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Abstract We show that Lubin–Tate spectra at the prime 2 are Real oriented
andRealLandweber exact. The proof is by application of theGoerss–Hopkins–
Miller theorem to algebras with involution. For each height n, we compute the
entire homotopy fixed point spectral sequence for En with its C2-action given
by the formal inverse. We study, as the height varies, the Hurewicz images
of the stable homotopy groups of spheres in the homotopy of these C2-fixed
points.
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732 J. Hahn, X. D. Shi

1 Introduction

The main results of this paper are the following:

Theorem 1.1 Let k be a perfect field of characteristic 2, G a height n formal
group over k, and E(k,G) the corresponding Lubin–Tate theory. Suppose G
is a finite subgroup of the Morava stabilizer group that contains the central
subgroup C2. Then there is a G-equivariant map

NG
C2
MUR −→ E(k,G),

where NG
C2

(−) is the Hill–Hopkins–Ravenel norm functor.

Theorem1.1 establishes thefirst knownconnection between the obstruction-
theoretic actions on Lubin–Tate theories and the geometry of complex
conjugation. In particular, when G = C2, Theorem 1.1 implies that for all
height n ≥ 1, the classical complex orientation MU → En can be refined to
a Real orientation

MUR −→ En.

This presence of geometry has tremendous computational consequences.
Using Theorem 1.1, we obtain the first calculations for EhC2

n , valid for arbi-
trarily large heights n:

Theorem 1.2 The E2-page of the RO(C2)-graded homotopy fixed point spec-
tral sequence of En is

Es,t
2 (EhC2

n ) = W (F2n )[[ū1, ū2, . . . , ūn−1]][ū±] ⊗ Z[u±
2σ , aσ ]/(2aσ ).

The classes ū1, . . ., ūn−1, ū±, and aσ are permanent cycles. All the differentials
in the spectral sequence are determined by the differentials

d2k+1−1(u
2k−1

2σ ) = ūk ū
2k−1a2

k+1−1
σ , 1 ≤ k ≤ n − 1,

d2n+1−1(u
2n−1

2σ ) = ū2
n−1a2

n+1−1
σ , k = n,

and multiplicative structures.

The existence of equivariant orientations renders computations that rely on
the slice spectral sequence tractable. This observation was first made in the
solution of the Kervaire invariant problem by Hill et al. [31]. More recently,
Hill, Wang, Xu, and the second author used Theorem 1.1 to compute com-
pletely the slice spectral sequence of a C4-equivariant height-4 Lubin–Tate
theory [37].
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Real orientations of Lubin–Tate spectra 733

1.1 Motivation and main results

Topological K -theory is a remarkably useful cohomology theory that has pro-
duced important homotopy-theoretic invariants in topology. Many deep facts
in topology have surprisingly simple proofs using topological K -theory. For
instance, Adams’s original solution [4] to the Hopf invariant one problem used
ordinary cohomology and secondary cohomology operations, but, together
with Adams and Atiyah [1], he later discovered a much simpler solution using
complex K -theory and its Adams operations. He also studied the real K -theory
of real projective spaces [5] and used it to resolve the vector fields on spheres
problem.

In 1966, Atiyah [8] formalized the connection between complex K -theory,
KU , and real K -theory, KO . The complex conjugation action on complex
vector bundles induces a natural C2-action on KU . Under this action, the
C2-fixed points and the homotopy fixed points of KU are both KO:

KUC2 � KUhC2 � KO.

Furthermore, there is a homotopy fixed point spectral sequence computing the
homotopy group of KO , starting from the action ofC2 on the homotopy group
of KU :

Es,t
2 = Hs(C2; πt KU ) �⇒ πt−s K O.

The spectrum KU , equipped with this C2-action and considered as a C2-
spectrum, is called Atiyah’s Real K -theory KR.

The spectrum KU is a complex oriented cohomology theory, which means
that there is a map MU −→ KU , where MU is the complex cobordism spec-
trum. Early work on MU due to Milnor [46], Novikov [50–52], and Quillen
[55] established the complex cobordism spectrum as a critical tool in mod-
ern stable homotopy theory, with deep connections to algebraic geometry and
number theory through the theory of formal groups [36,43,54,58]. The com-
plex orientation of KU induces a map of rings

π∗MU −→ π∗KU

on the level of homotopy groups. Quillen’s [55] calculation of π∗MU shows
that the map above produces a one dimensional formal group law over π∗KU ,
which turns out to be the multiplicative formal group law Gm(x, y) = x +
y − xy.
Analogously as in the case of KU , the complex conjugation action on

complex manifolds induces a natural C2-action on MU . This action produces
the Real cobordism spectrum MUR of Landweber [39], Fujii [22], and Araki
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734 J. Hahn, X. D. Shi

[7]. The underlying spectrum of MUR is MU , with the C2-action given by
complex conjugation.

Complex conjugation acts on KU and MU by coherently commutative
(E∞) maps, making KR and MUR commutative C2-spectra. The complex
orientation of KU is compatible with the complex conjugation action, and it
can be refined to a Real orientation

MUR −→ KR.

Complex K -theory belongs to a more general class of spectra—the Lubin–
Tate spectra—central to the study of chromatic homotopy theory and the stable
homotopy groups of spheres. These spectra are reverse-engineered from alge-
bra as follows. Given a formal group G of finite height n over a perfect field
k of characteristic p, Lubin and Tate [42] showed that G admits a universal
deformation defined over a complete local ring R with residue field k. The ring
R is non-canonically isomorphic toW (k)[[u1, u2, . . . , un−1]], over which the
formal group law is characterized by a map

MU∗ −→ W (k)[[u1, u2, . . . , un−1]][u±].

This map can be shown to be Landweber exact. Applying the Landweber
exact functor theorem yields a complex oriented homology theory represented
by a homotopy commutative ring spectrum E(k,G). When k = Fpn and G is
the Honda formal group law, the resulting Lubin–Tate spectrum is commonly
called En , the height nMorava E-theory. Since the height 1Morava E-theory is
KU∧

p , the Lubin–Tate spectra can be thought of as the higher height analogues
of K -theory.

To endow the Lubin–Tate theories E(k,G) with coherentmultiplicative struc-
tures, Goerss, Hopkins, and Miller computed the moduli space of A∞- and
E∞-structures on E(k,G). The groupGn of automorphisms of the formal group
G naturally acts on π∗E(k,G), and the Goerss–Hopkins–Miller computation
demonstrates that there is in fact an action of Gn on E(k,G) by E∞-ring auto-
morphisms.

For any closed subgroup G ⊆ Gn , one can use the Goerss–Hopkins–
Miller action to construct a homotopy fixed point spectrum EhG

(k,G) :=
F(EG+, E(k,G))

G . There are homotopy fixed point spectral sequences of the
form

Es,t
2 = Hs(G; πt (E(k,G))) �⇒ πt−s(E

hG
(k,G)).

The spectra EhG
n turn out to be the essential building blocks of the p-local

stable homotopy category. In particular, the homotopy groupsπ∗EhG
n assemble
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Real orientations of Lubin–Tate spectra 735

to the stable homotopy groups of spheres. To be more precise, the chromatic
convergence theorem of Hopkins and Ravenel [57] exhibits the p-local sphere
spectrum S(p) as the inverse limit of the chromatic tower

· · · −→ LEnS −→ LEn−1S −→ · · · −→ LE0S,

where each LEnS is assembled via the chromatic fracture square

LEnS LK (n)S

LEn−1S LEn−1LK (n)S,

where K (n) is the nth Morava K -theory.
Devinatz and Hopkins [19] proved that LK (n)S � EhGn

n , and, furthermore,
that the Adams–Novikov spectral sequence computing LK (n)S can be identi-
fied with the associated homotopy fixed point spectral sequence for EhGn

n . The
fixed point spectra {EhG

n |G ⊂ Gn}, where G ranges over finite subgroups of
Gn , play a central role in resolving EhGn

n (see [10,11,24,28,58]). They are
also important in modern detection theorems, which are results about families
in the stable homotopy groups of spheres obtained by studying the Hurewicz
homomorphism from the sphere spectrum to these periodic theories [31,56].

For the rest of the paper, we designate p = 2. When k = F2, and G

is the multiplicative formal group Gm(x, y) = x + y − xy, we find that
EhC2

(F2,Gm)
= KO∧

2 , the 2-adic completion of real K -theory. For this reason,

the spectra EhG
n are commonly called the higher real K -theories.

At height 2, these homotopy fixed points are known as TMF and TMF with
level structures. Computations of the homotopy groups of these spectra are
done by Hopkins–Mahowald [34], Bauer [9], Mahowald–Rezk [48], Behrens–
Ormsby [14], Hill–Hopkins–Ravenel [32], and Hill–Meier [35].

For higher heights n > 2, the homotopy fixed points EhG
n are notoriously

difficult to compute. Prior to the present work, essentially no progress had
been made. One of the chief reasons that these homotopy fixed points are
so difficult to compute is because the group actions are constructed purely
from obstruction theory. This stands in contrast to the cases of Atiyah’s Real
K -theory KR and Real cobordism MUR, whose actions come from geometry.
The main theorem of this work establishes the first known connection between
the obstruction-theoretic actions on Lubin–Tate theories and the geometry of
complex conjugation:

Theorem 1.3 Let k be a perfect field of characteristic 2, G a height n formal
group over k, and E(k,G) the corresponding Lubin–Tate theory. Suppose G
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736 J. Hahn, X. D. Shi

is a finite subgroup of the Morava stabilizer group that contains the central
subgroup C2. Then there is a G-equivariant map

NG
C2
MUR −→ E(k,G),

where NG
C2

(−) is the Hill–Hopkins–Ravenel norm functor.

In particular, when G = C2, Theorem 1.3 implies that for all height n ≥
1, the classical complex orientation MU → En can be refined to a Real
orientation

MUR −→ En.

The presence of geometry, aside from its intrinsic interest, has tremendous
computational consequences. Po and Kriz [53] were able to completely com-
pute the homotopy fixed point spectral sequence for MUR. Combining our
main theorem with the Hu–Kriz computation, we obtain the first calculations
for EhC2

n , valid for arbitrarily large heights n.

Theorem 1.4 The E2-page of the RO(C2)-graded homotopy fixed point spec-
tral sequence of En is

Es,t
2 (EhC2

n ) = W (F2n )[[ū1, ū2, . . . , ūn−1]][ū±] ⊗ Z[u±
2σ , aσ ]/(2aσ ).

