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Chapter 1

Introduction

Let K be a global field (for example, the field Q of rational numbers). To every
connected semisimple algebraic group G over K, one can associate a locally compact
group G(A), called the group of adelic points of G. The group G(A) comes equipped
with a canonical left-invariant measure µTam, called Tamagawa measure, and a discrete
subgroup G(K) ⊆ G(A). The Tamagawa measure of the quotient G(K)\G(A) is a
nonzero real number τ(G), called the Tamagawa number of the group G. A celebrated
conjecture of Weil asserts that if the algebraic group G is simply connected, then the
Tamagawa number τ(G) is equal to 1. In the case where K is a number field, Weil’s
conjecture was established by Kottwitz (building on earlier work of Langlands and Lai).
Our goal in this book (and its sequel) is to show that Weil’s conjecture holds also in the
case where K is a function field. We begin in this chapter by reviewing the statement
of Weil’s conjecture, discussing several reformulations that are available in the case of
a function field, and outlining the overall strategy of our proof.

The theory of Tamagawa numbers begins with the arithmetic theory of quadratic
forms. Let q = q(x1, . . . , xn) and q′ = q′(x1, . . . , xn) be positive-definite quadratic
forms (that is, homogeneous polynomials of degree 2) with integer coefficients. We say
that q and q′ are equivalent if there is a linear change of coordinates which converts q
into q′, and that q and q′ are of the same genus if they are equivalent modulo N , for
every positive integer N . Equivalent quadratic forms are always of the same genus, but
the converse need not be true. However, one can show that for a fixed nondegenerate
quadratic form q, there are only finitely many equivalence classes of quadratic forms of
the same genus. Even better, one can say exactly how many there are, counted with
multiplicity: this is the subject of the famous mass formula of Smith-Minkowski-Siegel
(Theorem 1.1.3.5), which we review in §1.1.

To an integral quadratic form q as above, one can associate an algebraic group
SOq over the field Q of rational numbers (which is connected and semisimple pro-

7



8 CHAPTER 1. INTRODUCTION

vided that q is nondegenerate). Tamagawa observed that the group of adelic points
SOq(A) can be equipped with a canonical left-invariant measure µTam, and that the
Smith-Minkowski-Siegel mass formula is equivalent to the assertion that the Tama-
gawa number τ(SOq) = µTam(SOq(Q)\ SOq(A)) is equal to 2. In [39], Weil gave a
direct verification of the equality τ(SOq) = 2 (thereby reproving the mass formula) and
computed Tamagawa numbers in many other examples, observing in each case that
simply connected groups had Tamagawa number equal to 1. This phenomenon became
known as Weil’s conjecture (Conjecture 1.2.6.4), which we review in §1.2.

In this book, we will study Weil’s conjecture over function fields: that is, fields K
which arise as rational functions on an algebraic curve X over a finite field Fq. In
§1.3, we reformulate Weil’s conjecture as a mass formula, which counts the number of
principal G-bundles over the algebraic curve X (see Conjecture 1.3.3.7). An essential
feature of the function field setting is that the objects that we want to count (in this
case, principal G-bundles) admit a “geometric” parametrization: they can be identified
with Fq-valued points of an algebraic stack BunG(X). In §1.4, we use this observation
to reformulate Weil’s conjecture yet again: it essentially reduces to a statement about
the `-adic cohomology of BunG(X) (Theorem 1.4.4.1), reflecting the heuristic idea that
it should admit a “continuous Künneth decomposition”

H∗(BunG(X)) '
⊗
x∈X

H∗(BunG({x})). (1.1)

Our goal in this book is to give a precise formulation of (1.1), and to show that it
implies Weil’s conjecture (the proof of (1.1) will appear in a sequel to this book). In
§1.5, we explain the basic ideas in the simpler setting where X is an algebraic curve over
the field C of complex numbers, where we have the full apparatus of algebraic topology
at our disposal. In this case, we formulate a version of (1.1) (see Theorem 1.5.4.10)
and show that it is essentially equivalent to a classical result of Atiyah and Bott ([2]),
which describes the structure of the rational cohomology ring H∗(BunG(X); Q) (see
Theorem 1.5.2.3). We close in §1.6 by giving a more detailed outline of the remainder
of this book.

1.1 The Mass Formula

We begin this chapter by reviewing the theory of quadratic forms and the mass formula
of Smith-Minkowski-Siegel (Theorem 1.1.3.5).

1.1.1 Quadratic Forms

We begin by introducing some terminology.
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Definition 1.1.1.1. Let R be a commutative ring and let n ≥ 0 be a nonnegative
integer. A quadratic form in n variables over R is a polynomial

q(x1, . . . , xn) ∈ R[x1, . . . , xn]

which is homogeneous of degree 2.

Given a pair of quadratic forms q and q′ (over the same commutative ring R and
in the same number of variables), we will say that q and q′ are isomorphic if there is
a linear change of coordinates which transforms q into q′. We can formulate this more
precisely as follows:

Definition 1.1.1.2. Let R be a commutative ring, and let q = q(x1, . . . , xn) and
q′ = q′(x1, . . . , xn) be quadratic forms in n variables over R. An isomorphism from q
to q′ is an invertible matrix A = (Ai,j) ∈ GLn(R) satisfying the identity

q(x1, . . . , xn) = q′(
n∑
i=1

A1,ixi,
n∑
i=1

A2,ixi, · · · ,
n∑
i=1

An,ixi).

We will say that q and q′ are isomorphic if there exists an isomorphism from q to q′.

Remark 1.1.1.3 (The Orthogonal Group). Let R be a commutative ring and let q be
a quadratic form in n variables over R. The collection of isomorphisms from q to itself
forms a subgroup Oq(R) ⊆ GLn(R). We will refer to Oq(R) as the orthogonal group of
the quadratic form q.

Example 1.1.1.4. Let R be the field of real numbers and let q : Rn → R be the
standard positive-definite quadratic form, given by q(x1, . . . , xn) = x2

1 + · · ·+x2
n. Then

Oq(R) can be identified with the usual orthogonal group O(n). In particular, Oq(R) is
a compact Lie group of dimension (n2 − n)/2.

Remark 1.1.1.5. The theory of quadratic forms admits a “coordinate-free” formula-
tion. Let R be a commutative ring and let M be an R-module. We will say that a
function q : M → R is a quadratic form if it satisfies the following pair of identities:

(a) The symmetric function

b : M ×M → R b(x, y) = q(x+ y)− q(x)− q(y)

is bilinear: that is, it satisfies the identities b(x + x′, y) = b(x, y) + b(x′, y) and
b(λx, y) = λb(x, y) for λ ∈ R.

(b) For λ ∈ R and x ∈M , we have q(λx) = λ2q(x).
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In the special case M = Rn, a function q : M → R satisfies conditions (a) and (b) if
and only if it is given by a quadratic form in the sense of Definition 1.1.1.1: that is, if
and only if q(x1, . . . , xn) =

∑
1≤i≤j≤n ci,jxixj for some scalars ci,j ∈ R. Moreover, the

scalars ci,j are uniquely determined by q: we have an identity

ci,j =

{
q(ei) if i = j

q(ei + ej)− q(ei)− q(ej) if i 6= j,

where e1, . . . , en denotes the standard basis for M = Rn.

Remark 1.1.1.6 (Quadratic Forms and Symmetric Bilinear Forms). Let R be a com-
mutative ring and let M be an R-module. A symmetric bilinear form on M is a function
b : M ×M → R satisfying the identities

b(x, y) = b(y, x) b(x+ x′, y) = b(x, y) + b(x′, y) b(λx, y) = λb(x, y) for λ ∈ R.

Every quadratic form q : M → R determines a symmetric bilinear form b : M×M → R,
given by the formula b(x, y) = q(x+ y)− q(x)− q(y). Note that q and b are related by
the formula b(x, x) = 2q(x).

If R is a commutative ring in which 2 is invertible (for example, a field of char-
acteristic different from 2), then the construction q 7→ b is bijective: that is, there is
essentially no difference between quadratic forms and symmetric bilinear forms.

If R = Z is the ring of integers (or, more generally, any commutative ring in which
2 is not a zero-divisor), then the construction q 7→ b is injective. However, it is not
surjective: a symmetric bilinear form b : M×M → R can be obtained from a quadratic
form on M if and only if it is even: that is, if and only if b(x, x) is divisible by 2, for
each x ∈M .

1.1.2 Classification of Quadratic Forms

The most fundamental problem in the theory of quadratic forms can be formulated as
follows:

Question 1.1.2.1. Let R be a commutative ring. Can one classify quadratic forms
over R up to isomorphism?

The answer to Question 1.1.2.1 depends dramatically on the commutative ring R.
As a starting point, let us assume that R = κ is a field of characteristic different from 2.
In that case, every quadratic form q over R can be diagonalized: that is, q is isomorphic
to a quadratic form given by

q′(x1, . . . , xn) = λ1x
2
1 + λ2x

2
2 + · · ·+ λnx

2
n
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for some coefficients λi ∈ R. These coefficients are not uniquely determined: for
example, we are free to multiply each λi by the square of an element of R×, without
changing the isomorphism class of the quadratic form q′. If the field R contains many
squares, we can say more:

Example 1.1.2.2 (Quadratic Forms over C). Let R = C be the field of complex
numbers (or, more generally, any algebraically closed field of characteristic different
from 2). Then every quadratic form over R is isomorphic to a quadratic form given by

q(x1, . . . , xn) = x2
1 + · · ·+ x2

r

for some 0 ≤ r ≤ n. Moreover, the integer r is uniquely determined: it is an
isomorphism-invariant called the rank of the quadratic form q.

Example 1.1.2.3 (Quadratic Forms over the Real Numbers). Let R = R be the field
of real numbers. Then every quadratic form over R is isomorphic to a quadratic form
given by the formula

q(x1, . . . , xn) = x2
1 + · · ·+ x2

a − x2
a+1 − x2

a+2 − · · · − x2
a+b

for some pair of nonnegative integers a and b satisfying a+ b ≤ n. Moreover, a theorem
of Sylvester implies that the integers a and b are uniquely determined. The difference
a−b is an isomorphism-invariant of q, called the signature of q. We say that a quadratic
form is positive-definite if it has signature n: that is, if it is isomorphic to the standard
Euclidean form q(x1, . . . , xn) = x2

1 + · · · + x2
n. Equivalently, a quadratic form q is

positive-definite if it satisfies q(v) > 0 for every nonzero vector v ∈ Rn.

Example 1.1.2.4 (Quadratic Forms over p-adic Fields). Let R = Qp be the field of p-
adic rational numbers, for some prime number p. If q = q(x1, . . . , xn) is a nondegenerate
quadratic form over R, then one can show that q is determined up to isomorphism by
its discriminant (an element of the finite group Q×p /Q×2

p ) and its Hasse invariant (an
element of the group {±1}). In particular, if p is odd and n� 0, then there are exactly
eight isomorphism classes of quadratic forms in n-variables over Qp. When p = 2, there
are sixteen isomorphism classes. See [31] for more details.

To address Question 1.1.2.1 for other fields, it is convenient to introduce some
terminology.

Notation 1.1.2.5 (Extension of Scalars). Let R be a commutative ring and let q =∑
1≤i≤j≤n ci,jxixj be a quadratic form in n variables over R. If φ : R → S is a

homomorphism of commutative rings, we let qS denote the quadratic form over S given
by qS(x1, . . . , xn) =

∑
1≤i≤j≤n φ(ci,j)xixj . In this case, we will denote the orthogonal

group OqS (S) simply by Oq(S).
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Let q and q′ be quadratic forms (in the same number of variables) over a commu-
tative ring R. If q and q′ are isomorphic, then they remain isomorphic after extending
scalars along any ring homomorphism φ : R→ S. In the case where R = Q is the field
of rational numbers, we have the following converse:

Theorem 1.1.2.6 (The Hasse Principle). Let q and q′ be quadratic forms over the
field Q of rational numbers. Then q and q′ are isomorphic if and only if the following
conditions are satisfied:

(a) The quadratic forms qR and q′R are isomorphic.

(b) For every prime number p, the quadratic forms qQp
and q′Qp

are isomorphic.

Remark 1.1.2.7. Theorem 1.1.2.6 is known as the Hasse-Minkowski theorem: it is
originally due to Minkowski, and was later generalized to arbitrary number fields by
Hasse.

Remark 1.1.2.8. Theorem 1.1.2.6 asserts that the canonical map

{Quadratic forms over Q}/ ∼→
∏
K

{Quadratic forms over K}/ ∼

is injective, where K ranges over the collection of all completions of Q. It is possible to
explicitly describe the image of this map (using the fact that the theory of quadratic
forms over real and p-adic fields are well-understood; see Examples 1.1.2.3 and 1.1.2.4).
We refer the reader to [31] for a detailed and readable account.

1.1.3 The Smith-Minkowski-Siegel Mass Formula

The Hasse-Minkowski theorem can be regarded as a “local-to-global” principle for
quadratic forms over the rational numbers: it asserts that a pair of quadratic forms q
and q′ are “globally” isomorphic (that is, isomorphic over the field Q) if and only if
they are “locally” isomorphic (that is, they become isomorphic after extending scalars
to each completion of Q). We now consider the extent to which this principle holds for
integral quadratic forms.

Definition 1.1.3.1. Let q and q′ be quadratic forms over Z. We will say that q and
q′ have the same genus if the following conditions are satisfied:

(a) The quadratic forms qR and q′R are isomorphic.

(b) For every positive integerN , the quadratic forms qZ/NZ and q′Z/NZ are isomorphic.
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Remark 1.1.3.2. Let q be a quadratic form over Z. We will say that q is positive-
definite if the real quadratic form qR is positive-definite (see Example 1.1.2.3). Equiv-
alently, q is positive-definite if and only if q(x1, . . . , xn) > 0 for every nonzero element
(x1, . . . , xn) ∈ Zn.

Note that if q is a positive-definite quadratic form over Z and q′ is another quadratic
form over Z in the same number of variables, then qR and q′R are isomorphic if and only
if q′ is also positive-definite. For simplicity, we will restrict our attention to positive-
definite quadratic forms in what follows.

Remark 1.1.3.3. Let Λ = Zn be a free abelian group of rank n and let q : Λ→ Z be
a quadratic form. Then the associated bilinear form b(x, y) = q(x + y) − q(x) − q(y)
determines a group homomorphism ρ : Λ → Λ∨, where Λ∨ = HomZ(Λ,Z) denotes the
dual of Λ. If q is positive-definite, then the map ρ is injective. It follows that the
quotient Λ∨/Λ = coker(ρ) is a finite abelian group.

Remark 1.1.3.4. Let Λ = Zn be a free abelian group and let q : Λ→ Z be a positive-
definite quadratic form. Then, for every integer d, the set Λ≤d = {λ ∈ Λ : q(λ) ≤ d}
is finite. It follows that the orthogonal group Oq(Z) is finite. (Alternatively, one can
prove this by observing that Oq(Z) is a discrete subgroup of the compact Lie group
Oq(R)).

If two positive-definite quadratic forms q and q′ are isomorphic, then they have
the same genus. The converse is generally false. However, it is true that each genus
contains only finitely many quadratic forms, up to isomorphism. Moreover, one has the
following:

Theorem 1.1.3.5 (Smith-Minkowski-Siegel Mass Formula). Let Λ = Zn be a free
abelian group of rank n ≥ 2 and let q : Λ → Z be a positive-definite quadratic form.
Then ∑

q′

1

|Oq′(Z)|
=

2|Λ∨/Λ|(n+1)/2∏n
m=1 Vol(Sm−1)

∏
p

cp,

where the sum on the left hand side is taken over all isomorphism classes of quadratic

forms q′ in the genus of q, Vol(Sm−1) = 2πm/2

Γ(m/2) denotes the volume of the standard

(m − 1)-sphere, and the product on the right ranges over all prime numbers p, with

individual factors cp satisfying cp = 2pkn(n−1)/2

|Oq(Z/pkZ)| for k � 0.

A version of Theorem 1.1.3.5 appears first in the work of Smith ([34]). It was
rediscovered fifteen years later by Minkowski ([27]); Siegel later corrected an error in
Minkowski’s formulation ([33]) and extended the result.
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Example 1.1.3.6. Let K be an imaginary quadratic field, let Λ = OK be the ring
of integers of K, and let q : Λ → Z be the norm map. Then we can regard q as a
positive-definite quadratic form (in two variables). In this case, the mass formula of
Theorem 1.1.3.5 reduces to the class number formula for the field K.

Remark 1.1.3.7. In the statement of Theorem 1.1.3.5, if p is a prime number which

does not divide |Λ∨/Λ|, then the formula cp = 2pkn(n−1)/2

|Oq(Z/pkZ)| is valid for all positive integers

k (not only for sufficiently large values of k); in particular, we can take k = 1 to obtain

cp = 2pn(n−1)/2

|Oq(Z/pZ)| .

1.1.4 The Unimodular Case

To appreciate the content of Theorem 1.1.3.5, it is convenient to consider the simplest
case (which is already quite nontrivial).

Definition 1.1.4.1. Let Λ = Zn be a free abelian group of finite rank and let q : Λ→ Z
be a quadratic form. We will say that q is unimodular if the quotient group Λ∨/Λ is
trivial.

Remark 1.1.4.2. Let Λ = Zn be a free abelian group of finite rank and let q : Λ→ Z
be a quadratic form. Then q is unimodular if and only if it remains nondegenerate after
extension of scalars to Z/pZ, for every prime number p. In particular, if q and q′ are
positive-definite quadratic forms of the same genus, then q is unimodular if and only if
q′ is unimodular. In fact, the converse also holds: any two unimodular quadratic forms
(in the same number of variables) are of the same genus.

Remark 1.1.4.3. Unimodularity is a very strong condition on a quadratic form q :
Λ → Z. For example, the existence of a quadratic form q : Λ → Z which is both
unimodular and positive-definite guarantees that the rank of Λ is divisible by 8.

In the unimodular case, the mass formula of Theorem 1.1.3.5 admits several sim-
plifications:

• The positive-definite unimodular quadratic forms comprise a single genus, so the
left hand side of the mass formula is simply a sum over isomorphism classes of
unimodular quadratic forms.

• The term |Λ∨/Λ| can be neglected (by virtue of unimodularity).

• Because there are no primes which divide |Λ∨/Λ|, the Euler factors cp appearing
in the mass formula are easy to evaluate (Remark 1.1.3.7).

Taking these observations into account, we obtain the following:
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Theorem 1.1.4.4 (Mass Formula: Unimodular Case). Let n be an integer which is a
positive multiple of 8. Then

∑
q

1

|Oq(Z)|
=

2ζ(2)ζ(4) · · · ζ(n− 4)ζ(n− 2)ζ(n/2)

Vol(S0) Vol(S1) · · ·Vol(Sn−1)

=
Bn/4

n

∏
1≤j<n/2

Bj
4j
.

Here ζ denotes the Riemann zeta function, Bj denotes the jth Bernoulli number, and
the sum is taken over all isomorphism classes of positive-definite, unimodular quadratic
forms q in n variables.

Example 1.1.4.5. Let n = 8. The right hand side of Theorem 1.1.4.4 evaluates to
1/696729600. The integer 696729600 = 21435527 is the order of the Weyl group of the
exceptional Lie group E8, which is also the automorphism group of the root lattice Λ
of E8. Consequently, the fraction 1/696729600 also appears as one of the summands
on the left hand side of the mass formula. It follows from Theorem 1.1.4.4 that no
other terms appear on the left hand side: that is, there is a unique positive-definite
unimodular quadratic form in eight variables (up to isomorphism), given by the the
E8-lattice Λ.

Remark 1.1.4.6. Theorem 1.1.4.4 allows us to count the number of positive-definite
unimodular quadratic forms in a given number of variables, where each quadratic form
q is counted with multiplicity 1

|Oq(Z)| . Each of the groups Oq(Z) has at least two

elements (since Oq(Z) contains the group 〈±1〉), so that the left hand side of Theorem
1.1.4.4 is at most C

2 , where C is the number of isomorphism classes of positive-definite
unimodular quadratic forms in n variables. In particular, Theorem 1.1.4.4 gives an
inequality

C ≥ 4ζ(2)ζ(4) · · · ζ(n− 4)ζ(n− 2)ζ(n/2)

Vol(S0) Vol(S1) · · ·Vol(Sn−1)
.

The right hand side of this inequality grows very quickly with n. For example, when
n = 32, we can deduce the existence of more than eighty million pairwise nonisomorphic
(positive-definite) unimodular quadratic forms in n variables.

1.2 Adelic Formulation of the Mass Formula

In this section, we sketch a reformulation of the Smith-Minkowski-Siegel mass formula,
following ideas of Tamagawa and Weil.
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1.2.1 The Adelic Group Oq(A)

Throughout this section, we fix a positive-definite quadratic form q = q(x1, . . . , xn)
over the integers Z. Let us attempt to classify quadratic forms q′ of the same genus.
As a first step, it will be convenient to reformulate Definition 1.1.3.1 in the language
of adeles.

Notation 1.2.1.1. For each prime number p, we let Zp = lim←−Z/pkZ denote the ring

of p-adic integers. We let Ẑ =
∏
p Zp ' lim←−N>0

Z/NZ denote the profinite completion

of Z. We let Af denote the tensor product Ẑ⊗Q, which we refer to as the ring of finite

adeles. We will generally abuse notation by identifying Ẑ and Q with their images in
Af . Let A denote the Cartesian product Af ×R. We refer to A as the ring of adeles.

Proposition 1.2.1.2. Let q′ = q′(x1, . . . , xn) be a quadratic form over Z. Then q and
q′ have the same genus if and only if they become isomorphic after extending scalars to
the product ring Ẑ×R.

Proof. Suppose that q and q′ have the same genus; we will show that q and q′ become
isomorphic after extension of scalars to Ẑ ×R (the converse is immediate and left to
the reader). Since qR and q′R are isomorphic, it will suffice to show that q

Ẑ
and q′

Ẑ
are

isomorphic. Using the product decomposition Ẑ '
∏
p Zp, we are reduced to showing

that qZp and q′Zp are isomorphic for each prime number p.

For each m > 0, our assumption that q and q′ have the same genus guarantees
that we can choose a matrix Am ∈ GLn(Z/pmZ) such that q = q′ ◦ Am. Choose a
matrix Am ∈ GLn(Zp) which reduces to Am modulo pm (note that the natural map
GLn(Zp) → GLn(Z/pmZ) is surjective, since the invertibility of a matrix over Zp can
be checked after reduction modulo p). Note that the inverse limit topology on GLn(Zp)
is compact, so the sequence {Am}m>0 has a subsequence which converges to some limit
A ∈ GLn(Zp). By continuity, we have q = q′ ◦ A, so that the quadratic forms qZp and
q′Zp are isomorphic.

Corollary 1.2.1.3. Let q′ = q′(x1, . . . , xn) be a quadratic form over Z which is of the
same genus as q. Then the rational quadratic forms qQ and q′Q are isomorphic.

Proof. By virtue of the Hasse principle (Theorem 1.1.2.6), it will suffice to show that
the quadratic forms q and q′ become isomorphic after extension of scalars to R and
to Qp, for each prime number p. In the first case, this is immediate; in the second, it

follows from Proposition 1.2.1.2 (since there exists a ring homomorphism Ẑ→ Qp).

Construction 1.2.1.4. Let q′ be a quadratic form over Z in the same genus as q.
Then:
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• By virtue of Proposition 1.2.1.2, the quadratic forms q and q′ become isomorphic
after extension of scalars to Ẑ×R. That is, we can choose a matrix A ∈ GLn(Ẑ×
R) satisfying q = q′ ◦A.

• By virtue of Corollary 1.2.1.3, the quadratic forms q and q′ become isomorphic
after extension of scalars to Q. That is, we can choose a matrix B ∈ GLn(Q)
satisfying q = q′ ◦B.

Let us abuse notation by identifying GLn(Ẑ × R) and GLn(Q) with their images in
GLn(A). Then we can consider the product B−1A ∈ GLn(A). We let [q′] denote the
image of B−1A in the double quotient

Oq(Q)\Oq(A)/Oq(Ẑ×R).

Note that A is well-defined up to right multiplication by elements of the orthogonal
group Oq(Ẑ×R) and that B is well-defined up to right multiplication by elements of
the orthogonal group Oq(Q). It follows that the double coset [q′] does not depend on
the choice of matrices A and B.

Proposition 1.2.1.5. Construction 1.2.1.4 determines a bijection

{Quadratic forms in the genus of q}/isomorphism→ Oq(Q)\Oq(A)/Oq(Ẑ×R).

Proof. Let us sketch the inverse bijection (which is actually easier to define, since it
does not depend on the Hasse-Minkowski theorem). For each element γ ∈ Oq(A),
consider the intersection

Λ(γ) = Qn ∩γ((Ẑ×R)n) ⊆ An .

Then Λ(γ) is a free abelian group of rank n. Moreover, the quadratic form qA : An → A
carries Qn to Q and carries γ((Ẑ×R)n) into Ẑ×R (since it is invariant under γ), and
therefore restricts to a quadratic form qγ : Λ(γ)→ Q∩(Ẑ×R) = Z.

Choose an isomorphism Zn → Λ(γ), which we can extend to an element α ∈
GLn(A). The condition that α(Zn) = Λ(γ) guarantees that α ∈ GLn(Q) and γ−1 ◦α ∈
GLn(Ẑ ×R). It follows that we can take A = α−1 ◦ γ and B = α−1 in Construction
1.2.1.3, so that [qγ ] is the double coset of B−1A = γ. This shows that γ 7→ qγ determines
a right inverse to Construction 1.2.1.3; we leave it to the reader to verify that it is also
a left inverse.

Let γ be an element of Oq(A) and let qγ : Λ(γ)→ Z be as in the proof of Proposition
1.2.1.5. Then the finite group Oqγ (Z) can be identified with the subgroup of Oq(A)
which preserves the lattice Λ(γ), or equivalently with the intersection γ−1 Oq(Q)γ ∩
Oq(Ẑ×R). Combining this observation with Proposition 1.2.1.5, we obtain the following
approximation to Theorem 1.1.3.5:
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Proposition 1.2.1.6. Let q = q(x1, . . . , xn) be a positive-definite quadratic form in
n ≥ 2 variables over Z. Then∑

q′

1

|Oq′(Z)|
=

∑
γ

1

|γ−1 Oq(Q)γ ∩Oq(Ẑ×R)|
.

Here the sum on the left hand side ranges over isomorphism classes of quadratic forms in
the genus of q, while the sum on the right hand side ranges over a set of representatives
for the double quotient Oq(Q)\Oq(A)/Oq(Ẑ×R).

Warning 1.2.1.7. It is not a priori obvious that the sums appearing in Proposition
1.2.1.6 are convergent. However, it is clear that the left hand side converges if and only
if the right hand side converges, since the summands can be identified term-by-term.

1.2.2 Adelic Volumes

Let us now regard Af as a topological commutative ring, where the sets {N Ẑ ⊆ Af}N>0

form a neighborhood basis of the identity. We regard the ring of adeles A = Af ×R
as equipped with the product topology (where R is endowed with the usual Euclidean
topology). Then:

(a) The commutative ring A is locally compact.

(b) There is a unique ring homomorphism Q → A, which embeds Q as a discrete
subring of A.

(c) The commutative ring A contains the product Ẑ⊗R as an open subring.

Now suppose that q = q(x1, . . . , xn) is a positive-definite quadratic form over Z.
The topology on A induces a topology on the general linear group GLn(A), which
contains the orthogonal group Oq(A) as a closed subgroup. We then have the following
analogues of (a), (b), and (c):

(a′) The orthogonal group Oq(A) inherits the structure of a locally compact topolog-
ical group.

(b′) The canonical map Oq(Q) → Oq(A) embeds Oq(Q) as a discrete subgroup of
Oq(A).

(c′) The canonical map Oq(Ẑ ×R) → Oq(A) embeds Oq(Ẑ ×R) ' Oq(Ẑ) × Oq(R)

as an open subgroup of Oq(A). Moreover, the group Oq(Ẑ×R) is also compact:

the topological group Oq(Ẑ) is profinite, and Oq(R) is a compact Lie group of
dimension n(n− 1)/2 (by virtue of our assumption that q is positive-definite)
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Let µ denote a left-invariant measure on the locally compact group Oq(A) (the
theory of Haar measure guarantees that such a measure exists and is unique up to
multiplication by a positive scalar). One can show that µ is also right-invariant: that
is, the group Oq(A) is unimodular. It follows that µ induces a measure on the quotient

Oq(Q)\Oq(A), which is invariant under the right action of Oq(Ẑ×R). We will abuse
notation by denoting this measure also by µ. Write Oq(Q)\Oq(A) as a union of orbits⋃
x∈X Ox for the action of the group Oq(Ẑ × R), where X denotes the set of double

cosets Oq(Q)\Oq(A)/Oq(Ẑ×R). If x ∈ X is a double coset represented by an element

γ ∈ Oq(A), then we can identify the orbit Ox with the quotient of Oq(Ẑ ×R) by the

finite subgroup Oq(Ẑ×R) ∩ γ−1 Oq(Q)γ. We therefore obtain an equality

∑
γ

1

|γ−1 Oq(Q)γ ∩Oq(Ẑ×R)|
=

∑
x∈X

µ(Ox)

µ(Oq(Ẑ×R))
(1.2)

=
µ(Oq(Q)\Oq(A))

µ(Oq(Ẑ×R))
. (1.3)

Combining (1.3) with Proposition 1.2.1.6, we obtain another approximation to The-
orem 1.1.3.5:

Proposition 1.2.2.1. Let q = q(x1, . . . , xn) be a positive-definite quadratic form in
n ≥ 2 variables over Z, and let µ be a left-invariant measure on the locally compact
group Oq(A). Then ∑

q′

1

|Oq′(Z)|
=
µ(Oq(Q)\Oq(A))

µ(Oq(Ẑ×R))
,

where the sum on the left hand side is taken over isomorphism classes of quadratic
forms q′ in the genus of q.

In what follows, it will be convenient to consider a further reformulation of Propo-
sition 1.2.2.1 in terms of special orthogonal groups.

Definition 1.2.2.2. Let q be a quadratic form over Z. For every commutative ring
R, we let SOq(R) = {A ∈ SLn(R) : q = q ◦ A}. We will refer to SOq(R) as the special
orthogonal group of q over R.

Warning 1.2.2.3. The group SOq(R) of Definition 1.2.2.2 can behave strangely when 2
is a zero-divisor in R. For example, if R is a field of characteristic 2 and the quadratic
form qR is nondegenerate, we have SOq(R) = Oq(R). In what follows, this will not
concern us: we will consider the groups SOq(R) only in the case where R is torsion-
free.
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Let G = {x ∈ A× : x2 = 1} denote the group of square-roots of unity in A,
which we can identify with the Cartesian product

∏
v〈±1〉, where v ranges over all the

completions of Q. The group Oq(A) fits into a short exact sequence

0→ SOq(A)→ Oq(A)
det−−→ G→ 0.

Suppose we are given left-invariant measures µ′ and µ′′ on SOq(A) and G, respectively.
We can then use µ′ and µ′′ to build a left-invariant measure µ on Oq(A), given by the
formula

µ(U) =

∫
x∈G

µ′(SOq(A) ∩ x−1U)dµ′′,

where x denotes any element of Oq(A) lying over x. An elementary calculation then
gives an equality

µ(Oq(Q)\Oq(A)) = µ′(SOq(Q)\ SOq(A))µ′′(〈±1〉\G)

=
µ′(SOq(Q)\SOq(A))µ′′(G)

2
.

We also have a short exact sequence

0→ SOq(Ẑ×R)→ Oq(Ẑ×R)
det−−→ H → 0,

where H ⊆ G is the image of det |
Oq(Ẑ×R)

. This yields an identity

µ(Oq(Ẑ×R)) = µ′(SOq(Ẑ×R))µ′′(H)

=
µ′(SOq(Ẑ×R))µ′′(G)

|G/H|
.

Replacing µ by µ′ in our notation, we obtain the following:

Proposition 1.2.2.4. Let q = q(x1, . . . , xn) be a positive-definite quadratic form in
n ≥ 2 variables over Z, and let µ be a left-invariant measure on the locally compact
group SOq(A). Then ∑

q′

1

|Oq′(Z)|
= 2k−1µ(SOq(Q)\ SOq(A))

µ(SOq(Ẑ×R))
,

where the sum on the left hand side is taken over isomorphism classes of quadratic forms
q′ in the genus of q, and k is the number of primes p for which SOq(Zp) = Oq(Zp).

Warning 1.2.2.5. In the statement of Proposition 1.2.2.4, it is not a priori obvious
that either the right hand side or the left hand side is finite. However, the above
reasoning shows that if one side is infinite, then so is the other.
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1.2.3 Digression: Local Fields

In the statement of Proposition 1.2.2.4, the left-invariant measure µ on SOq(A) is not
unique. However, it is unique up to scalar multiplication, so the quotient

µ(SOq(Q)\ SOq(A))

µ(SOq(Ẑ×R))

is independent of the choice of µ. However, one can do better than this: Tamagawa
observed that the group SOq(A) admits a canonical left-invariant measure, which can
be used to evaluate the numerator and denominator independently. The construction
of this measure (which we review in §1.2.5) will require some general observations about
algebraic varieties over local fields, which we recall for the reader’s convenience.

Notation 1.2.3.1. Let K be a local field. Then the additive group (K,+) is locally
compact, and therefore admits a translation-invariant measure µK , which is unique up
to multiplication by a positive real number. In what follows, we will normalize µK as
follows:

• If K is isomorphic to the field R of real numbers, we take µK to be the standard
Lebesgue measure.

• If K is isomorphic to the field C of complex numbers, then we take µK to be twice
the usual Lebesgue measure (to understand the motivation for this convention,
see Example 1.2.3.7 below).

• Suppose that K is a nonarchimedean local field: that is, K is the fraction field of
a discrete valuation ring OK having finite residue field. In this case, we take µK
to be the unique translation-invariant measure satisfying µK(OK) = 1.

For every nonzero element x ∈ K, we can define a new translation-invariant measure
on K by the construction U 7→ µK(xU). It follows that there is a unique positive real
number |x|K satisfying µK(xU) = |x|KµK(U) for every measurable subset U ⊆ K.
The construction x 7→ |x|K determines a group homomorphism | • |K : K× → R>0. By
convention, we extend the definition to all elements of K by the formula |0|K = 0.

Example 1.2.3.2. If K = R is the field of real numbers, then the function x 7→ |x|K is
the usual absolute value function R 7→ R≥0. If K = C is the field of complex numbers,
then the function x 7→ |x|K is the square of the usual absolute value function C 7→ R≥0.

Example 1.2.3.3. If K is a nonarchimedean local field and x ∈ OK , then |x|K =
|OK /(x)|−1 (with the convention that the right hand side vanishes when x = 0, so that
OK /(x) ' OK is infinite). Equivalently, if the residue field of OK is a finite field Fq
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with q elements and π ∈ OK is a uniformizer, then every nonzero element x ∈ K can
be written as a product uπk, where u is an invertible element of OK . In this case, we
have |x|K = |uπk|K = q−k.

In the special case where K = Qp is the field of p-adic rational numbers, we will
denote the absolute value | • |K by x 7→ |x|p.

Warning 1.2.3.4. If K ' R or K is a nonarchimedean local field, then the function
x 7→ |x|K is a norm on the field K: that is, it satisfies the triangle inequality |x+y|K ≤
|x|K + |y|K . This is not true in the case K = C (however, it is not far from being true:
the function x 7→ |x|C is the square of the usual Euclidean norm).

Construction 1.2.3.5 (The Measure Associated to a Differential Form). Let K be a
local field, let X be a smooth algebraic variety of dimension n over K, and let ω be an
(algebraic) differential form of degree n on X. Let X(K) denote the set of K-valued
points of X, which we regard as a locally compact topological space. For each point
x ∈ X(K), we can choose a Zariski-open subset U ⊆ X which contains x and a system
of local coordinates

~f = (f1, . . . , fn) : U → An,

having the property that the differential form df1∧df2∧· · ·∧dfn is nowhere-vanishing on
U . It follows that we can write ω|U = gdf1 ∧ · · · ∧ dfn for some regular function g on U ,
and that ~f induces a local homeomorphism of topological space U(K)→ An(K) = Kn.
Let µnK denote the standard measure on Kn (given by the nth power of the measure

described in Notation 1.2.3.1), let ~f∗µnK denote the pullback of µnK to the topological

space U(K), and define µUω = |g|K ~f∗µnK . Then µUω is a Borel measure on the topological
space U(K). It is not difficult to see that µUω depends only on the open set U ⊆ X,
and not on the system of coordinates ~f : U → An. Moreover, if V is an open subset
of U , we have µVω = µUω |V (X). It follows that there is a unique measure µω on the

topological space X(K) satisfying µω|U(X) = µUω for every Zariski-open subset U ⊆ X

which admits a system of coordinates ~f : U → Ad. We will refer to µω as the measure
associated to ω.

Example 1.2.3.6. Let K be the field R of real numbers. If X is a smooth algebraic
variety of dimension n over K, then X(K) is a smooth manifold of dimension n. More-
over, an algebraic differential form of degree n on X determines a smooth differential
form of degree n on X(K), and µω the measure obtained by integrating (the absolute
value of) ω.

Example 1.2.3.7. Let K be the field C of complex numbers. If X is a smooth
algebraic variety of dimension n over K, then X(K) is a smooth manifold of dimension
2n. Moreover, an algebraic differential form ω on X determines a smooth C-valued
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differential form of degree n on X(K), which (by slight abuse of notation) we will also
denote by ω. Then the measure µω of Construction 1.2.3.5 is obtained by integrating
(the absolute value of) the R-valued (2n)-form

√
−1

n
ω∧ω. Note that this identification

depends on our convention that µK is twice the usual Lebesgue measure on C (see
Notation 1.2.3.1).

Example 1.2.3.8. Let K be a nonarchimedean local field and let X be a smooth
algebraic variety of dimension n over K. Suppose that X is the generic fiber of a
scheme X which is smooth of dimension n over the ring of integers OK . Let ω be a
nowhere-vanishing n-form on X, and let ω = ω|X be the associated algebraic differential
form on X. Then X(OK) is a compact open subset of X(K), and the measure µω of

Construction 1.2.3.5 satisfies the equality µω(X(OK)) = |X(κ)|
|κ|n , where κ denotes the

residue field of OK (see Variant 1.2.3.10 below).

Remark 1.2.3.9 (Rescaling). In the situation of Construction 1.2.3.5, suppose that
we are given a scalar λ ∈ K. Then µλω = |λ|Kµω, where |λ|K is defined as in Notation
1.2.3.1.

In §1.2.5, it will be convenient to consider a slight generalization of Example 1.2.3.8,
where the integral model X is not assumed to be smooth.

Variant 1.2.3.10. Let K be a nonarchimedean local field and let X be a smooth
algebraic variety of dimension n over K. Suppose that X is the generic fiber of a
OK-scheme X which fits into a pullback diagram

X //

��

Spec(OK)

��
Y

f // Z,

where Y and Z are smooth OK-schemes of dimension dY and dZ = dY − n, and f
restricts to a smooth morphism of generic fibers f : Y → Z. Let ωY and ωZ be nowhere-
vanishing algebraic differential forms of degree dY and dZ on Y and Z, respectively.
Using the canonical isomorphism ΩdY

Y |X ' Ωn
X ⊗ (f∗ΩdZ

Z )|X , we see that the ratio
ω = ωY

f∗ωZ
|X can be regarded as an algebraic differential form on X. Let π denote a

uniformizer for the discrete valuation ring OK . Then we have an equality

µω(X(OK)) =
|X(OK /π

k)|
|OK /πk|n

(1.4)

for all sufficiently large integers k; in particular, we can write

µω(X(OK)) = lim
k→∞

|X(OK /π
k)|

|OK /πk|n
.
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In the special case Z = Spec(OK), we have X = Y and the equality (1.4) holds for all
k > 0; taking k = 1, we recover the formula of Example 1.2.3.8.

1.2.4 Tamagawa Measure

In this section, we let K denote a global field: either a finite algebraic extension of Q,
or the function field of an algebraic curve defined over a finite field. Let MK denote
the set of places of K: that is, (equivalence classes of) nontrivial absolute values on
K. For each v ∈ MK , we let Kv denote the local field obtained by completing K
with respect to the absolute value v. We let AK denote the subset of the product∏
v∈MK

Kv consisting of those elements (xv)v∈MK
having the property that for almost

every element v ∈MK , the local field Kv is nonarchimedean and xv belongs to the ring
of integers OKv . We refer to AK as the ring of adeles of K. We regard AK as a locally
compact commutative ring, which contains the field K as a discrete subring.

Remark 1.2.4.1. In the special case K = Q, the ring of adeles AK can be identified
with the product A = (Ẑ⊗Q)×R of Notation 1.2.1.1. More generally, if K is a finite
extension of Q, then we have a canonical isomorphism AK ' K ⊗Q A.

Now suppose that G is a linear algebraic group defined over K. Then we can
regard the set G(AK) of AK-valued points of G as a locally compact topological group.
Tamagawa observed that, in many cases, the group G(AK) admits a canonical Haar
measure.

Construction 1.2.4.2 (Informal). Let G be a linear algebraic group of dimension n
over K, and let Ω denote the collection of left-invariant differential forms of degree n
on G (so that Ω is a 1-dimensional vector space over K). Choose a nonzero element
ω ∈ Ω. For every place v ∈ MK , the differential form ω determines a (left-invariant)
measure µω,v on the locally compact group G(Kv) (see Construction 1.2.3.5). The
unnormalized Tamagawa measure is the product measure µun

Tam =
∏
v∈MK

µω,v on the
group G(AK) =

∏res
v∈MK

G(Kv).

Let us formulate Construction 1.2.4.2 more precisely. Let S be a nonempty finite
subset of MK which contains every archimedean place of K, let OS = {x ∈ K|(∀v /∈
S)[x ∈ OKv ]} be the ring of S-integers, and suppose that G is a smooth group scheme
over OS with generic fiber G. Then we can regard the Cartesian product

AS
K =

∏
v∈MK

{
Kv if v ∈ S
OKv if v /∈ S

as an open subring of AK . Set H =
∏
v∈MK−S G(OKv), so that H is a compact

topological group and we can regard H ×
∏
v∈S G(Kv) as an open subgroup of G(AK).
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We will say that G admits a Tamagawa measure if the infinite product∏
v∈MK−S

µω,v(G(O(Kv)))

converges absolutely to a nonzero real number. In this case, the compact group H
admits a unique left-invariant measure µH which satisfies the normalization condition
µH(H) =

∏
v∈MK−S µω,v(G(O(Kv))). In this case, we let µun

Tam denote the unique left-
invariant measure whose restriction to H ×

∏
v∈S G(Kv) coincides with the product

measure µH ×
∏
v∈S µω,v. It is not difficult to see that this definition does not depend

on the chosen subset S ⊆ MK , or on the choice of integral model G for the algebraic
group G (note that any two choices of integral model become isomorphic after passing
to a suitable enlargement of S). Moreover, the measure µun

Tam also does not depend
on the differential form ω: this follows from Remark 1.2.3.9 together with the product
formula ∏

v∈MK

|λ|K = 1

for λ ∈ K×.

Remark 1.2.4.3 (Well-Definedness of Tamagawa Measure). Let G be as above. En-
larging the subset S ⊆ MK if necessary, we can arrange that the group scheme G is
smooth over OS , and that ω extends to a nowhere-vanishing differential form of degree
n on G. Using Example 1.2.3.8, we see that the well-definedness of the Tamagawa
measure µun

Tam is equivalent to the absolute convergence of the infinite product

∏
v∈MK−S

|G(κ(v))|
|κ(v)|n

,

where κ(v) denotes the residue field of the local ring OKv for v /∈ S.

Example 1.2.4.4. Let G = Ga be the additive group. Then we can canonically extend
G to a group scheme G over OS , given by the additive group over OS . Then each factor
appearing in the infinite product

∏
v∈MK−S

|G(κ(v))|
|κ(v)|n

is equal to 1, so that G admits a Tamagawa measure.

Example 1.2.4.5. Let G = Gm be the multiplicative group. Then we can canonically
extend G to a group scheme G over OS , given by the multiplicative group over OS .
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Then the infinite product appearing in Remark 1.2.4.3 is given by∏
v∈MK−S

|κ(v)| − 1

|κ(v)|
,

which does not converge. Consequently, the group G does not admit a Tamagawa
measure.

Example 1.2.4.6. Let G be nontrivial finite group, which we regard as a 0-dimensional
algebraic group over K. Then we can extend G canonically to a constant group scheme
over OS . In the infinite product of Remark 1.2.4.3, each factor can be identified with
the order of G. Consequently, G does not admit a Tamagawa measure.

Remark 1.2.4.7. One can show that a linear algebraic group G admits a Tamagawa
measure if and only if G is connected and every character G→ Gm is trivial. More in-
formally, G admits a Tamagawa measure if and only if it avoids the behaviors described
in Examples 1.2.4.5 and 1.2.4.6. In particular, every connected semisimple algebraic
group G admits a Tamagawa measure. We refer the reader to [39] for details (we will
supply a proof in the function field case later in this book). Moreover, in the semisim-
ple case, Tamagawa measure is also right-invariant (since the left-invariant differential
form ω appearing in Construction 1.2.4.2 is also right-invariant).

Remark 1.2.4.8. It is possible to extend the notion of Tamagawa measure to arbitrary
linear algebraic groups by modifying Definition 1.2.4.2 to avoid the problems described
in Examples 1.2.4.5 and 1.2.4.6. We refer the reader to [28] for details.

Notation 1.2.4.9. Let G be a linear algebraic group over K which admits a Tama-
gawa measure. The diagonal mapK ↪→ AK induces a homomorphismG(K)→ G(AK),
which embeds G(K) as a discrete subgroup of G(AK). Since the unnormalized Tama-
gawa measure µun

Tam is left-invariant, it descends canonically to a measure on the collec-
tion of left cosets G(K)\G(AK). We will abuse notation by denoting this measure also
by µun

Tam. We let τun(G) denote the measure µun
Tam(G(K)\G(AK)). We refer to τun(G)

as the unnormalized Tamagawa number of G.

Example 1.2.4.10. Let K be a number field and let G = Ga be the additive group.
Then τun(G) =

√
|∆K |, where ∆K is the discriminant of K.

Example 1.2.4.11. Let K be the function field of an algebraic curve X defined over
a finite field Fq, and let G = Ga be the additive group. Then µun

Tam is the unique
translation-invariant measure on G(AK) = AK having the property that the compact
open subgroup A◦K =

∏
v∈MK

OKv ⊆ AK has measure 1. Note that we have an exact
sequence of locally compact groups

0→ H0(X;OX)→ G(A◦K)→ G(K)\G(AK)→ H1(X;OX)→ 0,
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where the outer terms are finite-dimension vector spaces over the finite field Fq. It

follows that the unnormalized Tamagawa number τun(G) is given by |H
1(X;OX)|

|H0(X;OX)| = qg−1,

where g is the genus of X.

In what follows, it is useful to consider the following slight modification of Con-
struction 1.2.4.2:

Definition 1.2.4.12. Let G be a linear algebraic group of dimension n over a global
field K which admits a Tamagawa measure. Then Tamagawa measure is the left in-
variant measure µTam on the locally compact group G(A) given by the formula

µTam =
µun

Tam

τun(Ga)n
,

where µun
Tam is the unnormalized Tamagawa measure of Construction 1.2.4.2. We will

generally abuse notation by not distinguishing between µTam and the induced measure
on the coset space G(K)\G(AK).

The Tamagawa number τ(G) is defined by the formula

τ(G) = µTam(G(K)\G(AK)) =
τun(G)

τun(Ga)n
.

Example 1.2.4.13. Let G = Ga be the additive group. Then the Tamagawa number
τ(G) is equal to 1.

Example 1.2.4.14. In the case K = Q, the normalized and unnormalized versions of
Tamagawa measure coincide.

Remark 1.2.4.15. One advantage of working with the normalized Tamagawa measure
of Definition 1.2.4.12 (as opposed to the unnormalized Tamagawa measure of Construc-
tion 1.2.4.2) is that it in some sense depends only on the group G(AK), and not on
the choice of global field K. More precisely, suppose that K is a finite extension of
a global field K0 ⊆ K, and let G be a linear algebraic group over K which admits a
Tamagawa measure. Then the Weil restriction G0 = ResKK0

G is a linear algebraic group
over K0 which admits a Tamagawa measure, equipped with a canonical isomorphism
α : G(AK) ' G0(AK0). This isomorphism is measure-preserving if we regard both
G(AK) and G0(AK0) as equipped with the Tamagawa measure of Definition 1.2.4.12.
This is not true for the unnormalized Tamagawa measure: for example, if K0 is the field
of rational numbers and G = Ga is the additive group, then we have τun(G) =

√
|∆K |

and τun(G0) = 1.

Warning 1.2.4.16. In the setting of Definition 1.2.4.12, it is not obvious that the
Tamagawa number τ(G) is finite: a priori, the quotient space G(K)\G(AK) could have
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infinite measure (note that this phenomenon does not occur when G = Ga, by virtue
of Examples 1.2.4.10 and 1.2.4.11), so that the Tamagawa measure µTam of Definition
1.2.4.12 is well-defined, and the Tamagawa number τ(G) is well-defined as an element
of R>0 ∪{∞}. The finiteness of τ(G) is established in [6] when K is a number field
and in [9] when K is a function field (when G is semisimple, this was proved earlier by
Harder).

1.2.5 The Mass Formula and Tamagawa Numbers

Let us now return to the setting of §1.2.1. Let Λ = Zn be a free abelian group of
rank n ≥ 2 and let q : Λ → Z be a positive-definite quadratic form. When restricted
to Q-algebras, the construction R 7→ SOq(R) is representable by an algebraic group
SOq over the field Q of rational numbers. One can show that the group SOq admits a
Tamagawa measure µTam (in fact, the algebraic group SOq is connected and semisimple
if n ≥ 3). We can therefore restate Proposition 1.2.2.4 as follows:

Proposition 1.2.5.1. Let q = q(x1, . . . , xn) be a positive-definite quadratic form in
n ≥ 2 variables over Z. Then∑

q′

1

|Oq′(Z)|
= 2k−1 τ(SOq)

µTam(SOq(Ẑ×R))
,

where the sum on the left hand side is taken over isomorphism classes of quadratic
forms q′ in the genus of q, k is the number of primes p for which SOq(Zp) = Oq(Zp),
and τ(SOq) denotes the Tamagawa number of the algebraic group SOq.

Using Proposition 1.2.5.1, we can restate the Smith-Minkowski-Siegel mass formula
as an equality

2k−1 τ(SOq)

µTam(SOq(Ẑ×R))
=

2|Λ∨/Λ|(n+1)/2∏n
m=1 Vol(Sm−1)

∏
p

cp,

where the factors cp are defined as in Theorem 1.1.3.5. In fact, we can say more:
the numerator and denominator of the left hand side can be evaluated independently.
Theorem 1.1.3.5 is an immediate consequence of the following pair of assertions:

Theorem 1.2.5.2. Let Λ = Zn be a free abelian group of rank n ≥ 2 and let q : Λ→ Z
be a positive-definite quadratic form. Then

µTam(SOq(Ẑ×R)) =
2k−1

∏n
m=1 Vol(Sm−1)

|Λ∨/Λ|(n+1)/2
∏
p cp

,

where k is the number of primes p for which SOq(Zp) = Oq(Zp), and the factors cp are
defined as in Theorem 1.1.3.5.
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Theorem 1.2.5.3 (Mass Formula, Tamagawa-Weil Version). Let q be a positive-definite
quadratic form in n ≥ 2 variables over Z. Then the Tamagawa number τ(SOq) is equal
to 2.

The “abstract” mass formula of Theorem 1.2.5.3 has several advantages over the
“concrete” mass formula of Theorem 1.1.3.5:

• The equality µTam(SOq(Q)\SOq(A)) = 2 continues to hold for nondegenerate
quadratic forms q which are not positive-definite, except in the degenerate case
where n = 2 and q is isotropic (in the latter case, the algebraic group SOq is
isomorphic to the multiplicative group Gm, so the Tamagawa number τ(SOq) is
not defined).

• Theorem 1.2.5.3 is really a statement about quadratic forms over Q: note that
the measure µTam(SOq(Q)\ SOq(A)) depends only on the rational quadratic form
qQ, and does not change if we rescale qQ by a nonzero rational number. This
invariance is not easily visible in the formulation of Theorem 1.1.3.5, where both
sides of the mass formula depend on the choice of an integral quadratic form.

The content of the mass formula is contained primarily in Theorem 1.2.5.3; Theorem
1.2.5.2 is essentially a routine calculation.

Proof Sketch of Theorem 1.2.5.2. Let g denote the Lie algebra of the algebraic group
SOq and let b : Λ×Λ→ Z denote the symmetric bilinear form associated to q (given by
b(x, y) = q(x+y)−q(x)−q(y)). Then there is a canonical isomorphism of rational vector
spaces ρ : Q⊗Z

∧2(Λ) → g, given concretely by the formula ρ(x, y)(z) = b(x, z)y −
b(y, z)x. Let Ω be as in Construction 1.2.4.2, which we can identify with the top exterior
power of the dual space g∨. It follows that the top exterior power of ρ∨ supplies an
isomorphism β : Ω→ Q⊗

∧n(n−1)/2 ∧2(Λ). Note that
∧n(n−1)/2 ∧2(Λ) is a free abelian

group of rank 1, and therefore admits a generator e which is unique up to a sign. Set
ω = β−1(e) ∈ Ω. Then ω is well-defined up to a sign, and therefore determines well-
defined measures µω,R on SOq(R) and µω,Qp

on SOq(Qp) for each prime number p.
The definition of Tamagawa measure then yields an identity

µTam(SOq(Ẑ×R)) = (
∏
p

µω,Qp
(SOq(Zp)))µω,R(SOq(R)).

To prove Theorem 1.2.5.2, it will suffice to verify the “local” identities

µω,R(SOq(R)) =

∏n
m=1 Vol(Sm−1)

2|Λ∨/Λ|(n−1)/2
(1.5)



30 CHAPTER 1. INTRODUCTION

µω,Qp
(SOq(Zp)) =

{
2|Λ∨/Λ|p

cp
if SOq(Zp) = Oq(Zp)

|Λ∨/Λ|p
cp

if SOq(Zp) 6= Oq(Zp).
(1.6)

Let us first prove (1.5). Let V be a finite-dimensional real vector space equipped
with a positive-definite bilinear form. Let o(V ) denote the Lie algebra of O(V ), which
we regard as a subspace of End(V ). Then the construction o(V ) admits a positive-
definite bilinear form b′, given by b′(A,B) = −1

2 Tr(AB). This symmetric bilinear
form determines a bi-invariant Riemannian metric on the compact Lie group O(V ),
so that the volumes Vol(O(V )) and Vol(SO(V )) are well-defined and depend only on
the dimension of V . In the case V = R⊗Λ, we obtain an identity µR,ω(SOq(R)) =
Vol(SO(Rn))√

|D|
= Vol(O(Rn))

2
√
N

, where D is the discriminant of the integral bilinear form

b′ ◦ ρ on the lattice
∧2(Λ). An elementary calculation gives |D| = |Λ∨/Λ|(n−1), and a

calculation using the fiber sequences O(Rm−1)→ O(Rm)→ Sm−1 yields

Vol(O(Rm)) = Vol(O(Rm−1)) Vol(Sm−1) Vol(O(Rn)) =
n∏

m=1

Vol(Sm−1).

Combining these identities, we obtain (1.5).
We now prove (1.6). The differential form ω extends uniquely to a left-invariant dif-

ferential form on the full orthogonal group Oq. Invoking the definition of the constants
cp, we can phrase (1.6) more uniformly as the assertion that the identity

µω,Qp
(Oq(Zp)) =

|Λ∨/Λ|p|Oq(Z/p
k)|

pkn(n−1)/2

holds for k � 0. Note that the orthogonal group Oq is representable by a scheme
defined over Zp (or even over Z), which fits into a pullback diagram

Oq
//

��

Spec(Zp)

q

��
GLn

f // Q.

Here Q is the affine space (of dimension (n2 +n)/2) which parametrizes quadratic forms
on Λ, and f : GLn → Q is the map given by A 7→ q ◦ A. The desired equality now
follows by combining Remark 1.2.3.9 with Variant 1.2.3.10.

1.2.6 Weil’s Conjecture

The appearance of the number 2 in the statement of Theorem 1.2.5.3 results from the
fact that the algebraic group SOq is not simply connected. Let us assume that q is a
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nondegenerate quadratic form in at least three variables, so that algebraic group SOq

is semisimple and admits a universal cover Spinq → SOq. We then have the following
more fundamental statement:

Theorem 1.2.6.1 (Mass Formula, Simply Connected Version). Let q = q(x1, . . . , xn)
be a nondegenerate quadratic form in n ≥ 3 variables over Q, and let Spinq be the
universal cover of the semisimple algebraic group SOq. Then the Tamagawa number
τ(Spinq) is equal to 1.

Remark 1.2.6.2. In general, there is a simple relationship between the Tamagawa
number of a semisimple algebraic group G and the Tamagawa number of the universal
cover G̃; we refer the reader to [29] for details. Using this relationship, it is not difficult
to see that Theorem 1.2.6.1 is equivalent to Theorem 1.2.5.3, provided that q is a
quadratic form in at least three variables.

Warning 1.2.6.3. Let q = q(x1, x2) be a nondegenerate quadratic form in two vari-
ables. Then the algebraic group SOq still admits a canonical double cover Spinq → SOq.
However, it is not true that the Tamagawa number τ(Spinq) is equal to 1. Instead, the
group Spinq is isomorphic to SOq, and we have an equality of Tamagawa numbers
τ(Spinq) = τ(SOq) = 2 (provided that q is anisotropic; if q is isotropic, then neither
τ(Spinq) or τ(SOq) is well-defined).

Motivated by Theorem 1.2.6.1, Weil proposed the following:

Conjecture 1.2.6.4 (Weil’s Conjecture). Let K be a global field and let G be an
algebraic group over K which is connected, semisimple, and simply connected. Then
the Tamagawa number τ(G) is equal to 1.

In [39], Weil verified Conjecture 1.2.6.4 in many cases (in particular, he gave a direct
proof of Theorem 1.2.6.1, thereby reproving the Smith-Minkowski-Siegel mass formula).
When K is a number field, Conjecture 1.2.6.4 was proved in general by Kottwitz in
[18] (under the assumption that G satisfies the Hasse principle, which is now known to
be automatic), building on earlier work of Langlands ([21]) in the case where G is split
and Lai ([19]) in the case where G is quasi-split.

1.3 Weil’s Conjecture for Function Fields

In §1.2, we formulated Weil’s conjecture for an arbitrary simply connected semisimple
algebraic group G over a global field K (Conjecture 1.2.6.4). In the case where K = Q
and G = Spinq for a positive-definite quadratic form q, Weil’s conjecture is essentially
a reformulation of the Smith-Minkowski-Siegel mass formula (Theorem 1.1.3.5). Our
goal in this book is to give a proof of Conjecture 1.2.6.4 in the case where K is the
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function field of an algebraic curve X (defined over a finite field Fq). In this section,
we will explain how the function field case of Weil’s conjecture can also be regarded
as a mass formula: more precisely, it is a (weighted) count for the number of principal
G-bundles on X (see Conjecture 1.3.3.7).

1.3.1 Tamagawa Measure in the Function Field Case

We begin by reviewing some terminology. Throughout this section, we let Fq denote
a finite field with q elements and X an algebraic curve over Fq. We assume that the
algebraic curve X is smooth, projective, and geometrically connected over Fq (that
is, the unit map Fq → Γ(X;OX) is an isomorphism). We let KX denote the field of
rational functions on X: that is, the residue field of the generic point of X. Then KX

is a function field: a global field of positive characteristic.
In what follows, we will write x ∈ X to mean that x is a closed point of the curve

X. For each x ∈ X, we let κ(x) denote the residue field of X at the point x. Then κ(x)
is a finite extension of the finite field Fq. We let Ox denote the completion of the local
ring of X at the point x: this is a complete discrete valuation ring with residue field
κ(x), noncanonically isomorphic to a power series ring κ(x)[[t]]. We let Kx denote the
fraction field of Ox.

The collection of local fields {Kx}x∈X can be viewed as the collection of all comple-
tions of KX with respect to nontrivial absolute values: in other words, we can identify
the set of closed points of X with the set of places MKX considered in §1.2.4. Let
AX =

∏res
x∈X Kx denote the ring of adeles of the global field KX . Then AX can be

described more precisely as a direct limit lim−→AS
X , where S ranges over all finite sets of

closed points of X and AS
X denotes the Cartesian product

∏
x∈X

{
Kx if x ∈ S
Ox if x /∈ S.

Here we regard each AS
X as equipped with the product topology, and AX as equipped

with the direct limit topology (so that each AS
X is an open subring of AX). In particular,

the ring of adeles AX contains a compact open subring A∅X =
∏
x∈X Ox, which we will

refer to as the ring of integral adeles.
Let G0 be a linear algebraic group defined over the function field KX . For every

KX -algebra R, we let G0(R) denote the group of R-valued points of G0. In particular,
we can consider the set G0(AX) of adelic points of G0, which we regard as a locally
compact topological group containing G0(KX) as a discrete subgroup. If the algebraic
group G0 is connected and semisimple, we let µTam denote the Tamagawa measure on
G0(AX) of Definition 1.2.4.12, and we let τ(G0) = µTam(G0(KX)\G0(AX)) denote the
Tamagawa number of G0.
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In order to obtain a concrete interpretation of the Tamagawa number τ(G0), it
will be convenient to choose an integral model of G0: that is, a group scheme π :
G → X whose generic fiber is isomorphic to G0, where the morphism π is smooth
and affine (such an integral model can always be found: see for example [8] or §7.1 of
[7]). Given such a group scheme, we can associate a group G(R) of R-valued points to
every commutative ring R equipped with a map u : Spec(R) → X. In the case where
u factors through the generic point of X, we can regard u as equipping R with the
structure of KX -algebra, and G(R) can be identified with the set G0(R) of R-valued
points of G0. However, a choice of integral model supplies additional structure:

• For each closed point x ∈ X, we can consider the group G(Ox) of Ox-valued points
of G: this is a compact open subgroup of the locally compact group G(Kx) =
G0(Kx).

• For each closed point x ∈ X, we can consider the group G(κ(x)) of κ(x)-valued
points of G: this is a finite group which appears as a quotient of G(Ox) (note
that the surjectivity of the map G(Ox) → G(κ(x)) follows from the smoothness
of G).

• For every finite set S of closed points of X, we can consider the group G(AS
X) of

AS
X -valued points of G, which is isomorphic to the direct product

∏
x∈X

{
G(Kx) if x ∈ S
G(Ox) if x /∈ S.

Here we can view G(AS
X) as an open subgroup of G(AX) = G0(AX). If S = ∅,

then G(AS
X) is a compact open subgroup of G(AX).

Remark 1.3.1.1. It will often be convenient to assume that the map π : G → X
has connected fibers. This can always be arranged by passing to an open subgroup
G◦ ⊆ G, given by the union of the connected component of the identity in each fiber of
π (note that passage from G to G◦ does not injure our assumption that the morphism
π is affine; the open immersion G◦ ↪→ G is complementary to a Cartier divisor and is
therefore an affine morphism).

Warning 1.3.1.2. Let G0 be a semisimple algebraic group over the function field KX .
It is generally not possible to choose an integral model π : G → X of G0 which is
semisimple as a group scheme over X. It follows from general nonsense that, for all
but finitely many closed points x ∈ X, the fiber Gx = Spec(κ(x))×X G is a semisimple
algebraic group over κ(x). However, we cannot avoid the phenomenon of bad reduction:
the existence of finitely many closed points x ∈ X where Gx is not semisimple. At these
points, one can use Bruhat-Tits theory to choose parahoric models for the algebraic
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group G0 (that is, group schemes over Ox which are not too far from being semisimple).
However, we will not need Bruhat-Tits theory in this book.

A choice of integral model π : G→ X for the linear algebraic group G0 allows us to
give a very concrete description of the Tamagawa measure µTam on G(AX) = G0(AX).
Let ΩG/X denote the relative cotangent bundle of the smooth morphism π : G → X.
Then ΩG/X is a vector bundle on G of rank n = dim(G0). We let Ωn

G/X denote the top
exterior power of ΩG/X , so that Ωn

G/X is a line bundle on G. Let L be the pullback of

Ωd
G/X along the identity section e : X → G. Equivalently, we can identify L with the

subbundle of π∗Ω
n
G/X consisting of left-invariant sections. Let L0 be the generic fiber

of L, which we regard as a 1-dimensional vector space over KX , and choose a nonzero
element ω ∈ L0. For every closed point x ∈ X, we can apply Construction 1.2.3.5 to
the differential form ω to obtain a left-invariant measure µω,x on the locally compact
group G(Kx). Using Remark 1.2.3.9 and Example 1.2.3.8, we see that the measure µω,x
is characterized by the identity

µx,ω(G(Ox)) =
|G(κ(x))|
|κ(x)|n+vx(ω)

,

where vx(ω) ∈ Z denotes the order of vanishing of ω at the point x. It follows that the
unnormalized Tamagawa measure µun

Tam of Construction 1.2.4.2 is characterized by the
formula

µun
Tam(G(A∅X)) =

∏
x∈X

|G(κ(x))|
|κ(x)|n+vx(ω)

.

Using the identity∏
x∈X
|κ(x)|vx(ω) =

∏
x∈X

qdeg(x)vx(ω) = q
∑
x∈X deg(x)vx(ω) = qdeg(L) = qdeg(ΩG/X)

and the description of τun(Ga) given in Example 1.2.4.11, we obtain the following:

Proposition 1.3.1.3. Let X be an algebraic curve of genus g over a finite field Fq and
let π : G → X be a smooth affine group scheme whose generic fiber is connected and
semisimple of dimension n. Then the Tamagawa measure µTam of Definition 1.2.4.12
is the unique left-invariant measure on the group G(AX) which satisfies the identity

µTam(G(A∅X)) = qn(1−g)−deg(ΩG/X)
∏
x∈X

|G(κ(x))|
|κ(x)|n

.

Remark 1.3.1.4. For purposes of understanding this book, the reader can feel free
dispense with the analytic constructions of §1.2.4 and take Proposition 1.3.1.3 as the
definition of the Tamagawa measure µTam. From this point of view, it is not immediately
obvious (but not hard to verify) that the measure µTam depends only on the generic
fiber G0 = Spec(KX)×X G, and not on the choice of integral model G→ X.



1.3. WEIL’S CONJECTURE FOR FUNCTION FIELDS 35

1.3.2 Principal Bundles

Our next goal is to relate measures on adelic groups and their quotients (in the function
field case) to more concrete counting problems. First, we review some terminology.

Definition 1.3.2.1. Let X be a scheme and let G be a group scheme over X. For
every X-scheme Y , we let GY = G×X Y denote the associated group scheme over Y .
By a G-bundle on Y , we will mean a Y -scheme P equipped with an action

GY ×Y P ' G×X P→ P

of GY (in the category of Y -schemes) which is locally trivial in the following sense:
there exists a faithfully flat map U → Y and a GY -equivariant isomorphism U ×Y P '
U ×Y GY ' U ×X G.

Remark 1.3.2.2. In the situation of Definition 1.3.2.1, suppose that we are given a
morphism of X-schemes f : Y ′ → Y . If P is a G-bundle on Y , then the fiber product
Y ′×Y P can be regarded as a G-bundle on Y ′. We will refer to Y ′×Y P as the pullback
of P along f , and denote it by f∗ P or by P |Y ′ (we employ the latter notation primarily
in the case where f is an embedding).

Remark 1.3.2.3. Let G be a group scheme over X. Then G represents a functor
hG from the category of X-schemes to the category of groups, and the functor hG is
a sheaf for the flat topology. Every G-bundle P on X represents a functor hP, which
can be regarded as an hG-torsor (locally trivial for the flat topology). If G is affine,
then every hG-torsor arises in this way (since affine morphisms satisfy effective descent
for the flat topology). For this reason, we will generally use the terminology G-bundle
and G-torsor interchangeably when G is affine (which will be satisfied in all of our
applications).

Remark 1.3.2.4. In the special case where G is a smooth over X, any G-bundle P on
an X-scheme Y is smooth as a Y -scheme. It follows that P can be trivialized over an
étale covering U → Y .

Notation 1.3.2.5. Let X be a scheme and let G be an affine group scheme over X. For
every X-scheme Y , we let TorsG(Y ) denote the category whose objects are G-bundles
on Y , and whose morphisms are isomorphisms of G-bundles.

We will need the following gluing principle for G-bundles:

Proposition 1.3.2.6 (Beauville-Laszlo). Let X be a Dedekind scheme (for example,
an algebraic curve), let G be a flat affine group scheme over X, and let S be a finite
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set of closed points of X. For each x ∈ S, let Ox denote the complete local ring of X
at x, and let Kx denote the fraction field of Ox. Then the diagram of categories

TorsG(X) //

��

TorsG(X − S)

��∏
x∈S TorsG(Spec(Ox)) //

∏
x∈S TorsG(Spec(Kx))

is a pullback square.

More informally, Proposition 1.3.2.6 asserts that a G-bundle P on X can be recov-
ered from its restriction to the open subset X − S ⊆ X and its restriction to a formal
neighborhood of each point x ∈ S, provided that we are supplied with “gluing data”
over a punctured formal neighborhood Spec(Kx) of each point x ∈ X. We now exploit
this to produce some examples of G-bundles on algebraic curves:

Construction 1.3.2.7 (Regluing). Let X be an algebraic curve over a finite field Fq,
let G be a smooth affine group scheme over X, and let γ be an element of the adelic
group G(AX). Then we can identify γ with a collection of elements {γx ∈ G(Kx)}x∈X ,
having the property that there exists a finite set S such that γx ∈ G(Ox) whenever
x /∈ S. Using Proposition 1.3.2.6, we can construct a G-bundle Pγ on X with the
following features:

(a) The bundle Pγ is equipped with a trivialization φ on the open set U = X − S.

(b) The bundle Pγ is equipped with a trivialization ψx over the scheme Spec(Ox) for
each point x ∈ S.

(c) For each x ∈ S, the trivializations of Pγ |Spec(Kx) determined by φ and ψx differ
by the action of γx ∈ G(Kx).

It is not difficult to see that the G-bundle Pγ is canonically independent of the choice
of S, so long as S contains all points x such that γx /∈ G(Ox).

In good cases, all G-bundles on algebraic curves can be obtained by applying Con-
struction 1.3.2.7. This is a consequence of the following pair of results:

Theorem 1.3.2.8 (Lang). Let κ be a finite field and let G be a connected algebraic
group over κ. Then every G-bundle on Spec(κ) is trivial.

Theorem 1.3.2.9 (Harder). Let X be an algebraic curve over a finite field Fq, let G be
an algebraic group over the fraction field KX , and let P be a G-bundle over Spec(KX).
Assume that G is connected, semisimple, and simply connected. Then the following
conditions are equivalent:
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(a) The G-bundle P is trivial.

(b) For every closed point x ∈ X, the fiber product Spec(Kx)×Spec(KX) P is a trivial
G-bundle on Spec(Kx).

We refer the reader to [20] and [16] for proofs of Theorem 1.3.2.8 and 1.3.2.9,
respectively. Note that Theorem 1.3.2.9 can be regarded as a function field analogue
of the Hasse principle for quadratic forms (Theorem 1.1.2.6).

Proposition 1.3.2.10. Let X be an algebraic curve over a finite field and let G be a
smooth affine group scheme over X. Assume that the fibers of G are connected and
that the generic fiber of G is semisimple and simply connected. Then every G-bundle
on X can be obtained from Construction 1.3.2.7: that is, it is isomorphic to Pγ for
some element γ ∈ G(AX).

Proof. Let P be aG-bundle on X. For each closed point x ∈ X, the G-bundle P is trivial
when restricted to Spec(κ(x)) by virtue of Lang’s theorem (Theorem 1.3.2.8). Since G
is smooth over X, the G-bundle P is also smooth over X. Applying Hensel’s lemma, we
see that any trivialization of P over Spec(κ(x)) can be extended to a trivialization of P
over Spec(Ox). In particular, P is trivial when restricted to each Spec(Kx). Applying
Harder’s theorem (Theorem 1.3.2.9), we deduce that P is trivial over the generic point
Spec(KX) ⊆ X. Using a direct limit argument, we conclude that P is trivial over some
open subset U ⊆ X. Let S be the set of closed points of X which are not contained in
U . Then P is trivial over U and over each of the local schemes {Spec(Ox)}x∈S . Using
Proposition 1.3.2.6, we conclude that P is isomorphic to Pγ for some γ ∈ G(AS

X) ⊆
G(AX).

Proposition 1.3.2.10 asserts that, under reasonable hypotheses, all G-bundles on
X can be obtained by applying the regluing procedure of Construction 1.3.2.7 to an
appropriately chosen element γ ∈ G(AX). However, the element γ is not uniquely
determined: it is possible for different elements of G(AX) to give rise to isomorphic
G-bundles on X. Let us now analyze exactly how this might occur. Suppose we are
given elements γ, γ′ ∈ G(AX). Then the G-bundles Pγ and Pγ′ both come equipped
with trivializations at the generic point of X. Consequently, the datum of a G-bundle
isomorphism

ρ0 : Spec(KX)×X Pγ ' Spec(KX)×X Pγ′

is equivalent to the datum of an element β ∈ G(KX). Unwinding the definitions, we
see that ρ0 can be extended to a G-bundle isomorphism of Pγ with Pγ′ if and only

if the product γ′−1βγ belongs to the subgroup G(A∅X) ⊆ G(AX) (moreover, such an
extension is automatically unique, since the generic point of X is dense in X). We
therefore obtain the following more precise version of Proposition 1.3.2.10:
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Proposition 1.3.2.11. Let X be an algebraic curve over a finite field and let G be a
smooth affine group scheme over X. Assume that the fibers of G are connected and
that the generic fiber of G is semisimple and simply connected. Then:

(a) The construction γ 7→ Pγ induces a bijection from the double quotient

G(KX)\G(AX)/G(A∅X)

to the set of isomorphism classes of G-bundles on X.

(b) Let γ be an element of G(AX) and let γ denote its image in G(KX)\G(AX). Then
the automorphism group of the G-bundle Pγ can be identified with the subgroup
of G(A∅X) which fixes γ.

1.3.3 Weil’s Conjecture as a Mass Formula

We now use Proposition 1.3.2.11 to reformulate Weil’s conjecture as a mass formula,
analogous to Theorem 1.1.3.5. First, we need a bit of terminology.

Definition 1.3.3.1 (The Mass of a Groupoid). Let C be a groupoid (that is, a category
in which all morphisms are isomorphisms). Assume that, for every object C ∈ C, the
automorphism group Aut(C) is finite. We let |C | denote the sum

∑
C

1
|Aut(C)| , where

C ranges over a set of representatives for all isomorphism classes in C. We will refer to
|C | as the mass of the groupoid C.

