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Abstract

Anick spaces are closely connected with both EHP sequences and the study
of torsion exponents. In addition they refine the secondary suspension and enter
unstable periodicity. In this work we describe their H-space properties as well
as universal properties. Techniques include a new kind on Whitehead product
defined for maps out of co-H spaces, calculations in an additive category that lies
between the unstable category and the stable category, and a controlled version
of the extension theorem of Gray and Theriault (Geom. Topol. 14 (2010), no. 1,
243–275).
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CHAPTER 1

Introduction

1.1. Statement of Results

By an Anick space we mean a homotopy CW complex T2n−1 which occurs in
a fibration sequence.

(1.1) Ω2S2n+1 πn �� S2n−1 �� T2n−1
�� ΩS2n+1

where the composition

Ω2S2n+1 πn �� S2n−1 E2
�� Ω2S2n+1

is homotopic to the prth power map on Ω2S2n+1.
We will say that a space is a homotopy-Abelian H-space if it has a homotopy

associative and homotopy commutative H-space structure.
Throughout this work we will assume that all spaces are localized at p � 5

unless otherwise indicated.

Theorem A. There is a homotopy-Abelian Anick space for any n � 1 and
r � 1.

We will write P 2n(pr) for the 2n dimensional Moore space S2n−1∪pr e2n. From
(1.1) we see that T2n−1 is 2n− 2 connected and there is a 2n-equivalence

i : P 2n(pr) �� T2n−1

For any homotopy-Abelian H-space Z, let [T2n−1, Z]H be the Abelian group of
homotopy classes of based H-maps from T2n−1 to Z. Let

pk(Z) = pr+k−1π2npk−1(Z;Z/pr+k).

Theorem B. [T2n−1, Z]H ∼= lim
←

Gk(Z) where G0(Z) = [P 2n(pr), Z] =

π2n(Z;Z/pr) and there are exact sequences:

0 �� pk(ΩZ)
e �� Gk(Z)

r �� Gk−1(Z)
β �� pk(Z).

In particular, if prπ∗(Z) = 0, there is an isomorphism

[P 2n(pr), Z] ≈ [T2n−1, Z]H

given by the restriction

P 2n(pr) �� T2n−1.

Several examples are given in Chapter 7. In particular

Corollary C. Given two homotopy-Abelian Anick spaces for the same values
of n, r and p > 3, there is an H map between them which is a homotopy equivalence.

1
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2 1. INTRODUCTION

Corollary D. In any homotopy-Abelian H-space structure on an Anick space,
the identity map has order pr.

Let T2n = S2n+1{pr}. Then analogous results1 to theorems A and B are well
known ([Nei83], [Gra93a]) when p > 3, and in particular, any map

α : Pn+1(pr) �� Pm+1(pr)

corresponds to a unique H-map α̂ such that the diagram

Pn+1(pr)
α ��

��

Pm+1(pr)

��
Tn

α̂ �� Tm

commutes up to homotopy, for any n and m. This result was the object of the
conjectures in [Gra93a].

In developing these results, several new techniques of geometric homotopy the-
ory are introduced. These may be of some use in other problems. A summary of
some of these techniques can be found in section 1.4.

In an appendix, we show that these results do not generally hold if p = 3, and
we treat the special case when n = 1.

The author would like to thank Joseph Neisendorfer for many helpful conver-
sations during this work.

1.2. History

A map πn : Ω
2S2n+1 �� S2n−1 with the property that the composition

Ω2S2n+1 πn �� S2n−1 E2
�� Ω2S2n+1

is homotopic to the prth power map was first discovered when p � 3 by Cohen,
Moore and Neisendorfer ([CMN79c],[Nei81]) and played a crucial role in deter-
mining the maximal exponent for the torsion in the homotopy groups of spheres.

In [CMN79a], the authors raised the question of whether a fibration such as 1.1
could exist. The feasibility of constructing a secondary EHP sequence refining the
secondary suspension ([Mah75], [Coh83]) together with a theory of compositions
([Tod56]) was studied in [Gra93a], [Gra93b]. This led the author to conjecture
the existence of Anick spaces with theorems A and B and corollaries C and D.

At about the same time, David Anick was studying the decomposition of the
loop space on a finite complex ([Ani92]). His intention was to find a list of inde-
composable spaces which, away from a few small primes, could be used for decom-
position. This led to the construction of a sequence of spaces for p � 5. The limit
of this sequence is the space sought after in [Gra93a]. This work of Anick was
published in a 270-page book ([Ani93]). In [AG95], the authors showed that the
Anick space so constructed admitted an H-space structure when p � 5. They also
proved a weaker version of Theorem B. They showed that if pk(Z) = 0 for all k, an
extension to an Anick space existed, but there was no indication that the extension
would be an H-map or that it would be unique. At that time it was thought that
the torsion condition was a peculiarity of the approach and, it was conjectured that,
as in the case of T2n = S2n+1{pr}, this requirement was unnecessary.

1In this case no torsion requirements are needed for Theorem B.
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1.3. METHODS AND MODIFICATIONS 3

In [The01], the author asserted theorem A and corollary C and that for each
homotopy Abelian H-space Z, there is an equivalence [P 2n(pr), Z] � [T2n−1, Z]H .
This, however, is not consistent with the results in [Gra12], where counter examples
are provided with Z is as Eilenberg–MacLane space. The assertions in [The01]
depend on the author’s Theorem 2.1 which is quoted as “to appear in Topology”
in the author’s bibliography. This, however, did not appear. Many of the results
in the author’s section 5 are inconsistent with results we obtain here. The main
result of the author’s section 4 is valid and we give a much simplified proof of it
here (2.9).

In [GT10] a much simpler construction of the Anick spaces was obtained which
worked for all p � 3. This result replicated the results of [Ani93] and [AG95] and
extended them to the case p = 3. Furthermore they showed that the homotopy type
of an Anick space that supports an H-space structure is uniquely characterized by
n, p and r.

In [Gra12], a proof was given that if pk(ΩZ) = 0 for all k, there is at most
one extension of a map α : P 2n �� Z to an H-map α̂ : T �� Z and examples were
presented to show that this torsion condition is necessary. The proof we give here
is entirely different.

In [GT10], the authors constructed the EHP sequences conjectured in
[Gra93a].

T2n−1
E �� ΩT2n

H �� BWn

T2n
E �� ΩT2n+1

H �� BWn+1

(where T2n = S2n+1{pr}), and BWn lies in a fibration sequence:

S2n−1 E2
�� Ω2S2n+1 ν �� BWn.

More details appear in the next section. The only remaining unsettled conjecture
in [Gra93a] for the Anick spaces is the following:

Conjecture E. There is a homotopy equivalence

BWn � ΩT2np−1(p)

where T2np−1(p) is the Anick space with r = 1.

In [The11], Theriault constructed T2n−1(2
r) for r � 3, but there is no H-space

structure in this case.

1.3. Methods and Modifications

Throughout this work we will fix n and abbreviate T2n−1 as T if this will not
lead to confusion. The construction in [GT10] begins with a fibration sequence:

(1.2) Wn
�� S2n−1 E2

�� Ω2S2n+1 ν �� BWn

where E2 is the double suspension map ([Gra88]). The authors construct a fac-
torization of the map ν:

Ω2S2n+1 Ω∂ �� ΩS2n+1{pr} H �� BWn

Licensed to Univ of Rochester.  Prepared on Thu Sep 12 15:07:34 EDT 2024for download from IP 128.151.13.59.



4 1. INTRODUCTION

where ∂ occurs in the fibration sequence defining S2n+1{pr}, the fiber of the degree
pr map on S2n+1. For any choice of H, there is a homotopy commutative diagram:

Ω2S2n+1

πn

��

Ω2S2n+1

pr

��
S2n−1 ��

��

Ω2S2n+1 ν ��

Ω∂
��

BWn

T
E ��

��

ΩS2n+1{pr} H ��

��

BWn

ΩS2n+1 ΩS2n+1

(1.3)

and consequently for each choice of H, the fiber of H is an Anick space by (1.1).
In [GT10], the authors proceed to show that for any such choice, the Anick

space admits an H-space structure such that the fibration 1.1 is an H-fibration.
Furthermore, they prove

Proposition 1.4 ([GT10, 4.9]). Fix n, r and p � 3. Then any two Anick
spaces which admit an H-space structure are homotopy equivalent.

The H-space structure is constructed in [GT10] as follows. The authors con-
struct a splitting:

(1.5) ΣT � G ∨W

where G is atomic and W is a 4n − 1 connected wedge of Moore spaces. A map
ϕ : G �� S2n+1{pr} is constructed from (1.5) and the adjoint of the map E in (1.3)

G �� ΣT
Ẽ �� S2n+1{pr}

and a space E is constructed as the fiber of ϕ:

ΩS2n+1{pr} ∂ �� E �� G
ϕ �� S2n+1{pr}.

The H-space structure arises from a factorization of H through the space E:

ΩG

h
��

ΩG

��
T

E ��

��

ΩS2n+1{pr} H ��

∂′

��

BWn

R ��

��

E
ν∞ ��

π
��

BWn

G G

(1.6)

h has a right homotopy inverse g : T �� ΩG defined by the splitting (1.5) since T
is atomic. Thus T inherits an H space structure as a retract of ΩG. The H-space
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1.4. OUTLINE OF MODIFICATIONS 5

structure depends on h and consequently on the choice of ν∞. The splitting (1.5)
and map ν∞ are defined inductively. The space G is filtered by subspaces Gk where

(1.7) Gk = Gk−1 ∪αk
CP 2npk

(pr+k)

and the fibration E
π �� G is the union of the induced fibrations

ΩS2n+1{pr} �� Ek
�� Gk.

The splitting (1.5) is approximated by a sequence of splittings:

ΣT 2npk � Gk ∨Wk

and ν∞ is simultaneously constructed by induction over the restriction of (1.6)
to Gk. The map ν∞ is then the limit of maps

νk : Ek
�� BWn.

The extension theorem [GT10, 21] is applied which guarantees that any map
νk−1 : Ek−1

�� BWn extends to Ek. An arbitrary choice is made for each k > 0.
It seems likely that the number of choices for ν∞ is uncountable.

1.4. Outline of Modifications

The basis of this paper is to modify and sharpen the construction in [GT10]
as described in section 1.3. As explained there, the H-space properties that the
Anick space inherits depend on a choice of a map

νk : Ek
�� BWn.

In Chapter 2, we introduce maps

Γk : ΩGk ∗ ΩGk
�� Ek

and prove that if we choose νk such that νkΓk is null homotopic for each k, the
induced H-space structure will be homotopy-Abelian. We also recall, at this point,
various facts about the Anick spaces that were developed in [GT10] which will be
needed in the sequel.

In Chapter 3, we recall from [Gra11] the construction of a Whitehead product
pairing

[G,X]× [H,X] �� [G ◦H,X]

where G and H are simply connected co-H spaces and G ◦ H is a new simply
connected co-H space. This generalizes the classical pairing:

[ΣA,X]× [ΣB,X] �� [ΣA ∧B,X].

We also generalize Neisendorfer’s theory of relative Whitehead products and H-
space based Whitehead products in the mod pr homotopy of a principal fibration
[Nei10a] by replacing Moore spaces with arbitrary co-H spaces. We then reduce
the question of whether νkΓk is null homotopic to whether a sequence of iterated
H-space based and relative Whitehead products Gk ◦ (Gk ◦ . . . Gk) �� Ek are an-
nihilated by νk for all i � 2.

In Chapter 4 we construct mod pr+i−1 homotopy classes a(i) and c(i) in Ek

for i � k and a modpr+k homotopy class βk which will play a key role. We
also introduce “index p approximation” and show that the iterated Whitehead
product under investigation can be approximated by iterated Whitehead products
in homotopy groups with coefficients in Z/ps for r � s � r+k. This approximation
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6 1. INTRODUCTION

excludes the case n = 1 which is handled in the appendix. These classes are the
obstructions and we seek to choose νk which annihilates them.

When k > 0, the obstructions actually belong to two classes, A and C depend-
ing on whether they involve the a(i) or the c(i). (It turns out that any obstruction
involving both a(i) and c(j) is automatically in the kernel of νk.) In 5.1 we sim-
plify the procedure by defining a quotient space Jk of Ek which is universal for
annihilating the classes as C. Jk is a principal fibration over a space Dk which is a
quotient2 of Gk and we seek a factorization of νk:

Ek
τk �� Jk

γk �� BWn

where γk annihilates the obstructions in A. In section 5.2 we introduce a congruence
relation among homotopy classes and the relative Whitehead products and H-
space basedWhitehead products have better properties in the congruence homotopy
category. This allows for a further reduction in obstructions to a collection of
mod pr homotopy classes.

In Chapter 6 we introduce the controlled extension theorem (6.1). This is a
modification of the extension theorem in [GT10, 2.2] which allows maps defined on
the total space of an induced fibration of a principal fibration over a subspace to be
extended over the total space under certain conditions. In the controlled extension
theorem, conditions are given for the extension to annihilate certain maps maps
u : P �� E. This is immediately applied to the case k = 0 where we construct νo
by induction over the skeleta of a space F0.

A complexity arises because for each k > 0, there are level k obstructions in
infinitely many dimensions. When we modify νk to eliminate these obstructions,
we can’t assume that it will be an extension of νk−1 and consequently the level
k − 1 obstructions may reappear. A separate argument (6.40) dispenses with this
issue. In section 6.2 we introduce the inductive hypothesis (6.7) and a space Fk is
analyzed to prepare for the inductive step. This is accomplished in section 6.3.

In Chapter 7, we discuss the universal properties of the Anick spaces. From
the fibration sequence (1.6) we extract the following fibration sequence

∗ �� ΩR �� ΩG
h �� T

∗ ��

which we think of as a presentation of T .
The proof of Theorem B depends on an understanding of the map R �� G.

From [GT10, 4.8] we know that for any choice of ν∞, R is a wedge of Moore
spaces. Certain of these Moore spaces are needed to resolve the relationship be-
tween H∗(ΩG;Z/p), which has infinitely many generators and H∗(T ;Z/p) which
has two generators. These are the classes a(i) and c(i). The others are necessary to
enforce the homotopy commutativity in H∗(T ;Z/p

r). These are either Whitehead
products or generalized Whitehead products3 defined by co-H-spaces in [Gra11].

2The space Dk, defined differently, occurs in the original construction of Anick ([Ani93]).
The results of [AG95] are obtained by replacing Dk by Gk.

3In particular, the first element in π∗(G) of order pr+k could not be a classical Whitehead
product for k > 0. It is defined as a composition

P 4npk (pr+k) �� Gk ◦Gk
W �� Gk

where W is a generalized Whitehead product.
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1.5. CONVENTIONS AND NOTATION 7

The obstruction to extensions depend on certain homotopy classes

β̃k : P
2npk−1(pr+k) �� ΩGk−1

which must be annihilated in order for an extension to proceed.
In the appendix we discuss the case n = 1 and the case p = 3.

1.5. Conventions and Notation

All spaces will be localized at a prime p � 3 and usually we will assume p � 5.
H∗(X) and H∗(X) will designate the mod p homology and cohomology. If other
coefficients are used (usually Z(p)) they will be specified in the usual way.

We write Pm(ps) = Sm−1 ∪ps em for the Moore space. Throughout we will fix
r � 1 and we will always have s � r. We will abbreviate Pm(pr) simply as Pm.
We will write ιm−1 and πm for the usual maps

Sm−1
ιm−1 �� Pm(ps)

πm �� Sm.

We designate the symbols β, σ, ρ for the maps

β : Pm(ps) �� Pm+1(ps)

ρ : Pm(ps) �� Pm(ps+1)

σ : Pm(ps) �� Pm(ps−1)

with β = ιmπm, πmρ = πm and σιm−1 = ιm−1. These symbols will not be indexed
by the dimension and can be composed, so that we have formulas

β = σβρ

p = σρ = ρσ

βσt = ptσtβ

where p is the degree p self map. We write

δt = βρt

and will frequently use the cofibration sequence

(1.8) Pm−1(ps) ∨ Pm(ps)
−δt ∨ ρt �� Pm(ps+t)

ps �� Pm(ps+t)
σt ∨ σtβ�� Pm(ps) ∨ Pm+1(ps)

especially when s = r + k − 1 and t = 1.
We will write νp(m)for the largest exponent of p that divides m and often set

s = νp(m). For any map x we will write x̃ for either its left or right adjoint, if there
is no possibility of confusion.

By a diagram of fibration sequences, we will mean a diagram in which any
sequences, either vertical or horizontal are fibration sequences up to homotopy.
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CHAPTER 2

Abelian Structures

We begin by reviewing some material about principal fibrations. In section 2.1,
we recall the construction of BWn ([Gra88]) and the extension theorem ([GT10]),
and for certain principal fibrations we construct a natural map Γ: ΩB∗ΩB �� E in
section 2.2. Γ is the lynchpin for generalizing Neisendorfer’s H-space based White-
head products. In 2.3 we give a short proof of a result of Theriault giving a criterion
for an H-space structure to be homotopy-Abelian. We use this to relate the map Γ
to the obstructions for the induced H-space structure on the fiber being homotopy
Abelian. We conclude with Proposition 2.12 which presents the conditions we will
establish in the next 4 chapters. Finally, we recall some results from [GT10] that
will be used in the sequel.

2.1. Preliminaries

In [Gra88], a clutching construction was described for Hurewicz fibrations in
case that the base is a mapping cone. This construction is particularly simple in
the case of a principal fibration.

Suppose ϕ : B �� X. We describe a principal fibration

ΩX
i �� E

π �� B

where E = {(b, ω) ∈ B × PX | ω(1) = ϕ(b)}, where PX is the space of paths
ω : I �� X with ω(0) = ∗.

In case B = B0 ∪θ CA, we have a pair of principal fibrations:

ΩX

��

ΩX

��
E0

��

π0

��

E

π
��

A

���
�

�
� θ �� B0

�� B

Clearly θ lifts to a map θ′ : A �� E0. We assert that there is a lifting θ : A �� E0

such that the composition:

A
θ �� E0

�� E

is null homotopic. For if the composition

A
θ′ �� E0

�� E

9
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10 2. ABELIAN STRUCTURES

is essential, it factors through ΩX up to homotopy, and we can use the principal
action

ΩX × (E,E0)
a �� (E,E0)

to define a different lifting θ : A �� E0 of θ in which the composition into E is null
homotopic. In particular, the composition

(CA,A)
θ �� (E,E0)

π �� (B,B0)

induces an isomorphism in homology.

Proposition 2.1 ([Gra88]) (Clutching Construction). Suppose

(E,E0)
π �� (B,B0)

is a Hurewicz fibration with fiber F where B = B0 ∪θ CA. Then there is a map

F × (CA,A)
ϕ �� (E,E0), and a pushout diagram

F × CA
ϕ �� E

F ×A
ϕ ��

��

E0

��

where πϕ : F × CA �� B is the projection onto CA ⊂ B. In particular

(2.2) E/E0
∼= F � ΣA.

In case that π is a principal fibration with fiber F = ΩX, we can take ϕ to be the
composition:

ΩX × (CA,A)
1× θ �� ΩX × (E,E0)

a �� (E,E0)

where a is the principal action map.

The following result ([Gra88]) is a simple application of 2.1.

Proposition 2.3. Localized at a prime p > 2, there is a fibration sequence

Ω2S2n+1 ∂ �� BWn × S4n−1 �� S2n E �� ΩS2n+1

where ∂ factors Ω2S2n+1 ν �� BWn
i1 �� BWn × S4n−1 and the homotopy fiber

of ν is S2n−1

S2n−1 E2
�� Ω2S2n+1 ν �� BWn.

Furthermore if p � 5, BWn has a homotopy-Abelian H-space structure and ν is an
H-map.

Using the work of Cohen, Moore and Neisendorfer, Theriault has proved

Proposition 2.4 ([The08]). BWn has H-space exponent1 p.

An important application of 2.1 is the extension theorem

1We say that an H-space has H-space exponent q if the qth power map is null homotopic in
some association.
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2.2. WHITEHEAD PRODUCTS 11

Extension Theorem 2.5 ([GT10, 2.1]). Suppose A is a co-H space such
that the map θ : A �� E0 is divisible by q in the co-H-space structure, and Z is a
connected H-space with H-space exponent q. Then the restriction

[E,Z] �� [E0, Z]

is onto.

This is a powerful tool and is the key to showing that each map νk−1 : Ek−1
��

BWn extends to a map νk : Ek
�� BWn in [GT10]. In section 6.1 we will enhance

this to the controlled extension theorem, which will allow for a good choice of
extension.

2.2. Whitehead Products

Whitehead and Samelson products in homotopy groups with coefficients were
introduced by Neisendorfer ([Nei80]). These included relative Whitehead products
and in [Nei10a], he introduced H-space based Whitehead products. These will be
useful in Chapter 3 where we will generalize these constructions to classes defined
on co-H spaces. At this point we will introduce a basic construction and show how
it is related to the question of homotopy-Abelian H-space structures.

For any space W , we define a homotopy equivalence of pairs

ξ : (C(ΩW ),ΩW ) �� (PW,ΩW )

by ξ(ω, s)(t) = ω(st).
Now construct a map

ω : ΩU ∗ ΩV �� U ∨ V.

We use the decomposition ΩU ∗ΩV = ΩU ×C(ΩV )∪C(ΩU)×ΩV where C is the
cone functor with vertex at 0 and define ω by

ΩU × C(ΩV )
π2 �� C(ΩV )

ε �� V �� U ∨ V

C(ΩU)× ΩV
π1 �� C(ΩU)

ε �� U �� U ∨ V

where ε is an evaluation.

Proposition 2.6 ([Gan70]). ω lifts to a homotopy equivalence with the ho-
motopy fiber of the inclusion U ∨ V �� U × V .

Proof. The homotopy fiber is the union of the parts over U and V ; i.e.,

F = ΩU × PV ∪ PU × ΩV.

According to [Str72], the pair (PW,ΩW ) is an NDR pair, so the induced map

ξ̂ : ΩU × C(ΩV ) ∪ C(ΩU)× ΩV �� ΩU × PV ∪ PU × ΩV

is a homotopy equivalence. �

Now suppose that

ΩX
i �� E

π �� B

is a principal fibration induced by a map ϕ : B �� X whereX is anH-space. We can
and will assume that the multiplication on X has a strict unit ([Nei10a, 11.1.11]).
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12 2. ABELIAN STRUCTURES

Proposition 2.7. There is a strictly commutative diagram,

ΩB ∗ ΩB
ω
��

Γ �� E

π
��

B ∨B
∇ �� B

where ∇ is the folding map. Furthermore, Γ is natural with respect to the data.

Proof. The square

B ∨B
∇ ��

��

B

ϕ
��

B ×B
ϕ× ϕ �� X ×X

μ �� X

is strictly commutative and induces a map of the induced principal fibrations. Γ is

the composition of ξ̂ with the map

ΩB × PB ∪ PB × ΩB �� E = {(b, ω) ∈ B × PX | ω(1) = ϕ(b)}
given by the formula

(ω1, ω2) ��

{
(ω1(1), ω(t)) if ω2(1) = ∗
(ω2(1), ω(t)) if ω1(1) = ∗

where ω(t) = μ(ϕ(ω1(t)), ϕ(ω2(t)). �

Recall (for example [Gra11, 3.4]) that there is a natural homotopy equivalence

Σ(X ∧ Y ) � X ∗ Y
such that the diagram

Σ(X ∧ Y )

−τ
��

� X ∗ Y

τ
��

Σ(Y ∧X) � Y ∗X
commutes up to homotopy, where the maps labeled τ are the transposition maps.

Proposition 2.8. Suppose that X is homotopy commutative. Then there is a
homotopy commutative diagram:

Σ(ΩB ∧ ΩB)

−τ

��

� ΩB ∗ ΩB
Γ

���
��

��
��

��
�

τ

��

E

Σ(ΩB ∧ ΩB) � ΩB ∗ ΩB
Γ

������������

Proof. By [Nei10a, 11.1.11], we can assume that the homotopy of com-
mutation μt(x1, x2) is stationary on the axes, where μ0(x1, x2) = μ(x1, x2) and
μ1(x1, x2) = μ(x2, x1). We then define

ωt(s) = μt (ϕ(ω1(s)), ϕ(ω2(s)))
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2.3. THERIAULT’S CRITERION 13

and use this to define Γt : ΩB ∗ ΩB �� E, a homotopy between Γ and Γτ . �

2.3. Theriault’s Criterion

The map ω : ΩB∗ΩB �� B∨B plays a role in a useful condition for an H-space
to have a homotopy-Abelian structure.

Proposition 2.9 ([The01, 4.12]). Suppose that

ΩB
h �� F

i �� E
π �� B

is a fibration sequence in which i is null homotopic. Suppose that there is a lifting
ω of ∇ω in the diagram:

ΩB ∗ ΩB ω ��

ω
��

E

π
��

B ∨B
∇ �� B

Then the H-space structure defined on F by any right inverse g : F �� ΩB of h
defines a homotopy-Abelian H-space structure.

Proof. For any pointed space Z let G = [Z,ΩB] and X = [Z, F ]. Then G is
a group which acts on X via the action map

ΩB × F
a �� F.

Since h has a right homotopy inverse, the orbit of ∗ ∈ X is all of X. The adjoint
of the composition

Σ(ΩB ∧ ΩB) � ΩB × ΩB
ω �� B ∨B

∇ �� B

is well known to be homotopic to the commuter map

ΩB ∧ ΩB
c �� ΩB.

(See, for example, [Gra11, 3.4]). Consequently, the existence of ω implies that
every commutator in G acts trivially on ∗ ∈ X; i.e., g(h∗) = h(g∗). Let N =
{g | g∗ = ∗} be the stabilizer of ∗. Then N is a normal subgroup since if g ∈ N ,
(hgh−1)(∗) = (hg)(h−1∗) = h−1(hg∗) = g∗ = ∗. Consequently X = G/N is a
quotient group of G. It is Abelian since g(h∗) = h(g∗). This group structure
on X = [Z, F ] is natural for maps in Z. Apply this in case Z = F × F and
Z = F × F × F to construct a homotopy-Abelian H-space structure on F . �

Now recall that we have fixed Gk and ϕk : Gk
�� S2n+1{pr} and we set G =⋃

Gk. Let E =
⋃
Ek. Consider the commutative diagram:

ΩS2n+1{pr}

��
ΩG ∗ ΩG

ω
��

Γ �� E

��
G ∨G

∇ �� G

(2.10)
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14 2. ABELIAN STRUCTURES

Proposition 2.11. If the composition:

ΩG ∗ ΩG Γ �� E
ν∞ �� BWn

is null homotopic, the induced H-space structure on T is homotopy Abelian.

