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Periodicity, compositions and EHP sequences

Brayton Gray

Abstract. In this work we describe the techniques used in the EHP method

for calculation of the homotopy groups of spheres pioneered by Toda. We
then seek to find other contexts where this method can be applied. We show
that the Anick spaces form a refinement of the secondary suspension and de-
scribe EHP sequences and compositions converging to the homotopy of Moore
space spectra at odd primes. Lastly we give a framework of how this may be
generalized to Smith–Toda spectra V (m) and related spectra when they exist.

0. Introduction

A central question in the chromatic approach to stable homotopy has been
the existence and properties of the Smith–Toda complexes V (m), whose mod p
homology is isomorphic to the subalgebra Λ(τ0, . . . , τm) of the dual of the Steenrod
algebra. These spaces do not exist for all m at any prime ([Nav10]), but when
V (m−1) does exist, a modification of V (m) can be constructed from a non nilpotent
self map of V (m− 1) ([DHS88]).

We will approach spectra of this type via an unstable development. In
[Gra93a], the question was raised of whether spectra other than the sphere spec-
trum could have an unstable approximation through EHP sequences, together with
all the features in the classical case. It appeared that these spectra were suitable
candidates for such a treatment.

We report on some recent work establishing these features for the spectrum
S0 ∪pr e1, and indicate some initial steps for V (1).

This work is divided into three parts. In sections 1–6 we recall the methods
and tools for self-referential calculation with the EHP sequences for the homotopy
groups of spheres. In particular, we explain the role of compositions pioneered by
Toda [Tod62]. Sections 7 and 8 reviews the work in [Gra93a], leading to the
conjectures for V (0). In sections 9 and 10 we report on recent results ([Ani93],
[AG95], [Gra], [Gra12], and [GT10]) resolving these conjectures for S0 ∪pr e1

when p > 3. In section 11, we take the early steps in studying V (1).

1. EHP Sequences

The EHP sequences are both a historically important calculation tool and an
organizing scheme for understanding the homotopy groups of spheres. Localized
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190 BRAYTON GRAY

at 2, these are exact sequences

(1.1) πk+n+2(S
2n+1)

P �� πk+n(S
n)

E �� πk+n+1(S
n+1)

H �� πk+n+1(S
2n+1)

P �� πk+n−1(S
n)

and are defined by a 2-local fibration sequence:

Ω2S2n+1 P �� Sn E �� ΩSn+1 H �� ΩS2n+1.

Here E is the suspension and H is the second James–Hopf invariant. The map H
is an important organizing tool since each element in the stable homotopy groups
of spheres is “born” on a given sphere with non trivial Hopf invariant; a sequence
of alternately desuspensions and Hopf invariants provides a complete genealogical
record for each homotopy class, and siblings often have similar features.

If α ∈ πk+n(S
n) we will say that α is in the k stem on Sn. The bootstrapping

method is to first do induction on the stem, and within that do induction on the
dimension of the target sphere. To calculate πk+n+1(S

n+1) in (1.1), note that the
first, fourth and fifth terms are in stems less than k when n � 2, and the second
term is in the k stem on a lower sphere. So we can assume by induction that all
terms except the middle term are known. We are left with two problems:

(1) Calculate P between known groups;
(2) Solve the extension problem

0 �� cokerP �� πk+n+1(S
n+1) �� kerP �� 0.

In addressing these problems, it is helpful to keep a list of all possible compo-
sitions in the k stem. This is useful because of:

Proposition 1.2. (a) P (α ◦ E2β) = P (α) ◦ β
(b) H(α ◦Eβ) = H(α) ◦ Eβ
(c) H(Eα ◦ β) = (Eα ∧ α) ◦H(β)

These formulas work even when the middle space is not a sphere. For example,
if α : ΣX → Sn+1 and β : Sn+k → X, then H(α ◦Eβ) = H(α) ◦ Eβ.

The induction begins with πk+1(S
1) = 0 for k � 1, and it is well known that

πn(S
n) ∼= Z for all n � 1. We write ιn : S

n → Sn for the identity map which is a
generator. Let wn = P (ι2n+1) ∈ π2n−1(S

n).

Proposition 1.3. H(ωn) = (1 + (−1)n)ι2n−1

These propositions are prehistoric and easy to prove (see for example [Tod62]).

