{K{G,n);V) and C*{K{G,n);V) are splittable for all finite dimen-
sional V G V. (When R = Q, the corresponding results are well known.) 

PROOF. If G is finite, the result is trivial. If G = 5^ then G is trivial and H''{K(G, n); V) 
by the Van Est Theorem ([21]). The cases G = Z and G = i? follow from Theorem 
4.10. D 

We next show that a large class of X G T have minimal models. 

THEOREM 5.9. Suppose X G T has a nilpotent Postnikov system as in Definition 4.3 with 
Mn locally Euclidean for each n > 1. Then there is a minimal algebra A and a weak 
R-equivalence f : A —* i^niX) in A and hence a weak equivalence f : X —^ AT^{A). 

Furthermore, if g : B -^ QT^{X) is another such map, then there is a weak equivalence 
^y : A-^ B such that g^y and f are homotopic. 

PROOF. In Section 3, we defined ADGA mappings ^ : i? -^ G*(R) and ip:C*{R) -^ f2 
with IIJ<P = id and ifi/j homotopic to the identity via a homotopy 7. These mappings 
define, for any V G VF.TT* homotopy equivalences in ATrr, 

K{V,n) = Zn{C*{R)) ^V^ Zn{n) 0 V = A{TL{V,n)) 



Section 5 Real and rational homotopy theory 901 

where the homotopy 

K : Zn{Q) (8) F X / -^ Zn{n) 0 V 

between ip^ and the identity is defined as follows: For a; € Zn{fi)^ v eV and s E A[l]q, 
viewed as s : A[q] -^ A[l], we set 

K{iJ(S)v,s) = l^{ifnl){ijj) -u)s*t\ -i-uj -\-juj*dt\) (8)t;. 

Suppose X has a nilpotent Postnikov system Xn = {Xn^i)k^+iy where 

Using induction on n we construct a minimal An € A and a weak equivalence fn : 
An -^ n^^iXn) such that An = An-i(Mn,Z'''^^) for some i'^'^^ and /n extends fn-\. 
The mappings /„ then gives the desired map / . For n = 0, take AQ = AQ and fp = h: 
AQ —• Q{ET^) = i7(Jfo)- Suppose /n-i has been constructed and let p : Mn C Mn- The 
mapping 

is a weak equivalence and hence there are elements 

V&{C^{Xn-x)®MNY = C^{Xn-V,AnY 

such that 

(V'/n-i ® id(M„))(£) = pfc"+' + 8v. 

Let ^•'"' = ^ and An = i4„_i(M„,r'+'). Viewing t and /9A;"+' as mappings, t; is a 
homotopy and if»p is homotopic to the identity. Thus the above equation gives a homotopy 
commutative diagram 

Xn_, - ^ ^ i<:(M„,n+l) 

^(A„_,) — ^ (R(Mn,n+l) ) 

where (p is induced hy ip ® id(M„). Since /„_i is a weak equivalence and <̂  is a 
homotopy equivalence, the Serre spectral sequence implies that /„_i lifts to a weak 
equivalence 
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By Theorem 5.6, p induces a weak equivalence 

P : X n = (Xn-l)jfcn+i —̂  (Xn-l)p)fen+i 

over the identity map on Xn-\- Hence Jp \ Xn -^ ^(^n) has an adjoint fn'-An--^ 
Q{Xn) giving the desired mapping and completing the inductive step. 

Suppose g : B -^ Q{X) is another such map. The last part of Theorem 5.6 implies 
that /* : [B, A\ ~> [J5, fi[X)] is an isomorphism and hence 7 € fZ^lo] gives the desired 
mapping. D 

COROLLARY 5.10. Suppose that X is a O-connectedy finite type Kan simplicial set with 
universal cover X and 7^\{X) isomorphic to TT. Then there is a minimal A £ A and a 
map g : X —^ ^niA) such that 

g^:H^{A,iA);V)—^H*{X;V) 

is an isomorphism for all V G Vp. 

REMARK 5.11. If TT is finite, we can strengthen the conclusion of Theorem 5.9. Suppose 
A and B are minimal and 7 : B —• i4 is a weak equivalence. If we could show that 

7. : H^B) = H.{B;R[7r]) —^ H.{A;R[7r]) = H.{A) 

is an isomorphism, we could conclude that 7 is an isomorphism by [1], Proposition 7.6. 
Thus, when TT is finite, R[7r] is finite dimensional and hence 7 is an isomorphism. 

The next two theorems give economical choices for AQ when IT is finite or infinite 
cyclic. 

THEOREM 5.12. Ifn is finite, R —> i?(JS^) is a weak equivalence. 

PROOF. Let j be the inclusion of {Q{E'K) (g) Vy into Q{E'K) 0 V and let fc be the 
retraction of Q{E'K) (g) F on (i7(J57r) ig) Vy given by 

k{x) = {\/m)Y^gx 
9 

where m is the order of TT. Then in the sequence 

H^R^Vy ^ H.{{n{En)^Vy) ^ H.{{n{E7r)^Vy) ^ H.{{^^^^ 

j*U is an isomorphism and fc*j* is the identity map. Thus u is an isomorphism. D 

THEOREM 5.13. Let Z be the group of integers. Then there is a weak equivalence 
R[t,dt] —• Q{EZ) where dim(t) = 0 and Z acts on R[t, dt] by n^t =^ t-i-n, n*dt = dt. 
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PROOF. Embed EZ in A{R), the singular complex of R, by sending (no, • •., Uq) to the 
linear simplex sending the i-th vertex of Aq to Ui G R. Let n{R) be the algebra C°^ 
differential forms on R. We then have mappings 

R[t,dt] C n{R) - ^ Q{A{R)) —^ n{EZ) —^ C*{EZ\R) 

where r){w){T) = T*if;. One may verify by inspection that all of these maps except rj 
are weak equivalences and one may verily that r/* is an isomorphism by computing the 
groups HP{R\ F), for p = 0,1. D 

6. The proof of Theorem 5.6 

The proof of each of the statements in Theorem 5.6 follows the same course. We carry 
out in detail the proof that 

is a weak equivalence, where A, JB G A are FNF, dealing with the remaining two state-
ments only when differences in the proofs require us to do so. (Recall that, as in the 
previous section, A denotes the category AO^TT and T denotes the category {A%)En') 
The idea of the proof is to show, by a sequence of reductions, that the theorem is true 
for general A if 

^(R(y ,n) ,B) -^:F(^,B,Z\,(R(y,n)) 

is a weak equivalence for all V G VFTT, n ^ 0, and B e A^-

REMARK. Each of the three statements of Theorem 5.6 involves proving that a continuous 
simplicial mapping induces isomorphisms on homotopy groups. Since the homotopy 
groups 7rq{X) of a simplicial space X are defined to be the homotopy groups of the 
underlying simplicial set X^ (with topology on nq{X) induced from the topology on X), 
we can ignore the topology on the simplicial spaces that occur and work in the category 
of simplicial sets. We will do so for the remainder of the section without further mention. 

Suppose now that A and JB in A are FNF and consider the diagram 

T{A^B,AnA) > .•• > J'iA^B.A^An) > T(A^B,A^An^i) > ••• 

T(AnB,A^A) • ..• > J'iA^B.A^An) ^ T(AnB,A^An-i) > ••• 

where A = limAn, An = i4n-i(Vn,mn) as in Definition 5.1. Here, A and An are 
considered to be in A using the inclusions AQ C A, AQ C An^ According to Theorem 
5.2 each of the mappings 

7r::F(An,B)->:F(^n-i,B) 
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is a fibration with fibre ^(R(Ki, mn),-B), B viewed in An- Since AAn -* ^An-i 
is a fibration with fibre A{R{Vn,Tnn)), so is AniAn) -* ATr{An-\)- Therefore, using 
Theorem 2.2 we see that 

TT' : J^{A^B,A^An) -^ T{AnB,A^An-i) 

is a fibration with fibre T{AB,AR{Vn,rnn)). Thus, according to [2, Theorem 3.1, 
p. 254], we have a commutative diagram 

0 -* lim^ 7ri+,(:F(>ln,B),Q„) ^ 7ri(:F(A,B),a) ^ to7r»(.^^(^n,^), an) - 0 

i i ' i ^« 1 ^ 

^ "" (6.1) 

for each i > 0, where each of the horizontal sequences is exact and ^ ^ ^ are induced 
by the A^. When 2 = 0, each term in the diagram is a set with distinguished base point 
(determined by the compatible sequence of base points {an}, Wn}) and exactness is 
defined in the usual way. 

LEMMA 6.2. / / for each n, the mapping An : ̂ {An, B) -^ T{AT^B, AT^AU) is a weak 
equivalence, then the mapping 

A:J'{A,B)^T{A.B,A^A) 

is a weak equivalence. 

PROOF. If Z > 0, it follows immediately from (6.1) that the mapping 

A.:i:i{T{A,Bla) ^i:i{T{A^B,A^A),a') 

is an isomorphism. Suppose that i = 0 and that we have 6i,fe2 ^ ^o(^(>l,^)) with 
Ai,b\ = AJyi. It then follows from diagram (6.1) that j^h\ — j^b2 = {an} € 
Hm7ro(^(i4n,B)). We use this sequence of base points as our distinguished points in 
the top row of (6.1) (with i = 0) and ^nan = a^ as the distinguished base points in the 
bottom row. By exactness, we can find ci,C2 € lim^ 7r]{T{An,B),an) with jf*ci = b\, 
j^C2 = 62- But then i'^A^c\ = i'^A^C2 which implies C] = 02. Thus 61 = 62 and 

A. : 7ro(J^(A,jB)) -^ 7:0{T{A^B,A^A)) 

is injective. The proof of surjectivity is similar and is left to the reader. D 

In the following, if K e An and B € A, we form ^(AT, B) by viewing B as contained 
in An- For V € VFTT, let F be a copy of V and define 

R£;(y ,n)=R(y ,n4- l ) (F ,A) 
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where A : F* ĉ  V'*. If {vi} is a basis for V and Ui = \vi, then 

RE{V, n) = R[i;i,..., v̂ , ixi,.. . , ix̂ ] 

with dimt;i = n,dimui = u 4- 1 and dvi = txi. Note that 

T{RE{V,n),B) = {{Q^B(^Vry, 

A{RE{V,n)) = n''^V 

both of which are contractible. 
We now proceed with the proof that An : J^{AnyB) —• !F{AjrB,ATrAn) is a weak 

equivalence. We know by Theorem 5.2 that the fibration 

7r::F{An,B)^J'{An-uB) (6.3) 

is induced from the fibration 

p : T{RE{Vn, mn\ B) ^ T{R{Vn, mn + 1), B) (6.4) 

by a mapping / : J'{An-\,B) -^ 7*(R(Fn,mn + 1),S). Since ^(RE(Fn,mn),B) is 
contractible, the image of the mapping (6.4) is contained in a single component X' of 
T{R{Vn, TTin+1), B). Now, if Z is a component of J^{An^ i, B), then TT" ̂  Z C ^(^n, B) 
is empty unless 

fZ C X'. (6.5) 

It follows that ^{An^^B) is the disjoint union of the TT'^Z as Z ranges over those 
components of ^(An-i , B) satisfying (6.5). 

In the same way, we see that the fibration 

TT' : T{A^B, A^An) -^ ̂ A^B, A^An-^) (6.6) 

is induced by the mapping Af : J^{AT,B,A^An-\) -> J^{AB,AR{Vn,mn 4- 1)) from 
the fibration 

^ ( ^ B , ARE{Vn,mn)) ^ J'iAB, AR{Vn, rrin + 1)). (6.7) 

Thus, if X' is the component of T{AB, ZiR(V^, mn -f- 1)) containing the image of the 
mapping (6.7), then J^XAT^B^Aj^An) is the disjoint union of {n')~^Z where Z ranges 
over the components of ^(^d^ri?, AT^An-\) satisfying (AT^f)Z C X. 

We now need the following. 

PROPOSITION 6.8. Let p' : Y' -^ X' be a fibration with X' connected and Y' con-
tractible. Let f : X -^ X' be a mapping and p :Y ^ X the induced fibration. Then, 
for any component X of X, we have an exact sequence 

•. • -* 7r,(y, yo) - ^ 7r,(X, xo) ^T:,{X',4)-^ ...-^ TT, [X', X'O) ^TTOY^*, 
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where Y = p-^X, p = p\Y, f = f\X, 

PROOF. If we replace f : X -^ X' by a. fibration, one sees easily that the fibre of this 
fibration has the homotopy type of Y (since Y' is contractible). The sequence above is 
the exact homotopy sequence of this fibration. D 

We can now apply Proposition 6.8 to the fibrations (6.3) and (6.6) obtaining the diagram 
of exact sequences 

• • • - ^ ^q(yy TA)) - • T^q(Z, Z{)) -* 7rg(X, X{)) - • . . . - + TTi(X, XQ) -^ 7ro(y) -* * 

i i i i i 

Here X' is the image of the mapping (6.4), Z is a component of J^{An-\iB) map-
ping into X' under the mapping / and Y = TT'^Z C T{An,B). Similarly, X' is 
the image of (6.7), Z is any component of J^{AT,B,ATrAn-~\) mapping into X' un-
der the mapping {Af), and Y' = (7r*)-'Z C r{A^B,A^An). Note that J^{AQ,B) = 
T{A^{B),A,{Ao))^^. 

Using Lemma 6.2, the 5-Lemma, and induction on n, we have the following. 

LEMMA 6.9. The mapping A : J^{A, B) —• !F{AT^B, A^^A) is a weak equivalence if 
J^(R(V,n),B) -> T[AB,AR{V,n)) is a weak equivalence for any A G An which is 
FNF, V eVF^andn^ 0. 

To prove that A : J^{R{V,n),B) -^ jr{ATrB,AT,R{V,n)) is a weak equivalence, we 
need the following. 

LEMMA 6.10. The mapping A^ : 7ro(J^(R(V,n),B)) -^ 7ro{J^{AB,AR{V,n)) is a bi-
jection for n ^ 0. Furthermore, ifn = 0, then 

A.:7rj{T{R{V,n),B),a)^7:j{T{AB,AR{V,n)),a') 

is an isomorphism for all j > 0. 

COROLLARY 6.11. The mapping A : J"(R(V,n),B) -^ T{AB,AR{V,n)) is a weak 
equivalence. 

PROOF of Corollary 6.11. Consider the diagram of fibrations 

^(R(y,n-l) ,J5) > J'{RE{V,n-l),B) ^ 7'{R{V,n),B) 

i 1 1 • 
T{AB,AR{V,n-l)) > J^{AB,ARE{V,n-I)) > J'{AB,ARiV,n)) 



Section 6 Real and rational homotopy theory 907 

Since the total space of each of the above fibrations is contractible (by Theorem 4.1), 
the homotopy exact sequences of these fibrations reduce to 

7r,+,(J^(R(T/,n),S)) . 7r,(JP(R(F,n ~ 1),5)) 

I 1 
7r,+,(:F(^B,Z\R(y,n))) . 7r,(^(^B,^R(F,n - 1))) 

An easy induction using Lemma 6.10 gives the required result D 

It now follows that the first assertion of Theorem 5.6 will be proved once we prove 
Lemma 6.10. Indeed, the arguments that we have developed in this section up to this 
point can be modified by making the obvious substitutions so as to deal with the second 
and third assertions of Theorem 5.6. As a result. Theorem 5.6 will be proved once we 
prove Lemma 6.10 and the following lenuna. 

LEMMA 6.12. Let f : B -^ C be a weak equivalence in A and suppose X €: T is 
^-connected. Then the mappings 

7. : 7ro(^(R(y,n),fi(X))) -^ iro{J'{X,AR{V,n))), 

f, : 7ro(J^(R(V,n),5)) -^ 7ro(:F(R(F,n - 1),C)) 

are bijections for n ^ 0. Furthermore, ifn = 0, then 

7. : TT,- (jr(R(V ,̂ n), Q{X)), a) ^ TT, ( : F ( X , AR{V, n)), a') 

/ , : 1TJ(:F{R(y,n),B),a)^ TT,(:F(R(y,n - 1),C),a') 

are isomorphisms for all j > 0. 

The proofs of Lenmia 6.10 and 6.12 involve the same ideas so we present them 
together. We begin by defining an isomorphism 

e : 7ro(^{R(V,n),J5)) -> Hn{B;V). 

(Note: Both ^(R(V; n), B) and J^{AB, AR{V, n)) are simplicial groups so 7ro(^(R(y, n), 
B)) and 7rQ{T(AB,AR{V,Ti))) are groups.) By definition, 

^(R(F, n), B)^ = (R(y, n),B)= Zn {{V^ 0 B)^) = Zn {{B 0 Vy), 

where Zn denotes the group of n-cycles. It follows that we have an epimorphism 

^:J^{R{V,n),B)^-^Hn{B;V). 
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Suppose z € J'(R(V,n),jB)o is in the same component as 0. Then there is an element 
t/;E^(R(y,n),B)i = Zn((r3i ^B^VY) with dot/; = 2, 317/; = 0. If we define 

r : ((r2, 0 B 0 F)")"^ -^ ((B 0 F)-)^"^ 

by r(a 0 6 (S) v) = 0 if a € i??, 6 € 5'' and 

r(adti 06(g)t;) = f / a{t\)dt\b^v 

ifbeB^ \ then dr -I- rd = 9o - di so that dr{v) = z. Hence ̂  induces an epimorphism 

To show that ̂  is a monomorphism, suppose z = du for some u G 5̂̂ "̂* 0 F. Then, if 
12 € (i?i 0 B 0 F)^ is given by 

iZ = 1̂ 0 2: -f dti 0 tx, 

we have 9on = 2;, 9i72 = 0 and 2: = 0 in 7ro(^(R(F,n), J5)). It follows that ^ is an 
isomorphism. 

Now, if / : J? -^ C is a DG algebra mapping and A = R(F, n), we have a commutative 
diagram 

7ro(^(A,B)) - A - > 7ro(^(A,C)) 

If /• : H„{B; V) -^ /^•(C; F) is an isomorphism, then 

f.:7ro{J'{A,B))^no{T{A,C)) 

is an isomorphism and the second of the four assertions of Lemma 6.12 is proved. 
We next define an isomorphism 

'̂ : iro{J'{X,ARiV,n))) - . Hn{niX);V) 

for any simplicial space X. By definition, J^{X,A{R{V,n))) can be identified witli 
ZniO{X;V)''). Using this identification we let 

$' : iro{J'{X,A{R{V,n)))) -^ Hn{0{X;V)) 

be given by 

^'{z} = z + Bn{niX;Vr). 
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We show that '̂ is well defined and an isomorphism. 
Recall that in Section 3, we defined fi^{A^ x I) to be the p forms on ^^ x / and we 

defined 

by 

/ i H = (-l)P-^ / W2{t)dt, 
Jo 

where w = w\{t) -f W2{t)dt. Note that we may view the elements of n^{A[q] x ^^[l]) 
as continuous, piecewise smooth p-forms on ^^ x / and the formula for /z makes sense 
on such forms and gives a mapping 

f,:n^{A[q]xA[\])^n''-'{Alq]). 

Furthermore, we have dfi -h fj^d = i* - i j , where zo,zi : A[q] —> A[q\ x A[l] are the 
inclusions. 

To see that '̂ is well defined, suppose ZQ and z\ are elements of Zn{fi{X\ VY) and 
Zi = diu, where u € Zn{n[X x 4(1];^)''). Let ?2 € r2^-^(X) be given by 

u(x) = yiitx X id^[i])*tx 

for X G Xg, where t^ : A\q\ —• X with ta:(0,..., g) = x. Then 

di)(x) = (z* - zS - Md){*x X id^[i))*iA 

= (dolt - 9iti)(x) = ZQ{X) - z\{x) 

so '̂ is well defined. 
Clearly '̂ is an epimorphism; we show it is a monomorphism. Suppose z — du^ u £ 

n''-^{{A{B\VY). Lctw e Zn{f2{X X A[l];VY) be given as follows: If p, and p2 
are the projections of X x A[\] onto the factors, then 

W{x) = (d(p2^i))p*u(x) -h (P2^l)(K^)(x). 

It is easily checked that dw = 0, dow = 0, and d\w = z. Thus '̂ is an isomorphism. 
It follows directly from the definitions that the diagrams 

7ro(:F(R(V,n),B)) - ^ ^ Mn^B,AR{V,n))) 

HniB;V) —^^-> /f„(/?4B;K) 
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7ro(^(R(F,n),r2(X))) -
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i'i^ 

- ^ HJn{X);V) 
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are commutative, where u : Hn{B) -^ Hn{fi{AB)) is the canonical mapping. Since B 
is FNF, u is an isomorphism by Theorem 5.4. The first assertions of both Lemmas 6.10 
and 6.12 are an immediate consequence of these diagrams. 

We now prove the remaining assertions of Lemmas 6.10 and 6.12, namely that certain 
mappings between simplicial spaces defined in terms of R( V, n) induce isomorphisms on 
homotopy in positive dimensions if n = 0. In fact, we prove that all of these homotopy 
groups vanish. 

Assume n = 0. By definition, 

J'{R{V,n),B)^={R{V,n),Q^^B^VY ^ZQ{{Q^^B^VY). 

It is easy to see that d(/ 0 6) = 0 for / G f? ,̂ 6 E B^ (g) V if and only if d/ = 0 and 
dh = 0. Thus, 

:F(R(y,n),B)^ = Ho(B;V) 

for all 9 ^ 0 and all face and degeneracy mappings are the identity. Therefore, 
7r̂ (.?̂ (R(V, n), S), a) = 0 for all j > 0. 

Similarly, ^R(V, n)q = V for all g ^ 0 and all face and degeneracy mappings in 
AR{V, n) are the identity. It follows that, for any Z € AT, 

T{Z,AJi{V,n))^ = {A[q] X Z,zlR(l/,n))" 

consists of mappings that are constant on components; that is, all continuous equivariant 
mappings of 7ro(Z) into V and all face and degeneracy mappings the identity. Again, 
T^j{T{Z, AViiy, n))) = 0 for j > 0 and Theorem 5.6 is proved. 

7. Comparison of real and rational homotopy theory 

Let A% (respectively, ^5o) be the full subcategory of AT (respectively, AS) consist-
ing of those X such that Q(X) is FNF. Denote by AS^^Q the category AS(s localized 
with respect to Q-equivalence and A%R the category A% localized with respect to 
i?-equivalence. Finally, let a : ^tS —• AT be the functor which assigns to any simplicial 
set X the simplicial space X in the discrete topology and 

OL: AS{^ —> A%R 
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the induced functor. The next result shows that this functor is neither injective or surjec-
tive. 

THEOREM 7.1. There are simply connected simplicial sets X\ and X2 each of finite type 
such that X\ and X2 are not isomorphic in ASQQ but a{X\) and a{X2) are isomorphic 
in AToR. In addition, there is an FNF algebra A E A such that A{A) is not isomorphic 
to anything in the image of a. 

PROOF. We begin with the construction of simplicial sets X\ and X2 satisfying the 
conditions of the theorem. Let tq E H^{K{Z,q);Z) be the generator and let Xn,m be 
the fibration over K{Z, 2) V K{Z, 2) induced from the contractible fibration by 

fn,m:K{Z,2)vK{Z,2)^K{Z,4), 

where fn.mM = n(̂ 2 0 1)̂  - m(l 0 L2Y. Then 

H''{Xn,m\Q) = Q[x,y]/{nx^ - my^.xy], 

where x and y have degree 2. If z = x^/m, then H^{Xn,m\ Q) — Q^Q with basis {x, y] 
and H^{Xn,m\ Q) — Q with basis {z}. The matrix of the quadratic form H^{Xn,m) —̂  
H^{Xn,m) in this basis is 

fm 0\ 
\0 nj' 

Let Mn^rn = Ji[x, t/, ix, v] G A, where dx = dy = 0, du = nx^ — my^ and dv = xy. 
In [1, Section 16], it is shown that since mx^ - my^^xy is an ESP sequence, Mn,m is 
a minimal model for i7(Xn,m)-

Let X\ = Xi,i5 and X2 = ^3,5. Then the matrices 

(J ,"5). (̂  s) 
are not equivalent over Q. For if they were equivalent, one would have rational solutions 
to the equation 3a^ -f 56^ = 1, or, equivalently, integer solutions to the equations 

Sa^ + 56^ = c^ (7.3) 

The fact that this is not possible is proved by working mod 3 and using the notion of 
"infinite descent"; the existence of solutions a, 6, c for (7.3) imply the existence of 
solutions a'^h', d with a' < a, 6' < 6, d < c. 

It follows that H*{X\; Q) and H*{X2\ Q) are not isomorphic. However, the matrices 
(7.2) are equivalent over R (since they have the same signatures). Hence Mi j5 and Mŝ s 
are isomorphic and then X\ and X2 are isomorphic in ATQR. 

We now prove the second assertion of Theorem 7.1. We are indebted to Tsuneo Tam-
agawa for his assistance with this proof. 
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Let A be the free DG algebra over R generated by x i , . . . , Xn G A^, 2/i, • • •, 2/m € -4^ 
and with 

dxi = 0 , 1 ^ i ^ n, 

dyi = Y^yi^XjXk, 1 < 2 ̂  m. 

We say that A has a rational form if there is a DG algebra A^ over Q and an isomorphism 
A c^ A^ 0Q R of DG algebras. Equivalently, A has a rational form if we can choose 
bases i i , . . . , Xn for 4̂̂ , y i , . . . , ^̂ n for A^ such that 

dyi ^'^V^XjXk 

with bi'' e Q. 
Suppose A has a rational form. Let P = (pij) be an invertible nxn matrix, Q = (qij) 

an invertible mx m matrix with 

Then 

so that 

Pi = X^Pti^i) ^ = XI 9ii2/i-

dyt = X ^ ^ u d t / j = X ^ g t j b f p A : r P / s i r i 5 

Of course, fr^'^ can be expressed in terms of 6[* in a similar way. 
Let AT = n{n -h l)m/2. Then there are AT of the b̂ ^ and n^ -h m?- of the Pij.qij. 

We can think of the passage from bj"* to 6̂^̂  as defining a mapping (/?P,Q : R^ —̂  i?^ 
depending on the particular choice of P and Q. If we fix a rational point b G Q^ C it^, 
then the set 

A\b) = {<^p,Q(b) : P invertible nxn, Q invertible m x m} 

corresponds to all DG algebras A (which of course depend on fr^ ) with A' defined by 
h as their rational form. Thus, the set U{^'(^) I ^ ̂  Q^) corresponds to the set of all 
A as above which have a rational form. 

Now, if iV > n^ -f m^ (for example, n = 5, m = 2), then A'(b) is the image of 
an open set in i?" '̂ '̂ ^ under a differentiable mapping R^ ^"^ -> R^. Thus, the set 
\J{A'(h) I 6 G Q^} cannot be all of R^ and any point in its complement corresponds 
to a real form of A with no rational form. D 
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8. Applications 

We now give some applications of the ideas developed in this paper. We begin with a 
formulation of the main result of [9] in our context. 

If JB is a commutative graded algebra of finite type, we can view it as being in the 
category A by taking d = 0. Let M{B) be a minimal algebra and 7 : M{B) -^ B a 
map such that 7 induces an isomorphism 

H,{M{B)) ^H,{B) = B. 

DEFINITION 8.1. A simplicial set X e AT is R-formal if there is a mapping g : X -^ 
A{M{H*{X)) inducing an isomorphism in cohomology. 

The main result of [9] can now be stated as follows. 

THEOREM 8.2. If N is a compact nilpotent Kdhler manifold, then the total singular 
complex A{N) in the discrete topology is R-formal. Hence, there is a minimal algebra 
M{H*[N)) G A and a map g : A{N) -^ A{M{H''{N))) inducing isomorphisms on 
H* and on TT*. 

We next describe a construction of the continuous characteristic classes of foliations 
in our context. 

Let (g —> BGLq be the universal real g-plane bundle and let B{q) be the simplicial 
set consisting of pairs (T ,^ ) , where T : A^ —^ BGLq is smooth and .^ is a smooth 
foliation on T*(q transverse to fibres. For fixed T, it is easy to define a sensible topology 
on {(T, T)}, making B{q) into a simplicial space. Then, the geometric realization \B{qy \ 
is a model for BFq and H^{B{q)) is a plausible definition of the continuous cohomology 
of BFq. 

Let B{q) be the fibre of the natural mapping B{q) —• A{BGLqY, Lq the Lie algebra 
of C°° vector fields on ii^ in the C ^ topology, and let C*{Lq) E ^ be the algebra 
of continuous cochains on Lq (continuous skew forms on Lq with differential defined 
by the Lie bracket). Then BFq = 15(^)^1 is the classifying space for foliations with 
trivialized normal bundle. In [11], it is shown that B{q) = A{C*{Lq)) and 

C*{Lq) — ^ ^ Q{A{C*{Lq))) = QB{q) -> QB{qY 

gives the characteristic mapping 

H'{L,) -^^ H'{A{C*{L,)) = H'{B{q)) -^ H*(Br,) 

which takes the secondary characteristic classes into H*{BFq). 
A fundamental question in the study of characteristic classes of foliations asks if this 

mapping is injective. In [5], we answered this question in the affirmative for G-foliations, 
([11]), G a compact Lie group. In addition, we proved in [8] that 

i:C^L)-->f2AC*{L) 
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is a homology isomorphism for a large class of Lie algebras L including the Lie algebras 
of vector fields on a compact manifold. 

A similar construction can be used to obtain a mapping 

H\L,,0,)-^H*{Br,). 

Just as above, the injectivity of this mapping is an important open question. 
The next two results deal with the rational homotopy type of function spaces. The 

first describes a minimal model of a function space and the second gives an explicit 
description of the Q-localization of a function space. (See [7] for details.) 

THEOREM 8.3. Let Y be a nilpotent space of finite type and let X be a space of finite 
type with H'^iX^Q) =:Oforq> N, some N. For f : X -^ Y, let T[X,YJ) be the 
component of the function space !F{X, Y) containing f. Then !F(X, Y, f) has a minimal 
model A ĉ  Q[W] where W^, q > 0, is isomorphic to a subspace of 

n 

If f is the constant map, this inclusion is equality. 

For any simplicial set Z, the geometric realization of Z is denoted by \Z\. 

THEOREM 8.4. Let X and Y be CW complexes with Y nilpotent and finite type, X formal, 
and Hq{X\ Q) = Ofor q> N, some N. Then the space 

\A{Q[7r^Y)^H4X',Q)ld,)\ 

is a Q localization ofJ^{X^Y). 

The differential d\ in Theorem 8.4 can be calculated as follows: If c G H^{X; Q) and 
V E 7r*(y), then dv € (5[7r*(F)] and d\ {v^c) — (dv) (g) c where (dv) 0 c is expanded 
by 

{u\ -\- ui) (^ c = u\ (S) c + u\ (SI C, 

(zx,U2)0c = ^(-l)l^^ll^il(u, 0c;) (u2 0c^) , 

where D : H^{X;Q) -^ H^{X; Q)^H^{X\ Q) is the coproduct induced by the diagonal 
mapping, Dc = Y. d^ (g) d-. 

For example, if c E H^{X\Q) and v^v\,V2^V with dv = v\V2, then 

d,(t;0c) = ^(- l ) l^' l^^'(v , 0c^)(t;, (8)c '̂). 

Note that, in this case, d\ depends only on the differential in A and the coproduct in 
H.{X^Q), 

The special case of Theorem 8.4 when X = S^ was proved in [19]. 
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1. Introduction 

The cohomology of groups is one of the crossroads of mathematics. It has its origins in 
representation theory, class field theory and algebraic topology, and thanks to the extraor-
dinary work of Quillen, it has led to the modern development of algebraic ff-theory. It is 
therefore not surprising that wherever one looks in pure mathematics and mathematical 
physics, one cannot escape its influence. In this survey, we can only hope to give a brief 
glimpse of the power and beauty of the subject. 

For an account of the origins of the subject, we cannot do better than refer the reader 
to the excellent 1978 survey article of MacLane [88]. If we fall short of a full historical 
account, it is because we cannot hope to compete. We feel obliged, nonetheless, to begin 
with a few words on the beginnings of the cohomology of groups. 

The first appearances only feature the low degree cohomology. Schur [102], [103] 
(1904, 1907), in his studies of projective representations (i.e. homomorphisms to a pro-
jective general linear group, not to be confused with the theory of projective modules), 
studied what we now write as H^{G,C^). This parameterizes the central extensions 
of the group by C^. For a finite group, the dual object if2(G,Z) is called the Schur 
multiplier. In the case of a perfect group, this appears as the extending central subgroup 
of the universal central extension of G. Schreier [101] (1926) and Baer [12] (1934) gen-
eralized this notion to group extensions which are not necessarily central. The same idea 
appears in the theory of crossed product algebras, as developed by Brauer, Hasse and 
Noether [37] (1932). Here, the appropriate group is H'^{Gd\{LlK),L^). These authors 
proved that all central simple algebras can be described as crossed products. This fact is 
central to the development of class field theory. 

2. Algebraic topology 

The theory of cohomology of groups in degrees higher than two really begins with a 
theorem in algebraic topology. Hurewicz [75] (1936), having just defined the higher ho-
motopy groups of a topological space, proved that for an aspherical space (namely, a 
path connected space X for which 7rn(X) = 0 for all n ^ 2), the fundamental group 
determines all the homology groups. Although Hurewicz works with homology with inte-
ger coefficients, the same methods work in homology or cohomology, and with arbitrary 
nontwisted or twisted coefficients. One possible approach to group cohomology is to 
define Hn{'Kx{X),A) = Hn{X,A) and H''{'KX{X),A) = if^(X, A), for coefficients A. 

Hopf [73] (1942) found an algebraic description of the second homology group of an 
aspherical space as 

H2(X,Z) = / i n [F,F]/[F,ii] 

where F is a free group mapping onto TTI {X) and R is the subgroup of relations. This is 
exactly the same formula as Schur had written down for his multiplier nearly forty years 
earlier. 
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Based on the work of Hurewicz and Hopf, Eilenberg and MacLane [56] (1943) con-
structed an algebraically defined chain complex K{G) whose homology groups are ex-
actly the homology groups of an aspherical space X with T^\{X) = G. The degree n 
term in this complex is the free Z-module with symbols [̂ i |^2| • • \gn] with gi G G, and 
the boundary homomorphism is given by 

n - l 

^[9\\92\ ' ' • \9n] = [92\ ' • • \9n] + X ^ ( - l ) ' b l | ' ' ' l̂ î i+11 ' ' ' \9n] 
i=l 

+ (-ir[ffl | --- |f ln-l] . 

This complex may be viewed as the simplicial chains on an "Eilenberg-MacLane space" 
K{G, 1) whose simplices correspond to these symbols, and where the zth face of such a 
simplex is given by the ith term in the above formula. The universal cover of this space 
has simplices corresponding to symbols go[9\ \g2\ • • • |pn]. and with boundary homomor-
phism given by 

n - l 

^golgilgil • • • \gn] = gogiigil • • • M + ̂ (-i)'pobil • • • l̂ t̂ t+i| • • • \gn] 

+ (-irpobii---iPn-i]. 

This complex forms a free resolution of Z as a ZG-module. Namely, it is an exact 
sequence 

, Fn -* ^ Fi -^ Fo -^ Z -^ 0 

with each Fi a free ZG-module. 
Hopf [74] (1945) noticed the algebraic analogue of the theorem of Hurewicz, and 

used it to give the definition of homology of a group G with coefficients in an arbitrary 
module, by taking a free resolution and forming the quotient by the augmentation ideal 
of the group algebra. He proved a comparison theorem which showed that the resulting 
definition is independent of the choice of resolution. In modern language, he described 
group homology in terms of Tor. Cohomology is similarly described in terms of Ext. 
The appropriate definitions are as follows. If A is a ring and N and M are A-modules, 
we form a projective resolution of M as an ^-module 

yPn-^ ^ Pi -> Po -> M - • 0. 

A projective module is simply a direct summand of a free module, and it is an easy step 
to generalize from free to projective modules. The characterization in terms of the usual 
lifting property is all that is needed for the comparison theorem to work; this theorem 
states that any map of modules extends to a chain map between projective resolutions. 
Furthermore, any two such chain maps are chain homotopic. Then TOT^{N, M) is defined 
to be the nth homology group of the chain complex 

yN(S)APn-^ • iV (8)A Pi -^ iV (8)>i Po -^ 0. 
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In particular, we have Tor^{N^ M) = HornA{N, M). Applying the comparison theorem 
to the identity map on M shows that these groups Tor^{N, M) are independent (up to 
natural isomorphism) of the choice of projective resolution. It is this statement which 
may be interpreted as the algebraic analogue of Hurewicz's statement that the homology 
groups of an aspherical space are determined by the fundamental group. In these terms, 
Hopf's definition amounts to 

Hn{G,M) = ToTl^{Z,M). 

In particular, we have Ho{G, M) = M^, the fixed points of G on M. 
The definition of Tor is symmetric, in the sense that we get the same answer if we 

form a projective resolution of N: 

and take the homology of the chain complex 

The definition of Ext is similar. We may either form an injective resolution of M: 

0 _ M -^ /o -> /i ^ > /n -> • • • 

and define E\i^{N, M) to be the nth cohomology group of the cochain complex 

0 -̂  HomA{N, /o) -̂  UomA{N, /,) ̂  > HomA{N, /n) ̂  • • 

or we may form a projective resolution of N as above and define Ext^(Ar, M) to be the 
nth cohomology group of the cochain complex 

0 -^ HomA(Po, M) -^ Hom>i(P/, M) -^ ^ Hom,i(P;, M) -^ • • • 

In these terms, group cohomology is defined by 

i f - (G,M) = ExtS,.(Z,M). 

Since a short exact sequence of chain complexes induces a long exact sequence of 
(co)homology groups, we get long exact sequences in (co)homology from short exact 
sequences of modules. 

It is also worth remarking at this stage that if iZ is a ring of coefficients, then a 
projective resolution of R as an i?G-module may be obtained by tensoring R with a 
projective resolution of Z as a ZG-module. It follows that if M is an iiG-module then 

Ext^c(i?,M)^ExtSc(Z,M). 
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Returning to the algebraic topology, we say that a space X is an Eilenberg-MacLane 
space K{G^ 1) if X is an aspherical space with the homotopy type of a connected CW-
complex with 7ri(A') = G. Such a space is unique up to homotopy equivalence, and the 
simplicial chains C^{K{G, l);i?) on its universal cover k{G, 1) form a free resolution 
of the coefficient ring R over the group ring RG. Since 

C* {K{G, 1); fi) = HomH(a {K{G, 1); R),R) 

^HomRG{a{K{G,\);R),R), 

we have H*{K{G, 1);/?) ^ ExtJecC^,^) = H*{G,R). 
There are two useful generalizations of this. The first is that if n ^ 1 and A is an 

abelian group then a space X is an Eilenberg-MacLane space K{A, n) if X has the 
homotopy type of a connected CW-complex with nniX) = A and 7Ti{X) = 0 for i 7̂  n. 
It turns out that such a space "represents" cohomology in the sense that there is a natural 
one-one correspondence between homotopy classes of maps from a CW-complex Y to 
X and elements of / /^(Y; A). 

Secondly, if G is a topological group, one can form a classifying space BG for 
principal G-bundles over a paracompact base space. The total space of the universal 
principal G-bundle over BG is written EG. It is characterized by the property that it is a 
contractible space with a free G-action. Thus the loop space HBG is homotopy equivalent 
to the group G. In case G happens to be discrete, BG is an Eilenberg-MacLane space 
K(G, 1), and EG is its universal cover. 

3. Cohomological finiteness conditions 

The links between algebraic topology and group theory lead naturally to the idea of co-
homological finiteness conditions. It is useful to compare this with the idea of a finiteness 
condition in abstract group theory. The latter notion, very prevalent in the work of Philip 
Hall and other influential groups theorists some thirty years ago, has had a powerful 
influence on the study of abstract infinite groups. As a definition, we say that a finiteness 
condition is any group theoretic property which holds for all finite groups. For example, 
the properties of being finitely generated or finitely presented are finiteness conditions. 
Further important examples include residual finiteness, Hopficity, and linearity. 

By analogy with this, we can define a cohomological finiteness condition to be any 
group theoretic property which holds for all those groups G which admit a finite 
Eilenberg-MacLane space, K{G,l), Finite generation and finite presentation are both 
examples of cohomological finiteness conditions, but residual finiteness, Hopficity and 
linearity are not cohomological finiteness conditions. 

A group is said to be of type (F) if it satisfies the strongest possible cohomological 
finiteness condition, namely that there is a finite Eilenberg-MacLane space. Examples 
of such groups include torsion-free arithmetic groups and torsion-free polycyclic-by-
finite groups. The case of arithmetic groups was studied in detail by Borel and Serre, 
[35]. A further very important source of examples is given by torsion-free subgroups 
of finite index in Coxeter groups. All these examples are also residually finite, Hopfian 
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and linear. But in addition, all finitely generated torsion-free one-relator groups are of 
type (F), having an Eilenberg-MacLane space formed by adjoining a single 2-cell to 
a finite bouquet of circles, and amongst these there are examples of groups which are 
non-Hopfian, and in particular not residually finite, and far from linear. 

On the other hand there are some cohomological finiteness conditions which are also 
abstract finiteness conditions. Perhaps the most important of these is the property that 
the cohomology ring H*(G, Z) is finitely generated. This plays a major role in the study 
of cohomology of finite groups, as we shall see subsequently. 

There is an important family of cohomological finiteness conditions which are best 
defined in terms of projective resolutions, and which make sense for modules over any 
associative ring. Let i? be a ring and let M be an i?-module. We say that M is of type 
(FP)„ if there is a projective resolution 

>Pi^ Pi_i -4 , Pj - , PQ _, M -^ 0, 

in which the Pi are finitely generated for all z < n. The module M is said to be of type 
(FP)oo if the projective resolution can be chosen so that every Pi is finitely generated, or 
in other words, if there is a projective resolution oi finite type. The module M is said to 
have finite projective dimension if the projective resolution can be chosen oi finite length, 
that is, with Pi = 0 for all sufficiently large i. In this case the projective dimension of a 
nonzero module M is defined to be the least n such that there is a projective resolution 
terminating with P^, The module M is said to be of type (FP) if there is di finite projective 
resolution, that is a resolution which is simultaneously of finite type and of finite length; 
and finally, M is said to be of type (FL) if there is a finite free resolution, that is a finite 
projective resolution in which each Pi is free. 

It is natural to ask how sensitive these definitions are to the choice of projective reso-
lution, because one imagines choosing a projective resolution step by step. For example, 
if a module is of type (FP)̂ ^ and one has made a choice of the first few steps in a pro-
jective resolution so that the projectives so far chosen are finitely generated, is it possible 
to continue the resolution so that it realizes the (PT)̂ ^ property, or is it conceivable that 
some early choice that was made renders it impossible to maintain finitely generated 
projectives indefinitely even in the presence of the property (FP)̂ ^? The answer in all 
cases is that projective resolutions behave as well as one could wish them to. With the 
exception of type (FL), where the story involves an extra twist, there are two important 
ways of understanding the stability of these definitions. 

The first of these depends on SchanueFs lemma which states that given two short exact 
sequences of i?-modules 

0-^K -^P ^M -^0 

and 

0 - ^ L-> Q-^ M - ^ 0 

which both end with the same module M, and in which P and Q are projective, then 
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P 0 L is isomorphic to <5 0 i^. An easy induction yields the following embellishment: 
if 

O-^K-^Pi-^Pi^x^ ^ Po -> M -> 0 

and 

0 -> L -> Qi -> Qi^x -^ ^QQ-^M -^0 

are two partial projective resolutions of M then 

K^Qi^ Pi.x 0 Qi_2 e Pt-3 0 • • • = L e Pi 0 Qi-\ 0 Pi-1 0 Qt-3 ® • • •. 

From this it is easy to see that our homological finiteness conditions for projective 
resolutions behave well. For example, if M is of type (FP)oo and the first partial resolution 
is taken from a projective resolution of finite type, then any partial resolution 0 -^ 
L —^ Qi -^ Qi-x -^ • • • ^ (5o —• M —• 0 in which the Qi are finitely generated 
automatically has L finitely generated, and hence any partial projective resolution by 
finitely generated projectives can always be continued so that all projectives are finitely 
generated. Except for type (FL), similar remarks can be made of the other finiteness 
conditions. The embellished Schanuel's Lemma also shows that M has type (FP)̂ ^ if 
and only if it has type (FP)^ for all n, and that M has type (FP) if and only if has type 
(FP)oo and finite projective dimension. 

The second way of understanding the invariance of these finiteness conditions is to 
interpret them as properties of the cohomology functors Ext}j(M, ~ ) . Since these functors 
can be defined by using projective resolutions of M, but are at the same time independent 
of the particular choice of resolution, their properties on the one hand reflect the nature 
of projective resolutions of M but are, on the other hand, invariant. Projective dimension 
is the simplest to interpret this way: M has finite projective dimension if and only if the 
functors Ext^(M, -) are zero for all sufficiently large n, and if M is a nonzero module 
of finite projective dimension then its projective dimension is the largest n for which the 
functor Ext^(M, - ) is nonzero. 

To interpret other properties through Ext one needs to consider filtered colimit systems. 
A filtered colimit system [Nx \ \ e A) consists of a directed partially ordered set A 
together with a family of P-modules N\ and a compatible system of maps Â A —̂  N^ 
for each pair X ̂  fi. We write lim Nx for the colimit of such a system. Now it can be 

shown that an i?-module M is of type (FP)„ (resp. (FP)oo) if and only if 

\mE\i^j^{M,Nx) = 0 

for alH ^ n (resp. for all i) and all (A^A) filtered colimit systems satisfying lim Â A = 0. 

Notice that in view of this it becomes transparent that M is of type (FP)̂ ^ if and only if 
it is of type (FP)^ for all n. Another very important consequence is that for M of type 
(FP)^, the functors Exi)i{M, -) commute with arbitrary direct sums when i ^ n. 
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The story for the property (FL) is more subtle and we postpone this to the next section. 
Now suppose that G is a group and that X is the universal cover of a cellular K{G,\). 

Then G acts freely on X by covering transformations, and X is contractible, so that the 
associated augmented chain complex 

-4 Ci{X) ^ ^Cx{X)^ Co{X) -> Z -^ 0 

is a free resolution of the trivial module Z over the group ring ZG. Finiteness properties 
of the chosen if (G, 1) are reflected in this chain complex, so that for example, if one 
begins with a finite K{G^ 1) then the chain complex is a finite free resolution of Z and 
hence Z is a ZG-module of type (FL). In general, one says that the group G is of type 
(FL) when this conclusion holds. If one begins with any finite dimensional K{G, 1) then 
the chain complex has finite length and Z has finite projective dimension. In this case 
one says that G has finite cohomological dimension, and its dimension can be defined 
to be the projective dimension of Z over ZG. It is now natural to define the properties 
(FP)^, (FP)oo and (FP) for groups simply in terms of the corresponding property for the 
trivial module Z over the group ring. 

For groups G these properties are interrelated in the following way: 

(F) => (FL) =̂  (FP) ^ (FP)^ => . . . =̂  (FP)2 ^ (FP),. 

Moreover, a group is of type (FP), if and only if it is finitely generated, and every 
finitely presented group is of type (FP)2. There is no known example of a group of 
type (FP)2 which is not finitely presented. In general, a group is finitely presented if 
and only if there is a cellular K(G, 1) with finite 2-skeleton, and so in particular, every 
group of type (F) is finitely presented as well as being of type (FL). One of the most 
important facts here is the theorem of Wall [122] which states that the converse holds: 
every finitely presented group of type (FL) has a finite K{G^ 1). This allows one to 
translate topological questions into algebra, although there remains one major difficulty. 
From the algebraic point of view, the property (FP) is much easier to grasp than (FL), 
being equivalent to type (FP)̂ ^ together with finite cohomological dimension. However 
there are few theorems in algebra which enable one to establish that a group has type 
(FL), and usually this requires powerful geometric methods. The work of Borel and Serre 
on arithmetic groups is a good example of this: in [34] they use the natural action of 
the arithmetic group on the symmetric space for the ambient Lie group, and although 
this provides a fast proof that arithmetic groups have finite cohomological dimension, it 
takes considerably more work to establish that they have type (F). At present there is no 
known example of a group of type (FP) which is not of type (FL). 

We conclude with a discussion of cohomological dimension, which has proved to 
be a remarkably subde group theoretic invariant. Of all the cohomological finiteness 
conditions introduced in this section, this is the only one which is always inherited by 
subgroups. Indeed, if if is a subgroup of G then 

cA{H) ^ cd(G) 
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because the trivial module Z has a projective resolution of length cd(G) as a ZG-
module and this serves equally as a projective resolution over ZH. From another point 
of view, a group G has finite cohomological dimension if and only if it admits a finite 
dimensional K{G^\). Nontrivial finite groups have infinite cohomological dimension, 
and consequently all groups of finite cohomological dimension are torsion-free. There is 
a beautiful and fundamental theorem of Serre which states that if if is a subgroup of 
finite index in a torsion-free group G and H has finite cohomological dimension then so 
does G, and moreover, in these circumstances cd{H) = cd(G). A good account of this 
result can be found in Brown's book, [38], We can give only a brief outline of the proof 
of this result here. First we may assume that H is normal in G. Now G can be identified 
with a subgroup of the wreath product W of H by the finite quotient Q := G/H. 
Since H has finite cohomological dimension there is a finite dimensional K{H^ 1), and 
its universal cover X is a space on which H acts freely by covering translations. The 
wreath product W now acts naturally on the cartesian product Y := X x " x X of 
\Q\ copies of X with finite isotropy, and through its identification as a subgroup of W, 
G also acts on Y. The fact that W acts with finite isotropy means that G acts freely, 
because G is torsion-free. The conclusion is that Y/G is a finite dimensional K{G, 1) 
and so G has finite cohomological dimension. The fact that cd(G) = cd{H) can deduced 
with techniques of homological algebra. 

Since many groups which arise in nature, such as arithmetic groups and Coxeter 
groups, are not torsion-free, it may seem unlikely that cohomological dimension could 
be a useful invariant. However, Serre's theorem provides a way around this because 
it leads to the notion of virtual cohomological dimension. A group G is said to have 
finite virtual cohomological dimension if it has a subgroup of finite index which has 
finite cohomological dimension. If G is such a group, then vcd(G) is defined to be the 
cohomological dimension of a torsion-free subgroup of finite index. The point here is 
that Serre's theorem guarantees vcd to be well defined: it makes no difference which 
torsion-free subgroup of finite index is chosen. Arithmetic groups, Coxeter groups, and 
polycyclic-by-finite groups are amongst many naturally occurring families of groups of 
finite vcd. 

4. Euler characteristics and /C-theory 

If G is a group of type (F) then its Euler characteristic x(G) can be defined as the Euler 
characteristic of any finite K{G, 1). This is an invariant of the group because one has 
the formula 

x(G) = 5](-I)'dim/fi(G,Q), 

in terms of the rational homology groups. This formula makes sense more generally, 
provided the rational homology groups are finite dimensional and only finitely many are 
nonzero. Based on this, K.S. Brown has developed a theory of Euler characteristics for a 
much larger class of groups. Care has to be taken: it is not simply a matter of adopting 
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the alternating sum formula whenever it makes sense because one wants to preserve the 
following property which holds for groups of type (F). 

If G is a group of type (F) and if is a subgroup of finite index then H is also of type 
(F) and 

x{H)^\G:H\x{G). 

In view of this, one can define x{G) for any group G which is virtually of type (F) by 
the formula 

where H is any subgroup of finite index which is of type (F). In general, this formula 
yields a rational number, not necessarily an integer. For example, when G is finite, 
x{G) = 1^. Since arithmetic groups are virtually of type (F), these have well defined 
Euler characteristics and many interesting calculations have been carried out. 

Using Swan's work on the ranks of projective modules over integral group rings of 
finite groups, Brown showed that if G is torsion-free and virtually of type (F) then x{G) 
is an integer. Now a torsion-free group which is virtually of type (F) is of type (FP), and 
looking at this from a different point of view, one can use the alternating sum formula 
to define an integral Euler characteristic for any group of type (FP) so that, because of 
Swan's theorem, the finite index formula holds. Hence there is a well behaved rational 
Euler characteristic which can be defined for any group which is virtually of type (FP). 
Brown's theory is more general even than this, although at present the Euler characteristic 
remains of most interest for groups which are virtually of type (F). We refer the reader 
to Brown's book, [38], for a more detailed account of this topic. 

Here, we turn briefly to /(T-theory. For any ring R, let Ko{R) denote the Grothendieck 
group of finitely generated projective i?-modules. We write [P] for the class in Ko{R) 
of a projective module P. If M is any /^-module of type (FP) then we write [M] for the 
class 

X 

where P* ^ M is a finite projective resolution of M. The generalized form of Schanuel's 
Lemma shows at once that this does not depend on the choice of finite resolution, and 
hence every module of type (FP) has a well defined Euler class in Ko{R). Given an 
additive homomorphism, or rank function p : Ko{R) —• Z, we can associate the integer 
p([M]) to M, which can be viewed as a kind of Euler characteristic. 

Suppose that G is a group of type (FP). Then the trivial module Z is of type (FP) 
over ZG, and the Euler class £{G) can be defined to be the class [Z] in Ko{ZG). Over 
the integral group ring, the simplest rank function on projective modules is given by 
p{[P]) := rankz(P (8)zG Z), and using this one obtains the formula 

p{e{G))=x{G). 
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If G is of type (F), or more generally of type (FL) then the Euler class is simply a 
multiple of the class [ZG]: 

E[G) = x(G)[ZG]. 

This formula is very significant, because it is not hard to show that when G is of type 
(FP) then this formula holds if and only if G is of type (FL). In this way the Euler class 
of a group of type (FP) carries crucial information. 

At present, in all known cases, the Grothendieck group Ko{ZG) is generated by the 
class [ZG] when G is torsion-free. If KQ{2,G) were always trivial for torsion-free group 
then it would follow that every group of type (FP) is in fact of type (FL). Thus the 
question of whether there are groups of type (FP) which are not of type (FL) is really 
X-theoretic. A great deal of research has been carried out into /f-theory. The work of 
Adem, [1], [2], [3] is especially relevant to our discussion here. 

5. Ends and cohomological dimension one 

There is an attractive quality to any result in abstract group theory whose proof depends 
on a cohomological insight. One such result, suggested by Serre, and later proved by 
Stallings and Swan [112], [117] states that if G is a torsion-free group which has a free 
subgroup of finite index then G is free. Serre proved an analogous result for pro-p-groups, 
but using very different techniques. 

To understand how Stallings and Swan proved this result, and the way in which 
cohomological techniques are involved, we need to briefly recount the basis of the Bass-
Serre theory of group actions on trees. At a combinatorial level a graph T is a quadruple 
(y, E., t, r ) comprising a set of vertices V, a set of edges E and two functions L^T : E -^ 
V which indicate the initial and terminal vertices of each edge. Bass and Serre prefer 
to work with unoriented graphs, but for this account it seems convenient to work with 
directed graphs as we have defined them. Any graph F = {V, E, L, T) can be realized 
geometrically as a 1-dimensional CW-complex: if / denotes the unit interval then one 
first forms the disjoint union of V and E x I, and then one identifies each (e, 0) with ue 
and each (e, 1) with re. The graph has an associated chain complex with the group of 
1-chains being ZE, the free abelian group on E and the group of 0-chains being ZV, 
the free abelian group on V. It is useful to consider the augmented chain complex: 

0 -^ ZE -^ z y --> z -> 0, 

because this carries the crucial homological data for the graph. In particular, this sequence 
is exact at Z if and only if the graph is nonempty, it is exact at ZV if and only if the 
graph, or rather its realization as a space, is connected, and it is exact at XE if and only if 
the graph has no loops, which is to say that the graph is di forest. Thus the chain complex 
is a short exact sequence if and only if the graph is a nonempty connected forest, or 
more simply, a tree. 

An action of a group G on a graph comprises an action on the vertex and edge sets 
which is compatible with the initial and terminal vertex maps. If T is a G-graph then the 
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associated chain complex is naturally a chain complex of G-modules. One of the most 
important examples of a G-graph is the Cayley graph of G with respect to a subset X 
of G. This is defined by setting V := G, J5 := X x G, i{x,g) := g, and r{x,g) := xg, 
and G acts by right multiplication. It is connected if and only if G is generated by X, 
and one of the fundamental cornerstones of the Bass-Serre theory states that it is a tree 
if and only if G is the free group on X, Since the group G always acts freely on its 
Cayley graphs, then in the case when G is the free group on X, the chain complex is a 
free resolution of Z over ZG of length one, and this gives an algebraic proof that free 
groups have cohomological dimension one. Geometrically, one sees this, because a free 
group has a bouquet of circles as an Eilenberg-MacLane space. 

A remarkable theorem proved by Stallings [112] for finitely generated groups and 
generalized by Swan [117] to arbitrary groups states that the converse holds: every group 
of cohomological dimension one is free. This is a very deep result, but notice that the 
group theoretic application with which we opened this section follows immediately from 
it. If G is torsion-free and has a free subgroup of finite index then Serre's theorem on 
cohomological dimension together with the basic results from Bass-Serre theory, shows 
that G has cohomological dimension one, and hence G is free by Stallings and Swan. 

In the remainder of this section we discuss Stallings contribution to this area and some 
of the ideas it has led to. Let G be a finitely generated group and let F be the Cayley 
graph of G with respect to some finite generating set. Then F is connected, but it is 
possible that, if a finite set of edges of F are removed then F will become disconnected 
and even that it may have more than one infinite component. The number of ends of G 
is defined to be the supremum of the number of infinite components of F\F as F runs 
through all finite sets of edges. It can be shown that this number e(G) is an invariant 
independent of the choice of finite generating set for G. Moreover, it is known that e(G) 
can take only one of four possible values: 0, 1, 2 or oo. It is very easy to see from 
the definition that e(G) = 0 if and only if G is finite. If G is infinite then there is the 
classical formula of Hopf: 

e(G) = l-f-dimFffnG,FG), 

where F denotes the field of two elements. 
Motivated by his work on 3-dimensional manifolds, Stallings proved a remarkable 

theorem about groups G with e(G) > 1. The theorem concerns splittings of groups. 
Here, we say that a group G splits over a subgroup H if and only if there is an action of 
G on a tree with one orbit of edges so that H is an edge stabilizer and so that all vertex 
stabilizers are proper subgroups of G. Let T be a G-tree with one orbit of edges, and 
let e be an edge with stabilizer H := Gg. There can be at most two orbits of vertices. If 
te and re are in different orbits then G is isomorphic to the free product of the vertex 
stabilizers G^e and Grei amalgamated over if, and if te and re belong to the same orbit, 
so that there is a ^ € G with {re)g = te, then there is only one orbit of vertices and G 
is isomorphic to the if iViV-extension Ĝ e *if n. Stallings theorem [112] asserts that if G 
is a finitely generated group then e(G) > 1 if and only if G splits over a finite subgroup. 
One direction of this theorem is not hard. If G does split over a finite subgroup then one 
can use the associated G-tree to construct almost invariant subsets of G in the following 



930 D.J. Benson and P.H. Kropholler Chapter 18 

way: let e be an edge of T and let B be the set of g £ G such that e points towards 
{te)g. It turns out that B is almost invariant in the sense that for all g G G, the symmetric 
difference B -\- Bg is finite. Finite subsets of G naturally correspond to elements of FG, 
and so the function g *-> B -^ Bg can be regarded as a derivation from G to FG which 
in turn gives rise to a nontrivial element of H^ (G, FG). Hopf's formula now shows that 
e(G) > 1. The other direction of Stallings theorem is a real tour deforce and we cannot 
give a detailed account here. 

Stallings theorem can be used to show that finitely generated groups of cohomological 
dimension one are fi-ee. If G is such a group, then one shows first that e(G) > 1 by 
means of Hopf's formula. Therefore G splits over a finite subgroup. Being torsion-free, 
G is therefore a nontrivial free product of two subgroups. Since these subgroups still 
have cohomological dimension one, the argument can be repeated, until one concludes 
that G is free. For infinitely generated groups, additional arguments are needed. Swan 
solved this problem [117], showing that all groups of cohomological dimension one are 
free. 

Subsequently much further work has been done on the theory of ends. Holt's paper [72] 
in which he showed that uncountable locally finite groups have one end is an important 
landmark. Much more has been discovered by Dunwoody [51], [52]. Dunwoody's work 
has led to a theory of accessibility for groups. A group G is called accessible if there 
is a G-tree with finite edge stabilizers, finitely many orbits of edges, and with all vertex 
stabilizers having at most one end. Dunwoody proved that all finitely presented groups 
are accessible, and more recently he has shown that there exist finitely generated groups 
which are not accessible and that such groups always contain an infinite locally finite 
subgroup. This last result is a far reaching generalization of a theorem of Linnell asserting 
that a finitely generated group is accessible if there is a bound on the orders of the finite 
subgroups. 

6. Duality groups 

If M is a closed orientable manifold of dimension n then there are isomorphisms between 
the zth homology and the (n — i)th cohomology for each i. This is the familiar Poincare 
duality for manifolds and the isomorphisms can be defined as cap products with the 
fundamental class of the manifold. In this article we discuss products in cohomology in 
the next section, and the reader may ask why it is possible to discuss duality between 
homology and cohomology of groups before products are introduced. While it is true that 
duality in group cohomology can be described in terms of cap products, it is possible to 
develop a workable theory which avoids any discussion of products. This approach was 
first taken by Bieri and Eckmann, [19], [22], [27], [29], [28]. 

A group G is called an n-dimensional duality group if there is a module D such that 
for each i there is a natural isomorphism 

W{G,M)^Hn-i{G,D^M), 

where D 0 M is made into a G-module with the diagonal action. 
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Let G be such a group. Bieri and Eckmann reformulated the definition of duality in the 
following way. First, it is an immediate consequence of the definition that the cohomology 
of G vanishes in dimensions greater than n, and that if M is a free ZG-module, then the 
cohomology groups W{G,M) are zero except possibly in dimension n. Hence G is a 
group of cohomological dimension n. Secondly, since homology always commutes with 
direct limits, it follows that the cohomology functors also commute with direct limits 
and hence that G is of type (FP)̂ .̂ Thus G is a group of type (FP). Thirdly, it can be 
shown that D is necessarily torsion-free as an additive group and that it is isomorphic 
to H^{G,ZGY^. (Here we are viewing cohomology and homology as functors from 
right ZG-modules to abelian groups, but since ZG is a bimodule, the cohomology group 
H^{G, ZG) inherits a left module structure. If L is any left ZG-module we write L^P for 
the right module with the same additive group and with G action defined by i-g := g~^£,) 
Thus an n-dimensional duality group G satisfies three properties: 

- G is of type (FP); 
- W{G, ZG) = 0 for I 7̂  n; and 
- -D := H'^{G,ZGY^ is torsion-free as additive group. 

Bieri and Eckmann then showed that these three properties actually imply that G is a 
duality group with dualizing module D. The Bieri-Eckmann approach avoids using cup 
or cap products, and has proved invaluable for further study of duality groups. 

In the special case when G is a duality group with dualizing module D being infinite 
cyclic, one says that G is a Poincar6 duality group. Here there is a very close link with 
manifold theory. A Poincar^ duality group is called orientable if its action on the dualizing 
module is trivial, and it is called nonorientable if the action is nontrivial. Moreover, no 
example is known of a Poincar6 duality group which is not the fundamental group of 
a closed aspherical manifold. In a series of papers, Bieri, Eckmann, Miiller and Linnell 
proved that every 2-dimensional Poincar6 duality group is the fundamental group of a 
closed 2-manifold. Subsequently Thomas, Hillman, Kropholler and Roller [120], [70], 
[71], [80], [82], [83], [84], [85] have developed the theory of 3-dimensional Poincare 
duality groups and there are indications of a close link with Thurston's geometrization 
programme for 3-manifolds. 

The key idea behind the study of Poincar6 duality groups is a generalization of the 
theory of ends. Scott introduced a notion of ends of a pair (G, H), where G is a group 
and if is a subgroup. If G is finitely generated then e(G, H) can be defined to be the 
number of ends of the quotient graph F/H where T is a Cayley graph for G. He showed 
that if G splits over H then e{G,H) > 1. However, the converse does not hold. For 
example, the group G generated by x, y, z subject to relations 

2 3 7 

X = y — z — xyz 

has many free abelian subgroups A such that e(G, A) = 2 but it admits no splitting 
over any subgroup. This is an interesting example because it is the fundamental group 
of a closed Seifert fibred 3-manifold, and in particular, it is a Poincare duality group. 
Nevertheless, some splitting theorems have been proved in terms of the new end invariant. 
The first of these is Scott's theorem that if if ^ G are finitely generated groups and 
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H is an intersection of subgroups of finite index in G then e(G, H) > \ if and only 
if some subgroup of finite index in G splits over H. A second theorem of this kind, 
due to Kropholler [80] states that if H ^ G are groups which both have one end 
[e{G) = e(H) = 1] and if H n H^ = \ for all g ^ H, then e(G, i?) > 1 if and only if 
G splits over H. There are more delicate versions of these results, and these play a role 
in understanding 3-dimensional Poincare duality groups. 

A further key ingredient is the beautiful theorem of Strebel [115] which asserts that if 
G is an n-dimensional Poincar6 duality group then every subgroup of infinite index in G 
has cohomological dimension strictly less than n. This is an important ingredient in the 
study of 2>dimensional Poincare duality groups where it shows that every subgroup of 
infinite index has cohomological dimension ^ 1 and hence is free by the Stallings-Swan 
theorem. 

Finally we should mention Davis' paper [50]. Davis provides a way of constructing 
many examples of closed aspherical manifolds using Coxeter groups. Not only has this 
led to examples of aspherical manifolds not covered by Euclidean space, but it has also 
provided many other interesting examples of Poincare duality groups. Mess has shown in 
[89] how one can use Davis' construction to embed certain groups into Poincare duality 
groups. In particular, every group of type (F) and of dimension n can be embedded into 
a (2n -h l)-dimensional Poincare duality group. 

7. Products 

One advantage of cohomology over homology is the existence of cup products and 
Yoneda products. Yoneda products are defined in terms of composition of maps between 
projective resolutions. This gives a map 

ExtX(M2,M3) (g)Ext^(M,,M2) ^ Exf^'^^'iMuMs). 

Cup products are defined in terms of tensor products of resolutions. They are not 
defined in the same generality as Yoneda products, but they are defined for modules over 
group rings, or more generally over Hopf algebras. The cup product is a map 

Exe^aiNuMi)^ExtlG{N2,M2) -> Ext^+^(iV, 0iV2,M, 0 M 2 ) , 

and hence in particular 

/ f^ (G,Ml) 0 / f ^ ( G , M2) ^ if^+^(G, M, 0 M2), 

so that H*{G,R) becomes a ring.^ This ring is graded commutative, in the sense that 
xy = (-l)'^^'^'ya:, where |a:| denotes the degree of an element x. 

^ Here and elsewhere, unless otherwise stated, tensor products of modules are taken to be over the coefficient 
ring, with diagonal G-action. 
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Any cup product may be written as a Yoneda product as follows: 

ExtScW.M)<S)ExtS^(7V2,M2) ^Ext:^^^(iV, 0Ar2,Mi 0M2) 

i (-(8>M2,iVi(g>-) y Yoneda 

Ext^c(iVi (g) M2, Ml 0 Ml) 0 ExtXc(iVi 0 iV2, iVi 0 M2) 

However, not every Yoneda product may be written as a cup product. In particular, 
Yoneda and cup products agree on Ext^Q(i?, R), but even if M is a simple iJG-module, 
ExfjiQ^M, M) need not be graded commutative. Carlson [43] has constructed examples 
with G finite, R a field of characteristic p and M a simple i?G-module, where the rings 
Exi*jiQ{M,M) have complete matrix rings as quotients. 

8. Tate cohomology 

Motivated by the development of class field theory, Tate introduced a variation on the 
cohomology of finite groups, H^{G,M) where n runs over the positive and negative 
integers, which agrees with ordinary cohomology for n ^ 1 and is reindexed ordinary 
homology for n < - 2 . Long exact sequences for this theory extend in both directions. 

If G is a finite group, we define a complete resolution of Z as a ZG-module to be a 
doubly infinite exact sequence of free modules 

>F^n^ > F_, -^ Fo -^ F, - . ^ Fn -> • • • 

with the property that the non-negative part forms a free resolution of Z as a ZG-modifle. 
For example, one may form the Z-dual of a resolution of Z by finitely generated free 
ZG-modules, shift in degree by one, and splice to the original resolution: 

> Homz(Fn-i,Z) -^ y Homz(Fo,Z) —^ Fo ^ Fi -^ > Fn-* - •-
\ / 

Z 
/ \ 

0 0 

Tate cohomology H^{G,M) (-00 ^ n ^ 00) with coefficients in a ZG-module M 
is then defined to be the cohomology of the doubly infinite complex HomzG(Fn,M). 
So for n > 0 this agrees with ordinary group cohomology, while for n < —1, we have 
H^{G,M)^H^n^i{G,M). 

If /f is a subgroup of G, then the inclusion of H in G induces a restriction map in 
(ordinary or) Tate cohomology 

rtSG,H : H*{G,M) -^ H*{H,M) 

and a corestriction map 

coxH^G : H*{H,M) ^ H^{G,M). 
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In positive degrees, these are the usual restriction and transfer maps, while in negative 
degrees (regarded as homology groups) the roles are reversed. This has the interesting 
consequence that transfer may be defined in terms of restriction by dimension shifting 
past zero. 

If H has index n in G, then cor//G O ^Q^G.H is equal to multiplication by n. In 
particular, this implies that H*{G,M) is killed by multiplication by |G|, so that it is 
entirely torsion. Furthermore, it implies that if P is a Sylow p-subgroup of G, then 
resG,p injects the p-primary component of H*{G,M) into H*{P,M), If M is killed 
by multiplication by p, and M is not a projective FpP-module, then for every value of 
n G Z, we have H'^{P,M) ^ 0. This follows from the fact that FpP is self-injective 
and the fact that every nontrivial FpP-module has a nonzero fixed point. If, on the other 
hand, M is Z-torsion-free, then the long exact sequence in Tate cohomology arising from 
the short exact sequence 

0 -^ M - ^ M -^ M/pM -^ 0 

shows that if H^{P,M) is zero for two consecutive values of n then M/pM is a 
projective FpP-module, hence a projective FpG-module, and so the p-primary part of 
H*{H,M) is zero for every subgroup H of G. If this holds for all primes p, we say 
that M is cohomologically trivial. By dimension shifting, the assumption that M is 
Z-torsion-free may be dropped. 

9. Class field theory 

In Helmut Hasse's article [69] on the history of class field theory, he states the view that 
"the sharply profiled lines and individual features of this magnificent edifice seem to me 
to have lost somewhat of their original splendor and plasticity by the penetration of class 
field theory with cohomological concepts and methods, which set in so powerfully after 
the [second world] war". It is our hope to convince the reader that in fact the introduction 
of methods from the cohomology of groups only served to enhance the splendor of this 
subject. 

The principal goal of class field theory is to describe the abelian extensions of a number 
field in terms of the internal structure of the field. This is usually described in terms of 
reciprocity maps. We shall limit ourselves to discussing that part of class field theory 
which is most easily dealt with in cohomological terms. For a fuller account of the local 
case see Serre [110], [HI] , and for the global theory see Tate [119]. 

The subject begins with the computation of the Brauer group of a local field. For any 
field K, the Brauer group BT{K) has as its elements the isomorphism classes of division 
rings A which are finite dimensional over K and which have K as their center. If A] 
and A2 are two such, then A\ ^K AI is a full matrix ring over another such division 
algebra A^. This gives Br(X) its group structure, with identity element represented by 
K itself and with Z\°P playing the role of the inverse of A, If L is a finite extension of 
K, we obtain a map Br(iir) -> Br(L) by tensoring over K with L, and the kernel of this 
map is written Br(I///f). It consists of the division rings over K split by L. Every such 
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division ring can be written as a crossed product algebra, so that there is an isomorphism 
between Bx{L/K) and H^{G,L''), where G = Gei{L/K). 

In the case where if is a local field, it turns out that H'^{G,L^) = Z/\G\. Moreover, 
generators for these cyclic groups can be chosen consistently, in the sense that if H ^ G 
then the restriction of the generator of H^{G, L^) to H'^{H,L^) is the generator for the 
latter. We write u e H^{G,L^) for the generator. 

Now write i7^Z for the second kernel in a projective resolution of Z as a ZG-module. 
This is not uniquely defined, but by Schanuel's lemma it is uniquely defined modulo 
adding projective summands. Then we can represent u e H^{G,L^) by a. ZG-module 
homomorphism u : i7^Z -> L^. Adding projective summands to i7^Z if necessary, we 
may assume that this map is surjective, say with kernel M. For any H ^ G, the short 
exact sequence 

0 ^ M - > i 7 2 z - ^ L ^ -^0 

of Zi/-modules gives rise to a long exact sequence in Tate cohomology, a portion of 
which is as follows: 

H\H,L'')-^H\H,M) -^ H^{H,f2^Z) ^ H\H,L'') 

-^H\H,M) ^ H^{H,n^Z). 

Now by Hilbert's Theorem 90, W (H, L^) = 0. By the above calculation of the Brauer 
group, the map tx. from H^{H,Q^Z) ^ H^{H,Z) ^ Z/\H\ to H^iH.L'') is an iso-
morphism. Also, H^{H, n^Z) ^ H\H,Z) ^ Hom(i/,Z) = 0 since H is finite. So by 
the above long exact sequence, we deduce that for all subgroups H of G, H^{H,M) 
and H^{H,M) are zero. Thus M is cohomologically trivial, and so the map u^ from 
^^(G, n^Z) ^ fl^^-2(G,Z) to ^^(G,L^) (i.e. cup product with u) is an isomorphism 
for all neZ. 

Let us apply this in the case n = 0. The group H~^{G,Z) = H\[G,Z) is just the 
abelianization Gab» while H^{G,L^) is fixed points modulo transfers. Since we are 
working multiplicatively, transfer here really means the usual number theoretic norm 
map, and so we have 

The inverse map to this cup product isomorphism is called the local reciprocity map, or 
norm residue symbol, and it has an explicit character theoretic characterization which may 
be found in Serre [110]. This allows the explicit construction of all abelian extensions 
ofK, 

In the global case, we must replace the multiplicative group L^ by the iddle class 
group CL = JL/L^' The properties of this module are analogous to the properties of 
L^ in the local case. Namely H\G,CL) = 0, and there are compatible isomorphisms 
H^{G, CL) = Z/\G\. Thus the generator u G H^{G, d) gives rise in the same way as 
before to a map u : fP-Z -^ CL which induces isomorphisms 

^ " - 2 ( G , Z ) - ^ # " ( G , C L ) . 
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In particular, the corresponding reciprocity law is the inverse of the isomorphism 

Gab ^ CKINL/K{CL) 

arising from the case n = 0. Details may be found in Tate [119]. 
Finally, we mention that the notion of a class formation is designed to abstract what 

makes the above arguments work. See the notes of Artin and Tate [8]. 

10. The complete cohomology of Mislin and Vogel 

Although Tate cohomology was introduced only for finite groups, it was subsequently 
generalized by Farrell G with vcdG < oo. As well as Farrell's paper [61], there is also 
a useful account in [38]. Farrell's approach was similar to Tate's and involved the use 
of complete projective resolutions. 

More recently, Vogel and Mislin have independently discovered a generalized Tate 
cohomology theory, [67], [90] which works for any group. This theory does not depend on 
complete resolutions, and has many exciting applications. Mislin was strongly influenced 
by the paper [63] of Gedrich and Gruenberg in which the authors develop a theory of 
terminal completions of cohomological functors for certain classes of groups. A different 
approach to generalized Tate cohomology was discovered by Vogel [67] and by Benson 
and Carlson, [16]. The paper by Benson and Carlson is ostensibly about Tate cohomology 
(of finite groups), but they work with definitions which make sense for arbitrary groups 
and which turn out to yield a theory isomorphic to that of Vogel and Mislin. This theory, 
which we shall call the complete cohomology, turns out to be ideally suited for proving 
that certain groups have finite cohomological dimension. We shall denote the cohomology 
groups by H^(G,M). Like ordinary cohomology, one can have coefficients in any G-
module M, and each cohomology group is functorial in M. The theory shares basic 
properties with ordinary cohomology, but it also enjoys some distinctive features. One 
point to emphasize at once is that if ̂  (G, M) is defined and can be nonzero for all integers 
J, positive and negative, as indeed must be the case because complete cohomology 
coincides with Tate cohomology for finite groups. 

Some properties of complete cohomology are just as for ordinary cohomology. First 
there are natural long exact sequences of complete cohomology associated to short exact 
sequences of coefficient modules. 

Thus, for any short exact sequence O -̂̂  A -^ B - ^ C —• 0 of G-modules, there are 
natural connecting homomorphisms 6:W{G,C) —• W'^^[G,A) which, together with 
functorially induced maps, give rise to a long exact sequence: 

^ H\G,A) -> H'{G,B) - . H\G,C) ^ H'^\G,A) -^ • • • 

Secondly, if G is of type (FP)^^ then the functors H^[G, ) commute with filtered 
colimits, just as the ordinary cohomology functors do. 
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There are, however, two properties which distinguish complete cohomology from or-
dinary cohomology. The first of these is very striking, and of great importance: 

^ ( G , Z) = 0 if and only if cd G < oo. 

This stands out because it ensures that complete cohomology need not be identically 
zero. It is wonderfully convenient that this zeroth cohomology group with trivial coeffi-
cients carries so much information. In general, not surprisingly, n{G^Z) is very hard 
to compute for groups of infinite cohomological dimension. If G is finite then we know 
that 

^ ( G , Z ) = Z/|G|Z 

but even for polycyclic-by-finite groups, no general formula is known. 
The last property we mention, like the first, is really axiomatic. This is built in to 

complete cohomology when it is defined, and the theory satisfies a universal property 
in relation to ordinary cohomology subject to this condition: For all integers j , and all 
projective modules P, the complete cohomology groups H\G, P) are zero. 

This property does not usually hold for ordinary cohomology. There are exceptions: 
for example if G is a free abelian group of infinite rank then W{G,P) is zero for 
all j (including j — 0) and all projective modules P. For such groups, the complete 
cohomology and the ordinary cohomology coincide. More generally, if there is an integer 
2 such that the ordinary cohomology vanishes on projectives from dimension j onwards, 
then the complete cohomology and the ordinary cohomology coincide from that point 
on. 

At the time of writing, there have been only a few applications for complete cohomol-
ogy, but those that have been discovered strike us as very exciting. One of the best results 
to emerge is KrophoUer's theorem [81] that soluble and linear groups of type (FP)̂ ^ are 
virtually of type (FP). The proof uses the fact that complete cohomology provides a cri-
terion for a group to have finite cohomologic^ dimension. But in order to prove such a 
result, one also needs a method of computing //^(G, Z). The method depends on the fact 
that both soluble and linear groups admit useful actions on finite dimensional contractible 
complexes. For linear groups, one needs the methods introduced by Alperin and Shalen 
when they established their criterion for finite dimensionality. For soluble groups one 
uses the simpler fact that every infinite finitely generated soluble group has an infinite 
quotient which is a crystallographic group, and which thus acts on a Euclidean space. 

These results can be generalized in various ways. For example, in [81] Kropholler also 
proves that if G is a torsion-free soluble or linear group then every ZG-module of type 
(FP)oo has finite projective dimension. It seems likely that complete cohomology will 
have many further applications in the near future. 

On the other hand, these results do not hold for arbitrary groups. Brown and Geoghegan 
[42], [41] have shown that there exist torsion-free groups of type (FP)oo which have 
infinite cohomological dimension. 
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11. Spectral sequences 

There are several spectral sequences of importance in group cohomology. Perhaps the 
most commonly used is the Lyndon-Hochschild-Serre spectral sequence of a group 
extension. If 

1 ^ iV -> G -> G/N -^ 1 

is a short exact sequence of groups and group homomorphisms, and J? is a commutative 
ring of coefficients, then for any iiG-module M there are spectral sequences in homology 
and cohomology: 

E f = m{G/N, H^{N, M)) => m^^{G, M). 

To construct these spectral sequences, we take a projective resolution of R as an R{G/N)' 
module 

> Pi -> Po -> i? -^ 0 

and as an iJG-module 

^Qi-^Qo-^R-^0 

and we form the double complexes 

K<i = Pp ^R(G/N) {Qq ^R NM) ^ {Pp 0 Qg) 0KG M, 

E^ = HomR^G/N) {Pp. HoniRNiQq. M)) ^ Hom^cCPp 0 R Qq. M). 

In the spectral sequences of these double complexes, we have 

Ef' = UomR^G/N) {Pp. H^{N. M)), 

and so the E^, respectively E^^ terms are as given above. Since P* ®R Q^ is a projec-
tive resolution of fl as an i?G-module, the spectral sequences converge to H^(G,M), 
respectively H*{G,M). 

Calculations involving the Lyndon-Hochschild-Serre spectral sequence tend to be in-
tricate, and to depend on having available as much extra structure as possible. This in-
volves products, Steenrod operations, restrictions, transfers, and so on. Particularly useful 
is the fact (Serre [109]) that the Steenrod operations commute with transgressions (i.e. 
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the differentials going from the vertical edge to the horizontal edge) in the cohomology 
spectral sequence with Fp coefficients. 

In the case of a central extension of groups, or more generally a central product of 
groups, there is the Eilenberg-Moore spectral sequence. Namely, if G\ and G2 are groups 
and 01 : Z ' ^ Z{G\), (jyi '- Z "-^ Z{G2) are inclusions of a common central subgroup, 
then we may form the central product 

G, oG2 = G, X G2/{{Mz),Mz))^ z € Z). 

In this situation, there is a pullback diagram of fibrations of Eilenberg-MacLane spaces 

K ( G , o G 2 , l ) -^i^(G,/(/>,(Z),l) 

i i 

K{G2l<h[Z\\)^ K{Z,2), 

The Eilenberg-Moore spectral sequence of this pullback square is 

ToT*H\K(zay,R)(H'(G^/MZ\R\H^G2/MZ).R)) => i/*(G, oG2,i?). 

The case where G\ = (j>\{Z) applies to any central extension, and is useful for example 
in calculating the cohomology of finite p-groups. Rusin [99] calculated the mod two 
cohomology of the groups of order 32 this way. 

Another spectral sequence which is of occasional use in finite group cohomology is 
the Atiyah spectral sequence [9]. This has as its E2 term the cohomology ring H*{G^ Z), 
and converges to the completion 7t(CG)^ of the complex representation ring Tl{CG) at 
the augmentation ideal. 

12. Cohomological dimension 

We have already discussed groups of low cohomological dimension, and especially as-
pects of the theory of cohomological dimension one. In higher dimensions many in-
teresting calculations have been carried out, but calculations are often very hard. In-
finite soluble groups provide a good source of examples. If G is a soluble group, 
one says that it has finite Hirsch length if and only if there is a subnormal series 
1 = GQ ^ G\ < • • • < Gn = G in which the factors Gi/Gi^\ are either infinite 
cyclic or locally finite. For such groups, the Hirsch length h{G) is defined to be the 
number of infinite cyclic factors in any such series. This is easily seen to be an invariant 
of the group. Stammbach, [113] established that a soluble group has finite cohomological 
dimension if and only if it is torsion-free of finite Hirsch length. The simplest instance of 
this is a free abelian group of finite rank, in which case the cohomological dimension is 
equal to the rank. Gruenberg took this further by showing that if G is a torsion free nilpo-
tent group with finite Hirsch length then cdG is equal to either h{G) or h{G) -f 1, and 
that cd G = h(G) if and only if G is finitely generated. Bieri [20] studied this question 
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for soluble groups in [20], and it became clear that the cohomological dimension of a 
soluble group was an interesting invariant. In general, for any torsion-free soluble group 
G of finite Hirsch length, it is the case that either cd G = h{G) or cd G = h{G) -f 1. After 
this had been established, it was some years before progress was made. Then Gildenhuys 
[65] solved the question in the case of Hirsch length 2, coming up with a complete list 
of the soluble groups G with cdG = h{G) = 2. These are precisely the groups with a 
presentation on two generators x and y subject to a single relation 

y-^xy = x^, 

where m is a nonzero integer. Gildenhuys and Strebel studied the question further in 
[66], and finally a complete story for soluble groups emerged in KrophoUer's paper [79]. 
The result is that if G is a soluble group then the following statements are equivalent 

- c d G = ft(G)<oo; 
- G is of type (FP); 
- G is a duality group; 
- G is torsion-free and can be built up from the trivial group by a finite sequence of 

i/iVAT-extensions and finite extensions. 

As in the case of the Stallings-Swan theorem, one sees that the cohomological dimen-
sion is intimately related to the structure of the group, and it remains mysterious that this 
single invariant should carry so much information. 

Another important theorem concerns the cohomological dimension of linear groups. 
Here, in general there is no exact formula for the dimension. Alperin and Shalen [7] 
proved that a finitely generated linear group (meaning a subgroup of GLn{C)) has finite 
cohomological dimension if and only if there is a bound on the ranks of the unipotent 
subgroups. To prove this, they depend on two techniques. The first is a generalized version 
of the method Borel and Serre used to study arithmetic groups. Secondly, they develop 
the theory of valuations and use the fact that if A is a finitely generated commutative 
ring then, associated to each discrete valuation on A one can construct an (n — 1)-
dimensional affine building on which SLn{A) acts. Their method draws attention to 
an important principle in studying cohomological dimension. In general, to show that a 
group G has finite cohomological dimension it suffices to find a free action of G on a 
finite dimensional contractible cell complex. In practice, one cannot always easily find 
free actions, but if G acts on an r-dimensional contractible complex in such a way that 
all isotropy groups have dimension ^ n, then cd G ^ n -h r. 

13. Elementary abelian subgroups 

Evens [58] and Venkov [121] (1961) proved independently that the cohomology ring 
H*{G,R) of a finite group G with coefficients in a commutative Noetherian ring R is 
finitely generated. The two proofs are quite different in nature. Venkov's is topological, 
and uses the theory of Chern classes. Evens' is purely algebraic, and in fact he proves 
the stronger theorem that for any commutative coefficient ring R, if M is an iJG-module 
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which is Noetherian over R, then H*{G^ M) is Noetherian as a module over H*{G^ R). 
The ideas in Evens' proof gave rise to his formulation of the Evens norm map [59] (of 
course, he didn't call it that), which is a multiplicative analogue of the usual additive 
transfer map. 

In the case where /2 = fc is a field of characteristic p dividing |G|, Quillen [93] (1971) 
gave an explicit description of the homogeneous affine variety Vcik) obtained by looking 
at the maximal ideal spectrum of H*{G, fc). His description involves the structure of the 
set of elementary abelian subgroups of G. 

We begin by explaining that since H*{G,k) is graded commutative, if p is odd then 
elements of odd degree square to zero and elements of even degree commute, while if 
p = 2 then all elements commute. In either case, H*{G^k) modulo its nil radical is 
commutative. We write H'{G, k) to denote the even cohomology ring if p is odd, and 
the whole of ff*(G, fc) if p = 2. Then H*{G, k) and H'{G, k) have "the same" maximal 
ideals. 

If Ci, . . . , Cs are homogeneous elements generating H'(G, k) then the map 

fc[Ci,...,C.]-^'(G,A:) 

gives rise to a map of maximal ideal spectra (by the weak Nullstellensatz) 

maxi7*(G,fc)-^A"(ik) 

which embeds max if'(G, k) as a closed homogeneous subvariety of affine space A .̂ Of 
course, this embedding depends on the choice of generators, but the abstract homogeneous 
affine variety max if* (G, A:) does not. 

If 0 : A -+ B is a morphism of finitely generated commutative fc-algebras, with the 
property that the kernel is nilpotent and for some value of t, the p*th power of every 
element of B lies in Im((/>), then (j)* : maxB —• max^l is bijective. Such a map is called 
an "inseparable isogeny" or an "F-isomorphism" (F for Frobenius). Quillen's theorem 
states that the restriction maps give rise to an inseparable isogeny 

H\G,k)-^\\mH\E,k), 

so that 

\\mVE{k)-^VG{k) 

is bijective. Here, the limit is taken over the category whose objects are the elementary 
abelian p-subgroups E of G, and whose morphisms are generated by the conjugations 
and inclusions in G. This theorem says that an element of H*{G, k) is nilpotent if and 
only if its restriction to every elementary abelian subgroup is nilpotent; and moreover, 
given elements XE € H'^{E,k) for each elementary abelian subgroup E, consistent 
under conjugations and restrictions, there is an element x e i/'̂ ^" (G, k) for some a ^ 0 

a 

such that for each E we have resG,E{x) = ^E • 
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Five years later, Chouinard [48] (1976) proved that a A:G-module is projective if 
and only if its restriction to every elementary abelian p-subgroup £" of G is projective. 
The connection between this and Quillen's theorem was not apparent until Alperin and 
Evens [6] (1981) formulated the notion of the complexity CG[M) of a finitely generated 
fcG-module M, and proved that it is equal to the maximal complexity of a restriction of 
M to an elementary abelian p-subgroup E of G: 

CG{M) = max CE{M IE)-

The definition of complexity is that if • • • —̂  Pi -^ PQ -^ M -^ 0 is 2L minimal projective 
resolution of M, then CG{M) is the smallest integer c ^ 0 such that 

lim dimk Pn/n^ = 0. 
n—*oo 

The fact that there is such a value of c follows from Evens' finite generation theorem. 
It turns out that M is projective if and only if CG{M) = 0, and M is a direct sum 
of a projective and a periodic module (a module is said to be periodic if its minimal 
resolution repeats) if and only if CG{M) = 1 (Eisenbud [57]; see also the beginning of 
the next section). 

Another way to interpret the complexity is as follows. By Evens' finite generation 
theorem, Ext)̂ (̂ (M, M) is a finitely generated module over the image of the map 

H%G,k) = ExilGik.k) ^ ExilG{M,M) 

given by tensoring exact sequences with M. We write IG{M) for the kernel of this map. 
Then since Ext]J^(M, 5) is finitely generated as a module over E\i\Q{M, M) for each 
simple module 5, it follows that CG{M) is the least integer c such that 

lim dimfcExt;f(.(M,M)/n^ = 0, 
n—»oo 

and is therefore equal to the Krull dimension of Ext]^(-(M, M), or equivalently the Krull 
dimension of H*{G, k)/lG{M). So the case M = A: of the Alperin-Evens theorem may 
be interpreted as Quillen's statement that the Krull dimension of H*{G,k) is equal to 
rp{G). 

The work of Alperin and Evens, together with some work of Carlson [44], [45] on rank 
varieties of modules for elementary abelian groups, led to the formulation of the notion, 
of varieties for modules. If M is a finitely generated fcG-module, we define VG{M) to 
be the closed homogeneous subvariety of Vcik) determined by the ideal / G ( M ) ; namely 
the subset consisting of the maximal ideals containing IG(M). The following is a list of 
properties of the varieties VG{M): 

(i) The dimension of VG{M) is equal to the complexity of M. In particular, 
VG{M) = {0} if and only if M is projective, and VG{M) is a finite union 
of lines through the origin if and only if M is a direct sum of a projective and a 
periodic module. 
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(ii) Vb(M, e M 2 ) = Vb(M,)uVfc(M2). 
(iii) VG{MX 0 M2) = VG{MX) n Vb(M2). 
(iv) If 0 —• Ml —> M2 —• M3 —̂  0 is a short exact sequence of finitely generated 

fcG-modules, then VciMi) C VblM?) U Vb(Mfc) whenever {i,j,k} = {1,2,3}. 
(v) Write Q{M) for the kernel of the projective cover of M. Then VG{f2{M)) = 

Vb(M). 
(vi) (Avrunin and Scott [11]) The map limVE;(M) -^ VG{M) induced by Quillen's 

map lim V£;(A:) —> VG{k) is an inseparable isogeny. 

(vii) If 0 7̂  C ̂  H^{G, k) is represented by a cocycle C • fi^{k) —> fc, write L^ for the 
kernel of (. Then V^G(^C) ^̂  ^^^ closed homogeneous hypersurface VG(C) given 
by regarding C as a polynomial function on VG{k). 

(viii) (Carlson's connectedness theorem [46]) If VG{M) = V\ UF2. where Vi and V2 are 
closed homogeneous subvarieties intersecting in the origin, then M decomposes 
as M\ 0 M2 with VG{M\) — V\ and VG^M-I) — V2. In particular, if M is 
indecomposable then VG[M) is (projectively) connected. 

It is worth remarking that it follows from (ii) and (vii) that every closed homogeneous 
subvariety of VG(k) is the variety of some finitely generated module; namely a tensor 
product of suitable L^'s. 

Recently (Benson, Carlson and Rickard [17], [18]), it has been realized that much of 
what is described in this section can be extended to infinitely generated modules. A kG-
module M is said to have complexity at most c if every map from a finitely generated 
fcG-module to M factors through a finitely generated module of complexity at most c. 
The complexity of a module is equal to the maximal complexity of a restriction to an 
elementary abelian subgroup, just as in the finitely generated case. 

Instead of a single variety, an infinitely generated module has a collection of vari-
eties. If M itself is finitely generated, then VG{M) consists of the closed homogeneous 
subvarieties of Vb(M), but for an infinitely generated module, Vc?(M) need not have 
a unique maximal element. Nonetheless, elements of V G ( M ) certainly have a maximal 
dimension, and this is equal to the complexity of M. 

14. Multiple complexes 

If M is a finitely generated A:G-module with the property that V G ( M ) is one dimensional, 
then we may choose an element 0 7̂  C ^ H^{G,k) (for some n > 0) satisfying 
VG{C) n VG{M) = {0}. Then L^ 0 M is projective, and so the exact sequence 

0 -> L^ 0 M -> 17"(A:) 0 M -> M -^ 0 

shows that i?'̂ (fc) 0 M is isomorphic to a direct sum of M with a projective module. 
It follows easily from Schanuel's lemma that Q^{k) 0 M is also isomorphic to a direct 
sum of f2^{M) with a projective module, and so M is a direct sum of a periodic and a 
projective module. It should be mentioned that this is not the original proof of Eisenbud's 
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theorem [57], but it is the one which generalizes to a "multiple periodicity" theorem for 
arbitrary finitely generated modules (Benson and Carlson [14]). 

We begin with a construction. If C ^ H^{G, k), we form the pushout 

0 

i 

h = 
i 

r2"(fc)-> 

i 
A; ^ 

i 
0 

0 

i 

Ĉ 

i 
Pn-\ 

i 
Pn-X/L^ 

I 
0 

i i 

Truncate the bottom row of this diagram by removing the copies of k at the beginning and 
the end. The resulting complex C^ has length n - 1. It has one dimension of homology 
in degrees zero and n - 1, and is otherwise exact. This complex may be spliced to itself 
infinitely often to form a periodic complex 

. P n - l / i c -^ ^ Po ^ P n - l A c ^ ^ Po -^ 0 

resolving the trivial module. All the modules except the copies of Pn-1 /L^ are projective. 

We write Cl°°^ for this complex. 
If M is a finitely generated fcG-module of complexity c, then the Noether normalization 

lemma implies that we can find a polynomial subring fc[Ci, • • •, Cc] Q H*{G, k) generated 
by homogeneous elements Ci € H'^^{G,k), which injects into Extj^^(M,M), and over 
which the latter is finitely generated as a module. Under these conditions, the module 

Pn , - i /Lc , 0 • • • 0 Pne-1 /i'Cc ^ ^ 

is projective, and so the complex 

is a "c-fold multiply periodic" projective resolution of M. It has the same polynomial 
rate of growth as the minimal resolution, though it is not in general minimal. 

In case M = k, the trivial module, the complexity is r = rp{G), the maximal rank 
of an elementary abelian p-subgroup of G. In this case, the elements Ci ? • • ? Cr are a 
homogeneous system of parameters for the cohomology ring. The complex 

C = Cc, 0 • • • 0 Cc, 
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may be thought of as a period hypercube for the above constructed resolution. It is a 
finite Poincare duality complex of projective modules, in the sense that it is homotopy 
equivalent to its graded dual, shifted in degree by 5 = X]i=i(^t ~ ^)-

A great deal of information about group cohomology may be obtained from the equiv-
ariant cohomology spectral sequence of the complex C: 

E f = Ext^^(i/ ,(C), A:) ^ i7P+^(Hom^G(C, A:)). 

For example, if the cohomology ring happens to be Cohen-Macaulay, then this spectral 
sequence is effectively the Koszul complex, and it converges to H*{G, k)/{(\,..., Cr). 
It follows that this finite quotient ring satisfies Poincar6 duality with dualizing degree s, 
which means that the Poincare series 

CXD 

PG{t) = ^dimk H^{G,k) 
i=o 

satisfies the functional equation 

15. Calculations 

In this section, we describe some of the calculations which have been carried out in finite 
group cohomology, and their theoretical impact. We begin with Quillen's calculation [95] 
of the cohomology of the finite general linear groups H*{GL{n, F^), F/), where q = p°' 
is a prime power, / 7̂  p is a prime. He showed that there is a map from BGL{n,Fq) 
to the homotopy fixed point set F9^ of the Adams operation ^^ : BU —> BU which 
induces an epimorphism in cohomology away from the prime p, and this enabled him 
to give explicit generators and relations for the mod / cohomology. He was not able to 
calculate the cohomology at the prime p (nobody since has managed this either), but 
he was able to show that as n gets larger, the cohomology in any particular degree is 
eventually zero. 

This calculation led him to the definition of the plus construction (see, for example, 
Gersten [64]), which is a procedure for killing a perfect normal subgroup of the fundamen-
tal group of a space by adding 2-cells and 3-cells, without altering the cohomology. He 
observed that there is a homotopy equivalence between BGL{oo, Fg)"*" (the perfect nor-
mal subgroup in this case is the derived subgroup of GL(00, Fg) = limn-.00 GL{n, ¥q)) 
and the homotopy fixed point set of ^^ on BU. He used this as one of the motivations 
for his definition of algebraic X-theory: if yl is a ring then the algebraic K-groups of A 
are defined by 

Ki{A) = iTi{BGL{oo,A)-^) {i ^ 1). 

Again, the plus construction is with respect to the derived subgroup of GI/(oo, A), which 
is the perfect subgroup E{A) generated by the elementary matrices, which differ from the 
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identity matrix in a single off-diagonal entry. The above calculation of the cohomology 
of the finite general linear groups then proves that 

iC2j - , (F , )=Z/ (q^^- l ) , i^2,(F,)=0. 

In general, the group K\ {A) is isomorphic to GL(oo, A)/E{A), and K2{A) is isomorphic 
ioH2{E{Alzy 

Analogous calculations have been made for the finite unitary, orthogonal and symplec-
tic groups by Fiedorowicz and Priddy [62], and for the Che valley groups of exceptional 
Lie type by Kleinerman [78]. 

Another example of the plus construction comes from the cohomology of the symmet-
ric groups. The homology of the infinite symmetric group 27oo = fim Sn was calculated 
by Nakaoka [91]. Based on this, together with work of Dyer andXashof [53], Priddy 
proved [92] that there is a canonical map BE^o x Z -^ Q'^S'^ = liml2''S''', induc-
ing isomorphisms in mod p and integral homology. The induced map {BEoo)^ x Z —> 
Qoogoo jg ̂ ^^^ ^ homotopy equivalence. Here, the plus construction is performed with re-
spect to the infinite alternating group, which is a perfect subgroup of index two. The exam-
ple of Quillen above splits off this one, essentially as the image of the J-homomorphism 
(away from p). 

In the case of a group G with perfect derived group, the plus construction BG^ 
with respect to the derived group is homotopy equivalent to the Bousfield-Kan 
Z-completion [36] T^BG. 

If G is a finite group, then the Bousfield-Kan Z-completion of BG is homotopy 
equivalent to the product of the Fp-completions, as p runs over the prime divisors of \G\. 
The fundamental group TTI {Fp)cx>BG is equal to G/0^{G)y the largest p-factor group of 
G, so 7r\ZooBG is the largest nilpotent quotient of G. It is an interesting question in 
general to ask what sort of spaces one obtains by looking at the loop spaces i7(Fp)oo^G. 
For example, when G is a perfect group with a cyclic Sylow p-subgroup P of order p^, 
then this space is the homotopy fiber of a self-map of degree p^ of a 2e - 1-sphere 
(Cohen [49]). Here, e = \NG{P) : CG{P)1 

A theorem of Kan and Thurston [77] says that given any topological space X, one can 
find a group G and a homology equivalence (p : BG -^ X (with arbitrary coefficients). 
The proof is constructive, but produces very large groups in general. Letting N denote 
the kernel of the epimorphism </>* : G -> TTI (X), it follows that iV is a perfect normal 
subgroup of G, and there is an induced weak homotopy equivalence from BG'^ (with 
respect to N) to X. 

Various other calculations should also be mentioned. Quillen [94] calculated the mod 
two cohomology of the extraspecial 2-groups. The analogous computation for odd primes 
still eludes us, though some progress has been made. A survey of work on the cohomology 
of extraspecial groups can be found in [15]. Rusin [99] has computed the mod two 
cohomology of all the groups of order 32. The cohomology of a number of the sporadic 
simple Mathieu groups at the prime two has been calculated: that of M\\ by Benson and 
Carlson [13], of M\2 by Adem, Maginnis and Milgram [4], and of M22 by Adem and 
Milgram [5]. 
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1. Introduction 

It was around 1880 that M.S. Lie created the notion of Lie group, then called topolog-
ical group. One of the motivations was to consider various geometries from the group-
theoretic view point. Roughly speaking, a Lie group is a manifold with group structure 
and locally it corresponds to a Lie algebra. At the beginning of this century E. Cartan 
and H. Weyl classified completely semi-simple Lie algebras and studied the properties 
of Lie groups in the large. In 1952 D. Montgomery and L. Zippin solved Hilbert's Fifth 
Problem affirmatively, namely that any locally Euclidean group is a Lie group. Thus one 
can define a Lie group as follows: 

DEFINITION. A Lie group G is a group which is also a smooth manifold such that the 
maps 

G xG -^ G, {g,h) y-^ gh and G -^ G, g ^ g~^ 

are smooth. 

A Lie group is compact or connected if the underlying manifold is compact or con-
nected. Two Lie groups are locally isomorphic if there exists a homeomorphism between 
two neighborhoods of the identities compatible with the product. 

A Lie group G is orientable as a manifold. In fact, an orientation at the identity can be 
translated to an arbitrary point by left translation. Quite similarly one can show that G is 
parallelizable ( ^ the tangent bundle of G is trivial). Therefore all the Stiefel-Whitney 
characteristic classes are trivial and in particular the Euler-Poincare characteristic x{G) 
(= the alternating sum of the Betti numbers) is zero. 

Now we recall the following 

THEOREM 1.1 (Cartan, Malcev and Iwasawa [109]). i4«y connected Lie group G is 
homeomorphic to the Cartesian product of a compact subgroup K and a subset which 
is homeomorphic with a Euclidean space W^: 

G^K xW, where dimG - dim Â  = n. 

Moreover the group K is a maximal compact subgroup, which is essentially unique', that 
is, all maximal compact subgroups are conjugate. 

