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1. Introduction

Consider the Hopf map η : A2 \ {0} −→ P
1 that takes (x, y) to [x : y]. In motivic homotopy theory, 

A
2 \ {0} and P1 are models for the motivic spheres S3,2 and S2,1 respectively. Therefore, η represents an 

element of the stable motivic homotopy group π1,1.
Computations of motivic stable homotopy groups share many similarities to the classical computations, 

but the motivic computations also exhibit “exotic” non-classical phenomena. One of the first examples is 
that η is not nilpotent, i.e., ηk is non-zero for all k [11].

Working over C (or any algebraically closed field of characteristic zero), we have an Adams spectral 
sequence for computing motivic stable 2-complete homotopy groups with good convergence properties [12,
6,7]. The E2-page of this spectral sequence is the cohomology ExtA of the motivic Steenrod algebra A. In 
the Adams spectral sequence, η is detected by the element h1 of ExtA. The failure of η to be nilpotent is 
detected by the fact that hk

1 is a non-zero permanent cycle for all k.
A further investigation of the motivic Adams E2-page reveals a number of other classes that survive 

h1-localization, i.e., classes x such that hk
1x is non-zero for all k. The first few are c0 in the 8-stem, Ph1 in 
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the 9-stem, d0 in the 14-stem, and e0 in the 17-stem. A fairly predictable pattern emerges, involving classes 
that all map non-trivially to the cohomology of motivic A(2) [8].

However, in the 46-stem, a surprise occurs. The class B1 is h1-local. This element is not detected by 
the cohomology of motivic A(2). At this point, it has become clear that an algebraic computation of the 
h1-localized cohomology ExtA[h−1

1 ] is an interesting and non-trivial problem.
The first goal of this article is calculate ExtA[h−1

1 ]. We will show that it is a polynomial algebra over 
F2[h±1

1 ] on infinitely many generators.

Theorem 1.1. The h1-localized algebra ExtA[h−1
1 ] is a polynomial algebra over F2[h±1

1 ] on generators v4
1 and 

vn for n ≥ 2, where:

(1) v4
1 is in the 8-stem and has Adams filtration 4 and weight 4.

(2) vn is in the (2n+1 − 2)-stem and has Adams filtration 1 and weight 2n − 1.

Although it is simple to state, this is actually a surprising answer. The elements d0, e0, and e0g are 
indecomposable elements of ExtA that are all h1-local. From consideration of the May spectral sequence, or 
from the cohomology of A(2), one might expect to have the relation e3

0 + d0 · e0g = 0.
In the terms of Theorem 1.1, e3

0 + d0 · e0g corresponds to h9
1v

3
3 + h9

1v
2
2v4. Theorem 1.1 says that this 

expression is non-zero after h1-localization, so it is non-zero before localization as well. The only possibility 
is that e3

0 + d0 · e0g equals h5
1B1.

The relation e3
0 + d0 · e0g = h5

1B1 in ExtA is hidden in the motivic May spectral sequence. As described 
in [9], it is tightly connected to the classical Adams differential d3(h1h5e0) = h2

1B1 [3, Corollary 3.6].
Our h1-local calculation surely implies other similarly exotic relations in higher stems. We do not 

yet possess a sufficiently detailed understanding of ExtA in that range, so we cannot identify any ex-
plicit examples with certainty. However, we expect to see a hidden relation e0(e0g)2 + d0 · e0g

3 =
h5

1 · g2B1 in ExtA in the 91-stem. Here, we anticipate that e0g
3 and g2B1 are indecomposable ele-

ments.
So far, we have only discussed the entirely algebraic question of computing ExtA[h−1

1 ], which informs 
us about the structure of ExtA. But ExtA[h−1

1 ] is also the E2-page of an Adams spectral sequence that 
converges to the 2-complete motivic stable homotopy groups of the η-local motivic sphere S0,0[η−1], which 
is the homotopy colimit of the sequence

S0,0 η
S−1,−1 η

S−2,−2 η
· · · .

In order to compute π∗,∗S
0,0[η−1], we thus only need to compute Adams differentials on ExtA[h−1

1 ]. There 
are indeed non-trivial differentials. In the non-local case, we know that d2(e0) = h2

1d0 and d2(e0g) = h2
1e

2
0

[9]. This implies the analogous h1-local differentials d2(v3) = h1v
2
2 and d2(v4) = h1v

2
3 .

Unfortunately, we have not been able to identify all of the Adams differentials. We expect the answer to 
turn out as stated in Conjecture 1.2.

Conjecture 1.2. 1 For all k ≥ 3, there is an Adams differential d2(vk) = h1v
2
k−1.

Conjecture 1.2 has the following immediate consequences.

1 After the first version of this manuscript appeared, Conjecture 1.2 was proved by Andrews and Miller [2].
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Conjecture 1.3. 2

(1) The E∞-page of the h1-local Adams spectral sequence is

F2[h±1
1 ][v4

1 , v2]/v2
2 .

(2) The 2-complete motivic stable homotopy groups of the η-local motivic sphere are

π∗,∗(S0,0[η−1]) ∼= F2[η±1, μ, ε]/ε2,

where η has degree (1, 1); μ has degree (9, 5); and ε has degree (8, 5).

Proof. Given the Adams differentials proposed in Conjecture 1.2, we can compute that the h1-local E3-page 
is equal to F2[h±1

1 ][v4
1 , v2]/v2

2 . For degree reasons, there are no possible higher differentials, so this expression 
is also equal to the h1-local E∞-page.

There are no possible hidden extensions in E∞, so we obtain π∗,∗(S0,0[η−1]) immediately. �
Remark 1.4. The h1-localization of the element Ph1 of ExtA is h1v

4
1 , and μ is the standard notation for the 

element of π9,5 detected by Ph1. The h1-localization of the element c0 of ExtA is h2
1v2, and ε is the standard 

notation for the element of π8,5 detected by c0.

We present one more consequence of Conjecture 1.2.

Theorem 1.5. 3 The following are equivalent:

(1) Conjecture 1.2 holds.
(2) At p = 2, the α1-localization of the classical Adams–Novikov spectral sequence E2-page is a free 

F2[α±1
1 ]-module with basis consisting of elements of the form αk/b for k = 1 and k ≥ 3.

Here b is an integer that depends on k. The point is that αk/b is the generator of the classical Adams–
Novikov E2-page in degree (2k − 1, 1).

Proof. Recall that τ is an element of π0,−1. Because τη4 is zero, we know that the η-localization Cτ [η−1]
of the cofiber Cτ of τ splits as S0,0[η−1] ∨S1,−1[η−1]. Therefore, π∗,∗(Cτ [η−1]) is the same as two copies of 
π∗,∗(S0,0[η−1]).

We explain in [9, Proposition 6.2.5] that π∗,∗(Cτ) is equal to the classical Adams–Novikov E2-page. 
Therefore, π∗,∗(Cτ [η−1]) is the same as the α1-localization of the Adams–Novikov E2-page. �

The origin of this work lies in the second author’s attempt to analyze the Adams spectral sequence 
beyond the 45-stem. The h1-local calculations discussed in this article are a helpful tool in the analysis 
of Adams differentials. We expect that the h1-local calculations will continue to be a useful tool in the 
further analysis of Adams differentials. For example, our work leads us to anticipate an Adams differential 
d2(e0g

3) = h2
1(e0g)2 in the 77-stem.

2 Because Conjecture 1.2 is settled, so is Conjecture 1.3.
3 Andrews and Miller [2] show that part (2) of Theorem 1.5 holds, thereby establishing Conjecture 1.2.