2. EHP Magic

In this section we will describe some sample calculations. If α ∈ πk(S
n) we will

say that α is “on Sn”. We sill also use α to denote Eα ∈ πk+1(S
n+1) and call this

element “α on Sn+1”. This should not lead to confusion. However α can have a
different order “on S” than “on Sn+1”.

It is easy to check from (1.1) that π3(S
2) ∼= Z, and we will label a generator η.

Because of 1.3, η has order 2 on Sn for n � 3. It is also easy to check that η2

generates πn+2(S
n) for each n � 2 and has order 2 on each Sn using 1.2(b). The
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PERIODICITY, COMPOSITIONS AND EHP SEQUENCES 191

first interesting problem occurs in the 3-stem. The group π5(S
2) ∼= Z/2 generated

by η3, but for π6(S
3) we have a short exact sequence

0 �� π5(S
2)

∼ =

E �� π6(S
3)

H �� π6(S
5) ��

∼ =

0

Z/2 Z/2

Consequently π6(S
3) is either Z/2⊕Z/2 or Z/4. To solve this we need to construct

an element ν′ ∈ π6(S
3) with H(ν′) = η. We define ν′ = βα, the horizontal

composition in the homotopy commutative diagram:

S5

S6

η

������������ α �� S4 ∪2ι4 e
5

��

β �� S3

S4

��

η

������������

The maps α and β exist because η has order 2 on S3. The map α is in fact a suspen-
sion, so we can use 1.2(b) to calculate H(βα) = H(β)α. H(β) 	= 0, since otherwise

η would have order 2 on S2. Thus H(β) is the projection S4 ∪2ι4 e
5 �� S5 and

H(ν′) = η. Since α is a suspension, 2α is homotopic to the composition:

S6 α �� S4 ∪2ι4 e
5 
 S2 ∧ (S2 ∪2ι2 e

3)
2∧ι �� S2 ∧ (S2 ∪2ι2 e

3).

However the map 2 ∧ ι has a mapping cone with Sq2 	= 0 by the Cartan formula.
Consequently 2 ∧ ι is essential and is homotopic to the composition:

S4 ∪2ι4 e
5 �� S5 η �� S4 �� S4 ∪2ι4 e

5.

It follows that 2ν′ = η3. Since η3 generates π5(S
3) ∼= Z/2, ν′ has order 4. In the

notation of Toda brackets, we have

ν′ = {η, 2ι, η}.
This construction is what Toda calls a secondary composition and everyone else

calls a Toda bracket.
Since the Hopf map ν : S7 → S4 has Hopf invariant one, π7(S

4) ∼= Z ⊕ Z/4
generated by ν and ν′. Finally πn+3(S

n) ∼= Z/8 for n � 5 generated by ν with
2ν = ν′. This follows from 1.3 since 2ν is a multiple of ν′, and if it were not ν′ or
3ν′, ν − ν′ would have order 2 and have Hopf invariant one. Applying the Adem
relation Sq2 Sq3 = Sq1 Sq4 +Sq4 Sq1 to the space

Sn ∪ν−ν′ en+1 ∪2ι e
n+2

proves that this is impossible.
The 4 and 5 stems are easier as there are no extensions, and each group is

generated by compositions except for π11(S
6) ∼= Z which is generated by ω6. These

calculations all follow directly from 1.1, 1.2 and 1.3. For example, in the 4 stem
there are elements ην′, ν′η, ην and νη, which generate the entire 4 stem by 1.2. It
turns out that ν′η = ην, and this element of order 2 generates π7(S

3). However
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192 BRAYTON GRAY

ην is null homotopic on S5 while νη is non zero of order 2 on S5. Since the stable
homotopy groups are graded commutative, we must have ω5 = νη and the stable
4 stem is trivial. We see that commutators are unstably non trivial. In the next
section we will see how commutators work with the EHP sequence.

3. Commutators in the EHP sequence

The following useful results can be found in [BH53], [Bar61] and [Tod57].
We will use the notation X ∗ Y for the join, so Sm ∗ Sn 
 Sm+n+1.

Theorem 3.1. Suppose α ∈ πk+n(S
n) and β ∈ π�+m(Sm). Then the following

formulas hold:

(a) (Barratt–Hilton) αβ = (−1)k�βα on Sm+n;
(b) (Barratt–Toda) Let Δ = αβ = αβ − (−1)k�βα on Sm+n−1.

