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In this document we make good on all the assertions we made in the previous
paper “Moduli spaces of commutative ring spectra” [20] wherein we laid out a
theory a moduli spaces and problems for the existence and uniqueness of E∞-
ring spectra. In that paper, we discussed the the Hopkins-Miller theorem on
the Lubin-Tate or Morava spectra En; in particular, we showed how to prove
that the moduli space of all E∞ ring spectra X so that (En)∗X ∼= (En)∗En
as commutative (En)∗ algebras had the homotopy type of BG, where G was
an appropriate variant of the Morava stabilizer group. This is but one point
of view on these results, and the reader should also consult [3], [38], and [41],
among others.

A point worth reiterating is that the moduli problems here begin with al-
gebra: we have a homology theory E∗ and a commutative ring A in E∗E co-
modules and we wish to discuss the homotopy type of the space TM(A) of all
E∞-ring spectra so that E∗X ∼= A. We do not, a priori, assume that TM(A) is
non-empty, or even that there is a spectrum X so that E∗X ∼= A as comodules.

For a variety of applications we are not simply interested in this absolute
problem, but in a relative version as well. We fix an E∞-ring spectrum Y and
write k = E∗Y for the resulting commutative algebra in E∗E comodules. Then
we may choose a morphism of commutative algebras k → A in E∗E-comodules
and write TM(A/k) for the moduli space of Y -algebras X so that E∗X ∼= A as
a k-algebra. The absolute case can be recovered by setting Y = S0, the zero-
sphere. While we are assuming the existence of Y , we are not assuming that
TM(A/k) is non-empty or even that there exists a spectrum X with E∗X ∼= A.

The main results are Theorems 3.3.2, 3.3.3, and 3.3.5 which together give a
decomposition of TM(A/k) as the homotopy inverse limit of a tower of fibra-
tions

· · · → TMn(A/k)→ TMn−1(A/k)→ · · · → TM1(A/k)

where

1. TM1(A/k) is weakly equivalent to BAutk(A) where Autk(A) is the group
of automorphisms of the k-algebra A in E∗E-comodules; in particular,
TM1(A) is is non-empty and connected;

2. for all n > 1, there is a homotopy pull-back square

TMn(A/k) //

��

BAutk(A,ΩnA)

��
TMn−1(A/k) // Ĥn+2

A (A/k,ΩnA).

This last diagram needs a bit of explanation. As a graded abelian group
[ΩnA]k = An+k; this is a module over A in the category of E∗E-comodules.
The group Autk(A,Ωn) is the automorphism group of the pair. If M is an
A-module and n a non-negative integer, there is an André-Quillen cohomology
space so that

πiHn(A/k,M) = Hn−i(A/k,M)
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where H∗(−,−) denotes an appropriate André-Quillen cohomology functor.
The group Autk(A,M) acts on Hn(A/k,M) and Ĥn(A/k,M) is the Borel con-
struction of this action. Note that the fiber of TMn(A/k)→ TMn−1(A/k) at
any basepoint will either be empty or will be homotopy equivalent to the space
Hn+1(A/k,ΩnA).

What is notable about this decomposition is that the spaces BAutk(A,Ωn)
and Ĥn+2

A (A/k,ΩnA) are determined completely by algebraic data.
By trying to lift the vertex of TM1(A/k) up the tower, one gets an obstruc-

tion theory for realizing A. The obstructions to both existence and uniqueness
lie in André-Quillen cohomology groups. See Remark 3.3.7. This is surely the
same obstruction theory as in [41], although we haven’t checked this.

This paper is very long – even though we consigned the applications to [20] or
to an as-yet-nonexistent paper on elliptic cohomology and topological modular
forms. Some of this length is probably gratuitous, as we have repeated a lot of
material available elsewhere, notably [7], [10], [17], and [20]. It was tempting
to simply point to results in all of these papers, but in the end there were too
many small details that needed reworking and, perhaps worse, the result had
all the narrative flow of a spreadsheet.

Here are some highlights of what is accomplished here. The main idea,
which goes back to Dwyer, Kan, and Stover, is to try to construct a simplicial
E∞-algebra whose geometric realization will realize A. Then we use the new
simplicial direction and apply Postnikov tower techniques to get the decompo-
sition of the moduli space. Making this work requires an enormous of amount
of technical detail. Specifically:

1. The resolution model category structures of [16] and [10] must be reworked
to accommodate resolving the E∞-operad as well. This is necessary, in
some cases, to obtain computational control over free objects – for an ar-
bitrary homology theory E∗, the homology of a free E∞-ring spectrum
may be hard to compute. Even more, we are not really interested in the
resolution model category itself, but a localization of it at some homol-
ogy theory E∗. While localization theory is highly developed [23], the
hypotheses remain fairly rigid, and this leads us into a discussion of the
point-set topology of structured ring spectra. In addition, the standard
localization theorems don’t apply directly – although the techniques do.
All of this is accomplished in the first chapter.

2. The second chapter is a grab-bag of essentially algebraic results. For
example, we need to have a description of comodules as diagrams in order
to prove the important Corollary 3.1.18 which allows us to identify the
module structure on ΩnA in our André-Quillen cohomology. We need a
theory of Postnikov towers for simplicial algebras in E∗E-comodules, and
for that we need a Blakers-Massey excision theorem, and so on. We also
have to be a bit careful about what André-Quillen cohomology actually is.
And, along the way, we discuss a spectral sequence for computing mapping
spaces.
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3. If these results ever do get used to discuss topological modular forms, we
will need a version suitable for use when E∗ is p-completed K-theory. This
was not discussed in [20] and takes some pages to set up as well.

4. The third chapter, which is where all the theorems are, is the shortest,
and really is a recapitulation of the program set out in [7]. But, again,
there are details to be spelled out. Some of these involve the passage
to E∗-localization and its effect on the spiral exact sequence; another of
these is to spell out exactly what it needed for the relative case; only the
absolute case is in the literature.

Throughout this manuscript, we are working with simplicial algebras is spec-
tra over a simplicial operad T . If E∗ is a homology theory based on a homotopy
commutative ring spectrum E so that E∗E is flat over E∗, then we have a theory
of E∗E modules. If X is a simplicial T algebra, then E∗X is an E∗T -algebra
in category of simplicial E∗E-comodules. One of the central difficulties we had
to confront was to find some condition on T and E∗T so that we could control,
at once, the homotopical algebra of T -algebras in simplicial spectra and E∗T
algebras in E∗E-comodules. The condition we arrived at – that of homotopi-
cally adapted operad (See Definition 1.4.16.) – is somewhat cumbersome, but it
is satisfied in all the applications we have in mind.

Many thanks to Matt Ando for carefully reading this manuscript, and many
thanks to all readers for so patiently waiting through the long gestation period
of these results.
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Chapter 1

Homotopy Theory and
Spectra

1.1 Mapping spaces and moduli spaces

1.1.1 Model category basics

We will assume that the reader is familiar with basics of model categories,
cofibrantly generated model categories, and simplicial model categories. These
are adequately and thoroughly presented in many references, including [25] and
[23]. All our model categories will be, at the very least, cofibrantly generated.
This implies, in particular, that given any morphism f : X → Y in our model
category, there are natural factorizations

X
j // Z

q // X

of f where j is a cofibration and a weak equivalence and q is a fibration; there is
also a natural factorization with j a cofibration and q and fibration and a weak
equivalence.

Less familiar, perhaps, is the notion of a cellular model category, which we
now review. The importance of this notion is that cellular model categories are
particularly amenable to localization, and this makes for a very clean theory for
us. Here are the definitions, all from [23].

1.1.1 Definition. Fix a category C with all limits and colimits. If I = {A→ B}
is some chosen set of maps in C, a presentation of a relative I-cell complex
f : X → Y consists of an ordinal number λ = λf and a colimit preserving
functor Y(−) : λ→ C so that

1. Y0 = X;

2. for each β there is a set of maps TXβ = {fi : A → Yβ} with A the source
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of a morphism in I and a push-out diagram

tTβ
A

tfi //

��

Yβ

��
tTβ

B // Yβ+1;

3. an isomorphism from X → colimβ<λ Yβ to f : X → Y .

The size of f : X → Y is the cardinality of the set of cells qTβ . If X is the
initial object of C, then Y is a presented I-cell complex.

We are particularly interested in the case when I generates the cofibrations.

1.1.2 Definition. A subcomplex of a presented relative I-cell complex X → Y ,
consists of a presented I-cell complex X → K so that λK = λY and a natural
transformation K(−) → Y(−) : λ→ C so that for all β < λ, the induced map

TKβ −→TYβ

is an injection and so that the induced map of push-out squares commutes. If
X is the initial object, we may write K ⊆ Y .

1.1.3 Definition. Let C be a category with all colimits, W an object of C, and
I a class of morphisms in C.

1. The object W of C is small relative to I if there is a cardinal number κ
so that for every regular cardinal λ ≥ κ and every λ sequence

Z0
// Z1

// · · · // Zα // · · ·

of morphisms in I, the natural map

colimα<κ HomC(W,Zα)→ HomC(W, colimα<κ Zα)

is an isomorphism.

2. The object W is compact relative to I if there is a cardinal γ so that for
every presented relative I-complex X → Y every map from W to Y factors
through a subcomplex of size at most γ.

Recall that in any category, an effective monomorphism is a morphism which
can be written as the equalizer of a pair of parallel arrows.

1.1.4 Definition. A cellular model category C is a cofibrantly generated model
category for which there is a set of I of generating cofibrations and set J of
generating acyclic cofibrations so that

1. the domains and codomains of the elements of I are compact relative to I;
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2. the domains of the elements of J are small relative to I; and

3. the cofibrations are effective monomorphisms.

1.1.5 Remark. Almost all of our model categories will be, in some way, based
on topological spaces – or, more exactly, compactly generated weak Hausdorff
spaces. In this case, if a morphism is a cofibration then it will be a Hurewicz
cofibration and, hence, a closed inclusion and an effective monomorphism. Fur-
thermore, the domains of the generating sets I and J of cofibrations and acyclic
cofibrations will be cofibrant. Finally, if A is the domain of an object in I or
J , it will have a stronger compactness property than that required by Defini-
tion 1.1.3: the functor HomC(A,−) will commute with all filtered colimits over
diagrams of closed inclusions. Thus, many of the conditions of Definition 1.1.4
will be nearly automatic.

We next come to a slight variation on model categories. When considering
categories of simplicial algebras in spectra, we will want to stipulate that the
weak equivalences be those morphisms X → Y so that after applying some
homology theory E∗, the resulting morphism E∗X → E∗Y becomes a weak
equivalence of simplicial E∗-modules. This won’t quite be a model category
structure, for reasons which are by now familiar: push-outs along all cofibrations
do not necessary preserve these E∗-equivalences – one has to assume that the
cofibration has cofibrant source. This situation arose also in [18] and [45]. The
latter source supplies an axiomatic framework (there credited to Mark Hovey,
see [26]) for coming to terms with this phenomenon. Here is the definition. We
highlight where the usual notion of a model category is weakened.

1.1.6 Definition. Let C be category with specified classes of weak equivalences,
fibrations, and cofibrations. Then C is a semi-model category provided the fol-
lowing axioms hold:

1. The category C has all limits and colimits;

2. Weak equivalences, cofibrations, and fibrations are all closed under re-
tracts; fibrations and acyclic fibrations are closed under pull back;

3. If f and g are composable morphisms and two of f , g, and gf are weak
equivalences, so is the third;

4. All cofibrations have the left lifting property with respect to acyclic fibra-
tions, and all acyclic cofibrations with cofibrant source have the left
lifting property with respect to all fibrations.

5. Every morphism can be functorially factored as as a cofibration followed
by an acyclic fibration and every morphism with cofibrant source can be
functorially factored as an acyclic cofibration followed by a fibration.

Note that this should really be called a left semi-model category, as the
definition singles out cofibrations. But this is only kind of semi-model category
which will arise in this paper.

7



The various auxiliary notions of model category also can be similarly modi-
fied. For example, we have the following.

1.1.7 Definition. A semi-model category C is cofibrantly generated if there are
sets of morphisms I and J which detect, respectively the acyclic fibrations and
the fibrations. Furthermore, the domains of the morphism in I should be small
relative to relative I-cell morphisms and the domains of J should be small with
respect to relative J-cell morphisms with cofibrant source.

Here “detect” means, for example, that a morphism is an acyclic fibration if
and only if it has the right lifting property with respect to the morphisms in I.

Or again, the following:

1.1.8 Definition. A semi-model category C is a simplicial semi-model category
if it simplicial in the sense of [35] §II.2, and if the following corner axiom holds.
Let

map(−,−) : Cop × C−→sSets

denote the simplicial mapping space functor. Then if j : A→ B is a cofibration
with cofibrant source and q : X → Y is a fibration, then

map(B,X)−→map(B, Y )×map(A,Y ) map(A,X)

is a fibration of simplicial sets which is a weak equivalence if either f is a weak
equivalence or j is a weak equivalence.

This gives a working model for mapping spaces in a semi-model category;
namely, the simplicial set of maps map(X,Y ) where X is cofibrant and Y is
fibrant.

We append here a final definition, mostly because we have no other place
to put it. Let I be a small category, C any category with colimits and CI the
category of I-diagrams in C. Let Iδ be the category with same objects as I but
only identity morphisms; thus, Iδ is I made discrete. An I-diagram X : I → C is
I-free (or simply free) if it is the left Kan extension of some diagramX0 : Iδ → C.

1.1.9 Definition. Let ∆ be the ordinal number category and ∆+ ⊂ ∆ the
category with same objects but only surjective morphisms. Let C be a category
and X : ∆op → C a simplicial object. Then X is s-free if the underlying diagram

X : ∆op
+ −→C

is free.

The restricted diagram X : ∆op
+ → C is the underlying degeneracy diagram,

and to be s-free is to say that there are objects Zk so that there are isomorphisms

Xn =
∐

φ:n→k

Zk

where φ runs over the surjections in ∆. Furthermore, these isomorphisms should
commute with the degeneracies. In many model categories of simplicial objects,
the cofibrant objects are retracts of s-free objects. See [35]§II.4.
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1.1.2 Moduli spaces

We now recall some of the basic facts about Dwyer-Kan classification spaces,
mapping spaces, and moduli spaces. In all cases, these spaces will be the nerve
(or classifying space) of some category. The subtlety in this construction will
be that often the category C to which we wish to apply the nerve functor is not
small and, therefore, we don’t immediately get a simplicial set. However, there
are at least three ways to deal with this problem. The first is to notice that
the we will obtain homotopically small nerves, which determine a well-defined
homotopy type. For this, see [14]. The second is to restrict, in each case, to
a small subcategory of the category in question which is still large enough to
capture enough information to determine the correct homotopy type. In both
cases, the constructions are routine, so we employ the third solution: we ignore
the problem in order to simplify exposition.

To begin the theory, we need only consider some category C with a specified
class of weak equivalences. Later on, in order to make calculations, we will need
a model category or perhaps, only a semi-model category.

If C is a category with weak equivalences, the Dwyer-Kan hammock localiza-
tion LHC(X,Y ) yields a model for the space of morphisms between two objects
X and Y of C. See [13]. The following result implies that the hammock local-
ization is a good model for the derived space of maps between two objects.

1.1.10 Proposition. 1.) Suppose X ′ → X and Y → Y ′ are weak equivalences
in C. Then

LHC(X,Y )→ LHC(X ′, Y ′)

is a weak equivalence.
2.) Let C be a simplicial semi-model category, and denote by

map(−,−) : Cop × C−→sSets

the mapping space functor. Then if X is cofibrant and Y is fibrant there is a
zig-zag of weak equivalences between map(X,Y ) and LHC(X,Y ).

Proof. The first property is Proposition 3.3 of [13]. For the second statement,
we note that the argument in §7 of [15] easily adapts to the more general semi-
model category.

For fixed X, the components π0L
HC(X,X) of LHC(X,X) form a monoid,

and we define the derived simplicial monoid of self-equivalences

(1.1.1) AutC(X) ⊆ LHC(X,X)

ofX by taking those components which are invertible. We note that ifX in some
semi-model category is cofibrant and fibrant, then the previous result implies
that AutC(X) is weakly equivalent to the components of map(X,X) which are
invertible.

1.1.11 Definition. Let C be a semi-model category. A category of weak equiv-
alences in C is a subcategory of E of C which has the twin properties that
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1.) if X is an object in E and Y is weakly equivalent to X, then Y ∈ E;

2.) the morphisms in E are weak equivalences and if f : X → Y is a weak
equivalence in C between objects of E, then f ∈ E.

For example, E might have the same objects as C and all weak equivalences.
Let BE denote the nerve of the category E ; this is the Dwyer-Kan classifica-

tion spaces, and we will refer to it as a moduli space. In fact, there is a formula
for this weak homotopy type: the following is from [14].

1.1.12 Proposition. Let E be a category of weak equivalences in some semi-
model category C. Then

BE '
∐
[X]

BAutC(X)

where [X] runs over the weak homotopy types in E and AutC(X) is the (derived)
monoid of self-weak equivalences of X.

Proof. See §2 of [14]. The proof goes through verbatim in the more general
context. Since one of the needed references for this argument can be hard to
obtain, we will also offer an outline of the proof below in 1.1.18.

1.1.13 Example (The moduli space of an object). Fix an object X of
some semi-model category C and let E(X) be the smallest category of weak
equivalences containing X. Then E(X) has as objects all Y which are weakly
equivalent to X and as morphisms all weak equivalences Y → Y ′. We will write
M(X) for BE(X). Then

M(X) ' BAutC(X).

1.1.14 Example (Moduli spaces for diagrams). If C is a semi-model cate-
gory and I is some small indexing category, let CI be the category of I-diagrams
in C. Under many conditions, CI has a semi-model category structure with
X → Y a weak equivalence if Xi → Yi is a weak equivalence for all i. (See [23],
among many references.) But in any case, this always yields a notion of weak
equivalence and we can talk about categories E of weak equivalences as above.
For example, let I be the category with two objects and one non-identity arrow;
then CI is the category of arrows in C. Then we may letM(X Y ) denote the
classifying space of the category with objects all arrows U → V with U weakly
equivalent to X and Y weakly equivalent to Y . This is not quite the moduli
space of arrows X → Y ; see the next example, and Proposition 1.1.17.

1.1.15 Example (Mapping spaces as moduli spaces). Let X and Y be
two objects in a semi-model category C. We can define a space of morphisms
between X and Y as a moduli space. It is the nerve of the category E(X,Y )
whose objects are diagrams

X U
'oo // V Y

'oo
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where U → X and Y → V are weak equivalences. Morphisms are commutative
diagrams of the form

X

=

��

U
'oo

'
��

// V

'
��

Y
'oo

=

��
X U ′

'oo // V ′ Y
'oo

in which the indicated maps are weak equivalences. Let MHom(X,Y ) denote
the moduli space of E(X,Y ). A theorem of Dwyer and Kan [13] implies that if
C is a model category, there is a natural weak equivalence

MHom(X,Y )−→LHC(X,Y ).

Thus, in a simplicial model category, MHom(X,Y ) is weakly equivalent to the
derived mapping space.

1.1.16 Example (Mapping spaces in semi-model categories). Now sup-
pose that C is only a semi-model category. Then the argument that the inclusion
MHom(X,Y ) → LHC(X,Y ) is a weak equivalence will not work for all X and
Y , for at some point (see Proposition 8.2 of [13]) one must take the push-out
along an acyclic cofibration and claim it is a weak equivalence. This defect can
be remedied as follows.

First, let Cc ⊆ C be the full subcategory of cofibrant objects, with the in-
herited class of weak equivalences. Furthermore, if X and Y are cofibrant, let
Mc

Hom(X,Y ) be the nerve of the category of diagrams

X U
'oo // V Y

'oo

where U and V are cofibrant. Then the argument cited above does show that

Mc
Hom(X,Y )−→LHCc(X,Y )

is a weak equivalence when C is a semi-model category.
Second, if X and Y are cofibrant, then functorial factorizations make it easy

to show that the inclusion

Mc
Hom(X,Y )→MHom(X,Y )

is a weak equivalence. Since LHCc(X,Y ) → LHC(X,Y ) is a weak equivalence,
by the analog of [13] 8.4, we obtain that

MHom(X,Y )−→LHC(X,Y )

is a weak equivalence for X and Y cofibrant in a semi-model category C.

The relationship between the various mapping objects thus far defined is
spelled out in the following result. The proof here is a paradigm for many
similar results, and we will often refer to it in later parts of the paper.
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1.1.17 Proposition. Suppose that X and Y are two objects in a model category
C. Then there is a homotopy fiber sequence

MHom(X,Y )→M(X Y )→M(X)×M(Y ).

If C is only a semi-model category, we must also assume that X and Y are
cofibrant.

Proof. This is an application of Quillen’s Theorem B (see [21]), which specifies
the homotopy fiber of the morphism on nerves BF : BC → BD induced by a
functor F : C → D between small categories. For X ∈ D, let X/F denote the
category with objects the arrows X → FY in D, with Y ∈ C; the arrows in
X/F will be triangles induced by morphisms Y → Y ′. If X ′ → X is a morphism
in D, we get a functor X/F → X ′/F by precomposition, and Theorem B says
that

B(X/F )→ BC → BD

is a fiber sequence if B(X/F )→ B(X ′/F ) is a weak equivalence of all X ′ → X.
The result now follows. The maps are the obvious ones: the morphism

MHom(X,Y ) → M(X Y ) is induced by the functor that sends X ← U →
V ← Y to U → V ; the morphism M(X Y ) →M(X)×M(Y ) sends U → V
to (U, V ). One easily checks the conditions of Theorem B, using Example 1.1.15
or Example 1.1.16 as necessary.

1.1.18 Example (A proof of Proposition 1.1.12). If we let MAut(X) be
the moduli space of diagrams

X U
'oo ' // V X

'oo

andM(Xwe
 X) the moduli space of morphisms

U
' // V

where U and V are both weakly equivalent to X, then the kind of argument
just given provides a fiber sequence

MAut(X) //M(Xwe
 X)

q //M(X)×M(X).

However, there is weak equivalenceM(X)→M(Xwe
 X) sending U to 1 : U →

U , and the morphism q becomes equivalent to the diagonal. Then Proposition
1.1.12 follows once we identifyMAut(X) with Aut(X). For this see [13] 6.3.

1.1.19 Example (Moduli spaces in the presence of homotopy groups).
Suppose that the semi-model category C has some specified notion of homotopy
groups πi, i ≥ 0. Then we let M(X#Y ) denote the moduli space of arrows
f : U → V , where

1. U is weakly equivalent to X and V is weakly equivalent to Y , and
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2. the morphism f induces an isomorphism on πi for all i such that πiX and
πiY are both non-trivial.

Note that M(X#Y ) is a (possibly empty) disjoint union of components of
M(X Y ), as defined in Example 1.1.14.

This kind of moduli space will be mostly used when we have a pair X and
Y where πiY is isomorphic – but not canonically isomorphic – to πiX whenever
πiY is non-zero.

There are many variants on this sort of example. For example, given three
spaces, we can form M(X#Y"Z).

In a semi-model category, we will always assume we have cofibrant objects.

1.2 The ground category: basics on spectra

The whole point of this document is to produce a theory of moduli spaces of
structured ring spectra; in particular, we wish to discuss E∞-ring spectra. Thus
we need some category of spectra where we can work easily with operads. This
works best if the underlying category has a closed symmetric monoidal smash
product, so we will choose one of the models of spectra with this property. It
turns out that almost any of the categories of this sort built from topological
spaces (as opposed to simplicial sets) will do. For example, we could choose
the S-modules of [18] or the orthogonal spectra of [33]; however, simply to be
concrete, we will select the symmetric spectra in topological spaces, as discussed
in [33]. This category owes much to the symmetric spectra in simplicial sets, as
developed in [28], but it is not clear that the latter category satisfies Theorem
1.2.3 below.

It turns out that for any of the models of spectra we might consider here,
the category of C-algebras in spectra, where C is some operad, depends only on
the weak equivalence type of C in the näıvest possible sense, which is in sharp
distinction to the usual results about, say, spaces. (The exact result is below,
in Theorem 1.2.4.) However, the reasons for this are not very transparent,
because they are buried in the construction of the smash product. But it is
worth emphasizing this point: the smash product has the property that if X is
a cofibrant spectrum, then the evident action of the nth symmetric group on
the n-fold iterated smash product of X with itself is free.

The concepts of a monoidal model category and of a module over a monoidal
category is discussed in Chapter 4.2 of [25]. Specifically, simplicial sets are a
monoidal model category and a simplicial model category is a module category
over simplicial sets. For any category of spectra, the action of a simplicial set
K on a spectrum X should be, up to weak equivalence, given by the formula

X ⊗K = X ∧ |K|+

whenever this makes homotopical sense. Here the functor | − | is geometric
realization and (−)+ means adjoin a disjoint basepoint. This is the part 3.)
of the next result. Also, whatever category of spectra we have, it should be
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amenable to localization. This happens most easily when one has a cellular
model category, an idea discussed in the previous section; see Definition 1.1.4.

Let S denote the category of symmetric spectra in topological spaces, as
developed in [33]. We fix once and for all the “positive” model category structure
on S, as in §14 of that paper.

1.2.1 Theorem. The category S of symmetric spectra satisfies the following
conditions:

1.) The category S is a cellular simplicial model category Quillen equivalent
to the Bousfield-Friedlander [11] category of simplicial spectra.

2.) The category S has a closed symmetric monoidal smash product which de-
scends to the usual smash product on the homotopy category; furthermore,
with that monoidal structure, S is a monoidal model category.

3.) The smash product behaves well with respect to the simplicial structure;
specifically, if S is the unit object of the smash product, then there is a
natural monoidal isomorphism

X ⊗K
∼=−→X ∧ (S ⊗K).

Note that Part 1 guarantees, among other things, that the homotopy cate-
gory is the usual stable category.

Proof. Symmetric spectra in spaces is not immediately a simplicial model cat-
egory, but a topological model category. But any topological model category is
automatically a simplicial model category via the realization functor. The fact
that we have a cellular model category follows from Remark 1.1.5. For example,
the effective monomorphism condition follows from the fact the every Hurewicz
cofibration of topological spaces is a closed inclusion and the “Cofibration Hy-
pothesis”, which is 5.3 in [33]. Parts 2 and 3 can be found in [33].

As with categories modeling the stable homotopy category one has to ex-
plicitly spell out what one means by some familiar terms.

1.2.2 Notation for Spectra. The following remarks and notation will be used
throughout this paper.

1.) When referring to a spectrum, we will use the words cofibrant and cellular
interchangeably. The generating cofibrations of S are inclusions of spheres
into cells.

2.) We will write [X,Y ] for the morphisms in the homotopy category Ho(S).
As usual, this is π0 for some derived space of maps. See point (5) below.

3.) In the category S the unit object S for the smash product (“the zero-
sphere”) is not cofibrant. We will write Sk, −∞ < k <∞ for a cofibrant
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model for the k-sphere unless we explicitly state otherwise. In this lan-
guage the suspension functor on the homotopy category is induced by

X 7→ X ∧ S1.

Also the suspension spectrum functor from pointed simplicial sets to spec-
tra is, by axiom 3, modeled by

K 7→ S0 ∧K def=
S0 ⊗K
S0 ⊗ ∗

Note that because the unit object S is not cofibrant, the functor S ⊗ (−)
is not part of a Quillen pair.

4.) Let K be a simplicial set and X ∈ S. We may write X ∧ K+ for the
tensor object X ⊗K. This is permissible by axiom 3 and in line with the
geometry. The exponential object in S will be written XK .

5.) We will write map(X,Y ) or mapS(X,Y ) for the derived simplicial set of
maps between two objects of S. Thus, map(X,Y ) is the simplicial map-
ping space between some fibrant-cofibrant models (“bifibrant”) models for
X and Y . This can be done functorially if necessary, as the category S is
cofibrantly generated. Alternatively, we could use some categorical con-
struction, such as the moduli spaces of Example 1.1.15. Note that with
this convention

π0 map(X,Y ) = [X,Y ].

6.) We will write F (X,Y ) for the function spectrum of two objects X,Y ∈ S.
The closure statement in Axiom 2 of 1.2.1 amounts to the statement that

HomS(X,F (Y, Z)) ∼= HomS(X ∧ Y,Z).

This can be derived:

map(X,RF (Y, Z)) ' map(X ∧L Y, Z)

where the R and L refer to the total derived functors and map(−,−) is
the derived mapping space. In particular

πkRF (Y,Z) ∼= [ΣkY, Z].

7.) If X is cofibrant and Y is fibrant, then there is a natural weak equivalence

map(X,Y ) ' map(S0, F (X,Y ))

and the functor map(S0,−) is the total right derived functor of the sus-
pension spectrum functor from pointed simplicial sets to S. Thus we could
write

map(X,Y ) ' Ω∞F (X,Y ).

In particular, map(X,Y ) is canonically weakly equivalent to an infinite
loop space.
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We need a notation for iterated smash products. So, define, for n ≥ 1,

X(n) def= X ∧ · · · ∧X←−−−n−−−→ .

Set X(0) = S.
This paper is particularly concerned with the existence of A∞ and E∞-ring

spectrum structures. Thus we must introduce the study of operads acting on
spectra.

Let O denote the category of operads in simplicial sets. Our major source
of results for this category is [38]. The category O is a cofibrantly generated
simplicial model category where C → D is a weak equivalence or fibration if
each of the maps C(n)→ D(n) is a weak equivalence or fibration of Σn-spaces in
the sense of equivariant homotopy theory. Thus, for each subgroup H ⊆ Σn, the
induced map C(n)H → D(n)H is a weak equivalence or fibration. The existence
of the model category structure follows from the fact that the forgetful functor
from operads to the category with objects X = {X(n)}n≥0 with each X(n) a
Σn-space has a left adjoint with enough good properties that the usual lifting
lemmas apply.

If C is an operad in simplicial sets, then we have a category of AlgC of
algebras over C is spectra. These are exactly the algebras over the triple

X 7→ C(X) def= ∨n≥0C(n)⊗Σn
X(n).

Note that we should really write X(n) ⊗Σn
C(n), but we don’t.

The object C(∗) ∼= S ⊗ C(0) is the initial object of AlgC . If the operad is
reduced – that is, C(0) is a point – then this is simply S itself.

If f : C → D is a morphism of operads, then there is a restriction of structure
functor f∗ : AlgD → AlgC , and this has a left adjoint

f∗
def= D ⊗C (−) : AlgC → AlgD

The categories AlgC are simplicial categories in the sense of Quillen and both
the restriction of structure functor and its adjoint are continuous. Indeed, if
X ∈ AlgC and K is a simplicial set, and if XK is the exponential object of
K in S, then XK is naturally an object in AlgC and with this structure, it is
the exponential object in AlgC . Succinctly, we say the forgetful functor creates
exponential objects. It also creates limits and reflexive coequalizers, filtered
colimits, and geometric realization of simplicial objects.

Here is our second set of results about spectra. The numbering continues
that of Theorem 1.2.1.

1.2.3 Theorem. The category S of symmetric spectra in topological spaces has
the following additional properties.

4.) For a fixed operad C ∈ O, define a morphism of X → Y of C-algebras in
spectra to be a weak equivalence or fibration if it is so in spectra. Then the
category AlgC becomes a cofibrantly generated simplicial model category.
Furthermore, AlgC has a generating set of cofibrations and a generating
set of acyclic cofibrations with cofibrant source.
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5.) In the category AlgC , every cofibration is a Hurewicz cofibration on the
underlying spectra and, in particular, is a level-wise closed inclusion and
an effective monomorphism.

