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1. Introduction

These notes explore equivariant homotopy theory from the perspective of model
categories in the case of a discrete group G. Section 2 reviews the situation for
topological spaces, largely following [May]. In section 3, we discuss two approaches
to equivariant homotopy theory in more general model categories. Section 4 dis-
cusses some examples to which the material from Section 3 applies. In particular,
the final example discusses equivariant homotopy theory in Morel and Voevodsky’s
A1-homotopy category (still for a discrete group G). Finally, section 5 discusses
briefly the coarse, or naive, model structure.

2. Topological spaces

Fix a (discrete) group G. The category of spaces will be denoted by T .
There are (at least) two approaches to equivariant homotopy theory. The first

starts with the category of G-spaces GT ; that is, spaces X equipped with an action
G × X → X. A G-homotopy between G-maps X ⇒ Y is a G-map X × I → Y ,
where G acts on X × I by g(x, t) = (gx, t). Passage to homotopy classes yields a
homotopy category hGT (following the notation of [May]).

As in the nonequivariant case, the above category is not the correct homotopy
category; one gets the appropriate category by restricting to the subcategory of
G − CW complexes. Alternatively, one defines a weak equivalence of G-spaces to
be a G-map f : X → Y which induces a weak equivalence on fixed point spaces
fH : XH ∼−→ Y H for every subgroup H ≤ G. The category obtained from hGT
by formally inverting the weak equivalences is denoted hGT ; this is the desired
homotopy category.

On the other hand, one can start instead with the orbit category OG. It has
objects G/H indexed by the subgroups H ≤ G, and morphisms G/H → G/K are
simply maps of G-sets (and these correspond to γ ∈ G such that γHγ−1 ≤ K). Note
that a G-space X determines a contravariant functor X(−) : OG → T . It is defined
on objects by XG/H := XH ; given a morphism G/H → G/K induced by γ ∈ G,
the map XK → XH is given by x 7→ γ · x. Note that a G-map X → Y is a weak
equivalence if and only if the corresponding natural transformation X(−) → Y (−)

is an objectwise weak equivalence. This motivates the following definition:

Definition 2.1. Given two functors X, Y : Oop
G → T , a natural transformation

f : X → Y is called a weak equivalence if it is an objectwise equivalence.
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One may then form the homotopy category hT Oop
G of OG-shaped diagrams in

T by formally inverting the weak equivalences. As we have seen, we have a functor
Φ : X 7→ X(−) from G-spaces to OG-spaces, and this preserves weak equivalences.
Thus we get an induced functor

Φ : hGT → hT Oop
G .

We introduced this section by saying that we would be discussing two approaches
to equivariant homotopy theory, so these two homotopy categories had better be
equivalent.

Theorem 2.2 (Elmendorf’s Theorem; [May], Theorem VI.6.3). The functor

Φ : hGT → hT Oop
G

is an equivalence of categories.

In the next section, we will duplicate the previous discussion, replacing T by an
arbitrary cofibrantly generated model category.

3. Model structures

In this section, C will be a cofibrantly generated model category with generating
cofibrations I and generating acyclic cofibrations J . We will recall the definition
below, but first we need to recall the notion of a small object.

Definition 3.1. An object X ∈ C is said to be small with respect to a subcategory
D of C if there exists some cardinal κ such that for every regular cardinal1 λ ≥ κ
and every λ-sequence Z∗ in D the natural map

colim
β<λ

Hom(X, Zβ) → Hom(X, colim
β<λ

Zβ)

is an isomorphism.

Definition 3.2. A cofibrantly generated model category C is a model category
such that there exists

(1) a set I of morphisms in C such that the domains of elements of I are small
with respect to the relative I-cell complexes and such that a map is an
acyclic fibration if and only if it satisfies the right lifting property (RLP)
with respect to I.

(2) a set J of morphisms in C such that the domains of elements of J are
small with respect to the relative J-cell complexes and such that a map is
a fibration if and only if it satisfies the RLP with respect to I.

3.1. OG-shaped Diagrams in C
We may regard C as being tensored over OG in the following sense: for any X ∈ C
and any orbit G/H, we define

G/H ×X :=
∐
G/H

X.

