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EILENBERG-MACLANE SPECTRA AS EQUIVARIANT THOM SPECTRA

JEREMY HAHN AND DYLAN WILSON

Abstract. We prove that the G-equivariant mod p Eilenberg–MacLane spectrum arises as an equi-
variant Thom spectrum for any finite, p-power cyclic group G, generalizing a result of Behrens and the
second author in the case of the group C2. We also establish a construction of HZppq, and prove interme-

diate results that may be of independent interest. Highlights include constraints on the Hurewicz images
of equivariant spectra that admit norms, and an analysis of the extent to which the non-equivariant
HFp arises as the Thom spectrum of a more than double loop map.
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Fix a prime p, n ě 1 an integer, and let G “ Cpn denote a cyclic group of order pn. Let λ denote the

standard representation of G “ Cpn on the complex plane, where the generator acts by e2πi{p
n

. There is
a corresponding representation sphere Sλ, with underlying sphere S2 and G-fixed points equivalent to
S0.

The action of Cpn on the plane defines an action on the configuration spaces of little disks in the
plane, leading to the notion of an Eλ-algebra. If X is any G-space, then ΩλX is naturally an Eλ-algebra.
Our main result is:

Theorem A. The free Eλ-algebra in G-spectra with p “ 0 is HFp.

A somewhat more explicit version of the above theorem, generalizing a non-equivariant result of
Hopkins–Mahowald, is as follows:

Theorem B (Theorem 7.1). Let

µ : ΩλSλ`1 ÝÑ BGL1pS0

ppqq
denote the Eλ-map extending the map

S1 ÝÑ BGL1pS0

ppqq

corresponding to 1 ´ p P πG0 S0

ppq. Then the Thom spectrum
`
ΩλSλ`1

˘µ
of µ is HFp.

We also establish a (p-local) integral variant.

Theorem C (Theorem 8.1). Let Sλ`1xλ` 1y denote the fiber of the unit

Sλ`1 ÝÑ Ω8
`
Σλ`1HZ

˘
.

Then there is an equivalence of Eλ-algebras
`
ΩλpSλ`1xλ` 1yq

˘µ » HZppq.
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Remark. This work constitutes an equivariant generalization of the non-equivariant fact that HFp is a
Thom spectrum over Ω2S3 [MRS01, Lemma 3.3]. When G “ C2, the second author and Mark Behrens
[BW] constructed HF2 as a Thom spectrum over ΩρSρ`1. Since C2 is the only group with 2-dimensional
regular representation, and many groups have no nontrivial, one-dimensional real representations, it
was far from clear how the results of [BW] might generalize to larger groups. In Section 4, we note a
non-obvious equivalence of C2-spaces

ΩρSρ`1 “ Ωσ`1Sσ`2 » Ω2σS2σ`1 “ ΩλSλ`1.

Observation of the above equivalence kick-started the present project.
Even in the case G “ C2, our work here involves entirely new techniques. Indeed, the main tool

applied in [BW] was deep computational knowledge of the C2-equivariant mod 2 dual Steenrod algebra,
knowledge that is unavailable at larger primes or larger groups. In fact, work in progress suggests that the
theorems we prove here may be used to deduce information about the G-equivariant Steenrod algebra,
providing an important application by reversing the flow of information.

Remark. Theorem B identifies HFp as a Thom Eλ-algebra. In fact, our proof will show that µ is an

H-space map for a certain H-space structure on ΩλSλ`1. With a bit more work, we thus equip the
Thom spectrum with the additional structure of an A2-algebra in Eλ-algebras. Verifying that this extra
structure exists is somewhat subtle, and may be of independent interest even in the non-equivariant
setting.

In §1 we review and expand on the non-equivariant case. In §2 we give an outline of the proof of the
main theorem, which includes an explanation of the content of the remaining sections. We offer some
concluding remarks, including a proof of Theorem C, in §8.

Conventions. We freely use the language of 8-categories (alias quasicategories, alias weak Kan com-
plexes) in the form developed in [Lur17]. We denote by Spaces the 8-category of spaces, and append
decorations to obtain the 8-category of pointed spaces or of G-spaces for a finite group G, the latter
being defined as the 8-category of presheaves PshpOGq on the 1-category of transitive G-sets. We denote

by SpG the 8-category of (genuine) G-spectra, and assume the reader is familiar with the standard
notations of equivariant homotopy theory. We could not improve on the summary given in [HHR16,
§2-3], and recommend it to the reader. In particular, we will require the Eilenberg-MacLane spectrum
associated to the constant Mackey functor Fp, and the notion of the geometric fixed points XΦG of a
G-spectrum. Finally, we denote the G-space classifying equivariant stable spherical fibrations with fiber
of type S0 by BGL1pS0q. (See §4 for more details).

Acknowledgements. The authors would like to thank Mark Behrens, Jun-Hou Fung, Mike Hopkins, and
Inbar Klang for helpful conversations related to this paper. We also thank Nick Kuhn and Peter May
for comments on an earlier draft.

1. The non-equivariant story

Both authors are fond of the following result of Mahowald [Mah77]:

Theorem 1.1 (Mahowald). The Thom spectrum of the unique non-trivial double loop map

Ω2S3 ÝÑ BO (1)

is HF2.

Remark 1.2. This result and several variants have enjoyed many subsequent proofs in the literature.
Examples include [Mah79, CMT81, Pri78, MRS01, MNN15].

In modern language, Mahowald’s theorem states that the free E2-algebra with 2 “ 0 is HF2 (cf.
[AB14, MNN15]), and so proves the nilpotence of all simple 2-torsion classes in the stable homotopy
groups of spheres [Nis73].

Less well-known is that Mahowald’s map (1) is in fact a triple loop map, as revealed by the following
observation:

Observation 1.1. Mahowald’s map (1) may be obtained by thrice looping the composite

HP8 » BSpp1q ÝÑ BSp » B5O
ηÝÑ B4O

2



Remark 1.3. This observation, combined with one of the main theorems of Klang in [Kla16], allows a
quick computation of the E3-center (or E3 topological Hochschild cohomology) of HF2:

map
Mod

E3

HF2

pHF2,HF2q – F pHP8
` ,HF2q.

In fact, a Borel equivariant precursor to our main theorem at the prime 2 appears as Lemma 3.1 in
[Kla16], where it is used in an essential manner to compute the factorization homology of Eilenberg–
Maclane spectra.

Remark 1.4. The authors first learned of Observation 1.1 from Mike Hopkins. We give a C2-equivariant
generalization in Section 4.

The remainder of the section will be about the case p ą 2, where there is the following theorem of
Hopkins [MRS01, Lemma 3.3]:

Theorem 1.5 (Hopkins). Let

S3 1´pÝÑ B3GL1pS0

ppqq
denote the class 1 ´ p P π0pSppqqˆ “ π3pB3GL1pSppqqq. Then, applying Ω2, one obtains a map

Ω2S3 ÝÑ BGL1pS0

ppqq
with Thom spectrum equivalent to HFp.

In light of the situation at p “ 2, it is natural to wonder if the map

1 ´ p : S3 ÝÑ B3GL1pS0

ppqq
may be delooped. We record here the fact that it cannot, which the authors could not locate in the
literature. At the prime p “ 3, the map is not even an H-space map for the standard H-space structure
on S3 “ SUp2q. Crucially, we will see in Section 5 that the map is an H-space map for a certain exotic
H-space structure on S3.

Theorem 1.6. Let S0
p denote the p-complete sphere spectrum, and suppose that p ą 2. Then there is no

triple loop map

X ÝÑ BGL1pS0

pq,
for any triple loop space X, that makes HFp as a Thom spectrum.

