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Abstract Consider a Quillen adjunction of two variables between combinatorial model cat-

egories from C × D to E , a set S of morphisms in C and a set K of objects in C. We prove

that there is a localised model structure LSE on E , where the local objects are the S-local

objects in E described via the right adjoint. Dually, we show that there is a colocalised model

structure CKE on E , where the colocal equivalences are the K-colocal equivalences in E

described via the right adjoint. These localised and colocalised model structures generalise

left and right Bousfield localisations of simplicial model categories, Barnes and Roitzheim’s

familiar model structures, and Barwick’s enriched left and right Bousfield localisations.
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1 Introduction

Quillen adjunctions between spectra or spaces and other model categories are a useful way

to study homotopy structures. For example, one can gain insight into a model category C

by studying the canonical action of the homotopy category of simplicial sets Ho(sSet) or of

the stable homotopy category Ho(Sp) (provided that C is a stable model category) on the

homotopy category Ho(C).

In [4] it was studied how this set-up is compatible with homological localisations of spec-

tra, that is, left Bousfield localisation at E∗-isomorphisms for a homology theory E. For a

stable model category C, Barnes and Roitzheim constructed in [4] a corresponding Bousfield

localisation CE of C called stable E-familiarisation with appropriate universal properties.

One of them implies that CE is the “closest” model category to C such that every left Quillen

functor from the model category of symmetric spectra Sp to CE factors over E-local spectra

LE Sp.

In this paper, we take this notion further by studying the compatibility of Quillen adjunc-

tions of two variables from C×D to E with Bousfield localisations and colocalisations of C

or D. Given a Quillen adjunction of two variables between combinatorial model structures

− ⊗ −: C × D −→ E,

Homr (−,−) : Dop × E −→ C,

Homl(−, −) : Cop × E −→ D,

where E is left proper, and a set S of morphisms in C, we define an S-localised model

structure LSE on E . The cofibrations of LSE are the same as the ones in E , and the fibrant

objects are the objects Z that are fibrant in E and such that for every morphism f : A → B

in S the induced map

f ∗ : Homl(B,Z) −→ Homl(A,Z)

is a weak equivalence in D. We show that the fibrant objects of LSE can be equivalently

characterised in terms of a set of homotopy generators GD of D. Namely, Z is fibrant in

LSE if it is fibrant in E and Homr (G,Z) is S-local in C for every G in GD .

In fact, if ID denotes the set of generating cofibrations of D and GD a set of homotopy

generators of D, then the model structure LSE can be obtained as the left Bousfield localisa-

tion of E with respect to the set of morphisms S�ID, where � denotes the pushout-product,

or equivalently as the left Bousfield localisation of E with respect to S ⊗GD . Moreover, we

show that the left Quillen bifunctor C × D → E induces a left Quillen bifunctor between

the localised model structures LSC × D → LSE , and that the model structure LSE is the

“closest” model structure to E with this property.

Dually, if we start with a set of objects K in C, we can obtain similar statements for the

corresponding K-colocalised model structure CKE .

The S-localised model structure and the K-colocalised model structure are useful as they

now generalise two known constructions: the enriched left and right Bousfield localisations

of enriched model categories [5] and the E-familiarisation of spectral model categories [4,

Section 5].

One application of our results is the description of Postnikov sections of arbitrary left

proper combinatorial model categories. For the category sSet of simplicial sets, the model

structure Pk sSet for kth Postnikov sections is obtained via localising sSet with respect to
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the map fk : Sk+1 → Dk+2. Using our localisation construction and combining it with the

theory of framings [15] we can now consider Postnikov sections PkC in model categories

C that are not necessarily simplicial, for instance, when C = Chb(R) is the category of

non-negatively graded chain complexes of R-modules endowed with the standard projective

model structure.

The S-localised and K-colocalised model structures play also an important role in the

study of towers and homotopy pullbacks of model categories, such as Postnikov towers,

Bousfield arithmetic squares, and homotopy fibers [12].

The paper is organised as follows. In Section 1, we recall some terminology and basic

results on locally presentabl categories and combinatorial model categories. In Section 2,

we discuss how Quillen adjunctions of two variables are compatible with left and right

Bousfield localisations. Given a Quillen adjunction of two variables C×D → E we describe

Bousfield localisations of E based on localisations of C or D and their universal properties.

As particular examples, we recover enriched localisations [5], enriched colocalisations and

E-familiarisations [3, 4]. Finally, in Section 3 we study the special case of Postnikov k-types

in combinatorial model categories.

2 Review of Combinatorial Model Categories

In this section, we recall some terminology on locally presentable categories and combina-

torial model categories. The essentials of the theory of locally presentable categories can be

found in [1, 10] or [20]. Foundations on the theory of combinatorial model categories may

be found in [6, 8] and [19]. As in [14] and [15] we will assume that all our model categories

are equipped with functorial factorisations.

2.1 Locally Presentable Categories

Let λ be a regular cardinal. A small category I is called λ-filtered if it is nonempty and

satisfies the following two conditions:

(i) Given any set of objects {ai | i ∈ I } in I , where |I | < λ, there is an object a and a

morphism ai → a for each i ∈ I .

(ii) Given any set of parallel morphisms {αj : a → a′ | j ∈ J } in I between two fixed

objects, where |J | < λ, there is a morphism γ : a′ → a′′ such that γ ◦ αj = γ ◦ αj ′

for all j, j ′ ∈ J .

An object X of a category C is called λ-presentable if the functor C(X,−) from C to sets

preserves λ-filtered colimits.

A cocomplete category C is locally λ-presentable if there is a set of λ-presentable objects

A such that every object of C is a λ-filtered colimit of objects from A. In fact, if C is locally

λ-presentable, then the collection of all λ-presentable objects has a set of representatives

with respect to isomorphism, and we will denote by Cλ the full subcategory determined by

any such set. The overcategory Cλ ↓ X is λ-filtered and if we denote by colim(Cλ ↓ X) the

colimit of the diagram Cλ ↓ X → Cλ →֒ C, where the first functor is the projection, then

the canonical map

colim(Cλ ↓ X) −→ X

is an isomorphism. A category is locally presentable if it is locally λ-presentable for some

regular cardinal λ.
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Every locally λ-presentable category is equivalent to a full, reflective subcategory closed

under λ-filtered colimits of the category of presheaves on some small category; see [1,

Proposition 1.46].

2.2 Combinatorial Model Categories

A model category C is cofibrantly generated if there exists a set IC of generating cofibrations

and a set JC of generating trivial cofibrations that one can use to perform the small object

argument (see [14, Definition 11.1.2] or [15, Definition 2.1.17] for a precise definition).

A homotopy function complex in a model category C is a functorial choice of a fibrant

simplicial set mapC(X, Y ), for every two objects X and Y in C, whose homotopy type is the

same as the diagonal of the bisimplicial set C(X̃, Ŷ), where X̃ is a cosimplicial resolution

of X and Ŷ is a simplicial resolution of Y ; for more details, see [14, Chapter 17]. Functorial

homotopy function complexes exist in every model category and they are unique up to

homotopy; see [14, Proposition 17.5.18 and Theorem 17.5.21].