REMARK. The theorem holds even when the number of connected components is finite. 

Thus from the homotopy theoretic view point it is sufficient to consider a compact Lie 
group. For example, G is connected if and only if K is connected; G is simply connected 
if and only if K is simply connected. 

Any abelian compact connected Lie group of dimension n is isomorphic to a torus 
T^ = 5^ X • • • X 5^ (n copies). 

DEFINITION. A subgroup T of G is a maximal torus, if it is 
(1) a subgroup which is a torus, such that 
(2) if T C C/ C G and [/ is a torus then T = U. 
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It is known that the maximal tori of a compact Lie group G are conjugate to each 
other by inner automorphisms. 

DEFINITION. The dimension of a maximal torus is the rank of G, 

NOTATION. N{T) = normalizer of a maximal torus T in G. 

The normalizer of T determines G itself; that is, 

THEOREM 1.2 (Curtis, Wiederhold and Williams [64]). Z /̂ d , G2 be compact con-
nected semi-simple Lie groups and let N\, iV2 be normalizers of maximal tori in them. 
Then G\ ^ G2 if and only if Nx ^ iV2. 

Let T be a maximal torus of G. 

DEFINITION. The Weyl group W{G) of G is the group of automorphisms of T which are 
the restrictions of inner automorphisms of G. (This is independent of the choice of T.) 

Note that the representation of W{G) as an automorphism group of T is faithful when 
G is connected. 

A maximal torus T has finite index in its normalizer N[T) and the quotient N(T)/T 
is a finite group. 

THEOREM L3. N{T)IT'^W{G). 

THEOREM L4. \W{G)\ = x{G/T). 

DEFINITION. A compact connected Lie group is called simple if it is non-abelian and 
has no proper closed normal subgroups of dimension > 0; it is called semi-simple if its 
center is finite. 

Compact connected Lie groups are locally isomorphic to direct products of tori and 
simple non-abelian Lie groups. Thus the classification problem of such groups reduces 
to that of simple groups. 

CLASSIFICATION THEOREM. The connected compact simple Lie groups are exactly the 
following: 

A „ ( n > 1) 

B„(n ^ 

C „ ( n ^ 

D „ ( n ^ 

G2 

F4 

E6 

E7 

Eg 

2) 

3) 

4) 

dim 

n{n -h 2) 

n(2n4- 1) 

n(2n4- 1) 

n{2n - 1) 

14 

52 

78 

133 

248 

linear group 

SU(n-hl) 

SO(2n-fl) 

Sp(n) 

SO(2n) 

universal cover 

Spin(2n-h 1) 

Spin(2n) 

center 

Zn-l-l 

Z2 

Z2 
Z2-Z2 

1 

1 

Z3 

Z2 
1 
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where Z2 • Z2 = Z4 if n is odd, = 'Li^'Li if n is even. The first four are called the 
classical groups and the last five are called the exceptional groups. 

REMARK. Ai ^ Bi ^ Ci, B2 = C2, A3 ^ D3 (D2 ^ Ai e Ai). 

NOTATION. PU(n-h 1), P0(2n-f 1), PSp(n), P0(2n) are the quotient groups of the linear 
groups by the centers, called the projective classical groups', similarly for PE6 and PE7. 

When n is even, the centre of Spin(2n) is Z2 0 Z2. Thus there are three central 
subgroups of order 2; the one gives S0(2n) and the other two give the two "semi-
spinor" groups, which are isomorphic to each other for all n, denoted Ss(2n). Note that 
Ss(4) = S0(3) X SU(2) '^ S0(4) and that Ss(8) ^ S0(8) by the triality principle. Let 
n > 4 be an even number. Baum and Browder [22] proved the following by showing that 
/f*(SO(2n);Z2) and //*(Ss(2n);Z2) are not isomorphic as algebras over the Steenrod 
algebra A2, although they are isomorphic as algebras. 

THEOREM 1.5. Let n> A be an even number Then S0(2n) and Ss(2n) are of different 
homotopy type. 

Further, using the classification and the results of Borel [30] they deduced the following 
from the cohomology structure of simple Lie groups. 

THEOREM 1.6. Let G and G' be connected simple Lie groups. Then G and G' have the 
same homotopy type if and only ifG and G' are isomorphic. 

REMARK. If the word "simple" is deleted, the theorem is false, as the examples SO(4) 
and Ss(4) = S0(3) x SU(2) show. 

In fact, they give many examples of this type; compact semi-simple Lie groups which 
are homeomorphic but are not isomorphic. 

On the other hand Scheerer [230] showed 

THEOREM 1.7. If two compact, connected Lie groups are homotopy equivalent, then they 
are locally isomorphic. 

COROLLARY 1.8. Two simply connected compact Lie groups are isomorphic if they are 
homotopy equivalent. 

Another observation is given by Toda [254]: 

THEOREM 1.9. Two simply connected compact semi-simple Lie groups are isomorphic to 
each other if and only if they have isomorphic homotopy groups for each dimension. 

One cannot replace the word "isomorphic homotopy groups" by "isomorphic cohomol-
ogy groups over the Steenrod algebra Ap'\ In fact, the 6 dimensional homotopy groups 
of G2 X Sp(2) and Spin(7) x SU(2) are Z3 and Z12 respectively, although they have 
isomorphic mod p cohomology over Ap. 

In concluding this section, we note that Hilbert's Fifth Problem has a negative solution 
in the homotopy category: there is a topological group of the homotopy type of the 
compact manifold Es which is not of the homotopy type of a Lie group. This example 
is constructed by Hilton and Roitberg [92]: Es is an 5^-bundle over S^ induced from 
Sp(2) by a map of degree 5 of S^ onto itself. 
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2. Cohomology 

In this section we collect cohomological results on compact Lie groups. 

2 . 1 . Rational cohomology 

First we recall the following 

THEOREM 2.1 (Hopf [97]). For a compact, connected simple Lie group G, we have 

H*{G;Q) ^ A{xu... ,x^), degx^ = Im - 1, 

where i = rankG and dimG = Yli degx^. 

DEFINITION, ( n i , . . . , ne) is called the type of G. 

The importance of the type of G is given by the following 

THEOREM 2.2. \W{G)\ = ni • • n^. 

The degrees of the simple groups are summarized below: 

An (3, 5, . . . , 2n-f 1), 

Bn (3, 7, . . . , 4 n - l ) , 

Cn (3, 7, . . . , 4 n - l ) , 

Dn (3, 7, . . . , 4 n - 5 , 2 n - l ) , 

G2 (3, 11), 

F4 (3, 11, 15, 23), 

E6 (3, 9, 11, 15, 17, 23), 

E7 (3, 11, 15, 19, 23, 27, 35), 

Eg (3, 15, 23, 27, 35, 39, 47, 59). 

2.2. Integral cohomology and torsion 

The classical Lie groups U(n), SU(n), Sp(n) have no torsion and so 

(2.3) i/*(U(n);Z)=^(xi,X3,. . . ,X2n-i), 

if*(SU(n);Z)=il(x3 , X5 , . . . , X2n—1 Jj 

/f*(Sp(n); Z)=yl(x3, X7, . . . , X4n-i); 

in particular 

(2.3)p i/*(U(n);Zp)=yl(xi,X3,... ,X2n-i), 

i/*(SU(n);Zp)=.l(x3 , X5 , . . . , X2n—1 ft 

H*{Sp{n); Zp)=il(x3, X7, . . . , X4n-1), 
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where the generators are chosen to be primitive, and for p> 2 

p''{x2i-\) = (z - 1 - a,a)x2i-i^2a(p-i) in if*(SU(n);Zp), 

p^(x4i-,) = (-l)^(P~^)/2(2i - 1 - a,a)x4i.,+2a(p-i) in ff*(Sp(n);Zp). 

Here (a, 6) = [(a -h 6)!]/(a!6!) with 0! = 1 for non-negative integers a, 6, and = 0 with 
either a or 6 < 0. 

The spinor group Spin(n) has no torsion forn < 6 and has only 2-torsion for n^l. 
The following results are due to Baum and Browder ([22]). 

THEOREM 2.4. (1) Let It be a subgroup of the center In of SU(n), and let p be a 
prime dividing L Let n ^ p^n', l = p^i\ where n' and (! are not divisible by p. Set 
G = SU(n)/Z£. If p ^ 2, or p = 2 and 5 > 1, then there exist generators Zi G 
H^'^\G;Zp), l^i^n.i^p' andy£ H'^{G;Zp) such that: 

(i) As an algebra 

H^{G;Zp) = Zp[y]/{y^')<S>A{zu...,Zpr,...,Zn), 

(ii) '^{zi) = Srszi 0 y*-^ + E5=2(i -J> i - J>j^ y'^^ for i > 2, 
where 6rs is the Kronecker delta, <f>{z\) = 0, (t){y) = 0, 

(iii) p'^Zi = {k,i-k- \)zij^k{p-x)y P\Zq = J/̂ , where q = p'"-\ 

Ifp = 2 and 5 = 1 , then we must modify the above by: 

(iO In (i), y = zl 
(ii') = (ii), 

(iiiO = (iii). 
(iv) In addition we have that Sq^^'^^ Zi = 0 unless A: = 0, r ^ 2, i = 2"*"̂  = g, and 

Sq'z, = ŷ  = f̂̂  = zf. 
(2) Let n be even, q — 2^ the largest power of 2 dividing n. Then in H*{FO{n); Z2) we 
may find generators v, u\,... ,Ug-_i,... ,Un-i, degv = 1, degtXi = z, such that: 

(i) As an algebra 

iJ*(PO(n);Z2) = Z2H/(i;^) 0 A{uu..., V i - • • .^n-i) , 

vv/ierig A indicates the simple system of generators, 
(ii) '4>{uk) = Ef=/(fc - hi)ui^v^-\ fc ^ 2, 

(iii) Sq-̂ iifc = (A: - jj)uk^j except when r '^ 3, j = I, k = 2^~^ - 1 m w/i/c/z case 
Sq^Um-i = î m + î "̂ , w/iere m = 2^~^ r ^ 3. 

(3) Let n be a positive integer, q = 2^ the largest power of 2 dividing n. Then in 
/f*(PSp(n);Z2) there are generators v,bi,b],... ,b4q-\,... ,64n-i> degi; = 1, degftj = 
i, such that: 

(i) As an algebra 

H* (PSp(n); Z2) = Z2M/(v^^) 0 .1(63,..., 64^-1, • • •, b^n-i), 
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(ii) ^(64^+3) = EtI (^ - '̂ 0«>4t+3 ^ v^^-^' for k^l, ~4>{hn) = 63 01^^ ^(63) = 0, 
(iii) Sq"*-̂  64̂ +3 = (A: - j,j)64fc+4j+3, Sq-̂  64̂ +3 = 0 r/j ^ Omod 4, w/z/̂ 5"5 r ̂  1, 

J = 1 am/ 4fc -f 3 = 2g - 1, m vvWc/i case Sc^U2q-\ = 1;̂ ,̂ i /r ̂  1. 

In the above, p^ is the Steenrod reduced power lip^l, while if p = 2, p^ = Sq^^. 

THEOREM 2.5 ([108]). (1) 

(i) /f*(Spin(n); Z2) = Z\(xi, 2; 3 < z < n, i 7̂  4 , 8 , . . . , 2^"*), 
where 2*~^_< n ̂  2*, degXt = i, degz = 2* - 1, Xi = 0 if i = 2^ or i ^ n, 

(ii) <;!>(xi) = 0, '^{z) = Yl 2̂t 0 X2j-i, 
i+j=2—> 

(iii) Sq^2:= X) 2:21X23-2t; 
l<t<2«-' 

(2) 

(i) if*(Ss(4m);Z2) = A{xi,z;3 ^ i < 4m,i ̂  4,8, • • • ,2^-^2^ - 1) (g) 
Z2[y]/{y'^''), where Am = T'odd, 2̂ "^ < 4m < 2^degXi = i,degz = 
V - l,degy_= \,Xi =0ifi = 2^ori^ 4m, 

(ii) (Piy) = 0, (l>{xi) = E (̂  - 2j,2/)2/2^ O Xi_2j + i • x̂  0 2/ ( M 2^ - 1), 
_ \<j<i/2 

H^) = E (^ J)y^'^2j 0 X2fc_ 1 4- E ^2iX2j 0 2/, 
t-|.j-ffc=2*-' 1+^=2"-^-1 

0<t<j 0<i<j 

( i i i )Sq^Z= E X2tX2»-2t + E 2/^X2iX2»-2t-2. 
l<i<2»-»-l l<i<2»-'-l 

The special orthogonal group SO(n) has only 2-torsion forn ^ 3; 

/f*(SO(n);Z2)=^(x, ,X2, . . . ,Xn-i) 

^Z2[xi,a:3,...,X2m-i]/(xr* | i = l , . . . , m ) , 

where m = [f ] and 5(1) is the smallest number such that 2*(*)(2f - 1) ^ n. One has 

Sq'*(xt) = {i-a,a)xi^a-

For p > 2, 

iif * (S0(2n); Zp) = ̂ (X3, X7,. . . , X4n-5, X2n-1), 

H*{SO{2n ~ l);Zp) = ^(x3,X7,... ,X4n-5). 

If we put 

SO-(n) = {Ae 0(n)|det>l = - 1 } 

which is homeomorphic to SO(n), then for any p 

//*(0(n);Zp) ^ //*(SO(n);Zp) 0if*(SO-(n);Zp). 



Section 2 Homotopy theory of Lie groups 959 

The exceptional Lie groups have p-torsions only for the following cases: 
G2 for 7? = 2; F4, E6, E7 for p = 2,3; Eg for p = 2,3,5. 

(2.6) H*(G2;Z2) = Z2[x3]l{x\)®A{xs) 
with all Xi primitive, where Sq x̂a = X5. 

(2.6)' if*(G2;Zp) = A{x^,xu)forp> 2 
with all Xi primitive, where p^x^ = x\\ forp = 5. 

(2.7) if*(F4;Z2) = Z2[X3]/(X^) 0 A(X5,X,5,X23) 
with all Xi primitive, where Sq^xs = X5 and Sq^xis = X23. 

(2.7)' H*{F4\ Z3) = Z3[X8]/(X|) 0 il(X3, X7, XI,, X15) 

with Xi primitive for i = 3,7,8 and 

<t>{xj) = xg 0 Xj-s for j=n, 15, 

where p^xz = X7,̂ X7 = xg, p^x\\ = X15. 

(2.7)" i/*(F4;Zp) = ^(x3,x„,x,5,X23)/^rp > 3 
with all Xi primitive, where p^x^ = xn, p^x\s = xij^forp = 5; p^xi — X15, p^xn = X23 
for p = l-^ p^x3 = X23 /<?r p = 11. 

(2.8) ff*(E6; Z2) = Z2[x3]/(x^) 0 yl(x5, X9, x,5, xn, X23) 
with Xi primitive for i = 3,5,9,17, and 

<j){xj) = X3 (g) Xj_6 /<:?'• 3 = 15,23, 

w/î r? Sq̂ X3 = X5, Sq'̂ xs = X9, Sq^xg = xn, Sq^xi5 = X23. 

(2.8)' H*{^^\Z3) = Z3[xg]/(x|) ® i4(x3,X7,X9,xii,X15,xn) 

wzYA Xi primitive for i = 3,7,8,9, anJ 

0(xj) = xs(SfXj^sfor j = 11,15,17, 

w/î re p̂ X3 = X7, /3x7 = xg, p^xn = X15. 

(2.8)" H*{Ee;Zp) = ^(x3,X9,xii,xi5,xi7,X23)/orp > 3 
with all Xi primitive, where p^x^ = xn, p*X9 = xn, p^xis = X23 forp = 5; p̂ X3 = X15, 
p^xu = X23 for p = l; p^x^ =X23 for p= 11. 

(2.9) H*{Er,I'2) = Z2[X3,X5,X9]/(X ,̂X ,̂X^) 0il(xi5,Xi7,X23,X27), 
with Xi primitive for i = 3,5,9,17 and 

0(xi5) = X5 0 X5 -h X9 0 X3, 
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(t>{^23) = X5 (g) 2:9 -f- Xi7 0 X3, 

H^n) = X9 0 X9 -f xi7 0 X5, 

where Sq̂ X3 = X5, Sq'̂ xs = X9, Sq̂ X9 = xn, Sq^xis = X23, Sq'*X23 = X27. 

(2.9)' i?*(E7; Z3) = Z3[x8]/(x^) ® il(x3, X7, xn, X15, X19,X27, X35) 
with Xi primitive for z = 3,7,8,19, and 

0(xj) =X8 0Xj_8 /or j = 11,15,27, 

<t>{^35) = iCg 0 2:27 — Xg 0 Xi9, 

where p^x^ = X7, Px^ = xg, p^xn = X15, p̂ X7 = X19, p^xis = X27, p^xis = £Xi9 {e = 
±1). 

(2.9)" -ff*(E7; Zp) = yl(x3, xn, X15, X19, X23, X27, X35) forp>3 
with all Xi primitivey where p̂ X3 = xn, p^x\s = X23, p^xi9 = X27, p̂ X27 = X35 for 
p = 5; p̂ X3 = xi5, p^xii = X23, p̂ X23 = X35 for p = l\ p^X3 = X23, P^xis = X35 for 
p = 11; p̂ X3 =X27, p^xii =X35 for p= 13; p*X3 =x35forp= 17. 

(2.10) ff*(E8;Z2) = Z2[x3,X5,X9,Xl5]/(x^^xf,X^,xf5) 0il(xi7,X23,X27,X29) 
with Xi primitive for i = 3,5,9,17, and 

(t>{x\5) = X3 0 X3 -f X5 0 X5 -h X3 0 X9, 

<t>{X23) = X3 0 X5 -f X5 0 X9 -f X3 0 Xn, 

0(2:27) = X3 0 X3 -f X9 0 X9 4- X5 0 Xi7, 

0(X29) = X5 0 X3 -f X9 0 X5 -h X3 0 Xi7, 

0(3:30) = X3 0 X3 4- X5 0 X5 + X3 0 X9, 

where Sq̂ X3 = X5, Sq'̂ xs = X9, Sq̂ X9 = xn, Sq^xi5 = X23, Sq'*X23 = X27, 
Sq X27 = X29. 

(2.10)' if*(E8;Z3) = Z3[x8,X2o]/(x|,X^o)^^(^3, 2:7, Xi5,Xi9,X27, 2:35, X39,X47) 
with Xi primitive for z = 3 ,7 ,8 ,19 ,20 , and 

0(Xi5) = X8 0X7, 

(t>{p^2i) = a:8 0 Xi9 H- X20 0 2:7, 

0(3^35) = X8 0 X27 ~ Xg 0 Xi9 + X20 0 a:i5 + X2oa:8 0 3:75 

0(2:39) = 2:20 0 Xi9, 

0(X47) = X8 0 X39 -h X20 0 X27 + X20X8 0 Xi9 — X20 0 2:7, 

where p*X3 = X7, /3x7 = xs, p^xis = €:xi9, i9xi9 = X20, ^ 2̂:35 = 6X39, p^X7 = X19, 
p^X8 = X20, P^xi5 = X27, p^X27 = -X39, p^X35 = X47 with 6 = ±\ simultaneously. 
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(2.10)'' H*{E%\Zs) = Ijs[xn]l{x\2) 0 A{x^,xu,^15,2:23,^27,2:35,2:39,X47) 
vv/fA Xt primitive for i = 3,11,12, tznd 

0(xj) = X12 0 Xj^n for j = 15,23, 

(/>(xfc) = 2x12 0 Xfc-12 + xfj <̂  Â;-24 far k = 27,35, 

(j){xt) = 3X12 0 2:̂ -12 + 3X̂ 2 0 Xi-2A + x\2 0 X̂ _36 /(?r ^ = 39, 47, 

wA r̂e p̂ X3 = Xii, ^Xii = X12, p^Xi5 = X23, p̂ X27 = X35, p̂ X39 = X47. 
(2.10)'" £r*(E8;Zp) = il(x3,Xi5,X23,0:27,2:35,X39,X47,X59)/c'rp > 5 
with all Xi primitive, where p^xj = X15, p*X23 = X35, p̂ X27 = X39, p̂ X35 = X47, 
p*X47 = a;59 far p = 1; p^x^ = X23, p^xis = X35, P̂ X27 = X47, ^̂ 3̂9 = X59 for 
p = 11; p̂ X3 = X27, p^xis = X39, P̂ X23 = X47, ^̂ 0:35 = X59 far p = 13; p̂ X3 = X35, 
p^xi5 = X47, P̂ X27 = X59 forp = 17; p̂ X3 = X39, p̂ X23 = xsgfarp = 19; p̂ X3 = X47, 
p*xi5 = X59 forp = 23; p̂ X3 = X59 for p = 29. 

REMARK. For each pair of the inclusions G2 C F4 C Ee C E7 C Eg the smaller group is 
totally nonhomologous to zero, mod 2, in the larger group. 

As is well known, among the exceptional groups, only E^ and E^ have the nontrivial 
centers (Z3 and Z2 respectively); the quotient groups are denoted by PE6 and PE7. 

(2.8)' ^*(PE6; Z3) = Z3[x2,xs]/(xl,x|) 0 yl(xi,X3,X7, X9, xn,X15), 
with Xi primitive for i = 1,2, and 

(/>(X3) = X2 0Xi, 

(̂ (X7) = X2 0X1, 

</>(x8) = X2 0 X 2 , 

0(X9) = X2 0 X7 — X2 0 X3 -I- X8 0 Xi -f X2 0 Xi, 

<t>{X\ 1) = X2 0 X9 — X2 0 X7 -f Xg 0 X3 — X2 0 X3 4- XgX2 0 Xi — X2 0 Xi, 

0(X15) = X2 0 X9 + Xg 0 X7 -h X2 0 X3 -f XgX2 0 Xi, 

where X2 = /9xi, X7 = p̂ X3, xg = /3x7, X15 = p^xn, p^xg = —X2. 

(2.8)" i/*(PE6; Zp) = i/*(E6; Zp) as Hopf algebras over Ap for p^3. 

(2.9)' iir*(PE7;Z2) = Z2[Xi,X5,X9]/(x|,X^,X^) 0yl(X6,Xi5,Xi7,X23,X27), 
with Xi primitive for i= 1,3,5,6,9,17, and 

0(xi5) = X6 0 X9 4- X5 0 X5, 

(t>{x23) = X9 0 X5 -f X6 0 Xi7, 

(t>{x2l) = X9 0 X9 + X5 0 X17. 

(2.9)" H* (PE7; Zp) = if* (E7; Zp) oj Hopf algebras over Ap for p^l. 
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2.3. K'theory 

First we recall Hodgkin*s theorem on the unitary iiT-theory of G with TTI {G) torsion-free. 

THEOREM 2.11 (Hodgkin [93]). Let G be a compact connected Lie group with ir\{G) 
torsion-free. Then 

(1) K*{G) is torsion free\ 
(2) K*{G) can be given the structure of a Hopf algebra over the integers^ graded 

byZ2\ 
(3) Regarded as a Hopf algebra, K*{G) is the exterior algebra on the module of 

primitive elements, which are of degree 1; 
(4) A unitary representation p: G -^ U(n), by composition with the inclusion U(n) C 

U, defines a homotopy class /3{p) in [G, U] = K^ (G). The module of primitive elements 
in K^{G) is exactly the module generated by all classes l3{p) of this type, 

(5) If G is semi-simple of rank £, and the £ basic representations are denoted pi 
(1 ^i ^ t)y then the classes /3{pi) form a basis for the above set of primitive elements; 
we can write 

K'{G) = A{p{pt),...,0{pi)). 

The assumption in the above theorem covers the case that G is semi-simple and simply 
connected. The proof makes use of the Atiyah-Hirzebruch spectral sequence, appealing 
to the classification of Lie groups. 

The proof without using classification is due to Araki [14] and Atiyah [19]. 

Now we consider the case when G is a compact, connected Lie group of rank i with 
finite fundamental group Zp = TTI (G) (p: prime). The Lie group G may be considered 
as the quotient group GQ/TT, where TT —• Go ̂  G is the universal covering of G. The 
inclusion i : TT —• Go induces a homomorphism i* : R{Go) —̂  R{'^) of complex 
representation rings. Then Held and Suter observed the following 

PROPOSITION 2.12. There are generators X\,... ,Xi^\,Xiof the exterior algebra K* (Go) 
and elements i^i,..., î ^-i, Si in K^ (G) such that 

(1) u*{i/i) = At for 1 ^ i < ^ - 1 and st = u^{\i) with u*{ei) = pXt\ 
(2) K*{G)llox^K*{G) = A{u'[vx\...,u\ut,x\u\et))', 

where u': K''{G) -^ K* {G)/TorsK" (G) is the natural projection; 
(3) the elements ^'i,..., ^'£-i, e£ generate an exterior algebra A{ui,..., i^e-i, st) in 

K*{G). 

Based on this they proved 

THEOREM 2.13 (Held and Suter [88]). Let 7ri(G) = Zp {p a prime) and £ = rankG. 
Then there exist elements î i, •»^e-\, ^t in K^ (G) such that 

K^{G)^{A{uu...,ue-uee)^T)/{ei^f) 
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as rings, where T = R{Zp)/i*{I{Go)) with /(Go) the augmentation ideal of R{Go) and 
f is the direct summand in T such that T = Z®f. 

As examples they computed explicitly K^iG) for G = PSp(n), PU(p), SO(n), Ss(4), 
PE6, PE7. 

Along the same line of proof, it is possible to compute K*{PU{n)) for an arbitrary n 
(see also [212]). These results were also obtained by Hodgkin [94]. 

As for the orthogonal iiT-theory KO{G) of a compact connected Lie group, we have 
Seymour's result [233] in which he determined the module structure of KO{G) with 
7ri((?) torsion free by first calculating Real K-theory KR*{G). The ring structure is 
mentioned in Crabb [62]. 

Among the cases where 7ri(G) is finite, Minami determined KO*{SO(n)) in [186], 
[187], [188], KO*{PEe) in [190] and KO*{VEn) in [189]. 

2.4. Morava K-theory 

Let K{nY{-) be Morava iC-theory with coefficients K{nY = Ijp[vn,v~^]. Note that 
JK'(1)*(~) is the (p - 1) component of the mod p if-theory ii'*(-; Zp). 

The key results needed to determine this are the following 

(2.14) Let X be a finite CW-complex. Then 
(1) if H*{X;Z) has no p-torsion, then the Atiyah-Hirzebruch spectral sequence col-

lapses for all n ^ 0; 
(2) if the Atiyah-Hirzebruch spectral sequence for K{n)*{X) collapses for some 

n^h so does that for K{n -h 1)*{X). 

We recall that the following is a list of the compact, simply connected, simple groups 
with p-torsion: 
(2.15) p = 2 G = G2,F4,E6,E7,E8,Spin(m)/or m ^ 7; 

P = 3 G = F4,E6,E7,E8; 

p = 5 G = Eg. 

We consider the odd and even cases separately: 

a) p: odd prime 

THEOREM 2.16 (Hunton [103] and Yagita [272]). Let p be an odd prime and n^l. The 
Atiyah-Hirzebruch spectral sequence for K{nY{G) collapses and there is a K{ny-
module isomorphism 

K{nY{G)^K{ny®H\G\Zp) 

except for the case K{2Y{G) with {G,p) = (Eg, 3). 
Here there is a K{2Y-module isomorphism 

K{2Y{Es) ^ K{2Y^A{{x3xlo})^Z3{xs]/{xl)<^A{xi5)^B, 
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with B = yl(a;7,a:i9,X27,X35,a;39,X47). 

b)p = 2. 

THEOREM 2.17 (Hunton [103]). Let n ^ 2. At p = 2, the Atiyah-Hirzebruch spectral 
sequence collapses for the following cases: n ^ 2 for G2,F4,E6; n ^ A for EyjEs-

The reader is referred to [103] for n = 2,3 with E7, Eg and for small n with Spin(m). 

2.5. Brown-Peterson cohomology 

Let BP*{-) be Brown-Peterson cohomology theory with coefficients BP* = 
'L(p)[v\,...] at a prime p. 

The following results are due to Yagita. 

THEOREM 2.18 ([274]). There are the following BP*-module isomorphisms for p =^ 2: 

(1) BP*(G2)^BP*{l,2a;3,x^X5}0J3P*{x^,x^X5}/(2x^ 4-^1x^x5) 

0BPV(2,i;O{x2}, 

(2) SP*(F4)^BP*(G2)0^(X,5,X23), 

(3) BP*(E6)^SP^(F4)0^(x9,xn). 

THEOREM 2.19 ([271]). There are the following BP*-algebra isomorphisms: 
(l)Fc?rp = 3, 

BP*(F4) ^ (BP*{l,2/3,y26} e5P*{yi9,2/23}/(3yi9 = vm^) 

eBP7(3,t;,)(8)Z3[x8]/(xi))(g)yl(x,,,xi5), 

and y3y23 = 3y26, yayiQ = 1̂ 1̂ 26, ViVj =0fori^3, j ^ 19,23, xsVi = 0. 
(2)Forp = 3, 

BP*(E6) ^ BP*(F4) 0 yl(X9, X17). 

(3) For p = 5, 

BP*(E8) ^ (BP*{1,2/3,2/62} eBP'{y5uy59}/{5y5i = viy59) 

0 BP*I{5, V\) 0 Z5[xi2]/(X^2)) <̂  ^(a:i5, X23, a;27, 2:35, X39, XAH), 

and y3y59 = 5̂ 62, VsVsi = 1̂2/62, 2/iyj = 0/or z 7«̂  3, j V 51,59, xnyi = 0. 

THEOREM 2.20 ([273]). (1) There is the following BP""-module isomorphism for p = 3: 

BP*(E7) ^ BP*(F4) 0 yl(x,9,a:27,X35) 

^ [J3P*{l,y3,y26} 05P*{2/,9,y23}/(32/i9 = vm^) 

0 P P V ( 3 , Vi ) [x8] / (x | ) ] (8) ̂ (Xi i , Xi5, Xi9, X27, X35). 
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(2) There is the following BP*-module isomorphism for p = 3: 

5P*(E8) ^ (T/i?i 0 FIR2) ® A(X27,X35,X39,X47), 

(1) T=BP*/{3) 0 [(Z3[x8]/(xl) 0 Z3[x2o]/(4o) ^ A{u2i) - {1} - {t/27a:ix2o}) 

®Z3{(x8,rr ,̂U27,tX27X8) (8) (iy43,lt;55)}], 
(2) iZi = Ideal(t;ia;8-̂ 22:205 '̂11^43-1^2^55,̂ 1^20?^2^60, vv/î re a,b,ce {xg,X20,^27}), 

(3) F=BP*{1, y23, f̂̂ l5, 2/59,1̂ 55, /̂̂ 43, 2/23, 5̂9, 2/23̂ 55, 2/23̂ 4̂3, 7̂4, 2/3, V^Vl^^Wil, 2/62, 2/85, 

2/81, 2/15, 2/38, lt̂ 34, 2/74, 2/97, 9̂3, 2/32/15, 2/41, 2/77, 2/lOo}, 

(4) i?2=Ideal(i;f2/23 - 3K;I5, 1̂ 1̂ 59 - 3ti;55,î y59 - 3K;43,t;ii/;43 ~ '̂2ty55, 

1̂2/23̂ 55 - 3574, Viy32/23 " 3l(;22, t̂ l2/85 " 3581,̂ 12/38 " 3t/;34,1̂ 12/97 " 3593)-

Let p be an odd prime and BP*(-;Zp) be mod p Brown-Peterson cohomology 
theory with coefficients BP*l{p) = Zp[t;i,z;2,...]. Observe that BP''{-;Zp) has a 
commutative associative multipHcation. 

First note that if H*{G;Z) is p-torsion free, then there is a BP*-algebra isomorphism 

5P*(G;Zp) ^ BP* 0ff*(G;Zp). 

Therefore, by (2.14), it suffices to determine BP*[G\ Zp) only for the following cases: 
p = 3 for G = F4,£5,E7,E8; p = 5 for G = E8. 

The following results are also due to Yagita. 

THEOREM 2.21 ([272]). (1) There are the following BP*-algebra isomorphisms: 
(i) 5P*(F4;Z3) ^ (PPV(3) 0 A{wi9) e PPV{3, t̂ i) ® (Z3[x8]/(x33) - {1})) 

(g)yl(X7,Xii,Xi5), 

(ii)BP*(E6;Z3)^BP*(F4;Z3)(8)^(x9,a:,7), 

(iii) BP*(E7; Z3) ^ BP*(F4;Z3) 0 A{xi9, xn, X35), 

(iv) BP*(E8;Z5)^(BPV(5) 0 A(7/;5i) 0BPV(5,t;i) 0 [M^x2]l{x\^) - {1})) 
0 i 4 ( x i 1, Xi5, X23, 2:27, 0:35, X39, X47), 

where wx^x^ = 0, t/^sixn = 0. 
(2) There is the following BP*-module isomorphism: 

{W) BP^{Es;Z3)^{BP^/{3){\,WX5.XV^4} ^ BP^/{3)[Z3{W55:W43,X20,XI^ 

0 Z 3 { l , X 8 , x | } ] / ( v i ? i ; 4 3 = V2W55,ViXs = V2X2Q,V\X2Q = 0 ) ) 

0 y l ( x 7 , Xi9, X27, X35, X39, X47). 

Moreover X\Q = 0, it;43X2o = 1̂ 55X8, wx^wss = v\w^4, WSS'^A^ = 0, w\sX2o = 0 and 
1̂̂55 2:20 = 0. 



966 M. Mimura Chapter 19 

3 . Homotopy groups 

3 .1 . Stable homotopy groups: Bott periodicity 

We denote by G one of U, SU, O, SO, Sp so that 

G(n) = U(n), SU(n), 0(n) , SO(n), Sp(n). 

By the correspondence G(n) ^ A ^^ A® I\ G G(n -f 1), we obtain a sequence of 
compact Hausdorff spaces 

G(l) C G(2) C • • • C G(n) C G(n -h 1) C • • •, 

where /„ is the identity matrix of G(n). 

DEFINITION. The group G = U n ^ ( ^ ) ^'^^ *^ ^^^^ topology is called the infinite 
dimensional classical group {infinite dimensional unitary, special unitary, orthogonal 
special orthogonal symplectic group, respectively). 

The inclusion H(n) C G(n) means one of the following cases: 

SO(n) C SU(n) C U(n) C Sp(n); SO(n) C 0(n) C U(n). 

Then we have H(n) = G(n) D H(n -f 1) for the natural inclusions 

H(n) = H(n) x 1 C H(n -h 1), G{n) = G(n) x 1 C G(n -h 1), 

and hence the natural maps G(n)/H(n) -* G(n -h 1)/H(n -h 1) are injections. Thus 
G(n)/H(n) can be regarded as a closed subspace of G{n 4- 1)/H(n -h 1) through the 
above map, since it is a compact Hausdorff space. 

DEFlNmON. The space \J^G{n)lY{{n) with the weak topology is called the quotient 
space of G by H, denoted G/H = Un G(n)/H(n). 

Then the natural inclusion H(n) —• G{n) and projection G(n) —> G(n)/H(n) induce 
respectively the inclusion i : H —• G and the projection p : G —> G/H. 

Let r be the permutation of the set {1,2, . . . ,2m} defined by r(i) = 2z - 1 and 
r(z -h m) = 2i for 1 ^ 2 ̂  m and consider the permutation matrix Pr = (<5tr(j)) defined 
by it. Consider the following subgroups K(m) of G(2m): 

K(m) = r^(G(m) x G(m)) for G = SO, O, SU, U, Sp; 

K(m) = r^(r(H(m))) for G = O, SO with H = U, SU; 

K(m) = Tni(c'(H(m))) for G = U, SU with H = Sp, 

where r : U(m) —• S0(2m) and c' : Sp(m) -* SU(2m) are the natural inclusions. Then 
we have K(m) = G(2m) fl K(m -f 1), and hence 

G(2m)/K(m) C G(2m -h 2)/K(m -f 1). 
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DEFINITION. The space (J^ G(2m)/K(m) with the weak topology is called the quotient 
space of G by G X G or H and denoted as follows: 

BG = G/H = Um G(2m)/rm(G(m) x G(m)), where H ^ G x G; 
G/H = UmG(2m)/r^(r(H(m))) for 0 = 0, SO, where H ^ U,SU; 
G/H = U„,G(2m)/r^(c'(H(m))) for G = U, SU, where H ^ Sp. 

NOTATION. i2t(n) = e'̂ ^̂ /n © e-̂ *̂/n € SU(2n), 

^ / N / ^i#» \ (COS TTtln — Sin7rt /n \ „ ^ , ^ x 
5t(n) = r e"'/„ = . " " U SO(2n). 

\ SinTTWn C0S7ri/„ J 

DEFINITION. The three maps defined below are called Bott maps. 

(1) P{n) : U(2n)/U(n) x U(n) -^ f?SU(2n) defined by 
l3in){A}it) = ARt{n)A-^Rtin)-\ A G U(n); 

(2) /3sp(n) : Sp(n)/U(n) ^ r2Sp(n) defined by 
l3sfin){A}it) = ^(e'"/„)^-»(e'"/„)-', A G Sp(n); 

(3) A)(n) : 0(2n)/U(n) -• /2SO(2n) defined by 
l3o{n){A}{t) = AStin)A-^Stin)-\ A G 0(2n). 

They induce Hopf maps /8 : BU -> /2SU, /3sp : Sp/U -^ /2Sp, /3o : O/U -• l?SO. 

THEOREM 3.1. /3, /%p, ySo a'ie (weak) homotopy equivalences. 

DEFINITION. The four maps defined below are called Bott maps. 

(1) l3o/v{n) : U(2n)/Sp(n) -+ /2(SO{4n)/U(2n)) defined by 
l3o/v{n){A}it) = ATt{n)A-^Ttin)-\ A e U(2n); 

(2) Pv/o{n) : 0(2n)/0(n) x 0(n) -• /2(SU(2n)/SO(2n)) defined by 
/3u/oin){A}it) = ARtin)A-^Rtin)-\ A G 0(2n); 

(3) /3sp/u(n) = U(n)/SO(n) -» /2(Sp(n)/U(n)) defined by 
0SpMn){A}{t) = ^(e'J*/2/„)A-'(e-''Jt/2/„), ^ G U(n); 

(4) /3u/Sp(") : Sp(2n)/Sp(n) x Sp(n) ^ r2(SU(4n)/Sp(2n)) defined by 
0v/Sp{n){A}{t) = Ai^2(„)^-i^2(„)-i^ A g Sp(2n), 

where rt(n) = St/iin) ® 5t/2(n) and i^(n) = i?t(n) ® /it(n). 

They induce the following Hopf maps: 

Po/v •• U/Sp -* Q{SO/V), 0V/O •• BO ^ r2(SU/SO), 
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/3sp/u : U/SO ^ r2(Sp/U), /?u/sp : ^Sp ^ /2(SU/Sp). 

THEOREM 3.2. /3o/u» AJ/O» î sp/u* Aj/Sp '̂'•̂  {weak) homotopy equivalences. 

COROLLARY 3.3 (Bott periodicity). BO c:̂  /2'̂ SO, i3Sp ~ i?^Sp. 

From the fibrations G(n -f 1)/G(n) = ^̂ Ĉ +̂O-i one has 

7rfc(Sp)=7rfc(Sp(n)) for n ^ (A: - l) /4; 

7r/b(U)=7rfc(U(n)) for n ^ (fc + l) /2; 

7r^(0)=7rfc(0(n)) forn ^ A: -h 2. 

Their values are given as follows: 

(A: = 3,7 mod 8), 

TTfcCSp) ^ { Z2 (fc = 4,5 mod 8), 

(A; = 0,1,2,6 mod 8), 

(A: = 3,7 mod 8), 

TTfcCO) ^{12 (A: = 0,1 mod 8), 

0̂ (A: = 2,4,5,6 mod 8), 

(A: = 1 mod 2), 

(A; = 0 mod 2). 

The original proof of the periodicity by Bott made use of Morse theory. The proof 
using homotopy and cohomology groups was first given by Toda [249] for SU and then 
by Dyer and Lashof [68] for O and Sp. 

In fact, Toda discussed as follows. The CW-complex X = SU has the following 
properties: 

(1) it is simply connected, 
(2) it is a homotopy associative Hopf space, 
(3) its integral cohomology ring is an exterior algebra A{e\, 62,.. ), ê  G H^^^^, 
(4) there is a map / : 5CP°° -^ X such that the induced homomorphism /* of 

integral cohomology is epimorphic. 
Then he proved the following 

THEOREM 3.4. if a space X satisfies (1) ^ (4), then so does X' = Q{{QX,?>)), where 
{fix, 3) is a 1-connectivefibre space over nX. 

As an immediate corollary he obtained 

COROLLARY 3.5 (Borel-Hirzebruch). 7r2n(SU(n)) = In^Jor n^l. 
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The only results which can be proved without appealing to the classification are Theorems 
3.6-3.10 below. 

THEOREM 3.6 (Weyl). The fundamental group T^\{G) is a finite abelian group for G 
compact, connected, and semi-simple. 

THEOREM 3.7 (Cartan). 7r2(G) = 0. 

This follows also from the following 

THEOREM 3.8 (Bott [41]). The integral cohomology of OG has no torsion for simply 
connected G. 

THEOREM 3.9 (Bott). 7r3(CT) = Zfor G compact, connected, simple, and non-abelian. 

THEOREM 3.10 (Bott and Samelson [47]). Let G be a compact, connected, simply con-
nected, simple Lie group, T a maximal torus of G, W its universal covering and F the 
inverse image of the identity ofT in W. Let a be the dominant root with respect to some 
lexicographic order of the roots of G. Then 

7r4(G) S 
I Z // the hyperplane a = 1 contains a point of T, 

10 if the hyperplane a = 1 contains no point of F. 

The higher homotopy groups of G can be obtained by appealing to the classification and 
using the homotopy exact sequence associated with the appropriate bundles involving G. 

We list some of the results: 

•Ki{G) = <Z2 

0 

7r2(G) = 0, 

- E 

{G = \3(n)forn^ l,SO(2)), 

(G = SO{n)for n ^ 3), 

{the other G), 

(G = S0(4)), 

(G ^ S0(4)), 

MG) ^ I 

{%2®l2 (G = S0(4), Spin(4)), 

Z2 (G = Sp(n), SU(2), S0(3), S0(5), Spin(3), Spin(5)), 

0 (G = SU(n)/or n ^ 3, SO(n)/or n > 6), 

0 (G = G2,F4,E6,E7,E8), 
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TTslG) S { 

0 

(G = SO(4),Spin(4)), 

(G = Sp(n), SU(2), S0(3), SO(5), Spin(3), Spin(5)), 

(G = SU(n)/or n > 3, S0(6), Spin(6)), 

(G = SO(n), Spin(n)/or n ^ 7, G2, F4, Ee, E7, Eg). 

G\A: 

Sp(l) 

Sp(2) 

Sp(3) 

Sp(4) 

SU(2) 

SU(3) 

SU(4) 

SU(5) 

SU(6) 

SU(7) 

SU(8) 

SO(5) 

S0(6) 

S0(7) 

S0(8) 

SO(9) 

SO(IO) 

SO(ll) 

S0(12) 

SO(13) 

SO(14) 

S0(15) 

S0(16) 

S0(17) 

G2 

F4 

E6 

E7 

Es 

6 

12 

0 

0 

0 

12 

6 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 
0 

0 
0 

0 
0 

0 

0 

3 

0 

0 

0 

0 

7 

2 

00 

00 

00 

2 

0 

00 

00 

00 

00 

00 

cx> 

00 

CX) 

00-foe 

00 

00 

00 

00 

00 

00 

00 

00 

00 

0 

0 

0 

0 

0 

8 

2 

0 

0 

0 

2 

12 

24 

0 

0 

0 

0 

0 

24 

2' 
2' 
2' 
2 
2 

2 
2 

2 

2 

2 

2 

2 

2 

2 

0 

0 

9 

3 

0 

0 

0 

3 

3 

2 

(X) 

00 

00 

00 

0 

2 

2' 
2' 
2' 

cx)-l-2 

2 

2 
2 

2 
2 

2 

2 

6 

2 

00 

0 

0 

TTfc 

10 

15 

120 

0 

0 

15 

30 

120 + 2 

120 

0 

0 

0 

120 

120-f 2 

8 

24 + 8 

8 
4 

2 

0 
0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

(G) for A: ̂  6 

11 

2 

2 

00 

00 

2 

4 

4 

0 

CX) 

00 

00 

2 

4 

cx) + 2 

(X) + 2 

00 + 2 

00 

00 

00 + 00 

00 

00 

00 

00 

00 

00 + 2 

00 + 2 

00 

00 

0 

12 

2' 
2' 
2 
2 
2' 
60 

60 

360 

720 
0 

0 

2' 
60 

0 

0 

0 
12 

2 

2' 
2 
0 
0 

0 

0 

0 

0 

12 

2 

0 

13 

12 + 3 

4 + 2 

2 

2 

12 + 3 

6 

4 

4 

2 

00 

00 

4 + 2 

4 

2 
2̂  

2 
2 

2̂  

2' 
2 
00 

0 

0 

0 

0 

0 

0 

2 

0 

14 

84+ 2̂  

1680 

10080 

0 
84 +2^ 

84 + 2 

1680 + 2 

1680 

5040 + 2 

5040 

0 

1680 

1680 + 2 

2520 + 8 + 2 

2520 +120 + 8 + 2 

8 + 2 

8 

8 

24 + 4 

8 

4 
2 

0 

0 

168 + 2 

2 

0 

0 

0 

15 

2' 
2 
2 
00 

2' 
36 

72 + 2 

6 

6 

0 

00 

2 

72 + 2 

2' 
2' 

00 + 2^ 

00+ 2^ 

00 + 2 

00 + 2 

00 + 2 

00 

00 

00 + 00 

00 

2 

00 

00 

00 

00 

Here oo denotes Z, the integer n means Zn, and 2^ means 2 H f- 2 (n times). 

For the metastable case one has ([161], [163], [174], [249]): 

7r2n(SU(n))^n!. 
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7r2n+2 

7r2n+3' 

^2n+5 

^2n+6 

^4nH-2 

7r4n4-3 

^4n-M 

^4n+5 

7r4n+6 

^4n+7 

^4n+8 

For 7rn+t(S0 

SU(n)) ^ 

SU(n)) ^ 

SU(n)) ^ 

SU(n)) ^ 
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\2 (n is even), 

[0 (n is odd). 

{n-{- 1)! + 2 (n is even ,n ^ 4), 

^(n+1)1/2 (n is odd). 
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(24, n) (n is even), 

(24,n + 3)/2 (n is odd). 

(n + 2)!(24,n)/48 (n is even,n ^ 4), 

(n + 2) !(24, n + 3)/24 (n is odd). 

SU(n))S7r2„+5(U(n + l)). 

7r2„+6(U(n+l)) (n = 2 , 3 m o d 4 , n ^ 3 ) , 
SU(n)) S 

.7r2n+6(U(n+l)) + 2 (n = 0,1 mod 4). 

S p ( „ ) ) ^ / ( 2 " + l ) ' (" 
*̂^ ^̂  \ 2 ( 2 n + l ) ! (n 

is even), 

is odd). 

Sp(n)) S 2. 

Sp(n)) S 

Sp(n)) S 

Sp(n)) 

2-1-2 (n is even), 

!2 (n is odd). 

f (24, n-I-2)-1-2 (n is even), 

[(24,n-h2) (n is odd). 

^(2n -f 3)!(24,n -f 2)/12 (n is even), 

[ (2n -h 3)!(24, n -h 2)/24 (n is odd). 

Sp(n))^2. 

Sp(n)) ^ 2 + 2. 

n)) we use the following isomorphism forn ^ 16 and 3 ^ z ^ - 1 due 
to Barratt and Mahowald [21]: 

7rn+t(S0(n)) ^ 7rn+i(0) e7rn+i+i(V;+3+n,i+3(K)). 
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For further results on the unstable homotopy groups of G we refer to [95], [105], 
[106], [123], [130], [155], [175], [178], [192], [199], [200], [207]. 

4. Localization and mod p decomposition 

Localization is a very strong tool in homotopy theory. In particular, it is quite effective 
in pursuing the problem of the mod p decomposability of simple Lie groups. 

To some extent this problem has been apparent since Serre introduced the class C 
theory of abelian groups. For example, Hopf's Theorem 2.1 can be interpreted as 

p -••.•*• 

where p = 0, that is, G is rationally equivalent to the product of odd dimensional 
spheres. When G is of low rank, Serre [232] (for classical groups) and Rumpel [148] 
(for exceptional groups) proved that it is valid for p a prime. Then Harris [82], [83] 
and Kumpel [149] gave mod p decompositions of Lie groups of a somewhat different 
type. Mimura and Toda [180] and Oka [204] obtained mod p decompositions of Lie 
groups of moderate rank. But the ultimate result was Nishida's mod p decompositions 
of U(n) and Sp(n) ([196] and [184]). He constructed spaces which are components in 
a mod p decomposition of U(n) by making use of two maps, one a loop product of 
OB\J{n) = U(n) and the other an unstable Adams operation ip^ : BlJ{n) -^ BlJ{n) 
defined by Sullivan [244]. Using them he decomposed U(n) into the product of p - 1 
spaces in the mod p sense. The corresponding results for exceptional Lie groups, when 
they are p-torsion free, were obtained by Mimura and Toda [184] by an ad-hoc method 
using obstruction theory based on a hard calculation of homotopy groups. Wilkerson 
[267] gave a universal result which extends Nishida's method so that it includes the 
results of Mimura and Toda. By making use of algebraic geometry he constructed a map 
'ijj^ : BG —> BG for any compact connected semi-simple Lie group G and proved the 
following 

THEOREM 4.1 (Wilkerson [267]). / / G is a compact connected semi-simple Lie group, 
there exists an *'unstable'' Adams operation ip^ : BGp-p —> BGp-p with the property 
that i/jP* \H'^'^{BGp-p\ Q) = p " . Id. Here BGp-p denotes the localization of BG away 
from the prime p. 

COROLLARY 4.2. If W{G) is the Weyl group of G and p does not divide the order of 
W{G)y then there exists ip^ : BG -* BG with the above property. 

The following is a generalization of Nishida's result: 

THEOREM 4.3. Let G be a finite Hopf space. Suppose that there exists a map ^ : G —^ G 
such that $*|(3/f2n-i (gf. Q) =qn. Id for all n > 0. 

If q is a primitive (p - \)-st root of unity mod p, and H^{G;Z) has no p-torsion, then 
G is p-equivalent to YlXi{G) where the type {2i\ - 1 , . . . ,2zj - 1) of Xi{G) has the 
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property that ii = • • • = ij = i mod (p - 1) and the product is taken over all residue 
classes mod (p - 1). 

For a Lie group G, one can take ^ = Oip^ by Theorem 4.1 and so one has 

COROLLARY 4.4. Let G be a compact connected simple Lie group such that H»{G;I>) 
has no p-torsion. Then G is p-equivalent to a product of Hopf spaces Xi{G) where each 
Xi{G) is indecomposable modp and the type {lit - l,---,2ij - 1) of Xi{G) has the 
property that i\ = • • • = ij = i mod (p — 1). 

EXAMPLE. The exceptional Lie groups when localized at p split as indicated below. 

G2 p = 3 52(3,11), 

p = 5 B(3 , l l ) , 

p > 5 S^xS". 

F4 p = 5 B(3,11) X 5(15,23), 

p = 7 5(3,15) x B ( l 1,23), 

p = l l 5(3,23) X 5 " x 5 ' ^ 

p > l l 53 X 5 " X 5'5 X 523. 

Eft p = 5 F4 X 5 ( 9 , 1 7 ) , 

p > 5 F4 X 5^ X S". 

E7 p = 5 5(3,11,19,27,35) X 5(15,23), 

p = 7 5(3,15,27) X 5(11,23,35) X 5", 

p = 11 5(3,23) X 5(15,35) x 5 " x 5'^ x 5" , 

p = 13 5(3,27) X 5(11,35) x 5'^ x 5 " x S^, 
p=n 5 ( 3 , 3 5 ) x 5 " x 5 > 5 x 5 ' ^ X 5^^x527^ 

p > 1 7 53 X 5 " X 5'5 X 5'9 X 525 X 527 X 5̂ 5 

Eg p = 7 5(3,15,27,39) X 5(23,35,47,59), 

p = 11 5(3,23) X 5(15,35) x 5(27,47) x 5(39,59) 

p = 13 5(3,27) x 5(15,39) x 5(23,47) x 5(35,59) 

p = 17 5(3,35) X 5(15,47) x 5(27,59) x S^^ x 5^' 

p = 19 5(3,39) X 5(23,59) x 5'^ x 5̂ 7 x 5 " x 5*'' 

p = 23 5(3,47) X 5(15,59) x S^^ x 5'̂ :' x S^^ x S^^ 

p = 29 5(3,59) X 5'5 x S^ x 5 " x S^^ x S^^ x 5̂ ^ 

p > 29 53 X 5'5 X 525 X 527 X 5̂ 5 X 5^' x 5"'' x 5'' . 

Here each space 5(2ni + l , . . . , 2nr + 1) is built up from fibrations involving 
p-local spheres of the indicated dimensions, and is equivalent to a direct factor of 
the p-localization of SU(nr + l)/SU(ni). The attaching map of the middle cell of 
5(2n + l ,2n + 2p - 1) is ai G 7r2„+2p-2(S'2"+'). The only factor not of this type, 
labeled 52(3,11), is a sphere bundle with attaching map az, and is not a direct factor in 
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the 3-localization of a quotient of SU's. Here the at are the standard elements of order 
pin 7r2(p_i)t_i(5^). 

One advantage of Wilkerson's argument is that Theorem 4.3 is still applicable, even 
when if*(G;Z) has p-torsion, if it can be verified that 

He obtained 

PROPOSITION 4.5. (1) E6^Xi(E6) x X2(E6), 

where /f*(Xi(E6);Z3) = A{x9,x^^), 

H*{X2{Ee);Z3) = Z3[x8]/(x|) 0 ^(^3,X7,x,i,xjs). 
(2)E8:^Xo(E8)xX2(E8), 

where if*(Xo(E8);Z5) = yl(xi5,X23,2:39,0:47), 

H*(X2(E8);Z5) = Z5[x,2]/(xf2) 0^(X3,X„,X27,X35). 

REMARK. (1) Statement (1) was previously obtained by Harris [83], who showed 

E6Cî F4 XE6/F4. 
3 

(2) Gon9alves [79] showed that Xo(E8) is indecomposable. 

5. Homotopy commutativity, normality and nilpotency 

When X is a finite homotopy associative Hopf space, say a topological group, the functor 
[-, X] takes its values in the category of groups. So we are interested in when this functor 
takes its values in various subcategories of groups. 

EXAMPLE. X is homotopy commutative if and only if [Y,X] is abelian for any Y, 

5.1. Homotopy commutativity 

Let G be a topological group and H a subgroup of G. 

DEFINITION. H is homotopy commutative in G if f c:=^ f : H X H -^ G, where / and 
f are defined by 

/(x,y)=^xy = f(y,x), x,y G H. 

This is the case when G is pathwise connected and H is conjugate to a subgroup 
whose elements commute with those of H. 
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When considering the standard embeddings G(n) C G{m), m > n, where G = SO 
for n > 3, G = U for n ^ 2, G = Sp for n ^ 1, the elements of G(n) commute with 
those of appropriate conjugate subgroups and hence G(n) is homotopy commutative in 
G(2n). 

On the other hand, James and Thomas [118] showed 

(5.1) G(n) is not homotopy commutative in G(2n - \)for G = U and Sp. 

The analogous statement is not true for G = SO, since S0(4) is homotopy commutative 
in S0(7). However they showed (see also [53]) 

(5.2) SO(n) is not homotopy commutative in S0(2n - r), where r = 2 for n odd and 
r = 4 for n even. 

Furthermore they showed 

(5.3) There exists no classical Lie group which is homotopy commutative but not com-
mutative. 

DEFINITION. A topological group is said to be homotopy commutative if it is homotopy 
commutative in itself. 

EXAMPLE. There exist homotopy commutative groups, such as the stable (infinite dimen-
sional) classical groups, which are not commutative. 

The question of the homotopy commutativity of a compact Lie group has a long 
history. First, Araki, James and Thomas ([15]) showed 

(5.4) A compact connected Lie group is homotopy commutative only if it is commutative. 

(5.5) If a Lie group is homotopy commutative, then its maximal compact connected 
subgroup is commutative. 

On the other hand, Browder ([53]) showed 

(5.6) A Lie group which has 2-torsion in its homology {such as SO(n), Spin(n), the 
exceptional groups and all projective groups except PU(n), n odd) does not admit a 
homotopy commutative Hopf structure. 

Then James and Thomas ([121]) showed 

(5.7) Let G be a countable connected CW-complex with finitely generated total singular 
homology. If G is a homotopy commutative topological group, then G has the homotopy 
type of a torus. In particular, ifG is simply connected, as well as homotopy commutative, 
then G is contractible. 

On the other hand James ([112]) obtained 

(5.8) The underlying space of a compact connected Lie group cannot support a homotopy 
commutative Hopf structures unless it is a torus. 

However a stronger result is proved by Hubbuck: 

THEOREM 5.9 ([100]). Let X be a noncontractible, connected finite complex which is a 
homotopy commutative Hopf space. Then X has the homotopy type of a torus. 
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5.2. Homotopy normality 

Let iif be a subgroup of a topological group G. Consider the commutator map 

C:GAH -^G^ c{g,h) = ghg-'^h~\ 

where GAH = GX H/G V if. The condition for H to be normal in G is that the image 
of c lies in H. So we make the following definition: 

DEFINITION (James). H is said to be homotopy normal in G if c can be deformed into 
H (<^ there exists a map ft.G AH -^G such that /o = c and /i{G AH) C H). 

An alternative definition is: 

DEFINITION (McCarty). H is said to be homotopy normal in G if there exists a homotopy 
ft: {GxH.HxH) -^ {G.H) such that /o(^,/i) = ^/i^"^ for g e G, h e H and 
/ , ( G x i f ) c i ? . 

REMARK. If /T is homotopy normal in the sense of McCarty, then H is homotopy normal 
in the sense of James, that is, if the subgroup H of G is not homotopy normal in the 
sense of James, then H cannot be homotopy normal in the sense of McCarty. 

EXAMPLE. S^ is homotopy normal in 5^ in the sense of James but not in the sense of 
McCarty. 

Obviously, if G is homotopy commutative, then every subgroup is homotopy normal 
in both senses. So the stable classical groups O, U, Sp contain examples of subgroups 
which are homotopy normal but not normal. 

If every inner automorphism of G is homotopic to the identity, then every finite 
subgroup of G is homotopy normal. 

EXAMPLE. G = 0(n), n: odd. 

As is easily seen, SU(n) is homotopy normal in U(n) for n ^ 2. In particular, 
Sp(l) = SU(2) is homotopy normal in U(2). 

NOTATION. G{n) = 0(n), U(n), Sp(n). 

Consider the standard inclusions: G(n) C G(n -f 1) C • •. 

(5.10) ([113]) Let n^ \ and r ^ 1. Exclude the real orthogonal case when n = 1 and 
r is even. Then G(n) is not homotopy normal in G(n -f r) in the sense of James. 

The exclusion is necessary since 0(1) is a finite subgroup of 0(n -f 1). 
James' method of proving this yields a similar result for SO(n), SU(n), Spin(n). 

(5.11) ([116]) (l)Ifn = 2orn^4, then U(n) is not homotopy normal in SO(2n) in 
the sense of McCarty. 
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{2)lfn^ 2, then Sp(n) is not homotopy normal in U(2n) in the sense of McCarty. 

(5.12) ([77]) U(3) is not homotopy normal in SO(6) in the sense of James. 

(5.13) ([166]) G(n) is not homotopy normal in G(n -f- 1) in the sense of McCarty, if 
n^2forG = 0,Spandifn = 2orn^4forG = U. 

(5.14) ([125]) If n ^ 2y then U(n) is not homotopy normal in Sp(n) in the sense of 
McCarty. 

Consider the following chain of compact, 1-connected, simple Lie groups: 

SU(3) C G2 C Spin(7) C Spin(8) C Spin(9) C F4 C £5 C E7 C Eg. 

(5.15) ([77]; see also [53]) Let G, H be any subgroups in this chain, with G D H. Then 
H is not homotopy normal in G in the sense of McCarty. 

5.3. Homotopy nilpotency 

Now we define the analogous notions of homotopy nilpotency and homotopy solvability 
of a finite homotopy associative Hopf space X in the obvious way. These properties can 
also be expressed in terms of the structure map of X. Let // and a be the Hopf structure 
(the multiplication) and the inverse map of X respectively. 

DEFINITION. The commutator map 02 is defined by the composite {^ji{^ x /i))(lA' x IA^ x 
a X a){Axxx)' XxX—^XxXxXxX—^XxXxXxX-^X. 

The iterated commutator maps Sn : X^" -^ X and Cn : X —̂  X are defined induc-
tively by Sn = C2(5n-i X Sn-i) and On = C2(cn-i X \x) respectively. 

Then Zabrodsky showed 

THEOREM 5.16 ([280], Lemma 2.6.1). A finite homotopy associative Hopf space X is 
(1) homotopy solvable if and only if Sn is null homotopic for sufficiently large n\ 
(2) homotopy nilpotent if and only if Cn is null homotopic for sufficiently large n. 

He also showed that the classical Lie groups SU(n), Sp(n) and SO(2n -h 1) are 
homotopy solvable. 

Recently Hopkins gave cohomological criteria: 

THEOREM 5.17 ([98]; see also [222]). Let X be a finite homotopy associative Hopf 
space. Then the following conditions are equivalent: 

{\) X is homotopy nilpotent, 

(2) MU Cn = Ofor sufficiently large n; 
— - • 

(3) For every prime p, BP Cn = Ofor sufficiently large n; 
(4) For every prime p and positive integer I, K{£)^{cn) = Ofor sufficiently large n. 
Here K{£) is the i-th Morava K-theory at the prime p. 
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Using this he showed that torsion free homotopy associative Hopf spaces are homotopy 
nilpotent; for example U(n) and Sp(n) are homotopy nilpotent. 

He even conjectured that all finite connected homotopy associative Hopf spaces are 
homotopy nilpotent. But Rao gave counter-examples by proving 

THEOREM 5.18 ([222]). SO(n) and Spin(n) are not homotopy nilpotent ifn ^ 7. (SO(3) 
and S0(4) are not homotopy nilpotent.) 

This is proved by showing the iterated commutator maps are nontrivial in a suitable 
Morava K-iheory. 

At the same time Yagita showed 

THEOREM 5.19 ([275]). Let G be a simply connected Lie group. Then for each prime p, 
the P'localization G^p) is homotopy nilpotent if and only if H*{G;Z) has no p-torsion. 

The proof consists of case by case analysis. 

6. Lustemik-Schnirelmann category 

Let X be a topological space and A a subspace of X. 

DEHNITION. The relative category of A in X, denoted catx^, is the smallest number 
n such that A can be covered by n open subsets each of which is contractible in X. If 
X = A, we simply denote cat X = catx^- This is the so called Lustemik-Schnirelmann 
category of X. 

THEOREM 6.1. When X is a compact differentiable manifold and f is a smooth real 
valued function X, we have '^{critical points of f} ^ CdXX. 

More precisely^ let Ak be the family of all subsets AofX such that catx^ ^ fc- Then 
inf sup f{x) is a critical value of f, if Ak is not empty. 

To enumerate cat G for a Lie group G, we introduce a notion of the cup-length. 

DEFINITION. The cup-length of X is the largest number n such that there are cohomology 
classes xi € H*{X\ R) satisfying xi • • • Xn 7«̂  0, where R is some coefficient ring. 

Then the following is due to Berstein and Ganea: 

PROPOSITION 6.2. Ifn is the cup-length, then catX ^ n -f 1. 

Of course the cohomology structure of a compact Lie group G gives the lower bound of 
cat G; for example, cat SU(n) ^ n. In particular we immediately see that cat SU(2) = 2, 
since SU(2) = S\ 

By making use of secondary cohomology operations induced by the diagonal mapping, 
Schweitzer showed that cat Sp(2) ^ 4 and hence 

THEOREM 6.3 ([231]). cat Sp(2) = 4. 
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Then Singhof showed cat SU(n) ^ n and hence 

THEOREM 6.4 ([234]). cat SU(n) = nand cat U(n) = n -f 1. 

In fact, he constructs n open contractible subsets Ai covering SU(n), namely 

Ai = {X e SU(n)| no eigenvalues of X is ^i}, 

where ^i, 1 ^ i ^ n, are different complex numbers with absolute value 1 such that 

He also showed the following by using Schweitzer's method. 

THEOREM 6.5 ([234]). cat Sp(n) ^ n + 2. 

7. The number of multiplications 

The underlying space of a compact Lie group has many multiplications (Hopf structures). 
In this section we will discuss such a multiplication. 

First we recall a definition due to Zassenhaus: 

DEHNITION. A group A is said to be of finite rank if there exists a chain of normal 
subgroups Ni : A = No D "• D Ni D Ni^\ D • • • D AT̂  = 1, for which each factor 
Ni/Ni^\ is either a periodic group or an infinite cyclic group. 

Note that the number r{A) of infinite cyclic factor groups Ni/Ni^\ is an invariant of 
the group A. 

DEFINITION. r{A) = the rank of A, 
When i4 is an abelian group, r{A) is the rank of A in the usual sense. 

It follows immediately from the definition of rank that r{A) = 0 if and only if A is 
periodic ( ^ every element has finite order). 

NOTATION. Pn{X) is the n-th Betti number of the space X. 7n(^) is the rank of the 
homotopy group 7rn(X). 

Consider the group [5y,X]. The following proposition due to Arkowitz and Curjel 
[17] determines the rank of [SY,X] in terms of the n-th Betti number of SY and the 
rank jn{X) of TTniX). 

PROPOSITION 7.1. Let Y be a I-connected finite complex. Then 

p{[SY,X])=Y,Pn{SYhn{X). 
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Let X be a homotopy associative Hopf space. Then the following lemma is a key 
result which provides a link between Proposition 7.1 and the number of multiplications 
of a Hopf space. 

LEMMA 7.2. The homotopy set [X A X, X] is in one to one correspondence with the set 
M{X) of homotopy classes of multiplications of X. 

Further we need 

DEFINFTION. A positive integer n is called a cup number relative to a sequence 
( m , . . . , rig) of positive integers if H^{K{Z,n]) x • • x K{Z, riq); Q) contains a non-
trivial cup product of two positive dimensional elements. 

Now suppose that X is an associative finite Hopf space such that 

H*{X;Q) ^ i l (x i , . . . ,Xg) , \xi\ =ni. 

Then we have 

THEOREM 7.3 (Arkowitz and Curjel [17]). X has an infinite number of nonhomotopic 
multiplications if and only if some Uj is a cup number relative to 

(n i , . . . ,ng ,n i , . . . ,ng ) . 

The proof is as follows. First we have 

[X AX,X]^[X/\ X, QBX] ^ [SX A X, BX], 

and hence 

p{[X A X, X]) = p{[SX A X, EX]) 

= Y^Pn{SXAXhn(BX) 

= 5]/3n-l(XAX)7n-lW. 

By combining this with Lemma 7.2 we see that M{X) is infinite if and only if 
Pn{X A X)jn{X) > 0 for some n. 

By (4.1) we know the integers n\,...,nq for a compact simple Lie group G and that 
Gc^S — S^^ X • • • X S^". It follows from the definition that n is a cup number relative 

0 
to ( m , . . . ,ng,ni, . ...Uq) if and only if i f^(5 A 5;Q) ^ 0. Thus we have 

THEOREM 7.4 ([17]). The following Lie groups have an infinite number of nonhomotopic 
multiplications: 

SO(10),SO(14),SO(n)/c?rn^ 17, SU{n) for n^ 6, Sp{n)forn^S, Ee, Eg. 
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All other groups have a finite number of multiplications. 

We list some concrete examples of the enumeration of M{G): 

EXAMPLE. (1) M(5') = [S^ AS\S^] = 'K2{S^) = 0. 

(2) Mis'") = [5^ A S\ 5 ]̂ = 7r6(5 )̂ ^ Z,2. 

(3) (Naylor [195].) There exist precisely 768 distinct homotopy classes of multiplica-
tions on S0(3). 

(4) (Mimura [176].) There exist precisely 2̂ ^ • 3^ • 5 • 7 am/ 2̂ ^ • 3 • 5̂  • 7 distinct 
homotopy classes of multiplications on SU(3) and Sp(2) respectively. 

8. Lie groups as framed manifolds 

Let G be a compact connected Lie group of dimension n. The tangent bundle of G 
can be trivialized by choosing a basis of the Lie algebra, which is the tangent space at 
the identity L(G), and by using left translation to give an isomorphism of the tangent 
space at any point with the tangent space L{G). Any trivialization of the tangent bundle 
induces a trivialization of the stable normal bundle (unique up to homotopy) and hence 
an element of the n-th framed cobordism group 1?]?. We apply the Pontryagin-Thom 
construction to the element to obtain an element of TT̂  depending only on the orientation 
of the basis and denote it by [G, a, L], where ot is the orientation of G and L indicates 
that we have used left translation. Replacing it by right translation we obtain another 
element [G,Q,i?]. Observe that 

[G,a,iZ] = [G,-a,L] = -[G,a,L]. 

From now on we fix the orientation and denote the element simply by [G,L]. It is 
straightforward to see that the elements [G, L] behave well with respect to product: 

[G,LG]X[H,LH] = [GXH,LG>CHI 

It is folklore that [5 ,̂1 ]̂ = r/ € Trf and [5^,L] = i/ E Trf, where 77 and v represent 
the Hopf elements. Hence we know [G, L] for any abelian group G. If G is non-abelian 
and contains a torus in the center, then there is a diffeomorphism of framed manifolds 
between (G, L) and (T, L) x {G/T, L) and thus the problem to determine the element 
[G, L], which was firstly proposed by Gershenson [78], may be reduced to the case where 
G is semi-simple. 

There are some results of a general nature: 

(8.1) (Becker and Schultz [23].) 2[SO(2n),L] = 0 and r7[SU(2n),L] = 0. 

(8.2) (Knapp [131], [133].) The p-primary component of [G, L] has BP-Adams filtration 
at least n, and at least n -f 2(p —l)ifp>3. 

(8.3) (Atiyah and Smith [20].) Let G be a non-abelian compact connected Lie group of 
rank > 1 and of dimension 4A: — 1. Assume further that the adjoint representation of 
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G lifts to Spin. Then e[G, L] = 0, where e : TT̂  —• Q/Z is the Adams e-invariant. In 
particular, this holds for simply connected Lie groups. 

Some other results are summarized in the following table ([20], [23], [131], [133], 
[240], [270]. 

rank 

i 

2 

3 

4 

G 
SU(2) 
SO(3) 

SU(3) 
Sp(2) 
S0(5) 

G2 
SO(4) 

SU(4) 
S0(6) 
Spin(7) 
S0(7) 
Sp(3) 

SU(5) 
Spin(9) 
SO(9) 
Sp(4) 

Spin(8) 
SO(8) 

F4 

dim 
~ 3 

8 
10 

14 
6 

15 

21 

24 
36 

28 

52 

{G,L] 
V 

V 

A (3) 
- A (3) 

K 

0 

Kt] 

0 
0 
0 

a^ +7iT) 

Tj'cxT) or 0 
0 
0 

0 
0 

< _ 
Z24 

Z2©Z2 

Z6 

Z2®Z2 

Z2 

Z480®Z2 

22 0 Z2 

Z 6 e Z 2 

Z6 

Z2 

Z3 ® 2-primary 

The best result so far is due to Ossa [211]: 

THEOREM 8.5. Let G be a compact connected Lie group. Then 

72[C?,L] = 0. 

Moreover, ifG is not locally isomorphic to a product ofEe, E7, Eg, then 

24[G,L] = 0. 

In fact he shows more: 

(8.4) 
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(8.6) In Theorem 8.5, the framing on G need not be left invariant: it is sufficient that the 
framing be invariant under a suitable subgroup S\ 

(8.7) The order of the homotopy element G -^ G/T in Tr^iG/T) is 
24 if the Lie algebra of G contains a simple factor of type An, Bn ? Cn, Dn, G2; 
72 if it contains a factor F4, £5, E7. 

(In the case where G is a product of groups Eg, he has only the estimate 360.) 

The idea of the proof is based on Knapp's approach [131], [133] via the 5^-transfer, 
using the classification theorem. 

The following is a list of books and papers related to the topology of Lie groups and 
their homotopy-theoretic study. It is by no means complete. Extensive bibliographies 
relating to the study of Hopf spaces may be found in [115], [238] and [280]. As for 
those relating to characteristic classes see, for example, [31] and [177]. 
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Section 1 Computing periodic homotopy groups 995 

1. Introduction 

In this paper, we present an account of the principal methods which have been used 
to compute the i;i-periodic homotopy groups of spheres and many compact simple Lie 
groups. The two main tools have been J-homology and the unstable Novikov spectral 
sequence (UNSS), and we shall strive to present all requisite background on both of 
these. 

The i;i-periodic homotopy groups of a space X, denoted t;j~^7r*(X;p), are a certain 
localization of the actual p-local homotopy groups TT* (^)(p). We shall drop the p from the 
notation except where it seems necessary. Very roughly, Vi~̂ 7r*(X) is a periodic version 
of the portion of 7r*(A') detectable by real and complex iiT-theory and their operations. It 
is the first of a hierarchy of theories, v~*7r*(X), which should account for all of 7r*(X). 
Each group vf Vt(^) is a direct summand of some actual group 'Ki^i{X), at least if X 
has an if-space exponent and v,~^7ri(X) is a finitely-generated abelian group, which is 
the case in all examples discussed here. 

The 1̂ 1-periodic homotopy groups are important because for spaces such as spheres 
and compact simple Lie groups they give a significant portion of the actual homotopy 
groups, and yet are often completely calculable. The goal of this paper is to explain how 
those calculations can be made. One might hope that these methods can be adapted to 
learning about t;n-periodic homotopy groups forn > 1. 

One application of vi-periodic homotopy groups is to obtain lower bounds for the 
exponents of spaces. The p-exponent of X is the largest e such that some homotopy 
group of X contains an element of order p^. We can frequently determine the largest 
p-torsion summand in Vj'"̂ 7r*(X). Such a summand must also exist in some 'ni{X), 
although we cannot usually specify which 7ri(X). Thus we obtain lower bounds for the 
p-exponents of spaces, which we conjecture to be sharp in many of the cases studied 
here. It is known to be sharp for ^̂ n-i-i j ^ ^ jg ^^j g^^ Corollaries 7.8 and 8.9 for 
estimates of the p-exponent of SU(n) when p is odd. 

Another application, which we will not discuss in this paper, is to James numbers, 
which are an outgrowth of work on vector fields in the 1950's. It is proved in [23] that, 
for sufficiently large values of the parameters, the unstable James numbers equal the 
stable James numbers, and these equal a certain value which had been conjectured by a 
number of workers. 

In Section 2, we present the definition and basic properties of the i;i-periodic homotopy 
groups. In Section 3, we describe the reduction of the calculation of the unstable groups 
i;f *7r*(52"+*) to the calculation of stable groups vf ^<(B^'*). Here B^^ is a space 
which will be defined in Section 3; when p = 2, it is the real projective space P̂ *̂ . Here 
we have begun the use, continued throughout the paper, of g as 2p - 2. The original proof 
of this result, 3.1, appeared in [40] and [56]; it involved delicate arguments involving 
the lambda algebra. We present a new proof, due to Langsetmo and Thompson, which 
involves completely different techniques, primarily /(T-theoretic. 

In Section 4, we explain how to compute J*(B^"), while in Section 5, we sketch 
the proof that if X is a spectrum, then vf V*(X) « v^^J^{X). Combining the results 
of Sections 3, 4, and 5 yields a nice complete result for i;,~V*(5 '̂̂ "^ )̂, which can be 
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summarized as 

and, if p is odd, 

_ r z/p"^"(̂ ''̂ p(°)+0 if i = ^a - 2 or ga - 1, 
\ 0 if i ^ - 1 or - 2 mod g. 

We will use Z/n and Zn interchangeably, and let î p(n) denote the exponent of p in n. 
The subscript p of '̂ will sometimes be omitted if it is clear from the context. The final 
result for T;j~̂ 7r*(5̂ "̂̂ )̂ when p = 2 is more complicated; see Theorem 4.2. 

In Section 6, we sketch the formation of the UNSS and its v\ -localization, and for 
gin-^\ ^g compute the entire z;i-localized UNSS and part of the unlocalized UNSS. In 
Section 7, we discuss the computation of the t;i-periodic UNSS and t;i-periodic homotopy 
groups in general for spherically resolved spaces and specifically for the special unitary 
groups SU(n). This is considerably easier at the odd primes than at the prime 2. The 
following key result of Bendersky ([4]) will be proved by observing that the homotopy-
theoretic calculation and UNSS calculation agree for S^'^'^^. 

THEOREM 1.1. Ifp is odd, and X is built by fibrations from finitely many odd-dimensional 
spheres, then v^^E2'^{X) = 0 in the v\-periodic UNSS unless s=lor2 and t is odd, 
in which case 

. . ( X ; p ) « ( ^ r ; ^ r W if as even, 
^ ^^ [v-^El^'-^^iX) ifiisodd. 

In Section 7 we also review the computation of J52(SU(n)) in [6] and combine it with 
Theorem 1.1 to obtain the following result, which was the main result of [23]. 

DEFINITION 1.2. Let i/p{m) denote the exponent of p in m, and define integers a{k^j) 
and ep{k,n) by 

and ep{k^n) = min{z/p(a(fc, j)) : n ^ j ^ k}. 

THEOREM 1.3. Ifp is odd, then vrW2k{SU{n)) « Z/p^p(^'^), and ?;j" V2fc-i(SU(n)) is 
an abelian group of order p^^^^'^', although not always cyclic. 

In Section 8, we illustrate the two principal methods used in computing vi-periodic 
homotopy groups of the exceptional Lie groups, focusing on Vi~^7r*(G2;5) for UNSS 
methods, and on î f ̂ 7r*(F4/G2; 2) for homotopy (7-homology) methods. We also discuss 
the recent thesis of Yang ([58]), which gives formulas more tractable than that of Defi-
nition 1.2 for the numbers ep{k, n) which appear in Theorem 1.3, provided n ^ p^ — p. 
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2. Definition of t;i-periodic homotopy groups 

In this section, we present the definition and basic properties of the t;i-periodic homo-
topy groups. We work toward the definition of V[^'K^{X) by recalling the definition of 
i;j"'7r*(X;Z/p^). Let M"(fc) denote the Moore space S'^~^ Ufec'̂ . The mod k homotopy 
group 7rn(X;Z/fc) is defined to be the set of homotopy classes [M'^[k),X]. With the 
prime p implicit, and g = 2(p - 1), let 

^(^\^ fp^'^Q if p i s odd, ^ . 

Let A : M"+*(^)(p^) -^ M^(p^) denote a map, as introduced by Adams in [1], which 
induces an isomorphism in iC-theory. Such a map exists provided n ^ 2e-l-3 ([28,2.11]). 
Then v^^ni{X;Z/p^) is defined to be 

dirlim [M'-^^'^^\p^),X], 

where the maps A are used to define the direct system. The map is what Hopkins and 
Smith would call a i;i-map, and they showed in [35] that any two t;n-niaps of a finite 
complex which admits such maps become homotopic after a finite number of iterations 
(of suspensions of the same map), and hence t;j~^7r*(X;Z/p^) does not depend upon the 
choice of the map A. Note that although vf ^ TT* (X; Z/p^) is a theory yielding information 
about the unstable homotopy groups of X, the maps A which define the direct system 
may be assumed to be stable maps, since the direct limit only cares about large values 
of z H- Ns{e). Note also that the groups v^^'Ki{X;Z/p^) are defined for all integers i 
and satisfy v^^ni{X\Z/p^) « v^^'Ki^s{e){X\'^/P^)' 

There is a canonical map p : M^{p^'^^) -+ M^{p^) which has degree p on the top 
cell, and degree 1 on the bottom cell. It satisfies the following compatibility with Adams 
maps. 

LEMMA 2.1 ([34, p. 633]). If A : M^+^(^)(p^) -^ M"(p^) and 

are v\-maps, then there exists k so that the following diagram commutes. 

M^(p^+^) - ^ M^(p^) 

Here p' = p unless p — 2 and e < 4, in which case p ' = 1. 
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Thus, after sufficient iteration of the Adams maps, there are morphisms p* between 
the direct systems used in defining vf V*(X;Z/p^) for varying e, and passing to direct 
limits, we obtain a direct system 

v;\4X-Z/p') ^ i;r^7r.(X;Z/p^+^) - ^ • • •. (2.2) 

The following definition was given in [28], following less satisfactory definitions in [30] 
and [23]. 

DEFINITION 2.2. For any space X and any integer i, 

v^^iri{X) = dirlim v^Wi^\{X;Z/p^), 
e 

using the direct system in (2.2). 

The reason for the use of the {i -f l)st mod-p^ periodic homotopy groups in defining the 
2-th (integral) periodic groups is that the maps p of Moore spaces have degree 1 on the 
bottom cells, but mod-p^ homotopy groups are indexed by the dimension of the top cell. 

The mod-p^ periodic homotopy groups have received more attention in the literature, 
especially when e = 1. For spaces with if-space exponents, there is a close relationship 
between the integral periodic groups and the mod-p^ groups, which we recall after giving 
the relevant definition. 

DEFINITION 2.3. A space X has //-space exponent p^ if for some positive integer L the 
p^-power map Q^X —> n^X is null-homotopic. 

By [20] and [36], spheres and compact Lie groups have if-space exponents. 

PROPOSITION 2.4. (i) [28, 1.7] IfX has H-space exponent p^, then there is a split short 
exact sequence 

0 -^ v-\i{X) -> t;,'Vi(X;Z/p^) ^ v:[\i-x{X) ^ 0. 

(ii) On the category of spaces with H-space exponents, there is a natural transforma-
tion 7r*(-)(p) -^ vf V^(-;p). 

(iii) If X has an H-space exponent, and v^^T:i{X) is a finitely generated abelian 
group, then t;j~^7ri(X) is a direct summand of'Ki^L{X)for some non-negative integer L. 

The proof of part ii utilizes the fibration 

map,(M"+^(p"),X) -^ fi^'X ^ /2^X, 

where map^(-,~) denotes the space of pointed maps. If the second map is null-
homotopic, then the first map admits a section s. The natural transformation is induced 
by 
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Techniques of [28] imply naturality of this construction. To prove part (iii), we note 
that the map s allows v^^'ni{X) to be written as dirlimfc7ri_^^5(e)(X), which is a direct 
summand of one of the groups in the direct system, provided the direct limit is finitely 
generated. 

If X is a spectrum, then V^^'K^{X) is defined in exactly the same way as for spaces, 
that is, as in Definition 2.2. If X is a space, then stable groups, i>j"V^(X), can be 
defined either as t;f V*(i7^X), where E°^X denotes the suspension spectrum of X, or 
as !;[" V*(QA'), where QX = Q°^E^X is the associated infinite loop space. 

3. The isomorphism i;fV*(52^+^) % vf V;J,2n-i(^^'') 

In this section, we sketch a new proof, due to Thompson and Langsetmo ([39, 4.2]), of 
the following crucial result. 

THEOREM 3.1. There is a map 

which induces an isomorphism in i>j" V*(- ) . 

Here QX = Q°^E^X, and J5̂ " is the gn-skeleton of thep-localization of the classifying 
space BEp of the symmetric group Ep on p letters. Note that if p = 2, then B^^ is 
the real projective space RP^^. The original proof, from [40] when p = 2 and [56] 
when p is odd, involved delicate arguments involving the lambda algebra and unstable 
Adams spectral sequences. We feel that the following argument, primarily iT-theoretic, 
will speak to a broader cross-section of readers. The following elementary result shows 
that it is enough to show that the map (3.1) induces an iso in i;i-periodic mod p homotopy. 

LEMMA 3.2. If a map X —^Y induces an isomorphism in vf V*(—; Z/p), then it induces 
an isomorphism in i;j~ * TT* (—; p). 

PROOF. There are cofibrations of Moore spaces which induce natural exact sequences 

^i;rVn(X;Z/p^) - ^ i;rVn(X;Z/p^+^)-^ 

v^'irn{X;Z/p) -> vY'7rn-i{X;Z/p^)-^ , 

Induction on e using the 5-lemma implies that there are isomorphisms 

v^\4X;Z/p') -> V^'TT^Y-Z/P^) 

for all e, compatible with the maps p* which define the direct system (2.2). The desired 
isomorphism of the direct limits is immediate. D 

The construction of the map (3.1) takes us far afield, and is not used elsewhere in 
the computations. For completeness, we wish to say something about it, but we will be 
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extremely sketchy. The map is due to Snaith. Work of many mathematicians, especially 
Peter May, is important in the construction. However, we shall just refer the reader 
to [37], where the proof of naturality of these maps is given, along with references to 
the earlier work. 

THEOREM 3.3. (i) There are maps 

which are compatible with respect to inclusion maps as n increases, and such that the 
adjoint map 

is the projection onto a summand in a decomposition of S^ fi^'^'^^ S^'^'^^ as a wedge of 
spectra. 

(ii) There is a map QS^""-^^ - ^ Qi:^'^'^^B^ri-\-\)q-\ whose fiber, T, satisfies 

SKETCH OF PROOF. Let Civ(A:) denote the space of ordered fc-tuples of disjoint little cubes 
in /^ . If X is a based space, let Ci^X denote the space of finite collections of disjoint 
little cubes of I^ labeled with points of X, More formally, 

where 

[(ci,...,Cifc),(a:i,...,Xifc«i,*)] ~ [(ci,...,Cfc_i),(xi,...,Xfc-i)]. 

There are natural maps, due to May, 

CivX -> Q^E^X, (3.2) 

which are weak equivalences if X is connected. 

The space C^X is filtered by defining TnSpNX) to be the subspace of m or fewer 
little labeled cubes. The successive quotients are defined by 

where Xl^' denotes the m-fold smash product. Snaith proved that if X is path-connected, 
there is a weak equivalence of suspension spectra 

E^^CNX - V r~Djv,mX. (3.3) 



Section 3 Computing periodic homotopy groups 1001 

Let AT = 2n -f 1 and X = S^. Stabilize the equivalence of (3.2), and project onto the 
summand of (3.3) with m = p to get 

The identification of C2n+i(p)/^p as the ng-skeleton of BEp after localization at p was 
obtained by Fred Cohen in [19, p. 246]. 

Note that (3.2) and (3.3) yield a map Q^E^X -^ QDN,mX. The map g of ii) is 
obtained from the case N = oo and X = 5̂ *̂"*"̂  as the composite 

Here we have used results of [45] for the last equivalence. 
The compatible maps Sn of 3.3(i) combine to yield a map 5' : QS^ —> QB^, and one 

can show that the right square commutes in the diagram of fibrations below. 

I' !•' I-
The map t then follows, and will induce an isomorphism in v^^7r^{—',Z/p), as asserted 
in Theorem 3.3(ii), once we know that s' does. Kahn and Priddy showed that there is an 
infinite loop map A : QB^ -^ QS^ such that A o s' induces an isomorphism in 7rj{-) 
for j > 0. It is easily verified using methods of the next two sections that the associated 
stable map B^ -> S^ induces an isomorphism in i;j"*7r*(-;Z/p). Hence so does 5'. D 

Throughout this section, let K^{-) denote mod p AT-homology, and M^ denote the 
mod p Moore space M^{p). The following two theorems, whose proofs occupy most of 
the rest of this section, imply that j : 5̂ ""*"̂  —̂  !F induces an iso in vj"^7r*(-;Z/p). 

THEOREM 3.4 ([16, 14.4]). If k ^ 2, and <f) : X -^ Y is a map of k-connected spaces 
such that Q^(j> is a K^-equivalence, then <t> induces an isomorphism in v^^'K^{—\Tj/p). 

THEOREM 3.5 ([39]). Let T be as in Theorem 3.3(ii). The map 5̂ ^̂ +̂  -^ Q5^^+* lifts 
to a map j : Ŝ ""*"̂  —• J^ such that fi^j is a K^-equivalence. 

The map j of Theorem 3.5 can be chosen so that t o Q^^'^^j = Sn, where t is the 
map in the proof of Theorem 3.3(ii) which induces the isomorphism in z;f^7r*(—;Z/p). 
Theorem 3.1 is now proved by applying Lemma 3.2 to Sn-

Bousfield localization is involved in the proof of Theorem 3.4 and several other topics 
later in the paper, and so we review the necessary material. If £J is a spectrum, then a 
space (or spectrum) X is E^4ocal if every JE*-equivalence Y ^W induces a bijection 
[W,X] —• [y^X]' The E^-localization of X is an -B*-local space (or spectrum) XE 
together with an JEJ*-equivalence X —• XE- The existence and uniqueness of these 
localizations were established in [18] and [17]. We will need the following result of 
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Bousfield, the proof of which is easily obtained using the ideas at the beginning of 
Section 5. 

THEOREM 3.6 ([18, 4.8]). A spectrum is K^'local if and only if its mod p homotopy 
groups are periodic under the action of the Adams map. 

We will omit the proof of Theorem 3.4, as it requires many peripheral ideas. Instead, 
we will sketch a proof of the following result, which, although weaker than 3.4, has the 
same flavor, and predated it. An alternate proof of Theorem 3.1 can be given by using 
Theorem 3.7 and strengthening Theorem 3.5 to show that K^{f2^j) is bijective. As the 
calculations for i?^ seem significandy more difficult than for i?^, we omit that approach. 

THEOREM 3.7 ([57]). Let p be an odd prime, and let X and Y be 3-connected spaces. 
Suppose that f : X -^Y is a map such that K^{Q^f) is an isomorphism for A: = 0, 1, 
2, and 3. Then f induces an isomorphism in i;j"^7r*(—;Z/p). 

SKETCH OF PROOF. If F —> £̂  -^ J3 is a principal fibration, there is a bar spectral sequence 
converging to K^{B) with E^^ « Jorfl^{K^E,K^). (See [55] for a discussion of this 
spectral sequence.) 

Applied to the commutative diagram of principal fiber sequences 

n^X - ^ Q^X -^map,(M^X) 

fi^Y - ^ I2^y-^map,(M^y) 

the spectral sequence and the hypothesis of the theorem imply that / ' induces an iso-
morphism in K^{'-). Hence there is an equivalence of the iiT*-localizations 

(map,(M^X))^ ^ (map.(M3,y))^. 

Let V{X) denote the mapping telescope of 

map, (M^A-) ^ map,(M^+9,X) ^ •••. 

Then V{X) is iC«-local, since it is i?°° of a periodic spectrum whicli is i<r,-local by 
Tiieorem 3.6. This implies that there are maps i' making the following diagram commute. 

map.(M3,X)-- (mapJM3,X))K - ^ V{X) 

map.(M3,y)-.(map.(MM'))K - ^ V{Y) 

Since Dj"'7r,(X;Z/p) w 7r,(V(X);Z/p), the desired isomorphism is a consequence of 
the following construction of an inverse to 

VU)* •• 7r.(V(X);Z/p) -» n.{V{Y);Z/p). 
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An element a G 7rfc(y(y);Z/p) can be represented by a map 

M'^~>map,(M^+^P^y), 

or, adjointing, by a map M '̂̂ ^̂ ^ -^ map„(M^, F). Here some care is required to see that 
we can switch the Moore space factor on which the map A is performed. The element 
which corresponds to a is the composite 

M -̂fgpj _^ j„ap^ (j^3^ Y) ^ (map,(M^ Y))^ 

^̂ K' (map,(M^X))^^y(X). 

D 

The proof of Theorem 3.5 involves a good bit of delicate computation. The hardest 
part is the determination of K^{fP-T) as a Hopf algebra. In order to conveniently obtain 
the coalgebra structure of Ki,{Q^T), we proceed in two steps. We first calculate the 
algebra K^{f2^T), using the bar spectral sequence associated to the principal fibration 

This spectral sequence is calculated in [38], obtaining an algebra isomorphism 

K.{f2'T)^P[yi,y2]^E[z]. (3.4) 

Here 2/i (resp. z) has bidegree (1,1) (resp. (0,1)) in the spectral sequence, and hence 
even (resp. odd) degree in K^{Q^T). The calculation of this spectral sequence requires 
some preliminary computation regarding the algebra structure of K^{f2^T), and this 
requires major input from [44]. 

Now we calculate the bar spectral sequence associated to the principal fibration 

This spectral sequence, with E2 « Tor '̂̂ *'̂ 2l® '̂̂ l(i(r*,i<r*), collapses to yield an iso-
morphism of Hopf algebras 

K. [Q^T] « E[ax, aj] ® r[6], (3.5) 

where F denotes the divided polynomial algebra over Zp. The coproduct has a\, ai, and 
7i (b) as the primitives, and 

Dualizing eq. (3.5) yields an isomorphism of algebras 
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with la^l odd and \fi\ even. This matches nicely with the following result from [52, 3.8]. 

PROPOSITION 3.8. For any prime p, there is an isomorphism of algebras 

where E and P denote exterior and polynomial algebras over K^. 

We will use the Atiyah-Hirzebruch spectral sequence to show that the map 

of Theorem 3.5 sends the generators of the isomorphic J^*(-)-algebras across. This will 
imply the second half of Theorem 3.5. 

In [52], it is shown how the generators txo, w, and u\ of i<'*(i7^S'̂ "~*"̂ ) arise in 
the Atiyah-Hirzebruch spectral sequence whose E2-term is H*{Q^S^'^'^^;K^). Indeed, 
they arise from the bottom three cohomology classes, of grading 2n - 1, 2pn — 2, 
and 2pn - 1, respectively. The map Q'^j induces an isomorphism in W{-;Zp) for 
i < 2pn — 1 +min(g, 2n - 2), and so it maps onto the three generators of K*{f2^S^'^'^^), 

4. J-homology 

In this section, we show how to compute J^(B^^). When combined with Theorems 3.1 
and 5.1, this gives an explicit computation of vf V*(S^^'*'^), which we state at the end 
of this section as Theorem 4.2. This will be extremely important in our calculation of 
t;j~V*(y) for other spaces Y. We begin with the case p odd, where the results are 
somewhat simpler to state. Historically it worked in the other order, with Mahowald's 
2-primary results in [40] preceding Thompson's odd-primary work in [56]. 

Let p be an odd prime. We follow quite closely the exposition in [24] and [56, §3]. The 
spectrum bu(^p) splits as a wedge of spectra S^^l satisfying H*{£;Zp) « A//E, where 
A is the mod p Steenrod algebra, and E is the exterior subalgebra generated by Qo = /3 
and Q\ = P^P - (SPK The spectrum (, is sometimes written BP{\). Then l^ = 7r*(^) is 
calculated from the Adams spectral sequence (ASS) with 

E'/ « Ext^''(i/*^, Zp) « Ext^/(Zp, Zp) « Zp[ao, a,], (4.1) 

where ai has bigrading {\,iq^ 1). Here we have used the change-of-rings theorem in 
the middle step. There are no possible differentials in the spectral sequence, and since 
multiplication by OQ corresponds to multiplication by p in homotopy, we find that 7r* {() 
is a polynomial algebra over Z(p) on a class of grading q. Using the ring structure of i, 
one easily sees that there is a cofibration 

Let fc be a (p - l)st root of unity mod p but not mod p^, and let il^^ denote the 
Adams operation. The map I/J^ - \ : £ -^ £ lifts to a map 0 : £ -^ E'^L The connective 



Section 4 Computing periodic homotopy groups 1005 

t - - 5 = 0 2q 

Figure l.ASSfor^.(i?). 

J-spectnim, J, is defined to be the fiber of 6. The homotopy exact sequence of 0 easily 
implies that 

rZ(p) ifi = o, 
TTtCJ) « < 1l'p''vh)'t\ if i=:qj^\ with j > 0, 

V 0 otherwise. 

The image of the classical J-homomorphism is mapped isomorphically onto these groups 
by the map S^ -^ J\ this is the reason for the name of the spectrum. 

We now proceed toward the calculation of J^[B^'^). We let B be the p-localization of 
the suspension spectrum of BSp, Then, with coefficients always in Zp, the only nonzero 
groups W{B) occur when i = 0 or - 1 mod g, and i > 0. These groups are cyclic of 
order p with generator Xi satisfying Qo^ag-i = ^aq and QiXag-i = X(a+i)^. We will 
work with the skeleta B^^ and the quotients Bg(n+i)-i = B/B^^\ these are suspension 
spectra of the spaces which appeared in Theorem 3.3. 

There is a p-local map B -^ S^ constructed by Kahn and Priddy. If R denotes its 
cofiber, there is a filtration of the ^-module H*R with subquotients E^^E//Eo for 
1 ^ 0 . Here JE<) is the exterior subalgebra of E generated by Qo- Since ExtE{E//Eo) » 
Ext£;o(Zp) « Zp[ao], we find that ExiE{H*R) has a "spike", consisting of the powers of 
oo, for each non-negative value of t- s which is a multiple of q. Here we have begun 
a practice of omitting Zp from the second variable of ExtB(—, —) if J5 is a subalgebra 
of the Steenrod algebra. The action of ExtE(Zp) on E\iE{H*R) has a\ always acting 
nontrivially. 

We draw ASS pictures with coordinates {t - 5, s), so that horizontal component refers 
to homotopy group. A chart for the ASS of /? A ^ is given in fig. 1. 

The short exact sequence 

0 -4 H^iSB) -^ H%R) -> H*{S^) -^ 0 

induces an exact sequence 

-> Ext^^(i/*5^) Ext^/(i/*i?) Exi%\H*{SB)) 

-^Ext^/*'*(if*5^) (4.2) 
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q-l 2q-\ 3q-l 4q-l 5q-l 6q-l 

Figure 2. ASS for £.(B^9) for t - s < 6q. 

These morphisms are Ext£;(Zp)-inodule maps, and the action of a\ implies that u is 
injective. Thus there are elements Xiq_i € Ext%*''~^{H*B) for z > 0 such that 

with generators aQXiq-.\. Hence 

t - 5 = i g - l , Z > 0 , 0 ^ 5 < 2 , 
otherwise, 

iiiB) f Z/p(*+^)/9 if i = - 1 mod 9, and z > 0, 
10 otherwise. 

There is an isomorphism of J5-modules if*(-Bg(n-fi)-i) « E^'^H*{B), and so 

The Ext calculation easily implies that the morphism U{B) —• ̂ •(Sg(n+i)~i) induced 
by the collapse map is surjective, and so the exact sequence of the cofibration B^^ -^ 
B —• Bq(^n-\-\)-'\ implies that 

A(S^^) ^ fz/p-"((* +i)/9,n) if i = ^ 1 mod g, and i > 0, 

otherwise. 

The ASS chart for B ^ is illustrated in fig. 2. 
The map S^ -^ R implies that 6^ : iqj{X) -^ £(^q^\)j{X) is multiplication by the 

same number for X = i2 as it was for X = S^. Thus it is multiplication by p''p(^)+^ 
Now the map R -+ EB implies that 6^ : £qj^]{B) —• £(g_i)j_i(B) is multiplication 
by P'^PO)+I. The maps B^n _, ^ _^ 5^(^+1)_, imply that the same is true in B^^ and 
^g(n+i)-i- We obtain 

Ji(B^") 

f Z/p^^(^MJH^) if 2 = jg - 1, j > 0, 
Z/pinin(n.i/p(j)+I) jf z = j ^ - 2, j > n, 
2/pmin(n-l,i/p(i)) if j = j g - 2, 0 < j ^ 71, 

0 otherwise. 

(4.3) 
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^l 
q^\ 2q-\ 3 ^ - 1 4g - 1 5q-\ 6g - 1 

Figure 3. Beginning of chart for J*(B^^). 

This is illustrated in fig. 3, which is not quite an ASS chart. It is a combination of the 
charts for £^{B^^) and £^-q^\{B'^^) and the homomorphism 0^ between them, which is 
represented by lines of negative slope. The exact sequence 

0 -^ coker(e,+,) -^ J*(B^^) -> ker(0,) ^ 0 

says that elements which are not involved in these boundary morphisms comprise 
J*(JB^'^). There are several reasons for our having elevated the filtrations of ^*_g+i (B^^) 
by 1 in this chart. One is that it makes all the boundary morphisms go up, so that it looks 
like an ASS chart. Another is that (by [40]) there is a resolution of B^^ A J (which is not 
an Adams resolution) for which the homotopy exact couple is depicted by this chart. A 
third is that if Ji is defined to be the fiber of J -* HZ2, then the ASS chart for B^'^ A J\ 
will agree with this chart in filtration greater than 1. See [13, §6] for an elaboration on 
this. 

If X is a space or spectrum, then v^^Ji{X) is defined analogously to Definition 2.2 
to be 

dirlim [M'-^^-^^'^^^ (p^), X A J] . 

Since J is a stable object, we can 5-dualize the Moore space, obtaining 

dirlim Ji^i^ks{e) {X A M(p^)), 

where the Moore spectrum M{n) has cells of degree 0 and 1. The "-hi" in this J-group 
is present due to the maps M(p^) -^ M(p̂ "̂ )̂ having degree 1 on the 1-cell. 

One can often compute v^^J^{X) direcdy from J^{X) without having to worry about 
the "AM(p^)". This can be done by extending the periodic behavior which occurs in 
positive filtration down into negative filtrations and negative stems. For example (cf. 
fig. 3), a chart for v'[^J^{B^^) has, for all integers a, adjacent towers of height n in 
aq-2 and aq - 1 with di,(a)^_i-differential. If u{a) -f- 1 ^ n, then the differential is 0. 
This interpretation of i;j~ V*( - ) can be justified using the following result. 
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PROPOSITION A.\. Let p be an odd prime, and let KU be the spectrum for periodic 
K-theory localized at p. Let k b§ a {p- \)st root of unity mod p but not mod p ,̂ and 
let Ad denote the fiber of KU ^ ^ KU. Then v-^J.{-) « Ad,(- ) . 

This follows from the fact that if vf *£*(-) is defined as 

dirlim lij,x^ks{e) {X A M(p^)), 

then v^ ^ ^*(—) ^ KU*[-), which is a consequence of the fact that 4̂ A t = t; A 1M : 
r^M ^ M A ,̂ where A : T^M -> M and v : 5^ -* £. 

When p = 2, the results are a bit messier to state and picture. If hsp denotes the 
2-local connected /2-spectrum whose (8A;)th space is B5p[8fc], then E%sp ~ 6o[4], the 
spectrum formed from bo by killing 7ri(-) for i < 4. The map ij? — \ :bo —*bo lifts to 
a map 0 :bo -* S^bsp, and J is defined to be the fiber of 6. 

Let Ai denote the subalgebra of the mod 2 Steenrod algebra A generated by Sq̂  and 
Sql Then if*6o « A//A\ and H'^bsp ̂  A (g)A, N, where N = (l,Sq^Sq^). Hence, 
using the change of rings theorem, the J52-term of the ASS converging to ir^{bo) is 
ExtA^iZi), while that for bsp is ExtA,(iV). These are easily computed to begin as in 
fig. 4, with each chart acted on freely by an element in {t - s^s) = (8,4). Positively 
sloping diagonal lines indicate the action of h\ G Ext]^^(Z2). It corresponds to the Hopf 
map rj in homotopy. 