Proof. To avoid a lengthy digression, we defer the proof to Appendix A. �

Remark 1.7. The above theorem also implies that there can be no triple loop map X ÝÑ BGL1pS0

ppqq
making HFp as a Thom spectrum.

2. Outline of the proof

The Thom spectrum of the map

S1 1´pÝÑ BGL1pS0

ppqq
is the mod p Moore spectrum, which admits a Thom class for HFp. It follows formally (see the argument
for Proposition 5.3 in [BW]) that there is a Thom class

α :
`
ΩλSλ`1

˘µ ÝÑ HFp.

Our goal is to show that this map is an equivalence of G-spectra. By induction on the order of the group
(the base case being supplied by Hopkins-Mahowald), it will suffice to prove that the map on geometric
fixed points

αΦG :
´`

ΩλSλ`1
˘µ¯ΦG

ÝÑ HFΦG
p

is an equivalence.
The proof proceeds in several steps.

Step 1. Compute the homotopy groups of
``
ΩλSλ`1

˘µ˘ΦG
.

Step 2. Compute the homotopy groups of HFΦG
p .

Step 3. Show that αΦG is a ring map (for some ring structure on the source).

Step 4. Show that αΦG hits algebra generators in the target.
3



The computation in Step 2 is well-known, and is stated as Lemma 7.2 below. At odd primes, one
learns that

π˚HF
ΦG
p “ Fprts b Λpsq, |t| “ 2, |s| “ 1.

Step 1 is more difficult. In §3 we show that
`
ΩλSλ`1

˘G “ Ω2S3 ˆΩS2, and, after developing some more

properties of this Thom spectrum, we verify (Lemma 7.3) that the homotopy groups of
``
ΩλSλ`1

˘µ˘ΦG
are additively given by

π˚

´`
ΩλSλ`1

˘µ¯ΦG

“ Fprxs b Λpyq, |x| “ 2, |y| “ 1.

There is a serious problem to be addressed in Step 3: by construction,
`
ΩλSλ`1

˘µ
is an Eλ-spectrum

and the Thom class is represented by an Eλ-map. When we take geometric fixed points, we are left
without even an A2-structure on either the source or the map. Nonetheless, we will show that αΦG is a
ring map for a certain A2-structure on the source. To do so requires a different argument at the prime
2 than at odd primes.

Step 3a) In §3 we show that Sλ`1 “ ΩHP8 for a certain G-action on HP8. We then show (§4) that,
when p “ 2, the map

Sλ`1 ÝÑ BλBGL1pS0

p2qq
deloops once. Thus, αΦG is an A8-map in this case. This section contains some material that
may be of independent interest, such as a description of one of the spaces in the equivariant
K-theory spectrum in terms of bundles of (twisted) G-H-modules.

Step 3b) In §5 we produce an exotic A2-structure on Sλ`1 at odd primes with respect to which the map
µ is an A2-map in Eλ-spaces. Our proof uses a small dose of unstable equivariant homotopy
theory, in particular the EHP sequence.

Finally, we come to Step 4. The element s P π1HFΦG
p arises as a witness to the fact that the composite

S0 ∇ÝÑ G`
1ÝÑ HFp

is null. Said differently, s witnesses the vanishing of the element rGs P πG0 S
0 in the Hurewicz image.

Nonequivariantly, the zeroth homotopy group of
`
Ω2S3

˘µ
is already detected by the map

pS1qµ “ Mppq ÝÑ
`
Ω2S3

˘µ
.

Equivariantly, this is no longer true. Recall [Seg71, tD75] that πG0 S
0 “ ApGq is the Burnside ring of finite

G-sets. While the element p dies in the Moore space pS1qµ, the same is not true of the elements rG{Ks
for K Ĺ G. The proof that these elements vanish in the Hurewicz image of

`
ΩλSλ`1

˘µ
is a consequence

of the vanishing of p together with the existence of norms supplied by the Eλ-structure. This is proved
in §6 and the final pieces of the proof of Step 4 and the main result are then spelled out in §7.

We end in §8 with some miscellaneous concluding remarks, including:

‚ An explanation of how to produce HZppq as a Thom spectrum.
‚ A proposed definition for equivariant Brown-Gitler spectra.
‚ A brief outline of a construction of Milnor operations, which is the subject of work in progress
by the authors.

‚ Some unanswered questions.

3. Quaternionic projective space

We begin by examining a very natural action of S1 on quaternionic projective space. It is in some
ways analogous to the natural action of C2 on CP8 by complex conjugation.

Construction 3.1. Consider the action of Spp1q on the quaternions H by conjugation. The center
t˘1u acts trivially, so this produces an action of Spp1q{t˘1u “ SOp3q on H. This produces an action of
S1 Ď SOp3q on H which can be described in two equivalent ways:

‚ z P S1 acts on q P H by p?
zqqp?

zq´1;
‚ z P S1 acts on q “ u` vj by u` pzvqj, where u, v P C.

From the first description it’s clear that H is an S1-equivariant algebra. From the second description it’s
clear that H “ 2 ` λ as a representation.
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Definition 3.2. Let HP8 denote the S1-space obtained from H8 by imposing the relation

rq0 : q1 : ¨ ¨ ¨ s „ rq0h : q1h : ¨ ¨ ¨ s, h P H
ˆ

and acting by S1 componentwise as in Construction 3.1.

We will, without comment, also denote by HP8 the G-space obtained by restricting the action to
a finite subgroup G Ď S1. We will assume that G is a fixed, nontrivial finite subgroup of S1 for the
remainder of this section.

Remark 3.3. It follows from the definition that the natural inclusion CP8 Ď HP8 is equivariant for
the trivial action on complex projective space and identifies the fixed points

CP8 “ pHP8qG .

The reader might compare this to the equivalence RP8 “ pCP8qC2 where C2 acts by complex conjuga-
tion on projective space.

We now study the loop spaces of HP8.

Proposition 3.4. ΩHP
8 » Sλ`1.

Proof. The usual inclusion Sλ`2 » HP 1 Ñ HP8 is equivariant for the action above and induces a map
Sλ`1 Ñ ΩHP8. This is an underlying equivalence, and on fixed points for nontrivial subgroups we have
the standard map (see Remark 3.3) S1 Ñ ΩCP8, which is also an equivalence. �

Remark 3.5. As a corollary of the proof, we record that the map ν : S2λ`3 Ñ Sλ`2 becomes η : S3 Ñ S2

upon passage to fixed points.

Proposition 3.6. If G “ C2, then ΩσHP8 » Sρ`1.

Proof. Again, the usual inclusion S2σ`2 Ñ HP8 is equivariant and we get a map Sσ`2 “ Sρ`1 Ñ
ΩσHP8 which is an underlying equivalence. To compute the fixed points of the right hand side, we use
the fiber sequence of spaces

pΩσHP8qC2 Ñ CP8 Ñ HP8

arising from the cofiber sequence C2` Ñ S0 Ñ Sσ of C2-spaces. But the fiber of BS1 Ñ BS3 is
S3{S1 » S2, by the Hopf fibration, which completes the proof. �

Corollary 3.7. If G “ C2, then

ΩλSλ`1 » ΩρSρ`1.

Moreover, this equivalence respects the inclusion of S1 up to homotopy.

Proof. There is a chain of equivalences

ΩλSλ`1 » Ω2σΩHP8 » ΩρΩσHP8 » ΩρSρ`1.