Let C be a model category with homotopy function complex mapC(−,−) and let

i : A → B and p : X → Y be two morphisms in C. Then the pair (i, p) is a homotopy

orthogonal pair if the diagram

is a homotopy fiber square [14, Definition 17.8.1]. The notion of homotopy orthogonal

pair does not depend on the choice of homotopy function complexes, as shown in [14,

Proposition 17.8.2]. In particular, we have that the pair (∅ → W,p) is homotopy orthogonal

if the induced map

p∗ : mapC(W,X) −→ mapC(W, Y )

is a weak equivalence of simplicial sets.

Recall that a model category is left proper if pushouts of weak equivalences along cofi-

brations are weak equivalences, and right proper if pullbacks of weak equivalences along

fibrations are weak equivalences. A model category is proper if it is left and right proper.

In a cofibrantly generated model category the set of generating cofibrations can be used

to detect weak equivalences. A proof of the following result can be found in [14, Theorem

17.8.18].

Proposition 2.1 Let C be a cofibrantly generated model category and let IC be a set of

generating cofibrations. Assume that C is left proper or that the domains of the elements of

IC are cofibrant. Then, a map f in C is a weak equivalence if and only if for every map i in

IC the pair (i, f ) is a homotopy orthogonal pair.

A set of homotopy generators for a model category C consists of a small full subcategory

G such that every object of C is weakly equivalent to a filtered homotopy colimit of objects

of G. A set of homotopy generators also detects weak equivalences.

Proposition 2.2 Let C be a model category with homotopy function complex mapC(−, −)

and a set of cofibrant homotopy generators G. Then a map f : X → Y in C is a weak

equivalence if and only if for every G in G the pair (jG, f ) is a homotopy orthogonal pair,

where jG denotes the morphism ∅ → G.
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Proof Let jW denote the map ∅ → W . By [14, Theorem 17.7.7] a map f : X → Y is a

weak equivalence if and only if the pair (jW , f ) is a homotopy orthogonal pair for every

object W , that is, if and only if the induced map

f∗ : mapC(W,X) −→ mapC(W, Y )

is a weak equivalence. Let f̂ : X̂ → Ŷ be a fibrant approximation of f . By assumption

every object W is weakly equivalent to a filtered homotopy colimit hocolim Gα of objects

of G, and hence [14, Theorem 19.4.2(2)] and [14, Theorem 19.4.4] imply that

mapC(hocolim Gα, X̂) ≃ holim(mapC(Gα, X̂))

and that the map

holim(mapC(Gα, X̂)) −→ holim(mapC(Gα, Ŷ ))

is a weak equivalence. The result now follows from the fact that homotopy function complexes

are homotopy invariant; see [14, Theorem 17.7.7].

Let λ be a regular cardinal. A model category C is called λ-combinatorial if it is cofi-

brantly generated and the underlying category is locally λ-presentable. A model category C

is called combinatorial if it is λ-combinatorial for some regular cardinal λ.

Every combinatorial model category is Quillen equivalent to a left Bousfield localisation

of a category of diagrams of simplicial sets equipped with the projective model structure

[8, Theorem 1.1] and many model categories of interest are combinatorial. Examples are

pointed or unpointed simplicial sets, pointed or unpointed motivic spaces [7, 21], symmet-

ric spectra over simplicial sets [16, § 3.4] or over motivic spaces [17], module spectra over a

ring spectrum [22, Theorem 4.1], bounded or unbounded chain complexes of modules over a

ring [15, § 2.3], or any locally presentable category equipped with the discrete model struc-

ture, where the weak equivalences are the isomorphisms and all morphisms are fibrations

and cofibrations.

Dugger also proved in [8, Proposition 4.7] that every combinatorial model category has

a set of homotopy generators (in the sense that every object is a homotopy colimit of those)

and that, moreover, they can be chosen to be cofibrant. Recall that we denote by C ↓ X the

slice category of C over an object X, and that by hocolim(Cλ ↓ X) we mean the homotopy

colimit of the projection followed by inclusion functor Cλ ↓ X → Cλ →֒ C.

Proposition 2.3 (Dugger) Let λ be a regular cardinal and let C be a λ-combinatorial model

category. Let Cλ ⊆ C denote the full subcategory of the λ-presentable objects. Then every

object X is a canonical filtered homotopy colimit of objects of Cλ. More precisely, the

canonical map

hocolim(Cλ ↓ X) −→ X

is a weak equivalence. Moreover, there is a regular cardinal μ > λ such that the canonical

map

hocolim(Ccof
μ ↓ X) −→ X

is a weak equivalence, where C
cof
μ denotes the full subcategory of Cμ consisting of the

cofibrant objects.

Given a combinatorial model category C, we will denote by GC a set of cofibrant

homotopy generators, whose existence is guaranteed by the previous proposition.
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Corollary 2.4 Let C be a combinatorial model category with a set of generating cofibra-

tions IC and a set of cofibrant homotopy generators GC . Assume that C is left proper or that

the domains of the elements of IC are cofibrant. Then, for every map f in C, the pair (i, f )

is a homotopy orthogonal pair for all i in IC if and only for every G in GC , the pair (jG, f )

is a homotopy orthogonal pair, where jG denotes the morphism ∅ → G.

Proof This is a consequence of Proposition 1.1 and Proposition 1.2.

3 Left and Right Bousfield Localisations along Quillen Bifunctors

In this section we are going to discuss how Quillen adjunctions of two variables are

compatible with left and right Bousfield localisation.

3.1 Quillen Bifunctors

Let C, D and E be categories. An adjunction of two variables from C × D to E is given by

functors

− ⊗ −: C × D −→ E,

Homr (−,−) : Dop × E −→ C,

Homl(−, −) : Cop × E −→ D,

and natural isomorphisms

C(X, Homr (Y, Z)) ∼= E(X ⊗ Y,Z) ∼= D(Y, Homl(X,Z)).

We will sometimes denote an adjunction of two variables from C × D to E just by the

left adjoint C × D → E . The following analogous notion for model categories appears

in [15, Definition 4.2.1].

Definition 3.1 Let C, D and E be model categories. An adjunction of two variables from

C ×D to E is a Quillen adjunction of two variables if for every cofibration f : A → B in C

and every cofibration g : X → Y in D, the pushout-product

f�g : B ⊗ X
∐

A⊗X

A ⊗ Y −→ B ⊗ Y

is a cofibration in E which is a trivial cofibration if either f or g is a trivial cofibration.

We will refer to the left adjoint ⊗ of a Quillen adjunction of two variables as a left Quillen

bifunctor.

Every Quillen adjunction of two variables induces a derived adjunction of two variables

on the corresponding homotopy categories.

Remark 3.2 There are equivalent formulations of the previous condition satisfied by a

Quillen adjunction of two variables in term of Hom�
r and Hom�

l , where Hom�
r and Hom�

l

denote the respective adjoints of the pushout-product; see [15, Lemma 4.2.2]. Explicitly, an

adjunction of two variables C ×D → E is a Quillen adjunction of two variables if and only

if any of the following equivalent conditions hold:

(i) For every cofibration f : A → B in C and every fibration h : U → V in E , the map

Hom�
l (f, h) : Homl(B,U) −→ Homl(B, V ) ×Homl(A,V ) Homl(A,U)
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is a fibration in D which is a trivial fibration if either f is a trivial cofibration or h is

a trivial fibration.

(ii) For every cofibration g : X → Y in D and every fibration h : U → V in E , the map

Hom�
r (g, h) : Homr (Y, U) −→ Homr (Y, V ) ×Homr (X,V ) Homr (X,U)

is a fibration in C which is a trivial fibration if either g is a trivial cofibration or h is a

trivial fibration.

