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IWASAWA THEORY FOR K(1)-LOCAL SPECTRA

REBEKAH HAHN AND STEPHEN MITCHELL

Abstract. The Iwasawa algebra Λ is a power series ring in one variable over
the p-adic integers. It has long been studied by number theorists in the con-
text of Zp-extensions of number fields. It also arises, however, as a ring of
operations in p-adic topological K-theory. In this paper we study K(1)-local
stable homotopy theory using the structure theory of modules over the Iwa-
sawa algebra. In particular, for p odd we classify K(1)-local spectra up to
pseudo-equivalence (the analogue of pseudo-isomorphism for λ-modules) and
give an Iwasawa-theoretic classification of the thick subcategories of the weakly
dualizable spectra.

1. Introduction

Fix a prime p and let K denote the p-completed complex K-theory spectrum.
The ring of operations K0K can be identified with a pro-group ring Zp[[Γ′]]. Here
Γ′ is the group of p-adic Adams operations, isomorphic to Z×

p . It splits uniquely as
a product Γ×∆, where Γ corresponds to the units congruent to 1 mod p, and ∆ to
the (p− 1)-st roots of unity (if p is odd) or {±1} (if p = 2). Furthermore, Zp[[Γ]] is
isomorphic to the power series ring Λ = Zp[[T ]]: the Iwasawa algebra. Then for any
spectrum X and n ∈ Z, KnX is a compact module over the compact topological
ring Λ[∆].

The Iwasawa algebra has long been studied by number theorists in connection
with Zp-extensions of number fields. In particular, there is a beautiful classification
theorem for finitely-generated Λ-modules that has been exploited to great advan-
tage. It is exactly like the classical theorem for modules over a principal ideal
domain, except that the classification only holds up to pseudo-isomorphism—the
morphisms with finite kernel and cokernel.

In view of the isomorphism K0K ∼= Λ′, the structure theory of Λ-modules can
be applied to K-theory. In fact this observation is not new; it was pointed out
thirty years ago by Bousfield [2] and Ravenel [18]. Somewhat surprisingly, however,
the idea seems not to have been pursued further. The purpose of this paper is to
consider K-theory systematically in terms of Iwasawa modules.

We work throughout in the category LK(1)S of K(1)-local spectra. Loosely
speaking, this category is obtained by formally inverting all morphisms of spectra
that induce an isomorphism on K∗. Since K∗ is periodic, we need only consider
K · = K0⊕K1. We call a morphism f : X−→Y in LK(1)S a pseudo-equivalence if its
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5208 R. HAHN AND S. MITCHELL

cofibre Cf is small, in the sense that the functor [Cf ,−] takes arbitrary coproducts
to direct sums. This is equivalent to requiring that K ·Cf is finite, and hence
f is a pseudo-equivalence if and only if K ·f is a pseudo-isomorphism. However,
the definition as stated is conceptually illuminating, and suggests a number of
interesting generalizations.

In order to apply the classical theory of Iwasawa modules, we must first restrict
ourselves to the thick subcategory Lfin

K(1)S whose objects X have K ·X finitely-
generated over Λ. The objects of this category can be characterized in several
interesting ways: as the spectra whose homotopy groups are finitely-generated over
Zp; as the spectra X such that the natural topology on [−, X] is compact; and as
the objects that are weakly dualizable, i.e., the double duality map X−→D2X is
an equivalence. In this last characterization the functional dual DX = F(X, S0)
can be replaced by the Brown-Comenetz dual, a spectrum-level analogue of the
Pontrjagin dual. All this is explained in detail in §8.

We then obtain (1) a classification of objects in LK(1)S up to pseudo-equivalence,
and (2) a classification of the thick subcategories of Lfin

K(1)S in Iwasawa-theoretic
terms. For these results we assume p is odd. Part of the difficulty at p = 2 is that
even the pure algebra of modules over Λ[∆] is surprisingly complicated (see the
discussion in [16]). We plan to return to the 2-primary case in a future paper.

The classification up to pseudo-equivalence in (1) is what one would expect
(Theorem 9.3):

Theorem 1.1. Suppose p is odd. For any X ∈ Lfin
K(1)S, there are pseudo-equiva-

lences
X

∼−→ Y
∼←− Z,

with Z an “elementary” spectrum; in other words, K ·Z is an elementary Λ-module
(see §2 for the definition).

The thick subcategories are classified by the support of K ·X in Spec Λ′. We call
a subset of Spec Λ′ fit if it is closed under specialization and Tate twisting. Then
(Theorem 10.2):

Theorem 1.2. Suppose p is odd. The thick subcategories of Lfin
K(1)S are in bijective

correspondence with the fit subsets of Spec Λ′.

There are many interesting examples. For instance, one can start from a thick
subcategory—say the spectra with finite homotopy groups, or the strongly dualiz-
able objects—and then determine the corresponding fit subset. Conversely, one can
start with a fit subset—say the fit subset generated by the irreducible distinguished
polynomials, or by the semi-discrete primes—and then consider the corresponding
thick subcategory.

We emphasize that §4 through §8 are based on the elegant work of Hovey-
Palmieri-Strickland on axiomatic stable homotopy theory [13], and of Hovey-
Strickland on K(n)-local spectra [12]. In fact, in most cases both the results and
the proofs are specializations to n = 1 of more general results from the latter mem-
oir; our claims to originality in these sections are modest and few. Our justification
for including this material here is threefold: first, we needed to translate everything
into our Iwasawa-theoretic language. Second, the results of [12] often simplify con-
siderably when n = 1. We wanted to make our paper accessible without requiring
the reader to digest all two hundred pages of [12], [13]. Therefore we have provided



IWASAWA THEORY FOR K(1)-LOCAL SPECTRA 5209

a mix of complete proofs and explicit references. Third, we include several results
which, although probably known, are not treated explicitly in the literature.

Finally, we acknowledge that the term “Iwasawa theory” as used by number
theorists entails far more than the mere algebra of Λ-modules considered here. It
refers to the structure of certain specific modules arising in the study of number
fields, elliptic curves and so on, and to the various deep relationships—some proved,
some conjectural—between these modules and certain p-adic L-functions. However,
the topology and the number theory are connected through algebraic K-theory, for
example by taking X ∈ LK(1)S to be the localization of the algebraic K-theory
spectrum of a number ring. See [16].

Organization of the paper: §2 introduces the Iwasawa algebra, and the basic
structure theorem for its modules. §3 introduces p-adic K-theory, and reviews
some basic facts about p-completion and Ext-p-complete-abelian groups.

In §4 through §8 we study the K(1)-local homotopy category LK(1)S. As ex-
plained above, most of this material is translated directly from [12], [13] and also
[10].

In §9 we introduce the notion of pseudo-equivalence in LK(1)S, and prove the
classification theorem. In §10 we classify the thick subcategories of Lfin

K(1)S, with
numerous examples. Note that in §9 and §10, p is odd.

2. The Iwasawa algebra

In this section we introduce the Iwasawa algebra Λ and some basic properties of
its modules, as well as the related algebra Λ′. General references for this material
include [17] and [21]; see also the discussion in [16].

Let Γ′ denote the automorphism group of Z/p∞. Thus Γ′ is canonically iso-
morphic to the p-adic units Z×

p , with the isomorphism c : Γ′−→Z×
p given by

γ(x) = c(γ)x for γ ∈ Γ′, x ∈ Z/p∞. In fact, if A is any abelian group isomor-
phic to Z/p∞, we again have a canonical isomorphism Γ′ ∼= Aut A, defined in the
same way. In particular, Γ′ is canonically identified with the automorphism group
of the group of p -power roots of unity in any algebraically closed field of charac-
teristic different from p. Note also that there is a unique product decomposition
Γ′ = Γ×∆, where Γ corresponds under c to the units congruent to 1 mod p (resp.
1 mod 4) if p is odd (resp. p = 2), and ∆ corresponds to the p− 1-st roots of unity
(resp. ±1) if p is odd (resp. p = 2). The restriction of c to ∆ is denoted ω and
called the Teichmuller character.

If G is a profinite group, the associated pro-group ring Zp[[G]] is the inverse limit
of the ordinary group rings Zp[G/U ], U ranging over the open normal subgroups
of G. We write Λ for Zp[[Γ]] and Λ′ for Zp[[Γ′]]. Let γ0 be a topological generator
of Γ. To be specific, we take c(γ0) = 1 + p if p is odd, and c(γ0) = 5 if p = 2. Then
it was observed by Serre that there is an isomorphism of profinite rings

Zp[[Γ]] ∼= Zp[[T ]],

such that γ0 �→ T + 1. Note that Λ′ = Λ[∆].
The ring Λ is a regular noetherian local domain of Krull dimension two. In

particular, it has global dimension two, and every module over it admits a projective
resolution of length at most two. It is also complete with respect to its maximal
ideal m = (p, T ), with residue field Z/p, and therefore is a profinite topological ring.
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The height one prime ideals are all principal, and are of two types. First there is
the prime p, which plays a special role. Second, there are the prime ideals generated
by the irreducible distinguished polynomials f(T ). Here a polynomial f ∈ Zp[T ] is
distinguished if it is monic and f(T ) = Tn mod p, n = deg f . Note that each height
one prime is now equipped with a canonical generator. We will usually not bother
to distinguish between the ideal and its generator.

2.1. Modules over the Iwasawa algebra. An elementary cyclic module is a Λ-
module that is either free of rank one or of the form Λ/qi, where q is an irreducible
element; we can and will take q to be either p or an irreducible distinguished
polynomial. A finitely-generated Λ-module E is elementary if it is a direct sum of
elementary cyclic modules. The primes q and exponents i that appear are uniquely
determined by E, up to ordering.

A pseudo-isomorphism is a homomorphism of Λ-modules with finite kernel and
cokernel. For example, suppose f and g are relatively prime elements of Λ. Then
the natural homomorphism Λ/fg−→Λ/f ⊕ Λ/g is a pseudo-isomorphism.

The main classification theorem reads:

Theorem 2.1. Let M be a finitely-generated Λ-module. Then there is an elemen-
tary module E and a pseudo-isomorphism φ : M−→E. Up to isomorphism, E is
uniquely determined by M .

Remark. If M is a Λ-torsion module, then one can also find a pseudo-isomorphism
ψ : E−→M . In general, however, this is not true; if M is Λ-torsionfree but not
free, there is no pseudo-isomorphism from a free module to M .

Recall that the support of a module M , denoted Supp M , is the set of primes
q such that Mq �= 0. Note that Supp M is closed under specialization, i.e., if
q ∈ Supp M and q ⊂ q′, then q′ ∈ Supp M . For example, the nonzero finite
modules are the modules with support {m}, while the Λ-torsion modules are the
modules with (0) /∈ Supp M .

