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ON THE BOUSFIELD CLASSES OF H∞-RING SPECTRA

JEREMY HAHN

Abstract. We prove that any K(n)-acyclic, Dp-ring spectrum is K(n + 1)-acyclic, affirming an
old conjecture of Mark Hovey.
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1. Introduction

A bedrock result of chromatic homotopy theory is that any K(h)-acyclic, p-local finite spectrum
is K(h−1)-acyclic. Our goal here is to prove that E∞-ring spectra enjoy the opposite phenomenon:

Theorem 1.1. Suppose that an E∞-ring spectrum R is K(h)-acyclic at some prime p. Then R is
also K(h+ 1)-acyclic at p.

In fact, our arguments require much less than a full E∞-structure:

Definition 1.2. For a fixed prime number p, a Dp-algebra R is a spectrum R equipped with:

(1) A unit map S → R and a multiplication map R ⊗ R → R, making R into a homotopy
commutative and associative ring spectrum.

(2) A factorization of the p-fold multiplication map R⊗p → R through the projection R⊗p →
(R⊗p)hCp

, such that the diagram

(S⊗p)hCp
(R⊗p)hCp

S R

(1⊗p)hCp

1

commutes up to homotopy. Here, 1 is the unit map, and the left-hand vertical map is part
of the natural E∞-ring structure on the sphere S.

Any E∞-ring R is naturally a Dp-algebra, and any H∞-ring R admits a Dp-algebra structure. In
particular, Theorem 1.1 is a corollary of the following stronger result:

Theorem 1.3. Suppose that a spectrum R admits a Dp-algebra structure. For any height h ≥ 0 at
the prime p, if R is K(h)-acyclic then R is also K(h+ 1)-acyclic.

Remark 1.4. If a spectrum R admits a homotopy unital multiplication, then R is K(h)-acyclic if
and only if it is T (h)-acyclic [Lan+22, Lemma 2.3], so Theorem 1.3 can also be read as a statement
about telescopic localization.
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Remark 1.5. The h = 0 case of Theorem 1.3 was proved by Mathew–Naumann–Noel [MNN15,
Theorem 2.1]1–it is known as the May nilpotence conjecture. Together with Clausen, these authors
found spectacular applications of the May nilpotence conjecture to descent questions in algebraic
K-theory [Cla+20b].

In order to prove Theorem 1.3, it suffices to consider not Dp-algebras in spectra, but rather
K(h+ 1)-local Dp-E-algebras, where E is the height h+ 1 Morava E-theory with

π∗E ∼= Zph+1Ju1, u2, · · · , uhK[u
±].

We will study a K(h+ 1)-local Dp-E-algebra R by means of the weight p power operation

P : π0(R) → R0(BCp),

which takes x : S0 → R to the homotopy class of the composite

BCp ≃ (S⊗p)hCp

(x⊗p)hCp
−−−−−−→ (R⊗p)hCp

→ R.

The power operation P is multiplicative, but not additive. Nonetheless, the composition of P
with the quotient map R0(BCp) → R0(BCp)/(tr) is additive. Here, (tr) denotes the transfer ideal,

which is cut out by a certain element [p](z)
z

∈ R0(BCp) that is related to the p-series of the formal
group law on π0(E). In particular, for each x ∈ π0(R) the image of P (x) in the quotient ring
R0(BCp)/(p, tr) depends only on x modulo p. One of our main technical results, which may be of
substantial independent interest, is a higher chromatic analog of the preceding sentence. For each
1 ≤ k ≤ h, we determine a quotient of RBCp in which P (x) depends only on the value of x modulo
(p, u1, · · · , uk):

Theorem 1.6. Suppose that R is a K(h + 1)-local Dp-E-algebra and k ≥ 1. Then, for any

x ∈ π0(R), the image of P (x) in π0

(

RBCp/
(

p, u1, · · · , uk,
[p](z)

zp
k+1

))

depends only on the image of x

in π0(R/(p, u1, · · · , uk)).

For a more detailed version of this statement, see Section 3, where [p](z)

zp
k+1 is denoted gk+1(z).

Note that [p](z) is divisible by zp
k+1

only after modding out by (p, u1, · · · , uk).