Proof. Compare (2.10) with (1.6) and apply (2.9). �

2.4. Compatibility of Modifications

In the sequel we will construct maps νk : Ek
�� BWn such that the composition:

ΩGk ∗ ΩGk
Γk �� Ek

νk �� BWn

is null homotopic. We begin with an arbitrary choice of νk as in [GT10] and
modify it using the controlled extension theorem (6.1). Having done this, we have
no reason to assume that the composition:

Ek−1
ek �� Ek

νk �� BWn

is homotopic to νk−1. However, all modifications occur in dimensions 2npk and
larger, so we can assume these maps agree up to dimension 2npk − 2. The proof of
Theorem A will then follow from

Proposition 2.12. Suppose we can construct maps νk : Ek
�� BWn for each

k � 0 such that:

(a) Ω2S2n+1 Ω∂ �� ΩS2n+1{pr} ∂′
�� Ek

νk �� BWn

induces an isomorphism in H2np−2

(b) The composition:

ΩGk ∗ ΩGk
Γk �� Ek

νk �� BWn

is null homotopic for each k � 0.
(c) The restrictions of νkek and νk−1 to the 2npk − 2 skeleton of Ek−1 are

homotopic.
Then there is a map

ν∞ : E �� BWn

in ( 1.6) such that ν∞Γ is null homotopic and thus the induced H-space structure
on T is homotopy Abelian.

Proof. Since the inclusion:⋃
k�0

E2npk+1−2
k

�� E

is a homotopy equivalence, we can define ν∞ : E �� BWn which restricts to νk on

E2npk+1−2
k . Since ∂′ : ΩS2n+1{pr} �� E factors through Ek for each k, we have a
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2.5. PROPERTIES OF G AND T 15

homotopy commutative diagram:

ΩS2n+1{pr}

��

ΩS2n+1{pr}
H

����
���

���
��

��

BWn

Ek
�� E

νk

		������������

By (a), the composition:

Ω2S1n+1 Ω∂ �� ΩS2n+1{pr} H �� BWn

induces an isomorphism in H2np−2. Using cup product and the Bockstein, we can
conclude that this composition is an epimorphism in all dimensions and conse-
quently the fiber of this composition is S2n−1. Now compare with (1.3) to see that
the fiber of H is an Anick space.

In the diagram

(ΩGk ∗ ΩGk)
2npk+1−2 ��

��

E2npk+1−2
k

νk ��

��

BWn

ΩG ∗ ΩG Γ �� E
ν∞ �� BWn,

the upper composition is null homotopic for each k, so the lower composition is null
homotopic as well, thus the result follows from 2.11. �

2.5. Properties of G and T

We now recall, for future use, the properties of G and T that we will be using
in the sequel.

Theorem 2.13 ([GT10]). For p � 3, r � 1 and n � 1, there is an Anick space
T ; i.e., there is a fibration sequence

Ω2S2n+1 πn �� S2n−1 �� T �� ΩS2n+1

such that the composition

S2n−1 E2
�� Ω2S2n+1 πn �� S2n+1

has degree pr. Furthermore we have the following properties:
(a) There exists a space G and maps f, g, h such that the compositions

G
f �� ΣT

g̃ �� G

T
g �� ΩG

h �� T

are homotopic to the identity, where g̃ is the adjoint of g.
(b) Both T and G are atomic and p-complete.
(c) The homotopy type of T and G are unique satisfying these conditions.
(d) ΣT ∧ T is a wedge of Moore spaces.
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16 2. ABELIAN STRUCTURES

(e) For any H-space structure defined by the maps g, h in (a), there is an H-
map

E : T �� ΩS2n+1{pr}
such that Eh ∼ Ωϕ.

(f) H∗(T ;Z) is generated by classes vi ∈ H2npi

(T ;Z) for each i � 0 subject to
the relations vpi = pvi+1 and prv0 = 0.

(g) H∗(T ) � Z/p[v] ⊗
∧
(u) where |v| = 2n and |u| = 2n − 1. Furthermore

β(r+i)(vp
i

) = uvp
i−1.

(h) Hm(G;Z) =

{
Z/pr+i if m = 2npi

0 otherwise.

(i) ΣG and Σ2T are each homotopy equivalent to a wedge of Moore spaces.
(j) Any choice of νk : Ek

�� BWn in ( 1.6) has a right homotopy inverse.
(k) R is homotopy equivalent to a wedge of mod ps Moore spaces for s � r.
(l) ΣG ∧G is homotopy equivalent to a wedge of Moore spaces

Proof. Most of these are restatements of results in [GT10]. Properties (a),
(b), (c), (d), (e), and (f) are respectively 4.4, 4.7, 4.9, 4.3(m), 4.6, and 4.1 of [GT10].
Property (g) follows immediately by applying the Serre spectral sequence to 1.1.
Properties (h) and (i) are 4.3(c) and 4.5 respectively. For (j), a right homotopy
inverse is given by the composition

BWn
�� BWn × S4n−1 � E(1)

�� E0
�� Ek

constructed from the proof of 3.5. Property (k) is 4.8. For (l) note that ΩG �
T × ΣR since hg ∼ 1. Thus

ΣΩG � ΣT ∨ ΣΩR ∨ ΣT ∧ ΩR � W1 ∨ ΣT

where W1 is a wedge of Moore spaces by (i) and (k). Thus Σ2ΩG ∈ W and

ΣΩG ∧ ΩG � W1 ∧ ΩG ∨ ΣT ∧ ΩG � W2 ∨ T ∧ ΣΩG

� W3 ∨ ΣT ∧ T

which is in a wedge of Moore space by property (d). �
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CHAPTER 3

Whitehead Products

In this chapter we will review and extend some results in [Gra11] which gener-
alize the notion of Whitehead products. In particular1 given two simply connected
co-H spaces G and H, we will construct a new co-H space G ◦H and a cofibration
sequence

G ◦H W �� G ∨H �� G×H.

Composition with W defines a more general notion of Whitehead products. In
section 3.1 we will review the material in [Gra11]. In section 3.2 we will dis-
cuss relative Whitehead products and H-space based Whitehead products which
have been developed for homotopy groups with coefficients in Z/pr by Neisendor-
fer [Nei10a]. We will define these in the total space of a principal fibration using
co-H spaces in place of Moore spaces. In section 3.3 we will use these products to
decompose ΩG ∗ΩH and ΩG�H when G and H are co-H spaces and decompose
the map Γ from section 2.2 as a wedge of iterated Whitehead products when the
base is a co-H space. In section 3.4 we recall and generalize slightly the results of
Neisendorfer in the case that G and H are Moore spaces.

3.1. Defining Whitehead Products Using co-H Spaces

Given two simply connected co-H spaces G,H, we introduce a new co-H space
G ◦H together with a cofibration sequence:

G ◦H W �� G ∨H �� G×H.

To do this, suppose that G and H are given co-H space structures by constructing
right inverses to the respective evaluation maps:

G
ν1 �� ΣΩG

ε1 �� G

H
ν2 �� ΣΩH

ε2 �� H.

We define a self map e : Σ(ΩG ∧ ΩH) �� Σ(ΩG ∧ ΩH) as the composition

Σ(ΩG ∧ ΩH)
ε1 ∧ 1 �� G ∧ ΩH

ν1 ∧ 1 �� Σ(ΩG ∧ ΩH)
1 ∧ ε2 �� ΩG ∧H

1 ∧ ν2 �� Σ(ΩG ∧ ΩH);

G ◦H is then defined as the telescopic direct limit of e. We then have:

Proposition 3.1 ([Gra11, 2.1,2.3]). The identity map of G ◦H factors:

G ◦H
ψ �� Σ(ΩG ∧ ΩH)

θ �� G ◦H.

1Throughout Chapter 3, G and H will designate an arbitrary co-H space. Then we will
return G as to designating the co-H space corresponding to T in future chapters.

17
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18 3. WHITEHEAD PRODUCTS

Furthermore, if f : G �� G′ and g : H �� H ′ are co-H maps, there are induced
co-H maps so that the diagram

G ◦H

f ◦ g
��

ψ �� Σ(ΩG ∧ ΩH)
θ ��

Σ(Ωf ∧ Ωg)
��

G ◦H

f ◦ g
��

G′ ◦H ′ ψ′
�� Σ(ΩG′ ∧ ΩH ′)

θ′ �� G′ ◦H ′

commutes up to homotopy.

Since G◦H is the limit of the telescope defined by e, θe ∼ θ, so the composition

G ◦H
ψ �� Σ(ΩG ∧ ΩH)

e �� Σ(ΩG ∧ ΩH)
θ �� G ◦H

is homotopic to the identity. The map e, however, is a composition of 4 maps
between co-H spaces, and thus G◦H is a retract of 3 different co-H spaces and one
of them, Σ(ΩG∧ΩH), in two potentially distinct ways. This provides 4 potentially
distinct co-H space structures on G◦H. We choose the structure defined by ψ and
θ; viz.,

G ◦H
ψ �� Σ(ΩG ∧ ΩH)

Σθ̃ �� ΣΩ(G ◦H)

or equivalently

G◦H
ψ �� Σ(ΩG∧ΩH) �� Σ(ΩG∧ΩH) ∨ Σ(ΩG∧ΩH)

θ∨θ �� G◦H∨G◦H

where θ̃ is the adjoint of θ.

Proposition 3.2 ([Gra11, 2.3,2.5]). There are co-H equivalences
G ◦ ΣX � G ∧X, Σ(G◦H) � G∧H which are natural for co-H maps in G and H
and continuous maps in X.

Proposition 3.3 ([Gra12, 3.3]). There is a natural cofibration sequence

G ◦H W �� G ∨H �� G×H

where W is the composition:

G ◦H
ψ �� Σ(ΩG ∧ ΩH)

ω �� G ∨H.

Definition 3.4. Let α : G �� X and β : H �� X. We define the Whitehead
product2

{α, β} : G ◦H �� X

as the composition

G ◦H W �� G ∨H
α ∨ β �� X.

2We use the notation {α, β} rather than the usual [α, β] since in an important application we
need to make a distinction. That is the case when G and H are both Moore spaces. In this case G◦
H is a wedge of two Moore spaces. By choosing the higher dimensional one, Neisendorfer [Nei80]
defines internal Whitehead products in homotopy with coefficients in Z/pr. This is denoted [α, β],
while {α, β} is the “external” Whitehead product.
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3.2. H-SPACE BASED AND RELATIVE WHITEHEAD PRODUCTS 19

Proposition 3.5. Each Whitehead product {α, β} : G◦H �� X factors through
the “universal Whitehead product”

w = ∇ω : Σ(ΩX ∧ ΩX) �� X ∨X �� X.

Proof. {α, β} is the upper composition in the commutative diagram:

G ◦H
ψ �� Σ(ΩG ∧ ΩH)

��

ω �� G ∨H

��
Σ(ΩX ∧ ΩX)

ω �� X ∨X
∇ �� X

The result follows since the bottom composition is w = ∇ω �

3.2. H-space Based and Relative Whitehead Products

In this section we will discuss H-space based Whitehead products and relative
Whitehead products. In the case that G and H are Moore spaces, this material
is covered in [Nei10a], and what we present is a mild generalization. We need
to consider Whitehead products instead of their adjoints—the Samelson products
(which Neisendorfer considered) since the domains are not necessarily suspensions.
We also consider principal fibrations, so these products occur in the total space
rather than the fiber of a fibration as in Neisendorfer’s version. We wish to thank
Joe Neisendorfer for several interesting conversations during the development of
this material.

We begin with a principal fibration

ΩX
i �� E

π �� B

induced by a map ϕ : B �� X. The (external) relative Whitehead product then is
a pairing

[G,B]× [H,E] �� [G ◦H,E].

In the case that X is a homotopy commutative H-space with strict unit, we also
define the H-space based Whitehead product. It is a pairing

[G,B]× [H,B] �� [G ◦H,E].

Suppose we are given maps:

G
α �� B, H

β �� B, G
γ �� E, H

δ �� E.

We will use the notation

{α, γ}r ∈ [G ◦H,E]

for the relative Whitehead product and

{α, β}× ∈ [G ◦H,E]
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20 3. WHITEHEAD PRODUCTS

for the H-space based Whitehead product. These products and the absolute White-
head product are related by the following formulas to be proved:

π{α, β}× ∼ {α, β} : G ◦H �� B;(3.6c)

{πγ, πδ}× ∼ {γ, δ} : G ◦H �� E;(3.6e)

π{α, δ}r ∼ {α, πδ} : G ◦H �� B;(3.11c)

{πγ, δ}r ∼ {γ, δ} : G ◦H �� E.(3.11e)

{α, δ}r ∼ {α, πδ}× : G ◦H �� E;(3.12)

We begin with the H-space based Whitehead product. These are defined using
the map Γ from (2.7). The product {α, β}× is defined as the homotopy class of the
upper composition in the diagram:

G ◦H
ψ ��

W 

���
���

���
���

���
Σ(ΩG ∧ ΩH) � ΩG ∗ ΩH

ω
��

�� ΩB ∗ ΩB Γ ��

ω
��

E

π
��

G ∨H
α ∨ β �� B ∨B

∇ �� B.

Proposition 3.6. Given α : G �� B and β : H �� B, the homotopy class of
the H-space based Whitehead product

{α, β}× : G ◦H �� E

depends only on the homotopy classes of α and β. Furthermore
(a) If f : G′ �� G and g : H ′ �� H are co-H maps,

{α, β}×(f ◦ g) ∼ {αf, βg}×.

(b) Given an induced fibration

E′ ξ̃ ��

��

E

��
B′ ξ �� B

ϕ �� X

and α′ : G �� B′, β′ : H �� B′, we have

ξ̃ {α′, β′}× ∼ {ξα′, ξβ′}× : G ◦H �� E.

(c) π{α, β}× ∼ {α, β} : G ◦H �� B.
(d) Suppose η : X �� X ′ is a strict H-map and we have a pointwise commuta-

tive diagram

B
ξ ��

ϕ
��

B′

ϕ′

��
X

η �� X ′
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3.2. H-SPACE BASED AND RELATIVE WHITEHEAD PRODUCTS 21

which defines a map of principal fibrations:

E
ξ̃ ��

��

E′

��
B

ξ �� B′.

Then

ξ̃{α, β}× ∼ {ξα, ξβ}× : G ◦H �� E′.

(e) {πγ, πδ}× ∼ {γ, δ} : G ◦H �� E.

Proof. These all follow directly from the definition except for (e). To prove
this we apply (d) to the diagram

E
π ��

k
��

B

ϕ
��

PX
ε �� X

where k(b, ω) = ω. Give PX the H-space structure of pointwise multiplication of
paths in X. Then ε is a strict H-map. This gives a map of principal fibrations:

Ẽ
π̃ ��

e
��

E

π
��

E
π �� B.

By (d) we have

π̃{γ, δ}× ∼ {πγ, πδ}×.
It suffices to show that π̃ ∼ e by applying part (c) to the left hand fibration. The

space Ẽ ⊂ (B × PX)× PPX can be described as follows

Ẽ = {(b, σ) ∈ B × PPX | ϕ(b) = σ(1, 1), σ(s, 0) = σ(0, t) = ∗}
with π̃(b, σ) = (b, ω) where ω(t) = σ(t, 1) and e(b, σ) = (b, ω′) where ω′(t) = σ(1, t).

Define F : Ẽ × I × I �� X by σ. The result then follows from:

Homotopy Rotation Lemma 3.7. Suppose F : A×I×I �� B and F (a, 0, t) =
F (a, s, 0) = F (∗, s, t) = ∗. Then there is a homotopy

H : A× I × I �� B

such that

H(a, 0, t) = F (a, 1, t)

H(a, 1, t) = F (a, t, 1)

H(a, s, 1) = F (a, 1, 1)

H(a, s, 0) = H(∗, s, t) = ∗

Proof. The left side and the bottom of the square are mapped to the base-
point. By rotating from the top to the right hand side pivoting at the point (1, 1),
we obtain the required homotopy. � �
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22 3. WHITEHEAD PRODUCTS

We now describe the relative Whitehead product. We assume a principal fibra-
tion

ΩX
i �� E

π �� B

induced by a map ϕ : B �� X (as in section 2.1), but we won’t assume an H-space
structure on X. Define k : E �� PX by the second component, so k(e)(1) = ϕπ(e).
The principal action

a : ΩX × E �� E

is defined by the formula

a(ω, e) = (π(e), ω′)

where ω′ is given by

ω′(t) =

{
ω(2t) 0 � t � 1/2

k(e)(2t− 1) 1/2 � t � 1.

We then describe a strictly commutative diagram of vertical fibration sequences

ΩB
d ��

��

ΩX

i
��

ΩB × E ∪ PB
Γ′

��

ϕ
��

E

π
��

B ∨E
1 ∨ π �� B

where ΩB × E ∪ PB is to be considered as a subspace of PB × E, and the map
ϕ is given as follows: ϕ|ΩB×E is the projection onto E and ϕ|PB is end point
evaluation. The map Γ′ is defind by the formula

Γ′(ω, e) = a(ϕω, e) for (ω, e) ∈ ΩB × E

Γ′(ω) = (ω(1), ϕω̃) for ω ∈ PB

where3 ω̃(t) = ω(2t), and the map d : ΩB �� ΩX is given by d(ω) = ϕω̃. The left
hand fibration is the principal fibration induced by the projection π1 : B ∨E �� B.

Observe that

ΩB × E ∪ PB � ΩB × E ∪ C(ΩB) � ΩB � E.

We record an important commutative diagram

ΩB × E

��

Ωϕ× 1 �� ΩX × E

a
��

ΩB � E � ΩB × E ∪ PB
Γ′

�� E

(3.8)

which will be useful in evaluating the relative Whitehead products in homology.

3For convenience, we extend maps [0, 1]
f �� X to the real line by f(x) = f(0) for x < 0

and f(x) = f(1) for x > 1.
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3.2. H-SPACE BASED AND RELATIVE WHITEHEAD PRODUCTS 23

Consider the strictly commutative square

B ∨E

��

B ∨E

π1

��
B × E

π1 �� B.

Taking homotopy fibers vertically, we obtain a diagram of principal fibrations

Ω(B × E)

��

Ωπ1 �� ΩB

��
ΩB × PE ∪ PB × ΩE

ζ ��

��

ΩB × E ∪ PB

��
B ∨ E B ∨ E

The map ζ is defined by the formula

ΩB × PE
1× ε �� ΩB × E

PB × ΩE
π1 �� PB

Combining these diagrams, we obtain a strictly commutative diagram

ΩB ∗ ΩE

W �����
����

����
����

�� � ΩB × PE ∪ PB × ΩE
ζ ��

��

ΩB × E ∪ PB
Γ′

��

��

E

π
��

B ∨ E B ∨ E
1 ∨ π �� B.

(3.9)

For α : G �� B and δ : H �� E, we define the relative Whitehead product

{α, δ}r : G ◦H �� E

as the composition

(3.10) G ◦H
ψ �� ΩG ∗ ΩH �� ΩB ∗ ΩE

ζ �� ΩB × E ∪ PB
Γ′

�� E

and, analogous to 3.6, we have

Proposition 3.11. The homotopy class of the relative Whitehead product
{α, δ}r depends only on the homotopy classes of α and δ. Furthermore

(a) If f: G′ �� G and g : H ′ �� H are co-H maps, then

{α, δ}r · (f ◦ g) ∼ {αf, δg}r.
(b) Given an induced fibration

E′

��

ξ̃ �� E

��
B′ ξ �� B

ϕ �� X
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and classes α′ : G �� B′, δ′ : H �� E′, we have

ξ̃{α′, δ′}r ∼ {ξα′, ξ̃δ′}r.
(c) π{α, δ}r ∼ {α, πδ}.
(d) Suppose we have a strictly commutative diagram

B
ξ′ ��

ϕ
��

B′

ϕ′

��
X

η �� X ′

inducing a map between principal fibrations:

E
ξ′ ��

π
��

E′

π′
��

B
ξ �� B′

Then ξ′{α, δ}r ∼ {ξα, ξ′δ}r.
(e) {πγ, δ}r ∼ {γ, δ}.

Proof. All parts except (e) follow directly from the definitions. For part (e)
we construct a map of principal fibrations exactly as in 3.6(e):

Ẽ
π̃ ��

e
��

E

π
��

E
π �� B

Recall that e ∼ π̃, and since PX is contractible, both e and π̃ are homotopy

equivalences. Choose δ̃ : H �� Ẽ such that π̃δ̃ ∼ δ. Then by part (d) we have

{πγ, δ}r ∼ π̃{γ, δ̃}r ∼ e{γ, δ̃}r ∼ {γ, eδ̃}
by part (c). However this is homotopic to {γ, π̃δ̃} ∼ {γ, δ}. �

At this point we will discuss the compatibility of the H-space based Whitehead
product and the relative Whitehead product.

Theorem 3.12. Suppose X is an H-space with strict unit and we are given
α : G �� B, δ : H �� E. Then

{α, δ}r ∼ {α, πδ}×
Proof. To prove this we will combine two homotopies and 3.12 is a conse-

quence of Proposition 3.15. The first homotopy will replace the sequential compo-
sition of paths in the definition of the action map a and Γ′ with a blending of the
homotopies using the H-space structure in X. The second homotopy will apply the
homotopy rotation lemma (3.7). Recall the map k : B �� PX with the property
that εk ∼ ϕπ

E
π ��

k
��

B

��
PX

ε �� X
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3.2. H-SPACE BASED AND RELATIVE WHITEHEAD PRODUCTS 25

Lemma 3.13. There is a homotopy as : ΩX×E �� E with a1 = a and a0 given
by the formula

a0(ω, e) = (π(e), μ(ω(t), k(e)(t)))

and a compatible homotopy Γ′
s : ΩB ×E ∪ PB �� E with Γ′

1 = Γ′ and Γ′
0 given by

the formula

Γ′
0(ω, e) = (π(e), μ(ϕω(t), k(e)(t))

Γ′
0(ω) = (ω(1), ωϕ) for ω ∈ PB

Proof. Recall that any map ω : [0, 1] �� X is to be extended to a map ω : R ��

X by defining ω(x) = ω(0) if x < 0 and ω(x) = ω(1) if x > 1. Then, for example,

μ(ω(2t), k(e)(2t− 1)) =

{
ω(2t) if 0 � t � 1/2

k(e)(2t− 1) if 1/2 � t � 1

since ω(1) = k(e)(0) = ∗, the unit for μ. We define

as(ω, e) = (π(e), ωs)

where

ωs(t) = μ

(
ω

(
2t

2− s

)
, k(e)

(
2t− s

2− s

))
.

We define Γ′
s(ω, e) = as(ϕω, e) and Γ′

s(ω) =

(
ω(1), ϕω

(
2t

2− s

))
in case ω ∈

PB. �
Using Γ′

0 we consider the composition

ΩB ∗ ΩE
ζ �� ΩB × E ∪ PB

Γ′
0 �� E.

Using the identification ΩB ∗ ΩE � PB × ΩE ∪ ΩE × PB, we have the following
formula for this composition

(3.14) (ω1, ω2) �� (ω1, ω2(1)) �� (πω2(1), μ(ϕω1(t), k(ω2(1))(t))).

We now apply 3.7 to the homotopy

F : PE × I × I �� X

given by F (ω, s, t) = k(ω(t))(s) to obtain a homotopy

H : PE × I �� X

with

H(ω, 1, t) = k(ω(1))(t)

H(ω, 0, t) = ϕπω(t)

H(ω, s, 0) = ∗
H(ω, s, 1) = ϕπω(1).

From this we construct a homotopy

Γs : ΩB × PE ∪ PB × ΩE �� E

given by

Γs(ω1, ω2) =

{
ω1(1) μ(ϕω1(t), H(ω2, s, t)) if ω2(1) = ∗
πω2(1) μ(ϕω1(t), H(ω2, s, t)) if ω1(1) = ∗.
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26 3. WHITEHEAD PRODUCTS

Then Γ1 = Γ(1 ∗ Ωπ) and Γ0 = Γ′
0ζ. We have proved

Proposition 3.15. If X is an H space with a strict unit, there is a homotopy
commutative diagram:

ΩB × E ∪ PB
Γ′

�� E

ΩB ∗ ΩE 1 ∗ Ωπ ��

ζ

��

ΩB ∗ ΩB

Γ

��

�
Clearly 3.12 follows from 3.15. �
We next describe a simplification of the relative Whitehead product in case

G = ΣA.

Proposition 3.16. Suppose α : ΣA �� B and δ : H �� E. Then the relative
Whitehead product

A ∧H � ΣA ◦H
{α, δ}r �� E

is represented by the composition

A ∧H
θ �� A�H

α̃� δ �� ΩB � E
Γ′

�� E

where θ is a right homotopy inverse to the projection4 which pinches H to a point.

Proof. To construct the map θ we need to generalize the context in which
the map ζ was defined in 3.9. The homotopy fiber of the map

CX ∪X × Y
π2 �� Y

which pinches CX to the basepoint is of the form

CX × ΩY ∪X × PY ⊂ CX × PY.

Using the homotopy equivalence ξ : (C(ΩY ),ΩY ) �� (PY,ΩY ) (see 2.6), we get a
homotopy equivalent fibration sequence

(3.17) 5 X ∗ ΩY
ζ ��

CX ∪X × Y

�

π2 �� Y

X � Y

Furthermore, the composition

X ∗ ΩY
ζ �� X � Y �� X ∧ Y

4θ will depend on the co-H structure of H.
5Curiously there is also a cofibration sequence

X ∗ Y
ζ′ �� X � ΣY

π2 �� ΣY

where ζ′ is the composition

X ∗ Y �� X ∗ ΩΣY
ζ �� X � ΣY.
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collapses X ∪ CX × ΩY to a point, so there is a commutative square

X ∗ ΩY
ζ ��

�
��

X � Y

��
X ∧ ΣΩY

1 ∧ ε �� X ∧ Y.

The relative Whitehead product in 3.16 is given by the upper composition in
the homotopy commutative diagram

ΩB ∗ ΩE
ζ �� ΩB×E∪PB

Γ′
�� E

(ΣA)◦H �� Σ(ΩΣA∧ΩH) � ΩΣA ∗ ΩH
ζ ��

Ωα ∗ Ωδ

��

ΩΣA×H∪PΣA

��

A∧H
�

��

1∧ν �� Σ(A∧ΩH)

��

� A ∗ ΩH

��

ζ �� A×H∪CA

��

� A�H

where the lower composition is the map θ. The right hand vertical map is the
composition

A�H
α̃� δ �� ΩB � E � ΩB × E ∪ PB.

By the homotopy commutative square above, θ has a right homotopy inverse since
εν ∼ 1, and θ projects trivially to H since π2ζ is null homotopic. �

Corollary 3.18. Suppose α : ΣA �� B and δ : H �� E. Then for any ring
R, the homomorphism

({α, δ}r)∗ : H∗(A ∧H;R) �� H∗(E;R)

is given by the composition

H∗(A ∧H;R) ⊂ H∗(A×H;R)
(ϕ̃α× δ)∗ �� H∗(ΩX × E;R)

a∗ �� H∗(E;R)

Proof. Apply 3.8 and 3.16. �

3.3. Iterated Whitehead Products and the Decomposition of ΩG ∗ ΩH
We need, also, to discuss iterated Whitehead products. Suppose

αi : Gi
�� X

for 1 � i � n. We define the iterated Whitehead product

{αn, αn−1, . . . , α1} : Gn ◦ (Gn−1 ◦ · · · ◦G1) . . . ) �� X

as {αn, {αn−1, . . . , α1}}. In case Gi = G for each i we define

G[n] = G ◦G[n−1].