Then Δ = ±P (H(α) ∗H(β)) where

Sm+n+k+�+1 
 Sm+k ∗ Sn+�
H(α)∗H(β) �� S2m−1 ∗ S2n−1 
 S2m+2n−1

Note: By αβ on Sm+n, we mean the composition

Sk+�+m+n Σk+nβ �� Sk+m+n Σmα �� Sm+n

and similarly for the other terms. Thus, for example, since η ∈ π3(S
2) has Hopf

invariant ι3 and ν ∈ π7(S
4) has Hopf invariant ι7, we have

ω5 = ην + νη

on S5. Since ην = 0 on S5, this agrees with our previous calculation.

4. Odd primary EHP Sequences

There are also EHP sequences for the p-local sphere when p > 2 [Tod56]. The
even spheres play a different role because of the Serre splitting

ΩS2n ∼= S2n−1 × ΩS4n−1.

The factor ΩS4n−1 is included in ΩS2n by a map S4n−1 → S2n whose suspen-
sion is null homotopic. Consequently the sphere S2n does not contribute to the

development of the stable homotopy. There is a substitute however. We define Ŝ2n

Ŝ2n = Jp−1(S
2n) = S2n ∪ e4n ∪ · · · ∪ e2n(p−1) ⊂ J(S2n)

where J(S2n) is the James construction. Ŝ2n replaces S2n and there is a bifurcation
of the EHP sequences which collapses when p = 2. The relevant fibrations are:

Ω2S2np−1 P �� S2n−1 E �� ΩŜ2n H �� ΩS2np−1

Ω2S2np+1 P �� Ŝ2n E �� ΩS2n+1 H �� ΩS2np+1

(4.1)

The analog of 1.2 holds. For 1.3 we have 2 cases:

ωn = P (ι2np−1) ∈ π2np−3(S
2n−1) and H(ωn) = 0

ω′
n = P (ι2np+1) ∈ π2np−1(Ŝ

2n) and H(ω′
n) = pι2np−1.

Theorem 3.1(a) holds ([Gra01]) while 3.1(b) only makes sense if one or both of m
and n is even.
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PERIODICITY, COMPOSITIONS AND EHP SEQUENCES 193

5. Λ-algebra Approximations

In [BK72], the authors constructed a dga called the lambda algebra, which
is an E1 term for the Adams spectral sequence for S0 localized at 2. They also
constructed subalgebras Λ(n) for each n with the property that Λ(n) is an E1 term
for the unstable Adams spectral sequence for Sn. In particular, there are short
exact sequences:

0 �� Λ(n)
E �� Λ(n+ 1)

H �� Λ(2n+ 1) �� 0

where H has degree −n. The resulting long exact sequence in homology gives an
EHP sequence for the E2 terms of the unstable Adams spectral sequences. Likewise
there are Λ-algebra models for the EHP sequences at odd primes:

0 �� Λ(2n− 1)
E �� Λ(2n)

H �� Λ(2np− 1) �� 0

0 �� Λ(2n)
E �� Λ(2n+ 1)

H �� Λ(2np+ 1) �� 0

where the chain maps labeled H have degrees 1− 2n(p− 1) and −2n(p− 1) respec-
tively.

When p > 2, the Λ-algebra is complex and can be replaced by another dga called
the periodic lambda algebra Λ ([Gra98]). It has the feature that the elements vn
which figure in the periodic development are apparent and replace the μ’s, and the
relations are simpler. Furthermore there are EHP sequences in Λ as well.

6. The Kahn–Priddy Theorem

In [KP78] the authors described a transfer map in the stable category

BΣp
λ �� S0

and proved that it is onto in stable homotopy localized at p. The p-localization
of BΣp has one cell in each dimension of the form nq and nq−1 and no others, and
we define spaces Bnq and Bnq−1 to be the appropriate skeleta of the localization.
In case p = 2, Bnq = RP 2n and Bnq−1 = RP 2n−1. Unstably, the map λ has
approximations

Σ2n+1Bnq
λ2n+1 �� S2n+1

Σ2nBnq−1 λ2n �� S2n.

It is an open question as to whether these maps are onto in unstable homotopy.
Nevertheless, they have a rich image. In [Gra84] the stable and unstable v1 periodic
homotopy of spheres was constructed by factoring through these maps.