B.J. Guillou, D.C. Isaksen / Journal of Pure and Applied Algebra 219 (2015) 4728–4756 4731
In this article, we are working exclusively in motivic homotopy theory over C. A natural extension is 
to consider h1-local and η-local calculations over other fields. Preliminary calculations over R show that 
the picture is significantly more complicated. We do not yet understand how η-local motivic calculations 
depend on the base field. We plan to explore this in more detail in future work.

The questions studied in this article become trivial in the classical situation, where h4
1 is zero in the 

cohomology of the classical Steenrod algebra, and η4 is zero in the classical 4-stem. This is consistent with 
the principle that τ -localization corresponds to passage from the motivic to the classical situations [9], and 
that τh4

1 and τη4 are both zero motivically.
However, η is not nilpotent in Z/2-equivariant stable homotopy groups. The equivariant analogues of our 

calculations are interesting open questions.
Our work raises the question of why Nishida’s nilpotence theorem [14] fails in motivic homotopy theory. 

In addition to η, there are other non-nilpotent elements, such as the element μ of π9,5 detected by Ph1. 
More generally, the elements μ8k+1 of π8k+1,4k+1 detected by P kh1 are also non-nilpotent. Starting in the 
32-stem, there are other families of elements that are not nilpotent. These elements will be the subject of 
future work.

1.1. Organization

Section 2 contains a review of the motivic Steenrod algebra and sets our notation. Section 3 computes 
ExtA[h−1

1 ], as stated in Theorem 1.1. For completeness, we also discuss ExtA(2)[h−1
1 ].

Section 4 discusses the same computation from the point of view of the motivic May spectral sequence. 
The point of this section is that it allows us to analyze in Section 5 the localization map ExtA −→ ExtA[h−1

1 ]
in detail through a range. This leads to some hidden relations in ExtA that are needed in [9]. The localization 
map is essential for deducing information about Adams differentials in ExtA from Adams differentials in 
ExtA[h−1

1 ]. We also consider the May spectral sequence and the localization map for A(2) in Sections 4
and 5. These sections are intended to be read in conjunction with the charts in Section 8.

Section 6 gives some computations of Adams differentials in support of Conjecture 1.2. We also discuss 
the role of a speculative “motivic modular forms” spectrum.

Much of the data for our computations, especially regarding the May spectral sequence, is given in tables 
to be found in Section 7.

2. Background

We continue with notation from [9] as follows:

(1) M2 is the motivic cohomology of C with F2 coefficients.
(2) A is the mod 2 motivic Steenrod algebra over C, and A∗,∗ is its dual.
(3) A(n) is the M2-subalgebra of A generated by Sq1, Sq2, Sq4, . . . , Sq2n

, and A(n)∗ is its dual.
(4) ExtA is the trigraded ring ExtA(M2, M2).
(5) More generally, ExtB is the trigraded ring ExtB(M2, M2) for any Hopf algebra B over M2.
(6) Acl is the mod 2 classical Steenrod algebra, and Acl

∗ is its dual.
(7) A(n)cl is the M2-subalgebra of Acl generated by Sq1, Sq2, Sq4, . . . , Sq2n

, and A(n)cl∗ is its dual.
(8) ExtAcl is the bigraded ring ExtAcl(F2, F2).
(9) More generally, ExtB is the trigraded ring ExtB(F2, F2) for any Hopf algebra B over F2.

The following two theorems of Voevodsky are the starting points of our calculations.

Theorem 2.1. (See [17].) M2 is the bigraded ring F2[τ ], where τ has bidegree (0, 1).
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Our main object of study will be a localization of ExtA. It will be more convenient for us to work with 
the dual A∗,∗ = HomM2(A, M2).

Theorem 2.2. (See [18; 19, Theorem 12.6].) The dual motivic Steenrod algebra A∗,∗ is generated as an 
M2-algebra by ξi and τi, of degrees (2(2i − 1), 2i − 1) and (2i+1 − 1, 2i − 1) respectively, subject to the 
relations

τ2
i = τξi+1.

The coproduct is given on the generators by the following formulae, in which ξ0 = 1:

Δ(τk) = τk ⊗ 1 +
∑

i

ξ2i

k−i ⊗ τi

Δ(ξk) =
∑

i

ξ2i

k−i ⊗ ξi.

Remark 2.3. The quotient A∗,∗/τ = A∗,∗ ⊗M2 F2 is analogous to the odd-primary classical dual Steenrod 
algebra, in the sense that there is an infinite family of exterior generators τi and an infinite family of 
polynomial generators ξi. On the other hand, the localization A∗,∗[τ−1] is analogous to the mod 2 classical 
dual Steenrod algebra, which has only polynomial generators τi.

2.1. Ext groups

We are interested in computing a localization of ExtA. Before localization, this is a trigraded object. 
In [9], classes in ExtA are described in degrees of the form (s, f, w), where:

(1) f is the Adams filtration, i.e., the homological degree.
(2) s + f is the internal degree, corresponding to the first coordinate in the bidegrees of A.
(3) s is the stem, i.e., the internal degree minus the Adams filtration.
(4) w is the motivic weight.

In the cobar complex, ξ1 represents an element h1 of ExtA in degree (1, 1, 1). Because we will invert h1, 
it is convenient to choose a new grading that is more h1-invariant. Except where otherwise noted, we will 
use the grading (t, f, c), where:

(1) t = s − w is the Milnor–Witt stem.
(2) f is the Adams filtration.
(3) c = s + f − 2w is the Chow degree [9], which turns out to be a convenient grading for calculational 

purposes.

The terminology “Milnor–Witt stem” arises from the work of Morel [11], which describes the motivic 
stable homotopy groups πs,w with s − w = 0 in terms of Milnor–Witt K-theory.

The terminology “Chow degree” arises from the fact that the grading s + f − 2w is a natural index from 
the higher Chow group perspective on motivic cohomology [4].

3. The h1-local cohomology of A

The goal of this section is to compute ExtA[h−1
1 ] explicitly. We will accomplish this by expressing A∗,∗

as a series of extensions of smaller Hopf algebras.
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Definition 3.1. For each i ≥ −1, let Bi be the subalgebra of A∗,∗ generated by the elements ξk and also by 
τ0, . . . , τi.

In particular, B−1 is a polynomial M2-algebra on the elements ξk.

Lemma 3.2. ExtB−1 [h−1
1 ] is isomorphic to M2[h±1

1 ].

Proof. We have an isomorphism B−1 −→ Acl
∗ ⊗F2 M2 of Hopf algebras. Under this mapping, the element h1

in ExtB−1 corresponds to h0 in ExtAcl . Adams’s vanishing line of slope 1 [1] implies that ExtAcl [h−1
0 ] is 

isomorphic to F2[h±1
0 ]. �

We proceed to compute ExtBn
[h−1

1 ] inductively via a Cartan–Eilenberg spectral sequence [5, §XVI.6], 
[16, A1.3.14] for the extension of Hopf algebras

Bn−1 −→ Bn −→ E(τn),

where E(τn) is an exterior algebra on the generator τn. The extension is cocentral, so the spectral sequence 
takes the form

E2 ∼= ExtBn−1 ⊗ExtE(τn) ∼= ExtBn−1 [vn] ⇒ ExtBn
.

The E2-page of this spectral sequence has four gradings: three from ExtBn
and one additional Cartan–

Eilenberg grading associated with the filtration involved in construction of the spectral sequence. However, 
we will suppress the Cartan–Eilenberg grading because we won’t need it for bookkeeping purposes.