We also define G[i]H [j] as G ◦ (G[i−1]H
[j]
∗ ) when i > 1 and as G ◦H [j] when i = 1.

Suppose now that α : G �� G ∨H and β : H �� G ∨H are the inclusions. We
then consider

adi(α)({α, β}) = {α, . . . , α, β} : G[i+1]H �� G ∨H.
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28 3. WHITEHEAD PRODUCTS

Given a principal fibration

ΩX �� E �� B

and maps αi : G �� B, β : H �� E, we define

{αn, . . . , α1, β}r : Gn ◦ (Gn−1 ◦ · · · ◦ (G1 ◦H) . . . ) �� E

as

{αn, {αn−1, . . . , α1, β}r}r.
By an iterated application of 3.11(c), we have

(3.19) π{αn, . . . , α1, β}r = {αn, . . . , α1, πβ}.
Now consider the principal fibration

ΩG
i �� ΩG�H

π �� G ∨H.

Let K =
∨
i�1

G[i]H. Let β : H �� ΩG�H be the inclusion of the second factor.

Proposition 3.20. The maps adir(α)(β) : G
[i]H �� ΩG�H define a homotopy

equivalence

K ∨H �
∨
i�1

G[i]H ∨H �� ΩG�H.

Proof. According to [Gra11, 3a], such a homotopy equivalence exists where
the maps

ξi : G
[i]H �� ΩG�H

are chosen so that πξi∼{α, . . . , α, πβ}. However by equation (3.19), π{α, . . . , α, β}r
∼ {α, . . . , α, πβ}; since the map i : ΩG �� ΩG � H is null homotopic, ξi ∼
{α, . . . , α, β}r. �

We now consider the principal fibration

ΩG× ΩH �� ΩG ∗ ΩH �� G ∨H.

Using the map ψ : G◦H �� ΩG∗ΩH we define iterated relativeWhitehead products:

adi,jr = adir(β)ad
j
r(α)(ψ) : H

[i]G[j](G ◦H) �� ΩG ∗ ΩH

Proposition 3.21. The maps adi,jr for i � 0, j � 0 define a homotopy equiv-
alence ∨

i�0
j�0

H [i]G[j](G ◦H) �� ΩG ∗ ΩH.

Proof. Consider the diagram of principal fibrations

ΩH
ι2 ��

��

ΩG× ΩH

��
ΩG ∗ ΩH

ζ
��

ΩG ∗ ΩH

π
��

ΩG�H �� G ∨H
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The maps adjr : G
[j](G ◦H) �� ΩG�H defined by 3.20 lift to ΩG ∗ΩH since ζ has

a right homotopy inverse. Since the liftings project by π onto the maps:

adj : G[j](G ◦H) �� G ∨H,

these liftings are homotopic to the relative Whitehead product defined by π. How-
ever ΩG�H is homotopy equivalent to H ∨K so the maps

adirH
[i]K �� ΩG ∗ ΩH

define a homotopy equivalence∨
i�0

H [i]K �� ΩG ∗ ΩH.

Furthermore

K =
∨
j�0

G[j](G ◦H)

and the relative Whitehead products defined by the left hand fibration are mapped
to the corresponding relative Whitehead products in the right hand fibration. Thus
we have

∨
i�0
j�0

H [i]G[j](G ◦H)

� �� ∨
i�0

H [i]K

� �� ΩG ∗ ΩH �

Theorem 3.22. Suppose

ΩX
i �� E

π �� G

is a principal fibration induced by a map ϕ : G �� X where X is an H-space with
strict unit. Suppose ν : E �� Z. Then the composition

ΩG ∗ ΩG Γ �� E
ν �� Z

is null homotopic iff the compositions

νadir(α)({α, α}×) : G[[i+2] �� E �� Z

are null homotopic for each i � 0, where α : G �� G is the identity map.

Proof. In this case G = H and the map of principal fibrations

ΩG× ΩG

��

�� ΩX

��
ΩG ∗ ΩG

��

�� E

��
G ∨G

∇ �� G

maps H [i]G[j](G ◦H) to G[i+j](G ◦G) which only depends on i+ j. �
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3.4. Neisendorfer’s Theory for Homotopy with Coefficients

In the case that the co-H spaces are Moore spaces, the resulting Whitehead
products occur in the homotopy groups with coefficients. The adjoint theory of
Samelson products is due to Neisendorfer [Nei80], and was crucial in the work
of [CMN79b,CMN79c,CMN79a]. This theory has been further developed
in [Nei10a] where H-space based Whitehead products were introduced.

We need to make a mild generalization of this in that we must consider the
case where

G = ΣPm(pr) H = ΣPn(ps) s � r.

In this case

G ◦H = ΣPm+n(pr) ∨ ΣPm+n−1(pr).

This splitting is not unique and we must choose a splitting.
Choose a map

Δ: Pm+n(ps) �� Pm(ps) ∧ Pn(ps)

so that the diagram

Pm+n(ps)
Δ ��

πm+n

��

Pm(ps) ∧ Pn(ps)

��
Sm+n � �� Sm ∧ Sn

(3.23)

commutes up to homotopy. Such a choice is possible when m,n � 2 for p odd and
is unique up to homotopy.

Neisendorfer [Nei80] has produced internal Whitehead and Samelson products
for homotopy with Z/ps coefficients. The Whitehead product of x ∈ πm+1(X;Z/ps)
and y ∈ πn+1(X;Z/ps) is an element

[x, y] ∈ πm+n+1(X;Z/ps)

defined as the homotopy class of the composition:

Pm+n+1(ps) = ΣPm+n(ps)
ΣΔ �� ΣPm(ps) ∧ Pn(ps)(3.24)

= Pm+1(ps) ◦ Pn+1(ps)
{x, y} �� X

As we will need to consider such pairings with different coefficients, suppose
x ∈ πm+1(X;Z/pr) and y ∈ πn+1(X;Z/pr+t). We can still form the external
Whitehead product:

ΣPm(pr) ∧ Pn(pr+t) = Pm+1(pr) ◦ Pn+1(pr+t)
{x, y} �� X.

Since the map of degree pr+t on Pm(pr) is null homotopic, there is a splitting:

Pm(pr) ∧ Pn(pr+t) � Pm+n(pr) ∨ Pm+n−1(pr).

We now choose an explicit splitting. Recall (1.5) δt = βρt.
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Proposition 3.25. There is a splitting of Pm(pr) ∧ Pn(pr+t) defined by the
two compositions:

Pm+n(pr)
Δ �� Pm(pr) ∧ Pn(pr)

1 ∧ ρt �� Pm(pr) ∧ Pn(pr+t)

Pm+n−1(pr)
Δ �� Pm(pr) ∧ Pn−1(pr)

1 ∧ δt �� Pm(pr) ∧ Pn(pr+t)

Proof. (1∧πn)(1∧ρt)Δ = (1∧πn)Δ induces a mod p homology isomorphism,
so (1 ∧ ρt)Δ induces a homology monomorphism. The second composition factors

Pm+n−1(pr)
Δ �� Pm(pr) ∧ Pn−1(pr)

1 ∧ πn−1 �� Pm(pr) ∧ Sn−1

1 ∧ ιn−1 �� Pm(pr) ∧ Pn(pr+t)

and the composition of the first two maps is a homotopy equivalence. Since the
third map induces a mod p homology monomorphism, this composition does as well.
Counting ranks, we see that the two maps together define a homotopy equivalence:

e : Pm+n(pr) ∨ Pm+n−1(pr)
� �� Pm(pr) ∧ Pn(pr+t) �

We apply this to the internal Whitehead product (3.24) to get

Proposition 3.26.

{x, y}e = [x, yρt] ∨ [x, yδt] : P
m+n(pr) ∨ Pm+n−1(pr) �� X. �

3.26 resolves the external Whitehead product with different coefficients into in-
ternal Whitehead products with coefficients in Z/pr as considered by Neisendorfer.

Suppose now that we are given a principal fibration

ΩX �� E �� B

classified by a map ϕ : B �� X where X is a homotopy commutative H-space with
strict unit and we are given classes u ∈ πm(B;Z/pr) and v ∈ πn(B;Z/pr+t). Then
we have

Proposition 3.27.

{u, v}×e = [u, vρt]× ∨ [u, vδt]× : Pm+n(pr) ∨ Pm+n−1(pr+t) �� E.

Proof. Both {u, v}×e and [u, vρt]×∨[u, vδt]× are the images under Γ of maps:

Pm+n(pr) ∨ Pm+n−1(pr) �� Σ(ΩB ∧ ΩB)

which are homotopic after projection

Σ(ΩB ∧ ΩB)
ω �� B ∨B

by 3.26. Since Ωω has a left homotopy universe, these maps are homotopic. Com-
posing with Γ: Σ(ΩB ∧ ΩB) �� E finishes the proof. �

Similar to 3.27, we have

Proposition 3.28. {x, u}re = [x, uρt]r ∨ [x, uδt]r where x ∈ πm(B;Z/pr) and
u ∈ πn(E;Z/pr+t). �
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There is one special case of this that we will need in section 6.3. This involves

relative Whitehead products [x, u]r when u : Sn �� E and x : Pm �� B. In this case

[x, u]r = {x, u}r : Pm ◦ Sn �� E .

Proposition 3.29. [x, uπn]r = [x, u]r : Pm+n−1 �� E .

Proof. {x, uπn}re = [x, uπn]r ∨ 0 since πnδt = 0. Consequently we have a
homotopy commutative diagram

Pm+n−1 ∨ Pm+n−2 e ��

[x, uπn]r ∨ 0

��		
			

			
			

			
			

			
	 Pm ◦ Pn 1 ◦ πn ��

{x, uπn}r

��

Pm ◦ Sn

[x, u]r




























� Pm+n−1

E

where the upper composition is homotopic to projection onto the first factor. �

Suppose then we are given a principal fibration

ΩX
i �� E

π �� B

induced by a map ϕ : B �� X where X is a homotopy commutative H-space with
strict unit. Suppose we are given classes

α ∈ πm(B;Z/pr), β ∈ πn(B;Z/pr), γ ∈ πk(E;Z/pr), δ ∈ π�(E;Z/pr).

Recall that by using the map Δ we define the internal H-space based Whitehead
product

[α, β]× = {α, β}×Δ ∈ πm+n−1(E;Z/pr)

and internal relative Whitehead product

[α, γ]r = {α, γ}rΔ ∈ πm+k−1(E;Z/pr).

These are related as in 3.6, 3.11 and 3.12.

Proposition 3.30. (a) π∗[α, β]× = [α, β] ∈ πm+n−1(B;Z/pr)
(b) [π∗γ, π∗δ]× = [γ, δ] ∈ πk+�−1(E;Z/pr)
(c) [α, δ]r = [α, π∗δ]× ∈ πm+�−1(E;Z/pr)
(d) π∗[α, δ]r = [α, π∗δ] ∈ πm+�−1(B;Z/pr)
(e) [π∗γ, δ]r = [γ, δ] ∈ πk+�−1(E;Z/pr)

According to Neisendorfer [Nei10a], we also have standard Whitehead product
formulas:

Proposition 3.31. The following identities hold:
(a) [α, β]× = −(−1)(m+1)(n+1)[β, α]×
(b) [α1 + α2, β]× = [α1, β]× + [α2, β]×
(c) [α, [β, η]]× = [[α, β], η]× + (−1)(m+1)(n+1)[β, [α, η]]×

for η ∈ πj(B;Z/pr)

(c′) [α, [β, γ]r] = [[α, β], γ]r + (−1)(m+1)(n+1)[β, [α, γ]r]r
(d) β(r)[α, β]× = [β(r)α, β]×+(−1)m+1[α, β(r)β]× where β(r) is the Bockstein

associated with the composition P k(pr) �� P k+1(pr) for appropriate k.
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Proof. See [Nei10a]. Neisendorfer considers the adjoint Samelson products,
so there is a dimension shift. �
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CHAPTER 4

Index p approximation

The goal of this chapter is to replace the co-H spaces G
[i]
k from 3.22 by a finite

wedge of Moore spaces in case n > 1. The iterated Whitehead products involving
Gk are then replaced by iterated Whitehead products in mod ps homotopy, which
are more manageable. In 4.1, we construct certain mod pr+i−1 homotopy classes
a(i) and c(i) for i � k. This is a refinement of a similar construction in [GT10],
and leads to a ladder of cofibration sequences. In 4.2, we construct new co-H spaces
Lk when n > 1, and introduce index p approximation. Using this we exploit the
fact ([The08]) that the identity map of BWn has order p to reduce the size of the
set of obstructions. This allows for the replacement of the iterated relative and H-
space based Whitehead products based on Gk with iterated relative and H-space
based Whitehead products in the mod ps homotopy groups for r � s � r+ k. The
case n = 1 is simpler and we show that T is homotopy-Abelian in the appendix.
Nevertheless, the constructions in Chapters 4, 5 and 6 will be used in Chapter 7 in
case n = 1 as well.

4.1. Construction of the co-H Ladder

In this section we will assume an arbitrary H-space structure on the Anick
space as given in [GT10] and use its existence to develop certain maps a(k) and
c(k) for k � 1. We begin with a strengthening1 of [GT10, 4.3(d)].

Proposition 4.1. There is a map

e : P 2npk

(pr+k−1) ∨ P 2npk+1(pr+k−1) �� ΣT

which induces an epimorphism in mod p homology in dimensions 2npk and 2npk+
1. Furthermore the composition of e with the map

ΣT
Ẽ �� S2n+1{pr}

is null homotopic, where Ẽ is adjoint to the map E of 2.13(e).

Proof. Recall by 2.13(g)

H∗(T ) � Z/p[v]⊗ Λ(u)

where |v| = 2n, |u| = 2n− 1 and β(r+i)(vp
i

) = uvp
i−1.

Using some H-space structure map μ we consider the Hopf construction:

H(μ) : Σ(T ∧ T ) �� ΣT.

Note that in homology

(H(μ))∗ (σ ⊗ x⊗ y) = σ ⊗ μ∗(x⊗ y)

1The additional property that ˜Ee is null homotopic is included here and will be needed in 4.3

35
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36 4. INDEX p APPROXIMATION

if |x| > 0 and |y| > 0. We now define homology classes

α ∈ H2npk+1(Σ(T ∧ T );Z/p)

β ∈ H2npk(Σ(T ∧ T );Z/p)

by the formulas

α = −σ ⊗ vp
k−1 ⊗ vp

k−1(p−1)

β = σ ⊗ vp
k−1 ⊗ uvp

k−1(p−1)−1

so we have

(H(μ))∗ α = −σ ⊗ vp
k

(H(μ))∗ β = σ ⊗ uvp
k−1.

Also β(r+k−1)(α) and β(r+k−1)(β) are both nonzero. By 2.13(d), Σ(T ∧ T ) is a
wedge of Moore spaces; consequently there are maps

a : P 2npk+1(pr+k−1) �� Σ(T ∧ T )

b : P 2npk

(pr+k−1) �� Σ(T ∧ T )

such that α is in the image of a∗ and β is in the image of b∗. Combining these we
get a map e

P 2npk+1(pr+k−1) ∨ P 2npk

(pr+k−1)
a ∨ b �� Σ(Γ ∧ T )

H(μ) �� ΣT

such that σ ⊗ vp
k

and σ ⊗ uvp
k−1 are in the image of e∗. From this we see that

there is a homotopy commutative diagram

P 2npk

(pr+k−1) ∨ P 2npk+1(pr+k−1)
e ��

b ∨ a
��

ΣT 2npk

��
Σ(T ∧ T )

H(μ) �� ΣT

(4.2)

where e induces an epimorphism in mod p homology in dimensions 2npk and 2npk+
1. It remains to show that the composition

Σ(T ∧ T )
H(μ) �� ΣT

Ẽ �� S2n+1{pr}

is null homotopic.
However, since E : T �� ΩS2n+1{pr} is an H map by 2.13(e), there is a homo-

topy commutative diagram:

Σ(T ∧ T )
Σ(E ∧E) ��

H(μ)
��

Σ(ΩS2n+1{pr} ∧ ΩS2n+1{pr})

H(μ′)
��

ΣT
ΣE �� ΣΩS2n+1{pr}.
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4.1. CONSTRUCTION OF THE CO-H LADDER 37

where μ′ is the loop space structure map on ΩS2n+1{pr}. Since ΩS2n+1{pr} is a
loop space, the right hand map is part of the classifying space structure

Σ(ΩS2n+1{pr} ∧ ΩS2n+1{pr})

H(μ′)
��

�� . . . �� E∞

��
ΣΩS2n+1{pr} �� . . . �� S2n+1{pr}

where E∞ is contractible and the bottom horizontal map is the evaluation map.

The result follows since Ẽ is the composition:

ΣT �� ΣΩS2n+1{pr} ev �� S2n+1{pr}. �

Now recall from 2.13(a) the maps

T
g �� ΩG

h �� T

with hg ∼ 1. Restricting we get T 2npk gk �� ΩGk . Let ϕk be the restriction of ϕ
to Gk. Then we have

T

g
��

T 2npk��

g∗
��

ΩG

h
��

ΩG

Ωϕ
��

ΩGk
��

Ωϕk
��

T
E �� ΩS2n+1{pr} ΩS2n+1{pr}

where the left hand square commutes up to homotopy by 2.13(e). Since hg = 1, we
get the homotopy commutative square:

T 2npk gk ��

��

ΩGk

Ωϕk

��
T

E �� ΩS2n+1{pr}.

Since e factors through ΣT 2npk

, we combine this with 4.1 to see that the central
composition

Ek

��
P 2npk

(pr+k−1) ∨ P 2npk+1(pr+k−1)

����������������
��

e



���
����

����
����

����
ΣT 2npk ��

��

Gk

ϕk

��
ΣT

Ẽ �� S2n+1{pr}

factors through Ek. We state this as
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38 4. INDEX p APPROXIMATION

Proposition 4.3. For any H-space structure on T with corresponding maps h
and g, there is a lifting of g̃ke to Ek

P 2npk

(pr+k−1) ∨ P 2npk+1(pr+k−1)
a(k) ∨ c(k) ��

e
��

Ek

πk

��
ΣT 2npk g̃k �� Gk.

In the diagram below, the left column is a standard cofibration sequence (1.8)
and the right column is a fibration sequence defined by the pinch map π : Gk

��

Gk/Gk−1 � P 2npk+1(pr+k)

P 2npk

(pr+k)

pr+k−1

��

θ1 �� ΩP 2npk+1(pr+k)

��
P 2npk

(pr+k)
θ2 ��

σ ∨ σβ
��

J

��
P 2npk

(pr+k−1)∨P 2npk+1(pr+k−1)

−δ1 ∨ ρ
��

a(k) ∨ c(k) �� Ek
πk �� Gk

π
��

P 2npk+1(pr+k) P 2npk+1(pr+k).

The homological properties of e and 4.3 imply that the bottom region commutes
up to homotopy since g̃k has a right homotopy inverse. The maps θ1 and θ2 are
induced from this region in the standard way. For dimensional reasons θ2 factors
through Gk−1 ⊂ J and since

Ek−1
��

��

Gk−1

��
Ek

�� Gk

is a pullback diagram, θ2 factors through Ek−1. θ1 factors through

P 2npk−1(pr+k)

also for dimensional reasons. We obtain
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Theorem 4.4. There is a homotopy commutative ladder of cofibrations:2

P 2npk

(pr+k)

pr+k−1

��

P 2npk

(pr+k)

αk

��
P 2npk

(pr+k)
βk ��

σ ∨ σβ
��

Ek−1

πk−1 ��

��

Gk−1

��
P 2npk

(pr+k−1)∨P 2npk+1(pr+k−1)
a(k) ∨ c(k) ��

−δ1 ∨ ρ
��

Ek
πk �� Gk

π
��

P 2npk+1(pr+k) P 2npk+1(pr+k).

Furthermore, for any choice of retraction νk−1 : Ek−1
�� BWn, we can construct

a(k) and c(k) so that νk−1βk ∼ ∗.

Proof. We need only demonstrate the last statement. Suppose we are given

a map βk : P
2npk

(pr+k) �� Ek−1 so that the diagram commutes up to homotopy.

Given a retraction νk−1 : Ek−1
�� BWn , we get a splitting

ΩEk−1 � ΩRk−1 ×Wn

by 2.13(j) where Rk−1 is the fiber of νk−1. We can then write βk = βk − ε where
ε is the component of βk that factors through Wn and βk factors through Rk−1.

Since each map P 2npk

(pr+k) �� Wn has order p, ε has order p and thus pr+k−1βk =
pr+k−1βk as r+ k− 1 � 1. Thus the upper region commutes up to homotopy when
βk is replaced by βk. Since pr+k−1ε = 0, ε factors

P 2npk

(pr+k)
σ ∨ σβ �� P 2npk

(pr+k−1) ∨ P 2npk+1(pr+k−1)
ε′ �� Ek−1

as the left hand column is a cofibration sequence. We now redefine a(k) and c(k)
by subtracting off the appropriate components of ε′ and the middle region now
commutes up to homotopy. Since this alteration of a(k) and c(k) factors through

Ek−1, the projections to Gk vanish when projected to P 2npk

(pr+k) so the bottom
region also commutes up to homotopy. �

During the inductive construction of νk we will be assuming that νi is defined
for i < k and the alterations in 4.4 have been made so that βk is in the kernel
of νk−1.

4.2. Index p Approximation

The goal of this section is to replace the co-H space Gk by a sequence of

approximations. The end result will be to replace G
[i]
k by a wedge of mod ps Moore

spaces for r � s � r + k. We begin with a cofibration sequence based on the
ladder 4.4. Throughout this section we will exclude the case n = 1. The case n = 1
is dealt with in the appendix.

2In order to keep the notation from being too cumbersome we will sometimes write βk, a(k)
and c(k) for the composition πk−1βk, πka(k), and πkc(k) if it will not lead to confusion.
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Proposition 4.5. For k � 1 there is a cofibration sequence

P 2npk

(pr+k)
ξk �� Lk

ζk �� Gk
π′

�� P 2npk+1(pr+k)

where Lk = Gk−1∨P 2npk

(pr+k−1)∨P 2npk+1(pr+k−1), ζk is induced by the inclusion
of Gk−1 and the maps πka(k) and πkc(k), and π′ = pr+k−1π.

Proof. This is a standard consequence of a ladder in which each third rail is
an equivalence (as in the usual proof of the Mayer–Vietoris sequence). �

Proposition 4.6. If n > 1, there is a unique co-H space structure on Lk so
that the cofibration in 4.5 is a cofibration of co-H maps.

Proof. Let P be the pullback in the diagram:

P ��

��

Gk ∨Gk

��
Lk × Lk

�� Gk ×Gk.

There is a map η : Lk
�� P which projects to the diagonal map on Lk and the

composition:

Lk
ζk �� Gk

�� Gk ∨Gk.

We first assert that η is unique up to homotopy. Since Lk is a wedge of Moore
spaces, it suffices to show that if ε : Lk

�� P projects trivially to Gk ∨ Gk and
Lk × Lk, it is itself trivial. Now the homotopy fiber of the map P �� Lk × Lk is
the same as the homotopy fiber of Gk ∨ Gk

�� Gk × Gk, i.e., Σ(ΩGk ∧ ΩGk); we
conclude that ε must factor through Σ(ΩGk ∧ ΩGk), and that the composition

Lk
ε′ �� Σ(ΩGk ∧ ΩGk) �� Gk ∨Gk

is null homotopic. This implies that ε′ is null homotopic and hence ε is as well since
Ω(Gk ∨Gk) �� Ω(Gk ×Gk) has a right homotopy inverse.

The map ζk is a 2npk−1 equivalence since P 2npk+1(pr+k) is 2npk−1 connected.
Since Lk and Gk are both 2n− 1 connected, this implies that the composition

Σ(ΩLk ∧ ΩLk) �� Σ(ΩLk ∧ ΩGk) �� Σ(ΩGk ∧ ΩGk)

is a 2npk + 2n− 2 equivalence. Now consider the diagram of vertical fibrations:

Σ(ΩLk ∧ ΩLk) ��

��

Σ(ΩGk ∧ ΩGk)
� ��

��

Σ(ΩGk ∧ ΩGk)

��
Lk ∨ Lk

��

��

P ��

��

Gk ∨Gk

��
Lk × Lk Lk × Lk

�� Gk ×Gk.

From this we see that the map Lk ∨Lk
�� P is a 2npk +2n− 2 equivalence. Since

n > 1, that implies that there is a unique lifting of η : Lk
�� P to Lk ∨ Lk, which

defines a co-H space structure on Lk such that ζk is a co-H map.
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Similarly, we observe that the 2npk + 2n − 3 skeleton of the fiber of the map

Lk ∨ Lk
�� Gk ∨Gk is P 2npk

(pr+k) ∨ P 2npk

(pr+k), so the composition

P 2npk

(pr+k)
ξk �� Lk

�� Lk ∨ Lk

factors through P 2npk

(pr+k)∨P 2npk

(pr+k) and such a factorization defines a co-H

space structure on P 2npk

(pr+k). That structure, of course, is unique. So this ξk is
a co-H map with the suspension structure. �

Warning: Lk does not split as a co-product of co-H spaces. In particular, the

inclusion P 2npk+1(pr+k−1) �� Lk is not a co-H map. If it were, the map

P 2npk+1(pr+k−1)
c(k) �� Ek

πk �� Gk

would be a co-H map, contradicting [AG95, 2.2].
Write [k] : ΣX �� ΣX for the k-fold sum of the identity map.

Definition 4.7. Suppose L
f �� G

g �� ΣK is a cofibration sequence of
co-H spaces and co-H maps. We will say that f is an index p approximation if
there is a co-H map g′ : ΣG �� Σ2K such that Σg factors

ΣG
g′ �� Σ2K

[p] �� Σ2K

up to homotopy. f: L �� G will be called an iterated index p approximation if f is
homotopic to a composition

L = L0
�� L1

�� . . . �� Lm = G

where each map Li
�� Li+1 is an index p approximation.

Thus, for example, ζk : Lk
�� Gk is an index p approximation.

Proposition 4.8. Suppose that f: L �� G is an iterated index p approximation
and ν : G �� BWn. Then ν is null homotopic iff νf is null homotopic.

Proof. We will only consider the case when f is an index p approximation,
as the general result follows by an easy induction. Suppose then that f: L �� G is
an index p approximation and Σg factors up to homotopy:

ΣG
g′ �� Σ2K

[p] �� Σ2K.

Assume that νf is null homotopic, so we can factor ν as

G
g �� ΣK

ν′ �� BWn.

Consider the diagram:

ΩΣ2K
Ω[p] �� ΩΣ2K

ΩΣν′ �� ΩΣBWn
�� BWn

G
g ��

g̃′

��

ΣK
ν′ ��

��

BWn

����������

����������

��

Since BWn is homotopy associative ([Gra88]), the upper composition is an H-map.
This composition is thus inessential if its restriction to ΣK is inessential. However
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this restriction factors through [p] : ΣK �� ΣK. Since BWn has H-space exponent
p ([The08]), we conclude that the upper composition is inessential. This ν ∼ ν′g
is inessential as well. �

Lemma 4.9. There is a homotopy commutative diagram

(Σ2K) ◦G
[p] ◦ 1 ��

�

(Σ2K) ◦G

�

(ΣK) ∧G
[p] ∧ 1 ��

�

(ΣK) ∧G

�

Σ2(K ◦G)
[p] �� Σ2(K ◦G)

where the equivalences are co-H equivalences.