Now if E is the elementary module associated to M as above, we have

E = Λr ⊕ Λ/qi1
1 ⊕ ... ⊕ Λ/qis

s ,

where the qi’s are height one primes, not necessarily distinct. Thus E is uniquely
determined by its Λ-rank r and its torsion invariants ((q1, i1), ..., (qs, is)). Note that
the qi’s which occur, together with m, form the support of the Λ-torsion submodule
tM . It will be convenient to use the following terminology:

(i) the frequency of a prime q is the number of qj = q;
(ii) the exponent of q is the maximal ij occuring for qj = q;
(iii) the multiplicity of q is the sum of the ij ’s for qj = q.
We next summarize some properties of Λ-modules that will be used in the sequel.

For further information, see [17]. For example, the next proposition is 5.3.19 in [17].

Proposition 2.2. A Λ-module M has projective dimension less than or equal to
one if and only if M has no finite Λ-submodules.

Proposition 2.3. If M and N are finitely-generated Λ-modules, then Ext2Λ(M, N)
is finite.

Proof. Suppose first that M is finite. Then M is annihilated by some power of
the maximal ideal m. Hence ExtkΛ(M, N) is finite for all k, since it is a finitely-
generated Λ-module annihilated by a power of m. In the general case it follows that
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the finiteness of Ext2Λ(M, N) is invariant under pseudo-isomorphisms of M , and
we therefore reduce to the case when M is an elementary module. Since elementary
modules have projective dimension at most one, this completes the proof.

Proposition 2.4. Let N be a submodule of a finitely-generated free Λ-module M .
Then N is free if and only if M/N has no nonzero finite Λ-submodules.

Proof. Using Proposition 2.3 and the fact that Λ is a local ring, we have that N
is free ⇔ Ext1Λ(N, L) = 0 for every L ⇔ Ext2Λ(M/N, L) = 0 for every L ⇔ M/N

has no finite Λ-submodules.

Corollary 2.5. Any pseudo-isomorphism between finitely-generated free Λ-modules
is an isomorphism.

2.2. Tate twisting. Let M be a Λ-module. The n-th Tate twist M(n) has the
same underlying Zp-module, but with the Γ-action twisted by the rule

γ · x = c(γ)nγx.

If Zp has trivial Γ-action, then clearly

M(n) = M ⊗Zp
(Zp(n))

as Λ-modules. Thinking of Λ as the power series ring Zp[[T ]], we can interpret
this twisting in another way. Given any automorphism φ of Λ—where we mean
automorphism as topological ring—any module M can be twisted to yield a new
module Mφ in which λ·x = φ(λ)x. In particular, any linear substitution T �→ cT +d
with c, d ∈ Zp, c a unit and d = 0 mod p defines such an automorphism. Among
these we single out the case c = c0, d = c0 − 1. This automorphism will be denoted
τ and called the Tate automorphism, the evident point being that M(1) = Mτ .

Note that τ permutes the height one primes. In particular, we write τn = τn(T ).
Written as an irreducible distinguished polynomial, τn = (T − (cn

0 − 1)). These are
the Tate primes, which will play an important role in the sequel.

2.3. Modules over Λ′. Suppose first that p is odd. Then the entire theory of
finitely-generated Λ-modules extends in a straightforward way to Λ′-modules. The
point is that Λ′ = Λ[∆], and ∆ is finite of order prime to p . Hence Λ′ splits as a
direct product of topological rings into p−1 copies of Λ, and similarly for its category
of modules. Explicitly, there are idempotents ei ∈ Zp[∆] ⊂ Λ′, 0 ≤ i ≤ p − 2,
such that for any module M we have M =

⊕
eiM as Λ′-modules, with ∆ acting

on eiM as ωi. Hence we can apply the structure theory to the summands eiM
independently.

We also have Spec Λ′ =
∐i=p−2

i=0 Spec Λ. If q ∈ Spec Λ and n ∈ Z, we write
(q, n) for the prime q in the n-th summand, n of course being interpreted modulo
p − 1. Tate-twisting is defined as before, interpreting Λ′ as Zp[[Γ′]]. In terms
of the product decomposition above, this means that τ ′ permutes the factors by
(q, n) �→ (τ (q), n+1). Hence there are Tate primes τ ′

n in Λ′ defined by τ ′
n = (τn, n).

If p = 2, the situation is considerably more complicated, and indeed does not
seem to be documented in the literature. The trouble is that now ∆ has order 2.
Thus we still have that Λ′ is a noetherian, profinite, local ring, but it does not split
as a product of Λ’s, and modules over it can have infinite projective dimension. See
[16] for further discussion of the pseudo-isomorphism theory.
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3. p-adic K-theory

The spectra considered in this paper are usually p-complete, the only major
exception being that we occasionally switch to an equivalent category of p-torsion
spectra; see §4.2. Now if Y is a p-complete spectrum, the functor [−, Y ] takes values
in Ext-p-complete abelian groups. We review this category in §3.1; see [5], Ch. VI,
§2 for further information and references. In §3.2 we recall some basic facts and
notation concerning p-complete K-theory.

3.1. Ext-p-complete abelian groups. Recall that an abelian group A is Ext-p-
complete if

Hom (Z[
1
p
], A) = 0 = Ext (Z[

1
p
], A).

The full subcategory E of Ext-p-complete abelian groups can also be described
as the smallest abelian subcategory of the category A of all abelian groups that
contains the p-complete groups. Here “p-complete” means that the natural map
A−→limnA/pn is an isomorphism. Some further properties of Ext-p-complete
groups are summarized in the following proposition:

Proposition 3.1. a) For any abelian group A, Hom (Z/p∞, A) and Ext (Z/p∞, A)
are Ext-p-complete.

b) An Ext-p-complete group has no nonzero divisible subgroups.
c) The objects of E have a natural Zp-module structure.
d) E is closed under arbitary limits, and these are formed in A.
e) If A, B are Ext-p-complete, then so are Hom (A, B) and Ext (A, B).

The Ext-p-completion of an abelian group is eA = Ext (Z/p∞, A).

Proposition 3.2. a) The Ext-p-completion functor is idempotent with image E.
b) There is an exact sequence

0−→Div A−→A−→eA−→Ext (Z[
1
p
], A)−→0,

where Div A is the maximal divisible subgroup of A.
c) There is a short exact sequence

0−→div A−→eA−→Â−→0,

where div A is the subgroup of divisible elements. In particular, if A has no nonzero
divisible elements, then eA is just the usual p-completion of A.

Here we recall that a group B is divisible (meaning p-divisible, in our context)
if pB = B. On the other hand, an element x is divisible if x = 0 mod pn for all n.
For example, let A be the abelian group with generators x, y1, y2, ... and relations
px = 0, pnyn = x. Then A has no divisible subgroups, but its subgroup of divisible
elements is a copy of Z/p generated by x. Note also that A−→eA is injective, and
hence eA is an Ext-p-complete group with nonzero divisible elements.

Note that E is not closed under arbitrary direct sums. For example, the direct
sum of an infinite number of copies of Zp is not Ext-p-complete. Nevertheless, the
category E has its own intrinsic coproduct given by∐

α

Aα = e(
⊕

α

Aα).
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In general, infinite coproduct functors on an abelian category need not be exact.
For an interesting example directly related to our situation, see [11]. So it is worth
noting that coproducts are exact in E .

Proposition 3.3. For any index set I, the functor {Aα : α ∈ I} �→
∐

α Aα is
exact.

Proof. The coproduct in E is formed in two stages: first we take the ordinary direct
sum; this functor is exact. Then we apply Ext-p-completion, which is right exact
with left derived functor Hom (Z/p∞,−). But if B is any direct sum of Ext-p-
complete groups, Hom (Z/p∞, B) = 0. Hence the composite functor is exact.

Thus E also has all colimits, and these are created by first taking the colimit in
A and then applying Ext-p-completion. Unfortunately, however, filtered colimits
are not exact. In fact, even sequential colimits are only right exact. For example,
consider the evident short exact sequence of direct systems

0−→Z/p−→Z/pn+1−→Z/pn−→0

(in the first slot we have a sequence of Z/p’s connected by identity maps) whose
colimit in A gives

0−→Z/p−→Z/p∞−→Z/p∞−→0.

Applying Ext-p-completion leaves the first term untouched while killing the other
two.

Now suppose M is a compact Hausdorff Zp-module, where as always we assume
the module structure is continuous. Then M is a profinite abelian p-group (cf.
[17], Proposition 5.2.4) and hence is Ext-p-complete by Proposition 3.1d). Many
Ext-p-complete groups do not have this form: for example, any infinite profinite
group is uncountable, whereas any finite exponent group, whether countable or
not, is Ext-p-complete. And of course no profinite group can have nonzero divisible
elements.

Nevertheless, the category of compact Hausdorff Zp-modules and continuous ho-
momorphisms admits a forgetful functor to Ext-p-complete abelian groups that will
be exploited frequently in the sequel. One noteworthy point is that the continuous
hom groups are still Ext-p-complete, because the group of continuous homomor-
phisms between two profinite modules is an inverse limit of finite exponent groups.

Finally, we recall that for any spectra W, X, there is a natural short exact se-
quence

0−→Ext (Z/p∞, [W, X])−→[W, X∧]−→Hom (Z/p∞, [Σ−1W, X])−→0.

In particular, the hom-groups for p-complete spectra take values in E .

3.2. p-adic topological K-theory. All spectra are implicitly completed at p; in
particular, K denotes the p-completion of the periodic complex K-theory spectrum.
We will use the notation K ·X = K0X ⊕ K1X. Then the ring of operations K∗K
is completely determined by K ·K and has an elegant description in terms of the
Iwasawa algebra ([14]; see also [15]).

Proposition 3.4. K0K is isomorphic to Λ′. The isomorphism is uniquely de-
termined by the correspondence ψk ↔ γ with c(γ) = k (k ∈ Z, p prime to k).
Furthermore, K1K = 0.
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Using the idempotents ei ∈ Zp[∆], we obtain the classical splitting

K ∼=
p−2∨
i=0

eiK.

Recall that the zero-th summand is itself a (2p − 2)-periodic ring spectrum, called
the Adams summand and customarily denoted E(1); furthermore, eiK ∼= Σ2iE(1).
Smashing with the Moore spectrum yields a similar decomposition, whose Adams
summand e0K ∧ MZ/p is usually denoted K(1)—the first Morava K–theory.