Remark 3.3 If (⊗, Homr , Homl) is a Quillen adjunction of two variables from C × D to

E and F1 : C ′ → C, F2 : D′ → D and F3 : E → E ′ are left Quillen functors (with right

adjoints G1, G2 and G3, respectively), then

(F3(F1(−) ⊗ F2(−)),G1 Homr (F2(−),G3(−)),G2 Homl(F1(−), G3(−)))

is a Quillen adjunction of two variables from C ′ × D′ to E ′.

Example 3.4 Let sSet denote the category of simplicial sets with the Kan–Quillen model

structure. A simplicial model structure on a model category C is the same as a left Quillen

bifunctor C × sSet → C. A topological model structure can be defined similarly, by replac-

ing simplicial sets with the category of compactly generated Hausdorff spaces equipped

with the Quillen model structure.

Let (E,⊗, I, HomE ) be a closed symmetric monoidal category. A model structure on E

is called a monoidal model structure if − ⊗ −: E × E → E is a left Quillen bifunctor and

the unit I is cofibrant.

Let E be a monoidal model category. An E-model category is a category C enriched, ten-

sored and cotensored over E together with a model structure such that the tensor, enrichment

and cotensor define a Quillen adjunction of two variables.

The following two lemmas are an immediate consequence of the bifunctor adjunctions

and we state them without proof. We will use the terminology f ⋔ g to indicate that a

morphism f has the left lifting property with respect to g (or that g has the right lifting

property with respect to f ), that is, f ⋔ g if for every commutative diagram of the form

there is a diagonal lifting h such that i = hf and p = gh.

Lemma 3.5 Let (⊗, Homr , Homl) be an adjunction of two variables from C × D to E and

let f , g and h be morphisms in C, D and E , respectively. The following are equivalent:

(i) (f�g) ⋔ h.

(ii) f ⋔ Hom�
r (g, h).

(iii) g ⋔ Hom�
l (f, h).

Lemma 3.6 Let (⊗, Homr , Homl) be an adjunction of two variables from C × D to E

between model categories.
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(i) The following are equivalent:

(a) For every cofibration f in C and a every cofibration g in D, the morphism

f�g is a cofibration in E .

(b) For every a cofibration g in D and for every trivial fibration h in E , the

morphism Hom�
r (g, h) is a trivial fibration in C.

(c) For every cofibration f in C and every trivial fibration h in E , the

morphism Hom�
l (f, h) is a trivial fibration in D.

(ii) The following are equivalent:

(a) For every cofibration f in C and every trivial cofibration g in D, the

morphism f�g is a trivial cofibration in E .

(b) For every trivial cofibration g in D and every fibration h in E , the

morphism Hom�
r (g, h) is a trivial fibration in C.

(c) For every cofibration f in C and every fibration h in E , the morphism

Hom�
l (f, h) is a fibration in D.

Note that in every Quillen adjunction of two variables, if X is cofibrant in C, then X ⊗−

is a left Quillen functor with right adjoint Homl(X,−). Similarly, if Y is cofibrant in D,

then − ⊗ Y is a left Quillen functor with right adjoint Homr (Y,−).

Just as in the case of Quillen functors (see [14, Proposition 8.5.4]) we have the following

proposition which will be useful to test whether an adjunction of two variables is a Quillen

adjunction of two variables. In order to prove it, we will make use of the following key

result, which appears as [18, Lemma 7.14].

Lemma 3.7 A cofibration in a model category is a trivial cofibration if and only if it has

the left lifting property with respect to every fibration between fibrant objects. Dually, a

fibration in a model category is a trivial fibration if and only if it has the right lifting

property with respect to every cofibration between cofibrant objects.

Proposition 3.8 Let (⊗, Homr , Homl) be an adjunction of two variables from C × D to E

between model categories. Suppose that if g is a cofibration (respectively trivial cofibration)

in D and h is a trivial fibration (respectively fibration) in E , then Hom�
r (g, h) is a trivial

fibration in C. Then the following are equivalent:

(i) (⊗, Homr , Homl) is a Quillen adjunction of two variables.

(ii) Given a cofibration g in D and a fibration between fibrant objects ĥ in E , the

morphism Hom�
r (g, ĥ) is a fibration in C.

(iii) Given a cofibration between cofibrant objects g̃ in D and a fibration h in E , the

morphism Hom�
r (g̃, h) is a fibration in C.

(iv) Given a cofibration between cofibrant objects g̃ in D and a fibration between fibrant

objects ĥ in E , the morphism Hom�
r (g̃, ĥ) is a fibration in C.

Proof It is clear that (i) implies (ii), (iii) and (iv), that (ii) implies (iv) and that (iii) implies

(iv). It then suffices, for example, to prove that (ii) implies (i) and that (iv) implies (ii).

In order to prove that (ii) implies (i), let g be any cofibration in D and h any fibration in

E . Then Hom�
r (g, h) is a fibration in C if and only if for every trivial cofibration j in C, we

have that j ⋔ Hom�
r (g, h). But by Lemma 2.5, this is equivalent to (j�g) ⋔ h, in other

words, j�g being a trivial cofibration. Since by assumption condition (i)(b) of Lemma 2.6
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holds, Lemma 2.6(i) implies that j�g is a cofibration. Hence, by Lemma 2.7 the previous

condition is equivalent to (j�g) ⋔ ĥ for ĥ being any fibration between fibrant objets in E .

Again, by Lemma 2.5 this is equivalent to j ⋔ Hom�
r (g, ĥ) for ĥ any fibration between

fibrant objects. Since we are assuming that Hom�
r (g, ĥ) is a fibration in C, the last statement

is true, so we can conclude that Hom�
r (g, h) is a fibration for any cofibration g and fibration

h as required, which was the missing part for (⊗, Homr , Homl) to be a Quillen adjunction

of two variables.

That part (iv) implies (ii) is proved in a very similar way to the previous point. Let g be

any cofibration in D and let ĥ be a fibration between fibrant objects in E . Then Hom�
r (g, ĥ)

is a fibration in C if and only if j ⋔ Hom�
r (g, ĥ) for every trivial cofibration j in C. By

Lemma 2.5 this is equivalent to g ⋔ Hom�
l (j, ĥ) for every trivial cofibration j in C. By the

assumption of the proposition and Lemma 2.6(ii) the morphism Hom�
l (j, ĥ) is a fibration,

and therefore, by Lemma 2.7, it is a trivial fibration if and only if g̃ ⋔ Hom�
l (j, ĥ) for every

cofibration g̃ between cofibrant objects in D. By adjunction, this is equivalent to saying that

j ⋔ Hom�
r (g̃, ĥ) for every trivial cofibration j in C, every cofibration between cofibrant

objects g̃ in D, and every fibration between fibrant objects ĥ in E . But Hom�
r (g̃, ĥ) is

a fibration, by assumption, hence (iv) is equivalent to (ii), which is what we wanted to

prove.

Remark 3.9 Note that if (⊗, Homr , Homl) is an adjunction of two variables from C × D

to E and τ : D × C → C × D is the functor that interchanges the components, then

(⊗ ◦ τ, Homl, Homr ) is an adjunction of two variables from D × C to E .

3.2 Left and Right Bousfield Localisation

We recall the notion of left Bousfield localisation and right Bousfield localisation (also

called Bousfield colocalisation) for model categories; see [14, Chapters 3–5].