6.) Let n ≥ 1 and let K → L be a morphism of Σn spaces which is a weak
equivalence on the underlying spaces. Then for all cofibrant spectra X, the
induced map on orbit spectra

K ⊗Σn
X(n) → L⊗Σn

X(n)

is a weak equivalence of spectra. If K → L is a cofibration of simplicial
sets, then this same map is a cofibration of spectra.

Proof. First, part 4.) The argument goes exactly as in §15 of [33]. The argument
there is only for the commutative algebra operad, but it goes through with no
changes for the geometric realization of an arbitrary simplicial operad.

Part 5.) follows from the Cofibration Hypothesis, [33] 5.3.
Part 6.) follows from the observation that for cofibrant X (here is where

the positive model category structure is required), the smash product X(n) is
actually a free Σn-spectrum. See Lemma 15.5 of [33].

We wonder whether this result is also true for symmetric spectra in simplicial
sets. This is not immediately obvious: many of the technical arguments of [33]
use that the inclusion of a sphere into a disk is an NDR-pair.

The following result emphasizes the importance part 6.) of Theorem 1.2.3.

1.2.4 Theorem. Let f : C → D be a morphism of operads in simplicial sets.
Then the adjoint pair

f∗ : AlgC
// AlgD : f∗oo

is a Quillen pair. If, in addition, the morphism of operads has the the property
that C(n) → D(n) is a weak equivalence of spaces for all n ≥ 0, this Quillen
pair is a Quillen equivalence.

Proof. The fact that we have a Quillen pair follows from the fact that the
restriction of structure functor (the right adjoint) f∗ : AlgD → AlgC certainly
preserves weak equivalences and fibrations.

For the second assertion, first note that since f∗ creates weak equivalences,
we need only show that for all cofibrant X ∈ AlgC , the unit of the adjunction

X → f∗f
∗X = D ⊗C X

is a weak equivalence. If X = C(X0) is actually a free algebra on a cofibrant
spectrum, then this map is exactly the map induced by f :

C(X0) =
∨
n

C(n)⊗Σn X
(n)
0 →

∨
n

D(n)⊗Σn X
(n)
0 = D(X0).

For this case, Axiom 6 of 1.2.3 supplies the result. We now reduce to this case.
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Let X ∈ AlgC be cofibrant. We will make use of an augmented simplicial
resolution in AlgC

P•−→X

with the following properties:

i.) the induced map |P•| → X from the geometric realization of P• to X is a
weak equivalence;

ii.) the simplicial C-algebra P• is s-free on a set of C-algebras {C(Zn)} where
each Zn is a cofibrant spectrum. (The notion of s-free was defined in
Definition 1.1.9.)

There are many ways to produce such a P•. For example, we could take an
appropriate subdivision of a cofibrant model for X in the resolution model cat-
egory for simplicial C-algebras based on the homotopy cogroup objects C(Sn),
−∞ < n <∞. 1

Given P•, consider the diagram

(1.2.1) |P•| //

��

|f∗f∗P•|

��
X // f∗f∗X

For all n, we have an isomorphism

Pn ∼= C(
∨

φ:[n]→[k]

Zk)

where φ runs over the surjections in the ordinal number category. Thus we can
conclude that Pn → f∗f

∗Pn is a (levelwise) weak equivalence and that both P•
and f∗f∗P• are Reedy cofibrant. The morphism |P•| → X is a weak equivalence
by construction, and |P•| → |f∗f∗P•| is a weak equivalence since geometric
realization preserves weak equivalences between Reedy cofibrant objects. Thus
we need only show that

|f∗f∗P•|−→f∗f∗X

is a weak equivalence.
To see this, we note that since weak equivalences and geometric realizations

are created in the underlying category of spectra, it is sufficient to show |f∗P•| →
f∗X is a weak equivalence. However |f∗P•| = f∗|P•| since f∗ is a left adjoint.
Finally, since f∗ is part of a Quillen pair, it preserves weak equivalences between
cofibrant objects (which is where that hypothesis is used).

We now make precise the observation that Theorem 1.2.4 implies that the
notion of, for example, an E∞ ring spectrum is independent of which E∞ op-
erad we choose. Actually, even more is true. Let C be an operad so that for

1See Proposition 1.4.11. Resolution model categories are reviewed in section 1.4. The
notion of Reedy cofibrant, used in the next paragraph, is discussed in the next section.
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all n, the unique map to the one-point space C(n) → ∗ is a weak equivalence
(non-equivariantly). Then the obvious map C → Comm from C to the com-
mutative monoid operad satisfies the hypotheses of Theorem 1.2.4 and thus we
may conclude that AlgC is Quillen equivalent to the category of commutative
S-algebras.

1.3 Simplicial spectra over simplicial operads

Simplicial objects are often used to build resolutions – and that is our main
point here. However, given an algebra X in spectra over some operad, there
are times when we will resolve not only X, but the operad as well. The main
results of this section are that if X is a simplicial algebra over a simplicial
operad T then the geometric realization |X| is an algebra over the geometric
realization |T | and, furthermore, that geometric realization preserves level-wise
weak equivalences between Reedy cofibrant objects, appropriately defined.

1.3.1 Remark. In what follows we are going to discuss the category sO of
simplicial operads. These are bisimplicial operads is sets, but when we say
simplicial operad, we will mean a simplicial object in O, emphasizing the second
(external) simplicial variable as the resolution variable. The first (internal)
simplicial variable will be regarded as the geometric variable.

As mentioned in the previous section, the category of operads O is a sim-
plicial model category. From this one gets the Reedy model category structure
on simplicial operads sO ([37]), which are the simplicial objects in O. Weak
equivalences are level-wise and cofibrations are defined using the latching ob-
jects. The Reedy model category structure has the property that geometric
realization preserves weak equivalences between cofibrant objects. It also has a
structure as a simplicial model category; for example if T is a simplicial operad
and K is simplicial set, then

TK = {TKn }.

However, note that this module structure over simplicial sets is inherited from
O and is not the simplicial structure arising externally, as in [35], §II.2.

Now fix a simplicial operad T = {Tn}. (At this point, T need not have any
special properties.) The free algebra functor X 7→ C(X) is natural in X and
the operad C; hence, for any simplicial spectrum X we can define a bisimplicial
spectrum {Tq(Xq)}. We will denote the diagonal of this bisimplicial spectrum
by T (X). A simplicial algebra in spectra over T is a simplicial spectrum X
equipped with a multiplication map

T (X) −→ X

so that the usual associativity and unit diagrams commute. In particular, if
X = {Xn}, then each Xn is a Tn-algebra. Let sAlgT be the category of
simplicial T -algebras.
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The category sAlgT is a simplicial model category, and geometric realization
behaves well with respect to this structure. The exact result we need is below
in Theorem 1.3.4, but its complete statement requires some preliminaries.

Recall that given a morphism of operads C → D, the restriction of structure
functor AlgD → AlgC is continuous. This implies that if K is a simplicial set
and X ∈ sAlgT , we may define X ⊗K and XK level-wise; for example,

X ⊗K = {Xn ⊗K}.

We could use this structure to define a geometric realization functor; how-
ever, we prefer to proceed as follows.

IfM is a module category ([25], §4.2) over simplicial sets, then the geometric
realization functor | · | : sM→M has a right adjoint

Y 7→ Y ∆ = {Y ∆n

}.

where ∆n is the standard n-simplex. In particular, this applies to simplicial
operads, and we are interested in the unit of the adjunction T → |T |∆. If C is
any operad and Y is a C-algebra, then for all simplicial sets K, the spectrum
Y K is a CK algebra. From this it follows that Y ∆ is a simplicial C∆ algebra.
Setting C = |T | and restricting structure defines a functor

Y 7→ Y ∆ : Alg|T | −→ sAlgT .

The result we want is the following.

1.3.2 Theorem. Let T be a simplicial operad and X ∈ sAlgT a simplicial
T -algebra. Then the geometric realization |X| of X as a spectrum has a natural
structure as a |T | algebra and, with this structure, the functor

X 7→ |X|

is left adjoint to Y 7→ Y ∆.

Proof. We know that for an operad C ∈ O the forgetful functor from AlgC to
spectra creates geometric realization. Actually, what one proves is that if X is
a simplicial spectrum and C(X) is the simplicial C-algebra on X, then there is
a natural (in C and X) isomorphism

C(|X|)−→|C(X)|.

This uses a “reflexive coequalizer” argument; see Lemma II.6.6 of [18]. Now use
a diagonal argument. If T is a simplicial operad and X is a simplicial spectrum,
then, by definition,

T (X) = diag{Tp(Xq)}.

Since the functor Y 7→ C(Y ) is a continuous left adjoint, taking the realization
in the p-variable yields a simplicial object

{|{T•(Xq)}|} ∼= {|T |(Xq)}.
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Now take the realization in the q variable and get

|T (X)| ∼= |T |(|X|)

using the fact about the constant case sited above. The result now follows.

The next item to study is the homotopy invariance of the geometric realiza-
tion functor in this setting. The usual result has been cited above: realization
preserves level-wise weak equivalences between Reedy cofibrant objects. The
same result holds in this case, but one must take some care when defining
“Reedy cofibrant”. The difficulty is this: the definition of Reedy cofibrant in-
volves the latching object, which is the colimit

LnX = colim
φ:[n]→[m]

Xm

where φ runs over the non-identity surjections in the ordinal number category.
We must define this colimit if each of the Xm is an algebra over a different
operad. The observation needed is the following. Let S : I → O be a diagram
of operads. Then an I-diagram of S-algebras is an I-diagram X : I → S of
spectra equipped with a natural transformation of I-diagrams

S(X)→ X

satisfying the usual associativity and unit conditions. For example if I = ∆op

one recovers simplicial S-algebras. Call the category of such AlgS .2 Then one
can form the colimit operad colimS = colimI S and there is a constant diagram
functor

AlgcolimS −→ AlgS

sending X to the constant I-diagram i 7→ X where X gets an Si structure via
restriction of structure along

Si −→ colim
I

S.

1.3.3 Lemma. This constant diagram functor has a left adjoint

X → colimI X.

Despite the notation, colimI X is not the colimit of X as an I diagram of
spectra; indeed, if X = S(Y ) where Y is an I-diagram of spectra

colimI X ∼= (colimI S)(colimI Y ).

If T is a simplicial operad we can form the latching object

LnT = colim
φ:[n]→[m]

Tm.

2This is a slight variation on the notation sAlgT . If T is a simplicial operad, this new
notation would simply have us write AlgT for sAlgT . No confusion should arise.
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There are natural maps LnT → Tn of operads. If X is a simplicial T -algebra
we extend this definition slightly and define

LnX = Tn ⊗LnT colim
φ:[n]→[m]

Xm

where, again, φ runs over the non-identity surjections in ∆. In short we extend
the operad structure to make LnX a Tn-algebra and the natural map LnX →
Xn a morphism of Tn-algebras.

With this construction on hand one can make the following definition. Let
T be a simplicial operad and f : X → Y a morphism of simplicial T -algebras.
Then f is a level-wise weak equivalence (or Reedy weak equivalence) if each of
the maps Xn → Yn is a weak equivalence of Tn-algebras – or, by definition,
a weak equivalence as spectra. The morphism f is a Reedy cofibration if the
morphism of Tn-algebras

LnY tLnX Yn −→ Yn

is a cofibration of Tn-algebras. The coproduct here occurs in the category of
Tn-algebras. (Fibrations are then determined; they have a description in terms
of matching objects. See [23], §15.1.) The main result is then:

1.3.4 Theorem. With these definitions, and the level-wise simplicial structure
defined above, the category sAlgT becomes a simplicial cellular model category.
Furthermore,

1. the geometric realization functor | − | : sAlgT → Alg|T | sends level-wise
weak equivalences between Reedy cofibrant objects to weak equivalences;
and

2. any Reedy cofibration in sAlgT is a Hurewicz cofibration in spectra at each
simplicial level; in particular, it is an effective monomorphism.

Proof. The standard argument for the existence of a Reedy model category
structure (see [23] §15.6, for example) easily adapts to this situation; one need
only take care with latching objects, and we have described these in some detail
above. The same reference also supplies arguments to show that the model
category structure is cellular. See [23] §15.7. That it is a simplicial model
category is an easy exercise.

To prove point 1.), note that the right adjoint to geometric realization Y 7→
Y ∆ preserves fibrations and weak equivalences when considered as a functor to
sS, hence it has the same properties when considered as a functor to sAlgT .
Thus geometric realization is part of a Quillen pair. For point 2.), one checks
that a Reedy cofibration X → Y in sAlgT yields a (Quillen) cofibration of
Tn-algebras Xn → Yn for all n. This can be done by adapting the argument of
Proposition 15.3.11 of [23]. Now apply Theorem 1.2.3.

Now let us next spell out the kind of simplicial operads we want might want.
One example is, obviously, the constant simplicial operad T on the commutative
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monoid operad or, perhaps, an E∞-operad in O. Then sAlgT will simply be
simplicial commutative algebras (or E∞-algebras) in spectra. However, there
are times when this might be too simplistic.

If E∗ is the homology theory of a homotopy commutative ring spectrum and
C is an operad in O, one might like to compute E∗C(X). This might be quite
difficult, unless E∗X is projective as an E∗ module and π0C(q) is a free Σq-set
for all q. Thus we’d like to resolve a general operad C using operads of this sort.

If T is a simplicial operad and E is a commutative ring spectrum in the
homotopy category of spectra, then E∗T is a simplicial operad in the category of
E∗-modules. The category of simplicial operads in E∗-modules has a simplicial
model category structure in the sense of §II.4 of [35], precisely because there
is a free operad functor. Cofibrant objects are retracts of diagrams which are
“free” in the sense of [35]; meaning the underlying degeneracy diagram is a free
diagram of free operads. Free operads are discussed in detail in the appendix
to [38].

Given an operad C ∈ O, we’d like to consider simplicial operads T of the
following sort:

1.3.5 Theorem. Let C ∈ O be an operad. Then there exists an augmented
simplicial operad

T −→ C

so that

1. T is Reedy cofibrant as a simplicial operad;

2. For each n ≥ 0 and each q ≥ 0, π0Tn(q) is a free Σq-set;

3. The map of operads |T | → C induced by the augmentation is a weak
equivalence;

4. If E∗C(q) is projective as an E∗ module for all q, then E∗T is cofibrant as
a simplicial operad in E∗ modules and E∗T → E∗C is a weak equivalence
of operads in that category.

This theorem is not hard to prove, once one has the explicit construction
of the free operad; for example, see the appendix to [38]. Indeed, here is a
construction: first take a cofibrant model C ′ for C. Then, if FO is the free
operad functor on graded spaces, one may take T to be the standard cotriple
resolution of C ′. What this theorem does not supply is some sort of uniqueness
result for T ; nonetheless, what we have here is sufficient for our purposes.

Note that if C is the commutative monoid operad, then we can simply take
T to be a cofibrant model for C in the category of simplicial operads and run
it out in the simplicial (i.e., external in the sense of Remark 1.3.1) direction.
Then T is, of course, an example of an E∞-operad; furthermore, E∗T will be a
simplicial E∞-operad in E∗-modules in the sense of Definition 2.3.8.
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1.4 Resolutions

Building on the results of the last section, we’d like to assert the following.
Fix a homology theory E∗. Let X be a simplicial algebra over a simplicial
operad T . Then, perhaps under hypotheses on T , we would like to assert there
is a simplicial T -algebra Y and a morphism of T -algebras Y → X so that
a.) |Y | → |X| is a weak equivalence and b.) E∗Y is cofibrant as an E∗T
algebra. The device for this construction is an appropriate Stover resolution
([46],[16],[17]) and, particularly, the concise and elegant paper of Bousfield [10].3

We explain some of the details in this section.
We begin by specifying the building blocks of our resolutions. We fix a

spectrum E which is a commutative ring object in the homotopy category of
spectra. Let D(·) denote the Spanier-Whitehead duality functor.

1.4.1 Definition. A homotopy commutative and associative ring spectrum E
satisfies Adams’s condition if E can be written, up to weak equivalence, as a
homotopy colimit of a filtered diagram of finite cellular spectra Eα with the
properties that

1. E∗DEα is projective as an E∗-module; and

2. for every module spectrum M over E the Künneth map

[DEα,M ] −→ HomE∗(E∗DEα,M∗)

is an isomorphism.

This is the condition Adams (following Atiyah) wrote down in [1] to guar-
antee that the (co-)homology theory over E has Künneth spectral sequences. If
M is a module spectrum over E, then so is every suspension or desuspension of
M ; therefore, one could replace the source and target of the map in part 2.) of
this definition by the corresponding graded objects.

Many spectra of interest satisfy this condition; for example, if E is the
spectrum for a Landweber exact homology theory, it holds. (This is implicit in
[1], and made explicit in [39].) In fact, the result for Landweber exact theories
follows easily from the example of MU , which, in turn, was Atiyah’s original
example. See [2]. Some spectra do not satisfy this condition, however – the
easiest example is HZ.

We want to use the spectra DEα as detecting objects for a homotopy theory,
but first we enlarge the scope a bit.

1.4.2 Definition. Define P(E) = P to be a set of finite cellular spectra so that

1. the spectrum S0 ∈ P and E∗X is projective as an E∗-module for all X ∈ P;

2. for each α there is finite cellular spectrum weakly equivalent to DEα in P;
3Bousfield’s paper is written cosimplicially, but the arguments are so categorical and so

clean that they easily produce the simplicial objects we require.
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3. P is closed under suspension and desuspension;

4. P is closed under finite coproducts (i.e, wedges); and

5. for all X ∈ P and all E-module spectra M the Künneth map

[X,M ] −→ HomE∗(E∗X,M∗)

is an isomorphism.

The E2 or resolution model category which we now describe uses the set P
to build cofibrations in simplicial spectra and, hence, some sort of projective
resolutions.

Because the category of spectra has all limits and colimits, the category of
simplicial spectra is a simplicial category in the sense of Quillen using external
constructions as in §II.4 of [35]. However, the Reedy model category structure on
simplicial spectra is not a simplicial model category using the external simplicial
structure; for example, if i : X → Y is a Reedy cofibration and j : K → L is a
cofibration of simplicial sets, then

i⊗ j : X ⊗ L tX⊗K Y ⊗K → Y ⊗ L

is a Reedy cofibration, it is a level-wise weak equivalence if i is, but it is not
necessarily a level-wise weak equivalence if j is.

The following ideas are straight out of Bousfield’s paper [10].

1.4.3 Definition. Let Ho(S) denote the stable homotopy category.

1.) A morphism p : X → Y in Ho(S) is P-epi if p∗ : [P,X]→ [P, Y ] is onto
for each P ∈ P.

2.) An object A ∈ Ho(S) is P-projective if

p∗ : [A,X]−→[A, Y ]

is onto for all P-epi maps.

3.) A morphism A → B of spectra is called P-projective cofibration if it has
the left lifting property for all P-epi fibrations in S.

The classes of P-epi maps and of P-projective objects determine each other;
furthermore, every object in P is P-projective. Note however, that the class
of P-projectives is closed under arbitrary wedges. The class of P-projective
cofibrations will be characterized below; see Lemma 1.4.7.

1.4.4 Lemma. 1.) The category Ho(S) has enough P-projectives; that is, for
every object X ∈ Ho(S) there is a P-epi Y → X with Y a P-projective.

2.) Let X be a P-projective object. Then E∗X is a projective E∗-module,
and the Künneth map

[X,M ]−→HomE∗(E∗X,M∗)

is an isomorphism for all E-module spectra M .
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Proof. For part 1.) we can simply take

Y = q
P∈P

q
f :P→X

P

where f ranges over all maps P → X in Ho(S). Then, for part 2.), we note
that the evaluation map Y → X has a homotopy section if X is P-projective.
Then the result follows from the properties of the elements of P.

We can now specify the P-resolution model category structure. Recall that
a morphism f : A → B of simplicial abelian groups is a weak equivalence if
f∗ : π∗A→ π∗B is an isomorphism. Also f : A→ B is a fibration if the induced
map of normalized chain complexes Nf : NA → NB is surjective in positive
degrees. The same definitions apply to simplicial R-modules or even graded
simplicial R-modules over a graded ring R. A morphism is a cofibration if it is
injective with level-wise projective cokernel.

1.4.5 Definition. Let f : X → Y be a morphism of simplicial spectra. Then

1.) the map f is a P-equivalence if the induced morphism

f∗ : [P,X]−→[P, Y ]

is a weak equivalence of simplicial abelian groups for all P ∈ P;

2.) the map f is a P-fibration if it is a Reedy fibration and f∗ : [P,X]−→[P, Y ]
is a fibration of simplicial abelian groups for all P ∈ P;

3.) the map f is a P-cofibration if the induced maps

Xn tLnX LnY−→Yn, n ≥ 0,

are P-projective cofibrations.

Then, of course, the theorem is as follows.

1.4.6 Theorem. With these definitions of P-equivalence, P-fibration, and P-
fibration, the category sS becomes a simplicial model category.

The proof is given in [10]. We call this the P-resolution model category
structure. It is cofibrantly generated; furthermore there are sets of generating
cofibrations and generating acyclic cofibrations with cofibrant source. An object
is P-fibrant if and only if it is Reedy fibrant. We will see below, in Theorem
1.4.9 – using the case where T is the identity operad – that this model category
structure on sS is, in fact, cellular.

The next result gives a characterization of P-cofibrations.
Call a morphism X → Y of spectra P-free if it can be written as a compo-

sition
X

i // X q F
q // Y

where i is the inclusion of the summand, F is cofibrant and P-projective, and q
is an acyclic cofibration. The following is also in [10]. Another characterization
of cofibrations can be obtained from the Lemma 1.4.10, which displays a set of
generating cofibrations.
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1.4.7 Lemma. A morphism X → Y of spectra is a P-projective cofibration if
and only if it is a retract of P-free map.

1.4.8 Remark. At this point we can explain one of the reasons for using the
models P to define the resolution model category. Suppose X → Y is a weak
equivalence between cofibrant objects in the P-resolution model category. Then
for each of the spectra DEα we have an isomorphism

f∗ : πp[ΣqDEα, X]
∼=−→πp[ΣqDEα, Y ].

However, if E∗(−) is our chosen homology theory

πpEqX ∼= colimα πp(Eα)qX
∼= colimα πp[ΣqDEα, X].

In particular, if X → Y is a P-equivalence of simplicial spectra, then

E∗X−→E∗Y

is a weak equivalence of simplicial E∗-modules. Also note that if X → Y is a
P-cofibration, then E∗X → E∗Y is a cofibration of simplicial E∗ modules. This
follows from Lemma 1.4.7.

For a Reedy cofibrant simplicial spectrum X or, more generally a proper4

simplicial object X, there is a spectral sequence

(1.4.1) πpEqX =⇒ Ep+q|X|.

This is, of course, the standard homology spectral sequence of a simplicial spec-
trum. If X → Y is an P-equivalence of Reedy cofibrant simplicial spectra, then
we get isomorphic E∗ homology spectral sequences.

The P-resolution model category structure can be promoted to a model
category for simplicial algebras over a simplicial operad. Fix a simplicial operad
T and let sAlgT be the category of algebras over T . This category has an
external simplicial structure; indeed, if K is a simplicial set and X ∈ sAlgT ,
one has

(1.4.2) (X ⊗K)n = q
Kn

TnXn.

The superscript Tn is indicates that the coproduct is taken in the category of
Tn algebras. The simplicial set of maps is defined again by

[n] 7→ HomsAlgT
(X ⊗∆n, Y ).

We say that a morphism X → Y of simplicial T -algebras is a P-fibration or P-
equivalence if the underlying morphism of simplicial spectra is. Then we have
the P-resolution model category structure on sAlgT . We will discuss cofibrations
below when we have more hypthoses.

4An object is proper if the inclusions of the latching objects LnX → Xn are Hurewicz
cofibrations.
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1.4.9 Theorem. With these definitions, the category sAlgT becomes a simpli-
cial cellular model category.

Proof. The existence of the simplicial model category structure is the standard
lifting argument. (See [21] §II.2 for the case of simplicial model categories, or [23]
§11.3. for a more general statement.) Since sAlgT is a simplicial category, in
the sense of Quillen, the categorysAlgT has a functorial path object. Since the
forgetful functor to sS creates filtered colimits in sAlgT , we need only supply a
P-fibrant replacement functor for sAlgT . However, every Reedy fibrant object
in sAlgT will be P-fibrant, and the sAlgT in its Reedy model category structure
is cofibrantly generated, so we can choose a Reedy fibrant replacement functor.
This will do the job. Note that this model category is cofibrantly generated,
again by the standard lifting arguments.

To get that the model category is cellular, first note that since every Reedy
weak equivalence is P-equivalence and every Reedy acyclic fibration is a P-
acyclic fibration, every P-cofibration will be Reedy cofibration, and hence a
space-wise closed inclusion, by Theorem 1.3.4. Since sS, in its P-resolution
model category structure has a set of generating cofibration A → B with
cofibrant source, so does sAlgT ; indeed, the generators will be of the form
T (A)→ T (B). To complete the argument, we apply Remark 1.1.5.

We now give a set of generating cofibrations for sAlgT . This will be impor-
tant when discussing the size of cell complexes in localization arguments. Recall
that we have fixed our set P(E) = P of projectives: see 1.4.2.

1.4.10 Lemma. Fix a set of J of generating acyclic cofibrations for S. The
P-model category structure on sAlgT has, as a set I of generating cofibrations,
the morphisms

T (Aj ⊗∆n qAj⊗∂∆n ⊗Bj ⊗ ∂∆n)→ T (Bj ⊗∆n)

where Aj → Bj is a morphism in J and the morphisms

T (P ⊗ ∂∆n)→ T (P ⊗∆n)

where P ∈ P.

Proof. A morphism X → Y is an acyclic fibration if and only if it is a Reedy
fibration and (by virtue of the spiral exact sequence, Theorem 3.1.4) the induced
morphism of underived mapping spaces

sAlgT (T (P ), X)−→sAlgT (T (P ), Y )

is an acyclic fibration of simplicial sets. The result follows by an adjointness
argument.

1.4.11 Proposition. For each X ∈ sAlgT there is a natural P-equivalence

PT (X)→ X

so that
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1.) PT (X) is cofibrant in the P-resolution model category structure on sAlgT ;

2.) the underlying degeneracy diagram of PT (X) is of the form T (Z) where Z
is free as a degeneracy diagram and each Zn is a wedge of elements of P.

Proof. The object PT (X) is produced by taking an appropriate subdivision (for
example the big subdivision of [9] §XII.3, Example 3.4) of a cofibrant model for
X.

The following result has content because it is not at all obvious that a P-
cofibrant algebra in sAlgT is Reedy cofibrant when regarded as a spectrum.

1.4.12 Corollary. Suppose that T is a simplicial operad. Let X be a P-
cofibrant simplicial T -algebra in sAlgT . Then for any homology theory E∗,
there is strongly convergent first quadrant spectral sequence

πpEqX =⇒ Ep+q|X|.

Proof. We may assume that X is of the form stipulated by Proposition 1.4.11.
Then we claim that X is, in fact, Reedy cofibrant when regarded as a simplicial
spectrum. This is routine, if tedious, and we leave the details to the reader.
There are two key observations. First, if T is a Reedy cofibrant operad, then
for each n, the bisimplicial set T (n) is Reedy cofibrant. This is because all
bisimplicial sets are Reedy cofibrant. Second, if C is any operad and Z1 and Z2

are spectra, then there is a decomposition formula

C(Z1 q Z2) ∼= q C(n+m)⊗Σm×Σn Z
(m)
1 ∧ Z(n)

2 .

To make constructive use of the P-resolution model category structure on
sAlgT , we impose a further condition.

1.4.13 Definition. An operad C is adapted to E∗ if there is a triple CE on
E∗-modules so that

1. if X is a C-algebra in spectra, then E∗X is naturally a CE-algebra in
E∗-modules;

2. if Z is a cofibrant spectrum such that E∗Z is projective as an E∗-module,
then the natural map of CE-algebras

CE(E∗Z)−→E∗C(Z)

is an isomorphism.

There is a simplicial version, also: a simplicial operad T is adapted to E∗ if
there is a triple TE on simplicial E∗-modules so that

3. if X is a simplicial T -algebra in spectra, then E∗X is naturally a TE-
algebra in simplicial E∗-modules;
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4. if Z is a Reedy cofibrant spectrum such that E∗Z is a cofibrant simplicial
E∗-module, then the natural map of TE-algebras

TE(E∗Z)−→E∗T (Z)

is an isomorphism.

Here are some basic examples. There are more below in Remark 1.4.17.

1.4.14 Example. 1.) If C is an operad adapted to E, then the C, regarded as
a constant simplicial operad, is adapted as a simplicial operad to E.

2.) By the results of section 2.2 below, any E∞-operad is adapted to p-
complete K-theory.

3.) If C is any operad so that π0C(k) is a free Σk set for all k, then C
is adapted to any Adams-type homology theory. This means, specifically, that
any A∞-operad is adapted to E. More generally, if T is a simplicial operad so
that for all k and n, the set π0Tn(k) is a free Σk-set, then T is adapted as a
simplicial operad to E.

In the following result, we make a cardinality statement about relative cell
complexes. The generating set I of cofibrations is that of Lemma 1.4.10.

1.4.15 Lemma. Suppose T is a simplicial operad adapted to E and suppose
f : X → Y is a cofibration with cofibrant source in sAlgT with its P-resolution
model category structure. The f is a retract of a morphism g : X → Z with the
following property:

(∗) The underlying morphism of degeneracy diagrams for E∗g is isomorphic
to a morphism of the form

E∗X
i // E∗X q TE(M)

where M is s-free on a projective E∗-module.

Furthermore, g has a presentation as a relative I-cell complex with γ cells, then
M has a set of generators as an E∗-module of cardinality γ.

Proof. All acyclic cofibrations in spectra have a strong deformation retraction.
This follows from Theorem 14.1 (see also Theorem 6.5) of [33]. This implies
that if we have push-out diagram in simplicial T -algebras of the form

T (Aj ⊗∆n qAj⊗∂∆n ⊗Bj ⊗ ∂∆n) //

��

X

��
T (Bj ⊗∆n) // Y

then, at every simplicial level k, we have that Xk → Yk is a homotopy equiv-
alence. In particular E∗Xk

∼= E∗Yk. On the other hand, if we have push-out
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diagram of the form
T (P ⊗ ∂∆n) //

��

X

��
T (P ⊗∆n) // Y

then, at every simplicial level k, we have that Yk ∼= Xk q Tk(qIk
P ) for some

finite indexing set Ik and this decomposition respects the degeneracies.
If f : X → Y is any cofibration with cofibrant source, then f is a retract of

a cofibration g : X → Z built by the small object argument from the generating
cofibrations. This, in turn, is a retract of a cofibration g′ : X ′ → Z ′ so that X ′

is built by the small object argument from the initial object S and Z ′ is built
from X ′ by the small object argument. The conclusion (∗) for S → X ′ and
hence for g′ by observations of the previous paragraph. Then (∗) holds for g
because it is a retract of g′.

To go further we have to assume that our the category of TE-algebras has
good homotopical behavior. This is encoded in the following definition.