The classes ū1, . . ., ūn−1, ū±, and aσ are permanent cycles. All the differentials
in the spectral sequence are determined by the differentials

d2k+1−1(u
2k−1

2σ ) = ūk ū
2k−1a2

k+1−1
σ , 1 ≤ k ≤ n − 1,

d2n+1−1(u
2n−1

2σ ) = ū2
n−1a2

n+1−1
σ , k = n,

and multiplicative structures.

The existence of equivariant orientations renders computations that rely on
the slice spectral sequence tractable. This observation was first made in the
solution of the Kervaire invariant problem by Hill, Hopkins, and Ravenel in
2009.

In their landmark paper [31], Hill, Hopkins, and Ravenel established that
the Kervaire invariant elements θ j do not exist for j ≥ 7 (see also [29,30,47]
for surveys on the result). A key construction in their proof is the spectrum �,
which detects theKervaire invariant elements in the sense that if θ j ∈ π2 j+1−2S

is an element of Kervaire invariant 1, then the Hurewicz image of θ j under the
map π∗S → π∗� is nonzero.
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Real orientations of Lubin–Tate spectra 737

The detecting spectrum � is constructed using equivariant homotopy the-
ory as the C8-fixed point of a genuine C8-spectrum �O, which in turn is an
equivariant localization of MU ((C8)) := NC8

C2
MUR. In particular, there is a

C8-equivariant orientation

MU ((C8)) −→ �O.

ForG = C2n , theG-spectrum MU ((G)) and its equivariant localizations are
amenable to computations. To analyze the C8-equivariant homotopy groups
of �O, Hill, Hopkins, and Ravenel generalized the C2-equivariant filtration
of Hu–Kriz [53] and Dugger [21] to a G-equivariant Postnikov filtration
for all finite groups G. They called this the slice filtration. Given any G-
equivariant spectrum X , the slice filtration produces the slice tower {P∗X},
whose associated slice spectral sequence strongly converges to the RO(G)-
graded homotopy groups πG

�X .
Using the slice spectral sequence, Hill, Hopkins, and Ravenel proved

the Gap Theorem and the Periodicity Theorem, which state, respectively,
that π

C8
i �O = 0 for −4 < i < 0, and that there is an isomorphism

π
C8∗ �O

∼= π
C8∗+256�O. The two theorems together imply that

π2 j+1−2� = π
C8
2 j+1−2

�O = 0

for all j ≥ 7, from which the nonexistence of the corresponding Kervaire
invariant elements follows.

Analogues of the Kervaire invariant elements exist at odd primes. In 1978,
Ravenel [56] computed theCp-homotopy fixed points of the Lubin–Tate spec-
trum Ep−1 and proved that the p-primary Kervaire invariant elements do not
exist for all p ≥ 5.

In light of Ravenel’s work, Hill, Hopkins, and Ravenel had hoped that the
homotopy fixed points of a certain Lubin–Tate theory would entail the nonex-
istence of the bona fide Kervaire invariant elements. Indeed, they mentioned
in [30] that the Detection Theorem held for EhC8

4 , which made it a promis-
ing candidate to resolve the Kervaire invariant problem. However, because of
the computational difficulties surrounding the homotopy fixed point spectral
sequence, they could not prove the Gap Theorem and the Periodicity Theorem
for EhC8

4 .

Instead, in [31], they opted to consider�C8
O
, which serves tomimic EhC8

4 , but

benefits from the geometric rigidity it inherits from MU ((C8)): once the theory
of slice filtrations is set up, the Gap Theorem and the Periodicity Theorem are
immediate.
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738 J. Hahn, X. D. Shi

Despite the computational access granted via MU ((G)), its localizations
are unsuitable for chromatic homotopy theory because the E2-pages of their
slice spectral sequences are too large and contain many unnecessary classes.
Thus, one cannot hope to resolve the K (n)-local sphere by fixed points of the
localizations of MU ((G)).

To address this situation, one could hope to quotient MU ((G)) by generators
in its equivariant stable homotopy group in order to cut down the size of its
slice spectral sequence and its coefficient group. This can been done at heights
≤ 2. At higher heights, however, the quotienting process fails to preserve the
higher coherent structure (E∞-ness) of the spectrum.

For example, even at G = C2, the spectra BPR〈n〉 and the Real Johnson–
Wilson theories ER(n) are not known to be rings when n ≥ 3 (see [38] and
[35, Remark 4.19]). They also have no clear connection to the Lubin–Tate
spectra En . Therefore, despite its computability, it is difficult to use ER(n) to
obtain information about the higher real K -theories EhG

n and the K (n)-local
sphere.

Theorems 1.3 and 1.4 combine the computational power of the slice spectral
sequencewith the import of the Lubin–Tate spectra. Preponderant in chromatic
homotopy theory, the Lubin–Tate spectra have smaller coefficient rings than
the localizations of MU ((G)), so they are ideal candidates for resolving the
K (n)-local sphere.
It is a consequence of Theorem 1.4 that En is an even C2-spectrum, and,

in particular, has pure and isotropic slice cells. In a forthcoming paper by the
second author, Theorems 1.3 and 1.4will be used to compute the slice filtration
of En for all n, considered as aG-spectrum, whereG is a cyclic group of order
a power of 2. It will follow that En has pure and isotropic G-slice cells.

Remark 1.5 Once this is established, the proofs in [31] are applicable to EhG
n .

Hence EhG
n satisfies aGapTheoremand aPeriodicityTheorem, and,moreover,

there is a factorization

MU ((G)) En

D−1MU ((G)) .

In particular, there is a C8-equivariant map from the detection spectrum
�O −→ E4.

Recently, Hill, Wang, Xu, and the second author used Theorem 1.3 to
compute completely the slice spectral sequence of a C4-equivariant height-4
Lubin–Tate theory [37]. It is a current project to harness Theorem 1.3 to com-
pute completely the C2m -fixed points of En and study its Hurewicz images.
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Real orientations of Lubin–Tate spectra 739

1.2 Summary of contents

We now turn to a more detailed summary of the contents of this paper. To
prove Theorem 1.3, we first consider a specific Lubin–Tate spectra. Let Ê(n)

denote the 2-periodic completed Johnson–Wilson theory, with

π∗(Ê(n)) = Z2[[v1, v2, . . . , vn−1]][u±], |u| = 2.

This spectrum is a version of Morava E-theory. In particular, it is a complex-
oriented E∞-ring spectrum. Work of Goerss, Hopkins, and Miller [23,59]
identifies the space of E∞-ring automorphisms of Ê(n), and in particular
ensures the existence of a central Galois C2-action by E∞-ring maps. At the
level of homotopy groups,C2 acts as the formal inverse of the canonical formal
group law.

There is also a natural C2-action on MU , by complex-conjugation. To this
end, we first prove the following:

Theorem 1.6 The spectrum Ê(n), with its central Galois C2-action, is Real
oriented. That is to say, it receives a C2-equivariant map

MUR −→ Ê(n)

from the Real cobordism spectrum MUR.

Leveraging the Hill–Hopkins–Ravenel norm functor [31], Theorem 1.3 is
a formal consequence of Theorem 1.6.

To prove Theorem 1.6 it will be helpful to sketch a construction of
Ê(n) as a ring spectrum, not yet worrying about any C2-actions. Recall
that there is a periodic version of complex cobordism, denoted MUP , that
is an E∞-ring spectrum. We denote the symmetric monoidal (∞-)category
of MUP-module spectra by MUP-Mod. The subgroupoid spanned by the
unit and its automorphisms is the space BGL1(MUP), which is natu-
rally an infinite loop space. Associated to any map of spaces f : X →
BGL1(MUP) is a ThomMUP-module Thom( f ) [2]. The category of spaces
over BGL1(MUP) is symmetric monoidal, and an associative algebra object
in this category gives rise to an A∞-algebra structure on its Thom spectrum
[3].

Consider now the following diagram of categories:
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740 J. Hahn, X. D. Shi

A∞
(

Spaces/BGL1(MUP)

)
A∞(MUP−Mod) A∞(Spectra)

Spaces/B2GL1(MUP) A∞(MUP−Mod) A∞(Spectra)

E∞(Spectra).

Thom

LK (n)

Forget

LK (n)�
Forget

Forget

(�)

In Sect. 2, we will construct a certain map of spaces X → B2GL1(MUP).
Applying � and then the Thom spectrum construction, we obtain an A∞-
MUP-algebra E(n) that is a 2-periodic version of Johnson–Wilson theory.
The K (n)-localization of E(n) is Ê(n), equipped with the structure of an
A∞-MUP-algebra.

It is a consequence of work of Goerss, Hopkins, and Miller [23,59] that
we may lift the A∞-ring spectrum underlying Ê(n) to an E∞-ring spectrum.
Indeed, letting C� denote themaximal subgroupoid of a category C, they prove
that the path-component of A∞(Spectra)� containing Ê(n) is equivalent to a
path component inE∞(Spectra)�, with the equivalence given by the forgetful
functor.

Our strategy for the Proof of Theorem 1.6 is to produce a Real orientation
MUR → E(n) into some ring spectrum E(n) with C2-action. The E(n) we
produce is obviously equivalent to Ê(n) as a spectrum, and the C2-action is
obviously the Galois one up to homotopy. However, it is not at all obvious that
the full, coherent C2-action on E(n) is the Galois action. To prove it, we must
make full use of the Goerss–Hopkins–Miller theorem.

Weproduce E(n) via aC2-equivariant lift of the above construction of Ê(n):

Construction 1.7 In Sect. 3, each of the categories in the diagram (�) will be
equipped with a C2-action, yielding an equivariant diagram:

A∞
(

Spaces/BGL1(MUP)

)
A∞(MUP-Mod) A∞(Spectra)

Spaces/BρGL1(MUP) A∞(MUP-Mod) A∞(Spectra)

E∞(Spectra).

Thom

LK (n)

Forget

op

LK (n)�σ

Forget
op

tr ivial

Forget

(��)
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Real orientations of Lubin–Tate spectra 741

The action on E∞(Spectra) will be the trivial C2-action. The action on
A∞(Spectra) will be the non-trivial op action that takes an algebra to its
opposite.

Remark 1.8 By a homotopy fixed point in a category C with C2-action we
mean an object in the category ChC2 . For example, a homotopy fixed point in
E∞(Spectra)with its trivial action is just anE∞-ring spectrumwithC2-action
by E∞-ring maps. A homotopy fixed point for the op action on A∞(Spectra)

is an A∞-algebra A equipped with an involution, meaning a coherent algebra
map σ : A → Aop. This is a Borel equivariant version of what other authors
have called anEσ -ring, or a ring with anti-involution (see [20,33]). We believe
the use of algebras with involutions to be the most interesting feature of our
construction.