Proof. The vertical equivalences follow from 3.2. These equivalences are nat-
ural for co-H maps. However [p] : ΣH �� ΣH is a co-H map since H is a co-H
space. �

Lemma 4.10. Suppose G1
α �� G2

β �� G3 is a cofibration sequence of co-
H spaces and co-H maps. Then for each co-H space H,

G1 ◦H α ◦ 1 �� G2 ◦H
β ◦ 1 �� G3 ◦H

H ◦G1
1 ◦ α �� H ◦G2

1 ◦ β �� H ◦G3

are both cofibration sequences.

Proof. In the extended cofibration sequence, the composition of two adjacent
maps is null homotopic

G1
α �� G2

β �� G3
γ �� ΣG1

Σα �� ΣG2
Σβ �� ΣG3

�� . . .

and all maps are co-H maps. It follows that the same is true for the sequence:

G1 ◦H α ◦ 1 �� G2 ◦H
β ◦ 1 �� G3 ◦H

γ ◦ 1 �� (ΣG1) ◦H �� . . .

where Σ(G1 ◦H) � G1∧H � (ΣG1) ◦H. Since this sequence also induces an exact
sequence in homology it is a cofibration sequence. The other case is similar. �

Proposition 4.11. If f: L �� G is an index p approximation, the maps f ◦
1: L ◦H �� G ◦H and 1 ◦ f: H ◦ L �� H ◦G are index p approximations as well.

Proof. Factor Σg as

ΣG
g′ �� Σ2K

[p] �� Σ2K

and consider the diagram

(ΣG) ◦H
Σg ◦ 1�� (Σ2K) ◦H � Σ2(K ◦H)

(ΣG) ◦H
g′ ◦ 1 ��

=

(Σ2K) ◦H

[p] ◦ 1
��

� Σ2(K ◦H)

[p]

��
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where the right hand square commutes by 4.9. The map

Σg ◦ 1: (ΣG) ◦H �� (Σ2K) ◦H

is the cofiber of f ◦ 1, and g′ ◦ 1 is a co-H map since g′ is a co-H map. Thus f ◦ 1
is an index p approximation. The other case is similar. �

Corollary 4.12. Suppose L
f �� G is an index p approximation. Then

f [i]: L[i] �� G[i]

is an iterated index p approximation.

Proof. We first observe that

L ◦G[j] f ◦ 1 �� G ◦G[j] = G[j+1]

is an index p approximation by 4.11. We then see by induction that

L[i]G[j] = L ◦ (L[i−1]G[j]) �� L ◦ (L[i−2]G[i+1]) = L[i−1]G[j+1]

is an index p approximation. Finally

L[i] �� L[i−1]G

is an iterated index p approximation by induction since it factors as

L[i] = L ◦ (L[i−1]) �� L ◦ (L[i−2]G) = L[i−1]G.

Consequently

L[i] �� L[i−1]G �� L[i−2]G[2] �� . . . �� L ◦G[i−1] �� G[i]

is an iterated index p approximation. �

Theorem 4.13. Suppose

ΩX �� E �� G

is a principal fibration classified by a map ϕ : G �� X where X is an H-space with
strict unit. Suppose f: L �� G is an index p approximation. Then, for any map
ν : E �� BWn the compositions

Σ(ΩG ∧ ΩG)
Γ �� E

ν �� BWn

is null homotopic iff the composition

Σ(ΩL ∧ ΩL)
Σ(Ωf ∧ Ωf) �� Σ(ΩG ∧ ΩG)

Γ �� E
ν �� BWn

is null homotopic.

Proof. Suppose the composition

Σ(ΩL ∧ ΩL) �� Σ(ΩG ∧ ΩG)
Γ �� E

ν �� BWn
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is null homotopic. Let α : G �� G be the identity map and β = αf . Since
f: H �� G is a co-H map, there is a homotopy commutative diagram:

L[i]
adi−2

r (β)({β, β}×) ��

f [i]

��

Σ(ΩL ∧ ΩL)

��
G[i]

adi−2(α)({α, α}×) �� Σ(ΩG ∧ ΩG)

by 3.6(d) and 3.11(d). Since f is an index p approximation, f [i] is an iterated index
p approximation by 4.12; thus the compositions

G[i]
adi−2(α)({α, α}×) �� Σ(ΩG ∧ ΩG)

Γ �� E
ν �� BWn

are null homotopic for all i � 2. The result then follows from 3.22. �

We will use this result to transfer conditions on νk to the composition:

Σ(ΩLk ∧ ΩLk) �� Σ(ΩGk ∧ ΩGk)
Γk �� Ek.

We need to iterate this. We have to consider the issue that for ζk : Lk
�� Gk to

be a co-H map, we need to use an exotic co-H space structure on Lk. We will
show that the triviality of the composition above does not depend on the co-H
space structure of Lk. To see this, recall that the map Γk : Σ(ΩGk∧Gk) �� Ek was
defined in section 2.2 based on the fact that Ek was defined by a principal fibration

ΩS2n+1{pr} �� Ek
�� Gk

classified by a map ϕk : Gk
�� S2n+1{pr} where S2n+1{pr} is an H-space with H-

space structure map chosen to have a strict unit. The fact that Gk is a co-H space
was not used.

For any space X and map ζ : X �� Gk, we can construct the pullback

ΩS2n+1{pr}

��

ΩS2n+1{pr}

��
E(X) ��

��

Ek

��
X

ζ �� Gk

which is induced by the composition ϕkζ. Consequently there is a map Γ(X) :
Σ(ΩX ∧ ΩX) �� E(X) and a strictly commutative diagram:

Σ(ΩX ∧ ΩX) ��

Γ(X)
��

Σ(ΩGk ∧ ΩGk)

Γk

��
E(X) �� Ek.

Consider the homotopy equivalence

Xk = Gk−1 ∨ P 2npk

(pr+k−1) ∨ P 2npk+1(pr+k−1) � Lk
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where we give Xk the split co-H space structure, so this map is not a co-H map.
Nevertheless, we have a strictly commutative diagram

Σ(ΩXk ∧ ΩXk)
� ��

Γ(Xk)
��

Σ(ΩLk ∧ ΩLk) ��

Γ(Lk)
��

Σ(ΩGk ∧ ΩGk)

Γk

��
E(Xk)

� ��

��

E(Lk) ��

��

Ek

πk

��
Xk

� �� Lk
ζk �� Gk

since ζk is an iterated index p approximation, we have

Proposition 4.14. For any map ν : Ek
�� BWn, νΓk is null homotopic iff the

composition

Σ(ΩXk ∧ ΩXk)
Γ(Xk) �� E(Xk) � E(Lk) �� Ek

ν �� BWn

is null homotopic. �
We now define spaces with split co-H space structures (coproducts in the cat-

egory of co-H spaces):

W (j, k) =

k∨
i=j

P 2npi

(pr+i−1) ∨ P 2npi+1(pr+i−1)

G(j, k) = Gj ∨W (j + 1, k)

L(j, k) = Lj ∨W (j + 1, k).

Consequently we have homotopy equivalences

G(j, k) � L(j + 1, k)

which are not co-H equivalences, and index p approximations

L(j, k)
ζj ∨ 1 �� G(j, k).

This leads to a chain:

f: G(0, k) � L(1, k) �� G(1, k) � L(2, k) �� . . . �� G(k − 1, k) � Lk
�� Gk.

Theorem 4.15. Suppose n > 1. Then for any given map ν : Ek
�� BWn the

composition

Σ(ΩGk ∧ ΩGk)
Γk �� Ek

ν �� BWn

is null homotopic iff the composition

Σ(ΩG(0, k) ∧ ΩG(0, k))
Σ(Ωf ∧ Ωf) �� Σ(ΩGk ∧ ΩGk)

Γk �� Ek
ν �� BWn

is null homotopic, where

G(0, k) = P 2n+1 ∨
k∨

i=1

P 2npi

(pr+i−1) ∨ P 2npi+1(pr+i−1)

and the map f: G(0, k) �� Gk is defined by the inclusion of

P 2n+1 = G0
�� Gk
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and the maps πkc(i) and πka(i) for 1 � i � k:

P 2npi

(pr+i−1)
a(i) �� Ei

�� Ek
πk �� Gk

P 2npi+1(pr+i−1)
c(i) �� Ei

�� Ek
πk �� Gk. �

Let E(0, k) be the induced fibration over G(0, k). Define a lifting Γ:

E(0, k) ��

��

Ek

��
Σ(ΩG(0, k) ∧ ΩG(0, k)) ��

Γ
��
G(0, k)

f �� Gk

obtained by pulling back the composition of Γk with Σ(Ωf ∧ Ωf). Since G(0, k)
is a wedge of Moore spaces, the components of Γ are H-space based Whitehead
products as defined by Neisendorfer [Nei10a]. This will be studied in the next
chapter.
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CHAPTER 5

Simplification

In this chapter we work with the obstructions obtained in Chapter 4. These are
mod ps homotopy classes for r � s � r+k. In section 5.1, we define a quotient space
Dk of Gk and a corresponding principal fibration Jk over Dk. This has the property
that roughly half of the obstructions vanish in Jk; we then seek a factorization of νk
through Jk. In section 5.2 we introduce a congruence relation on homotopy classes,
and show that we need only consider the obstructions up to congruence homotopy.
This leads to a shorter list of obstructions. Congruence homotopy will also be useful
in Chapter 6, since the properties of relative Whitehead products are simpler up to
congruence homotopy.

5.1. Reduction

The inductive hypothesis (6.7) in the next chapter is a strengthening of Propo-
sition 2.12, so in particular, we will be assuming that we have constructed a re-
traction νk−1 : Ek−1

�� BWn such that νk−1Γk−1 is null homotopic. In section 4.1
we constructed classes a(i), c(i), and βi for i � k and in section 4.2 we reduced
the constraints on the construction of νk to a condition involving the maps a(i)
and c(i). Some of the material in this section and section 6.2 can be found at
arXiv:0804.1896.

We now make a further simplification by burying the classes c(i) in the base
space. Specifically, we define a map

c : Ck =

k∨
i=1

P 2npi+1(pr+i−1) �� Ek

by the compositions

P 2npi+1(pr+i−1)
c(i) �� Ei

�� Ek,

and define1 Dk by a cofibration

Ck
πkc �� Gk

�� Dk.

1The spaces Dk were first defined in [Ani93], but were abandoned in [GT10] as the related
spaces Gk have better properties. As we will see, the spaces Dk have smaller homotopy which is
useful in our analysis.

47
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Proposition 5.1. There is a homotopy commutative diagram of cofibration
sequences

P 2npk+1(pr+k−1)
ρ �� P 2npk+1(pr+k)

σr+k−1
�� P 2npk+1(p)

Ck
πkc ��

��

Gk
��

π

��

Dk

��

Ck−1

πk−1c ��

��

Gk−1
��

��

Dk−1

��

and

Hi(Dk;Z(p)) =

⎧⎪⎨⎪⎩
Z/pr if i = 2n

Z/p if i = 2npj , 1 � j � k

0 otherwise.

Proof. The composition

P 2npk+1(pr+k−1)
c(k) �� Ek

πk �� Gk
π �� P 2npk+1(pr+k)

is ρ by 4.4. The homology calculation is immediate. �

Since ϕkπk is null homotopic, we can extend ϕk to a map

ϕ′
k : Dk

�� S2n+1{pr}.

Any such extension defines a diagram of vertical fibration sequences:

Ek
τk ��

πk

��

Jk
ηk ��

ξk
��

Fk

σk

��
Gk

��

ϕk

��

Dk

ϕ′
k
��

Dk

��
S2n+1{pr} �� S2n+1{pr} �� S2n+1

(5.2)

Proposition 5.3. We can choose an extension ϕ′
k of ϕ′

k−1 in such a way that
the composition

P 2npk+1(pr+k−1)
c(k) �� Ek

τk �� Jk

is null homotopic.

Proof. We begin by defining D by a pushout square:

Gk
�� D

Gk−1

��

�� Dk−1

��
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Using the lower right hand square in 5.1 and the pushout property, we see that
there is a cofibration

P 2npk+1(pr+k−1)
α �� D �� Dk

where α is the composition:

P 2npk+1(pr+k−1)
c(k) �� Ek

πk �� Gk
�� D.

We use the pushout property to construct ϕ : D �� S2n+1{pr} by ϕ′
k−1 on Dk−1

and ϕk on Gk. We seek a map ϕ′
k in the diagram

Ek
��

πk

��

J ��

��

Jk

��
Gk

��

ϕk

��

D ��

ϕ
��

Dk = D ∪α CP 2npk+1(pr+k−1)

ϕ′
k
��

S2n+1{pr} S2n+1{pr} S2n+1{pr}

We assert that we can choose ϕ′
k so that the composition

P 2npk+1(pr+k−1)
c(k) �� Ek

�� J �� Jk

is null homotopic. Note that α is homotopic to the composition

P 2npk+1(pr+k−1)
c(k) �� Ek

�� J �� D.

The assertion then follows from

Lemma 5.4. Suppose J
π �� D is a principal fibration induced by a map

ϕ : D �� S. Suppose c : Q �� J and D′ is the mapping cone of πc. Then there is a
map ϕ′ : D′ �� S with homotopy fiber J ′ such that the composition Q �� J �� J ′

is null homotopic in the diagram:

Q
c �� J ��

π
��

J ′

��
D ��

ϕ
��

D′

ϕ′

��
S S.

Proof. J = {(d, ω) ∈ D × PS | ω(1) = ϕ(d)} so c(q) has components
(c1(q), c2(q)) where c1(q) ∈ D, c2(q) ∈ PS with c2(q)(0) = ∗ and c2(q)(1) =
ϕ(c1(q)). Write D′ = D ∪α CQ with 0 at the vertex of the cone and α(q) = c1(q).
Now define ϕ′ : D′ �� S by ϕ′(d) = ϕ(d) for d ∈ D and ϕ′(q, t) = c2(q)(t). This is
well defined and we can define a homotopy

H : Q× I �� J ′ ⊂ D′ × PS

by the formula

H(q, t) = ((q, t), c2(q)t)
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where c2(q)t is the path defined as c2(q)t(s) = c1(q)(st). �
This proves the lemma and hence the proposition. �
Now assume n > 1 and define

(5.5) Uk = P 2n+1 ∨
k∨

i=1

P 2npi

(pr+i−1),

so G(0, k) = Uk ∨ Ck, and we have a homotopy commutative square

G(0, k) ��

��

Gk

��
Uk

a �� Dk

where the left hand vertical map is the projection and a is defined on

P 2npi

(pr+i−1) as the composition:

p2np
i

(pr+i−1)
a(i) �� Ek

τk �� Jk
ξk �� Dk.

From this we construct homotopy commutative diagram:

Σ(ΩG(0, k) ∧ ΩG(0, k)) ��

��

Σ(ΩGk ∧ ΩGk)
Γk ��

��

Ek

τk
��

Σ(ΩUk ∧ ΩUk) �� Σ(ΩDk ∧ ΩDk)
Γk �� Jk

(5.6)

Proposition 5.7. Suppose that n > 1 and there is a retraction

γk : Jk �� BWn

such that the compositions

U
[j]
k

{a, . . . , a, {a, a}×}r �� Jk
γk �� BWn

are null homotopic for each j � 2. Then the composition

Σ(ΩGk ∧ ΩGk)
Γk �� Ek

τk �� Jk
γk �� BWn

is null homotopic.

Proof. By (5.6) and 4.15, it suffices to show that the composition

Σ(ΩUk ∧ ΩUk) �� Σ(ΩDk ∧ ΩDk)
Γk �� Jk

γk �� BWn

is null homotopic. Define E(Uk)k as a pullback:

E(Uk) ��

��

Jk

��
Uk

a �� Dk

Then by naturality, it suffices to show that the composition

Σ(ΩUk ∧ ΩUk)
Γ(Uk) �� E(Uk) �� Jk

γk �� BWn
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is null homotopic. But since Uk is a co-H space, we can apply 3.22 to finish the
proof. �

Now write Uk = ΣPk where

Pk = P 2n ∨
k∨

i=1

P 2npi−1(pr+i−1)

so U
[j]
k = ΣPk ∧ · · · ∧ Pk by 3.2.
Using the splitting of Pk into k + 1 Moore spaces, we obtain

Proposition 5.8. Suppose n > 1. Then the map

{a, . . . , a, {a, a}×}r : U [j]
k = ΣP

(j)
k

�� Jk

when restricted to one of the (k+1)j iterated smash products of Moore spaces is an
iterated external Whitehead product of the form

{x1, . . . , xj−2, {xj−1, xj}×}r
where each xi is either ξkτka(i) : P

2npi−1(pr+i−1) �� Dk for 1 � i � k or the
inclusion P 2n+1 �� Dk. �

By applying 3.26, we resolve these external Whitehead products into internal
Whitehead products.

Theorem 5.9. Suppose n > 1. Then the restriction of the map

{a, . . . , a, {a, a}×}r : ΣPk ∧ · · · ∧ Pk
�� Jk

to any Moore space in any decomposition of ΣPk ∧ · · · ∧Pk is homotopic to a linear
combination of weight j iterated internal H-space based Whitehead products

[x1, . . . , xj−2, [xj−1, xj ]×]r

where each xi is one of the following: ξkτka(i)ρ
t, ξkτka(i)δt, μ, ν for 1 � i � k

and for appropriate values of t.

Proof. This is an easy induction on j using 3.26. �

5.2. Congruence Homotopy Theory

The results of section 5.1, and in particular 5.9, indicate that the obstructions
to constructing a suitable retraction νk = γkτk are mod ps homotopy classes in Jk
for r � s � r + k. These obstructions are iterated compositions of relative and
H-space based Whitehead products. However, they are not Whitehead products
of maps into Jk in general. Since BWn is an H-space, any Whitehead products
of classes in Jk will be annihilated by any such map γk. We are led to a coarser
classification. We introduce a congruence relation among homotopy classes so that
it is only necessary to annihilate a representative of each congruence class. A
remarkable and useful feature is that the congruence homotopy of Jk is a module
over the symmetric algebra on πk(ΩDk).

Definition 5.10. Two maps f, g : X �� Y will be called congruent (written
f ≡ g) if Σf and Σg are homotopic in [ΣX,ΣY ]. We write e[X,Y ] for the set of
congruence classes of pointed maps: X �� Y and

eπk(Y ;Z/ps) = e[P k(ps), Y ].
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Clearly congruence is an equivalence relation and composition is well defined
on congruence classes. This defines the congruence homotopy category. It is easy
to prove

Proposition 5.11. Suppose f ≡ g : X �� Y and h : Y �� Z where Z is an
H-space. Then hf and hg are homotopic.

Consequently, it is sufficient to classify the iterated H-space based Whitehead
products of 5.9 up to congruence. We will also need to consider congruence in a dif-
ferent way in section 6.3. In constructing γk we will make alterations in dimensions
where obstructions of level k − 1 may resurface. This is a delicate point which has
needed much attention. For this reason we need to develop some deeper properties
of congruence homotopy theory.

Proposition 5.12. The inclusion Y1 ∨ Y2
i �� Y1 × Y2 defines a 1–1 map

ι∗ : e[X,Y1 ∨ Y2] �� e[X,Y1 × Y2]. Furthermore, if G is a co-H space e[G,X] is a
Abelian group and

e[G, Y1 ∨ Y2] ∼= e[G, Y1 × Y2] ∼= e[G, Y1]⊕ e[G, Y2].

Proof. Suppose f, g : X �� Y1 ∨ Y2 and the compositions:

ΣX
Σf �� Σ(Y1 ∨ Y2)

Σi �� Σ(Y1 × Y2)

ΣX
Σg �� Σ(Y1 ∨ Y2)

Σi �� Σ(Y1 × Y2)

are homotopic. Since Σi has a left homotopy inverse, Σf and Σg are homotopic.
The co-H space structure on G defines a multiplication on [G,X] and the map

[G,X] �� [G,ΩΣX]

is multiplicative. However [G,ΩΣX] is a Abelian group by a standard argument.
Since e[G,X] is a subgroup of [G,ΩΣX] ∼= [ΣG,ΣX], it also is Abelian. Finally
observe that the composition

e[G, Y1]⊕ e[G, Y2] �� e[G, Y1 ∨ Y2] �� e[G, Y1 × Y2] �� e[G, Y1]⊕ e[G, Y2]

is the identity where the first and last maps are defined by naturality. Thus the
composition of the first two is 1–1. But this composition is also onto since any
element of e[G, Y1×Y2] is represented by a map G �� Y1×Y2 so all these maps are
isomorphisms. �

Proposition 5.13. Suppose G and H are co-H spaces. Then composition
defines a homomorphism:

e[G,H]⊗ e[H,X] �� e[G,X].

Proof. The only issue is the distributive law

(β1 + β2)α ≡ β1α+ β2α
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for α : G �� H and β1, β2 : H �� X. To prove this we show that the following
diagram commutes up to congruence:

G
α ��

��

≡

H

��
G ∨G

α ∨ α �� H ∨H.

This certainly commutes after the inclusion of H∨H �� H×H. Thus it commutes
up to congruence by 5.12. �

This will be useful when G and H are Moore spaces.

Corollary 5.14. The category of co-H spaces and congruence classes of con-
tiuous maps is an additive category.

Proof. G ∨H is both a product and co-product by 5.12 and composition is
bilinear by 5.13. �

The following result will be needed in 5.19 and in section 6.3.

Theorem 5.15. Suppose ϕ : Σ2X �� P 2m(pr+t) has order pr. Then there are
maps ϕ1 : Σ

2X �� P 2m(pr) and ϕ2 : Σ
2X �� S2m−1 such that

ϕ ≡ ρtϕ1 + ι2m−1ϕ2.

Proof. According to [CMN79b, 11.1] or [Gra99, 1.2], there is a fibration
sequence

ΩP 2m(pr+t)
∂ �� S2m−1{pr+t} �� W

π �� P 2m(pr+t)

where W is a 4m− 3 connected wedge of Moore spaces and π is an iterated White-
head product on each factor. In particular, π is null congruent. A right homotopy
inverse for ∂ is constructed as follows. Given any map θ : U �� V , there is a natural
map from the fiber of θ to the loop space on the cofiber:

Φ: Fθ
�� Ω(V ∪θ CU).

This defines a map Φ: S2m−1{pr+t} �� ΩP 2m(pr+t) and ∂Φ is a homology equiva-
lence since S2m−1{pr+t} is atomic. This defines a splitting of ΩP 2m(pr+t) and we
have a direct sum decomposition

[Σ2X,W ]⊕ [ΣX,S2m−1{pr+t}] �� [Σ2X,P 2m(pr+t)]

(α, β) �� �� ϕ = πα+ Φ̃β

where Φ̃β is the adjoint of Φβ : ΣX �� ΩP 2m(pr+t). Since ϕ has order pr, both α
and β have order pr. Since π is null congruent, we have

ϕ ≡ Φ̃β.
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Now consider the diagram of fibration sequences:

F
f ��

��

S2m−1{pr+t}
pr ��

��

S2m−1{pr+t}

��
S2m−1{pr} ��

∗ ∼ pr+t

��

S2m−1
pr ��

pr+t

��

S2m−1

pr+t

��
S2m−1{pr} �� S2m−1

pr �� S2m−1.

From this we see that F � S2m−1{pr} × ΩS2m−1{pr}. We choose a splitting of F
as follows: define a map ρt by the diagram of vertical fibration sequences:

S2m−1{pr}
ρt ��

��

S2m−1{pr+t}

��
S2m−1

pr

��

S2m−1

pr+t

��
S2m−1

pt �� S2m−1.

The map ρt factors through f and defines a splitting. Thus the composition

S2m−1{pr} × ΩS2m−1{pr} � �� F
f �� S2m−1{pr+t}

is homotopic to the map

S2m−1{pr} × ΩS2m−1{pr}
ρt × δt �� S2m−1{pr+t} × S2m−1{pr+t} μ �� S2m−1{pr+t}

where δt is the composition

ΩS2m−1{pr} Ωπ �� ΩS2m−1 ι �� S2m−1{pr+t}.

Since β has order pr, it factors through F and we conclude that β is homotopic to
a composition:

ΣX �� S2m−1{pr} × ΩS2m−1{pr}

ρt × δt �� S2m−1{pr+t} × S2m−1{pr+t} �� S2m−1{pr+t}.

This map is homotopic to the sum of the two compositions

ΣX �� S2m−1{pr} ρt �� S2m−1{pr+t}

ΣX �� ΩS2m−1{pr} �� ΩS2m−1 �� S2m−1{pr+t}.
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By the naturality of Φ, Φβ is homotopic to the sum of the maps

ΣX
ϕ̃1 �� ΩP 2m(pr)

Ωρt �� ΩP 2m(pr+t)

ΣX
ϕ̃2 �� ΩS2m−1

Ωι2m−1 �� ΩP 2m(pr+t).

Thus ϕ ≡ φ̃β which is homotopic to ρtϕ1 + ι2m−1ϕ2. �

At this point we will examine relative Whitehead products in congruence ho-
motopy. This will be applied to determining the congruence homotopy classes of
the obstruction in Theorem 5.9.

Recall that relative Whitehead products are defined in a principal fibration:

ΩX �� E �� B

classified by a map B �� X.
We define a Z/pr module M∗(B) by

Mm = πm+1(B;Z/pr) ≈ πm(ΩB;Z/pr).

Proposition 5.16. The relative Whitehead product [α, δ]r induces a homomor-
phism:

Mm ⊗ eπk(E;Z/pr) �� eπm+k(E;Z/pr)

which commutes with the Hurewicz homomorphism; i.e., the diagram

Mm ⊗ eπk(E;Z/pr) ��

��

eπm+k(E;Z/pr)

��
Hm(ΩB;Z/pr)⊗Hk(E;Z/pr)

a∗ �� Hm+k(E;Z/pr)

commutes where a∗ is induced by the principal action.

Proof. To see that the pairing is well defined, it suffices to show that if Σδ ∼ ∗,
then Σ[α, δ]r ∼ ∗. Recall that [α, δ]r is given in 3.16 by the composition:

Pm+k Δ �� Pm ∧ P k θ �� Pm � P k α̃� δ �� ΩB � E
Γ′

�� E.

However, since there is a natural homeomorphism

Σ(X � Y ) ∼= X � ΣY,

Σ[α, δ]r factors through the map

Pm � P k+1 α̃� Σδ �� ΩB � ΣE.

This map is null homotopic since it factors through ΩB�∗ up to homotopy. Clearly
the Hurewicz map factors through congruence homotopy and the homology calcu-
lation follows from 3.18. �

Definition 5.17. A∗(B) is the graded symmetric algebra generated by M∗(B).