The maps λn are compatible with the EHP fibrations in the sense that there
are homotopy commutative diagrams where the upper horizontal sequence is a
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194 BRAYTON GRAY

cofibration sequence and the lower sequence is a fibration sequence

. . . �� S2np−1

E2

��

�� Σ2nBnq−1

λ2n

��

�� Σ2nBnq

˜λ2n+1

��

�� S2np

E
��

. . . �� Ω2S2np+1 P �� Ŝ2n E �� ΩS2n+1 H �� ΩS2np+1

. . . �� S2np−3

E2

��

�� Σ2n−1B(n−1)q

λ2n−1

��

�� Σ2n−1Bnq−1

˜λ2n
��

�� S2np−2

E
��

. . . �� Ω2S2np−1 P �� S2n−1 E �� ΩŜ2n H �� ΩS2np−1

which collapse when p = 2 to a single diagram

. . . �� S2n−1

E2

��

�� Σn
RPn−1

λn

��

�� Σn
RPn

˜λn+1

��

�� S2n

E
��

. . . �� Ω2S2n+1 P �� Sn E �� ΩSn+1 H �� ΩS2n+1

As an example of how these maps behave unstably, we can consider the 3-stem
on S6. We have a map

Σ6
RP 5 λ6 �� S6

which is an extension of η : S7 → S6. In the chart below, the dots represent cells
of ΣRP 5. The single lines represent Sq1 and the double lines represent Sq2. This
corresponds to relative attaching maps of 2ι and η.

11 •
10 •
9 •

������

������
����� �� S6

8 •

������

������

7 •
The 7 cell represents η and the 8 cell the relation 2η = 0 on S3. The map η on1

the 8 cell represents ν′ and the 9 cell represents ν. The 10 cell gives the relation
2ν = ν′ on S5 and the 11 cell gives the relation νη = 0 on S6.

7. EHP Spectra

It is natural to ask whether there are EHP sequences for the unstable homotopy
groups of other spaces. For each space X there is a James–Hopf invariant

ΩΣX
H �� ΩΣX ∧X;

however H is not a good invariant for detecting whether a map desuspends. In
fact, the homotopy groups of the spaces ΣnX are often not a good approximation
to the stable homotopy outside the stable range. The best example to see this
phenomenon is in approximating the Moore space spectrum S0∪pr e1 by the Moore

1If α : Sm → Sn, we say that α : Sm → X ∪ en is “α on e” if the composition

Sm α �� X ∪ en �� Sn is homotopic to α.
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PERIODICITY, COMPOSITIONS AND EHP SEQUENCES 195

spaces Pn = Sn−1 ∪pr en. According to the seminal work of Cohen, Moore and
Neisendorfer ([CMN79b])

ΩPn 
 Ω
( ∨

α

Pnα

)
×X

where
∨
α
Pnα is an infinite wedge of Moore spaces, and the suspension of the map∨

α
Pnα → Pn is null homotopic. The Euler Poincaré polynomial of Ω(∨Pnα) is

considerably larger than that of X, so much of the homotopy of Pn has nothing to
do with the stable homotopy. We seek spaces Tn and maps E : ΣTn−1 → Tn repre-
senting the Moore space spectrum where the spaces Tn are better approximations.

In general, suppose we are given a connective spectrum X and we wish to
approximate it with (n−1)-connected spaces Xn. One way to control the situation
is to suppose that there are some sort of Hopf invariants that lie in the homotopy
of something closely related to X. A simple approach to this was investigated
in ([Gra93a]): We suppose that in favorable cases there are spaces Xn, a function
f(n) and maps H such that there are EHP fibrations

Xn
E �� ΩXn+1

H �� ΩXf(n) .

An important key to the self referential calculations in the sphere spectrum was
the ability to form compositions and the result 3.1 for the commutators. Suppose
then that X is a ring spectrum and the ring structure is given by “composition”.
To make sense of this, we will assume that there is a functorial construction of an
extension α̂ for each α:

Xk

α̂

���
��

��
��

�

Sk α ��

k

��

Xn.

If we also assume that the ring spectrum is homotopy commutative, we can add
the condition that the formulas in 3.1 hold when one or both of m and n are even
(as was the case for the sphere spectrum when p > 2). These assumptions put a
condition on the function f(n) which leads to the following:

Definition 7.1 ([Gra93a]). A reflexive EHP structure on a p-local spec-
trum X is a presentation {Xn} together with fibration sequences:

Ω2X2nk−1
P �� X2n−1

E �� ΩX2n
H �� ΩX2nk−1,

Ω2X2nk+2d+1
P �� X2n

E �� ΩX2n+1
H �� ΩX2nk+2d+1.

