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1 Introduction

1.1 Higher structures

Higher algebra is the study of algebraic structures which arise in the setting of
higher category theory. Higher algebra generalizes ordinary algebra, or algebra
in the setting of ordinary category theory. Ordinary categories have sets of
morphisms between objects, and elements of a set are either equal or not. Higher
categories, on the other hand, have homotopy types of morphisms between
objects, typically called mapping spaces. Sets are examples of homotopy types,
namely the discrete ones, but in general it doesn’t quite make sense to ask
whether or not two “elements” of a homotopy type are “equal”; rather, they are
equivalent if they are represented by points which can be connected by a path
in some suitable model for the homotopy type. But then any two such paths
might form a nontrivial loop, leading to higher automorphisms, and so on. The
notion of equality only makes sense after passing to discrete invariants such as
homotopy groups.

Since the higher categorical analogue of a set is a space, the higher categorical
analogue of an abelian group ought to be something like a space equipped with
a multiplication operation which is associative, commutative, and invertible
up to coherent homotopy. While invertibility is a property of an associative
operation, commutativity is not; rather, it is structure. This is because, in higher
categorical contexts, it is not enough to simply permute a sequence of elements;
instead, the permutation itself is recorded as a morphism. A commutative
multiplication operation must also act on morphisms, so that they may also be
permuted, and so on and so forth, provided we keep track of these permutations
as still higher morphisms. There are a number of formalisms which make this
precise, all of which are equivalent to (or obvious variations on) the notion of
spectrum in the sense of algebraic topology.1

On the one hand, a spectrum is an infinite delooping of a pointed space,
thereby providing an abelian group structure on all its homotopy groups (pos-
itive and negative); on the other, a spectrum represents a cohomology theory,
which is to say a graded family of contravariant abelian group valued functors
on pointed spaces satisfying a suspension relation and certain exactness con-
ditions. These two notions are equivalent: the functors which comprise the
cohomology theory are represented by the spaces of the infinite delooping. The

1The overuse of the term “spectrum” in mathematics is perhaps a potential cause for
confusion; fortunately, it is almost always clear from context what is meant.
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real starting point of higher algebra is the observation that there is a symmetric
monoidal structure on the ∞-category of spectra which refines the tensor prod-
uct of abelian groups, and that there are many important examples of algebras
for this tensor product.

1.2 Overview

Ordinary algebra is set based, meaning that it is carried out in the language of
ordinary categories. As mentioned, the higher categorical analogue of sets are
spaces, or n-truncated spaces if one chooses to work in an (n + 1)-categorical
context, and the truncation functors allow us to switch back and forth between
categorical levels. In the category of sets, limits and colimits reduce to intersec-
tions and unions in some ambient set; in higher category theory, however, these
operations must be interpreted invariantly, which implies that a homotopy col-
imit of sets (viewed as spaces) need not be discrete.

We begin our exposition in Section 2 with some background on the behavior
of colimits in higher categories, especially in ∞-categories of presheaves or cer-
tain full subcategories thereof (the presentable ∞-categories). We then turn to
the Grothendieck construction, which establishes a correspondence between fi-
brations and functors. The fibration perspective allows for an efficient approach
to the theory of (symmetric) monoidal ∞-categories and (commutative) alge-
bras and modules therein, our main objects of interest, at least in the stable
setting: a stable ∞-category is a higher categorical analogue of an abelian cat-
egory, an analogy which we make precise by comparing derived categories of
abelian categories with stable ∞-categories via t-structures.

Having equipped ourselves with the basic structures and language, in Section 3
we turn to a more detailed study of spectra and the smash product. An asso-
ciative (respectively, commutative) ring spectrum is defined as an algebra (re-
spectively, commutative algebra) object in the stable∞-category of spectra, the
universal stable∞-category. The theory also allows for a notion of (left or right)
module object of an∞-category which is (left or right) tensored over a monoidal
∞-category. We conclude this section with some remarks on localizations of ring
spectra, which mirrors the ordinary theory save for the fact that ideals must be
interpreted on the level of homotopy groups.

Section 4 is devoted to module theory. In particular, monads appear as an
instance of modules, allowing us to address monadicity, which plays a much
more important role higher categorically due do the difficultly of ad hoc con-
structions. Simplicial objects and their colimits, geometric realizations, feature
in the construction of the relative tensor product as well as the definition of pro-
jective module. We also study the more general class of perfect modules, which
are colimits of shifted projective modules in a sense made rigorous by the theory
of tor-amplitude, which acts as a substitute for projective resolutions. We also
consider free algebras and isolate various finiteness properties of modules and
algebras which play important roles in higher algebra.

The final Section 5 deals with deformations of commutative algebras. The
formalism of the tangent bundle allows for an elegant construction of the cotan-
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gent complex, which governs derivations and square-zero extensions. The Post-
nikov tower of truncations of a connective commutative algebra is comprised
entirely of square-zero extensions, a crucial fact which implies an obstruction
theory for computing the space of maps between commutative algebra spectra.
The main theorem in that all obstructions vanish in the étale case, from which
it follows that the ∞-category of étale commutative algebras over of fixed com-
mutative ring spectrum R is equivalent to an ordinary category, namely that
of étale commutative algebras over its underlying ordinary ring π0R, a strong
version of the topological invariance of étale morphisms.

We conclude this introductory section with some background on various ap-
proaches to homotopy coherence and some remarks on higher categorical “set
theory”: small and large spaces, categories, universes, etc. The reader who is al-
ready familiar with these notions is encouraged to Section 2, or even Section 3 if
they are already familiar with stability, presentability, and symmetric monoidal
structures.

1.3 Homotopy coherence

To lessen the prerequisites we avoid the use of operads or ∞-operads in this
article altogether. Nevertheless, for the sake of putting the theory of higher
categorical algebra into historical context, and explaining some of the standard
terminology, a few remarks are in order.

A space equipped with a homotopy coherently associative, or homotopy co-
herently associative and commutative, multiplication operation is traditionally
referred to as an A∞-monoid, or E∞-monoid, meaning that it admits an action
by an A∞ (infinitely homotopy coherently associative) or E∞ (infinitely homo-
topy coherently “everything”, i.e. associative and commutative) operad. If the
multiplication operation is invertible up to homotopy, the A∞-monoid is said to
be grouplike. An E∞-monoid is grouplike when viewed as an A∞-monoid. These
operads were originally constructed out of geometric objects like associahedra,
configuration spaces, or spaces of linear isometries.

The ∞-categorical approach prefers to use small combinatorial models for
associativity and commutativity, as in Segal’s treatment [36], by incorporating
homotopy coherence into the language itself. The result is a significantly more
streamlined approach to homotopy coherent algebraic structures, as anticipated
in the now extremely influential book of the same name of Boardmann–Vogt [12],
which contained the original definition of ∞-category, well before the theory
was systematically developed by Joyal and then Lurie. Nevertheless, there is
a rich interplay between geometry, topology, and higher category theory, as
evidenced by the remarkable cobordism hypothesis, among other things. Even
the motivating example of the theory of operads, as originally developed by
May [28], namely the little n-cubes operad, n ∈ N, collectively form the most
important family of ∞-operads, the so-called En operads.

As ∞-operads, A∞ ≃ E1 and E⊗n
1 ≃ En; the former equivalence is easy

but the latter is equivalence is hard and requires both the tensor product of
Boardmann–Vogt [12] and the additivity theorem of Dunn [15]. Since we will
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only be concerned with A∞-algebras and E∞-algebras in (symmetric) monoidal
∞-categories, we choose to emphasize the analogy with ordinary algebra by refer-
ring to these objects as associative and commutative algebras, respectively. This
drastically simplifies the terminology and also allows us to reformulate actions
by the associative or commutative ∞-operad, respectively, in terms of functors
from a category of ordinals or cardinals (arguably the must basic mathematical
objects of all). And while the abstract theory is quite powerful, one should keep
in mind that many of the most important examples come from geometry and
topology via these more classical constructions.

Heuristically, a ∞-categories are generalizations of (ordinary) categories in
which there is a space, instead of a set, of morphisms between any pair of
objects. There are a number of ways of making this precise, but suffice it to say
that simplicially (or topologically) enriched categories and quasi-categories yield
equivalent models: any∞-category is equivalent to the homotopy coherent nerve
N(C) of a simplicially enriched category C. We will follow the usual notational
conventions and sometimes refer to simplically enriched categories as simplicial
categories, though this should not be confused with the more general notion of
simplicial object in the category of categories.

Remark 1.3.1. The theory of quasi-categories [23] has the distinct advantage
that it allows for an easy construction of the ∞-category Fun(D,C) of functors
from an ∞-category D to an ∞-category C as the exponential

Fun(D,C) := C
D

in the cartesian closed category of simplicial sets. This is a completely combi-
natorial object: if X and Y are simplicial sets, an m-simplex of XY is natural
transformation ∆m × Y → X of functors ∆op → Set, so it is completely deter-
mined by a compatible family of functions ∆m

n × Yn → Xn, n ∈ N.

Remark 1.3.2. The chief issue which arises when working with simplicial cat-
egories is that the simplicial category of simplicial functors from D to C is not
in general invariant under weak equivalence (simplicial functors which are fully
faithful and essentially surjective up to weak homotopy equivalence). To ob-
tain the homotopically correct simplicial category of functors we must replace
D with a sufficiently “free” version D′ → D of itself.

Remark 1.3.3. In practice it is usually easier to apply the homotopy coherent
nerve functor

N : Cat∆ −→ Fun(∆op, Set)

and work in simplicial sets. Here Cat∆ denotes the category of simplicially
enriched categories and N is the right adjoint of the colimit preserving functor
C : Fun(∆op, Set) → Cat∆ determined by defining Map

C[∆n](i, j) to be the
simplicial set of partially ordered subsets of {i, i+ 1, . . . , j − 1, j}.

Theorem 1.3.1. [24, Theorem 2.2.5.1] The homotopy coherent nerve functor
N : Cat∆ → Fun(∆op, Set) is a right Quillen equivalence. In particular, the
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homotopy coherent nerve N(C) of a simplically enriched category C is a quasi-
category provided C is enriched in Kan complexes (every MapC(A,B) is a Kan
complex).

Higher categorical algebra is truly homotopical and not just homological in
nature, meaning that many of its most important objects simply do not exist
within the world of chain complexes or derived categories. The portion of the
theory that can be formulated in these terms is differential graded algebra, the
abstract study of which employs the language of differential graded categories.

Definition 1.3.4. A differential graded category is a category enriched over the
category Ch = Ch(Ab) of chain complexes of abelian groups. We write Catdg
for the category of small differential graded categories

Example 1.3.5. Let A be an abelian category, or an additive subcategory of
an abelian category. Given complexes A,B ∈ Ch(A), there is a natural chain
complex of abelian groups of homomorphisms Hom(A,B), which in degree n
is the abelian group Hom(A,B)n =

∏

k∈Z
HomA(Ak, Bk+n), with differential

given by the formula (dϕ)(a) = d(ϕ(a)) − (−1)nϕ(d(a)). In this way, Ch(A)
acquires a canonical structure of a differential graded category: there is a chain
complex of maps between any two objects, suitably compatible with composition.
Moreover, the abelian group of maps Hom(A,B) ∼= H0Hom(A,B) falls out as
the zeroth homology of this complex, so that Ch(A) is the homotopy category
of this differential graded category.

Remark 1.3.6. A differential graded category determines a simplicially en-
riched category via the Dold-Kan correspondence [40], which asserts that there
is a suitably monoidal equivalece of categories between connective chain com-
plexes and simplicial abelian groups. Said differently, we may regard a chain
complex, provided it is identically zero in negative degrees,2 as a simplicial
abelian group. This is done via the functor Ch≥0(Ab) → Fun(∆op,Ab) which
associates to such a chain complex A and nonempty finite ordinal [n] the abelian
group

⊕

[n]։[m]

Am.

Remark 1.3.7. The functor Ch≥0(Ab)→ Ab∆ alluded to above admits a lax
monoidal structure [40], and lax monoidal functors between enriching monoidal
categories allow us to functorially change enrichment. Since the (good) trunca-
tion functor τ≥0 : Ch(Ab) → Ch≥0(Ab) and underlying set functor Ab → Set
also admit lax monoidal structures, we obtain a composite lax monoidal functor

Ch(Ab) −→ Ch≥0(Ab) −→ Fun(∆op,Ab) −→ Fun(∆op, Set),

and hence a functor from differential graded to simplicially enriched categories.
We write (−)∆ : Catdg → Cat∆ for this functor and N(C) := N(C∆) for the
homotopy coherent nerve of the differential graded category C. One can define
a more explicit differential graded nerve functor Ndg : Catdg → Fun(∆op, Set),
as in [25, Construction 1.3.1.6], but it is equivalent to the homotopy coherent
nerve of the associated simplicially enriched category [25, Proposition 1.3.1.17]).

2We will use homological grading consistently throughout this article.
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1.4 Terminology and notation

For the purposes of this article, we will always consider spaces from the point of
view of∞-category theory. This means that we will tend to think of a topological
space X in terms of its associated singular simplicial set (its fundamental ∞-
groupoid) rather than as a point-set object, and that we reserve the right to
replace X with a homotopy equivalent space (or not even choose a representative
of the homotopy type of X). If X has the homotopy type of a cell complex
then the realization of the singular complex of X recovers X up to homotopy
equivalence; otherwise, the realization of the singular complex of X recovers X
only up to weak homotopy equivalence. As we will never need actual topological
spaces (up to homoemorphism) at all anywhere in this article, “space” will always
mean “homotopy type” in this sense.

Definition 1.4.1. The ∞-category S of spaces is the homotopy coherent nerve
of the simplicially enriched category of Kan complexes, S = N(Kan).

Remark 1.4.2. As stipulated by Grothendieck’s homotopy hypothesis, the ∞-
category of spaces is equivalent to the ∞-category Gpd∞ of∞-groupoids. Here
Gpd∞ ⊂ Cat∞ denotes the full subcategory consisting of those ∞-categories C
for which any morphism ∆1 → C is an equivalence.

We will also be interested in the ∞-category S∗ of pointed spaces, which can
be modeled either internally as pointed spaces S∗ = Spt/ or as the homotopy
coherent nerve of the simplicial category of pointed Kan complexes.

Remark 1.4.3. The coproduct of a pair of objects X and Y of S∗ is computed
as the wedge product X ∨ Y , the quotient of the disjoint union of X and Y
obtained by identifying their basepoints. Via the colimit preserving functor
S→ S∗ which freely adjoins a basepoint, the cartesian product on S extends to
the smash product on S∗. That is, the smash product sits in a cofiber sequence

X ∨ Y −→ X × Y −→ X ∧ Y

and has the property that if X ≃ X ′
+ and Y ≃ Y ′

+ then X ∧ Y ≃ (X ′ × Y ′)+.

In practice, it is sometimes necessary to be precise about size by bounding
various classes of objects by sets of cardinality less than some infinite regular
cardinal. For the purposes of this survey article, however, we will gloss over
most of these distinctions and employ a very basic version of the theory of
Grothendieck universes: objects which exist in our first universe will be called
small, objects which exist in the next universe will be called large, and objects
which exist only in a still higher universe will be called very large.

As one ascends the higher categorical ladder, the size of the mathematical
objects under consideration tends to increase. While a space will always be
assumed to be small, an∞-category will typically be assumed to be large, unless
otherwise mentioned. We write Cat∞ for the large ∞-category of small ∞-
categories and CAT∞ for the very large ∞-category of large ∞-categories.
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While some ∞-categorical statements will be formulated in the model of
quasicategories, we will often employ the theory without reference to any par-
ticular model. From this perspective, a full subcategory is assumed to be closed
under equivalences, a cartesian fibration is any functor that is equivalent to a
cartesian fibration (see [24, Section 2.4], or Section 2.2 for an overview), and
ordinary categories are ∞-categories with discrete mapping spaces.

1.5 Acknowledgements
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article is based almost entirely on the groundbreaking work of Jacob Lurie. It
is a great pleasure to thank him for his enormous contributions to the subject.
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as precisely as possible and provide accurate references for these results (though
in the interest of keeping the article as short as possible we have decided not
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Of course, Lurie’s work builds on the combined efforts of a great many mathe-
maticians — far too many to list here, and any attempt to do so will inevitably
leave omit many valuable contributions.

It is also a pleasure to thank Benjamin Antieau, Tobias Barthel, Jeremiah
Heller, Lars Hesselholt, Achim Krause, Tyler Lawson, Haynes Miller, Thomas
Nikolaus, Charles Rezk, Markus Spitzweck, and Hiro Tanaka for helpful remarks
and comments on earlier versions of this draft. The author would also like to
thank the Mathematical Sciences Research Institute for providing an extremely
pleasant working environment while much of this article was being written, as
well as the National Science Foundation for their generous support.

2 Category theory

2.1 Presheaves and colimits

Definition 2.1.1. A presheaf on an ∞-category C is a functor Cop → S. The
∞-category of presheaves on C is the functor ∞-category

P(C) = Fun(Cop, S),

where S denotes the ∞-category of (small) spaces.

Remark 2.1.2. Recall [24, Proposition 5.1.3.1] that P(C) is equipped with a
fully faithful Yoneda embedding j : C → P(C), given by the formula j(A) =
MapC(−, A) : C

op → S. Colimits in P(C) are computed objectwise as colimits
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in S. Since S is cocomplete, in the sense that it admits all small colimits, we see
that P(C) is as well. In fact, the Yoneda embedding exhibits P(C) as the free
cocompletion of C, in the sense made precise by the following statement.

Theorem 2.1.1. [24, Theorem 5.1.5.6] Given a small ∞-category C and a co-
complete ∞-category D, precomposition with the Yonda embedding

Funcolim(P(C),D) ⊂ Fun(P(C),D) −→ Fun(C,D)

induces an equivalence between the ∞-categories of functors C→ D and colimit
preserving functors P(C)→ D.

Remark 2.1.3. The actual statement of [24, Theorem 5.1.5.6] is in terms of
left adjoint functors P(C) → D. Left adjoint functors preserve colimits, and in
this case any colimit preserving functor is a left adjoint.

We will require variants of the above construction in which we freely adjoin
only certain types of colimits.

Definition 2.1.4. A map of simplicial sets J → I is cofinal if, for every ∞-
category C and every I-indexed colimit diagram I⊲ → C, the induced cone
J⊲ → C is a colimit diagram. See [24, Proposition 4.1.1.8] for details.

Definition 2.1.5. Let κ be an infinite regular cardinal. A simplicial set I is
κ-small if I has fewer than κ nondegenerate simplices. A simplicial set J is
κ-filtered if every map f : I → J from a κ-small simplicial set I extends to a
cone f⊲ : I⊲ → I. A simplicial set K is sifted if K → K ×K is cofinal.

Example 2.1.6. Filtered simplicial sets are sifted, and the simplicial indexing
category ∆op is sifted. A functor of ∞-categories f : C → D preserves sifted
colimits if and only if f preserves filtered colimits and geometric realizations.

Definition 2.1.7. An object A of an ∞-category C which admits κ-filtered
colimits is κ-compact if MapC(A,−) : C→ S commmutes with κ-filtered colimits.
An object A of an∞-category C which admits geometric realizations is projective
if MapC(A,−) : C→ S commutes with geometric realizations.

Definition 2.1.8. An indexing class is a collection of simplicial sets which we
regard as indexing allowed types of diagrams; this is not standard terminology.
Given an indexing class I, we write PI(C) ⊂ P(C) for the full subcategory
consisting of those presheaves f : Cop → S such that, for all I ∈ I, f transforms
I-indexed colimits in C to Iop-indexed limits in S.

Remark 2.1.9. The indexing classes which most commonly arise when consid-
ering algebraic structures are finite discrete, finite, filtered, and sifted. These
classes often come in pairs. A functor f : C→ D of preserves all small colimits
if and only if it preserves finite colimits and filtered colimits, or finite discrete
colimits (that is, finite coproducts) and sifted colimits.
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Proposition 2.1.10. [24, Proposition 5.3.6.2] Let C and D be ∞-categories. If
C admits finite coproducts and D admits sifted colimits, precomposition with the
Yoneda embedding C ⊂ PΣ(C) determines an equivalence of ∞-categories

Fun(C,D)
≃
←− Funsift(PΣ(C),D) ⊂ Fun(PΣ(C),D)

of functors C → D and sifted colimit preserving functors PΣ(C)→ D. If C

admits κ-small colimits and D admits κ-filtered colimits, precomposition with
the Yoneda embedding C ⊂ Pκ-sm(C) determines an equivalence of ∞-categories

Fun(C,D)
≃
←− Funκ-filt(Pκ-sm(C),D) ⊂ Fun(Pκ-sm(C),D)

of functors C→ D and κ-filtered colimit preserving functors Pκ-sm(C)→ D.