Theorem 5.18. The relative Whitehead product induces the structure of a
graded differential A∗(B) module on eπ∗(E;Z/pr).
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Proof. By 5.16, there is an action of M∗(A) on eπ∗(E;Z/pr) and hence an
action of the tensor algebra. It suffices to show that

[α, [β, γ]r]r ≡ (−1)mn[β, [α, γ]r]r

where α ∈ Mm and β ∈ Mn. However we have

[α, [β, γ]r]r = [α, [β, π∗(γ)]]×

= [[α, β], π∗(γ)]× + (−1)mn[β, [α, π∗(γ)]]×

by 3.30(c), (d) and 3.31(c). But [α, β] = π∗[α, β]× by 3.30(a), so we have

[[α, β], π∗(γ)]× = [π∗([α, β]×), π∗(γ)]×

= [[α, β]×, γ]

by 3.30(b). Since [[α, β]×, γ] is a Whitehead product of classes in π∗(E;Z/pr),
[[α, β]×, γ] ≡ 0. Thus

[α, [β, γ]r]r ≡ (−1)mn[β, [α, π∗(γ)]]×

= (−1)mn[β, [α, γ]r]r. �
Since the action of A∗(B) is associative, we will also use the notation

α · γ = [α, γ]r

to simplify the notation and distinguish this action from composition.

Proposition 5.19. Suppose ξ : H ′ �� H, δ : H �� E and α : ΣP �� B. Then
(a) {α, δξ}r ≡ {α, δ}r(1 ∧ ξ) : A ∧H ′ �� E.
(b) Suppose P = Pm, H = P k and H ′ = P �. Then there is a splitting P ∧H �

Pm+k ∨ Pm+k−1 such that

[α, δξ]r ≡ [α, δ]r(Σ
mξ) ∨ [β(α), δ]r(ξ

′)

where ξ′ : Pm+� �� Pm+k−1.

Remark. These relative Whitehead products are not homotopic in general
unless ξ is a co-H map.

Proof. Using 3.16, we construct the following diagram:

P ∧H
θ �� P �H

α̃� δ �� ΩB � E

Γ′

����
���

���
���

�

E

P ∧H ′

1 ∧ ξ

��

θ �� P �H ′ α̃� δξ ��

1� ξ

��

ΩB � E
Γ′

		������������

The two right hand regions are commutative. We claim that the left hand region
commutes up to congruence. Since P � H is a co-H space, there is a homotopy
equivalence

P �H � P ∧H ∨H

given by the sum of the map pinching H to a point and the projection onto H.
Since the composition

P ∧H
θ �� P �H �� P ∧H
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is a homotopy equivalence while the composition

P ∧H
θ �� P �H �� H

is null homotopic, both compositions in the left hand square become homotopic
when composed with the map

P �H
� �� P ∧H ∨H �� (P ∧H)×H.

The result then follows from 5.12.
For part b, we split Pm ∧ P k by the composition

Pm+k ∨ Pm+k−1 Δ ∨Δ �� Pm ∧ P k ∨ Pm−1 ∧ P k
1 ∨ β ∧ 1 �� Pm ∧ P k

(compare to 3.25) [α, δξ]r is given by precomposing {α, δξ}r with Δ. The compo-
sition

Pm+� Δ �� Pm ∧ P �
1 ∧ ξ �� Pm ∧ P k � Pm+k ∨ Pm+k−1

is congruent to a map with components Σmξ and ξ′ : Pm+k �� Pm+k−1. The result
then follows from the splitting. �

In case n > 1, we now apply the A∗(Dk) module structure to the study of
the congruence classes of the obstructions in Theorem 5.9. We will actually only
consider the subalgebra of A∗(Dk) generated by ν ∈ M2n = π2n+1(DkZ/pr) and
μ = βν ∈ M2n−1. These elements generate a subalgebra

Z/p[ν]⊗ ∧(μ) ⊂ A∗(Dk)

and eπ∗(Jk;Z/p
r) is a module over this algebra. We define classes

a(i) = τka(i)ρ
i−1 : P 2npi �� Jk

b(i) = τka(i)δi−1 : P
2npi−1 �� Jk

a(0) = [ν, μ]×

b(0) = [μ, μ]×

for 1 � i � k.

Theorem 5.20. In case n > 1, the collection of congruence classes of the set
of obstructions listed in Theorem 5.9 is spanned, as a module over Z/p[ν] ⊗ ∧(μ)
by the classes a(i) and b(i) of weight j � 2 for 0 � i � k, where the weight of a(i)

and b(i) are both one, except when i = 0 where the weight is two.

Proof. We first consider internalH-space basedWhitehead products of weight
2. Recall that by 3.30(b) [ξkγ, ξkδ]× = [γ, δ] which is null congruent, so we need
only consider weight 2 products [x1, x2]× in which at least one of x1, x2 is not in the
image of ξk. By 3.31(a), we will assume that x1 = μ or ν. This gives the following
possibilities for weight 2.

a(0), b(0), [ν, ξka(i)]×, [μ, ξka(i)]×, [ν, ξkb(i)]×, [μ, ξkb(i)]×

for 1 � i � k. Applying 3.30(e) again, we see that for j > 2 the class of

[x1, . . . , xj−2, [xj−1, xj ]×]r
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is null congruent if x1 is in the image ov ξk. Thus each of x1, . . . , xj−2 must
be either μ or ν, and this class is in the Z/p[ν] ⊗ ∧(μ) submodule generated by
[xj−1, xj ]×. �

We will refer to the submodule generated by a(k) and b(k) as the level k ob-
structions. In case k = 0 we have some simple relations:

Proposition 5.21. μ · b(0) ≡ 0 and ν · b(0) ≡ 2μ · a(0). Consequently the

submodule generated by a(0) and b(0) has a basis consisting of νk ·b(0) and νk ·a(0)
for k � 0.

Proof. By 3.30(c) and 3.31(c), we have

μ · [μ, μ]× = [μ, [μ, μ]×]r = [μ, [μ, μ]]× = 0 since p > 3.

Likewise, by 3.30(c),

μ · [ν, μ]× = [μ, [ν, μ]×]r = [μ, [ν, μ]]×.

Using 3.31(a) and (c) we get

[μ, [ν, μ]]× = [[μ, ν], μ]× + [ν, [μ, μ]]× = −[μ, [ν, μ]]× + [ν, [μ, μ]]×,

so 2μ · [ν, μ]× = [ν, [μ, u]]× = ν · [μ, μ]×. �
Because of these relations we define2 x2 = [ν, μ]× and y2 = 1

2 [μ, μ]×. Then

xk = ν · xk−1 = νk−2 · a(0) and yk = μ · xk−1.

Proposition 5.22. In case n > 1, the level 0 congruence classes are generated
by xj and yj for j � 2 with the relations μ ·xk ≡ ν · yk and ν · yk ≡ 0. Furthermore
βxj ≡ jyj and βyj ≡ 0.

Proof. We have

μ · xk ≡ νk−2μ · x2 ≡ 1

2
νk−1 · [μ, μ]× ≡ νk−1 · y2 = ν · yk

and

μ · yk ≡ μνk−2 · y2 ≡ 1

2
νk−2μ · [μ, μ]× ≡ 0

by 5.21. These relations imply that the xk and yk are linear generators. We will
see in section 6.1 that they are actually linearly independent.

Likewise,

βxk = (k − 2)νk−3 · x2 + νk−2 · [μ, μ]× ≡ (k − 2)μ · xk−1 + 2yk ≡ kyk

and

βyk ≡ (k − 2)νk−3μ · [μ, μ]× ≡ 0. �

2The class xk : P 2nk �� D0 = P 2n+1 is the adjoint of the similarly named class
in [CMN79b].
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CHAPTER 6

Constructing γk

In this chapter we assemble the material in the previous chapters and construct
a proof of Theorem A. In 6.1 we introduce the controlled extension theorem and
apply this in case k = 0. This case is simpler since D0 = G0, and serves as a
model for the more complicated case when k > 0. We recall a space F0 (called
F in [GT10]) and construct ν0 over the skeleta of F0 as in [GT10]. However we
choose ν0 so that it annihilates xm and ym for each m � 2, and conclude that ν0Γ0

is null homotopic.
In 6.2 we establish Statement 6.7 which depends on k. We will prove 6.7 by

induction. Several important properties will be derived from this statement along
the way. In particular, we construct Fk and calculate its homology. This allows for
a secondary induction over the skeleta of Fk.

In 6.3 the calculations are made to construct νk = γkηk so that it annihilates
the level k obstructions. At this point it is necessary to show that the level k − 1
obstructions do not reappear. This requires a careful analysis of the congruence
class of the level k − 1 obstructions. Theorem 6.28 and Corollary 6.37 provide
the necessary decompositions, and the issue is resolved by 6.40. The induction is
completed by 6.41 and 6.43

6.1. Controlled Extension and the Case k = 0

In this section we will introduce the controlled extension theorem and apply it
to the simplest case: the construction of a retraction map

ν0 : E0
�� BWn

such that the composition

Σ(ΩG0 ∧ ΩG0)
Γ0 �� E0

ν0 �� BWn

is null homotopic. This case is considerably simpler than the case k > 0 and
will serve as a model for the later cases. The controlled extension theorem is
an enhancement of the extension theorem (2.5), and our construction of ν0 is a
controlled version of the construction of ν0 = νE of section 3 of [GT10].

Theorem 6.1 (Controlled extension theorem). Suppose that all spaces are lo-
calized at p > 2 and we have a diagram of principal fibrations induced by a map

59
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60 6. CONSTRUCTING γk

ϕ : B ∪θ e
m �� X:

ΩX

��

ΩX

��
E0

��

��

E

π
��

B �� B ∪θ e
m.

Suppose dimB < m and we are given a map χ : Pm(ps) �� E with s � 1 such that
πχ : Pm(ps) �� B ∪θ em induces an isomorphism in mod p cohomology in dimen-
sion m. Suppose also that we are given a map γ0 : E0

�� BWn. Then:

(a) There is an extension of γ0 to γ′ : E �� BWn.
(b) Suppose also that we are given a map u : P �� E and a subspace P0 ⊂ P

such that the composition

P0
�� P

u �� E
γ′

�� BWn

is null homotopic and such that the quotient map q : P �� P/P0 factors
up to homotopy as

P
u �� E

q′ �� E/E0
ξ �� P/P0

for some map ξ. Then there is an extension γ of γ0 such that γu ∼ ∗.

Proof. Clearly the map πχ : (Pm(ps), Sm−1) �� (B ∪θ e
m, B) induces an iso-

morphism in homology, so the existence of γ′ follows from the extension theorem
(2.5).

To prove part (b), we suppose γ′ is given and we construct γ as the composition:

E
Δ �� E×E/E0

γ′×ξ �� BWn×P/P0
1×η �� BWn×BWn

÷ �� BWn

where η : P/P0
�� BWn is defined by the null homotopy of γ′u|P0

and ÷ is the
H-space division map. Clearly γ|E0

∼ γ0. To study γ|P , consider the diagram

E
Δ �� E×E/E0

γ′×ξ �� BWn×P/P0
1×η �� BWn×BWn

÷ �� BWn

P
Δ ��

u

��

P×P

u×q′u

��

ηq×q �� BWn×P/P0

��

1×η �� BWn×BWn
÷ �� BWn

where the lower composition of the first 3 maps factors through the diagonal map
of BWn, so the lower composition is null homotopic. �
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Now we will apply this in the case k = 0. Recall the spaces (5.2). In this case
D0 = G0 = P 2n+1 and J0 = E0:

Ω2S2n+1 �� E0
τ0 ��

��

F0
��

��

ΩS2n+1

��
P 2n+1

��

P 2n+1 ��

��

PS2n+1

��
S2n+1{pr} �� S2n+1

pr �� S2n+1.

These spaces were introduced in [CMN79a] where E0 is called E2n+1(pr) and F0

is called F 2n+1(pr).

Proposition 6.2. Hi(F0;Z(p)) =

{
Z(p) if i = 2mn

0 otherwise.

Proof. This is immediate from consideration of the cohomology Serre spectral
sequence of the middle fibration, which is induced from the path space fibration on
the right. All differentials are controlled by the path space fibration. �

We filter F0 by setting F0(m) to be the 2mn skeleton of F0 and define E0(m)
to be the pullback over F0(m)

Ω2S2n+1

��

Ω2S2n+1

��
E0(m) ��

��

E0

η0
��

F0(m) �� F0

Since F0(1) = S2n, this fibration in case m = 1 is the fibration which defines BWn

(see 2.3)

Ω2S2n+1 �� S4n−1 ×BWn
�� S2n �� ΩS2n+1.

We consequently define ν0(1) : E0(1) �� BWn by retracting onto BWn. Clearly
ν0(1)y2 is null homotopic since y2 : P

4n−1 �� E0 and BWn is 2np−3 connected. We
will use 6.1 to construct ν0(m) : E0(m) �� BWn such that ν0(m)yi and ν0(m)xi−1

are null homotopic for i � m+ 1.

Proposition 6.3. For each m � 2, there is a retraction

ν0(m) : E0(m) �� BWn

extending ν0(m−1) such that ν0(m)∗ annihilates the classes xm and ym+1 from 5.22.

The proof of this result will depend on two lemmas.

Lemma 6.4. The composition

P 2nj
xj �� E0

η0 �� F0

induces a cohomology epimorphism.
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Proof. To study η0xj , we use the principal fibration:

ΩS2n+1 �� F0
�� P 2n+1

Clearly μ : P 2n �� P 2n+1 lifts to a map x1 : P
2n �� F0 which induces a cohomology

epimorphism. Then xj = [ν, xj−1]r for each j � 2 so we can apply 3.18 to evaluate
xj in cohomology. �

Now let ξj be the composition

Ω2S2n+1 � S2nj � S2nj ∨ S2nj ∧ Ω2S2n+1 �� S2nj ∨ S2(j+1)n−1

where the last map is obtained by evaluation on the double loop space.

Lemma 6.5. The composition

P 2n(j+1)−1
yj+1 �� E0(j) �� E0(j)/E0(j − 1)

Ω2S2n+1 � S2nj
ξj �� S2nj ∨ S2n(j+1)−1

induces an integral cohomology epimorphism.

Proof. Since F0(j) = F0(j − 1) ∪ e2mj ,

E0(j)/E0(j − 1) � Ω2S2n+1
� S2mj

by the clutching construction (2.2). From the homotopy commutative square

E0(j) ��

��

E0(j)/E0(j − 1)

��
F0(j) �� S2nj

� S2nj
� Ω2S2n+1

and 6.4 we we see that the composition

P 2nj
xj �� E0(j) �� E0(j)/E0(j − 1)

� Ω2S2n+1 � S2nj
ξj �� S2nj ∨ S2n(j+1)−1

is an integral cohomology epimorphism. Since the action of Ω2S2n+1 on E0(j)
corresponds with the action of Ω2S2n+1 on

E0(j)/E0(j − 1) � Ω2S2n+1
� S2nj ,

we can apply 3.18 to see that the composition in question

P 2n(j+1)−1 �� Ω2S2n+1 � S2nj
ξj �� S2nj ∨ S2n(j+1)−1

induces an epimorphism in integral cohomology. �
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Proof of 6.3. We apply 6.1 to the diagram

Ω2S2n+1

��

Ω2S2n+1

��
E0(m− 1) ��

��

E0(m)

��
F0(m− 1) �� F0(m) = F0(m− 1) ∪θ e

2mn

where θ is the attaching map of the 2mn cell. Let χ = xm : P 2mn �� E(m). Choose
an extension γ′ of γ0 = ν0(m− 1). Let P = P 2mn ∨ P 2(m+1)n−1 and

u : P 2mn ∨ P 2(m+1)n−1
xm ∨ ym+1 �� E0(m);

let P0 = S2mn−1 ∨ S2(m+1)n−2. The composition

P 2mn−1 �� S2mn−1 �� P 2mn xm �� E0(m)

is βxm ≡ mym by 5.22. Since ν0(m− 1)ym is null homotopic, the composition

P 2mn−1
β �� P 2mn xm �� E0(m)

γ′
�� BWn

is null homotopic. β factors: P 2mn−1 �� S2mn−1 �� P 2mn, so the composition

S2mn−1 �� P 2mn xm �� E0(m)
γ′

�� BWn

is divisible by pr. However p ·π∗(BWn) = 0, so this composition is null homotopic.
Similarly, since βym+1 ≡ 0, the composition

S2(m+1)n−2 �� P 2(m+1)n−1
ym+1 �� E0(m)

γ′
�� BWn

is null homotopic. Thus the composition

P0
�� P

xm ∨ ym+1 �� E0(m)
γ′

�� BWn

is null homotopic. However

P = P 2mn∨P 2(m+1)n−1
xm∨ym+1 �� E0(m) ��

E0(m)/E0(m− 1) ∼= Ω2S2n+1�S2mn

induces an integral cohomology epimorphism by 6.4 and 6.5.
Composition with ξm yields a map P �� S2mn∨S2(m+1)n−1 as required by 6.1,

so we can choose an extension ν0(m) of ν0(m− 1) such that ν0(m)∗(xm) = 0 and
ν0(m)∗(ym+1) = 0. This completes the induction. �

Corollary 6.6. There is a retraction ν0 : E0
�� BWn such that the composi-

tion

Σ(ΩG0 ∧ ΩG0)
Γ0 �� E0

ν0 �� BWn

is null homotopic.
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Proof. By 6.3 (ν0)∗(xm) = 0 and (ν0)∗(ym) = 0 for m � 2. By 5.9 and 5.22,

{ν, . . . , ν, {ν, ν}×}r : ΣG0 ∧ · · · ∧ G0
�� E0

ν0 �� BWn

is null homotopic for all j � 2. The conclusion follows from 5.7. �

6.2. Preparation for Induction

At this point we present a statement depending on k which we will prove by
induction. As pointed out in section 2.4, this will be stronger than Proposition 2.12
given there. This strengthening will be a factorization of the map νk through the
map τk : Ek

�� Jk. In case k = 0, Ek = Jk and τk is the identity map, so this
alteration only applies when k > 0.

Statement 6.7. There is a map γk : Jk �� BWn such that the composition

ΩGk ∗ ΩGk
Γk �� Ek

τk �� Jk
γk �� BWn

is null homotopic and such that the compositions

E2npk−2
k−1

�� Ek−1
ek �� Ek

τk �� Jk
γk �� BWn

E2npk−2
k−1

�� Ek−1

τk−1 �� Jk−1

γk−1 �� BWn

are homotopic for k ≥ 1, where γ0 = ν0 as constructed in 6.6.

By 2.3, the composition

Ω2S2n+1 �� E0(1)
ν0(1) �� BWn

is homotopic to ν. Consequently 6.7 implies 2.12 in case k = 0. We will assume
that we have constructed γi for i < k, Having γi we obtain νi = γiτi and construct
a(k), c(k) and βk as in 4.4 with νk−1βk ∼ ∗. We then define Dk and Jk and proceed
to construct γk. The construction is completed with 6.43.

The procedure in section 6.1 is a model for the inductive step. To proceed, we
will first need to prove:

(6.8) Hi(Fk;Z(p)) ∼=
{
Z(p) if i = 2mn

0 otherwise.

We will then use an inductive procedure over the skeleta of Fk as in section 6.1.
The proof of 6.8 will be by induction on k. The case k = 0 is 6.2. At this point we
will assume 6.8 in case k − 1.

Proposition 6.9. Let Wk−1 be the fiber of γk−1. Then we have a homotopy
commutative diagram of vertical fibration sequences

T

��

T ��

��

ΩS2n+1

��
Rk−1

��

��

Wk−1
��

��

Fk−1

σk−1

��
Gk−1

�� Dk−1 Dk−1
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and two diagrams of fibration sequences

S2n−1 ��

��

Ω2S2n+1 ��

��

BWn

Wk−1
��

��

Jk−1

γk−1 ��

��

BWn

Fk−1 Fk−1

S2n−1 ��

��

T ��

��

ΩS2n+1

Wk−1

��

Wk−1

��
Fk−1

�� Dk−1
�� S2n+1

Proof. We define νk−1 to be the composition

Ek−1

τk−1 �� Jk−1

γk−1 �� BWn.

From this it follows that we have a commutative diagram of fibration sequences

Rk−1
��

��

Ek−1

νk−1 ��

τk−1

��

BWn

Wk−1
�� Jk−1

γk−1 �� BWn.

Consequently the square

Rk−1
��

��

Wk−1

��
Gk−1

�� Dk−1

is the composition of two pullback squares

Rk−1
��

��

Ek−1

πk−1 ��

τk−1

��

Gk−1

��
Wk−1

�� Jk−1

ξk−1 �� Dk−1,

so it is a pullback and the first diagram commutes up to homotopy. The second
diagram follows from the definition of Wk−1 and the third is a combination of the
first two. �

Proposition 6.10. ΩFk−1 � S2n−1 × ΩWk−1.
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Proof. Extending the third diagram of 6.9 to the left yields a diagram

Ω2S2n+1 ��

��

S2n−1

��
∗ ��

��

Wk−1

��
ΩS2n+1 �� Fk−1;

both of the horizontal maps have degree pr in dimension 2n, so Wk−1 is 4n − 2
connected and the map S2n−1 �� Wk−1 is null homotopic. From this it follows
that ΩFk−1 � S2n−1 × ΩWk−1. �

Proposition 6.11. The homomorphism

H∗(Fk−1;Z(p)) �� H∗(Wk−1;Z(p))

is onto and

Hj(Wk−1;Z(p)) =

⎧⎪⎨⎪⎩
Z(p)/p

r+s−1 if j = 2nps 0 < s < k

Z(p)/ip
r if j = 2ni, otherwise

0 otherwise.

Proof. Consider the Serre spectral sequence for the p-local homology of the
fibration

ΩS2n+1
δk−1 �� Fk−1

σk−1 �� Dk−1

Since E2
p,q is only nonzero when p and q are divisible by 2n, E2

p,q = E∞
p,q. We assume

the result (6.8) for the case k−1 by induction. Since E∞
p,q has finite order when p > 0

and H∗(Fk−1;Z(p)) is free, all extensions are nontrivial. Let ui ∈ H2ni(ΩS2n+1) be

the generator dual to the ith power of a chosen fixed generator in H2n(ΩS
2n+1), so

uiuj =

(
i+ j
i

)
ui+j .

Using the nontrivial extensions in the Serre spectral sequence, we can choose gen-
erators ei ∈ H2ni(Fk−1;Z(p)) so that

(δk−1)
∗(ei) =

{
pr+d−1ui if pd−1 � i < pd d < k

pr+k−1ui if i � pk−1.

Since (δk−1)
∗ is a monomorphism, it is easy to check that

e1ei−1 =

{
ipr−1ei if i = ps 0 < s < k

iprei otherwise.

It now follows from the p-local cohomology Serre spectral sequence for the fibration

S2n−1 �� Wk−1
�� Fk−1

that

d2n(ei−1 ⊗ u) =

{
ipr−1ei if i = ps 0 < s < k

iprei otherwise.

From this we can read off the cohomology of Wk−1. �
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Proposition 6.12. The homomorphism

H2npk

(Wk−1;Z(p)) �� H2npk

(T ;Z(p))

is nontrivial of order p.

Proof. From 6.9 we have a homotopy commutative square

T ��

��

ΩS2n+1

δk−1

��
Wk−1

�� Fk−1

to which we apply cohomology

H2npk

(T ) H2npk

(ΩS2n+1)��

H2npk

(Wk−1)

��

H2npk

(Fk−1)

δ∗k−1

��

��

which we evaluate

Z/pr+k Z(p)
��

Z/pr+k

��

Z(p)
��

pr+k−1

��

where the two horizontal arrows are epimorphisms. The result follows. �

Proposition 6.13. The map T �� Rk−1 extends to a map

T/T 2npk−2 �� Rk−1

such that the composition

P 2npk

(pr+k) = T 2npk

/T 2npk−2 �� T/T 2npk−2 �� Rk−1
�� Rk

is null homotopic.

Proof. Since the fibration

T �� Rk−1
�� Gk−1

is induced from the fibration over Gk, we have a homotopy commutative square

T/ΩGk−1
��

��

Rk−1

��
T/ΩGk

�� Rk.
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By 2.13(a) the inclusion T 2npk−2 �� T factors through ΩGk−1, this gives a
homotopy commutative square

T/T 2npk−2 ��

��

Rk−1

��
T/T 2npk+1−2 �� Rk

The result follows by restriction to T 2npk

/T 2npk−2. �

Proposition 6.14. Let α̃k : P
2npk

(pr+k) �� Rk−1 be the composition of the
first two maps in 6.13. Then the composition

P 2npk

(pr+k)
α̃k �� Rk−1

�� Wk−1

is nonzero in p local cohomology.

Proof. This follows from 6.12 using the diagram

P 2npk

(pr+k) ��

α̃k

����
���

���
���

�
T/T 2npk−2

��

T

��

��

Rk−1
�� Wk−1

where the three spaces on the top have isomorphic cohomology in dimension 2npk.
�

Proof of 6.8. We assume the result for Fk−1 by induction. Since Fk is the

total space of a principal fibration over Dk = Dk−1 ∪ CP 2npk

(p) whose restriction
to Dk−1 is Fk−1, we have by 2.2

Fk/Fk−1 = P 2npk+1(p)� ΩS2n+1;

and consequently we have a short exact sequence

0 �� H2nm(Fk−1;Z(p)) �� H2nm(Fk;Z(p)) �� Z/p �� 0

for m � pk, while

H2nm(Fk−1;Z(p)) � H2nm(Fk;Z(p))

for m < pk. We will prove that the extension is nontrivial. It suffices to show
that H2npk(Fk;Z(p)) � Z(p) since the module action of H∗(ΩS

2n+1;Z(p)) on both

H∗(Fk−1;Z(p)) and H∗(Fk;Z(p)) implies the result for all m > pk. If this failed
we would conclude that H2npk(Fk;Z(p)) ∼= Z(p) ⊕ Z/p. This would imply that the
homomorphism

H2npk

(Fk;Z(p)) �� �� H2npk

(Fk−1;Z(p))
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is onto. We will show that this is impossible. Suppose then that this homomorphism
is onto and consider the homotopy commutative diagram

ΩS2n+1

δk

��
P 2npk

(pr+k)

L

���������������������������������������������������� α̃k �� Rk−1
��

��

Wk−1
��

��

Fk−1
��

σk−1

��

Fk

σk

��
Gk−1

�� Dk−1 Dk−1
�� Dk.

The map L exists since the composition into Dk factors through the composition

Rk−1
�� Rk

�� Gk
�� Dk;

thus this composition is null homotopic by 6.13. Now if

H2npk

(Fk;Z(p)) �� H2npk

(Fk−1;Z(p))

is onto then the entire horizontal composition

H2npk

(Fk;Z(p)) �� H2npk

(P 2npk

(pr+k);Z(p))

is nonzero by 6.11 and 6.14. But δk factors:

ΩS2n+1
δk−1 �� Fk−1

�� Fk

and (δk−1)
∗ : H2npk

(Fk−1;Z(p)) �� H2npk

(ΩS2n+1;Z(p)) is divisible by pr+k−1.