Remark 1.3.3.2. In the setting of Definition 1.3.3.1, each term in appearing in the
sum

∑
C

1
|Aut(C)| is ≤ 1. Consequently, if C has only n isomorphism classes of objects

for some nonnegative integer n, then |C | ≤ n. We can regard |C | as a weighted count of
the number of isomorphism classes in C, where the isomorphism class of an object C ∈ C

is counted with multiplicity 1
|Aut(C)| . This is a very natural way to count mathematical

objects which admit nontrivial automorphisms.
If the number of isomorphism classes in C is infinite, then the sum

∑
C

1
|Aut(C)|

contains infinitely many terms, and may or may not converge. If it does not converge,
we will write |C | =∞ and say that the mass of C is infinite.

Example 1.3.3.3. Let C be the groupoid whose objects are finite sets and whose
morphisms are bijections. Up to isomorphism, C contains a single object of cardinality
n for each n ≥ 0, whose automorphism group is the symmetric group Σn having order
n!. We therefore have

|C | =
∑
n≥0

1

n!
= e,

where e is Euler’s constant.
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Example 1.3.3.4. Let q = q(x1, . . . , xn) be a positive-definite integral quadratic form.
Let C be the category whose objects are quadratic forms of the same genus as q (Defi-
nition 1.1.3.1) and whose morphisms are isomorphisms of quadratic forms (Definition
1.1.1.2). Then |C | =

∑
q′

1
|Oq′ (Z)| is the sum appearing on the left hand side of the

Smith-Minkowski-Siegel mass formula (Theorem 1.1.3.5).

Example 1.3.3.5. Let G be an algebraic group defined over a finite field Fq, and
let TorsG(Spec(Fq)) denote the category of principal G-bundles (Notation 1.3.2.5). If
G is connected, then Lang’s theorem guarantees that every G-bundle on Spec(Fq) is
trivial (Theorem 1.3.2.8). In this case, the category TorsG(Spec(Fq)) has only a single
object (up to isomorphism), whose automorphism group is the finite group G(Fq). We
therefore have |TorsG(Spec(Fq))| = 1

|G(Fq)| .

We now return to the setting of Weil’s conjecture. Fix an algebraic curve X over a
finite field Fq and a smooth affine group scheme G→ X. Then the category TorsG(X)
of G-bundles on X satisfies the hypotheses of Definition 1.3.3.1, so we can consider the
mass

|TorsG(X)| =
∑
P

1

|Aut(P)|
,

where the sum is taken over all isomorphism classes of G-bundles on X.

Proposition 1.3.3.6. Assume that the fibers of G are connected and the generic fiber
is semisimple and simply connected, and let µTam denote the Tamagawa measure on
the group G(AX) (and on the quotient space G(KX)\G(AX)). Then the Tamagawa
number of the generic fiber of G is equal to the product |TorsG(X)|µTam(G(A∅X)).

Proof. Let Z denote the double quotient G(KX)\G(AX)/G(A∅X). For each z ∈ Z, let
Oz ⊆ G(KX)\G(AX) denote the inverse image of z, so that we have a decomposition

G(KX)\G(AX) = qz∈ZOz

into orbits under the right action of G(A∅X). Using Proposition 1.3.2.11, we can identify
Z with the collection of isomorphism classes of G-bundles on X. Under this identifica-
tion, if z ∈ Z corresponds to a G-bundle P, then the orbit Oz can be identified with the
quotient of G(A∅X) by a (free) action of the finite group Aut(P). We therefore compute

µTam(G(KX)\G(AX)) =
∑
z∈Z

µTam(Oz)

=
∑
P

µTam(G(A∅X))

|Aut(P)|
,
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where the sum is taken over all isomorphism classes of G-bundles on X. The left hand
side of this equality is the Tamagawa number of the generic fiber of G, and the right
hand side is |TorsG(X)|µTam(G(A∅X)).

Combining Propositions 1.3.1.3 and 1.3.3.6, we obtain the following reformuation
of Weil’s conjecture:

Conjecture 1.3.3.7 (Weil’s Conjecture, Mass Formula Version). LetX be an algebraic
curve of genus g over a finite field Fq and let G be a smooth affine group scheme of
dimension n over X. Assume that the fibers of G are connected and that the generic
fiber of G is semisimple and simply connected. Then

|TorsG(X)| = qn(g−1)+deg(ΩG/X)
∏
x∈X

|κ(x)|d

|G(κ(x))|
.

The rest of this book is devoted to giving a proof of Conjecture 1.3.3.7.

Warning 1.3.3.8. In the statement of Conjecture 1.3.3.7, the mass appearing on the
left hand side and the product appearing on the right hand side involve infinitely
many terms. The convergence of the product on the right hand side is equivalent to
the well-definedness of the Tamagawa measure on G(AX) (see Remark 1.2.4.3), and
the finiteness of the mass |TorsG(X)| is equivalent to the finiteness of the Tamagawa
number of the generic fiber of G. We regard the convergence of both sides as part of
the statement of Conjecure 1.3.3.7, to be established later in this book.

Remark 1.3.3.9. Using Example 1.3.3.5, we can rewrite the equality of Conjecture
1.3.3.7 in the more suggestive form

|TorsG(X)|
qn(g−1)+deg(ΩG/X)

=
∏
x∈X

|TorsG(Spec(κ(x)))|
q−n deg(x)

.

The powers of q which appear in the denominators admit geometric interpretations (in
terms of the dimensions of certain algebraic stacks), which we will discuss in §1.4 (see
Example 1.4.1.4).

The assertion of Conjecture 1.3.3.7 can be regarded as a function field version of the
Smith-Minkowski-Siegel mass formula (Theorem 1.1.3.5). Our perspective is informed
by the following table of analogies:
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Classical Mass Formula Conjecture 1.3.3.7

Number field Q Function field KX

Quadratic form q over Q Algebraic Group G0

Quadratic form q over Z Integral model G

Quadratic forms in the genus of q Principal G-bundles P∑
q′

1
|Oq′ (Z)|

∑
P

1
|Aut(P)| .

1.4 Cohomological Formulation of Weil’s Conjecture

On general grounds, one would expect Weil’s conjecture (Conjecture 1.2.6.4) to be eas-
ier to prove in the function field setting: function fields admit an algebro-geometric
interpretation (as rational functions on algebraic curves), and can be studied using
geometric techniques that have no analogue in the setting of number fields. In more
concrete terms, the mass formula of Conjecture 1.3.3.7 has to do with the problem
of counting principal bundles on an algebraic curve, while the Smith-Minkowski-Siegel
mass formula (Theorem 1.1.3.5) has to do with counting integral quadratic forms within
a genus. The former problem has much more structure than the latter, because princi-
pal G-bundles on an algebraic curve admit an algebro-geometric parametrization (see
Construction 1.4.1.1). In this section, we will exploit this observation to reduce Weil’s
conjecture to a pair of statements about the `-adic cohomology of a certain algebraic
stack (Theorems 1.4.3.3 and 1.4.4.1).

1.4.1 The Moduli Stack of G-Bundles

Let k be a field, let X be an algebraic curve over k (assumed to be smooth, projective,
and geometrically connected), and let G be a smooth affine group scheme over X. In
§1.3.2, we introduced the notion of a principal G-bundle on X (Definition 1.3.2.1).
More generally, for any map of schemes X ′ → X, we can consider principal G-bundles
on X ′, which form a category TorsG(X ′). In particular, we can take X ′ to be a product
Y ×Spec(k)X, where Y is an arbitrary k-scheme. In this case, we can think of a principal
G-bundle on X ′ as a family of principal G-bundles on X, parametrized by the k-scheme
Y . This motivates the following:
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Construction 1.4.1.1. For every k-scheme S, let XS = S ×Spec(k) X denote the S-
scheme obtained from X by extension of scalars. We let BunG(X)(S) denote the cat-
egory TorsG(XS) of principal G-bundles on XS . The construction S 7→ BunG(X)(S)
determines a contravariant functor { k-schemes } → { Groupoids }, which we will de-
note by BunG(X). We refer to BunG(X) as the moduli stack of G-bundles.

Warning 1.4.1.2. A careful reader might object that that the construction S 7→
BunG(X)(S) is not quite a functor, because the pullback operation on G-bundles is well-
defined only up to (canonical) isomorphism. This technical point can be addressed in
many ways (for example, using the language of fibered categories, which we will review
in §3.2.4). For purposes of the present discussion, we will ignore the issue.

If S is a k-scheme, we will refer to objects of the category BunG(X)(S) = TorsG(XS)
as S-valued points of BunG(X). For many purposes, it is useful to think of BunG(X)
as a geometric object, whose S-valued points correspond to maps S → BunG(X). To
make sense of this idea, we are forced to adopt a liberal interpretation of the word
“geometric.” The functor BunG(X) cannot be represented by an algebraic variety over
k, because the categories BunG(X)(S) are not equivalent to sets (principal G-bundles
can admit nontrivial automorphisms, and these play an important role in formulating
the mass formula of Conjecture 1.3.3.7). However, one does not need to go far beyond
the theory of algebraic varieties. The functor BunG(X) is an example of an algebraic
stack: that is, there exists a scheme U and a map U → BunG(X) which is representable
by smooth surjections (in other words, for every S-valued point of BunG(X), the fiber
product U×BunG(X)S is representable by a smooth S-scheme US with nonempty fibers).
We will henceforth assume that the reader has some familiarity with the theory of
algebraic stacks (for an introduction, we refer the reader to [22]).

Remark 1.4.1.3 (The Tangent Groupoid to a Stack). Let Y be an algebraic variety
over k. Suppose that we are given an extension field k′ of k and a point y ∈ Y (k′).
Recall that the Zariski tangent space to Y at the point η is defined as the fiber of the
map Y (k′[ε]/(ε2))→ Y (k′), taken over the point y.

If Y is an algebraic stack over k equipped with a k′-valued point y ∈ Y(k′), then
we can again consider the fiber of the map Y(k′[ε]/(ε2)) → Y(k′) over the point η. In
general, this fiber should be regarded as a groupoid, which we refer to as the tangent
groupoid to Y at η and denote by TY,y. We let π0TY,y denote the set of isomorphism
classes of objects of TY,y, and π1TY,y the automorphism group of any choice of object y ∈
TY,y (this automorphism group is canonically independent of y). One can regard π0TY,y
and π1TY,y as vector spaces over k′. If Y is smooth, then the difference dimk′(π0TY,y)−
dimk′(π1TY,y) is called the dimension of Y at the point y. This dimension is then locally
constant on Y: in other words, one can write Y as a disjoint union of smooth algebraic
stacks having constant dimension.
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Example 1.4.1.4 (The Tangent Groupoid to BunG(X)). Let k′ be an extension field
of k and let η be a k′-valued point of BunG(X), which we can identify with a G-bundle
P on the curve Xk′ . Let gP denote the vector bundle on Xk′ obtained by twisting the Lie
algebra g of G by means of the bundle P. It follows from standard deformation-theoretic
arguments that there are canonical isomorphisms

π0TBunG(X),η ' H1(Xk′ ; gP) π1TBunG(X),η ' H0(Xk′ ; gP).

It follows that the dimension of the algebraic stack BunG(X) at the point η can be
identified with the Euler characteristic

−χ(gP) = dimk(H
1(X; gP))− dimk(H

0(X; gP)).

Let g be the genus of the curve X and let n be the relative dimension of the map G→ X.
Applying the Riemann-Roch theorem, we deduce that the dimension of BunG(X) is
given by n(g − 1)− deg(gP).

Note that the action of G on
∧n g determines a morphism of group schemes G →

Gm. If the generic fiber of G is semisimple, then this homomorphism is necessarily
trivial, so that the top exterior power

∧n gP does not depend on the G-bundle P.
Extending the above analysis to k′-valued points of BunG(X), where k′ is an arbitrary
extension field of k, we deduce that the (virtual) dimension of BunG(X) at each point
is given by n(g − 1)− deg(g) = n(g − 1) + deg(ΩG/X).

Warning 1.4.1.5. If the group scheme G acts nontrivially on the top exterior power∧n g, then BunG(X) need not have constant dimension. In the case where the ground
field k is finite, this is related to the failure of unimodularity for the adelic group
G(AX). This phenomenon arises, for example, if we take G to be a Borel subgroup of
a semisimple group scheme.

1.4.2 Counting Points on Algebraic Varieties

Suppose that X is an algebraic curve defined over a finite field Fq, and let G be a
smooth affine group scheme over X. To establish Weil’s conjecture in the function field
case, we need to evaluate the sum

∑
P

1
|Aut(P)| appearing in Conjecture 1.3.3.7. This

sum can be regarded as a (weighted) count of principal G-bundles on the curve X, or
equivalently as a (weighted) count of Fq-valued points of the moduli stack BunG(X).
In this section, we consider the following simpler problem:

Question 1.4.2.1. Let Y be an algebraic variety defined over a finite field Fq, so that
the set Y (Fq) of Fq-valued points of Y is finite. What can one say about the cardinality
of |Y (Fq)| of the set Y (Fq)?
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To address Question 1.4.2.1, let us fix an algebraic closure Fq of the finite field Fq.
Then the finite set Y (Fq) can be viewed as a subset of Y (Fq), which we can identify with
the set of closed points of an algebraic variety Y = Spec(Fq) ×Spec(Fq) Y defined over

Fq. We let Frob : Y → Y denote the geometric Frobenius map, defined as the product
of the identity map id : Spec(Fq)→ Spec(Fq) with the absolute Frobenius map Y → Y .
More concretely, if the variety Y is equipped with a projective embedding i : Y ↪→ Pn,
then the geometric Frobenius map Frob is given in homogeneous coordinates by the
formula

Frob([x0 : · · · : xn]) = [xq0 : · · ·xqn].

Note that a point y ∈ Y (Fq) belongs to the subset Y (Fq) ⊆ Y (Fq) if and only if it
satisfies the equation Frob(y) = y.

In [38], Weil proposed that the description of Y (Fq) as the fixed-point set of the map
Frob : Y → Y could be used to analyze Question 1.4.2.1. His proposal was motivated
by the following theorem of topology:

Theorem 1.4.2.2 (Lefschetz Fixed-Point Theorem). Let M be a compact manifold
and let f : M →M be a smooth map. For each point x ∈M , let Tx denote the tangent
space to M at the point x and let Dfx : Tx → Tf(x) denote the differential of f at x.

Let Mf = {x ∈ M : f(x) = x} denote the set of fixed points of f . Assume that, for
each x ∈ Mf , the linear map idTx −(Df)x is an isomorphism of the tangent space Tx
with itself. Then the set Mf is finite and we have∑

x∈Mf

ε(x) =
∑
m≥0

(−1)m Tr(f∗|Hm(X; Q)),

where ε(x) ∈ {±1} denotes the sign of the determinant det(idTx −(Df)x).

Let us assume for simplicity that the algebraic variety Y of Question 1.4.2.1 is
smooth and projective. Weil’s insight was that one should be able to apply some version
of Theorem 1.4.2.2 to the geometric Frobenius map Frob : Y → Y to obtain a formula
for the number |Y (Fq)| of fixed points of Frob (here each fixed point should appear
with multiplicity 1, since the differential of the Frobenius map vanishes). Motivated by
this heuristic, Weil made a series of precise conjectures about the numerical behavior
of the integers |Y (Fq)|. Moreover, Weil showed that his conjectures would follow from
the existence of a sufficiently well-behaved cohomology theory for algebraic varieties,
provided that one had a suitable analogue of Theorem 1.4.2.2. These conjectures were
eventually proved by constructing such a cohomology theory: Grothendieck’s theory of
étale cohomology.

We will review the theory of étale cohomology (from a slightly unconventional point
of view) in §2. For every prime number ` which is invertible in Fq, and every alge-
braic variety V over Fq, this theory assigns `-adic cohomology groups {Hn(V ; Q`)}n≥0
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and compactly supported `-adic cohomology groups {Hn
c (V ; Q`)}n≥0, which are finite-

dimensional vector spaces over Q`. If Y is an algebraic variety over Fq, then the
geometric Frobenius map Frob : Y → Y determines a pullback map from H∗c(Y ; Q`) to
itself. We will abuse notation by denoting this map also by Frob. Then Question 1.4.2.1
can be answered by the following algebro-geometric analogue of Theorem 1.4.2.2:

Theorem 1.4.2.3 (Grothendieck-Lefschetz Trace Formula). Let Y be an algebraic
variety over Fq. Then the number of Fq-valued points of Y is given by the formula

|Y (Fq)| =
∑
m≥0

(−1)m Tr(Frob |Hm
c (Y ; Q`)).

For our purposes, it will be convenient to write the Grothendieck-Lefschetz trace
formula in a slightly different form. Suppose that Y is a smooth variety of dimension
n over Fq. Then, from the perspective of `-adic cohomology, Y behaves as if it were a
smooth manifold of dimension 2n. In particular, it satisfies Poincaré duality: that is,
there is a perfect pairing

µ : Hi
c(Y ; Q`)⊗Q`

H2n−i(Y ; Q`)→ Q` .

This pairing is not quite Frobenius-equivariant: instead, it fits into a commutative
diagram

Hi
c(Y ; Q`)⊗Q`

H2n−i(Y ; Q`)
µ //

Frob⊗Frob
��

Q`

qn

��
Hi
c(Y ; Q`)⊗Q`

H2n−i(Y ; Q`)
µ // Q`,

reflecting the fact that the geometric Frobenius map Frob : Y → Y has degree qn. In
particular, pullback along the geometric Frobenius map Frob induces an isomorphism
from H∗(Y ; Q`) to itself, and we have the identity

q−n Tr(Frob |Hi
c(Y ; Q`)) ' Tr(Frob−1 |H2n−i(Y ; Q`)).

We may therefore rewrite Theorem 1.4.2.3 as follows:

Theorem 1.4.2.4 (Grothendieck-Lefschetz Trace Formula, Dual Version). Let Y be
an algebraic variety over Fq which is smooth of dimension n. Then the number of
Fq-points of Y is given by the formula

|Y (Fq)|
qn

=
∑
m≥0

(−1)m Tr(Frob−1 |Hm(Y ; Q`)).
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Remark 1.4.2.5. In the statement of Theorem 1.4.2.4, the denominator qn appearing
on the left hand side can be regarded as a rough estimate for the cardinality |Y (Fq)|,
based only on the information that Y is an algebraic variety of dimension n over Fq

(note that this estimate is exactly correct in the case where Y is an affine space over
Fq).

1.4.3 The Trace Formula for BunG(X)

Let us now return to the setting of Conjecture 1.3.3.7. Let X be an algebraic curve
over a finite field Fq, let G be a smooth affine group scheme over X, and let BunG(X)
denote the moduli stack of G-bundles on X (Construction 1.4.1.1). We would like to
apply the ideas of §1.4.2 to the problem of counting principal G-bundles on X.

Let Fq denote an algebraic closure of Fq and set X = Spec(Fq)×Spec(Fq) X. Let us
abuse notation by not distinguishing between the group scheme G and the fiber product
X ×X G, so that we can consider the moduli stack BunG(X) of principal G-bundles on
X. Then BunG(X) can be identified with the fiber product Spec(Fq)×Spec(Fq)BunG(X).

Construction 1.4.3.1 (The Geometric Frobenius on BunG(X)). Let R be an Fq-
algebra. Then the Frobenius map a 7→ aq determines an Fq-algebra homomorphism
ϕ : R → R, and therefore induces a map ϕX : XR → XR (which is the identity on
X: that is, ϕX is a map of X-schemes). If P is a principal G-bundle on XR, then
the pullback ϕ∗X P is another principal G-bundle on XR. The construction P 7→ ϕ∗R P

depends functorially on R, and can therefore be regarded as a map of algebraic stacks
Frob : BunG(X)→ BunG(X). We will refer to Frob as the geometric Frobenius map of
BunG(X).

Let us now fix a prime number ` which is invertible in Fq. The theory of `-adic
cohomology can be extended to algebraic stacks (we will discuss this extension in §3.2)
and supplies cohomology groups H∗(BunG(X); Q`) (for our purposes it will be conve-
nient to take our coefficient ring to be Z` rather than Q`, though this is ultimately not
important). The geometric Frobenius map Frob of Construction 1.4.3.1 induces an au-
tomorphism of the graded ring H∗(BunG(X); Z`). By abuse of notation, we will denote
this automorphism also by Frob. Here, we encounter a slight wrinkle: the cohomology
groups Hn(BunG(X); Z`) need not vanish for n � 0, so a correct formulation of the
Grothendieck-Lefschetz trace formula requires some care.

Notation 1.4.3.2. Let C denote the field of complex numbers, and fix an embedding
ι : Z` ↪→ C. Let M be a Z`-module for which C ⊗Z` M is a finite-dimensional vector
space over C. If ψ is any endomorphism of M as a Z`-module, we let Tr(ψ|M) ∈ C
denote the trace of C-linear map C⊗Z`M → C⊗Z`M determined by ψ. More generally,
if ψ is an endomorphism of a graded Z`-module M∗, we let Tr(ψ|M∗) denote the
alternating sum

∑
i≥0(−1)i Tr(ψ|M i) (provided that this sum is absolutely convergent).
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One of our main goals in this book is to prove the following analogue of Theorem
1.4.2.4:

Theorem 1.4.3.3. [Grothendieck-Lefschetz Trace Formula for BunG(X)] Assume that
the group scheme G has connected fibers and that the generic fiber of G is semisimple.
Then we have an equality

q− dim(BunG(X))|TorsG(X)| = Tr(Frob−1 |H∗(BunG(X); Z`)).

Here dim(BunG(X)) denotes the dimension of the algebraic stack BunG(X) (see Ex-
ample 1.4.1.4), |TorsG(X)| =

∑
P

1
|Aut(P)| denotes the mass of the category of principal

G-bundles on X, and the trace on the right hand side is defined as in Notation 1.4.3.2.

Warning 1.4.3.4. Neither the left nor the right hand side of the identity asserted by
Theorem 1.4.3.3 is a priori well-defined. We should therefore state it more carefully as
follows:

(a) For each integer i, the tensor product C⊗Z`H
i(BunG(X); Z`) is a finite-dimensional

vector space over C, so that the trace Tr(Frob−1 |Hi(BunG(X); Z`)) is well-
defined.

(b) The sum

Tr(Frob−1 |H∗(BunG(X); Z`)) =
∑
i≥0

(−1)i Tr(Frob−1 |Hi(BunG(X); Z`))

is absolutely convergent (beware that, in contrast with the situation of Theorem
1.4.2.4, this sum is generally infinite).

(c) The mass |TorsG(X)| =
∑

P
1

|Aut(P)| is finite.

(d) We have an equality

|TorsG(X)|
qdim(BunG)

= Tr(Frob−1 |H∗(BunG(X); Z`)).

Remark 1.4.3.5. In the statement of Theorem 1.4.3.3, the right hand side is a priori
dependent on a choice of prime number ` (which we always assume to be invertible in
Fq) and on a choice of embedding ι : Z` ↪→ C. However, Theorem 1.4.3.3 shows that
this dependence is illusory (since the left hand side is defined without reference to ` or
ι).
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We can regard Theorem 1.4.3.3 as an analogue of Theorem 1.4.2.4, where the smooth
Fq-scheme Y is replaced by the algebraic stack BunG(X). The principal difficulty in
verifying Theorem 1.4.3.3 comes not from the fact that BunG(X) is a stack, but from
the fact that it need not be quasi-compact. For every quasi-compact open substack
U ⊆ BunG(X), one can write U as the stack-theoretic quotient of a smooth algebraic
variety Ũ by the action of an algebraic group H over Fq (for example, we can take Ũ
to be a fiber product U ×BunG(X) BunG(X,D), where BunG(X,D) denotes the moduli
stack of G-bundles on X which are equipped with a trivialization on some sufficiently
large effective divisor D ⊆ X). One can then show that U satisfies the Grothendieck-
Lefschetz trace formula by applying Theorem 1.4.2.4 to Ũ and H (for more details, see
§5.1). One might hope to prove Theorem 1.4.3.3 by writing BunG(X) as the union of
a sequence of well-chosen quasi-compact open substacks

U0 ↪→ U1 ↪→ U2 ↪→ · · · ,

and making some sort of convergence argument. Using this method, Behrend proved
Theorem 1.4.3.3 in many cases (see [4]). In Chapter 5, we will use the same technique
to show that Theorem 1.4.3.3 holds in general.

Variant 1.4.3.6 (Steinberg’s Formula). Let G be a connected algebraic group of di-
mension n over a finite field Fq and let BG denote the classifying stack of G. Then the
algebraic stack BG satisfies the Grothendieck-Lefschetz trace formula in the form

|TorsG(Spec(Fq))|
qdim(BG)

= Tr(Frob−1 |H∗(BG; Z`)). (1.7)

Here dim(BG) = −dim(G) = −n and the mass |TorsG(Spec(Fq))| is equal to 1/|G(Fq)|
(Example 1.3.3.5), so the left hand side of (1.7) is given by qn

|G(Fq)| , and BG denotes

the fiber product Spec(Fq)×Spec(Fq) BG; see Proposition 4.4.4.1. This gives an explicit
formula for the order of the finite group G(Fq), due originally to Steinberg (see [36]).

1.4.4 Weil’s Conjecture

Using Theorem 1.4.3.3 (and the description of dim(BunG(X)) supplied in Example
1.4.1.4), we can reformulate Conjecture 1.3.3.7 as follows:

Theorem 1.4.4.1 (Weil’s Conjecture, Cohomological Form). Let X be an algebraic
curve over a finite field Fq and let G be a smooth affine group scheme over X. Assume
that the fibers of G are connected and that the generic fiber of G is semisimple and
simply connected of dimension n. Fix a prime number ` which is invertible in Fq and
an embedding ι : Z` ↪→ C. Then there is an equality

Tr(Frob−1 |H∗(BunG(X); Z`)) =
∏
x∈X

|κ(x)|n

|G(κ(x))|
.
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In particular, the trace on the left hand side and the product on the right hand side are
both absolutely convergent.

The bulk of this book is devoted to the proof of Theorem 1.4.4.1.

Remark 1.4.4.2. In the statement of Theorem 1.4.4.1, it follows from either Theorem
1.4.4.1 or Theorem 1.4.3.3 that the trace appearing on the left hand side does not
depend on the prime number ` or the choice of embedding ι : Z` ↪→ C.

Remark 1.4.4.3. Let G be as in Theorem 1.4.4.1. For each closed point x ∈ X, let
Gx = Spec(κ(x))×X G denote the fiber of G at x, and let BGx denote the classifying
stack of Gx. Set BGx = BGx = Spec(Fq) ×Spec(κ(x)) BGx, and let Frobx denote the

geometric Frobenius map on BGx. Using Variant 1.4.3.6, we can rewrite the statement
of Theorem 1.4.4.1 in the more suggestive form

Tr(Frob−1 |H∗(BunG(X); Z`)) =
∏
x∈X

Tr(Frob−1
x |H∗(BGx; Z`)). (1.8)

This can be regarded as a cohomological reformulation of the product formula appearing
in Remark 1.3.3.9.

1.5 Computing the Cohomology of BunG(X) over C

Let k be an algebraically closed field, let X be an algebraic curve over k, and let G be a
smooth affine group scheme over X. Most of this book is devoted to understanding the
cohomology of the moduli stack BunG(X). For applications to Weil’s conjecture, we
are ultimately interested in the case where k = Fq is an algebraic closure of a finite field
Fq. In this section, we study the simpler situation where k = C is the field of complex
numbers and the group scheme G is assumed to be semisimple (and simply connected)
at each point. In this case, calculating the cohomology of BunG(X) can be regarded as
a purely topological problem (Proposition 1.5.1.1), which can be attacked by a variety
of classical methods. If we additionally assume that the group scheme G is constant
(that is, it arises from a linear algebraic group over C), then this problem is fairly easy,
at least for cohomology with rational coefficients: there is a simple explicit description
of the rational cohomology ring H∗(BunG(X); Q) (Theorem 1.5.2.3), due originally to
Atiyah and Bott. In this section, we explain the Atiyah-Bott calculation and indicate a
mechanism by which it can be extended to the non-constant case (Theorem 1.5.4.10).

1.5.1 Bundles on a Riemann Surface

Let G be a linear algebraic group defined over the field C of complex numbers. By abuse
of notation, we will not distinguish between G and its set G(C) of C-valued points,
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which we view as a topological group. Throughout this section, we let BG denote a
classifying space of G, in the sense of algebraic topology: that is, a quotient EG /G,
where EG is a contractible space equipped with a free action of G. The classifying space
BG enjoys the following universal mapping property: for any reasonably well-behaved
topological space Y (for example, any paracompact manifold), the construction

(f : Y → BG) 7→ Y ×BG EG

determines a bijection from the set [Y,BG] of homotopy classes of continuous maps
from Y into BG to the set of isomorphism classes of G-bundles on Y (in the category
of topological spaces).

Let M be a manifold, and let Map(M,BG) denote the collection of all continuous
maps from X to BG. We regard Map(M,BG) as a topological space by equipping it
with the compact open topology. Then Map(M,BG) classifies G-bundles over M in
the category of topological space: that is, for any sufficiently nice parameter space Y ,
we can identify homotopy classes of maps from Y to Map(M,BG) with isomorphism
classes of principal G-bundles on the product M × Y in the category of topological
spaces.

Proposition 1.5.1.1. Let X be an algebraic curve over C (which we assume to be
smooth and projective), which we identify with the compact Riemann surface X(C)
of C-valued points of X. Let BunG(X) = BunG×Spec(C)X(X) denote the moduli stack
of G-bundles on X, in the sense of Construction 1.4.1.1. Then there is a canonical
homotopy equivalence BunG(X) ' Map(X,BG).

Remark 1.5.1.2. In the setting of Proposition 1.5.1.1, the moduli stack BunG(X) and
the mapping space Map(X,BG) both have universal properties: the former classifies
G-bundles in the setting of algebraic geometry, and the latter classifies G-bundles in
the setting of topological spaces. Roughly speaking, Proposition 1.5.1.1 asserts that
there is not much difference between the two.

Proof of Proposition 1.5.1.1. We provide an informal sketch: a rigorous treatment
would require us to define the homotopy type of an algebraic stack over C, which would
take us too far afield. For simplicity, let us assume that the linear algebraic group G is
connected and simply connected (this is the main case we are interested in). Since X is
a projective algebraic variety, the category of algebraic G-bundles on X is equivalent to
the category of complex-analytic G-bundles on X. Moreover, the simple connectivity
of G guarantees that every complex-analytic G-bundle on X is trivial when viewed as
a smooth G-bundle. Consequently, we can identify BunG(X) (in a suitable category
of differentiable stacks) with the stack-theoretic quotient A /Mapsm(X,G), where A

denotes the collection of all complex structures on the trivial G-bundle P = G × X,
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and Mapsm(X,G) denotes the automorphism group of P (which we identify with the
space of smooth maps from X into G).

Since X has complex dimension 1, the space A can be identified with the collection
of all smooth ∂-connections on P: that is, the collection of all C-antilinear vector bundle
maps TX → gX , where TX is the tangent bundle of X, g is the Lie algebra of G, and
gX denotes the constant vector bundle over X associated to g. In particular, A is an
infinite-dimensional affine space, and therefore contractible. It follows that BunG(X)
has the homotopy type of the classifying space of the group Mapsm(X,G).

Let Map(X,G) denote the space of all continuous maps from X into G. It follows
from standard approximation arguments that the inclusion Mapsm(X,G) ↪→ Map(X,G)
is a homotopy equivalence. We now complete the proof by observing that Map(X,EG)
is a contractible space equipped with a free action of Map(X,G) having quotient
Map(X,EG)/Map(X,G) = Map(X,BG) (here we invoke the fact that every map
from X to BG factors through EG, by virtue of our assumption that G is simply
connected), so that Map(X,BG) also has the homotopy type of a classifying space of
Mapsm(X,G).

Warning 1.5.1.3. In the statement of Proposition 1.5.1.1, the assumption that G is
simply connected is superfluous. However, the assumption that X is an algebraic curve
is essential. If X is a smooth projective variety of higher dimension, then ∂-connections
on a smooth G-bundle need not be integrable. Consequently, the homotopy type of
BunG(X) is not so easy to describe in purely homotopy-theoretic terms.

Variant 1.5.1.4. Let X be an algebraic curve over C and let G be a group scheme over
X which is semisimple at each point (but not necessarily constant). In this case, we
take classifying spaces fiberwise to obtain a fibration of topological spaces π : BG→ X,
whose fiber over a point x ∈ X can be identified with the classifying space BGx for
Gx = G ×X {x}. In this situation, one can prove a relative version of Proposition
1.5.1.1: the space BunG(X) is homotopy equivalent to the space Sectπ(X) = {s : X →
BG : π ◦ s = idX} of continuous sections of π. We will return to this point in §1.5.4.

1.5.2 The Atiyah-Bott Formula

Let X be an algebraic curve over the field C of complex numbers and let G be a
simply-connected linear algebraic group over C. By virtue of Proposition 1.5.1.1, the
cohomology of the moduli stack BunG(X) can be identified with the cohomology of
the mapping space Map(X,BG). In this section, we give an explicit description of the
rational cohomology of Map(X,BG). Our starting point is the following well-known
description of the rational cohomology of BG itself:
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Proposition 1.5.2.1. Let G be a linear algebraic group over C which is simply con-
nected, and let BG denote the classifying space of G. Then the cohomology ring
H∗(BG; Q) is isomorphic to a polynomial algebra on finitely many homogeneous gener-
ators x1, x2, . . . , xr having even degrees e1, . . . , er ≥ 4.

To describe the cohomology of Map(X,BG) in terms of the cohomology of BG, it
will be convenient to introduce some notation.

Notation 1.5.2.2. Let V = V ∗ be a graded vector space over the rational numbers.
We let Sym∗(V ) denote the free graded-commutative algebra generated by V . More
explicitly, if we decompose V as a direct sum V even ⊕ V odd of even and odd degree
subspaces, then we have Sym∗(V ) = Sym∗(V even) ⊗Q

∧∗(V odd) where Sym∗(V even)
denotes the usual symmetric algebra on V even, and

∧∗(V odd) denotes the exterior
algebra generated by V odd.

In what follows, let us fix an isomorphism H∗(BG; Q) ' Sym∗(V ), where V is
a graded vector space concentrated in even degrees ≥ 4 (the existence of such an
isomorphism follows from Proposition 1.5.2.1). If X is a compact Riemann surface,
then the evaluation map e : Map(X,BG) ×X → BG induces a map of graded vector
spaces

V → Sym∗(V )

' H∗(BG;Q)
e∗−→ H∗(Map(X,BG)×X; Q)

' H∗(Map(X,BG); Q)⊗Q H∗(X; Q),

which we can identify with a map u : H∗(X; Q)⊗Q V → H∗(Map(X,BG); Q). We then
have the following:

Theorem 1.5.2.3 (Atiyah-Bott). The map u extends to an isomorphism of graded
algebras

Sym∗(H∗(X; Q)⊗Q V )→ H∗(Map(X,BG); Q).

We will sketch a proof of Theorem 1.5.2.3 in §1.5.6.

Remark 1.5.2.4. To spell out Theorem 1.5.2.3 more explicitly, let g be the genus of
the curve X and let e1, e2, . . . , er denote the degrees of the polynomial generators of
the cohomology ring H∗(BG; Q). Then Theorem 1.5.2.3 implies that the cohomology
ring H∗(Map(X; BG); Q) is isomorphic to a tensor product of a polynomial ring on 2r
generators (of degrees ei and ei − 2 for 1 ≤ i ≤ r) with an exterior algebra on 2gr
generators (with 2g generators of each degree ei − 1).
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1.5.3 Digression: Rational Homotopy Theory

For applications to Weil’s conjecture, we will need an analogue of Theorem 1.5.2.3 which
applies in cases where the group scheme G is not assumed to be constant (Example
1.5.4.15). Before formulating such an analogue, we take a brief excursion through
rational homotopy theory, following ideas of Sullivan.

Let X be a topological space. For any commutative ring R, the singular cohomology
of X is equipped with cup product maps

∪ : Hi(X;R)×Hj(X;R)→ Hi+j(X;R)

which endow H∗(X;R) with the structure of a graded-commutative ring: that is, the
cup product ∪ is unital, associative, and satisfies u ∪ v = (−1)ijv ∪ u for u ∈ Hi(X;R)
and v ∈ Hj(X;R). The cup product operation can be realized at the cochain level:
that is, it arises from a map of singular cochain complexes

m : C∗(X;R)⊗R C∗(X;R)→ C∗(X;R)

by passing to cohomology. The map m is unital and associative: that is, it endows the
singular cochain complex C∗(X;R) with the structure of a differential graded algebra
over R. However, it is not commutative (even in the graded sense): if u ∈ Ci(X;R)
and v ∈ Cj(X;R) are cocycles representing cohomology classes u ∈ Hi(X;R) and
v ∈ Hj(X;R), then the identity u ∪ v = (−1)ijv ∪ u guarantees that we can write
m(u, v) = (−1)ijm(v, u) + dε(u, v) for some cochain ε(u, v) ∈ Ci+j−1(X;R), but this
cochain is generally nonzero.

The failure of commutativity at the cochain level can sometimes be avoided by
computing cohomology in a different way.

Example 1.5.3.1 (de Rham Cohomology). Suppose that X is a smooth manifold
and let R be the field of real numbers. A theorem of de Rham supplies a canonical
isomorphism

ρ : H∗DR(X) ' H∗(X; R),

where H∗DR(X) denotes the cohomology of the smooth de Rham complex

0→ Ω0(X)
d−→ Ω1(X)

d−→ Ω2(X)→ · · · .

Moreover, the map ρ can be regarded as an isomorphism of graded rings, where we
equip the de Rham cohomology H∗DR(X) with the ring structure arising from the wedge
product of differential forms. Note that, unlike the cup product, the wedge product
of differential forms satisfies the graded-commutative law ω ∧ ω′ = (−1)ijω′ ∧ ω for
ω ∈ Ωi(X), ω′ ∈ Ωj(X) before passing to cohomology.
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Let us introduce some terminology which axiomatizes some key features of Example
1.5.3.1.

Definition 1.5.3.2. Let R be a commutative ring. A graded-commutative R-algebra
is a graded R-algebra A∗ whose multiplication satisfies the commutativity law xy =
(−1)ijyx for x ∈ Ai and y ∈ Aj . We let CAlggr

R denote the category whose objects are
graded-commutative R-algebras and whose morphisms are homomorphisms of graded
R-algebras.

A commutative differential graded algebra over R is a graded-commutativeR-algebra
A∗ equipped with an R-linear differential d : A∗ → A∗+1 satisfying d2 = 0 and the Leib-
niz rule d(xy) = (dx)y + (−1)ix(dy) for x ∈ Ai. We let CAlgdg

R denote the category
whose objects are commutative differential graded algebras over R and whose mor-
phisms are graded R-algebra homomorphisms f : A∗ → B∗ satisfying df = fd.

Remark 1.5.3.3. Let A = (A∗, d) be a commutative differential graded Lie algebra
over R. Then the cohomology H∗(A) (with respect to the differential d) is a graded-
commutative algebra over R.

Example 1.5.3.4. Let X be a topological space. For any commutative ring R, the
cohomology ring H∗(X;R) is a graded-commutative R-algebra.

Example 1.5.3.5. Let X be a smooth manifold. Then the smooth de Rham complex
Ω∗(X) is a commutative differential graded algebra over the field R of real numbers.

Sullivan observed that there is a variant of Example 1.5.3.5 which makes sense for
an arbitrary topological space X.

Construction 1.5.3.6 (Sullivan). For each n ≥ 0, let

∆n = {(x0, . . . , xn) ∈ R≥0 |x0 + · · ·+ xn = 1}

denote the standard n-simplex and let

∆n
+ = {(x0, . . . , xn) ∈ R |x0 + · · ·+ xn = 1}

denote the affine space containing it. We will say that a differential form ω on ∆n
+

is polynomial if it belongs to the subalgebra of Ω∗(∆n
+) generated (over the rational

numbers) by the functions xi and their differentials dxi.
Let X be an arbitrary topological space and let m ≥ 0 be an integer. A singular

m-form on X is a function

ω : {Continuous maps ∆n → X} → {Polynomial m-forms on ∆n
+}

σ 7→ ωσ
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which satisfies the following constraint: if f : ∆n′ → ∆n is the map of simplices
associated to a nondecreasing function {0 < 1 < . . . < n′} → {0 < 1 < · · · < n}, then
ωσ◦f = ωσ|∆n′

+
. We let Ωm

poly(X) denote the set of all singular m-forms on X.

If ω is a singular m-form on X, then we can define a singular (m + 1)-form dω on
X by the formula (dω)σ = d(ωσ). Using this differential, we can regard

0→ Ω0
poly(X)→ Ω1

poly(X)→ Ω2
poly(X)→ · · ·

as a chain complex of rational vector spaces, which we will refer to as the polynomial de
Rham complex of X and denote by Ω∗poly(X). We regard Ω∗poly(X) as a commutative
differential graded algebra over Q, with multiplication given by (ω ∧ ω′)σ = ωσ ∧ ω′σ.

Let X be a topological space, let m be a nonnegative integer, and let ω be a singular
n-form on X. Then the construction

(σ : ∆n → X) 7→
∫

∆n

ωσ

can be regarded as a singular n-cochain on X with values in Q, which we will denote
by

∫
ω.

Theorem 1.5.3.7 (Sullivan). For any topological space X, the construction ω 7→
∫
ω

induces a quasi-isomorphism of chain complexes∫
: Ω∗poly(X)→ C∗(X; Q).

Moreover, the induced isomorphism on cohomology H∗(Ω∗poly(X)) → H∗(X; Q) is an
isomorphism of graded-commutative rings.

By virtue of Theorem 1.5.3.7, one can regard the polynomial de Rham complex
Ω∗poly(X) as an “improved” version of the singular cochain complex C∗(X; Q): it has
the same cohomology, but has the virtue of seeing the commutativity of the cup product
at the cochain level. This makes the polynomial de Rham complex Ω∗poly(X) a much
more powerful invariant of X. In fact, Sullivan showed that it is a complete invariant
of the rational homotopy type of X. To formulate this precisely, let us introduce a bit
more terminology (which we will use in §1.5.4).

Definition 1.5.3.8 (The Homotopy Category of CAlgdg
Q ). Let f : A = (A∗, d) →

(B∗, d) = B be a morphism of commutative differential graded algebras over Q. We
will say that f is a quasi-isomorphism if it is a quasi-isomorphism of the underlying
chain complexes: that is, if the induced map H∗(A) → H∗(B) is an isomorphism of

graded-commutative Q-algebras. We let hCAlgdg
Q denote the category obtained from

CAlgdg
Q by formally inverting all quasi-isomorphisms. We will refer to hCAlgdg

Q as the
homotopy category of commutative differential graded algebras over Q.
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Definition 1.5.3.9 (The Rational Homotopy Category). Let f : X → Y be a map
of simply connected topological spaces. We will say that f is a rational homotopy
equivalence if the induced map of rational cohomology rings f∗ : H∗(Y ; Q)→ H∗(X; Q)
is an isomorphism. We let HQ denote the category obtained from the category of simply
connected topological spaces by inverting all rational homotopy equivalences.

It follows immediately from Theorem 1.5.3.7 that any rational homotopy equivalence
f : X → Y induces a quasi-isomorphism of polynomial de Rham complexes f∗ :
Ω∗poly(Y )→ Ω∗poly(X). Consequently, the formation of polynomial de Rham complexes
determines a functor of homotopy categories

Ω∗poly : Hop
Q → hCAlgdg

Q .

Theorem 1.5.3.10 (Sullivan). The functor Ω∗poly : H
op
Q → hCAlgdg

Q is fully faith-

ful when restricted to the full subcategory of H
op
Q spanned by those simply connected

topological spaces X for which the cohomology H∗(X; Q) is finite-dimensional in each
degree.

Remark 1.5.3.11. Using Theorem 1.5.3.10, one can reduce topological questions
about the rational homotopy category HQ to more concrete questions about the struc-
ture of commutative differential graded algebras. This is one starting point for the
theory of rational homotopy theory. Our interests in this book lie in a somewhat
orthogonal direction: we will be interested in the theory of commutative differential
graded algebras (and its mixed characteristic incarnation as the theory of E∞-algebras)
in its own right, rather than as a tool for capturing topological information.

Warning 1.5.3.12. In the statement of Theorem 1.5.3.7, it is essential that we work
over the field Q of rational numbers (or over some ring which contains Q). The proof of
Theorem 1.5.3.7 requires us to integrate polynomial differential forms, and integration
of polynomials introduces denominators. When not working rationally, the failure of
cup product to be commutative at the cochain level is an unavoidable phenomenon:
when R = Z/pZ, it is responsible for the existence of Steenrod operations on the
cohomology H∗(X;R). In general, we cannot hope to (functorially) replace the cochain
complex C∗(X;R) by a commutative differential graded algebra over R (however, we
can equip C∗(X;R) with the structure of an E∞-algebra over R, which is an appropriate
replacement in many contexts; see §3.1.4).

1.5.4 The Product Formula

Let us now return to the situation of interest to us. Let X be an algebraic curve over
the field C of complex numbers, and let G be a smooth affine group scheme over X
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whose fibers are semisimple and simply connected. In this case, we take classifying
spaces fiberwise to obtain a fibration π : BG → X. Moreover, the homotopy type of
the moduli stack BunG(X) can be identified with the space Sectπ(X) of continuous
sections of π (Variant 1.5.1.4). The problem of computing the cohomology of BunG(X)
can therefore be regarded as a special case of the following:

Question 1.5.4.1. Let π : E → X be a fibration of topological spaces and let Sectπ(X)
denote the space of sections of π. How can we describe the rational cohomology ring
H∗(Sectπ(X); Q)?

To fix ideas, let us assume that X is a manifold (remember that we are primarily
interested in the case where X is a Riemann surface). We would like to give an answer
to Question 1.5.4.1 which is in the spirit of a Künneth formula. Roughly speaking, we
can think of the Sectπ(X) as a “continuous” product

∏
x∈X Ex, where Ex = π−1{x}

denotes the fiber of π over the point x. We might then expect that the cohomology
ring H∗(Sectπ(X); Q) can be described as a tensor product of the cohomology rings
{H∗(Ex; Q)}x∈X . Let us begin with a crude attempt to make this precise.

Remark 1.5.4.2. LetA∗ andB∗ be graded-commutative Q-algebras (Definition 1.5.3.2).
Then the tensor product A∗ ⊗Q B∗ inherits the structure of a graded-commutative Q-
algebra, with multiplication given by

(a⊗ b)(a′ ⊗ b′) = (−1)ij(aa′ ⊗ bb′) for a′ ∈ Ai and b ∈ Bj .

Note that we have canonical maps A∗ → A∗ ⊗Q B∗ ← B∗, which exhibit A∗ ⊗Q B∗ as
the coproduct of A∗ and B∗ in the category CAlggr

Q.

Warning 1.5.4.3. Let A∗ and B∗ be graded-commutative Q-algebras. Then we can
equip the tensor product A∗ ⊗Q B∗ with the structure of a graded Q-algebra, whose
multiplication is given by

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′. (1.9)

Beware that, with respect to this multiplication, A∗ ⊗Q B∗ is generally not graded-
commutative. In what follows, we will always regard tensor products of graded-
commutative algebras as equipped with the multiplication described in Remark 1.5.4.2,
rather than the multiplication described in equation (1.9).

Construction 1.5.4.4 (Infinite Tensor Products: Algebraic Version). Let {A∗x}x∈X be

a collection of graded-commutative Q-algebras indexed by a set X. We let
⊗alg

x∈X A
∗
x

denote the coproduct of the collection {A∗x}x∈X , formed in the category CAlgdg
Q . By
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definition, the tensor product
⊗alg

x∈X A
∗
x is characterized by the following universal

property: for any graded-commutative Q-algebra B∗, we have a canonical bijection

Hom(

alg⊗
x∈X

A∗x, B
∗) '

∏
x∈X

Hom(A∗x, B
∗),

where the Hom-sets are taken in the category CAlgdg
Q .

More concretely, the infinite tensor product
⊗alg

x∈X A
∗
x can be described as the (fil-

tered) direct limit lim−→S⊆X
⊗

x∈S A
∗
x, where S ranges over all finite subsets of X and

the finite tensor products
⊗

x∈S A
∗
x can be described by iterating the construction of

Example 1.5.4.2.

Let us now return to Question 1.5.4.1. Suppose we are given a fibration of topo-
logical spaces π : E → X. For each point x ∈ X, evaluation at x determines a
continuous map ex : Sectπ(X) → Ex, which induces a pullback map on cohomology

ρalg
x : H∗(Ex; Q) → H∗(Sectπ(X); Q). Amalgamating the homomorphisms ρx, we ob-

tain a map

ρalg
X :

alg⊗
x∈X

H∗(Ex; Q)→ H∗(Sectπ(X); Q).

If X is a finite set (with the discrete topology) and the rational cohomology of each Ex
is finite-dimensional in each degree, then ρalg

X is an isomorphism: this follows from the

Künneth formula. However, the map ρalg
X is usually very far from being an isomorphism.

Note that if p : [0, 1]→ X is a path beginning at a point p(0) = x and ending at a point
p(1) = y, then transport along p determines a homotopy equivalence γ : Ex → Ey, and
therefore an isomorphism of cohomology rings γ∗ : H∗(Ey; Q)→ H∗(Ex; Q). This map
fits into a commutative diagram

H∗(Ey; Q)
γ∗ //

ρalg
y ((

H∗(Ex; Q)

ρalg
xvv

H∗(Sectπ(X); Q).

This has several unpleasant consequences:

(a) In general, the map ρalg
X has an enormous kernel. For example, ρalg

X annihilates
u− γ∗(u), for any element u ∈ H∗(Ey; Q).

(b) If X is connected, then the image of ρalg
X is the same as the image of ρalg

x , for any
chosen point x ∈ X.
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However, it turns out that failure of ρalg
X to be an isomorphism stems from the fact that

our definition of the tensor product

alg⊗
x∈X

H∗(Ex; Q) = lim−→
S⊆X

⊗
x∈S

H∗(Ex; Q) (1.10)

is too naive: it completely neglects the topology on the spaceX. We can get a much bet-
ter approximation to the cohomology ring H∗(Sectπ(X); Q) by introducing a homotopy-
theoretic enhancement of the right hand side of (1.10), which differs from the algebraic
tensor product in three (closely related) ways:

(i) In place of the cohomology rings H∗(Ex; Q), we work with polynomial de Rham
complexes Ω∗poly(Ex) of Construction 1.5.3.6 (before passing to cohomology).

(ii) Rather than taking a coproduct indexed by the points of X, we consider instead
a colimit indexed by the partially ordered set of open disks U ⊆ X. Roughly
speaking, this has the effect of “turning on” the topology of X, by allowing its
points to move.

(iii) Rather than working with colimits in the category CAlggr
Q of graded-commutative

Q-algebras, we consider homotopy colimits in the category CAlgdg
Q of commutative

differential graded algebras.

We begin by elaborating on (iii).

Definition 1.5.4.5 (Homotopy Colimits). Let J be a small category and consider the

category Fun(J,CAlgdg
Q ) of functors from J to the category CAlgdg

Q of commutative
differential graded algebras over Q (Definition 1.5.3.2). For every commutative differ-

ential graded algebra A, we let A ∈ Fun(J,CAlgdg
Q ) denote the constant functor taking

the value A.
Let u : F → G be a morphism in the category Fun(J,CAlgdg

Q ), which we regard

as a natural transformation between functors F,G : J → CAlgdg
Q . We will say that u

is a quasi-isomorphism if, for every object J ∈ J, the induced map F (J) → G(J) is
a quasi-isomorphism of commutative differential graded algebras (Definition 1.5.3.8).

We let hFun(J,CAlgdg
Q ) denote the category obtained from Fun(J,CAlgdg

Q ) by formally
inverting all quasi-isomorphisms.

Suppose that we are given a functor F : J→ CAlgdg
Q and a natural transformation

u : F → A, for some fixed commutative differential graded algebra A ∈ CAlgdg
Q . We will

say that u exhibits A as a homotopy colimit of F if, for every commutative differential
graded algebra B, composition with u induces a bijection

Hom
hCAlgdg

Q
(A,B)→ Hom

hFun(J,CAlgdg
Q )

(F,B).
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Remark 1.5.4.6. Let J be a small category. It follows immediately from the definitions
that if a functor F : J → CAlgdg

Q admits a homotopy colimit A, then A is determined

up to canonical isomorphism as an object of the homotopy category hCAlgdg
Q . One can

show that every functor F : J→ CAlgdg
Q is quasi-isomorphic to a functor which admits

a homotopy colimit. More precisely, the formation of homotopy colimits determines a
functor

hocolim : hFun(J,CAlgdg
Q )→ hCAlgdg

Q

which is left adjoint to the diagonal map

hCAlgdg
Q → hFun(J,CAlgdg

Q ) A 7→ A.

Warning 1.5.4.7. For every small category J, there is an evident comparison functor
φ : hFun(J,CAlgdg

Q ) → Fun(J,hCAlgdg
Q ). Beware that φ is usually very far from being

an equivalence of categories (in general it is neither faithful, nor full, nor essentially
surjective). Consequently, the notion of homotopy colimit (introduced in Definition

1.5.4.5) is not the same as the notion of colimit in the homotopy category hCAlgdg
Q .

The latter notion is not very well-behaved. For example, every functor F : J→ CAlgdg
Q

admits a homotopy colimit (at least after replacing F by a quasi-isomorphic functor),
but it is fairly uncommon for there to exist a colimit of the induced functor J →
hCAlgdg

Q .

We now use the theory of homotopy colimits to introduce a homotopy-theoretic
refinement of the algebraic tensor product

⊗alg
x∈X H∗(Ex; Q) considered above.

Construction 1.5.4.8 (Continuous Tensor Product). Let π : E → X be a fibration
of topological spaces, where X is a manifold of dimension d, and let U0(X) denote the
collection of open subsets of X which are homeomorphic to the Euclidean space Rd.
For each open set U ⊆ X, we let Sectπ(U) denote the space of sections of the projection
map E ×X U → U . Note that an inclusion of open sets U ⊆ V induces a restriction
map Sectπ(V ) → Sectπ(U), and therefore a map of polynomial de Rham complexes
Ω∗poly(Sectπ(U)) → Ω∗poly(Sectπ(V )). We can therefore regard the construction U 7→
Ω∗poly(Sectπ(U)) as a functor B : U0(X)→ CAlgdg

Q . We let
⊗

x∈X C
∗(Ex; Q) denote the

homotopy colimit of the functor B, in the sense of Remark 1.5.4.6: that is, the image
of B under the left adjoint of the diagonal map hCAlgdg

Q → hFun(U0(X),CAlgdg
Q ).

Remark 1.5.4.9. Let π : E → X be as in Construction 1.5.4.8. For each open disk
U ∈ U0(X) containing a point x ∈ U , we have canonical quasi-isomorphisms of cochain
complexes

Ω∗poly(Sectπ(U))→ C∗(Sectπ(U); Q)← C∗(Ex; Q)
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(the first by virtue of Theorem 1.5.3.7, and the second because evaluation at x induces
a homotopy equivalence Sectπ(U) → Ex). Consequently, we can view Construction

1.5.4.8 as an analogue of the algebraic tensor product
⊗alg

x∈X H∗(Ex; Q), where we
replace colimits in the category of graded-commutative algebras (indexed by the collec-
tion of points x ∈ X) by homotopy colimits in the category of commutative differential
graded algebras (indexed by the collection of open disks in X).

In the situation of Construction 1.5.4.8, the continuous tensor product⊗
x∈X

C∗(Ex; Q)

is well-defined only up to quasi-isomorphism (that is, up to isomorphism in the homo-

topy category hCAlgdg
Q ). However, there is an obvious candidate for a representative

of
⊗

x∈X C
∗(Ex; Q). For each U ∈ U0(X), the inclusion U ⊆ X induces a map of

commutative differential graded algebras

B(U)→ Ω∗poly(Sectπ(U))→ Ω∗poly(Sectπ(X)),

depending functorially on U . This collection of maps then classifies a comparison map

ρX :
⊗
x∈X

C∗(Ex; Q) = hocolim(B)→ Ω∗poly(Sectπ(X))

in the homotopy category hCAlgdg
Q , which we can regard as a continuous analogue of

the map

ρalg
X :

alg⊗
x∈X

H∗(Ex; Q)→ H∗(Sectπ(X); Q)

considered above. However, the map ρX is much better behaved than its algebraic
analogue:

Theorem 1.5.4.10 (The Product Formula). Let X be a compact manifold of dimension
d and π : E → X be a fibration. Assume that for each x ∈ X, the fiber Ex is d-connected
and that the cohomology groups H∗(Ex; Q) are finite-dimensional in each degree. Then
the comparison map

ρX :
⊗
x∈X

C∗(Ex; Q)→ Ω∗poly(Sectπ(X))

is a quasi-isomorphism of commutative differential graded algebras. More precisely, the
evident natural transformation of functors B→ Ω∗poly(Sectπ(X)) exhibits Ω∗poly(Sectπ(X))

as a homotopy colimit of the diagram B, in the sense of Definition 1.5.4.5.
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Remark 1.5.4.11. Let π : E → X as in Theorem 1.5.4.10. We can state the product
formula more informally by saying that there is a canonical quasi-isomorphism of chain
complexes ⊗

x∈X
C∗(Ex; Q)→ C∗(Sectπ(X); Q)

(by virtue of Theorem 1.5.3.7).

Remark 1.5.4.12. In the statement of Theorem 1.5.4.10, the hypothesis that X is a
compact manifold is not very important: one can formulate a similar statement for any
topological space X which is homotopy equivalent to a finite cell complex of dimension
≤ d (see Remark 3.1.7.4).

Example 1.5.4.13. In the special case d = 0, Theorem 1.5.4.10 reduces to the Künneth
formula for rational cohomology.

Remark 1.5.4.14. In §3.1.7, we will formulate an analogue of Theorem 1.5.4.10 for
cohomology with coefficients in any commutative ring Λ (Theorem 3.1.7.3).

Example 1.5.4.15. Let X be an algebraic curve over C (which we identify with the
Riemann surface X(C)), let G be a semisimple group scheme over X whose fibers are
simply connected, and let π : E → X be the fibration whose fibers are the classifying
spaces of the fibers of G. Combining Theorem 1.5.4.10 with a Variant 1.5.1.4, we obtain
a canonical quasi-isomorphism of differential graded algebras⊗

x∈X
C∗(BGx; Q)→ C∗(BunG(X); Q).

Warning 1.5.4.16. In the statement of Theorem 1.5.4.10, the connectivity assumption
on the fibers of the map π : E → X is essential. For example, suppose that π is the
fibration of Example 1.5.4.15, where G is a semisimple group scheme over X which
is not simply connected. In this case, replacing G by its universal cover does not
change the continuous tensor product

⊗
x∈X C

∗(BGx; Q), but can change the number
of connected components of the moduli stack BunG(X).

1.5.5 Proof of the Product Formula

We now turn to the proof of Theorem 1.5.4.10. Since neither Theorem 1.5.4.10 nor
its proof plays any logical role in our proof of Weil’s conjecture, we will provide only
an informal sketch. Let π : E → X be a fibration of topological spaces, where X is
a compact manifold of dimension d and the fibers Ex = E ×X {x} are d-connected
topological spaces whose rational cohomology groups H∗(Ex; Q) are finite-dimensional
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in each degree. We will assume for simplicity that the manifold X is smooth and
connected.

For each open set U ⊆ X, we let
⊗

x∈U C
∗(Ex; Q) denote the homotopy colimit

hocolimV ∈U0(U) Ω∗poly(Sectπ(V )),

which we regard as a commutative differential graded algebra over Q. Using the uni-
versal property of the homotopy colimit, we obtain a tautological comparison map

ρU :
⊗
x∈U

C∗(Ex; Q)→ Ω∗poly(Sectπ(U)).

Let us say that the open set U is good if the cohomology groups H∗(Sectπ(U); Q) are
finite-dimensional in each degree and the map ρU is a quasi-isomorphism. To prove
Theorem 1.5.4.10, we must show that the manifold X is good (when regarded as an
open subset of itself).

Note that if U ⊆ X is an open disk, then the collection of open sets U0(U) contains
U itself (as a largest element). From this, we immediately deduce that every open disk
U ⊆ X is good. Moreover, it is easy to see that the empty set ∅ ⊆ X is good. Using
standard covering arguments, we can reduce to proving the following:

(∗) If U and V are good open subsets of X for which the intersection U ∩ V is good,
then the union U ∪ V is also good.

We now observe that if U and V are as in (∗), then functoriality determines a commu-
tative diagram σ : ⊗

x∈U∩V C
∗(Ex; Q) //

��

⊗
x∈U C

∗(Ex; Q)

��⊗
x∈V C

∗(Ex; Q) //
⊗

x∈U∪V C
∗(Ex; Q),

which is well-defined up to quasi-isomorphism. It follows by relatively formal arguments
that σ is a homotopy pushout square: that is, it exhibits the continuous tensor product⊗

x∈U∪V C
∗(Ex; Q) as a homotopy colimit of the diagram⊗

x∈U
C∗(Ex; Q)←

⊗
x∈U∩V

C∗(Ex; Q)→
⊗
x∈V

C∗(Ex; Q)

(in the sense of Definition 1.5.4.5). Consequently, to deduce that ρU∪V is good, it will
suffice to show that the diagram

Ω∗poly(Sectπ(U ∩ V )) //

��

Ω∗poly(Sectπ(U))

��
Ω∗poly(Sectπ(V )) // Ω∗poly(Sectπ(U ∪ V )
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is also a homotopy pushout square. This (and the finite-dimensionality of the coho-
mology groups H∗(Sectπ(U ∪V ); Q)) follow from the convergence of the cohomological
Eilenberg-Moore spectral sequence for the homotopy pullback diagram

Sectπ(U ∪ V ) //

��

Sectπ(U)

��
Sectπ(V ) // Sectπ(U ∩ V ).

Here the space Sectπ(U ∩ V ) is simply connected, because the fibers of π are assumed
to be d-connected and U ∩ V is homotopy equivalent to a cell complex of dimension
< d (except in the trivial case U = V = X, in which case there is nothing to prove).

1.5.6 Proof of the Atiyah-Bott Formula

Let X be an algebraic curve over the field C of complex numbers and let G be a smooth
affine group scheme over X, whose fibers are semisimple and simply connected. Then
the product formula of Theorem 1.5.4.10 supplies a canonical quasi-isomorphism⊗

x∈X
C∗(BGx; Q) ' C∗(BunG(X); Q) (1.11)

(see Example 1.5.4.15). In theory, this quasi-isomorphism gives a complete description
of the cohomology ring H∗(BunG(X); Q) in terms of data which is “local” on the curve
X. Our goal in this section is to translate theory into practice by explaining that, in
the case where the group scheme G is constant, (1.11) is essentially equivalent to the
classical Atiyah-Bott formula (Theorem 1.5.2.3). If the group scheme G is not constant,
then it is more difficult to extract concrete information about H∗(BunG(X); Q) from
(1.11). Nevertheless, we will show in Chapter 4 that the analysis of this section can be
adapted to describe the cohomology groups of the successive quotients in an appropriate
filtration of C∗(BunG(X); Q) (which comprise the second page of a spectral sequence
converging to H∗(BunG(X); Q)).

We begin with some general remarks.

Notation 1.5.6.1 (Homotopy Colimits of Chain Complexes). Let Vectdg
Q denote the

category of cochain complexes of rational vector spaces. We let hVectdg
Q denote the

homotopy category of Vectdg
Q (obtained from Vectdg

Q by formally adjoining inverses to
quasi-isomorphisms).

For every small category J, we let Fun(J,Vectdg
Q ) denote the category of functors

from J to Vectdg
Q , and let hFun(J,Vectdg

Q ) be the homotopy category obtained from

Fun(J,Vectdg
Q ) by formally inverting all quasi-isomorphisms. One can show that the
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diagonal map hVectdg
Q → hFun(J,Vectdg

Q ) admits a left adjoint, which we will refer to
as the homotopy colimit functor and denote by

hocolim : hFun(J,Vectdg
Q )→ hVectdg

Q .

Remark 1.5.6.2. Every cochain complex V = (V ∗, d) in Vectdg
Q is (noncanonically)

quasi-isomorphic to its cohomology H∗(V ), regarded as a chain complex with trivial

differential. Using this observation, one can show that the homotopy category hVectdg
Q

is equivalent to the category of graded vector spaces over Q.

Example 1.5.6.3 (The Homotopy Colimit of a Constant Functor). Let J be a small

category and let F : J → Vectdg
Q be the constant functor taking the value Q. In this

case, one can identify the homotopy colimit hocolim(F ) with the rational chain complex
C∗(N(J); Q), where N(J) is the nerve of the category J (see Example 2.1.2.3). More

generally, if F : J → Vectdg
Q is the constant functor taking any value V ∈ Vectdg

Q , then
we have a canonical quasi-isomorphism hocolim(F ) ' C∗(N(J); Q)⊗Q V .

Remark 1.5.6.4. In the situation of Example 1.5.6.3, suppose that J = U0(X) is
the partially ordered set of open disks in a manifold X. Then the nerve N(U0(X)) is
canonically homotopy equivalent to X (this follows formally from the fact that every
point of X has a neighborhood basis of open disks). Consequently, the homotopy
colimit hocolim(F ) appearing in Example 1.5.6.3 can be identified with the rational
chain complex C∗(X; Q).

Construction 1.5.6.5 (Symmetric Algebras). Let V = (V ∗, d) be a cochain complex
of vector spaces over Q. Then the symmetric algebra Sym∗(V ) inherits the structure of
a commutative differential graded algebra over Q. Moreover, the functor V 7→ Sym∗(V )
carries quasi-isomorphisms to quasi-isomorphisms, and therefore induces a functor on
homotopy categories

Sym∗ : hVectdg
Q → hCAlgdg

Q .

Remark 1.5.6.6. The symmetric algebra functor Sym∗ : Vectdg
Q → CAlgdg

Q is an exam-
ple of a left Quillen functor between model categories. It follows that Sym∗ commutes
with homotopy colimits. More precisely, for any small category J, the diagram

hFun(J,Vectdg
Q )

hocolim//

Sym∗

��

hVectdg
Q

Sym∗

��

hFun(J,CAlgdg
Q )

hocolim// hCAlgdg
Q

commutes up to canonical isomorphism, where the upper horizontal map is defined in
Notation 1.5.6.1 and the lower horizontal map is defined in Remark 1.5.4.6.
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Proposition 1.5.6.7. Let A = (A∗, d) be a commutative differential graded algebra
over Q. The following conditions are equivalent:

(a) There exists a graded vector space V and an isomorphism of graded rings α :
Sym∗(V )→ H∗(A).

(b) There exists a graded vector space V and a quasi-isomorphism of commutative
differential graded algebras β : Sym∗(V ) → A (where the domain has trivial
differential).

Proof. The implication (b) ⇒ (a) is obvious. Conversely, suppose that there exists a
graded vector space V and an isomorphism α : Sym∗(V ) → H∗(A). Let {vi}i∈I be a
basis of V , where each vi is homogeneous of degree di for some integer di. Then each
α(vi) can be represented by some cocycle ai ∈ Adi . There is a unique morphism of
differential graded algebras β : Sym∗(V ) → A satisfying β(vi) = ai. By construction,
the map β induces α after passing to cohomology, and is therefore a quasi-isomorphism.

Example 1.5.6.8. Let G be a connected linear algebraic group over C. Then the ra-
tional cohomology H∗(BG; Q) of the classifying space BG is isomorphic to a symmetric
algebra Sym∗(V ) (Proposition 1.5.2.1). Applying Proposition 1.5.6.7, we deduce that
the polynomial de Rham complex Ω∗poly(BG) is quasi-isomorphic to Sym∗(V ).

Proof of Theorem 1.5.2.3. Let X be an algebraic curve over C (which we identify with
its underlying Riemann surface X(C)), let G be a simply connected linear algebraic
group over C, and let π : X × BG → X be the projection map. For every open set
U ⊆ X, we have a diagonal embedding δ : BG → Sectπ(U), which is a homotopy
equivalence if U is contractible. Using Example 1.5.6.8, we can choose a graded vec-
tor space V and a quasi-isomorphism of differential graded algebras α : Sym∗(V ) →
Ω∗poly(BG). Let V denote the constant functor U0(X)→ Vectdg

Q with the value V and

let B : U0(X) → CAlgdg
Q denote the functor given by B(U) = Ω∗poly(Sectπ(U)) (as in

Construction 1.5.4.8), so that α induces a quasi-isomorphism Sym∗(V )→ B in the cat-

egory Fun(U0(X),CAlgdg
Q ). Combining Remark 1.5.6.4, Remark 1.5.6.6, and Theorem

1.5.4.10, we obtain canonical quasi-isomorphisms

Sym∗(C∗(X; Q)⊗Q V ) ' Sym∗(hocolimV )

← hocolim(Sym∗(V ))

→ hocolim(B)

=
⊗
x∈X

C∗(BG; Q)

→ Ω∗poly(Map(X,BG)).
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Passing to cohomology, we obtain an isomorphism

Sym∗(H∗(X; Q)⊗Q V ) ' H∗(Map(X,BG); Q),

which is easily seen to coincide with the map appearing in the statement of Theorem
1.5.2.3.

1.6 Summary of This Book

Our goal in this book is to prove Weil’s conjecture for function fields as articulated in
Conjecture 1.3.3.7: if X is an algebraic curve over a finite field Fq and G is a smooth
affine group scheme over X with connected fibers whose generic fiber is semisimple and
simply connected, then we have an equality

|TorsG(X)|
qdim(BunG(X))

=
∏
x∈X

|κ(x)|d

|G(κ(x))|
. (1.12)

As explained in §1.4, we will achieve this by comparing both sides with the trace of the
arithmetic Frobenius on the `-adic cohomology of BunG(X), whereX = Spec(Fq)×Spec(Fq)

X. Consequently, our proof can be broken naturally into two steps:

(a) Showing that the trace Tr(Frob−1 |H∗(BunG(X); Z`)) is equal to the Euler prod-

uct
∏
x∈X

|κ(x)|n
|G(κ(x))| (Theorem 1.4.4.1).

(b) Showing that the moduli stack BunG(X) satisfies the Grothendieck-Lefschetz

trace formula |TorsG(X)|
qdim(BunG(X)) = Tr(Frob−1 |H∗(BunG(X); Z`)) (Theorem 1.4.3.3).

The majority of this book is devoted to step (a). Let us consider a more general
situation, where X is an algebraic curve over an arbitrary algebraically closed field k.
In the case where k = C is the field of complex numbers and the group scheme G
is everywhere semisimple, Theorem 1.5.4.10 asserts that the rational cochain complex
C∗(BunG(X); Q) can be realized as a continuous tensor product

⊗
x∈X C

∗(BGx; Q)
(in the sense of Construction 1.5.4.8). The main ingredient in our proof of Weil’s
conjecture is a purely algebro-geometric version of this result, which makes sense over
any algebraically closed field k (where we replace singular cohomology with `-adic
cohomology, for any prime number ` which does not vanish in k). Heuristically, this
result asserts that there is a canonical quasi-isomorphism of `-adic cochain complexes⊗

x∈X

C∗(BGx; Z`)
∼−→ C∗(BunG(X); Z`). (1.13)
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Our first objective is to give a rigorous definition of both sides appearing in (1.13).
In Chapter 3, we associate to each algebraic stack Y over k a chain complex of Z`-
modules C∗(Y; Z`), which we refer to as the `-adic cochain complex of Y (Construc-
tion 3.2.5.1). In particular, this allows us to contemplate the `-adic cochain complex
C∗(BunG(X); Z`) as well as each individual factor C∗(BGx; Z`) appearing on the left
hand side of (1.13). To make precise sense of the tensor product

⊗
x∈X C

∗(BGx; Z`),
we will need to exploit some additional structure. Recall that Construction 1.5.4.8
made use of the observation that for any topological space Y , the rational cochain
complex C∗(Y ; Q) is quasi-isomorphic to the commutative differential graded algebra
Ω∗poly(Y ). This has a parallel in the `-adic setting: for any algebraic stack Y over k, the
`-adic cochain complex C∗(Y; Z`) can be viewed as an E∞-algebra over Z` (see §3.1 for
a review of the theory of E∞-algebras). We can therefore view {C∗(BGx; Z`)}x∈X as

a family of E∞-algebras, parametrized by the points of X. In §3.4, we show that this
family can itself be regarded as an E∞-algebra in the setting of `-adic sheaves on X
(Theorem 3.4.0.3), which we denote by [BG]X . Using this observation, we can make
sense of the tensor product

⊗
x∈X C

∗(BGx; Z`): it is defined to be an E∞-algebra A
over Z` which is universal among those which admit a map of commutative algebras
[BG]X → ωX ⊗ A (where A denotes the constant `-adic sheaf on X with the value
A). We will denote this universal E∞-algebra A by

∫
X [BG]X and refer to it as the

factorization homology of [BG]X (Definition 4.1.1.3).

In the preceding discussion, we have indulged in an abuse of terminology which will
be ubiquitous in this book: though we refer to the object [BG]X as an `-adic sheaf, it
really belongs to a suitable derived category of `-adic sheaves on X. This forces us to
walk a delicate line. On the one hand, we will need to make use of many sheaf-theoretic
constructions that are really well-defined only up to quasi-isomorphism. For example,
the algebra structure on [BG]X is encoded by a map

m : ∆!([BG]X � [BG]X)→ [BG]X ,

where ∆! is the exceptional inverse image functor associated to the diagonal embedding
∆ : X → X×Spec(k)X. This functor is well-defined at the level of derived categories, but
is not t-exact (and is therefore difficult to work with at the level of individual sheaves).
On the other hand, passage to the derived category involves a loss of information that
we cannot afford. To construct the factorization homology

∫
X [BG]X , it is not enough

to view [BG]X as a commutative algebra in the derived category of `-adic sheaves
on X: we need to use the fact that the multiplication map m above is commutative
and associative up to coherent homotopy, rather than merely up to homotopy. We
will reconcile these requirements by systematically using the theory of ∞-categories,
as developed in [25] and [23]. For the reader’s convenience, we review this theory in
§2.1. In addition, in §2.2 and §2.3, we review the theory of étale and `-adic sheaves,
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emphasizing the ∞-categorical point of view. In particular, we introduce in §2.3 an
∞-category of constructible `-adic sheaves, which does not seem to have appeared
explicitly in the existing literature.

In Chapter 4, we return to the proof of Theorem 1.4.4.1. Using the formalism
developed in Chapters 2 and 3, we construct a canonical map∫

X
[BG]X

ρ−→ C∗(BunG(X); Z`) (1.14)

and assert (without proof) that it is a quasi-isomorphism (Theorem 4.1.2.1). The
remainder of Chapter 4 is devoted to showing that, in the special case where X and G
are defined over a finite field Fq, we can then deduce the numerical equality

∏
x∈X

|κ(x)|n

|G(κ(x))|
= Tr(Frob−1 |H∗(BunG(X); Z`)). (1.15)

Heuristically, one can deduce (1.15) from the quasi-isomorphism (1.14) by passing to
cohomology groups and taking the trace of Frobenius. This heuristic does not translate
directly into a proof, because one encounters certain convergence issues when rearrang-
ing infinite sums. We proceed instead by using the theory of Koszul duality to translate
the quasi-isomorphism of (1.14) to a statement concerning the motive G relative to X
(see Construction 4.5.1.1), from which we deduce (1.15) by applying the Grothendieck-
Lefschetz trace formula.