Remark 1.7. In private communication, Nathaniel Stapleton has asked whether there exist power
operations for the cohomology theory of spaces given by the spectrum E/(p, u1, · · · , uk). In other
words, if X is a space, Stapleton asks whether there is a natural map

(E/(p, u1, · · · , uk))
0 (X) →

(

EBCp/

(

p, u1, · · · , uk,
[p](z)

zpk+1

))0

(X).

The above result shows that such a power operation can be defined on any x ∈ (E/(p, u1, · · · , uk))
0 (X)

that arises as the image of a class in E0(X).

Let us briefly describe how we prove Theorem 1.3. Suppose that R is a K(h + 1)-local Dp-E-
algebra. If R is K(h)-acyclic, then for some value of n it must be the case that (uh)

n ∈ π0(E)
maps to zero in π0(R/(p, u1, · · · , uh−1)). Using Theorem 1.6, we check that if (uh)

n maps to
zero, then so does (uh)

n−1. Iterating this argument, we eventually learn that one maps to zero in
π0(R/(p, u1, · · · , uh−1)), which implies (since R is K(h + 1)-local) that R is the zero ring. Such a
proof is very much analogous to the one of the May nilpotence conjecture in [MNN15].

1While Mathew–Naumann–Noel state their theorem for H∞-ring spectra, their proof uses only Dp-algebra
structure.
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Remark 1.8. In the long time since the first version of this paper was posted, Clausen–Mathew–
Naumann–Noel [Cla+20a] and Land–Mathew–Meier–Tamme [Lan+22] found applications of The-
orem 1.1 to foundational descent and purity results in algebraic K-theory. As part of their argu-
ments, Clausen–Mathew–Naumann–Noel make the elegant observation that, for any K(h+1)-local
E∞-ring R, R is K(h)-acyclic if and only if RtCp is K(h)-acyclic, where RtCp denotes the Tate con-
struction for the trivial Cp action. We record as Proposition 4.7 that this is also true of Dp-algebras.
Thus, if a K(h+ 1)-local Dp-algebra R has LK(h)R

tCp = 0, then R = 0.

Remark 1.9. In their forthcoming work on the chromatic Nullstellensatz, Burklund–Schlank–Yuan
prove that any E∞-ring is either K(h+1)-acyclic or maps to some height h+1 Lubin–Tate theory;
this in particular strengthens Theorem 1.1. In combination with work of Allen Yuan [Yua21], the
Nullstellensatz implies chromatic redshift occurs in the algebraic K-theory of any E∞-ring.

Remark 1.10. A version of Theorem 1.3 was first conjectured by Mark Hovey, where it appears
as Miscellaneous Problem 2 in his 1999 list of unsolved problems in algebraic topology [Hov99].

Acknowledgements. I heartily thank Akhil Mathew for introducing me to this problem and
pointing out its appearance on Mark Hovey’s webpage. Thanks are due to Peter May, Denis Nardin,
Eric Peterson, Andrew Senger, Nathaniel Stapleton, Dylan Wilson, Allen Yuan, and especially my
advisor Mike Hopkins for helpful conversations. The author was supported by the NSF Graduate
Fellowship under Grant DGE-1144152.

The original version of this paper was the first preprint I ever produced, and I hope the subsequent
six years of experience have improved both my technical and expository powers. In particular, I
thank Robert Burklund, Akhil Mathew, and Andrew Senger for bringing to my attention a mistake
in Section 2 of the original version of this preprint.

2. Morava E theory and its weight p power operation

We fix throughout the remainder of this paper a prime p and an integer h > 0, and by default
all spectra will be implicitly p-localized. By convention, we let E = Eh+1 denote the height h + 1
Lubin–Tate theory associated to the Honda formal group over Fph+1 . We call this Eh+1 Morava
E-theory, and it has homotopy groups

π∗E ∼= Zph+1Ju1, u2, · · · , uhK[u
±],

where |ui| = 0 and |u| = −2. By convention, we sometimes write u0 = p. Any other Lubin–Tate
theory would work just as well for our purposes, but we use this one for the sake of concreteness.
The Goerss–Hopkins–Miller theorem equips E with a canonical E∞-ring structure [GH04].

Convention 2.1. We fix a p-typical complex orientation of E

BP → E,

and name our generators ui ∈ π0E such that indecomposable generators vi ∈ π2pi−2BP are carried

to uiu
−pi+1 [DH04, p. 7]. Note that we do not in any way insist that this orientation be compatible

with the E∞-ring structure on Morava E-theory. Our fixed p-typical complex orientation is given
by a class t ∈ E2(CP∞), and it will be convenient to let z ∈ E0(CP∞) denote the product of t with
u−1 ∈ π2E. We can then speak of the p-series [p](z) as a class in E0(CP∞) ∼= E0JzK.