Note also that K0S2n = Zp(n). More generally, K0(S2n ∧ X) = K0X(n). Thus
Tate twisting corresponds precisely to double suspension. Note also that the full
ring of operations can be written as a twisted tensor product

K∗K ∼= Λ′⊗̃K∗S0 = Λ′⊗̃Zp[β, β−1],

where β is the Bott class.
Let N = Σ−1MZ/p∞. By a classical theorem of Adams [1], we have:

Proposition 3.5. There is a natural isomorphism

KnX ∼= (Kn−1X ∧ N )#,

where # denotes Pontrjagin duality.

Corollary 3.6. The functors KnX take values in the category of compact Λ′-
modules and continuous homomorphisms.

Proof. The functor X �→ Kn−1(X ∧ N ) takes values in the category of discrete
torsion Λ′-modules. Pontrjagin duality then gives an equivalence from this category
to the category of compact Hausdorff Λ′-modules (see for example [17], Theorem
1.1.8).

In §8.3 we consider the general question of when [−, Y ] lifts to compact Λ′-
modules.

We conclude by recalling that for p = 2, the operations in real K-theory can also
be described in terms of the Iwasawa algebra.

Proposition 3.7. KO0KO ∼= Λ and KO∗KO ∼= Λ⊗̃KO∗S0.

4. The K(1)-local category

This section reviews the stable homotopy category LK(1)S. We also introduce
the notion of “quasi-small” object (§4.3), briefly discuss an equivalence of categories
LKStor

∼= LK(1)S (§4.2), and review the K-based Adams spectral sequence (§4.6).
The analysis of LK(1)S is continued in more detail in later sections.

4.1. Smash products and units. LK(1)S is a closed symmetric monoidal cate-
gory with compatible triangulation (see [13], Appendix A for the definitions). It
is important to note that the smash product of p-complete spectra need not be
p-complete, and hence the smash product of two objects X, Y in LK(1)S is defined
to be the K(1)-localization LK(1)(X ∧ Y ). When no confusion can result, we will
simply write X ∧ Y for this intrinsic smash product (see §4.2 for the only excep-
tion to this convention). In contrast, the function spectrum F (X, Y ) is already
K(1)-local.
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The unit object LK(1)S
0 and the localized Moore spectrum LK(1)MZ/p will

similarly be written as S0, MZ/p, respectively. With this notation, there are fibre
sequences in LK(1)S

S0−→K
T−→ K, S0−→KO

T−→ KO

for p odd, p = 2, respectively.
In particular, we find that S0 is in the thick subcategory generated by K. For

p = 2 this assertion depends on the well-known lemma:

Lemma 4.1. Suppose f : ΣkX−→X is nilpotent. Then X is in the thick subcate-
gory generated by the cofibre Cf .

Applying this to η : ΣKO−→KO, we have:

Proposition 4.2. KO is in the thick subcategory generated by K.

This yields the p = 2 case of our assertion above.

4.2. Complete spectra vs. torsion spectra. Let Stor denote the full subcate-
gory of p-torsion spectra. Then LK(Stor) = (LKS)tor, so we may use the notation
LKStor without ambiguity. Let N = Σ−1MZ/p∞. Then there are mutually inverse
equivalences of categories

(−) ∧ N : LK(1)S−→LKStor, F (N ,−) : LKStor−→LK(1)S.

These are equivalences of stable homotopy categories in the evident sense, pre-
serving unit objects, coproducts, smash products, etc. Note that in LKStor, smash
products and coproducts are formed in S, while products and function objects have
to be reflected back by smashing with N—exactly the opposite of what happens in
LK(1)S. See [16] for further discussion.

Note: When working in LKStor, the smash product is always the ordinary smash
product. Our convention that X ∧ Y means LK(1)(X ∧ Y ) only applies when
X, Y ∈ LK(1)S.

4.3. Coproducts. The category LK(1)S also has arbitrary coproducts, obtained
by K(1)-localizing the wedge. In this case the distinction between the two “wedges”
comes up frequently enough to warrant a separate notation:∐

α

Xα = LK(1)(
∨
α

Xα).

This dichotomy leads to two possible definitions of “small” object in LK(1)S.
Following [13], we reserve the term small for objects W such that the natural map⊕

α

[W, Xα]−→[W,
∐
α

Xα]

is an isomorphism for arbitrary collections Xα. We call W quasi-small if the natural
map

e(
⊕

α

[W, Xα])−→[W,
∐
α

Xα]

is an isomorphism. For example, MZ/p is small, whereas S0 is only quasi-small.
To see that S0 is quasi-small, note that since the Xα’s are p-complete,

Hom (Z/p∞,
⊕

π−1Xα) = 0.
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Hence
e(

⊕
π0Xα) ∼= π0(LK(1)(

∨
Xα)) = π0(

∐
Xα).

On the other hand,
⊕

π0Xα need not be p-complete; for example,
⊕∞

n=1 π0S
0 =⊕∞

n=1 Zp is not. Hence S0 is not small. We will consider this issue more systemat-
ically in later sections.

4.4. Localizing subcategories. Now recall that a subcategory is said to be local-
izing if it is thick and closed under arbitrary coproducts. The following important
fact is a special case of [12], Theorem 7.5.

Theorem 4.3. LK(1)S has no proper nontrivial localizing subcategories.

This theorem implies that a natural transformation of cohomology theories is an
isomorphism provided that is an isomorphism on a single object.

The proof involves a result of independent interest on cellular towers. Let A
be a collection of objects of LK(1)S and let Σ∗A denote the collection obtained
by adjoining all suspensions of objects of A. An A-cellular tower is a sequence
X0−→X1−→X2−→... such that the cofibre of each map Xn−→Xn+1 is a coproduct
of elements of Σ∗A. We say that a given X admits an A-cellular tower if there exists
an A-cellular tower as above and an equivalence

hocolimnXn

∼=−→ X.

Here the sequential homotopy colimit hocolimnXn is defined as the usual telescope,
formed as the cofibre the appropriate map

∐
Xn−→

∐
Xn.

Lemma 4.4. Any X in LK(1)S admits an MZ/p-cellular tower.

The lemma follows from an extremely general result ([13], Theorem 2.3.2). What
this reference actually proves is the following: let C be any triangulated category
with arbitrary coproducts (so small objects and sequential “homotopy colimits”
can be defined as above). Then A-cellular towers can be defined in the evident way,
and we have:

Lemma 4.5. Suppose A is a set of small objects in C with the property that if Z
is an object of C and [W, Z] = 0 for all W ∈ Σ∗A, then Z = ∗.

Then any object of C admits an A-cellular tower.

Thus Lemma 4.4 is a special case. Now let locX denote the smallest localizing
subcategory containing the object X. Then Lemma 4.4 yields the corollary:

Corollary 4.6. loc MZ/p = LK(1)S = loc S0.

It follows from the second equality above that any localizing subcategory is an
ideal. Now suppose D is a localizing subcategory containing a nontrivial object
X. Then K(1) ∧ X ∈ D and hence K(1) ∈ D. It follows that MZ/p ∈ D, using
Proposition 4.2 in the case p = 2. Hence D = LK(1)S by the corollary. This proves
Theorem 4.3.

4.5. LK(1)S as stable homotopy category. Recall from [13] the definition of an
algebraic stable homotopy category: This means a category C such that

(i) C is a triangulated category with a compatible closed symmetric monoidal
structure;

(ii) C has arbitrary coproducts;
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(iii) cohomology functors are representable;
(iv) there is a set A of small objects such that the only localizing subcategory

containing A is C.

Theorem 4.7. LK(1)S is an algebraic stable homotopy category.

Here we take A = {Σ∗MZ/p}. Item (iii), Brown representability, follows from
the corresponding fact in S or by a direct argument. The remaining items have
already been discussed above.

Note that a cohomology functor h∗ must take values in the Ext-p-complete
abelian groups E , since it is representable. This also follows directly from Lemma 4.4,
since E is closed under products.

Dually, any homology functor h∗ : LK(1)S−→A takes values in p-torsion groups.
This again follows from Lemma 4.4, since a homology functor by definition takes
coproducts to direct sums. Hence it is not surprising that Brown representability
for homology functors takes the following form ([12], Theorem 9.5).

Theorem 4.8. Any homology functor h : LK(1)S−→A is representable in the sense
that there is an object Y ∈ LK(1)S and a natural isomorphism

h(X) ∼= π0(X ∧ Y ∧N ).

Furthermore, any natural transformation h−→h′ between two such functors is in-
duced by a map Y −→Y ′ of the representing objects, unique up to phantom maps.

One can also consider E-valued homology functors; that is, exact functors h :
LK(1)S−→E that commute with arbitrary coproducts. Any object E ∈ LK(1)S
defines such a homology functor in the usual way: h(X) = π0(E ∧ X), using the
intrinsic smash product. However, these functors need not commute with filtered
or even sequential colimits of small objects (see [11], or the example in §3.1), which
limits their utility.

4.6. The K-based Adams spectral sequence. The K-based Adams spectral
sequence is discussed in [6], [12] and, in the form most directly relevant to this
paper, [16]. It has E2-term

Es,t
2 = ExtsΛ′(K ·X, K ·ΣtY )

and converges to [Σt−sY, X]. The Ext-groups are to be computed in the category of
compact topological Λ′-modules (see [17] for a general discussion of compact mod-
ules over pro-group rings). Continuous Pontrjagin duality gives an isomorphism
between this category and the category of discrete p-torsion Λ′-modules; further-
more, this correspondence fits perfectly with the equivalence of stable homotopy
categories LK(1)S ∼= LKStor, using Proposition 3.5. Hence it is very easy to move
back and forth between LK(1)S and compact Λ′-modules on the one hand, and
LKStor and discrete torsion Λ′-modules on the other.

In fact the convergence of the spectral sequence is uniform, in the following sense:
there is a d ≥ 0 such that the spectral sequence collapses at Ed and the d-th Adams
filtration vanishes. When p is odd, d = 3 and in fact the entire spectral sequence
is concentrated in s = 0, 1, 2.

When p = 2 one can take d = 6; cf. [16]. (Is this sharp? The examples we know
have d at most 5.) We note the following special cases with p = 2:

1. Suppose K ·X is acyclic as a Z2[∆]-module. Then by Shapiro’s lemma, Es,t
2 =

0 for s > 2. In other words, this case behaves formally like the odd primary case,
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with d = 3. This remark applies to any X after smashing with the mapping cone
of η, since K0Cη = Z2[∆] as a Z2[∆]-module and K1Cη = 0, and hence

K ·(X ∧ Cη) ∼= K ·X ⊗Z2
K ·Cη.

Note the module on the right is ∆-acyclic.
2. Take X = KO. Then another application of Shapiro’s lemma shows that

Es,t
2 = Hs(∆; K0ΣtY ).

In this case the convergence is uniform with d = 4. To see this, note that KO
admits an Adams tower in which each term is a suspension of KO, the cofibres are
suspensions of K and the connecting maps in the tower are all multiplication by
η. In fact this is the Adams tower associated to the standard periodic resolution of
the Λ[∆]-module Λ. Since η3 = 0 in π∗KO, this proves our claim.