Consequently the image of δ∗k is divisible by pr+k−1; since L∗δ∗k is nonzero and

H2npk

(P 2npk

(pr+k);Z(p)) ∼= Z/pr+k,

we conclude that L∗ is onto. This is impossible for then the composition

P 2npk

(pr+k)
L �� ΩS2n+1

Hpk−1

�� ΩS2npk−1+1

would be onto, where Hpk−1 is the James Hopf invariant. But there is never a map

P 2mp(pr+k) �� ΩS2m+1

which is onto in cohomology when r + k > 1 since the adjoint

P 2np−1(pr+k) �� Ω2S2m+1

would also be onto. Such a map would not commute with the Bockstein. Conse-
quently the extension is nontrivial and the cohomology is free. �
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Corollary 6.15. The induced homomorphism

H2ni(Fk−1;Z(p)) �� H2ni(Fk;Z(p))

is an isomorphism when i < pk and has degree p if i � pk. Furthermore the
principal action defines an isomorphism

H2ni(ΩS
2n+1;Z(p))⊗H2npk(Fk;Z(p)) �� H2npk+2ni(Fk;Z(p)) �

This completes the first task of this section. Our second task will be to give
a sharper understanding of the spaces Rk−1 and, in particular, Wk−1. Recall that

by 2.13(a), Gk−1 is a retract of ΣT 2npk−2. Consequently we have a sequence of
induced fibrations from 6.9

T

��

T

��

T

��
Rk−1

��

��

Qk−1
��

��

Rk−1

��
Gk−1

�� ΣT 2npk−2 �� Gk−1

from which we see that Rk−1 is a retract of Qk−1. Using the clutching construction
(2.1), we see that Qk−1 is homotopy equivalent to a pushout with E = Qk−1 and
E0 = T = F

T �� Qk−1

T × T 2npk−2 ��

ϕ

��

T × CT 2npk−2

��

where ϕ is the restriction of the action map:

T × T 2npk−2 �� T × ΩGk−1
a �� T.

Since the inclusion T 2npk−2 �� T factors through ΩGk−1, the composition

T 2npk−2 �� T �� Qk−1

is null homotopic; by applying 2.2 we have an equivalence Qk−1/T
2npk−2 � Qk−1∨

ΣT 2npk−2. However, from the pushout diagram, we have

Qk−1/T � T � ΣT 2npk−2.

Restricting to the 2npk − 2 skeleton, we get

Q2npk−2
k−1 ∨ ΣT 2npk−2 � (T � ΣT 2npk−2)2np

k−2

so Q2npk−2
k−1 �

(
T ∧ ΣT 2npk−2

)2npk−2
. Now T ∧ ΣT is a wedge of Moore spaces

by 2.13(d) in section 2.3 and only has cells in dimensions congruent to −1, 0,

or 1 mod 2n. Consequently Q2npk−2
k−1 is a wedge of Moore spaces, and the largest

exponent is the same as the largest exponent in ΣT 2npk−2, which is pr+k−1. Since
Rk−1 is a retract of Qk−1, we have proved
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Proposition 6.16. R2npk−2
k−1 is a wedge of mod ps Moore spaces Pm(ps) for

r � s < r + k.

Remark. There are no spheres in this wedge as there are no Moore spaces in

ΣT 2npk−2 ∧ T of dimension 2npk − 1.

Proposition 6.17. The homomorphism in integral homology

Hi(Rk−1;Z(p)) �� Hi(Wk−1;Z(p))

is onto for all i and split for i < 2npk − 1.

Proof. Since Dk−1 is the mapping cone of the composition

Ck−1 =
k−1∨
i=1

P 2npk−1(pr+i−1)
c �� Ek−1

πk−1 �� Gk−1,

we apply 2.2 to the fibrations in 6.9

T

��

T

��
Rk−1

��

��

Wk−1

��
Gk−1

�� Dk−1

and we can then describe Wk−1 by a pushout diagram

T × C(Ck−1) �� Wk−1

T × Ck−1

��

�� Rk−1.

��

This leads to a long exact sequence

. . . �� H̃i(T × Ck−1;Z(p)) �� H̃i(Rk−1;Z(p))⊗ H̃i(T ;Z(p))

�� H̃i(Wk−1;Z(p)) �� H̃i−1(T × Ck−1;Z(p)).

We assert that the homomorphism

H̃i(Wk−1;Z(p)) �� H̃i−1(T × Ck−1;Z(p))

is trivial. By 6.11, H̃i(Wk−1;Z(p)) is only nontrivial when i = 2sn − 1 for some
s � 2. But H2sn−2(T × Ck−1;Z(p)) = 0 since there are no cells in these di-
mensions. Now since π2 : T × Ck−1

�� T is onto in homology, we conclude that

Hi(Rk−1;Z(p)) �� Hi(Wk−1;Z(p)) is onto. To show that this is split when

i < 2npk − 1, we note that since Hi(Wk−1;Z(p)) is cyclic by 6.11, it suffices
to show that the exponent of Hi(Rk−1;Z(p)) is not larger than the exponent of

Hi(Wk−1;Z(p)) for i < 2npk − 1. By 6.11, we have

exp
(
Hi−1(Wk−1;Z(p))

)
=

{
r + νp(i) i �= ps

r + s− 1 i = ps 0 < s < k.
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But

exp
(
Hi−1(Rk−1;Z(p))

)
� exp

(
Hi−1(Qk−1;Z(p))

)
� exp

(
Hi−1

(
T ∧ ΣT 2npk−2;Z(p)

))
when i− 1 � 2npk − 2. However

iprH2ni−1(ΣT ∧ T ;Z(p)) = 0

and

pr+s−1H2nps−1(ΣT ∧ T ;Z(p)) = 0. �

Proposition 6.18. W 2npk−2
k−1 is a wedge of Moore spaces.

Proof. Since Hi−1

(
R2npk−2

k−1 ;Z(p)

)
�� Hi−1

(
W 2npk−2

k−1 ;Z(p)

)
is split onto, we

can find a Moore space in the decomposition of R2npk−2
k−1 for each i representing

a given generator. This constructs a subcomplex of R2npk−2
k−1 which is homotopy

equivalent to W 2npk−2
k−1 . �

Corollary 6.19. W 2npk−2
k−1 �

pk−1∨
i=2

P 2ni(pr+ni) where

ni =

{
νp(i) if i �= ps, 0 < s < k

s− 1 if i = ps 0 < s < k.

6.3. The Inductive Construction

In this section we perform the inductive step of constructing a retraction
γk : Jk �� BWn for k � 1. As in the proof of 6.3, we will apply 6.1 to the fi-
bration

Ω2S2n+1 �� Jk �� Fk

and do an induction over the cells of Fk. At each stage in this secondary induction
we will make choices to eliminate the obstructions from 5.20.

We will construct a map γk : Jk �� BWn which will annihilate the level k ob-
structions. However, γk−1 is not homotopic to the composition

Jk−1
�� Jk

γk �� BWn

so we will need an extra argument to show that γk annihilates the obstructions
of level less than k. This is accomplished by some general results (6.28 and 6.37)
which decompose certain relative Whitehead products. This is applied in 6.40 to
control the obstructions of a lower level.

We presume that γk−1 has been constructed such that the composition

Σ(ΩGk−1 ∧ ΩGk−1)
Γk−1 �� Ek−1

τk−1 �� Jk−1

γk−1 �� BWn

is null homotopic. This defines the fiber Rk−1 of νk−1 = γk−1τk−1 and we construct
βk, a(k) and c(k) in accordance with 4.4, and Dk, Jk and Fk as in 5.2.

We next construct a modification of 4.4 in this context.
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Proposition 6.20. There is a homotopy commutative ladder of cofibration
sequences:

P 2npk

(p) ��
��

=

��

P 2npk

(pr+k)
σ ��

βk

��

P 2npk

(pr+k−1) ��

a(k)
��

P 2npk+1(p)
��

=

��

Ek−1

τk−1

��

Ek

τk
��

Jk−1
ι ��

ηk−1

��

Jk

ηk
��

Fk−1
��

σk−1

��

Fk

σk

��
P 2npk

(p) �� Dk−1
�� Dk

�� P 2npk+1(p)

Proof. The upper central square commutes up to homotopy by 4.4 and 5.3
and the lower central squares follow from (5.2). By a cohomology calculation, the
right hand square commutes up to homotopy. For the left hand region, observe
that the 2npk skeleton of the fiber of the inclusion of Dk−1 into Dk is homotopy

equivalent to P 2npk

(p); a standard argument with cofibration sequences shows that
the left hand vertical map can be taken to be the identity. �

Corollary 6.21. The compositions

P 2npk

(pr+k−1)
a(k) �� Ek

τk �� Jk
ηk �� Fk

P 2npk

(pr+k)
βk �� Ek−1

τk−1 �� Jk−1

ηk−1 �� Fk−1

induce integral cohomology epimorphisms.

Proof. The first composition is handled by applying integral cohomology to
the right hand region of 6.20. For the second composition we consider the upper

two parts of the middle region. The map σ has degree p in H2npk

as does the map
Fk−1

�� Fk by 6.15. Since r + k � 2, this is enough to imply the result. �

Proposition 6.22. W 2npk

k−1 is a wedge of Moore spaces.

Proof. By 4.4, βk factors through Wk−1, and by 6.11 and 6.21 the map:

P 2npk

(pr+k)
βk �� W 2npk

k−1

induces an isomorphism in H2npk−1. The result follows from 6.18. �

We now filter Fk by skeleta and apply 6.8. As in section 6.1, let Fk(m) be the
2mn skeleton of Fk, so

Fk(m) = Fk(m− 1) ∪ e2mn.
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Let Jk(m) be the pullback of Jk to Fk(m), so we have a map of principal fibrations

Ω2S2n+1

��

Ω2S2n+1

��
Jk(m− 1) ��

��

Jk(m)

��
Fk(m− 1) �� Fk(m)

(6.23)

and using the clutching construction (2.1) we see that

Jk(m)/Jk(m− 1) � Ω2S2n+1
� S2mn

The obstructions that we need to consider at level k are the elements νi · a(k) and
μνi−1 · a(k) for i � 1 where νi and μνi−1 generate Z/p(ν)⊗ ∧(μ) ⊂ A∗(Dk). (See
5.18 and 5.20).

Proposition 6.24. The compositions

P 2npk+2ni
νi · a(k)�� Jk

ηk �� Fk

P 2npk+2ni−1
μνi−1 · a(k) �� Jk(pk + i− 1)

q �� Ω2S2n+1 � S2(pk+i−1)n

induce integral cohomology epimorphisms where q is the quotient map.

Proof. The first composition is evaluated by 6.21 when i = 0. In case i > 0,
we use induction on i. We apply 3.11(d) to the diagram

Jk
ηk ��

��

Fk

��
Dk

ϕ′
k
��

Dk

��
S2n+1{pr} �� S2n+1

to see that ηk(ν
i · a(k)) ≡ [ν, ηkν

i−1 · a(k)]r. The result then follows from 3.18
and 6.15. The second composition is evaluated by using 3.18 again since μνi−1 ·
a(k) ≡ [μ, νi−1a(k)]r. �

Corollary 6.25. The composition

P 2npj+2ni
νi · a(j) �� Wj

�� Wk−1

induces an integral cohomology epimorphism when 0 � i < pj+1 − pj and j < k;
likewise the composition

P 2npj+2n(i+1)−1
μνi · a(j) �� Wj

�� Wk−1

is nonzero in mod p cohomology in dimension 2npj + 2n(i+ 1)− 1.
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Proof. By the induction hypothesis, νi ·a(j) and μνi−1 ·a(j) are in the kernel
of γj for j < k, so they factor through Wj . We then construct the diagram

P 2npj+2ni
νi · a(j) �� Wj

��

��

Wk−1

��
Fj

�� Fk−1

when i < pj+1 − pj . Since the map Fj
�� Fk−1 induces an isomorphism in co-

homology in dimensions less than 2npj+1, the first result follows from 6.24. The
second result follows directly from the first since there is a map of fibrations

S2n−1 ��

��

Ω2S2n+1

��
Wk−1

��

��

Jk−1

��
Fk−1 Fk−1 �

At this point we introduce a simplified notation analogous to the notation in
case k = 0. We define mod pr homotopy classes

xi(k) : P
2ni �� Jk

yi(k) : P
2ni−1 �� Jk

for i � 2 by the formulas

xi(k) =

⎧⎪⎨⎪⎩
xi if k = 0

ιxi(k − 1) if i < pk

νi−pk · a(k) if i � pk

yi(k) = μ · xi−1(k).

(6.26)

Consequently, if pj � i < pj+1 � pk, xi(k) = xi(j).
We will often not distinguish between xi(j) : P

2ni �� Jj and its composition
with Jj �� Jk for k � j. However

ν · xi(k) =

{
xi+1(k) if i �= pt − 1 t < k

xi+1(t− 1) if i = pt − 1 t < k

We will write xi(k) for xi(�) with � unspecified but � � k, so νd · xi(k) = xi+d(k)
and similarly for yi(d).

Corollary 6.27. The compositions

P 2ni
xi(k) �� Jk �� Fk

P 2ni−1
yi(k) �� Jk(i− 1) �� Jk(i− 1)/Jk(i− 2) � Ω2S2n+1 � S2n(i−1)

induce integral cohomology epimorphisms for all i � 2.

Proof. This follows from 6.25 and 6.11. �
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The main technical tool in relating the xi(k) and yi(k) with xi(k − 1) and
yi(k − 1) will be the following

Theorem 6.28. Suppose ζ ∈ πm+1(Dk−1;Z/p
r) � πm(ΩDk−1;Z/p

r) with m >
0 and the composition

Σ2X
ϕ �� W 2npk−2

k−1
�� Jk−1

has order pr. Then {ζ, ϕ}r : Pm+2 ∧X �� Jk−1 is congruent to the sum

{ζ, ϕ}r ≡
pk−1∑
i=2

{ζ, yi(k − 1)}rαi + {ζ, xi(k − 1)}rβi

where αi : P
m ∧ Σ2X �� Pm ∧ P 2ni−1 and βi : P

m ∧ Σ2X �� Pm ∧ P 2ni.

There are several steps in the proof of 6.28. Under the inductive hypothesis,
xi(k − 1) and yi(k − 1) factor through Wk−1.

Proposition 6.29. The map

Ξ:

pk−1∨
i=2

P 2ni−1 ∨ P 2ni
yi(k − 1) ∨ xi(k − 1) �� W 2npk−2

k−1

induces a monomorphism mod p cohomology.

Proof. Hm(W 2npk−2
k−1 ) is trivial unless m = 2ni or m = 2ni−1 for 2 � i < pk,

in which case it is Z/p by 6.19. Each of these classes is nontrivial under either
xi(k − 1) or yi(k − 1). �

We seek to compare the maps xi(k − 1) and yi(k − 1) to a natural basis for

W 2npk−2
k−1 . Choose maps ei : P

2ni(pr+ni) �� W 2npk−2
k−1 for 2 � i < pk − 1 which

define the splitting of 6.19.

e :

pk−1∨
i=2

P 2ni(pr+ni)
∼= �� W 2npk−2

k−1

where ni = νp(i) if i �= ps and ni = s− 1 if i = ps. Now define a map

Λ:

pk−1∨
i=2

P 2ni ∨ S2ni−1 �� W 2npk−2
k−1

with components eiρ
ni : P 2ni �� Wk−1 and eiι2ni−1 : S

2ni−1 �� Wk−1.

Proposition 6.30. Suppose ϕ : Σ2X �� W 2npk−2
k−1 has order pr. Then there is

a congruence

ϕ ≡
pk−1∑
i=2

eiρ
niαi + eii2ni−1βi

for some maps αi : Σ
2X �� p2ni and βi : Σ

2X �� S2ni−1.

Proof. This follows directly from 5.12 and 5.15, since W 2npk−2
k−1 is a wedge of

even dimensional Moore spaces by 6.19. �
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Corollary 6.31. If n > 1, there is a diagram

pk−1∨
i=2

P 2ni ∨ P 2ni−1

F

��

Ξ

����
���

���
��

≡ W 2npk−2
k−1

pk−1∨
i=2

P 2ni ∨ S2ni−1

Λ

		����������

which commutes up to congruence, for some map F .

Proof. If n > 1,
pk−1∨
i=2

P 2ni ∨ P 2ni−1 is a double suspension whose identity

map has order pr. Thus 6.31 follows from 6.30. �
In particular, we obtain a congruence formula by restricting 6.31 to P 2ni:

xi(k − 1) ≡ eiρ
ni +

∑
2�j<i

ejρ
njαj + ejι2nj−1βj

for some maps αj : P
2ni �� P 2nj and βj : P

2ni �� S2nj−1. Actually, the coefficient
of eiρ

ni in this formula is a unit by a cohomology calculation. We can safely
assume it is the identity by adjusting the basis {ei}. We intend to use this formula
to replace the term eiρ

ni in 6.30 by xi(k − 1) plus lower dimensional terms. This
is a matter of linear substitutions, and we explain this more clearly in a general
context. Observe that all the spaces in these formulas are co-H spaces and 5.14
applies.

Lemma 6.32. In an additive category, the formulas

x =
N∑
i=1

aiϕi + biθi

xi = ai +
i−1∑
j=1

ajϕij + bjθij

imply that there is a formula:

x =
N∑
i=1

xiϕi + biθi.

Proof. Use downward induction beginning with replacing aN with xN . �
Comparing 6.30 with the formula for xi(k−1) above and applying 6.32, we get

Corollary 6.33. Suppose ϕ : Σ2X �� W 2npk−2
k−1 has order pr and n > 1. Then

ϕ is congruent to a sum

pk−1∑
i=2

xi(k − 1)ϕi + eiι2ni−1θi
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where ϕi : Σ
2X �� P 2ni and θi : Σ

2X �� S2ni−1. �

Proof of 6.28. We apply 5.19(a) to 6.33 to obtain a congruence

{ζ, ϕ}r ≡
pk−1∑
i=2

{ζ, xi(k − 1)}rΣmϕi + {ζ, eiι2ni−1}rΣmθi.

But by 3.29,

{ζ, eiι2ni−1}r = {ζ, eiι2ni−1π2ni−1}r = {ζ, di}r
where

di = eiι2ni−1π2ni−1 = eiβp
ni : P 2ni−1 �� P 2ni(pr+ni).

Substituting we get

(6.34) {ζ, ϕ}r ≡
pk−1∑
i=2

{ζ, xi(k − 1)}rΣmϕi + {ζ, di}rΣmθi.

We also apply 6.33 with ϕ = yi(k − 1) to get

yi(k − 1) ≡ di +
∑

2�j<i

xj(k − 1)ϕ′
j + eje2nj−1θ

′
j

and apply 5.19, we get

(6.35) {ζ, yi(k − 1)}r ≡ {ζ, di}r +
∑

2�j<i

{ζ, xj(k − 1)}rϕ′′
j + {ζ, dj}ϕ′′

j .

We now apply 6.32 to 6.34 and 6.35 with xi = {ζ, yi(k − 1)}r, aj = {ζ, dj}r
and bj = {ζ, xj(k − 1)}r to obtain

(6.28) {ζ, ϕ}r ≡
pk−1∑
i=2

{ζ, yi − (k − 1)}rαi + {ζ, xi(k − 1)}rβi. �

In case Σ2X = P � we can precompose with Δ

Pm+� �� Pm ∧ P �
{ζ, ϕ}r �� Jk−1

to obtain

[ζ, ϕ]r ≡
pk−1∑
i=2

{ζ, yi(k − 1)}rα′
i + {ζ, xi(k − 1)}rβ′

i

and apply 5.19(b) to obtain

Corollary 6.36. Suppose ζ : Pm �� ΩDk−1 and ϕ : P � �� W 2npk−2
k−1 . Then

[ζ, ϕ]r is congruent to a sum

pk−1∑
i=2

[ζ, yi(k − 1)]rαi + [β(ζ), yi(k − 1)]rβi + [ζ, xi(k − 1)]rγi + [β(ζ), xi(k − 1)]rδi

for some maps

αi : P
m+� �� Pm+2ni−�,

βi : P
m+� �� Pm+2ni−2,

γi : P
m+� �� Pm+2ni
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and

δ : Pm+� �� Pm+2ni−1.

Corollary 6.37. Suppose ϕ : P � �� W 2npk−2
k−1 . Then

νd · ϕ ≡
pk−1∑
i=2

xi+d(k − 1)αi + yi+d(k − 1)βi

and μνd−1 · ϕ ≡
pk−1∑
i=2

yi+d(k − 1)γi.

Proof. In case d = 1 we apply 6.36. The formula simplifies since β(ν) = μ
and μ · yi(k− 1) ≡ 0, while μ · xi(k− 1) = yi(k− 1) and ν · xi(k− 1) = xi+1(k− 1).
In case d > 1 we apply induction and 5.19(b) with α = ν and either

δ = xi+d−1(k − 1) and ξ = αi−1

or

δ = yi+d−1(k − 1) and ξ = βi−1.

�

We will use 6.37 to compare the obstructions at adjacent levels. Recall (4.4),
the map

P 2npk

(pr+k)
βk �� Rk−1

�� Wk−1;

βk induces a cohomology epimorphism by 6.21. We apply 6.28 where ϕ is one of
the two maps:

Δ1 = βkρ
k − xpk(k − 1) : P 2npk �� W 2npk−2

k−1

Δ2 = βkδk − ypk(k − 1) : P 2npk−1 �� W 2npk−2
k−1 .

(6.38)

The maps Δ1 and Δ2 are uniquely defined as maps to Wk−1 since each term lies in

the kernel of γk−1. The fact that they factor through W 2npk−2
k−1 follows from 6.22

and 6.24 (In the case k = 1 apply 6.4 and 6.5 in place of 6.24). Note that by 6.20
ιβk = a(k)σ where ι : Jk−1

�� Jk, so

ιβkρ
k = a(k)σρk = pa(k)ρk−1 = pa(k)

ιβkδk = a(k)σδk = a(k)δk−1 = b(k).

Thus we have

ιΔ1 = pa(k)− ιxpk(k − 1)

ιΔ2 = b(k)− ιypk(k − 1)
(6.39)

We will filter Jk by spaces Jk(m) as in 6.23 and construct maps

γk(m) : Jk(m) �� BWn

by induction first on k and then on m. By design the map γk(m) will annihilate the
classes xm(k) and ym+1(k). However γk(m) will not be an extension of γk−1(m)
and we need to know that the classes xm(k − 1) and ym+1(k − 1) are also in the
kernel of γk(m)∗. For this purpose we establish the following
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Lemma 6.40. Suppose m � pk and we have constructed

γ′ : Jk(m) �� BWn

such that the kernel of (γ′)∗ contains the classes xi(s) and yi+1(s) for i < m and
s < k. Then the kernel of (γ′)∗ also contains the classes

xm(k − 1)

ym+1(k − 1)

νj · b(k)
μνj · b(k)

when j + pk � m+ 1.

Proof. Let d = m− pk. Then we have

pxm(k) = p(νd · a(k))
≡ νd · (ιxpk(k − 1) + ιΔ1)

≡ ιxm(k − 1) + ινd ·Δ1

≡ ιxm(k − 1) + ι

⎛⎝pk−1∑
i=2

xi+d(k − 1)αi + yi+d(k − 1)βi

⎞⎠
by 6.26, 6.39 and 6.37. Since the identity map of BWn has order p and each of the
classes xi+d(k−1) and yi+d is equal to xi+d(s) and yi+d(s) respectively with s < k,
we can conclude that (γ′)∗(xm(k − 1)) = 0. Similarly,

pym+1(k) = p
(
μνd · a(k)

)
≡ μνd · (ιxpk(k − 1) + ιΔ1)

≡ ιym+1(k − 1) + ιμνd ·Δ1

≡ ιym+1(k − 1) +

pk−1∑
i=2

yi+d+1(k − 1)γi

by 6.37. Consequently (γ′)∗(ym+1(k − 1)) = 0. Likewise, by 6.39 we obtain

νj · b(k) ≡ νj · (ιypk(k − 1) + ιΔ2)

≡ ιypk+j(k − 1) + Σ

⎛⎝pk−1∑
i=2

xi+j(k − 1)αi + yi+j(k − 1)βi

⎞⎠
which lies in ker(γ′)∗ when pk + j � m+ 1. Similarly

μνj · b(k) ≡ ι

⎛⎝pk−1∑
i=2

yi+j+1(k − 1)γi

⎞⎠
which is in ker(γ′)∗ when pk + j � m+ 1. �
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Theorem 6.41. There are maps γk : Jk �� BWn such that γk restricted to
Jk(p

k − 1) = Jk−1(p
k − 1) is homotopic to the restriction of γk−1 and such that the

compositions

P 2npk

(pr+k−1)
a(k) �� Ek

τk �� Jk
γk �� BWn (k � 1)

P 2ni
xi(s) �� Js �� Jk

γk �� BWn

P 2ni−1
yi(s) �� Js �� Jk

γk �� BWn

are null homotopic for i � 2 and s � k.

Proof. Recall (6.23) that Fk =
⋃
Fk(m) where

Fk(m) = Fk−1(m) ∪ e2mn

and Fk(m) = Fk−1(m) when n < pk. We have induced principal fibrations:

Ω2S2n+1

��

Ω2S2n+1

��
Jk(m− 1) ��

��

Jk(m)

��
Fk(m− 1) �� Fk(m)

We will proceed by induction first on k and then on m. The result follows from 6.3
when k = 0. Suppose we have constructed γk−1 and γk(m− 1) is defined agreeing
with γk−1 on Jk(p

k−1) and such that the classes xi(s) and yi+1(s) are in the kernel
of γk(m− 1) when i < m and s � k. By 6.24 the composition

P 2mn
xm(k) �� Jk(m)

ηk �� Fk(m)

induces an isomorphism in mod p cohomology in dimension 2mn. We apply 6.1 to
construct an extension γ′ : Jk(m) �� BWn of γk(m− 1).

We first consider the case m = pk. Since γ′ extends γk(m− 1) = γk−1(m− 1),
the classes xi(s) and yi+1(s) are in the kernel of γ′ when s < k and i < pk. By 6.40,

the kernel of γ′ also contains the classes xpk(k − 1), ypk+1(k − 1), ν · b(k), μ · b(k)
and μν · b(k).

Now let P = P 2npk

(pr+k−1) ∨ P 2n(pk+1)−1 and u : P �� Jk(pk) be given by

a(k) ∨ μ · a(k). Let P0 = S2npk−1 ∨ S2n(pk+1)−2 ⊂ P . We next show that the
composition

(6.42) P0
�� P

u �� Jk(pk)
γ′

�� BWn

is null homotopic. Since a(k)β = a(k)σβρ = ιβkβρ and βk is in the kernel of γk−1,
γ′(a(k)β) = 0. This implies that the composition

S2npk−1 �� P 2npk

(pr+k−1)
a(k) �� Jk(pk)

γ′
�� BWn
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is divisible by pr+k−1 � p. Since p · π∗(BWn) = 0, this composition is null homo-
topic. Similarly

(μ · a(k))β = −μ ·
[(
a(k)ρk−1

)
β
]
= −pk−1μ · b(k)

which is in the kernel of γ′. Thus the composition 6.42 is null homotopic and we
can apply 6.1 to construct a different extension

γk(p
k) : Jk(p

k) �� BWn

of γl(p
k − 1). We use 6.24 to verify that the composition

P �� Jk(pk) �� Jk(pk)
/
Jk(p

k−1) � Ω2S2n+1�S2npk ξ �� S2npk∨S2n(pk+1)−1

induces an integral cohomology epimorphism. Thus after composing with a homo-
topy equivalence on the wedge of spheres, we see that it is homotopic to the quotient
map P �� P/P0. We apply 6.1 to construct γk(p

k) with xpk(k) and ypk+1(k) in

the kernel. Apply 6.40 again, this time to γk(p
k) to see that the classes xpk(p− 1)

and ypk+1(k − 1) are in the kernel. Then we repeatedly apply 6.40 to restrictions

of γk(p
k) to Js(p

k) for s < pk to see that xpk(s − 1) and ypk+1(s − 1) are in the
kernel for s < k.

