
A MONADIC INTERPRETATION OF CATEGORICAL MACKEY FUNCTORS

Elijah H. Gunther

A DISSERTATION

in

Mathematics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2023

Supervisor of Dissertation

Mona Merling, Assistant Professor of Mathematics

Graduate Group Chairperson

Ron Donagi, Thomas A. Scott Professor of Mathematics

Dissertation Committee

Florian Pop, Samuel D. Schack Professor of Algebra
Mona Merling, Assistant Professor of Mathematics
Maximilien Péroux, Hans Rademacher Instructor of Mathematics

ACKNOWLEDGEMENT

I would like to thank Steve Barkin, Peter Bonventre, Bari Brodsky, David Gunther, Maya Gunther,

Mona Merling, Marielle Ong, Souparna Purohit, Reshma Tanna, Jianing Yang.

I also had many helpful conversations with Thomas Brazelton, Anna Marie Bohmann, Infty Cat,

Elden Elmanto, Maximilien Péroux, Donald Yau, and members of the online math community on

Twitter and the Algebraic Topology Discord Server.

ii

ABSTRACT

A MONADIC INTERPRETATION OF CATEGORICAL MACKEY FUNCTORS

Elijah H. Gunther

Mona Merling

We study a monadic version of categorical Mackey functors proposed by Bonventre which we call

Σ̂G≀(−)-algebras or ΣGAs. These are algebras over the monad Σ̂G≀(−) in categories fibered over FinG

satisfying an additivity condition. The monad operation encode genuine commutative operations,

which we can also interpret as transfers. These have several conditions we can strengthen or weaken,

offering substantial flexibility. By varying the conditions on these algebras, we show we can recover

the permutative Mackey functors of Bohmann-Osorno and the symmetric monoidal Mackey functors

of Hill-Hopkins. In the process we construct a convenient strict (2,1)-category of spans. We also

define G-commutative monoids in a ΣGA.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT . ii

ABSTRACT . iii

CHAPTER 1 : INTRODUCTION . 1

1.1 Outline . 8

I CONVENTIONS AND PRELIMINARIES 10

CHAPTER 2 : BASICS . 11

CHAPTER 3 : EQUIVARIANT BACKGROUND . 13

3.1 Commutative Monoids . 15

3.2 Equivariant Monoids . 17

CHAPTER 4 : 1-CATEGORICAL PRELIMINARIES . 23

4.1 Cartesian Morphisms and Fibrations . 24

CHAPTER 5 : 2-CATEGORICAL PRELIMINARIES . 27

CHAPTER 6 : ∞-CATEGORICAL BASICS . 31

CHAPTER 7 : SYMMETRIC MONOIDAL CATEGORIES, MULTICATEGORIES, AND

ENRICHMENT . 32

7.1 Symmetric Monoidal and Permutative Categories . 32

7.2 Enrichment in Symmetric Monoidal Categories . 37

7.3 Multicategories . 39

7.4 PC-Categories . 45

7.5 Spectra and K-theory . 46

iv

CHAPTER 8 : THE CATEGORY FinG . 49

8.1 Properties of Lex-Pullbacks . 52

CHAPTER 9 : CHOSEN PULLBACKS . 57

9.1 Chosen Pullback Structures . 57

9.2 Span Categories . 60

9.3 Chosen Pullbacks on Fin . 64

9.4 Proof of Theorem 9.3.1 . 64

CHAPTER 10 : THE PC-CATEGORIES GE′ AND GEord . 74

II Σ̂G-ALGEBRAS 86

CHAPTER 11 : FinG-CATEGORIES Σ̂G . 87

11.1 FinG-Categories . 87

11.2 Σ̂G and Σ̂G ≀ (−) . 96

CHAPTER 12 : DEFINING Σ̂G-ALGEBRAS . 102

12.1 Examples . 104

CHAPTER 13 : STRUCTURE OF ΣGAs . 108

13.1 Morphisms of ΣGAs . 128

III COMPARISON OF Σ̂G-ALGEBRAS AND OTHER MODELS 130

CHAPTER 14 : PERMUTATIVE MACKEY FUNCTORS 131

14.1 ΣGAs to PMFs . 131

14.2 PFMs to ΣGAs . 139

CHAPTER 15 : COMPARISON WITH THE EQUIVARIANT SYMMETRIC MONOIDAL

STRUCTURES OF HILL-HOPKINS AND G-SYMMETRIC MONOIDAL

∞-CATEGORIES . 147

v

15.1 Hill-Hopkins . 147

15.2 G-Symmetric Monoidal ∞-categories . 148

CHAPTER 16 : GENUINE COMMUTATIVE MONOIDS . 150

CHAPTER 17 : MUSINGS AND FURTHER DIRECTIONS 153

BIBLIOGRAPHY . 156

vi

CHAPTER 1

INTRODUCTION

One of the most fundamental concepts in category theory and algebra is that of a symmetric

monoidal category - a category with a monoidal product, unital, associative, and commutative up

to coherent natural isomorphisms; in the case of a permutative category associativity and unitality

are strict. For instance we have the symmetric monoidal category of Set with the cartesian product,

or R − Mod with ⊗R. With this structure we can define rings and algebras as examples of a

general concept of monoids. Additionally, by taking algebraic K-theory or the classifying space of

a symmetric monoidal category, we can connect the structure of the category to topology.

Group actions are similarly omnipresent across mathematics, appearing frequently in topology,

geometry, and number theory. Throughout, we consider a fixed finite group G. Recently, spurred on

by the proof of the Kervaire Invariant 1 Problem by Hill-Hopkins-Ravenel (HHR21) and connections

to trace methods in algebraic K-theory, equivariant homotopy theory and equivariant algebra have

come to the spotlight as techniques from this field have found more widespread use.

Central to these are Mackey functors, best thought of as the equivariant analogue of abelian groups.

These can be defined as additive functors from FinG, the category of finite G-sets and equivariant

maps, to Ab with both covariant transfer and contravariant restriction maps, related by the double

coset formula.

Remark 1.0.1. Throughout equivariant homotopy theory and algebra, we often see a distinction

between naive and genuine commutative objects. The former merely has both a commutative

monoidal structure and a G-action, whereas in the latter the two have a more subtle interplay. For

instance we have abelian groups with a G-action compared to Mackey functors or Borel G-spectra

versus genuine G-spectra.

With this in mind, we might expect many of the symmetric monoidal categories encountered in

equivariant homotopy theory and algebra to have some additional structure. Here lays a gap which

1

is only natural to fill:

How we can define a genuine equivariant symmetric monoidal category? That is to say a suitable

equivariant analogue of a symmetric monoidal category.

Multiple authors have presented versions, often with similar names, so we use the term (genuine)

equivariant symmetric monoidal category to refer to the general idea of a construction aiming to

answer this question, and refer to their constructions as different models of it. Similar to how one

can refer to ∞-categories in the abstract and to specific models such as quasicategories.

We start by outlining several desiderata of a theory of genuine equivariant symmetric monoidal

categories.

• Mackey functors and semi-Mackey functors give discrete ones; taking isomorphism classes

gives us semi-Mackey functors.

• There is an equivariant K-theory functor to genuine G-spectra.

• Equivariant K-theory is surjective up to homotopy equivalence, analogous to Thomason’s

theorem. Ideally K-theory also has a homotopy-inverse as in the non-equviariant case.

• They include naive equivariant symmetric monoidal categories, but are not limited to them.

• They include the examples of finite G-sets, G-Mackey functors, and genuine G-spectra. These

each should also include or recover the data of FinH ,MackH , SpH , respectively, as well as

restriction and norm functors NG
H for all H ≤ G. Between these examples the Eilenberg-

Maclane spectrum H(−) and π0 functor are monoidal.

• There is a notion of a genuine commutative monoid, and in the latter two examples they are

Tambara functors and G-ring spectra.

• For G = {e} the theory reduces to that of non-equivariant symmetric monoidal categories.

• Genuine equivariant colored operads specialize to them, in the same way that symmetric

2

colored operads (multicategories) specialize to permutative categories.

We now introduce several of the models. For completeness we start with two naive versions.

• Symmetric monoidal categories with a G-action by symmetric monoidal functors.

• A symmetric monoidal object in G-categories is a G-object in categories with an equivariant

biproduct ⊗ and fixed unit object, so that the unitor, associator, and symmetry natural iso-

morphisms are G-isomorphisms (Rub20). It is straightforward to check that this is equivalent

to a symmetric monoidal category with G-action by strict symmetric monoidal functors.

Remark 1.0.2. We note that in a symmetric monoidal category with G-action by lax or strong

monoidal functors, the fixed point category CH is generally not symmetric monoidal as g(1C) ̸= 1C ,

so 1C ̸∈ CH and g(x)⊗ g(y) ̸= g(x⊗ y), so x, y ∈ CH ̸⇒ x⊗ y ∈ CH .

We observe that a symmetric monoidal category with strong monoidal strictly unital G-action, is

equivalent to a G-category C with a pseudo-equivariant functor C ⊗C → C, with a fixed unit object,

so that the unitor, associator, and symmetry natural isomorphisms are G-isomorphisms.

By (Mer17) Cor 3.4, this makes ChH := Fun(EG, C)H = Fun(EH, C)H a symmetric monoidal

category as we have the induced functor ⊗ : ChH ×ChH → ChH . Additionally, by (Mer17) Prop 3.3,

given a pseudoequivariant functor F : C ⊗ C → C, by applying Fun(EG,−) we have an equivariant

functor. Consequently, given a symmetric monoidal category with G-action by strong symmetric

monoidal strictly unital functors, by applying Fun(EG,−) we have a symmetric monoidal object

in G-categories.

The first type of genuine models are those based on Mackey functors; we can think of these as being

indexed on FinG or OG, the full subcategory of transitive G-sets.

• We first consider the permutative Mackey functors or categorical Mackey functors of Bohmann-

Osorno (BO15). These were originally defined as enriched functors (GE′)op → Perm, where

GE′ is a version of the span category on FinG enriched in permutative categories, and Perm

3

is the category of permutative categories which is enriched over itself. They define a version

of K-theory and use it to construct Eilenberg-Maclane genuine G-spectra, satisfying one of

the key desiderata. We construct an equivalent enriched span category GEord which we use

instead as it is more convenient.

• Next are the symmetric monoidal Mackey functors of Hill-Hopkins as well as a generalization

called genuine G-symmetric monoidal structure (HH16). These consist of pairs of covariant

and contravariant pseudofunctors OG → SymMonCat with a double coset natural isomo-

prhim. These are defined much less rigidly but also less precisely. As a result they are

comparatively unwieldy. Hill-Hopkins also define genuine G-commutative monoids which are

known to include some of the desired examples.

• Third we have the G-symmetric∞-categories of Nardin-Shah, part of the series of parametrized

higher category theory and higher algebra (BDG+16; NS22). These can be viewed as a higher

categorical version of Mackey functors taking values in ∞-categories. This theory connects

to parametrized ∞-operads and includes some of the desired examples. These are both the

most general and in a sense the most morally correct approach. However they are abstract

and unwieldy and for many purposes working with 1- and 2-categories is simpler and more

elucidating.

The second group consist of a single category symmetric monoidal or permutative category with

extra operations on it. The first two of which are closely related to E∞ −G-spaces.

• A Γ−G-category as defined by Shimikawa is a functor X : Fin∗ → CatG∗ (Shi89; Shi91). It

is special if the map X(n)ρ → X(1)nρ is an H-equivalence, for all H ≤ G and all ρ : H → Σn,

where H acts on them through ρ : H → G × Σn. (These are equivalent to special ΓG-

categories.) These give an equivariant generalization of the Segalic construction of K-theory.

• A permutative (resp. symmetric monoidal) G-category of Guillou-May-Merling-Osorno is a

pseudoalgebra (resp. algebra) over the categorical equivariant Barratt-Eccles operad with nth

level is the G-category Fun(EG,EΣn) (GM12; GMMO19; GMMO23) . By work of (BBK+19)

4

these cannot be described as permutative category with finitely many extra operations. But

the operad is equivalent to a finitely generated one. These have a well-studied version of

K-theory which is multiplicative.

• A normed symmetric monoidal category of Rubin is a symmetric monoidal object in G-

categories with the additional structure of compatible H-equivariant external norm functors

⊗T : CT → C, where T is a finite H-set and H acts on CT by simultaneously permuting the

components and action on them, and natural untwistor isomorphisms relating the external

norms to multiplication C|T | → C (Rub20).

• A G-parsummable category by Lenz is a G-object in the category of parsummable categories,

a variation of symmetric monoidal categories (Len22).

The main thrust of this paper is introducing the monad Σ̂G ≀ (−), whose (pseudo)algebras can be

viewed as a new type of categorical Mackey functor. There are several parameters we can vary

separately which together determine the strength of additivity a ΣGA has, whether restrictions

are functorial or pseudofunctorial, whether they are strong or strict monoidal, and similarly for

transfers. This also provides a precise way to describe the naturality of a double-coset isomorphism.

ΣGAs were created by Peter Bonvetre and Luis Pereira and further developed in joint work with

Bonventre. Most of the technical results on the structure of ΣGAs and some in their proofs were

devised by Bonventre

With this we reach a main success of this paper - carefully interpolating between the (BO15;

HH16) versions of symmetric monoidal and permutative Mackey functors by varying the different

parameters.

A significant challenge when constructing categorical Mackey functors is that pullbacks are only

defined up to isomorphism, so there is no prefered way to define composition of spans. In the

1-categorical case this is not an issue as we are only concerned with isomorphism classes of spans.

Guillou-May (GM11) and Bohmann-Osorno (BO15) deal with this problem by working in FinG, the

category of ordered G-sets including all (unordered) equivariant maps, with only a single object of

5

each ordered isomorphism-type. In this category we can define the lexicographical pullback, giving

us a preferred choice of pullbacks. However if we use this to define a 2-category of spans, it results

in the bicategory GE as opposed to a strict 2-category. Guillou-May sidestep this issue by cleverly

defining GE′, a slight modification which is a strict 2-category, and Bohmann-Orsono contains a

minor error as their construction of GE is not in fact a strict 2-category, as noted in (JY22).

One main result of this paper is proving that there is not consistent choice of pullbacks in FinG which

would make GE a strict 2-category. Consequently something else is necessary. We define GEord, the

(2,1)-category of spans in FinG whose left leg is order preserving. This is equivalent to GE and GE′

as a 2-category and biequivalent to GE′ as a category enriched in permutative categories. GEord is

more closely connected to the category FinG and thus simpler to work with. As a result, later in

the paper we use GEord as the domain category for permutative Mackey functors.

On the other hand we have the work of Guillou-May-Merling-Osorno (GMMO19; GMMO23). They

define genuine symmetric monoidal G-categories as alebgras over an operad. At the moment however

the connection between their version of genuine equivariant symmetric monoidal categories and the

various Mackey functor versions is poorly understood. One motivation of our choice to work with

algebras over monads was to connect with their approach. However we now believe this to be a

fundamentally different approach. A major question is to what extent these all arise from naive

symmetric monoidal G-categories. Lenz has proved that all do up to a notion of equivalence (Len22).

We believe genuine G-symmetric monoidal categories could be viewed as a type of a genuine G

(colored) operad in the same way that symmetric multicategories extend permutative categories.

Indeed this is the approach taken in (NS22). There is also We do not know of similar work in

a lower-category theoretic context. However it is not apparent how such a connection would be

formed.

We believe that many of the ideas in this thesis have a natural application in the six-functor

formalism and Beck-Chevalley transformation of algebraic geometry. In many ways this is formally

similar to that of Mackey functors.

6

Much of the first section of this work deals with FinG, the skeleton category of ordered finite G-

sets. This is so that we can define products and coproducts of finite G-sets so that they form a

permutative category, and so that we have a well-defined choice of pullbacks. This is needed in

order to construct permutative Mackey functors in a strict 2-functorial way. We emphasize that

although large sections of this paper rely heavily on the mechanics of ordered sets and maps, they

are not philosophically meaningful to us, rather they are useful merely for the formal properties

they satisfy.

There are other approaches. The tradition 1-categorical approach is to work with isomorphism

classes of G-sets or spans of them, making pullbacks well-defined. Another approach is to work

entirely with weak 2-categories and pseudofunctors. This is the approach taken by (HH16). In

many ways this is a more natural and “morally correct” approach. A disadvantage is that these are

generally unwieldy and unpleasant to deal with. Additionally some work such as (BO15; EM06)

uses strict 2-categories, and they are needed for multiplicative K-theory constructions. Even when

working with weak 2-categories, one will often want to strictify to strict 2-categories and permutative

categories as in (Gui10); so we ultimately lose the strictness at one point or another. With ΣGAs

we can carefully tweak the different ways in which things can be weak, strong, or strict. A final

way is to work with∞-categories, which could be thought of as even more natural. However in this

case the higher level of abstraction can obscure more than it reveals, particularly as the work in

this direction is somewhat less accessible.

We create the FinG categories - essentially these are functors (FinG)op → Cat which are weakly

additive, and the equivalences and invertible 2-cells witnessing them are suitably natural. In a

sense this is a rather messy and ad-hoc definition, but we believe it is the weakest set of conditions

needed for ΣGAs to have the desired properties. Fortunately in the strongly additive case, the extra

naturality conditions are satisfied a fortioti. These were first defined by Bonventre as a setting for

ΣGAs and refined in this work.

7

1.1. Outline

After reviewing some basic definitions and notation, we discuss the background topics of equivariant

mathematics and various ways of describing monoids. These motivate the constructions of the

different types of genuine equivariant symmetric monoidal categories. In particular, the idea of

what genuine means in such a context.

In the next three chapters, we review definitions and results from 1-category theory, 2-category

theory, as well a brief overview of ∞-categories. We will need some of these later in the paper.

We then review symmetric monoidal categories, multicategories and enriched categories, building up

to defining Perm, the category of permutative categories enriched in the multicategory of permuta-

tive categories. We touch on results of (BO15) on change of enrichment and multiplicative K-theory

of (EM06), which are used to construct genuine G-spectra from functors enriched in permutative

categories.

Next we discuss FinG, the skeleton category of finite ordered G-sets and equivariant maps. We prove

several technical results on lexicographical-pullbacks in FinG which we use throughout the rest of

the paper.

We then introduce chosen pullback systems, a selection of pullbacks in a category C, and draconian

chosen pullback systems, a choice which is suitably unital and associative, allowing us to define

a strict (2,1)-category of spans in C. We prove that no such structure can exist on Fin or FinG,

essentially telling us there is no convenient way to define a strict Burnside 2-category on FinG.

Instead we are forced to constuct a slight variation originally proposed by Bonventre. We discuss

the strict (2,1)-categories GE′ of (GM11) and GEord which we define as the strict (2,1)-category

of spans in FinG with left leg order preserving. This idea was presented by Bonventre. These are

biequivalent as categories enriched in permutative categories, and we choose to use GEord as it is

more cleanly defined than GE′.

8

We start the second section by defining FinG-categories which are categories fibered over (FinG)op

satisfying a particular weak additivity propert. This was also first devised by Bonventre and then

refined in this thesis. We define Σ̂G then Σ̂G ≀ (−), the latter a monad in the category of FinG-

categories. For a FinG-category C, intuitively Σ̂G ≀ C encodes the fibers of C as well as genuine

equivariant operations.

We then introduce a Σ̂G ≀ (−)-algebra or ΣGA as a pseudoalgebra over this monad which was

proposed by Bonventre. We discuss several ways to strengthen and weaken this definition and then

present several important examples. In the next chapter we prove technical results on the structure

of ΣGAs, the key takeaway being that ΣGAs share much of the key information as a Mackey functor

but in categories, with various invertible 2-cells being highly coherent.

In the next section we compare ΣGAs to two other models of genuine equivariant symmetric

monoidal categories. We first show that given a permutative ΣGA, one satisfying some strictness

assumptions, we can construct a permutative Mackey functor. And given a permutative Mackey

functor satisfying a mild technical assumption we can construct a ΣGA. We observe that on the

categories and 1-morphism present, these constructions are inverses, but we do not have a proof of

a stronger statement.

We then observe that pseudo-ΣGAs, a weaker version, capture the idea described in (HH16) as a

symmetric monoidal Mackey functor. We then define commutative monoids in a ΣGA and compare

them to the G-commutative monoids of (HH16).

We finish by discussing some different choices we could have made in this paper as well as directions

of further research.

9

Part I

CONVENTIONS AND

PRELIMINARIES

10

CHAPTER 2

BASICS

Notation 2.0.1. Through this entire paper, G will denote a finite group, H,K will denote subgroups,

and e will denote its identity element.

We discuss the importance of finiteness in Remark 3.2.12.

Notation 2.0.2. Fin denotes a skeleton category of finite sets and all maps. For concreteness its

objects are n := {1, · · · , n}, with 0 = ∅. We let Σ denote its maximal subgroupoid and use cycle

notation to denote its elements. Fin∗ denotes finite pointed sets with elements n+ = {∗, 1, · · · , n}.

Notation 2.0.3. Σn denotes the automorphism group of n in Fin.

Notation 2.0.4. Throughout, “=” will only be used to denote strict equality; in diagrams we use “=”

and “Id” interchangeably. We use “∼=” to denote an isomorphism, “≃” will denote an equivalence

of categories, an equivalence of 2-categories, or a homotopy equivalence; and “∼” will denote weak

equivalences or ad hoc equivalence relations; “≃Q” wil denote a (zig-zag of) Quillen equivalence(s)

between model categories.

Notation 2.0.5. For a category C we will write x ∈ C to denote that x is an object of C.

We will write “f : x→ y in C” to mean f ∈ HomC(x, y).

Notation 2.0.6. For a group G, BG denotes the associated groupoid.

Definition 2.0.7. A G-object in a category C is a functor BG → C, equivalently and object in

C upon which G acts by automorphisms. These form the category CG := Fun(BG, C) where

morphisms are natural transformations, equivalently equivariant maps in C.

Definition 2.0.8 ((Mer17)). For two G-categories C,D, a functor F : C → D is pseudo-equivariant if

for g ∈ G, we have a natural isomorphism gF ∼= Fg, which is suitably preserved along multiplication

11

in G.

Definition 2.0.9. For a G-set A, A//G is the action groupoid with objects elements of A and

morphisms are pairs a 7→ ga for each (a, g) ∈ A×G.

Definition 2.0.10. For a group G, its chaotic category or indiscrete category EG is the action

groupoid of G acting on itself by translation. This has an object for each element of G and a unique

morphism between every two elements. We observe that G acts on this by translation.

Definition 2.0.11. Given two G-categories C,D, Fun(C,D) is the category of all functors C → D,

it has a G-action via conjugation and Fun(C,D)G is the full subcategory of equivariant functors.

We note that Fun(EG, C) ≃ C, but they are not equivalent as G-categories. For H ≤ G, we call

ChH := Fun(EG, C)H the homotopy fixed points of C.

Proposition 2.0.12 ((Mer17)). Given a pseudo-equivariant functor F : C → D, it induces an

equivariant functor we also denote F : Fun(EG, C)→ Fun(EG,D).

12

CHAPTER 3

EQUIVARIANT BACKGROUND

In this chapter we introduce several concepts in the field of equivariant algebra which motivates later

constructions. We present several important definitions and theorems. We also explain many key

bits of intuition in equivariant algebra. Some topics we present only briefly here and only present

more formally in other chapters. We hope this chapter could be of use to novices of equivariant

homotopy theory.

In Chapter 8 we introduce a specific model of FinG, the category of finite G-sets and equivariant

maps, which has a preferred way of taking finite (co)products and pullbacks. In this chapter any

equivalent category suffices.

Notation 3.0.1. When discussing group actions, we always mean left actions. G/H denotes the

set of left cosets, those of the form gH. We let gHg−1 := {ghg−1 | g ∈ G} denote the conjugate

subgroup of H.

Definition 3.0.2. The orbit category OG is the full subcategory of FinG on transitive G-sets of the

form G/H.

Lemma 3.0.3. All transitive G-sets are isomorphic to those of the form G/H.

Projection maps π : G/K → G/H for K ≤ H and conjugacy maps c : G/H → G/(gHg−1) generate

the morphisms in this category.

For a G-object X, XH denotes the H-fixed points of X, which in a general category can be defined

as lim(BH
X−→ C) when it exists.

We note that in Set, XH = Hom(G/H,X) ∼= XH .

Lemma 3.0.4. Any finite G-set is a finite coproduct of G-sets of the form G/H, which are exactly

the transitive G-sets.

13

We note that we mean this a as categorical product as opposed to an ordered one. Alternatively

every element of FinG is isomorphic to one of the form ⨿iG/Hi.

Lemma 3.0.5. FinH ≃ FinG/(G/H).

Proof. We first pick a set of coset representatives {gi}i of G/H, where g0 = e. Let X ∈ FinH , we

have the G-set X ×G/H , where gih(x, gjH) = (hx, gigjH). Thus projection X ×G/H → G/H is

G-equivariant. In the other direction, given p : Y → G/H, p−1(eH) is an H-set.

Given H ⟳ X and K ≤ H then K ⟳ X and XH ⊆ XK . We call these both restriction. And gHg−1

acts on X by ghg−1(x) := h(x) which we call conjugation.

These are equivalent to the functors: FinG/(G/H) → FinGG/K and FinG/(G/H) → FinGG/(gHg−1) given by

pullback along π and c.

Theorem 3.0.6. (Elmendorf) We have a Quillen equivalence

TopG ≃Q Fun(Oop
G , T op)

Given by

X 7−→
(
G/H 7→ XH

)

On the LHS weak equivalences are maps which induce weak homotopy equivalences on all fixed points,

on the RHS weak equivalences are defined objectwise.

We note that there are many analogues of Elmendorf’s theorem across equivariant homotopy theory.

This motivates our slogan:

14

“When doing equivariant homotopy theory, it is just as good to study fixed points as it is to study

objects with a G-action."

From Lemma 3.0.4 we know that defining a (contravariant) functor from FinG which sends coprod-

ucts to (products) coproducts is equivalent to defining a (contravariant) functor on OG As a result,

throughout equivariant mathematics we often study coefficient systems, functors out of Oop
G .

3.1. Commutative Monoids

Definition 3.1.1. A monoid is a set M with a multiplication map µ : M×M →M and an element

1M ∈M called the unit, such that

µ(a, µ(b, c)) = µ(µ(a, b), c), µ(1M , a) = a = µ(a, 1M)

and it is commutative if µ(a, b) = µ(b, a).

We will generally assume monoids are commutative unless otherwise stated. This definition can be

generalized from Set to a general symmetric monoidal category in Chapter 7. We present three

other equivalent ways to view commutative monoids.

The first is a Segalic construction. A special Γ set is a functor F : Fin∗ → Set∗ such that F (∗) = ∗

and the natural map F ((n+m)+)→ F (n+)×F (m+) induced by the order-preserving maps sending

n+ 1, · · · , n+m to ∗ and 1, · · · , n to ∗ respectively, is an isomorphism. This we call this the Segal

condition. The Segal condition implies F (n+) ∼= Mn and we view this as an identification. The

intuition is that F (1+) is M , F (∗ → 1+) picks out 1M . The fold map F (n+ → 1+) sending

only ∗ 7→ ∗ induces the monoidal product. The compatibility of these folds across different n and

the action of Σn imply associativity and commutativity. More generally for f : n+ → m+, we view

F (f) : Mn →Mm as sending the n-tuple (a1, · · · , an) to the m-tuple whose ith entry is
∏

j∈f−1(i) aj ,

which means the product via µ over that set, and interpret as 1M in the case of the empty set.