2.2 The Grothendieck construction

Given an ordinary category C, the theory of categories fibered over C developed
in [1] characterizes the essential image of the Grothendieck construction

Fun(Cop,CAT) −→ CAT/C

as the (not full) subcategory of CAT/C consisting of the fibered categories and
their morphisms. Because of the fundamental role the Grothendieck construc-
tion plays in higher algebra, we begin with a brief overview of the basic notions
of fibered∞-category theory [24]. Whenever possible we choose to phrase these
notions internally inside of CAT∞ itself, with a few exceptions: it is sometimes
quite useful to represent an ∞-category by a (marked) simplicial set [24], in
particular when specifying diagrams D→ C in an ∞-category C.

Consider the slice ∞-category CAT∞/C: objects of CAT∞/C are functors
p : D → C with target C, and morphisms of CAT∞/C from q : E → C to
p : D→ C are commuting triangles of CAT∞ of the form

E
f

//

p
��
❃❃

❃❃
❃❃

❃❃
D

q
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

C

.

We write FunC(E,D) ≃ Fun(E,D)×Fun(E,C) {p} for the ∞-category of functors
f : E→ D such that q ◦ f = p.

Definition 2.2.1. Let p : D → C be a functor3 of ∞-categories. An arrow
α : C → D of D is p-cartesian if the induced functor

D/α −→ D/D ×C/p(D)
C/p(α)

3If we are working externally in the ordinary category of quasicategories, we would addi-
tionally require p to be a categorical fibration [24]; internally, however, this is a meaningless
assumption, as the notion of categorical fibration is not stable under categorical equivalence.
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is an equivalence of ∞-categories. A p-cartesian lift of an arrow f : A → B
in C is a p-cartesian arrow α : C → D in D such that p(α) = f . A functor
p : D → C is a cartesian fibration if, for every arrow f : A→ B of C and every
object D ∈ p−1(B), there is a p-cartesian lift α : C → D of f with target D.

Remark 2.2.2. When p : D → C is clear from context, we will refer to p-
cartesian arrows simply as cartesian arrows.

A cartesian fibration p : D→ C determines a functor StC(p) : C
op → CAT∞,

called the straightening of p in [24], basically by taking fibers, which happen
to be contravariantly functorial in precisely this case. This operation is inverse
to the unstraightening functor, the ∞-categorical analogue of the Grothendieck
construction, which “integrates” the functor f : Cop → CAT∞ to a cartesian fi-
bration p : UnC(f)→ C. There are analogous versions for cocartesian fibrations,
which correspond to covariant functors C→ CAT∞.

Theorem 2.2.1. [24, Theorem 3.2.0.1] For any small ∞-category C, the un-
straightening functor

UnC : Fun(Cop,CAT∞)
≃
−→ CATcart

∞/C ⊂ CAT∞/C

induces an equivalence between the ∞-category Fun(Cop,CAT∞) and the (not
full) subcategory CATcart

∞/C ⊂ CAT∞/C consisting of the cartesian fibrations over
C and those functors over C which preserve cartesian arrows.

The straightening and unstraightening equivalence will be used throughout
this article, especially in our definitions of (symmetric) monoidal ∞-category
and (commutative) algebra object therein. Even more fundamentally, this equiv-
alence is used in the definition of adjunction.

Definition 2.2.3. Let C and D be∞-categories. An adjunction between C and
D is cartesian and cocartesian fibration p : M→ ∆1 equipped with equivalences
i : C→M{0} and j : D→M{1}.

Remark 2.2.4. Given an adjunction, the left adoint f : C → D is determined
by cocartesian lifts of 0→ 1, and the right adjoint g : D→ C is determined by
cartesian lifts of 0→ 1. It is possible to construct a unit or counit transformation
[24, Proposition 5.2.2.8], and the fact that both C and D fully faithfully embed
into M implies that we have equivalences

Map(A, gB) ≃Map(iA, igB) ≃Map(iA, jB) ≃Map(jfA, jB) ≃ Map(fA,B)

for any pair of objects A of C and B of D. A functor f : ∆1 → CAT∞ is a
left adjoint if and only if the associated cocartesian fibration M → ∆1 is also
cartesian, and a functor g : ∆1 → CATop

∞ is a right adjoint if and only if the
associated cartesian fibration M→ ∆1 is also cocartesian.
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2.3 Monoidal and symmetric monoidal ∞-categories

Informally, a symmetric monoidal∞-category is an∞-category C equipped with
unit η : ∆0 → C and multiplication µ : C×C→ C maps which are appropriately
coherently associative, commutative, and unital. Making this precise requires
a means to organize for us the infinite hierarchy of coherence data necessary
to assert that the intermediate multiplications C×m → C×n, which should be
indexed by something like functions from the set with m elements to the set
with n elements, are suitably compatible.

Remark 2.3.1. Actually, as we may first project away some of the factors in
the product before we multiply, these operations are indexed by functions of
pointed sets. For convenience we allow ourselves to specify a finite pointed set
by the cardinality n of its elements, writing 〈n〉 = {0, 1, . . . , n} for the pointed
set with basepoint 0 and n elements in the complement 〈n〉◦ = {1, . . . , n}.

Definition 2.3.2. A morphism α : 〈m〉 → 〈n〉 in Fin∗ is inert if, for each
element i ∈ 〈n〉◦, the preimage α−1(i) ⊂ 〈m〉◦ consists of a single element. A
morphism α : 〈m〉 → 〈n〉 in Fin∗ is active if the preimage α−1(pt) ⊂ 〈m〉 consists
of a single element (necessarily the basepoint).

Example 2.3.3. There are exactly n inert maps δi : 〈n〉 → 〈1〉, namely

δi(j) =

{

1 j = i

0 j 6= i
.

Definition 2.3.4. A symmetric monoidal∞-category is a cocartesian fibration
p : C⊗ → Fin∗ which satisfies the Segal condition: for each natural number
n, the map C

⊗
〈n〉 →

∏n
i=1 C

⊗
〈1〉 induced by the inert morphisms δi : 〈n〉 → 〈1〉,

1 ≤ i ≤ n, is an equivalence. A morphism of symmetric monoidal ∞-categories,
or a symmetric monoidal functor, from p : C⊗ → Fin∗ to q : D⊗ → Fin∗,
is a functor f : C⊗ → D⊗ over Fin∗ such that f preserves cocartesian edges.
The ∞-category CMon(CAT∞) of symmetric monoidal ∞-categories is the full
subcategory of CATcocart

∞/Fin∗
spanned by the symmetric monoidal ∞-categories.

Remark 2.3.5. The straightening of a symmetric monoidal ∞-category C⊗ →
Fin∗ is a functor Fin∗ → CAT∞ satisfying the Segal condition. This is the data
of a commutative monoid object in Cat∞, hence the notation CMon(CAT)∞.
We could take this as the definition of a symmetric monoidal∞-category, except
that in practice these functors are often difficult to write down, an issue which
already arises in ordinary category theory: for instance, the tensor product of
modules is more naturally defined by a universal property than a specific choice
of representative. It is usually easier to avoid making explicit choices altogether
by constructing the cocartesian fibration p : C⊗ → Fin∗ instead, where one may
as well take the fiber over 〈n〉 to be the ∞-category of all possible choices of the
symmetric monoidal product of n objects of C.
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Example 2.3.6. Let C be an ∞-category with finite products. Then there
exists a cocartesian fibration p : C× → Fin∗ whose fiber over 〈n〉 is the ∞-
category of commutative diagrams of the form f : (Sub(n),≤)op → C such that
f(∅) ≃ pt and f carries pushout squares in Sub(n) to pullback squares in C. In
particular, the map f(I) →

∏

i∈I f({i}) is an equivalence in C, from which it
follows that C×

〈n〉 →
∏n

i=1 C is an equivalence and therefore that p : C× → Fin∗ is
a symmetric monoidal ∞-category. We refer to this as the cartesian symmetric
monoidal structure on C, which exists if and only if C has finite products.

Definition 2.3.7. Let p : C⊗ → Fin∗ be a symmetric monoidal ∞-category. A
commutative algebra object of C⊗ is a section s : Fin∗ → C⊗ of p which sends inert
morphisms in Fin∗ to cocartesian morphisms in C⊗. The ∞-category CAlg(C⊗)
of commutative algebra objects in p : C⊗ → Fin∗ is the full subcategory of the
∞-category FunFin∗

(Fin∗,C
⊗) of sections s : Fin∗ → C⊗ of p consisting of the

commutative algebra objects.

Remark 2.3.8. There is an equivalence CAlg(CAT×
∞) ≃ CMon(CAT∞). That

is, the ∞-category of commutative algebra objects in CAT×
∞ → Fin∗ is equiva-

lent to the ∞-category of commutative monoid objects in CAT∞.

We will also be interested in monoidal ∞-categories. To set up the theory
we need a nonsymmetric analogue on the category Fin∗ of finite pointed sets.

Remark 2.3.9. To keep the prerequisites to a minimum, we purposely avoid
using the language of ∞-operads. However, from that perspective, a natural
choice of indexing category for monoidal structures is the “desymmetrization”
q : Finord

∗ → Fin∗ of Fin∗, the functor whose fiber over 〈n〉 is the set of total
orderings of 〈n〉◦. However it will be both more convenient and elementary to
simply use simplicial objects instead.

Definition 2.3.10. The functor Cut : ∆op → Fin∗ is defined by identifying
the nonempty finite ordinal [n] = {0 → 1 → · · · → n − 1 → n} with the set of
“cuts” of the pointed cardinal 〈n〉 = {0, 1, . . . , n − 1, n} as follows: we can cut
the string {0 → 1 → · · · → n − 1 → n} before or after any i ∈ [n], for a total
of n+ 2 possibilities. However, cutting before 0 or after n have the same effect
(nothing), so we identify the two trivial cuts with the basepoint of 〈n〉.

Definition 2.3.11. An order preserving function f : [m] → [n] is inert if it is
it injective with convex image; that is, f(m) = f(0) +m.

Remark 2.3.12. The n inert morphisms [1]→ [n] in ∆ are the order preserving
functions of the form σi(j) = i+ j, 0 ≤ i < n, j ∈ [1].

Definition 2.3.13. A monoidal ∞-category is a cocartesian fibration p : C⊗ →
∆op which satisfies the Segal condition: for each n ∈ N, the map

C
⊗
[n] −→

n
∏

i=1

C
⊗
[1]
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induced by the inert morphisms σi : [1] → [n], 0 ≤ i < n, is an equivalence. A
morphism of monoidal∞-categories, or a monoidal functor, from p : C⊗ → Fin∗

to q : D⊗ → Fin∗ is a functor f : C⊗ → D⊗ over ∆op such that f preserves
cocartesian edges. The ∞-category Mon(CAT∞) of monoidal ∞-categories is
the full subcategory of CATcocart

∞/∆op spanned by the monoidal ∞-categories.

Definition 2.3.14. Let p : C⊗ → ∆op be a monoidal ∞-category. An algebra
object of C⊗ is a section s : ∆op → C⊗ of p which sends inert morphisms in ∆op

to cocartesian morphisms in C⊗. The ∞-category Alg(C⊗) of algebra objects
in C⊗ is the full subcategory of the ∞-category Fun∆op(∆op,C⊗) of sections
s : ∆op → C⊗ of p consisting of the algebra objects.

Remark 2.3.15. As in the symmetric case, there is an equivalence Alg(CAT×
∞) ≃

Mon(CAT∞): the ∞-category of associative algebra objects in CAT×
∞ → ∆op

is equivalent to the ∞-category of monoid objects in CAT∞.

Remark 2.3.16. Using [25, Construction 4.1.2.9] he theory is set up so that
a symmetric monoidal ∞-category p : C⊗ → Fin∗ restricts to a monoidal
∞-category q : C

⊗|∆op → ∆op. It follows that we have a forgetful functor
CAlg(C⊗)→ Alg(C⊗) := Alg(C⊗|∆op).

2.4 Presentable ∞-categories

Definition 2.4.1. Given a small ∞-category C, we write Indκ(C) ⊂ P(C) for
the full subcategory consisting of those functors f : Cop → S such that the
source D of the unstraightening p : D→ C of f is κ-filtered.

Proposition 2.4.2. [24, Proposition 5.3.5.10] Let C be a small ∞-category
and D an ∞-category with κ-filtered colimits. There is an equivalence of ∞-
categories

Funκ-filt(Indκ(C),D) ≃ Fun(C,D),

and hence by Proposition 2.1.10 an equivalence Indκ(C) ≃ Pκ-fin(C).

Definition 2.4.3. An object A of an ∞-category C is κ-compact if the corep-
resentable functor MapC(A,−) : C → S commutes with κ-filtered colimits. We
write C

κ ⊂ C for the full subcategory of C consisting of the κ-compact objects.

Definition 2.4.4. An ∞-category C is κ-compactly generated if C admits all
small colimits and, writing C

κ ⊂ C for the full subcategory consisting of the
κ-compact objects, the canonical map Indκ(C

κ) → C is an equivalence. A
presentable ∞-category is an ∞-category which is κ-compactly generated for
some infinite regular cardinal κ.

There are dual notions of morphism of presentable ∞-category: namely,
those functors which are left (respectively, right) adjoints. We write LPr (re-
spectively, RPr) for these ∞-categories. A key point [24, Proposition 5.5.3.13
and Theorem 5.5.3.18] is that the inclusion of subcategories LPr ⊂ CAT∞ and
RPr ⊂ CAT∞ preserves limits: in fact, given a functor D → LPr, a cone
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D⊳ → LPr is limiting in LPr (respectively, RPr) if and only if the induced cone
is limiting in CAT∞.

Remark 2.4.5. For each infinite regular cardinal κ we have subcategories
(again not full) LPrκ ⊂ LPr (respectively, RPrκ ⊂ RPr) consisting of the
κ-compactly generated ∞-categories and those left (respectively, right) adjoint
functors which preserve κ-compact objects (respectively, κ-filtered colimits).

Definition 2.4.6. A presentable fibration is a cartesian fibration p : D→ C such
that the straightening StC(p) : C

op → CAT∞ factors through the subcategory
RPr ⊂ CAT∞ of presentable ∞-categories and right adjoint functors.

Remark 2.4.7. The adjoint functor theorem [24, Corollary 5.5.2.9] states that
any colimit preserving functor L : A → B of presentable ∞-categories admits
a right adjoint R : B → A (this is even true more generally, for instance if B
is only assumed to be cocomplete). Hence LPr can be equivalently described
as the subcategory of presentable ∞-categories and left adjoint functors. Du-
ally, writing RPr ⊂ CAT∞ for the subcategory consisting of the presentable
∞-categories and right adjoint functors, uniqueness of adjoints allows us to
construct a canonical equivalence LProp ≃ RPr .

Definition 2.4.8. A presentable symmetric monoidal∞-category is a symmet-
ric monoidal ∞-category p : C⊗ → Fin∗ such that the underlying ∞-category
C ≃ C

⊗
〈1〉 is presentable and any choice of tensor product bifunctor ⊗ : C×C→ C

commutes with colimits separately in each variable.

Theorem 2.4.1. [25, Proposition 4.8.1.17] Let C and D be presentable ∞-
categories. The subfunctor

Fun′(C×D,−) ⊂ Fun(C×D,−) : LPr −→ CAT∞,

whose value at E ∈ LPr consists of those functors f : C×D→ E which preserve
colimits separately in each variable, is corepresented by an object C⊗D ∈ LPr.

Remark 2.4.9. It is straightforward to check, with the definition of C⊗D as
above, that for a presentable ∞-category E, there is a canonical equivalence

LFun(C⊗D,E) ≃ LFun(C,LFun(D,E)),

where LFun(D,E) denotes the∞-category of left adjoint functors D→ E, which
is presentable by [25]. Dually, we write RFun(E,D) for the ∞-category of right
adjoint functors E→ D, and note that LFun(D,E) ≃ RFun(E,D)op.

Proposition 2.4.10. [25, Lemma 4.8.1.16] Let C,D be presentable∞-categories.
Then RFun(Dop,C) is a presentable ∞-category, and

C⊗D ≃ RFun(Dop,C).

Theorem 2.4.2. [25, Corollary 4.8.1.12] The functor P : Cat∞ → LPr extends
to a symmetric monoidal functor P⊗ : Cat×∞ → LPr⊗.
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Remark 2.4.11. The symmetric monoidality of the presheaves functor is an
∞-categorical generalization of the Day convolution product. If C⊗ is a small
symmetric monoidal ∞-category, then P⊗(C) inherits a convolution symmetric
monoidal structure [25, Remark 4.8.1.13], given by the formula

(X1 ⊗ · · · ⊗Xn)(A) ≃ colim(B1,...,Bn)∈C
×n
/A

X1(B1)× · · · ×Xn(Bn).

Here the colimit is taken over the ∞-category C
×n
/A ≃ C×n ×C C/A.

Remark 2.4.12. The fact that P⊗ is symmetric monoidal implies that the
canonical map P(C)⊗ P(D)→ P(C×D) is an equivalence.

Definition 2.4.13. A space X ∈ S is said to be n-truncated if πm(X, x) ∼= 0
for all m > n and x ∈ X . By convention, a space is said to be (−2)-truncated
if it is contractible and (−1)-truncated if it is empty or contractible.

Definition 2.4.14. An object A of an ∞-category C is said to be n-truncated,
n ∈ N, if the associated representable functor MapC(−, A) : Cop → S factors
through the full subcategory τ≤nS ⊂ S spanned by the n-truncated spaces.

Proposition 2.4.15. [24, Proposition 5.5.6.18] Let C be a presentable∞-category.
The inclusion of the full subcategory of n-truncated objects τ≤nC ⊂ C is stable
under limits and admits a left adjoint τ≤n : C→ τ≤nC.

Proposition 2.4.16. [25, Example 4.8.1.22] As an endofunctor of LPr, τ≤n :
LPr → LPr is idempotent. It therefore determines a localization of LPr with
essential image the presentable n-categories. In particular, for any presentable
∞-category C, we have a canonical equivalence C⊗ τ≤nS ≃ τ≤nC.

For any presentable∞-category C, the left adjoints of the inclusions τ≤mC ⊂
τ≤nC for m < n result in a tower · · · → τ≤nC→ · · · → τ≤0C of truncations of C
in LPrC/, and consequently a comparison map

C −→ lim{· · · → τ≤nC→ · · · → τ≤0C}.

Definition 2.4.17. Let A be an object of a presentable ∞-category C. The
Postnikov tower of A is the tower of truncations · · · → τ≤nA → · · · → τ≤0A of
A, regarded as a diagram in CA/.

Definition 2.4.18. Let C be a presentable∞-category. We say that Postnikov
towers converge in C if the map C → lim{· · · → τ≤nC → · · · → τ≤0C} is an
equivalence of ∞-categories.

More concretely, Postnikov towers converge in C if, for each object A, the
map A→ lim τ≤nA from A to the limit of its Postnikov tower is an equivalence.

Example 2.4.19. Postnikov towers converge in the ∞-categories S and S∗.
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2.5 Stable ∞-categories

Definition 2.5.1. A zero object of an ∞-category C is an object which is both
initial and final. An ∞-category C is pointed if C admits a zero object.

Definition 2.5.2. Let C be a pointed ∞-category. A triangle in C is a commu-
tative square ∆1 ×∆1 → C of the form

A
f

//

��

B

g

��

0 // C

where 0 is a zero object of C. We typically write A
f
→ B

g
→ C for a triangle

in C, though it is important to remember that a choice of composite g ◦ f and
nullhomotopy g ◦ f ≃ 0 ∈ Map(A,C) are also part of the data. We say that
a triangle in C is left exact if it is cartesian (a pullback), right exact if it is
cocartesian (a pushout), and exact if it is cartesian and cocartesian.

Remark 2.5.3. Let C be a pointed ∞-category with finite limits and colimits,
and consider a triangle in C of the form

A //

��

0

��

0 // B

.

Then A ≃ ΩB if the triangle is left exact and ΣA ≃ B is the triangle is right
exact. If the triangle is exact, we have equivalences A ≃ ΩΣA and ΣΩB ≃ B.