5. Dualizable objects

An object X ∈ LK(1)S is dualizable if the natural map DX ∧ Y −→F (X, Y )
is an equivalence. Here DX = F (X, S0), and the smash product is the intrinsic
smash product, as usual. For a convenient summary of basic facts about dualizable
objects in symmetric monoidal categories, see [13], Appendix A2. For example, X
is dualizable if and only if the the more general dualizing map

F (X, Z) ∧ Y −→F (X, Z ∧ Y )

is an equivalence for all Y, Z.
An object X is F-small if the natural map∐

α

F (X, Yα)−→F (X,
∐
α

Yα)

is an equivalence for arbitrary collections Yα ([13], Definition 2.1.1).
The next theorem (except for part c)) is a special case of [12], Theorem 8.6.

Theorem 5.1. The following are equivalent:
a) X is dualizable,
b) X is F -small,
c) X is quasi-small,
d) K(1)∗X is finite-dimensional over K(1)∗,
e) K ·X is finitely-generated over Zp.

Proof. (a) ⇔ (b) is valid in any algebraic stable homotopy category; see [13], The-
orem 2.1.3c.

(b) ⇔ (c) is straightforward from the definitions: since S0 is quasi-small, as
noted earlier, the induced map on π0

π0(
∐
α

F (X, Yα))−→π0F (X,
∐
α

Yα)

has the form
e(

⊕
α

[X, Yα])−→[X,
∐
α

Yα]

and similarly for the other homotopy groups. Hence this map is an isomorphism if
and only if X is quasi-small.

(d) ⇔ (e) follows from Nakayama’s lemma.
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It remains to show (a) ⇔ (d). In our special case, the proof in [12] can be
summarized in the following diagram, in which K(1) has been abbreviated as κ:

Homκ∗(κ∗X, κ∗) ⊗κ∗ κ∗Z ��

∼=
��

Homκ∗(κ∗X, κ∗Z)

=

��

π∗F (X, κ) ⊗κ∗ κ∗Z ��

∼=
��

Homκ∗(κ∗X, π∗(κ ∧ Z))

∼=
��

π∗(F (X, κ) ∧ Z) �� π∗(F (X, κ ∧ Z))

The vertical maps are isomorphisms by general properties of module spectra
(cf. [12], Proposition 3.4). If X is dualizable, then the bottom map is an iso-
morphism and hence so is the top map. But the latter map has the form V ∗ ⊗
W−→Hom (V, W ) as vector spaces over κ∗, forcing dimκ∗κ∗X < ∞.

Conversely, if dimκ∗κ∗X < ∞, then the top map is an isomorphism and hence so
is the bottom map. In other words, the dualizing map F (X, Y )∧Z−→F (X, Y ∧Z)
is an equivalence when Y = κ. But the collection of all Y for which the dualizing
map is an equivalence is a thick subcategory, and the thick subcategory generated
by κ contains M (see §4.1). We conclude that DX∧Y −→F (X, Y ) is an equivalence
after smashing with M , and hence is an equivalence.

6. Small objects

Recall that an object X ∈ LK(1)S is small if the natural map
⊕

α[X, Yα]−→
[X,

∐
Yα] is an isomorphism, for arbitrary coproducts

∐
Yα. In this section we

characterize the small objects ([12], Theorem 8.5).

Theorem 6.1. The following are equivalent:
a) X is small,
b) X is MZ/p-finite,
c) X is the K(1)-localization of a finite p-torsion spectrum,
d) K ·X is finite,
e) X is dualizable and of finite exponent.

Proof. (a) ⇒ (b): This follows from a general result valid in any algebraic stable
homotopy category; see [13], Corollary 2.3.12.

(b) ⇒ (c): See [3]. The key point is that the K(1)-localization of a finite p-
torsion spectrum F can be constructed as the homotopy colimit of a sequence
F = F0−→F1−→F2−→... in which each Fn is a finite p-torsion spectrum and each
map is a K(1)-equivalence. Hence maps between localizations of finite p-torsion
spectra can be realized as localizations of maps between two other such spectra.
This makes it possible to induct on the “length” of an MZ/p-finite spectrum X.

(c) ⇒ (d): This is immediate.
(d) ⇒ (e): Since K ·X is finitely-generated over Zp, X is dualizable. Since K ·X

is finite, pm annihilates it for some m. Then pm has Adams filtration one and so is
nilpotent.

(e) ⇒ (a): By assumption pm annihilates X for some m; hence X is a retract
of X ∧ MZ/pm. An easy formal argument shows that the smash product of a
dualizable object and a small object is small ([13], Theorem 2.1.3a). Hence X is
small.
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The key lemma of Bousfield used in the proof of (b) ⇒ (c) actually shows more.
We record the more general statement here for future reference.

Proposition 6.2. Suppose F1, F2 are finite spectra at least one of which is p-
torsion. Then the cofibre of any map LK(1)F1−→LK(1)F2 is the localization of a
finite spectrum.

The category of small objects is irreducible, in the following sense (see [12],
Theorem 6.9).

Theorem 6.3. The thick subcategory of small objects has no proper nontrivial thick
subcategories.

See the original paper of Hopkins ([9], Theorem 7) for the proof. Since we are
working in LK(1)S, everything is of course much easier. In particular, the nilpotence
theorem reads as follows.

Proposition 6.4. If X has finite exponent and f : ΣkX−→X induces the zero
homomorphism on K(1)∗, then f is nilpotent.

In LK(1)S this is easy because of the uniform vanishing line for the K∗-Adams
spectral sequence. The theorem is then deduced as in [9].

7. Invertible objects

This section is a summary and translation of some results from [10].
Recall that an object X is invertible if there is an object Y such that X∧Y ∼= S0.

Here the smash product is the intrinsic smash product in LK(1)S, as usual. In fact,
a formal argument shows that if Y exists, then Y ∼= DX ([13], A.2.8). The set of
isomorphism classes of invertible objects forms a group under smash product: the
Picard group, denoted Pic LK(1)S.

Proposition 7.1. X is invertible if and only if K ·X is free of rank one as a
Zp-module.

In particular, only one of K0X, K1X can be nonzero. To simplify the discus-
sion we will assume K1X = 0. The collection of all such X forms a subgroup of
Pic LK(1)S, denoted Pic0LK(1)S. Note that there is a natural homomorphism

φ : Pic0LK(1)S−→Pic Λ′,

where Pic Λ′ is the group of Λ′-modules invertible under tensor product. Note
further that

Pic Λ′ ∼= Hom (Γ′, Z×
p ) ∼=

{
Z×

p if p odd,
Z
×
2 × Z/2 if p = 2.

To see this, note that M is invertible if and only if it is free of rank one as a Zp-
module; in other words, it is a rank one representation of Γ′. Such representations
are in bijective correspondence with Hom (Γ′, Z×

p ). Since Γ′ is itself isomorphic to
Z
×
p , this yields our claim.

Proposition 7.2. For p odd, φ is an isomorphism Pic0LK(1)S
∼=−→ Pic Λ′.
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That φ is injective is immediate from the Adams spectral sequence. In more
detail: note that for any K(1)-local spectrum X with K ·X of projective dimension
at most one, the Adams spectral sequence for maps into X collapses. Hence X is
determined up to a noncanonical equivalence by the Λ′-module K ·X. When p is
odd, any invertible spectrum has K ·X of projective dimension one by Proposition
7.1 and Proposition 2.2.

The surjectivity is also immediate, using fibres of suitable self-maps eiK−→eiK.
Let Z

(1)
p denote the p-adic units congruent to one mod p. Then explicitly, we have

Hom (Γ′, Z×
p ) = Hom (Γ, Z

(1)
p ) × Hom (∆, µp−1).

Given χ : Γ−→Z
(1)
p and ωi : ∆−→µp−1, the fibre of γ0 − χ(γ0) : eiK−→eiK

realizes the corresponding invertible Λ′-module. This translates into our Iwasawa-
module terminology as follows: a rank one representation of Γ corresponds to a Λ-
module Λ/f , where f = T−a is a linear distinguished polynomial. Since γ0 = 1+T ,
a = χ(γ0) − 1. We let Xf,i denote the fibre of f : eiK−→eiK.

When p = 2 we have

Hom (Γ′, Z×
2 ) = Hom (Γ(1), Z×

2 ) × Hom (∆, Z×
2 ) = Z

×
2 × {±1}.

Then the element (χ,1) of Pic Λ′ is realized by the fibre of γ0−χ(γ0) :KO−→KO,
while the element (1,−1) is realized by the cofibre Y of S0−→S0

C
. Here S0

C
—the

“complexified sphere”—is just the fibre of T : K−→K. This shows that φ is
surjective for p = 2 also. The kernel, however, is nontrivial. For f ∈ Λ, let XR

f

denote the fibre of f : KO−→KO. Now take

W = Σ−4XR

(T−24).

Note that with our convention that γ0 = ψ5, T − 24 corresponds to ψ5 − 25. Thus
K0XR

(T−24) = Z2(2), and XR

(T−24) is a “fake S4”.

Lemma 7.3. Suppose K ·X ∼= K ·S0 as Λ′-modules. Then either
(a) X ∼= S0 (if KO0X

∼=−→ K0X) or
(b) X ∼= W (if KO−4X

∼=−→ K−4X).

The alternatives correspond to the two possible d3’s in the Adams spectral se-
quence converging to KO∗X, as can be seen on inspection. Furthermore, these
alternatives are exclusive, and W is not equivalent to S0.

Theorem 7.4. (a) There is a short exact sequence

0−→Z/2−→Pic0LK(1)S−→Pic Λ′−→0,

with the kernel Z/2 generated by W .
(b) Y ∧ Y ∼= W . Hence Y has order four, the sequence is nonsplit, and

Pic0LK(1)S ∼= Z2 × Z/2 × Z/4.

(c) W ∼= LK(1)Cζ , where ζ : ΣMZ/2−→S0 is one of the two maps of order four.

The theorem follows from the lemma, by direct computation. The generators
for the three factors in (b) can be taken respectively as XR

T−4, XR

T+2, and Y . Note
that the Z2 × Z/2 part corresponds to those invertible X which can be realized as
the fibre of a map KO−→KO.
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Given any E ∈ LK(1)S, we define the inertia group IE ⊂ Pic0LK(1)S by

IE = {X ∈ Pic0LK(1)S : E ∧ X ∼= E}.
For example, IS0 = {1} and IK = Pic0LK(1)S. A more interesting example:

Proposition 7.5. Let p = 2. Then IKO = Z2 × Z/2 as in Proposition 7.4b). The
element Y of order 4 acts by KO ∧ Y ∼= KO ∧ S2. Hence KO ∧ W ∼= Σ4KO ∼=
Σ−4KO.