The class vn has degree (2n − 1, 1, 1) in the E2-term. The differentials take the form

dr : E(t,f,c)
r −→ E(t−1,f+1,c)

r .

Proposition 3.3.

(1) ExtB0 [h−1
1 ] ∼= M2[h±1

1 , v0].
(2) ExtB1 [h−1

1 ] ∼= F2[h±1
1 , v4

1 ].
(3) ExtBn

[h−1
1 ] ∼= F2[h±1

1 , v4
1 , v2, . . . , vn] for all n ≥ 2.

In each case, vi has degree (2i − 1, 1, 1).

Proof. When n = 0, Lemma 3.2 says that the Cartan–Eilenberg spectral sequence takes the form

E2 ∼= M2[h±1
1 ][v0] ⇒ ExtB0 [h−1

1 ].

Since τ0 is primitive, the spectral sequence collapses at E2. We conclude that ExtB0 [h−1
1 ] ∼= M2[h±1

1 , v0]
with v0 in degree (0, 1, 1).

Taking now n = 1, the computation of ExtB0 [h−1
1 ] in the previous paragraph tells us that the spectral 

sequence takes the form

E2 ∼= M2[h±1
1 , v0, v1] ⇒ ExtB1 [h−1

1 ],

with v0 in degree (0, 1, 1) and v1 in degree (1, 1, 1). The coproduct formula

Δ(τ1) = τ1 ⊗ 1 + ξ1 ⊗ τ0 + 1 ⊗ τ1
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gives rise to the differential d2(v1) = h1v0. It follows that E3 ∼= M2[h±1
1 , v2

1 ]. There is next a differential 
d3(v2

1) = τh3
1, which can be verified by the cobar complex calculation

d(τ1|τ1|ξ1 + ξ1|τ0τ1|ξ1 + τ1ξ1|τ0|ξ1 + ξ2
1 |τ0|(τ1 + τ0ξ1)) = τξ1|ξ1|ξ1|ξ1.

The class v4
1 in degree (4, 4, 4) cannot support any higher differentials for degree reasons, and we have

ExtB1 [h−1
1 ] ∼= E∞ = E4 ∼= F2[h±1

1 , v4
1 ].

For n ≥ 2, the argument is by induction, using a Cartan–Eilenberg spectral sequence at every turn. Each 
of these spectral sequences collapses at E2 since there are no possible values for differentials on vn. �
Theorem 3.4.

ExtA[h−1
1 ] ∼= F2[h±1

1 , v4
1 , v2, v3, . . .],

where h1 has degree (0, 1, 0); v4
1 has degree (4, 4, 4); and vn has degree (2n − 1, 1, 1) for n ≥ 2.

Proof. Since A is colimBn, ExtA equals colim ExtBn
. The calculation follows from part (3) of Proposi-

tion 3.3. �
Remark 3.5. Theorem 3.4 implies that the part of ExtA[h−1

1 ] in Chow degree zero is equal to F2[h±1
1 ]. 

Another more direct argument for this observation uses the isomorphism between ExtAcl and the Chow 
degree zero part of ExtA [9]. This isomorphism takes classical elements of degree (s, f) to motivic elements 
of degree (s, f, 0). The classical calculation ExtAcl [h−1

0 ] = F2[h±1
0 ] corresponds to the Chow degree zero part 

of ExtA[h−1
1 ].

3.1. The h1-local cohomology of A(2)

For completeness, we will also explicitly calculate ExtA(2)[h−1
1 ], where A(2) is the M2-subalgebra of A

generated by Sq1, Sq2, and Sq4.
Dual to the inclusion A(2) ↪→ A is a quotient map

A∗,∗ −→ A(2)∗,∗ ∼= M2[ξ1, ξ2, τ0, τ1, τ2]/(ξ4
1 , ξ

2
2 , τ

2
0 = τξ1, τ

2
1 = τξ2, τ

2
2 ).

We filter A(2)∗,∗ by sub-Hopf algebras

B−1(2) ⊆ B0(2) ⊆ B1(2) ⊆ A(2)∗,∗

where B−1(2) is the subalgebra generated by ξ1 and ξ2; B0(2) is generated by ξ1, ξ2, and τ0; and B1(2) is 
generated by ξ1, ξ2, τ0, and τ1. The notation is analogous to the notation in Definition 3.1.

Lemma 3.6. ExtB−1(2)[h
−1
1 ] is isomorphic to M2[h±1

1 , a1], where a1 has degree (4, 3, 0).

Proof. We have an isomorphism B−1(2) −→ A(1)cl∗ ⊗F2M2. Under this mapping, the element h1 in ExtB−1(2)
corresponds to h0 in ExtA(1)cl . It is well-known that ExtA(1)cl [h

−1
0 ] is isomorphic to F2[h±1

0 , acl], where acl

has degree (4, 3) (for example, see [16, Theorem 3.1.25]). �
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Proposition 3.7.

(1) ExtB0(2)[h
−1
1 ] ∼= M2[h±1

1 , a1, v0].
(2) ExtB1(2)[h

−1
1 ] ∼= F2[h±1

1 , a1, v4
1 ].

(3) ExtA(2)[h−1
1 ] ∼= F2[h±1

1 , a1, v4
1 , v2].

In each case, a1 has degree (4, 3, 0); v0 has degree (0, 1, 1); v4
1 has degree (4, 4, 4); and v2 has degree (3, 1, 1).

Proof. The proof uses a series of Cartan–Eilenberg spectral sequences as in the proof of Proposition 3.3, 
given Lemma 3.6 as the starting point. �
Remark 3.8. The classes a1, v4

1 , and h2
1v2 correspond respectively to the classes u, P , and c in [8, Theo-

rem 4.13].

Remark 3.9. Using the structure of ExtA(2)cl [h
−1
0 ], similar arguments show that

ExtA(3)[h−1
1 ] ∼= F2[h±1

1 , g, b31, v
4
1 , v2, v3],

where g has degree (8, 4, 0) and b31 has degree (12, 2, 0). Using the structure of ExtA(3)cl [h
−1
0 ],

ExtA(4)[h−1
1 ] ∼= F2[h±1

1 , g2,Δ1, b41, v
4
1 , v2, v3, v4],

where g2 has degree (16, 8, 0), Δ1 has degree (24, 4, 0), and b41 has degree (28, 2, 0).

4. The h1-local motivic May spectral sequence

Although Theorem 3.4 gives a complete description of ExtA[h−1
1 ], it unfortunately tells us very little about 

the localization map ExtA → ExtA[h−1
1 ]. The problem is that the proof of Theorem 3.4 is incompatible with 

the motivic May spectral sequence approach to ExtA, as carried out in [9].
A detailed understanding of the localization map allows for the transfer of information from the well-

understood ExtA[h−1
1 ] to the much more complicated ExtA. In this section we carry out the computation 

of the h1-localized motivic May spectral sequence. This will allow us to obtain information about the 
localization map in Section 5.

We recall the details of the motivic May spectral sequence from [6]. This spectral sequence has four grad-
ings: three from ExtA and one additional May grading associated with the filtration involved in construction 
of the spectral sequence. We will grade this spectral sequence in the form (m − f, t, f, c), where m is the 
May grading, f is the Adams filtration, t = s −w is the Milnor–Witt stem, and c = s + f − 2w is the Chow 
degree.

The E1-page is a polynomial algebra over M2 on generators hij for i ≥ 1, j ≥ 0, where

(1) hi0 has degree (i − 1, 2i−1 − 1, 1, 1).
(2) hij has degree (i − 1, 2j−1(2i − 1) − 1, 1, 0) for j > 0.