Remark 2.2. The fibration

S1 → BCp → CP
∞

allows one to write E0(BCp) as a quotient of E0(CP∞) ∼= E0JzK [HKR00, Lemma 5.7]. Specifically,
one has

E0(BCp) ∼= E0JzK/[p](z).
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Definition 2.3. The central object of study of this paper is the weight p power operation on Morava
E-theory, which is a multiplicative (but not additive) map

P : E0 → E0(BCp).

By definition, this map takes a class x : S0 → E to the composite class

Σ∞
+BCp = (S0)⊗p

hCp

(x⊗p)hCp
−−−−−−→ (E⊗p)hCp

→ E,

where the last map arises from the Dp-algebra structure on Morava E-theory.

Definition 2.4. While P is not additive, and hence not a ring map, the composite

E0 P
−→ E0(BCp) −→ z−1E0(BCp) = π0E

tCp

is a ring map, which we will denote by ϕ. In fact, ϕ is π0 of the Nikolaus–Scholze Frobenius [NS18,
§IV.1], which is an E∞ ring map E → EtCp . By taking π∗ of the Nikolaus–Scholze Frobenius, we
extend the domain of ϕ to include elements of π∗E that are not of degree 0; the output of ϕ will
in general be a class in z−1E∗(BCp).

Lemma 2.5. For each 0 ≤ k ≤ h, the following congruence holds in z−1E0(BCp):

ϕ(uk) ≡
ϕ
(

up
k−1

)

uk

upk−1
modulo p, · · · , uk−1

Proof. Recall that we have fixed a homotopy ring map f : BP → E, which on homotopy groups takes

vi to uiu
−pi+1. The lemma is thus implied by the statement that ϕ(vi) ≡ vi modulo (p, v1, · · · , vi−1)

in z−1E0(BCp). To see this, consider the homotopy ring map given by the composite

BP⊗ BP
f⊗f
−−−→ E ⊗ E

can⊗ϕ
−−−−→ EtCp ,

where can denotes the canonical map that exists because we are considering E with trivial Cp-
action. Taking homotopy groups, vi will be the image of ηL(vi) ∈ π∗(BP ⊗ BP), while ϕ(vi)
will be the image of ηR(vi). The result then follows from the fact that ηL(vi) ≡ ηR(vi) modulo
(p, v1, · · · , vi−1) in π∗(BP⊗ BP). �

Corollary 2.5.1. For each 0 ≤ k ≤ h, ϕ(uk) ≡ 0 modulo p, · · · , uk in z−1E0(BCp).

It will be useful to formulate the above corollary in terms of P , instead of ϕ. To do so, recall
(by, e.g., the formula at the top of [Goe+05, p.788]) that the p-series [p](z) ∈ E0JzK satisfies the
equation

[p](z) ≡ ukz
pk modulo p, · · · , uk−1, z

pk+1,

for each 0 ≤ k ≤ h. We may thus make the following definition:

Definition 2.6. For each 0 < k ≤ h, let gk(z) ∈ E0JzK denote the power series such that zp
k

gk(z)
is obtained from the p-series [p](z) by setting p, u1, · · · , uk−1 = 0.

Remark 2.7. By the Weierstrass preparation theorem [HKR00, Lemma 5.1], z is not a zero-divisor
in E0JzK/(p, u1, · · · , uk−1, gk(z)).

Proposition 2.8. In E0(BCp), the following congruence holds for each 0 ≤ k ≤ h− 1:

P (uk) ≡ 0 modulo p, u1, · · · , uk, gk+1(z).

Proof. By Corollary 2.5.1 there exists some positive integer i such that ziP (uk) is trivial in
E0(BCp) modulo p, u1, · · · , uk. The result now follows from the fact that z is not a zero-divisor in
E0(BCp)/(p, u1, · · · , uk, gk+1(z)). �
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3. The weight p power operation in a Dp-E-algebra

In the preceding section, we studied the weight p power operation P : E0 → E0(BCp), where
E is the height h+ 1 Morava E-theory. In this section, we study the analogous operation for any
K(h+ 1)-local Dp-E-algebra R:

Definition 3.1. A K(h + 1)-local Dp-E-algebra is a K(h + 1)-local E-module R equipped with
the data of:

• Multiplication and unit maps R⊗E2 → R and E → R, making R into a commutative and
associative algebra object in the homotopy category of E-modules.