1.4.16 Definition. Let E∗ be a homology theory so that E∗E is flat over E∗
and let T be a simplicial operad adapted to E. Then we will say that T is
homotopically adapted to E if:

1. the triple TE on simplicial E∗-modules lifts to a triple on E∗E-comodules;

2. the category of simplicial TE-algebras in E∗-modules supports the structure
of a simplicial model category where a morphism is a weak equivalence or
fibration if and only if it is so as as a simplicial E∗-module;

3. the category of simplicial TE-algebras in the category of E∗E-comodules
supports the structure of a simplicial model category such that the forget-
ful functor to TE-algebras in E∗-modules creates weak equivalences and
preserves fibrations.

1.4.17 Remark. This definition is rather complicated; however, our three main
examples will all produce homotopically adapted operads. But let us first say
that what is needed in the next section is only part (2) of this definition. The
rest becomes crucial later.

1. If E∗ is any Adams-type homology theory with E∗E flat over E∗, then
the associative monoid operad is homotopically adapted to E∗. Then TE
will be the simplicial associative algebra triple. The necessary model cat-
egory structure on simplicial associative E∗-algebras is the one supplied
by Quillen in [35]§II.4 and the model category structure on simplicial as-
sociative algebras in E∗E-comodules appeared in [19]. (See the beginning
of section 2.5 for a more thorough review of the comodule case.)
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2. Again let E∗ be any Adams-type homology theory with E∗E flat over
E∗. Let C be an E∞ operad in the category of simplicial sets; thus C(k)
is contractible and has a free Σk-action. Then let T be the resulting
simplicial operad obtained by running C out in the external5 simplicial
direction. Then |T | ∼= C and E∗T is an E∞-operad in E∗-modules. (See
Definition 2.3.8) and TE is the free simplicial E∞-algebra triple. Again
the necessary model category structure on E∞-algebras is the one supplied
by Quillen in [35]§II.4 and the model category structure on E∞-algebras
in E∗E-comodules appeared in [19].

3. Let K∗ be p-completed K-theory, and T the commutative monoid operad,
so that T -algebras are simplical commutative S-algebras. Then TE is the
free theta-algebra functor. The details of this example, including the fact
T is homotopically adapted to K∗ appear in section 2.3.

The following result is an immediate consequence of Lemma 1.4.15 given
Quillen’s characterization ([35]§II.4) of cofibrations as retracts of “free” maps.

1.4.18 Corollary. Suppose the simplicial operad T is homotopically adapted to
E. Then the functor

E∗ : sAlgT−→sAlgTE

sends weak equivalences to weak equivalences and cofibrations with cofibrant
source to cofibrations.

1.4.19 Example. Suppose we fix an operad C ∈ O and a simplicial resolution
T → C of C as in Theorem 1.3.5. If X is an C-algebra, then X can be regarded
as a constant object in sAlgT and, hence, we have the resolution PT (X)→ X
of Proposition 1.4.11. Then PT (X) is P-cofibrant in sAlgT . Since Remark
1.4.8 implies that the augmentation π∗E∗PT (X) → E∗X is an isomorphism,
the previous result and Example 1.4.14.3 imply that E∗PT (X) is a cofibrant
replacement for E∗X in simplicial E∗T -algebras. (Here we are using the model
category structure on simplicial E∗-algebras of [35]§II.4.) Furthermore we can
use the E∗ homology spectral sequence of Corollary 1.4.12 to conclude

π∗E∗|PT (X)| ∼= E∗X.

1.5 Localization of the resolution model cate-
gory

In the previous section, we developed the resolution model category of spectra,
or simplicial T -algebras, based on some set of projectives P. In particular, we
were interested in the set P = P(E) arising from an Adams-type homology
theory, as in Definition 1.4.2. This resolution model category has the type of
cofibrant objects we’d like, but – as the reader may have surmised – we are not

5See Remark 1.3.1 for the meaning of “external”.
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primarily interested in the P-equivalence classes of objects in simplicial spectra
or simplicial T -algebras, but in certain types of E∗-equivalences. There does not
appear to be a model category with these cofibrations and weak equivalences;
therefore, we settle for a semi-model category, as in the next result. It is a
localization of the one supplied in Theorem 1.4.9.

The material of this section developed out of some conversations with Phil
Hirschhorn.

The rest of this section will be devoted to proving the following result. The
notion of semi-model category was discussed in Section 1.1, and the definition of
what it means for an operad to be homotopically adapted to a homology theory
is in the Definitions 1.4.13 and 1.4.16.

1.5.1 Theorem. Suppose that T is a simplicial operad homotopically adapted
to the homology theory E. Then the category sAlgT supports the structure of a
cofibrantly generated simplicial semi-model category so that

1.) a morphism f : X → Y is an E∗-equivalence if

π∗E∗(f) : π∗E∗X−→π∗E∗Y

is an isomorphism;

2.) a morphism is an E∗-cofibration if it is a P-cofibration; and

3.) a morphism is an E∗-fibration if it has the right lifting property with re-
spect to all morphisms which are at once an E∗-equivalence and an E∗-
cofibration.

Since, by Remark 1.4.8, every P-equivalence in sAlgT is an E∗-equivalence,
this semi-model category structure can be produced using the localization tech-
nology of Bousfield, et al., with variations which have previously been confronted
in [18], §VIII.1. There are many minute details, and we vary somewhat from
the canonical path – as mapped out in [23] – but the route is familiar.

To begin, let E∗ be our chosen Adams-type homology theory, and let ChE∗
denote the category of non-negatively graded chain complexes over E∗. Then
we have a functor

hE
def= NE∗(−) : sS−→ChE∗

given sending a simplicial spectrum X to the normalized complex NE∗(X).
Note that we have the H∗hE(X) = π∗E∗X. The following is obvious, and
included only to ground the argument.

1.5.2 Lemma. The functor hE : sS−→ ChE∗ has the following properties:

i.) If X → Y is a P-equivalence, then hE(X) → hE(Y ) is a homology iso-
morphism, and if ∗ is the initial object then hE(∗) = 0.

ii.) If i 7→ Xi is a filtered diagram of Reedy cofibrant objects, then

colimhE(Xi)→ hE(colimXi)

is an isomorphism.
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iii.) If A → B is a P-cofibration, then hE(A) → hE(B) is an injection. If
A→ X is any other map, then the resulting diagram

hE(A) //

��

hE(X)

��
hE(B) // hE(B tA X)

is a push-out square.

As a remark on this result, we note that items ii.) and iii.) together imply
that if {Xα} is any set of P-cofibrant objects in sS, then the evident map

⊕αhE(Xα)−→hE(
∐

Xα)

is an isomorphism. Note also that the hypothesis on the initial object is redun-
dant; the empty diagram is filtered, so ii.) implies hE(∗) = 0.

The functor π∗E∗(−) has some of the usual properties of a homology functor.
For example, if A→ B is a P-cofibration with cofibrant source, we can define

π∗E∗(B,A) = H∗(hE(B)/hE(A))

and we have a long exact sequence of a pair, by Definition 1.5.2.iii. The same
item also yields a Mayer-Vietoris sequence.

We now begin to set up the localization argument. In order for this to work,
we need to know that intersections of subcomplexes exist. Here are the details.

Suppose we are given some category C and a set of maps I in C. Then, in
Definitions 1.1.1 and 1.1.2 we wrote down the definition of I-cell complexes and
subcomplexes. Given two such subcomplexes K,L ⊆ X, we would like to define
K ∩ L with the property that

TK∩Lβ = TKβ ∩ TLβ .

(This is called the combinatorial intersection in [18] §III.2 and simply the inter-
section in [23]). The difficulty is to show that (K ∩ L)(−) : λ→ C exists. Using
transfinite induction, we can assume (K∩L)β exists and to define (K∩L)β+1 we
need to be able to complete the following diagram for every element of TKβ ∩TLβ :

(1.5.1) A

**TTTTTTTTTTTTTTTTTTTTT

��5
55

55
55

55
55

55
55

5

$$H
H

H
H

H

(K ∩ L)β //

��

Lβ

��
Kβ // Xβ .

We will say that intersections of subcomplexes exist if for some set I of generating
cofibrations of C we can solve this problem and produce K ∩ L. The reason we
went to all the trouble to specify that our various categories of simplicial spectra
were cellular model categories was so that we could apply the following result.
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1.5.3 Lemma. Let C be a cellular model category. Then intersections of sub-
complexes exist.

Proof. See [23] §14.2. The proof is straightforward: the effective monomorphism
condition and a diagram chase shows that the square of diagram 1.5.1 is a pull-
back diagram.

To prove Theorem 1.5.1, we use a standard technique for constructing cofi-
brantly generated model categories: Theorem 2.1.19 of [25] (but see also the
identical Theorem 13.4.1 of [23] which credits this result to Dan Kan). The
exact statement will be incorporated in the proof below, but one begins by
specifying a class of weak equivalences and sets of maps I and J which will
generate the cofibrations and acyclic cofibrations respectively. Then one has
to show these maps satisfy certain properties. In this case the class of weak
equivalences will be the π∗E∗(−) isomorphisms and, since sAlgT (in the P-
resolution model category structure) is already cofibrantly generated, I will be
a generating set for the cofibrations. The issue is to supply J , and for this we
use an analog of the Bousfield-Smith argument (cf. [23] §4.5). This comes down
to a cardinality argument, so we begin by spending a paragraph or so to specify
some cardinals.

We choose, as our generating set I def= IT of cofibrations of sAlgT , in the
P-resolution model category structure, the morphisms of Lemma 1.4.10. These
are all of the form

T (A)−→T (B)

where A → B are generating cofibrations for sS in its P-resolution model cat-
egory structure. By the properties of a cofibrantly generated model category
(see Definition 2.1.3 of [25]), there is a cardinal number κ so that the domain
of every morphism of IT is κ-small relative to the class of cofibrations. This is
the first cardinal we need.

We first record the following result. This is where the effective monomor-
phism condition on cofibrations in cellular model categories arises.

1.5.4 Lemma. 1.) Every IT -cell of a relative IT complex in sAlgT is contained
in a relative sub-I-cell complex of size at most κ.

2.) Every IT -complex of sAlgT is the filtered colimit of its subcomplexes of
size at most κ.

Proof. The first statement is Lemma 13.5.8 of [23]. The second statement fol-
lows from the first.

The second cardinal we need is supplied by the following result.
We will assume for the rest of the section that we are working with a sim-

plicial operad T homotopically adapted to E.

1.5.5 Lemma. There is a cardinal η so that if X is IT -cell complex of size γ
in sAlgT , then π∗E∗(X) has at most ηγ elements.
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Proof. By Lemma 1.4.15 the underlying degeneracy diagram of X has the prop-
erty that

E∗X ∼= TE(M)

where M is s-free on a graded projective E∗-module with generating set of
cardinality γ. Furthermore, the triple TE has the property that

TE(E∗Z)
∼= // E∗T (Z)

whenever Z is Reedy cofibrant and E∗Z is level-wise projective. We use these
two formulas to bound the cardinality of E∗X.

Since M is level-wise projective, it is a retract of a degeneracy diagram F
of free E∗-modules with a generating set of the same cardinality γ. Thus we
may assume M is actually s-free on a graded free E∗-modules. By fixing a
set of generators we obtain an isomorphism of degeneracy diagrams M ∼= E∗Z
where Z is itself s-free on a graded spectrum which is a wedge of spheres in each
degree. Furthermore the cardinality of that set of spheres is γ. Thus we need
only bound the cardinality of E∗T (Z).

If U is a graded simplicial set, we denote the card(U) to be the cardinality
of the union of all the sets that make up U . Since we are only trying to find a
bound, we will assume all cardinals are infinite.

For any operad C in simplicial sets and any spectrum W with E∗W free as
an E∗-module there is a first quadrant spectral sequence

H∗(Σk, E∗(C(k))⊗ (E∗W )⊗k) =⇒ E∗(C(k)⊗Σk
W (k)).

From this it follows that

card[E∗(C(k)⊗Σk
W (k))] ≤ card(E∗(C(k)) · card(E∗W ).

Thus, for our simplicial operad T and our chosen simplicial spectrum Z, we
have

card(E∗T (Z)) ≤ card(E∗T ) · card(E∗Z).

But card(E∗Z) ≤ card(E∗) · γ. Thus we may take η ≥ card(E∗(T )) · card(E∗).

Now let ν be any infinite cardinal greater than ηκ. Note that ν depends
only on IT , E∗(−), and T . Here is our variant of Bousfield’s key lemma. See
Lemma X.3.5 of [21].

1.5.6 Lemma. If X → Y is an inclusion of IT -cell complexes in sAlgT such
that π∗E∗(Y,X) = 0, then there exists a subcomplex D ⊆ Y satisfying the
following conditions:

1.) D is of size less than ν;

2.) D is not in X; and,

3.) h∗(D,D ∩X) = 0.
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Proof. This argument is by now classic, and we won’t repeat it. Bousfield’s
original argument goes through verbatim, using the existence of intersections of
subcomplexes. See [23].

This immediately allows one to prove the following result:

1.5.7 Lemma. Suppose q is a morphism in sAlgT with the right lifting property
with respect to any inclusion j : A → B of IT -cell complexes with B of size at
most ν and π∗E∗(j) an isomorphism. Then q has the right lifting property with
respect to any inclusion of IT -cell complexes which is a π∗E∗(−) isomorphism.

Proof. This is a Zorn’s lemma argument, and also classic. See [23], Lemma 2.4.8
or Lemma X.2.14 of [21].

Now let JT be a set of representatives for the isomorphism classes of inclu-
sions A→ B of IT -cell complexes with B of size at most ν and which induce an
isomorphism on π∗E∗(−). Recall that a JT -cofibration in sAlgT is a morphism
in the class of maps containing JT and closed under retract, coproduct, cobase
change, and sequential colimits.

1.5.8 Lemma. Suppose that A→ B is a P-cofibration with P-cofibrant source
in sAlgT and a π∗E∗(−)-isomorphism. Then A→ B is a JT -cofibration.

Proof. Recall (from [25]) that a JT -injective is any morphism with the right
lifting property with respect to all the elements of JT . Suppose, for a moment,
that we can show that A → B has the left lifting property with respect to all
JT -injectives. Then, using the small object argument, we can factor A→ B as

A
j // E

p // B

where j is a JT -cofibration and p is a JT -injective. A standard argument now
shows A→ B is a retract of j, which is all that is required.

We now must show that A→ B has the left lifting property with respect to
all JT -injectives.

We start by choosing a cellular approximation Ã → B̃ to A → B. Thus,
Ã→ B̃ is an inclusion of IT -cell complexes and there is a commutative square

Ã //

��

A

��
B̃ // B

with the horizontal maps weak equivalences. Note that Ã → B̃ is a π∗E∗(−)
isomorphism. Now consider a lifting problem

Ã //

��

A //

��

X

q

��
B̃ // B

??�
�

�
�

// Y
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where q is a J-injective. By the previous lemma, we can produce a map B̃ → X
solving the outer lifting problem, hence a map B̃ tÃ A→ X solving the lifting
problem under A. Since A is cofibrant, the induced map B̃ tÃ A−→B is a
homotopy equivalence; hence we have a weak equivalence between cofibrant
objects in the category of objects under A and over Y . Also, q : X → Y
is a fibrant object in the same category, since any JT -injective is a fibration.
The original lifting problem is then solved by the following standard fact about
model categories: if C → C ′ is a weak equivalence between cofibrant objects
and C → E is a morphism to a fibrant object, then there is a morphism C ′ → E
so that the composite C → C ′ → E is homotopic to the original map.

1.5.9 Remark. The model category sAlgT is hardly ever left proper. If it
were, we could immediately conclude that the map

B̃ tÃ A−→B

was a weak equivalence for any A and, thus, drop the hypothesis that A be
cofibrant. Then we would obtain a model category, rather than a semi-model
category in Theorem 1.5.1. This will happen, for example, in the case of the
identity operad; that is, when sAlgT = sS.

Our final technical lemma is a closure property for π∗E∗(−)-equivalences.

1.5.10 Lemma. Every JT -cofibration with cofibrant source is an IT -cofibration
and a π∗E∗(−)-equivalence.

Proof. Since every morphism in JT is an IT -cofibration, every JT -cofibration
is an IT cofibration. So we must prove that every JT -cofibration is a π∗E(−)-
equivalence. It is sufficient to show that

1. an arbitrary coproduct of elements of JT is a π∗E∗(−)-equivalence; and

2. if X Aoo j // B is a two-source of T -algebras with A and X cofi-
brant and j a cofibration and a π∗E∗(−)-equivalence, then X → X qA B
is a π∗E∗(−) equivalence.

Then, since π∗E∗(−) commutes with filtered colimits, the result will follow.
For (1), let A → B be a morphism in JT . Since this is a cofibration with

cofibrant source, Lemma 1.4.18 implies that E∗A → E∗B is a cofibration of
TE-algebras with cofibrant source. It is also, by assumption, a weak equivalence
of TE-algebras. Lemma 1.4.15 and the definition of what it means for an operad
to be adapted (Definition 1.4.13) next imply that if {Ai → Bi} is a set of
morphisms JT , then

E∗(qiA)−→E∗(qiB)

is isomorphic to
qiE∗(A)−→qi E∗(B)

where the coproduct now is in TE-algebras. Since the acyclic cofibrations are
closed under coproduct, we have that qiA→ qiB is a π∗E∗(−)-equivalence.
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For (2), we note that the push-out X qA B is homotopy equivalent to the
homotopy push-out, which can be computed as the geometric realization of the
bar construction B(X,A,B). Here B(X,A,B) is the simplicial T -algebra which,
at level n is the coproduct

B(X,A,B)n = X qAq · · · qA←−−−n−−−→ qB.

The geometric realization is created in spectra and, hence, is isomorphic to the
diagonal of the bisimplicial spectrum B(X,A,B). We conclude that there is a
spectral sequence

πpπqE∗B(X,A,B) =⇒ πp+qE∗(X qA B).

Here we filter first by the external simplicial degree coming from the bar con-
struction.

To finish, we assert that an argument very similar to that give for (1) implies
that the natural map

π∗E∗B(X,A,A)n−→π∗B(X,A,B)

is an isomorphism. Then the spectral sequence just constructed shows π∗E∗X →
π∗E∗(X qA B) is an isomorphism.

1.5.11 Proof of Theorem 1.5.1. We specify the weak equivalences in sAlgT
to be the π∗E∗-isomorphisms. As above, we let IT be a generating set for the
cofibrations and we let JT a set of representatives for the isomorphism classes
of inclusions A → B of IT -cell with B of size at most γ and which induce an
isomorphism on π∗E∗(−). We now must show

• both IT and JT permit the small object argument;

• every JT -cofibration with cofibrant source is both an IT -cofibration and
an π∗E∗(−)-equivalence;

• every morphism with the right lifting property with respect to IT has the
right lifting property with respect to JT and is a π∗E∗(−)-equivalence;

• every map with cofibrant source which is both an IT -cofibration and a
π∗E∗(−)-equivalence is a JT -cofibration.

The first statement follows from the assumption that sAlgT is cofibrantly
generated, the second holds by Lemma 1.5.10, the third holds because π∗E∗(−)
takes P-weak equivalences to isomorphisms, and the fourth point is Lemma
1.5.8.
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Chapter 2

The Algebra of Comodules

2.1 Comodules, algebras, and modules as dia-
grams

In Section 1.4 we introduced the notion of a homology theory E∗ which satis-
fied a condition developed by Atiyah and Adams. (See Definition 1.4.1.) This
condition was the basis for the development of our simplicial resolutions. Now,
if E∗E happens to be flat over E∗, then the pair (E∗, E∗E) forms a Hopf alge-
broid and, for any spectrum X, the module E∗X is a comodule over this Hopf
algebroid. The purpose of section is to connect these two notions.

Specifically, we prove a variant of Giraud’s Theorem (cf. [4] §6.8) to show
that the category of comodules over a Hopf algebroid of Adams type is equiva-
lent to a category of diagrams. In particular, we will embed comodules into a
category of contravariant functors (i.e., presheaves) on some indexing category,
and show that comodules are exactly those presheaves which satisfy a conti-
nuity (or sheaf) condition. We then use this to characterize various algebraic
structures in comodules in terms of such structures on presheaves.

This is section is somewhat long, mostly because of a large number of routine
– but not completely trivial – lemmas. It is included so we can discuss the kind of
algebra and module structure supported by the spiral exact sequence in section
3.1. For this application, the key result is Theorem 2.1.13 and its analog for
algebras and modules. See Corollary 2.1.21.

In this section and throughout this paper, (A,Γ) will be a graded Hopf
algebroid and the category CΓ will denote left Γ-comodules. But note that the
conjugation in a Hopf algebroid induces an equivalence of categories between
left and right comodules. As a bit of notation, if N is a comodule, then ΣkN ,
k ∈ Z, is the evident shifted comodule and

HomCΓ(M,N) = {CΓ(Σk, N)}

will denote the graded A-module of comodule homomorphisms from M to N .
Similarly, if we need it, we will write HomA(M,N) for the graded A-module of
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A-module homomorphisms.

2.1.1 Comodules as product-preserving diagrams

2.1.1 Definition. A Hopf algebroid (A,Γ) is of Adams-type if

1.) The left unit ηL : A→ Γ makes Γ a flat A-module;

2.) There is filtered system of sub-Γ-comodules Γi ⊂ Γ which are finitely gen-
erated and projective over A and so that

colim Γi−→Γ

is an isomorphism.

2.1.2 Definition. A generating system J of Γ-comodules is a diagram of
comodule maps over Γ

Cj → Γ

so that the objects Cj are finitely generated and projective over A and the induced
map colimJ Cj → Γ is an isomorphism of comodules.

2.1.3 Example. Thus if (A,Γ) is of Adams type, then it has a generating
system. Furthermore any diagram of comodules Cj → Γ over Γ so that each
of the Cj is finitely generated and projective over A and which contains the
diagram of inclusions Γi → Γ will be a generating system. For example, we
could take as a generating system the diagram category which consists of one
representative for each isomorphism class of comodule morphisms C → Γ with
C finitely generated and projective over A. Morphisms would be commutative
triangles. This generating system is maximal, in an obvious sense, and closed
under the following tensor product operation. If C1 → Γ and C2 → Γ are in the
system, then the composition

C1 ⊗A C2−→Γ⊗A Γ m−→Γ

where m is the Hopf algebroid multiplication.

If N is a Γ-comodule which is finitely generated over A, let

DN = HomA(N,A)

be the dual comodule. The comodule structure is that associated to the right
comodule structure of [36] Lemma A.1.16.

2.1.4 Remark. Let J = {Cj → Γ} be a generating system. Then, because the
comodules Cj are finitely generated and projective as A-modules, the natural
map Cj → D(DCj) is an isomorphism of comodules. From this is follows that
for all comodules M there are natural isomorphisms

(2.1.1) colimJ HomΓ(DCj ,M) ∼= colimC HomΓ(A,Cj ⊗AM) ∼= M.
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The following Lemma explains the term “generating” system.

2.1.5 Lemma. Let Cj → Γ be a generating system of Γ-modules. Then the
comodules ΣkDCj are projective as A-modules and generate the category of Γ
comodules.

Proof. In [19], §3 we showed that the comodules ΣkDΓi generate. The same
argument works here. See also [27] for a cleaned-up version of this proof. The
essential fact is Equation 2.1.1.

2.1.6 Remark. In his paper on model category structures on categories of
chain complexes in comodules [27], Mark Hovey has given a much more elegant
discussion of the role of generating systems of comodules than we have given
here. This ad hoc discussion predates his, however, and we’re too tired to rewrite
at this point. It will do for now.

Let Cj → Γ be any generating system of Γ-comodules and let P be the full
subcategory of CΓ which contains the objects ΣkDCj and which is closed under
finite direct sums. Now consider the category Pre(P) of contravariant functors

F : Pop−→ModA.

Among all such functors, we single out the full-subcategory Sh(P) of functors
which satisfy the following sheaf condition: if Q→ P is a surjection, then

(2.1.2) F (P ) // F (Q) //// F (Q×P Q)

is an equalizer diagram. We will call the objects of Sh(P) sheaves.1 The inclu-
sion functor Sh(P) → Pre(P) has a left adjoint L; thus LF is the associated
sheaf. We give a concrete description of LF in the proof of Lemma 2.1.8 below.

We are mainly concerned not so much with sheaves and presheaves as the
following full subcategories.

2.1.7 Definition. Let Pre+(P) denote the contravariant functors

F : P−→Sets

which preserves finite products in the following sense: if P ∼= P1 ⊕ P2, then the
natural map

F (P )→ F (P1)× F (P2)

is an isomorphism. Morphisms in Pre+(P) are morphisms of diagrams; hence
Pre+(P) is a full-subcategory of the category of Pre(P). Let Sh+(P) be the
be the full subcategory of Pre+(P) of objects satisfying the sheaf condition of
Equation 2.1.2; this, in turn, is a full-subcategory of Sh(P).

1This nomenclature can be justified by introducing a suitable topology; however, we fore-
bear.
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Note that there is a Yoneda embedding

y∗ : CΓ−→Pre+(P)

sending a comodule M to the functor

P 7→ CΓ(P,M).

This is, in fact, a sheaf. If this is not completely obvious see the next lemma.

2.1.8 Lemma. 1.) Every object in Pre+(P) the graded set

F (Σ∗P ) = {F (ΣkP )}

has a natural structure as an A-module.
2.) If F ∈ Pre+(P), and LF is the associated sheaf of A-modules, then

LF ∈ Sh+(P).
3.) If M ∈ CΓ is comodules, then y∗M ∈ Pre+(P) is sheaf.

Proof. The first statement follows from the fact that, since F ∈ Pre+(P) pre-
serves products, F (Σ∗P ) is a right module over the graded ring End(P ) =
HomCΓ(P, P ), hence, an A-module. Furthermore, the actions on HomCΓ(P,Q)
of End(P ) and End(Q) on the left and right, respectively, give HomCΓ(P,Q)
the identical structures as an A-module; hence, any morphism P → Q gives a
morphism F (Q)→ F (P ) of A-modules.

For the second statement, let F be a presheaf. Define a new presheaf L0F
by

(L0F )(P ) = colim
Q�P

F (Q)

where the colimit is over all epimorphisms in P and the colimit is in A-modules.
If P ′ → P is a morphism in P, then (L0F )(P )→ (L0F )(P ′) is defined by using
the maps P ′ ×P Q→ P ′. If P = P1 ⊕ P2 and Q→ P is an epimorphism, then

Q ∼= (P1 ×P Q)⊕ (P2 ×P Q).

This equation and the fact that finite sums and products in A-modules are
isomorphic, imply that if F ∈ Pre+(P), then so is L0F . As usual, LF =
L0(L0F ).

For part 3, we use that colimits and finite limits in CΓ are created in A-
modules. Thus every epimorphism of comodules is, in fact, an effective epimor-
phism. In formulas, this means that if Q→ P is an epimorphism of comodules,
then

Q×P Q // // Q // P

is a coequalizer diagram.

The next result discusses limits and colimits in Pre+(P).
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Recall the a reflexive coequalizer in any category C is a coequalizer diagram

X1

d0 //
d1

// X0
// X

which can be equipped with a “degeneracy” s0 : X0 → X1 so that d0s0 = d1s0 =
1.

2.1.9 Lemma. 1.) The categories Pre+(P) and Sh+(P) are complete and
cocomplete.

2.) Reflexive coequalizers in Pre+(P) are created in Pre(P).
3.) The objects y∗P , with P ∈ P, generate Pre+(P) and Sh+(P).
4.) The inclusions functors Pre+(P) → Pre(P) and Sh+(P) → Sh(P)

have left adjoints. In fact, Pre+(P) is a category of algebras over a triple on
Pre(P).

Proof. Limits and colimits in Pre(P) are constructed object-wise or “point-
wise”. Since reflexive coequalizers in sets commute with products, point 2.)
follows. For point 1.) note that limits and colimits in Pre+(P) can be formed
level-wise in A-modules; then limits in Sh+(P) can are created in Pre+(P)
and colimits using sheafification and Lemma 2.1.8.2. For point 3, note that if
F ∈ Pre+(P), then the evident map⊕

P

⊕
x∈F (P )

y∗P−→F

is an epimorphism in Pre+(P). If F is a sheaf, we can sheafify the source
of this morphism. Finally point 4 follows from point 3 and the special adjoint
functor theorem; the fact that we have a category of algebras follows from Beck’s
Theorem, Theorem 10 of [4] §3.3.

2.1.10 Lemma. The functor y∗ : CΓ → Pre+(P) has a left adjoint y∗ and this
left adjoint restricts to a left adjoint to the induced functor y∗ : CΓ → Sh+(P).

Proof. This is formal. If M an A-module and P is a comodule, define a new
comodule M ⊗A P as the evident A-module with coproduct

M ⊗A P
M⊗ψP−→ M ⊗A Γ⊗A P

t⊗P−→Γ⊗AM ⊗A P.

There is an adjoint isomorphism

HomA(M,HomCΓ(P,N)) ∼= HomCΓ(M ⊗A P,N).

This immediately implies that y∗ is the coend

y∗(F ) =
∫ P

F (P )⊗A P

for F either a sheaf or a presheaf.
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2.1.11 Lemma. The Yoneda embedding functor

y∗ : CΓ → Sh+(P)

is exact.

Proof. It suffices to show that y∗ preserves monomorphisms and epimorphisms.
It clearly preserves monomorphisms. So let q : M → N be an epimorphism of
comodules. The induced map of sheave y∗M → y∗N is an epimorphism if for
all

f ∈ (y∗N)(P ) = CΓ(P,N)

there is an epimorphism j : Q→ P in P and an element

g ∈ (y∗M)(Q) = CΓ(Q,M)

so that
y∗(q)(g) = qg = fj = j∗(f) ∈ CΓ(Q,N) = (y∗N)(Q).

Form the pull-back P ×N M and note that the induced map P ×N M → P is a
surjection. Since the comodules DCj generate the category of comodules, there
is an epimorphism Q′ → P ×N M for some, possibly infinite, sum of comodules
of the form DCj . However, since P is finitely generated, there is a finite sub-sum
Q ⊆ Q′ so that the composite

Q−→P ×N M−→P

remains surjective. The resulting map

Q−→P ×N M−→M

is the morphism g required.

2.1.12 Proposition. Let Cj → Γ be a generating system of comodules and let

y∗ : CΓ → Sh+(P)

be the associated Yoneda embedding. Then y∗ is an equivalence of categories.

Proof. Since all of the objects of P are finitely generated, the functor y∗ com-
mutes with sums. The previous lemma shows that y∗ is exact. Next we show
that y∗ is full and faithful; that is, we need to show that

(2.1.3) CΓ(Y,X)→ Sh+(y∗Y, y∗X)

is an isomorphism. Regard the source and target as functors of Y . If Y is
an object in P, this map is an isomorphism by the Yoneda Lemma. Since y∗
preserves sums, it is an isomorphism if Y is sum of objects of P. More generally,
we can write Y as part of an exact sequence

Y1−→Y0−→Y → 0
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where Y0 and Y1 are sums of the generators DCj , which are in P. Since y∗ is
exact, Equation 2.1.3 is an isomorphism for Y as well.

To finish the argument, we need to know that for every sheaf F in Sh+(P)
there is an object M ∈ CΓ and an isomorphism of sheaves y∗M ∼= F . For
this category Lemma 2.1.9 implies that every sheaf is a colimit of representable
sheaves. Since y∗ preserves products, this implies there is a short exact sequence
of sheaves

y∗Y1
f−→ y∗Y2 → F → 0

where Y1 is a sum of objects in P. Since y∗ is full and faithful, there is a
morphism g : Y1 → Y2 so that y∗(g) = f . Let M be the cokernel of g. Then the
exactness of y∗ implies y∗M ∼= F .