Definition 2.5.4. A stable ∞-category is an ∞-category C with a zero object,
finite limits and colimits, and which satisfies the following axiom: a commutative
square ∆1 × ∆1 → C in C is cartesian if and only if it is cocartesian (in other
words, a pullback if and only if it is a pushout).

Definition 2.5.5. Let C and D be a functor of∞-categories which admits finite
limits and colimits. A functor f : C→ D is left exact if f preserves finite limits,
right exact if f preserves finite colimits, and exact if f preserves finite limits
and finite colimits. We write CATst

∞ ⊂ CAT∞ for the (not full) subcategory
consisting of the stable ∞-categories and the exact functors.

Proposition 2.5.6. [25, Corollary 1.4.2.11] Let C be a pointed∞-category. The
following conditions are equivalent:

(1) C is stable.

(2) C admits finite colimits and Σ : C→ C is an equivalence.

(3) C admits finite limits and Ω : C→ C is an equivalence.
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Theorem 2.5.1. [25, Lemma 1.1.2.13] The homotopy category of a stable ∞-
category C admits the structure of a triangulated category such that:

(1) The shift functor is induced from the suspension functor Σ : C→ C.

(2) A triangle A
f
→ B

g
→ C

h
→ ΣA in the homotopy category is exact if and

only if there exist exact triangles

A
f ′

//

��

B //

g′

��

0

��

0 // C
h′

// D

in C such that f ′, g′, and h′ are representatives of f , g and h composed
with the equivalence ΣA→ D, respectively.

Definition 2.5.7. Let C be an ∞-category with finite limits. A functor

F : Sfin∗ −→ C

is said to be excisive (respectively, reduced) if F sends cocartesian squares to
cartesian squares (respectively, sends initial objects to final objects). We write

Exc∗(S
fin
∗ ,C) ⊂ Fun(Sfin∗ ,C)

for the full subcategory of reduced excisive functors Sfin∗ → C.

Definition 2.5.8. Let C be an ∞-category with finite limits. The ∞-category
Sp(C) of spectrum objects in C is the ∞-category

Sp(C) = Exc∗(S
fin
∗ ,C)

of reduced excisive functors from finite spaces to C.

The reason for the terminology “spectrum object” is that a reduced excisive
functor determines, and is determined by, its value on any infinite sequence
{Sn0 , Sn1 , Sn2 , . . .} of spheres of strictly increasing dimension. The most canon-
ical choice is the sequence of all spheres {S0, S1, S2, . . .}, so that evaluation on
this family of spheres induces a map

Exc∗(S
fin
∗ ,C) −→ lim{· · ·

Ω
→ C∗

Ω
→ C∗

Ω
→ C∗}

which sends the excisive functor F to the sequence of pointed objects {F (Sn)}n∈N

and equivalences F (Sn)
≃
−→ ΩF (ΣSn)

≃
−→ ΩF (Sn+1).

Proposition 2.5.9. [25, Remark 1.4.2.25] Let C be an ∞-category with finite
limits. The functor

Sp(C) = Exc∗(S
fin
∗ ,C) −→ lim{· · ·

Ω
→ C∗

Ω
→ C∗

Ω
→ C∗}

induced by evaluation on spheres is an equivalence of ∞-categories.
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Remark 2.5.10. Since C has finite limits, it has a final object pt, and so it
makes sense to consider the∞-category C∗ ≃ Cpt/ of pointed objects in C. There
is a canonical equivalence Sp(C∗) ≃ Sp(C).

The main examples of stable ∞-categories are either presentable or embed
fully faithfully inside a stable presentable ∞-category as the subcategory of κ-
compact objects for some infinite regular cardinal κ. Let LPrst ⊂ LPr denote
the full subcategory spanned by the stable presentable ∞-categories.

Proposition 2.5.11. [25, Proposition 4.8.2.18] The inclusion of the full sub-
category LPrst ⊂ LPr admits a left adjoint LPr→ LPrst.

Remark 2.5.12. The left adjoint “stabilization” functor is given by tensoring
with the ∞-category of spectra. By virtue of the equivalence C ⊗ Sp ≃ Sp(C),
the ∞-category of spectrum objects in C is a description of its stabilization.

Corollary 2.5.13. Let A and B be presentable ∞-categories such that A is
stable. Then A⊗B is stable.

Corollary 2.5.14. The symmetric monoidal structure LPr⊗ on LPr induces a
symmetric monoidal structure LPr⊗st on the full subcategory LPrst ⊂ LPr con-
sisting of the stable presentable ∞-categories.

We write LPr⊗st ⊂ LPr⊗ for this symmetric monoidal subcategory. Note that
this inclusion is lax symmetric monoidal and right adjoint to the symmetric
monoidal stabilization functor Sp(−) : LPr⊗ → LPr⊗st.

Corollary 2.5.15. The forgetful functor LPrst ⊂ CAT∞ extends to a lax sym-
metric monoidal functor LPr⊗st → CAT×

∞. In particular, it carries (commuta-
tive) algebra objects of LPr⊗st to (symmetric) monoidal ∞-categories.

Example 2.5.16. The ∞-category Sp of spectra is a unit of the symmetric
monoidal ∞-category LPr⊗st of stable presentable ∞-categories. It therefore
admits a presentable symmetric monoidal structure, called the smash product.
We will write ⊗n : Sp×n → Sp for any choice of smash product multifunctor.

Remark 2.5.17. Given spectra A and B, their smash product is usually written
A∧B is the literature. We follow the convention of [25] and write A⊗B instead,
emphasizing the analogy with the tensor product of abelian groups (or more
precisely the derived tensor product of chain complexes).

Remark 2.5.18. By construction, the symmetric monoidal structure on the
∞-category of spectra is compatible with the cartesian symmetric monoidal
structure on the ∞-category of spaces via the suspension spectrum functor

Σ∞
+ : S −→ Sp .

This means that, for spaces X1, . . . , Xn, there is a canonical equivalence

(Σ∞
+ X1)⊗ · · · ⊗ (Σ∞

+ Xn) ≃ Σ∞
+ (X1 × · · · ×Xn).
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Proposition 2.5.19. [25, Corollary 1.4.4.2] A stable∞-category C is κ-compactly
generated if and only if C admits small coproducts, a κ-compact generator for
some regular cardinal κ, and (the homotopy category of) C is locally small.

Definition 2.5.20. A Verdier sequence is a cocartesian square

A //

��

B

��

0 // C

in CATst
∞ such that 0 is a zero object and the top horizontal map A → B is

fully faithful. A semi-orthogonal decomposition is a Verdier sequence such that
the functors A → B and B → C admit right adjoints. It is common to simply
write A→ B→ C for a Verdier sequence, leaving implicit the requirement that
A→ B be fully faithful with cofiber C.

Remark 2.5.21. Given a Verdier sequence A
i
→ B

j
→ C, the fact that i is

fully faithful implies that the left adjoint functor i! : Ind(A) → Ind(B) is fully
faithful with right adjoint i∗, and the right adjoint j∗ : Ind(C)→ Ind(B) of the
functor j! : Ind(B) → Ind(C) is also fully faithful. Thus the Verdier sequence
Ind(A)→ Ind(B)→ Ind(C) is actually a semi-orthogonal decomposition.

2.6 Homotopy groups and t-structures

Unfortunately, the notion of truncation (see Definition 2.4.14 above) considered
earlier is poorly behaved in stable ∞-categories C, even if C happens to be
presentable. This is because it is a direct consequence of stability that an object
A of C is n-truncated if and only if it is (n − 1)-truncated, so that the only
finitely truncated objects at all are the zero objects, all of which are canonically
equivalent to one another. Thus any attempt to study C itself via the standard
obstruction theoretic truncation type methods is doomed to fail.

The notion of a t-structure on a stable ∞-category remedies this situa-
tion, providing all kinds of other interesting and potentially effective ways of
(co)filtering objects of C — ideally even C itself — as limits of “Postnikov type”
towers of truncation functors τ≤n : C → C, or dually as colimits of “Whitehead
type” telescopes of connective cover functors τ≥n : C → C. We emphasize that
while a t-structure is structure, it is encoded as innocuously as possible, via a
choice of “orthogonal” full subcategories of C in the sense made precise below.

First we need some notation. If C is a stable∞-category and A is an object of
C, we also write A[n] for a choice of n-fold suspension ΣnA of A, n ∈ Z. If D ⊂ C

is a full subcategory of C, we write D[n] ⊂ C for the full subcategory consisting
the objects of the form B[n], where B is an object of the full subcategory D.
Finally, for any pair of objects A and B of C, we write Extn(A,B) for the abelian
group π0 MapC(A,B[n]).

Definition 2.6.1. A t-structure on a stable ∞-category C consists of a pair of
full subcategories C≥0 ⊂ C and C≤0 ⊂ C satisfying the following conditions:
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(1) C≥0[1] ⊂ C≥0 and C≤0 ⊂ C≤0[1];

(2) If A ∈ C≥0 and B ∈ C≤0, then MapC(A,B[−1]) = 0;

(3) Every A ∈ C fits into an exact triangle of the form τ≥0A → A → τ≤−1A
with τ≥0A ∈ C≥0 and τ≤−1A ∈ C≤0[−1].

Definition 2.6.2. An exact functor C→ D between stable∞-categories equipped
with t-structures is left t-exact (respectively, right t-exact) if it sends C≤0 to D≤0

(respectively, C≥0 to D≥0). An exact functor is t-exact if is both left and right
t-exact. We set C≥n = C≥0[n] and C≤n = C≤0[n].

Remark 2.6.3. The data of a t-structure on a stable∞-category C is equivalent
to the data of a t-structure on its triangulated homotopy category Ho(C) in the
sense originally defined and studied by Beilinson-Bernstein-Deligne [11].

Example 2.6.4. If A is a small abelian category, then the bounded derived
∞-category Db(A) admits a canonical t-structure, where Db(A)≥n consists of
the complexes A such that Hi(A) = 0 for i < n, and similarly for Db(A)≤n. If
A is a Grothendieck abelian category, then the unbounded derived ∞-category
D(A) admits a t-structure with the same description as the previous example.
This stable ∞-category and its t-structure are studied in [25, Section 1.3.5].

Example 2.6.5. If R is a connective associative ring spectrum, then the stable
presentable ∞-category LModR of left R-module spectra admits a t-structure
with LModR≥0 ≃ LModcnR , the ∞-category of connective left R-module spectra.
We call this the Postnikov t-structure.

Remark 2.6.6. The mapping space MapC(A,B[−1]) is actually contractible
for A ∈ C≥0 and B ∈ C≤0. This is not the case for the mapping spectra, as
π0 MapD(A)(A[−n], B[−1]) ∼= Extn−1

A
(A,B) for any pair of objects A and B in

a Grothendieck abelian category A (see [25, Proposition 1.3.5.6]).

Proposition 2.6.7. [25, Remark 1.2.1.12 and Warning 1.2.1.9] The intersection
C≥0∩C≤0 is an abelian category equivalent to the full subcategory of C≥0 consist-
ing of the discrete objects (that is, 0-truncated in the sense of Definition 2.4.14).

Definition 2.6.8. The abelian category C≥0 ∩ C≤0 is called the heart of the
t-structure (C≥0,C≤0) on C, and is denoted C♥.

Example 2.6.9. The hearts of the t-structures in Example 2.6.4 are both
equivalence to the abelian category A itself. The heart of the t-structure in
Example 2.6.5 is LMod♥π0R

, the abelian category of left π0R-modules.

Remark 2.6.10. It turns out that the truncations τ≥n and τ≤n are functorial
in the sense that the inclusions C≥n → C and C≤n → C admit right and left
adjoints, respectively, by [25, Corollary 1.2.1.6].

Definition 2.6.11. Let C be a stable ∞-category equipped with a t-structure
(C≥0,C≤0) and let A be an object of C. There is an equivalence of functors
τ≥0τ≤0 ≃ τ≤0τ≥0 : C → C

♥ [25, Proposition 1.2.1.10]. The homotopy groups
πnA, n ∈ Z, are defined via the formula πnA = τ≥0τ≤0A[−n] ∈ C♥.
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Remark 2.6.12. In the stable setting, passing to homotopy groups is a homo-
logical functor in the sense that there are long exact sequences

· · · → πn+1C → πnA→ πnB → πnC → πn−1A→ · · ·

in C
♥ whenever A→ B → C is an exact triangle in C.

Definition 2.6.13. A t-structure (C≥0,C≤0) on a stable ∞-category C is left
complete if the full subcategory of infinitely connected objects C≥∞ =

⋂

n∈Z
C≥n ⊂

C consists only of zero objects. Right complete t-structures are defined similarly.

Definition 2.6.14. A t-structure (C≥0,C≤0) on a stable∞-category C is bounded
if the inclusion of the full subcategory of bounded objects Cb =

⋃

n∈N
C≥−n ∩

C≤n ⊂ C is an equivalence. There are analogous notions of right and left
bounded.

Many of the most important examples of stable ∞-categories may already
be familiar from homological algebra. If A is an abelian category with enough
projectives, the derived ∞-category D−(A) of bounded below chain complexes
in A admits a universal property which characterizes the stable ∞-categories
which arise in this way. We will suppose that A has enough projective and write
A

proj ⊂ A for the full subcategory consisting of the projective objects.

Definition 2.6.15. Let A be an abelian category with enough projectives.
The bounded below derived ∞-category of A is the homotopy coherent nerve
D−(A) := N(Ch−(A)) of the differential graded category Ch−(A) (viewed as
a simplically enriched category as in Remark 1.3.6) of bounded below chain
complexes in A (those complexes A ∈ Ch(A) such that Hn(A) = 0 for n≪ 0.

Proposition 2.6.16. [25, Corollary 1.3.2.18 and Proposition 1.3.2.19] Let A be
an abelian category with enough projectives. Then D−(A) is a stable∞-category,
and the full subcategories D

−
≥0(A) ⊂ D−(A) and D

−
≤0(A) ⊂ D−(A) consisting

of those complexes A such that Hn(A) = 0 for n < 0 and Hn(A) = 0 for n > 0,
respectively, comprise a right bounded and left complete t-structure on D−(A).

Theorem 2.6.1. [25, Theorem 1.3.4.4] Let A be an abelian category with enough
projectives and W ⊂ Fun(∆1,Ch−(A)) the class of quasi-isomorphisms. There
is a canonical equivalence of ∞-categories A[W−1] ≃ D−(A).

Remark 2.6.17. A sits inside D−(A) as the full subcategory of complexes
concentrated in degree zero. Moreover, straightforward homological algebra
arguments show that π0 : D−(A)→ A restricts to an equivalence D−(A)♥ ≃ A.

Remark 2.6.18. Let A be a small abelian category with enough projectives.
The category Ind(A) of inductive objects of A is again an abelian category
with enough projective objects and is equivalent to the large abelian category
FunΠ((Aproj)op, Set) of product preserving functors from (Aproj)op to Set.

Theorem 2.6.2. [25, Theorem 1.3.3.8] Let A be an abelian category with enough
projectives, let C be an ∞-category which admits geometric realizations, and let
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Fungeom(D−
≥0(A),C) ⊂ Fun(D−

≥0(A),C) denote the full subcategory consisting of
those functors which preserve geometric realizations. Then restriction along the
embedding Aproj ⊂ D

−
≥0(A) induces an equivalence of ∞-categories

Fun(Aproj,C)
≃
←− Fun′(D−

≥0(A),C) ⊂ Fun(D−
≥0(A),C)

between realization preserving functors D
−
≥0(A)→ C and functors Aproj → C.

Theorem 2.6.3. [25, Theorem HA.1.3.3.2] Let A be an abelian category with
enough projectives, let C be a stable ∞-category with a left complete t-structure,
and let Fun′(D−(A),C) ⊂ Fun(D−(A),C) denote the full subcategory of functors
D−(A)→ C which are right t-exact and send projective objects of A to C♥. Then
restriction along i : A→ D−(A) induces an equivalence of ∞-categories

Funrex(A,C♥)
≃
←− Fun′(D−(A),C) ⊂ Fun(D−(A),C)

between right t-exact functors D−(A)→ C which send Aproj ⊂ A to C♥ ⊂ C and
right exact functors A→ C♥.

3 Ring theory

3.1 Spectra

So far we have considered the∞-category of spectra from two seemingly different
but equivalent perspectives: on the one hand, as reduced excisive functors Sp =
Sp(S) = Exc∗(S

fin
∗ , S), and on the other, as a unit object Sp ∈ LPr⊗st of the

symmetric monoidal∞-category of presentable stable∞-categories. The former
is more explicit and yields lots of examples, while the latter is more abstract
and suggests a universal property.

Remark 3.1.1. The reader may be wondering what any of this has to do
with the classical notion of spectrum in algebraic topology. By definition,
Sp = Exc∗(S

fin
∗ , S), but evaluation on the family of spheres {Sn}n∈N induces

an equivalence of ∞-categories

Sp ≃ lim
{

· · ·
Ω
−→ S∗

Ω
−→ S∗

Ω
−→ S∗

}

.

Remark 3.1.2. Our convention is that we work in the ∞-category S of spaces
and its pointed variant S∗, so that all (pointed) spaces have the homotopy
type of cell complexes. If we wish to model a spectrum, however, it is often
convenient to work in a category C equipped with a class of weak equivalences
W and functor C→ S∗ which sends the maps in W to equivalences in S∗, such
as the category Top∗ of pointed topological spaces. In such models we need only
ask that the maps ηn : An → ΩAn+1 are weak equivalences, a structure which
is often referred to as an Ω-spectrum in the literature. In the case C = Top∗ we
can even require the ηn : An → ΩAn+1 to be homeomorphisms.
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Remark 3.1.3. The forgetful functor RPr→ CAT∞ preserves limits, meaning
we may also form this limit in RPr. Equivalently, Sp is given as the colimit

Sp ≃ colim
{

S∗
Σ
−→ S∗

Σ
−→ S∗

Σ
−→ · · ·

}

in LPr, by virtue of the antiequivalence LPr ≃ RProp which takes the adjoint.

Remark 3.1.4. The forgetful functor LPr → CAT∞ does not commute with
filtered colimits; nevertheless, the∞-category of finite — or equivalently, in this
case, compact — spectra Spfin ≃ Spω is computed as the filtered colimit of the
suspension functor on finite pointed spaces Sfin∗ . This equivalence

Spfin ≃ colim
{

S
fin
∗

Σ
−→ S

fin
∗

Σ
−→ S

fin
∗

Σ
−→ · · ·

}

in Cat∞ is the ∞-categorical analogue of the Spanier-Whitehead category.

Remark 3.1.5. We have taken the “coordinate free” convention that spectra
are reduced excisive functors. Nevertheless, it is often the case in practice that
a spectrum A is given in terms of an infinite delooping of its infinite loop space
Ω∞A, in which case the associated excisive functor is given by the formula

TA(−) := Ω∞(−⊗A) : Sfin∗ −→ S.

Here, ⊗ refers to the fact that Sp, as a commutative S∗-algebra in LPr, is
canonically left tensored over S∗, and hence over the symmetric monoidal subcat-
egory Sfin∗ ⊂ S∗ as well. Alternatively, this tensor is computed by first applying
Σ∞ : S∗ → Sp and then tensoring with A in Sp⊗.

Remark 3.1.6. The∞-category Sp of spectra admits a left and right complete
t-structure with heart Sp♥ ≃ Ab the category of abelian groups. The iden-
tity functor Ab → Ab is right exact and so determines a right t-exact functor
D

−(Z) ≃ D
−(Ab) → Sp with image the Eilenberg-MacLane spectra. Strictly

speaking, these are the generalized Eilenberg-MacLane spectra: an Eilenberg-
MacLane spectrum is a generalized Eilenberg-MacLane spectrum which has ho-
motopy concentracted in a single degree, or equivalently is the image of a chain
complex with homology concentrated in a single degree.

Definition 3.1.7. A cohomology theory {Fn}n∈Z is a Z-graded family of func-
tors Fn : Ho(Sop∗ ) → Ab and natural isomorphisms σn : Fn → Fn+1 ◦ Σ
satisfying the following exactness conditions:

(1) For any cofiber sequence X → Y → Z integer n the sequence of abelian
groups Fn(Z)→ Fn(Y )→ Fn(X) is exact.

(2) For any (possibly infinite) wedge decomposition X ≃
∨

i∈I Xi and integer
n, the homomorphism Fn(X)→

∏

i∈I F
n(Xi) is an isomorphism.