Let C be a model category with homotopy function complex mapC(−,−) and let S be

a class of morphisms of C and K a class of objects in C. We say that an object Z in C is

S-local if it is fibrant and for every morphism f : A → B in S the induced map

f ∗ : mapC(B,Z) −→ mapC(A,Z)

is a weak equivalence of simplicial sets. We say that a map g : X → Y is an S-local

equivalence if the induced map

g∗ : mapC(Y, Z) −→ mapC(X,Z)

is a weak equivalence of simplicial sets for every S-local object Z.

We say that a map h : X → Y in C is a K-colocal equivalence if for every object K in K

the induced map

h∗ : mapC(K,X) −→ mapC(K, Y )

is a weak equivalence of simplicial sets. We say that an object W in C is K-colocal if it is

cofibrant and for every K-colocal equivalence h the induced map

h∗ : mapC(W,X) −→ mapC(W, Y )

is a weak equivalence of simplicial sets.
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The left Bousfield localisation of C with respect to S (if it exists) is a new model structure

LSC on C such that

(i) the cofibrations of LSC are the same as those of C,

(ii) the weak equivalences of LSC are the S-local equivalences,

(iii) the fibrant objects of LSC are the S-local objects.

The S-local equivalences between S-local objects are weak equivalences in C.

The right Bousfield localisation (or Bousfield colocalisation) of C with respect to K (if

it exists) is a new model structure CKC on C such that

(i) the fibrations of CKC are the same as those of C,

(ii) the weak equivalences of CKC are the K-colocal equivalences,

(iii) the cofibrant objects of CKC are the K-colocal objects.

The K-colocal equivalences between K-colocal objects are weak equivalences in C.

Remark 3.10 In [14, Chapter 3], both left and right Bousfield localisations are defined

with respect to arbitrary classes of morphisms. Here we have chosen to define right Bous-

field localisations with respect to objects, since the main existence result works under the

assumption that we localise at the class of K-colocal equivalences for a set of objects K.

Remark 3.11 Note that the definition of the S-local objects does not depend on the chosen

homotopy function complexes, since they are unique up to homotopy and also homotopy

invariant. Therefore, we can always replace the morphisms in S by weakly equivalent ones

consisting of cofibrations between cofibrant objects without changing the model structure

LSC. Hence, without loss of generality we will often assume that when we localise with

respect to a class of morphisms, these morphisms are cofibrations between cofibrant objects.

Similarly, we can assume without loss of generality that when we colocalise with respect

to a class of objects, they are cofibrant.

There are two main classes of model categories where localisations with respect to a

set of morphisms and colocalisations with respect to a set of objects are always known to

exist. These are the cellular model categories and the combinatorial model categories. For

both classes the assumption of left properness is needed for the existence of left Bousfield

localisations (see [14, Theorem 4.1.1] and [5, Theorem 4.7]) and right properness in needed

for the existence of right Bousfield localisation (see [14, Theorem 5.1.1] and [5, Proposition

5.13]). If C is left proper and combinatorial (or cellular) and S is a set of morphisms of

C, then LSC is also left proper and combinatorial (or cellular). If C is right proper and

combinatorial (or cellular) and K is a set of objects of C, then CKC is also right proper, but

it is not cofibrantly generated in general.

Definition 3.12 Let ⊗: C × D → E be a left Quillen bifunctor, where D is cofibrantly

generated with set of generating cofibrations ID and set of cofibrant homotopy generators

GD . Assume that E is proper and combinatorial and let S and K be sets of morphisms and

objects in C, respectively.

(i) The S-local model structure on E , denoted by LSE , is the left Bousfield localisation

LS�ID
E of E with respect to S�ID .

(ii) The K-colocal model structure on E , denoted by CKE is the right Bousfield

localisation CK⊗GD
E of E with respect to K ⊗ GD.
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Remark 3.13 If (⊗, Homr , Homl) is a Quillen adjunction of two variables from C×D to E ,

with C cofibrantly generated, E left proper and combinatorial, and S is a set of morphisms

in D (instead of in C), then we can also define an S-localised model structure on E as

LIC�SE , where IC is the set of generating cofibrations of C. All the results from this section

can be rephrased in terms of a set of morphisms in D, by suitably replacing Homl by Homr

and vice versa; see Remark 2.9.

Theorem 3.14 Let (⊗, Homr , Homl) be a Quillen adjunction of two variables from C ×D

to E . Let S and K be classes of morphisms and objects in C, respectively. Assume that

D is combinatorial with set of generating cofibrations ID and set of cofibrant homotopy

generators GD and that it is either left proper or the domains of the elements of ID are

cofibrant.

(i) The following are equivalent for an object Z of E:

(a) Z is S�ID-local.

(b) Z is S ⊗ GD-local.

(c) Z is fibrant and Homr (G,Z) is S-local for every G in GD .

(d) Z is fibrant and for every f : A → B in S the induced map

f ∗ : Homl(B,Z) −→ Homl(A,Z)

is a weak equivalence in D.

(ii) The following are equivalent for a morphism h : X → Y of E:

(a) h is a K ⊗ GD-colocal equivalence.

(b) For every G in GD the induced map

ĥ∗ : Homr (G, X̂) −→ Homr (G, Ŷ )

is a K-colocal equivalence, where ĥ is a fibrant approximation of h.

(c) For every K in K the induced map

ĥ∗ : Homl(K, X̂) −→ Homl(K, Ŷ )

is a weak equivalence in D, where ĥ is a fibrant approximation of h.

Proof We will prove part (i) first. Let Z be any object of E . Then Z is S�ID-local if and

only if it is fibrant and

mapE (B ⊗ Y,Z) −→ mapE (A ⊗ Y
∐

A⊗X

B ⊗ X, Z)

is a weak equivalence of simplicial sets for every map A → B in S and every map X → Y

in ID. By adjunction and the compatibility of homotopy function complexes with Quillen

pairs (see [14, Proposition 17.4.16]), the previous condition is equivalent to the diagram

being a homotopy fiber square. This is the same as saying that for every morphism A → B

in S and every morphism X → Y in ID , the pair given by the morphisms X → Y and

Homl(B,Z) → Homl(A, Z) is a homotopy orthogonal pair.
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By Corollary 1.4 the previous condition amounts to saying that the pair given by ∅ → G

and Homl(B,Z) → Homl(A,Z) is a homotopy orthogonal pair for every G in GD , that is,

mapD(G, Homl(B,Z)) −→ mapD(G, Homl(A, Z))

is a weak equivalence. Again by adjunction and the compatibility of homotopy function

complexes with Quillen adjunctions, this is equivalent to saying that

mapE (B ⊗ G,Z) −→ mapE (A ⊗ G,Z)

is a weak equivalence for every G in GD , and this is precisely the condition of Z being

S ⊗ GD-local. This proves that (a) and (b) are equivalent.

By adjunction (b) is equivalent to the fibrancy of Z and the fact that

mapC(B, Homr (G,Z)) −→ mapC(A, Homr (G,Z))

is a weak equivalence for every map A → B in S . Hence (b) and (c) are equivalent.

Now, Proposition 1.2 shows that (b) is equivalent to Homl(B,Z) → Homl(A,Z) being

a weak equivalence in D, which concludes the proof of part (i).