There are no possible differentials in these ASS's, and so we obtain 

7rt(6o) « 

if z = 0 mod 4, z ^ 0, 
if i = 1,2 mod 8, i > 0, 
otherwise, 

in accordance with Bott periodicity. 

bo bsp 

Figure 4. Part of ASS for bo and bsp. 
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11 15 

Figure 5. 2-primary 7ri( J), i ^ 18. 

From Adams' work, we have 6^ : 7r4j(6o) —̂  i^/^j{E%sp) hitting all multiples of 
2'^0)+3^ ^hile e^ is 0 on the Z2's. This yields 7ri(J) = 0 if 2 < 0, while for i ^ 0 

7ri(J) « ^ 

rZ(2) 
Z/2»^(t)+l 

Z2 
Z2eZ2 

. 0 

if i = 0, 
if i = 3 mod 4, 
if z = 0,2 mod 8, i > 0, 
if z = 1 mod 8, z > 1, 
if 2 = 4,5,6 mod 8. 

(4.4) 

From Adams' work and the confirmation of the Adams Conjecture, it is known that 
7r*(5 )̂ —• 7r*(J) sends the image of the classical J-homomorphism plus Adams' ele-
ments /ij and ry/Xj isomorphically onto 7r«(J). A chart for 7ri(J) with i ^ 18 is given in 
fig. 5. Here the elements coming from ho are indicated by ©'s, while those from S^bsp 
are indicated by o's. 

The first dotted //-extension can be deduced from the fact that 6* : H^{S^bsp) —> 
H^{bo) hits Sq"̂ , together with the relation rj^ = 4i/. This r/-action is then pushed along 
by periodicity. Another argument which is frequently useful for deducing //-extensions 
such as this involves Toda brackets. The generator of 7r8i+4(6o) is obtained from the 
element a G 7rsi^2{bo) as (a,7/, 2). Clearly a pulls back to 7r*(J), and if arj were 0 
here, then the bracket could also be formed in J. However, the boundary morphism on 
7r8t+4(6o) implies that this bracket cannot be formed, and so ar] must be nonzero in J. 
Moreover, it must be the element /? such that 2/3 is 6{{a, r],!)). 
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Figure 6. ExUi(//*P), from E\iA^{H*^) and ExtA,(H*/e), t - s < 15. 

We will rename B^^ as P^^ when p = 2, with P denoting the suspension spectrum 
of /?P°^. As in the odd primary case, there is a map A : P —> 5^ with nontrivial 
cohomology operations in its mapping cone R. This 2-primary map A can be viewed 
more geometrically than its odd-primary analogue, as an amalgamation of composites 

P ^ - > S O ( n + l ) ^ / ? ^ 5 ^ . 

With Ao denoting the exterior subalgebra of A generated by Sq\ H*R can be filtered 
as an Ai-module with subquotients I!^^A\//Ao for i ^ 0, and so ExtA{H*{R A bo)) 
consists of /iQ-spikes rising from each position {t — s,s) = (4i, 0) for z ^ 0. Here ho is 
the element of Ext̂ (̂Zl2) or Ext^J(Z2) corresponding to Sq* and to multiplication by 2 
in homotopy. Also, we begin a practice of using without comment the relation 

ExiA{H^X A bo)) « ExiA{H*X 0 A//A^) « Ext̂ , {H*X). 

Thus the nonzero groups boi{R) occur only when i = 0 mod 4 and i ^ 0, and these 
groups are Z(2). We also need 

{ Z(2) if i = 0 mod 4, i^O, 
Zi if z = 2 mod 4, z > 0, 
0 otherwise. 

The Za's are obtained from the exact sequence in 6o*(-) associated to the cofibration 

RAS^~-^RA{S^U2e^) -^RAS^ - ^ . 

Analogous to (4.2) is an exact sequence which allows us to compute Ext>i,(if*P) 
from ExtA,(^*S^) and ExtA^iH^R). This is most easily seen in the chart of fig. 6, in 
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^ 11 

Figure 7. 6sp*(P), from 6sp*(5̂ 0 and bsp*(R), * < 11. 

which •'$ are from Ext>i,(ff*5^), and o's are from Ext>i,(//*i?). 
The groups are read off from this as 

boiiP) Z/2^^ i = 8 j - 1 , ; > 0 , 
Z2, i = 8j -h 1 or 8j -f 2, j ^ 0, 
0 otherwise. 

Next on the agenda is bsp^{P), which is computed from bsp^{S^) (in •) and bsp^{R) 
(in o) as in fig. 7. 

Note that in positive filtration bspm{P) looks like bo^{U^P) pushed up by 1 filtration. 
The explanation for this is the short exact sequence of A i-modules 

0 -> r^Za ^ Aif/Ao -^ iV -^ 0, (4.5) 

where N = (l,Sq^,Sq^), as before. If this is tensored with any Ao-free ^i-module M, 
such as P, then the exact Ext>i,-sequence reduces to isomorphisms 

Ext^7^'*(r^M) -^ Ext^[(iV 0 M) 

when 5 > 1. When M = P, an iso is also obtained when 5 = 1 . 
The isomorphism of i4i-modules H*{P4n^\) « i/*(Z"*'^P) allows one to immediately 

obtain 6o* (P4n+i) and bsp^ (P4n+i) from the above calculations. One way of determining 
6o*(P4nH-3) and bsp^{P4n-\.3) is from the short exact sequence of >li-modules 

0 -^ if*(i:^^+%) -^ H*(P4n+3) -^ H*(r^"+^i?) ^ 0. 
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4n-f- 15 

Figure 8. 6sp*(P4n-i-3), * ^ 15. 

This yields as bspi,{P/^n^-^) a chart which begins as in fig. 8, while 6o*(P4n+7) ^ 
6o*(i7'*P4n+3) is obtained from this chart by deleting all classes in filtration 0. 

Next we compute bo^{P^'^) and bsp^{P^^) using the exact Ext A,-sequence corre-
sponding to the short exact sequence 

0 ^ H'{P2m^x) -^ H*{P) -^ H^iP^"^) -^ 0. 

For example, this yields the calculation of bo^{P^^) indicated in fig. 9, where bo^{P) is 
in ©'s, while bo^{Psn^\) is in o's. 

Next we form J^iP^"^) from bo^{P'^'^) and (r^65p)*(p2^), with filtrations of 
the latter pushed up by 1, similarly to the odd primary case. The boundary mor-
phism bou-\{P^^) -^ {E%sp)/^i-\{P^'^) is pictured by a differential in the chart, 
and, for the same reason as in the odd-primary case, its value is the same as in 
6o4i-i(5^) -> (£"*6sp)4i_i(5^), namely a nonzero d,̂ (i)-fi wherever possible. If m ^ A;, 
then the charts for J^{P^^) and Ji,{P^^) are isomorphic through dimension 2A:— 1. This 
is illustrated in fig. 10 for A: = 8. 

For * ^ 2m - 1, the form of the chart for J^{P^'^) depends upon the mod 4 value of 
m. The last of the filtration-1 Z2's occurs in * = 2m or 2m -f- 2. The chart near * = 2m 
is indicated in fig. 11. Note how the bsp-part is like the 6o-part shifted one unit left and 
two units down. Differentials dr with r > 1 are omitted from this chart; they occur on 
the towers in 8n - 1 and 8n -f 7. 

To obtain t;f ^ J,(p2^) from MP^"^). one removes the filtration-1 Z2's, and extends 
into negative filtration the periodic behavior which is present in the towers to the right of 
dimension 2m. The justification for this is similar to that in the odd-primary case, namely 
Proposition 4.1. For example, if i is any integer, v^^J^{P^'^^'^) for 8i -f 6 ^ * ^ 82 -h 13 
looks like the portion of fig. 11 for P^^-^^ between 8n -h 6 and 8n -f 13, with a ,̂̂ (41+4)-
differential on the tower in 82 -h 7. One might find it easier to compute i;f* J*(P^'^) 
directly without bothering to first compute the nonperiodic J; however, one sometimes 
needs the nonperiodic J-groups. 

We combine the results of this section with Theorem 3.1 and Theorem 5.1 to obtain 
the following extremely important result. Theorem 4.2. 
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1 3 11 8 n - 1 8n-f-7 

Figure 9. 6o*(P^^), from 6o*(P) and ho*{P%n^\)' 

o o 4 o 

1 3 11 15 

Figure 10. J.(P^"') in » ̂  15, provided m ^ 8. 

THEOREM 4.2. ifp is odd, then 

, ^c2n+i. N ^ / Z/p™"("'''»(°)+') i / i = qa-2orqa-\ 
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pBn 

i 
p8n-|-2 

? 

i \ a/ 
! ! 

p8n+4 

iM 
T 

/ t i H w 

8 n ~ 1 8n-f 3 8n-f 3 8 n + l l 8n-f7 

Figure 11. J*(P^^) where it starts to ascend. 

Ifn =lor2 mod 4, r/î n 

^r^7r2n+i+i(5^"-^*;2)« 

/^n = 0 or 3 mod 4, then 

Z2 (/"z^ 0,5 mod 8, 
22 0 Z2 1 /2=1 ,4 mod 8, 
Z2 © Z/2™"(̂ '̂ + )̂ i/ ^ = 2,3 mod 8, 
2/2»™n(n-i,i/2(j)+4) ifi = Sj-2 or Sj - 1. 

2;f^7r2n+i+t(52"^*;2)«^ 

Z2 0 Z2 0 Z2 
Z8 0 Z 2 
Zg 
0 
2/2min(n,i/2(i)+4) 

f/ 2 = 0,1 mod 8, 

ifi = 2 mod 8, 
ifi~3 mod 8, 
if i = 4,5 mod 8, 
ifi = %j-2. 

I Z2 0 z/2"^"(̂ '̂ (̂ ')+ )̂ f/ 2 = 8j - 1. 

5. The 2;i-periodic homotopy groups of spectra 

In this section, we sketch three proofs of the following central result. 

THEOREM 5.1. IfX is a spectrum, then vf V*(X) « i;f ^ J*(X). 

This result was first stated, at least for mod p 2;i-periodic homotopy groups, in [56]. 
Theorem 5.1 is a consequence of the following result, which is the special case where 

X is the mod p Moore spectrum M = S^ Up e^ 

THEOREM 5.2. Let v^^M denote the mapping telescope of 

M -> E-'M -^ S-^'M 



Section 5 Computing periodic homotopy groups 1015 

where s = S if p = 2 and s = q if p is odd, and the maps are all suspensions of an 
Adams map A. Then the Hurewicz morphism 

7r.( t ;r 'M)^ J.(vr^M) 

is an isomorphism. 

This theorem implies that for any spectrum X, the map 

is an equivalence, which, after dualizing the Moore spectra, implies that Theorem 5.1 
is true with mod p coefficients. The general case of the theorem then follows from 
Lemma 3.2. 

As an aside, we note that these results are equivalent to the validity of Ravenel's 
Telescope Conjecture ([53]) when n = 1. This result, for which the analogue with n = 2 
has been shown to be false, can be stated in the following way. 

COROLLARY 5.3. The vx-telescope equals the K^-localization, i,e. v^^M = MK-

PROOF. Since the Adams maps induce isomorphisms in Ki,{—), the inclusion M —> 
vf^M is a ilT*-equivalence. Since t;["*M ~ t;j'^M A J ĉ ; M A vf^ J, and, similarly to 
Proposition 4.1, there is a cofibration 

it follows readily that v^^M is iiT -̂local. D 

The remainder of this section is concerned with proofs of Theorem 5.2. Three distinct 
proofs have been given, although each is too complicated to present in detail here. We 
sketch each, relegating details to the original papers. 

The first proof, when p = 2, was given by Mahowald in [40], although he was offering 
sketches of this proof as early as 1970. The odd-primary analogue was given in [24]. 
A sketch of Mahowald's proof, involving 6a-resolutions, follows. 

Using self-duality of M, it suffices to show that 

dirlim [E^^^'M, ^] ^ dirlim [S^^^'M, J] (5.1) 

is an isomorphism. The target groups are easily determined by the methods of the preced-
ing section to be given by two sequences of "lightning flashes" as in fig. 12. It is easily 
seen, for example from the upper edge of Adams spectral sequence, that these elements 
all come from actual stable homotopy classes, i.e. the morphism (5.1) is surjective. 

The injectivity of the morphism (5.1) will be proved by showing that if E^M —y S^ —• 
J is trivial, then for i sufficiently large, T'^+^W - ^ E^M -^ S^ is trivial. This will 
be done using 6o-resolutions. 
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k =  -2 0 2 3 mod 8 

Figure 12. dirlim, [Zk+'"'M, J] 

Let G denote the cofiber of the inclusion 9 4 bo. There is a tower of (co)fibrations 

The homotopy exact couple of this tower gives the bo-ASS for f. It was proved in 
[25], following [41], that the &-term of this spectral sequence vanishes above a line 
of slope 115. That is, E ; ' ~ ( $ ' )  = 0 if s > &(t - s )  + 3. One can show that bo A bo - 
C4bsp V W, where W can be written explicitly, and the map 

may be used as the map whose fiber is J. Here 6 induces the lowest dl in the bo-ASS, 
and the second map collapses W.  

Let Es = ( ~ - ' 6 6 ) " ~ ,  the sth stage of the tower. By explicit calculation it can be 
shown that, if s > 1 or if s = 1 and the map is detected entirely in the W-part, a map 
X -t Es of Adams (HZ/2) filtration greater than I can be varied so that its projection 
to E,-I is unchanged, while the new map lifts to ES+] .  Originally it was thought that 
this was true for maps of Adams filtration greater than 0, but a complication was noted 
in [27]. 

Now suppose that CkM M f 4 J is trivial. Then f lifts to a map into El whose 
projection into C3bsp is trivial. The Adams map A can be written as the composite of two 
maps, each of HZ/2-Adams filtration greater than I .  Thus, by the result of the previous 
paragraph, f oAi lifts to E2i+l. If i is chosen large enough that 2i + 1 > 3(k + 8i + 1) + 3, 
then this map Ck+8i M + 9 will have bo-filtration so large that all such maps are trivial 
by the vanishing line result, completing the proof. 

The first proof of Theorem 5.2 for p odd was given by Haynes Miller. A proof 
analogous to his for p = 2 has not been achieved; [32] was a step in that direction. 
Miller's work did not involve the spectrum J. Instead, in [46], he defined a localized 
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ASS for M, and computed its £2-term. Then, in [47], using a clever comparison with 
the BP-based Novikov spectral sequence, he computed the differentials in the ASS, 
obtaining the following result. 

PROPOSITION 5.4. Ifp is odd, then 7r*(z;j"^M) is free overZp[v^^] on two classes, namely 
[S^c^M-^ v'^M] and [S^-^ - ^ M -^ v^^M]. 

The methods of Section 4 show easily that these map isomorphically to t;j"̂  J*(M). 
We provide a little more detail about Miller's calculations. In [46] he obtained as an 

-E2-term for the localized ASS 

v^^E[hi^Q : 2 ̂  1] 0 P[6i,o : 2 ̂  1], (5.2) 

where hi^ corresponds to [^i] and has bigrading (1,2(p* — 1)), while bi^o corresponds to 

T.l(^^mn 
and has bigrading (2,2p(p* - 1)). The first step in obtaining this is to use a change-
of-rings theorem to write the £?2-term as vj"*Cotoryi(i)^(Zp,Zp), where ^4(1)* is the 
quotient A*/(ro). This is then shown to be isomorphic to 

Zp[i;f^](g)Cotorp(,)(Zp,Zp), 

where P( l ) = Zp[e,,6, • • ]/{^l^l • • 0̂  and this yields eq. (5.2). 
In [47], the differential d2(/it,o) = v\bi-\,o is established in the localized ASS. This 

leaves Zp[i;j*'̂ ] 0 JS[/ii,o] as E^ = Eoo, and this is easily translated into Proposition 5.4. 
Miller first established this differential in an algebraic spectral sequence converging to the 
E2-term of the BP-based Novikov spectral sequence, and then showed that this implies 
the desired differential in the ASS by a comparison theorem. 

Somewhat later, Crabb and Knapp ([21]) gave a proof of Theorem 5.1 for finite spectra 
X which was much less computational than those just discussed. Their proof utilized the 
solution of the Adams conjecture, and some refinements thereof. They let Ad*(—) be 
the generalized cohomology theory corresponding to the fiber of '̂̂  - 1 : KO —• KO. 
By Proposition 4.1, this is just our vj~̂  J*. They prove the following result about stable 
cohomotopy, which by S'-duality is equivalent to Theorem 5.1 for finite spectra. 

THEOREM 5.5. IfX is a finite spectrum, then the Hurewicz morphism 

i;,-'<(X;Z/p«) - ^ Ad-(X;Z/p«) 

is bijective. 

Their main weapon is a result of May and Tomehave which says that if i4*(—) is the 
connective theory associated to Ad*(-), and j is the morphism given by a solution of 
the Adams conjecture, then the composite 

A^{X) ^ n'iiX) ^ A^{X) 
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is bijective for a connected space X. This is used to show that, for k sufficiently large, 
there is a stable Adams map E^^^^^M(jp^) —^ M{p^) which is in the image under 
j from i4~^*(^)(M(p^);Z/p^). This is then used to show that for any element x of 
7r'^{X\Z/p^), for L sufficiently large, A^x is in the image of the morphism j , and this 
easily implies injectivity in Theorem 5.5. Care is required throughout in distinguishing 
stable maps from actual maps. 

6. The i;i-periodic unstable Novikov spectral sequence for spheres 

In this section, we review the basic properties of the unstable Novikov spectral sequence 
(UNSS) based on the Brown-Peterson spectrum B P , and sketch the determination of 
the 1- and 2-lines of this spectral sequence when applied to S^'^'^^. Then we show how 
the t;i-periodic UNSS is defined, and compute it completely for 5^""^*. 

The spectrum BP associated to the prime p is a commutative ring spectrum satisfying 
BP^ = 7r*(J5P) = Z(p)[vi,V2,...] and BP.{BP) = BP.\hxM. • • •]» with \vi\ = \hi\ = 
2p* - 2. The generators vi are those of Hazewinkel, while hi is conjugate to Quillen's 
generator U, We shall often abbreviate BP^^BP as F, 

We will make frequent use of the right unit 'qa : BP^ -^ BP^BP. 

PROPOSITION 6.1. m M = ^i -ph\, and 

mivi) = V2-ph2 f {pP-' - l)/ift;, + ( p + l)</ i i + ^ a , < + ^ - V / i i , 
t=2 

where ai G Z. 

In writing h\v\ here, we have begun the practice of writing rjR{v)h as hv. Thus h^v\ ^ 
V]h^. Proposition 6.1 is easily derived from formulas relating Vi to m^, and for r}R{mi). 
See [14, 2.6], where the following formula for the comultiplication A : BP^BP —̂  
BP^BP(S)BP^BP is also computed. All tensor products in this and subsequent sections 
are over J3P*. 

PROPOSITION 6.2. A{h]) = /ii 0 1 -h 1 (g) /ii, and 

p-i J / \ 
A{h2) = / i 2 0 l + 1 0 f t 2 - f ^ - ( )/ij ^h^~'v\ -f fef <S)/ii. 

Let BPn denote the nth space in the i?-spectrum for BP. If X is a space, then a 
space BP{X) is defined as limn î '̂ CBPn A X), Define D^{X) to be the fiber of the 
unit map X -^ BP{X), and inductively define D^{X) to be the fiber of D^-\X) -> 
D*"^(J5P(X)). This gives rise to a tower of fibrations 

D^{X)-^D^{X)-^X. 



Section 6 Computing periodic homotopy groups 1019 

The homotopy exact couple of this tower is the UNSS of X; if A" is simply connected, 
it converges to the localization at p of 7r*(X). 

In general, computing this spectral sequence can be extremely difficult, but if BP^X 
is free as a J3P*-module, and cofree as a coalgebra, then it becomes somewhat tractable. 
Indeed, in such a case 

E^'\X) « Ext^(A,P(BP.X)) , (6.1) 

where At denotes a free J3P*-module on a generator of degree t, P{-) denotes the 
primitives in a coalgebra, and U denotes the category of unstable T-comodules. We 
sketch a definition of the category U and the proof of eq. (6.1), referring the reader to [6, 
p. 744] or [8, §7] for more details. If M is a free BP*-module, then U(M) is defined to 
be the BP*-submodule of P (g) M spanned by all elements of the form h^ ^m satisfying 
the unstable condition 

2(zi 4-12 +•••) < |m| , (6.2) 

where h^ = h\'h^ • • •. If M is not BP*-free, then U{M) is defined as coker(C7(Pi) - • 
[/(Po)), where Po and Pi are free BP*-modules with M = coker(Pi --* FQ). We 
define U^{M) by iterating f / ( - ) . The category U consists of SP*-modules equipped 
with morphisms M —• U{M), U{M) —• U^{M)y and U{M) - ^ M satisfying certain 
properties. The unstable condition (6.2) is analogous to the one for unstable right modules 
over the Steenrod algebra, but its proof relies on deep work of Ravenel and Wilson in [54]. 

The category U is abelian. We abbreviate Exiy{At, N) to Ext^*(iV). These groups 
may be calculated as the homology groups of the unstable cobar complex C ' (iV), 
defined by C''\N) = U'{N)t. with boundary C' - ^ C'^^ defined by 

d l 7 i | - - - N ^ = [ l | 7 i | - " N ^ 

^Y^hmii\'''Wj\7-\'-hs]rn 

where Aijj) = Yl"Yj^ Ij ^^^ ^(^) = S V ® ^"• 
We will use a reduced complex C*'*{N), which is chain equivalent to C ' {N). This 

is obtained from U{N) = ker(f/(iV) - ^ N) and its iterates U' by C'^^N) = U'{N)t. 
Finally, we illustrate how d{v) = r]R{v) - v ior v £ BP^. comes into play. Suppose 
A{h) = h 0 l-f 1 0 /i -h X) /i' ® /i" and ip{I) = 1 (g) / , and let v, v' G BP^. Then 

d{\vh\v'l) = \\\vh\v'I - \vhWl - \v\hyi - Yy^\^yi + \vh\v'\I 

= \m{^) - v\h\v'I - ^[i;/i' |/i'>7 - \vh\r]R{;v') - v'\I, 

We abbreviate C*'*(BP*(X)) to C*^*{X\ 
The first result about the UNSS, both historically and pedagogically, is the following, 

which appeared in [8, 9.12]. We repeat their proof because it gives a good first example 
of working with the unstable cobar complex. Recall that q = 2(p - 1). 
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THEOREM 6.3. Let p be an odd prime. Ifk>0, then 

Ift ^ 2n-h 1 mod q, or ift < 2n-f 1, then E2'^{S^''-^^) = 0. 

PROOF. Since \vi\ and \hi\ are divisible by q, all nonzero elements in BP*(S'^"'^*) 
have degree congruent to 2n + 1 mod q, and so the only possible nonzero elements in 
^s,t^^2n-f-î  occur when t = 2n -h 1 mod q, and t^2n-\-\. There is an injective chain 
map 

defined by A 0 t2n-i -̂̂  -A 0 2̂n+i» corresponding to the double suspension homomor-
phism of homotopy groups. Since the boundaries in C^{S^'^~^) dirt sent bijectively to 
those in (7^5^^+^), the morphism ^^''(^^^-^ -^ El^'^^iS^""^^) is injective. 

We quote a result, originally due to Novikov (but see [51, §5.3] for the proof), about 
the stable groups: if n is sufficiently large, then 

with generator d{v\)i2n+\/p''^^^'^^^ - We will prove Theorem 6.3 by showing that if 
n ^ Up{k) + 1, then d(vf )/p^ is defined on 52"+^ but not on 5^^^^ 

We begin by observing 

d{v\)lp'' = {{miv^))" - t;f)/p" = ((i;, -ph,f - i;f)/p" 

Note that the coefficients (̂ )j>^~^ have non-negative powers of p, since '̂(0) 
for j ^ 1. Now we work mod terms that are defined on S^'^~^. This allows us to 
ignore terms in the sum (6.3) for j < n. For the other terms, we write p^^^h^ as 
(̂ 1 -VR'^X y^^h^. and note that when this is expanded by the binomial theorem, all terms 
except vp'^/if may be ignored, since {riRViyh'^L2n-] = h'^v\L2n-\ satisfies eq. (6.2) 
when i > 0. Thus the sum (6.3) reduces to 

n - l 
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since 

S'-'K')-"-
If j > 0 in the right-hand sum, then (̂ ) is divisible by p, and then ph^ can be written as 

vi/i^"* - h!l~^v\, so that the term is defined on 5̂ "*"̂  Thus, mod S'^''~\ (6.3) reduces 

to -t;f~"/if. This class is not defined on 5^"~^ D 

If p = 2, a similar argument establishes the following result. 

THEOREM 6.4. / /p = 2, then, far u > 0, 

^^2n+l+n^^2n+l) 

0, u odd, 
Z/2, U2{u) = 1, 
Z/4, u = 4, 

L z/2™"(^''^W+*), u = 0 mod 4, and u>4. 

If u = 2k in the three nonzero cases, then the generators are, respectively, d{v\)ll, 
d{v\)lA, and d{v^ + 2^(^)^^v\'\2)/2'^^^^'^^, 

When p is odd, the element 

is denoted otk/j- If j = 1, this will frequently be shortened to ak. We note the following 
fi-om the proof of Theorem 6.3. 

PROPOSITION 6.5. Ifn ^ j , then ajfe/ĵ 2n+i = î ~^h\i2n^\ tnod terms defined on S^^~^. 

Next we cull from [5] information about unstable elements in E2*{S'^^'^^), which 
form a subgroup which we shall denote by E2*{S^'^'^^)' By "unstable", we mean an 
element in the kernel of the iterated suspension. The main theorem of [5] is the following. 

THEOREM 6.6. Let p he an odd prime, and let t = i^p{a). then 

fZ/p" ifn^t^X, 
^2,ga+2n+l (^2n+l) ^ J ^/pt+l , / 1 + 1 ^ n < a - t, 

\ zip"""'' ifa-t-\^n<a. 

The homomorphism EI^''''^^''-\S^^-^) ^ ^2,ga+2n+l(^2n+l) i^ 

{ injective ifn^t-\-l, 
p ift-\-l<n<a-t, 

surjective if a-t^n < a. 
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Let m = min(n,a - t - 1). Then p> times the generator of ^2,qo+2n+i^g,2„+ij ̂ ^ 

hx ® ur'""*"^"''ir"^t2n+i mod terms defined on 52('"-j)-'. 

This is illustrated in the chart below, where we list just leading terms, an element con-
nected to one just below it by a vertical line is p times that element, and elements at the 
same horizontal level are related by the iterated double suspension homomorphism. We 
omit the subscript from hi and U|, and the (gi. 

53 gS 524+3 s2t+5 

I I 
hv''-^h} hv'^-^h? hv^-^h^ 

I 

g2{a-t)-i g2{a-t)+\ 5^0-1 

/iy2t/jO-2t-l 

I 

I I 

The proof of Theorem 6.6 requires results about Hopf invariants which we will address 
shortly. We begin by describing a plausibility argument for it using only elementary ideas 
about the unstable cobar complex. We continue to omit the subscript of h\ and v\. 

(i) The lead term h (gi i,"-n+j-i/in-i does not pull back to 52(7.-j)-i because 
h"~h2(n-j)-\ does not satisfy the unstable condition, 

(ii) By Proposition 6.1, ph — v-Tfii{v), & fact which we will begin to use frequently. 
It implies that 
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The second term desuspends below 5'2(^~^)-\ and the first term is the next term 
up the unstable tower, 

(iii) We show that E^ applied to the element of order p on S^n+i j^ ^ boundary when 
n ^ t -h 1. To do this, we give a more precise description of this element of 
order p as d(v"~^~*/i'̂ "^ )̂t2n-f-i- This clearly double suspends to the boundary 
^(^a-n-i^^n+i^^^^^) Notc how wc had to wait until 5̂ ""̂ ^ in order to put 
the i inside the d( - ) , since /in-}-î 2n+i does not satisfy the unstable condition. It 
remains to show that the lead term is correct, which is the content of the following 
proposition. 

PROPOSITION 6.7. Ift = i^p{a), then 

mod terms defined on 52(n->t-i)+i 

PROOF. Replacing v by ph-\- rjR{v) implies 

Since boundaries on 5̂ "̂̂ ^ desuspend to 5̂ ('̂ ~*̂ "^ we obtain 

mod the indeterminacy stated in the proposition. Now 

d{h^) = Y^(^^h^^h^-^, 

and, since 

^p((^j)) ^ * + 2 - j f o r j > l , 

we find 

mod terms defined on ^^(n-t-i)+i jj^j.̂  ^ _ gpt ĵ̂ ĵ  ^ ^Q^ ^ multiple of p, and we 
have freely replaced ph by v - rjR{v). D 

The main detail in the proof of Theorem 6.6 which is lacking in the plausibility 
argument above is an argument for why these are the only unstable elements on the 
2-line. For this, we need the following result, which will also be useful in other contexts. 



1024 D.M. Davis Chapter 20 

THEOREM 6.8. (i) There is an unstable F-comodule W{n) and an exact sequence 

-^E'/-'{S^^-') ^E'/^'{S^^^') ^Exil;-'^'-'{W{n)) 

-^E'2-^'^'-'{S^^-'). (6.4) 

(ii) W{n) is a free module over BP^/p on classes X2pin--i for i > 0 with coaction 

^{X2p'^n-\) = ^P^ 'K-i^X2pin^l^ 

(iii) Exilt{W{n)) « Zp[vi]x2pn^i. 
(iv) Ifz e E\ti({W{n)) is represented by Yllk <S)X2pitn-i» ^^^f^ 

P2{Z) = df^^^k ^P^~^h{\ 0 L2n-\-

(v) Every element x e £2(3^'^'^^) may be represented, mod terms which desuspend to 
^2n-i^ lyy ^ ^y^i^ of the form 

with jk € C*(>l2pfcn-i ®Zp). Then 

H2{x) = ^Jk^X2pkr,-i. 

Recall in (v) that At is the free BP«-module on a generator of degree t, and that C*(—) 
denotes the reduced unstable cobar complex. 

We provide a bare outline of the proof, beginning with the construction from [9]. There 
is a nonabelian category G of unstable T-coalgebras, and a notion of Exto such that if 
BP^X is a free BP*-module of finite type, then E2{X) (of the UNSS) is ExtciBP^X). 
Letting PG{-) denote the primitives in G, one finds that if M is an object of G?, then 
PG{M) is in the category U. By considering an appropriate double complex, one can 
construct a composite functor spectral sequence converging to ExtG(M) with 

£;f^ «Ext^ (i?9PG(M)). 

Here R^PG denotes the qth right derived functor of PG- If M satisfies WPGM = 0 
for g > 1, then the spectral sequence has only two nonzero columns, and reduces to an 
exact sequence 

^ Ext^(PGM) ^ Ext?;(M) -^ Ext̂ ~^ {R^PGM) -^ . (6.5) 

This will be the case when M = jBP*(r252^+'). One verifies that PcBP^QS^""-^^) « 
A2n, and that B}PGBP^{nS'^'^^^) is the comodule W{n) described in Theorem 6.8, 
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and the exact sequence (6.5) reduces to the sequence (6.4) in this case. The descriptions 
of the morphisms in (iv) and (v) are obtained in [3] using an alternate construction of 
the exact sequence. Part (iii) is proved in [5, p. 535] by studying explicit cycles. 

Now we complete our observations on the proof of Theorem 6.6. If x is any nonzero 
unstable element on the 2-line, then there must be k and n so that 

Then by Theorem 6.8, there must be an element v\x2pn-\ ^ Ext^(W(n)) such that 

But this is exactly the description of the unstable elements on the 2-line which was given 
in the third part of our plausibility argument for Theorem 6.6. 

When p = 2, the discussion above about the unstable elements on the 2-line goes 
through almost without change, as described in [10, pp. 482-484]. The result is that if 
n^a- U2{a) - 2, then 

E' ,2,2n+H-2a/r»2n+l\ ^ / Z / 2 if a is odd. (̂S2"+') « I '2 V̂  ;-^|Z/2minMaH2,n) if ^ is even. 

The orders when a is even are 1 larger than in the odd primary case because V2 can be 
used to obtain 1 additional desuspension. 

Now we construct the vj-periodic UNSS, following [4] for the most part. In [7] a 
UNSS converging to map^(y,X) was constructed. If F = M^(p^), the -B2-term is the 
homology of C*{P{BP^{X))) 0 Z/p^ The Adams map A induces 

UNSS(map,(M^(p^),X)) ^ UNSS(map,(M^+^(^)(p^),X)), 

where 5(e) is as in eq. (2.1). By [35], on £2 this is just multiplication by a power of v\ 
after iterating sufficiently. As in our definition of v, ^7r*(-), we define the vi-periodic 
UNSS of X by 

t;f *£;'*(X) = dirlim £;'*+'(map,(M^"(^>(p^),X)). 

The direct system over e utilizes the maps p : M^{p^'^^) —• M'̂ (p^) used in Section 1, 
and the shift of one dimension is done for the same reason as in our definition of 
t;j"̂ 7r*(—). Similarly to Proposition 2.4, we have 

PROPOSITION 6.9. On the category of spaces with H-space exponents, there is a natural 
transformation from the UNSS to the v\-periodic UNSS. 

One of the main theorems of [4] is the following determination of the vi-periodic 
UNSS of 52^+1. 
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THEOREM 6.10. Let p be an odd prime. The v\-periodic UNSS of S'^'^'^^ collapses from 
E2 and satisfies 

^-i^5,2n+i-fu/^2n+i\ ^ f z/p™°(̂ ''̂ p(̂ )+ )̂ if s = \ or 2, and u = qa, . (52n+l)^ rZ/p™°(-''^P 
1 2 

'̂  otherwise. 

The morphism E2'\S'^'^-^^) -^ t;,~*£;2'̂ (S'̂ '*"̂ 0 is an isomorphism if s = \ and t > 
2n + 1, while for s = 2 it sends the unstable towers injectively, and bijectively unless 
n^ a- Upia) - 1, where t = 2n -f- 1 + ^a. 

PROOF. It is readily verified that the elements on the 1- and 2-lines described in The-
orems 6.3 and 6.6 form vi-periodic families. The main content of this theorem is that 
there is nothing else which is vi-periodic. 

In order to prove this, we use a vi-periodic version of the double suspension sequence 
(6.4). It is proved in [4] that the morphisms of (6.4) behave nicely with respect to 
vi-action, yielding an exact sequence 

^ v^'ExC^'^' {W{n)) -^ . (6.6) 

By Theorem 6.8(ii), there is a spectral sequence converging to v^^Extu{W{n)) with 

^f'' « 0^^r'Ext^'*(A2p^n., 0Zp). (6.7) 

There is a short exact sequence given by the universal coefficient theorem 

0 -> v^^E^^'(5^) 0 Zp ^ v;^Exili\An 0 Zp) 

^TOT{V^'E'2''^'{S^),ZJ,) ^ 0. (6.8) 

We will use eqs. (6.6), (6.7), and (6.8) to show inductively that there are no unexpected 
elements in v^^EiiS^^'^^). But first we show how the known elements fit into this 
framework. By (6.8), each summand in v^^E^S^) gives two Zp's, called stable, in 
v^^E\tu{An(S>Zp), and similarly each summand in v,~^£'|(5^) gives two summands in 
v'^^Extu{An 0 Zp), called unstable. We claim that 

vr'ExitiUWin)) « ( ^ ''^' = 0 or 1, and t ^ 2n ~ 1 mod g, 
1 u \ \ )) \Q Otherwise. ^ 

In [4, p. 57], the relationship between (6.9) and (6.7) is discussed: in the spectral sequence 
(6.7), stable classes from the (i -}- l)-summand hit unstable classes from the i-summand, 
yielding in vf̂ JSoo only the stable classes from the 1-summand. These are the elements 
described in eq. (6.9). On the other hand, in the exact sequence (6.6), let t = 2n-\-kq 
with e = i/p(fc). If e < n - 1, then E'^ is Z/p^ - ^ Z/p^ when s = 2, yielding the 
elements in v^^Exi^^~^{W{n)) for s = 0 and 1, while if e ^ n - 1, then for 5 = 1 
and 2, T^ is Z/p^"^ ^ Z/p^, also yielding elements in v^^Exi^f ~\W{n)) for 5 = 0 
and 1. 
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It seems useful for this proof to have one more bit of input, namely the result for the 
vi-periodic stable Novikov spectral sequence, which can be defined as a direct limit over 
e of stable Novikov spectral sequences of M(p^). 

THEOREM 6.11 ([13, §2]). There is a v\'periodic stable Novikov spectral sequence for 
S ,̂ satisfying 

and 

VY'E'/{^) = dirUm t;-»£;^-.*+2n+i (52n+i^^ 

y-^^E^.t ̂ gO\ ^ ( Z/p""^^^^-^^ ifs=landt = 0 mod q, 
^ ^ ^ ^ ̂  10 otherwise. 

We prove by induction on s that, for all n, vf ^f;|(52^+*), v^^E^^^iS^""-^^), and 
t;j~*Ext^(W(n)) contain only the elements described in Theorem 6.10 and eq. (6.9). 
This is easily seen to be true when s = 0, where we know all groups completely. As-
sume it is true for all s < a. Then v7^E2{S^^'^^) contains no unexpected elements 
because a = (a - 1) -f- 1. If v^^ E2 {S^^"^^) contains an unexpected element, then 
some i;J"*-B '̂̂ '(5^ '̂̂ )̂ must contain one in ker(i7^) by Theorem 6.11. Such an ele-
ment must be P2(x), where x is an unexpected element of vj"^Ext^~^(lV(n)), but no 
such element exists by our induction hypothesis. Finally, t;i~^Ext^(W^(n)) contains no 
unexpected elements by (6.7) and (6.8) since, as just established, vf^E'f (S'̂ '̂ ''"*) and 

,̂"'̂ ^•^^(5 '̂̂ '̂ ^) contain no unexpected elements for any m. D 

The UNSS and vi-periodic UNSS are considerably more complicated at the prime 2 
than at the odd primes, but the t;i-periodic UNSS of Ŝ "̂*"̂  is still completely understood. 
We shall not discuss it in detail because most of our applications in this paper will be at 
the odd primes. The reader desiring more detail is referred to [4], which gives a chart 
with UNSS names of the elements. 

We reproduce in figs. 13 and 14 the charts from [10, p. 488] of the vj-periodic UNSS 
of 52̂ +̂̂  at the prime 2. Here "3" means Z/2^ and *V" means Z/2'', where 

1/= min (i^(8fc-h 8)-h l ,n ) . 

Differentials emanating from a summand of order greater than 2 are nonzero only on 
a generator of the summand. Note how Z/8 in periodic homotopy is obtained as an 
extension by the Z2 in filtration 3 of the elements in the 1-line group which are divisible 
by 2 in a Z/8. 

Figure 14 applies to 5̂ 11+1 ^^g^ n = 1 or 2 mod 4, with n > 2. The reader is 
referred to [10, p. 487] for the minor changes required when n ^ 2. In fig. 14, the dotted 
differential is present if and only if 1/ = n. In both charts, the left r/-action on the Z/2'^ 
on line 1, which is usually indicated by positively sloping solid lines, is indicated by the 
dotted line if n < u{%k -h 8) 4-1. 

The argument establishing these charts appears in [4]. Note that v^^El'*{S'^'^'^^) = 0 
if 5 > 4, and hence no higher differentials are possible. 
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s = l 

j -s = 8A;4-

Figure 13. v.-̂ Ej*'̂ '*'*''̂ ^ (52^+0. n = 0, 3 mod 4, p = 2. 

5 = 4 

s= 1 

j -s = 8A:+ 

Figure 14. I;-'E2'2''"^'"+'^(52^+'), n = 1, 2 mod 4, n > 2, p = 2. 

7. I'l-periodic homotopy groups of SU(n) 

In this section we show how the vi-periodic UNSS determines the i;i-periodic homotopy 
groups of spherically resolved spaces. This relationship is particular nice when localized 
at an odd prime, and it is this case on which we focus most of our attention. At the end 
of the section, we discuss the changes required when p = 2. After proving the general 
result for spherically resolved spaces, we specialize to SU(n), where the result is, in 
some sense, explicit. 
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It is not clear that the vi-periodic UNSS of a space X must converge to the p-primary 
vi-periodic homotopy groups of X. There might be periodic homotopy classes which 
are not detected in the periodic UNSS because multiplication by v\ repeatedly increases 
BP filtration. It is also possible that a vi-periodic family in E2 might support arbitrarily 
long differentials in the unlocalized spectral sequence, in which case it would exist in 
all v^^Er, but would not represent an element of periodic homotopy. We now show 
that neither of these anomalies can occur for a spherically resolved space, essentially 
because they cannot happen for an odd sphere, where the vi-periodic homotopy groups 
are known to agree with the t;j"^ -̂term. 

DEFINITION 7.1. A space X is spherically resolved if there are spaces ^o, • • •, XL, with 
Xo = *, XL = X, and fibrations 

Xi.x^Xi^S^^ (7.1) 

with rii odd, and algebra isomorphisms 

H'{Xi)^H*{Xi.x)^H*[S'''). 

The following result was stated as Theorem 1.1. It was proved in [4]. 

THEOREM 7.2. Ifp is odd, and X is spherically resolved, then v^^E2^{X) = 0 unless 
s=\or2, and t is odd. The v\ -periodic UNSS collapses to the isomorphisms 

-1 rv^ (v7^Ey'^\X) ifiiseven, 
^ ^ ^ \V:^^EI''^^{X) if i is odd. 

PROOF. Each algebra BP*{Xi) is free, and so eq. (6.1) applies to give EziXi) w 
Exti^(M(xn,,...,Xm)), where M(-) denotes a free BP*-module on the indicated gen-
erators. There are short exact sequences in U 

0-^M(a:n,,...,Xni_,) -> M(a:n,,... ,XnJ -^ M{xni) -^0, 

and hence long exact sequences 

^ E^^\Xi.i) ^ E^'\Xi) -^ E^^'iS""') -^ E^-^'^'iXi^i) -^ . (7.2) 

These exact sequences are compatible with the direct system of vi-maps whose limit 
is the i;i-periodic groups. Thus there is a vi-periodic version of (7.2), and hence by 
Theorem 6.10 and induction on z, v^^E2^{X) = 0 unless 5 = 1 or 2, and t is odd. Thus 
v^'E2{X)^v^'Eoo{X). 

If n > max{ni}, s = 1 or 2, and s -f- u is odd, there are natural edge morphisms 
Tiu{X) -^ E2^^'^{X), and these are compatible with the direct system of vi-maps, 
giving morphisms v^^i^uiX) —• v'^^E^^^'^iX). These yield a commutative diagram of 
exact sequences 
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^Vi^1l2k{S^*)-

0 -«,-'^2''*""(^i-i) ^v;'£'/"+'(Xi) ^v^-'E'/'+'iS^*) 

^u,-'7r2fc-i(Xi-,) ^v:['iT2k-i{Xi) ^u,-'7r2fe-i(5"') ^ 0 

* ; _ > <l>'i i>' 

t/r'iSa''""" (Xi-i) t;r'£;f *+' {Xi) 1;,"' £^2''" '̂ (^"0 ^ 0. 
(7.3) 

The zeros at the ends of the vf *£<2-sequence follow from the previous paragraph. The 
zero morphism coming into v^^'ir2k{Xi^\) follows from v^^E2{S^^) = 0 and </>i-i 
being an isomorphism, which is inductively known. The zero morphism coming out 
from v^\2k-\{S^') follows since anything in the image must have filtration ^ 2, but, 
by induction, t;J~'7r2fc_2(^i-i) is 0 above filtration 1. 

Comparison of Theorems 4.2 and 6.10 shows that the groups related by ip and by 
i/j' are isomorphic, and it is easy to see that ^|^ and V̂ ' induce the isomorphisms. (See 
[23] for reasons.) Since X\ is a sphere, this comparison also shows that (t>\ and (l>[ 
are isomorphisms, which starts the induction. Thus all <f>i and 0̂  are isomorphisms by 
induction and the 5-lemma. D 

Theorem 7.2 is a nice result, but it still leaves the formidable task of calculating 
v^^E2{X). In [6], Bendersky proved the following seminal result, whose proof we will 
discuss throughout much of the remainder of this section. 

THEOREM 7.3. Ifk ^ n, then in the UNSS E\''^^'^\S\J{n)) w Z/p^^^ '̂"), where ep{k,n) 
is as defined in Definition 1.2, and p is any prime. 

This allows us to easily deduce Theorem 1.3, now demoted to corollary status, which 
we restate for the convenience of the reader. 

COROLLARY 7.4. Ifp is odd, then T;r̂ 7r2fc(SU(n)) « Z/p^^^ '̂̂ ^ and vf ^7r2fc-i(SU(n)) 
is an abelian group of the same order. 

PROOF OF COROLLARY. The first part of the corollary is a straightforward application of 
Theorems 7.2 and 7.3, once we know that the groups in Theorem 7.3 are vi-periodic. 
This can be seen by observing how they arise, from exact sequences built from spheres, 
where the classes are all vi-periodic. In [23], a slightly different proof of this part of the 
corollary was given, before the vi-periodic UNSS had been hatched. 

The exact sequence like the top row of (7.3) for the fibration 

S U ( n - l ) - > S U ( n ) - > 5 ' 2n- l (7.4) 



Section 7 Computing periodic homotopy groups 1031 

implies, by induction on fi, that |V| 7̂r2/k—1 (SU(TI))| = \v^ 7̂r2jfc(SU(7i))|. Indeed, the 
orders are equal for S^^~^ by Theorem 6.10, and so if they are equal for SU(n - 1), 
then they will be equal for SU(n), since the alternating sum of the exponents of p in an 
exact sequence is 0. The fact that SU(2) = S^ starts the induction. D 

In [23], an example of a noncyclic group vf̂ 7r2fc-i (SU(n); 3) was given, and in [13] 
it was shown that t;fV2ik-i(SU(n);2) will often have many summands (in addition to 
a regular pattern of Z2's). 

In order to prove Theorem 7.3, it is convenient to work with the UNSS based on 
MU, rather than BP. This allows us to work with the ordinary exponential series, rather 
than its p-typical analogue. The facts about MU that we need are summarized in the 
following result. 

PROPOSmON 7.5. (i) MU„{MU) is a polynomial algebra over MU^ with generators 
Bi of grading 2i for i > 0. There are elements Pi G MU2%{CP^) which form a basis 
for MU^CP"^) as an MU^-module. 

(ii) Let B denote the formal sum 1 -h YLi>{)^i' ^^^ coaction 

MU.[CP'^) - ^ MUMU®MU. MU,{CP°^) 

satisfies 

J 

Here {B^)n-j denotes the component in grading 2{n — j) of the jth power of the formal 
sum B, 

(iii) There is a ring homomorphism e : MU^{MU) 0 Q —• Q satisfying 

• e(jBi) = l/(z-f 1). 
• e{7]R{a)) =Oifae MUi with i > 0. 
• e induces an injection £; '̂2n+i+2fe(^2n+i) ^ Q / ^ 

(iv) The BP'based UNSS is the p-localization of the MU-based UNSS. 

PRCX)F. Part (i) is standard (e.g., [2]), while part (ii) is [2, 11.4]. Part (iii) is from [6]. 
There are elements rrii ^ MU2i 0 Q such that MU^MU (g) Q is a polynomial algebra 
over Q on all rrii and 'rjR{mi). One defines e to be the ring homomorphism which sends 
TUi to l/(z -f 1) and 'qR{mi) to 0. The second property in (iii) is clear, and the first 
follows by conjugating [2, 9.4] to obtain 

m„ = J^„«(m,)(J5^+')„-i. 

and then applying e to obtain e{mn) = e{Bn). 
One way to see the third property is to localize at p and pass to BP. Then m^^j 

passes to mf^, and so our e passes to that of [6, 4.3]. It is shown on [6, p. 751] that 
eBP sends the p-local 1-line injectively, and this works for all p. D 
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Now we can state a general theorem which incorporates most of the work in proving 
Theorem 7.3. This theorem was stated without proof in [11, 3.10], where it was applied 
to X = Sp{n), p = 2. We will outline the proof, which is a direct generalization of [6], 
later in this section. 

THEOREM 7.6. Suppose X is spherically resolved as in Definition 7.1 with n\ < 712 < 
• • • , and L possibly infinite. Then MU^ {Xk) is an exterior algebra over MU^ on classes 
y\,...,yk, ^ith \yi\ = n̂ . Let 

E'\Xk) = kcT{E'/{X,) ^ E'/{XL)). 

Let ^kj ^ MU^{MU) be defined in terms of the coaction in MU^{Xi) by 

k 

and let bkj = ei'ykj) € Q. Then the matrix B = {bkj) is lower triangular with 1 !$• on 
the diagonal Let C = {ckj) be the inverse of B, and let 

uJk{Tn) = l.c.m.{den(cfcj) : m^ j ^ k}. 

Then coker(E '^''{Xm-i) —^ E '^''{Xk-x)) is cyclic of order Uk{m). 

Now we specialize to SU(n), where we need the following result. 

PROPOSITION 7.7. In the UNSS 

(i) E^'\SlJ) = Oifs>0. 
(ii) E^^^^-^^SUin)) =Oifn>k. 

(iii) El^^^-^\S\]{k))^Z/kl 
(iv) Ifi<j^K the inclusion SU(i) —> SU(j) induces an injection in E2 ^ • 
(v) SU is spherically resolved as in Theorem 7.6 with Xk = SU{k +1), Uk = 2fc -I-1, 

and if the MU-coaction on SU is as in eq. (7.5), then 

X;e(7M)^' = ( - log( l -x))^ (7.6) 
k^j 

PROOF. Part (i) is a nontrivial consequence of the fact that SU is an if-space with torsion-
free homology and homotopy. See [6, 3.1]. The coalgebra MC/*(SU(n)) is cofree with 
primitives isomorphic to MU^{ECP^~^), Hence by (6.1) 

and so the fibrations (7.4) induce exact sequences in £2- Part ii follows from part i and 
the exact sequence, and part iv is also immediate from the exact sequence. 
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Let 2/2/k+i € Mt/2A:-fi(SU(n)) be the generator corresponding to 

E|3k^MU2k^^{ECP^-') 

for k<n. Part (iii) is proved on [6, p. 748] by showing that the generator of JÊ '̂ ''"̂ ^ (SU) 

is of the form k\y2k-\-\-\- lower terms, so that 

EP^^^^' (SU(A: -f 1)) - - £̂ '2̂ 4-1 (52/.+!) 

sends the generator of one Z to fc! times the generator of the other Z. This impHes 
part (iii). 

By Proposition 7.5(ii) and the relationship of Mi7*(SU(n)) with MU^SCP'^-^) 
noted above, we find 

By Proposition 7.5(iii), we have ^e(Bt)x*"*"^ = - log(l — x). These facts yield part (v). 
D 

Now we can prove Theorem 7.3. If / (x) is a power series with constant term 0, let 
[/(x)] denote the infinite matrix whose entries akj satisfy 

f{xy = Yakjx^. 
k 

One easily verifies that [p(x)][/(x)] = [/(p(x))]. Hence the inverse of the matrix 
[-log(l - x)] is [1 - e~^]. This observation, with Theorem 7.6 and Proposition 7.7, 
implies that there is a short exact sequence 

0 -^ E];'^^^^ (SU(n)) ^ E];'^^^^ (SU(A:)) -^ Z/uk{n) ^ 0 

with middle group Z/fc! and 

ujk{n) = l.c.m.{den(coef(x^, (1 - e"^)^)): n ^ j ^ k}. 

Thus El''^^'^\sU{n)) is cyclic of order 

A:! / l.c.m.{den(coef(x'', (e^ - l)^)): n^j ^k} 

= gcd |coef (^ |y , (e^- l )^Y n ^ j ^ f c j . 

Looking at exponents of p yields Theorem 7.3 by Proposition 7.5(iv). 
It remains to prove Theorem 7.6, the notation of which we employ without comment. 

Define bkj{m) for m < fc recursively by bkj{k) = bkj and 

f^k,j{m) = bkj{m 4-1) ~ bk,m{m 4- l)6m,j. (7-7) 
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We begin by noting that if row reduction is performed on {B\I) so as to get at each step 
one more diagonal of O's below the main diagonal of J5, we find that the entries Ck^j of 
B"^ satisfy 

fO 'ifj>K 
Ckj = \ 1 if j = k, 

l-&/fc,jO' + l) ifj<fc. 

Then 

Ukim) = max {oTd{bkj{j + 1)): m ^ j ^k). (7.8) 

Here and throughout this proof, ord(-) refers to order in Q/Z. 
Fix fc, and let 

We drop the subscript k from eqs. (7.7) and (7.8). The fibration Xk-\ -^ Xk --^ 5""̂  

implies that the generator g{k - \) oi E '^^{Xk^\) is 

3<k 

Let aj{k - 1) = e(7fc,j) = b/tj. By Proposition 7.5(iii), r(fc - 1) = ord(afc_i(fc - 1)). 
Then there is a G MU^ so that r{k - \)g{k - 1) -h d{ayk^\) pulls back to a generator 
oi'E^''^^{Xk-2). Write this generator as Ylij[k - l)yj. Then 

aj{k-2)'.= e(p(j{k-2)) = T{k - \)aj{k - I)-\-e{a)bk-\j 

= T{k ~ l){aj{k - 1) ~ ak-i{k - l)6/fc-,,,). 

Here we have used that e(a) = -e(d(a)), which follows from Proposition 7.5(iii). 
This procedure can be continued until we obtain a generator ^ 7 j ( m - \)yj of 

E ' ''{Xm-i) with aj{m - 1) := e(7j(m - 1)) satisfying 

aj{Tn-\) = T{m){aj{m) - am{m)bmj) 

and T{m) = ord(am(7n)). Now we prove by downward induction on m that aj{m—l) = 
u{m)bj{Tn), the case m^ k being trivial. 

aj{m- 1) = r(m) (aj(m) - am(^)bm,j) 

= r(m) a;(m-f l ) (6j(m+ 1) - 6rn(m + l)&m,i) 

= OTd{am{'m))(jj{m -h l)6j(m) 

= ord(a;(m-f l)bm{m-\- l))a;(m-f l)bj{m) 

= max (a;(m-f- l),ord(6m(m-I- l)))6j(m) 

= u;(m)6j(m) 
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The portion of this string after the first line and not including the last factor shows that 
r(m)a;(m -h 1) = ti;(m), and hence uj{m) = T{m) • • • r(A: ~ 1), which is a restatement 
of the desired conclusion of Theorem 7.6. • 

Since each Vj~^7ri(SU(n)) occurs as a direct summand of some actual homotopy group 
of SU(n), the following result about the p-exponent of SU(n) is immediate from Theo-
rem 1.3. 

COROLLARY 7.8. Let expp(X) denote the largest e such that, for some i, 7ri{X) has an 
element of order p^. Then, ifp is odd, 

expp(SU(n)) ^ ep{n), 

where ep{n) = max{ep(fc,n) : k ^ n}. 

We conjecture that this bound is sharp, the main evidence being that the analogous 
statement is true for odd spheres, by [20]. The numbers ep{k,n) are explicit in Defini-
tion 1.2, and this formula can be used with a computer for specific calculations. How-
ever, this formula is not very tractable. In Section 8, we sketch how simple formulas for 
vr^7r2fc(SU(n)) can be obtained for n ^ p^ - p without using Theorem 1.3, but rather 
by studying the exact sequences of UNSS £^-terms. 

Theorem 7.6 is valid when p = 2, but Theorems 7.2 and 1.3 must be modified, due to 
the more complicated form of the vi-periodic UNSS for S^n-f i ^^e^ p = 2, as discussed 
at the end of Section 6. We state below the 2-primary version of Theorem 7.2 which was 
proved in [4], but we refer the reader to [10] for the 2-primary analogue of Theorem 1.3. 

THEOREM 7.9 ([6]). Suppose X is spherically resolved and p = 2. Then 

• v^^E2{X) is generated as an 7}-module by elements with s = I orl. Here rj has 
is,t) = {l,2). 

• 77 acts freely on elements with s > 2. 
• v:;'^E4{X) = v^^Eoo{X), and v^^EI{X) = Oifs> 4. 
• If the groups v^^E2'*{X) are cyclic, then the v\-periodic UNSS converges to 

v^'n^X). 

8. i;i-periodic homotopy groups of some Lie groups 

In this section we focus on two examples. One uses UNSS methods to determine 
ff V*(G2;5), while the other uses ASS methods to determine vfV*(F4/G2;2). Here 
G2 and F4 are the two simplest exceptional Lie groups. The first example is just one 
of many discussed in [14]. We also discuss how these UNSS methods can be used to 
give tractable formulas for vj" V*(SU(n);p) when p is odd and n ^ p^ - p. We close 
by summarizing the status of the program, initially proposed by Mimura, of computing 
the vi-periodic homotopy groups of all compact simple Lie groups. 

Our first theorem concerns the vi-periodic homotopy groups of certain sphere bundles 
over spheres, which appear frequently as direct factors of compact simple Lie groups 
localized at p, according to the decompositions given in [49]. 
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THEOREM iA. Let p be an odd prime, and let B\{p) denote an S^-bundle over 5̂ "̂*"* 
with attaching map a\. Then the only nonzero v\'periodic homotopy groups of B\{p) 
are 

V^'l^2,^,rn-^x[B^{p))^V;'l^2^^,rn[Bx{p)^ 

This is the case fc = 1 of [14, 2.1]. The spaces B\{p) were called J5(3,2p-|-1) in [14]. 
The following result follows immediately from the 5-local equivalence G2 '^ B\{5). 

COROLLARY 8.2. 

r 2/5inin(6,l+i/5(t-5009)) if i ^ \ mod 8, 

1̂ Vt(G2;5) « I z/5min(6,i+î 5(t~50io)) ŷ̂  ^ 2 mod 8, 

^ 0 otherwise. 

The following result is the central part of the proof of Theorem 8.1. Indeed, this theo-
rem, 8.3, along with Theorem 6.3, gives the order of each group EY{B\ (p)), and Theo-
rem 8.5 shows the group is cyclic. Then Theorem 7.2 shows that this gives i;f ^ TT* {B\ (p)) 
when * is even, and the proof of Corollary 7.4 shows that 

|t;r^^2fc-i(Bi(p))| = \v^^T^ik{B^{p))[ 

Finally, vf^7r*(Bi(p)) is shown to be cyclic when * is odd in Theorem 8.6. 

THEOREM 8.3. In the exact sequence 

J*^ ril,9»7i+2p4-l/rf2p+l\ 9 ^ £.2,gm4-2p+l / e3\ 

the morphism 9 is a surjection to Z/p unless 

i/p(m) ^ p - 1 and m/pP"^ = 1 mod p, 

in which case it is 0. 

We will use the double suspension Hopf invariant H2 discussed in Theorem 6.8. We 
denote by Jf' the morphism 

H' : Jef (5^^+^) - ^ Ext^(W^(n)) -> E\{M), 

obtained by following if2 by the stabilization. Here 

E^{M) « Exi%p^sp{BP.,BPJp) 

denotes the i52-term of the stable NSS for the mod p Moore spectrum M. We will 
eventually need the following facts about EziM). 
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LEMMA 8.4. (i) E2[M) is commutative. 
Cii) v\hx^Q£E\{M\ 
(iii) Ifxe E2[M\ then V2X = xv2 = 0. 
(iv) T;,/if(''~^)+' = T;f(̂ -̂ ^+ /̂i, in E2{M). 
(v) Ifs^Omodp, then a^pe-i/e = -svf^*" ~^/ii in E2{M). 

PRCKDF. Part (i) is well known, part ii is [51, p 157], and part (iii) follows from [48, 
2.10]. Part (iv) follows from Proposition 6.1, part (iii) of this lemma, and the fact that 

e —1 

phi = 0 G £^(M). To prove part (v), we use 6.1 to expand v^^ , obtaining 

All terms except j = 1 are divisible by p, and hence are 0. To insure that terms with j 
large are p times an admissible element, write p^'^h] as p{v\ - r//e(vi))̂ ~^~ /̂i®"^^ D 

Now we begin the proof of Theorem 8.3. We begin with the case u{m) < p — 1. In 
this case, 

a(gen) = am/u{m)-^\ ® ai^a = -Q^m/i/(m)+i ® /ii^3, (8.1) 

mod terms that desuspend to SK Here we have used [6, 4.9] and Proposition 6.5. By 
Proposition 6.5, the assumption that i/(m) < p - 1 implies that am/u(m)+\ is defined on 
5^P~^ and hence Theorem 6.8(v) implies that 

iy'(a(gen)) = -am/u{mH\ T̂  0, 

where the last step uses parts v and ii of Lemma 8.4. Thus d 7»̂  0 in this case, as claimed. 
Now we complete the proof of Theorem 8.3 by considering the case i/{m) ^ p - 1. 

We let s = m/p''^^) and 

_ fO i f i / ( m ) > p - l , 
^ \l if i/{m) = p— 1. 

We will establish the following string of equations in the next paragraph, and then we 
will further analyze whether these terms are 0 by studying their Hopf invariant. The 
following string is valid mod terms which desusf)end to S^. 

a(gen) = a^/p(8)ait3 

= p"^(r?H(vr) - (p/ii + mMD ^ ctM^ (8.2) 
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= -p^-^h^ 0 ai t3 - eshx 01;^" ̂  a, 3̂ (8.3) 

= -v'^'^h^ 0 ait3 - v'^^-^'^h^ 0 vxhxirs + es/ii 0 i;7^-^/i,t3 (8.4) 

= ^ + B 4- C, (8.5) 

where A, B, and C denote the three terms in the preceding line. 
Line (8.2) follows from Propositions 6.5 and 6.1. Line (8.3) has been obtained by 

observing that in the sum all terms desuspend to S^ except j = m and, if i/(m) = p - 1, 
j = L To see this, we observe that we need to have a p to make ait^ desuspend. This 
factor will be present unless j = 1 and u{m) = p - 1. The requirement that j be < ^ 
times the degree of the symbols following h] will only be a problem for large values of 
j . When j is large, write the term as 

(7)p(«. - m{vx)y~'"'h^'®vr'c^i^i-
Since p times anything which is defined on S^ desuspends to 5 ^ this desuspends to 5* 
provided p -I- 1 < (p - l)(m - j -f 1) -f 1, which simplifies to 1 ^ (p - l)(m - j), i.e. 
j < m. To obtain (8.4), we have rewritten the first term of eq. (8.3) as 

observed that when this is expanded, all terms except the first desuspend, and in that first 
term we write ph\ =v\- r}R{v\). 

We note first that, by Proposition 6.2, A is d(/i2) mod S\ and so H'{A) = 0. We can 
evaluate the Hopf invariant of B and C by Theorem 6.8(v); using Lemma 8.4, we obtain 

H\B + C) = {-\-^es)v'^^^hx, 

Hence if'(a(gen)) = 0 if and only if - 1 -f- es = 0 mod p. Since if' is injective on 
£2(8^), this completes the proof of Theorem 8.3. Q 

Now we settle the extension in the exact sequence of Theorem 8.3. 

THEOREM 8.5. The groups E\''''^'^^^'^\B]{P)) in Theorem 8.3 are cyclic. 

PROOF. We will show that whenever ker(9) 7»̂  0 in the exact sequence of 8.3, there is 

an element z E EI'^'^^^^'^\B]{P)) such that j^{z) = am 2̂p-fi» the element of order p, 

and pz = i*(gen). Since 9(am^2p+i) = 0 in these cases, there is WL^ G C'̂ '̂ '̂ "*"̂ "̂̂ *(5̂ ) 

such that d{wi2) = am^ ^i 63. Let 

Then z is a cycle, since d[z) = am 0«i^3 - ^m ̂ ĉ î 'S, and clearly j*(z) is as required. 
Since pam = d{v'^), we have 

pz - d(vl^t2p+i) = d(y'^)i2p^\ - pwL3 - d(t;P)62p+i + '̂P̂ ^̂ î 'S 
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We show (v^ai -jnuYi ^̂  0 G £'̂ '̂ ^+ '̂'"^ (̂5̂ ) by noting from [7, §7] that the Hopf 
invariant 

H2:E\{S^)-^Exi\W{\)) 

factors through the mod p reduction of the unstable cobar complex. Thus 

The second "=" uses Theorem 6.8(v), and the *V' uses 6.8(iii). D 

The following result completes the proof of Theorem 8.1 according to the outline 
given after Corollary 8.2. 

THEOREM 8.6. In Theorem 8.1, the group v^^'Kqm-{-2p^\{B\{p)) is cyclic. 

PROOF. We use the exact sequence in v,"^7r*(-) of the fibration which defines B\{p). 
The cyclicity follows from that of vf Vgm+2p-i(S'̂ ''"^ )̂ unless 

3 = 0 : v:[\qm^2j,{S^^-^') -^ v:[\qm^2p-x (5^)- (8.6) 

If eq. (8.6) is satisfied, then 

by [23, 6.2], and 

is an isomorphism of Z/p's by Theorem 8.3. Let G denote a generator of 

t;r^7r,^+2(52p+>)»andlet 
y € v:[\qrn^2p^\ {B\{P)) 

project to G o ai. By [50, 2.1], 

pF = z.((aG,a,,p)) = a(G)o^, ^ 0 . ^ 

It is shown in [49] that B\ (p) is a direct factor of SU(n)(p) if p < n < 2p, and hence 
i;j~*7rt(SU(n);p) is given by Theorem 8.1 if p < n < 2p and z = 1 or 2 mod q. This 
yields the following number theoretic result. 

COROLLARY 8.7. If p is an odd prime, k = 1 mod p - 1, and p < n < 2p, then the 
number ep{k^n) defined in 1.2 equals min(p,Up{k -p-pP -\-p^'^)) -h 1. 

The author has been unable to prove this result without the UNSS. In fact, the only 
tractable result for ep(fc, n) which follows easily from Definition 1.2 seems to be that if 
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n^p and A; = n ~ 1 mod p - 1, then ep{k, n) > min(n - \,Up{k - n -f 1) -f 1), which 
is proved using the Little Fermat Theorem as in [22, p. 792]. 

Using methods similar to those in our proof of Theorem 8.1, Yang ([58]) has proved the 
following tractable result for t;f ^7r:̂ (SU(n);p) when p is odd and n^p^ -p. Of course 
this can also be interpreted as a theorem about the numbers ep(fc, n). We emphasize that 
the proof of Theorem 8.8 does not involve the use of Theorem 1.3. 

THEOREM 8.8. Suppose p is odd, fc = c -h (p - l)d with 1 ^ c < p, and 

c - h ( p ~ l ) 6 - f 1 ^ n < c - f - ( p - - l ) ( t 4 - l ) 

with 0 ^ 6 ^ p - 1. Define j by I < jf ^ p and d = j mod p. Then v^^7r2k{SU{n);p) is 
cyclic of order p ,̂ with 

( min(c + (p ~ l ) j , 6 4- i/(d - j) -f-1) 
if & < c and 1 ^ j < b, 

e = < 

min(c+ ( p ~ l ) j + 1, 6 + i / ( d - j + ( - lpj ( ,V( ' '~^)) ) 
if c < 6 and 1 ^ j < 6, 

min(c, 6-1- 1 -f i/{d)) 
if b < c and 6 < j' < p, 

16 if c ^ 6 and 6 < jf ^ p. 

One can easily read off from Theorem 8.8 the precise value of the numbers ep{n) which 
appeared in Corollary 7.8, yielding the following result for the p-exponent of the space 
SU(n). 

COROLLARY 8.9. Ifp is odd and n^p^ -p, then 

exp,(su(n)) >»,(„) = {;;_, ^^ ) -I- 2 < n ^ zp -h 1 for some i, 

When p = 2, UNSS methods of computing i;J" 7r*(-;p) become more compli-
cated because of the 77-towers. Then ASS techniques become more useful, as they 
did for i;j"V*(G2;2) in [29]. Here we show how to use ASS methods to determine 
v^^7r^{F4/G2\2). It is hoped that the result of the calculations of v^^7r^{G2',2) and 
t;fV*(F4/G2;2) might be combined to yield v,''̂ 7r*(F4;2), but this involves one dif-
ficulty not yet resolved. Our main reason for including this example is to give a new 
illustration of this method. 

The proof of the following theorem will consume most of the remainder of this paper. 
If G denotes an abelian group, then mG denotes the direct sum of m copies of G. 
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THEOREM 8.10. Let G{n) denote some group of order n. 

v;\i{F4/G2;2) ^ < 

^4Z2 
Zg © Zg e Z2 
Z/64 
0 
/j/'2™"(^5»'^(*~21)+4)\ 

Z2©Z2©Z/2"^"(^^'^(^-
.5Z2 

There is a fibration 

515 _U F4/G2 - ^ 52^ 

-22)+4) 

i = 0 mod 8, 
i = 1 mod 8, 
i = 2 mod 8, 
2 = 3 or 4 mod 8, 
i = 5 mod 8, 
i = 6 mod 8, 
2 = 7 mod 8. 

(8.7) 

derived in [29, 1.1]. Here and throughout this proof all spaces and spectra are localized 
at 2. 

In [31], it was shown that for any spherically resolved space Y, there is a finite torsion 
spectrum X satisfying v^^n^{Y) « v^^J„,{X). In our case, we have 

PROPOSITION 8.11. There is a spectrum X such that 

(i) t;f^J.(X) « vfV,(F4/G2), and 
(ii) there is a cofibration 

S^5pH _^x^ j;23+Lp22^ (8 8) 

where L equals 0 or a large l-power. 

We present in fig. 15 a chart which depicts an initial part of the ASS for v^^J^{X) if 
X is as in Proposition 8.11 and L = 0. It depicts the direct sum of the spectral sequences 
for i;f ^ J*(i:̂ ^P*'̂ ) and v,"̂  J*(r^^P^^), together with one differential, which will be 
established in Proposition 8.13. The •'$ are elements from P^^, while the o's are from 
P^^. Charts such as these for v^^J^{P'^) were derived in Section 4. 

To see that fig. 15 is also valid when L in Proposition 8.11 is a large 2-power, we use 
the following result. 

LEMMA S.12. If L is a large 2-power, then the attaching map 

^22+Lp22_,^-1^15pl4 

in Proposition 8.11 has filtration L/2 -h 1. 

Using results of [40], this implies that a resolution of v^^X can be formed from 
v'^^E^^P^^ and 0̂ /̂ i;j"̂ Z'̂ "̂*"̂ P̂ ,̂ where (jP increases filtrations by j , and this yields 
fig. 15. 

PROOF OF LEMMA 8.12. Under S'-duality, the generator corresponds to an element of 
v'^Ji^-jiP^"^ A D{P'^^)). This group is isomorphic to 

V;'JLMP''^P-23)' (8-9) 
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8ifc-f 21 

d' = di/(A:-)-l)+2 

8ifc-f 26 

Figure 15. Initial chart for v, '7r*(F4/G2). 

Figure 16. The generator of Vj ^JL^(,{P^^ A P ĵ̂ a)-
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Using methods of [26], one can show that the relevant chart is as in fig. 16, where the 
class indicated with a bigger • is the generator of (8.9), and has filtration L/2 -f 1. 

Borel ([15]) showed that Sq^(xi5) = X23 in H*{FA\ Z2). This implies that the attaching 
map in F4/G2 and in X is the Hopf map cr, and hence corresponds to the generator of 
(8.9). Thus the attaching map has filtration L/2 -hi. D 

We can now establish the d2-differentials in fig. 15. 

PROPOSITION 8.13. There are d2-dijferentials as indicated in fig. 15. 

PROOF. This follows from the a attaching map just observed, together with the observation 
that the first of the pair of elements that are related by the differential in fig. 15 are 
vi-periodic versions of 7723 and r)a\s. D 

This d2-differential implies there is a nontrivial extension in v^^'K^k-^2(i{F/[/G2) as 
follows. 

PROPOSITION 8.14. i;f 7̂r8/b+26(î 4/G2) » Z/64. 

PROOF. This follows from fig. 15 and a standard Toda bracket argument ([50, 2.1]), which 
in this situation says the following. Let A be the element supporting the higher of the 
two d2-differentials, and let D be the lowest • in 8fc -h 26. Let 9 denote the boundary 
morphism in the exact sequence in vf ^7r*(-) associated to the fibration (8.7). Then D lies 
in the Toda bracket (9(i4),77,2), and so there exists an element E G t;f ^8^+26(^4/^2) 
such that p*(-B) = A o 77 and u{D) = IE. D 

As indicated in fig. 15, there are di,(/fc)̂ .2-differentials between o-towers in 8A:-f 22 and 
8A: -1- 21, and there are d„(fĉ .i)_j_2-differentials between ©-towers in 8A: + 22 and 8A: + 21. 
This follows just from standard J«(-)-considerations. But there may also be differentials 
from the o-tower in 8fc -h 22 to the •-tower in 8A: -h 21. These differentials from o to • 
are determined from the homomorphism 

v:['-nik+7i{S^^) -^ v;'nk+2i {S''), (8.10) 

which is evaluated in the following result. 

PROPOSITION 8.15. The image of the homomorphism (8.10) consists of all multiples ofS 
ifv{k) ^ 7, and is 0 ifv{k) > 1. 

The following result plays a central role in the proof of Proposition 8.15. 

PROPOSITION 8.16. Let {S^^)K denote the K^-localization as constructed in [42]. There 
is a commutative diagram 

Qg23 5 ^^15 

r 
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in which 9 is obtained from the fiber sequence (8.7), e is the localization, and h induces 
an isomorphism in TTJ{—) for j = 22 and j ^ 28. 

PROOF. The map h is constructed as in [29, pp. 669-670], using results of [42]. It induces 
an isomorphism in 'KJ{-) for many other small values of j , but we only care about values 
of j which are positive multiples of 22. The obstructions to its being an isomorphism for 
all small values of j are Z2-classes in filtration 1 in Jj{I!^^P^^) for j = 19, 23, and 27. 
The map £ is obtained by obstruction theory, since QS^^ has cells only in dimensions 
which are positive multiples of 22. D 

Now we prove Proposition 8.15. Let i be as in Proposition 8.16. The morphism 7r*(̂ ) 
can be factored as 

There is a splitting 

i>0 

We will use the method of [43] to deduce that 

sends the vi-periodic generator pk to 8 times the generator. Indeed, the stable map 
5̂ 2 -^ E^^P^^ A J which induces the morphism factors through E^^P^ A J, from which 
it projects nontrivially to S^^Pf A J. We then use [43, 2.8] to deduce that pk goes to 
the nonzero element of 78̂ +21 (̂ ^^ 7̂̂ )- This implies that its image in Jsk-h2\{E^^P^) is 
the generator, and this maps to 8 times the generator of Jsk+iii^^^P^^)-

The composite of vi-periodic summands of 

7r8fc+2i {nS^') - 7r|,^2i i^S^') - 8̂̂ +21 (5'') (8.11) 

is bijective if i/{k) ^ 7, but is not surjective if u{k) > 7. Thus when the composite 
(8.11) is followed into Jsk-{-2\{S^^P^^). the image of a i;i-periodic generator is 8 times 
the generator if u{k) ^ 7 and 0 G Z/16 if i/(fc) > 7. Once we observe that, in the diagram 
of Proposition 8.16, h induces an isomorphism in 7r8fc -̂2i(-) and e sends the t;i-periodic 
summand isomorphically, we obtain the desired conclusion of Proposition 8.15. • 

The differentials implied by Proposition 8.15 have an interesting and unexpected im-
plication about fig. 15. Since dr from the o-tower in 8fc -h 22 hits the top o in 8A: -h 21 
and the • just above it with the same r, and since dr respects the action of ho, there 
must be an /lo-extension between these classes in 8A: -f 21. If L = 0 in (8.8), then this 
extension can only be accounted for by a failure of the map (8.8) to induce a split short 
exact sequence of Ai-modules in cohomology. Indeed, we have 

PROPOSITION 8.17. IfL = 0 in (8.8), then there is a splitting of A\-modules 
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k odd 

8ifc4-21 

Sifc-f 26 

k even 

8A:-h21 

d = d^(k)-\~2 

Sk + 2b 

Figure 17. Final chart for v, *7r*(F4/G2). 

This splitting is caused by having Sq^ 7»̂  0 on the class in H*X corresponding to the 
topcellofff*(i:^^P^^), i.e. 

Sq^'.H^^X-^H^^X 

is an isomorphism. This is the only way to account for the /lo-extension in fig. 15. 
Proposition 8.17 implies that the /lo-extensions are present in the chart for values of k 
(u{k) > 7) where they cannot be deduced from differentials. It also implies that there is 
an /iQ-extension on the top o in 8fc -h 22. If L > 0 in (8.8), the same conclusion about 
the charts can be deduced from a more complicated analysis. 

It causes fig. 15 to take the form of fig. 17. 
We can read off almost all of Theorem 8.10 from fig. 17. We must show that ck is 0 

on the o's near the bottom in 8fc -f 23 and 8A: -f- 24. This is done by the argument used to 
prove Proposition 8.15. The classes involved are present in all spaces in the diagram in 
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Proposition 8.16, but they are not mapped across by £^, since it factors through 7rJ(l75^^). 
All that remains is the verification of the abelian group structure. Most of the extensions 

are trivial due to the relation 2T] = 0. The extension in 8A: -f 22 when k is odd was 
present before the exotic extension was deduced, and remains true. The cyclicity of this 
2^ summand can also be deduced by consideration of the kernel of the homomorphism 
in the fibration which defines J, but that seems unnecessary. Note that no claim is made 
about the group structure in 8 A: 4- 21. • 

In 1989, Mimura suggested to the author that he try to calculate t;f*7r*(G) for all 
compact simple Lie groups G. If p is odd, and G = Sp(n) or SO(n), then the result 
follows from Theorem 1.3 and [33]. With great effort, 7;j~^7r*(Sp(n);2) was calculated 
in [13]. The result involves a surprising pattern of differentials among Z2's from the 
various spheres which build Sp(n), resulting in [log2(4n/3)] copies of Z2 in certain 
v^^7ri{Sp{n)). Of the classical groups, only t;fV*(S0(n);2) remains. All torsion-free 
exceptional Lie groups were handled in [14], using the UNSS. In [29] and [12], the 
torsion cases (G2,2), (F4,3), and {E^^ 3) were handled. Remaining then are seven cases 
of (G,p) yet to be calculated. At least a few of these should lend themselves to the 
methods of this paper. 
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Section 0 Classifying spaces of compact Lie groups \ 051 

0. Introduction 

The basic problem of homotopy theory is to classify spaces and maps between spaces up 
to homotopy by means of algebraic invariants such as homology or cohomology. Since 
their discovery, classifying spaces of compact Lie groups G, denoted by BG, have been 
a very important part in homotopy theory. For example, they appeared as target in the set 
of homotopy classes of maps [X, F], because of their central role in bundle theory. In 
the last decade, some striking progress was made in the understanding of the homotopy 
theory of classifying spaces of compact Lie groups. We mention some aspects: 

- It has been shown that, for a simple connected compact Lie group G, two self maps of 
BG are homotopic if and only if they induce the same map in rational cohomology. 

- It also has been proved that for a large class of simply connected compact Lie groups 
G the mod-p cohomology with cup products and Steenrod operations completely de-
termines the homotopy type of the p-adic completion BG(^ of BG (for odd primes 
this contains all classical matrix groups). 

- Similar methods have also been used to obtain new results for Steenrod's problem: 
which polynomial algebras can be realized as the mod-p cohomology of a space? 

- The program of understanding 'classical* Lie group theory from the homotopy point 
of view, i.e. to express Lie group theory in terms of classifying spaces, is developed 
to a large extent and might lead to a complete classification of finite loop spaces. 

The study of maps between classifying spaces goes back to Hurewicz. For aspherical 
spaces X and Y he showed that 

[X,Y] ^ Hom(7r,(X),7r,(y))/Jnn(7r,(y)) 

is a bijection. In particular this applies to classifying spaces of finite or more generally of 
discrete groups. Here, Hom{ , ) denotes the set of homomorphisms between groups and 
Inn{) the group of inner automorphisms. Moreover, the homotopy type of an aspherical 
space is determined by the fundamental group. This fed the hope that, up to homotopy, 
every map between the classifying spaces of any pair of compact Lie groups is induced 
by a homomorphism. However, in 1970, the first counterexamples were constructed by 
Sullivan, namely self maps of BU{n), which even in rational cohomology do not look like 
a map coming from a homomorphism. Inspired by Sullivan's work, a careful investigation 
of Hubbuck, Mahmud and Adams gave necessary criteria for the effect that maps between 
classifying spaces of compact Lie groups could have in rational cohomology. 

The idea of developing Lie group theory in terms of homotopy theory goes back to 
Rector. In his study of loop structures on S^ and sub-loop spaces of finite loop spaces 
first definitions of basic notions of Lie group theory appeared in terms of classifying 
spaces, such as homomorphisms, subgroups, maximal tori and Weyl groups. 

The proof of the Sullivan conjecture by Miller and Carlsson and subsequent work of 
Lannes was the break through for the recent fast development in this area. The Sullivan 
conjecture states as follows: 
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0.1. THEOREM (Sullivan conjecture, [59]). Let-K be a locally finite group and K a finite 
CW-complex. Then, the evaluation at a basepoint 

7nap{B7r, K) -^ K 

is a weak equivalence. 

Lannes developed machinery for a purely algebraic calculation of the mod-p coho-
mology of mapping spaces of the form map{BZ/p,X). Under some mild assumptions 
his T-functor calculates if*(map(BZ/p, K)\Fp) as an algebra over the Steenrod alge-
bra only using the mod-p cohomology H*{X,¥p) as input. For example, this led to a 
complete description of the mapping space map{BP, EG) for any p-toral groups P and 
any compact Lie group G, due to Dwyer and Zabrodsky [37] and the author [69]. 

Based on this and a decomposition of EG into a homotopy direct limit of classifying 
spaces of certain p-toral groups [50], Jackowski, McClure and Oliver set up a program 
for studying maps EG —> EH for any pair of compact Lie groups G and H. In the case 
of G = H being a simple connected compact Lie group the program went through and 
led to: 

0.2. THEOREM ([50]). Let G be a simple connected compact Lie group. Then two self 
maps f,g : EG -^ EG are homotopic if and only if / * = p* : H*{EG;Q) -^ 
H*{EG',Q). 

Lannes' theory and the Jackowski-McClure-Oliver approach also allowed the ho-
motopy type of the classifying space for a large class of compact Lie groups to be 
characterized. 

0.3. THEOREM ([72]). Let p be an odd prime. Let G be a simply connected compact Lie 
group such that H*[G\ Z) has no p-torsion, and let X be a space. Then, the p-adic com-
pletion X^ and EG^ are homotopy equivalent if and only ifH" {X;Fp) and if* {EG; Fp) 
are isomorphic as algebras over the Steenrod algebra. 

The same result for G = SU{2) and G = 50(3) was proved by Dwyer, Miller and 
Wilkerson for all primes [26], which was the first homotopy uniqueness theorem. The 
same authors also proved Theorem 0.3 for primes not dividing the order of the Weyl 
group WG of G without any extra assumption on G beside being connected [27]. 

From the homotopy point of view the essential property of a compact Lie group G is 
the existence of a classifying space EG and a finiteness condition on G, namely that G 
is a finite GW -̂complex or a little weaker that H*{G\Z) is a finitely generated module 
over Z. Because completion always makes life easier in homotopy theory, these facts 
led Dwyer and Wilkerson to the definition of p-compact groups. For p-compact groups, 
the classifying space has to be p-complete, and the finiteness condition is expressed in 
terms of mod-p cohomology. The main examples are given by completing a connected 
compact Lie group and the associated classifying space. A generalization of Smith theory 
to actions of finite p-groups on Fp-finite p-complete spaces allowed Dwyer and Wilkerson 
to achieve the following fundamental result in the Lie group theory of p-compact groups. 
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It generalizes well known facts about compact Lie groups. Here, a space is called Fp-finite 
if the mod-p cohomology is finite. 

0.4. THEOREM ([33]). (1) For any p-compact group X, there exists a maximal torus Tx 
of X and a Weyl group Wx-

(2) If X is connected, the inclusion of the maximal torus induces an isomorphism 

H^BX;Z^)^Q^ {H*{BTx'.Z)(8)Q)^''. 

The representation Wx -^ Gl{H'^{BTx\1) 0 Q) is faithful and represents Wx as a 
pseudo reflection group. 

We think, that these are some of the high lights of the recent achievements in the study 
of classifying spaces. The idea of this article is to describe developments after the proof 
of the Sullivan conjecture. 

We strongly encourage the reader to take a look at the very nice survey article of 
Jackowski, McClure and Oliver [53] on a very similar topic. Parts of this article are 
covered in their paper, in particular the discussion about decomposition and maps between 
classifying spaces of compact Lie groups. Because this is needed for an understanding 
of the later development, and because we like to keep this article self contained, we 
also present this part of the homotopy theory of classifying spaces of compact Lie 
groups, but much more briefly. For example, we omit completely the discussion about 
the computation of higher inverse limits. 

At the end we add as appendix some remarks and facts about homotopy colimits, 
Lannes' theory and Smith theory for homotopy fixed-points, which we feel is necessary 
for an understanding of this article by nonexperts. 

1. Decompositions of classifying spaces 

In the analysis of maps between classifying spaces, decompositions into simpler pieces 
have proved to be quite a powerful tool. By simpler pieces, we mean classifying spaces 
of subgroups. There are two different types of such decompositions. One uses centralizers 
of elementary abelian subgroups. The other is based on p-toral subgroups. Both types 
are useful for different problems as we will show later. 

The idea of decompositions or approximations of classifying spaces goes back to 
Adams [1]. In his analysis of the effect, which maps between classifying spaces may 
have in complex K-theory, he approximated p-toral subgroups by their finite p-subgroups. 
This construction was extended by Feshbach to the case of finite extensions of tori [38]. 
For any such extension iV, he showed that there exists a sequence 

Ml C M2 C M3 C • • • C Â  

of finite subgroups such that 

hocolimBMi :^ Tel{BMi) ~ BMoc -* BN 
N 
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is a homology equivalence for any kind of coefficients taken in a finite group. Here, the 
group Moo •= Ui ^i is a locally finite group and gives an approximation of BN at any 
prime p. 

This approach was extended further by Friedlander and Mislin [40], [41]. For a compact 
Lie group G they showed the existence of a locally finite group with similar properties. 
A locally finite group is the union of finite groups. 

1.1. THEOREM ([40], [41]). Let G be a compact Lie group, and let q be a prime not 
dividing the order ofTro{G). Then there exists a locally finite group 7 and a map B7 —> 
BG which is a mod-p equivalence for any prime p different from q. 

In general, the finite subgroups of 7 may not be subgroups of G and the restric-
tion of the map to the classifying space of a finite subgroup may not be induced by a 
homomorphism. For G = f/(n), and a prime p the approximation is given by a map 
BGL{n,Fq) —• BU{n), where {q,p) = 1 and where F^ is the algebraic closure of the 
field Fq of q elements. 

As a consequence of this approximation theorem, Friedlander and Mislin generalized 
the Sullivan conjecture to the case of compact Lie groups. For a Fp-finite p-complete 
space X, they showed that the evaluation at a basepoint map{BG, X) —> X is an equiv-
alence [41]. The approximation was also used by Mislin to get a complete classification 
of self maps of BSU{2) up to homotopy [60]. This was the first case of such analysis 
beyond the "simple" case of finite groups or tori. 

Although decompositions via centralizers of elementary abelian subgroups or via 
p-toral subgroups seem to be more useful in the study of maps between classifying 
spaces, it would be of great interest to have an analogue of Theorem 1.1 for p-compact 
groups. Examples of this form are given by calculations of Quillen on the cohomology 
of general linear groups of finite fields [83]. 

Decompositions other than telescope constructions were first introduced by Dwyer, 
Miller and Wilkerson. The pushout of the diagrams 

SO{3)/D{S) ^ 50(3) /0(2) BD{S) ^ B0{2) 

(1) 

SO{3)/E4 BS4 

is F2-acyclic for the left side, and mod-2 equivalent to BS0{3) for the right side. For 
the left side, this is not to hard to check by explicit calculations, and for the right side, 
it follows because the Borel construction EG XG -» as a homotopy colimit, commutes 
with pushouts. Here, D(8) denotes the dihedral subgroup of 50(3), 0(2) the normalizer 
of the maximal torus and £"4 the octohedral subgroup. 

There exists a closely related decomposition of BS0{3) at the prime 2, given by the 
diagram 

1:3 O ESO{3)/{Z/2f 3 ESO{3)/0{2). (2) 
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That is that the underlying category has two objects 0 and 1 and the morphisms sets are 
given by End[0) = JCa, End{\) = {id], Hom{0,1) = ^3/2:2 and Hom{l,0) = 0 . 
Decomposition in this case means that the homotopy colimit of the diagram is mod 2 
equivalent to BSO{3). Notice that the left space is equivalent to jB(Z/2)^and the right 
to 50 (2 ) . A cohomological calculation based on the spectral sequence of Theorem A.l 
gives a proof. It also can be shown directly that the homotopy colimit of diagram (2) is 
equivalent to the pushout of diagram (1). 

Unlike the pushout diagram, the decomposition of BS0{3) via diagram (2) can be 
generalized to compact Lie groups in essentially two different ways, which we discuss 
next. 

Decompositions via p-toral subgroups 
A p-toral group is a compact Lie group P whose component of the unit PQ is a torus 
and whose group of components P/PQ is a finite p-group. p-toral groups play the same 
role for compact Lie groups as finite p-groups do for finite groups. For example, every 
compact Lie group G has a p-toral Sylow subgroup SpG C G. It has the same properties 
as a p-Sylow subgroup of a finite group; e.g., the group SpG is maximal in the sense 
that every p-toral subgroup of G is subconjugate to SpG. It is also characterized by the 
condition that the Euler characteristic of G/SpG is coprime to p. Let TG C G be a 
maximal torus of G and let N{TG) --> WG be the projection of the normalizer of TG 
onto the Weyl group of G, Then, the counter image of a p-Sylow subgroup SpWc of 
WG is a p-toral Sylow subgroup of G. 

For any compact Lie group G, let 0{G) denote the (topological) orbit category, whose 
objects are homogeneous spaces G/H with H C G being a closed subgroup and whose 
morphisms are given by G-equivariant maps. Let Op(G) C 0{G) denote the full sub-
category of all objects G/P, where P C G is a p-toral subgroup. Let I : Op(G) —> Top 
be the inclusion functor. Then, the Borel construction defines a (continuous) functor 

EGxGT'.Op{G)'^Tap. 

Notice that the EG XG G/P Ĉ  BP. 
If G is a finite group, the category Op{G) is finite (and so is O). In this case, the map 

hocoliTJiQ^^G) EG XG X -* BG is a mod-p equivalence, since all higher inverse limits 
in the associated spectral sequence of Theorem A.l vanish [60] and since the inverse 
limit involved equals the mod-p cohomology of BG [17, XII, 10.1]. 

For compact Lie groups, the category Op{G) is not finite and not even discrete in 
general. For a generalization of the above result, the question comes up, which of the 
p-toral subgroups cannot be got rid of in a decomposition of BG. This motivates the 
notion of p-stubborn subgroups. More concretely, a p-toral subgroup is called p-stubbom 
if the quotient N{P)/P of the normalizer of P by P is finite and does not contain 
any nontrivial normal p-subgroup. Let Tlp(G) C Op{G) denote the full subcategory of 
all objects G/P where P is p-stubbom. This turned out to be a finite category [50]. 
Restricting the above functor to this subcategory, Jackowski, McClure and Oliver proved 
the following decomposition theorem using techniques from the theory of transformation 
groups. 
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1.2. THEOREM ([50]). For any compact Lie group G, the map 

hocolimEG XGI -^ BG 

is a p-local equivalence, i.e. induces an isomorphism in H*{—;Z(^p)) cohomology. 

Decompositions via centralizers of elementary abelian subgroups 
For any compact Lie group G, let Ap{G) denote the Quillen category [82] whose objects 
are nontrivial elementary abelian p-subgroups V cG and whose morphisms are given by 
restrictions of conjugations by elements of G. Actually, Quillen also allowed the trivial 
group to be an object of ApP{G) but we exclude it. Let 

be the functor given by the Borel construction f3{V) := EGXGG/CG{V), where CG{V) 
denotes the centralizer of V in G and where G acts on G/CG{V) via left translation. 
Starting from the opposite category of Ap{G) makes /? into a covariant functor. 

The projection G/C{V) —> * to a point establishes a natural transformation from 
P to the constant functor with value BG and a map hocolimAj,{G) 0 -* BG. These 
constructions were used by Jackowski and McClure to get a decomposition of BG into 
simpler pieces. 

1.3. THEOREM ([49]). Let G be a compact Lie group. Then the map 

hocolim 3 —• BG 
AAG) 

is a mod'P equivalence. 

The proof is based on the spectral sequence of Theorem A. 1. Using transfers and 
Feshbach's double coset formula [38], one first proves that 

ff*(BG;Fp)^ Hm if*(/3(-);Fp) 
AAG) 

is an isomorphism. The proof of the vanishing of the higher derived functors of the inverse 
limit functor is also based on the existence of a transfer for the functor ^*(^(—);Fp). 
This functor turns out to be a Mackey functor in a sense closely related to the definition 
given in [21]. This extra structure allows the proof to be completed. 

This geometric decomposition was generalized by Dwyer and Wilkerson [31]. They 
formulated Theorem 5.1 in purely algebraic terms using mod-p cohomology and also 
gave an algebraic proof of this theorem based on Lannes' T-functor. 

Let /C denote the category of unstable algebras over the Steenrod algebra. For any 
object jR € /C, Rector defined a category A{R) [86]. The objects are given by morphisms 
(l>v : R -^ H''{BV;Fp) such that H*{BV',¥p) is a finitely generated module over R 
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and such that F is a nontrivial elementary abelian group. The morphisms are given by 
commutative triangles 

H* {BV\ Fp) ^ H* {BW\ Fp) 

Lannes' T-functor defines a functor 

r : A{R) -> K 

given by T{<t>v) := Tv{R,(j>v). 
As a consequence of Lannes' theory (see Appendix B), of a theorem of Dwyer and 

Zabrodsky [37] (see Theorem 2.1) and of a result of Quillen [82] (see 5.2), passing to 
mod-p cohomology establishes an isomorphism Ap{G) = A{H*{BG\¥p) of categories 
and a natural equivalence 

i7*(^( - ) ;Fp)^r . 

To reprove Theorem 5.1 in algebraic terms, Dwyer and Wilkerson also used the existence 
of a p-toral Sylow subgroup P C G, which, by analogy to the p-Sylow group of a finite 
group, has the properties that H*[BG\ Fp) --* H*{BP\ Fp) is a monomorphism, that this 
map has a left inverse as H*{BG; Fp)-module homomorphism given by the transfer, and 
that P has a central subgroup. Translating group theory notions into mod-p cohomology 
we say that a morphism (t>v 'R-^ H*{BV\ Fp) of A{R) is central if Tv[R, <j)v) = R 
and that R has a nontrivial center if there exists a central morphism in A{R), Now, 
Theorem 5.1 can be reformulated to 

1.4. THEOREM ([31]). Let i : R-^ S be a morphism in K such that the following holds: 
{I) R and S are Noetherian algebras. 
(2) There exists a left inverse S-^Rofi which is both a map of R-modules and a 

map over the Steenrod algebra. 
(3) The algebra S has a nontrivial center. 

Then hm r ^ R and lim . V vanishes for i ^ 1. 

For any compact Lie group G, the mod-p cohomology H*{BG;¥p) is Noetherian 
[90]. Hence, the first condition is also satisfied in the case of i? = /f*(BG;Fp). 

For objects of /C with nontrivial center, it turns out that the center (which is fixed 
under "conjugations") plays the role of an initial element in the category A{R). This 
makes the proof in this case possible. For the general case, the higher inverse limits of r 
defined on A{R) and on ^4(5) are compared. Using the exactness of the T-functor, it can 
be shown that the higher derived inverse limits taken over A{R) are SL direct summand 
of the ones over A{S). 

This algebraic proof of the geometric decomposition theorem allows a generalization 
to a much larger class of spaces than just compact Lie groups. One only needs that 
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passing to mod-p cohomology controls a sufficient part of the homotopy theory of a 
given space (for explicit conditions see [31]). In particular, decompositions of this type 
exist for p-compact groups (see Theorem 5.14). 

The important role which the Quillen and the Rector categories play in the homotopy 
theory of classifying spaces inspired Oliver to analyze inverse limits of general functors 
from the Rector category into the category of abelian groups [80]. He set up a spectral 
sequence converging to the higher limits and computed the J5̂ -term in terms of the 
endomorphism sets of single objects. Because every endomorphism of the Rector category 
is an isomorphism, the objects form a poset. This gives rise to a filtration of the functor 
such that the quotients are nontrivial only on one particular object. Then, the -B -̂term is 
given by the higher limits of these atomic functors which turn out only to depend on the 
automorphism set of this object. In particular, Oliver showed that, for any Noetherian 
algebra K over the Steenrod algebra and any functor F : A{K) —> Ab, all higher limits 
vanish above a certain degree. 

2. IVIaps between classifying spaces 

Sullivan [89] (for BU{n)) and later Wilkerson [91] (in the general case) constructed self 
maps of classifying spaces of connected compact Lie groups, which are called unstable 
Adams operations. That is a self map / : BG —> EG which, for a suitable A; G N, induces 
multiplication by fc* in the rational cohomology group if^*(BG;Q). In this case we say 
that / has degree k. The name comes from the fact that / induces in complex /(T-theory 
a map which looks like an Adams operation of degree A;. These examples destroyed 
the hope that, up to homotopy, all maps between classifying spaces are induced by 
homomorphisms. 

These examples also motivated Adams, Mahmud and Hubbuck [2], [3], [1], [44], 
[45] to study carefully the effect maps between classifying space could have in rational 
cohomology. Methods and results, which are available today and which are consequences 
of the generalized Sullivan conjecture (Theorem C.l), allow a more precise analysis of 
such maps. Results of great importance are those of Dwyer and Zabrodsky [37] and of 
the author [69]. 

In contrast to the above mentioned examples of Sullivan and Wilkerson, maps BP -^ 
BG are always induced by homomorphisms if P is a p-toral group and G a compact 
Lie group. To be more explicit, let Rep{P,G) := Hom{P,G)/Inn{G) denote the set 
of representations P -^ G, i.e. the set of all homomorphisms P -^ G modulo inner 
automorphisms of G. 

2.1. THEOREM ([37], [99], [69]). Let P be a p-toral group and G a compact Lie group. 
Then, passing to classifying spaces induces a bijection 

Rep{P,G)-^[BP,BG]. 

Moreover, for any homomorphisms p : P -^ G, there exist equivalences 

BCG{P{P))1 ^ {map{BP,BG)Bpt^c^rrmp{BP,BG'^)^^^. 
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The map is given by the adjoint of 

BCG{P{P)) XBP:^ B{CG{P)) X P) ^ BG 

induced by the homomorphism p. The second equivalence comes from the technical 
dainty that in this case passing to completion and taking mapping spaces commute (see 
[50, Theorem 3.2] and for a general statement [11]). In the first part of the statement we 
have to divide out conjugations by elements of G, because for any compact Lie group 
inner automorphisms induce self maps on the classifying space homotopic to the identity 
[87]. For finite p-groups Theorem 2.1 was proved by Dwyer and Zabrodsky, and in the 
general case by the author. Zabrodsky also found a proof for tori. 

For an outline of the proof let us assume that P is a finite p-group. The second part 
of the theorem is a consequence of the generalized Sullivan conjecture (Theorem C.l). 
Taking loops in the map BCG{P{P)) -^ map{BP,BGp)Bp gives the fixed-point set 
G^ for the source and the homotopy fixed-point set Gp^^ for the target. Here, the 
group P acts on G via the homomorphism p and conjugation. For G^ this is obvious, 
and for G^^^ this follows from the observation that the loop space Qmap{BP^BG)BP 
is equivalent to the space of sections of the pull back fibration of the free loop space 
fibration ABG -> BG along the map BP —• BG and the fact that the free loop space 
fibration is fiber homotopy equivalent to the fibration EG XQ G -^ BG where G acts 
via conjugation on itself. The proof of the first part goes by an induction over the order 
of P. The starting point is given by the case P = Z/p. In this case Lannes' theory is 
available and gives a way to calculate [BZ/p,BG] in terms of representations. In the 
induction step it only remains left to calculate the set of homotopy classes [BP,BG]. 
This is done using obstruction theory and by describing 

n BCG{P{P)) 
Rep{P,G) 

and map{BP^BG) as homotopy fixed-point sets of Z/p-actions on suitable spaces, 
which we can apply to the induction hypothesis. The step is based on the observation 
that any finite p-group P fits into a short exact sequence 1 —• Po -^ P -^ Z/p —> 1. 

In the case of P being a p-toral group, one uses the mod-p approximation of P by 
its finite p-subgroups to achieve a generalization of the generalized Sullivan conjecture 
[68] and a proof of Theorem 2.1. 

Theorem 2.1 also allows the following corollary. 

2.2. COROLLARY ([69]). Let T be a torus and G a compact Lie group. Then, passing to 
rational cohomology induces an injection 

[BT, BG] -> Hom{H*{BG;Q), i/*{BT;^ 

And using this corollary we can reformulate a theorem of Adams and Mahmud as 
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2.3. THEOREM ([2]). Let G and H be two connected compact Lie groups with maximal 
tori TG and TH- Then, for every map BG —> BH, there exists a homomorphism a : 
TG —* TH such that the diagram 

BTG-^^BTH 

BG—^BH 

commutes up to homotopy. Moreover, if P : TG -^ TH is another homomorphism with 
this property, then we have (3 = w' oa for some element w' G WH-

Adams and Mahmud actually proved that the diagram commutes in rational cohomol-
ogy, and that the last identity also holds in rational cohomology. But by Corollary 2.2 
this is an equivalent statement. This theorem also led to the notion of admissible homo-
morphisms. A homomorphism a : TG —> T// is called admissible if for each w £ WG 
there exists a z/;' E WH such that w' oa = aow (notice that for every w G WG the 
composition aow satisfies Theorem 2.3 if a does). 

Actually, this is a stronger definition than the one of Adams and Mahmud. They were 
interested in maps which exist after localization at a set of primes and compared them 
with linear maps between the universal covers of the maximal tori. 

Based on Theorem 2.1 and Theorem 2.3, Jackowski, McClure and Oliver set up a 
program to attack the classification of homotopy classes of maps between classifying 
spaces [50]. This program splits into several steps, which we explain next. For a much 
more detailed survey of this program we refer the reader to [53]. For the following G 
and H denote connected compact Lie groups. 

Step L' Admissible homomorphisms 
By Theorem 2.3 every map BG —• BH gives rise to a W//-conjugacy class of an admis-
sible homomorphism. For an admissible homomorphism a : TG —* TH, let [BG, BH]a 
denote the set of homotopy classes of maps BG —^ BH which all give rise to the 
HOf-conjugacy class of a. Then we have 

[BG,BH] = l[[BG,BH]a 

where we take the union over all admissible homomorphisms a. The question comes 
down to a classification of all admissible homomorphisms and a study of the sets 
[BG,BH]a. 