The case m > pk is similar. Since γ′ extends γk(m − 1), the classes xi(s) and
yi+1(s) are in the kernel of γ′ when i < m and s < k. By 6.40 the kernel of γ′ also

contains the classes xm(k − 1), ym+1(k − 1) and the classes νj · b(k) and μνj · b(k)
when j + pk � m+ 1. We now define P and u : P �� Jk(m)

P =P 2mn ∨ P 2(m+1)n−1

u = xm(k) ∨ ym+1(k)

and we calculate

x(k)β =
(
νm−pk · a(k)

)
β

= mμνm−pk · a(k) + νm−pk ·
(
a(k)ρk−1β

)
= mym(k) + pk−1νm−pk · b(k)

ym(k) is in the kernel of γk(m− 1) and hence in the kernel of γ′ and νm−pk · b(k)
is in the kernel since (m− pk) + pk � m+ 1. Similarly

yk+1(k)β = pk−1μνm−pk · b(k)
is in ker γ′. As before, this implies that the restriction of u to

S2mn−1 ∨ S2(m+1)n−2

is null homotopic and we can construct the required map ξ satisfying 6.1. This
allows for the construction of γk(m) which annihilates xm(k) and ym+1(k). As
before, we apply 6.40 to conclude that all classes xi(s) and yi+1(s) are annihilated
by γk(m) when i � m and s � k. �

Theorem 6.43. Suppose n > 1. Then the composition

Σ(ΩGk ∧ ΩGk)
Γk �� Ek

ηk �� Jk
γk �� BWn

is null homotopic
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Proof. By 6.41 γk annihilates

xm(i) = νm−pi · a(i)

ym(i) = μνm−pi−1 · a(i)
for each m � 2 and i � k. By 6.40 γk annihilates

νj · b(k)
μνj · b(k)

for each j � 0. The result follows 5.7, 5.9 and 5.20. �
As in the proof of 2.12, we have a homotopy equivalence⋃

k�0

J2npk+1−2
k

��
⋃
k�0

Jk = J

and consequently we can construct γ∞ : J �� BWn and redefine γk as the restriction
of γ∞ to Jk. Similarly we define ν∞ = γ∞τ∞ and we have

Compatibility Theorem 6.44. There are maps γk and νk such that γkι ∼
γk−1 and νke ∼ νk−1. Furthermore, there are homotopy commutative diagrams of
fibration sequences

ΩGk

hk

��

ΩGk

Ωϕk
��

T ��

��

ΩS2n+1{pr} H ��

��

BWn

Rk

��

�� Ek

��

νk �� BWn

Gk Gk

ΩDk

h′
k
��

ΩDk

��
T

��

�� ΩS2n+1{pr}

��

H �� BWn

Wk
��

��

Jk

��

γk �� BWn

Dk Dk

where the left hand diagram maps into the right hand diagram. The maps hk

and h′
k are the restrictions of maps h : ΩG �� T and h′ : ΩD �� T and there are

compatible maps gk : T
2npk+1−2 �� ΩGk with hkgk homotopic to the inclusion and

compatible maps fk: Gk
�� ΣT 2npk

with g̃kfk homotopic to the identity.
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CHAPTER 7

Universal Properties

The aim of this chapter is to prove theorem B, corollaries C and D, and to
discuss some applications. We describe an obstruction theory for the existence and
uniqueness of extensions α̂ and evaluate the obstructions in some cases. We have,
however, no example of a homotopy Abelian H-space and map α : P 2n �� Z for
which no extension to an H-map α̂ : T �� Z exists.*

7.1. Statement of Results

In this section we describe the basic result relating to the existence and unique-
ness of an extension of a map α : P 2n �� Z to an H-map α̂ : T �� Z. The proofs
of these results are reserved for the next two sections. We note, however, that a
different argument for the obstruction to uniqueness was obtained in [Gra12].

We begin with some notation. Throughout this chapter, Z will be an arbitrary
homotopy Abelian H-space. We will call an H-map α : ΩGk

�� Z proper if the
compositions:

P 2npi−1(pr+i−1) ∨ P 2npi (
pr+i−1

) a(i) ∨ c(i) �� ΩGi
�� ΩGk

α �� Z

are null-homotopic for each i, 1 � i � k. Let Gk(Z) be the Abelian group of all
homotopy classes of proper H-maps α : ΩGk

�� Z, where 0 � k � ∞ and we write
G(Z) for G∞(Z). Let

pk(Z) = pr+k−1π2npk−1(Z;Z/pr+k)

by which we mean the subgroup of all elements of π2nph−1(Z;Z/pr+k) which are

divisible by pr+k−1. Let [Z1, Z2]H be the Abelian group of all H-maps from Z1

to Z2.
Clearly

(7.1) G0(Z) =
[
P 2n, Z

]
= π2n(Z;Z/pr)

Theorem 7.2. lim
←

Gk(Z) ∼= [T, Z]H .

Theorem 7.3. There is an exact sequence:

0 �� pk(ΩZ)
e �� Gk(Z)

r �� Gk−1(Z)
β �� pk(Z)

We will see by example that this sequence is not exact on the right. In fact,
we have no example in which β �= 0. But there are examples in which pk(Z) �= 0.

*Added in proof. Such a space Z has recently been discovered.

85

Licensed to Univ of Rochester.  Prepared on Thu Sep 12 15:07:34 EDT 2024for download from IP 128.151.13.59.



86 7. UNIVERSAL PROPERTIES

7.2. Inductive Analysis

In this section we will prove Theorem 7.2. It is a consequence of the following
propositions:

Proposition 7.4. lim
←

Gk(Z) ∼= G(Z)

Proposition 7.5. [T, Z]H ∼= G(Z).

Proof of 7.4: We first establish that for any space X,

(7.6) lim
←

[Gk, X] ∼= [G,X]

The argument here is a special case of the results in [Gra66]. First we observe that
the restrictions define an epimorphism:

[G,X] �� lim
←

[Gk, X]

by the homotopy extension property applied inductively for each k. Suppose, how-
ever, that α ∈ [G,X] lies in the kernel; i.e., the restrictions:

Gk
�� G

α �� X

are all null homotopic. We construct a homotopy commutative diagram in which
the horizontal sequence is a cofibration sequence:∨

k�0

Gk

�� G ��

α

��

C(G) ��

α′
���
�
�
�

∨
k�0

ΣGk

�� ΣG

X

However by 2.13(i), ΣG is a wedge of Moore spaces, so the map∨
k�0

ΣGk
�� ΣG

has a right homotopy inverse. This implies that∨
k�0

ΣGk
∼= ΣG ∨ C(G)

and consequently the map G �� C(G) is null homotopic. It follows that α is null
homotopic. �

To complete the proof of 7.4, consider the diagram:

[ΩG,Z]H
L ��

ϕ

��

lim
←

[ΩGk, Z]H

ϕ

��
[G,ΣZ]

∼= ��

ψ

��

lim
←

[Gk,ΣZ]

ψ

��
[ΩG,Z]H

L �� lim
←

[ΩGk, Z]H

where ϕ(α) = (Σα)ν and ϕ(β) = μ(Ωβ). Clearly ψϕ = 1. The middle horizontal
homomorphism is an isomorphism by 7.6. Since ψ is an epimorphism, L is an
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epimorphism and since ϕ is a monomorphism, L is a monomorphism. Clearly proper
H-maps in [ΩG,Z]H correspond to proper H-maps in [ΩGk, Z]H for each k. �

The proof of 7.5 will depend on an analysis of R. We define spaces A and C
and maps a and c as follows:

a : A =
∨
k�1

P 2npk

(pr+k−1) �� R �� E

c : C =
∨
k�1

P 2npk+1(pr+k−1) �� R �� E

by the maps a(k) and c(k) from (4.4) on the respective factors. The maps a and c
factor through R by 5.3 and 6.41.

Proposition 7.7. R � A ∨ C ∨ ΣP where the inclusion of ΣP in R factors
through Γ: ΩG ∗ ΩG �� R.

Proof of 7.5 (based on 7.7): Given an H-map α : T �� Z, the composition
β = αh:

ΩG
h �� T

α �� Z

is a proper H-map since h is proper. We construct an inverse:

T
g �� ΩG

β �� Z

However, since g is not an H-map, we need an extra argument to show that βg is
an H-map. Consider the diagram:

T × T
g × g ��

μ

��

ΩG× ΩG
h× h ��

μ

��

T × T

μ

��
T

g �� ΩG
h �� T

in which the left-hand square is not homotopy commutative. Since the right-hand
square and the rectangle are homotopy commutative, the difference between the
two sides of the left-hand square

Δ = (gμ)−1μ(g × g) : T × T �� ΩG

factors through the fiber of h:

ΩR �� ΩG
h �� T �� R �� G.

However since β is proper and Z is homotopy Abelian the composition:

ΩR �� ΩG
β �� Z

is null homotopic by 7.7. Thus βΔ is null homotopic and βg is an H-map. �

The remainder of this section will be devoted to a proof of 7.7. We begin by
clarifying the relationship between R and W .

Proposition 7.8. R � (T � C) ∨W .
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Proof. By 6.17, the homomorphism

H∗(R;Z(p)) �� H∗(W ;Z(p))

is a split epimorphism. Since R is a wedge of Moore spaces by 6.16 and W is a
wedge of Moore spaces by 6.19, the map R �� W has a right homotopy inverse. In
the proof of 6.17, a map of fibration sequences was studied; in the limit, this is of
the form

T

��

T

��
R ��

��

W

��
G �� D

where D is the mapping cone of the map c : C �� G. It follows from 2.1 that there
is a homotopy pushout diagram

T × C(C) �� W

T × C

��

�� R

��

where C(C) is the cone on C. Since the inclusion of T in R is null homotopic, there
is an induced map

T � C � CT ∪ T × C �� R

whose cofiber is W ;

T � C �� R �� W.

Since the map R �� W has a right homotopy inverse, the result follows. �

Proposition 7.9. There is a homotopy commutative diagram

T � C ��

g � c
��

R

��
ΩG� E

πΓ′
�� G.

Proof. The map T �C � T ×C∪CT �� R is given as follows. The restriction
to T × C comes from a trivialization of the pullback over C in the diagram

T

��

T

��

T

��
T × C ��

��

R ��

��

J

��
C

c �� G �� D

so the composition T × C �� T × C ∪ CT �� R �� G is given by the map

T × C
π2 �� C

c �� G.
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To understand the map CT �� R, consider a general fibration

F �� E
π �� B.

Using the homotopy lifting property, one can construct a map

(PB,ΩB)
L �� (E,F )

extending the connecting map ΩB �� F and such that πL : PB �� B is endpoint
evaluation. In our case we use the map L : (PG,ΩG) �� (R, T ) together with
g : T �� ΩG to obtain the composition

(CT, T )
g �� (CΩG,ΩG)

ξ �� (PG,ΩG)
L �� (R, T ),

where ξ is defined in the proof of 2.6. This defines the map CT �� R and the
composition

CT �� R �� G

is given by

CT �� C(ΩG)
ε �� G.

According to the definition of Γ′ (see 3.8), the map

ΩG× E ∪ PG
Γ′

�� E
π �� G

is given by

ΩG× E
π2 �� E

π �� G

PG
ε �� G �

Corollary 7.10. T � C � (T ∧ C) ∨ C and the composition

T ∧ C
ζ �� T � C �� R �� G

factors through ΩG ∗ ΩG Γ �� E
π �� G.

Proof. Since C is a suspension, T �C � (T ∧C)∨C. By 7.9, the composition
in question factors up to homotopy as

T ∧ C �� T � C
g � c �� ΩG� E

Γ′
�� E

π �� G

We construct a homotopy commutative diagram:

T ∧ C ��

��

T � C ��

g � c
��

C

c
��

ΩG ∗ ΩE ��

��

ΩG� E ��

Γ′
��

E

ΩG ∗ ΩG Γ �� E

π
��
G
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as follows: the upper right hand square commutes by naturality, and the middle
horizontal sequence is a fibration sequence by 3.17. This allows for the construction
of the upper left hand square. Since the lower square commutes up to homotopy
by 3.15, we see that the composition in question is homotopic to the left edge of
the diagram which finishes the proof. �

At this point we have R � (T ∧ C) ∨ C ∨W , where T ∧ C �� R �� G factors
through

ΩG ∗ ΩG Γ �� E
π �� G.

The remainder of this section will be focused on proving

Proposition 7.11. W � A ∨W ′ where

W ′ =
∨
i �=ps

P 2ni(pr+νp(i)).

Furthermore, there is a factorization:

W ′ ��

��

R

��
ΩG ∗ ΩG Γ �� G

The main ingredient for the proof of 7.11 is the following result:

Proposition 7.12. Suppose pk < m < pk+1 and s = νp(m).Then there is a
map f(m) : P 2mn(pr+s) �� Jk such that

(a) The composition

P 2mn(pr+s)
f(m) �� Jk

ηk �� Fk

induces a cohomology epimorphism.
(b) There is a factorization:

P 2mn(pr+s)
f(m) ��

w
��

Jk

ΩGk ∗ ΩGk
Γk �� Ek

τk

��

Proof of 7.11. Suppose pk < m < pk+1. By 7.12, γkf(m) is null homotopic,
so there is a factorization:

Jk
ηk

���
��

��
��

�

P 2mn(pr+s)

f(m)
������������

f(m) ��		
			

			
		

Fk

Wk

��

����������

By 6.11, f(m) induces an isomorphism in integral homology in dimension 2mn−1.
Assembling the maps f(m) together for all k together with the maps a(k) we get a
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map

A ∨
∨

m �=pk

P 2mn(pr+s) �� W

which induces an isomorphism in homology. Thus W � A ∨ W ′ and W ′ factors
through ΩG ∗ ΩG by 7.12. �

The construction of f(m) when s = 0 is immediate. We simply set f(m) =
xm(k). In case s > 0 we need to construct relative Whitehead products using Gk.
In the special case that m = 2pk we will need to use an H-space based Whitehead
product.

The proof of 7.12 will rely on four lemmas. We will call an integer m accept-
able if there is a map f(m) : P 2mn(pr+s) �� Jk with νp(m) = s, satisfying 7.12(a)
and (b).

Lemma 7.13. Suppose pk < m < pk+1 and x : P 2mn(pr+t) �� Ek is a map such
that the composition

P 2mn(pr+t)
x �� Ek

τk �� Jk
ηk �� Fk

induces an integral cohomology epimorphism. Suppose i � t � k. Then there is a

map f(m + pi) : P 2mn+2npi

(pr+i) �� Jk satisfying 7.12(a) and (b). Consequently
if νp(m+ pi) = i, m+ pi is acceptable.

Remark. This applies in particular whenm > pk is acceptable with t = νp(m).

Proof. Write ΣP = P 2mn(pr+t) and let λi : Gi
�� Gk be the inclusion when

i � k. We will define f(m+ pi) using the relative Whitehead product:

Gi ◦ ΣP
{λi, x}r �� Ek

τk �� Jk
ηk �� Fk.

Our first task will be to evaluate this in H2n(m+pi). Recall (3.10) that {λi, x}r is
the composition:

Gi ◦ ΣP
ψ �� Σ(ΩGi ∗ ΩΣP )�ΩGi∗ΩΣP

ζ �� ΩGi�ΣP �� ΩGk�Ek
Γ′

�� Ek

For the first part of this composition, consider the diagram

(7.14)

Gi ◦ ΣP
ψ �� ΣΩGi ∧ ΩΣP

Gi ∧ P
ν ∧ 1 ��

�

��

ΣΩGi ∧ P

1 ∧ i

��
�

�

ΩGi ∗ ΩΣP
ζ

����
���

���
���

ΩGi � ΣP

ΩGi ∗ P

1 ∗ i

��

ζ ′

�������������

where ν is the co-H space structure map on Gi. The left hand square is homotopy
commutative by 3.2 and the right hand triangle defines ζ ′ (see footnote to 3.17).

Choose a generator bi ∈ H2npi+1(Gi) ∼= Z/p and let σbi ∈ H2npi(ΩGi) be the
image of this generator under ν∗. Choose a generator f ∈ H2mn−1(P ). Then by
the above diagram we have

ζ∗ψ∗(bi ⊗ f) = σbi ⊗ 1⊗ f ∈ H2mn+2npi(ΩGi � ΣP ),
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by applying the commutative square in the proof of 3.17. We now construct a dia-
gram where the two right hand squares are homotopy commutative by 3.8, 3.11(b)
and 3.11(d):

ΩGi � ΣP
Ωλi � x �� ΩGk � Ek

Γ′
��

��

Γ′
�� Ek

ηiτk
��

ΩDk � Fk
Γ′

�� Fk

ΩDk × Fk

��

��

��

ΩS2n+1 × Fk

a

��
(7.15)

To evaluate ηkτk{λi, x}r in mod p homology we observe that the image of σbi⊗ |
⊗f is a∗(α⊗β) where α ∈ H2npi(ΩS2n+1) is the image of Ωbi under the homomor-
phism induced by the composition

ΩGi
�� ΩGk

�� ΩDk
�� ΩS2n+1

and β is the image of 1⊗ f under the homomorphism

ΣP
x �� Ek

ηkτk �� Fk.

By hypothesis β ∈ H2mn(Fk) is a generator.

Lemma 7.16. The image of σbi ∈ H2npi(ΩGk) under the homomorphism

ΩGk
�� ΩDk

�� ΩS2n+1

is a unit multiple of the generator.

Proof. By 5.2, the composition in question is homotopic to the composition:

ΩGk

Ωϕk �� ΩS2n+1{pr} �� ΩS2n+1.

By 6.44, this factors as

ΩGk
hk �� T �� ΩS2n+1.

However the composition

Gk
ν �� ΣΩGk

Σhk �� ΣT

induces a monomorphism in mod p homology, so (hk)∗(σbi) is a nonzero generator

which is mapped to a unit multiple of vp
i

under the map T �� ΩS2m−1. �

We now complete the proof of 7.13. Since i � t, we can find a map

P 2mn+2npi

(pr+i) �� Gi ◦ P 2mn(pr+t)

which induces an isomorphism in mod p homology in dimension 2mn+ 2npi using
2.13(i) and 3.25. Then let f(m+ pi) be the composition:

P 2mn+2npi

(pr+i) �� Gi ◦ P 2mn(pr+t)
{λi, x}r�� Ek

τk �� Jk.
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By 7.14, 7.15, and 7.16, ηkf(m+pi) induces an epimorphism in mod p cohomology
and consequently in integral cohomology as well. By 3.15, we have a homotopy
commutative diagram

ΩGi ∗ ΩΣP
ζ ��

��

ΩGi � ΣP

��
ΩGk ∗ ΩEk

ζ ��

��

ΩGk � Ek
��

Γ′

��

ΩDk � Jk

Γ′

��
ΩGk ∗ ΩGk

Γ �� Ek
�� Jk

so f(m+ pi) factors through Γ. �
We need to consider the case m = 2pk separately. We will construct

P 4npk

(pr+k)
f(2pk)�� W.

It is the first example of a mod pr+k Moore space in W by 6.19.

Proposition 7.17. 2pk is acceptable.

We will construct f(2pk) as an H-space based Whitehead product. Let Gk be
the 2npk skeleton of Gk. Then Gk ◦Gk has dimension 4npk.

Lemma 7.18. Gk ◦Gk is a wedge of Moore spaces.

Proof. Consider the cofibration sequence

Gk ◦Gk
�� Gk ◦Gk

Q �� S2npk+1 ◦Gk � Σ2npk

Gk.

Since Gk ◦ Gk is a wedge of Moore spaces by 2.13(l) and 3.21, it suffices to show
that this cofibration splits. Choose a basis {ai, bi} for H∗(Gk) with 0 � i � k
and β(r+k)(bi) = ai �= 0. Consider the classes bk ◦ bi corresponding to bk ⊗ bi.
We can construct a basis for H∗(Gk ◦Gk) which contains the elements bk ◦ bi and
β(r+i)(bk ◦ bi). Since Gk ◦ Gk is a wedge of Moore spaces we can construct maps
of Moore spaces into Gk ◦ Gk realizing these basis elements and from this a right
homotopy inverse to Q. Thus

Gk ◦Gk � Gk ◦Gk ∨ Σ2npk

Gk. �
Now consider the principal fibration sequence:

ΩGk × ΩGk
�� ΩGk ∗ ΩGk

�� Gk ∨Gk.

We will study the integral homology Serre spectral sequence of this fibration.
The principal action defines a module structure

Er
o,q′ ⊗ Er

p,q
�� Er

p,q+q′ .

For i = 1, 2, let a(i) ∈ H2npk(Gk ∨ Gk;Z) be the image of ak in the ith axis.

Let σa ∈ H2npk−1(ΩGk;Z) be the desuspended image under ν∗ of ak, and σa(i)

the image of σa in the ith axis in H2npk−1(ΩGk × ΩGk;Z). Using the universal
coefficient theorem, we define a monomorphism

Hp(Gk ∨Gk;Z)⊗Hq(ΩGk × ΩGk;Z) �� E2
p,q.
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Then d2npk(a(i)⊗ 1) = 1⊗ σa(i). Define ξ ∈ E2
2npk,2npk−1 by

ξ = a(1)⊗ σa(2) + a(2)⊗ σa(1).

ξ has order pr+k and d2npk(ξ) = 0. Since E2
p,q = 0 when p > 2npk + 1, ξ survives to

an element of order pr+k in E∞. By 7.18, 3.21 and 2.13(l), ΩGk ∗ΩGk is a wedge of
Moore spaces and by an easy homology calculation, every element in the homology
has order at most pr+k. Consequently ξ converges to an element [ξ] of order pr+k

in H4npk−1(ΩGk ∗ ΩGk;Z). Since ΩGk ∗ ΩGk is a wedge of Moore spaces, there is
a map

ϕ : P 4npk

(pr+k) �� ΩGk ∗ ΩGk

whose homology image contains a class η ∈ H4npk(ΩGk ∗ΩGk) with β(r+k)(η) equal
to the mod p reduction of [ξ].

Now let γ be the composition:

ΩGk ∗ ΩGk
�� ΩGk ∗ ΩGk

Γk �� Ek
τk �� Jk

ηk �� Fk

Lemma 7.19. The composition

P 4npk

(pr+k)
ϕ �� ΩGk ∗ ΩGk

γ �� Fk

induces an isomorphism in mod p homology in dimension 4npk.

Remark. This implies that γϕ induces an epimorphism in integral cohomology.

Proof. Consider the two diagrams of principal fibrations

ΩGk × ΩGk

��

ΩGk × ΩGk

��
L ��

��

ΩGk ∗ ΩGk

��
Gk−1 ∨Gk−1

�� Gk ∨Gk

Ω2S2n+1

��

Ω2S2n+1

��
Fk−1

��

��

Fk

��
Dk−1

�� Dk

where L is the total space of the induced fibration. The homotopy commutative
square

Gk ∨Gk
��

��

Dk

��
Gk ×Gk

�� S2n+1

induces a map from the left hand pair of fibrations to the right hand pair. We
apply 2.1 to obtain the following homotopy commutative diagram:

ΩGk ∗ ΩGk

/
L

γ ��

�
��

Fk

/
Fk−1

�
��

(S2npk ∨ P 2npk+1(pr+k))� ΩGk × ΩGk
γ′

�� ΩS2n+1 � P 2npk+1(p)
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Let e ∈ H2npk(S2npk

) be the image of a(1) and f ∈ H2npk(P 2npk+1(pr+k)) be the
image of a(2) under the quotient map

Gk ∨Gk
�� Gk ∨Gk

/
Gk−1 ∨Gk−1 � S2npk ∨ P 2npk+1(pr+k).

Choose g with β(r+k)(g) = f . Then the image of [ξ] under the left hand equivalence
is e⊗ σa(2) + f ⊗ σa(1). The image of η is a class η′ such that

β(r+k)(η′) = e⊗ σa(2) + f ⊗ σa(1).

At this point in the Bockstein spectral sequence there are very few classes left and
the only possibility for η′ is

η′ = e⊗ σb(2) + g ⊗ σa(1)

where β(r+k)b(2) = a(2).

The components of the map γ′ are the inclusion S2npk �� P 2npk+1(p) and

σr+k−1 : P 2npk+1(pr+k) �� P 2npk+1(p).

By 7.16, the image of σb(2) is vp
k �= 0. We conclude that the image of η′ is nonzero

P 4npk

(pr+k)
ϕ �� ΩGk ∗ ΩGk

γ �� Fk
�� Fk

/
Fk−1 � P 2npk+1(p)� ΩS2n+1

in mod p homology, from which the conclusion follows. �

Proof of 7.17. Let f(2pk) be the composition

P 4npk

(pr+k)
ϕ �� ΩGk ∗ ΩGk

Γk �� Ek
ηk �� Jk.

The result follows from 7.19. �

Proof of 7.12. Write m = e0 + e1p+ · · ·+ ekp
k where 0 � ei < p. Let �(m)

bet the number of coefficients ei which are nonzero. We first deal with the case
�(m) = 1. Then m = ekp

k with 1 < ek < p since pk < m < pk+1. The case ek = 2
is 7.17. If ek > 2 we apply 7.13 with x = f((ek − 1)pk) and i = t = k, to establish
this case by induction. In case �(m) = 2, we first consider the case m = pi + ekp

k

for i < k. In case ek � 2 we apply 7.13 with x = f(ekp
k) and t = k. In case ek = 1

we apply 7.13 with x = a(k). In this case t = k − 1 � i. We now consider the
general case with �(m) = 2. In this case m = eip

i + ekp
k with i < k. We do this

by induction on ei with ei < p as before. The general case is by induction on �(m)
and then induction on the coefficient of the least power of p in the expansion using
7.13 repeatedly. �

Proof of 7.7. By 7.8 and 7.10 R = T �C ∨W � T ∧C ∨C ∨W where T ∧C
is a wedge of Moore spaces which factors through Γ. By 7.11 W � A ∨W ′ where
W ′ is a wedge of Moore spaces which factors through Γ. Set ΣP = W ′∨C∧W . �

Licensed to Univ of Rochester.  Prepared on Thu Sep 12 15:07:34 EDT 2024for download from IP 128.151.13.59.



96 7. UNIVERSAL PROPERTIES

7.3. The exact sequence

In this section we will define the homomorphisms e, r, and β and prove Theo-
rem 7.3.

We define

e : pk(ΩZ) �� Gk(Z)

as follows. Let φ : P 2npk−1(pr+k) �� ΩZ, and extend the adjoint

φ̃ : P 2npk

(pr+k) �� Z

to an H-map

φ̂ : ΩP 2npk+1(pr+k) �� Z.

