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Abstract

We show that the category of n-excisive functors from the ∞-category

of spectra to a target stable ∞-category E is equivalent to the category

of E-valued Mackey functors on an indexing category built from finite

sets and surjections. This new classification of polynomial functors arises

from an investigation of the structure present on cross effects. The path to

this result involves a pair of surprising extension theorems for polynomial

functors and a discussion of some interesting topics in semiadditive ∞-

category theory, including a formula for the free semiadditive ∞-category

on an ∞-category. Our equivalence forms the basis for a set of strong

analogies between functor calculus and equivariant stable homotopy the-

ory.

1 Introduction

This paper is devoted to proving that n-excisive functors, in the sense of Good-
willie [Goo91], from the category Spω of finite spectra to a target stable ∞-
category E can be represented as E-valued Mackey functors on a particu-
lar indexing category, much like genuine G-spectra in E for a finite group
G [GM11, Bar17]. This provides an entirely new classification of n-excisive
functors in the stable setting, and when coupled with the results of [Gla15]
it recontextualizes the classification given by Arone and Ching [AC15]. It is
one of the key examples in both the theory of epiorbital categories developed
in [Gla15] and the wider theory of orbital categories that serves as the foun-
dation for parametrized higher algebra in [BDG+16b] and its sequels. It is a
topological analogue of an algebraic result of Baues, Dreckmann, Franjou and
Pirashvili [BDFP01].

The indexing category in question - the category that plays the role of the
orbit category of the group G in the analogy with equivariant stable homotopy
theory - is the category F≤n

surj of finite sets of cardinality at most n and surjec-

tive maps. Then the category Mack(F≤n
surj,E) is by definition the category of

additive functors from the semiadditive ∞-category

Aeff (F
F

≤n

surj

),

1

http://arxiv.org/abs/1610.03127v3


the effective Burnside category of the formal coproduct completion of F≤n
surj, to

E. A rough statement of the main theorem is then

Theorem 1.1 (6.1). There is an explicit equivalence of ∞-categories from

Mack(F≤n
surj,E) to the category Funn−exc(Spω ,E) of n-excisive functors from

the category of finite spectra to E.

This equivalence is such that if F : Spω → E is an n-excisive functor and
MF is the corresponding Mackey functor, then for any U ∈ F≤n

surj, the value

MF (U) ≃ crUF (S, S, · · · , S),

the U -indexed cross effect of F evaluated on copies of the sphere spectrum.
This work was partly motivated by the following fascinating observation,

known to Arone, Ching and McCarthy. Let Sp be the ∞-category of spectra
and let

F = ((−)∧C2)C2 : Sp → Sp

be the functor obtained as the genuine C2 fixed points of the Hill-Hopkins-
Ravenel norm for the group C2 [HHR16]. On the other hand, let

G = P2(Σ
∞Ω∞) : Sp → Sp

be the 2-excisive approximation in the sense of Goodwillie [Goo03]. Then the
functors F and G, although their origins are utterly different, are actually equiv-
alent. This prompts one to ask the following question, posed to us by Hopkins
and Lurie via Barwick: what happens for higher n? Is there an equivariant
description of Pn(Σ

∞Ω∞)?
To address this, we note that Theorem 6.1 brings functor calculus under the

purview of the theory of parametrized higher algebra [BDG+16a], which allows
us to port all of our tricks from equivariant stable homotopy theory to functor
calculus. This affords us a ‘norm’ that builds an n-excisive functor

Nmn(X) : Sp → E

from an object X ∈ E in much the same way as the Hill-Hopkins-Ravenel norm
builds a G-spectrum X∧G from X .

We have been told by Tomer Schlank that this norm can be used to give an
explicit inverse to the functor of 6.1: if M ∈ Mack(F≤n

surj,Sp) and FM : Sp →
Sp is the corresponding n-excisive functor, then

FM (X) ≃ (Nmn(X)⊗M)(〈1〉),

where ⊗ is the Day convolution of Mackey functors and 〈1〉 is a one-element set.
As a special case, we may make the striking observation that the orbital cat-

egoriesOC2
and F≤2

surj (minus the empty set, whose contribution is unimportant)
are equivalent, giving an equivalence

SpC2 ∼
→ Mack(F≤2

surj,Sp)
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which is compatible with norms. In particular,

Nmn(S) ≃ Pn(Σ
∞Ω∞) : Sp → Sp,

since the norm is symmetric monoidal and Pn(Σ
∞Ω∞) is the unit for the Day

convolution on Funn−exc(Sp,Sp). This neatly contextualizes the equivalence
between fixed points and the 2-excisive approximation, as well as describing the
situation for higher n. Moreover, the assignment

A 7→ FA, FA(X) = (X∧C2 ∧ A)C2

defines an equivalence SpC2 ∼
→ Fun2−exc(Sp,Sp), a memorable result in itself.

The equivalence of Theorem 6.1 is written as a long composite of functors,
each of which is constructed and proved to be an equivalence more or less in-
dependently, and so this paper has a modular structure in which each section
is both largely self-contained and, we hope, individually interesting. We now
review this structure. In Section 2, we review the theory of semiadditive ∞-
categories and give a new formula for the free semiadditive ∞-category on an
∞-category C. This category has a particularly nice form when C is the ef-
fective Burnside category Aeff (F) of finite sets. In Section 3, we learn that
certain retractions whose existence we can count on in the additive setting may
be absent in a semiadditive ∞-category, and we discuss how to adjoin missing
retractions universally. In Section 4, we prove results, some of which are folk-
lore, implying that n-excisive functors on the category of finite spectra can be
reduced to certain combinatorially defined objects. In Section 5, we prove an
intriguing analytic continuation theorem. Finally, in Section 6, we string all of
our equivalences together and prove the main theorem.

The reader may notice a formal similarity between the analytic continuation
theorem, Theorem 5.1, and Proposition 4.1, which extends polynomial functors
from connective spectra to all spectra. In forthcoming joint work with Clark
Barwick, Akhil Mathew and Thomas Nikolaus, we will explore this connection
and apply it to the study of polynomial functoriality.