We can use Theorem 2.1.12 to give a formula for the left adjoint to the
Yoneda embedding y∗ : CΓ → Pre+(P).

2.1.13 Theorem. Let J be our fixed generating system for Γ-comodules, re-
garded as a category of comodules over Γ. If F ∈ Pre+(P) then there is a
natural isomorphism of A-modules

(2.1.4) y∗(F ) ∼= colimC F (DCj).

Proof. We simply define a functor Ψ from Pre+(P) to A-modules by the formula
2.1.4. This functor is exact, since the category C is filtered. By Remark 2.1.4,
there is a natural isomorphism

Ψ(y∗M) ∼= colimJ HomΓ(A,Cj ⊗AM) ∼= M.

Now, since y∗ preserves sums, we can write any object F ∈ Pre+(P) in a
reflexive coequalizer diagram in Pre+(P)

(2.1.5) y∗M1
// // y∗M0

// F

where Mi is a sum of objects in P. Since y∗ is full and faithful, and reflexive
coequalizers in CΓ are created in sets (or A-modules), this implies there is a
reflexive coequalizer diagram

M1
// // M0

// Ψ(F ).

Since reflexive coequalizers in CΓ are created in A-modules (or even sets) this
supplies Ψ(F ) with a natural structure as a Γ-comodule; furthermore, if F =
y∗M , then this structure is isomorphic to the original structure on M .

Now, the fact the Ψ is a functor yields a natural map

Pre+(P)(F, y∗M)−→CΓ(Ψ(F ),M).

If F = y∗N this is an isomorphism. Then an exactness argument using the
reflexive coequalizer diagram 2.1.5 yields that this map is an isomorphism for
all F . Thus, the uniqueness of adjoints supplies a natural isomorphism Ψ(F ) ∼=
y∗F .
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2.1.14 Remark. The associated sheaf functor L : Pre+(P) → Sh+(P) has a
formula in terms of comodules. Indeed, if F is a presheaf

L(F ) = y∗y
∗F = y∗ colimF (Σ∗DCi)

using Proposition 2.1.12 and Lemma 2.1.10.

2.1.2 Algebras as diagrams

We would now like to expand the notions of the previous subsection in order to
encompass algebras and modules over algebras in comodules. This is the point
of this theory, for we are working to put a module structure into the spiral exact
sequence.

Let Φ be a triple in CΓ and AlgΦ
Γ or simply AlgΦ as the category of algebras

over Φ in comodules. We will assume that Φ preserves surjections. Let Cj → Γ
be a generating system of of Γ-comodules and let Φ(P) be the full subcategory
of AlgΦ

Γ which contains the objects Φ(ΣkDCj) and which is closed under finite
coproducts and finite limits.

2.1.15 Definition. 1.) Let Pre+(Φ(P)) denote the contravariant functors

F : Φ(P)op−→Sets

which preserve finite products; that is, which send finite coproducts to finite
products.

2.) Let Sh+(Φ(P)) be the full-subcategory of Pre+(Φ(P)) containing the
functors which for which

F (P ) // F (Q) // // F (Q×P Q)

is an equalizer for all surjections Q→ P in Φ(P)).

Note that there is a Yoneda embedding

y∗ : AlgΦ
Γ−→Sh+(Φ(P))

sending B to the representable functor AlgΦ
Γ (−, B). Note also that the functor

P → Φ(P) sending P → Φ(P ) defines a restriction functor

r∗ : Pre+(Φ(P))−→Pre+(P).

2.1.16 Lemma. Reflexive coequalizers and filtered colimits in Pre+(Φ(P)) ex-
ist and are created in Pre+(P).

Proof. Reflexive coequalizers in Pre+(P) are constructed point-wise in sets.
See Lemma 2.1.9. Thus, if we have parallel arrows X1

//// X0 which can be

47



given a degeneracy, we can form the equalizer X in Pre+(P). Then we have,
for each f : Φ(Q)→ Φ(P ) in Φ(P) a diagram

X1(Φ(Q))

��

//// X0(Φ(Q))

��

ε // X(Φ(Q))

���
�
�

X1(Φ(P )) //// X0(Φ(P )) ε // X(Φ(P )).

The solid vertical arrows are induced by f and the fact that X1 and X0 are in
Pre+(Φ(P)). The dotted vertical arrow exists because the horizontal rows are
equalizer diagrams of sets. We have a functor X on Φ(P)op because each of the
maps ε is a surjection. Finally, X preserves products because it is the equalizer
in Pre+(P).

The same argument works for filtered colimits, which are also constructed
point-wise in sets.

2.1.17 Lemma. The category Pre+(Φ(P)) has all coproducts. Furthermore, if
{Aα = Φ(Pα)} is a set of free objects of Φ(P), then

ty∗Aα ∼= y∗(tAα).

Proof. We first show that the Yoneda embedding preserves coproducts. This
goes in several steps. First note that y∗Φ(P1) t y∗Φ(P2) ∼= y∗(Φ(P1) t Φ(P2)).
This is a consequence of the following isomorphism, where F ∈ Pre+(Φ(P)):

Pre+(Φ(P))(y∗(Φ(P1) t Φ(P2)), F ) ∼= F (Φ(P1) t Φ(P2))
∼= F (P1)× F (P2)

Next, note that y∗ commutes with filtered colimits, since each of the objects in
Φ(P) is small. It follows immediately that y∗ commutes with all coproducts.

To complete the existence of coproducts in Pre+(Φ(P)) we use that any
object Fα ∈ Pre+(Φ(P) fits into a reflexive coequalizer diagram

ty∗Φ(Qj,α) // // ty∗Φ(Pi,α) // F.

Taking the coproduct of such diagrams and applying Lemma 2.1.16 finishes the
argument.

2.1.18 Lemma. 1.) The categories Pre+(Φ(P)) and Sh+(Φ(P)) are complete
and cocomplete.

2.) The restriction functor r∗ : Pre+(Φ(P)) → Pre+(P) has a left adjoint
r∗ with the property that if P ∈ P is a generating comodule, then there is a
natural isomorphism

r∗y∗P ∼= y∗Φ(P ).

3.) The category of Pre+(Φ(P)) is the category of algebras for some triple
on Pre+(P).

4.) The Yoneda embedding y∗ : AlgΦ
Γ → Pre+(Φ(P)) has a left adjoint y∗.
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Proof. Part 1 follows from the previous two lemmas and the fact that limits are
created in Pre+(P).

For Part 2, note that if F ∈ Pre+(Φ(P)), then

Pre+(Φ(P))(y∗P, r∗F ) ∼= r∗F (P ) = F (Φ(P )).

We can take r∗y∗P = y∗Φ(P ) as the definition. To define r∗G for general
G ∈ Pre+(P), write

G = colim y∗P → Gy∗P

and set
r∗G = colim y∗P → Gy∗Φ(P ).

Part 3 now follows from Lemma 2.1.16 and Beck’s Theorem. See [4], §3.3.
The triple has underlying functor r∗r∗.

For Part 4, the adjoint y∗ can be written down as a coend; compare Lemma
2.1.10.

The first part of this last lemma implies that the category Pre+(Φ(P)) has
an initial object. In fact, one can take that object to be y∗Φ0, where Φ0 is the
is the initial object in AlgΦ

Γ .
We now turn to the relationship between the category of sheaves and the

category of algebras in comodules.

2.1.19 Lemma. The Yoneda embedding

y∗ : AlgΦ
Γ−→Sh+(Φ(P))

preserves reflexive coequalizers and coproducts.

Proof. It is a consequence of Lemma 2.1.16 that the reflexive coequalizers in
Sh+(Φ(P)) are created in Sh+(P). Now apply Lemma 2.1.11 to get the first
half of the statement. For the part about coproducts, use that every object
A ∈ AlgΦ

Γ fits into a reflexive coequalizer diagram

X1 // // X0
// A

where Xi is a coproduct of objects of the form Φ(P ) ∈ Φ(P). This is because
those objects generate the category AlgΦ

Γ . Now apply Lemma 2.1.17 and the
fact the y∗ preserves reflexive coequalizers.

2.1.20 Proposition. The Yoneda embedding functor

y∗ : AlgΦ
Γ−→Sh+(Φ(P))

is an equivalence of categories.

Proof. The argument is essentially the same as that for Theorem 2.1.12, al-
though the two arguments there using exact sequences must replaced by argu-
ments using reflexive coequalizers. The details are routine.
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As in Lemma 2.1.13, this result can be used to give a formula for the adjoint
to the Yoneda embedding y∗ : AlgΦ

Γ → Pre+(Φ(P)).

2.1.21 Corollary. Let J be our fixed generating system for Γ-comodules, re-
garded as a category of comodules over Γ. Then, if F ∈ Pre+(Φ(P)) then there
is a natural isomorphism of A-modules

(2.1.6) y∗(F ) ∼= colimJ F (Σ∗Φ(DCj)).

Proof. The argument is the same as for Lemma 2.1.13; one defines an auxiliary
functor Ψ by the formula of 2.1.21 and uses a succession of reflexive coequalizer
arguments to show that is must be the adjoint.

2.1.3 Modules as diagrams

In this section we talk about modules over algebras and how they can be de-
scribed in terms of the presheaves.

We fix an object F in Pre+(Φ(P)). Then an abelian object over F is a
morphism in G→ F in Pre+(Φ(P)) so that the functor

HomPre+(Φ(P))/F (−, G) : Pre+(Φ(P))op → Sets

has a chosen lift to abelian groups. As usual, this means that there are specified
maps

µ : G×F G−→G and e : F → G

over F satisfying the evident associative, commutative, and unital diagrams.
Let Abpre+(Φ(P))/F be the evident category of abelian objects over F .

2.1.22 Example. 1.) Let Λ ∈ AlgΦ
Γ ; then the notion of an abelian object

q : E → Λ over Λ can be defined the same way. However, if M is the kernel
of q, then E ∼= M ⊕ Λ as A-modules, and we may as well write M o Λ for the
Φ-algebra E. We will call M an Λ-module. Note that y∗(M o Λ) → y∗Λ is an
abelian group object over y∗Λ.

In the same way, abelian objects over a fixed object F ∈ Pre+(ΦP)) can be
identified with modules of the following sort.

2.1.23 Definition. Let F ∈ Pre+(Φ(P)). Then we specify an F -module M by
the following data:

1.) an object M ∈ Pre+(P); and

2.) for each f : Φ(Q)→ Φ(P ) a map of sets

φf : M(P )× F (Φ(P ))−→M(Q)

subject to the conditions that

a.) if f = Φ(f0), then φf (x, a) = M(f0)x;
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b.) for any composable pair of arrows in Φ(P),

φgf (x, a) = φf (φg(x, a), F (g)a);

c.) for all a ∈ F (Φ(P )), the function φf (−, a) is a homomorphism of abelian
groups.

The F -modules form a category ModF (P) in the obvious way.

2.1.24 Remark. If M is an F -module, we form a new object M o F of
Pre+(Φ(P)) by setting

(M o F )(Φ(P )) = M(P )× F (Φ(P ))

and for any morphism f : Φ(Q)→ Φ(P ), we set

(M o F )(f)(x, a) = (φf (x, a), F (f)a).

The fact that M preserves coproducts and conditions a.) and b.) guarantee
that we do indeed have an object in Pre+(Φ(P)). We define a multiplication
and unit for M o F

m(x, y, a) = (x+ y, a)

and e(a) = (0, a). Then condition c.) implies that these give natural transfor-
mations of functors and yield an abelian object over F .

2.1.25 Lemma. The functor

(−) o F : ModF (P)−→Abpre+(Φ(P))/F

is an equivalence of categories.

Proof. We write down the inverse functor. If G → F is an abelian object, let
M ∈ Pre+(P) be defined by the split short exact sequence of A modules

0→M(P )→ G(Φ(P ))→ F (Φ(P ))→ 0

and, for f : Φ(Q)→ Φ(P ), let φf be defined by the composite

M(P )× F (Φ(P )) ∼= G(Φ(P ))
G(f)−→G(Φ(Q))→M(Q).

Then the evident isomorphisms G(Φ(P ))→M(P )× F (Φ(P )) assemble to give
an isomorphism of abelian objects over F .

We define ShModF (P) to be the full sub-category of those modules M for
which M o F ∈ Sh+(Φ(P)).

The following result is now a more-or-less evident consequence of Theorem
2.1.12 and Proposition 2.1.20.

2.1.26 Proposition. Fix an algebra Λ ∈ AlgΦ
Γ . Then the Yoneda embedding

y∗ : ModΦ
Λ−→Mody∗Λ(Φ(P))

defines an equivalence of categories from ModΦ
Λ to ShMody∗Λ(Φ(P)).
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2.2 Theta-algebras and the p-adic K-theory of
E∞-ring spectra

In this section we define and discuss the concept of a theta-algebra, which is
the algebraic model for the p-adic K-theory of an E∞-ring spectrum. We also
discuss the appropriate notion of modules over such rings. The key point for our
obstruction theory is that the p-adic K-theory of E∞-ring spectra can be made
algebraic in the following sense. There is a forgetful functor from theta-algebras
to (certain) continuous Z×p -modules, and it has a left adjoint Sθ. Furthermore,
if X is a cofibrant spectrum such that K∗X is torsion free, and C is an operad
weakly equivalent to the commutative monoid operad, then the natural map

Sθ(K∗X)→ K∗(C(X))

is an isomorphism.
Let K denote the p-complete K-theory spectrum. If X is any spectrum, we

define the p-adic K-theory of X by the equation

K∗X = π∗LK(1)(K ∧X).

Under favorable circumstances, which will nearly always apply here,

K∗X = limK∗(X ∧M(pk))

where M(pk) is the evident Moore spectrum. Thus, we should really adorn K∗
with some sort of completion symbol, but it is the only kind of K-theory that
we will have, so we forebear.

Note that K∗X is not really a homology theory: it does not take coproducts
to direct sums of abelian groups. However, it is the appropriate analog for
homology when discussing K(1)-local spectra, where K(n) is the nth-Morava
K-theory. This sort of phenomenon discussed at length in [29] and we draw
freely from that source.

As with all 2-periodic homology theories, we may either regard K∗X as Z-
graded or Z/2Z-graded. The latter is often more convenient, but the former can
be important, for example, when keeping track of behavior under suspension.

To talk about the structure of K∗X, we first need a definition. Let L0 be
the zeroth derived functor of p-completion. Then a Zp-module is L-complete
if the natural map M → L0M is an isomorphism. If M is torsion free, this is
equivalent to being p-complete.

If X is any spectrum, K∗X is L-complete. Furthermore, K∗X has a contin-
uous action by the group Z×p of units in the p-adics. If k ∈ Z×p the action of k
is by the kth Adams operation ψk:

ψk ∧X : LK(1)(K ∧X)→ LK(1)(K ∧X).

However, not every continuous action can arise as the K∗ homology of some
spectrum.
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2.2.1 Definition. Let CK∗K denote the category of L-complete Z/2Z-graded
Z×p -modules M with the property that the quotient Z/pZ ⊗M = M/pM is a
discrete Z×p -module. We will call this the category of K∗-Morava modules or
simply Morava modules.

2.2.2 Proposition. The p-completed K-theory K∗(−) = π∗LK(1)(K ∧ (−))
takes any spectrum to a Morava module.

Proof. This follows from the facts that K1K = 0 and

K0K = Homcont(Z
×
p ,Zp)

∼= lim
n

colimj Hom(Z×p /Uj ,Z/pnZ)

where Uj runs over a sequence of normal subgroups so that ∩Uj = {1}.

An elementary example of a Morava module we will use often is the following:
if u ∈ K2 = [S2,K] = K̃0(S2) is the Bott element, then

(2.2.1) ψk(u) = ku.

2.2.3 Definition. A theta-algebra is a Z/2Z-graded continuous commutative
Zp-algebra A so that

1. For i = 0, 1, the module Ai is a Morava-module. Write the action of k on
Ai as Adams operations ψk : Ai → Ai.

2. The Adams operations ψk : A→ A are linear and

ψk(xy) =

 ψk(x)ψk(y) |x| = 0 or |y| = 0

1
kψ

k(x)ψk(y) |x| = 1 = |y|.

3. There is a continuous operation θ : Ai → Ai so that θψk = ψkθ for all
k ∈ Z×p and

θ(x+ y) =

 θ(x) + θ(y)−
∑p−1
s=1

1
p

(
p
s

)
xsyp−s |x| = 0 = |y|;

θ(x) + θ(y) |x| = 1 = |y|.

4. θ(1) = 0, where 1 ∈ A0 is the multiplicative identity and

θ(xy) =

 θ(x)yp + xpθ(y) + pθ(x)θ(y) |x| = 0 or |y| = 0;

θ(x)θ(y) |x| = 1 = |y|.

Theta-algebras form an obvious category Algθ.
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The following result explains the origin of this definition; it is implied by the
work of McClure [12], Chapter IX.

2.2.4 Theorem. Suppose that X is an E∞-ring spectrum. Then K∗X is nat-
urally a theta-algebra.

2.2.5 Remark. If A is a theta-algebra, define an operation ψ : A→ A by the
equation

ψ(x) = xp + pθ(x).

If the degree of x is 1, then ψ(x) = pθ(x). The operation ψ is a continuous, linear
endomorphism of A that commutes with the Adams operations; furthermore

(2.2.2) ψ(x)ψ(y) =

 ψ(xy), |x| = 0 or |y| = 0;

pψ(xy), |x| = 1 = |y|.

The operation ψ is also a lift of the Frobenius in the sense that ψ(x) = xp

modulo p. If A is torsion free, then the operation ψ also determines θ; indeed,
any lift of the Frobenius that commutes with the Adams operations and has the
multiplicative properties of Equation 2.2.2 will then determine an operation θ
with desired properties.

2.2.6 Example. Suppose X is a finite CW complex. Let D(X+) = F (X+, S
0)

denote the Spanier-Whitehead dual of X with a disjoint basepoint added. Then
D(X+) is naturally an E∞ ring spectrum and there is a natural duality isomor-
phism

τ : K∗D(X+) = K∗(X) def= limK∗(X,Z/pkZ)

given by applying homotopy to the homotopy inverse limit of the evident maps

M(pk) ∧K ∧ F (X+, S
0)→ F (X+,M(pk) ∧K).

Note that in degree 1 this defines an isomorphism

τ : K1D(X+)
∼=−→K−1(X).

The morphism τ is an isomorphism of graded Zp-algebras that commutes with
Adams operations ψk and

τ(θ(x)) = θp(τ(x))

where θp is in the unstable cohomology operation so that ψp(x) = xp + pθp(x).
This allows for the following easy, but crucial calculation: as a theta-algebra

K∗D(S1
+) ∼= Zp[ε]

where |ε| = 1, ψk(ε) = kε and θ(ε) = ε.
In fact, the element ε is defined to be the element which goes to the Bott

element u under the isomorphisms

K1D(S1
+) ∼= K−1S1 ∼= K̃0(S2).

and we can apply Equation 2.2.1.
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We now come to the notion of a module over a theta-algebra.

2.2.7 Definition. Let A be a theta-algebra. Then an A-module is a continuous
Z/2Z-graded module M over the commutative ring A equipped with continuous
homomorphisms ψk : M →M , k ∈ Z×p and θ : M →M so that M is a Morava
module and

1. if k ∈ Z×p , a ∈ A, and x ∈M , then

ψk(ax) = ψk(a)ψk(x);

2. if a ∈ A and x ∈M , then

θ(ax) =

 apθ(x) + pθ(a)θ(x) |a| = 0 or |x| = 0;

θ(a)θ(x) |a| = 1 = |x|.

If A is a theta-algebra, there is an evident abelian category of A-modules.

2.2.8 Remark. Suppose that A is a theta-algebra and that M is an A-module.
Then we can define a new theta-algebra M o A as follows. As a module, this
algebra is M ⊕A and we give it the usual infinitesimal multiplication:

(x, a)(y, b) = (ay + xb, ab).

Define ψk(x, a) = (ψk(x), ψk(a)) and

θ(x, a) = (θ(x)− ap−1x, θ(a)).

One easily checks this yields a theta-algebra. Furthermore, there is an evident
short exact sequence of modules

0 // M // M oA
q //

A
s

oo // 0

so that s and q are theta-algebra maps, the inclusion M → M o A commutes
with the Adams operations and θ, and M2 = 0. We will call such a diagram a
split square-zero extension or split infinitesimal extension of theta-algebras.

This process can be reversed. If q : B → A is an abelian group object in the
category of theta-algebras over A, then there is a split square-zero extension

0 // M // B
q //

A
s

oo // 0

where M is the kernel of q. This diagram gives M the structure of a module
over the theta-algebra A and defines an isomorphism B ∼= M o A. Thus, the
functor M 7→ M o A is an equivalence of categories between A-modules and
abelian theta-algebras over A.
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2.2.9 Example. If A is theta-algebra, then A is not a module over itself, as
θ : A→ A is not linear. However, one can define a new module ΩA with

[ΩA]n = An+1.

If x ∈ An+1, let us write εx for the corresponding element in [ΩA]n. (If it’s not
clear already, see Equation 2.2.3 for a reason to choose this notation.) Then we
define the action of the Adams operations by

ψk(εx) =

 kεψk(x), |x| = 0;

εψk(x), |x| = 1;

and the action of θ by

θ(εx) =

 εψ(x), |x| = 0;

εθ(x); |x| = 1.

Recall that ψ(x) = xp + pθ(x) is linear in x. The action of A on ΩA is the
obvious one:

a(εx) = ε(ax).

The resulting split square-zero extension can be written

ΩAoA
def= A[ε]

where |ε| = 1 and with ψk(ε) = kε, θ(ε) = ε, and ε2 = 0. This mimics K-
theory: if X is an E∞ ring spectrum, then there is a natural isomorphism of
theta-algebras

(2.2.3) K∗F (S1, X) ∼= (K∗X)[ε].

Indeed, the natural pairing F (S1, S0)∧X → F (S1, X) defines the isomorphism

K∗(S1)⊗̂K∗X
∼=−→K∗F (S1, X).

Compare Example 2.2.6.

2.2.10 Example. The functor Ω(−) can be extended to modules as well. If A
is a theta-algebra and M is an A-module, define ΩM to be the shifted graded
Zp module with

ψk(εx) =

 kεψk(x), |x| = 0;

εψk(x), |x| = 1;

and

θ(εx) =

 εpθ(x), |x| = 0;

εθ(x); |x| = 1.
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Of course, if a ∈ A and x ∈M , then a(εx) = ε(ax).
This definition of Ω(−) and the one given in the previous example dovetail

in the following way. There is a split short exact sequence of M oA modules

0 // ΩM // Ω(M oA) // ΩAoo // 0

and the action of M oA on ΩM factors through A.
We can iterate the functor Ω to form a functor Ωk. For example, if M is

an A-module, then Ω2nM ∼= M as an ordinary Z/2Z-graded A-module, but we
write ε2nx for x under this identification, then

ψk(ε2nx) = knε2nψ
k(x) and θ(ε2nx) = pnε2nθ(x).

We now show that we have listed all the possible operations in the p-complete
K-theory of E∞ ring spectra. As in Definition 2.2.1, let CK∗K denote the cat-
egory of Morava modules. The following also follows from results of McClure
in Chapter IX of [12]. Let C be any operad weakly equivalent to the commuta-
tive monoid operad. Then C(−) is a model for the free E∞-algebra functor on
spectra. (See Theorem 1.2.4.)

2.2.11 Theorem. The forgetful functor Algθ → CK∗K sending a theta-algebra
to the underlying module over the Adams operations has a left adjoint Sθ. Fur-
thermore, if X is a cofibrant spectrum so that K∗X is torsion free, then the
natural map

Sθ(K∗X)−→K∗(CX)

is an isomorphism.

2.2.12 Remark. It is possible to write down a formula for Sθ. There is a
category Alg0

θ of continuous graded Zp-algebras equipped with an operation θ
satisfying such conditions that there is a forgetful functor Algθ → Alg0

θ. The
forgetful functor from Alg0

θ all the way down to continuous Zp modules has
a left adjoint which, by abuse of notation, we also call Sθ. The abuse is not
great: if M is a continuous Zp-module the two obvious meanings of Sθ(M) in
Alg0

θ agree up to natural isomorphism. Calculations can now be made using
two basic facts. First, there is a natural isomorphism

Sθ(M1)⊗̂Sθ(M2)
∼=−→Sθ(M1 ⊕M2).

The source of this isomorphism is the completed tensor product. Second, if
M = Zp with generator x we have a completed polynomial algebra

Sθ(Zp) ∼= Zp[x, θ(x), θ2(x), . . .]∧p

if M is concentrated in degree 0, and a completed exterior algebra

Sθ(Zp) ∼= Λ[x, θ(x), θ2(x), . . .]∧p

if M is concentrated in degree 1.
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For our applications, we would like to write down a model category structure
on simplicial theta-algebras so that the cofibrant objects are s-free on a set of
objects of the form Sθ(M), where M is a free continuous Zp-module. This can
be done using the arguments used in [19]. We will give an outline here.

2.2.13 Lemma. Let A = {Mα} be a set with one representative for each iso-
morphism class of Morava modules which are free and finitely generated as Zp-
modules. Then the elements of the set A generate the category CK∗K of Morava
modules.

Proof. We reduce to a simpler case. There is an isomorphism of topological
groups Z×p ∼= G×Zp where G is a finite cyclic group. Let C0

K∗K
be the category

of continuous modules over the profinite group ring Zp[[Zp]] modules M so that
M/pnM is discrete for all n. Then there is a forgetful functor CK∗K → C0

K∗K

with a left adjoint given by inducing up along G. We will show CK∗K has a set
of generators {Nα} where with each element free and finitely generated as a Zp-
module. Since our set A includes the classes of modules obtained by inducing
up the modules Nα, the result will follow.

By choosing a topological generator γ ∈ Zp, we obtain an isomorphism
Zp[[t]]→ Zp[[Zp]] sending t to γ− 1. (This is an old result of Serre, and easy to
prove.) So we can translate our problem as follows. Let M be a Zp[[t]]-module
with the property that every element in M/pM has a non-trivial annihilator
ideal in Fp[[t]]. Let x ∈M . Then we show there is a Zp[[t]]-module N which is
free and finitely generated as a Zp-module and a morphism N → M of Zp[[t]]-
modules so that x is in the image. Note that we may assume that M is cyclic
as a Zp[[t]]-module and generated by x.

Let I ⊆ Zp[[t]] be the annihilator ideal of x. Since the annihilator ideal of
x+ pM ∈ M/pM must be of the form (tn) ⊆ Fp[[t]] for some n, 1 ≤ n < ∞, I
is non-trivial; in fact, there is a sequence of surjections

I−→I/pI−→(tn).

In particular, there is an element g(t) ∈ I so that g(t) is congruent to tn mod p.
If we apply the Weierstrass preparation theorem to g(t), we see we may assume
that g(t) is the of the form

tn + an−1t
n−1 + · · ·+ a1t+ a0

where ai = 0 mod p. Then we set N = Zp[[t]]/(g(t)), and the result follows.

2.2.14 Remark. From the previous proof it is easy to see that each of the
elements Mα of the set of generators A of CK∗K is a cyclic Zp[[Z×p ]]-module with
a preferred generator xα. Define a diagram of these generators by specifying
a morphism of Morava modules Mβ → Mα if and only if xβ 7→ xα. Then we
immediately have that for all Morava modules M , evaluation at the generators
yields a natural isomorphism

colimα HomCK∗K
(Mα,M)

∼= // M.
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Note that every object in the set A of generators is small in CK∗K . Then
the arguments in [19], §§3 and 4 immediately imply the following. Give sCK∗K

the standard structure of a simplicial category: see [35], §II.2.

2.2.15 Proposition. The category sCK∗K of simplicial Morava modules sup-
ports the structure of a cofibrantly generated simplicial model category where
f : X → Y is

1. a weak equivalence if π∗f is an isomorphism; and

2. a cofibration if it is a retract of a morphism which is s-free on set {Zn}
of Morava modules with each Zn a coproduct of objects in the generating
set A.

Furthermore, the cofibrations are generated by the set I of morphisms

Mα ⊗ ∂∆n →Mα ⊗∆n

with n ≥ 0 and Mα ∈ A.

2.2.16 Remark. This model category is the localization of an auxiliary model
category created from the generators Mα. Compare Remark 2.5.1.

This result and the standard lifting lemmas (in [25], for example) imply
the result we want. Similar arguments appear in [19]. Again give sAlgθ the
standard structure of a simplicial category.

2.2.17 Theorem. The category sAlgθ of simplicial theta-algebras supports the
structure of a cofibrantly generated simplicial model category where f : X → Y
is

1. a weak equivalence if π∗f is an isomorphism; and

2. a cofibration if it is a retract of a morphism which is s-free on set {Sθ(Zn)}
of Morava modules with each Zn a coproduct of objects in the generating
set A.

We can immediately write down the following consequence of the fact that
every object in the generating set is free as a continuous Zp-module. Give the
category sAlgZp

of simplicial commutative continuous Zp algebras the usual
simplicial model category structure of [35] §II.4.

2.2.18 Corollary. The forgetful functor from the category sAlgθ of simplicial
theta-algebras to sAlgZp

preserves cofibrations.

2.3 Homotopy push-outs of simplicial algebras

The category of simplicial algebras over a simplicial operad is often not left
proper, and we seek to give a condition which serves as an acceptable substitute.
We will state this condition in Definition 2.3.3 and then show the condition is
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satisfied when the operad is E∞ or A∞. Mandell has related results in the E∞
case. See [31].

Recall that the category of simplicial algebras over an operad supports in
the standard simplicial model category structure. Thus, we let C = C• be a
simplicial operad in R-modules and sAlgC the category of simplicial algebras
over C. This is a simplicial category in the external simplicial structure; for
example, if K is a simplicial set and X ∈ sAlgC then

(A⊗K)n =
∐
Kn

An

with the coproduct in Cn-algebras. Also, among the morphisms of sAlgC we
single out the free maps: a morphism X → Y is free if the underlying morphism
of degeneracy diagrams is isomorphic to a map of the form

X → X t C(Z)

where Z is a s-free diagram on a free R-module. The definition of s-free is in
Definition 1.1.9.

The main theorem of [35] §II.4 immediately implies the following:

2.3.1 Proposition. The category sAlgC has the structure of a simplicial model
category with a morphism f : X → Y

1. a weak equivalence if π∗f : π∗X → π∗Y is an isomorphism;

2. a fibration if the induced map Nf : NX → NY of normalized chain
complexes in R-modules is surjective in positive degrees;

3. a cofibration if it is a retract of a free map.

Recall that a model category is left proper if whenever there is a push-out
square

A
f //

j

��

B

��
X

g // Y

with j a cofibration and f a weak equivalence, then g is a weak equivalence.
For example, the category of simplicial associative algebras is not left proper;
see Example 2.3.4. This lends teeth to the following example.

2.3.2 Example. Let R be a commutative ring. Then the category of simplicial
commutative R-algebras is left proper. Suppose we are given a two-source B ←
A → X with A → X a cofibration. Then, by [35], §II.6, there is a spectral
sequence

Torπ∗A(π∗B, π∗X)⇒ π∗B ⊗A X.
Since B⊗AX is the push-out in simplicial R-algebras, the claim follows. Exactly
the same argument shows that the category sAlgθ of simplicial theta-algebras
is left proper.
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2.3.3 Definition. Fix a commutative ring R and a simplicial operad C of R-
modules. The model category sAlgC of simplicial C-algebras is relatively left
proper if

1. whenever W is cofibrant simplicial R-module and f : A → B is a weak
equivalence between simplicial C-algebras which are cofibrant as simplicial
R-modules, then

A t C(W )→ B t C(W )

is a weak equivalence, and

2. any cofibrant X ∈ sAlgC is cofibrant as a simplicial R-module.