Since φ is divisible by pr+k−1, so is φ̂ and consequently the composition

ΩGk
Ωπ′

�� ΩP 2npk+1(pr+k)
φ̂ �� Z

is a proper H-map. We define e(φ) = φ̂Ωπ′. Then e is clearly a homomorphism.
To see that e is a monomorphism, we suppose e(φ) is null homotopic. Since π′ is a
co-H map, we have a homotopy commutative diagram:

Gk
ν ��

π′

��

ΣΩGk

Σe(φ)

����
���

���
���

��

ΣΩπ′

��

ΣZ

P 2npk+1(pr+k) �� ΣΩP 2npk+1(pr+k)
Σφ̂

��������������

Since e(φ) is null homotopic, the upper composition is null homotopic, so the lower
composition factors over the cofiber of π′:

Gk
π′

�� P 2npk+1(pr+k) �� ΣGk−1
�� ΣGk.

But since ΣGk splits as a wedge of Moore spaces, the map

P 2npk+1(pr+k) �� ΣGk−1

is null homotopic. It follows that the composition:

P 2npk+1(pr+k) �� ΣΩP 2npk+1(pr+k)
Σφ̂ �� ΣZ

is null homotopic. Since Z in an H space, we conclude that

P 2npk

(pr+k) �� ΩP 2npk+1(pr+k)
φ̂ �� Z

is null homotopic. Since φ̂ is an H-map, φ̃ is null homotopic and consequently φ is
as well. Thus e is a monomorphism.

The map

r : Gk(Z) �� Gk−1(Z)
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is given by restriction. Clearly re = 0. Suppose rα = 0 for some proper H-map
α : ΩGk

�� Z. We construct an extension φ in the diagram:

Gk−1
��

ν

��

Gk
��

ν

��

P 2npk+1(pr+k)

φ

���
�
�
�
�
�
�
�
�

ΣΩGk−1
��

∗
����

���
���

��
ΣΩGk

Σα
��

ΣZ

We include the loops on the right-hand triangle into the diagram:

ΩGk
Ωπ′

��

Ων
��

ΩP 2npk+1(pr+k)

Ωφ

����
��
��
��
��
��
��
��
��
�

ΩGk

����������

����������

α
��

ΩΣΩGk
Ωε��

ΩΣα
��

Z ΩΣZ
μ��

to see that α is homotopic to μ(Ωφ)(Ωπ′) ∼ φ̂Ωπ′ where φ̂ is the composition μΩφ.

Restricting φ̂ to P 2npk

(pr+k) defines φ̃ whose adjoint is

φ : P 2npk−1(pr+k) �� ΩZ.

To see that φ is divisible by pr+k−1 , it suffices to show that φ is divisible by pr+k−1.
However since α is proper, the upper composition in the diagram:

P 2npk−1(pr+k−1) ∨ P 2npk

(pr+k−1)
a(k) ∨ c(k) ��

�����
����

����
����

��
ΩGk

α ��

Ωπ′

��

Z

��
ΩP 2npk+1(pr+k−1)

Ωφ �� ΩΣZ

is null homotopic. Consequently the lower composition and its adjoint are null
homotopic:

P 2npk

(pr+k−1) ∨ P 2npk+1(pr+k−1)
−δ1 ∨ p �� P 2npk+1(pr+k)

φ �� ΣZ

It follows from 1.8 that φ is divisible by pr+k−1. Thus φ̃ and φ are divisible as well.
Finally we define

β : Gk(Z) �� pk+1(Z)

as the composition

P 2npk+1−1(pr+k+1)
β̃k+1 �� ΩEk

�� ΩGk
α �� Z

At one point it was thought that this composition would always be null homo-
topic when Z is homotopy Abelian ([The01, 5.1]). What we will prove is that the
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compositions:

P 2npk+1−1(pr+k)
ρ �� P 2npk+1−1(pr+k+1)

β̃k+1 �� ΩGk
α �� Z

P 2npk+1−2(pr+k)
δ1 �� P 2npk+1−1(pr+k+1)

β̃k+1 �� ΩGk
α �� Z

are null homotopic, which implies

Theorem 7.20. β(α) is divisible by pr+k.

We accomplish this by constructing maps:

r : P 2npk+1

(pr+k) �� Rk
�� Wk

d : P 2npk+1−1(pr+k) �� Rk
�� Wk

which differ from βk+1p and βk+1δ1 by maps which factor through A ∨ C ∨ ΣP .

Lemma 7.21. The homomorphism induced by the inclusion

H∗(Wk) �� H∗(Jk)

is a monomorphism.

Proof. By 6.11, Wk has one cell in each dimension of the form 2ni or 2ni− 1
for each i � 2; consequently

Hj(Wk) =

{
Z/p if j = 2ni or 2ni− 1, i � 2

0 otherwise.

By 6.27, the maps xi(k) : P
2ni �� Jk and yi(k) : P

2ni−1 �� Jk are nonzero in mod
p homology in dimensions 2ni and 2ni − 1 respectively. By 6.41, the maps xi(k)
and yi(k) factor through Wk up to homotopy when i � 2. The result follows. �

We will write xi ∈ H2ni(Jk) and yi ∈ H2ni−1(Jk) for the images of the genera-
tors in the homology of the respective Moore spaces. Note that in the congruence
homotopy of Jk we have

ν · xi(k) ≡ xi+1(k)

μ · xi(k) ≡ yi+1(k)

when i � pk by 6.26. The action of the principal fibration defines an action

H∗(ΩDk)⊗H∗(Jk) �� H∗(Jk).

Let u, v be the Hurewicz images of ν and μ (see 5.20). Then Z/p[v] ⊗ Λ(u) ⊂
H∗(ΩDk) acts on H∗(Jk).

Lemma 7.22. If i � pk, vxi = xi+1 and uxi = yi+1.

Proof. Apply 5.16. �

Lemma 7.23. There are maps

r : P 2npk+1

(pr+k) �� Wk

and

d : P 2npk+1−1(pr+k) �� Wk
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which are nonzero in mod p homology in dimensions 2npk+1 and 2npk+1 − 1 re-
spectively and whose image in Jk factors through the map

ΩGk ∗ ΩGk
Γk �� Ek

τk �� Jk.

Remark. Both βk+1ρ and βk+1δ1 satisfy the homological condition of 7.23 and
factor through Wk. However βk+1 does not factor through Γk since it has order
pr+k+1, and there are no elements in the homotopy of ΩGk ∗ΩGk in that dimension
of that order.

Proof. Let x = f(pk(p−1)) : P 2npk(p−1)(pr+k) �� Jk be the map constructed
in 7.12. Apply 7.13 with i = k to construct

r = f(pk+1) : P 2npk+1

(pr+k) �� Jk.

The class xpk+1 ∈ H2npk+1(Jk) is in the homology image of r since r factors through
Wk and projects to a nonzero class in H2npk+1(Fk).

To construct d, we return to the class x above and observe that the homomor-
phism induced by x:

H∗(P
2npk(p−1)(pr+k)) �� H∗(Jk)

contains both xpk(p−1) and ypk(p−1) in its image since x factors through Wk which

has P 2npk(p−1)(pr+k) as a retract.

Consequently xβ : P 2npk(p−1)−1(pr+k) �� Jk has ypk(p−1) in its homology im-
age. Now consider

[λk, xβ]r : Gk ◦ P 2npk(p−1)−1(pr+k) �� Jk

and apply 7.14 and 7.15. It follows that vp
k

ypk(p−1) = ypk+1 is in the homology
image by 7.16. We then choose a map

P 2npk+1−1(pr+k) �� Gk ◦ P 2npk(p−1)−1

which induces an isomorphism in dimension 2npk+1 − 1 to construct d. �
Proof of 7.20. Since W is a retract of R by 7.8 we can assume that r and d

factor through R. Choose units u1 and u2 so that the maps

Δ1 = u1βk+1ρ− r : P 2npk+1

(pr+k) �� Rk
�� Wk

Δ2 = u2βk+1δ1 − d : P 2npk+1−1(pr+k) �� Rk
�� Wk

are trivial in mod p homology. This can be done since the relevant factor of Wk is

P 2npk+1

(pr+k+1) and both βk+1ρ and r are nontrivial in dimension 2npk+1 while
βk+1δ1 and d are nontrivial in dimension 2npk+1 − 1. It follows from 7.7 that both
Δ1 and Δ2 factor through

k∨
i=1

P 2npi

(pr+i−1) ∨ P 2npi−1(pr+i−1) ∨ ΣP.

Since α is proper, we conclude that the compositions

P 2npk+1−1(pr+k)
Δ̃1 �� ΩRk

�� ΩGk
α �� Z

P 2npk+1−2(pr+k)
Δ̃2 �� ΩRk

�� ΩGk
α �� Z
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are both null homotopic. Since the maps r and d factor through ΩGk ∗ΩGk, these
terms are null homotopic and we conclude that the compositions

P 2npk+1−1(pr+k)
β̃k+1ρ �� ΩRk

�� ΩGk
α �� Z

P 2npk+1−2(pr+k)
β̃k+1δ1 �� ΩRk

�� ΩGk
α �� Z

are null homotopic. Now consider the cofibration sequence

P 2npk+1−2(pr+k) ∨ ρ2np
k+1−1(pr+k)

−δ1 ∨ ρ �� P 2npk+1−1(pr+k+1)
pr+k

�� P 2npk+1−1(pr+k+1).

From this we see that the composition

P 2npk+1−1(pr+k+1)
β̃k+1 �� ΩRk

�� ΩGk
α �� Z

is divisible by pr+k. �

Proposition 7.24. βr = 0

Proof. Since α is proper, the composition on the right in the diagram:

P 2npk−1(pr+k)
σ ∨ σβ ��

β̃k

��

P 2npk−1(pr+k−1) ∨ P 2npk

(pr+k−1)

a(k) ∨ c(k)

��
ΩGk−1

�� ΩGk
α �� Z

is null homotopic. The diagram commutes up to homotopy by 4.4 from which the
result follows. �

Proposition 7.25. If β(α)=0, α ∼ rα′ for some proper H-map α′: ΩGk
�� Z.

Proof. By 4.4, Gk = Gk−1 ∪αk
CP 2npk

(pr+k). Since G is a retract of ΣT ,
Gk−1 and Gk are co-H spaces and there is a homotopy commutative diagram

Gk−1
��

��

Gk

��
Gk−1 ∨Gk−1

�� Gk ∨Gk

The map αk ∨αk : P
2npk

(pr+k)∨P 2npk

(pr+k) �� Gk−1 ∨Gk−1 factors through the
fiber of the lower horizontal map in the diagram and defines a homotopy equivalence
with the 2npk skeleton of the fiber of that map. However the composition

P 2npk

(pr+k)
αk �� Gk−1

�� Gk−1 ∨Gk−1
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factors through this fiber, from which we get a homotopy commutative square

P 2npk

(pr+k)
αk ��

��

Gk−1

��
P 2npk

(pr+k) ∨ P 2npk

(pr+k)
αk ∨ αk �� Gk−1 ∨Gk−1;

that is, αk is a co-H map. Consequently there is also a homotopy commutative
diagram:

P 2npk

(pr+k)
αk ��

��

Gk−1

ν

��
ΣΩP 2npk

(pr+k) �� ΣΩGk−1

However, the composition on the left and the bottom is Σα̃k, where

α̃k : P
2npk−1(pr+k) �� ΩGk−1

is the adjoint of αk. Let b = πk−1βk : P
2npk

(pr+k) �� Gk−1. By 4.4, pr+k−1b is
homotopic to αk. This leads to a homotopy commutative diagram:

P 2npk

(pr+k)

αk

��

P 2npk

(pr+k)
pr+k−1

��

Σα̃k

��

P 2npk

(pr+k)

Σb̃
��

Gk−1
ν �� ΣΩGk−1

�� ΣΩGk−1

Taking cofibers vertically, we get a composition

Gk
�� Σ(ΩGk−1 ∪α̃k

CP 2npk−1(pr+k)) �� Σ(ΩGk−1 ∪˜b CP 2npk−1(pr+k)).

By hypothesis, α extends to a map

ΩGk−1 ∪˜b CP 2npk−1(pr+k)
α �� Z.

Composing these maps together defines a map α′′

Gk
�� Σ(ΩGk−1 ∪˜b CP 2npk−1(pr+k))

Σα �� ΣZ

whose restriction to Gk−1 is the composition

Gk−1
ν �� ΣΩGk−1

Σα �� ΣZ.

We now form the homotopy commutative diagram

ΩGk
Ωα′′

�� ΩΣZ
μ �� Z

ΩGk−1
Ων ��

��

ΩΣΩGk−1
Ωε ��

ΩΣα

��

ΩGk−1

α

��

(7.26)

where the lower composition is homotopic to the identity. The upper composition
is an H-map extending α. We will modify this slightly to satisfy our requirements.
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In the diagram below, the left hand triangle is homotopy commutative due to 7.26
and the left hand square follows from 4.4.

P 2npk−1(pr+k)

β̃k

��

σ ∨ σβ �� P 2npk−1(pr+k−1)∨P 2npk

(pr+k−1)
−δ1 ∨ ρ ��

(Ωπk)(α̃(k)∨c̃(k))
��

P 2npk

(pr+k)

ε

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

ΩGk−1

α

��		
		

		
		

		
		

		
		

		
		

		
		

		
		

	
�� ΩGk

Ωα′′

��
ΩΣZ

μ

��
Z

By hypothesis β(α) = αβ̃k is null homotopic. Since the upper horizontal sequence
is a cofibration sequence, there is an extension

ε : P 2npk

(pr+k) �� Z.

Extend ε to an H-map ε′ : ΩP 2npk+1(pr+k) �� Z and define

α′ = μΩα′′ − ε′Ωπ′,

where π′ is the projection of Gk onto P 2npk+1(pr+k). Since Z is homotopy-Abelian
and α′ is the difference between two H-maps, α′ is an H-map. Since the restriction
of ε′Ωπ′ to ΩGk−1 is null homotopic, α′ extends α by 7.26. From 4.4 we construct
a homotopy commutative square:

P 2npk

(pr+k)
i �� ΩP 2npk+1(pr+k)

P 2npk−1(pr+k−1) ∨ P 2npk

(pr+k−1)
(Ωπk)(ã(k) ∨ c̃(k)) ��

−δ1 ∨ ρ

��

ΩGk

Ωπ′

��

Consequently,

α′(Ωπk)(ã(k) ∨ c̃(k) ∼ (μΩα′′ − ε′Ωπ′)(Ωπk)(ã(k) ∨ c̃(k))

∼ ε(δ1 ∨ ρ)− ε′i(−δ1 ∨ ρ) ∼ ∗ �
This completes the proof of 7.3 �

7.4. Applications

In this section we will discuss various applications of the results developed in
the previous sections.

Proposition 7.27. Suppose pr+1π∗(Z) = 0. Then there is a natural exact
sequence:

0 �� pr
[
P 2np(pr+1), Z

] e �� [T, Z]H
r ��

[
P 2n(pr), Z

]
β �� pr

[
P 2np−1(pr+1), Z

]
.
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In particular, if prπi(Z) = 0 for 2np− 2 � i � 2np, r is an isomorphism.

Note. We are not asserting that β is onto.

Proof. This is immediate from 7.2 and 7.3 since pk(Z) = 0 and pk(ΩZ) = 0
for all k � 2. �

Corollary 7.28. Suppose T and T ′ are two homotopy Abelian Anick spaces
for the same values of n, r and p > 3. Then there is a homotopy equivalence via
an H-map and the H-space expondent is pr.

Proof. We apply 7.27 with Z = T ′. It suffices to show that prπi(T
′) = 0 for

2np− 2 � i � 2np. We apply the fibration sequence:

Wn
�� T ′

2n−1
E �� ΩT2n(p

r)
H �� BWn

from [GT10]. According to [Nei83], prπ∗(T2n) = 0 and according to [CMN79c]
pπ∗(Wn) = 0, so pr+1π∗(T

′) = 0. However, since p � 3, πi(Wn) = 0 when 2np−2 �
i � 2np, so prπi(T

′) = 0 in this range. Thus

[T, T ′]H �
[
P 2n(pr), T ′] = Z/pr

and the result follows. In particular, prπi(T ) = 0 for all i as a consequence. �

Corollary 7.29. Suppose α : P 2n(pr) �� P 2n(ps) with s � r then there is a
unique H-map α̂ such that the diagram:

T2n−1(p
r)

α̂ �� T2m−1(p
s)

P 2n(pr)
α ��

i

��

P 2m(ps)

i

��

homotopy commutes.

Note. In case r = s, this result was the original motivation for these conjec-
tures, leading to a secondary composition theory [Gra93a].

Proof. This follows from 7.27 and 7.28. �

Proposition 7.30. There is an H-map θ1 : T2n−1(p
r) �� T2np−1(p

r+1) which
induces a homomorphism of degree pr in H2np. Furthermore, the map e in 7.27,
evaluated on on prf is the composition:

T2n−1(p
r)

θ1 �� T2np−1(p
r+1)

f̂ �� Z

where f̂ is the unique extension of f to an H-map.
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Proof. By 7.28, pr+1π∗(T2np−1(p
r+1)) = 0, so we may apply 7.27 with Z =

T2np−1(p
r+1) and use naturality under f̂ . This leads to a commutative square

0 �� pr
[
P 2np(pr+1), Z

] e �� [T, Z]H

0 �� pr
[
P 2np(pr+1), T2np−1(p

r+1)
] e ��

f̂∗

��

≈

[
T, T2np−1(p

r+1)
]
H

f̂∗

��

Z/p

The image of the generator in the lower left hand corner under e is an H-map θ1
which is nonzero and of order p. To evaluate (θ1)

∗ in cohomology, use the diagram:

T2n−1(p
r)

θ1 �� T2np−1(p
r+1)

ΩG1

pr(Ωπ′) ��

h1

��

ΩP 2np+1(pr+1)

��

based on the definition of e. �

Note that a similar construction can be made in case pr+kπ∗(Z) = 0. In this
case

[T, Z]H � Gk(Z)

and

e : pr+k−1
[
P 2npk

(pr+k), Z
]

�� Gk(Z)

can be evaluated on pr+k−1f as a composition:

T2n−1
θk �� T2npk−1

f̂ �� Z

where θk is an H-map of order p inducing pr+k−1 in H2npk

.
In section 1.5, certain coefficient maps were labeled for use:

β : Pm(ps) �� Pm+1(ps)

ρ : Pm(ps) �� Pm(ps+1)

σ : Pm(ps) �� Pm(ps−1)

Analogs of these maps were implicitly defined and used in section 5.2:

ρ : T2n(p
s) �� T2n(p

s+1)

σ : T2n(p
s) �� T2n(p

s−1)

and one can easily define β as the compositions:

T2n(p
r) �� S2n+1 �� T2n+1(p

r)

T2n−1(p
r) �� ΩS2n+1 �� T2n(p

r)

using 7.29, we can define

σ : T2n−1(p
r) �� T2n−1(p

r−1)

Licensed to Univ of Rochester.  Prepared on Thu Sep 12 15:07:34 EDT 2024for download from IP 128.151.13.59.



7.4. APPLICATIONS 105

We apply 7.27 to construct ρ, but it is not unique in general

ρ : T2n−1(p
r) �� T2n−1(p

r+1)

Proposition 7.31. There is a split short exact sequence:

0 �� p1(ΩT2n−1(p
r+1)) ��

[
T2n−1(p

r), T2n−1(p
r+1)

]
H

r �� Z/pr �� 0

and

p1(ΩT2n−1(p
r+1)) ∼= pr

{[
P 2np+1(pr+1), S2n+1

]
⊕
[
P 2np+2(pr+1), S2n+1

]}
Note. p1(ΩT2n−1(p

r+1)) is known to be nonzero when pr divides n ([Gra69])
and is known to be zero when r � n ([CMN79c]).

Proof. In order to establish this exact sequence we show that the map β in
fact is zero in this case. Since β1 factors through E0, by 4.4, the composition:

P 2np(pr+1)
β1 �� P 2n+1(p)

ϕ0 �� S2n+1{pr}
is null homotopic. Let j be composition

P 2n+1(pr)
ϕ0 �� S2n+1{pr} σ �� S2n+1{pr+1} = T2n(p

r+1);

then Ωj is homotopic to the composition:

ΩP 2n+1(pr)
Ωρ �� ΩP 2n+1(pr+1)

h0 �� T2n−1(p
r+1)

E �� ΩT2n(p
r+1)

since both compositions are H-maps which agree on P 2n(pr). In the diagram
below, the upper composition is null homotopic and the lower sequence is a fibration
sequence:

P 2np−1(pr+1)
β̃1 ��

ξ

���
�
�

ΩP 2n+1(pr)
Ωj ��

h0Ωρ
��

ΩT2n(p
r)

Wn
�� T2n−1(p

r+1)
E �� ΩT2n(p

r+1).

It follows that the map ξ exists forming a homotopy commutative square. But[
P 2np−1(pr+1),Wn

]
= ∗,

so the composition:

P 2np−1(pr∗)
β̃1 �� ΩP 2n+1(pr)

Ωρ �� ΩP 2n+1(pr+1)
h0 �� T2n−1(p

r+1)

is null homotopic. However h0Ωρ generates[
ΩP 2n+1(pr), T2n−1(p

r+1)
]
H

∼=
[
P 2n(pr), T2n−1(p

r+1)
] ∼= Z/pr

and consequently β = 0. Finally

p1
(
ΩT2n−1(p

r+1)
)
= pr

[
P 2np(pr+1), T2n−1P

r+1)
]
.

But since [P 2np(pr+1),Wn] = 0 = [P 2np(pr+1), BWn],[
P 2np(pr+1), T2n−1(p

r+1)
]
=
[
P 2np(pr+1),ΩT2n(p

r+1)
]

=
[
P 2np+1(pr+1), S2n+1{pr+1}

]
=
[
P 2np+1(pr+1), S2n+1

]
⊕
[
P 2np+2(pr+1), S2n+1

]
,
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so

p1
(
ΩT2n−1(p

r+1)
)
= pr

{[
P 2np+1(pr+1), S2n+1

]
⊕
[
P 2np+2(pr+1), S2n+1

]}
.

These groups are stable and trivial if r � n. However, if pr divides n, there is an
element of π2np(S

2n+1) of order pr+1 and consequently p1(ΩT2n−1(p
r+1)) �= 0 in

this case. The exact sequence is split since T2n−1(p
r) has exponent pr. �

Finally we note that for every choice of ρ, ρσ = σρ = p, β = σβρ and βσt =
ptσtβ, as in section 1.5.

Proposition 7.32. There is a unique H-map

T2n−1
f �� Ω2P 2n+2(pr)

up to a unit whose double adjoint has a right homotopy inverse.

Proof. By [CMN79b], pr+1π∗
(
Ω2P 2n+2(pr)

)
= 0, so we apply 7.27. We

have

pr
[
P 2np(pr+1),Ω2P 2n+1(pr)

]
= pr

[
P 2np+2(pr+1), P 2n+2(pr)

]
pr
[
P 2np−1(pr+1),Ω2P 2n+1(pr)

]
= pr

[
P 2np+1(pr+1), P 2n+2(pr)

]
However prπi

(
P 2n+2(pr)

)
= 0 for i < (4n+ 2)p− 1. �

Since P 2n+2(pr) is a retract of Σ2T2n−1, the double adjoint has a right homo-
topy inverse.

Corollary 7.33. If Z is H-equivalent to the loop space on an H-space, every

map P 2n(pr)
α �� Z has an extension to an H-map T2n−1

α̂ �� Z .

Proof. If Z = ΩW the adjoint of α extends

ΩP 2n+2(pr)

α′

���
��

��
��

��
�

P 2n+1(pr)
α̃ ��

��

W

and we construct α̃ as the composition:

T2n−1(p
r) �� Ω2P 2n+2(pr)

Ωα′
�� Z

using 7.32. �

Licensed to Univ of Rochester.  Prepared on Thu Sep 12 15:07:34 EDT 2024for download from IP 128.151.13.59.



APPENDIX A

The Case n = 1 and the Case p = 3

In section 4.2, we applied index p approximation to reduce the obstructions
to a homotopy-Abelian H-space structure to a family of elements in the homotopy
of Ek with mod ps coefficients. This reduction only works when n > 1. We will use
a different method in this case. However, the material in sections 5.1 and 6.2 on
Dk, Jk and Fk does not depend on 4.2, and we can still construct γk : Jk �� BWn

(see for example [Gra08]).

Theorem A.1. For p > 2, r � 1 and n = 1, the Anick space is homotopy
equivalent to a double loop space and hence has a homotopy-Abelian H-space struc-
ture.

Proof. Let e ∈ H4(BS3;Z(p)) be a generator and κ = pre. Let X be the
homotopy fiber of κ. Then we have a homotopy commutative diagram of fibration
sequences

ΩX �� S3 Ωκ �� K(Z; 3)

S3{pr} ��

γ

��

S3
pr �� S3

Ωe

��

with γ uniquely determined. Using γ, we construct a diagram of vertical fibration
sequences:

S1 ��

��

Ω2S3 ��

��

S1

��
T1

��

��

ΩS3{pr}

��

Ωγ �� Ω2X

��
ΩS3 ΩS3 ΩS3

Since the upper horizontal composition is a homotopy equivalence, T1 � Ω2X. Note
that the right hand fibration is an H-fibration and is an Anick fibration. �

Theorem A.2. If T2n−1(3
r) is homotopy associative, n = 3k with k � 0.

Furthermore if n > 1, then r = 1.

Proof. For any homotopy associative space T , there is a map:

T ∗ T ∗ T �� ST ∪H(μ) C(T ∗ T )
building the third stage of the classifying space construction ([Sug57],
[Sta63]). The mapping cone X of this map has the cohomology of the bar con-
struction on the homology of T through dimension 8n− 1. In particular the mod p
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108 A. THE CASE n = 1 AND THE CASE p = 3

cohomology of the 6n skeleton of X has as a basis, classes u, v, u2, uv, u3 where
|u| = 2n and |v| = 2n + 1. The 6n skeleton of the subspace ST ∪H(μ) CT ∗ T

has cohomology generated by u, v, u2, uv. Now since the map R �� G is a re-
tract of the map H(μ) : T ∗ T �� ΣT , the 4n + 1 skeleton of ST ∪H(μ) CT ∗ T
contains the 4n + 1 skeleton of G ∪ CR as a retract (See the proof of 6.15). But
[G ∪ CR]4n = P 2n+1 ∪x2

CP 4n; consequently

X6n � P 2n+1 ∪x2
CP 4n ∪ e6n.

Note that Pnu = u3 generates H6(X;Z/3). Since Σx2 is inessential we can pinch
the middle cells to a point after one suspension, and obtain a space with cell struc-
ture

S2n+1 ∪pr e2n+2 ∪ e6n+1

with Pn �= 0. However, Pn is decomposable unless n = pk = 3k. Furthermore, the

decomposition of Ppk

by secondary operations ([Liu62]) implies that if n > 1, we
must have r = 1. �

Note that such a space for n > 1 would imply that the “mod 3 Arf invariant
class” survives the Adams spectral sequence. This does happen when n = p with
T5(3) = ΩS3〈3〉, but not when n = p2.
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