Adams and Mahmud proved that a homomorphism a :TG -^TH is admissible if and 
only if 

Ba* : H*{BTH;Q) -^ H*{BTG'J 
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maps the M^H-invariants H*{BTH\Q)^" = H*{BH\Q) into the M^G-invariants 
H*{BTG'yQ)^^ = H*{BG\Q) [2], which gives a necessary and sufficient condition 
to check the first part. The following steps deal with the second part of the problem. 

Step 2: Passing to completions 
If we want to use the mod-p decomposition of BG given by Theorem 1.3, we can only 
analyze maps BG —• BH^ into the p-adic completion. Sullivan's arithmetic square [89], 
[15] gives a way to pass forward and back between global data on the one side and mod-p 
and rational data on the other side. Because BH is simply connected and because BH 
is rationally a product of Eilenberg-MacLane spaces of even degrees, these techniques 
allow a proof of 

2.4. PROPOSITION ([50, Theorem 3.1]). Let G and H be connected compact Lie groups. 
For each admissible homomorphism a : TG ~* TH, the map 

[BG,BHU^ n [^^'^^p]a 
P\\WH\ 

is a bijection. 

If p does not divide the order \WH\ of the Weyl group WH, then there always exists an 
extension of a to a map BG —> BH^, unique up to homotopy (see Theorem 2.6). This 
is the reason why one only has to take into account those primes which divide \WH\-

So we are left with the problem of calculating the sets [BG, BHp]a. 

Step 3: TZp{G)-invariant representations 
For this step we fix a prime p. Let NP{TG) C N{TG) C G be a p-toral Sylow subgroup 
of G; i.e. NP{TG)/TG C WG is a p-Sylow subgroup of WG-

For a map / : BG -> BH, Theorem 2.1 provides more information than just the 
existence of an admissible homomorphism. The restriction flBNpiTc) — ^P is homo-
topic to a map induced by a homomorphism p : NP{TG) —* H which is unique up to 
conjugation in H (and this also is true for any p-toral subgroup). In particular, for any 
pair P\,P2 C G of p-toral subgroups and subconjugations Cg^ : Pi —> NP{TG) and any 
subconjugation Cg : P\ —^ P2, the compositions pocg^o Cg and p o ĉ , are conjugate in 
H. That is to say that the homomorphism p establishes an element 

p := (pp) G lim Rep{P, H). 
G/ptnp(G) 

Homomorphisms NP{TG) -^ H with this property are called 7ip(G)-invariant repre-
sentations of NP{TG). Every map BG -+ BH^ which comes from an integral map 
gives rise to such an 7^p(G)-invariant representation. Thus the problem is now: given 
an admissible map a :TG -^ TH, does there exist an extension to an 7ip(G)-invariant 
representation p : NP{TG) -^ H 1 And if so, how many conjugacy classes are there? 

There is a lack of general techniques for doing this. But in the case of H being 
a classical matrix group like C/(n), SU{n), 0{n) or Sp{n)y character theory is suffi-
cient to check if two homomorphisms are conjugate and therefore, if a homomorphisms 
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NP{TG) -^ H is 72,p(G)-invariant. If G is connected, every element of G is subconjugate 
to TQ. Thus, if H is one of the above mentioned groups character theory also tells us that 
there is at most one 72^(G)-invariant extension of a given admissible homomorphism. 

Finally we have to pass from 72.p(G)-invariant representations to actual maps. 

Step 4: From Tlp{G)-invariant representations to actual maps 
For this step we fix a prime p and a Tip(G)-invariant representation p : NpiTo) -^ H 
respectively an element 

P={PP)G/P^ Hm Rep{P,G). 
G/Penp(G) 

Let map{BG^ BHp)p denote the union of all components given by the counterimage of 
p under the obvious map 

[BG.BH]-^ lim Rep{G), 
G/PeiipiG) 

Using the decomposition of BG of Theorem 1.3, we get 

map{BG,BH^)^ c^ Tnap(hocoliTnEG XQI^BH^) , 

and applying Theorem A.2 establishes a spectral sequence calculating the homotopy of 
map{BG,BHpp. Ltt 

77f : UpiG) -^ p-groups and B^ : HpiG) -> Ab 

denote the functors given by 

7r^^{G/P) := 7rn{map{BP,BH^)^J ^ 7rn(BCH(/>p)P). 

(Note that for any p-toral subgroup P C G the group of components of the centralizer 
GH{PP) is a finite p-group if 7ro(G) is one [50, Proposition A.4].) Now Theorem A.l 
and Corollary A.2 take the form 

2.5. THEOREM ([50]). Let p : NP{TG) -^ H be a Tlp{G)-invariant representation. Then, 
there exists a spectral sequence 

£;f ^ := lim^ 77,̂  =^ 7r,^p{map{BG,BH;))^ 
G/Penp{G) 

which strongly converges. In particular, the map Bp has an extension f : BG —* BHp 

if 

G/Pe-R.p{G) 
lim"+' nfi 
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vanishes for all n'^ 1, and there exists at most one extension if 

lim^ n^ 
G/Penp(G) 

vanishes for all n^ 1. 

The strong convergence follows from the fact that there exists an iV, depending only 
on G, such that the n-th higher limit of any functor defined on TZp{G) vanishes for 
n^N [50]. 

Now one has to face the analysis of the spectral sequences, i.e. in the first place 
the calculation of the higher limits. Although this looks like a very difficult and hard 
question, Jackowski, McClure and Oliver developed techniques to attack this problem 
successfully in many interesting cases (see [50], [51], [52]). 

We demonstrate the power of this machinery in two cases. 

2.6. THEOREM ([53]). IfG is connected and if (p, \WG\) = 1, then any admissible ho-
momorphism a :TG -^TH has an extension f : BG —* BHp, unique up to homotopy. 

PROOF. Actually this was already proved by Adams and Mahmud [2] with different meth-
ods. For a proof, the present theory can be used as follows. Because (p, \WG\) = 1, we 
have TG = Np{TG)y and the category Tlp{G) consists only of the object G/TG- The set 
of endomorphisms is given by WG- Hence, for any admissible homomorphism a :TG ^ 
TH, there exists a unique 7ip(G)-invariant representation p = a : NP{TG) = TG -^ H. 
The higher limits are isomorphic to the cohomology groups HP{WG\7^q{BTGp)) and 
vanish for p ^ 1. The associated spectral sequence of Theorem A.l collapses, which 
finishes the proof. D 

The other case, which is much more difficult and much deeper concerns integral 
self maps. Using their machinery, Jackowski, McClure and Oliver proved the following 
beautiful classification theorem for self maps of classifying spaces of simple connected 
compact Lie groups. 

2.7. THEOREM ([50]). Let G be a simple connected compact Lie group. Then there exists 
a bijection 

<? : [BG.BG] ^ {0}JJ (Oixt(G) x {A: ̂  1 : (fc, \WG\) = l } ) . 

For two self maps / , g : BG —• BG, the following conditions are equivalent: 
(1) / and g are homotopic. 
(2) The restrictions / |BTG ^'^ QIBTG ^^^ homotopic. 
(3) The induced maps H*{f;Q) and H*{g'yQ) in rational cohomology are equal. 
Moreover, for each map f : BG -^ BG and each prime there exist equivalences 

BZ{G)^ ~ map{BG,BG)f; ~ map{BG,BG;)f,. 
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OUTLINE OF PROOF. The first step consists of a characterization of all admissible homo-
morphisms TG -^ TQ, which is due to Hubbuck [45] and Ishiguro [47]. Hubbuck showed 
that, for G simple, every self map of BG looks in rational cohomology like a compo-
sition of a map induced by an outer automorphism and an unstable Adams operation of 
degree ^ 0. Ishiguro proved that, for a connected compact Lie group G, every unstable 
Adams operation BG —> BG has a degree coprime to the order of the Weyl group. 
Putting these facts together and passing to rational cohomology establishes the map ^ of 
the statement. 

The existence of unstable Adams operations of any degree coprime to \WG\ was shown 
by Sullivan [89], Wilkerson [91] and Friedlander [39]. Hence, the map $ is surjective, and 
it only remains to show that rational cohomology detects homotopy classes of self maps, 
or, what is sufficient, that rational cohomology detects homotopy classes of unstable 
Adams operations. One has to distinguish between the degree 0 and degrees ^ 1. We 
only consider the latter case; the former one can be treated similarly. 

The associated admissible homomorphism of an unstable Adams operation of degree 
A: ^ 1 is given by ak '. TG -^ TQ, t ^-^ t^- In the next step one has to show that up to 
conjugation there exists at most one 7ip(G)-invariant representation pk : NP{TG) -^ G. 
For most of the classical matrix groups this follows from character theory and in general 
this is done in [50, Proposition 3.5]. 

After passing to completions as described in Step 2, one finally has to calculate the 
higher limits 

limP 7rJrnap{BP,BG;) ) - lim^ 7r,{BCG{pk{P))^^)^ 
G/Penjy(G) G/p^np(G) 

The equivalence is a consequence of Theorem 2.1. Using the fact that, for p-stubbom 
subgroups P C G, the centralizer CcipkiP)) is equal to the center Z{P) of P [50, 
Lemma 1.5] and using general techniques developed for the calculation of higher limits 
of functors on TZp{G), Jackowski, McClure and Oliver were able to prove the vanishing 
of all higher limits under consideration and to show that 

lim 7r,{BCG{pk{P))^^) = 7r,{BZ{G);). 
G/PeUpiG) 

Hence, the associated spectral sequence of Theorem A.l collapses. This proves the state-
ment. (For more details see [50], [53].) D 

For any connected compact Lie group G, Jackowski, McClure and Oliver applied 
the same method to self maps BG -^ BG which induce an isomorphism in rational 
cohomology. There also exists a complete characterization of all admissible maps in terms 
of Dynkin diagram symmetries or outer automorphisms and unstable Adams operations 
[52], [61], [71]. The analogous statement as in Theorem 2.7 is true [52]. In particular, 
homotopy classes of rational self equivalences are detected by rational cohomology as 
well as by the restriction to the maximal torus. 
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Based on Theorem 2.7, different proofs for the same results about rational self equiv-
alences of classifying spaces of connected compact Lie groups are given by M0ller [62] 
and by the author [71]. 

For general self maps, the classification problem is much harder, because that involves 
the classification of all maps between classifying spaces of connected compact Lie groups. 
In their work, Jackowski, McClure and Oliver constructed examples contradicting all 
reasonable conjectures one could make; e.g., they found a pair of nonhomotopic maps 
f,g : B(50(3) x 50(3)) -* BSO{25), whose restrictions to BN{TG) are homotopic. 
Hence, homotopy classes of maps between classifying spaces cannot be detected by any 
cohomology theory in general. 

What is known beyond this point? One can look at self maps BG^ —• BG^ of com-
pleted classifying spaces. For connected compact Lie groups similar results are obtained. 
The "completion" of Corollary 2.2 and of the Adams-Mahmud theorem (Theorem 2.3) 
are proved by Adams and Wojtkowiak [5] and by Smith and the author [76], the com-
pletion of Theorem 2.6 by Wojtkowiak [95] and the completion of Theorem 2.7 is due 
to Jackowski, McClure and Oliver [52]. 

M0ller studied self maps of classifying spaces of nonconnected compact Lie groups 
[63]. Every compact Lie group G gives rise to a fibration Fib{G) : BGQ —̂  BG —+ 
BIT := B'KQ{G), Every self map / : BG -^ BG establishes a self map Bp : B-K -^ B-K 

which is induced by a homomorphism. A rational self equivalence of BG is defined to 
be a fiber self map (f.Bpf), such that flsGo'^BGo —• BGQ induces an isomorphism in 
rational cohomology. Let sqiBG) denote the monoid of all vertical homotopy classes of 
rational self equivalences of BG. By definition there is a monoid map 

eqiBG) - • eqiBGo) x Endiir) 

where End{-) denotes the set of endomorphisms of a group, and where eQ{BGo) is 
actually the monoid of ordinary homotopy classes of rational self equivalences. The 
second coordinate of the map takes image among homomorphisms because a vertical 
homotopy induces a pointed homotopy on the base. 

Let ^ •= /IBGO be the restriction on the fiber. The pull back via Bp establishes an 
induced fibration Bp*Fib{G). M0ller also constructed a fibration g^Fib{G) by imitating 
the push out for groups. Let £q^G{BGo,B7r) C eQ{BGo) x End{7r) be the subset 
of all pairs {g^p) such that Bp*Fih{G) and g*Fib{G) are fiber homotopy equivalent 
fibrations. M0ller proved the following classification result for rational self equivalences 
of nonconnected compact Lie groups. 

2.8. THEOREM ([63]). For every compact Lie group G, there exists a short exact sequence 
of monoids 

1 -> H\iTo{G)\Z{G)) ^ eqiBG) -^ eQ,G{BGo,B7ro{G)). 

The action of iro{G) on the center Z{G) is induced by conjugation. Using the analogue 
of Theorem 2.7 for connected compact Lie groups, this gives a complete classification 
of homotopy classes of rational self equivalences of classifying spaces of compact Lie 
groups. 
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More recently, Jackowski and Oliver used the method described to analyze maps 
BG —> BU{n). In fact, they stabilized such maps in the same sense as is done for 
honest representations in U{n). They defined 

K{BG) :=Gr(]l[BG,BU{n)]\ 

as the Grothendieck group of the monoid IJn['^^'-^'^(^)l* ^^^ monoid structure is 
inherited from the Whitney sum of vector bundles. There is also a multiplication which 
comes from the tensor product of vector bundles. Of course, this definition makes perfect 
sense for topological spaces, and, if X is a finite CW-complex, then we have K{X) = 
K{X) = [X,ZxBU], 

For every prime, restriction to a p-toral subgroup P establishes a map 

R : K{BG) -^ Yl K{BP). 
PCG 

all primes 

Using Theorem 2.1, for p-toral groups, we can identify K{BP) with the representation 
ring R{P). Let Ov{G) C 0{G) denote the full subcategory of the objects G/P, where 
P is a p-toral group for some prime. So, what is the image and the kernel of R? 

Passing from homomorphisms to maps between classifying spaces and from BU{n) 
to BU gives rise to a sequence of maps 

R{G) ^ K(5G) -* K{BG) 

from classical representation theory to K{BG) and to complex /C-theory. 
Let IR{G) denote the augmentation ideal of R{G). Then, Atiyah [7] (for finite groups) 

and Atiyah and Segal [9] (for general compact Lie groups) showed that /ij(G)-adic 
completion induces an isomorphism 

R{G)'i^(a)^K{BG). 

How does the group K(J5G) fit into this picture? Functorial properties establish a com-
mutative diagram 

S c . U " ^ ^ lac? . (3) 

K{BG)-^^-^ K{BG) 

The following statement, due to Jackowski and Oliver, answers the above questions. 
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2.9. THEOREM ([54]). For every compact Lie group G, the map R induces an isomor-
phism 

K{BG) ^ Hm R{P). 

Furthermore, in diagram (3), we have ker{\G) = ker{aG) and (3G is a monomorphism. 

The kernel of XQ is known. It is given by all representations of G whose restriction 
to p-th power elements of G is trivial. For example, for connected compact Lie groups, 
XQ as well as ac are monomorphisms. Jackowski and Oliver also computed the image 
of /?G and identified it with the formally finite elements of K{BG) (see [1]). These are 
elements of K{BG) which are mapped on 0 by A-operations of large degree. 

As usual, when proving a statement about homotopy classes of maps, the full mapping 
space has to be considered. There is a parallel construction leading to a Grothendieck 
group 

)C{BG) :=Gr(]]^map{BG,BU{n))\ 

The disjoint union ]J^ map{BG^ BU{n) gets a monoid structure from the map BU{n) x 
BU{m) -^ BC7(n-f-m) which is induced from the Whitney sum of vector bundles. Then 
Jackowski and Oliver used a refinement of the above general approach to calculate the 
homotopy groups of K{BG). These calculations give a proof of Theorem 2.9. 

Jackowski and Oliver also looked at real vector bundles over classifying spaces of 
compact Lie groups and got similar results as in Theorem 2.9 [54]. 

3. The Steenrod problem: Realizations of polynomial algebras 

Steenrod posed the question, which polynomial algebras over ¥p appear as the mod-p 
cohomology of a topological space [88]? Examples are provided by classifying spaces 
of connected compact Lie groups. For a connected compact Lie group G the mod-p 
cohomology H*{BG\¥p) is polynomial for almost all primes (in particular for primes 
coprime to the order of the Weyl group and in several cases for all primes). If this is 
the case, a result of Borel [12] tells us that, at least for odd primes, the inclusion of the 
maximal torus TQ-^ G induces an isomorphism H*{BG\¥p) ^ if*(J5TG;Fp)^G. For 
primes not dividing the order of WQ, a straightforward calculation of a Serre spectral 
sequence shows that the map BN{TG) -^ BG is a mod-p equivalence. This observation 
led Clark and Ewing to a construction of several exotic examples of spaces with polyno-
mial cohomology [19]. They considered finite pseudo reflection groups W —• Gl{n, Zp), 
whose order is coprime to p. That is the map is a monomorphism and W is generated 
by pseudo reflections. And a pseudo reflection is a linear map of finite order, which fixes 
a hyperplane of codimension 1. Every such group induces an action on the Eilenberg-
MacLane space K := K{Zp'^, 2). Then, the mod-p cohomology of the Borel construction 
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EW xwK IS given by the invariants and is polynomial by a theorem of Chevalley [18]. 
Here, exotic means that these spaces are not equivalent to the completion of a classifying 
space of a compact Lie group. 

Later Adams and Wilkerson gave criteria which ensure that a polynomial algebra on n 
generators over the Steenrod algebra is isomorphic to the invariants of a pseudo reflection 
group W -* GZ(n,Fp) acting on the polynomial part Py of H*{{BZ/p)'^\¥p) [4]. 
For odd primes, Dwyer, Miller and Wilkerson showed that, for a polynomial algebra 
P = if *(-X';Fp) given by the mod-p cohomology of a space, these conditions are always 
satisfied and that the associated pseudo reflection group W —• GZ(n;Fp) always lifts to 
GZ(n; Z^) [27]. 

3.1. THEOREM ([4], [27]). Let p he an odd prime. Let P b a polynomial algebra over 
the Steenrod algebra. If P = i/*(A';Fp), then there exists a pseudo reflection group 
W ^ Gl{n\Z^) such that P ^ [Py)^. 

Based on this result, Dwyer and >\̂ ilkerson proved the following realization and unique-
ness theorem for polynomial algebras. 

3.2. THEOREM ([27]). Let P be a polynomial algebra over the Steenrod algebra gener-
ated by elements of degree coprime to p. Then there exists a p-complete space X, unique 
up to homotopy, with H*{X\Fp) = P. 

All these algebras are realized by the examples of Clark and Ewing. For a proof of 
the uniqueness see the proof of Theorem 4.2. 

Theorem 3.1 also shows that, for odd primes, a solution of Steenrod's problem asks 
for a classification of pseudo reflection groups over the p-adic integers. Clark and Ewing 
gave a complete list of all p-adic rational irreducible reflection groups W -^ Gl{U) 
where (7 is a vector space over the p-adic rationals. So, slightly changing the problem, 
one might ask for a realization of these irreducible p-adic rational pseudo reflection 
groups. Notice that the classifying space of every simple connected compact Lie group 
realizes one of the irreducible pseudo reflection groups, but not every of these spaces 
has polynomial mod-p cohomology. 

Besides the Clark-Ewing spaces, computations of Quillen on the mod-p group coho-
mology of general linear groups over finite fields of characteristic coprime to p [83] and 
ad hoc constructions of Zabrodsky [96] gave further spaces whose mod-p cohomology is 
polynomial. In these cases the order of the associated pseudo reflection group is not co-
prime to p, which makes constructions much more difficult. The examples of Quillen and 
Zabrodsky as well as the examples we discuss next realize irreducible pseudo reflection 
groups. 

More recently, Aguad6 [6] and Dwyer and Wilkerson [32] approached the Steenrod 
question using ideas from the decomposition theorems for classifying spaces. Aguad6 
looked at diagrams similar to the decomposition diagram of BS0{3) (see Section 1, 
diagram (2)). For a pair of groups if C G he considered the category C{G,H) with 
two objects 0 and 1 and morphism sets given by End{0) = G, End{\) = {1}, and 
Hom{0,1) = G/H and Hom{l,0) = 0 , constructed a "nice" functor C{G, H) -^ Top 
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into the category of topological spaces and took the homotopy limit of F. The Bousfield-
Kan spectral sequence of Theorem A.l gives a tool to compute the mod-p cohomology 
of the homotopy colimit. Hopefully all higher limits involved vanish. 

3.3. THEOREM ([6]). LetHcGbea pair of finite groups. If for any ¥p [G]-module M, 
restriction induces an isomorphism H*{G, M) = H*{H, M), then there exists a functor 
F \C{G,H) -^ Tap such that H*{F{0);¥p) =: P is a polynomial algebra generated 
by elements of degree 2, such that H*{F{iy,Fp) = P" and such that 

H*(hocolimF;¥p) ^ P^ 
C(G,H) 

Aguad6 applied his result to several cases of the Clark-Ewing list, covering the exam-
ples of Zabrodsky and producing some new spaces with polynomial mod-p cohomology. 
He also reconstructed the classifying spaces of the exceptional Lie groups E^, Rj, E% 
at those primes which do not appear as torsion primes in the integral homology of the 
particular group. 

Dwyer and Wilkerson chose an approach based on the algebraic decomposition via 
centralizers of elementary abelian subgroups (Theorem 1.3 and Theorem 1.4). They found 
a space whose mod-2 cohomology is given by the Dickson invariants in dimension 4. 

3.4. THEOREM ([32]). There exists a space X with 

OUTLINE OF PROOF. The idea of the proof comes from the fact, that there exists an 
algebraic decomposition of £>(4) over the Rector category of D{A) (Theorem 1.4) and 
that the topological realization should give a topological decomposition of such a space. 
For each object (t>: D(4) -^ H*{BV;¥2) of the Rector category A2{D{4)), a calculation 
of the pieces Tv{D{4); (j)) of the algebraic decomposition shows that these algebras are 
given by the mod-2 cohomology of BCspin{i){y) for a suitable inclusion V C Spin{l). 
Here, V is an elementary abelian 2-group of dimension ^ 4. In the next step Dwyer and 
Wilkerson constructed a functor F : A2{D{4)) -^ HoTop into the homotopy category of 
topological spaces, which realizes the algebraic data. This is the hard part of the matter. 
Beside the solution in this special case, Dwyer and Wilkerson approached such questions 
in a more general context, including algebraic decomposition of spaces whose mod-p 
cohomology satisfies the assumptions of Theorem 1.4 [36]. 

Because homotopy colimits do not exist in the homotopy category, one has finally to 
find a lift F : A2{D{4)) —• Top of F, For such a need, Dwyer and Kan had developed 
an obstruction theory [23], [24]. In the case under consideration the obstruction groups 
are given by some higher limits of a functor on A2{D{4)) with the homotopy groups of 
map{F{(t>), F{(l)))id as values. The functor F takes image among the classifying spaces 
of certain subgroups of Spin{l) and, passing everywhere to completions, the mapping 
spaces can be identified with centers (see Theorem 2.7 and extensions). This allows a 
proof of the vanishing of the obstruction groups and of the existence of F. The mod-2 
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cohomology of the homotopy colimit hocolimA2{D{4)) ^ can be computed using the 
spectral sequence of Theorem A.l. Theorem 1.4 proves the vanishing of all higher limits 
involved. This finishes the proof. D 

An Eilenberg-Moore spectral sequence argument shows that, for every space X with 
polynomial mod-p cohomology, the cohomology H*{nX\ Fp) of the loop space is finite. 
That is that X is the classifying space of a connected p-compact group. In Section 5, we 
show that every connected p-compact group comes with an associated pseudo reflection 
group W -^ Gl(n\^). This group W plays the same role as Weyl groups do for 
connected compact Lie groups. In this sense the example of Dwyer and Wilkerson gives 
a realization of another irreducible pseudo reflection group at the prime 2, although the 
group GZ(4,F2) does not lift to Z^. (G/(4,F2) is not the Weyl group of the Dwyer-
Wilkerson example.) 

The Eilenberg-Moore spectral sequence argument also shows that the solution of 
Steenrod's problem is closely related to the classification of all connected p-compact 
groups, which we will discuss in Section 5. 

4. Homotopy uniqueness of classifying spaces 

Connected compact Lie groups are very rigid objects. A few combinatorial data are suf-
ficient to distinguish between two connected compact Lie groups; e.g., Dynkin diagrams 
classify the local isomorphism types of semi-simple connected compact Lie groups, or 
the isomorphism types of simply connected compact Lie groups. 

Surprisingly, classifying spaces of connected compact Lie groups also seem to be 
very rigid objects. The algebra H*{BG\¥p) considered as an algebra over the Steenrod 
algebra determines the homotopy type of the p-adic completion BG^ in a large number 
of cases. This is what we mean by the homotopy uniqueness of the classifying spaces 
of connected compact Lie groups. The first results of this type were proved by Dwyer, 
Miller and Wilkerson [26], [27]. We say that two spaces X and Y have the same mod-p 
type if H*{X\¥p) ^ if ' ' (y;Fp) as algebras over the Steenrod algebra. 

4.1. THEOREM ([26]). LetG = SU{2) orG=^ SO{3) and let X be a p-complete space. 
Then the spaces X and EG have the same mod-p type if and only if they are homotopy 
equivalent. 

4.2. THEOREM ([27]). Let G be a connected compact Lie group and let Xbea p-complete 
space. Assume that (p, \WG\) = 1. Then the two spaces X and BG have the same mod-p 
type if and only if they are homotopy equivalent. 

For i7(2), McClure and Smith proved the analogous result of Theorem 4.1 [57]. The 
second theorem is a special case of Theorem 3.2 and also covers Theorem 4.1 for odd 
primes. To give the reader an idea of the techniques used for the proof we outline the proof 
of the second theorem. The main idea is to combine Lannes' theory (see Appendix B) 
and the Dwyer-Zabrodsky theorem (Theorem 2.1) into a powerful tool. 
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PROOF of Theorem 4.2. By assumption, p is an odd prime not dividing the order of WQ-

By [12], this implies that H^iBG'^Fp) ̂  H""{BTc^Fp)^^. We fix such an isomorphism 
and try to realize it by a topological map. As a first step we construct a map / : BTQ —> X 
which looks in mod-p cohomology like the map Bi : BTG —> BG. By Theorem B.l, 
the composition 

H*{X;Fp) ^ H*{BG;Fp) ^ H^{BV;Fp) 

has a topological realization fv : BV —• X where V C TG is a maximal elementary 
abelian subgroup. Because p is odd, we have CG{V) = To for the centralizer of V in 
G [27]. The application of the T-functor and Theorem 2.1 establish a diagram 

rv(f f*(X;Fp) ,r ) ^H*{map{BV,X)f',Fp) 

Tv{H^{BG\Fp),Bi^)^^H*{map{BV,BG^)f^',Fp)-^H^{BTG\Fp) 

Because BTcp is simply connected, the lower left arrow is an isomorphism (Theo-
rem B.2) and so is the upper arrow, since Tv{H*{X\Fp), f*) vanishes in degree 1 
(Theorem B.2). The mod-p cohomology determines the homotopy type of BTcp. Hence, 
the mapping space map{BV, X)f and BTcp are equivalent. Again by Theorem B.2, the 
action of WG on V fixes the component of / , for it does so cohomologically, and es-
tablishes a second action of WG on BTG p. mod-p, both actions are equivalent, which 
follows from the above sequence of isomorphisms. For an appropriate basepoint of BV, 
the evaluation map{BV,X)f —• X induces the desired map / : BTGp -^ X, which is 
Wc?-equivariant as well as Bi, where WG acts trivially on BG and on X. 

Because p is coprime to \WGI both actions of WG on BTGP are equivalent over the 
p-adic integers. Passing to the Borel construction yields a map EWG ^^WG BTG —* X. 
Again, because (p, \WG\) = 1 we have a sequence of maps 

BG^*-BN{TG); C. {EWG xwa BTG); -^ X. 

A straight forward calculation of the mod-p cohomology shows that both arrows are 
homotopy equivalences, which finishes the proof. D 

For p = 2 and G = 50(3), Dwyer, Miller and Wilkerson used the pushout diagram 
of BSO{3) described in Section 1 (diagram (1)). Given a space Y with the same mod-2 
cohomology, they constructed maps from all pieces of this diagram into Y and showed 
that the associated diagram 

BD{S) ^B0{2) 

Y Y 

BE4 ^Y 
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commutes up to homotopy. This is the hard part of the proof and again based on 
combining Lannes' theory with the Dwyer-Zabrodsky theorem (notice that 0(2) = 
C'5o(3)(Z/2)). The above diagram establishes a homotopy equivalence 550(3)2 "^ ^• 
For G — SU{2), the homotopy uniqueness is proved with the help of the sequence of 
fibrations BZ/2 -> BSU{2) -^ BS0{3) -* B^Z/2. 

In general, mod-p cohomology is not sufficient to characterize the homotopy type 
of BG for connected compact Lie groups G; e.g., the spaces B{SU{p^) x S^) and 
B{SU{p^) Xz/pS^) have isomorphic mod-p cohomology, but are not homotopy equiv-
alent [72, 9.6]. For nonsimply connected compact Lie groups one needs a little extra 
information. Let X be a p-complete space with the same mod-p type as BG. As shown 
above there exists a map BTcp —• X and another VFc-action on BTcp making the map 
equivariant (for p = 2 one needs an extra assumption (see [72]). We say that X has the 
p-adic type of BG if it has the same mod-p type and if both actions of WG on BTcp are 
p-adically equivalent. Actually, this is a rough version of the technical definition given 
in [72] but hits the heart of the matter. We say that BG is p-torsion free if H'^{BG\Z) 
has no p-torsion. In [72], the following homotopy uniqueness result is proved. 

4.3. THEOREM ([72]). Let p be an odd prime. Let G be a connected compact Lie group 
such that BG is p-torsion free. Let X be a p-complete space. 

(\) If X has the mod-p type of BG, then there exists a connected compact Lie group 
H such that X and BH have the same p-adic type. 

(2) The space X has the p-adic type of BG, if and only if X and BG^ are homotopy 
equivalent. 

(3) IfG is simply connected, ifG is a product of unitary groups, or if (p, \WG\) = 1, 
then X has the mod-p type of BG if and only if X and BGp are homotopy equivalent. 

For p = 2 similar results are true for quotients of products of unitary and special 
unitary groups, but one has to exclude SU{2) = 5p(l) as factor. For odd primes, this 
covers all classical matrix groups and among the exceptional Lie groups only a few cases 
are missed (for a complete list see [72]). 

The proof of Theorem 4.3 is heavily based on the work of Jackowski, McClure and 
Oliver, their decomposition of BG via p-stubbom subgroups and their analysis of self 
maps of BG. The idea is to construct the identity id : BG^ -* BG^ purely by algebraic 
means. The assumption that BG is p-torsionfree is essential for the proof. In particular, 
it implies that H*{BG;¥p) ^ H*{BTG;¥P)^^ [12] which makes calculation with the 
Lannes T-functor easier. Furthermore, Oliver's computation of the p-stubbom subgroups 
of the classical matrix groups [79] allows a sufficient understanding of the category 
Tlp{G) in these cases. The proof also uses the classification of connected compact Lie 
groups. For simple simply connected Lie groups, the proof is done by a case by case 
checking and differs only in details from the one for U{n). 

To demonstrate the ideas we consider the case of G = U{n) and an odd prime. We 
fix an isomorphism H*{X\Fp) ^ H*{BU{n);Fp). As in the proof of Theorem 4.2, we 
construct a "maximal torus" fr : BTu{n)p -^ X and another action of Wu(n) = ^n 
on BTu(ri)p' By construction, the two representations pu(n)^Px * W ĉ/(n) —* GZ(n;Zp), 
associated to the two actions of Wu{n) on BTc/(„)p, are equivalent mod-p. Because 
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the standard permutation representation over ¥p has only one p-adic lift [72, Proposi-
tion 11.1], the two representations are p-adically conjugate, and we assume they are 
equal. That is to say that id : BTu(n)p -* BTu(ri)p is an "admissible" map. (For a 
general connected compact Lie group there may exist several, but finitely many p-adic 
liftings, and each of them is associated with a possibly different connected compact Lie 
group.) 

The classifying space BN{Ti;(^n)) of the normalizer of Tu^^n) can be thought 
of as the homotopy colimit of the diagram V given by the action of Wu(n) on 
EN{Tu(n))/Tu(n) - BTui^ri)' Then, by Corollary A.2, the obstruction for extending 
fr to a map /jv : BN{Tu{n)) -^ X lie in the groups 

-^3(r„;(Z^)") 

which vanish for odd primes. In this case, the higher limits are given by group cohomol-
ogy. The first isomorphism follows from a lemma we will mention in a moment. 

Thus, the extension f^ '• BN{Tu{n)) -^ X exists and for every object U{n)/P E 
TZp{U{n)) we define a map fp := f^lp : BP —> X. We have to show that this gives 
rise to an 7^p([/(n))-invariant representation. First one shows that the triangle 

H^{BN{Tu^n))\Vp) 

H*(X;Fp) ^ ^H*{BU{ny,Fp) 

commutes. This is based upon proving that the map 

H*{BU(n);¥p) ^ H*{BTu(n);^p) 

has only one lift to H''{BN{Tu^n))''>^p)- Using this mod-p information one shows that 
all triangles 

BP ^BP' 

given by morphisms in TZp{U{n)), commute up to homotopy. This is the trickiest part 
of the proof and uses Oliver's explicit description of p-stubborn subgroups of U{n) [79] 
and a lemma which, for any abelian p-toral group A, calculates the mod-p cohomology 
of the mapping space map{BA,X) [72, Theorem 10.1]. That tells us that the maps fp 
define an 7^p(C/(n))-invariant representation. 

Finally, one has to show that this 72,p([/(n))-invariant representation extends to a map 

/ : hocolimEU{n) X(/(„) I —• X, 
1lp{U{n)) 
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which, because X is p-complete, establishes a homotopy equivalence BU{n)^ -^ X. 
The obstruction groups for this extension are given by higher limits of the functor 

n^{U{n)/P) :=ni{map{BP,X)f^) 

(Corollary A.3 or Theorem 2.5). Fortunately, the mapping spaces map{BP,X)fp are 
computable and there exists a natural equivalence 

where U^ ^^^ is the functor given by replacing X by BU{n)^. As Jackowski, McClure 

and Oliver showed [50], all higher limits of 77̂  ^^^ vanish and so do all obstruction 
groups involved. This finishes the proof of Theorem 4.3. 

We finish this section with 

4.4. CONJECTURE. Theorem 4.3 holds for every connected compact Lie group. 

5. Lie group theory for finite loop spaces and p-compact groups 

The starting point of this theory was an idea of Rector [84], [85], who suggested studying 
a compact Lie group G (as Lie group) by looking at its classifying space BG and 
expressing classical Lie group notions in terms of classifying spaces. This would allow 
Lie group theory to be applied to a much larger class of spaces, namely finite loop spaces. 

A loop space L := (L, BL, e) consists of a pair of spaces L and BL, BL pointed, and 
a homotopy equivalence e : QBL ĉ  L defining a loop structure on L. The space BL is 
called the classifying space of L. A loop space L inherits properties from the space L, 
e.g., a loop space is called finite, if H*{L;Z) is a finitely generated as graded abelian 
group (usually, one asks for an equivalence between L and a finite CW-complex, but 
the homological condition is sufficient for most of the results about finite loop spaces). 
Examples of finite loop spaces are given by compact Lie groups. For every compact Lie 
group G, there exists a canonical equivalence e : f2BG ~ G which establishes a finite 
loop space structure (G, BG, e) on G. 

Rector gave definitions for subgroups, maximal tori and Weyl groups of a finite loop 
space [84], [85] and used this "Lie group theory" for a study of loop space structures 
on S^. In particular, he showed that there exist uncountable many loop structures on 
S^ (compare this with Theorem 4.1) and, with the help of McGibbon at the prime 2 
[58], that the property of admitting a maximal torus distinguishes the genuine loop space 
structure of all the others [84]. 

The real break through in this theory was by Dwyer and Wilkerson [33]. Instead of 
looking at finite loop spaces, they passed to p-adic completions and called a loop space 
X := (X, BX, e) a p-compact group if X is Fp-finite and if BX is a p-complete space. 
The latter if-part is equivalent to the condition that X is p-complete and that 7ro(-X') is 
a finite p-group. Again, the main examples are given by compact Lie groups. But the 
triple {G^,BGp,e) is only a p-compact group if 7ro(G) is a finite p-group. As already 
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mentioned in Section 3, further examples are given by pairs {QBX.BX), where BX 
has polynomial mod-p cohomology. 

In contrast to finite loop spaces, Dwyer and Wilkerson showed that every p-compact 
group has a maximal torus and a Weyl group with similar properties known for classical 
Lie group theory [33], This astonishing similarity was extended by the same people and 
by M0ller and the author [66] to the philosophical theorem that p-compact groups enjoy 
almost every property of compact Lie groups. 

If you believe in this similarity, then the game goes as follows: You take your favorite 
theorem about compact Lie groups, you translate it into the language of classifying 
spaces or p-compact groups and you try to find a "new" proof in these terms. If you are 
successful, you get a new and interesting result about classifying spaces of p-compact 
groups. There is a lack of a notion of the Lie algebra. But, when proving conjectures 
suggested by classical Lie group theory, the existence of maximal tori and Weyl groups 
and an induction principle, due to Dwyer and Wilkerson [34], are a good replacement 
for the Lie algebra. 

Next we set up part of the dictionary (for p-compact groups) and try to explain what 
the new techniques in the proofs are. Several of the notions have also a straightforward 
translation into the category of finite loop spaces. 

5.1. Special p-compact groups. The component XQ of the unit of a p-compact group 
X is given by one component of X or by the universal cover of BX, A p-compact 
torus is a triple {T,BT,e) where T c:^ K{Zp^, 1) is an Eilenberg-MacLane space of 
degree 1. A p-compact group X is called toral if XQ is a p-compact torus, finite if X 
is homotopically discrete, and abelian if map{BX,BX)id c^ BX. For honest abelian 
compact Lie groups, the last definition is actually a theorem. 

5.2. Homomorphisms. A homomorphism / : X -^ y is a pointed map Bf : BX —^ 
BY. The homomorphism / is an isomorphism if Bf is a homotopy equivalence. It 
is a monomorphism if the homotopy fiber Y/X of Bf is Fp-finite or equivalently 
if H*{BX;Fp) is a finitely generated module over if*(By;Fp) ([33, Proposition 
9.11]). This also defines subgroups. These definitions are motivated by the fact that 
every monomorphism p : G —^ H of compact Lie groups establishes a fibration 
H/G —> BG —> BH and by a theorem of Quillen saying that p has a finite p-torsion 
free kernel if and only if H*{BG;Fp) is finitely generated over if*(Bff;Fp). 

A short exact sequence X -^ Y -^ Z of p-compact groups is a fibration BX -^ 
BY -^ BZ. 

Two homomorphisms / i , /2 : X —• Y are conjugate if Bf\ and jB/2 are freely 
homotopic. A subgroup i\ : X\ -̂̂  F is subconjugate to another subgroup ij: Xi^-^Y 
if there exists a homomorphism j : X\ -^ X2 such that 12j and i\ are conjugate. 

5.3. Elements of p-compact groups. An element of a p-compact group X of order p'̂  
is a monomorphism Z/p^ —̂  X. 

5.4. PROPOSITION ([33, Proposition 5.4]). Every p-compact group X has an element of 
order p. 
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For a proof of such a statement in classical Lie group theory, usually a 1-dimensional 
parameterized subgroup is constructed with the help of the tangent bundle, i.e. a subgroup 
isomorphic to S^. So we need a "new" proof. 

PROOF OF 5.4. For a compact Lie group G let G —> G^ be the diagonal embedding. 
Then, the group Z/p acts on G^ via cyclic permutations and also on the quotient G^/G. 
Each element of the fixed-point set (G^/G)^/^ can be represented by a tuple of the form 
(1, ft,..., h^~^) with h^ — 1 and equals therefore the set of all elements of G of order 
p. 

Now we can argue for p-compact groups. The diagonal A . X -^ X^ is a 
equivariant homomorphism and establishes a Z/p-equivariant fibration X^/X —̂  BX 
BX^. Taking homotopy fixed-points yields a fibration 

^XP/X)^^^"" -> BX'^^/P ĉ  map{BZ/p, BX) ^-^' {BX^)''^^'' ^ BX. 

The equivalence follows from the identities map{Z/p,BX) = BX^^^ of 
equivariant spaces and 

BX c:^ map{EZ/p, BX) ^ map{EZ/p x^/pZ/p, BX) 

^ map{EZ/p X Z/p, BX)^/^ ^ map{EZ/p, map{Z/p, BX)f'^ 

(j5jfZ/p\/iZ/p 

This argument also shows that the map ^'^IP is given by the evaluation at the basepoint. 
Because X is a loop space with i/*(A';Fp) being finite, the Euler characteristic 

x{XP~^) = xi^P/X) vanishes. Therefore, by Smith theory for homotopy fixed-points 
(Theorem C.3), we have xiX^/X)^^^^) = 0 mod p. The constant map const: BZ/p -> 
BX gives rise to one homotopy fixed point of X^/X (for compact Lie groups this is 
given by the unit) which belongs to a contractible component as the above fibration 
shows. Hence, this component has Euler characteristic 1. Thus, there must be another 
one which gives rise to a nontrivial map BZ/p —• BX. Because of the structure of 
H*{BZ/p\Fp) this has to be a monomorphism. D 

With similar methods Dwyer and Wilkerson showed that, if X is connected, every 
element of order p'̂  has a p-th root, i.e. every monomorphism Z/p'^ —̂  X extends to 
Z/p^+'. Taking p-th roots up to infinity defines a map BS^^ ^ {BZ/p"^)^ -^ BX, 
which establishes a monomorphism S^^ -^ X of p-compact groups. 

5.5. Centralizers. For a homomorphism f : Y -^ X of p-compact groups we de-
fine the centralizer Cx{f{Y)) by the equation BCx{f{Y)) := map{BY,BX)Bf- If 
y is abelian, i.e. CY{Y) = Y, the homomorphism / factors over Cx{f{Y)). Eval-
uation induces a map BY x BCx{f{Y)) —• BX and therefore a homomorphism 
Y X Cx{f{Y)) -^ X of p-compact groups. If Y is a p-compact toral group, the central-
izer is again a p-compact group [33, Propositions 5.1 and 6.1]. The motivation for this 
definition comes from Theorem 2.1, which says that for a homomorphism p : P -^ G 
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from a p-toral group into a compact Lie group the above defining equation is actually a 
homotopy equivalence. 

For finite loop spaces this definition does not make that much sense, because Theorem 
2.1 is not true integrally (see [69] or [99]). 

5.6. Maximal tori. A monomorphism T —> X of a p-compact torus T into a p-compact 
group X is a maximal torus if Cx{T) is a p-compact toral group and if Cx{T)/T (T is 
abelian) is homotopically discrete. 

For a finite loop space L, we call a monomorphism T —> L of an honest torus 
considered as finite loop space into L a maximal torus if rA:(T) = rk{L). Here, following 
a result of Hopf [43], the rank is given by the transcendence degree of H*{BL,Q) 
over Q. This definition is the original one of Rector [84], [85]. It can be pushed forward 
to p-compact groups by completion and is then equivalent to the above one [67]. 

The first definition is motivated by the fact that, for connected compact Lie groups, the 
maximal torus is self centralizing, and the second by the fact that the rank of a connected 
compact Lie group, defined as above, equals the dimension of the maximal torus. 

5.7. THEOREM ([33, 8.11, 8.13 and 9.1]). Let X be a p-compact group. Then, X has a 
maximal torus Tx -^ X and any two maximal tori are conjugate. 

In general, finite loop spaces do not enjoy this property, as the examples of Rector 
show [84]. 

OUTLINE OF PROOF. Without loss of generality we can assume that X is connected. Then, 
by 5.3, there exists a monomorphism S^ —> X. If the centrahzer C := Cx{S^) is smaller 
than X, it has a maximal torus T —• C by induction hypothesis. And the composition 
T —̂  C —• X is a maximal torus of X. Here, the size of a p-compact group is given by the 
cohomological dimension, i.e. the highest degree of a nonvanishing mod-p cohomology 
class, and the number of components. If C and X have the same size, one can show 
that C = X,Jhat S^ C X is a central subgroup, that there exists a short exact sequence 
5^ —• X —> X := X/S^ of p-compact groups and that X is smaller than X. By induction 
hypothesis, there exists a maximal torus T -^ X. Because every extension of a torus by 
a torus is again a torus, a pull back yields a maximal torus of X. The induction starts 
from finite groups or from p-compact toral groups, for which the first part is obvious. 

For a classical proof of the second part, usually the fixed-point set G/Ti )̂ ^ is analyzed, 
where Ti, T2 C G are two different maximal tori of G. Every fixed-point conjugates T2 
into Ti. By the general philosophy, fixed-points are replaced by homotopy fixed-points 
and Smith theory is still available. In a little more detail, the pull back diagram 

X/Ti ^E ^BT2 

X/Ti ^BTi ^BX 

given by two maximal tori Ti,T2 C X, establishes a T2-proxy action on X/T\. (For 
proxy actions see Appendix C.) Every homotopy fixed-point is a section in the up-
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per row and defines a lift from BT2 into BT\ and therefore conjugates T2 into T\. 
The set {X/T\)^'^^ is Fp-finite and for the Euler characteristics we have the identity 
x{{X/Ti)^'^^) = x{X/Ti) ^ 0 (Theorem C.5 and C.6). The inequality is shown in 
[33, 9.5] (see also Theorem 5.9). This shows that there exists at least one homotopy 
fixed-point. n 

5.8. Weyl spaces and Weyl groups. Let Tx —• ^ be a maximal torus of a p-compact 
group X. We think of BTx --* BX as being a fibration. Then, the Weyl space Wx 
is defined to be the space of all fiber maps over the identity. By the arguments in the 
proof of the second part of Theorem 5.7 we have a proxy action of Tx on X/Tx and 
an equivalence Wx — (X/Tx)^'^^. This fact was used by Dwyer and Wilkerson to 
show that VVx is homotopically discrete and that Wx := 7ro(Wx) is a finite group 
under composition. Because all maximal tori are conjugate, the definition of Wx does 
not depend essentially on the chosen maximal torus. Dwyer and Wilkerson also proved 
the following analogues of well known results about compact Lie groups. 

5.9. THEOREM ([29, 9.5 and 9.7]). Let Tx -^ X be a maximal torus of a connected 
p-compact group X of rank n. Then the following holds: 

(1) The order ofWx is equal to the Euler characteristic of X/Tx-
(2) The action of Wx on BTx induces a faithful representation 

Wx - Gl {H' {BTx; Z^) ® Q) S GZ (n; ( ^ ) 

whose image is generated by pseudo reflections, i.e. Wx is a pseudo reflection group. 
(3) The map H*{BX\Z^) 0 Q -^ {H*{BTx\Z^) 0 Q)^^ is an isomorphism. 

One cannot expect that the Weyl group is always generated by honest reflections, as 
examples of Clark and Ewing show. 

The proof of the first part follows from the above equivalence between the Weyl space 
and the homotopy fixed-point set and because [X/Tx)^'^^ and X/Tx have the same 
Euler characteristic (Theorem C.5 and formula C.6). The second part is a consequence 
of the third which is the difficult part of the proof. 

5.10. Normalizers and p-normalizers of the maximal torus. Again we think of a maximal 
torus as being a fibration BTx -^ BX. The Weyl space Wx acts on BTx via fiber maps. 
This establishes a monoid homomorphism Wx —^ aut{BTx) where aut{BTx) denotes 
the monoid of all self equivalences of BTx- Passing to classifying spaces establishes a 
map BWx ^ Baut{BTx) which can be thought of as being a classifying map of a 
fibration BTx —̂  BN{Tx) —• BWx- The total space gives the classifying space of the 
normalizer N{Tx) of Tx. This construction is nothing but the Borel construction. 

In general BN{Tx) is not a p-compact group, because Wx is not a finite p-group. 
Let Wp be the union of those components of Wx corresponding to a p-Sylow sub-
group Wp of Wx' The restriction of the above construction to Wp gives the classifying 
space of the p-normalizer Np{Tx), which is a p-compact group. Since the action of 
Wx respects the map BTx ~^ BX, the monomorphism Tx -^ X extends to a loop 
map N{Tx) -^ X. The restriction Np{Tx) —> X is a monomorphism and the Euler 
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characteristic x{^/Np{Tx) is coprime to p [29, Proof of 2.3]. A homotopy fixed-point 
argument, similar to that in the proof of Theorem 5.7, shows that p-compact toral sub-
groups of X are subconjugate to Np{Tx)> That is to say that Np(Tx) is a p-toral Sylow 
subgroup of X. 

This gives the basis of a Lie group theory for p-compact groups. Now we can look at 
the wide and rich field of classical Lie group theory and try to rediscover it in this spirit 
through results about p-compact groups. So, let us continue. 

5.11. Centers, A subgroup Z C A" of a p-compact group X is called central, if evalua-
tion induces an isomorphism Cx{Z) = X of p-compact groups. A subgroup Z{X) C X 
is called the center of X if it is central and if every central subgroup Z C X is subcon-
jugate to Z{X). That is to say the center is the maximal central subgroup. This already 
gives an idea how the center can be constructed. The "union" of two central subgroups 
should be again a central subgroup. The following theorem was proved independendy 
by Dwyer and Wilkerson and by M0ller and the author. 

5.12. THEOREM ([34], [66]). Every p-compact group X has a center Z{X) C X. There 
exists a short exact sequence 

Z{X) -^X-^X:= X/Z{X). 

If X is connected, then X is centerfree. 

5.13. An induction principle. In [22], Dwyer showed that a transfer for "nice" cohomol-
ogy theories (including mod-p cohomology) exists if the fiber satisfies some finiteness 
conditions expressed in terms of the cohomology theory. In general, these conditions 
are slightly weaker as being equivalent to a finite CW-complex. For example, for mod-
p cohomology, the fiber only has to be Fp-finite. Applying this to the homomorphism 
Np{Tx) —> X of the p-normalizer of the maximal torus of a p-compact group X, 
Dwyer and Wilkerson showed that H*{BX;Fp) is a Noetherian algebra and that the 
map H*{BX;Fp) ~* H*{BNp{Tx);¥p) satisfies the assumption of Theorem 1.4. That 
is to say there exists an algebraic decomposition of BX via centralizers of elementary 
abelian subgroups which can be realized on the geometric level. Let Ap{X) denote the 
Quillen category of X, omitting the trivial subgroup. This makes perfect sense, because 
we already translated all necessary notions, involved in the definition, into the language 
of p-compact groups. By Lannes' theory, the Quillen category is equivalent to the Rec-
tor category of H*{BX;¥p). For elementary abelian p-subgroups V C X, the maps 
BCx{V) -^ BX induced by evaluation at basepoints are compatible with the mor-
phisms of Ap{X). Hence the following theorem is a consequence of Theorem L4 and 
Theorem B.2. It also generalizes the decomposition of classifying spaces of compact 
Lie groups via centralizers of elementary abelian subgroups by Jackowski and McClure 
(Theorem 1.3). 

5.14. THEOREM. The natural map hocolimj^^i^x) BCx{V) -^ BX is a homotopy equiv-
alence. 
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This is the key for the following induction principle of Dwyer and Wilkerson. 

5.15. PROPOSITION. Let CI be a class ofp-compact groups satisfying the following con-
ditions: 

(1) IfX € CI and Y^X, then Y £ CL 
(2) The trivial group belongs to CL 
(3) If the component XQ of the unit is contained in CI, then X € CL 
(4) IfX is connected and ifX/Z{X) G CI, then X G CL 
(5) If X is connected and centerfree and Y £ CI for every p-compact group Y with 

smaller cohomological dimension than X, then X € CL 
Then, the class CI contains every p-compact group. 

The proof is nothing but the observation that for a centerfree connected p-compact 
group X, the centralizer of any subgroup has smaller cohomological dimension than X. 
The cohomological dimension is defined to be the maximal degree of the nonvanishing 
mod-p cohomology classes. 

To demonstrate the induction principle we want to prove the Sullivan conjecture for 
p-compact groups. 

5.16. THEOREM ([33]). Let X be a p-compact group, and let K be a p-complete ¥p-finite 

space. Then evaluation induces an equivalence ev : map{BX^ K) ^ K. 

PROOF. Let CI denote the class of all p-compact groups which satisfy the statement. Then, 
the first two conditions are obviously satisfied. 

Any p-compact group X fits into a short exact sequence XQ —> X —> TT := 7ro(-X') of 
p-compact groups. If XQ e CI, one can show that map{BTT, K) -* map{BX, K) is an 
equivalence. Hence, the third condition is satisfied by the Sullivan conjecture for finite 
groups [59]. 

For any connected p-compact group X, Theorem 5.12 establishes a fibration 
BZ{X) -^ BX -> BlC := B{X/Z{X)). Actually, as for compact Lie groups, this 
is a principal fibration with classifying map BX -^ B^{Z{X)). The center is a product 
of a p-compact torus and a finite abelian p-group and therefore satisfies the Sullivan 
conjecture. In this situation we can apply a lemma of Zabrodsky [98] to show that 
map{BX, K) —• map{BX, K) is an equivalence. Hence, the fourth condition is satis-
fied. 

To prove the fifth condition, we use the decomposition theorem (Theorem 5.14). Let 
X be connected and centerfree. We have 

map{BX,K) ~ mapl hocolimBCx{V),Kj 
Ap{X) 

The centralizers are smaller than X. Thus if they satisfy the theorem, the higher limits 
in the spectral sequence of Theorem A.2 for calculating the homotopy groups of the 
latter mapping space have to be taken over the constant functors with 'K„{K) as value. 
But Theorem L4 implies that all higher limits of a constant functor on Ap{X) vanish. 
Hence, we have map{BX, K) c::^ K dJid X e CL U 



Sections Classifying spaces of compact Lie groups 1081 

This induction principle is quite a powerful tool. For example, along the same lines, 
M0ller proved that every homomorphism f : X -^ Y between connected p-compact 
groups is trivial if and only if the restriction to a maximal torus is trivial if and only 
if H*{Bf;Z^) (8) Q is trivial [63]. And Dwyer and Wilkerson showed that there exists 
an equivalence BZ{X) ~ map{BX, BX)id for any p-compact group X. The map is 
the adjoint of a multiplication Z{X) x X —• X on the level of classifying spaces [34]. 
This generalizes parts of the results of Jackowski, McClure and Oliver (Theorem 2.7 
for connected compact Lie groups). This equivalence will become an important fact in 
the further study of p-compact groups; in particular in the analysis of homomorphisms 
between p-compact groups and proofs of homotopy uniqueness properties using the 
decomposition of BX via centralizers of elementary abelian subgroups. For example, 
the equivalence allows it to be shown that BZ{Cx(y)) —̂  map{BCx{V),BX)Bi is 
an equivalence for any elementary abelian subgroup V C X. 

The final goal of the theory of p-compact groups is a complete classification. Again, 
classical Lie group theory serves as a guide. On the one hand every connected compact 
Lie group has a finite cover which is a product of a simply connected compact Lie 
group and a torus and every simply connected compact Lie group splits into a product of 
simple simply connected pieces. On the other hand, two connected compact Lie groups 
are isomorphic if the normalizers of the maximal tori are. (This is implicitly contained 
in Bourbaki [14]. For an explicit proof see [20] (only for semi simple Lie groups), [62], 
[81] or [73]. The first statements can completely reproved for p-compact groups due to 
work of Dwyer and Wilkerson [35] and M0ller and the author [66], [75]. For the second 
statement there exist partial results of the latter group of authors [67]. 

5.17. THEOREM ([66]). Let X be a connected p-compact group. Then there exists a short 
exact sequence 

K -^XsXT-^X 

of p-compact groups, where K is a finite group, where T is a p-compact torus and 
where Xg is a simply connected p-compact group. The group K is a central subgroup 
ofXs X T. 

The simply connected part Xs is given by the 2-connected cover of BX which also is 
a p-compact group. The toral part T is given by the component of the unit of the center 
of X. Because Cx{T) = X, there exists a map Xs x T -^ X. To show that this is a 
finite covering comes down to a proof that the center of a p-compact group is finite if 
and only if the fundamental group is finite, a well-known fact for connected compact Lie 
groups. 

For every simple connected compact Lie group G, the associated representation 
WG —• Gl{H^{BTG\Q)y is irreducible. This property is used for the definition of 
a simple p-compact group, i.e. X is simple if the associated representation Wx —* 
Gl{H'^{BTx\1p) 0 Q is irreducible. 

5.18. THEOREM ([35], [75]). Let X be a simply connected p-compact group. Then there 
exists a splitting X = Yii^i ^^^^ ^ product of simple simply connected p-compact 
groups Xi. 
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Dwyer and Wilkerson proved this for all primes and independently the author for odd 
primes. Actually, the statement is first proved for centerfree p-compact groups and then 
for simply connected p-compact groups by passing to the universal cover. For centerfree 
p-compact groups the integral representation Wx —̂  Gl{H'^{BTx',Zp) is under control 
and splits into a direct sum, where each piece belongs to an irreducible factor of the 
associated rational representation of Wx [35], [74]. This splitting gives rise to a splitting 
WOf = Hi Wi of Wx and T^ = I j ^ t such that Wi acts only on Ti nontrivially. The 
centralizer Cx{Ti) for fixed i splits into a product Xi x Ht^^j ^ j - ^ ^ ^ part of the proof 
goes the same way as for simply connected compact Lie groups. The construction of a 
homomorphism JJ^Xi -^ X is the difficult part of the proof of Theorem 5.18. Basically, 
the centralizer Cx{Xi) has to be computed. 

Theorem 5.9 connects connected p-compact groups with pseudo reflection groups. The 
list of Clark and Ewing gives a complete classification of such irreducible gadgets. By the 
above two theorems, a complete classification of connected p-compact groups consists 
of the construction of a simple simply connected p-compact group and a homotopy 
uniqueness result for each irreducible pseudo reflection group of the list. For most of the 
irreducible pseudo reflection groups examples are constructed (see Section 3). Homotopy 
uniqueness results, in particular if p-torsion in the cohomology is around, are the main 
missing link for a complete classification of connected p-compact groups. 

The most general homotopy uniqueness results in terms of normalizers of maximal 
tori so far are proved by M0ller and the author. We say that two p-compact groups X 
and Y have the same (p-adic) Weyl group type if X and Y have the same rank n and if 
the two associated integral representations Wx.Wy —* GZ(n,Zp) are equivalent. 

5.19. THEOREM ([67]). Let p be an odd prime. Let G be a connected compact Lie group 
such that H*{G;Z) has no p-torsion. Let X be a connected p-compact group with the 
same p-adic Weyl group type as G. Then X and G^ are isomorphic as p-compact groups. 

The proof is based on Theorem 4.3, which states a homotopy uniqueness result based 
on mod-p cohomology. The main part of the proof is to show that the p-compact groups 
under consideration have torsion free p-adic cohomology. Again, this is first proved for 
unitary groups and then extended to the other cases. For p = 2 a similar result is true for 
quotients of products of unitary and special unitary groups, but again, SU{2) is excluded. 

For p = 2 the Weyl group data are not sufficient to distinguish between connected 
p-compact groups as a comparison of S0{2n -h 1) and Sp{n) shows. In general the 
following conjecture should be true. As usual, it generalizes a known statement about 
connected compact Lie groups. 

5.20. CONJECTURE. TWO connected p-compact groups X and Y are isomorphic if and 
only if the normalizers of the maximal tori are isomorphic (as loop spaces). At odd 
primes the normalizer splits and the Weyl group data are sufficient to distinguish between 
connected p-compact groups. 

There has also been some work done on the analysis of endomorphisms of p-compact 
groups. M0ller studied rational self equivalences. These are endomorphisms f : X -^ 
X such that H*{Bf;Zp) (g) Q is an isomorphism. He was able to generalize parts 



Section 6 Classifying spaces of compact Lie groups 1083 

of the Jackowski-McClure-Oliver theorem (Theorem 2.7) and reduced the homotopy 
classification of rational self equivalences to the case of endomorphisms of simple simply 
connected p-compact groups [64], [65]. For endomorphisms of nonconnected p-compact 
groups, he proved similar results to those he proved for nonconnected compact Lie groups 
(see Section 2). 

6. Finite loop spaces and integral questions 

As we already mentioned in the previous section. Rector suggested studying compact 
Lie groups from the homotopy point of view, i.e. passing to classifying spaces [84], 
[85]. If we consider a compact Lie group just as a topological space, we would lose too 
much information. Although the homotopy type of G distinguishes between two simple 
connected compact Lie groups [10], this is not true in general, even not for semi simple 
groups. Counterexamples may also be found in [10]. The concept of Rector is based on 
the hope that the classifying space BG contains all the information about the compact 
Lie group G. This was independendy proved by M0ller [62] and Osse [81] for connected 
compact Lie groups and in general by the author [73]. 

6.1. THEOREM ([62], [81], [73]). Two compact Lie groups G and H are isomorphic if 
and only if the classifying spaces BG and BH are homotopy equivalent. 

The p-adic completion of a connected finite loop space gives a p-compact group, 
and the rationalization is a product of rational Eilenberg-MacLane spaces. Hence, via 
Sullivan's arithmetic square [89], finite loop spaces are built out of p-compact groups. 
This gives a way to transport p-compact group results to theorems about finite loop 
spaces. 

Most of the recent research on finite loop spaces can be understood as an attempt to 
solve the following conjecture, which we could trace back to Wilkerson [92]. 

6.2. CONJECTURE ([92]). Every finite loop space with maximal torus is equivalent to a 
compact Lie group (as finite loop space). 

In a first approach, finite loop spaces L were considered whose classifying space BL 
has the same (adic) genus as BG for a given connected compact Lie group G. That is 
that all p-adic completions BG^ and BL!^ are homotopy equivalent. Because BG as 
well as BL is rationally a product of Eilenberg-MacLane spaces, this also implies that 
the rationalizations are equivalent. Also, by passing to loops, the space L has the same 
genus as G, if G is connected. Actually, the genus of a space was defined via localization, 
but using completion is more appropriate to this kind of question. In particular, if BL 
is in the genus of BG, we can think of BL as built out of the p-adic completions of 
BG, the rationalization of BG and some gluing data, encoded in a self map of the adele 
type of BG. Actually, the adele type of BG is a product of Eilenberg-MacLane spaces. 
Hence, the gluing code is completely contained in cohomological information. If, for a 
finite loop space L, the classifying space BL has the same genus as BG, we say that L 
is a fake Lie group of type G. 
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Rector solved the above conjecture for S^ under this genus assumption by showing 
(with a little help from McGibbon at the prime 2 [58]) that the property of admitting a 
maximal torus distinguishes the genuine group among the fakes [84]. Actually, because 
of the homotopy uniqueness property of BS^!^ (Theorem 4.1), every loop space structure 
on S^ is a fake Lie group of type S^. The genus assumption is superfluous in this case. 

Rector's result was extended by Smith and the author to the case of simply connected 
compact Lie groups [76], [77], [78], [70]. In a series of papers, they analyzed the genus 
of a classifying space of a connected compact Lie group G and arrived at the following 
result: 

6.3. THEOREM ([76], [77], [78], [70]). Let G be a connected compact Lie group and L 
a fake Lie group of type G. 

(\) If L admits a maximal torus TL -^ L, then there exists a connected compact Lie 
group H such that L and H are isomorphic as finite loop spaces, 

(2) If G is simply connected in addition, and L admits a maximal torus, then L and 
G are isomorphic. 

This solves the above conjecture under the genus assumption. The proof is based 
on an identification of several Weyl groups connected with L, the Weyl group of L 
as finite loop space, of L^ as p-compact group (for all primes) and the rational Weyl 
group of L, which can be defined to be the Galois group of the integral ring extension 
H*{BL;Q) -> H*{BTL;Q). Moreover, even together with the action on the maximal 
torus, all these Weyl groups turn out to be isomorphic to WQ- These identifications allow 
the gluing data for BL to be decoded out of the existence of a maximal torus. 

By a theorem of Atiyah [8], complex K-theory together with the Adams operations 
determines the mod-p cohomology of simply connected spaces as algebras over the 
Steenrod algebra, if the integral cohomology is torsionfree. The Chern character con-
nects complex iiT-theory with rational cohomology, and complex A'-theory determines 
the rational cohomology ring. Hence, for nice spaces, complex /f-theory contains all 
information about the gluing data of an arithmetic square. It has turned out to be quite 
a useful tool in the theory of finite loop spaces. For example, a fake Lie group L of 
type G has a maximal torus if and only if K{BG) = K{BL) as A-rings [76], and two 
fake Lie groups L\ and L2 of the same type are isomorphic if K{BL\) = K{BL2) as 
A-rings [71]. 

The following theorem is a consequence of the mod-p homotopy uniqueness properties 
of connected compact Lie groups (Theorem 4.3). 

6.4. THEOREM ([72]). Let G be a quotient of a product of unitary and special unitary 
groups, different from SU{2), such that i/*(G;Z) is torsionfree. Let X be a simply 
connected CW-complex of finite type such that H*{X\Z) is torsionfree. Then, BG and 
X are homotopy equivalent if and only if K{BG) = K{X) as X-rings. 

By Atiyah's result it follows that BG and X have isomorphic mod-p cohomology, 
and by Theorem 4.3 it follows that the p-adic completions of BG and X are homotopy 
equivalent. The rationalizations are equivalent because both have isomorphic complex 
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if-theory. Hence, X has the same genus as BG. In fact both spaces are equivalent 
because of the iC-theory isomorphism. This outlines the proof of Theorem 6.4. 

Recently, M0ller and the author used the ideas of the proof of Theorem 6.3 to study 
the Weyl group of a general connected finite loop space with maximal torus [67]. They 
showed that at least the Weyl group action is the expected one. 

6.5. THEOREM ([67]). Let L be a finite loop space with maximal torus TL -^ L. Then, 
the representation WL —> GI{H'^{BTL;Q) isfaithfiil and represents WL as a crystallo-
graphic group, and we have H*{BL\Q) ^ H*{BTL\Q)^''. 

This is an integral version of Theorem 5.9, which the proof is very much based on. It 
is also one step forward to a proof of Conjecture 6.2. To complete the proof, a complete 
classification of connected p-compact groups is necessary in terms of the Weyl group 
action on the maximal torus or in terms of the normalizer of the maximal torus. 

Appendix 

A. Homotopy colimits 
In this section we recall a construction for homotopy colimits which goes back to Segal 
[87] and some spectral sequences related to this construction. Let C be a small (topo-
logical) category (as defined in [87]), and let F : C —• Tap be a covariant (continuous) 
functor into the category of (compactly generated) topological spaces. The homotopy col-
imit hocolimc F can be thought of as a kind of bar construction. It can be constructed 
as the quotient space 

-(u u hocolimF := ( J J J J F{co) x A"" 

where Ci is an object of C, where A^ is the n-simplex and where each face or degeneracy 
map between the sequences co —̂  • —̂  Cn gives rise to the obvious identification. This 
construction is obviously functorial with respect to (continuous) natural transformations. 
The natural transformation from F to the constant functor * : C —̂  Tap taking a point 
as value induces a map hocolimc F -^ hocolimc^ =: BC. The target is called the 
classifying space of the category C. In the above construction this map is given by 
the projection onto the second factor. The above construction also allows an obvious 
filtration of the homotopy colimit given by taking the coproduct for 0 ^ n ^ AT. This 
filtration gives rise to a first quadrant cohomological spectral sequence which calculates 
the cohomology of the homotopy colimit. The £'̂ -term is formed by higher derived 
functors of the inverse limit functor of the contravariant functors H^{F{-)) : C -^ Ab 
into the category of abelian groups, established by taking cohomology groups of F{c). 

A.I. THEOREM. For any covariant fiinctor F :C ^ Tap there exists a spectral sequence 

El^ = limPif^(F(-)) => H^^'^lhocolimFy 
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For a proof see [15], where a different approach for the construction of the homotopy 
colimit is used (see also [87]). 

Important examples of the homotopy colimit construction are given by: 

a) Pushout diagrams. Let C be the category C := {c\<—CQ —̂  C2}. Then, for any 
functor F : C -> Tap, the homotopy colimit is homotopy equivalent to the pushout 
of the diagram F(ci)^—^(O)) -^ ^(^2)- The spectral sequence reduces to the Mayer-
Vietoris sequence. 

b) Mapping telescopes, let C := N be the category given by the totally ordered set 
of the natural numbers. Then, for any functor F : N -^ Top, the homotopy colimit is 
equivalent to the mapping telescope of the sequence 

F ( 0 ) - ^ F ( l ) - > vF{n)^'" . 

The spectral sequence reduces to the Milnor sequence for the cohomology of mapping 
telescopes. 

c) Borel constructions. To any topological group G we can associate a category /3G 
with one object and whose endomorphisms are given by G. In this case, a functor 
F : (3G -^ Top is nothing but a G-space X. The homotopy colimit of F is equivalent 
to the Borel construction EG XQX.U X is a. point, then hocolimc F ĉ  EG/G = BG 
is just the classifying space of the group G (for details see [87]). 

Let C be a discrete category, and let F : C —• Top be a functor. For any space 
X, the filtration of the homotopy colimit hocolimc F establishes a tower of fibrations 
under map{hocolimc,X). This tower gives rise to a spectral sequence calculating the 
homotopy groups of map{hocolimc^ X). In more detail, the restrictions to F{c) for each 
c^C establish a map 

R\ \hocolimF,x\ -> lim [ F ( - ) , X ] . 

Let 

/ = ( / c ) c € c G l i m [ F ( - ) , X ] . 
c 

Let </>n • C -+ ^6 be the contravariant functor given by 0n(c) := 7rn(map(F(c),X)f^. 

A.2. THEOREM. Under the same assumptions as above there exists a spectral sequence 

^2'^ = 1™^ ^q = ^ ^g-p I ^^P ( hocolim, Xj ], 

which converges strongly if 
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for allp^ N and all q. 

Here, map{hocoli7nF,X)j^_uf^ means the union of all components of maps / : 

BG -^ X such that R{f) = f. For a proof see [15] and [93]. Bousfield and Kan 
arrived at this result by constructing a spectral sequence for homotopy inverse limits and 
Wojtkowiak discusses carefully all questions related to choosing basepoints and what 
happens when the fundamental group is nonabelian. 

If we are only interested in the set of components of the mapping space we have the 
following corollary. 

A.3. COROLLARY. Under the above assumptions, the set R~^{f) is nonempty if 

lim'*-^Vn=0 for all n^ 1, 

and contains at most one element if 

lim"^0n = 0 for all n^ 1. 

B. Lannes' theory 
In this section we recall some results and basic definitions of Lannes' theory. Proofs and 
ideas of proofs are completely omitted. The material is taken from [55], [56]. 

For the following we fixed a prime p. The cohomology groups are always taken with 
coefficients in Z/p and H*{ ) always means H*{ ;Z/p). We denote by K, the category 
of unstable algebras over the Steenrod algebra Ap. 

Let V be an elementary abelian p-group. An algebra A over Ap is called of finite type 
if A is finite in each dimension. 

B.l. THEOREM ([56]). If X is a p-complete space and H*{X) is of finite type, then the 
canonical map 

[BV,X] ^ HcymA,{H*{X),H\BV)) 

is an isomorphism. 

The evaluation map 

BV xmap{BV,X) -* X 

induces a cohomological map 

H*{X) ^ H*{BV)^H*{map{BV,X)), 

Lannes studied the functor Ty : /C —• /C which is the left adjoint of the functor 
H""{BV) (S)z/p - . Taking the adjoint of the evaluation map yields a map 

TvH*{X) -^ H*{map{BV,X)). 
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For any map g : BV —• X, there is an associated direct summand TY{H*{X),g'') of 
T'^H*{X) which corresponds to the summand H*{7nap{BV, X)g) oiH^{map{BV, X)). 
With respect to this splitting the above map is a direct sum of maps with coordinates 

Tv{H*{Xlg*) ^ H*{mav{BV,X)g). 

B.2. THEOREM ([56]). Let X be a space, such that H*{X) is of finite type. Let g : BV -^ 
X be a map. The map 

T^{H*{X),g') -. H'{map{BV,X^)g) 

is an isomorphism if T^{H*{X),g*) is of finite type and one of the following three 
conditions is satisfied: 

(1) r^(if*(X),^*) is zero in degree 1. 
(2) Tnap{BV,Xp)g is l-connected. 
(3) There is a connected space Z with the property that H*{Z) is of finite type and a 

map 

Z -> map{BV,X)g, 

such that the associated map 

T^{H*iX),g*) - . H'{Z) 

is an isomorphism. 

B.3. THEOREM ([56, 3.4.3]). In addition to the assumptions of Theorem B.2, let X be 
p-complete. Then the following conditions are equivalent: 

(1) Tnap{BV,X)g is p-complete. 
(2) T^{H*{X),g*) -^ H*{map{BV,X)g) is an isomorphism. 

If we consider a collection S of maps BV -^ X, then of course we get a direct 
summand Tv{H*{X),S*), where 5* is the collection of the associated cohomological 
maps. The theorems B.2 and B.3 are still true in this situation [56]. 

C. Homotopy fixed-points and Smith theory 
Let G be a group acting on a space X. Then the fixed-point set can be described as 
the mapping space X^ = mapG{*,X) of G-equivariant maps from a point into X. 
The homotopy fixed-point set is defined as the mapping space X^^ := mapciEG, X), 
where EG is a contractible free G-space. The G-equivariant projection EG -^ * induces 
a map X^ -^ X^^. As one easily sees, the homotopy fixed-point is equivalent to 
the space of sections r{XhG -* BG) of the bundle XhG ^ BG given by the Borel 
construction Xhc := EG XQX. Compared with fixed-point sets, homotopy fixed-point 
sets have the very nice advantage of only depending on the homotopy type of X\ i.e. 
any G-equivariant map X —* F, which is also a homotopy equivalence (nonequivariant) 
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induces an equivalence X^^ -^ Y^^, This follows straightforwardly from the description 
in terms of section spaces. In general this is not true for fixed-point sets. But for G a 
finite p-group, the generalized Sullivan conjecture says that there is a close connection 
between fixed-point and homotopy fixed-point sets. By functoriality there is a natural 
map X^^ -> X^^^. 

C.l. THEOREM ([25], [16], [55], [56]). Let G be a finite p-group acting on a finite G-
complex. Then the map X^^ —> X^^^ is a weak equivalence. 

In the case of G = V an elementary abelian j>-group, there are two ways to get a hold 
of the cohomology of the homotopy fixed-point set. The first is an output of Lannes' 
theory and his T-functor. The second is a functorial recipe of calculating the cohomology 
of X^^ on the lines of the localization theorem, a reformulation of classical Smith theory 
(e.g., see [42]). 

For a space X with a V-action there exists a fibration 

X^^ - r{Xhv -^ BV) -^ map{BV, Xhv)sec -^ map{BV, BV)id (**) 

where the total space is the union of the components given by sections in the fibration 
Xhv -^ BV. Because map{BV, BV)id — BV [46] (see the introduction), composition 
defines a map X^^ x BV —> map{BV,Xhv)sec which establishes a fiber homotopy 
trivialization of (**). This was used by Lannes to establish a functor 

FixviX) := Tv{H^{X;Fj,),sec^) 0 H * V Fp. 

Here, sec* denotes the set of all sections on the cohomological level, and Hy{X) := 
H*{Xhv) denotes equivariant cohomology. We also defined Hy := i?*(SF;Fp). As in 
the case of the T-functor, there is a natural map 

Fixv{X)-^H''{X^^;Fp) 

which turns out to be an isomorphism in several cases. 

C.2. THEOREM ([56]). Let V act on a p-complete space X whose cohomology H* (J ;̂ Fp) 
is of finite type. Then, the natural map 

FixviX) :^Tv{H^{X;¥p),sec*) ^H^yFp ^ H*{X^^',¥p) 

is an equivalence if and only if the homotopy fixed-point set X^^ is p-complete. 

Analogously as in Theorem B.2, there are several other conditions which ensure that 
FixviX) -^ H*iX^'^',¥p) is an isomorphism (see [56]). The condition of X^^ being 
p-complete seems hard to check, but fortunately in all cases relevant for the proofs of 
the results in the previous sections, it turns out that this condition is always satisfied. 

For the following we assume that X is Fp-finite. Let S C H*iBV;Fp) be the multi-
plicative subset of all elements of strictly positive degree in the image of H*iBV\ Z) —̂  
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H*{BV\¥p), This is isomorphic to the submodule of positive elements of the torsionfree 
quotient of Hy considered as a module over itself. For a nice action of V on X, the 
above mentioned localization theorem reads 

The localized algebra S''^H*{Xhv\^p) is still an algebra over the Steenrod algebra 
but may not satisfy the unstability conditions. Let C/n(5"^if*(-X'/iv;Fp) be the unstable 
part of S-^H*{Xhv\¥p). Dwyer and \\^ilkerson proved [30] that 

H;^^Fixv{X) ^ Un{S'^H*{XHv'Jp)), 

Because ff*(X/iv; Fp) is a finitely generated module over Hy, a Serre spectral sequence 
argument shows that the Fp-module Fixv{X) is also finite. Using Theorem C.2 in 
addition, the same authors proved 

C.3. THEOREM ([33]). LetV = Z/pbe the cyclic group of order p acting on a ¥p-finite 
P'Complete space X. If the homotopy fixed-point set X^^ is also p-complete, then the 
following holds: 

(\)The homotopy fixed-point set X^^ and the pair {Xhv, BV x X^^) are Fp-finite. 
(2) For the Euler characteristics we have x{^) = xi^^^) ^^d p. 

This parallels the classical facts that, for V = Z//? acting nicely on a finite F-complex 
X, the analogous statements for the actual fixed-point set are true. 

The generalization of these results to the case of finite p-groups goes by an induc-
tion over the group order. One uses the fact that any finite p-group TT fits into a short 
exact sequence 1 —̂  TTQ -+ TT —• Z/p —• 1, that Z/p acts on the homotopy fixed-point 
set X^'^^ ĉ  map^^{E7r,X) and that X^"" ĉ  f^xh'''^>^h,z/p Assuming that for any sub-
group TT' C TT the homotopy-fixed point set X^'^' is p-complete gives the desired Euler 
characteristic formula 

x(X) = x(^'^")niodp. (C.4) 

The arguments involved in the proof of Theorem C.3 do not care about the explicit 
action of the finite p group TT on the space X. The fibration X -^ Xhn -^ Bir contains all 
the necessary information. For example, the homotopy fixed-point set X^'^ is equivalent 
to the space of sections in the above bundle. This motivates the following definition of 
Dwyer and Wilkerson. A proxy action of TT on X is a fibration X -^ E -^ BIT. The 
homotopy fixed-point set X^'^ is given by the space of sections of this fibration. Then, 
Theorem C.3 is still true for proxy actions of finite p groups on Fp-finite spaces. 

Using the mod-p approximation BZ/p°°^ -* BS^p of a torus, Dwyer and Wilkerson 
extended Theorem C.3 to proxy actions of tori. 

C.5. THEOREM ([33]). Let X -^ E -^ BT be a proxy action of a torus on a ¥p-finite 
space X. Assume that for every finite p-subgroup ir C T the homotopy fixed-point set 
X^^ is p-complete. Then, for every finite p-subgroup TT C T, the space X^^ is ¥p-finite 
and xiX^n = X{X). 
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In general it is not known if X^'^ is Fp-finite or if xi^^^) = x)-^)- ^^t in all cases, 
appearing in the proofs of the above theorems, the homotopy fixed-point set X^'^ is 
equivalent to X^'^ for TT C T big enough. This estabhshes the formula 

X{X>^'')=X(X). (C.6) 
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0. Introduction 

Recall an /f-space is a pointed space X, together with a binary operation XxX - ^ X 
called multiplication such that the base point acts as a left and right unit. iJ-spaces occur 
all the time in mathematics. We list some examples here: 

(1) Take any space Y, Let QY be the space of all loops that begin and end at a fixed 
point yo in Y, 

(2) Any topological group. 
(3) Eilenberg-MacLane complexes. 
(4) The 7 sphere, or various Lie groups, are examples of "finite H-spaces;" i.e. H-

spaces that have the homotopy type of finite complexes. 
(5) Applying localization at a prime, we have that any odd sphere localized at an odd 

prime is an i?-space. 
(6) Applying "mixing techniques" of Zabrodsky [25] one can obtain other non-Lie 

finite i7-spaces. 
(7) An omega spectrum can be thought of as an infinite sequence of loop spaces. 
(8) The fibre of an if-map. 
Clearly we are carving out an extremely large area of topology. This paper will not 

attempt to survey all these examples. Instead, we will offer useful references and com-
ment on some open problems. Further, for the most part we will restrict ourselves to the 
homology of il-spaces, and their interplay with various algebraic invariants such as the 
Steenrod algebra, the Dyer Lashof algebra, and various higher order cohomology opera-
tions. This exposition is intended to be accessible rather than exhaustive. The examples 
are chosen for their simplicity rather than generality. 

An important class of examples are the "finite if-spaces." A finite if-space is an 
if-space that has the homotopy type of a finite complex. A theorem in Lie groups states 
that any Lie group is a product of a compact Lie group and Euclidean space, so all Lie 
groups are finite if-spaces. For purposes of this exposition, we would like to extend 
our definition of finite to include those if-spaces whose mod p cohomology is finite 
dimensional. This allows us to also consider p-localizations which have become a large 
part of the subject. 

It may be helpful to consider the following sequence of inclusions 

Lie groups C finite topological groups C finite loop spaces 

C finite An-spaces C finiteif-spaces. 

After describing the cohomology of an if-space mod p as a Hopf algebra over the 
Steenrod algebra, we will proceed to describe various constructions such as the projective 
spaces of Stasheff [83] and the interplay between cup products in the cohomology of the 
projective space and obstructions to higher homotopy associativity in the if-space. 

The following is an oudine of the paper. Let X be an fi-space, p a prime. 

I (Sections 1, 2) H*{X\Zp) is a (graded) commutative Hopf algebra over the 
Steenrod Algebra. 

(a) As an algebra, H*{X; Zp) is a tensor product of exterior algebras, truncated 
polynomial algebras, and free polynomial algebras. 
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(b) If X is a finite if-space, the Steenrod action is very restrictive. The start-
ing point is Browder's Theorem which states fi\H^''^^{X\Zp) consists of 
decomposable elements and the pth powers of even homology primitives 
vanish. 

n (Sections 3, 4, 5) Projective Spaces Associated to i7-spaces 

(a) liX is an i7-space, there is a twofold projective space PjX and a cofibration 
sequence E{X A X) —• EX —• P2X. The cup product structure in 
H*{P2X;Zp) is related to the coproduct in H*{X\Zp). 

(b) If X is an if-space with higher homotopy associative structures called An-
structures, there exist a sequence of spaces EX C P2X C • • • C PnX and 
cofibration sequences PeX —• Pi^\X —> (EX)^ ^ 

(c) Given a map / : X —• Y where X and Y are An-spaces and / is an An-\ 
map, the i4n-deviation can be defined in terms of the projective spaces. 

III (Sections 6, 7) Mapping i4n-Spaces into Postnikov Systems 

(a) If X is an >ln-space, the theory of lifting an An-map into a 2-stage Post-
nikov System by an An-map can be described via obstruction theory. The 
obstructions lie in Cotorn-{x){'^pi^p) 

(b) A 2-stage Postnikov System is constructed which has a nonzero homology 
pth power. 

(c) Using this Postnikov System, we apply the obstruction theory to several 
examples to show how the action of the Steenrod algebra on certain if-spaces 
is restricted. In particular, there are several results about atomic spaces. 

IV (Section 8) Homotopy Commutative Spaces 

(a) If X is homotopy commutative one can construct a projective space P2X. 
(b) If f : X —• Y is an fi-map between homotopy commutative spaces, a 

homotopy commutative obstruction c{f) can be defined. 

In many of the sections there will be some overlap with excellent books on the subject. 
We recommend that the reader look at Kane's book [48], Homology of Hopf Spaces, 
and Zabrodsky's book [99], Hopf Spaces, Other survey papers we recommend are [7], 
[64]. My main contribution is the open problems and a certain personal preference of 
presentation. In the later chapters there will be new material that addresses the questions 
of nonfinite fi-spaces, and fi-spaces with added structures such as higher homotopy 
commutativity or homotopy associativity. 

Throughout, all spaces will be connected and base pointed. All homotopies will respect 
the basepoint. All homologies and cohomologies will be of finite type. 

1. Cup products and Hopf algebras 

In a basic course in algebraic topology one usually calculates cup products on various 
spaces toward the end of the course. The computations are often not easy - they require 
a piece of complicated machinery such as Poincare duality and cup products are usually 
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computed only for orientable manifolds. One leaves with the illusion that the cup product 
structure is not always easy to compute. 

In contrast, the cohomology of an if-space with coefficients in a field has lots of 
nontrivial cup products and it is not difficult to prove. Let A: be a field. Recall the 
Kiinneth theorem implies 

H*{XxX;k)^H*{X;k)^H*{X\k), 

H^X X X;k) ^ H4X;k) (S) H.{X;k). 

Given an if-space X with multiplication 

m: XxX —^X, 

we get two induced maps 

m*: H*{X xX;k)^— H*{X;k), 

m.: H4XxX',k)—^H,{X;k). 

Combining with Kiinneth isomorphisms, we get maps 

H%X; k) ® H*{X\ k) ^ H*{X; k), 

H^{X\k)^H.{X\k)—^H,{X\k). 

H*{X\k) is already an algebra with respect to cup product. Further this makes 
H*{X\k) ® H*{X;k) an algebra. In fact if A,B are graded algebras, 4̂ 0 J5 is an 
algebra with (a 0 6) • (c (g) d) = (-1)^^ '̂  ^^ ""{ac 0 bd). It follows that ^ is a map of 
algebras since m* is and the Kunneth isomorphism is also. The fact that the base point 
acts as a left and right unit implies if x € H*{X; k) then 

A{x) = x 0 l - h l(g)x-f-^x-(8)x-', degx^ > 0, degx-' > 0 (1.1) 

where degxj -h degxf = degx. This is all discussed in detail in a number of places [76], 
[49], [94], [70]. 

Suppose the first positive nonvanishing cohomology group of H*{X; Z2) occurs in an 
even degree n. Then if x € H^{X\ Z2), 

A{x) = X (g) 1 -f 1 0 X 

by (1.1). Since ^ is a map of algebras, and degree of x is even 

1=0 ^ ^ 
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Now if x^~^ ^ 0 and CJ) ^ 0 mod2, for some i between 0 and n, then A{x'^) ^0 so 
x^ ^ 0. Checking binomial coefficients, (^) = 0 mod 2 for all 0 < z < n only if n = 2̂  
for some j > 0. So we have if A{x) = x 0 1 -f 1 0 x and deg x even, then the lowest 
power of X that is trivial is 2̂  for some j > 0. 

As a corollary we see that EF^ cannot be an i/-space \i n^2^ — \ for some j > 0. 
This follows since 

Similarly, CP" cannot be an H-space for any n since there exists a prime p such that 

/f'((CP";Zp) = ^ ^ , A{X2) = X2®1 + \®X2, 
1 

and n H- 1 7«̂  p̂  for some p. 
If one has an odd degree generator x in H*{X\ Zp) for p odd, we know that x^ = -x^ 

by the anticommutativity of cup product, so 2x^ = 0 which implies x^ = 0. One might 
ask what goes wrong with the above argument if we apply it to a generator of odd 
degree? What happens is this: 

Ax = X (g) 1 -h 1 0 X so the signed commutativity implies 

( I 0 x ) . ( x 0 l ) = (-l)(**^8^)'x0x = -x(8)x. 

It follows that 

A{x^) = (^(x))^ = x ^ ( g ) l - f x ( 8 ) x - x 0 x - h l 0 x ^ 

= x^(g)l -f 1 (g)x .̂ 

Thus, the binomial coefficient argument does not apply. 
Now that we have a general idea of the restrictions the Hopf algebra structure places 

on H*{X; k) for X an il-space, we should give the general theorems due to Hopf and 
Borel: 

THEOREM 1.1 (Hopf [36]). Let X be an H-space. Then 

H^X; Q) ^ A(x , , . . . , x^ . . . ) 0 Q[yi,... y^, • • •] 

where degree Xi are odd, degree yj are even. If X is finite, H*{X',Q) has only a finite 
number of odd degree generators. This is an isomorphism as algebras. 

THEOREM 1.2 (Borel [7]). Let X be an H-space. Then 

f f* (X;Z2)^A(x i , . . . x , , . . . ) ( g )^%l- (g )Z2[^ i ] . 
1 w ; j 
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Forp odd: 

/7-(Z;Zp)-A(x, , . . .x , , . . . )®^®Zp[z,] 

degree xi odd, degree yi and degree Zj are even. 

These are algebra isomorphisms. We make no statement about the coproduct structure. 
If >l is a Hopf algebra, the "module of primitives" is denoted by P{A) and is defined 

by 

P{A) = {x e A \ Ax = X (SI I + I ^ x}. 

Note that a map of Hopf algebras f : A -^ B that preserves products and coproducts 
induces a map P{f) : P{A) —> P{B). We also define "the module of indecomposables." 

Q{A) = I{A)/I{AY where I{A) is the augmentation ideal of A. 
A is primitively generated if the natural map 

P{A) —^lA—^ Q[A) 

is onto. If i4 is a Hopf algebra over Zp, p a prime, A is primitively generated if and 
only if its dual Hopf algebra A^ is commutative, associative and has no pth powers. This 
result appears in [70]. 

There are other properties about i/-spaces that are reflected in the Hopf algebra struc-
ture. We say X, m is "homotopy associative" if the diagram 

XxXxX -̂ ^^^^ XxX 

XxX - ^ ^ ^ X 

commutes up to homotopy. Hence applying homology with field coefficients we obtain 
a commutative diagram 

H,{X)®H,{X)^H.{X) -̂ ^̂ ^̂  H,{X)®H,{X) 

H,{X) ®H,{X) • H,iX) 

It follows that H^{X) is an associative ring. Similarly X,m is "homotopy commuta-
tive" if the following diagram homotopy commutes 
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where T{x\,X2) ~ {p^ii^x)- It follows if X , m is homotopy commutative, then H^{X) 
is a (graded) commutative ring. 

The converse is not true. There are many if-spaces whose homology rings are com-
mutative (resp. associative), but as if-spaces the multiplications are not homotopy com-
mutative (resp. homotopy associative). Topologists have studied this extensively and they 
have invented projective spaces associated to the if-space that exist in the presence of ho-
motopy commutativity or homotopy associativity. As we will see in later chapters, these 
projective spaces place further restrictions on an ii-space that is homotopy associative 
or commutative. 

For more information about Hopf algebras that can occur as the cohomology of 
if-spaces, we refer the reader to [48], [59], [60]. 

Notice that Hopf's theorem and Borel's theorem only specify the cup product structure 
of the cohomology rings. One might ask about the map 

H4X;k)^H,{X',k) —^ H^X X X;k) ^ H4X;k), 

This makes Hi^{X\k) into a ring, but there is no guarantee that the ring structure is 
associative or commutative. In fact, we have the following questions and conjectures. 

CONJECTURE 1.1 (Arkowitz, Lin, McGibbon). Let X , m be a finite fi-space. There is a 
multiplication on X such that Jf*(X;Q) is an associative ring. There is a multiplication 
on X such that H^{X\ Zp) is associative, for p a prime. 

QUESTION 1.2. Investigate the algebra structure of fi*(X;Zp) for X a finite if-space. 
In particular, if H^{X;Zp) is associative, what are all the possible commutators? This 
is closely related to a question posed by Kane [48]. 

QUESTION 1.3. Let p be an odd prime. If X is a finite if-space, are all pth powers of 
elements of H*{X;Zp) trivial? This is equivalent to choosing generators of H:^(X;Zp) 
to be primitive. 

The following references address Questions 2 and 3 [47], [48]. Lin [60] has shown all 
p^ powers are trivial in H*{X\ Zp) for p an odd prime, X a simply connected fi-space. 

QUESTION 1.4. Describe fi*(X;Z(p)) as a ring for X a finite if-space with p-torsion. 

QUESTION 1.5. Let p be an odd prime. Suppose X is a finite fi-space, simply connected. 
Do the even generators always lie in degrees 2p 4- 2 and 2p^ -h 2? 

QUESTION 1.6. Let X be a simply connected, finite if-space and suppose H*{X\Z) has 
2-torsion. Is there always a 3 or 7 dimensional class in H*{X;Z2) whose cup product 
square is nonzero? 

QUESTION 1.7 (Jeanneret). Let X be a simply connected finite fi-space with p-torsion in 
H*{X; Zp). Does this imply there is an even generator of degree 2p -f 2 in H*{X; Zp) 
for p an odd prime? 

QUESTION 1.8 (Jeanneret). Does a 6-connected 2-torsion free finite if-space have the 
homotopy type of a product of 7 spheres? 
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2. Action of the Steenrod algebra 

There is an extensive theory of graded connected Hopf algebras. See [70]. However, 
H*(X;Zp) for X an if-space is more than just a graded connected Hopf algebra. It 
supports the action of the Steenrod algebra. Recall the Steenrod algebra A{p) can be 
described as all linear natural transformations of the mod p cohomology functor. Thus if 
6 e A(p), f : X -^Y one has a commutative diagram of linear transformations 

H^{Y) - ^ ^ H*{X) 

'I . i ' • 
H*{Y) - ^ ^ H*{X) 

We refer the reader to [71], [86] for several basic properties of A{p). 
For p odd A{p) is generated by symbols I3\,V^ for n ^ I, subject to the "Adem 

relations." That is, if one takes the tensor algebra on these symbols and quotients by 
the ideal generated by the Adem relations one obtains A{p). We have deg/3i = 1, 
degP" = 2n{p - 1). Further if degx = 2n, Vx = x^. For p = 2, A{2) is generated 
by symbols Sq^, n ^ 1. deg^g*^ = n. 

Some of the special properties that apply to -ff-spaces are: 
(1) Cartan formulae: 

7>̂ (x(g)2/) = J](P^x)0(P*-^2/). 

(2) Steenrod operations conmiute with coproduct V^{Ax) = AV^Xy so Steenrod op-
erations preserve the module of primitives and the module of indecomposables. 

Thus, one can begin to study QH*{X; Zp) or PH*{X; Zp) as modules over A{p). If 
one can describe their structure, much can be learned about H*{X\ Zp). This is exploited 
in [58], [59], [60], for finite ff-spaces. 

A second area of study is the p-torsion in if *(X; Z). This can be investigated via the 
Bockstein spectral sequence. 

THEOREM 2.1 (Browder [9]). / / X is a finite H-space, x e H'^'^{X\Zp) then piX is 
decomposable for i ^ 1. 

This was one of the key results that started topologists thinking about the action of 
the Steenrod algebra determining the structure of H*{X; Zp). Browder uses a number of 
very interesting techniques. In particular, he notices that the Bockstein spectral sequence 
is a spectral sequence of differential Hopf algebras. Further, he maps a space X into a 
K(Zpr, 2n) and uses the Bockstein sequence in K{Zpr^ In) to derive information about 
the Bockstein sequence for H*{X\Zp). These ideas are all generalized to prove 

THEOREM (a) (Kane [50]). (5/f^™(X;Z2) = 0 for X, a finite simply connected 
H-space. 
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THEOREM (b) (Lin [60]). QF^^^"(X;Zp) = Y.I^\T^''QH^"'^^{X\Zp) for p odd, X, a 
finite H'Space. 

THEOREM (C) (Kane, Lin [51], [60], [59]). The Bockstein spectral sequence Br col-
lapses and Bi = Boo for X, a simply connected finite H-space. H*{X;Z) has no 
p^ torsion. 

THEOREM (d) (Lin [58]). Sq^^QH'^^^^^^'^~\X\Z2) = 0 and 

Q^2^4-2^+»fc-i(j^.2^) C Sq^^'QH*{X-Z2) 

for X a simply connected finite H-space with H^{X;Z2) associative, k > 0. 

THEOREM (e) (Jeanneret, Lin [61]). The first nonvanishinghomotopy group of X, a finite 
H-space, lies in degrees 1,3 or 1 if H^{X\Z2) is associative. 

REMARKS. All these theorems rely on a careful analysis of the action of the Steenrod 
algebra. They use methods we will describe in Section 7. 

QUESTION 2.1. Determine the action of the Steenrod algebra on H*{QX\Zp) for X a 
Lie group or finite /f-space with torsion. In particular what is the action of the Steen-
rod algebra on the various divided powers that occur in a coalgebra decomposition of 
H\QX\Zp)l 

QUESTION 2.2. In the above Theorems (d) and (e) can the assumption ff*(X;Z2) asso-
ciative be removed? Or is it true that a finite i7-space always has a multiplication that 
makes H^{X;Z2) associative? 

QUESTION 2.3. Is there some general formula similar to Theorem (d) for the action of 
the Steenrod algebra on QH^^{X;Zp) for p an odd prime and X having sufficient 
associativity hypotheses for example X, a loop space? Note we have to assume some 
associativity since otherwise an odd sphere localized to an odd prime is an /f-space. 

Hemmi has done some work on Question 2.3, at the prime 3 [33]. In particular, he 
notes there are Lie groups with odd generators in any given degree that are not in the 
image of any mod 3 Steenrod operation. So whatever formula we get must depend on 
more than the p-adic expansion of the degree. 

Browder's work [9] can be looked at from a different viewpoint. Essentially, he proves 
the following. 

Let Bi be the ith term of the Bockstein spectral sequence. If x € QB^^ with 0iX = 
y ^ 0, then either x^ ^ 0 with Pi^\{xP} = {x^'^y} 7̂  0 in Bi+i or there is an 
x\ e QB]"^^ with PiX\ =z yi ^0. Thus, either a new algebra generator in Bi is created 
or a new pth power is created. 

Wilkerson proves if Bi is finitely generated as an algebra, then so is Bi-^]. In fact he 
proves the following stronger theorem: 

THEOREM 2.2 (Wilkerson). Let A be a differential commutative algebra mod p and sup-
pose A is finitely generated as an algebra. Then the homology of A is also finitely 
generated as an algebra. 
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PROOF. Consider A as a left module over die subring £,A of pth powers. Then the 
differential d is an ^^-module map and A is finitely generated as a ^>l-module. (^A is 
Noetherian, so >1 is a Noetherian ^i4-module. Hence the cycles Z{A) and boundaries 
B{A) are also finitely generated ^̂ 4 modules. Hence the homology H{A) is a finitely 
generated ^i4-module and algebra generators of H{A) may be chosen from Q{(,A) and 
the module generators of Z{A). D 

THEOREM 2.3. Suppose H*{X;Zp) is finitely generated as an algebra, and H*{X;Z) 
has bounded p-torsion. Then ifxE H^^{X;Zp), then /3iX is decomposable for i^ \. 

PROOF. Suppose PiX is indecomposable. Since H*{X\ Zp) has bounded p-torsion, Bi = 

Bcx> for some i. By the above observation, there is an element z G QB^^^ with /3iZ = 

y ^0. This implies there exists an infinite sequence of generators Zk € QB^ with 
PiZk = Vk ¥" ^' Hence Bi is not finitely generated as an algebra. But this contradicts 
Theorem 2.2. D 

Lin [56] proves that actually the hypotheses of the Theorem 2.3 imply H*{X;Zp) is 
finite dimensional. 

QUESTION 2.4. Do all simply connected if-spaces whose mod p cohomology is finitely 
generated as an algebra have mod p cohomology isomorphic to a product of K{Z,2)s 
with 3-connective covers of finite if-spaces and finite if-spaces? 

Most of the exposition that follows can be used to study if-spaces whose mod p 
cohomology is finitely generated as an algebra. Recendy, in the homotopy commutative 
case, new theorems have been proven. 

THEOREM (Slack [79]). Let X be a homotopy commutative, homotopy associative H-
space whose mod 2 cohomology is finitely generated as an algebra. Then X has the 
mod 2 homotopy type of an Eilenberg-MacLane space in degrees 1 and 2. 

THEOREM (Lin [57]). Let X be a double loop space whose mod p cohomology is finitely 
generated as an algebra. Then X has the mod p homotopy type of an Eilenberg-MacLane 
space in degrees 1 and 2. 

The second theorem is actually true under the weaker hypothesis that X is the loop 
on an "Ap space" in the sense of Stasheff [83]. 

THEOREM (Lin [57]). Let X be an H-space whose mod p cohomology is finitely gener-
ated as an algebra for p odd. Then all generators of infinite height lie in degrees 2p^ 
forj^O. 

THEOREM (Slack [81]). Let X be a homotopy commutative, homotopy associative 
H-space whose mod p cohomology is finitely generated as an algebra for p odd. Then 
all even generators lie in degrees 2p^ for j ^ 0. 
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3. Projective planes 

Given an if-space X,/x, one can build a "projective plane" P2X. For the if-spaces Z2, 
S\ 5 ^ P2Z2 , PiS^ and PiS^ have the homotopy type of ]Rp2, CP^, HP^ respectively. 
We know from a basic graduate topology course that 

fr*(ip2;Z2) = Z2[xi]/x^ 

i f*(CP^Z) = Z[x2]/x^, 

ff*(]HDP^Z) = Z[x4]/xi 

Thus, in a different way, the existence of an ff-space structure on X produces nonzero 
cup products in another space P2X. This is one of the key ideas in the theory of if-spaces. 
Thomas and Sugawara and Toda [90], [91], [87] exploit this idea to determine most of the 
action of the Steenrod algebra on finite if-spaces whose mod 2 cohomology is primitively 
generated. We describe the construction here. 

Given spaces X, F , the join A" * y is the quotient of the space X x / x y with the 
identifications (x,0,y) ^ (x,0,y') and (x, 1,2/) ~ (x', 1,1/). \i X is an if-space, there 
is a well-defined map 

X^X-^EX 

with /i[x,t,2/] = (/x(x,2/),t). The cofibre of this map is P2X, the projective plane. 
Sometimes it is useful to replace X^X with E{X AX) via the homotopy equivalence 

X^X ^ E{X xX)^ E{X AX) 

k[x, t, y] = (x, y, t), here q is the quotient map. If we do this, then there is a map 

E{XAX)^EX 

with 6x = -ETTI H- Efx - E'K2' Here we are using the fact that maps of a suspension 
into another space form a group [76]. The cofibre of 6^ can also be considered to be 
P2X up to homotopy. For our purposes it is helpful to know 0^ induces the reduced 
coproduct 

H*{X) - ^ H*{X xX)^ H\X)(^H*{X), 

Ax = Ax — X 0 1 - 1 (8) X. 

Thus we have a long exact cofibration sequence 

H\X)^H\X)^H\X)-^H*{P2X)^H\X) —^ (3.1) 
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Work of Thomas [89], or also in [94, p. 502] shows if 

i{a) = x, i{b) = y then \{x 0 2/) = ab. 