To prove part (ii), first observe that a morphism h : X → Y is a K⊗ GD-colocal equiva-

lence if and only if ĥ : X̂ → Ŷ is a K ⊗ GD-colocal equivalence. By definition, this means

that

mapE (K ⊗ G, X̂) −→ mapE (K ⊗ G, Ŷ )

is a weak equivalence of simplicial sets for every K in K and every G in GD . As in the

proof of part (i), by adjunction and the compatibility of homotopy function complexes with

Quillen adjunctions, this is equivalent to saying that

mapC(K, Homr (G, X̂)) −→ mapC(K, Homr (G, Ŷ ))

is a weak equivalence for every K in K and every G in GD , or that

mapD(G, Homl(K, X̂)) −→ mapD(G, Homl(K, Ŷ ))

is a weak equivalence for every K in K and every G in GD , which follows from

Proposition 1.2.

Corollary 3.15 Let C, D and E be left proper combinatorial model categories and let

⊗: C × D → E be a left Quillen bifunctor. Let S be a set of morphisms in C and let GD be

a set of cofibrant homotopy generators of D. Then LSE = LS⊗GD
E , where as before LSE

means LS�ID
E .

Proof The result follows immediately from Theorem 2.14.

Recall that the left Bousfield localisation of a left proper combinatorial model category

at a set of morphisms is cofibrantly generated.

Proposition 3.16 Let C be a left proper combinatorial model category and S a set of

morphisms in C. If JS is a set of generating trivial cofibrations of LSC, then LSC = LJSC.

Proof The argument is the same as in [19, Proposition A.3.7.4], where it is proved for

left proper combinatorial simplicial model categories. In our case we have to replace the

simplicial enrichment by the homotopy function complex mapC(−,−).

Both model structures LSC and LJSC have the same cofibrations, so it is enough to

check that they have the same trivial cofibrations. The elements in JS are trivial cofibrations

in LJSC. Since the set JS determines the trivial cofibrations of LSC (these are in fact the
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morphisms with the left lifting property with respect to the morphisms with the right lifting

property with respect to JS ) it follows that every trivial cofibration of LSC is a trivial

cofibration of LJSC.

Conversely, let f : X → Y be a trivial cofibration in LJSC. It is in particular a cofibration

in LSC so it suffices to see that it is an S-local equivalence. By assumption

f ∗ : mapC(Y, Z) −→ mapC(X,Z)

is a weak equivalence of simplicial sets for every Z that is JS -local. But every S-local is

JS -local, since JS consists of trivial cofibrations of LSC, so f ∗ is a weak equivalence for

every Z that is S-local.

Proposition 3.17 Let C, D and E be left proper combinatorial model categories and let

⊗: C×D → E be a left Quillen bifunctor. Let S be a set of morphisms in C. Then ⊗: LSC×

D → LSE is a left Quillen bifunctor.

Proof By [15, Corollary 4.2.5] it is enough to prove that the pushout-product axiom holds

for the sets of generating cofibrations and trivial cofibrations of LSC and D. As the cofibra-

tions in LSC and C as well as the cofibrations in LSE and E agree, it is sufficient to only

consider the following case. Let JS be a set of generating trivial cofibrations of LSC and

let ID be a set of generating cofibrations of D. Since the cofibrations of LSC are the same

as those in C, it suffices to prove that if i is in JS and j is in ID, then i�j is a S�ID-local

equivalence in E . In fact, we will prove that the JS�ID-local equivalences coincide with

the S�ID-local equivalences.

Let GD be a set of cofibrant homotopy generators of D. By Theorem 2.14(i), an object

Z of E is S�ID-local if and only if Homr (G,Z) is S-local for every G in GD . But by

Proposition 2.16, S-local objects coincide with JS -local objects. Hence Homr (G,Z) is

JS -local for every G in GD and thus Z is JS�ID-local.

Proposition 3.18 Let C, D and E be model categories with sets of cofibrant homotopy

generators GC , GD and GE , respectively. Suppose that D is left proper and combinatorial.

Let (⊗, Homr , Homl) be a Quillen adjunction of two variables from C × D to E and let S

be a class of morphisms in C. Let f : X → Y be a map in E and let f̂ : X̂ → Ŷ be a fibrant

approximation to f in LSE . If the induced map

f̂∗ : Homr (G, X̂) −→ Homr (G, Ŷ )

is an S-local equivalence in C for every G in GD and GE ⊂ GC ⊗ GD , then f is an

S ⊗ GE -local equivalence in E .

Proof By Theorem 2.14(i) the objects Homr (G, X̂) and Homr (G, Ŷ ) are both S-local.

Thus f̂∗ is an S-local equivalence between S-local objects and hence a weak equivalence

in C. This implies that

mapC(W, Homr (G, X̂)) −→ mapC(W, Homr (G, Ŷ ))

is a weak equivalence of simplicial sets for every W in GC and every G in GD . By adjunction

and compatibility of homotopy function complexes with Quillen functors this is equivalent

to

mapE (W ⊗ G, X̂) −→ mapE (W ⊗ G, Ŷ )

being a weak equivalence of simplicial sets for every W in GC and every G in GD . Since

by assumption GE ⊂ GC ⊗ GD , this implies that f̂ is a weak equivalence in E . Now, by the
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2-out-of-3 axiom and the fact that weak equivalences in E are S ⊗ GE -local equivalences,

it follows that f is an S ⊗ GE -local equivalence.

The following definition is motivated by the notion of E-familiar model structure

described in [2, Section 4].

Definition 3.19 Let C be a left proper combinatorial model category and let S be a set of

morphisms in C. Let ⊗: C×D → E be a left Quillen bifunctor. We say that E is S-familiar

if ⊗: LSC × D → E is a left Quillen bifunctor.

Remark 3.20 In particular, it follows from Proposition 2.17 that the S-local model structure

LSE is S-familiar.

Proposition 3.21 Let (⊗, Homr , Homl) be a Quillen adjunction of two variables from

C ×D to E , where C is left proper and combinatorial, and let S be a set of morphisms in C.

Then E is S-familiar if and only if Homr (X, Y ) is S-local for every X cofibrant in D and

Y fibrant in E .

Proof The “only if” part follows from the fact that if E is S-familiar and X is cofibrant in

D, then the functor Homr (X,−) : E → LSC is right Quillen. Hence, for every Y fibrant in

E , we have that Homr (X, Y ) is fibrant in LSC, that is, S-local.

Conversely, we want to show that if Homr (X, Y ) is S-local for every cofibrant X and

fibrant Y , then LSC×D → E is also a left Quillen bifunctor. Let f be a cofibration (respec-

tively, a trivial cofibration) in D and let g be a trivial fibration (respectively, a fibration) in

E . Because C × D → E is assumed to be a left Quillen bifunctor, the map Hom�
r (f, g) is

a trivial fibration in C and hence a trivial fibration in LSC (since C and LSC have the same

cofibrations). Therefore, by Proposition 2.8 it suffices to prove that if f : A → B is a cofi-

bration between cofibrant objects in D and g : X → Y is a fibration between fibrant objects

in E , then Hom�
r (f, g) is a fibration in LSC. Since it is already a fibration in C, it is enough

to check that the source and target are S-local. Consider the pullback diagram

The right vertical map f ∗ is a fibration in LSC, since it is a fibration in C between S-local

objects (see [14, Proposition 3.3.16]). Since fibrations are closed under pullbacks, the left

vertical map is also a fibration in LSC. But Homr (A,X) is S-local (that is, fibrant in LSC)

and therefore so is

Homr (B, Y ) ×Homr (A,Y ) Homr (A, X).