�

Remark 3.8. We can reword this equivalence as the statement that the free E2σ-space and free Eρ-space
on the pointed C2-space S

1 coincide. A prototype of this result is that the free, group-like Eσ-space and
free E1-space on the pointed C2-space S

0 also coincide, i.e. ΩS1 » ΩσSσ » Z (with trivial action). This
can be proved in much the same way, using the equivalences:

ΩρCP8 » Z, ΩCP8 » Sσ, ΩσCP8 » S1,

where C2 acts on CP8 by complex conjugation.

As a consequence of the equivalence ΩHP8 » Sλ`1, we observe that ΩλSλ`1 inherits an Eλ`1-

structure. This gives the fixed points
`
ΩλSλ`1

˘G
an E1-algebra structure.

Proposition 3.9. As an E1-space,

`
Ωλ`1

HP8
˘G » Ω2S3 ˆ ΩS2.

Warning 3.10. At odd primes, the classifying map µG is not an E1-map.
5



Proof of the proposition. Define Sλ{2 by the cofiber sequence

G` Ñ S0 Ñ Sλ{2,

and notice that we have a cofiber sequence

G` ^ S1 Ñ Sλ{2 Ñ Sλ.

From the second cofiber sequence, we learn that there is a fiber sequence

ΩλHP8 Ñ map˚pSλ{2,HP8q Ñ map˚pG` ^ S1,HP8q.
Taking fixed points, we get

`
ΩλHP8

˘G Ñ map˚pSλ{2,HP8qG Ñ ΩHP8 » S3.

The first cofiber sequence identifies the middle term as the fiber of the inclusion of fixed points:

map˚pSλ{2,HP8qG Ñ CP8 Ñ HP8.

In other words, map˚pSλ{2,HP8qG » S2 and we can identify our previous fiber sequence with:
`
ΩλHP8

˘G Ñ S2 Ñ S3.

The second map is null, so we learn that there is an equivalence:
`
ΩλHP8

˘G » ΩS3 ˆ S2,

and hence an equivalence of loop spaces:
`
Ωλ`1

HP8
˘G “ Ω

`
ΩλHP8

˘G » ΩpΩS3 ˆ S2q.
�

We stress that the above result does not concern multiplicative structure on the Thom spectrum in
question. This is the subject of the next section at the prime two, and of the subsequent section at odd
primes.

4. Extra structure at the prime 2

Hopkins observed that the map µ : Ω2S3 Ñ BO admits a triple delooping as the composite:

HP8 “ BSpp1q ÝÑ BSp » B5O
ηÝÑ B4O.

We would like to establish an equivariant version of this result. The statement requires a few prelimi-
naries.

The first results of this section hold for any finite subgroup G Ď S1. We will indicate later when we
must restrict attention to G “ C2n .

Definition 4.1. A G-H-module is a real G-representation V equipped with a G-equivariant algebra
map H Ñ EndpV q. Here EndpV q is the G-representation of all endomorphisms and we use the G-action
on H constructed in (3.1). More generally, a G-H-bundle on a G-space X is a G-equivariant, real vector
bundle E Ñ X together with a G-equivariant algebra map H Ñ EndpEq.
Construction 4.2. For F “ R or H, let UF be a complete G-F -universe. That is: UF is a direct sum
of infinitely many finite dimensional G-F -modules which contains every finite dimensional G-F -module
as a summand (up to isomorphism). Let GrF pUF q denote the infinite grassmanian with its induced
G-action. Then we define:

BOG :“ GrRpURq,
BGLpHq :“ GrHpUHq.

The G-space BOG is well-known, and there is an equivalence

Ω8KOG “ Z ˆ BOG.

Warning 4.3. The G-space BGLpHq is not the same as the space BSpG associated to equivariant,
symplectic K-theory. The latter does not incorporate a nontrivial action of G on H.

Warning 4.4. Neither BOG nor BGLpHq are equivariantly connected when G is nontrivial. For example,
πG0 BOG is the group of virtual real representations of virtual dimension zero.

6



Theorem 4.5 (Karoubi).

Ω8Σλ`2KOG » Z ˆ BGLpHq
where BGLpHq is the G-space constructed above.

Proof sketch. We indicate how to recover this result from the much more general work of Karoubi. First,
if we endow λ with the standard negative definite quadratic form, then the Clifford algebra Cℓpλq is G-
equivariantly isomorphic to H as an algebra. It follows from the ‘fundamental theorem’ [Kar70, Theorem

1.1] that, when X is compact, KO2`λ
G pXq is given by Karoubi’s (graded) K-theory of the graded Banach

category of G-Cℓp2 ` λq-bundles, in the sense of [Kar68, Definition 2.1.6]. From the interpretation of

this K-theory group explained on [Kar70, p.192], we learn that a class in KO2`λ
G pXq is specified by a

G-Cℓp2`λq-bundle E on X together with two extensions to a G-Cℓp3`λq-bundle structure on E. Such
a triple is declared trivial if the two extensions give isomorphic bundles, and two triples are equivalent if
they become isomorphic after adding a trivial triple.

As in the classical computation of Clifford algebras, we have equivariant isomorphisms:

Cℓp2 ` λq » M2pHq
Cℓp3 ` λq » M2pHq ˆ M2pHq

By Morita invariance, we may reinterpret elements in KO2`λ
G pXq as equivalence classes of G-H-bundles

E equipped with two decompositions η1 : E » E0 ‘ E1 and η2 : E » E1
0 ‘ E1

1. Arguing as in [Kar08,
Proposition 4.26] and [Seg68, Proposition 2.4], one can show that every such datum pE, η1, η2q is equiv-
alent to one of the form pX ˆ pM0 ‘M1q, id, ηq where M0 and M1 are G-H-modules. After supplying a
metric, we may replace η by the data of a sub-G-H-module of M0 ‘M1. For fixed M0 and M1, this data
is equivalent to an equivariant map X Ñ š

kě0
GrHk pM0 ‘M1q. Now the result follows by the definition

of a complete G-H-universe and the construction of BGLpHq. �

At this point we may form the composite

HP8
Op´1q´1 // Z ˆ BGLpHq » Ω8Σλ`2KOG

η // Ω8Σλ`1KOG

where

‚ Op´1q is the tautological G-H-bundle on HP8.
‚ η P πG1 KOG is the image of η P π1S0 Ď πG1 S

0.

To complete the construction, we will need an equivariant version of the J-homomorphism. The J-
homomorphism and equivariant spherical fibrations have been studied previously (e.g. [Seg71, McC83,
Wan80, Wan82]) and it is shown in [CW91] and [Shi92] that the classifying space of equivariant stable
spherical fibrations is an equivariant infinite loop space. For the reader’s convenience, we prove this
here, as well as the corresponding notion and results regarding Picard spectra, which provides the target
for the J-homomorphism. The construction below is natural from the point of view of [BDG`16], from
whom we draw inspiration.

Construction 4.6 (Picard G-spectrum). The existence of norms for spectra produces a product pre-
serving functor

SpG : AeffpGq ÝÑ CAlgpCat8q, G{H ÞÑ SpH ,

where the left-hand side denotes the (effective) Burnside (2,1)-category of finite G-sets and spans [Bar17].
The formation of Picard spectra [MS16, 2.2] for symmetric monoidal 8-categories is product preserving.
We define picpS0q as the composite

picpS0q : AeffpGq ÝÑ CAlgpCat8q ÝÑ Sp.

This is a spectral Mackey functor, so we may regard it as an object in SpG [GM11, Nar16], called the
Picard G-spectrum of S0. We denote by PicpS0q the 0th space of this spectrum, which is a group-like

G-E8-space. We note that this G-space may be obtained directly from SpG by assigning to the orbit G{H
the maximal subgroupoid of the full subcategory of SpH consisting of invertible objects. If one further
restricts to the full subcategory consisting of objects equivalent to S0, this is a model for BGL1pS0q, so
there is a G-E8-map

BGL1pS0q Ñ PicpS0q.
More generally, given any virtual G-representation V , restricting, for each H , to the full subcategory of
objects equivalent to SresH pV q produces such a map.