Proof. Suppose the invertible object X lies in the subgroup Z2 ×Z/2, so there is a

fibre sequence X
i−→ KO

f−→ KO. Then K0X ∼= Z2 is generated by the composite
X

i−→ KO
c−→ K, where c is complexification. Hence

K0(KO ∧ X) ∼= K0KO ⊗Z2
K0X ∼= Λ

as a Λ′-module, generated by the composite

KO ∧ X
c∧ci−→ K ∧ K−→K.

Since c is a ring map, we can rewrite this composite as

KO ∧ X
1∧i−→ KO ∧ KO

m−→ KO
c−→ K.

This shows that m◦(1∧i) induces an isomorphism Λ = K0KO ∼= K0(KO∧X) ∼= Λ.
Since K1KO = 0 = K1(KO ∧ X), m ◦ (1 ∧ i) is an equivalence. This proves that
Z2 × Z/2 ⊂ IKO.

Now consider the fibre sequence KO ∧ S0−→KO ∧ S0
C
−→KO ∧ Y . Since

K0(KO ∧ S0
C) ∼= K0KO ⊗Z2

Z2[∆] ∼= Λ′,

KO ∧S0
C
∼= K. Furthermore, the map KO ∧S0−→KO ∧S0

C
can be identified with

c : KO−→K, which has cofibre Σ2KO. This completes the proof of Proposition 7.5.

8. K-finite and weakly dualizable objects

In this section we study the thick subcategory of LK(1)S consisting of those X
such that K ·X is finitely-generated over Λ, or equivalently over Λ′. The following
theorem summarizes the main results.

Theorem 8.1. The following are equivalent:
a) K ·X is a finitely-generated Λ-module,
b) X is K-finite,
c) πnX is finitely-generated over Zp for all n,
d) X is weakly dualizable,
e) X is weakly Brown-Comenetz dualizable,
f) The natural topology on [−, X] is compact.

Except for part c), most of this appears in a more general context in [12]; see
especially Theorem 10.2 there. The proof of the theorem above is divided into
several steps, which appear below as Theorem 8.2, Proposition 8.10, Theorem 8.11,
and Proposition 8.17.

We also give a universal coefficient spectral sequence for the K-theory of the
Brown-Comenetz dual (Theorem 8.19).

The thick subcategory satisfying these equivalent conditions will be denoted
Lfin

K(1)S.
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8.1. K-finite spectra. An object X ∈ LK(1)S is K-finite if it is in the thick
subcategory generated by K.

Theorem 8.2. The following are equivalent:
a) K ·X is finitely-generated over Λ,
b) X is K-finite,
c) πnX is a finitely-generated Zp-module for all n ∈ Z.

Proof. (a) ⇒ (b): Suppose first that p is odd. Then X has an Adams resolution of
length two

X

��

X1
��

��

X2
��

=

��

W0

����������
W1

����������
W2

in which each Wi is K-finite. Here we have used the fact that Λ is noetherian.
Hence X is also K-finite.

Now suppose p = 2. If K ·X if ∆-acylic, then it has projective dimension at most
two over Λ′, and hence the argument used for p odd still applies. In particular, it
follows that X ∧ Cη is K-finite. Then Lemma 4.1 completes the proof.

(b) ⇒ (c): This is immediate.
(c) ⇒ (a): For this we will use an algebraic lemma.

Lemma 8.3. Let M be a compact Λ-module with pkM = 0, and suppose that
Ext1Λ(M, Z/pk) is a finitely-generated (and hence finite) Zp-module. Then M is a
finitely-generated Λ-module.

Proof. By a general result on modules over compact group-rings ([17], Corollary
5.2.9 p. 232), we have a natural isomorphism

(Ext1Λ(M, Z/pk))# ∼= TorΛ1 (M, Z/pk).

Here (−)# denotes Pontrjagin dual. For any compact M we can compute the Tor1

using the standard resolution of Z/pk:

0−→Λ i−→ Λ ⊕ Λ
j−→ Λ−→Z/pk−→0,

where i(a) = (Ta, pka) and j(x, y) = pkx − Ty. We find that

TorΛ1 (M, Z/pk) ∼= {(x, y) ∈ M ⊕ M : pkx = Ty}/{(Tz, pkz)}.

When pkM = 0, this is just M/TM ⊕ {y ∈ M : Ty = 0}. Hence if the Ext1 is
finite, so is M/TM and hence so is M/mM . The topological Nakayama lemma (see
for example [17], Ch.V, §2, exercise 6) then implies that M is a finitely-generated
Λ-module.

Now suppose that πnX is finitely-generated over Zp for every n. We want to
show that K ·X is finitely-generated over Λ. By Nakayama’s lemma, it is enough
to show that K ·X/p is finitely-generated over Λ. Hence it is enough to show that
K ·(X ∧ MZ/p) is finitely-generated over Λ. Note that

(i) p · K ·(X ∧ MZ/p) = 0 (even when p = 2),
and
(ii) [ΣkMZ/p, X ∧ MZ/p] is finite for all k.



5224 R. HAHN AND S. MITCHELL

Now suppose that p is odd. Then since E1,∗
2 = E1,∗

∞ in the Adams spectral
sequence, by (ii) we have that Ext1Λ′(K ·(X ∧ MZ/p), Z/p(n)) is finite for all n.
Since

Ext1Λ′(K ·(X ∧ MZ/p), Z/p(n)) = Ext1Λ(eiK
·(X ∧ MZ/p), Z/p)

for i = n mod p− 1, we conclude that Ext1Λ(K ·(X ∧MZ/p), Z/p) is finite. It then
follows from Lemma 8.3 that K ·(X ∧ MZ/p) is a finitely-generated Λ-module.

Finally, suppose p = 2. If K ·(X ∧ MZ/2) is ∆-acyclic, then the argument used
for p odd still applies. Hence K ·(X ∧MZ/2∧Cη) is finitely-generated over Λ. But
for any Y there is a short exact sequence

0−→K ·Y (1)−→K ·(Y ∧ Cη)−→K ·Y −→0,

since η is zero in complex K-theory. Hence K ·(X∧MZ/2) is also finitely-generated
over Λ, completing the proof of the theorem.

8.2. Functional and Brown-Comenetz duality. We say that X is weakly du-
alizable if the natural map

X−→D2X

is an equivalence. Any dualizable object is weakly dualizable, but the converse is
false as we will see.

The map X−→D2X generalizes to a “double Y -duality” map

φX,Y : X−→F (F (X, Y ), Y )

adjoint to the evaluation map X ∧ F (X, Y )−→Y , which in turn is adjoint to the
identity map of F (X, Y ).

Proposition 8.4. X is weakly dualizable if and only if for every invertible object
W , the double W -duality map φX,W : X−→F (F (X, W ), W ) is an equivalence.
More generally, if φX,W is an equivalence for one invertible W , it is an equivalence
for all invertible W .

This follows easily from the fact ([13], A.2.8) that any invertible W is dualizable,
with DW = W−1.

There is another kind of duality in LK(1)S, called Brown-Comenetz duality (see
[12]). Fix E and consider the functor

X �→ (π0(E ∧ X ∧ N ))#.

This functor is cohomological and hence is representable. The representing spec-
trum dE is the Brown-Comenetz dual of E, denoted ÎE in [12]. For example,
Proposition 3.5 can be interpreted as saying:

Proposition 8.5. dK ∼= ΣK.

It follows from the definition that we have a universal coefficient theorem.

Proposition 8.6. There is a natural short exact sequence

0−→(tZp
π−nE)#−→πndE−→Hom (π1−nE, Zp)−→0,

where tZp
(−) denotes p-torsion.
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In particular, if E has p-torsion homotopy groups, then the homotopy groups of
the Brown-Comenetz dual are just the Pontrjagin duals of the homotopy groups of
E.

As a formal consequence of the definitions, we have:

Proposition 8.7. There is a natural equivalence dE ∼= F (E, dS0).

We next determine dS0. When p is odd, this is easy using Proposition 8.5 and
Lemma 8.20 below. However, we will give a different proof here that makes the
isomorphism of functors explicit.

Theorem 8.8. If p is odd, dS0 ∼= S2.
If p = 2, dS ∼= Σ2W , where W is the invertible spectrum of Theorem 7.4.

Proof. Suppose p is odd. From the universal coefficient theorem we have the short
exact sequence

0−→πn+1S
2 ⊗ Z/p∞−→πnS2 ∧ N−→πnS2[p∞]−→0

and hence

Z/p∞ = π1S
2 ⊗ Z/p∞

∼=−→ π0S
2 ∧ N .

This yields a natural transformation of cohomology theories

ζ : [X, S2]−→(π0X ∧N )#

given by ζ(f) = π0f ∧ N , and we will show ζ is an isomorphism.
By Theorem 4.3 and the periodicity of K, it is enough to show ζ is an isomor-

phism for X = K, ΣK. For X = K both source and target are zero, so there is
nothing to prove. For X = ΣK, ζ factors as

[ΣK, S2]−→Hom (π1ΣK, π1S
2)−→Hom (π1ΣK ⊗ Z/p∞, π1S

2 ⊗ Z/p∞)

−→Hom (π0ΣK ∧N , π0S
2 ∧N ),

where the maps are the obvious ones. The first map is an isomorphism by direct
calculation: [ΣK, S2] = Zp, generated by Σδ, where δ : K−→S1 is the coboundary
map in the cofibre sequence S0−→K−→K. The second map is just the evident iso-
morphism Hom (Zp, Zp) ∼= Hom (Z/p∞, Z/p∞). The third map is an isomorphism
because π0ΣK ∧ N = 0 = π2

S ∧ N .
The proof for p = 2 is almost identical, but with one additional twist. In the

universal coefficient theorem we have

0−→π1Σ2W ⊗ Z/2∞−→π0Σ2W ∧ N−→π0Σ2W [2∞]−→0,

with π1Σ2W ⊗ Z/2∞ ∼= Z/2∞ as before. On the other hand, π0Σ2W = Z/2, and
hence the short exact sequence has the form

0−→Z/2∞−→π0Σ2W ∧ N−→Z/2−→0.

This sequence splits, of course, but there are two choices of splitting and no apparent
reason to prefer one over the other. Nevertheless, we simply choose a splitting
α : π0Σ2W ∧N−→Z/2∞, yielding a natural transformation of cohomology theories

ζ : [X, Σ2W ]−→Hom (π0X ∧N , π0Σ2W ∧ N )−→Hom (π0X ∧ N , Z/2∞).
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Note that if π0X is torsion-free, the splitting α is irrelevant; we can regard ζ as
a homomorphism

[X, Σ2W ]−→Hom (π1X ⊗ Z/2∞, π1Σ2W ⊗ Z/2∞) ∼= Hom (Z/2∞, Z/2∞).