We now pause to note some connections with previous work. There is a
body of important work on the classification of n-excisive functors, notably
including [AC15], [AC14], [McC], and an unpublished theorem of Dwyer and
Rezk which appears as Proposition 3.15 and Theorem 3.82 in [AC14]. The
latter theorem should be considered the analog of our main result for functors
from Top to Sp. The former two references have the advantage of dealing
with polynomial functors for which the source, target or both is unstable, and
pertain primarily to structure on the derivatives rather than the cross effects.
This makes them thematically somewhat distinct from our work. However, we
note that [AC14, Proposition 4.24] - which, for L = 0, gives the cross effects
of a functor F : Sp → Sp the structure of a right module over the nonunital
commutative operad Com - combines with [AC14, Example 1.17] to give a
functor

d0(F ) : Fop
surj → Sp
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whose values are the cross effects of F . Presumably d0(F ) satisfies

d0(F ) ≃ DR0(F ◦ Σ∞) : Fop
surj → Sp

where DR0(F ◦ Σ∞) is the functor associated to F ◦ Σ∞ : Top → Sp by the
Dwyer-Rezk classification. This is the contravariant half of the Mackey functor
structure we give.

Moreover, the penultimate paragraph of the introduction of [AC14] in some
sense anticipates the present paper: we suspect that our main result can be
viewed as an “unrolling” of [McC, Theorem 7.6], which exhibits the sum of the
cross effects of an n-excisive functor as a module over a certain ring. If so,
McCarthy’s result could be reconstructed from ours using the Schwede-Shipley
theorem [Lur12, Theorem 7.1.2.1] together with an analysis of the endomor-
phism ring of the unit n-excisive functor Pn(Σ

∞
+ Ω∞).

Finally, some important points of notation and convention. Polynomial func-
tors with source a presentable category will be assumed to preserve filtered col-
imits. When the target category E is presentable, the category of n-excisive
functors from Spω → E is equivalent to the category of functors from the
category Sp of all spectra to E which are n-excisive and preserve filtered col-
imits, and we will sometimes use this equivalence implicitly. All “categories”
or “∞-categories” will be quasicategories unless otherwise specified, and thus
all categorical constructions will be of the homotopy invariant sort. F is the
category of finite sets and F∗ is the category of finite pointed sets.

We thank Clark Barwick, Akhil Mathew, Tomer Schlank and the partici-
pants of the Bourbon Seminar for many helpful conversations related to the
subject matter of this paper.

This paper was partly written while the author was supported by the Na-
tional Science Foundation under agreement no. DMS-1128155. Any opinions,
findings and conclusions, or recommendations expressed in this material, are
those of the author and do not necessarily reflect the views of the National
Science Foundation.

2 Semiadditive ∞-categories and the free semi-

additive ∞-category on an ∞-category

We’ll start this section by collecting, for convenience, a few more-or-less well-
known facts about semiadditive ∞-categories. Most of these results also appear
in [GGN13, §2], although those authors use the term “preadditive” rather than
“semiadditive”. Throughout this paper, F∗ will denote the category of finite
pointed sets, and if S is a finite pointed set, S◦ will denote the set of non-
basepoint elements of S.

Definition 2.1 ( [Lur12], Definition 6.1.6.13). By a semiadditive ∞-category,
we mean an ∞-category which admits a zero object, finite products and finite
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coproducts and in which the natural map

 id 0

0 id


 : X ∐ Y → X × Y

is an equivalence for any objects X,Y . In this situation, we’ll tend to use the
notation X⊕Y for both X ∐Y and X×Y and leave their equivalence implicit.

The semiadditive axiom is the line that divides combinatorics from algebra.
As we’ll shortly recall, the mapping spaces in a semiadditive ∞-category carry
canonical commutative monoid structures.

Lemma 2.2. Let C⊗ be a symmetric monoidal category. Then the following
conditions are equivalent:

1. C⊗ is both cartesian and cocartesian in the sense of [Lur12, Definition
2.4.0.1].

2. C⊗ is either cartesian or cocartesian in the sense of [Lur12, Definition
2.4.0.1], and the underlying category C is semiadditive.

The proof is immediate.
If C is semiadditive, we’ll denote the cartesian, or equivalently the cocarte-

sian, symmetric monoidal category associated to C by C⊕.

Corollary 2.3. Let SMCat⊕∞ be the ∞-category of symmetric monoidal ∞-
categories which are both cartesian and cocartesian and symmetric monoidal
functors, and let Cat⊕∞ be the ∞-category of semiadditive ∞-categories and
direct-sum-preserving functors. Then the forgetful functor

θ : SMCat⊕∞ → Cat⊕∞

is an equivalence.

Proof. Combine Lemma 2.2 with [Lur12, Corollary 2.4.1.9].

Corollary 2.4. Let CMon(C) be the category of commutative monoids in
C [Lur12, Remark 2.4.2.2]. If C is semiadditive, then the forgetful functor
u : CMon(C) → C is a trivial Kan fibration.

Proof. We have a homotopy commutative diagram

AlgF∗
(C) CMon(C)

C

α

β

u

where α is the restriction functor and β arises from the cartesian structure onC⊕

[Lur12, Definition 2.4.1.1]. u is always a Kan fibration. Since C⊕ is cocartesian,
α is an equivalence [Lur12, Proposition 2.4.3.16], and since C⊕ is cartesian, β
is an equivalence [Lur12, Proposition 2.4.2.5], so u is an equivalence.
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Lemma 2.5. Semiadditive categories are naturally enriched in commutative
monoids in the following sense: if C is semiadditive, then the functor

Map(−,−) : Cop ×C → Top

extends canonically over the forgetful functor CMon → Top.

Proof. Since Cop ×C is also semiadditive, we have a diagram

CMon(Cop ×C) CMon

Cop ×C Top.

∼

Lemma 2.6. IfC is any∞-category with finite products, the categoryCMon(C)
of commutative monoids in C is semiadditive.