(Here ab denotes the cup product of a and 6.) Thus if a6 = 0 there exists a z with 

Az ^ x<^y. 

So the vanishing of cup products in H*{P2X) implies the existence of nonzero coprod-
ucts in H*{X). Conversely, if H*{X) is primitively generated, very few cup products 
vanish in H*[P2X\IJ2), See [10]. We know that two-fold cup product squares mod 2 
are obtained by applying a Steenrod square to an element. 

If n 7̂  2 ,̂ S^~^ is not a mod 2 Jf-space. To see this, 

but x^ = Sq^Xn = Y^aibiXn, cuM G A{2) and biXn = 0. 
Here Sq^ ^YL^i^i factors through other operations as long as n is not 1, 2, 4 or 8. 

This is proved by Adams in [1]. 
We note here that if Jf, ux and Y, uy are fl^-spaces and / : X —> F is an /f-map, 

there is an induced map of projective planes 

P2/ : P2X -^ P2Y. 

In fact we have a commutative diagram 

Six A X) ^^^^^^ > E{Y A Y) 

The cofibration property implies there is a map P2/ • PiX -^ P2Y that extends Uf. 
Stasheff [83] proves, given a commutative diagram 

SX - ^ ^ SY 

P2X y P2Y 
Pif 

that / is an H-map. 
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The main advantage of looking at P2X is that its cohomology supports 2-fold cup 
products. The fact that the cup product square can be defined mod 2 as a Steenrod 
operation Sq^x = x^ if degree x == n allows one to derive information about the mod 2 
cohomology of an ^-space. 

Hemmi [32] proves at an odd prime p, if dega = 2n 4- 1 and i{a) = u, then up to a 
constant, 

A j ^ r j ~ û  0 uP'^ ] = /3iP"(a) if p odd. (3.2) 

These two facts show that the coproduct structure of H*{X) is linked to the cup 
product and Steenrod algebra structure of H*{P2X). In fact since the sequence (3.1) is 
exact, we conclude 

PROPERTY l,lfab = 0 in H*{P2X), there exists ace H* [X) with Ac = a(^b. 

PROPERTY 2. If for an odd prime PiV^a = 0 there exists ade ll'^iX) with 

Property 1 corresponds to the existence of a commutator in H^{X).ln fact if a,6 G 
H^{X) are dual to a, 6 G H^'iX), a^b, (a, a) 7̂  0(6, b)^0 then ([a, 6], c) ^ 0. 

Property 2 corresponds to the existence of a pth power in homology. If (ti, u) ^ 0 
then {uP, d) i- 0. 

Recall a Hopf algebra is primitively generated if and only if its dual Hopf algebra 
is commutative, associative and has no pth powers (see [70]). So the action of ^xV^ 
together with the cup product structure in H*{P2X) provides key information about how 
H*{X) differs from being primitively generated. Browder and Thomas exploit this fact 
in [10] to prove if H*{X) is primitively generated, H*{P2X) contains a polynomial 
algebra truncated at height three. 

Thomas [90] then uses this polynomial algebra at the prime 2 to determine most of the 
action of the Steenrod algebra on the cohomology of finite iJ-spaces that are primitively 
generated. 

Other authors have used variations on this technique. Hubbuck [37] uses the projective 
plane together with the squaring map to show any finite iif-space that is homotopy 
commutative is homotopy equivalent to a torus. 

QUESTION 3.1. What can be said about i/*(P2X;Zp) for X a finite /f-space whose 
cohomology is not primitively generated? 

QUESTION 3.2 (Arkowitz and Silberbush). There are different maps S{X AX) -^ EX 
obtained by permuting -X'TTI, Z'/X and -17x2. How are these maps related? 



Section 4 H-spaces with finiteness conditions 1109 

4. Higher projective spaces 

Sugawara, Stasheff and Milnor [83], [69] have constructed higher projective spaces 
PnX, that are related to the higher homotopy associativity of the H-space X. Mil-
nor constructed projective spaces when X is a topological group; Sugawara and Stasheff 
constructed projective spaces under much weaker hypotheses. Recall an Jf-space is ho-
motopy associative if the diagram below commutes up to homotopy 

XxXxX - ^ ^ ^ XxX 

XxX y X 

/x(/x X 1) :^ /i(l X /x). Attached to any homotopy associative if-space X is its 3-fold 
projective space P3X. We leave it to the reader to look at [83] for an explicit construction. 
We have 

SX ^ P2X ^ P3X. 

Further P2X - ^ P^X —> (SX)^ is a cofibration sequence. Hence we get an exact 
triangle 

H^iP^X) '-^ ^H*{P2X) 

T{X)^ 

If 

X = (ii22)*(a), y = (iii2)*(b), z = {hiiTic), 

then 

abc = A(x 0 2/0 2:). 

From this, we can see S'^ is not a mod 3 homotopy associative /f-space. The cofibration 
sequence implies 

H'(PsS-';Z,) = ? ^ . 

But Xg = V^xs = V^V^x% and for degree reasons, V^x% - 0. Once again we are using 
the factorization of a cup product through primary operations. This will be a recurring 
theme. 
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Stasheff [83] defines an A4-structure on an if-space to be a map P x X^ —> X that 
allows one to "fill in" the following pentagon 

x(y(z\^)) 
x((yz)w) 

(x{yz))'^ 

(xyHzw) 
((xy)z)w; 

An A^-structure yields a projective space P^X and a cofibration sequence 

P^X —^ PAX -^ {EX)''\ 

This yields analogous relations with 4-fold cup products in H*{PAX). 

In general, an i4n-structure yields inclusions 

EX —> P2X —^ P3X PnX 

with 

PeX -^ Pt+xX -^ ( r X ) ^ ^ 

a cofibration sequence. An Aoo-structure implies X c:̂  QB and 

r x c P2A: c ... c p̂ x c ... c B. 

This filtration produces a spectral sequence whose exact couple can be described by 

/ f * ( i :x ) -€— 

f/*(X^ ) 

The map 

H*(X^ ) 

H^iPiX) 

H^X^ ) 

H*{X^)' 
aeXe 

-^H^iX"" ) 
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is the "cobar differential" 

d\ = 2 5 ( g ) l - - - ( g ) l - l 0 4 ( g ) - - ( g > l - l - - - - l 0 l ( g ) - - - ( S ) Z . 

By definition, kerdi/imdi is 

Color H^(X){^ 

So the E2 term is ColorH*(X){^P,'^P) (or EXIH^(X){^P,^P))' 
In particular if 

Xi = i\i2"'in-\{0'i)' 

Then 

An(xi 0 • • • (g) Xn) = aia2 • • • an G //""(PnX). 

QUESTION 4.1. Compute H*{PnX\Zp) for A" a finite i4n-space or Lie group with 
p-torsion in its cohomology. For X p-torsion free, and not generated by An-classes, 
H*{PnX;Zp) is also unknown. 

QUESTION 4.2. Compute H*{PnOX\Zp) for X an if-space. Some calculations have 
been made by Hemmi for n = 2 and p = 2 [32]. 

QUESTION 4.3. If X is an ff-space, what conditions on H*{X\ Zp) imply H*{PnfiX\ Zp) 
contains a polynomial algebra truncated at height n -f 1? See [33], [34]. 

QUESTION 4.4 (McGibbon [67]). Does there exist a p local finite homotopy type that 
admits an Ap-structure, but admits no i4oo-structure? 

QUESTION 4.5. Suppose EX - ^ PnX has i*(2/2A:+i) = sx2k ini^) = sw. Is 

There are analogous cup product questions for more factors of the form ^ - (^)x*(8)x^~\ 

QUESTION 4.6 (Arkowitz). Let X be a finite associative i/-space and (p : X x X —^ X 
the commutator map. It is known that <̂  has finite order in the group [X xX,X]. See [42]. 
If (j) has order N, then iV(a, /3) = 0 for every Samuelson product (a, P) € 7r*(X). 

PROBLEM. What is the order of </>, at least in the case when X is a low-dimensional Lie 
group? For X = 5^ 0 has order 12. See [41]. For X = IP^ = SO{3) (p has order 12. 
See [75]. 

The following problems are due to Cornea, University of Toronto: 
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The main relation between fl^-spaces and the Lusternik-Schnirelmann category 
emerges from the work of Ganea [22]: If G is a topological group the L.S.-category 
for BG, catBG, can be defined as the least n for which the map BnG - ^ BG admits 
a homotopy section; that is, there exists a map r : BG —• BnG such that ri is homotopic 
to the identity. Here BnG is the nth order Milnor approximation of the classifying space 
BG, [69]. If X is a CVF-complex, we can replace f2X with a topological group, hence, 
the above definition may be applied to HX giving catX. 

Notice that, in Milnor's construction, we have homotopy cofibration sequences: 
EkG —> BkG ^ Bk-^\G, with Bo = *. Whenever a homotopy type of a space X 
can be obtained from a point, by iteratively attaching cones, in n steps, we say that the 
strong L.S.-category, CatX, is ^ n. In particular Cat{BkG) ^ k. The strong Lusternik-
Schnirelmann category was introduced by Ganea in [22]; it is a reasonable approximation 
of the usual one as shown by the inequality catX ^ CatX ^ catX -\-1. 

It was remarked in [14] that: Cat{BkG) = cat{BkG) = k when k ^ catBG and 
cat{BkG) = catBG when k > catBG. Also Cat{BkG) ^ CatBG. 

QUESTION 4.7. Suppose CatBG ^ catBG. Describe precisely how does Cat{BkG) 
change with respect to fc? 

REMARK. This is closely related to the problem of finding examples of spaces X such that 
CatX y^ catX. Any co-ff-space which is not a suspension is such an example but no 
examples are known when catX > I, Rationally a conjecture of Lemaire and Sigrist [55], 
if true, would imply (and, as shown in [15], is equivalent to) catXo = CatXo. 

It is natural to try to understand the behaviour of Bk{G x H) with respect to that of 
Bi{G) and Bj{H). In particular there is the conjecture of Ganea: 

QUESTION 4.8 (Ganea). Is it true that cat{X x S"") = cat{X) -f 1. 

REMARK. It is trivial that cat {X x S^) ^ cat {X). Recently K. Hess, based on work of 
Barry Jessup [46], has proved, [35], the rational version of the conjecture. The equality 
cat {X(p) X Y(p)) = cat{X(^p) x catY^p)) is also conjectured; (-)(p) being localization at 
p. Another, somewhat more general, problem consists in trying to identify restrictions on 
the homology or homotopy structure of G imposed by cat BG ^ n. In particular see the 
classical work of Ginsburg [23], Toomer [93], and the recent and very fruitful approach 
of Felix, Halperin, Lemaire and Thomas [18] and Felix, Halperin and Thomas [19]. 
The fundamental reference for the main properties of the L.S.-category and the related 
invariants is the survey paper of James [43]. For the rational results see the book of 
Felix [17]. In closing let's mention the existence of a very useful list of problems compiled 
by J.C. Thomas [92]. 

5. Maps between if-spaces with higher homotopy associativity 

It is natural to try to approach the theory of i/-spaces like the theory of groups. In group 
theory, groups are studied by mapping in or out of them via homomorphisms. We then 
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have isomorphism theorems. In if-space theory there are several kinds of maps between 
i/-spaces that preserve certain structures. For example, if X, /x^ and Y, /Xy are two 
homotopy commutative i/-spaces, an H-map may or may not preserve the homotopy 
commutativity. In group theory any homomorphism between abelian groups preserves 
the commutativity. So in /f-space theory the homotopies provide an extra element that 
does not exist in group theory. Many of these properties can be viewed alternatively in 
terms of the projective spaces. We describe some of these properties now. 

Given } \ X -^ Y, where X and Y are iJ-spaces, we say / is an H-map if the 
following diagram commutes up to homotopy. 

XxX -^^^ Y xY 

"""l 
X 

If Y has inverses, 

XxX 

l'̂ ''-
. V 
> J 

f 

we can consider the map 

^Y, 

D/(X1,X2) =/Xy(//i^(xi,X2),/iy(/(x2) \f{xi) ^)). 

If the basepoint acts as the identity, Df vanishes on X V X, so it induces a map 
Df : X AX -^Y. Clearly / is an ^-map if and only if Df is null homotopic. We call 
Df the "H-deviation of /." We can reformulate Df in terms of the projective planes. 
There exists the following (possibly not commutative) diagram 

E{XAX) ^M!l£u i:{YAY) 

EX - ^ ^ EY 

P2X P2Y 

The columns are cofibrations. 
We define the i7-deviation Df : E{X AX) -^ EY by EfO^ - OyEif A / ) . The 

minus sign uses the cogroup structure in E{X A X). 

LEMMA 5.1. iyDf ~ * if and only if f is an H-map. 

PROOF. If iyDf ~ * then * ~ iy^f ^ '^y^f^x ^^^^^ V^y ~ * by the cofibration 
property of the right column. 
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By the cofibre property of the left column, there exists a map Pzf : P2X —> P2Y 
such that 

SX -^^ EY 

P2X -^^ P2Y 

commutes. This is known to imply / is an -ff-map. See [83]. Conversely if / is an 
if-map, P2/ exists. Hence iyEfO^ ~ *. So iy^f — *• • 

Note P2/ is determined by the choice of an /f-structure F : ffj^c^ /i(/ x / ) . Different 
choices of /f-structures yield possibly different maps from P2X to P2Y. 

Given three ff-spaces X,Y, Z and maps 

X -^Y ^X 

we have diagrams (not necessarily commutative) 

S{XAX) ^ ^ ^ ^ ^YAY) - ^ ^ ^ E{ZAZ) 

[ "4 '4 
SX — ^ ^ EY -^^ SZ 

•^1 1'^ ['' 
PjX P2Y PiZ 

LEMMA 5.2. Dgf ~ Egbf + bgl!(f A / ) . 

PROOF. Using the functorial property of E, we have 

bgf = E{gf)ex-9zE{gfAgf) 

~ EgiEfOx - OyEif A /)) + {EgOy - O^Eig Ag))EU A f) 

= Egbf + DgE{fAf). 

D 

Recall that H^{X;k) is homotopy classes of maps X —> K{k,n). See [71]. 
K{k,n) = QK{k,n + 1) is an if-space so if [/] G H"'(X,k), / is an if-map iff 
the diagram 

XxX -^^^ K{k,n) X K{k,n) 

X > K{k,n) 
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commutes up to homotopy. But [fij^if x /)] , [ffix] E H^{X x X; k). So if k is a field, 

= {r^^Diin 0 1 + 1 0Zn) - r ( i n ) 0 1 - 1 0 / * ( ^ n ) 

- 4 r (in) = -AriinY 

So up to sign, D*f{in) = ^/*(in) = 4[/] . We have 

LEMMA 5.3. f : X ^ K{k,n) is an H-map (a) if and only if [f] E H'^{X\k) is 
primitive, (b) if and only if f is adjoint to a map f : EX -^ K{k^ n -f 1) that extends 
toPiX 

EX ^K{k,n^\) 

. . . • • • • • • / " 

P^X 

PROOF. TO prove (b) note if / : P^X —̂  K{k, n -h 1) exists, then taking adjoints 

X: ^ K{k, n) = nK{k, n -f 1) 

Stasheff proves i\ is an /f-map [84], so / is also. Conversely ii f \X -^ K{k^ n) is an 
if-map, there exists a commutative diagram 

EX — ^ EK{k,n) 

ti(X)| jiiW 

P2^ - ^ ^ PiKik.n) —^^ K{k,n^\) 

with r/ii {K)Ef adjoint to / , so we can define / = r]P2f. D 

LEMMA 5.4. An H-map induces a Hopf algebra map on cohomology with field coeffi-
cients. 

These ideas extend to the higher projective spaces. Stasheff [83] introduces the idea 
of "An map". Given An-spaces X, Y, a map / : X —• y is an An map if there is a 
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commutative ladder 

EX — ^ SY 

1 1 

i 1 

P„X - ^ ^ Pr^Y 

An A2 map is simply an i/-map. One can talk about "An-deviations". Given an An-\ 
map f : X --^Y where X, Y are An-spaces, consider the diagram 

Pn-lX ^ ^ ^ Pn.,Y 

1 1 

1 , 1 
(i:x)A" i ^ ^ (ry)^" 

Qx a y 

rPn-lX ^ ^ ^ SPn-lY 

The bottom square may not commute. We define the On-deviation of / to be 

anif) = (rPn-i / )ax - aviSf)^'' : {SX)^'' —> TPn-i^ 

using the cogroup structure of (SX)^''. As before, we obtain if X —> Y - ^ Z are 
maps between An-spaces and g, f are an-i maps, then 

a„(p/) ~ a„(5)(r/)^" + (rP„_,5)a„(/). 

Now we should clarify the relation between an{f) and Anif)- Suppose X is an 
An-space. Let / : X —• K{Zp,£) be an An-\ map in the sense of Stasheff. Then we 
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Pn-xX - ^ ^ Pn-xK 

I 1 
PnX PnK 

1 _. ! 
(EX)^" i ^ ^ (SK)^" 

ax 1 1-
SPn-iX ^^"-'^^ SPn-iK y B^K 

i{K) 

Note that (ax)* induces dn-\ in the Stasheff spectral sequence so 

(ax)'[i(iir)(rp„_,/)]=d„_,[/]. 
Further z(i(r)ai<^ factors 

{EK)^'' ^ SPn^iK ^-^' SPnK —> B^^ 

and the composition of the first two maps is part of a cofibration sequence and hence is 
null homotopic. 

Therefore we have 

LEMMA 5.5. 

i{K)an{f) = i{K)[{EPn-.if)ax - aKiSf^^] 

= d n ~ l [ / ] = ^ n - l ( / ) 

by Stasheff [83]. 

LEMMA 5.6. Given X an An-space, f : X -^ K(k,£). 

If / is an An-\ map, then / is an An-map (a) if and only if the map 

(SX)^^ -̂uli) SP^^^K{kJ) — . K{kJ-\-2) 

is trivial; (b) if and only if / is adjoint to a map / ' that extends to / 

SX ^K{kJ-^l) 
r 

PnX 
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PRCX)F. If / is an An map, there exists a commutative diagram 
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EX - ^ ^ SK{k,e) 

i 1 
Pn_,X - ^ ^ Pn-lK{k,e) 

1 1 

1 _, 1 

Therefore an(/) is trivial. Conversely if 

(SX)^" "^^ SPr^-iKikJ) -^ K{k,i + 2) 

is trivial, then the diagram 

(LX)^" ^^^^^'^ > (EK)^" 

SPn-xX 

SPnX 

SP„-,f 
^SPn-xK- -^B^K = K{k,e + 2) 

SPuK 

implies there exists a map EPnX -* K{k,i + 2) that makes 

E^X. 

EPn-xX 

EPnX 

J" 

-*K{k,t-¥2) 
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commute, where f is the double adjoint of / . Hence, taking double adjoints, 

/ 'K{kJ) 

QPnX 

commutes where X -• QPnX is the inclusion and fn is a loop map. Stasheff [83] shows 
X —• QPnX is an An map, so / is also. D 

If f \X -^ K{Zp, i) represents an An-2 map, then the An-1-deviation is a cohomol-
ogy class 

^„_,(/)e/r'-"+^(x^"-';Zp) 

The classical examples are the "transpotence elements". 
An-deviations are often described by homotopies. If f : X -^Y isan H-map between 

homotopy associative ff-spaces. A3{f) : X A X /\X -^ QY can be described by the 
loop 

f{x{yz)) 

f({xy)z) 

f{x)f[yz) 

f{xy)f{z) 

f{x)(f(y)f{z)) 

(f{x)f{y))f{z) 

Here the paths are given by the if-structure of / and the homotopy associativity of X 
and y. For n > 3, it is harder to see the An-obstructions, so the cofibration viewpoint 
is more useful. Note that there is quite a bit of indeterminancy in these obstructions, 
depending on your choice of An-1-structures for / , and choice of An-structures on X 
and y. For additional details, look at [97]. 

Much of the literature deals with these homotopies, which can get quite complicated 
because of the indeterminacy. The cofibration method described in this chapter tends to 
be a cleaner approach. 

6. Maps of if-spaces into fibrations 

Our goal is to develop a general obstruction theory of maps between /f-spaces. In this 
chapter we will show how the group Cotorn* (x) (Zp, Zp) measures obstructions to lifting 
An-maps to An-i maps in a 2-stage Postnikov system. If the target space is the fibre of 
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a map into an Eilenberg-MacLane space K\ at Zp, then the obstruction takes values in 
the mod p cohomology. We illustrate this by the following example. Suppose 

[• 
E 

[' 
K > Kx 

is a stable 2-stage Postnikov system with K, K\, Zp-Eilenberg-MacLane spaces. If X 
is an /f-space and / : X -> -ftT is an if-map with a lifting f : X -* E, when can / be 
chosen to be an /f-map? 

r 
T 

E 
rf I 

P 

T Kx 

From Section 5, we know / : X 
P2X -^ BE. 

In general, we have the following commutative diagram 

^f f? is an if-map if SX - A UE extends to 

EX-
sf 

T^EE-

P2X ^^ y P2K 

(EX)"^ 

E^X 

^BE 

\BP 

-^BK 

IBW 

^BKi 

By the cofibration and fibration properties there exists a D : {EX)^ -> BK\ that 
makes the diagram commute. Note that D is not unique; it can be altered by any map 

se (EX)^ - 4 E^X -> BKx. >\llliams [95] shows D is doubly adjoint to the if-deviation 
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of / . (We will generalize this fact here.) Clearly if D is null homotopic there exists a 
map/ ' 

BE 
f' 

EX—^PiX 
iiiPif) -^BK 

Hence / can be chosen to be adjoint to /'z, and / will be an jff-map. 
These ideas can be extended to i4n-maps. Suppose as above / is an an map and / is 

an an-i map, what is the o^ obstruction? We have a diagram 

Pn^lX- -^BE 

\BP 

PnX -^BK 

\BW 

(i:x)^'^--"-^^'^-^Bifi 

(6.1) 

SPn-xX 

0"n{fY exists and if it is trivial there exists a commutative diagram 

SX ^PnX ^BK 

adjointing this diagram, we get an An lift of / : X -* /(T. So we may consider anif)' 
as an ''an obstruction to lifting / to an an map" if it already lifts to an an~i map. 

We describe the relation between anifY and anif) : {SX)^^ -> SPnE. We have a 
(noncommutative) diagram 

(SX)^'' 

n—1" 

{sfr" 

SPn-lX ^^""'̂ . SPn-iE -^^-^ B^E 
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Note that IEOLB ~ * since we may express is 

SPn-xE- B^E 
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SPnE 

and in-\aE '^*- Therefore, 

So we have a homotopy commutative diagram 

{Exy •BK, 

B'j 

2JFn-lf I ^E 

tn-1 

rp„x-
B'p 

SPnf 
^SPr^K- B'^K 

One checks that adjointing iKi^Pnf) we get the map 

PnX 
Pnf 

PnK BK 

This map may be placed above the dotted line to obtain 

Pn-]X » BE 

1 i 
P^X ^J^^ BK 

I 1 

(6.2) 

(2;X)A" -^!i l^ BK^ 

Hence a„(/)' may be chosen to be the dotted line. It follows that 

THEOREM 6.1. iBa„(/) ~ B'^j{anU)'). 

This construction is actually part of a general scheme of mapping cofibrations into 
fibrations. I state a basic fact pointed out to me by John Harper [26]. 
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Suppose there is a homotopy commutative diagram 

1123 

B —^—> X 

4 1' 
Y 

(6.3) 

with Pa and gf are null homotopic. So we have homotopies 

^1: * c:̂  /3a, 

(,2- gf^*' 

Then there are maps SA -* C/j -> Z; the first map is the coextension to Cp using £\, 
the second map extends gs using H and I2. 

There is also a map 

A-^Ff—^nZ 

where the first map is a lifting of r to the homotopy fibre of / using £\ and H while 
the second map is determined by £2. One checks these two maps are adjoint, up to 
reparameterization. 

Now suppose / is actually an An+i map. Then the following diagram commutes 

PnX- Pnf 
^PnK 

Pn+i X • ^Pn+iK 

{Exy {SK)^" (6.4) 

EPr^X ^^ ^ SPnK • in(K) 
-^B^K 

SPn+lX- •SPn+iK 
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Suspending (6.1) we get 

(EX)^" 

J.P.Lin 

•^ EPnX ^^^ ^ EPnK "-^^^^ 
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•B^K 

E[EX) 
^n Sa„{f)' EBKx '"'^'^ > B'^Kx 

Since in{K)EPnfocn = An+\{f) is trivial via the cofibration sequence, we have 

(^{in{K^)Ean{f)') = 0 where t„(A:,)ra„(/)' € F*(X'^") = H'{X)®''. 

(Here, we are suppressing dimension shifts due to suspension,) Since d* is the cobar 
differential, we may think of in{K\)SanU)' as a cycle with respect to d*. 

Now by 6.1 anifY may be altered by any map that factors as 

If in{Ki)an{fy is altered by imd, this is realizable as a map 

(rX)^" ^ SPn^iX ^ BKx 

(6.5) 

^(rx)^" 

So {znC-ft̂ OanC/)'} is a well defined class of Cotorn*{X){^P^^P) = kerd/imd. 
If H*{X) is a bicommutative Hopf algebra, CotorH*{x){^pi^p) is very easy to 

compute. In fact, it is bigraded and generated as an algebra by elements that have first 
bidegree 1 or 2. If 

H.{X) = A(xi,...,a;^) 0 Z p % [ 0 Zp[zm] 
Vk 

is a Borel decomposition of the homology, then 

Cotor^(^){Zp,Zp) = r{sx, l,degx), 

Cotorr^^^(y)(Zp,Zp) = A{sy, l,degy) 0Zp[tj/,2,2p^'^degy], 

Cotorriz){Zp,Zp) = A{sz, l^degz) 

and 

CotorA(s>B{Zp, Zp) ^ CotorA(Zp, Zp) 0 CotorB{1p, Zp). 
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Thus Cotor'^*,j^JZp,Zp) can be computed from the above formulae. If it vanishes in 

the appropriate degrees, a lifting / can be chosen that is an An map. 
As an example, to illustrate these techniques, suppose X is an Ajfê -i-space and 

H*{X\Zp) = A{x\,..., x )̂ where degree Xi are odd and let w : iir(Zp, 2n-\-\) -^ K\ 
be a stable map where K\ is a generalized Eilenberg-MacLane space in even degrees. 
Suppose X e PH'^'^-^\X\'lp) is represented by a map f : X -^ K{Zp,2n-f 1). Then 
if / is an Ak-\.\ map, then / can always be lifted to an Ak-msip f : X -^ E where E is 
the fibre of w 

QK, 

The proof is by induction. If / is an At map, for z < fc we have a diagram 

PiX > BE 

Pi+\X > BK 

1 1 • 
BKi 

aii/y 

and {at(/)'} G Co^or^^,^x(Zp,Zp) where i -\- k is odd. Since H*{X) is exterior on 
odd degree generators, C7otor//*(x)(Zp, Zp) is a divided power algebra on elements sxj 

J,k of deg(l,degXj). But Coior^w^JZp,Zp) = 0 for z 4- A: odd, since degXj is odd. 
Hence all the obstructions are trivial. 

7. Universal examples 

Recall in Section 3 (Property 2), that the vanishing of certain Steenrod operations in the 
projective plane implied the existence of nontrivial coproducts in the if-space. In this 
chapter, we develop a universal example for this phenomenon. 

For convenience of exposition assume p is an odd prime. Let 

Bw : K{Zp, 2n -h 1) -^ ^(Zp, 2np + 2) 
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be defined by 

{Bw)'{i2np+2) = A^"i2n+i € ^^"'^^((ArCZp,2n + l);Zp). 

(If p = 2, replace /3iP" with 59^"+'.) Let BE be the 2-stage Postnikov system with 
Bw as A;-invariant. 

K{lp,2np+\) 

BE 

i<:(Zp, 2n + 1) . /C(Zp, 2np + 2) 

Bw 
Note that the suspension map 

a^ : //2np+2(^(2p, 2n + 1); Zp) - . i/̂ ^P+^ (ii:(Zp, 2n); Zp) 

has P\V^i2n-\'\ ^ kera*. It follows that the loop map is null homotopic. So looping the 
2-stage Postnikov system 

ii:(Zp,2np) 

E 

i' 
K{Zp,2n) * iir(Zp,2np+l) 

W 

E is the fibre of a null homotopic map w. Hence E splits as a product, 

E - ii:(Zp,2n) X ii:(Zp,2np). 

Note that H*{E\ Zp) is a bicommutative Hopf algebra since E is the loops on an if-space. 
I claim that the element v € H'^^P{E; Zp) corresponding to the fundamental class Z2np ^ 
H'^'^TP{K{Zp,lnp)\Zp) is not primitive. In fact 

p - i 

Av = y ^ ( 1 - *̂ <̂  w ~̂* where ii = g*(i2n)-

There are a number of ways to see this, [101], [49]. We will use P2E to show this 
fact. We have 
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EE - U P2E C BE 

and if u' € H^"+^{BE) has or*(u') = u then Jfc*(/3i7'"u') = /?i^"ifc'(u') = 0. 
But 

u = i*(r(w')) 7^0 

and in the coiibration sequence 

H' (PiE) '- ^ H' (E) 

H {E)<S)H (E) 

we have by (3.1) 

Y, (fj - «' ® «""') = /9î "ifc*(u') = 0 

up to a constant. 
By exactness, there exists a t; with 

Now V cannot be a Steenrod operation applied to u since all such elements are primitive. 
Nor can v lie in the subalgebra H*{K{Z,2n);Zp). (Note that v is dual to a pth power 
in homology.) The only other class in H'^^^{E; Zp) corresponds to the fundamental class 
of K{Zp,2np) so r{v) ^ 0. 

It follows that J5 has a "twisted //-structure" even though E splits topologically as 
a product of two spaces. (The word "twisted" is used because the projection of E onto 
K{Zp, 2np) is not an H-map.) 

COROLLARY 7.1. If there is a nontrivial H-map X - ^ E, with f*{i2n) ¥" 0> ^hen 
H^{X\ Zp) contains a nontrivial p-th power 

PROOF. We have 

Af*{i2np) = (/'' ® r)^i2np sincc / is an if-map 

i = l 
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If<t,r(i2n)>7^0then 

= {t®t® tP-\ (1 ® A)Ar{i2np)) 

= (t (g . . . ® f, (1 0 • • • ® ̂ )(1 ®---A)--- Af*{i2np)) 

^{t®---®t, /'(i2„) ® • • • ® /*(i2n)> 

Hence t^ j^O. D 

From this example, many others can be constructed. If ySiP" factors in A{p), say 

0iV'' = J2aibi, ai,bi£A{p), 

then let Bw] = K{1p, 2n + 1) -»IIK(Zp, 2n + 1 + deg 6i) be defined by 

(B«;i)*(i2n+H-deg6i) = bii2n+\-

There is a commutative diagram 

K(Zp,2n+\) 

T 

n K{Zp, 2n + 1 + deg 6̂ ) ^M ^ ^(^p, 2np + 2) 

(B0)*(i2„p+2) = IIatJ2n+i+deg6i- It follows that if BE\ is the fibre of Bwi, there is a 
commutative diagram 

nK{Zp,2n + dcgbi) 

BEx 

KiZp,2n+l) 

Bh 

-V K{Zp,2np+\) 

1 
•̂  BE 

K{Zp,2n+l) 

Looping, we get an if-map h : E\ ^ E with h*{i2n) ¥" 0- By the Corollary 7.1, 
H»{E\;Zp) has a nonzero p-th power, in fact there exists an element h*{i2np) — vi € 
//2np(£;,) witli j7(t;,) = Eflifen-i+degtJ and 

-̂' = E(i)^"i®"r-
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These examples can be used to analyze H*{X;Zp) for X an if-space. We give an 
example here. 

THEOREM 7.2. Suppose H*{X\ Zp) is primitively generated and let x € H'^'^{X\ Zp) be 
a primitive generator Then if x^ = 0, x lies in the image of /3\ plus decomposahles. 

PROOF. We can factor PxV^ as a\b\ where ai = /3i, 6i = V^. Then we have a commu-
tative diagram 

K{Zp,2np-\) 

j ^ K{Zp, 2n) ^ u j T ^ K{Zp, 2np) 

where /*(z2n) = X, W*{i2np) = 'P^^2n = i2n' f ^^^^^ ^̂ "̂ ^ {'^\fY{hnp) = X^ = 0. 
Further / is an i?-map since x is primitive. We could look at the above diagram in a 
different way. Consider the following diagram 

EX r •BEx 

PiX- Pif^ ^ P2K{Zp, 2n) — ^ K{Zp, 2n + 1) 

iBwi 

(SXASX) ^' ^K{Zp,2np-^l) 

Here / ' is adjoint to / . 
The upper square commutes since / is an if-map. There exists a D' using the cofi-

bration property. 
If D' is null homotopic, there exists a lifting of iPi/-

,BEi 

EX ^ P2X '^—^ PiK{Zp, 2n) ^ K{Zp, 2n -h 1) 

If we adjoint the above diagram and use Lemma 5.3 of Section 5, we get that / can 
be chosen to be an if-map. So D' can be considered the obstruction to lifting / ' to an 
if-map. By the arguments of Section 6, D' is doubly adjoint to the if-deviation. 
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If we continue the cofibration, fibration ladder one more step, we obtain 

P2X 

A 

Y 

{SXASX) 

Y 

D' 

\BWI 

Y 

^K(Zp,2np+l) 

f 

K{Zp,2np + 2) 

We notice two things 
(1)1)' is not unique; it can be altered by any map 

EO 
{EX) A (EX) -^ E^X -^ KiZp,2np + 1). 

This will alter D' by A{w] where [w] e ifi'^P-^X). 
(2) piiBwiXiPif) = AP"u' where u' e /f2n+i(p2X) restricts to x e H^'^iXiZp). 
Now by Property 2 of Section 3 

^'(E(i)^-^®-''")=/5'^""' 

So 

/3, (D'] - 5 ] W - x' ® x""* G ker A' = image A. 

This places a restriction on [£>'] G ^''(A')®5^*(X). Suppose x ^ im/9i+ decompos-
ables. Then there exists a primitive t G PH2„{X; Zp) with (t, x) 9̂  0 and (t, im/3i) = 0. 
By the above equation 

^, [D'] = X I W - ^' ® ^''"' + ^ ^ fo"" some w; G iJ*(X; Zp). 

Define A^ inductively by (1 (g • • • 0 A)A^~^ = A^, A^ = A. Applying ^""^ we get 

So 

0 = (t (g) • • • ® t, /3i ̂ P~^ [£)']) = (t O • • • (8) t, X ® • • • ® x) + 

+(t®---(8)i,4''~'u;> 

= {t,x)'' = (tP,«;). 
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The left side is zero since t G ker/3i. t̂  = 0 since H^{X;Zp) has no pth powers. (This 
is a Hopf algebra result since H*{X',Zp) is primitively generated.) We conclude 

(i, x)^ = 0 which is a contradiction. 

So our original assumption is false and x £iml3\+ decomposables. 
Variations of this argument are used repeatedly in the study of the cohomology of 

i/-spaces. See [101], [49] for the details. As one can see, often we obtain information 
about the Steenrod algebra action on H*{X\'Lp). 

Perhaps it would be useful to give other examples of how one might use this technique 
to study other problems in ff-space theory. Recall that in the 80s, topologists were 
studying the concept of "atomic spaces". 

A space X is mod p atomic if 
1. X(p) is (n - 1) connected and Hn{X\Zp) = Zp. 
2. Given a map f : X -* X such that / induces an isomorphism on Hn{X\ Zp), then 

/(p) is a homotopy equivalence. 
Cohen, Mahowald and Peterson [12] show fP-S^ and fP-^ are mod 2 atomic. They 

use a special argument of Peterson's to prove if 

/ : 2̂̂ 55 ^ Qigs 

is nontrivial in H^{fP'S^\'L2), it is an isomorphism in degree 6. We will prove this in a 
different way using the techniques described above. 

Note that / f *(i?S'^; Z2) = r{x^) that is, a divided power Hopf algebra on a 4 dimen-
sional generator. Hence, using the Eilenberg-Moore spectral sequence, i f *(i7^5^; Z2) is 
generated by 72(2/3) in degree 6 where 2/3 = G*{X^). In degree 7 we have a*72(x4) with 
Sqhiiys) = ^*72(a:4). 

It suffices to prove 

/*(cr*72(X4)) =a*72(x4) . 

We build the universal example. Note there is an Adem relation 

Sq^ = Sq^Sq^Sq^ + Sq^Sq\ 

Let Bw : K{Z,4) -> K{Z2,6) be defined by (BwYiie) = SqH^- Let BE be the fiber 
of Bit;. 

i^(Z2,5) 

BE 

Bq 

[' 

[' 
K(Z,4) -5!!U K{Z2,6) 
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By arguments similar to the odd prime case, there exists a Bv £ H^{BE) {Bj)*{Bv) = 
Sq^SqUs and A{Bv) = Bu(S> Bu, Bu = (BqYiU). 

Now consider the commutative diagram 

K{Z2,4) 

n^S'-^^n^S'—j^K{Z,3)-^^K{Z2,5) 

with g*{i3) = ys, an integral lift ofy^.g exists since Sq^y^ = 0. Further g can be chosen 
to be a loop map since p is a loop map and BwBg is null homotopic. 

Similarly, gf and g project to gf and g respectively and gf ~ g. So gf and g differ 
by an element in H^{f2^S^;Z2) which is trivial, so 

Hence, we have a diagram 

K{Z2,5) 

K{ZA) 

Now Bg is an ff-map since Dsg G H^{nS^ A 175^; Z2) = 0. Hence 

4(Bp)*(J3t;) = {BgY 0 {BgY{Bu (8) JBu) = X4 0 X4 7̂  0. 

So {BgY[Bv) = 72(x4) since that is the only nonzero element of H^{QS^\Z2). Hence 
g\a\Bv)) = (J*72(x4) = /*^*(cT*Bt;)). This implies (T*72(X4) = /*((T*72(X4)) which 
completes the proof. 

The proof for 17̂ S^ is exactly analogous. We can use the factorization Sq^ = Sq^Sq^ -\-
Sq^Sq^Sq^ 

Clearly one can introduce other notions of atomicity. We list a few here. Let X be an 
if-space with 

Hi{X\ Zp)=0 for 0 < £ < n, Hn{X; Zp) = Zp. 

1. X is mod p H-atomic if every self map f : X -^ X that is an H-map and an 
isomorphism on Hn{X;Zp) induces an isomorphism on H^{X;Zp). 
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2. If X is an Ajk-space, then X is mod p Ak-atomic if every self map f : X -^ X 
that is an A^-map and an isomorphism on Hn{X\Zp) induces an isomorphism 
onH4X;Zp). 

QUESTION 7.1. Let p be an prime, S'^^'^^{p} the fibre of a self map of degree p from 
5̂ P+̂  to itself. Is nS^P-^^{p} mod p atomic? 

This question was posed by Selick and is related to the mod p Arf invariant problem. 
See [78]. One can show that f2S^^'^^{p} is mod pAp-atomic without too much trouble 
using results of Selick, so a related question would be 

QUESTION 7.2. Do there exist self maps / : fiS^^'^^ip} -^ nS'^^'^^{p} that are isomor-
phisms on H2p{fiS^^'^^{p};Zp) but are not Ap-maps? 

QUESTION 7.3. Which simple Lie groups are mod p atomic? 

For large primes, a Lie group splits into a product of odd spheres. This is called 
"p-regular." Often H-spaces do also, or they split into other factors. Harper [24] showed 
F4 splits at the prime 3, so he is able to produce a non-Lie finite H-space with p torsion 
in this manner. For other Lie groups the action of the Steenrod algebra often forces 
atomicity. This leads one to 

QUESTION 7.4. Let X be a simply connected finite i7-space with H^{X\Z2) associative. 
If f : X —* X induces an isomorphism on H^{X; Z2) and //7(X; Z2), does it induce an 
isomorphism on H^{X\Z2)f 

Here we know all known examples of mod 2 finite H-spaces begin in degrees 1, 3 or 
7 from [61]. One might throw in other hypotheses, for example / could be an Ak-map 
for appropriate fc. 

8. Homotopy commutativity 

We begin by discussing some ideas of Stasheff and Sugawara. Homotopy commutativity 
has experienced a recent flurry of interest. Work of Hemmi, Kuhn, Slack and Williams, 
Zabrodsky, McGibbon, Foskey [85], [88], [32], [54], [97], [67], [68], [44], [45], [20], 
[21] and others has made it more accessible. Because of their work, there are many 
interesting open questions. 

Recall a homotopy commutative H-space X has the property that the diagram 

XxX 

XxX 

commutes up to homotopy. 
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Given an if-space X with basepoint acting as strict identity, fiX is homotopy com-
mutative. To see this, let a and /3 be loops in X, a, /3 : / , {0,1} -> X, *. Then we can 
construct maps F^G : I x I ^ X that look like 

Here at the bottom of / x / , F traverses a at double speed and then sits at the basepoint. 
G traverses the basepoint and then travels along P at double speed. 

Consider ^x{P,G) : I x I ^ X. Its picture looks like 

Hence this shows a/3 ĉ  ^a, relative endpoints. 
Hubbuck [37] proves a finite 2 local if-space has the homotopy type of a torus. This 

generalizes the Lie group theorem that a commutative Lie group is a product of a torus 
with Euclidean space. 

For homotopy commutative if-spaces, Stasheff [85] realized there is an "axial map" 

SXxEX^-^ P2X. 

If we restrict to each factor, the induced maps 

SX ^EXxEX -^ P2X, 

ix{x) = (x,*), 

SX -^EXxSX -^ P2X, 

iiix) = (x,*) 
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then di and d2 are homotopic to the inclusion map 

EX M P2X. 

1135 

(8.1) 

We say c is "axial with respect to the maps j , f\ We give the formal definition due 
to Hemmi [32]. 

DEFINITION. An ff-pairing is a family of maps (/x,/ii,/i2) 

^:XixX2—^ X, 

fj.\ :Xi —^X with II] [x]) = /JL{X\ , *), 

/X2 : X2 — • X with /X2(x2) = /i(*, X2). 

We say fi is "axial with respect to /ii, /i2". If one performs the Hopf construction on the 
map c, we obtain a cofibration sequence 

E{SX A SX) ^-^ SP2X - U P^X -^ E\EX A EX). 

Cup products in H*{P2X) are related to elements of nonzero "c invariant in H*{Xy\ 
We describe this phenomena here. Suppose 

where jf : TAT - • P2X is the inclusion. Then A*(x (g) y) = ab. See [94], [32]. 
If X G PH*{X), it corresponds to an fl^-map 

Since A", i f (Zp, n) are homotopy commutative, we can define 

c(/) :X^X^ nK{Zp,n), [c(/)] G H^'-'iX/\X;Zp), 

c{f) is the loop 

f{xiX2) 

f{Xl)f{X2) 

f{X2Xi) 

/(X2)/(X1) 

(8.2) 

Here, the lines correspond to a choice of if-structure for / and a choice of homotopy 
commutative structures for X and K{'Lp,n), Changing the /f-structure of / changes 
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c{f) by im(H-r*). Usually we assume the homotopy commutative structures are fixed. 
So c(/) can be thought of as a coset in H*(X A X) /im 1 4- T\ See [97], [32]. 

Alternatively, since / is an if-map, there is an element z e H*{P2X) with j*{z) = sx 
where [/] = x. c{f) = c{Xy{z). See [32]. Here c{X) will be defined explicitly in the 
following paragraph. 

Hemmi proves x E PH*{X) lies in the image of (ij)* if and only if c(/) is trivial. 
The c obstruction can be rephrased as follows. Suppose / : X —> F is an H-map and 
X, y are homotopy commutative. Then there is the following diagram (not necessarily 
commutative) 

S{SXASX) ^^^^^^^\ E{EYM:Y) 

c(x)| |c(y) 

EP2X ^ EP2Y 
splf 

Here c{X) is defined to be the map induced by -EJ7T\ + EC- Ej7r2 where 

TTi, 7r2 : SX X EX —• EX are the 2 projections. 

Define c(/) : E{EX A EX) ^ EP2Y by 

c(/) = (rP2/)(c(X)) - {c{Y))E{EfAEf). 

Then if Y = ii:(Zp,n) and 0 : i:P2>' -• B^K{Zp,n) = K{Zp,n 4- 2), we have 
[Oc{f)] = [c(/)] G i/"->(X A X;Zp). One easily checks if X -^ Y -^ Z is a 
sequence of H-maps between homotopy commutative spaces, then 

c{gf) ^ c{g)E{Ef A Ef) + {SP29W). (8-3) 

Henrnii [32] also proves the composition 

E{EX A EX) '^^ EP2X —^ E{EX A EX) (8.4) 

induces 1 — T* on cohomology. 
These properties can be used to restrict the if-deviation of certain liftings. For example, 

let £ be a stable 2-stage Postnikov system, and suppose we have a commutative diagram 

3 

E 

Q 
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where X is a homotopy commutative if-space and / is an i/-map. We can transform 
this to a diagram involving projective planes. 

EX- -^PiE ^BE 

Bq 

P2X' Plf 

D' 

[Piq 
T 

\BW 

T 

EX A EX ^ BKx 

Now if {Bw)i{P2f) is trivial, we could lift iiPif) to BE. Taking adjoints, we would 
get an if-map for a lifting. Suspending the above diagram, we get 

E(i:X A EX) ^ EP2X • splf 
^ EP2K >- EBK ^ B^K 

E{EX A EX) • I:D' 

B^w 

-^EBKi ^B^Ki 

(8.5) 

It follows that 

( i - n [D ; ] = [c(/)] (8.6) 

So if / is a c-map, the if-deviation can be chosen to lie in kernel (1 - T*). 
Zabrodsky gives a geometric proof of this fact in [97]. However, the proof here is 

potentially more easily generalizable since it becomes harder and harder to draw the 
homotopies, in the presence of higher homotopy commutativity. 

Recall in Section 6, we proved if / is an A^ map then [Dj] e Cotor^j^*,-^JZp,Zp). 
Combining with (8.6) in the case [c(/)] is trivial implies 

[Df] G Cotor|^.(^)(Zp, Zp) nker(l - T*). 

This consists of PCotor^t(x)(Zp,Zp). 
If -ff*(-X') is a bicommutative Hopf algebra, such elements only occur in bidegrees 

(2,2jPn). Here j ^ 0 for p = 2, j > 0 for p odd. So fairly often, one can choose / to 
be an H-map. 

For example, let X be a homotopy commutative, homotopy associative ff-space and 
let X E PH'^{X\ Zp) have the property that c{x) = 0 = A^{x). 

Let w : K{Zp, n) -* nK{Zp, li) = Ki be an infinite loop map and let E be the fibre 
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of w. Then if 'w{x) is trivial, we get a commutative diagram 

If p is odd and ̂ f—1 is not divisible by p for all z, then / can be chosen to be an if-map. 
This follows since c{wx) :̂  * ĉ  A^{wx), So [Dj] G PCotar^^\'^^^{'Lp,Zp) = 0. 

QUESTION 8.1. Recall the transpotenceelement (t>pk{x) G PH*{nX) for X an if-space. 
What is the c obstruction of the if-map QX —• K{Zp, n) representing (j)pk {x)l 

QUESTION 8.2. Zabrodsky [98] has shown that any p local if-space admits a multipli-
cation that makes it homotopy commutative if p is an odd prime. See also [40]. If X 
originally has a homotopy associative multiplication, when is it possible to create a new 
multiplication that is both homotopy commutative and homotopy associative? 

Slack has the following related theorem. 

THEOREM 8.1 ([81]). IfX is a homotopy commutative homotopy associative H-space, 
and p is an odd prime QH^^^^{X\ Zp) lies in degrees 2p^ for j ^ 0. 

QUESTION 8.3 (Arkowitz, Lupton). Multiplication m on X is guasicommutative if 6 : 
{X, m) —• (X, m P̂) is an ff-equivalence. Clearly homotopy associative homotopy com-
mutative multiplications are quasicommutative. It is well-known that all multiplications 
on spheres S\ S^, 5^ are quasicommutative. Williams [96] showed EP^ has a non-
quasicommutative multiplication and stated that the same is true for SU{3). Arkowitz-
Lupton [5] gave an example of infinitely many multiplications on a product of three 
spheres S^ x S^ x S^ which are not quasicommutative (Proposition 6.1). 

PROBLEM. IS every multiplication on a product of two spheres S^ x S^, p,q £ {1,3,1} 
quasicommutative? 
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0. Introduction 

Co-H-spaces are important objects of study for at least two reasons. First of all, they are 
the duals, in the sense of Eckmann and Hilton, of H-spaces. The latter have played a 
significant and central role in topology for many years. Secondly, there is a large class of 
examples, namely the suspensions, which are co-H-spaces. It is the co-H-structure which 
enables one to add homotopy classes of maps defined on a suspension and which gives 
rise to the homotopy groups of a space. In this paper we survey the known results on 
co-H-spaces. While it has not been possible to cover everything that has been published, 
we have attempted to be comprehensive. In particular, we have presented sketches of 
the proofs of the major theorems and many illustrative examples. Although suspensions 
enter naturally into our exposition, our main focus is on co-H-spaces. We have therefore 
not included results which deal with suspensions per se. 

We now fix our notation and state our conventions. All spaces are based and have the 
based homotopy type of a connected, CW-complex. All maps and homotopies preserve 
the base point. We do not distinguish notationally between a map and the homotopy class 
of the map. Thus equality of maps means equality of homotopy classes or homotopy of 
maps. The standard notation of homotopy theory will be used: * for the base point or 
the constant map, / for the closed unit interval [0,1], [X, Y] for the set (of homotopy 
classes) of maps X -^ Y, A : X -^ X x X for iht diagonal map, V : Xy X -^ X 
for the folding map, E for (reduced) suspension, C for the (reduced) cone, i? for the 
loop-space, 1 for the identity map, *J^' for homeomorphism or isomorphism and ' = ' for 
the relation of same homotopy type of spaces. Finally, for a map / : X -^ F , we let 
/* : [A, X] —• [A, Y] and /* : [Y, B] —> [X, B] be the induced functions, for any spaces 
A and B. 

1. Definitions and basic properties 

We begin with a number of definitions. Recall that equality of maps means equality of 
their homotopy classes. 

DEFINITION 1.1. A pair (X, (p) consisting of a space X and a map (p : X ^^ X y X \s 
called a co-H-space if (i) pup = I and (ii) pi^p = 1, where p\,p2 : X V X -^ X arc the 
two projections. 

Co-H-spaces have been called H'-spaces or co-Hopf spaces. The map ip : X -^ X\/X 
is called a comultiplication. Clearly (X, ^) is a co-H-space space if and only if j^p = A: 
X -^ X X X, where j:XWX-^XxXisthc inclusion emd A : X ^ X x X is iht 
diagonal map. For a co-H-space {X, ip) it is common not to mention ^p explicitly. The 
notion of co-H-space is homotopically invariant, in fact, if (X, ip) is a co-H-space and 
i: A-^ X and r . X -^ Adxt maps such that rz = 1, then {r\/r)ipi is a comultiplication 
of A. If X is a co-H-space and a finite CW-complex, we call X a finite co-H-space. 

DEFINITION 1.2. Let (X.^p) and {X\(p') be co-H-spaces and / : X -> X ' a map. Then 
/ is a co-H-map \{ ip'f = [f y f)ip. 
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A co-H-map is written / : {X,(p) —• {X'.if') or just f : X -^ X'. Co-H-maps have 
also been called primitive maps. 

Clearly co-H-spaces and (homotopy classes of) co-H-maps form the objects and mor-
phisms of a category. 

DEFINITIONS 1.3. If (̂  : X -> X V X is a map, then ip is called associative if (1V (/?)(/? = 
{(p V l)(p : X -^ Xy XM X. A right inverse for </? is a map p : X —^ X such that 
V(l V p)(p = *, where V : A" V X -* X is the folding map and * : A" -> X is the 
constant map. A left inverse for (/? is a map X: X -^ X such that V(A V 1)(̂  = *. 

The terms co-associative and co-inverse have been used for associative and inverse. 
We can now define an important object of our study. 

DEFINITION 1.4. A co-H-space {X,ip) is called a cogroup if ip is associative and has a 
right and left inverse. 

The following is the primary example of a cogroup. 

EXAMPLE 1.5. Let A be any space and EA the suspension of A. If a A : EA -^ EAvSA 
is the pinching map [56, p. 41], then it is well known that {SA,(JA) is a cogroup [56, 
pp. 47-^8]. In particular, if 5^ is the n-sphere, ES"^-^ « 5" for all n ̂  1 [37, p. 275] 
and so S'^ is a cogroup for n ^ 1. If / : >1 —̂  JB is a map, then Ef : {SA,aA) —> 
{EB^GB) is clearly a co-H-map. 

Many of the preceding definitions can be made for an abstract category. We briefly 
describe this. Let C be a category with zero morphisms and finite coproducts denoted by 
*U'. Then a pair (X, ip) consisting of an object X and a morphism ^p : X -^ XuX is 
called a co-H-object in C if p](p = 1 = p2^ for pi,p2 '- XUX —> X the two projections. 
Similarly, one can define a cogroup object and a co-H-morphism. Thus we obtain new 
categories CCH of co-H-objects and co-H-morphisms and CCG of cogroup objects and 
co-H-morphisms. It is an interesting exercise to consider specific categories C and to 
determine CCH and CCG- For example, the co-H-objects in the category of groups are 
precisely the free groups [42]. 

We return to spaces and let (X, (/?) be a co-H-space and Y an arbitrary space. If 
a,(3 e [X, y ] , then define a -f /3 G [X, F] to be the composition 

x^xvx^yvy-^y. 
This is a well-defined binary operation on the set [X, Y] with the constant map * G 

[X, y ] a (two-sided) unit. We call this operation the binary operation induced by cp. It is 
clear that in homology, (a + /3)* = a* -f /3 ,̂ and a similar result holds for cohomology. 
If / : y -^ y , then the function /* : [X, Y] -^ [X, Y'] is a homomorphism (of sets 
with binary operation and unit). Furthermore, if (X, (p) is a cogroup, then the induced 
binary operation in [X, Y] is a group such that /* is a group homomorphism. 

PROPOSITION 1.6. Let X be a space. Then 
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{\) X is a cO'H'Space ^ for every space Y, [X, Y] has a binary operation with unit 
* such that / • : [X, Y] - • [X, Y'] is a homomorphism for all f :Y -^ Y'. 

Next let (X, (/?) be a co-H-space. Then 
(2) if is associative <=» for every space Y, the induced binary operation on [X, Y] is 

associative; 
(3) (Jf, if) is a cogroup <^for every space Y, [X, Y] with the induced binary operation 

is a group. 

PROOF. We only indicate *^' of (1) by showing how to define (/?. Let Y = X V X and 
zi, 22 € [X, X VX] be the inclusions. Then set (̂  = ii -f 22 G [X, X VX]. It follows that 
(X, ip) is a co-H-space. The proof of the rest of the proposition is straightforward. Q 

It is clear that if {X, (p) is a co-H-space, then (p = i\ -f 22 € [X^X W X], where '-f' 
is the binary operation induced by (p. 

COROLLARY IJ, Let (p : X -^ X W X be a map. Then {X,ip) is a cogroup ^ ip 
is associative, (i) of Definition 1.1 holds and there is a right inverse for (̂  <=> (p is 
associative, (ii) of Definition 1.1 holds and there is a left inverse for (p. 

COROLLARY 1.8. //* iX,(p) is a cogroup with right inverse p and left inverse A, then 
p = \. 

There are further analogies with group theory. 

DEFINFIION 1.9. A co-H-space (X, ip) is called commutative if T(p = ip : X -^ X W X, 
where r : X y X -^ X \/ X is the map which interchanges coordinates. 

The following result then complements Proposition 1.6. 

PROPOSITION 1.10. Let {X,ip) be a co-H-space. Then ip is commutative if and only if 
the induced binary operation in [X, Y] is commutative for all spaces Y. 

We now give an example of a commutative co-H-space, in fact a commutative cogroup. 

EXAMPLE 1.11. If 4̂ is a co-H-space, then {EA^GA) is commutative. In particular, 
{S^B^CTJJB) is commutative. This follows from Proposition 1.10 since [iJyl, y ] ^ 
[A, nY], and the latter group is commutative when Ais SL co-H-space [61, p. 124]. 

Other group theoretic concepts such as nilpotency are relevant to cogroups (see §8). 
We next show that every 1-connected, associative co-H-space is a cogroup. 

DEFINITION 1.12. Let L be a set with binary operation '-h' and unit e e L. Then L is 
called a loop if for every a^b £ L, the equations a -h x = 6 and y -^ a=^b have unique 
solutions x,y e L. 

The following result is the dual of a well known theorem of James for H-spaces. 

PROPOSITION 1.13 ([36, Theorem 2.3]). IfX is a \-connected co-H-space and Y is any 
space, then [X, Y] with the induced binary operation is a loop. 
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PROOF. A set L with binary operation '-f' is a loop if and only if the functions ^,/i : 
LxL -^ Lx L given by 6{a, b) =^ {a,a-\- b) and ii{a, b) = {a + b, b) are bijections. Let 
t,7n : X y X -^ X W X he defined by ti\ = i\, tii = (̂ , mzi = (p and 77122 = h, where 
zi,Z2 : X -^ X V X are the inclusions. Then under the identification of [X V X,Y] 
with [X,Y] ® [X,Y], t* and m* : [X V X,Y] -^ [X W X,Y] correspond to 6 and 
/i : [X,Y] © [X,y] -^ [X,y] © [X,Y]. Thus it suffices to prove that t and m are 
homotopy equivalences. But in homology, (p^ = {i\ + ii)* — i\* + ii*, and so U 
and m* : H^X W X) -^ H^X V X) correspond to /i and 0 : i/*(X) © H^{X) -^ 
H^{X)^H^{X). The latter /i and ^ are isomorphisms because H^{X) is a group. Since 
X is 1-connected, t and m are homotopy equivalences. D 

REMARK 1.14. Proposition 1.13 remains true when X is not 1-connected provided that 
F is a nilpotent space (see [36, Theorem 2.3]). 

Since an associative loop is a group, we have 

COROLLARY 1.15 ([1], [27]). A \-connected, associative co-H-space is a cogroup. 

This result does not hold without associativity. See §7 for an example of a co-H-space 
with different left and right inverses. 

We conclude this section with a few remarks and questions. A co-H-map f : X -^ X' 
induces a homomorphism /* : [X' ,y] -^ [X^i^] for any space Y. In particular, if 
g : A -^ A\ then {SgY : [U^l^F] —• [-S'A, F] is a homomorphism. A co-H-map / : 
(X, ip) —> (A"', ip') which is a homotopy equivalence is called a co-H-equivalence. This 
is an equivalence relation for co-H-spaces. Co-H-equivalent co-H-spaces are regarded as 
essentially the same. 

The elementary considerations of this section raise a number of basic questions which 
are dealt with in subsequent sections. We mention some of them: When is a space a 
co-H-space? Are there nonassociative co-H-spaces (there are) and when is a co-H-space 
associative? Are there cogroups which are not suspensions (there are) and when is a 
cogroup co-H-equivalent to a suspension? When is a co-H-space commutative? A further 
complication which can be taken into account is that a given co-H-space may admit 
several homotopically distinct comultiplications. This raises several other questions, for 
example, is there a co-H-space such that no comultiplication on it is associative? 

2. The topology of co-H-spaces 

In this section we consider the classical algebraic topology of co-H-spaces. We will sum-
marize the salient facts without proof or just outline the proof. We begin by noting, and 
leaving as an exercise, the fact that every co-H-space is path-connected. Thus 7ro(X) = 0. 
We next consider the fundamental group. 

PROPOSITION 2.1 ([26, p. 353]). If{X,(p) is a co-H-space, then i^\{X) is a free group. 

PROOF. We sketch the proof. We identify TTI (X VX) with the free product TTI (X) * TTI {X) 
and 7ri(X x X) with the direct sum 'K\{X) © 7ri(X). Under these identifications j * : 
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7rl (X V X) ~ 7r, (X x X)  corresponds to the canonical homomorphism X : 7rl ( X ) .  
7rl (X) ~ 7rl (X) • 7rl (X) and we regard ~p. : 7rl (X) ~ 7rl (X) • 7rl (X). Thus X~P. = 
A :  7rl(X) ~ 7rl(X)@ 7rl(X) and so Imageq;. C_ X-l(ImageA).  Furthermore, q;. is 
a monomorphism since plqo - 1, and so it suffices to prove that X -1 (Image A) is a 
free group. This can be done directly by showing that the set of all a'a" E 7rl (X) • 
7rl (X), where a runs over all nontrivial elements of 7rl (X), is a free generating set for 
X-l (Image A) (see [25, p. 211]). V1 

Although there seem to be no general statements that can be made for the higher 
homotopy groups of a co-H-space X (e.g., take X -- Sn), much is known about the 
rational homotopy groups of X. Let Q be the group of rationals and let s - i V  denote the 
desuspension of the graded vector space V (i.e. ( s - lV)n  - Vn+l). For any space Y, the 
total rational homotopy group 7r, (f2Y) ® Q of f2Y is a graded Lie algebra over Q with 
Lie bracket given by the Samelson product. Clearly 7r, (f2Y) ®Q - s -1 (Tr,(Y) ®Q) with 
the Lie bracket in 7r, (f2Y) ® Q corresponding to the Whitehead product in 7r, (Y) ® ~. 

PROPOSITION 2.2. Let X be a 1-connected, finite co-H-space. Then 7r,([2X) ® (~ is the 
free Lie algebra generated by the graded vector space s -1 (H, (X; Q)), where if/I, denotes 
reduced singular homology. 

For a discussion of Proposition 2.2 and other rational homotopy results, see §7. 
We next turn to cohomology. 

PROPOSITION 2.3. If (X, qo) is a co-H-space and a C HP'(X; G1 ), ~ E Hrn(X; G2) with 
Pl,P2 > O, then the cup product a/3 = 0 in HP~+rn(X; G1 ® G2). 

PROOF. We regard cohomology as (homotopy classes of) maps into an Eilenberg- 
MacLane space. Let Ki - K(Gi ,pi)  and K - K(G,p)  be Eilenberg-MacLane spaces, 
where G = G1 ® G2 and p = pl + P2, let l : K1 V K2 ~ K1 x/£2 be the inclusion and 
let q : K l  x K2 ~ K1 A K2 be the projection. Choose 

0 e HP(Kl A K2; G) ,~ Hom(Hp(K, A K2), G) ~ Hom(G, G) 

corresponding to the identity homomorphism of G. Then a/3 is the composition 

X A ax q 0 ~, X x X ~ KI x K2 " K I A K 2  , K .  

If A = jt#, then a/3 = Oql(a V/3)t# = O. 

A similar result holds for any multiplicative cohomology theory. 

REMARK 2.4. If R is a ring, it follows from Proposition 2.3 that cup products in 
H*(X;  R) of positive dimensional elements are trivial. More generally, Massey prod- 
ucts are trivial. That is, if ui are positive dimensional cohomology elements in 
H*(X;  R), / = 1 , . . . ,  n, with nonempty Massey product ( u l , . . . ,  un) C_ H N(X.  R), 
then (u l , . . . ,Un)  - {0}. This is because (ul , . . . ,Un)  is in the kernel of the coho- 
mology suspension cr • H N ( x ; R )  --+ H N - I ( Q x ' R . )  [43, Theorem 5]. But cr is a 
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monomorphism, since X is a co-H-space (Proposition 4.3). Similarly, matric Massey 
products are trivial [30, Corollary 5.14]. 

For an associative co-H-space X there is a cohomology flat product 

H p+l (X; G1) ® H q+l (X; G2) ~ H p+q+l (X; G1 ® G2) 

introduced in [1]. This is defined using the commutator (i~, i2) in the group [ X , X  V X] 
and is dual to the Samelson product of an H-space. For a suspension X -- L'A, the flat 
product for S A  is the cup product for A. For more details, see [1] and [8, pp. 160-163]. 

There are several homological results relating to co-H-spaces. The first is a generaliza- 
tion of the Bott-Samelson theorem on the homology of the loop-space of a suspension. 

PROPOSITION 2.5 ([ 1 1 ]). Let K be a field and (X, qo) a co-H-space. Then the Pontryagin 
algebra H.(f2X;  K) is a free algebra. Furthermore, if 99 is associative, there is a set 
{ai} of free generators of H . ( O X ; K )  such that  

I II V I II = + +  j, aja , 

j,k 

where aj,k e K, a' = (~2il).(a) and a" = ((2i2).(a), for any a E H . ( O X ; K ) .  

A generalization of Proposition 2.5 has been given by Rutter [49, Theorem C]. 
The generators {ei} in Proposition 2.5 are called semi-primitive (with respect to 

( S ~ ) . ) .  
These considerations lead to the Berstein-Scheerer coalgebra of a cogroup. Let .A be 

the category of connected, graded, associative algebras over K and C the category of 
connected, graded, associative coalgebras over K. Then Berstein has defined a functor 
S • ,AGo ~ C, where .AcG is the category of cogroup objects of .A, and shown it 
to be an isomorphism of categories [1 1]. We briefly indicate the definition of S' • Let 
(A, ~b) be a cogroup object in ,A and let t9 c_ A be the vector space generated by a 
semi-primitive basis with respect to ¢. Then A is a free algebra generated by P and the 
homomorphism ~ gives A the structure of a Hopf algebra. It follows that P C_ A is a 
subcoalgebra, and we set S(A) = P. If (X, p) is a cogroup, then (H. (f2X; K) ,  (12~p).) 
is a cogroup object in ,A, and we define the Berstein-Scheerer coalgebra of X by 
B ( X ; K )  - B ( X ,  qo; K)  = S ( H . ( f 2 X ; K ) ) .  In the case K - Q and X is a rational 
space, B is a functor from the homotopy category of rational cogroups and co-H-maps to 
the category of connected, graded, associative, commutative coalgebras over ~, and can 
be shown to be an equivalence of categories. In particular, two rational cogroups X and 
X '  are co-H-equivalent ¢:~ B ( X ;  Q) ,~ B(X ' ;  Q) as coalgebras. Furthermore, the set of 
co-H-maps [X, X']co-H is in one-one correspondence with the coalgebra homomorphisms 
H o m ( B ( X ; Q ) , B ( X ' ; Q ) ) .  In addition, it can be shown that if X is a commutative 
cogroup, then B(X" Q) has trivial diagonal. Finally, B(Z:A;Q) ~ H. (A;  Q) as coalge- 
bras. Therefore if A has finite type, the vector space dual (B(SA;  Q))* ~ H*(A; Q) as 
algebras. Some of these results were first obtained by Baues [8, pp. 132-133]. For more 
details on the Berstein-Scheerer coalgebra, see [ 11 ] and [51 ]. For a generalization of the 
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Berstein-Scheerer coalgebra to 1-connected co-H-spaces and more general coefficient 
rings and for a discussion of similar functors defined on the category of co-H-spaces 
with values in other algebraic categories, see [52]. 

This concludes the summary of facts on the topology of co-H-spaces. 

3. Examples of co-H-spaces 

We begin with a simple, well-known result. 

PROPOSITION 3.1. If X is an ( n -  1)-connected complex of dim <~ 2 n -  1, where n >~ 1, 
then X admits a comultiplication. If in addition, the dimension of X <~ 2 n -  2, then 
any two comultiplications of X are homotopic. 

PROOF. Assume that the ( n -  1)-skeleton of X is the base point. The diagonal map of X 
is homotopic to a cellular map A'.  Since dim X ~< 2 n -  1, A ' factors through X V X.  
This proves the first assertion. The second is similar. El 

For an ( n -  1)-connected complex X of dimension ~< 2n, the obstruction to the 
existence of a comultiplication on X can be identified with the cup square of the basic 
cohomology class. See [39, Proposition 5.3] for a more general result about spaces of 

category ~< n. 
We now turn to some examples. By Proposition 3.1, the n-sphere S n admits a comul- 

tiplication for n ~> 1 which is unique up to homotopy for n ~> 2. But S n = Z S  n- l ,  and 
so S ~ is a cogroup for n >~ 1, commutative for n >~ 2. On S 1 there are many comulti- 
plications, each corresponding to a certain element of 7rl (S 1 V S 1 ). More precisely, let x 
and y be the canonical generators of the free group 7rl (S 1 V ,5 '1). The comultiplications 
on S ~ correspond to words w in x and y such that the sum of the exponents of the x 's  in 
w and of the y's in w are 1. Thus S 1 admits infinitely many distinct comultiplications. 

More generally, we describe comultiplications on Moore spaces. For an abelian group 
G and integer n >/2, a Moore space of type (G, n) is a 1-connected space with a single 
nonvanishing reduced homology group G in dimension n. It is known that Moore spaces 
exist and that any two of type (G, n) have the same homotopy type. We denote the 
Moore space of type (G, n) by M(G, n). Clearly, we can regard M(G, n) as a CW- 
complex of dimension ~< n + 1 (~< n, if G is free-abelian). By Proposition 3.1, M(G,  n) 
has a comultiplication which is unique if n >/ 3. But M ( G , n )  - Z M ( G ,  n -  1), 
and so M(G ,n )  is a cogroup for n /> 3. However, M ( G ,  2) is also a suspension, 
and so all Moore spaces M(G, n) are cogroups which are commutative for n >~ 3. 
The set of comultiplications of M ( G , 2 )  has been studied in [2] and shown to be in 
one-one correspondence with the group Ext(G, G ® G). In addition, if q is odd, all 
comultiplications of M(Zq, 2) are commutative, and if q is even, no comultiplication of 
M(Zq ,  2) is commutative [2, Corollary 16]. 

Now Moore spaces M(Zq, n) are complexes with two nontrivial cells, M(Zq, n) -- 
S n Uq e n+l, where q : S '~ ~ S n is the map of degree q. Based on work of Berstein and 
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Hilton we next determine when a cell complex X = S n U~ e m with two nontrivial cells 
admits a comultiplication. We first give an important general result. 

PROPOSITION 3.2. If  A and X are co-H-spaces and f : A ~ X is a co-H-map, then the 
mapping cone X Uf C A  is a co-H-space such that the inclusion i : X ~ X Uf CA is 
a co-H-map. I f  A = S A  t and X = S X '  are suspensions and f = $ 9  for  9 : A' ~ X ' ,  
then X UI C A  - Z ( X '  Ug CA') .  

PROOF. Let A and ~ be the comultiplications of  A and X respectively and let Y = 
X Uf CA.  Then (i V i ) ¢ f  = (i V i ) ( f  V f)A = ( i f  V i f ) A  = 0. Therefore there exists 
cp : Y --~ Y V Y such that ~i = (i V i )~.  Now let j : Y V Y ~ Y x Y be the inclusion 
and pl ,  p2 : Y V Y ~ Y and 7rl, 7r2 : Y x Y ~ Y the projections. Then for r = 1,2, 

p,.g)i = p,.(i V i )¢  = i and so 7c,.j~i = i = 7crAi. 

We consider the exact sequence 

[SA,  Y x Y] , [ Y , Y × Y ]  [ x , Y × Y ]  

obtained from the cofibration A ~f X -L Y and note that i*( j~)  = i*(A) .  But for all 
spaces B,  there is an operation of  [ZA, B] on [Y, B] whose orbits are the pre-images 
of i* : [Y, B] ~ IX, B] [35, Chapter 15]. Therefore there is an c~ E [SA,  Y x Y] such 
that c~. jqD = A. But j .  : [ZA, Y V Y] ~ [ZA, Y x Y] is onto, and so c~ = j . ( /3)  for 
some/3  E [ZA,  Y V Y]. Then j .  (/3. g)) = A, and consequent ly /3 .¢p E [Y, Y V Y] is a 
comultiplication of Y such that (/3. cp)i = (i V i )~ .  This proves the first assertion of  the 
proposition. The second assertion is easily proved and hence omitted. F-I 

Another approach to the result proved above has been given by Berstein and Harper 
[16]. They show that any homotopy between ( f  V f )A and ~ f  can be replaced by 
a primitive homotopy, i.e. one which is itself homotopic to a map built out of the 
homotopies jAA "" AA  and j x ~  ~-- A x .  The primitive homotopy can then be used to 
directly define a comultiplication on Y. 

It follows from Proposition 3.2 that S ~ U~ e m is a co-H-space if c~ : S m - 1  ---+ S n is 
a co-H-map and that S n U~ e m is a suspension if c~ : S m -  1 ~ S n is a suspension. We 

will see that the converses of these results hold. 
We next define a Hopf  invariant homomorphism for a co-H-space (X,  ~). Let c~ E 

7rp(X) and consider the element 

0 = - i 2 . ( . )  - 

in 7rp(X V X) .  From the exact homotopy sequence of the pair (X  x X,  X V X) ,  we have 
the short exact sequence 

( x  × x ,  x v x )   -p(x v x )  J', × x )  o. 



Section 4 Co-H-spaces 1153 

Since j . ( O )  - O, there is a unique element 7-((a) E 7 r v + l ( X  × X , X  V X )  such that 
dT-((a) - 0. This defines the H o p f  invar iant  h o m o m o r p h i s m  ~ " Trv (X  ) ~ 7rv+~ ( X  x 

X, X V X) .  From the definition it follows that 

7-[ (a)  - 0 ¢:~ 0 - 0 ¢:~ a is a co-H-map• 

If X - S k, then the homotopy groups of X V X are isomorphic to the homotopy 
groups of an infinite product of spheres S k × S k x S 2k-1 × S 3k-2  x S 3k-2 × . . .  [34, 

• (S  2k-1 $3k-2 $3k-2  Theorem A] Thus 7rp+l (X x X, X V X)  ~ 7rp+ 1 x x X .- . )  and so 
7-/determines homomorphisms 7-[o " Trp(S k) ~ 7rp(S2k-1), ~1 " Trp(S k) ~ 7rp(S3k-2), 
7-[2 " 7rp(S k) ~ 7rp(S3k-2) ,  etc. which are the classical Hi l ton-Hopf  invariants. Therefore 
for a sphere, 7-/subsumes all of the Hilton-Hopf invariants. Now if a E 7rm_ l (S  n) ,  then 
7-/(c~) = 0 implies that S n Uc~ e m is a co-H-space. In fact, the following result holds. 

PROPOSITION 3.3 ([17, Theorem 3.20, Lemma 3.6]). Le t  c~ E 7rm_ 1 ( S  n)  wi th  m - 1 >~ 

n >/2,  then 

(1) S n U s  e m is a c o - H - s p a c e  ¢~ 7-[(c~) = 0 ¢¢, a is a c o - H - m a p ;  

(2) S n Uc~ e m is a s u s p e n s i o n  ¢ ,  a is a suspens ion .  

Thus S n U,~ e m is a co-H-space if and only if all Hi l ton-Hopf  invariants are trivial 

(cf. [8, p. 43]). 
We can now construct cell complexes S n Us e m which are co-H-spaces but not sus- 

pensions. 

EXAMPLE 3.4 ([ 17, p. 444]). Let p be an odd prime and a E 712p (S 3) an element of order 
p. Then for i = 0, 1 , 2 , . . . ,  7-/i(a) C 7r2p(S 2~'+1) for ni > 1. Since 7l'2p(S 2hi+l) has 
no element of order p, 7-(i(c~) = 0. Thus S 3 Us e 2p+l is a co-H-space. However, c~ is 
not a suspension since 7rzp-I (S 2) has no element of order p. Thus S 3 Us e 2p+l is not a 
suspension. 

Using Proposition 2.5, Berstein has shown that S 3 Us e 2p+I does not admit any asso- 
ciative comultiplication [ 10]. 

For further results on cell complexes with two nontrivial cells, see [17]. 

4. Characterizations of co-H-spaces and cogroups 

In this section we give alternative formulations of the notion of co-H-space and cogroup 
which are duals to corresponding statements for H-spaces. The theorems for co-H-spaces, 
however, appear to be more difficult to prove because there are no known duals of certain 
fundamental H-space results and constructions (such as the James reduced product). The 
material of this section is based on [35, §17] and [27]. 

For a space X we denote by C ( X )  C_ [ X , X  V X] the (possibly empty) set of co- 
multiplications of X.  A map "7 - "Tx : X ~ L ' Q X  is called a core t rac t ion  of X if 
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v x T x  -- 1 • X ~ X ,  where v = v x  • kT~2X -0 X is the canonical projection. Denote 
by CT~(X) C_ [X, Z f2X ]  the set of coretractions of X.  

THEOREM 4.1 ([27, Theorem 1.1]). The function ( ( vx  V v x ) c r o x ) .  " [X,~ ' f2X]  --~ 
[X, X V X] induces a bijection from CTZ(X) to C(X) .  In particular, X admits a comul- 
tiplication if  and only if X admits a coretraction. 

PROOF. If 3, is a coretraction of X,  clearly (v V v)cr 7 is a comultiplication of X.  Thus 
((v V v)cr), induces a function F "  CT~(X) --0 C(X) .  We will define an inverse function 
G after some preliminaries. Let W be the homotopy pull-back of j and A, 

W q , X V X  

A 
X , X x X  

with projections p and q. Thus 

w = x, v)l • e x ,  x c ( x  × x ) ' ,  

y C X V X, A(0) - A(x) ,  A(1) = j ( y ) } .  

Let E o X  be the paths in X starting at • and EI X the paths in X ending at , .  Define 
V C_ X / by V - E o X  0 E1X.  If w is a path in X and a, b E I,  then Wa,b denotes the 
path in X along w from w(a) to w(b). (We allow a > b in which case wa,6 is traversed 
from w(a) to w(b) along the path opposite to w.) Since E o X  and EI X are contractible 
spaces whose intersection is F2X, V has the homotopy type of L'F2X. More precisely, 
define s "  Z F2X ~ V by 

g 
t) = ~ ~0,2, 

[, ~32t -  1,1 

i fO~<t~<  1/2, 
if 1 /2~<t<~  1, 

and show that e is a homotopy equivalence [35, p. 211]. Moreover, 0 : V -~ IV given 
by 0(() - (~(! ) ,  (~½,1,~½,0),~(1),~(0)) is a homeomorphism. If qD E C(X) ,  then qo 
and 1 : X ~ 2 X  determine a map # • X ~ W such that p#  - 1 and q# - qo. 
Now set "7 = e - 1 0 - 1 #  : X ~ Z'f2X. Clearly "7 is a coretraction, and so we define 
G :  C ( X )  --~ CT¢(X) by G(99) = '7. Since (v V v)cr'7 = qa, F G  = 1. To complete the 
proof we show F : C7-¢(X) ~ C ( X )  is one-one. Consider the fibration 7r' : X I ~ X × X 
given by rr'(ca) - (ca(1),w(0)) with fibre f2X. By restricting the base to X V X,  we 

obtain a fibre sequence ;2X -~ V -L X V X.  Since i factors through a contractible space, 
i = . ,  and so 7r. : [27A, V] ~ [~'A, X V X] is a monomorphism for all spaces A. But 
7re = (v V v)cr : S f 2 X  ~ X V X with e a homotopy equivalence. Thus 

((v V v)cr),  " [ZA,  ZJ2X] ~ [ZA, X V X] 

is a monomorphism. Now let 71,72 be two coretractions such that F('71) -- F(72).  Hence 
( (vVv)cr ) . (7 ,  v ) - ( (vVv)cr) . (72v) ,  and so 71v = 72v. Thus '7, - "7,v'71 = "72v'7, - "72. 
Therefore F is one-one. [] 
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We see next that in Theorem 4.1 X is a cogroup if and only if the corresponding 
coretraction is a co-H-map. If "7" X ~ 27,f2X is a coretraction, then we say that (X, "7) 
is a (homotopy) coalgebra if the diagram 

X "Y., 27f2X 

S, f 2 X  ~o~  S, f2J?f2X 

commutes, where e y  • Y ~ ~27,Y is the natural embedding. 

THEOREM 4.2 ([27, Theorem 2.2]). Let "7 : X ---. ( 2 S X  be a coretraction with corre- 
sponding comultiplication 99: X --~ X V X .  Then the following are equivalent." 

(1) (X ,  99) is a cogroup; 
(2) "7: (X, qa) ~ (L'g-2X, crux) is a co-H-map; 
(3) (X, '7) is a coalgebra. 

PROOF. We sketch the proof. If '7" X ~ Z O X  is a co-H-map, then 

[zs x, x v x v x] [x, x v x v x]  

is an epimorphism from a group to a set with binary operation. Thus [X, X V X V X] 
is associative, and so i~ + (i2 + i3) = (i1 + i2) + i3, where i,. is the inclusion of X into 
the rth summand of X V X V X. This shows that qo is associative. The proof of the 
existence of inverses is similar. Therefore (2) =~ (1). The equivalence of (2) and (3) is 
based on the following general and easily verified facts: (a) Let (X, qo) and ( X ' ,  qd) be 
co-H-spaces with corresponding coretractions "7 and "7' and let f : X ~ X '  be a map. 
Then f is a co-H-map ¢ ,  the following diagram commutes 

X f '~ X l 

"Y[ ,['¢ 

(The proof of '=>' uses the fact, established in the proof of Theorem 4.1, that ((u' V 
u')cr'). : [X, S O X ' ]  ~ [X, X ' V  X'] is one-one.) (b) The coretraction corresponding to 
the suspension comultiplication O'A : ~V'A ----+ z~A V ~V'A is SeA : ~'A ---+ S f 2 S A .  This 
just leaves the proof that (1) ~ (2) which we omit because of its length. [5] 

The alternative characterizations of co-H-spaces and cogroups of this section yield 
results about co-H-spaces and cogroups. As an illustration we prove 

, . . . .  

PROPOSITION 4.3. l f  X is a co-H-space, then the homology suspension cri " Hi ( J'2X ; G) --~ 

Hi+l (X; G) is onto and the cohomology suspension cr i • H i + I ( X ;  G) ~ Hi(Y2X" G) is 

one-one for  all i >~ O. 
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PROOF. Let ~' : X ~ ZY2X be a coretraction corresponding to the given comultiplication 
of X. Since u7 = 1, u. : Hi+l (2 ]~X;  G) --+ Hi+~(X; G) is onto. But the homology 

suspension cr~ is just the composition of the isomorphism Hi (Y2X; G) ~ Hi+l (ZY2X; G) 
with u., and so cri is onto. The result for the cohomology suspension is proved similarly. [] 

5. Connectivity/dimension results 

In this section we consider when a co-H-space or a cogroup with connectivity and 
dimension restrictions is co-H-equivalent to a suspension. The main result is the following 

THEOREM 5.1. Let (X, 99) be a finite co-H-space which is ( n -  1)-connected. 
(1) If dim X <~ 3 n -  3, n >~ 1, then (X,  99) is co-H-equivalent to a suspension. 
(2) If  dim X <, 4 n -  5, n >1 2, and 99 is associative, then (X,  99) is co-H-equivalent to 

a suspension. 

Part (1) is due to Berstein and Hilton [18, Theorem A] and Part (2) is due to Ganea 
[27, Corollary 3.5]. Before discussing the proof of Theorem 5.1, we digress to describe 
a construction which is the dual of the Hopf construction of an H-space multiplication 
and which generalizes the Hopf invariant homomorphism defined in §3. Let X ~ X be 
the space of paths in X x X beginning in X V X and ending at the base point and 
let i : X ~ X ~ X V X assign to a path its initial point. Then we obtain a short exact 
sequence 

[nx, n(x x)] [nx, n(x v x)] [nx, n(x  × x)] o. 

The comultiplication 99 : X --~ X V X determines an element 

IZ-- --J'~i2- n i l  n u n99 E [ n X ,  n(X V X)] 

such that ( f2j) . (#)  = 0. Thus there exists a unique element H(99) E [f2X, f2(Xb X)] 
such that (Y)i).(H(99)) = #. We call H(99) the dual Hopf construction (applied to 99). 
If A is any space and p E [ZA, X], let ~ c [A, (2X] denote the adjoint of p. Then 
the following two facts about the dual Hopf construction are easily verified: (i) Let c~ E 
7rp(X) and let ~ : 7rp(X) ~ 7rp+l (X  × X,  X V X )  be the Hopf invariant homomorphism 
of §3. We identify 7rp+l (X × X, X V X) with 7rv(X b X) and regard 7~(c~) ~ 7rv(X b X).  

Then H(g~)~ - 7~(~). (ii) 3 " ( Z A ,  aA) ~ (X, 99) is a co-H-map ~=~ H(~)/3 - 0 in 
[A, f2(X b X)]. We note that (i) and (ii) yield the result in §3 that c~ is a co-H-map ~=~ 

=0. 
We now sketch the proof of Theorem 5.1(1) following [18]. Let P be the fibre of 

H(99) and consider the fibre sequence 

P ~ f2X H(¢) f2(X b X).  

Then if r? : Z 'P  -~ X is the adjoint of 3' (i.e. ~ = 7), 7/is a co-H-map since H(99)~ = 0. 
The main step in the proof is to show that 7/. : H ~ ( S P )  ~ H~(X)  is an isomorphism for 
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r < 3 n -  3 and an epimorphism for r = 3 n -  3. This is done by analyzing the homology 
homomorphism (H (~ ) ) .  (similar to the analysis of (Y?qo). in §2) and then applying the 
Serre spectral sequence of a fibration to obtain the desired result for r/.. The proof is 
completed by constructing a space P0 of dimension ~< 3 n -  4 and a map u : P0 ~ P 
using a modified homology decomposition of P such that u. : H~(Po) ~ H,.(P) is an 
isomorphism for r < 3 n -  4 and 

n3n-4(Po) --~ n3n-4(P) ~ n3n-3(z~,P) ft. n3n_3(X) 

is an isomorphism. The map 7 /Su :  ZPo ~ X is then a co-H-equivalence. 
Because of its length and complexity we omit the proof of Theorem 5.1(2). We note 

that Ganea's proof uses the characterization of a cogroup as a coalgebra (Theorem 4.2). 
Theorem 5.1 suggest the possibility of a sequence of successively restrictive conditions 

A2, A3 , . . .  on a space X such that A~ and a connectivity/dimension condition (such as 
dim(X) ~< (r + 1 ) n -  ( 2 r -  1) for X ( n -  l)-connected) would imply that X is co- 
H-equivalent to a suspension. Furthermore, the condition A2 should be that X is a 
co-H-space and the condition A3 should be that X is an associative co-H-space. The 
prototype for this is Stasheff's An-theory for H-spaces. This theory for co-H-spaces has 
been developed in part by Saito [50], though the details are formidable. However, Saito 
has proved [50, Proposition 6.17] that an ( n -  1)-connected co-H-space of dimension 
~< 5 n -  7 which satisfies an A4-1ike condition is co-H-equivalent to a suspension. 

For the remainder of this section we consider examples relating to Theorem 5.1. The 
general reference for homotopy groups of spheres is [58]. 

We begin by giving an example taken from [18] to show that the connectivity and 
dimension restriction in Theorem 5.1(1) is best possible. Let c~ E 716(S 3) -- Z12 be an 
element of order 3 and form X -- S 3 Us e 7. By Example 3.4 with p - 3, X is a co-H- 
space which is not a suspension. Thus with n -- 3 we see that the restriction in (1) of 
Theorem 5.1 is necessary. 

We next discuss examples relating to Theorem 5.1(2). Let/3 E 7r15(5 '5) = Z72 O Z2 be 
an element of order 9. Then 7-/(/3) = 0 since 71-15(S 9) --- Z 2 and 7r15(S 13) = Z2. Thus/3 
is a co-H-map and so X -- S 5 t5~ e 16 is a co-H-space. But/3 is not a suspension because 
7114($4) = •120 O •12 O 7/~2. Therefore X is not a suspension. In [27, 4.2] Ganea made 
the following conjecture: 

CONJECTURE 5.2. X - 5 ,5 t3~ e 16 admits an associative comultiplication. 

If true, this conjecture would show that the dimensional restriction in Theorem 5.1 (2) is 
best possible. We will see shortly that 5.2 is false. However, Ganea has given an example 
to show that some dimensional restriction is necessary. He considered Y - S 3 V 5 '15 and 
proved that Y has at least 72 associative comultiplications such that at most 56 of them 
are co-H-equivalent to a suspension [27, Proposition 4.3]. 

Conjecture 5.2 was taken up by Barratt and Chan in [7]. The spectral sequence of an 
inclusion with differentials d,- developed in [6] was applied to S ~- l  C_ E n, n odd >~ 3. 
The following result was then proved. 
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PROPOSITION 5.3 ([7, Theorem 3.3]). I f  13 C 71"15(S 5) has order 9, then dl (/3) = 0 and 

d2(/3) -7/= 0. 

Proposition 5.3 disproves Conjecture 5.2 for the following reasons. For a E 7rq (S ~), 
d~ (a)  - 0 e ,  S n ua  eq+l admits a comultiplication [6, §2]. For a E kerd~ C_ "7rq(Sn), 
d2(a)  - 0 e:~ S ~ U~ e q+l admits an associative comultiplication [20, Theorem 6.8.1]. 
I f /3  E 7r15(S 5) is an element of order 9, then S s Uz e 16 is a co-H-space such that no 
comultiplication is associative. As mentioned at the end of §3, the space S s Ua e 2p+l, 
where a 6 ~-2p(S 3) has order p, also has this property. The following question was raised 
in [7, Remark 3.5]. 

QUESTION 5.4. Does there exist a finite complex X,  more particularly, a cell complex 
with two nontrivial cells, which is not a suspension, but which admits an associative 
comultiplication ? 

This question was answered by Berstein and Harper in the affirmative. We state some of 
their results. First note that the p-primary components pTl'2p+2(S 5) - Zp,  pTl'6p_3(~ 5) -- 
Z v for p ) 5 and 37r15(S 5) - Z9. Let a E p71Zpw2(S 5) and "7 E pTl'6p-3 (S 5) be generators. 
Furthermore, 37r34(S 5) -- Z3 and we let 7? be a generator. 

PROPOSITION 5.5 ([16, Theorems A,D]). The space X = S s U~ e 2v+3 U.y e 6v-2 is a 

cogroup which is not a suspension if  p is a prime such that p - 1 (mod 3). The space 
Y = S '5 U, 7 e 35 is a cogroup which is not a suspension. 

Berstein and Harper also show that S 5 U- t e 6p-2 is a co-H-space which admits no 
associative comultiplication [16, Theorem B], thus providing more examples of this 

phenomena. 
It is not known if the dimension restriction in Theorem 5.1 (2) is best possible. 

6. The G anea conjecture 

For a co-H-space (X, qo), Ganea conjectured that there is a homotopy equivalence 

X = Y V S ,  

where Y is 1-connected and S is a wedge of circles or a point [28, Problem 10]. We 
assume in this section that X is not 1-connected (so that S is not a point) and refer 
to this conjecture as the Ganea conjecture. In 1976 Berstein and Dror gave a condition 
on the comultiplication q) which implies the Ganea conjecture. As a consequence the 
Ganea conjecture holds for an associative comultiplication ~. We give the Berstein- 
Dror condition in Proposition 6.1. Our treatment is based on the paper of Hilton, Mislin 
and Roitberg [36]. We adopt the following notation: for a map f,  7rn(f) denotes the 
n-th induced homotopy homomorphism and H n ( f )  denotes the rL-th induced homology 
homomorphism. 

Since X is a co-H-space, 7rl(X) is free, and so there is a wedge of circles S with 
7r 1 ( X )  ~ 71 1 (S ) .  We choose a map u : X --, S such that 71" 1 (U) : 771 ( X )  ~ 711 ( S )  
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is an isomorphism. (Since S is an Ei lenberg-MacLane  space K(.n-~(X), 1), u could be 

the classifying map of the universal cover X ---+ X. )  We let pl " X V S ---+ X and 
P2 : X  V S ---+ S be the projections. 

PROPOSITION 6.1. The following are equivalent: 
(1) For every space Z, a E IX, Z], and b, c E IS, Z], 

(a + bu) + cu = a + (bu + cu). 

(2) There exists a comultiplication # on S such that u : (X,  g~) ---+ (5', #) is a co-H-map 
and there exists a ~ : X ~ X V S with P1¢ = 1 and P29 -- u which satisfies 

(¢ v 1)¢ = (J v #)¢. 

PROOF. (1) ~ (2): We first show the existence of > such that u is a co-H-map without 
assuming (1). A map # :  S --+ S V S is determined by rrl (#),  so we define > by 

= v ( , . , ) - ' .  

Clearly # is a comultiplication and u : (X, qo) ~ (S, #) is a co-H-map.  Now set ~b = 
(1 V u)qo. Then with Z = X V S v S, a = i l, b = i2 and c = i3 (the three inclusions), 
the condition in (1) implies (~b V 1)¢  = (1 V # ) ¢ .  

(2) => (1): If V :  Z v Z v Z -+ Z is the folding map then 

(a + bu) + cu = V ( a  V b V c)(~b V 1)!b and 

a + (bu + c u ) -  V ( a  V b V c)(1 V #)~b. 

rq 

The map ga : X --+ X V S with (~b V 1)~b -- (1 v/ ,)~b in (2) is called an associative 
cooperation of S on X .  We will call either condition of  Proposit ion 6.1 the Berstein-Dror 
condition. Then Berstein and Dror proved the following 

THEOREM 6.2 ([12, Theorem 1.5]). Let (X ,  qo) be a co-H-space and u : X -+ S a map 
which induces an isomorphism of  fundamental  groups. I f  (X ,  go) satisfies the Berstein-  
Dror condition, then the Ganea conjecture holds for  X ,  i.e. there is a 1-connected space 
Y such that X =_ Y V S. 

PROOF. We sketch the proof  in steps, omitting some details due to space limitations. 

Step 1. A retract of a space Y is a triple (A, i, r) consisting of a space A and maps 
i : A ~ Y and r : Y ---+ A such that ri = 1. An idempotent of Y is a map e : Y -+ Y 
such that e 2 -- e. It is well known that there is a one-one correspondence  between retracts 
of Y and idempotents  of Y. This is seen as follows: If (A, i, r)  is a retract of Y, then 
e = ir is an idempotent  of Y. Conversely, given an idempotent  e : Y --+ Y, we define a 
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space I m a g e e  as the (homotopy)direct  limit of Y -% Y ~ Y - % . . .  [29, p. 127]. Then 
the diagram 

1 1 
Y , Y ~ Y - -+  

y e e 

1 1 
Y ~ Y ~ Y - - ~  

gives rise to maps Pe " Y ~ Imagee  and i~ • Image e ~ Y such that i~p~ - e and 
p~ie = 1. Thus (Imagee,  i~,p~) is a retract of Y. For more details, see [36, §5] and [32]. 

Step 2. Now assume the hypothesis of Theorem 6.2. Then there is a map f : o c --~ X 
such that 7rl(f) = 7I'l(U) -1 • Therefore u f  = 1 and so (S, f ,  u) is a retract of X .  Then 
e = f u ,  the corresponding idempotent, is called the canonica l  idempotent  of the co-H- 

space X .  As in the proof of Proposition 6.1, there is a comultiplication # :  S ~ S V S 
such that u : (X, ~) ~ (S, #) is a co-H-map. It now easily follows that f : (S, #) 
(X, ~) is also a co-H-map. Consequently e = f u :  ( X ,  cp) ---, ( X ,  cp) is a co-H-map. 

Step 3. Let e E [X, X] be the canonical idempotent. If for every a ¢ [X, X],  there is 
a unique :c E IX, X] such that x + e -  a, then e is called loop-like on the right. (Note 
that we cannot use Proposition 1.13 to conclude that IX, X] is a loop since X is not 
1-connected.) The following is proved in [36, Theorem 6.1]" If e is loop-like on the right, 
then there is an idempotent d C [X, X] such that d + e - 1 and X = Image d V Image e. 

We make some remarks about the proof of this. The existence of d • X --~ X such 
that d + e - 1 is a consequence of e being loop-like on the right. We see that d is an 
idempotent as follows: e - (d + e)e - de + e, since e is a co-H-map. Therefore de - 0, 
and so d - d (d  + e) - d 2 + de = d 2. Hence d is an idempotent. We omit the proof of the 
assertion that X = Image d V Image e, but attempt to make it plausible by indicating an 
analogous, easily proved result in linear algebra. Let V be a vector space and P • V ~ V 
an idempotent linear transformation (i.e. p2 _ p) .  By setting Q - 1 - P • V ---, V, 
we obtain an idempotent Q such that Q + P - 1. Then it is easy to show that V 
I m a g e Q  ® Image P.  The isomorphism is determined by the inclusions Image Q c_ V 
and Image P c_ V. Returning to the co-H-space X with idempotents e and d, we have 
that X - Image d V Image e, where the homotopy equivalence Image d V Image e --, X 
is analogously defined by the inclusions ia"  Imaged  --, X and ie " Image e ~ X.  We 
show next that this decomposition of X yields the Ganea conjecture for X.  For this 
it suffices to prove that Image e is a wedge of circles and that Image d is 1-connected. 
Now 7ri (Image e) - Image Tri (e) since 7ri commutes with direct limits. But e - f u  

factors through S, and hence Image e is a wedge of circles. Next note that 7rl (e) - 1 by 
construction and so H1 (e) -- 1. But we infer from d + e - 1 that HI (d) + H1 (e) - 1. 
Therefore H, (d) - 0 and thus HI (Imaged) - Image Hi (d) - 0. But Imaged,  being a 
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retract of X, is a co-H-space. Hence TTI(Imaged) is a free group whose abelianization 
ifi(Imaged) = 0. Thus TTI(Imaged) = 0, and we conclude that Imaged is 1-connected. 

Step 4. To complete the proof we show that the hypothesis of the theorem implies 
that the canonical idempotent e G [X, X] is loop-like on the right. Let fi : S -^ S V S 
be a comultiplication such that u and / are co-H-maps (Step 2). For any space Z and 
a,b,ce[S,Z], 

{a + {b + c))u = {{a 4- 6) 4- c)u 

by hypothesis. Therefore, since u* : [S, Z] -^ [X, Z] is a monomorphism, [5, Z] is 
associative. By Proposition 1.6, ji is associative. It follows that the group [5, S] together 
with /x* : [5,5] -> [5,5 V 5] = [5,5] * [5, S] (the free product, written additively) is an 
associative co-H-object in the category of groups. By a theorem of Kan, there is a set 
of free generators {a^} of [5, S] such that fx*{ai) = a\ -f a'/ [42]. Define a left inverse 
A G [5,5] for /x by K{ai) = -ai. Then with this inverse, (5,/x) is a cogroup, and 
so [S,Z] is a group for all spaces Z. Now / G [S,X] and ^*(/) = e G [X,X]. Set 
e' = u*{-f). Then e' -f e = 0 = e + e'. We show that e is loop-like on the right. Given 
a e [X,X],\tix = a-\- e'. Then, using the Berstein-Dror condition, we have 

x -f e = (a -f- e') -f- e = a -I- (e' -h e) = a. 

For uniqueness, suppose that x -h e = y -h e. Then 

a; = X -f- (e -f e') = (x + e) -f e' = (y -h e) 4- e' = y -f (e -f e') = y. 

Thus e is loop-like on the right. This completes the sketch of the proof. Q 

Since every associative co-H-space satisfies the Berstein-Dror condition, the Ganea 
conjecture holds for every associative co-H-space. 

To our knowledge, the Ganea conjecture is not known for arbitrary co-H-spaces. 

7. Rational homotopy of co-H-spaces 

In this section we use methods of rational homotopy theory to obtain information about 
rational co-H-spaces (and rational information about co-H-spaces). We assume some 
familiarity with rational homotopy, though we will summarize the Quillen theory below. 
Recall that a rational space is one whose homotopy groups are vector spaces over Q. We 
denote the rationalization of a nilpotent space X of finite type by XQ. 

We begin with a result of Scheerer which uses the Berstein-Scheerer coalgebra of §2. 

PROPOSITION 7.1 ([51, Corollary 2, p. 68]). If Y is a 2-connected, rational, associative 
co-H-space, then Y is co-H-equivalent to a suspension. 

PROOF. Let B = B^{Y) be the Berstein-Scheerer coalgebra of Y with Q coefficients. 
Then Quillen has shown that there is a 1-connected space Z such that H^{Z;Q) is 
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isomorphic to B as a coalgebra [48]. Thus B^{EZ) « H^{Z\ Q) « B^{Y) as coalgebras. 
Consequently, Y is co-H-equivalent to EZ. Q 

This result is believed to be true for 1-connected F, but no proof has yet appeared. 
We next consider an early result on rational co-H-spaces. In 1961 Berstein proved 

that a 1-connected finite co-H-space X is equivalent modulo the class of finite groups 
to a wedge of spheres V, i.e. there is a map from X to V whose induced homotopy 
homomorphism has finite kernel and cokernel [9, Corollary 2.3]. With the later appearance 
of localization, the conclusion can be restated as follows: X is rationally equivalent to 
V (i.e. Xq = Vq). This result has been generalized by Toomer [59, Corollary 13], 
Scheerer [51, p. 67] and Henn [33, p. 167] by weakening the finiteness and connectivity 
hypotheses. We state the result due to Henn which is the most general of these. 

THEOREM 7.2 ([33, Theorem, p. 167]). Let Y be a co-H-space such that -KniX) is a 
rational vector space for all n^l. Then Y is homotopically equivalent to a wedge of 
circles and rational spheres of dimension ̂  2. 

PROOF. The theorem does not assume that Y is 1-connected, but to shorten the exposition 
we will assume so. Thus y is a 1-connected, rational co-H-space, and we show that 

Y=\/S^\ where2^mi ^m2 ^ ••• 

We proceed by a number of steps. 

Step 1. Y = Vi^i SQ' <=^ the Hurewicz homomorphism hy : 7r*(y) -^ H^iY) is an 
epimorphism. To prove '<=', choose a collection of elements {a^} C 7r^{Y) such that 
{hY{ai)} is a basis of H„{Y). Then the ai determine a map 

V Q̂ ' -^ ^ 

which is a homology isomorphism. The other implication is clear. 

Step 2. For any 1-connected rational space Z, 

We choose a homology decomposition of Z [35, Chapter 8] consisting of a nested 
sequence of 1-connected subcomplexes Zn of Z and maps of Moore spaces 

fn : M(i?n+i,n) -^ Zn, 

where i7n+i = Hn-\-\{Z), such that 

Z=\JZn, 
n>2 
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Zn-f-i is the mapping cone of fn and /n* = 0 on reduced homology. But the last statement 
implies Sfn = 0 [33, p. 165]. Thus by Proposition 3.2, 

SZ= \J M{Hn+un-\-\). 

But each M{Hn, n) is a wedge of 5Q'S, and so the result follows. 

Step 3. EQY = Vi^i S'^\ Since i?y is a connected, rational H-space, it is a product 
of Eilenberg-MacLane spaces, 

r2y = JJ Ki^-Kn, n), where TTn = -KniQY). 

