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1. Introduction

The Segal conjecture, for the cyclic group C2 of order 2, is an equivalence

π0
s(RP∞) ∼= Â(C2)

of the stable cohomotopy of RP∞ with the completion of the Burnside ring of C2 at the 
augmentation ideal. The conjecture follows from the following stronger result of Lin [16]:

Theorem 1.1 (Lin). Let γ denote the canonical line bundle over RP∞, and for each 
integer n > 0 let RP∞

−n denote the Thom spectrum of −n ·γ. Then there is an equivalence 
of spectra

RP∞
−∞ = holimnRP∞

−n � (S−1)∧2 .

The only known proof of Lin’s theorem proceeds via calculation of a certain continuous 
Ext group

ÊxtA
(
H∗(RP∞

−∞;F2),F2
)
.

The calculation is elegant, and has been generalized through the development of the 
Singer construction [19,1,17]. However, the simplicity of Lin’s proof is fundamentally 
limited by the complexity of the Steenrod algebra A. The goal of this paper is to provide a 
new, less computational proof of Lin’s theorem. We cannot avoid calculating a completed 
Ext group, but the Ext we calculate is over a polynomial coalgebra F2[x] rather than 
the Steenrod algebra A. We trust the reader will agree that this reduces the complexity 
of the homological algebra.

Remark 1.2. Just as the Steenrod algebra A arises as (the dual of) the homology of F2, 
the polynomial coalgebra F2[x] appears as the topological Hochschild homology of F2.

To explain our methods, we must review how the Segal conjecture has been both 
restated and generalized via the language of C2-equivariant stable homotopy theory.

Notation 1.3. In the C2-equivariant stable homotopy category, we use the notation S =
S0 to denote the unit object. This is the C2-equivariant sphere spectrum. We use Sσ to 
denote the 1-point compactification of the sign representation. Depending on context, 
we use F2 to denote either the field with 2 elements or the non-equivariant Eilenberg–
Maclane spectrum HF2.

Recollection 1.4. In the C2-equivariant stable homotopy category, the morphism

a : S−σ → S0
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is adjoint to the inclusion of fixed points into the sign representation σ. The Borel 
completion of a C2-spectrum X is the a-completion

X∧
a := holim

(
· · · → X/an → X/an−1 → · · · → X/a

)
.

One says that a C2-spectrum X is Borel complete if the natural map X → X∧
a is an 

equivalence.

Theorem 1.5 (Lin’s theorem, restated). The natural map S → S∧
a is an equivalence after 

2-completion.

We will explain the equivalence of the two variants of Lin’s theorem in Section 5. In 
the above form, Lin’s theorem has received a substantial generalization.

Recollection 1.6. For any ordinary spectrum X, the Hill–Hopkins–Ravenel norm NX =
NC2

e X is a C2-equivariant refinement of the smash product X ∧X, with C2-action given 
by swapping the two copies of X [11, §B.5].

A version of the following was first proved in [14] (cf. [17, Theorem 5.13]). As we will 
recall in Section 5, the statement in full generality is a consequence of [20, III.1.7].

Theorem 1.7 (Segal conjecture, strong form). Let X denote any bounded below spectrum. 
Then the natural map

NX → (NX)∧a

is an equivalence after 2-completion.

Theorem 1.5 follows from Theorem 1.7 by setting X to be the sphere spectrum. As 
explained in [20, III.1.7], Theorem 1.7 follows in general from the case X = F2. In other 
words, since NF2 is 2-complete, all statements of Lin’s theorem are consequences of the 
following result:

Theorem 1.8. The C2-spectrum NF2 is Borel complete.

Theorem 1.8 is the form in which we will prove the Segal conjecture. It is important 
to note that, while Theorem 1.8 tells us that the spectra NF2 and (NF2)∧a coincide, it 
does not shed light on the homotopy type of either one. As we now explain, our main 
theorem provides a computable upper bound on the homotopy groups of these spectra, 
and in this sense our results are stronger than the Segal conjecture.