2.3.4 Example. The category of simplicial associative algebras is not left
proper, but is relatively left proper. For if C is the free associative algebra
functor, W is an R-module and A any associative algebra, then

A t C(W ) ∼=
⊕
n≥0

A⊗W ⊗A · · ·A⊗W ⊗A

where W appears n times and A appear (n + 1) times in the nth summand.
This follows from the fact that A t C(W ) is the free algebra under A on the
A-bimodule A⊗W ⊗A.

In order to explore the implications of this relative notion of properness, we
will use the following standard observation.

2.3.5 Lemma. Let X ∈ s(sAlgC) be a simplicial object in the category of
simplicial C-algebras. Then the geometric realization of X is the diagonal:

|X| ' diagX = {Xn,n}.

The nomenclature “relatively left proper” is justified by the next result.

2.3.6 Lemma. Let

A
f //

j

��

B

��
X

g // Y

be a push-out square in sAlgC with j a cofibration and f a weak equivalence
between objects which are cofibrant as simplicial R-modules. Then g is a weak
equivalence.

Proof. In the simplicial model category sModR, define objects R ∧ ∆n/∂∆n,
n ≥ 0, by the push-out diagram

R ∼= R⊗ ∗ //

��

R⊗∆n/∂∆n

��
0 // R ∧∆n/∂∆n.
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This forms a collection of cofibrant cogroup objects in sMR; hence the objects

C(R ∧∆n/∂∆n) ∈ sAlgC

form a set of cofibrant cogroup objects. Let

A→W• → X

be a factorization of A→ X as a cofibration followed by a weak equivalence in
the resolution model category on s(sAlgC) determined by these objects. (The
bullet (•) here refers to the new, external, simplicial degree.) Then |W•| → X is
a weak equivalence of cofibrant objects in the under category A/sAlgC . Since
every object of this under category is fibrant, this map is necessarily a homotopy
equivalence under A. It follows that

B tA |W•| → B tA X ∼= Y

is a homotopy equivalence. Thus we need only show

|W•| → B tA |W•| ∼= |B tAW•|

is a weak equivalence. By the previous lemma, it is enough to show

Wn → B tAWn

is a weak equivalence. This is a retract of a morphism of the form

A t C(Z)→ B t C(Z)

where Z ∼=
⊕
α
R∧∆nα/∂∆nα . This map is a weak equivalence by the definition

of relatively left proper.

We now prove:

2.3.7 Proposition. Suppose sAlgC is relatively left proper and

A //

j

��

B

��
X // Y

is a push-out diagram. If j is a cofibration and A,B are cofibrant in sModR,
then Y is weakly equivalent to the homotopy push-out in sAlgC .

Proof. Choose a surjective weak equivalence A0 → A with A0 cofibrant and, as
in the proof of Lemma 2.3.6, let

A0 →W• → X

be a factorization of A0 → X as a cofibration followed by a weak equivalence
in the resolution model category structure on s(sAlgC). By Lemma 2.3.6,
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|W•| → X is a weak equivalence; furthermore A0 → |W•| is a cofibration.
Factor A0 → B as A0 → B0 → B where the first map is a cofibration and the
second a weak equivalence – now simply in sAlgC . Then

B0 tA0 |W•| ∼= |B0 tA0 W•|

is a model for the homotopy push-out.
There is a homotopy equivalence under A0

(2.3.1) Wn ' A0 t C(Zn)

where Zn is a sum of copies of R ∧∆k/∂∆k. From this it follows that there is
a homotopy equivalence under A

A tA0 Wn ' A t C(Zn)

and, hence,
Wn → A tA0 Wn

is a weak equivalence. Thus, the natural map

|A tA0 Wn| ∼= A tA0 |Wn| → A tA0 X
∼= X

is a weak equivalence. The last isomorphism uses that A→ A0 is surjective and
that we already have the map j : A→ X. Since A→ AtA0 |Wn| is a cofibration
and every object of sAlgC is fibrant we have (as in Lemma 2.3.6) that

|B tA0 W•| = B tA (A tA0 |W•|)→ Y

is a weak equivalence. By (2.3.1) we have that for each n

B0 tA0 Wn → B tA0 Wn

is a homotopy equivalent to

B0 t C(Zn)→ B t C(Zn).

This map is a weak equivalence and the result follows.

It is possible to prove that any cofibrant simplicial operad in R-modules is
relatively left proper. We will make a remark on this below, but this result is
tangential to our project here, so we won’t elaborate. More important is the
case of an E∞-operad; we want any such operad to be relatively left proper.
This result can be obtained from [31], but we will give an outline here as well.

We begin a decomposition which we learned from Charles Rezk. For each
simplicial operad C, each C-algebra A, and each k ≥ 0, we claim there is a
R[Σk] module Dk

CA so that D0
TA = A and there is an isomorphism of simplicial

R-modules

(2.3.2) A t C(W ) ∼=
⊕
k

Dk
CA⊗R[Σk] W

⊗k.
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The isomorphism is natural in A, C, and W . We have D0
TA
∼= A.

To see this, first note that if A = C(A0) for some simplicial R-module A0,
then

A t C(W ) = ⊕k[⊕nC(n+ k)⊗R[Σn] A
⊗n
0 ]⊗R[Σk] W

⊗k

which gives
Dk
CC(A0) = ⊕nC(n+ k)⊗R[Σn] A

⊗n
0 .

For more general A, we write down a coequalizer diagram

(2.3.3) Dk
CC

2(A) // // Dk
CC(A) // Dk

CA.

The parallel arrows

⊕nC(n+ k)⊗R[Σn] C(A)⊗n //// ⊕nC(n+ k)⊗R[Σn] A
⊗n

are given respectively by the evaluation C(A)→ A and the partial operad maps

(2.3.4) C(n+ q)⊗ C(m1)⊗ · · · ⊗ C(mn)→ C(m1 + · · ·mn + q).

2.3.8 Definition. Let R be a commutative ring. Then a simplicial E∞-operad
over R is an augmented simplicial operad C → Comm with the properties that

1.) The augmentation induces an isomorphism π∗C → Comm; and

2.) for all n, the simplicial R[Σn]-module C(n) is cofibrant.

The last requirement implies that C(n) is level-wise projective as a R[Σn]-
module.

2.3.9 Lemma. Let C be an E∞-operad in simplicial R-modules and let A be
any C-algebra. Then there is a natural zig-zag of homotopy equivalences of
R[Σk]-modules between Dk

CA and C(k)⊗A.

Proof. The operad multiplication

µ : C(2)⊗ C(n)⊗ C(k)−→C(n+ k)

supplies a weak equivalence between cofibrant simplicial R[Σk]-modules. As a
result, µ has a homotopy inverse in this category. From this we obtain, for all
simplicial R-modules A0, a homotopy equivalence of simplicial R-modules

[⊕nC(2)⊗ C(n)⊗ C(k)]⊗R[Σn] A
⊗n
0 −→⊕n C(n+ k)⊗R[Σn] A

⊗n
0 = Dk

CC(A0).

The equalizer diagram in Equation 2.3.3 – and the description below that equa-
tion of the two maps to be equalized – now yields a homotopy equivalence of
simplicial R-modules

C(2)⊗ C(k)⊗A→ Dk
CA

for any A. Since this a morphism of simplicial R[Σk]-modules, it is a weak
equivalence of simplicial R[Σk]-modules. To complete the zig-zag, take the
projection

C(2)⊗ C(k)⊗A−→R⊗ C(k)⊗A.
Since C(2)⊗ C(k) → C(k) is a weak equivalence of cofibrant simplicial R[Σk]-
modules, we obtain a homotopy equivalence.
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2.3.10 Remark. If C is a cofibrant simplicial operad a more delicate argument
using the language of trees analyzesDk

CA and shows that sAlgC is also relatively
left proper.

The following is immediately obvious from Lemma 2.3.9 and Equation 2.3.2.

2.3.11 Proposition. Let C be an E∞-operad in simplicial R-modules and A a
C-algebra. Then:

1.) If W is any simplicial R-module, there is a natural zig-zag of weak
equivalences between the simplicial R-modules A t C(W ) and A⊗ C(W ).

2.) Let B be a cofibrant C-algebra. Then there is a natural zig-zag of weak
equivalences between the simplicial R-modules A tB and A⊗B.

3.) The model category sAlgC is relatively left proper.

Proof. For the first statement, the previous lemma supplies a natural zig-zag of
homotopy equivalences between A t C(W ) and

[⊕kC(k)⊗R[Σk] W
⊗k]⊗A.

For the second statement, take resolution W• → B of B is s(sAlgC) using
the objects C(R ∧ ∆n∂∆n) as the homotopy cogroup objects. (See the proof
of Lemma 2.3.6.) Then |W•| → B is a weak equivalence between cofibrant
C-algebras, hence a homotopy equivalence. Now part (1) supplies a homotopy
equivalence of simplicial R-modules between At |W•| and A⊗ |W•|. The third
statement follows immediately from the first.

2.3.12 Corollary. Let C be an E∞-operad and suppose we are given a two-
source

X A
joo f // B

in sAlgC with j a cofibration and A and B cofibrant as simplicial R-modules.
Then there is a spectral sequence

Torπ∗Ap (π∗X,π∗B)q =⇒ πp+q(X tA B).

Proof. This follows immediately from Lemma 2.3.7, Proposition 2.3.11.2 and
the fact that we can use the bar construction to calculate the homotopy push-
out.

Let f : A→ B a morphism of simplicial R-modules. Define π∗(f) to be the
homotopy groups of the morphism. If f is a cofibration, then this is simply the
homotopy groups of the pair; more generally, it can be computed by replacing
f by a cofibration. As always, we will write π∗(B,A) when f is understood.

The following result is almost proved many places. See, for example, [6],
§I.C.4 or [43]. The wrinkle here is that we have may have a simplicial operad.

2.3.13 Theorem. Let sAlgF be either the category of simplicial algebras over a
simplicial E∞-operad C, the category of simplicial theta-algebras, or the category
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of associative R-algebras. Suppose we are given a homotopy push-out diagram
in sAlgC

A
f //

j

��

X

��
B // Y

and, furthermore, that πi(B,A) = 0 for i < m and πi(X,A) = 0 for i < n.
Then

πi(B,A)−→πi(Y,X)

is an isomorphism for i ≤ n+m− 2 and onto for i = n+m− 1.

Proof. The for the category of simplicial algebras over an E∞-operad, we apply
the spectral sequence of Corollary 2.3.12; similarly, for simplicial theta-algebras,
apply the spectral sequence of Example 2.3.2. The case of simplicial associative
algebras is covered by [6], §I.C.4. Alternatively, we could use a bar complex
argument and the decomposition result of Example 2.3.4.

2.3.14 Remark. The previous result is actually true for an arbitrary simplicial
operad. This can be proved by adapting the methods of [7], Section 5. Indeed,
these methods make it clear that this result really follows from very general
considerations about functors from sets to itself.

2.3.15 Corollary. Let sAlgF be either the category of simplicial algebras over a
simplicial E∞-operad C, the category of simplicial theta-algebras, or the category
of associative R-algebras. Suppose we are given a push-out diagram in sAlgC

A
f //

i

��

X

��
B // Y

and, furthermore, that πi(B,A) = 0 for i < m and πi(X,A) = 0 for i < n.
Then there is a partial long exact sequence

πm+n−2(B)⊕ πm+n−2(X)→ πm+n−2(Y )→ πm+n−3(A)→ · · · → π0(Y )→ 0.

Proof. Given any commutative square (not necessarily a push-out), we can de-
fine two modules Dn and Kn by the formulas

Dm = (j∗)−1Im(πm(B,A)→ πm(Y,X)) ⊆ πmY

where j∗ : πm(Y )→ πm(Y,X) is the natural map and

Km−1 = πm−1A/δ(Ker(πm(B,A)→ πm(Y,X)).

where δ : πm(B,A) → πm−1A is connecting map. Note that D∗ and K∗ are
functors of the square; furthermore, Dm = πm(Y ) if πm(B,A) → πm(Y,X) is
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onto and Km−1 = πm−1(A) if πm(B,A)→ πm(Y,X) is one-to-one. A diagram
chase shows there is a long exact sequence

· · · → Dm+1 → Km → πm(B)⊕ πm(X)→ Dm → Km−1 → · · · → D0 → 0.

The result now follows easily.

2.4 André-Quillen cohomology

If A is a commutative algebra over a commutative ring R, M an A-module and
X → A a morphism of R-algebras, then the André-Quillen cohomology of X
with coefficients in M is the non-abelian right derived functors of the functor

X 7→ DerR(X,M)

which assigns to X the A-module of R-derivations from X to M . This coho-
mology has natural generalization to algebras over operads and their modules;
it also has a generalization to theta-algebras and their modules. Indeed, much
of the formalism of Quillen’s paper [34] goes through without difficulty – in the
theta-algebra case the formalism is nearly identical. This section outlines the
details and gives an example of an application to the computation of the homo-
topy type of the space of maps between between K(1)-local E∞-ring spectra.

2.4.1 Cohomology of algebras over operads

This first part is written algebraically. We fix a commutative ring R, possi-
bly graded, and we consider R-modules (again possibly graded), operads in
R-modules, and so on. All tensor products will be over R. In our applications
R will be E∗ for some homotopy commutative ring spectrum E. Any omitted
details can be found in [19].

Let C be an operad in R-modules and suppose A is a C algebra. We define
what it means for M to be an A-module. Let Φ(A,M) to be the graded R-
module with

Φ(A,M)n =
⊕
i

A⊗ · · · ⊗A⊗M
i
⊗A⊗ · · · ⊗A

with each summand having n-terms, M appearing once in each summand and
then in the ith slot. Note that Φ(A,M)n has an obvious action of the symmetric
group Σn. Define

C(A,M) =
⊕
n

C(n)⊗kΣn Φ(A,M)n =
⊕
n

C(n)⊗RΣn−1 A
⊗(n−1) ⊗M.

It is an exercise to show that there is a natural isomorphism of bifunctors

C(C(A), C(A,M)) ∼= (C ◦ C)(A,M)
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where (·) ◦ (·) is the composition of operads. The R-module M is an A-
module over C (or simply an A-module) if there is a morphism of k-modules
η : C(A,M)→M which fits into a coequalizer diagram

C(C(A), C(A,M)) ∼= (C ◦ C)(A,M)
d0
⇒
d1

C(A,M)
η−→M

where the maps d0 and d1 are induced by the operad multiplication of C, and
by η and the algebra structure on A respectively. Furthermore, the unit 1→ C
defines a morphism of R-modules M = 1(A,M) → C(A,M) which is required
to be a section of η.

If A is a commutative R-algebra, and M is an A-module, we can can form a
new commutative algebra over A called M oA, which as an R-module is simply
M ⊕A, but with algebra multiplication

(x, a)(y, b) = (xb+ ay, ab).

The algebra M o A is an infinitesimal extension and an abelian object in the
category of algebras over A; all abelian group objects in this category have this
form.

Now let k → A be a morphism of commutative R-algebras. Then A o M
represents the functor that assigns to an algebra over A the A-module of k-
derivations from A to M :

Derk(X,M) ∼= (Algk/A)(A,M oA)

where we write Algk/A is the category of k-algebras over A; that is, Algk is
the category of algebras over the commutative algebra operad over A and under
k.

These concepts easily generalize. If C is an operad, A a C-algebra and M
an A-module, define a new C-algebra over A called M o A as follows: as a
R-module M o A is simply M ⊕ A, but the C-algebra structure is defined by
noting that there is a natural decomposition

C(M ⊕A) ∼= E(A,M)⊕ C(A,M)⊕ C(A)

where E(A,M) consists of those summands of C(M ⊕ A) with more than one
M term. Since M is an A-module we get a composition

C(M ⊕A)→ C(A,M)⊕ C(A)→M ⊕A

which defines the C-algebra structure on M o A. Again we obtain an abelian
object in the category of algebras over A; again, all abelian objects have this
form. This last observation makes it possible to define the category of A-modules
over C to be the category of abelian C-algebras over A. For comparison, see
Remark 2.2.8.

Note that if we are in a graded setting and M is an A-module, then the
graded object ΩtM with

(ΩtM)k = Mk+t
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is also an A-module. In this operadic setting, an obvious example of an A-
module is A itself.

The object MoA in the category of C-algebras over A represents an abelian
group valued functor which we might as well call derivations. If k → A is a
morphism of C-algebras and M is an A-module, we define

(2.4.1) Derk(A,M) def= Algk/A(A,M oA).

Such a derivation is determined by a R-module homomorphism d : A → M
which fits into an appropriate diagram which reduces to the usual definition of
derivation in the commutative or associative algebra case. We invite the reader
to fill in the details.

Note that the definition of derivations in Equation 2.4.1 depends on the
operad C; thus we might want C in the notation somewhere. But we hope that
C will always be implicit from the discussion, so we leave it out.

Cohomology in this context should be derived functors of derivations; for this
we need the model category structure on sAlgC discussed in Proposition 2.3.1.
We now allow ourselves the generality of a simplicial operad C in R-modules.

If A ∈ sAlgC then π0A is a π0C-algebra. If M is a π0A-module (over the
operad π0C) then M is an An-module (over Cn) for all n ≥ 0. Then we can form
the simplicial module K(M,n) over A whose normalization NK(M,n) ∼= M
concentrated in degree n. From this object we can form the simplicial C-algebra
KA(M,n) = K(M,n)oA over A. In following definition, we will use the notion
of relatively left proper, which appeared in Definition 2.3.3.

2.4.1 Definition. Suppose that C is a simplicial operad in R-modules so that
the model category sAlgC is relatively left proper. Let k → A be a morphism
of simplicial C-algebras. Let X be a C-algebra under k and over A. Then
André-Quillen cohomology of X with coefficients in M is defined by

Hn
C(X/k,M) def= [X,KA(M,n)]sAlgk/A

∼= π0 mapsAlgk/A
(X,KA(M,n)).

Here we are writing sAlgk/A for simplicial C-algebras over A and under k
and in this formula we mean, as always, the derived mapping space. If C is
understood, we will write H∗(X/k,M); if k is the initial object in sAlgC , we
may write simply H∗(X,M).

We note immediately that there are natural isomorphisms

Hn−i
C (X/k,M) ∼= πi mapsAlgk/A

(X,KA(M,n))

and that, in fact, the collection of spaces mapsAlgk/A
(X,KA(M,n)), n ≥ 0,

assemble into a spectrum homsAlgk/A
(X,KAM) so that

Hn
C(X/k,M) ∼= π−n homsAlgk/A

(X,KAM).

2.4.2 Remark. We have defined a relative André-Quillen cohomology for a
morphism k → A of simplicial C-algebras. At this level of generality, it may
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actually be necessary to resolve the source k as well as the target A to get a
good theory. By this we mean that we ought to choose a cofibrant model k′ → k
for k as a simplicial C-algebra and set

Hn
C(X/k,M) = π0 mapsAlgk′/A

(X,KA(M,n)),

again using the derived mapping space. Only in this way, for example, do
we get a transitivity sequence for this cohomology theory. (See Remark 2.4.3
below.) However, we have assumed that the category sAlgC is relatively left
proper. Then if k is projective as R-module, Lemma 2.3.7, implies for all weak
equivalences f : k′ → k restriction yields an adjoint pair

f∗ = k tk′ (−)sAlgk′
// sAlgk : f∗oo

which is part of a Quillen equivalence. Hence the more näıve definition of
André-Quillen cohomology given above agrees with the definition wherein one
also resolves k. The more general situation is discussed in [19].

2.4.3 Remark (Transitivity Sequence). As defined, there is a long exact
sequence, or transitivity sequence for André-Quillen cohomology. Suppose we
have a sequence of C-algebras k → X → A and suppose that M is a π0A-
module. Then there is a homotopy pull-back square

(2.4.2) mapsAlgX/A
(A,KA(M,n)) //

��

mapsAlgk/A
(A,KA(M,n))

��
{s} // mapsAlgk/A

(X,KA(M,n))

where s is composition X → A→ KA(M,n) induced by the zero-section. Hence
there is a long exact sequence

· · · → Hn
C(A/X,M)→ Hn

C(A/k,M)→Hn
C(X/k,M)

→ Hn+1
C (A/X,M)→ · · · .

To get the fiber sequence 2.4.2, choose a commutative square

X ′ j //

'
��

A′

'
��

X // A

where the vertical maps are weak equivalences, X ′ is cofibrant in sAlgk and j is
a cofibration in sAlgk. Then, because we have assumed that sAlgC is relatively
left proper, the induced map

X tX′ A′−→A
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is a weak equivalence and the source is cofibrant in sAlgX . Then we have a
pull-back

mapsAlgX/A
(X tX′ A′,KA(M,n)) //

��

mapsAlgk/A
(A′,KA(M,n))

��
{s} // mapsAlgk/A

(X ′,KA(M,n))

as needed.

2.4.4 Remark. In all the applications we have in mind both k and A will be
constant simplicial C-algebras, or equivalently, k and A will be π0C-algebras,
regarded as constant simplicial C-algebras. In this case, we have a natural
isomorphism

H0
C(A/k,M) = Derk(A,M).

Also, André-Quillen cohomology can be written down as the cohomology of a
chain complex.

To do this, suppose k → A a morphism of constant C-algebras. Let M be a
A = π0A-module. Then for any simplicial C-algebra Y under k and over A, we
have abelian groups

Derk(Yn,M) = (Algk/A)(Yn,M oA).

Furthermore, if φ : [n]→ [m] is a morphism in the ordinal number category, the
Yn is a Cm-algebra by restriction of structure along φ∗ : Cm → Cn and then

φ∗ : Ym−→Yn

is a morphism of Cm-algebras. Hence we get a map

Derk(Yn,M)−→Derk(Ym,M)

and, in fact, Derk(Y,M) becomes a cosimplicial abelian k-module. Then, if
X ∈ sAlgk/A, we have

(2.4.3) Hn
C(X/k,M) = HnN DerC(Y,M)

where Y is some cofibrant model for X and N is the normalization functor
from cosimplicial k-modules to cochain complexes of k-modules. This concept
is important enough that we will write

(2.4.4) DC(X/k,M) ∈ Ho(Ch∗k)

for the well-defined object in the derived category of cochain complexes defined
by N Derk(Y,M), with Y a cofibrant model for A.
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2.4.5 Example (Cohomology of associative algebras). This discussion
applies to the case where k → A is a morphism of associative algebras over our
ground ring R. If k is commutative and k is central in A, then H∗(A/k,M) is, by
the results of [34], closely related to the Hochschild cohomology of the k-algebra
A. In this case, an A-module is an A-bimodule and there are isomorphisms

Hs(A/k,M) ∼= HHs+1(A/k,M), s ≥ 1

and an exact sequence

0 // Z(M)
⊆ // M

f // H0(A/k,M) // HH1(A/k,M) // 0

where

Z(M) = HH0(A/k,M) = {x ∈M | ax = xa for all a ∈ A }

and f sends x ∈M to the derivation ∂x ∈ Derk(A,M) = H0(A/k,M) given by

∂x(a) = ax− xa.

2.4.6 Example (Cohomology over an E∞ operad). Recall that we defined
an E∞-operad to be a simplicial operad C of R-modules so that each C(k) is
a cofibrant R[Σk]-module and so that there is a weak equivalence of operads
C → Comm to the commutative algebra operad.

If A is a commutative R-algebra and M is an A-module, we can – by using
the augmentation – regard A as a constant C-algebra and M as an A-module
over C. Hence we may form the André-Quillen cohomology groups H∗

C(A/k,M)
for any morphism k → A of commutative R-algebras. These groups turn out to
be a independent of the choice of C, and are naturally isomorphic to almost any
other version of E∞-algebra cohomology of A one might possible contrive. In
particular, by work of Mandell [32] H∗

C(A/k,M) is isomorphic to the topological
André-Quillen cohomology of the Eilenberg-MacLane spectrum HA regarded
as an Hk-algebra and, combining this with work of Basterra and McCarthy
[5], H∗

C(A/k,M) is also isomorphic to the Γ-cohomology of the k-algebra A as
defined by Robinson and Whitehouse in [42].

2.4.2 Cohomology of algebras in comodules

In our applications we will have a homology theory E∗(·) and R = E∗. We will
also have a simplicial operad T – that is, a simplicial object in the category O of
simplicial operads – so C = E∗T and a typical C-algebra will be of the form E∗X
where X ∈ sAlgT . If E∗E if flat over E∗, this will imply that we are actually
working with operads, algebras and so forth in the category of E∗E-comodules,
rather than simply in the more basic category of E∗-modules. Under appropriate
hypotheses – for example, if E satisfies the Adams condition of Definition 1.4.1
– the E∗E-comodule version of Proposition 2.4.7 is true, and one can use this
to define André-Quillen cohomology in the category of E∗E-comodules.
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To do this requires a little care, as we are forced to resolve not only algebras,
but also the modules; the short reason for this technical difficulty is that not
every chain complex of comodules is fibrant. The same problem arose in [30]
and our solution is not much different.

To get started, fix a simplicial operad C in E∗E-comodules and a π0C algebra
A, also all in E∗E-comodules.

To ease notation, let us abbreviate the extended comodule functor by

Γ(M) = E∗E ⊗E∗ M.

The functor Γ also induces a right adjoint to the forgetful functor from A-
modules in E∗E-comodules to A-modules. Indeed, if M is an A-module, the
module structure on Γ(A) is determined by the top split row of the diagram

Γ(M)

=

��

// Γ(M) oA //

��

Aoo

ψA

��
Γ(M) // Γ(M oA) // Γ(A),oo

where the right square is a pull-back and where ψA is the comodule structure
map, which, by assumption, is a morphism of algebras. The functor Γ(−) thus
becomes the functor of a triple on A-modules in E∗E-comodules.

Let k → A be a morphism of π0C-algebras in E∗E-comodules and let Y be a
simplicial C-algebra under k and over A in E∗E comodules. Then we can form
the bicosimplicial E∗-module

Derk(Y,Γ•(M)) = {Derk(Yp,Γq+1(M))}
= {Algk/A(Yq,Γq+1(M) nA)}.

where Algk/A is the category of C-algebras under k and over A. If X is a
simplicial C-algebra in E∗E comodules under k and over A, we now write

(2.4.5) DC/E∗E(X/k,M) ∈ Ho(Ch∗E∗E)

for the object in the derived category of comodules defined by taking Y to
be some cofibrant model for A in simplicial C-algebras under k and then tak-
ing the total complex of the double normalization of the cosimplicial object
Derk(Y,Γ•(M)). Then, still assuming that the sAlgC is relatively left proper,
we define the André-Quillen cohomology by

(2.4.6) Hn
C/E∗E

(X/k,M) = HnDC/E∗E(X/k,M).

However, with luck, one can reduce the calculation of the comodule coho-
mology to the case of module cohomology. Here is the result we will use. The
definitions should make the following results plausible; the proof is in [19].
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2.4.7 Proposition. Let C be a simplicial operad in E∗E comodules and k → A
a morphism of π0C-algebra in E∗E-comodules. If M is a A-module in E∗-
modules, then the extended comodule Γ(M) = E∗E ⊗E∗ M is an A-module in
E∗E-comodules and there is a natural isomorphism

H∗
C/E∗E

(X/k,E∗E ⊗E∗ M) ∼= H∗
C(X/k,M).

A stronger assertion is true: there is an isomorphism

DC/E∗E(X/k,E∗E ⊗E∗ M) ∼= DC(X/k,M)

in the derived category of E∗-modules.

2.4.8 Remark (Comodule transitivity sequence). In this setting there is
also a transitivity sequence identical to that of Remark 2.4.3. The argument
remains the same.

2.4.3 The cohomology of theta-algebras

Another variant on the cohomology of a commutative algebras occurs in the
context of theta-algebras and their modules. Here we use the model category
structure on simplicial theta algebras developed at the end of §2.2. See, in
particular, Theorem 2.2.17.

Let k be a theta-algebra and let Algkθ be the category of θ-algebras under k.
If A is an object in Algkθ and M is a θ-module over A. In this case, we simply
define

Hn
θ (A/k,M) = π0 mapsAlgk

θ/A
(A,KA(M,n))

where, as always, we are taking the derived mapping space. So in particular,
for computations, we will have to choose a cofibrant replacement X → A for A
as a simplicial object in Algkθ . As before there is well-defined object

Dθ(A/k,M) ∈ Ho(Ch∗k)

whose cohomology is H∗
θ (A/k,M). There is a mild wrinkle here: Ho(C∗k) is

the derived category of continuous k-modules.

2.4.9 Remark. One example of a theta-algebra is the algebra Zp = K∗S
0.

This is the initial object in the category of theta-algebras and we will abbreviate
H∗
θ (A/Zp,M) as Hθ(A,M).

2.4.10 Remark (Theta-algebra transitivity sequence). The cohomology
of theta-algebras also has a transitivity sequence. The proof in [34] goes through
verbatim, but we could also use the arguments of Remark 2.4.3.

This example is very closely related to the standard André-Quillen coho-
mology of A as a commutative k-algebra. If k → A is a morphism θ-algebras
and M is module over A, then we have a module Derθk(A,M) of continuous
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k-derivations ∂ : A → M which commute with the Adams operations and so
that

∂θ(x) =

 θ(∂x)− xp−1dx |x| = 0

θ(∂x) |x| = 1.

This formula is obtained by viewing the natural isomorphism

Derθk(A,M) ∼= Algkθ/A(A,M oA)

In the end H∗
θ (A/k,M) are the right derived functors of Derθk.

The functor Derθk(A,−) of A-modules is representable by the A-module on
ΩA/k of continuous A-differentials. This inherits a natural structure as a θ-
module over A and the universal derivation d : A → ΩA/k is a derivation for
the theta-algebra A. As always, one derives this functor by taking a cofibrant
resolution of X → A as a simplicial θ-algebra under k and setting

Lθ(A/k) = A⊗X ΩX/k

where ⊗ should be interpreted as a completed tensor product. Then there is a
composite functor spectral sequence

(2.4.7) RHoms
Modθ

A
(HtLθ(A/k),M) =⇒ Hs+t

θ (A/k,M)

where RHom denotes the derived functors of Hom in the category of θ-modules
over the theta-algebra A. More is true. Since free θ-algebras are free commuta-
tive Zp-algebras, there is a natural isomorphism

(2.4.8) H∗Lθ(A/k) ∼= H∗LA/k
where LA/k is the ordinary cotangent complex of the the completed algebra A.
In particular, if A is smooth as complete graded k-algebra, then

HtLθ(A/k) =

 ΩA/k t = 0

0 t > 0

regardless of the action of θ and the module ΩA/k is projective as a continuous A-
module. (Although not a projectiveA-module in the category of theta-modules.)
In particular, the spectral sequence of 2.4.7 collapses and we have

(2.4.9) RHoms
Modθ

A
(ΩA/k,M) ∼= Hs

θ (A/k,M).