Remark 3.1.8. These are the Eilenberg-Steenrod axioms [16] for a (generalized)
cohomology theory. The original formulation included the dimension axiom,
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which required that Fn(S0) = 0 for all n 6= 0. One can show without much
difficulty that the cohomology theories F which satisfy the dimension axiom are
necessarily of the form Fn(X) ∼= Hn(X ;F 0(S0)), which is to say cohomology
with coefficients in the abelian group F 0(S0). This axiom was disregarded as
interesting “generalized” cohomology theories were discovered.

Remark 3.1.9. The Brown representability theorem [13] asserts that any suit-
ably left exact functor F : Sop → Set∗ is representable. In particular,

Fn ∼= π0 MapS∗
(−, An) : S

op −→ Ab

for some pointed space An, and the resulting sequence of pointed spaces {An}
can be chosen so that the suspension isomorphisms σn : Fn → Fn+1 ◦ Σ are
induced by equivalences ηn : An → ΩAn+1 in S∗ (in fact the loop space structure
induces the group structure on the represented functor, and any such group
structure arises in this way). This is how spectra arose in practice.

Remark 3.1.10. By choosing a representing spectrum, any cohomology theory
F = {Fn} in the classical sense as above gives rise to a cohomological functor
in the ∞-categorical sense, by which we mean a limit preserving functor F :
S
op
∗ → Sp. One can show that any such functor is necessarily a right adjoint,

so that the ∞-categories of spectra and cohomological functors are canonically
equivalent:

Sp ≃ S∗ ⊗ Sp ≃ RFun(Sop∗ , Sp).

Similarly, Sp ≃ RFun(Spop, Sp), so that any cohomological functor of pointed
spaces extends uniquely to a cohomological functor of spectra.

Remark 3.1.11. A cohomological functor F : Spop → Sp induces a functor
π0F : Spop → Ab which necessarily factors through the triangulated homotopy
category of spectra. There is a version of Brown representability for triangu-
lated categories which are compactly generated in the appropriate sense, due to
Neeman [30]. This is not a corollary of the corresponding formal result for com-
pactly generated stable ∞-categories, namely that Sp(C) ⊂ Fun(Cop, Sp) is the
full subcategory consisting of the cohomological functors. Indeed, triangulated
categories aren’t always homotopy categories of stable ∞-categories and don’t
necessarily even admit finite limits or colimits; rather, the requisite exactness
properties are encoded by the triangulated structure.

Remark 3.1.12. Much of the classical algebraic topology literature models
spectra as a full subcategory of local objects inside of a larger category. Our
definition of spectra Sp ⊂ Fun∗(S

fin
∗ , S∗) is as the full subcategory of (reduced)

excisive functors. The excisive approximation [24, Example 6.1.1.28] ∂F : Sfin∗ →
S∗ of a reduced functor F : Sfin∗ → S∗ is given by the formula

(∂F )(T ) ≃ colimn→∞ ΩnF (ΣnT ).

As any finite space admits a cell decomposition, a reduced excisive func-
tor is determined by its values on spheres; in fact, any sequence of spheres
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{Sn0 , Sn1 , . . .} with ni > nj whenever i > j. Moreover, for any reduced
F : Sfin∗ → S∗, we have maps

S1 −→ Map∗(S
n, Sn+1) −→ Map∗(F (Sn), F (Sn+1))

and hence maps S1 ∧ F (Sn)→ F (Sn+1). This motivates the next definition.

Definition 3.1.13. A prespectrum consists of an N-indexed collection of pointed
spaces {Zn}n∈N and structure maps {εn : ΣZn−1 → Zn}n∈N.

To organize prespectra into an ∞-category PSp, it will be useful to write

Σ[1] : SN∗ −→ S
N

∗ and Ω[−1] : SN∗ −→ S
N

∗

for the “shifted” suspension and loops functors Σ[1](X)n = Σ(Xn−1) and Ω[−1](X)n =
Ω(Xn+1), where we take the convention that X−1 ≃ pt is contractible. Then
Σ[1] is left adjoint to Ω[−1], and the ∞-category of prespectra is defined by
forming either of following the pullbacks CAT∞:

Fun(∆1, SN∗ )

��

PSp //

��

oo Fun(∆1, SN∗ )

��

Fun(∂∆1, SN∗ ) S
N
∗

(Σ[1],id)
//

(id,Ω[−1])
oo Fun(∂∆1, SN∗ )

.

Remark 3.1.14. A prespectrum Z = {Zn} gives rise to a sequence of repre-
sentable functors Map(−, Zn) : S

op
∗ → S∗ which collectively represent a cohomol-

ogy theory if and only if the map Z → Ω[−1]Z is an equivalence. The “diagonal”
map SN∗ → Fun(∆1, SN∗ ) identifies SN∗ with the full subcategory of Fun(∆1, SN∗ )
consisting of the equivalences, and the iterated pullback square

Sp //

��

SN∗

��

PSp //

��

Fun(∆1, SN∗ )

��

SN∗

(id,Ω[−1])
// Fun(∂∆1, SN∗ )

exhibits Sp ⊂ PSp as the equalizer of the endofunctors id,Ω[−1] : SN∗ → SN∗ .

Remark 3.1.15. This inclusion admits a left adjoint spectrification functor
PSp→ Sp. Indeed, if Z = {Zn} is a prespectrum, the nth-space of the associated
spectrum A is given by the formula

An ≃ colim
m→∞

ΩmZm+n.

The equivalence An
∼
→ ΩAn+1 is induced by the maps Zn+m → ΩZn+m+1,

which becomes the equivalence colimΩmZn+m ≃ Ωm+1Zn+m+1 after passing to
the colimit. This is essentially the same formula as in Remark 3.1.12.



3 RING THEORY 27

Remark 3.1.16. The ∞-category of prespectra is quite useful in practice. As
a source of examples, a pointed space X evidently determines a suspension
presprectrum {ΣnX}n∈N whose associated spectrum is Σ∞X . Since the spec-
trification functor preserves colimits, the ∞-category of prespectra can be used
as a tool for computing colimits and smash products of spectra.

3.2 The smash product

The construction of a symmetric monoidal model category of spectra was a
major foundational problem in the subject for quite some time. One issue is that
there isn’t an obvious candidate for the smash product of prespectra; instead,
given prespectra A = {Am} and B = {Bn}, their smash product A⊗B is most
naturally indexed on the poset N×N; that is, (A⊗B)m,n = Am ∧Bn. Adams’
theory of “handicrafted smash products” [3] shows that any cofinal choice of
poset N ⊂ N×N results in a prespectrum representing the smash product, and
verifies that this procedure descends to a symmetric monoidal structure on the
homotopy category of spectra. However this is insufficient for many purposes,
especially as the homotopy category doesn’t admit even the most basic sorts of
limits and colimits like pullbacks and pushouts.

Another more significant issue is already apparent in homological algebra:
in the derived ∞-category of chain complexes of modules over a commutative
ring, the derived tensor product is really only defined up to quasi-isomorphism,
so there’s no philosophical reason to expect this to lift to a symmetric monoidal
structure on the ordinary category of chain complexes. The first resolutions of
this problem in homotopy theory were the symmetric spectra of Hovey-Shipley-
Smith [20] and the S-modules of Elmendorf-Kriz-Mandell-May [17].

There are morphisms of ⊗-idempotent objects of LPr

S −→ S∗ −→ CMon(S) −→ CMongp(S) −→ Sp,

necessarily symmetric monoidal, which enable us to calculate the tensor product
in these presentable∞-categories. Specifically, writing Σ∞ : S∗ → Sp for unique
symmetric monoidal left adjoint functor, we deduce that

(Σ∞X1)⊗ · · · ⊗ (Σ∞Xn) ≃ Σ∞(X1 ∧ · · · ∧Xn)

for any finite collection of pointed spaces X1, . . . , Xn. The analogous result
remains true for unpointed spaces by addition of a disjoint basepoint.

Remark 3.2.1. Using the description of spectra as the limit of tower associated
to the endofunctor Ω : S∗ → S∗, we obtain maps

Ω∞−n : Sp −→ S∗

by projection to the nth factor. The reason for this notation is that we have
equivalences Ω∞ ≃ ΩnΩ∞−n; indeed, if A is a spectrum, Ω∞A ≃ A0 ≃
ΩnAn ≃ ΩnΩ∞−nA. The collection of functors {Ω∞−n}n∈N, or any infinite
subset thereof, form a conservative family of functors Sp → S∗ in RPr. They
admit left adjoints Σ∞−n : S∗ → Sp which factor through PSp→ Sp.
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Remark 3.2.2. By [24, Proposition 6.3.3.6], any spectrum A admits a canonical
presentation by desuspended suspension spectra

A ≃ colimn→∞ Σ∞−nΩ∞−nA ≃ colimn→∞ Σ−nΣ∞An

in which the maps Σ∞−nAn → Σ∞−n−1An+1 correspond to the composites

An → Ω∞ΣnΩnΣ∞An → Ω∞ΣnΩn+1Σ∞An+1 ≃ Ω∞−nΣ∞−n−1An+1.

Using the fact that Σ∞−mX ⊗ Σ∞−nY ≃ Σ∞−m−nX ∧ Y , we can write down
explicit formulas for the spaces in the smash product of any finite sequence of
spectra.

Remark 3.2.3. Another characterization of the n-fold smash product functor
⊗n : Sp×n → Sp is as the derivative of the n-fold cartesian product functor ×n :
S×n → S or its coreduction, the n-fold smash product functor ∧n : S×n

∗ → S∗.
See [25, Example 6.2.3.28] for further details.

Remark 3.2.4. If B is a fixed spectrum, the functor Sp
(id,B)
−→ Sp× Sp

⊗2

−→ Sp
which sends A to A⊗B preserves colimits and therefore, according to the adjoint
functor theorem, admits a right adjoint. This right adjoint is the mapping
spectrum functor F(B,−) : Sp→ Sp, which admits the following description: if
A is a spectrum, then F(B,A) is the spectrum given by the formula

F(B,A)n ≃MapSp(B,ΣnA),

with structure maps

MapSp(B,ΣnA) ≃ MapSp(B,ΩΣn+1A) ≃ ΩMapSp(B,Σn+1A),

where the first equivalence uses the fact that Sp is a stable ∞-category and
therefore that the composite functor ΩΣ is equivalent to the identity.

In order to be able to work effectively with spectra, we need ordinary alge-
braic invariants such as homotopy groups. One way to obtain the homotopy
groups of a spectrum is via the Postnikov t-structure, defined as follows.

Definition 3.2.5. Let Sp≤−1 ⊂ Sp denote the full subcategory of spectra con-
sisting of those objects A such that Ω∞A is contractible.

Remark 3.2.6. The functor Ω∞ : Sp → S is corepresented by the unit ob-
ject S of Sp, which is compact. It therefore preserves limits and filtered col-
imits; furthermore, limits and filtered colimits of contractible spaces are con-
tractible. Hence the inclusion Sp≤−1 ⊂ Sp preserves limits and filtered colimits
and therefore, by the adjoint functor theorem, it admits a left adjoint. We write
τ≤−1 : Sp → Sp for the left adjoint followed by the right adjoint, so that any
spectrum A admits a natural unit map A→ τ≤−1A. The fiber of the unit map
then determines an endofunctor τ≥0 : Sp→ Sp, the connective cover. We write
Sp≥0 for the essential image of τ≥0 and Sp≤0 = Sp≤−1[1].
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Proposition 3.2.7. [25, Proposition 1.4.3.6] The pair of full subcategories
Sp≥0 ⊂ Sp and Sp≤0 ⊂ Sp are the connective and coconnective parts of a t-
structure on Sp. Moreover, this t-structure is left and right complete, and its
heart Sp♥ ≃ Ab is canonically equivalent to the category of abelian groups.

Remark 3.2.8. The spectra that lie in the full subcategory Sp≥0 ⊂ Sp are
called the connective spectra, and we will often write Spcn in place of Sp≥0.

Remark 3.2.9. The homotopy groups of a spectrum A, defined via the t-
structure on Sp, collectively form a Z-graded abelian group

π∗A =
⊕

m∈Z

πmA.

Viewing A as a sequence of pointed spaces {An}n∈N equipped with equivalences
An ≃ ΩAn+1, we can also obtain the homotopy groups of A via the homotopy
groups of the pointed spaces {An}n∈N. Specifically, the nonnegative homotopy
groups of A are the homotopy groups of the underlying infinite loop space; that
is, for m ≥ 0,

πmA ∼= πmA0
∼= πm+1A1

∼= πm+2A2
∼= · · · .

The negative homotopy groups of A, on the other hand, are the homotopy groups
of a sufficiently high delooping; that is, for m < 0,

πmA ∼= π0A−m
∼= π1A−m+1

∼= π2A−m+2
∼= · · · .

More generally, πmA ∼= colimπnAn−m, where for m > n we take An−m to mean
the homotopy type of the space Ωm−nA0 ≃ Ωm−n+1A1 ≃ Ωm−n+2A2 ≃ · · · .

Definition 3.2.10. Let A and B be spectra. The A-homology of B, A∗(B), is
the graded abelian group π∗(A⊗B). Dually, the A-cohomology of B, A∗(B), is
the graded abelian group π∗F(B,A).

Remark 3.2.11. If X is a pointed space, we write A∗(X) = A∗(Σ
∞X) and

A∗(X) = A∗(Σ∞X). If A is a spectrum representing a generalized cohomology
theory, this recovers the A-cohomology groups of the pointed space X .

3.3 Associative and commutative algebras

Definition 3.3.1. An associative ring spectrum is an algebra object of the
monoidal∞-category of spectra. A commutative ring spectrum is a commutative
algebra object of the symmetric monoidal ∞-category of spectra.

We write Alg = Alg(Sp⊗) and CAlg = CAlg(Sp⊗) for the ∞-categories of
associative and commutative ring spectra, respectively.

Remark 3.3.2. As the notation suggests, we often refer to associative or com-
mutative ring spectra as associative or commutative algebra spectra, or just
associative or commutative algebras when the symmetric monoidal ∞-category
of spectra is clear from context. The latter terminology is especially convenient
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in relative contexts, such as when we wish to work over4 a fixed base commuta-
tive ring spectrum R, where the corresponding notion is that of an associative
or commutative R-algebra (spectrum here is implicit).

Remark 3.3.3. Recall that a commutative algebra object of the symmetric
monoidal ∞-category of spectra is a section

A〈−〉 : Fin∗ −→ Sp⊗

of the cocartesian fibration p : Sp⊗ → Fin∗ such that A〈m〉 → A〈n〉 ∈ Sp⊗ is
cocartesian whenever 〈m〉 → 〈n〉 ∈ Fin∗ is inert. We will typically write A in
place of A〈1〉 ∈ Sp⊗〈1〉 ≃ Sp and refer to A as the algebra object. The value of
A〈−〉 on the active map 〈2〉 → 〈1〉, pushed forward to the fiber over 〈1〉 via this
map, is the multiplication µ : A⊗2 → A.

Similarly, an associative algebra object A ∈ Alg(Sp⊗) is a section

A[−] : ∆op −→ Sp⊗×Fin∗
∆op

of the restricted (along the cut map ∆op → Fin∗) fibration which carries inert
arrows to cocartesian arrows. We will typically also write A = A[1] for the
underling spectrum of A[−] and refer to A as the associative ring spectrum.

Remark 3.3.4. A section A[−] : ∆op → Sp⊗×Fin∗
∆op amounts to a diagram

of the form
A[0] // A[1]

oo
oo //

//
A[2]

oo
oo
oo //

//
//

· · ·
oo
oo
oo
oo

in Sp⊗. If it is an algebra object, the n inert maps [1]→ [n] in ∆ force A[n] to
decompose as the n-fold product (A[1], . . . , A[1]) of A[1] under the equivalence
Sp⊗〈n〉 ≃ Sp×n, where we identify Sp with Sp⊗〈1〉 as usual. Restricting to the
active maps and pushing everything forward to the the fiber over [1] ∈ ∆ via
the inert maps, and writing S, A, A ⊗ A for the images of A[0], A[1], A[2], we
obtain a diagram

S // A //
//
A⊗A

//
//
//

oo · · ·
oo
oo

in Sp, encoding exactly the maps one would expect from an algebra object. The
commutative case is similar but more complex due to the permutations.

In certain situations, some of which we will encounter later, it is convenient
to work with only the connective spectra. Recall that Spcn ⊂ Sp denotes the
full subcategory consisting of the spectra A whose negative homotopy groups
πnA vanish for all n < 0. In other words, Spcn = Sp≥0 as full subcategory of
spectra, where Sp≥0 is defined via the standard Postnikov t-structure. Since
the tensor product of connective spectra is again connective, we actually obtain
Sp⊗≥0 ⊂ Sp⊗ as a symmetric monoidal subcategory. Thus we have ∞-categories
Algcn = Alg(Spcn) and CAlgcn = CAlg(Spcn) of connective associative and
commutative algebra spectra.

4Over R means over SpecR, reversing the direction of the arrows. Algebraically this means
working under R, but the terminology is influenced by geometric intuition.
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Proposition 3.3.5. [25, Proposition 7.1.3.19] Postnikov towers converge in the
presentable ∞-categories Spcn, Algcn, and CAlgcn.

Definition 3.3.6. An∞-monoid is an algebra object of the symmetric monoidal
∞-category S× of spaces. An abelian ∞-monoid is a commutative algebra ob-
ject of S×. An ∞-monoid, or abelian ∞-monoid, G is said to an ∞-group, or
abelian ∞-group, if the ordinary discrete monoid π0G is a group.

Remark 3.3.7. We have ∞-categories Mon∞ = Mon(S×) = Alg(S×) and
Gp∞ ⊂ Mon∞ of ∞-monoids and ∞-groups, as well as their abelian variants
AbMon∞ = CMon(S×) = CAlg(S×) and AbGp∞ ⊂ AbMon∞. The group
completion of an ∞-monoid M is the left adjoint of the fully faithful inclusion
Gp∞ ⊂ Mon∞, and is given by the formula G ≃ ΩBM .

Remark 3.3.8. The reader might be wondering why we did not define asso-
ciative and commutative ring spectra as homotopy coherently associative and
commutative ring objects in the ∞-category of spaces. The primary reason is
that this only yields the connective ring spectra, and nonconnective spectra,
even ring spectra, such as topological K-theory, are among our most important
examples. Nevertheless it is true, and a good sanity check, that we have an
equivalence Spcn ≃ AbGp∞, which induces equivalences Algcn ≃ Ring∞ and
CAlgcn ≃ CRing∞, where the latter notions are defined as in [18] (among other
algebraic theories, such as semirings and their En variants).

Definition 3.3.9. A homotopy associative ring spectrum is an associative alge-
bra object in the monoidal homotopy category of spectra. A homotopy commu-
tative ring spectrum is a commutative algebra object in the symmetric monoidal
homotopy category of spectra.

Remark 3.3.10. Homotopy categories are ordinary categories. Hence there are
no coherences to specify, and a homotopy associative ring spectrum is the data
of a ring spectrum R equipped with a unit map η : S→ R and a multiplication
map µ : R ⊗ R → R which are associative and unital in the sense that the
diagrams

R⊗R⊗R
µ⊗id

//

id⊗µ

��

R⊗R

µ

��

R
η⊗id

//

id⊗η

��

id

%%❏
❏❏

❏❏
❏❏

❏❏
❏❏

R ⊗R

µ

��

R⊗R
µ

// R R⊗R
µ

// R

commute up to homotopy (a choice of homotopy is not part of the data). As in
ordinary algebra, commutativity in this case is a property of a homotopy associa-
tive ring spectrum R. While the theory of homotopy associative or commutative
ring spectra plays an important role in algebraic topology, the categories of left
(or right) modules over homotopy associative ring spectra are poorly behaved,
lacking basic structure such as finite limits and colimits.

Proposition 3.3.11. [25, Proposition 7.2.4.27] The ∞-categories Algcn and
CAlgcn are compactly generated. Moreover, they are generated under sifted col-
imits by compact projective objects.
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Definition 3.3.12. A connective associative ring spectrum A is said to be
locally of finite presentation if A is compact as an object of Algcn. A connective
commutative ring spectrum A is said to be locally of finite presentation if A is
a compact as an object of CAlgcn.

