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i. Setting the scene. 

When seeking an analogue of ordinary cohomology for spaces with a 

specified finite group G of symmetries we may think first of Bredon's 

cohomology for obstruction theory [7], and its extention to the stable 

context [13], [14], [21]. However the difficulty of calculating with Bredon 

cohomology is a severe drawback. We shall consider instead a substitute which 

had already been developed by Borel and applied to give an alternative 

approach to Smith theory [6]. This is the theory defined for based G-spaces X 

by 

b (X;A) - H (EG+ ^C X;A) 

where EG+ is a nonequivariantly contractible free G-space with a G-fixed 

basepoint added and A is an abelian group of coefficients. It is referred to 

as Borel cohomology (the term "ordinary equivariant cohomology" is also used 

hut is liable to lead to confusion>. Because X is made free before the 

quotient is taken it is much easier to work with than most Bredon theories. 

One might expect this to make it a less powerful theory, but it turns 

out to be remarkably useful, especially for elementary abelian groups G and 

finite X. Indeed the remarkable recent theorem of Dwyer-Wilkerson [9] shows 

that in this case the localisation theorem can be refined to give a 

functorial description of the mod p cohomology of the fixed point set X G in 

terms of the mod p Borel cohomology b (X) of X. Indeed ~he particular potency 

on finite complexes suggests that perhaps the power really comes from 

homology: it is geometrically possible for homology to be strictly more 

powerful than cohomology since only infinite spaces may he essential but 

nonequivariantly contractible. 

Various other known theorems give further indications of the status of 

the theory. For example a well known theorem of Quillen [18] considers more 

general groups G of equivariance. It states that the Borel eohomology of a 

finite space X is determined by the fixed point sets X E for the various 

elementary abelian subgroups E of G. This shows that Bore1 homology ~s 

somewhat limited to elementary abelian groups. Moreover the general 

usefulness of the theory in both the elementary abelian and general cases has 

been established in the work of May [16] and Adams [4] on the Segal 

conjecture. 
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We shall attempt to put these various results in perspective by 

outlining the existence of a convergent and calculable Adams spectral 

sequence based on Borel homology for elementary abelian groups of 

equivarlance and commenting on the extension of this result to more general 

groups. The convergence theorem should be contrasted with the weaker ones 

available for the Adams spectral sequences based on Borel and coBorel 

cohomology [101 . 

In Section 2 we recall how an Adams spectral sequence is constructed, 

and state our main theorem ((2.7)) . In Section 3 we outline the proof of 

the convergence theorem. In Section 4 we explain why the coalgebra of 

cooperations is flat over the coefficient ring for elementary abelian groups; 

this is the essential step in establishing the calculability of the spectral 

sequence. Further details and applications will appear elsewhere. 

Henceforth G is a p-group and mod p coefficients are$~pressed. 

2. Constructing an Adams Spectral Sequence 

We now move into the stable world in which suspension by every real 

representation has been forced to be an isomorphism [3], [12]. To be at ease 

in this world we need systematic methods of calculation and from the 

nonequivariant context we recall that Adams spectral sequences provide such 

methods. Indeed on Adams spectral sequence is a machine to perform 

obstruction theory formulated in the language of homological algebra; thus to 

construct an Adams spectral sequence one attempts to perform homological 

resolutions of geometric objects. 

In most nonequivariant contexts one is either using mod p homology (in 

which case H.X is always projective over H. - Fp) or one is simply interested 

in ~.(Y) - [S0,Y]. when E.S 0 is projective over E.. Hence one can get away 

with just resolving Y by relative inJectives, without the need to resolve X 

at all. 

In the equivariant context Bredon homology with constant coefficients is 

very hard to use, and for other theories E the homology of a space will not 

always be projective. Nor can we be satisfied with the restriction to S O 

since at the very least we are interested in ~(Y) - [G/H+,Y]~. Hence we are 

forced to resolve X by b.-projectives. 

Thus we must attempt to form a resolution. 

(2.1) X - X 0 ---+ X I > X 2 ---~... 