1Assuming the Axiom of Choice, a cardinal κ is said to be regular if given any set X of
cardinality κ and a decomposition X ∼= qα∈AXα with each |Xα| < κ, then |A| ≥ κ.
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Define sets of maps in C Oop
G by

IOG
:= {G/H × i}i∈I,H≤G

and
JOG

:= {G/H × j}j∈J,H≤G.

We then have the following result.

Theorem 3.3 ([Hir] Theorem 11.6.1). The diagram category C Oop
G is a cofibrantly

generated model category with generating cofibrations IOG
and generating trivial

cofibrations JOG
. The weak equivalences and fibrations are the objectwise weak

equivalences and fibrations.

Remark 3.4. The preceding theorem works equally well if we replace Oop
G by any

small category D . The generating cofibrations in this case would be

ID = {d× i}d∈D,i∈I ,

where for d ∈ D and X ∈ C , the object d×X ∈ C D is defined by

(d×X)(d′) = Hom(d, d′)×X =
∐

Hom(d,d′)

X.

Similarly for the generating acyclic cofibrations.

The main tool used in the proof of the above theorem is the following theorem
of Dan Kan. Sometimes referred to as the “transfer principle”, this is an extremely
useful property of cofibrantly generated model categories that allows one to trans-
port model category structures along left adjoints.

Theorem 3.5. ([Hir], 11.3.2) Let C be a cofibrantly generated model category with
generating cofibrations I and generating acyclic cofibrations J . Let D be a category
which is complete and cocomplete and suppose given an adjoint pair F : C � D : G.
Then the sets FI and FJ are the generating cofibrations and acyclic cofibrations
for a cofibrantly generated model structure on D if

(1) the domains of the maps in FI are small with respect to the relative FI-cell
complexes, and similarly for FJ , and

(2) G takes relative FJ-cell complexes to weak equivalences in C .
The weak equivalences and fibrations are then the the morphisms which become

so after application of the functor G.

3.2. G-objects in C
The notion of G-object makes sense in an abritray cofibrantly generated model
category, but in order to be able to define weak equivalences of G-objects, we need
a fixed points functor for each H ≤ G (or at least for a family of subgroups).

Definition 3.6. Given a subgroup H ≤ G, an H-fixed points functor on GC is
a right adjoint to the “trivial H-space” functor G/H × (−) : C → HC → GC .

A moment’s reflection shows that for a H-space X, the object XH is exactly the
limit of X, regarded as a functor H → C . Since we are taking C to be a model
category, it is complete and so fixed point functors exist.

Given such fixed point functors, we define a map of G-objects to be a weak
equivalence or fibration if it is so after passage to H fixed points for every H ≤ G.
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A cofibration will then be defined to be a map with the left lifting property with
respect to acyclic fibrations.

In order to be able to apply the small object argument, we will need to require
something of our fixed point functors. We will put a cofibrantly generated model
structure on GC where the generating cofibrations are given by

IG = {G/H × i}i∈I,H≤G,

and the generating acyclic cofibrations by

JG = {G/H × j}j∈J,H≤G.

We will need to require that our fixed point functors take IG-cell complexes to
cofibrations in C and take JG-cell complexes to acyclic cofibrations in C .

Definition 3.7. A fixed point functor (−)H : GC → C is said to be a cellular
fixed point functor if it

(1) preserves pushouts along maps of the form

G/K ×X
1×f−−−→ G/K × Y,

where X and Y are trivial H-spaces and f is a cofibration in C and
(2) preserves directed colimits of G-maps which are cofibrations as maps in C .

A fixed point functor automatically takes a map G/K ×X
1×f−−−→ G/K × Y to a

cofibration if X and Y are trivial G-spaces and f is a cofibration since

(G/K ×X)H ∼=
∐

G/H→G/K

X

and similarly for Y .

Remark 3.8. The cellularity condition above requires the fixed point functors to
preserve certain colimits, but we point out that fixed point functors will usually not
preserve all colimits. For instance, consider the case G = Z/2Z acting on S1 by
rotating through 180◦. If σ ∈ Z/2Z denotes the nontrivial element, then we have
the coequalizer diagram

S1
σ //
id

// S1 // S1
triv

in Z/2Z-spaces, where Z/2Z acts trivially on S1
triv. Taking Z/2Z-fixed points,

however, yields the diagram of spaces

∅ //// ∅ // S1

which is certainly not a coequalizer.