If, in addition, M is an induced θ-module – which in this case means it is of the
form Homc(Z×p ,M0) where M0 is some continuous A-module – then we have a
further reduction

(2.4.10) RHoms
Modθ

A
(ΩA/k,M) ∼= ExtsA[θ](ΩA/k,M0)

where the target Ext group is the derived functors of continuous homomorphisms
over the ring A[θ]∧p . Then, since ΩA/k is a projective A-module

(2.4.11) Hs(A/k,M) ∼= ExtsA[θ](ΩA/k,M0) = 0, s > 1.
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2.4.4 Computing mapping spaces – the K(1)-local case

In this part, we show how to construct a Bousfield-Kan spectral sequence for
the mapping space of E∞-ring spectrum morphisms from an E∞-ring spectrum
X to K(1)-local E∞-ring spectrum Y . A similar spectral sequence for simplicial
T -algebras in another setting was constructed in [20].

In this subsection, our E∞-ring spectra will be algebras over the commu-
tative monoid operad – that is, we will work with commutative S-algebras (or
simply “S-algebras”, for short). This is so we have a simple description of the
coproduct in this category. By Theorem 1.2.4, this is not a loss of generality.

We begin with some preliminary results. Let K be the p-adic complex K-
theory spectrum. Note that for any spectrum Y there is a homotopy pairing

µ : K ∧ LK(1)(K ∧ Y )→ LK(1)(K ∧ Y )

obtained as the unique completion of the diagram

K ∧K ∧ Y

K∧η
��

m // K ∧ Y // LK(1)(K ∧ Y )

K ∧ LK(1)(K ∧ Y )

33gggggggggg

obtained by from the multiplication m of K and the fact that K ∧ η is a K(1)∗-
equivalence. This yields, for any two spectra X and Y , a Künneth map

π0 map(X,LK(1)(K ∧ Y ))→ HomK∗(K∗X,K∗Y )

sending a morphism f to the map obtained by applying homotopy to the com-
posite

LK(1)(K ∧X)
K∧f // LK(1)(K ∧ (LK(1)(K ∧ Y ))

µ // LK(1)(K ∧ Y ).

Here is a continuous version of one of the key items in the definition of
Adams’s condition on ring spectra. See Definition 1.4.1. Here and below we will
specify that K∗Y be p-complete. A priori K∗Y is only L-complete. See the
material before Definition 2.2.1. However K∗Y will be p-complete if K(1)∗Y is
in even degrees or even if K∗Y is torsion-free.

2.4.11 Lemma. Let X be a finite CW complex with cells in even degrees and
let Y be any spectrum so that K∗Y is p-complete. Then the Künneth map

π0 map(X,LK(1)(K ∧ Y ))→ HomK∗(K∗X,K∗Y )

is an isomorphism.

Proof. The result is obvious if X is a sphere. Now induct over the number of
cells.
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If X and Y are commutative S-algebras, then their coproduct as a commu-
tative S-algebra is isomorphic to X ∧ Y . (See [18], Proposition II.3.7; the proof
there works in any of the models of spectra with a symmetric monoidal smash
product.) In particular, if Y is an S-algebra, so is K ∧ Y . Also, if X is an
S-algebra, there is a model for LK(1)X, which is also an S-algebra. (See [18],
§VIII.2; again, the argument is very general.) Thus we may conclude that if Y is
an S-algebra, so is LK(1)(K ∧ Y ). More than that, we can form the augmented
cobar construction

(2.4.12) Y → LK(1)(K(·) ∧ Y )

obtained from the usual cobar construction by applying the localization functor;
this will be a cosimplicial S-algebra. We will use this cosimplicial S-algebra to
build our spectral sequence.

Lemma 2.4.11 has the following obvious consequence. Let C be the free
commutative S-algebra functor. As a bit of notation, if Z is a commutative
S-algebra, write mapZ(−,−) for the (underived) space of Z-algebra maps. Sim-
ilarly, write HomK∗Z(−,−) for the set theta-algebra maps under K∗Z.

2.4.12 Proposition. Let Y be a K(1)-local commutative S-algebra so that K∗Y
is p-complete. Let X be a finite CW -spectrum concentrated in even (or in odd)
degrees. Then the natural map

π0 mapS−alg(C(X), Y )→ HomAlgθ
(K∗C(X),K∗Y )

is an isomorphism. More generally, let Z = ∨Zα be any spectrum which is
wedge of spectra Zα with cells in even (or odd) degrees Then

π0 mapC(Z)(C(Z)q C(X), Y )→ HomK∗C(Z)(K∗(C(Z)q C(X)),K∗Y )

is an isomorphism.

Proof. This is routine, using Lemma 2.4.11 and Theorem 2.2.11.

We also have the following convergence fact.

2.4.13 Lemma. Let Y be a K(1)-local S-algebra so that K∗Y is p-complete.
Then the natural map

Y → holim∆ LK(1)(K(·) ∧ Y )

is a weak equivalence of commutative S-algebras.

Proof. The natural map is a morphism of S-algebras, so we need only show it is
a weak equivalence. Under the hypotheses listed, we have from [29] Proposition
7.10(e) that there is a natural weak equivalence

LK(1)(K(·) ∧ Y ) ' // holimn[(K(·) ∧ Y ) ∧M(pn)]

where M(pn) is the mod p Moore space. Now the arguments at the end of the
proof Proposition 7.4 of [24] imply the result.
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Putting this all together, we have the following result.

2.4.14 Theorem. Let Z be a commutative S-algebras and let X be a commuta-
tive Z-algebra. Let Y a K(1)-local commutative Z-algebra with K∗Y p-complete.
Fix a morphism φ : X → Y of Z-algebras. Then there is a second quadrant spec-
tral sequence abutting to

πt−s(mapZ(X,Y );φ)

with E2-term
E0,0

2 = HomK∗Z(K∗X,K∗Y )

and
Es,t2 = Hs

θ (K∗X/K∗Z,ΩtK∗Y ), t > 0.

Proof. Since p-completed K-theory is Landweber exact, we can use the resolu-
tion model category structure of Theorem 1.4.9, with T = C, the commutative
monoid operad. We use Lemma 1.4.15 to compute the effect of K∗ on cofibrant
objects.

In the category sAlgC , form a commutative diagram

Zcf
j //

'
��

Xcf

'
��

Z // X

where (−)cf denotes a simplicial P-cofibrant replacement and the morphism j
is a P-cofibration. Now form the cosimplicial space

M• = diag mapZcf (Xcf , LK(1)(K(·) ∧ Y )).

The morphism φ : X → Y supplies this with the basepoint. Since the geometric
realization of Zcf is weakly equivalent to Z, the geometric realization of Xcf

is weakly equivalent to X, and using Lemma 2.4.13, the total space of this
cosimplicial space will be weakly equivalent to mapZ(X,Y ). We now identify
the E2-term.

First, since π0K∗X
cf ∼= K∗X and π0K∗LK(1)(K(·)∧Y ) ∼= K∗Y , Proposition

2.4.12 implies that

π0π0M
• = HomK∗Z(K∗X,K∗Y ).

For the rest of the E2-term we use a bicomplex argument.
There is a spectral sequence converging to πp+qπtM• with

Ep,q1 = πqπt mapZcf
p

(Xcf
p , LK(1)(K(·) ∧ Y )).

Since t > 0, Proposition 2.4.12 implies that

πt mapZcf
p

(Xcf
p ,K∗LK(1)(K(q+1) ∧ Y ))

∼= DerK∗Z
cf
p

(K∗X
cf
p ,ΩtK∗LK(1)(K(q+1) ∧ Y ))

∼= DerK∗Z(K∗Z ⊗K∗Z
cf
p
K∗X

cf
p ,ΩtK∗LK(1)(K(q+1) ∧ Y )).
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The augmented cosimplicial K∗Y -module

ΩtK∗Y → ΩtK∗LK(1)(K(q+1) ∧ Y )

has a cosimplicial retraction as K∗Y modules and, thus, as K∗X
cf
p -modules. It

follows that

E1
p,q =


DerK∗Z(K∗Z ⊗K∗Z

cf
p
K∗X

cf
p ,ΩtK∗Y ) q = 0

0 q > 0
.

Since K∗Z ⊗K∗Zcf K∗X
cf → K∗X is a cofibrant resolution of K∗X as a K∗Z-

algebra in theta-algebras, the result follows.

Bousfield’s work [8] on obstructions in the total tower of a cosimplicial space,
implies the following result:

2.4.15 Corollary. Let Z be a commutative S-algebras and let X be a com-
mutative Z-algebra. Let Y a K(1)-local commutative Z-algebra with K∗Y p-
complete. Then there are successively defined obstructions to realizing a map
f ∈ HomK∗Z(K∗X,K∗Y ) in the groups

Hs+1
θ (K∗X/K∗Z,ΩsK∗Y ) s ≥ 1.

In particular, if these groups are all zero, then the Hurewicz map

(2.4.13) π0(mapZ(X,Y ))→ HomK∗Z(K∗X,K∗Y )

is surjective. If, in addition, the groups

Hs
θ (K∗X/K∗Z,ΩsK∗Y ) = 0

for s ≥ 1, the Hurewicz map of Equation 2.4.13 is a bijection.

2.5 Postnikov systems for simplicial algebras

In this section we supply a detailed description of the Postnikov systems of a
simplicial algebra. We are particular interested in simplicial algebras in simpli-
cial comodules over some Adams-type Hopf algebroid (A,Γ); therefore, we will
concentrate on this case. However, the theory is very general and will apply,
for example, to the case of simplicial theta-algebras, as discussed in §2.2. The
primary technical input in this case will be supplied by Lemma 2.2.13, Remark
2.2.14, and Theorem 2.2.17.

The discussion parallels section 5 of [7] very closely.
Let CΓ be the category of comodules over our fixed Adams-type Hopf al-

gebroid (A,Γ) and let {Cj} be an arbitrary, but fixed, generating system of
Γ-comodules. (See Definition 2.1.2.) Let D(−) be the duality functor on co-
modules which are finitely generated and projective as A-modules. (See Lemma
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2.1.5.) Since our Hopf algebroid and comodules will be graded, let us write
M [k] for the shifted comodule obtained from M withM [k]n = Mk+n. Thus, in
the language of Example 2.2.10, we might also write M [k] = ΩkM ; however,
the bracket notation is simpler for this section.

We now consider the category sCΓ of simplicial objects in CΓ. In [19] we
supplied the category sCΓ with the structure of a simplicial model category so
that

1. a morphism f : X → Y is a weak equivalence if π∗X → π∗Y is an
isomorphism; and

2. a morphism f : X → Y is a cofibration if it is in the class of morphisms
generated by the set of maps

DCj [k]⊗ ∂∆n → DCj [k]⊗∆n.

for all j, all integers k and all positive integers n.

The fibrations are determined by the lifting property and a localization ar-
gument. They are not easily otherwise described.2

2.5.1 Remark. More specifically, there is an auxiliary model category structure
on sCΓ with the cofibrations above, but we specify that f : X → Y is a weak
equivalence or fibration if for all j and k, the induced morphism of underived
simplicial mapping spaces

mapsCΓ
(DCj [k], X)−→mapsCΓ

(DCj [k], Y )

is a weak equivalence or fibration. Any such weak equivalence is automatically
induces an isomorphism π∗X → π∗Y , and it is this auxiliary model category
that gets localized.

These technicalities not withstanding, we can ground the model category
structure on sCΓ with the following comparison result. Give the category
sModA of simplicial A-modules its standard simplicial model category structure
[35].

2.5.2 Lemma. 1.) The forgetful functor from sCΓ to sModA preserves weak
equivalences and cofibrations. The extended comodule functor

Γ⊗A (−) : sModA−→sCΓ

preserves fibrations and weak equivalences.
2.) The forgetful functor from sCΓ to sModA preserves fibrations.

2A similar, but perhaps more elegant model category structure could be obtained using
the techniques of [27].
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Proof. 1.) The statements about the forgetful functor follow from the definition
of weak equivalence and the fact that each of the Cj is a projective A-module.
The statements about the extended comodule functor follow from the fact that
Γ is flat over A and an adjointness argument.

2.) Let X → Y be a fibration in sCΓ. For each j and k, and each s and t,
the map of simplicial sets

mapsCΓ
(DCj [k]⊗∆s, X)

��
mapsCΓ

(DCj [k]⊗∆s
t , X)×mapsCΓ

(DCj [k]⊗∆s
t ,Y ) mapsCΓ

(DCj [k]⊗∆s, Y )

is an acyclic fibration. (Here we are not using the derived simplicial mapping
spaces, but the usual mapping spaces for a simplicial category.) If K is a finite
simplicial set, then there are natural isomorphisms

colimj mapsCΓ
(DCj [k]⊗K,X) ∼= colimj mapsCΓ

(A[k]⊗K,Cj ⊗A X)
∼= mapsCΓ

(A[k]⊗K,Γ⊗A X)
∼= mapsModA

(A[k]⊗K,X).

The filtered colimit of fibrations of simplicial sets is a fibration and the result
follows.

We will be interested in various categories of algebras in comodules. Let
F be a triple on sCΓ. We are thinking of the triple TE which arises from a
homotopically adapted operad T ; see Definition 1.4.16. In particular, we could
have either the free simplicial E∞-algebra functor (for a general Hopf algebroid)
or the prolonged free θ-algebra (for p-complete K-theory). Let sAlgF be the
category of F -algebras and will assume that the forgetful functor

sAlgF−→sCΓ
creates a simplicial model category structure on sAlgF . This model category
will automatically be cofibrantly generated and the cofibrations will be gener-
ated by

F (DCj [k]⊗ ∂∆n)→ F (DCj [k]⊗∆n).

2.5.3 Remark. In Remark 2.5.1 we noted that the model category structure
on sCΓ is the localization of an auxiliary model category structure with fewer
weak equivalences. This auxiliary structure also lifts to an auxiliary model
category structure on sAlgF and again we have a localization, at least in all
our examples. Compare [19].

2.5.4 Lemma. Suppose the triple F is a lift of a triple F0 on sModA, and sup-
pose the forgetful functor sAlgF0

→ sModA creates a simplicial model category
structure on sAlgF0

. Then there is a forgetful functor

sAlgF−→sAlgF0
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which preserves cofibrations and weak equivalences.

Proof. This follows immediately from Lemma 2.5.2.

The hypotheses of this result are satisfied in both the examples we are in-
terested in.

We now come to Postnikov towers.

2.5.5 Definition. Let X ∈ sAlgF . Then an nth Postnikov section of X is a
morphism f : X → Y in sAlgF so that πkY = 0 for k > n and f induces an
isomorphism πkX ∼= πkY for k ≤ n. A Postnikov tower for X is a tower under
X

X → · · · → Xn → Xn−1 → · · ·X1 → X0

so that X → Xn is an nth Postnikov section.

Note that in a Postnikov tower for X, Xn is an nth Postnikov section of Xk

for k ≥ n.
We will see below that functorial Postnikov towers and functorial k-invariants

exist in sAlgF . We begin with the towers.

2.5.6 Proposition. The category sAlgF has functorial Postnikov towers: for
all X ∈ sAlgF there is a natural tower under X

X → · · · → PnX → Pn−1X → · · · → P1X → P0X

so that for all n, PnX is an nth Postnikov section for X.

Proof. The argument here is the standard one, but with the twist that we begin
with the auxiliary model category mentioned above in Remark 2.5.3. We will
say that X → Yn is a Γ-Postnikov section if

πk mapsCΓ
(DCj [k], X)→ πk mapsCΓ

(DCj [k], Yn)

is an isomorphism for k ≤ n and if the target homotopy group is zero for k > n.
There is an associated notion of a Γ-Postnikov tower and we first claim that
functorial Γ-Postnikov towers exits. This is the standard argument:

PnX = colimi Pn,iX

where Pn,iX = X for i ≤ n and, for i > n, Pn,iX fits into a push-out diagram∐
W F (DCj [k]⊗ ∂∆i) //

��

Pn,i−1X

��∐
W F (DCj [k]⊗∆i) // Pn,iX.

Here W is the set of all maps F (DCj [k] ⊗ ∂∆i) → Pn,i−1X. Then Corollary
2.3.15 and the fact that mapsCΓ

(DCj [k],−) commutes with filtered colimits
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implies that X → PnX is a natural Γ-Postnikov section. There is an evident
inclusion PnX → Pn−1X induced from the inclusions Pn,iX → Pn−1,iX, and
we obtain the natural tower.

We would now like to claim that the same tower is actually a Postnikov
tower. This follows immediately from the formula

πkX = colimπk mapsCΓ
(DCj [∗], X).

We next write down k-invariants. For this we will need our triple F on sCΓ
to have an augmentation F → Φ to a triple on CΓ. Here is the definition of that
concept.

2.5.7 Definition. Let F be triple on sCΓ. Then an augmentation for F is a
triple on CΓ equipped with a natural isomorphism

dX = d : π0FX−→Φπ0X

so that there are commutative diagrams

π0X
= //

ηΦ

��

π0X

ηF

��
π0FX

d
// Φπ0X

and

π0F
2X

p //

dF X

��

π0F (π0FX)
π0F (d)// π0F (π0ΦX)

dΦπ0X

��
Φ(π0X)

Φd
// Φ2(π0X)

where p in induced by the augmentation FX → π0FX and

π0F
2X

d //

π0εF

��

Φπ0FX
Φd // Φ2π0X

εΦ

��
π0FX

d
// Φπ0X.

Here η and ε are the unit and multiplication of the respective triples. As an
abuse of notation we may write that there is an augmentation of triples F → Φ.

This concept fits closely with all our major examples.

2.5.8 Example. If F is the triple induced by a simplicial operad sCΓ then we
may take Φ to be the triple induced by the operad π0F . The augmentation is
then the observation that there is a natural isomorphism π0F (X) ∼= π0F (X).
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Indeed, the forgetful functor from F -algebras to to sCΓ creates reflexive co-
equalizers.

In particular, if F is a simplicial E∞-operad (see Definition 2.3.8), then π0F
is the commutative algebra operad. If F is the constant associative algebra
operad, then π0F is simply the associative algebra operad.

The other case of interest in theta-algebras. In this case, F is the free
theta-algebra triple, prolonged to the simplicial setting and Φ is also the free
theta-algebra triple.

The following result is an exercise in diagrams.

2.5.9 Proposition. Suppose F → Φ is an augmentation from a triple on sCΓ

to a triple on CΓ. Then

1. if A is a Φ-algebra in CΓ, then the constant simplicial comodule A is an
F -algebra in sCΓ with structure morphism

FA
p // π0FA

d // ΦA
εA // A;

2. if X is an F -algebra in sCΓ, then π0X is a Φ-algebra in CΓ with structure
morphism

Φ(π0X)
d−1

X // π0FX
π0εX // π0X;

3. the functor X 7→ π0X from F -algebras to Φ-algebras is left adjoint to the
functor that assigns to any Φ-algebra A the constant simplicial F -algebra
A.

The existence of an augmentation not only has implications for π0, but for
the higher homotopy groups as well. In fact, if X is an F -algebra, πiX will
be a π0X module. For any triple Φ and any Φ-algebra A, an A-module M is
determined by a split extension of Φ-algebras

(2.5.1) M // B // Aoo

with the further additional property that B is an abelian Φ-algebra over A with
unit given by the splitting.

2.5.10 Proposition. Suppose F → Φ is an augmentation from a triple on sCΓ

to a triple on CΓ and suppose that X is an F -algebra. Then for all i ≥ 1, πiX
is a module over the Φ-algebra π0X.

Proof. If K is a simplicial set and X ∈ sCΓ, let hom(K,X) denote the internal
exponential object in sCΓ. Since the forgetful functor sAlgF → sCΓ creates
the simplicial model category structure on sAlgF , if X is a fibrant F -algebra,
so is hom(K,X). If K is pointed, then let hom∗(K,X) be defined by fiber at
0 of the morphism hom(K,X) → hom(∗, X) = X. To obtain the result, apply
π0(−) to the split extension of F -algebras

hom∗(∆i/∂∆i, X) // hom(∆i/∂∆i, X) // Xoo

and apply Proposition 2.5.9.2.
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Finally, for our proofs, we are going to have to assume that push-outs in
the category sAlgF are quite regular. Thus, for the rest of this monograph,
we make the following assumption. It is satisfied for all our main examples by
Theorem 2.3.13 and, in fact, for many other examples as well. See Remark
2.3.14.

2.5.11 Assumptions. The category sAlgF satisfies the following Blakers-
Massey Excision property: Suppose we are given a homotopy push-out diagram
in sAlgF

A
f //

j

��

X

��
B // Y

and, furthermore, that πi(B,A) = 0 for i < m and πi(X,A) = 0 for i < n.
Then

πi(B,A)−→πi(Y,X)

is an isomorphism for i ≤ n+m− 2 and onto for i = n+m− 1.
When this assumption is satisfied, there is a truncated Mayer-Vietoris se-

quence in homotopy, as in Corollary 2.3.15.

We can now introduce our Eilenberg-MacLane objects.

2.5.12 Definition. 1.) Let A be a Φ-algebra. Then X ∈ sAlgF is of type KA

if π0X ∼= A and the augmentation X → A is a weak equivalence of simplicial
F -algebras. In particular πiX = 0 for i > 0.

2.) Let M be an A-module and let n ≥ 1. Then a morphism X → Y in
sAlgF is of type KA(M,n) if X is of type KA, the morphism π0X → π0Y is
an isomorphism and

πiY ∼=
{
M i = n
0 i 6= n, i > 0

This isomorphism should be as A-modules. If the morphism X → Y is under-
stood, we will simply call Y an object of type KA(M,n).

Collectively, we will call the objects of type KA and KA(M,n) Eilenberg-
MacLane objects. As would be expected such objects exist; indeed, A itself,
regarded as a constant object is of type KA and if M is an A-module, the
twisted object

K(M,n) nA

yields a morphism of type KA(M,n). Here K(M,n) is the simplicial module
whose normalization is M is degree n; this is naturally a simplicial A-module,
and K(M,n) nA is the simplicial infinitesimal extension.

In fact, Proposition 2.5.19 below says that the moduli space of all Eilenberg-
MacLane objects is a space of the form BG where G is a discrete group of
automorphisms. Before proving that however, we state and prove the result
about k-invariants and pull-backs.
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Suppose we are given a morphism X → Y in sAlgF for which πiX → πiY
is an isomorphism for i < n, n ≥ 1. Write A for π0X ∼= π0Y and let M = πnF
where F is the homotopy fiber of X → Y . Then let C be the homotopy push-out
of

Y Xoo // P0X.

Then Assumption 2.5.11 (or Corollary 2.3.15 in our main examples) implies that
P0X → Pn+1C is of type KA(M,n+1). A calculation of homotopy groups now
implies the following result.

2.5.13 Proposition. If Z is the homotopy fiber of X → Y and πiZ = 0 for
i 6= n, then the natural diagram

X //

��

P0X

��
Y // Pn+1C

is a homotopy pull-back diagram.

In other words, we have a natural formulation of the fact that there is a
homotopy cartesian square

(2.5.2) PnX //

��

KA

��
Pn−1X // KA(πnX,n+ 1).

2.5.14 Remark. The construction we used in Proposition 2.5.13 will be re-
peated throughout later sections, so we will give it a name. Given a morphism
f : X → Y , let us write

δn(f) : P0X−→Pn+1C

for the resulting morphism, and call it the nth difference construction. It is
natural in the morphism f .

2.5.15 Remark (The relative version). In our applications we will need to
consider the relative case where we have fixed a morphism k → A of Φ-algebras.
In order to do this, we will assume that the category sAlgF is relatively left
proper (as in Definition 2.3.3) and that k is projective as an R-module. This
is to avoid the question of whether or not we have to resolve the algebra k or
not. See Remark 2.4.2. Then all of the constructions we have made so far are
valid not simply in sAlgF , but in the relative category sAlgk of simplicial F -
algebras under k. Thus we have Postnikov towers under A, for example, and we
can require that our Eilenberg-MacLane objects KA and KA(M,n) be objects in
sAlgk as well. The difference construction and Proposition 2.5.13 also remains
valid in sAlgk as homotopy pull-backs in sAlgk are created in sAlgF . Keeping
this in mind, we will work, for the rest of this section in this relative case. Note
that a simplicial k-algebra will be an object in sAlgF under k.

86



Proposition 2.5.13 has a continuous version that is phrased in terms of moduli
spaces. Let k → A be a morphism of Φ-algebras and let Y be a simplicial k-
algebra. Suppose πiY = 0 for i > n. Let M be a π0Y = A module and
write M(Y ⊕ (M,n)) for the moduli space of all simplicial k-algebras so that
Pn−1X ' Y and πnX ∼= M as an A-module. (Neither the weak equivalence nor
the isomorphism are part of the data.) The notation using the arrows # was
defined in Example 1.1.19.

Note that we might writeM(Y ⊕ (M,n)) asMk(Y ⊕ (M,n)) if we want to
emphasize the role of k; however, we hope that k normally remains clear from
the context.

2.5.16 Theorem. The difference construction defines a natural weak equiva-
lence

M(Y ⊕ (M,n)) '−→M(Y#KA(M,n+ 1)"KA).

Proof. The difference construction is natural and provides a functor from the
category whose nerve definesM(Y ⊕(M,n)) to the category whose nerve defines
M(Y#KA(M,n + 1)"KA). A natural version of homotopy pull-back defines
the functor back. Then Proposition 2.5.13 – which remains true in the relative
case – supplies the natural transformations needed to make these functors into
an equivalence on nerves.

There is a variant of these results which can be used to analyze Eilenberg-
MacLane objects. Let k → A be a morphism of Φ-algebras and M an A-module.
If X → Y is a morphism of type KA(M,n), then the difference construction
and Proposition 2.5.13 supplies a homotopy cartesian diagram in sAlgk

Y //

��

P0Y

��
P0Y // Pn+1C

and the morphism P0Y → Pn+1Y is of type KA(M,n+ 1). WriteMA/k(M,n)
for the moduli space of all morphisms of type KA(M,n) in sAlgk.

2.5.17 Lemma. Let n ≥ 1. The assignment

{f : X → Y } 7→ {δn(f) : P0Y → Pn+1C}

yields a weak equivalence of moduli spaces

MA/k(M,n) '−→MA/k(M,n+ 1).

Proof. The functor back takes sends a morphism f : X → Y of type KA(M,n+
1) to the homotopy pullback of the two-sink

X
f // Y X.

foo
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We now analyze the uniqueness of Eilenberg-MacLane objects. We assuming
we have an augmented triple F → Φ and we are keeping mind the results of
Propositions 2.5.9 and 2.5.10. Anything labeled “Eilenberg-MacLane” should
represent cohomology and that is indeed the case here. Let k → A be a mor-
phism of Φ-algebras and M an A module. Let X be a simplicial F -algebra
under k equipped with an augmentation X → A. Recall that we can define the
André-Quillen cohomology of X with coefficients in M by the formula

Hn
F (X/k,M) = π0 mapsAlgk/A

(X,KA(M,n))(2.5.3)
∼= πt mapsAlgk/A

(X,KA(M,n+ t)).

Here sAlgk/A is the category of simplicial F -algebras under k and over A. The
following is now immediately obvious.

2.5.18 Lemma. Let k → A be a morphism of Φ-algebras and M an A module.
Let X be a simplicial F -algebra under k. Then there is a natural isomorphism

π0 mapsAlgk
(X,KA(M,n)) =

∐
f :π0X→A

Hn
F (X/k,M).

Only slightly more complicated is the following result. If A is an algebra and
M is an A-module, the group Aut(A,M) of automorphisms of the pair (A,M)
is defined to be the group of automorphisms in the category of algebras of the
diagram

M nA
//
A.oo

For example, if A is a commutative algebra, this is equivalent to specifying
an algebra automorphism f : A → A and an isomorphism of abelian groups
φ : M →M so that φ(ax) = f(a)φ(x) for all a ∈ A and x ∈M .

In the following result, recall that sAlgk is the category of F -algebras under
a fixed F -algebra k.

2.5.19 Proposition. 1.) Let k → A be a morphism of Φ-algebras and Autk(A)
the group of automorphisms of A under k as a Φ-algebra. If MA is the moduli
space of all objects in sAlgk of type KA, then there is a weak equivalence

MA ' BAutk(A).

2.) Let k → A be a morphism of Φ-algebras and M an A-module. Let
Autk(A,M) denote the group of automorphisms of the pair (A,M) under k. If
MA/k(M,n) is the moduli space of all morphisms in sAlgk of type KA(M,n),
then there is a weak equivalence

MA/k(M,n) ' BAutk(A,M).

In particular, this moduli space is connected and any object of MA/k(M,n)
represents André-Quillen cohomology.
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Proof. The first claim follows immediately from the definition of type KA,
Proposition 2.5.9.3, and the case M = 0 of the previous lemma.

For the second claim, let us write MA/k(M,n) = Mn for n ≥ 1. Because
of Lemma 2.5.17 we need only calculate M1. Let M0 be the moduli space of
pairs of the form KMnA � KA; that is diagrams of the form

Y � X

of simplicial F -algebras under k so that Y and X have trivial higher homotopy
there is an isomorphism of Φ-algebras from π0Y � π0X to M n A � A. An
easy calculation shows M0 ' BAutk(A,M). We establish a weak equivalence
M1 'M0.

If X → Y is a morphism of type KA(M, 1), we take the homotopy pull-back
of X → Y ← X to get a morphism Y ′ → X – with the evident section – of
the form KMnA � KA. This gives the map M1 →M0. To get map back let
Y � X be a morphism of the form KMnA � KA and let M ′ be the kernel of
π0Y → π0X and form

Kπ0X → K(M ′, 1) nKπ0X

That these two functors have natural transformations to the identity is an ex-
ercise left to the reader. Or see the proof of Proposition 6.5 of [7].

2.5.20 Remark. This last result provides an equivalence of moduli spaces

(2.5.4) MA/k(M,n) '−→M(KA(M,n)"KA).

In particular,MA/k(M,n) is connected and any morphism of k-algebras of type
KA(M,n) is weakly equivalent (although not canonically) to KA → KA(M,n).
Combining this statement with the pull-back diagram of Proposition 2.5.13 and
the isomorphism of Lemma 2.5.18 we have the following statement: if X is
a simplicial F -algebra under the constant simplicial F -algebra k, then the k-
invariants of the Postnikov tower of X lie in

Hn+1
F (PnX/k, πnX).

By Proposition 2.5.10 we know that πnX is, in fact, a π0X-module.

We record the following result for later use. Recall that all the moduli spaces
we are considering are built in the category sAlgk of F -algebras under k.

2.5.21 Lemma. Let k → A be a morphism of Φ-algebras, let M be an A-module
and let m ≥ 1. Then there is a commutative square with horizontal maps weak
equivalences

M(KA#KA(M,n)) ' //

��

M(KA#KA(M,n+ 1))

��
M(KA ⊕ (M,n)) ' //M(KA#KA(M,n+ 1)"KA).
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The left vertical map sends X → Y to Y and the right vertical map sends a
morphism X → Y to X → Y ← X.

Proof. This is a combination of Theorem 2.5.16, Lemma 2.5.17, and the equiv-
alence 2.5.4.

We now investigate the homotopy type of the one of the spaces that arises
here.

Let k → A be a morphism Φ-algebras, M an A-module and B a simplicial
F -algebra under k.

2.5.22 Proposition. There is a homotopy fiber sequence∐
f

HnF (B/k,Mf ) //M(B#KA(M,n)"A)
p //M(B)×BAut(A,M)

where f : π0B → A runs over all Φ-algebra isomorphisms under k and Mf

indicates the π0B-module induced by f

Proof. We will identify the fiber of the arrow p as

mapsAlgk
(X,KA(M,n))

and then apply Proposition 2.5.22.
As in the proof of Proposition 1.1.17, the fiber of the morphism p is the

nerve of the category of diagrams

KA(M,n)

'
��

Aoo

'
��

B U
'oo // V Woo

However, the functor that takes such a diagram to the diagram

B U
'oo // V KA(M,n)'oo

induces an equivalence of categories and the result follows from Example 1.1.15.