In Sects. 4 and 5 , we will refine our map X → B2GL1(MUP) to an
equivariant map X → BρGL1(MURP). Applying �σ produces a homo-
topy fixed point of A∞

(
Spaces/BGL1(MUP)

)
, which in turn equips E(n) with

an A∞-involution. After K (n)-localizing, we obtain a C2-action on Ê(n) by
A∞-involutions. The Goerss–Hopkins–Miller Theorem [23,59] proves that
any such action on Ê(n) may be lifted to one by E∞-ring maps. Since Goerss,
Hopkins, and Miller furthermore calculate the entire space of E∞-ring auto-
morphisms of Ê(n), we may determine any E∞-C2-action on Ê(n) by its
effect on homotopy groups.

In Sect. 6, we look towards computational applications of the above results.
For simplicity, we use a specific Morava E-theory En that is defined via a lift
of the height n Honda formal group law over F2n . Its homotopy groups are

π∗En = W (F2n )[[u1, u2, . . . , un−1]][u±].
Using Theorem 1.3 and leveraging Hu and Kriz’s computation of the homo-
topy fixed point spectral sequence for MUR [53], we prove Theorem 1.4. As
a corollary, we learn that as a C2-spectrum, En is strongly even and Real
Landweber exact in the sense of Hill–Meier [35].

Theorem 1.9 En is strongly even and Real Landweber exact. More precisely,
πkρ−1En = 0 and πkρEn is a constant Mackey functor for all k ∈ Z. The Real
orientation MUR → En induces a map

MUR�(X) ⊗MU2∗ (En)2∗ → En�(X)

which is an isomorphism for every C2-spectrum X.

The second author’s detection theorem for MUhC2
R

, joint with Li, Wang,

and Xu [41], allows us to conclude a detection theorem for EhC2
n . Roughly
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742 J. Hahn, X. D. Shi

speaking, as the height grows, an increasing amount of the Kervaire and κ̄-
families in the stable homotopy groups of spheres are detected by π∗EhC2

n .
More precisely, we prove in Sect. 7 the following:

Theorem 1.10 (Detection theorem for EhC2
n )

(1) For 1 ≤ i, j ≤ n, if the element hi ∈ Ext1,2
i

A∗ (F2, F2) or h2j ∈
Ext2,2

j+1

A∗ (F2, F2) survives to the E∞-page of the Adams spectral

sequence, then its image under the Hurewicz map π∗S → π∗EhC2
n is

nonzero.
(2) For 1 ≤ k ≤ n − 1, if the element gk ∈ Ext4,2

k+2+2k+3

A∗ (F2, F2) survives
to the E∞-page of the Adams spectral sequence, then its image under the
Hurewicz map π∗S → π∗EhC2

n is nonzero.

Remark 1.11 We freely use the language of ∞-categories throughout this
work, and will refer to an ∞-category simply as a category. If C is a sym-
metric monoidal category, we useA∞(C) to denote the category of associative
algebra objects in C, and similarly use E∞(C) to denote commutative algebra
objects. We will use Spaces to denote the symmetric monoidal category of
pointed spaces under cartesian product.

2 Thom spectra and Johnson–Wilson theory

In this section we will describe a non-equivariant construction of Ê(n), a
Landweber exact Morava E-theory with

π∗(Ê(n)) ∼= Z2[[v1, v2, . . . , vn−1]][u±].
Our construction is a riff on Theorem 1.4 of [16].

We begin with a brief review of the classical theory of Thom spectra. Useful
references, in the language of ∞-categories we espouse here, include [2] and
[3].

If R is an E∞-ring spectrum, then the category of R-modules acquires a
symmetric monoidal structure. The subcategory consisting of the unit and
its automorphisms is denoted BGL1(R). The symmetric monoidal struc-
ture equips BGL1(R) with an infinite loop space structure, and we write
BGL1(R) � �∞	gl1(R). The space GL1(R) � �∞gl1(R) sits in a pull-
back square

GL1(R) �∞R

π0(R)× π0(R),
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Real orientations of Lubin–Tate spectra 743

where π0(R)× is the subset of units of π0(R) under multiplication. From this
latter description of GL1(R), it is clear that

π∗(BGL1(R)) ∼= π∗−1(GL1(R)) ∼= π∗−1(R), for ∗ > 1.

Given a map of spaces X → BGL1(R), we can form the Thom R-module
by taking the colimit of the composite functor X → BGL1(R) ⊂ R-Mod. If
X is a loop space and X → BGL1(R) is a loop map, then the main theorem of
[3] shows that the associated Thom spectrum is an A∞-R-algebra. Similarly,
if X is an infinite loop space and X → BGL1(R) an infinite loop map, then
[3] shows that the associated Thom spectrum is an E∞-R-algebra.

Given two maps f1 : X1 → BGL1(R) and f2 : X2 → BGL1(R), we may
use the infinite loop space structure on BGL1(R) to produce a product map

( f1, f2) : X1 × X2 → BGL1(R) × BGL1(R) → BGL1(R).

The Thom R-module Thom( f1, f2) is the R-module smash product
Thom( f1) ∧R Thom( f2).

We may speak not only of BGL1(R), but also of the infinite loop space
Pic(R). As a symmetric monoidal category, Pic(R) is the full subcategory of
R-Mod� spanned by the invertible R-modules. It is a union of path compo-
nents each of which is equivalent to BGL1(R). Again, Antolín-Camarena and
Barthel [3] explains that the colimit of an infinite loop map X → Pic(R) ⊂
R-Mod is an E∞-R-algebra. Our only use of this more general construction
is to recall the following classical example:

Example 2.1 The complex J -homomorphism is an infinite loop map BU ×
Z → Pic(S), obtainedvia the algebraic K -theory constructionon

∐
BU (n) →

Pic(S). The resulting Thom E∞-ring spectrum is the periodic complex cobor-
dism spectrum, denoted MUP . The 2-connective cover of spectra bu → ku
yields an infinite loop map BU → BU × Z, which induces a map of Thom
E∞-ring spectra MU → MUP .

The map J : BU × Z → Pic(S) decomposes as a product of the infinite
loop map BU → BGL1(S) and the loop map Z → Pic(S). This yields an
equivalence of Thom A∞-ring spectra

MUP � MU ∧
(∨
n∈Z

S2n
)

�
∨
n∈Z

	2nMU,

which allows us to calculate π∗(MUP) ∼= π∗(MU )[u±] ∼= Z[x1, x2, . . .]
[u±], where |u| = 2 and |xi | = 2i . The complex-conjugation action on
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BU ×Z by infinite loop maps yields aC2-action on MUP by E∞-ring homo-
morphisms; we will make no use of this action in the current section, but much
use of it in Sects. 3 and 4 .

We now specialize the discussion and embark on our construction of E(n).
Suppose that we choose a non-zero α ∈ π2(MUP) ∼= π3(BGL1(MUP)).
Then, e.g. by [16, Theorem 5.6] or [3, Theorem 4.10], there is an equivalence
of MUP-module spectra

Thom(α) � Cofiber(	2MUP
α→ MUP) � MUP/α.

If we choose a sequence of elements (α1, α2, . . . , αn) ∈ π2(MUP), we
may produce a map

S3 × S3 × · · · S3 → BGL1(MUP)

and an associated Thom MUP-module

Thom(α1, α2, . . . , αn)

� (MUP/α1) ∧MUP(MUP/α2) ∧MUP · · · ∧MUP(MUP/αn)

� MUP/(α1, α2, . . . , αn).

If the sequence (α1, α2, . . . , αn) is regular in π∗(MUP), then the usual
cofiber sequences imply that

π∗(MUP/(α1, α2, . . . , αn)) ∼= π∗(MUP)/(α1, α2, . . . , αn).

Finally, we may even mod out an infinite regular sequence (α1, α2, . . .) by
using the natural maps

S3 → S3 × S3 → S3 × S3 × S3 → · · ·
to produce a filtered colimit of MUP-modules

MUP/α1 → MUP/(α1, α2)

→ MUP/(α1, α2, α3) → · · · → MUP/(α1, α2, . . .).

Proposition 2.2 Each map αi : S3 → BGL1(MUP) can be given the struc-
ture of a loopmap. In other words, the above construction of the MU P-module
MU P/(α1, α2, . . .) can be refined to a construction of anA∞-MU P-algebra.

Proof It will suffice to construct a map α̃i : BS3 → B2GL1(MUP) such
that �α̃i � αi . This is equivalent to asking that the precomposition of the
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map α̃i : BS3 → B2GL1(MUP) with the inclusion S4 → BS3 be adjoint to
the map αi : S3 → BGL1(MUP). In fact, any map S4 → B2GL1(MUP)

automatically admits at least one factorization through BS3. The reason is that
BS3 admits an even cell decomposition: there is a filtered colimit

S4 = Y1 → Y2 → Y3 → · · · → BS3

and pushouts

S4n−1 Yn−1

D4n Yn.

This cell decomposition is easily seen from the model BS3 � HP
∞, the

infinite dimensional quaternionic projective space, where it is the canonical
cell-decomposition corresponding to the inclusions of the HP

�. The obstruc-
tions to factoring a map Yn−1 → B2GL1(MUP) through Yn therefore live
in π4n−1B2GL1(MUP) ∼= π4n−3(MUP). This group is 0, as explained in
Example 2.1. ��

To summarize, ifwe choose any regular sequence (α1, α2, . . .) ∈ π∗(MUP)∼= Z[x1, x2, . . .][u±], each element of which lies in degree 2, then we may
construct the quotient MUP-module MUP/(α1, α2, . . .) as an A∞-MUP-
algebra. This fact was originally proven without the use of Thom spectra
by Angeltveit [6, Corollary 3.7], who instead used an obstruction theory
developed by Robinson [60]. The following standard lemma allows us to use
Proposition 2.2 to build Morava E-theories as A∞-algebras:

Lemma 2.3 Let G denote a formal group of height n over the field F2, and E
the associatedMorava E-theory. Then there is a map MU P → E, classifying
a universal deformation of G, which may be described as first taking the
quotient of MU P by a regular sequence (α1, α2, . . .) of degree 2 classes and
then performing K (n)-localization.

Remark 2.4 If the reader prefers, they will lose no intuition by thinking of the
regular sequence

(α1, α2, . . .) = (x2n−1u
2−2n − u, x2u

−1, x4u
−3, x5u

−4, x6u
−5, x8u

−7, . . .),

where the classes xiu−i+1 that are included are those such that either

• i is not one less than a power of 2, or
• i is larger that 2n − 1.
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However, since there are non-isomorphic formal groups over F2, not every
Morava E-theory is obtained by quotienting out this particular sequence.