Remark 3.9. Note that the conditions for a fixed point functor to be cellular
resemble the conditions appearing in Dwyer and Kan’s notion of “orbit” [DK],
only the latter is an up-to-homotopy version. They can get away with this looser
condition since they are working simplicially and all simplicial sets are small with
respect to the whole category sSet.

The point of requiring fixed point functors to be cellular is that it makes the
following true:

Proposition 3.10. If GC has cellular fixed point functors, then each (−)H : GC →
C takes IG-cell complexes to I-cell complexes and JG-cell complexes to J-cell com-
plexes.
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Once we have fixed point functors for every H ≤ G, we may define a functor

Φ : GC → C Oop
G

as in Section 2. Moreover, Φ has a left adjoint Θ : C Oop
G → GC given by evaluating

at the orbit G/e.

Lemma 3.11. We have Θ ◦ Φ = id and Φ is full and faithful.

Theorem 3.12. If C is a cofibrantly generated model category such that GC has
cellular fixed point functors, then GC is a cofibrantly generated model category with
generating cofibrations

IG = {G/H × i}i∈I,H≤G,

generating acyclic cofibrations

JG = {G/H × j}j∈J,H≤G,

and weak equivalences as described above.

Proof. Again, the weak equivalences and fibrations are the maps which are so after
passage to H-fixed points for every H ≤ G, and the cofibrations are the maps
having the left lifting property (LLP) with respect to the acyclic fibrations.

Note that an adjointness argument shows that the fibrations are the maps with
the RLP with respect to JG (these are called J-injectives). Similarly the acyclic
fibrations are the maps with the RLP with respect to IG.

Many of the model category axioms for GC may be deduced from those for
C : completeness and cocompleteness, the 2-out-of-3 property for the weak equiv-
alences, and the retract axiom for weak equivalences and fibrations. The retract
axiom for cofibrations follows since they are defined by a left lifting property. Be-
fore proving the lifting axiom for acyclic cofibrations, we will prove the factorization
axioms.

First we show that IG and JG permit the small object argument. Suppose that
G/H × Si is a domain of IG and let A → X be a relative IG-cell complex. By
adjointness, the result will follow from smallness of Si with respect to I if we know
that AH → XH is an I-cell complex. But this is Prop. 3.10. The same argument
works for JG.

Let f : X → Y be an arbitrary G-map. The small object argument then gives
us a factorization of f as X

i−→ Z
p−→ Y where i is a relative IG-cell complex

and therefore a cofibration and where p is an IG-injective and therefore an acyclic
fibration.

For the other factorization axiom, let f : X → Y be a G-map once again.
The small object argument gives us a factorization X

j−→ Z
q−→ Y , where j is a

relative JG-cell complex and q is a JG injective and therefore a fibration. Note
that a relative JG-cell complex satisfies the LLP with respect to all fibrations;
in particular, it satisfies the LLP with respect to acyclic fibrations and so is a
cofibraiton. It remains to show that j is a weak equivalence, but this follows from
Prop. 3.10.

The remaining lifting axiom follows from the folllowing lemma since JG-cell
complexes satisfy the LLP with respect to fibrations.

Lemma 3.13. An acyclic cofibration is a retract of a relative JG-cell complex.
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Proof. Let A
i−→ B be an acyclic cofibration. By the factorization axiom proved

above, we may factor i as A
j−→ C

q−→ B where j is a relative JG-cell complex and q
is a fibration. By Prop. 3.10, j is a weak equivalence; the 2-out-of-3 axiom forces q
to be an acyclic fibration. But then we get a lift in the diagram

A

i

��

j // C

q

��
B

λ

>>~
~

~
~

B
This shows that i is a retract of j. �

�

Remark 3.14. The short proof from ([MM], Theorem III.1.8) works just as well
here.