Then, using the equivalence E{A x B) = EAW SBW E{A A B), we have 

SnY = E(K{7ru 1) X [ | if (TTn, n) 

= rii:(7r,, 1) Vr[][[ii:(7rn,n)') Vr[ii:(7r,, 1) A n x ^ ^ ^ 

By Step 2, the second and third summands are equivalent to wedges of rational spheres. 
We show that the first summand EK{'K\ , 1) is equivalent to a wedge of rational spheres. If 
TT] is finite-dimensional, we prove this by induction on the dimension of TTI . If dim TTJ = 1, 
K{7r\, 1) = 5Q and so EK{'K\, 1) = 5Q. NOW assume the result is true for all vector 
spaces of dimension ^ n and let TTI be (n -f l)-dimensional. Then TTI = K © Q, where 
V is ri-dimensional. Therefore K{'KI,\) = K{V, 1) x K{Q, 1) and so 

UK{7Tu 1) = EK{V, 1) V LK{Q, 1) V U{K{V, 1) A K{Q, 1)). 

The first summand is a wedge of rational spheres by assumption, the second is SQ and 
the third is a wedge of rational spheres by Step 2. This completes the induction. If TTI is 
an arbitrary rational vector space, then a direct limit argument using Step 1 shows that 
EK{7r\, 1) is equivalent to a wedge of rational spheres. This completes Step 3. 

Step 4. We now prove the theorem. By Step 3, SQY is equivalent to a wedge of 
rational spheres. By Step 1, hEQv : 7r*(Z'i7y) —> H^{EfiY) is an epimorphism. But Y 
is a coretraction of EQY (Theorem 4.1). From this it easily follows that hy : n^{Y) -^ 
H^{Y) is an epimorphism. By Step 1, y is equivalent to a wedge of rational spheres. D 

This proof follows [33] and can be extended to the non-1-connected case. Note that 
the 1-connected case together with the Ganea conjecture (§6) would imply Theorem 7.2. 
Note too that the equivalence between Y and the rational spheres is not asserted to be a 
co-H-map (and usually is not). 
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This theorem has many consequences. We discuss some of them next. For the remain-
der ofjhis section all spaces will either be 1-connected, finite complexes, usually denoted 
X or X, or 1-connected rational spaces with finite dimensional total homology, usually 
denoted by Y. All vector spaces and Lie algebras will be graded and over Q. 

We next recall some basic facts about the Quillen minimal Lie algebra Lz of a space 
Z. It is a free Lie algebra Lz = M^) ^^ ^ vector space V with differential d of 
degree - 1 such that H^{Lz) = H^{L{V)) = 7r^(i?Z) 0 Q, the rational homotopy 
Lie algebra. In addition, V « s~^H^(Z;Q), the desuspension of the reduced, rational 
homology of Z, and the quadratic part of the differential d of Lz is determined by the 
coalgebra structure of if*(Z;Q). Furthermore, there is the notion of homotopy for two 
homomorphisms Lz -* L^ of Quillen minimal algebras. For more details, see [57]. 

Now let X be a finite co-H-space. By Theorem 7.2, XQ = 5Q'"^^ V • • V SQ'"^\ for 
unique integers 1 < nj < • • • < rir. The integers (ni , . . . ,nr) are called the type of 
the finite co-H-space X. (The type of a rational co-H-space is similarly defined.) Then 
Lx = L(^), where V has a basis X\,...,Xr with degree \xi\ = Ui. We then write 
Lx — L(^) = L(^i 7 • • • 5 ^r)' Moreover, d = 0 since d is_quadratic and the coalgebra 
structure of H^{X; Q) is trivial (Proposition 2.3). If X and X are finite co-H-spaces and 
a, /3 : Lx -^ L^ are homotopic homomorphisms, then a = P since a and P induce 
the same homology homomorphism from H^{Lx) = Lx to H^{LY) = Lj^. Thus the 
following result holds (cf. [51, Proposition 2.7]). 

PROPOSITION 7 .3 . / / X is a finite co-H-space of type (rii,... ,nr), then Lx = 
h{x\,..., Xr) is the free Lie algebra on x\^._^. ̂  Xr, where \xi\ — rii, and the differ-
ential d = 0. For finite co-H-spaces X and X the set of homotopy classes [LxiL-^] 
equals the set of Lie algebra homomorphisms Horn {LX,LY)-

If X and X are co-H-spaces and Lx — L(^) and L ^ = L(^) then their coproduct (in 
the category of free Lie algebras) exists and is given by Lx UL^ = L(V ©V) = -^xvx* 

Now let X be a finite co-H-space of type (ni , . . . ,nr) with Lx = L(V') = 
L(x i , . . . , Xr), \xi\ = rii. Let L'^ = h{V') be another copy of Lx with V isomorphic 
to V, and write L'^ = L{x[,... ,x'̂ ) with \x[\ = rii. Define 7r,7r' : Lx U Lx' —* Lx 
by 7r(xi) = Xi, TT{X'-) — 0, 7r'(xi) = 0 and 7r'(xJ) = Xi. A homomorphism 
a : Lx -^ Lx U Lx' is called a (Lie algebra) comultiplication if Tra = 1 and TT'Q =-- L 
Note that (Lx, Oi) is a co-H-object in the category of free Lie algebras. For i = 1 , . . . , r, 
we have 

a{xi) = Xi-\-x[ -{- P{xi), 

where P{xi) is a linear combination of brackets of elements x i , . . . , Xr, a^j,..., x^ with 
no bracket containing only elements from x i , . . . , Xr or only elements from X j , . . . , Xj.. 
Equivalently, P :V -^ L{V) U h{V') = L{V © F') is a linear transformation such that 
TTP = 0 and TT'P = 0. We call P a perturbation of the comultiplication a. 

PROPOSITION 7.4 ([4, §2]). Let X be a finite co-H-space with Quillen minimal algebra 
Lx = L(V )̂, where V = s~^H^{X\Q). Then there is a bijection between: 
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(1) The set ofhomotopy classes of comultiplications of Xq\ 
(2) The set of Lie algebra comultiplications on Lx — M^); 
(3) The set of perturbations V -> UY 0 V). 

The bijection between the sets in (1) and (2) follows from the basic result that for 
spaces X and X, [Xq, XQ] and [Lx, L^] are in one-one correspondence [57, Chapter 3]. 

Proposition 7.4 enables us to analyze comultiplications of the rationalization of a finite 
co-H-space or equivalentiy, of a rational co-H-space, by a purely algebraic investigation of 
perturbations. This was carried out by Arkowitz and Lupton and questions of associativity, 
commutativity and inverses for rational co-H-spaces were considered in [4]. We state one 
of these results for associativity. If (p and t/; are two comultiplications of Y, then (p is 
equivalent to ^ means that (y, (p) and (F, tp) are co-H-equivalent. 

THEOREM 7.5 ([4, Corollary 3.19]). Let Y be a rational co-H-space of type ( n j , . . . Ur) 
with all rii odd. Then any two associative comultiplications of Y are equivalent. 

We also give an example regarding inverses. The details can easily be worked out. 

EXAMPLE 7.6 ([4, Example 5.7]). Let y be a rational co-H-space of type (ni,712,713) 
with TI3 = 2n\ 4- na. Define a comultiplication a on Ly = L(xi,X2,iK3), by setting 
P{x\) = 0 = P{x2) and P(x3) = [xi, [xi,X2]]. Then the homomorphisms A, p : Ly —^ 
Ly defined by X{xi) — p{xi) = -xu i = 1,2, A(x3) = —0:3 — [xi, [xi,X2]] and 
p{x3) = -X3 4- [xi, [xi,X2]] are left and right inverses respectively of a with \ i^ p. 
Thus y is a rational space with a comultiplication (/? such that the left inverse and the 
right inverse for (/? are different. For an example of this for a finite co-H-space, see [4, 
Example 6.13]. 

Finally we mention that the study of perturbations of comultiplications of rational 
spaces can be carried over to finite co-H-spaces which are wedges of spheres, though the 
presence of torsion in the homotopy groups of a wedge of spheres gives rise to additional 
difficulties. See [4, §6] for details. 

8. Miscellaneous results 

In this section we describe or state without proof a number of miscellaneous results on 
co-H-spaces which do not fit into earlier sections. 

Co-H-Maps. (i) We begin with a result of Berstein and Hilton which is the counterpart 
of Theorem 5.1(1) for maps. 

PROPOSITION 8.1 ([18, Theorem B]). Let A be a finite complex of dimension ^ 3n - 2 
and let B be an (n - \)-connected space of finite type, n ^ 1. Then every co-H-map 
{EA^GA) —^ {SB, as) is a suspension. 

Now apply the dual Hopf construction of §5 to the comultiplication as to obtain 
H{aB) : OEB -^ n{SBbSB). Then (as noted in [18, §5]) Proposition 8.1 can be 
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interpreted as asserting the exactness of the following sequence under the hypothesis of 
Proposition 8.1: 

[A,B] - ^ [EA,EB]^[A,nSB] 

H(CTB). 
[A,n{SB b EB)] « [EA.EBbEB] 

since a E [EA, SB] is a co-H-map <=> H[03)01 = 0 (see §5). This exact sequence is a 
generalization of an extract of the well-known EHP sequence of G. Whitehead. 

(ii) In [31] Harper considers a p-local space A and a map / : E'^A -^ 5?'\"^^ where 

p is an odd prime and S^^^^ is the p-localization of S'^'^'^K As in §3 let h : QS'^'^'^^ -^ 
Qg2np-\-\ denote any map which gives the Hilton-Hopf invariant. That is, h is the 
composition 

i 

where a is the comultiplication of Ŝ '̂ "̂ ^ and g is a projection. Let h^^^^^ : QS}^^^ -^ 

^^Ipf^^ be the p-localization of h and let J :EA-^ ^S^p)^^ be the adjoint of / . 

PROPOSITION 8.2 ([31, Theorem 1]). Let A be a p-local space and f : E^A -^ S^'^^'^K 

Then f is a co-H-map ̂  h(^p)f — 0. 

In addition, Harper has considered co-A-maps / : EA -^ Y, where A is any space and 
Y is an associative co-H-space. These are co-H-maps with an added condition (namely, 
the vanishing of the co-A-deviation of / in [EA, Q{Y V Y V Y)]) which ensures that 
the induced comultiplication on the mapping cone of / is associative. The theory of 
co-A-deviations of a co-H-map is developed in [31, §2] in analogy to the A-deviations 
of an H-map. A necessary and sufficient condition is then given for E'^A —• '^fp)'^ ^^ 
be a co-A-map, where p is an odd prime and A is p-local [31, Theorem 2]. 

(iii) Shi considers the set [X, y]co-H of co-H-maps from a commutative cogroup X 
into a co-H-space Y and shows that it is a subgroup of [X, Y] ([54] and [55]), An upper 
bound for the rank of this subgroup is given in terms of the Betti numbers of X and Y, 

(iv) In [2, Theorem 14] the co-H-maps M(Zm, 2) -> M(Zn, 2) of Moore spaces 
are determined for every comultiplication of M{Zm, 2) and every comultiplication of 
M(Zn,2). 

Sets of comultiplications. (i) If (X, (p) is a cogroup, let C{X) C [X,X\/ X] be the set 
of comultiplications of X. Then the sequence of groups 

0 ^ [X,X\>X] - ^ [X,X\/X] h [X,X xX]—^0 

is exact. Since C{X) = j~\A) and j-\0) « [X,XbX], it follows that there is a 
bijection from C{X) to [X,X\>X]. We see that this is also true if X is a 1-connected 
co-H-space by modifying the above argument with loops replacing groups. This was 
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done by Navarro [46]. We now specialize to the case X = EA. By the Hilton-Milnor 
theorem [61, Chapter XI, §6], n{EAyEA) has the homotopy type of an infinite product 

where Pi = A = P2, P3 = A A A, P4 = ^ A A A A = P5, etc., the factors Pi being 
determined by basic Lie brackets. Thus 

n{EA\>EA) = Yl^^Pi 
1^3 

and we obtain the following result due to Naylor. 

PROPOSITION 8.3 ([47, Corollary 2]). C{EA) is in one-one correspondence with 

^[EA^EPi], 
z^3 

Naylor then gives necessary and sufficient conditions in terms of the Betti numbers of 
A for C{EA) to be finite [47, Theorem 3]. 

(ii) For a rational co-H-space Y, the finiteness of certain subsets of C(y) is considered 
in [4]. In terms of the type of Y, necessary and sufficient conditions are given for (1) the 
existence of infinitely many associative comultiplications of Y [4, Theorem 3.14] (2) the 
existence of infinitely many nonassociative comultiplications of Y [4, Theorem 3.15] (3) 
the existence of infinitely many commutative comultiplications of Y [4, Proposition 4.2]. 
Similar results are obtained for wedges of spheres [4, §6]. 

(iii) The relation of co-H-equivalence is an equivalence relation on the set C{X). 
We let Ca{X) denote the set of equivalence classes of associative comultiplications of 
X and Cac{X) denote the set of equivalence classes of associative and commutative 
comultiplications of X. Then Arkowitz and Lupton proved the following result. 

THEOREM 8.4 ([5, Theorem 6.1]). Let X he a finite, \-connected complex which is a 
cogroup of type (n i , . . . , rir). 

(1) If, for every i = 1 , . . . , r, we have that rii ^ Uj + Uk for j ^ k and that Ui ^ Irij 
for Uj even, then Ca{X) is finite. 

(2) Cac{X) is always finite. 

Operations with co-H-spaces. We consider some standard constructions on the homo-
topy category of topological spaces which carry co-H-spaces to co-H-spaces. One could 
determine (but we do not) which properties of co-H-spaces are preserved by these con-
structions. Clearly if X and Y are co-H-spaces, so is X\/Y. If X is a co-H-space and Y is 
any space, then X AY is a co-H-space. For, if Z is any space, then [X AY,Z]^ [X, Z^], 
where Z^ is the space of all maps (not homotopy classes) Y -^ Z suitably topologized. 
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Since [X, Z^] has a binary operation with unit *, X A F is a co-H-space by Propo-
sition 1.6(1). Note that if F is a co-H-space, then Z^ is an H-space [61, Chapter 3, 
Theorem 5.16]. 

Now let X be a 1-connected N dimensional complex and let Hk = Hk{X). Recall 
that a homology decomposition of X consists of a sequence of mapping cone inclusions 

A 2 > M > ' ' • > Ajv, 

where X^+i is the mapping cone of some /^ : M(Ti\^^\,k) -^ Xk, and maps gk : 
Xk -^ X compatible with the ik such that f̂c* is an isomorphism in dimensions ^ fc 
[35, Chapter 8]. Then Curjel proved the following result. 

PROPOSITION 8.5 ([22, Lemma 2.3, Theorem I]). / / X is a l-connected, finite dimen-
sional co-H'Space and {Xk\iki fk^Qk) is a homology decomposition of X, then each 
Xk admits a comultiplication such that all ik : Xk —^ Xk-^\ and all gk : Xk -^ X 
are co-H-maps. Furthermore, the elements fk in the group [M{Hk-{-\, k)^Xk] have finite 
order 

Finally, we consider localization and completion. If P is any set of primes, let Xp 
denote the P-localization of the nilpotent space X. If X is a 1-connected co-H-space, 
then it follows from standard functorial properties of P-localization that Xp is a co-H-
space such that the canonical map X —^ Xp is a co-H-map. However, we cannot replace 
1-connectedness with nilpotence in this result. For example, Sp is not a co-H-space. 
This follows since S^ = K{Z, 1), and so Sp = K{Zp, 1), where Zp is the integers 
localized at P. But 7ri(5p) = Zp is not free, and so by Proposition 2.1, Sp is not a 
co-H-space. We note that McGibbon has proved that the existence of a comultiplication 
on a space is a generic property with respect to the Mislin genus. That is, if X and Y 
are nilpotent spaces of finite type such that X(p) = Y(^p) for all primes p and if X admits 
a comultiplication, then so does Y [44, Corollary 5.1]. 

The situation regarding completion is different from localization. It has been ^hown 
by McGibbon that Sp, thep-adic completion of S^, is not a co-H-space. In fact, Sp has 
nontrivial cup products in rational cohomology of arbitrary length [45]. 

Potpourri, (i) Nilpotency of co-H-spaces. If (X, (/?) is a cogroup with inverse i\ X -^ 
X, then define the (l-fold) commutator 62 € [X,X\/ X] to be the composition 

x-^xwx'^xyxwx\/x'''^'"'{x\/X)y{xvx)-^xvx, 
where V is the folding map for XVX. The n-fold commutator On G [X,'^X], where 
"X = XV- • • VX (n times), is defined inductively as follows: Assume 6n-\ G [X, '^"^X] 
already defined and let 6n be the composition 

X A , X V X "̂"-̂ "̂  X V ^-^X = "X. 

Note that 0n = (ii, • •., {in-\,in) - • •)» the commutator in the group [X,^X] of the n 
inclusions i i , . . . , 2^-1, in of X into ^X. We let 0i € [X, X] be the identity map. Then 
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Berstein and Ganea defined the conilpotency class conil(X, if) of the cogroup (X, ip) to 
be the least integer n ^ oo such that 9n-\-\ = 0 [13, §1]. Clearly conil(X, (/?) < n <=> for 
every space Y, the group [X, Y] has nilpotency class < n. For a space A, let U-long A, 
be the least integer n, 0 ^ n < oo, such that for any coefficient ring, the cup product 
of any n + 1 positive dimensional cohomology elements vanishes. Let cat A denote the 
Lusternik-Schnirelmann category of A, normalized so that cats'" = 1. 

THEOREM 8.6 ([13, Theorem 5.8, Corollary 6.12]). 

U-long A ^ com\{EA^GA) ^ cat A. 

Examples of spaces have been given for which the inequalities are strict. For other 
results on the conilpotency class, see [13]. 

(ii) Co'H'Spaces which are H-spaces. There are surprisingly few of these. If X is a 
noncontractible co-H-space and H-space of finite type, then West has shown that X = S^, 
S^ or 5^ [60]. More generally, Holzsager has considered such spaces X which are not 
assumed to be of finite type. He has proved that either X = 5^ or X is 1-connected [38, 
Theorem 1]. In the latter case a complete list of the possibilities for X is given - they 
are all wedges of Moore spaces [38, Theorem 2]. 

(iii) Mod p decomposition of co-H-spaces, Let X be a co-H-space of finite type and 
/ : X -^ X a map. Let p be a prime or 0 and let Fp denote the field with p elements (with 
Fo = Q). Then for each i^O, f^ : Hi{X;Fp) -^ Hi{X;¥p) is a linear transformation 
which makes Hi{X;Fp) into an Fp[a;]-module. We form the primary decomposition 

//i(X;Fp) = 0 F i ( X ; F p ) p ( , ) , 
p(x) 

where p{x) ranges over all monic, irreducible polynomials in Fp[x], and thence the 
decomposition 

F.(X;Fp) = 0 F . ( X ; F p ) p ( , ) . 
p{x) 

Then Cooke and Smith show that there is a space Xp(^x) and a map /p(a.) : X —> Xp(a.) 
such that 

/p(a:)*l/f.(X;Fp)p(̂ ) : H^{X;Fp)p^^) ->i7*(Xp(a,);Fp) 

is an isomorphism and 

for q{x) ^ p{x) [21, Theorem 1.1]. Thus X is p-equivalent to Vp(a;) ̂ pix)- Applications 
and generalizations of this decomposition are given in [21]. 

(iv) Extensions of co-H-spaces. Castellet and Navarro consider the question of classi-
fying the comultiplications on X V F, where X and Y are co-H-spaces [19]. In analogy 



1170 M. Arkowitz Chapter 23 

with group theory, they define equivalence classes CHE(X, </?; Y, ijj) of co-H-extensions 
of the co-H-space {X,ip) by the commutative cogroup (F,^) . These turn out to be co-
H-equivalence classes of comultiplications on X V y . They establish a bijection from 
CHE(X, if', F, il)) to the cokernel of the homomorphism [F, X] -> \Y,X\> X] which as-
signs to a map its deviation from being a co-H-map. They use this to investigate the case 
when X and Y are spheres. 

(v) Commutativity. The following is a partial converse of Example 1.11. 

PROPOSITION 8.7 ([14, Theorem 1]). Let X be an (n - \)-connected complex of dimen-
sion ^ 3n — 2, n ^ 1. If EX is commutative, then X admits a comultiplication. 

(vi) k-fold suspensions. From §4 we know that X is a co-H-space if and only if the 
projection u : UQX -^ X has a right inverse. Thus Theorem 5.1 is essentially a special 
case of the following result of Berstein and Ganea. 

PROPOSITION 8.8 ([15, Theorem 1.4]). If X is an (n - lyconnected complex and the 
projection v^ : S^Q^X —> X has a right inverse, k ^ 1 then X has the homotopy type 
of a k-fold suspension provided dimension X ^ 3n - 2A: - 1 and n— \^ k. 

9. Generalizations 

In this section we present a very brief discussion of a few of the generalizations of the 
theory of co-H-spaces. Some of these consist of working out the theory of co-H-objects, 
co-H-morphisms, etc. in specific topological categories. We are primarily interested in 
describing the results and in giving references for further study. 

Lustemik-Schnirelmann category. Recall the homotopy theoretic characterization of 
spaces of normalized (Lusternik-Schnirelmann) category ^ n. Let T'^{X) C X " be the 
fat wedge and j : T^{X) —> X^ the inclusion. Then catX ^ n - 1 if and only if 
there is (p : X -^ T''{X) such that j^p = A : X -^ X"", the n-fold diagonal. Clearly 
catX < 1 <^ X admits a comultiplication. Some of the results of earlier sections for 
co-H-spaces have generalizations to spaces of cat ^ n. For a survey of category, see [39]. 

R-local homotopy. Let r ^ 3 and i? C Q be a subring. Denote by p the smallest prime 
in R which is not invertible in R and set m = r + 2 p - 4 . We next define a class of spaces 
CW^. An i?-local sphere is just a Moore space M{R, n). In analogy to a CW-complex, 
an i?-local CW-complex is a space built from a point by successively attaching cones 
by maps defined on i?-local spheres. Then CWJ!̂  consists of based topological spaces X 
which are J?-local CW-complexes of fi-dimension ^ m such that the (r - l)-skeleton 
X'^~^ = *. Scheerer has proved analogues of some of the rational results of §7 for 
X G CW^. In particular, the following are proved [53]: (i) If X is a co-H-space, then X 
has the homotopy type of a wedge of Moore spaces, (ii) If H^ {X\ R) is a free i?-module, 
r > 3, and X is a cogroup, then X is co-H-equivalent to a suspension. 

In addition, there are some results in [51, A3] on ii-local co-H-spaces and the Berstein-
Scheerer coalgebra JB*(X; R). 
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Equivariant homotopy. Let G be a finite group and consider the category G-Top of 
pointed G-spaces and G-homotopy classes of pointed G-maps. Then G-co-H-spaces 
and G-cogroups are just co-H-objects and cogroup objects in the category G-Top. Of 
particular interest here are the appropriate Moore spaces. Kahn has given conditions for 
their existence and uniqueness up to homotopy [41]. From this it follows that certain 
Moore G-spaces are G-cogroups. However, Doman has given an example of infinitely 
many Moore G-spaces of the same type such that only one is a G-co-H-space [24]. 
Arkowitz and Golasinski describe the set of comultiplications of certain Moore G-spaces 
in [3, §3]. With regard to general G-co-H-spaces, Doman has proved the coretraction 
theorem (Theorem 4.1) for the category G-Top [23, Theorem 3.1]. He has also given 
conditions on a rational G-co-H-space for it to be G-homotopy equivalent to a wedge of 
Moore G-spaces [23, Theorems B, C, D]. 

Fibrewise pointed homotopy. For a fixed space B, a fibrewise pointed space consists 
of a space X and maps p : X -^ B and s : B -^ X such that ps = I. Fibrewise pointed 
maps between fibrewise pointed spaces {X^p^ s) and {X'^p'^ s') are just continuous maps 
f : X -^ X' such that p'f = p and fs = s'. There is a notion of homotopy for fibrewise 
pointed maps using an appropriate cylinder construction. This gives the fibrewise pointed 
homotopy category. James has studied co-H-objects - called fibrewise co-H-spaces - in 
this category. In the case where p : X -^ B is a. fibration there are results about the 
relationship between an ordinary co-H-structure on the fibres and a fibrewise co-H-
structure on X [40, §2]. Furthermore, James has shown that a sectioned {q - l)-sphere 
bundle over S^ is a fibrewise co-H-space if and only if the g'-fold suspension of p*(a) 
in 7rn+g_i(S'̂ ^~^) is zero, where a G 7rn-i{S0{q)) is the characteristic element of the 
bundle and p : SO{q) —> S^"^ is the evaluation map [40, Proposition 4.1]. 
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0. Introduction 

The subject of this article is a survey of fibration and product decompositions which 
occur in parts of classical nonstable homotopy theory. A fundamental goal in this subject 
is an analysis of the structure of the set of pointed homotopy classes of maps [X, Y] 
from a space X to a space Y. 

Without some reasonable hypotheses, standard arguments applied to the set [X^ Y] are 
sometimes cumbersome. For example, the set [EP^,]RP^] is countably infinite although 
there is an exact sequence of sets Z/2Z -> [EP^, EP^] -^ Z/2Z. This behavior traces 
back to the fact that maps in this exact sequence are not group homomorphisms. If 
either (i) X is a suspension given by SA or (ii) y is a loop space given by f2T, then 
the set [X, Y] is naturally a group. Furthermore, the groups [A, HT] and [SA, T] are 
canonically isomorphic by a standard adjoint functor argument. Thus much of this article 
will be restricted to spaces X which are suspensions or spaces Y which are loop spaces. 

In the case that y is a loop space i7T, it is frequently the case that either (1) fiT 
is homotopy equivalent to a nontrivial product or (2) QT admits a nontrivial fibration; 
the space T itself might not admit an "interesting" fibration while the space f2T does. 
One might also consider more general pointed mapping spaces map^(>l, T) for which 
map*(S'^T) is the (pointed) loop space. The n-th homotopy group of map*(>l,T), 
n ^ 1, is isomorphic to the group [E'^A.T]. Thus fibrations for map*(>l,T) provide 
information about homotopy groups with coefficients. 

Beautiful examples of this type of structure are given by (1) the EHP sequences due 
to James and Toda [37], [70] and (2) Selick's proof that the p-primary component of 
TTqS^^p an odd prime, is a Z/pZ-vector space [61]. These types of fibrations and product 
decompositions occupy Sections 3-5 of this article. Further analogous results provide one 
of the main points of view in this article. 

There are other related product decompositions of certain function spaces with targets 
given by spheres. Some of these are discussed in Section 5. In addition, stable analogues 
are given in Section 8. Applications to exponents of the homotopy groups of spheres and 
related problems are given in Section 6. Some of the main open questions at the prime 
2 are also given. 

Other related spaces admit certain product decompositions. For example, the loop 
spaces of double suspensions, at least after localization at p, are usually homotopy equiv-
alent to products. The ur-example here is given by a mod-p^ Moore space which is 
described in Section 7 if p is odd; mod-2'' Moore spaces are considered in Sections 7, 
11, and 12. General decompositions are given in Section 10. 

Certain unresolved questions related to 2-primary homotopy theory are discussed in 
these sections. In addition, the question of the divisibility of the Whitehead square im-
pinges on these product decompositions (or rather the lack of them). Thus a short dis-
cussion of this problem is given in Section 9. 

Connections between compositions of Whitehead products and James-Hopf invariants 
have been of interest for over 40 years. The product decompositions alluded to above 
are, in part, obtained from general p-local product decompositions which follow from the 
relations between Whitehead products and Hopf invariants. However, the finer structure 
implicit here is more delicate (at least to the eyes of this author). In order to codify some 
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of this finer information, combinatorial methods are applied. Thus this finer structure can 
be given in terms of generators and relations in "combinatorially defined" groups and is 
discussed in Section 13. 

Unless otherwise stated spaces and maps are assumed to be in the category of 
compactly-generated weak Hausdorff spaces with nondegenerate base-points [68]. The 
general constructions given here fit well in this context. Several theorems in the literature 
admit proofs within this context although published proofs may not always be stated this 
way. 

1. On some classical theorems 

A fundamental feature of nonstable homotopy theory is reflected by one of Serre's the-
orems. 

THEOREM 1.1 ([66]). (1) If X is a simply-connected space of finite type, then -KiX is a 
finitely generated abelian group for all i. 

(2) If X is a simply-connected space having reduced homology which is entirely 
p-torsion, then 'KiX is a p-torsion abelian group for all i. 

(3) If X is a simply-connected finite complex with nonvanishing reduced homology, 
then for each integer n, there is an integer Sn > n such that T^sn^ ^^ nonzero. 

A beautiful improvement of part (3) is given by 

THEOREM 1.2 ([46]). If X is a simply-connected finite complex with nonvanishing re-
duced mod-p homology, then for each integer m there is an integer Sm > T^ such that 
TTs^X has nonvanishing p-torsion subgroup. 

A classical example is 

EXAMPLE 1.3 ([2], [71]). If p is an odd prime and n ^ 3, then 7rkq+n-\S^ contains a 
Z/p^Z-summand for some r with g = 2p - 2. If n = 3, then r = 1. 

A particularly nice way to see this result is to map fi^S^ to the space J as given 
in [11]. Yet another attractive example is 

THEOREM 1.4 ([26]). Ifi^4, then -KIS^ is nonzero. 

As these theorems illustrate, the homotopy groups of a simply-connected finite complex 
are "large". Thus one point of view in the subject has been to focus on more specialized 
spaces such as spheres, Moore spaces, and bouquets of these spaces. Some of the basic 
tools which are used to study these spaces are given in the next section. 

2. Formulae 

Consider the bouquet X\ V X2 which is the subspace of the product X\ x X2 given by 
{X\ X 62) U (ei X X2) where ê  is the base-point in Xi. The cofibre of the inclusion of 
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X\ y X2 in X\ X X2 is the smash product Xi AX2; the n-fold smash product is denoted 
by 

X^") =XA---AX. 

Let F{X\,X2) denote the homotopy theoretic fibre of the inclusion of X] V X2 in 
X, X X2. 

THEOREM 2.1 ([28], [49]). IfX\ and X2 are path-connected, then F{X\,X2) is homo-
topy equivalent to E{QX\) A {QX2). 

Thus if Xi are Eilenberg-MacLane spaces, then X\ V X2 frequently has interesting 
homotopy groups as illustrated next. 

EXAMPLE 2.2. If Xi = Xi = CP"^, then E{QXx) A {QX2) is homotopy equivalent to 
S^. Thus there is an isomorphism 

7rg(CP°° V CP°°) -> i^qS\ q^3. 

A theorem of Ganea compares certain fibrations and cofibrations as follows: let p : 
£J —• JB be a fibration with fibre F. Consider the cofibration q: E -^ E\jC{F) where the 
cone of P, C{F), is attached by the inclusion of F in E. Thus E\jC{F) is frequently 
written as EjF. 

THEOREM 2.3 ([28]). If B is path-connected, then the homotopy theoretic fibre of q is 
E{F;,QB). 

The structure of EQX has similar useful properties some of which are used in evalu-
ating secondary cohomology operations. Let e : EQX -^ X ht the evaluation map and 
P{e; X} be the homotopy theoretic fibre of e. 

THEOREM 2.4 ([4]). If X is path-connected, then F{e\ X} is homotopy equivalent to 
E{QX) A {nx). 

The suspension of QEX has important applications. 

THEOREM 2.5 ([37], [48]). If X is path-connected, then there is a homotopy equivalence 

e : EQEX -^ E Nx^A 

Consider (1) the adjoint of 6 

e\nEX-^nEl\J x^A, 
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and (2) the collapsing map 

which sends X̂ *̂  to the base-point if i =^ n and which is the identity when restricted to 
X^'^\ The n-th James-Hopf invariant 

Hn: osx -^ nsx^''^ 

is the composite QEi^-Kn) ^ -̂ This map has ubiquitous applications some of which are 
discussed in Sections 3, 4, 6, and 10. 

The Hilton-Milnor theorem is basic in the subject. A precursor is as follows. 

THEOREM 2.6 ([35], [30], [48], [74]). / / X and Y are path-connected, then there is a 
homotopy equivalence 

f2Ex X ns y V y (x(̂ ) A Y) 
i>\ 

ns{xvY). 

Given spaces Xn let Yn be the product 11?= i ^i- ^^ ^n is pointed, there is a natural 
map Yn -^ Yn-^h The weak infinite product YlYn is the colimit of the spaces Yn, 

A corollary of Theorem 2.6 is the Hilton-Milnor theorem which is given next. 

THEOREM 2.7 ([35], [30], [48], [74]). / / X and Y are path-connected, then there is a 
homotopy equivalence 

e : QEX X QEY x J]^ QE{X^^ A F̂ -̂ )̂ -> QU{X V Y) 

for a certain choice of index set I. 

An elegant proof of this last theorem was given in [30] without specifying the choice 
of equivalence 6. Certain maps 

S{iJ) : X^^ A X^^^ -^ nSiXi V X2) 

pervade nonstable homotopy theory and are also used to specify a choice of 9 in Theorem 
2.7. Namely, there are natural maps 

Ek:Xk-^f2S{X,VX2), fc=l,2, 

given by the composite of the natural inclusion Xk —^ X\\/ X2 followed by the Freuden-
thal suspension £ : Xi V X2 -^ nE{Xi V X2). The maps S{iJ) are gotten by choices 
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of iterated Samelson products which are defined as follows. Regard QE{X\ V X2) as a 
group G. There are maps S : Ĝ ^̂  —> G induced by sending {g,h) to ghg~^h~^ [60]. 
The maps S{i, j) are obtained by iterates of S composed with choices of maps Ek^ After 
passage to adjoints, the resulting maps 

uj{ij) : EX^^ A X^'^ -4 E{X V F). 

are (iterated) Whitehead products. The equivalence 0 is gotten by taking products of 
certain maps f2uj{ij) which are indexed by a choice of basis for a free Lie algebra [35], 
[48], [74]. 

A generalization of the Hilton-Milnor theorem due to G. Porter is given below. 
Let Yu...,Yn be pointed CW-complexes with Ti{Y\,... ,Yn) the subspace of the 

product Y\ X • • • X y^ where at least i coordinates are at the base-point. 

THEOREM 2.8 ([58]). If each Yi is a suspension EXi, then there is a homotopy equiva-
lence 

00 

[ J QEXj ^ nTi{EXx,..., EXn) 

where Xj^ j > n, is obtained by certain repeated smash products and suspensions of 
Xi, I ^ i ^ n. 

A general structure theorem for the localization at p of many loop spaces is given as 
follows. 

THEOREM 2.9 ([47]). Let X be a finite, l-connected CW complex whose total rational 
homotopy rank is finite and nonzero. Then for almost all primes p, the loop space QX 
is p-equivalent to a product of spheres and loop spaces of spheres; that is there is a 
p-equivalence 

nx ^p Yls^"^-^ X Y[ns^''^-\ 
i 3 

Very little is known at primes p for which the homology of f2X has p-torsion. A basic 
example in this last case is discussed in Sections 6, 7, 10, 11, and 12. In addition one is 
led to wonder whether there are analogues of Theorem 2.9 and the results of Sections 7 
and 10 when X is the localization at p of a simply-connected finite complex which has 
the rational homology of a sphere and has nontrivial p-torsion in integral homology. 

3. The EHP sequence for p = 2 

The q-th James-Hopf invariant Hq : HEX -^ HEX^^^ was described in Section 2 after 
Theorem 2.5. In this section X will be restricted to the n-sphere 5". Furthermore all 



1182 ER. Cohen Chapter 24 

spaces are localized at the prime 2 unless otherwise stated. James' theorem given below 
yields the EHP sequence which has proven to be one of the important tools in the study 
of the homotopy groups of spheres. 

THEOREM 3.1 ([37], [38]). There is a 2-local fibration 

where E is the suspension given by the adjoint of the identity. 

Toda obtained odd primary analogues of this fibration [70], [71]; some of this infor-
mation is described in Section 4. 

The EHP sequence is the result of applying the long exact sequence of homotopy 
groups to the fibration given in Theorem 3.1. Thus there is a long exact sequence after 
localization at 2: 

•••->7riS'p)—•TTi^.iSpl —y7ri^\S^2)^ —• 7rî i5(^) ^ • ••. 

More information is obtained by looping the fibration in 3.1. 
Namely the set [X, Y] is naturally a group if y is a loop space and the element H2 in 

[nS'^~^^, fiS'^'^'^^] always has infinite order. However the situation changes after looping. 
The next theorem anticipates some results in Sections 4 and 5. 

THEOREM 3.2 ([37], [61], [14], [13]). After localization at the prime p, the element OHp 
has order pin the group [f2'^S'^''^K Q^S'^'^P'^^]. 

James had already proven the very useful result that the James-Hopf invariant of twice 
an element in the homotopy groups of S^^'^^ is zero [38]. The topological analogue given 
above is a modification of his methods. On the other hand, that maps, after looping, have 
finite order is a modification which also has very useful applications. This last approach 
is due to J.C. Moore. 

If p = 2 the result in Theorem 3.2 was known to M.G. Barratt who never published it. 
Unwittingly the author of this article published a proof of this theorem. One consequence 
is the next result due to James. 

THEOREM 3.3 ([38]). The order of the 1-torsion in TT̂ Ŝ "̂̂ ^ is bounded above by 2^ .̂ 

Other applications and improvements were given by Selick [61], Richter [59], and 
[15]. 

THEOREM 3.4 ([63], [15], [7]). The order of the l-torsion in TTqS'^'^'^^ is bounded above 
by 22^-!T1. 

By extending the fibration in 2.1 in the natural way, there is a map 

P : 12̂ 5̂ +̂̂  -> S"" 
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such that the homotopy theoretic fibre of E : S"" -^ i?5''+^ is fi'^S^'"'^^ where P gives 
the map from the fibre to the total space. It was observed in [16] that one could factor the 
//-space squaring map on Q^S^"^^^ through fi^S^'^'K The next result is an improvement 
of this remark where 2 denotes the //-space squaring map and E'^ denotes the double 
suspension. 

THEOREM 3.5 ([59]). There is a 2-local homotopy commutative diagram 

^ 3 5 4 n + l 2 _ ^ ^35-471+1 

f2p[ ]aE^ 

i754n-i —L-^ i?5^^-* 

Let Wn denote the homotopy theoretic fibre of the double suspension E'^ : S^'^~^ —> 
r2252n+l 

THEOREM 3.6 ([7]). After localization at p = 2, the fourth power map of fl^Wn is null-
komotopic. Thus TTqWn has exponent bounded above by 4. 

The map P fits in with features of the tangent bundle of a sphere. Namely let [q] : 
5" —̂  S"̂  denote a map of degree q\ write S'^{q} for the homotopy theoretic fibre of [q\ 
and P'^'^^{q) for the cofibre of [q\. Let rS"^ denote the unit sphere bundle in the tangent 
bundle of 5^; thus r5^ = SO{n + l ) / 5 0 ( n - 1). 

LEMMA 3.7 ([16]). There is a l-local fibration 

with homotopy theoretic fibre 5^"" ̂ {2}. Furthermore there is a morphism of fibration 
sequences 

4 1 1 , [' 

Thus P is the composite of two maps 

Q^gAn-x J_^g2n-\^2] and S^^'-^l]-^ S^^-\ 

It is an elementary and open question as to whether the degree 2 map [2] induces 
multiplication by 2 on T[qS^^~^ for all q. Part of this question is reflected in the features 
of 5̂ '̂ "* {2}. This last space has some properties which are similar to those of if-spaces. 
In particular given a degree one map of a mod-2^ Moore space to 5^""^ {2} say a : 
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p2n-i(2r) _, 52n-i |2}, then this map extends to a map fiUP^'^'-^l'^) -^ S^'^-^il} 
if and only if r ^ 2 [17]. In addition, there is a fibration 

where (1) {QX){q} is the homotopy theoretic fibre of the ̂ -th power map q : HX —> fiX 
and (2) 2 a is null [75]. Thus 8 • T^^S^'^-^il}) = 0. 

A few of the many applications of James' EHP sequence are given in [5], [15], [38], 
[45], [63]. 

4. The EHP sequence for p > 2 

The odd primary analogue of James' EHP sequence was obtained by Toda [70], [71]. 
Let p be an odd prime and let JqX denote the qth filtration of the James construction 
JX\ if X is path-connected, then JX is homotopy equivalent to f2SX [37]. In the case 
that X is 5̂ ^ the q-th filtration of JqX is homotopy equivalent to the (ng)-skeleton of 

THEOREM 4.1 ([70]). After localization at p, there are fibrations 

(i) Jj.-xS^'' -^ nS^""^^ ^ nS^''^^^ and 

(ii) 52^'^ -^ ajp-iS^"" - ^ ns^^'p-K 

The map T has additional features which distinguish it from Hp. 

THEOREM 4.2 ([31]). After localization at p, p > 2, the map T may be chosen to be an 
H-map, 

Up to homotopy, there is only one T which is also an if-map. Furthermore, it is 
proven in [49] that this choice of T is homotopic to the one originally constructed by 
Toda. 

Toda used the fibrations in Theorem 4.1 to obtain the odd primary analogues of James' 
exponent result (Theorem 3.3 here). 

THEOREM 4.3 ([38], [70]). // p is an odd prime, then p^'^ annihilates the p-torsion in 

This last result has been improved to that which is best possible [61], [20], [52]. Some 
discussion of this is given in Sections 5 and 6. 

Since f2Hp has order p in the group [r2252^+^ ^^5^^^+^], there is a lift Hp which 
fits in a homotopy commutative diagram 

4 
^252n+l JEU r2252"P+' 
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Selick showed that there is a choice of Hft Hp which is an iJ-map if p is an odd prime 
[61]. The behavior of if2 in mod-2 homology precludes any choice of H2 from being 
an H-map. Using these choices of Hp, p > 2, which are if-maps Harper obtained the 
following factorization. 

THEOREM 4.4 ([33]). After localization at an odd prime p, there is a homotopy commu-
tative diagram 

f2{d) JnE 

1 

Thus Theorem 3.5 is the 2-primary analogue of Harper's theorem. Additional related 
information is given in Section 6 where further factorizations of the pth power map are 
discussed. 

There are further fibrations which fit with the ones given by Toda. 

THEOREM 4.5 ([32], [49]). Ifn^l, there is a space BWn together with a fibration 

where E^ is the double suspension. 

Let / : E^X —> S^'^'^^ be a map. Questions of whether / preserves the co-H-structure 
of the source and target have been studied in [34] by using Selick's choice of lift Hp. 

THEOREM 4.6 ([34]). After localization at pfor p an odd prime, f is a co-H map if and 
only if Hp o /* is null-homotopic where /* : EX —• QS'^'^^^ is the adjoint of f. 

THEOREM 4.7 ([34]). After localization at p for p an odd prime, f is a co-A map {co-
associative) if and only if Hp o /** is null-homotopic, where /** is the double adjoint 
off. 

As in the case p = 2, a few of the many applications of some of these constructions 
are given in ([32], [49], [61], [70], [71]). 

5. Product decompositions related to spheres 

Another basic theorem in the subject traces back to the classical Hopf fibrations 

rj:S^ -^ 5^ with fibre 5 \ 

v'.S^^ S"^ with fibre 5^ and 

(J : S^^ -> S^ with fibre S\ 
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These fibrations immediately yield the following homotopy equivalences 

5^^- ̂  X 125^^- ̂  -^ nS^"" if n = 1,2,4. 

In somewhat different language, Serre [66] exhibited p-local equivalences, p > 2, 

These decompositions can be extended in at least 2 different ways. Either the sphere 
S^'^ could be replaced by other spaces or the function space f2S'^'^ could be replaced 
by other pointed mapping spaces mapr^{A,S'^). Product decompositions for either of 
these types of constructions yield useful information. The first analogue for loop spaces 
of double suspensions is studied in Sections 7, 10, 11, and 12 while map^{A,S'^) is 
considered here. 

The notation in this section is as given earlier: Wn is the homotopy theoretic fibre of 
the double suspension E^ : 5̂ '̂ "̂  -> Q^S^'^'^K 5"^{g} is the homotopy theoretic fibre 
of a degree q map \q] : S'̂  -> 5"̂ , and P^'^^ (q) is the cofibre of [q]. 

There is a p-local decomposition for the function space map^,{P^{p), 5̂ "̂̂ )̂ which was 
first proven by P. Selick for p > 2 [61]. Since the p-th power map for 7nap^{P^{p),X) 
is null for p odd, it follows that p'K^map^{P^{p), X) = 0 if p is an odd prime. Let X{n) 
denote the n-connected cover of X. 

THEOREM 5.1 ([61], [62]). After localization at p>2, there are homotopy equivalences 

Q^S\y) xWp-^ map,{P\p),S^^^^). 

As a corollary, Selick immediately obtains the next beautiful result. 

COROLLARY 5.2 ([61]). Ifp is an odd prime, then p annihilates the p-primary component 
ofTTqS'^, q^4. 

Analogous results for S^'^'^^ are described in Section 6. 
The 2-primary analogue of Theorem 5.1 is the following. 

THEOREM 5.3 ([16]). There is a 2-local homotopy equivalence 

f2^S^3) X W2 -^ map*(P^(2),5^). 

There are related splittings which reflect features of both the classical Hopf fibrations 
and the Whitehead square Wn - [in, in] in -KIU-XS^- In the following, a theorem of Gray 
stating that Wn is a loop space is used [32]. 

THEOREM 5.4 ([23]). There are l-local homotopy equivalences 

f2^S\3) X W2->map.(P^(2),5^), 

BW2 X W4 -^ map, (P^ (2), 5^), and 

W^ X Xn-^map.(P^(2),S^^). 
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REMARK 5.5. It seems reasonable to guess that X^ is homotopy equivalent to QW% in 
this last theorem. In addition, it is not known whether these decompositions proliferate 
to map*(P"'(2), S'^^^^) for n large. It is known that map*(P^(2), S"^) cannot split non-
trivially ifn^ 2,4,8,5,9,17 [12]. 

One feature of the product decompositions given above is that they imply product 
decompositions of homotopy groups with coefficients. Thus, for example, Theorems 5.1 
and 5.3 give the following isomorphisms where all spaces are localized at p: 

7r^(52p+^p) - ^ 7 r ^ _ , 5 ^ 0 7rg_3Wp, g ^ 2 p + l , 

and where 'Kq{X\p) = [P^{p),X]. A thorough and careful study of mod-p homotopy 
groups 7rg(X;p), p odd, is given in [50]. 

Notice that these previous results give that the spaces map*(EP^, i?*S" )̂, 2 ^ 3 , 
decompose as nontrivial products if n = 2,4, 8, 5, 9, or 17. One is led to wonder whether 
there are nontrivial decompositions of map*(MP^, i7*5"̂ ) for other values of n and i. 
An interesting case occurs when RP^ is the Spanier-Whitehead dual 5̂ "̂ +̂  - RP^^. If 
either n = 1 or one restricts to the metastable range, then QQ'^'^^ S^"^^^ is a retract of 
the pointed mapping space map*(5'*'̂ '̂ ^ - EP^'^, S^^'^^) [15]. Thus one might wonder 
how to interpolate these results for all n in order to obtain a nonstable analogue of the 
Kahn-Priddy theorem. A further question is whether this type of interpolation can setde 
exponent problems of the type addressed in the next section. A more precise discussion 
of this point is given in Section 8. 

There are two related decompositions associated to 50(3) and SU{4). The splitting 
concerning SU{4) due to D. Waggoner is given by 

THEOREM 5.6 ([73]). After localization at p — l, there is a homotopy equivalence 

W2xY4-^ map,{P\2),SU{4)) 

for some space I4. 

It is as yet unclear whether there are further analogous decompositions obtained by 
(1) replacing SU{4) by SU{n), n > 4, or other related Lie groups or (2) replacing 
TEP^ = P^(2) by MP^ = RP^/RP''-^. However, there is the natural map 

7n:i:RP^~^ -^BSO{n). 

A theorem of Jie Wu which is stated in Section 12 here gives that 73 induces a split 
epimorphism on iTq after localization at 2 when q^ 5. 

6. On exponents for spheres 

Throughout this section p denotes a prime and all spaces are assumed to be localized 
at p. A space Y is said to have exponent p^ (at p) provided p" is the smallest power 
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of p which annihilates the p-torsion subgroups of all of the homotopy groups of y . An 
if-space X is said to have if-space exponent p^ if p'^ is the least power of p such that 
the p^-ih power map p^ : X -^ X is null-homotopic. Since the self-map of X given 
by p'^ induces multiplication by p'^ on the level of homotopy groups, the existence of 
an -ff-space exponent implies that the space has an exponent which is bounded above 
by the il-space exponent. An example of a space with an exponent is the n-sphere; this 
follows from results of James and Toda [38], [70] which are listed here as Theorems 3.3 
and 4.3. Improvements of these results were obtained by compressions of the pth power 
map for i7^5 '̂'+^ through the double suspension map E^ : 5^^"^ -> Q'^S^'^^K 

THEOREM 6.1 ([20], [52]). After localization at an odd prime p, there is a map TT : 
Qig2n-\-\ __^ gin-x fQg^fii^f y^ifii Q homotopy commutative diagram 

gln-\ i _ , 52n-l 
I' 

A theorem of B. Gray gives that if p is an odd prime, then there exist elements of 
order exactly p^ in 7r*5̂ '̂ "'"̂  [29]. Combining this last fact with the fact that -K^S^ is 
trivial if z > 1, the next corollary follows at once. 

COROLLARY 6.2 ([20], [52]). After localization at an odd prime p, the group p{'KqS^'^'^^) 
is contained in the image of the double suspension El{7rq-2S^'^~^). Thus 5̂ "̂̂ * has 
exponent p^. Furthermore, i7̂ "̂ (5̂ '̂ "̂ (̂2n -f- 1)) has H-space exponent p^. 

Important refinements for "large" primes p were given in [3]. 

THEOREM 6.3 ([3. p. 7]). Ifp is prime with p ^ 5 and n ^ 1, then there exist p-local 
spaces Too together with p-local fibrations 

g2n-\ _ ^ 2;^_^^52n+l 

and a homotopy commutative diagram 

^2^271+1 _ P _ f22g2n^\ 

g2n-\ L ^ g2n-\ 

where 

0 0 

is principal fP'S'^'^^^-fibration. Furthermore, the p-th power map for Q'^S'^'^^^ factors 

as Q'^S^''^^ - ^ 52^-^ - ^ f2252n+î  
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The situation at the prime 2 is less clear. There is a factorization of the if-space squar-
ing map for fi^S'^'^'^^ through f2S^'^~K However, the potential analogous factorization 
with 4n -f 1 replaced by 4n -I- 3 fails. There are, however, upper and lower bounds for 
exponents at the prime 2. 

Consider the canonical line bundle over RP^^ which has order 2^^'^^^. Assume that 
all spaces are localized at 2 and consider the maps 

i : ̂ p2n_^^2n+lg2n+\ ^^j (̂  j) 

s : f2̂ +̂* 5̂ "+̂  -^Q^S"^ (6.2) 

where i is Whitehead's map and 5 is the restriction to the base-point component of the 
(2n + l)-fold looping of the stabilization map 5̂ "̂*"̂  -^ QS^'^'^K Since soi has order 
exactly 2^P") in the group [EP^^, i?^5°°], the map s has order at least 2*̂ (̂ 71) j^at s 
has order at most 2^^^"^^ follows by naturality of the stable second James-Hopf invariant 
and the Kahn-Priddy theorem. That nl^~^^ S^'^'^^ has an if-space exponent bounded 
above by 22^-!(2)1 follows from ([64], [15], [7]). 

Thus i7o'*"̂ Ŝ̂ +̂̂  has an if-space exponent bounded below by 2*̂ (̂ '') and above by 
However, it is not known whether there exist elements of order 2̂ ^̂ '̂ ^ in 

n^S^"^^^ for all n; it is known in many cases [45]. Barratt and Mahowald at one time 
conjectured that 5̂ '̂ '̂ ^ had exponent 2^^^'^\ This conjecture is unsettled if n ^ 3, and 
also raises the possibility that the if-space exponent for Q^^'^^S^'^^^ may be different 
than the exponent (for homotopy groups). 

It is also the case that if-space exponents for certain loop spaces of spheres are 
strictly larger than the exponent for spheres. Of course the power maps for f2S'^ are 
always essential. 

THEOREM 6.4 ([53]). If q ^ 2n — 2, and spaces are localized at the prime p, then the 
p^-th power map on i7̂ (5̂ '̂ "̂ ^ {2n -h 1)) is essential for all r. 

A related and somewhat peculiar example is the exponent of 517(3) at the prime 2. 
It was shown in [15], that n^{SU{3){5)) has an if-space exponent (localized at p = 2) 
which is bounded above by 16. However it was pointed out in [15] that 7^iSU{3)^2) for 
i ^ 10 has exponent 4 and thus the ?;i-periodic elements given by Oka [55] also have 
exponent bounded by 4. Thus the situation for SU{3) is not very well understood. 

These examples raise the possibility that if-space exponents may well be different than 
homotopy exponents. Again, the situation is not well understood. Namely, the proofs for 
the existence of exponents for the homotopy groups of certain finite complexes arise 
from the existence of an if-space exponent. Thus without "complete" knowledge of 
the homotopy groups for the complex, it is difficult to decide whether an exponent for 
homotopy groups is strictly less than a given ff-space exponent. 

One particular finite complex is a mod p^-Moore space P'^(p^). The loop spaces of 
P'^{p^) were central in the proof of Theorem 6.1; they provide useful examples of spaces 
whose double loop spaces have exponents, and they are the subject of the next section. 
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7. On the homotopy theory of Moore spaces 

The subject of this section is the homotopy theory of mod-q Moore spaces P'^'^^{q) the 
cofibre of a degree q self-map of S"̂ . The material in this section comes from ([19], [21], 
[51], [16], [54]). 

Since the universal cover of P^{q) is homotopy equivalent to Vg_iS^, the homotopy 
groups of P'^{q) are given in terms of (1) the Hilton-Milnor theorem, and (2) the ho-
motopy groups of spheres. Of course P^{q) does not have an exponent for q> 2, Thus, 
simply-connected mod-q Moore spaces are considered here. 

Two useful features of mod-p Moore spaces are (1) they provide a tool for the analysis 
of p-th power maps on iterated loop spaces of spheres, and (2) the loop space of a 
simply-connected mod-p^ Moore always splits as a nontrivial product. An analysis of 
these splittings is the key to the results stated in Section 6 [20], [52]. The ur-example 
of these splittings is given in the theorem below. 

THEOREM 7.1 ([19]). Ifp is an odd prime and n ^ 1, then there is a homotopy equiva-
lence 

5 2 n + l | p r | y^Qsfy p4n+2fcn+2(^rA _^ ^ p 2 n + 2 ( ^ r ) 

An analogous result is correct if p = 2 with either (i) n = 1 with r ^ 3 or (ii) n = 3 
with r ^ 4. However these product decompositions fail if 2n -h 2 is not a power of 2 
[15]. This failure traces directly to the failure of the Whitehead square on 5̂ "̂"*"̂  to be 
divisible by 2 in these cases, a problem which is discussed in the next section. In general, 
there are (nonsplit) fibrations 

S^{2^} _ r2P^+^(2^) -^nsfy p2n+fc(n-l)(2-)'\ 

if r ^ 2 [16]. It is not, as yet, clear what the analogous fibrations should be if r = 1. 
There is one other type of space which appears in the determination of the homotopy 

type of the loop space of a mod-p'" Moore space, p^ > 2. If p is an odd prime, and 
n > 2, then there is a choice of (2n -f l)-connected bouquets of Moore spaces 

m Q 6 J 

together with a map a : Pin.p") -^ P^^+^(p''). The space T^̂ "̂ {̂p''} is the homotopy 
theoretic fibre of a. 

THEOREM 7.2 ([21], [52]). Ifp is an odd prime, and n ^ 2, then thefibration 
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is split. Thus there is a homotopy equivalence 

Furthermore, there is a fibration 

An application of (1) the Hilton-Milnor theorem, (2) the fact that P''{p'') A P"^(p^) 
is homotopy equivalent to P^+^(p^) V p^+^-i(p^) if n -f m ^ 5 with p^ > 2, and (3) 
Theorems 7.1, 7.2 gives the next result. 

THEOREM 7.3 ([21], [52]). Ifp is an odd prime and n ^ 3, then QP"^^^ {p'') is homotopy 
equivalent to a weak infinite product of spaces 

S^^^'ip"-} and T^^+HP'} 

for certain choices of k and j . 

The product decompositions given in Theorem 7.2 admit 2-primary analogues. If r, 
n ^ 2, then there exists an n-connected bouquet of Moore spaces 

P(n,2^)= y P^'*(2'') 
maeL 

together with a map a : P{n, 2'') -> P^+^ (2"*} with homotopy theoretic fibre T'̂ "̂̂  {2''}. 

THEOREM 7.4 ([16]). If r and n are at least 2, then the fibration i?P^+^(2'') -^ 
2̂ 71+1̂ 2̂ } is split. Thus there is a homotopy equivalence 

T^+^{2^} X nP{n,2') ^ /2P^+*(2^). 

Furthermore, there are fibrations 

nis^'^-' X J]52'^-^{2^}] 

^ OT2-^1{2''} -^ f2252n+l X r?/" J ] 52'--^{2}") 

The spaces T^+i{2^} and T2^+»{p^} do not usually split further. If p is an odd prime 
and n > 1, then T '̂̂ +^P'̂ } is atomic [21]; a similar result applies to T^+^{2''} if n-f 1 
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is not a power of 2 [16]. That the Moore spaces P'̂ +^(p^), p^ > 2, have exponents 
follows from the above theorems. However, the best possible exponents are known in 
case p is odd. 

THEOREM 7.5 ([51]). Ifp is an odd prime and n ^ 3, then Q'^P'^{p'') has H-space 
exponent exactly p^^^. 

This last result is best possible by the following theorem. 

THEOREM 7.6 ([19], [14]). Ifkandn^l with p"" > 2 for any prime p, then 

contains a IJ/p'^'^^Zsummand. 

The analogue of this theorem in the case that p^ = 2 is discussed in Section 11 here. 
The way in which mod-p^ Moore spaces fit with factorizations of power maps in 

Theorem 6.1 is described below where a short digression concerning maps of degree p'" 
[p̂ ] : S'^ -^ S'^ is given first. Consider the looping of [p'̂ ], filp"^]; this map is homotopic 
to the p'̂ -th power map on f2S'^ if either (i) 5^ is an if-space (thus n = 1,3, or 7), (ii) 
all spaces are localized at p and S?^>. is an if-space (thus if p = 2, n = 1,3, or 7 while 
if p > 2, then n is odd), or (iii) all spaces are localized at p with n odd and p^ > 2. 
The map i7[2] : HS'^ -^ QS"^ is homotopic to the i/-space squaring map if and only if 
n = 1,3, or 7 [15]. Thus the notation [p̂ ] is chosen in order to distinguish the self-maps 
p" and n\p']. 

Next consider the homotopy commutative diagram 

P^'ip'') 

gn 

where q denotes the pinch map. Enlarging this diagram to one which gives morphisms 
of fibration sequences, 

12(5" {P^}) 

1 
/25" 

/25" 

£"{p-} 

F"{p'"} 

f?5" 

pn(pr) _ i _ ^ gn 

ilpl 
* 5" 

there is a factorization of Q\p''] : i75" -+ ^25" through F"{p''}, the homotopy theoretic 
fibre of q. Product decompositions of QE'^{p') and /2F"{p'"} which are given next 
imply Theorem 6.1. 
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THEOREM 7.7 ([20], [15]). Let p be an odd prime. There are morphisms of p-local fibra-
tions 

d x l x l 

1 

vv/ier̂  the horizontal arrows are homotopy equivalences. 

In a similar direction, P. Selick has exhibited p-local decompositions of the loop spaces 
for JqS^"^ [65]. His more complete results are in the cases q where H*{f2JqS^'^',¥p) 
have trivial Steenrod reduced power operations. 

8. On product decompositions related to QX 

This section represents a digression from the main points of the previous sections. There 
are product decompositions associated to QX = Q°°E°^X of which the product de-
compositions in Section 5 are analogues. Thus the liberty of comparing product decom-
positions of QX with those given in previous sections is taken here. 

T0rnehave exhibited a product decomposition of the space SG = i7?]fl5°° [72]. This 
decomposition applies to other spaces in several different guises. In addition, a second 
decomposition due to Kahn and Priddy [40] provides a p-local homotopy product de-
composition of QBUp where Up denotes the symmetric group on p letters. Analogous 
product decompositions apply to spaces (1) QQQX for finite complexes X with n > 
dimension of X, and (2) {B7r)p where TT runs over various choices of groups like the 
stable automorphism group of free products of cyclic groups. These splittings are a re-
flection of the features of certain mapping spaces with targets given by spheres as given 
in Section 5. 

First of all, the space J will be described. It is a path-connected if-space whose 
reduced integral homology is torsion. Thus J is homotopy equivalent to a wedge of 
its localizations J^p) for each prime p. The space J^p) can be chosen to be BGL{¥q)^ 
if p > 2 where g is a prime such that g* - 1 ^ O(mod p) for I ^ i ^ p - 2 and 
i/p(gP-^ - 1) = 1. If p = 2, J(2) can be taken to be BS0{¥3)^ [56], [57], [27]. 

By work of Quillen [56] there is a map from BGL{¥q) to the homotopy theoretic fibre 
of -0^ - 1 : BU —̂  BU which is an equivalence after completing at an odd prime p and 
where ^^ denotes the evident Adams operation. A similar result is correct at p = 2 with 
-0^ - 1 : BSO -> BSO [56], [57], [27]. Thus J(^p) may be taken to be the homotopy 
theoretic fibre of i/;̂ "* - 1 : Sf/ ^ SC7 at p > 2 and t/;̂  - 1 : BSO -^ BSO at p = 2. 
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Notice that the symmetric group on n letters En is isomorphic to the subgroup of 
permutation matrices in GL(n,Fg). Passage to limits and p-completions gives 

The homotopy theoretic fibre of TT is the p-completion of Coker J. Among other results, 
T0rnehave showed that TT admits a cross-section. An elementary proof is furnished in [22]. 

THEOREM 8.1 ([72]). There is a homotopy equivalence 

JxCokQvJ -^Q^S"^. 

Assume that X is a connected finite complex which embeds in 5 ^ and write D{X, N) 
for the Spanier-Whitehead dual S^ - X. An application of Spanier-Whitehead duality 
gives the next result. 

THEOREM 8.2 ([24]). There is a homotopy equivalence 

Notice that Q^QX is homotopy equivalent to the component of the base-point 
in Q^map^{D{X,N),QS^). 7napl{D{X,N),n^S^). As H^S^ splits by Theo-
rem 8.1, the next corollary follows at once. 

COROLLARY S3. If X is a connected finite complex which embeds in S^, then there is 
a homotopy equivalence 

Q^QX -^ mapl{D{X, N),J)x mapl{D{X, AT),Coker j ) . 

This last corollary of course provides an elementary description of the well-known 
decomposition of the stable homotopy groups of finite complexes where one summand is 
given by the homotopy groups of J with coefficients in the (suspensions) of the Spanier-
Whitehead dual of X. Thus it is natural to wonder whether Coker J admits a nontrivial 
and useful fibering. It is worth remarking that similar decompositions apply to groups 
other than GL{Fq). Some examples are given by various "stable" automorphism groups 
such as the automorphism group of a free group or certain free products [22]. 

Let Up denote the symmetric group on p-letters. Kahn and Priddy proved 

THEOREM 8.4 ([40]). There is a p-local homotopy equivalence 

QBEp -^ r2^5~ X Y{p) 

for some choice of space Y{p). 
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The product decompositions of map*(P^(p),5^P"^^) given in Theorems 5.3 and 5.4 
fit with the above decomposition. Consider the natural map s : fi^S^ -^ i?o°5°°. The 
decompositions given in these theorems fit in a homotopy commutative diagram 

map.(p4(p),52p+0 ^ fi^S^xnWp 

\sxf i-
QBEp y Q^S"^ x Y{p) 

where the horizontal arrows are p-local homotopy equivalences. Furthermore QBSp 
is naturally filtered with first filtration given by map„{P^{p),S^^'^^) [15]. The other 
filtrations are specified by certain mapping spaces which are analogues of 

map, {D (EP2^, 4n + 2), 5^^+^) at p = 2. 

For example, one might wonder when 

map, 

is homotopy equivalent to a product with one factor given by QQ'^'^^S^'^'^^ localized at 
2. Very little is known about these mapping spaces other than the mod-p homology as a 
Hopf algebra and an exponent for their homotopy groups. 

9. The strong form of the Kervaire invariant one problem 

Consider the Whitehead square Wn = [im'i'n] in '^2n-\S'^. That Wn is zero precisely 
when n = 1,3, or 7 is equivalent to the classical problem of the existence of elements 
of Hopf invariant one which was solved completely in [1]. Restrict attention to integers 
n which are odd and not equal to 1, 3, or 7. Thus Wn is nonzero in these cases and is of 
order 2. There is a short exact sequence of abelian groups 

0 ^ Z/2Z - . 2^2n-\S^ ^ 27rf_, ^ 0 

where 27rf is the 2-primary component of the z-th stable stem and Wn is the generator of 
Z/2Z. Hence Wn is divisible by 2 in 'K2n-\S'^ if and only if this sequence fails to split. 
A small part of the interplay between stable homotopy theory and nonstable homotopy 
theory arises in asking for the structure of the first nonstable group 7r2n-\S'^ in the 
homotopy groups of S^\ namely, is the extension above split or nonsplit? 

It has been known since the 1950's that Wn is not divisible by 2 if n is not equal 
to 2^ - 1 for some k. Of the remaining cases given by n = 2̂ ^ - 1, it is known that 
Wn is divisible by 2 if n = 1,3,7,15,31 or 63 [8], [41], [63]. The cases for which 
n = 2̂ ^ — 1 > 63 remain open. 

The strong form of the Kervaire invariant one conjecture is that Wn is divisible by 2 
when n = 2*̂  - 1. Several reformulations of this conjecture are listed below where n is 
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odd and not equal to 1, 3, or 7. One form is given in the frontispiece of loan James' 
book [39] on the topology of Stiefel manifolds. 

THEOREM 9.1 ([8], [63], [15]). The following are equivalent where n is odd and not 
equal to 1, 3, or 1. 

{\) Wn is divisible by 2. 
(2) The exact sequence {on the level of 2-primary components) 

0 -^ Z/2Z ^ 7r2n-i5" -^ 7r2n5^+^ -> 0 

fails to split. 
(3) There is a map P'^'^{2) -> i75'̂ "̂ ^ which is nonzero in mod-l homology. 
(4) There exists a space X such that (i) W{X\¥2) is isomorphic to ¥2 in degrees 

i = 0,n -\- l,2n -\- I and 2n -{- 2, (ii) W{X;¥2) is zero in other degrees, (iii) 5^^+' is 
nonzero on if^+^(X;F2), and (iv) Sq^ is nonzero on H^'^+\X;¥2). 

(5) The self-map i7^[-l] of Q'^S'^'^^^ is homotopic to the inverse. 

Thus one might ask whether a degree - 1 map [-1] : 5^ -^ 5^ induces multiplication 
by - 1 on 7r*5" for an odd integer n. A restatement of 9.1(5) is that the action of the 
map [—1] on the abelian group [E'^X.S'^] by composition is given by multiplication by 
— 1 for every double suspension S^X if and only if Wn is divisible by 2. Thus in the 
cases that n is odd, ni^2^ - \, there is a double suspension E'^X such that [—1] does 
not act by multiplication by - 1 on [S'^X, S'^]\ in this case, it suffices to use X — fP-S'^. 

There have been a number of attempts to solve this question. Homotopy theoretic meth-
ods are used in [8]. One reformulation has been given in terms of a classical construction 
of L.E. Dickson which gives the quaternions, Cayley numbers and related algebras [17]. 

In addition, this conjecture is encountered when considering the structure of i7P^^(2^). 
This last space is sometimes homotopy equivalent to 

5 2 ^ - 4 2 ^ } X n^i \j p4n-2+fc(2n-l)(2r)Y 

If there is such a product decomposition, then there is a map p4n-2^2^) —> QP'^'^i^T) 
which is nonzero in mod-2 homology. Thus there is an induced map P'^'^~^(2) -> i75^^ 
which is nonzero in mod-2 homology gotten by precomposing with P^'^-^(2) -> 
p4Ti-2^2'') and post-composing with the looping of the pinch map P^^(2^) -^ S'^'^. 
Furthermore, W2n-\ is then divisible by 2 by 9.1. 

10. General splittings for loop spaces of double suspensions 

Throughout this section X is assumed to be a suspension EA. Features of the fc-fold 
Whitehead product map EA^^"^ —> EA are considered. Applications to natural p-local 
product decompositions of QE^A are given here. Applications to the homotopy theory 
of mod-2 Moore spaces are given in the next two sections. The material in this section 
is taken from [25]. 
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Let E : X -^ HEX be the Freudenthal suspension and write 

ad{k - I) : X^^"^ -^ QEX 

for the k'foM Samelson product 

[E[El'^[E,EY^-\ 

with the fc-fold smash product of X denoted X^^\ The symmetric group on k letters 
acts on X^^^ by permuting coordinates. Define self-maps 

inductively by 

/32 = 1 - ( 1 , 2 ) and (10.1) 

/3fc+i = lA/3ib-( /3feAl)o(l , fc4-l , fc ,A:-l , . . . ,2) . (10.2) 

The Dynkin-Specht-Wever relation is 

Mk = kPk 

in the group [X^^\X^^^] [36]. 
Let k : flEX —* QEX denote the fcth power map. Since X is itself a suspension, 

bilinearity of the Whitehead product EX^^^ —> EX directly gives the next result. 

LEMMA 10.1. The equation ad{k-l)'0k = kad{k-l) holds in the group [X^^\QEX]. 
Thus there is a homotopy commutative diagram 

0k 1 k 

X^'^) y HEX 
ad(k-\) 

together with an induced map 

hocolimX(^) -^hocolim i?i:X 
/3ic k 
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Let Lk{X) denote hocolim^^ X^^\ If X is a p-local space with (p, A:) = 1, then the 
natural map QEX —> hocolim^ QEX is a homotopy equivalence. 

LEMMA 10.2. If X is a p-local space with (p, k) = 1, then there is a homotopy commu-
tative diagram 

Xi") ^^^!^ HEX 

Lk{X) > QEX 

4>{k) 

Furthermore, there is a homotopy equivalence 

X^^^-^Lk{X)wMk{X) 
where Mk{X) = hocolim(/fe_y3̂ .) X^^\ 

Combining the above results, one obtains general product decompositions of HEX as 
follows. 

THEOREM 10.3. If X is p-local with (p, k) = 1, then any k-fold Samelson product 
XW -^ QEX factors through Lk{X). Furthermore, the canonical multiplicative exten-
sion of (j){k), 

Q^{k) : QELk{X) -^ QEX 

has a left inverse. Thus there is a homotopy equivalence 

QEX -^ QELk{X) X Ak{X) 

where Ak{X) is the homotopy theoretic fibre of^{k) : ELk{X) —> EX. 

REMARK 10.4. If EX is an odd sphere, then Lk{X) is always contractible for k ^ 2. 
If EX is an even sphere S^"^, then L2{X) localized at an odd prime p is homotopy 
equivalent to Sf'^rK In this case Theorem 10.3 gives a p-local decomposition for QS^'^, 
p > 2 . 

In the cases above Lk{X) is homotopy equivalent to a (fc - l)-fold suspension as /3k 
desuspends at least (fc - 1) times; Thus the decompositions of QEX proliferate in at 
least 2 different ways. Two of these are illustrated below. 

PROPOSITION 10.5. Let X be a suspension which is homotopy equivalent to a 2-cell 
complex given by the cofibre of a map a : 5^"^ -^ 5" ,̂ then L^iX) localized at p^3 
is homotopy equivalent to the localization at p of E'^'^'^X. Thus 

(1) L3(P^(2)) is homotopy equivalent to P^'^'^l), and 
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(2) L3(r^CP2)(2) is homotopy equivalent to (i:^"+^CP2)(2). 

If X has more than 2 cells, then L3(X)(p) grows in "size" quickly. For example, if 

^diin5^i(X;F2) = 3, then 
i 

^ d i m / r i ( i 3 W ; F 2 ) = 8. 
i 

There are of course finer decompositions of the smash product which are useful for non-
stable homotopy theory and which arise by comparing Lk{X) A X '̂̂ ) with Lk-\-n{X). 
The proof of 10.2 gives that Lk+n{X) is a p-local retract of Lk{X) A X̂ "") if both k and 
(n-h A:) are relatively prime to p. In the case that X = P^(2), L^{X)AX^'^^ is homotopy 
equivalent to E'^^'^X^^^ by Proposition 10.5(i) and Lemma 10.2. It then follows that 
there are homotopy equivalences 

L^iP^'il)) A P"(2)(2) -> r^^-* (P^(2))^^\ 

pn(2)(3) ^ (V2 P^"-H2)) V i:^^-^.(Cp2 A P2(2)). 

Thus one has 

LEMMA 10.6. There is a homotopy equivalence 

LsiP^'il)) -^ P^^-^(2) V (CP2 AP^"-^(2)). 

Statements 10.2, 10.3, and 10.6 have applications in Section 11 where infinitely many 
elements of order exacdy 8 in 7r:^(P"(2), n ^ 4, are described. 

Of course X̂ "̂ ^ admits further decompositions after localization at p. Some of these 
have been used by Jeff Smith [67]. The decompositions here use "different" summands 
than those used by Smith. For example, X^^\ after localization at p = 2, is homotopy 
equivalent to L3(X)(2) VM3,i(X)(2) VM3,2(X)(2) where M3,i(X) is the telescope of 6i, 
z = 1,2, with 1̂ = 1 + (1,2;'3) -f (1,3,2) and (92 = 3 - /53 - ^1. If X is a 2-cell complex, 
then M3,i(X) is a 4-cell complex with the "top" and "bottom" cells of X^^\ One is 
led to wonder about the structure of the indecomposable factors of QEX at least after 
localization at a prime p. In the special cases that X is a 1-connected mod-p^ Moore 
space with either p > 2 or p = 2 with r > 1, the factors of QX have been given in 
[21], [51], [16]. In all of these cases, the factors are indecomposable with the possible 
exception of the cases X = P'^(2^). In all cases, the factors or their loop spaces can 
be fibred iteratively in terms of spheres and their loop spaces. It is interesting to ask 
which other spaces X satisfy the property that i?X is homotopy equivalent to a product 
of spaces which can be fibred (iteratively) in this way. One surprising example is given 
by some spaces which are the p-completions of BG for a finite group G. It is shown in 
[43] that i7(J3Gp) sometimes has the loop space of a mod-p^ Moore space as a retract. 
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11. On the homotopy theory of T'̂ RP^ n ^ 2 

Some product decompositions of QE'^WP'^, n > 2, are given in this section. Several 
applications follow. One such application is to the construction of an infinite family of 
elements of order exactly 8 in the homotopy groups of E'^WP'^, n ^ 2. 

A point worth mentioning concerns these elements of order 8 in -K^S^WP'^ when 
71 + 2= I (mod 4). In these cases, the methods employed here give elements of order 8 
in dimensions above roughly 15 times the stable range; the methods do not give elements 
of order 8 in lower degrees. One wonders whether this gap is an artifact of the methods 
or whether there is an anomaly worth studying. This section summarizes work in [25]. 
The space T^EP^ is denoted P^+2(2). 

THEOREM l l . l . / / n > 3, there exist spaces X{n -\- 1) and y ( n -f 1) together with 
homotopy equivalences 

i7pn+i(2) _^ f2p3n(2) X X{n + 1), and 

^pn+i(2) -^ i?P^^-\2) X Y{TI + 1). 

To find elements of order 8 in the homotopy groups of P^(2), n ^ 3, the previous 
theorem can be used in conjunction with the next result where the mod-2 homology of 
^pn-fi(2) is required. Here recall that H^(i?P^+^(2);F2) is isomorphic to the tensor 
algebra T[u, i;] generated by a class u of degree n - 1 and a class v of degree n [10]. 

THEOREM 11.2. There exist elements X2n in 7r4n-3^P^'^(2) with Hurewicz image in 
mod'2 homology given by the commutators \u,v\ — u^v-\-v®u. Furthermore, the 
order of \2n is independent of the choice of an element with mod-2 Hurewicz image 
[u, v] and is given by 

4 £/n = 0(2), and 8 ifn=\{2) 

for all n> \. 

Fix natural numbers n and k and define an integer which is divisible by 4 with the 
equation 

/i(A:,n) = 9^^(471+1)-1. 

The next theorem follows at once from Theorems 11.1 and 11.2. 

THEOREM 11.3. Let n, k and /i(fc, n) be as above. 
(1) There exist spaces B{k,n) and homotopy equivalences 

^p4n+2(2) ^ r2P'̂ ( '̂̂ )+2(2) X B{k,n). 

Thus 7r2+2/x(A:,n)̂ '̂ '̂ '̂ (̂2) contains a Z/%Z-summandfor allk^l. 
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(2) There exist spaces C{k^n) and homotopy equivalences 

^p4n(2) ^ Qpn{kM-r)+2(2) X C(fc,n). 

Thus T^2^in{k,5n-2)P^^['^) Contains a Z/SZ-summandfor all k ^ I. 

(3) There exist spaces D[k, n) and homotopy equivalences 

^p4n+i(2) - . Qpt^{k.\Sn-2)+i^2) X D{k,n). 

Thus 7r2+2/x(ik,i5n-2) '̂̂ ^^(2) Contains a Z/%Z-summandfor all k ^ I. 
(4) There exist spaces E{k, n) and homotopy equivalences 

Thus 7r24-2/x(fc,3n+2)-P'*'̂ ^̂ (2) Contains a Z /%Z'Summand for all k^ 1. 

At this writing, the following questions arise in the study of i?P""^^(2). 
(1) What are the "indecomposable" factors of f2P^+^(2), n ^ 2? 
(2) Do the "indecomposable" factors of i7P'̂ "^ (̂2) admit (iterated) fibrations by 

spheres and their loop spaces if n ^ 2? 

12. On the homotopy theory of TEP^, a theorem of Wu 

J. Wu studies the natural map 7^ : EWP"^'^ —> BSO(n) with homotopy theoretic fibre 
denoted X{n) [75]. The results here are a partial synopsis of a portion of this study. 

Let Zn denote the homotopy theoretic fibre of 7n. Let RP^ = RP^/RP''-'^. 

THEOREM 12.1 ([75]). / / n = 3, Zn is homotopy equivalent to iT^lP^ v SRP^. 

Of course jn does not admit a cross-section. However, Wu loops 73 beyond the 
connectivity of i7MP^ to obtain 

THEOREM 12.2 ([75]). There is a homotopy equivalence 

n^uRP^ -^ n^Bso{3) X n^Z3. 

Thus QQERP^ is homotopy equivalent to 

QlS^ X nl{E^RP^ V i:EP2^) 

after localization at p = 2. 

Notice that BS0{3), and SWP2 have nontrivial rational homotopy groups. However, 
after looping enough to force the rational homotopy groups to vanish, Wu obtains a 
product decomposition. One corollary is of course that the natural multiplicative map 

f2(73) : firRP^ -^ 50(3) 
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induces a split epimorphism on the 2-primary component of 7rqSO{3) for q> 3. 
Other applications to spaces like S^, SU{3), and G2 follow. For example, TTSERP'^ is 

isomorphic to 03Z/2Z; there is a choice of map 77: 5^ -> ERP'^ such that i7Q5C/(3) is 
a 2-local retract of i?oF(^) where F{fj) is the homotopy theoretic fibre of fj. In addition, 
identification of infinitely many elements of order 8 in TT^ERP'^ follows from Theorem 
12.2 and the results in Section 11. 

The product decomposition in Theorem 11.2 has immediate applications for the ho-
motopy groups of ERP'^. Combining the above with a further detailed analysis of the 
product decompositions given in Section 10 here, J. Wu [75] determines the following 
table for the homotopy groups of P'^{2). 

13. Hopf invariants and Whiteliead products 

A useful technique in nonstable homotopy theory is an analysis of the relations between 
Hopf invariants and Whitehead products. These relations are codified in the Hilton-
Milnor theorem and have been studied since the 1950's [6], [4], [9], [69]. One application 
is a partial analysis of the effect of the qih power map in the group [SX, SX] on the 
homotopy groups of SX [6]. 

Many features of these relations can be described by the structure of a group given 
by a certain combinatorial description. Using methods originating with work of W. Mag-
nus [44] and M. Lazard [42], a description of this group is given in Theorem 13.1. 
Computations with the classical distributivity law then follow from relations in a group; 
this information is given in [18]. Several applications follow directly one of which is 
summarized here. 

The purpose of this section is to present "universal examples" for certain groups which 
appear in classical nonstable homotopy theory. Consider the groups [X'^^ QUX], [JnX, 
HEX], and [OEX, QEX] where X is assumed to be a suspension and JnX denotes 
the nth stage of the James construction JX [37]. The phrase "universal example" for 
[JnX, HEX] is defined in the next paragraph. 

Choose elements in the group [HEX, [2EX] as follows: 
(1) the class of the A;th power map k : HEX —• QEX with k a natural number, and 
(2) the class of the composite for each natural number k 

QEX ^ QEX^^^ ^-^^ QEX 

where hk is the fcth James-Hopf invariant, X^^"^ is the fc-fold smash product, and oJk '-
EX^^^ -^ r X is a fe-fold iterated Whitehead product. 

Let S{X) denote the subgroup of [QEX, QEX] generated by the elements (iHii) 
above. Let Sn{X) denote the subgroup of [JnX, QEX] given by the image of the 
restriction map [QEX, QEX] -^ [JnX, QEX] applied to S{X). Notice that S{X) and 
Sn[X) are quotients of the free group F generated by symbols k and {Qu^k) o hk one 
for each element listed in (i)-(ii) above. Define Hn to be the quotient of F modulo the 
normal subgroup given by the intersection of the kernels of composites F -^ Sn{X) -^ 
[JnX, QEX] for every space X which is a suspension. Thus Hn is the smallest group 
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which admits a surjection to Sn{X) for all suspensions X. Define the "universal example" 
of the groups [JnX, HEX] to be the group Hn-

The first step in analyzing the structure of Hn is to analyze the analogous "universal 
example" for [X^'^fiSX]. Given a space X, there are n canonical choices of maps 
Pi : X " —> fiSX where pi is the composite of 2th coordinate projection TTI : X'^ -^ X 
followed by the Freudenthal suspension map E : X -^ fiSX. Let F[pu... ,pn] denote 
the free group generated by the pi and 6 : F[p\,... ,pn] -^ [X'^, QEX] be the induced 
homomorphism. Let Kn[x\,..., Xn] be the smallest quotient group of F[p\,... ,Pn] such 
that there is an induced homomorphism 6 : Kn[x\,... ,Xn] -^ [X"^, QSX] for which 
9{xi) = 6{pi) for every suspension X — S{X'). 

The groups Kn[x\,... ,Xn] are closely related to a noncommutative analogue of an 
exterior algebra. Here, let F be a free Z-module of rank n with a fixed choice of basis 
{yi 5 • • • J Vn}' Let J denote the two-sided ideal of the tensor algebra T\y\ generated by 
all monomials in this choice of basis elements given by ^i, 0 2/i2 *̂  • • ̂  VH where 
Vij — Vik f̂ ^ some 1 ̂  j < fc ̂  n. Define 

A[V] = T\V]IJ. 

Let Fq denote the gth stage of the lower central series for the group K[x\,.. .^ Xn]-

THEOREM 13.1. Ifn^ 1, Kn[x\,..., Xn] is a torsion free nilpotent group of class n. The 
filtration quotients Fq/Fq^i are free abelian groups of rank {q — l)!(g). Furthermore, 
Kn[x\,..., Xn] is isomorphic to the subgroup of the group of units of A[V] generated 
by I -{- yi, I ^ i ^ n. 

The centers of the groups Kn[x\,... x„], denoted by An, are useful here and support 
an action of the symmetric group on n letters En- These centers are closely related to 
certain free Lie algebras over Z. Namely, let L[V] be the free Lie algebra generated by 
V (where V, of course, is ungraded). Define Lie(n) to be the linear span of the elements 

[••• [2/(7(1)>2/(T(2)]y(T(3)]-" Vain)] 

where a runs over the elements in the symmetric group Sn- Thus Lie(n) is isomorphic 
to 0 ( n - i ) ! 2 as a Z[Z'n]-module. The module Lie(n) has appeared in several other 
contexts recendy in connection with algebraic if-theory and conformal field theories. It 
was proven in the early '70's that Lie(n) is isomorphic to Hn-\{Pn\ Z) tensored with the 
sign representation as a ZfZ'n]-module where Pn is the pure braid group for n-stranded 
braids. 

THEOREM 13.2. An is isomorphic to Lie{n) as a Z[En]'module. 

There is a quotient map TT : X^ -^ JnX defined in [37]. The natural homomorphism 
TT* : [JnX.fiY] -^ [X'^^QY] is a split monomorphism of sets. There exist subgroups 
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Hn of Kn[x\,... jXn] which corTcspond to the image of TT* and which were defined 
above. 

THEOREM 13.3. There is a nonsplit central extension 

Thus there is a tower of groups 

i 
An ^ Hn 

Qn 

An-\ ^ Hn-\ 

1 
Hn-2 

1 
where Qn is an epimorphism with kernel An which is isomorphic to Lie(n) as a ZflJ'n]-
module. Define ilcx) to be the inverse limit of the groups Hn, lim Hn^ Recall the groups 
Sn{X) defined in the third paragraph of this article. Restriction induces a surjection 
Sn{X) -^ Sn-i{X). Define Soo{X) to be limSn{X). 

THEOREM 13.4. There is a commutative diagram of groups 

Hn —^^^ [JnX.QEX] 

1 
Hn-l —^=-^ [Jn-iX,QEX] 

for every suspension X. Furthermore the natural homomorphism 

0 : i?oo -> \m[JnX, nSX] 
n 

has image given by Soo[X). 

Thus in the case that the natural homomorphism [QSX, QSX] —> limn[Jn-X', QEX] 
is an isomorphism of groups Hoo may be regarded as the universal example for 
[QEX^ QEX]. There are finite p-groups which are p^-torsion analogues of the groups 
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Kn[x\,..., Xn] and Hn- These groups have analogous structure where Lie(n) is replaced 
by Lie(n) ®z Z/p^Z. Also, it should be pointed out that 1 : fiSX -^ QEX does not 
usually represent the identity element in the group [QEX, QEX] as the constant map 
represents the identity. The results above codify the relations between power maps to-
gether with compositions of Hopf invariants and Whitehead products. These relations 
have been of interest since the 1950's; a sample in different form is given by [6], [9]. 
Also focus on specific compositions is given in [69]. 

The main point of the analysis of the groups Hn is that the information obtained gives 
a "global" picture of relations in a simple computable form. Namely the group structure 
"carries" the relations. This information in turn provides data about the kernel of the 
looping functor 

a : [JnX, QEX] -^ [QJnX, Q'^EX] 

which is the group homomorphism sending a map / to its looping. In particular if 

Y^AimHi{EX\¥p) > 1, 
i > 0 

then Q^ always has a kernel. This structure implies information concerning essential 
maps in the kernel of i?* and thus about TT^EX. It should be remarked that these groups 
give no new information about the homotopy groups of spheres. However, they do give 
new information concerning double suspensions which are not homotopy equivalent to 
spheres. As a sample consider the pinch map h^ : J4X —> X^^^ composed with the 4-fold 
Samelson product 

a = [[xi ,X4], [0:2,X3]] : X(^> -> QEX. 

If X contains a bouquet of 4 mod-p Moore spaces, then cr o /14 is nonzero mod-p homo-
logy. However the looping of cro/14 is null-homotopic. These relations after looping have 
consequences for the distributivity law implied by the Hilton-Milnor theorem; namely 
many terms vanish. 
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1. Definitions 

Let X be a connected CW-complex and let Xn denote its n-skeleton. A map f : X -^Y 
is called a phantom map if its restriction to each Xn is null homotopic. This paper 
is a study of such maps from a homotopy point of view.̂  Of course, if X is a finite 
dimensional space (and hence X — Xn for some finite n) then every phantom map out 
of X is necessarily trivial up to homotopy. Hence essential phantom maps can occur 
only when the domain X is an infinite dimensional space. Similarly, if the range F is a 
space with only finitely many nonzero homotopy groups, then it follows that the set of 
homotopy classes [X, Y] « [Xn, Y] for some finite n and hence in this case there are no 
essential phantom maps into y . So in the following we will deal with domains X which 
are infinite dimensional and ranges Y with infinitely many nonzero homotopy groups. 
Of course, there are lots of interesting spaces which satisfy these criteria. 

The elusive wispy nature of phantom maps is readily apparent. Such maps appear to 
be null homotopic from a number of different points of view; indeed, they induce the 
trivial homomorphism on homotopy groups, in homology, and in cohomology. How then 
do we detect them? In what cases are they trivial? When a phantom map is essential, 
what does this imply about its domain and range? This survey will deal with questions 
such as these. 

There is another slighdy different notion of a phantom map in the literature. This 
second notion is more general than the one just given. In it a map g : Z -^W is said to 
be a phantom map if for any finite complex K and any map h: K —^ Z.tht composition 
gh is null homotopic, e.g., see [39], [50], and [71]. Notice that if the domain X has a 
CW decomposition with only a finite number of cells in each dimension, then the two 
definitions agree. However for spaces not of finite type they do not agree. Indeed, in 
terms of the second definition, it is possible to have an essential phantom map coming 
out of a finite dimensional domain. The following example, due to Hilton, Mislin and 
Roitberg ([24, p. 84]), illustrates this. 

EXAMPLE 1. Let W = (5^ V5g)UAe"+^ where n ^ 2, and A and B are complementary 
sets of primes, and A = (1,1) G TTniS'X V 5g) « Z(^) © Z(5). Then the map K : W -^ 
5n+i^ which collapses 5 A V 5 B to a point, is essential and yet K(p) c=i 0 for all primes p. 

Here XL denotes the localization of X at a set of primes L, in the sense of Sullivan 
[66] or Bousfield and Kan [9]. If L contains just one prime p, the notation X(p) will be 
used. Recall from Sullivan's cellular construction of a localization that if X is a finite 
dimensional nilpotent complex, then so is XL. Thus the domain W in Example 1 is finite 
dimensional. On the other hand, it is well known that if f : K -^ Y is a. map from a 
finite complex into a nilpotent space such that the composite 

is null homotopic for all primes p, then / must be null homotopic ([24, p. 83]). It 

^ All spaces are assumed to have basepoints and all maps and homotopies are assumed to preserve them. 
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follows that the map K in Example 1 is an essential phantom map according to the 
second definition but not according to the first. 

Here is a second example involving the localized sphere. By the universal coefficient 
theorem, 

/f-+^(5[;,);Z)«Ext(Z(p),Z) 

and this Ext group is nonzero ([19, p. 226]). Hence there is an essential map from S?. 
to the Eilenberg-MacLane space jFf (Z, n-f 1). Now S?. can be constructed as an infinite 
mapping telescope using the self maps of S'^ whose degrees are relatively prime to p. It 
follows by a compactness argument that every map of a finite complex into S? ^ actually 
factors through 5'^. Of course, there are no essential maps from S''̂  to iir(Z, n + 1), and 
so it follows that there exist essential phantom maps of the second kind from 5? x to a 
K(Z, n-f 1)^, or indeed into a sphere S'^^^ 

It might seem unusual (maybe even unnatural) to consider maps from spaces which are 
p-local to spaces which are not. And yet, this is a typical situation where phantom maps 
of the second kind occur. For another unconventional example, consider first maps from 
finite complexes to Eilenberg-MacLane spaces. This, of course, is classical cohomology 
from a homotopy point of view. However, when one looks at maps going in the other 
direction; more precisely, from simply connected Eilenberg-MacLane spaces to finite 
complexes, then every such map is a phantom map of the first kind, and in general there 
are lots of them. This situation will be studied in Section 5. 

In Section 3, we will study spaces out of which all phantom maps are trivial. Using 
the first definition given it will be shown that if a space X has this property then so 
too does any localization of it. This statement is false for phantom maps of the second 
kind, as the second example shows. This is one reason why I prefer the first notion; it 
behaves as expected with respect to localization. A second reason concerns the algebra 
involved; often questions involving phantoms maps of the first kind can be answered 
using towers (i.e. inverse sequences) of groups whereas those of the second kind involve 
inverse systems of groups. The latter are more general, of course, but they are also more 
difficult to work with. Hereafter all phantom maps in this paper will be of the first kind, 
unless specifically stated otherwise. 

2. A bit of history 

One of the first people to consider phantom maps was Alex Heller - it was he who 
named them^. The first published account of an essential phantom map - from SCP^ 
to an infinite bouquet of 4-spheres, was given by J.F. Adams and G. Walker in [1]. It was 
in response to a question from Paul Olum. One of the first detailed studies of phantom 
maps was done by Brayton Gray in his University of Chicago Ph.D. thesis, [20], written 

^ Thus phantom maps of the second kind do not necessarily induce the trivial homomorphism in cohomology, 
whereas those of the first kind do. 
^ I have been told that Heller felt the term phantom map was appropriate for something defined in terms of 
skeletons. 
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under the direction of Michael Barratt. Some of the results obtained there appeared in 
[22] and are covered here in Section 3. 

An important algebraic tool in the computation of phantom maps is the derived functor 
lim^. It will be described in detail in Section 4. To the best of my knowledge, a lim^ 
construction was first given by Steenrod in 1940 in his paper, "Regular cycles on compact 
metric spaces" (see [64, p. 845]). Most topologists, however, would probably cite Milnor's 
1962 paper "On axiomatic homology theory" as their first encounter with lim}. Milnor 
introduced it there as the first derived functor of the inverse limit functor and used it 
to study the cohomology of infinite complexes. He also credited Steenrod as his source 
for lim^. Others quickly saw the importance of this tool in algebra and in topology. 
Algebraists became interested in the derived functors lini^ in more general settings; 
e.g., the early work the work of Roos [56], Jensen [28], and Mitchell [46]. In 1966, 
Gray used a lim} computation in [21] to show that there are uncountably many phantom 
maps from CP°° to S^. In [3], Anderson and Hodgkin proved the existence of essential 
phantom maps from various Eilenberg-MacLane spaces to BU, again using abelian lim^ 
calculations. 

In their book [9] Bousfield and Kan extended the definition of lim^ to towers of 
nonabelian groups and showed that a number of its important properties carry over to 
this more general setting. One property in particular is the short exact sequence of pointed 
sets 

* —> l\m'[SXn,Y] - ^ [X,Y] -^ lim[Xn,y] - ^ *, 

for any pointed complexes X and Y. This allows one to identify lim}[SXn,Y] with 
Ph(X, F), the set of all homotopy classes of phantom maps from X to Y. It thus enables 
one to determine Ph(-X', Y) algebraically under very general conditions. 

In the late 1970s Willi Meier made a number of interesting discoveries about phantom 
maps; let me mention just three of them. In [39], he noted the existence of essential 
phantoms maps which become trivial when localized at any prime. This is the subject 
of Section 6. In that same paper he gave a formula, which for certain spaces'̂ , almost 
reduces the computation of Ph(A', Y) to a rational calculation 

Ph(X,y) « [UX, {Y)J/imA « J][ Jf'^(X;7rfe+i(y)0E)/2mA 

In this formula Y denotes the profinite completion of Y in the sense of Sullivan 
[66], and E denotes a rational vector space with the cardinality of the real numbers. 
Meier noted the relevance of the Sullivan conjecture to computations of this sort; it 
implies for certain X and F, the im A term is zero. This theme is taken up in Sec-
tion 5. 

A map f \X -^ X' induces the obvious function /* : Ph(X', Y) -> Ph(X, Y). What 
is not so obvious is that /* is an epimorphism when / induces an isomorphism in rational 

^ Both domain and target have finite type and the target is a nilpotent space whose rationalization, Fo* is an 
if-space. 
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homology. Meier noted some special cases of this in [40]. Roitberg and I subsequently 
pursued this connection between rational equivalences and phantom maps in [35] and 
[36]. The results we obtained are the subject of Section 7. Thus Sections 5, 6, and 7 of 
this survey deal with ideas first considered by Willi Meier. 

In the early 1980s Haynes Miller proved the Sullivan conjecture; that the space of based 
maps map^{BG,Y) is contractible when G is locally finite and Y is finite dimensional 
[43]. Alex Zabrodsky was one of the first to recognize the implications of this important 
result in homotopy theory. Among other things he saw how to extend Miller's result 
to obtain map^{X,Y) ~ * when the domain X has only a finite number of nonzero 
homotopy groups (subject to certain restrictions^) and F is a finite complex. This implies 
that every map between from X to y is a phantom map. Zabrodsky also saw that in 
this case the computation of [X^Y] is essentially a rational calculation. He wrote up 
a preliminary version of [71] soon after the Sullivan conjecture was proved; it was 
revised and accepted for publication shortly before his untimely death in 1986. The 
paper, which is discussed more in Section 5, contains a number of interesting results 
and interesting errors; and both have led to new insights about phantom maps. Most 
of these offshoots of Zabrodsky's work are due to Joe Roitberg [50], [51], [52], and 
[23]. 

The first published mention of a universal phantom map appeared in a paper of 
J. Lannes [29] in 1987. Letting B denote ]FLP°°, Lannes notes in passing that the uni-
versal phantom map out of B is an example which shows that the restriction to finite 
type spaces in his theorem, [B,Y] w l{om)c{H*Y, H*B), is necessary. It was here I 
first learned of it, thanks to Joe Neisendorfer. When I finally understood how the map 
worked I couldn't wait to tell the world about it. Soon I was drawing pictures of it for 
my wife, my kids, - anyone who would listen. At an AMS meeting, I had barely started 
the sketch for Brayton Gray, when he interrupted to say, "Oh yeah, that's the universal 
phantom map - I discovered it in my thesis 25 years ago." We decided then to combine 
our results in [22]. This paper is covered in the next section. 

3. Universal phantom maps 

Given space X, how can you tell if it is the domain of an essential phantom map? We 
now deal with this question and its dual - when is X the target of an essential phantom 
map? The answer to the first question involves the universal phantom map out of X. 
This is a phantom map which factors every other phantom map out of X. It is also the 
only nontrivial phantom map that I know how to describe explicitly. 

oo 

The universal phantom map out of X is a map 0 : X -> VEXn that can be viewed 
as follows. Identify the space X with the direct limit of its CW-skeletons via the infinite 
telescope construction. Thus X c::̂  Tel{X) where 

Tel{X)= [jXnX[n-ln]/ 
n>\ 

^ He also requires X to be simply connected of finite type. 
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Here each Xn x {n} is identified with its image in Xn-^\ x {n}. Now lay the telescope 
on its side and collapse to a point, each joint at which the second coordinate is an integer. 

Then collapse to a point the seam along the basepoint in the target. The resulting map 
is a surjection from Tel{X) to the infinite wedge^ of reduced suspensions 

WSXn = SXi V EX2 VEXsW"- . 

It is easy to see that the map just described is a phantom map. Indeed, restrict it to the 
first n stages of the telescope, and then deform that portion to the right into Xnx{n}. 

00 
This is a deformation retraction. Since Xn x {nj is sent to the base point in VEXn, the 
assertion follows. Thus G is one phantom map which is easy to describe. The question 
of whether or not it is essential can, in many cases, be answered. 

The results in this section appeared in [22] and [31]. A few proofs have been included 
to illustrate the ideas involved. Most of these results concern phantom maps out of a 
pointed path-connected space^ with the homotopy type of a CW-complex. Of course, a 
space X could have many different CW-decompositions and so the universal phantom 
map out of X, as just defined, is not unique. It depends on which CW-decomposition is 
chosen. It will be assumed, in what follows, that a choice has been made. 

THEOREM 3.1. If X is a pointed connected CW-complex, then the map O is universal 
among phantom maps out ofX, In other words, given another phantom map f : X -^Y, 
there exists a map f such that the following diagram commutes up to homotopy. 

X -^ Y 

00 

vrx„ 
^ This has the weak topology of a direct limit of wedges of finitely many spaces. 
^ The finite type restriction on a number of results in [22] have been removed here. 
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PROOF. Take the telescope Tel{X), and collapse to a point its seam along the basepoint. 
Call the quotient space the reduced telescope T{X). Now identify the n-skeleton of X 

with the image of Xn x {n - 1} in T{X). This defines an inclusion i : VXn -> T{X) 
which is a cofibration. To see this, let 

R\f—^ (Ox/) U (JxO) U (1 x l ) 

be the retraction given by stereographic projection from the point, say (1/2,3/2). Let 
Ri{ •> ) denote the zth coordinate of the value. Now define another retraction 

/ X Tel{X) —> (0 X Tel{X)) U (/ x Un(Xn x n - 1 ) ) , 

by sending 

( 5 , ( x , t ) ) ^ ( i ? i ( s , t ) , ( x , [ t ] + i ? 2 ( s , t ) ) ) . 

Here t = t-f- [t] where \t] denotes the greatest integer less than or equal to t. This second 
retraction respects the identifications made in Tel{X) in creating T{X). The second 

oo 
retraction induces a third of / x T{X) onto 0 x T{X) U / x WXn- It follows by ([63, 

CX) 

p. 57]) that i : VX^ —• ^(-X') is a cofibration as claimed. There is also an obvious 
homotopy equivalence TT : T{X) -^ X, induced by projection on the first factor. Given 
a phantom map / : X -^ y , let / ' = /TT in the following diagram 

Vxn —- nx) —- ^rx, 

Since the restriction of / ' is null homotopic on each Xn, there is an extension, / , to the 
cofiber of 2, and so the result follows. D 

It follows, of course, that every phantom map out of X is null homotopic if and only 
if Q is. With regard to the dependence of Q on the choice of CW-decomposition of X, 
this result suggests that one choice is as good as the next. The universal property in 
Theorem 1 leads to a very simple proof of the following. 

COROLLARY 3.2. If f : X -^ Y and g : Y —^ Z are two phantom maps, then the 
composition gf : X -^ Z is null homotopic. 

PROOF. The following commutative diagram, in which / and g are phantom maps, is an 
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immediate consequence of Theorem 1. 

1217 

ysYn 

f ^ 9 

X ^ Y ^ Z 

ysYn 

The composition going up the diagonal is a phantom because the second map, 0, is. 
The restriction of this composition to each SXn is therefore null homotopic since each 
summand is finite dimensional. Since a map out of a bouquet is completely determined 
by such restrictions, we conclude the map along the diagonal is trivial. This, of course, 
implies that the horizontal composition gf must likewise be null homotopic. Q 

Recall that a space X is said to be dominated by a space Y if there exist maps 
f : X -^ Y and g : Y -^ X such that gf c:^ Ix- This, of course, is the homotopy 
analogue of saying that X is a retract of Y. 

THEOREM 3.3. If X is a pointed connected CW-complex, then all phantom maps out of 
oo 

X are trivial if and only if SX is dominated by S/EXn-

The proof involves the extended cofiber sequence 
A oo A oo 

—> X - ^ vrXn - ^ yEXn - ^ • • • 
and the implications of 0 ~ *. For more details, see [22]. 

COROLLARY 3.4. If EX is homotopy equivalent to a bouquet of finite dimensional com-
plexes, then the universal phantom map out of X is trivial. 