Chapter 5 of this book is devoted to the proof of the Grothendieck-Lefschetz trace
formula for the moduli stack BunG(X) (Theorem 1.4.3.3), and is mostly independent of
the rest of this book. Roughly speaking, the strategy is to choose a suitable stratification
of BunG(X) by locally closed substacks {Xα}α∈A, where each Xα can be realized as a
global quotient stack Yα/Hα. By applying the classical Grothendieck-Lefschetz trace
formula to Yα and Hα, one can deduce that each Xα satisfies the Grothendieck-Lefschetz
trace formula (Proposition 5.1.0.1). This formally implies that BunG(X) also satisfies
the Grothendieck-Lefschetz trace formula, provided that the eigenvalues of Frobenius
on the cohomology of the stacks Spec(Fq) ×Spec(Fq) Xα decay quickly as α varies (see
Proposition 5.2.2.3). In the case where the group scheme G is everywhere reductive,
Behrend proved the Grothendieck-Lefschetz trace formula for BunG(X) by applying this
strategy to the Harder-Narasimhan stratification of BunG(X) (see Theorem 5.3.2.2).
We generalize this argument to the case where G fails to be semisimple at finitely many
points (Theorem 5.0.0.3) by exploiting the relationship between G-bundles on X and
on finite (possibly ramified) covers of X.

Warning 1.6.0.1. The preceding discussion can be summarized as follows: the goal
of this book is to give a precise formulation of a geometric product formula (Theorem
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4.1.2.1, which asserts that the map ρ of (1.15) is a quasi-isomorphism), and to show
that it implies the function field case of Weil’s conjecture. The proof of Theorem 4.1.2.1
is not given here, but will appear in a sequel volume. Note that Theorem 4.1.2.1 is an
algebro-geometric analogue of Theorem 1.5.4.10, whose proof was sketched in §1.5.5.
Our argument made essential use of the local contractibility of the analytic topology of
a Riemann surface, which has no obvious analogue in the setting of algebraic geometry.
Our proof of Theorem 4.1.2.1 is much more indirect, and relies on some relatively
sophisticated geometric ideas (such as the use of Verdier duality on the Ran space
Ran(X) of the algebraic curve X) which are outside the scope of the present volume.
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Chapter 2

The Formalism of `-adic Sheaves

Let k be an algebraically closed field, let X be an algebraic curve over k, and let G be
a smooth affine group scheme over X. For each closed point x ∈ X, let Gx denote the
fiber of G at x and let BGx denote its classifying stack. One of our principal aims in
this book is to make sense of the idea that (under mild hypotheses) the cohomology of
BunG(X) should admit a “continuous” Künneth decomposition⊗

x∈X
H∗(BGx) ' H∗(BunG(X)). (2.1)

In §1.5, we gave a precise formulation of this heuristic (see Example 1.5.4.15) in the
case where k = C is the field of complex numbers, the fibers of G are semisimple and
simply connected, and cohomology is taken to mean singular cohomology (since the
algebraic stacks BunG(X) and BGx have underlying homotopy types). Let us recall
several key features of our approach:

(a) To make sense of the continuous tensor product appearing on the left hand side
of (2.1), it was important to work at the level of cochain complexes, rather than
at the level of cohomology. Consequently, it would be more accurate to say that
§1.5 outlined the construction of a quasi-isomorphism

α :
⊗
x∈X

C∗(BGx; Q)→ C∗(BunG(X); Q). (2.2)

(b) Our definition of the continuous tensor product
⊗

x∈X C
∗(BGx; Q) made use of

the fact that the cochain complexes C∗(BGx; Q) can be equipped with additional
structures, which are cochain level refinements of the cup product on cohomology.
In the setting of §1.5, this was articulated by replacing the rational cochain com-
plexes C∗(Y ; Q) by the polynomial de Rham complexes Ω∗poly(Y ) of Construction
1.5.3.6.

71



72 CHAPTER 2. THE FORMALISM OF `-ADIC SHEAVES

(c) To define the continuous tensor product
⊗

x∈X C
∗(BGx; Q), it was important

to regard the individual factors C∗(BGx; Q) as depending “continuously” on the
parameter x. In the setting of §1.5, this continuity was encoded by the functor
B of Construction 1.5.4.8.

For applications to Weil’s conjecture, we would like to make sense of (2.1) in the case
where k is the algebraic closure of a finite field Fq (and the curve X and group scheme
G are both defined over Fq). In this situation, the language of singular cohomology
is not available and we instead work with `-adic cohomology, where ` is some prime
number which is invertible in k. In Chapter 4, we will formulate a version of (2.1) in
the `-adic setting (Theorem 4.1.2.1). This result will share the essential features of its
classical avatar:

(a′) To make sense of the left hand side of (2.1) in the `-adic setting, we will need to
understand the theory of `-adic cohomology at the cochain level. In other words,
we need to refine the construction (x ∈ X) 7→ H∗(BGx; Q`) to a construction
(x ∈ X) 7→ C∗(BGx; Q`), where C∗(BGx; Q`) is some cochain complex of Q`-
modules whose cohomology can be identified with H∗(BGx; Q`).

(b′) We will need to exploit the existence of algebraic structures on the `-adic cochain
complexes C∗(BGx; Q`), which refine the cup product maps ∪ : Hi(BGx; Q`) ×
Hj(BGx; Q`)→ Hi+j(BGx; Q`).

(c′) We will need to regard the `-adic cochain complexes C∗(BGx; Q`) as depending
continuously on the point x ∈ X, in some sense.

Let us begin by outlining an approach which partially achieves these goals. Assume
for simplicity that every fiber of G is semisimple and simply connected, and let BG
denote the classifying stack of G (so that BG is an algebraic stack equipped with
a projection map π : BG → X, whose fibers are the classifying stacks BGx). To
every algebraic stack Y over k, one can associate a triangulated category D`(Y ) whose
objects can be understood as “complexes of `-adic sheaves on Y ” (we will give a precise
definition of D`(Y ) in §2.3, at least in the special case where Y is a quasi-projective
k-scheme). The projection map π determines a (derived) pushforward functor π∗ :
D`(BG) → D`(X). Let Q

`
denote the constant sheaf on BG with value Q`, and set

B = π∗Q`
∈ D`(X). For each point x ∈ X, the stalk Bx ∈ D`({x}) can be identified

with a chain complex of vector spaces over Q`, whose cohomology groups are given
by H∗(BGx; Q`). Consequently, the `-adic complex B satisfies the requirements of (a′)
and (c′).

Warning 2.0.0.1. If the group scheme G fails to be semisimple at some point x ∈ X,
then the cohomology of the stalk Bx need not be isomorphic to H∗(BGx; Q`). To handle
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points of bad reduction, it is convenient to twist B by the dualizing sheaf ωX of the
curve X and to consider costalks in place of stalks; we will return to this point in
Chapter 3.

Let us now consider point (b′). For any algebraic stack Y , the formation of tensor
products of `-adic sheaves endows the category D`(Y ) with the structure of a symmet-
ric monoidal category. In particular, it makes sense to consider commutative algebra
objects of D`(Y ). Moreover, the direct image functor π∗ : D`(BG) → D`(X) carries
commutative algebras to commutative algebras, so that B can be regarded as a com-
mutative algebra object of D`(X). For each point x ∈ X, the stalk Bx inherits the
structure of a commutative algebra object of the category D`({x}), which determines
a multiplication map

m : C∗(BGx; Q`)⊗Q`
C∗(BGx; Q`)→ C∗(BGx; Q`)

which is well-defined (as well as commutative and associative) up to chain homotopy.
Unfortunately, this is not good enough for our ultimate application: since Q` is a field,
specifying the multiplication map m up to chain homotopy is equivalent to specifying
the cup product ∪ : H∗(BGx; Q`) ⊗Q`

H∗(BGx; Q`) → H∗(BGx; Q`). Our formulation
of the product formula in §1.5 made essential use of the polynomial de Rham complex,
which witnesses the commutativity and associativity of the cup products at the cochain
level (and thereby captures much more information than the cup product alone; see
Theorem 1.5.3.7). The `-adic product formula we discuss in Chapter 4 will need to make
use of analogous structures, which are simply not visible at the level of the triangulated
category D`(X).

Our goal in this chapter is to remedy the situation described above by introducing
a mathematical object Shv`(X) which refines the triangulated category D`(X). This
object is not itself a category but instead is an example of an ∞-category, which we
will refer to as the ∞-category of `-adic sheaves on X (Definition 2.3.4.1). The tri-
angulated category D`(X) can be identified with the homotopy category of Shv`(X);
in particular, the objects of D`(X) and Shv`(X) are the same. However, there is a
large difference between commutative algebra objects of D`(X) (which can be viewed
as chain complexes of `-adic sheaves F equipped with a multiplication which is com-
mutative and associative up to homotopy) and commutative algebra objects of the
∞-category Shv`(X) (where we require commutativity and associativity up to coherent
homotopy). We can achieve (b′) by viewing the complex B as a commutative algebra
of the latter sort: we will return to this point in Chapter 3.

We begin in §2.1 with a brief introduction to the language of ∞-categories, em-
phasizing some examples which are particularly relevant for our applications (such as
the ∞-category ModΛ of chain complexes of Λ modules; see Example 2.1.4.8). The
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remainder of this chapter is devoted to giving an exposition of the theory of `-adic co-
homology, placing an emphasis on the ∞-categorical perspective. We begin in §2.2 by
reviewing the theory of étale sheaves. To every scheme Y and every commutative ring
Λ, one can associate a stable ∞-category Shv(Y ; Λ) of ModΛ-valued étale sheaves on
Y (Definition 2.2.1.2). This can be regarded as an “enhancement” of the derived cate-
gory of the abelian category of sheaves of Λ-modules on Y , whose objects are cochain
complexes

· · · → F−2 → F−1 → F0 → F1 → F2 → · · · .

The ∞-category of étale sheaves Shv(Y ; Λ) contains a full subcategory Shvc(Y ; Λ) of
constructible perfect complexes, which we will discuss in §2.2.6. However, the ∞-
category Shvc(Y ; Λ) is too small for many of our purposes: it fails to contain many of
the objects we are interested in (for example, the cochain complex C∗(BunG(X); Z/`Z)
typically has cohomology in infinitely many degrees), and does not have good closure
properties under various categorical constructions we will need to use (such as the for-
mation of infinite direct limits). On the other hand, allowing arbitrary chain complexes
(in particular, chain complexes which are not bounded below) raises some technical
convergence issues. We will avoid these issues by restricting our attention to the case
where the scheme Y is quasi-projective over an algebraically closed field k. In this case,
the étale site of Y has finite cohomological dimension, which implies that Shv(Y ; Λ) is
compactly generated by the subcategory Shvc(Y ; Λ).

The construction Y 7→ Shv(Y ; Λ) depends functorially on Λ: every map of commu-
tative rings Λ→ Λ′ induces base change functors

Shv(Y ; Λ)→ Shv(Y ; Λ′) Shvc(Y ; Λ)→ Shvc(Y ; Λ′)

(see §2.2.8). In particular, we have a tower of ∞-categories

· · · → Shvc(Y ; Z/`3Z)→ Shvc(Y ; Z/`2Z)→ Shvc(Y ; Z/`Z).

We will denote the (homotopy) inverse limit of this tower by Shvc`(Y ), and refer to
it as the ∞-category of constructible `-adic sheaves on Y . In §2.3, we define the ∞-
category Shv`(Y ) of `-adic sheaves on Y to be the Ind-completion of Shvc`(Y ). These
∞-categories provide a convenient formal setting for formulating most of the construc-
tions of this book: the ∞-category Shv`(Y ) contains all constructible `-adic sheaves
F ∈ Shvc`(Y ) as well as other objects obtained by limiting procedures (such as localiza-
tions of the form F[`−1]). Many important foundational results in the theory of étale
cohomology (such as the smooth and proper base change theorems) can be extended
to the setting of `-adic sheaves in a purely formal way; we will review the situation in
§2.4.
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2.1 Higher Category Theory

In this section, we give a brief introduction to the theory of ∞-categories (also known
in the literature as quasi-categories or weak Kan complexes). The formalism of ∞-
categories supplies an efficient language for discussing homotopy coherent constructions
in mathematics (such as the formation of homotopy colimits; see Definition 1.5.4.5),
which we will make use of throughout this book.

Warning 2.1.0.1. A comprehensive account of the theory of ∞-categories would take
us far afield of our goals. In this section, we will content ourselves with explaining
the basic definitions and their motivation. For a more detailed treatment, we refer the
reader to [25] and [23].

2.1.1 Motivation: Deficiencies of the Derived Category

Let Λ be a commutative ring. Throughout this section, we let Chain(Λ) denote the
abelian category whose objects are chain complexes

· · · → V2 → V1 → V0 → V−1 → V−2 → · · ·

of Λ-modules. We will always employ homological conventions when discussing chain
complexes (so that the differential on a chain complex lowers degree). If V∗ is a chain
complex, then its homology H∗(V∗) is given by

Hn(V∗) = {x ∈ Vn : dx = 0}/{x ∈ Vn : (∃y ∈ Vn+1)[x = dy]}.

Any map of chain complexes α : V∗ → W∗ induces a map H∗(V∗) → H∗(W∗). We say
that α is a quasi-isomorphism if it induces an isomorphism on homology.

For many purposes, it is convenient to treat quasi-isomorphisms as if they are
isomorphisms (emphasizing the idea that a chain complex is just a vessel for carrying
information about its homology). One can make this idea explicit using Verdier’s
theory of derived categories. The derived category D(Λ) can be defined as the category
obtained from Chain(Λ) by formally inverting all quasi-isomorphisms.

The theory of derived categories is a very useful tool in homological algebra, but
has a number of limitations. Many of these stem from the fact that D(Λ) is not very
well-behaved from a categorical point of view. The category D(Λ) does not generally
have limits or colimits, even of very simple types. For example, a morphism f : X → Y
in D(Λ) generally does not have a cokernel in D(Λ). However, there is a substitute:
every morphism f in D(Λ) fits into a “distinguished triangle”

X
f−→ Y → Cn(f)→ ΣX.
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Here the object Cn(f) is called the cone of f , and it behaves in some respects like a
cokernel: every map g : Y → Z such that g ◦ f = 0 factors through Cn(f), though
the factorization is generally not unique. The object Cn(f) ∈ D(Λ) (and, in fact,
the entire diagram above) is well-defined up to isomorphism, but not up to canonical
isomorphism: there is no functorial procedure for constructing the cone Cn(f) from the
datum of a morphism f in the category D(Λ). And this is only a very simple example:
for other types of limits and colimits (such as taking invariants or coinvariants with
respect to the action of a group), the situation is even worse.

Let f, g : V∗ →W∗ be maps of chain complexes. Recall that a chain homotopy from
f∗ to g∗ is a collection of maps hn : Vn →Wn+1 such that fn − gn = d ◦ hn + hn−1 ◦ d.
We say that f∗ and g∗ are chain-homotopic if there exists a chain homotopy from f∗ to
g∗. Chain-homotopic maps induce the same map from H∗(V∗) to H∗(W∗), and have the
same image in the derived category D(Λ). In fact, there is an alternative description of
the derived category D(Λ), which places an emphasis on the notion of chain-homotopy
rather than quasi-isomorphism:

Definition 2.1.1.1. Let Λ be a commutative ring. We define a category D′(Λ) as
follows:

• The objects of D′(Λ) are the K-projective chain complexes of Λ-modules, in the
sense of [35]. A chain complex V∗ is K-projective if, for every surjective quasi-
isomorphism W ′∗ →W∗ of chain complexes, every chain map f : V∗ →W∗ can be
lifted to a map f ′ : V∗ →W ′∗.

• A morphism from V∗ to W∗ in D′(Λ) is a chain-homotopy equivalence class of
chain maps from V∗ to W∗.

Remark 2.1.1.2. Chain homotopic morphisms f, g : V∗ → W∗ have the same image
in the derived category D(Λ). Consequently, the construction V∗ 7→ V∗ determines a
functor D′(Λ)→ D(Λ), which can be shown to be an equivalence of categories.

Remark 2.1.1.3. If V∗ ∈ Chain(Λ) is K-projective, then each Vn is a projective Λ-
module. The converse holds if Vn ' 0 for n� 0 or if the commutative ring Λ has finite
projective dimension (for example, if Λ = Z), but not in general. For example, the
chain complex of Z/4Z-modules

· · · → Z/4Z
2−→ Z/4Z

2−→ Z/4Z
2−→ Z/4Z→ · · ·

is not K-projective.

From the perspective of Definition 2.1.1.1, categorical issues with the derived cate-
gory stem from the fact that we are identifying chain-homotopic morphisms in D′(Λ)
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without remembering how they are chain-homotopic. For example, suppose that we
wish to construct the cone of a morphism [f ] : V∗ →W∗ in D′(Λ). By definition, [f ] is
an equivalence class of chain maps from V∗ to W∗. If we choose a representative f for
the equivalence class [f ], then we can construct the mapping cone Cn([f ]) by equipping
the direct sum W∗ ⊕ V∗−1 with a differential which depends on f . If h is a chain-
homotopy from f to g, we can use h to construct an isomorphism of chain complexes
αh : Cn(f) ' Cn(g). However, the isomorphism αh depends on h: different choices of
chain homotopy can lead to different isomorphisms, even up to chain-homotopy.

2.1.2 The Differential Graded Nerve

It is possible to correct many of the deficiencies of the derived category by keeping
track of more information. To do so, it is useful to work with mathematical structures
which are a bit more elaborate than categories, where the primitive notions include not
only “object” and “morphism” but also a notion of “homotopy between morphisms.”
Before giving a general definition, let us spell out the structure that is visible in the
theory of chain complexes over a commutative ring.

Construction 2.1.2.1. Let Λ be a commutative ring. We define a sequence of sets
S0, S1, S2, . . . as follows:

• Let S0 denote the set of objects under consideration: in our case, these are K-
projective chain complexes of Λ-modules (strictly speaking, this is not a set but
a proper class, because we are trying to describe a “large” category).

• Let S1 denote the set of morphisms under consideration. That is, S1 is the
collection of all chain maps f : X → Y , where X and Y are K-projective chain
complexes of Λ-modules.

• Let S2 denote the set of all pairs consisting of a (not necessarily commuting)
diagram

Y
f12

��
X

f01

>>

f02 // Z

together with a chain homotopy f012 from f02 to f12 ◦ f01. Here X, Y , and Z are
K-projective chain complexes of Λ-modules.

• More generally, we let Sn denote the collection of all (n+ 1)-tuples

{X(0), X(1), . . . , X(n)}
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of K-projective chain complexes, together with chain maps fij : X(i) → X(j)
which are compatible with composition up to coherent homotopy. More precisely,
this means that for every subset I = {i− < im < . . . < i1 < i+} ⊆ {0, . . . , n}, we
supply a collection of maps fI : X(i−)k → X(i+)k+m satisfying the identities

d(fI(x)) = (−1)mfI(dx)+
∑

1≤j≤m
(−1)j(fI−{ij}(x)−(f{ij ,...,i1,i+}◦f{i−,im,...ij})(x)).

Suppose we are given an element ({X(i)}0≤i≤n, {fI}) of Sn. Then for 0 ≤ i ≤ n, we
can regard X(i) as an element of S0. If we are given a pair of integers 0 ≤ i < j ≤ n,
then f{i,j} is a chain map from X(i) to X(j), which we can regard as an element of
S1. More generally, given any nondecreasing map α : {0, . . . ,m} → {0, . . . , n}, we can
define a map α∗ : Sn → Sm by the formula

α∗({X(j)}0≤j≤n, {fI}) = ({X(α(j))}0≤j≤m, {gJ}),

where

gJ(x) =


fα(J)(x) if α|J is injective

x if J = {j, j′} and α(j) = α(j′)

0 otherwise.

This motivates the following:

Definition 2.1.2.2. A simplicial set X• consists of the following data:

• For every integer n ≥ 0, a set Xn (called the set of n-simplices of X•).

• For every nondecreasing map of finite sets α : {0, 1, . . . ,m} → {0, 1, . . . , n}, a
map of sets α∗ : Xn → Xm.

This data is required to be be compatible with composition: that is, we have

id∗(x) = x (α ◦ β)∗(x) = β∗(α∗(x))

whenever α and β are composable nondecreasing maps.

Example 2.1.2.3 (The Nerve of a Category). Let C be a category. We can associate to
C a simplicial set N(C)•, whose n-simplices are given by chains of composable morphisms

C0 → C1 → · · · → Cn

in C. We refer to N(C)• as the nerve of the category C.
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Example 2.1.2.4. Let Λ be a commutative ring and let Chain′(Λ) denote the full
subcategory of Chain(Λ) spanned by the K-projective chain complexes of Λ-modules.
Construction 2.1.2.1 yields a simplicial set {Sn}n≥0, which we will denote by ModΛ.
The simplicial set ModΛ can be regarded as an enlargement of the nerve N(Chain′(Λ))•
(more precisely, we can identify N(Chain′(Λ))• with the simplicial subset of ModΛ whose
n-simplices are pairs ({X(i)}0≤i≤n, {fI}) for which fI = 0 whenever I has cardinality
> 2).

The construction Chain′(Λ) 7→ ModΛ can be regarded as a variant of Example
2.1.2.3 which takes into account the structure of Chain′(Λ) as a differential graded
category. We refer to §[23].1.3.1 for more details.

2.1.3 The Weak Kan Condition

Let C be a category. Then the simplicial set N(C)• determines C up to isomorphism.
For example, the objects of C are just the 0-simplices of N(C)• and the morphisms of C
are just the 1-simplices of N(C)•. Moreover, given a pair of morphisms f : X → Y and
g : Y → Z in C, the composition h = g ◦ f is the unique 1-morphism in C for which
there exists a 2-simplex σ ∈ N(C)2 satisfying

α∗0(σ) = g α∗1(σ) = h α∗2(σ) = f,

where αi : {0, 1} → {0, 1, 2} denotes the unique injective map whose image does not
contain i.

If C and D are categories, then there is a bijective correspondence between functors
F : C → D and maps of simplicial sets N(C)• → N(D)•. We can summarize the
situation as follows: the construction C 7→ N(C)• furnishes a fully faithful embedding
from the category of (small) categories to the category of simplicial sets. It is therefore
natural to ask about the essential image of this construction: which simplicial sets arise
as the nerves of categories? To answer this question, we need a bit of terminology:

Notation 2.1.3.1. Let X• be a simplicial set. For 0 ≤ i ≤ n, we define a set Λni (X•)
as follows:

• To give an element of Λni (X•), one must give an element σJ ∈ Xm for every subset
J = {j0 < · · · < jm} ⊆ {0, . . . , n} which does not contain {0, 1, . . . , i − 1, i +
1, . . . , n}. These elements are subject to the compatibility condition σI = α∗σJ
whenever I = {i0 < · · · < i`} ⊆ {j0 < · · · < jm} and α satisfies ik = jα(k).

More informally, Λni (X•) is the set of “partially defined” n-simplices of X•, which are
missing their interior and a single face. There is an evident restriction map Xn →
Λni (X•).
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Proposition 2.1.3.2. Let X• be a simplicial set. Then X• is isomorphic to the nerve
of a category if and only if, for each 0 < i < n, the restriction map Xn → Λni (X•) is
bijective.

For example, the bijectivity of the map X2 → Λ2
1(X•) encodes the existence and

uniqueness of composition: it says that every pair of composable morphisms f : C → D
and g : D → E can be completed uniquely to a commutative diagram

D
g

  
C

f
>>

h // E.

Example 2.1.3.3. Let Z be a topological space. We can associate to Z a simplicial
set Sing(Z)•, whose n-simplices are continuous maps ∆n → Z (here ∆n denotes the
standard topological n-simplex). The simplicial set Sing(Z)• is called the singular
simplicial set of Z.

From the perspective of homotopy theory, the singular simplicial set Sing(Z)• is a
complete invariant of X. More precisely, from Sing(Z)• one can functorially construct
a topological space which is (weakly) homotopy equivalent to Z. Consequently, the
simplicial set Sing(Z)• can often serve as a surrogate for Z. For example, there is a
combinatorial recipe for extracting the homotopy groups of Z directly from Sing(Z)•.
However, this recipe works only for a special class of simplicial sets:

Definition 2.1.3.4. Let X• be a simplicial set. We say that X is a Kan complex if,
for 0 ≤ i ≤ n, the map Xn → Λni (X•) is surjective.

Example 2.1.3.5. For any topological space Z, the singular simplicial set Sing(Z)•
is a Kan complex. To see this, let H denote the topological space obtained from the
standard n-simplex ∆n by removing the interior and the ith face. Then Λni (Sing(Z)•)
can be identified with the set of continuous maps from H into Z. Any continuous map
from H into Z can be extended to a map from ∆n into Z, since H is a retract of ∆n.

The converse of Example 2.1.3.5 fails: not every Kan complex is isomorphic to
the singular simplicial set of a topological space. However, every Kan complex X• is
homotopy equivalent to the singular simplicial set of a topological space, which can be
constructed explicitly from X•. In fact, something stronger is true: the construction
Z 7→ Sing(Z)• induces an equivalence from the homotopy category of nice spaces (say,
CW complexes) to the homotopy category of Kan complexes (which can be defined in
a purely combinatorial way).
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Example 2.1.3.6. Let Λ be a commutative ring. A simplicial Λ-module is a simplicial
set X• for which each of the sets Xn is equipped with the structure of a Λ-module,
and each of the maps α∗ : Xn → Xm is a Λ-module homomorphism homomorphism.
One can show that every simplicial Λ-module is a Kan complex, so that one has ho-
motopy groups {πnX•}n≥0. According to the classical Dold-Kan correspondence, the
category of simplicial Λ-modules is equivalent to the category Chain≥0(Λ) ⊆ Chain(Λ)
of nonnegatively graded chain complexes of Λ-modules. Under this equivalence, the
homotopy groups of a simplicial Λ-module X• can be identified with the homology
groups of the corresponding chain complex.

The hypothesis of Proposition 2.1.3.2 resembles the definition of a Kan complex, but
is different in two important respects. Definition 2.1.3.4 requires that every element
of Λni (X•) can be extended to an n-simplex of X. Proposition 2.1.3.2 requires this
condition only in the case 0 < i < n, but demands that the extension be unique.
Neither condition implies the other, but they admit a common generalization:

Definition 2.1.3.7. A simplicial set X• is an ∞-category if, for each 0 < i < n, the
map Xn → Λni (X•) is surjective.

Remark 2.1.3.8. A simplicial set X• satisfying the requirement of Definition 2.1.3.7
is also referred to as a quasi-category or a weak Kan complex in the literature.

Example 2.1.3.9. Any Kan complex is an ∞-category. In particular, for any topo-
logical space Z, the singular simplicial set Sing(Z)• is an ∞-category.

Example 2.1.3.10. For any category C, the nerve N(C)• is an ∞-category.

Example 2.1.3.11 (The ∞-Category Associated to a 2-Category). Let C be a strict
2-category (that is, a 2-category in which composition is strictly associative, rather
than associative up to isomorphism). For each integer n ≥ 0, we let N(C)n denote the
set of all triples ({Ci}0≤i≤n, {fij}0≤i≤j≤n, {αijk}0≤i≤j≤k≤n), where:

• For 0 ≤ i ≤ n, Ci is an object of C.

• For 0 ≤ i ≤ j ≤ n, fij is a 1-morphism from Ci to Cj in the 2-category C, which
is required to be the identity in the case i = j.

• For 0 ≤ i ≤ j ≤ k ≤ n, αijk is a 2-morphism from fik to fjk ◦fij in the 2-category
C, which is required to be the identity map if i = j or j = k.

• For 0 ≤ i ≤ j ≤ k ≤ l ≤ n, the diagram

fil
αijl //

αikl

��

fjl ◦ fij
αjkl

��
fkl ◦ fik

αikl // fkl ◦ fjk ◦ fij
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commutes (in the category of 1-morphisms from Ci to Cl.

The construction n 7→ N(C)n determines a simplicial set N(C)•, which we will refer to
as the nerve of the 2-category C. One can show that N(C)• is an ∞-category (in the
sense of Definition 2.1.3.7) if and only if every 2-morphism in C is invertible.

Remark 2.1.3.12. Let C be a category. Then C can be regarded as a (strict) 2-
category, having no 2-morphisms other than the identity maps. In this case, the nerve
N(C)• of Example 2.1.2.3 agrees with the nerve N(C)• of Example 2.1.3.11.

Remark 2.1.3.13. Using a variant of Example 2.1.3.11, one can assign a nerve N(C)•
to a non-strict 2-category C (also known as a bicategory or weak 2-category in the
literature), which will again be an ∞-category provided that every 2-morphism in C is
invertible.

2.1.4 The Language of Higher Category Theory

By virtue of the discussion following Example 2.1.2.3, no information is lost by iden-
tifying a category C with the simplicial set N(C)•. It is often convenient to abuse
notation by identifying C with its nerve, thereby viewing a category as a special type of
∞-category. We will generally use category-theoretic notation and terminology when
discussing ∞-categories. Here is a brief sampler; for a more detailed discussion of how
the basic notions of category theory can be generalized to this setting, we refer the
reader to the first chapter of [25].

• Let C = C• be an ∞-category. An object of C is an element of the set C0 of
0-simplices of C. We will indicate that x is an object of C by writing x ∈ C.

• A morphism of C is an element f of the set C1 of 1-simplices of C. More precisely,
we will say that f is a morphism from x to y if α∗0(f) = x and α∗1(f) = y, where
αi : {0} ↪→ {0, 1} denotes the map given by αi(0) = i. We will often indicate that
f is a morphism from x to y by writing f : x→ y.

• For any object x ∈ C, there is an identity morphism idx, given by β∗(x) where
β : {0, 1} → {0} is the unique map.

• Given a pair of morphisms f, g : x→ y in C, we say that f and g are homotopic
if there exists a 2-simplex σ ∈ C2 whose faces are as indicated in the diagram

y
idy

��
x

f
??

g // y.
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In this case, we will write f ' g, and we will say that σ is a homotopy from f
to g. One can show that homotopy is an equivalence relation on the collection of
morphisms from x to y.

• Given a pair of morphisms f : x → y and g : y → z, it follows from Definition
2.1.3.7 that there exists a 2-simplex with boundary as indicated in the diagram

y
g

  
x

f
??

h // z.

Definition 2.1.3.7 does not guarantee that the morphism h is unique. However, one
can show that h is unique up to homotopy. We will generally abuse terminology
and refer to h as the composition of f and g, and write h = g ◦ f .

• Composition of morphisms in C is associative up to homotopy. Consequently, we
can define an ordinary category hC as follows:

– The objects of hC are the objects of C.

– Given objects x, y ∈ C, the set of morphisms from x to y in hC is the set of
equivalence classes (under the relation of homotopy) of morphisms from x
to y in C.

– Given morphisms [f ] : x→ y and [g] : y → z in hC represented by morphisms
f and g in C, we define [g] ◦ [f ] to be the morphism from x to z in hC given
by the homotopy class of g ◦ f .

We refer to hC as the homotopy category of C.

• We will say that a morphism f in C is an equivalence if its image [f ] is an
isomorphism in hC (in other words, f is an equivalence if it admits an inverse up
to homotopy). We say that two objects x, y ∈ C are equivalent if there exists an
equivalence f : x→ y.

• An ∞-category C is a Kan complex if and only if every morphism in C is an
equivalence. More generally, if C is an arbitrary ∞-category, then there is a
largest Kan complex C' which is contained in C; it consists of all simplices of C
whose 1-dimensional facets are equivalences.

The theory of ∞-categories allows us to treat topological spaces (via their singular
simplicial sets) and ordinary categories (via the nerves) as examples of the same type
of object. This is often very convenient.
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Definition 2.1.4.1. Let C and D be ∞-categories. A functor from C to D is a map of
simplicial sets from C to D.

Remark 2.1.4.2. Let C be an∞-category. The homotopy category of C admits another
characterization: it is universal among ordinary categories for which there exists a
functor from C to (the nerve of) hC.

Example 2.1.4.3. Let Z be a topological space and let C be a category. Unwinding
the definitions, we see that a functor from Sing(Z)• to N(C)• consists of the following
data:

(1) For each point z ∈ Z, an object Cz ∈ C.

(2) For every path p : [0, 1]→ Z, a morphism αp : Cp(0) → Cp(1), which is an identity
morphism if the map p is constant.

(3) For every continuous map ∆2 → Z, which we write informally as

y
q

��
x

p
??

r // z,

we have αr = αq ◦ αp (an equality of morphisms from Cx to Cz).

Here condition (3) encodes simultaneously the assumption that the map αp depends
only on the homotopy class of p, and that the construction p 7→ αp is compatible with
concatenation of paths. Moreover, it follows from condition (3) that each of the maps
αp is an isomorphism (since every path is invertible up to homotopy). Consequently,
we see that the data of a functor from Sing(Z)• into N(C)• recovers the classical notion
of a local system on Z with values in C.

One of the main advantages of working in the setting of ∞-categories is that the
collection of functors from one ∞-category to another can easily be organized into a
third ∞-category.

Notation 2.1.4.4. For every integer n ≥ 0, we let ∆n denote the simplicial set given
by the nerve of the linearly ordered set {0 < 1 < · · · < n}. We refer to ∆n as the
standard n-simplex. By definition, an m-simplex of ∆n is given by a nondecreasing
map {0, 1, . . . ,m} → {0, 1, . . . , n}.

Let X and Y be simplicial sets. We let Fun(X,Y ) denote the simplicial of maps
from X to Y . More precisely, Fun(X,Y ) is the simplicial set whose n-simplices are
maps ∆n ×X → Y (more generally, giving a map of simplicial sets Z → Fun(X,Y ) is
equivalent to giving a map Z ×X → Y ).
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One can show that if the simplicial set Y is an ∞-category, then Fun(X,Y ) is also
an ∞-category (for any simplicial set X). Note that the objects of Fun(X,Y ) are
functors from X to Y , in the sense of Definition 2.1.4.1. We will refer to Fun(X,Y ) as
the ∞-category of functors from X to Y .

Example 2.1.4.5. Let C and D be ordinary categories. Then the simplicial set

Fun(N(C)•,N(D)•)

is isomorphic to the nerve of the category of functors from C to D. In particular, there
is a bijection between the set of functors from C to D (in the sense of classical category
theory) and the set of functors from N(C)• to N(D)• (in the sense of Definition 2.1.4.1).

Remark 2.1.4.6. It follows from Example 2.1.4.5 that no information is lost by passing
from a category C to the associated ∞-category N(C). For the remainder of this book,
we will generally abuse notation by identifying each category C with its nerve.

Remark 2.1.4.7 (Equivalences of ∞-Categories). Let C and D be ∞-categories. We
will say that a functor F : C → D is an equivalence of ∞-categories if there exists a
functor G : D→ C with the following properties:

• The composition F ◦ G is equivalent to the identity functor idD (where we view
both F ◦G and idD as objects of the functor ∞-category Fun(D,D)).

• The composition G ◦ F is equivalent to the identity functor idC (where we view
both G ◦ F and idC as objects of the functor ∞-category Fun(C,C)).

When specialized to (the nerves of) ordinary categories, this recovers the usual defini-
tion of an equivalence of categories (see Remark 2.1.4.5).

Example 2.1.4.8. Let Λ be a commutative ring and let ModΛ = {Sn}n≥0 denote the
simplicial set introduced in Construction 2.1.2.1. Then ModΛ is an ∞-category, which
we will refer to as the derived ∞-category of Λ-modules. It can be regarded as an
enhancement of the usual derived category D(Λ) of Λ-modules, in the sense that the
homotopy category of ModΛ is equivalent to D(Λ) (in fact, the homotopy category of
ModΛ is isomorphic to the category D′(Λ) of Definition 2.1.1.1).

Notation 2.1.4.9. Let Λ be a commutative ring. For every integer n, the construction
M∗ 7→ Hn(M∗) determines a functor from the∞-category ModΛ to the ordinary abelian
category of Λ-modules. We will say that an object M∗ ∈ ModΛ is discrete if Hn(M∗) ' 0
for n 6= 0. One can show that the construction M∗ 7→ H0(M∗) induces an equivalence
from the∞-category of discrete objects of ModΛ to the ordinary category of Λ-modules.
We will generally abuse notation by identifying the abelian category of Λ-modules with
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its inverse image under this equivalence. We will sometimes refer to Λ-modules as
as discrete Λ-modules or ordinary Λ-modules, to distinguish them from more general
objects of ModΛ.

Remark 2.1.4.10. The ∞-category ModΛ is, in many respects, easier to work with
than the usual derived category D(Λ). For example, we have already mentioned that
there is no functorial way to construct the cone of a morphism in D(Λ). However, ModΛ

does not suffer from the same problem: there is a functor Fun(∆1,ModΛ) → ModΛ,
given on objects by f 7→ Cn(f).

We close this section with an alternative description of the ∞-category ModΛ.

Construction 2.1.4.11. Let C be an ∞-category and let W be a collection of mor-
phisms in C. Then we can form a new ∞-category C[W−1] equipped with a functor
F : C → C[W−1] which enjoys the following universal property: for every ∞-category
D, composition with F induces an equivalence from Fun(C[W−1],D) to the full subcat-
egory of Fun(C,D) spanned by those functors G : C→ D with the following property:
for each morphism w ∈ W , the image G(w) is an equivalence in D. This universal
property characterizes the ∞-category C[W−1] up to equivalence.

In the situation of Construction 2.1.4.11, the∞-category C[W−1] will generally not
be (equivalent to the nerve of) an ordinary category, even if C is an ordinary category
to begin with. In fact, one can show that every∞-category has the form C[W−1], where
C is an ordinary category (and W is some collection of morphisms in C).

Example 2.1.4.12. Let Λ be a commutative ring, let Chain(Λ) be the category of
chain complexes of Λ modules, and let W be the collection of all quasi-isomorphisms
in Chain(Λ). Then Chain(Λ)[W−1] is equivalent to the ∞-category ModΛ of Example
2.1.4.8. More precisely, the canonical maps Chain(Λ)[W−1] ← Chain′(Λ)[W ′−1] →
ModΛ are equivalences, where Chain′(Λ) is the full subcategory of Chain(Λ) spanned
by the K-projective chain complexes, and W ′ is the collection of all quasi-isomorphisms
between objects of Chain′(Λ). This can be regarded as an∞-categorical generalization
of the equivalence D(Λ) ' D′(Λ) of Remark 2.1.1.2.

2.1.5 Example: Limits and Colimits

The theory of ∞-categories is a robust generalization of ordinary category theory. In
particular, most of the important notions of ordinary category theory (adjoint functors,
Kan extensions, Pro-objects and Ind-objects, . . .) can be generalized to the setting of∞-
categories in a natural way. For a detailed introduction (including complete definitions
and proofs of the basic categorical facts we will need), we refer the reader to [25].
For the reader’s convenience, we briefly sketch how this generalization plays out for
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the categorical constructs which will appear most frequently in this book: limits and
colimits.

Construction 2.1.5.1 (Overcategories and Undercategories). Let C be an∞-category
containing an object C. We define simplicial sets CC/ and C/C as follows:

• An n-simplex of CC/ is an (n+ 1)-simplex of C whose first vertex is C.

• An n-simplex of C/C is an (n+ 1)-simplex of C whose last vertex is C.

One can show that CC/ and C/C are also ∞-categories. We refer to C/C as the ∞-
category of objects of C over C, and to CC/ as the ∞-category of objects of C under
C.

Example 2.1.5.2. Let C be a category and let N(C) be its nerve, which we regard
as an ∞-category. For each object C ∈ C, the simplicial sets N(C)C/ and N(C)/C are
isomorphic to the nerves of categories CC/ and C/C , which can be described as follows:

• The objects of CC/ are morphisms α : C → D in C, and the morphisms in CC/
are commutative diagrams

C
α

��

α′

!!
D // D′.

• The objects of C/C are morphisms β : E → C in C, and the morphisms in C/C
are commutative diagrams

E
β

  

// E′

β′

~~
C.

For every object C of an ∞-category C, we have evident (forgetful) functors C/C →
C← CC/.

Definition 2.1.5.3. Let C be an ∞-category. We say that an object C ∈ C is initial if
the forgetful functor CC/ → C is an equivalence of ∞-categories (Remark 2.1.4.7). We
say that C ∈ C is final if the forgetful functor C/C → C is an equivalence of∞-categories.

Remark 2.1.5.4. Let C be an ∞-category. One can show that an initial (final) object
C ∈ C is unique up to equivalence, if it exists.
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Example 2.1.5.5. Let C be a category. Then an object C ∈ C is initial or final (in
the sense of classical category theory) if and only if C is initial or final when regarded
as an object of the ∞-category N(C) (in the sense of Definition 2.1.5.3).

Construction 2.1.5.6 (Limits and Colimits). Let C and D be ∞-categories. There
is an evident diagonal functor D → Fun(C,D), which assigns to each object D ∈ D

the constant functor cD : C → D taking the value D. Let F : C → D be an arbitrary
functor, which we regard as an object of the functor ∞-category Fun(C,D). One can
show that the fiber products

Fun(C,D)F/ ×Fun(C,D) D Fun(C,D)/F ×Fun(C,D) D

are also ∞-categories. Then:

• A limit of F is a final object of the ∞-category Fun(C,D)/F ×Fun(C,D) D.

• A colimit of F is an initial object of the ∞-category Fun(C,D)F/ ×Fun(C,D) D.

We will generally abuse terminology by identifying a limit or colimit of F with its image
in the ∞-category D.

More informally, if F : C → D is a functor of ∞-categories, then a limit of F
is an object D ∈ D which is universal among those for which there exists a natural
transformation of functors cD → F , while a colimit of F is an object D ∈ D which is
universal among those for which there exists a natural transformation F → cD.

Remark 2.1.5.7. Let F : C→ D be a functor of∞-categories. Then a limit or colimit
of F is uniquely determined up to equivalence, if it exists (see Remark 2.1.5.4. We will
denote a limit of a functor F by lim←−C∈C F (C), and a colimit of F by lim−→C∈C F (C). One

can show that lim←−(F ) and lim−→(F ) depend functorially on F (provided that we restrict
our attention to those functors which admit limits or colimits).

Example 2.1.5.8. When C is empty, then the notions of limit and colimit of a functor
F : C→ D reduce to the notions of final and initial object of D, respectively.

Example 2.1.5.9. Let F : C→ D be ordinary categories. Then we can identify limits
(colimits) of the induced map N(C)→ N(D) (in the sense of Construction 2.1.5.6) with
limits and colimits of F , in the usual sense of category theory.

Example 2.1.5.10. Let CAlgdg
Q denote the category of commutative differential graded

algebras over Q, let W be the collection of all quasi-isomorphisms in CAlgdg
Q , and

let CAlgQ denote the ∞-category CAlgdg
Q [W−1] obtained from CAlgdg

Q by formally
inverting every morphism in W (see Example 2.1.4.11). Let J be a small category.
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Then every functor between ordinary categories F : J → CAlgdg
Q determines a functor

of ∞-categories F ′ : J → CAlgQ. One can show that the functor CAlgdg
Q → CAlgQ

carries homotopy colimits of F (in the sense of Definition 1.5.4.5) to colimits of the
functor F ′ (in the sense of Construction 2.1.5.6). One of the main virtues of the ∞-
categorical framework is that it provides a language to express the idea that homotopy
limits and colimits are solutions to universal mapping problems.

We now briefly review some notions which are useful for computing with limits and
colimits.

Definition 2.1.5.11 (Cofinality). Let C be an ∞-category. We say that C is weakly
contractible if, for every Kan complex D, the diagonal map D → Fun(C,D) is an
equivalence of ∞-categories.

Let F : C→ D be a functor between∞-categories. We will say that F is left cofinal
if, for every object D ∈ D, the fiber product C×DDD/ is weakly contractible. We say
that F is right cofinal if, for every object D ∈ D, the fiber product C×DD/D is weakly
contractible.

In this book, we will primarily be interested in the special case of Definition 2.1.5.11
where C and D are (nerves of) ordinary categories.

Definition 2.1.5.12. Let F : C→ D be a functor between categories (or∞-categories).
Then F admits a right adjoint G if and only if, for each object D ∈ D, the category
C×DD/D has a final object (D, v : F (D) → D) (the functor G is then given on

objects by G(D) = D). In this case, the fiber product C×DD/D is automatically
weakly contractible. It follows that if F admits a right adjoint, then F is right cofinal.
Similarly, if F admits a left adjoint, then it is left cofinal.

We refer the reader to §[25].4.1 for a proof of the following:

Proposition 2.1.5.13. Let F : C → D and G : D → E be functors of ∞-categories.
Then:

• If F is left cofinal, then G admits a colimit if and only if (G◦F ) admits a colimit.
In this case, there is a canonical equivalence lim−→C∈C(G ◦ F )(C) → lim−→D∈DG(D)
in the ∞-category E.

• If F is right cofinal, then G admits a limit if and only if (G ◦ F ) admits a limit.
In this case, there is a canonical equivalence lim←−D∈DG(D) → lim←−C∈C(G ◦ F )(C)
in the ∞-category E.

Remark 2.1.5.14. Let D and E be∞-categories and suppose we are given a functorG :
Dop → E. We will sometimes abuse notation by denoting a limit of G by lim←−D∈DG(D)
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and a colimit of G by lim−→D∈DG(D). Note that in this case, to identify the limit of G
with the limit of G ◦ F op for some functor F : C→ D, it suffices to show that F is left
cofinal. Dually, to identify the colimit of G with the colimit of G ◦ F op, it suffices to
show that F is right cofinal.

2.1.6 Stable ∞-Categories

We now describe a special feature of the ∞-category ModΛ of Example 2.1.4.8 called
stability (Definition 2.1.6.5); roughly speaking, stability articulates the idea that ModΛ

is of a “linear” nature (for example, it is possible to add morphisms). The homo-
topy category of a stable ∞-category inherits additional structure: it is a triangulated
category in the sense of Verdier (Remark 2.1.6.7).

Definition 2.1.6.1. Let C be an ∞-category. A zero object of C is an object which is
both initial and final. We will say that C is pointed if it admits a zero object.

Definition 2.1.6.2. Let C be a pointed ∞-category, and suppose that C admits finite
colimits. For any morphism f : C → D in C, we let cofib(f) denote a pushout 0qC D,
where 0 denotes a zero object of C. We will refer to cofib(f) as the cofiber of f . For any
object C ∈ C, we let Σ(C) denote the cofiber of the (essentially unique) map C → 0;
we refer to Σ(C) as the suspension of C.

Example 2.1.6.3. Let C = ModΛ be the derived ∞-category of Λ-modules, and let f
be a morphism in C which we can identify with a map of chain complexes M∗ → N∗.
Then the cofiber cofib(f) can be realized explicitly as the mapping cone Cn(f). In
particular, the suspension Σ(M∗) of a chain complex M∗ can be identified with the
shifted complex M∗−1.

Variant 2.1.6.4. Let C be a pointed ∞-category which admits finite limits. For any
morphism f : C → D in C, we let fib(f) denote the pullback 0 ×D C. We will refer
to fib(f) as the fiber of f . For any object C ∈ C, we let Ω(C) denote the fiber of the
(essentially unique) map 0→ C; we refer to Ω(C) as the loop object of C.

Definition 2.1.6.5. Let C be an ∞-category. We say that C is stable if it is pointed,
admits finite limits and colimits, and the construction C 7→ Σ(C) induces an equiva-
lence of ∞-categories Σ : C → C (in this case, an inverse equivalence is given by the
construction C 7→ Ω(C)).

Example 2.1.6.6. Let Λ be a commutative ring. Then the ∞-category ModΛ of
Example 2.1.4.8 is stable.

Remark 2.1.6.7. Let C be a stable ∞-category. Then hC admits the structure of
a triangulated category, where the shift functor X 7→ X[1] on hC is induced by the
suspension functor Σ : C→ C. See Theorem [23].1.1.2.14 for more details.
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2.2 Étale Sheaves

Let X be a scheme and let Λ be a commutative ring. One can associate to X an abelian
category A of étale sheaves of Λ-modules on X. The derived category D(A) provides a
useful setting for performing a wide variety of sheaf-theoretic constructions. However,
there are other basic constructions (such as the formation of mapping cones) which
cannot be carried out functorially at the level of derived categories. One way to remedy
the situation is to introduce an ∞-category Shv(X; Λ) whose homotopy category is
equivalent to the derived category D(A). It is possible to produce such an ∞-category
by applying a purely formal procedure to the abelian category A (see §[23].1.3.2 and
§[23].1.3.5). However, it will be more convenient for us to define Shv(X; Λ) directly
as the ∞-category of (hypercomplete) ModΛ-valued sheaves on X. Our goal in this
section is to give a brief introduction to this point of view, and to review some of the
basic properties of étale sheaves which will be needed in the later sections of this book.
We will confine our attention here to the most formal aspects of the theory, where the
coefficient ring Λ can be taken to be arbitrary; base change and finiteness theorems for
étale cohomology, which require additional hypotheses on Λ, will be discussed in §2.3
and §2.4.

Remark 2.2.0.1. Since the apparatus of étale cohomology is treated exhaustively in
other sources (such as [1] and [10]; see also [13] for an expository account), we will be
content to summarize the relevant definitions and give brief indications of proofs.

Warning 2.2.0.2. To simplify the exposition, we will confine our attention to the
discussion of étale sheaves on quasi-projective k-schemes, where k is an algebraically
closed field. This restriction is largely unnecessary: many of the constructions we de-
scribe make sense for more general schemes. Beware, however, that some of our results
(such as Lemma 2.2.4.1) depend on the boundedness of the cohomological dimension
of finitely presented k-schemes, and would require modification if we were to work with
arbitrary schemes.

2.2.1 Sheaves of Λ-Modules

Throughout this section, we let k denote an algebraically closed field and Schk the
category of quasi-projective k-schemes.

Notation 2.2.1.1. Let X be a quasi-projective k-scheme. We let Schet
X denote the

category whose objects are étale maps U → X (where U is also a quasi-projective
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k-scheme). Morphisms in Schet
X are given by commutative diagrams

U //

  

V

~~
X.

We will say that a collection of morphisms {fα : Uα → V } in Schet
X is an étale covering

if the induced map qUα → V is surjective. The collection of étale coverings determines
a Grothendieck topology on the category Schet

X , which we refer to as the étale topology.

Definition 2.2.1.2. Let Λ be a commutative ring, and let ModΛ be the ∞-category
of chain complexes over Λ (see Example 2.1.4.8). A ModΛ-valued presheaf on X is a
functor of ∞-categories

F : (Schet
X)op → ModΛ .

If F is a ModΛ-valued presheaf on X and U ∈ Schet
X , then we can regard F(U) as a chain

complex of Λ-modules. For each integer n, the construction U 7→ Hn(F(U)) determines
a presheaf of abelian groups on X. We let πn F denote the étale sheaf of abelian groups
on X obtained by sheafifying the presheaf U 7→ Hn(F(U)). We will say that F is locally
acyclic if, for every integer n, the sheaf πn F vanishes.

We let Shv(X; Λ) denote the full subcategory of Fun((Schet
X)op,ModΛ) spanned by

those ModΛ-valued presheaves F which have the following property: for every locally
acyclic object F′ ∈ Fun((Schet

X)op,ModΛ), every morphism α : F′ → F is nullhomotopic.

Remark 2.2.1.3. Let F : (Schet
X)op → ModΛ be a ModΛ-valued presheaf on a quasi-

projective k-scheme X. Then F ∈ Shv(X; Λ) if and only if the following conditions are
satisfied:

(1) The presheaf F is a sheaf with respect to the étale topology on Schet
X . That

is, for every covering {fα : Uα → V }, the canonical map F(V ) → lim←−F(U) is an

equivalence in ModΛ, where the limit is taken over all objects U ∈ Schet
V for which

the map U → V factors through some fα.

(2) The ModΛ-valued sheaf F is hypercomplete (see Definition [24].I.1.1.15). This is
a technical hypothesis which is necessary only because we consider potentially
unbounded complexes, where descent for Čech coverings does not necessarily
imply descent for arbitrary hypercoverings.

Remark 2.2.1.4 (Sheafification). Let X be a quasi-projective k-scheme and let Λ be
a commutative ring. Then the inclusion functor Shv(X; Λ) ↪→ Fun((Schet

X)op,ModΛ)

admits a left adjoint F 7→ F̃. If F is an arbitrary ModΛ-valued presheaf on X, we will
refer to F̃ as the sheafification of F.
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Example 2.2.1.5. If X = Spec(k), then the ∞-category Shv(X; Λ) is equivalent to
ModΛ. Concretely, this equivalence is implemented by the global sections functor F 7→
F(X) ∈ ModΛ.

2.2.2 The t-Structure on Shv(X; Λ)

Let k be an algebraically closed field and let Λ be a commutative ring. For every
quasi-projective k-scheme X, the ∞-category Shv(X; Λ) is stable (Definition 2.1.6.5).
We now construct a t-structure on the ∞-category Shv(X; Λ) (or equivalently on the
triangulated category hShv(X; Λ)).

Warning 2.2.2.1. In this book, we will use homological indexing conventions when
working with t-structures on triangulated categories, rather than the cohomological
conventions which can be found (for example) in [5]. One can translate between con-
ventions using the formulae

C≤n = C≥−n C≥n = C≤−n .

Notation 2.2.2.2. Let X be a quasi-projective k-scheme and let Λ be a commutative
ring. For each integer n ∈ Z, we let Shv(X; Λ)≤n denote the full subcategory of
Shv(X; Λ) spanned by those objects F for which πm F ' 0 for m > 0, and we let
Shv(X; Λ)≥n denote the full subcategory of Shv(X; Λ) spanned by those objects F for
which πm F ' 0 for m < 0.

Proposition 2.2.2.3. Let X be a quasi-projective k-scheme. Then the full subcate-
gories (Shv(X; Λ)≥0,Shv(X; Λ)≤0) determine a t-structure on Shv(X; Λ). Moreover,
the construction F 7→ π0 F determines an equivalence of categories from the heart

Shv(X; Λ)♥ = Shv(X; Λ)≥0 ∩ Shv(X; Λ)≤0

of Shv(X; Λ) to the abelian category of étale sheaves of Λ-modules on X.

Proof. See Theorem [24].I.2.1.9.

Remark 2.2.2.4. Let X be a quasi-projective k-scheme. The ∞-category

C = Fun((Schet
X)op,ModΛ)

of all ModΛ-valued presheaves admits a t-structure (C≥0,C≤0), where a presheaf F

belongs to C≥0 (respectively C≤0) if and only if the homology groups of the chain
complex F(U) are concentrated in degrees ≥ 0 (respectively ≤ 0). With respect to this
t-structure, the sheafification functor

C→ Shv(X; Λ) F 7→ F̃
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of Remark 2.2.1.4 is t-exact. It follows that the inclusion functor Shv(X; Λ) ↪→ C is left
t-exact: in fact, we have Shv(X; Λ)≤0 = C≤0 ∩Shv(X; Λ). Beware that the inclusion
functor Shv(X; Λ) ↪→ C is not t-exact: for example, it does not carry the heart of
Shv(X; Λ) to the heart of C (see Warning 2.2.2.5 below).

Throughout this book, we will use this equivalence of Proposition 2.2.2.3 to iden-
tify the abelian category of sheaves of Λ-modules on X with the full subcategory
Shv(X; Λ)♥ ⊆ Shv(X; Λ). In particular, if F ∈ Shv(X; Λ), we will generally identify
the sheaves πn F with the corresponding objects of Shv(X; Λ)♥.

Warning 2.2.2.5. Let X be a quasi-projective k-scheme, let Λ be a commutative ring,
and let F be an object of the abelian category A of étale sheaves of Λ-modules on X.
Then there are two different ways in which F can be interpreted as a ModΛ-valued
presheaf on X:

(a) One can view F as a presheaf with values in the abelian category Mod♥Λ of (dis-
crete) Λ-modules, which determines a functor

F0 : (Schet
X)op → Mod♥Λ ⊆ ModΛ .

(b) Using the equivalence of abelian categories A ' Shv(X; Λ)♥, one can identify F

with an object

F1 ∈ A ' Shv(X; Λ)♥ ⊆ Shv(X; Λ) ⊆ Fun((Schet
X)op,ModΛ).

The functors F0 and F1 are generally not the same. By construction, the functor F0

has the property that for every étale X-scheme U , the chain complex F0(U) ∈ ModΛ

has homology concentrated in degree zero, but the homologies of F1(U) are given by
the formula

Hn(F1(U)) ' H−net (U ;F |U ).

Note also that F1 is a ModΛ-valued sheaf with respect to the étale topology on Schet
X

but F0 is not (in fact, F1 can be identified with the sheafification of F0, in the sense of
Remark 2.2.1.4).

To any Grothendieck abelian category A, one can associate a stable ∞-category
D(A) called the (unbounded) derived ∞-category of A, whose homotopy category is the
classical derived category of A; see §[23].1.3.5 for details.

Proposition 2.2.2.6. Let k be an algebraically closed field, let X be a quasi-projective
k-scheme and let Λ be a commutative ring. Then the inclusion Shv(X; Λ)♥ ↪→ Shv(X; Λ)
extends uniquely to a (t-exact) equivalence of ∞-categories θ : D(Shv(X; Λ)♥) '
Shv(X; Λ). In particular, the homotopy category of Shv(X; Λ) is equivalent to the
unbounded derived category of Shv(X; Λ)♥.
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Proof. This follows from the fact that the Grothendieck site Schet
X is an ordinary cat-

egory (rather than an ∞-category) and that Λ is an ordinary ring (rather than a ring
spectrum); see Theorem [24].I.2.1.9.

2.2.3 Functoriality

Throughout this section, we fix an algebraically closed field k and a commutative ring
Λ. We now investigate the dependence of the ∞-category Shv(X; Λ) on the choice of
quasi-projective k-scheme X.

Remark 2.2.3.1 (Functoriality). Let f : X → Y be morphism of quasi-projective
k-schemes. Then f determines a base-change functor Schet

Y → Schet
X , given by U 7→

U ×Y X. Composition with this base-change functor induces a map Shv(X; Λ) →
Shv(Y ; Λ), which we will denote by f∗ and refer to as pushforward along f . The functor
f∗ admits a left adjoint, which we will denote by f∗ and refer to as pullback along f .
If F ∈ Shv(Y ; Λ), we will sometimes denote the pullback f∗ F by F |X , particularly in
those cases when f exhibits X as a subscheme of Y .

Proposition 2.2.3.2. Let X be a quasi-projective k-scheme, and let F ∈ Shv(X; Λ).
The following conditions are equivalent:

(1) The sheaf F vanishes.

(2) For every k-valued point η : Spec(k) → X, the stalk η∗ F ∈ Shv(Spec(k); Λ) '
ModΛ vanishes.

Proof. The implication (1) ⇒ (2) is trivial. Suppose that F satisfies (2); we will show
that F ' 0 by proving that the identity map id : F → F is nullhomotopic. For this, it
will suffice to show that F is locally acyclic: that is, each of the sheaves of abelian groups
πn F vanishes. We may therefore assume without loss of generality that F belongs to
the heart of Shv(X; Λ). We will abuse notation by identifying F with the corresponding
sheaf of abelian groups on Schet

X . Choose an object U ∈ Schet
X and a section s ∈ F(U);

we wish to show that s = 0. Let V ⊆ U be the largest open subset for which s|V = 0.
Suppose for a contradiction that V 6= U . Then we can choose a point ηU : Spec(k)→ U
which does not factor through V . Let η denote the composition of ηU with the map
U → X, so that η∗ F ' 0 by virtue of (2). It follows that the map ηU factors as
a composition Spec(k) → Ũ → U , where s|

Ũ
= 0. We conclude that s vanishes on

the open subset of U given by the union of V with the image of Ũ , contradicting the
maximality of V .

Remark 2.2.3.3. Let k be an algebraically closed field, let X be a quasi-projective
k-scheme, and let Λ be a commutative ring. Then an object F ∈ Shv(X; Λ) belongs
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to Shv(X; Λ)≥0 if and only if, for every point η : Spec(k) → X, the stalk η∗ F ∈
Shv(Spec(k); Λ) ' ModΛ belongs to (ModΛ)≥0. Similarly, F belongs to Shv(Spec(k); Λ)≤0

if and only if each stalk η∗ F belongs to (ModΛ)≤0.

Construction 2.2.3.4. Let f : X → Y be an étale morphism between quasi-projective
k-schemes. Then composition with f induces a forgetful functor u : Schet

X → Schet
Y .

The pullback functor f∗ : Shv(Y ; Λ) → Shv(X; Λ) is then given by composition with
u. From this description, we immediately deduce that f∗ preserves limits and colimits.
Using Corollary [25].5.5.2.9, we deduce that f∗ admits a left adjoint which we will
denote by f!. In the special case where f is an open immersion, we will refer to f! as
the functor of extension by zero along f .

Proposition 2.2.3.5. Suppose we are given a diagram of quasi-projective k-schemes
σ :

UX
f ′ //

j′

��

UY

j

��
X

f // Y,

where j′ and j are étale. If σ is a pullback diagram, then the associated diagram of
∞-categories

Shv(UX ; Λ) Shv(UY ; Λ)oo

Shv(X; Λ)

OO

Shv(Y ; Λ)oo

OO

satisfies the Beck-Chevalley property: that is, the induced natural transformation j′!f
′∗ →

f∗j! is an equivalence of functors from Shv(UY ; Λ) to Shv(X; Λ) (see §2.4 for a more
detailed discussion).

Proof. Passing to right adjoints, we are reduced to proving that the canonical map
j∗f∗ → f ′∗j

′∗ is an equivalence. Let F ∈ Shv(X; Λ). Using the descriptions of the pull-
back and pushforward functors supplied by Remark 2.2.3.1 and Construction 2.2.3.4,
we must show that for every object V ∈ Schet

UY
, the restriction map F(UX ×UY V ) →

F(X ×Y V ) is an equivalence. This is evidently satisfied whenever σ is a pullback
square.

2.2.4 Compact Generation of Shv(X; Λ)

Let k be an algebraically closed field and let Λ be a commutative ring, which we regard
as fixed throughout this section. Our goal is to show that, for every quasi-projective
k-scheme X, the∞-category Shv(X; Λ) is compactly generated (we will give an explicit
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description of the compact objects of Shv(X; Λ) in §2.2.6). We begin with the following
standard observation:

Lemma 2.2.4.1. Let k be an algebraically closed field, let X be a quasi-projective k-
scheme of Krull dimension d, and let F be an étale sheaf of abelian groups on X. Then
the cohomology groups Hn(X;F) vanish for n > 2d+ 1.

Proof. Let ShvNis(X; Z) denote the full subcategory of Fun((Schet
X)op,ModZ) spanned

by those functors which are sheaves with respect to the Nisnevich topology, and let
ι : Shv(X; Z) ↪→ ShvNis(X; Z) denote the inclusion map. Let F′ denote the object
of the heart Shv(X; Z)♥ corresponding to F, so that we have a canonical isomorphism
Hn(X;F) ' H−n F

′(X). Since the∞-topos of Nisnevich sheaves on X has homotopy di-
mension ≤ d (see [24].B.5), it will suffice to show that F′ belongs to ShvNis(X; Λ)≥−d−1.
To prove this, it will suffice to show that for every map η : Spec(R) → X which
exhibits R as the Henselization of X with respect to some finite extension of some
residue field of X, the cohomology groups Hm(Spec(R); η∗ F) vanish for m > d + 1.
Let κ′ denote the residue field of R, and let η0 : Spec(κ′) → X be the restriction
of η. Then κ′ is an extension of k having trancendence degree ≤ d, and is therefore
a field of cohomological dimension ≤ d (see [32]). Since the ring R is Henselian, the
canonical map Hm(Spec(R); η∗ F)→ Hm(Spec(κ′); η∗0 F) is an isomorphism so that that
Hm(Spec(R); η∗ F) vanishes for m > d+ 1 as desired.

Proposition 2.2.4.2. Let X be a quasi-projective k-scheme. Then the full subcategory
Shv(X; Λ) ⊆ Fun((Schet

X)op,ModΛ) is closed under colimits.

Proof. The inclusion Shv(X; Λ) ↪→ Fun((Schet
X)op,ModΛ) is a left exact functor between

stable ∞-categories and therefore preserves finite colimits. It will therefore suffice to
show that it preserves filtered colimits. Let {Fα} be a filtered diagram of objects of
Shv(X; Λ) having colimit F. We wish to prove that for each U ∈ Schet

X , the canonical
map lim−→Fα(U) → F(U) is an equivalence. In other words, we want to show that for
each integer n, the induced map lim−→πn Fα(U)→ πn F(U) is an isomorphism of abelian
groups. Shifting if necessary, we may suppose that n = 0. Replacing each Fα by a
truncation if necessary, we may suppose that each Fα belongs to Shv(X; Λ)≥0. Using
Lemma 2.2.4.1, one can show that there exists an integer N � 0 such that the canonical
map π0 G(U) → π0(τ≤N G)(U) is an isomorphism, for each G ∈ Shv(X; Λ). Replacing
each Fα by τ≤N Fα, we may assume that {Fα} is a diagram in Shv(X; Λ)≤N for some
integer N . The desired result now follows formally from the fact that the Grothendieck
topology on Schet

X is finitary (that is, every covering admits a finite refinement); see
Corollary [24].A.2.18 for more details.

Corollary 2.2.4.3. Let f : X → Y be a morphism of quasi-projective k-schemes. Then
the pushforward functor f∗ : Shv(X; Λ)→ Shv(Y ; Λ) preserves colimits.
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Notation 2.2.4.4. Let X be a quasi-projective k-scheme, so that there is a unique
morphism of k-schemes f : X → Spec(k). Pullback along f determines a functor

ModΛ ' Shv(Spec(k); Λ)
f∗−→ Shv(X; Λ),

which we will denote by M 7→ MX . For each M ∈ ModΛ, we will refer to MX as
the constant sheaf on X with value M . By construction, the functor M 7→ MX is left
adjoint to the global sections functor F 7→ F(X) ∈ ModΛ. Equivalently, MX can be
described as the sheafification (in the sense of Remark 2.2.1.4) of the constant functor
(Schet

X)op → ModΛ taking the value M .

Proposition 2.2.4.5. Let X be a quasi-projective k-scheme. Then the ∞-category
Shv(X; Λ) is compactly generated. Moreover, the full subcategory

Shvc(X; Λ) ⊆ Shv(X; Λ)

spanned by the compact objects is the smallest stable subcategory of Shv(X; Λ) which is
closed under retracts and contains every object of the form j!ΛU , where j : U → X is
an object of the category Schet

X .

Proof. We first show that for each j : U → X in Schet
X , the sheaf j!ΛU is a compact

object of Shv(X; Λ). To prove this, it suffices to show that the functor

F 7→ MapShv(X;Λ)(j!ΛU ,F) ' MapModΛ
(Λ,F(U))

commutes with filtered colimits, which follows immediately from Proposition 2.2.4.2.
Let C ⊆ Shv(X; Λ) be the smallest full subcategory which contains every object

of the form j!ΛU and is closed under retracts. Since C consists of compact objects
of Shv(X; Λ), the inclusion C ↪→ Shv(X; Λ) extends to a fully faithful embedding F :
Ind(C)→ Shv(X; Λ) which commutes with filtered colimits (Proposition [25].5.3.5.10).
Moreover, since C is closed under retracts, we can identify C with the full subcategory
of Ind(C) spanned by the compact objects. To complete the proof that Shv(X; Λ) is
a compactly generated ∞-category and that C is the ∞-category of compact objects
of Shv(X; Λ), it will suffice to show that F is an equivalence of ∞-categories. Using
Corollary [25].5.5.2.9, we deduce that F has a right adjoint G. We wish to show that
F and G are mutually inverse equivalences. Since F is fully faithful, it will suffice to
show that G is conservative. Since G is an exact functor between stable ∞-categories,
it will suffice to show that if F ∈ Shv(X; Λ) satisfies G(F) ' 0, then F ' 0. This is
clear, since G(F) ' 0 implies that

π0 MapC(Σnj!ΛU , G(F)) ' π0 MapShv(X;Λ)(Σ
nj!Λ,F) ' Hn(F(U))

vanishes for each U ∈ Schet
X .
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2.2.5 The Exceptional Inverse Image

Let k be an algebraically closed field and let Λ be a commutative ring. If f : X → Y is
any morphism between quasi-projective k-schemes, then Corollary 2.2.4.3 guarantees
that the direct image functor f∗ : Shv(X; Λ) → Shv(Y ; Λ) preserves small colimits. It
follows from the adjoint functor theorem (see Corollary [25].5.5.2.9) that the functor
f∗ admits a right adjoint.

Notation 2.2.5.1. If f : X → Y is a proper morphism between quasi-projective k-
schemes, then we let f ! : Shv(Y ; Λ) → Shv(X; Λ) denote a right adjoint to the direct
image functor f∗ : Shv(X : Λ) → Shv(Y ; Λ). We will refer to f ! as the exceptional
inverse image functor.

Warning 2.2.5.2. When the coefficient ring Λ is finite, one can extend the definition
of the inverse image functor f ! to the case where f : X → Y is an arbitrary morphism
of quasi-projective k-schemes. However, the functor f ! is defined as the right adjoint
to the compactly supported direct image functor f!, rather than the usual direct image
functor f∗. Since we do not wish to address the homotopy coherence issues which arise
in setting up an “enhanced” six-functor formalism, we will not consider this additional
generality: that is, we consider the functor f ! as defined only when f is proper, and the
functor f! as defined only when f is étale (a special case of the relationship between
f ! and f! is articulated in Example 2.4.4.6). For our applications, we will primarily be
interested in the functor f ! in the special case where f is a closed immersion.

Example 2.2.5.3. Let n be a positive integer which is invertible in k and let Λ = Z/nZ.
For every integer d, we let Λ(d) denote the free Λ-module of rank 1 which is given by
the dth tensor power of µn(k) = {x ∈ k : xn = 1}. If X is a quasi-projective k-scheme
and F ∈ Shv(X; Λ), we let F(d) denote the object of Shv(X; Λ) given by the formula
F(d)(U) = F(U) ⊗Λ Λ(d) (so that F(d) is noncanonically isomorphic to F). We will
refer to F(d) as the d-fold Tate twist of F.

If f : X → Y is a proper smooth morphism of relative dimension d, then the main
result of [37] supplies an equivalence

f ! F ' Σ2df∗ F(d).

Remark 2.2.5.4. Let X be a quasi-projective k-scheme which is smooth of dimension
d, let n be a positive integer which is invertible in k, and let η : Spec(k) → X be a
point of X. Then there is an equivalence η!Z/nZ ' Σ−2dZ/nZ(−d). To prove this, we
can work locally with respect to the étale topology on X, and thereby reduce to the
case where X = Pn so that there exists a proper morphism π : X → Spec(k). In this
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case, Example 2.2.5.3 supplies an equivalence

η!Z/nZ ' η!(π!Σ−2dZ/nZ(−d))

' (π ◦ η)!Σ−2dZ/nZ(−d)

' Σ−2dZ/nZ(−d).

Remark 2.2.5.5. Let i : Y → X be a closed immersion of quasi-projective k-schemes,
set U = X − Y , and let j : U → X be the complementary open immersion. Then
the pushforward functor i∗ : Shv(Y ; Λ) → Shv(X; Λ) is a fully faithful embedding,
whose essential image is the full subcategory of Shv(X; Λ) spanned by those objects
F ∈ Shv(X; Λ) such that j∗ F ' 0 (see Proposition [24].I.3.1.18).

Let F ∈ Shv(X; Λ). Then the fiber K of the canonical map F → j∗j
∗ F satisfies

j∗K ' 0, so we can write K ' i∗K0 for some K0 ∈ Shv(Y ; Λ). For each G ∈ Shv(Y ; Λ),
we have canonical homotopy equivalences

MapShv(Y ;Λ)(G,K0) ' MapShv(X;Λ)(i∗ G, i∗K0)

' fib(MapShv(X;Λ)(i∗ G,F)→ MapShv(X;Λ)(i∗ G, j∗j
∗ F))

' fib(MapShv(X;Λ)(i∗ G,F)→ MapShv(U ;Λ)(j
∗i∗ G, j

∗ F))

' MapShv(X;Λ)(i∗ G,F).

so that K0 can be identified with the sheaf i! F. In other words, we have a canonical
fiber sequence i∗i

! F → F → j∗j
∗ F. Using similar reasoning, we obtain a canonical

fiber sequence j!j
∗ F → F → i∗i

∗ F.

Remark 2.2.5.6. If i : X → Y is a closed immersion of quasi-projective k-schemes,
then Remark 2.2.5.5 gives an explicit construction of the functor i! (which does not
depend on Corollary 2.2.4.3): namely, for each object F ∈ Shv(X; Λ), we can identify
i! with a preimage (under the functor i∗) of the fiber of the unit map F → j∗j

∗ F.

Proposition 2.2.5.7. Let i : Y ↪→ X be a closed immersion of quasi-projective k-
schemes. Then:

(1) The functor i! preserves filtered colimits.

(2) The functor i∗ preserves compact objects.

Proof. The implication (1) ⇒ (2) follows from Proposition [25].5.5.7.2. We will prove
(1). Since the functor i∗ is a fully faithful embedding which preserves colimits (Corollary
2.2.4.3), it will suffice to show that the composite functor F 7→ i∗i

! F preserves filtered
colimits. Using the existence of a fiber sequence i∗i

! F → F → j∗j
∗ F, we are reduced

to proving that the functor F 7→ j∗j
∗ F preserves filtered colimits, which follows from

Corollary 2.2.4.3.
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Proposition 2.2.5.8. Let X be a quasi-projective k-scheme. Then there exists an
integer n with the following property: for every closed immersion i : Y ↪→ X and every
commutative ring Λ, the functor i! carries Shv(X; Λ)♥ into Shv(Y ; Λ)≥n.

Proof. Let d be the Krull dimension of X. We will prove that n = −2d has the
desired property. Let i : Y ↪→ X be a closed immersion, and let j : U → X be the
complementary open immersion. To prove that the functor i! carries Shv(X; Λ)♥ into
Shv(Y ; Λ)≥n, it will suffice to show that the composite functor i∗i

! carries Shv(X; Λ)♥

to Shv(X; Λ)≥n. Using the fiber sequence of functors

Σj∗j
∗ → i∗i

! → id,

we are reduced to proving that the functor j∗ carries Shv(U ; Λ)♥ into Shv(X; Λ)≥n−1.
Let F ∈ Shv(U ; Λ)♥. We will prove that j∗ F ∈ Shv(X; Λ)≥n−1 by proving that
(j∗ F)(V ) ∈ (ModΛ)≥n−1 for every étale map V → X. Equivalently, we must show
that the cohomology groups Hi(U ×X V ;F |U×XV ) vanish for i > 2d+ 1, which follows
from Lemma 2.2.4.1.

2.2.6 Constructible Sheaves

Let k be an algebraically closed field and let Λ be a commutative ring. In §2.2.4,
we proved that the ∞-category Shv(X; Λ) is compactly generated, for every quasi-
projective k-scheme X (Proposition 2.2.4.5). In this section, we will show that the
compact objects of Shv(X; Λ) can be identified with the (perfect) constructible com-
plexes on X (Proposition 2.2.6.2).