• A factorization of the p-fold multiplication map R⊗Ep → R through the projection R⊗Ep →
(R⊗Ep)hCp

.

Example 3.2. If A is a Dp-algebra in spectra, then LK(h+1) (E ⊗A) is naturally a K(h+1)-local
Dp-E-algebra.

If R is a K(h+ 1)-local Dp-E-algebra, then RBCp is in particular an EBCp -module, so it makes
sense to speak of the quotient of RBCp by any sequence of elements in E0(BCp). With this in mind,
the main result of this section is the following theorem:

Theorem 3.3. Let R be a K(h + 1)-local Dp-E-algebra, k ≥ 1, and suppose that x ∈ π0R has

the property that x maps to 0 in π0 (R/(p, u1, · · · , uk)). Then P (x) ∈ π0(R
BCp) maps to zero in

π0
(

RBCp/ (p, u1, · · · , uk, gk+1(z))
)

.

Let us explain for a moment the complications involved with proving Theorem 3.3. For each
integer 0 ≤ i ≤ k, the quotient E/ui admits the structure of a homotopy E-algebra. The above
theorem would be straightforward, even before coning off gk+1(z), if each E/ui furthermore ad-
mitted a Dp-E-algebra structure. Unfortunately, the E/ui fail to admit such structure: the first
obstruction is the fact that P (ui) ∈ E0(BCp) does not map to 0 in E0(BCp)/ui. However, P (ui)
does project to 0 in E0(BCp)/(p, u1, · · · , ui, gi+1(z)), and it is this fact that will allow us to prove
Theorem 3.3.

The remainder of this section will be entirely devoted to the proof of Theorem 3.3. Before
continuing, it will be helpful to introduce some language from equivariant homotopy theory. Our
use of equivariant language is entirely confined to the remainder of this section.

Definition 3.4. The category of E-modules with Cp-action, also known as the category of Cp-
equivariant E-modules, is the category of functors from the groupoid BCp to the category of E-
modules. If M is an E-module, we will often write M⊗Ep to denote the Cp-equivariant E-module
M ⊗E M ⊗E · · · ⊗E M where the Cp action permutes p tensor factors. For readability, when it is
clear from context and in this section only, we will abbreviate M⊗Ep by M⊗p.

Remark 3.5. The symmetric monoidal category of K(h + 1)-local E-modules with Cp-action is
equivalent to the category of K(h + 1)-local modules over the E∞-ring spectrum EBCp [HL13,
Corollary 5.4.4]. Given a class x ∈ E0(BCp), and an EBCp -module M , we may form the EBCp -
module M/x = EBCp/x⊗EBCp M . In particular, if M is a K(h+1)-local E-module with Cp-action,
and x ∈ E0(BCp), it makes sense to speak of the Cp-equivariant E-module M/x.

Remark 3.6. Expanding on the above remark, given any sequence of elements x1, x2, · · · , xm in
E0(BCp), and a K(h + 1)-local Cp-equivariant E-module M , we may form the Cp-equivariant E-
module M/(x1, · · · , xm). In fact, since E∗(BCp) is concentrated in even degrees, there exists an
E1-E

BCp -algebra structure on EBCp/(x1, · · · , xm), and a choice of such E1-algebra structure allows
us to view Cp-equivariant E-module M/(x1, · · · , xm) as a module over EBCp/(x1, · · · , xm) [HW18].

The following lemma is the key technical fact powering our proof of Theorem 3.3. It concerns
the Cp-equivariant pth tensor power of the non-equivariant ui-Bockstein map Σ−1E/ui → E.
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Lemma 3.7. For any 0 ≤ i ≤ h− 1, the Cp-equivariant E-module map
(

Σ−1E/ui
)⊗p

→ E⊗p = E

admits a Cp-equivariant section after modding out by (p, u1, · · · , ui, gi+1(z)). In other words, there
is a section of the Cp-equivariant E/(p, u1, · · · , ui, gi+1(z))-module map
(

Σ−1E/ui
)⊗p

/(p, u1, · · · , ui, gi+1(z)) → E⊗p/(p, u1, · · · , ui, gi+1(z)) = E/(p, u1, · · · , ui, gi+1(z)).