We prove the following Theorem and Corollary independently of the Segal conjecture. 
From here on, all Hopf algebras, comodules, and homotopy groups will be indexed over 
RO(C2), the virtual representation ring of C2. The functor Ext is then defined using 
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relative injective resolutions in this category of RO(C2)-graded comodules, just as in 
[18, §A.1].

Theorem A. Let F2[x] be the Hopf algebra with x primitive of degree 1 +σ, and let F2[a, u]
be the comodule algebra where the class a is primitive in degree −σ, u is in degree 1 −σ, 
and the coaction is determined by:

u �→ u⊗ 1 + a2 ⊗ x.

Then there is a spectral sequence

E2 = Êxt
s,k+�σ

F2[x] (F2,F2[a, u±1]) ⇒ π(k−s)+�σ(NF2)∧a .

Explicitly, the completed Ext appearing in this E2-page may be calculated as

E2 = lim
n

Exts,k+�σ
F2[x]/x2n (F2,F2[a, u±1]).

Corollary B. Let p and q denote integers such that p + q < 0. Then

πp+qσ(NF2)∧a =
{

0 p 	= 0
F2{a−q} p = 0.

Corollary B follows from straightforward computation of the Ext groups appearing 
in Theorem A. As we will explain in Section 5, it immediately implies Theorem 1.8 and 
hence Theorem 1.7.

Remark 1.9. Our proof of Theorem A arises by considering the descent spectral sequence 
for the C2-equivariant norm map

NF2 → F2,

where we use F2 to denote the C2-equivariant Eilenberg–Maclane spectrum of the con-
stant Mackey functor, HF2. This norm map is a C2-equivariant refinement of the usual 
multiplication map F2⊗F2 → F2, which arises from the fact that F2 is a C2-commutative 
ring in C2-spectra in the sense of §2 (see, e.g., [21]). The basic descent datum is the 
RO(C2)-graded homotopy of

F2 ⊗NF2 F2,

which is known as the Real topological Hochschild homology of F2. These RO(C2)-graded 
homotopy groups were computed as an algebra in [8]. We will need to know them as 
a Hopf algebroid, and not just as an algebra. Our computation of the Hopf algebroid 
structure maps is likely of independent interest, and appears in Section 2.



J. Hahn, D. Wilson / Advances in Mathematics 387 (2021) 107839 5
Remark 1.10. By the Segal conjecture, and the fact that NF2 is 2-complete, the fixed 
points spectrum NFC2

2 is identified with the more classical object (F2 ∧ F2)hC2 . There 
has been some interest in computing the homotopy groups of these fixed points, and we 
give a brief discussion in Section 6.

Outline
The spectral sequence in the main theorem is obtained by taking the a-completion of 

the relative Adams spectral sequence for the map NF2 → F2. The E2-term of this spectral 
sequence is governed by the Hopf algebroid structure on π�(F2⊗NF2F2), otherwise known 
as Real topological Hochschild homology (cf. [8]). We determine this structure in §2 by 
comparison with underlying and geometric fixed points. In §3 we identify the E2-page 
for the Borel completion with the indicated limit of Ext groups. In §4 we compute these 
Ext groups, and extract a vanishing result which implies the Segal conjecture for the 
group C2. We give the proof of the Segal conjecture in §5. Finally, in §6 we indicate 
a computation of some low dimensional integer stems, and leave the reader with a few 
questions of interest.

Conventions
We assume the reader is acquainted with equivariant homotopy theory at the level 

of [11, §2,§3]. If (A, Γ) is a Hopf algebroid and M is a comodule, we will abbreviate 
ExtΓ(A, M) as ExtΓ(M).
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2. The real topological Hochschild homology of F2

Let CAlgC2 denote the (∞-)category of C2-commutative algebras in genuine C2-
spectra.1 Recall from [8] that, if R ∈ CAlgC2 is a C2-commutative ring spectrum,2 then 
the Real topological Hochschild homology of R is the C2-spectrum3

1 As an explicit model, one could take the ∞-category underlying the model category structure on commu-
tative algebras in G-spectra constructed in [11, §B.7]. We warn the reader that a C2-commutative algebra 
has more structure than an E∞-algebra object in the ∞-category of genuine C2-spectra.
2 More generally, this definition makes sense if R is an Eσ-ring in the sense of [10, §2.2].
3 This spectrum is denoted THR(R) in [8].