Finally, we specialize to the case where B = A. The following is an easy
consequence of the previous result, the fact that M(A) = BAutk(A), and the
fact that Autk(A) acts freely on π0 map0(A,KA(M,n)). Recall that

ĤnF (A/k,M) = EAut(A,M)×Aut(A,M) Hn(A,M)

is the Borel construction of the natural action of Autk(A,M) on the André-
Quillen cohomology space.
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2.5.23 Corollary. There is a homotopy fiber sequence

HnF (A/k,M) //M(A#KA(M,n)"A)
p // BAutk(A,M)

and the induced action of Autk(A,M) on HnF (A/k,M) is the natural action on
the André-Quillen cohomology space. Furthermore, there is a weak equivalence

M(A#KA(M,n)"A) ' ĤnF (A/k,M).
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Chapter 3

Decompositions of Moduli
Spaces

3.1 The spiral exact sequence

The spiral exact sequence displays the relationship between two different sets
of homotopy groups that can be defined on a simplicial T -algebra in spectra.
The existence of this exact sequence and its properties are discussed in [17]
and [7] and this section is an amalgamation of those two papers. The added
value here and the whole reason for running through these ideas once again
is so that we can prove Corollary 3.1.18, which displays a localized version of
the more traditional spiral exact sequence. This version is at the heart of our
computations.

3.1.1 Natural homotopy groups and the exact sequence

We give ourselves a model category C and a set P of small projectives, in the
sense of Bousfield – all as discussed in section 1.4. We also assume enough
that we get the P-resolution model category on sC; this is a simplicial model
category. Given P ∈ P, there are two notions of homotopy groups for objects
in sC. First, if X ∈ sC, we can form the simplicial abelian group [P,X], where
[−,−] denotes the morphisms in the homotopy category of C. We can then take
the homotopy groups of this simplicial abelian group:

πi[P,X] def= πiπP (X).

These are the homotopy groups used to define the weak equivalences in the
P-model category structure. On the other hand, we can form the simplicial
mapping space map(P,X), where we now regard P as a constant simplicial
object in sC and, as always, we either assume that X is P-fibrant or we take
the derived mapping space. Because the objects of P are homotopy cogroup

92



objects, this mapping space has a basepoint given by the morphism

P → φ→ X

where φ is the initial object. Define the natural homotopy groups by

πi,PX
def= πi map(P,X).

These natural homotopy groups are representable. If K is any pointed simplicial
set and P ∈ P, define P ∧K by the push-out diagram

P ⊗ ∗ //

��

P ⊗K

��
φ⊗ ∗ // P ∧K.

Then there is a natural isomorphism

πi,PX ∼= [P ∧∆i/∂∆i, X]P

where the symbol [−,−]P means homotopy classes of maps in the P-resolution
model category structure. In contrast, the homotopy groups π1πP (X) do not
seem to be representable. (The groups πiπP (X) are representable if i 6= 1. See
[17].)

The representability of πi,P (−) suggests a construction. Let K be a pointed
simplicial set and let C/φ be the arrow category of objects in C equipped with
an augmentation Z → φ to the initial object. Then we have defined a functor

(−) ∧K : C/φ−→sC.

This functor has a right adjoint CK(−). Indeed the functor from C to sC which
assigns Z ⊗K to Z has a right adjoint given by the zeroth object in the expo-
nential object

(3.1.1) MKX
def= hom(K,M)0.

If ∗ is “one-point” simplicial set, then CKX is defined by the pull-back diagram

(3.1.2) CKX //

��

MKX

��
φ // M∗X = X0.

The construction of CKX is natural in K; in other words, we have a bifunctor

C(−)(−) : sSetsop∗ × sC−→ C/φ.
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where sSets∗ is the category of pointed simplicial sets. Note also that if K → L
is a cofibration of simplicial sets, then there is pull-back diagram

(3.1.3) CL/KX //

��

MLX

��
φ // MKX.

An important aspect of this construction is the following:

3.1.1 Lemma. 1.) Let A → B be an acyclic cofibration in C and K → L a
fibration of simplicial sets. Then

A⊗ L tA⊗K B ⊗K → B ⊗ L

and
A ∧ L tA∧K B ∧K → B ∧ L

are acyclic Reedy cofibrations.
2.) Suppose X ∈ sC is Reedy fibrant and K → L is a fibration of pointed

simplicial sets. Then the morphism

MLX−→MKX

is a fibration in C and the morphism

CLX−→CKX

is a fibration in C/φ with the fiber at φ→ CKX naturally isomorphic to CK/LX.

Proof. The first statement is simply a matter of inspection. The second state-
ment follows from an adjointness argument, using the first statement. Alterna-
tively, combine the diagrams 3.1.2 and 3.1.3.

To shorten notation, we define

CnX
def= C∆n/∆n

0
X

ZnX
def= C∆n/∂∆nX.

Then the morphism
d0 : ∆n−1/∂∆n−1 → ∆n/∆n

0

and Lemma 3.1.1 define – at least for X Reedy fibrant – a fibration sequence in
C/φ

(3.1.4) ZnX // CnX
d0 // Zn−1X.

The following lemma starts the calculations. If A is a simplicial abelian
group, let NA be its normalized chain complex.
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3.1.2 Lemma. Let X be a Reedy fibrant object in sC.

(1) For all P ∈ P projective, there is a natural isomorphism [P,CnX] ∼=
Nn[P,X];

(2) If P ∈ P is a projective, then there is a natural exact sequence

[P,Cn+1X]
d0 // [P,ZnX] // πn map(P,X)→ 0

Proof. The cofiber sequence

∆n
0 → ∆n → ∆n/∆n

0

of simplicial sets yields, using Lemma 3.1.1, a fibration sequence

(3.1.5) CnX → Xn →M∆n
0
X.

Furthermore
[P,M∆n

0
X]→M∆n

0
[P,X]

is an isomorphism, by the standard induction argument. (See [21], VIII.1.8, for
the cosimplicial analog.) The fibration sequence of 3.1.5 yields a short exact
sequence

0→ [P,CnX]→ [P,Xn]→ [P,MnX]→ 0

and part (1) now follows.
For (2), note that the adjoint isomorphism

HomC(P,ZnX)→ HomsC(P ∧∆n/∂∆n, X)

and Lemma 3.1.1.1 yields a well defined map

[P,ZnX]−→πn map(P,X).

Since any element in πn map(P,X) is represented by an element P ∧∆n/∂∆n →
X, this morphism is onto. If P ∧ ∆n/∂∆n → X represents the zero object in
πn map(P,X), then it automatically extends over P ∧∆n+1/∆n+1

0 .

3.1.3 Corollary. There is a natural isomorphism

π0πP (X)
∼=−→π0,PX

Proof. This is case n = 0 of Lemma 3.1.2.2.

We now get a set of long exact sequences

· · · → [ΣP,Zn−1X]→ [P,ZnX]→ [P,CnX]→ [P,Zn−1X]
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which can be spliced together into an exact couple

(3.1.6) [Σq+1P,Zn−1X] //_______ [Σq+1P,ZnX]

yyssssssssss

[Σq+1P,CnX]

ffMMMMMMMMMM

Using Lemma 3.1.2 we immediately see that the first derived long exact se-
quences of this exact couple yield the spiral exact sequence:

3.1.4 Proposition. For all P ∈ P and all Reedy fibrant X in sC there is a long
exact sequence

· · · → πi+1πP (X)→ πi−1,ΣPX → πi,PX → πiπPX →
· · · → π0,ΣPX →π1,PX → π1πPX → 0.

For the rest of the section, it is convenient to write

π∗(X;P ) def= π∗πP (X)

π\∗(X;P ) def= π∗,P (X)

in order to avoid very complicated subscripts.
The long exact sequences of Proposition 3.1.4 can be spliced together to give

a spectral sequence

(3.1.7) πp(X; ΣqP ) =⇒ colimk π
\
k(X; Σp+q−kP ).

using the triangles

(3.1.8) π\p−1(X; Σq+1P ) // π\p(X; ΣqP )

{{ww
ww

ww
ww

w

πp(X; ΣqP )

eeK
K

K
K

K

as the basis for an exact couple. Here and below the dotted arrow means a
morphism of degree −1. In the basic case when C = S is the category of spectra
and P = PE is the set of projective arising from an Adams-type homology
theory (see Definition 1.4.2), this is actually a very familiar spectral sequence
in disguise, as we now explain.

So let us assume we are working with spectra and simplicial spectra and that
P = PE .

We may assume that X is Reedy cofibrant spectrum, and let sknX denote
the nth skeleton of X as a simplicial spectrum. Then geometric realization
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makes {|sknX|} into a filtration of |X| and the standard spectral sequence of
the geometric realization of a simplicial spectrum is gotten by splicing the to-
gether the long exact sequences obtained by apply the functor [Σp+qP,−] to the
cofibration sequence

|skp−1X|−→|skpX|−→Σp(Xp/LpX).

If we let

[Σp+qP, |skpX|](1) = Im{[Σp+qP, |skpX|]−→[Σp+qP, |skp+1X|]}

then the first derived long exact sequence of this exact couple is

(3.1.9) [Σp+qP, |skp−1X|](1) // [Σp+qP, |skpX|](1)

yyrrrrrrrrrr

πp[ΣqP,X]

ffM
M

M
M

M

and we obtain the usual spectral sequences

(3.1.10) πp(X; ΣqP ) = πp[ΣqP,X] =⇒ [Σp+qP, |X|].

Thus the two spectral sequences have isomorphic E2-terms. More is true. The
next result says that the two exact couples obtained from the triangles of 3.1.8
and 3.1.9 are isomorphic; hence, we have isomorphic spectral sequences and we
can assert that geometric realization induces an isomorphism

colimk π
\
k(X; Σp+q−kP )

∼=−→[Σp+qP, |X|].

3.1.5 Lemma. Geometric realization induces as isomorphism between the spiral
exact sequence

· · · → π\p−1(X; Σq+1P )→ π\p(X; ΣqP )→ πp(X; ΣqP )→ · · ·

and the derived exact sequence

· · · → [Σp+qP, |skp−1X|](1)−→[Σp+qP, |skpX|](1)−→πp[ΣqP,X]→ · · ·

Proof. We construct a map between the exact sequences which induces an iso-
morphism πp(X; ΣqP ) ∼= πp[ΣqP,X]. Once that is in place, the five lemma and
an induction argument show that we must have an isomorphism. To do this,
we write down the map

HomS(Z,CKX) ∼= HomsS(Z ∧K,X)−→HomS(Z ∧ |K|, |X|).

This does not induce a map out of the triangle of 3.1.6; however, after taking first
derived triangles, we get a morphism from the triangle of 3.1.8 to the triangle
3.1.9, as required.
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3.1.6 Remark. Lemma 3.1.5 implies that we have a spectral sequence

πp[ΣqDEα, X] =⇒ [Σp+qDEα, |X|]

where the Eα are the finite cellular spectra so that colimEα ' E. Taking the
colimit of α, as in Remark 1.4.8 we get a spectral sequence

πpEq(X) =⇒ Ep+q|X|.

Lemma 3.1.5 implies that this is the usual homology spectral sequence of a
simplicial spectrum.

3.1.2 The module structure

The spiral exact sequence is natural in X and P and the naturality in P leads
to the module structure of the exact sequence. To be concrete, we will limit
ourselves to the situation which will arise here, but there are possibilities for
almost infinite generalization. Thus in our basic case we will work with spectra
and P = PE as in Definition 1.4.2.

Thus we will have a simplicial operad T that is homologically adapted to E∗
and so that the resulting triple TE on E∗E has an augmentation TE → Φ. The
notion of homologically adapted was defined in Definitions 1.4.13 and 1.4.16.
The notion of an augmented triple was defined in Definition 2.5.7. In particular,
we have a triple Φ on E∗E-comodules so that if X is a T -algebra, then π0E∗T
is a Φ-algebra. See Example 2.5.8 and Propositions 2.5.9 and 2.5.10.

3.1.7 Example. Here are the main examples:

1. In the case where T is the constant simplicial commutative monoid operad
(so that a T -algebra is a simplicial E∞-ring spectrum) and E∗ = K∗ (p-
completed K-theory), then Φ is the free θ-algebra functor.

2. In the case when T is a simplicial E∞-operad and E∗ is arbitrary, then
Φ is simply the graded commutative algebra functor. Recall that T is a
simplicial E∞-operad if for all k the space T (k) is contractible and if the
action of Σk on T (k) is level-wise free.

3. In the case when T is the constant simplicial associative monoid operad
(so that T -algebras are simplicial A∞-ring spectra), we can take Φ to be
the associative algebra operad.

Now let T (P) be the category with objects the simplicial T -algebras T (P ),
P ∈ P (regarded as constant objects) and morphisms all classes of morphisms
of T -algebras in the P-resolution homotopy category obtained from Theorem
1.4.9. Let Pre+(T (P)) be the product preserving presheaves of sets on T (P)
(there are no sheaves).

3.1.8 Example. The main example we have of an object in Pre+(T (P)) is

T (P ) 7→ π0 mapT (T (P ), X) ∼= π0,PX
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when X is a (fibrant) simplicial T -algebra. Let π0,∗X denote this object in
Pre+(T (P))

If we let P stand (by abuse of notation) for the category with objects P and
morphisms all homotopy classes in spectra. There is a forgetful functor

Pre+(T (P))−→Pre+(P).

given by restricting along the functor T : P → T (P). In particular, we see that
for each P ∈ P and each object F ∈ Pre+(T (P)), the set F (T (P )) is actually
an abelian group. However, not every transition function F (T (P ))→ F (T (Q))
need be a homomorphism of abelian groups.

We would like to regard the objects of Pre+(T (P)) as algebras of a certain
sort. In Section 2.1.2 we showed that there was an equivalence of categories

y∗ : AlgΦ
E∗E−→Sh+(Φ(E∗P))

where Sh+(Φ(E∗P)) ⊆ Pre+(Φ(E∗P)) was a full-subcategory satisfying a de-
scent (or sheaf) condition. The functor y∗ is the Yoneda embedding

A 7→ HomΦ(−, A).

Less formally, the left adjoint to this equivalence was given by

y∗G = colimαG(E∗Σ∗DEα).

See Lemma 2.1.21 for an exact statement. This functor extends to a functor
y∗ : Pre+(Φ(P))→ AlgΦ

E∗E .
The functor

π0E∗(−) : T (P)−→Φ(E∗P)

guaranteed by our assumptions defines a restriction functor

Pre+(Φ(E∗P))→ Pre+(T (P))

which has a left adjoint given by left Kan extension. This yields a composable
pair of functors

Pre+(T (P))
LKan // Pre+(Φ(P))

y∗ // AlgΦ
E∗E

By abuse of notation we write y∗ : Pre+(T (P)) → AlgΦ
E∗E for this composite

functor as well; it is left adjoint to the functor

A 7→ HomΦ(π0E∗(−), A).

3.1.9 Lemma. This composite functor y∗ : Pre+(T (P))→ AlgΦ
E∗E is isomor-

phic to the functor
F 7→ colimα F (T (Σ∗DEα)).
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Proof. Let us drop the suspensions from the notation. After dissecting the
definitions, we find that the composite is given by the coend1∫ T (P)

F (T (P ))⊗ Φ(E∗P ).

Since Φ(E∗P ) ∼= π0E∗T (P ), we can write

Φ(E∗P ) ∼= colimi π0 map(DEi, T (P ))
∼= colimi π0 mapT (T (DEi), T (P )).

Thus, evaluation gives a map

ε :
∫ T (P)

F (T (P ))⊗ Φ(E∗P )→ colimi F (T (DEi)).

The claim is that this natural map is an isomorphism. It clearly is if F is a
representable of the form

F (−) = π0 mapT (−, T (P )).

Since the coend and the colimit commute all colimits in F , this implies that
ε is an isomorphism if F is a coproduct of representables. The general case
follows, since every F is the coequalizer of a pair of maps between coproducts
of representables.

Modules over algebras can be defined as abelian objects in an over category
and a similar definition applies to the objects in Pre+(T (P)); see Proposition
3.1.11 below. However, we can offer a more concrete definition exactly as in
Definition 2.1.23. Only the base category on which our contravariant functors
has changed.

3.1.10 Definition. Let F ∈ Pre+(T (P)). Then we specify an F -module M by
the following data:

1.) an object M ∈ Pre+(P); and

2.) for each f : T (Q)→ T (P ) a map of sets

φf : M(P )× F (T (P ))−→M(Q)

subject to the conditions that

a.) if f = T (f0), then φf (x, a) = M(f0)x;

b.) for any composable pair of arrows in T (P),

φgf (x, a) = φf (φg(x, a), F (g)a);
1If X is set and A is any category with coproducts, then X ⊗A =

∐
X A.
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c.) for all a ∈ F (T (P )), the function φf (−, a) is a homomorphim of abelian
groups.

The F -modules form a category ModF (P) in the obvious way.

If M is an F -module, we form a new object M o F of Pre+(T (P)) exactly
as in Remark 2.1.24 and then we have the analog of Proposition 2.1.25. The
proof remains the same.

3.1.11 Proposition. The functor

(−) n F : ModF (P)−→Abpre+(T (P))/F

is an equivalence of categories.

3.1.12 Remark. If M is an F -module, then then there is a split projection of
Φ-algebras

y∗(M n F ) // y∗Foo

which defines a module y∗M over the Φ-algebra y∗F . In our examples, this will
actually be an ordinary module over the ring y∗F , perhaps with some additional
structure if the operation θ is present. Lemma 3.1.9 implies that the module
y∗M has a simple formula

y∗M = colimiM(Σ∗DEi).

3.1.13 Example. Let F ∈ Pre+(T (P)). Then F is not a module over itself,
but there are modules ΩnF , for n ≥ 1 and these modules play a very important
part in this discussion. For any spectrum X set Σn+X denote the spectrum
Sn+ ∧ X, where Sn+ is the topological n-sphere with a disjoint basepoint. If
P ∈ P, then Σn+P ∈ P. Then, if F ∈ Pre+(T (P)), we define a new object
Ωn+F ∈ Pre+(T (P)) by the formula

Ωn+F (T (P)) = F (T (Σn+P )).

The evident split short exact sequence

0 // ΩnF // Ωn+F
//
Foo // 0

defines ΩnF and its module structure over F . Note that as an abelian group
ΩnF (P ) = F (T (ΣnP )).

If M is an E∗E-comodule we can define the shifted E∗E comodule ΩnM by
the formula [ΩnM ]k = Mn+k. (In Section 2.5 we called this module M [n].) If
M is a module over the Φ-algebra A, then so it ΩnM . Now one easily checks
that

y∗ΩnF ∼= Ωn(y∗F )

as a module over Φ-algebra y∗F .

101



3.1.14 Example. 1.) If X is a simplicial T -algebra, then

T (P ) 7→ πn mapT (T (P ), X) = πn,PX

is a π0,∗X module which we will call πn,∗X. In fact, the natural split cofibration
sequence of simplicial T -algebras

T (P ) // T (P ⊗∆n/∂∆n)oo // T (P ∧∆n/∂∆n)

yields the abelian object over π0,∗X necessary to display πn,∗X as a module:

πn,∗X // π0 mapT (T (∗ ∧∆n/∂∆n), X) // π0,∗Xoo

An immediate consequence of these observations is that y∗πn,∗X = πn,∗EX has
a natural structure over the Φ-algebra y∗π0,∗X = π0E∗X.

2.) Slightly less obvious is that πnπ∗X = πn[−, X] is also a module over
π0,∗X ∼= π0π∗X, for n > 0. To see this, let T (P)Reedy denote the category
with objects T (P ), P ∈ P and morphisms the Reedy homotopy classes of maps
in simplicial T -algebras. Then C0[−, X] ∈ Pre+(T (P)Reedy) and Lemma 3.1.2
implies that the functor Cn[−, X] is an object in ModC0[−,X](T (P)Reedy). The
projection functor T (P)Reedy−→T (P) gives a restriction functor

Pre+(T (P))−→Pre+(T (P)Reedy)

and this gives π0π∗X the structure of an object in Pre+(T (P)Reedy). The
fact that the categories of modules have kernels and cokernels now imply that
πnπ∗X is an object in Modπ0π∗X(T (P)Reedy). We now have to argue that it
actually descends to an object in Modπ0π∗X(T (P)). Because the morphisms
f : T (Q)→ T (P ) in T (P)Reedy (or T (P) for that matter) form an abelian group,
it is sufficient to show that if f descends to the trivial morphism T (Q)→ T (∗)→
T (P ) in T (P), then the induced morphism on πnπ∗X is trivial. But we have a
factoring

T (Q ∧∆n/∂∆n)

f∧∆n/∂∆n

��

d0 // T (Q⊗∆n+1/∆n+1
0 )

��
T (P ⊗∆n/∂∆n) // T (P ⊗∆n/∂∆n)′

where (−)′ means some functorial fibrant replacement. The claim follows.
An immediate consequence of these observations is that y∗πnπ∗X = πnE∗X

has a natural structure as a module over the Φ-algebra π0E∗X.

The main result on module structures is the following:

3.1.15 Theorem. Let X ∈ sAlgT be a fibrant simplicial T -algebra. Then the
isomorphism

π0,∗X → π0π∗X

is an isomorphism of objects in Pre+(T (P)) and the the spiral exact sequence
is naturally an exact sequence of π0,∗X-modules.
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The proof is exactly the same as for Proposition 7.13 of [7]. Since it is tedious
we won’t give it here.

We now come to the main result. In order to state it, we need a bit of
notation.

3.1.16 Definition. If X is a simplicial spectrum and E∗ is a homology theory
with representing spectrum E, form the new simplicial spectrum EX = E ∧X
and define its bigraded homotopy groups by the equation

πp,qEX = πp mapsS(Sq, EX)

The mapping space here is the external mapping space defined using the
standard simplicial structure on a category of simplicial objects and we derived
the mapping space, if necessary, using the resolution model category structure
based on the set of projectives {Sq}, q ∈ Z. See Theorem 1.4.6.

3.1.17 Example. From Example 3.1.14 we immediately have that πp,∗EX and
πpE∗(X) are modules over the Φ-algebra π0,∗EX = π0E∗X.

The following now immediately follows from Theorem 3.1.15 by applying the
functor y∗; that is, by passing to a colimit.

3.1.18 Corollary. . Let X ∈ sAlgT be a fibrant simplicial T -algebra. Then
the isomorphism

π0,∗EX ∼= π0E∗X

is an isomorphism in AlgΦ
E∗E and the spiral exact sequence

· · · → Ωπn−1,∗EX → πn,∗EX → πnE∗X →
Ωπn−2,∗EX →· · · → π1,∗EX → π1E∗X → 0

is an exact sequence of π0,∗EX-modules.

3.2 Postnikov systems for simplicial algebras in
spectra

This section sets up a theory of Postnikov towers for simplicial T -algebras, where
T is one of our simplicial operads. The important correspondence to the theory
for simplicial algebras constructed in Section 2.5 is provided by the k-invariants
and the Eilenberg-MacLane objects, which will represent André-Quillen coho-
mology. In order to make this correspondence explicit, we must make some
assumptions. The following holds for this rest of this monograph, and we note
that most of this has come up before. The notion of homologically adapted was
defined in Definitions 1.4.13 and 1.4.16. The notion of an augmented triple was
defined in Definition 2.5.7.
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3.2.1 Assumptions. Let T be a simplicial operad and sAlgT the category of
simplicial algebras in spectra. Fix an Adams-type homology theory E∗ and give
sAlgT the PE = P-resolution model category structure. Furthermore

1. The simplicial operad T is homotopically adapted to E∗;

2. the resulting triple TE on simplicial E∗E-comodules has an augmentation
TE → Φ. In particular, we have a triple Φ on E∗E-comodules so that if
X is a T -algebra, then π0E∗X is a Φ-algebra.

3. the zeroth simplicial set T (0) of the simplicial operad T is a point; in
particular, the sphere spectrum is the initial object in sAlgT ;

4. the category sAlgTE
satisfies Blakers-Massey Excision, as in 2.5.11.

3.2.2 Example. There are three examples we have in mind. The following
statement collect the results of Example 2.5.8, Propositions 2.5.9 and 2.5.10,
and Theorem 2.3.13.

1. Let T be the associative monoid operad, regarded as a constant simplicial
operad. The sAlgT is the category of simplicial associative algebras in
spectra – that is, simplicial A∞-ring spectra. We can let F and Φ be the
associative algebra triple on E∗E-comodules.

2. Let T be a simplicial E∞-operad. Then we can let F = E∗T regarded as
triple and we can let Φ be the commutative algebra triple.

3. For this example, we specialize to the case of E∗ = K∗, p-completed K-
theory. Then we can let T be constant commutative monoid operad, so
that sAlgT is the category of simplicial commutative algebras in spectra
– that is, simplicial E∞-ring spectra. Then we can let F = Φ be the free
theta-algebra triple.

The question of whether these operads are relatively left proper and satis-
fied Blakers-Massey excision was settled in Example 2.3.2, Example 2.3.4, and
Proposition 2.3.11.

3.2.3 Remark (Notation for André-Quillen Cohomology). In the rest of
this paper were are going to work with André-Quillen cohomology of simplicial
E∗-algebras.

Suppose k is Φ-algebra and Y is a simplicial T -algebra equipped with a
weak equivalence of E∗T -algebras E∗Y → k. Equivalently, we could require
that πnE∗Y = 0 for n > 0 and π0E∗Y ∼= k as Φ-algebras. (In the context of
the three examples just given, we are thinking of the example where Y is the
constant simplicial algebra on some E∞-ring spectrum.) Suppose we are given
a morphism of k → A of Φ-algebras and an A-module M . Now let Y → X be
a morphism of simplicial T -algebras so that X is equipped with a morphism of
Φ-algebras π0X → A so that the composite

k ∼= π0E∗Y → π0E∗X → A
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is our chosen morphism k → A. Then we will be concerned with the André-
Quillen cohomology groups

Hn
TE/E∗E

(E∗X/k,M).

This is a bit of a mouthful, so we will write Hn(E∗X/k,M) for these groups,
or even Hn(E∗X,M) if k = E∗S = E∗ with the Φ-algebra structure obtained
from Assumptions 3.2.1.

We now get down to our construction of Postnikov towers. Recall that we
have two homotopy theories on simplicial T -algebras. First, there is the P-
resolution model category structure where P is a fixed set of finite CW-spectra
closed under coproducts and containing the spectra ΣkDEi. This simplicial
model category structure was defined and discussed in Section 1.4 and figured
in the Assumptions 3.2.1. Second, there is the localization of this category,
where we define a morphism f : X → Y to be an π∗E∗(−)-equivalence if

π∗E∗X−→π∗E∗Y

is an isomorphism. This yielded only a semi-model category (See Definition
1.1.6.); the cofibrations remained the same as in P-resolution model category.
While the latter is the one that is ultimately important, the former is the key
to constructions, and we will take care to keep them straight.

3.2.4 Definition. Let X ∈ sAlgT be a simplicial T -algebra in spectra. Then an
nth Postnikov section for X is a morphism of simplicial T -algebras q : X → Y
so that there is an isomorphism

f∗ : πi,PX
∼=−→πi,PY, i ≤ n

for all P ∈ P and so that πi,PY = 0 for i > n. More succinctly, we will say
that f∗ : πi,∗X → πi,∗Y is an isomorphism for i ≤ n and that πi,∗Y = 0 for
i > n. The asterisk (∗) is a placeholder for P ∈ P. A Postnikov tower for X is
a tower of simplicial T -algebras under X

X → · · · → Xn → Xn−1 → · · · → X0

so that X → Xn is an nth Postnikov section.

The reader will have noticed that this definition depends on P and, perhaps,
that P should be included in the notation at some point. However, since P will
be fixed throughout, we forebear.

3.2.5 Lemma. Let X be a simplicial T -algebra in spectra. Then there exists a
natural Postnikov tower for X

X → · · · → PnX → Pn−1X → · · · → P0X
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Proof. The only wrinkle on the standard construction is that not every object
in sAlgT is Reedy fibrant. We let X → X ′ denote some functorial acyclic
cofibration fromX to a fibrant object. Then PnX = colimPn,tX where Pn,0X =
X ′ and Pn,t+1X = Y ′ with Y defined by the push-out diagram∐

P,k>n

∐
f :P∧∆k/∂∆k→Pn,tX

P ∧∆k/∂∆k //

��

Pn,tX

��∐
P,k>n

∐
f :P∧∆k/∂∆k→Pn,tX

P ∧∆k+1/∆k+1
0

// Y.

Recall that Pre+(T (P)) is the category of functors

F : T (P)op−→Sets

which preserve products.

3.2.6 Definition. 1.) Let F ∈ Pre+(T (P)). Then we say that a simplicial
T -algebra is of type BF if π0,∗X ∼= F and πi,∗X = 0 for i > 0.

2.) Suppose further that M is an F -module. Then we say a morphism
X → Y is of T -algebras is of type BF (M,n), n ≥ 1, if X is of type BF , the
morphism

π0,∗X−→π0,∗Y

is an isomorphism, πn,∗Y ∼= F as an F -module, and πi,∗Y = 0 if i 6= 0 or n. As
a shorthand, we may say Y is of type BF (M,n), leaving the morphism X → Y
understood.

Note that X → Y is of type BF (M,n), then the composition

X−→Y−→P0Y

is a weak equivalence. This observation, the spiral exact sequence, and Theorem
3.1.15 immediately imply the following lemma.

3.2.7 Lemma. 1.) Let X be of type BF . Then π0π∗X ∼= F , πiπ∗F = 0 if
i 6= 0, 2 and

π2π∗X ∼= ΩF

as an F -module.
2.) Let X → Y be of type BF (M,n). Then there is an isomorphism

πiπ∗Y ∼= πiπ∗X ×

 M i = n;
ΩM i = n+ 2;
0 otherwise.

If i ≥ 1, this is an isomorphism of F -modules.
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3.2.8 Example. Let A ∈ AlgΦ and N an A-module. Recall that the triple
Φ on E∗E-comodules is built into our Assumptions 3.2.1. Then we have the
associated object F ∈ Pre+(T (P))

F (−) = HomAlgΦ
(π∗E∗(−), A)

and the F -module M

M(−) = HomE∗E(E∗(−), N).

The previous result and a colimit argument as in Remark 1.4.8 show that if X
is of type BF , then

πiE∗X ∼=

 A i = 0;
ΩA i = 2;
0 otherwise

and, by Corollary 3.1.18 this is an isomorphism of A-modules for i ≥ 1. Fur-
thermore, if X → Y is of type BF (M,n), then

πiE∗Y ∼= πiE∗X ×

 M i = n;
ΩM i = n+ 2;
0 otherwise.

Again this is an isomorphism of A-modules in positive degrees. Note, in partic-
ular, that E∗Y is not of type KA(M,n). Compare Definition 2.5.12.

We now come to a functorial construction of k-invariants. Let f : X → Y
be any morphism in sAlgT and let C be the pushout of the two-source

Y ′ ←− X ′−→(P0X)′

where use the symbol (−)′ to denote some functorial construction to replace X
be a P-cofibrant simplicial algebra and the two maps by P-cofibrations. Then,
applying the Postnikov section functor of Lemma 3.2.5, we obtain a commutative
diagram

(3.2.1) X

f

��

X ′'oo //

��

(P0X)′

δn(f)

��
Y Y ′

'oo // Pn+1C.