Hence, we have proved that Hom�
r (f, g) is a fibration in C between S-local objects. By

[14, Proposition 3.3.16] this means that Hom�
r (f, g) is a fibration in LSC.
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We have seen that for a left Quillen bifunctor ⊗: C ×D → E and a set S of morphisms

in C, the new model structure LSE on E gives rise to a left Quillen bifunctor

⊗: LSC × D −→ LSE .

We can now state that this model structure LSE is the “closest” model structure to E with

this property in the following sense.

Proposition 3.22 Let C, D and E be left proper combinatorial model categories and let

⊗: C × D → E be a left Quillen bifunctor. Let F : E → E ′ be a left Quillen functor

and S a set of morphisms in C. If E ′ is S-familiar with respect to the Quillen bifunctor

F ◦ ⊗: C × D → E → E ′, then

F : LSE −→ E ′

is also a left Quillen functor, that is, F factors over the S-localisation of E .

Proof By Corollary 2.15 we have that LSE = LS⊗GD
E , where GD is a set of cofibrant

homotopy generators of D. Thus, by [14, Proposition 3.3.18] it is enough to show that

F(f ⊗ G) is a weak equivalence in E ′ for every f in S and G in GD . But, by assumption,

F ◦⊗: LS ×D → E ′, is a left Quillen bifunctor. Hence F(f ⊗G) is a weak equivalence in

E ′ since f is a weak equivalence in LSC between cofibrant objects and G is cofibrant in D

(recall that, by Remark 2.11, we can assume without loss of generality that the morphisms

in S are cofibrations between cofibrant objects).

3.3 Examples

3.3.1 Enriched Localisations and Colocalisations

Let V be a monoidal model category and let C be a V-enriched model category. Then there

is a Quillen adjunction of two variables C × V → C. If V is combinatorial, C is left proper

combinatorial and S is a set of morphisms in C, then the S-localised model structure (see

Remark 2.11) is the V-enriched left Bousfield localisation of C with respect to S , as in

[5, Definition 4.42]. Similarly if K is a set of objects in C, then the K-colocalised model

structure of C along the left Quillen bifunctor is the enriched right Bousfield localisation of

C with respect to K.

If V = sSet, the category of simplicial sets, then we recover left and right Bousfield

localisations of simplicial model categories.

3.3.2 Familiarisations

Let C be a spectral model category, that is, a model category which is compatibly enriched

over the model category Sp of symmetric spectra. Then there is a Quillen adjunction of

two variables C × Sp → C. Let E be any spectrum and let SE be the set of generating

trivial cofibrations of the E-local model structure LE Sp; see [2, Section1] or [3, Section

2]. Then the SE-localised model structure on C is the E-familiarisation of C in the sense of

[4, Section 5].

If S is a set of morphisms in Sp, then we call the S-localised model structure on C the

stable S-familiarisation.
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4 Postnikov Sections of Model Categories

We are going to apply a construction closely related to our localisation construction to obtain

Postnikov sections in combinatorial model categories. We start by reviewing the classical

case of topological spaces and then explain how we can use our construction to gener-

alise this concept to arbitrary combinatorial model categories which are not necessarily

simplicial.

4.1 The Classical Case: Spaces

We are going to recall some results for Postnikov towers and k-types in simplicial sets. For

details, see [14, Section 1.5]. Note that in [14] this is formulated for topological spaces

rather than simplicial sets, but due to the compatibility of localisation with the geometric

realisation and total singular complex functors this will not be an issue; see [14, Section

1.6].

Let fk : Sk+1 → Dk+2 denote the boundary inclusion in sSet from the (k + 1)-sphere to

the (k + 2)-disk. We form the left Bousfield localisation of sSet with respect to this map,

obtaining the model structure Lfk
sSet. This is called the model structure for k-types of

simplicial sets. In fact, a simplicial set X is fk-local if and only if it is a Kan complex and

its homotopy groups vanish in degrees k + 1 and higher, for every choice of basepoint in X.

The localisation map

lk : X −→ Lfk
X,

which is defined as the fibrant replacement of X in Lfk
sSet, is a πi-isomorphism for i ≤ k

and every choice of a basepoint in X.

Remark 4.1 The model category Lfk
sSet exists and is cellular (hence cofibrantly gener-

ated), since it is a left Bousfield localisation of a left proper cellular model category; see for

example [14, Theorem 4.1.1].

Proposition 4.2 If a map of fibrant simplicial sets X → Y is a πi-isomorphism for i ≤ k

and every choice of a basepoint in X, then it is an fk-local equivalence, that is, a weak

equivalence in Lfk
sSet.

Proof This is [14, Propositions 1.5.2 and 1.5.4].

As a consequence of the above, we see that the localisation map lk of a simplicial set X

to its fk-localisation is nothing but the projection of X onto its kth Postnikov section PkX;

see [14, Theorem 1.5.3]. For details on Postnikov sections, see for instance [11, VI.3] or

[13, Section 4.3].

If i ≥ j , then PjX is fibrant in Lfi
sSet, that is, PjX is fi-local. Hence, there is a

commutative triangle

since, by definition, li is a trivial cofibration in Lfi
sSet.
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Furthermore, let X → Y be a weak equivalence in Lfk
sSet. Consider the commutative

square

We know that the vertical maps are πi-isomorphisms for i ≤ k by definition. As the

top horizontal and the two vertical maps are fk-local equivalences, then so is the map

PkX → PkY . But of course PkX and PkY are fk-local, so the bottom map is in fact a

πi-isomorphism for all i and every choice of basepoint. Thus, any weak equivalence in

Lfk
sSet is a πi-isomorphism for i ≤ k. Together with Proposition 3.2 we can conclude that

a map X → Y between fibrant simplicial sets is a weak equivalence in Lfk
sSet if and only

if it is a πi-isomorphism for i ≤ k and every choice of basepoint.

4.2 The General Case

Let C be now a simplicial, left proper, combinatorial model category. Again, by fk we denote

the map Sk+1 → Dk+2 in simplicial sets, and denote Wk = IC�fk , where IC denotes the set

of generating cofibrations in C (see Remark 2.11). We then form the Bousfield localisation

PkC = LWk
C which we will call the model structure for k-types in C.

When C is a model category that is not necessarily simplicial (but still left proper and

combinatorial), we can still define the model structure for k-types in C. In this case we use

the technique of framings; see [15, Section 5] or [2, Section 3] for details. As explained

in [15, Remark 5.2.9], framings provide any model category C with bifunctors

− ⊗ − : C × sSet −→ C,

(−)(−) : sSetop ×C −→ C,

mapl(−,−) : Cop × C −→ sSet,

mapr (−,−) : Cop × C −→ sSet,

and adjunctions

C(X ⊗ K,Y ) ∼= sSet(K, mapl(X, Y )) and Cop(YK , X) ∼= sSet(K, mapr (X, Y )).

The homotopy function complex mapC(−,−) agrees with the derived functors

R mapl(−,−) and R mapr (−,−). Moreover, if X is a cofibrant object in C and Y is a fibrant

object in C, then

are Quillen pairs; see [15, Corollary 5.4.4].