6 J. Hahn, D. Wilson / Advances in Mathematics 387 (2021) 107839
THHσ(R) := R⊗NR R.

Here we are using that part of the structure of a C2-commutative algebra is a ring map 
NR → R, which makes R into a module over NR.

The underlying spectrum is the topological Hochschild homology of R (viewed as an 
ordinary ring spectrum). The geometric fixed points are given by

(THHσ(R))ΦC2 � RΦC2 ⊗R RΦC2 .

Dotto–Moi–Patchkoria–Reeh computed the Real topological Hochschild homology of 
F2 in [8, Theorem 5.18]:

Theorem 2.1. THHσ(F2) is the free E1-F2-algebra on a generator x in degree ρ. In par-
ticular, there is an isomorphism of RO(C2)-graded rings:

THHσ(F2)� ∼= (F2)�[x], |x| = ρ,

where ρ = 1 + σ is the regular representation.

If THHσ(R)� is flat over R� then the pair (R�, THHσ(R)�) forms a Hopf algebroid in 
the usual way, since we may identify it with the Hopf algebroid associated to the relative 
Adams spectral sequence for the map

NR → R,

as in Baker-Lazarev [2].

Remark 2.2. In the classical setting, the left and right units for THH(R) are always 
homotopic, and, when the relevant flatness hypothesis is satisfied, the associated Hopf 
algebroid is always a Hopf algebra. This is no longer true for real Hochschild homology, 
as we will see below. The reason is that the inclusions of the two different fixed points 
into Sσ are not equivariantly homotopic.

Before stating the structure theorem, we recall ([9,13]) that the homotopy groups of 
F2 are given by

π�F2 = F2[a, u] ⊕ F2(a, u)
F2[a, u] {θ}

where:

• a : S−σ → F2 is the Hurewicz image of the map S−σ → S0 adjoint to the inclusion 
of fixed points.
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• u : S1−σ → F2 is the unique homotopy class extending the underlying unit C2+ → F2
along the map C2+ → S1−σ.

• θ : S2σ → S2 is the degree 2 cover.

Theorem 2.3. The Hopf algebroid structure on ((F2)�, THHσ(F2)�) is given as follows:

• The left units on generators are, for i, j ≥ 0:

ηL(a) = a,

ηL(θ) = θ,

ηL(u) = u,

ηL(θa−iu−j) = θa−iu−j .

• The right units on generators are, for i, j ≥ 0:

ηR(a) = a,

ηR(θ) = θ,

ηR(u) = u + a2x,

ηR(θa−iu−j) = (u + a2x)−j θ

ai
.

(Note that the apparently infinite sum in the last formula is finite because θ
ai is 

a-torsion.)
• The comultiplication is determined by

Δ(x) = x⊗ 1 + 1 ⊗ x.

In particular, the elements a and θ are primitive.

Proof. Since NS0 = S0 the Hopf algebroid structure on THHσ(S0) is trivial. Both θ
and a lie in the Hurewicz image of S0 → F2, so we conclude that they are primitive as 
indicated.

The element x is primitive for degree reasons: the only elements in πρ(THHσ(F2) ⊗F2

THHσ(F2)) are x ⊗ 1 and 1 ⊗ x.
Now we compute the right unit on u. Observe that, as a vector space, π1−σF2[x] =

F2{u, a2x} so we must have ηR(u) = αu + βa2x for some numbers α and β in F2. On 
underlying homotopy we have res(u) = 1 so that α = 1. Now observe that the map

NF2 → F2

becomes, upon taking geometric fixed points, the map
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F2 → F2[t]

where t = u/a.
The descent Hopf algebroid for this map has left and right units ηL, ηR : F2[t] →

F2[t] ⊗F2 F2[t] given by t �→ 1 ⊗ t and t �→ t ⊗ 1. In particular, ηL − ηR is nonzero on 
geometric fixed points, so β must be nonzero, completing the proof of the claim.