Proof. The category AlgComm(C
×) of [Lur12, Example 3.2.4.4] has underly-

ing ∞-category equivalent to CMon(C) [Lur12, Proposition 2.4.3.16] and is
cocartesian [Lur12, Proposition 3.2.4.7]. We’ll prove that AlgComm(C

×) is
also cartesian. Unwinding the definitions and using the characterization of the
cocartesian edges of AlgComm(C

×) given in [Lur12, Proposition 3.2.4.3 (4)],
we find that the unit object in CMon(C) is the final object of C with its
unique commutative monoid structure, and that the tensor productCMon(C)×
CMon(C) → CMon(C) is the pointwise product. The result follows.

Remark 2.7. By the same reasoning as in the proof of Lemma 2.5, if C

is semiadditive and D admits finite products, then the category Fun×(C,D)
of product-preserving functors from C to D is equivalent to the category of
Fun⊕(C,CMon(D)) of additive functors from C to the category of commuta-
tive monoids in D.

Let C be any ∞-category. We now turn to the problem of describing the
free semiadditive ∞-category on C: can we give a formula for the left adjoint
of the forgetful functor Cat⊕∞ → Cat∞?

We’ll start by giving a fairly abstract answer to this question; although
we’ll end up with something more explicit, the following result is a necessary
waypoint.

Proposition 2.8. Define

∢ : C → Fun(Cop,Top) → Fun(Cop,CMon)

as the composition of the Yoneda embedding with the pointwise free commu-
tative monoid functor. By Lemma 2.6, Fun(Cop,CMon) is semiadditive; let
Addp(C) denote the closure of the essential image of ∢ under direct sums. Then

∢ : C → Addp(C)

exhibits Addp(C) as the free semiadditive ∞-category on C.
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Proof. Since Fun(Cop,Top) is the free presentable ∞-category on C,
Fun(Cop,CMon) is the free semiadditive presentable ∞-category on C by
[GGN13, Theorem 4.6], in the sense that if P is a presentable semiadditive
∞-category, then the restriction functor

FunL(Fun(Cop,CMon),P) → Fun(C,P)

is an equivalence, where FunL denotes the category of colimit-preserving func-
tors.

On the other hand, the free semiadditive presentable∞-category onC is also
the nonabelian derived category (c.f. 3.5) of the free semiadditive ∞-category
on C, by [Lur09, Proposition 5.5.8.15], and so it contains the free semiadditive
category on C as a full subcategory. This full subcategory must contain all
the objects of Addp(C), and since Addp(C) is already semiadditive, it coincides
with the free semiadditive category on C.

Lemma 2.9. For each X,Y ∈ C, the map

∢X.Y : MapC(X,Y ) → MapAddp(C)(∢(X),∢(Y ))

exhibits the target as the free commutative monoid on the source.

Proof. Let hX denote the representable functor

Map(−, X) ∈ Fun(Cop,Top).

We have

MapAddp(C)(∢(X),∢(Y )) ≃ MapFun(Cop,Top)(hX ,∢(Y ))

≃ (∢(Y ))(X),

which gives the result, since the free commutative monoid functor is pointwise.

We’ll now be able to construct our more explicit model for the free semiad-
ditive category on C.

Definition 2.10. We denote by FC the category obtained by adjoining formal
finite coproducts to C. Explicitly, FC is the full subcategory of Fun(Cop,Top)
spanned by the finite coproducts of representable presheaves. The notation
derives from the intuition that objects of FC should be thought of as finite sets
of objects of C.

We’ll give an alternative construction of FC which is more convenient for
our purposes. Let F →֒ F∗ be the usual subcategory inclusion, and define

C∐
F := C∐ ×F∗ F ,

7



where C∐ is the ∞-operad of [Lur12, Construction 2.4.3.1]. An object of C∐
F is

a finite set S together with an S-tuple (Xs)s∈S of objects of C, and a morphism

f : (S, (Xs)s∈S) → (T, (Yt)t∈T )

is a set morphism fS : S → T together with a morphism fs : Xs → YfS(s) for
each s ∈ S.

We’ll denote the projectionC∐
F → F by πC

0 ; since the projection Γ∗×F∗F →
F [Lur12, Construction 2.4.3.1] is a cocartesian fibration, it follows from [Lur09,
Corollary 3.2.2.13] that πC

0 is a cartesian fibration, and that a morphism f is
cartesian if and only if fs is an equivalence for each s ∈ S.

If ∗ is a one-element set, then C is isomorphic to the fiber of πC
0 over ∗. Let

i : C → C∐
F be the resulting inclusion.

Lemma 2.11. The functor

q : C∐
F → Fun((C∐

F )
op,Top)

i∗
→ Fun(Cop,Top)

is fully faithful, and its essential image is FC.

Proof. For each object X = (S, (Xs)) ∈ C∐
F , the right fibration classified by

q(X) is the source map
C×C∐

F
(C∐

F )/X → C.

As s ∈ S varies, the maps

js : C/Xs
→ C×C∐

F
(C∐

F)/X

with js(Z → Xs) = (Z → Xs → X) induce an isomorphism

∐

s∈S

C/Xs
∼= C×C∐

F
(C∐

F )/X .

Let Fcart
C be the subcategory of πC

0 -cartesian edges in FC. We observe that
(FC,FC,Fcart

C ) is a disjunctive triple in the sense of [Bar17, Definition 5.2].

Definition 2.12. We write

Add(C) := Aeff (FC,FC,F
cart
C )

for the effective Burnside category of the disjunctive triple (FC,FC,F
cart
C )

[Bar17, Definition 5.7]. It follows from [Bar17, 5.8] and [Bar17, Proposition
4.3] that Add(C) is semiadditive.

We can now state the main theorem of this section:

Theorem 2.13. The functor

α : C
i
→ FC → Add(C)

exhibits Add(C) as the free semiadditive category on C.

8



Proof. First we characterize the mapping spaces in Add(C). Let X,Y ∈ C.
Then the mapping space MapAdd(C)(X,Y ) is the space of diagrams

X∐S

X Y

up to equivalence over X and Y . Since the automorphism group of X∐S over
X is just the symmetric group ΣS , this space is equivalent to

∐

n≥0

MapC(X,Y )nhΣn
,

and on mapping spaces α induces the inclusion

αX,Y : MapC(X,Y ) → MapAdd(C)(X,Y )

which exhibits the target as the free commutative monoid on the source.
Now α extends to an additive functor

β : Addp(C) → Add(C).