Note that a framing does not provide C with a simplicial model structure though, as

mapl and mapr only agree up to a zig-zag of weak equivalences [15, Proposition 5.4.7].

However, it does mean that Ho(C) is a closed Ho(sSet)-module category. If C is already a

simplicial model category, the action from the simplicial structure agrees with the Ho(sSet)-

action coming from framings. In our previous notation, for a simplicial model category

C, the simplicial enrichment Map(−,−) = Homl(−, −) coincides with mapl(−,−) and

mapr (−,−), and the cotensor is Homr (−, −).

Thus, if our model category C is not simplicial we can define Wk = IC�fk just as before,

where the pushout-product is constructed using the functor ⊗ coming from the framing.
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(Note that if C is simplicial, the simplicial action on the homotopy category agrees with the

action coming from the framing, so the rest of this section, particularly Definition 3.4, does

not depend on any choice of framing.)

Remark 4.3 If C is a pointed model category, then it is equipped with a pointed framing

[15, Section 5.7], where the category of simplicial sets is replaced by pointed simplicial sets

sSet∗.

Definition 4.4 Let C be a left proper combinatorial model category. We call PkC = LWk
C

the model category of k-types in C. An object of C is called a k-type (or k-truncated) if it is

Wk-local, that is, fibrant in PkC.

Before we look further into the properties of this localisation, we need an analogue of

Theorem 2.14(i) using framings. Note that we are taking the class of maps S in sSet (see

Remark 2.11).

Proposition 4.5 Let C be a combinatorial, left proper model category with generating cofi-

brations IC and set of cofibrant homotopy generators GC . Furthermore, let S be a class of

maps in sSet. Then the following are equivalent for an object Z of C:

(i) Z is IC�S-local

(ii) Z is GC ⊗ S-local

(iii) Z is fibrant and mapC(G,Z) is S-local for every G in GC .

(iv) Z is fibrant and for every g : X → Y in S the induced map

g∗ : ZY −→ ZX

is a weak equivalence in C.

Proof The proof follows exactly the same pattern as Theorem 2.14(i), so we are not spelling

it out here. The occurring functors ⊗, Homr and Homl have been replaced by the functors ⊗,

(−)(−), mapl and mapr coming from framings. The only properties needed are that when X

is cofibrant and Y is fibrant in C, the adjunctions (X⊗−, mapl(X,−)) and (Y (−), mapr (−, Y ))

are Quillen pairs, and that mapl(X, Y ) is weakly equivalent to mapr (X, Y ); see [15, Propo-

sition 5.4.7]. As the homotopy mapping objects are also derived from framings, these are

all compatible and the necessary adjunctions hold just as before.

Proposition 4.6 Let C be a left proper combinatorial model category with set of cofibrant

homotopy generators GC . A fibrant object Z of C is a k-type if and only if πi(mapC(X,Z)) =

0 for all X in C, i > k and every choice of a basepoint, or equivalently, πi(mapC(G,Z)) = 0

for all G in GC , i > k and every choice of a basepoint.

Proof By Proposition 3.5 we have that Z is Wk-local if and only if Z is fibrant in C and

mapC(G,Z) is a k-type in sSet for every G in GC . Since every object in C is weakly equiv-

alent to a homotopy colimit of objects of GC and those commute with homotopy function

complexes, the result follows.

In combination with Proposition 3.5 we also have the following.
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Corollary 4.7 Let C be a left proper combinatorial model category with set of cofibrant

homotopy generators GC , and let fk : Sk+1 → Dk+2 in sSet. Then the model category of

k-types PkC coincides with LGC⊗fk
C.

Remark 4.8 When C is a simplicial model category, then the model structure PkC agrees

with the model structure for k-types defined by Barwick in [5, Proposition 5.28].

In the context of familiarisation as defined by [4], one would define PkC to be LIC�Jfk
C

where Jfk
denotes the generating acyclic cofibrations of Lfk

sSet. However, those two

model structures agree since Lfk
sSet = LJfk

sSet by Proposition 2.16. The reason one

works with the acyclic cofibrations in [4] is to actually cut down the localised weak equiv-

alences of some LS sSet to a generating set if S is not a set. However, in our case we only

localise simplicial sets at one morphism, making this technicality unnecessary.

Proposition 4.9 Let C be a left proper combinatorial model category. The model category

of k-types PkC has the following properties:

(i) Every Quillen adjunction sSet ⇄ C gives rise to a Quillen adjunction

Lfk
sSet ⇄ PkC, and PkC is the closest model structure to C with this property. This

means that if C ⇄ D is a Quillen adjunction such that the composite sSet ⇄ D

factors over Lfk
sSet, then PkC ⇄ D is also a Quillen adjunction.

(ii) If C is a simplicial model category, then PkC is a Lfk
sSet-model category.

(iii) For every k ≥ 0 the model structures PkPk+1C and PkC coincide.

Proof Let F : sSet ⇄ C : U be a Quillen adjunction. By [14, Proposition 3.3.18], in order

for this to be a Quillen adjunction between Lfk
sSet and PkC, we need to show that F(fk)

is a weak equivalence in PkC.

By [15, Chapter 5], all Quillen adjunctions such that the left adjoint is defined on the

Quillen model structure on simplicial sets arise from framings, that is, for every left Quillen

functor F there is an object A ∈ C such that the left derived functors of F and A ⊗ −

agree. (Every adjunction between sSet and C is of the form (A• ⊗ −, Hom(A•,−)) for

some cosimplicial object A• ∈ C�, and every Quillen adjunction is given by a framing on

A•[0] = A; see [15, Proposition 3.1.5 and Section 5.2] and [2, Section 3].) So we have to

show that A ⊗ fk is a weak equivalence in PkC. By Proposition 3.5, all maps of the form

G ⊗ fk are weak equivalences for all homotopy generators G ∈ G. But as every A is a

filtered homotopy colimit of such generators, and − ⊗ fk commutes with such homotopy

colimits, A ⊗ fk is a weak equivalence as well.

Now let F ′ : C ⇄ D : U ′ be another Quillen adjunction such that F ′(F (fk)) is a weak

equivalence in D for any left Quillen functor F as before. This means that F ′(A ⊗ fk) is

a weak equivalence in D for any A ∈ C. So in particular, F ′ sends all morphisms G ⊗ fk

to weak equivalences, where G ∈ G. As PkC = LG⊗fk
C, this means that F ′ sends all the

weak equivalences in PkC to weak equivalences in D, which is what we wanted to prove.

Part (ii) follows from Proposition 2.17(ii), and part (iii) follows from the fact that both

model structures have the same cofibrations and the same fibrant objects. This last point can

be easily checked using the characterisation of local objects given in Proposition 3.5.

Before we move on to the next result, let us note the following. The fact that a model

category is λ-presentable only depends on the underlying category, not on its model
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structure. Also, the left Bousfield localisation of a cofibrantly generated model category

is again cofibrantly generated. Thus, if a model category is combinatorial, so is any left

Bousfield localisation of it. Also, as Bousfield localisation does not change cofibrations

and preserves weak equivalences, if GC is a set of homotopy generators for a combinatorial

model category C, then GC will also be a set of homotopy generators for any left Bousfield

localisation of C.

We can now characterise the weak equivalences of PkC.