Before proving the lemma, we recall the following useful fact:

Remark 3.8. The E∞-ring spectrum E has an F
×
p action preserving π0E. The fixed points of this

action form an E∞-ring spectrum that we denote by Ê, which has homotopy groups concentrated
in degrees that are multiples of 2p− 2. The inclusion of homotopy fixed points is an E∞-ring map
Ê → E, which is an isomorphism on π0. We use the existence of Ê only to prove the lemma below;
the key useful property is the triviality of homotopy groups in degrees that are not multiples of
2p− 2.

Proof of Lemma 3.7. To understand this point, it is (at least for the author) helpful to think of the
Cp-equivariant E-module (E/ui)

⊗p as a Thom spectrum. Indeed, the non-equivariant E-module
E/ui is the Thom spectrum of the map

S1 1+ui−−−→ BGL1(E).

The E∞-ring structure on E induces a Cp-equivariant map BGL1(E)×p → BGL1(E), and we can
use this to make a Cp-equivariant map

(S1)×p (1+ui)×p

−−−−−−→ (BGL1(E))×p → BGL1(E)

that has Thom spectrum exactly the Cp-equivariant E-module (E/ui)
⊗p. Our goal will be accom-

plished upon proving that the composite map

(S1)×p → BGL1(E) → BGL1(E/(p, u1, · · · , ui, gi+1(z)))

is Cp-equivariantly nullhomotopic. In fact, at primes p > 2 it is easier to prove the slightly stronger
statement that the composite

(S1)×p → BGL1(Ê) → BGL1(Ê/(p, u1, · · · , ui, gi+1(z)))

is Cp-equivariantly nullhomotopic.
We accomplish this by examining the natural equivariant cell decomposition of the pointed Cp

space (S1)×p. Since the non-equivariant space S1 admits a cell decomposition with one 0-cell and
one 1-cell, (S1)×p admits an equivariant cell decomposition with:

• One 0-cell.

• For each 0 < k < p,
(pk)
p

induced cells with boundaries (Cp)+ ∧ Sk−1.

• A ρ-cell (i.e., a cell with boundary Sρ−1), where ρ is the real regular representation of Cp.

Noting that Sρ is built from S1 by attaching induced cells of dimension at least 2 and at most
p, we see that it suffices to check the following three facts:

(1) The composite

S1 ∆
−→ (S1)×p (1+ui)×p

−−−−−−→ BGL1(Ê) → BGL1(Ê/(p, u1, · · · , ui, gi+1(z)))

is nullhomotopic.
(2) The composite

(Cp)+ ∧ S1 → (S1)×p → BGL1(Ê)
(1+ui)×p

−−−−−−→ BGL1(Ê/(p, u1, · · · , ui, gi+1(z)))

is nullhomotopic.
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(3) For 1 < k ≤ p, all maps

(Cp)+ ∧ Sk → BGL1(Ê/(p, u1, · · · , ui, gi+1(z)))

are nullhomotopic.

Statement (1) is the claim that P (1+ui) = 1 in E0(BCp)/(p, u1, · · · , ui, gi+1(z)). Since we have
killed gi+1(z), we have killed the generator [p](z)/z of the transfer ideal in E0(BCp), and so we
may write P (1 + ui) = P (1) + P (ui) = 1 + P (ui). Now we conclude (1) from Proposition 2.8.

To see statements (2) and (3), we recall that a map

(Cp)+ ∧ Sk → BGL1(Ê/(p, u1, · · · , ui, gi+1(z)))

is the data of a non-equivariant map from Sk to the non-equivariant ring underlying Ê/(p, u1, · · · , ui, gi+1(z)).

Because gi+1(z) is ui+1 plus a multiple of z, the non-equivariant ring underlying Ê/(p, u1, · · · , ui, gi+1(z))

is the non-equivariant quotient Ê/(p, u1, · · · , ui, ui+1). Since (p, u1, · · · , ui+1) is a regular sequence

in π0Ê = π0E, we may conclude (3) by the sparsity highlighted in Remark 3.8. To see statement
(2), we need to check that 1 + ui = 1 in E0/(p, u1, · · · , ui, ui+1), which follows from the fact that
we have coned off ui. �

The next corollary studies the Cp-equivariant pth tensor power of the non-equivariant iterated
Bockstein

Σ−kE/(p, u1, · · · , uk) → · · · → Σ−2E/(p, u1) → Σ−1E/p → E.