Since every object of Add(C) is a direct sum of objects of C, β is essentially
surjective, and by Lemma 2.9, for any objects X,Y ∈ C, the induced map

βX,Y : MapAddp(C)(X,Y ) → MapAdd(C)(X,Y )

is an equivalence. But this implies that βX,Y is an equivalence when X,Y are
direct sums of objects of C, since in any additive category M,

MapM


⊕

i

Xi,
⊕

j

Yj


 ≃

∏

i,j

MapM(Xi, Yj).

Thus β is fully faithful, and we’re done.

In the case of most interest to us, when C is Aeff (F), this formula becomes
substantially simpler:

Proposition 2.14. The natural inclusion

κ : Aeff (F) → Aeff (FF )

exhibits the target as the free semiadditive category on the source.

Proof. Aeff (FF) is clearly semiadditive, and every object of Aeff (FF ) is a
direct sum of objects of Aeff (F). Moreover, due to the equivalence

(BG)nhΣn
≃ B(G ≀ Σn),

κ exhibits MapAeff (FF )(X,Y ) as the free commutative monoid on MapAeff (F)(X,Y ),

for any objects X,Y ∈ Aeff (F). Thus, by the same reasoning as in the proof
of Theorem 2.13, we conclude.
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3 Adjoining retractions in semiadditive ∞-categories

In this section, we’ll discuss a problem endemic to semiadditive category theory.
Suppose C is a semiadditive ∞-category, and

Y
i
→ X

r
→ Y

is a retraction diagram in C. Then ir is idempotent in End(X). If C were
additive, then we would have a complementary idempotent 1 − ir in End(X),
and if C were moreover idempotent complete, then 1 − ir would arise from a
retraction

Y ′ i′
→ X

r′
→ Y ′,

and we would obtain a direct sum decomposition

X ≃ Y ⊕ Y ′.

However, if C is merely semiadditive, then 1− ir need not exist, and therefore
Y ′ need not exist, even if C is idempotent complete.

As an example of this phenomenon, suppose that G is a finite group and
that B is a full subcategory of the category FG of finite G-sets which is closed
under pullbacks and disjoint unions. Suppose furthermore that B contains an
object of the form O ∐ S, where O is an orbit and S is some other finite G
-set, and suppose that B contains O but not S. For instance, B might be the
category of finite G-sets with at least one element on which G acts trivially.
Then Aeff (B) is semiadditive, and the retraction of O ∐ S onto O in Aeff (B)
gives rise to an idempotent on O ∐ S. But the complementary idempotent is
nowhere to be found.

We claim that Aeff (FF) is precisely this kind of example. Note that the
endomorphism

{a} ∐ {b}

{a, b} {a, b}

of {a, b} ∈ Aeff (FF) is idempotent. But it’s easy to see that no comple-
mentary idempotent exists. What should the remaining summand be? Or,
otherwise put, where’s the total cofiber of

∅ {a}

{b} {a, b}?

In the following construction, we will universally adjoin such complemen-
tary idempotents. We’ll define a complementable semiadditive category to be,
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roughly speaking, a semiadditive categories in which all idempotents have com-
plementary summands, and we’ll characterize the category obtained by adjoin-
ing complements to Aeff (FF). This will be the effective Burnside category of
finite sets and surjections, Aeff (FFsurj

), which will play an important role in
the statement of the main theorem and the remainder of this paper.

As in the introduction, let Fsurj be the category of finite sets and surjective

maps, and let F≤n
surj be the full subcategory spanned by the sets of cardinality

at most n. The first important fact about Fsurj is as follows:

Lemma 3.1. FFsurj
admits pullbacks.

Proof. It suffices to show that any diagram Λ2
2 → Fsurj admits a pullback in

FFsurj
, since pullbacks distribute over coproducts, which are disjoint, in any

category of the form FC. But it’s easy to see that the diagram

∐
U⊆Y×XZ,U։Y,U։Z Y

Z X

is a pullback square, where the coproduct is taken over subsets of the set pullback
Y ×XZ which surject onto both Y and Z under the natural projections. Indeed,
if

V Y

Z X

is a commutative square of surjections, then V surjects onto a unique such
subset.

Definition 3.2. Define a functor

φ′ : F → FFsurj

by setting, for any finite set S,

φ′(S) =
∐

U⊆S

U

and, for each morphism f : S → T , letting the component of φ(f) on U ⊆ X
be the natural surjection

fU : U → im U.

By the universal property of FF , φ
′ extends uniquely to a coproduct-preserving

functor
φ : FF → FFsurj

.

The following is an easy observation:

11



Lemma 3.3. φ is right adjoint to the functor

U : FFsurj
→ FF

which is given by the identity on objects and the inclusion of setwise surjective
maps into all maps on morphisms.

In particular,

Corollary 3.4. φ preserves pullbacks.

This corollary may also be established by direct inspection using the descrip-
tion of the pullbacks of FFsurj

given in Lemma 3.1. We deduce that φ gives rise
to a functor between effective Burnside categories, which we’ll abusively denote

φ : Aeff (FF) → Aeff (FFsurj
).

We’ll show that φ formally adjoins certain total cofibers to Aeff (FF).

Recollection 3.5. Let C be a semiadditive category, and denote

Psh
⊕(C) = Fun×(Cop,Top),

the category of additive presheaves on C, which are functors Cop → Top which
carry direct sums to products. Such functors factor uniquely through the for-
getful functor CMon → Top by Remark 2.7, and so we may equivalently define

Psh⊕(C) = Fun⊕(Cop,CMon).

Psh
⊕(C) is freely generated as a semiadditive category under all colimits, and as

a category under sifted colimits, byC. It is also known as the nonabelian derived
category of C. For a general reference on this object, see [Lur09, Definition
5.5.8.8] and the ensuing discussion.

The content of the next lemma is that each representable presheaf in
Psh⊕(Aeff (FFsurj

)) has a filtration by split monomorphisms - morphisms that
“should” be direct summand inclusions.