T T T 
pO pl p2 

where b.P i is b.-protective and pi ~ X i is onto in b.(.). Hence 



142 

0 + b.X + b.P 0 e b.S-ip I + ... is a resolution of b.X by b.-proJectives in the 

usual sense. 

This has been proved to be possible when G is elementary abelian, but 

more generally I do not know if it is possible even for G - Z/4. If such a 

resolution (2.1) exists, all the usual UCT's exist and converge when G is a 

p-group and we use mod p coefficients . 

Still, suppose that for G such a resolution exists and let 

X ~ - holim X s and let X be defined by the cofibration 
a 

~- - - -+x ,  >x ~. 

Here b.X ~ - 0 so b. X - b.X. 

We also form an Adams tower as usual 

(2.2) 

where Qs ~ b ^ Ys 

ring spectrum b, 

Y " Y0 +- YI +-- Y2 +- "'" 

1 1 1 
Q0 QI Q2 

and Y ---9 b A Y is obtained via the unit of the 
s s 

The way to construct an Adams spectral sequence with the right Adams 

filtration is well known. We combine these and form the filtration 

W - U F(xi,y=) 
s i+j-s J 

where the lattice of function spectra has been converted to one of 

inclusions. 

This has 

and, by the Weak UCT, 

s,* - ¢[pi Qj]~ 

E1 i+j-s 

i b.~j}, (2.3) [pi, Qj]~ - Ho~.(b.P, 

This of course follows from the UCT, but one can perhaps prove it directly. 

All we need for the E2-term to work is the Weak K~nneth Theorem 

(2.4) b.(bAYj) - b.b ®b.b.Yj 

Again this follows from the UCT or directly provided we cheek that b.b is 

b.-flat. We discuss this in §4. 

In any ease~given (2.4) b.b is a b.-eomodule and 

0 --~ b.Y --+ b.Q 0 --+ b.SQI --9... is a resolution by relative injective 

b.-eomodules. Hence by (2.3) 
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as usual. 

E s t  b;) 
2 

Now there is the central matter of convergence. 

By an argument based on Ravenel's [19] we reduce the problem to a more 

familiar one. 

Proposition (2.5): We have a cofibration 

F(X, holim Ys ) ) ~olim W s ) F(X~,Y/~¢olim Ys ) 
s s s 

Now the double filtration spectral sequence converges iff the term 

~olim W s = *. However the usual type of convergence theorem says 
s 

holim Ys = *" Fortunately in our case X ~ is b.-acyclic and Y~olim Ys is 
s 

b-complete and so we have the following corollary telling us that the 

convergence problem is the same whether or not the resolution (2.1) of X 

exists. 

Corollary (2.6): holim W s = F(X, ~0~ Ys )" 
s s 

Finally we may state the m~in theorem. 

Resolving X by b.-proJectives 

Proving weak K~nneth and universal coefficient theorems. 

(3) Proving b.b is flat over b. 

and (4) Proving convergence. 

We shall only comment here on (3) and (4). The prospects of proving (i) 

and (3) for more general p-groups are indistinct. On the other hand (2) is 

unlikely to give problems, and in (4) the only difficulty is in formulating 

palatable conditions. 

One of the motivations for constructing the spectral sequence was a 

desire to understand relationship of the algebra to geometry in the proof of 

the Segal conjecture for elementary abelian groups. In ~he rank I case at 

least the Ext isomorphism of Lin [15] and Gunawardena [II] is the map of 

E2-terms of the above spectral sequence induced by the relevant map of 

spaces. Thus the spectral sequence is a glass for the study of equivariant 

topology which automatically takes account of Segal invariance phenomena at 

the very outset. 

follows 

(I) 

(2) 

Theorem (2.7): If G is elementary abelian and Y is p-complete and bounded 

below then there is a convergent Adams spectral sequence 

Es,t - Ex s,t [X,Y]~ 2 ~.b (b.X,b.Y) ~> 

Remarks: We have noted above that the main points in the proof are as 
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3. Convergence of the spectral sequence 

We have seen that whether or not we can construct the best behaved 

version of the spectral sequence, the convergence problem is that of proving 

holim Ys " * where the Ys are terms in the Adams tower 
s 

l 
Y2 ~ Q2 

l 
YI ) QI 

l 
Y - YO ) QO 

In the standard tower Qs ~ Ys ̂ b, but more generally we allow any b-injective 

resolution tower in the sense of Miller [17]. Since any two such resolutions 

are chain equivalent there is a map of spectral sequences inducing an iso 

of E2-terms and hence the homotopy type of holim Y is independent of which 
( s 

s 
tower we use. 