It remains to compute the right unit on elements of the form θa−iu−j . For any C2-
spectrum X, consider the diagram where each square is a homotopy pullback and ∂ is 
the induced map:

Σ−1X∧
a [a−1]

∂

0

X X[a−1]

0 X∧
a X∧

a [a−1]

If X is a homotopy ring, then each object has a canonical X-module structure, and maps 
in the squares are maps of X-modules; hence ∂ can be given the structure of a map of 
X-modules.

In particular, we have a commutative diagram:

Σ−1(F2)∧a [a−1]
ηR

∂

Σ−1(F2 ⊗NF2 F2)∧a [a−1]

∂

F2 ηR
F2 ⊗NF2 F2

The construction X �→ X∧
a [a−1] is lax symmetric monoidal, so the map

(F2)∧a [a−1] →
(
F2 ⊗NF2 F2

)∧
a

[a−1]

is still a ring map and hence

ηR(a−i−1u−j−1) = a−i−1ηR(u)−j−1 = a−i−1(u + a2x)−j−1.

From the Mayer-Vietoris sequence of the arithmetic square, we see that ∂(a−1u−1) must 
be nonzero and therefore equal to θ. It follows that ∂(a−i−1u−j−1) = θa−iu−j , since 
there is a unique element in that degree which, when multiplied by aiuj , is equal to θ. 
The result follows. �
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3. The construction of the spectral sequence

Theorem 3.1. There is a spectral sequence

E2 = lim
n

Exts,k+�σ
F2[x]/x2n (F2[a, u±1]) ⇒ π(k−s)+�σ(NF2)∧a .

Proof. Since NF2 is connective and 2-complete, there is an identification4:

NF2 � holim
Δ

F2
⊗NF2•+1.

Since a-completion preserves homotopy limits, we have

(NF2)∧a � holim
Δ

(
F2

⊗NF2•+1)∧
a
.

Thus we get a spectral sequence with E1-term given by

Es,�+s
1 = π�

(
F2

⊗NF2s+1)∧
a
.

Since F2 ⊗NF2 F2 is free as an F2-module, the same is true for each term F2
⊗NF2s+1. The 

a-completion of F2 has RO(C2)-graded homotopy groups

π�(F2)∧a ∼= F2[a, u±1].

Combined with the computation in the previous section, we may then identify the sth 
term of the E1-page with

F2[a, u±1, x1, ..., xs]∧a ,

and the d1-differentials are determined by the coaction u �→ u + a2x. Here observe that 
the a-completion is taken in the graded sense. Since the underlying degree of a is −1, the 
underlying degree of u is zero, and the underlying degrees of the xi are 2, we find that, 
in a fixed degree, any element which is highly divisible by a must also be highly divisible 
by the ideal (x1, ..., xn), and vice versa. Therefore, we may rewrite the sth term as:

F2[a, u±1, x1, ..., xs]∧a ∼= F2[a, u±1, x1, ..., xs]∧(x1,...,xs)

= lim
n

F2[a, u±1] ⊗
(
F2[x]/(x2n

)
)⊗s

,

where the completions and limit are understood in the graded setting. In other words, 
we may identify the E1-term with the limit of the cobar complexes5:

4 The proof is that of [5, Theorem 6.6], where one replaces the Postnikov tower with the C2-equivariant 
Postnikov tower.
5 For a refresher on the cobar complex, see [18, A1.2.11].
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E1 = lim
n

C∗
F2[x]/(x2n )(F2[a, u±1]).