Note in particular that hi0 has Chow degree 1, while hij has Chow degree 0 for j > 0. In a sense, this 
wrinkle in the gradings is the primary source of “exotic” motivic phenomena that do not appear in the 
classical situation.

The d1-differential is given by the classical formula

d1(hij) =
∑

hkjhi−k,j+k.

0<k<i
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The May dr-differential takes the form

dr : Em−f,t,f,c
r −→ Em−f−r,t−1,f+1,c

r .

4.1. The h1-local E1-term

The elements h1n are typically abbreviated as hn. Consider the h1-localization E1[h−1
1 ] of the May 

E1-page. In order to simplify the calculation, we introduce the following notation.

Definition 4.1. In E1[h−1
1 ], define

(1) h′
n0 to be hn0 + h−1

1 h20hn−1,1.
(2) h′

n−1,2 to be hn−1,2 + h−1
1

∑n−1
k=2 hk,1hn−k,k.

We may replace the algebra generators hn0 and hn−1,2 by h′
n0 and h′

n−1,2 to obtain another set of algebra 
generators for E1[h−1

1 ] that will turn out to be calculationally convenient.

Definition 4.2.

(1) Let F1 be the M2[h±1
1 ]-subalgebra of E1[h−1

1 ] on polynomial generators h0, h20, hn1 for all n ≥ 2, and 
h′
n2 for all n ≥ 1.

(2) Let G1 be the F2-subalgebra of E1[h−1
1 ] on polynomial generators h′

n0 for n ≥ 3 and hij for i ≥ 1 and 
j ≥ 3.

Note that F1 is a differential graded subalgebra of E1[h−1
1 ] since d1(h20) = h1h0 and d1(hn1) = h1h

′
n−1,2. 

The generators of F1 are indicated in the figure below as the elements that are outside of the shaded region.
Note also that G1 is a differential graded subalgebra of E1[h−1

1 ] because d1(h′
n,0) =

∑n−1
j=3 hn−j,jh

′
j,0 if 

n ≥ 3. The generators of G1 are indicated in the figure below as the elements in the shaded regions.

Proposition 4.3. E1[h−1
1 ] splits as a tensor product F1 ⊗F2 G1.

Proof. This follows immediately from the definitions, using that h′
n0 and h′

n2 can be used as algebra gener-
ators in place of hn0 and hn2. �

We will now show that the perhaps obscurely defined subalgebra G1 is isomorphic to the familiar classical 
May E1-page.
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Proposition 4.4. Let Ecl
1 be the E1-page of the classical May spectral sequence. Consider the algebra map 

S : Ecl
1 −→ G1 determined by

(1) S(hn0) = h′
n+2,0 for all n ≥ 1.

(2) S(hnk) = hn,k+2 for all n ≥ 1 and k ≥ 1.

The map S is an isomorphism of differential graded algebras.

Proof. We need to check that S preserves the May d1 differential. This is a straightforward computation. �
4.2. The h1-local E2-term

We now have a good understanding of E1[h−1
1 ] from Propositions 4.3 and 4.4. Next we analyze the 

h1-localization E2[h−1
1 ] of the motivic May E2-page. Since localization is exact, E2[h−1

1 ] is isomorphic to 
the cohomology of the differential graded algebra E1[h−1

1 ].

Proposition 4.5. E2[h−1
1 ] is isomorphic to

M2[h±
1 ][b20, b21, b31, b41, . . .] ⊗F2 G2,

where bij = h2
ij and G2 is the cohomology of the differential graded algebra G1 from Definition 4.2.

Proof. This follows from the splitting given in Proposition 4.3. The calculation of the cohomology of the 
subalgebra F1 from Definition 4.2 is straightforward. �

Because of Proposition 4.4, we know that G2 is isomorphic to the classical May E2-page. May’s original 
calculation [10] of the classical E2-term in stems below 156 gives us complete understanding of G2 in a 
much larger range because the map S from Proposition 4.4 approximately quadruples degrees.

Generators and relations for E2[h−1
1 ] up to the Milnor–Witt 66-stem can be found in Tables 1 and 2, 

where we use the following notation. We remind the reader that all tables may be found in Section 7.

Notation 4.6. For an element x in the classical May spectral sequence, let x be the element S(x) of the 
h1-localized motivic May spectral sequence from Proposition 4.4.

According to this notation, the classical element c0 = h1h0(1) may be written as c0 = h2
1h0, so that 

the elements c0 and h0 are practically interchangeable. As the primary goal of our computation is to 
relate the answer to ExtA, we will most often choose to work with c0. However, we will opt instead to 
use h0 when it illuminates the structure of the h1-localized motivic May spectral sequence, especially in 
Section 4.3.

See also Table 3 for additional notation used on later pages. The names of many classes in the May 
spectral sequence have been chosen to agree with the notation of [9], and we denote the remaining new 
classes by yn.

4.3. The h1-local May differentials

We now understand E2[h−1
1 ] in a very large range of dimensions. The next step is to compute the higher 

differentials to obtain E∞[h−1
1 ].
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Proposition 4.7. Table 1 gives the values of the May d2 differential on the multiplicative generators of E2[h−1
1 ]

through the Milnor–Witt 66-stem.

Proof. As discussed in [6, §5], the d2 differential of the motivic May spectral sequence is easy to determine 
from the classical d2 differential; the formulas are the same, except that powers of τ must sometimes be 
inserted to balance the weights. This, combined with the fact that h1-localization kills the classes h0 and h2, 
leads to the values in Table 1. �

The values of the May d2 differential given in Table 1 allow us to compute E4[h−1
1 ] directly. A chart of 

E4[h−1
1 ] through the Milnor–Witt 66-stem is given in Section 8.

Remark 4.8. The element e0 = b21h0(1), or h1h0b21, is a permanent cycle. The relation e2
0 = h2

1h0
2g =

d0 · g = h−2
1 c20 · g leads to similar relations e0 · e0g = h−2

1 c20g
2, e0g · e0g = h−2

1 c20g
3, etc. Therefore, the 

elements e2
0, e0 · e0g, and (e0g)2 are represented in c0-towers in Section 8.

Remark 4.9. We do not attempt to list all relations in the May Er pages for r ≥ 4. Many of the relations 
that we use or that appear in the charts in Section 8 are simple consequences of E2-relations and May 
differentials. One exception is the relation c0 · y45 = 0 in the E4-page. The class y45 is decomposable, equal 
to

y45 = gν + h2
0h3Δ1.

The differential

d2(h0
2b31b41 + b20b21b41 + b30b21b31) = gν + h0

2h3Δ1 + h1(b20b41 + b30b31),

combined with the E2 relation h0h1 = 0, shows that h0y45 = 0 in E4.

Now we proceed to the higher May differentials and the higher h1-localized pages of the motivic May 
spectral sequence.

Proposition 4.10. For r ≥ 4, some values for the May dr differentials are given in Tables 4–10. The May dr
differentials are zero on all other multiplicative generators of Er[h−1

1 ] through the Milnor–Witt 66-stem.

Proof. Most of the differentials are forced by the known structure of ExtA[h−1
1 ] given in Theorem 3.4. For 

example, Theorem 3.4 implies that hk
1v3v4 are the only non-zero elements in the Milnor–Witt 22-stem with 

Chow degree 2. We know that hk
1e0 ·e0g survive the May spectral sequence to detect these elements. However, 

the element φ in the May E4-page is also in the Milnor–Witt 22-stem with Chow degree 2. Therefore, it 
cannot survive the May spectral sequence. The only possibility is that d6(φ) equals h1c

2
0h5.