Taking X = K, ΣK, the rest of the proof is identical to the odd primary case.

Corollary 8.9. dS0 is invertible.

In fact one can prove the corollary a priori; see [12], Theorem 10.2e. The proof
there simplifies dramatically in the case n = 1.

Call X weakly Brown-Comenetz dualizable if the double dS0-duality map is an
equivalence. Combining Theorem 8.8 with Proposition 8.4, we have:

Proposition 8.10. X is weakly dualizable if and only if X is weakly Brown-
Comenetz dualizable.

The next theorem is the main result of this subsection.

Theorem 8.11. X is weakly Brown-Comenetz dualizable if and only if πnX is
finitely-generated over Zp for all n.

Proof. By smashing with MZ/p, we easily reduce to the following special case.

Lemma 8.12. Suppose X has a finite exponent. Then X is weakly Brown-Comenetz
dualizable if and only if X has finite homotopy groups.

This lemma has an algebraic antecedent.

Lemma 8.13. Let A be an abelian p-torsion group. Then
(a) A# is torsion if and only if A has a finite exponent.
(b) The natural homomorphism A−→A## is an isomorphism if and only if A

is finite.

Now observe that by the universal coefficient theorem above, for a finite exponent
spectrum X there is a natural isomorphism πnd2X ∼= (πnX)##. To make use of
this we need to know further:

Lemma 8.14. Suppose X has finite exponent. Then the map πnX−→(πnX)## in-
duced by X−→d2X coincides with the natural homomorphism as in Lemma 8.13(b).

If the reader is willing to believe Lemma 8.14, then Lemma 8.12 follows Lemma
8.13, completing the proof of Theorem 8.11. However, the proof of Lemma 8.14 is
not entirely trivial, so we will sketch it here.

For arbitrary X, Y , let εX,Y denote the natural homomorphism

π0F (X, Y )−→Hom (π0X, π0Y ).

Then the following diagram commutes:

π0X

π0φX,Y

��

η
�� Hom(Hom(π0X, π0Y ), π0Y )

ε∗X,Y

��

π0F (F (X, Y ), Y ) εF (X,Y ),Y

�� Hom(π0F (X, Y ), π0Y )

Here η is the algebraic analogue of φ. We cannot apply this directly to Y =
dS0 because of the smash product with N in the definition of Brown-Comenetz
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duality. However, for any torsion spectrum X and arbitrary spectrum Y there is a
commutative diagram

F (X, Y ∧ N ) ��

��

F (X, Y )

��

F (X ∧ N , Y ∧N ) �� F (X ∧N , Y )

in which all four maps are homotopy equivalences. The maps are the natural ones
arising from the canonical map N−→S0. Furthermore, if X has finite exponent,
then so does F (X, Y ).

Now if p is odd, taking Y = dS0 ∧ N in the first diagram we find that:
(i) η is the Pontrjagin double duality map;
(ii) φX,Y is the Brown-Comenetz double duality map;
and
(iii) the two ε maps are Brown-Comenetz duality isomorphisms.
This completes the proof for p odd.
When p = 2 we extend the first diagram as follows, using the homomorphism

α : π0(dS ∧ N )−→Z/2∞ defined earlier and writing h in place of Hom to save
space:

π0X
η

��

π0φX,Y

��

h(h(π0X, π0Y ), π0Y )
α∗ ��

ε∗X,Y

��

h(h(π0X, π0Y ), Z/2∞)

ε∗X,Y

��

π0F (F (X, Y ), Y ) εF (X,Y ),Y

�� h(π0F (X, Y ), π0Y ) α∗
�� h(π0F (X, Y ), Z/2∞)

h(h(π0X, Z/2∞), Z/2∞)

(α∗)∗

��

π0X α∗◦η
��

����������������
h(h(π0X, π0Y ), Z/2∞)

Here we have:
(i) the diagonal map is again the Pontrjagin double duality map;
(ii) φX,Y is again the Brown-Comenetz double duality map;
(iii) the composite map in the bottom row of the first diagram is an isomorphism

as in the odd primary case;
(iv) the vertical composite ε∗X,Y ◦ (α∗)∗ is an isomorphism as in the odd primary

case.
The 2-primary case of Lemma 8.14 now follows as before.
We conclude with an important example for p = 2.

Proposition 8.15.
dKO ∼= Σ−3KO.

Proof. We first show:

Lemma 8.16. DKO ∼= Σ−1KO.

Consider the fibre sequence

Σ−1KO
Σ−1T−→ Σ−1KO

δ−→ S0.
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Let φ : Σ−1KO−→DKO = F(KO, S0) denote the composite

Σ−1KO
τ−→ F(KO, Σ−1KO) δ∗−→ F(KO, S0),

where τ is adjoint to the desuspended ring multiplication. A direct check on ho-
motopy groups shows that φ is a weak equivalence, proving the lemma.

We then have

dKO ∼= F(KO, Σ2W ) ∼= F(KO, S0) ∧ Σ2W ∼= Σ−1KO ∧ Σ2W

∼= Σ−1KO ∧ S−2,

where the four equivalences follow respectively from Theorem 8.8, the fact that W
is invertible and hence dualizable, the lemma, and Proposition 7.5.

8.3. Compact topologies on [−, X]. The natural topology on [X, Y ] ([13], §4.4)
is the topology with neighborhood base at the origin given by the kernels of all
maps f∗ : [X, Y ]−→[W, Y ], where (W, f) ranges over all maps f of small objects
W to X.

Proposition 8.17. The natural topology on [W, X] is compact Hausdorff for all
W if and only if πnX is finitely-generated over Zp for all n.

Proof. Suppose [Y, X] is compact Hausdorff in the natural topology. If Y is small,
then [Y, X] is also discrete, and hence finite. Taking Y = MZ/p, it follows that X
has finite mod p homotopy groups and hence πnX is finitely-generated over Zp for
all n.

Conversely, suppose πnX is finitely-generated over Zp for all n. By Theorem 8.11,
X is weakly Brown-Comenetz dualizable and hence X = dY where Y also has
homotopy groups finitely-generated over Zp.

Now observe that for any E, the functor represented by dE takes values in the
category of compact Hausdorff Zp-modules and continuous homomorphisms, since
it is Pontrjagin dual to a functor taking values in discrete p-torsion groups. Hence
it will suffice to show that the natural topology agrees with this Brown-Comenetz
topology.

By Theorem 6.1, an object is small if and only if it is MZ/p-finite. Hence
πn(W ∧ Y ) is finite for all small W and all n. It follows easily that the two
topologies agree, as desired.

More generally one can ask whether there is any lift of [−, X] to compact Zp-
modules.

Proposition 8.18. The functor represented by X lifts to the category of compact
Zp-modules and continuous homomorphisms if and only if X is in the image of the
Brown-Comenetz duality functor.

Proof. If X = dY for some Y , then [−, X] lifts to compact Hausdorff Zp-modules,
as noted in the proof of the preceeding proposition.

Conversely, suppose [−, X] lifts to a functor h to compact Hausdorff Zp-modules.
Then the Pontrjagin dual h# is a homology functor and so is representable by
Theorem 4.8: (h(Z))# = π0E ∧ Z ∧N for some E. Hence

[Z, X] = h(Z) = [Z, dE],

as required.
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8.4. K-theory of the dual as a module over the Iwasawa algebra. Let X
be a K-finite spectrum. In this section we obtain a universal coefficient formula for
the K-theory of the Brown-Comenetz dual, as modules over Λ′.

For any pro-group ring Zp[[G]], we let χ denote the canonical anti-automorphism
given by χ(g) = g−1. If M is a left Zp[[G]]-module, let Mχ denote the right module
defined by setting xα = χ(α)x for α ∈ Zp[[G]], x ∈ M . Similarly, χ converts right
modules to left modules.

When G = Γ′, the fact that Γ′ is commutative confuses the issue. To help clarify
the discussion below, we will sometimes speak of left versus right actions as though
Γ′ were noncommutative.

Theorem 8.19. Let X ∈ LK(1)S be K-finite. Then there is a spectral sequence of
Λ′-modules with

Es,t
2 = ExtsΛ′(KεX, Λ′)χ(m),

where ε = 0, 1 and t = 2m + ε, converging to K1−(t−s)dX.

Remark. To clarify the Λ′-module structure on the E2-term, recall that since Λ′ is
commutative, for any M, N there is a natural module structure on ExtsΛ′(M, N).
The module structure on the E2-term in the theorem is obtained from this one by
applying the functor χ and then taking the m-fold Tate twist.

Proof. Since X is weakly Brown-Comenetz dualizable, we have

[dX, ΣnK] ∼= [d(ΣnK), d2X] ∼= [Σ1−nK, X].

This an isomorphism of left Λ′-modules, where Λ′ acts on [Σ1−nK, X] by

λ · (f : Σ−n(ΣK)−→X) = f ◦ (Σ−ndλ).

Lemma 8.20. dλ = Σχ(λ).

Proof. There is a natural isomorphism

π2n+1dK ∼= HomZp
(π−2nK, Zp) = HomZp

(Zp(−n), Zp).

Identifying π2n+1dK with π2nK, we see that the action of dλ on π2nK is the same
as the action of χ(λ). Since the representation of Λ′ on π∗K is faithful, this proves
the lemma.

Now consider the Adams spectral sequence converging to [ΣnK, X]. This is a
spectral sequence of left Λ′-modules, where

λ · (f : ΣnK−→X) = f ◦ Σnχ(λ).

By the lemma, on the abutment this module structure corresponds to the usual
module structure on K1−ndX. So it remains to determine the module structure on
the E2-term. Taking t = 2m to illustrate, we have

Es,t
2 = ExtsΛ′(K0X, K0Σ2mK).

In general, the Ext has a Λ′-module structure only because Λ′ happens to be com-
mutative. Call this the “standard” structure, and note that it can be computed by
letting Λ′ act by post-composition on [Σ2mK, K]. The structure we want, however,
is obtained by precomposition with Σ2mχ(λ). Using the relation

γβm = c(γ)mβm ◦ Σ2mγ,
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where γ ∈ Γ′ and β is the Bott class, we see that this module structure is obtained
from the standard one by applying χ and then the m-fold Tate twist. This completes
the proof of the theorem.

Example. Take p odd and suppose K ·X is Λ-torsion with no finite submodules (so
that K ·X has projective dimension one as a Λ-module). To simplify the discussion,
assume also that K1X = 0. Then K1dX = 0 and

K0dX = Ext1Λ′(K0X, Λ′)χ(1).