Lemma 3.6. Let S be a finite set, let hS ∈ Psh⊕(Aeff (FF)) be the functor

represented by S, and for any k with 0 ≤ k ≤ |S|, let h≤k
S denote the full

subfunctor of hS whose value on X ∈ Aeff (FF) is the subspace of hS(X)
spanned by those diagrams

Y

X S

for which the image in S of every component of Y has cardinality ≤ k. Then
the natural inclusion

Jk : h≤k−1
S → h≤k

S

admits a retraction for each k with 0 < k ≤ |S|.

12



Proof. This is easiest to see at the level of right fibrations. The right fibration
corresponding to hS is the overcategory Aeff (FF)/S , whose n-simplices are
diagrams

δ : Õ(∆n+1)op → FF ,

where Õ denotes the twisted arrow category (see [Bar17, Example 2.6]), such
that all squares are pullbacks and δ(n → n) = S. The right fibration corre-

sponding to h≤k
S is the simplicial subset

Aeff (FF )
≤k
/S ⊆ Aeff (FF )/S

whose n-simplices δ satisfy the additional condition that the image in S of each
component of δ((n− 1) → n) has cardinality ≤ k. Jk is the natural inclusion

Aeff (FF)
≤k−1
/S ⊆ Aeff (FF)

≤k
/S ,

and the retraction, Rk, takes an n-simplex σ of Aeff (FF )
≤k
/S to Rk(σ), where

• the restriction of Rk(σ) to Õ(∆[0,··· ,n−1])op ⊆ Õ(∆n)op is identical to that
of σ, and

• for each m with 0 ≤ m ≤ n − 1, Rk(σ)(m → n) is the subobject of
components of σ(m → n) whose image in S has cardinality at most k− 1.

It’s easy to see that Rk(σ) really is an n-simplex of Aeff (FF )
≤k−1
/S - that is,

squares remain pullbacks - and that Rk is left inverse to Jk.

Lemma 3.7. The cofiber of Jk can be identified with

⊕

U⊆S, |U|=k

φ∗~U

where ~U ∈ Psh⊕(Aeff (FFsurj
)) is the presheaf represented by U .

Proof. Clearly

φ!hS ≃
⊕

U⊆S

~U .

Composing with the projection to
⊕

U⊆S, |U|=k+1 ~U and adjointing over, we
get a map

hS →
⊕

U⊆S, |U|=k+1

φ∗~U

Composing further with the inclusion h≤k+1
S → hS gives the required map

L : h≤k+1
S →

⊕

U⊆S |U|=k+1

φ∗~U .

13



At the level of objects, L and Jk+1 give the cofiber sequence of commutative
monoids

h≤k
S (X) → h≤k+1

S (X) →




Y

X S

f

∣∣∣∣∣∣∣∣
|f(Y ′)| = k for every component Y ′ of Y




.

Lemma 3.8. For each U ∈ FFsurj
, the counit map

ǫU : φ!φ
∗U → U

is an equivalence. Therefore, extending by colimits, the counit map

ǫ : φ!φ
∗ → idAeff (FFsurj

)

is an equivalence of functors.

Proof. Let U be a finite set of cardinality n. It’s then clear that

h≤n−1
U ≃ colim

V ∈CubeU\{U}
hV ,

where CubeU is the poset of subsets of U . Thus we have

φ!(h
≤n−1
U ) ≃ colim

V ∈CubeU\{U}


 ⊕

W⊆V

~W


 ≃

⊕

V(U

~V ,

and a cofiber sequence

φ!(h
≤n−1
U )

φ!Jn→ φ!hU → ~U ,

where the right hand map is the projection

φ!hU ≃
⊕

V ⊆U

~V → ~U .

But applying φ! to the cofiber sequence obtained in Lemma 3.7 shows that the
cofiber of φ!Jn can be identified with φ!φ

∗~U . This gives the result.

We deduce from this that φ∗ is fully faithful. This is the backdrop to the
major result of this section: that Aeff (FFsurj

) is the localization of Aeff (FF )
into “complementable semiadditive categories”.
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Definition 3.9. A semiadditive category C is called complementable if when-
ever f : X → Y is a morphism in C admitting a retraction r : Y → X , the
cofiber g : Y → Z of f exists, and the diagram

Y Z

X

g

r

is a product diagram.

Example 3.10. Any idempotent-complete additive categoryC is complementable.

Proof. The homotopy category ho(C) is an idempotent complete additive cate-
gory, and we may define Z ∈ ho(C) to be the retract of Y corresponding to the
idempotent id− fr. Then there is a product diagram

Y Z

X

g

r

in ho(C), which lifts to a product diagram in C. It remains to show that

X
f
→ Y

g
→ Z is a cofiber sequence in C. This follows from the fact that f is

homotopic to the summand inclusion X → X ⊕ Z ≃ Y , and g is homotopic to
the projection Y ≃ X ⊕ Z → Z.

Lemma 3.11. Let C be a complementable semiadditive category which is pre-
sentable and let ψ : Aeff (FF) → C be an additive functor. Abusively denoting
the colimit-preserving extension

ψ : Psh⊕(Aeff (FF )) → C,

we claim that for each finite set S, ψ takes the map

BS : hS →
⊕

U⊆S

φ∗~U

to an equivalence.

Proof. We’ll prove simply by induction on k with 0 ≤ k ≤ |S| that ψ(B≤k
S ) is

an equivalence, where

B≤k
S : h≤k

S →
⊕

U⊆S, |U|≤k

~U

is the natural map. Indeed, B≤0
S is already an equivalence, and since ψ must

take the diagram

h≤k
S

⊕
U⊆S, |U|=k ~U

h≤k−1
S

L

Rk

15



to a product diagram, the conclusion follows.