There are a handful of more difficult cases, which are handled individually in the following lemmas. �
Lemma 4.11.

(1) d4(P) = h4
0h3.

(2) d4(Δ) = h4P.

Proof. For the first formula, we use Nakamura’s squaring operations [13] in the May spectral sequence to 
compute that
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d4(P) = d4(Sq0(b20)) = Sq1d2(b20) = Sq1(h2
0h2)

= Sq1(h2
0)Sq0(h2) + Sq0(h2

0)Sq1(h2) = 0 + h4
0h3.

The proof for the second formula is similar:

d4(Δ) = d4(Sq0(b30)) = Sq1d2(b30) = Sq1(h3b20)

= Sq1(h3)Sq0(b20) + Sq0(h3)Sq1(b20) = h4P + 0. �
Lemma 4.12. d6(c0gφΔ1) = h7

1D
′
3Δ1.

Proof. The class D′
3Δ1 cannot survive by Theorem 3.4. There are no classes for it to hit, and the only 

other differential that could possibly hit h7
1D

′
3Δ1 is d10(h−8

1 c0g
4φ). But d10(g4φ) = h13

1 gy45, so c0g4φ is a 
d10-cycle. �
Lemma 4.13.

(1) d8(Δ1P) = h−6
1 c20e

2
0h6.

(2) d8(P2) = h8
0h4.

Proof. Start with the relation c20 ·Δ1φ = h2
1e0 ·Δ1B1. We will show in Lemma 4.14 that Δ1B1 is a permanent 

cycle. Therefore, c20Δ1φ is a permanent cycle. However, Δ1φ cannot survive by Theorem 3.4, so we must 
have d10(Δ1φ) = h3

1e
2
0h6. Since d10(c20Δ1φ) must be zero, it follows that c20e2

0h6 must be zero in E10[h−1
1 ]. 

The only possibility is that d8(Δ1P) = h−6
1 c20e

2
0h6. This establishes the first formula.

For the second formula, we use Nakamura’s squaring operations [13] as in the proof of Lemma 4.11 to 
compute

d8(P2) = d8(Sq0(P)) = Sq1d4(P) = Sq1(h4
0h3)

= h8
0h4 + Sq1(h4

0)h2
3 = h8

0h4. �
Lemma 4.14. d10(Δ1B1) = 0.

Proof. We know that d16(e0g
4) = h16

1 e0h6, yet c20 · e0g
4 = h2

1e
2
0 · e0g

3 is a permanent cycle. So c20e0h6 must 
be zero in E16[h−1

1 ]. The only possibilities are that d10(Δ1B1) = h1c
2
0e0h6 or d14(g3B1) = h9

1c
2
0e0h6.

In the notation of Theorem 3.4, c0, e0, e0g and e0g
3 correspond to h2

1v2, h3
1v3, h7

1v4, and h15
1 v5 respectively. 

Since these elements are algebraically independent, we conclude that the relation h2
1e0(e0g)2 + c20 · e0g

3 = 0
in E∞[h−1

1 ] must be resolved by

h2
1e0(e0g)2 + c20 · e0g

3 = h7
1g

2B1

in ExtA[h−1
1 ].

Similarly, the relation e2
0 · e0g

3 + (e0g)3 = 0 in E∞[h−1
1 ] must be resolved in ExtA[h−1

1 ] by

e2
0 · e0g

3 + (e0g)3 = x,

where x is either h13
1 Δ1B1 or h5

1g
3B1. Multiply the first hidden relation by e2

0, multiply the second hidden 
relation by c20, and add to obtain

h2
1e

3
0(e0g)2 + c20(e0g)3 = h7

1e
2
0 · g2B1 + c20x.
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Again using Theorem 3.4, the left side of this last relation is not zero, so the right side is also not zero. 
This implies that x cannot be h5

1g
3B1, since h7

1e
2
0 · g2B1 equals h5

1c
2
0 · g3B1 in the May spectral sequence 

with no possible hidden extension.
Therefore, x must be h13

1 Δ1B1, and Δ1B1 must survive the May spectral sequence. �
4.4. E∞[h−1

1 ] and ExtA[h−1
1 ]

The May differentials given in Section 4.3 allow us to compute E∞[h−1
1 ] explicitly through the Milnor–

Witt 66-stem. See Section 8 for a chart of this calculation.
The final step is to pass from E∞[h−1

1 ] to ExtA[h−1
1 ] by resolving hidden extensions.

Proposition 4.15. Table 11 lists some relations in ExtA[h−1
1 ] that are hidden in E∞[h−1

1 ]. Through the 
Milnor–Witt 66-stem, all other hidden relations are multiplicative consequences of these relations.

Proof. Arguments for the relations involving g2B1 and Δ1B1 were given already in the proof of Lemma 4.14. 
The other relations in Table 11 are established similarly. �

Finally, we have calculated ExtA[h−1
1 ] through the Milnor–Witt 66-stem with the May spectral sequence 

and obtained the same answer as in Theorem 3.4. Multiplicative generators for ExtA[h−1
1 ] through the 

Milnor–Witt 66-stem are given in Table 12.

4.5. The h1-local May spectral sequence for A(2)

We sketch here the calculation of the h1-localized May spectral sequence over A(2). The E1-term is a 
polynomial algebra on the generators h0, h1, h2, h20, h21, and h30.

Then d1(h20) = h0h1 and d1(h21) = h1h2. As in Section 4.1, we replace h30 by h′
30 = h−1

1 h0(1) =
h30 + h−1

1 h20h21, so that d1(h′
30) = 0.

The E2-page is then the polynomial algebra M2[h±1
1 , b20, b21, h′

30], and the only differential is
d2(b20) = τh3

1.
It follows that E3 is given by F2[h±1

1 , b220, b21, h
′
30]. No more differentials are possible, and E3 = E∞.

Note that b220, b21, and h′
30 correspond respectively to v4

1 , h−1
1 a1, and v2 in the notation of Proposition 3.7.

5. The localization map

The calculation of ExtA is given in [9] up to the 70-stem. In this section, we will use the May spectral 
sequence analysis of ExtA[h−1

1 ] from Section 4 to determine the localization map

L : ExtA −→ ExtA[h−1
1 ]

in the same range. A detailed understanding of the localization map is essential for transfer of information 
between the localized and non-localized situations.

Proposition 5.1. Table 13 lists some values of the localization map L : ExtA → ExtA[h−1
1 ] on multiplicative 

generators of ExtA. Through the 70-stem, the localization map is zero on all generators of ExtA not listed 
in Table 13.

Proof. Note that ExtA[h−1
1 ] is concentrated in degrees (t, f, c) such that t −c is even. Many of the generators 

of ExtA are in degrees (t, f, c) such that t − c is odd. Therefore, all of these generators must map to 0 in 
the localization.
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The values of L on u, v, u′, v′, and U follow from applying the May E4 relation h4
1Δ = d2

0 + Pg to the 
May descriptions of these classes.

The remaining values are again determined by their May descriptions, together with the value of L(B1), 
which follows from the relation h7

1B1 = h2
1e

3
0 + c20 · e0g established in Proposition 4.15. �

Table 13 gives values for the localization map in two forms. First, it uses the notation from Theorem 3.4
involving the elements vn. Second, it uses a different notation for the generators of ExtA[h−1

1 ] given in 
Table 12 that is more compatible with the standard notation for ExtA.

With a detailed understanding of the localization map in hand, we can establish some hidden relations 
in ExtA that are needed in [9].

Corollary 5.2. The following hidden extensions hold in ExtA:

(1) e3
0 + d0 · e0g = h5

1B1.
(2) d0v + e0u = h3

1x
′.