7



Warning 4.7. The space PicpS0q does not decompose into a disjoint union of copies of BGL1pS0q when
G is nontrivial.

Construction 4.8 (Equivariant J-homomorphism). LetVectG denote the topological category of finite-
dimensional G-representations. We use the same notation for the associated 8-category. Consider the
product preserving functors

VectG, Spaces
G

˚
: AeffpGq ÝÑ CAlgpCat8q

given by:

‚ VectGpG{Hq :“ VectH with direct sum, functoriality by restriction and coinduction;

‚ SpacesG
˚

pG{Hq :“ SpacesH˚ “ PshpOH , Spacesq with ^ , functoriality by restriction and norm

defined by

NG
HpXq :“ mapHpG,Xq{tf : ˚ P fpGqu.

The assignment V ÞÑ SV produces a natural transformation

VectG Ñ SpacesG
˚

Σ
8

ÝÑ SpG.

Restricting to maximal subgroupoids, and noting that each SV is invertible, we get a natural transfor-
mation

Vect»
G ÝÑ PicpS0q

which we may regard as a map of G-E8-spaces. The target is group-like, so this map factors through the
group-completion of the source. One can identify the underlying space of that group-completion with
Z ˆ BOG, so we have produced a G-E8-map

J : Z ˆ BOG ÝÑ PicpS0q.

We also denote by J the restriction to t0u ˆ BOG “ BOG as well as any deloopings.

Warning 4.9. Unlike the classical case, the restriction to virtual dimension zero representations

BOG Ñ PicpS0q

does not factor through BGL1pS0q when G is nontrivial.

Remark 4.10. Since Ωλ`1HP8 “ ΩλSλ`1 is equivariantly connected, the map HP8 Ñ Ω8Σλ`1KOG
constructed above factors through Bλ`1BOG.

Now we specialize to the case G “ C2n .

Proposition 4.11. Let g denote the composite

HP8 ÝÑ Bλ`1BOG ÝÑ Bλ`1
PicpS0q

Then Ωλ`1g factors through BGL1pS0q and is homotopic to µ under the equivalence Ωλ`1HP8 » ΩλSλ`1.

Proof. Since Ωλ`1HP8 is equivariantly connected, Ωλ`1g automatically factors through BGL1pS0q. To
complete the proof, we need only identify the map

Sλ`2 Ñ HP8 Ñ Bλ`1
PicpS0q.

To begin, notice that the map

Sλ`2 Ñ Bλ`1BOG

corresponds to an element of KO´1

G . By [AS69, p.17], this group is ROpGq{RpGq. For G “ C2n we have

ROpGq{RpGq “
#
F2t1, σu n “ 1

F2 n ą 1

Even when n “ 1, the bundle we started with was restricted from a bundle defined for n ą 1, so the
element in question is either 0 or 1. But we know that the underlying class is nonzero, so we must
be looking at the nonzero element in ROpGq{RpGq. Moreover, this class corresponds precisely to the
Möbius bundle on S1, whence the claim. �
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5. An equivariant H-space orientation

The purpose of this section is to prove the following theorem.

Theorem 5.1. There is an H-space structure on Sλ`1

ppq such that

(i) The element 1 ´ p P π0pS0

ppqq defines an H-map

Sλ`1

ppq Ñ Bλ`1GL1pS0

ppqq.
(ii) The composite

Sλ`1

ppq Ñ Bλ`1GL1pS0

ppqq Ñ Bλ`1GL1pHFpq
is nullhomotopic through H-maps.

Before doing so, we record a corollary.

Corollary 5.2. The Thom class ´
ΩλSλ`1

ppq

¯µ
ÝÑ HFp

has the structure of a map of A2-algebras in Eλ-algebras.

Remark 5.3. The H-space structure we define is necessarily p-local. We only use this structure to

produce a multiplication on the homology of
´
ΩλSλ`1

ppq

¯µ
which is preserved by the map induced by the

Thom class. The localization map
ΩλSλ`1 ÝÑ ΩλSλ`1

ppq

induces an isomorphism on mod p homology and using this one can show that the map
`
ΩλSλ`1

˘µ ÝÑ
´
ΩλSλ`1

ppq

¯µ

is a p-local equivalence. On the other hand, the left hand side is automatically p-local, being a (albeit,
equivariant) homotopy colimit of p-local spectra by construction. We can transport the A2-structure
from the target to the source and get a map

`
ΩλSλ`1

˘µ Ñ HFp

of A2-algebras in Eλ, even though the A2-structure does not ‘de-Thomify’.

We will need to recall a few facts about H-space objects, mainly to establish notation.

Definition 5.4. Let C be an 8-category which admits products. For 0 ď k ď 8, an Ak-monoid X in
C is a truncated simplicial object

BďkX : ∆op
ďk ÝÑ C

such that

‚ The object pBďkXq0 is final.
‚ If k ě 1, then for 1 ď j ď k, the maps

pBďkXqj Ñ pBďkXq1,
induced by ti, i` 1u Ñ rjs, exhibit the source as the j-fold product of pBďkXq1.

In this case we denote pBďkXq1 by X . If C admits homotopy colimits, we denote the homotopy colimit
of the diagram BďkX by BďkX .

The 8-category of Ak-monoids, MonAk
pCq, is the full subcategory of Funp∆op

ďk,Cq spanned by the
Ak-monoids. Note that restriction defines forgetful functors

MonAk
pCq Ñ MonAj

pCq
for j ď k, and we have natural maps

BďjX ÝÑ BďkX.

Example 5.5 (k “ 0). An A0-monoid is a final object of C. The natural maps above provide each BďjX

with a basepoint.

Example 5.6 (k “ 1). An A1-monoid in C is specified by the data of an object X and a map ˚ Ñ X ,
where ˚ is a final object in C. The object Bď1X is computed as the colimit of

X // // ˚oo

which is the suspension ΣX .
9



Example 5.7 (k “ 2). Suppose C admits limits and colimits. By [Lur17, A.2.9.16], extending a diagram
Bď1X to a diagram Bď2X is equivalent to specifying a factorization

C
pd0,d1,d2q

%%❑❑
❑❑

❑❑
❑❑

❑❑

X _X //

;;✇✇✇✇✇✇✇✇✇
X ˆX ˆX

where C P C is some object and X_X denotes the pushout X >˚X where ˚ “ pBď1Xq0 is a final object.
In order for this extended diagram to define an A2-monoid, the maps d0 and d2 must give an equivalence
C » X ˆX . Under this equivalence, the map X _X Ñ X ˆX is the standard one. The only additional
data is the map d1 : XˆX » C Ñ X . In summary: an A2-monoid in C is precisely the data of a pointed
object X together with a map m : X ˆX Ñ X which extends the fold map X _X Ñ X . It follows that
the cofiber of Bď1X Ñ Bď2X is given by Σ2pX ^Xq.

Example 5.8 (Loop spaces). If C “ SpacesG and Y is a pointed G-space, then ΩY has a natural
A8-structure.

Now we will restrict attention to the 8-category SpacesG of G-spaces. The following is proved just as
in the classical case, for which there are many references. The earliest appears to be [Sta61, Proposition
3.5].

Lemma 5.9. If X is an A2-algebra, then the map X Ñ ΩBď2X adjoint to

ΣX “ Bď1X Ñ Bď2X

extends to an A2-map.