Since φ!BS is also an equivalence, it follows that any object in the essential
image of φ∗ is local for the collection of morphisms B := {BS |S a finite set}.
In particular, BS exhibits

⊕
U⊆S φ

∗~U as the B-localization of hS . Conversely,
since B-localization preserves colimits, all B-local objects belong to im (φ∗).
We deduce:

Theorem 3.12. φ! exhibits Psh⊕(Aeff (FFsurj
)) as the B-localization of

Psh⊕(Aeff (FF)). As a consequence, if C is a presentable complementable
semiadditive category, the restriction

φ∗ : Fun⊕(Aeff (FFsurj
),C) → Fun⊕(Aeff (FF),C)

is an equivalence of categories. This holds in particular if C is a presentable
(thus idempotent complete) additive category.

Proof. At this point, only the second sentence requires proof; but it follows
immediately from the diagram

FunL(Psh
⊕(Aeff (FFsurj

)),C) FunL(Psh
⊕(Aeff (FF )),C)

Fun⊕(Aeff (FFsurj
),C) Fun⊕(Aeff (FF ),C),

φ∗

∼

∼ ∼

φ∗

in which the other three maps are equivalences.

Remark 3.13. We haven’t actually proved thatAeff (FFsurj
) is complementable

- we only need the fact that it’s constructed by adjoining some complements to
Aeff (FF ) - but we strongly suspect that it is.

4 Calculus and the Burnside category

In this section we’ll assume that the reader is familiar with the basic definitions
and results of Goodwillie’s functor calculus as laid out, for instance, in [Goo03],
the original and still best source, or in the notes from the 2012 Talbot workshop,
or in [Lur12, §6.1].

Let E be a stable ∞-category. We’d like to progressively reduce the theory
of polynomial functors Spω → E to something more combinatorial. Our first
lemma in this direction asserts that polynomial functors on the category of
connective finite spectra extend uniquely, in the strongest possible way, to all
finite spectra. This result is originally due to Lukas Brantner, and the line of
argument is significantly indebted to a conversation between us.

Proposition 4.1 (Brantner). Let ι : Spω
≥0 → Spω be the inclusion. For each

n, the restriction functor

ι∗n : Funn−exc(Spω,E) → Funn−exc(Spω
≥0,C)

is an equivalence of categories.

16



By comparison, the functor ι∗ : Fun(Spω,E) → Fun(Spω
≥0,E) is very far

from even being conservative - as we know well, polynomial functors are very
rigid compared to general functors.

Proof. We’ll use a recollement argument and [BG16, Proposition 8] using the
recollement formed by the reflective and coreflective subcategory

Fun(n−1)−exc(S,E) ⊆ Funn−exc(S,E)

where S is either Spω
≥0 or Spω. Denote Fun(n−1)−exc(Spω,E) by U and

Fun(n−1)−exc(Spω
≥0,E) byU≥0. Denote the categories of objects of Funn−exc(S,E)

which are left resp. right orthogonal to U(≥0) by Z∨
(≥0) resp. Z

∧
(≥0). By defini-

tion, Z∨
(≥0) is the category of n-homogeneous functors S → E.

By induction on n and [BG16, Proposition 8], to prove the proposition it’s
enough to show that

ι∗n(Z
∨
Spω ) ≃ Z∨

Spω
≥0
, ι∗n(Z

∧
Spω ) ⊆ Z∧

Spω
≥0
.

By [Lur12, Proposition 6.1.4.14], we have equivalences

Funn−hmg(S,E) ≃ SymFunn
lin(S,E)

≃ Fun1−exc(S⊗n
hΣn

,E),

the category of symmetric multilinear functors, whence

Funn−hmg(S,E) ≃ Fun1−exc(ShΣn
,E)

≃ Fun1−exc(S,EhΣn)

≃ EhΣn

for the trivial Σn-actions on S and E. Indeed, since Spω
≥0 is freely generated by

S as an additive category with finite colimits, and Spω is freely generated by S

as a stable category, both are tensor-idempotent, and we have

Fun1−exc(S,E) ≃ E

whenever E is stable. Since this chain of equivalences is compatible with re-
striction along ι, this shows that

ι∗n(Z
∨) ≃ Z∨

≥0.

For the inclusion
ι∗n(Z

∧) ⊆ Z∧
≥0,

we let Ln be the left adjoint of ι∗n. This is left Kan extension ι! along ι followed
by n-excisivization:

Ln = Pnι!.

17



Now it suffices to show that

Ln(U≥0) ⊆ U,

since this implies that if X ∈ Z∧ and Y ∈ U≥0, then

Map(Y, ι∗nZ) ≃ Map(LnY, Z) ≃ ∗.

Since ι itself has a right adjoint, the connective cover functor τ≥0, ι! is just
precomposition with τ≥0. This, along with the next set of lemmas, will show
that if F is (n− 1)-excisive then LnF is (n− 1)-excisive:

Lemma 4.2. Suppose F : Sp → E is a functor whose restriction to Sp≥0 is
n-excisive. Then the unit of the n-excisivization

η : F → PnF

is an equivalence on objects of Sp≥0.

Proof. This is clear from Goodwillie’s original construction of PnF , which is
described in sufficient generality in [Lur12, Construction 6.1.1.27].

We deduce that
ι∗nLn ≃ id.

Lemma 4.3. If F is n-excisive and F evaluates to zero on connective spectra,
then F = 0.

Proof. This means that
crnF (S, · · · , S) = 0,

and so the nth derivative of F is zero and F is actually (n − 1)-excisive. By
induction down the Taylor tower, F = 0.

Lemma 4.4. If the restriction of F to Sp≥0 is (n − 1)-excisive, then PnF is
(n− 1)-excisive.

Proof. The fiber of PnF → Pn−1F is zero on connective spectra, and therefore
it is zero. Thus PnF is (n− 1)-excisive.

The hypotheses of Lemma 4.4 apply in particular to LnF when F ∈ U≥0.
This completes the proof of Proposition 4.1.

Suppose now that E is presentable. Let A(F) be the Burnside category
of finite sets, or equivalently, the full subcategory of Sp spanned by spectra
equivalent to finite direct sums of copies of S. When discussing objects of A(F),
we will use 〈n〉 to denote a chosen n-element set. Let ℑ denote the inclusion
A(F) → Sp. Then ℑ exhibits Sp≥0 as the nonabelian derived category of A(F).
Therefore:
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Corollary 4.5. For each n, the restriction functor

ℑ∗
n : Funn−exc(Sp≥0,E) → Fun(A(F),E)

is fully faithful.