(3) e0u
′ + d0v

′ = h2
1c0x

′.

Proof. Table 13 says that L(e3
0 +d0 ·e0g) equals h9

1v
3
3 +h9

1v
2
2v4, which is non-zero. It follows that e3

0 +d0 ·e0g

is non-zero in ExtA. From the calculation in [9], the only possibility is that it equals h5
1B1. This establishes 

the first formula.
The argument for the second formula is similar. Table 13 says that L(d0v+e0u) equals h6

1v
4
1v

2
2v4+h6

1v
4
1v

3
3 , 

which is non-zero. It follows that d0v + e0u is non-zero in ExtA, and the only possibility is that it equals 
h3

1x
′.

For the third formula, Table 13 says that L(e0u
′ + d0v

′) equals h7
1v

4
1v2v

3
3 + h7

1v
4
1v

3
2v4, which is non-zero. 

It follows that e0u
′ + d0v

′ is non-zero in ExtA. There are several possible non-zero values for e0u
′ + d0v

′. 
However, e0u

′ + d0v
′ must be annihilated by τ because both u′ and v′ are. Then h2

1c0x
′ is the only possible 

value. �
5.1. The localization map for A(2)

For completeness, we also describe the localization map

ExtA(2) −→ ExtA(2)[h−1
1 ].

The calculation of ExtA(2) is given in [8].

Proposition 5.3. Table 14 lists some values of the localization map L : ExtA(2) −→ ExtA(2)[h−1
1 ] on mul-

tiplicative generators of ExtA(2). The localization map is zero on all generators of ExtA(2) not listed in 
Table 14.

Proof. The generators for ExtA(2) are given in [8, Table 7]. The values of L follow by comparison of the 
localized and unlocalized May spectral sequences for A(2). �

Now consider the diagram

ExtA ExtA[h−1
1 ]

ExtA(2) ExtA(2)[h−1
1 ]
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in which the horizontal maps are localizations and the vertical maps are induced by the inclusion A(2) −→ A. 
Given that ExtA[h−1

1 ] and ExtA(2)[h−1
1 ] are computed explicitly in Theorem 3.4 and Proposition 3.7, one 

might expect that the map ExtA[h−1
1 ] −→ ExtA(2)[h−1

1 ] would be easy to determine. The obvious guess is 
that this map takes v4

1 to v4
1 , takes v2 to v2, and takes vn to 0 for n ≥ 3. However, the Cartan–Eilenberg 

spectral sequences of Section 3 hide some of the values of this map.

Lemma 5.4. The map ExtA[h−1
1 ] −→ ExtA(2)[h−1

1 ] takes v4
1, v2, v3, v4, v5, and v6 to v4

1, v2, h−3
1 a1v2, 

h−9
1 a3

1v2, h−21
1 a7

1v2, and h−45
1 a15

1 v2.

Proof. This follows from the May spectral sequence calculations of Section 4. The given values for 
ExtA[h−1

1 ] −→ ExtA(2)[h−1
1 ] are apparent on the May E∞-pages. We are using that a1 is represented 

by a1 = h1b21. �
Lemma 5.4 suggests an obvious conjecture on the complete description of the h1-localized restriction 

ExtA[h−1
1 ] −→ ExtA(2)[h−1

1 ].

Conjecture 5.5. The map ExtA[h−1
1 ] −→ ExtA(2)[h−1

1 ] takes v4
1 to v4

1 and takes vn to h−3(2n−2−1)
1 a2n−2−1

1 v2
for n ≥ 2.

6. The Adams spectral sequence for S[η−1]

Recall that ExtA is the E2-page for the motivic Adams spectral sequence that converges to the 2-complete 
motivic stable homotopy groups π∗,∗ of the motivic sphere S0,0. The element h1 in ExtA detects the motivic 
Hopf map η in π1,1.

Definition 6.1. Let S0,0[η−1] to be the homotopy colimit of the sequence

S0,0 η−→ S−1,−1 η−→ S−2,−2 η−→ . . . .

The homotopy groups π∗,∗(S0,0[η−1]) are then the target of an h1-localized Adams spectral sequence 
whose E2-page is ExtA[h−1

1 ]. However, we must consider convergence. A priori, there could be an infinite 
family of homotopy classes linked together by infinitely many hidden η-multiplications. These classes would 
not be detected in ExtA[h−1

1 ]. But this cannot occur, as the argument of [1] carries over readily to the 
motivic setting to establish a vanishing line of slope 1 in ExtA.

In the (s, f, w)-grading, the Adams differentials behave according to

dr : Es,f,w
r −→ Es−1,f+r,w

r .

In the h1-invariant grading, this becomes

dr : Et,f,c
r −→ Et−1,f+r,c+r−1

r .

Proposition 6.2. The Adams d2 differential for S0,0[η−1] takes the following values.

(1) d2(v4
1) = 0.

(2) d2(v2) = 0.
(3) d2(v3) = h1v

2
2.

(4) d2(v4) = h1v
2
3.

Proof. The first two formulas follow immediately because there are no possible non-zero values. The third 
formula follows from the Adams differential d2(e0) = h2

1d0 in the unlocalized case [9], together with the fact 
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that the localization map takes c0 and e0 to h2
1v2 and h3

1v3. The fourth formula follows from the Adams 
differential d2(e0g) = h2

1e
2
0 in the unlocalized case [9], together with the fact that the localization map takes 

e0 and e0g to h3
1v3 and h7

1v4. �
Proposition 6.2 suggests an obvious conjecture for the values of the Adams d2 differential on the rest of 

the generators of ExtA[h−1
1 ]. See Conjecture 1.2 for an explicit statement.

6.1. Motivic modular forms and Adams differentials

In the classical case, the topological modular forms spectrum tmf is a spectrum whose F2-cohomology is 
equal to the quotient Acl//A(2)cl. This implies that ExtA(2)cl is the E2-page of the Adams spectral sequence 
converging to the 2-complete homotopy groups of tmf .

One might speculate that there is a motivic spectrum mmf (called “motivic modular forms”) whose 
motivic F2-cohomology is isomorphic to A//A(2). Then ExtA(2) would be the E2-page of the motivic 
Adams spectral sequence converging to the 2-complete motivic homotopy groups of mmf . However, 
no such motivic spectrum is known to exist. See [15] for one piece of the program for constructing 
mmf .

In any case, we assume for the rest of this section that mmf does exist, and we explore some of the 
computational consequences.

Lemma 6.3. (See [8, §4.4].) Suppose that mmf exists. Then, in the Adams spectral sequence

ExtA(2) ⇒ π∗,∗(mmf ),

there is an Adams differential d2(a1) = h2
1c0.

Proof. Since d2(e0) = h2
1d0 in the Adams spectral sequence for S0,0, it follows that d2(e0) = h2

1d0 in the 
Adams spectral sequence for mmf as well.

We have the relation c0a1 = h2
1e0 in ExtA(2) [8]. Therefore, a1 must support a differential, and h2

1c0 is 
the only possible value.

Note that the element a1 was called u in [8]. �
Proposition 6.4. 4 Suppose that mmf exists. Then Conjecture 1.2 is equivalent to Conjecture 5.5.

Proof. The existence of mmf ensures that the Adams d2 differential is compatible with the map r : ExtA −→
ExtA(2), so that d2(r(vn)) = r(d2(vn)). For degree reasons, r(vn) is either equal to h−3(2n−2−1)

1 a2n−2−1
1 v2, 

or it is zero. Also for degree reasons, d2(vn) is either equal to h1v
2
n−1, or it is zero.