3.4 Left and right modules

An associative (respectively, commutative) algebra A is something that exists
in a monoidal (respectively, symmetric monoidal) ∞-category A⊗. Classically
it was common to take A⊗ to be the symmetric monoidal category of abelian
groups, or (left) R-modules for a commutative ring R. Recall that a monoidal
∞-categoryA⊗ can be regarded as a cocartesian fibration over ∆op (equivalently
a functor ∆op → CAT∞) satisfying the Segal condition, the underlying category
A of A⊗ is the value A

⊗
[1] at the ordinal [1], and the simplicial object A⊗ can be

regarded as a categorical bar construction on A, using its monoidal structure.
The ordinary bar construction generalizes as follows: if M admits a left A-

action and N admits a right A-action, then we may form a simplicial object
which in degree n is equivalent to N × A

×n ×M. The ∞-categories M and N

which arise in this way are said to be left and right tensored over A, respectively;
this is the structure which, when given an algebra object A of A, allows us to
define the notions of left and right A-module object of M and N. Such ∞-
categories are themselves cocartesian fibrations over A⊗, and hence over ∆op,
but they satisfy a slight variant of the Segal condition.

Definition 3.4.1. Let p : A⊗ → ∆op be a monoidal ∞-category. An ∞-
category left tensored over A⊗ is a cocartesian fibration q : M⊗ → ∆op together
with a morphism of cocartesian fibrations f : M⊗ → A⊗ over ∆op which satisfies
the following relative version of the Segal condition: for each natural number n,
the map

M
⊗
[n]−→A

⊗
[n] ×M

⊗
{n}

induced by f and the inclusion of the final vertex {n} ⊂ [n] is an equivalence.

Remark 3.4.2. The morphism of cocartesian fibrations f : M⊗ → A⊗ over
∆op is an example of a left action object of CAT∞. More precisely, we write
LMon(CAT∞) ⊂ Fun(∆1,CAT∞ /∆opcocart) for the full subcategory consisting
of those morphisms of cocartesian fibrations f : M⊗ → A⊗ which satisfy the
relative Segal condition of Definition 3.4.1. As in [25, Notation 4.2.2.5], there
is a functor LMon(CAT∞) → Mon(CAT∞) which sends the left action object
f : M⊗ → A⊗ to the monoidal ∞-category A⊗.

Remark 3.4.3. The underlying ∞-category of the left tensored ∞-category
q : M

⊗ → ∆op is the fiber M
⊗
[0] over [0], which we will typically denote M.

There are equivalences M{n} ≃M for all n. The Segal condition at n = 1 gives
an equivalence M

⊗
[1] ≃ A ×M and the inclusion [0] → [1] of the initial vertex

induces a left action morphism A×M→M.
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Remark 3.4.4. Dually, there is an entirely analogous notion of right tensored
∞-category whose definition instead involves the inclusions of the initial vertices,
with the action coming from the inclusion of the final vertices.

Remark 3.4.5. A monoidal ∞-category p : A⊗ → ∆op is canonically left
(respectively, right) tensored over itself. Roughly, restricting the cocartesian
fibration p along the right (respectively, left) cone functor ⊲ : ∆ → ∆ which
sends [n] to [n] ⋆ [0] (respectively, [n] to [0] ⋆ [n]) yields a cocartesian fibration
q : A⊲⊗ → ∆op whose fiber over [n] is equivalent to A×n+1. The morphism of
cocartesian fibrations f : A⊲⊗ → A⊗ is obtained as in [25, Example 4.2.2.4]. See
[25, Variant 4.2.2.11] for details and a comparison to the operadic approach.

Definition 3.4.6. Let p : A⊗ → ∆op be a monoidal ∞-category and let f :
M

⊗ → A
⊗ be an∞-category left tensored over A⊗. A left module object of M⊗

is a map s : ∆op →M⊗ such that the composite f ◦s is an algebra object of A⊗

and, if i : [m]→ [n] is an inert map in such that i(m) = n, f(i) is a cocartesian
morphism of M⊗. We write

LMod(M⊗) ⊂ Fun∆op(∆op,M⊗)

for the full subcategory consisting of the left module objects of M⊗.

Remark 3.4.7. In the special case in which M⊗ ≃ A⊲⊗ is equivalent to A,
regarded as being left tensored over itself via f : A⊲⊗ → A⊗, we simply write
LMod(A⊗) in place of LMod(A⊲⊗).

Remark 3.4.8. There is an evident notion of right module object of an ∞-
category right tensored over a monoidal ∞-category.

Definition 3.4.9. A left module spectrum is a left module object of the monoidal
∞-category Sp⊗×Fin∗

∆op of spectra.

We write LMod = LMod(Sp⊗) for the ∞-category of left module spectra.

Remark 3.4.10. The∞-category LMod of left module spectra comes equipped
with a forgetful functor LMod → Alg which returns the algebra object in the
definition of a left module object. Given an associative algebra spectrum A,
we write LModA for the fiber over A of the forgetful functor. We also have a
forgetful functor LMod×Alg CAlg → CAlg obtained by pulling back along the
forgetful functor CAlg→ Alg. We will sometime simply write LMod→ CAlg for
this forgetful functor, when it is clear from context that we are only considering
left modules over commutative algebra spectra.

3.5 Localization

In this section we briefly review the theory of localization of ring spectra. Recall
that a multiplicatively closed subset S, containing the unit, of an associative
ring R is said to satisfy the left Ore condition if, for or every pair of elements
r ∈ R and s ∈ S there exist elements r′ ∈ R and s′ ∈ S such that s′r = r′s,
and if r ∈ R is an element such that rs = 0 for some element s ∈ S then there
exists an element s′ ∈ S such that s′r = 0.
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Remark 3.5.1. If A is an associative algebra spectrum, any homogeneous
element s ∈ πnA can be represented by a “degree n” left A-module map ΣnA→
A which is unique up to homotopy.

Definition 3.5.2. Let A be an associative algebra spectrum and S ⊂ π∗A a
set of homogeneous elements satisfying the left Ore condition. A left A-module
spectrum M is S-local if, for every element s ∈ S, left multiplication by s
induces an isomorphism π∗M → π∗M . We write S−1 LModA ⊂ LModA for the
full subcategory consisting of the S-local left A-module spectra.

Proposition 3.5.3. [25, Remark 7.2.3.18] The inclusion of the full subcategory
S−1 LModA ⊂ LModA of S-local objects admits a left adjoint S−1 : LModA →
S−1 LModA, the S-localization functor.

Remark 3.5.4. The theory of Bousfield localization generalizes that of Ore
localization. In the stable setting, this is the data of a left adjoint functor L :
B→ C of stable presentable∞-categories such that the right adjoint R : C→ B

is fully faithful. The kernel of L : B → C is the stable presentable subcategory
A ⊂ B consisting of those objects A ∈ B such that L(A) ≃ 0 in C. An instance
of this construction is the localization of the ∞-category B ≃ Sp of spectra at
a fixed spectrum E: in this case, a spectrum N is E-acyclic if E⊗N ≃ 0 and a
spectrum M is E-local if every map N →M from an E-acyclic object M is null.
While it turns out that Bousfield localization preserves (commutative) algebra
structures [25, Proposition 2.2.1.9], it is quite difficult to control the localization
in this generality, which is why we focus on the Ore localization instead.

Remark 3.5.5. It is possible to use the left Ore condition to give a reasonable
explicit description of the homotopy groups of the left Ore localization S−1M ,
for M ∈ LModA and S ⊂ π∗A a set of homogeneous elements satisfying the
left Ore condition. See [25, Construction 7.2.3.19 and Proposition 7.2.3.20] for
details.

Definition 3.5.6. Let A be an associative algebra spectrum and S ⊂ π∗A a
set of homogeneous elements. A map of associative algebra spectra η : A→ A′

exhibits A′ as the left Ore localization of A at S ⊂ π∗A if, for every associative
algebra spectrum B, η∗ : MapAlg(A

′, B) → MapAlg(A,B) is fully faithful with
image those f : A→ B such that f(s) is invertible in π∗B for all s ∈ S.

Theorem 3.5.1. [25, Proposition 7.2.3.27] Let A be an associative algebra spec-
trum and S ⊂ π∗A a set of homogeneous elements satisfying the left Ore con-
dition. The localization S−1A admits the structure of an associative algebra
A[S−1] equipped with an algebra map η : A → A[S−1] such that, for any asso-
ciative algebra spectrum B, precomposition with η is fully faithful

η∗ : MapAlg(A[S
−1], B) ⊂MapAlg(A,B)

with image those f : A→ B such that f(s) ∈ π∗B is invertible for all s ∈ S.
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Remark 3.5.7. If S ⊂ π∗A is a set of homogeneous elements satisfying the left
Ore condition, the canonical map S−1π∗(A)→ π∗(S

−1A) is an isomorphism of
graded rings, where S−1π∗A denotes the localization as graded rings.

Remark 3.5.8. If A is an associative algebra spectrum such that the graded
ring π∗A is graded commutative, then the left Ore condition on a multiplicative
subset S ⊂ π∗A is automatically satisfied.

There is an analogous statement for commutative algebra spectra.

Definition 3.5.9. Let A be a commutative algebra spectrum and S ⊂ π∗A a set
of homogeneous elements. A map of commutative algebra spectra η : A → A′

exhibits A′ as the localization of A at S ⊂ π∗A if, for every commutative algebra
spectrum B, η∗ : MapCAlg(A

′, B)→ MapCAlg(A,B) is fully faithful with image
those f : A→ B such that f(s) is invertible in π∗B for all s ∈ S.

Theorem 3.5.2. [25, Example 7.5.0.7] Let A be a commutative algebra spectrum
and S ⊂ π∗A a multiplicative set of homogeneous elements. The localization
S−1A admits the structure of a commutative algebra A[S−1] equipped with a
commutative algebra map A → A[S−1] such that, for any commutative algebra
specrum B, precomposition with η is a fully faithful functor

η∗ : MapCAlg(A[S
−1], B) ⊂MapCAlg(A,B)

with image those f : A→ B such that f(s) ∈ π∗B is invertible for all s ∈ S.

Remark 3.5.10. Given a commutative algebra spectrum A and an arbitrary
subset T ⊂ π∗A of homogeneous elements of A, we often write A[T−1] in place
of A[S−1], where S denotes the multiplicative closure of T in π∗A. Indexing the
elements of T by some ordinal I, so that T = {ti}i∈I , we have equivalences of
commutative algebra spectra

⊗

i∈I A[t
−1
i ] ≃ A[T−1], where the infinite tensor

product is defined to be the filtered colimit of the finite tensor products.

A map of ordinary commutative rings f : A → B is a Zariski localization if
there exists a finite collection of elements xi ∈ π0A, defining basic Zariski open
sets A→ A[x−1

i ], such that f is isomorphic to the product map A→ ΠiA[x
−1
i ]

as objects of CAlgA. There is a similar notion for ring spectra.

Example 3.5.11. Let R be a commutative ring spectrum and suppose given
an element f ∈ π0R, which we regard as an R-linear map f : R → R via the
equivalence R ≃ EndR(R). Then the filtered colimit

R[f−1] ≃ colim{R
f
−→ R

f
−→ R

f
−→ · · · }

is a ⊗-idempotent left R-module: that is, the relative tensor product (see
Section 4.2) is an equivalence R[f−1] ⊗R R[f−1] ≃ R[f−1]. If follows that the
associated Bousfield localization of LModR is given the formula M 7→M [f−1] ≃
M ⊗R R[f−1], and that R[f−1] ∈ CAlgR has the following universal property:
MapCAlgR

(R[f−1], A) is contractible if f ∈ π0(A)
× and empty otherwise.
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Example 3.5.12. Let R be a commutative ring spectrum and consider the
affine scheme X = Specπ0R. The structure sheaf OX is determined by its
values OX(Uf ) = π0R[f−1] on the basic open sets Uf = Spec π0R[f−1], f ∈
π0R. Localizing R at elements of π0R allows us to enhance OX to a sheaf of
commutative ring spectra OSpecR on (the topological space of) X by the formula
OSpecR(Uf ) = R[f−1]. This is the affine spectral scheme SpecR.

Definition 3.5.13. Let R be a commutative ring spectrum. Then R is local
if π0R is local, in the sense that there exists a unique maximal ideal m ⊂ π0R.
Equivalently, R is local if, for any f ∈ π0R, either f or 1− f is a unit.

4 Module theory

4.1 Monads

Given an∞-category C, the∞-category Fun(C,C) of endofunctors of C is canon-
ically a monoidal ∞-category with respect to composition. Viewing C as a
simplicial set and Fun(C,C) as simplicial sets, where composition is already a
functor on the nose, we obtain a simplicial model for this monoidal ∞-category,
which moreover comes equipped with a strict left action on C via the evaluation
pairing Fun(C,C)× C→ C.

Definition 4.1.1. Let C be an ∞-category. A monad T on C is an algebra
object of the monoidal ∞-category Fun(C,C) of endofunctors of C.

Remark 4.1.2. We write T : C → C for the underlying endofunctor of the
monad. The unit and multiplication maps are usually denoted η : idC → T and
µ : T ◦ T → T . There are also homotopy coherent higher multiplications.

Remark 4.1.3. Let T be a monad on an ∞-category C. As C is left tensored
over Fun(C,C) via the evaluation map Fun(C,C) × C → C, it makes sense to
consider left M -module objects in C (these are often referred to instead as M -
algebras, especially in ordinary category theory). We write LModT (C) for the
∞-category of left T -modules.

Example 4.1.4. Let g : D → C be a functor of ∞-categories which admits a
left adjoint f : C → D. Then the composite functor g ◦ f : C → C admits a
canonical structure of a monad on C. Here, the unit η : id → g ◦ f is the unit
of the adjunction, and the multiplication µ : g ◦ f ◦ g ◦ f → g ◦ f is induced by
the counit ε : f ◦ g → id. The formalism of adjunctions allows one to fill in all
the coherences in a unique (up to a contractible space of choices) way.

Remark 4.1.5. Let g : D → C be a functor of ∞-categories which admits a
left adjoint f : C → D and let T = g ◦ f denote the resulting monad on C, as
in the example above. Then g : D → C factors as the composite g = p ◦ g′,
where g′ : D → LModT (C) is the functor which sends the object B to the left
T -module ε : TB → B, and p : LModM (C)→ C is the forgetful functor.
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Definition 4.1.6. Let g : D→ C be a functor of ∞-categories which admits a
left adjoint f : C → D and let T = g ◦ f be the resulting monad on C. Then g
is monadic over C if the induced map g′ : D→ LModT (C) is an equivalence.

Knowing when a functor is monadic is quite important: for instance, monadic
functors are conservative, and they exhibit the source as a kind of∞-category of
modules in the target. Fortunately there is a recognition principle for monadic
functors. To state it we’ll need the following notions.

Definition 4.1.7. The category ∆−∞ has an object [n] for each integer n ≥ −1
and an arrow α : [m]→ [n] for each nondecreasing function [m]∪{−∞} → [n]∪
{−∞} with α(−∞) =∞ which composes in the obvious way. The subcategory
∆+ ⊂ ∆−∞ has the same objects but only those arrows α : [m]→ [n] such that
α−1(−∞) = {−∞}. Note that we may identify ∆ with the full subcategory
of ∆+ consisting of those objects [n] with n ≥ 0; in fact, the category ∆+

parametrizes augmented simplicial objects.

Definition 4.1.8. An augmented simplicial object A• : ∆op
+ → C is split if A•

extends to a functor ∆op
−∞ → C. A simplicial object A• : ∆op → C is split

if it extends to a split augmented simplicial object. Finally, given a functor
g : D→ C, an (augmented) simplicial object A• of D is g-split if g ◦ A• is split
as an (augmented) simplicial object of C.

The monadicity theorem is a higher categorical analogue of the Barr-Beck
Theorem. The result plays a considerably more important role higher categori-
cally due to the difficulty of producing explicit constructions in this context.

Theorem 4.1.1. [25, Theorem 4.7.3.5] Let g : D → C be a functor of ∞-
categories which admits a left adjoint f : C → D. Then g is monadic over C if
and only if g is conservative, D admits colimits of g-split simplicial objects, and
g preserves colimits of g-split simplicial objects.

4.2 Relative tensor products

We now consider the ∞-category of left modules over a base commutative ring
spectrum R (which could be the sphere itself, in the absolute case). To gener-
alize ordinary algebra, we’d like to have a notion of (commutative) R-algebra
spectrum. In order to make this notion precise, we need a (symmetric) monoidal
structure on the ∞-category LModR of left R-modules.

Remark 4.2.1. Using the language of ∞-operads, these results can be refined
to produce En-monoidal ∞-categories of left R-modules when R is only an
En+1-algebra spectrum. See [25] for the details of this approach.

As in ordinary algebra, the ∞-category of (either left or right) modules for
an associative ring spectrum A will not carry a symmetric monoidal structure,
which has A as the unit and commutes with colimits in each variable, unless the
algebra structure on A extends to commutative algebra structure. Nevertheless,
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given a left A-module M and a right A-module N , we may form the iterated
tensor products

N ⊗A⊗ · · · ⊗A⊗M.

The algebra structure on A and the left and right module structures on M and
N organize these into a simplicial spectrum BarA(M,N) with

BarA(M,N)n ≃ N ⊗A⊗n ⊗M.

Definition 4.2.2. The relative tensor product N⊗AM is a spectrum equivalent
to the geometric realization of the simplicial spectrum BarA(M,N):

N ⊗A M ≃ |BarA(M,N)|.

Remark 4.2.3. No noncanonical choices were involved in this construction,
and indeed the relative tensor product can be shown to extend to a functor

−⊗A − : RModA×LModA −→ Sp

which preserves colimits separately in each variable. We therefore obtain a
morphism LModAop⊗A ≃ RModA⊗LModA → Sp in LPr. By Morita theory,
such a map is determined by a left A ⊗ Aop-module, which in this case is A
itself.

Left adjoint functors between ∞-categories of modules determine, and are
determined by, bimodules. More precisely, if A and B are associative ring
spectra, an (A,B)-bimodule M determines a functor LModA → LModB via
the relative tensor product, and conversely. We will avoid the theory of (A,B)-
bimodules by simply using the equivalent ∞-category LModAop⊗B.

Theorem 4.2.1. [25, Theorem 7.1.2.4] Let A,B be associative algebra spectra.
The relative tensor product induces an equivalence of ∞-categories

LModAop⊗B ≃ LFun(LModA,LModB).

Remark 4.2.4. The above equivalence sends the left Aop⊗B-module N to the
functor M 7→ N ⊗AM and a left adjoint functor f : LModA → LModB to f(A),
viewed as a left Aop ⊗B-module via its right A-action.

Remark 4.2.5. The right adjoint of the left adjoint functor N⊗A− : LModA →
LModB is MapB(N,−) : LModB → LModA.

The following version of Morita theory, originally due to Schwede-Shipley
[35], is a convenient recognition principle for ∞-categories of modules.

Theorem 4.2.2. [25, Theorem 7.1.2.1] Let C be a stable presentable∞-category
and let P be an object of C. Then C is compactly generated by P if and only if
the functor MapC(P,−) : C→ RModEndC(P ) is an equivalence.
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Remark 4.2.6. If f : A → B is a map of associative ring spectra, then we
may view B as a left Aop ⊗ B-module, in which case the resulting left adjoint
functor B⊗A− : LModA → LModB is the basechange functor, with right adjoint
MapB(B,−) : LModB → LModA the forgetful functor. Note that the forgetful
functor preserves colimits, as they are detected on underlying spectra, so that
this is the same as tensoring with the left Bop⊗A-module B, i.e. MapB(B,−) ≃
B ⊗B −. In particular, there is a further right adjoint MapA(B,−) : ModA →
ModB.

Example 4.2.7. Suppose that B ≃ A[S−1] is a localization of A. Then the
forgetful functor LModB → LModA is fully faithful with essential image the
S-local left A-module spectra, namely those M such that M ≃ S−1M .

4.3 Projective, perfect, and flat modules

We now study the ∞-categories LModA for A an associative ring spectrum.

Remark 4.3.1. The Morita theory of the previous section can be used to
identify stable ∞-categories C of the form LModA for an associative algebra
spectrum A, where now A ≃ EndC(P )op for some compact generator P of C.
It follows that LModA is compactly generated. Moreover, a stable ∞-category
C is of the form LModA if and only if C admits a compact generator, and
LModA ≃ Ind(LModωA) is the Ind-completion of its full subcategory LModωA of
compact objects.

Definition 4.3.2. Let A be an associative ring spectrum. A left A-module M
is perfect if M is a compact object of LModA.

Definition 4.3.3. Let A be an associative ring spectrum. A left A-module M
is free if M is a (possibly infinite) coproduct of (unshifted) copies of A, viewed
as a left module over itself.