Now in equivariant topology it is standard practice to reduce to less 

equivariant problems by passage to fixed points, and it is no loss of 

generality to restrict ourselves to normal subgroups N. This is true stably 

too but there are two ways of getting a G/N-spectrum from a G-spectrum. We 

shall use features of each of them, so we recall the relevant properties from 

[12]. 

The Lewis-May categorical fixed point functor ~(.) 

We use this name since the functor's essential property is the 

isomorphism 

Indeed FN(.) i s  a r i g h t  a d j o i n t .  

[X, ~y]G/N - [ *X,y]C 

Where ~ : G 9 G/N is the quotient [12; II.4.4]. Thus FN(-) has certain 

categorical properties of the fixed point functor, and in particular it 

preserves products. It does not have the geometric properties; for example 

it does not preserve smash products, and the fixed points of a free spectrum 

are rarely trivial - they have features of the quotient. 

The ~eometrie fixed point functor, ~N(.) 

This fixed point functor extends the unstable one in the sense that 

for spaces X we have an equivalence ~ X N ~ ~Nz~x. Accordingly it behaves in 

a more familar fashion. It preserves smash products and vanishes on suitably 
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free spectra. It is to this that we refer with the name "geometric" and not 

to any means of definition. Finally it is represented in the sense that if 

[~] denotes the family of subgroups not containing N and E[~] is the 

unreduced suspension of the classifying space for [~] (i.e. "the part of S O 

over N") we have the following two facts which also combine to show #Nis a 

left adjoint. 

(i) For any G-spectrum X E[~N] ^ X = E[~N] A ~Nx 

~ ° 

[The symbol A allows for the fact that if we regard ~Nx as a b-spectrum via 

the quotient it will not have structure maps for all representations of G. 

After smashing termwise with the space E[~N] it is easy to build in the 

remaining representations to obtain the G-.spectrum E[~N] A @Nx in (I).] 

and 

(2) For any G-spectra X and Y IX, E[~N] A y]G - [#Nx,#Ny]G/N ' 

Furthermore the relationship between the functors is close. The 

Lewis-May functor ~ is more general in that 

~N(x) - FN(~[~N] ^ X) 

i.e. ~N(x) is the ~ fixed points of the part of X over N. 

Now we are in a position to state our theorem. 

Theorem (3.1): If G is an elementary abelian p-group and Y is a bounded 

below spectrum which is p-complete then holim Y = *. 
( s 

s 

The proof is by induction on the group order. The case G - I is 

covered by Adams' original theorem [i], [2]. Since b is H-equivariantly the 

Borel spectrum 
G 

[G/H+, holim Ys] , - 0 
s 

if H ~ G by induction. 

Hence we are reduced to consideration of F G holim Y = hollm FGy . Now 
s ( s 

s s 

it is very hard to analyse FGYs , so we shall show in (3.3) that it is enough 

to consider spectra Y of various special forms. Indeed we may assume that 

Y is concentrated over N (it is H-contractible for any subgroup not 

containing N) and is as free as is consistent with this, i.e. 

Y = ElaN) A EG/N+ A Y 

for various normal subgroups N. Then we can say F G - F G/N o ~ and 

FN(y s ^ ElaN] ^ EG/N+) ~ #N(Y s ^ EG/N+) 

#N(Ys) ^ EG/N+ 
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Now ~N applied to the original tower gives an Adams resolution by the ring 

spectrum ~Nb. So the proof amounts to the verification that this tower 

converges, and we shall do this by comparison with the G/N Borel Adams tower. 