Proof. Indeed, if FunΣ(Sp≥0,E) is the category of sifted-colimit-preserving func-
tors from Sp to E, then the restriction

ℑ∗
Σ : FunΣ(Sp≥0,E) → Fun(A(F),E)

is an equivalence. But it follows from Goodwillie’s classification of homogeneous
functors (see e.g. the proof of [Lur12, Corollary 6.1.4.15], since Goodwillie’s
papers can be a little hard to track down these days), together with induction
on n and the fact that tensor power functors preserve sifted colimits, that n-
excisive functors all preserve sifted colimits.

Proposition 4.6. The essential image of Funn−exc(Sp≥0,E) in Fun(A(F),E) is

the category Fun≤n(A(F),E) spanned by those functors F which, for each finite
set S of cardinality |S| > n, map the cube of projections (a.k.a. contravariant
injections or inert maps)

̺S : (CubeS)op → A(F) U 7→ U

to a cartesian cube in E. Rephrased, this is the condition that for each m > n,
the cross effect

crSF (〈1〉, 〈1〉, · · · , 〈1〉) = 0.

We will call objects of Fun≤n(A(F),E) degree n functors.

Proof. Since all mth order cross effects of n-excisive functors vanish for m > n,
it’s clear that the image of ℑ∗

n is contained in Fun≤n(A(F),E). To prove the
converse, we need to show that the left Kan extension along ℑ of any F : A(F) →
E of degree n is n-excisive. For this, we note that G ∈ Fun≤n(Sp≥0,E) is n-
excisive if and only if the cross effects

cr〈m〉G(X1, X2, · · · , Xm),

are zero whenever m > n. On the other hand, we may write

Xi = colim
∆op

Xi,•

where Xi,• : ∆op → A(F) is a diagram with image in A(F). Since G preserves
sifted colimits, we have

cr〈m〉G(X1, X2, · · · , Xm) ≃ colim
∆op

cr〈m〉(X1,•, X2,•, · · · , Xn,•.)

So it suffices to prove that if F ∈ Fun≤n(A(F),E), then

cr〈m〉F (S1, S2, · · · , Sm) = 0
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whenever m > n and S1, S2, · · ·Sm are objects of A(F).
Now suppose that S is a finite set and φ : S → T is a surjective map of sets.

We get a functor
φ∗ : (CubeT )op → (CubeS)op

by letting ψ(U) be the preimage of U under φ. We claim that if F : A(F) → E

is degree n, then F̺Sφ
∗ is a cartesian T -cube whenever |T | > n; if we can

establish this, we can conclude, because F̺Sφ
∗ is the cube whose total fiber is

the cross effect
crTF ((φ

−1(t))t∈T ).

We’ll prove this statement by induction on |S| and |S| − |T |, by representing
F̺Sφ

∗ as the concatenation of two T -cubes we know to be cartesian by the
induction hypothesis. This involves some moderately hard combinatorics.

If |S| = |T |, then φ∗ is an isomorphism and the conclusion is clear. Moreover,
if |S| = n + 1, then this is always the case. Otherwise, we may choose some
t ∈ T such that |φ−1(T )| > 1, and pick some s ∈ φ−1(T ). By induction,

F̺S\{s}(φ|S\{s})
∗ : (CubeT )op → E

is cartesian. Now define

ψ : (CubeT )op → (CubeS)op

by

ψ(U) =

{
φ∗(U) t ∈ U

φ∗(U ∪ {t}) \ {s} t /∈ U.

We claim that
F̺Sψ : (CubeT )op → E

is cartesian. To see this, let
T ′ = T ∪ {s}

and define λ : S → T ′ by

λ(x) =

{
φ(x) x 6= s

s x = s.

By induction, F̺Sλ
∗ is cartesian. Moreover, if

T ′′ = T ′ \ {t}, S′′ = S \ (φ−1(t) \ {s}),

then the restriction of F̺Sλ
∗ to the face (CubeT

′′

)op of (CubeT
′

)op is naturally
identified with

F̺S′′(φ|S′′)∗ : (CubeT
′′

)op → E,

and is thus also cartesian by induction. Thus the opposite face of F̺Sλ
∗ is also

cartesian. But this face can be identified with F̺Sψ.
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Now
ψ|(CubeT\{t})op : (CubeT\{t})op → (CubeS)op

has the same image as

(φ|S\{s})
∗|(CubeT )op\(CubeT\t)op : (CubeT )op \ (CubeT\{t})op

→ (Cube
S\{s})op

→ (Cube
S)op.

Gluing ψ and (φ|S\{s})
∗ along this common face gives φ∗, and applying F̺S

represents F̺Sφ
∗ as the composite of two T -cubes proven to be cartesian, which

gives the result.

5 Analytic continuation of polynomials

In this section, we’ll prove the following possibly surprising result:

Theorem 5.1. Let E be a stable category. Let Fun≤n(A(F),E) be as in Propo-
sition 4.6, and let
Fun≤n(Aeff (F),E) be the full subcategory of Fun(Aeff (F),E) defined by the
same condition on vanishing of cross effects. Then restriction along the additive
completion functor

Rn : Fun≤n(A(F),E) → Fun≤n(Aeff (F),E)

is an equivalence of categories.

Of course, when n = 1, this follows immediately from the universal property
of the additive completion functor. That’s exactly what makes this statement
look strange: constructions defined by universal properties generally deliver
neither more nor less than they promise, but the additive completion appears
to be bringing unexpected gifts.

We think of this statement as analogous to the following elementary result
from analysis: analytic continuation exists and is unique for polynomials. That
is, a polynomial function defined on the right half plane {s ∈ C | ℜ s ≥ 0}
extends uniquely to a polynomial function defined on the whole of C.

We thank Akhil Mathew for insights critical to the proof of this theorem.
The proof follows the plan of the proof of Proposition 4.1 very closely, and
will refer back to that proof at several points; common generalizations of these
theorems and much more will appear in future joint work.