Proposition 3.15. With the same assumptions as Theorem 3.12, the adjoint pairs

G/e× (−) : C � GC : (−)e

and
Θ : C Oop

G � GC : Φ

are Quillen pairs. Moreover, the latter pair is a pair of Quillen equivalences.

Proof. The functor (−)e preserves weak equivalences and fibrations by definition of
the model structure on GC . Similarly, the functor Φ preserves fibrations and weak
equivalences.

Recall that (Θ,Φ) is a pair of Quillen equivalences if for every cofibrant X ∈ C Oop
G

and fibrant Y ∈ GC then a morphism

f : Θ(X) → Y

is a weak equivalence if and only if the corresponding map

g : X → Φ(Y )

is a weak equivalence. To show this, we will need the following:

Lemma 3.16. If X ∈ C Oop
G is cofibrant, then the unit of the adjunction

η : X → ΦΘ(X)

is an isomorphism.

Proof. Recall that the cofibrant objects are the retracts of IOG
-cell complexes. The

functor Θ preserves colimits and takes the set IOG
to the set IG. Combining this

with Prop. 3.10, we have that η is an isomorphism on cell complexes. We are then
done since isomorphisms are closed under retracts. �

Given f : Θ(X) → Y , the morphism gH : X(G/H) → Y H can be factored as

X(G/H)
ηG/H

∼=
// (X(G/e))H

fH

// Y H .

The 2-out-of-3 axiom then shows that f is a weak equivalence if and only if g is.
Note that we have not used that Y is fibrant. �
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4. Examples

4.1. Spaces
The case where C is the category of topological spaces is discussed in [MM], sec-
tion III.1. That the fixed point functors are cellular is Lemma III.1.6.

4.2. Simplicial Sets
We claim that fixed point functors for G-simplicial sets (=simplicial G-sets) are
cellular. To see that they preserve the appropriate pushouts, it suffices to do so for
m-simplices for all m; then this turns into an easy question in the category of sets.
Similarly for the preservation of colimits of monomorphisms. Thus Theorem 3.12
applies to give a model structure on GsSet.

4.3. Simplicial Presheaves
Let D be a small category. As in Remark 3.4, the diagram category C Dop

becomes a
cofibrantly generated model category. Note that the category of G-objects in C Dop

is canonically isomorphic to the category (GC )Dop

. Specializing to C = sSet, we
saw in Example 4.2 that GsSet has cellular fixed point functors, so that GsSet
becomes a cofibrantly generated model category. It follows that G(sSetD

op

) ∼=
(GsSet)Dop

becomes a cofibrantly generated model category.
Alternatively, we can show directly that G(sSetD

op

) has cellular fixed point
functors. Recall first that every cofibration in sSetD

op

is in particular an objectwise
cofibration (=monomorphism). Since colimits are computed objectwise, it thus
suffices to show that the fixed point functors are objectwise cellular. This follows
from Example 4.2.

4.4. “Presented Homotopy Theories”
There is a slightly more restrictive kind of model category, known as a cellular
model category (cf. [Hir], 12.1). These include sSet and Top, as well as diagram
categories such as sSetD and TopD . For our purposes, the interest in restricting
to cellular model categories is that left proper cellular model categories admit left
Bousfield localizations with respect to sets of maps ([Hir], Theorem 4.1.1).

In [D1], Dugger considers model categories obtained by first forming a “free”
homotopy theory and then imposing certain relations. More precisely, starting
with a small category D , the diagram category sSetD

op

with the model structure
of Remark 3.4 is the “universal” model category built from D . Since sSetD

op

is the
category of simplicial presheaves on D , we will write sPre(D) for sSetD

op

. This is a
left proper cellular model category, essentially inheriting these properties from sSet.
Thus given any set A of maps in sPre(D), there exists a left Bousfield localization
LAsPre(D) (this is simply a new model structure on the same underlying category),
and this model structure on sPre(D) is again left proper and cellular.