The number 2d is called the period.

The indices are controlled in such a way that both sides of 3.1(b) are in the same
set. One could also consider a more general situation where the targets of the Hopf
invariants are spaces Zn and Yn such that there are pairings Σ2

Zn ∧ Zm → Zm+n

and Σ2
Zn ∧ Ym → Ym. We will see examples of this in section 9. We will refer to

these as nonreflexive EHP structures.
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196 BRAYTON GRAY

Comparing with (4.1), we see that the sphere spectrum has a reflexive EHP
structure with k = p and d = 0 for p > 2. It is likely that any interesting examples
will have k = ps in order to avoid dissonance with p local units.

It is important to note that this is an unstable development of X and is not
necessarily unique if it even exists. If {Xn} is an EHP structure on X, then {ΩXn}
is an EHP structure on Σ−1X, although Σ−1X is not connective and is not a ring
spectrum.

In the case of the sphere spectrum, the composition

Ω3S2np+1 P �� ΩŜ2n H �� ΩS2np−1

is actually the loops on a map ϕn: Ω
2S2np+1 → S2np−1 constructed in [Gra88],

where ϕn restricted to S2np−1 is the map of degree p. Richter recently proved:

Proposition 7.2 (Richter [Ricar]). For p � 2 the composition

Ω2S2np+1 ϕn �� S2np−1 E2
�� Ω2S2np+1

is the pth power map.

Cohen, Moore and Neisendorfer constructed maps

Ω2S2n+1 πn �� S2n−1

when p � 3 with this same property [CMN79a]; i.e., the composition

Ω2S2n+1 πn �� S2n−1 �� Ω2S2n+1

is the pth power map. It is not known whether ϕn ∼ πnp.

Conjecture 7.3 (Reflexivity Conjecture). ϕn ∼ πnp.

This has consequences as we will see in section 9.

Definition 7.4. An EHP structure satisfies condition CMN if there are maps

πn : Ω
2X2n+2d+1 → X2n−1

for each n such that the square

Ω4X2n+2d+3

Ω2πn+1 �� Ω2X2n+1

Ω2X2n+2d+1
πn ��

Ω2E2

��

X2n−1

E2

��

homotopy commutes, and the composition

Ω3X2nk+2d+1
P �� ΩX2n

H �� ΩX2nk−1

is homotopic to Ωπnk.

Thus by 7.2, the sphere spectrum satisfies CMN where πn is the map of Cohen,
Moore and Neisendorfer when (n, p) = 1 and πnp = ϕn.

Supposing that X = {Xn} satisfies condition CMN, we define a self map v as
the composition

Σ2dX2n−1
E′

�� X2n+2d−1
E2

�� Ω2X2n+2d+1
πn �� X2n−1,
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PERIODICITY, COMPOSITIONS AND EHP SEQUENCES 197

where E′ is the adjoint of E2d. Using the telescope on the adjoint of v allows us to
construct v−1X2n−1 and v−1X and it is easy to see that

(7.5) v−1X ∼= v−1X2n−1 n � 1.

In the case of the sphere spectrum this is a rational equivalence between S0 and
S2n+1 for each n � 0.

The main consequence of the condition CMN, however, is the following:

Theorem 7.6 ([Gra93a, 1.3]). Suppose X has an EHP structure {Xn} of
period 2d which satisfies condition CMN. Let X ′ be the cofiber of v : Σ2nX → X.
Then Σ−1X ′ has an EHP structure of period 2d′ where d′ = (d+ 1)k − 1.

If we consider iterating this construction, beginning with the sphere spectrum,
the periods we obtain are of the form 2(pm − 1). It is harder to construct an
EHP structure on X ′. In case such a structure exists, we will call this a derived
structure. We will consider the existence of a derived structure for the sphere
spectrum in section 9.