Definition 4.3.4. A free left A-module M is finitely generated if it is equivalent
to a finite coproduct of copies of A.

Just as in ordinary algebra, there are other notions of “freeness” correspond-
ing to various forgetful-free adjunctions. For instance, if M is a left A-module
and f : A→ B to a ring map, then B⊗AM is often referred to as the “free” left
B-module associated to the left A-module M , even though B ⊗A M is rarely
a free B-module (although it will be of course if M was actually a free left
A-module).

Using the long exact sequence on homotopy groups, it is straightforward to
check that a map f : M → N of connective left A-modules (over a connective
associative ring A) is surjective if and only if fib(f) is connective.

Definition 4.3.5. Let A be a connective associative ring spectrum. A left
A-module P is projective if it is connective and projective as object of the
∞-category LModcnA of connective left A-modules, in the sense that the corep-
resented functor Map(P,−) LModcnA → S preserves geometric realizations (that
is, colimits of simplicial diagrams). See [24, Definition 5.5.8.18] for details.
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Remark 4.3.6. It is unreasonable to ask for a left A-module to be projective
as an object of the ∞-category LModA itself, as the only projective objects of
this ∞-category are the zero objects. Indeed, suppose that M is a projective
object of LModA. For any A-module N, we can write the suspension of N as
the geometric realization of the simplicial A-module

ΣN ≃
∣

∣

∣
0 ←← N ←←

← N ⊕N ←←
←← · · ·

∣

∣

∣
.

But MapLModA
(Σ−1M,N) ≃ MapLModA

(M,ΣN) ≃ BMapLModA
(M,N), so

π0 MapLModA
(Σ−1M,N) ≃ 0 for all left A-modules N and therefore M ≃ 0.

Proposition 4.3.7. [25, Proposition 7.2.2.6] Let C be a stable∞-category with a
left complete t-structure (C≥0,C≤0) and let P ∈ C≥0 be an object. The following
conditions are equivalent:

(1) P is projective (as an object of C≥0).

(2) For every M ∈ C≥0, Ext
1
C(P,M) ∼= 0.

(3) For every M ∈ C≥0 and every integer n > 0, ExtnC(P,M) ∼= 0.

(4) For every M ∈ C♥ and every integer n > 0, ExtnC(P,M) ∼= 0.

(5) For every exact triangle L → M → N in C≥0, the map Ext0C(P,M) →
Ext0C(P,N) is surjective.

Proposition 4.3.8. [25, Corollary 7.2.2.19] Let f : A→ B be a map of connec-
tive associative algebra spectra such that π0f : π0A → π0B is an isomorphism.
The basechange functor f∗ = (−)⊗A B : ModA → ModB restricts to an equiva-
lence

f∗ : Ho(LModprojA )
≃
−→ Ho(LModprojB )

on homotopy categories of projective objects. In particular, the 0-truncation map
f : A→ π0A induces an equivalence Ho(LModproj

A ) ≃ LMod♥ proj
π0A

.

Proposition 4.3.9. [25, Proposition 7.2.2.7] Let A be a connective associative
algebra spectrum and P a projective left A-module. Then there exists a free
left A-module M such that P is a retract of M . If additionally P is finitely
generated, we may take M to be finitely generated as well.

While the notion of projectivity really only makes sense over connective ring
spectra, the notion of flatness makes sense over arbitrary ring spectra.

Definition 4.3.10. Let A be an associative ring spectrum. A left A-module
spectrum M is said to be flat over A if π0M is a flat left π0A-module, in the
sense of ordinary algebra, and for each integer n, the canonical map

πnA⊗π0A π0M −→ πnM

is an isomorphism.
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Nevertheless, over a connective associative ring spectrum A, the notion of
flatness behaves in a manner more similar to that of ordinary algebra. For
example we have the following important generalization of Lazard’s theorem.

Theorem 4.3.1. [25, Theorem 7.2.2.15] Let A be a connective associative alge-
bra spectrum and M a connective left A-module. The following conditions are
equivalent:

(1) M is flat.

(2) M is a filtered colimit of finitely generated free left A-modules.

(3) M is a filtered colimit of finitely generated projective left A-modules.

(4) The functor RModA → Sp given by N 7→ N ⊗A M is left t-exact.

(5) If N is a discrete right A-module then N ⊗A M is discrete.

Remark 4.3.11. A free (respectively, projective) left A-module M is a filtered
colimit of finitely generated free (respectively, projective) left A-modules. Thus
the statement of Lazard’s theorem remains true (albeit less precise) if we disre-
gard finite generation.

Remark 4.3.12. The Tor spectral sequence has E2-page

Ep,q
2 = Torπ∗A

p (π∗M,π∗N)q

and converges to the homotopy groups πp+q(M ⊗A N) of the relative tensor
product. If M or N is flat over A, Ep,q

2 vanishes for p > 0, the spectral sequence
degenerates at the E2-page, and π∗(M ⊗A N) ∼= π∗M ⊗π∗A π∗N is calculated
as graded tensor product of π∗M and π∗N over π∗A.

Remark 4.3.13. As a consequence we observe that if M and N are both flat
over A, then their tensor product M ⊗A N is again flat over A. Since the unit
object A of LModA is flat, we see that the full subcategory LMod♭A ⊂ LModA
inherits the structure of a symmetric monoidal ∞-category.

In order to calculate in the∞-category LModA of left A-modules, it is useful
to have something analogous to a projective resolution. If A is connective, the
theory of tor-amplitude plays this role, giving a means of construct any perfect
A-module inductively, in a finite number of steps, as an iterated cofiber of maps
from shifted finitely projective left A-modules.

Definition 4.3.14. Let R be a connective commutative ring spectrum. A left
R-module P has tor-amplitude contained in the interval [a, b] if for any discrete
left π0R-module M , πi(P ⊗RM) = 0 for i /∈ [a, b]. If such integers a and b exist,
P is said to have finite tor-amplitude.

If P is an R-module, then P has tor-amplitude contained in [a, b] if and only
if P ⊗R π0R is a complex of left π0R-modules with tor-amplitude contained in
[a, b] in the ordinary sense. Note, however, that this definition differs from that
in [2, I 5.2] as we work homologically as opposed to cohomologically.
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Proposition 4.3.15. [7, Proposition 2.13] Let A be a connective associative
algebra spectrum and let M and N be left A-module spectra.

(1) If M is perfect then M has finite tor-amplitude.

(2) If B ∈ CAlgcnA and M has tor-amplitude contained in [a, b] then the left
B-module B ⊗A M has tor-amplitude contained in [a, b].

(3) If M and N have tor-amplitude contained in [a, b] then the fiber and cofiber
of a map M → N have tor-amplitude contained in [a− 1, b] and [a, b+ 1].

(4) If M is perfect with tor-amplitude contained in [0, b] then M is connective
and π0M ∼= π0(π0A⊗A M).

(5) If M is perfect with tor-amplitude contained in [a, a] then M is equivalent
to ΣaP for a finitely generated projective left A-module P .

(6) If M is perfect with tor-amplitude contained in [a, b] then there exists an
exact triangle ΣaP → M → Q with P finitely generated projective and Q
perfect with tor-amplitude contained in [a+ 1, b].

Remark 4.3.16. If additionally A is a connective commutative algebra spec-
trum and M and N are left A-modules such that M has tor-amplitude con-
tained in [a, b] and N has tor-amplitude contained in [c, d], then M ⊗A N has
tor-amplitude contained in [a+ c, b+ d].

4.4 Tensor powers, symmetric powers, and free objects

Given a map of associative algebra spectra f : A→ B, the basechange functor
f∗ : LModA → LModB (corresponding to the left Aop ⊗ B-module B) is left
adjoint to the forgetful functor f∗ : LModB → LModA (corresponding to the
left Bop ⊗A-module B). Indeed, the counit of the adjunction f∗f∗ → idLModB

is induced from the left B-module action map B ⊗A N → N , and the unit of
the adjunction idLModA

→ f∗f
∗ is induced from the left A-module unit map

M ≃ A ⊗A M → B ⊗A M . In particular, f∗M ≃ B ⊗A M is the free left
B-module on the left A-module M , by virtue of the equivalence

ModB(f
∗M,N) ≃ ModA(M, f∗N).

Remark 4.4.1. Observe that f∗M ≃ B ⊗A M need not be free as a left B-
module in the sense of Definition 4.3.3 unless M is free as a left A-module.

Remark 4.4.2. The forgetful functor f∗ : LModB → LModA is conservative
and preserves all small limits and colimits. Hence it is monadic, and exhibits
LModB as the ∞-category of left modules for the monad T = f∗f

∗.

The forgetful functors CAlg → Alg → Sp preserve limits, so it is natural
to ask whether or not they admit left adjoints. Using presentability and the
adjoint functor theorem (see Remark 2.4.7), this is the case if and only if they
preserve κ-filtered colimits for some regular cardinal κ. As we might expect
from algebraic kinds of categories, they preserve all filtered colimits (as well
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as geometric realizations), so the left adjoints exist, and are instances of free
algebra functors [25]. As is ordinary algebra, it is useful to consider the relative
situation, so we work over a base commutative ring spectrum R.

Proposition 4.4.3. [25, Corollaries 3.2.2.4 and 3.2.3.2] The forgetful functors
CAlgR → AlgR → Sp preserve small limits and sifted colimits.

Basically by construction, these forgetful functors are also conservative, hence
monadic by the Barr-Beck-Lurie Theorem 4.1.1. This means that the free-
forgetful adjunctions exhibit Alg and CAlg as ∞-categories of left modules for
their respective monads. The underlying endofunctors of these monads are just
in ordinary algebra, the tensor and symmetric algebra constructions.

Remark 4.4.4. Straightening the symmetric monoidal ∞-category LMod⊗R to
a functor Fin∗ → CAT∞ and restricting to the active maps 〈n〉 → 〈1〉 for each
n ∈ N, we obtain n-fold tensor power functors TennR : LModR → LModR. That
is, TennR(M) ≃M⊗n, where the tensor product is taken over R.

Proposition 4.4.5. [25, Proposition 4.1.1.18] Let M be a left R-module. The
free associative R-algebra on M is the tensor algebra

TenR(M) ≃
⊕

k∈N

TenkR(M) ≃
⊕

k∈N

M⊗k.

Remark 4.4.6. This only describes the underlying left R-module of the free
associative R-algebra on M . The multiplication

⊕

i∈N

M⊗i ⊗
R

⊕

j∈N

M⊗j ≃
⊕

i,j∈N

M⊗i+j −→
⊕

k∈N

M⊗k

is given by concatenation of tensor powers. This is still only a small, but impor-
tant, piece of the homotopy coherently associative algebra structure.

The free commutative algebra functor, also known as the symmetric algebra,
uses the symmetric power functors Symn

R : LModR → LModR, given by the
formula

Symn
R(M) ≃ Tenn

R(M)hΣn ≃M⊗n
hΣn

,

where the tensor product is taken in the symmetric monoidal∞-category LMod⊗R
of left R-module spectra. Here the subscript hΣn refers to the homotopy quo-
tient of M⊗n by the permutation action of the symmetric group Σn, which is to
say that quotient in the ∞-categorical sense. This is to distinguish from more
strict versions of quotients by group actions which arise through either ordinary
categorical models of the ∞-category LModR, where it can make sense to ask
for an ordinary categorical quotient, or in the context of equivariant homotopy
theory, where there are several notions of fixed points.

Proposition 4.4.7. [25, Example 3.1.3.14] Let M be a left R-module. The free
commutative R-algebra on M is the symmetric algebra

SymR(M) ≃
⊕

k∈N

Symn
R(M) ≃

⊕

k∈N

M⊗k
hΣk

.
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Remark 4.4.8. While it isn’t terribly difficult to describe the multiplication on
SymR(M) explicitly, organizing all of the higher multiplications in a coherent
manner seems difficult without abstract machinery. The theory of operadic left
Kan extensions [25] is one way to make this precise.

Example 4.4.9. In the case where M = R, we have TenR(R) ≃
⊕

n∈N
R.

This is often denoted R[t], as we have that π∗(R[t]) ∼= (π∗R)[t] on homotopy
groups. As the notation suggests, the free tensor algebra on one generator in
degree zero, R[t], happens to be a commutative R-algebra spectrum, though it
is not the free commutative R-algebra on one generator in degree zero. Instead
we have that SymR(R) ≃

⊕

n∈N
Symn

R(R) ≃
⊕

n∈N
R⊗n

hΣn
, which is sometimes

denoted R{t} in order to distinguish it from R[t]. In this case, π∗(SymR(R)) ∼=
⊕

k∈N
R∗(BΣn) is the coproduct of the R-homologies of the symmetric groups

Σn.

Remark 4.4.10. If R is a Q-algebra then, for all n ∈ N, the map R∗(pt) →
R∗(BΣn) is an isomorphism. This follows from the Atiyah-Hirzebruch spec-
tral sequence E2

p,q
∼= Hp(BΣn, πqR)⇒ Rp+q(BΣn) and the vanishing of group

cohomology in characteristic zero by Maschke’s theorem. Hence the map

R[t] ≃ TenR(R) −→ SymR(R) ≃ R{t}

obtained by taking the homotopy quotient is an equivalence.

Remark 4.4.11. Away from characteristic zero the map R∗(pt) → R∗(BΣn)
is typically not an isomorphism. In particular, the map TenR(R) → SymR(R)
is rarely an equivalence. Nevertheless, the fact that TenS(S) ≃ S[t] admits a
commutative algebra structure (although it is not free as a commutative algebra)
implies, by basechange along the commutative algebra map S → R, that there
is always a commutative R-algebra map R{t} → R[t], which is an equivalence
when R is a Q-algebra and not typically otherwise.

There are other sorts of free algebra functors as well. The forgetful functor
Sp→ S fails to be monadic because it isn’t conservative; it is, however, monadic
on the full subcategory Spcn ⊂ Sp of connective spectra, the obvious subcategory
on which it is conservative. The resulting monad Q ≃ Ω∞Σ∞

+ is a higher
categorical analogue of the free abelian group monad.

Definition 4.4.12. Let G be an∞-group (respectively,∞-monoid). The group
ring (respectively, monoid ring) R[G] is the associative ring spectrum R[G] ≃
R⊗Σ∞

+ G, with R-algebra structure induced from that of G via the symmetric
monoidal functor Σ∞

+ : S→ Sp.

Remark 4.4.13. Group and monoid rings are a rich source of examples of
ring spectra. For instance, toric varieties, which are locally modeled on the
group and monoid rings like R[Z×k] and R[N×k], are combinatorial enough
that they descend from the integers to the sphere, giving basic examples of
spectral schemes such as the projective space Pn

R [27, Construction 5.4.1.3].
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Definition 4.4.14. The general linear group GLn(R) of a ring spectrum R is
the ∞-group AutR(R

⊕n) of left R-module automorphisms of R⊕n.

Example 4.4.15. Let M =
∐

n∈N
BΣn, the free abelian ∞-monoid on one

generator. Then S[M ] ≃
⊕

Σ∞
+ BΣn is the free commutative algebra spectrum

on one generator in the sense that, via the equivalences

MapCAlg(S[M ], A) ≃MapAbMon∞
(M,Ω∞A) ≃ MapS(pt,Ω

∞A) ≃ Ω∞A,

specifying a commutative algebra map S[M ] → A is the same as specifying a
point of Ω∞A, the image of the generator pt ≃ BΣ1 →M of M .

Example 4.4.16. Let G ≃ Ω∞S be the abelian ∞-group given by the infinite
loop space of the sphere S. Under the equivalence between the ∞-categories of
connective spectra and abelian ∞-groups, it follows that G is the free abelian
∞-group on one generator, or equivalently the group completion of the free
abelian ∞-monoid M ≃

∐

n∈N
BΣn on one generator of the previous example.

By adjunction, for any commutative algebra spectrum A, we have equiva-
lences

Map(S[G], A) ≃ Map(G,Ω∞A) ≃ GL1(A) ⊂ Ω∞A,

where the ∞-group GL1(A) ≃ AutModA
(A) is equivalently the subspace of the

∞-monoid Ω∞A ≃ EndModA
(A) consisting of the invertible components; that

is, it fits into the pullback square

GL1(A) //

��

Ω∞A

��

(π0A)
× // π0A.

Since S[G] corepresents the functor which sends the commutative algebra A to
its space of units, the “derived scheme” SpecS[G] can be regarded as derived
version of the multiplicative group scheme.

Example 4.4.17. Any abelian ∞-group G with π0G ∼= Z determines a “con-
nective spectral abelian group scheme” with underlying ordinary scheme Gm,
the multiplicative group. While the previous example represents the functor of
units, it is sometimes necessary to consider more “strictly commutative” derived
analogues of Gm. At the other extreme, one can consider Z as an ∞-group, in
which case the spherical group ring S[Z] is a flat commutative S-algebra such
that, for any commutative ring spectrum A,

MapCAlg(S[Z], A) ≃ MapAbMon∞
(Z,Ω∞A) ≃ MapAbGp∞

(Z,GL1(A)).

This space of “strict units” of A plays a central role in elliptic cohomology [26].

Thom spectra ([38], [29], [4]) are spectra which occur as quotients of the
sphere by the action of a group. Again, it is somewhat more useful to have the
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version relative to a fixed commutative ring spectrum R. By construction the
∞-group GL1(R) is the universal group which acts on R by R-linear maps, so
any ∞-group G over GL1(R) acts as well. The group homomorphism f : G→
GL1(R) deloops to a map of pointed spaces f : BG→ BGL1(R).

Example 4.4.18. The equivalence GL1(S) ≃ colimn→∞ Aut∗(S
n) and compat-

ible families of ∞-group maps O(n) → Aut∗(S
n) and U(n) → Aut∗(S

2n) give
∞-group maps O → GL1(S) and U → GL1(S). The Thom spectra MO and
MU are the homotopy quotients MO = ShO and MU = ShU . While defined in
an apparently abstract and formal way, there’s a surprising connection to geom-
etry: π∗MO is the bordism ring of unoriented manifolds, π∗MU is the bordism
ring of stably almost complex manifolds. The analogues for other tangential
structures hold; for instance, π∗S is the stably framed bordism ring.

4.5 Smooth, proper, and dualizable objects

Definition 4.5.1. A symmetric monoidal ∞-category p : C⊗ → Fin∗ is closed
if, for any object A of C = C

⊗
〈1〉, the right multiplication by A functor (−)⊗A :

C→ C admits a right adjoint FC(A,−) : C→ C.

Remark 4.5.2. This allows for the construction of function objects FC(B,C)
of C, naturally as a functor FC : Cop × C → C. In particular, there are natural
equivalences MapC(A⊗B,C) ≃ MapC(A,FC(B,C)).

Definition 4.5.3. Let C⊗ be a closed symmetric monoidal∞-category. A dual
of an A is an object of the form FC(A,1), where 1 denotes a unit object.

As duals are uniquely determined, we will write DCA, or DA, for a dual of
A.

Remark 4.5.4. There is a canonical evaluation map

ε : A⊗DCA ≃ A⊗ FC(A,1) −→ 1,

any map corresponding to the identity of FC(A,1) under the equivalence Map(A⊗
FC(A,1),1) ≃ Map(FC(A,1),FC(A,1)).

Definition 4.5.5. An object A of a closed symmetric monoidal∞-category C
⊗

is dualizable if there exists a coevaluation map η : 1 −→ DA ⊗ A such that the
compositions

A
A⊗η
−−−→ A⊗DA ⊗A

ε⊗A
−−−→ A

DA
η⊗DA
−−−−→ DA⊗A⊗DA

DA⊗ε
−−−−→ DA

are equivalent to the identity.

We write Cdual ⊂ C for the full subcategory consisting of the dualizable
objects of C⊗. It always contains at least one object, any unit object 1.
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Example 4.5.6. Let R be a commutative ring spectrum and consider the closed
symmetric monoidal ∞-category LMod⊗R of left R-module spectra. Stability
forces the full subcategory LModdualR of dualizable objects to be closed under
finite limits, colimits, and retracts [19, Theorem 2.1.3]. Since LModR is com-
pactly generated, it follows that the full subcategories of compact and dualizable
objects coincide.

Given a commutative algebra object T of LPr, we may form the ∞-category
LModT(LPr) of left T-module objects of LPr. For instance, LPrst ≃ LModSp(LPr).
Of course, Sp ≃ LModS, so LPrst ≃ LModLModS

(LPr). It is useful to consider
the relative version of this: given a commutative ring spectrum R, the relative
tensor product equips the presentable∞-category LModR with the structure of
a commutative algebra object.