Definition 2.5 We denote by E(n) the quotient of MUP by the regular
sequence (α1, α2, . . .) of Lemma 2.3, and say that E(n) is a 2-periodic form of
Johnson–Wilson theory. Proposition 2.2 provides a (not necessarily unique)
construction of E(n) as an A∞ MUP-algebra. We are deliberately vague
about which formal group G defines E(n), so that we may handle all cases at
once.

Proof of Lemma 2.3 The formal group G is classified by some map of
(ungraded) rings π∗(BP) → F2. View this map as the solid arrow in the
diagram of ring homomorphisms

π∗(BP) W (k)[[u1, u2, . . . , un−1]]

F2[u1, u2, . . . , un−1]/m2

F2.

L2

L1

According to [59, §5.10], as long as the lift L1 is chosen correctly, any further
lift L2 will classify a universal deformation. Furthermore, we may assume
that vi maps to ui for i ≤ n − 1 under L1, while vn maps to 1. Each v j
for j > n then maps to some L1(v j ) that is an F2-linear combination of
L1(v1), L1(v2), . . . L1(vn). Write φ(v j ) to denote the element of π∗(BP)

that is given by the same linear combination of v1, v2, . . . vn . Then the map
L2 can be chosen to be the quotient by the regular sequence (vn − 1, vn+1 −
φ(vn+1), vn+2 − φ(vn+2), . . .).

Using the invertible element u to move elements by even degrees, we may
identify π2(MUP) with π∗(MU ). Inside of π∗(MU ) we identify π∗(BP) by
viewing vi as x2i−1. This allows us to talk about φ(v j ) as a class in π2(MUP).

To obtain the lemma, one mods out by the regular sequence (α1, α2, . . .) ∈
π2(MUP), where one mods out, in order of i ∈ N:

• All xiu−i+1 with i not one less than a power of 2.
• The class xiu−i+1 − u where i = 2n − 1.
• The classes xiu−i+1 − φ(v j ) where i = 2 j − 1 for j > n.

��
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3 Categories with involutions

Recall that a key fact powering the constructions of the previous sections is
that, if R is an E∞-ring, then any map of loop spaces

�X −→ �B2GL1(R) � BGL1(R)

induces an E1-Thom spectrum.
In the C2-equivariant setting, there are two sorts of loops one can take. If

X is a C2-space, one can again take ordinary loops, denoted �X , but one can
also consider based maps from the representation sphere Sσ , which is denoted
�σ X . If R is a C2-E∞-ring spectrum, we shall be interested in C2-equivariant
maps

�σ X −→ �σ BρGL1(R) � BGL1(R).

The structure carried by such a Thom spectrum is no longer that of an
E1-ring, but rather that of a so-called Eσ -ring, or ring with involution,
or to some authors a ring with anti-involution. A number of independent,
detailed discussions of Eσ -algebras have appeared since the first edition
of this preprint was released, including particularly nice exposition in [33,
§2.2] and [20, §2]. The discussion of equivariant Thom spectra in [17] is
also very relevant. All of these authors work in the genuine C2-equivariant
category, and prove general theorems of which we only need and discuss
Borel equivariant shadows. In this section, we include our original discus-
sion of Borel equivariant Eσ -algebras, and in particular note the existence
of a diagram of categories with C2-action and equivariant functors between
them:

A∞
(

Spaces/BGL1(MUP)

)
A∞(MUP-Mod) A∞(Spectra)

Spaces/BρGL1(MUP) A∞(MUP-Mod) A∞(Spectra)

E∞(Spectra).

Thom

LK (n)

Forget

op

LK (n)�σ

Forget
op

tr ivial

Forget

(��)

Remark 3.1 For us, an equivariant functor F : C1 → C2 between categories
with C2-action is an arrow in the functor category Hom(BC2, Cat∞). Such
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an arrow contains a substantial amount of data, and is in particular not deter-
mined by its underlying functor Funderlying of non-equivariant categories. For
example, using

σi : Ci → Ci

to denote the C2-action on Ci , part of the data of F is a choice of natural
isomorphism

σ2 ◦ Funderlying � Funderlying ◦ σ1.

Remark 3.2 The reader who is comfortable with the existence of the above
diagram of categories with (Borel) C2-actions may safely skip the remainder
of this section. The rest of the section only discusses themeaning and existence
of the above diagram, which we view as a summary of the formal (i.e., purely
categorical) input we need for our main theorem.

Let MonCatLax denote the category of monoidal categories and lax
monoidal functors. In the language of [44, §4.1], this is the category of
coCartesian fibrations of∞-operads C⊗ → Assoc⊗, with morphismsmaps of
∞-operads C1 → C2 overAssoc⊗ that are not required to preserve coCartesian
arrows. Remark 4.1.1.7 in [44] constructs a C2-action rev on MonCatLax . If
(C, ⊗) is a monoidal ∞-category, then (Crev, ⊗rev) has the same underlying
category as C but the opposite ⊗-structure, with X ⊗rev Y in Crev calculated
as Y ⊗ X in C. We call a homotopy fixed point for this rev action a monoidal
category (C, ⊗) with involution. Such a category is equipped with a coherent

equivalence C �→ Crev. This should be contrasted with a fixed point for the
trivial action on MonCatLax , which would just be a monoidal category with
C2-action via monoidal functors.

Remark 4.1.1.7 also constructs an equivalence betweenA∞-algebra objects
A in C andA∞-algebra objects Arev in Crev. If C is equippedwith an involution,
then there is an induced C2-action on A∞(C). In other words, there is an
equivariant functor

MonCatLax Cat∞,

rev

A∞(−)

tr ivial

and so a homotopy fixed point in MonCatLax is sent to one in Cat∞.
Finally, we also consider the category SymMonCatLax of symmetric

monoidal categories and lax functors. The last paragraph of Remark 4.1.1.7
of [44] ensures that the sequence of forgetful functors
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SymMonCatLax MonCatLax Cat∞
Forget Forget

is equivariant, with the trivial C2-action on SymMonCatLax , the rev action
on MonCatLax , and the trivial action on Cat∞.

Example 3.3 IfC is any symmetricmonoidal category, then the trivial action on
C by symmetricmonoidal identity functors induces an involution, and therefore
an op action on A∞(C). When we want to emphasize that we are considering
A∞(C) as a C2-equivariant category with its op action, we will write it as
A

σ∞(C). There is an equivariant sequence of categories

E∞(C) A
σ∞(C) C,

Forget Forget

where E∞(C) and C are given the trivial C2-actions and A
σ∞(C) is given the

op action.

Example 3.4 Consider the category Set of sets, equipped with the cartesian
symmetric monoidal structure. The trivial C2-action on Set by symmetric
monoidal identity functors allows us to view Set as a homotopy fixed point for
the trivialC2-action onSymMonCatLax . This equips the underlyingmonoidal
category ofSetwith a canonical involution,which in turn equips the category of
monoids with a C2-action. This is the classical op action that takes a monoid
M to its opposite monoid Mop, which has the same underlying set but the
opposite multiplication.

Taking C in Example 3.3 to be the category Spaces of pointed spaces, we
obtain the op action onA∞(Spaces), writtenA

σ∞(Spaces).We call a homotopy
fixedpoint for this action anA∞-spacewith involution; such spaces, considered
as groupoids, are special cases of categories with involution. Any spectrum E
with C2-action has an underlying A∞-space with involution �∞E .

Example 3.5 Suppose that X is an A∞-space with involution. Then the
monoidal category Spaces/X is equipped with an involution. Concretely,
this involution takes an algebra map A → X to the natural algebra map

Aop → Xop inv−→ X .

Remark 3.6 If a monoid M happens to be a group, then there is a canonical
equivalence M � Mop defined by the inverse homomorphism m �→ m−1.
Our next few observations exploit an analogue of this equivalence for group-
like A∞-spaces. We denote by LoopSpaces the full subcategory of grouplike
objects inA∞(Spaces).Notice that the property of beinggrouplike is preserved
under the op action on A

σ∞(Spaces), so there is an op action on LoopSpaces.
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Construction 3.7 There is a diagram of equivalences of equivariant cate-
gories

ConnectedSpaces

LoopSpaces LoopSpaces

tr ivial

�σ �

op trivial

The equivariant functors� and�σ share the same underlying, non-equivariant
functor.

Proof It is classical that � and the bar construction provide inverse equiva-
lences of the non-equivariant categories ConnectedSpaces and LoopSpaces.
This category has a universal property: it is the initial pointed category with all
connected colimits. As such, any C2-action on it admits an essentially unique
equivalence with the trivial C2-action. ��
Corollary 3.8 Suppose X is a grouplikeA∞-spacewith involution. Then there
exists some connected space with C2-action Bσ X such that �σ Bσ X � X.
There is a natural C2-equivariant functor

Spaces/Bσ X
�σ−→ A

σ∞
(
Spaces/X

)
,

where the latter object is the category with C2-action underlying the monoidal
category with involution from Example 3.5.

Consider the sequence of right adjoints

Spaces ConnectedSpaces A
σ∞(Spaces) Spaces

(−)0 �σ Forget

By Example 3.3, this is an equivariant functor from Spaces with trivial
action to Spaces with trivial action. As such it sends any space with C2-action
X to some other space with C2-action, which by abuse of notation we denote
�σ X .

Proposition 3.9 Suppose X is a space with C2-action. Then the space with
C2-action�σ X is the equivariant function spaceHom(Sσ , X). In other words,
the action on a loop S1 → X is given by both precomposing with the complex
conjugation on S1 and postcomposing with the action on X.
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Proof By the Yoneda lemma,�σ X must be the equivariant function spectrum
Hom(S1, X) for some C2-action on S1. To determine that this action is the
complex conjugation action, and not the trivial action, we look at the sequence
of equivariant functors

Groups ConnectedSpaces LoopSpaces Groups,Bar �σ π0

which connects groups with trivial action to groups with op action. The only
natural isomorphism between a group and its opposite is given by g �→ g−1,
which is non-trivial on underlying sets. ��

Specializing the discussion, recall that MUP is the Thom spectrum of the

J homomorphism BU × Z
J−→ BGL1(S). Since the J homomorphism is an

infinite loop map, MUP acquires the structure of an E∞-ring spectrum. The
complex-conjugation action by infinite loop maps on BU × Z gives MUP
a C2-action by E∞-ring maps. This in turn induces C2-actions by symmet-
ric monoidal functors on the categories MUP-Mod and Spaces/BGL1(MUP).
There is a diagram of lax symmetric monoidal functors

Spaces/BGL1(MUP) MUP-Mod Spectra

MUP-Mod Spectra.