We will refer to the morphism δn(f) as the difference construction applied to f .

3.2.9 Proposition. Let f : X → Y be a morphism of simplicial T -algebras and
suppose there is an n ≥ 1 so that

1. f∗ : πi,∗EX → πi,∗EY is an isomorphism for i < n, and

2. f∗ : πn,∗EX → πn,∗EY is surjective.
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Let M = πn+1,∗(EY,EX). Then M is naturally an A = π0,∗EX ∼= π0E∗X
module and there in an π∗E∗(−)-equivalence from δn(f) to a morphism of type
BA(M,n + 1). If πi,∗(Y,X) = 0 for i 6= n + 1, then the right hand square of
3.2.1 induces an π∗E∗(−)-equivalence

X ′ → holim{Y ′ → Pn+1C ← (P0X)}.

Proof. There is a homotopy push-out in simplicial E∗T -algebras

E∗X
′ //

��

E∗(P0X)′

��
E∗Y

′ // E∗C.

This is because the functor E∗(−) : sAlgT → sAlgE∗T preserves cofibrations,
weak equivalences, and push-outs along free cofibrations. By the five-lemma
and the spiral exact sequence, we have that

πiE∗X → πiE∗Y

is a surjection for i ≤ n and an isomorphism for i < n. Furthermore,

πn+1E∗(Y,X) ∼= M

as an A-module. Then, Corollary 2.3.15 implies that πiE∗(C,P0X) = 0 for
i ≤ n and

πiE∗(C,P0X) ∼= M

as A-modules. This and using the spiral exact sequence in reverse proves that
δn(f) is as claimed. It is then straightforward to check the final claim.

3.2.10 Remark. There is a stronger result than the one we just proved. Indeed,
let f : X → Y be a morphism of simplicial T -algebras and suppose there is an
n ≥ 1 so that

1. f∗ : πi,∗X → fi,∗Y is an isomorphism for i < n, and

2. f∗ : πn,∗X → πn,∗Y is a pointwise surjective

Let M = πn+1,∗(Y,X). The M is naturally a F = π0,∗X module and δn(f) is a
morphism of type BF (M,n+ 1). If πi,∗(Y,X) = 0 for i 6= n+ 1, then the right
hand square of 3.2.1 is a homotopy pull-back square.

This can be proved exactly as the comparable result in section 8 of [7].
However, this would mean developing the homotopy theory of Pre+(T (P)) and
we haven’t done that. Since this is not relevant for our main applications, we
will be content with the previous result.

The next question is whether Eilenberg-MacLane objects exist. Again we
concentrate on the case where A is the kind of algebra which can arise as π0E∗X,
where X is a simplicial T -algebra. Thus we will have a simplicial operad T that
is homologically adapted to E∗ and so that the resulting triple TE on E∗E has
an augmentation TE → Φ. See Assumptions 3.2.1 and Examples 3.2.2.
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3.2.11 Proposition. Let A be a Φ-algebra and M a Φ-module over A. Then
there is a simplicial T -algebra of type BA and for each n ≥ 1 there is a morphism
of simplicial T -algebras of type BA(M,n). Furthermore, for X ∈ sAlgT there
are natural isomorphisms

π0 map(X,BA) ∼= π0 mapsAlgE∗T
(E∗X,A)

∼= HomAlgΦ
(π0E∗X,A).

and

π0 map(X,BA(M,n)) ∼= π0 mapsAlgE∗T
(E∗X,KA(M,n))

∼=
∐

π0E∗X→A

Hn(E∗X,M).

Proof. This can be done by a generator and relations argument. (See [7].)
Alternatively, we could use a Brown representability argument. (See [22].) We
need to show certain functors are representable – namely, the targets of the
isomorphisms listed in the statement of the result. The argument given in [44]
certainly works, where we use as our spheres the objects T (P ⊗∆k/∂∆k). We
leave the details to the reader.

It is worth recording immediately that the Eilenberg-MacLane object BA
constructed in this result has a strong homotopy discreteness property.

3.2.12 Lemma. Let BA be an Eilenberg-MacLane object so that

π0 map(X,BA) ∼= HomAlgΦ
(π0E∗X,A)

for all simplicial T -algebras A. Then all of the components of map(X,BA) are
contractible.

Proof. This follows from the fact that if ∗ → ∆k/∂∆k is the inclusion of the
basepoint, then the induced map

X ∼= X ⊗ ∗ → X ⊗∆k/∂∆k

induces an isomorphism on π0E∗(−).

We next turn to the project of identifying the homotopy type of the mapping
space map(X,BA(M,n)).

By taking the class of the identity in π0 map(BA(M,n), BA(M,n)) and using
the isomorphism supplied by the second part of Proposition 3.2.11, we have a
universal morphism u : E∗BA(M,n)−→KA(M,n) and a diagram

(3.2.2) E∗BA(M,n) u //

��

KA(M,n)

��
E∗BA // A.
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Now Example 3.2.8 implies that if X → Y is of type BA(M,n), then

δn(E∗f) : P alg0 (E∗X)→ P algn C

is of type KA(M,n). Here P algn denote the algebraic Postnikov section of Propo-
sition 2.5.6 (there simply called Pn) and C is the homotopy push-out in sAlgE∗T
of

P alg0 E∗X E∗Xoo // E∗Y.

Applying this observation to the universal morphism u we get a diagram

E∗BA(M,n) //

��

P algn+1C
v //

��

KA(M,n)

��
E∗BA // A =

// A.

3.2.13 Lemma. The induced map

v : P algn+1C−→KA(M,n)

is a weak equivalence of simplicial TE-algebras in E∗E-comodules.

Proof. Let X = T (P ∧∆n/∂∆n). Then we get, by examining the definition of
u, a commutative diagram

πn,PBA(M,n)
∼= //

∼=
��

π0 mapsCE∗E
(E∗P ∧∆n/∂∆n,KA(M,n)).

πnπPBA(M,n)

33ggggggggggggggggggg

The horizontal map is an isomorphism by construction and the vertical map is
an isomorphism by the spiral exact sequence. In the end, we get an isomorphism

πnπPBA(M,n)
∼=−→π0 mapsCE∗E

(E∗P ∧∆n/∂∆n,KA(M,n)).

Letting P = ΣkDEi, taking the colimit over i and letting k vary gives an
isomorphism

πnE∗BA(M,n)
∼=−→πnKA(M,n).

The result follows.

We now give a continuous version of the statement that Eilenberg-MacLane
objects represent cohomology, and we also take a moment to present a relative
version. If M is some A-module, let

Hn(E∗X/k,M) = mapsAlgTE/A
(E∗X,KA(M,n))
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denote the André-Quillen cohomology space. This is the derived space of maps
of simplicial TE-algebras over A. Of course,

πiHn(E∗X/k,M) ∼= Hn−i(E∗X/k,M).

We should really write HnTE/E∗E
(E∗X/k,M), but in keeping with Remark 3.2.3

we shorten the notation. If k = E∗, we write will continue to write H∗(E∗X,M)
for H∗(E∗X/E∗,M).

First we have an absolute result.

3.2.14 Proposition. Let A be a Φ-algebra, M an A-module and let BA(M,n)
be an Eilenberg-MacLane object which represents Andre-Quillen cohomology as
in 3.2.11.2. Let n ≥ 2. Then functor which sends

X ← U → V → BA(M,n)

to
E∗X ← E∗U → E∗V → E∗BA(M,n) u→ KA(M,n)

defines a natural weak equivalence

fX : mapsAlgT /BA
(X,BA(M,n))→ Hn(E∗X,M).

Proof. In this proof we will write

mapsAlgT /BA
(−,−) = mapBA

(−,−)

to make some of our more cluttered calculations easier on the eye. The morphism
fX is a morphism of H-spaces, so it is sufficient to show that fX induces an
isomorphism on homotopy groups. We choose as basepoint of the mapping space
mapBA

(X,BA(M,n)) the “constant” map

X → BA → BA(M,n).

This maps to the corresponding constant map

E∗X → A→ KA(M,n).

We have an isomorphism on π0 by Proposition 3.2.11.
To examine what happens in higher homotopy groups, we make a construc-

tion. Let C be any simplicial category. If K is a simplicial set and Y is in C
let hom(K,Y ) be the internal mapping (or exponential) object. We may fix an
object U and consider the category C/U of objects over U . If K is a simplicial
set and Y → U is in C/U , we define the mapping object homU (K,Y ) by the
pull-back diagram

homU (K,Y ) //

��

hom(K,Y )

��
U = hom(∗, U) // hom(K,U).
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If Y → U has a section and K is pointed, we may define the pointed mapping
object by making a further pull-back

homU
∗ (K,Y ) //

��

homU (K,Y )

��
U // homU (∗, Y ) = Y.

Note that the section on Y induces a section U → homU
∗ (K,Y ). One now checks

that we have a commutative square

πp mapBA
(X,BA(M,n))

∼= //

��

π0 mapBA
(X,homBA

∗ (∆p/∂∆p, BA(M,n)))

��
πp mapA(E∗X,KA(M,n)) ∼=

// π0 mapA(E∗X,homKA
∗ (∆p/∂∆p,KA(M,n))).

The result follows once one checks that BA → homBA
∗ (∆k/∂∆k, BA(M,n)) and

A → homA
∗ (∆k/∂∆k,KA(M,n)) are of type BA(M,n − k) and KA(M,n − k)

respectively, and that

E∗ homBA
∗ (∆k/∂∆k, BA(M,n))→ homA

∗ (∆k/∂∆k,KA(M,n))

is a model for the universal morphism. This is easy and left to the reader.

We are now going to prove two results about the homotopy types of various
moduli spaces of Eilenberg-MacLane objects. It is important for the next section
that we have a relative version of the results here. Choose a morphism k → A
of Φ-algebras and suppose we have an E∞-ring spectrum Y so that E∗Y ∼= k as
Φ-algebras. We may regard Y as a constant object in sAlgT and then choose
a P-equivalence Yc → Y with Yc cofibrant in the P-resolution model category.
In particular, πnE∗Yc = 0 for n > 0 and we have an isomorphism of Φ-algebras,
π0E∗Yc ∼= k. Corollary 1.4.12 implies that the induced map |Yc| → Y is an E∗
equivalence.

In this section and the next we are going to be working with the category
sAlgYc

of simplicial T -algebras under Yc. Because of our assumptions 3.2.1, this
category is independent of the choice of Yc; specifically, we have the following
result.

3.2.15 Lemma. Suppose f : Y0 → Y1 is a π∗E∗(−) equivalence of P-cofibrant
objects in sAlgT . Then the adjoint pair

f∗ = Y1 tY0 (−)sAlgY0

// sAlgY1
: f∗oo

is a Quillen equivalence of semi-model categories.

112



Proof. Recall that we are using the π∗E∗(−) isomorphisms as our weak equiv-
alences. The functor f∗ sends a morphism Y1 → X to the composition

Y0
f // Y1

// X.

The functor f∗ preserves all π∗E∗(−)-equivalences and fibrations; the functor
f∗ preserves cofibrations for formal reasons and π∗E∗(−)-equivalences between
cofibrant objects by Lemma 1.5.10 – or, more exactly, by the argument given
for the second part of the proof of that result.

The lemma here now follows as any two P-cofibrant replacements can be
connected by a chain π∗E∗(−)-equivalences.

Now select the model for an Eilenberg-MacLane object of type BA con-
structed in Proposition 3.2.11. The morphism k → A of Φ-algebras yields a
unique homotopy class of T -algebra maps Yc → BA; by fixing a representative,
we may assume that BA is a T -algebra under Yc. Similarly, we may construct
Eilenberg-MacLane objects of type BA(M,n) under Yc.

3.2.16 Proposition. Let k → A be a morphism of Φ-algebras, Y an E∞-ring
spectrum so that E∗Y ∼= k as Φ-algebras and Yc → Y a P-cofibrant model for
Y in simplicial T -algebras. Let BA and BA(M,n) be the Eilenberg-MacLane
objects of 3.2.11.

1. Evaluation at π0E∗(−) defines a natural isomorphism

π0 mapYc
(X,BA) ∼= Homk(π0E∗X,A)

where mapYc
is the derived space of morphisms of simplicial T -algebras

under Yc and Homk means homomorphisms of Φ-algebras under k. In
addition, the components of mapYc

(X,BA) are contractible.

2. If n ≥ 2, the universal element u : E∗BA(M,n) → KA(M,n) defines a
natural weak equivalence

mapYc/BA
(X,BA(M,n) ' Hn(E∗X/k,M)

where mapYc/BA
denotes the derived space of morphisms of simplicial T -

algebras under Yc and over BA.

Proof. The first statement follows from a pull-back argument using Proposition
3.2.11.1 and Lemma 3.2.12. The second statement follows from a pull-back
argument, Proposition 3.2.14, and Remarks 2.4.3, 2.4.8, and 2.4.10.

All our moduli spaces will be formed in the category sAlgYc
. In order to

specify these moduli spaces we need to specify a class of weak equivalences.
In both Proposition 3.2.17 and Proposition 3.2.16 we will mean the π∗E∗(−)-
equivalences of simplicial T -algebras. Recall that M(KA#KA(M,n)) is the
moduli morphisms of simplicial E∗T -algebras which induce an isomorphism in
π0. This is exactly the moduli space of all algebraic Eilenberg-MacLane objects

113



of type KA(M,n). See Definition 2.5.12 and Proposition 2.5.19. Even alge-
braically, we are still working in a relative situation; for example, KA will be
an object in the category sAlgk of simplicial F -algebras under k and M(KA)
is formed in sAlgk.

3.2.17 Proposition. Let k → A be a morphism of Φ-algebras and M a Φ-
module over A. Furthermore, let Y be an E∞-ring spectrum so that E∗Y ∼= k
as Φ-algebras and suppose Yc → Y is a P-cofibrant model for Y as a simplicial
T -algebra.

1. Let M(A) be moduli space of all simplicial T -algebras of type BA under
Yc. Then the functor X 7→ P alg0 E∗X defines a weak equivalence

M(A)→M(KA) ' BAutk(A).

2. Let MA(M,n) be the moduli space of all morphisms of type BA(M,n) in
simplicial T -algebras under Yc. Then the functor f 7→ δn−1(E∗) defines a
weak equivalence

MA(M,n)→M(KA#KA(M,n)) ' BAutk(A,M)

In particular, these spaces are connected and any Eilenberg-MacLane object
in sAlgT will represent André-Quillen cohomology.

Proof. Both of these statements follow from examining the functor that the
object in question represents. We begin with first point. Choose a fixed bifi-
brant simplicial T -algebra Z under Yc which represents Homk(π0E∗(−), A). See
Proposition 3.2.16. Then if X is any simplicial T -algebra of type BA under Yc,
the isomorphism π0E∗X → A defines a morphism X → Z under Yc which is
P-equivalence. Thus M(A) ∼= BAut(X). Now an easy calculation shows that

π0Aut(X) ∼= Autk(A).

via f 7→ π0E∗f . To complete the argument, use Proposition 3.2.16 to show that
Aut(X) is homotopically discrete.

The second point is proved similarly. Choose a bifibrant model Z for BA
and a cofibration g : Z →W of type BA(M,n) so that W represents

X 7→
∐

π0E∗X→A

Hn(E∗X/k,M).

Then if we have any morphism f of type BA(M,n), there is an evident map
E∗f → δn−1E∗f ∼= E∗g, which – using the strong representability result of
Proposition 3.2.16 – defines an E∗-equivalence from f to g. This shows that
M(A,n) is connected, and now we need only show that Aut(g) is homotopically
discrete. But this is a simple calculation. Compare the corresponding result in
[7].
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3.2.18 Remark. Combining Proposition 3.2.9 with Proposition 3.2.16 we can
identify where k-invariants for simplicial T -algebras live. Indeed, when X ∈
sAlgYc

is a simplicial T -algebra under Yc and π0X ∼= A as Φ-algebras, the
Postnikov tower becomes a tower under Yc and the nth k-invariant determines
an equivalence class of elements in the group

Hn+1(E∗Pn−1X/k, πnE∗X).

3.3 The decomposition of the moduli spaces

Let us recall the basic setup. We have a simplicial operad T so that the as-
sumptions of 1.4.16 and 3.2.1 hold. In particular, there is a fixed homology
theory E∗ and a triple Φ on E∗E-comodules so that for all simplicial T -algebras
X, π0E∗X is naturally a Φ-algebra. In our two main examples, Φ is the free
commutative algebra functor or the free theta-algebra functor.

The arguments and ideas of this section also apply to the case of associative
algebras. These are considerably easier, and left to the reader.

Note that if Y is simply an E∞-ring spectra, then Y may be regarded as a
constant object in sAlgT ; hence, our assumptions imply that E∗X is Φ-algebra.
In the case where Φ is the free commutative algebra functor, this amounts
to regarding E∗Y simply as a commutative algebra and forgetting any other
structure that might be present – for example, any Dyer-Lashof operations.

If A is a Φ-algebra in E∗E-comodules, then we have a moduli space TM(A)
of realizations of A. This is the nerve of the category R(A) with objects the
commutative ring spectra X so that E∗X ∼= A as Φ-algebras; the morphisms are
E∗-equivalences. The Dwyer-Kan decomposition theorem of Proposition 1.1.12
gives a weak equivalence

TM(A) '
∐
[X]

BAut(X)

where [X] runs over the E∗-equivalence class of objects in R(A), and Aut(X) is
the (derived) space of self-equivalences of X in the E∗-local category of E∞-ring
spectra. The point of this section is give a decomposition of TM(A) in terms
of algebraic data.

We will actually work out a more general relative case. Fix a cofibrant E∞-
ring spectrum Y and let k = E∗Y . Choose a Φ-algebra morphism k → A and let
TM(A/k) be the moduli space of realizations of the Φ-algebra A under k. This
is the nerve of the category R(A/k) with objects the morphisms of commutative
ring spectra Y → X so that there is an isomorphism from E∗Y → E∗X to the
chosen morphism k → A. The morphisms in R(A/k) are morphisms under Y
which induce an isomorphism on E∗. Again there is a decomposition

TM(A/k) '
∐
[X]

BAutY (X)
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where [X] runs over the E∗-equivalence class of objects in R(A), and AutY (X)
is the (derived) space of self-equivalences of X under Y in the E∗-local category
of E∞-ring spectra.

For our decomposition results, we will work with the π∗E∗(−) localization of
the P-resolution model category structure on simplicial T -algebras in spectra,
where P is the fixed set of projectives defined in Definition 1.4.2. For a simplicial
spectrum X, we are writing πi,∗X = {πi,PX} where P runs over the elements
of P.

Regard our fixed E∞-ring spectrum Y as a constant object in the category
sAlgT of simplicial T -algebras, and choose a P-equivalence Yc → Y so that
Yc is P-cofibrant; thus Yc is a P-resolution of Y . The reason for making this
replacement is so that we can apply Lemma 3.2.15, which will imply that any
moduli space we construct out of the category sAlgYc

will be independent of
the choice of Yc.

3.3.1 Definition. Let Y be an E∞-ring spectrum and let k = E∗Y be the
resulting Φ-algebra in E∗E-comodules. Let A be a Φ-algebra under k in E∗E-
comodules. A potential n-stage for A is a simplicial T -algebra X under Yc so
that the following three conditions hold

1. π0E∗X ∼= A as Φ-algebra under k;

2. πi,∗X = 0 for i > n; and

3. πiE∗X = 0 for 1 ≤ i ≤ n+ 1.

The partial moduli space TMn(A/k) is defined to be the moduli space of all
simplicial T -algebras under Yc which are potential n-stages for A. Morphisms
are the π∗E∗(−) equivalences under Yc.

It follows from the spiral exact sequence that if X is a potential n-stage for
A, then

(3.3.1) πiE∗X ∼=

 A i = 0;
Ωn+1A i = n+ 2;
0 otherwise.

Furthermore, the structure of πn+2E∗X as a π0E∗X-module is the standard
one. See Examples 2.2.10 and 3.1.13.

Definition 3.3.1 makes sense for n = ∞. If X is a potential ∞-stage for A,
then

πiE∗X ∼=
{
A i = 0;
0 i 6= 0.

Let TM∞(A/k) be the resulting moduli space.
Here are two preliminary decomposition results.

3.3.2 Theorem. The geometric realization functor induces a weak equivalence

TM∞(A/k)→ TM(A/k).
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Proof. The spaces TM∞(A/k) and TM(A/k) are the nerves of categories
R∞(A/k) and R(A/k) respectively. Therefore, it is sufficient to define func-
tors F : R∞(A/k) → R(A/k) and G : R(A/k) → R∞(A/k) so that the two
composites FG and GF are connected to the respective identity functors by
chains of natural transformations which are π∗E∗(−) equivalences. The functor
G is easy: given a morphism Y → X we may regard X as a constant T -algebra
under Y and, hence, under Yc; this is a tautological potential ∞-stage.

We now define the functor F . If Yc → X is a potential ∞-stage, form a
functorial factorization

Yc
i // X ′ p // X

where X ′ is a P-cofibrant simplicial T -algebras and the morphisms p is a
π∗E∗(−)-equivalence. Apply geometric realization to the top map in this di-
agram and form the push-out in E∞-algebras

|Yc|
i //

ε

��

|X ′|

��
Y // Y t|Yc| |X ′|.

We now apply Corollary 1.4.12 to the top row and use that |Yc| → Y is an E∗-
equivalence between cofibrant E∞-algebras to conclude that the bottom row is
in R(A/k). Then

F (Y → X) = Y → Y t|Yc| |X
′|.

We leave it to the reader to connect FG and GF by weak equivalences to the
respective identities.

3.3.3 Theorem. The nth-Postnikov stage functor Pn induces a map of moduli
spaces

Pn : TMk(A/k)−→TMn(A/k), n ≤ k ≤ ∞

and the resulting map

TM∞(A/k)−→holim
n<∞

TMn(A/k)

is a weak equivalence.

Proof. This follows from [14], §4.6.

Because of the these results, we next address the homotopy type of the space
TMn(A/k).

3.3.4 Theorem. The functor π0E∗(−) induces a natural weak equivalence

TM0(A/k) ' BAutk(A)

where Autk(A) is the group of automorphisms of the Φ-algebra A over k. In
particular, TM0(A/k) is non-empty and connected.
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Proof. A potential 0-stage for A is nothing more nor less than a simplicial T -
algebra of typeBA under Yc. The result now follows from Proposition 3.2.17.

The main theorem of this section and, indeed, of this paper now identifies
how to pass up the layers of the tower. If A is Φ-algebra and M is an A-module,
then we have defined

Hn(A/k,M) def= HkTE/E∗E
(A/k,M) = mapsAlgk/A

(A,KA(M,n))

and

Ĥn(A/k,M) def= ĤnTE/E∗E
(A/k,M) = EAutΦ(A,M)×Aut(A,M) Hn(A/k,M).

See Remark 3.2.3 for more on this notation.

3.3.5 Theorem. Let n ≥ 1, then there is a natural homotopy pull-back diagram

TMn(A/k) //

Pn−1

��

BAutΦ(A/k,ΩnA)

��
TMn−1(A/k) // Ĥn+2(A/k,ΩnA).

The proof will occupy the rest of the section. We begin with an analysis of
how to pass from potential (n− 1)-stages to n-stages.

Suppose that X is a potential n-stage for A. Then πnE∗X ∼= ΩnA as an
A-module, by the spiral exact sequence. Then Z = Pn−1X is a potential (n−1)-
stage for A and Proposition 3.2.9 implies that there is a homotopy pull-back
square in the E∗-local category under Yc

(3.3.2) X //

p

��

BA

q

��
Z

f // BA(ΩnA,n+ 1).

Note that all the maps in this diagram induce an isomorphism on π0E∗(−). The
next result shows how to reverse this process. Recall from Proposition 3.2.16
that the simplicial T -algebra BA(M,n) represents André-Quillen cohomology;
that is,

(3.3.3) π0 mapsAlgYc
(Z,BA(M,n)) ∼= π0 mapk(E∗Z,KA(M,n)).

3.3.6 Proposition. Suppose that Z is a potential n − 1-stage for A and that
n ≥ 1. Suppose further that X lies in a homotopy fiber square of the form
displayed in 3.3.2. Then X is a potential n-stage if and only if the map

g : E∗Z−→KA(ΩnA,n+ 1)

induced by f is a weak equivalence of simplicial TE-algebras.
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Proof. This is a simple calculation, using that there is a Mayer-Vietoris se-
quence in π∗,∗(−) – and hence in π∗E(−) – for homotopy pull-backs. Compare
Proposition 9.11 of [7].

3.3.7 Remark (Obstructions to realization). Given a potential (n − 1)-
stage Z for A, then E∗Z, as an F -algebra, has exactly two non-vanishing homo-
topy groups; thus, taking algebraic Postnikov sections, we obtain a homotopy
pull-back square in F -algebras under k

E∗Z //

��

A

��
A

χ // KA(ΩnA,n+ 2).

The previous result implies that there exists a potential n-stage X so that
Pn−1X ' Z if and only if

0 = χ ∈ Hn+2(A/k,ΩnA).

Thus we see the obstructions to realizing A as elements of André-Quillen coho-
mology. The next result extends this observation to a statement about moduli
spaces.

We continue to work in the category sAlgYc
of simplicial T -algebras under

Yc. If X and Z are two T -algebras under Yc, then recall from Example 1.1.19
that M(X#Z) means the moduli space of all arrows X → Z which induce
an isomorphism on non-zero homotopy groups. In this case, we would have
πmE∗(X)→ πmE∗(Z) is an isomorphism when both source and target are non-
zero. If Z is a potential (n − 1)-stage for A, let M(Z ⊕ (ΩnA,n)) denote the
moduli space of potential n-stages X for A under Yc so that there is some π∗E∗-
weak equivalence Pn−1X → Z. This weak equivalence is not part of the data,
we are simply assuming we can find one.

3.3.8 Remark (Labeling of moduli spaces). In the rest of this section we
will be working with relative moduli spaces; that is, moduli spaces built from
objects either under Yc (on the topological side) or under E∗Yc (on the algebraic
side). We could adorn our space to indicate this; for example, in the previous
paragraph we could have writtenMYc

(X#Z) and in the statement of the next
result we could writeME∗Yc

(E∗Z) for the moduli space of the object E∗Z under
E∗Yc. However, since this will be completely universal, we won’t add this extra
bit of notation, but leave it understood.

3.3.9 Proposition. Suppose that Z is potential (n − 1)-stage for A under Yc
and that n ≥ 1. Then there is a natural homotopy fiber square

M(Z ⊕ (ΩnA,n)) //

Pn−1

��

M(E∗Z#KA(ΩnA,n+ 1)"KA)

��
M(Z)

E∗

//M(E∗Z).
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Note that the space M(Z ⊕ (ΩnA,n)) may be empty. By Proposition 3.3.6
this will happen if and only if there is no weak equivalence

E∗Z → KA(ΩnA,n+ 1)

under E∗Yc. In this case, the space M(E∗Z#KA(ΩnA,n + 1)"KA) will also
be empty.

Proof. Let M = ΩnA. The difference construction supplies a map

M(Z ⊕ (M,n))→M(Z ⊕−→BA(M,n+ 1)"BA)

where the symbol ⊕ in the target means morphisms Z → BA(M,n + 1) under
Yc which correspond to weak equivalences E∗Z → KA(M,n + 1) under E∗Yc.
See Proposition 3.2.16. Then Proposition 3.3.6 implies that this map is a weak
equivalence; thus we have a homotopy pull-back square

M(Z ⊕ (M,n)) //

Pn−1

��

M(Z ⊕−→BA(M,n+ 1)"BA)

��
M(Z) = //M(Z).

Now applying homology and composing with the universal map of Diagram 3.2.2

u : E∗BA(M,n+ 1)→ KA(M,n+ 1)

supplies a commutative diagram

M(Z ⊕−→BA(M,n+ 1)"BA) //

��

M(E∗Z#KA(M,n+ 1)"KA)

��
M(Z)

E∗

//M(E∗Y ).

To complete the proof, we show that this is a homotopy pull-back square. To
do this, note that Proposition 3.2.17 yields a weak equivalence

M(BA(M,n+ 1)"BA)−→M(KA(M,n+ 1)"KA).

Therefore it is sufficient to prove that there is a homotopy pull-back square

M(Z ⊕−→BA(M,n+ 1)"BA) //

��

M(E∗Z#KA(M,n+ 1)"KA)

��
M(Z)×M(BA(M,n+ 1)"BA) //M(E∗Z)×M(KA(M,n+ 1)"KA).

Note that the two spaces at the bottom of this diagram are connected. The
induced map on fibers is

mapwYc
(Z,BA(M,n+ 1))→ mapwE∗Yc

(E∗Z,KA(M,n+ 1)).
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Here the superscript w means, on the right, the subspace of the space of all maps
which are weak equivalences and, on the left, those maps which correspond to
weak equivalences. Then Proposition 3.2.16 shows this morphism is a weak
equivalence. The result follows.

We can now supply the proof of our core result.

3.3.10 Proof of the Theorem 3.3.5. For any morphism k → A of Φ-algebras,
any A-module M , and any m ≥ 1, there is a commutative square

(3.3.4) M(KA(M,m)"KA) ' //

��

M(KA(M,m+ 1)"KA)

��
M(KA ⊕ (M,m)) ' ////M(KA#KA(M,m+ 1)"KA).

(Recall that these are all moduli spaces of morphisms under E∗Yc and that
E∗Yc is weakly equivalent to k.) As indicated the horizontal maps are weak
equivalences, as demonstrated by the analysis of Postnikov sections given in
Proposition 2.5.16. In particular, we have a pull-back square. If Y is a potential
(n − 1)-stage for A, we take M = ΩnA and m = n + 1. Then M(E∗Z) is one
component ofM(KA ⊕ (M,m)). There are two cases.

The first case is that there is no weak equivalence of simplicial algebras
E∗Z → KA(ΩnA,M) under E∗Yc. With that assumption Proposition 3.3.6
shows that M(Y ⊕ (ΩnA,n)) is empty. We also have that the component
M(E∗Y ) is not in the image of

M(KA(M,m)"KA)→M(KA ⊕ (M,m)).

Together with the pull-back 3.3.4, these facts imply that

(3.3.5) M(Z ⊕ (ΩnA,n)) //

��

M(KA(M,m+ 1)"KA)

��
M(Z) //M(KA#KA(M,m+ 1)"KA)

is a pull-back square – rather trivially, in fact.
For the second case we assume that there is some weak equivalence of sim-

plicial algebras E∗Z → KA(ΩnA,M). Then we assert that there is is a weak
equivalence

(3.3.6) f :M(KA(M,m)"KA)→M(E∗Z#KA(ΩnA,m)"KA).

To see this recall that source and target are given by nerves of categories of
arrows. The morphism f sends U ← V to

U
=−→U ←− V ;
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the homotopy inverse sends W → U ← V to U ← V . Then Proposition 3.3.9
implies that the square of 3.3.5 is a homotopy pull-back square in this case also.

Finally taking the coproduct over all weak equivalence classes of potential
(n− 1)-stages Z yields a pull-back square

TMn(A/k) //

��

M(KA(M,m+ 1)"KA)

��
TMn−1(A/k) //M(KA#KA(M,m+ 1)"KA).

and the result follows. Indeed, the identification

M(KA(M,m+ 1)"KA) ' BAut(A,ΩnA)

follows from Proposition 2.5.19 and the identification

M(KA#KA(M,m+ 1)"KA) ' Ĥn+2(A/k,ΩnA)

follows from Corollary 2.5.23.
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