Definition 2.2.6.1. Let X be a quasi-projective k-scheme. We will say that an object
F ∈ Shv(X; Λ) is constant if it is equivalent to MX , for some M ∈ ModΛ. We will say
that F is locally constant if there is an étale covering {fα : Uα → X} for which each
pullback f∗α F ∈ Shv(Uα; Λ) is constant.

Proposition 2.2.6.2. Let X be a quasi-projective k-scheme. Then an object F ∈
Shv(X; Λ) is compact if and only if the following conditions are satisfied:

(1) There exists a finite sequence of quasi-compact open subsets

0 = U0 ⊆ U1 ⊆ · · · ⊆ Un = X

such that, for 1 ≤ i ≤ n, if Yi denotes the locally closed reduced subscheme of X
with support Ui − Ui−1, then each restriction F |Yi is locally constant.

(2) For every k-valued point η : Spec(k) → X, the stalk η∗ F ∈ Shv(Spec(k); Λ) '
ModΛ is perfect (that is, it is a compact object of ModΛ).
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Definition 2.2.6.3. We will say that an object F ∈ Shv(X; Λ) is constructible if it
satisfies conditions (1) and (2) of Proposition 2.2.6.2 (equivalently, if it is a compact
object of Shv(X; Λ)). We let Shvc(X; Λ) denote the full subcategory of Shv(X; Λ)
spanned by the constructible objects.

Warning 2.2.6.4. Some authors use the term constructible to refer to sheaves which
are required to satisfy some weaker version of condition (2), such as the finiteness of
the graded abelian group H∗(η

∗ F) for each point η : Spec(k) → X (when Λ = Z or Λ
is finite).

Proof of Proposition 2.2.6.2. We begin by showing that every compact object F ∈
Shv(X; Λ) satisfies conditions (1) and (2). Using Proposition 2.2.4.5, we may reduce to
the case where F = j!ΛU for some étale map j : U → X. We first show that F satisfies
(1). We may assume that X 6= ∅, otherwise the result is vacuous. Using Noetherian
induction on X (and Proposition 2.2.3.5), we may suppose that the restriction F |Y
satisfies (1) for every nonempty closed subscheme Y ⊆ X. It will therefore suffice to
show that F |V satisfies (1) for some nonempty open subscheme V ⊆ X. Passing to an
open subscheme, we may suppose that j : U → X is finite étale of some fixed rank r. In
this case, we claim that j!Λ is locally constant. Choose a finite étale surjection X̃ → X
such that the fiber product U ×X X̃ is isomorphic to a disjoint union of r copies of X̃.
Using Proposition 2.2.3.5, we may replace X by X̃. In this case, the sheaf j!ΛU ' ΛrX
is constant.

We now show that for every étale map j : U → X, the sheaf j!ΛU satisfies condition
(2). Using Proposition 2.2.3.5, we may replace X by Spec(k) and thereby reduce to
the case where X is the spectrum of an algebraically closed field. In this case, U is a
disjoint union of finitely many copies of X, so that j!ΛU can be identified with a free
module Λr as an object of Shv(X; Λ) ' ModΛ.

Now suppose that F is a sheaf satisfying conditions (1) and (2); we wish to show
that F is a compact object of Shv(X; Λ). Without loss of generality we may suppose
that X is nonempty. Using Noetherian induction on X, we may assume that for every
closed immersion i : Y → X whose image is a proper closed subset of X, the pullback
i∗ F is a compact object of Shv(Y ; Λ). Using Proposition 2.2.5.7 we deduce that i∗i

∗ F
is a compact object of Shv(Y ; Λ). Let j : U → X denote the complementary open
immersion, so that we have a fiber sequence

j!j
∗ F → F → i∗i

∗ F .

It will therefore suffice to show that there exists a nonempty open subset U ⊆ X such
that j!j

∗ F is a compact object of Shv(X; Λ). Since the functor j∗ preserves colimits,
j! preserves compact objects; it will therefore suffice to show that we can choose U
such that j∗ F is a compact object of Shv(U ; Λ). Since F satisfies (1), we may pass to
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a nonempty open subscheme of X and thereby reduce to the case where F is locally
constant.

For each object G ∈ Shv(X; Λ), let Map
Λ

(F,G) denote the sheaf of (Λ-linear) maps
from F to G, so that we have a canonical equivalence

MapShv(X;Λ)(F,G) ' MapShv(X;Λ)(ΛX ,Map
Λ

(F,G)).

It follows from Proposition 2.2.4.2 that ΛX is a compact object of Shv(X; Λ). Conse-
quently, to show that F is a compact object of Shv(X; Λ), it will suffice to show that the
functor G 7→ Map

Λ
(F,G) commutes with filtered colimits. This assertion can be tested

locally with respect to the étale topology on X. We may therefore assume without loss
of generality that the sheaf F = MX is constant. In this case, we have a canonical
homotopy equivalence

MapShv(X;Λ)(F,G) ' MapModΛ
(M,G(X)).

Since M is a compact object of ModΛ and the functor G 7→ G(X) commutes with filtered
colimits (Proposition 2.2.4.2), we conclude that F is a compact object of Shv(X; Λ), as
desired.

Remark 2.2.6.5 (Extension by Zero). Let i : X → Y be a locally closed immersion

between quasi-projective k-schemes. Then i factors as a composition X
i′−→ X

i′′−→ Y
where X denotes the scheme-theoretic closure of X in Y , i′′ is a closed immersion, and
i′ is an open immersion. We let i! denote the composite functor

Shv(X; Λ)
i′!−→ Shv(X; Λ)

i′′∗−→ Shv(Y ; Λ),

which we will refer to as the functor of extension by zero from X to Y .

Remark 2.2.6.6. It follows from Proposition 2.2.6.2 that for every compact object
F ∈ Shv(X; Λ), there exists a finite stratification of X by locally closed subschemes
Yα and a finite filtration of F whose successive quotients have the form iα! Fα, where
Fα ∈ Shv(Yα; Λ) is a locally constant sheaf with perfect stalks, and iα : Yα → X denotes
the inclusion map.

2.2.7 Sheaves of Vector Spaces

Let k be an algebraically closed field. In this section, we summarize some special
features enjoyed by the ∞-categories Shv(X; Λ) in the case where the commutative
ring Λ is a field.
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Remark 2.2.7.1. The results of this section are valid more generally if Λ is a commu-
tative ring of finite projective dimension, such as the ring Z of integers. However, we
are primarily interested in the case where Λ = Z/`Z for some prime number ` which is
invertible in k.

Proposition 2.2.7.2. Let X be a quasi-projective k-scheme and let Λ be a field. If
F ∈ Shv(X; Λ) is compact, then each truncation τ≥n F and τ≤n F is also a compact
object of Shv(X; Λ).

Proof. Using Proposition 2.2.6.2, we can reduce to the case where F = MX , where M
is a perfect object of ModΛ. We now observe that our assumption that Λ is a field
guarantees that the truncations τ≥nM and τ≤nM are also perfect objects of ModΛ.

Proposition 2.2.7.3. Let X be a quasi-projective k-scheme, and let Λ be a field.
Then there exists an integer n with the following property: for every pair of objects
F,G ∈ Shv(X; Λ)♥, if F is compact object of Shv(X; Λ), then ExtmShv(X;Λ)(F,G) ' 0 for
m > n.

Proof. Using Proposition 2.2.5.8, we can choose an integer n′ such that, for every
closed immersion i : Y ↪→ X, the sheaf i! G belongs to Shv(Y ; Λ)≥n′ . Let d be the Krull
dimension of X. We will prove that n = n′+ 2d+ 1 has the desired property. For this,
it will suffice to prove the following:

(∗) Let H ∈ Shv(X; Λ) have the property that i! H ∈ Shv(Y ; Λ)≥n′ for every closed
immersion i : Y → X. Then ExtmShv(X;Λ)(F,H) ' 0 for m > n.

We prove (∗) using Noetherian induction on X. Using Proposition 2.2.6.2, we can
choose an open immersion j : U → X such that j∗ F is locally constant, hence a
dualizable object of Shv(X; Λ)♥. Let i : Y ↪→ X be a complementary closed immersion,
so that we have a fiber sequence j!j

∗ F → F → i∗i
∗ F. We therefore obtain an exact

sequence

ExtmShv(U ;Λ)(j
∗ F, j∗H)→ ExtmShv(X;Λ)(F,H)→ ExtmShv(Y ;Λ)(i

∗ F, i! H).

The first group can be identified with Hm(U ; (j∗ F)∨ ⊗Λ j∗H)), which vanishes for
m > n by virtue of Lemma 2.2.4.1. The third group vanishes for m > n by the
inductive hypothesis, so that ExtmShv(X;Λ)(F,H) also vanishes for m > n.

Proposition 2.2.7.4. Let X be a quasi-projective k-scheme, let Λ be a field, and let F
be an object of Shv(X; Λ)♥. If F is constructible, then F is a Noetherian object of the
abelian category Shv(X; Λ)♥.
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Proof. Proceeding by Noetherian induction, we may suppose that for each proper closed
subscheme Y ( X, each constructible object G ∈ Shv(Y ; Λ)♥ is Noetherian. We will
prove the following:

(∗n) Let F ∈ Shv(X; Λ)♥ be constructible. Suppose there exists a nonempty connected
open subset U ⊆ X containing a point x such that F |U is locally constant and
the stalk Fx has dimension ≤ n (when regarded as a vector space over Λ). Then
F is a Noetherian object of Shv(X; Λ)♥.

The proof proceeds by induction on n. Let U and F satisfy the hypotheses of (∗n).
We will abuse notation by identifying F with a sheaf of Λ-vector spaces on X. Suppose
we are given an ascending chain of subobjects F0 ⊆ F1 ⊆ F2 · · · of F; we wish to
show that it is eventually constant. If each restriction Fm |U vanishes, then we have
Fm ' i∗i∗ Fm. We are therefore reduced to proving that the sequence of inclusions

i∗ F0 ⊆ i∗ F1 ⊆ i∗ F2 ⊆ · · ·

stabilizes, which follows from our inductive hypothesis. We may therefore assume that
some Fm |U 6= 0 for some integer m. Using Proposition 2.2.4.5 we can write Fm as
the colimit of a filtered diagram {Fα} of constructible objects of Shv(X; Λ). Using
Proposition 2.2.7.2, we can assume that each Fα belongs to Shv(X; Λ)♥. Choose an
index α for which the map Fα |U → Fm |U is nonzero. Using Proposition 2.2.6.2, we can
choose a nonempty open subset U ′ ⊆ U such that Fα |U ′ is locally constant. Choose an
étale U -scheme V such that the map Fα(V )→ Fm(V ) ⊆ F(V ) is nonzero (as a map of
vector spaces over Λ), and let V ′ = U ′ ×U V . Then V ′ is dense in V , so that the map
F(V )→ F(V ′) is injective. Using the commutativity of the diagram

Fα(V ) //

��

Fα(V ′)

��
F(V ) // F(V ′),

we deduce that the map of vector spaces Fα(V ′)→ F(V ′) is nonzero, so that the map of
sheaves Fα |U ′ → F |U ′ is nonzero. Replacing U by U ′, we may reduce to the case where
Fα |U is locally constant. Note that the cofiber of the map Fα → F is constructible, so
that (by virtue of Proposition 2.2.7.2) the cokernel G = coker(Fα → F) is a constructible
object of Shv(X; Λ)♥. For any point x ∈ U , we have dimGx < dimFx, so that our
inductive hypothesis implies that G is a Noetherian object of Shv(X; Λ)♥. The sheaf
F /Fm is a quotient of G, and therefore also Noetherian. It follows that the sequence
of subobjects {Fm′ /Fm ⊆ F /Fm}m′≥m is eventually constant, so that the sequence
{Fm′ ⊆ F}m′≥m is eventually constant.



106 CHAPTER 2. THE FORMALISM OF `-ADIC SHEAVES

2.2.8 Extension of Scalars

Let k be an algebraically closed field and let X be a quasi-projective k-scheme. We
now study the dependence of the ∞-category Shv(X; Λ) on the commutative ring
Λ. Note that every ring homomorphism f : Λ → Λ′ determines a forgetful functor
ModΛ′ → ModΛ. This functor preserves inverse limits, and therefore induces a functor
Shv(X; Λ′)→ Shv(X; Λ). We will refer to this functor as restriction of scalars along f .

Proposition 2.2.8.1. Let X be a quasi-projective k-scheme and let f : Λ → Λ′ be a
morphism of commutative rings. Then the restriction of scalars functor Shv(X; Λ′)→
Shv(X; Λ) admits a left adjoint.

Proof. This is a formal consequence of the adjoint functor theorem (see Corollary
[25].5.5.2.9). For a more explicit description of the left adjoint functor, see Remark
2.2.8.3 below.

Construction 2.2.8.2. In the situation of Proposition 2.2.8.1, we will denote the left
adjoint to the restriction of scalars functor by

(F ∈ Shv(X; Λ)) 7→ (Λ′ ⊗Λ F ∈ Shv(X; Λ′)),

and refer to it as the functor of extension of scalars along f .

Remark 2.2.8.3. In the situation of Construction 2.2.8.2, the extension of scalars
functor is given more explicitly by the formula

(Λ′ ⊗Λ F)(U) = Λ′ ⊗Λ F(U),

where the expression on the right hand side indicates the left derived tensor product
of F(U) (which we regard as a chain complex of Λ-modules) with Λ′ (in other words,
it denotes the image of F(U) under the left adjoint to the forgetful functor ModΛ′ →
ModΛ). Note that the presheaf U 7→ Λ′⊗ΛF(U) belongs to ShvΛ′(X): this follows from
Proposition 2.2.4.2, since we can write Λ′ as a filtered colimit of perfect Λ-modules.

Proposition 2.2.8.4. Let X be a quasi-projective k-scheme and let F ∈ Shv(X; Z/`dZ)
for d ≥ 1. Then F is constructible if and only if the object (Z/`Z) ⊗Z/`dZ F ∈
Shv(X; Z/`Z) is constructible.

Proof. It follows from Proposition 2.2.4.2 that the forgetful functor Shv(X; Z/`Z) →
Shv(X; Z/`dZ) preserves colimits and therefore the left adjoint F 7→ (Z/`Z) ⊗Z/`dZ F

preserves compact objects; this proves the “only if” direction. For the converse, suppose
that F ∈ Shv(X; Z/`dZ) has the property that (Z/`Z) ⊗Z/`dZ F ∈ Shv(X; Z/`Z) is
constructible. Then the functor

G 7→ MapShv(X;Z/`Z)((Z/`Z)⊗Z/`dZ F, (Z/`Z)⊗Z/`dZ G)

' MapShv(X;Z/`dZ)(F, (Z/`Z)⊗Z/`dZ G)
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preserves filtered colimits. It then follows by induction that for 1 ≤ i ≤ d, the functor

G 7→ MapShv(X;Z/`dZ)(F, (Z/`
iZ)⊗Z/`dZ G)

preserves filtered colimits. Taking i = d, we deduce that F is a compact object of
Shv(X; Z/`dZ), hence constructible.

2.2.9 Stability Properties of Constructible Sheaves

Let k be an algebraically closed field. The theory of étale sheaves is particularly well-
behaved when the coefficient ring Λ has the form Z/`dZ, where ` is a prime number
which is invertible in k. We now recall some of the special features of this situation,
which will play an important role in our discussion of `-adic sheaves in §2.3.

Proposition 2.2.9.1 (Persistence of Constructibility). Let f : X → Y be a morphism
of quasi-projective k-schemes, let ` be a prime number which is invertible in k, and let
d ≥ 0. Then:

(1) The pushforward functor f∗ : Shv(X; Z/`dZ) → Shv(Y ; Z/`dZ) carries the ∞-
category Shvc(X; Z/`dZ) into Shvc(Y ; Z/`dZ).

(2) The pullback functor f∗ : Shv(Y ; Z/`dZ)→ Shv(X; Z/`dZ) carries the∞-category
Shvc(Y ; Z/`dZ) into Shvc(X; Z/`dZ).

(3) If f is proper, then the exceptional inverse image functor

f ! : Shv(Y ; Z/`dZ)→ Shv(X; Z/`dZ)

carries the ∞-category Shvc(Y ; Z/`dZ) into Shvc(X; Z/`dZ).

(4) If f is étale, then the functor

f! : Shv(X; Z/`dZ)→ Shv(Y ; Z/`dZ)

carries the ∞-category Shvc(X; Z/`dZ) into Shvc(Y ; Z/`dZ).

Remark 2.2.9.2. Assertions (2) and (4) of Proposition 2.2.9.1 follow immediately
from the fact that the functors f∗ and f∗ preserve filtered colimits (and remain valid
when Z/`dZ is replaced by an arbitrary commutative ring).

Proof of Proposition 2.2.9.1. By virtue of Proposition 2.2.8.4, we can assume without
loss of generality that d = 1. In this case, the desired result is proved as Corollaire 1.5
(“Théorème de finitude”) on page 234 of [10] (note that our definition of constructibility
is different from the notion of constructibility considered in [10], but the two notions
agree in the case d = 1; see Warning 2.2.6.4).
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Remark 2.2.9.3. Let X be a quasi-projective k-scheme, let ` be a prime number which
is invertible in k, and let F be a compact object of Shv(X; Z/`dZ). Using Propositions
2.2.9.1 and 2.2.6.2, we see that that there exists a finite collection of locally closed
immersions iα : Yα ↪→ X (having disjoint images) such that F admits a filtration with
successive quotients of the form iα∗ Fα, where each Fα is a locally constant sheaf on Yα
with perfect stalks (compare with Remark 2.2.6.6).

Corollary 2.2.9.4. Let f : X → Y be a proper morphism between quasi-projective
k-schemes, let ` be a prime number which is invertible in k, and let d ≥ 0. Then the
functor f ! : Shv(Y ; Z/`dZ)→ Shv(X; Z/`dZ) preserves filtered colimits.

Proof. This is a reformulation of assertion (1) of Proposition 2.2.9.1.

Corollary 2.2.9.5. Let X be a quasi-projective k-scheme, let ` be a prime number
which is invertible in k, and let F,G ∈ Shvc(X; Z/`dZ) for some integer d ≥ 0. Then
the groups ExtiShv(X;Z/`dZ)(F,G) are finite.

Proof. Using Proposition 2.2.4.5, we may reduce to the case where F = j!Z/`
dZ

U
for

some étale morphism j : U → X. In this case, we have

ExtiShv(X;Z/`dZ)(F,G) ' ExtiShv(U ;Z/`dZ)(Z/`
dZ

U
, j∗ G)

' Hi(π∗j
∗ G),

where π : U → Spec(k) denotes the projection map. The desired result now follows
from Proposition 2.2.9.1.

Proposition 2.2.9.6. Let X be a quasi-projective k-scheme, let ` be a prime number
which is invertible in k, and let F ∈ Shvc(X; Z/`dZ) for some d ≥ 0. The following
conditions are equivalent:

(1) The sheaf F vanishes.

(2) For every point η : Spec(k)→ X, the stalk Fη = η∗ F vanishes.

(3) For every point η : Spec(k) → X, the costalk η! F ∈ Shv(Spec(k); Z/`dZ) van-
ishes.

Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) are obvious, and the implication
(2) ⇒ (1) is Proposition 2.2.3.2 (which is valid for any coefficient ring Λ). Assume
that F satisfies (3); we will prove that F ' 0 using Noetherian induction on X. Using
Proposition 2.2.6.2, we can choose a nonempty open subset U such that F |U is locally
constant. Shrinking U if necessary, we may suppose that U is smooth of dimension
n ≥ 0. Let i : Y → X be a closed immersion complementary to U . Then i! F ∈
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Shv(Y ; Z/`dZ) satisfies condition (3), so that i! F ' 0 by the inductive hypothesis.
We may therefore replace X by U , and thereby reduce to the case where F is locally
constant. The assertion that F vanishes is local on X; we may therefore suppose further
that X is smooth and F ∈ Shv(X; Z/`dZ) has the form MX for some perfect object
M ∈ ModZ/`dZ. Arguing as in Remark 2.2.5.4 (and choosing a primitive `dth root of

unity in k), we see that for any point η : Spec(k)→ X, the pullback η! F is equivalent
to Σ−2nM . It then follows from (3) that M ' 0, so that F ' 0 as desired.

2.3 `-adic Sheaves

Throughout this section, we fix an algebraically closed field k and a prime number `
which is invertible in k. Let X be a quasi-projective k-scheme. For every commutative
ring Λ, the theory outlined in §2.2 associates an ∞-category Shv(X; Λ) of (hypercom-
plete) ModΛ-valued étale sheaves on X. This theory is very well-behaved when the
commutative ring Λ has the form Z/`dZ for some d ≥ 0, but badly behaved when
Λ = Z or Λ = Q. To remedy the situation, it is convenient to introduce the formalism
of `-adic sheaves: roughly speaking, a (constructible) `-adic sheaf on X is a compatible
system {Fd}d≥0, where each Fd is a (constructible) object of Shv(X; Z/`dZ). The col-
lection of `-adic sheaves on X can be organized into an∞-category which we will denote
by Shv`(X). Our goal in this section is to review the definition of the ∞-categories
Shv`(X) and summarize some of the properties which we will need later in this book.

2.3.1 `-Completeness

We begin by reviewing some homological algebra.

Definition 2.3.1.1. Let Λ be a commutative ring, and let M be an object of ModΛ.
We will say that M is `-complete if the limit of the diagram

· · · →M
`−→M

`−→M

vanishes in the ∞-category ModΛ.

Remark 2.3.1.2. In the situation of Definition 2.3.1.1, let Z/`dZ ⊗Z M denote the
cofiber of the map `d : M →M . We then have a tower of fiber sequences

{M `d−→M → Z/`dZ⊗Z M}d≥0.

Passing to the limit, we see that M is `-complete if and only if the canonical map

M → lim←−((Z/`dZ)⊗Z M)

is an equivalence in the ∞-category ModΛ.
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Remark 2.3.1.3. Let Λ be a commutative ring. Then an object M ∈ ModΛ is `-
complete if and only if each homology group Hn(M) is `-complete, when regarded as a
discrete object of ModΛ. To prove this, we may assume without loss of generality that
Λ = Z, in which case M is noncanonically equivalent to the product

∏
n∈Z Σn Hn(M).

If Λ is Noetherian and each homology group Hn(M) is finitely generated as a Λ-
module, then M is `-complete if and only if each of the homology groups Hn(M) is
isomorphic to its `-adic completion lim←−Hn(M)/`d Hn(M), where the limit is taken in
the abelian category of Λ-modules.

Remark 2.3.1.4. Let Λ be a commutative ring, let M• be a simplicial object of ModΛ,
and let |M•| ∈ ModΛ denote its geometric realization. Suppose that there exists an
integer n ∈ Z such that the simplicial abelian groups Hm(M•) vanish for m < n. Then
if each Mq is `-complete, the geometric realization |M•| is `-complete. To prove this, it
will suffice to show that each homology group Hi(|M•|) is `-complete (Remark 2.3.1.3).
We may therefore replace M• by a sufficiently large skeleton, in which case |M•| is a
finite colimit of `-complete objects of ModΛ.

Definition 2.3.1.5. Let X be a quasi-projective k-scheme and let Λ be a commutative
ring. We will say that an object F ∈ Shv(X; Λ) is `-complete if, for every object
U ∈ Schet

X , the object F(U) ∈ ModΛ is `-complete.

Remark 2.3.1.6. Let F ∈ Shv(X; Λ). The following conditions are equivalent:

(1) The sheaf F is `-complete.

(2) The limit of the tower

· · · → F
`−→ F

`−→ F

vanishes.

(3) The canonical map F → lim←−(Z/`dZ⊗Z F) is an equivalence in Shv(X; Λ).

Remark 2.3.1.7. Let X be a quasi-projective k-scheme, let Λ a commutative ring, and
let C ⊆ Shv(X; Λ) be the full subcategory spanned by the `-complete objects. Then
the inclusion functor C ↪→ Shv(X; Λ) admits a left adjoint L, given by the formula

LF = lim←−(Z/`dZ⊗Z F).

We will refer to L as the `-adic completion functor. Note that an object F ∈ Shv(X; Λ)
is annihilated by the functor L if and only if the map ` : F → F is an equivalence.
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Proposition 2.3.1.8. Let Λ be a commutative ring and suppose that ` is not a zero-
divisor in Λ. Let X be a quasi-projective k-scheme and let C ⊆ Shv(X; Λ) be the full
subcategory spanned by the `-complete objects. Then the composite functor

C ↪→ Shv(X; Λ)
θ−→ lim←−

d≥0

Shv(X; Λ/`dΛ)

is an equivalence of ∞-categories (here θ is obtained from the extension of scalars
functors described in §2.2.8).

Proof. We first prove that θ is fully faithful when restricted to C. Let F and F′ be
objects of Shv(X; Λ). We compute

Map(θ(F), θ(F′)) ' lim←−
d≥0

MapShv(X;Λ/`dΛ)((Z/`
dZ)⊗Z F, (Z/`dZ)⊗Z F′)

' lim←−
d≥0

MapShv(X;Λ)(F, (Z/`
dZ)⊗Z F′)

' MapShv(X;Λ)(F, LF′),

where L is defined as in Remark 2.3.1.7. If F′ is `-complete, then the canonical map

MapShv(X;Λ)(F,F
′)→ Map(θ(F), θ(F′))

is a homotopy equivalence.
It remains to prove essential surjectivity. Suppose we are given an object of the

inverse limit lim←−d≥0
Shv(X; Λ/`dΛ), which we can identify with a compatible sequence

of objects
{Fd ∈ Shv(X; Λ/`dΛ)}d≥0.

Let us abuse notation by identifying each Fd with its image in Shv(X; Λ), and set
F = lim←−Fd ∈ Shv(X; Λ). Since each Fd is `-complete, it follows that F is also `-
complete. Moreover, we have a canonical map θ(F) → {Fd}d≥0 in the ∞-category
lim←−d≥0

Shv(X; Λ/`dΛ). To prove that this map is an equivalence, it will suffice to show

that for each integer d ≥ 0, the canonical map

(Λ/`dΛ)⊗Λ lim←−
e≥d

Fe → Fd

is an equivalence in Shv(X; Λ/`dΛ). Since Λ/`dΛ is a perfect Λ-module, we can identify
this with the natural map

lim←−
e≥d

(Λ/`dΛ)⊗Λ Fe ' lim←−
e≥d

((Λ/`dΛ)⊗Λ (Λ/`eΛ))⊗Λ/`eΛ Fe → (Λ/`dΛ)⊗Λ/`eΛ Fe .

This map is an equivalence, since the inverse system {(Λ/`dΛ)⊗Λ (Λ/`eΛ)}e≥d is equiv-
alent to Λ/`dΛ as a Pro-object of the ∞-category ModΛ.
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2.3.2 Constructible `-adic Sheaves

We now study a variant of Definition 2.2.6.3.

Definition 2.3.2.1. Let X be a quasi-projective k-scheme. We will say that an object
F ∈ Shv(X; Z) is a constructible `-adic sheaf if it satisfies the following conditions:

(1) The sheaf F is `-complete.

(2) For each integer d ≥ 0, the sheaf (Z/`dZ)⊗Z F ∈ Shv(X; Z/`dZ) is constructible
(see §2.2.8).

We let Shvc`(X) denote the full subcategory of Shv(X; Z) spanned by the con-
structible `-adic sheaves.

Remark 2.3.2.2. In the situation of Definition 2.3.2.1, it suffices to verify condition
(2) in the case d = 1, by virtue of Proposition 2.2.8.4.

Remark 2.3.2.3. Let F be as in Definition 2.3.2.1. Then (Z/`Z)⊗ZF is constructible
as an object of Shv(X; Z/`Z) if and only if it is constructible as an object of Shv(X; Z).
Consequently, condition (2) can be rephrased as follows:

(2′) The cofiber of the map ` : F → F is a constructible object of Shv(X; Z).

Remark 2.3.2.4. It follows from Proposition 2.3.1.8 that the forgetful functor

Shv(X; Z`)→ Shv(X; Z)

is an equivalence when restricted to `-complete objects. Consequently, we can re-
place Shv(X; Z) by Shv(X; Z`) in Definition 2.3.2.1 without changing the notion of
constructible `-adic sheaf.

Warning 2.3.2.5. Let X be a quasi-projective k-scheme. Neither of the full subcat-
egories Shvc`(X),Shvc(X; Z) ⊆ Shv(X; Z) contains the other. Objects of Shvc(X; Z)
are generally not `-complete (this is true even if we replace Z by Z`), and objects of
Shvc`(X) need not be locally constant when restricted to any nonempty open subset of
X.

Remark 2.3.2.6. Let X be a quasi-projective k-scheme. Using Proposition 2.3.1.8,
we can identify Shvc`(X) with a (homotopy) inverse limit of the tower of ∞-categories

· · · → Shvc(X; Z/`3Z)→ Shvc(X; Z/`2Z)→ Shvc(X; Z/`Z).

Proposition 2.3.2.7. Let X be a quasi-projective k-scheme. Then the equivalence of
∞-categories Shvc`(X) ' lim←−{Shvc`(X; Z/`dZ)}d≥0 induces an equivalence of homotopy
categories

θ : hShvc
`(X)→ lim←−{hShvc

`(X; Z/`dZ)}d≥0.
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Remark 2.3.2.8. Proposition 2.3.2.7 implies that the homotopy category of Shvc`(X)
can be identified with the constructible derived category of Z`-sheaves considered else-
where in the literature (see, for example, [5]).

Proof of Proposition 2.3.2.7. It follows immediately from the definitions that θ is es-
sentially surjective; we will show that θ is fully faithful. For every pair of objects
F,G ∈ Shvc`(X) having images Fd,Gd ∈ Shvc(X; Z/`dZ), we have a Milnor exact se-
quence

0→ lim1{Extn−1(Fd,Gd)} → Extn(F,G)→ lim0{Extn(Fd,Gd)} → 0.

Since each of the groups Extn−1(Fd,Gd) is finite (Corollary 2.2.9.5), the first term of
this sequence vanishes. It follows that the canonical map

MaphShvc
`(X)(F,G)→ lim←−MaphShv(X;Z/`dZ)(Fd,Gd)

is bijective.

Notation 2.3.2.9 (Tate Twists). Let X be a quasi-projective k-scheme and let F ∈
Shvc`(X) be a constructible `-adic sheaf, which we can identify with an inverse sys-
tem {Fm ∈ Shvc(X; Z/`mZ)}m≥0. For every integer d, the inverse system {Fm(d) ∈
Shvc(X; Z/`mZ)}m≥0 determines another constructible `-adic sheaf on X, which we
will denote by F(d) and refer to as the d-fold Tate twist of F (see Example 2.2.5.3).
Note that F(d) is noncanonically equivalent to F (one can choose an equivalence by
choosing a trivialization of the Tate module lim←−µpm(k)).

2.3.3 Direct and Inverse Images

We now analyze the dependence of the ∞-category Shvc`(X) on the choice of quasi-
projective k-scheme X.

Proposition 2.3.3.1. Let f : X → Y be a morphism of quasi-projective k-schemes.
Then:

(1) The pushforward functor f∗ : Shv(X; Z)→ Shv(Y ; Z) carries constructible `-adic
sheaves to constructible `-adic sheaves.

(2) The resulting functor from Shvc`(X) to Shvc`(Y ) admits a left adjoint f∗∧, which
carries an object F ∈ Shvc`(X) to the `-completion of f∗ F.

Proof. The functor f∗ preserves limits, and therefore carries `-complete objects to `-
complete objects. Assertion (1) is now a consequence of Proposition 2.2.9.1. To prove
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(2), let L : Shv(X; Z) → Shv(X; Z) denote the `-completion functor. If F ∈ Shvc`(Y ),
then we have a natural homotopy equivalence

MapShv(Y ;Z)(F, f∗ G) ' MapShv(X;Z)(Lf
∗ F,G)

whenever G ∈ Shv(X; Z`) is `-complete. It will therefore suffice to show that Lf∗ F is
constructible. By construction, Lf∗ F is `-complete. It will therefore suffice to show
that each tensor product

(Z/`dZ)⊗Z Lf
∗ F ' (Z/`dZ)⊗Z f

∗ F ' f∗(Z/`dZ⊗Z F)

is a constructible object of Shv(X; Z/`dZ) for each d ≥ 0, which follows immediately
from Proposition 2.2.9.1.

Warning 2.3.3.2. In the situation of Proposition 2.3.3.1, the pullback functor f∗ :
Shv(Y ; Z`) → Shv(X; Z`) does not preserve `-constructibility. For example, if Y =
Spec(k) and F ∈ Shv(Y ; Z`) is the constant sheaf with value Z`, then the chain complex
(f∗ F)(X) computes the étale cohomology of X with coefficients in the constant sheaf
associated to Z`, while the chain complex (f∗∧ F)(X) computes the `-adic cohomology
of X (see §3.2.1).

Proposition 2.3.3.3. Let f : X → Y be a proper morphism between quasi-projective k-
schemes. Then the functor f ! : Shv(Y ; Z)→ Shv(X; Z) carries Shvc`(Y ) into Shvc`(X).

Proof. The functor f ! preserves limits and therefore carries `-complete objects to `-
complete objects. It will therefore suffice to show that if F ∈ Shvc`(Y ), then

(Z/`dZ)⊗Z f
! F ' f !((Z/`dZ)⊗Z F)

is constructible for each d ≥ 0, which follows from Proposition 2.2.9.1.

Remark 2.3.3.4. In the situation of Proposition 2.3.3.3, the functor f ! : Shvc`(Y ) →
Shvc`(X) can be identified with the inverse limit of the tower of exceptional inverse
image functors f ! : Shvc(Y ; Z/`dZ)→ Shvc(X; Z/`dZ).

Example 2.3.3.5. If f : X → Y is a smooth morphism of relative dimension d, then
Example 2.2.5.3 supplies an equivalence f ! F ' f∗ F(d), which depends functorially on
F ∈ Shvc`(Y ).

Proposition 2.3.3.6. Let f : X → Y be an étale morphism between quasi-projective
k-schemes. Then:

(1) The pullback functor f∗ : Shv(X; Z)→ Shv(Y ; Z) carries Shvc`(X) into Shvc`(Y ).
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(2) When regarded as a functor from Shvc`(X) to Shvc`(Y ), the functor f∗ admits a
left adjoint f∧! , which carries an object F ∈ Shvc`(X) to the `-completion of f! F.

Proof. We first prove (1). If F ∈ Shv(Y ; Z) is a constructible `-adic sheaf, then
Z/`dZ⊗Z F belongs to Shvc(Y ; Z/`dZ), so that Proposition 2.2.9.1 shows that

Z/`dZ⊗Z f
∗ F ' f∗(Z/`dZ⊗Z F) ∈ Shvc(X; Z/`dZ)

for each d ≥ 0. Since f is étale, the pullback functor f∗ preserves limits, and therefore
carries `-complete objects to `-complete objects.

We now prove (2). Let f! denote the left adjoint to the pullback functor f∗ :
Shv(Y ; Z)→ Shv(X; Z) (see Construction 2.2.3.4), and let f∧! denote the composition
of f! with the `-completion functor. It follows immediately from the definitions that
for every object F ∈ Shv(X; Z) and every `-complete object G ∈ Shv(Y ; Z), we have a
canonical homotopy equivalence

MapShv(Y ;Z)(f
∧
! F,G) ' MapShv(X;Z)(F, f

∗ G).

It will therefore suffice to show that if F is an `-adic constructible sheaf, then f∧! F is
an `-adic constructible sheaf. Since f∧! F is `-complete by construction, we are reduced
to proving that each tensor product

Z/`dZ⊗Z f
∧
! F ' f!(Z/`

dZ⊗Z F)

is a compact object of Shv(Y ; Z/`dZ), which follows from Proposition 2.2.9.1.

Proposition 2.3.3.7. Let X be a quasi-projective k-scheme and let F ∈ Shvc`(X). The
following conditions are equivalent:

(1) The sheaf F vanishes.

(2) For every point η : Spec(k)→ X, the stalk Fη = η∗ F vanishes.

(3) For every point η : Spec(k) → X, the costalk η! F ∈ Shv`(Spec(k)) ' ModZ`

vanishes.

Proof. Note that since F is `-complete, it vanishes if and only if F1 = (Z/`Z) ⊗Z F

vanishes. Similarly, the stalk (costalk) of F at a point η ∈ X(k) vanishes if and only
if the stalk (costalk) of F1 vanishes at η. The desired result now follows from the
corresponding assertion for F1 ∈ Shv(X; Z/`Z) (Proposition 2.2.9.6).
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2.3.4 General `-adic Sheaves

For our applications in this book, the setting of constructible `-adic sheaves will be too
restrictive: we will encounter many examples of sheaves which are not constructible.
To accommodate these examples, we introduce the following enlargement of Shvc`(X):

Definition 2.3.4.1. Let X be a quasi-projective k-scheme. We let Shv`(X) denote
the ∞-category Ind(Shvc`(X)) of Ind-objects of Shvc`(X) (see §[25].5.3.5). We will refer
to Shv`(X) as the ∞-category of `-adic sheaves on X.

Remark 2.3.4.2. Let X be a quasi-projective k-scheme. By abstract nonsense, the
fully faithful embedding Shvc`(X) ↪→ Shv(X; Z`) extends to a colimit-preserving functor
θ : Shv`(X) → Shv(X; Z`). However, this functor need not be fully faithful, since the
objects of Shvc`(X) need not be compact in Shv(X; Z`).

Example 2.3.4.3. IfX = Spec(k), then the essential image of the inclusion Shvc`(X) ↪→
Shv(X; Z`) ' ModZ` consists precisely of the compact objects of ModZ` . It follows that
the forgetful functor of Remark 2.3.4.2 induces an equivalence Shv`(X)→ Shv(X; Z`) '
ModZ` .

Remark 2.3.4.4. Let X be a quasi-projective k-scheme. Then there is a fully faithful
exact functor Shvc`(X) → Shv`(X). We will generally abuse notation by identifying
Shvc`(X) with its essential image under this embedding.

Notation 2.3.4.5. Let f : X → Y be a morphism between quasi-projective k-schemes.
Then the adjoint functors

f∗ : Shvc`(X)→ Shvc`(Y ) f∗∧ : Shvc`(Y )→ Shvc`(X)

extend (in an essentially unique way) to a pair of adjoint functors relating the ∞-
categories Shv`(X) and Shv`(Y ), which we will denote by

f∗ : Shv`(X)→ Shv`(Y ) f∗ : Shv`(Y )→ Shv`(X).

If f is proper, then the functor f ! : Shvc`(Y )→ Shvc`(X) admits an essentially unique
extension to a functor Shv`(Y )→ Shv`(X) which commutes with filtered colimits. This
extension is a right adjoint to the pushforward functor f∗ : Shv`(X) → Shv`(Y ), and
will be denoted by f !.

If f is étale, then the functor f∧! : Shvc`(X)→ Shvc`(Y ) admits an essentially unique
extension to a functor Shv`(X)→ Shv`(Y ) which commutes with filtered colimits. This
extension is left adjoint to the pullback functor f∗ : Shv`(Y ) → Shv`(X), and will be
denoted by f!.
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Warning 2.3.4.6. There is some potential for confusion, because the operations in-
troduced in Notation 2.3.4.5 need not be compatible with the corresponding operations
on étale sheaves studied in §2.2. That is, the diagrams of ∞-categories

Shv`(Y )
f∗ //

��

Shv`(X)

��

Shv`(X)
f! //

��

Shv`(Y )

��
Shv(Y ; Z`)

f∗ // Shv(X; Z`) Shv(X; Z`)
f! // Shv(Y ; Z`)

Shv`(Y )
f !

//

��

Shv`(X)

��
Shv(Y ; Z`)

f !
// Shv(X; Z`),

where the vertical maps are given by the forgetful functors of Remark 2.3.4.2, need not
commute. In the first two cases, this is because the definition of f∗ and f! on `-adic
sheaves involves the process of `-completion; in the third, it is because the functor
f ! : Shv(Y ; Z`) → Shv(X; Z`) need not preserve colimits (the functor f ! preserves
filtered colimits if and only if the direct image functor f∗ carries constructible sheaves to
constructible sheaves; this is generally false when working with sheaves of Z`-modules).
However, the analogous diagram

Shv`(X)
f∗ //

��

Shv`(Y )

��
Shv(X; Z`)

f∗ // Shv(Y ; Z`)

does commute (up to canonical homotopy).

The existence of the adjunction (f!, f
∗) when f : X → Y is an étale morphism has

the following consequence:

Proposition 2.3.4.7. Let f : X → Y be an étale morphism between quasi-projective
k-schemes. Then the pullback functor f∗ : Shv`(Y )→ Shv`(X) preserves limits.

In fact, we have the following stronger assertion:

Proposition 2.3.4.8. Let f : X → Y be a smooth morphism between quasi-projective
k-schemes. Then the functor f∗ : Shv`(Y )→ Shv`(X) preserves limits.
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Proof. Using Corollary 2.3.5.2 and Proposition 2.3.4.7, we see that the result is local
with respect to the étale topology on X. We may therefore assume without loss of

generality that f factors as a composition X
f ′−→ Pn × Y f ′′−→ Y , where the map f ′

is étale. Since f ′∗ preserves limits (Proposition 2.3.4.7), we may replace f by f ′′ and
thereby reduce to the case where f is smooth and proper. In this case, the functor f∗

is equivalent to a shift of the functor f ! (Example 2.3.3.5) and therefore admits a left
adjoint (given by a shift of f∗).

Remark 2.3.4.9. Let X be a quasi-projective k-scheme and let η : Spec(k)→ X be a
k-valued point of X. Then the pullback functor η∗ : Shv`(X)→ Shv`(Spec(k)) carries
each `-adic sheaf F ∈ Shv`(X) to an object of Shv`(Spec(k)) ' ModZ` . We will denote
this object by Fη and refer to it as the stalk of F at the point η.

Warning 2.3.4.10. Proposition 2.3.3.7 does not extend to non-constructible `-adic
sheaves. It is possible to have a nonzero object F ∈ Shv`(X) whose stalk Fη vanishes
for every k-valued point η ∈ X(k).

The pathology of Warning 2.3.4.10 can be avoided by restricting our attention to
`-adic sheaves which are `-complete, in the following sense:

Definition 2.3.4.11. Let X be a quasi-projective k-scheme. We say that an object
F ∈ Shv`(X) is `-complete if the inverse limit of the tower

· · · → F
`−→ F

`−→ F

vanishes in the ∞-category Shv`(X).

Remark 2.3.4.12. Let X be a quasi-projective k-scheme. An object F ∈ Shv`(X) is
`-complete if and only if, for every object F′ ∈ Shv`(X), the inverse limit of mapping
spaces

· · · → MapShv`(X)(F
′,F)

`−→ MapShv`(X)(F
′,F)

`−→ MapShv`(X)(F
′,F)

is contractible. Moreover, it suffices to verify this condition when F′ ∈ Shvc`(X) is
constructible.

Remark 2.3.4.13. Let X be a quasi-projective k-scheme. Then every constructible `-
adic sheaf F on X is `-complete (this follows from Remark 2.3.4.12, since F is `-complete
when viewed as an object of Shv(X; Z)).

Proposition 2.3.4.14. Let X be a quasi-projective k-scheme and let F ∈ Shv`(X) be
`-complete. The following conditions are equivalent:
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(1) The sheaf F vanishes.

(2) For every étale morphism f : U → X, the object C∗(U ; f∗ F) ∈ ModZ` (see
Construction 3.2.1.1) vanishes.

(3) For every k-valued point x ∈ X(k), the stalk x∗ F vanishes.

Proof. The implication (1) ⇒ (2) is trivial. Conversely, suppose that (2) is satisfied.
Write F as the colimit of a filtered diagram {Fα} in Shvc`(X). For each integer d ≥
0, let Fd denote the cofiber of the canonical map `d : F → F, so that Fd can be
written as a colimit lim−→α

Fα,d where Fα,d = cofib(`d : Fα → Fα). Note that we can

identify the diagram {Fα,d} with an object of the Ind-category Ind(Shvc(X; Z/`dZ)) '
Shv(X; Z/`dZ). Using condition (2) we see that this Ind-object vanishes, so that Fd '
0. Since F is `-complete, it follows that F ' lim←−Fd ' 0. This proves that (2) ⇒ (1).
The proof that (1) and (3) are equivalent is similar (using Proposition 2.2.3.2).

2.3.5 Cohomological Descent

Let X be a quasi-projective k-scheme. For every commutative ring Λ, the theory of
ModΛ-valued sheaves on X satisfies effective descent for the étale topology: that is, the
construction

(U ∈ Schet
X) 7→ Shv(U ; Λ)

is a sheaf of ∞-categories with respect to the étale topology. We now establish an
analogous statement for `-adic sheaves.

Proposition 2.3.5.1 (Effective Cohomological Descent). Let f : U → X be a surjective
étale morphism between quasi-projective k-schemes, and let U• denote the simplicial
scheme given by the nerve of the map f (so that Um is the (m+ 1)st fiber power of U
over X). Then the canonical map

ψ : Shv`(X)→ lim←− Shv`(U•)

is an equivalence of ∞-categories.

Corollary 2.3.5.2. Let f : X → Y be a smooth surjection between quasi-projective
k-schemes. Then the functor f∗ : Shv`(Y )→ Shv`(X) is conservative.

Proof. Since f is a smooth surjection, there exists a map g : X ′ → X such that the
composite map f ◦g is an étale surjection. Replacing X by X ′, we may suppose that f is
étale. In this case, the desired result follows immediately from Proposition 2.3.5.1.

The proof of Proposition 2.3.5.1 depends on the following result:
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Lemma 2.3.5.3. Let X be a quasi-projective k-scheme. Suppose that F• is an aug-
mented simplicial object of Shvc`(X) satisfying the following conditions:

(a) There exists an integer n such that Z/`Z⊗Z F• is an augmented simplicial object
of Shvc(X; Z/`Z)≥n.

(b) The image of F• in Shv(X; Z/`Z) is a colimit diagram (that is, it exhibits (Z/`Z)⊗Z

F−1 as a geometric realization of the simplicial object (Z/`Z)⊗Z F•).

Then F• is a colimit diagram in both Shv(X; Z) and Shv`(X).

Proof of Proposition 2.3.5.1. It follows from the Beck-Chevalley property of Variant
2.4.3.1 (and Corollary [23].4.7.5.3) that the functor ψ admits a fully faithful left adjoint

φ : lim←− Shv`(U•)→ Shv`(X).

To complete the proof, it will suffice to show that for each object F ∈ Shv`(X), the
counit map v : (φ ◦ ψ)(F) → F is an equivalence in Shv`(X). For each n ≥ 0, let
fn : Un → X denote the projection map. Unwinding the definitions, we can identify
v with the natural map |f•!f∗• F | → F. Writing F as a colimit of constructible `-adic
sheaves, we may assume without loss of generality that F is constructible. By virtue of
Lemma 2.3.5.3, it will suffice to prove this after tensoring with Z/`Z, in which case the
desired result follows from the fact that the construction U 7→ Shv(U ; Z/`Z) satisfies
étale descent.

Proof of Lemma 2.3.5.3. We first prove that F• is a colimit diagram in Shv(X; Z): that
is, that the canonical map α : |F• | → F−1 is an equivalence in Shv(X; Z). Condition
(b) implies that α is an equivalence after tensoring with Z/`Z. Since the codomain of
α is `-complete, it will suffice to show that the domain of α is also `-complete. For
each integer m, let F(m) denote the colimit of the m-skeleton of F• (formed in the ∞-
category Shv(X; Z)). Then each F(m) belongs to Shvc`(X) and is therefore `-complete,
and we have an equivalence |F• | ' lim−→F(m). Fix an étale map V → X; we wish to
prove that

|F• |(V ) ' lim−→F(m)(V ) ∈ ModZ`

is `-complete. According to Remark 2.3.1.3, this is equivalent to the assertion that
for every integer i, the abelian group lim−→Hi(F(m)(V )) is `-complete (in the derived
sense). To prove this, it will suffice to show that the direct system of abelian groups
{Hi(F(m)(V ))} is eventually constant. Let K(m) denote the fiber of the map F(m)→
F(m+ 1), so that we have an exact sequence

Hi(K(m)(V ))→ Hi(F(m))→ Hi(F(m+ 1)(V ))→ Hi−1(K(m)(V )).
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It will therefore suffice to show that the groups Hi(K(m)(V )) vanish for m� i. Since
K(m) is `-complete, we have a Milnor exact sequence

lim1{Hi+1(Z/`dZ⊗Z K(m)(V ))→ Hi(K(m)(V ))→ lim←−{Hi(Z/`
dZ⊗Z K(m)(V ))}.

Corollary 2.2.9.5 implies that the left term vanishes. We are therefore reduced to
proving that Hi(Z/`

dZ ⊗Z K(m)(V )) ' 0 for m � i. Using induction on d, we can
reduce to the case d = 1. Using Lemma 2.2.4.1, we are reduced to the problem of
showing that Z/`Z ⊗Z K(m) ∈ Shv(X; Z/`Z)≥i for m � i. This follows easily from
assumption (a). This completes the proof that α is an equivalence in Shv(X; Z).

Note that each F(m) is a constructible `-adic sheaf, and is a colimit of the m-
skeleton of F• in both Shv(X; Z) and Shv`(X). The sheaf F−1 can be identified with
the colimit of the sequence

F(0)→ F(1)→ · · ·

in the ∞-category Shv(X; Z); we wish to show that F is also a colimit of this sequence
in Shv`(X). Equivalently, we wish to show that for every object G ∈ Shvc`(X), the
canonical map

lim−→MapShvc`(X)(G,F(m))→ MapShvc`(X)(G,F)

is a homotopy equivalence; here we write MapC(C,D) for the space of maps from C to
D in an ∞-category C (see [25]). For each m ≥ 0, let F′(m) denote the cofiber of the
canonical map F(m)→ F, so that we have a fiber sequence

lim−→MapShvc`(X)(G,F(m))→ MapShvc`(X)(G,F)→ lim−→MapShvc`(X)(G,F
′(m)).

It will therefore suffice to show that the space lim−→MapShvc`(X)(G,F
′(m)) is contractible.

We will prove the following more precise statement: for every integer q, the mapping
space MapShvc`(X)(G,F

′(m)) is q-connective for m sufficiently large (depending on q).

Since F′(m) is `-complete, we can identify MapShvc(X;Z`)
(G,F′(m)) with the limit of a

tower of spaces MapShvc(X;Z`)
(G,Z/`dZ⊗ZF′(m)). It will therefore suffice to show that

each of these spaces is (q + 1)-connective. Using the existence of a fiber sequence

MapShvc`(X)(G,Z/`Z⊗Z F′(m))

��
MapShvc`(X)(G,Z/`

d+1Z⊗Z F′(m))

��
MapShvc`(X)(G,Z/`

dZ⊗Z F′(m)),
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we can reduce to the case d = 1. That is, we are reduced to proving that the mapping
spaces MapShv(X;Z/`Z)(Z/`Z ⊗Z G,Z/`Z ⊗Z F′(m)) are (q + 1)-connective for q � m.
This follows from Proposition 2.2.7.3, since condition (a) guarantees that the sheaves
Z/`Z⊗Z F′(m) are highly connected for m� 0.

2.3.6 The t-Structure on `-Constructible Sheaves

Let X be a quasi-projective k-scheme. In §2.2.2, we introduced a t-structure on the
stable ∞-category Shv(X; Λ), for every commutative ring Λ. We now describe an
analogous t-structure on the stable∞-category Shv`(X) of `-adic sheaves. Our starting
point is the following result:

Proposition 2.3.6.1. Let X be a quasi-projective k-scheme. Then there exists a t-
structure (Shvc`(X)≥0, Shvc`(X)≤0) on the ∞-category Shvc`(X) of constructible `-adic
sheaves on X which is uniquely characterized by the following property:

• A constructible `-adic sheaf F ∈ Shvc`(X) belongs to Shvc`(X)≥0 if and only if
Z/`Z⊗Z F belongs to Shv(X; Z/`Z)≥0.

Warning 2.3.6.2. In the situation of Proposition 2.3.6.1, we can regard Shvc`(X) as
a full subcategory of Shv(X; Z), which is also equipped with a t-structure by virtue of
Proposition 2.2.2.3. Beware that the inclusion Shvc`(X) ↪→ Shv(X; Z) is not t-exact.
However, it is left t-exact: see Remark 2.3.6.5 below.

Example 2.3.6.3. Let X = Spec(k), so that Shvc`(X) can be identified with the ∞-

category Modpf
Z`

of perfect Z`-modules. Under this identification, the t-structure of

Proposition 2.3.6.1 agrees with the usual t-structure of Modpf
Z`

.

Lemma 2.3.6.4. Let A be an abelian category. For each object M ∈ A, let M/`dM
and M [`d] denote the cokernel and kernel of the map `d : M → M . Suppose we are
given a tower of objects

· · · →M3 →M2 →M1 →M0

satisfying the following conditions:

(a) Each of the maps Md+1 →Md induces an equivalence Md+1/`
dMd+1 'Md.

(b) The object M1 is Noetherian.

Then, for each integer m ≥ 0, the tower {Md[`
m]}d≥0 is equivalent to a constant Pro-

object of A.
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Proof. For each d ≥ 0, letNd denote the image of the natural mapMd+m[`m]→Md[`
m].

If d ≥ m, multiplication by `d−m induces a map θd : Mm → Md[`
m]. Let N ′d denote

the fiber product Mm×Md
Nd, which we regard as a subobject of Mm. Assumption (a)

implies that Mm admits a finite filtration by quotients of M1, so that Mm is Noetherian
by virtue of (b). Note that N ′d = ker(θd+m) ⊆ N ′d+m, so that the subobjects N ′d ⊆Mm

form an ascending chain
N ′m ⊆ N ′2m ⊆ N ′3m ⊆ · · · .

Since Mm is Noetherian, this chain must eventually stabilize. We may therefore choose
an integer a0 such that N ′am = N ′(a−1)m = ker(θam) for a ≥ a0. Using the commutative
diagram of short exact sequences

0 // N ′(a−1)m

��

//Mm
θam //

id

��

Im(θam) //

��

0

0 // N ′am //Mm

θ(a+1)m// Im(θ(a+1)m
// 0,

we see that multiplication by `m induces an isomorphism from Im(θam) to Im(θ(a+1)m)
for a ≥ a0. This isomorphism factors as a composition

Im(θam) ↪→Mam[`m]
`m−−→ Im(θ(a+1)m),

so that for a ≥ a0 the object Mam[`m] splits as a direct sum Im(θam)⊕Nam. Note that
the restriction map M(a+1)m[`m] → Mam[`m] has image Nam and kernel Im(θ(a+1)m),
and therefore restricts to an isomorphism N(a+1)m → Nam for a ≥ a0. It follows that
the tower {Mam[`m]}a≥a0 is isomorphic to the direct sum of a constant tower {Nam}a≥a0

and a tower {Im(θam)}a≥a0 with vanishing transition maps, and is therefore equivalent
to a constant Pro-object of A.

Proof of Proposition 2.3.6.1. For each integer n, let Shvc`(X)≤n denote the full subcat-
egory of Shvc`(X) spanned by those objects F such that, for each object G ∈ Shvc`(X)≥0,
the mapping space MapShvc`(X)(G,Σ

−m F) is contractible for m > n. To prove Propo-
sition 2.3.6.1, it will suffice to show that for each object F ∈ Shvc`(X), there exists a
fiber sequence F′ → F → F′′ where F′ ∈ Shvc`(X)≥0 and F′′ ∈ Shvc`(X)≤−1.

For each integer d ≥ 0, let Fd = (Z/`dZ)⊗ZF denote the image of F in Shv(X; Z/`dZ),
so that F ' lim←−{Fd}d≥0. Set F′ = lim←−{τ≥0 Fd}d≥0 and F′′ = lim←−{τ≤−1 Fd}d≥0, where
the limits are formed in Shv(X; Z). We will prove that F′ ∈ Shvc`(X)≥0. Assuming
this, it follows that F′′ ∈ Shvc`(X). Note that for G ∈ Shvc`(X)≥0, the mapping space

MapShvc`(X)(G,F) ' lim←−MapShvc`(X)(G, τ≤−1 Fd)

' lim←−MapShv`(X;Z/`dZ)(Z/`
dZ⊗Z G, τ≤−1 Fd)
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is contractible, since each tensor product Z/`dZ⊗Z G belongs to Shv(X; Z/`dZ)≥0. It
follows that F′′ belongs to Shvc`(X)≤−1, as desired.

It remains to prove that F′ ∈ Shvc`(X)≥0. For this, we must establish three things:

(a) The object F′ ∈ Shv(X; Z) is `-complete.

(b) The tensor product (Z/`Z)⊗Z F′ is a compact object of Shv(X; Z/`Z).

(c) The tensor product (Z/`Z)⊗Z F′ belongs to Shv(X; Z/`Z)≥0.

Assertion (a) is obvious (since the collection of `-complete objects of Shv(X; Z) is closed
under limits). We will deduce (b) and (c) from the following:

(∗) The tower {(Z/`Z)⊗Z τ≥0 Fd}d≥0 is a constant Pro-object of Shv(X; Z/`Z).

Note that if a tower {Cd}d≥0 in some ∞-category C is Pro-equivalent to an object
C ∈ C, then C can be identified with a retract of Cd for d � 0. In particular, using
assertion (∗) (and the fact that the construction (Z/`Z)⊗Z • preserves limits), we can
identify (Z/`Z) ⊗Z F′ with a retract of some G = (Z/`Z) ⊗Z τ≥0 Fd for some d ≥ 0.
From this, assertion (c) is obvious and assertion (b) follows from Proposition 2.2.6.2.

Note that the tower {(Z/`Z) ⊗Z (Z/`dZ)} determines a constant Pro-object of
ModZ, so that the Pro-objects {(Z/`Z) ⊗Z Fd}d≥0 and {τ≥0(Z/`Z ⊗Z Fd)}d≥0 are
likewise constant. For each d ≥ 0, form a fiber sequence

(Z/`Z)⊗Z τ≥0 Fd → τ≥0((Z/`Z)⊗Z Fd)→ Gd .

To prove (∗), it will suffice to show that the tower {Gd}d≥0 is constant. Unwinding
the definitions, we see that each Gd belongs to the heart Shv(X; Z)♥, where it can be
identified with the kernel of the map π−1 Fd → π−1 Fd given by multiplication by `. For
each integer m, let us regard πm F as an object of Shv(X; Z)♥, and let (πm F)/`d and
(πm F)[`d] denote the cokernel and kernel of the multiplication map `d : πm F → πm F,
so that we have exact sequences

0→ (π−1 F)/`d → π−1 Fd → (π−2 F)[`d]→ 0

which determine an exact sequence of Pro-objects

0→ {(π−1 F)/`d)[`]}d≥0 → {Gd}d≥0 → {(π−2 F)[`]}d≥0.

The last of these Pro-objects is trivial (it has vanishing transition maps), so we are
reduced to proving that the Pro-object {(π−1 F)/`d)[`]}d≥0 is constant. Note that
(π−1 F)/` is a subobject of π−1 F1, and is therefore a Noetherian object of the abelian
category Shv(X; Z/`Z)♥ by virtue of Proposition 2.2.7.4. The desired result now follows
from Lemma 2.3.6.4.
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Remark 2.3.6.5. Let X be a quasi-projective k-scheme and let F ∈ Shvc`(X). The
proof of Proposition 2.3.6.1 shows that F belongs to Shvc`(X)≤0 if and only if the
canonical map F → lim←− τ≤0(Z/`dZ⊗Z F) is an equivalence in Shv(X; Z). In particular,
every object of Shvc`(X)≤0 belongs to Shv(X; Z)≤0. In other words, the inclusion
Shvc`(X) ↪→ Shv(X; Z) is left t-exact.

Remark 2.3.6.6. Let X be a quasi-projective k-scheme and let F ∈ Shvc`(X). For
each integer d ≥ 0, let Fd = (Z/`dZ)⊗Z F ∈ Shvc(X; Z/`dZ). If F ∈ Shvc`(X)≤n, then
Remark 2.3.6.5 implies that F ∈ Shv(X; Z)≤n so that each of the sheaves Fd belongs
to Shv(X; Z/`dZ)≤n+1. Conversely, if F1 belongs to Shv(X; Z/`Z)≤n+1, then it follows
by induction on d that each Fd ∈ Shv(X; Z/`dZ)≤n+1, so that the proof of Proposition
2.3.6.1 shows that F ∈ Shvc`(X)≤n+1.

Proposition 2.3.6.7. Let X be a quasi-projective k-scheme. Then the t-structure on
Shvc`(X) is right and left bounded: that is, we have

Shvc`(X) =
⋃
n

Shvc`(X)≤n =
⋃
n

Shvc`(X)≥−n.

Proof. Let F ∈ Shvc`(X). For each integer d ≥ 0, let Fd = Z/`dZ⊗ZF ∈ Shvc(X; Z/`dZ).
The characterization of constructibility given by Proposition 2.2.6.2 shows that there
exists an integer n ≥ 0 such that F1 ∈ Shv(X; Z/`Z)≥−n ∩ Shv(X; Z/`Z)≤n. It follows
by induction on d that each Fd belongs to Shv(X; Z/`dZ)≥−n ∩ Shv(X; Z/`dZ)≥n, so
that F ∈ Shvc`(X)≥−n ∩ Shvc`(X)≤n.

2.3.7 Exactness of Direct and Inverse Images

Let f : X → Y be a map of quasi-projective k-schemes. Then f determines a pair of
adjoint functors

Shvc`(Y )
f∗∧ //Shvc`(X).
f∗
oo

In this section, we study the exactness properties of these functors with respect to the
t-structure of Proposition 2.3.6.1.

Proposition 2.3.7.1. Let f : X → Y be a morphism of quasi-projective k-schemes.
Then the pullback functor f∗∧ : Shvc`(Y )→ Shvc`(X) is t-exact.

Proof. If F ∈ Shvc`(Y )≥0, then

(Z/`Z)⊗Z f
∗
∧ F ' f∗(Z/`Z⊗Z F)

∈ f∗ Shv(Y ; Z/`Z)≥0

⊆ Shv(X; Z/`Z)≥0.
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This proves that the functor f∗ is right t-exact.

To prove left exactness, we must work a little bit harder. Assume that F ∈
Shvc`(Y )≤0, and for d ≥ 0 set Fd = (Z/`dZ)⊗Z F ∈ Shv(Y ; Z/`dZ). We have

τ≥1f
∗
∧ F ' lim←− τ≥1(Z/`dZ⊗Z f

∗ F)

' lim←− τ≥1f
∗(Z/`dZ⊗Z F)

= lim←− τ≥1f
∗ Fd

' lim←− f
∗τ≥1 Fd .

It will therefore suffice to show that lim←− f
∗τ≥1 Fd vanishes in Shv(X; Z). Since the limit

is `-complete, we are reduced to proving that the limit

Z/`Z⊗Z lim←− f
∗τ≥1 Fd ' lim←− f

∗(Z/`Z⊗Z τ≥1 Fd)

vanishes. Using the characterization of Shvc`(Y )≤0 obtained in the proof of Proposition
2.3.6.1, we see that the limit lim←−(Z/`Z ⊗Z τ≥1 Fd) vanishes in Shv(Y ; Z/`Z). It will
therefore suffice to show that the natural map

f∗ lim←−(Z/`Z⊗Z τ≥1 Fd)→ lim←− f
∗(Z/`Z⊗Z τ≥1 Fd)

is an equivalence in Shv(X; Z). This follows from assertion (∗) from the proof of
Proposition 2.3.6.1.

Corollary 2.3.7.2. Let f : X → Y be a morphism of quasi-projective k-schemes.
Then the direct image functor f∗ : Shvc`(X) → Shvc`(Y ) is left t-exact. If f is a finite
morphism, then f∗ is t-exact.

Proof. The left t-exactness of f∗ follows immediately from the right t-exactness of
the adjoint functor f∗ (Proposition 2.3.7.1). If f is a finite morphism, then for F ∈
Shvc`(X)≥0 we have

Z/`Z⊗Z f∗ F ' f∗(Z/`Z⊗Z F)

∈ f∗ Shv(X; Z/`Z)≥0

⊆ Shv(Y ; Z/`Z)≥0,

so that f∗ is right t-exact.

Corollary 2.3.7.3. Let f : X → Y be a finite morphism of quasi-projective k-schemes.
Then the exceptional inverse image functor f ! : Shvc`(Y )→ Shvc`(X) is left t-exact.

Corollary 2.3.7.4. Let X be a quasi-projective k-scheme. Then:
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(a) An object F ∈ Shvc`(X) belongs to Shvc`(X)≥0 if and only if, for each point η :

Spec(k)→ X, the stalk η∗∧ F ∈ Shvc`(Spec(k)) ' Modpf
Z`

belongs to (ModZ`)≥0.

(b) An object F ∈ Shvc`(X) belongs to Shvc`(X)≤0 if and only if, for each point η :

Spec(k)→ X, the stalk η∗ F ∈ Shvc`(Spec(k)) ' Modpf
Z`

belongs to (ModZ`)≤0.

Proof. We will prove (b); the proof of (a) is similar. The “only if” direction follows
immediately from Proposition 2.3.7.1 and Example 2.3.6.3. Conversely, suppose that
η∗ F belongs to (ModZ`)≤0 for each point η : Spec(k) → X. Since the functor η∗∧ is
t-exact (Proposition 2.3.7.1), it follows that the canonical map α : F → τ≤0 F induces
an equivalence after passing to the stalk at each point, so that α is an equivalence by
virtue of Proposition 2.3.3.7.

2.3.8 The Heart of Shvc`(X)

Let X be a quasi-projective k-scheme. In this section, we study the relationship be-
tween the∞-category Shvc`(X) of `-constructible sheaves onX (introduced in Definition
2.3.2.1) and the classical abelian category of `-adic sheaves (introduced in [15]). We
begin by recalling the definition of the latter.

Definition 2.3.8.1. LetX be a quasi-projective k-scheme and let F ∈ Shv(X; Z/`dZ)♥.
We will say that the sheaf F is imperfect constructible if it satisfies the following con-
ditions:

(1) There exists a finite sequence of quasi-compact open subsets

0 = U0 ⊆ U1 ⊆ · · · ⊆ Un = X

such that, for 1 ≤ i ≤ n, if Yi denotes the locally closed reduced subscheme of X
with support Ui − Ui−1, then each restriction F |Yi is locally constant.

(2) For every k-valued point η : Spec(k)→ X, the pullback η∗ F ∈ Shv(Spec(k); Z/`dZ) '
Mod♥

Z/`dZ
is finite (when regarded as an abelian group).

We let Shv◦(X; Z/`dZ) denote the full subcategory of Shv(X; Z/`dZ)♥ spanned by the
imperfect constructible objects.

Example 2.3.8.2. Let F ∈ Shvc(X; Z/`dZ). Then each of the cohomology sheaves
πi F is imperfect constructible.

Remark 2.3.8.3. If X is a quasi-projective k-scheme, then the full subcategory

Shv◦(X; Z/`dZ) ⊆ Shv(X; Z/`dZ)♥

is closed under the formation of kernels, cokernels, and extensions. Consequently, it
forms an abelian category.
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Remark 2.3.8.4. For every pair of integers d′ ≥ d ≥ 0, the construction

F 7→ τ≤0((Z/`dZ)⊗Z/`d′Z F)

carries Shv◦(X; Z/`d
′
Z) into Shv◦(X; Z/`dZ). We therefore have a tower of (abelian)

categories and right-exact functors

· · · → Shv◦(X; Z/`3Z)→ Shv◦(X; Z/`2Z)→ Shv◦(X; Z/`Z).

We will denote the homotopy inverse limit of this tower by Shv◦(X).

Proposition 2.3.8.5. Let X be a quasi-projective k-scheme, and let φ : Shvc`(X)≥0 →
Shv◦(X) denote the functor given on objects by the formula

φ(F) = {τ≤0(Z/`dZ⊗Z F)}d≥0.

Then θ induces an equivalence of categories Shvc`(X)♥ ' Shv◦(X). In particular,
Shv◦(X) is an abelian category.

Proof. Let ψ : Shv◦(X) → Shv(X; Z) be the functor given by ψ{Fd}d≥0 = lim←−Fd
(where the limit is formed in the ∞-category Shv(X; Z)). The proof of Proposition
2.3.6.1 shows that the composite functor ψ ◦ φ : Shvc`(X)≥0 → Shv(X; Z) is given by
F 7→ τ≤0 F (where the truncation is formed with respect to the t-structure of Proposition
2.3.6.1). Consequently, ψ is a left homotopy inverse of the restriction φ|Shvc`(X)♥ . To
complete the proof, it will suffice to show that ψ factors through the full subcategory
Shvc`(X)♥ ⊆ Shv(X; Z) and that it is a right homotopy inverse to φ|Shvc`(X)♥ . To prove
this, we must show that every object {Fd}d≥0 of Shv◦(X) has the following properties:

(a) The inverse limit F = lim←−Fd (formed in the∞-category Shv(X; Z)) is `-complete.

(b) The tensor product (Z/`Z)⊗Z F is a constructible object of Shv(X; Z/`Z).

(c) The limit F = lim←−Fd belongs to Shvc`(X)≥0: in other words, the tensor product
(Z/`Z)⊗Z F belongs to Shv(X; Z/`Z)≥0.

(d) The limit F = lim←−Fd belongs to Shvc`(X)≤0.

(e) For each integer d ≥ 0, the canonical map τ≤0(Z/`dZ)⊗Z F)→ Fd is an equiva-
lence in Shv(X; Z/`dZ)♥.

Assertion (a) is clear. Note that the tensor product (Z/`Z)⊗Z F can be identified
with the limit of the diagram {(Z/`Z)⊗Z Fd}d≥0. For each d ≥ 1, we have

πi(Z/`Z⊗Z Fd) '


F1 if i = 0

ker(` : Fd → Fd) if i = 1

0 otherwise.
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Using Lemma 2.3.6.4 and Proposition 2.2.7.4, we see that the tower {ker(` : Fd →
Fd)}d≥1 is constant as a Pro-object of Shv◦(X; Z/`Z). It follows that πi(Z/`Z ⊗Z F)
is F1 when i = 0, a retract of some ker(` : Fd → Fd) if i = 1, and vanishes otherwise.
This proves (b) and (c). To prove (d), we note that for G ∈ Shvc`(X)≥0, the mapping
space

MapShv(X;Z)(G,Σ
−1 F) ' lim←−MapShv(X;Z)(G,Σ

−1 Fd)

' lim←−MapShv(X;Z/`dZ)(Z/`
dZ⊗Z G,Σ−1 Fd)

is contractible because each (Z/`dZ)⊗Z G belongs to Shv(X; Z/`dZ)≥0. To prove (e),
we first observe that for d′ ≥ d, we have

πi((Z/`
dZ)⊗Z Fd′) '


Fd if i = 0

ker(`d : Fd′ → Fd′) if i = 1

0. otherwise

Using Lemma 2.3.6.4 and Proposition 2.2.7.4, we see that the tower {ker(`d : Fd′ →
Fd′)}d′≥d is equivalent to a constant Pro-object of Shv◦(X; Z/`dZ), so that the tower
{((Z/`dZ)⊗Z Fd′}d′≥d is constant and we obtain an equivalence

τ≤0 lim←−
d′

((Z/`dZ)⊗Z Fd′)→ lim←−
d′
τ≤0((Z/`dZ)⊗Z Fd′) ' Fd .

2.3.9 The t-Structure on Shv`(X)

We now extend the constructions of §2.3.6 to the setting of `-adic sheaves which are
not constructible.

Notation 2.3.9.1. Let X be a quasi-projective k-scheme. We let Shv`(X)≥0 and
Shv`(X)≤0 denote the essential images of the fully faithful embeddings

Ind(Shvc`(X)≥0) ↪→ Ind(Shvc`(X)) = Shv`(X)

Ind(Shvc`(X)≤0) ↪→ Ind(Shvc`(X)) = Shv`(X).

It follows from Proposition 2.3.6.1 that the full subcategories (Shv`(X)≥0,Shv`(X)≤0)
determine a t-structure on the ∞-category Shv`(X).

Remark 2.3.9.2. Let f : X → Y be a morphism of quasi-projective k-schemes. Then
the pullback functor f∗ : Shv`(Y ) → Shv`(X) is t-exact, and the pushforward functor
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f∗ : Shv`(X)→ Shv`(Y ) is left t-exact. If f is finite, then f∗ : Shv`(X)→ Shv`(Y ) is t-
exact and f ! : Shv`(Y )→ Shv`(X) is left t-exact. These assertions follow immediately
from Proposition 2.3.7.1, Corollary 2.3.7.2, and Corollary 2.3.7.3. Beware that the
analogue of Corollary 2.3.7.4 for non-constructible `-adic sheaves is generally false: for
example, one can find nonzero objects of Shv`(X) with vanishing stalks (or costalks)
at every point.

Proposition 2.3.9.3. Let X be a quasi-projective k-scheme. Then the t-structure on
Shv`(X) is right complete (that is, the canonical map Shv`(X) → lim←−n Shv`(X)≥−n is
an equivalence of∞-categories). Moreover, the canonical map Shv`(X)→ lim←−n Shv`(X)≤n
is fully faithful.

Remark 2.3.9.4. We do not know if the t-structure on Shv`(X) is left complete.

Lemma 2.3.9.5. Let X be a quasi-projective k-scheme. Then there exists an inte-
ger q with the following property: if F ∈ Shvc`(X)≤0 and G ∈ Shv`(X)≥q, then every
morphism F → G is nullhomotopic.

Proof. By virtue of Proposition 2.2.7.3, we can choose an integer n for which the groups
ExtmShv(X;Z/`Z)(F

′,G′) vanish whenever F′ ∈ Shvc(X; Z/`Z)♥, G′ ∈ Shv(X; Z/`Z)♥, and

m > n. We will show that q = n+ 3 has the desired property. Let F ∈ Shvc`(X)≤0 and
G ∈ Shv`(X)≥n+3; we wish to prove that Ext0

Shv`(X)(F,G) ' 0. Writing G as a filtered

colimit of objects of Shvc`(X)≥n+3, we may assume that G is constructible. For each
d ≥ 0, set

Fd = (Z/`dZ)⊗Z F Gd = (Z/`dZ)⊗Z G .

Note that F can be regarded as an object of Shv(X; Z)≤0 (Remark 2.3.6.5), so that
each Fd belongs to Shv(X; Z/`dZ)≤1. We have a canonical homotopy equivalence

MapShv`(X)(F,G) ' lim←−MapShv(X;Z)(F,Gd)

which gives rise to Milnor exact sequences

0→ lim1{Ext−1
Shv(X;Z)(F,Gd)} → Ext0

Shv`(X)(F,G)→ lim0{Ext0
Shv(X;Z)(F,Gd)}.

It will therefore suffice to show that the groups ExtiShv(X;Z)(F,Gd) vanish for i ∈ {0,−1}.
Writing Gd as a successive extension of finitely many copies of G1, we may reduce to the
case d = 1. We are therefore reduced to showing that the groups ExtiShv(X;Z/`Z)(F1,G1)

vanish for i ∈ {0,−1}. The desired result now follows by writing F1 and G1 as successive
extensions of objects belonging to the heart Shv(X; Z/`Z)♥.