15

The structure of Fin∗ then implies the operation is also unital. Numbers sent to ∗ are essentially

discarded.

We can also formulate this in terms of spans. We let Span(Fin) be the span category of Fin

with objects the same as those of Fin and morphisms A to B are isomorphism classes of spans

(A← X → B). Composition is by pullback which is well defined up to isomorphism. It is routine

to check that the coproduct of sets gives the product of objects in Span(Fin).

A span-monoid1 is a product preserving functor G : Span(Fin) → Set. We let M = G(1) and

we identify G(n) with Mn. G(∅ = ∅ → 1) gives a map ∗ → M whose image will be the unit.

G(2 = 2 → 1) gives the multiplication. Via similar arguments as in the case of special Γ sets,

the structure of Span(Fin) is enough to show that multiplication in M is associative, unital, and

commutative.

The other direction is much more intuitive as discussed in (Fre13) Given a commutative monoid

M , we let G(n) = Mn. For f : n→ r we get a function M r →Mn, by (a1, · · · , an) 7→ (bi = af(i))i.

These contravariant maps we call restrictions and think of as rearranging and picking out the

relevant entries of Mn. For g : r → m we get a function M r → Mm sending (b1, · · · , br) 7→ (ci =∑
k∈g−1(i) bk)i, and 1M in the case of the empty set. This covariant map we call a transfer, and

this encodes the multiplication. This is well defined up to isomorphism of spans. Given a span

h = (n
f←− r

g−→ m) G(h) : Mn →Mm is defined as the composite of the restriction then transfer.

This is philosophically quite similar to special Γ-categories. Both assign sets to natural numbers

and the Segal condition corresponds exactly to the span monoids being product-preserving.

Given a map f : n+ → m+ in Fin∗ it creates the span in Fin given by (n←↩ f−1({1, · · · ,m}) f−→ m).

In the case restriction is injective this gives an exact correspondence between maps of finite pointed

sets and isomorphism classes of spans. But in the case restriction is not injective we no longer have

the exact correspondence. Intuitively this encodes multiple copies of an element appearing. For

instance (1 ← 2 = 2) gives (a) 7→ (a, a) and (1 ← 2 → 2) gives (a) 7→ (a + a). In special Segal
1We do not know of another term for this construction so use this ad-hoc one for clarity.

16

sets, we must use the diagonal map of sets to formulate this. For instance by M
∆−→ M ×M and

M
∆−→M ×M

µ−→M respectively.

Lastly, we note that via the disjoint union of spans, Span(Fin) is enriched in commutative monoids.

We could just as well define span monoids as functors enriched in monoids F : Span(Fin)→ CMon,

and via a straightforward calculation the enrichment implies the product-preserving condition we

had. Similarly this gives a monoidal structure on F (1), which turns out to be the original one of

F (1) ∈ CMon via an Eckman-Hilton argument.

An operadic description of monoids is as algebras over the operad Comm enriched in Set, where

Comm(n) = ∗.

3.2. Equivariant Monoids

We now consider suitable ways to define commutative monoids in an equivariant context. At the

most basic level we can consider a G-object in commutative monoids, equivalently, a commutative

monoid in the category of G-sets. These we call naive as they are the most basic.

However in many situations naive equivariance does not capture the full nature of the interplay

between an algebraic structue and the group G.

The key intuition is in a genuine equivariant situation, G not only acts on an object, but also

permutes the inputs of the monoidal operation simultaneously. For instance, loosely speaking given

an K-spectrum X, its Hill-Hopkins-Ravenel (HHR) norm is the H-spectrum ∧[ki]∈H/KXi where

gh = hik acts by k acting on the separate copies of X, and hi permuting them. Then ∧[hi]∈G/JXi

is converted back to a genuine spectrum (HHR21).

In a sense operations can be parametrized by maps of finite G-sets. We decompose these as the

composition of a quotient or conjugation G/K → G/H to pass from one subgroup to another. And

then a fold map - encoding the basic (nonequivariant) operation as we had used folds to encode

17

operations in a monoid, and then quotients. These can also be parametrized by the G-corollas of

(BP21).

Thus the naive versus genuine distinction only appears in situations which are algebraic in some

way with a form of commutativity.

We now explain this intuition as it pertains to spectra. Intuitively a (non-equivariant) connective

spectrum is the homotopical version of an abelian group. Indeed they are equivalent to grouplike

E∞ spaces. For each abelian group A we have the Eilenberg Mac Lane spectrum HA which we can

view as the “discrete” spectrum on A. In the other direction, taking π0 gives us abelian groups. The

idea is that the delooping gives a direction in which we can “add”. Borel spectra or naive G-spectra

are just spectra with a G-action, we can think of these as the naive equivariant homotopical version

of abelian groups. Indeed given an abelian group A with G-action, HA is a naive G-spectrum, and

taking π0 of a naive G-spectrum gives an abelian group A with G-action. By analogy this means

that G can permute the “inputs” we add and that the commutativity respects this. In a genuine

G-spectrum, we have deloopings with respect to all finite G-representations, meaning that we have

commutativity with respect to G permuting the inputs.

Given something monoidal with strict commutativity, naive implies genuine, as the action of G by

permuting inputs has no effect. As an example, given an abelian group, ring, or strict symmetric

monoidal category with a G-action, we can create their genuine versions, respectively a Mackey

functor, Tambara functor, or genuine equivariant symmetric monoidal category. So we only are

concerned with genuine versus naive when we have commutativity up to homotopy or isomorphism.

There are several different equivalent definitions for a Mackey functor and we will review a few of

them.

Definition 3.2.1. A Mackey functor is a function M : {subgroups of G} → Ab. With morphisms

IHK : M(K) → M(H), RH
K : M(H) → M(K), cg : M(H) → M(gHg−1) for all K ≤ H ≤ G and

g ∈ G satisfying the following identities:

18

• IHH , RH
H , ch : M(H)→M(H) are all identities for H and h ∈ H.

• RK
J RH

K = RH
J , IHK IKJ = IHJ for J ≤ K ≤ H.

• cgch = cgh

• RgHg−1

gKg−1cg = cgR
H
K , IgHg−1

gKg−1 cg = IHK

• RH
J IHK =

∑
x∈JH/K IJJ∩xKx−1cxR

K
x−1Jx∩K for J,K ≤ H. This we refer to as the double coset

formula.

Definition 3.2.2. A Mackey functor M = (M∗,M
∗) consists of a covariant functor M∗ : Fin

G → Ab

and a contravariant functor M∗ : (FinG)op → Ab which agree on objects. We call M∗(f) a restriction

and M∗(f) a transfer.

M must satisfy the double coset formula: given a pullback square in FinG

A B

C D

f

g

p q

M∗(p)M
∗(f) = M∗(g)M∗(q) as functions M(B)→M(C).

Lastly M satisfies an additivity condition in that for ιA : A→ A⨿B, ιB : B → A⨿B the resulting

map

M∗(ιA)⊕M∗(ιB) : M(A)⊕M(B)→M(A⨿B)

is an isomorphism.

Lemma 3.2.3. The following is a pullback diagram in FinG,

19

A G/K

G/J G/H

where J,K ≤ H and

A = ⊔x∈J\H/KG/(J ∪ xKx−1).

This is the origin of the name double coset formula.

Definition 3.2.4. A Mackey functor is an additive functor Span(FinG)→ Ab.

Definition 3.2.5. We define a semi-Mackey functor as a Mackey functor which takes values in

commutative monoids instead of abelian groups. As our definitions never used inverses, nothing

else needs to be modified here. Equivalently, a semi-Mackey functor is a product preserving functor

Span(FinG)→ Set.

Example 3.2.6. Given an abelian group A with G-action, we have a fixed point Mackey functor

G/H 7→ AH , restriction are inclusion of fixed points AH ↪→ AK for K ≤ H, transfers are by

summing a ∈ AK 7→
∑

[hi]∈H/K hi(a) ∈ AH .

Remark 3.2.7. In equiariant algebra and related fields one often talks about both transfers and

norms. Intuitively these are the same, only that transfers refer to operations we view as additive

and norms refer to ones we view as multiplicative. As a result when there is only one sort of

operation the two are essentially synomynous.

Mackey functors form a closed symmetric monoidal abelian category, with symmetric monoidal

product given by the box product(□), defined by Day convolution. The monoidal unit is the Burnside

Mackey functor AG .

Furthermore, MackG, the category of G-Mackey functors forms an abelian category. This leads to

our slogan:

20

“Mackey functors are the equivariant version of abelian groups.”

Definition 3.2.8. A Green functor is a monoid in the symmetric monoidal category

(MackG,□, AG).

This has an equivalent definition in terms of concrete formulae similar to our first definition of

Mackey functors. In a Green functor M , M(A) has the structure of a commutative ring. Restrictions

are ring homomorphism and transfers are abelian group homomorphisms. The intuition here is that

Green functors are genuine equivariant with their additive structure, but only naive monoids with

their commutative structure.

Definition 3.2.9. A Tambara functor is a Green functor with the additional structure of covari-

ant norm maps which are maps of multiplicative monoids. They must satisfy several additional

conditions similar to those in 3.2.1.

Tambara functors can also be defined as product preserving functors from the category of bispans

in FinG, just as we can define Mackey functors as product preserving functors from the category of

bispans in FinG. Just as in a Mackey functor the left side of a span encodes restriction and the right

side the transfer. A bispan has three legs • ← • → • → •. The left gives restriction, the middle

gives the norm, the right transfer. Composition of bispans is complicated and unenelightening so we

omit it. The intuition is that a Tambara functor is a monoid in the “genuine equivariant symmetric

category” of Mackey functors. This has been formalized by (Hav18).

Example 3.2.10. Given a ring R with a G-action, the fixed point Mackey functor is also a Tamabra

functor with norms given by multiplying: A 7→
∏

[ki]∈K/H ki(a)

Example 3.2.11. Given a G-ring spectrum, its π0 Mackey functor is a Tambara functor. (Bru06)

The intuition here is that π0 is a genuine monoidal functor so it sends monoids to monoids.

Remark 3.2.12. A common question is why we restrict to G a finite group. This is only the case in

algebraic settings.

21

First, transfers often arise from summing over the set of cosets in a group, which roughly speaking

requires a group we can integrate over like a (pro)finite group or compact Lie group. Indeed genuine

equivariant spectra work well in these contexts.

Second, for genuine equivariant spectra to give us Mackey functor via π0 we need transfers arising

from XK → XH for K ≤ H via

XK = [Σ∞
G (G/K+), X] ∼= [SG,Σ∞

G (G/K+) ∧X]→ [SG,Σ∞
G (G/H+) ∧X] = [Σ∞

G (G/H+), X] = XH

This comes from the fact that Σ∞
G (G/H+) is self dual, which does not hold for G compact Lie.

Finally, following the intuition that in a genuine equivariant monoid, G permutes the inputs of an

operation, this is only meaningful if G acts on finite sets.

22

CHAPTER 4

1-CATEGORICAL PRELIMINARIES

Notation 4.0.1. Let Cat be the category of categories and functors. This has the potential to lead

to size issues, but we assume that we can pass to a larger universe as needed.

We will also use Cat to denote the 2-category of categories, functors, and natural transformations.

It should be clear in context which we are using.

Definition 4.0.2. A category C is a skeleton category if it has no isomorphisms between different

objects. Equivalently it has only one object of each isomorphism class.

Remark 4.0.3. Skeleton categories are often more convenient to work with and in many sections of

this paper we will replace categories with equivalent skeleton categories.

Using the axiom of global choice2, every category is equivalent to a skeletal subcategory, by choosing

one object from each isomorphism class.

However this does not generaly make (co)limits strictly well-defined as opposed to defined up to

unique isomorphsim as (co)cones are part of the data of a (co)limit and obects in skeleton categories

can still have non-trivial automorphism groups.

Example 4.0.4. Let C be a skeleton category with object A,B. Further suppose that (A×B, πA, πB)

is a product of A and B in C, and that φ : A × B
∼=−→ A × B is a non-trivial isomorphism. Then

(A×B, πAφ, πBφ) is also a product of A and B in C.

A×B

A×B A×B

A B A B

πA πB πA πB

φ

2This is essentially the axiom of choice for classes.

23

We recall another result which will prove useful.

Lemma 4.0.5. Let F : C → D be an equivalence of categories, given G : D → C and a natural

isomorphism η : IdC ⇒ GF there is a unique natural isomorphism ϵ : FG⇒ IdD so that F ⊣ G, η, ϵ

is an adjoint equivalence.

4.1. Cartesian Morphisms and Fibrations

All the results in this section are standard in the literature so do not prove them here. The nLab

and (FK18) provide some of the best explanations of these.

Definition 4.1.1. Let p : E → B be a functor, we say f : e → e′ in E is cartesian if for all

f ′ : e′′ → e′ in C and g : p(e′′)→ p(e) in D such that p(f ′) = p(f)g, there exists a unique lift g̃ of g

so that f ′ = fg̃.

in C e′′

e e′

in D p(e′′)

p(e) p(e′)

f

p(f)

g

p(f ′)

f ′

∃! g̃

p

We note that cartesian is not an absolute term but is only meaningful relative to p.

Remark 4.1.2. Everything in this section has a dual version simply by applying the definitions to

pop : Cop → Dop.

We note some direct implications of the definition.

Lemma 4.1.3. Let f : e1 → e′, f ′ : e2 → e′ two cartesian morphisms over b → p(e′). Then

24

p(e1) = p(e2) and there is a unique isomorphism φ : e1 → e2 in E that p sends to Idp(a) and such

that f = f ′φ.

Lemma 4.1.4. Let h : b→ b′, h′ : b;→ b′′ be morphisms in B and h̃, h̃′, h̃′h be cartesian lifts. Then

there is a unique isomorphism φ between the sources of h̃ and h̃′h so that h̃′h̃ = φh̃′h.

Definition 4.1.5. A functor p : E → B is a fibration if for all e ∈ E, b ∈ B and h : b→ p(e) there

is a lift h̃ in E which is cartesian.

We point out that this is not required to be unique. Some author call this a categorical fibration,

fibered category, cartesian fibration, or Grothendieck fibration.

Definition 4.1.6. Given a fibration p, a cleavage is a choice of cartesian lift of every morphism in

B with target in the image of E.

By the axiom of global choice we can always find one.

Definition 4.1.7. A cleavage is normal if h = Id implies h̃ = Id. It is split if it preserves

composition in the sense that (̃hk) = h̃k̃.

Lemma 4.1.8. Let p : E → B be a fibration with a cleavage. It defines a pseudofunctor Bop → Cat

which sends b ∈ B to the fiber Eb ⊂ E consisting of objects sent to b and morphisms sent to Idb.

On morphisms h : b→ b′ we define the functor

h∗ : Eb′ → Eb

which sends an object e′ to the source of the chosen cartesian lift of h : b→ p(e′), which we denote

h∗(b′).

In general this only defines a pseudofunctor, but in the case that the cleavage is split and normal,

this is a functor.

Definition 4.1.9. Given a functor (or more generally pseudofunctor) F : Bop → Cat, we construct

25

an associated split fibration π :
∫
F → B called the Grothendieck construction on F . The objects

of
∫
F are pairs b ∈ B, a ∈ F (b). Its morphisms are pairs f : c→ c′, α : F (f)(a)→ a′. The functor

π is simply the forgetful functor. This is functorial in the sense that a natural transformation is

sent to a map of split fibrations.

We briefly note that pseudofunctors are a type of weak functor between 2-categories which we

discuss more in Chapter 5.

Remark 4.1.10. (f, α) is a cartesian lift of f if α is an isomorphism in F (b′).
∫
F

π−→ B is a split

fibration where the chosen cartesian lifts are those with α = Ida′ .

Proposition 4.1.11. The process of taking fibers and the Grothendieck construction are inverse

weak 2-functors which make an equivalence of weak 2-categories between pseudofunctors Bop → Cat

and fibrations over B.

Definition 4.1.12. For two fibrations (resp. fibrations with cleavages) p : E → B, p′ : E′ → B′, a

morphism of fibrations is a pair of functors F : E → E′, G : B → B′ so that Gp = p′F and F sends

cartesian morphism (resp. also takes chosen cartesian lifts of p to chosen lifts of p′).

Definition 4.1.13. Given two morphisms of fibrations (F,G) and (F ′, G′), a natural transformation

of fibrations consists of natural transformations η : F ⇒ F ′, ϵ : G ⇒ G′ so that η lies above ϵ. In

the case G = G′ = IdB and ϵ = Id as well, this mean the components of η all lie above identity

morphisms in B.

26

CHAPTER 5

2-CATEGORICAL PRELIMINARIES

In this chapter we briefly review key concepts from the theory of 2-categories, sometimes omitting

technicalities present in some definitions.

Remark 5.0.1. Throughout this paper we almost exclusively deal with strict 2-categories and strict

2-functors as opposed to weak 2-categories or pseudofunctors. Unless otherwise specified, we use

2-category and 2-functor to refer to the strict version.

Much of the content of this paper could be done just as well with bicategories (weak 2-categories)

and pseudofunctors and in some cases this would be more natural. For instance the main theme

of Chapter 9 is finding conditions when pullbacks can be taken in a strictly coherent way so as to

create strict 2-categories.

We prefer to work with strict 2-categories for two main reasons. First, much of the existing literature

we build on, such as (BO15), uses strict 2-categories. Second, strict 2-categories are much simpler

to deal with, and in the context of this paper we rarely lose generality or any of the key ideas.

For the same two reasons, we prefer to work with permutative categories as opposed to symmetric

monoidal ones when possible. (Though we generally have no choice but to use strong monoidal

functors as opposed to strict monoidal ones).

In the opposite direction, one can work with ∞-categories3, which in many ways is even more

natural. Indeed some work has been done in this direction in the papers on Spectral Mackey Func-

tors and Parametrized Higher Algebra (Bar17; BGS20; BDG+16; NS22). Throughout we mention

connections to this work.

Definition 5.0.2. A (strict) 2-category is simply a category enriched in categories. This has objects,

a hom-category Hom(A,B) for every pair of objects, and identity object in Hom(A,A), and a
3The namesake of Infty mentioned in the acknowledgements

27

composition functor Hom(B,C)×Hom(A,B)→ Hom(A,C). These satisfy the usual associatvity

and unitality conditions.

We may refer to the objects as 0-cells, the objects in the hom-categories as morphisms, 1-morphisms,

or 1-cells, and the morphisms in the hom-categories as 2-morphisms or 2-cells.

In this section, let C be a strict 2-category unless otherwise specified.

Example 5.0.3. Cat, the 2-category of categories, functors, and natural transformations is the pro-

totypical 2-category.

Most of the 2-categories discussed in this paper are a variant on Cat, specifically a 2-category whose

objects are a certain type of category, morphisms are a type of functor, and 2-cells are a type of

natural transformation.

Example 5.0.4. We observe that every category can be viewed as a 2-category with discrete hom-

categories.

Definition 5.0.5. A (strict) 2-functor between 2-categories is simply a functor enriched in cate-

gories. It sends objects to objects, and has a functor between the suitable hom-categories, satisfying

strict unitality and compositionality identities.

There are numerous weakenings of the definition of a 2-category, but one which is most relevant

here.

Definition 5.0.6. A bicategory is a type of weak 2-category. A bicategory has objects, a hom-

category for every pair of objects, with an identity object in Hom(A,A) and a composition bifunctor.

These satisfy the typical unitality and associativity but only up to natural isomorphisms as opposed

to the equality we have in a strict 2-category. The associator and unitor transformations must also

satisfy coherence diagrams.

Definition 5.0.7. A pseudofunctor between 2-categories or bicategories F : C → D is a weaker ver-

sion of a 2-functor, in which unitality and composition are only preserved up to natural isomorphism.

28

We note that we can define this with C a 1-category as well via Example 11.1.17.

Formally we have an assignment F : Obj(C)→ Obj(D), a functor Fx,y : HomC(x, y)→

HomD(F (x), F (y)), an isomorphism ηx : IdF (x) ⇒ Fx,x(Idx) in HomD(F (x), F (x)), for

f ∈ HomC(x, y), g ∈ HomC(y, z) an isomorphism µf,g : Fy,z(f) ◦ Fx,y(f) ∼= Fx,z(g ◦ f), which is

natural in f, g. We require these satisfy associativity and unitality diagrams, which also incorporate

the associativity and unitality isomorphisms making D a bicategory.

This is the natural type of morphism between bicategories, among which we cannot in general define

strict 2-functors.

Definition 5.0.8. We say F : C → D is an equivalence of 2-categories if it is essentially surjective

on objects (i.e. surjective up to equivalence in D) and induces equivalences on the hom-categories.

Equivalently it has a weak inverse pseudofunctor G : D → C and pseudonatural transformation

equivalences: GF ≃ IdC , FG ≃ IdD.

We note that F can be an equivalence even if its weak inverse is only a pseudofunctor.

Definition 5.0.9. A 2-diagram is a diagram in a 2-category, generally formed by pasting multiple

2-cells. We say it commutes if all comparable pasting diagrams that can be formed strictly agree.

Example 5.0.10. A commuting cube in C is a 2-diagram of the form

A B

E F

C D

G H

where the following pasting diagrams agree:

29

A B A B

E F F

C C D

G H G H

We will often display 2-diagrams geometrically in this way.

Remark 5.0.11. We note that the same basic rules of diagram-chasing in 1-categories apply to

diagrams in 2-categories, replacing commuting squares with commuting cubes.

Example 5.0.12. If two commuting cubes share a face in common, they can be glued along a face

and then the composite cube also commutes.

30

CHAPTER 6

∞-CATEGORICAL BASICS

We only briefly discuss ∞-categories in this paper and never in technical terms so we only give an

intuitive definition.

Definition 6.0.1. An ∞-category, or (∞, 1)-category is a weak higher category with n-morphisms

for all 0 ≤ n <∞. All n-morphisms are invertible (up to higher morphisms) for n > 1. Composition

is only well-defined up to higher morphisms; associativity and unitality are only satisfied up to higher

morphisms.

Remark 6.0.2. In an∞-category essentially nothing is defined in a strictly unique way, rather things

are unique up to a contractible space of choices. We can also think of an ∞-category as being like

a category enriched in spaces.

Quasi-categories, a type of simplicial set satisfying a lifting property, are the most common model

of ∞-categories. This theory is fleshed out in (Lur09).

Definition 6.0.3. The nerve N : Cat→ Cat∞ is a functor taking in a 1-category and outputting

an ∞-category.

Definition 6.0.4. The Duskin nerve ND : Cat(2,1) → Cat∞ is a functor taking in a (2,1)-category

and outputting an ∞-category.

We will generally identify a 1- of (2, 1)-category with its nerve.

Remark 6.0.5. Most 1-categorical notions (e.g. (co)limits, cartesian morphisms, fibrations, etc.)

have ∞-categorical analogues. Generally speaking if an object (resp. morphism, category, functor)

has a 1-categorical property, its nerve satisfies the ∞-categorical analogue.

31

CHAPTER 7

SYMMETRIC MONOIDAL CATEGORIES, MULTICATEGORIES, AND

ENRICHMENT

Remark 7.0.1. This chapter reviews definitions and results found in the literaure. Most of this is

found in (EM06), the section on Perm as a PC-category is best explained in (BO15), and the most

comprehensive reference is (JY22).

7.1. Symmetric Monoidal and Permutative Categories

Definition 7.1.1. A monoidal category is a category C with a monoidal product functor

⊗ : C × C → C

which is unital and associative up to coherent isomorphisms. It has an object 1C , and unitor natural

isomorphisms

ηr : a⊗ 1C ∼= a ∼= 1C ⊗ a : ηℓ,

and an associator natural isomorphism

α : (a⊗ b)⊗ c ∼= a⊗ (b⊗ c).

Finally the unitality and associativity isomorphisms must be suitably coherent in the sense that

every diagram made of associators and unitors commutes as in (Mac63).

Definition 7.1.2. A symmetric monoidal category is a monoidal category which also has a sym-

metry isomorphism

32

τ : a⊗ b ∼= b⊗ a

which is coherent with unitality and associativity.

We will almost exclusively deal with symmetric monoidal categories in this paper as opposed to

monoidal ones.

Definition 7.1.3. A permutative category is a symmetric monoidal category in which the unitality

and associativity isomorphisms are identities.

Definition 7.1.4. A functor F : C → D is lax monoidal if there is a natural distributivity transfor-

mation

δ : F (−)⊗D F (−)⇒ F (−⊗C −)

and a morphism

ηF : 1D → F (1C)

which are compatible in that δ and ηF satisfy coherence conditions related to the unitors and

associators of C and D.

If C,D are symmetric monoidal, we say F is symmetric monoidal if the following diagram commutes.

F (x)⊗ F (y) F (x⊗ y)

F (y)⊗ F (x) F (y ⊗ x)

τ

δ

F (τ)

δ

F is strong monoidal if δ, ηF are isomorphisms and strict monoidal if they are equalities. We say F

33

is strictly unital if ηF is an equality and if on of the inputs is 1C then δ is as well.

We will primarily work with strictly unital strong symmetric monoidal functors in this paper between

permutative categories. In this case the compatibility conditions of monoidal functors simplify to

the following diagram commuting

F (x)⊗ F (y)⊗ F (z) F (x)⊗ F (y ⊗ z)

F (x⊗ y)⊗ F (z) F (x⊗ y ⊗ z)

δ⊗IdF (z)

δ

δ

IdF (x)⊗δ

In nature, symmetric monoidal categories are common but it is comparatively uncommon to find

permutative categories. Fortunately we can remedy this.

Theorem 7.1.5 (Isbell. (Isb69; JS93)). Given a symmetric monoidal category C there is a permu-

tative category C′ with a strong monoidal functor C → C′ which is an equivalence of categories.

Essentially this tells us that we can replace symmetric monoidal categories with permutative ones

for free. However the analagous result does not work with regards to permutative categories which

are strictly symmetric.

Definition 7.1.6. Given monoidal functors F,G : C → D, θ : F ⇒ G is a monoidal natural

transformation if for x, y ∈ C the diagrams commute:

F (x)⊗D F (y) G(x)⊗D G(y) 1D

F (x⊗C y) G(x⊗C y) F (1C) G(1C)

θx⊗Dθy

θx⊗Cy

δF δG

θ1C

ηF ηG

There are several other ways to characterize symmetric monoidal and permutative categories which

we briefly discuss.

• An unbiased version replaces the ⊗ bifunctor with functors ⊗n : Cn → C for each n ≥ 0, which

34

essentially multiply n objects. n = 0 is the inclusion of the unit object IC : ∗ → C. Symmetry

is realized by natural isomorphisms ⊗nσ ∼= ⊗n for a permutation isomorphism σ : Cn → Cn.