The proof of this which was given in [22] is flawed; here is a different one. We can 
assume that there are cellular homotopy equivalences, say 

EX y Ka EX 
ael 

where gf ^ I and where each Ka is a finite dimensional complex. For each n, let K[n] 
denote the subbouquet consisting of those Ka whose dimension is exactly n. Then K[n] 
is a retract of the original bouquet and it is dominated by {EX)n^] since / and g are 
cellular. So for each n choose maps 

K[n] 
9[n] 

(EX). n+l 
/H K[n] 
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such that /[n]p[n] ĉf 1. It follows, using the maps V/[n] and Vp[n] that WK[n] is 

dominated by VX^. But 

VK[n] =\/ Ka^SX 

and so the result follows. 
A familiar example to which Corollary 3.4 applies is when X = fiS'^. Thus there are 

no essential phantom maps out of the first loop space of a sphere. More generally one 
has 

EXAMPLE 3.5. If X has the homotopy type of Q{EL\ x • • • x ELn), where each Li is 
a connected finite complex, then EX ~ V îî a where each K^ is a finite complex. 

This example follows from the well known decomposition 

EQEL - E[L V (LAL) V ( L A L A L ) V • • •) . 

Is the result in Corollary 3.4 best possible? More precisely we ask 

oo 

QUESTION 3.6. li EX is dominated by WEXn, does it follow that EX ~ W^Ka where 
each summand Ka is finite dimensional? 

The general answer to this question is no as the following example shows. 

EXAMPLE 3.7. There exists a CW-compIex X, with the property that EX is dominated 
oo 

by VEXn but EX has no nontrivial finite dimensional retracts. Moreover, this space 
X can be taken to have no odd dimensional cells, and at most one cell in each even 
dimension. 

The construction of this example begins with two homotopy classes of essential maps, 
say a and /3, 

whose orders are finite, stable, and relatively prime, and whose targets are different. In 
other words, if ||a|| denotes the order of a, assume that ||a|| = ||i^'^a|| for all n, that 
the same condition holds for /3, that (||a||, ||/3||) = 1, and that t > 0. For instance, one 
could take a - ai(7) in ITUS^ and f3 = E^a\{3) in TTUS^^ in this construction. The cell 
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complex X can be built using the following suspensions of these maps 

om jjtqm yjltom 

More precisely take the space X in this example to be the mapping cone, 

X = cofiber U : \/ S^'S"^ —^ \ / S'^'sA 

where the restriction of ^ to S'^^S'^ is given by 

The first map here is the standard comultiplication on the sphere - the one that pinches 
the equator to a point. 

Notice that when SX is localized at ||a|| , all the suspensions of P become trivial and 
the resulting space breaks apart into a wedge of mapping cones of the various suspensions 
of a and that this splitting will split no further. A similar splitting into irreducibles occurs 
when SX is localized at ||/3||. However if SX were to dominate some nontrivial finite 
dimensional complex, this would imply that at least one of these localized splittings was 
not of the form just described. 

The proof that SX is dominated by WSXn is more complicated. It amounts to 
constructing a map 

X -^y S^'C{a + /?) 

with a left inverse. The relative primeness of l|a|| and ||/3|| is crucial here. For details 
see [22, p. 381]. 

There are some special cases worth noting where the answer to Question 3.6 is yes. 
Here is one of them. 

PROPOSITION 3.8. If Hn{X;Z) is finite for each n sufficiently large then the answer to 
Question 3.6 is yes. In other words, for such spaces X, the universal phantom map 
out of X is trivial if and only if SX decomposes into a bouquet of finite dimensional 
complexes. 

The proof involves splitting off finite dimensional complexes from SX through the 
use of idempotents. This same technique will be used in the proof of Theorem 3.9. 
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Recall that an ifo-space is one that, when rationalized, becomes an iif-space. Odd di-
mensional spheres, connected compact Lie groups, and Stiefel manifolds provide familiar 
examples of i7o-spaces. Notice that if iC is a 1-connected finite CW-complex and is also 
an ifo-space, then by Hopf's theorem it has the rational homotopy type of either a point 
or a finite product of odd dimensional spheres. The same is true of its double loop space, 
n^K. In particular, this means that Q^K, which is almost always infinite dimensional, 
satisfies the hypothesis of Proposition 3.8. However, there are very few spaces K, that 
come to mind for which Q^K splits apart into a bouquet of finite complexes after just 
one suspension. Consider, for example, the sphere 5"̂ , with n odd. While a theorem of 
Snaith asserts that ff'S'^ stably splits into an infinite bouquet of finite spectra, this split-
ting is not achieved after one suspension. In fact, Snaith's splitting is never completely 
achieved, even 2-locally, after any finite number of suspensions according to Cohen and 
Mahowald [12]. This suggests the presence of essential 2-local phantom maps phantom 
maps coming out of Q^S'^. More will be said them in Section 8. But for now, localize 

CX) 

at a prime p, and reconsider the domination of EX by MEXn. The next result suggests 
that Question 3.6 is a problem that is best studied one prime at a time. 

THEOREM 3.9. Let X be a CW-complex with finite type and let p be a fixed prime. Then 
Ph(X, y ) = * for all p-local spaces Y if and only if EX(p) is equivalent to a bouquet 
of finite complexes. 

PROOF. The space EX will be assumed to be p-local in this proof, but the notation 
will not be burdened with this assumption. Reduced integral homology will be used 
throughout. The initial goal of the proof is to split EX into two pieces, say 

EXc^Ky L 

where K is finite dimensional and the connectivity of L is strictly greater than that of 
EX. To this end, we can assume, without any real loss of generality, that the first nonzero 
homology group of EX occurs in degree 2. By hypothesis, there is an inclusion 

j-.EX —^ WEXn 

oo 

that is a right inverse to the folding map T : WEXn -> EX. Since H2EX is a finitely 
generated Z(p)-module, its image under j * is contained in a finitely generated summand, 
say 

1̂ 2 ( V SXn)QH2{VEXn). 

Let <f>: EX —» SX be the following composition, 

EX -^-* yEXn - ^ • V EXn ^' . EX. 
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Note that in homology (f) induces the identity in degree 2 and the zero map in degrees 
greater than t. If 0 induces a pseudoprojection - that is, a homomorphism h such that 
image{h) = image{h?) - in all remaining degrees as well, then we will use it to form 
the telescope 

Tel{lJX^SX-^SX-^--} 

whose homology realizes the image of (̂ *. This telescope will have finite dimensional 
homology. It will be our K. The telescope corresponding to 1 —0 will be L. The initial 
splitting will have been achieved. 

If 0 does not induce a pseudoprojection in some degree d, where 2 < d ^t, then there 
is work to be done. We will follow Wilkerson [70] in obtaining the desired pseudopro-
jection. However, since his results pertain to finite dimensional spaces, a few changes 
are needed for our purposes. 

Let H = H^tSX, let T denote the torsion subgroup of iJ, and let V = H/T. Since 
V has finite rank, we can assume that if r > 0 is given, then some iterate of ip will induce 
an idempotent on the finite set, V 0 Z/p^. Wilkerson proves the following algebraic fact 
in step 1 of his Theorem 3.3: if B is an endomorphism of V that induces an idempotent 
on y 0 Tijp^, then there exists a pseudoprojection B' on V, such that 

j5' = B4-p^A 

We will combine this fact with the following result - the analogue of Wilkerson's The-
orem 3.2. D 

LEMMA 3.10. There is an integer r > 0, such that that if A is any endomorphism of 
the graded Z(p) module V, then p^A is realizable by a self-map of EX. Moreover this 
self-map can be taken to induce the zero map in degrees greater than t. 

Assume for the moment that this lemma is true. Take r large enough to satisfy the 
condition in the lemma, take B = (^•/torsion, and let a : EX —• EX be the map that 
realizes p^A on V. Use the suspension co-i/-structure on EX to form the sum, 

t/; = 04-a :EX—^EX 

Then on H^EX, the self-map ip induces the identity in degree 2, the zero map in degrees 
greater than t, and a pseudoprojection on V. 

We claim that some iterate of ^ induces a pseudoprojection on H, and hence on 
all of Hi^EX. To simplify the notation in the proof of this claim, let / denote the 
endomorphism of H induced by t/;. Since the torsion subgroup T is finite, it is clear that 
the nested sequence of subgroups {T fi image{f'^)} eventually stabilizes. Thus for n 
sufficiendy large, 

T n imageif^) = T Pi i7nage{f'^'^). 
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Now if / induces a pseudoprojection on V, then so does p. This means that for any 
element y E H, 

r(y) = /'"(x) + z 

for some x € H, and z £ T. This equation implies that z is in the image of f^, and 
hence in image{f^'^), when n is sufficiently large. In this case, the claim 

image{f'^) = imagei^f^'^) on H 

follows. 
We have shown that t/̂ "̂ , for n sufficiendy large, induces a pseudoprojection on H^EX. 

As indicated earlier, we then use the telescope construction to obtain a splitting 

SXc:^K\/L 

where the homology of K realizes the image of ^jj^, and H^L realizes the image of 
(1 - i/;'̂ )̂ . Notice that the space L is 2-connected. Thus the argument just used to split a 
finite dimensional retract off EX can be used again to do the same to L. The appropriate 
homology idempotent can be obtained as the composition 

OO T 

L—^EX—^yEXn —> V EXn —^EX—^L 
n=l 

where r > t. Care should be taken here to choose the inclusion on the left and the 
retraction on the right to be compatible with the self map 1 - (̂ . In addition the integer r 
should be taken large enough to ensure that in this composition of five maps , the middle 
three induce the identity on EX up through dimension t. Repeating this process over 
and over, and then taking limits, it follows that 

aX::^\/K a 
a 

where each summand ka is a finite complex. 

PROOF OF LEMMA 3.10. Choose an integer r large enough that the composition 

EXMyEXn^ V EXn^EXr 

induces the identity on H. Here we have used the inclusion EXr —> EX to identify the 
homology of the two spaces in degrees ^ t. Now EXr has the rational homotopy type 
of a finite bouquet of spheres; let W denote the subbouquet consisting of those spheres 
of dimension ^ t. Since EXr is a finite co-i?-space, Wilkerson's Theorem 3.2 shows 
that there is an integer r, and maps 

EXr —^W—^W—^ EXr 
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whose composition realizes the endomorphismp^A on F. So take the composition UX —> 
EXT mentioned first, follow it by this one, and then compose that by the inclusion 
SXr -* SX. This is the required map. D 

For some spaces X it is easy to show that i^X(p) is not homotopy equivalent to a bou-
quet of finite dimensional spaces. Consider the case where H*{X\ Z/p) is a polynomial 
algebra. The Steenrod algebra then acts in such a way that every nonzero orbit in posi-
tive degrees is an infinite set. As a result SX^p) can have no proper finite dimensional 
retracts. 

It seems harder to verify the splitting of SX(p), when it occurs than to rule it out 
when it doesn't. A case in point is the following conjecture, which seems beyond the 
reach of current techniques. 

CONJECTURE. If K is a 1-connected finite complex, then for all primes sufficiently large, 
EQKij^) ĉ  VQFQ where each Fa is finite dimensional. 

Recall that a space X is said to be atomic at a prime p, if any self map / , of its 
completion Xp, is either an equivalence or, under iteration, /'^ —> 0 in the profinite 
topology on [Xp^Xp]. In particular, atomic spaces have no nontrivial idempotents and 
hence, they have no proper retracts. 

COROLLARY 3.11. Assume that X has finite type. If for some prime p, either EX(^p) or 
EXp has an infinite dimensional atomic retract, then the universal phantom map out of 
X is nontrivial. 

Here is one simple but important application of this corollary. 

EXAMPLE 3.12. Let G be a compact Lie group. Then the universal phantom map out of 
BG is trivial if and only if G is the trivial group. 

This follows since for some prime H*{BG\'L/p) must contain an element of infinite 
height. 

One might be tempted to conclude that if the universal phantom map vanishes at every 
prime, then it must in fact be trivial. The next example shows that this is not the case. 

EXAMPLE 3.13. Let 

X = cofiber j a i : \ / 5^^ —^ 5 ^ 

where for each prime p, a\ is a phantom map X —> S^, that is 
stably essential and yet the universal phantom map out of X is trivial at each prime p. 

Consider now phantom maps into targets of finite type. Since the outbound universal 
phantom map takes values in a space not of finite type, one might suspect that it is almost 
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too sensitive; that, in some cases, it detects something never seen in a universe of finite 
types. It will be shown that such suspicion is justified. 

QUESTION 3.14. For what spaces X, is Ph(X, y ) = * for every target Y of finite type? 

Here are three rather different examples from [22]. 

EXAMPLE 3.15. Let X be a CW-complex whose homology groups, Hn{X\ 7i), are torsion 
groups for all n ^ 1. Then Ph(X, F) = * for every finite type target Y, 

An important special case of this example is the classifying space, BG, for a finite 
group, G. Recall from Example 3.12 that the universal phantom map out of such a space 
is essential whenever G 7»̂  {1}. So this is an instance where the sensitive nature of G is 
quite apparent. The next example represents the other extreme - with no torsion in its 
homology. 

EXAMPLE 3.16. Fix an odd prime p, and take the cofiber of Toda's a-family on S^. To 
be more precise, let 

X = cofiberia:\/5^*(P-^)+^ 

where for each t, a \ Ŝ *̂ ^ *̂"*"̂  = at. Then the universal phantom map out of X is 
essential, but again Ph(X, Y) = * for all targets Y, of finite type. 

The third example involves the loop space Q^S^. It is the domain of an essential 
phantom map into a target of finite type, which vanishes when localized at any prime p. 

EXAMPLE 3.17. There is an essential phantom map i7^5^ -> MP°°, and yet for every 
prime p and every n ^ 1, Ph(l7̂ 5̂ *̂̂ ^ F(p)) = * for every nilpotent target Y of finite 
type. 

In Section 7 we will return to this problem of targets of finite type. It will be shown in 
Theorem 7.1 that the question just raised has a rather simple answer. The remainder of this 
section deals with the Eckmann-Hilton dual problem, that of the universal phantom map 
into a pointed space Y. Let ŷ ^^ denote the Postnikov approximation of Y up through 
dimension n. Thus Y^'^^ can be obtained from Y by attaching cells of dimension n 4- 2 
and higher to achieve a space all of whose homotopy groups are zero in dimensions 
greater than n. Consider the map 

Y[Y(n) 

whose nth component is the inclusion Y -* Y^'^\ The infinite product here has the 
product topology. 

THEOREM 3.18. Up to a weak homotopy equivalence of the fiber, there is afibration 

j^QY^^^ —^-—- y — - — - n^^" 
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in which the map F is a phantom map. Moreover F is universal in the sense that for 
any CW-complex X and phantom map f : X -^Y, there is a lift f : X -^ Yl ^Y^'^^ 
so that f = Ff. 

There is a technical point here that should be mentioned. Since the domain of F does 
not necessarily have the homotopy type of a CW-complex, the phrase "r is a phantom 
map" should be interpreted to mean that for any CW-approximation h\W -^Yl ^y^'^\ 
the restriction of Fh to any skeleton of W is null homotopic. Similarly, in the next result 
the statement that the universal phantom map is trivial means that the composite Fh is 
null homotopic. 

THEOREM 3.19. The universal phantom map into Y is trivial if and only if QY is domi-
nated by Y[QY^''\ 

The previous two results appeared in [30]. They can be regarded as the Eckmann-
Hilton duals of Theorem 3.1 and 3.3. The next result gives some simple conditions under 
which phantom maps vanish. 

THEOREM 3.20. The universal phantom map into a space Y is trivial (as is every other 
phantom map into Y) if any of the following four conditions hold: 

(i) Y is the profinite completion of some space. 
(ii) Y is the rationalization of some space. 

(iii) 'KnY is finite for each n. 
(iv) fiY :̂  Ha ^ot y^here each La has only finitely many nonzero homotopy groups. 

The following example shows that among familiar spaces, such as closed orientable 
manifolds, the universal inbound phantom map is almost always essential. It is an easy 
consequence of a result of Zabrodsky; see Theorems 5.2, 5.4, and 5.6. 

EXAMPLE 3.21. If K is a 1-connected finite complex, then the universal phantom map 
into K is trivial if and only if K has the rational homotopy type of a point. 

It was noted earlier that some of these results are the Eckmann-Hilton duals of certain 
theorems about the universal outbound phantom map. Let me close this section with an 
example that does not conform to this duality. Recall that Theorem 3.9 said that when 
localized at a prime p, EX is a retract of WSXn if and only if SX has the homotopy 
type of a bouquet of finite dimensional spaces. It is tempting to conjecture the dual result: 
when localized at a prime p, QY is a retract of H i^Y^"^^ if and only if QY has the 
homotopy type of a product JjLa, where each La has only a finite number of nonzero 
homotopy groups. Here is a counterexample. 

EXAMPLE 3.22. Take a Moore space, Y = S"^ Up ê ^^^ with m ^ 3. Then fiY is a 
retract of Yl QY^'^\ by Theorems 3.19 and 3.20, but f2Y does not have the homotopy 
type of a product Yla ^a where each factor has only finitely many nonzero homotopy 
groups. 



1226 CA. McGihhon Chapter 25 

PROOF. By way of a contradiction, suppose that QY had the weak homotopy type of a 
product J7 i a where each L^ has only a finite number of nonzero homotopy groups. 
Choose one of these factors, call it L, and assume that its last nonzero homotopy group 
occurs in dimension n -f 1. Since L is a retract of QY, fi^L is a retract of fi^'^^Y. 
However each component of Q'^L is a K{7r, 1) where TT is a finite but nontrivial abelian 
group. This implies there is an essential map of such a K{7r^l) into fi'^^^Y. This, 
of course, contradicts the Sullivan conjecture. In view of Miller's confirmation of that 
conjecture [43] the example is verified. D 

4. The tower approach 

A tower of groups is an inverse sequence of groups and homomorphisms, say 

Cri < Gr2 ^ ^ 3 ^ • • • 

Such towers arise naturally in homotopy theory when, given spaces X and Y, one sets 
Gn = [X, i?y(")] and takes the homomorphism Gn-\ ^ Gn to be the one induced by the 
Postnikov decomposition i?(y('^"^) ^ F^'^)). There is another slightly different tower 
whose nth term is [Z'Xn,^] and whose homomorphisms are induced by the inclusions 
of skeleta E{Xn-\ —> Xn). While the first tower has better naturality properties than 
the second, the two towers contain essentially the same information about phantom maps 
from X into Y. The fundamental fact is this: if X and Y have the homotopy type of 
pointed CW-complexes, then there are bijections of pointed sets 

lim* [EXn, Y] « Ph(X, Y) « lim^ [X, QY^""^]. 

These bijections were given by Bousfield and Kan ([9, p. 254, 255]) although special 
cases of these equivalences go back to Milnor [44]. 

Before getting into a discussion about the functor lira^ let us take a closer look at the 
sort of towers one encounters in the study of phantom maps between reasonably nice 
spaces. The following result shows that such towers are somewhat restricted. 

PROPOSITION A A. Let X and Y be connected nilpotent CW-complexes of finite type. If 
G\ < ^ G2 ̂ ^ ''' denotes the tower {[X, QY^"^^]]^ induced by a Postnikov decompo-
sition of QY, then for each n, 

(i) Gn is a finitely generated nilpotent group, 
(ii) the kernel ofiTn is central in Gn+i, and 

(iii) the cokemel of TT̂  is a finite abelian group. 

A proof of this result is given in [37]. Notice that the third condition implies that 
such a tower rationalizes to a tower of epimorphisms. It seems like a difficult problem 
to characterize algebraically, even up to pro-isomorphism, those towers of the form 
{[X, i7y("^)]}. For more on this question see Section 9. 
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Let us begin with the oldest and most elementary description of lim^ in the case of 
abelian towers. Using this description it is easy to see that the lim^ term vanishes for a 
tower of epimorphisms or for a tower of trivial maps. 

DEFINITION. Given a tower of abelian groups A = {A^ +-^ Aj - ^ A3 <r^ • • •}, let 
D : UAn -^ n ^ n be defined by 

(ai,a2,a3,--- ) H-̂  (ai - f\{a2),a2- fiM.a^ - h{a4), ••• ) . 

Then lim^ is the kernel of D and lim^A is defined to be the cokemel of D. 

The inverse limit can, of course, be viewed as the set of all coherent sequences. 
Although the liw} term is not as easy to describe in general, it does have an elementary 
interpretation in the following special case. Consider an abelian group A and a nested 
sequence of subgroups A\ 'D A2 ^ A'i D - - such that flAn = 0. These subgroups 
define a topology on A\ they form a neighborhood system around zero. An element 
{fln} ^ ri-^n can then be regarded as a sequence which converges to zero in this 
topology on A. It then makes sense to ask, "If a sequence {an) converges to zero in A, 
does the series Yl ^n converge in AT The livn} term, in this case, answers this basic 
question. Indeed, linn} An = 0 if and only if the answer is yes. To see this, remember 
that livn} An = 0 if and only if the map i? : f l^n -^ H-^n is onto. Take a sequence 
{oLn} € n ^n and suppose that D{xn) = {an}- This implies that 

Xn — ^n^\ = ttn f o m = 1, 2, 3, . . . . 

Then the partial sum 5n = ai H \-an = x\- Xn+i and since Xn —> 0, it follows that 
Y^ak = x\. Thus if the map D is onto, then every sequence converging to zero sums 
to a convergent series. Conversely, if the series Jjon converges to xi, then it is easy to 
check that {an} =• D{xn} where Xn-f i = x\ — Sn-

The following result is an indispensable tool when dealing with towers and their limits. 

THEOREM 4.2. Given a short exact sequence of towers of abelian groups, 

0 — > A ^B ^ C — ^ 0 

there exists a six term exact sequence 

0 —y Mm A —> limB —> limC —> limU —^ lim^B —^ lim^C —> 0. 

Using this result it follows, for example, that an epimorphism between towers induces 
an epimorphism between livn} terms. For another example, consider a tower of proper 
inclusions, say {An}, of countable groups. Applying Theorem 4.2 to the short exact 
sequence 

0 - ^ {An} - { A i } ^{MIAn} — 0 
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it follows easily that livn}An must be uncountably large. The 6 term lim-lim} sequence 
is also useful in specific calculations, e.g., see [9, p. 253]. 

Consider the following three towers and their lim^ terms. 

A = Z 

C = Z 

, P n; P rjj V 

\ 

2 m ^ nr S 

The homomorphisms here are simply multiplication by the integers shown. In J5, the nth 
homomorphism is multiplication by n while in C, the nth homomorphism is multiplica-
tion by the nth prime. It follows that 

lim^ A « Ext(Z (1), Z ) « E e^^p Z /q"^, 

lim^B«Ext(Q,Z) «R, 

lim^C«Ext(D,Z) « R ( 

To obtain these results, one can first use Jensen's formula (see Section 10.7). It asserts 
that lim}A « Ext(colim(Hom(i4,Z),Z)). In the last calculation, D denotes the additive 
group of rational fractions with square-free denominators. The symbol K denotes the real 
numbers, regarded only as a rational vector space. Using Theorem 4.2 it is not hard to 
show that Urn} A is also isomorphic to the p-adic integers mod Z. The torsion in this 
case comes from p-local integers mod Z. 

It was Bousfield and Kan [9] who generalized the notion of Urn} to towers of groups 
which are not necessarily abelian. 

DEFINITION. Given a tower of groups, G={Gi^G2^G3^ }, define lim^G 

to be the quotient space of the action of the group Yl Gn acting on the set H ^n by 

[Qn] ' {^n} = {9nXn{fn{9n-\-\)) }• 

It is a simple exercise to see that this definition agrees with the previous one when 
the tower is abelian. When the tower is nonabelian the lim} term has no obvious group 
structure; it is only a pointed set. Bousfield and Kan also showed that the 6 term lim -
livn} sequence generalizes to the nonabelian setting; see [9, p. 252]. 

PROPOSITION 4.3. Let G = {G\ ^ Gi ^ G^ ^ " -} be a tower where the Gi are 
compact Hausdorff^ topological groups and the maps fi are continuous. Then lim^ G = *. 

^ If one omits the Hausdorff condition here, as was done in [69, Lemma 2.2], the result is no longer true. For 
a counterexample take any discrete tower with a nontrivial lim} term and put the indiscrete topology on each 
Gi. 
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PROOF. Let {xn} denote a typical element in Jl Gn and let {*n} denote the distinguished 
(identity) element in this product. It suffices to show that {xn} and {*„} lie in the same 
orbit under Y[Gn action defined above. In other words I need to produce an element 
{gn} such that 

9n'Xn'{fn{9n-^\))~^ = *n f o m = 1, 2, 3, . . . . 

For each n, define /^ : Gn+i —> Gn to be the map which sends z \-^ fn{z) - x~^. This 
is no longer a homomorphism, of course, but it is a continuous map. The existence of 
the element {gn} is then equivalent to the inverse limit of the sequence {Gi, / / } being 
nonempty. The latter follows from [17, Theorem 3.6]. D 

Using this latest definition of lim\ let me indicate how a phantom map f : X -^ Y 
determines an element of lim^[I!Xn,Y]. For each n choose a null homotopy of the 
restriction of the phantom map / to Xn\ regard this null homotopy as an extension of 
/1 Xn to the reduced cone over the n-skeleton, say Fn : CXn —> Y. Regard the reduced 
suspension SXn as the union of two cones on Xn- Define a map !Fn • ̂ Xn ^ F to be 
Fn on the bottom cone and to be the restriction of FnJ^i to CXn on the top cone. The 
sequence {Tn} then determines an element in Hl^-^nji^] which is not well defined 
(different null homotopies can, of course, lead to different TnS). However, it is easy to 
see that in passing to the lim^ term, all the different choices get sent to the same orbit. 

Given a tower G, can one tell whether or not lim^G = * without actually computing 
this term? Fortunately, the answer is often yes. The reason why is the Mittag-Lefjier 
property^ of towers which is often easy to verify and which will, in many important 
cases, settie this question. 

DEFINITION. A tower G = {Gi ^ G2 ^ G3 ^ • •} is said to be Mittag-Leffler if for 

each n the nested sequences of images Gn = image{Gn <— Gni}^ m^ n satisfies 
a chain condition. In other words, these images do not grow ever smaller; instead they 
stabilize at some finite stage. More precisely , there exists an integer N, which depends 
on n, such that 

G W = G M for all m ^ AT. 

The abelian towers A, B, and C considered earlier clearly do not have this property. 
Which of the following examples are Mittag-Leffler? 

(i) a tower of finite groups, 
(ii) a tower of compact Hausdorff groups and continuous homomorphisms, 

(iii) a tower of finite dimensional vector spaces over a field k with fc-linear homomor-
phisms. 

The descending chain conditions are evident in the first and third examples and thus 
these two are Mittag-Leffler. However, the second example, in general, is not. To see 
this consider Example 4.5, below, with each Hi = Z/2. 

^ This property was so named by Dieudonn̂  and Grothendieck [15] apparently in reference to Mittag-Leffler's 
theorem about inverse limits of complete Hausdorff uniform spaces (see [7, p. 187]). 
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Obviously a tower of epimorphisms has the Mittag-Leffler property. More generally, 
it is known that a tower is Mittag-Leffler if and only if it is pro-isomorphic to a tower of 
epimorphisms, e.g., see [57]. Since pro-isomorphic towers have isomorphic livn} terms 
it follows that if a tower is Mittag-Leffler, then its livn} term is trivial. The following 
result shows that for towers of countable groups the converse is also true. 

THEOREM 4.4. Let G denote a tower of countable groups. Then lim}G = * if and only 
if the tower is Mittag-Leffler Moreover iflim^G ^ *, then it is uncountably large. 

This theorem appeared in [33]. However the first part of its conclusion (that the Mittag-
Leffler property is equivalent to the vanishing of Urn} for countable towers) was already 
known in shape theory [16]. The second part of its conclusion was first noted in the 
abelian case by Gray in [21]. The following example shows that for towers which are 
not countable the situation is more complicated. 

EXAMPLE 4.5. Let H\,H2,ifa,... be an infinite sequence of nontrivial groups. For each 
n ^ 1, let Gn be the kernel of the projection from J][ Hi onto H\X" x Hn- Then the 
tower of inclusions Gi -«— G2 -^ • • is not Mittag-Leffler and yet lim^ Gn = *. 

There are a number of ways one can show that a tower is Mittag-Leffler. Some of 
them are described in the following three lemmas. The first one is a recent result due to 
J. Roitberg [55]. 

LEMMA 4.6. Let G and H be towers of nilpotent groups. Assume these towers become 
isomorphic when localized at any prime p. Then G is Mittag-Leffler if and only if H is. 

Notice that this result together with Theorem 4.4 implies that if X and X^ are two 
nilpotent finite type spaces which are locally homotopy equivalents^ X at each prime p, 
then Ph{X, F) = * if and only if Ph(A'', Y) = * for any finite type target Y. A similar 
result holds when the domain is fixed and the target is allowed to vary (globally but 
not locally). Thus the cardinality of Ph(X, Y) can be regarded as a generic invariant for 
finite type spaces. 

In the next result a homomorphism f : G -^ H is said to have a finite cokernel if the 
image of / has finite index in H. This result was used in [33] in the study of towers of 
the form {AtxtX^}. 

LEMMA 4.7. Let G\ ^ G2 ^ - - be a tower of countable groups in which each map 
Gn ^ Gn+i has a finite cokernel. Then the tower [Gk] is Mittag-Leffler if and only if 
the canonical map limGfe -^ Gn has a finite cokernel for each n. 

It was observed earlier that a tower epimorphism induces an epimorphism on the lim} 
terms. The following result generalizes this observation. 

LEMMA 4.8. Assume that f : G -^ H is a homomorphism between towers of the type 
described in 4.1. Then the tower H is Mittag-Leffler if the tower G is Mittag-Leffler and 
the map f rationalizes to an epimorphism. 

"̂ In this case the homotopy types of X and X' are said to be in the same Mislin genus. For a recent survey 
of this topic see [32]. 



Section 5 Phantom maps 1231 

In particular if f : X -^ X' is a, rational homotopy equivalence between fi-
nite type domains and y is a finite type target, then the induced map of towers 
r /* : {[EX^Y^"^^]} -^ {[UX^Y^'^^} rationalizes to a tower isomorphism. It follows 
then that Ph(X, F) = * if Fh{X\ Y) = *. 

It is possible to define lim, lim\ and the Mittag-Leffler condition in settings which 
are much more general (for example, diagrams of groups indexed by a small category) 
than the towers considered here. Many of the basic results in this section generalize as 
well. The interested reader might consult Bousfield and Kan, Chapter 11 or [64]. 

5. The rationalization-completion approach 

For nilpotent spaces X and F, recall that r : X -^ XQ denotes the rationalization of the 
first and e :Y -^Y denotes the profinite completion of the second. Both constructions 
play central roles in the study of phantom maps. These roles will be described in the 
first three theorems of this section. 

THEOREM 5.1. Let X and Y be connected nilpotent complexes of finite type. A map 
(p : X —^Y is a phantom map if and only if 

(i) the composition e(p : X -^Y -^Y is null-homotopic, or 
(ii) there is a diagram 

X—^—-y 

Xo 

which commutes up to homotopy. 

Thus the first part characterizes Ph(X, Y) as the kernel of e* : [X, Y] -^ [X, Y] while 
the second describes it as the image of r* : [Xo, Y] —• [X, Y]. 

PROOF OF THEOREM 5.1. In^art i) notice that if (f : X —^Y is a. phantom map, then so 
is the composite e(p : X —^Y. But Ph{X, y ) = * because this is isomorphic to the lim^ 
term of a tower of profinite groups and continuous homomorphisms which, in turn, is 
trivial by Proposition 4.3. Going the other way, ife(p:X-^Yis null homotopic, then so 
is its restriction to any finite skeleton of X. But this forces ip\ Xnio be null-homotopic 
by a basic result of Sullivan [66, Theorem 3.2]. 

In part ii), let Xr denote the homotopy fiber of the rationalization map r : X -^ Xo. 
This fiber is a space whose homotopy groups are torsion, as are its reduced integral 
homology groups. The fibration sequence 

XT • X • Xf o 
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happens to be a cofibration sequence as well [42]. Now if (̂  : X —• Y is a phantom map, 
then so is the composite ^i : Xr -^ Y. But Ph(Xr,y) = * by Example 3.15 and so 
ipi must be null. Thus ^ factors through the rationalization XQ as claimed. Going in the 
other direction, first notice that if Ao is the rationalization of a finitely generated abelian 
group and B is the profinite completion of another finitely generated abelian group then 

Hom(Ao,B) = Ext(Ao,B) = 0. 

For a proof, see [19, Chapter̂  IX]. Together with basic obstruction theory, this implies 
that every map from Xo to Y is null homotopic. Therefore if (p factors through Xo it 
must be a phantom map by this observation and part. D 

The theorem of Sullivan, mentioned in the proof, says that \i K'lSdi finite complex and 
Y is as in 5.1, then two maps f.g.K-^Ydnt homotopic if and only if e / ~ eg. This 
implies that for a domain Z, not necessarily of finite type, the kernel of e* : [Z, Y] -^ 
[Z, Y] is the set of all phantom maps of the second kind. In particular this means that 
in Theorem 5.1, the set [Xo,y] consists solely of phantom maps of the second kind. 
However, notice that the only phantom map (of the first kind) in [Xo,F] is the trivial 
one! This follows from Theorem 3.3 since the suspension of a rational space is a bouquet 
of rational spheres. 

Both conclusions in Theorem 5.1 fail to hold if the finite type hypothesis on Y is 
dropped. To see this in part i), recall that if Y were a rational space, then its profinite 
completion would have the homotopy type of a point. If 5.1 still held this would mean 
that every map into a rational space is a phantom map, which is obviously nonsense. In 
part ii) consider the universal phantom map out of EP°°. It is essential even though this 
domain has the rational homotopy type of a point. Thus the description of Ph(X, Y) as 
a quotient of [Xo,y] fails to hold in this generality. 

It is apparent from Theorem 5.1 that, under the appropriate restrictions on the spaces 
involved, the set [Xo, Y] serves as an upper bound on Ph(X, Y). The following theorem 
of Zabrodsky describes this upper bound in terms of ordinary rational invariants. 

THEOREM 5.2. If X and Y are l-connected CW-complexes of finite type, then there is a 
bijection of pointed sets, 

[Xo,Y]^Y[H''{X;irk+iiY)m), 

where R is a rational vector space whose cardinality equals that of the real numbers. 
Moreover if X is rationally a co-H-space or if Y is rationally an H-space, then there 
is a natural group structure on [Xo, Y] so that the above bijection is an isomorphism of 
rational vector spaces. 

PROOF. Let j : y -> ? denote an integral approximation of Y. This means that the 
homotopy groups of Y are torsion-free and finitely generated, the loop space f2Y is 
homotopy equivalent to a product of Eilenberg-MacLane spaces, and the map j is a 
rational equivalence. Such approximations exist by [71, Lemma A]. Since the fiber of j 
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has finite homotopy groups, it follows that j induces a bijection between the sets [Xo, Y] 
and [Xo,!^]. Now apply [ ,?] to the cofiber sequence 

Xr • X *- Xo 

to obtain the sequence 

[X, Y] ^-^^^ [Xo, Y] ^ [SXr, Y] ^ - ^ ^ [EX, Y] ^ . 

I first claim that the induced function r* is trivial. To see this recall that every map from 
Xo to Y (and hence to Y) is a phantom map of the second kind. When precomposed 
with r, these become phantom maps of the first kind. But according to Theorem 3.20, 
part 4, there are no essential phantom maps of the first kind into Y. The claim follows. 

The second claim is that the function Si* is injective. Since f2Y has the homotopy 
type of a product of K{Z,n)s, this claim is easily seen to be equivalent to the assertion 
that r* : H*{Xo\'L) -^ H*{X',Z) is the trivial homomorphism. This is true because in 
each positive degree, the domain of r* is a rational vector space while its target is a 
finitely generated abelian group. 

Combining these two claims, it follows that there is a bijection between [Xo,y] and 
the cokernel of 

[Xr,nY]. '* [x,nY]. 

If one takes the product abelian multiplication on OY, this cokernel then has the form 

l[H^{Xo,Fn) ^l[Ext{Hn-lXo,7rnY), 

where Fn is the maximal torsion-free quotient of TTnY. The isomorphism here is a 
consequence of the universal coefficient theorem together with the observation that 
Ext(Q,r) = 0, when T is a finite abelian group. Since Ext(Q,Z) ^ E, the descrip-
tion of the set [Xo, Y] given in the statement of this theorem follows. 

As the set [Xo,y] consists solely of phantom maps of the second kind it can be 
identified as 

[Xo,Y] ^\im^ [K,nY] 
*—K<Xo 

where K runs through the finite subcomplexes of Xo, by [64, Theorem 3.3]. This bijection 
is clearly natural in the second variable. Naturality in the first variable is seen by noting 
that a map / between two CW-complexes induces a map between their systems of finite 
subcomplexes (send K to the minimal subcomplex containing the compact image f{K)). 
If Xo is a co-i7-space, then it has the homotopy type of a bouquet of rational spheres 
and it has a CW-decomposition in which each finite subcomplex has the homotopy type 
of a bouquet of spheres. In this case each group [K, f2Y] is abelian and hence so is the 
Urn} term. If Y has the rational type of an i/-space, then the integral approximation 
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Y can be taken to be an if-space. The map j \ Y -^ Y then induces a bijection 
[Xo,y] —> [-STo??] and also one between the associated livn) sets. Since each [K, QY] 
is abelian the corresponding lim} term is again abelian. 

The rational vector space structure on this lim) term is a consequence of the rational 
nature of the domain. To be more precise, let A denote a power map on EXo, with 
respect to the suspension co-if-structure. Then A is a homotopy equivalence and so it 
must induce an isomorphism on the livn) term. But it also induces multiplication by A on 
each group [EK^ Y] and hence it induces multiplication by A on the abelian livn} term. 
The divisibility and the absence of torsion follow easily from these two observations. D 

COROLLARY 5.3. Let X and Y be simply connected spaces of finite type. IfX is rationally 
a co-H-space, or if Y is rationally an H-space, then there is a natural group structure 
on Ph(X, Y) which is abelian and divisible. This group structure comes from identifying 

Ph(x,y) with iim^[x,nY^% 
PROOF. One way to see this is to combine the second part of 5.1 with 5.2. The map 
r : X -^ Xo induces an epimorphism from 0{Xo,Y) = lim^[K,nY] to Fh{X,Y). 
Here one notes that phantom maps of the second kind coincide with those of the first 
kind when the domain has finite type. As the quotient of a rational vector space, Ph(X, Y) 
is divisible. D 

Another way to obtain this result is to work direcdy with the tower {[X, QY^'^^}, as 
was done in [31]. See Theorem 6.3 for a slightly stronger result. 

This group structure on Ph{X,Y) is natural in the following restricted sense. For 
the moment, let C denote the class of based spaces with the homotopy type of simply 
connected CW-complexes of finite type. If f : X' —^ X and g : Y -^ Y^ SLTG maps 
between members of C, then the induced function 

P h ( / , ^ ) : P h ( x , y ) - . P h ( x ' , y ' ) 

is a homomorphism provided X,Y and X',Y' satisfy the hypothesis of this corollary. 
The next result gives a condition under which the set Ph(X, Y) and the upper bound 

[Xo,y] coincide. 

THEOREM 5.4. Let X and Y be l-connected CW-complexes of finite type. If the function 
space map^{X^Y) is weakly contractible, then for every fc ^ 0, 

[X, n^Y] = Ph (X, n'^Y) « [Xo, n^Y]. 

PROOF. The first equality follows immediately from the first part of Theorem 5.1. The 
proof of the other bijection begins with the fact ?h{X,Y) « r*[Xo,Y] established in 
Theorem 5.1, In view of the long exact sequence 

[Xr^Y] . [X,y] ^-^^-^ [Xo^Y] . [EXr^Y] ^ 

it suffices to show that the set [EXr.Y] is trivial. This would follow, of course, from 
the weak contractibility of the space of based maps map^{Xr,Y). To prove this, use the 
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following result from [43, Proposition 9.5] which is known nowadays as the Zabrodsky 
lemma. 

LEMMA 5.5. Let E ^^ B be a principal bundle with structure group G. Ifmap^{G, Z) 
is contractible, then map^{B, Z) —̂  map^{E^ Z) is a homotopy equivalence. 

Let Z = y and apply the Zabrodsky lemma to the principal fibration 

nXo Xr X 

Now map^{QXo',Y) is weakly contractible, as noted in the proof of Theorem 5.1. 
Therefore one can take simplicial models which satisfy the requirements of the Zabrodsky 
lemma and deduce that map^{Xr, Y) is weakly contractible. In other words, every map 
from Xr to i7'^y is a phantom map of the second kind. However, since the reduced 
integral homology groups of Xr are torsion groups, every phantom map of the second 
kind from this space to a finite type target is trivial. This is proved in the verification of 
Example 4.1 of [22], The proof amounts to identifying this set of maps with the Urn} 
term of a system of finite groups. Thus mapi^{Xr,Y) is weakly contractible and the 
theorem follows. D 

THEOREM 5.6. Let Y be a l-connectedfinite complex. If 

(i) X is a \-connected Postnikov space (i.e. TTUX = 0 for n sufficiently large) of 
finite type, or ^ 

(ii) X = BG where G is a connected Lie group, then map^{X^Y) is weakly con-
tractible. 

The first part of this theorem is due to Zabrodsky; its proof will be given shortly. The 
second part is a special casê * of a result of Friedlander and Mislin; see [18]. Both results 
are consequences of H. Miller's celebrated theorem: 

THEOREM 5.7. IfG is a locally finite group and Y is a finite dimensional complex, then 
map^{BG,Y) is weakly contractible. 

PROOF. Recall that a group is locally finite if every finite set of elements in it generates 
a finite subgroup. If TT is such a group, then map^{K{7r,n),Y) is weakly contractible 
for each n ^ 1. The proof of this is by induction, starting with Miller's theorem when 
n = \. The induction step uses the principal fibration 

K{G,n-l) ^ * ^K{G,n). 

Since map^{K{G^n - l),Y) and Tnap,^{*,Y) are weakly contractible, the Zabrodsky 
lemma implies the same is true of map^{K{G,n),Y). Notice that if X is a Postnikov 

*' They prove in Theorem 3.1 that mapm(BG,Y) is weakly contractible when G is a Lie group with finitely 
many components and Y is any finite dimensional complex. 
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space, then so is Xr. Moreover, the homotopy groups of Xr are locally finite. A finite 
induction, using the fibrations 

K{G,n) X|^) Xj^-^) 

and the Zabrodsky lemma, yields that ma'p^{XT\y) is weakly contractible for each 
n ^ 1. Finally the same result holds for map{X^'^\ Y) using the fibrations 

QX^J"^ X^^) X(") 

and the Zabrodsky lemma as was done in the proof of Theorem 5.3. D 

Some of the results stated above are not as general as those stated in Zabrodsky's paper. 
For example, Zabrodsky states in [71, Theorem B(d)], that Ph(X, Y) is a divisible abelian 
group isomorphic to a quotient of Y[H'^~^{X'.-Kny®^ assuming only that X and Y 
are 1-connected with finite type. Even though he makes no claims of naturality, I still 
have some problems with this assertion and its proof. In particular, he contends (p. 137, 
last line) that [Xr, QY] is abelian and uses this fact to handle a double coset calculation 
of Ph(X, y ) . Although QY does have the homotopy type of a product of Eilenberg-
MacLane spaces, it does not follow that the group [Z, QY] is necessarily abelian. For 
example, take Y to be the two stage Postnikov tower with fc-invariant i^ : K{Ij,2n) —^ 
K{Z,An) and let Z = 5^^-^ x 5^^"^ In this case QY - i^ (Z ,2n- 1) x K ( Z , 4 n - 1), 
but the group [Z, QY] is not even rationally abelian. 

Joe Roitberg also wondered about the way in which Zabrodsky was adding phantom 
maps. In [50], Roitberg showed that if Y is group-like in C, then the induced group 
structure on Ph(A', Y) was abelian, divisible and independent of the particular homotopy 
associative il-structure used on y . In [51], he proved a dual result in terms of co-group 
structures on X. The naturality he obtained was thus limited to maps which preserve this 
set of homotopy associative structures. 

Oda and Shitanda have worked out some equivariant versions of Zabrodsky's results 
on phantom maps in [48] and [49]. There are probably some other nuggets left in his 
paper worth mining, but the prospective prospector should be warned about some of 
the dangers. For example, when Zabrodsky claims (p. 131, midpage) that the integral 
approximation Y cannot be the target of an essential phantom map, he really means 
a phantom map of the first (and not of the second) kind. In his Theorem D, part 3, 
Zabrodsky seems to be claiming that every map from a Postnikov space into a finite 
dimensional complex is a phantom map. And since Miller's theorem holds for finite 
dimensional targets this might at first glance seem plausible. Nevertheless, there is an 
easy counterexample in this case; let X — K{Z,2n - 1) and let Y = K{Q, 2n - 1). The 
latter is finite dimensional (it can be constructed as a telescope using self maps of the 
sphere) and there are clearly lots of nonphantom maps between these two spaces. Finally 
there is the application on p. 135 concerning S'^ bundles over K{Z,m) which is wrong 
(for n odd) as explained in [33, p. 198]. 
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6. Phantoms which vanish when localized 

This section deals with the effects of localization on phantom maps. From an algebraic 
point of view it is also concerned with the curious failure of the functor lim^ to commute 
with locahzation. Let us begin by considering two extreme examples. First, there are those 
phantom maps, such as the universal phantom map out of C P ^ , which remain essential 
when localized at any prime. At the other extreme is Example 3.17: Every essential 
phantom map 

(and there are uncountably many of them) becomes null homotopic when localized at 
any prime p. What is one to make of this? 

The first example might seem closer to the norm when one recalls what happens in 
the case of finite complexes. If it' is a finite complex and Y is a nilpotent space, then a 
map f : K -^Y is null homotopic if and only if the composition 

K — ^ - ^ ^(P) 

is null homotopic for each prime p. This is no longer true if one replaces "finite" by 
"finite dimensional", as Example 1 showed. Nor does it hold when K has finite type but 
is infinite dimensional, as the second example showed. 

The second example might not seem so exotic when one recalls that every phantom 
map becomes null homotopic when rationalized (this is a consequence of Theorem 3.3). 
Loosely speaking, localizing at a single prime is not all that different from rationalizing. 
At any rate this example suggests that we take a closer look at the function 

which is induced by the map 6 :Y -^Yl ^(P) whose pth projection is the map Cp : y —> 
Y^py According to a theorem of Steiner [65], the function 5* is surjective when X and 
Y have finite type. The results which follow are concerned with the kernel of 6^. 

THEOREM 6.1. The map 5* is not injective when X and Y have finite type unless 
Ph(X, Y) = *. 

This result, from [37], is maddening in how little it says; it claims only that there exist 
at least two phantom maps, say / , ^ : X —• Y, which are not globally homotopic but that 
are locally homotopic at every prime p. It would be nice to know if this phenomenon is 
uniformly distributed throughout Ph(X, Y) or not. The problem is, of course, that in this 
generality Ph(X, Y) is just a pointed set and the induced functions, such as 6^ are just 
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pointed set maps with no other uniform properties known. Here are some special cases, 
again from [37] where we can say a bit more. 

THEOREM 6.2. Assume X and Y have finite type and Ph(X, Y) ^ *. Then the map 6^ 
is an infinite-to-one covering if any of the following conditions hold: 

(i) X has finite Lustemik-Schnirelmann category. 
(ii) Hn{X',Q) = Ofor n sufficiently large. 

(iii) TTniY) (8) Q = Ofor n sufficiently large. 
(iv) [X, fiY] = Ph(X, QY). 

The case which is best understood is the next one where Ph(X, Y) has a natural abelian 
group structure and the map 6^ is a homomorphism. The following result was proved 
in [31]. 

THEOREM 6.3. Assume that X is a CW-complex whose integral homology groups are 
finitely generated in each degree and that Y is a space whose homotopy groups are 
finitely generated in each degree. If X is a nilpotent space with the rational homotopy 
type of a co-H-space, or if the universal cover ofY has the rational homotopy type of 
an H'Space, then 

(i) Ph(X, Y) has a natural, divisible, abelian group structure, and 
(ii) the kernel of 6i, is a divisible subgroup ofV\i{X^Y). 

Remarks. The first part is a better result than was stated in Corollary 5.3. (The simply 
connected condition in 5.3 is unnecessary when working directly with towers.) The 
finiteness conditions on X and Y ensure that for each n, the group [X, QY^'^'^] is finitely 
generated and nilpotent. The rational conditions ensure that these groups are rationally 
abelian, or equivalently, that their commutator subgroups are finite. The lim} term of 
such a tower is seen to be isomorphic to that of its abelianization using the 6 term 
lim — li'w} sequence and Lemma 3.2 of [69]. This fact enables one to identify Ph(A', Y) 
with Ext(i4,Z), where A = colim(Hom([X,i?y(^)],Z)). The second part is then a 
consequence of some homological algebra; namely that the obvious map 

Ext(AZ)—^I|Ext(A 

is always surjective and that it always has a nontrivial kernel (unless, of course, its 
domain, Ext(A,Z) is the trivial group). This particular result was one announced by 
Willi Meier in [39], but as far as I know, he never published a proof of it. Finally, since 
nonzero divisible groups are never finite, one concludes in part (ii) that the kernel of 6^ 
is infinitely large whenever Ph(X, Y) is nontrivial. 

Here are some examples of abelian towers G in which the kernel of the induced map 
5* : lim^G —̂  Yllim^G^p) has been computed (see [37] for the details). The maps in 
each example are the obvious inclusions. 

(i) IfGn = 2^Z, then kernel((5*) ^ Z(2)/Z and hence is countably infinite. 
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(ii) IfGn= rUn'^j, where rUn is the product of the first n primes, then 

kernel((5*)«lim^G«E( 

(iii) IfGn — ^ l ^ , then the kernel of 6^ is an uncountably large rational vector space. 

The failure of lim^ to commute with localization was briefly mentioned earlier. These 
examples illustrate this phenomenon. The first tower, which is essentially tower A in 
Section 5, has a lim^ term isomorphic to E © Z(2)/Z. One can see directly that this 
tower becomes stationary when localized at any odd prime. On the other hand localizing 
the lim^ term at an odd prime p leaves R 0 Z/p°°. 

The third example is isomorphic to the tower B in Section 5. In particular lim^B « R. 
If the functor lim^ commuted with localization the kernel of (5* would necessarily be 
trivial in this case. Instead it turns out to be uncountably large! 

7. Phantoms and rational homotopy equivalences 

This section involves phantom maps between spaces of finite type. More precisely, a 
space X is called 2i finite type domain if each of its integral homology groups is finitely 
generated; a space Y is referred to as SL finite type target if each of its homotopy groups 
is finitely generated. The results in this section are from joint work with Joe Roitberg 
[35], [36]. 

Those spaces X, out of which all phantom maps are trivial, were characterized in 
Section 3 by the property that SX is dominated by WUXn- However, there are other 
spaces X, such as R P ^ or the mapping cone in Example 3.16, for which the universal 
phantom map out of X is essential and yet every phantom map from X to a finite type 
target is trivial. The following theorem characterizes such domains. 

THEOREM 7.1. Let X be a finite type domain. Then the following statements are equiv-
alent. 

(i) Ph(X, y ) = * for every finite type target Y. 
(ii) Ph(X, 5") = * for every n. 

(iii) There exists a map from EX to a bouquet of spheres VS'^" that induces an 
isomorphism in rational homology. 

The example X — WP^ mentioned above, shows that the restriction to finite type 
targets is necessary in part (i). This same example also shows that sometimes there are 
no spheres in the bouquet in part (iii). In cases such as this, we define the empty bouquet 
to be a point. There is an Eckmann-Hilton dual result that goes as follows. 

THEOREM 7.2. Let Y be a finite type target. Then the following statements are equivalent. 

(i) Ph(X, y ) = * for every finite type domain X. 
(ii) Ph(ii:(Z,n),y) = ^ for every n. 
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(iii) There exists a weak rational equivalence from a product of Eilenberg-MacLane 
spaces Ylcc K{^'> ^Q) to the basepoint component of f2Y. 

The direction of the rational equivalences in these theorems is important. In Theo-
rem 7.1, for example, one can always construct a rational homology equivalence from 
an appropriate bouquet of spheres into EX, but one can not always find one going the 
other way. A case in point is X = CP"^. Since there are essential phantoms from this 
space to other spaces of finite type, such as the 3-sphere, there is no rational equiva-
lence from its suspension back to a bouquet of spheres. This lack of symmetry is truly 
an infinite dimensional phenomenon. With finite dimensional suspensions, or with loop 
spaces with only a finite number of nonzero homotopy groups, one can always get ra-
tional equivalences, in both directions, between these spaces and the models featured in 
Theorem 7.1. 

One can, of course, regard Ph(X, Y) as a functor of two variables. The following 
results describe how it behaves when one variable is held constant and the other is 
allowed to vary, subject to certain rational conditions. 

THEOREM 13. \)If f : X —^ X' induces a monomorphism between the rational homology 
groups of two finite type domains, and Y is a finite type target, then 

ph(x,y) - — - — Ph(x',y) 

is an epimorphism of pointed sets. 
ii) If g :Y -^ Y' induces a rational epimorphism between the higher homotopy groups 

of two finite type targets, and X is a connected finite type domain, then 

Ph(x,y) — - — - Ph(x,r') 

is an epimorphism of pointed sets. 

More precisely, in (ii) it is only necessary that g : Trn^^Q —> TTnY'iS^Q be an 
epimorphism for each n ^ 2. Thus fig, when rationalized, restricts to a retraction onto 
the basepoint component of {fiY')o. Dually, the rationalization of Uf, in part (i), has a 
left inverse. 

Willi Meier was the first person to see a connection between phantom maps and rational 
equivalences. He announced in [40] a special case of 7.3, wherein he required his target 
to have the rational homotopy type of an Jfif-space. He also assumed that Ph(X', Y) = * 
in the first part and that Ph(X, y ) = * in the second. His result was generalized in [22], 
where Gray and I removed the Ho hypothesis on Y. Clearly, that result is still a special 
case of Theorem 7.3. 

The next result from [36] is quite different from the previous three in that it does not 
require any reasonable maps between the domains in part (i), or between the targets in 
part (ii). Instead, it only requires such maps between the suspensions of the domains, or 
between the loop spaces of the targets. 

THEOREM 7.4. i) If X and X' are finite type domains with rational homology equiva-
lences between their suspensions, EX and EX', in both directions, then Ph(X, Y) and 
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Ph(X', y ) , are isomorphic as pointed sets, whenever Y is a finite type target. 
ii) IfY and Y' are nilpotent finite type targets with rational homotopy equivalences 

between their loop spaces QY and QY' in both directions, then Ph(A', Y) and Ph(Jt, Y') 
are isomorphic as pointed sets for any finite type domain X. 

The spaces S^ and K(Z,3) have the same rational homotopy type but, of course, 
there is a rational equivalence between their suspensions in only one direction. In view 
of Theorem 7.4, this is as it should be since Ph(5^,F) = * for all spaces Y, whereas 
there are essential phantoms from K{Z,3) into many finite type targets Y - the simplest 
example being Y = 5"*, [41]. 

All four of the results just stated are proved using the tower approach. The proof of 
the first theorem will be given here to give some indication of the details involved. 

PROOF OF THEOREM 7.1. The case when X has the rational homology of a point is 
exceptional and will be considered first. According to Example 3.15, statement (i) holds 
for all such X. This implies (ii) is true, as well. The proof of (iii) is a triviality for 
such X, Having finished this trivial case, let us henceforth assume that X does not 
have the rational homology of a point. Let g : VS'^" —> UX be a rational homology 
equivalence, and let Qa denote its restriction to 5"^". As remarked earlier, there is always 
a rational homology equivalence in the direction of g, but not always one going in the 
opposite direction. Now assume that Ph(X, Y) = * for every finite type target Y. Then 
in particular 

Ph(X,5 ' ' " ) = * for each n^. 

This is equivalent to saying that 

\im'[{SX)k.S^-]=*. 

Since each group in this tower is countable, the tower is Mittag-Leffler by Theorem 
4.4. Moreover, by Lemma 4.7, the tower Gk = [{UX)k^ S''^"], has the property that the 
image of the canonical map limG^; -^ Gn has finite index. Since [UX, 3'^°'] maps onto 
limGfc, this implies that if 

/ : {EXh —> S^-

is a map some nonzero multiple of which extends to the t-skeleton of SX, for each 
t^k, then some nonzero multiple of / extends to all of SX. In particular take k ^ ria, 
and take / to a map such that the composite 

gn. £2—^ (^sx)k — - 5^-

is nontrivial. Since suspensions have the rational homotopy type of a bouquet of spheres 
and finite suspensions are universal in the sense of Mimura and Toda [45] it is clear that 
maps / with this property exist out of each skeleton of EX. Consequently one of them 
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has an extension , call it /a, to all of EX. Thus for each a there is a map /a such that 
the composite 

gn^ EX gn^ 

is nontrivial. Now sum up these /^s as follows: first let 

denote the adjoint of fa composed with the obvious inclusion. Then use the loop multi-
plication to form the finite product of maps into the nth Postnikov approximation, 

/n= n /^"^•.^—>^(V5^")^"\ 

The /nS form a coherent sequence and so there is a map, say 

/ : X —> r? V 5^" 

that projects to fn for each n. It is clear that the adjoint of / is the required rational 
equivalence. 

The proof of (iii) = > (i) amounts to showing that the tower Gn — \{EX)n, Y] has the 
Mittag-Leffler property. To this end, it is enough to show that the image of [EX, Y] in 
Gn, induced by restriction to the n-skeleton, has finite index for each n. The sufficiency 
here follows since this particular image is a lower bound for all the other images of 
the Gn+k in Gn- If it has finite index, then there can be at most a finite number of 
distinct subgroups of Gn that contain it and so the Mittag-Leffler property follows as a 
consequence. 

Assume now that the rational equivalence / : EX —̂  VS''̂ ° exists and consider the 
following diagram 

[SX,Y] r [v5"°,y] 

[SK,Y] \J 5"°,y 
•TlQ^fc 

in which Ĵ  is a certain (fc — 1)-dimensional subcomplex of X, chosen so that the 
restriction fk is a rational equivalence from EK to the indicated subbouquet of spheres. 
This restriction would not necessarily be a rational equivalence if EK were the /c-skeleton 
of EX\ in that case fk might have rational homology kernel in degree fc. To get around 
this problem, let /f be a complex of dimension A; — 1 with the following properties: 

(i) Kk-2 - Xk-i, 



Section 7 

(ii) Hk-2{K;Z) » Hk. 
(iii) Hk-i{K;Z) ^ Hk. 
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-2(X;Z), 
-i(X;Z)/torsion. 

Both homology isomorphisms are to be induced by a map of K into Xk-\. Such a î T, 
as well as the map, exists by Theorem 2.1 of [6]. For our homotopy theoretic purposes, 
we can (and will) regard K as a subcomplex of X by means of the mapping cylinder 
construction. It is then clear that / restricts, with the help of the cellular approximation 
theorem, to a rational homotopy equivalence from the subcomplex SK to the indicated 
subbouquet of spheres. 

If the restriction, fk, were a suspension, it would then follow by Lemma 7.1.2 below, 
that the image of /^ is a subgroup of finite index. This fact, together with a diagram 
chase, would imply that that the image of [SX, Y] also has finite index in the lower left 
comer. However, neither / nor fk was assumed to be a co-H map in this result and so 
we have to work a little harder. 

Take g G [SK, Y]. The group element g'^ can be represented by the nth power map 
on UK followed by the map that represents g. The following lemma then shows that for 
some sufficiently large power, say A, the element g^ is in the image of /^. D 

LEMMA 7.1.1. Let K be a connected complex whose suspension has the homotopy type 
of a finite complex and let 

f-.EK—^yS''^ 
0 

be a rational equivalence. Then for some power map, A, on SK, of sufficiently high 
power, there is a commutative diagram 

SK SK 

0 

Assume for the moment that this lemma is true. The group [SK, Y] is, of course, 
nilpotent and finitely generated. The image of [SX, Y] in this group is easily seen to 
be a subgroup that contains the subset image{fl^). Therefore the image of [SX, Y] has 
finite index in [SK, Y] by the previous lemma and the following bit of group theory. 

LEMMA 7.1.2. Let G be a finitely generated nilpotent group and assume that H is a 
subgroup ofG such that for each g in G, g^ G H, where A is some nonzero integer that 
may depend on g. Then H has finite index in G. 
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The inclusions, 

{EX)k-xCi:KC{EX)^, 

induce maps, 

[(rx)fc-i,y] ^ [EK^Y] ^ [(rx)fc,y], 

such that the image of the group on the right has finite index in the one on the left. It 
follows that the image of [EX, Y] in the left group also has finite index. Since k was 
arbitrary here, the proof of Theorem 7.1 will be complete once we prove the two lemmas 
just used. 

PROOF OF LEMMA 7.1.1. First choose a set of classes {g^} c TT^EK SO that the map, 

is a rational homotopy equivalence and so that 

Here tfs denotes the standard inclusion of 5^^ into the bouquet and each mp is a nonzero 
integer. This is possible since / : EK —> VS'^^ is a rational equivalence, and so for 
each (3, some nonzero multiple m^sip lies in the image of / • and hence factors as a 
composition f • g^^ 

Next recall that the rationalization of EK can be constructed as an infinite telescope 
using the power maps given by the suspension co-H-structure. The composition 

gnp 9J_^ ^^ r ^ ^^^^^ 

is certainly divisible by mp, say 

r^{g(3) = mp9'(3^ 

and it may be assumed that this equality holds at some finite stage of the telescope. In 
other words, for sufficiently large A, the composition X- gp is divisible by m/j, say 

Define h : VS""^ —^ EK by requiring 

K{ip) = hp. 
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Since evidently, 

r . A = r • /i • / , 

it follows from the infinite telescope description of {EK)o that for some nonzero power 
map, i, on EK, 

Thus, by replacing A by iX and h by Ih, the lemma follows. D 

PROOF OF LEMMA 7.1.2. If if is a normal subgroup of G, the quotient G/H is then a 
finitely generated, nilpotent, torsion group. It must, therefore, be a finite group. Thus, 
the lemma is true if H is normal in G. If H is not normal, consider the sequence of 
subgroups 

where each Hi^\ is the normalizer in G of Hi. Since Hi contains the ith term of the 
upper central series of G, it follows that G = Hn for some integer n. Any subgroup that 
contains H clearly satisfies the hypothesis of this lemma, and so as noted above, each 
quotient Hi/Hi-x is finite. The result follows. D 

There is a p-local version of Theorem 7.1 whose proof is isomorphic to the one just 
given. For a finite type domain X, it says that Ph(X, y ) = * for any p-local space Y 
with finite type over Z(p) if and only if there is a rational equivalence from {EX)(^p\ 
to a bouquet of p-local s spheres. Such a result would apply to the loop space fP-S^ 
for example. Although there is no global rational equivalence ff-S^ —> 5^, there does 
exist such a map at each prime. The existence of such maps is due to Cohen, Moore, 
and Neisendorfer [13] for p ^ 5, to Neisendorfer [47] for p = 3, and to Cohen [11] for 
p = 2. 

8. Phantom maps out of loop spaces 

Let X be a 1-connected finite CW-complex which is not contractible. It is known that 
for each fc ^ 1, the iterated loop space fi^X has nonzero homology in infinitely many 
degrees. For fc = 1 this is easy to see using the Serre spectral sequence. For fc ^ 2 this 
follows from Hubbuck's theorem that the torus is the only connected finite complex with 
a homotopy commutative multiplication. It seems reasonable then to look for phantom 
maps coming out of such loop spaces. However, this setting seems to be a difficult one 
to search and aside from a few examples and some scattered results not much is known 
about it. 
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The first nontrivial example is, of course, the sphere. It was noted in Section 3 that 
there are no essential phantom maps out of QS^. This follows from Corollary 3.4 and 
the decomposition 

EnS""^^ :̂  S'"'^^ V 5 '̂'+^ V Ŝ '̂ '̂ ^ • • •. 

However, the situation for the higher loop spaces of S"^ appears to be very different. 
When k ^ 2, the universal phantom map out of fi^S'^ is often essential, as will be 
evident in Proposition 8.2, but I suspect that a much stronger result holds; namely. 

CONJECTURE 8.1. The universal phantom map out of fi^S^ is essential at each prime p, 
for all n ^ 2, and for all k^2. 

Here is a proof for the case k — p — 1 when n is odd. In other words, I will show that 
ĵ 2^2m-i-i jQ ĝ ĵ Q̂  become homotopy equivalent at the prime 2 to a bouquet of finite 
dimensional complexes after one suspension. To simplify notation, let E = ff-S'^'^'^^ 

oo 

localized at 2, If EE were dominated by WE En, it would follow, just as in the proof 
of Theorem 3.9, that for any finite degree d, there is an integer t and maps 

E nE{Et) E 

such that the composition induces isomorphisms on homotopy groups up to degree d. 
After taking d to be sufficientiy large, this composition would have to be a homotopy 
equivalence by the results of [10]. But this would imply that the mod 2 homology of 
E, which is a polynomial algebra on infinitely many generators, can be embedded, as a 
module over the Steenrod algebra, into H^^ilEEt, which is a finitely generated tensor 
algebra. I will show that no such embedding exists. 

First recall that the mod 2 homology of fP'S'^'^'^^ is a polynomial algebra 
Z/2[xi, X2, X3, • • •] where the degree of xi is l^m-1. The action of the Steenrod algebrâ -̂  
is the following: for each i > 1, 

Q k , _ [ A ^hen A:= 1, 
(I ^i+i - | Q when A: = 2 ,4 ,8 , . . . . 

The action of the Steenrod algebra on the tensor algebra H^QEEt is completely deter-
mined by its action on H^Et and the Cartan formula. 

Now suppose that a is the largest integer exponent such that 2^m - 1 ^ 1.1 will show 
that there is no place in the tensor algebra H^QEEt to send the next generator Xa+i-
Notice back in H^E that 

Sq^Xa^x={xxf ^0, 

^^ As usual, this action is the Hom-dual of the action of A2 on cohomology. 
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where / = { 2 ^ - ^ . . . ,4 ,2,1}. Thus if the embedding takes Xa+i to an element y, it 
follows that Sq^y must be nonzero. Now a typical term in this tensor product is a linear 
combination of monomials, such as a; = [t/;i][iy2] • • • [̂ n]> where each Wi is a monomial 
in the generators, xi,X2,. . . ,Xa. Take the length of u to be the obvious one obtained 
by forgetting the brackets and summing up the exponents; for example, the monomial 
[xiX2][a;̂ X3] has length 10. Notice that when Sq^ is applied to a monomial, the result, if 
nonzero, is longer. Its length is increased by 1. This follows from the description of the 
action given earlier and the Cartan formula. More generally, if u; is a monomial of length 
i, then Sq'^u, if nonzero, is a sum of monomials each of length ^ 4- fc. It follows then if 
y is written as a sum of monomials, the shortest of which has length c, then Sq^y can 
be written as a sum of monomials, the shortest of which has length at least c -f 2" - 1. 
However, since the degree of y is 2^'^^m- 1, the degree of Sq^y is 2^(2m - 1) and the 
longest monomial with this degree is x] . Terms that seem to have greater length in this 
degree must in fact be zero. The assumption Sq^y ^ 0 thus implies the existence of a 
monomial of length 1 with degree 2""̂ m̂ - 1 in the tensor algebra H^QSEt. But this 
is absurd, and so the proof follows. 

W t̂h regard to finite type targets, the following sums up what is known about phantom 
maps out of the iterated loop space of a sphere. As might be expected, the answer has a 
decidedly rational flavor. 

PROPOSITION 8.2. There exist essential phantom maps from Q^S'^ into finite type targets 
if and only if k^2 and 

TTgfi^S'^^QT^O for some q^ 2. 

These targets can be taken to be spheres. However, for each prime p there are no essential 
phantom maps from Q^S'^ to nilpotent p-local targets of finite type over 1*{py 

Remarks. The above conditions translate into n - 2 ^ fc ^ 2 when n is odd and 
2n — 3 ^ A: ^ 2 when n is even. The choice of essential targets among spheres is, 
of course, limited by Theorem 5.2. For example, when n is odd (and n and k satisfy 
the above inequalities), there is an essential phantom map fi^S'^ —> 5'^ if and only 
if m = n — A:-|-l. When n is even there appear to be two choices: m = 2n — k or 
771 = n — fc -f 1. The first choice always works; the second works only if fc ^ 3. 

This proposition does not have much bearing on Conjecture 8.1. Of course, it implies 
that the universal phantom map out of H^S^ is often essential (even, sometimes, when 
k > n) and so in this sense it supports 8.1. However, please note that it does not imply 
that the universal phantom map is trivial when localized at p; at most, it indicates the 
delicate nature of the problem. 

PROOF OF PROPOSITION 8.2. The first step is to establish that 

Ph(i7'=5^^+^/2'^-252^)7^0, 
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when 2n — 1 ^ fc ^ 2. A special case of this (when k = 2) was proved in [30] and so 
assume hereafter that A: ^ 3. Using the tower approach, it suffices to show that the tower 
with jth term given by 

is not Mittag-Leffler. There is a map QS^'^ -^ g2n-i ŷ hjch induces an epimorphism 
on rational homotopy groups. Therefore, by looping this map the appropriate number of 
times and using Theorem 7.3, it suffices to show that the tower {Gj} is not Mittag-Leffler, 
where 

When fc ̂  4, the group Gj is abelian and is easily seen to be isomorphic to Z 0F^ where 
Fj is some finite abelian group. When fc = 3, the group Gj may not be abelian but it 
has a finite commutator subgroup and its abelianization has the form just described. To 
see that the tower {Gj} is not Mittag-Leffler, notice that at each odd prime p, there is 
no map, say 

with degree 1 on the bottom cell. Of course, there is such a map going in the other 
direction; it comes from the double suspension S^^~^ —> i?^5^ '̂̂ ^ Since i?^"^5^'^-^ 
is atomic at p, by [10], the existence of (p would imply that the image of the double 
suspension is a summand of TT^S^"^^^. But at each odd prime this is not the case, as can 
be seen in the unstable image of the J-homomorphism. 

The observations just made imply that the tower {Gj} is, modulo torsion, pro-
isomorphic to a tower of the form 

where each odd prime occurs at least once. Such a tower is evidently not Mittag-Leffler. 
This completes the proof for the odd spheres. 

When fc ^ 1, there is a map Q^S^'^'^ —> Q^S^'^ which induces a monomorphism 
in rational homology. Therefore the proof of 8.2 for the even spheres follows from that 
for the odd spheres and Theorem 7.3. That the targets can be taken to be spheres is a 
consequence of Theorem 7.1. The rest of Proposition 8.2 is proved in [30]. The proof of 
the last part is essentially a corollary of Theorem 8.7 (or a localized version of Theorem 
7.1) and the existence of p-local maps flS'^'^'^^ -^ S'^'^'^ with degree p on the bottom 
cell. As mentioned at the end of Section 7, such maps were shown to exist by Cohen, 
Moore, and Neisendorfer. D 

The rest of this section will concern only ih^ first loop space of a finite complex. The 
obvious question is: Does there exist a finite complex K for which the universal phantom 
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map out of f2K is essential? The answer is yes. 

EXAMPLE 8.3. Let G be the Lie group 5p(2), 5p(3), G2 or F4. In each case QG is stably 
atomic at the prime 2 and thus the universal phantom map out of it is essential. Indeed, 
it is stably essential. The first two of the four loop spaces just mentioned, were shown to 
be stably atomic by M. Hopkins in his Northwestern Ph.D. thesis [25]. J. Hubbuck then 
proved all four cases a different way in [27]. The claim in the example follows from this 
fact and Corollary B.IL 

The next example is an unstable one and in this respect it resembles n^S^'^'^^ at the 
prime 2. 

EXAMPLE 8.4. Let X = nSU{3). Then X is stably equivalent to a bouquet of finite 
spectra, but the universal phantom map out of X is essential at p = 2. 

The proof of this result is also similar to the one given above for the double loops 
on an odd sphere; it amounts to showing that one cannot embed the polynomial algebra 
H^nSU{3), as a module over the mod 2 Steenrod algebra, into the corresponding finitely 
generated tensor algebra. The technical details are slightly different; see [22]. I suspect 
that the result holds for f2SU{n), for all n ^ 3. Hubbuck has shown that QSU{n) is 
atomic at 2 for all n, [26]. A proof of the stable splitting of f2SU{n) was given by 
M. Crabb and S. Mitchell in [14]. 

The examples just cited involved the smallest prime, p = 2.1 do not know of a similar 
example involving a larger prime, although I suspect that they exist. Indeed, QSp(2) at 
p = 3 looks like a good candidate. Of course, one would not expect EQK to be atomic 
at p > 2. It will break into p - 1 pieces on general principles. It seems likely that some 
of these pieces, at some small odd prime, do not decompose completely into bouquets 
of finite dimensional pieces. 

But what about large primes? What happens to EQK when it is localized at a large 
prime? If K is one of the Lie groups mentioned in the previous two examples, it is easy 
to check that EQK is a bouquet of spheres at all primes ^ 1 3 . The following theorem 
shows this phenomenon generalizes to a larger class of spaces. Recall that a space X is 
said to be rationally elliptic if it has finite type and its rational homology groups and its 
rational homotopy groups both vanish in all sufficiently large degrees. The prototypical 
example is G/H, where G is a Lie group and if is a closed subgroup. Wilkerson and I 
proved the following result in [38]. 

THEOREM 8.5. If K is a \-connected finite complex which is rationally elliptic, then for 
all sufficiently large primes p, 

QK - p J]j5^^"+^ X JJ/25^^^+^ 

After one suspension, the product on the right decomposes into a bouquet of spheres. 
Thus the universal phantom map out of QK is trivial at almost all primes when K 
is a finite complex which is rationally elliptic. It is by no means clear that the same 
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should hold for all finite complexes. For example, Anick has constructed a complex K 
consisting of eleven 4-cells attached to seven 2-cells, with the property that H^{f}K;Z) 
has torsion of order n in degree n -f 1 for every natural number n; see [4]. Nothing is 
known about p-local decompositions of Ef2K in this case. 

The last topic in this section is that of phantom maps QK —> Y, where K is a finite 
complex and Y has finite type. An essential phantom map under these circumstances has 
yet to be found! The best we can currently do is prove, in some cases, that none exist 
and examine its implications. 

Given a 1-connected finite CW-complex K, it is a simple matter to construct an 
appropriate product of odd dimensional spheres and loop spaces of other odd dimensional 
spheres, along with a map, 

Jj52n.+l><Jj-^^2n,+l h ^ ^^^ 

that induces an isomorphism in rational homology. Finding a map in the opposite direction 
that induces a rational homology isomorphism is, however, quite another matter. It seems 
to be a difficult unsolved problem in unstable homotopy theory. The following result deals 
with one of the few classes of compact spaces for which one knows that such a map 
exists. 

PROPOSITION 8.6. Let K be a X-connected finite complex with the rational homotopy 
type of a product of spheres. Then Ph(i?i(r, Y) — Ofor any finite type space Y. 

This result certainly applies to the Lie groups listed in Examples 8.3 and 8.4. Thus, 
for example, the universal phantom map out of f2F4 is essential but every phantom map 
from this loop space into a finite type target is trivial. This result would also apply to 
the complex or quatemionic Stiefel manifolds. 

PROOF. By hypothesis, K has the rational homotopy type of a finite product of spheres, 
say P. It is not difficult to construct a map, f : K —^ P, which induces an isomorphism 
in rational homology; see, e.g., [33, Proposition 5.1]. Then f2f : QK —> nP is also 
a rational equivalence. Since the universal phantom map out of fiP is trivial the result 
then follows from Theorem 7.3. D 

Is it always possible to find a map 

a (3 

which induces a rational homology isomorphism, when K is rationally elliptic? It is, at 
large primes, by Theorem 8.5, but I do not know if such maps exist at small primes too. 

The last result in this section shows that the question of essential phantom maps 
QK -> y , where the target has finite type, is equivalent to the problem of finding a 
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rational equivalence OK —• P, where P is some product of odd spheres and loop spaces 
of odd spheres. 

THEOREM 8.7. Let X be a connected, nilpotent, CW-complex of finite type over some 
subring R of the rationals and assume that all other spaces in this theorem are R-local 
as well. Assume that X has the rational homotopy type of a product, 

p = Jj5^""-* x] î752^^+^ 

Then there exists a map X -^ P, which induces an isomorphism in rational homology 
if and only ifVh{X^ Y) = * for every finite type target Y. 

I proved this result in [30]. Notice the connection between it and Theorem 7.1. This 
result says a little bit more about a smaller class of spaces. Combining the two results 
one sees that to obtain a rational equivalence HK -^ P it is enough to know that 
¥h{fiK, S"^) — * for every n > 2. Then by Theorem 5.2, one could further restrict the 
search to those n for which Hn-\{OK\Q) ^ 0. 

One of the main reasons I became interested in finding rational equivalences f2K —> P 
was John Moore's Exponent Conjecture. It says that in the homotopy groups of a finite 
complex, the exponent of the p-torsion is finite, for each prime p, if and only if the 
complex is rationally elliptic. This is the problem that motivated Theorem 8.5. Since 
spheres are known to satisfy this conjecture, so do all rationally elliptic spaces at large 
primes. But what about at small primes? This is still an open problem. To tackle it, one 
might start with a rational equivalence QK —> P of minimal degree and hope to derive 
information about the torsion in TT^HK in terms of a minimal map and knowledge of P 
- at least, that was my plan. However, to get started one needs a map... 

There are other reasons for wanting a rational equivalence fiK —> P. When K is 
rationally elliptic, the existence of such a map implies that the pointed set SNT{f2K), 
consisting of those homotopy types [Y] with the same n-type as QK for all n, has just 
one element; see [33, Theorem 5]. This fact is crucial in establishing the finiteness of 
the Mislin genus Q{nK). At first glance, there is no apparent reason why QKy being 
infinite dimensional with respect to both homology and homotopy, should have a trivial 
SNT-s&i or a finite Mislin genus. For example, both SNT{X) and G{X) are uncount-
ably large when X = BSPil). Nevertheless, I know of no 1-connected finite complex 
K for which SNT{QK) is nontrivial or Q{QK) is an infinite set. For more details on 
these topics, see [32]. 

9. Open problems 

This section contains most of the open problems previously mentioned and a few others 
that were not. The first five deal with problems considered in Section 8. 

QUESTION 1. Is the universal phantom map out of Q^S"^ essential at each prime p, for 
each k^l, and for each n ^ 2? 
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QUESTION 2. If K is a finite 1-connected complex, does the universal phantom map out 
of nK become trivial when localized at sufficiently large primes? 

By Theorem 3.9, this is equivalent to asking if EQK is homotopy equivalent to a 
bouquet of finite complexes at all sufficiently large primes. As mentioned in Section 8, 
the answer is known to be yes when K has only a finite number of nonzero rational 
homotopy groups. The answer is also yes when K has the rational homotopy type of 
a suspension. By a result of Anick [5] it is also true if K has Lusternik-Schnirelmann 
category two and H^{f2K;Z) has p-torsion for at most a finite number of primes. 

The following problem was raised in [38] and is still open. An answer of yes would 
lend some credibility to the previous question. 

QUESTION 3. If JC is a 1-connected finite complex, do the Steenrod reduced powers P* 
act trivially on H*{nK',Z/p) for all primes sufficiently large? 

QUESTION 4. Does there exist a finite complex K and an essential phantom map from 
f2K to a target of finite type? 

QUESTION 5. Let G/H be a homogeneous space where G is a compact Lie group and 
i? is a closed subgroup. Is there a map 

Q{G/H) —̂  JJS^^--^ X [Jfi5^^^+^ 

which induces an isomorphism in rational homology? 

Question 5 is admittedly a special case of the one that preceded it, by Theorem 8.7. 
However, the homogeneous spaces provide good test cases. It is possible that techniques 
needed to handle the homogeneous spaces might also handle the rationally elliptic spaces 
at small primes. In particular, what is the answer when X = U{2n)/Sp{n)l 

QUESTION 6. Suppose that X is an arbitrary CW-complex and that Y is group-like. Is 
the subgroup of phantom maps in [Jf, Y] necessarily abelian? 

This, of course, is true when X and Y have finite type, as was discussed in Section 5. 
But I can see no reason why the commutator of two phantom maps should be null 
homotopic in general. 

QUESTION 7. Suppose that X and Y are simply connected finite complexes. Is it true 
that every map from Q{X) to F is a phantom map? 

As usual, Q{X) = colimi7'^i7'^X. Thanks to the Sullivan conjecture we now know that 
Tnap^{E,Y) ĉ  * when E is an abelian Eilenberg-MacLane space. It seems reasonable 
to ask if the same result holds for other infinite loop spaces. 

QUESTION 8. Given finite type spaces X and Y, define 

A{X,Y) = colimnnom{[EX,f}Y^''^,Z). 
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Then A{X, Y) is a countable torsion-free abelian group. Can every such group be ob-
tained in this manner? 

It seems like an impossible problem to characterize, even up to pro-isomorphism, those 
towers which occur as {[X, fiY^'^^]} for some spaces X and Y. Question 8 is a weaker 
version of this problem. I can show that every additive subgroup of Q can be obtained 
as A{X, Y) for a suitable choice of X and Y. 

QUESTION 9. Suppose that X and X' are two finite type domains that are homotopy 
equivalent after one suspension. Is it then true, for any target Y, that Ph(X, y ) = * if 
andonly i fPh(X' ,y) = *? 

The following problem is the algebraic version of Question 9. It deals with the extent 
to which lim^G depends upon the actual group structures in the tower. To be more 
precise, suppose that (j): G ^ G' is a bijection between two towers of groups. Thus for 
each n there is a commutative diagram 

Gn ^ Gn 

where the horizontal maps are bijections, but not necessarily homomorphisms. Assume 
also that for each n 

(i) (j)n+\ restricts to an isomorphism between the abelian kernels, ker(7rn) and 
ker(7r^), and 

(ii) (t)n induces an isomorphism between the abelian cokernels, coker(7rn) and 
c o k e r « ) . 

Here is the problem. 

QUESTION 10. Does it follow that hm^G = * if and only if lim^G' = *? 

When two spaces X and X' become homotopy equivalent after one suspension, the 
homotopy equivalence between the suspensions will induce a bijection between the towers 
{[SX, y^'^)]} and {[SX\ Y^'^^]}, with the two properties just mentioned. This bijection 
is not necessarily a group isomorphism however. Thus Question 10 is the algebraic 
version of the problem which preceded it. 

If the groups Gn are countable then the answer to Question 10 is yes. This can be 
shown using the Mittag-Leffler condition. Recall from Section 4 that this is a set theoretic 
condition which, for towers of countable groups, is equivalent to the vanishing of their 
lim^ terms. Bijections between towers clearly preserve this property. 

QUESTION 11. DO there exist towers of finitely generated nilpotent groups {Gn} with 
the property that lim^ lim G^^^ 7»̂  * or such that lim^lim G\^ ^ *? 
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Here Gn denotes the image of Gjn^n in G^ while H^^^^ denotes the maximal nilpotent 
quotient of E of class < c. This is a problem that Steiner and I encountered in [37]. 
Simply put, we know very little about nonabelian towers and are unsure how complicated 
they can be. 

Let G again denote a tower of finitely generated nilpotent groups and consider the 
function 

(5. :lWG~^niWG(p), 

which was studied in Section 6. The main question left open is this: 

QUESTION 12. If the kernel of 6* is nontrivial, does it follow that b~^{y) is an infinite 

set for each y in lim G? 

This is known to be true in the abelian case, by Theorem 4 of [31] and it is also known 
to be true in certain special nonabelian cases considered in [37]. 

QUESTION 13. If Ph(X,y) has a natural abelian group structure, does it follow that the 
torsion in Ph(X,y) is contained in the kernel of <5*? 

The examples worked out in Section 6 make this look plausible but Steiner and I can 
show that this is not true in general on the algebraic level. That is we can construct 
towers G with torsion in lim}G that is not in the kernel of (5*. However we have yet to 
show that these towers can be realized as towers of the form {[X, i7y^"^^]}. This is one 
reason for my interest in Question 8. 

The last question deals with towers of large abelian groups and their lirrn} terms. 
First recall the finitely generated case. Jensen has shown that when G is a tower of 
finitely generated abelian groups, livn} G ^ Ext(yl, Z) where A is a countable torsion-free 
abelian group. The connection between G and A is given by A = colim Hom(Gn, Z). 
His result shows that the possible values of lim^G are quite restricted. Indeed, Ext(A^ Z) 
if nontrivial, is a divisible group with a torsion-free summand of cardinality 2^° and, for 
each prime p, has p-torsion isomorphic to 0Z/p°° where the number of summands can 
either be finite or 2^°. Jensen also showed that for any countable torsion-free abelian 
group A, the group Ext(A, Z) can be realized as the lim^ term of an appropriate tower 
of finitely generated abelian groups [28]. Roitberg has shown that each of these same 
Ext groups can be realized as groups of phantom maps Ph(X, Y) for appropriate choices 
of spaces X and Y [53]. 

Suppose that the finitely generated condition on the tower is weakened to where the 
groups in it are only assumed to be countable abelian. It is still true that the lim^ term 
of such a tower is either 0 or uncountably large [33]. However, a nontrivial lim^ term 
need no longer be divisible nor must it have a nontrivial torsion-free summand. For an 
example, consider an F2-vector space with a countable infinite basis. Take the tower of 
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inclusions whose n-th term is the subspace of vectors whose first n ~ 1 coordinates are 
zero. The lim^ term in this case is n°° '̂ '2 / ©°° 1̂ 2. This prompts the following problem. 

QUESTION 14. How does one characterize lim^G when all the groups in the abelian 
tower are countable? 

When all restrictions (except commutativity) are removed from the groups in the tower 
there is a very nice characterization of the possible lim^ terms. Warfield and Huber have 
shown in this case that lim^G is a cotorsion group and conversely that every cotorsion 
group can be realized as the Urn} term of a tower of abelian groups [67]. Recall that an 
abelian group B is cotorsion if and only if Ext(Q, B) = 0. Thus every finite abelian group 
is cotorsion as is every countable bounded abelian group [19, Chapter 9]. Of course, the 
simplest example of a group which is not cotorsion is the integers Z. 
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Section 1 Wall's finiteness obstruction 1261 

1. Historical background 

1.1. Borsuk's question 

A space X is called an absolute neighborhood retract or ANR, if every map F —^ X from 
a closed subspace F C y of a normal space Y admits an extension to some neighborhood 
of F in y . A typical example is a compact topological n-manifold (compact Hausdorff 
space, locally homeomorphic to R"). It is easy to see that a compact ANR has the 
homotopy type of a CW-complex (see Section 2). Moreover, if X is a compact ANR 
and (j): X -^ P 2L homotopy equivalence with P a CW-complex then, as 0(X) will be 
contained in a finite subcomplex Q of P , the restriction to Q of a homotopy inverse to 
0 shows that X is a retract up to homotopy of the finite complex Q. 

Borsuk asked at the International Congress in Amsterdam in 1954 (cf. [7]) whether 
a compact metric ANR is actually homotopy equivalent to a finite CW-complex and he 
was able to settle this question positively for a special class of compact metric ANR's 
(admitting a "brick decomposition"). In the simply connected case one can use the concept 
of a homology decomposition (due to Eckmann and Hilton [18]) to see that such a 
space is of the homotopy type of a finite CW-complex. In subsequent years many more 
special cases were setded, in particular the case of a compact n-manifold (see Kirby 
and Siebenmann [37]). A positive solution to Borsuk's general question was given by 
West in [72]. Given a compact metric ANR X he constructed a cell-like mapping, thus 
a homotopy equivalence, from Q x loo onto X, Q a finite polyhedron and /oo the 
Hilbert cube (a countably infinite product of intervals [0,1]), showing that X is homotopy 
equivalent to Q. Later, Chapman found a different proof of the "Borsuk Conjecture" [13]. 

1.2. Wall's answer to a more general question 

A natural generalization of Borsuk's question is the following. Consider an arbitrary 
topological space X which admits maps (t> : X -^ P and il^ : P -^ X with P a finite 
CW-complex, such that i/;o</> is homotopic to idx', we call such an X finitely dominated. 
A finitely dominated space X is homotopy equivalent to a CW-complex (see Section 2), 
and the obvious question arises whether such a space is actually homotopy equivalent to 
ai finite CW-complex. Indeed, that a finitely dominated space X is not far off from being 
of the homotopy type of a finite CW-complex can be seen from the following result due 
to Mather [43]. 

THEOREM 1.1. Suppose X is a finitely dominated space. Then X x S^ is of the homotopy 
type of a finite CW-complex. 

Here is a sketch of the pretty argument. Let (j). X -^ P and ij) \ P ^ Xhc maps with 
V̂  o 0 ~ idx, where P is a finite CW-complex. The mapping torus T of ^oxl;: P ^ P 
is obtained from P x [0,1] by identifying the points (x,0) G P x [0,1] with those of 
the form ((^(-^(x)), 1). The homotopy between idx and ipo(j) gives rise to a homotopy 
equivalence between X x S^ and T. But T is obviously homotopy equivalent to a finite 
CW-complex and thus X x S^ is too. (We will later discuss a purely algebraic proof 
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of this theorem, using the product formula for finiteness obstructions.) Note also, that 
Mather's result implies that a finitely dominated space X is homotopy equivalent to a 
finite dimensional CW-complex. Namely, if X x 5^ ~ iC with K a finite CW-complex 
of dimension say n, then X is homotopy equivalent to an infinite cyclic covering space 
of K, which is a locally finite CW-complex of dimension n. 

First examples of finitely dominated spaces which are not homotopy equivalent to 
finite CW-complexes were discovered by de Lyra (see [40]). About at the same time Wall 
([68], [69]) found the correct general setup to reduce the topological question to a purely 
algebraic one. For a finitely dominated connected space X Wall defined an invariant 
w{X) in the reduced projective class group of Z7ri(X), such that w{X) = 0 if and only 
if X is homotopy equivalent to a finite CW-complex. Moreover, Wall showed that every 
element in the reduced projective class group of ZTT, TT an arbitrary finitely presented 
group, may be realized as w{X) for some connected finitely dominated space X with 
fundamental group TT. (If X is a finitely dominated connected space, its fundamental 
group is necessarily finitely presented, because a retract of a finitely presented group 
is finitely presented [68]). To get examples of finitely dominated spaces which are not 
of the homotopy type of any finite CW-complex one therefore just needs to find a 
finitely presented group whose reduced projective class group is nontrivial. For a finite 
abelian group TT the projective modules over ZTT are closely related to ideals in rings 
of integers of number fields. In particular if TT = Z/pZ with p a prime, the reduced 
projective class group of TT is isomorphic to the ideal class group of the cyclotomic field 
Q(exp 27r\/^/p), a group which is known to be trivial for all primes p ^ 19 and 
nontrivial for all other primes. 

In the following survey we will give an account of Wall's general theory together 
with some typical applications. A well written and comprehensive introduction to the 
topic is Varadarajan's book [67], in which the reader will find complete proofs of the 
many technical details which underlie the basic definitions, and which are omitted in 
these notes. It is interesting to investigate the question how topological properties of 
spaces are reflected in properties of their finiteness obstruction. There remain many open 
questions in that respect. For instance, it is not known whether a finitely dominated 
loop space (or i7-space) is necessarily of the homotopy type of a finite CW-complex. 
It is also not known if every finitely dominated Eilenberg-MacLane space K{G,l) 
is homotopy equivalent to a finite CW-complex. The fundamental group G of such 
a K{G, 1) is necessarily finitely presented and torsion-free; at present there are even 
no examples known of arbitrary torsion-free groups with nontrivial reduced projective 
class group! We will also discuss the behaviour of the finiteness obstruction in fibration 
and cofibration sequences, and we will indicate the close relationship with Whitehead 
torsion. For the class of finitely dominated nilpotent spaces the situation is relatively 
well understood, in the sense that one can give a precise description of the elements in 
the projective class group which can occur as finiteness obstructions of such spaces. For 
instance, a finitely dominated nilpotent space with infinite fundamental group is always 
of the homotopy type of a finite CW-complex, and the finiteness obstruction vanishes 
for finitely dominated nilpotent spaces with fundamental group cyclic of prime order. In 
the nilpotent situation, it is also natural to analyze the finiteness obstruction via p-local 
information, an approach which leads to several interesting examples and applications. 
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We also sketch briefly the relevance of the finiteness obstruction in the spherical space 
form problem. 

There are many other applications, which we had to omit to keep this exposition 
relatively short and reasonably self-contained; this applies in particular to Siebenmann's 
exciting work on the finiteness obstruction to finding a boundary for an open manifold 
[57]. 

2. Finitely dominated spaces 

Recall that X is said to be dominated by Y if there are maps f : X -^Y and g :Y -^ X 
such that ^ o / ~ idx- A space X which is dominated by a CW-complex has the 
homotopy type of a CW-complex. Indeed, if [^(X)! denotes the geometric realization of 
the singular complex of an arbitrary space X then the natural weak homotopy equivalence 
Lj : [^(X)! —> X will induces for an arbitrary CW-complex P a bijection 

a;,:[P,\SiX)\]-^[P,X] 

of homotopy sets and, in case X is dominated by a CW-complex, one thus obtains an 
induced bijection 

a ; . : [ X , | 5 ( X ) | ] - . [ X , X ] . 

An inverse up to homotopy for u is then given by a representative of {uj*)~^{[idx]). 
If the connected topological space X is dominated by a CW-complex P then X is also 
dominated by a connected subcomplex Q of P, which is a path-connected space, and 
therefore X is path-connected too because 7ro(X) is a retract of 7ro(Q). We can therefore 
refer to the fundamental group of such a space X in an unambiguous way. Moreover, if 
a not necessarily connected space X is dominated by a finite CW-complex then X is the 
topological disjoint union of a finite number of connected (and path-connected) spaces 
each of which is dominated by a finite connected CW-complex. There is therefore no loss 
in generality to study finiteness conditions for the case of connected finitely dominated 
spaces and, if convenient, we may even assume our spaces to be actual CW-complexes. 

REMARK. If X is a compact ANR, one can embed X in a linear space f ] ^ which is a 
normal space. Therefore, there exists an open neighborhood N{X) of X cYl^ which 
retracts onto X. But such an N{X) is easily seen to be homotopy equivalent to some 
open subset of a finite dimensional space W, which is triangulable. It follows, that such 
an X is dominated by a (finite) CW-complex. 

For an arbitrary connected CW-complex X and 7r-module M, TT the fundamental group 
of X, we write 

H,{X\M) and H\X\M) 

for the homology (respectively cohomology) of X mih local coefficients in M. These 
groups are defined as the homology groups of the chain complex M0T^C^^^^{X) (respec-
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tively the cohomology of the cochain complex Hom7r{C:̂ '̂̂ (X), M)), where X denotes 
the universal cover of X and C^^"(X) the cellular chain complex of X, considered as 
a TT-complex. Note that if M is a trivial 7r-module, then H^{X\ M) and i?*(X; M) are 
just ordinary homology and cohomology of X with coefficients in M. 

For an arbitrary connected CW-compIex X we define 

cd(X) ^ n 4=^ H\X\ M) = 0, VM, Vi > n. 

Here M stands as before for an arbitrary Z7ri(X)-module. Clearly, if X happens to 
be homotopy equivalent to a connected m-dimensional CW-complex, then certainly 
cd(-X') ^ m. The converse is essentially true too. 

THEOREM 2.1. Suppose X is of the homotopy type of a connected CW-complex and 
cd(-X') ^ n. Then X is homotopy equivalent to a CW-complex of dimension ^ max(3, n). 

PROOF. Consider a homotopy equivalence 0 : P -^ X. By restricting (f) to the (n - 1)-
skeleton of P one obtains an (n - l)-connected map il) : P'^~^ -^ X (thus -0* : 
7ri(P"~^) —̂  T^i[X) is bijective for i < n - 1 and surjective for i = n - 1). We 
first consider the case n > 2 so that 7ri(P'̂ ~^) -^ 7ri(X) is an isomorphism. One shows 
then, using the assumption cA{X) ^ n, that the homotopy theoretic fiber fib{ip) has 
for 7rn-i(/i6('0)) a projective 7r-module, TT the fundamental group of X. By replacing 
pn-\ by pn- i y (y 5''-^), with V S^^-U suitable (possibly infinite) wedge of spheres, 
and extending ^ by a constant map over the wedge of spheres, we may assume that 
the new homotopy fiber has Sifree 7r-module as its (n - l)'st homotopy group. After 
attaching n-cells corresponding to a basis of that homotopy module, the map extends to 
a homotopy equivalence between (P* -̂̂  v (V S'^~^)) U {n-cells} and X. If n ^ 2, the 
same argument shows that X is homotopy equivalent to a complex of dimension ^ 3, 
and we are done. D 

REMARK. It is not known whether a CW-complex X with cd(X) < 2 is actually ho-
motopy equivalent to a 2-dimensional CW-complex. However, if cd(X) ^ 1 it follows, 
using the fact that groups of cohomological dimension 1 are free, that X is homotopy 
equivalent to a 1-dimensional CW-complex, and therefore X ~ i<r(7ri(X), 1). 

If X is dominated by a finite CW-complex then obviously all the finitely many con-
nected components of X are of finite cohomological dimension and the following theorem 
is an immediate consequence of the previous one. 

THEOREM 2.2. If X is dominated by a finite complex, then X is homotopy equivalent to 
a finite dimensional CW-complex. 

Recall that a space of the homotopy type of a CW-complex is said to be of finite type 
if it is homotopy equivalent to a CW-complex with finite skeleta. 

THEOREM 2.3. Suppose X is finitely dominated. Then X is of finite type. 

PROOF. We will only sketch the proof. One may assume that X is connected. The fun-
damental group of X is then finitely presented, being a retract of a finitely presented 
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group. Thus we can find a finite 2-dimensional CW-complex W{2) and a 2-connected 
map W(2) -^ X. One can show that 7r2 of the homotopy fiber of that map is a finitely 
generated module over the fundamental group of X so that one can render the map 
3-connected by attaching a finite number of 3-cells to W{2), to obtain a new space W{3). 
The map from W{2) to X then extends to a 3-connected map from W{3) to X. Con-
tinuing in this manner one obtains a coherent family of n-connected maps W{n) -~> X, 
n ^ 2, giving rise to a homotopy equivalence U ^ ( ^ ) -^ ^' • 

The two preceding theorems constitute the basic homotopy theoretical properties of 
finitely dominated spaces. They have purely algebraic counter parts in the framework of 
chain complexes, which we will discuss in the next section. 

3. Finitely dominated chain complexes 

We denote by R an associative ring with 1. Modules over R are unitary left modules, and 
all chain complexes are supposed to be non-negative. A chain complex C = {Ci, di} is 
said to be projective if the modules Ci are all projective. As usual, we write H*{C', M) 
for the cohomology of the cochain complex HomR{C, M) and we call C acyclic when 
C is exact. It is a basic fact that a morphism / : C —> Z) of projective chain complexes is 
a chain homotopy equivalence if and only if the induced map of cohomology ^ * ( ; i?) 
is an isomorphism. We say that the chain complex C = {Ci, di} is of type FP if each 
d is finitely generated and projective over R, and Ci = 0 for i large; C is said to be of 
type FF, if it is of type FP with all modules Ci free. For a chain complex C = {Ci, di} 
of type FP the Euler characteristic 

xiC) = '£{-mCi]eMR) 

is defined, where Ko{R) denotes the Grothendieck group of finitely generated projective 
i^-modules, and [Ci] stands for the class of the projective module d in Ko{R). (Basic 
references for Ko{R), the projective class group of R, are the books by Bass [2], Milnor 
[48] and Swan [61].) If 

• • • —> Ci —̂  Ci-\ -^ • • • —> Co —̂  0 

is an acyclic complex of type FP then x{C) = 0, as one easily verifies by observing 
that all kernels and images of the homomorphisms di are projective in this case. More 
generally, if </>: C -^ JD is a chain homotopy equivalence between chain complexes of 
type FP then x(C') = xi^)- This follows by observing that the mapping cone M of (j>is 
an acyclic chain complex of type FP with Mi = Ci©£>i_i, thus M satisfies x ( ^ ) = 0, 
which implies x(C') = x{D). The following definition is therefore meaningful. 

DEFINITION 3.1. Let C be a chain complex which is chain homotopy equivalent to a 
chain complex D of type FP. Then the Euler characteristic 

X{C) € KoiR) 
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is defined to be the Euler characteristic of D. 

We will also use the following definitions. 

DEFINITION 3.2. Let C = {Ct,di} be a chain complex. Then 

cd(C) < n ^=^ W{C; M) = 0, VM, Vz > n. 

Moreover, C is said to be of type FFoo if each module Ci is finitely generated and free 
over R, 

In applications it is very useful to have a criterion for deciding when a chain complex 
is, up to chain homotopy, of type FFQO- A homological criterion was first proved by 
Bieri and Eckmann for the case of resolutions of modules. Later Brown [9] dualized 
the criterion to a cohomological one and proved the following result for arbitrary chain 
complexes. 

THEOREM 3.3. A chain complex C is chain homotopy equivalent to a chain complex of 
type FFoo if and only if the functors H'^{C\ -) on the category of R-modules preserve 
direct limits for all n. 

A chain complex C is said to be oi finite cohomological dimension if there is an N such 
that cd(C) < N. Note that for X a connected CW-complex and C the Z7ri(X)-complex 
C f " ( ^ ) , onehas 

cd(X) < n <̂ =:̂  cd{Cf "(X)) ^ n, 

and 

X of finite type ==> Cl^^\X) is, up to chain homotopy, of type FF^o-

The converse is true too if one assumes T^\{X) to be finitely presented. In particular, the 
following cohomological characterization for finite domination holds. 

THEOREM 3.4. Let X be a connected CW-complex. Then 

{ TTi {X) is finitely presented^ 
cd(-X') < oo and 
^riH'^[X\ —) commutes with direct limits. 

REMARK. A chain complex C = {Ci, di} is said to be of type FPoo if each Ci is finitely 
generated projective. It is easy to see that a chain complex is chain homotopy equivalent 
to a chain complex of type FPoo if and only if it is chain homotopy equivalent to one 
oftypePFoo. 

The following simple theorem is basic in what follows. We denote by Ko{R) the 
reduced projective class group of R\ it is the factor group of Ko{R) modulo the subgroup 
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generated by [i?]. Thus, the class [P] G KQ{R) of the finitely generated projective module 
P maps to zero in Ko{R) if and only if P is stably free, meaning that there exists a 
finitely generated free module F such that P © F is free. We will denote the image 
of the Euler characteristic x(C') in Ko{R) by x(C') and we call it the reduced Euler 
characteristic of C. We will use the notation {P} E Ko{R) for the class of the finitely 
generated projective module P. One easily checks that for finitely generated projective 
modules P and Q one has 

{P} = {Q} € Ko{P) 

if and only there exist finitely generated/ree modules F and G such that P®F^ Q^G', 
such modules P and Q are said to be stably isomorphic. Also, every element in Ko{R) 
is of the form {P} for some finitely generated projective P. 