Proof of Proposition 2.3.9.3. The right completeness of the Shv`(X) follows formally
from the right boundedness of Shvc`(X) (Proposition 2.3.9.3). To see this, we first ob-
serve that the full subcategory Shv`(X)≤0 is closed under infinite direct sums. To
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show that Shv`(X) is right complete, it will suffice to show that the intersection⋂
Shv`(X)≤−n consists only of zero objects (Proposition [23].1.2.1.19). To prove this,

let F ∈
⋂

Shv`(X)≤−n. If F 6= 0, then there exists an object F′ ∈ Shvc`(X) and a
nonzero map F′ → F. This is impossible, since F′ belongs to Shv`(X)≥m for some
integer m (by virtue of the right boundedeness of the t-structure on Shvc`(X)).

To complete the proof, it will suffice to show that for every object G ∈ Shv`(X), the
canonical map G → lim←− τ≤n G is an equivalence. Equivalently, we must show that the
object lim←− τ≥n G vanishes. To prove this, we argue that for each constructible object
F ∈ Shvc`(X), the mapping space MapShv`(X)(F, lim←− τ≥n G) is contractible. We have
Milnor exact sequences

lim1{Extm−1(F, τ≥n G)}n≥0 → Extm(F, lim←− τ≥n G)→ lim0{Extm(F, τ≥n G)}n≥0,

where all Ext-groups are formed in the stable ∞-category Shv`(X). The desired result
now follows from Lemma 2.3.9.5 (and the left boundedness of Shvc`(X)), which guar-
antees that the groups Extm−1(F, τ≥n G) and Extm(F, τ≥n G) are trivial for n� 0.

2.4 Base Change Theorems

Throughout this section, we fix an algebraically closed field k and a prime number `
which is invertible in k. Our goal is to review some nontrivial results in the theory of
étale cohomology which will be applied in later chapters of this book.

2.4.1 Digression: The Beck-Chevalley Property

We begin with some general categorical remarks.

Notation 2.4.1.1. Suppose we are given a diagram of ∞-categories and functors σ :

C
f //

g
��

D

g′

��
C′

f ′ // D′

which commutes up to specified homotopy: that is, we are given an equivalence of
functors α : g′ ◦ f ' f ′ ◦ g. Suppose that f and f ′ admit left adjoints fL and f ′L,
respectively. Then σ determines a map β : f ′L ◦ g′ → g ◦ fL, given by the composition

f ′L ◦ g′ → f ′L ◦ g′ ◦ f ◦ fL α−→ f ′L ◦ f ′ ◦ g ◦ fL → g ◦ fL

where the first and third maps are given by composition with the unit and counit for
the adjunctions between the pairs (fL, f) and (f ′L, f ′), respectively. We will refer to
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β as the left Beck-Chevalley transformation determined by α. We will say that the
diagram σ is left adjointable if the functors f and f ′ admit left adjoints and the natural
transformation β is an equivalence. If f and f ′ admit right adjoints fR and f ′R, then
a dual construction yields a natural transformation

γ : g ◦ fR → f ′R ◦ g′,

which we will refer to as the right Beck-Chevalley transformation determined by σ. We
will say that σ is right adjointable if the functors f and f ′ admit right adjoints and the
natural transformation γ is an equivalence.

Remark 2.4.1.2. In the situation of Notation 2.4.1.1, suppose that the functors f , f ′,
g, and g′ all admit left adjoints. We then obtain a diagram σL:

D′
g′L //

f ′L

��

D

fL

��
C′

gL // C

which commutes up to (preferred) homotopy, and the vertical maps admit right adjoints
g′ and g. We therefore obtain a right Beck-Chevalley transformation f ′L ◦ g′ → g ◦ fL
for σL, which agrees (up to canonical homotopy) with the left Beck-Chevalley trans-
formation for σ.

Remark 2.4.1.3. Suppose we are given a diagram of ∞-categories σ :

C
f //

g
��

D

g′

��
C′

f ′ // D′,

where the functors f and f ′ admit left adjoints fL and f ′L, and the functors g and g′

admit right adjoints gR and g′R. Applying the Construction of Notation 2.4.1.1 to σ
and to the transposed diagram σt :

C
g //

f

��

C′

f ′

��
D

g′ // D′,

we obtain left and right Beck-Chevalley transformations

β : f ′L ◦ g′ → g ◦ fL γ : f ◦ gR → g′R ◦ f ′.
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Unwinding the definitions, we see that γ is the natural transformation obtained from
β by passing to right adjoints. In particular, under the assumption that the relevant
adjoints exist, the diagram σ is left adjointable if and only if the diagram σt is right
adjointable.

2.4.2 Smooth and Proper Base Change

We now specialize to the setting of algebraic geometry. Suppose we are given a com-
mutative diagram σ :

X ′
f ′ //

p′

��

X

p

��
S′

f // S

of quasi-projective k-schemes. Then σ determines a diagram of ∞-categories

Shv`(S)
p∗ //

f∗

��

Shv`(X)

f ′∗

��
Shv`(S

′)
p′∗ // Shv`(X

′).

Each functor in this diagram admits a right adjoint, so we obtain a right Beck-Chevalley
transformation β : f∗p∗ → p′∗f

′∗. The following statement summarizes some of the main
foundational results in the theory of étale cohomology:

Theorem 2.4.2.1 (Smooth and Proper Base Change). Suppose we are given a pullback
diagram of quasi-projective k-schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S.

If either p is proper or f is smooth, then the Beck-Chevalley morphism β : f∗p∗ → p′∗f
′∗

is an equivalence of functors from Shv`(X) to Shv`(S
′).

Proof. Let F ∈ Shv`(X
′); we wish to prove that the canonical map βF : f∗p∗ F →

p′∗f
′∗ F is an equivalence in Shv`(S

′). Writing F as a filtered colimit of constructible
`-adic sheaves (and using the fact that the functors f∗, p∗, p

′
∗, and f ′∗ commute with

filtered colimits), we can reduce to the case where F is constructible. In this case, the
domain and codomain of βF are constructible `-adic sheaves (see Notation 2.3.4.5). We
may therefore identify βF with a morphism in the ∞-category Shvc`(S

′) ⊆ Shv(S′; Z`).
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Since the domain and codomain of βF are `-complete, it will suffice to show that the
induced map

(Z/`Z)⊗Z` f
∗p∗ F → (Z/`Z)⊗Z` p

′
∗f
′∗ F

is an equivalence in Shv(S′; Z/`Z). For this, it suffices to show that the diagram of
∞-categories

Shvc(S; Z/`Z)
p∗ //

f∗

��

Shvc(X; Z/`Z)

f ′∗

��
Shvc(S′; Z/`Z)

p′∗ // Shvc(X ′; Z/`Z)

is right adjointable: that is, that the canonical map f∗p∗ G→ p′∗f
′∗ G is an equivalence

for each constructible object G ∈ Shv(X; Z/`Z). The constructibility of G implies that
it can be written as a finite extension of suspensions of objects belonging to the heart
Shv(X; Z/`Z) (which we can identify with the abelian category étale sheaves of Z/`Z
on X). The desired result now follows from the usual smooth and proper base change
theorems for étale cohomology (see [10]).

2.4.3 Direct Images and Extension by Zero

In the situation of Theorem 2.4.2.1, suppose that the map f is étale. Then the pullback
functors f∗ and f ′∗ admit left adjoints f! and f ′! . Invoking the dual of Remark 2.4.1.3,
we obtain the following version of Proposition 2.2.3.5:

Variant 2.4.3.1. Suppose we are given a pullback diagram of quasi-projective k-
schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S,

where f is étale. Then the diagram of ∞-categories

Shv`(S)
f∗ //

p∗

��

Shv`(S
′)

p′∗

��
Shv`(X)

f ′∗ // Shv`(X
′)

is left adjointable. In other words, the associated Beck-Chevalley transformation β′ :
f ′!p
′∗ → p∗f! is an equivalence of functors from Shv`(S

′) to Shv`(X).
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Remark 2.4.3.2. It is easy to deduce Variant 2.4.3.1 directly from Proposition 2.2.3.5;
the full force of the smooth base change theorem is not required.

Construction 2.4.3.3. Suppose that we are given a pullback diagram of quasi-projective
k-schemes

X ′
f ′ //

p′

��

X

p

��
S′

f // S

where f is étale, so that the diagram of ∞-categories

Shv`(X)
f ′∗ //

p∗
��

Shv`(X
′)

p′∗
��

Shv`(S)
f∗ // Shv`(S

′)

commutes up to canonical homotopy (Theorem 2.4.2.1). Note that the horizontal maps
admit left adjoints f ′! and f!, respectively, so that there is an associated left Beck-
Chevalley transformation γ : f!p

′
∗ → p∗f

′
! . By virtue of Remark 2.4.1.2, we can also

identify γ with the right Beck-Chevalley transformation associated to the diagram

Shv`(S
′)

p′∗ //

f!

��

Shv`(X
′)

f ′!
��

Shv`(S)
p∗ // Shv`(X)

of Variant 2.4.3.1.

Proposition 2.4.3.4. Suppose that we are given a pullback diagram of quasi-projective
k-schemes

X ′
f ′ //

p′

��

X

p

��
S′

f // S,

where f is étale. If p is proper, then the natural transformation γ : f!p
′
∗ → p∗f

′
! of

Construction 2.4.3.3 is an equivalence. In other words, the diagram of ∞-categories

Shv`(X)
f ′∗ //

p∗
��

Shv`(X
′)

p′∗
��

Shv`(S)
f∗ // Shv`(S

′)
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is left adjointable, and the diagram of ∞-categories

Shv`(S
′)

p′∗ //

f!

��

Shv`(X
′)

f ′!
��

Shv`(S)
p∗ // Shv`(X)

is right adjointable.

Proof. Let F ∈ Shv`(X
′); we wish to show that the map γF : f!p

′
∗ F → p∗f

′
! F is an

equivalence in Shv`(S). Writing F as a filtered colimit of constructible `-adic sheaves
(and using the fact that the functors f!, p∗, f

′
! , and p′∗ commute with filtered colimits),

we can reduce to the case where F is constructible. In this case, the domain and
codomain of γF are also constructible `-adic sheaves. Using Proposition 2.3.3.7, we
are reduced to showing that βF induces an equivalence η∗f!p

′
∗ F → η∗p∗f

′
! F for every

point η : Spec(k) → S. Using Theorem 2.4.2.1 and Variant 2.4.3.1, we can replace S
by Spec(k). In this case, S′ is isomorphic to a disjoint union of finitely many copies of
Spec(k) and the result is easy.

2.4.4 Base Change for Exceptional Inverse Images

Let us now return to the setting of Theorem 2.4.2.1. Suppose we are given a pullback
diagram of quasi-projective k-schemes

X ′
f ′ //

p′

��

X

p

��
S′

f // S.

Note that the right adjointability of the diagram

Shv`(S)
p∗ //

f∗

��

Shv`(X)

f ′∗

��
Shv`(S

′)
p′∗ // Shv`(X

′).

is equivalent to the left adjointability of the diagram

Shv`(X
′)

f ′∗ //

p′∗
��

Shv`(X)

p∗
��

Shv`(S
′)

f∗ // Shv`(S)
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(see Remark 2.4.1.2). If p is proper, then the vertical maps admit right adjoints given
by p! and p′!, respectively. Invoking Remark 2.4.1.3, we obtain:

Variant 2.4.4.1. Suppose we are given a pullback diagram of quasi-projective k-
schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S,

where p is proper. Then the diagram of ∞-categories

Shv`(X
′)

p′∗ //

f ′∗
��

Shv`(S
′)

f∗
��

Shv`(X)
p∗ // Shv`(S)

is right adjointable. In other words, the right Beck-Chevalley transformation

β′′ : f ′∗p
′! → p!f∗

is an equivalence of functors from Shv`(S
′) to Shv`(X).

We have the following dual version of Construction 2.4.3.3:

Construction 2.4.4.2. Suppose that we are given a pullback diagram of quasi-projective
k-schemes

X ′
f ′ //

p′

��

X

p

��
S′

f // S

where p is proper, so that the diagram of ∞-categories

Shv`(X)
p∗ //

f ′∗

��

Shv`(S)

f∗

��
Shv`(X

′)
p′∗ // Shv`(S

′)

commutes up to canonical homotopy (Theorem 2.4.2.1). Note that the horizontal maps
admit right adjoints p! and p′!, so that there is an associated right Beck-Chevalley
transformation γ′ : f ′∗p! → p′!f∗ of functors from Shv`(S) to Shv`(X

′). Using Remark
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2.4.1.2, we can also identify γ′ with the left Beck-Chevalley transformation associated
to the diagram

Shv`(S
′)

f∗ //

p′!

��

Shv`(S)

p!

��
Shv`(X

′)
f ′∗ // Shv`(X)

of Variant 2.4.4.1.

Proposition 2.4.4.3. Suppose we are given a commutative diagram of quasi-projective
k-schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S

where p is proper. If f is smooth, then the natural transformation γ′ : f ′∗p! → p′!f∗ of
Construction 2.4.4.2 is an equivalence. In other words, the diagram of ∞-categories

Shv`(X)
p∗ //

f ′∗

��

Shv`(S)

f∗

��
Shv`(X

′)
p′∗ // Shv`(S

′)

is right adjointable and the diagram of ∞-categories

Shv`(S
′)

f∗ //

p′!

��

Shv`(S)

p!

��
Shv`(X

′)
f ′∗ // Shv`(X)

is left adjointable.

Remark 2.4.4.4. In the situation of Proposition 2.4.4.3, suppose that p is proper and
f is étale. In this case, the natural transformation γ′ : f ′∗p! → p′!f∗ is obtained from
the natural transformation γ : f!p

′
∗ → p∗f

′
! of Construction 2.4.3.3 by passing to right

adjoints. In this case, Proposition 2.4.4.3 reduces to Proposition 2.4.3.4.

Proof of Proposition 2.4.4.3. Fix an object F ∈ Shv`(S); we wish to show that the
map γ′F : f ′∗p! F → p′!f∗ F is an equivalence. Since the construction F 7→ γ′F preserves
filtered colimits, we may assume without loss of generality that F is a constructible
`-adic sheaf. For every point η : Spec(k) → X, let iη denote the inclusion of the fiber
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product X ′×X Spec(k) into X ′. By virtue of Proposition 2.3.3.7, it will suffice to show
that i!ηγ

′
F is an equivalence for each η. Let f ′′ : X ′ ×X Spec(k) → Spec(k) denote the

projection map, so that i!ηγF fits into a commutative diagram

i!ηf
′∗p!

η!γ′
F

$$
f ′′∗η!p!

β′
::

β′′ // i!ηp
′!f∗.

It will therefore suffice to show that β′ and β′′ are equivalences. We may therefore
replace the map p by either η or p ◦ η, and thereby reduce to the case where p is a
closed immersion.

Let j : U → S be an open immersion complementary to p, let U ′ denote the fiber
product U ×S S′, and let j′ : U ′ → S′ denote the projection onto the second factor. If p
is a closed immersion, then the pushforward functor p′∗ is fully faithful. It will therefore
suffice to show that p′∗γ

′
F is an equivalence. Identifying p′∗f

′∗p! F with f∗p∗p
! F, we see

that p′∗γ
′
F fits into a commutative diagram of fiber sequences

f∗p∗p
! F

p′∗γ
′
F

��

// f∗ F

id

��

// f∗j∗j
∗ F

ρ

��
p′∗p
′!f∗ F // f∗ F // j′∗j

′∗f∗ F .

It will therefore suffice to show that ρ is an equivalence. This follows from Theorem
2.4.2.1, since f is smooth.

Example 2.4.4.5. Let X be a quasi-projective k-scheme, and let j : U → X be an
open immersion whose image is also closed in X. Then j is a proper map, and the
diagram

U
id //

id
��

U

j
��

U
j // X

is a pullback square. Then Proposition 2.4.4.3 supplies a canonical equivalence

j! ' id∗ j! ' id! j∗ ' j∗.

Example 2.4.4.6. Let f : X → Y be a proper morphism between quasi-projective
k-schemes. Let U ⊆ X be the locus over which f is étale, let f0 be the restriction of f
to U , let j : U ↪→ X be the inclusion map, and let δ : U → U ×Y X be the diagonal
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map. Then δ exhibits U as a direct summand of U ×Y X, so that Example 2.4.4.5
supplies an equivalence δ! ' δ∗. Applying Proposition 2.4.4.3 to the pullback square

U ×Y X
π2 //

π1

��

X

f
��

U
f0 // Y,

we obtain a natural equivalence

j∗f ! ' δ∗π∗2f ! ' δ∗π!
1f
∗
0 ' δ!π!

1f
∗
0 ' f∗0 .

In particular, if f is both étale and proper, then the functors f ! and f∗ are canonically
equivalent to one another (one can show that this equivalence agrees with the one
supplied by Example 2.3.3.5).

Variant 2.4.4.7. Suppose we are given a commutative diagram of quasi-projective
k-schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S

where p is proper. Let U ⊆ X be an open subset for which the restriction p|U is smooth,
and let U ′ ⊆ X ′ denote the inverse image of U . Then the natural transformation
γ′ : f ′∗p! → p′!f∗ of Construction 2.4.4.2 induces an equivalence

(f ′∗p! F)|U ′ → (p′!f∗ F)|U ′

for each object F ∈ Shv`(S). In particular, if p is smooth, then γ′ is an equivalence.

Proof. The assertion is local on U . We may therefore assume without loss of generality
that there exists an étale map of S-schemes g : U → Pn ×Spec(k) S. Let Γ ⊆ U × Pn

denote the graph of g, let Γ ⊆ X ×Spec(k) Pn be the closure of Γ, and let q : Γ→ X be
the projection onto the first factor. Then q is a proper morphism which restricts to an
isomorphism over the open set U . Using Example 2.4.4.6, we can replace X by Γ and
thereby reduce to the case where g extends to a map g : Pn×Spec(k) S. Using Example
2.4.4.6 again, we can replace X by Pn×Spec(k) S, and thereby reduce to the case where
p is smooth. In this case, the desired result follows from the description of the functors
p! and p′! supplied by Example 2.3.3.5 (and the fact that this description is compatible
with base change).
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Construction 2.4.4.8. Suppose that we are given a pullback diagram of quasi-projective
k-schemes

X ′
f ′ //

p′

��

X

p

��
S′

f // S,

where p is proper and f is étale. Then Proposition 2.4.4.3 supplies a commutative
diagram of ∞-categories

Shv`(S)
f∗ //

p!

��

Shv`(S
′)

p′!

��
Shv`(X)

f ′∗ // Shv`(X
′).

Note that the horizontal maps admit left adjoints f! and f ′! , so that there is an associated
left Beck-Chevalley transformation δ : f ′!p

′! → p!f! of functors from Shv`(S
′) to Shv`(X).

Using Remarks 2.4.1.2 and 2.4.4.4, we see that δ can also be identified with the right
Beck-Chevalley transformation associated to the diagram of ∞-categories

Shv`(X
′)

p′∗ //

f ′!
��

Shv`(S
′)

f!

��
Shv`(X)

p∗ // Shv`(S)

given by Proposition 2.4.3.4.

Proposition 2.4.4.9. Suppose we are given a commutative diagram of quasi-projective
k-schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S,

where p is proper and f is étale, and let δ : f ′!p
′! → p!f! be the natural transformation

of Construction 2.4.4.8. If U is an open subset of X such that p|U is smooth, then δ
induces an equivalence

(f ′!p
′! F)|U → (p!f! F)|U

for each object F ∈ Shv`(S
′). In particular, if p is smooth, then δ is an equivalence, so
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that the diagrams of ∞-categories

Shv`(S)
f∗ //

p!

��

Shv`(S
′)

p′!

��

Shv`(X
′)

p′∗ //

f ′!
��

Shv`(S
′)

f!

��
Shv`(X)

f ′∗ // Shv`(X
′) Shv`(X)

p∗ // Shv`(S)

are left and right adjointable, respectively.

Proof. Arguing as in the proof of Variant 2.4.4.7, we may reduce to the case where p
is smooth, in which case the desired result follows from the desciption of the functors
p! and p′! supplied by Example 2.3.3.5.



Chapter 3

E∞-Structures on `-Adic
Cohomology

Let M be a compact manifold and let π : E →M be a fibration of topological spaces.
In §1.5.4, we introduced the continuous tensor product

⊗
y∈M C∗(Ey; Q) (Construction

1.5.4.8) and proved that, under some mild hypotheses on π, there is a canonical quasi-
isomorphism ⊗

y∈M
C∗(Ey; Q) ' C∗(Sectπ(M); Q) (3.1)

(Theorem 1.5.4.10). Recall that the continuous tensor product
⊗

y∈M C∗(Ey; Q) was

defined as the homotopy colimit of a diagram B taking values in the category CAlgdg
Q

of differential graded algebras over Q (see Construction 1.5.4.8).

For applications to Weil’s conjecture, we would like to formulate a version of (3.1)
in the setting of algebraic geometry, where we replace M by an algebraic curve X
(defined over an algebraically closed field k) and E by the classifying stack BG of a
smooth affine group scheme over X. Our goal in this chapter is to lay the groundwork
by constructing an analogue of the functor B. Recall that the value of B on an open
disk U ⊆ M is given by the polynomial de Rham complex Ω∗poly(Sectπ(U)), which is
canonically quasi-isomorphic to the singular cochain complex C∗(Ey; Q) for any choice
of base point y ∈ U . In §3.2, we associate to every algebraic stack Y over k its `-adic
cochain complex C∗(Y; Z`) (here ` is some prime number which is invertible in k), which
is an algebro-geometric analogue of the singular cochain complex of a topological space.
In order to regard these `-adic cochain complexes as an adequate replacement for the
diagram B, we will need to address the following questions:

(a) How does the `-adic cochain complex C∗(BGx; Z`) change as the point x ∈ X

143
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varies? (In other words, what is the algebro-geometric analogue of the statement
that the construction U 7→ B(U) is a functor?)

(b) In what sense can we regard the `-adic cochain complex C∗(BGx; Z`) as an alge-
bra? (In other words, what is the algebro-geometric analogue of the statement
that each B(U) is a commutative differential graded algebra over Q?)

Let us begin by addressing (a). Note that, for each open disk U ⊆ M , the chain
complex B(U) is quasi-isomorphic to the hypercohomology of U with coefficients in the
(derived) direct image π∗Q, where Q denotes the constant sheaf on E with values in
Q. This has an obvious algebro-geometric counterpart: if G is a smooth affine group
scheme over an algebraic curve X and π : BG → X denotes the projection map, then
we can regard the direct image π∗Z` as an `-adic sheaf on X. If the fibers of G are
reductive, then the map π is a locally trivial fiber bundle in the étale topology, and
the stalk of π∗Z` at any closed point x ∈ X can be identified with the `-adic cochain
complex C∗(BGx; Z`). However, the assumption that G is everywhere reductive is
unreasonably strong. The group schemes G of interest to us will be reductive (even
semisimple) at the generic point of X, but we cannot avoid the possibility that G might
have “bad reduction” at finitely many closed points x ∈ X. At such a point, the stalk
x∗(π∗Z`) need not be quasi-isomorphic to the `-adic cochain complex C∗(BGx; Z`).
However, using the smoothness of BG over X (and the smooth base change theorem),
we can always compute the costalk x!(π∗Z`): it agrees with the shifted (and Tate-
twisted) `-adic cochain complex C∗(BGx; Z`[−2](−1)). For our purposes, it will be
useful to compensate for this shift by replacing the direct image π∗Z` by the tensor
product [BG]X = ωX ⊗ (π∗Z`), which we will refer to as the cohomology sheaf of the
morphism BG → X. We will regard the `-adic sheaf [BG]X ∈ Shv`(X) as an algebro-
geometric incarnation of the functor B of Construction 1.5.4.8, and the identifications
C∗(BGx; Z`) ' x![BG]X as an answer to question (a).

We now consider (b). For every algebraic stack Y, the `-adic cochain complex
C∗(Y; Z`) is a cochain complex of Z`-modules, whose cohomology groups form a graded-
commutative algebra over Z` with respect to the cup product

∪ : Hi(Y; Z`)×Hj(Y : Z`)→ Hi+j(Y; Z`).

It is generally impossible to witness the commutativity of the cup product at the cochain
level: that is, to equip C∗(Y; Z`) with the structure of a differential graded algebra over
Z` (in the sense of Definition 1.5.3.2) which depends functorially on Y. However, we
can achieve something almost as good: the cochain complex C∗(Y; Z`) can always
be regarded as an E∞-algebra over Z`: that is, it admits a multiplication which is
commutative and associative up to coherent homotopy. Put differently, we cannot
arrange that C∗(Y; Z`) has the structure of a commutative algebra in the ordinary
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category Chain(Z`) of chain complexes over Z`, but we can arrange that it has the
structure of a commutative algebra in the ∞-category ModZ` of Example 2.1.4.8. We
will prove this (thereby answering question (b)) in §3.2, after first reviewing the theory
of E∞-algebras (and, more generally, commutative algebra objects of ∞-categories) in
§3.1.

For our applications, it will be important to address questions (a) and (b) simulta-
neously. In other words, we need to understand not only that each of the `-adic cochain
complexes C∗(BGx; Z`) has the structure of an E∞-algebra over Z`, but the sense in
which these E∞-algebra structures depend “continuously” on the point x ∈ X. We
will address this point in §3.4 by showing that the relative cohomology sheaf [BG]X
can be regarded as a commutative algebra object of the∞-category Shv`(X) (Theorem
3.4.0.3). However, there is a slight wrinkle: the algebra structure on the cohomology
sheaf [BG]X is given by a map

m : [BG]X ⊗! [BG]X → [BG]X

whose domain is not the usual tensor product of `-adic sheaves, but is instead defined
by the formula F⊗! G = δ!(F�G) where δ : X → X × X is the diagonal map (see
Construction 3.3.0.2). We will study the functor ⊗! and its coherence properties in
§3.3.

Remark 3.0.0.1. In Chapter 4, we will formulate an algebro-geometric analogue of
(3.1) which relates the `-adic cochain complexes C∗(BunG(X); Z`) and {C∗(BGx; Z`)}x∈X
(see Theorem 4.1.2.1). In order to deduce Weil’s conjecture, we do not need to know
that this statement holds at the integral level: it is sufficient to establish an analogous
result relating C∗(BunG(X); Q`) to {C∗(BGx; Q`)}x∈X . With rational coefficients, the
distinction between E∞-algebras and commutative differential graded algebras disap-
pears: for any algebraic stack Y, it is possible to replace C∗(Y; Q`) by a commutative
differential graded algebra over Q`, analogous to the polynomial de Rham complex of
Construction 1.5.3.6 (see Proposition 3.1.5.4). However, this observation does not lead
to any simplifications of our overall strategy: in order to formulate Theorem 4.1.2.1,
we will need to regard the cohomology sheaf [BG]X as a commutative algebra object
of the ∞-category Shv`(X) (with respect to the !-tensor product of §3.3). Even with
coefficients in Q`, such algebras do not admit obvious “concrete” models when X is not
a point. Consequently, we do not know how to avoid appealing to the ∞-categorical
theory of commutative algebras described in §3.1.
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3.1 Commutative Algebras

Let X be a compact manifold and let π : E → X be a fibration of topological spaces.
Under some mild hypotheses, Theorem 1.5.4.10 supplies a canonical quasi-isomorphism⊗

x∈X
C∗(Ex; Q)

∼−→ C∗(Sectπ(X); Q).

Our goal in this section is to address the following:

Question 3.1.0.1. Let Λ be a commutative ring. Can we make sense of a continuous
tensor product

⊗
x∈X C

∗(Ex; Λ)? If so, do we have a continuous Künneth decomposi-

tion
⊗

x∈X C
∗(Ex; Λ)

∼−→ C∗(Sectπ(X); Λ)?

Remark 3.1.0.2. As stated, Question 3.1.0.1 is a bit orthogonal to the ultimate aims
of this book. What we would really like to do is to prove an analogue of Theorem
1.5.4.10 in the setting of algebraic geometry, where singular cohomology is replaced by
`-adic cohomology. For applications to Weil’s conjecture, it would suffice to know that
such a result held with coefficients in Q`. However, our answer to Question 3.1.0.1 will
introduce some ideas which play an essential role in the formulation of the algebro-
geometric product formula of Chapter 4.

To appreciate the difficulties raised by Question 3.1.0.1, let us revisit the construc-
tion of the continuous tensor product

⊗
x∈X C

∗(Ex; Λ) in the special case Λ = Q. Our
definition made essential use of Sullivan’s polynomial de Rham complex Y 7→ Ω∗poly(Y )

(Definition 1.5.3.6) to construct a diagram B : U0(X)→ CAlgdg
Q , which assigns to each

open disk U ⊆ X a commutative differential graded algebra B(U) which is (canoni-
cally) quasi-isomorphic to C∗(Ex; Q) for any point x ∈ U ; the continuous tensor prod-
uct

⊗
x∈X C

∗(Ex; Λ) was then defined to as the homotopy colimit of B (Construction
1.5.4.8).

If Y is an arbitrary topological space and Λ is an arbitrary commutative ring, then
we can regard the cohomology H∗(Y ; Λ) as a graded-commutative algebra over Λ. The
multiplication on H∗(Y ; Λ) is given at the level of cochains by a cup product map

∪ : C∗(Y ; Λ)⊗Λ C
∗(Y ; Λ)→ C∗(Y ; Λ).

Unfortunately, this structure is not a good replacement for the polynomial de Rham
complex Ω∗poly(Y ):

(a) The map ∪ exhibits C∗(Y ; Λ) as a differential graded algebra over Λ: that is, as
an associative algebra object of the category Chain(Λ) of chain complexes over Λ
(see §2.1.1). However, C∗(Y ; Λ) is not a commutative differential graded algebra:
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the cup product operation is not commutative at the level of cochains. In the
setting of Construction 1.5.4.8, commutativity is essential: note that if X is a
finite set and {Ax}x∈X is a collection of commutative differential graded algebras
over Q, then the tensor product

⊗
x∈X Ax can be identified with the coproduct

of {Ax}x∈X in the category of commutative differential graded algebras, but not
in the category of all differential graded algebras.

(b) Though the cup product is not commutative on the nose, it is commutative up
to homotopy: that is, it exhibits C∗(Y ; Λ) as a commutative algebra object in
the derived category D(Λ). However, this is not good enough for our purposes.
For example, if Λ is a field, then the homotopy class of the cup product map ∪ :
C∗(Y ; Λ)⊗ΛC

∗(Y ; Λ)→ C∗(Y ; Λ) is completely determined by the ring structure
on H∗(Y ; Λ). We could exploit this structure to define an algebraic tensor product⊗alg

x∈X H∗(Ex; Λ) (see Construction 1.5.4.4). However, this construction is far too
crude to be useful to us (for the reasons articulated in §1.5.4).

In the definition of the polynomial de Rham complex Ω∗poly(Y ), it is possible to replace
the field Q of rational numbers by an arbitrary commutative ring Λ. However, the re-
sulting object is badly behaved unless Λ is an algebra over Q. More precisely, the proof
that the integration map

∫
: Ω∗poly(Y ) → C∗(Y ; Q) is a quasi-isomorphism (Theorem

1.5.3.7) relies on Poincaré’s lemma (for algebraic differential forms on a simplex), which
is valid only in characteristic zero. Moreover, this difficulty turns out to be essential:
one can show that if there exists any functor from topological spaces to commutative
differential graded Λ-algebras which is (functorially) quasi-isomorphic to C∗(•; Λ), then
Λ must be an algebra over Q.

In general, we cannot hope to replace C∗(Y ; Λ) by a commutative algebra in the
category Chain(Λ) of chain complexes (that is, by a commutative differential graded
algebra over Λ). On the other hand, it is not enough to observe that C∗(Y ; Λ) is a
commutative algebra in the derived category D(Λ) (that is, as a chain complex with
a multiplication which is commutative and associative up to homotopy). Our goal in
this section is to show that Question 3.1.0.1 can be addressed in general by working
between these extremes: by regarding C∗(Y ; Λ) as a commutative algebra object of
the ∞-category ModΛ of Example 2.1.4.8 (that is, as a chain complex equipped with
a multiplication which is commutative and associative up to coherent homotopy). To
explain this point, we need to review the theory of symmetric monoidal structures on
∞-categories, which will play an important role throughout the rest of this chapter
(and in Chapter 4).
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3.1.1 Commutative Monoids

Recall that a commutative monoid is a set M equipped with a multiplication map
M ×M →M and a unit object 1 ∈M satisfying the identities

1x = x xy = yx x(yz) = (xy)z

for all x, y, z ∈M . This notion admits the following generalization:

Definition 3.1.1.1 (Commutative Monoids in a Category). Let C be a category which
admits finite products and let 1 denote the final object of C. A commutative monoid
object of C is an object M ∈ C equipped with a multiplication map m : M ×M → M
and a unit map e : 1→M for which the diagrams

1×M
∼

##

e×id //M ×M
m

zz

M ×M
m

$$

σ //M ×M
m

zz
M M

M ×M ×M m×id //

id×m
��

M ×M
m
��

M ×M m //M

commute; here σ denotes the automorphism of M ×M given by permuting its factors.

Example 3.1.1.2. If C is the category of sets, then commutative monoid objects of C
are simply commutative monoids.

We now generalize Definition 3.1.1.1 to the case where C is an ∞-category which
admits finite products. Roughly speaking, we would like to say that a commutative
algebra object of C is an object M ∈ C equipped with a unital multiplication m :
M × M → M satisfying suitable commutative and associative laws, articulated by
the commutative diagrams which appear in Definition 3.1.1.1. However, we should
not ask only that these diagrams commute up to homotopy: that would amount to
considering commutative monoid objects of the homotopy category hC. Instead, we
should demand witnesses in C to the commutativity of the above diagrams (encoded
by higher-dimensional simplices of C). These witnesses should be taken as part of
the data of a commutative monoid, and should be required to satisfy “higher-order”
commutativity and associativity properties of their own. In the absence of a good
organizing principle, it is prohibitively difficult to give a precise (or useful) definition
which follows this line of thought. Instead, we consider a reformulation of Definition
3.1.1.1 which is more amenable to generalization, following some ideas introduced by
Segal.
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Construction 3.1.1.3. Let Fin∗ denote the category of pointed finite sets: the objects
of Fin∗ are pairs (I, ∗), where I is a finite set and ∗ is an element of I, and morphisms
from (I, ∗) to (I ′, ∗′) are given by functions f : I → I ′ satisfying f(∗) = ∗′.

Let C be a category which admits finite products and let M be a commutative
monoid object of C. We define a functor XM : Fin∗ → C as follows:

• For each object (I, ∗) ∈ Fin∗, we have XM (I, ∗) =
∏
i∈I−{∗}M ∈ C.

• For each morphism f : (I, ∗)→ (I ′, ∗′) in Fin∗, the induced map

XM (I, ∗)→ XM (I ′, ∗′)

is given by the product (taken over elements i′ ∈ I ′ − {∗′}) of maps∏
f(i)=i′

M →M

determined by the multiplication on M .

In the situation of Construction 3.1.1.3, the functor XM completely encodes the
monoid structure on M . More precisely, we have the following fact, whose proof we
leave to the reader:

Proposition 3.1.1.4. Let C be a category which admits finite products. Then the
construction M 7→ XM determines a fully faithful embedding

{Commutative monoid objects of C} → Fun(Fin∗,C).

The essential image of this embedding consists of those functors X : Fin∗ → C with the
following property:

(∗) Let (I, ∗) be a pointed finite set. For each element i ∈ I − {∗}, let ρi : I → {i, ∗}
be given by

ρi(j) =

{
i if i = j

∗ otherwise.

Then the maps ρi induce an isomorphism

X(I, ∗)→
∏

i∈I−{∗}

X({i, ∗}, ∗)

in the category C.

Motivated by Proposition 3.1.1.4, we introduce the following:
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Definition 3.1.1.5. Let C be an ∞-category which admits finite products. A com-
mutative monoid object of C is a functor X : Fin∗ → C which satisfies condition (∗)
of Proposition 3.1.1.4. We let CMon(C) denote the full subcategory of Fun(Fin∗,C)
spanned by the commutative monoid objects of C. We refer to CMon(C) as the ∞-
category of commutative monoid objects of C.

Example 3.1.1.6. Let C be a category which admits finite products. Then the ∞-
category of commutative monoid objects of C (in the sense of Definition 3.1.1.5) is
equivalent to the category of commutative monoid objects of C (in the sense of Definition
3.1.1.1): this is the content of Proposition 3.1.1.4.

Remark 3.1.1.7. Let C be an∞-category which admits finite products. Evaluation on
the pointed finite set ({0, ∗}, ∗) determines a forgetful functor CMon(C)→ C. We will
generally abuse notation by not distinguishing between a commutative monoid object
X ∈ CMon(C) and its image X({0, ∗}, ∗) ∈ C.

Remark 3.1.1.8 (Functoriality). Let C and D be ∞-categories which admit finite
products, and let F : C → D be a functor which preserves finite products. Then
composition with F determines a functor CMon(C)→ CMon(D).

Example 3.1.1.9. Let C be an ∞-category which admits finite products and let hC
be its homotopy category. Applying Remark 3.1.1.8 to the canonical map C→ hC, we
obtain a forgetful functor CMon(C)→ CMon(hC). In particular, if X is a commutative
monoid object of C, then we can also regard X as a commutative monoid object of the
homotopy category hC: in particular, there is a multiplication map m : X × X → X
which is commutative and associative up to homotopy.

3.1.2 Symmetric Monoidal ∞-Categories

Let E be an ∞-category. Roughly speaking, a symmetric monoidal structure on C is a
tensor product functor

⊗ : C×C→ C

which is commutative, associative, and unital up to coherent homotopy. To make this
idea precise, it is convenient to regard symmetric monoidal ∞-categories as commuta-
tive monoids (in the sense of Definition 3.1.1.5) in a suitable context.

Construction 3.1.2.1 (The∞-Category of∞-Categories). The collection of all (small)
∞-categories can be organized into a category Cat∆

∞, whose morphisms are given by
functors of ∞-categories (that is, maps of simplicial sets). Note that if C and D

are ∞-categories, then HomCat∆
∞

(C,D) can be identified with the set of 0-simplices

of Fun(C,D)', where Fun(C,D)' is the largest Kan complex contained in Fun(C,D)
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(more concretely, Fun(C,D)' is obtained from Fun(C,D) by discarding noninvertible
natural transformations between functors). Note that composition of functors deter-
mines a strictly associative multiplication

Fun(D,E)' × Fun(C,D)' → Fun(C,E)'.

Consequently, we can regard Cat∆
∞ as enriched over the category of Kan complexes. We

let Cat∞ denote the homotopy coherent nerve of Cat∆
∞ (see Definition [25].1.1.5.5). We

refer to Cat∞ as the ∞-category of ∞-categories.

Definition 3.1.2.2. A symmetric monoidal ∞-category is a commutative monoid ob-
ject of the ∞-category Cat∞.

In what follows, we will generally abuse notation by identifying a symmetric monoidal
∞-category with its image under the forgetful functor CMon(Cat∞)→ Cat∞ (Remark
3.1.1.7). Note that if C is a symmetric monoidal ∞-category, then C inherits the struc-
ture of a commutative monoid object of the homotopy category hCat∞. In particular,
we can regard C as equipped with a tensor product operation

⊗ : C×C→ C

which is unital, associative, and commutative up to homotopy.

Warning 3.1.2.3. Definition 3.1.2.2 really captures the notion of a small symmetric
monoidal ∞-category (since the objects of Cat∞ are themselves small ∞-categories).
In practice, we will also want to consider large symmetric monoidal ∞-categories, like
the ∞-category ModR of chain complexes over a commutative ring R (see §3.1.4). To
avoid burdening the exposition with irrelevant technicalities, we will generally ignore
the distinction in what follows.

Warning 3.1.2.4. Our definition of symmetric monoidal ∞-category differs from the
definition which appears in [23], but is essentially equivalent: see Example [23].2.4.2.4.

Example 3.1.2.5. Let C be an ∞-category which admits finite products. Then we
can regard C as a symmetric monoidal ∞-category, whose underlying tensor product is
the Cartesian product functor

× : (C×C)→ C .

Moreover, the resulting symmetric monoidal structure on C is essentially unique (see
Proposition [23].2.4.1.5 and Corollary [23].2.4.1.9). Similarly, if C admits finite coprod-
ucts, then the coproduct functor

q : (C×C)→ C

determines a symmetric monoidal structure on C.
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Example 3.1.2.6. Let C be a symmetric monoidal ∞-category and let J be an ar-
bitrary ∞-category. Then the ∞-category of functors Fun(J,C) inherits the structure
of a symmetric monoidal ∞-category, whose underlying tensor product is computed
levelwise (this follows from the observation that the construction Fun(J, •) determines
a product-preserving functor from Cat∞ to itself).

3.1.3 Commutative Algebra Objects

For any symmetric monoidal∞-category C, there is an associated notion of commutative
algebra object of C: that is, an object A ∈ C equipped with a multiplication m : A⊗A→
A which is unital, commutative, and associative up to coherent homotopy. This notion
is a special case of the following:

Definition 3.1.3.1. Let C and D be symmetric monoidal ∞-categories. A symmet-
ric monoidal functor from C to D is a morphism from C to D in the ∞-category
CMon(Cat∞). The collection of symmetric monoidal functors from C to D can be
regarded as objects of an∞-category Fun⊗(C,D), whose k-simplices are given by sym-
metric monoidal functors from C to the symmetric monoidal ∞-category Fun(∆k,D)
(see Example 3.1.2.6). We will refer to Fun⊗(C,D) as the ∞-category of symmetric
monoidal functors from C to D.

More informally, a symmetric monoidal functor F : C→ D is a functor which com-
mutes with tensor products and is compatible with the commutativity and associativity
constraints of C and D.

Definition 3.1.3.2 (Commutative Algebras). Let C be a symmetric monoidal ∞-
category. A commutative algebra object of C is a symmetric monoidal functor A :
Fin→ C. Here Fin denotes the category of finite sets, which we regard as a symmetric
monoidal∞-category via the formation of disjoint unions q : Fin×Fin→ Fin (see Ex-
ample 3.1.2.5). We let CAlg(C) = Fun⊗(Fin,C) denote the∞-category of commutative
algebra objects of C.

Remark 3.1.3.3. Let C be a symmetric monoidal ∞-category and let A : Fin → C

be a commutative algebra object of C. Let A(∗) denote the value of the functor A
on the singleton set {∗}. The construction A 7→ A(∗) determines a forgetful functor
CAlg(C)→ C. We will generally abuse notation by identifying A with its image under
this forgetful functor. Note that for every finite set I, the compatibility of A with
tensor products supplies a canonical equivalence

A(I) = A(qi∈I{i}) '
⊗
i∈I

A({i}) = A(∗)⊗I .
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Consequently, the projection map I → ∗ induces an “I-fold multiplication map”
A(∗)⊗I → A(∗). Taking I to be a two-element set, we obtain a multiplication A(∗) ⊗
A(∗) → A(∗). It is not difficult to see that this multiplication is commutative and
associative up to homotopy: that is, it exhibits A(∗) as a commutative algebra object
of the homotopy category hC (which we can regard as a symmetric monoidal category
in the usual sense).

Remark 3.1.3.4. Let C be a symmetric monoidal ∞-category with unit object 1.
Then there is an essentially unique commutative algebra object A ∈ CAlg(C) for which
the unit map 1→ A is an equivalence. We will refer to this commutative algebra as the
unit algebra in C and denote it by 1. It is an initial object of the ∞-category CAlg(C)
(see Proposition [23].3.2.1.8).

Remark 3.1.3.5. Let C be an∞-category which admits limits of some particular type.
Then the ∞-category CAlg(C) admits limits of the same type, which are preserved by
the forgetful functor CAlg(C)→ C; see Corollary [23].3.2.2.5.

Example 3.1.3.6. Let C be an ∞-category which admits finite products, and regard
C as equipped with the symmetric monoidal structure given by the Cartesian product
(see Example 3.1.2.5). Then there is a canonical equivalence of∞-categories CAlg(C) '
CMon(C). For a proof, see Proposition [23].2.4.2.5.

Example 3.1.3.7. Let C be an ∞-category which admits finite coproducts, and re-
gard C as equipped with the symmetric monoidal structure given by the formation
of coproducts (see Example 3.1.2.5). Then the forgetful functor CAlg(C) → C is an
equivalence of ∞-categories. In other words, every object C ∈ C admits an essentially
unique commutative algebra structure, whose underlying multiplication is given by the
codiagonal C q C → C. For a proof, we refer the reader to Proposition [23].2.4.3.9.

We close by describing a slight modification of Definition 3.1.3.2 which will be useful
in §3.3.5:

Variant 3.1.3.8. Let C be a symmetric monoidal ∞-category. A nonunital commu-
tative algebra is a symmetric monoidal functor A : Fins → C, where Fins denotes the
category whose objects are finite sets and whose morphisms are surjective functions
(which we regard as a symmetric monoidal subcategory of the category Fin of finite
sets).

3.1.4 Tensor Products of Chain Complexes

Let Λ be a commutative ring. In §2.1.2, we defined the∞-category ModΛ, whose objects
are chain complexes of Λ-modules. We now show that the tensor product of chain
complexes determines a symmetric monoidal structure on the ∞-category ModΛ. This
is a special case of the following general fact (for a proof, see Proposition [23].4.1.7.4):
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Proposition 3.1.4.1. Let C be a symmetric monoidal ∞-category and let W be a
collection of morphisms in C with the following property:

(∗) If f : C → D is a morphism belonging to W and E is any object of C, then the
induced map (f ⊗ id) : C ⊗ E → D ⊗ E belongs to W .

Let C[W−1] be the ∞-category obtained from C by inverting the morphisms of W (see
Construction 2.1.4.11). Then there is an essentially unique symmetric monoidal struc-
ture on the ∞-category C[W−1] for which the functor F : C → C[W−1] is symmetric
monoidal. Moreover, if D is an arbitrary symmetric monoidal ∞-category, then com-
position with F induces a fully faithful embedding

Fun⊗(C[W−1],D)→ Fun⊗(C,D),

whose essential image consists of those symmetric monoidal functors G : C→ D which
carry each morphism of W to an equivalence in D.

If Λ is any commutative ring, then the hypothesis of Proposition 3.1.4.1 is satisfied if
we take C = Chain′(Λ) to be the category of K-projective chain complexes of Λ modules
and W to be the collection of all quasi-isomorphisms in Chain′(Λ). We therefore obtain
the following result:

Corollary 3.1.4.2. Let Λ be a commutative ring. Then there is an essentially unique
symmetric monoidal structure on the ∞-category ModΛ for which the canonical map
Chain′(Λ)→ ModΛ is symmetric monoidal.

Notation 3.1.4.3. If Λ is a commutative ring, we will denote the underlying tensor
product for the symmetric monoidal structure of Corollary 3.1.4.2 by

⊗Λ : ModΛ×ModΛ → ModΛ .

Warning 3.1.4.4. For any commutative ring Λ, Example 2.1.4.12 supplies a canonical
functor θ : Chain(Λ) → ModΛ. Beware that this functor is generally not symmetric
monoidal (though it becomes symmetric monoidal when restricted to the full subcate-
gory Chain′(Λ) ⊆ Chain(Λ) of K-projective chain complexes). If M∗ and N∗ are chain
complexes of Λ-modules, then we have a canonical equivalence

θ(M∗)⊗Λ θ(N∗) ' θ(M∗ ⊗LΛ N∗),

where M∗ ⊗LΛ N∗ denotes the left derived tensor product of M∗ with N∗ over Λ.

Remark 3.1.4.5. If Λ is a field, then every chain complex of Λ-modules isK-projective.
In this case, the functor θ : Chain(Λ) → ModΛ of Warning 3.1.4.4 is symmetric
monoidal.
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Warning 3.1.4.6. Let Λ be a commutative ring. Then the usual abelian category of
Λ-modules can be identified with the full subcategory of the∞-category ModΛ spanned
by the discrete objects (see Notation 2.1.4.9). Beware that the tensor product on ModΛ

is generally not compatible with this inclusion: if M and N are discrete Λ-modules,
then the tensor product M ⊗ΛN (formed in the∞-category ModΛ) is given by the left
derived tensor product M ⊗LΛ N , whose homology groups are given by

Hi(M ⊗Λ N) = TorΛ
i (M,N).

In particular M ⊗Λ N is discrete if and only if the groups TorΛ
i (M,N) ' 0 for i > 0

(this is automatic, for example, if M or N is flat over Λ). Unless otherwise specified,
we will always use the notation ⊗Λ to indicate the tensor product in the ∞-category
ModΛ, rather than the abelian category of discrete Λ-modules.

3.1.5 E∞-Algebras

Let Λ be a commutative ring, and regard the ∞-category of chain complexes ModΛ as
equipped with the symmetric monoidal structure of Corollary 3.1.4.2.

Definition 3.1.5.1. An E∞-algebra over Λ is a commutative algebra object of the
∞-category ModΛ (see Definition 3.1.3.2). We let CAlgΛ denote the ∞-category
CAlg(ModΛ) whose objects are E∞-algebras over Λ.

Warning 3.1.5.2. In the case where Λ = Q is the field of rational numbers, we gave
an a priori different definition of the ∞-category CAlgΛ in Example 2.1.5.10. We will
see in a moment that these definitions are actually equivalent (Proposition 3.1.5.4).

Remark 3.1.5.3. Let A be an E∞-algebra over Λ. Then we can regard A as a chain
complex of Λ-modules (which, without loss of generality, we can assume to be K-
projective) equipped with a multiplication m : A ⊗Λ A → A which is commutative,
associative, and unital up to coherent homotopy. It follows that the cohomology ring
H∗(A) inherits the structure of a graded-commutative algebra over Λ.

Assume for simplicity that Λ is a field, so that Corollary 3.1.4.2 supplies a symmetric
monoidal functor θ : Chain(Λ)→ ModΛ. It follows that θ carries commutative algebra
objects of Chain(Λ) (that is, commutative differential graded algebras over Λ) to com-
mutative algebra objects of ModΛ (that is, E∞-algebras over Λ). We therefore obtain a

functor CAlg(θ) : CAlgdg
Λ → CAlgΛ. Note that this functor carries quasi-isomorphisms

of differential graded algebras to equivalences in ModΛ.

Proposition 3.1.5.4. Let Λ be a field of characteristic zero, and let W be the col-
lection of all quasi-isomorphisms in CAlgdg

Λ . Then the construction above induces an

equivalence of ∞-categories CAlgdg
Λ [W−1]→ CAlgΛ.
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Proof. This is a special case of Proposition [23].7.1.4.11.

Remark 3.1.5.5. In the construction of the functor CAlgdg
Λ → CAlgΛ, one does not

need to require Λ to be a field: the functor θ : Chain(Λ) → ModΛ is always lax
symmetric monoidal (see Warning 3.2.3.2), and therefore carries commutative algebras
to commutative algebras. Similarly, Proposition 3.1.5.4 is valid for any commutative
ring Λ which is an algebra over Q.

Warning 3.1.5.6. Proposition 3.1.5.4 is false if we take Λ to be a field of positive
characteristic. In this case, the theory of E∞-algebras over Λ is very different (and
much better behaved) than the theory of commutative differential graded algebras over
Λ.

Remark 3.1.5.7. Proposition 3.1.5.4 has an analogue for associative algebras, which
is valid for any commutative ring Λ; see Proposition [23].7.1.4.6.

3.1.6 E∞-Structures on Cochain Complexes

Let Λ be a commutative ring. Our next goal is construct an abundant supply of
examples of E∞-algebras over Λ, given by the cochain complexes C∗(Y ; Λ) where Y is
a topological space. We begin with a few general remarks.

Definition 3.1.6.1. Let Cat∞ denote the ∞-category of (small) ∞-categories (Con-
struction 3.1.2.1). We let S denote the full subcategory of Cat∞ whose objects are Kan
complexes. We will refer to S as the ∞-category of spaces.

Remark 3.1.6.2. For every topological space Y , the singular simplicial set Sing(Y )•
of Example 2.1.3.3 is a Kan complex. The construction Y 7→ Sing(Y )• determines
a functor Top → S, where Top is the ordinary category of topological spaces (with
morphisms given by continuous maps). One can show that this functor induces an
equivalence of ∞-categories Top[W−1] → S, where W is the collection of all weak
homotopy equivalences between topological spaces (that is, those maps which induce
isomorphisms at the level of homotopy groups). In other words, we can regard the
∞-category S as obtained from the ordinary category of topological spaces by inverting
all weak homotopy equivalences.

The ∞-category S can be described by a universal mapping property:

Proposition 3.1.6.3. The ∞-category S admits small colimits. Moreover, if C is any
other ∞-category which admits small colimits, then the evaluation functor F 7→ F (∗)
induces an equivalence of ∞-categories FunL(S,C)→ C, where ∗ denotes the one-point
space and FunL(S,C) ⊆ Fun(S,C) is the full subcategory spanned by those functors
F : S→ C which preserve small colimits.
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Proof. This is a special case of Theorem [25].5.1.5.6.

More informally, Proposition 3.1.6.3 asserts that the ∞-category S of spaces is
freely generated by the one-point space ∗ under small colimits. Given any ∞-category
C which admits small colimits and any object C ∈ C, there is an essentially unique
colimit-preserving functor F : S → C satisfying F (∗) = C; this functor carries a Kan
complex X ∈ C to the colimit of the constant functor X → C taking the value C (note
that the Kan complex X can itself be regarded as an ∞-category). We are interested
in the following special cases:

Corollary 3.1.6.4. Let Λ be a commutative ring. Then:

(a) There is an essentially unique functor F : S → Modop
Λ which preserves small

limits and satisfies F (∗) = Λ.

(b) There is an essentially unique functor G : S → CAlgop
Λ which preserves small

limits and satisfies G(∗) = Λ.

(c) The diagram of ∞-categories

S

F

||

G

""
CAlgop

Λ
//Modop

Λ

commutes (up to essentially unique homotopy); here the horizontal map is the
forgetful functor CAlgΛ → ModΛ.

Proof. Assertions (a) and (b) follow immediately from Proposition 3.1.6.3; assertion (c)
follows from the uniqueness asserted by (b) (note that the forgetful functor CAlgΛ →
ModΛ preserves small limits; see Remark 3.1.3.5).

We now identify the functor F appearing in Corollary 3.1.6.4. Note that the for-
mation of singular cochain complexes determines a functor

Top→ Chain(Λ)op Y 7→ C∗(Y ; Λ).

Let W be the collection of weak homotopy equivalences in Top, and let W ′ be the
collection of quasi-isomorphisms in Chain(Λ). The functor Y 7→ C∗(Y ; Λ) carries W to
W ′, and therefore induces a functor of ∞-categories

S ' Top[W−1]→ Chain(Λ)[W ′−1] ' ModΛ .
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Let us abuse notation by denoting this functor also by C∗(•; Λ), so that we have a
commutative diagram of ∞-categories

Top
C∗(•;Λ) //

Sing

��

Chain(Λ)op

��
S

C∗(•;Λ) //Modop
Λ .

Proposition 3.1.6.5. Let Λ be a commutative ring and let F : S → Modop
Λ be as in

Corollary 3.1.6.4. Then F is equivalent to the functor C∗(•; Λ) : S→ Modop
Λ described

above.

Proof. It follows immediately from the definitions that C∗(∗; Λ) is equivalent to Λ.
Consequently, we are reduced to showing that the functor Y 7→ C∗(Y ; Λ) carries colimits
in the∞-category S to limits in the∞-category ModΛ. This is essentially equivalent to
excision in singular cohomology. Alternatively, it can be deduced from the fact that the
functor C∗(•; Λ) admits a right adjoint Modop

Λ → S, which can be described concretely
using the Dold-Kan correspondence.

Combining Corollary 3.1.6.4 with Proposition 3.1.6.5, we obtain the following:

Corollary 3.1.6.6. Let Λ be a commutative ring. Then the composite functor

Top
C∗(•;Λ)−−−−−→ Chain(Λ)op → Modop

Λ

admits an essentially unique lift to a functor Top→ CAlgop
Λ .

More informally, Corollary 3.1.6.6 asserts that there is an essentially unique way
to endow the singular cochain complex C∗(Y ; Λ) of every topological space Y with the
structure of an E∞-algebra over Λ which depends functorially on Y (more precisely,
this lift is uniquely determined by a choice of quasi-isomorphism Λ ' C∗(∗; Λ), which
is ambiguous up to multiplication by invertible elements of Λ).

Example 3.1.6.7. The polynomial de Rham complex Y 7→ Ω∗poly(Y ) of Construction
1.5.3.6 determines a functor from the category Top of topological spaces to the opposite
of the category CAlgdg

Q of commutative differential graded algebras over Q. Composing

with the functor CAlgdg
Q → CAlgQ of Proposition 3.1.5.4, we obtain a map G : Top→

CAlgop
Q . It follows from Theorem 1.5.3.7 that the composition

Top
Ω∗poly−−−→ (CAlgdg

Q )op → CAlgop
Q → Modop

Q



3.1. COMMUTATIVE ALGEBRAS 159

is quasi-isomorphic to the singular cochain functor Y 7→ C∗(Y ; Q). It follows that F is
equivalent to the functor Top → CAlgop

Q whose existence (and uniqueness) is asserted
by Corollary 3.1.6.6.

3.1.7 The Topological Product Formula with General Coefficients

We now apply the formalism of E∞-algebras to give an affirmative answer to Question
3.1.0.1 for an arbitrary commutative ring Λ. In what follows, let us regard the construc-
tion Y 7→ C∗(Y ; Λ) as a (contravariant) functor from the category of topological spaces
to the ∞-category CAlgΛ of E∞-algebras over Λ. We begin by adapting Construction
1.5.4.8:

Construction 3.1.7.1 (Continuous Tensor Product). Let π : E → X be a fibration
of topological spaces, where X is a manifold of dimension d, and let U0(X) denote the
collection of open subsets of X which are homeomorphic to the Euclidean space Rd.
For each open set U ⊆ X, we let Sectπ(U) denote the space of sections of the projection
map E ×X U → U . We define a functor of ∞-categories B : U0(X) → CAlgΛ by the
formula B(U) = C∗(Sectπ(U); Λ). We now define⊗

x∈X
C∗(Ex; Q) = lim−→(B),

where the colimit is formed in the ∞-category CAlgΛ.

Remark 3.1.7.2. Let Λ = Q be the field of rational numbers. The functor of ∞-
categories B : U0(X)→ CAlgQ of Construction 3.1.7.1 is closely related to the functor
which appears in Construction 1.5.4.8 (which, to avoid confusion, we will denote by

Bdg : U0(X)→ CAlgdg
Q ). More precisely, the functor B is equivalent the composition of

Bdg with the functor CAlgdg
Q → CAlgQ of Proposition 3.1.5.4: this follows immediately

from Example 3.1.6.7. Moreover, it follows from Example 2.1.5.10 that we can identify
the homotopy colimit Bdg with a colimit of the functor B (both are well-defined up to

canonical isomorphism in the homotopy category hCAlgdg
Q ' hCAlgQ). It follows that

the continuous tensor product
⊗

x∈X C
∗(Ex; Λ) of Construction 3.1.7.1 specializes, in

the case Λ = Q, to the continuous tensor product
⊗

x∈X C
∗(Ex; Q) of Construction

1.5.4.8.

In the situation of Construction 3.1.7.1, we have an evident natural transformation
from B to the constant functor taking the value C∗(Sectπ(X; Λ)), which is classified by
a morphism of E∞-algebras

ρX :
⊗
x∈X

C∗(Ex; Q) = lim−→(B)→ C∗(Sectπ(X); Λ).

We have the following analogue of Theorem 1.5.4.10:
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Theorem 3.1.7.3 (The Product Formula). Let X be a compact manifold of dimension
d and π : E → X be a fibration. Assume that for each x ∈ X, the fiber Ex is d-
connected and that the homology groups H∗(Ex; Z) are finitely generated in each degree.
Then the comparison map

ρX :
⊗
x∈X

C∗(Ex; Λ)→ C∗(Sectπ(X); Λ)

is an equivalence of E∞-algebras over Λ.

Sketch. Using universal coefficient arguments, one can reduce to the case where Λ = Q
or Λ = Fp for some prime p. In the special case Λ = Q, the desired result follows
from Theorem 1.5.4.10 (see Remark 3.1.7.2). When Λ = Fp, we can repeat the proof
of Theorem 1.5.4.10 given in §1.5.5 without essential change; the only caveat is that
we need finiteness properties of the Fp-cohomology of the fibers Ex, rather than the
rational cohomology of the fibers Ex (however, the requisite finiteness properties follow
from our assumption that the integral homology groups of the fibers Ex are finitely
generated).

Remark 3.1.7.4. In the statement of Theorem 3.1.7.3, the hypothesis that X is a
compact manifold can be relaxed. For any fibration of topological spaces π : E → X,
the construction (x ∈ X) 7→ C∗(Ex; Λ) can be promoted to a functor of ∞-categories
A : Sing(X)• → CAlgΛ, which is essentially equivalent to the datum of the functor
B in the special case where X is a manifold. In this case, there is canonical map
lim−→(A)→ C∗(Sectπ(X); Λ), which is an equivalence provided that the fibers Ex satisfy
the hypotheses of Theorem 3.1.7.3 and the space X is homotopy equivalent to a finite
cell complex of dimension ≤ d.

3.2 Cohomology of Algebraic Stacks

Throughout this section, we fix an algebraically closed field k and a prime number
` which is invertible in k. Suppose we are given an algebraic curve X over k and a
smooth affine group scheme G over X. Our principal aim in this book is to describe
a “local-to-global” mechanism which relates `-adic cohomology of the moduli stack
BunG(X) to the `-adic cohomologies of the classifying stacks {BGx}x∈X . To describe
this mechanism precisely, we will need to work at the cochain level: that is, to regard
the `-adic cohomology groups of an algebraic stack Y over k as the cohomology of a
cochain complex C∗(Y; Z`). Our goal in this section is to sketch the construction of the
cochain complex C∗(Y; Z`), and to explain that it admits the structure of an E∞-algebra
over Z`.
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3.2.1 `-Adic Cohomology of Algebraic Varieties

We begin with a discussion of `-adic cohomology for schemes which are quasi-projective
over k.

Construction 3.2.1.1. Let X be a quasi-projective k-scheme and let π : X →
Spec(k) be the projection map. Composing the direct image functor π∗ : Shv`(X) →
Shv`(Spec(k)) with the equivalence Shv`(Spec(k)) ' ModZ` of Example 2.3.4.3, we
obtain a functor Shv`(X) → ModZ` , which we will denote by F 7→ C∗(X;F). For
each object F ∈ Shv`(X), we will refer to C∗(X;F) as the complex of cochains on X
with values in F. We will denote the nth cohomology group of the cochain complex
C∗(X;F) by Hn(X;F), and refer to it as the nth (hyper)cohomology group of X with
values in F.

Remark 3.2.1.2. In the situation of Construction 3.2.1.1, the direct image functor
π∗ : Shv`(X)→ Shv`(Spec(k)) preserves constructible sheaves (see Proposition 2.3.3.1).
It follows that the `-adic cochain complex C∗(X; Z`) is perfect: that is, the `-adic
cohomology groups Hn(X; Z`) are finitely generated modules over Z`, which vanish for
all but finitely many integers n.

Variant 3.2.1.3 (Cohomology with Finite Coefficients). Let X be a quasi-projective
k-scheme, let d ≥ 0 be a nonnegative integer, and let Z/`dZ

X
denote the constant

`-adic sheaf on X with value Z/`dZ (that is, the cofiber of the map `d : Z`X → Z`X).

We let C∗(X; Z/`dZ) denote the complex C∗(X; Z/`dZ
X

) of cochains on X with values

in Z/`dZ
X

, and for each integer n we let Hn(X; Z/`dZ) denote the nth cohomology

group of C∗(X; Z/`dZ).

Remark 3.2.1.4. In the situation of Variant 3.2.1.3, the short exact sequence of abelian
groups

0→ Z`
`d−→ Z` → Z/`dZ→ 0

induces a fiber sequence of cochain complexes

C∗(X; Z`)
`d−→ C∗(X; Z`)→ C∗(X; Z/`dZ),

hence a long exact sequence of homology groups

· · · → H∗(X; Z`)
`d−→ H∗(X; Z`)→ H∗(X; Z/`dZ)→ H∗+1(X; Z`)→ · · · .

Warning 3.2.1.5. Let X be a quasi-projective k-scheme and let d be a nonnegative
integer. We have now assigned two different meanings to the notation Z/`dZ

X
:



162 CHAPTER 3. E∞-STRUCTURES ON `-ADIC COHOMOLOGY

(1) In Notation 2.2.4.4, we defined Z/`dZ
X

to be an object of Shv(X; Z/`dZ): namely,

the sheafification of the constant functor (Shvet
X)op → ModZ/`dZ taking the value

Z/`dZ.

(2) In Variant 3.2.1.3, we defined Z/`dZ
X

as an object of the ∞-category Shv`(X)
of `-adic sheaves on X.

However, these two definitions are compatible: the second can be obtained as the image
of the first under the forgetful functor Shv(X; Z/`dZ) → Shv`(X). It follows that the
cochain complex C∗(X; Z/`dZ) can be identified with Z/`dZ

X
(X), where Z/`dZ

X
is

interpreted in the sense of Notation 2.2.4.4.

Remark 3.2.1.6. Let X be a quasi-projective k-scheme. For every nonnegative integer
d, the cohomology groups H∗(X; Z/`dZ) are finite. This follows from Remarks 3.2.1.2
and 3.2.1.4 (or more directly from Proposition 2.2.9.1).

Remark 3.2.1.7 (Comparison with Étale Cohomology). Let X be a quasi-projective
k-scheme, let d ≥ 0 be a nonnegative integer, and set Λ = Z/`dZ. Let ModΛ denote the
∞-category of chain complexes of Λ-modules, and let Mod♥Λ denote the usual abelian
category of Λ-modules (which we regard as a full subcategory of ModΛ). Let Schet

X

denote the category of étale X-schemes (see Notation 2.2.1.1), and let c : (Schet
X)op →

ModΛ denote the constant functor taking the value Λ. We can then sheafify the functor
c in (at least) two different senses:

(i) We can consider c as a presheaf on X with values in the abelian category Mod♥Λ ,

and form its sheafification c̃ : (Schet
X)op → Mod♥Λ in the 1-categorical sense. The

functor c̃ can be regarded as an object of the abelian category A of Mod♥Λ -valued
sheaves on X.

(ii) We can consider c as a presheaf on X with values in the stable∞-category ModΛ,
and form its sheafification ΛX in the sense of Remark 2.2.1.4. The functor ΛX is
an object of the stable ∞-category Shv(X; Λ).

Beware that we can regard both c̃ and ΛX as functors from (Shvet
X)op to the∞-category

ModΛ, and that these functors generally do not coincide. However, they are closely
related. Note that the abelian category A has enough injectives, so we can choose an
injective resolution

0→ c̃→ I0 → I1 → · · · .

The construction U 7→ I∗(U) determines a functor from (Schet
X)op to the category

Chain(Λ) of chain complexes of Λ-modules, hence also a functor (Shvet
X)op → ModΛ.

It follows from the injectivity of the abelian sheaves I• that the resulting functor is an
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object of the ∞-category Shv(X; Λ), and from the acyclicity of the chain complex I•

that the composite map c→ c̃→ I• exhibits I• as a sheafification of c (in the presheaf
∞-category Fun((Schet

X)op,ModΛ)). Consequently, we can identify ΛX with the functor

(U ∈ Schet
X) 7→ (I0(U)→ I1(U)→ I2(U)→ · · · ).

Taking U = X and passing to cohomology, we obtain a canonical isomorphism

H∗(X; Λ) ' H∗(ΛX(X)) ' H∗et(X; Λ),

where the left hand side is defined as in Variant 3.2.1.3 and the right hand side is the
usual étale cohomology of X with coefficients in Λ.

Remark 3.2.1.8 (Passage to the Inverse Limit). Let X be a quasi-projective k-
scheme. Then we can identify the constant sheaf Z`X with the inverse limit of the

tower {Z/`dZ
X
}d≥0 in the∞-category Shv`(X). The construction F 7→ C∗(X;F) com-

mutes with inverse limits (since it is a right adjoint), so we can identify the `-adic
cochain complex C∗(X; Z`) with the limit of the tower {C∗(X; Z/`dZ)}d≥0 in the ∞-
category ModZ` . It follows that, for every integer n, we have a Milnor short exact
sequence

0→ lim←−
1 Hn−1(X; Z/`dZ)→ Hn(X; Z`)→ lim←−Hn(X; Z/`dZ)→ 0.

However, the term on the left automatically vanishes (since the étale cohomology groups
Hn−1(X; Z/`dZ) are finite by virtue of Remark 3.2.1.6). We therefore have canonical
isomorphisms

Hn(X; Z`) ' lim←−Hn(X; Z/`dZ) ' lim←−Hn
et(X; Z/`dZ).

In other words, Construction 3.2.1.1 recovers the classical theory of `-adic cohomology.

Warning 3.2.1.9. Let X be a quasi-projective k-scheme. The construction U 7→
C∗(U ; Z`) determines a functor F : (Schet

X)op → ModZ` . This functor satisfies étale
descent, and can therefore be regarded as an object of the ∞-category Shv(X; Z`) of
Definition 2.2.1.2. However, the functor F is generally not the sheafification of the
constant functor taking the value Z`. Consequently, the `-adic cohomology groups
H∗(X; Z`) of Construction 3.2.1.1 need not be isomorphic to the étale cohomology
groups H∗et(X; Z`) (defined by regarding Z` as a constant sheaf on the étale site of X).
The sheaf F can instead be regarded as the `-adic completion of the sheafification of
the constant sheaf with value Z`.

Variant 3.2.1.10 (Cohomology with Rational Coefficients). LetX be a quasi-projective
k-scheme and let Q`X

= Z`X [`−1] denote the `-adic sheaf on X obtained from Z`X by
inverting `. We let C∗(X; Q`) denote the complex C∗(X; Q`X

) of cochains on X with
values in Q`X

, and for each integer n we let Hn(X; Q`) denote the nth cohomology
group of C∗(X; Q`).
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Remark 3.2.1.11. Let X be a quasi-projective k-scheme. Since the construction
F 7→ C∗(X;F) commutes with filtered colimits, we have canonical equivalences

C∗(X; Q`) ' C∗(X; Z`)[`
−1] H∗(X; Q`) ' H∗(X; Z`)[`

−1].

Remark 3.2.1.12 (Functoriality). Let f : X → Y be a map of quasi-projective k-
schemes. Then the constant sheaf Z`X can be regarded as the pullback of the constant
sheaf Z`Y along f . Consequently, we have a unit map Z`Y → f∗Z`X in the∞-category
Shv`(Y ), which induces a map

C∗(Y ; Z`)→ C∗(Y ; f∗Z`X) ' C∗(X; Z`).

Elaborating on this reasoning, one sees that the construction X 7→ C∗(X; Z`) de-
termines a functor of ∞-categories Schop

k → ModZ` . Similarly, the constructions
X 7→ C∗(X; Z/`dZ) and X 7→ C∗(X; Q`) determine functors

C∗(•; Z/`dZ) : Schop
k → ModZ/`dZ C∗(•; Q`) : Schop

k → ModQ`
.

3.2.2 Digression: Tensor Products of `-Adic Sheaves

Let X be a quasi-projective k-scheme. In §2.3, we introduced the ∞-category Shv`(X)
of `-adic sheaves on X (Definition 2.3.4.1). In this section, we explain how to endow the
∞-category Shv`(X) with a symmetric monoidal structure, in the sense of Definition
3.1.2.2.

Construction 3.2.2.1 (Tensor Products of Presheaves). Let Λ be a commutative ring,
and regard the ∞-category ModΛ as equipped with the symmetric monoidal structure
described in §3.1.4. For every ∞-category J, the functor ∞-category Fun(J,ModΛ)
inherits a symmetric monoidal structure. We will denote the underlying tensor product
functor by

� : Fun(J,ModΛ)× Fun(J,ModΛ)→ Fun(J,ModΛ);

it is given levelwise by the formula (F �G)(J) = F (J)⊗Λ G(J).

In particular, ifX is a quasi-projective k-scheme, then we can regard the∞-category
Fun((Schet

X)op,ModΛ) as a symmetric monoidal ∞-category via the levelwise tensor
product.

Warning 3.2.2.2. Let X be a quasi-projective k-scheme and suppose we are given
objects F,G ∈ Shv(X; Λ), where Λ is some commutative ring. We can then form the
levelwise tensor product F�G of Construction 3.2.2.1, which we regard as a functor
from (Schet

X)op to the ∞-category ModΛ. However, the levelwise tensor product F�G

is usually not an object of Shv(X; Λ).
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In the situation of Warning 3.2.2.2, to obtain a good tensor product on the ∞-
category Shv(X; Λ), we need to sheafify the levelwise tensor product of Construction
3.2.2.1.

Definition 3.2.2.3. Let C be a symmetric monoidal ∞-category and let C0 ⊆ C be
a full subcategory. Suppose that the inclusion functor C0 ↪→ C admits a left adjoint
L : C→ C0. We will say that L is compatible with the symmetric monoidal structure on
C if the following condition is satisfied: for every morphism f : C → D in C and every
object E ∈ C, if L carries f to an equivalence in C0, then L carries the induced map
(f ⊗ idE) : C ⊗ E → D ⊗ E to an equivalence in C0.

Proposition 3.2.2.4. Let C be a symmetric monoidal ∞-category, let C0 ⊆ C be a full
subcategory, and suppose that the inclusion C0 ↪→ C admits a left adjoint L : C → C0

which is compatible with the symmetric monoidal structure on C. Then there is an
essentially unique symmetric monoidal structure on the ∞-category C0 for which L
admits the structure of a symmetric monoidal functor.

Proof. Concretely, we equip C0 with the tensor product given by (C,D) 7→ L(C ⊗D).
For a proof that this construction yields a symmetric monoidal structure on C0, we
refer the reader to Proposition [23].2.2.1.9.

Remark 3.2.2.5. In the situation of Proposition 3.2.2.4, the resulting symmetric
monoidal structure on C0 is characterized by the following universal property: for every
symmetric monoidal∞-category D, composition with L induces a fully faithful functor

Fun⊗(C0,D)→ Fun⊗(C,D),

whose essential image is spanned by those symmetric monoidal functors F : C → D

with the following property: for every morphism f : C → C ′ in C for which Lf is an
equivalence in C0, the morphism Ff is also an equivalence in D.

Example 3.2.2.6 (Tensor Products of Sheaves). Let X be a quasi-projective k-scheme
and let Λ be a commutative ring. Then the inclusion functor

Shv(X; Λ) ↪→ Fun((Schet
X)op,ModΛ)

admits a left adjoint L (given by the sheafification functor of Remark 2.2.1.4). One
can show that the left adjoint L is compatible with the pointwise tensor product of
Construction 3.2.2.1. Applying Proposition 3.2.2.4, we deduce that the ∞-category
Shv(X; Λ) admits a symmetric monoidal structure. We will denote the underlying
tensor product functor by ⊗Λ : Shv(X; Λ)× Shv(X; Λ)→ Shv(X; Λ), given concretely
by the formula F⊗G = L(F�G).
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Example 3.2.2.7. Let X be a quasi-projective k-scheme, let Λ be a commutative
ring, and let Shv(X; Λ) be the ∞-category introduced in Definition 2.2.1.2. Let C ⊆
Shv(X; Λ) denote the full subcategory spanned by the `-complete objects (see §2.3.1).
Then the inclusion C ↪→ Shv(X; Λ) admits a left adjoint (given by the formation of
`-adic completions), and this left adjoint is compatible with the symmetric monoidal
structure of Example 3.2.2.6. It follows that C admits a symmetric monoidal structure,
whose underlying tensor product ⊗̂Λ : C×C→ C is the `-adic completion of the tensor
product ⊗Λ of Example 3.2.2.6.