For this we may work in Miller's context and note that the condition we 

require for ~N(.) ^ EG/N+ of the original tower to be a bG/N tower is that 

^ S O ^ EG/N+ 

bG/N A ~Nb G A EG/N+ .......... -) hG/N A S0A EG/N+ 

have a solution. We remark that it is futile to try to prove that 

bG/N A EG/N+ is a @Nb G module spectrum; even though (bG/N A EG/N+). 

H*BG+ [ eNl ] - H.(BG/N+) is a module over H*BG+ it is not over . It seems to be 

sufficient to find a good map ~Nb G A EG/N+---+ bG/N A EG/N+ (maps in the other 

direction are easy to come by). We note that this is certainly impossible in 

general since ~Gb G is contractible when G is not elementary abelian [20]. 

In our case we find 
G~N×G/N 

and it is quite easy to see that we have the following. 

Lemma 3,2: ~Nb G is equivalent to a wedge of copies of bG/N (one for 

each element of an F -basis of * -i P H (BN+) [e N ]). 

Hence the r e s o l u t i o n  { ~N(Ys) A EG/N+ }s i s  a h i g h l y  nonminimal 

r e s o l u t i o n  of  ~Ny A EG/N+ 

Hence 

holim[~N(Ys ) A EG/N+]= holim(eN(Y) A EG/N+) s 
s s 

Now if N ~ I this is contractible by induction. 

If N - I we have to consider 

holim(Y s ^ EG+). 
s 

To see this is contractible we first check that the result is G-free. 

we know this it is enough to check 

contractible and this follows from 

Now whenever the Y ^ EG are 
s + 

(s ~ Ys) A EG+ ----+ sn(Ys A EG+) is an 

diagram 

[T, s~(Ys ^ EG+)] G 

T 

Once 

°lim (Ys A EG+) is nonequivariantly 
s 

Adams' original result [i], [2]. 

uniformly bounded below, the natural map 

equivalence. This is because in the 

~ [ sII(Ys A EG(n))] G ( T, + 

To 
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the horizontals are iso if dim T < c + n where c is the connectivity of the 

Ys" It follows that s ~ (Ys ^ EG+) is free. 

Finally to see Ys ^ EG+ are uniformly bounded below we note that they are 

G-free and hence that we may appeal to the classical nonequivariant case. 

It remains to Justify the sufficiency of considering Y to be of the 

given special form. For this let G be a group with all subgroups normal. 

Lemma (3.3): S O may be built from spaces E[~N] A EG/N+ for various 

normal subgroups N of G, using a finite number of cofibrations. 

First ~e make some elementary observations in which ~, ~, are families 

of subgroups of G. 

Observations (3.4): (a) E~+ A E~+ = E(~ ~ ~)+ 

(b )  'E~ ^ F_, ~ ,= F-,(~ U ~)  

(c) E~; A E~+ = * iff ~ C 9. 

The fundamental construction is as follows: 

Suppose ~ ~ ~ then we may pick K E ~\~ adjacent to ~ and consider 

(3.5) Eg ^ E~+ ^ E[~K]+ ---+ E~ A E~+ ~ Eg A E[CK] ^ E~+ 

E~ ^ E[CK]+ E(S U (K)) A E~+ 

Hence we may keep adding conJugacy classes (K) to g until the right hand term 

is contractible. To deal with the first term we use 

(3.6) E~ ^ E[CK]+ A E[~K]+ ---~ E~ ^ E[cK]+ ---+ E~; ̂  E[~K] ^ E[=K]+ 

• since [CK] ~ [~K] ~ ~ E[~K] ^ E[~K]+ 

This is already enough since all subgroup K are normal and E[cN]+- EG/N+. 

Remark: For other groups the obstruction to an analogue of (3.3) should lie 

in a suitable Grothendieck group. The statement of the lemma is false for the 

dihedral group of order 8. 

4. The E2-term 

In this section we assume G is elementary abelian of rank r. 

Recall that all we need to do is check that b,b is b,-flat: in fact 

we shall show b,b is "just like b,S 0" . 