THEOREM 3.5. Suppose that the chain complex C is chain homotopy equivalent to a 
chain complex D of type FFoo. Furthermore, assume that C satisfies cd(C) ^ n. Then 
C is chain homotopy equivalent to a chain complex of type FP and 

xiC) = {-ir+'{Br,}eKoiR) 

where N is any integer ^ n -f 1 and Bjq = im(djv+i '- DN^\ —> D^) C Djv, the 
module of N-boundaries of D. 

PROOF. Since C is chain homotopy equivalent to D we have cd{D) ^ n. The reader 
verifies easily that, in general, for a projective complex the condition W{D\ M) = 0, VM 
implies that Hi{D\R) = 0 and that im(di) C Di_i is a direct summand. It follows that 
BN is projective and that the inclusion of the truncated complex 

0-^ BN -^ DN -^ DN-\ -> > Do-^0 

into the complex £> is a homology isomorphism, therefore a chain homotopy equivalence, 
because both complexes are projective. Clearly, as the J^i's are free, the reduced Euler 
characteristic of the truncated complex equals {—1)^'^^{BN} and the result follows. D 

The following finiteness theorem is now plain and serves as a motivation for the 
corresponding topological result which we will discuss in the next section. 

COROLLARY 3.6. Let C be a chain complex of finite cohomological dimension, chain 
homotopy equivalent to a chain complex of type FFoo. Then C is chain homotopy 
equivalent to a complex of type FF if and only if the reduced Euler characteristic x{C) 
in Ko{R) is zero. 

Namely, we have only to observe that once we have replaced C by the chain homotopy 
equivalent complex 
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as above, with the D^'s free and x(C) = {-\)^'^^{BM} = 0, the module BN is stably 
free, and we can find a finitely generated free module F with BN © F free. Therefore 
we can replaces the truncated complex above by a complex of the form 

0-^BNeF-^DN^F-^ DN-\ -^ ^ Do -> 0 

with obvious boundary maps, to obtain a complex of type FF, which is chain homotopy 
equivalent to the original complex C, 

4. The finiteness obstruction 

Let X denote a connected, finitely dominated CW-complex. Then, as X is also homo-
topy equivalent to a complex of finite type, the cellular chain complex C^^^^X) of the 
universal cover of X is chain homotopy equivalent to a chain complex of type FF^. 
Moreover, as X is homotopy equivalent to a finite dimensional CW-complex, C^^^\X) 
is of finite cohomological dimension. The Euler characteristic 

x ( C r " ( X ) ) =: w{X) e Xo(Z7r,(X)) 

is therefore well defined, and we call it the Wall finiteness obstruction of X; the associated 
reduced Euler characteristic will be denoted by iD(-X"). 

We have omitted the mention of base points. Indeed, if XQ, xi € X are two base points 
in the connected CW-complex X, then there exists a homotopy equivalence f : X -^ X 
taking xo to xi and thus inducing an isomorphism 

U : Ko{Zn^{X,xo)) -^ Ko(Z7ri(X,Xi)). 

The point now is that /* is independent of the particular choice of / . This can be seen 
by checking that an inner automorphism of a group n induces the identity on iiro(Z7r), 
and using the well-known fact that the class of the homomorphism 

/ # : TTi ( X , Xo) -> TTi {X, X] ) 

modulo inner automorphisms of TTI {X, x\) is independent of the particular choice of / . 
As a consequence, we may neglect base points when dealing with Wall obstructions. In 
particular, if f : X -^Y is any map of connected CW-complexes, one has a well-defined 
induced map 

f. : Ko{Z7ri{X)) -^ Ko{Z7tx{Y)). 

Note that if / is a homotopy equivalence and the spaces X and Y are finitely dominated, 
one has 

fMX) = w{Y), 
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as / (more precisely, a cellular approximation to / ) induces a chain homotopy equivalence 
of cellular chain complexes of associated universal covers. The following corollary is 
useful to notice. 

COROLLARY 4.1. Let X be a connected, finitely dominated CW-complex and let f denote 
a self-homotopy equivalence of X. Then 

fMX) = w{x). 

5. Basic properties of w{X) 

Let TT denote an arbitrary group. The natural map Koil^fr) -> KoiZn) admits a splitting 
cr, given by cr{P} = [P] - rk(P) • [ZTT], where the rank rk(P) of the finitely generated 
projective 7r-module P is defined to be the dimension of the Q-vector space Q (Sin P-
As a result, we have a canonical decomposition 

ii:o(Z7r) = Ko(Z7r)0Z, [P] = ({P},rk(P)), 

where we have identified the cokernel of the splitting a with Z, which is the image of 
the rank map 

rk : KoiZ'K) -> Z. 

LEMMA 5.1. Let X be a connected, finitely dominated CW-complex and w{X) its Wall 
obstruction. Then 

Tkw{X) = x{X), 

where 

x(X) = ^(-l)MimQffi(X;Q) 
i 

denotes the ordinary Euler characteristic of X. 

Namely, if we choose a chain complex P* of type PP, chain homotopy equivalent to 
C f "(X), then 

^X) = [5^(-inPj,rk^(-ir[P,]] 

and 
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The following basic theorem of C.T.C. Wall implies that the reduced Wall obstruction 
is indeed thtfiniteness obstruction: 

THEOREM 5.2. Let X be a connected, finitely dominated CW-complex. Then X is homo-
topy equivalent to a finite CW-complex if and only if 

ii)(X) = OGKo(Z7ri(X)). 

Moreover, ifir denotes a finitely presented group and y an arbitrary element of Ko{Z7r), 
then there exists a connected, finitely dominated CW-complex Y with fundamental group 
TT and Wall obstruction w{Y) = y. 

For the proof see Wall's original papers [68], [69], or Varadarajan's book [67]. 

REMARK. It was proved by Ferry (cf. [25] and [26]) that if the space X is dominated by 
a finite CW-complex, then X is homotopy equivalent to a compact metric space F; it is 
an open question whether Y can be chosen locally simply connected. 

5.1. A sum theorem for Wall's obstruction 

The following Sum Theorem is a very useful computational tool. If f : G -^ H denotes a 
group homomorphism, we write / • for the induced homomorphism Ko{ZG) -> Ko{ZH) 
(given by [P] H^ [ZH<SIG P])^ since /*[ZG] = [ZH], one also obtains an induced map 
of reduced projective class groups, which we will denote by the same symbol /*. In 
case Y d X denotes a connected, finitely dominated subcomplex of the connected and 
finitely dominated CW-complex X, and if ty denotes the inclusion map Y -^ X, then 
we obtain an induced map 

iY,:Ko{ZT^x{Y))^Ko{ZTTx{X)). 

One assumes here that a base point in X is chosen which lies in Y\ the induced map 
of fundamental groups gives then rise to a map of projective class groups which is 
independent - in the obvious sense - of the particular choice of the basepoint (see also 
the corresponding remark earlier on), justifying our notation. 

THEOREM 5.3. Let X = Y\JZ bea connected, finitely dominated CW-complex, with Y, 
Z and Y 0 Z connected and finitely dominated subcomplexes. Then 

w{X) = LY.{w{Y)) + tzA^iZ)) - LYnz.{w{Y n Z)) G Ko{Z7r,{X)), 

where ty, LZ and tynz denote the inclusion maps. 

We omit the proof and refer to Siebenmann [57], where also a version of this Sum 
Theorem in the nonconnected setting is discussed. Note also that under the hypothesis of 
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the sum theorem one sees from the Mayer-Vietoris sequence for rational homology, that 
the Euler characteristics of the spaces involved satisfy 

x{x) = x{Y) + x{z)-x{Ynz). 

We could therefore have stated the Sum Theorem in exactly the same form with w{-) 
replaced by the reduced Wall obstructions w{-). 

5.2. Thefibration theorem 

Let F -^ -B —> B be a fibration sequence of connected CW-complexes. If F and B 
are finitely dominated then T^\{E) is finitely presented (cf. [51]) and, by applying the 
cohomological characterization of finite domination to the Serre spectral sequence of the 
fibration F —^ E -^ B one concludes that the total space E is finitely dominated too. 
We wish now to describe w{E) in terms of the Wall obstructions of the base and fiber 
and possibly some other data present in the given fibration (the formula in Lai's paper 
[39] is incorrect; he neglected the action of the fundamental group of the base on the 
homology of the fiber). The simplest situation is that of a product fibration. For this, it 
is useful to consider the following pairing. Let G and H denote arbitrary groups. One 
defines 

- 0 - : Ko{ZG) X Ko{ZH) -^ Ko{Z{G x H)) 

by putting 

[P]^[Q]:=[P^zQh 

for P (respectively Q) a finitely generated projective ZG- (respectively ZH-) module. 
Note that the pairing induces also a pairing on the reduced projective class groups, which 
we will denote by the same symbol " - 0 —". 

The Product Theorem due to Gersten [32] and Siebenmann [57] can now be expressed 
by the following attractive formula. 

THEOREM 5.4. Let F and B be connected, finitely dominated CW-complexes. Then 

w{F xB) = w{F) ® w{B) G Ko (Z (TT, (F) x TT, (B)) ). 

For applications it is useful to decompose the Wall obstructions in this formula into 
their reduced and Euler characteristic parts, w = {w^ x)» which yields the formula 

w{F xB) = w{F)^w{B) + x{F) • iB.{w{B)) + x{B) • iF.{w{F)), 
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where ip and LB denote the obvious inclusion maps (as usual we assume that base-points 
have been chosen, where necessary). 

COROLLARY 5.5. Let X be a connected, finitely dominated CW-complex and Y a con-
nected finite CW'Complex with X^X) = 0- Then w{X xY) =0 and therefore X xY is 
homotopy equivalent to a finite CW-complex. 

As a special case, we obtain Mather's result stated in the introduction: If X is a 
finitely dominated space then X x S^ is homotopy equivalent to a finite CW-complex. 
The formula stated in the Product Theorem is also correct for a certain wider class of 
fibrations with section LB - B -^ E and retraction E -^ F (with associated decomposition 
TTi (J5) = TTi (F) X TTi {B))\ for a precise statement, see Ehrlich [20]. To deal with the case 
of a general fibration, Ehrlich introduced in [19] a geometric transfer homomorphism 
(see also Pedersen [54]) denoted by 

p*:Xo(Z7r,(B))-.^o(Z7r,(E)), 

associated with a fibration p : E —* B of connected, finitely dominated CW-complexes, 
with finitely dominated fiber F. It is useful here to permit the case of a disconnected 
fiber F, e.g., di finite covering space situation (in which 7ri(F) is a subgroup of finite 
index of TTI (B) and the geometric transfer map p* is given by the usual "restriction map" 
of projective class groups). If F = UFi, the disjoint union of its connected components, 
one puts w{F) equal ^iw{Fi) in ©iXo(Fi), and 

tp^,(ii;(F))=^.i. , ,(tD(FO). 
i 

The general fibration theorem then reads as follows (for a proof see Ehrlich [19]). 

THEOREM 5.6. Given a fibration p : E -^ B of finitely dominated, connected CW-
complexes with finitely dominated (not necessarily connected) fiber F. Then 

w{E) = p*w{B) + xiB)' LF. {w{F)) G KO{ZTTI{E)). 

It seems to be difficult to compute p* in general. But the composition p*p*, which 
is an endomorphism of KO{ZIT\{B)), can be described explicitly: it is given by the 
•-multiplication with the 7r\{B)-module Euler characteristic ^^(-l)^iJi(F;Z). This 
dot-multiplication is defined in the following way. For an arbitrary group TT let G(Z7r) 
denote the Grothendieck group of 7r-modules, which are finitely generated as abelian 
groups. One then defines a pairing 

- • - : G(Z7r) X Ko{Zn) -^ KO{ZT^) 

by putting [M] • [P] = [M ®z P], where M is a 7r-module which is finitely generated 
and torsion-free as an abelian group, and P an arbitrary finitely generated projective 
TT-module. The definition extends to all of G{Z7r) by observing that G(Z7r) is generated 
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by [M]'s which are torsion-free as abelian groups (one checks that the pairing is indeed 
well-defined, see the paper by Pedersen and Taylor [55]). The tensor product over Z turns 
G(Z7r) into a commutative ring with unit (given by the class of the trivial 7r-module Z), 
and i(ro(Z7r} becomes a module over G(Z7r). One also obtains an induced action of 
G(Z7r) on Ko(Z7r), which we will denote by " • " too. 

According to Pedersen and Taylor, the image p^p*w{B), which by the fibration theo-
rem is equal to p^w{E), is given by the following formula (their result is actually more 
general, compare [55]). 

THEOREM 5.1. Let p : E —> B be a fibration of connected, finitely dominated CW-
complexes, with (not necessarily connected) finitely dominated fiber. Then 

p,w{E) = r ^ ( - l ) ^ i f i ( F ; Z ) ^ •ii}(B) G ̂ o(Z7r,(B)). 

Note that in case TTI [B) acts trivially on the homology of the fiber F, the sum over 
the homology groups can be replaced by the ordinary Euler characteristic of F, and the 
formula reduces to 

p.w{E)^x{F)'<^{B). 

5.3. Relationship with Whitehead torsion 

For an associative ring R with unit one defines 

Kx (R) = Gl{R)/ [Gl{R), Gl{R)], Gl{R) = (J Gln{R). 
n 

For the basic properties of the functor K\ ( - ) see Milnor [47] and [48]. An isomorphism 
between two finitely generated free, based J?-modules gives rise to a well defined "torsion 
element" in K\ (ZTT), which is just the image of the matrix representing the isomorphism. 
More generally, if C = {Ci,di} denotes an acyclic, based chain complex of type FF 
over R, its torsion tor(C) G Ko{R) is well defined (see [47] or [14] for details). In case 
of i l = ZTT, the group ring of the group TT, we can consider 

±7r C GZi(Z7r) -^ G/(Z7r) -^ Ki{Z7r) 

and one defines the Whitehead group of TT by 

Wh(7r):=ii:i(Z7r)/im(±7r). 

One checks that an inner automorphism of TT induces the identity on Wh(7r) and thus 
Wh(7ri(-X')) is functorially defined for a path-connected space X. If f : X —^ Y is 
a homotopy equivalence of connected finite CW-complexes, then the Whitehead tor-
sion T ( / ) G Wh(7ri(y)) of / is defined (see Whitehead [73] in the simplicial setting). 
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Roughly speaking, the definition goes as follows. One replaces / up to homotopy by a 
cellular map g and considers the relative chain complex C = Cl^^\Mg,X) with Mg 
the mapping cylinder of g, considered as a CW-complex in the obvious way. Since C is 
acyclic and has - because of the cell decomposition - a preferred Z'iT\{Mf) basis (up 
to multiplication by elements ±x E 7ri(M/)), the torsion tor(C) is well defined modulo 
the image of ±7ri(M/) in K\{Z7ri(.Mf)), giving rise to a unique element denoted by 
T{C) e Wh(7ri(M/)). The natural collapsing homotopy equivalence p : Mf —• Y maps 
T{C) to Wh(7ri(y), leading to the definition 

r( / ):=P*r(C)€Wh(Z7r,(y)) . 

REMARK. A homotopy equivalence / between connected, finite CW-complexes is called 
simple, if r ( / ) = 0; for a geometric interpretation see Cohen's book [14]. A basic result 
is the topological invariance of Whitehead torsion proved by Chapman in [11]: If f 
is a homeomorphism between connected, finite CW-complexes, then T{f) = 0. Indeed 
Chapman proves that a homotopy equivalence f \ X —^ Y between connected finite 
CW-complexes is simple if and only if / x id : X x /QO —* ̂  x /QO is homotopic to a 
homeomorphism (cf. [12]), where as earlier loo stands for the Hilbert cube. 

Let X be a connected, finitely dominated space so that one has maps f : K -^ X 
and g : X -^ K with K a connected finite CW-complex and fog homotopic to the 
identity of X. Consider a cellular map a : K -^ K homotopic iogof. Then the mapping 
torus T(a) is in a natural way a finite CW-complex. Choose any homotopy equivalence 
$ : T{a) -^ X X S^ and let iP̂  be a homotopy inverse of $. Define the involution 
X:X X S^ -^X xS\ A(x, z) = (x, f), and put 

a{X) :=0^{T{^OXO^)) € Wh(7ri(Xx5*)). 

This yields a well-defined homotopy invariant of X (cf. Ferry [27]). 
Now, according to Bass, Heller and Swan [5], one has for any group TT a natural 

decomposition 

Wh(7r X Z) = Wh(7r) 0 Nil(Z7r) © Nil(Z7r) © KoiZir), 

where Nil(-) denotes a certain functor on associative rings with 1. The relationship with 
Wall's obstruction is given by the following result due to Kwasik [38]. 

THEOREM 5.S. Let X be a finitely dominated, connected CW-complex. Then one has 
a{X) = (0,0,0,'it)(X)) if one identifies Wh(7ri(X x S^)) with the sum 

Wh(7ri(X)) ©Nil(Z7ri(X)) ©Nil(Z7r,(X)) ©^o(Z7r,(X)). 

5.4. Some results on projective class groups of group rings 

In order to be able to give examples of finitely dominated spaces which are not homo-
topy equivalent to finite CW-complexes, one needs to give examples of groups TT with 
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Koi'^n) ^ 0. We list a few basic facts on projective class groups of group rings. The 
first one is due to Swan [60]: 

TT a finite group = » Ko{Z7r) a finite group. 

Thus, for a finite group n the reduced projective class group KoiZn) is naturally iso-
morphic to the torsion subgroup of /Co(Z7r). Note, however, that for an arbitrary finitely 
generated abelian group n the group Ĵ OCZTT) is not finitely generated in general, see 
Bass and Murthy [4]. 

Because projective modules over free groups are free (cf. Bass [3], Gersten [31] and 
Stallings [58]), the following holds: 

TT a free group = » KQ{Z'K) = 0. 

Indeed, there is no torsion-free group known with nontrivial reduced projective class 
group (although there exist nonfree projective modules over certain torsion-free groups, 
see the examples of Dun woody [17], Berridge and Dun woody [6] and Artamonov [1]). 
On the other hand, there are many torsion-free groups known for which the reduced 
projective class group is trivial. The following are a few examples: finitely generated 
abelian groups, or more generally, Bieberbach groups (cf. Farrell and Hsiang [22]), poly-
Z groups (cf. Farrell and Hsiang [23]) and ~ even more generally - fundamental groups of 
closed Riemannian manifolds all of whose sectional curvature values are nonpositive (cf. 
Farrell and Jones [24]). Actually, for all these groups TT the Whitehead group Wh(7r x Z) 
vanishes. Note that if T is a direct limit of groups TTQ all of which satisfy Wh(7ra x Z) = 0 
then one has Xo(Zr) = 0. In particular, because the Whitehead group vanishes for 
finitely generated free abelian groups, one concludes: 

TT a torsion-free abelian group =^ A'o(Z7r) = 0. 

We finish this section by briefly describing examples of finite groups with nontrivial 
reduced projective class groups. If A denotes a Dedekind domain, we write C{A) for the 
ideal class group of A, and [I]c for the class of a nonzero ideal I C A. Because ideals 
of A are finitely generated projective ^-modules, and because for nonzero ideals I\, I2 
of a Dedekind domain one has the well-known relation 

/ i e / 2 = ^ e ( / i 0 / i / 2 ) , 

there is a natural homomorphism 

C{A)-^ko{A), [I]c-^{I}, 

which is actually an isomorphism (see, e.g., Milnor's book [48]). Moreover, for p a prime 
number, the ideal class group C(Z[exp(27r'v/^/p)]) is known to be trivial for p < 23, 
and nontrivial for all primes p ^ 23 (see Washington's book [71] for references on ideal 
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class groups of number rings). The connection with projective class groups of group 
rings is given by the following basic theorem due to Rim [56]. 

THEOREM 5.9. Let n = (x) be a cyclic group of prime order p. Consider the map 
ZTT -> Z[exp(27r\/^/p)] given by mapping x to exp (27rV^/p). Then the induced 
map of reduced projective class groups 

KoiZn) ^ ko{Z [exp (27rv^/p)]) 

is an isomorphism. 

COROLLARY 5.10. For every prime p ^ 23 there exists a connected, finitely dominated 
CW-complex X with fundamental group Z/pZ, such that X is not homotopy equivalent 
to any finite CW-complex, 

There is a vast literature on projective class groups of finite groups. The following 
are a few examples. For cyclic groups of prime power order see Galovich [29], Kervaire 
and Murthy [36] and UUom [66], for quaternion and dihedral 2-groups see Martinet [42], 
Keating [34], Frohlich, Keating and Wilson [28], for metacyclic groups see Keating [35], 
Galovich, Reiner and Ullom [30], and for general p-groups see Taylor [62]. Examples 
of infinite groups (with torsion) and nonvanishing projective class group are discussed 
in Bass and Murthy [4] (abelian groups) and in Biirgisser [10] (arithmetic groups). 

6. Nilpotent spaces 

Let TT be an arbitrary group, M a 7r-module and /ZTT C ZTT the augmentation ideal. The 
group TT is said to operate nilpotently on M, and M is termed a nilpotent 7r-module, if 
there is an n > 0 such that 

(/ZTT)^ . M = 0. 

Recall that a connected CW-complex is called simple if 7ri(X) is abelian and operates 
trivially on all higher homotopy groups 7ri{X). The notion of a nilpotent space is a 
generalization as follows. 

DEFINITION 6.1. A space is called nilpotent, if it is of the homotopy type of a connected 
CW-complex X such that 7ri(X) is a nilpotent group and all homotopy groups 7ri{X), 
i > 1, are nilpotent 7ri(X)-modules. 

A space X is called quasi-finite if QnHn{X;Z) is a finitely generated abelian group. 
For nilpotent spaces, the following criterion for finite domination holds (cf. [50]). 

LEMMA 6.2. A nilpotent space X is finitely dominated if and only if it is quasi-finite. 
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The Wall obstruction of a finitely dominated nilpotent space is subjected to strin-
gent restrictions. For the case of an infinite fundamental group, the following vanishing 
theorem holds (cf. [50]). 

THEOREM 6.3. Let X be a finitely dominated nilpotent space with infinite fundamental 
group. Then 

Therefore, X is homotopy equivalent to a finite CW-complex and x{^) = 0. 

PROOF. Since TTI (X) is an infinite, finitely generated nilpotent group, it admits a surjective 
homomorphism T^\{X) —^ Z. The associated covering space X is classified by a map 
p : X -^ S\ which has as homotopy theoretic fiber the covering space X. One checks 
that X is nilpotent and quasi-finite (cf.[50]), thus finitely dominated. Obviously, 

xix) = x(x)-x{s')=o, 

and, from the fibration theorem, 

w{X)=p*w{S')+x{S')-w{X)=^0, 

which completes the proof. D 

The next theorem is from [49]; we will only sketch its proof. 

THEOREM 6.4. Let X be a finitely dominated nilpotent space with finite cyclic fundamen-
tal group of prime order Then X is homotopy equivalent to a finite CW-complex, 

PROOF. Let TT = TTI {X) = Z/pZ and A = Z[exp(27r\/^/p)]. Consider yl as a 7r-module 
via a surjective homomorphism ZTT —̂  A. By Rim's theorem, the induced map 

e : ̂ o(Z7r) -> ^o(^) 

is an isomorphism. It therefore suffices to show that 

Because A has finite cohomological dimension (actually cd^ = 1), one can define the 
reduced Euler characteristic 

X(M) E ^o(^) 

for any finitely generated ^-module M, by putting 

x(M) = j ; ( - i r {p ,} , 
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where 

0 -> Pn ~> yPi-^Pi-i-^ yPo-^M 

denotes a projective resolution of finite length of M, with all the modules Pi all finitely 
generated. One can now compute the Euler characteristic in question by passing to 
homology: 

X{A®. Cr"(X)) - x{Hi{X-,A)) G Ko{A). 

Because of the nilpotency of X and using the homology sequence associated with the 
short exact sequence of 7r-modules 

one can show that, as abelian groups, all homology groups Hi{X\ A) are finite p-groups. 
On the other, for the trivial 7r-module Z/pZ, considered as a il-module by letting 
exp(27r\/^/p) operate via the identity map, one has 

x(Z/pZ) = 0 G ^o(^). 

This is plain in view of the following short exact sequence 

0 - . A '--""(^'-^/P). A -* llpL - ^ 0. 

Using induction, it is now easy to prove that for any ^-module M such that the underlying 
abelian group is a finite p-group, one has x{^) — 0- The claim of the theorem then 
follows readily. D 

The previous theorem admits the following generalization. Let TT denote an arbitrary 
finite group and write ZTT for a maximal Z-order containing ZTT in the rational group 
algebra QTT. Define 

D(Z7r) := ker (;. : K^{Zi^) -> K^^)), 

where j : ZTT —> ZTT denotes the natural inclusion (one verifies that Z?(Z7r) is independent 
of the particular choice of the maximal order). In case of TT = Z/pZ with p a prime, 
one has ZTT C il X Z with A = Z[exp(27r\/^/p)], and Rim's theorem asserts that jf* is 
injective in that case, thus D{1JIPZ) — 0. The previous theorem then becomes a special 
case of the following result. 

THEOREM 6.5. Let X be a finitely dominated nilpotent space with nontrivial finite fun-
damental group 1T\{X) = TT. Then 

(i) w{X) e D(Z7r); 
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(ii) |7r| • ii;(A') = 0 m case n is a p-group. 

For the proof, the reader is referred to [53]. Part (ii) of the theorem follows from results 
concerning the exponent of £>(Z7r) due to Ullom [64]. It is known that £)(Z7r) = 0 for TT 
a dihedral 2-group (cf. Frohlich, Keating and Wilson [28]), and accordingly the finiteness 
obstruction vanishes for a finitely dominated nilpotent space with such fundamental 
groups. But in general, D{Zn) is rather large (see Taylor [62]). Note also that (ii) 
does not hold in general, if TT is not a p-group; in [52] it is shown that there exists a 
finitely dominated nilpotent space with fundamental group cyclic of order 15 and Wall 
obstruction of order 2. It is also known that -D(Z/22Z) ^ 0, although for a finitely 
dominated nilpotent space X with T^\{X) ^ Z/22Z one has w{X) = 0 (cf. [52]). Thus, 
one is led to consider the subset 

N{Z7c) C KoiZir) 

consisting of all those elements which arise as finiteness obstructions of finitely dominated 
nilpotent spaces with fundamental group TT. Ewing, Loffler and Pedersen showed that for 
TT a finite nilpotent group iV(Z7r) is actually a subgroup of KoiZn). For TT ^ {e} a finite 
nilpotent group, we have 

iV(Z7r) C DiZn) 

by the previous theorem, and in general iV(Z7r) ^ D{Z7r), as the case of TT = Z/22Z 
illustrates. (Note that for the trivial group TT one has iV(Z7r) = Z but Z)(Z7r) = 0; that's 
why we have to assume TT ^ {e}.) For p-groups, the following result holds (see Ewing, 
Loffler and Pedersen [21]). 

THEOREM 6.6. Let n be a nontrivial finite p-group. Then 

N{ZIT) = DiZir). 

In particular it follows that the finiteness obstruction does not vanish in general for a 
finitely dominated nilpotent spaces whose fundamental group is a p-group. Indeed, for TT 
a p-group of order p" with p > 2 and n ^ 5 one has 

\D{Zir)\^p^-\ 

see Taylor [62] (there is a similar result for the prime 2: if TT = ZjT'Z with n ^ 5, 
one has |D(Z7r)| ^ 2̂ "̂̂ , whereas for a generalized quaternion group Qn of order 
2"* ̂  8 one has |D(ZQn)| = 2). It should also be noted that one can even find simple, 
finitely dominated spaces not of the homotopy type of finite CW-complexes (cf. [52]). Of 
course, if-spaces are simple. However, no finitely dominated if-space with nonvanishing 
finiteness obstruction is known (some partial vanishing results on the Wall obstruction 
of if-spaces can be found in [50]). 
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7. Localization techniques 

We will be concerned in this section with the study of the finiteness obstruction of a 
finitely dominated space X with finite fundamental group acting trivially on the rational 
homology of the universal cover of X (e.g., X a nilpotent space). In such a situation, 
after choosing a basis for the rational homology of X, the p-local Reidemeister torsion 
RTp(X) is defined and is used to define the "p-part" Wp[X) of the finiteness obstruction 
w{X). It turns out that Wp{X) may be nonzero, even if wi^X) = 0; this is the reason why 
the "Zabrodsky mixing" of two finite CW-complexes can fail to be homotopy equivalent 
to a finite CW-complex. We will write as usual Z(p) for the localization of Z at the prime 
ideal (p), i.e. the subring of Q consisting of fractions with denominators prime to p, and 
we write Z[l/p] for the subring consisting of fractions with denominators involving only 
powers of p. For a nilpotent space X we will write X(p) for its p-localization, and X(o) 
for its rationalization (cf. [33]). 

7 .1 . p-local Reidemeister torsion 

Let X be an arbitrary CW-complex. We will call X Q-based, if a fixed basis for 
H^{X',Q) is chosen. If X is a finite, Q-based CW-complex, the chain complex 
C^^^^{X',Q) with its natural basis, together with the given homology basis defines a 
torsion invariant in K\{Q) = Q^, see Milnor [47]. Now let X be a connected, finitely 
dominated Q-based CW-complex with finite fundamental group TT operating trivially on 
the rational homology of the universal cover of X. If we write e G QTT for the idempotent 

we obtain a decomposition 

QTT = e • QTT X (1 - e) • QTT = Q X A, A := (1 - e) • QTT. 

Let P be a chain complex of type FP, chain homotopy equivalent to the cellular chain 
complex of the universal cover of X. Since, according to Swan [60], for a finitely 
generated projective ZTT module M the Z(p)7r-module M(p) := M 0 Z ( p ) is free, we can 
choose a basis for P(^p) := P0Z(p), and obtain from it an induced basis for P(o) := P 0 Q . 
Using the natural splitting of P(o) into a Q-complex and an A-complex, 

^(0) =e-P(o) x ( l - e ) - P ( o ) , 

one observes that, because TT operates trivially on the rational homology of X , the 
homology of e • P(o) is naturally isomorphic via the projection P(o) -> P (8)7r Q to the 
homology of X with Q-coefficients, and H^{e • P(o)) has thus a natural basis because X 
is supposed to be Q-based. On the other hand (1 - e) • P(o) is acyclic. From these two 
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based complexes (with based homologies) one obtains thus a pair of torsion invariants 
in 

i^i(Q7r)=ii:,(Q)xK,(A). 

Since everything depends on the choice of the basis of Pi^;), the torsion invariant will 
only be well-defined if we calculate modulo the image of K\{Z(jyyn) in K\{^). The 
resulting invariant will be denoted by 

RTp(X) E i^,(Q7r)/im (ii:i(Z(p)7r)) 

and is called (by Ewing, Loffler and Pedersen [21]) the p-local Reidemeister torsion of 
the Q-based space X. 

For p any prime and TT any group, the commutative diagram with obvious arrows 

ZTT —^Z(p)7r 

I i 

gives rise to a long exact sequence (see Bass [2]) of K-groups 

K\{ZT^) - . /fi(Z(p)7r) X K\{Z[\/p]-n) -^ ii:,(Q;r) ^ 

iiro(Z7r) -^ /£ro(Z(p)7r) x /fo(Z[l/p]7r) -> /SToCQ̂ )-

We are interested in the connecting homomorphism 

which is used in the following definition. Note that the image of i^i(Z(p)7r) in Ki(Q7r) 
lies in the kernel of 5 .̂ 

DEFINITION 7.1. Let X be a connected, finitely dominated Q-based CW-complex with 
finite fundamental group n operating trivially on the rational homology of the universal 
cover of X. Then for every prime p the p-part 'Wp{X) of the Wall obstruction of X is 

aP(RTp(X)) =: w^{X) e MZTT). 

In [21] Ewing, Loffler and Pedersen show that the p-parts Wp{X) are zero for almost 
all primes p and it makes therefore sense to form their sum. 

THEOREM 7.2. Let X be a connected, finitely dominated Q-based CW-complex with fi-
nite nontrivial fiindamental group TT operating trivially on the rational homology of the 
universal cover of X. Then 

Y,^vW = ^{X)eK^{Zi^x{X)), 
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In case TT is a finite nilpotent group, we write TTp for the Sylow p-subgroup of TT, and 
one has a natural decomposition 

TT = TTp X T T ' , 

with TT' consisting of all elements of order prime to p. The idempotent 

provides a splitting of the group algebra 

QTT =ep-Q7r X (1 -ep)-Q7r, 

and yields a corresponding splitting 

i^i(Q7r) = ifi(ep . QTT) X Ki{{l - e^) • QTT). 

Note that the projection TT —• TTp induces an isomorphism ep-Qn -^ QKp so that 

i^i(ep-Q7r)^i^i(Q7rp). 

DEFINITION 7.3. Let TT be a finite nilpotent group. Then 

NpiZir) := dP{K^{ep • QK) X {0}) C KoiZir). 

Recall that for a finite nilpotent group n we defined N{Z7r) to consists of those 
elements of the projective class group of n which are realizable as finiteness obstruction 
of finitely dominated nilpotent spaces with fundamental group TT. The connection with 
the subgroups Np{Z7r) is given by the following theorem [21]. 

THEOREM 7.4. Let IT be a nontrivial finite nilpotent group. Then 

^NpiZn) = iV(Z7r) C Ko{Z7r). 
p 

If TT is an arbitrary finite group, the Swan subgroup 

T(Z7r) C KoiZTT) 

is defined as the image of the boundary map 5^ in the Milnor exact sequence 

y KI{Z/\TT\Z) - ^ KoiZn) -^ • • • 
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associated with the commutative diagram 

ZTT —y Z 

i i 
Z7r/(r)—^Z/|7r|Z 

where (S) denotes the ideal generated by Z" = XIXGTT ^ ^̂ ^ ^̂ ^ arrows are the obvious 
maps. The Swan subgroup is quite computable. Its elements are precisely those which can 
be written in the form [(fc, E)] - [ZTT] where (A:, S) C ZTT denotes the (projective) ideal 
generated by k and E, where A: E Z is prime to |7r|. According to Ullom [65], the Swan 
subgroup is trivial for cyclic groups. In general, its exponent divides the Artin exponent 
of TT, and if TT is a p-group, T(Z7r) is cyclic (for TT a ;?-group T(Z7r) is completely known, 
see Taylor [62]). It is not hard to see that in general 

T(Z7r) C D(Z7r), 

and one can show that (cf. [52]) for a finite nilpotent group TT one always has has 

T(Z7r) C N(Z7r). 

In the abelian case one even has the following result [52]. 

THEOREM 7.5. Let TT be a finite abelian group and x G T(Z7r). Then there exist a finitely 
dominated connected, simple CW-complex X with fiindamental group IT and w{X) = x. 

REMARK. The definition of the p-part Wp{X) of the Wall obstruction of X depended 
on the choice of a basis for the rational homology of X. It is shown in Ewing, Loffler 
and Pedersen [21] that a different choice results in a change of Wp{X) by an element 
in T(Z7r). In particular, in case n is cyclic one has T(Z7r) = 0 and thus Wp{X) will be 
independent of that choice. 

7.2. Fiber-wise localization and genus 

For X a connected CW-complex with fundamental group TT one has a natural fibration 
up to homotopy of the form 

X^X-^BTT 

which, for any prime p, admits a fiber-wise p-localization for which we will use the 
notation 

X(p) -> X(p_7r) -> BIT, 

where X(p) stands for (^)(p)- In case the group TT is finite, of order prime to p and 

acting trivially on the p-local homology of X, this fibration is fiber-homotopy trivial, 



1284 G. Mislin Chapter 26 

thus X(p_7r) ~ X(p) X B-K. Moreover, if X is nilpotent with finite fundamental group, 
one has 

X(p_^) :^X(p) X JBTT', 

where TT' denotes the subgroup of the fundamental group of X consisting of all elements 
of order prime to p. (For a definition of fiber-wise localizations on the level of spaces 
see Bousfield and Kan [8].) 

As observed by Wojtkowiak in [75], the following holds. 

THEOREM 7.6. Let X be a connected CW-complex with finite fundamental group n and 
let Y be the universal cover of X(p_7r) with its natural TT action. Then the singular 
chain complexes C^^'^^{X) 0 Z(p) and CV^^{Y) 0 Z(p) are naturally chain homotopy 
equivalent over Z(p)7r. 

Indeed, the natural 7r-map X —^ Y induces the equivalence. As a result, the p-local 
Reidemeister torsion RTp(X) depends only on the homotopy type of X(p_7r) and the 
choice of a basis for the rational homology of that space. In the nilpotent situation this 
implies that the finiteness obstruction depends, modulo the image of the Swan homomor-
phism, only on the homotopy types X(p). More precisely, the following holds. Recall that 
for a nilpotent space of finite type X the genus set G{X) of X consists of all nilpotent 
homotopy types of finite type Y such that for every prime p one has Y(^p>^ ~ X(p) (for 
basic properties of the genus see [33]). 

THEOREM 7.7. Let X be a finitely dominated nilpotent space with finite fundamental 
group and let Y G G{X). Then there is an isomorphism (j): 7ri(y) -^ '7ri(X) such that 

w{X) - (l>My) ^ T(Z7ri(X)) C Ko(Z7ri(X)). 

For a proof see [21] or [74]. Note that if Y is in the genus of a finite, nilpotent CW-
complex with finite nontrivial fundamental group, then we can conclude that w{Y) lies 
in the Swan subgroup (but it is not necessarily zero, for an example see [50]). 

The same methods can be used to compute the Wall obstruction for a "Zabrodsky 
mixing". 

THEOREM 7.8. Suppose PUQ is a partition of the set of primes and M, X, Y and Z 
are finitely dominated nilpotent spaces with finite fundamental groups, such that there is 
a pull-back diagram 

M—^X 

i i 
Y—^Z 
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with the horizontal arrows being P-equivalences, and the vertical ones Q-equivalences. 
Then there is a P-equivalence (j)x : 7ri(X) —• 7ri(M) and a Q-equivalence (J)Y : 
TTi ( y ) —• TTi ( M ) 5Mc/i that 

w{M) = 5 ; (/)x.t/̂ p(X) + Yl ^^*^^(^) 
p€P g€Q 

where the p-parts of the Wall obstructions are supposed to be computed with respect 
to bases of the rational homology of X and Y which correspond to each other via the 
induced isomorphisms 

An other interesting and closely related question is the following. Suppose X is a 
finitely dominated nilpotent space and p a prime. Is X(p) necessarily homotopy equivalent 
to Y(p) for some finite nilpotent CW-complex Yl The answer is "no" in general. Indeed, 
if we choose for X a finitely dominated nilpotent space with 7r\{X) = Z/p'^Z such 
that w{X) 7»̂  0, then one has obviously w{X) = Wp{X) ^ 0, but for Y a finite 
CW-complex with the same fundamental group, one has wiy) = '^'p{Y) = 0 (recall 
that T{Z[Z/p'^Z]) = 0 so that there is no ambiguity in the definition of the local Wall 
obstructions). Thus, as Wp{X) depends only on X(p_7r) = -̂ (p)» ^̂ d similarly for Wp{Y), 
we see that necessarily X^p^ ^ Y(^py For a thorough discussion of these matters, see [21]. 

7.3. The spherical space form problem 

A classical question asks to describe all topological manifolds M with universal cover 
homeomorphic to 5*̂ . The fundamental group of such a manifold is necessarily a finite 
group with periodic cohomology and, in case M is orientable, the (minimal) period of 
7ri(M) divides (n -f 1). If M a nonorientable, then M is easily seen to be homotopy 
equivalent the projective space P"(R) with n even; we shall concentrate on the orientable 
case in the sequel. 

A finite group with periodic cohomology is called a P-group. The 'P-groups are char-
acterized by the fact that all their abelian subgroups are cyclic. If the period of a P-group 
TT is fc, then 

i/^(7r;Z) = Z/|7r|Z. 

Conversely, if for a finite group TT one has W{IT;Z) = Z/|7r|Z, then TT is a P-group of 
period dividing i. 

The following emerge as the natural and basic basic questions: 

- Which V'groups admit free actions on spheres? 
- If the V-group TT acts freely on S'^, what are the possible values of n? Is the minimal 

value ofn equal to k — I, where k is the period ofir? 
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It has been known for a long time that not every V-group admits a free action on some 
sphere. Namely, Milnor proved in [46] that if the finite group n acts freely on a sphere, 
then all elements of order two in IT are central. Thus, for instance the symmetric group 
53, which has period 4, does not act freely on any sphere. But according to Madsen, 
Thomas and Wall ([63], [41]), Milnor's condition is the only obstruction to finding an 
action, and the following converse holds. 

THEOREM 7.9. If the V-group TT has the property that all elements of order 2 are central, 
then TT admits a free action on some sphere. 

This answers our first question completely. If the finite group TT acts freely on S'^, 
the orbit space S'^/TT is a compact topological manifold, which is an ANR and therefore 
homotopy equivalent to a finite CW-complex Y. Thus TT acts freely and cellularly on the 
finite CW-complex Y homotopy equivalent to 5^. One can therefore divide the second 
question up into two separate ones, a purely homotopy theoretical one, and a surgery 
problem: 

- Given a V-group TT, find all values of n such that TT acts freely and cellularly on a 
finite CW-complex homotopy equivalent to a sphere 5". 

- Suppose the V-group TT acts freely and cellularly on a finite CW-complex homotopy 
equivalent to S'^. Does TT admit a free action on S^ ? 

We will only sketch how the homotopy problem can be reduced to an investigation 
concerning finiteness obstructions; a thorough analysis as well as a discussion of the 
surgery problem, which we won't address here, can be found in the excellent survey by 
Davis and Milgram [16]. 

If a finite group TT acts freely and cellularly on the finite CW-complex X homotopy 
equivalent to 5"̂ , preserving the orientation, then one obtains a complex 

• • • - C'ni\{X) - C^^"{X) - - . . . - > Cô ^"(X) - . Z -> 0 

with B^^"(X) = im{C^^l[{X) -^ ^^"(X)) a direct summand. This direct summand 
is stably free because it represents the reduced finiteness obstruction for the finite CW-
complex X/ir, It is then easy to modify the complex to obtain a periodic resolution 

0 ^ Z -^ Fn - Fn-1 - Q!f!>(X) ^ . . . - . Q^"(X) - - Z -> 0, 

with Fn, Fn-\ and all the modules Cf^"(X), 0 ^ i < n - 2 , finitely generated and free 
over ZTT. In particular, TT is a P-group of period dividing n + 1. Conversely, according 
to Swan [59], if TT is a P-group of period k then TT admits periodic resolutions 

0 -^ Z -^ Pik-i -^ Pik-2 -^ > P, -> Po -^ Z ^ 0, Z ^ 1, 

with each Pi finitely generated projective. Swan proved in [59] that 

lk-\ 

Y,{-mPi\€Ko{Zi:) 
1 = 0 
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depends, modulo the Swan subgroup T(Z7r), only on the pair (TTJ), and whence gives 
rise to elements 

sik{ir) eKo{Z7r)/T{Z7r), Z ^ 1, 

with k standing for the period of TT. These elements are called Swan obstructions, and 
5fc(7r) is called the Swan obstruction of TT. According to Swan the following holds (cf. 
[59]). 

THEOREM 7.10. Let n be a V'group of period k. Then for every I ^ 1 

(i) 5/fc(7r) = 0 if and only ifn admits afree^ cellular action on a finite CW-complex 
homotopy equivalent to S^^~^\ 

(ii) siki'K) = Z • 5fc(7r). 

It is clear that the elements s/jk(7r) have finite order, that is, rk(5/fc(7r)) = 0, Indeed, 
because the period fc of a P-group is always even we obtain, by computing homology 
with Q coefficients. 

^( - inp , ] j = 1-1=0. 

It follows that TT acts on some finite CW-complex X c^ 5 '̂̂ ~^ by taking for I the order 
of Sjfe(7r). Wall improved this considerably (cf. [70]) by showing that one can always 
take I = 2, that is 

2 . SkM = 0 G Ko{Zn)/T{Z7r), 

For almost all families of P-groups of period A; one can show that the Swan obstruction 
5fc(7r) actually vanishes. Moreover, one can show that if SkM ^ 0, the TT must contain 
a subgroup of the form Q{2'^a, 6, c) with a, b, c coprime odd integers and n ^ 3 (the 
notation for these groups is due to Milnor [46]). These groups are defined as semi-direct 
products of the form 

1 -^ Z/aZ X Z/6Z X Z/cZ -> Qil^'a, b,c) -^Qn-^l 

with 

n - 2 
Qn = gp{x,y\x^ =\,y^ = x^^ ,yxy ^ = x *) 

the quaternion group of order 2^, acting so that x inverts the elements of Z/aZ and Z/6Z 
while y inverts those of Z/aZ and Z/cZ. These groups all have period 4 and it turns out 
that the associated Swan obstruction does not vanish in general, but there is no simple 
minded pattern. For instance, according to Milgram [44] one has s^{Q{2A,5,1)) ^ 0 
and 54(Q(24,13,1)) = 0. The smallest group with nonvanishing Swan obstruction is 
Q(16,3,1) a group of order 48 (cf. Davis [15]). Note that one can conclude that the 
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groups (5(24,5,1) and Q(16,3,1) cannot be fundamental groups of 3-manifolds! The 
computation of the Swan obstruction relies on interpreting it as the image of some 
Reidemeister torsion element in the following way. Let Zp denote the p-adic integers 
and Qp the field of p-adic numbers. Consider the pull-back square 

i i 

riplMZpTr—>np||.|Qp^ 

with associated Milnor sequence 

p|W 

Composing with the projection iiro(Z7r) —> 2fo(27r)/T(Z7r) yields a homomorphism 

r : H A:i(Qp7r) —* Ko{Zi:)/T{Zir). 

p|M 

It turns out that the Swan obstructions sikiir) he in the image of 9 . Indeed, one can 
compute sikiit) as follows. Given a P-group TT of period k and a periodic resolution of 
length Ik, 

P{Tr,Ik) :0->Z-* Pik-i -* > Po -^ Z, 

with each Pi finitely generated and projective over ZTT. One can think of P(7r, Ik) as 
being obtained as a pull-back of the form 

P{Tr,lk) —>Z[l/|7r|](8)P(7r,Zfc) 

i i 
riplKi Zp 0 P(7r, lk)-^np\\ni ^ ® P('̂ ' ^ )̂ 

This pull-back is completely determined by a family of "twisting isomorphisms" 

defining a Reidemeister torsion element 

lk-\ 
r(P(7r,Zfc)) := Y. E^-l^'t-^'.^J ^ 11 ^ •WP '^ ) ' 

i=o PIH PIKI 
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which is uniquely determined modulo the image of 

[ J ] KiCZpTT)] X i^,(Z[l/|7r|]7r) —> H if,(Qp7r), 

and it satisfies 

r(T(P(7r,Zfe))) = sikM e Ko{ZiT)/T{Z7r). 

It turns out that the computation of siki'K) is closely related to the structure of the ring 
of integers (and strictly positive integers) in cyclotomic number fields. The interested 
reader is invited to consult [44], [45], [16] and [15] for more details. 
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Category, in the sense of Lustemik and Schnirelmann, arose in the course of research 
into the theory of critical points. While the main applications of the classic theorem are 
in that area Smale [42] has found other applications in computer science, specifically 
in complexity theory. Both the original invariant and many variations are much studied 
by homotopy theorists. Some years ago I wrote a survey [28] of what was known at 
that time. Not surprisingly this had the effect of stimulating further research and much 
progress has been made since then. A comprehensive survey, up to the present time, 
would need to be quite lengthy. Rather than embark on this I have taken the opportunity 
presented by this article to describe some of the main ideas. 

1. Introduction 

Given a space X let us say that a subset V of X is categorical if V is contractible 
in X. It is not necessary for V to be contractible in itself, indeed V does not need to 
be connected. By a categorical covering of X we mean a finite numerable covering 
{Vi, . . . , V/k} of X, for some k, by categorical subsets. We define the category cat(X) of 
X to be the least value of k for which such a covering exists. If no such covering exists 
we say that the category is infinite. However the class of spaces with finite category 
includes, for example, all compact manifolds and finite complexes. 

In earlier work the covering is assumed to be either open or closed, rather than nu-
merable. However when X is normal the definition given here is equivalent to the one 
in which the covering is required to be open, while when X is an ANR it is equivalent 
to the one in which the covering is required to be closed. 

More generally we can define the category of a map / : X —̂  y in a similar fashion. 
We say that a subset V of X is categorical with respect to / , if the restriction / | V 
is nulhomotopic. We define the category cat(/) of / to be the least value of k for 
which there exists a finite numerable covering {Vj,..., Vĵ } of X by subsets which are 
categorical with respect to / . If no such covering exists we say that the covering is 
infinite. Of course cat(/) reduces to cat(A') when X = Y and / is the identity. 

Of course cat(/) = 1 if and only if / is nulhomotopic. Given a numerable covering 
{X, ,X2}ofXwehave 

c a t ( / ) ^ c a t ( / | X i ) - f c a t ( / | X 2 ) . 

For any two maps f : X -^Y and g :Y -^ Z v/e have 

csLt{g o / ) < min {cat(/),cat(p)}. 

In particular 

cat(/) ^ min{cat(X),cat(y)}. 

Clearly cat(/) depends only on the homotopy class of / , and hence catX depends only 
on the homotopy type of X. 
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The Lusternik-Schnirelmann theorem has undergone various refinements over the 
years, at the hands of Palais, Schwartz, Smale and others. Here we follow the expo-
sition of Clapp and Puppe [7]. 

Suppose that we have a paracompact C^-Banach manifold M, possibly with boundary, 
and a C^-function f : M —^K Consider the critical set K of / , i.e. the set of points of 
M where the derivative of / vanishes. Thus f{K) is the set of critical values of / and 
E - f{K) is the set of regular values. For any a € M we write 

Ma = r*(-oo,a] , Kc, = Knf-\a). 

The Lustemik-Schnirelmann theorem provides information about the topology of the sets 
Ka, under certain conditions. 

If X and X' are subsets of M let us say that X is deformable into X' within M 
if there exists a homotopy ht : X -^ M of the inclusion such that h\X C X\ The 
conditions we are going to assume are: 

(Di) For any a in the interior of the set of regular values of / there is an e > 0 such 
that Ma^e is deformable into Ma-e within M. 

(D2) For any isolated critical value a of / and any neighborhood V of K in M there 
is an 6: > 0 such that Ma-^e\V is deformable into M^-e within M. 

(D3) If a > sup f{K) then M is deformable into Ma within itself. 

We refer to (DO—(D3) as the deformation conditions. To ensure that they are satisfied 
some further assumptions on M and / are required. For example, suppose that M has no 
boundary. If M is a Hilbert manifold then M (being paracompact) admits Riemannian 
structure. If further / : M —* E is a C^-function and a proper map (which is only possible 
when M is finite-dimensional) then standard methods of integrating the gradient field 
V / enable the deformation conditions to be established. 

However, most of the important applications are to the infinite-dimensional case. Still 
assuming that M is a Hilbert manifold without boundary and that / is C^ we impose 

(C) For any S C M such that / is bounded but | |V/|| is not bounded away from 
zero there exists a critical point in the closure S C M. 

This is often known as the Palais-Smale condition. When it is satisfied it can be shown, 
by more sophisticated arguments than in the finite-dimensional case, that the deformation 
conditions are satisfied. 

So let / : M —> E be a C*-function satisfying the deformation conditions. Write 
cat(M,-X') for the category of the inclusion X C M, where X is any subset of M. 
Consider the function m : E -> N U {00) given by m{a) = cat(M, M^). We assert that 

(i) the function m is (weakly) increasing. 
(ii) In the interior of the set of regular values the function m is locally constant, 

(iii) At any a € E which is an isolated critical value the function m jumps by 
cat(M, iiTa) at most, 

(iv) When a > sup f{K) then m{a) = cat(M). 

The proof of these assertions depends on just a few simple properties of the set function 
n{X) = cat(M, X), where X runs through the subsets of M, namely the following: 
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(1) Monotonicity: li X' C X C M then n{X') ^ n{X)\ 
(2) Subadditivity: If {X\,X2} is a numerable covering of X C M then n{X) ^ 

n(Xi)-fn(X2); 
(3) Deformation invariance: If X C M is deformable into X' within M then n{X) ^ 

n(X'); 
(4) Continuity: If X is closed in M then n(C7) = n(X) for some neighborhood U of 

X'mM. 
The first three of these properties are trivial consequences of the definition while the 

fourth follows from the fact that M is an ANE. Returning to the four assertions made 
above we see that (i) follows directly from (1), that (ii) follows from (3) using (DO, 
and that (iv) follows from (3) using (D3). To prove (iii), the remaining assertion, take a 
neighborhood U of K^ such that n{U) = n{Ka). Let V be a closed neighborhood of 
Ka in the interior of U, and choose 6: > 0 as in (D2). Then 

^n{Ma+e\V) + n{U), by (2), 

^ n{Ma-e) + n{Ka), by (D2) and (3), 

= m{a - e) + cat(M, Ka)-

This proves the assertions, which constitute the Lusternik-Schnirelmann theorem, from 
the modem standpoint. Note that if, in addition, / is bounded below then 

ca t (M)^ J]cat(M,i i :^) . 

Palais [38] has shown how to extend the result to manifolds with boundary. Browder 
[6] has given an account of some of the applications. In the finite-dimensional case the 
Palais-Smale condition implies compactness. However it is possible, as shown in [29], 
to reformulate the theorem so that it applies to noncompact manifolds by modifying the 
notion of critical point, making use of ideas from the theory of ends. 

2. Some variants 

Basepoints play no role in the original definition of category in the Lusternik-
Schnirelmann theorem. However although it is not always made explicit much of the 
literature is more concerned with the pointed version of category, as follows. Given a 
pointed space X let us say that a subset V of X (necessarily containing the basepoint) is 
pointed categorical if V is contractible in X in the pointed sense. By a pointed categor-
ical covering of X we mean a finite numerable covering {Vi,. • •, 14} of X, for some 
fc, such that each member of the covering is pointed categorical. We define the pointed 
category cat*(X) of X to be the least value of k for which such a covering exists. If no 
such covering exists we say that the pointed category is infinite. The pointed category 
of a pointed map is defined in a similar fashion. 
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Obviously cat(A') ^ cat*(A') in all cases. Equality holds provided (i) X is path-
connected and (ii) the basepoint xo admits a numerically defined pointed categorical 
neighborhood in X. For then if V is a categorical subset of X containing xo then F is a 
pointed categorical subset, while if V is a categorical subset of X not containing XQ we 
can form the union of V and a disjoint pointed categorical neighborhood of xo and thus 
obtain a pointed categorical superset of V. Thus a categorical covering can be converted 
into a pointed categorical covering and the conclusion follows. 

G.W. Whitehead [45] gave a characterization of pointed category which the majority 
of homotopy theorists then adopted as their definition. As before let X be a pointed 
space with basepoint XQ. In the fc-fold topological product 11^X {k — 1,2,...) consider 
the "fat-wedge" subspace 

r^(X,xo) = TTf ̂ (xo) U . • • U 7r;̂ (̂xo), 

where TTf : WX ^ X —• X (i = 1 , . . . , fc) is the z-th projection. Whitehead showed that 
under fairly general conditions cat*(X) is the least value of k for which the diagonal 

A:X-^ n^X 

can be deformed into T'^(X,xo), by a pointed homotopy. In fact it is sufficient that (i) 
X is normal and (ii) XQ admits a pointed categorical neighborhood. Using the Whitehead 
definition we see that cat*(X) ^ 2 if and only if X admits co-Hopf structure. 

Recall that the fc-fold smash product A^[X) of X is obtained from 11^X by collapsing 
T^{X,XQ). Consider the projection 

A' :X-^A^{X) 

of the diagonal into the smash product. Obviously A' is nulhomotopic, in the pointed 
sense, if A can be deformed into T^{X,XQ), in the same sense. This observation led 
Berstein and Hilton [5] to define the weak pointed category wc2X*{X) of X to be the 
least value of k for which A' is pointed nulhomotopic. Clearly wc2X*{X) < cat*(X), in 
all cases, but examples are given in [5] and [22] where the two invariants are not the 
same. 

Lower bounds for weak pointed category, and hence for pointed category, can be given 
using cohomology. Thus consider the reduced cohomology ring H*{X) of the pointed 
space X, with an arbitrary coefficient ring. If wcai*{X) is defined then the cohomology 
ring is nilpotent and the index of nilpotency nil^*(A') cannot exceed it. Results of this 
type have a long history but this particular version can be found at the end of [5]. 

Although cohomological lower bounds yield important information it is not always easy 
to compute the index of nilpotency as, for example, in the case of the real Grassmannian 
where Stong [43], while improving earlier results of Hiller, has still not succeeded in 
completely solving what might appear to be a simple problem. Moreover, as we shall 
see in §7, it is not difficult to give examples where the category is infinite but the 
multiplicative structure of the cohomology ring is trivial. 
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3. More variants 

The variants of the original concept we have described so far by no means exhaust the 
possibilities. We continue by discussing some examples of a different type. In fact each 
of these can, as we shall see, be regarded as a special case of category with respect to a 
map. 

Given a fibrewise space X over B let us say that a subset W of B is section-categorical 
if Xw admits a section over W. By a section-categorical covering of B we mean a 
finite numerable covering {W\,. ..,Wk} of B, for some k, such that each member of 
the covering is section-categorical. We define the sectional-category secat(X) of X to be 
the least value of k for which such a covering exists. If no such covering exists we say 
that the sectional category is infinite. Note that secat(X) ^ cat(B) when X is fibrant. 

For paracompact B Schwartz has shown that secat(-X') ^ fc if and only if the fc-fold 
fibrewise join 

X^^^ = X*B*-"*BX (fc factors) 

of X with itself admits a section. This result, for which §8 of [28] is a convenient 
reference, leads to an upper bound for sectional category as in (8.2) of [28]. Specifically, 
let B be a finite complex and let X be a fibre bundle over B with {q - l)-connected 
fibre, where q^ I. Then 

secat(X) <{q+ 1)"^ dimB + 2. 

For a lower bound we turn to cohomology again and consider the homomorphism 

p^:H'{B)^H'{X) 

induced by the projection. We find that 

secat(A') ^ nilkerp*. 

When X admits a section the sectional category itself is without interest, but then the 
polar category, which has somewhat similar properties, may be defined, as follows. Let 
us say that X is polarized if every section of X — B is vertically homotopic in X to 
the standard section. For example, suppose that X = EBE, the fibrewise suspension 
of a fibrewise space E. Then X comes equipped with a pair of "polar" sections, where 
the suspension parameter takes its extreme values. We choose one polar section, conven-
tionally called the north, as standard, and refer to the other as the south polar section. 
Then X is polarized if and only if the polar sections are vertically homotopic. The latter 
condition is satisfied whenever the fibrewise space E admits a section. The converse 
holds when £" is a (g — l)-sphere bundle over B and B is a finite complex such that 
dimB < 2 g - 2 . 

After these preliminaries we are ready to define the polar category. Given a fibrewise 
pointed space X over B let us say that a subset VT of B is polar categorical if Xw 
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is polarized over W. By a polar categorical covering of B we mean a finite numerable 
covering {W\,... ,Wk} of B such that each member of the covering is polar categorical. 
We define the polar category polcat(A') of X to be the least value of k for which such 
a covering exists. If no such covering exists we say that the polar category is infinite. 

In case X = EBE, for some fibrewise space E, we have 

po\c2Li{EBE) ^ secatE. 

Conversely, suppose that E is a (g - l)-sphere-bundle over B and B is a finite complex 
such that dimB ^ q{k-\-l)-3 for some k. Then po\cai{SBE) < k implies secat(jB) ^ k. 

Another variant of the original concept arises in the theory of fibre bundles, as follows. 
Let X be a numerable G-bundle over B, where G is a topological group. By a triviality 
covering of B, with respect to X, we mean a finite numerable covering {W\ ,...,Wk} 
of J5, for some k, such that X is trivial over each member of the covering. We define the 
triviality category trivcat(A') of X to be the least value of k for which such a covering 
exists. If no such covering exists we say that the triviality covering is infinite. It is not 
difficult to show that trivcat(X) is equal to the category of the classifying map B —• BG 
of X, where BG denotes the classifying space of G. An example where triviality category 
naturally arises is as follows. 

Manifolds are usually described as the result of gluing together open subsets of a fixed 
Euclidean space. It is natural at the outset to ask how efficiently a given manifold can be 
constructed. In low dimensions it is often possible to study this problem by geometric 
methods, as Montejano and others have shown, but in general the geometry needs to be 
supplemented by the methods of homotopy theory. 

In studying this problem Berstein [3] introduced the following invariants (all mani-
folds, embeddings and immersions are assumed to be C°°-smooth). Let M be a closed 
n-manifold. The embedding covering number N{M) is the least integer k such that M 
can be covered by k open sets, each of which embeds in R". The immersion covering 
number n{M) is the least integer A: such that M can be covered by k open sets, each of 
which immerses in W^. 

Although it is N{M) we wish to determine, it cannot be less than n{M), and thanks 
to the work of Hirsch and Smale n{M) can be seen to be precisely the triviality category 
of the stable tangent bundle of M. 

For various reasons it is of particular interest to determine the Berstein covering 
numbers in the case of P^, the real projective n-space. Berstein himself gave upper 
and lower bounds for the covering numbers but in general they are wide apart. Much 
more recently Hopkins [27] succeeded in closing the gaps completely for the immersion 
problem, and has done so for the embedding problem except in two cases where there 
is an element of doubt. The specific results are as follows. Write n -f 1 == 2^m, with m 
odd. Then 

lleast integer ^ ^(^ if fc ^ 3. 

Moreover N{P'^) = n{P'^) with the possible exception of the values n = 31 and n = 47, 
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where 

Unfortunately the arguments are too technical to be summarized here. 

4. Equivariant category 

Developing an equivariant version of the classical theory is not as easy as it might first 
appear. However it is clear enough how to begin. Let X be a G-space, where G is a 
topological group. We describe an invariant subspace F of X as G-categorical if there 
exists a G-homotopy ht :V -^ X of the inclusion such that hi V is the orbit Gx of some 
point X of X. By a G-categorical covering of X we mean a finite numerable covering 
{Vi, . . . , Vjk} of X by G-categorical subsets. We define the G-category G-cat(X) of X 
to be the least value of k for which such a covering exists. If no such covering exists we 
say that the G-category is infinite. The G-category of a G-map is defined in a similar 
fashion. 

After the initial stage one has a choice of several different treatments in the literature, 
which only partially overlap. Fadell [14], and Fadell and Husseni [15], [16], [17] have 
developed one approach. Mazantowicz [37] and Ramsay [39] have developed others, as 
have Barsch and Clapp [2], and Clapp and Puppe [7], [8], [9]. The differences originate 
from the different applications the authors have in mind and cannot be reconciled into a 
single theory. 

Let us assume, for simplicity, that G is compact. Then each orbit G.x is equivalent, 
as a G-space, to a factor space G/H, where H is the stabilizer of x. Relations exist 
between the equivariant category of the G-space X and the ordinary category of the 
orbit space X/G. We have 

G-cat(X) ^ cat(X/G) 

in all cases, while equality holds when X has just one orbit type, in particular when the 
action is free (see 1.10 of [37], for example). 

In this case, therefore, it is easy to convert results about ordinary category into results 
about equivariant category. 

For some results it is convenient, perhaps necessary, to assume that X is a G-ANR. 
This class of G-spaces includes finite-dimensional G-CW complexes. It also includes 
finite-dimensional smooth G-manifolds, where G is a compact Lie group. 

Mazantowicz [37] gives an upper bound for the equivariant category of the G-space X 
in terms of the dimension of X/G and another number depending on the orbit structure. 
In particular if X is a connected G-ANR and the fixed point set X^ is nonempty and 
connected then 

G'C2Li{X)^dim{X/G) + \. 

Here, as usual, dim means covering dimension. 
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Cohomological lower bounds for the equivariant category can be obtained in terms of 
Borel cohomology as follows. Let EG be a contractible space on which G acts freely. 
Consider, for each G-space X, the orbit space EG XQ X of the product EG x X, 
with respect to the diagonal action. (Under certain conditions EG XG X has the same 
homotopy type as X/G.) The Borel cohomology HQ{X\ R) of X, with coefficients in a 
ring R, is defined to be the Cech cohomology ring H*{EG XQ X\R). The cup-product 
in HQ{X\R) is defined in the usual way. We can regard HQ[X\R) as a module over 
the coefficient ring H^(pt\R) = H*{BG;R), where BG = EG/G is the classifying 
space of G. 

At this stage Mazantowicz and Ramsay introduce the strong assumption that all orbits 
satisfy the dimension axiom, i.e. that HQ{G/H) = 0 for alH > 0 and every closed 
subgroup H of G. Then 

G - c a t ( X ) ^ n i l ^ ^ ( X ) 

by the argument which is used in the ordinary theory. However the assumption is very 
restrictive and to avoid this Fadell, and Fadell and Husseini, prefer to disregard equiv-
ariant category and instead to seek cohomological lower bounds directly for the number 
of critical orbits of an invariant real-valued function on a given G-space. 

Instead of pursuing these questions further let us turn now to the pointed version of 
the equivariant theory. Specifically let J t be a pointed G-space (i.e. the basepoint XQ 
is a fixed point). We describe an invariant subset V of G (necessarily containing the 
basepoint) as pointed G-categorical if there exists a pointed G-homotopy ht '.V -^ X 
of the inclusion such that h\V ^ XQ. By a pointed G-categorical covering of X we 
mean a finite numerable covering {Vj , . . . , Vjk} of X by pointed G-categorical subsets. 
We define the pointed G-category G-cat*(X) of X to be the least value of k for which 
such a covering exists. If no such covering exists we say that the pointed G-category is 
infinite. The pointed G-category of a pointed G-map is defined in a similar fashion. 

Obviously G-cat(X) ^ G-cat*(-X') in all cases. In fact equality holds if (i) X^ is path-
connected for all closed subgroups H of G and (ii) there exists a numerically defined 
pointed G-categorical neighborhood of the basepoint. 

Proceeding on the same lines as in §2 we can formulate a "Whitehead" form of the 
definition of pointed G-category and then a weak form. Without making any further 
assumptions a lower bound for the weak pointed G-category can be obtained in terms 
of Borel cohomology, using an equivariant version of the argument given at the end of 
[5], and of course this is a lower bound for pointed G-category itself. 

5. Fibrewise category 

Fibrewise category is a relatively new idea. The following outline is based on [30] and 
[31] where full details may be found. We describe a subset F of a fibrewise space X over 
a given base space B to be fibrewise categorical if the inclusion V —• X is fibrewise 
nulhomotopic. By a fibrewise categorical covering of X we mean a finite numerable 
covering {Vi, . . . , VA:} of X by fibrewise categorical subsets. We define the fibrewise 
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category cdXB{X) of X to be the least value of k for which such a covering exists. If no 
such number exists the fibrewise category is said to be infinite. The fibrewise category 
of a fibrewise map is defined in a similar fashion. 

Note that for any space A and map A : 4̂ —> J5 we have 

catA(A*X) ^ catB(X), 

where \*X denotes the induced fibrewise space over A. In particular cat^X is bounded 
below by the category of the fibres of X. 

Of course catB(-^) = 1 if and only if X is fibrewise contractible. Also cdXB{X) ^ 2 
if X is a fibrewise suspension since then X is the union of two open fibrewise cones. 

Let us turn now to the fibrewise pointed theory. We describe a subset F of a fibrewise 
pointed space X (necessarily containing the section) to be fibrewise pointed categorical 
if the inclusion V ^ X is fibrewise pointed nulhomotopic. By a fibrewise pointed 
categorical covering of X we mean a finite numerable covering {Vi , . . . , 14} of X by 
fibrewise pointed categorical subsets. We define iht fibrewise pointed category catf (X) 
of X to be the least value of k for which such a covering exists. If no such number exists 
the fibrewise pointed category is said to be infinite. The fibrewise pointed category of a 
fibrewise pointed map is defined in a similar fashion. 

Note that for any space A and map A : A —> B we have 

cat^(A*X)^cati(X), 

where \*X denotes the induced fibrewise pointed space over A. In particular catf (X) 
is bounded below by the pointed category of the fibres of X. 

Of course catf (X) = 1 if and only if X is fibrewise pointed contractible. Also 
catf (X) < 2 if X is the reduced fibrewise suspension of a fibrewise pointed space. 

If we disregard the section then the fibrewise category cdiBX of X is defined and 
cannot exceed cat^(X). The relation between these invariants will be considered below. 

For any fibrewise pointed space X over B the fc-fold fibrewise product 11 QX is defined 
{k = 1,2,...) and contains the union T^{X,B) of the preimages 7r~^(B) {i = l,...,/c) 
of the section. We may refer to T^{X,B) as the fibrewise frit wedge. Note that U^X 
contains the diagonal AX of X while T^{X,B) contains the diagonal AB of B, In 
other words the pair 

n%{x,B) = [n%x,T^{x,B)) 

contains the diagonal A{X,B) = [AX.AB) of the pair {X,B). By generalizing the 
argument used in the ordinary case we find (see [31]) that under fairly general conditions 
catf (X) is the least value of k for which the diagonal 

A'.X-^ n%X 

can be deformed into T^{X,B) by a fibrewise pointed homotopy. If we adopt this 
criterion as our definition we see that catf (X) ^ 2 if and only if X admits fibrewise 
coHopf structure. 
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There is an obvious connection between pointed category in the equivariant sense and 
pointed category in the fibrewise sense. Thus let P be a principal G-bundle over B, 
where G is a topological group. Let F be a pointed G-space and let X be the associated 
bundle with fibre Y and section determined by the basepoint. Then pointed G-categorical 
subsets of Y correspond to fibrewise pointed categorical subsets of X, and so 

catf(X)^G-cat*(y). 

Recall that the fc-fold fibrewise smash product A%X oi X is obtained from UQX by 
fibrewise collapsing T^{X,B), Consider the projection 

A' ;X-^ A%X 

of the diagonal into the fibrewise smash product. Obviously A' is fibrewise nulhomotopic, 
in the pointed sense, if A can be fibrewise deformed into TQ{X, B), in the same sense. 
This suggests defining the weak fibrewise pointed category wcdX^{X) of X to be the 
least number k such that A' \ X -^ ^%^ is fibrewise pointed nulhomotopic. Clearly 
wcat^{X) ^ catf (X), in all cases, but the two invariants do not always coincide, even 
when X is a sectioned sphere-bundle, as we shall see later. 

Note that for any space A and map A : ̂ 4 —̂  B we have 

WC^ti{X*X)^WC2i4{X). 

In particular i/;catf (X) is bounded below by the weak pointed category of the fibres 
o fX. 

There is a useful functor which sends each fibrewise pointed space X into the mapping-
cone Cs of the section s, and similarly for fibrewise pointed maps and fibrewise pointed 
homotopies. Then 

cat|(X) ^ cat*{Cs) ^ cat*(jB) -f 1; 

the first inequality resulting from the use of the functor, the second being due to Berstein 
and Ganea. Similarly 

i(;cat|(X) ^ wc2it*{Cs) ^ wc2X*{B) -f- 1. 

When the section 5 is a cofibration we may replace Cg by the pointed space X/B obtained 
from X by collapsing B. The index of nilpotency H*{X,B) of the cohomology ring 
of the pair {X, B), with arbitrary coefficients, is then a lower bound for wc3i^{X) and 
hence for catf (X). 

It turns out that polar category, as defined in §4, appears in a relation between fibrewise 
category and fibrewise pointed category. Specifically, let X be a fibrewise pointed space 
over B such that the section admits a numerically defined fibrewise pointed categorical 
neighborhood in X. Then 

cat|(X) ^ 1 4-polcat(X).catB(X - B). 
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When X is a sectioned sphere-bundle this implies 

cat | (X) ^ 1 -f polcat(X) < 1 4-cat(B). 

These numerical invariants of fibrewise homotopy type can be evaluated in the case of 
sectioned sphere-bundles over spheres, or rather the problem of evaluation can be reduced 
to a computation in the homotopy groups of spheres. Specifically consider the sectioned 
oriented g-sphere bundle Xa over S"^ formed by the clutching construction from an ele-
ment a € TTn-i50(g). We find cat | (Xa) = 2 if E'^p^a = 0, otherwise cat | (Xa) = 3. 
We also find lucatf (Xa) = 2 if S^~^^p^a = 0, otherwise i(;catf (Xa) = 3. Hence an ex-
ample can be given of a sectioned 8-sphere bundle over 5^^ which has fibrewise pointed 
category 3 but weak fibrewise pointed category 2. 

6. Strong category and homotopy colimits 

Returning to the original definition of category it is natural to ask what difference it 
makes if we use coverings of the given space X by subsets which are contractible 
in themselves, rather than contractible in X. It was realized at an early stage that the 
number thus defined is not a homotopy invariant. However Ganea [21] considered the 
homotopy invariant which can be derived from it by running through all spaces of the 
same homotopy type as X. Specifically he defined the strong category Cat(X) of X 
to be the least number of contractible subsets required to numerably cover a space of 
the same homotopy type as X. It is easy to see that Cat(X) ^ A: if and only if X is 
dominated by a space Z such that cat(Z) < k. Moreover Takens [44] has shown, under 
fairly general conditions, that either Cat(X) = cat(X) or Cat(X) = cat(X) -h 1; both 
possibilities can occur. 

Of course there is also a pointed version of the definition; the strong pointed category 
of the pointed space X will be denoted by Cat*(-Y). If X is a CW complex one can 
use subcomplexes rather than subsets but this turns out to make no difference. 

For path-connected CVF-spaces X Ganea showed that Cat(X) coincides with another 
invariant, the "cone-length" C\{X) of X. Specifically he defined Cl{X) to be the least 
value of k such that there exists a sequence of cofibration sequences 

Zi —^ Xi —^ Xi^i, 

with i = l , . . . , f c - l , with X\ contractible, and with Xk of the same homotopy type as 
X. Recently Cornea [10], [11] has shown that the same is true for sequences in which 
each Zi is required to be an i-fold suspension. 

Another way of looking at strong category, and hence category, has been developed by 
Clapp and Puppe [8]. Essentially the same idea occurred to Hopkins [26] independently 
but Hopkins was more concerned with the dualization which led him to fresh insights 
into the right way to define cocategory. Following Clapp and Puppe I give an outline 
of this alternative method which yields comparatively straightforward proofs of some of 
the classical results. 
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Let Kbtdi simplicial complex and let K also denote the poset of its simplices ordered 
by opposite inclusion. For any functor ^ : K -^ Top the homotopy colimit /i-colim$ of 
^ is defined in the usual way. For example, if K = A^~^, the standard k - 1 simplex, 
the fc-fold mapping cylinder is the homotopy colimit of a functor ^ : A^~^ -^ Top. 

Given a covering {Vo,..., Vit-i} of a space X we associate with it the functor U : 
A^'^ ->X , where 

U[a) = P[Vi and U{T ^ a) : U{T) C U{a). 
iecr 

The homotopy colimit of U is known as the classifying space BU of U and the canonical 
map BU -^ X is Si homotopy equivalence when the covering is numerable. 

Given a functor ^ : K -^ Top we can construct a canonical map 

(j): /i-colim ̂  -^ K. 

The preimages under <̂  of the open stars St(v) of the vertices v of K form a numer-
able covering of /i-colim$ and the canonical contraction of St('u) to v lifts canonically 
to a fibrewise deformation retraction of </)~^St(t;) to 0"~ (̂v) = ^(i;). It follows that 
Cat*(-X') ^ A: if and only if X has the pointed homotopy type of a fc-fold mapping 
cylinder with vertices at the basepoint. 

From this we can deduce the product inequality 

Cat*(X X y ) < Cat*X + Cat*y - 1, 

for any pointed spaces X^Y. For let m = Cat*(X), n = Cat*(y). We may assume that 
X and Y are homotopy colimits of functors U : A^'^ -^ Top and V : A^'^ —> Top, 
vertices being mapped to the point-space. Consider the canonical simplicial subdivision 
K of A^-^ X A'^-K Then a functor ^ : iC -^ Top is defined by 

#(p) = U{a) X y(r) , 

where a and r are the smallest simplices of A^~^ and A^'^, respectively, such that 
p C a X r. Then X x y is homeomorphic to /i-colim$ and the result follows. 

Of course the product inequality for strong category implies the product inequality for 
ordinary category 

cat(X X y ) ^ cat(X) 4- cat(y) - 1. 

Examples can be given where equality does not hold but these always possess torsion 
in both factors. Ganea conjectured that equality holds whenever one of the factors is a 
sphere. Only very limited progress had been made in proving the Ganea conjecture until 
recently when rational methods achieved a remarkable success. I will now describe some 
of these methods which have led to a much better understanding of the subject. 
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7. Rational methods 

The rational homotopy theory, as developed by Quillen, now has an extensive literature, 
with contributions from Anick, Felix, Halperin, Hess, Jessup, Lemaire, Thomas and 
others. It was Felix and Halperin who first showed that rational methods were effective in 
dealing with problems about category, particularly the use of Sullivan's minimal models. 
This enabled Jessup and then Hess to obtain results, including the Ganea conjecture for 
simply-connected rational spaces, which seem beyond the reach of other methods. 

A convenient introduction to the relevant rational homotopy theory has been given 
by Lemaire [36]. In this branch of the subject it is customary to denote spaces by the 
letters 5, T , . . . . From now on we assume that all such spaces are connected and simply-
connected CW-spaces of finite type. 

Recall that a rational space is one of which the homotopy groups are rational vector 
spaces of finite dimension. For any space S we denote by SQ the rationalization of 5, 
i.e. the localization with respect to all primes. Rational spaces can be modeled by (com-
mutative) differential graded algebras, DG algebras for short. We recall that the Sullivan 
minimal model AX of 5 is a DG algebra, freely generated as a graded commutative 
algebra by the dual of 7r^(5). 

So far, in this article, we have followed the traditional normalization of category, in 
which points have category one, spheres have category two, and so forth. From now on, 
however, we follow the practice in this branch of the subject and reduce the value of the 
invariant by unity, so that points have category zero, spheres have category one, and so 
forth. 

Consider a fibration p : E -^ B. Suppose first, that the fibre F is categorical in E. 
Then it follows from the homotopy lifting property that if V is a categorical subset 
of B then the preimage p'^V is categorical in E. Hence caX{E) ^ cat(B). Does this 
conclusion hold if we simply assume that the induced homomorphism 

p, : TT^E) ^ iT^B) 

is injective, in all dimensions? Examples can be given to show that in general it does 
not. However, when E and B are rational spaces Felix and Halperin showed that the 
weak assumption is sufficient. For such spaces, therefore, we have some new information 
about the behaviour of category. This mapping theorem of Felix and Halperin opened up 
a line of investigation which has proved most fruitful. 

In the Felix-Halperin mapping theorem it is asserted that if E and B are rational 
spaces then cat(J5) ^ cat(B) when p^ is injective. To establish this it is sufficient, as we 
have seen, to show that the fibre F of p is contractible in E. And this will be the case if 
we can show that the standard map j : QB -^ F admits a right inverse up to homotopy. 
Now since 

is a surjection we may write 

7r^(r2B) = C/^0kerj*, 
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where the summand C/* is mapped isomorphically onto 7r*(F) under j * . According to 
the well-known theorem of Milnor and Moore any loop-space has the rational homotopy 
type of a product of Eilenberg-MacLane spaces. So i7B, here, has the homotopy type 
of the product 

l[K{Un,n)xl[K{ktv{j,ln). 

Since the restriction of j : QB —> F to the factor 

l[K{Un,n) 

is a homotopy equivalence, we deduce that j admits a right inverse, as required. 
The rational category cato(S') of a space S is defined to be the ordinary category 

cat(5o) of its rationalization So- So for spaces E and B, not necessarily rational spaces, 
the Felix-Halperin mapping theorem shows that cato{E) ^ cato(-B) when p^ is injective. 
The assumption that p is a fibration can be dropped since any map can be replaced by a 
fibration in the usual way. 

The notion of category can be extended to DG algebras, as follows. If AX is the 
minimal model we denote by A^^X the algebra generated by products of length greater 
than k. The quotient AX/A^^X can be written in the form AX (g) AY, where AY is 
also a minimal model, and then the natural projection to the quotient takes the form of 
a morphism 

p:AX-^AX(S^AY 

of DG algebras. Felix and Halperin [18] define the rational category cato^X of the DG 
algebra AX to be the least value of k for which p admits a right inverse, as a morphism 
of DG algebras. They show that if AX is the minimal model of a space S then cato(5), 
as previously defined, is equal to cato{AX). 

Now suppose that we seek a right inverse of p not as a morphism of DG algebras but 
simply as a morphism of ^IX-modules. Halperin and Lemaire [24] define the module 
rational category Mcato(ilX) of AX to be the least integer k for which such a right 
inverse of p exists. Then they define Mcato(5), for a space 5, to be McaXo{AX) where 
AX is the minimal model of S. 

Berstein asked whether the Ganea conjecture might be true at least for rational spaces, 
in other words whether 

cato(T X S"") = cato(r) -hi (n > 1) 

for all rational T. Jessup [32] succeeded in establishing this with Mcato in place of cato. 
Meanwhile Hess [25] had shown that cato and Mcato are equal. So Berstein's question is 
answered in the affirmative. The rational method tells us nothing when n = 1 nor does it 
help with the case when TT] ( T ) is nontrivial, but nevertheless the Hess-Jessup theorem 
constitutes a major advance in this difficult area. 
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These and other algebraic invariants, related to category in the topological sense, seem 
destined to play an important role in future developments. The idea naturally suggests 
itself of formulating a notion of category (in the sense of Lusternik-Schnirelmann) for 
other categories (in the sense of Eilenberg-MacLane). An early exercise of this type 
is that of Eckmann and Hilton [13]. More recent exercises have usually been based 
on Quillen's closed model theory. In particular Doeraene [12] has developed a general 
framework which seems to include category in the ordinary sense and most, if not all, 
of these variants. 
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homotopy fixed-point set 1088 
homotopy groups of spheres 51 
homotopy groups with coefficients 1187 
homotopy invariance, strong fibrewise 192 
homotopy invariant 12 

homotopy inverse, fibrewise 179 
homotopy J-completion 266 
homotopy left inverse, fibrewise 179, 180 
homotopy pairs 199 
homotopy right inverse, fibrewise 179, 180 
homotopy theorem for fibrations 197, 210 
homotopy theoretic fibre 1183 
homotopy theory 75 
- fibrewise 171 
- rational 123, 870 
-real 870 
- of categories of diagrams 197 
- of differential graded algebras 838 
homotopy type 4, 329 
- fibrewise 174 
- fibrewise pointed 178 
homotopy uniqueness 1082 
- of classifying spaces 1070 
Hopf algebra 962, 1097, 1098, 1100-1103, 1115, 

1124, 1126, 1137 
- differential graded 834, 844, 846 
- homotopy associative 1101, 1102 
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Hopf algebra (cont'd) 
- homotopy commutative 1101, 1102 
-primitively generated 1101, 1108, 1129, 1131 
Hopf construction 1135 
-dual 1156 
Hopf fibration 1185 
Hopf invariant 400, 408, 411, 1203, 1206 
Hopf map 388, 967 
Hopf ring 690, 695, 740, 775, 791, 818 
Hopf ring ideal 695, 791, 796, 801, 819 
Hopf space 972,973,983 
- fibrewise 179 
- finite connected homotopy associative 978 
- homotopy associative 968, 974, 977, 980 
- homotopy commutative 975 
- homotopy nilpotent 977, 978 
- homotopy solvable 977 
Hopf structure 975 
- fibrewise 179 
Hopf-Whitoey theorem 876 
Hurewicz fibration 510 
Hurewicz homomorphism 35 
Hurewicz map 432, 466, 469, 475, 478, 497 
- functional 468 
Hurewicz theorem 337, 509 
- proper 153, 162 

/-category 163 
ideal, invariant 733, 812 
idempotent 1159 
idempotent, loop-like on the right 1160 
idempotent operation 593 
/m( J)-theory 466, 477, 479, 482 
- connected 435, 445 
- connective 431, 477, 495, 498, 502 
- nonconnected 429 
/m( J)-theory Thom class 491 
immersion covering number 1300 
inclusion, cofinal 133 
indecomposable 702, 703, 1101, 1103 
indexing space 287 
induction principle 1079 
induction theorem 318 
infinite telescope construction 1214 
inseparable isogeny 941, 943 
integration along fibres 890 
invariant prime ideal theorem 353 
inverse 
-left 1146 
-right 1146 
isomorphism type 4 

J-completion, homotopical 307 
J-group 488,489 

J-homology 995, 1004 
J-homomorphism 414, 473, 478, 481 
J-map 476,477,479 
J-spectrum 1005 
JA-map All 
Jn-complex 155 
James construction 385, 529, 531, 1203 
James-Hopf invariant 1182,1189,1203 
-n-th 1180, 1181 
Johnson question 694 
join 1106 

/ir-homology 1001 
fc-invariant 23, 33 
IC-theory 927, 995, 999, 1008 
-algebraic 431,582 
- complex 429 
- connected p-local 435 
- connective equivariant 317 
-equivariant 306, 315 
- orthogonal 963 
-real 963 
- unitary 962 
/C-theory localization 432, 436, 452 
/C-theory operations 471 
/c4>-equivalence 66 
/c*-local homotopy type 67 
/C*-localization 1015, 1043 
fc#-localization 66 
K(p)-localization 431 
Kahler manifold 913 
Kiinneth homeomorphism 603, 640, 724 
Kunneth isomorphism 334, 600, 638, 696 
Kunneth spectral sequence 244 
Kahn-Priddy theorem 1189 
Kan simplicial set 875 
Kan simplicial space 885 
Kervaire invariant one 408 
Kervaire invariant one conjecture 1195 
Kervaire invariant one problem 1195 
knot 4 
Koszul cochain complex 258 
Koszul complex 945 
Koszul resolution 823 
Koszul spectrum 266 
Krull dimension 942 
kype 41 

A algebra 403-405 
L-spectrum 226, 291 
Lambda algebra 402, 404, 411, 412 
Landweber filtration 683, 690, 802, 810 
Landweber filtration theorem 354 
Lannes' theory 1087 
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Lazard theorem 350 
left lifting property 87 
lens space 481, 670, 678, 769, 774, 782 
level map 141 
level weak equivalence 143 
Lie algebra 981, 983 
-free 68 
- semi-simple 953 
Lie algebra comultiplication 1164 
Lie group 953, 1097, 1104, 1111, 1133, 1134 
- classical 975 
- compact 330 
- connected compact 1052 
- exceptional 959, 972 
-fake 1083 
- orientable 953 
- parallelizable 953 
- semi-simple 954, 955, 962, 969, 972 
- simple 954, 956, 969, 972, 973, 980 
limit of functor 80 
linear distributivity law 25 
link 4 
localization 15, 402, 414, 973, 1001 
- of category 99 
localization theorem 308, 311, 312, 380, 1090 
loop 1147 
loop space 30, 1074 
- finite 1074, 1083 
- fibrewise 177 
Lustemik-Schnirelmann category 978, 1112, 1169 
-strong 1112 
Lyndon-Hochschild-Serre spectral sequence 938 

M-set, simplicial 161 
M-simplicial set 158 
Mackey functor 301 
Mahowald-Miller theorem 478 
main relation 667, 673, 681, 763, 766, 771, 776, 

784, 793 
map 
- associative 1146 
-axial 1134 
- axial with respect to maps /xi, /i2 1135 
- between classifying spaces 1058 
- classifying 30 
- coclassifying 30 
- degree p 340 
- essential 328 
-evaluation 1179 
- fibrewise 171 
- fibrewise homotopy-associative 180 
- fibrewise homotopy-commutative 179, 180 
- fibrewise locally trivial 173 

- fibrewise pointed 175 
- null homotopic 328 
- perfect 163 
- proper 132 
- simplicial 873 
- smash nilpotent 363 
- stably essential 331 
- stably null homotopic 331 
- switching 172 
mapping, simplicial 873, 891, 895 
mapping cone 338 
- <^-contractible 283 
mapping cylinder factorization 203 
mapping space 
- fibrewise pointed 177 
-pointed 1177 
mapping telescope 482 
mapping track factorization 202 
maps 
- fibrewise homotopic 174 
- fibrewise pointed homotopic 178 
- homotopic 4 
- n-homotopic 153 
Massey product 1149 
Mathieu groups, sporadic simple 946 
Miller theorem 1236 
Milnor-type short exact sequence 146 
Mislin genus 1251 
missing boundary problem 129 
Mittag-Leffler property 1229 
Mittag-Leffler system of groups 135 
- essentially constant 135 
- essentially epimorphic 135 
- essentially monomorphic 135 
-stable 135 
mod-p type 1070 
model category 83, 236 
model for 2-type 154 
model for universal simplicial 7r-bundle 884 
modular representation theory 357 
module 
- 2-crossed 154 
- additively unstable 691, 709, 720, 736, 760, 802 
- crossed 154 
-dual 601,614 
-filtered 599 
- free graded 835 
- of indecomposables 613 
- of primitives 614 
- over differential graded algebra 832 
-stable 587,642,736 
monoid of infinite matrices 158 
monomial, allowable 785, 795 
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Moore chain complex 14 
Moore exponent conjecture 1251 
Moore G-space 1171 
Moore loop space 852 
Moore path space 833, 852 
Moore space 29, 340, 997-999, 1001, 1003, 1007, 

1151, 1190, 1192 

- elementary 54 
-mod 2 1196 
-mod 2^ 1177, 1183 
- mod p 1206 
- m o d p ^ 1177, 1189 
- proper (in dimension n) 160 
Moore spectrum 430, 1014, 1015, 1036 
Morava K-thcory 45, 333, 378, 588, 679, 689, 

774, 783, 963, 977 
Morava picture 358 
Morava stabilizer group 359 
morphism 
-central 1057 
- differential graded algebra, homotopic 840 
- indecomposable 52 
morphism of proobjects 140 
Morse theory 968 
movability 152 
multiplication (Hopf structure) 979-981 
- fibrewise 179 
- homotopy associative 1138 
- homotopy associative homotopy commutative 

1138 
- homotopy commutative 1138 

n-series 352 
n-type 16, 153 
Nakayama lemma 680, 790, 822 
neighborhood of oo 129, 133 
nerve 9, 145 
nilpotence theorem 332, 383 
nilpotency degree 21 
Nishida theorem 338 
normalizer 954 
- of maximal torus 1078 
nulhomotopy 
- fibrewise 174 
- fibrewise pointed 178 
numerical polynomial 455, 456 

(9-space 559 
i?-spectrum 218, 570, 595, 689 
object 
- cylinder 89, 840 
- decomposable 52 
- £;*-algebra 619, 623, 662, 734 
- £•*-module 618, 637, 646, 702, 707, 734 

- sequentially small 104 
- simplicial 8, 122 
- spherical 164 
- V-cofree 591, 628 
-K-free 590 
obstruction 155 
operad 224, 291, 560 
operation 
- additive 689, 694, 697, 707, 715, 723, 767, 784, 

802 
-based 697,731,755,762 
- collapse 730, 804 
- idempotent 691, 695, 813, 818 
- looped 699, 817 
- stable 587. 633, 641, 668, 689, 700, 715 
- unstable 689, 759, 764, 775, 819 
ordinary cohomology theory 286 
orientability for Im(J) 490 

p-adic type 1072 
p-completion 69 
p-exponent 995, 1035, 1040 
p-localization 333, 978 
p-series 668, 766, 793 
p-simplex, oriented 871 
TT-equivariant mappings 884 
TT-isomorphism 889 
TT-module 22, 889 
TT-space 897 
pair homotopy theory 197, 205 
Palais-Smale condition 1296 
partially coherent homotopy category under A and 

over B 199 
path object 92 
path-space, fibrewise 177 
PCW-complex 156 
Peiffer commutator 18 
periodic families 341 
periodicity 429, 481, 493 
periodicity theorem 333, 367 
periodization 415, 418, 419 
perturbation 1164 
phantom class 599 
phantom map 440, 1211 
- o f first kind 1212 
- of second kind 1212 
phantom operations 440 
Poincare duality 301 
Poincare duality group 931 
Poincar6 series 945 
polyhedron 7 
- finite 4 
Pontryagin algebra 1150 
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Pontryagin ring 446, 452, 492 
Pontryagin-Thom construction 981 
Postnikov approximation 1224 
Postnikov decomposition 1226 
Postnikov functor 16 
Postnikov invariant 33, 38 
Postnikov system 896 
- nilpotent 895, 900 
- simple 896 
Postnikov tower 286 
pre-crossed module 18 
prespectrum 570 

- suspension 219 
primitive 471,497, 1098, 1101, 1103 
principal G-bundle 173 
pro-group 314 
procategory 139 
product 81 
- cohomology flat 1150 
- fibrewise 171 
- infinite 34 
product decompositions 1185 
projective plane 1106-1108, 1113, 1125, 1137 
promodel 154 
proobject 140 
proper category at cx) 133 
proper cellular approximation 154 
proper stability problem 152 
proxy action 1090 
pseudo interior 130 
pseudo reflection 1067 
pseudo-homology 33 
pseudoprojection 1221 
pullback 82 
- homotopy 119, 208, 209 
pushout 80 
- homotopy 117 
pushout axiom 163 

Q-equivalence 910 
Q-localization of function space 914 
g-simplex 
- singular 871 
-standard 870 
quadratic module 19 
quasi-isomorphism 831 
quasifibration 512 
- associated 513, 516 
-principal 513 
quaternions 1196 
Quigley exact sequence 146 
Quillen category 1056 
Quillen K-theory 445, 456 

Quillen minimal Lie algebra 1164 
Quillen minimal model 68 
Quillen theorem 351, 691, 695, 802 
Quillen-Sullivan rational homotopy theory 883 

il-equivalence 910 
/̂ -formal 913 
/^-module 234,270 
- finite J-power torsion 269 
-semi-finite 239 
- sphere 235 
rank 954, 956, 962, 979, 981 
rank function 927 
rational homotopy theory 1307 
rational homotopy type of function spaces 914 
Ravenel-Wilson basis 785, 803 
Ravenel-Wilson generator 795, 823 
realizability of Hurewicz homomorphisms 36 
realization 
- of good simplicial space 8 
- of polynomial algebra 1067 
- of simplicial complex 7 
realization problem of Whitehead 14 
recognition principle 575 
Reidemeister torsion 1280, 1288 
-p-local 1280, 1281 
reindexing lemma 141 
relation, derived 788, 797 
representation 
- projective 919 
-7^p(G)-invariant 1061 
representation ring 456 
resolution 
- finite projective 923 
- free 920 
- injective 921 
- periodic 1286 
- projective 921 
- projective of finite type 923 
retract 77, 1159 
right lifting property 87 
right unit 649, 653, 717, 722, 743, 767 
Rim theorem 1278 
ring 
- complex bordism 349 
- of locally finite matrices over Z 159 
ring spectrum 588, 636, 704, 715 

5-algebra 233, 291 
- commutative 233 
5-dual 524 
S'-duality map 524 

'̂-module 231, 291 
- sphere 232 
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5G-algebra, commutative 291, 310 
r-cofibrant 221 
Z'-cofibrant prespectram 221 
-C-cofibrant spectrum 221 
Samelson product 1181, 1197 
Schanuel lemma 923 
second homology group of aspherical space 919 
secondary boundary operator 36 
sectional-category 1299 
Segal conjecture 318,319 
self-equivalence, rational 1064, 1065 
self-map 332 
Serre fibration 107, 512 
Serre finiteness theorem 337 
Serre spectral sequence 880, 894, 896, 897 
set 
- O-simplicial 567 
- of comultiplications 1153 
- of coretractions 1154 
- of ends 131 
- of equivalence classes of associative and com-

mutative comultiplications 1167 
- of equivalence classes of associative comultipli-

cations 1167 
- partially ordered 9 
- simplicial 8, 121 
- simply connected simplicial 911 
- singular 8 
- singular simplicial 873 
shape 145 
- strong 145 
shape theory 129 
shift 147 
short exact sequence 1075 
simplex 3, 920 
- standard geometric 889 
simplicial 872 
simplicial set analogue of Eilenberg-MacLane 

space 876 
small object argument 104 
smash product 363, 1179 
-external 222 
- fibrewise 176 
-internal 224 
-operadic 228 
smash product theorem 382 
smashing 271 
Smith model 568 
Smith theory 1088, 1089 
Snaith splitting 392, 566 
Snaith theorem 431,432,447 
space 
-atomic 1131, 1223 

- category profinite 132 
- classifying 10, 330, 456 
- classifying, of category 1085 
- complex projective 351, 445, 489 
- contractible 329 
- fibrewise 171 
- fibrewise cogroup-like 180 
- fibrewise contractible 174 
- fibrewise group-like 179 
- fibrewise locally trivial 173 
- fibrewise nondegenerate 185 
- fibrewise pointed 175 
- fibrewise pointed contractible 178 
- fibrewise pointed locally trivial 176 
- homotopy commutative 1098 
- infinite loop 558, 569, 571 
- iterated loop 558 
- /c-connected 12 
- mod p atomic 1131 
-nilpotent 1276 
- of free Moore paths 852 
- of Freudenthal ends 131 
- of Moore loops 529 
-p-local 67 
-polarized 1299 
- projective 995, 999, 1109 
- quotient 966 
-i^-local 67 
-rational 67, 1307 
- real projective 51 
- real projective, truncated 62 
- cr-compact 130 
- simplicial 8 
- simply connected 13 
- stunted projective 481 
- torsion-free 430, 494 
- vi-periodic 419 
- with polynomial cohomology 1067 
spaces 
- homeomorphic 4 
- homotopy equivalent 4 
Spanier-Whitehead dual 1194 
Spanier-Whitehead duality 55, 241, 300, 364, 522, 

1187, 1194 
spectra, Bousfield equivalent 374 
spectral sequence 938, 1002-1004, 1016, 1017, 

1019, 1110 
- of inclusion 1157 
spectrum 361, 362, 569, 570 
- Aoo ring 233 
- connective 
-coordinate-free 218 
- E-nilpotent 374 
- £?-prenilpotent 374 
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spectrum (cont'd) 
- Eoo ring 233 
- fibrewise 189 
-MU-ring 251 
-quotient 294 
-R-ring 245 
-sphere 220,362 
- suspension 219, 362 
- torsion-free 467, 468, 498 
spectrum ^(71) 379, 384 
sphere, n-dimensional 10 
spherical space form 1285 
splitting 432, 435, 472 
-ofgroup 929 
- unstable 694 
square, crossed 154 
stability problem 151 
stabilization 609, 700, 704, 709, 713, 727, 742, 

767 
stable homotopy class 331 
stable homotopy type 44 
Stasheff structure 859 
Steenrod algebra 352, 587, 642, 689, 738, 955, 

1097, 1098, 1103, 1104, 1106, 1108, 1131, 
1133 

Steenrod group, relative 151 
Steenrod homotopy groups 146 
Steenrod homotopy theory 146 
Steenrod power 496 
Steenrod reduced power 958 
Stiefel-Whitney characteristic class 953 
Stiriing number 433, 501 
structural group, fibrewise 173 
subcategory 
-full 76 
- generic 356 
-thick 356 
subgroup 
-central 1079 
- homotopy normal 976 
- maximal compact 953 
- maximal compact connected 975 
- p-stubbom 1055 
subset 
- categorical 1295 
- categorical with respect to map 1295 
- fibrewise categorical 1302 
- fibrewise pointed categorical 1303 
- pointed categorical 1297 
- pointed G-categorical 1302 
- polar categorical 1299 
- section-categorical 1299 
subspace 
- fibrewise categorical 174 

- fibrewise pointed categorical 178 
- G-categorical 1301 
Sullivan conjecture 1052, 1080, 1214 
- generalized 1089 
Sullivan minimal model 69, 1307 
suspension 30, 44, 330, 698, 756, 820, 831, 1146 
-cohomology 1155 
-double 1186, 1188 
- fibrewise 176 
-homology 1155 
-unstable 759 
suspension element 757, 759 
suspension homomorphism 703 
suspension isomorphism 595, 633 
Swan obstruction 1287, 1288 
Swan subgroup 1282, 1283 
system of fundamental groups, essentially constant 

129 

T-algebra 572 
T-CW-complexes 164 
tame spectrum 221 
tangent bundle of S^ 1183 
Tate cohomology 933, 935 
Tate cohomology theory, generalized 936 
Tate theory 308 
telescope conjecture 381 
tensor algebra 532 
tensor product, completed 603, 612, 659 
theory of cogroups 164 
theory of ends 931 
thick subcategory theorem 356, 367 
Thom G-spectrum 316 
Thom complex 528, 529 
Thom spectrum 250, 770 
Toda bracket 469 
Toda-Smith spectrum 274 
Todd map 497, 501 
Todd polynomial 468 
topological equivalence 
- fibrewise 171 
- fibrewise pointed 175 
topological in variance of Whitehead torsion 1274 
topological monoid 10, 530 
topology 
-dual-finite 601,639 
- profinite 601, 612, 639, 646, 696 
torsion 
- /-power 258 
- homotopical J-power 308 
- homotopy J-power 266 
torus 953,975 
- maximal 953, 954, 969, 1077 
- p-compact 1075 
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tower 140, 141 
-chromatic 380 
- finitely generated 161 
- of groups 1212, 1226 
track category over B 198, 202 
track category under A 198 
transfer 481, 483, 484, 496, 983 
transfer homomorphism 304 
transfer map 301 
transpotence element 1119,1138 
tree of homotopy types 17 
triangulation, smooth 870 
triple 571 
trivialization 173, 176 
twisting function 875, 895 
type 334, 355,956, 1164 

universal coefficient formula 437 
universal coefficient isomorphism 600 
universal coefficient spectral sequence 244 
universal coefficient theorem 155 
universal phantom map into pointed space Y MIA 
universal phantom map out of X 1214 
unstable Novikov spectral sequence 995, 996, 

1018, 1019, 1024, 1025, 1027, 1029, 1030, 
1035, 1040 

vi-localization 478, 996 
vi-periodicity 414, 478, 489 
vi-periodicity map 482 
vi-periodization 416, 418 
vi-torsion 478 
Vn-m^ 335, 367 
Vn-torsion 347 
Van Est theorem, generalized 883 

vanishing line 387 
vector space, simplicial 872 
Verschiebung operator 745 
Vietoris construction 145 
Vogt lemma 200, 207 

M -̂periodization 416 
Waldhausen boundary 135 
Wall finiteness obstruction 1268 
weak C-equivalence 832 
weakly phantom classes 602, 637 
wedge, fibrewise fat 1303 
wedge product, fibrewise 176 
Weyl group 281, 954, 972, 1078 
Weyl group type 1082 
Weyl space 1078 
Whitehead group 1273 
Whitehead product 406, 
Whitehead square 1186, 
Whitehead theorem 14, 

510 
Whitehead torsion 1262, 
Wirthmiiller isomorphism 
word 55 
- basic 56 
- central 56 
- cyclic 57 
-dual 58 

Yoneda product 932, 933 

Zabrodsky lemma 1235 
Zabrodsky mixing 1280, 1284 
Zilchgon 548 

1181, 1203 
1190, 1195 
152, 220, 235 

1273 
298 

1206 

289, 509, 
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