8. An Ideal Development

At this point we will assume that p is large and m is small and we will examine
the form of iterated derived structures of the sphere spectrum. We will see that
in an algebraic sense these do exist, but of course a geometric realization will only
exist in limited cases since the spectrum of the (m + 1)st derived EHP spectrum
would be the Smith–Toda Specturm V (m). The EHP sequences associated with
such a spectrum would be of the form

P �� V (m)2n−1
E �� ΩV (m)2n

H �� ΩV (m)2np−1

P �� V (m)2n
E �� ΩV (m)2n+1

H �� ΩV (m)2np+qm+1+1

(8.1)

where qm = 2(pm−1). These spaces would be inductively constructed from fibration
sequences:

ΩV (m−1)2n+1
�� V (m)2n �� V (m−1)2n+qm+1

vm �� V (m−1)2n+1

(8.2)

Ω2V (m−1)2n+qm+1
πn �� V (m−1)2n−1

�� V (m)2n−1
�� ΩV (m−1)2n+qm+1

There will also be a key relationship between V (m) and the double suspension in
V (m− 1) given by a fibration sequence

(8.3) V (m− 1)2n−1
E2

�� Ω2V (m− 1)2n+1
ν �� ΩV (m)2np−1.

In the case m = 0 we consider V (−1) to be the sphere spectrum.
Although such a development is unlikely except in very limited cases, we can

more easily investigate the existence of Λ-algebra analogs as in section 5. The
main result of [Gra93b] is that there are short exact sequences of dga’s of exactly
this form which converges to ExtAp

(H∗(V (m);Z/p),Z/p) where Ap is the Steenrod
algebra. In this model, we think of Λ(m)(n) as being the nth approximation to
Λ(m).
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198 BRAYTON GRAY

Theorem 8.4 ([Gra93b]). There are short exact sequences of dga’s

0 �� Λ(m)(2n−1)
E �� Λ(m)(2n)

H �� Λ(m)(2np−1) �� 0

0 �� Λ(m)(2n)
E �� Λ(m)(2n+1)

H �� Λ(m)(2np+qm+1+1) �� 0

0 �� Λ(m−1)(2n+1) �� Λ(m)(2n) �� Λ(m−1)(2n+qm+1) �� 0

0 �� Λ(m−1)(2n−1) �� Λ(m)(2n−1) �� Λ(m−1)(2n+qm+1) �� 0

0 �� Λ(m−1)(2n−1)
E2

�� Λ(m−1)(2n+1) �� Λ(m)(2np−1) �� 0

and a “composition pairing” Λ(m)(n)σ · Λ(m)(n + σ) ⊂ Λ(m)(n). Furthermore,
Λ(m)(0) is acyclic and H∗(Λ(m)(∞)) = ExtAp

(H∗(V (m);Z/p),Z/p).

The first two exact sequences are models for (8.1) and the next two for (8.2).
The fifth exact sequence corresponds to (8.3). The product formula is a model for
a hypothetical composition

πk(V (m)n+σ)⊗ πn+σ(V (m)n) → πk(V (m)n).

The calculation that Λ(m)(0) is acyclic corresponds to V (m)0 = Z/p with the
discrete topology for m � 0.

There is also an unstable model using the periodic lambda algebra Λ [Gra93c]
which is considerably smaller than the lambda algebra and displays the classes vn
as generators. This is defined when p > 2 and has simpler relations. In fact Λ(m)

is a quotient of Λ while Λ(m) is a submodule of a free Λ-module.

9. EHP Structure for S0 ∪pr e1

Applying 7.6 to the sphere spectrum we obtain an EHP structure on S−1∪pe
0 =

Σ−1V (0) where X2n = ΩS2n+1{p} is the fiber of the map ΩS2n+1 p �� ΩS2n+1

and X2n−1 the fiber of the map πn : Ω
2S2n+1 → S2n−1 of degree p of Cohen,

Moore and Neisendorfer when (n, p) = 1 and X2np−1 = BWn which is the fiber of
ϕn : Ω

2S2np+1 → S2np−1 from ([Gra88]). (This simplifies if the reflexive conjecture
(7.3) is valid since then πnp ∼ ϕn.)

More interesting is that the EHP structure on S0 ∪pr e1, is only reflexive when
r = 1 and the reflexivity conjecture holds. To see this, recall the conditions (8.2)
when m = 0

V (0)2n �� S2n+1 p �� S2n+1

Ω2S2n+1 πn �� Sm−1 �� V (0)2n−1
�� ΩS2n+1

where πn is the Cohen–Moore–Neisendorfer map of degree p. Replacing p by pr,
we define spaces Tn by fibration sequences

T2n
�� S2n+1 pr

�� S2n+1

Ω2S2n+1 πn �� S2n−1 �� T2n−1
�� ΩS2n+1

where in this case πn is the Cohen–Moore–Neisendorfer map of degree pr. Clearly
T2n = S2n+1{pr} is defined by the first fibration. It is not immediately clear that
the second fibration exists.
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Theorem 9.1 (Anick [Ani93]). If p � 5 there is a fibration

Ω2S2n+1 πn �� S2n−1 �� T2n−1
�� ΩS2n+1

where the composition

Ω2S2n+1 πn �� S2n−1 E2
�� Ω2S2n+1

prth power map on Ω2S2n+1.