One may think of this as giving a “presentation” for the resulting homotopy cat-
egory (Dugger speaks of presentations of model categories rather than of homotopy
categories); the category D provides the generators while A gives the relations.
Many model categories are Quillen equivalent to “presented” model categories; in
particular, Dugger has shown ([D2]) that J. Smith’s combinatorial model categories
have presentations.
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Now let LAsPre(D) be a presentation for a homotopy theory. As we have seen
in Example 4.3, GsPre(D) has cellular fixed point functors. But it then follows
that G

(
LAsPre(D)

)
also has cellular fixed point functors since (1) LAsPre(D) and

sPre(D) have the same underlying category and (2) the cofibrations of LAsPre(D)
are exactly the cofibrations of sPre(D). Thus Theorem 3.12 applies to give us a
model structure on G

(
LAsPre(D)

)
.

4.5. Homotopy Theory of Schemes
We begin by recalling the Morel-Voevodsky unstable motivic homotopy category
([MV]). Fix a perfect field k and consider the category Smk of smooth schemes of
finite type over k. There is a Grothendieck topology, called the Nisnevich topology,
on this category. It is finer than the Zariski topology but coarser than the étale; in
fact it is fine enough to allow for a “homotopy purity” theorem but coarse enough
so that algebraic K-theory satisfies descent. The details need not concern us. One
then considers the category sShNis(Smk) of simplicial Nisnevich sheaves on Smk.
This has a model structure, due to Joyal, in which the weak equivalences are the
stalkwise weak equivalences and the cofibrations are the monomorphisms. One
then performs a left Bousfield localization at the set of maps X×A1 → X, and the
resulting homotopy category is the unstable motivic homotopy category Ho(k).

Jardine has shown ([J]) that there is a model structure on the category sPre(Smk)
of simplicial presheaves where the cofibrations are the monomorphisms and the
weak equivalences are the maps which induce isomorphisms on sheaves of homo-
topy groups. Sheafification then induces a Quillen equivalence

aNis : sPre(Smk) � sShvNis(Smk) : i

(the right adjoint is the inclusion), and this Quillen equivalence descends to A1-
localizations.

Finally, as Dugger explains in [D1], one can give a presentation as follows.
First consider sPre(Smk) with the objectwise weak equivalences and fibrations
(the model structure from Remark 3.4). One then localizes at the Nisnevich hyper-
covers U∗ → X as well as at the projections X ×A1 → X. The identity functor on
sPre(Smk) then is a left adjoint of a Quillen equivalence from this model structure
to Jardine’s model structure (this is Theorem 6.2 of [DHI]).

Thus the Morel-Voevodsky homotopy category fits into Example 4.4 and we get
a model structure on G-motivic spaces.

5. Coarse G-structure

The model structure of Theorem 3.12 is sometimes called the fine model structure
on G-spaces. There is another interesting model structure, called the coarse model
structure, in which one only considers the trivial subgroup 1 ≤ G.

Theorem 5.1 (Coarse Model Structure). There is a cofibrantly generated model
structure on GC , where the weak equivalences and fibrations are the maps which are
so as maps in C . The generating cofibrations are given by G×I and the generating
acyclic cofibrations are given by G× J .

One can prove this either by repeating the proof of Theorem 3.12, using only the
trivial subgroup instead of all of the groups, or by noting that this is another special
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case of 3.4 with D the group G regarded as a one object category with morphisms
given by G.

We now mention some trivial consequences of the existence of these model struc-
tures.

Proposition 5.2. The adjunction id : GC � GC : id is a Quillen adjunction from
the coarse model structure to the fine model structure.

Proposition 5.3. The cofibrant objects in the coarse model structure have free
G-action. In particular, a cofibrant replacement X̃ → X is a G-object with free
G-action which is weakly equivalent to X in C .

Example 5.4. Thus we see that in spaces, EG → ∗ is a cofibrant replacement for
∗ in the coarse model structure.

Example 5.5. The quotient functor Q : GC → C given by Q(X) = X/G has right
adjoint the trivial G-space functor t : C → GC , and it is clear that t preserves
fibrations and weak equivalences, so that this becomes a Quillen pair. The left
derived functor of Q is given by LQ(X) = EG×G X, the Borel construction.

Example 5.6. Similarly, for any G-space X, the functor MapG(−, X) : GC op →
C has a left adjoint given by Map(−, X)op : C → GC op. The category GC op

inherits the opposite model structure from GC , and one gets RMapG(∗, X) =
MapG(EG, X).
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