Note that this iterated Bockstein may also be described as the tensor product of the Bocksteins

Σ−1E/ui → E

as i ranges from 0 to k.

Corollary 3.8.1. For each 0 ≤ k ≤ h− 1, there is a Cp-equivariant section of the map

(Σ−kE/(p, · · · , uk))
⊗p → E⊗p = E

after modding out by (p, u1, · · · , uk, gk+1(z)).

Proof. We tensor together the sections provided by Lemma 3.7 for i = k, k − 1, · · · , 0. This gives
a section of the map

(Σ−kE/(p, · · · , uk))
⊗p → E

after first coning off by (p, u1, · · · , uk, gk+1(z)), then coning off (p, u1, · · · , uk−1, gk(z)), etc. Each of
p, u1, · · · , uk−1, g1(z), g2(z), · · · , gk(z) is trivial modulo (p, u1, · · · , uk, gk+1(z)). So the above coning
off process yields a direct sum of copies of E/(p, u1, · · · , uk, gk+1(z)), and we may project onto a
single copy. �

Proof of Theorem 3.3. By assumption, we are given a Dp-E-algebra R and a class x ∈ π0(R) such
that x maps to 0 in π0(R/(p, · · · , uk)). Consider now the following commutative diagram of Cp-
equivariant E-modules

(Σ−kE/(p, · · · , uk))
⊗p E R⊗p

Σ−1(Σ−kE/(p, · · · , uk))
⊗p/gk+1(z) Σ−1E/gk+1(z)

f x⊗p

g

h

j

Here, the map j is the gk+1(z) Bockstein Σ−1E/gk+1(z) → E, where E is considered as a Cp-
equivariant E-module with trivial action. The map g is obtained by tensoring j with the Cp-

equivariant E-module (Σ−kE/(p, · · · , uk))
⊗p. The map f is the pth tensor power of the Bockstein

Σ−kE/(p, · · · , uk) → E. Finally, the map h is obtained by tensoring f with Σ−1E/gk+1(z).
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The composite x⊗p ◦ f is trivial, because it is the pth tensor power of the non-equivariant
composite

Σ−kE/(p, · · · , uk) → E → R

that is trivial by assumption. In particular, this implies that x⊗p◦j◦h is trivial. By Corollary 3.8.1,
x⊗p ◦ j becomes trivial after further coning off p, u1, · · · , uk.

Finally, we consider the Cp-equivariant map R⊗p → R into R with trivial action, which is given
by the assumed Dp-E-algebra structure on R. From the above discussion, we learn in particular
that the composite

Σ−1E/gk+1(z) → E = (E⊗p)
x⊗p

−−→ (R⊗p) → R → R/(p, u1, · · · , uk)

is nullhomotopic. If we compose all but the initial map and final maps in this chain, we obtain
P (x) ∈ R0(BCp). The full composite precisely records the image of P (x) in π0(R

BCp/p, · · · , uk, gk+1(z)).
�

4. The weight p power operation modulo (p, u1, · · · , uh−1)

In this final section, we study in greater detail the mod (p, u1, · · · , uh−1) weight p power operation
on a K(h + 1)-local Dp-E-algebra R, beginning with the special case R = E. In particular,
Theorem 3.3 ensures that the following definition is sensible.

Definition 4.1. Let

P : FpJuhK → FpJuh, zK/(gh(z))

be the unique ring homomorphism fitting into the following diagram:

E0 E0(BCp)

E0/(p, u1, · · · , uh−1) E0(BCp)/(p, u1, · · · , uh−1, gh(z)),

P

P

where the vertical maps are the natural quotient homomorphisms.

The codomain of P can be understood fairly explicitly, using the Weierstrass preparation theorem
as in the following proposition:

Proposition 4.2. There exists a polynomial g(z) ∈ FpJuhK[z] such that:

• In the ring FpJuh, zK, g(z) = Ugh(z) where U is a unit.

• g(z) is monic, of degree ph+1 − ph, and g(z) ≡ zp
h+1−ph modulo uh.

• The constant term of g(z) is divisible by uh but not u2h.