By the Milnor exact sequence (as in, e.g., [22, Theorem 3.5.8]), this gives the desired 
computation of the E2-term modulo a possible lim1 contribution. But for fixed n and 
tridegree, these groups are finite-dimensional vector spaces over F2, so the lim1 vanishes 
and the result follows. �
4. Computation of the E2-page

In this section we compute some information about the E2-page of the spectral se-
quence from the previous section. Our principal aim will be to prove Corollary B from 
the Introduction.

Write {E(n)
r } for the x-adic spectral sequence (as in [18, A1.3.9]):

E
(n)
1 = F2[a, u, y0, ..., yn−1] ⇒ ExtF2[x]/(x2n )(F2[a, u]),

where yi is represented by [x2i ] in the cobar complex ([18, A1.2.11]), and write {Er} or 
{E(∞)

r } for the x-adic spectral sequence

E1 = F2[a, u, yi : i ≥ 0] ⇒ ÊxtF2[x](F2[a, u]).

These spectral sequences are obtained by filtering the cobar complex as in [18, §A.2.3].

Theorem 4.1. We have ring isomorphisms

E∞ = F2[a, u2r+1myr : m, r ≥ 0]/(a2r+1
u2r+1myr).

E(n)
∞ = F2[a, u2n

, u2r+1myr : m ≥ 0, 0 ≤ r ≤ n− 1]/(a2r+1
u2r+1myr).

Moreover, there are no nontrivial F2[a]-module extensions.

The proof will require the following lemma.

Lemma 4.2. The elements u2r+1myr ∈ E
(n)
1 (F2[a, u]) are permanent cycles for all m ≥ 0

and 0 ≤ r ≤ n − 1.

Proof. Let δ denote the Bockstein

δ : Ext0(F2[a, u]/(a2r+1
)) → Ext1(F2[a, u]).

In the cobar complex computing ExtF2[x](F2[a, u]) we have

d(u2r(2m+1)) = ηL(u2r(2m+1)) − ηR(u2r(2m+1)) ≡ u2r+1ma2r+1
[x2r

] mod a2r+1+1x2r+1.
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It follows that u2r(2m+1) is primitive in F2[a, u]/(a2r+1) and that δ(u2r(2m+1)) is rep-
resented by u2r+1m[x2r ] modulo terms of higher filtration. This provides a lift of the 
element u2r+1myr to a cocycle in the cobar complex, which completes the proof. �
Proof of Theorem 4.1. We will prove by induction on t ≤ n that E(n)

2t−1+1 = E
(n)
2t , and

E
(n)
2t = F2[a, u2t

, u2r+1myr : m ≥ 0, 0 ≤ r ≤ n− 1]/(a2r+1
u2r+1myr : r ≤ t− 1).

Note that, in this case, E(n)
2n is generated by permanent cycles so the spectral sequence 

stops at this page, which is also the advertised answer.
The base case is trivial, so we assume the result holds for t and turn to the inductive 

step. Let I = (i0, i1, ..., in−1) be a tuple of nonnegative integers and denote by yI the 
monomial yi00 yi11 · · · yin−1

n−1 . Given such a monomial, denote by m(I) the minimal nonzero 
index in I. Then the elements

amukyI

with

• m(I) ≤ t − 1, m ≤ 2m(I)+1 − 1, and k divisible by 2m(I)+1; or
• m(I) ≥ t and k divisible by 2t

form an F2-basis for E(n)
2t . If m(I) ≤ t − 1 then this element is a product of permanent 

cycles by the previous lemma. Otherwise, using the cobar differential d(u2t) = a2t+1 [x2t ], 
we see that

d2t(amu2t�yI) = amyI(�(u2t

)�−1a2t+1
yt),

and so

E
(n)
2t+1 = F2[a, u2t+1

, u2r+1myr]/(a2r+1
u2r+1myr : r ≤ t).