First choose maximal subgroups M l ..... M r such that 

G ~ G/M I x G/M 2 x . . . x  G/M r . 

and let Ni be nontrivial simple real representation of G via G/M i. 
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Then of course we have the cofibration 

E(G/Mi)+---+ S O ___+ S~Ni 

and this induces a short exact sequence 

0 --) b. --> b.[e(~i)-I ] ---+ b.(EG/Mi+) ) 0 

since e i - e(N i) is not a zero divisor. Indeed we see that, since e l, e 2, 

...,er_ I, e r is a regular sequence in b. 

0 --9 b. --9 b.[el I] --) D.(E(G/MI)+)[e-~] > ... 

-~ b.(E(G/MIXG/M 2 x ... x G/Mr_l)+)[er I] --> b. (EG+) --9 0 

is exact. 

From this we easily see that 

weak dim b.(E(G/M I x ... x G/Mi)+) S i 

Now with rather more effort we can prove for certain spectra T that the 

analogous sequence 

(4.1) 0 9 b,(T) ~ b,(T)[e~ I] ~ b,(E(G/MI)+AT)[e2 I] --9 ... 

b,(E(G/MIX...×G/Mr_I) + ^ T)[erl ] --+ b,(EG+ A T) --+ 0 

EG + 
is exact. Specifically this is true for the pointed_function space T - X 

for any G-fixed space X. and hence for T - h by passing to limits. 

Now we work the sequence in reverse. Since the projection 
EG 

EG+ > S O gives an equivalence EG+ ^ X + = EG+ A X (cf (4.3)) 

we have an isomorphism 
EG 

(4.2) b,(EG+ ^ X +) - b,EG+ ® H,X 

and so b.(EG+ A X EG+) is of weak dimension r. 

EG 
We steadily work down to b.(X +) and prove it has weak dimension 0 as 

required. 

This is not quite so simple since we cannot calculate 

-i 
b.(E(G/MIXG/M2x...xG/Mi)+ A T)[ei+l] as it stands. We must use a shorter 

version of (4.1) to deduce facts about it in terms of more localised groups. 

Finally, those sufficiently localised can be calculated for geometric 

reasons: 

Lemma (4.3): If A - B x C then we have an equivalence 

BC+ = E(B×C)+ 
X A EB+ A E[~CI ) X A EB+ A E[~C] 

The two simplest examples serve to illustrate how the argument is 
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implemented without obscuring matters in notation, 

Example i: If G - C 
P 

EG + 
then for T - X we have 

0 ----> b.T ----> b.T [e -1] ----> b.(T A EG+) 

EG+ 
Now (i) X ^ EG ~ X A EG so the final term is tractable + + 

- EG+) G - 
A S °p ~ (X A S ~p 

BG ~ 
= X + A S ~p so the middle term is tractable. 

EG+ 
and (2) X 

>0. 

Example 2: If G - C 2 x C 2 - {l,x,y.z} 

take M I - <x>, M 2 - <y> and write e~, e 9 for the respective Euler classes. 

EG + 
Then for T - X we have 

0 ---+ b.T ) b.T [e~ I] ---~ b.(gG/x+Ar) [e~ i] ---+ b.(EG+ ^ T) ---9 0 

EG+ 
Now (i) X 

EG+ 
(2) X 

A EG = X ^ EG so the final term is tractable + + 

A EG/x+ ^ S ~ X EG+ A ^ = A EG/x+ A S ~yez 

= X EG/y+ ^ EG/x+ ^ S ~9®zA 

= (xEG/y+) x ^ EG/x+ ^ S ~®zA 

Bx+ A A 

X ^ EG/x+ ^ S ~y~z 

so the penultimate term is tractable. 

(3) 0 --+ b.r[e~xl ] --+ b.T[e~ I] --+ B.(EG/y+ ^ T)[e~x I] --+ 0. 

The final term is already dealt with in (2), and for the middle term we 

use 

0 ---> b.T[e~xl , e~ l] --> b*T[e~l'e~r l ' e~  1] ---> b*(EG/z+ AT)[exlx ' y exl] ~ O. 

The final term is dealt with in (2) and the middle term is 

EG+ ~ EG+) G - 
X ^ S ~p = (X ^ S ~p 

BG 
= X + A S ~p and therefore tractable. 
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