Proposition 3.2.2.8. Let X be a quasi-projective k-scheme and let F,G ∈ Shv(X; Z)
be constructible `-adic sheaves on X (in the sense of Definition 2.3.2.1). Then the
completed tensor product F ⊗̂Z G is also a constructible `-adic sheaf on X.

Proof. The tensor product F ⊗̂Z G is `-adically complete by construction. It will there-
fore suffice to show that, for every integer d ≥ 0, the sheaf

(Z/`dZ)⊗Z F ⊗̂Z G ∈ Shv(X; Z/`dZ)

is constructible. Unwinding the definitions, we can identify this sheaf with the tensor
product of the constructible sheaves (Z/`dZ)⊗ZF and (Z/`dZ)⊗ZG, formed in the∞-
category Shv(X; Z/`dZ). The desired result now follows easily from the characterization
of constructible sheaves supplied by Proposition 2.2.6.2.

It follows from Proposition 3.2.2.8 (together with the observation that the `-adic
completion of the constant sheaf ZX is a constructible `-adic sheaf) that the symmetric
monoidal structure described in Example 3.2.2.7 restricts to a symmetric monoidal
structure on the ∞-category Shvc`(X) of constructible `-adic sheaves on X.

Remark 3.2.2.9. Let X be a quasi-projective k-scheme. According to Proposition
2.3.2.7, the ∞-category Shvc`(X) of constructible `-adic sheaves on X can be identified
with the inverse limit of the tower

· · · → Shvc(X; Z/`3Z)→ Shvc(X; Z/`2Z)→ Shvc(X; Z/`Z).

Each ∞-category in this tower admits a symmetric monoidal structure (obtained by
restricting the symmetric monoidal structure of Example 3.2.2.6), and each of the
transition functors can be regarded as a symmetric monoidal functor. It follows that
the inverse limit Shvc`(X) ' lim←− Shvc(X; Z/`dZ) inherits a symmetric monoidal struc-
ture, which coincides with the symmetric monoidal structure obtained from Proposition
3.2.2.8 and Example 3.2.2.7.

Proposition 3.2.2.10. Let X be a quasi-projective k-scheme and let Shv`(X) denote
the ∞-category of `-adic sheaves on X (Definition 2.3.4.1). Then Shv`(X) admits an
essentially unique symmetric monoidal structure with the following properties:
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(a) The inclusion Shvc`(X) ↪→ Shv`(X) is symmetric monoidal (where we endow
Shvc`(X) with the symmetric monoidal structure given by the completed tensor
product ⊗̂Z of Example 3.2.2.7).

(b) The tensor product functor Shv`(X) × Shv`(X) → Shv`(X) preserves small col-
imits separately in each variable.

Proof. We begin by observing that the tensor product ⊗̂Z : Shvc`(X) × Shvc`(X) →
Shvc`(X) is exact in each variable (this follows from the analogous assertion for the
tensor product ⊗Z : ModZ×ModZ → ModZ). Proposition 3.2.2.10 is now a formal
consequence of Corollary [23].4.8.1.14.

Notation 3.2.2.11. Let X be a quasi-projective k-scheme. We let ⊗ : Shv`(X) ×
Shv`(X) → Shv`(X) denote the tensor product functor underlying the symmetric
monoidal structure of Proposition 3.2.2.10. If F and G are `-adic sheaves on X, we
will refer to F⊗G ∈ Shv`(X) as the tensor product of F and G.

Example 3.2.2.12. When X = Spec(k), the equivalence Shv`(X) ' ModZ` of Ex-
ample 2.3.4.3 can be promoted to an equivalence of symmetric monoidal ∞-categories:
that is, it carries tensor products of `-adic sheaves on X to tensor products of chain
complexes over Λ.

Remark 3.2.2.13 (Functoriality). All of the constructions outlined in this section
depend functorially on the quasi-projective k-scheme X. If f : X → Y is a morphism
of quasi-projective k-schemes, then we can regard the pullback f∗ : Shv`(Y )→ Shv`(X)
as a symmetric monoidal functor, where Shv`(Y ) and Shv`(X) are equipped with the
symmetric monoidal structure described in Proposition 3.2.2.10.

3.2.3 E∞-Structures on `-adic Cochain Complexes

Let Y be a topological space and let Λ be a commutative ring. In §3.1.6, we saw that the
singular cochain complex C∗(Y ; Λ) admits the structure of an E∞-algebra over Λ. In
this section, we establish an analogue for `-adic cochain complexes of quasi-projective
k-schemes. The proof is based on the following general categorical fact:

Proposition 3.2.3.1. Let C and D be symmetric monoidal ∞-categories and let f :
C→ D be a symmetric monoidal functor, so that composition with f induces a functor
F : CAlg(C) → CAlg(D). Suppose that the functor f admits a right adjoint g. Then
the commutative diagram of ∞-categories

CAlg(C)
F //

��

CAlg(D)

��
C

f // D
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is right adjointable, in the sense of Notation 2.4.1.1 (here the vertical maps are the for-
getful functors). In other words, the functor F admits a right adjoint G : CAlg(D) →
CAlg(C), which is computed (after forgetting commutative algebra structures) by apply-
ing the functor g.

Warning 3.2.3.2. In the situation of Proposition 3.2.3.1, the functor g : D→ C need
not be symmetric monoidal. However, it can always be regarded as a lax symmetric
monoidal functor: that is, for every pair of objectsD,D′ ∈ D, there is a comparison map
g(D)⊗g(D′)→ g(D⊗D′) which is compatible with the commutativity and associativity
constraints on C and D, but need not be an equivalence. Any lax symmetric monoidal
functor g : D→ C carries commutative algebras to commutative algebras, and therefore
induces a functor G : CAlg(D)→ CAlg(C).

Construction 3.2.3.3. Let X be a quasi-projective k-scheme and let π : X → Spec(k)
be the projection map. Then the pullback functor π∗ : Shv`(Spec(k)) → Shv`(X) is
symmetric monoidal, and therefore induces a functor CAlgZ`

' CAlg(Shv`(Spec(k)))→
CAlg(Shv`(X)) which we will denote by M 7→ MX . Applying Proposition 3.2.3.1, we
deduce that the functor F admits a right adjoint CAlg(Shv`(X))→ CAlgZ`

, which fits
into a commutative diagram

CAlg(Shv`(X)) //

��

CAlgZ`

��
Shv`(X)

C∗(X;•) //ModZ` .

In what follows, we will abuse notation by denoting the upper vertical map also by
F 7→ C∗(X;F). We can informally summarize the situation as follows: if F admits
the structure of a commutative algebra object of Shv`(X), then the cochain complex
C∗(X;F) admits the structure of an E∞-algebra over Z`.

Let us regard the constant sheaf Z`X as a commutative algebra object of the ∞-
category Shv`(X) as in Remark 3.1.3.4. Applying the above reasoning to Z`X , we
deduce that the `-adic cochain complex C∗(X; Z`) admits the structure of an E∞-
algebra over Z`. This E∞-algebra is characterized by the following universal property:
for every E∞-algebra A ∈ CAlgZ`

, we have a canonical homotopy equivalence

MapCAlgZ`
(A,C∗(X; Z`)) ' MapCAlg(Shv`(X))(AX ,Z`X).

Variant 3.2.3.4. Let X be a quasi-projective k-scheme. Applying the logic of Con-
struction 3.2.3.3 to the constant sheaves Z/`dZ

X
and Q`X

, we see that the cochain

complexes C∗(X; Z/`dZ) and C∗(X; Q`) can be regarded as E∞-algebras over Z`. In
fact, we can say more: they admit the structure of E∞-algebras over Z/`dZ and Q`,
respectively.
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Remark 3.2.3.5 (Cup Products). Let X be a quasi-projective k-scheme and let Λ ∈
{Z`,Z/`dZ,Q`} be some coefficient ring. Then the E∞-algebra structure on the `-adic
cochain complex C∗(X; Λ) endows the cohomology H∗(X; Λ) with the structure of a
graded-commutative ring (see Remark 3.1.5.3). The associated multiplication is given
by the classical cup product map

∪ : Hi(X; Λ)×Hj(X; Λ)→ Hi+j(X; Λ).

Remark 3.2.3.6. Let X be a quasi-projective k-scheme and let Λ ∈ {Z`,Z/`dZ,Q`}
be some coefficient ring. Then we can identify C∗(X; Λ) with the tensor product
C∗(X; Z`)⊗Z`Λ (which is the coproduct of C∗(X; Z`) with Λ in the∞-category CAlgZ`
of E∞-algebras over Z`).

Remark 3.2.3.7 (Functoriality). Let f : X → Y be a morphism of quasi-projective
k-schemes and let Λ ∈ {Z`,Z/`dZ,Q`} be some coefficient ring. Then the pullback
map C∗(Y ; Λ)→ C∗(X; Λ) of Remark 3.2.1.12 can be regarded as a morphism of E∞-
algebras over Λ. In fact, we can regard the construction X 7→ C∗(X; Λ) as a functor
from the category Schop

k of quasi-projective k-schemes to the ∞-category CAlgΛ of
E∞-algebras over Λ.

3.2.4 Algebraic Stacks and Fibered Categories

LetX be an algebraic curve over k and letG be a smooth affine group scheme overX. In
§1.4.1, we gave an informal description of the moduli stack BunG(X) (see Construction
1.4.1.1) as a contravariant functor

{ k-schemes } → { Groupoids }.

This functor assigns to each k-scheme S the category TorsG(XS) of principal G-bundles
on the relative curve XS = S×Spec(k)X, and to each morphism of k-schemes φ : S → S′

the pullback functor φ∗ : BunG(X)(S′)→ BunG(X)(S), given on objects by the formula
φ∗ P = S′ ×S P. Beware that this construction is not strictly functorial: given another
k-scheme homomorphism ψ : S′′ → S′, the iterated pullback

ψ∗(φ∗ P) = S′′ ×S′ (S′ ×S P)

is canonically isomorphic to S′′ ×S P, but not literally identical. One can address this
technical point by regarding the collection of groupoids as forming a 2-category (or
∞-category), rather than an ordinary category, and generalizing the notion of functor
appropriately. In this section, we will review a more traditional solution to the same
problem, using the language of fibered categories.
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Construction 3.2.4.1 (The Category of Points of BunG(X)). Let X be an algebraic
curve over k and let G be a smooth affine group scheme over X. We define a category
Pt(BunG(X)) as follows:

• The objects of Pt(BunG(X)) are pairs (S,P), where S is a quasi-projective k-
scheme and P is a G-bundle on the relative curve XS = S ×Spec(k) X.

• A morphism from (S,P) to (S′,P′) in the category Pt(BunG(X)) is a commutative
diagram of k-schemes

P //

��

P′

��
S // S′,

where the upper horizontal map is G-equivariant. Equivalently, a morphism from
(S,P) to (S′,P′) is given by a morphism of k-schemes f : S → S′, together with
a G-bundle isomorphism P ' f∗ P′ = S ×S′ P′.

Remark 3.2.4.2. In the situation of Construction 3.2.4.1, the restriction to quasi-
projective k-schemes S is not important: one can capture essentially the same informa-
tion by allowing a larger class of test objects (such as arbitrary k-schemes) or a smaller
class of test objects (such as affine k-schemes of finite type).

Let Schk denote the category of quasi-projective k-schemes. In the situation of
Construction 3.2.4.1, the assignment (S,P) 7→ S determines a forgetful functor π :
Pt(BunG(X))→ Schk. For every quasi-projective k-scheme X, we can recover the cate-
gory of TorsG(XS) of principalG-bundles onXS as the fiber product Pt(BunG(X))×Schk

{S}. Moreover, the map π also encodes the functoriality of the construction S 7→
TorsG(XS): given an object (S,P) ∈ Pt(BunG(X)) and a k-scheme morphism f : S′ →
S, we can choose any lift of f to a morphism f : (S′,P′) → (S,P) in the category
Pt(BunG(X)). Such a lift then exhibits P′ as a fiber product S′ ×S P.

More generally, for any functor of categories π : C→ D and any object D ∈ D, let
CD denote the fiber product C×D{D}. We might then ask if CD depends functorially
on D, in some sense. This requires an assumption on the functor π.

Definition 3.2.4.3. Let π : C → D be a functor between categories. We say that a
morphism α : C ′ → C in C is π-Cartesian if, for every object C ′′ ∈ C, composition with
α induces a bijection

HomC(C ′′, C ′)→ HomC(C ′′, C)×HomD(πC′′,πC) HomD(πC ′′, πC ′).

We will say that π is a Cartesian fibration if, for every object C ∈ C and every
morphism α0 : D → π(C) in the category D, there exists a π-Cartesian morphism
α : D → C with α0 = π(α).
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Warning 3.2.4.4. A functor π : C → D satisfying the requirements of Definition
3.2.4.3 is more often referred to as an fibration or a Grothendieck fibration between cat-
egories. We use the term Cartesian fibration to remain consistent with the conventions
of [25].

Example 3.2.4.5. Let X be an algebraic curve over k and let G be a smooth affine
group scheme over X. Then the forgetful functor

π : Pt(BunG(X))→ Schk π(S,P) = S

is a Cartesian fibration of categories. Moreover, every morphism in the category
Pt(BunG(X)) is π-Cartesian (in other words, the category Pt(BunG(X)) is fibered in
groupoids over the category Schk).

Example 3.2.4.6 (The Category of Points of BG). Let X be a quasi-projective k-
scheme and let G be a smooth affine group scheme over X. We define a category
Pt(BG) as follows:

• The objects of Pt(BG) are triples (S, f,P), where S is a quasi-projective k-scheme,
f : S → X is a morphism of k-schemes, and P is a G-bundle on S.

• A morphism from (S, f,P) to (S′, f ′,P′) in the category Pt(BG) is a commutative
diagram of k-schemes

P //

��

P′

��
S //

f ��

S′

f ′~~
X,

where the upper horizontal map is G-equivariant. Equivalently, a morphism from
(S, f,P) to (S′, f ′,P′) is given by a morphism of X-schemes g : S → S′, together
with a G-bundle isomorphism P ' g∗ P′ = S ×S′ P′.

The construction (S, f,P) 7→ S determines a Cartesian fibration of categories π :
Pt(BG)→ Schk. Moreover, every morphism in Pt(BG) is π-Cartesian.

Example 3.2.4.7 (The Category of Points of a k-Scheme). Let X be a quasi-projective
k-scheme. We can associate to X a category Pt(X), which we call the category of points
of X. By definition, an object of Pt(X) is a pair (S, φ), where S is a quasi-projective
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k-scheme and φ : S → X is a morphism of k-schemes. A morphism from (S, φ) to
(S′, φ′) is given by a commutative diagram

S //

φ   

S′

φ′~~
X.

The construction (S, φ) 7→ S determines a Cartesian fibration of categories π : Pt(X)→
Schk, where every morphism in Pt(X) is π-Cartesian.

Examples 3.2.4.5, 3.2.4.6, and 3.2.4.7 can all be encapsulated by the following:

Example 3.2.4.8. Let X be an algebraic stack which is locally of finite type over the
field k. We define a category Pt(X) as follows:

• The objects of Pt(X) are pairs (S, f), where S is quasi-projective k-scheme and
f is an S-valued point of X (that is, a morphism from S to X of algebraic stacks
over k).

• If (S, f) and (S′, f ′) are objects of Pt(X), then a morphism from (S, f) to (S′, f ′)
in Pt(X) is a pair (g, α), where g : S → S′ is a morphism of k-schemes and α
is an isomorphism of f with f ′ ◦ g in the category of S-valued points of X. Put
another way, a morphism from (S, f) to (S′, f ′) is a diagram of algebraic stacks
over k

S //

f

��

S′

f ′

��
X

which commutes up to a specified 2-isomorphism.

We will refer to Pt(X) as the category of points of X. The construction (S, f) 7→ S
determines a Cartesian fibration of categories π : Pt(X) → Schk. Moreover, every
morphism in Pt(X) is π-Cartesian.

Remark 3.2.4.9. In many treatments of the theory of algebraic stacks, an algebraic
stack X over k is identified with the Cartesian fibration π : Pt(X) → Schk (or some
variant thereof, where we replace Schk by a suitable category of test objects). In
this book, we will implicitly follow this convention: the cohomological invariants of an
algebraic stack X will be defined using the category Pt(X). To avoid confusion, our
notation will maintain a (technically irrelevant) distinction between the algebraic stack
X itself (which we think of as an algebro-geometric object) and its category of points
Pt(X).
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Example 3.2.4.10 (Grothendieck Construction). Let D be a category, and let U be a
functor from Dop to the category Cat of categories. We can define a new category DU

as follows:

(1) The objects of DU are pairs (D,u) where D is an object of D and u is an object
of the category U(D).

(2) A morphism from (D,u) to (D′, u′) consists of a pair (φ, α), where φ : D → D′ is
a morphism in D and α : u→ U(φ)(u′) is a morphism in the category U(D).

The construction (D,u) 7→ D determines a Cartesian fibration of categories π : DU →
D, where a morphism (φ, α) in DU is π-Cartesian if and only if α is an isomorphism.
The passage from the functor U to the category DU is often called the Grothendieck
construction.

For any Cartesian fibration F : C→ D, the category C is equivalent to DU , for some
functor U : D→ Cat. Moreover, the datum of the Cartesian fibration F and the datum
of the functor U are essentially equivalent to one another (in a suitable 2-categorical
sense); see Proposition 3.2.6.4.

3.2.5 `-Adic Cohomology of Algebraic Stacks

In Chapter 2, we introduced the∞-category Shv`(X) of `-adic sheaves on a scheme X,
under the assumption that X is quasi-projective over an algebraically closed field k.
In this chapter, we applied the theory of `-adic sheaves to construct the `-adic cochain
complex C∗(X; Z`) (Construction 3.2.1.1) and to equip it with an E∞-algebra structure
(Construction 3.2.3.3). In each of these constructions, the quasi-projectivity assump-
tion on X is largely superfluous: the theory of `-adic sheaves (and `-adic cohomology)
can be extended to a much larger class of geometric objects. In this section, we consider
a generalization to algebraic stacks (assumed for simplicity to be locally of finite type
over k) that will be needed in the proof of Weil’s conjecture.

Construction 3.2.5.1. Let Λ ∈ {Z`,Q`,Z/`
dZ} be a coefficient ring, let X be an

algebraic stack which is locally of finite type over k, and let Pt(X) denote the category
of points of X (Example 3.2.4.8), whose objects are given by pairs (S, f) where S is
a quasi-projective k-scheme and f : S → X is a morphism of algebraic stacks over k.
Using Remark 3.2.3.7, we can regard the construction (S, f) 7→ C∗(S; Λ) as a functor
from the category Pt(X)op to the ∞-category CAlgΛ of E∞-algebras over Λ. We let
C∗(X; Λ) denote the inverse limit lim←−(S,f)∈Pt(X)op C

∗(S; Λ), formed in the ∞-category

CAlgΛ. We will refer to C∗(X; Λ) as the complex of Λ-valued cochains on X. For every
integer n, we let Hn(X; Λ) denote the nth cohomology of the chain complex C∗(X; Λ),
so that H∗(X; Λ) can be regarded as a graded-commutative algebra over Λ.
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Example 3.2.5.2. Let X be a quasi-projective k-scheme. Then X can be regarded
as an algebraic stack (which is of finite type over k). For each coefficient ring Λ ∈
{Z`,Z/`dZ,Q`}, we have supplied two different definitions for the cochain complex
C∗(X; Λ): one given by Construction 3.2.1.1 (or Variants 3.2.1.3 and 3.2.1.10), and
one given by Construction 3.2.5.1. However, the resulting E∞-algebras are canonically
equivalent to one another: this follows from the observation that the identity map
id : X → X is a final object of the category Pt(X).

Remark 3.2.5.3. For every integer d ≥ 0, the extension of scalars functor CAlgZ`
→

CAlgZ/`dZ commutes with limits. It follows that, for every algebraic stack X of finite
type over k, we have a canonical equivalence

Z/`dZ⊗Z` C
∗(X; Z`)→ C∗(X; Z/`dZ)

of E∞-algebras over Z/`dZ. Similarly, we can identify C∗(X; Z`) with the limit of the
tower

· · · → C∗(X; Z/`3Z)→ C∗(X; Z/`2Z)→ C∗(X; Z/`Z).

Proposition 3.2.5.4. Let X be an algebraic stack which is of finite type over k. Then
the canonical map C∗(X; Z`)[`

−1] → C∗(X; Q`) is an equivalence of E∞-algebras over
Q`.

Proof. Assume for simplicity that the algebraic stack X has quasi-projective diagonal
(this condition is satisfied for all algebraic stacks of interest to us in this book). Choose
a smooth surjective map U0 → X, where U0 is an affine scheme. For each n ≥ 0, let Un
denote the (n+1)-fold fiber product of U0 over X, so that each Un is a quasi-projective k-
scheme. Then U• is a simplicial scheme. For each coefficient ring Λ ∈ {Z`,Z/`dZ,Q`},
we can identify C∗(X; Λ) with the totalization of the cosimplicial E∞-algebra C∗(U•; Λ).
The desired result now follows from Remark 3.2.1.11, since the functor

ModZ` → ModQ`
M 7→M [`−1]

commutes with totalizations of cosimpicial objects when restricted to the full subcate-
gory (ModZ`)≤0.

Warning 3.2.5.5. The conclusion of Proposition 3.2.5.4 generally does not hold if X
is only assumed to be locally of finite type over k. For example, suppose that X is a
disjoint union of infinitely many copies of Spec(k). In this case, the cochain complex
C∗(X; Z`) is equivalent to a product of infinitely many copies of Z`, while C∗(X; Q`)
is equivalent to a product of infinitely many copies of Q`. In this case, the canonical
map C∗(X; Z`)[`

−1]→ C∗(X; Q`) is not a quasi-isomorphism.
In this book, we are primarily interested in the `-adic cohomology of the moduli

stack BunG(X), where X is an algebraic curve over k and G is a smooth affine group
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scheme over X. The moduli stack BunG(X) is never quasi-compact (except in trivial
cases), so we cannot apply Proposition 3.2.5.4 directly. Nevertheless, if the generic fiber
of G is semisimple, then one can show that the canonical map

C∗(BunG(X); Z`)[`
−1]→ C∗(BunG(X); Q`)

is a quasi-isomorphism. This can be proved using the methods of Chapter 5. However,
this compatibility will not be needed in this book.

Remark 3.2.5.6 (Functoriality). Let f : X → Y be a morphism between algebraic
stacks which are locally of finite type over k. Then f determines a functor Pt(X) →
Pt(Y), which in turn determines a map

f∗ : C∗(Y; Λ) = lim←−
(S,f)∈Pt(Y)

C∗(S; Λ)→ lim←−
(S′,f ′)∈Pt(X)

C∗(S′; Λ) = C∗(X; Λ)

for every coefficient ring Λ ∈ {Z`,Z/`dZ,Q`}. Elaborating on this argument, we can
view the construction X 7→ C∗(X; Λ) as a contravariant functor from (the nerve of) the
2-category of algebraic stacks (which are locally of finite type over k) to the∞-category
CAlgΛ of E∞-algebras over Λ.

3.2.6 Digression: Fibered ∞-Categories

In §3.2.4, we introduced the notion of a Cartesian fibration between categories (Def-
inition 3.2.4.3). Our discussion placed emphasis on examples of geometric origin: an
algebraic stack X (assumed to be locally of finite type over a field k) can be encoded
by its category of points Pt(X) (Example 3.2.4.8), together with a Cartesian fibration
from Pt(X) to the category Schk of quasi-projective k-schemes. However, the theory of
Cartesian fibrations is applicable more broadly: for any category D, the Grothendieck
construction of Example 3.2.4.10 supplies a useful dictionary

{ Functors Dop → Cat } ' { Cartesian fibrations C→ D .} (3.2)

In this section, we describe an ∞-categorical generalization of the theory of Cartesian
fibrations and of the equivalence (3.2), which will be needed in both §3.3 and §3.4. Our
presentation will be somewhat terse: for a detailed discussion (and proofs of the results
stated here), we refer the reader to [25] (particularly §[25].2.4 and §[25].3.2).

Definition 3.2.6.1. Let F : C → D be a functor of ∞-categories (or, more generally,
any map of simplicial sets). We will say that F is an inner fibration if, for all 0 < i < n,
the induced map Cn → Λni (C)×Λni (D) Dn is surjective (see Notation 2.1.3.1).

Assume that F is an inner fibration, and let α : C → C ′ be a morphism in C (which
we regard as a 1-simplex of C). We will say that α is F -Cartesian if, for each n ≥ 2
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and each element σ ∈ Λnn(C) satisfying σ{n−1,n} = α (see Notation 2.1.3.1), the induced
map

Cn×Λnn(C){σ} → Dn×Λnn(D){σ}

is surjective.
We will say that F is a Cartesian fibration if it is an inner fibration and, for every

object C ∈ C and every morphism α : D → F (C) in the ∞-category D, there exists an
F -Cartesian morphism α : D → C in C satisfying F (α) = α.

Example 3.2.6.2. Let C be a simplicial set and let F : C→ ∆0 be the projection map.
Then:

• The map F is an inner fibration if and only if C is an ∞-category (this follows
immediately from the definitions).

• If C is an ∞-category, then a morphism of C is F -Cartesian if and only if it is an
equivalence (Proposition [25].1.2.4.3).

• If C is an ∞-category, then F is automatically a Cartesian fibration.

Example 3.2.6.3. Let F : C → D be a functor between categories, which we regard
(via passing to nerves) as a functor of ∞-categories. Then:

• The map F is automatically an inner fibration.

• A morphism of C is F -Cartesian in the sense of Definition 3.2.6.1 if and only if it
is F -Cartesian in the sense of Definition 3.2.4.3.

• The functor F is a Cartesian fibration in the sense of Definition 3.2.6.1 if and
only if it is a Cartesian fibration in the sense of Definition 3.2.4.3.

Example 3.2.4.10 admits the following ∞-categorical generalization:

Proposition 3.2.6.4. [∞-Categorical Grothendieck Construction] Let Cat∞ be the
∞-category of ∞-categories (see Construction 3.1.2.1) and let D be an arbitrary ∞-
category. There is an explicit construction which associates to each functor U : Dop →
Cat∞ a new ∞-category DU equipped with a Cartesian fibration π : DU → D. More-
over, this construction induces a bijection

{Functors Dop → Cat∞}/homotopy ' {Cartesian fibrations C→ D}/equivalence.

Proof. The construction U 7→ DU is given by the (marked) unstraightening functor
of Corollary [25].3.2.1.5. The asserted bijectivity is the main content of Theorem
[25].3.2.0.1.
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Remark 3.2.6.5. In the special case where D is an ordinary category and the functor
U : Dop → Cat∞ factors through the subcategory Cat ⊆ Cat∞, the Cartesian fibration
DU → D of Proposition 3.2.6.4 agrees with the classical Grothendieck construction
described in Example 3.2.4.10.

Remark 3.2.6.6. Let π : C → D be a Cartesian fibration of ∞-categories and let
U : Dop → Cat∞ be a functor which corresponds to π under the bijection of Proposition
3.2.6.4. In this situation, we will say that the functor U classifies the Cartesian fibration
π, or that π is classified by the functor U . In this case, the functors π and U determine
one another up to equivalence. The functor U can be described informally by the
formula U(D) = C×D{D}.

Each of the notions defined above can be dualized:

Variant 3.2.6.7. Let F : C→ D be a functor of∞-categories and let F op : Cop → Dop

denote the induced functor of opposite∞-categories. We will say that a morphism of C
is F -coCartesian if it is F op-Cartesian (when regarded as a morphism in the∞-category
Cop). We will say that F is a coCartesian fibration if the functor F op is a Cartesian
fibration.

Applying Proposition 3.2.6.4 to the ∞-category Dop (and composing with the au-
toequivalence of Cat∞ given by E 7→ Eop), we obtain a bijective correspondence

{Functors D→ Cat∞}/homotopy ' {coCartesian fibrations C→ D}/equivalence.

If π : C → D is a coCartesian fibration which corresponds to a functor U : D → Cat∞
under this bijection, then we will say that the functor U classifies the coCartesian
fibration π, or that π is classified by the functor U .

3.3 The !-Tensor Product

Throughout this section, we fix an algebraically closed field k and a prime number
` which is invertible over k. For every quasi-projective k-scheme X, the ∞-category
Shv`(X) of `-adic sheaves on X can be endowed with the symmetric monoidal structure
of Proposition 3.2.2.10, given by the formation of tensor products of `-adic sheaves
discussed in §3.2.2. This gives rise to an an external tensor product operation:

Construction 3.3.0.1. Let X and Y be quasi-projective k-schemes, and let X × Y =
X ×Spec(k) Y denote their product. For every pair of `-adic sheaves F ∈ Shv`(X) and
G ∈ Shv`(Y ), we define

F�G = (π∗X F)⊗ (π∗Y G) ∈ Shv`(X × Y ).

Here πX : X ×Y → X and πY : X ×Y → Y denote the projection maps. We will refer
to F�G as the external tensor product of F and G.
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The external tensor product F�G of Construction 3.3.0.1 is defined in terms of
the usual tensor product of `-adic sheaves (on the product X × Y ) studied in §3.2.2.
Conversely, we can recover the tensor product of §3.2.2 from the external tensor product
of Construction 3.3.0.1: if F and G are `-adic sheaves on a fixed quasi-projective k-
scheme X, then we have a canonical equivalence F⊗G ' δ∗(F�G), where δ : X →
X ×X denotes the diagonal map. This perspective suggests a variant:

Construction 3.3.0.2. Let X be a quasi-projective k-scheme and let δ : X → X ×X
denote the diagonal map. For every pair of `-adic sheaves F,G ∈ Shv`(X), we define

F⊗! G = δ!(F�G) ∈ Shv`(X).

The construction (F,G) 7→ F⊗! G determines a functor ⊗! : Shv`(X) × Shv`(X) →
Shv`(X), which we will refer to as the !-tensor product functor.

Our goal in this section is to prove the following result:

Theorem 3.3.0.3. For every quasi-projective k-scheme X, the ∞-category Shv`(X)
admits a symmetric monoidal structure whose underlying tensor product is the !-tensor
product

⊗! : Shv`(X)× Shv`(X)→ Shv`(X)

of Construction 3.3.0.2. Moreover, this symmetric monoidal structure depends func-
torially on X: for every proper morphism f : X → Y , the exceptional inverse image
functor f ! : Shv`(Y )→ Shv`(X) can be regarded as a symmetric monoidal functor from
Shv`(Y ) to Shv`(X).

Remark 3.3.0.4. In the statement of Theorem 3.3.0.3, the properness assumption on
f : X → Y can be removed, given an appropriate definition of the exceptional inverse
image for non-proper morphisms. However, a rigorous proof would require substantial
modifications of the ideas presented here. For our purposes in this book, Theorem
3.3.0.3 will be sufficient.

Let us now briefly outline our approach to Theorem 3.3.0.3. Fix a quasi-projective
k-scheme X. Roughly speaking, Theorem 3.3.0.3 asserts that the !-tensor product

⊗! : Shv`(X)× Shv`(X)→ Shv`(X)

is commutative, associative, and unital, up to coherent homotopy. In particular, for
`-adic sheaves F,G,H ∈ Shv`(X), we have canonical equivalences

α : F⊗! G ' G⊗! F β : F⊗!(G⊗! H) ' (F⊗! G)⊗! H . (3.3)

The existence of the equivalence α follows easily from the definitions (since the tensor
product of §3.2.2 is commutative up to equivalence), but the existence of β is less
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obvious: it will be constructed in §3.3.2, using some formal properties of the external
tensor product which we establish in §3.3.1.

To establish the unitality of the !-tensor product, we need to specify an `-adic sheaf
ωX ∈ Shv`(X) for which there are equivalences ωX ⊗! F ' F, depending functorially
on F ∈ Shv`(X). It follows from general considerations that the object ωX is uniquely
determined up to equivalence: we will refer to it as the dualizing sheaf of X. The
construction of the dualizing sheaf ωX (and the verification of its universal property)
will be carried out in §3.3.3.

The commutativity and associativity equivalences of (3.3) can be used to equip the
homotopy category hShv`(X) with a symmetric monoidal structure. However, this is not
good enough for our applications: we will need to study the∞-category of commutative
algebra objects of Shv`(X), whose definition requires a symmetric monoidal structure
on the ∞-category Shv`(X) itself. More informally, we need to know that the !-tensor
product ⊗! is commutative and associative not only up to homotopy, but up to coherent
homotopy. The proof of this will require somewhat elaborate (but completely formal)
categorical constructions, which we carry out in §3.3.4 and 3.3.5.

3.3.1 The Künneth Formula

Let X and Y be quasi-projective k-schemes and let X × Y = X ×Spec(k) Y denote

their product. For any coefficient ring Λ ∈ {Z`,Z/`dZ,Q`}, the multiplication on
C∗(X × Y ; Λ) induces a map

C∗(X; Λ)⊗Λ C
∗(Y ; Λ) → C∗(X × Y ; Λ)⊗Λ C

∗(X × Y ; Λ)

→ C∗(X × Y ; Λ).

We then have the following result:

Theorem 3.3.1.1 (Künneth Formula). For every pair of quasi-projective k-schemes
X and Y and every coefficient ring Λ ∈ {Z/`dZ,Z`,Q`}, the canonical map

C∗(X; Λ)⊗Λ C
∗(Y ; Λ)→ C∗(X × Y ; Λ)

is an equivalence.

Remark 3.3.1.2. When Λ ∈ {Z/`Z,Q`} is a field, Theorem 3.3.1.1 asserts that we
have a canonical isomorphism

H∗(X × Y ; Λ) ' H∗(X; Λ)⊗Λ H∗(Y ; Λ).

Theorem 3.3.1.1 is a special case of a more general result (Corollary 3.3.1.6), which
we will prove below by studying the relationship between the external tensor product
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� of Construction 3.3.0.1 with direct images. Note that if f : X → Y is a morphism of
quasi-projective k-schemes and Z is another quasi-projective k-scheme, then we have a
canonical equivalence

(f × idZ)∗(H�G) ' f∗H�G

for H ∈ Shv`(Y ), G ∈ Shv`(Z). Taking H = f∗ F for F ∈ Shv`(X) (and composing
with the counit map f∗H→ F), we obtain a map

θF,G : f∗ F�G→ (f × idZ)∗(F�G).

Proposition 3.3.1.3. Let f : X → Y be a morphism of quasi-projective k-schemes
and let Z be a quasi-projective k-scheme. Then for every pair of objects F ∈ Shv`(X)
and G ∈ Shv`(Z), the canonical map

θF,G : (f∗ F) � G→ (f × idZ)∗(F�G)

is an equivalence in Shv`(Y × Z).

Before giving the proof of Proposition 3.3.1.3, let us collect some consequences.

Corollary 3.3.1.4. Let f : X → Y be a morphism of quasi-projective k-schemes and
let Z be another quasi-projective k-scheme, so that we have a pullback square

X × Z f ′ //

g

��

Y × Z
g′

��
X

f // Y.

For each sheaf F ∈ Shv`(X), the canonical map g′∗f∗ F → f ′∗g
∗ F is an equivalence.

Proof. Apply Proposition 3.3.1.3 in the special case G = Z`Z ∈ Shv`(Z).

Corollary 3.3.1.5. Let f : X → Y and f ′ : X ′ → Y ′ be morphisms of quasi-projective
k-schemes. For every pair of `-adic sheaves F ∈ Shv`(X) and F′ ∈ Shv`(X

′), the
canonical map (f∗ F) � (f ′∗ F

′)→ (f × f ′)∗(F�F′) is an equivalence in Shv`(Y × Y ′).

Corollary 3.3.1.6. Let X and X ′ be quasi-projective k-schemes. For every pair of
`-adic sheaves F ∈ Shv`(X), F′ ∈ Shv`(X

′), the canonical map

C∗(X;F)⊗Z` C
∗(X ′;F′)→ C∗(X ×X ′;F�F′)

is an equivalence in ModZ`.
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Proof of Theorem 3.3.1.1. Let X and Y be quasi-projective k-schemes and let Λ ∈
{Z`,Z/`dZ,Q`}; we wish to show that the tautological map C∗(X; Λ)⊗Λ C

∗(Y ; Λ)→
C∗(X × Y ; Λ) is an equivalence. Using Remarks 3.2.1.4 and 3.2.1.11, we can reduce
to the case Λ = Z`, in which case the desired result is a special case of Corollary
3.3.1.6.

The proof of Proposition 3.3.1.3 will require some preliminaries. Let f : X → Y
be a morphism of quasi-projective k-schemes, and suppose we are given `-adic sheaves
F ∈ Shv`(X) and G ∈ Shv`(Y ). Since the pullback functor f∗ commutes with tensor
products (Remark 3.2.2.13), the counit f∗f∗ F → F induces a map

f∗((f∗ F)⊗ G) ' (f∗f∗ F)⊗ f∗ G→ F⊗f∗ G,

which we can identify with a map βF,G : (f∗ F) ⊗ G → f∗(F⊗f∗ G) in the ∞-category
Shv`(Y ).

Proposition 3.3.1.7 (Projection Formula). Let f : X → Y be a proper morphism
between quasi-projective k-schemes. Then for every pair of objects F ∈ Shv`(X) and
G ∈ Shv`(Y ), the preceding construction induces an equivalence

βF,G : (f∗ F)⊗ G→ f∗(F⊗f∗ G).

Proof. The construction (F,G) 7→ βF,G commutes with filtered colimits separately in
each variable. We may therefore assume without loss of generality that F and G are
constructible `-adic sheaves. In this case, βF,G is a morphism between constructible `-
adic sheaves. Consequently, to prove that βF,G is an equivalence, it will suffice to show
that the image of βF,G in Shv(Y ; Z/`Z) is an equivalence. In other words, it suffices
to prove the analogue of Proposition 3.3.1.7 when F and G are constructible objects of
Shv(X; Z/`Z) and Shv(Y ; Z/`Z), respectively.

Let us regard F as fixed. Using Corollary 2.2.4.3, we see that the construction G 7→
βF,G preserves colimits. It follows that the collection of those objects G ∈ Shv(Y ; Z/`Z)
for which βF,G is an equivalence is closed under colimits. Using Proposition 2.2.4.5,
we may suppose that G = j!Z/`ZU for some étale map j : U → Y . Form a pullback
diagram

UX
j′ //

f ′

��

X

f
��

U
j // Y.

Unwinding the definitions, we can identify (f∗ F) ⊗ G with the object j!j
∗f∗ F, and

F⊗f∗ G with j′!j
′∗ F. Under these identifications, the map βF,G factors as a composition

j!j
∗f∗ F

β′−→ j!f
′
∗j
′∗ β′′−→ f∗j

′
!j
′∗ F,
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where β′ is an equivalence by Theorem 2.4.2.1 (since j is étale) and β′′ is an equivalence
by Proposition 2.4.3.4 (since f is proper).

Proof of Proposition 3.3.1.3. The construction (F,G) 7→ θF,G preserves filtered colimits
in F and G. We may therefore assume without loss of generality that F and G are
constructible `-adic sheaves. In this case, θF,G is a morphism of constructible `-adic
sheaves on Y × Z. Consequently, to prove that θF,G is an equivalence, it will suffice to
show that the image of θF,G in Shv(Y × Z; Z/`Z) is an equivalence. It will therefore
suffice to prove the analogue of Proposition 3.3.1.3 where F and G are compact objects
of Shv(X; Z/`Z) and Shv(Z; Z/`Z), respectively.

We first consider two special cases:

(a) If the map f is proper, then the desired result follows immediately from the
projection formula (Proposition 3.3.1.7).

(b) Suppose that Z is smooth and that G is locally constant. In this case, we can
assume that G is the constant sheaf MZ , where M ∈ ModZ/`Z is perfect (since
the assertion is local with respect to the étale topology on Z). The collection
of those M for which θF,G is an equivalence is closed under shifts, retracts, and
finite colimits; we may therefore assume that M = Z/`Z. In this case, the desired
result follows from the smooth base change theorem (Theorem 2.4.2.1).

We now treat the general case. For the remainder of the proof, we will regard
f : X → Y and F ∈ Shvc(X; Z/`Z) as fixed. Let d denote the dimension of Z; we will
proceed by induction on d. It follows from case (a) that if we are given a proper map
g : Z → Z ′, then we can identify θF,g∗ G with the image of θF,G under the pushforward
functor (id×g)∗ : Shv(Y × Z; Z/`Z)→ Shv(Y × Z ′; Z/`Z).

Since the desired conclusion can be tested locally on Z, we may assume without
loss of generality that Z is affine. In this case, we can use Noether normalization to
choose a finite map g : Z → Ad. Then cofib(θF,G) vanishes if and only if g∗ cofib(θF,G) '
cofib(θF,g∗ G) vanishes. We may therefore replace G by g∗ G, and thereby reduce to the
case where Z = Ad is an affine space.

Using Proposition 2.2.6.2, we can choose a nonempty open subset U ⊆ Z such that
G |U is locally constant. Applying a translation if necessary, we may suppose that U
contains the origin 0 ∈ Ad = Z. Set H = cofib(θF,G), so that H ∈ Shvc(Y × Z; Z/`Z).
Using (b), we see that H vanishes on the open set Y × U . We wish to prove that
H ' 0. Suppose otherwise: then H has a nonvanishing stalk at some closed point (y, z)
of Y ×Z. Since H vanishes on Y ×U , z is not the origin of Z ' Ad. Applying a linear
change of coordinates, we may assume without loss of generality that z = (1, 0, . . . , 0).
Let Z = P1 ×Ad−1, let j : Z → Z denote the inclusion map, let G = j! G, and set H =
θF,G ∈ Shvc(Y × Z; Λ). Let g : Z → Ad−1 denote the projection map onto the second
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factor. Since H vanishes on Y ×Spec(k) U , the support of H has finite intersection with
the fiber (id×g)−1{(y, 0)}. Using the proper base change theorem (Theorem 2.4.2.1),
we see that the stalk of H at (y, z) can be identified with a direct summand of the stalk
of (id×g)∗H at the point (y, 0). In particular, we have 0 6= (id×g)∗H ' cofib(θF,g∗G),
contradicting our inductive hypothesis.

3.3.2 Associativity of the !-Tensor Product

Let X be a quasi-projective k-scheme. Our goal in this section is to verify the associa-
tivity of the !-tensor product

⊗! : Shv`(X)× Shv`(X)→ Shv`(X)

described in Construction 3.3.0.2. To this end, suppose we are given `-adic sheaves
F,G,H ∈ Shv`(X); we wish to construct a canonical equivalence

(F⊗! G)⊗! H ' F⊗!(G⊗! H). (3.4)

Note that the associativity of the usual tensor product on Shv`(X × X × X) guar-
antees that the external tensor products (F�G) �H and F�(G�H) are canonically
equivalent; we will abuse notation by denoting both of these objects by F�G�H ∈
Shv`(X × X × X). We will verify the associativity of ⊗! by showing that both sides
of (3.4) can be identified with δ(3)!(F�G�H), where δ(3) : X → X × X × X is the
diagonal embedding. This is a consequence of the following:

Proposition 3.3.2.1. Let f : X → Y be a proper morphism between quasi-projective
k-schemes, let Z be a quasi-projective k-scheme, and let f ′ = f× idZ : X×Z → Y ×Z.
Then, for every pair of objects F ∈ Shv`(Y ) and G ∈ Shv`(Z), the canonical map

µF,G : (f ! F�G)→ f ′!f ′∗(f
! F�G)

θ−1

−−→ f ′!(f∗f
! F�G)→ f ′!(F�G)

is an equivalence; here f ′ = (f× idZ) : X×Z → Y ×Z and θ = θf ! F,G is the equivalence
of Proposition 3.3.1.3.

Before giving the proof of Proposition 3.3.2.1, we make some auxiliary remarks.

Construction 3.3.2.2. Let f : X → Y be a proper morphism of quasi-projective
k-schemes and suppose we are given objects F,G ∈ Shv`(Y ). Tensoring the counit map
f∗f

! G→ G with F and applying Proposition 3.3.1.7, we obtain a map

f∗(f
∗ F⊗f ! G) ' F⊗f∗f ! G→ F⊗G,

which in turn classifies a map ρF,G : f∗ F⊗f ! G→ f !(F⊗G) in Shv`(X).



184 CHAPTER 3. E∞-STRUCTURES ON `-ADIC COHOMOLOGY

Proposition 3.3.2.3. Let f : X → Y be a proper morphism between quasi-projective
k-schemes. Let U ⊆ X be an open subset for which f |U is smooth. Then the natural
map ρF,G : f∗ F⊗f ! G→ f !(F⊗G) induces an equivalence (f∗ F⊗f ! G)|U → f !(F⊗G)|U
for every pair of objects F,G ∈ Shv`(Y ).

Proof. Let Z`Y denote the unit object of Shv`(Y ). Note that we have a commutative
diagram

f∗ F⊗f ! G

&&
f∗ F⊗f∗ G⊗f !Z`Y

ρF⊗G,Z`Y //

ρG,Z`Y

66

f !(F⊗G).

It will therefore suffice to show that the maps ρG,Z`Y
and ρF⊗G,Z`Y

are equivalences
over the open set U . We may therefore reduce to the case where G = Z`Y . Since the
construction F 7→ ρF,Z`Y

preserves filtered colimits, we may assume without loss of
generality that F is a constructible `-adic sheaf. In this case, ρF,Z`Y

is a morphism of
constructible `-adic sheaves. To prove that it is an equivalence over U , it will suffice to
show that its image in Shv(U ; Z/`Z) is an equivalence. In other words, we are reduced
to proving that for each constructible object F1 ∈ Shv(Y ; Z/`Z), the canonical map
(f∗ F1⊗f !Z/`Z

Y
)|U → (f ! F1)|U is an equivalence. Using Proposition 2.2.4.5, we may

assume without loss of generality that F1 = g!Z/`ZV where g : V → Y is an étale map.
In this case, the desired result follows from Proposition 2.4.4.9.

Proof of Proposition 3.3.2.1. We first treat the case where f : X → Y is a closed
immersion. In this case, f∗(µF,G) can be identified with a homotopy inverse to the
equivalence θf ! F,G of Proposition 3.3.1.3, and the desired result follows from the fact
that the functor f∗ is fully faithful (and, in particular, conservative).

To treat the general case, we first choose an immersion i : X ↪→ Pn. Then f factors

as a composition X
(i,f)−−−→ Pn×Y π−→ Y , where π denotes the projection onto the second

factor. Since f is proper, the map (i, f) : X → Pn × Y is a closed immersion. Using
the first part of the proof, we can replace f by the projection map π : Pn × Y → Y .
In this case, the desired result follows from Proposition 3.3.2.3.

For later use, we note the following more symmetric version of Proposition 3.3.2.1:

Corollary 3.3.2.4. Let f : X → Y and f ′ : X ′ → Y ′ be morphisms of quasi-projective
k-schemes. For every pair of `-adic sheaves F ∈ Shv`(Y ) and F′ ∈ Shv`(Y

′), there is a
canonical equivalence (f ! F) � (f ′! F′) ' (f × f ′)!(F�F′) of `-adic sheaves on X ×X ′.
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3.3.3 Dualizing Sheaves

Our next goal is to show that there exists a unit with respect to the !-tensor product
on Shv`(X), where X is a quasi-projective k-scheme. We can state this result more
precisely as follows:

Proposition 3.3.3.1. Let X be a quasi-projective k-scheme. Then there exists an
object E ∈ Shv`(X) for which the construction F 7→ E⊗! F is equivalent to the identity
functor from Shv`(X) to itself.

Remark 3.3.3.2. In the situation of Proposition 3.3.3.1, the object E is unique up to
equivalence: note that if E′ is another object of Shv`(X) which is a unit with respect
to ⊗!, then we have the equivalences

E ' E⊗! E′ ' E′ .

Our goal in this section is to prove Proposition 3.3.3.1 by constructing an `-adic
sheaf ωX ∈ Shv`(X) called the dualizing sheaf of X, and showing that it has the
appropriate universal property. We begin with the case where X is projective: in this
case, the dualizing sheaf ωX can be characterized by a universal property.

Notation 3.3.3.3. Let f : X → Y is a proper morphism of quasi-projective k-schemes.
We let ωX/Y denote the `-adic sheaf given by f !Z`Y . We will refer to ωX/Y as the
relative dualizing sheaf of the morphism f . In the special case where Y = Spec(k), we
will denote ωX/Y by ωX , and refer to it as the dualizing sheaf of X.

Example 3.3.3.4. If f : X → Y is a proper smooth morphism of relative dimension
d, then Example 2.3.3.5 supplies an equivalence ωX/Y ' Σ2dZ`(d)

X
. More generally,

one can show that if U ⊆ X is an open subset for which f |U is a smooth morphism of
relative dimension d, then ωX/Y |U is equivalent to Σ2dZ`(d)

X
.

Remark 3.3.3.5. Suppose we are given a commutative diagram of quasi-projective
k-schemes

X ′
f //

��

X

p

��
Y ′ // Y,

where the vertical maps are proper. Then Construction 2.4.4.2 supplies a canonical
map f∗ωX/Y → ωX′/Y ′ , which is an equivalence over the inverse image of the smooth
locus of p (see Variant 2.4.4.7).
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If the morphism f : X → Y is proper and smooth, then the exceptional inverse
image functor f ! : Shv`(Y ) → Shv`(X) differs from the usual inverse image functor
f∗ : Shv`(Y ) → Shv`(X) by tensor product with the relative dualizing sheaf ωX/Y .
More precisely, we have the following result (which is a special case of Proposition
3.3.2.3):

Proposition 3.3.3.6. Let f : X → Y be a proper morphism of quasi-projective k-
schemes. For each object F ∈ Shv`(Y ), Construction 3.3.2.2 supplies a map

f∗ F⊗ωX/Y → f ! F

which is an equivalence over the smooth locus of f .

Proof of Proposition 3.3.3.1. Let X be a quasi-projective k-scheme; we wish to show
that there exists a unit for the !-tensor product on Shv`(X). Choose an open embedding
j : X → X, where X is a projective k-scheme. Let π : X → Spec(k) be the projection
map. Let ωX = π!Z` denote the dualizing sheaf on X, and set ωX = j∗ωX . We will
complete the proof by showing that ωX has the desired property. Let

δX : X → X ×X δX : X → X ×X

denote the diagonal maps, and let π1 : X × X → X be the projection onto the first
factor. Using Proposition 3.3.2.1, we obtain a canonical equivalence π!

2 G ' ωX � G for
each object G ∈ Shv`(X). Applying the functor δ!

X
, we obtain an equivalence

ωX ⊗
! G ' δ!

X
(ωX � G) ' δ!

X
π!

2 G ' G .

For any object F ∈ Shv`(X), we have canonical equivalences

F ' j∗j∗ F

' j∗(ωX ⊗
! j∗ F)

' j∗δ!
X

(ωX � j∗ F)
α' δ!

X(j × j)∗(ωX � j∗ F)

' δ!
X(j∗ωX � j∗j∗ F)

' δ!
X(ωX � F)

= ωX ⊗! F,

where the equivalence α is obtained by applying Proposition 2.4.4.3 to the pullback
square

X
δX //

��

X ×X

j×j
��

X
δX // X ×X.
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Remark 3.3.3.7. In the proof of Proposition 3.3.3.1, it follows from Remark 3.3.3.2
that the sheaf ωX = ωX |X depends only on the k-scheme X, and not on the choice of
compactification X. We will refer to ωX as the dualizing sheaf of X. Note that this
terminology is compatible with that of Notation 3.3.3.3 (if X is already projective, we
can take X = X).

3.3.4 The ∞-Category Shv?`

The results of §3.3.2 and §3.3.3 show that for every quasi-projective k-scheme X, the !-
tensor product functor ⊗! : Shv`(X)×Shv`(X)→ Shv`(X) is commutative, associative,
and unital up to equivalence. However, the statement of Theorem 3.3.0.3 is stronger: it
asserts that the !-tensor product underlies a symmetric monoidal structure on Shv`(X),
in the sense of Definition 3.1.2.2. In this section, we prove an analogous statement for
the external tensor product of Construction 3.3.0.1 (Proposition 3.3.4.4). First, we
need to introduce a bit of notation.

Construction 3.3.4.1 (The ∞-Category Shv?` ). According to Notation 2.3.4.5, every
morphism f : X → Y of quasi-projective k-schemes determines a pullback functor on `-
adic sheaves f∗ : Shv`(Y )→ Shv`(X). Elaborating on this construction, we can regard
the construction X 7→ Shv`(X) as defining a functor χ : Schop

k → Cat∞, where Cat∞
denotes the∞-category of∞-categories (see Construction 3.1.2.1). We let Shv?` denote
the ∞-category obtained by applying the dual of Proposition 3.2.6.4 to the functor χ,
so that we have a coCartesian fibration of ∞-categories Shv?` → Schop

k (classified by χ
in the sense of Variant 3.2.6.7).

Remark 3.3.4.2. We can describe the ∞-category ∞-category Shv?` more informally
as follows:

(a) The objects of the∞-category Shv?` are pairs (X,F), where X is a quasi-projective
k-scheme and F ∈ Shv`(X).

(b) Given a pair of objects (X,F), (Y,G) ∈ Shv?` , a morphism from (X,F) to (Y,G)
is given by a pair (f, α), where f : Y → X is a morphism of k-schemes and
α : f∗ F → G is a morphism of `-adic sheaves on Y .

Warning 3.3.4.3. Strictly speaking, the construction X 7→ Shv`(X) does not define
a functor with codomain Cat∞ because the objects of Cat∞ are small ∞-categories,
and the ∞-categories Shv`(X) are not small. Of course, this has no real impact on
the discussion: the ∞-category Shv?` is still perfectly sensible (albeit large). To avoid
burdening the exposition with irrelevant technicalities, we will ignore the distinction
between large and small ∞-categories in the discussion which follows.
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The main result of this section can be formulated as follows:

Proposition 3.3.4.4. The ∞-category Shv?` admits a symmetric monoidal structure,
whose underlying tensor product is given by (X,F)⊗ (Y,G) = (X × Y,F�G).

Remark 3.3.4.5. In practice, we are interested not so much in the statement of Propo-
sition 3.3.4.4 (which asserts the existence of a symmetric monoidal structure) but in
the proof given below (which supplies a particular symmetric monoidal structure).

The proof of Proposition 3.3.4.4 will require some categorical preliminaries.

Definition 3.3.4.6. Let C and D be symmetric monoidal ∞-categories and let F :
C→ D be a symmetric monoidal functor. We will say that F is a symmetric monoidal
Cartesian fibration if it satisfies the following conditions:

(1) As a functor of ∞-categories, F is a Cartesian fibration (Definition 3.2.6.1).

(2) If u : X → X ′ and v : Y → Y ′ are F -Cartesian morphisms in C, then the tensor
product (u⊗ v) : X ⊗ Y → X ′ ⊗ Y ′ is also an F -Cartesian morphism in C.

Dually, we say that F is a symmetric monoidal coCartesian fibration if the induced
map F op : Cop → Dop is a symmetric monoidal Cartesian fibration. In other words, F
is a symmetric monoidal coCartesian fibration if it is a coCartesian fibration, and the
collection of coCartesian morphisms in C is closed under tensor products.

Remark 3.3.4.7. Let Fin denote the category of finite sets, equipped with the sym-
metric monoidal structure given by the formation of disjoint unions. Suppose we are
given a symmetric monoidal ∞-category C equipped with a symmetric monoidal co-
Cartesian fibration F : C→ Fin. Fix a one-element set {∗}, and let C∗ denote the fiber
C×Fun{∗}. Using the fact that F is a coCartesian fibration and that the singleton {∗}
is a final object of the category Fin, we deduce that the inclusion functor C∗ ↪→ C is
fully faithful and admits a left adjoint L: concretely, the functor L carries an object C
to the codomain of an F -coCartesian morphism C → LC covering the projection map
F (C)→ {∗}.

Using the assumption that the collection of F -coCartesian morphisms is closed
under tensor products, we deduce that the functor L is compatible with the symmetric
monoidal structure on C (in the sense of Definition 3.2.2.3). Consequently, there is an
essentially unique symmetric monoidal structure on the ∞-category C∗ for which the
functor L is symmetric monoidal.

Remark 3.3.4.8. Let C and D be symmetric monoidal ∞-categories, and suppose we
are given a symmetric monoidal coCartesian fibration F : C→ D. Let A be a commu-
tative algebra object of D, which we regard as a symmetric monoidal functor Fin→ D.
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Applying the construction of Remark 3.3.4.7 to the projection map C×D Fin → Fin,
we obtain a symmetric monoidal structure on the ∞-category

CA = C×D{A} ' (C×D Fin)×Fin {∗}.

It is not hard to see that this symmetric monoidal structure depends functorially
on A: in other words, the construction A 7→ CA determines a functor CAlg(D) →
CAlg(Cat∞).

Variant 3.3.4.9. In the situation of Remark 3.3.4.8, suppose that A is a nonunital
commutative algebra object of the∞-category D (see Variant 3.1.3.8). In this case, we
can apply the construction of Remark 3.3.4.8 to equip the fiber CA with the structure of
a nonunital symmetric monoidal ∞-category (that is, a nonunital commutative algebra
object of the ∞-category Cat∞).

Example 3.3.4.10. In the situation of Remark 3.3.4.8, suppose that the∞-category D

admits finite coproducts, and that the symmetric monoidal structure on D is given by
the formation of coproducts (see Example 3.1.2.5). In this case, every object D ∈ D ad-
mits an essentially unique commutative algebra structure, whose multiplication is given
by the codiagonal DqD → D (Example 3.1.3.7). Applying Remark 3.3.4.8, we deduce
that the construction D 7→ CD = C×D{D} determines a functor D→ CAlg(Cat∞). In
other words, each fiber CD of F inherits a symmetric monoidal structure.

Concretely, if ⊗ : C×C → C is the tensor product underlying the symmetric
monoidal structure on C, then each fiber CD inherits a symmetric monoidal structure
whose underlying tensor product ⊗D can be characterized as follows: for every pair of
objects C,C ′ ∈ CD, the tensor product C ⊗D C ′ is the codomain of an F -coCartesian
morphism C ⊗ C ′ → C ⊗D C ′, lying over the codiagonal D qD → D.

We will deduce Proposition 3.3.4.4 from the following general categorical principle:

Proposition 3.3.4.11 (Symmetric Monoidal Grothendieck Construction). Let D be
an ∞-category which admits finite coproducts, which we regard as endowed with the
symmetric monoidal structure given by the formation of coproducts. Then the con-
struction

(F : C→ D) 7→ {CD}D∈D
of Example 3.3.4.10 induces a bijection from the collection of equivalence classes of
symmetric monoidal coCartesian fibrations F : C→ D and the collection of equivalence
classes of functors χ : D→ CAlg(Cat∞).

Remark 3.3.4.12. In the situation of Proposition 3.3.4.11, suppose we are given a
functor χ : D → CAlg(Cat∞). Applying the Grothendieck construction to the under-
lying functor D → Cat∞, we obtain a coCartesian fibration F : C → D. The functor
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χ endows each fiber CD of F with a symmetric monoidal structure, whose underlying
tensor product we will denote by⊗D. Proposition 3.3.4.11 implies that C inherits a sym-
metric monoidal structure (and that F inherits the structure of a symmetric monoidal
coCartesian fibration). For every pair of objects X,Y ∈ C having images X,Y ∈ D, we

can lift the canonical maps X
f−→ XqY g←− Y to F -coCartesian morphisms f : X → X

′

and g : Y → Y
′

in the ∞-category C. Unwinding the definitions, one sees that the
tensor product on C is given concretely by the construction (X,Y ) 7→ (X

′ ⊗XqY Y
′
).

In the case where D = Schop
k and the functor χ is given by X 7→ Shv`(X), this recovers

the external tensor product of Construction 3.3.0.1.

Proof of Proposition 3.3.4.4 from Proposition 3.3.4.11. According to Remark 3.2.2.13,
we can regard the construction X 7→ Shv`(X) as a functor χ from the category Schop

k

to the ∞-category CAlg(Cat∞) of symmetric monoidal ∞-categories. Note that the
category Schop

k admits finite coproducts (which are given by the formation of Cartesian
products in the category of k-schemes). Applying Proposition 3.3.4.11, we see that the
functor χ classifies a symmetric monoidal coCartesian fibration F : C → Schop

k . By
construction, the underlying ∞-category of C can be identified with Shv?` . Using Re-
mark 3.3.4.12 below, we see that the tensor product underlying the symmetric monoidal
structure on C is given by the construction (X,F)⊗ (Y,G) = (X × Y,F�G).

Proof of Proposition 3.3.4.11. According to Proposition [23].2.4.3.16, the datum of a
symmetric monoidal coCartesian fibration F : C → D is equivalent to the datum of a
lax symmetric monoidal functor ρ : D→ Cat∞. If the symmetric monoidal structure on
D is given by the formation of coproducts, then Theorem [23].2.4.3.18 implies that the
datum of a lax symmetric monoidal functor from D to Cat∞ is equivalent to the datum
of an arbitrary functor D → CAlg(Cat∞). The composition of these equivalences is
implemented by the construction of Example 3.3.4.10.

3.3.5 The ∞-Category Shv!
`

In §3.3.4 we introduced an ∞-category Shv?` , whose objects are pairs (X,F) where X
is a quasi-projective k-scheme and F is an `-adic sheaf on X (Construction 3.3.4.1).
Moreover, we showed that the∞-category Shv?` admits a symmetric monoidal structure
(Proposition 3.3.4.4) which simultaneously encodes the symmetric monoidal structure
on each of the ∞-categories Shv`(X) (given by the usual tensor product of `-adic
sheaves); see Proposition 3.3.4.11.

Our goal in this section is to construct a closely related ∞-category, which we will
denote by Shv!

`. The objects of Shv!
` are the same as the objects of Shv?` : they are pairs

(X,F), where X is a quasi-projective k-scheme and F is an `-adic sheaf on X. However,
the morphisms are different: roughly speaking, the datum of a morphism from (X,F)
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to (Y,G) in Shv!
` is a proper map of k-schemes f : Y → X, together with a map of

`-adic sheaves f ! F → G. We will show that the ∞-category Shv!
` admits a symmetric

monoidal structure (Proposition 3.3.5.13), whose underlying tensor product is given by

((X,F), (Y,G)) 7→ (X × Y,F�G).

Using Proposition 3.3.4.11, we can regard the ∞-category Shv!
` as encoding a family

of symmetric monoidal ∞-categories {Shv`(X)}, depending functorially on a quasi-
projective k-scheme X. However, the resulting tensor product on each Shv`(X) is not
the usual tensor product, but the !-tensor product of Construction 3.3.0.2.

We begin with some general categorical observations.

Construction 3.3.5.1 (The Cartesian Dual). Let F : C→ D be a Cartesian fibration
of ∞-categories (see Definition 3.2.6.1). Then F is classified by a functor χF : Dop →
Cat∞ (see Remark 3.2.6.6), given informally by the construction χF (D) = C×D{D}.
The construction E 7→ Eop determines an equivalence from the ∞-category Cat∞ to
itself. Consequently, we can also consider the functor χop

F : Dop → Cat∞, given by
the formula χop

F (D) = (C×D{D})op. Applying the Grothendieck construction to the
functor χop

F , we obtain a new Cartesian fibration of ∞-categories F ′ : C′ → D, whose
fibers are characterized (up to equivalence) by the formula

(C′×D{D}) ' (C×D{D})op.

Remark 3.3.5.2. If F : C → D is a Cartesian fibration, then the Cartesian dual
F ′ : C′ → D should be regarded as well-defined only up to equivalence. For explicit
constructions, we refer the reader to §[24].IV.3.4.2 and [3].

Remark 3.3.5.3. Cartesian duality is a symmetric relation. If F : C → D is a
Cartesian fibration with Cartesian dual F ′ : C′ → D, then F is also the Cartesian dual
of F ′.

Remark 3.3.5.4. Let F : C → D be a Cartesian fibration of ∞-categories and let
F ′ : C′ → D be the dual Cartesian fibration. We can describe the ∞-category C′ more
informally as follows:

• Objects of C′ are objects of C.

• If C and C ′ are objects of C′ having images D,D′ ∈ D, then a morphism from C
to C ′ in C′ is given by a diagram

C
f←− E g−→ C ′

in the ∞-category C, where F (f) = idD and the morphism g is F -Cartesian.
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Variant 3.3.5.5 (The Dual of a coCartesian Fibration). Let F : C→ D be a coCarte-
sian fibration of ∞-categories, classified by a functor χF : D → Cat∞ (see Variant
3.2.6.7). Then we can also consider the functor

χop
F : D→ Cat∞ χop

F (D) = (C×D{D})op,

which classifies a coCartesian fibration of ∞-categories F ′′ : C′′ → D. We will refer to
F ′′ as the coCartesian dual of F .

Warning 3.3.5.6. Let F : C → D be a functor between ∞-categories which is both
a Cartesian fibration and a coCartesian fibration. Then we can consider both the
coCartesian dual F ′ : C′ → D and the Cartesian dual F ′′ : C′′ → D of F . For each
object D ∈ D, we have a canonical equivalence

C′×D{D} ' (C×D{D})op ' C′′×D{D}.

However, the∞-categories C′ and C′′ are usually not equivalent to one another (we will
see in a moment that this phenomenon occurs in the case of primary interest to us: see
Remark 3.3.5.11).

Remark 3.3.5.7. Let F : C→ D be a Cartesian fibration of∞-categories. Then every
morphism α : D → D′ in D determines a functor α∗ : (C×D{D′})→ (C×D{D}). The
functor F is a coCartesian fibration if and only if each of the functors α∗ admits a left
adjoint.

Similarly, a coCartesian fibration F : C→ D is a Cartesian fibration if and only if,
for each morphism α : D → D′, the induced functor (C×D{D})→ (C×D{D′}) admits
a right adjoint (which is then given by the functor α∗). See Corollary [25].5.2.2.5.

We now specialize to the case of interest to us.

Lemma 3.3.5.8. Let F : Shv?` → Schop
k be the coCartesian fibration of ∞-categories

appearing in Construction 3.3.4.1. Then:

(1) The functor F is also Cartesian fibration. Consequently, F admits a Cartesian
dual F ′ : C→ Schop

k .

(2) The functor F ′ is a coCartesian fibration. Consequently, F ′ admits a coCartesian
dual F ′′ : D→ Schop

k .

Proof. By virtue of Remark 3.3.5.7, assertion (1) is equivalent to the statement that
for every morphism f : X → Y of quasi-projective k-schemes, the pullback functor f∗ :
Shv`(Y ) → Shv`(X) admits a right adjoint f∗. Note that the fibers of F ′ : C → Schop

k
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over an object X ∈ Schop
k can be identified with the ∞-category Shv`(X)op. Moreover,

if f : X → Y is a morphism of quasi-projective k-schemes, then the induced map

Shv`(X)op ' C×Schop
k
{X} → C×Schop

k
{Y } ' Shv`(Y )op

is given by (the opposite of) the functor f∗. Since the functor f∗ : Shv`(X)→ Shv`(Y )
preserves small colimits, it admits a right adjoint (Corollary [25].5.5.2.9). Consequently,
the opposite functor f∗ : Shv`(X)op → Shv`(Y )op admits a left adjoint. Assertion (2)
now follows from Remark 3.3.5.7.

The coCartesian fibration F ′′ : D → Schop
k is classified by a functor χ : Schop

k →
Cat∞ (in the sense of Variant 3.2.6.7), which can be described as follows:

• To each quasi-projective k-scheme X, the functor χ assigns the ∞-category
Shv`(X) of `-adic sheaves on X.

• To each morphism of quasi-projective k-schemes f : X → Y , the functor χ assigns
the right adjoint of the direct image functor f∗ : Shv`(X)→ Shv`(Y ).

The right adjoint of the direct image functor f∗ : Shv`(X)→ Shv`(Y ) is usually not a
well-behaved construct when the morphism f is not proper. We therefore restrict our
attention to the following variant:

Construction 3.3.5.9 (The ∞-Category Shv!
`). Let Schpr

k denote the category whose
objects are quasi-projective k-schemes and whose morphisms are proper maps (which
we regard as a non-full subcategory of Schk). We let Shv!

` denote the fiber product

(Schpr
k )op ×Schop

k
D,

where D is the ∞-category appearing in conclusion (2) of Lemma 3.3.5.8. By con-
struction, the ∞-category Shv!

` is equipped with a coCartesian fibration F : Shv!
` →

(Schpr
k )op, which is the coCartesian dual of the Cartesian dual of the projection map

(Schpr
k )op ×Schop

k
Shv?` → (Schpr

k )op.

Remark 3.3.5.10. The∞-category Shv!
` can be described more informally as follows:

• The objects of Shv!
` are pairs (X,F), where X is a quasi-projective k-scheme and

F ∈ Shv`(X).

• A morphism from (X,F) to (Y,G) in the ∞-category Shv!
` is given by a proper

map of k-schemes f : Y → X, together with a map f ! F → G in the ∞-category
Shv`(Y ) of `-adic sheaves on Y .
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Remark 3.3.5.11. The∞-categories (Schpr
k )op×Schop

k
Shv?` and Shv!

` illustrate the phe-
nomenon described in Warning 3.3.5.6: note that they can be described respectively as
the Cartesian and coCartesian duals of the same (Cartesian and coCartesian) fibration
C→ (Schpr

k )op.

Warning 3.3.5.12. By extending the definition of exceptional inverse images to non-

proper morphisms f : X → Y , one can construct an enlargement Shv
!
` of the ∞-

category Shv!
` which fits into a pullback diagram of ∞-categories

Shv!
`

//

��

Shv
!
`

G

��
(Schpr

k )op // Schop
k ,

where the vertical maps are coCartesian fibrations. Beware, however, that the co-

Cartesian fibration G : Shv
!
` → Schop

k does not agree with the coCartesian fibration
F ′′ : D → Schop

k appearing in Lemma 3.3.5.8 (because the functors f ! and f∗ are
generally not adjoint if f : X → Y is a not a proper morphism of k-schemes).

We can now formulate the main result of this section:

Proposition 3.3.5.13. The ∞-category Shv!
` of Construction 3.3.5.9 admits a sym-

metric monoidal structure, whose underlying tensor product is given by the construction

((X,F), (Y,G)) 7→ (X × Y,F�G).

Moreover, the forgetful functor Shv!
` → (Schpr

k )op can be regarded as a symmetric
monoidal coCartesian fibration; here (Schpr

k )op is equipped with the symmetric monoidal
structure given by the formation of Cartesian products in the category of k-schemes.

Remark 3.3.5.14. As with Proposition 3.3.4.4, we are interested not so much in
the statement of Proposition 3.3.5.13 but in its proof, which will supply a particular
symmetric monoidal structure on the∞-category Shv!

` which we will need to work with
later.

Before giving the proof of Proposition 3.3.5.13, let us see that it resolves the coher-
ence issues for the !-tensor product of Construction 3.3.0.2.

Proof of Theorem 3.3.0.3 from Proposition 3.3.5.13. Let X be a quasi-projective k-
scheme. Then the diagonal map δ : X → X×X exhibits X as a nonunital commutative
algebra object of the ∞-category (Schpr

k )op (see Variant 3.1.3.8); beware that this alge-
bra admits a unit only when X is proper over Spec(k). Applying Variant 3.3.4.9 to the
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symmetric monoidal coCartesian fibration F : Shv!
` → (Schpr

k )op, we obtain a nonuni-
tal symmetric monoidal structure on the ∞-category F−1{X} ' Shv`(X). Using the
description of the underlying tensor product of the symmetric monoidal structure on
Shv!

` supplied by Proposition 3.3.5.13, we see that the underlying tensor product of the
symmetric monoidal on Shv`(X) is given by the construction

(F,G) 7→ δ!(F�G) = F⊗! G .

We may therefore regard Shv`(X) as a nonunital commutative algebra object of the∞-
category Cat∞ of∞-categories, whose underlying multiplication is given by the !-tensor
product⊗!. According to Theorem [23].5.4.4.5, we can promote Shv`(X) to a symmetric
monoidal∞-category (in an essentially unique way) if and only if the multiplication ⊗!

is quasi-unital: that is, if and only if there exists an object E ∈ Shv`(X) for which the
functor F 7→ E⊗! F is equivalent to the identity functor from Shv`(X) to itself. This
follows from Proposition 3.3.3.1.

It follows formally that the construction X 7→ Shv`(X) determines a functor from
the ∞-category (Schpr

k )op to the ∞-category Fun⊗(Fins,Cat∞) of nonunital symmetric
monoidal ∞-categories (here Fins denotes the category whose objects are finite sets
and whose morphisms are surjections; see Variant 3.1.3.8). In particular, for every
proper map f : X → Y , the exceptional inverse image functor f ! : Shv`(Y )→ Shv`(X)
commutes with the formation of !-tensor products. To complete the proof of Theorem
3.3.0.3, it will suffice to show that each f ! can be promoted to a symmetric monoidal
functor. According to Theorem [23].5.4.4.5, this is equivalent to the assertion that
the functor f ! carries the dualizing sheaf ωY (which is the unit object of Shv`(Y )) to
the dualizing sheaf ωX (which is the unit object of Shv`(X)). To prove this, choose
compatible compactificationsX and Y , so that we have a pullback diagram of k-schemes

X

f

��

// X

f
��

Y // Y ,

where the horizontal maps are open immersions. We then have ωX = ωX |X and
ωY = ωY |Y (see the proof of Proposition 3.3.3.1). Using Proposition 2.4.4.3, we obtain

an equivalence f !ωY ' (f
!
ωY )|X . We are therefore reduced to proving that f

!
ωY is

equivalent to ωX , which follows immediately from the construction.

Remark 3.3.5.15 (Functoriality of the Dualizing Sheaf). Regard the construction
X 7→ Shv`(X) as a functor from the∞-category (Schpr

k )op to the∞-category CAlg(Cat∞)
of symmetric monoidal ∞-categories. In particular, we can regard the unit map
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{ωX} → Shv`(X) as a natural transformation of (symmetric monoidal) functors. Ap-
plying the Grothendieck construction, we deduce that the projection map Shv!

` →
(Schpr

k )op admits a (symmetric monoidal) section, given on objects by the construction
X 7→ (X,ωX).

We now turn to the proof of Proposition 3.3.5.13. We begin by introducing some
terminology.