Associativity by natural isomorphisms relating the ⊗n for multiple n at once.

• This has an equivalent operadic description. The categorical Barratt-Eccles operad, enriched in

categories, is defined by En = EΣn which we recall has an object for each element of Σn and a

unique isomorphism between each pair of objects.. Algebras over it are permutative categories

and pseudoalgebras over it are symmetric monoidal categories. Symmetry is encoded by the

operad action En×Cn → C and associativity by the compatibility of this action across multiple

n.

(We recall that a pseudoalgebra is one in which the algebra coherence equalities are replaced

by natural isomorphisms, as defined in (CG13).)

• A special Γ category is a functor F : Fin∗ → Cat∗ such that F (∗) ≃ ∗ and satisfying the Segal

condition that

F (n+m)→ F (n)× F (m)

is an equivalence of pointed categories. These correspond to permutative categories.

• Another version uses spans and considers (weakly) product-preserving functors

Span(Fin)→ Cat

Where Span(Fin) has the same objects as Fin and morphisms are isomorphism classes of spans.

Its products are given by coproducts in Fin. We give a complete description in 9.2.1.

• Finally we have the monadic version of (BP21), which heavily influenced this paper. We

consider the monad F ≀ (−) in Cat which sends C to the Grothendieck construction of the

35

functor Finop → Cat given by I 7→ CI . This is a monad with F ≀ F ≀ C → F ≀ C defined by

((
(cij)i∈Ij , Ij

)
j∈J , J

)
7−→

(
(cij)ij ,

∐
j∈J

Ij

)

If C is a symmetric monoidal category it gives an algebra over F ≀ (−) via CI → C by multipli-

cation. And in the other direction given an algebra over F ≀ (−), we can define a multiplicative

structure on it in this way.

Many analogues of symmetric monoidal categories are based on these versions such as the symmetric

monoidal ∞-categories of (Lur17). We see that most the various versions of equivariant symmetric

monoidal categories take one of these approaches and adds a G in, for instance replaces finite sets

with finite G-sets.

Definition 7.1.7. A monoid in a symmetric monoidal category C is an object M with a multipli-

cation map µ : M ⊗M → M and a unit map η : 1C → M so that the associativity and unitality

diagrams commute:

M ⊗M ⊗M M ⊗M 1C ⊗M M ⊗M M ⊗ 1C

M ⊗M M M

µ

µ

Id×µ

µ×Id

µ

η×Id Id×η

ηrηℓ

M is commutative if this diagram commutes as well:

M ⊗M M ⊗M

M

µµ

τ

In a loose sense, symmetric monoidal categories can be thought of as weak monoids in the symmetric

monoidal category of categories.

36

Proposition 7.1.8. Let C,⊗, 1C be a symmetric monoidal category. The category of commutative

monoids in C is equivalent to the category of strong symmetric monoidal functors (Fin,⨿, ∅) →

(C,⊗, 1C).

Definition 7.1.9. A monoidal category C is closed monoidal if for all objects B ∈ C, the functor

(−)⊗B has a right adjoint, which we denote by Hom(B,) and that this is natural in B.

The intuition is that Hom(A,B) is an object in C of morphisms A→ B. This is further motivated

by the bijection (in a locally small category)

HomC(1C , HomC(A,B)) ∼= HomC(A,B).

We also have an evalutation morphism

ev : A⊗HomC(A,B)→ B.

7.2. Enrichment in Symmetric Monoidal Categories

Definition 7.2.1. Let V be a symmetric monoidal category. A category C enriched over V has

objects X, and for every X,Y ∈ C, a hom-object C(X,Y) ∈ V with units IdX : 1V → C(X,X) and

composition maps

comp : C(Y,Z)⊗ C(X,Y)→ C(X,Z).

Such that the diagrams commute in V:

37

C(Y,Z)⊗ C(X,Y)⊗ C(W,X) C(Y,Z)⊗ C(W,Y)

C(X,Z)⊗ C(W,X) C(W,Z)

1C ⊗ C(Y,X) C(X,X)⊗ C(Y,X) C(X,Y)⊗ 1C C(X,Y)⊗ C(X,X)

C(Y,X) C(X,Y)

comp

IdX⊗Id

ηℓ
comp

ηr

Id⊗IdX

comp

comp

Id⊗comp

comp⊗Id

Notation 7.2.2. The convention when discussing enriched categories is to use V to denote the enrich-

ing category. We call these V-categories. Some authors switch the composition ordering convention

and instead write C(X,Y)⊗ C(Y,Z)→ C(X,Z).

For V = Set, this is exactly the definition of a locally small category.

Definition 7.2.3. Given a category C enriched in V, its opposite category Cop is a category enriched

in V with the same objects as C. And Cop(X,Y) := C(Y,X).

comp : Cop(Y,Z)⊗ Cop(X,Y)→ Cop(X,Z) is defined as the composition:

Cop(Y,Z)⊗ Cop(X,Y) = C(Z, Y)⊗ C(Y,X)
τ−→ C(Y,X)⊗ C(Z, Y)

compC−−−−→ C(Z,X) = Cop(X,Z).

Remark 7.2.4. We note the importance of the symmetry isomorphism τ in this.

Definition 7.2.5. A V-enriched functor F : C → D sends object of C to those of D, and for

X,Y ∈ C has a morphism in V, FX,Y : C(X,Y)→ D(F (X), F (Y)) so that

the diagrams in V commute:

38

C(Y, Z)⊗ C(X,Y) C(X,Z) 1V

D(F (Y), F (Z))⊗D(F (X), F (Y)) D(F (X), F (Z)) C(X,X) D(F (X), F (X))

compC

FX,Z

compD

FY,Z⊗FX,Y IdX

FX,X

IdF (X)

Remark 7.2.6. Given a V-functor F : C → D it defines a V-functor F op : Cop → Dop.

Definition 7.2.7. For enriched functors F,G : C → D a V-enriched natural transformation α :

F ⇒ G consists of morphisms αX : 1V → D(F (X), G(X)) for each X ∈ C so that the diagram

commutes:

C(X,Y)

1V ⊗ C(X,Y) C(X,Y)⊗ 1V

E(F (Y), G(Y))⊗ E(G(X), G(Y)) E(F (X), F (Y))⊗ E(F (X), G(X))

E(F (X), G(Y))

ηrηℓ

αY ⊗GX,Y FX,Y ⊗αX

compcomp

Definition 7.2.8. In this way V-enriched categories form a strict 2-category which we denote by

V − Cat. We might also use the 1-category attained by ignoring the natural transformations.

7.3. Multicategories

Definition 7.3.1. A multicategory M has objects {x} and n-ary multimorphisms, a set (or proper

class)

HomM(x1, · · · , xn; y) for objects x1, · · · , xn, y

39

an identity morphism Idx ∈ HomM(x;x), and a composition map

HomM(y1, · · · , yn; z)×HomM(x1,1, · · · , x1,k1 ; y1)× · · · ×HomM(xn,1, · · · , xn,kn ; yn)

−→ HomM(x1,1, · · · , xn.kn ; z)

satisfying suitable associativity and unitality conditions (EM06). We note that we allow nullary

morphisms where n = 0. This is the same as a colored non-symmetric operad.

A symmetric multicategory M is one with isomorphisms

σ : HomM(x1, · · · , xn; y)→ HomM(xσ(1), · · · , xσ(n); y)

for each permutation σ ∈ Σn, that is suitably compatible with composition and unitality. This is

the same as a colored symmetric operad.

Definition 7.3.2. We say a multicategory M is unital if it contains an object 1M and unitor

binary morphisms ηℓ ∈ HomM(1M, x;x), ηr ∈ HomM(x, 1M;x) which are natural in x such that

they induce bijections natural in y: HomM(x, 1M; y) ∼= HomM(x; y) ∼= HomM(1M, x; y) We

require the unitors to be compatible with associativity and symmetry ifM is symmetric; satisfying

conditions analogous to those of symmetric monoidal cateogories.

Definition 7.3.3. A multifunctor F :M→N sends objects ofM to those of N and functions

HomM(x1, · · · , xn; y)→ HomN (F (x1), · · · , F (xn);F (y))

subject to the obvious unitality and composition-preserving conditions. This is the same as a

morphism of (non-symmetric) operads.

A symmetric multifunctor is a multifunctor between symmetric multicategories is one which is also

40

Σn-equivariant on hom-sets. This is the same as a morphism of (symmetric) operads.

If M,N are unital, we require that F is strictly unital, so that F (1M) = 1N , and it preserves the

unitors.

Example 7.3.4. Given a symmetric monoidal category V we can form a multicategory V̂ with the

same objects and

HomV̂(x1, · · · , xn; y) := HomV(x1 ⊗ · · · ⊗ xn, y)

We use the conventions that the empty monoidal product is 1V so HomV̂((); y) := HomV(1V , y)

and x1 ⊗ · · · ⊗ xn = (x1 ⊗ · · · ⊗ xn−1)⊗ xn.

Remark 7.3.5. Given a permutative cateogory V, we can form a symmetric unital multicategories

enriched in V by havingM(x1, · · · , xn; y) be an object of V instead of a set or proper class. Composi-

tion is defined similarly as to enriched categories and analogous unitality and associativity identities

hold.

Definition 7.3.6. A category C enriched in a multicategory M has objects X and an object

C(X,Y) ∈M for every pair of objects in C. We have a composition multimorphism in

HomM(C(Y,Z), C(X,Y); C(X,Z)) and a unit in HomM(; C(X,X)) satisfying associativity in the

sense that the two composite trinary morphisms agree in the left diagram and unital in that the

three unary morphisms agree in the right diagram.

C(C,D), C(B,C), C(A,B) C(C,D), C(A,C) C(A,B) C(B,B), C(A,B)

C(B,D), C(A,B) C(A,D) C(A,B), C(A,A) C(A,B)

comp,Id

comp

comp

Id,comp comp

comp

IdC(A,B),IdA,

IdB ,IdC(A,B)

IdC(A,B)

Most of constructions with categories enriched over a (symmetric) monoidal category can be gener-

41

alized to categories enriched in (symmetric) multicategories.

We can define M-enriched functors and natural transformations analogously to the case of enrich-

ment in a symmetric monoidal category. This forms the category of M-categories and M-functor

which we denote M− Cat. Similarly we can define the opposite category of an M-category in a

functorial way, all in the case thatM is symmetric.

For a permutative category V, a category enriched over V is the same as one enriched over the

multicategory V̂.

Given a multifunctor F :M→N we have a change of enrichement 2-functor

F• :M− Cat −→ N − Cat

For aM-category C, F•(C) has the same objects as C and F•(C)(X,Y) := F (C(X,Y)).

Definition 7.3.7. We say a multicategoryM is closed if for object x1, · · · , xn, y there is an object

HomM(x1, · · · , xn; y) ∈M and an evaluation multimorphism

ev ∈ HomM(HomM(x1, · · · , xn; y), x1, · · · , xn; y)

satisfying a bjiection universal property similar to that of the adjunction seen in 7.1.9 (closed

monoidal cat). (BLM12).

In this way we can viewM as enriched over itself.

We note that Ĉ is closed if and only if C is closed.

Proposition 7.3.8. Let M,N be closed unital multicategories and F : M → N a unital multi-

functor. We have an N -functor

42

ΦF : F•(M)→ N ,

on objects ΦF (X) := F (X), and on hom-objects

ΦF X,Y : F (HomM(X,Y))→ HomN (F (X), F (Y))

is defined as the adjoint to

F (evM) : F (HomM(X,Y)), F (X)→ F (Y)

This is generalization of the Φ of (BO15) § 6.

Definition 7.3.9. Perm is defined as the multicategory of permutative categories and strong

monoidal strictly unital multilinear functors.

Its objects are permutative categories.

HomPerm(M1, · · · ,Mn;N)

is the set (or class) of multilinear functors:

F :M1 × · · · ×Mn −→ N

which are strong monoidal strictly unital in each variable meaning that for each 1 ≤ i ≤ n, there is

a distributivity structure natural isomorphism:

43

δi : F (x1, · · · , xi, · · · , xn)⊗ F (x1, · · · , x′i, · · · , xn)→ F (x1, · · · , xi ⊗ x′i, · · · , xn)

and strictly unital in that F (x1, · · · , 1M, · · · , xn) = 1N and δi = Id if any of the xk or x′i is 1M.

We require analogues of the diagrams in the definition of permutative functors to commute and a

third pentagonal diagram relating δi, δj as in (EM06) pg. 11. Nullary morphisms ()→M pick out

objects ofM.

When composing we get distributivity morphisms as follows. Given (g, {δgi }) : (B1, · · · , Bn) → C

and (fj , {δ
fj
i }) : (Aj,1, · · · , Aj,kj)→ Bj their composite is

g ◦ (f1, · · · , fj) := (g ◦ (f1 × · · · × fj), {δs =
∑

g(δ
fj
i) ◦ δgj })

as described in (EM06) 3.2.

Remark 7.3.10. We are forced to use multicategories when working with permutative categories in

this way, as there is no tensor product of permutative categories satisfying the appropriate bilinearity

universal property.

Remark 7.3.11. We can instead consider the multicategory of permutative functors and lax monoidal

strictly unital multilinear functors. This is the approach taken in (BO15) and (EM06) For the most

part these behave exactly the same; we will only need the δ’s to be isomorphisms in the proof of

14.2.6, but everything in this chapter works identically. We could also consider strict monoidal

multifunctors, where the δ’s are identities, but this is too restrictive for most purposes.

Proposition 7.3.12 ((BO15)). Perm is a closed unital multicategory.

44

7.4. PC-Categories

Definition 7.4.1. A PC -category is a category enriched over Perm. A PC-functor between PC-

categories is a functor enriched in PC-categories. A PC-natural transformation is an enriched

natural transformation.

Remark 7.4.2. By forgetting the monoidal structure, a PC-category has the underlying structure of

a strict 2-category, and a PC-functor has an underlying 2-functor.

Definition 7.4.3. Perm is a PC-category with objects permutative categories and in Perm(C,D)

the monoidal product is given by applying the product in D objectwise:

(f + g)(x) := f(x) + g(x)

the distributivity morphism of f ⊗ g is given by

f(x) + g(x) + f(y) + g(y)
τ−→ f(x) + f(y) + g(x) + g(y)

δf⊗δg−−−−→ f(x⊗ y)⊗ g(x⊗ y).

We have a composition bilinear bifunctor

comp : Perm(B,C)× Perm(A,B)→ Perm(A,C)

where δ1 is the identity as (g ◦ f) + (g′ ◦ f) = (g + g′) ◦ f by definition, and δ2 is given by

δg : (g ◦ f) + (g ◦ f ′)→ g ◦ (f + f ′).

Remark 7.4.4. One can also consider categories enriched in symmetric monoidal categories as op-

posed to permutative categories, and in many cases these are more natural. However that they have

an underlying bicategory 5.0.6 as opposed to an underlying strict 2-category.

45

Fortunately by Guillou’s strictification result (Gui10), all such symmetric-monoidally-enriched cat-

egories are suitably equivalent to PC-categories.

Essentially this tells us that by restricting to PC categories we do not lose any important examples

or information.

7.5. Spectra and K-theory

In this paper we briefly discuss spectra and G-spectra but never do in-depth calculations with them,

so we do not get too deep into their construction or choose a model to work with.

We emphasize that we are generally interested in spectra and G-spectra up to weak homotopy

equivalences. We chose to work with the homotopy category as the different constructions on

K-theory are only equivalent up to homotopy.

• Sp denotes the (homotopy) category of spectra. Sp≥0 denotes the subcategory of connective

spectra, those with trivial negative homotopy groups.

• Sp is a closed symmetric monoidal category with the smash product ∧ as its monoidal product,

the sphere spectrum S as its unit, and Sp(−,−) the mapping spectrum.

• SpG denotes the (homotopy) category of genuine G-spectra, those with desuspensions for

all finite G-representations. This is in contrast to (Sp)G, the category of naive or Borel G-

spectra, which are simply G-objects in the category of spectra. SpG≥0 denotes the subcategory

of connective G-spectra, those with trivial negative homotopy Mackey functors.

• SpG is similarly a closed symmetric monoidal category with the smash product ∧ as its

monoidal product, the equivariant sphere spectrum SG as its unit, and SpG(−,−) the mapping

G-spectrum.

Definition 7.5.1. Given a symmetric or permutative category C we can define its algebraic K-theory

spectrum K(C) ∈ Sp≥0.

46

Intuitively this is a homotopical version of group completing C with its monoidal structure. For

instance π0(K(C)) is the group completion of the monoid of isomorphism classes in C (for C a small

category).

There are too main constructions of this, which agree up to homotopy. The first uses special

Γ-categories, the second uses an operadic construction.

Theorem 7.5.2 (Elmendorf Mandell (EM06)). K defines a symmetric multifunctor

K : Perm −→ Ŝp.

Theorem 7.5.3 (Thomason). Every connective spectrum is equivalent to the K-theory of a permu-

tative category.

This can be upgraded to show that the homotopy category of permutative categories is equivalent to

that of connective spectra.

Theorem 7.5.4. (Man10; Elm21)

There is a multifunctor

K−1 : (̂Sp≥0)→ Perm

which is a weak inverse (i.e. inverse up to natural equivalence) to K. However it is not strictly

symmetric.

Theorem 7.5.5 (Guillou May). (GM11) There is a zig-zap of Quillen equivalences:

FunSp

(
(K•(GE

′))op, Sp
)
≃Q SpG

47

where GE′ is a version of the PC-enriched Burnside category we discuss in 10. We note that in this

case we are using the full categories of (G-)spectra, not just their homotopy categories.

Remark 7.5.6. A current area of research is attempting to use multiplicative inverse K-theory and

the Guillou-May theorem to prove a version of Theorem 7.5.4 using permutative Mackey functors.

Currently the fact that inverse K-theory is not known to be symmetric is the main obstruction as

this is needed when taking enriched opposite categories.

48

CHAPTER 8

THE CATEGORY FinG

In this chapter we prove several technical results on skeleton category of ordered finite G-sets which

will be used in future chapters.

Definition 8.0.1. FinG is a skeleton category of ordered finite G-sets and all equivariant maps. For

concreteness, we can view this as the category with objects (n, α) where n ∈ Fin and α : G→ Σn a

group homomorphism.

Remark 8.0.2. We point out that these categories have unordered maps and that there is no com-

patibility required between the ordering and the G-action. In a sense though restricting to order

preserving morphisms does not limit the morphisms we can have. For instance given an arbitrary

equivariant map A → B, by choosing suitable orderings, we can make this be order preserving as

well.

The ordering is not mathematically necessary at a moral level, but it is quite usual for bookeeping

and ensuring objects are equal as opposed to isomorphic, which makes many steps simpler. In fact

we use ordering for some nice formal properties it gives FinG, namely a permutative disjoint union,

a permutative product, and a choice of pullbacks satisfying several key properties.

Notation 8.0.3. We used → to denote unordered maps, and ↣ to denote order preserving maps.

Remark 8.0.4. We observe the useful fact that the only order-preserving isomorphisms in FinG or

Fin are identities.

We can also view Fin ⊆ FinG as the full subcategory of objects with trivial G-action. In this way

we let n ∈ FinG denote the (unique ordered) G-set with n elements and trivial G-action. We can

also view Fin as FinG for G = {e} the trivial group. In fact FinG is just the category of G-objects

in Fin. Given a G-set A, we order A/G based on the least elements in an orbit.

49

We specify choices of disjoint unions and products in a way that makes FinG permutative with

respect to both.

• A⨿B is the disjoint union where ιA : A→ A⨿B, ιB : B → A⨿B are both order preserving

and for a, b ∈ A⨿B, a < b. Equivalently in A⨿B, a < a′ if and only if a < a′ ∈ A; similarly

b < b′ ∈ A⨿B if and only if b < b′ ∈ A; and a < b.

This makes FinG permutative with ∅ as the monoidal unit. However it is not strictly symmetric

although as objects A⨿B = B ⨿A, the coproduct morphisms are not the same. For a finite

ordered set I or G-set, ⨿IAi is the disjoint union with components ordered by I.

• A × B is the cartesian product with the lexicographical ordering or lex-product ; the unique

ordering where πA : A× B → A is order preserving and πB : A× B → B is order preserving

on fibers over a ∈ A. Equivalently it is the ordering where (a, b) < (a′, b′) if a < a′ or if a = a′

and b < b′. We can characterize it as the ordering on the product where the entry in A take

precedence. We let A⨿n denote n×A.

Similarly this makes FinG a permutative but not strictly symmetric category with ∗ = (1, 1) as

the monoidal unit. We also note that the product strictly distributes over the disjoint union

on the right: (A ⨿ B) × C = (A × C) ⨿ (B × C). However it is not distributive on the left:

A× (B ⨿ C) ̸= (A× B) ⨿ (A× C). For a finite ordered set I or G-set,
∏

I Ai is the disjoint

union with components ordered by I.

• The product with colexicographical ordering or colex-product of A and B is simply the cate-

gorical product where the role of A and B is reversed.

• We similarly have a prefered choice of pullbacks. Given a cospan (A → X ← B), the lex-

icographical pullback or lex-pullback A ×X B is the subset of A × B satisfying the pullback

universal property. In diagrams we denote the lex-pullback as:

50

A×X B B

A Xq

fq∗f

In particular we use the convention that the vertical leg is the order-preserving one. We might

also use q∗B to denote A×X B. We also observe that q∗f is order preserving by definition

We note that the ordering is very important here as (A → X ← B) is not equal to the

lex-pullback of (B → X ← A).

Finally, the right distributivity of lex-products over coproducts implies a similar distributivity

property for lex-pullbacks and coproducts.

• Our convention in this paper is that pullback refers to any categorical pullback satisfying the

universal property; we will sometimes refer to them as categorical pullback when we want to

emphasize the distinction. Lex-pullback refers to this specific model, and chosen pullback for

a choice of pullbacks discussed in depth in Chapter 9.

We use the word cartesian for pullback diagrams and for cartesian arrows in the context of a

Grothendieck fibration.

• Given a map f : A → B, we define A⋉B to be the lex-pullback of B = B
f←− A. As a G-set

A⋉B is isomorphic to A, but is reordered to that A⋉B ↣ B is order preserving and the maps

on fibers (A⋉B)b ↣ Ab are order-preserving. Equivalently we can also view A×B as having

the same underlying G-set as A, but ordered lexicographically first by their image in B, then

by their original ordering. The intuition is that A⋉B is A twisted by the ordering on B.

• We lastly note that as FinG is a skeleton category, A⨿B and A×B might not be equal to the

obvious point-set interpretation of the disjoint union or product. But this does not pose any

issues and the same happens when discussing ordered pullbacks. We can address this using

the approach of (GMMO23).

51

Using our concrete model of FinG, as a set (j, α) ⨿ (k, β) := (j + k, α ⨿ β), where (α ⨿ β)(g)

permutes the first j elements of j + k as α(g) permutes j and (α ⨿ β)(g) permutes the final

k elements of j + k as β(g) permutes k. ιj : (j, α)→ (j + k, α ⨿ β) is a bijection on the first

j elements of j + k and ιk is a bijection on the final k elements.

As a set (j, α) × (k, β) := (jk, α × β). For x = nk + r ∈ jk where 0 ≤ n < j, 0 < r ≤ k and

g ∈ G, (α× β)(g)(x) = (α(g)(n+1)− 1)k+ β(g)(r). The ±1’s appear because σj permutes 1

to j whereas n ranges from 0 to j− 1. πj : jk → j sends x 7→ n+1. πk : jk → k sends x 7→ r.

There is no general formula for a pullback j ×n k ⊆ j × k of this form, so we must view it as

some (m, γ) with a suitable inclusion map into j × k.

8.1. Properties of Lex-Pullbacks

We prove a few basic lemmas about lexicographical pullbacks which will prove useful later. For the

most part they tell us that some key facts about categorical pullbacks also apply to lex-pullbacks.

Lemma 8.1.1. Consider the following diagram in FinG so that both square are lex-pullback squares.

Then the full rectangle is a lex-pullback square.

A B C

D E F

h k

p

t

q

We call this result horizontal pasting of lex-pullbacks.

Proof. We know that the full rectangle is a categorical pullback by a standard result in category

theory so we must show the ordering is correct. As the left square is a lex-pullback square, p is

order preserving.

Consider a < a′ ∈ p−1(d); it suffices to show that kh(a) < kh(a′). As they are in the same fiber

52

over d, h(a) < h(a′); these two are both in the fiber over tp(a) = tp(a′), so kh(a) < kh(a′)

Example 8.1.2. In contrast, the analogous statement of vertical pasting is false. For instance in the

following diagram it is easy to see that both the top and lower squares are lex-pullbacks, but the

rectangle as a whole is not.

2 2

2 2

1 1

(12)

(12)

However vertical pasting does hold in a key circumstance.

Lemma 8.1.3. Consider the following diagram in FinG so that both squares are lex-pullbacks and

q is order preserving. Then the full rectangle is a lex-pullback square.

A B

C D

E F

f

p

r

q

g

Proof. We know that the full rectangle is a categorical pullback by a standard result in category

theory so we must show the ordering is correct.

Let a < a′ ∈ A, so that e = rp(a) = rp(a′). In the case that p(a) = p(a′), then as they are in the same

fiber over C and the top square is a lex-pullback, f(a) < f(a′). Otherwise, p(a) < p(a′); as these are

in the same fiber over E and the bottom square is a lex-pullback, qf(a) = gp(q) < gp(a′) = qf(a′).

As q is order preserving, this implies f(a) < f(a′).

53

Lemma 8.1.4. Consider the following diagram in FinG so that the right square and full rectangle

are lex-pullback squares. Then the left square is a lex-pullback square.

A B C

D E F

f g

p

r

q

We call this result horizontal reverse-pasting of lex-pullbacks.

Proof. We know that the full rectangle is a categorical pullback by a standard result in category

theory so we must show the ordering is correct.

As the full rectangle is a lex-pullback, p is order preserving. Let a < a′ ∈ A, both in p−1(d). Suppose

for contradiction that f(a) > f(a′). Then qf(a) = rp(a) = rp(a′) = qf(a′); then as the right square

is a lex-pullback, gf(a) > gf(a′), which contradicts the full rectangle being a lex-pullback.

Example 8.1.5. The vertical analogue does not work in general as shown in this example:

2 2

2 2

1 1

(12) (12)

However, it does hold in a special case.

Lemma 8.1.6. Consider the following commutative diagram in FinG, where the lower square and

the full rectangle are lex-pullbacks, and the map q is order preserving. Then the upper square is a

lex-pullback.

54

A B

C D

E E

f

p

r

g

t

q

We call this result vertical reverse-pasting. These conditions intially appear ad-hoc or contrived,

but in fact they apply in some important situations we will encounter later

Proof. First we note that g thus f are isomorphisms as they are pullbacks of isomorphisms.

We must show that f is order preserving when restricted to fibers over c ∈ C. This follows from it

being order preserving on fibers over r(c) ∈ E.