Proof. Recall that [p](z) ≡ uhz
ph modulo (p, u1, · · · , uh−1, z

ph+1), and that [p](z) is a unit multiple

of zp
h+1

modulo (p, u1, · · · , uh). The result then follows from the Weierstrass preparation theorem
[HKR00, Lemma 5.1]. �

By the first of the above bullet points, we may describe the codomain E0(BCp)/(p, u1, · · · , uh−1, gh(z))

of P equally well as E0(BCp)/(p, u1, · · · , uh−1, g(z)). We then have the following proposition:

Proposition 4.3. The ring E0(BCp)/(p, u1, · · · , uh−1, gh(z)) ∼= FpJuhK[z]/(g(z)) is a discrete val-
uation ring, with uniformizer z.

Proof. The ring FpJunK[z] is a UFD, so Eisenstein’s criterion applies to show that g(z) is irreducible.
It follows that the quotient FpJunK[z]/g(z) is a local domain. Furthermore, FpJunK[z]/(z, g(z)) ∼= Fp,
because the constant term of g(z) is divisible by uh but not u2h. It follows that z is a uniformizer. �
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Convention 4.4. It will be convenient to scale the discrete valuations on FpJuhK and FpJuh, zK/(g(z))
so that uh has valuation 1 in both rings. This means that z has valuation 1

ph+1−ph
, and the valuation

of any non-zero element in FpJuh, zK/(g(z)) is a multiple of 1
ph+1−ph

.

Proposition 4.5. The class P (uh) ∈ FpJuh, zK/g(z) has valuation p−1
ph+1−ph

.

Proof. The valuation on FpJuh, zK/g(z) extends to a valuation on z−1
FpJuh, zK/g(z). In this latter

ring, we have the equation

ϕ(uh) = uh
ϕ(up

h−1)

uph−1
= uh

(

ϕ(u)

u

)ph−1

,

by Lemma 2.5. It therefore suffices to prove that the valuation of ϕ(u)/u is −(p−1)
ph+1−ph

, since this will

imply that the valuation of ϕ(uh) is

1−
(p − 1)(ph − 1)

ph+1 − ph
=

p− 1

ph+1 − ph
.

The valuation of ϕ(u)
u

does not depend on the choice of degree −2 unit u, so we may as well study
a particularly convenient choice of degree −2 unit. By a theorem of Ando [And95] generalized by
Zhu [Zhu20, Corollary 8.17], there exists an H∞ ring homomorphism MUP → E, where MUP is
the periodic complex bordism obtained as the Thom spectrum of the J-homomorphism BU×Z →
pic(S). Assuming that u is the image of the degree −2 generator of π∗(MUP) under such an H∞-
ring map, we have (as in [NS18, pg. 339]) that ϕ(u) is up divided by the Euler class of the reduced
real regular representation of Cp. In symbols, recalling that z ∈ E0(BCp) denotes u−1 times the
Euler class of the standard representation of Cp on C, we have that

ϕ(u) =
u

z([2](z)) · · · ([p − 1](z))
.

For each integer k between 1 and p − 1, [k](z) = kz +O(z2) has valuation 1
ph+1−ph

, and it follows

that ϕ(u)/u has valuation −(p−1)
ph+1−ph

. �

Corollary 4.5.1. Let x ∈ FpJuhK denote any non-zero element of positive valuation. Then P (x) ∈
FpJuh, zK/gh(z) has strictly smaller valuation.

Proof. Since we may write an arbitrary x ∈ FpJuhK as a power of uh times a unit, it suffices to
check this for powers of uh, where it follows from Proposition 4.5 since we have assumed h > 0. �

Corollary 4.5.2. Suppose that R is a K(h+1)-local Dp-E-algebra, and that x ∈ E0 is a non-zero
element such that the image of x in π0(R/(p, · · · , uh−1)) is trivial. Then, if x has positive valuation
in E0/(p, · · · , uh−1) ∼= FpJuhK, there exists an element y ∈ E0 which:

(1) Also maps to 0 in π0(R/(p, · · · , uh−1)).
(2) Has valuation in E0/(p, · · · , uh−1) ∼= FpJuhK strictly smaller than that of x.

Proof. Let α denote the image of P (x) in E0(BCp)/(p, u1, · · · , uh−1, gh(z)). By Theorem 3.3, the
image of α in R0(BCp)/(p, u1, · · · , uh−1, gh(z)) is trivial.