Notation 3.3.5.16 (∞-Categories of Cartesian and coCartesian Fibrations). Let Cat∞
denote the ∞-category of ∞-categories (see Construction 3.1.2.1). Let Fun(∆1,Cat∞)
denote the ∞-category of arrows in Cat∞: that is, the ∞-category whose objects are
functors F : C→ D. We define (non-full) subcategories

FunCart(∆1,Cat∞) ⊆ Fun(∆1,Cat∞) ⊇ FuncoCart(∆1,Cat∞)

as follows:

• Let F : C → D be a functor of ∞-categories, regarded as an object of the ∞-
category Fun(∆1,Cat∞). Then F belongs to FunCart(∆1,Cat∞) if and only if F is
a Cartesian fibration, and to FuncoCart(∆1,Cat∞) if and only if F is a coCartesian
fibration.

• Let α : F → F ′ be a morphism in Fun(∆1,Cat∞), which we can identify with a
commutative diagram of ∞-categories

C

F
��

G // C′

F ′
��

D // D′ .

Then the morphism α belongs to FunCart(∆1,Cat∞) if and only if F and F ′

are Cartesian fibrations, and the functor G carries F -Cartesian morphisms to
F ′-Cartesian morphisms. The morphism α belongs to FuncoCart(∆1,Cat∞) if
and only if F and F ′ are coCartesian fibrations, and the functor G carries F -
coCartesian morphisms to F ′-coCartesian morphisms.

Remark 3.3.5.17. Each of the ∞-categories

FunCart(∆1,Cat∞) ⊆ Fun(∆1,Cat∞) ⊇ FuncoCart(∆1,Cat∞)

admits finite products (which are computed pointwise). Consequently, we can contem-
plate commutative monoid objects (in the sense of Definition 3.1.1.5) in Fun(∆1,Cat∞),
FunCart(∆1,Cat∞), and FuncoCart(∆1,Cat∞). Unwinding the definitions, we see that:
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• Commutative monoid objects of the∞-category Fun(∆1,Cat∞) can be identified
with symmetric monoidal functors F : C→ D.

• Commutative monoid objects of the ∞-category FunCart(∆1,Cat∞) can be iden-
tified with symmetric monoidal Cartesian fibrations F : C → D (in the sense of
Definition 3.3.4.6).

• Commutative monoid objects of the∞-category FuncoCart(∆1,Cat∞) can be iden-
tified with symmetric monoidal coCartesian fibrations F : C→ D (in the sense of
Definition 3.3.4.6).

Remark 3.3.5.18. The formation of Cartesian duals determines a functor from the
∞-category FunCart(∆1,Cat∞) to itself. This functor is homotopy inverse to itself
(Remark 3.3.5.3), and is therefore an equivalence of ∞-categories. In particular, it
commutes with finite products, and therefore carries commutative monoid objects of
FunCart(∆1,Cat∞) to commutative monoid objects of FunCart(∆1,Cat∞). Combining
this observation with Remark 3.3.5.17, we deduce that if F : C → D is a symmetric
monoidal Cartesian fibration, then the Cartesian dual F ′ : C′ → D inherits the structure
of a symmetric monoidal Cartesian fibration (in particular, the ∞-category C′ inherits
a symmetric monoidal structure).

Similarly, if F : C→ D is a symmetric monoidal coCartesian fibration, then its co-
Cartesian dual F ′′ : C′′ → D inherits the structure of a symmetric monoidal coCartesian
fibration.

Proof of Proposition 3.3.5.13. The proof of Proposition 3.3.4.4 shows that we can re-
gard the forgetful functor F : Shv?` → Schop

k as a symmetric monoidal coCartesian
fibration. Note that the functor F is also a Cartesian fibration (see Lemma 3.3.5.8).
We claim that it is a symmetric monoidal Cartesian fibration: that is, the collection
of F -Cartesian morphisms is stable under tensor product. This is a reformulation of
Proposition 3.3.1.3.

Let F ′ : C→ Schop
k be the Cartesian dual of F , as in the proof of Lemma 3.3.5.8. Ap-

plying Remark 3.3.5.18, we see that F ′ inherits the structure of a symmetric monoidal
Cartesian fibration. Moreover, Lemma 3.3.5.8 implies that F ′ is also a coCartesian fi-
bration. Beware that F ′ is not a symmetric monoidal coCartesian fibration (that is, the
collection of F ′-coCartesian morphisms is not closed under tensor products). However,
we can remedy the situation by restricting our attention to proper morphisms of k-
schemes. Let C0 denote the fiber product (Schpr

k )op×Schop
k
C and let F ′0 : C0 → (Schpr

k )op

be the projection map. Then F ′0 is a coCartesian fibration (Lemma 3.3.5.8), whose co-
Cartesian dual is the forgetful functor Shv!

` → (Schpr
k )op. By virtue of Remark 3.3.5.18,

it will suffice to show that F ′0 is a symmetric monoidal coCartesian fibration: that is,
that the collection of F ′0-coCartesian morphisms is closed under tensor products in C′0.
This is a reformulation of Corollary 3.3.2.4.
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Remark 3.3.5.19. The proof of Proposition 3.3.5.13 supplies a specific symmetric
monoidal structure on the ∞-category Shv!

` (well-defined up to equivalence), which in
turn supplies a specific symmetric monoidal structure on the ∞-category Shv`(X) for
every quasi-projective k-scheme X. This symmetric monoidal structure determines an
associativity constraint on the !-tensor product ⊗!: that is, a collection of equivalences

F⊗!(G⊗! H) ' (F⊗! G)⊗! H

depending functorially on F,G,H ∈ Shv`(X). We leave it to the reader to verify that
these equivalences agree with those constructed more explicitly in §3.3.2.

3.4 The Cohomology Sheaf of a Morphism

Throughout this section, we fix an algebraically closed field k and a prime number `
which is invertible in k. In §3.2.5, we defined the `-adic cochain complex C∗(Y; Z`) of
an algebraic stack Y (assumed for simplicity to be locally of finite type over k) and saw
that it admits the structure of an E∞-algebra over Z`. Our goal in this section is to
describe a relative version of this construction, which can be applied to an algebraic
stack Y equipped with a map π : Y→ X where X is a quasi-projective k-scheme. In this
case, the fiber Yx = Y×X{x} of π over every closed point x ∈ X can be regarded as an
algebraic stack over k, so we can contemplate the `-adic cochain complex C∗(Yx; Z`).
Our goal is to address the following:

Question 3.4.0.1. Let X be a quasi-projective k-scheme and let π : Y → X be a
morphism of algebraic stacks which is locally of finite type. What can one say about
the collection of E∞-algebras {C∗(Yx; Z`)}x∈X?

Example 3.4.0.2. Let π : Y → X be a proper morphism of quasi-projective k-schemes.
Proposition 3.2.3.1 implies that the functor π∗ : Shv`(Y )→ Shv`(X) carries commuta-
tive algebras (with respect to the standard tensor product on the∞-category Shv`(Y ))
to commutative algebras (with respect to the standard tensor product on Shv`(X)).
In particular, A = π∗Z`Y can be regarded as a commutative algebra object of the ∞-
category Shv`(X). The proper base change theorem (Theorem 2.4.2.1) implies that the
stalk of A at a closed point x ∈ X can be identified with the `-adic cochain complex
C∗(Yx; Z`). Moreover, these identifications are compatible with commutative algebra
structures. We can therefore answer Question 3.4.0.1 (in this special case) as follows:
the collection of E∞-algebras {C∗(Yx; Z`)}x∈X can be identified with the stalks of an
`-adic sheaf A, which is a commutative algebra object of the∞-category Shv`(X) (with
respect to the usual tensor product).

For applications to Weil’s conjecture, we would like to address Question 3.4.0.1
in the case where X is an algebraic curve and Y = BG is the classifying stack of
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a smooth affine group scheme over X. In this case, the map π : BG → X is not
proper, so the cochain complexes {C∗(BGx; Z`)}x∈X need not arise as the stalks of
an `-adic sheaf on X (we can still define A ∈ Shv`(X) as in Example 3.4.0.2, but
the comparison maps x∗A → C∗(BGx; Z`) are generally not equivalences unless G is
reductive in a neighborhood of x). However, all is not lost: using the smoothness of
the map π : BG→ X, one can show that the E∞-algebras {C∗(BGx; Z`)}x∈X arise as
the costalks of an `-adic sheaf [BG]X , which is a commutative algebra with respect to
the !-tensor product of §3.3. This is a special case of the following:

Theorem 3.4.0.3. Let X be a quasi-projective k-scheme and let π : Y → X be a
smooth morphism of algebraic stacks. Then there exists an `-adic sheaf [Y]X which is a
commutative algebra with respect to the !-tensor product on Shv`(X) with the following
property: for each point x ∈ X, the costalk x![Y]X can be identified with the `-adic
cochain complex C∗(Yx; Z`) (as an E∞-algebra over Z`). Moreover, the construction
Y 7→ [Y]X is (contravariantly) functorial in Y.

As with the main results of §3.3, we are interested not in the statement of Theorem
3.4.0.3 so much as in its proof, which provides an explicit construction of the sheaf [Y]X
(this sheaf will play a central role in Chapter 4). We begin in §3.4.1 by defining the
sheaf [Y]X : roughly speaking, it can be described as the direct image π∗π

∗ωX , where
ωX is the dualizing sheaf of X (see Construction 3.4.1.2 for a description which avoids
the language of `-adic sheaves on algebraic stacks). The bulk of this section is devoted
to studying the naturality properties of the construction Y 7→ [X]Y. The two main
properties we need can be stated as follows:

(a) If π : Y→ X is smooth, then the formation of the sheaf [Y]X is compatible with
the formation of exceptional inverse images. More precisely, for every pullback
diagram

Y′ //

π′

��

Y

π
��

X ′
f // X

where f is proper, we have a canonical equivalence [Y′]X′ ' f ![Y]X of `-adic
sheaves on X ′. We will prove this result in §3.4.3 (see Proposition 3.4.3.2).

(b) Let X and X ′ be quasi-projective k-schemes, and suppose we are given maps of
algebraic stacks Y → X and Y′ → X ′ which are of finite type. Then the sheaf
[Y×Y′]X×X′ can be identified with the external tensor product [Y]X � [Y′]X′ of
Construction 3.3.0.1 (see Theorem 3.4.5.1; here all products are formed over the
base scheme Spec(k)).
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Assuming (a) and (b), we can informally sketch the proof of Theorem 3.4.0.3. As-
sume for simplicity that the map π : Y → X is smooth and that Y is quasi-compact
(we can reduce to this case by exhausting Y by quasi-compact open substacks). Let
δ : X → X×X be the diagonal map. Combining (a) and (b), we obtain an equivalence
of `-adic sheaves

[Y×X Y]X ' δ![Y×Y]X×X

' δ!([Y]X � [Y]X)

' [Y]X ⊗! [Y]X .

The relative diagonal Y→ Y×X Y then induces a multiplication map

m : [Y]X ⊗! [Y]X ' [Y×X Y]X → [Y]X .

The description of the costalks of [Y]X follows from (a), applied to the inclusion maps
{x} ↪→ X.

To turn the preceding sketch into a rigorous proof, we need to show that the mul-
tiplication m is commutative and associative up to coherent homotopy, depends func-
torially on Y, and is compatible with the formation of exceptional inverse images. This
will require us to formulate and prove more elaborate versions of (a) and (b), which
articulate homotopy-coherent aspects of the construction Y 7→ [Y]X . We carry this out
in §3.4.4 and 3.4.6, respectively (following some groundwork that we lay out in §3.4.2).
We then combine these analyses in §3.4.7 to prove Theorem 3.4.0.3.

3.4.1 The Sheaf [Y]F

Let X be a quasi-projective k-scheme and let ωX denote the dualizing sheaf of X (see
Remark 3.3.3.7). Given any morphism f : Y → X of quasi-projective k-schemes, we let
[Y ]X ∈ Shv`(X) denote the `-adic sheaf given by f∗f

∗ωX . We will refer to the `-adic
sheaf [Y ]X as the cohomology sheaf of the morphism f .

Remark 3.4.1.1. We will primarily be interested in the construction Y 7→ [Y ]X in
the special case where Y is smooth over X. In this case, for any proper morphism of
quasi-projective k-schemes g : X ′ → X, Variant 2.4.3.1 and Proposition 2.4.4.3 supply
an equivalence of `-adic sheaves

[Y ×X X ′]X′ ' g![Y ]X .

Taking X ′ = Spec(k), we obtain the following informal description of [Y ]X : it is the
`-adic sheaf whose costalk at a point x ∈ X(k) can be identified with the cochain
complex C∗(Yx; Z`), where Yx denotes the fiber Y ×X {x}.
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Our goal in this section is to generalize the construction Y 7→ [Y ]X to the case
where Y is an algebraic stack. For later use, it will be convenient to consider a further
generalization which depends on a choice of `-adic sheaf F ∈ Shv`(X).

Construction 3.4.1.2. Let X be a quasi-projective k-scheme, let Y be an algebraic
stack which is locally of finite type over k, and let π : Y → X be a morphism. Let
Pt(Y) denote the category of points of Y (see Notation 3.2.4.8), whose objects are quasi-
projective k-schemes Y equipped with a map f : Y → Y. For each object (Y, f) ∈ Pt(Y),
the map π determines a morphism of quasi-projective k-schemes (π ◦ f) : Y → X. For
each `-adic sheaf F ∈ Shv`(X), we let [Y]F denote the inverse limit

lim←−
(Y,f)∈Pt(Y)

(π ◦ f)∗(π ◦ f)∗ F ∈ Shv`(X).

Example 3.4.1.3. Let π : Y → X be a morphism of quasi-projective k-schemes. By
abuse of terminology, we can also regard Y as an algebraic stack over k. In this case,
the category Pt(Y ) has a final object (given by the identity map id : Y → Y ), so we
can identify [Y ]F with the pushforward π∗π

∗ F. In particular, if F ∈ Shv`(X)≤n for
some integer n, then [Y ]F ∈ Shv`(X)≤n.

Notation 3.4.1.4. Let π : Y → X be as in Construction 3.4.1.2. We let [Y]X denote
the sheaf [Y]ωX ∈ Shv`(X), where ωX is the dualizing sheaf of X.

Example 3.4.1.5. Let Y be an algebraic stack which is locally of finite type over k.
Then we have a canonical equivalence [Y]Spec(k) ' C∗(Y; Z`). Here we abuse notation by
identifying the ∞-category Shv`(Spec(k)) with ModZ` and the `-adic cochain complex
C∗(Y; Z`) is defined in §3.2.

Example 3.4.1.6. Let X be a quasi-projective k-scheme. For every `-adic sheaf F ∈
Shv`(X), we have a canonical equivalence [X]F ' F. In particular, the cohomology
sheaf [X]X is the dualizing sheaf ωX .

Remark 3.4.1.7. Let π : Y→ X be as in Construction 3.4.1.2. Then the `-adic sheaf
[Y]X is `-complete. When Y is a quasi-projective k-scheme this follows from Remark
2.3.4.12 (since [Y]X is constructible), and the general case follows from the observation
that the collection of `-complete objects of Shv`(X) is closed under limits.

Remark 3.4.1.8 (Functoriality in Y). Let X be a quasi-projective k-scheme, and
suppose we are given a commutative diagram of algebraic stacks

Y
f //

  

Y′

~~
X.
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For every `-adic sheaf F ∈ Shv`(X), the morphism f induces a pullback map f∗ :
[Y′]F → [Y]F. We can summarize the situation informally by saying that the `-adic
sheaf [Y]F depends functorially on Y. We will discuss this point in more detail in §3.4.2
and 3.4.4.

Remark 3.4.1.9. Let X be a quasi-projective k-scheme and let F ∈ Shv`(X). Let
Y be an algebraic stack which is locally of finite type over k, equipped with a map
π : Y→ X. Suppose that Y can be realized as a filtered union of open substacks {Uα}.
Then the tautological map [Y]F → lim←−α[Uα]F is an equivalence in Shv`(X).

In practice, one does not need to use the entire fibered category Y to compute the
cohomology sheaf [Y]F of Construction 3.4.1.2.

Proposition 3.4.1.10. Let X be a quasi-projective k-scheme and let Y be an algebraic
stack which is locally of finite type over k equipped with a map Y→ X. Let U0 be a quasi-
projective k-scheme equipped with a map ρ : U0 → Y, and let U• be the simplicial scheme
given by the iterated fiber powers of U0 over Y. Suppose that ρ is locally surjective with
respect to the étale topology. Then, for every object F ∈ Shv`(X), the canonical map

[Y]F ' Tot[U•]F = lim←−
[n]∈∆

[Un]F

is an equivalence of `-adic sheaves on X.

Proof. Assume for simplicity that the diagonal map Y → Y×X Y is affine (this as-
sumption is not needed, but is satisfied in all cases of interest to us). Let Pt(Y) be
the category of points of Y, so that the simplicial scheme U• determines a functor
ρ : ∆op → Pt(Y). Let Pt0(Y) denote the full subcategory of Pt(Y) spanned by those
maps f : Y → Y which factor through ρ. Note for each object (Y, f) ∈ Pt(Y), the fiber
product ∆op×Pt(Y) Pt(Y)(Y,f)/ is empty if (Y, f) /∈ Pt0(Y), and weakly contractible oth-
erwise. It follows that ρ induces a left cofinal map ∆op → Pt0(Y), hence an equivalence
lim←−(Y,f)∈Pt0(Y)

(π ◦f)∗(π ◦f)∗ F = Tot[U•]F. To complete the proof, it suffices to observe

that the functor

Pt(Y)op → Shv`(X) (Y, f) 7→ (π ◦ f)∗(π ◦ f)∗ F

is a right Kan extension of its restriction to Pt0(Y)op. This follows from our assumption
that ρ is locally surjective in the étale topology.

3.4.2 Functoriality

Let X be a quasi-projective k-scheme. The `-adic sheaf [Y]F ∈ Shv`(X) of Construction
3.4.1.2 can be regarded as a contravariant functor of the algebraic stack Y, and a
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covariant functor of the `-adic sheaf F. Our first goal in this section is to articulate the
dependence of [Y]F on the triple (X,Y,F) more precisely (Proposition 3.4.2.2). First,
we need some notation.

Notation 3.4.2.1 (The 2-Category RelStk). We define a 2-category RelStk as follows:

• An object of RelStk consists of a quasi-projective k-scheme X together with a
morphism of algebraic stacks π : Y→ X which is locally of finite type.

• A morphism from π : Y → X to π′ : Y′ → X ′ in the category RelStk is a
commutative diagram of algebraic stacks over k

Y
φ //

π
��

Y′

π′

��
X

f // X ′.

We regard the collection of morphisms from π to π′ as a category, where the
set Hom((φ, f), (φ′, f ′)) is empty unless f = f ′, in which case it is the set of all
isomorphisms of φ with φ′ which are compatible with π.

In what follows, we will abuse notation by identifying RelStk with its associated ∞-
category (given by the nerve construction of Example 2.1.3.11). Note that the con-
struction (π : Y → X) 7→ X determines a forgetful functor RelStk → Schk which is
both a Cartesian and coCartesian fibration. For every quasi-projective k-scheme X,
we let RelStkX denote the fiber RelStk×Schk{X}: that is, the 2-category of algebraic
stacks which are locally of finite type over X.

Let Shv?` be the ∞-category appearing in Construction 3.3.4.1. In what follows, we
will study the fiber product RelStkop×Schop

k
Shv?` . This fiber product can be described

more informally as follows:

• The objects of RelStkop×Schop
k

Shv?` are triples (X,Y,F) where X is a quasi-
projective k-scheme, Y is an algebraic stack equipped with a morphism π : Y→ X
which is locally of finite type, and F is an `-adic sheaf on X.

• A morphism from (X,Y,F) to (X ′,Y′,F′) in RelStkop×Schop
k

Shv?` is a commuta-
tive diagram of algebraic stacks

Y′
φ //

π′

��

Y

π

��
X ′

f // X,

together with a morphism of `-adic sheaves f∗ F → F′.
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Proposition 3.4.2.2. There exists a functor of ∞-categories

Φ? : RelStkop×Schop
k

Shv?` → Shv?`

with the following properties:

(1) The diagram of ∞-categories

RelStkop×Schop
k

Shv?`
Φ? //

((

Shv?`

||
Schop

k

commutes. In particular, for every quasi-projective k-scheme X, Φ? restricts to
a functor Φ?

X : RelStkop
X ×Shv`(X)→ Shv`(X).

(2) For every quasi-projective k-scheme X, the functor Φ?
X is given on objects by the

formula Φ?
X(Y,F) = [Y]F.

(3) Let C be the full subcategory of RelStkop×Schop
k

Shv?` spanned by those triples

(X,Y,F) for which the projection map Y → X is an isomorphism. Then Φ?|C :
C→ Shv?` is given by the projection onto the second factor.

(4) Let q : Shv?` → Schop
k denote the forgetful functor. Then Φ?|C is a q-right Kan

extension of its restriction to C (see §[25].4.3.2 for a discussion of relative Kan
extensions).

Remark 3.4.2.3. It follows from Proposition [25].4.3.2.15 that the functor Φ? is de-
termined (up to a contractible space of choices) by properties (1), (3) and (4). A reader
who finds Construction 3.4.1.2 too informal can take property (2) as the definition of
the relative cohomology sheaves [Y]F.

Proof of Proposition 3.4.2.2. We first show that there exists a functor

Φ? : RelStkop×Schop
k

Shv?` → Shv?`

satisfying conditions (1), (3), and (4) by verifying the criterion of Proposition [25].4.3.2.15.
Let C = (X,Y,F) be an object of the fiber product RelStkop×Schop

k
Shv?` and define

CC/ = C×RelStkop×
Sch

op
k

Shv?`
(RelStkop×Schop

k
Shv?` )C/.

Unwinding the definitions, we can identify objects of CC/ with pairs (f : Y → Y, α)
where Y is a quasi-projective k-scheme, f : Y → Y is a morphism of algebraic stacks
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over k, and α : (π ◦ f)∗ F → G is a morphism of `-adic sheaves on Y . The construction
(f : Y → Y, α) 7→ (π ◦ f)∗ G determines a functor F : CC/ → Shv`(X). Using the
criteria of Propositions [25].4.3.1.10 and [25].4.3.1.9, we are reduced to showing that
F admits a limit in the ∞-category Shv`(X) (in which case the functor Φ? is given
by Φ(?C) = (X, lim←−(F ))). To see this, let C0

C/ be the full subcategory of CC/ spanned
by those pairs (f : Y → F, α) where α is an equivalence. Then the inclusion functor
C0
C/ ↪→ C is right cofinal (since it admits a right adjoint). We conclude by observing

that the inverse limit lim←−(F |C0
C/

) coincides with [Y]F by construction.

3.4.3 Compatibility with Exceptional Inverse Images

Let X be a quasi-projective k-scheme and let π : Y → X be a morphism of algebraic
stacks which is locally of finite type. Our goal in this section is to show that, if π
is smooth, then the costalks of the cohomology sheaf [Y]X can be identified with the
`-adic cochain complexes C∗(Yx; Z`) (Corollary 3.4.3.4). We will deduce this from a
more general assertion about the compatibility of Construction 3.4.1.2 with exceptional
inverse images (Proposition 3.4.3.2).

We begin by considering a special case of the functoriality articulated by Proposition
3.4.2.2. Let f : X ′ → X be a morphism of quasi-projective k-schemes, let π : Y → X
be a morphism of algebraic stacks which is locally of finite type, and let F be an `-adic
sheaf on X ′. We then have a canonical map

(X,Y, f∗ F)→ (X ′, X ′ ×X Y,F)

in the∞-category RelStkop×Schop
k

Shv?` . Applying the functor Φ? of Proposition 3.4.2.2,

we obtain a map (X, [Y]f∗ F)→ (X ′, [X ′×X Y]F) in the ∞-category Shv?` , which we can
identify with a map [Y]f∗ F → f∗[X

′ ×X Y]F in the ∞-category Shv`(X).

Proposition 3.4.3.1 (Compatibility with Direct Images). Let f : X ′ → X be a
morphism of quasi-projective k-schemes, let π : Y → X be a morphism of algebraic
stacks which is locally of finite type, and let F ∈ Shv`(X

′). Then the comparison map
[Y]f∗ F → f∗[X

′ ×X Y]F is an equivalence if either f is proper or π is smooth.

Proof. Using Remark 3.4.1.9, we can reduce to the case where Y is quasi-compact, so
that there exists a smooth surjection U0 → Y for some quasi-projective k-scheme U0.
Let U• be the simplicial scheme given by the iterated fiber powers of U0 over Y. Using
Proposition 3.4.1.10, are reduced to proving that the conclusion of Proposition 3.4.3.1
holds for each of the projection maps Un → X. We may therefore assume without loss
of generality that Y is a k-scheme. Repeating the above arguments, we can assume that
Y is a quasi-compact k-scheme and therefore choose a surjection U0 → Y as above, so
that each Un admits a monomorphism Un → (U0)n+1 and is therefore quasi-projective.
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Replacing Y by Un once more, we are reduced to the special case where Y is a quasi-
projective k-scheme. In this case, the desired result follows from the smooth and proper
base change theorems (Theorem 2.4.2.1).

Let π : Y → X be as in Proposition 3.4.3.1, let f : X ′ → X be a proper morphism
of quasi-projective k-schemes, and let F ∈ Shv`(X) be an `-adic sheaf on X. Applying
Proposition 3.4.3.1 to the exceptional inverse image f ! F ∈ Shv`(X

′), we obtain an
equivalence

f∗([X
′ ×X Y]f ! F) ' [Y]f∗f ! F.

Composing with the counit map [Y]f∗f ! F → [Y]F and using the adjunction between f∗
and f !, we obtain a comparison map [X ′ ×X Y]f ! F → f !([Y]F).

Proposition 3.4.3.2. [Compatibility with Exceptional Inverse Images] Let f : X ′ → X
be a proper morphism of quasi-projective k-schemes and let π : Y → X be a smooth
morphism of algebraic stacks. Then, for every `-adic sheaf F ∈ Shv`(X), the construc-
tion above yields an equivalence [X ′ ×X Y]f ! F → f !([Y]F) of `-adic sheaves on X ′. In

particular (taking F = ωX), we obtain a canonical equivalence [Y′]X′ ' f !([Y]X).

Warning 3.4.3.3. The conclusion of Proposition 3.4.3.2 does not necessarily hold if
we drop the assumption that π is smooth.

Proof of Proposition 3.4.3.2. Arguing as in the proof of Proposition 3.4.3.1, we can
use Remark 3.4.1.9 and Proposition 3.4.1.10 to reduce to the case where Y is a quasi-
projective k-scheme. In this case, the desired result follows from Proposition 2.4.4.3.

Corollary 3.4.3.4. Let X be a quasi-projective k-scheme and let π : Y → X be a
smooth morphism of algebraic stacks. Then, for each closed point x ∈ X, the costalk
x![Y]X can be identified with the `-adic cochain complex C∗(Yx; Z`).

Proof. Combine Proposition 3.4.3.2 with Example 3.4.1.5.

3.4.4 Functoriality Revisited

In §3.4.2, we showed that the construction (X,Y,F) 7→ [Y]F of §3.4.1 determines a
functor of ∞-categories

Φ? : RelStkop×Schop
k

Shv?` → Shv?`

(see Proposition 3.4.2.2). The functor Φ? directly encodes the data of the comparison
maps [Y]f∗ F → f∗[X

′ ×X Y]F of Proposition 3.4.3.1, and therefore indirectly encodes
the data of the comparison maps [X ′×X Y]f ! F → f ![Y]F of Proposition 3.4.3.2. For our
purposes, we are primarily interested in the latter comparison. Our goal in this section
is to construct another functor Φ! which encodes (most of) the same information as the
functor Φ?, but in a format which is better suited to our applications.
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Notation 3.4.4.1 (The 2-Category RelStksm). Let RelStk be the ∞-category intro-
duced in Notation 3.4.2.1, whose objects are given by maps π : Y → X where X is a
quasi-projective k-scheme and π : Y → X is a morphism of algebraic stacks which is
locally of finite type. We let RelStksm denote the full subcategory of RelStk spanned
by those objects π : Y→ X for which the morphism π is smooth.

Note that the construction (π : Y → X) 7→ X determines a forgetful functor
RelStksm → Schk which is a Cartesian fibration. For every quasi-projective k-scheme
X, we let RelStksm

X denote the fiber product RelStksm×Schk{X} (that is, the 2-category
of algebraic stacks equipped with a smooth map to X).

The main result of this section can be stated as follows:

Proposition 3.4.4.2. There exists a functor of ∞-categories

Φ! : (RelStksm)op ×Schop
k

Shv!
` → Shv!

`

with the following properties:

(1) The diagram of ∞-categories

(RelStksm)op ×Schop
k

Shv!
`

Φ!
//

((

Shv!
`

||
Schop

k

commutes. In particular, for every quasi-projective k-scheme X, Φ! restricts to a
functor Φ!

X : (RelStksm
X )op × Shv`(X)→ Shv`(X).

(2) For every quasi-projective k-scheme X, the functor Φ!
X coincides with the functor

Φ?
X appearing in Proposition 3.4.2.2 (given on objects by (Y,F) 7→ [Y]F).

Remark 3.4.4.3. The ∞-category (RelStksm)op ×Schop
k

Shv!
` can be described more

informally as follows:

(i) The objects of (RelStksm)op ×Schop
k

Shv!
` are triples (X,Y,F) where X is a quasi-

projective k-scheme, Y is an algebraic stack equipped with a smooth map Y→ X,
and F is an `-adic sheaf on X.

(ii) A morphism from (X,Y,F) to (X ′,Y′,F′) is given by a commutative diagram σ :

Y′ //

��

Y

��
X ′

f // X

where f is proper, together with a morphism of `-adic sheaves α : f ! F → F′.
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The essential content of Proposition 3.4.4.2 is that the data described in (ii) gives rise
to a morphism of relative cohomology sheaves β : f ![Y]F → [Y′]F′ . Concretely, the map
β is given by the composition

f ![Y]F
∼←− [Y×XX ′]f ! F

→ [Y′]f ! F

α−→ [Y′]F′ ,

where the first map is supplied by the comparison equivalence of Proposition 3.4.3.2,
and the second is given by pullback along the map Y′ → Y×XX ′ determined by the
diagram σ.

Corollary 3.4.4.4. The construction (Y → X) 7→ (X, [Y]X) determines a functor of
∞-categories Ψ : (RelStksm×Schk Schpr

k )op → Shv!
`.

Proof. According to Remark 3.3.5.15, the construction X 7→ (X,ωX) determines a
functor of ∞-categories χ : (Schpr

k )op → Shv!
`. We now define Ψ to be the composition

(RelStksm×Schk Schpr
k )op id×χ−−−→ (RelStksm)op ×Schop

k
Shv!

`
Φ!

−→ Shv!
` .

Remark 3.4.4.5. In practice, we are interested not only in the statements of Propo-
sition 3.4.4.2 and Corollary 3.4.4.4, but also in their proofs (which produce particular
functors that we will use later).

We now turn to the proof of Proposition 3.4.4.2. Our strategy is an elaboration
of Remark 3.4.4.3: we would like to argue that the desired functor Φ! can be formally
extracted from the functor Φ? of Proposition 3.4.2.2, using the comparison results
established in §3.4.3. To make this precise, we need a few categorical remarks.

Definition 3.4.4.6. Let q : A → C be a coCartesian fibration of ∞-categories, let r :
B→ C and s : D→ C be Cartesian fibrations of ∞-categories, and let λ : A×CB→ D

be a functor for which the diagram

A×CB
λ //

##

D

s
��

C

commutes. We will say that λ is balanced if, for every morphism (α, β) in the fiber prod-
uct A×CB, if α is a q-coCartesian morphism in A and β is an r-Cartesian morphism
in B, then λ(α, β) is an s-Cartesian morphism in D.
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Example 3.4.4.7. The functor Φ? of Proposition 3.4.2.2 determines a balanced functor

(RelStksm)op ×Schop
k

Shv?` → Shv?` .

This follows from Proposition 3.4.3.1 (note that the forgetful functor q : Shv?` → Schop
k

is a Cartesian fibration, where a morphism (X,F)→ (X ′,F′) is q-Cartesian if it exhibits
F as the direct image of F′ along the underlying map X ′ → X).

Construction 3.4.4.8. [The Balanced Dual] Let q : A→ C, r : B→ C, and s : D→ C

be as in Definition 3.4.4.6, and suppose that q, r, and s are classified by functors
χq : C → Cat∞, χr, χs : Cop → Cat∞. Using Corollary [25].3.2.2.12, one can show
that the data of a balanced functor λ : A×CB → D is equivalent to the data of
a natural transformation χr → U , where U : Cop → Cat∞ is given by the formula
U(C) = Fun(χq(C), χs(C)).

Let σ : Cat∞ → Cat∞ denote the functor which assigns to each ∞-category its
opposite. Any natural transformation from χr to U determines a natural transformation
from σ ◦ χr to the functor σ ◦ U given by

(σ ◦ U)(C) = Fun(χq(C), χs(C))op = Fun(χq(C)op, χs(C)op).

It follows that the datum of a balanced functor λ : A×CB → D is equivalent to the
data of a balanced functor A′′×CB

′ → D′, where A′′ → C denotes the coCartesian dual
of q, B′ → C denotes the Cartesian dual of B, and D′ → C denotes the Cartesian dual
of D (see Construction 3.3.5.1 and Variant 3.3.5.5). We will refer to λ′ as the balanced
dual of λ.

Proof of Proposition 3.4.4.2. Let A′′ be the coCartesian dual of the coCartesian fibra-
tion (RelStksm)op → Schop

k . The ∞-category A′′ can be described more informally as
follows:

• The objects of A′′ are smooth morphisms of algebraic stacks π : Y → X, where
X is a quasi-projective k-scheme.

• A morphism from (π : Y→ X) to (π′ : Y′ → X ′) in A′′ is given by a morphism of
quasi-projective k-schemes X ′ → X together with a morphism of algebraic stacks
f : Y×XX ′ → Y′ for which the diagram

Y×XX ′
f //

$$

Y′

π′

~~
X ′

commutes.
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Let B′ be the Cartesian dual of the Cartesian fibration Shv?` → Schop
k . Using Example

3.4.4.7, we see that the functor Φ? of Proposition 3.4.2.2 determines a balanced functor

(RelStksm)op ×Schop
k

Shv?` → Shv?` ,

which admits a balanced dual F : A′′×Schop
k
B′ → B′. Set A′′0 = A′′×Schop

k
(Schpr

k )op and

B′0 = B′×Schop
k

(Schpr
k )op, so that F induces a functor F0 : A′′0 ×(Schpr

k )op B′0 → B′0 which
fits into a commutative diagram of ∞-categories

A′′0 ×(Schpr
k )op B′0

p
''

F0 // B′0

q
{{

(Schpr
k )op.

Note that the projection maps

A′′0 → (Schpr
k )op q : B′0 → (Schpr

k )op

are coCartesian fibrations (see Lemma 3.3.5.8), whose coCartesian duals are given by
the projection maps

(RelStksm)op ×Schop
k

(Schpr
k )op → (Schpr

k )op Shv!
` → (Schpr

k )op.

It follows that p is also a coCartesian fibration. Moreover, the functor F0 carries p-
coCartesian morphisms to q-coCartesian morphisms (this is a reformulation of Propo-
sition 3.4.3.2). It follows that F0 induces a functor from the coCartesian dual of p to
the coCartesian dual of q, which we write as Φ! : (RelStksm)op ×Schop

k
Shv!

` → Shv!
`. It

is now easy to check that Φ! has the desired properties.

3.4.5 Compatibility with External Tensor Products

Let Y and Y ′ be quasi-projective k-schemes. According to Theorem 3.3.1.1, the
`-adic cochain complex C∗(Y × Y ′; Z`) can be identified with the tensor product
C∗(Y ; Z`) ⊗Z` C

∗(Y ′; Z`). Our goal in this section is to prove a generalization of this
result, where we replace the `-adic cochain complex C∗(Y ; Z`) by the cohomology sheaf
[Y]F of Construction 3.4.1.2:

Theorem 3.4.5.1. Let X and X ′ be quasi-projective k-schemes, let π : Y → X and
π′ : Y′ → X ′ be finite type morphisms of algebraic stacks, and suppose we are given
`-adic sheaves F ∈ Shv`(X)<∞ and F′ ∈ Shv`(X

′)<∞. Then there is a canonical
equivalence

[Y×Y′]F�F′ ' [Y]F � [Y′]F′
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in the∞-category Shv`(X×X ′) (here all products are formed relative to the base scheme
Spec(k)).

Example 3.4.5.2 (Relative Künneth Formula). Let π : Y→ X and π′ : Y′ → X ′ be as
in Theorem 3.4.5.1. Taking F = ωX and F′ = ωX′ , we obtain an equivalence of `-adic
sheaves

[Y×Spec(k) Y
′]X×Spec(k)X

′ ' [Y]X � [Y′]X′ .

Example 3.4.5.3 (Absolute Künneth Formula). Let Y and Y′ be algebraic stacks of
finite type over k. Applying Example 3.4.5.2 (in the special case X = X ′ = Spec(k)),
we obtain an equivalence of `-adic cochain complexes C∗(Y×Y′; Z`) ' C∗(Y; Z`) ⊗Z`

C∗(Y′; Z`). This equivalence is induced by the multiplication on C∗(Y×Y′; Z`) de-
scribed in Construction 3.2.3.3.

Warning 3.4.5.4. In the statement of Theorem 3.4.5.1 (and Examples 3.4.5.2 and
3.4.5.3), we require that the algebraic stacks Y and Y′ are of finite type over k, rather
than merely locally of finite type. Note that the assertion of Example 3.4.5.3 fails in
the case where both Y and Y′ are disjoint unions of infinitely many copies of Spec(k).
The assertion of Theorem 3.4.5.1 can also fail if we drop the boundedness assumptions
on the sheaves F and F′.

Variant 3.4.5.5. In the situation of Example 3.4.5.3, suppose that Y = Y is a quasi-
projective k-scheme. In this case, the canonical map

θ : C∗(Y; Z`)⊗Z` C
∗(Y′; Z`)→ C∗(Y×Y′; Z`)

is an equivalence assuming only that Y′ is locally of finite type over k. To see this, we
observe that C∗(Y; Z`) is a perfect object of ModZ` , so that θ can be realized as an
inverse limit of maps

θα : C∗(Y; Z`)⊗Z` C
∗(Uα; Z`)→ C∗(Y×Uα; Z`)

where Uα ranges over all quasi-compact open substacks of Y′. Moreover, each of the
maps θα is a quasi-isomorphism by virtue of Example 3.4.5.3.

The main ingredient in the proof of Theorem 3.4.5.1 is the following:

Proposition 3.4.5.6. Let X and Y be quasi-projective k-schemes. Suppose that F• is a
cosimplicial object of Shv`(X)≤0 and that G• is a cosimplicial object of Shv`(Y )≤0. Then
the canonical map Tot(F•)�Tot(G•)→ Tot(F•�G•) is an equivalence in Shv`(X×Y ).

Before giving the proof of Proposition 3.4.5.6, let us apply it to the situation of
Theorem 3.4.5.1.
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Proof of Theorem 3.4.5.1. Let π : Y → X and π′ : Y′ → X ′ be as in the statement
of Theorem 3.4.5.1 and suppose we are given `-adic sheaves F ∈ Shv`(X)<∞ and
F′ ∈ Shv`(X

′)<∞. We wish to construct an equivalence

[Y×Y′]F�F′ ' [Y]F � [Y′]F′ .

Let us assume for simplicity that Y and Y′ have quasi-projective diagonals (this condi-
tion is satisfied in all cases of interest to us) and choose quasi-projective k-schemes U0

and U ′0 equipped with smooth surjections ρ : U0 → Y and ρ′ : U ′0 → Y′. Let U• denote
the simplicial k-scheme given by the iterated fiber product of U0 with itself over Y, de-
fine U ′• similarly, and consider the natural maps φ• : U• → X and φ′• : U ′• → X ′. Using
Proposition 3.4.1.10, Proposition 3.4.5.6, and Corollary 3.3.1.5, we obtain equivalences

[Y×Y′]F�F′ ' Tot[U• × U ′•)]F�F′

' Tot((φ• � φ′•)∗(φ• � φ′•)
∗(F�F′))

' Tot((φ•∗φ
∗
• F) � (φ′•∗φ

′∗
• F
′))

' Tot(φ•∗φ
∗
• F) � Tot(φ′•∗φ

′∗
• F)

' [Y]F � [Y′]F′ .

Remark 3.4.5.7. At this point, the reader might reasonably object that Theorem
3.4.5.1 asserts the existence of a canonical equivalence, but our proof constructs an
equivalence which depends a priori on a choice of smooth atlases U0 → Y and U ′0 → Y′.
This point will be addressed in §3.4.6.

We now turn to the proof of Proposition 3.4.5.6.

Lemma 3.4.5.8. Let X be a quasi-projective k-scheme and let F,G ∈ Shv`(X)≤0.
Then F⊗G ∈ Shv`(X)≤2.

Remark 3.4.5.9. With more effort, one can show that the tensor product functor
carries Shv`(X)≤0 × Shv`(X)≤0 into Shv`(X)≤1, but Lemma 3.4.5.8 will be sufficient
for our purposes.

Remark 3.4.5.10. Let X be a quasi-projective k-scheme and let Λ be a field. Then the
tensor product functor⊗ : Shv(X; Λ)×Shv(X; Λ)→ Shv(X; Λ) is left t-exact: that is, it
carries Shv(X; Λ)≤0×Shv(X; Λ)≤0 into Shv(X; Λ)≤0. This follows from Remark 2.2.3.3,
since the tensor product ⊗Λ : ModΛ×ModΛ → ModΛ carries (ModΛ)≤0 × (ModΛ)≤0

into (ModΛ)≤0.
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Proof of Lemma 3.4.5.8. Since Shv`(X)≤1 is closed under filtered colimits and the ten-
sor product ⊗ preserves filtered colimits separately in each variable, we may assume
without loss of generality that F and G are constructible, so that F⊗G is likewise con-
structible. Set F1 = (Z/`Z) ⊗Z F and G1 = (Z/`Z) ⊗Z G. Using Remark 2.3.6.6 we
see that F1,G1 ∈ Shv(X; Z/`Z)≤1. Using Remark 3.4.5.10, we conclude that the tensor
product

(Z/`Z)⊗Z (F⊗G) ' F1⊗Z/`Z G1

belongs to Shv(X; Z/`Z)≤2, so that F⊗G belongs to Shvc`(X)≤2 by Remark 2.3.6.6.

Lemma 3.4.5.11. Let X be a quasi-projective k-scheme, let F ∈ Shv`(X)≤0, and let
G• be a cosimplicial object of Shv`(X)≤0. Then the canonical map θ : F⊗Tot(G•) →
Tot(F⊗G•) is an equivalence in Shv`(X).

Proof. For each n ≥ 0, let Totn(G•) denote the nth stage of the Tot-tower of G• (that
is, the limit of the restriction of G to the category ∆≤n of simplices of dimension ≤ n).
The construction G• 7→ Totn(G•) is given by a finite limit, and therefore commutes with
any exact functor. It follows that θ can be identified with the composition

F⊗Tot(G•) ' F⊗ lim←−Totn(G•)

θ′−→ lim←−(F⊗Totn(G•))

' lim←−Totn(F⊗G•)

' Tot(F⊗G•).

We are therefore reduced to proving that θ′ is an equivalence. Since Shv`(X) is right
complete, it will suffice to show that the fiber of θ′ belongs to Shv`(X)≤−m for each
integer m. For n ≥ m + 2, let Hn denote the cofiber of the natural map Totn(G•) →
Totm+2(G•), so that we have a pushout square

F⊗ lim←−Totn(G•)
θ′ //

��

lim←−n′≥n(F⊗Totn(G•))

��
F⊗ lim←−Hn

θ′′ // lim←−F⊗Hn .

Since each Gq belongs to Shv`(X)≤0, the cofibers Hn belong to Shv`(X)≤−m−2. Using
Lemma 3.4.5.8, we deduce that the domain and codomain of θ′′ belong to Shv`(X)≤−m,
so that fib(θ′) ' fib(θ′′) belongs to Shv`(X)≤−m as desired.

Proof of Proposition 3.4.5.6. Embedding X and Y into projective space, we may as-
sume without loss of generality that X and Y are smooth. Let p : X × Y → X and
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q : X×Y → Y denote the projection maps onto the first and second factor, respectively.
Unwinding the definitions, we wish to show that the composite map

Tot(F•) � Tot(G•) ' p∗Tot(F•)⊗ q∗Tot(G•)
θ−→ Tot(p∗ F•)⊗ Tot(q∗ G•)

θ′−→ Tot(p∗ F•⊗Tot(q∗ G•))

θ′′−→ Tot(Tot(p∗ F•⊗q∗ G•))
' Tot(F•�G•)

is an equivalence. The map θ is an equivalence by Proposition 2.3.4.8, and the maps
θ′ and θ′′ are equivalences by virtue of Lemma 3.4.5.11.

3.4.6 Tensor Functoriality

In §3.4.5, we proved that (under some mild hypotheses) the construction F 7→ [Y]F is
compatible with the formation of external tensor products (Theorem 3.4.5.1). However,
this is not sufficient for our applications: we will need to know not only that there exist
equivalences

[Y×Y′]F�F′ ' [Y]F � [Y′]F′ ,

but also that they can be made compatible with the commutativity and associativity
constraints on the external tensor product �, up to coherent homotopy. Before we can
formulate this statement precisely, we need a bit of notation.

Notation 3.4.6.1. Let RelStk denote the 2-category of Notation 3.4.2.1, whose objects
are maps of algebraic stacks π : Y→ X where X is a quasi-projective k-scheme and π
is locally of finite type. We let RelStkft denote the full subcategory of RelStk spanned
by those objects π : Y → X where π is of finite type. Similarly, we let RelStksm

ft =
RelStksm ∩RelStkft denote the full subcategory spanned by those objects π : Y → X
where π is smooth and of finite type.

Let Shv?` and Shv!
` be the ∞-categories introduced in Constructions 3.3.4.1 and

3.3.5.9, whose objects can be identified with pairs (X,F) where X is a quasi-projective
k-scheme and F ∈ Shv`(X). We let Shv?c ⊆ Shv?` and Shv!

c ⊆ Shv!
` denote the full

subcategories spanned by those objects (X,F) where F is a constructible `-adic sheaf
on X.

The functors Φ? and Φ! of Propositions 3.4.2.2 and 3.4.4.2 can be restricted to
functors

Φ?
c : RelStkop

ft ×Schop
k

Shv?c → Shv?`

Φ!
c : (RelStksm

ft )op ×Schop
k

Shv!
c → Shv!

` .
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In what follows, we will regard the 2-categories RelStkft and RelStksm
ft as equipped

with the symmetric monoidal structure given by the formation of Cartesian products
(see Example 3.1.2.5), and the ∞-categories Shv?` and Shv!

` as equipped with the sym-
metric monoidal structures given by the formation of external tensor products (see
Propositions 3.3.4.4 and 3.3.5.13 and their proofs). Our goal in this section is to prove
the following variant of Theorem 3.4.5.1:

Theorem 3.4.6.2. The functors

Φ?
c : RelStkop

ft ×Schop
k

Shv?c → Shv?`

Φ!
c : (RelStksm

ft )op ×Schop
k

Shv!
c → Shv!

`

of Notation 3.4.6.1 can be promoted to symmetric monoidal functors.

Remark 3.4.6.3. As usual, our interest in Theorem 3.4.6.2 is not in the statement,
but in the proof (which will provide natural symmetric monoidal structures on the
functors Φ?

c and Φ!
c).

We begin by analyzing the functor Φ?
c of Theorem 3.4.6.2.

Proposition 3.4.6.4. The functor

Φ?
c : RelStkop

ft ×Schop
k

Shv?c → Shv?`

admits a symmetric monoidal strucutre.

Proof. We proceed in two steps. First, let RelSch denote the full subcategory of RelStkft

spanned by those objects (Y→ X) where the algebraic stack Y is itself a quasi-projective
k-scheme. Then the constructions (Y → X) 7→ Y and (Y → X) 7→ X determine
functors e0, e1 : RelSch → Schk. For i ∈ {0, 1}, we let RelSchop

(i) denote the fiber

product RelSchop×Schop
k

Shv?c . There is an evident symmetric monoidal functor u :

RelSchop
(1) → RelSchop

(0), given by the construction

(f : Y → X,F ∈ Shvc`(X)) 7→ (f : Y → X, f∗ F ∈ Shvc`(Y )).

This functor has a right adjoint v : RelSchop
(0) → RelSchop

(1), given by the construction

(f : Y → X,G ∈ Shvc`(Y )) 7→ (f : Y → X, f∗ G ∈ Shvc`(X)).

Using the symmetric monoidal structure on the functor u, we obtain a lax symmetric
structure on the functor v, which is actually symmetric monoidal by virtue of Propo-
sition 3.3.1.3.
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Let us regard RelSchop
(1) as a full subcategory of RelStkft×Schop

k
Shv?c , and let Φ?

0 :

RelSchop
(1) → Shv?` denote the composite functor

RelSchop
(1)

u−→ RelSchop
(0)

v−→ RelSchop
(1) = RelSchop×Schop

k
Shv?c → Shv?c ⊆ Shv?` .

It follows immediately from the definitions that Φ?
0 is equivalent to the restriction

Φ?
c |RelSchop

(1)
after neglecting symmetric monoidal structures.

To complete the construction, we will use the formalism of Day convolution in
the setting of ∞-operads, as developed in §[23].2.2.6. Suppose we are given a pair
of symmetric monoidal coCartesian fibrations of ∞-categories A → C and B → C

satisfying the following conditions:

(i) For each object C ∈ C, the fiber AC = A×C{C} is essentially small.

(ii) For each object C ∈ C, the fiber BC = B×C{C} admits small colimits.

(iii) For every morphism C → C ′ in C, the transport functor BC → BC′ preserves
small colimits.

(iv) For every pair of objects C,C ′ ∈ C, the tensor product on B induces a functor
BC ×BC′ → BC⊗C′ , which preserves small colimits separately in each variable.

In this case, we can construct a new symmetric monoidal coCartesian fibration ρ :
FunC(A,B)→ C with the following features:

(a) For each object C ∈ C, we have a canonical equivalence FunC(A,B)C ' Fun(AC ,BC).

(b) For every pair of objects F ∈ FunC(A,B)C ' Fun(AC ,BC) and F ′ ∈ FunC(A,B)C′ '
Fun(AC′ ,BC′), the tensor product F⊗F ′ ∈ FunC(A,B)C⊗C′ ' Fun(AC⊗C′ ,BC⊗C′)
is given on objects by the formula

(F ⊗ F ′)(X) = lim−→
A⊗A′→X

F (A)⊗ F ′(A′),

where the colimit is taken over the ∞-category (AC ×AC′)×AC⊗C′
(AC⊗C′)/X .

(c) For each section s : C→ FunC(A,B) of ρ, we can associate a functor Fs : A→ B

by the formula Fs(A) = s(C)(A), where C denotes the image of A in the ∞-
category C. This construction induces an equivalence from the ∞-category of lax
symmetric monoidal sections of ρ to the ∞-category of lax symmetric monoidal
functors F : A→ B for which the diagram

A
F //

��

B

��
C
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commutes.

For a proof, we refer the reader to Proposition [23].2.2.6.16. We will apply this for-
malism in our situation by taking A = RelStkop

ft ×Schop
k

Shv?c , B = Shv?` , and C = Schop
k

(and also after replacing A by the full subcategory A′ = RelSchop
(1) ⊆ A), we obtain

symmetric monoidal∞-categories FunC(A,B) and FunC(A′,B) which can be described
informally as follows:

• For each quasi-projective k-scheme X, let SchX denote the category of quasi-
projective X-schemes and let RelStkX ft denote the category RelStkft×Schk{X}
of algebraic X-stacks of finite type. The objects of FunC(A,B) are given by pairs
(X,F ), where X is a quasi-projective k-scheme and

F : RelStkop
X ft×Shvc`(X)→ Shv`(X)

is a functor; the objects of FunC(A′,B) are pairs (X,F0) where X is a quasi-
projective k-scheme and F0 : Schop

X ×Shvc`(X)→ Shv`(X) is a functor.

• The tensor product on the symmetric monoidal category FunC(A,B) is given
concretely by the formula

(X,F )⊗ (X ′, F ′) = (X ×Spec(k) X
′, F ? F ′)

(F ? F ′)(Y,G) = lim−→
F�F′→G

F (Y,F) � F (Y,F′),

and the tensor product on FunC(A′,B) is described similarly.

From the above description, it is not hard to see that the inclusion functor i : RelSchop
(1) ↪→

RelStkop
ft induces a symmetric monoidal functor i∗ : FunC(A,B) → FunC(A′,B) (and,

moreover, that this functor preserves the class of morphisms which are coCartesian
relative to C). The functor i∗ admits a right adjoint i∗ : FunC(A′,B) → FunC(A,B),
given concretely by the formula

i∗(X,F0) = (X,F ) F (Y,F) = lim←−
Y→Y

F0(Y,F),

where the limit is taken over all quasi-projective X-schemes Y equipped with a map
Y → Y in RelStkX ft.

Using (c), we can identify the symmetric monoidal functor Φ?
0 : RelSchop

(1) → Shv?`

with a lax symmetric monoidal section s of the projection map FunC(A′,B) → C.
The composition i∗ ◦ s is then a lax symmetric monoidal section of the projection map
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FunC(A,B)→ C, which we can identify (using (c) again) with a lax symmetric monoidal
functor

RelStkop
ft ×Schop

k
Shv?c = A→ B = Shv?` .

Using the explicit description of i∗ given above, it is not hard to see that this lax
symmetric monoidal functor agrees, as a functor, with the map Φ?

c of Notation 3.4.6.1.
We therefore obtain a lax symmetric monoidal structure on the functor Φ?

c . To complete
the proof of Proposition 3.4.6.4, it will suffice to show that this lax symmetric monoidal
structure is actually a symmetric monoidal structure: that is, for any pair of objects
(X,Y,F), (X ′,Y′,F′) ∈ A, the resulting map

[Y]F � [Y′]F′ → [Y×Y′]F�F′

is an equivalence of `-adic sheaves on X ×Spec(k) X
′. This is a special case of Theorem

3.4.5.1.

Proof of Theorem 3.4.6.2. Proposition 3.4.6.4 determines a symmetric monoidal struc-
ture on the functor Φ?

c . We will use this to construct a symmetric monoidal structure
on the functor Φ!

c using some formal categorical constructions. Let CatBal
∞ denote the

∞-category whose objects are commutative diagrams of ∞-categories

A×CB //

{{ ##

D

s

��

A
q

##

B

r
{{

C
id // C

where q is a coCartesian fibration, r is a Cartesian fibration, s is a Cartesian fibration,
and λ is a balanced functor (Definition 3.4.4.6), which we regard as a subcategory of
Fun(P,Cat∞) for a suitable partially ordered set P (morphisms in CatBal

∞ are required
to preserve q-coCartesian, r-Cartesian, and s-Cartesian morphisms).

Using Proposition 3.4.6.4 and Example 3.4.4.7, we see that the diagram σ :

RelStkop
ft ×Schop

k
Shv?c

Φ?c //

vv ''

Shv?`

��

RelStkop
ft

((

Shv?c

ww
Schop

k
id // Schop

k
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can be regarded as a commutative monoid object of the∞-category CatBal
∞ . The forma-

tion of balanced duals (Construction 3.4.4.8) determines a functor from the∞-category
CatBal
∞ to itself whose square is equivalent to the identity. In particular, this functor

is an equivalence of ∞-categories, and therefore carries commutative monoid objects
to commutative monoid objects. Applying this functor to σ, we obtain a diagram of
∞-categories σ′:

A×Schop
k
Bc

F //

zz %%

B

s

��

A

$$

Bc

yy
Schop

k
id // Schop

k

which is equipped with the structure of a commutative monoid object of CatBal
∞ . Here

we can identify the objects of A with maps π : Y → X, where X is a quasi-projective
k-scheme and Y is an algebraic stack of finite type over X. Let Asm be the full
subcategory of A spanned by those objects π : Y → X where π is smooth, set
Bpr = B×Schop

k
(Schpr

k )op, and define Bpr
c ⊆ Bpr similarly. Let F0 be the restriction

of F to the product Asm×Schop
k
Bpr
c , so that F0 fits into a commutative diagram of

symmetric monoidal ∞-categories τ :

Asm×Schop
k
Bpr
c

F0 //

��

Bpr

��
(Schpr

k )op id // (Schpr
k )op.

As in the proof of Proposition 3.3.5.13, we observe that the vertical maps in this
diagram are symmetric monoidal coCartesian fibrations. We may therefore regard τ
as a morphism between commutative algebra objects of the ∞-category CatcoCart

∞ of
Notation 3.3.5.16. Applying the coCartesian duality of Variant 3.3.5.5, we obtain a
new diagram of symmetric monoidal ∞-categories

(RelStksm
ft )op ×Schop

k
Shv!

c
//

��

Shv!
`

��
(Schpr

k )op id // (Schpr
k )op.

We complete the proof by observing that the upper horizontal map agrees, after ne-
glecting symmetric monoidal structures, with the functor Φ!

c of Notation 3.4.6.1.



220 CHAPTER 3. E∞-STRUCTURES ON `-ADIC COHOMOLOGY

3.4.7 The Algebra Structure on [Y]X

We now specialize our study of cohomology sheaves [Y]F to the case where F = ωX is
the dualizing sheaf of the base scheme X.

Proposition 3.4.7.1. The construction (π : Y → X) 7→ (X, [Y]X) determines a sym-
metric monoidal functor

Ψft : (RelStksm
ft ×SchkSch

pr
k )op → Shv!

` .

Proof. According to Remark 3.3.5.15, the construction X 7→ (X,ωX) determines a
symmetric monoidal functor of ∞-categories χ : (Schpr

k )op → Shv!
`. Note that this

functor factors through the full subcategory Shv!
c ⊆ Shv!

` (since the dualizing sheaf ωX
is constructible for each X ∈ Schpr

k ). We now define Ψft to be the composition

(RelStksm
ft ×Schk Schpr

k )op id×χ−−−→ (RelStksm)op
ft ×Schop

k
Shv!

c
Φ!
c−→ Shv!

` .

Remark 3.4.7.2. Neglecting symmetric monoidal structures, the functor Ψft of Propo-
sition 3.4.7.1 is given by restricting the functor Ψ of Corollary 3.4.4.4 to those maps
π : Y→ X which are of finite type. Beware that the functor Ψ itself is not symmetric
monoidal (see Warning 3.4.5.4).

Note that the functor Ψft of Proposition 3.4.7.1 fits into a commutative diagram of
symmetric monoidal ∞-categories

(RelStksm
ft ×Schk Schpr

k )op Ψft
//

p
))

Shv!
`

q
zz

(Schpr
k )op,

where the vertical maps are symmetric monoidal coCartesian fibrations and the functor
Ψft carries p-coCartesian morphisms to q-coCartesian morphisms. For every quasi-
projective k-scheme X, the diagonal map δ : X → X × X exhibits X as a nonunital
commutative algebra object of (Schpr

k )op. Using the construction of Variant 3.3.4.9, we
see that Ψft restricts to a nonunital symmetric monoidal functor

Ψft
X : (RelStksm

X ft)
op → Shv`(X).

Here RelStksm
X ft denotes the 2-category of algebraic stacks Y equipped with a smooth

morphism π : Y→ X of finite type (where the nonunital symmetric monoidal structure
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is given by fiber products over X and therefore has a unit, given by the identity map
id : X → X), while Shv`(X) is equipped with the nonunital symmetric monoidal
structure given by the !-tensor product (which also has a unit, given by the dualizing
sheaf ωX). The functor Ψft

X carries the identity map id : X → X to the cohomology
sheaf [X]X = ωX (see Example 3.4.1.6). Applying Theorem [23].5.4.4.5, we deduce that
Ψft
X can be promoted (in an essentially unique way) to a symmetric monoidal functor.

This proves the following:

Proposition 3.4.7.3. For every quasi-projective k-scheme X, the construction Y 7→
[Y]X determines a symmetric monoidal functor

Ψft
X : (RelStksm

X ft)
op → Shv`(X),

where we regard Shv`(X) as equipped with the symmetric monoidal structure of Theorem
3.3.0.3 (given by the !-tensor product).

Remark 3.4.7.4. The functor Ψft
X of Proposition 3.4.7.3 depends functorially on the

quasi-projective k-scheme X. In particular, for any proper map f : X ′ → X, the
diagram of ∞-categories

(RelStksm
X ft)

op
Ψft
X //

X′×X•
��

Shv`(X)

f !

��
(RelStksm

X′ ft)
op

Ψft
X′ // Shv`(X

′)

commutes up to (canonical) homotopy.

Proof of Theorem 3.4.0.3. Let X be a quasi-projective k-scheme. If π : Y → X is
a morphism of algebraic stacks which is smooth and of finite type, then the relative
diagonal δ : Y→ Y×X Y exhibits Y as a commutative algebra object of the ∞-category
(RelStksm

X ft)
op (see Example 3.1.3.7). Applying the symmetric monoidal functor Ψft

X

of Proposition 3.4.7.3, we see that the cohomology sheaf [Y]X = Ψft
X(Y) inherits the

structure of a commutative algebra in the ∞-category Shv`(X) (with respect to the
!-tensor product).

If Y is an arbitrary algebraic stack equipped with a smooth map π : Y→ X, then we
can write Y as a filtered union

⋃
Uα of open substacks of finite type over X. Remark

3.4.1.9 then supplies an equivalence of [Y]X with the inverse limit lim←−[Uα]X of a diagram
of commutative algebra objects of Shv`(X), and therefore inherits the structure of a
commutative algebra object of Shv`(X).

Using Remark 3.4.7.4, we see that the commutative algebra structure on [Y]X de-
pends functorially on X. More precisely, if f : X ′ → X is a proper morphism of quasi-
projective k-schemes, then the equivalence [Y×XX ′]X′ ' f ![Y]X of Proposition 3.4.3.2
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is an equivalence of commutative algebra objects of Shv`(X). Applying this observation
in the special case where f is the inclusion of a closed point x ∈ X, we see that the
costalk of [Y]X can be identified with the `-adic cochain complex C∗(Yx; Z`) ' [Yx]Spec(k)

as an E∞-algebra over Z`.



Chapter 4

Computing the Trace of
Frobenius

Let X0 be an algebraic curve defined over a finite field Fq, and let G0 be a smooth affine
group scheme over X0 with connected fibers, whose generic fiber is semisimple and sim-
ply connected. Fix an algebraic closure Fq of Fq and let X = Spec(Fq) ×Spec(Fq) X0

and G = Spec(Fq)×Spec(Fq)G0 denote the Fq-schemes associated to X0 and G0, respec-

tively. Our goal in this chapter is to compute the trace Tr(Frob−1 |H∗(BunG(X); Z`)),
where ` is a prime number which is invertible in Fq.

We will follow the strategy outlined in Chapter 1. If X is an algebraic curve over the
field C of complex numbers and G is a smooth affine group scheme over X whose fibers
are semisimple and simply connected, then Theorem 1.5.4.10 (and Example 1.5.4.15)
supply a quasi-isomorphism

C∗(BunG(X); Q) '
⊗
x∈X

C∗(BGx; Q), (4.1)

whose right hand side is the continuous tensor product of Construction 1.5.4.8. In §4.1,
we will formulate an `-adic version of (4.1) (Theorem 4.1.2.1) which makes sense over
an arbitrary algebraically closed ground field k (of characteristic different from `) and
for group schemes G which have bad reduction at finitely many points. We do not
prove Theorem 4.1.2.1 here: a proof will appear in a sequel to this book.

The remainder of this chapter is devoted to explaining how Theorem 4.1.2.1 can
be used to compute the trace of the arithmetic Frobenius automorphism on the `-adic
cohomology of BunG(X). In the case where G and X are defined over a finite field
Fq ⊆ k, we can use Theorem 4.1.2.1 to rewrite the cohomological version of Weil’s

223
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conjecture (Theorem 1.4.4.1) as an equality

Tr(Frob−1 |H∗(
⊗
x∈X

C∗(BGx; Z`))) =
∏
x∈X0

Tr(Frob−1
x |H∗(BGx; Z`)). (4.2)

Here equation (4.2) can be viewed as a multiplicative version of the Grothendieck-
Lefschetz trace formula

Tr(Frob |H∗c(X;F)) =
∑
x∈X0

Tr(Frobx |Fx), (4.3)

where F denotes an `-adic sheaf on the curve X0.

We will eventually justify (4.2) by showing that it reduces to (4.3) for an appropri-
ately chosen `-adic sheaf F = M(G), which we refer to as the motive of G relative to
X (Construction 4.5.1.1). The definition of M(G) involves a version of Koszul duality,
which we formalize in §4.2 using the notion of cotangent fiber cot(A) of an augmented
commutative algebra (Definition 4.2.1.5). In §4.5, we combine this theory with Theo-
rem 4.1.2.1 to obtain a quasi-isomorphism (cotC∗(BunG(X); Z`))[`

−1] ' C∗(X;M(G))
(Proposition 4.5.1.3).

One difficulty we will need to grapple with is that the trace

Tr(Frob−1 |H∗(BunG(X); Z`)) =
∑

(−1)i Tr(Frob−1 |Hi(BunG(X); Z`))

is not a priori well-defined, since the cohomology groups Hi(BunG(X); Z`) are generally
nonzero for infinitely many values of i. In §4.3 we explain how to circumvent this
obstacle using Koszul duality: under appropriate hypotheses, we show that the trace
of an automorphism of an augmented commutative algebra A can be determined from
the trace of the induced automorphism (and its iterates) on the cotangent fiber cot(A)
(Proposition 4.3.2.1). In §4.4, we combine this result with Proposition 4.5.1.3 and the
Grothendieck-Lefschetz trace formula to complete the proof of Theorem 1.4.4.1.

4.1 The Product Formula

Throughout this section, we let k denote an algebraically closed field and ` a prime
number which is invertible in k. Let X be an algebraic curve over k and let G be a
smooth affine group scheme over X. Our goal is to formulate an `-adic analogue of the
product formula (Theorem 1.5.4.10), which asserts that (under suitable hypotheses)
there is a canonical quasi-isomorphism

ρ :
⊗
x∈X

C∗(BGx; Z`)→ C∗(BunG(X); Z`),
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whose domain is a “continuous” tensor product of chain complexes over Z`. The main
difficulty lies in finding a reasonable definition for this tensor product.

We begin by recalling how this difficulty was resolved in Chapter 1 in the classical
setting, when X is defined over the field C of complex numbers and the group scheme
G is everywhere semisimple. Let us abuse notation by identifying X with the Riemann
surface X(C), and let U0(X) denote the collection of open subsets of X which are

homeomorphic to R2. In this case, we studied a functor B : U0(X) → CAlgdg
Q , whose

value on an open disk U is given by the polynomial de Rham complex of a classifying
space for G-bundles on U . The functor B can be regarded as a kind of local system
on X, taking values in the ∞-category CAlgQ of E∞-algebras over Q (this can be
formalized using Example 2.1.4.3). There is a pair of adjoint functors

hFun(U0(X),CAlgdg
Q )

hocolim//hCAlgdg
Q

δ
oo , (4.4)

where δ denotes the diagonal map, and the continuous tensor product
⊗

x∈X C
∗(BGx; Q)

was defined as the image of B under the left adjoint hocolim : hFun(U0(X),CAlgdg
Q )→

hCAlgdg
Q (Construction 1.5.4.8).

Let us now return to working over an arbitrary algebraically closed field k. To any
smooth affine group scheme G over X, we can associate a classifying stack BG, which
is an algebraic stack equipped with a smooth map BG → X. In §3.4, we showed that
the `-adic cochain complexes {C∗(BGx; Z`)}x∈X can be identified with the costalks of
a certain `-adic sheaf [BG]X , which can be regarded as a commutative algebra with
respect to the !-tensor product on Shv`(X) (Theorem 3.4.0.3). Let π : X → Spec(k)
denote the projection map. Then the exceptional inverse image functor

π! : ModZ` ' Shv`(Spec(k))→ Shv`(X)

is symmetric monoidal (if we regard Shv`(X) as equipped with the !-tensor product),
and therefore carries commutative algebra objects to commutative algebra objects. In
§4.1.1, we show that π! participates in an adjunction

CAlg(Shv`(X))

∫
X //CAlgZ`

,
π!
oo

which we can regard as an algebro-geometric analogue of (4.4). Here the functor
∫
X :

CAlg(Shv`(X))→ CAlgZ`
is an incarnation of factorization homology (of a particularly

simple type: it is the factorization homology in the setting of commutative factorization
algebras), which we will discuss in detail in the sequel to this book.

Once all of our definitions are in place, it will be easy to formulate an `-adic analogue
of Theorem 1.5.4.10. For any smooth affine group scheme G → X, the factorization



226 CHAPTER 4. COMPUTING THE TRACE OF FROBENIUS

homology
∫
X [BG]X can be regarded as an `-adic incarnation of the continuous tensor

product ⊗x∈XC∗(BGx; Q) of Construction 1.5.4.8. The universal property of
∫
X [BG]X

then provides a comparison map ρ :
∫
X [BG]X → C∗(BunG(X); Z`). In §4.1.2, we will

describe some hypotheses which guarantee that ρ is a quasi-isomorphism (Theorem
4.1.2.1).

4.1.1 Factorization Homology

We begin with some general remarks. Let f : X → Y be a proper morphism between
quasi-projective k-schemes, and let f ! : Shv`(Y ) → Shv`(X) denote the exceptional
inverse image functor of Notation 2.3.4.5. Then we can regard f ! as a symmetric
monoidal functor, where we regard Shv`(X) and Shv`(Y ) as equipped with the sym-
metric monoidal structures given by the !-tensor product (see Theorem 3.3.0.3). It
follows that f ! determines a functor on commutative algebra objects

f ! : CAlg(Shv`(Y ))→ CAlg(Shv`(X)).

Proposition 4.1.1.1. Let f : X → Y be a proper morphism of quasi-projective k-
schemes. Then the functor f ! : CAlg(Shv`(Y ))→ CAlg(Shv`(X)) admits a left adjoint
f+ : CAlg(Shv`(X))→ CAlg(Shv`(Y )).

Warning 4.1.1.2. When regarded as a functor from Shv`(Y ) to Shv`(X), the functor
f ! is defined as a right adjoint to the direct image functor f∗ : Shv`(X) → Shv`(Y ).
However, the functor f∗ does not carry commutative algebras of Shv`(X) (with respect
to the !-tensor product) to commutative algebras of Shv`(Y ). Consequently, the functor
f∗ is quite different from the functor f+ appearing in Proposition 4.1.1.1. For example,
suppose that X = Y q Y is a disjoint union of two copies of Y , so that Shv`(X) can
be identified with a product Shv`(Y ) × Shv`(Y ). In this case, the functor f∗ is given
by the formula f∗(F,G) = F⊕G, while f+ is given by f+(F,G) = F⊗! G.

Proof of Proposition 4.1.1.1. As a functor from Shv`(Y ) to Shv`(X), the functor f ! can
be defined as the right adjoint to f∗, and therefore preserves small limits. Moreover, it
also preserves filtered colimits (see Notation 2.3.4.5). Since the forgetful functors

CAlg(Shv`(X))→ Shv`(X) CAlg(Shv`(Y ))→ Shv`(Y )

preserve small limits and filtered colimits, it follows that the functor

f ! : CAlg(Shv`(Y ))→ CAlg(Shv`(X))

also preserves small limits and filtered colimits. The existence of the left adjoint f+

now follows from the ∞-categorical version of the adjoint functor theorem (Corollary
[25].5.5.2.9).
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Definition 4.1.1.3 (Factorization Homology). Let X be a projective k-scheme with
structural morphism f : X → Spec(k), and regard the∞-category Shv`(X) as endowed
with the !-tensor product. We let∫

X
: CAlg(Shv`(X))→ CAlgZ`

denote the composition of the functor f+ : CAlg(Shv`(X)) → CAlg(Shv`(Spec(k)))
with the equivalence CAlg(Shv`(Spec(k))) ' CAlg(ModZ`) = CAlgZ`

. If B is a com-
mutative algebra object of Shv`(X), we will refer to

∫
X B as the factorization homology

of B.

Remark 4.1.1.4. Our presentation of Definition 4.1.1.3 is rather unsatisfying: the
factorization homology of a commutative algebra A ∈ CAlg(Shv`(X)) is defined using
the functor f+ of Proposition 4.1.1.1, which we proved by invoking an abstract exis-
tence result. However, the factorization homology functor

∫
X (and, more generally,

the functor f+ associated to a proper morphism) also admits a concrete description,
given by integration over the Ran space Ran(X). This concrete description will play
an essential role in our proof of the product formula (Theorem 4.1.2.1), but not in our
application of it. We therefore postpone a discussion to the sequel to this book.

Remark 4.1.1.5. Let X be a projective k-scheme, let B be a commutative algebra
object of Shv`(X), and let f : X → Spec(k) be the projection map. We then have a unit
map u : B → f !

∫
X B (of commutative algebra objects of Shv`(X)). For each closed

point x ∈ X, passing to costalks at x yields a map ux : x! B →
∫
X B of E∞-algebras

over Z`. Heuristically, we can think of the maps ux as exhibiting
∫
X B as a “continuous

tensor product”
⊗

x∈X x
! B of the costalks of B (compare with Construction 1.5.4.8).

4.1.2 Formulation of the Product Formula

We now return to the setting of Weil’s conjecture. Let X be an algebraic curve over k
and let G be a smooth affine group scheme over X. To the group scheme G, we can
associate two algebraic stacks:

• The classifying stack BG, which is equipped with a smooth map π : BG→ X.

• The moduli stack BunG(X) of Construction 1.4.1.1.

Moreover, we have a tautological evaluation map e : X ×Spec(k) BunG(X) → BG. Let
π : X → Spec(k) be the projection map. Using Theorem 3.4.0.3, we obtain a canonical
map

[BG]X
e∗−→ [X ×Spec(k) BunG(X)]X ' π!C∗(BunG(X); Z`)
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of commutative algebra objects of Shv`(X) (with respect to the !-tensor product). This
determines a comparison map

ρ :

∫
X

[BG]X → C∗(BunG(X); Z`).

The main ingredient in our proof of Weil’s conjecture is the following theorem:

Theorem 4.1.2.1. Let G be a smooth affine group scheme over X with connected
fibers, whose generic fiber is semisimple and simply connected. Then the comparison
map

ρ :

∫
X

[BG]X → C∗(BunG(X); Z`)

is an equivalence in the ∞-category ModZ`. In particular, the `-adic cohomology
H∗(BunG(X); Z`) can be identified with the homology of the chain complex

∫
X [BG]X .

The proof of Theorem 4.1.2.1 will appear in a sequel to this book.

Remark 4.1.2.2. Theorem 4.1.2.1 can be regarded as an algebro-geometric analogue of
Theorem 1.5.4.10 (or, more precisely, of the special case of Theorem 1.5.4.10 described
in Example 1.5.4.15). However, it is in some respects more general than Theorem
1.5.4.10: here we allow the group scheme G to have bad reduction at finitely many
points.

Remark 4.1.2.3. Theorem 4.1.2.1 can be regarded as a characterization of the `-adic
cochain complex C∗(BunG(X); Z`) as an object of the ∞-category CAlgZ`

of E∞-
algebras over Z`. It can be stated more concretely as follows: for every E∞-algebra A
over Z`, we have a canonical homotopy equivalence

MapCAlgZ`
(C∗(BunG(X); Z`), A)→ MapCAlg(Shv`(X))([BG]X , ωX ⊗A),

where ωX ⊗ A ' π!A denotes the constant commutative algebra object of Shv`(X)
associated to A.