Now we must show p is order preserving. Suppose for contradiction there are a < a′ ∈ A so that

p(a) > p(a′). As rp is order preserving by assumption, rp(a) ≤ rp(a′). As r is order preserving, the

only way for this to happen is if a, a′ are in the same fiber over e = rp(a) = rp(a′). We know that

f is order preserving on fibers over e and an isomorphism so f(a) < f(a′). Then gp(a) = qf(a) <

qf(a′) = gp(a′). As g is order preserving on fibers, p(a) < p(a′), a contradiction.

Lemma 8.1.7. If f is an isomorphism, then its lex-pullback q∗f is an identity.

A B

C D
q

fId

r

Proof. It is clear that this is a categorical pullback, that Id is order preserving, and that r is order

preserving on fibers as those are all singletons.

Corollary 8.1.8. The lex-pullback of an identity map is an identity; q∗Id = Id

We call this result one-sided unitality of lex-pullbacks.

55

Example 8.1.9. In contrast, even in a weaker form, this does not work in the reverse orientation.

Let f be a non-identity isomorphism, then the leg opposite the identity is not an identity.

A B

A A

f−1

f

Remark 8.1.10. The failure of lex-pullbacks to satisfy the pasting and unitality in both orientations

proves to be a major limitation to developing an elegant theory of categories of spans. In fact by

Theorem 9.3.1 we can not get around these issue by choosing pullbacks in some very clever way.

This is discussed in much greater length in Chapter 9.

56

CHAPTER 9

CHOSEN PULLBACKS

9.1. Chosen Pullback Structures

Definition 9.1.1. Let C be a category with all categorical pullbacks. The structure of a class of

chosen pullbacks is a choice of a single (categorical) pullback for each cospan.

Example 9.1.2. So far this is a very weak condition. By the axiom of global choice, any category C

with pullbacks of all cospans has a class of chosen pullbacks.

Remark 9.1.3. We note that the choice need not be symmetric, in general the chosen pullback of

(A→ X ← B) is not equal to the chosen pullback of (B → X ← A).

There are three key properties a class of chosen pullbacks can have that interest us:

Definition 9.1.4. A class of chosen pullbacks is unital if the chosen pullback of an identity mor-

phism is an identity morphism in either orientation

• • • •

• • • •
f

Id

Id

f Id

f

Id

f

Definition 9.1.5. A class of chosen pullbacks satisfies the pasting property if given two chosen

pullback squares, the combined rectangle is also a chosen pullback square

• • • • • •

• • • • • •

57

• • • •

• • • •

• • • •

Definition 9.1.6. A class of chosen pullbacks is associative if given two composable cospans, taking

the chosen pullback of the left then the right gives the same span as the right than the left. I.e. the

outside spans of the following diagrams agree:

• •

• •

• • • • • •

• • • •

Example 9.1.7. For C = Fin or FinG, the lexicographical pullback is associative and satisfies one

of the unital squares and one part of pasting, but not the other. The colexicographical pullback

satisfies the other unital square and other part of pasting

Remark 9.1.8. These three definitions here are symmetric so any statement about horizontal pull-

backs also applies to vertical ones.

Definition 9.1.9. A class of chosen pullbacks on C is draconian if it is unital, associative, and

satisfies the pasting property4.

As we will see, these are not logically independent.

Example 9.1.10. If C is a group there is a draconian class of chosen pullbacks. We define the chosen

pullback as follows:
4We would like to thank Kate Ponto for advice on creative terminology.

58

• •

• •
f

gg

gfg−1

Example 9.1.11. On a single category C there can be multiple draconian chosen pullback structures.

For instance given a good chosen pullback structure, we can take the reverse of it, where the new

chosen pullback of (A → X ← B) is the old chosen pullback of (B → X ← A). In the example of

groups we have an alternative choice given by

• •

• •
fgf−1

f

g

f

.

Lemma 9.1.12. If a chosen pullback structure satisfies the pasting property it is also associative.

Proof. We consider the two composable cospans at the bottom of the diagram. We first take the

pullbacks of those two cospans, then the pullback of the new cospan they generate. By pasting, the

left and top squares glue to a chosen pullback so the large span is equal to that of left one in the

associativity definition. Similarly, by pasting, the right and top squares glue to a chosen pullback

so the large span is equal to that of right one in the associativity definition.

•

• •

• • •

• •

59

Lemma 9.1.13. If a chosen pullback structure satisfies unitality and associativity then it satisfies

the pasting property.

Proof. Consider the following diagram where we assume that squares 1 and 3 are chosen pullbacks;

we aim to show that the rectangle combining 1 and 3 is also a chosen pullback. By unitality, square

2 is a chosen pullback. Then the rectangle formed by 1 and 2 is equal to square 1 so it is also a

chosen pullback. So then the outside span is equal to the span around the rectangle of 1 and 3. By

associativity, the outside span is equal to the span of the chosen pullback of the cospan around the

rectangle of 1 and 3. This shows that pasting is satified.

•

• •

• • •

• •
f ′ gf

f

1

2 3

Showing pasting in the other direction is identical.

Lemma 9.1.14. If a chosen pullback structure satisfies unitality and associativity then it is draconian .

9.2. Span Categories

Definition 9.2.1. Let C be any category with all pullbacks. The classical category of spans in C,

also called the Lindner category of C, Span(C), is defined as the category with the same objects

as C and morphisms are isomorphism classes of spans between objects in C. Where two spans are

isomorphic if there is an isomorpisms as follows, so that both triangles commute:

60

X

A X ′ B

∼=

Composition of two spans (A← X → B) and (B ← Y → C) is formed by outer span in the below

diagram where Z is a pullback of (X → B ← C) in the below diagram.

Z

X Y

A B C

As we are only interested in isomorphism classes of spans composition is well defined despite the fact

that pullbacks are not strictly unique. The isomorphism class represented by span (A = A = A) is

the identity with respect to composition.

Remark 9.2.2. Span(C) is equal to its dual.

Remark 9.2.3. The categorical product in Span(C) of X,Y ∈ C is given by the coproduct X ⨿ Y in

C if it exists.

Remark 9.2.4. If C also has all finite coproducts, then Span(C) is enriched in monoids:

(A← X → B) + (A← X ′ → B) := (A← X ⨿X ′ → B)

Definition 9.2.5. For a category with finite coproducts, the homset-wise group completion of

Span(C) is the Burnside category which is much better known. (Though some authors (Bar17;

BGS20) use slightly different conventions).

Definition 9.2.6. Let C be a category with a draconian chosen pullback structure. We define its

61

new span 1-Category, Span′(C), as the category with the same objects as C and morphisms are

spans between objects in C. Composition of two spans (A← X → B) and (B ← Y → C) is formed

by outer span in the below diagram where Z is the chosen pullback of (X → B ← C) in the below

diagram.

Z

X Y

A B C

The span (A = A = A) is the identity with respect to composition.

Unitality implies that the span (A = A = A) is the identity with respect to composition. Asso-

ciativity is equivalent to composition being associative. This motivates the term draconian . Note

that Span′(C) is not in general equal to its dual.

Span′(C) is not equivalent to Span(C) as homsets in the former consist of spans whereas in the

latter they are isomorphism classes of spans. In a sense though, both are 1-categorical versions of

the same 2-category.

Definition 9.2.7. Let C be a category with a chosen pullback structure). We define the (2,1) span

category of C denoted Span2(C) as the bicategory with object the same as those of C. Hom(A,B) is

equal to the maximal groupoid of spans over A and B. Composition is formed by taking the chosen

pullback of the middle cospan.

In the case that C has a draconian chosen pullback structure, unitality and associativity ensure this

is a strict 2-category, however in the more general case, associativity and unitality only hold up to

ismorphism.

Lemma 9.2.8 ((Lur23) Ex. 2.2.6.13). Given two different chosen pullback structures on C, we have

two versions of Span2(C) which are distinct, but equivalent as 2-categories.

62

Example 9.2.9. The bicategory GE of (GM11) is defined as Span2(Fin
G) with the lex-pullback. We

discuss it more in Chapter 10.

By taking the homotopy 1-category of the (2,1) span category we get the classical span category.

By taking the underlying 1-category we get the new span category. Although the former is the more

“morally correct” version, the latter is often more useful and appears in relevant literature, namely

(BO15).

This is easily generalized to a 2-category as opposed to a (2,1)-category by including all morphisms

of spans, not just isomorphisms. However I do not know of any uses for this so it is not discussed.

In the world of∞-categories, this is all much more natural as we are not concerned with a distinction

between “strict” and “up to coherent equivalences”.

Definition 9.2.10 ((Bar17; BGS20)). For a category or∞-category C with pullbacks, the effective

Burnside category Aeff (C) is the ∞-category, viewed as a quasicategory with n-simplices given by

diagrams in C of the form:

•

• •

• • •

X0 X1 Xn−1 Xn

···
···

···
···

where all squares are pullbacks. Intuitively, this encodes all of the possible ways to compose the

spans from object X0 to Xn.

Remark 9.2.11. For a 1-category C with pullbacks it is suspected that ND(Span2(C)) ≃ Aeff (C). I

believe that a proof might involve (Lur23) Cor. 8.1.3.12.

63

9.3. Chosen Pullbacks on Fin

Theorem 9.3.1. There is no class of draconian chosen pullbacks on Fin.

Unfortunately the proof is tedious and unilluminating so we leave it for the end of the chapter.

Remark 9.3.2. We believe this result to be widely suspected or considered common sense but it is

not explicitly stated anywhere nor is a proof written.

Corollary 9.3.3. There is no class of of draconian chosen pullbacks on FinG.

Proof. of corollary.

Suppose we have a draconian chosen pullback system on FinG. If we restrict to objects with a trivial

G-action this gives us a draconian chosen pullback system on FinG because categorical pullbacks of

trivial G-objects are also trivial.

Remark 9.3.4. As draconian classes of chosen pullbacks deal with strict equality of objects and mor-

phisms, as opposed to uniqueness up to unique isomorphism, standard category theoretic techniques

do not always work and we are forced to work very concretely. For instance, although a class of

chosen pullbacks is preserved under an equivalence of categories, this is not known to be the case

for a draconian class of chosen pullbacks. Additionally, although we suspect this result also applies

in Top and the non-skeletal category of finite sets and G-sets, our proof heavily relies upon our use

of a skeleton category and it is not clear how we could generalize it.

9.4. Proof of Theorem 9.3.1

We first prove a few lemmas.

64

Lemma 9.4.1. Assume there is a draconian pullback structure on Fin. For any surjection in Fin,

s : X → Y , if k : Z → Y is such that s∗k = IdX , then Z = Y and k = IdY .

Proof. Let t be the right inverse to s. Then by unitality t∗IdX = IdY . But by pasting and unitality,

that’s also (st)∗k = Id∗Y k = k.

Z X Z

Y X Yt s

k

IdY

Lemma 9.4.2. Assume there is a draconian pullback structure on Fin. For any injection in Fin

t : Y → X, and k : Z → Y , then there is a h : W → Y st k = t∗h.

Proof. Let s be a left inverse to t. We take the chosen pullback of (X s−→ Y
k←− Z) which we denote

W and draw as the right square. Then we take the pullback of (Y t−→ X
h←− W). By pasting and

unitality, t∗h = k.

Z W Z

Y X Yt s

khk

IdY

Lemma 9.4.3. Let this be a chosen pullback square in a category with a draconian pullback structure

• •

• •

f

qp

g

65

If f, g are invertible then this is a chosen pullback square

• •

• •

f−1

pq

g−1

If p, q are invertible then this is a chosen pullback square

• •

• •

g

q−1p−1

f

We call this process flipping.

Proof. We just prove the first case, the second one is identical. Consider the diagram:

• • •

• • •

f−1

pq

g−1 g

q

f

The right square is a pullback square by assumption and the full rectangle is by unitality. That

implies g−1∗q = p and as f is invertible the top arrow is f−1.

Lemma 9.4.4. As before, let the following be a chosen pullback square of a category with draconian

choice of pullbacks, and we assume that g and q are non-identity isomorphisms. Then f and p are

also not identities.

Proof. Suppose for contradiction that p is an identity. Then we have the following diagram and by

flipping, the left square is a chosen pullback.

66

• • •

• • •

f−1

pq

g−1 g

q

f

However, p is an identity and by unitality q is as well, a contradiction. The case for g is identical.

We now are ready to procede to proving Theorem 9.3.1.

Proof. of Theorem 9.3.1

We begin by assuming for contradiction that there is a draconian chosen pullback system on Fin.

In this section all squares shown in diagrams will be chosen pullback squares. We focus on endo-

morphisms of the set 3 = {1, 2, 3}.

Let e be the endomorphism of 3 given by 1 7→ 2, 2 7→ 2, 3 7→ 3.

We define r : 3→ 2 by 1 7→ 1, 2 7→ 1, 3 7→ 2 and i : 2→ 3 by 1 7→ 2, 2 7→ 3.

First we state some basic facts about these three morphisms.

• e is idempotent.

• e(12) = e.

• There are 6 endomorphisms conjugate to e.

• ri = Id2.

• ir = e.

We define f : 3→ 3 as r∗(12) and we consider the following diagram:

67

3 2 3 2

3 2 3 2r r

(12)

i

f(12)f

Ide

By assumption the left and right squares are chosen pullbacks. As Id∗(12) = (12) the composite of

the middle and right squares are chosen pullbacks, so i∗f = (12) and the middle square is a chosen

pullback as well.

• We know f is an isomorphism as a pullback of an isomorphism is an isomorphism; as Fin is a

skeleton category it must also be an automorphism of 3.

• f ̸= Id3 as r∗Id3 = Id2 ̸= (12) = r∗f .

• As shown in the diagram, e∗f = f . We call f a morphism fixed by e∗.

• Let e′ be the conjugate of e via (12); e′ : 1 7→ 1, 2 7→ 1, 3 7→ 3. Via direct calculation we see

that e′ is idempotent, ee′ = e, e′e = e′. (12)e = e′, and (12)e′ = e.

• As f is fixed by e∗ then it is also fixed by e′∗.

3 3 3

3 3 3ee′

e

fff

Again the right square and full rectangle are chosen pullbacks, so the left must be as well.

• By the same argument, if f ′ is any automorphism of 3 fixed by e′∗ then it is also fixed by e∗.

• As f is fixed by e∗, then (12)∗f = f ,

68

3 3 3

3 3 3
(12) e

e

fff

Similarly the right square and full rectangle are chosen pullbacks, so the left must be as well.

We know both squares are chosen pullbacks so pasting the full rectangle is as well.

Recall that there are 6 idempotents conjugate to e of which e′ is one. These are the endomorphisms

which fix two elements and send the other one to one of the fixed points.

We let f12 := f as f corresponds to the idempotents sending 1 and 2 to the same point. By

symmetry, there are other non-identity isomorphisms fixed by the other 4 idempotents of that type.

We call them f13, f23 based on which idempotents they fix.

So far we know that they are non-identity isomorphisms, but we have not shown yet that they are

distinct.

Also note that everything we have proved about f applies to the other two, though with the numbers

suitably changed. For instance they are pullbacks along maps conjugate to r of (12) ∈ Σ2. And

(32)∗f13 = f13, (23)∗f23 = f23.

We will prove they are distinct though this is a bit tricky. Let c : 3 → 1 be the unique map, and

i1 : 1→ 3 send 1 7→ 1, similarly for i2, i3 : 1→ 3. Let c1 : 3→ 3 send everything to 1, similarly for

c2, c3. Then cij = Id1, ijc = cj .

Then c∗jf = Id3, and similarly for f23, f13

3 1 3

3 1 3c ij

fIdId

cj

69

The right square is the chosen pullback of (1
ij−→ 3

f←− 3), and i∗jf = Id1 as it is the only automor-

phism of 1. The left square is a chosen pullback by unitality. By pasting the full rectangle is a

chosen pullback.

We now prove f12 ̸= f23 and by the same argument we can show that the other pairs are distinct

as well.

Let e23 : 3 → 3 be the idempotent sending 1 7→ 1, 2 7→ 2, 3 7→ 2. It is one of the 6 conjugates of e.

By symmetry e∗23f23 = f23 . By direct computation ee23 = c2.

We now claim that f12 = f23. We start by considering the following diagram:

3 3 3

3 3 3ee23

c2

ff? .

We know the right square is a chosen pullback. By pasting the full rectangle is a chosen pullback,

so the left vertical arrow is c∗2f23 = Id3. If f12 = f23 then the left vertical arrow would be f , a

contradiction. By symmetry this shows that f12, f23, f13 are all distinct.

We claim that in Aut(2) (12)∗(12) = (12). This is as (12)∗(12) is an isomorphism, but cannot be

Id2 by Lemma 9.4.4 Thus this is a chosen pullback square:

2 2

2 2

(12)

(12)(12)

(12)

So f = (r(12))∗(12).

We consider the following diagram where r23 = r(13) : 1 7→ 3, 2 7→ 2, 3 7→ 2.

70

3 3 2

3 3 2

(12)f

r(13)

f23

r23

(9.4.1)

By a similar argument to the one we used for f , we can show that r∗23(12) = f23, so this shows that

(13)∗f = f23.

By similar arguments (23)∗f = f13 and (12)∗f13 = f23.

We claim that f = f12, f23, f13 are transpositions. Consider the following diagram where the top

square is from flipping

3 2

3 2

3 2

(12)

(12)

r

f

f−1

r

r′

By examination, r′ is a surjection conjugate to r so f−1 ∈ {f, f13, f23}. By symmetry, f−1
23 , f−1

13 ∈

{f = f12, f23, f13} as well. Thus they come in inverse pairs, so at least one must be its own inverse,

thus a transposition.

Without loss of generality, let f12 be the transposition. Note that this is the first time we have

made assumptions about it different from those of f13 and f23. We have:

3 2

3 2

3 2

(12)

(12)

r

f

f

r

r′

71

Assume for contradiction that r = r′. By direct computation, there is no transposition f ∈ Σ3 so

that (12)r = rf , contradicting the above diagram. Thus r ̸= r′.

Thus r′ = (12)r as we know ((12)r)∗(12) = f . By direct computation, the only transposition f

satisfying rf = r is f = (12).

We will show f23 must also be a transposition. If not it is either (123) or (132). In the case of

f23 = (123) for the left square of Diagram 9.4.1 to commute, its top arrow is Id, contradicting

Lemma 9.4.4.

If f23 = (132) we know the following are chosen pullback squares:

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

(12)

(12)

(12)

(12) (12)

(13)

(132)

(123)

(23)

(12)(123)

(132) (13)

(132)

(23)

(132)

For the first we had already proven (12)∗f = f , the second as (13)∗f = f23, the third we get by

making the same argument with (23) as f13 to show that (23)∗f = f13 = (123) and as we had

assumed f13 = f−1
23 , the fourth as by assumption (23)∗f23 = f23.

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

(13) (123) (23) (13)

(123) (12) (123) (12)

(123) (23) (13) (132)

(12) (123) (123) (123)

We get the first square of this set by vertically flipping the second square of the previous set. We

get the second by horizontally flipping the third of the previous set. We get the third by vertically

flipping the fourth of the previous set. We get the fouth by horizontally gluing the second of this

set with the square of (12)∗(12) = (12).

Now we glue squares 1 and 2 of this set vertically and glue squares 3 and 4 vertically to get the

following two chosen pullbacks:

72

3 3 3 3

3 3 3 3
(23)

(13)(23)

(13)

(132)

(132)(23)

(23)

But flipping the second of these vertically contradicts the second square of the prior set. Thus

f23 ̸= (132) and it must a transposition. So then f13 is as well. Using the same argument as with

f12 we show they are (23), (13) respectively.

We had shown that (13)∗f = f23, and (12)∗f13 = f23, So we have the squares:

3 3 3 3

3 3 3 3

(13)

(23)

(12)

(23)(12) (13)

(13) (12)

But all the arguments we made in this section could also be made switching the two legs of a cospan

when taking the chosen pullback. That is to say switching the horizontal and vertical axes. But

these two squares are not switched versions of each other. Thus we have a contradiction so Fin

cannot have a draconian chosen pullback structure.

73

CHAPTER 10

THE PC-CATEGORIES GE′ AND GEord

In this section we consider three versions of an enriched Burnside category on FinG

Definition 10.0.1. GE is defined as Span2(Fin
G), using the lex-pullback as the chosen pullback

system. We recall this definition in detail. Its objects those of FinG,

GE(A,B) is the category of spans (A ← X → B) and isomorphisms of spans. GE(A,B) is a

permutative category with the ordered disjoint union, ⨿, as its monoidal product. The unit span

in GE(A,A) is (A = A = A) Composition GE(B,C) × GE(A,B) → GE(A,C) is defined by taking

the outer span where the square is the lex-pullback:

g∗Y

X Y

A B C
f

g h

k

g∗h
(10.0.1)

Composition is strictly associative, however as the lex-pullback is only unital on one side, GE is not

strictly unital but is only a bicategory.

We observe that composition is strong monoidal, recalling that the distributivity isomorphism δ1

relates addition of Y, Y ′ to composition and δ2 relates addition of X,X ′ to composition, though

this may initially be counterintuitive. We have that δ1 is a non-identity isomorphism via the

reordering isomorphism g∗(Y ⨿Y ′) = (g∗Y ⨿g∗Y ′)⋉X
∼= g∗Y ⨿g∗Y ′ which is natural. And δ2 is the

identity as the ordered disjoint union right distributes over the lex-product and thus lex-pullback:

(g ⨿ g′)∗Y = g∗Y ⨿ g′∗Y . 5

As Theorem 9.3.1 tells us, we cannot simply get around this issue by using another choice of
5We could also phrase this in terms of right (resp. left) composition being strong (resp. strict) monoidal, but this

phrasing can be less readable.

74

pullback instead of the lex-pullback. Admittedly we have not shown that there can be no clever

way of choosing a different pullback for each pair of spans to make it work but this remains unlikely.

So we must resort to nastier measures.

Definition 10.0.2 ((GM11), more details in (JY22)). GE′ is the PC-category whose objects are

the same as FinG. For A ̸= B or A = B and |A| ≤ 1 we let GE′(A,B) := GE(A,B) with the same

permutative structure.

For |A| ≥ 2, GE′(A,A) has objects spans (A ← X → B) and a whiskered compositional unit we

denote IdA. The morphisms in GE′(A,A) are generated by the isomorphisms of spans and a unique

isomorphism IdA ∼= (A = A = A).

On the spans the permutative structure of GE′(A,A) agrees with that of GE(A,A), (A ← ∅ →

A)⨿ IdA := IdA and for all other spans (A← X → A)⨿ IdA := (A← X ⨿A→ A) .

On spans composition is defined using the lex-pullback as in GE. And IdA is a strict unit with

respect to composition. For spans δ1 is the reordering isomorphism and δ2 is an equality, both as in

GE. For the whiskered unit, IdB ◦(A← X → B) = (A← X → B) = (B = B = B)◦(A← X → B)

and we recall that IdB and (B = B = B) behave the same under addition so there is nothing new

to check here for δ1. On the other side is it more subtle.

However as (A = A = A) ◦ (A← X → B) ̸= (A← X → B), composition is only strong monoidal;

δ2 ̸= Id.

We calculate:

(
(A← X → A) + IdA

)
◦ (A← Y → B) = (A← Z ⨿ (Y⋉A)→ B)

whereas

(A← X → A) ◦ (A← Y → B) + IdA ◦ (A← Y → B) = (A← Z ⨿ Y → B)

75

where Z is the lex-pullback of (X → A ← Y). The distributivity isomorphism then comes from

the reordering isomorphism Y
∼=−→ Y⋉A over A. Thus in general δ1, δ2 are non-identity isomorphisms

and composition in GE′ is strong but not strict bilinear.

Lemma 10.0.3. GE and GE′ are biequivalent.

Proof. We have an inclusion pseudofunctor i : GE → GE′, which is the identity on objects, mor-

phisms (spans), and 2-morphisms (isomorphisms between spans). It is easy to see that it induces

monoidal equivalences on hom-categories, preserves composition up to natural isomorphism, and

sends units to objects isomorphic to IdA.

GE′ is adequate for constructing spectral or permutative Mackey functors as in (GM11; BO15),

however the whiskered unit is somewhat unwieldy, and does not interact particularly nicely with

FinG itself. For that reason we introduce a different PC-category to replace GE.

Definition 10.0.4. We define GEord as the PC-cat whose objects are again those of FinG, in

GEord(A,B) objects are spans whose left leg is order preserving: (A ↢ X → B) and morphisms

are isomorphisms of spans.

As before we compose spans by taking the outer span resulting using the lex-pullback which is

strictly associative. It is strictly unital with (A = A = A) ∈ GEord(A,A) the unit as

X X

A A

is a lex-pullback square.

Its permutative structure is more complicated. We define

(A ↢ X → B) + (A ↢ Y → B) := (A ↢ (X ⨿ Y)⋉A → B).

76

It is clear this is strictly unital with (A← ∅ → A) as the additive unit. In both ((X⨿Y)×A⨿Z)⋉A

and (X ⨿ (Y ⨿Z)⋉A)⋉A elements are ordered lexicographically first by which element of A they lie

over, then whether they come from X,Y, or Z, then based on the original ordering in those sets.

This can also be shown via a diagram chase. This shows those are the same as ordered G-sets, so

associativity is strict.

We now describe the distributivity isomorphisms δ1, δ2. On the other side it is only strong monoidal;

δ1 is a non-identity isomorphism. We can display

(
(B ↢ Y → C) + (B ↢ Y ′ → C)

)
◦ (A ↢ X → B)

as the following diagram where both squares are lex-pullback and by gluing Lemma 8.1.1 the rect-

angle is as well. V is the lex-pullback of (X → B ↢ (Y ⨿ Y ′)⋉B).

V

X (Y ⨿ Y ′)⋉B

A B Y ⨿ Y ′

B C

And we can display

(B ↢ Y → C) ◦ (A ↢ X → Y) + (B ↢ Y ′ → C) ◦ (A ↢ X → Y)

in the following diagram:

77

(U ⨿ U ′)⋉A

(U ⨿ U ′)

A X (Y ⨿ Y ′)

A B C

where U,U ′ are the lex-pullbacks of (X → B ↢ Y), (X → B ↢ Y ′) respectively. The middle

square is a pullback square but not a lex-pullback. However its legs are order preserving when

restricting to Z,Z ′, Y, Y ′ its legs are order preserving. The leg (U ⨿ U ′)⋉A ↣ A factors through X

so we can draw:

(U ⨿ U ′)⋉A

X (U ⨿ U ′)

A X (Y ⨿ Y ′)

A B C

where the lower left square is a lex-pullback, but the top square is not a lex-pullback. We claim

that ((U ⨿ U ′)⋉A)⋉X = Z ′′′, and that their maps to A and C agree as well.