We now return to the case of interest. We begin by establishing the existence of the A2-structure we
need on Sλ`1.

Proposition 5.10. For p an odd prime, there is an H-space structure on Sλ`1

ppq with the property that

the map ΣX Ñ Bď2X stably splits.

We will deduce this proposition from the following calculation, which is an equivariant version of a
classical result (see, e.g. [Jam57]).

Proposition 5.11. Let E denote the suspension homomorphism. Then, after localization at p,

Ep2νq P E2pπ2λ`2S
λ`1q.

Proof of Proposition 5.10 assuming Proposition 5.11. In general, if one modifies an H-space structure
on X by an element d P rX ^X,Xs, then the attaching map

ΣpX ^Xq Ñ ΣX

for Bď2X is altered by Epdq. In our case, denote the attaching map for the standard H-space structure
on Sλ`1 by ν : S2λ`3 Ñ Sλ`2. After inverting 2, Proposition 5.11 implies that Epνq “ E2pxq for some
x P π2λ`2S

λ`1. So alter the standard H-space structure by x and the suspension of the attaching map
for Bď2S

λ`1 becomes null, proving the result. �

Now we turn to the proof of Proposition 5.11. We will deduce this theorem from a slightly stronger re-
sult. Recall that, given classes x P rΣA,Xs and y P rΣB, Y s, theWhitehead product rx, ys P rΣpA^Bq, Xs
is induced by the commutator of πAx and πBy in the group rΣpAˆBq, Xs.

Lemma 5.12. Let ιλ`2 P π2λ`3S
λ`2 be the fundamental class. Then, after localization at p,

rιλ`2, ιλ`2s ” 2ν mod Epπλ`2S
λ`1q.

Proof of Proposition 5.11 assuming Lemma 5.12. The suspension of a Whitehead product vanishes (the
proof for Spaces applies in general), which immediately implies the result. �

In order to prove Lemma 5.12 we will establish an exact sequence of the form

π2λ`2S
λ`1 E // π2λ`3S

λ`2 H // π2λ`3S
2λ`3

10



and then identify the image of the Whitehead product in the last group. To that end, we note that the
James splitting

ΣΩΣX » Σ

˜
ł

kě1

X^k

¸

holds for pointed objects in any 8-topos1, and, in particular, in SpacesG˚ . (For a direct argument, see
[Kro10]). This provides a natural transformation

H : ΩΣX Ñ ΩΣX^2

which induces a map
H : π‹`1ΣX Ñ π‹`1ΣX

^2

for any X .

Lemma 5.13. The sequence

Sλ`1 E // ΩSλ`2 H // ΩS2λ`3

is a fiber sequence when localized at p.

Proof. Let F denote the homotopy fiber of H so that we have a natural map Sλ`1 Ñ F . We would
like to show this is an equivalence. Since restriction to underlying spaces and fixed points preserves
homotopy limits and colimits, we are reduced to the nonequivariant statement that

S2n`1 E // ΩS2n`2 H // ΩS4n`3

is a fiber sequence when localized at p for n “ 0, 1. In fact, it is a classical result of James [Jam57] that
this is a p-local fiber sequence for any n ě 0. �

We will need some control over the last term in this sequence, which is provided by an equivariant
version of the Brouwer-Hopf degree theorem. For us, the only fact we need is that the homomorphism

π2λ`3S
2λ`3 Ñ

à

KĎG

Z,

recording each of the degrees of a map on K-fixed points, is an injection. See, e.g., [tD79, 8.4.1]. We
now prove the only remaining lemma necessary for producing the exotic H-space structure on Sλ`1.

Proof of lemma 5.12. The formation of Whitehead products commutes with passage to fixed points and
restriction to underlying classes, as does the map H . From the remarks above, it then suffices to check
the nonequivariant formulas:

Hprι4, ι4sq “ 2Hpνq,
Hprι2, ι2sq “ 2HpνKq, K ‰ teu.

But ν and νK “ η (see Remark 3.5) have Hopf invariant 1, while rι2n, ι2ns has Hopf invariant 2 for any
n ě 1, whence the result. �

Since the attaching map in Bď2S
λ`1

ppq is stably null, the following lemma is immediate.

Lemma 5.14. There exists a dotted map making the diagram below commute up to homotopy in SpG:

Sλ`2

ppq

1´p //

��

Σλ`2gl1S
0

ppq

Σ8Bď2S
λ`1

ppq

88♣
♣

♣
♣

♣
♣

We will eventually need to produce a Thom isomorphism in mod p cohomology which respects our
extra structure. For that we require the next lemma.

Lemma 5.15. Choose a dotted map f̃ as in the previous lemma. Then the composite

Σ8Bď2S
λ`1

ppq

f̃ // Σλ`2gl1pS0

ppqq // Σλ`2gl1pHFpq

is null.

1The second author learned this from Gijs Heuts, who attributes the essential idea to Mike Hopkins, who in turn
attributes the essential idea to Tudor Ganea [Gan68].
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Proof. The composite

Sλ`2

ppq
// Σ8Bď2S

λ`1

ppq

f̃ // Σλ`2gl1pS0

ppqq // Σλ`2gl1pHFpq

vanishes since 1´ p “ 1 P πG0 pgl1pHFpq is the basepoint component. So the map f̃ factors through some
map

S2λ`4 ÝÑ Σλ`2gl1pHFpq.
But

πGλ`2gl1pHFpq » πGλ`2HFp “ 0

since Sλ`2 is 2-connective, whence the claim. �

Finally, we arrive at the proof of the main theorem of the section.

Proof of Theorem 5.1. Choose a dotted map as in Lemma 5.14 and let f be its adjoint,

f : Bď2S
λ`1

ppq ÝÑ Bλ`2GL1pS0

ppqq.

Then the map 1 ´ p : Sλ`1

ppq Ñ Bλ`1GL1pS0

ppqq factors as a composite:

Sλ`1

ppq
// ΩBď2S

λ`1

ppq

Ωf // ΩBλ`2GL1pS0

ppqq // Bλ`1GL1pS0

ppqq ,

each of which is an H-map. This proves part (i) of the theorem.
To prove part (ii), consider the diagram:

Sλ`1

ppq
// ΩBď2S

λ`1

ppq

Ωf // ΩBλ`2GL1pS0

ppqq

ΩB
λ`2

GL1pιq

��

// Bλ`1GL1pS0

ppqq

��
ΩBλ`2GL1pHFpq // Bλ`1GL1pHFpq

where ι : S0

ppq Ñ HFp is the unit map.

The composite

Bď2S
λ`1

ppq

f // Bλ`2GL1pS0

ppqq B
λ`2

GL1pιq // Bλ`2GL1pHFpq

is null by Lemma 5.15. The loop of this composite is then null through A8-maps and the result follows.
�

6. Computing the zeroth homotopy Mackey functor

In this section, we establish that the zeroth homotopy Mackey functor of our Thom spectrum is as
expected. That is to say, we give a proof that

π0

`
ΩλSλ`1

˘µ “ Fp.

By construction,
`
ΩλSλ`1

˘µ
receives a map from the mod p Moore spectrum Mppq “ pS1qµ. This

is enough to guarantee that p “ 0 in π0

`
ΩλSλ`1

˘µ
. However, π0S

0 is the Burnside Mackey functor A,
and A{ppq is not Fp. For example, when G “ Cp, we have

A{ppq “

Fp trCpsu

��
Fp

UU

.

We will need to use some extra structure on
`
ΩλSλ`1

˘µ
to show that rCps also vanishes. More generally,

we must show that rCpn{Cpks vanishes in the Hurewicz image for all k.
For the remainder of this section we write G “ Cpn for a cyclic group of prime power order.