Suppose that Conjecture 1.2 holds. Then r(d2(vn)) equals h1r(vn−1)2. We may assume by induction that 
r(v2

n−1) equals h−3(2n−2−2)
1 a2n−2−2

1 v2
2 . In particular, this shows that r(d2(vn)) is non-zero. But r(d2(vn))

equals d2(r(vn)), so r(vn) must also be non-zero. This establishes Conjecture 5.5.
Now suppose that Conjecture 5.5 holds. Then d2(r(vn)) is equal to h−3(2n−2−2)+1

1 a2n−2−2
1 v2

2 because of 
the differential d2(a1) = h2

1c0 from Lemma 6.3. But d2(r(vn)) equals r(d2(vn)), so d2(vn) must also be 
non-zero. This establishes Conjecture 1.2. �
4 Conjecture 1.2 is settled, so Proposition 6.4 now says that if mmf exists, then Conjecture 5.5 holds.
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7. Tables

Table 1
Generators for May E2[h−1

1 ] in t ≤ 66.

Description (m − f, t, f, c) d2

h0 h−2
1 c0 = h30 + h−1

1 h20h21 (2, 3, 1, 1)
h1 h3 (0, 3, 1, 0)
h2 h4 (0, 7, 1, 0)
b20 h2

40 + h−2
1 h2

20h
2
31 (6, 14, 2, 2) h2

0
h2

h3 h5 (0, 15, 1, 0)
h0(1) h−1

1 h0(1, 3) = h50h3 + h−1
1 h20h31h23 + h40h23 + h−1

1 h20h41h3 (4, 18, 2, 1) h0h2

2

b21 b23 = h2
23 (2, 22, 2, 0) h2

1
h3 + h3

2

b30 h2
50 + h−2

1 h2
20h

2
41 (8, 30, 2, 2) h3b20

h4 h6 (0, 31, 1, 0)
h1(1) h3(1) = h4h33 + h23h24 (2, 34, 2, 0) h1h2

3

b22 b24 = h2
24 (2, 46, 2, 0) h2

2
h4 + h3

3

b31 b33 = h2
33 (4, 54, 2, 0) h4b21 + h2b22

b40 h2
60 + h−2

1 h2
20h

2
51 (10, 62, 2, 2) h4b30

h5 h7 (0, 63, 1, 0)

b20 b20 = h2
20 (2, 2, 2, 2) τh3

1
b21 b21 = h2

21 (2, 4, 2, 0) h2
1h1

b31 b31 = h2
31 (4, 12, 2, 0) h2b21

b41 b41 = h2
41 (6, 28, 2, 0) h3b31

b51 b51 = h2
51 (8, 60, 2, 0) h4b41

Table 2
Relations for May E2[h−1

1 ] in t ≤ 66.

Relation (m − f, t, f, c)
h0h1 (2, 6, 2, 1)
h1h2 (0, 10, 2, 0)
h2b20 + h0h0(1) (6, 21, 3, 2)
h2h3 (0, 22, 2, 0)
h2h0(1) + h0b21 (4, 25, 3, 1)
h3h0(1) (4, 33, 3, 1)
b20b21 + h2

1
b30 + h0(1)2 (8, 36, 4, 2)

h0h1(1) (4, 37, 3, 1)
h3b21 + h1h1(1) (2, 37, 3, 0)
h3h4 (0, 46, 2, 0)
b20h1(1) + h1h3b30 (8, 48, 4, 2)
h3h1(1) + h1b22 (2, 49, 3, 0)
h0(1)h1(1) (6, 52, 4, 1)
b20b22 + h2

0
b31 + h2

3
b30 (8, 60, 4, 2)

b22h0(1) + h0h2b31 (6, 64, 4, 1)
h4h1(1) (2, 65, 3, 0)

Table 3
Notation for the h1-localized May spectral sequence.

Description (m − f, t, f, c)
P b220 (4, 4, 4, 4)
e0 b21h0(1) = h1h0b21 (4, 7, 4, 1)
g b221 (4, 8, 4, 0)
B b20b21 + h2

0
b31 (8, 18, 4, 2)

B1 c0B (10, 21, 7, 3)
φ h1b21B (10, 22, 7, 2)
Δ1 b231 (8, 24, 4, 0)
D4 gh0(1) + h0h2b21b31 (8, 26, 6, 1)
P b2

20
(12, 28, 4, 4)

s1 h1h
2
4b21b31 + h1gb23 + h−1

1 h3h5b
3
21 (6, 30, 7, 0)

D′
3 h4

1b20h0(1) (10, 32, 8, 3)
y34 h5

2b21 + h2
1h3(1) (2, 34, 4, 0)

y35 h4b41 (6, 35, 3, 0)
d0 h0(1)2 (8, 36, 4, 2)
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Table 3 (continued)

Description (m − f, t, f, c)
ν h2b30 (8, 37, 3, 2)
e0 b20h0(1) (6, 40, 4, 1)
g b2

21
(4, 44, 4, 0)

y45 gν + h2

0
h3Δ1 (12, 45, 7, 2)

y60 h8
1b21b30 + h2

2
b30b21b31g (14, 60, 12, 2)

Δ b2

30
(16, 60, 4, 4)

y61 h4h0(1)b31 + h0b22b31 + h0h2

3
b41 + h0b31b21 (8, 61, 5, 1)

y64 b30h1(1) (10, 64, 4, 2)

Table 4
The h1-localized May d4 differential.

(m − f, t, f, c) d4

g (4, 8, 4, 0) h4
1h4

Δ1 (8, 24, 4, 0) gh5
P (12, 28, 4, 4) h4

0
h3

y35 (6, 35, 3, 0) y34
ν (8, 37, 3, 2) h2

0
h2

3

Δ (16, 60, 4, 4) h4P
b41ν (14, 65, 5, 2) h2

1y64

Table 5
The h1-localized May d6 differential.

(m − f, t, f, c) d6

φ (10, 22, 7, 2) h1c
2
0h5

c0g
3 (14, 27, 15, 1) h10

1 D4

h4g
3 (12, 31, 13, 0) h7

1s1

c0gφ (16, 33, 14, 3) h7
1D

′
3

h4gφ (14, 37, 12, 2) h9
1d0

h4gD4 (12, 41, 11, 1) h8
1e0

h4gs1 (10, 45, 12, 0) h9
1g

h4g
3Δ1 (20, 55, 17, 0) h7

1s1Δ1

c0gφΔ1 (24, 57, 18, 3) h7
1D

′
3Δ1

g2y45 (20, 61, 15, 2) h4
1y60

h4gφΔ1 (22, 61, 16, 2) h9
1Δ1d0

c0gφP (28, 61, 18, 7) h7
1D

′
3P

h4gφb41 (20, 65, 14, 2) h9
1b41d0

h4gD4Δ1 (20, 65, 15, 1) h8
1Δ1e0

Table 6
The h1-localized May d8 differential.

(m − f, t, f, c) d8

g2 (8, 16, 8, 0) h8
1h5

Δ2
1 (16, 48, 8, 0) g2h6

Δ1P (20, 52, 8, 4) h−6
1 c0

2e2
0h6

P2 (24, 56, 8, 8) h8

0
h4

c0Δ1y35 (16, 62, 10, 1) h6
1y61

Table 7
The h1-localized May d10 differential.