Thom

LK (n)

Forget

LK (n)

Forget

Since the C2-action on MUP is unital, the entire diagram becomes C2-
equivariant once we equip Spectra with the trivial C2-action. We may thus
view the diagram as one of morphisms in the category of homotopy fixed
points of SymMonCatLax with trivial action. This in turn induces a diagram
in the homotopy fixed point category of MonCatLax with rev action, which
yields a diagram of C2-equivariant categories

A
σ∞

(
Spaces/BGL1(MUP)

)
A

σ∞(MUP-Mod) A
σ∞(Spectra)

A
σ∞(MUP-Mod) A

σ∞(Spectra).

Thom Forget

LK (n) LK (n)

Forget

This is nearly all of our diagram (��). To complete the diagram, we use
Corollary 3.8 for X � BGL1(MUP) and Example 3.3 for C the symmet-
ric monoidal category of Spectra.

123



752 J. Hahn, X. D. Shi

Remark 3.10 In the sequel, we will denote the space with C2-action Bσ

BGL1(MURP) by BρGL1(MURP).

4 An equivariant map to BρGL1(MURP)

The previous Sect. 3 constructs a C2-equivariant functor

Spaces/BρGL1(MUP) → A
σ∞(Spectra),

which remains C2-equivariant after composing with K (n)-localization. Here,
Spaces/BρGL1(MUP) is granted its C2-action via the one on the space
BρGL1(MUP) = BρGL1(MURP). The categoryA

σ∞(Spectra) is equipped
with the op action of Example 3.3.

A homotopy fixed point for Spaces/BρGL1(MUP) is just a map of spaces
with C2-action X → BρGL1(MUP), and such a map therefore gives rise
to a homotopy fixed point of A

σ∞(Spectra). In other words, an equivariant
map of spaces with C2-action f : X → BρGL1(MUP) gives rise to a Thom
A∞-algebra with involution (�σ X)�

σ f .
One can apply the construction to ∗ → BρGL1(MUP) to obtain MUP

itself as an A∞-algebra with involution. Using the equivariant map ∗ → X ,
we obtain a map of A∞-rings with involution MUP → (�σ X)�

σ f . The
canonical Real orientation

	−2
CP

∞ → MUR → MURP

then equips (�σ X)�
σ f with a Real orientation. If (�σ X)�

σ f happens to also
be a C2-equivariant homotopy commutative ring, then [53, Theorem 2.25]
implies that it receives an equivariant homotopy commutative ring map from
MUR.
In this section we will be concerned with the construction of a particular

map of spaces with C2-action into BρGL1(MURP); the underlying map of
spaces will be the morphism

BS3 × BS3 × · · · → B2GL1(MUP)

constructed in Sect. 2. Our aim is to construct both 2-periodic Johnson–Wilson
theory and Morava E-theory as A∞-rings with involution.

Remark 4.1 Recall that, among spaceswithC2-action,wemay identify certain
representation spheres Sa+bσ as the one-point compactifications of real C2-
representations. We use σ to denote the sign representation, 1 to denote the
trivial representation, and the shorthand ρ to denote the regular representation
1 + σ . If X is a space or spectrum with C2-action, then we use πa+bσ (X) to
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denote π0 of the space of equivariant maps Sa+bσ → X . Of interest to us,
Proposition 3.9 implies that πa+bσ (Bσ X) ∼= πa+(b−1)σ (X).

In [53], the equivariant homotopy groups of MURP are computed. For each
n, πnρ−1(MURP) ∼= 0. Additionally, there is a ring isomorphism

π∗ρ(MURP) ∼= Z[x̄1, x̄2, . . .][ū±],
where x̄i is in degree iρ and ū is in degree ρ. The forgetful map from the
equivariant to ordinary homotopy groups π∗ρ(MURP) → π2∗(MUP) takes
x̄i to xi and ū to u.

Since GL1(MURP) is defined via a pullback square of spaces with C2-
action

GL1(MURP) �∞MUP

π0(MURP)× π0(MURP),

we learn that πa+bσ (BρGL1(MURP)) ∼= π(a−1)+(b−1)σ (MURP) whenever
a, b > 1.

Our next task is to understand the C2-equivariant space Bσ Sρ+1. The ana-
logue of the even cell structure that played a prominent role in Sect. 2 is the
following:

Proposition 4.2 There is a C2-action onHP
∞ so thatHP

∞ arises as a filtered
colimit

Y1 = S2ρ → Y2 → Y3 → · · · ,

where there are homotopy pushout square of spaces with C2-action

S2nρ−1 Yn−1

∗ Yn.

Furthermore, �σ
HP

∞ � Sρ+1. We will therefore write Bσ Sρ+1 to denote
HP

∞ with this C2-action.

Proof This cell decomposition is due to Mike Hopkins. Recall that, non-
equivariantly, the cellular filtration on BS3 agrees with the standard filtration

HP
1 → HP

2 → · · · → HP
∞ � BS3,
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where HP
∞ is the infinite-dimensional quaternionic projective space. For us,

the relevant C2-action on this space is conjugation by i . In other words, we act
on a point

[z0 : z1 : z2 : · · · ]

by sending it to

[i z0i−1 : i z1i−1 : · · · ].

From the expression i(a+bi + cj +dk)i−1 = a+bi − cj −dk we learn both
that the action is well-defined and that the C2-cells attached are multiples of
2ρ. Furthermore, with this C2-action, the C2-fixed points of HP

∞ are CP
∞

and the map CP
∞ = (HP

∞)C2 → HP
∞ is the usual inclusion map.

The non-equivariant map S4 → BS3 � HP
∞ adjoint to the identity is

lifted to an equivariant map S2ρ → HP
∞, given by the inclusion HP

1 →
HP

∞ under the described C2-action. By adjunction, this gives a map Sρ+1 →
�σ

HP
∞ of C2-spaces which is an underlying equivalence. We will show that

this map induces a C2-equivalence by checking that it is an equivalence on
C2-fixed points.

The map Sρ+1 → �σ
HP

∞ is the composite map

Sρ+1 −→ �σ	σ Sρ+1 −→ �σ
HP

∞,

where the first map is the unit map of the loop-suspension adjunction and the
second map is obtained by applying �σ(−) to the inclusion S2ρ → HP

∞. On
C2-fixed points, we have the commutative diagram

(Sρ+1)C2 = S2 (�σ	σ Sρ+1)C2 (�σ
HP

∞)C2 � S2

(	σ Sρ+1)C2 = S2 (HP
∞)C2 = CP

∞

S4 HP
∞.

1 2

3 4

5

The two vertical sequences are fiber sequences obtained by first mapping the
cofiber sequence C2+ → S0 → Sσ to 	σ Sρ+1 and HP

∞, respectively, and
then taking C2-fixed points. Since the map (HP

∞)C2 → HP
∞ is the map

BS1 → BS3, its fiber (�σ
HP

∞)C2 is S3/S1 � S2. Maps 4 and 5 are both the
usual inclusion map S2 = CP

1 → CP
∞.
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For any C2-space X , consider the composite map

X −→ �σ	σ X −→ 	σ X,

where the first map is the unit map of the loop-suspension adjunction and the
secondmap is obtainedbymappingout of the inclusion S0 → Sσ ofC2-spaces.
OnC2-fixed points, this map induces an equivalence XC2 � XC2 = (	σ X)C2 .
This shows that the composite map 3 ◦ 1 is an equivalence. It follows from
the commutativity of the diagram that the composite map 2 ◦ 1 is also an
equivalence. ��

As a corollary, exactly as in Proposition 2.2, we learn that any map
S2ρ → BρGL1(MURP) factors through Bσ Sρ+1. This is because the
map S2ρ → BρGL1(MURP) can be viewed as a map out of Y1, and the
obstruction to factor a map Yn−1 → BρGL1(MURP) through Yn lives in
π2nρ−1(BρGL1MURP) ∼= π(2n−1)ρ−1MURP , which is zero.

Using the symmetric monoidal structure on Spaces/BρGL1(MUP), which
commutes with the C2-action, we may construct from any sequence
(α1, α2, . . .) ∈ πρMURP a map

Sρ+1 × Sρ+1 × · · · → BGL1(MURP).

This then factors through at least one equivariant map

Bσ Sρ+1 × Bσ Sρ+1 × · · · → BρGL1(MURP).

We choose for (α0, α1, . . .) the same sequence as in Lemma 2.3, with the
xi replaced by x̄i . The reader may prefer to consider the special case in which
the sequence is

(x̄2n−1ū
2−2n − ū, x̄2ū

−1, x̄4ū
−3, x̄5ū

−4, x̄6ū
−5, x̄8ū

−7, . . .),

where the classes x̄i ū−i+1 that are included in the sequence are all those such
that either

• i is not one less than a power of 2.
• i is greater than 2n − 1.

In any case, applying �σ and then the Thom construction we obtain a
homotopy fixed point of the category A

σ∞(MUP-Mod). The underlying A∞-
ring is E(n), the 2-periodic version of Johnson–Wilson theory constructed in

Sect. 2. Our constructions produce a coherentA∞-ring map E(n)
�−→ E(n)op

lifting the complex-conjugation C2-action E(n) −→ E(n). We denote this
ring with involution by ER(n).
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Remark 4.3 From this work, it seems that the natural action on E(n) is byA∞-
involutions rather thanA∞-algebramaps.However, we can sketch an approach
to producing an action by A∞-algebra maps in the spirit of this paper.

Using Theorem 1.4 of [16], E(n) can be built as a Thom spectrum of a
map SU → BGL1(MUP). Obstruction theory easily lifts this to a map
BSU → B2GL1(MUP), which produces the same involution we see above.
We may go further though, and note that B3SU also has an even cell structure.
This means that it is easy to produce maps B3SU → B4GL1(MUP), but as
noted in [18, §6] it is not so easy to knowwhichmaps BSU → B2GL1(MUP)

these lie over. If one could produce E(n) as a Thom E3-MUP-algebra in
this way, non-equivariantly, it seems likely that one could produce an E2σ+1-
structure on the equivariant E(n). In particular, this would mean theC2-action
on E(n) is by A∞-ring homomorphisms.

This may be of interest in light of [38], in which Kitchloo, Lorman, and
Wilson provide a homotopy commutative and associative ring structure up
to phantom maps on Real Johnson-Wilson theory. We thank Kitchloo for
pointing out to us that the difficulty with phantommaps disappears after K (n)-
localization.

Remark 4.4 Our arguments also show that the RealMorava K -theories KR(n)

[53, Section 3] have the structure of rings with involution.More precisely, they
are Eσ -MURP-algebras.

5 Proof of Theorem 1.3

In the previous section, we constructed an A∞-ring spectrum E(n) with a
C2-action by A∞-involutions. After K (n)-localizing, we obtain a C2-action
by involutions on Morava E-theory Ê(n).