Definition 6.1. We say that a G-spectrum X is equipped with norms if it is equipped with a unit
S0 Ñ X and maps of H-spectra NHX Ñ X extending the unit for all H Ď G.

The Thom spectrum
`
ΩλSλ`1

˘µ
is equipped with norms, as we now show. This result is well-known;

compare, for example, [Hil17, Theorem 2.12].
12



Lemma 6.2. If X is an Eλ-algebra then it is canonically equipped with norms.

Proof. Since the restriction of an Eλ-algebra is still an Eλ-algebra, it will suffice to construct the norm
NGX Ñ X .

By definition, X comes equipped with a map

ĆConfpnpλq` ^Σpn
X^pn ÝÑ X,

where ĆConfpnpλq denotes the G-space of configurations of pn ordered points in λ. Consider the inclusion
G ãÑ Σpn which sends a generator to the standard pn-cycle p1, 2, ..., pnq and let Γ denote the graph

of this inclusion. Let ζ “ e2πi{p
n

. Then the ordered tuple p1, ζ, ζ2, ..., ζpn´1q P ĆConfpnpλq produces a
G ˆ Σpn -equivariant inclusion:

G ˆ Σpn

Γ
ÝÑ ĆConfpnpλq.

This, in turn, gives us a map ˆ
Gˆ Σpn

Γ

˙

` Σ̂pn

X^pn ÝÑ X.

To complete the proof, we note that, for any G-spectrum Y , we have
ˆ
G ˆ Σpn

Γ

˙

`
Σ̂pn

Y ^pn » NGY.

Indeed, the norm NG : Sp ÝÑ SpG is uniquely determined by the property that it is symmetric monoidal,
commutes with sifted homotopy colimits, and satisfies the identity

NGpT`q » pmappG, T qq`

for all finite sets T . One verifies readily that the functor
´
GˆΣpn

Γ

¯
`

^Σpn
p´q extends in an essentially

unique way to a symmetric monoidal functor satisfying these properties. �

Remark 6.3. We have been vague in how one interprets the expression
´
GˆΣpn

Γ

¯
`

^Σpn
Y . Either, one

computes this expression literally in orthogonal G ˆ Σpn -spectra when X is appropriately cofibrant, or

else one defines this as a symmetric monoidal functor SpGˆΣpn Ñ SpG extending the appropriate map
on spaces and commuting with homotopy colimits and suspension spectra.

Proposition 6.4. Suppose X is equipped with norms. Suppose further that p “ 0 P πG0 X. Then

rH{Ks “ 0 P πH0 X for all K Ď H Ď G.

Corollary 6.5. We have

π0

`
ΩλSλ`1

˘µ “ Fp.

Proof of Proposition 6.4. Recall that G “ Cpn . If the result is proved for Cpn´1 Ď G, then the classes

p, trGC
pn´1

prCpn´1sq “ rGs, trGC
pn´1

prCpn´1{Cpsq “ rG{Cps, ..., rG{Cpn´2s

all vanish in πG0 X . The result now follows from the next lemma. �

Lemma 6.6. If X is equipped with norms, then

NGppq ” rG{Cpn´1s mod pp, rG{Ks : K Ĺ Cpn´1q.
Proof. It suffices to prove this formula when X “ S0, i.e. for the Burnside Mackey functor A. By
[HHR16, Lemma A.36], or by definition depending on how one sets up the theory, the norm of p is the
class of the G-set mappG, t1, ..., puq. By recording the size of the image of a map, we get an equality in
ApGq:

rmappG, t1, ..., puqs “
ÿ

0ăkďn

ˆ
p

k

˙
rsurjpG, t1, ..., kuqs

where surjpG, t1, ..., kuq denotes the G-set of surjective maps G Ñ t1, ..., ku. So we have

NGppq ” rsurjpG, t1, ..., puqs mod p.

We are only concerned with the orbits in surjpG, t1, ..., puq with isotropy Cpn´1 or G. There is only one
orbit with isotropy Cpn´1 , namely the orbit of the quotient map G Ñ G{Cpn´1 » t1, ..., pu. There are p
orbits with isotropy G, namely the p constant maps. This completes the proof. �
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7. Proof of the main theorem

We are now ready to prove the main theorem, which we recall here for convenience.

Theorem 7.1. Let G “ Cpn and let S1 Ñ BGL1pS0

ppqq be adjoint to 1 ´ p P πG0 S
0

ppq. Denote by

µ : ΩλSλ`1 Ñ BGL1pS0

ppqq the extension of this map over the λ-loop space. Then the Thom class

`
ΩλSλ`1

˘µ ÝÑ HFp

is an equivalence of G-spectra.

Before the proof, we record a well-known computation (the p “ 2 case is proven in [HHR16, Proposition
3.18] and the odd primary proof is much the same).

Lemma 7.2. For G “ Cpn and p odd, we have

π˚HZ
ΦG “ Fprts, |t| “ 2,

π˚HF
ΦG
p “ Fprts b Λpsq, s “ βt

When p “ 2, the second computation becomes

π˚HF
ΦG
2 “ F2rss, |s| “ 1.

We also will need the corresponding result about our Thom spectrum.

Lemma 7.3. Let X denote the Thom spectrum pΩλSλqµ. Then the homotopy group π˚pXΦGq of the

geometric fixed points is isomorphic to Fp for each ˚ ě 0.

Proof. As we have equipped X with the structure of an A2-algebra in Eλ-algebras, the norm map

NGpXq ÝÑ X

is a map of A2-algebras. In particular, XΦG is a module over pNGpXqqΦG » pNGpHFpqqΦG » HFp.
Since HFp is a field spectrum, XΦG splits as a wedge of suspensions of HFp. The homotopy groups of
XΦG are then determined by the homology groups of XΦG. By the Thom isomorphism, H˚pXΦGq »
H˚pΩ2S3 ˆ ΩS2q, and the result follows. �

Proof of the main theorem. We prove the theorem by induction on n. When n “ 0, this is the non-
equivariant result of Hopkins-Mahowald. For the induction hypothesis we assume that the map

α : X :“
`
ΩλSλ`1

˘µ ÝÑ HFp

is an equivalence after restriction to Cpn´1 , and we assume that n ě 1 from now on.
We need only show that the map on geometric fixed point spectra

αΦG : XΦG “
´`

ΩλSλ`1
˘µ¯ΦG

ÝÑ HFΦG
p

is an equivalence. By Lemma 7.3, we know that (additively)

π˚X
ΦG “ Fprxs b Λpyq, |x| “ 2, |y| “ 1.

Thus, by Lemma 7.2, both the source and target have the same homotopy groups, additively.
By Theorem 5.1, when p is odd we can put an A2-structure on X such that α, and hence αΦG, is an

A2-map. When p “ 2, the Thom class is already an Eλ`1-map. In either case, αΦG induces a ring map
on homotopy. It therefore suffices to show that s and t lie in the image of αΦG. This follows somewhat
formally from the inductive hypothesis and the computation of (6.5), as we now explain.

First we show that s lies in the image. Define a G-spectrum S1´λ{2 as the cofiber of the transfer map

S0 Ñ G` ^ S0 Ñ S1´λ{2.

By Corollary 6.5, we know π0X “ Fp, which has zero transfer map. From the diagram of exact sequences

π1X
G //

��

rS1´λ{2, Xs //

��

πu0X
0 //

��

π0X
G

��
0 // rS1´λ{2,HFps // Fp

0 // Fp

(2)

we learn that
rS1´λ{2, Xs Ñ rS1´λ{2,HFps
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is surjective. On the other hand, passage to geometric fixed points produces an isomorphism

rS1´λ{2,HFps Ñ π1HF
ΦG
p .