Proposition 4.10 Let C be a left proper combinatorial model category and let f : X → Y

be a morphism in C. If its fibrant approximation f̂ : X̂ → Ŷ in PkC induces a weak

equivalence

f̂∗ : mapC(G, X̂) −→ mapC(G, Ŷ )

in Lfk
sSet for all homotopy generators G in GC , then the morphism f is a weak equivalence

in PkC.

Proof We have that GC ⊂ GC ⊗ GsSet as we can, without loss of generality, add the single

point to GsSet. Thus, the statement follows from Proposition 2.18. Note that if C is not

simplicial, then we have to replace the mapping objects in that proof by the mapping objects

given by framings.

Corollary 4.11 Let C be a left proper combinatorial model category and let f : X → Y be

a morphism in C. If its fibrant approximation f̂ : X̂ → Ŷ in PkC induces an isomorphism

of homotopy groups

πi(f̂∗) : πi(mapC(G, X̂)) −→ πi(mapC(G, Ŷ ))

with respect to all basepoints for all i ≤ k and homotopy generators G in GC , then f is a

weak equivalence in PkC.

4.3 Example: S-local Simplicial sets

Let us consider the example of left Bousfield localisations of pointed simplicial sets, C =

LS sSet∗. We can easily describe Postnikov sections in this model category. By definition,

PkLS sSet∗ = LWk
LS sSet∗ where Wk = ILS sSet∗�fk and fk : Sk+1 → Dk+2. As the

generating cofibrations ILS sSet∗ of LS sSet∗ are the same as the generating cofibrations of

sSet∗ we have that ILS sSet∗�fk = IsSet∗�fk . Then we can conclude that

PkLS sSet∗ = Lfk
LS sSet∗ .

Thus, X is fibrant in PkLS sSet∗ if and only if it is a Kan complex, S-local and πiX =

πiLSX = 0 for i > k.

4.4 Example: k-types in Chain Complexes

Let Chb(R) denote the category of non-negatively graded chain complexes of R-modules,

where R is a commutative ring with unit. We are going to apply the results from the previ-

ous section this category. This is a particularly interesting example as it concerns a model

category that is not simplicial, although it is left proper and combinatorial. We are going

to describe the k-types in Chb(R) as well as describe some of the weak equivalences. The

results are just what one would expect and fit very neatly with our general setup.
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Consider the standard projective model structure on Chb(R); see [9, Section 7]. The

weak equivalences are given by quasi-isomorphisms, fibrations are morphisms which are

surjective in positive degrees, and cofibrations are monomorphisms with projective cokernel

in every degree. Consider the model category of k-types of chain complexes, Pk Chb(R).

According to Definition 3.4, this is the left Bousfield localisation with respect to the set

Wk = IChb(R)�{fk : Sk+1 −→ Dk+2}.

Now the generating cofibrations in the standard projective model structure are given by the

inclusions

IChb(R) = {Sn −→ D
n+1 | n ≥ 0},

where S
n denotes the chain complex which is R in degree n and zero everywhere else, and

D
n+1 denotes the chain complex with R in degrees n and n+1 with the identity differential

between them, and zero everywhere else. To avoid notational confusion with the sphere and

disk in spaces, we will use bold face for these.

Recall that the suspension functor 	 in a pointed model category C can be defined using

pointed framings; see [15, Definition 6.1.1]. If X is a cofibrant object then 	X = X ⊗ S1,

that is, 	X is the pushout of the diagram

So let us look at the pushout-product

In the category Chb(R), the suspension is given by shifting. By [15, Section 6.1],

S
i ⊗ Sj = S

i+j . Furthermore, framings are compatible with fibre and cofibre sequences

[15, Section 6.2], so the above diagram is the same as

The pushout of two disks and a sphere is just another sphere, hence we obtain

Wk = {Sn+k+1 −→ D
n+k+2 | n ≥ 0},

so Pk Chb(R) is just localising Chb(R) at the map gk : Sk+1 → D
k+2. Note that local

equivalences are closed under (positive) suspensions, and hence localising with respect to

gk is the same as localising with respect to {	ngk | n ≥ 0} = Wk .
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Recall that we denote by mapChb(R)(−,−) a homotopy function complex for the model

category Chb(R).

Proposition 4.12 A fibrant chain complex M in Chb(R) is a k-type if and only if Hi(M) =

0 for all i > k.

Proof The chain complex M is gk-local if and only if

πi(mapChb(R)(D
k+2,M)) −→ πi(mapChb(R)(S

k+1,M))

is an isomorphism for all i ≥ 0. By adjunction, this is equivalent to

[Di+k+2, M] −→ [Si+k+1, M]

being an isomorphism for all i ≥ 0, where the square brackets denote morphisms in the

derived category Db(R). But as the chain complex D
i+k+2 is acyclic and the right hand

side equals the homology Hi+k+1(M) of M , the above is equivalent to Hi(M) = 0 for all

i > k.

We can now say something about the weak equivalences in Pk Chb(R). Recall that if M

is a chain complex in Chb(R), we denote by M[n] the n-fold suspension of M .

Proposition 4.13 Let f : M → N be a morphism of chain complexes such that Hi(f ) is

an isomorphism for 0 ≤ i ≤ k + 1. Then f is a weak equivalence in Pk Chb(R).

Proof This is very similar to [14, Proposition 1.5.2]. Without loss of generality, let f : M → N

be a cofibration of chain complexes, that is, a monomorphism with degreewise projective

cokernel. We know that f is a weak equivalence in Pk Chb(R) if and only if

mapChb(R)(N,Z) −→ mapChb(R)(M,Z)

is an acyclic fibration in simplicial sets for all gk-local Z; see [14, Section 1.3.1]. This is

equivalent to having a lift in the diagram

for all n ≥ 0. By adjunction, this is equivalent to having a lift in the diagram

for all n ≥ 0.

Note that for a chain complex A, the complex A ⊗ �[n] is the nth suspension of the

cone of A, while A ⊗ ∂�[n] is A[n] ⊕ A[n + 1] (direct sum of chain complexes). Thus,

the top left corner of this square is the nth suspension of the mapping cone of f , and the

left vertical map is given by f ⊕ id. As f was assumed to be a homology isomorphism in

degrees 0 to k+1, this mapping cone is acyclic in degrees 0 to k+1 and the left vertical map
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is a homology isomorphism in those degrees (as the cone of a chain complex is obviously

acyclic).

We know by Proposition 3.12 that Hj (Z) = 0 for j ≥ k + 1. This means that we have

a square in Chb(R) where the left vertical map is a cofibration and the right vertical map a

fibration. In order to have the desired lift, one of those maps would have to be a homology

isomorphism.

As the left vertical map is a homology isomorphism in degrees 0 to k + 1, we can use the

methods in [9, Section 7.7, proof of MC4(i)] to construct a lift in those degrees. Then we

can use the same method as in [9, Section 7.5, proof of MC4(ii)] to inductively construct

the lift from degrees k + 2 onwards, which uses that Hj (N) = 0 for j ≥ k + 1.

So we have constructed a lift in the above square, which means that f : M → N is a

weak equivalence in Pk Chb(R).

As a consequence of Proposition 3.12 and Proposition 3.13 we get the following.

Corollary 4.14 If M is a chain complex in Chb(R), then the Wk-localisation is given by

the k-truncation τ≥kM of X, defined by

(τ≥kM)n =

⎧
⎨
⎩

Mn if n < k,

Mk/Bk if n = k,

0 if n > k,

where Bk = im(dk) denotes the group of k-boundaries.
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