78

((U ⨿ U ′)⋉A)⋉X

X (U ⨿ U ′)⋉A

X (U ⨿ U ′)

A X (Y ⨿ Y ′)

A B C

1

2

34

This reduces to showing that the composite rectangle of squares 1, 2, and 3 is a lex-pullback. We

know the left leg ((U ⨿U ′)⋉A)⋉X → X is order preserving, so we consider u < u′ ∈ ((U ⨿U ′)⋉A)⋉X

lying over x ∈ X and we prove hgf(u) < hgf(u′) in Y ⨿ Y ′. First we have that f(u) < f(u′) as

f is the top square is a lex-pullback. As u, u′ are in the same fiber over x, they are also in the

same fiber over A, so gf(u) < gf(u′), and g is the top leg of the lex-pullback square given by the

composite of squares 2 and 4. Now gf(u), gf(u′) are still in the same fiber over x ∈ X. If both

are in U then as U is the lex-pullback of (X → B ← Y), h is order preserving when restricted

to U so hgf(u) < hgf(u′). This same argument holds if both are in U ′. The other case is that

gf(u) ∈ U, gf(u′) ∈ U ′ in this case as h(U) ⊆ Y, h(U ′) ⊆ Y ′, we must have that hgf(u) < hgf(u′).

So now we have a natural distributivity isomorphism δ1 : V = ((U ⨿ U ′)⋉A)⋉X
∼= (U ⨿ U ′)⋉A .

Consider spans (A ↢ X → B), (A ↢ X ′ → B), (B ↢ Y → C) Let Z,Z ′ be the lex pullbacks of

(X → B ↢ Y), (X ′ → B ↢ Y) respectively.

(B ↢ Y → C) ◦
(
(A ↢ X → B) + (A ↢ X ′ → B)

)

can be drawn as the diagram:

79

W

(X ⨿X ′)⋉A Z ⨿ Z ′

A X ⨿X ′ Y

A B C

where W is the lex-pullback of ((X ⨿X ′)⋉Z → B ↢ Y). We observe that the leg W → Y factors

through Z ⨿Z ′, and that the lower right square with the dotted arrow is a lex pullback. By reverse

pasting the top square is as well. By pasting the rectangle formed by the top square and lower left

square is a lex-pullback; thus W = (Z ⨿ Z ′)⋉A.

We also have by definition that

(B ↢ Y → C) ◦ (A ↢ X → B) + (B ↢ Y → C) ◦ (A ↢ X ′ → B) = (A ↢ (Z ⨿ Z ′)⋉A → C)

so composition on this side is strict monoidal, δ2 = Id.

Theorem 10.0.5. There is a biequivalence of PC-categories R : GE′ → GEord

Proof. We start by constructing R as a 2-functor, then show it is in fact a PC-functor. It acts as

the identity on objects and on hom-categories we define:

RA,B : HomGE′(A,B) −→ HomGEord
(A,B)

(A
f←− X → B) 7−→ (A

Id∗f←−−− X⋉A
g−→ B)

where g is determined uniquely by the reordering isomorphism X ∼= X⋉A. R(IdA) := (A = A = A).

We see in the diagram how R acts on a morphism η between spans:

80

X⋉A

A X B

A Y⋉A B

Y

η

RA,B(η)

(10.0.2)

This is well-defined by the universal property of pullbacks and it is clear that it preserves identity

morphisms and composition. Thus RA,B defines a functor.

By construction R sends the composition units of GE′ to those of GEord.

Next we show that it preserves composition which amounts to Z⋉C = Z ′′ in the diagram, where Z

is the lex-pullback of (X → B ↢ Y), and Z ′′ is the lex-pullback of (X⋉A → B ↢ Y⋉B). To better

keep track of the maps, we use “ 7→” here to denote the top arrows in a lex-pullback square.

Z ′′

Z⋉A

X⋉A Z Y⋉B

A X B Y C

A B C

(10.0.3)

The squares 1 and 2 shown below are both lex-pullbacks, so using Lemma 8.1.1 on horizontal

pasting, the composite square 3 is also a lex-pullback.

81

Z ′′ Y⋉B Y Z ′′ Y

X⋉A B B X⋉A B

1 2 3

We now return to diagram 10.0.3, which we have simplified by substituting in square 3 in place of

squares 1 and 2 and omitting C as it is no longer relevant.

Z ′′

Z⋉A

X⋉A Z

A X Y

A B

Next, the arrow Z⋉A ↣ A factors through X⋉A which follows from X⋉A → X being invertible.

This implies the lex-pullback square 8 shown below is the composite of squares 4 and 5. Using the

fact that square 5 is a lex-pullback square, we can reverse gluing of Lemma 8.1.6 to see that square 4

is a lex-pullback. We then use that square 6 is a lex-pullback to apply horizontal pasting of Lemma

8.1.1 to show that square 7, the composite of 4 and 6, is also a lex-pullback.

Z⋉A Z Z⋉A Z Z⋉A Z Y Z⋉A Y

A A X⋉A X X⋉A X B X⋉Z B

A A

4

5

4 6 78

This completes the proof that both Z ′′ and Z⋉A are lex-pullbacks of (X⋉A → B ← Y). We already

82

showed that R sends units to units so we have already shown composition is preserved in the case

that either 1-cell is and Id. Showing that composition is a bifunctor comes from a lengthy but

straightforward diagram chase. This completes the proof that R is a strict 2-functor.

We now need to show that it is PC-enriched. By direct checking we see that (X ⨿ Y)⋉A = (X⋉A ⨿

Y⋉A)⋉A meaning that RA,B is strict monoidal.

Next we need to show that in the following diagram commutes in the sense that both ways around

the diagram give the same bilinear bifunctor of permutative categories. We have already shown

that as bifunctors they are the same so it remains to show that the distributivity isomorphism δ1, δ2

agree.

GE′(B,C)×GE′(A,B) GE′(A,C)

GEord(B,C)×GEord(A,B) GEord(A,C)

R

comp

comp

R

As RA,B is strict monoidal, we only need to consider the distributivity morphisms of composition.

We consider spans with X,X ′, Y, Y ′ as before. For δ1 going across we have g∗Y ⨿ g∗Y ′ ∼= (g∗Y ⨿

g∗Y ′)⋉X = g∗(Y ⨿ Y ′) going down we then have (g∗Y ⨿ g∗Y ′)⋉A
∼= ((g∗Y ⨿ g∗Y ′)⋉X)⋉A. We

observe that the RHS is equal to (g∗Y ⨿ g∗Y ′)⋉X which is the same as the δ1 of GEord. We recall

that on the whiskered unit δ1 is defined the same as on the span (B = B = B) so there is nothing

new to check there.

For δ2 we first consider spans in GE′. Going across δ2 is equality, so then applying R we once again

get equality. As δ2 is an equality in GEord these agree. On the whiskered unit, we recall that in GE′

δ2 is the reordering Z ⨿ Y⋉A
∼= Z ⨿ Y . Applying R to this we get (Z ⨿ Y⋉A)⋉A = (Z ⨿ Y)⋉A so

this is again an equality, agreeing with the δ2 of GEord.

Next we show it is a biequivalence of 2-categories. By definition it is surjective on objects, so we must

show RA,B is an equivalence of categories. In the case of A = B we note that GE′(A,A) ≃ GE(A,A)

and R factors through the retract so we do not need to treat this case any differently. RA,B is

83

surjective on objects because HomGEord
(A,B) is a subcategory of HomGE′(A,B) and RA,B is a

retract.

An alternative explanation is that HomGEord
(A,B) already has all spans whose left side is order

preserving, and RA,B leaves these unchanged.

For fully faithfullness we consider the square in diagram 10.0.2 and note that all the maps in the

middle are isomorphisms, in particular so η and RA,B(η) uniquely determine each other.

Remark 10.0.6. There is no strict 2-functor GEord → GE′. To see this we note that in GE′, IdA

cannot be expressed as a composition of two non-identity spans, whereas in GEord the identity

(A = A = A) can be.

Definition 10.0.7 ((BO15)). A permutative Mackey functor is a PC-functor (GE′)op → Perm, or

from a PC-category biequivalent to (GE′)op. This forms a 2-category with PC-natural transforma-

tions and modifications.

We note that the original definition used lax monoidal functor whereas we use strong monoidal ones.

Proposition 10.0.8. PMFs with GE′ are equivalent to those with GEord which we denote PMFord

FunPC(GE
′op,Perm) ≃ FunPC(GE

op
ord,Perm)

Proof. As R is a biequivalence, it has a weak inverse we denote S : GEord → GE′, which is a

pseudofunctor, and monoidal pseudonatural equivalences RS ≃ IdGEord
, SR ≃ IdGE′ . We have a

precomposition functors Rop∗ : PMF ′ → PMFord, S
op∗ : PMFord → PMF ′, which are a strict 2-

functor and pseudofunctor respectively. Similarly, the monoidal pseudonatural equivalences induce

natural equivalences Sop∗Rop∗ ≃ IdPMFord
and Rop∗Sop∗ ≃ IdPMF ′ making this an equivalence of

2-categories.

84

By this result we chose to use to work with PMFs from GEord instead.

85

Part II

Σ̂G-ALGEBRAS

86

CHAPTER 11

FinG-CATEGORIES Σ̂G

ΣGAs were first introduced by Peter Bonventre and Luis Pereira in an unpublished draft. Bonventre

later refined the definition to its current version for which he defined FinG-categories. The work

in this and the following chapters builds on their work and fills in technical lemmas in their work.

This work is largely based on joint work with Peter Bonventre.

11.1. FinG-Categories

Definition 11.1.1. Let C be a fibration over FinG with a normal cleavage (i.e. a strictly unital choice

of cartesian lifts such that the cartesian lift of an identity morphism is the identity) whose fibers

are all nonempty. Equivalently we can view this as a strictly unital pseudofunctor (FinG)op → Cat

whose image does not include the empty category. In the case of a split fibration we have a functor.

Remark 11.1.2. By the equivalence of weak 2-categories between contravariant functors to Cat and

categorical fibrations, we know that everything done in this chapter could also be done in terms

of pseudofunctors (FinG)op → Cat, however we believe that some parts are more convenient when

phrased in terms of fibrations, paraphrasing the slogan attributed to Elden Elmanto,

“Functors are better for intuition, fibrations are better for calculations.”

Definition 11.1.3. For f : A → B in FinG, we denote the associated functor f∗ : C(B) → C(A)

which we call the restriction along f .

We say C is weakly additive (resp. strongly, strictly) if for all A,B ∈ FinG the natural map

C(A⨿B)
ι∗A×ι∗B−−−−→ C(A)× C(B) (11.1.1)

87

is an adjoint equivalence of categories (resp. isomorphism, equality). We denote the weak inverse λ

and associated unit and counit natural isomorphisms η, ϵ:

η : IdC(A⨿B)

∼=
=⇒ λ(ι∗A × ι∗B), ϵ : (ι∗A × ι∗B)λ

∼=
=⇒ IdC(A)×C(B) (11.1.2)

Note that that by Lemma 4.0.5 we can replace η or ϵ with another natural isomorphism to make

this the case if it is not already, so we can expand the FinG-categories to include those that merely

have equivalences. As this is an adjoint equivalence, both λ, ι∗A× ι∗B are left and right adjoints. Our

choice of η and ϵ as the unit and counit respectively as opposed to their inverses (which would be

counit and unit respectively) is thus arbitrary.

Notation 11.1.4. For concision we will occasionally use ι∗ to denote ι∗A× ι∗B, and r for a restriction.

We will sometimes use λC for clarity if multiple fibrations are present.

Throughout this paper for clarity we will generally prove results only for λ, ι∗ in the case of two

objects, however by the required well-definition and compatibility, the same proofs work just as well

for multiple objects. And we will appeal to some results in the case of multiple objects.

We next require that ϵ is suitably preserved by restriction along isomorphisms. Spelled out this

means given isomorphisms B → A,B′ → A′ the whiskering diagrams agree:

V (A)× V (A′) V (A)× V (A′)

V (A⨿A′)

V (B)× V (B′) V (A)× V (A′)

V (B ⨿B′)

V (B)× V (B′) V (B)× V (B′)

λ

r

ι∗

r

ι∗

λ

ϵ

ϵ

(11.1.3)

88

Implicit in this we are requiring restriction along isomorphism to strictly commute with λ.

A quick diagram chase using the triangle identities shows that this is equivalent to a similar condition

on η.

We next require that they are associative and commutative in the sense that the following diagrams

strictly commutes for all A,B,C, and that they are suitably compatible.

C(A)× C(B)× C(C) C(A⨿B)× C(C)

C(A)× C(B ⨿ C) C(A⨿B ⨿ C)

λ×Id

Id×λ λ

λ

(11.1.4)

C(A)× C(B) C(A⨿B)

C(B)× C(A) C(B ⨿A)

λ

τ

λ

τ∗ (11.1.5)

where τ denotes both twist maps. These additional conditions mean we have a well defined λ :∏
i C(Ai)→ C(⨿iAi) which is equivariant with respect to action of Σn.

This is a weak inverse to
∏

i ι
∗
Ai

, however a priori we can form the (co)units by various compositions

of the ηs’ and ϵ’s.

We finally require that the various compositions yield the same natural isomorphism. Consquently

we have an equivalence λ :
∏

i C(Ai) → C(⨿iAi) :
∏

i ι
∗
Ai

with specified (co)units, which we also

denote η, ϵ.

Remark 11.1.5. By Lemma 4.0.5 if we have η’s and ϵ’s forming these equivalences and we replace

the η’s (or ϵ’s) so as to form adjoint equivalences, they still are suitably compatible as required.

Lemma 11.1.6. Weak (resp. strong) additivity implies that C(∅) ≃ ∗ (resp. C(∅) ∼= ∗).

We call this weak unitality (resp. strong).

89

Proof. We observe that applying the natural map 11.1.1 to A = B = ∅ we obtain:

C(∅) = C(∅ ⨿ ∅) ∆−→ C(∅)× C(∅).

As ∆ = ι∗∅ × ι∗∅. In the weak case, as ∆ is essentially surjective, for (a, b) ∈ C(∅)× C(∅) there must

be a d ∈ C(∅) so that (a, b) ∼= (d, d) in C(∅)×C(∅). This implies a ∼= d ∼= b in C(∅). Thus all objects

are isomorphic.

Next, by full faithfulness, ∆ : EndC(∅)(a, a) ∼= EndC(∅)×C(∅)((a, a), (a, a)) ∼=

EndC(∅)(a, a) × EndC(∅)(a, a). Thus EndC(∅)(a, a) is a singleton. Finally as we assume C(∅) is not

the empty category, it must be equivalent to ∗.

In the strict case, singletons are the only non-empty sets (or proper classes) which are in bijection

with their product with themself via the diagonal, so C(∅) has a single object. As it is equivalent

to ∗, it now must be isomorphic to ∗ as well.

This is the only occasion we use the assumption that C only takes values in non-empty categories.

Lemma 11.1.7. Restrictions and λs commute up to isomorphism, and strictly if C is strongly

additive.

Proof. They commute up to the 2-cell Λ defined by the pasting diagram:

90

C(A)× C(A′)

C(A⨿A′)

C(A)× C(A′)

C(B ⨿B′)

C(B)× C(B′)

C(B ⨿B′)

r

λ

r

ι∗

ι∗

λ

ϵ

η

(11.1.6)

The center square commutes strictly if C is a split fibration and up to isomorphism if not. The unit

and counit η and ϵ are trivial in the case of strict additivity.

Lemma 11.1.8. Λ transitive along restrictions. Explicitly we mean that given A
f−→ B

g−→ C and

A′ f ′
−→ B′ g′−→ C ′ the first and last diagram in 11.1.7 agree.

Proof. The following pasting diagrams agree.

91

C(C)× C(C ′) C(C ⨿ C ′) C(C)× C(C ′) C(C ⨿ C ′)

C(B)× C(B′) C(B ⨿B′) C(B)× C(B′) C(C ⨿ C ′)

C(A)× C(A′) C(A⨿A′) C(B)× C(B′) C(B ⨿B′)

C(A)× C(A′) C(B ⨿B′)

C(A)× C(A′) C(A⨿A′)

C(C)× C(C ′) C(C ⨿ C ′) C(C)× C(C ′) C(C ⨿ C ′)

C(A)× C(A′) C(C ⨿ C ′) C(A)× C(A′) C(A⨿A′)

C(A)× C(A′) C(A⨿A′)

(gf)∗×(g′f ′)∗ (gf⨿g′f ′)∗

λ

λ

λ

ι∗ (gf⨿g′f ′)∗

(gf)∗×(g′f ′)∗ ι∗

λ

λ

ι∗

f∗×f ′∗

(f⨿f ′)∗

ι∗

(g⨿g′)∗

ι∗

λ

g∗×g′∗

ι∗

λ

f∗×f ′∗

g∗×g′∗

λ

(g⨿g′)∗

λ

(f⨿f ′)∗

λ

Λ

Λ

Λη

η

η

ϵ

ϵ

ϵ

(11.1.7)

To go from the first to the second we expand the Λs. From the second to the third we apply the

triangle identities and use the functoriality of restrictions. From the third to the fourth we contract

Λ.

Definition 11.1.9. (Bonventre) Finally, we define a FinG-category as a weakly additive split fibra-

tion over FinG, with non-empty fibers.

A pseudo-FinG-category is then a weakly additive fibration over FinG with a chosen normal cleavage

and non-empty fibers.

We call these strong (resp. strict) if it is strongly (resps. strictly) additive.

Remark 11.1.10. At first glance the additivity condition imposed by λ appears to be a sort of Segal

condition and sufficient to create a monoidal structure on C. The rough intuition behind this is that

a monoidal structure on C(A) is induced by

92

C(A)× C(A) ∼−→ C(A⨿A) 99K C(A)

where the dashed arrow is induced by the fold map. However this is somewhat misleading, as

FinG − Cats have contravariant functors from FinG, such a map does not exist. So although it is

segalic in nature, it is not sufficient to induce of monoidal structure. We will see later in Proposition

13.0.16, that the covariant transfer maps in a ΣGA induce such a structure.

Instead the proper way to view this condition is that it tells us that a FinG-category is essentially

determined by its values on OG up to equivalence of categories (resp. isomorphism) in a coherent

way.

Definition 11.1.11. A morphism of FinG-categories is a morphism of fibrations over FinG, meaning

a functor over FinG sending cartesian arrows to cartesian arrows.

A split morphism of FinG-categories is a morphism of split fibrations over FinG, sending chosen

cartesian arrows to chosen cartesian arrows.

We recall that this induces pseudofunctors between the respective fibers, and functors in the case

of a split morphism.

Definition 11.1.12. An additive morphism of between FinG-categories is one which is natural

with respect to the respective λs. I.e. the diagram 11.1.8 strictly commutes.

C(A)× C(B) C(A⨿B)

D(A)×D(B) D(A⨿B)

FF

λC

λD

(11.1.8)

Lemma 11.1.13. The additivity square 11.1.8 always commutes up to isomorphism.

Proof. We define Φ as the following pasting diagram, where the central natural isomorphism comes

93

from morphisms of (non-split) fibrations commuting with restriction up to isomorphism.

C(A)× C(B)

C(A⨿B)

C(A)× C(B)

D(A⨿B)

D(A)×D(B)

D(A⨿B)

F

F

ι∗

ι∗

λD

∼=

λ

ϵ

η

(11.1.9)

Corollary 11.1.14. If C,D are strongly additive and F is split, then F is automaticallty additive.

Lemma 11.1.15. The following three pasting diagrams are equal:

C(A)× C(B)

C(A)× C(B) D(A)×D(B) C(A)× C(B)

C(A⨿B) C(A)× C(B) C(A⨿B)

D(A)×D(B) D(A⨿B) C(A)× C(B)

D(A⨿B) D(A)×D(B) D(A⨿B)

D(A)×D(B) D(A⨿B) D(A)×D(B)

D(A)×D(B)

λ

F

F

λ

F

λ

ι∗

F

ι∗ι∗

∼=

Φ

ι∗

λD

ι∗

F

F

ι∗

λ

∼=

η

η

η

ϵ

η

Proof. To go from the first to second we simply expand Φ. To go from the second to the third, we

94

see that the bottom two cells for the triangle identity of the ι, λ adjunction, so they paste to the

identity 2-cell.

Lemma 11.1.16. The following three diagrams are equal:

C(A⨿B)

C(A⨿B) C(A)× C(B) C(A⨿B)

C(A)× C(B) C(A⨿B) C(A)× C(B)

C(A⨿B) C(A)× C(B) D(A⨿B)

D(A)×D(B) D(A⨿B) D(A)×D(B)

D(A⨿B) D(A)×D(B) D(A⨿B)

D(A⨿B)

F

F

ι∗

ι∗

λ

∼=

λ

ι∗

ι∗

λ

λ

F

F F

λ

ι∗

F

∼=

ι∗

ν

µ

ν

ν

Φ

Proof. Again we expand Φ then use the triangle identity.

We can also display this by saying these two triangular prism-shaped 2-diagrams commute, where

their rear face is the identity 2-cell:

C(A)× C(B) C(A)× C(B) C(A⨿B) C(A⨿B)

C(A⨿B) C(A)× C(B)

D(A)×D(B) D(A)×D(B) D(A⨿B) D(A⨿B)

D(A⨿B) D(A)×D(B)

λ

λ

ι∗

ι∗

F

Φ ∼=

ι∗ λ

F F

ι∗ λ

∼= Φ

F

F

ϵ

ϵ

η

η

F

(11.1.10)

95

Example 11.1.17.

Id : FinG → FinG

is a strong FinG-category corresponding to the constant functor (FinG)op → ∗ ⊂ Cat.

Notation 11.1.18. When viewing FinG in this way as a FinG-category, we denote it ∗.

Example 11.1.19 (Bonventre). Given a coefficient system C : Oop
G → Cat we can extend it to a strict

FinG-category by C+(A) :=
∏

U∈A/G C(U). Restrictions f∗ are given by the composite

∏
B/G

C(V) −→
∏
A/G

C(f(U))
(f∗

U)
−−−→

∏
A/G

C(U)

with fU : U → f(U).

Example 11.1.20. Let C be a category with a G action; by taking fixed points it defines a coefficient

system G/H 7→ CH , with restrictions given by inclusion. Using the above example it then gives a

strict FinG category.

11.2. Σ̂G and Σ̂G ≀ (−)

Definition 11.2.1. Let Σ̂G → FinG be the fibration given by the Grothendieck construction on

the functor B 7→ FinG/B,ord, the subcategory of the slice category over B consisting of only order-

preserving arrows A ↣ B. On morphisms f : B′ → B it gives the functor sending (p : A ↣ B) 7→

f∗p : A×B B′ ↣ B. Horizontal pasting and partial unitality suffice to make this functorial. Thus

Σ̂G has objects A ↣ B and morphisms are pullback squares.

Lemma 11.2.2. Σ̂G is a strong FinG-category.

Proof. This is a split fibration as is comes from a Grothendieck construction.

Showing it is strongly additive takes a bit more work. Let A,B ∈ FinG. The functor Σ̂G ≀ C(A ⨿

96

B)
ι∗A×ι∗B−−−−→ Σ̂G ≀ C(A)× Σ̂G ≀ C(B) sends

(p : X ↣ A⨿B) 7−→
(
(p−1(A ↣ A), (p−1(B) ↣ B)

)
.

Its inverse λ is

(
(X ↣ A), (Y ↣ B)

)
7−→ (X ⨿ Y ↣ A⨿B).

Associativity and commutativity of λ is clear. FinG/∅ is the subcategory of FinG consisting of only

(Id : ∅↣ ∅).

Definition 11.2.3. For C ∈ FinG − Cat, we define the wreath product Σ̂G ≀ C to be the following

1-pullback:

Σ̂G ≀ C C

Σ̂G FinGs

(11.2.1)

where s is the source map (A ↣ C) 7→ A. Objects are tuples (A ↣ B, x) with x ∈ C(A), and

arrows pullback squares in FinG and a map x′ → x in C over A′ → A.

Proposition 11.2.4. This is again a FinG-category via the composite

Σ̂G ≀ C → Σ̂G
t−→ FinG

where t is the target map. Furthermore, this construction is functorial in C with respect to (split,

additive) morphisms of fibrations. In the case that C is a pseudo-FinG-category then Σ̂G ≀ C is as

well.

Proof. This clearly defines a functor Σ̂G ≀ C → FinG. For q : B′ → B in FinG and (A ↣ B, x) in

97

Σ̂G ≀ C(B) its chosen cartesian lift is

q∗(A ↣ B, x) :=
(
q∗A ↣ B′, q∗Ax

)
(11.2.2)

where q∗Ax is the source of the chosen cartesian lift of C of qA : q∗x → x. We can also display this

visually in a diagram:

(qA)
∗ : q∗Ax x

q∗A A

B′ B
q

(11.2.3)

Checking that this is in fact cartesian, we consider q′ : B′′ → B′ and a pullback/commuting square

A′′, A,B′′, B above qq′′ as well as x′′ ∈ C(B′′) and a map in C x′′ → x above qq′.

C x′′

A′′ q∗Ax x

Σ̂G B′′ q∗A A

B′ B

FinG B′′

B′ B
q′

q

Now to confirm existance and uniqueness, q′ is the only map B′′ → B′ here; by the universal

property of the pullback, A′′ → q∗A is uniquely determined. x′′ → x then exists and is unique by

virtue of C being a fibration.

98

We confirm that this is a split fibration and (Id)∗ = Id as C is assumed to be a normal split fibration.

and because lex-pullback is suitably unital and transitive. Unitality is also easy to check.

In the case of C a pseudo-FinG-category, this gives us a normal cleavage instead of a split one.

Finally, this is weakly (resp. strongly) additive whenever C is as in Σ̂G ≀ C, ι∗A × ι∗B is given by

(p : X ↣ A⨿B, x) 7−→
(
(p−1(A ↣ A, ι∗C,Ax), (p

−1(B) ↣ B, ι∗C,Bx)
)
.

With (resp. strict) inverse λΣ̂G≀C

(
(X ↣ A, x), (Y ↣ B, y)

)
7−→ (X ⨿ Y ↣ A⨿B, λC(x, y)).

For Σ̂G ≀ C, η and ϵ are defined as:

ηx : (p : X ↣ A⨿B, x)
Id,ηC−−−→ (p : X ↣ A⨿B, λC(ι

∗
C,Ax, ι

∗
C,Bx)

ϵ(x,y) :
(
(X ↣ A, ι∗C,A(λC(x, y)), (Y ↣ B, ι∗C,B(λC(x, y)))

) Id,ϵC−−−→
(
(X ↣ A, x), (Y ↣ B, y)

)

These satisfy the adjunction triangle identities, following directly from the fact that ηC and ϵC do;

similarly for being preserved by isomorphisms. Associativity and commutativity of λ follow from

that of λC , as do the coherence conditions on the η, ϵ. The fiber over ∅ is {(Id : ∅ ↣ ∅)} × C(∅)

which is nonempty.

99

For F : C → D a morphism (resp. split, additive), gives Σ̂G ≀ F : Σ̂G ≀ D → Σ̂G ≀ C is a morphism

(resp. split, additive). This sends (A ↣ B, x) 7→ (A ↣ B,F (x)) on objects, and on morphisms

f : x′ → x to the identity on squares and F (f) : F (x′)→ F (x). It is clear this is all over FinG. As

F is a morphism of (split) fibrations Σ̂G ≀ F is as well. To see this is additive, we observe from the

description of λ that it commutes with Σ̂G ≀ F when F is additive.