Now, consider the equivariant sequence of forgetful functors

E∞(Spectra) → A
σ∞(Spectra) → Spectra,

where both E∞(Spectra) and Spectra are given the trivial C2-action, but
A

σ∞(Spectra) is given the op action. We may restrict this sequence to an
equivariant sequence of subcategories

C3 → C2 → C1,

where

• C1 is the category of all spectra equivalent to Ê(n) and equivalences
between them.

• C2 is the category of A∞-ring spectra with underlying spectrum Ê(n), and
equivalences between them.
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• C3 is the category of E∞-ring spectra with underlying spectrum Ê(n), and
equivalences between them.

Note that a map of categories with C2-action is equivalence if and only if
the underlying non-equivariant functor is an equivalence of non-equivariant
categories. The Goerss–Hopkins–Miller theorem [23,59] says that the map
C3 → C2 is an equivalence of categories. It follows that any homotopy fixed
point of C2 may uniquely be lifted to one of C3. Thus, theC2-action on Ê(n) by
A∞-involutions has a unique lift to a C2-action by E∞-ring automorphisms.
According to Goerss–Hopkins–Miller [59], the categories C3 and C2 are equiv-
alent to BG, where G is the Morava stabilizer group. A C2-action on Ê(n) by
E∞-ring maps is therefore the data of a map BC2 → BG, which is the data
of a group homomorphism C2 → G. It follows by direct calculation that any
C2-action by E∞-ring maps is determined by its effect on homotopy groups.
The Real orientation MUR → ER(n) → Ê(n) determines that the C2-action
we have constructed is the one that acts by the formal inverse, proving Theo-
rem 1.6.

Remark 5.1 Our discussion of algebras with involution, and our use of the
Goerss–Hopkins–Miller Theorem, may both be entirely avoided if one only
wants to know that the C2-action on Ê(n) is the Galois one in the homotopy
category of spectra. It is, however, not a priori clear that there is a unique lift
of this homotopy C2-action on Ê(n) to a fully coherent C2-action.

To prove Theorem1.3, we need to prove that there is a Real orientation of the
Lubin–Tate theory E(k,G) associated to any finite height formal group G over
a perfect field k of characteristic 2. If the formal group G is defined over F2,
then we may use a Real orientation of some Ê(n) in order to orient E(k,G). In
general, there will be a map of Lubin–Tate theories E(k,G) −→ E(k̄,G), where

k̄ is the algebraic closure of k and G is the pushforward of G to this algebraic
closure. Since any two height n formal groups over an algebraically closed field
are isomorphic, G is isomorphic to a Honda formal group defined over F2. We
will see in Sect. 6.1 that this forces the C2-equivariant homotopy fixed point
spectral sequence of E(k̄,G) to be regular in the sense of [45, Definition 6.1].

In particular, πC2∗ρ−1E(k̄,G)
∼= 0 and π

C2∗ρ E(k̄,G) is a copy of the non-equivariant
homotopy groups π2∗E(k,G). The latter statement implies that E(k̄,G) is a free
module over E(k,G), and so in particular E(k,G) is a retract of E(k̄,G). The former

statement then tells us that πC2∗ρ−1E(k,G)
∼= 0, so that there are no obstructions

to making a Real orientation of E(k,G) ( [35, Lemma 3.3]).

Remark 5.2 Since writing the first version of this paper, Lennart Meier has
very cleanly formulated [45] the notion of an even ring spectrum having a
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regular homotopy fixed point spectral sequence. He generously attributes [45,
Example 6.11] to this work the theorem that Lubin–Tate E(k,G) have regular
homotopy fixed point spectral sequences, but in fact we do not quite prove
this here. Rather, we prove in Sect. 6.1 only that E(k,G) has regular C2-HFPSS
when G is pushed forward from a formal group defined over F2. Nonetheless,
Meier’s Proposition 6.5 in [45] applies to show that, since the C2-HFPSS
for E(k̄,G) is regular, so must be the C2-HFPSS for E(k,G). Thus, it is really
the combination of our work here with [45, Proposition 6.5] that implies the
regularity of the C2-HFPSS for all Lubin–Tate theories.

IfG is a finite subgroup of theE∞-ring automorphisms of E(k,G) containing
the central C2, there then arises a sequence of homotopy ring maps

NG
C2
MUR −→ NG

C2
E(k,G) −→ E(k,G).

The existence of the last homomorphism follows from the fact that the norm is
an adjunction between E∞-rings with C2-action and E∞-rings with G-action
(see [35, §2.2]).

6 Real Landweber Exactness and proof of Theorem 1.4

In the remainder of the paper, for simplicity, we use a specificMorava E-theory
En that is defined via a lift of the height n Honda formal group law over F2n .
Its homotopy groups are

π∗En = W (F2n )[[u1, u2, . . . , un−1]][u±].
and the 2-typical formal group law over π∗En is determined by the map
π∗BP → π∗En sending

vi �→
⎧
⎨
⎩
uiu2

i−1 1 ≤ i ≤ n − 1
u2

n−1 i = n
0 i > n.

Our results are all easily generalized to other variants of Morava E-theory.
In this section, we will show that En , as a C2-spectrum, is Real Landweber

exact in the sense of [35]. We do so by completely computing the RO(C2)-
graded homotopy fixed point spectral sequence of En .
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6.1 RO(C2)-graded homotopy fixed point spectral sequence of En

So far, we have constructed a C2-equivariant map from

MUR → En.

Here, the C2-action on MUR is by complex conjugation, and the C2-action
on En is by the Goerss–Hopkins–Miller E∞-action. The existence of this
equivariant map will help us in computing the C2-homotopy fixed point spec-
tral sequence of En . In particular, the map MUR → En induces the map of
spectral sequences

C2- HFPSS(MUR) → C2- HFPSS(En)

of C2-equivariant homotopy fixed point spectral sequences. Since both the
complex conjugation action on MUR and the Galois C2-action on En are by
E∞-ring maps, both spectral sequences are multiplicative (the map between
them is not necessarily a multiplicative map, but this is perfectly fine). At
this point, we will replace MUR by BPR because everything is 2-local, and
argument below is exactly the same regardless of whether we are using MUR

or BPR. Moreover, since MUR splits as a wedge of suspensions of BPR’s, the
homotopy fixed point spectral sequence of BPR has the advantage of having
fewer classes thanMUR while still retaining the important 2-local information
that we need.

By [35, Corollary 4.7], the E2-pages of the RO(C2)-graded homotopy fixed
point spectral sequences of BPR and En are

Es,t
2 (BPhC2

R
) = Z[v̄1, v̄2, . . .] ⊗ Z[u±

2σ , aσ ]/(2aσ )

Es,t
2 (EhC2

n ) = W (F2n )[[ū1, ū2, . . . , ūn−1]][ū±] ⊗ Z[u±
2σ , aσ ]/(2aσ ).

On the E2-page, the class v̄i is in stem |v̄i | = iρ for i ≥ 1; the class ūi is
in stem |ūi | = 0 for 1 ≤ i ≤ n − 1; and the class ū is in stem |ū| = ρ. The
classes u2σ and aσ are in stems 2 − 2σ and −σ , respectively. They can be
defined more generally as follows:

Definition 6.1 (aV and uV ) Let V be a representation of G of dimension d.

(1) aV ∈ πG
−V S

0 is themap corresponding to the inclusion S0 ↪→ SV induced
by {0} ⊂ V .

(2) If V is oriented, uV ∈ πG
d−V HZ is the class of the generator of

HG
d (SV ; HZ).

Proof of Theorem 1.4 In [53], Hu and Kriz completely computed the C2-
homotopy fixed point spectral sequence of MUR and BPR. In particular, the
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classes v̄i for all i ≥ 1 and the class aσ are permanent cycles. All the differ-
entials are determined by the differentials

d2k+1−1(u
2k−1

2σ ) = v̄ka
2k+1−1
σ , k ≥ 1

and multiplicative structures (see Figs. 1, 2, and 3). There are no nontrivial
extension problems on the E∞-page.

On the E2-page, the map

C2- HFPSS(BPR) → C2- HFPSS(En)

of spectral sequences sends the classes u2σ �→ u2σ , aσ �→ aσ , and

v̄i �→
⎧
⎨
⎩
ūi ū2

i−1 1 ≤ i ≤ n − 1
ū2

n−1 i = n
0 i > n.

We will first prove that the classes ū1, . . ., ūn−1, ū±, and aσ are permanent
cycles in C2- HFPSS(En). Since the classes v̄i , i ≥ 1, and aσ are perma-
nent cycles in C2- HFPSS(BPR), their images are also permanent cycles in
C2- HFPSS(En). This shows that the classes ūi ū2

i−1, 1 ≤ i ≤ n − 1, ū2
n−1,

and aσ are permanent cycles in C2- HFPSS(En).
Now, consider the non-equivariant map

u : S2 → i∗e En.

Fig. 1 Important d3-differentials and surviving torsion classes on the E3-page
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−32 −28 −24 −20 −16 −12 −8 −4 0 4 8 12 16 20 24 28 32 36 40 44 48
0

v̄2a
3
σ

v̄22aσ
6

v̄42u
4
2σa4

σ

u−2
2σ a4

σ

u−4
2σ a8

σ

u−6
2σ a12

σ

u−8
2σ a16

σ

u−10
2σ a20

σ

u−12
2σ a24

σ

u−14
2σ a28

σ

Fig. 2 Important d7-differentials and surviving torsion classes on the E7-page

Applying the Hill–Hopkins–Ravenel norm functor NC2
e (−) ( [31]) produces

the equivariant map

NC2
e (u) = ū2 : S2ρ → NC2

e i∗e En → En,

where the last map is the co-unit map of the norm–restriction adjunction

NC2
e : Commutative C2-spectra � Commutative spectra : i∗e .

Since the element NC2
e (u) = ū2 is an actual element inπ

C2
� En , it is a permanent

cycle. This, combined with the fact that ū2
n−1 is a permanent cycle, shows

that ū = ū2
n−1 · (ū−2)2

n−1
is a permanent cycle. It follows from the previous

paragraph that the classes ū1, . . ., ūn−1, and ū± are all permanent cycles in
C2- HFPSS(En).