(m − f, t, f, c) d10

Δ1φ (18, 46, 11, 2) h3
1e

2
0h6

φP (22, 50, 11, 6) h−7
1 c60h6

c0g
6 (26, 51, 27, 1) h18

1 Δ1D4

g4φ (26, 54, 23, 2) h13
1 gy45

g2φ2 (28, 60, 22, 4) h12
1 c0b30D4

g2Δ1φ (26, 62, 19, 2) h13
1 Δ1ν
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Table 8
The h1-localized May d12 differential.

(m − f, t, f, c) d12

h5g
6 (24, 63, 25, 0) h12

1 h4h6g
3

φ2 (20, 44, 14, 4) h2
1c

4
0h6

c0g
4φ (28, 57, 26, 3) h19

1 b30D4

e0gΔ1φ (26, 61, 19, 3) h8
1h6e0φ

c0g
2φ2 (30, 63, 25, 5) h16

1 b30D
′
3

g2Δ1D4 (24, 66, 18, 1) h8
1h6gD4

Table 9
The h1-localized May d14 differential.

(m − f, t, f, c) d14

g2φ (18, 38, 15, 2) h9
1c

2
0h6

e0g
6 (28, 55, 28, 1) h21

1 b41D4

g4e0φ (30, 61, 27, 3) h18
1 b41D

′
3

Table 10
The h1-localized higher May differentials.

(m − f, t, f, c) dr Value

g4 (16, 32, 16, 0) d16 h16
1 h6

e2
0g

5 (28, 54, 28, 2) d18 h21
1 h6φ

g8 (32, 64, 32, 0) d32 h32
1 h7

Table 11
Hidden Relations in ExtA[h−1

1 ].

(t,f,c)

h2
1e

3
0 + c20 · e0g = h7

1B1 (21, 14, 3)
h2

1e0(e0g)2 + c20 · e0g
3 = h7

1g
2B1 (37, 22, 3)

h4
1e

4
0 · e0g + c40 · e0g

3 = h14
1 B1φ (43, 28, 5)

e2
0 · e0g

3 + (e0g)3 = h13
1 Δ1B1 (45, 24, 3)

h6
1e

7
0 + h4

1c
2
0e

4
0 · e0g + h2

1c
4
0e0(e0g)2 + c60 · e0g

3 = h23
1 PB1 (49, 34, 7)

Table 12
Generators for ExtA[h−1

1 ] in t ≤ 66.

May name Theorem 3.4 name (t, f, c) Adams d2

c0 h2
1v2 (3, 3, 1)

P v4
1 (4, 4, 4)

e0 h3
1v3 (7, 4, 1) c20

e0g h7
1v4 (15, 8, 1) h2

1e
2
0

e0g
3 h15

1 v5 (31, 16, 1) h2
1(e0g)2

e0g
7 h31

1 v6 (63, 32, 1) h2
1(e0g

3)2
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Table 13
The localization map ExtA −→ ExtA[h−1

1 ].

Element May description (s, f, w) Theorem 3.4 value Table 12 value

Pkh1 (1, 1, 1) + k(8, 4, 4) h1v
4k
1 h1P

k

Pkc0 (8, 3, 5) + k(8, 4, 4) h2
1v

4k
1 v2 Pkc0

Pkd0 (14, 4, 8) + k(8, 4, 4) h2
1v

4k
1 v2

2 h−2
1 Pkc20

Pke0 (17, 4, 10) + k(8, 4, 4) h3
1v

4k
1 v3 Pke0

e0g (37, 8, 22) h7
1v4 e0g

u Δh1d0 (39, 9, 21) h3
1(v

4
1v

2
3 + v6

2) h−3
1 (Pe2

0 + c60)
Pku (39, 9, 21) + k(8, 4, 4) h3

1v
4k
1 (v4

1v
2
3 + v6

2) h−3
1 Pk(Pe2

0 + c60)
v Δh1e0 (42, 9, 23) h4

1(v
4
1v4 + v4

2v3) h−3
1 (Pe0g + h−4

1 c40e0)
Pkv (42, 9, 23) + k(8, 4, 4) h4

1v
4
1(v4

1v4 + v4
2v3) h−3

1 Pk(Pe0g + h−4
1 c40e0)

B1 c0B (46, 7, 25) h4
1(v

2
2v4 + v3

3) h−7
1 c20e0g + h−5

1 e3
0

u′ Δc0d0 (46, 11, 25) h4
1(v

4
1v2v

2
3 + v7

2) h−4
1 (Pc0e

2
0 + h−6

1 c70)
Pku′ (46, 11, 25) + k(8, 4, 4) h4

1v
4k
1 (v4

1v2v
2
3 + v7

2) h−4
1 Pk(Pc0e

2
0 + h−6

1 c70)
v′ Δc0e0 (49, 11, 27) h5

1(v
4
1v2v4 + v5

2v3) h−4
1 (Pc0e0g + h−4

1 c50e0)
Pkv′ (49, 11, 27) + k(8, 4, 4) h5

1v
4k
1 (v4

1v2v4 + v5
2v3) h−4

1 Pk(Pc0e0g + h−4
1 c50e0)

B8 h0(1)B1 (53, 9, 29) h5
1(v

3
2v4 + v2v

3
3) h−6

1 c0(h−2
1 c20e0g + e3

0)
x′ h0(1)BP (53, 10, 28) h3

1v
4
1(v2

2v4 + v3
3) h−6

1 P (h−2
1 c20e0g + e3

0)
B21 h0(1)3B (59, 10, 32) h5

1(v
4
2v4 + v2

2v
3
3) h−8

1 c20(h
−2
1 c20e0g + e3

0)
B22 b21d0B (62, 10, 34) h6

1(v
2
2v3v4 + v4

3) h−6
1 e0(h−2

1 c20e0g + e3
0)

U Δ2h2
1d0 (64, 14, 34) h4

1(v
8
1v3v4 + v10

2 ) h−6
1 (P 2e0e0g + h−10

1 c100 )
P 2x′ (69, 18, 36) h3

1v
12
1 (v2

2v4 + v3
3) h−6

1 P 3(h−2
1 c20e0g + e3

0)

Table 14
The localization map for ExtA(2) −→ ExtA(2)[h−1

1 ].

Element May description (s, f, w) Value

P (8, 4, 4) v4
1

c (8, 3, 5) h1v2

u h1b21 (11, 3, 7) a1

d (14, 4, 8) h2
1v

2
2

e (17, 4, 10) a1v2

g (20, 4, 12) h−2
1 a2

1
Δh1 (25, 5, 13) h−5

1 v4
1a

2
1 + h1v

4
2

Δc (32, 7, 17) h−5
1 v4

1v2a
2
1 + h1v

5
2

Δu (35, 7, 19) h−6
1 v4

1a
3
1 + v4

2a1

Δ2 (48, 8, 24) h−12
1 v8

1a
4
1 + v8

2

8

(
(
(
(

(
(
(
(

d

. h1-localized motivic May spectral sequence charts

The following is a key for reading the charts.

1) The horizontal axes indicate the Milnor–Witt stem, i.e., the stem minus the motivic weight.
2) The vertical axes indicate the May filtration minus the Adams filtration.
3) Dots indicate copies of F2.
4) All of our calculations are free as a module over the polynomial ring F2[P ], so the charts only show the 

spectral sequence modulo P . The solid squares labeled P serve as a reminder of this.
5) Lines of slope 2/3 indicate multiplications by c0.
6) Arrows of slope 2/3 indicate infinitely many multiplications by c0.
7) Horizontal blue lines indicate multiplications by h2 = h4.
8) The May dr differential takes elements one unit to the left and r units downward.

In addition to the May d16 differentials, the chart of the E16-page also indicates the remaining higher 
ifferentials. In our range, all differentials except for d18 and d32 are trivial.
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