Definition 4.5.7. Let R be a commutative ring spectrum. An R-linear ∞-
category C is a left LModR-module in LPr⊗.

We write CatR = LModLModR
(LPr) for the ∞-category of R-linear cate-

gories and R-linear functors (left LModR-module maps).

Remark 4.5.8. Since LModR is stable, we have CatR ≃ LModLModR
(LPrst).

Remark 4.5.9. CatR is in fact closed symmetric monoidal: if C and D are R-
linear∞-categories, the∞-category of R-linear functors (that is, ModR-module
morphisms in LPr) LFunR(C,D) from C to D is again an R-linear ∞-category
(a ModR-module in LPr). The dual

DRC = LFunR(C,LModR)

of C is the∞-category of R-linear functors from C to LModR. Hence an R-linear
∞-category C is dualizable if there exists a coevaluation map η : LModR

η
−→

DRC⊗R C such that the compositions

C
C⊗Rη
−−−−→ C⊗R DRC⊗R C

ε⊗RC
−−−−→ C

DRC
η⊗DRC
−−−−−→ DRC⊗R C⊗R DRC

DRC⊗ε
−−−−−→ DRC

are equivalent to the identity.

Proposition 4.5.10. Let R be a commutative ring spectrum. Then Cat⊗R is a
rigid symmetric monoidal ∞-category; that is, all objects are dualizable.

Remark 4.5.11. Consider the subcategory LPrcgst ⊂ LPrst of compactly gen-
erated stable presentable ∞-category and left adjoint functors which preserve
compact objects. Then LPrcgst is equivalent, via the functor which restricts to
the full subcategories of compact objects, to the∞-category of idempotent com-
plete (that is, all idempotents split) small stable∞-categories and exact functors.
The inverse equivalence is given by Ind : Cat∞ → LPr, which when restricted
to Catst∞ ⊂ Cat∞, factors through the subcategory LPrcgst ⊂ LPr. Since sta-
bility and idempotent completeness are properties of small ∞-categories, and
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a functor of small stable ∞-categories is exact if and only if it is right exact,
we deduce that LPrcgst is equivalent to a full subcategory of Catrex∞ (see [24,
Proposition 5.5.7.8] for details). It follows from [25, Proposition 4.8.1.4], using
[25, Remark 2.2.1.2], that LPrcgst inherits a symmetric monoidal structure which
is compatible with the symmetric monoidal structure on LPrst or LPr. The
∞-category Mod⊗R is a commutative algebra object in LPrcgst , so we have a sub-
category CatcgR ⊂ CatR of compactly generated R-linear categories and colimit
and compact object preserving functors. Similar arguments show that CatcgR
inherits the structure of a symmetric monoidal ∞-category from Cat⊗R.

Proposition 4.5.12. [7, Proposition 3.5] An R-algebra A is compact in AlgR
if and only if LModA is compact in CatcgR .

Remark 4.5.13. An object C is dualizable in CatcgR if and only if it is dualizable
in CatR and the evaluation and coevaluation morphisms lie in the (not full)
subcategory CatcgR ⊂ CatR.

Definition 4.5.14. A compactly generated R-linear category C is proper if
its evaluation map is in CatcgR ; it is smooth if it is dualizable in CatR and its
coevaluation map is in CatcgR . An R-algebra A is proper if LModA is proper; it
is smooth if LModA is smooth.

Remark 4.5.15. The property of being compact, smooth, or proper in AlgR
is invariant under Morita equivalence.

Remark 4.5.16. If A is an R-algebra, then LModA is proper if and only if A
is a perfect R-module. Indeed, the evaluation map is the map

LModA⊗RAop ≃ LModA⊗R LModAop −→ LModR

that sends A ⊗R Aop to A. Similarly, LModA is smooth if and only if the
coevaluation map

LModR −→ LModAop⊗RA,

which sends R to the Aop⊗RA-module A, exists and is in CatcgR . So we see that
LModA is smooth if and only if A is perfect as an Aop ⊗R A-module.

Proposition 4.5.17. [7, Lemma 3.9] If C is a smooth R-linear category then
C ≃ LModA for some R-algebra spectrum A.

Proposition 4.5.18. [25, Proposition 7.3.5.8] Let R be a commutative ring
spectrum and A an associative R-algebra. If A is compact in AlgR then A is
smooth. If A is a smooth and proper then A is compact in AlgR.

Corollary 4.5.19. [25, Corollary 7.3.5.9] Let R be a commutative ring spectrum
and let A be an associative R-algebra. Then A is smooth and proper if and only
if it is compact as an object of AlgR and LModR.

Remark 4.5.20. The noncommutative cotangent complex is the fiber

ΩA/R −→ A⊗R Aop −→ A

of the multiplication map. Thus, in the noncommutative setting, A is a smooth
R-algebra if and only if ΩA/R is a perfect left A⊗R Aop-module.
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4.6 Nilpotent, local, and complete objects

In this section we fix a commutative ring spectrum R and a finitely generated
ideal I = (f1, . . . , fn) ⊂ π0R. We write R[I−1] ≃

⊗n
i=1 R[f−1

i ] and, for any
left R-module M , M [I−1] ≃ R[I−1]⊗R M , regarded as a left R-module via the
commutative algebra map R→ R[I−1].

Remark 4.6.1. There does not seem to be a good notion of ideal in the ∞-
category of commutative ring spectra. Rather, it seems that for most part,
which is relevant are ideals in the discrete ring π0R or graded ring π∗R. The
problem is that the cofiber R/f of an R-module map f : R → R need not
admit a commutative multiplication, or even any multiplication at all. A good
example is the Moore spectrum S/p for p ∈ Z ∼= π0S a prime, which does not
carry an associative algebra structure; in fact, S/2 doesn’t even support a unital
binary multiplication map S/2⊗ S/2→ S/2 (see [34, Proposition 4]).

Remark 4.6.2. The nilpotence theorem of Devinatz-Hopkins-Smith [14] states
that if R is a homotopy associative ring spectrum, then the kernel of the map
π∗(R) → π∗(MU ⊗ R) consists entirely of nilpotent elements. This generalizes
the Nishida nilpotence theorem [31], which states that every element of π∗S

of positive degree is nilpotent. It is used to show that the only homotopy
associative ring spectra R with the property that π∗R is a graded field are
(extensions of) the Morava K-theory spectra K(n) at the prime p (suppressed
from the notation) at height n. Here K(0) ≃ Q, π∗K(n) ∼= Fp[v

±] for a
generator v in degree 2(pn − 1), and K(∞) ≃ Fp. By [6], there is an essentially
unique associative S-algebra structure on K(n), at least at odd primes.

Remark 4.6.3. Given a left S-module E, the Bousfield localization LE Sp of
the ∞-category of spectra at E sits in a Verdier sequence

KE Sp −→ Sp −→ LE Sp,

where KE Sp ⊂ Sp denotes the full subcategory of those spectra M such that
M ⊗ E ≃ 0 (the kernel of the multiplication by E map Sp → Sp). Since the
inclusion of the full subcategory KE(Sp) ⊂ Sp evidently preserves colimits, it
follows that this is a semi-orthogonal decomposition. It is a recollemont precisely
when the right adjoint inclusion LE Sp → Sp preserves colimits, which implies
that the localization is smashing: LEM ≃M ⊗ LES.

Definition 4.6.4. Let R be a commutative ring spectrum, let I ⊂ π0R be a
finitely generated ideal, and let A be an associative R-algebra.

(1) A left A-module M is I-nilpotent if M [I−1] ≃ 0.

(2) A left A-module M is I-local if Map(N,M) ≃ 0 for every I-nilpotent N .

(3) A left A-module M is I-complete if Map(L,M) ≃ 0 for every I-local L.

Remark 4.6.5. Taking homotopy groups, we see that N is I-nilpotent if each
πkN , k ∈ Z, is an I-nilpotent left π0R-module. Equivalently, N is I-nilpotent
if every element of each πkN is annihilated by some power of I.
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Remark 4.6.6. It suffices to test I-locality only on those I-nilpotent objects
which are also compact as left A-modules. This is because the fully faithful
inclusion i∨ : LModI-nilA ⊂ LModA of the I-nilpotent left A-modules is a colimit
preserving functor of compactly generated stable ∞-categories [27, Proposition
7.1.1.12], which implies that it admits a right adjoint i∨. For instance, if I =
(f) is principle, then A/f is a compact generator of LModI-nilA ⊂ LModA and
A[f−1] is generator of LModI-locA ⊂ LModA which is compact as an object of
LModI-locA but not typically as an object of LModA. In particular, LModI-locA ≃
LModA[I−1].

Remark 4.6.7. The fully faithful inclusion j∗ : LModI-locA → LModA of the I-
local objects admits both a left adjoint j∗ and a right adjoint j×. The existence
of the left adjoint follows from the fact that j∗ preserves limits, essentially by
definition, and filtered colimits by the previous remark. The existence of the
right adjoint follows from the fact that j∗ is exact and so it also preserves
finite colimits, hence all colimits. It follows that the I-localization functor j∗ :
LModA → LModI-locA is given by tensoring with j∗A ≃ A[I−1].

Theorem 4.6.1. [27, Theorem 7.3.4.1] A left A-module M is I-complete if each
homotopy group πnM is a derived I-complete left π0A-module, in the sense that
Ext0π0A(π0A[f

−1],M) ∼= 0 ∼= Ext1π0A(π0A[f
−1],M).

Remark 4.6.8. The inclusion of the I-complete objects preserves limits, again
by construction, and κ-filtered colimits for κ≫ 0. Indeed, this follows from the
fact that we need only test completeness on a generator A[I−1] of LModI-locA ,
and this generator is κ-compact in LModA for some κ≫ 0.

Proposition 4.6.9. [27, Proposition 7.2.4.4 and Proposition 7.3.1.4] The fully
faithful inclusions i∨ : LModI-nilA → LModA and j∗ : LModI-locA → LModA
induce Verdier sequences

LModI-nilA
i∨−→ LModA

j∗

−→ LModI-locA

LModI-locA
j∗
−→ LModA

i∧
−→ LModI-cplA

which are semi-orthogonal decompositions of LModA.

Remark 4.6.10. In the stable setting, a recollement is the data of a fully
faithful inclusion of a stable subcategory which admits both a left and a right
adjoint [8]. An example is the inclusion j∗ : LModI-locA → LModA of the I-local
objects. The composite i∧i∨ is an equivalence of categories with inverse i∨i∧.
A stable recollement determines a fracture square, a cartesian square

id //

��

i∧i
∧

��

j∗j
∗ // j∗j

∗i∧i
∧
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of endofunctors of LModA. For A ≃ S, the arithmetic square is the cartesian
square

M //

��

(

∏

p M
∧
p

)

��

M ⊗Q //
(

∏

p M
∧
p

)

⊗Q

obtained by completing a spectrum M at all primes p and rationalization.

Theorem 4.6.2. [27, Proposition 7.4.1.1] Let R be a commutative ring spectrum
and let I ⊂ π0R a finitely generated ideal. Suppose given a map of associative
R-algebras f : A→ B, and consider the commutative square

LModA
f∗

//

��

LModB

��

LModA[I−1]

f [I−1]∗
// LModB[I−1]

in LPr. If f∧
I : A∧

I → B∧
I is an equivalence, this square is cartesian.

5 Deformation theory

5.1 The tangent bundle and the cotangent complex

The cotangent complex formalism is an instance of the fiberwise stabilization of
a presentable fibration. Given a pair of presentable fibrations p : D → C and
q : E→ C, we write RFunC(E,D) ⊂ FunC(E,D) for the full subcategory of those
functors g : E → D over C which admit a left adjoint f : D → E such that
p(η(D)) is an equivalence in C for every object D ∈ D, where η : idD → gf
denotes any choice of unit transformation exhibiting the adjunction.

Remark 5.1.1. This is the precise condition needed to ensure that g : E→ D

restricts to a right adjoint on fibers over any object of C, or even after pullback
along any morphism C′ → C.

Definition 5.1.2. A stable envelope of a presentable fibration p : D → C is a
presentable fibration q : E→ C equipped with a morphism

E
g

//

q
��
❃❃

❃❃
❃❃

❃❃
D

p
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

C

of presentable fibrations over C which exhibits E as the fiberwise stabilization of
D over C in the following sense: if q′ : E′ → C is a stable presentable fibration,
the induced map g∗ : RFunC(E

′,E)→ RFunC(E
′,D) is an equivalence.
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Definition 5.1.3. A tangent bundle q : TC → C of a presentable ∞-category C

is a stable envelope of the target fibration p : Fun(∆1,C)→ Fun({1},C) ≃ C.

Remark 5.1.4. The fiber of q : TC → C over the object A ∈ C is the stabiliza-
tion Sp(C/A) of the fiber C/A of the target fibration p : Fun(∆1,C)→ C.

Remark 5.1.5. The tangent bundle TC admits an explicit construction as the
∞-category of unreduced excisive functors

E ≃ Exc(Sfin∗ ,C).

In this case, the morphism of presentable fibrations g : E → D over C is given
by evaluating at the arrow S0 → pt; that is, g(X) = {X(S0)→ X(pt)}.

Let C be a presentable ∞-category, and consider the commutative triangle

TC

g
//

q
��
❄❄

❄❄
❄❄

❄❄
Fun(∆1,C)

p

zz✉✉
✉✉
✉✉
✉✉
✉✉

C

where p is the target fibration. A relative version of the adjoint functor theorem
implies that f admits a left adjoint, allowing for the following construction.

Definition 5.1.6. The absolute cotangent complex functor L : C → TC is the
composition C → Fun(∆1,C) → TC, where the first map is the diagonal (con-
stant) embedding and the second is left adjoint to g : TC → Fun(∆1,C). We
will write LA for the value of L : C→ TC at the object A of C, and refer to LA

as the (absolute) cotangent complex of A.

Remark 5.1.7. The cotangent complex has a long history. Its first incarnation
was as the sheaf of Kähler differentials, and a derived version of this was intro-
duced by Berthelot and Illusie ([2], [21], [22]). Around the same time, Quillen
([33], [32]) and André ([5]) defined a derived version in the context of (simpli-
cial) commutative rings, and later Basterra and Mandell ([9], [10]) developed
the theory in the more general context of commutative algebra spectra, where
they refer to it as topological André-Quillen homology.

Remark 5.1.8. Let A be an object of C. The identification of the fiber of
the tangent bundle TC over A ∈ C with Sp(C/A) is such that LA ∈ Sp(C/A)
corresponds to the image of idA ∈ C/A under Σ∞

+ : C/A → Sp(C/A).

Remark 5.1.9. The diagonal embedding C→ Fun(∆1,C) is left adjoint to the
evaluation Fun(∆1,C) → Fun({0},C) → C at 0 ∈ ∆1. Hence the cotangent
complex functor L : C→ TC is left adjoint to the composite functor

TC −→ Fun(∆1,C) −→ Fun({0},C)→ C.



5 DEFORMATION THEORY 53

Definition 5.1.10. The relative cofiber over C functor

cofC : Fun(∆1, TC)→ TC

is the functor which sends the morphism f : X → Y in TC to the pushout

X //

��

Y

��

Z // cofC(f)

where Z is any zero object of the fiber of TC over p(X).

Definition 5.1.11. The relative cotangent complex functor is the composition

Fun(∆1,C)
L
−→ Fun(∆1, TC)

cofC−→ TC.

Remark 5.1.12. A zero object of a fiber of q : TC → C need not be a zero
object of TC itself. Given a morphism f : X → Y in TC, the relative cofiber
cofC(f) of f is an object of the fiber of TC over q(Y ).

We write LB/A for the value of the relative cotangent complex functor on
an object f : A→ B of the ∞-category Fun(∆1,C) of arrows in C.

Remark 5.1.13. By construction, the relative cotangent complex of a mor-
phism f : A→ B fits into a relative cofiber sequence

LA
//

��

LB

��

0 // LB/A

in TC. This induces an actual cofiber sequence f!LA → LB → LB/A in the ∞-
category TC×C {B} ≃ Sp(C/B). Here f! : Sp(C/A)→ Sp(C/B) is a straightening
of the restriction f∗q : TC ×C ∆1 → ∆1 of q : TC → C along f : ∆1 → C.

Remark 5.1.14. It follows that the commutative square in TC

LB/A
//

��

LC/A

��

LB/B
// LC/B

associated to a pair of composible morphisms A → B and B → C in C is
cocartesian, hence a relative cofiber sequence since LB/B ≃ 0 in Sp(C/B).

Definition 5.1.15. The tangent correspondence of a presentable ∞-category
C is the cocartesian fibration MC → ∆1 associated to the cotangent complex
functor L : C→ TC.



5 DEFORMATION THEORY 54

Remark 5.1.16. The tangent correspondence MC → ∆1 is also a cartesian
fibration since L : C→ TC is a left adjoint.

Remark 5.1.17. The cocartesian fibration M → ∆1 associated to a functor
f : C→ D can be constructed as the pushout

C
f

//

��

D

��

∆1 × C // M

in which the left vertical map is the inclusion at {1} ⊂ ∆1. The functor M →
∆1 has fiber over 0 and 1 the full subcategories C → M and D → M, and
over the unique map ε : 0 → 1 the functor f : C → D; this is evidently a
cocartesian fibration as we can push forward objects of C along ε via f . Thus
a functor h : M→ C amounts to the data of a functor g : D→ C and a natural
transformation η : ∆1×C→ C from idC to gf . If M is also a cartesian fibration,
a unit transformation η : idC → gf induces a canonical functor h : M→ C.

Remark 5.1.18. A derivation in C is a morphism ∆1 → MC such that the
composite ∆1 → MC → ∆1 is the identity and ∆1 → MC → C is constant.
More concretely, a derivation in C is a morphism in MC from an object A in the
fiber C over 0 to an object M in the fiber Sp(C/A) of q : TC → C over A (see [25,
Remark 7.4.1.2]). The ∞-category Der(C) of derivations in C is the pullback

Der(C) //

��

Fun(∆1,MC)

��

C // Fun(∆1,∆1 × C)

in which the right vertical map is induced by the functor MC → ∆1×C and the
bottom horizontal map is adjoint to the identity of ∆1 × C.

5.2 Derivations and square-zero extensions

We now specialize to the case in which C is the presentable∞-category CAlg of
commutative algebra spectra.

Remark 5.2.1. All algebras will be assumed commutative for the remainder of
this article. If A is a commutative algebra object there is a canonical equivalence
A ≃ Aop, hence a canonical equivalence LModA ≃ LModAop ≃ RModA, so we
needn’t distinguish left and right module structures in the commutative case.
We thus write ModA in place of LModA and RModA.

Theorem 5.2.1. [25, Corollary 7.3.4.14] The functor p : Mod → CAlg which
sends the pair (A,M) ∈ Mod to A ∈ CAlg exhibits Mod as a tangent bundle
of CAlg. In particular, for any commutative algebra spectrum A, we have an
equivalence ModA ≃ Sp(CAlg/A).
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We will write Sym≤1 : Mod → Fun(∆1,CAlg) for a functor which cor-
responds to Ω∞ : TCAlg → Fun(∆1,CAlg). We use this notation because
Sym≤1 ≃ Sym0⊕ Sym1 is the formula for the split square-zero extension in
ordinary algebra, though we have obtained its augmented commutative algebra
structure through abstract stabilization techniques.

Remark 5.2.2. Let A be a commutative ring spectrum and M an A-module.
Then the split square-zero augmented commutative A-algebra structure on A⊕
M is square-zero in the sense that the compositions

Symn
A(M) −→ Symn

A(A⊕M)
⊗n

−→ A⊕M −→M

are null whenever n > 1.

Remark 5.2.3. On homotopy groups, the split square-zero extension is an or-
dinary split square-zero extension of graded commutative rings. In other words,
for any pair of elements (a0,m0) and (a1,m1) of π∗(A⊕M), the multiplication
on π∗(A⊕M) ∼= π∗(A)⊕ π∗(M) is given by the expected formula

(a0,m0)(a1,m1) = (a0a1, a0m1 + (−1)|a1||m0|a1m0).