Proof. First suppose that E is presentable. Note that the proof of Proposition
4.6 shows verbatim that the restriction

An : Funn−exc(CMon,E) → Fun≤n(Aeff (F),E)
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is an equivalence of categories. We will use a recollement argument and induc-
tion on n to show that An is an equivalence by induction on n.

Let
U = Fun(n−1)−exc(Sp≥0,E) ⊆ Funn−exc(Sp≥0,E),

and let Z∨, Z∧ be the subcategories left resp. right orthogonal to U. Similarly,
define

Ueff = Fun(n−1)−exc(CMon,E) ⊆ Funn−exc(CMon,E),

and let Zeff,∨ and Zeff,∧ be its left and right orthogonal subcategories. By the
induction hypothesis,

(An)|U : U → Ueff

is an equivalence. By [BG16, Proposition 8], in order to show that an An is an
equivalence, it suffices to show that

An(Z
∨) ≃ Zeff,∨, An(Z

∧) ⊆ Zeff,∧.

For the first equivalence, we note that Z∨ is the category of n-homogeneous
functors Sp≥0 → E and Zeff,∨ is the category of n-homogeneous functors
CMon → E. As in the proof of Proposition 4.1, the usual classification goes
through and both categories are identified with EhΣn by the nth cross effect
construction.

For the second inclusion, as in the proof of Proposition 4.1, we consider the
left adjoint Ln of R′

n; it suffices to show that

Ln(U
eff ) ⊆ U.

If GC is the group completion functor from CMon to Sp≥0, then Ln is left
Kan extension along GC followed by n-excisivization:

Ln = Pn(GC)!.

Since GC has a right adjoint, namely the inclusion ∝ of Sp≥0 as a full subcat-
egory of CMon, we can identify (GC)! with ∝

∗. But since ∝ itself preserves
colimits, ∝∗ preserves k-excisive functors for any k; thus

Ln =∝
∗ .

In particular, we can take k = n− 1, and the conclusion follows.
We have now proved Theorem 5.1 in the case where E is presentable. To

deduce the result for a general stable category E, we may replace E by the
presentable category Ind(E), which has E as a full subcategory. If

F : A(F) → Ind(E)

is a degree-n functor, then clearly F ∈ Fun≤n(A(F),E) if and only if AnF ∈
Fun≤n(Aeff (F),E).
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6 Synthesis

In this brief concluding section, we declare our hand and chain the functors
we’ve constructed to produce the main equivalence.

Theorem 6.1. If E is stable and presentable, there is an explicit equivalence
of categories from Mack(F≤n

surj,E) to Funn−exc(Spω,E).

Proof. The equivalence is written as a composite as follows:

Mack(F≤n
surj,E)

Ξ
F

≤n
surj

→ Mack≤n(Fsurj,E)

φ∗

→ Fun⊕,≤n(Aeff (FF),E)

κ∗

→ Fun≤n(Aeff (F),E)

(Rn)
−1

→ Fun≤n(A(F),E)

(ℑ∗
n)

−1

→ Funn−exc(Spω
≥0,E)

(ι∗)−1

→ Funn−exc(Spω,E).

A word of clarification is necessary, because some of these categories are mi-
nor variants appearing for the first time. Mack≤n(Aeff (FFsurj

),E) is the full
subcategory of

Mack(Fsurj,E) := Fun⊕(Aeff (FFsurj
),E)

spanned by those functors whose value on U ∈ Fsurj is zero whenever |U | > n.

The equivalence ΞF≤n

surj is a case of [Gla15, Corollary 2.33]. Fun⊕,≤n(Aeff (FF ),E)
is both the essential image of Mack≤n(Fsurj,E) under

φ∗ : Mack(Fsurj,E) → Fun⊕(Aeff (FF ),E)

and the essential image of Fun≤n(Aeff (F),E) under

(κ∗)−1 : Fun(Aeff (F),E) → Fun⊕(Aeff (FF ),E);

seeing that these two categories coincide is a simple matter of unwrapping the
definitions.

Finally, we note that there are explicit formulae for the functors appearing as
inverses. The inverse of Rn is left Kan extension along the additive completion
functor Aeff (F) → A(F) followed by localization into the category of degree n
functors. The inverse of ℑ∗

n is left Kan extension along ℑn. Finally, as explained
in the proof of Proposition 4.1, the inverse of ι∗ is given by precomposition with
the connective cover functor τ≥0 followed by n-excisivization Pn.

For ease of reference, we include a table matching each of these functor to
the location of its definition and the proof that it’s an equivalence:
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Functor Definition Proof

ΞF≤n

surj [Gla15, Definition 2.22] [Gla15, Corollary 2.33]
φ∗ 3.2 3.12
κ∗ 2.14 2.14
Rn Theorem 5.1 Theorem 5.1
ℑ∗

n Corollary 4.5 Proposition 4.6
ι∗ Proposition 4.1 Proposition 4.1

Remark 6.2. Let F̃≤n
surj be the full subcategory ofF

≤n
surj spanned by the nonempty

sets. Then clearly
F≤n

surj ≃ F̃≤n
surj ∐ {∅}.

This disjoint union extends to a direct sum decomposition of semiadditive cat-
egories

Aeff (F
F≤n

surj

) ≃ Aeff (F
F̃

≤n

surj

)⊕Aeff (F{∅});

in other words, since Aeff (F{∅}) ≃ Aeff (F) is the free semiadditive category

on one generator, an E-valued Mackey functor M on F≤n
surj is the same data as a

Mackey functor M̃ on F̃≤n
surj together with an objectM(∅) of E. This mirrors the

observation that an n-excisive functor F : Spω → E decomposes as the direct
sum of a reduced n-excisive functor F̃ : Spω → E - that is, F̃ (0) ≃ 0 - and a
constant functor const(F (0)).

Indeed, if F and M correspond under the equivalence of Theorem 6.1, then
it’s easy to see that F (∅) ≃M(∅), and thus Mack(F̃≤n

surj) - the full subcategory

of Mack(F≤n
surj) of objectsM for which M(∅) ≃ 0 - is equivalent to the category

of reduced n-excisive functors Spω → E.
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