By the isomorphism

E0(BCp)/(p, u1, · · · , uh−1, gh(z)) ∼= FpJuhK[z]/(g(z)),

where g(z) is monic of degree ph+1 − ph, we may write

α = a0 + a1z + a2z
2 + · · ·+ aph+1−ph−1z

ph+1−ph−1

for some collection of coefficients ai ∈ FpJuhK.



REFERENCES 10

By Corollary 4.5.1, the valuation of α is strictly less than the valuation of x in FpJuhK ∼=
E0/(p, · · · , uh−1). It follows that there exists some k, with 0 ≤ k < ph+1 − ph, such that ak
has valuation strictly lower than that of x.

Noting that E0(BCp)/(p, u1, · · · , uh−1, gh(z)) is a free E0/(p, u1, · · · , uh−1) module, with basis
dual to the functions that pick out the coefficients ai, we may cap with the class that picks out
ak to learn that ak maps to 0 in π0(R/(p, · · · , uh−1)). We may then take y to be any lift of
ak ∈ E0/(p, · · · , uh−1) to a class in E0. �

Corollary 4.5.3. Suppose that R is a K(h+1)-local Dp-E-algebra, and that x ∈ E0 maps to zero
in π0(R/(p, · · · , uh−1)). Then, if x maps to a non-zero element of E0/(p, · · · , uh−1) ∼= FpJuhK, R
is trivial.

Proof. We learn from the above that 1 = 0 in the homotopy groups of the ring spectrumR/(p, · · · , uh−1).
Since R is K(h+ 1)-local, this implies R ≃ 0. �

We now turn to the proof of the main theorem of this article, which we restate for the reader’s
convenience:

Theorem 4.6. Suppose that R is a Dp-algebra in spectra. For any height h at the prime p, if R is
K(h)-acyclic then R is also K(h+ 1)-acyclic.

Proof. To check that R is K(h+1)-acyclic, it suffices to check that LK(h+1)(R⊗E) is trivial. Fur-
thermore, sinceK(h)⊗LK(h+1)(R⊗E) is a module over the homotopy ringK(h)⊗R, LK(h+1)(R⊗E)
will be K(h)-acyclic if R is K(h)-acyclic.

We may therefore assume without loss of generality that R is a K(h + 1)-local Dp-E-algebra.

If R is K(h)-acyclic, then it is T (h)-acyclic for some telescope T (h) = v−1
h S/(pi0, v

i1
1 , · · · , v

ih−1

h−1 )

[Lan+22, Lemma 2.3], so there must be some positive integer k such that (uh)
k ∈ π0E maps to

zero in π0 (R/(p, · · · , uh−1)). In particular, we may apply Corollary 4.5.3 and learn that R ≃ 0. �

Following the arguments of [Cla+20a], we also have the following variant of the main theorem:

Corollary 4.6.1. Suppose that R is a Dp-algebra in spectra, and let RtCp denote the Tate con-
struction of R with trivial Cp action. For any height h at the prime p, if RtCp is K(h)-acyclic then
R is also K(h+ 1)-acyclic.

Proof. Note that
(

LK(h+1)(E ⊗R)
)tCp is a module over RtCp , so the former is K(h)-acyclic when-

ever the latter is. The result therefore follows by the combination of the proposition below with
Theorem 1.3. �

Proposition 4.7. Suppose that R is a K(h+1)-local homotopy E-algebra, and let RtCp denote the
Tate construction of R with trivial Cp action. If RtCp is K(h)-acyclic, then R is K(h)-acyclic.

Proof. We follow the arguments of Clausen–Mathew–Naumann–Noel from [Cla+20a, §4]. First,
one checks that EhCp is a free and finitely generated E-module, which follows as in many of our
above arguments by the Weierstrass preparation theorem. It follows that the natural comparison
map EhCp ⊗E M → MhCp is an equivalence for any K(h+ 1)-local E-module M , considered with
trivial Cp-action. This then implies that EtCp ⊗E M ≃ M tCp .

It then remains to check that K(h) ⊗E EtCp ⊗E R ≃ 0 if and only if K(h) ⊗E R ≃ 0, which
follows from the explicit description π∗(K(h) ⊗E EtCp) ∼= FpJuhK[z

±1][u−1
h ]/g(z). �
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