Example 11.2.5. As a simple example we have Σ̂G ≀ FinG = Σ̂G.

Example 11.2.6. Σ̂G ≀ Σ̂G consists of composable order-preserving G-maps (A1 ↣ A0 ↣ A−1), and

morphisms are stacks of pullback squares. The left vertical and top horizontal maps of 11.2.1 delete

A1 and A−1, respectively.

Example 11.2.7. Σ̂≀k+1
G ≀ C = Σ̂G ≀ (Σ̂≀k

G ≀ C) consists of pairs (Ak ↣ . . . ↣ A0 ↣ A−1, x ∈ C(Ak)) of

a string of maps and an element of the appropriate fiber; morphisms are stacks of pullback squares

and a map x′ → q∗kx. Our convention is that Σ̂≀0
G ≀ C = C.

Remark 11.2.8. The intuition behind this construction is that the ordered maps can be thought of

as operations.

Proposition 11.2.9. (Bonventre) The iterated wreath products Σ̂≀•+1
G ≀C form a coaugmented cosim-

plicial object in FinG-Cat (resp. with split, additive morphisms). This also holds for pseudo-FinG-

categories. Its cofaces are

δi : Σ̂
≀k+1
G ≀ C → Σ̂≀k+2

G ≀ C

inserting equalities Ai = Ai for −1 ≤ i ≤ k, and codegeneracies

σi : Σ̂
≀k+1
G ≀ C → Σ̂≀k

G ≀ C

deleting Ai and composing the adjacent maps for 0 ≤ i ≤ k. Moreover, Σ̂G ≀ σi = σi+1 and

Σ̂G ≀ δi = δi+1.

100

Furthermore this is functorial in C with (split, additive) morphisms of (pseudo-)FinG-categories.

Corollary 11.2.10.

(Σ̂G ≀ (−), σ0, δ−1)

forms a monad in (pseudo-)FinG-categories (resp. with split, additive morphisms).

For explicitness, we observe that δ−1 : C → Σ̂G ≀ C sends x ∈ C(A) to (Id : A ↣ A, x) ∈ Σ̂G ≀ C(A).

101

CHAPTER 12

DEFINING Σ̂G-ALGEBRAS

Definition 12.0.1. (Bonventre) A Σ̂G-algebra or ΣGA6 is a pseudoalgebra over the monad Σ̂G ≀(−)

in the category of FinG-categories.

First we write this out in full detail. An ΣGA consists of a FinG-category V → FinG, a multiplication

map of fibrations ⊗ : Σ̂G ≀ V → V

Σ̂G ≀ V V

FinG

⊗

We denote the image of (f : A ↣ B, x) in Σ̂G ≀C(B) under ⊗ by ⊗(f, x). Along with an associativity

natural isomorphism of fibrations α over FinG:

Σ̂≀2
G ≀ V Σ̂G ≀ V

Σ̂G ≀ V V

⊗

⊗

σ0

Σ̂G≀⊗

α (12.0.1)

and a unitality natural isomorphism of fibrations 7 ω over FinG:

V

Σ̂G ≀ V V

δ−1

⊗

ω (12.0.2)

We recall that α, ω being natural transformations of fibrations means that objectwise lie over iden-
6We choose this name for clarity and to disambiguite it from terms like “genuine equivariant symmetric monoidal

category”.
7We call it ω as η is taken.

102

tities in FinG. They are also subject to the relations that these pasting diagrams are equal:

Σ̂≀3
G ≀ V Σ̂≀2

G ≀ V Σ̂G ≀ V V Σ̂≀3
G ≀ V Σ̂≀2

G ≀ V Σ̂G ≀ V V

Σ̂≀2
G ≀ V Σ̂G ≀ V V Σ̂≀2

G ≀ V Σ̂G ≀ V V

Σ̂G ≀ V V Σ̂G ≀ V V

σ0

Σ̂≀2
G ≀⊗ Σ̂G≀⊗

σ0

⊗

α σ1

Σ̂≀2
G ≀⊗ Σ̂G≀⊗ ⊗

Σ̂G≀α
Σ̂G≀⊗

σ0

⊗

α

Σ̂G≀⊗

σ0

⊗

α

⊗ ⊗

and that these two are equal as well:

Σ̂G ≀ V V V Σ̂G ≀ V Σ̂G ≀ V V

Σ̂≀2
G ≀ V Σ̂G ≀ V V Σ̂≀2

G ≀ V Σ̂G ≀ V V

Σ̂G ≀ V V Σ̂G ≀ V V

⊗

δ0 δ0

Σ̂G≀⊗ ⊗

ω

σ0

⊗

α

⊗

δ−1

⊗

ω

⊗

⊗

σ0 α

Definition 12.0.2. There are many possible strengthenings and weakenings of this structure:

(a) We say a ΣGA is split (resp. additive) if the action map Σ̂G ≀ V
⊗−→ V is split (resp. additive)

as a map of FinG-categories.

(b) We say a ΣGA is strict if it is in fact an algebra over Σ̂G ≀ (−).

(c) If the underlying FinG-category of V is strongly (resp. strictly) additive, we say V is strongly

(resp. strictly) additive as a FinG category.8

(d) If V is split, strict, and additive we call it permutative.

(e) In the case that V is a pseudo-FinG-category we call it a weak or pseudo-ΣGA.
8We recall that all FinG-categories are at least weakly additive.

103

Remark 12.0.3. If V is split and strongly additive as a FinG-category then it is additive.

Remark 12.0.4. Intuitively, ⊗ is a way of turning genuine equivariant operations combinatorially

encoded by maps of G-sets B ↣ A into functors V(B) → V(A). As before, the restriction to

order-preserving maps does not reflect any deeper meaning, it is merely so technical parts work out

cleanly.

Conjecture 12.0.5. Given a ΣGA we can strictify it to an equivalent permutative ΣGA.

As a rough sketch we first make ⊗ additive, which we could do by making V and thus Σ̂G ≀V strongly

additive as FinG-categories. We can attempt to do this by first restricting to the fibers over OG,

then expanding to strongly additive ones via the (−)+ construction. Next we modify ⊗ into a split

morphism, perhaps by replacing Σ̂G ≀ V or V with an equivalent fibration with a different choice of

cleavage. Finally we strictify from pseudo-algebras to algebras, perhaps using results of (Lac02) or

(BKP89).

12.1. Examples

Example 12.1.1. Given a (split, additive) FinG-category C, Σ̂G ≀ C is also a (split, additive as a

FinG-category) strict ΣGA. This we view as the free ΣGA on a FinG-category as it is left adjoint to

the forgetful functor from ΣGAs to FinG-categories.

Example 12.1.2. FinG := Σ̂G ≀ FinG = Σ̂G is an example of this.

This is a prototypical example in the sense that Fin is the prototypical symmetric monoidal category.

Intuitively it should be thought of as the equivariant symmetric monoidal category FinG viewed as

a ΣGA. Indeed FinG(G/H) ≃ FinH , with restriction being restriction of subgroups K ≤ H and

transfers being X 7→ X ×K H.

Intuitively, we can also think of this as the free ΣGA on a single generator.

Example 12.1.3. Id : FinG → FinG of Example 11.1.17 is a permutative ΣGA where

104

⊗ : Σ̂G ≀ FinG = Σ̂G
p−→ FinG where p is the fibration map. We denote this by ∗ as each fiber is the

singleton category.

To see that α is an equality, we observe that for (A ↣ B ↣ C) ∈ Σ̂≀2
G ≀ Fin

G both ways around the

diagram 12.0.1 give C. For unitality δ−1 : Fin
G → Σ̂G sends A 7→ (Id : A ↣ A) making it a section

which shows ω is an equality.

This is the terminal object in the category of FinG categories. It is also the initial object (in a

2-catgorial sense) in the category of ΣGAs as morphisms of ΣGAs are unital.

Definition 12.1.4. We say a map of fibrations ∗ → V is an object of V. In particular we note it

picks out an object of each fiber, which are sent to one another by restrictions. We note that it is

equivalent to specify an object of V(G/G) as it is initial in (FinG)op.

Lemma 12.1.5. To define a strict ΣGA it suffices to give a categorical coefficient system F :

(OG)
op → Perm and for each f : A ↣ B a functor f∗ : F (A) → F (B) which is functorial and

satisfies a strict double coset formula for lex-pullbacks.

This defines ⊗, as it strictly satisfies a double coset formula, it defines a natural transformation from

Σ̂G ≀F ⇒ F , viewed a coefficient systems, which then via the Grothendieck construction corresponds

to a split map of FinG-categories. As F, Σ̂G ≀ F are strongly additive, ⊗ is as well.

Remark 12.1.6. We suspect that we can weaken this to defining a pseudo-ΣGA given a pseudo-

functor F : (OG)
op → SymMon and for each f : A ↣ B a functor f∗ : F (A) → F (B) which is

pseudofunctorial and satisfies a natural double coset isomorphism.

Remark 12.1.7. We suspect that we can define Top as the pseudo-ΣGA given via G/H 7→ TopH .

Restriction along G/K → G/H is by restriction BK ↪→ BH → Top. Transfer along G/K → G/H

is by X 7→ X ×K H.

Example 12.1.8 ((Hav18)). Mack is defined as the Grothendieck construction applied to G/H 7→

MackH . Restrictions agree with ResGH : MackG →MackH induced by the forgetful functor FinG →

105

FinH and transfers agree with the norm NG
H : MackH → MackG. Using results 3.1.3, 3.1.15, and

3.1.16 of (Hav18) this is a pseudo-ΣGA.

Remark 12.1.9. I believe that most of (Hav18) could be redone using lex-pullbacks, and the added

strictness would allow us to define Mack as a ΣGA as opposed to a pseudo-ΣGA.

Example 12.1.10. SpG is the pseudo-ΣGA of genuine G-spectra; SpG(G/H) = SpH . Restriction is

given by the usual restriction and transfers are given by the HHR norm. By (BH17) §9, we have

that the double coset formula is suitably natural.

Remark 12.1.11. As (BH17) work with∞-categories, we can only apply their results to the homotopy

category of G and H-spectra. So as we have been doing throughout this paper we work with

homotopy categories. Similarly, it is not clear how easily we could strictify this, as originally

everything is defined up to homotopy.

Example 12.1.12. For a permutative category C with a G action by strict symmetric monoidal

functors. We have a ΣGA C given by applying the Grothendieck construction to G/H 7→ CH .

Restrictions are via precomposition. For f : G/K → G/H, ⊗f(x) is given by ⊗[hi]∈H/Khi(x).

Given a symmetric monoidal category with G action by strictly unital strong symmetric monoidal

functors, we have a ΣGA with G/H 7→ ChH , using Remark 1.0.2.

Example 12.1.13. Consider a semi-Mackey functor M = (M∗,M∗) which we view using the second

definition.

We define M as the Grothendieck constuction applied to M∗ : FinG → Cat where we identify

sets (monoids) and function with discrete categories, (permutative) categories and (strict monoidal)

functors. This is a stronly additive FinG-category.

We define ⊗(f : A→ B, x) as M∗(f)(x). This is a map of FinG-categoires following from the double

coset formular of Mackey functors and additive as M, Σ̂G ≀M are strong additive.

Example 12.1.14. For X ∈ FinG we define ΣG ≀ X as the Grothendieck construction applied to

106

A 7→ GEord(A,X) where for f : B → A we define f∗ : GEord(A,X) → GEord(B,X) as composition

with (B = B
f−→ A).

We can show this is a strong FinG category using essentially the same proof of Lemma 11.2.2 where

we showed Σ̂G = ΣG ≀ ∗ is a strong FinG-category; only now we also have maps to X. We now

construct its ΣGA structure. For g : A ↣ A′, we define ⊗(g, (A ↢ Y → X)) as the composition

(A ↢ Y → X) ◦ (A′ g←− A = A) in GEord.

This is a map of split fibrations as it satisfies the double coset formula by composition in GEord.

As ΣG ≀Xis a strong FinG category, Σ̂G ≀ (ΣG ≀X) is as well, so additivity of ⊗ is automatic. Strict

associativity and unitality follow from GEord being a strict 2-category.

Example 12.1.15. FinG ≀ C for a permutative category C is given by the Grothendieck construction

on A 7→
∏

a∈A C. ⊗ is given by summing as in C, in the order given by the ordering of A.

107

CHAPTER 13

STRUCTURE OF ΣGAs

Notation 13.0.1. For the remainder of this chapter (V,⊗, α, ω) will be a fixed ΣGA. V will be

reserved for ΣGAs and C will denote a generic FinG-cateogory.

In this section we prove several key results on the structure of ΣGAs. The different levels and

different types of strength (pseudo-, strict, split, additive) will affect the strength of these results.

We summarize the main results:

• For an order preserving map F : A ↣ B we have a covariant map f∗ : V(A)→ V(B) we call

a transfer (Definition 13.0.2).

• There is a natural double coset isomorphism (identity for lex-pullbacks if V split) (Proposition

13.0.10, Lemma 13.0.11).

• V is levelwise symmetric monoidal (permutative if additive, split, and strict) (Proposition

13.0.16).

• Restrictions are functorial and strong monoidal (strict monoidal if V split and additive as a

FinG-category) (Proposition 13.0.19).

• Transfers are pseudofunctorial (functorial if V is strict) and strong monoidal (Lemma 13.0.9).

• For V the double coset isomorphism is a monoidal natural isomorphism (Proposition 13.0.21).

• The double coset isomorphism suitably commutes with λ , restrictions, and transfers (Lemma

13.0.15).

Definition 13.0.2. Given an order preserving map f : A ↣ B in FinG we have a function γf :

V(A)→ Σ̂G ≀ V(B) defined by x 7→ (f, x) on objects. On morphisms it sends x→ x′ to the pullback

square shown below along with x→ x′ .

108

A A

B B

ff

Remark 13.0.3. We note that this is not a functor over FinG.

Lemma 13.0.4. γ is pseudonatural in the sense that given a pullback square in FinG,

A′ A

B′ B

f g

q

p

There is a natural isomorphism Γ making the following diagram commute up to isomorphism. Γ is

also suitably natural. In the case of a lex-pullback square, Γ is the identity and the diagram strictly

commutes.

V (A) V(A′)

Σ̂G ≀ V(B) Σ̂G ≀ V(B′)

p∗

γg γf

Σ̂G≀(q∗)

Γ (13.0.1)

Furthermore, Γ is preserved by morphisms of fibrations.

Proof. For x ∈ V(A), going down then across gives us q∗g, q∗Ax. This is the source of the chosen

cartesian morphism in Σ̂G ≀ V over q, as displayed in Diagram 11.2.3.

Going across then down yields f, p∗x. In the case the original pullback was a lex-pullback, this is

equal to q∗g, q∗Ax. This is the source of the morphism in Σ̂G ≀ V

109

p∗x x

A′ A

B′ B

f

q

g

p

which also lies above q. In fact we can show it is a cartesian lift of q, using an argument identical

to the one we used to show the first map is cartesian in the proof of Proposition 11.2.4. By the

universal property of cartesian lifts there is a unique isomorphism between these two, which is how

we define Γx.

Furthermore, this is natural in the sense that that given two pullback squares:

A′′ A′ A

B′′ B′ B

f g

q

pp′

q′
h

the following diagrams agree.

V (A) V (A′) V (A′′) V (A) V (A′′)

SV (B) SV (B′) SV (B′′) SV (B) SV (B′′)

p∗

γg γf

S(q∗)

Γ

p′∗

S(q′∗)

γhΓ γhγg

S((qq′)∗)

(pp′)∗

Γ

This follows from the fact that all three ways to trace through the pasting diagram give sources of

cartesian lifts of qq′, there are unique isomorphisms between them and the uniqueness implies the

pasted morphism agrees with that of the right hand diagram.

Lastly, a morphism of fibrations F : C → D sends cartesian lifts to cartesian lifts, so it must preserve

the unique isomorphisms between their sources.

110

Definition 13.0.5. Given an order preserving map f : A ↣ B in FinG, we have a transfer f∗ :

V(A)→ V(B) defined as the composite:

f∗ : V(A)
γf−→ Σ̂G ≀ V(B)

⊗−→ V(B) (13.0.2)

Remark 13.0.6. We remark that we do not define transfer only for order-preserving map for a deep

reason. Rather we want them to interact well with disjoint unions, products, and pullbacks of

objects in FinG.

Lemma 13.0.7. Transfers commute with λs up to isomorphism (resp. strictly if V is additive).

First we spell out exactly what we mean by this. Given order preserving maps f : A ↣ A′, g : B ↣

B′ then the following diagram commutes up to an isomorphism we call Ψ:

V(A)× V(B) V(A⨿B)

V(A′)× V(B′) V(A′ ⨿B′)

f∗×g∗

λ

(f⨿g)∗

λ

Ψ

Proof. We expand the above diagram and define Ψ as the composite:

V(A)× V(B) V(A⨿B)

Σ̂G ≀ V(A′)× Σ̂G ≀ V(B′) Σ̂G ≀ V(A′ ⨿B′)

V(A′)× V(B′) V(A′ ⨿B′)

λ

λ

⊗ ⊗

λ

Φ

(13.0.3)

By assumption in the bottom square ⊗ commutes with λ up to isomorphism (resp. strictly) so

it reduces to showing that in the top square V(A) ↪→ Σ̂G ≀ V(A′) does as well; in fact it actually

commutes strictly:

111

Given (x, y) ∈ V(A) × V(B) if we go right then down we get (f ⨿ g, λV(x, y)). Going down gives(
(f, x), (g, y)

)
, then across we also get (f ⨿ g, λV(x, y)) by Lemma 11.2.4.

We have a version of the prism lemmas relating λ and transfers.

Lemma 13.0.8. Consider order preserving maps f : A ↣ A′, g : B ↣ B′. The following prism

diagrams commute, where the vertical arrows are those of Definition 13.0.5:

V(A)× V(B) V(A)× V(B) V(A⨿B) V(A⨿B)

V(A⨿B) V(A)× V(B)

Σ̂G ≀ V(A′)× Σ̂G ≀ V(B′) Σ̂G ≀ V(A′)× Σ̂G ≀ V(B′) Σ̂G ≀ V(A′ ⨿B′) Σ̂G ≀ V(A′ ⨿B′)

Σ̂G ≀ V(A′ ⨿B′) Σ̂G ≀ V(A′)× Σ̂G ≀ V(B′)
λ

ι∗
ι∗ λ

ι∗ λ

γf×γg

λ ι∗

γf×γg

γf⨿g

γf⨿gγf×γg

ϵ

ϵ

η

η

γf⨿g

Γ Γ

Proof. We recall from the proof of Lemma 13.0.7 that the squares with λ’s strictly commute. And

the rear squares do as well. Next, the Γ’s are identities by Lemma 13.0.4 as they arise from pullback

squares similar to
A A⨿B

A′ A′ ⨿B′

f

ιA

ιA′

f⨿g

which are lex-pullbacks.

We observe that ι∗A′(f ⨿ g) = f and ι∗B′(f ⨿ g) = g proving that these are the same. Showing that

the square commutes on morphisms uses the same argument.

Now we show directly that the prisms commute. As all the squares are identity 2-cells, it suffices

to show the following pairs of whiskering diagrams agree.

112

V(A)× V(B) V(A)× V(B) Σ̂G ≀ V(A′)× Σ̂G ≀ V(B′)

V(A⨿B)

V(A)× V(B) Σ̂G ≀ V(A′)× Σ̂G ≀ V(B′) Σ̂G ≀ V(A′)× Σ̂G ≀ V(B′)

Σ̂G ≀ V(A′ ⨿B′)

V(A⨿B) V(A⨿B) Σ̂G ≀ V(A′ ⨿B′)

V(A)× V(B)

Σ̂G ≀ V(A′)× Σ̂G ≀ V(B′)

V(A⨿B) Σ̂G ≀ V(A′ ⨿B′) Σ̂G ≀ V(A′ ⨿B′)

λC ι∗

ι∗
λD

ι∗
λC

λ ι∗

ϵ

η

η

ϵ

This now comes down to checking definitions. In the first diagram for (x, y) in V(A) × V(B) the

composite natural transformation is

(
(f, ι∗Aλ(x, y), (g, ι

∗
Bλ(x, y))

)
−→
(
(f, x), (g, y)

)
.

Is given by (ϵx, ϵy) and the pullback squares:

A A B B

A′ A′ B′ B′

f f g g

Tracing through the second diagram we have this morphism as well. For z ∈ V(A⨿B) in the third

pasting diagram we have

113

(f ⨿ g, z) −→ (f ⨿ g, λι∗z)

which is given by ηz and the pullback square:

A⨿B A⨿B

A′ ⨿B′ A′ ⨿B′

f⨿g f⨿g

Tracing through the fourth diagram we have this morphism as well.

Proposition 13.0.9. Transfers are pseudofunctorial. If V is strict, they are functorial.

This means (gf)∗ ∼= g∗f∗ and that (Id)∗ ∼= Id.

Proof. This essentially come down to associativity and unitality of V as a monad. Consider order

preserving maps A f−→ B
g−→ C and x ∈ V(A). We view this as (A f−→ B

g−→ C, x) ∈ Σ̂≀2
G ≀ V(C) and we

trace around the associativity diagram 12.0.1.

Applying Σ̂G ≀ ⊗ we get (B
g−→ C,⊗(f, x)) ∈ Σ̂G ≀ V(C). Applying ⊗ to this we get ⊗(g,⊗(f, x)) =

g∗(f∗(x))

Applying σ0 we get (A
gf−→ C, x) ∈ Σ̂G ≀ V(C) applying ⊗ we get ⊗(A gf−→ C, x) = (gf)∗(x). By

associativity these are naturaly isomorphic (resp. equal).

Now for x ∈ V(A), applying σ0 we get (Id : A ↣ A, x) ∈ Σ̂G ≀ V(A). Then applying ⊗ we get

⊗(Id, x) ∈ V(A). By unitality this is naturally isomorphic (resp. equal) to x

The fact that α, ω are natural transformations of fibrations is needed to imply that the isomorphisms

between elements of V(C) they create are not merely morphisms in V, but in the fiber over C. The

114

coherence diagrams relating α and ω are needed to imply that these pseudofunctorility isomorphisms

of transfers are suitably coherent.

Similarly to classical Mackey functors, we have a version of the double coset formula

Proposition 13.0.10. Consider a pullback square in FinG with its vertical arrows order preserving

A′ A

B′ B

p

g f

q

(13.0.4)

For a ΣGA V, we have a natural isomorphism of functors V(A)→ V(B′)

Θq,f : g∗p
∗ ∼= q∗f∗ (13.0.5)

Furthermore if this is a lex-pullback square A′ = q∗A and V is split, then Θq,f is the identity and

the two are equal.

We refer to this result and Θ as the double coset formula.

Proof. We define Θq,f as the composite given by the pasting diagram, where the bottom square

comes from ⊗ being a map of fibrations.

V(A) V(A′)

Σ̂G ≀ V(B) Σ̂G ≀ V(B′)

V(B) V(B′)

p∗

γf γg

Σ̂G≀(q∗)

Γ

⊗ ⊗

q∗

∼=

(13.0.6)

In the case of a lex-pullback the top square commutes strictly. In the case of V split, the bottom

115

square commutes strictly. With a simple diagram chase, this implies that naturality as in the

pasting diagrams of Lemma 13.0.11 both ways around the diagram given cartesian lifts so the

resulting isomorphisms between them must be the same.

We note that nothing in this proof relied on V → FinG being a split fibration, so indeed this result

applies to pseudo-ΣGAs as well.

We will see later in Proposition 13.0.21 that Θ is a monoidal natural transformation.

Lemma 13.0.11. Θ is natural in the sense that when gluing pullbacks either horizontally or verti-

cally, the corresponding pasting diagrams of Θ equal the isomorphism of the full pullback.

Proof. For the pullback squares in FinG:

A′′ A′ A

B′′ B′ B

f

p

g

r

h

s q

the two pasting diagrams are equal:

V(A) V(A′′) = V(A) V(A′) V(A′′)

V(B) V(B′′) V(B) V(B′) V(B′′)

f∗ h∗

(pr)∗

(qs)∗

Θqs,f f∗

p∗ r∗

s∗

g∗

q∗

h∗Θq,f Θs,g

This follows from the naturality of Γ, and the fact that ⊗ is a map of FinG categories, so ∼= is also

appropriately natural. And for the pullback squares in FinG

116

A′ A

B′ B

C ′ C

f

p

g

q

r

hk

the two pasting diagrams are equal, where the “∼=”s come from the pseudofunctoriality of transfers.

V(A) V(A′) V(A) V(A′)

= V(B) V(B′)

V(C) V(C ′) V(C) V(C ′)
r∗

p∗

(kg)∗

(hf)∗
Θr,hf

r∗

p∗

f∗ g∗

h∗ k∗

q∗

Θq,f

Θf,h

h∗f∗

(kg)∗

∼= ∼=

We prove this using the following 2-diagram:

V(A′) Σ̂G ≀ V(B′) V(B′)

V(A) Σ̂G ≀ V(B) V(B)

Σ̂≀2
G ≀ V(C ′) Σ̂G ≀ V(C ′)

Σ̂≀2
G ≀ V(C) Σ̂G ≀ V(C)

Σ̂G ≀ V(C ′) V(C ′)

Σ̂G ≀ V(C) V(C)

Σ̂G≀⊗

σ0

⊗

⊗

⊗

⊗α

α

Γ

⊗

Γ

Γ

Γ

σ0

Σ̂G≀⊗

⊗

117

Going right then down is applying one transfer than the other. Down then right is applying the

transfer of the composite.

The top composite face is Θ, the right composite face is Θ, the left and bottom faces paste to form

Θ. The front composite face pastes to form the 2-cell of (kg)∗ ∼= k∗g∗, the back composite face

pastes to form the 2-cell of (hf)∗ ∼= h∗f∗. So now it suffices to show this 2-diagram commutes.

The top cube commuting is exactly the fact that Γ commutes with the morphisms of FinG categories,

namely ⊗ : Σ̂G ≀ V → V.

The bottom cube commuting is exactly the fact that α is a natural isomorphism of fibrations so is

natural with respect to the restriction of C ′ → C.

The left prism is a bit trickier, we must do a direct calculation. Starting at x ∈ V(A) applying γf

we get (A
f−→ B, x) ∈ Σ̂G ≀ V(B). Applying γh we get (A

f−→ B
h−→ C, x) ∈ Σ̂≀2

G ≀ V(C), applying σ0 to

this yields (A
hf−→ C, x) ∈ Σ̂G ≀ V(C). Direct observation tells us this is the same a γhf (x), so the

front face strictly commutes. The same argument applies to the back face. Γx is then the unique

isomorphism between sources of the cartesian lifts of r, as is the composite of the 2-cells the other

way around.

Remark 13.0.12 (Bonventre). We note that, even in the case where A′ = q∗A is the chosen pullback,

we do not have an equality between p∗g
∗ and f∗q∗. This is due to the necessary choice of an ordering

of the pullback, which is not preserved by switching B′ and A, yielding that q∗A is isomorphic, but

not equal, to f∗B′.