In the cobar complex we have d(u2t+1) = a2t+2 [x2t+1 ], so u2t+1 survives to E2t+1 in 
the x-adic spectral sequence, and the other algebra generators are permanent cycles. 
This completes the induction and the theorem follows modulo extension problems. With 
notation as in the previous lemma, we note that δ(u2r(2m+1)) provides a lift of u2r+1myr
which is automatically annihilated by a2r+1 . This resolves the F2[a]-module extension 
problem.

The case of n = ∞ is essentially the same (or could also be deduced from the above 
computation). �

We are now ready to deduce Corollary B from the Introduction:
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Corollary 4.3. Let p and q denote integers such that p + q < 0. Then

πp+qσ(NF2)∧a =
{

0 p 	= 0
F2{a−q} p = 0.

Proof. It suffices, using the spectral sequence from Theorem A, to prove that, when 
k − s + � < 0, the groups

Êxt
s,k+�σ

F2[x] (F2,F2[a, u±1])

vanish for k− s 	= 0 and are given by F2{a−�} when k− s = 0. Indeed, once this result is 
known on the E2-page, we see that the classes a−� must be permanent cycles since their 
potential targets lie in the vanishing range. They cannot be the target of differentials 
since they lie in filtration 0. From now on we write k − s = p and � = q, for consistency 
with the statement of the corollary.

We will show that, in positive filtration, the E2-term vanishes when p + q < 0; the 
filtration zero contribution is easily seen to be just F2{a−q}. It further suffices to verify 
this vanishing for each group ExtF2[x]/(x2n )(F2[a, u±1]) appearing in the limit defining 
the E2-page.

Since u2n is F2[x]/(x2n)-primitive in F2[a, u], we have that

ExtF2[x]/(x2n )(F2[a, u±1]) = ExtF2[x]/(x2n )(F2[a, u])[(u2n

)−1].

Since u has underlying topological degree 0, we can verify the vanishing claim before 
inverting u. But there it follows immediately from Theorem 4.1, since each multiplicative 
generator of the associated graded, in positive filtration, satisfies p + q ≥ 0. �
5. The Segal conjecture

In this section, we prove the Segal conjecture in the following form:

Theorem 5.1. Let X denote any bounded below spectrum. Then the natural map

NX → (NX)∧a

is an equivalence after 2-completion.

The key point is the following standard observation:

Lemma 5.2. Let X be a bounded below spectrum. Then, to prove Theorem 5.1, it suffices 
to show that

(NX)[a−1] → (NX)∧a [a−1]
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is an equivalence after 2-completion. This in turn is equivalent to the claim that the Tate 
diagonal

X → (X ∧X)tC2

is an equivalence after 2-completion.

Proof. The first part of the lemma follows from the pullback fracture square

NX (NX)[a−1]

(NX)∧a (NX)∧a [a−1]

Since this is a pullback, the left hand vertical map is an equivalence after 2-completion 
if and only if the right hand vertical map is an equivalence after 2-completion. To obtain 
the second part of the lemma, note that the non-equivariant map underlying a is nullho-
motopic. Thus, the non-equivariant spectra underlying (NX)[a−1] and (NX)∧a [a−1] are 
trivial. This means that it suffices to check that the map on C2-fixed points(

(NX)[a−1]
)C2 →

(
(NX)∧a [a−1]

)C2

is an equivalence after 2-completion. The above map is identified with the Tate diagonal 
via [4, §2] and [20, §III.1.5]. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. By an argument of Nikolaus–Scholze [20, proof of III.1.7], the 
Tate diagonal

X → (X ∧X)tC2

is an equivalence after 2-completion, for all bounded below X, if it is when X = F2. 
Since ((NF2)[a−1])C2 = F2 ([11, Prop. 2.57]), we are reduced to proving that

(NF2)[a−1] → (NF2)∧a [a−1]

is an equivalence.
Observe that, when a acts invertibly on a C2-spectrum Y , we have

·aq : πp+qσY
∼=−→ πp(Y C2).

Since (NF2[a−1])C2 = F2, we deduce that π�NF2[a−1] = F2[a±1]. So it suffices to show 
that:
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π�(NF2)∧a [a−1] = F2[a±1].