It follows that s lies in the image of αG.
Next, we argue that π1X “ 0. Indeed, let P denote the family of proper subgroups of G and let XhP

denote the spectrum pX ^EP`qG (see, for example, [HHR16, 2.5.2]). Then there is a diagram of cofiber
sequences of spectra

XhP
//

��

XG //

��

XΦG

��`
HFp

˘
hP

// HFp // HFΦG
p

By the induction hypothesis, the left vertical map is an equivalence. Since we have shown that s is hit,
the right vertical map is an isomorphism on both π0 and π1. It follows that the middle vertical map is
injective on π1, and hence that π1X

G “ 0, proving the claim.
Returning to the diagram (2) we learn that rS1´λ{2, Xs Ñ rS1´λ{2,HFps is in fact an isomorphism.
Finally, we turn to the following cofiber sequence:

S1´λ{2 Ñ G` ^ S0 Ñ S2´λ.

This leads to the diagram:

0 // π2´λX //

��

πu0X

»

��

// rS1´λ{2, Xs

»

��
0 // π2´λHFp // πu0HFp // rS1´λ{2,HFps

Thus π2´λX Ñ π2´λHFp is an isomorphism. Passage to geometric fixed points gives an isomorphism

π2´λHFp Ñ π2HF
ΦG
p , and this completes the proof. �

8. Concluding remarks

We end with some miscellaneous remarks.

The integral Eilenberg-MacLane spectrum. Recall that Mahowald also showed that HZppq can be obtained

as the Thom spectrum of a bundle on Ω2pS3x3yq. This result also holds in our context. Define Sλ`1xλ`1y
as the fiber of the unit map

Sλ`1 Ñ KpZ, λ` 1q :“ Ω8
`
Σλ`1HZ

˘
.

Then we have the following result.

Theorem 8.1. There is an equivalence of Eλ-algebras
`
ΩλpSλ`1xλ` 1yq

˘µ » HZppq.

Proof. We argue as in Antoĺın-Camarena-Barthel [AB14, §5.2], though we need not develop all the
technology present there. We have a fiber sequence

ΩλSλ`1xλ` 1y Ñ ΩλSλ`1 Ñ S1.

Decomposing S1 into a 0-cell and a 1-cell, and trivializing the fibration on each cell, produces a decom-
position of the Thom spectrum

`
ΩλSλ`1

˘µ
as a cofiber

`
ΩλSλ`1xλ` 1y

˘µ x //
`
ΩλSλ`1xλ` 1y

˘µ //
`
ΩλSλ`1

˘µ » HFp.

Each of these Thom spectra came from bundles classified by A2-maps, which is enough to ensure that the
map x induces a map π˚

`
ΩλSλ`1xλ` 1y

˘µ Ñ π˚

`
ΩλSλ`1xλ` 1y

˘µ
of modules over π0

`
ΩλSλ`1xλ` 1y

˘µ
.

In particular, on homotopy the map corresponds to multiplication by some element x P π0
`
ΩλSλ`1xλ` 1y

˘µ
.

Arguments similar to those in the proof of the main theorem show that

π0

`
ΩλSλ`1xλ` 1y

˘µ » Zppq,

so we must have x “ p. The result follows from Nakayama’s lemma once one argues that the genuine
fixed point spectra have finitely generated homotopy groups in each degree. (For example, isotropy
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separation reduces us to the corresponding statement on geometric fixed points, where it follows from
the Thom isomorphism.) �

Remark 8.2. Unlike the classical case, it is unclear whether the statement globalizes to a construction
of HZ. Our methods do not construct HFℓ as a Thom spectrum when ℓ does not divide the order of G.

Remark 8.3. The main results of Antoĺın-Camarena-Barthel [AB14] and Beardsley [Bea16] carry over
to the equivariant context once one identifies equivariant Thom spectra as parameterized homotopy
colimits in the sense of [BDG`16]. It would be nice, going forward, to have a reference that verifies this.

Brown-Gitler spectra. One of Mahowald’s motivations for proving the equivalence pΩ2S3qµ » HF2 is
that the left hand side carries a natural filtration due to Milgram and May. This produces a filtration
of HF2 by spectra which turn out to be the Brown-Gitler spectra of [BG73] (see [BP78, Coh79, HK99]).
The G-space ΩλSλ`1 also carries the arity filtration from the Eλ-operad, so we could define equivariant
Brown-Gitler spectra using this filtration. It would be interesting to know if these spectra could be of
any use. In the case G “ C2, using the arity filtration of ΩρSρ`1, the second author has been able to
establish some equivariant versions of classical results for these Brown-Gitler spectra. The odd primary
case is less well-understood.

Milnor operations. The Milnor operations Qi : HFp Ñ Σ|Qi|HFp can be characterized as precisely those
operations which arise as E1-maps

HFp Ñ HFp ‘ Σ|Qi|HFp

augmented over HFp, where the target denotes the trivial square-zero extension. By the Hopkins-
Mahowald theorem and the universal properties of Thom spectra, such E1-maps are in canonical bijection
with E1-maps

Ω2S3 ÝÑ KpFp, |Qi|q.
These, in turn, are in bijection with just ordinary maps

ΩS3 ÝÑ KpFp, |Qi| ` 1q.

In other words: the Milnor operations come from the cohomology of the space ΩS3.
Denote by Ωλ{2X the Cp-space of maps map˚pSλ{2, Xq, where Sλ{2 is the cofiber of the map Cp` Ñ S0.

Using a generalization of the James splitting and an argument as above, the authors have constructed
analogues of Milnor operations in Cp-equivariant homotopy theory. The properties of these operations
and their possible relationship to an equivariant analogue of the Brown-Peterson spectrum is the subject
of ongoing work.

Remark 8.4. It seems possible that the Cp-equivariant dual Steenrod algebra might be understood via
its equivalence with π‹pHFp^ΩλSλ`1q. This is also the subject of work in progress by the second author
and Krishanu Sankar using entirely different methods. We note that, at odd primes, HFp ^ HFp does
not split as a wedge of ROpCpq-graded suspensions of HFp, so the relationship between the Steenrod
algebra and its dual is slightly more mysterious. The second author and Krishanu Sankar have, however,
obtained splittings involving more exotic objects than representation spheres.

Questions. We end with a few questions that we do not intend to investigate in the near future, but
which others may find interesting.

Question 8.5. Calculations indicate that the spectrum
`
ΩλSλ`1

˘µ
is not HFp for the groups Cn when n

is not a power of p. What can be said about
`
ΩλSλ`1

˘µ
as an S1 or even SUp2q{˘1 » SOp3q-equivariant

spectrum? At least, one expects an interesting Cp8 -spectrum.

Question 8.6. Is HFp a Thom spectrum for any group G that is not cyclic of p-power order? Perhaps
an obstruction could be found. Alternatively, it would be very interesting if a different source of group
actions on Ω2S3 were located.

Question 8.7. In the case G “ C2 there are two different operadic filtrations of Ω2σS2σ`1 » ΩρSρ`1.
This leads to two different notions of Brown-Gitler spectra. How are they related?

Question 8.8. What are the Thom spectra obtained by killing other natural elements in the Burnside
ring in a highly structured manner? What is the free Eλ-algebra in Cp-spectra with rCps “ 0?
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Question 8.9. The original results of Hopkins and Mahowald offer a powerful nilpotence criterion: In
the homotopy of E2-algebras, p-torsion classes are nilpotent if and only if their mod p Hurewicz images
are nilpotent. Is any interesting analogue of that criterion afforded by the results here? In [Hah17], the
first author more generally investigated nilpotence of pk-torsion elements in En-ring spectra. Are there
interesting extensions of that work for equivariant operads like Eλ?