Lemma 13.0.13. Consider the following commutative diagram in FinG where the top, bottom, left,

and right sides are pullbacks.

118

A B

E F

C D

G H

Then the following 2-diagram commutes, where the 2-cells are Θs and r, t denote restrictions and

transfers of the obvious maps:

V(A) V(B)

V(E) V(F)

V(C) V(D)

V(G) V(H)

r

t

r

t

t

r

r

t

r

r

Θ

Θ

Θ

Θ
r

r

Proof. The front and back squares commute strictly as restrictions commute with restrictions. By

pasting, the top and side faces combine to form a single 2-cell from the double coset formula. This

is by the naturality of the double coset formula. Similarly for the left and bottom faces. As the

front and back faces of the original cube commute, the two pastings are the double coset formula

applied to the same maps, so they agree and the cube commutes.

Lemma 13.0.14. Consider the following commutative diagram in FinG where the top, bottom, left,

and right sides are pullbacks.

119

A B

E F

C D

G H

Then the following 2-diagram commutes, where the top, bottom, left, and right 2-cells are Θs and

r, t denote restrictions and transfers of the obvious maps, the front and back faces do not strictly

commute but only up to the isomorphism coming from the pseudonaturality of transfers.

V(A) V(B)

V(E) V(F)

V(C) V(D)

V(G) V(H)

t

t

r rt

Θ

t

t

t

rΘr

t
t

Θ

Θ

Proof. The front and back squares commute up to isomorphism as transfers are pseudofunctorial;

and commute strictly in the case that V is strict. By pasting, the top and side faces combine to

form a single 2-cell from the double coset formula. This is by the naturality of the double coset

formula. Similarly for the left and bottom faces. As the front and back faces of the original cube

commute, the two pastings are the double coset formula applied to the same maps, so they agree

and the cube commutes

These two results we refer to as the cube lemmas.

Lemma 13.0.15. Consider the two pullback squares in FinG.

120

A B A′ B′

C D C ′ D′

Then the following cube commutes.

V(A)× V(A′) V(B)× V(B′)

V(A⨿A′) V(B ⨿B′)

V(C)× V(C ′) V(D)× V(D′)

V(C ⨿ C ′) V(D ⨿D′)

t

t
t

r

r

r

λ

λ
λ

λ

Ψ
Θ

Λ

Λ

t

r

Θ
Ψ

We refer to this result as λ commuting with the double coset formula.

Proof. We prove this using a 2-diagram pasting argument. Consider the following 2-diagram.

V(A)× V(A′) V(A)× V(A′) V(B)× V(B′)

V(A⨿A′) V(B ⨿B′) V(B ⨿B′)

Σ̂G ≀ V(C)× Σ̂G ≀ V(C ′) Σ̂G ≀ V(C)× Σ̂G ≀ V(C ′) Σ̂G ≀ V(D)× Σ̂G ≀ V(D′)

Σ̂G ≀ V(C ⨿ C ′) Σ̂G ≀ V(D ⨿D′) Σ̂G ≀ V(D ⨿D′)

V(C)× V(C ′) V(C)× V(C ′) V(D)× V(D′)

V(C ⨿ C ′) V(C ⨿ C ′) V(C ⨿ C ′)

λ

γ

λ

r

ι∗ ι∗

ι∗ ι∗

λ ι∗

r

ι∗

r

⊗ ⊗

Φ

Γ

∼= ∼=

⊗

λ

λ

λ

Φ

ϵ

η

Γ

r

γ

⊗⊗

γ

121

First we confirm that its outer faces agree with the ones we seek to show commute. The internal

faces paste to form Θs.

The middle parallelipiped commutes by the cube lemma 13.0.13, the top two prisms commute by

Lemma 13.0.8, the bottom two prisms commute by Lemma 11.1.10 applied to ⊗.

Proposition 13.0.16. Let V be a ΣGA, then for each A, V(A) is a symmetric monoidal category.

In the case that V is permutative (additive, strict, and split) V(A) is a permutative category.

Proof. We present V(A) as an unbiased symmetric monoidal category by constructing a multiplica-

tion map9 ⊗ : V(A)k → V(A) as the composite:

⊗ : V(A)k
λ−→ V(A⨿k)

ξ∗−→ V(A× k)
∇∗−−→ V(A) (13.0.7)

where ξ is the reordering isomorphism. For k = 0 this is ∇∗ : V(∅) → V(A). Recall that V(∅) ≃ ∗

with equality if V is additive. So this defines an object or contractible choice of objects in V(A)

which will be the unit.

This is symmetric up to isomorphism as ⊗ is pseudonatural with respect to reordering isomorphisms

χ : k → k:

V(A)k V(A⨿k) V(A× k) V(A)

V(A)k V(A⨿k) V(A× k) V(A)

χ

λ

λ

ξ∗

ξ∗

∇∗

∇∗

χ∗ χ∗ Θ (13.0.8)

The left commutes strictly by 11.1.5, the middle as restrictions are functorial, and the right com-

mutes up to Θ (strictly if V is additive) as it comes from the lex-pullback square:

9We use ⊗ to denote both the operation of V as a monad over Σ̂G ≀ (−) and the monoidal product internal to
V(A). In context it should be clear which we are referring to.

122

A× k A× k

A A

χ

∇ ∇ .

To see associativity, consider k1, · · · , kn and k =
∑

i ki. We consider the following diagram:

∏
n

∏
ki
V(A)

∏
n V(A⨿ki)

∏
n V(A× ki)

∏
n V(A)

V(k ×A) V(⨿n(A× ki)) V(An)

V(A× k) V(A× n)

V(A)

λ

λ
λ

λλ

ξ∗

ξ∗

ξ∗
ξ∗ ξ∗

∇∗

∇∗

∇∗

∇∗
∇∗

Λ Ψ

Θ

∼=

(13.0.9)

where we note that k ×A = ⨿n

(
Aki
)
.

We go through the cells of this diagram in order.

• The top left triangle commutes as λ is associative 11.1.4.

• The top middle square commutes up to isomorphism given by Λ and strictly if V is strongly

additive as a FinG category.

• The top right commutes up to isomorphism as transfers commute up to isomorphism with λ

and strictly if V is additive (13.0.7).

• The middle triangle commutes as restrictions are functorial.

• The middle right square commutes up to isomorphism by the double coset formula. In the

case that V is split, it strictly commutes as it arises from a lex-pullback.

• The bottom triangle commutes up to isomorphism as transfers are pseudofunctorial and

123

strictly if V is strict (13.0.9).

We note that unitality is the special case of associativity when ki = 0 for some i; this also demon-

strates compatibility of unitality and associativity.

Compatibility of the symmetry and associativity isomorphism follows from this diagram being

pseudonatural with respect to block permutations Ξ : ⨿iki → ⨿iki. We display this as a large

2-diagram. The arrows coming out of the page are induced by Ξ, the rest are those of the above

diagram. We have not drawn the 2-cells for clarity.

∏
n

∏
ki
V(A)

∏
n V(A⨿ki)

∏
n V(A× ki)

∏
n V(A)

∏
n

∏
ki
V(A)

∏
n V(A⨿ki)

∏
n V(A× ki)

∏
n V(A)

V(k ×A) V(⨿n(A× ki)) V(An)

V(k ×A) V(⨿n(A× ki)) V(An)

V(A× k) V(A× n)

V(A× k) V(A× n)

V(A)

V(A)

We go through the prisms and cubes in order to confirm they commute.

• The top left triangular prism commutes as λ is commutative and associative in a compatible

way by 11.1.4 and 11.1.5.

• The top middle cube commutes as Λ is transitive with respect to restrictions 11.1.8.

• λ The top right cube commutes by 13.0.15.

• The middle triangular prism commutes as restrictions are functorial (all the 2-cells here are

124

trivial).

• The middle right cube commutes by the cube lemma 13.0.13.

• The lower right triangular prism commutes by the cube lemma 13.0.14.

Remark 13.0.17. We point out that the coherence condition on λ, η, and ϵ of 11.1.4, 11.1.5, 11.1.3

are required for us to have a symmetric monoidal structure.

Remark 13.0.18 (Bonventre). Using this symmetric monoidal structure, we can give an isomorphic

description of the additivity inverses λ. Indeed, λ is naturally isomorphic to (ιA)∗+(ιB)∗ as natural

transformations V(A)× V(B)→ V(A ⨿ B), with equality holding if V is permutative. To see this,

consider the following diagram:

V (A)× V (B) V (A⨿B) V (A⨿B) V (A⨿B)

V (A⨿B)× V (A⨿B) V ((A⨿B)⨿2) V ((A⨿B)× 2) V (A⨿B)
∇∗

λ

ιA∗×ιB∗

λ

ιA⨿ιB∗Ψ ιA⨿ιB∗ ∼=Θ

The left square commutes up to Ψ which is an identity if V is additive, the middle square commutes

up to the double coset formulat which is an equality if V is split the right square commutes up to

isomorphism as transfers are pseudofunctorial by Lemma 13.0.9 and commutes strictly if V is strict.

As the bottom composite is multiplication in V(A⨿B), the result follows.

Proposition 13.0.19. For f : A → B, f∗ : V(B) → V(A) is strong monoidal, and strict in the

case that V is split and additive.

125

Proof.

V(B)k V(B⨿k) V(B × k) V(B)

V(A)k V(A⨿k) V(A× k) V(A)

A× k B × k

A B

f∗

λ

λ

ξ∗

ξ∗

∇∗

∇∗

f∗f∗ f∗ ΘΛ

The left square strictly commutes if V is split and the right square strictly commutes if V is additive,

using the fact that the bottom square is a lex pullback.

Proposition 13.0.20. For f : A ↣ B, the transfer f∗ : V(A) → V(B) is strong monoidal; f∗ is

strict monoidal in the case that V is additive and strict and f is injective.

Proof.

V(A)k V(A⨿k) V(A× k) V(A)

V(B)k V(B⨿k) V(B × k) V(B)

A× k Ak

B × k Bk

f∗

λ

λ

ξ∗

ξ∗

∇∗

∇∗

f∗f∗ f∗Θ

ξ

ξ

fk

Ψ ∼=

f×Id

The left square commutes up to the isomorphism Ψ, which is an equality when V is additive. The

middle square commutes up to the isomorphism Θ, which is strict when V is additive and the lower

square is a lex-pullback in FinG, which is the case if f is injective. The third square commutes up

to isomorphism as transfers are pseudofunctorial by Lemma 13.0.9, and strictly if V is strict.

126

Proposition 13.0.21. For a ΣGA, Θ of the double coset formula is a monoidal natural transfor-

mation.

Proof. This is another 2-diagram chase. We omit the 2-cells for readability.

V(A)2 V(A⨿A) V(A× 2) V(A)

V(B)2 V(B ⨿B) V(B × 2) V(B)

V(A′)2 V(A′ ⨿A′) V(A′ × 2 V(A′)

V(B′)2 V(B′ ⨿B′) V(B′ × 2) V(B′)

f∗

f∗

λ ξ∗ ∇∗

f∗ f∗

q∗

λ ∇∗ξ∗

g∗ g∗ g∗ g∗

λ ξ∗ ∇

p∗p∗p∗p∗
∇∗λ ξ∗

q∗q∗ q∗

The left cube commutes as Θ commutes with λ as in Lemma 13.0.15. The middle cube commutes

by the cube Lemma 13.0.13, and the right commutes by the other cube Lemma 13.0.14.

Remark 13.0.22. Similar results hold for pseudo-ΣGAs, although they were not detailed in the

interest of concision. The main differences are that as restrictions are pseudofunctorial, we also must

include invertible 2-cells to account for composition and unitality. Thus our lemmas and results

which used the functoriality of restrictions now must also include these new 2-cells. Generally this

means that a commuting square or triangle now has a non-trivial 2-cell.

The main consequence is that everything is weak - fibers are symmetric monoidal instead of per-

mutative, restrictions and transfers are strong symmetric monoidal functors but not strictly unital,

and the double coset formula is generally not an equality.

127

13.1. Morphisms of ΣGAs

Definition 13.1.1. A morphism of morphism of ΣGAs is a morphism of fibrations F : V → W

that is also a lax morphism of pseudoalgebras over Σ̂G ≀ (−), meaning that we have the 2-cell β:

Σ̂G ≀ V Σ̂G ≀ W

V W
F

Σ̂G≀F

⊗⊗ β

so that the following 2-diagrams commute:

Σ̂≀2
GV Σ̂G ≀ V V V

Σ̂≀2
GW Σ̂G ≀ W Σ̂G ≀ V

Σ̂G ≀ V V W W

Σ̂G ≀ W W Σ̂G ≀ W⊗

⊗

Σ̂G≀F

σ0

Σ̂≀2
G ≀F Σ̂G≀F

Σ̂G≀⊗

F

⊗

⊗

α

β

β

Σ̂G≀β ⊗

⊗

F

Σ̂G≀F

δ−1

δ−1

F

ω

ω

σ0

Σ̂G≀⊗

α

β

There are several possible strengthenings similar to those of ΣGAs.

• F is strong if F is a strong morphism of pseudoalgebras, meaning that β is invertible.

• F is strict if F is a strict morphism of pseudoalgebras, meaning that β is the identity.

• F is split if F is morphism of split fibrations.

• F is additive if F is an additive morphism of FinG categories.

Remark 13.1.2. We believe but do not yet have a full proof that lax morphism of ΣGAs induces a

lax symmetric monoidal functor on fibers, strong monoidal if strong, and strict monoidal if strict,

128

split, and additive.

The natural transformation F (−)⊗W(A) F (−)⇒ F (−⊗V(A) −) is given by the following 2-cell:

V(A)k V(A⨿k) V(A× k) Σ̂G ≀ V(A) V(A)

W(A)k W(A⨿k) W(A× k) Σ̂G ≀ W(A) W(A)

F FF F

λ

λ

ξ∗

ξ∗

Φ−1 ∼=

γ∇ ⊗

⊗

F

γ∇

β

The first square on the left commutes up to Φ−1 which is an equality in the case that F is additive.

We use Φ−1 as opposed to Φ simply to have the correct directionality. The second square commutes

up to isomorphism as a map of fibrations is pseudofunctorial in this sense; it is an equality in the

case that F is split. We directly check that the third square strictly commutes. Given x ∈ V(A)

both ways around send it to (∇, F (x)). The fourth square commutes up to β, which is invertible if

F is strong and an equality if F is strict. The unit morphism is given by this same cell for k = 0.

It is clear to see that this cell weakly commutes with restrictions and transfers in V and W.

The subtlety arises in showing that this natural transformation satisfies the necessary conditions

relating it to the associativity, unitality, and symmetry isomorphisms in V(A) and W(A). This

essentially comes down to an enormous 2-diagram chase.

Conjecture 13.1.3. We believe that π0 : SpG → MackG is a lax morphism of ΣGAs. The strength

of π0 as well as the methods of proving this claim depend heavily on the exact ways in which we

construct SpG and MackG as ΣGAs.

Definition 13.1.4. A natural transformations of ΣGAs is a natural transformation α : F ⇒ G of

fibrations.

129

Part III

COMPARISON OF Σ̂G-ALGEBRAS

AND OTHER MODELS

130

CHAPTER 14

PERMUTATIVE MACKEY FUNCTORS

Definition 14.0.1. We define a permutative Mackey functor (PMF) as a PC-functor

(GEord)
op −→ Perm

and that they form a 2-cateogry with PC natural transformations and modifications.

Remark 14.0.2. The original version in (BO15) used GE′ and permutative categories with lax

monoidal multifunctors.

14.1. ΣGAs to PMFs

Theorem 14.1.1. Given a permutative ΣGA, V, we can construct a PMF MV : GEop
ord → Perm.

Let V be a permutative ΣGA. We first briefly recall that as V is permutative, V(A) is permutative,

restrictions are strong monoidal strict unital, transfers are functorial and strong monoidal strictly

unital, and the double coset formula is an equality for lex-pullbacks.

We construct the PMF MV : GEop
ord → Perm as follows.

• MV(A) := V(A).

• For χ = (A
r←− X

t−→ B), with t order preserving, MV(χ) is the composition MV(A) = V(A)
r∗−→

V(X)
t∗−→ V(B) = MV(B).

• For ξ = (A
r′←− X ′ t′−→ B) and η : χ⇒ ξ we construct V(η) as follows. We have the map of spans

in FinG, with η an isomorphim:
A X B

Y

r

η

t

r′ t′

As η may not be order preserving, so we cannot take transfers along it. But we have the pullback

131

square:

Y X

B B

η−1

tt′

By the double coset formula, we have a monoidal natural transformation t′∗ ⇒ g∗ ◦ t∗ It is sent to

V(A) V(X) V(B)

V(Y) V(B)

r∗

r′∗
η−1∗

t∗

t′∗

Θ

The left triangle strictly commutes, and the right one is connected by the natural transformation

described above. This gives a monoidal natural transformation between the two functors.

We first show that MV is a strict 2-functor, and will later show that it is PC-enriched. We claim

that MVA,B is functorial. This sends Idξ to IdMV (ξ) as the pullback square is a lex-pullback. For

composition we consider:

X

A Y B 7−→

Z

V(X) V(B) V(X) V(B)

V(A) V(Y) V(B) = V(A)

V(Z) V(B) V(Z) V(B)

r

r′

r′′

t

t′

t′′

η

η′

r∗

r′∗

r′′∗

η−1∗

η′−1∗

t∗

t′∗

t′′∗

Θ

Θ

r∗

r′′∗

(η′η)−1∗

t∗

t′′∗

Θ

Where the equality is by the naturality of Θ.

132

To see that compositional unit are preserved we recall that as Id∗ = Id, Id∗ = Id.

For composition, on objects (spans) this amounts to showing the two compositions agree:

Z

X Y

A B C

r s u v

t w

Where Z is the chosen pullback.

v∗ ◦ u∗ ◦ s∗ ◦ r∗ = v∗ ◦ w∗ ◦ t∗ ◦ r∗ = (v ◦ w)∗ ◦ (r ◦ t)∗

Where the first equality is from the double coset formula. Now we show that this commutes on

morphisms. For the diagram in FinG:

Z

X Z ′ Y

X ′ B Y ′

A B C

η ϵ

we need to show that the two pasting diagrams agree.

133

VA VX VB VY VC

VA VX′ VB VY ′ VC

VA VZ VC

VA VZ′ VC

Using the naturality of Θ, the second diagram is equal to the following one:

VA VX VZ VY VC

VA VX′ VZ′ VY ′ VC

By the cube lemma 13.0.13, the composite of the middle two cells in this are equal to the middle

two cells of the first diagram, using the fact that Z,Z ′ are lex-pullbacks. This completes the proof

that MV is a strict 2-functor.

Now we show that it is PC-enriched. The first step is to show that MVA,B : GEop
ord(A,B) →

Perm(V(A),V(B)) is strong monoidal strict unital.

Now we need to show this is monoidal on hom-categories. Given spans (A ← X ↣ B), (X ←

X ′ ↣ B) we have the monoidality isomorphism given by the large pasted 2-cell, where r, t denote

restrictions and transfers, ϕ is the reordering isomorphism. Θ is trivial as the square shown at the

bottom left is a lex-pullback.

134

V(A) V(X)× V(X ′) V(B)× V(B)

V((X ⨿X ′)⋉B) V(X ⨿X ′) V(X ⨿X ′) V(B⨿2)

(X ⨿X ′)⋉B X ⨿X ′ V((X ⨿X ′)⋉B) V(B × [2])

B × 2 B⨿2 V(B) V(B)

tr

∇∗

ξ∗

λ
ι∗

t

ϕ∗

t

λ

t

Θ

ϕ

ξ

ϕ−1∗

t
η−1

Showing this is natural in X,X ′ comes down to showing we can “stack” this diagram; i.e. the

following diagram commtues. Consider spans (A← Y ↣ B), (A← Y ′ ↣ B) and isomorphisms of

spans X ∼= Y,X ′ ∼= Y ′.

V(A) V(Y)× V(Y ′) V(B)× V(B)

V(A) V(X)× V(X ′) V(B)× V(B)

V((Y ⨿ Y ′)⋉B) V(Y ⨿ Y ′) V(Y ⨿ Y ′) V(B⨿2)

V((X ⨿X ′)⋉B) V(X ⨿X ′) V(X ⨿X ′) V(B⨿2)

V((Y ⨿ Y ′)⋉B) V(B × [2])

V((X ⨿X ′)⋉B) V(B × [2])

V(B) V(B)

V(B) V(B)

η−1

η−1

Here we have omitted most labels for readability. The top left trapezoidal prism commutes as all

of its faces strictly commute (all 2-cells here are trivial). The top triangular prism commutes by

the naturality of η with respect to restrictions along isomorphisms. The top right cube commutes

by Lemma 13.0.15, The middle right cube commutes by Lemma 13.0.13 and the bottom right cube

commutes by Lemma 13.0.14.

135

The additive units are preserved as V(∅) ∼= ∗ And this is symmetric with respect to swapping X

and Y so this is a strictly unital functor of permutative categories.

Now we show that composition is enriched, in other words the following diagram commutes in Perm.

We have alread shown that the underlying functor commute, so we show that the distributivity

morphisms agree as well.

GEop
ord(B,C)×GEop

ord(A,B) GEop
ord(A,C)

Perm(V(B),V(C))× Perm(V(A),V(B)) Perm(V(A),V(C))

comp

comp

MM

In Perm, δ1 = Id. In GEord δ2 = Id, implying that in GEop
ord, δ1 = Id, so all the relevant 2-cells are

trivial and monoidality is preserved.

Checking δ2 is trickier though. First we do some set up. Consider spans (B ← Y ↣ C), (A← X ↣

B), (A← X ′ ↣ B). Let U,U ′ be the lex-pullbacks of (Y → B ↢ X), (Y → B ↢ X ′) respectively.

Across then down yields the top diagram, down then across yields the bottom.

136

V(A) V(U)× V(U ′) V(C)× V(C)

V((U ⨿ U ′)⋉C) V(U ⨿ U ′) V(U ⨿ U ′) V(C⨿2)

V((U ⨿ U ′)⋉Y) V((U ⨿ U ′)⋉C) V(C × [2])

V(Y) V(C) V(C) V(C)

V(A) V(U)× V(U ′)

V(X)× V(X ′) V(B)× V(B) V(Y)× V(Y) V(C)× V(C)

V(X ⨿X ′) V(X ⨿X ′) V(B⨿2) V(Y ⨿2) V(C⨿2)

V((X ⨿X ′)⋉B) V((X ⨿X ′)⋉B) V(B × [2]) V(Y × [2]) V(C × [2])

V(B) V(Y) V(C)

t∗r∗,r′∗

∇∗

ξ∗

λι∗

t∗

ϕ∗

t∗

λ

t∗
ϕ−1∗

r∗

r∗

t∗

t∗

ϕ∗

λ

ξ∗

∇∗

t

λ

ξ∗

∇∗

r

r

ι∗ λ

t

t

tr

λ

r t

ξ∗

tr

∇∗

t

ξ−1∗

t

r

r

r

ξ∗

ϵ

Θ

ϵ

To show they agree we make the following large diagram. There are four 3-cells in it. The trapezoidal

prism on the left commutes as all of its side strictly commute (only trivial 2-cells). Checking the

triangular prism commutes comes down to writing out the definition of Λ from 11.1.8 and checking

the appropriate pasting diagrams agree. The top cube commutes by Lemma 13.0.15, and the bottom

137

cube commutes by Lemma 13.0.13.

V(X)× V(X ′) V(B)× V(B)

V(U)× V(U ′) V(Y)× V(Y)

V(X ⨿X ′) V(X ⨿X ′) V(B⨿2) V(C)× V(C)

V(U ⨿ U ′) X V(U ⨿ U ′) V(Y ⨿2)

V(C⨿2)

V(A) V((X ⨿X ′)⋉B) V((X ⨿X ′)⋉B) V(B × [2]) V(B)

V((U ⨿ U ′)⋉Y) V(Y × [2]) V(Y)

V((U ⨿ U ′)⋉C) V((U ⨿ U ′)⋉C) V(C × [2]) V(C)

λ

∇∗

t

λ

ξ∗

∇∗

r

r

ι∗ λ

t

t

r

λr

t

ξ∗

t

r

∇∗

t

t

ξ−1∗

t

ξ∗

t

r

r
r

ϕ∗

r

ξ∗

t

ϕ∗

ι∗

λ

ϕ−1∗

t

ξ∗

Definition 14.1.2. Given a permutative ΣGA V, we define its equivariant K-theory as the K

theory of MV using the construction of (BO15).

Proposition 14.1.3. For X ∈ FinG, ΣG ≀X is sent to the PMF SX := GEop
ord(X,−) = GEord(−, X)

This is by a direct check of the definitions.

Proposition 14.1.4. (Equivariant Barratt-Priddy-Quillen)

K(FinG) = SG

Proof. We recall that FinG = ΣG ≀∗ and we apply Theorem 9.4 of (BO15) that ΦK•(SX) corresponds

to Σ∞
G (X+). Plugging in X = ∗ we have that K(FinG) = Σ∞

G (∗+) = SG.

138

14.2. PFMs to ΣGAs

In this section we let M : GEop
ord → Perm be a PMF.

Notation 14.2.1. Let f : A→ B, g : C ↣ D in FinG. We call (B f←− A = A) restriction and denote

it by f∗. We call (C = C
g−→ D) transfer and denote it by g∗. Note that M is implicit in these

definitions.

Remark 14.2.2. We observe that using restrictions M defines a functor M∗ : (FinG)op → Cat sending

A 7→ M(A), f : A → B 7→ f∗ : M(B) → M(A). Similarly using transfers we can define a functor

M∗ : Fin
G → Cat sending A 7→M(A), f : A→ B 7→ f∗ : M(A)→M(B).

These follow from the associativity and one-sided unitality of lex-pullbacks in FinG as well as M

being strictly functorial.

Lemma 14.2.3. Restrictions and transfers created by M satisfy a version of the double coset for-

mula.

Given a pullback square in FinG:

A B

C D

p q

f

g

We have that p∗f∗ ∼= g∗q∗ with equality if the square is a lex-pullback. This is also natural similarly

to the case with ΣGAs.

Proof. We first prove this in the case of a lex-pullback. As M functorial, this follows from the two

pairs of spans in GEop
ord having the same composite:

139

A A

B A C

B C

B D C

f p

q g

In the case that A is not the lex-pullback here, then the composite of the top span is (B f←− A
p−→ C)

which is isomorphic as a span to the composite of the lower two spans. Thus M sends it to a natural

isomorphism. Showing the naturality comes down to similar diagram chasing arguments.

Lemma 14.2.4. Let ιi : Ui → X := ⨿iUi be the inclusion. Then we have the following identities:

ι∗i ιi∗ = Id, ι∗j ιi∗ = 0 for i ̸= j, and
∑

i ιi∗ι
∗
i = IdX .

We use this notation through this section.

Proof. These we verify directly with the help of these diagrams showing composition in GEop
ord

∅ U

U V U U

U X V U X U

U

U U

X U X

And direct computations show that the sums of the (X ← U → X) over U is (X = X = X) in

140

GEop
ord(X,X).