It remains to produce the differentials in C2- HFPSS(En). We will show by
induction on k, 1 ≤ k ≤ n, that all the differentials in C2- HFPSS(En) are
determined by the differentials

d2k+1−1(u
2k−1

2σ ) = ūk ū
2k−1a2

k+1−1
σ , 1 ≤ k ≤ n − 1,

d2n+1−1(u
2n−1

2σ ) = ū2
n−1a2

n+1−1
σ , k = n

and multiplicative structures.
For the base case, when k = 1, there is a d3-differential

d3(u2σ ) = v̄1a
3
σ
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−32 −28 −24 −20 −16 −12 −8 −4 0 4 8 12 16 20 24 28 32 36 40 44 48
0

v̄3a
7
σ

v̄23a
14
σ

v̄43u
8
2σa12

σ

u−4
2σ a8

σ

u−8
2σ a16

σ

u−12
2σ a24

σ

Fig. 3 Important d15-differentials and surviving torsion classes on the E15-page

in C2- HFPSS(BPR). Under the map

C2- HFPSS(BPR) → C2- HFPSS(En)

of spectral sequences, the the source is mapped to u2σ and the target is mapped
to ū1ūa3σ . It follows that there is a d3-differential

d3(u2σ ) = ū1ūa
3
σ

in C2- HFPSS(En). Multiplying this differential by the permanent cycles pro-
duced before determines the rest of the d3-differentials. These are all the
d3-differentials because there are no more room for other d3-differentials after
these differentials.

Suppose now that the induction hypothesis holds for all 1 ≤ k ≤ r −1 < n.
For degree reasons, after the d2r−1-differentials, the next possible differential
is of length d2r+1−1. In C2- HFPSS(BPR), there is a d2r+1−1-differential

d2r+1−1(u
2r−1

2σ ) = v̄ra
2r+1−1
σ .

The map

C2- HFPSS(BPR) → C2- HFPSS(En)
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of spectral sequences sends the source to u2
r−1

2σ and the target to

v̄ra
2r+1−1
σ �→

{
ūr ū2

r−1a2
r+1−1

σ r < n

ū2
n−1a2

n+1−1
σ r = n.

In particular, both images are not zero. Moreover, the image of the target must
be killed by a differential of length at most 2r+1 − 1. By degree reasons, the
image of the target cannot be killed by a shorter differential. It follows that
there is a d2r+1−1-differential

d2r+1−1(u
2r−1

2σ ) =
{
ūr ū2

r−1a2
r+1−1

σ r < n

ū2
n−1a2

n+1−1
σ r = n.

The rest of the d2r+1−1-differentials are produced by multiplying this differ-
ential with permanent cycles. After these differentials, there are no room for
other d2r+1−1-differentials by degree reasons. This concludes the proof of the
theorem. ��
Remark 6.2 As an example, Figs. 4, 5, 6 and 7 show the differentials in the
integer-graded part of C2- HFPSS(E3). The spectral sequence converges after
the E15-page and we learn that π∗EhC2

3 is 32-periodic.

6.2 Real Landweber Exactness

Wewill now use theC2-homotopy fixed point spectral sequence of En to show
that En is Real Landweber exact. First, we will recall some definitions and
theorems from [35].

Definition 6.3 ([7]) Let E be a C2-equivariant homotopy commutative ring
spectrum.AReal orientation of E is a class x̄ ∈ Ẽρ

C2
(CP

∞)whose restriction
to

Ẽρ
C2

(CP
1) = Ẽρ

C2
(Sρ) ∼= E0

C2
(pt)

is the unit. Here, we are viewing CP
n as a C2-space via complex conjugation.

By [53, Theorem 2.25], Real orientations of E are in one-to-one cor-
respondence with homotopy commutative maps MUR → E of C2-ring
spectra.
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−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 48
0

F8[[ū1,ū2]]

Fig. 4 d3-differentials in the integer graded part of C2- HFPSS(E3)

−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 48
0

F8[[ū2]]

Fig. 5 d7-differentials in the integer graded part of C2- HFPSS(E3)
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−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 48
0

F8

Fig. 6 d15-differentials in the integer graded part of C2- HFPSS(E3)

−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 48
0

ν
η2

η

σ
ν2

σ2

κ̄

κ̄2

Fig. 7 E∞-page of the integer graded part of C2- HFPSS(E3)
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Definition 6.4 ([35,Definition3.1]).AC2-spectrum ER is even ifπkρ−1ER =
0 for all k ∈ Z. It is called strongly even if additionally πkρER is a constant
Mackey functor for all k ∈ Z, i.e., if the restriction

π
C2
kρ ER → πe

kρER ∼= πe
2k ER

is an isomorphism.

Even spectra satisfy very nice properties. In particular, Hill–Meier further
proved ( [35, Lemma 3.3]) that if a C2-spectrum ER is even, then ER is Real
orientable. They proved this by showing that all the obstructions to having a
Real orientation lie in the groups π2k−1ER and π

C2
kρ−1ER, which are all 0 by

definition.

Definition 6.5 ([35, Definition 3.5]). Let ER be a strongly even C2-spectrum
with underlying spectrum E . Then ER is called Real Landweber exact if for
every Real orientation MUR → ER the induced map

MUR�(X) ⊗MU2∗ E2∗ → ER�(X)

is an isomorphism for every C2-spectrum X .

Here, we are treatingMUR� as a gradedMU2∗-module because the restric-
tion map (MUR)kρ → MU2k is an isomorphism, and it defines a graded ring
morphism MU2∗ → MUR� by sending elements of degree 2k to elements of
degree kρ.

Theorem 6.6 ([35], Real Landweber exact functor theorem) Let ER be a
strongly even C2-spectrum whose underlying spectrum E is Landweber exact.
Then ER is Real Landweber exact.

For En , its underlying spectrum is clearly Landweber exact. In light of
Theorem 6.6, we prove the following:

Theorem 6.7 En is a Real Landweber exact spectrum.

Proof By Theorem 6.6, it suffices to show that En is strongly even. By
Theorem 1.4, the classes ū1, . . ., ūn−1, and ū± are permanent cycles in
C2- HFPSS(En). The restriction of these classes to πe

2∗En are u1, . . ., un−1,

and u±, respectively. Furthermore, there are no other classes in π
C2∗ρ En . This

shows that the restriction map

πC2∗ρ En → πe
2∗En

is an isomorphism, hence πkρEn is a constant Mackey functor for all k ∈ Z.
Classically, we already know that πe

2k−1En = 0. The following lemma
shows that πkρ−1En = 0 for all k ∈ Z. ��
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Lemma 6.8 The groups π
C2
kρ−1En = 0 for all k ∈ Z.

Proof InC2- HFPSS(En), the classes ū± are permanent cycles. Since |ū| = ρ,
multiplying by ūk produces an isomorphism

π
C2
� En

∼=→ π
C2
�+kρEn.

It follows that in order to show π
C2
kρ−1En = 0 for k ∈ Z, it suffices to prove

π
C2−1En = 0.
Recall that the E2-page of C2- HFPSS(En) is

Es,t
2 (EhC2

n ) = W (F2n )[[ū1, . . . , ūn−1]][ū±] ⊗ Z[u±
2σ , aσ ]/(2aσ ).

As in Fig. 7, every class on the 0-line is of the form

W (F2n )[[ū1, . . . , ūn−1]]ūaub2σ ,

where a, b ∈ Z, and every class of filtration greater than 0 is of the form

F2n [[ū1, . . . , ūn−1]]ūaub2σacσ ,

where a, b ∈ Z, and c > 0. For degree reasons, the classes on the (−1)-stem
are all of the form

F2n [[ū1, . . . , ūn−1]]ū2�−1u−�
2σ a

4�−1
σ ,

where � ≥ 1. The relevant differentials that have source or target in the (−1)-
stem are all generated by

d2r+1−1(u
−2r−1

2σ ) = d2r+1−1(u
−2r
2σ · u2r−1

2σ )

= u−2r
2σ · d2r+1−1(u

2r−1

2σ )

=
{
ūr ū2

r−1u−2r
2σ a2

r+1−1
σ 0 < r < n

ū2
n−1u−2n

2σ a2
n+1−1

σ r = n.

We will analyze these differentials one-by-one:

(1) The relevant d3-differentials are all generated by the differential

d3(u
−1
2σ ) = ū1ūu

−2
2σ a

3
σ .

The classes at ū2�−1u−�
2σ a

4�−1
σ , with � ≡ 1 (mod 2), are the sources of

these differentials, and hence they die after the E3-page. The classes at
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ū2�−1u−�
2σ a

4�−1
σ , with � ≡ 0 (mod 2), are the targets. These differentials

quotient out the principal ideal (ū1) at these targets. The remaining classes
at these targets are of the form

F2n [[ū2, . . . , ūn−1]]ū2�−1u−�
2σ a

4�−1
σ ,

with � ≡ 0 (mod 2).
(2) The relevant d7-differentials are all generated by the differential

d7(u
−2
2σ ) = ū2ū

3u−4
2σ a

7
σ .

The classes at ū2�−1u−�
2σ a

4�−1
σ , with � ≡ 2 (mod 4), are the sources of

these differentials, and hence they die after the E7-page. The classes at
ū2�−1u−�

2σ a
4�−1
σ , with � ≡ 0 (mod 4), are the targets. These differentials

quotient out the principal ideal (ū2) at these targets. The remaining classes
at these targets are of the form

F2n [[ū3, . . . , ūn−1]]ū2�−1u−�
2σ a

4�−1
σ ,

with � ≡ 0 (mod 4).
(3) In general, for 0 < r < n, the relevant d2r+1−1-differentials are all

generated by the differential

d2r+1−1(u
−2r−1

2σ ) = ūr ū
2r−1u−2r

2σ a2
r+1−1

σ .

The classes at ū2�−1u−�
2σ a

4�−1
σ , with � ≡ 2r−1 (mod 2r ), are the sources

of these differentials, and hence they die after the E2r+1−1-page. The
classes at ū2�−1u−�

2σ a
4�−1
σ , with � ≡ 0 (mod 2r ), are the targets. These

differentials quotient out the principal ideal (ūr ) at these targets. The
remaining classes at these targets are of the form

F2n [[ūr+1, . . . , ūn−1]]ū2�−1u−�
2σ a

4�−1
σ ,

with � ≡ 0 (mod 2r ).
(4) The relevant d2n+1−1-differentials are all generated by the differential

d2n+1−1(u
−2n−1

2σ ) = ū2
n−1u−2n

2σ a2
n+1−1

σ .

The classes at ū2�−1u−�
2σ a

4�−1
σ , with � ≡ 2n−1 (mod 2n), are the sources

of these differentials, and hence they die after the E2n+1−1-page. The
classes at ū2�−1u−�

2σ a
4�−1
σ , with � ≡ 0 (mod 2n), are the targets. They

also die after these differentials because the only classes at these targets
now are ū2�−1u−�

2σ a
4�−1
σ .
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It follows that every class at the (−1)-stem vanish after the E2n+1−1-page.