For instance, if X = S2n we get

Ext1Λ′(Zp(n), Λ′)χ(1) = Zp(n)χ(1) = Zp(1 − n),

confirming that dS2n = S2−2n.
See Proposition 10.10 for a description of K ·dX up to pseudo-isomorphism.

9. Pseudo-equivalence of K(1)-local spectra

In this section we assume p is odd. The K-local, p-local spectra were classified
up to equivalence by Bousfield [3]. The classification obtained here is much coarser,
but is nonetheless enlightening, and useful in applications such as [16]. We also note
that according to unpublished work of Frenke [7], for p odd the category of K-local
spectra is equivalent to a certain category of chain complexes. We will not make
any use of this.

We begin by observing (cf. [3]).

Proposition 9.1. Suppose X ∈ LK(1)S. Then X is uniquely determined by the
Λ′-module K ·X under either of the following hypotheses:

a) One of K0X, K1X vanishes,
b) K ·X has projective dimension at most one as a Λ′-module.

Proof. The obstruction to realizing an isomorphism φ : K ·X ∼= K ·Y by a map
Y −→X is the element

d2φ ∈ Ext2Λ′(K ·X, K ·ΣY ).

The Ext2 vanishes for parity reasons in case a), and by assumption in case b);
in fact, in case b) X splits as a wedge of two objects satisfying condition a).

Let N · = N0 ⊕N1 be a Λ′-module. Following [3] we then define the generalized
Moore spectrum MN · as follows: if one of N0, N1 is zero, MN · is the unique object
with K ·MN · = N ·. In general we set MN · = MN0

∨
MN1 .

In many cases we are given only a Λ-module M . We then write (M, i) for the
corresponding Λ′-module with ∆ acting as ωi. If i is omitted it is to be taken as
zero. As examples of this notation we have

MΛ,i = eiK, MΛ = e0K = E(1).

A morphism X−→Y is a pseudo-equivalence if it has small cofibre. From Theo-
rem 6.1 we have at once:

Proposition 9.2. f : X−→Y is a pseudo-equivalence if and only if K ·f is a
pseudo-isomorphism.
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Now call an object Y elementary if K ·Y is an elementary Λ-module. Equiva-
lently, by Proposition 9.1, Y is a finite coproduct of spectra of the form ΣrMΛ/qk,i,
where r = 0, 1, q is either 0, p, or an irreducible distinguished polynomial, and
0 ≤ i ≤ p − 2.

Theorem 9.3. Every K-finite spectrum X is pseudo-equivalent to an elementary
spectrum ME, unique up to equivalence. The pseudo-equivalence can be taken of
the form

X
∼−→ Y

∼←− ME

for some intermediate spectrum Y .

Lemma 9.4. Let M be a finitely-generated Λ-module. Then there is a torsion-free
submodule N such that tM ⊕ N has finite index in M .

Proof. Suppose first that tM is finite, and consider the filtration mkM ⊇ mk+1M ⊇
.... Then

⋂
k mkM = 0 and hence

⋂
k(mkM) ∩ tM = 0. Since tM is finite, this

forces (mkM) ∩ tM = 0 for k >> 0. Then we can take N = mkM , k >> 0.
In the general case there is a pseudo-retraction φ : M−→tM ; i.e., a homomor-

phism φ whose restriction to tM is a pseudo-isomorphism. (This follows from the
proof of the classification theorem.) Then the kernel L of φ has finite torsion sub-
module, and hence has a torsion-free submodule N of finite index as shown above.
It follows that tM ⊕ N has finite index, as desired.

Corollary 9.5. There is a pseudo-isomorphism L ⊕ N
∼−→ M with L elementary

torsion and N torsion-free.

Proof of the theorem. Take M = K ·X, choose a pseudo-isomorphism j : L ⊕
N−→M as in the corollary and let Y = ML⊕N . Then choose a pseudo-isomorphism
k : L ⊕ N−→E with E elementary. Since L ⊕ N has projective dimension at most
one, the diagram of Λ′-modules

K ·X
∼←− L ⊕ N

∼−→ E

can be realized by a diagram of spectra

X
∼−→ Y

∼←− ME

as desired.
In general, there is no pseudo-equivalence X−→ME or ME−→X.

Example. Let X = Mm, so E = Λ. There is no pseudo-isomorphism Λ−→m, and
hence there is no pseudo-equivalence X−→ME .

Example. An easy calculation shows that

[Σ−1MΛ, MZ/p] = Ext2Λ′(Z/p, Λ) = Z/p.

Let α : Σ−1MΛ−→MZ/p be a generator, and let let X be the cofibre. Then E = Λ,
and we claim that there is no pseudo-equivalence MΛ−→X. To see this, note that
K0X = Λ and K1X = Z/p. Since any pseudo-isomorphism of free Λ-modules is
an isomorphism by Corollary 2.5, a pseudo-equivalence MΛ−→X would induce an
isomorphism on K0. Hence X would split as MZ/p

∨
MΛ, contradicting the fact

that α is essential.
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Taking the wedge of the preceeding two examples gives an example with no
pseudo-equivalence in either direction; presumably one could also find an indecom-
posable example.

In the torsion case, however, we can get maps going both ways.

Theorem 9.6. Suppose X is K-finite and K ·X is Λ-torsion, with associated ele-
mentary module E·. Then there are pseudo-equivalences ME−→X and X−→ME.

To prove this we need a lemma of independent interest. Consider arbitrary
X, Y ∈ LK(1)S and the Adams spectral sequence converging to [X, Y ]. Since the
E2-term is canonically identified with certain Ext-groups over Λ′, it has a Λ′-module
structure.

Lemma 9.7. d2 : E0,t
2 −→E2,t+1

2 is a homomorphism of Λ′-modules.

Proof. There is a formula for d2 due to Bousfield [3], which in our context reads as
follows: if f ∈ E0,t

2 , then

d2f = κY f + (−1)t+1fκX .

Here the invariant κX lies in

E2,1
2 (X, X) = Ext2Λ′(K ·X, K ·ΣX).

It is the obstruction to an equivalence of X with the generalized Moore spectrum
associated to K ·X. The products with f are Yoneda products. Taking t = 0 for
convenience, we have

d2(λf) = κY (λf) − (λf)κX ,

λd2f = λ(κY f) − λ(fκX).

Since the Yoneda product is associative, we have only to show that

λκY = κY λ ∈ Ext2Λ′(K ·Y, K ·Y ).

But this is true because for any commutative ring R, the R-module structure on
Ext∗R(M, N) can be computed in either variable.

To prove the theorem, first recall that since K ·X is Λ-torsion, there are pseudo-
isomorphisms α : E·−→K ·X and β : K ·X−→E·. Since E has projective dimension
at most one, we can realize α by a pseudo-equivalence X−→ME .

Now consider β ∈ E0,0
2 (ME , X). Let λ ∈ Λ be any irreducible element not in the

support of K ·X. Then for all k, λkβ is still a pseudo-isomorphism. But E2,1
2 is an

Ext2 of two finitely-generated modules and therefore is finite. Hence for k >> 0,
λkE2,1

2 = 0. For k >> 0 it then follows from the lemma that d2(λkβ) = λkd2β = 0.
Hence λkβ can be realized by a pseudo-equivalence ME−→X.

10. Thick subcategories of K-finite spectra

The goal of this section is to classify and study the thick subcategories of the
K-finite spectra C. We continue to assume p is odd.

We call a set of primes S ⊂ Spec Λ′ fit if it is closed under specialization and
Tate twisting. Given a fit subset S, let CS denote the full subcategory of C whose
objects X have Supp K∗X ⊂ S.

Proposition 10.1. If S is a fit subset of Spec Λ′, then CS is a thick subcategory.
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Proof. Since S is closed under Tate twisting, CS is closed under suspension. Stan-
dard arguments then show that CS is thick.

The main result of this section is the converse.

Theorem 10.2. Let C be a thick subcategory of the K-finite spectra 〈K〉. Then
there is a unique fit set of primes S such that C = CS.

We assume from now on that C is a nontrivial thick subcategory.

Lemma 10.3. C contains every small object F .

Proof. By Theorem 6.3, it suffices to show C contains one nontrivial small object.
By assumption C contains a nontrivial object X. Smashing with MZ/p, we

can assume K ·X is Λ-torsion. Let λ ∈ Λ be any nonunit whose prime factors
are disjoint from the support of K ·X. Then multiplication by λ is a pseudo-
isomorphism of K ·X. Furthermore, by Lemma 9.7, there is a self-map f : X−→X
realizing multiplication by λ. The cofibre of f is nontrivial, is in C and has finite
K ·. Hence Cf is small by Theorem 6.1, proving the lemma.

Corollary 10.4. C is closed under pseudo-equivalence.

Lemma 10.5. Suppose X ∈ C and Y is K-finite with Supp K ·Y ⊂ Supp K ·X.
Then Y ∈ C.

Proof. By Corollary 10.4 and Theorem 9.3, we may assume that X and Y are
elementary spectra. If K ·X is not Λ-torsion, it follows that MΛ ∈ C; hence C
consists of all K-finite spectra and we are done. Hence we may assume K ·X is Λ-
torsion. Since C is closed under retracts, we reduce further to the case X = MΛ/qi ,
Y = MΛ/qj for some irreducible element q.

Let f : X−→X be a self-map realizing multiplication by q. The cofibre Z satisfies
K0Z = Λ/q = K1Z and hence by Proposition 9.1b),

Z ∼= MΛ/q

∨
ΣMΛ/q.

Hence MΛ/q ∈ C. It then follows by induction on j that Y ∈ C, completing the
proof of the lemma.

Theorem 10.2 follows immediately from the lemma: let S denote the union of
the supports of all KnX for all X ∈ C and all n ∈ Z. Then S is fit and C = CS .

10.1. Examples. If S is a set of primes that is not necessarily fit, it will be con-
venient to let CS denote the thick subcategory corresponding to the fit subset
generated by S.

1. Let C be the thick subcategory of small objects. Then C = C{m} by Theo-
rem 6.1.

2. Let C be the thick subcategory of dualizable objects. Then C = CS , where S
is the set of irreducible distinguished polynomials. This is clear from Theorem 5.1.

3. Let C be the thick subcategory of finite exponent objects. Then C = C{p}.
(Note that p means pΛ.)

4. Let C be the thick subcategory of objects with all homotopy groups finite.
Then C = CS , where S is the complement of the set of Tate primes in the set of all
height one primes.