Lemma 14.2.5. Let iM(U) : M(U) →
∏

iM(U) denote the inclusion which is the identity on the

M(U) factor and the zero functor on all others.

Then for C ∈ Perm, fi : C →M(Ui), for each i, as functors C →
∏

iM(Ui),

(fi)i =
∑
i

iM(Ui) ◦ fi.

This follows from direct computation.

Proposition 14.2.6. PMFs are weakly additive in that M(X) ≃
∏

iM(Ui).

Proof. In one direction we have ι∗ : M(X)→
∏

iM(Ui) defined as (M(ι∗i))i. By the above lemma

this is equal to
∑

i iM(Ui) ◦M(ι∗i).

In the other direction we construct λ :
∏

iM(Ui)→M(X) as
∑

iM(ιi∗)πM(Ui). We observe that λ

here is associative and symmetric in the sense of 11.1.4. We now construct the unit and counit of

this equivalence.

η : Id∏M(U) =
∑
i

iM(Ui) ◦ πM(Ui) =
∑
i,j

iM(Ui) ◦M(ι∗i ◦ ιj∗) ◦ πM(Uj) =

∑
i,j

iM(Ui) ◦M(ι∗i) ◦M(ιj∗) ◦ πM(Uj)
δσ ,=−−−→
Perm

(∑
i

iM(Ui) ◦M(ι∗i)

)
◦

∑
j

M(ιj∗) ◦ πM(Uj)

 = ι∗ ◦ λ

141

ϵ : λ ◦ ι∗ =

(∑
i

M(ιi∗) ◦ πM(Ui)

)
◦
(
M(ι∗j)

)
j

=←−−−
Perm

∑
i=j

M(ιi∗) ◦M(ι∗j) =

∑
i=j

M(ιi∗ ◦ ι∗j)
∼=−−→
δM

M
∑
i

ιi∗ ◦ ι∗Ui
= M(IdX) = IdM(X)

The first morphism (Perm) is an equality because the left distributivity morphism for composition

is equality (see (BO15), top of page 10) and there is no addition on the right here. δM denotes the

distributivity morphisms of M .

Remark 14.2.7. This is where we needed PMFs and thus PC-categories to be strong monoidal instead

of lax.

Lemma 14.2.8. ϵ is natural along the restrictions of isomorphisms in FinG in the sense of Diagram

11.1.3.

Notation 14.2.9. In this proof we let X = U ⨿ V,X ′ = U ′ ⨿ V ′ and r : U → U ′, s : V → V ′

isomorphisms

Written out we require that the two pasting diagrams (of monoidal functors) agree:

M(U ′)×M(V ′)

M(X ′) M(X ′) M(X)

M(U)×M(V)

M(X ′) M(X) M(X)

M((r⨿s)∗)

M((r⨿s)∗)

ϵ

ϵ

Proof. By the definition of ϵ, this is the same as these two pasting diagrams agreeing

142

M(X ′) M(X ′) M(X)

M(X ′) M(X) M(X)

M((r⨿s)∗)

M((r⨿s)∗)

∑
M(ι∗ι∗)

M(
∑

(ι∗ι∗))
∑

M(ι∗ι∗)

M(
∑

(ι∗ι∗))

δM

δM

As (r ⨿ s)∗ is invertible with inverse ((r ⨿ s)−1)∗ it suffices to show these agree:

M(X) M(X ′) M(X ′) M(X)

M(X) M(X)

M((r⨿s)∗)

∑
M(ι∗ι∗)

M(
∑

(ι∗ι∗))

∑
M(ι∗ι∗)

M(
∑

(ι∗ι∗))

M(((r⨿s)−1)∗)
δM

δM

This follows from the diagram commuting as monoidal functors - the distributivity morphisms (in

this case the middle one) are suitably preserved.

GEop
ord(X,X ′)× GEop

ord(X
′, X ′)× GEop

ord(X
′, X) GEop

ord(X,X)

Perm(M(X),M(X ′))× Perm(M(X ′),M(X ′))× Perm(M(X ′),M(X)) Perm(M(X),M(X))
comp

MM,M,M

comp

We apply this to (r⨿ s)−1)∗, ι∗ι
∗, (r⨿ s)∗ in the top left, where ι = ιU , ιV . And using the fact that

((r ⨿ s)−1)∗ ◦ ιU∗ ◦ ι∗U ◦ (s⨿ r)∗ = ιU ′∗ ◦ ι∗U ′ and similarly for V in place of U .

Theorem 14.2.10. Given a PMF M we can construct a strict, split ΣGA, furthermore it is additive

143

when M satisfies a certain technical condition.

This technical condition is stated in Equation 14.2.1. It can be summarized as saying that either

MA,B is strict monoidal its image is strict monoidal in a particular circumstance.

Proof. We construct V as follows.

• As a FinG category, V is given by applying the Grothendieck construction to M∗ : (FinG)op →

Cat. So V(A) = M(A) and the chosen lift of f : A → B is M(f∗) : V(B) → V(A). This is

clearly a split fibration as M∗ is a functor.

• Additivity comes from that of M , which we showed in Proposition 14.2.6. By construction λ

is associative and commutative. The conunit ϵ is preserved by restriction along isomorphism

as shown in Lemma 14.2.8. On the other hand, we do not know the orginal η of Lemma 14.2.6

is adjoint to ϵ so we replace it with η′ which is. Then η′ is preserved by restriction along

isomorphisms.

• ⊗ comes from transfers. Showing this is a map of split fibrations will be the tricky part. We

need to show that it is actually a functor, might follow from Grothendieck construction but

we need to check.

⊗ : Σ̂G ≀ V(A)→ V(A)

is given by

A′ p−→ A, x ∈ V(A′) 7→M(f∗)(x)

A morphism in Σ̂G ≀ V over f : B → A consists of a pullback square in FinG

144

B′ A′

B A

p

f

q

g

Along with a morphism α : M(g∗)(x)→ x′ in M(B′). It is cartesian if the morphism α is an

isomorphism, and the chosen lift if the pullback square is a lex-pullback, and α is an equality.

Then ⊗ applied to such a square is defined as

f∗p∗(x) ∼= q∗g
∗(x)

q∗(α)−−−→ q∗(x
′)

where the first isomophism comes from the double coset formula of Lemma 14.2.3; this is a

morphism in V =
∫
M∗ as hoped.

If the original morphism is cartesian, this is as well. If it is the chosen cartesian lift of f , then

the square is a lex-pullback, so the double coset isomorphism is an identity and g∗(α) is an

equality as well. This is the chosen lift in the Grothendieck construction. This shows that ⊗

is a map of split fibrations.

• Next we show that ⊗ is associative and unital, in other words V is an algebra. These essentially

come down to the fact that transfers are functorial. For this we simply check that the diagrams

12.0.1 and 12.0.2 commute. For unitality we claim that V δ−1−−→ Σ̂G ≀V
⊗−→ V is the identity. This

composite is given by (A, x ∈ M(A)) 7→ (A, IdA : A → A, x ∈ M(A)) 7→ (A, IdA∗x) which

is the identity as IdA∗ = IdM(A). For associativity we consider (A
f−→ B

g−→ C, x ∈ M(A)).

Applying Σ̂G ≀ ⊗ to this gets (B
g−→ C, f∗(x) ∈M(B)) applying ⊗ to this gives g∗f∗(x).

On the other side we first apply σ0 to get (A
gf−→ C, x); applying ⊗ to this gives (gf)∗(x).

This is equal as transfers are functorial.

• We now discuss the additivity of ⊗ recalling that it means the following diagram strictly

commutes:

145

Σ̂G ≀ V(U)× Σ̂G ≀ V(V) Σ̂G ≀ V(X)

V(U)× V(V) V(X)

⊗⊗

λ

λ

We start with (f, x)(g, y) ∈ Σ̂G ≀ V(U) × Σ̂G ≀ V(V), where f : U ′ ↣ U, g : V ′ ↣ V and let

X ′ = U ′⨿V ′. Going across then down gives M((f ⨿ g)∗)(M(ι∗)(x)+M(ι∗)(y)). Going down

then across gives M(ι∗)M(f∗)(x) +M(ι∗)M(g∗)(y).

Thus additivity is exactly having the equality:

M(ι∗)M(f∗)(x) +M(ι∗)M(g∗)(y) = M((f ⨿ g)∗)(M(ι∗)(x) +M(ι∗)(y)). (14.2.1)

This holds if M((f ⨿ g)∗) is strict monoidal when applied here. This is also satisfied if

M((f ⨿ g)∗) = M(f∗) +M(g∗) = M(X ′ ι←− U ′ ιf−→ X) +M(X ′ ι←− V ′ ιg−→ X), which holds if

M is strict monoidal on hom-categories. We note that 14.2.1 is satisfied for PMFs originating

from permutative ΣGAs.

Theorem 14.2.11. On the underlying categories, restrictions, transfers, and λs, these two con-

structions are inverses.

By construction the categories, restrictions, and transfers correspond. In the case of permutative

ΣGAs we recall that λ is defined as a sum of transfers so this follows as well. We note that this

does not imply these are inverse constructions as it does not take into account any of the relevant

2-cells.

Conjecture 14.2.12. We believe that these form equivalent 2-categories.

146

CHAPTER 15

COMPARISON WITH THE EQUIVARIANT SYMMETRIC MONOIDAL STRUCTURES

OF HILL-HOPKINS AND G-SYMMETRIC MONOIDAL ∞-CATEGORIES

15.1. Hill-Hopkins

In this chapter we review the symmetric monoidal Mackey functors and equivariant symmetric

monoidal structures of (HH16) and compare them with ΣGAs.

Definition 15.1.1. A symmetric monoidal coefficient system is a pseudofunctor (OG)
op → Sym,

the category of symmetric monoidal categories and strong monoidal functors.

We observe that this is equivalent to a strictly additive pseudo-FinG-category.

Definition 15.1.2. A symmetric monoidal Mackey functor M = (M∗,M∗) consists of two pseud-

ofunctors M∗ : (OG)
op → Sym,M∗ : OG) → Sym called restriction and transfer which agree on

objects and satisfy a double coset formula up to isomorphism.

Remark 15.1.3. We note that this definition of (HH16) is rather imprecise, and one of the goal of

developing ΣGAs was to formalize the details of this definition and the coherences involved.

Remark 15.1.4. We can realize these as pseudo-ΣGAs, strictly additive as a FinG category.

Definition 15.1.5. Set is the symmetric monoidal coefficient system given by G/H 7→ FinH ≃

FinG/(G/H). Restriction is given by pullback along G/K → G/H, trasnfer by postcomposition.

We observe that this is equivalent to the ΣGA FinG.

Definition 15.1.6. SetIso is the symmetric monoidal coefficient system given by taking the ob-

jectwise maximal subgroupoid of Set.

Proposition 15.1.7 ((HH16) 3.1). The category of symmetric monoidal coefficient systems has a

147

product gicen by objectwise cartesian products.

Definition 15.1.8. A bilinear functor of symmetric monoidal coefficient systems C1 × C2 → D

which is bilinear on objects and suitably coherent.

Definition 15.1.9. A genuine G-symmetric monoidal structure on a symmetric monoidal coefficient

system C is a bilinear map □ : SetIso × C → C such that when restricting to trivial H-sets X ∈

SetIso(G/H), □(G/H) : X × C(G/H)→ C(G/H) is simply the exponentiation functor A 7→ A⊗|X|

and such that the following commutative diagram commutes up to natural ismorphism:

SetIso × SetIso × C SetIso × C

SetIso × C C
□

□(−×−)×Id

Id×□

Remark 15.1.10. We suspect that out of all of the Mackey functor-like models of genuine equivariant

symmetric monoidal categories, these are probably the closest to those of (GMMO19).

Proposition 15.1.11 ((HH16)). Let M be a symmetric monoidal Mackey functor, we a a genuine

G-symmetric monoidal structure on it given by □(H/K,−) : M(G/K)→M(G/K) by TrHKResHK .

15.2. G-Symmetric Monoidal ∞-categories

We briefly discuss the connections between ΣGAs and the G-symmetric monoidal ∞-categories of

(BDG+16; NS22).

Definition 15.2.1. A G-symmetric monoidal ∞-category is a product preserving functor

Span2(FinG)→ Cat∞.

These can also be defined in terms of spans of fibrations over a version of FinG
∗ which satisfy a

Segal condition. This is best explained in (Hor19) §2.4 and App B.

148

Remark 15.2.2. Given a ΣGA we can make a (pseudofunctorial) PMF, then take its nerve we get a

G-symmetric monoidal ∞-category.

149

CHAPTER 16

GENUINE COMMUTATIVE MONOIDS

Definition 16.0.1. A G-commutative monoid in a ΣGA V is a strong map of ΣGAs µ : FinG → V.

Remark 16.0.2. The non-equivariant intuition here is that in a symmetric monoidal category C, a

commutative monoid is equivalent to a symmetric monoidal functor Fin → C, where the monoid

object is the image of 1.

Remark 16.0.3. By varying the type of morphism of ΣGAs (eg. lax, strong, strict) we should be

able have different types of monoids. However we do not currently know how to interpret these

differences.

Expanding this, for each H we have a symmetric monoidal functor FinH → V(G/H).

Definition 16.0.4. A morphism of G-commutative monoids is a natural transformation of fibrations

that commutes with the 2-cell.

Lemma 16.0.5. Given a morphism of ΣGAs V → W and a G-commutative monoid in V, its image

is a G-commutative monoid in W.

This explains why homotopy groups of a ring spectrum are Tambara functors.

Remark 16.0.6. We do not know of any version of monoids in a PMF or in the G-symmetric monoidal

∞-catogories of (GMMO19). We believe that in we can similarly view monoids as maps out of the

analogue of FinG.

Definition 16.0.7. In a genuine symmetric monoidal structure of (HH16), a G-commutative monoid

is an object M ∈ C(G/G) and an extension N :

150

Setiso C

Set

N

−□M

In the case that C comes from the symmetric monoidal Mackey functor M we also require that N

is a map of symmetric monoidal Mackey functors.

The condition that N is a map of symmetric monoidal Mackey functors can be explicitly described

as in (Hor19) 3.2.2. In that case a G-commutative monoid is a commutative monoid M ∈M(G/G),

with commutative monoid maps NG
H□M → ∗□M ∼= M , which are pseudonatural in that NG

HNH
K
∼=

NG
K .

Remark 16.0.8. A map of symmetric monoidal Mackey functors F : Set→ M nearly determines a

G-commutative monoid in M . Indeed we calculate:

H/K□ResGHM = TrHKResHKResGHM ∼=

TrHKResGKM = TrHKResGKF (∗) = F (TrHKResGK(∗)) = F (H/K)

This isomorphism arises from symmetric monoidal Mackey functors being defined as pseudofunc-

tors from OG and (OG)
op. The extension property simply requires this to be an equality instead

essentially adding a particular sort of strictness on Setiso which is not present in general.

Example 16.0.9. (Hor19) Tambara functors are the G-commutative monoids in MackG, viewed as a

symmetric monoidal Mackey functor. We believe that this result also hold for monoids in the ΣGA

MackG, however we do not have a full proof of this at the moment.

Conjecture 16.0.10. A G-commutative monoid in SpG is a genuine G-ring spectrum.

Conjecture 16.0.11. We expect that G-commutative monoids in FinG are equivalent to semi-Mackey

functors. This is essentially Thm 5.6 of (HH16).

151

Remark 16.0.12. We can also attempt to define G-commutative monoids in PMFs. For this we

can consider FinG as the PMF S∗ defined in (BO15) Defn . 9.1; given by S∗(A) := GEord(∗, A);

equivalently A 7→ FinG/A ,ord . Restrictions are lex-pullbacks, transfers are by post-composition.

Then we can define a genuine G-commutative monoid in a PMF M is a map of PMFs M → FinG.

This is philosophically the same as our approach for monoids in ΣGAs and for G-commutative

monoids in (HH16).

However we anticipate that the extreme strictness of PMFs relative to both ΣGAs and symmetric

monoidal Mackey functors could prevent these from including useful examples. There might be

workarounds such as finding strict versions using ordered G-sets similar to much of the work in

this paper. One could also attempt to define a suitable weak morphisms of PMFs and define

G-commutative monoids using these instead.

152

CHAPTER 17

MUSINGS AND FURTHER DIRECTIONS

There are several choices we made in our general approach to ΣGAs as a way of unifying the different

versions of genuine equivariant symmetric monoidal categories, and it is worthwhile considering other

ways we could have done it.

• We could have just as well defined FinG categories and ΣGAs in terms of functors (FinG)op →

Cat instead of as fibrations over FinG. Of course we know that these should yield (2-

categorically) equivalent theories. But the comparisons with PMFs and the symmetric monoidal

Mackey functors of (HH16) might be cleaner working entirely with functors as opposed to fi-

brations. In particular we might have a more tractible relationship between the 2-categories

of ΣGAs and PMFs.

• We could have chosen to work primarily in bicategories as opposed to strict 2-categories.

• We could have chosen to work internally to PMFs. Originally a major motivation for the

development of ΣGAs was a way to bridge the K-theoretic machinery of PMFs with the

monoids of (HH16). Only at the very end of the process did we realize that we can interpret

monoids as maps of PMFs from S∗.

On its own this approach this would not account for the symmetric monoidal Mackey functors

of (HH16) as these use pseudofunctors. But combining this with bicategories could work well.

We still might not be able to fine-tune the different types of strictness as we can with ΣGAs.

• A major innovation of this paper was to use GEord instead of GE′ or GE. This required the

lengthy technical results on pullbacks in FinG.

There are several further directions for research we could consider:

• Flesh out the 2-category of ΣGAs. In particular we can prove structural results on what mor-

153

phisms and natural transformations look like on the fibers. We expect them to be symmetric

monoid functors and monoidal natural transformations, however this has not been proven.

• Compare the various Mackey functor constructions to Shimakawa’s ΓG categories. These have

their own K-theory construction, which we hope would be equivalent to ours. These also are

more closely connected to [GMMO].

• Develop a notion of multiplicative equivariant K-theory for ΣGAs and PMFs. This has al-

ready been done in (GMMO23) to prove a multiplicative equivariant Barratt-Priddy-Quillen

theorem.

• For this we would define a (possibly genuine equivariant) symmetric monoidal structure on

the category of ΣGAs, whose monoids are bipermutative ΣGAs. Then K theory of ΣGAs

should extend to a multiplicative functor and the K-theory of bipermutative ΣGAs should be

genuine G-ring spectra.

• In many equivariant situations, it is necessary to work with indexing systems - roughly a subset

of maps along which we can define transfers or norms. This is necessary as equivariant algebraic

structures are not well behaved under localization. We expect that most of the constructions

of this paper could be generalized to indexing systems. In the case of G-commutative monoids,

this is already done by (HH16) §4.

• A major desiderata of a good theory of genuine equivariant symmetric monoidal categories

is a version of Thomason’s theorem and ideally something even stronger such as an inverse

equivariant K-theory functor. A version of Thomason’s theorem has been proven in (Len22).

Another active area of research in that direction is to use multiplicative inverse K-theory the

Guillou-May theorem to give an inverse of the K-theory of PMFs. I am also not aware of any

version of K-theory directly using (HH16), however it is relatively straightforward to strictify

those into PMFs.

• Hitherto there has been minimal writing on the theory of monoids in a general equivariant

154

symmetric category. I believe this would be a fertile ground for new research. One avenue

is applying genuine symmetric monoidal structures to the homological algebra of Mackey

functors.

• As mentioned in the desiderata, we expect that genuine equivariant colored operads, such as

those of (BP21), specialize to them such as those of (BP21); analogous to how symmetric

colored operads (multicategories) specialize to permutative categories. In a sense the version

in (NS22) is simply defined as equivariant operads satisfying a suitable condition (analous to

how symmetric monoidal ∞-categories are a type of ∞-operads as in (Lur17)). However we

do not expect this to carry over neatly to the lower-categorical constructions, so would require

independent work.

155

BIBLIOGRAPHY

[Bar17] Clark Barwick. Spectral mackey functors and equivariant algebraic K-theory (i). Ad-
vances in Mathematics, 304:646–727, 2017.

[BBK+19] Kayleigh Bangs, Skye Binegar, Young Jin Kim, Kyle M. Ormsby, Angelica M. Osorno,
David Tamas-Parris, and Lanshuan Xu. Biased permutative equivariant categories.
Homology, Homotopy and Applications, 2019.

[BDG+16] Clark Barwick, Emanuele Dotto, Saul Glasman, Denis Nardin, and Jay Shah.
Parametrized higher category theory and higher algebra: A general introduction, 2016.

[BGS20] Clark Barwick, Saul Glasman, and Jay Shah. Spectral Mackey functors and equivariant
algebraic K-theory, II. Tunisian Journal of Mathematics, 2(1):97 – 146, 2020.

[BH17] Tom Bachmann and Marc Hoyois. Norms in motivic homotopy theory. Astérisque,
2017.

[BKP89] R. Blackwell, G.M. Kelly, and A.J. Power. Two-dimensional monad theory. Journal of
Pure and Applied Algebra, 59(1):1–41, 1989.

[BLM12] Yuri Bespalov, Volodymyr Lyubashenko, and Oleksandr Manzyuk. Pretriangulated
A∞categories. 03 2012.

[BO15] Anna Marie Bohmann and Angelica Osorno. Constructing equivariant spectra via
categorical mackey functors. Algebraic & Geometric Topology, 15(1):537–563, mar 2015.

[BP21] Peter Bonventre and Luís A. Pereira. Genuine equivariant operads. Advances in Math-
ematics, 381:107502, 2021.

[Bru06] M. Brun. Witt vectors and equivariant ring spectra applied to cobordism. Proceedings
of the London Mathematical Society, 94(2):351–385, 11 2006.

[CG13] Alexander S. Corner and Nick Gurski. Operads with general groups of equivariance,
and some 2-categorical aspects of operads in cat. arXiv: Category Theory, 2013.

[Elm21] A. D. Elmendorf. Multiplicativity in Mandell’s inverse K-theory, 2021.

[EM06] A.D. Elmendorf and M.A. Mandell. Rings, modules, and algebras in infinite loop space
theory. Advances in Mathematics, 205(1):163–228, 2006.

[FK18] Daniel Fuentes-Keuthan. Motivating the definition of monoidal infinity category, 2018.

[Fre13] Daniel Freed. Gamma-spaces and deloopings, 2013.

156

[GM11] Bertrand Guillou and J Peter May. Models of G-spectra as presheaves of spectra. arXiv
preprint arXiv:1110.3571, 2011.

[GM12] Bertrand J. Guillou and Jon P. May. Equivariant iterated loop space theory and per-
mutative G–categories. Algebraic & Geometric Topology, 17:3259–3339, 2012.

[GMMO19] Bertrand J Guillou, J Peter May, Mona Merling, and Angelica M Osorno. Symmetric
Monoidal G-categories and their Strictification. The Quarterly Journal of Mathematics,
71(1):207–246, 12 2019.

[GMMO23] Bertrand J. Guillou, J. Peter May, Mona Merling, and Angelica M. Osorno. Multi-
plicative equivariant K-theory and the Barratt-Priddy-Quillen theorem. Advances in
Mathematics, 414:108865, 2023.

[Gui10] Bertrand Guillou. Strictification of categories weakly enriched in symmetric monoidal
categories. Theory and Applications of Categories, 24(20):564–579, 2010.

[Hav18] Raluca Havarneanu. G-Tambara Functors are G-commutative Monoids. PhD thesis,
2018. Copyright - Database copyright ProQuest LLC; ProQuest does not claim copy-
right in the individual underlying works; Last updated - 2023-03-02.

[HH16] Michael A. Hill and Michael J. Hopkins. Equivariant symmetric monoidal structures,
2016.

[HHR21] Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel. Equivariant Stable Ho-
motopy Theory and the Kervaire Invariant Problem. New Mathematical Monographs.
Cambridge University Press, 2021.

[Hor19] Asaf Horev. Genuine equivariant factorization homology, 2019.

[Isb69] John R Isbell. On coherent algebras and strict algebras. Journal of Algebra, 13(3):299–
307, 1969.

[JS93] A. Joyal and R. Street. Braided tensor categories. Advances in Mathematics, 102(1):20–
78, 1993.

[JY22] Niles Johnson and Donald Yau. Homotopy theory of enriched Mackey functors, 2022.

[Lac02] Stephen Lack. Codescent objects and coherence. Journal of Pure and Applied Algebra,
175(1):223–241, 2002. Special Volume celebrating the 70th birthday of Professor Max
Kelly.

[Len22] Tobias Lenz. Genuine vs. naïve symmetric monoidal G-categories, 2022.

[Lur09] Jacob Lurie. Higher topos theory. Princeton University Press, 2009.

157

[Lur17] Jacob Lurie. Higher algebra (2017). Preprint, available at http://www. math. harvard.
edu/˜ lurie, 2017.

[Lur23] Jacob Lurie. Kerodon. https://kerodon.net, 2023.

[Mac63] Saunders Maclane. Natural associativity and commutativity. Rice Institute Pamphlet
- Rice University Studies, 49:28–46, 1963.

[Man10] Michael Mandell. An inverse K-theory functor. Documenta mathematica Journal der
Deutschen Mathematiker-Vereinigung, 15, 02 2010.

[Mer17] Mona Merling. Equivariant algebraic K-theory of G-rings. Mathematische Zeitschrift,
285(3):1205–1248, 2017.

[NS22] Denis Nardin and Jay Shah. Parametrized and equivariant higher algebra, 2022.

[Rub20] Jonathan Rubin. Normed symmetric monoidal categories, 2020.

[Shi89] Kazuhisa Shimakawa. Infinite loop G-spaces associated to monoidal G-graded cate-
gories. Publications of the Research Institute for Mathematical Sciences, 25, 01 1989.

[Shi91] Kazuhisa Shimakawa. A note on ΓG-spaces. Osaka Journal of Mathematics, 28, 01
1991.

158

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

30423044

2023

	ACKNOWLEDGEMENT
	ABSTRACT
	INTRODUCTION
	I CONVENTIONS AND PRELIMINARIES
	BASICS
	EQUIVARIANT BACKGROUND
	1-CATEGORICAL PRELIMINARIES
	2-CATEGORICAL PRELIMINARIES
	-CATEGORICAL BASICS
	SYMMETRIC MONOIDAL CATEGORIES, MULTICATEGORIES, AND ENRICHMENT
	THE CATEGORY FinG
	CHOSEN PULLBACKS
	THE PC-CATEGORIES GE' AND GEord

	II G-ALGEBRAS
	FinG-CATEGORIES G
	DEFINING G-ALGEBRAS
	STRUCTURE OF GAs

	III COMPARISON OF G-ALGEBRAS AND OTHER MODELS
	PERMUTATIVE MACKEY FUNCTORS
	COMPARISON WITH THE EQUIVARIANT SYMMETRIC MONOIDAL STRUCTURES OF HILL-HOPKINS AND G-SYMMETRIC MONOIDAL -CATEGORIES
	GENUINE COMMUTATIVE MONOIDS
	MUSINGS AND FURTHER DIRECTIONS
	BIBLIOGRAPHY