Multiplication by a decreases underlying topological dimension, so it further suffices to 
show that, when p + q < 0, we have:

πp+qσ(NF2)∧a =
{

0 p 	= 0
F2{a−q} p = 0

This is the statement of Corollary B. �
Remark 5.3. Setting X = S0, it follows from the above that

(S0)∧2 � (S0 ∧ S0)tC2 � (S0)tC2 .

After identifying (S0)tC2 with ΣRP∞
−∞, the original version of Lin’s theorem follows.

6. Epilogue

Integer stems
Over the last few years, there have been several attempts to understand the homotopy 

groups of the non-equivariant spectrum

(NF2)C2 = (F2 ∧ F2)hC2 .

This seems especially interesting in light of forthcoming work of Mingcong Zeng and 
Lennart Meier, which uses the equivalence

ΦC2NC4
C2

BPR � NF2

to relate these homotopy groups to the slice spectral sequence differentials studied by 
Hill-Shi-Wang-Xu [12]

The most straightforward approach to these homotopy groups is via the homotopy 
fixed point spectral sequence. However, even the E2-page, given by the group coho-
mology H∗(C2; A∗), is largely unknown at this time [7]. Another approach, pursued 
independently in unpublished work by J.D. Quigley and Tyler Lawson, is to use the 
non-equivariant F2-Adams spectral sequence. Quigley was able to use the Adams spec-
tral sequence to obtain some results about π∗(NFC2

2 ) for ∗ < 10. We suspect that the 
use of the equivariant F2-Adams spectral sequence for π�NF2 would lead to similar com-
plications as those encountered by Lawson and Quigley.

The relative Adams spectral sequence of this paper, restricted to integer stems 
πp+0σNF2, provides yet another route to these homotopy groups. We draw the E2-page 
below, with each circle representing a single copy of F2:
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Remark 6.1. The E2-page is easy to compute if one is only interested in integer 
stems. In this case, even on the E1-page, the only possible contributions come from 
ExtF2[x](F2[a, u]) so we may forego inverting u and the corresponding completion.

Using a low-dimensional cell structure for NF2, one can show that there is a nontrivial 
extension between the classes in degrees (0, 0) and (0, 1), and in particular that π0NF2 ∼=
Z/4Z. One can also prove that the class in (1, 1) detects η.

We believe, but have not verified, that there is a d2 differential from the class in degree 
(5, 3) to the class in degree (4, 5). This should be a consequence of a whole family of d2

differentials

d2(yi+1) = (ay0)y2
i ,

connected to each other via power operations. We suspect that an equivariant analog 
of work of Kahn [15], as generalized by Bruner [6, §VI], could establish this family of 
differentials.

Further Questions

Question 6.2. Can the spectral sequence in this paper be used to recover any of the 
exotic differentials established by Hill-Shi-Wang-Xu in [12]? While the aλ-inverted slice 
spectral sequence also converges to the RO(C2)-graded homotopy of NF2, the two spec-
tral sequences differ greatly on the E2-page. It is conceivable that they become much 
more similar after running the slice differentials from Hill-Hopkins-Ravenel, since these 
implement the a-torsion visible on our E2-page.
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Question 6.3. Can our method of proof be generalized to deduce the Segal conjecture for 
elementary p-groups? The Segal conjecture for elementary p-groups is the key compu-
tational input for the Segal conjecture in general [1]. For the group Cp, it seems that a 
study of Fp ⊗N

Cp
e Fp

Fp would be relevant.

Question 6.4. The groups ExtF2[x](F2[a, u]) are much smaller than the version with u
inverted. Real motivic homotopy theory provides a setting similar to C2-equivariant 
homotopy theory in which the negative cone is not present (see, e.g., [3]). Is there a 
notion of motivic topological Hochschild homology of F2 whose homotopy groups are 
the Hopf algebroid F2[a, u, x]?
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