Appendix A. Proof of Theorem 1.6

For convenience, we recall the statement of Theorem 1.6, which this appendix is devoted to proving.
The result is entirely non-equivariant.

Theorem. Let S0
p denote the p-complete sphere spectrum, and suppose that p ą 2. Then there is no

triple loop map

X ÝÑ BGL1pS0

pq,
for any triple loop space X, that makes HFp as a Thom spectrum.

Proof. Suppose, for the sake of contradiction, that such a triple loop map

X ÝÑ BGL1pS0

pq

exists. The Thom isomorphism then implies that

HFp ^Σ8
`X » HFp ^HFp

as HFp–E3-algebras.
In particular, by Theorem 1.5,

HFp ^Σ8
`X » HFp ^Σ8

`Ω2S3

as HFp–E2-algebras, and the latter object is the free HFp–E2-algebra on a class in degree 1.
The Hurewicz theorem gives a map S1 Ñ X , which extends to a double-loop map Ω2S3 Ñ X , and the

above discussion implies that this double loop map is a homology isomorphism. Thus, the p-completion
of X is the p-completion of Ω2S3, as a double loop space.

Transporting the E3-algebra structure on X yields an E3-algebra structure on the p-completion of
Ω2S3, extending the usual E2-algebra structure. The theorems of Dwyer, Miller, and Wilkerson [DMW87]
show that there is a unique such E3-algebra structure, and so the p-completion of B3X must be the p-
completion of HP8.

Now, the composite

X ÝÑ BGL1pS0

pq ÝÑ BGL1pHFpq
is null, and it follows that there is a factorization through the fiber F of BGL1pS0

pq ÝÑ BGL1pHFpq.
The equivalence Zˆ

p – µp´1 ˆ Zp implies that the homotopy groups of F are p-complete. Thus, with
HP8

p denoting the p-completion of HP8, there is a commuting diagram

B3X B4GL1pS0
pq.

HP8 HP8
p

In particular, there is a triple-loop map

Ω2S3 ÝÑ Ω3
HP8 ÝÑ BGL1pS0

pq

with Thom spectrum equivalent (at least after p-completion) to HFp.
The underlying double loop map is determined by a class in 1 ` pα P π3pB3GL1pS0

pqq – Zˆ
p . Our

original assumption, made for the sake of contradiction, is reduced to the assertion that a dashed arrow
exists the diagram below:

S4 B4GL1pS0
pq.

HP8

1`pα
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We will show this to be impossible by proving the non-existence of a solution to the weaker lifting
problem

S4 Σ8B4GL1pS0
pq Σ4LKp1qS

0,

Σ8HP8

1`pα ℓ

where LKp1qS
0 is Kp1q-local sphere spectrum and ℓ is the Rezk logarithm [Rez06]. We first calculate the

composite

S4 1`pαÝÑ B4GL1pS0

pq ℓÝÑ Σ4LKp1qS
0,

using Rezk’s formula [Rez06, Theorem 1.9] for the logarithm at odd primes:

ℓp1 ` pαq “ logp1 ` pαq ´ 1

p
logp1 ` pαq.

If α were not a p-adic unit, then the composite Ω2S3 ÝÑ BGL1pS0q ÝÑ BGL1pHZ{p2q would be null
as a 2-fold loop map, providing a ring map HFp ÝÑ HZ{p2. Since this is absurd, α must be a p-adic
unit, and we learn that ℓp1 ` pαq is also a p-adic unit.

Without loss of generality, then, we are reduced to showing the impossibility of the following lifting
problem:

S4 Σ4LKp1qS
0,

Σ8HP8

1

where 1 is the unit of the ring spectrum LKp1qS
0.

Let KUp denote p-complete complex K-theory. Recall that the composite

LKp1qS
0 ÝÑ KUp

ψq´1ÝÑ KUp

is null for any Adams operation ψq with q relatively prime to p. Since p is odd, to finish the problem it
will suffice for us to show that no element of KU4

ppHP8q simultaneously:

(1) Restricts to the unit in KU4

ppS4q.
(2) Is invariant under the action of ψ2.

Now,

KU˚
p pHP8q – ZpJeKrβ˘s,

where |e| “ 0 and β is the Bott class in degree ´2. Of course, ψ2pβq “ 2β, and it will be necessary also
to understand ψ2peq.

Remembering that HP8 is BSUp2q, we may calculate ψ2peq by determining the restriction of e along
the inclusion of the maximal torus BS1 ÝÑ BSUp2q. Indeed, KU˚

p pBS1q – ZpJxKrβ˘1s, where x “ L´1.

On the other hand, e “ V ´ 2, where V is the standard representation of SUp2q on C2. The restriction
of e is thus L` L´1 ´ 2, where

L´1 “ px` 1q´1 “ 1 ´ x` x2 ´ x3 ` ¨ ¨ ¨ .
Since

ψ2pL`L´1´2q “ L2`L´2´2 “ px`1q2` 1

px` 1q2 ´2 “
ˆ
x` 1 ` 1

x` 1
´ 2

˙2

`4

ˆ
x` 1 ` 1

x` 1
´ 2

˙
,

we calculate that

ψ2peq “ e2 ` 4e.

An element of KU4pHP8q is of the form β´2P peq, where P peq is a power series in ZpJeK. The lifting
problem in question is equivalent to finding a power series P peq “ e` c2e

2 ` ¨ ¨ ¨ such that

P peq “ 2´2P
`
ψ2peq

˘
.

Using the calculations above, this can be rewritten as the relation

4P peq “ P pe2 ` 4eq.
The relation

4pe` c2e
2 ` c3e

3 ` ¨ ¨ ¨ q “ pe2 ` 4eq ` c2pe2 ` 4eq2 ` c3pe2 ` 4eq3 ` ¨ ¨ ¨
18



inductively determines each ci, given c2, ¨ ¨ ¨ , ci´1, according to the formula

ci “ 2

p2iq!

iź

j“2

`
´pj ´ 1q2

˘
.

In particular, this formula does not yield a p-adic integer for i “ p`1

2
, implying that there is no lift

through HP
p`1

2 . �

Remark A.1. The Adams conjecture provides a map from the connective cover of the Kp1q-local sphere
spectrum into gl1pS0

ppqq. Using a variant of this due to Bhattacharya and Kitchloo [BK18], it is possible

to construct maps HP k ÝÑ B4GL1pS0

ppqq. Indeed, [BK18] employs arguments very similar to the ones

above in order to produce multiplicative structures on Moore spectra. The authors believe, but have not

verified, that it is possible to equip the map S3 1´pÝÑ B3GL1pS0

ppqq with an A p´1

2

-algebra structure in this
manner.

Remark A.2. It is well-known that the integral Eilenberg–Maclane spectrum HZppq is the Thom spec-
trum of a double loop composite

Ω2pS3x3yq ÝÑ Ω2S3 ÝÑ BGL1pS0

pq.
One could attempt to refine this to a triple loop map, using the equivalence ΩHP8x4y » S3x3y. The
same obstruction as above proves that this strategy cannot work at odd primes, because the map

HP8x4y ÝÑ HP8

is a Kp1q-local equivalence.
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pp. 249–262. MR 1851257

[MS16] Akhil Mathew and Vesna Stojanoska, The Picard group of topological modular forms via descent theory, Geom.
Topol. 20 (2016), no. 6, 3133–3217. MR 3590352

[Nar16] D. Nardin, Parametrized higher category theory and higher algebra: Exposé IV – Stability with respect to an
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