This implies π
C2−1En = 0, as desired. ��

7 Hurewicz images

In this section, we will prove that π∗EhC2
n detects the Hopf elements, the

Kervaire classes, and the κ̄-family. The case when n = 1 and n = 2 are
previously known. When n = 1, E1 = KU∧

2 and EhC2
1 = KO∧

2 . It is well-
known that π∗KO∧

2 detects η ∈ π1S and η2 ∈ π2S ( [8]). When n = 2, the

Mahowald–Rezk transfer argument ( [48]) shows that π∗EhC2
2 detects η, η2,

ν ∈ π3S, ν2 ∈ π6S, and κ̄ ∈ π20S.
The Hopf elements are represented by the elements

hi ∈ Ext1,2
i

A∗ (F2, F2)

on the E2-page of the classical Adams spectral sequence at the prime 2. By
Adam’s solution of the Hopf invariant one problem [4], only h0, h1, h2, and
h3 survive to the E∞-page. By Browder’s work [15], the Kervaire classes
θ j ∈ π2 j+1−2S, if they exist, are represented by the elements

h2j ∈ Ext2,2
j+1

A∗ (F2, F2)

on the E2-page. For j ≤ 5, h2j survive. The case θ4 ∈ π30S is due to Barratt–
Mahowald–Tangora [13,49], and the case θ5 ∈ π62S is due to Barratt–Jones–
Mahowald [12]. The fate of h26 is unknown. Hill–Hopkins–Ravenel’s result
[31] shows that the h2j , for j ≥ 7, do not survive to the E∞-page.

To introduce the κ̄-family, we appeal to Lin’s complete classification of
Ext≤4,t

A∗ (F2, F2) in [40]. In his classification, Lin showed that there is a family
{gk | k ≥ 1} of indecomposable elements with

gk ∈ Ext4,2
k+2+2k+3

A∗ (F2, F2).

The first element of this family, g1, is in bidegree (4, 24). It survives the
Adams spectral sequence to become κ̄ ∈ π20S. It is for this reason that we
name this family the κ̄-family. The element g2 also survives to become the
element κ̄2 ∈ π44S. For k ≥ 3, the fate of gk is unknown.

In [41], the second author, together with Li,Wang, andXu, proved detection
theorems for the Hurewicz images of MUC2

R
≈ MUhC2

R
and BPC2

R
≈ BPhC2

R

(the equivalences between the C2-fixed points and the C2-homotopy fixed
points for MUR and BPR are due to Hu and Kriz [53, Theorem 4.1]).
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Theorem 7.1 (Li–Shi–Wang–Xu, Detection Theorems for MUR and BPR)
The Hopf elements, the Kervaire classes, and the κ̄-family are detected by
the Hurewicz maps π∗S → π∗MUC2

R
∼= π∗MUhC2

R
and π∗S → π∗BPC2

R
∼=

π∗BPhC2
R

.

Given the discussion above, Theorem 7.1 shows that the elements η, ν, σ ,
and θ j , for 1 ≤ j ≤ 5, are detected by π

C2∗ MUhC2
R

and π
C2∗ BPhC2

R
. The last

unknown Kervaire class θ6 and the classes gk for k ≥ 3 will also be detected,
should they survive the Adams spectral sequence.

The proof of Theorem 7.1 requires the C2-equivariant Adams spectral
sequence developed by Greenlees [25–27] and Hu–Kriz [53]. Since MUR

splits as a wedge of suspensions of BPR 2-locally, we only need to focus on
BPR. There is a map of Adams spectral sequences

classical Adams spectral sequence of S (π∗S)∧2

C2-equivariant Adams spectral sequence of S (π
C2
� F(EC2+, S))∧2

C2-equivariant Adams spectral sequence of BPR (π
C2
� F(EC2+, BPR))∧2 .

It turns out that for degree reasons, the C2-equivariant Adams spectral
sequence for BPR degenerates at the E2-page. From this, Theorem 7.1 follows
easily from the following algebraic statement:

Theorem 7.2 (Li–Shi–Wang–Xu, Algebraic Detection Theorem) The images
of the elements {hi | i ≥ 1}, {h2j | j ≥ 1}, and {gk | k ≥ 1} on the E2-page of
the classical Adams spectral sequence of S are nonzero on the E2-page of the
C2-equivariant Adams spectral sequence of BPR.

The proof of Theorem 7.2 requires an analysis of the algebraic maps

ExtA∗(F2, F2) → ExtAcc
�(Hc

�, Hc
�) → Ext�cc

�(Hc
�, Hc

�).

These are the maps on the E2-pages of the Adams spectral sequences above.
Here, A∗ := (HF2 ∧ HF2)∗ is the classical dual Steenrod algebra; Hc

� :=
F(EC2+, HF2)� is the Borel C2-equivariant Eilenberg–MacLane spectrum;
Acc

� := F(EC2+, HF2 ∧ HF2)� is the Borel C2-equivariant dual Steenrod
algebra; and �cc

� is a quotient of Acc
�. Hu and Kriz [53] studied Acc

� and
completely computed the Hopf algebroid structure of (Hc

�,Acc
�). Using their

formulas, it is possible to compute the map

(HF2,A∗) → (Hc
�,Acc

�) → (Hc
�, �cc

�)
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ofHopf-algebroids. Filtering theseHopf algebroids compatibly producesmaps
of May spectral sequences:

May spectral sequence of S ExtA∗(F2, F2)

C2-equivariant May spectral sequence of S ExtAcc
�(Hc

�, Hc
�)

C2-equivariant May spectral sequence of BPR Ext�cc
�(Hc

�, Hc
�).

There is a connection between the C2-equivariant May spectral sequence
of BPR and the homotopy fixed point spectral sequence of BPR:

Theorem 7.3 (Li–Shi–Wang–Xu) TheC2-equivariantMay spectral sequence
of BPR is isomorphic to the associated-graded homotopy fixed point spectral
sequence of BPR as RO(C2)-graded spectral sequences.

By the “associated-graded homotopy fixed point spectral sequence”, we
mean that whenever we see a Z-class on the E2-page, we replace it by a
tower of Z/2-classes. Since the equivariant Adams spectral sequence of BPR

degenerates, the E∞-page of the C2-equivariant May spectral sequence of
BPR is an associated-graded of π

C2
� F(EC2+, BPR). The isomorphism in

Theorem 7.3 allows us to identify the classes in C2- HFPSS(En) that detects
the Hopf elements, the Kervaire classes, and the κ̄-family. This is crucial for
tackling detection theorems of EhC2

n .
Using Hu–Kriz’s formulas, one can compute the maps on the E2-pages

of the May spectral sequences above, as well as all the differentials in the
C2-equivariant May spectral sequence of BPR.

Theorem 7.4 (Li–Shi–Wang–Xu) On the E2-page of the map

MaySS(S) → C2-MaySS(S) → C2-MaySS(BPR) ∼= C2- HFPSS(BPR),

The classes

hi �→ v̄i a
2i−1
σ ,

h2j �→ v̄2j a
2(2 j−1)
σ ,

h42k �→ v̄4k+1u
2k+1

2σ a4(2
k−1)

σ .

These classes all survive to the E∞-page in C2- HFPSS(BPR).
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Since En is Real oriented and everything is 2-local, a Real orientation gives
us a C2-equivariant homotopy commutative map

BPR → En,

which induces a multiplicative map

C2- HFPSS(BPR) → C2- HFPSS(En)

of spectral sequences. On the E2-page, this map sends the classes u2σ �→ u2σ ,
aσ �→ aσ , and

v̄i �→
⎧
⎨
⎩
ūi ū2

i−1 1 ≤ i ≤ n − 1
ū2

n−1 i = n
0 i > n.

(1)

Theorem 7.5 (Detection Theorem for EhC2
n )

(1) For 1 ≤ i, j ≤ n, if the element hi ∈ Ext1,2
i

A∗ (F2, F2) or h2j ∈
Ext2,2

j+1

A∗ (F2, F2) survives to the E∞-page of the Adams spectral

sequence, then its image under the Hurewicz map π∗S → π∗EhC2
n is

nonzero.
(2) For 1 ≤ k ≤ n − 1, if the element gk ∈ Ext4,2

k+2+2k+3

A∗ (F2, F2) survives
to the E∞-page of the Adams spectral sequence, then its image under the
Hurewicz map π∗S → π∗EhC2

n is nonzero.

Proof By Theorem 7.4 and (1), the composite map

MaySS(S) → C2-MaySS(BPR) ∼= C2- HFPSS(BPR) → C2- HFPSS(En)

on the E2-pages sends the classes

hi �→ v̄i a
2i−1
σ �→

⎧⎪⎨
⎪⎩
ūi ū

2i−1a2
i−1

σ 1 ≤ i ≤ n − 1
ū2

n−1a2
n−1

σ i = n
0 i > n,

h2j �→ v̄2j a
2(2 j−1)
σ �→

⎧
⎪⎨
⎪⎩
ū2j ū

2(2 j−1)a2(2
j−1)

σ 1 ≤ j ≤ n − 1

ū2(2
n−1)a2(2

n−1)
σ j = n

0 j > n,

h42k �→ v̄4k+1u
2k+1

2σ a4(2
k−1)

σ �→

⎧
⎪⎨
⎪⎩
ū4k+1ū

4(2k+1−1)u2
k+1

2σ a4(2
k−1)

σ 1 ≤ k ≤ n − 2

ū4(2
n−1)u2

n

2σ a
4(2n−1−1)
σ k = n − 1

0 k > n − 1.
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We know all the differentials in C2- HFPSS(En) from Sect. 6. From these
differentials, it is clear that all the nonzero images on the E2-page survive to
the E∞-page to represent elements in π∗EhC2

n . The statement of the theorem
follows. ��
Corollary 7.6 (Detection Theorem for EhG

n ) Let G be a finite subgroup of the
Morava stabilizer group Gn containing the centralizer subgroup C2.

(1) For 1 ≤ i, j ≤ n, if the element hi ∈ Ext1,2
i

A∗ (F2, F2) or h2j ∈
Ext2,2

j+1

A∗ (F2, F2) survives to the E∞-page of the Adams spectral

sequence, then its image under the Hurewicz map π∗S → π∗EhG
n is

nonzero.
(2) For 1 ≤ k ≤ n − 1, if the element gk ∈ Ext4,2

k+2+2k+3

A∗ (F2, F2) survives
to the E∞-page of the Adams spectral sequence, then its image under the
Hurewicz map π∗S → π∗EhG

n is nonzero.

Proof Consider the following factorization of the unit map S → EhC2
n :

EhG
n = F(EG+, En)

G F(EG+, En)
C2 = EhC2

n

S

The claims now follow easily from Theorem 7.5. ��
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