Remark. The prth power map is the same as the double loops on the map
of degree pr when p > 2. Any space T2n−1 satisfying the conclusion of 9.1 will be
called an Anick space.

Theorem 9.2 ([AG95]). For p � 3 there is an Anick space T2n−1 which admits
an H-space structure. This space is unique up to homotopy and the fibrations in
9.1 are H-fibrations.

The construction of T2n−1 by Anick in 1993 was the culmination of a 274 page
book. It was a complex and lengthy result and serious efforts were made to simplify
the construction [The01]. These early efforts failed.2 The first successful attempt
was published in 2010.

Theorem 9.3 ([GT10]). For p � 3, the Anick space exists and there is an
H-space structure on the defining fibration. Furthermore, there is an EHP fibration

T2n−1
E �� ΩT2n

H �� BWn

where T2n = S2n+1{pr}.

The restriction that p � 5 was removed as there was no use of the Jacobi
identity for Whitehead products. The construction was reduced to 13 pages and as
long again for the H-space structure. Note that the EHP sequence is non reflexive
as the Hopf invariant is in BWn. If the reflexivity conjecture were true, this would
be reflexive when r = 1. The other EHP sequence is the middle row of the homotopy
commutative diagram:

ΩS2n+1

��

ΩS2n+1

��
T2n

E ��

��

ΩT2n+1
H ��

��

BWn+1

S2n+1 E2
��

pr

��

Ω2S2n+1 ν ��

πn+1

��

BWn+1

S2n+1 S2n+1

Consequently, we have:

2[The01] contained incorrect statements and statements for which no explanation was given.
It relied on a previous paper the author listed as “to appear” which was later withdrawn.
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Theorem 9.4. For p � 3 there is a (non reflexive) EHP structure on S0∪pr e1

with EHP sequences:

T2n−1
E �� ΩT2n

H �� BWn

T2n
E �� ΩT2n+1

H �� BWn+1

Clearly the reflexivity conjecture is precisely that this is reflexive when r = 1,
since then BWn = ΩT2np−1. In general this is a non reflexive EHP structure since
there is a map Σ2BWn ∧BWm → BWn+m obtained from a retraction Σ3BWm →
P 2np+2(p). (See the discussion after 7.1.)

We next ask whether there is a composition theory for the spaces Tn. Specif-
ically, we ask to describe a functorial extension of a map α to a map α̂ in the
diagram:

Tn

α̂

���
��

��
��

�

Sn

i

��

α �� Tm

Proposition 9.5. If p � 5, the H-space Tn has H-space exponent pr.

Proof. This is due to Neisendorfer ([Nei83]) if n is even and is in [Gra93a]
if n is odd. �

Consequently we can choose and fix a null homotopy of the map prth power
map for each n. Such a null homotopy determines an extension of α to a map
α : P 2n+1 → Tm. In the case that n is even, we have two results which determine α̂.

Proposition 9.6 ([Nei83]). If p � 5, T2n is homotopy associative and homo-
topy commutative.

Proposition 9.7 ([Gra93a]). If X is a homotopy associative and homotopy
commutative H-space and α : P 2n+1 → X, there is a unique extension to an H-map
T2n → X up to homotopy.

These results prompted the conjecture in [Gra93a] that the spaces T2n−1 would
enjoy analogous properties to 9.6 and 9.7.

Proposition 9.8 ([Gra]). If p � 5, the space T2n−1 is homotopy associative
and homotopy commutative.3

With regard to the universal property, it was established in [AG95] that under
certain conditions on the torsion in the target space, extensions exist but they
may not be H-maps and may not be unique. In [The01], the author claimed
to prove the conjectured universal property, but the details were never published.
Subsequently it was established that the universal property failed in the generality
claimed ([Gra12]). The torsion conditions in [AG95] appeared to be necessary.

Definition 9.9. Fix n and r. A space X is said to have the (n, r) growth
condition if for all k � 1

pr+k−1π2npk−1(X;Z/pr+k) = 0.