Remark 5.2.4. Any split square-zero extension A⊕M , viewed as an augmented
commutative A-algebra, is canonically a spectrum object in the pointed ∞-
category CAlgA/A. Indeed, in degree n, (A⊕M)n ≃ A⊕ ΣnM , and the map

A⊕ ΣnM −→ Ω(A⊕ Σn+1M) ≃ A⊕ ΩΣn+1M ≃ A⊕ ΣnM

is an equivalence, as A is a zero object of CAlgA/A and

A⊕ ΣnM //

��

A

��

A // A⊕ Σn+1M

is a cartesian square of CAlgA/A. Moreover, as ModA is stable, the functor

Sym≤1
A : ModA → CAlgA/A factors through Ω∞ : Sp(CAlgA/A) → CAlgA/A.

There is even an evident map back in the order direction given by taking the
fiber, which sends the spectrum object {Bn}n∈N to fib{B0 → A} ∈ModA.

In ordinary commutative algebra, a derivation d : A → M over R is an
R-module map satisfying the Leibniz rule

d(ab) = ad(b) + bd(a).

Instead of using elements, we could instead define a derivation d : A → M as
a section of the projection A ⊕M → A, taken in the category of commutative
R-algebras. Replacing R with S we obtain the following notion.
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Definition 5.2.5. Let A be a commutative algebra spectrum and M an A-
module. A derivation from A to M is a section A → A ⊕M in CAlg of the
projection A⊕M → A.

Remark 5.2.6. This is a special case of the notion of derivation introduced
in the previous section. Here we avoid explicit mention of the tangent corre-
spondence by pulling back to the fiber of MCAlg → ∆1 via the split square zero
extension functor TCAlg ≃ Mod→ CAlg.

Remark 5.2.7. The space Der(A,M) of derivations A→ A⊕M is the fiber

Der(A,M) −→ MapCAlg(A,A ⊕M) −→ MapCAlg(A,A)

over the identity idA ∈ MapCAlg(A,A). The composite of the commutative
algebra map A→ A ⊕M with the second projection A ⊕M →M is a map of
spectra d : A→M which we will abusively refer to as the derivation.

Remark 5.2.8. For any connective commutative algebra A and left A-module
M , there is an equivalence MapModA

(LA,M)→ Der(A,M). That is, the cotan-
gent complex LA corepresents the functor Der(A,−) : ModA → S.

Remark 5.2.9. Using the tangent correspondence formalism from the previ-
ous subsection, the ∞-category Der = Der(CAlg) of derivations has objects
derivations d : A→M and morphisms commutative squares of the form

A //

��

M

��

B // N

,

with A→ B a commutative algebra map and M → N an A-module map.

Let A be a commutative ring spectrum, M an A-module, and η : A→ ΣM
a derivation with associated section (id, η) : A → A ⊕ ΣM of the projection
A⊕ΣM → A. By construction, (id, η) is a morphism of commutative algebras.

Definition 5.2.10. A map of commutative algebra spectra ε : A′ → A is
a square-zero extension of A by the A-module M if there exists a derivation
η : A→ ΣM and a cartesian square in CAlg/A of the form

A′ //

��

A

(id,η)

��

A
(id,0)

// A⊕ ΣM

.

Remark 5.2.11. There is a functor Φ : Der→ Fun(∆1,CAlg) which sends the
derivation η : A→ ΣM to the map Aη → A, where Aη is a pullback

Aη //

��

A

(id,η)

��

A
(id,0)

// A⊕ ΣM
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in CAlg/A, and whose essential image consists of the square-zero extensions.

Remark 5.2.12. Note that, if f : Aη → A is a square-zero extension of A by
M , then the fiber sequence of A-modules M → A → A ⊕ ΣM implies that we
also have a fiber sequence M → Aη → A and hence a canonical equivalence
fib(f) ≃ M . Hence derivations η : A→ ΣM give rise to square-zero extensions
Aη of A by M . This is why we use ΣM instead of M itself.

Remark 5.2.13. As the name suggests, square-zero extensions f : A′ → A are
actually square-zero. That is, the fiber M → A′ → A has the property that the
n-fold symmetric power map Symn

A(M)→M is null for any n > 1.

Definition 5.2.14. A morphism ε : A′ → A in CAlgcn is an n-small extension
if fib(ε) has homotopy concentrated in degrees [0, 2n] and the multiplication
map fib(ε) ⊗A′ fib(ε) → fib(ε) is nullhomotopic. A derivation η : A → M is
n-small if the associated square-zero extension Aη → A is n-small.

Theorem 5.2.2. [25, Theorem 7.4.1.26] The composition

Dern ⊂ Der
Φ
−→ Fun(∆1,CAlgcn)

is fully faithful with essential image the full subcategory of Fun(∆1,CAlgcn) con-
sisting of the n-small extensions (here Φ is as in Remark 5.2.11 above).

Corollary 5.2.15. Any n-small extension is a square-zero extension.

One of the primary source of examples of square-zero extensions comes from
the Postnikov tower of a connective commutative algebra A.

Proposition 5.2.16. [25, Corollary 7.4.1.28] Let A ∈ CAlgcn. For each n > 0,
the map

τ≤nA −→ τ≤n−1A

exhibits τ≤nA as a square-zero extension of τ≤n−1A by ΣnπnA.

Remark 5.2.17. The fact that the Postnikov tower is composed of square-zero
extensions is one of the main reasons why the cotangent complex plays such an
important role in spectral algebra and geometry. The space of maps

MapCAlg(A,B) ≃ limMapCAlg(A, τ≤nB) ≃ limMapCAlg(τ≤nA, τ≤nB)

between connective commutative algebra spectra A and B decomposes as the
limit of the space of maps between their truncations, and for any n > 0 we have
a pullback diagram

τ≤nB //

��

τ≤n−1B

��

τ≤n−1B // τ≤n−1B ⊕ Σn+1πnB

.

This implies that the fibers of MapCAlg(A,B) −→ MapCAlg♥(π0A, π0B) are
accessible via infinitesimal methods: arguing inductively up the Postnikov tower,
we are reduced to understanding spaces of derivations from A→ Σn+1πnB, an
A-linear question concerning maps LA → Σn+1πnB.
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5.3 Deformations of commutative algebras

Given a connective commutative algebra spectrum A and a square-zero exten-
sion A′ → A of A by a connective A-module M , it is natural to study the
space of deformations of the square-zero extension A′ → A to a connective com-
mutative A-algebra f : A → B. That is, we wish to understand the space of
cocartesian squares in CAlgcn of the form

A′ f ′

//

��

B′

��

A
f

// B

(it turns out that B′ → B is automatically also a square-zero extension). As
in ordinary algebra, this reduces to a module theoretic question concerning the
cotangent complex: such a commutative A′-algebra B′ exists if and only if the
map B ⊗A LA → B ⊗A ΣM induced by a derivation η : A → ΣM classifying
A′ → A factors through the absolute cotangent complex LB of B.

Definition 5.3.1. Let A be a commutative algebra spectrum, A′ → A a square-
zero extension of A by an A-module M , and B a commutative A-algebra. A
deformation of B to A′ is a commutative A′-algebra B′ equipped with an equiv-
alence B′ ⊗A′ A→ B of commutative A-algebras.

Remark 5.3.2. We need not assume that B′ is flat over A′, as this is the case
if and only if B is flat over A. Indeed, if A′ → B′ is flat, then the basechange
A → B ≃ B′ ⊗A′ A is flat by a spectral sequence argument. Conversely, the
fact that any deformation B′ → B of A′ → A along a flat map A → B results
in a flat map A′ → B′ follows from a tor-amplitude argument.

Remark 5.3.3. In the connective case, just like in ordinary commutative al-
gebra, there are cohomological obstructions to the existence and uniqueness
of deformations. Given an A-linear map η : LA → ΣM with M a connective
A-module, the associated square-zero extension Aη → A of A by M is again con-
nective. Given a morphism of connective commutative algebra spectra A→ B,
we obtain a map ηB : B ⊗A LA → B ⊗A ΣM , and a deformation B′ → B of
A′ → A along A→ B exists if and only if ηB factors as a composite

B ⊗A LA
εB−→ LB

η′

−→ B ⊗A ΣM

of εB : B ⊗A LA → LB and a B-module map η′ : LB → B ⊗A ΣM . In this
case, the deformation is recovered as the square-zero extension B′ ≃ Bη′

→ B.
Notice, though, that such a factorization exists if and only if the composite

Σ−1LB/A −→ B ⊗A LA −→ B ⊗A ΣM,

is null, so that a deformation exists if and only if the obstruction class in
Ext2B(LB/A, B ⊗A M) corresponding to this map vanishes. The set of equiv-
alence classes of deformations is a torsor for the group Ext1B(LB/A, B ⊗A M);
in particular, it might be empty, or only admit an element locally on Specπ0B.
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Definition 5.3.4. A derivation η : A → ΣM is said to be connective if A is a
connective commutative algebra spectrum and M is an connective A-module.

Let D ⊂ Der denote the subcategory consisting of the connective derivations
A→ ΣM and those morphisms of connective derivations

A //

��

ΣM

��

B // ΣN

such that the induced map B ⊗A M → N is an equivalence. Similarly, let
C ⊂ Fun(∆1,CAlg) denote the subcategory consisting of those objects A′ → A
such that both A and A′ are connective and those morphisms the squares

A′ //

��

A

��

B′ // B

which are cocartesian in CAlg; in other words, B′ ⊗A′ A→ B is an equivalence.
When restricted to D ⊂ Der, the square zero extension functor Φ : Der →
Fun(∆1,CAlg) of Remark 5.2.11 factors through C ⊂ Fun(∆1,CAlg).

Theorem 5.3.1. [25, Theorem 7.4.2.7] The composition

D ⊂ Der
Φ
−→ Fun(∆1,CAlg)

factors through the subcategory C ⊂ Fun(∆1,CAlg), and the resulting functor
Φ′ : D→ C is a left fibration (a cocartesian fibration with ∞-groupoid fibers).

Proposition 5.3.5. [25, Proposition 7.4.2.5] For any connective derivation η :
A→ ΣM , Φ : Der→ Fun(∆1,CAlg) induces an equivalence

Φη/ : Dη/
≃
−→ CAlgcnAη ,

where D ⊂ Der denotes the subcategory defined above.

5.4 Connectivity results

A universal derivation is any derivation d : A→ LA which is corresponds to an
equivalence LA → LA. Given a map of commutative ring spectra f : A→ B,

A //

f

��

LA

��

B // LB

is a commutative square in Der. Taking vertical cofibers, we obtain map of A-
modules cof(f)→ LB/A which is adjoint to a map of B-modules cof(f)⊗AB →
LB/A. We will write εf : cof(f)⊗A B → LB/A for this map.
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Theorem 5.4.1. [25, Theorem 7.4.3.1] Let f : A→ B be a morphism in CAlgcn

such that cof(f) ∈ Mod≥n
A for some n ≥ 0. Then fib(εf ) ∈Mod≥2n

B .

Example 5.4.1. We note the elementary fact that if M ∈ Mod≥n
A then, for

any natural number m, TenmA (M) ∈ Mod≥mn
A and consequently Symm

A (M) ∈

Mod≥mn
A as well. Thus if f : SymA M → A is the projection to A ≃ Sym0

A M , it
is straightforward to show that fib(εf ) ∈Mod≥2n

A . The general case is obtained
from this special case by connectivity and induction arguments.

Proposition 5.4.2. [25, Corollary 7.4.3.2] Let f : A → B be a map of con-
nective commutative algebra spectra such that cof(f) is n-connective for some
n ≥ 0. Then the relative cotangent complex LB/A is n-connective, and the
converse holds provided that π0f : π0A→ π0B is an isomorphism.

Remark 5.4.3. The absolute cotangent complex of a connective commutative
algebra spectrum is itself connective. This follows immediately from the previ-
ous proposition since the cofiber of the unit map is connective.

Corollary 5.4.4. Let f : A → B be a map of connective commutative alge-
bra spectra. Then f is an equivalence if and only if π0f : π0A → π0B is an
isomorphism and the relative cotangent complex LB/A vanishes.

Remark 5.4.5. Let f : A → B be a map of connective commutative algebra
spectra such that cof(f) is n-connective for some n ≥ 0. The induced map
LA → LB factors as the composite

LA
g
−→ B ⊗A LA

h
−→ LB

and the equivalence cof(g) ≃ cof(f)⊗A LA, together with the connectivity of A
and LA, imply that cof(g) is n-connective. We also have an exact triangle

B ⊗A cof(f) −→ LB/A −→ cof(εf )

in which B⊗A cof(f) and cof(εf ) are n-connective, so that LB/A is n-connective
as well. It follows that the cofiber of LA → LB is n-connective..

Proposition 5.4.6. [25, Lemma 7.4.3.8] Let A be a connective commutative
algebra spectrum. There are canonical isomorphisms of π0-modules

π0LA ≃ π0Lπ0A ≃ Ωπ0A.

Remark 5.4.7. Let f : A → B be a map of connective commutative algebra
spectra such that cof(f) is n-connective. Tensoring the exact triangle A→ B →
cof(f) with the A-module cof(f), we obtain an exact triangle

cof(f)
δ
−→ B ⊗A cof(f) −→ cof(f)⊗A cof(f)

which exhibits δ as a (2n − 1)-connective map. Composing with εf : B ⊗A

cof(f)→ LB/A, we obtain a (2n− 1)-connective map cof(f)→ LB/A.
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Proposition 5.4.8. [25, Proposition 7.4.3.9] Let f : A→ B be a morphism in
CAlgcn. Then LB/A is connective and π0LB/A

∼= Ωπ0B/π0A.

Theorem 5.4.2. [25, Theorem 7.4.3.18] Let f : A → B be a morphism in
CAlgcn. If B is locally of finite presentation over A, LB/A is a perfect B-module.
The converse holds provided π0B is of finite presentation over π0A.

5.5 Classification of étale maps

Recall that a map of discrete commutative rings f : A→ B is said to be étale if
B is a finitely presented flat commutative A-algebra such that the multiplication
map B⊗A B → B is the projection onto a summand. Geometrically, this is the
algebraic analogue of a (not necessarily surjective) covering space: there exists
a commutative ring C and a cartesian square of schemes of the form

Spec(B)
∐

Spec(C) //

��

Spec(B)

f

��

Spec(B)
f

// Spec(A)

.

Étale maps of commutative rings A → B are smooth of relative dimension
zero [37, Lemma 10.141.2]. In particular, there exists a presentation of B as a
commutative A-algebra of the form B ∼= A[x1, . . . , xn]/(f1, . . . , fn), where the
{fi}1≤i≤n are a sequence of elements of A[x1, . . . , xn] such that the image of the
Jacobian matrix of partial derivatives {∂fi/∂xj}1≤i,j≤n is invertible in B.

Definition 5.5.1. A map f : A → B of commutative algebra spectra is étale
if f exhibits B as a finitely presented commutative A-algebra such that B is a
flat A-module and π0f : π0A→ π0B is étale.

Ideally, we would like to be able to calculate the space of étale maps between
commutative algebra spectra A and B in terms of the set of étale maps between
their underlying discrete commutative algebras π0A and π0B. Since an étale
map f : A → B induces an étale map π0f : π0A → π0B, we can address this
question directly by studying the space of étale lifts f : A → B of an étale
morphism f0 : π0A → π0B. The main result of this section, one of the major
results of higher algebra, is that the space of such lifts is contractible.

Proposition 5.5.2. [25, Remark 7.5.1.7] Given a commutative triangle

A
g

��
❅❅

❅❅
❅❅

❅
f

��⑦⑦
⑦⑦
⑦⑦
⑦

B
h // C

in CAlg, if f is étale, then g is étale if and only if h is étale. In particular, any
map between étale commutative A-algebras is automatically étale.
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Remark 5.5.3. Let f : A → B be a map of connective commutative ring
spectra. Then f is étale if and only if each τ≤nf : τ≤nA→ τ≤nB is étale.

Remark 5.5.4. Since an étale map of discrete rings is smooth of relative di-
mension zero, its module of relative Kähler differentials vanishes, and one can
show using ordinary algebraic methods that its relative cotangent complex also
vanishes. This begs the question of whether or not the relative cotangent com-
plex LB/A of an étale map of commutative algebra spectra f : A→ B vanishes.
Using flatness, one reduces to the connective case, so that LB/A is also con-
nective, and if LB/A 6= 0 there’s a least n ∈ N with πnLB/A 6= 0. This is a
contradiction: by connectivity considerations as in the previous section,

0 ∼= πnLπ0B/π0A
∼= πn(LB/A ⊗B π0B) ∼= πnLB/A.

Hence LB/A ≃ 0 for any étale map f : A→ B.

Remark 5.5.5. Said differently, this means that the absolute cotangent com-
plex functor L : CAlg → Mod satisfies étale basechange: if f : A → B is an
étale map of commutative algebra spectra, then the exact triangle

B ⊗A LA −→ LB −→ LB/A

together with the vanishing of the relative cotangent complex LB/A implies that
B ⊗A LA ≃ LB.

Let Derét ⊂ Der denote the (not full) subcategory consisting of the connec-
tive derivations A→ ΣM and those morphisms of connective derivations

A //

��

ΣM

��

B // ΣN

such that the induced map B ⊗A M → N is an equivalence and the commuta-
tive algebra map A → B is étale. Let CAlgét ⊂ CAlgcn denote the (not full)
subcategory consisting of the (connective) commutative algebra spectra and the
étale maps.

Remark 5.5.6. The forgetful functor Derét → CAlgét is a cocartesian fibration
such that, for each A ∈ CAlgét, the fiber DerétA is an∞-groupoid (i.e., it is a left
fibration). This is because an étale morphism of derivations is cocartesian: given
connective derivations η : A → ΣM and η′ : B → ΣN and a map f : A → B,
we have an equivalence N ≃ B ⊗A M , so if f = idA we obtain an equivalence
N ≃M . In particular, for any connective derivation η : A→ ΣM , the forgetful
functor induces an equivalence Derétη/

≃
−→ CAlgétA .

Remark 5.5.7. Consider the functor Φ : Der → Fun(∆1,CAlg) which sends
the derivation η : A→ ΣM to the square-zero extension Aη → A. Compositing
with the restrictions to the set of vertices {0, 1} of ∆1, we obtain functors
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Φ0 : Der → CAlg and Φ1 : Der → CAlg such that Φ1 restricts to the left
fibration Derét → CAlgét. For a given connective derivation η : A → ΣM , Φ0

and Φ1 induce functors

CAlgétAη

Φ′

0←− Derétη/
Φ′

1−→ CAlgétA

such that Φ′
0 is an equivalence by Proposition 5.3.5 and Φ′

1 ≃ Φ′
0⊗Aη A and Φ′

0

is an equivalence by the remark above. We obtain the following corollary.

Corollary 5.5.8. Let f : A′ → A be a square-zero extension of connective
commutative ring spectra. The relative tensor product

(−)⊗A′ A : CAlgA′ −→ CAlgA

induces an equivalence from the ∞-category of étale commutative A′-algebras to
the ∞-category of étale commutative A-algebras.

Theorem 5.5.1. [25, Corollary 7.5.4.3] For any commutative algebra spectrum
A, π0 : CAlgA → CAlgπ0A induces an equivalence CAlgétA ≃ CAlgétπ0A.

Remark 5.5.9. Note that any étale commutative π0A-algebra B is automat-
ically in CAlg♥A since the flatness condition implies that B must be discrete:
πnB ∼= πnA ⊗π0A π0B ∼= 0 if n 6= 0. Hence CAlgétπ0A ≃ CAlg♥ ét

π0A
, and the theo-

rem asserts that the ∞-category of étale commutative A-algebras is equivalent
to the ordinary category of étale commutative π0A-algebras.

Remark 5.5.10. If R is a commutative ring spectrum, the structure of the ∞-
category CAlgétR of étale commutative R-algebras implies that the small étale
site of R is equivalent to the small étale site of the discreet ring π0R, and the
analogous result holds for the small Zariski sites of Example 3.5.11. These facts
form the cornerstones of spectral algebraic geometry, as treated in [27] and [39].

Remark 5.5.11. There are robust notions of spectral scheme and Deligne-
Mumford stack. Versions of the Artin representability theorem for these higher
categorical objects are formulated and proved as [27, Theorems 18.1.0.1 and
18.1.0.2], providing necessary and sufficient conditions for a functor F : CAlgcn →
S to be represented by such an object. These conditions are surprisingly straight-
forward: the ordinary stack F |CAlg♥ → S must be represented by an ordinary
scheme or Deligne-Mumford stack, F must admit a cotangent complex, F must
preserve limits of Postnikov towers, and F must preserve pullbacks of diagrams
of the form A → C ← B in CAlgcn in which both of the maps A → C and
B → C surjective on π0 with nilpotent kernel.
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