To see this, note that by Proposition 2.3, in the Adams spectral sequence for
π∗X, each E0,∗

∞ has finite index in E0,∗
2 . Hence E0,∗

∞ is finite in each degree if and
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only if HomΛ′(K ·X, Zp(n)) is finite for all n. By the structure theory of Λ-modules,
these latter groups are finite if and only if K ·X is Λ-torsion with support disjoint
from the annihilator of the Zp(n), i.e., disjoint from the set of Tate primes. In this
case the groups Ext1Λ′(K ·X, Zp(n)) are also finite. Since Ext2Λ′(M, N) is finite for
all finitely-generated modules M, N , it follows that C = CS as claimed.

5. Let C be the thick subcategory of objects with almost all homotopy groups
finite. Then C = CS , where S is the set of all height one primes.

This is similar to the preceding example. The support of K ·X lies in the height
one primes if and only if K ·X is a Λ-torsion module. Now if K ·X is a Λ-torsion mod-
ule, then since only finitely many Tate primes can occur in Supp K ·X, only finitely
many of the groups HomΛ′(K ·X, Zp(n)), Ext1Λ′(K ·X, Zp(n)) can be nonzero and
Zp-torsion-free. Conversely if K ·X is not a Λ-torsion module, then infinitely many
of the groups HomΛ′(K ·X, Zp(n)) are nonzero and Zp-torsion-free.

6. Let C be the thick subcategory generated by LK(1)S
0. Then C = CS , where

S is the set of Tate primes.
7. Let C be the thick subcategory generated by the invertible spectra. Then

C = CS , where S is the set of linear distinguished polynomials.

10.2. Localization of finite spectra. We have seen that the localizations of finite
p-torsion spectra form a thick subcategory and that this subcategory coincides
with the small objects and with the MZ/p-finite objects. There is no analogous
statement for localizations of finite spectra. However, by Proposition 6.2 we have:

Lemma 10.6. The collection of all objects of the form LK(1)F , F finite, is closed
under pseudo-equivalence.

Then we have:

Theorem 10.7. The following are equivalent:
(a) X ∼= LK(1)F for some finite spectrum F .
(b) K ·X has support in the Tate primes, and each Tate prime occurs with expo-

nent at most one.
(c) X is pseudo-equivalent to a wedge of spheres.

Proof. (a) ⇒ (b): We may assume that F is the suspension spectrum of an actual
finite complex. Using induction on the dimension of F , one easily proves the more
precise statement:

Lemma 10.8. If dim F = 2d, then Supp K0X ⊂ {τ0, ..., τd} and Supp K1X ⊂
{τ0, ..., τd−1}.

If dim F = 2d + 1, then Supp KiX ⊂ {τ0, ..., τd} for i = 0, 1.
Furthermore, in all cases each τi that occurs has exponent one.

This yields the desired result.
(b) ⇒ (c): By Theorem 9.3, X is pseudo-equivalent to an elementary spectrum

ME , where E is a direct sum of Zp(n)’s. In other words, ME is a wedge of spheres.
(c) ⇒ (a): This follows from Lemma 10.6.

10.3. Duality on the thick subcategories. Let C be a thick subcategory of
Lfin

K(1)S. Since d : [X, Y ]−→[dY, dX] is an isomorphism for X, Y ∈ Lfin
K(1)S, the

image of C under d is again a thick subcategory. Thus d permutes the thick sub-
categories of Lfin

K(1)S, and so induces a permutation of the fit subsets of Spec Λ′.
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Proposition 10.9. Let S be a fit subset of Spec Λ′. Then dCS = Cχ(S).

Here we recall that χ is the canonical anti-automorphism of Λ′, regarding the
latter as a pro-group ring. The proposition follows from a more precise description
of the pseudo-isomorphism-type of K ·dX. For an elementary Λ′-module E, let

E = tE ⊕ fE

denote the decomposition of E into a Λ-torsion submodule E and a Λ-free module
fE. Let Ei denote the elementary module associated to KiX.

Proposition 10.10. There are pseudo-isomorphisms

K0dX ∼ tEχ
0 (1) ⊕ fEχ

1 ,

K1dX ∼ tEχ
1 ⊕ fEχ

0 .

Proof. One could start by replacing X by a pseudo-equivalent elementary spectrum.
It is also enlightening, however, to work directly with the spectral sequence of
Theorem 8.19. To simplify notation we give the proof for the case of K0.

For any X, Y ∈ Lfin
K(1)S, the second Adams filtration A2 = A2[X, Y ] is fi-

nite. Hence the quotient map [Y, X]−→[Y, X]/A2 is a pseudo-isomorphism of Zp-
modules. (This step works even for p = 2.)

Take Y = ΣK and apply Theorem 8.19 to get a pseudo-isomorphism of Λ′-
modules

K0dX = [ΣK, X] ∼−→ [ΣK, X]/A2.

Now the short exact sequence

0−→A1/A2−→A0/A2−→A0/A1−→0

has A1/A2 Λ-torsion (since Ext1Λ(M, Λ) is always Λ-torsion), and A0/A1 Λ-torsion-
free (since HomΛ(M, Λ) is always Λ-free). It follows that the short exact sequence
pseudo-splits as Λ′-modules, so that there is a pseudo-isomorphism

A0/A2 ∼ A1/A2 ⊕A0/A1.

(This is false for p = 2. There is a pseudo-splitting as Λ-modules, but not necessarily
as Λ′-modules.)

Whenever X, Y ∈ Lfin
K(1)S, the term Es,t

2 of the Adams spectral sequence for
[Y, X] is finite for s ≥ 2. Hence

A1/A2 ⊕A0/A1 ∼ E1,2
2 ⊕ E0,1

2 .

Then
E0,1

2 = HomΛ′(K1X, Λ′)χ ∼ HomΛ′(fE1, Λ′)χ ∼ fEχ
1

and
E1,2

2 = Ext1Λ′(K0X, Λ′)χ(1) ∼ Ext1Λ′(tE0, Λ′)χ(1) = tEχ
0 (1).

At the last step we used the fact that if R is any commutative ring and x ∈ R is
not a zero divisor, then Ext1R(R/x, R) ∼= R/x as R-modules.

This completes the proof of Proposition 10.10. Note that Proposition 10.9 is an
immediate consequence.
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10.4. Semi-discrete primes. Let Γn ⊂ Γ denote the closed subgroup of index pn.
Thus Γ/Γn is a finite cyclic group of order pn, and in particular is discrete. Note
that every homomorphism from Γ to a discrete group factors through some Γ/Γn.

The group homomorphisms Γ−→Γ/Γn induce Zp-algebra homomorphisms
Zp[[Γ]]−→Zp[Γ/Γn], or equivalently

ρn : Λ−→Λ/ωn,

where ωn = (1 + T )pn − 1. We call a prime q of Λ semi-discrete if it is pulled back
along ρn from some prime of Λ/((1 + T )pn − 1). In other words, q = (f) for some
irreducible distinguished polynomial dividing (1 + T )pn − 1. In fact

(1 + T )pn − 1 = ν0ν1...νn,

where ν0 = T , ν1 = (1+T )p−1
T , and in general νk is the cyclotomic polynomial of

degree pk − pk−1. Thus the semi-discrete primes are precisely the νi’s, i ≥ 0.
Similarly, a prime of Λ′ is semi-discrete if it is pulled back from Λ′/((1+T )pn −1)

for some n. Thus the semi-discrete primes of height one are the (vi, j), i ≥ 0,
0 ≤ j ≤ p − 2. Let Sδ denote the set of semi-discrete primes.

The semi-discrete primes play an interesting role in number-theoretic applica-
tions; for a discussion of this, see [16]. Here is another interesting example.

Proposition 10.11. Let G be a discrete group, and suppose there exists a con-
tractible finite G-CW-complex Z with finite isotropy groups (e.g., G is an S-arith-
metic group [19]). Then K ·BG is a finitely-generated Λ-torsion module and has
support in the semi-discrete primes.

Proof. Consider first the case G finite. If P is a p-Sylow subgroup of G, then
Σ∞BG is a retract of Σ∞BP , since we are working with p-complete and hence
p-local spectra. By Atiyah’s theorem, K1BP = 0 and K0BP+

∼= R̂CP : the
p-completed representation ring of P . This isomorphism is compatible with the
Adams operations and hence is an isomorphism of Λ′-modules. Furthermore, for
any group G, the Adams operations permute the irreducible representations of G
([20]). Hence K0BP is a discrete Γ′-module, and as a Λ′-module is supported in
the semi-discrete primes. This settles the finite case.

In the general case, we have BG ∼= EG ×G Z, since Z is contractible. Let
π : EG×G Z−→Z/G denote the natural projection. Taking π−1 of skeleta yields a
filtration of BG and hence a spectral sequence of Λ′-modules converging to K ·BG.
Since the isotropy groups are finite and Z/G is a finite complex, the E1-term is a
finite direct sum of modules of the form K ·ΣsBH, H finite. Hence the E1-term is
a finitely-generated Λ-torsion module and has support in the semi-discrete primes.
It follows that the same is true for the E∞-term, and hence for K ·BG.

Proposition 10.12. The thick subcategory CSδ
is generated by each of the following

two sets of objects:
a) The suspension spectra of classifying spaces BG, where G ranges over finite

cyclic p-groups.
b) The algebraic K-theory spectra KFqn , where q is a power of a prime different

from p, and n ≥ 1.

Proof. a) Let C be the thick subcategory generated by the Σ∞BZ/pn, and fix n ≥ 1.
Thinking of Γ′ as the automorphism group of the p-power roots of unity, it is clear
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that the set of faithful irreducible representations of Z/pn over C is a discrete
transitive Γ′-set with isotropy group Γn−1. Hence

K0BZ/pn ∼=
n−1⊕
i=0

Zp[Γ′/Γi] ∼= (
n−1⊕
i=0

Λ/ωi) ⊗ Zp[∆].

Since Λ/ωn ∼ (
⊕n

i=0 Λ/νi) and thick subcategories are closed under retracts and
pseudo-equivalences, it follows that each Moore spectrum MΛ/νn,i is in C. Hence
C = CSδ

.
b) Let γ be any element of Γ′, and consider the fibre Fγ−1 of γ − 1 : K−→K.

Then K0Fγ−1
∼= Zp[[Γ′/Hγ ]], where Hγ is the closed subgroup generated by γ.

Now if H is any closed subgroup of Γ′, then either H has finite index or H ⊂ ∆.
When c(γ) = k ∈ Z and k > 1, the latter case cannot occur, so Hγ has finite
index. Furthermore, under the same assumption, Hγp−1 = Γn for some n, and
Hγ(p−1)pm = Γn+m.

Thus the sequence of spectra Fγj−1, j ≥ 1, includes the Moore spectra MΛ′
/ωn

for all n. It follows that the Fγj−1, j ≥ 1, generate CSδ
. Taking c(γ) = q as in

assertion b), we have Fγj−1 = KFqj , and b) follows.
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