3This result was also asserted in [The01] without proof.
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The condition for the existence of an extension in [AG95] was precisely this
condition. We now have:

Proposition 9.10 ([Gra12]). Suppose that X and ΩX satisfy the (n, r) growth
condition. Then any map α : P 2n→X extends uniquely to an H map α̂ : T2n−1→X.

Since the spaces Tm(pr) and ΩTm(pr) satisfy the (n, r) growth condition by 9.5,
we have:

Corollary 9.11. Every map α : P 2n1 → Tm(pr) has a unique extension to an
H-map α̂ : T2n−1(p

r) → Tm(pr) up to homotopy.

In particular, there is a composition theory for the homotopy of the Tn spaces
when p � 5.

10. A Kahn–Priddy Map

The spaces Bnq and Bnq−1 from section 6 have an analogue for the EHP struc-
ture {Tn} on S0 ∪pr e1.

Proposition 10.1. There is a map Fn: ΣB
nq → ΣB(n−1)q which is unique up

to homotopy such that the diagram

ΣBnq p ��

Fn

����
���

���
��

ΣBnq

ΣB(n−1)q p ��

��

ΣB(n−1)q

��

commutes up to homotopy, and there is a factorization

ΣBnq Fn ��

πn

��

ΣB(n−1)q

πn−1

��
Pnq+1(p)

ν1 �� P (n−1)q+1(p)

where πn and πn−1 are quotient maps and v1 is an Adams map.

Proof. It is easy to see that Fn exists in such a way that the upper triangle
exists since ΣB(n−1)q is equivalent to the fiber of the projection πn in this range, and
uniqueness follows as well. The lower triangle also follows from a cellular argument.

Since K̃(Bnq) ∼= Z/pn, Fn is essential and does not factor through ΣB(n−1)q. It
follows that the lower diagram can be constructed and v1 	= 0. Since every map
from Pnq+1(p) to P (n−1)q+1(p) is homotopic to a multiple of the Adams map ν1 is
also an Adams map. �

We also have a homotopy commutative diagram ([Gra84, 2.1])

Ω2S2n+1 πn �� S2n−1

Σ2n−1Bnq Σ2n−2Fn ��

˜λ2n+1

��

Σ2n−1B(n−1)q

λ2n+1

��
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since the difference between the two sides factors through Wn → S2n−1 up to
homotopy and [Σ2n−1Bnq,Wn] = ∗ when p > 2. Now define C(2n − 1) to be the
cofiber of Fn and we get a homotopy commutative ladder:

Ω2S2n+1 πn �� S2n−1 �� T2n−1
�� ΩS2n+1

Σ2n−1Bnq Σ2n−2Fn ��

˜λ2n+1

��

Σ2n−1B(n−1)q

λ2n−1

��

�� Σ2n−2C(2n−1) ��

μ2n−1

��

Σ2nBnq

λ2n+1

��

Furthermore C(2n+ 1)/C(2n− 1) 
 Σ(n+1)qV (1), and we define C(2n) = C(2n−
1) ∪ CP (n+1)q(p) ⊂ C(2n+ 1). Then we have a homotopy commutative diagram:

T2n−1
E �� ΩT2n

E �� Ω2T2n+1

Σ2n−2C(2n− 1) ��

μ2n−1

��

Σ2n−2C(2n) ��

μ̃2n

��

Σ2n−2C(2n+ 1)

˜λ2n+1

��

These maps are useful in constructing the stable and unstable v2 periodic ho-
motopy classes ([Gra93c]).

11. The case of V (1)

The projected derived EHP development for V (1) would consist of (n − 1)
connected spaces Un together with EHP sequences

P �� U2n−1
E �� ΩU2n

H �� ΩU2np−1

P �� U2n
E �� ΩU2n+1

H �� ΩU2np+q2+1

where the spaces are defined by fibrations:

U2n
�� T2n+q+1

v1 �� T2n+1

Ω2T2n+q+1
πn �� T2n−1

�� U2n−1
�� ΩT2n+q+1

where the compositions

T2n+q−1
E2

�� Ω2T2n+q+1
πn �� T2n−1

Ω2T2n+q+1
πn �� T2n−1

�� Ω2T2n+1

are homotopic to v1 and Ω2v1. It is easy to see that there is a unique H-map

v1 : T2n+q−1 → T2n−1

extending the Adams map for all n when p � 5 by 9.6 and 9.7, so U2n is well
defined as this fiber. Constructing U2n−1 is an ongoing project. The defining
fibration sequence is a secondary version of the Anick fibration.
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