4.2 The Cotangent Fiber

Let X = Spec(A) be an affine algebraic variety over a field k and let x ∈ X(k) be a
k-valued point of X, corresponding to a k-algebra homomorphism ε : A → k. We let
mx = ker(ε), so that mx is a maximal ideal of A. The Zariski cotangent space of X
at the point x is defined as the quotient mx/m

2
x. For each n ≥ 0, there is an evident

surjective map
Symn(mx/m

2
x)→ mn

x/m
n+1
x ,
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which is an isomorphism if X is smooth at the point x. Consequently, the structure
of the completed local ring Â = lim←−A/m

n
x is in some sense controlled by the finite-

dimensional vector space mx/m
2
x.

Now suppose that C is a symmetric monoidal stable ∞-category. Then one can
consider commutative algebra objects A ∈ C equipped with an augmentation ε : A→ 1
(here 1 denotes the unit object of C). For every such pair (A, ε), one can consider an
analogue of the Zariski cotangent space, which we will refer to as the cotangent fiber of
A and denote by cot(A) (Definition 4.2.1.5). Our goal in this section is to review some
elementary properties of the construction A 7→ cot(A) which will be useful in our proof
of Weil’s conjecture.

Notation 4.2.0.1. Throughout this section, we let C denote a fixed symmetric monoidal
∞-category. We will assume that C is stable, admits small colimits, and that the tensor
product functor

⊗ : C×C→ C

preserves colimits separately in each variable. Let CAlg(C) denote the ∞-category of
commutative algebra objects of C and let 1 denote the unit object of C, which we
identify with the initial object of CAlg(C).

4.2.1 Augmented Commutative Algebras

Let A be a commutative algebra object of C. An augmentation on A is a map of
commutative algebra objects ε : A → 1. An augmented commutative algebra object of
C is a pair (A, ε), where A is a commutative algebra object of C, and ε is an augmentation
on A. The collection of augmented commutative algebra objects of C can be organized
into an ∞-category which we will denote by CAlgaug(C) = CAlg(C)/1.

If (A, ε) is an augmented commutative algebra object of C, we let mA denote the
fiber of the augmentation map ε : A → 1. We will refer to mA as the augmentation
ideal of A. Note that mA inherits the structure of a nonunital commutative algebra
object of C. Moreover, the construction A 7→ mA determines an equivalence from
the ∞-category CAlgaug(C) of augmented commutative algebra objects of C to the ∞-
category CAlgnu(C) of nonunital commutative algebra objects of C (see Proposition
[23].5.4.4.10).

Definition 4.2.1.1. Let Fins denote the category whose objects are finite sets and
whose morphisms are surjective maps. For each integer n ≥ 0, we let Fins≥n denote the
full subcategory of Fins spanned by those finite sets which have cardinality ≥ n.

Suppose that A is an augmented commutative algebra object of C. Then the con-

struction S 7→ m⊗SA determines a functor Fins → C. For each integer n > 0, we let m
(n)
A

denote the colimit lim−→S∈Fins≥n
m⊗S . By convention, we set m

(0)
A = A.
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Example 4.2.1.2. The category Fins≥1 has a final object, given by a 1-element set.
It follows that for every augmented commutative algebra object A of C, we have a

canonical equivalence m
(1)
A ' mA.

Example 4.2.1.3. Let k be a field and let A be an augmented commutative alge-
bra over k (which we regard as a chain complex concentrated in degree zero), with
augmentation ideal mA. Then we can regard mA as a nonunital commutative algebra
object of the symmetric monoidal ∞-category Modk. Then we can think of the object

m
(n)
A ∈ Modk as a “derived version” of the usual nth power ideal mn

A ⊆ A. Multiplica-
tion in A determines a compatible family of maps {m⊗SA → mn

A}S∈Fins≥n
, which can be

amalgamated to give a map m
(n)
A → mn

A. One can show that this map is an equivalence
if k is of characteristic zero and A is smooth over k (this follows from Proposition
4.2.4.2 below).

Remark 4.2.1.4. Let A be an augmented commutative algebra object of C. Then the
inclusions of categories

· · ·Fins
≥3 ↪→ Fins

≥2 ↪→ Fins
≥1

determine maps

· · · → m
(3)
A → m

(2)
A → m

(1)
A ' mA,

depending functorially on A.

Definition 4.2.1.5. Let A be an augmented commutative algebra object of C. We let

cot(A) denote the cofiber of the canonical map m
(2)
A → m

(1)
A ' mA. We will refer to

cot(A) as the cotangent fiber of A.

Remark 4.2.1.6. Let C and D be stable symmetric monoidal ∞-categories which
admit small colimits and for which the tensor product functors

⊗ : C×C→ C ⊗ : D×D→ D

preserve colimits separately in each variable, and let F : C → D be a symmetric
monoidal functor. Then F carries augmented commutative algebra objects A of C to
augmented commutative algebra objects F (A) of D. If F preserves colimits, then we
have a canonical equivalence cot(F (A)) ' F (cot(A)) for each A ∈ CAlgaug(C).

Example 4.2.1.7. Let V be an object of C and let Sym∗(V ) =
⊕

n≥0 Symn(V ) denote
the free commutative algebra object of C generated by V (here Symn(•) denotes the
derived nth symmetric power functor, which carries an object V ∈ C to the coinvariants
for the action of the symmetric group Σn on V ⊗n). The zero map V → 1 determines an
augmentation ε : Sym∗(V ) → 1, whose fiber is given by Sym>0(V ) '

⊕
n>0 Symn(V ).
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For any finite set S, we can identify Sym>0(V )⊗S with the colimit lim−→f :T→S V
⊗T , where

the colimit is taken over all surjections f : T → S. For n > 0, we compute

Sym>0(V )(n) ' lim−→
|S|≥n

Sym>0(V )⊗S

' lim−→
|S|≥n

lim−→
f :T→S

V ⊗T

' lim−→
T

lim−→
f :T→S,|S|≥n

V ⊗T

' lim−→
T

{
V ⊗T if |T | ≥ n
0 if |T | < n.

'
⊕
m≥n

Symm(V ).

Here in each colimit, we allow T to range over the category of finite sets and bijections
and f to range over all surjections. In particular, we have a canonical equivalence
cot(Sym∗(V )) ' V .

4.2.2 Cotangent Fibers and Square-Zero Extensions

Our next goal is to show that if (A, ε) is an augmented commutative algebra object
of C, then the cotangent fiber cofib(A) can be characterized by a universal property
(Proposition 4.2.2.2). First, we need to establish a formal property of Definition 4.2.1.5:

Proposition 4.2.2.1. The formation of cotangent fibers determines a functor cot :
CAlgaug(C)→ C which preserves colimits.

Proof. To show that the functor cot preserves all colimits, it will suffice to show that it
preserves sifted colimits and finite coproducts. Since the tensor product on C preserves
colimits separately in each variable, the functor V 7→ V ⊗S preserves sifted colimits

for every finite set S. It follows that the construction A 7→ cot(m
(n)
A ) commutes with

sifted colimits for each n, so that A 7→ cot(A) commutes with sifted colimits. Since the
functor cot clearly preserves initial objects, we are reduced to showing that it preserves
pairwise coproducts. Let A and B be augmented commutative algebra objects of C; we
wish to show that the canonical map

cot(A)⊕ cot(B)→ cot(A⊗B)

is an equivalence. Resolving the augmentation ideal mA by free augmented commutative
algebras, we can reduce to the case where A ' Sym∗(V ) for some object V ∈ C.
Similarly, we may suppose that B ' Sym∗(W ) for some W ∈ C. In this case, the
desired result follows from Example 4.2.1.7.
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For each object V ∈ C, let 1 ⊕ V denote the trivial square-zero extension of 1 by
V . The construction V 7→ 1⊕ V determines a functor Ω∞ : C→ CAlgaug(C).

Proposition 4.2.2.2. The construction cot : CAlgaug(C) → C is left adjoint to the
formation of trivial square-zero extensions V 7→ 1 ⊕ V . In other words, for every
augmented commutative algebra A ∈ CAlgaug(C) and every object V ∈ C, we have a
canonical homotopy equivalence

MapCAlgaug(C)(A,1⊕ V ) ' MapC(cot(A), V ).

Proof. Theorem [23].7.3.4.13 implies that the functor Ω∞ exhibits C as a stabilization
of the ∞-category CAlgaug(C). In particular, we have an adjunction

CAlgaug(C)
Σ∞ //C,
Ω∞
oo

where Σ∞ : CAlgaug(C) → C denotes the absolute cotangent complex functor intro-
duced in Definition [23].7.3.2.14. The functor Σ∞ is universal among colimit-preserving
functors from CAlgaug(C) to stable ∞-categories. It follows from Proposition 4.2.2.1
that the formation of cotangent fibers factors as a composition

cot : CAlgaug(C)
Σ∞−−→ C

λ−→ C,

where λ is some functor from C to itself. Using Example 4.2.1.7, we obtain equivalences
of functors

idC ' cot ◦ Sym∗ ' λ ◦ (Σ∞ ◦ Sym∗) ' λ,
so that λ is equivalent to the identity functor.

4.2.3 Examples of Cotangent Fibers

Let k be a field and let A be an augmented commutative algebra object of Modk. We
can identify I = H∗(mA) with a maximal ideal in the graded-commutative ring H∗(A).
We may therefore consider the (purely algebraic) Zariski cotangent space I/I2. Note
that I2 is contained in the image of the map

H∗(m⊗2
A )→ H∗(mA) = I,

and therefore also in the kernel of the map H∗(mA)→ H∗(cot(A)). We therefore obtain
a comparison map I/I2 → H∗(cot(A)).

Proposition 4.2.3.1. Let k be a field of characteristic zero, let A be an augmented
commutative algebra object of CAlgk, and suppose that the cohomology H∗(A) is a
graded polynomial ring (that is, H∗(A) is a tensor product of a polynomial ring on
generators of even degree and an exterior algebra on generators of odd degree). Then
the comparison map I/I2 → H∗(cot(A)) is an isomorphism.
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Proof. Choose homogeneous polynomial generators {ti}i∈I of H∗(A) which are annihi-
lated by the augmentation map ε : A→ k. Let V denote the graded vector space freely
generated by homogeneous elements {Ti}i∈I with deg(Ti) = deg(ti) and regard V as a
chain complex with trivial differential. Then we can choose a map of chain complexes
φ0 : V → mA which carries each Ti to a cycle representing the homology class ti. Then
φ0 extends to a map of augmented commutative algebras φ : Sym∗(V ) → A. The
assumption that k has characteristic zero guarantees that the cohomology of Sym∗(V )
is a graded polynomial ring on the generators Ti, so that φ is an equivalence. It follows
from Example 4.2.1.7 that φ determines an equivalence

V ' cot(Sym∗(V ))→ cot(A)

in Modk.

Example 4.2.3.2. Let k be a field of characteristic zero (or, more generally, any
Q-algebra), and let A be an augmented commutative k-algebra with maximal ideal
mA. The cotangent complex LA/k is a chain complex of A-modules, obtained from the
simplicial A-module A ⊗P • ΩP •/k, where P • is a simplicial resolution of A by free k-
algebras. One can show that the cotangent fiber cot(A) is given by the (derived) tensor
product k⊗ALA/k. This follows from Proposition 4.2.3.1 when A is a free algebra over
k, and the general case can be reduced to the case of free algebras using Proposition
4.2.2.1 below.

More generally, if k is arbitrary commutative ring and A ∈ CAlgaug(Modk), then
the cotangent fiber cot(A) can be identified with the tensor product k ⊗A LtA/k, where

LtA/k denotes the complex of topological André-Quillen chains of A over k (Proposition

4.2.2.2).

Example 4.2.3.3 (Rational Homotopy Theory). Let X be a simply connected topo-
logical space, and assume that the cohomology ring H∗(X; Q) is finite-dimensional
in each degree. Let x ∈ X be a base point, so that x determines an augmentation
C∗(X; Q) → C∗({x}; Q) ' Q of commutative algebra objects of the ∞-category
ModQ. We will denote the augmentation ideal by C∗red(X; Q). Then the cotangent
fiber of C∗red(X; Q) is a cochain complex M . One can show that the cohomologies of
this chain complex are given by

Hn(M) = Hom(πn(X,x),Q).

Remark 4.2.3.4. Let k be a field of characteristic zero, and let A be an augmented
commutative algebra object of Modk. One can show that the shifted dual Σ−1 cot(A)∨

of the cotangent fiber cot(A) is quasi-isomorphic to the underlying chain complex of a
differential graded Lie algebra which depends functorially on A. In other words, the
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construction A 7→ Σ−1 cot(A)∨ determines a contravariant functor from the∞-category
of augmented commutative algebra objects of Modk to the ∞-category of differential
graded Lie algebras over k. This construction is adjoint to the functor g 7→ C∗(g)
which carries a differential graded Lie algebra g to the Chevalley-Eilenberg complex
which computes the Lie algebra cohomology of g. See §[24].IV.2 for more details.

4.2.4 The m-adic Filtration

Let k be a field of characteristic zero and let A be an augmented commutative algebra

object of Modk. In good cases, one can recover the tower {cofib(m
(n)
A → A)}n≥1 from

the cotangent fiber cot(A) together with the Lie algebra structure on Σ−1 cot(A)∨.
However, for our applications in this book, it will be sufficient to describe the successive

quotients of the filtration m
(n)
A . This does not require us to consider Lie algebras

structure at all, and works without any restrictions on A or C:

Construction 4.2.4.1. Let A be an augmented commutative algebra object of C, so
that its cotangent fiber is given by

cot(A) ' cofib( lim−→
|T |≥2

m⊗TA → lim−→
|T |≥1

m⊗TA ).

An easy calculation shows that for every finite set S, we can identify cot(mA)⊗S with
the cofiber

cofib( lim−→
f :T

�−→S

m⊗T → lim−→
f :T→S

m⊗TA ),

where the colimits are taken over the category of all finite sets T equipped with a
surjection f : T → S (which, on the left hand side, is required to be non-bijective).

Let J denote the category whose objects are finite sets T equipped with an equiv-
alence relation E such that |T/E| = n, where a morphism from (T,E) to (T ′, E′) is a
surjection of finite sets α : T → T ′ such that xEy if and only if α(x)E′α(y). Let J0

denote the full subcategory of J spanned by those pairs (T,E) where |T | > n. Then
the above considerations determine an equivalence

Symn cot(mA) ' cofib( lim−→
(T,E)∈J0

m⊗TA → lim−→
(T,E)∈J

m⊗TA ).

We have an evident commutative diagram

J0
//

��

J

��
Fins≥n+1

// Fins≥n,
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which determines a map

θ : Symn cot(mA)→ cofib(m
(n+1)
A → m

(n)
A ).

Proposition 4.2.4.2. Let A be an augmented commutative algebra object of C. Then,
for each integer n ≥ 0, Construction 4.2.4.1 determines an equivalence Symn cot(A)→
cofib(m

(n+1)
A → m

(n)
A ). In other words, we have a fiber sequence

m
(n+1)
A → m

(n)
A → Symn cot(mA).

Proof. The case n = 0 follows immediately from our convention m
(0)
A = A. We will

therefore assume n > 0. Let F : Fins → C denote the functor given by F (S) = mS
A.

For every category I equipped with a forgetful functor I → Fins, we let F |I denote
the restriction of F to I, and lim−→(F |I) the colimit of F |I (regarded as a diagram in C).
Unwinding the definitions, we wish to prove that the diagram σ :

lim−→(F |J0
) //

��

lim−→(F |J)

��
lim−→(F |Fins≥n+1

) // lim−→(F |Fins≥n
)

is a pushout diagram in the∞-category C. We will show that this holds for any functor
F : Fins → C.

Let F ′ : Fins≥n → C be a left Kan extension of the functor F |Fins≥n+1
along the

inclusion
Fins≥n+1 ↪→ Fins≥n .

Let U : J→ Fins≥n denote the forgetful functor. Note that for every object (T,E) ∈ J,
the functor U induces an equivalence of categories J/(T,E) → (Fins≥n)/T . It follows that
F ′ ◦ U is a left Kan extension of F |J0

along the inclusion J0 ↪→ J. We may therefore
identify σ with the commutative diagram

lim−→(T,E)∈J F
′(T ) //

��

lim−→(T,E)∈J F (T )

��
lim−→T∈Fins≥n

F ′(T ) // lim−→T∈Fins≥n
F (T ).

For T ∈ Fins≥n, let F ′′(T ) denote the cofiber of the canonical map F ′(T ) → F (T ).
Unwinding the definitions, we are reduced to proving that the map

θ : lim−→
(T,E)∈J

F ′′(T )→ lim−→
T∈Fins

≥n

F ′′(T )
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is an equivalence. Let Fins=n denote the full subcategory of Fins spanned by those sets
having cardinality n, and let J=n ⊆ J denote the inverse image of Fins=n under U . Note
that F ′′(T ) ' 0 if |T | > n, so that F ′′ is a left Kan extension of its restriction to Fins=n
and F ′′ ◦ U is a left Kan extension of its restriction to J=n. We may therefore identify
θ with the canonical map

lim−→
(T,E)∈J=n

F ′′(T )→ lim−→
T∈Fins=n

F ′′(T ).

This map is an equivalence because U induces an equivalence of categories J=n →
Fins=n.

4.2.5 Convergence of the m-adic Filtration

Let A be an augmented commutative algebra object of C. It follows from Proposition
4.2.4.2 that the successive quotients of the filtration

· · · → m
(3)
A → m

(2)
A → m

(1)
A → m

(0)
A = A

can be functorially recovered from the cotangent fiber cot(A). We next study a condi-
tion which guarantees that this filtration is convergent, so that information about the
cotangent fiber cot(A) gives information about the algebra A itself.

Proposition 4.2.5.1. Suppose that C = Modk, where k is a field of characteristic
zero. Let A be an augmented commutative algebra object of C whose augmentation

ideal mA belongs to (Modk)≤−1. Then, for every integer n > 0, the object m
(n)
A belongs

to (Modk)≤−n. In particular, the inverse limit lim←−m
(n)
A vanishes in C.

The proof of Proposition 4.2.5.1 depends on the following elementary combinatorial
fact about t-structures:

Lemma 4.2.5.2. Let C be a stable ∞-category which admits small colimits, equipped
with a t-structure which is compatible with filtered colimits (that is, the full subcategory
C≤0 is closed under filtered colimits). Let P be a partially ordered set, let λ : P → Z≥0

be a strictly monotone function, and suppose we are given a functor G : N(P )op → C

such that G(x) ∈ C≤−n−λ(x) for each x ∈ P . Then the colimit lim−→G belongs to C≤−n.

Proof of Proposition 4.2.5.1. We define a category I as follows:

• The objects of I are diagrams

S0
φ1−→ S1

φ2−→ · · · φd−→ Sd,

where each Si is a finite set of cardinality ≥ n, and each of the maps φi is surjective
but not bijective.
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• Let ~S = (S0 → S1 → · · · → Sd) and ~T = (T0 → T1 → · · · → Te) be objects of
I. A morphism from ~S to ~T in I consists of a map α : {0, . . . , e} → {0, . . . , d},
together with a collection of bijections Sα(i) ' Ti for which the diagrams

Sα(i)
//

��

Sα(i+1)

��
Ti // Ti+1

commute.

We have an evident forgetful functor ρ : I → Fins≥n, given by (S0 → · · · → Sd) 7→ S0.
We first prove:

(∗) The functor ρ is left cofinal.

Fix a finite set T of cardinality ≥ n, and define

IT/ = I×Fins≥n
(Fins≥n)T/.

To prove (∗), we must show that each of the categories IT/ has weakly contractible nerve.
Unwinding the definitions, we can identify objects of IT/ with chains of surjections

T
ψ−→ S0

φ1−→ S1
φ2−→ · · · φd−→ Sd,

where the maps φi are not bijective. Let I◦T/ denote the full subcategory of IT/ spanned
by those objects for which ψ is bijective. Since the inclusion I◦T/ ↪→ IT/ admits a right
adjoint, it will suffice to prove that the category I◦T/ has weakly contractible nerve.

This is clear, since I◦T/ contains a final object (given by the map T
id−→ T ).

Let F : I→ C denote the functor given by the formula

F (S0 → · · · → Sd) = m⊗S0
A .

It follows from (∗) that we can identify m(d) with the colimit lim−→(F ). Let P denote the
set of all finite subsets of Z≥n, partially ordered by inclusion. The construction

(S0 → S1 → · · · → Sd) 7→ {|S0|, |S1|, . . . , |Sd|}

determines a functor ρ′ : I→ P op. Let G : N(P )op → C denote a left Kan extension of
F along ρ′, so that m(n) ' lim−→J∈P G(J).

Fix a finite subset J ⊆ Z≥n. Since ρ′ is a coCartesian fibration, G is given by the
formula G(J) = lim−→F |J×Pop{J}. For every object ~S = (S0 → · · · → Sd) in J×P op{J},
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the set S0 has cardinality ≥ d + |Sd| ≥ d + n = |J | + n − 1. The category J×P op{J}
is a groupoid in which every object has a finite automorphism group. It follows that
G(J) can be written as a direct sum of objects of the form (m⊗TA )Γ, where T is a finite
set of cardinality |J |+n− 1 and Γ is a finite group acting on m⊗TA via permutations of
T . Since k has characteristic zero, it follows that G(J) ∈ (Modk)≤1−n−|J |. The desired
result now follows from Lemma 4.2.5.2 (take λ : P → Z≥0 to be the function given by
λ(J) = |J | − 1).

Proof of Lemma 4.2.5.2. We will prove the following more general assertion: for every
simplicial subset K ⊆ N(P )op, the colimit lim−→(G|K) belongs to C≤−n. Writing K as a
filtered colimit of finite simplicial sets, we may reduce to the case where K is finite. We
proceed by induction on the number of nondegenerate simplices of K. If K is empty,
there is nothing to prove. Otherwise, we can choose a pushout diagram

∂∆m //

��

K0

��
∆m // K.

Since lim−→(G|K0) ∈ C≤−n by the inductive hypothesis, it will suffice to prove that the
cofiber of the canonical map θ : lim−→(G|K0) → lim−→(G|K) belongs to C≤−n. For this, we
may replace K by ∆m and K0 by ∂∆m. Let x ∈ P op denote the image of the final
vertex {m} ∈ ∆m. We will prove that cofib(θ) ∈ C≤−n−λ(x). The proof proceeds by
induction on m. If m = 0, then cofib(θ) = G(x) and there is nothing to prove. If
m > 0, then the inclusion Λmm ↪→ ∆m is right anodyne and therefore left cofinal. It
follows that the composite map

lim−→(G|Λmm)
θ′−→ lim−→(G|∂∆m)

θ−→ lim−→(G∆m)

is an equivalence, so that cofib(θ) ' Σ cofib(θ′). Using the pushout diagram of simplicial
sets

∂∆m−1 //

��

∆m−1

ι

��
Λmm // ∂∆m,

we can identify cofib(θ′) with the cofiber of the induced map θ′′ : lim−→(G|∂∆m−1) →
lim−→(G|∆m−1). Let y ∈ P denote the image of the final vertex of ∆m−1. Then y > x.
Since λ is monotone, we have λ(y) > λ(x). Using the inductive hypothesis, we deduce
that

cofib(θ′′) ∈ C≤−n−λ(y) ⊆ C≤−n−1−λ(x),

so that cofib(θ) ' Σ cofib(θ′) ' Σ cofib(θ′′) ∈ C≤−n−λ(x), as desired.
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4.2.6 Application: Linearizing the Product Formula

Let us now return to the setting of algebraic geometry. Let X be an algebraic curve
defined over an algebraically closed field k, and let G be a smooth affine group scheme
over X. In §4.1, we constructed a canonical map

ρ :

∫
X

[BG]X → C∗(BunG(X); Z`),

and asserted that it is an equivalence under some mild hypotheses on G (Theorem
4.1.2.1). In principle, this result gives a complete description of the `-adic cohomology
H∗(BunG(X); Z`). This description is somewhat unwieldy in practice, since it uses the
formalism of factorization homology (Definition 4.1.1.3). Nevertheless, we will see that
it yields very concrete information about the cotangent fiber of C∗(BunG(X); Z`).

Let BG denote the classifying stack of G. We begin by noting that the projec-
tion map BG → X admits a canonical section, classifying the trivial G-bundle on X,
which we can also identify with a k-valued point of the moduli stack BunG(X). By
functoriality, we obtain restriction maps

ε : [BG]X → [X]X = ωX ε′ : C∗(BunG(X); Z`)→ C∗(Spec(k); Z`) ' Z`,

which equip [BG]X and C∗(BunG(X); Z`) with the structures of augmented commuta-
tive algebra objects of the ∞-categories Shv`(X) and ModZ` , respectively.

Let e : X ×Spec(k) BunG(X)→ BG be the evaluation map and let π : X → Spec(k)
be the projection. Then we can regard the map

[BG]X
e∗−→ [X ×Spec(k) BunG(X)]X ' π!C∗(BunG(X); Z`)

described in §4.1.2 as a morphism of augmented commutative algebra objects of Shv`(X).
Passing to cotangent fibers, we obtain a map

µ : cot([BG]X)→ cot(π!C∗(BunG(X); Z`)) ' π! cot(C∗(BunG(X); Z`))

(where the identification is supplied by Remark 4.2.1.6). We then have the following:

Theorem 4.2.6.1. Let G be a smooth affine group scheme over X. Assume that the
fibers of G are connected and that the generic fiber is semisimple and simply connected.
Then the map µ : cot([BG]X) → π! cot(C∗(BunG(X); Z`)) described above induces an
equivalence

θ : π∗ cot([BG]X)→ cot(C∗(BunG(X); Z`))

in the ∞-category Shv`(Spec(k)) ' ModZ`.
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Proof. Fix an object M ∈ ModZ` ; we wish to show that composition with θ induces a
homotopy equivalence

θM : MapModZ`
(cotC∗(BunG(X); Z`),M)→ MapModZ`

(π∗ cot[BG]X ,M).

Using the universal property of the cotangent fiber (Proposition 4.2.2.2), we obtain
homotopy equivalences

MapModZ`
(cotC∗(BunG(X); Z`),M) ' MapCAlgaug(ModZ`

)(C
∗(BunG(X); Z`),Z` ⊕M)

MapModZ`
(π∗ cot[BG]X ,M) ' MapCAlgaug(Shv`(X))([BG]X , ωX ⊕ π!M).

It will therefore suffice to show that the diagram of spaces

MapCAlg(ModZ`
)(C
∗(BunG(X); Z`),Z` ⊕M) //

��

MapCAlg(Shv`(X))([BG]X , ωX ⊕ π!M)

��
MapCAlg(ModZ`

)(C
∗(BunG(X); Z`),Z`) //MapCAlg(Shv`(X))([BG]X , ωX)

is a homotopy pullback square. In fact, the horizontal maps in this diagram are homo-
topy equivalences by virtue of Theorem 4.1.2.1 (see Remark 4.1.2.3).

Remark 4.2.6.2. Theorem 4.2.6.1 is strictly weaker than Theorem 4.1.2.1. In prin-
ciple, Theorem 4.1.2.1 gives complete information about the cohomology of BunG(X)
with coefficients in Z` (though that information might be difficult to access). By con-
trast, Theorem 4.2.6.1 gives only rational information: one can show that the cotangent
fibers cot([BG]X) and cot(C∗(BunG(X); Z`)) are modules over Q`.

4.3 Convergent Frob-Modules

Let k be an algebraically closed field, let X be an algebraic curve over k, and let G be
a smooth affine group scheme over X. Suppose that X and G are defined over a finite
field Fq ⊆ k, so that the moduli stack BunG(X) is equipped with a geometric Frobenius
map Frob : BunG(X) → BunG(X). To prove Theorem 1.4.4.1, we need to compute
the trace Tr(Frob−1 |H∗(BunG(X); Z`)). However, this requires some care: typically
the cohomology groups Hn(BunG(X); Z`) are nonzero for infinitely many values of n.
We therefore devote this section to a careful discussion of the convergence issues which
arise when working with infinite sums such as

Tr(Frob−1 |H∗(BunG(X); Z`)) =
∑
n≥0

(−1)n Tr(Frob−1 |Hn(BunG(X); Z`)).



4.3. CONVERGENT Frob-MODULES 241

4.3.1 Definitions

Throughout this section, we fix a prime number ` and an embedding of fields ι : Q` ↪→
C.

Definition 4.3.1.1. Let V ∗ be a graded vector space over Q` and F an endomorphism
of V ∗. We will say that (V ∗, F ) is convergent if the following conditions are satisfied:

(1) The vector space V m is finite-dimensional for every integer m.

(2) For each λ ∈ C and every integer m, let dλ,m denote the dimension of the gen-
eralized λ-eigenspace of F on the complex vector space C ⊗Q`

V m. Then the
sum ∑

m,λ

dλ,m|λ|

is convergent.

If (V ∗, F ) is convergent, we let |V ∗|F denote the nonnegative real number
∑

m,λ dλ,m|λ|;
we will refer to |V ∗|F as the norm of the pair (V ∗, F ). We let Tr(F |V ∗) denote the
complex number

∑
m,λ(−1)mdλ,mλ. Note that this sum converges absolutely, and we

have |Tr(F |V ∗)| ≤ |V ∗|F .

Remark 4.3.1.2. The definition of a convergent pair (V ∗, F ) and the trace Tr(F |V ∗)
depend on a choice of embedding ι : Q` → C. However, for the pairs (V ∗, F ) of interest
to us, the traces Tr(F |V ∗) can be shown to be independent of ι.

Remark 4.3.1.3. Suppose we are given graded Q` vector spaces V ′∗, V ∗, and V ′′∗

equipped with endomorphisms F ′, F , and F ′′ respectively, together with a long exact
sequence

· · · → V ′′n−1 → V ′n → V n → V ′′n → V ′n+1 → · · ·

compatible with the actions of F , F ′, and F ′′. If (V ′∗, F ′) and (V ′′∗, F ′′) are convergent,
then (V ∗, F ) is also convergent. Moreover, in this case we have

|V ∗|F ≤ |V ′∗|F ′ + |V ′′∗|F ′′ Tr(F |V ∗) = Tr(F ′|V ′∗) + Tr(F ′′|V ′′∗).

4.3.2 The Case of an Augmented Algebra

We again fix a prime number ` and an embedding ι : Q` ↪→ C. The following result
will play a key role in our proof of Weil’s conjecture (essentially, it allows us to reduce
a multiplicative problem to an additive one):
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Proposition 4.3.2.1. Let A be an augmented commutative algebra object of ModQ`

equipped with an automorphism F . We let V = cot(A) denote the cotangent fiber of A,
so that F determines an automorphism of V (which we will also denote by F ). Suppose
that the following conditions are satisfied:

(1) The augmentation ideal mA belongs to (ModQ`
)≤−1.

(2) The graded Q`-vector space H∗(V ) is finite-dimensional.

(3) For every integer i and every eigenvalue λ of F on C⊗Q`
Hi(V ), we have |λ| < 1.

Then (H∗(A);F ) is convergent. Moreover, we have

Tr(F |H∗(A)) = exp(
∑
n>0

1

n
Tr(Fn|H∗(V ))),

where the sum on the right hand side is absolutely convergent.

Remark 4.3.2.2. Proposition 4.3.2.1 asserts that, under mild hypotheses, the trace
of F on the cohomology of A is equal to the trace of F on the cohomology of the
symmetric algebra Sym∗(V ).

Remark 4.3.2.3. Let V ∗ be a finite-dimensional graded Q`-vector space equipped
with an automorphism F . We define the L-function of the pair (V ∗, F ) to be the
rational function of one variable t given by the formula

LV ∗,F (t) =
∏
m∈Z

det(1− tF |V m)(−1)m+1
.

An easy calculation yields

LV ∗,F (t) = exp(
∑
n>0

tn

n
Tr(Fn|H∗(V )))

for |t| < C, where C = sup{ 1
|λ|} where λ ranges over the eigenvalues of F . In particular,

if all of the eigenvalues of F have complex absolute values < 1, then we have

LV ∗,F (1) = exp(
∑
n>0

1

n
Tr(Fn|H∗(V ))).

In the situation of Proposition 4.3.2.1, we can rewrite the conclusion as

Tr(F |H∗(A)) = LH∗(cotA),F (1) =
∏
m>0

det(1− F |Hm(V ))(−1)m+1
.
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4.3.3 The Proof of Proposition 4.3.2.1

Fix an augmented commutative algebra A ∈ CAlgaug
Q`

satisfying the hypotheses of

Proposition 4.3.2.1, and set V = cot(A). Write the graded vector space H∗(V ) as a
direct sum Heven(V )⊕Hodd(V ). Let {λ1, . . . , λm} denote the eigenvalues of F on C⊗Q`

Heven(V ) (counted with multiplicity), and let {µ1, . . . , µm′} denote the eigenvalues of
F on C⊗Q`

Hodd(V ) (again counted with multiplicity). For every integer n ≥ 0, we set

sn =
∑

n=n1+···+nm+|S|,S⊆{1,...,m′}

(
∏

1≤i≤m
|λi|ni

∏
j∈S
|µj |)

σn =
∑

n=n1+···+nm+|S|,S⊆{1,...,m′}

(
∏

1≤i≤m
λnii

∏
j∈S
−µj).

It follows from (3) that the sum s0 + s1 + s2 + · · · converges to∏
1≤i≤m

1

1− |λi|
∏

1≤j≤m′
(1 + |µj |),

so that the sum σ0 + σ1 + σ2 + · · · converges absolutely to∏
1≤i≤m

1

1− |λi|
∏

1≤j≤m′
(1− µj).

For each n ≥ 0, we can identify H∗(Symn(V )) with the nth symmetric power of
H∗(V ) (in the category of graded vector spaces with the usual sign convention). It
follows that

|H∗(Symn(V ))|F = sn Tr(F |H∗(Symn(V ))) = σn.

Let mA denote the augmentation ideal of A. For each integer n ≥ 1, let m
(n)
A be as in

Definition 4.2.1.1, and set m
(0)
A = A. For every pair of integers i ≤ j, let Qi,j denote

the cofiber of the map m
(j)
A → m

(i)
A . If i < j, then Proposition 4.2.4.2 supplies a fiber

sequence

Qi+1,j → Qi,j → Symi(V ).

Applying Remark 4.3.1.3 repeatedly, we deduce that each pair (H∗(Qi,j), F ) is conver-
gent, with

|H∗(Qi,j)|F ≤ si + · · ·+ sj−1 Tr(F |H∗(Qi,j)) = σi + · · ·+ σj−1.

We next prove the following:
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(∗) For each integer n, the pair (H∗(m
(n)
A ), F ) is convergent, with

|H∗(m(n)
A )|F ≤ sn + sn+1 + · · · .

For every integer d ≥ 0, set W (d)∗ =
⊕

i≤d Hi(m
(n)
A ). To prove (∗), it will suffice to

show that each of the pairs (W (d)∗, F ) is convergent with |W (d)∗|F ≤ sn + sn+1 + · · · .
Without loss of generality we may assume that d > n. It follows from Proposition

4.2.5.1 that the map Hi(m
(n)
A )→ Hi(Qn,d+2) is an isomorphism for i ≤ d, so that

|W (d)∗|F ≤ |H∗(Qn,d+2)|F ≤ sn + · · ·+ sd+1 ≤
∑
n′≥n

sn′ <∞,

as desired.
Applying (∗) when n = 0, we deduce that (H∗(A), F ) is convergent. Moreover, for

every integer n, applying Remark 4.3.1.3 to the fiber sequence

m
(n)
A → A→ Q0,n

gives an inequality

|Tr(F |H∗(A))− σ0 − · · · − σn−1| = |Tr(F |H∗(A))− Tr(F |H∗(Q0,n))|

= |Tr(F |H∗(m(n)
A ))|

≤ |H∗(m(n)
A )|F

≤ sn + sn+1 + · · · .

It follows that Tr(F |H∗(A)) is given by the absolutely convergent sum∑
n≥0

σn =
∏

1≤i≤m

1

1− λi

∏
1≤j≤m′

(1− µj).

In particular, we have

log Tr(F |H∗(A)) =
∑

1≤i≤m
log

1

1− λi
−

∑
1≤j≤m′

log
1

1− µi

=
∑

1≤i≤m

∑
n>0

1

n
λni −

∑
1≤j≤m′

∑
n>0

1

n
µnj

=
∑
n>0

1

n
(
∑

1≤i≤m
λni −

∑
1≤j≤m′

µnj )

=
∑
n>0

1

n
Tr(Fn|H∗(V )).
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4.4 The Trace Formula for BG

Let G be a connected linear algebraic group defined over a finite field Fq, and let
BG denote its classifying stack. A theorem of Lang asserts that every G-bundle is
trivial (Theorem 1.3.2.8), and the automorphism group of the trivial G-bundle can be
identified with the finite group G(Fq) of rational points of G. Consequently, the mass
of the groupoid BG(Fq) (in the sense of Definition 1.3.3.1) is equal to 1

|G(Fq)| . In this

section, we will verify that the classifying stack BG satisfies the Grothendieck-Lefschetz
trace formula in the form

Tr(Frob−1 |H∗(BG; Q`)) =
|BG(Fq)|
qdim(BG)

=
qdim(G)

|G(Fq)|

(Proposition 4.4.4.1). This is a special case of a more general result for global quotient
stacks, which we will discuss in Chapter 5 (see Corollary 5.1.0.4). However, we give a
direct argument in this section in order to highlight some ideas which will be useful for
analyzing moduli stacks of bundles on algebraic curves in §4.5.

4.4.1 The Motive of an Algebraic Group

We begin by establishing some terminology.

Notation 4.4.1.1. Let k be a field, let ` be a prime number which is invertible in k,
and let k be an algebraic closure of k. Let Y be an algebraic stack defined over k, so
that Y = Y×Spec(k) Spec(k) can be regarded as an algebraic stack over the algebraically

closed field k. We let C∗gm(Y) denote the cochain complex C∗(Y; Z`)[`
−1] ∈ ModQ`

. We
will refer to C∗gm(Y) as the geometric cochain complex of Y. We let H∗gm(Y) denote the
cohomology of the cochain complex C∗gm(Y); we will refer to H∗gm(Y) as the geometric
cohomology of Y. Note that the cochain complex C∗gm(Y) and its cohomology H∗gm(Y)

are equipped with an action of the absolute Galois group Gal(k/k).

Remark 4.4.1.2. The definition of the geometric cohomology H∗gm(Y) depends on the

choice of an algebraic closure k of k and the choice of prime number ` which is invertible
in k. However, to avoid making the exposition too burdensome, we will often neglect
to mention these choices explicitly.

Warning 4.4.1.3. In the situation of Notation 4.4.1.1, the geometric cohomology
H∗gm(Y) comes equipped with a canonical map

θ : H∗gm(Y)→ H∗(Y; Q`).
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This map is an isomorphism if Y is of finite type over k (Proposition 3.2.5.4), but not
in general. For example, if Y is a disjoint union of countably many copies of Spec(Fq),
then θ is given by the canonical monomorphism

(
∏
i≥0

Z`)[`
−1]→

∏
i≥0

Q` .

Remark 4.4.1.4. Let Y be a smooth algebraic variety of dimension d over a finite
field Fq, so that the geometric cohomology H∗gm(Y ) is equipped with a geometric
Frobenius automorphism Frob. Since H∗gm(Y ) is a finite-dimensional vector space over

Q`, the pair (H∗gm(Y ),Frob−1) is automatically convergent (in the sense of Defini-
tion 4.3.1.1). Moreover, the Grothendieck-Lefschetz trace formula yields an equality
Tr(Frob−1 |H∗gm(Y )) = q−d|Y (Fq)| (see Theorem 1.4.2.4).

Definition 4.4.1.5. Let G be a connected algebraic group defined over a field k and
let I = H>0

gm(G) denote the (two-sided) ideal in H∗gm(G) generated by homogeneous
elements of positive degree. We define the motive of G to be the quotient I/I2, which
we regard as a representation of the absolute Galois group Gal(k/k).

Remark 4.4.1.6. For a reductive group G over a field k, the motive M(G) was intro-
duced by Gross in [14]. Definition 4.4.1.5 appears in [40]. Beware that our conventions
differ from those of [14] and [40] by a Tate twist (the motive of G is defined in [14] to
be the tensor product Q`(1)⊗Q`

M(G); see Remark 4.5.1.5 below).

Remark 4.4.1.7. In the case where k = C is the field of complex numbers, the motive
M(G) of an algebraic group G can be identified with the tensor product Q`⊗QV , where
V is the rational vector space appearing in the statement of the Atiyah-Bott formula
(Theorem 1.5.2.3).

Remark 4.4.1.8. Let φ : G → H be an isogeny between connected algebraic groups
over a field k. Then φ induces an isomorphism φ∗ : H∗gm(H)→ H∗gm(G), which restricts

to a Gal(k/k)-equivariant isomorphism M(H) 'M(G).

4.4.2 Digression: The Eilenberg-Moore Spectral Sequence

Let k be an algebraically closed field, which we regard as fixed throughout this section.
If X and Y are quasi-projective k-schemes, then Theorem 3.3.1.1 supplies a quasi-
isomorphism of `-adic cochain complexes

C∗(X; Z`)⊗Z` C
∗(Y ; Z`)→ C∗(X ×Spec(k) Y ; Z`).
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In other words, the pullback diagram of schemes

X ×Spec(k) Y //

��

X

��
Y // Spec(k)

induces a pushout diagram

C∗(X ×Spec(k) Y ; Z`) C∗(X; Z`)oo

C∗(Y ; Z`)

OO

C∗(Spec(k); Z`)

OO

oo

of E∞-algebras over Z`. We will need the following variant:

Proposition 4.4.2.1. Let H be a connected algebraic group over k, let BH denote the
classifying stack of H, let Y be an algebraic stack equipped with a map π : Y → BH,
and form a pullback square

Y //

��

Y

��
Spec(k) // BH .

Then the associated diagram of cochain complexes

C∗(Y; Z`) C∗(Y; Z`)oo

C∗(Spec(k); Z`)

OO

C∗(BH; Z`)oo

OO

is a pushout diagram of E∞-algebras over Z`.

Remark 4.4.2.2 (The Cohomological Eilenberg-Moore Spectral Sequence). In the sit-
uation of Proposition 4.4.2.1, it follows that there exists a convergent spectral sequence

TorH∗(BH;Z`)
s (H∗(Y; Z`),Z`)⇒ H∗−s(Y; Z`).

We will deduce Proposition 4.4.2.1 from the following technical result, whose proof
we defer to the end of §4.4.

Lemma 4.4.2.3. Let A• be a cosimplicial object of Alg(ModZ`). Suppose we are given
a cosimplicial right A•-module M• and a cosimplicial left A•-module N• satisfying the
following requirements:
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(a) For each integer n ≥ 0, the homology groups H∗(M
n), H∗(N

n), and H∗(A
n)

vanish for ∗ > 0.

(b) For each integer n ≥ 0, the unit map Z` → H0(An) is an isomorphism.

(c) For each integer n ≥ 0, the homology group H−1(An) is torsion-free.

Then the canonical map

θ : Tot(M•)⊗Tot(A•) Tot(N•)→ Tot(M• ⊗A• N•)

is an equivalence in ModZ`.

Proof of Proposition 4.4.2.1. Let U0 = Spec(k), and let U• denote the simplicial scheme
given by the nerve of the smooth map U0 → BH (so that Ud ' Hd). For each integer
d ≥ 0, the pullback diagram σd:

Y×BH Ud

��

// Y×BHUd

��
Spec(k)×BH Ud // Ud

can be rewritten as
Y×Spec(k) H

d+1 //

��

Y×Spec(k) H
d

��
Hd+1 // Hd.

Using Variant 3.4.5.5, we deduce that σd determines a pushout square

C∗(Y×BH Ud; Z`) C∗(Y×BHUd; Z`)oo

C∗(Spec(k)×BH Ud; Z`)

OO

C∗(Ud; Z`)oo

OO

in ModZ` . We may therefore identify C∗(C) with Tot(M• ⊗A• N•), where A• =
C∗(U•; Z`), M

• = C∗(C×BHU•; Z`), and N• = C∗(Spec(k) ×BH U•; Z`). To prove
Proposition 4.4.2.1, we must show that the canonical map

θ : Tot(M•)⊗Tot(A•) Tot(N•)→ Tot(M• ⊗A• N•)

is an equivalence in ModZ` . For this, it will suffice to show that A•, M•, and N• satisfy
the hypotheses of Lemma 4.4.2.3. Hypothesis (a) is obvious, and hypotheses (b) and
(c) follow from our assumption that H is connected.
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4.4.3 The Motive as a Cotangent Fiber

In §4.4.1, we defined the motive M(G) of a connected algebraic group G defined over a
field k (Definition 4.4.1.5). In this section, we will provide two alternative descriptions
of M(G): one in terms of the cotangent fiber of the geometric cohomology of G (Propo-
sition 4.4.3.1), and one in terms of the cotangent fiber of the geometric cohomology of
BG (Remark 4.4.3.2).

Proposition 4.4.3.1. Let G be a connected algebraic group defined over a field k and
let I = H>0

gm(G). Then the canonical map

M(G) = I/I2 → H∗(cotC∗gm(G))

(see §4.2.3) is an isomorphism.

Proof. The group law m : G×Spec(k) G→ G induces a comultiplication

m∗ : H∗gm(G)→ H∗gm(G)⊗Q`
H∗gm(G),

which endows H∗gm(G) with the structure of a finite-dimensional graded-commutative
Hopf algebra over Q`. Since G is connected, it follows that H∗gm(G) is isomorphic to
an exterior algebra on finitely many generators x1, . . . , xr of odd degrees d1, . . . , dr (see
[26]). The desired result now follows from Proposition 4.2.3.1.

Remark 4.4.3.2. Let G be a connected algebraic group over a field k. We have a
pullback diagram of algebraic stacks

G //

��

Spec(k)

��
Spec(k) // BG .

Applying Proposition 4.4.2.1, we obtain a pushout square

C∗gm(G) C∗gm(Spec(k))oo

C∗gm(Spec(k))

OO

C∗gm(BG)

OO

oo

of augmented commutative algebra objects of ModQ`
, hence a pushout diagram of

cotangent fibers
cotC∗gm(G) 0oo

0

OO

cotC∗gm(BG);

OO

oo
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see Proposition 4.2.2.1 (here we regard BG as equipped with the base point Spec(k)→
BG corresponding to the trivial G-bundle, and G as equipped with the base point
Spec(k)→ G given by the identity section). In other words, we can identify cotC∗gm(G)

with the suspension Σ cotC∗gm(BG). In particular, we obtain a Gal(k/k)-equivariant
isomorphism M(G) ' H∗(cotC∗gm(BG)) (which shifts the grading by 1).

Remark 4.4.3.3. Let G be a connected algebraic group over a field k. One can show
that the geometric cohomology ring H∗gm(BG) is a polynomial ring on generators of even
degree. It follows from Proposition 4.2.3.1 and Remark 4.4.3.2 that the motive M(G)
can be identified with the quotient J/J2, where J = H>0

gm(BG) is the ideal generated
by elements of positive degree.

Remark 4.4.3.4. Let G be a reductive algebraic group over a field k and let G′ be
a quasi-split inner form of G. Then there exists a Gal(k/k)-equivariant isomorphism
M(G) ' M(G′). To prove this, we may assume without loss of generality that G and
G′ are adjoint (Remark 4.4.1.8). In this case, the classifying stacks BG and BG′ are
equivalent to one another, so the desired result follows from the characterization of
M(G) and M(G′) given in Remark 4.4.3.3.

Since G′ is quasi-split, we can choose a Borel subgroup B′ ⊆ G′. Let T ′ ⊆ B′ be
a maximal torus and let Λ be the character lattice of Spec(k) ×Spec(k) T

′. The Galois

group Gal(k/k) acts on Λ preserving a system of positive roots, and there is a canonical
Gal(k/k)-equivariant isomorphism

H∗gm(BT′) ' Sym∗(Q`(−1)⊗Z Λ).

One can show that the restriction map H∗gm(BG′) → H∗gm(BT′) is injective, and its
image consists of those elements of H∗gm(BT′) which are invariant under the action of

the Weyl group (N(T ′)/T ′)(k). Combining this observation with Remark 4.4.3.3, we
obtain a very explicit description of the motive M(G) 'M(G′), which agrees with the
definition given in [14] (up to a Tate twist); see [40] for a more detailed explanation.

4.4.4 Proof of the Trace Formula

We now specialize to the case of algebraic groups defined over finite fields.

Proposition 4.4.4.1. Let G be a connected linear algebraic group of dimension d
defined over a finite field Fq and let BG denote its classifying stack. Assume that ` is
invertible in Fq. Then (H∗gm(BG),Frob−1) is convergent, and we have

Tr(Frob−1 |H∗gm(BG)) =
qd

|G(Fq)|
.
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Moreover, both sides are equal to

exp(
∑
n>0

1

n
Tr(Frob−n |M(G))) = det(1− Frob−1 |M(G))−1,

where M(G) denotes the motive of G.

We will need the following:

Lemma 4.4.4.2. Let G be a connected linear algebraic group over a finite field Fq.
Then each eigenvalue of the Frobenius automorphism Frob on the motive M(G) has
complex absolute value ≥ q. If G is semisimple, then each eigenvalue has complex
absolute value ≥ q2.

Proof. Since Fq is perfect, the unipotent radical U of G is defined over Fq. Replacing
G by the quotient G/U , we may reduce to the case where G is reductive. In this case,
the assertion follows immediately from the explicit description of M(G) supplied by
Remark 4.4.3.4.

Proof of Proposition 4.4.4.1. Proposition 4.4.3.1 and Remark 4.4.3.2 supply Frobenius-
equivariant isomorphisms

H∗(cotC∗gm(BG)) 'M(G) ' H∗(cotC∗gm(G)),

where the groups on the left hand side are concentrated in even degrees and the groups
on the right hand side are concentrated in odd degrees. Applying Proposition 4.3.2.1 to
the augmented commutative algebras C∗gm(BG) and C∗gm(G) and using Remark 4.4.1.4,
we obtain

Tr(Frob−1 |H∗gm(BG)) = exp(
∑
n>0

1

n
Tr(Frob−n |M(G)))

= exp(
∑
n>0

−1

n
Tr(Frob−n |M(G)))−1

= Tr(Frob−1 |H∗gm(G))−1

= (q−d|G(Fq)|)−1

=
qd

|G(Fq)|
.

Remark 4.4.4.3. We can rewrite the final assertion of Proposition 4.4.4.1 as a formula

|G(Fq)| = qd det(1− Frob−1 |M(G)) = qd det(1− Frob |M(G)∨)

for the order of the finite group G(Fq); this formula is due originally to Steinberg ([36]).
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4.4.5 The Proof of Lemma 4.4.2.3

We conclude this section with the proof of Lemma 4.4.2.3. This will require some
preliminary algebraic results.

Lemma 4.4.5.1. Let M• be a cosimplicial object of (ModZ`)≤0 and let N ∈ (ModZ`)≤0.
Then the canonical map

Tot(M•)⊗Z` N → Tot(M• ⊗Z` N)

is an equivalence.

Proof. For each integer p ≥ 0, let K(p) denote the pth partial totaliation of M•. Since
the operation of tensoring with N is exact, we can identify K(p) ⊗Z` N with the pth
partial totalization of M• ⊗Z` N . It will therefore suffice to show that the canonical
map

θ : (lim←−K(p))⊗Z` N → lim←−(K(p)⊗Z` N)

is an equivalence. Note that for each q ≥ 0, we have a commutative diagram

(lim←−K(p))⊗Z` N
θ //

φ

((

lim←−(K(p)⊗Z` N)

ψvv
K(q)⊗Z` N,

where the fibers of φ and ψ belong to (ModZ`)≤−q. It follows that the fiber of θ belongs
to (ModZ`)≤−q for all q, so that θ is an equivalence.

Lemma 4.4.5.2. Let M• and N• be cosimplicial objects of (ModZ`)≤0. Then the
canonical map

θ : Tot(M•)⊗Z` Tot(N•)→ Tot(M• ⊗Z` N
•)

is an equivalence.

Proof. Let ∆ denote the category whose objects are the nonempty linearly ordered
sets [n] = {0, . . . , n} and whose morphisms are nondecreasing maps. Then the diagonal
map ∆ → ∆×∆ is right cofinal (Lemma [25].5.5.8.4), so that we can identify θ with
the natural map

( lim←−
[m]∈∆

Mm)⊗Z` ( lim←−
[n]∈∆

Nn)→ lim←−
[m],[n]∈∆

(Mm ⊗Z` N
n).

This follows from two applications of Lemma 4.4.5.1.
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Proof of Lemma 4.4.2.3. If A is an associative algebra object of ModZ` equipped with
a right A-module M and a left A-module N , then the tensor product M ⊗A N can be
computed as the geometric realization of a simplicial object BarA(M,N)• with

BarA(M,N)q 'M ⊗Z` A
⊗q ⊗Z` N

•.

For each integer d, we let Bd
A(M,N) denote the realization of the d-skeleton of this

simplicial object, so we have a sequence

M ⊗Z` N ' B
0
A(M,N)→ B1

A(M,N)→ · · ·

with colimit M⊗AN . Moreover, if we let A denote the cofiber of the unit map Z` → A,
then we have cofiber sequences

Bd−1
A (M,N)→ Bd

A(M,N)→M ⊗Z` (ΣA)⊗d ⊗Z` N.

If A•, M•, and N• are as in the statement of Lemma 4.4.2.3, then assumption (a)
and Lemma 4.4.5.2 supply equivalences

Bd
Tot(A•)(Tot(M•),Tot(N•)) ' Tot(Bd

A•(M
•, N•))

for each integer d ≥ 0. We may therefore identify θ with the canonical map

lim−→
d

Tot(Bd
A•(M

•, N•))→ Tot(lim−→
d

Bd
A•(M

•, N•)).

To prove that this map is an equivalence, it will suffice to show that there exists an
integer k such that Bd

Ap(M
p, Np) belongs to (ModZ`)≤k for all p, d ≥ 0. We claim that

this is satisfied for k = 1. Using the cofiber sequence above, we are reduced to proving
that

Mp ⊗Z` (ΣA
p
)⊗d ⊗Z` N

p

belongs to (ModZ`)≤1 for all p and all d ≥ 0. It follows immediately from (a) that
Mp ⊗Z` N

p belongs to (ModZ`)≤1. To complete the proof, it suffices to show that A
p

has Tor-amplitude ≤ −1 for all p ≥ 0, which follows from assumptions (a), (b), and
(c).

4.5 The Cohomology of BunG(X)

Throughout this section, we fix a finite field Fq, an algebraic curve X over Fq, and
a smooth affine group scheme G over X with connected fibers whose generic fiber is
semisimple and simply connected. We also fix an algebraic closure Fq of Fq, a prime
number ` which is invertible in Fq, and an embedding Z` ↪→ C. Our goal is to verify
Theorem 1.4.4.1 by establishing the following:
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Theorem 4.5.0.1. The pair (H∗gm(BunG(X)); Frob−1) is convergent (in the sense of
Definition 4.3.1.1). Moreover, we have

Tr(Frob−1 |H∗gm(BunG(X))) =
∏
x∈X

|κ(x)|dim(G)

|G(κ(x))|
,

where the product on the right hand side is absolutely convergent.

We will deduce Theorem 4.5.0.1 by combining the product formula (Theorem 4.1.2.1),
Steinberg’s formula (Proposition 4.4.4.1), and the Grothendieck-Lefschetz trace for-
mula.

4.5.1 The Motive of a Group Scheme

In §4.4.1, we defined the motive of a connected algebraic group over a field (Definition
4.4.1.5). We now consider a variant of this definition, which makes sense for group
schemes over the curve X (or over more general base schemes).

Construction 4.5.1.1. [The Relative Motive] Let X = Spec(Fq)×Spec(Fq) X and let

G = Spec(Fq)×Spec(Fq)G. We will regard Shv`(X) as a symmetric monoidal∞-category

with respect to the !-tensor product of §3.3. Let BG denote the classifying stack of G,
so that we can regard the relative cohomology sheaf [BG]X as a commutative algebra
object of Shv`(X) (see §4.1.2). Note that the projection map BG→ X has a canonical
section (classifying the trivial G-bundle), which induces an augmentation ε : [BG]X .
We define an `-adic sheaf M(G) ∈ Shv`(X) by the formula

M(G) = (cot[BG]X)[`−1].

We will refer to M(G) as the motive of G relative to X.

Remark 4.5.1.2. In the situation of Construction 4.5.1.1, it is not necessary to invert
`: one can show that the cotangent fiber cot[BG]X already admits the structure of a
Q`-module (see Remark 4.2.6.2).

Our interest in Construction 4.5.1.1 stems from the following consequence of The-
orem 4.2.6.1:

Proposition 4.5.1.3. There is a canonical quasi-isomorphism of chain complexes

C∗(X;M(G))→ cot(C∗gm(BunG(X))).

The relative motive M(G) is closely related to the motives defined in §4.4.
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Remark 4.5.1.4. Let x ∈ X(Fq). Using Remark 4.2.1.6 and Proposition 3.4.3.2, we
obtain equivalences

x! M(G) = x!(cot[BG]X)[`−1]

' cot(x![BG]X [`−1])

' cot(C∗(BGx; Q`))

in the ∞-category ModQ`
. In particular, we can identify the cohomology of the chain

complex x! M(G) with the motive M(Gx) (see Remark 4.4.3.2).

Remark 4.5.1.5. Let U be the largest open subset of X over which the group G is
semisimple. Then we can choose a surjective étale morphism V → U and an equivalence

V ×X G ' V ×Spec(Fq)
H,

where H is a semisimple algebraic group over Fq. We then have

M(G)|V = cot([BG]X)[`−1]|V
' cot([V ×Spec(Fq)

BH]V )[`−1]

' cot(C∗(BH; Z`)⊗ ωV )[`−1]

' cot(C∗(BH; Q`))⊗ ωV .

It follows that the `-adic sheaf M(G) is lisse when restricted to U (in fact, it is even
locally constant: after base change to V , it is equivalent to a direct sum of finitely many
shifted copies of ωV [`−1]). In particular, for any point x ∈ U(Fq) we have a canonical
equivalence

x∗M(G) ' (x! M(G))⊗Q`
Σ2 Q`(1)

so that the cohomology of x∗M(G) can be identified with the Tate-twisted motive
M(Gx)⊗Q`

Q`(1).

4.5.2 Estimating the Eigenvalues of Frobenius

We now address the convergence of the pair (H∗gm(BunG(X)),Frob−1).

Proposition 4.5.2.1. The cohomology H∗(X;M(G)) is a finite-dimensional vector
space over Q`. Moreover, each eigenvalue of the Frobenius map Frob on H∗(X;M(G))
has complex absolute value ≥ q.

Proof. This can be deduced from Deligne’s work on the Weil conjectures ([11]). How-
ever, we will proceed in a more elementary way. Let H denote a split form of the
generic fiber of G, regarded as an algebraic group over Fq. Choose a finite generically
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étale map X ′ → X, where X ′ is a smooth connected curve over Fq (not necessarily
geometrically connected) and the groups H ×Spec(Fq) X

′ and G ×X X ′ are isomorphic
at the generic point of X ′. Then there exists a dense open subset U ′ ⊆ X ′ and an
isomorphism

α : H ×Spec(Fq) U
′ ' G×X U ′

of group schemes over U ′. Shrinking U ′ if necessary, we may assume that U ′ is the
inverse image of a dense open subset U ⊆ X, and that the map U ′ → U is finite étale.

Let {x1, . . . , xn} be the set of closed points ofX which do not belong to U . Replacing
Fq by a finite extension if necessary, we may assume that each xi is defined over Fq. Let
fi : Spec(Fq)→ X denote the map determined by xi and let U = Spec(Fq)×Spec(Fq)U ,
so that we have an exact sequence⊕

1≤i≤n
H∗(f !

i M(G))→ H∗(X;M(G))→ H∗(U ;M(G)|U ).

It will therefore suffice to prove the following:

(a) For 1 ≤ i ≤ n, the cohomology H∗(f !
i M(G)) is finite-dimensional and each eigen-

value of Frob on H∗(f !
i M(G)) has complex absolute value ≥ q.

(b) The cohomology H∗(U ;M(G)|U ) is finite-dimensional and each eigenvalue of Frob
on H∗(U ;M(G)|U ) has complex absolute value ≥ q.

Assertion (a) follows immediately from Lemma 4.4.4.2 and the identification

H∗(f !
i M(G)) 'M(Gxi)

supplied by Remark 4.5.1.4. To prove (b), let H = Spec(Fq) ×Spec(Fq) H, let U
′

=

Spec(Fq)×Spec(Fq) U
′ and let π : U

′ → U denote the projection map. Then M(G)|U is

a direct summand of π∗π
∗M(G)|U , so that H∗(U ;M(G)|U ) is a direct summand of

H∗(U
′
;M(G)|

U
′) ' H∗(U

′
; cot(C∗(BH; Q`))⊗ ωU ′)

' M(H)⊗Q`
H∗+2(U

′
; Q`(1)).

The finite-dimensionality of H∗(U ;M(G)|U ) follows immediately. To prove the assertion

about Frobenius eigenvalues, we note that each eigenvalue of Frob on H∗(U
′
; Q`) has

complex absolute value ≥ 1 and therefore each eigenvalue of Frob on H∗(U
′
; Q`(1))

has complex absolute value ≥ q−1. We are therefore reduced to proving that each
eigenvalue of Frob on M(H) has complex absolute value ≥ q2, which follows from
Lemma 4.4.4.2.
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We will also need the following assertion, whose proof will appear in the sequel to
this book:

Proposition 4.5.2.2. The moduli stack BunG(X) is connected.

Using Propositions 4.5.2.1 and 4.5.1.3, we deduce that the cotangent fiber

cot(C∗gm(BunG(X)))

has finite-dimensional cohomologies, and that every eigenvalue of Frob−1 on the coho-
mology of cot(C∗gm(BunG(X))) has complex absolute value < 1. Moreover, Proposition

4.5.2.2 guarantees that the cohomology group H0
gm(BunG(X)) is isomorphic to Q`.

Invoking Proposition 4.3.2.1, we obtain the following preliminary version of Theorem
4.5.0.1:

Corollary 4.5.2.3. The pair (H∗gm(BunG(X)); Frob−1) is convergent. Moreover, we
have

Tr(Frob−1 |H∗gm(BunG(X))) = exp(
∑
n>0

1

n
Tr(Frob−n |H∗(X;M(G)))).

In particular, the sum on the right is absolutely convergent.

4.5.3 The Proof of Theorem 4.5.0.1

For each integer n > 0, the Grothendieck-Lefschetz trace formula supplies equalities

1

n
Tr(Frob−n |H∗(X;M(G))) =

1

n

∑
η∈X(Fqn )

Tr(Frob−n |H∗(η! M(G)))

=
∑

η∈X(Fqn )

1

n
Tr(Frob−n |M(Gη))

=
∑

n=edeg(x)

1

e
Tr(Frob−ex |M(Gx))

where the latter sum is taken over all closed points x ∈ X whose degree divides n, and
Frobx denotes the geometric Frobenius at the point x. Combining this with Corollary
4.5.2.3, we obtain an equality

Tr(Frob−1 |H∗gm(BunG(X); Q`)) = exp(
∑
n>0

∑
e deg(x)=n

1

e
Tr(Frob−ex |M(Gx)). (4.5)
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Proposition 4.5.3.1. The double summation appearing in formula (4.5) is absolutely
convergent.

Proof. For each closed point x ∈ X, let λx,1, . . . , λx,mx ∈ C denote the eigenvalues of
Frobx on C ⊗Q`

M(Gx), so that Tr(Frob−ex |M(Gx)) =
∑

1≤i≤mx λ
−e
x,i . We will show

that the triple sum ∑
n>0

∑
edeg(x)=n

1

e

∑
1≤i≤mx

|λ−ex,i |

is convergent.

For each integer d, set

Cd =
∑

deg(x)=d

∑
e>0

∑
1≤i≤mx

1

e
|λ−ex,i |;

we wish to show that that each Cd is finite and that the sum
∑

d>0Cd is convergent.
Let g denote the genus of the curve X, so that we have an inequality |X(Fqd)| ≤
qd + 2gq

d
2 + 1. It follows that the number of closed points of X0 having degree exactly

d is bounded above by d−1(qd + 2gq
d
2 + 1). Let H be a split form of the generic fiber

of G and let r denote the dimension of M(H) as a vector space over Q` (the number r
is equal to the rank of the generic fiber of G, but we will not need to know this). For
all but finitely many closed points x ∈ X, the motive M(Gx) is isomorphic to M(H)
as a Q`-vector space (see Remark 4.5.1.5) so that mx = r. In this case, each of the
eigenvalues λx,i has complex absolute value ≥ q2 (Lemma 4.4.4.2). For d� 0, we have

Cd ≤
qd + 2gq

d
2 + 1

d
r
∑
e>0

1

e
q−2de

≤ (2g + 2)qdr
∑
e>0

q−2de

≤ (2g + 2)qdr
q−2d

1− q−2d

≤ (2g + 2)r

1− q−2
q−d.

It follows that the series
∑

d>0Cd is dominated (apart from finitely many terms) by

the geometric series
∑

d>0
(2g+2)r
1−q−2 q

−d and is therefore convergent.

Proof of Theorem 4.5.0.1. By virtue of Proposition 4.5.3.1, we are free to rearrange the
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order of summation appearing in formula (4.5). We therefore obtain

Tr(Frob−1 |H∗gm(BunG(X))) = exp(
∑
n>0

∑
edeg(x)=n

1

e
Tr(Frob−ex |M(Gx))

= exp(
∑
x∈X

∑
e>0

1

e
Tr(Frob−ex |M(Gx))

=
∏
x∈X

exp(
∑
e>0

1

e
Tr(Frob−ex |M(Gx))

=
∏
x∈X0

|κ(x)|dim(G)

|Gx(κ(x))|
,

where the last equality follows from Proposition 4.4.4.1.

Remark 4.5.3.2. To the relative motive M(G) we can associate an L-function

LM(G),Frob−1(t) = det(1− tFrob−1 |H∗(X;M(G)))−1,

which is a rational function of t. The proof of Proposition 4.5.3.1 shows that this
L-function admits an Euler product expansion

LM(G),Frob−1(t) =
∏
x∈X

LM(Gx),Frob−1
x

(t)

where the product on the right hand side converges absolutely for |t| < q. Combining
this observation with Steinberg’s formula (Proposition 4.4.4.1), we obtain

LM(G),Frob−1(1) =
∏
x∈X

|κ(x)|dim(G)

|G(κ(x))|
.

The right hand side of this formula is given by

q− dim BunG(X)τ(G)−1
∑
P

1

|Aut(P)|
,

where τ(G) = µTam(G(KX)\G(A)) denotes the Tamagawa number of G (see the dis-
cussion preceding Conjecture 1.3.3.7). We therefore obtain an equality

τ(G)LM(G),Frob−1(1) = q− dim BunG(X)
∑
P

1

|Aut(P)|
,

which we can regard as a function field analogue of Theorem 9.9 of [14].



Chapter 5

The Trace Formula for BunG(X)

Throughout this chapter, we fix a finite field Fq with q elements, an algebraic closure
Fq of Fq, a prime number ` which is invertible in Fq, and an embedding of fields
ι : Q` ↪→ C.

Definition 5.0.0.1. Let X be a smooth algebraic stack of dimension d over Fq. We will
say that X satisfies the Grothendieck-Lefschetz trace formula if the following assertions
hold:

(1) The pair (H∗gm(X),Frob−1) is convergent (in the sense of Definition 4.3.1.1), where

H∗gm(X) = H∗(X×Spec(Fq) Spec(Fq); Z`)[`
−1]

denotes the geometric cohomology of X (see Notation 4.4.1.1), and Frob−1 is the
arithmetic Frobenius map.

(2) We have an equality

Tr(Frob−1 |H∗gm(X)) =
|X(Fq)|
qd

,

where |X(Fq)| =
∑

η∈X(Fq)
1

|Aut(η)| denotes the mass of the groupoid X(Fq) (see

Definition 1.3.3.1).

Remark 5.0.0.2. If X is a smooth algebraic stack over Fq which satisfies the Grothendieck-
Lefschetz trace formula, then the mass |X(Fq)| is finite.

Our goal in this chapter is to prove Theorem 1.4.4.1, which we formulate as follows:

Theorem 5.0.0.3. Let X be an algebraic curve over Fq and let G be a smooth affine
group scheme over X. Suppose that the fibers of G are connected and that the generic
fiber of G is semisimple. Then the moduli stack BunG(X) satisfies the Grothendieck-
Lefschetz trace formula.

260
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In the special case where every fiber of G is semisimple, Theorem 5.0.0.3 was proved
by Behrend in [4]. Let us now give an outline of our proof, which will closely follow the
methods used in [4].

For algebraic stacks of finite type over Fq, the Grothendieck-Lefschetz trace for-
mula was verified by Behrend in [4]. In §5.1, we prove a weaker version of this result:
any (smooth) global quotient stack Y/H (where H is affine) satisfies the Grothendieck-
Lefschetz trace formula (Corollary 5.1.0.4). This is quite relevant to the proof of The-
orem 5.0.0.3, since any quasi-compact open substack BunG(X) can be presented as a
global quotient stack (see Corollary 5.4.1.4).

Unfortunately, we cannot deduce Theorem 5.0.0.3 directly from the Grothendieck-
Lefschetz trace formula for global quotient stacks because the moduli stack BunG(X)
is usually not quasi-compact. Our strategy instead will be to decompose BunG(X) into
locally closed substacks BunG(X)[P,ν] which are more directly amenable to analysis. In
§5.2, we lay the foundations by reviewing the notion of a stratification of an algebraic
stack X. Our main result is that if X is a smooth algebraic stack over Fq which admits
a stratification by locally closed substacks {Xα}α∈A which satisfy the Grothendieck-
Lefschetz trace formula, then X also satisfies the Grothendieck-Lefschetz trace formula
provided that a certain convergence condition is satisfied (Proposition 5.2.2.5; see also
Proposition 5.2.2.3).

To apply the results of §5.2 to our situation, we need to choose a useful stratification
of BunG(X). In §5.3.2, we specialize to the case where G is a split group and review
the theory of the Harder-Narasimhan stratification, which supplies a decomposition
of BunG(X) into locally closed substacks BunG(X)P,ν where P ranges over standard
parabolic subgroups of G and ν ranges over dominant regular cocharacters of the center
of the Levi quotient P/ radu P . At the present level of generality, this theory was
developed by Behrend and was the main tool used in his proof of Theorem 5.0.0.3 in
the case where G is everywhere semisimple.

In order for a stratification of BunG(X) to be useful to us, we will need to know that
the individual strata are more tractable than the entire moduli stack BunG(X) itself:
for example, we would like to know that they are quasi-compact. In §5.4, we recall the
proof that the Harder-Narasimhan strata BunG(X)P,ν are quasi-compact (Proposition
5.4.3.1) in the case of a split group G, and provide a number of tools for establishing
related results (by studying the compactness properties of morphisms between moduli
stacks of the form BunG(X) as G and X vary).

In order to prove that the moduli stack BunG(X) satisfies the Grothendieck-Lefschetz
trace formula, it is not enough to know that BunG(X) can be decomposed into locally
closed substacks BunG(X)α which satisfy the Grothendieck-Lefschetz trace formula:
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for example, we also need to know that the sum

|BunG(X)(Fq)| =
∑
α

|BunG(X)α(Fq)|

converges. In the case of the Harder-Narasimhan stratification, the key observation is
that the infinite collection of Harder-Narasimhan strata {BunG(X)P,ν} can be decom-
posed into finitely many families whose members “look alike” (for example, members of
the same family have the same `-adic cohomology). In the case where G is split, one can
prove this by comparing BunG(X)P,ν with the moduli stack of semistable bundles for
the reductive quotient P/ radu P of P . However, this maneuver does not generalize to
our situation. In §5.5, we discuss a different mechanism which guarantees the same be-
havior: given a G-bundle P equipped with a reduction to a parabolic subgroup P ⊆ G,
there is a “twisting” procedure (depending on a few auxiliary choices) for producing a
new G-bundle Twλ,D(P). Roughly speaking, this twisting procedure supplies maps

BunG(X)P,ν → BunG(X)P,ν+deg(D)λ

which exhibit the left hand side as a fiber bundle over the right hand side, whose fibers
are affine spaces (strictly speaking, this is only true if we assume that Fq is a field of
sufficiently large characteristic; in general, the twisting construction is only defined “up
to” a finite radicial map); see Proposition 5.5.6.1.

The Harder-Narasimhan stratification of §5.3 is defined only in the special case
where G is split (or, more generally, an inner form of a split group). To treat the general
case, we note that the generic fiber of G is a semisimple algebraic group over KX , and
therefore splits after passing to some finite Galois extension L of the fraction field
KX . The field L is then the function field of an algebraic curve X̃ which is generically
étale over X (though not necessarily geometrically connected as an Fq-scheme), and

the generic fiber of G ×X X̃ is split. In particular, there exists a semisimple group
scheme G̃ over X̃ and an isomorphism β between G̃ and G ×X X̃ over a dense open
subset U ⊆ X̃. In §5.6, we will show that the group scheme G̃ can be chosen to admit
an action of Gal(L/KX) (compatible with the action of Gal(L/KX) on X̃) and that
the isomorphism β can be chosen to be Γ-equivariant (Proposition 5.6.2.1). There is
then a close relationship between G-bundles on X and Γ-equivariant G̃-bundles on X̃,
which we will use to “descend” the Harder-Narasimhan stratification of Bun

G̃
(X̃) to

a stratification of BunG(X) (at least after replacing G by a suitable dilitation). We
will show that the latter stratification satisfies the axiomatics developed in §5.2, and
thereby obtain a proof of Theorem 5.0.0.3.

Remark 5.0.0.4. It is possible to develop a theory of compactly supported cohomology
for algebraic stacks over Fq. If X is a smooth algebraic stack of dimension d over Fq
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for which the cohomology

H∗c(X×Spec(Fq) Spec(Fq); Z`)

is a finitely generated Z`-module in each degree, then it follows from Poincaré duality
that (H∗gm(X); Frob−1) is convergent if and only if

(H∗c(X×Spec(Fq) Spec(Fq); Z`)[`
−1],Frob)

is convergent, and in this event we have

Tr(Frob−1 |H∗gm(X)) =
Tr(Frob |H∗c(X×Spec(Fq) Spec(Fq); Z`)[`

−1])

qd
.

In this case, X satisfies the Grothendieck-Lefschetz trace formula if and only if

Tr(Frob |H∗c(X×Spec(Fq) Spec(Fq); Z`)[`
−1]) = |X(Fq)|.

Note that this condition makes sense even when X is not smooth. However, we will
confine our attention to smooth algebraic stacks in this book (since they are all that is
needed for the proof of Weil’s conjecture).

5.1 The Trace Formula for a Quotient Stack

Our primary goal in this section is to prove the following result:

Proposition 5.1.0.1. Let X be a smooth algebraic stack over Fq, let G be a con-
nected linear algebraic group over Fq, and suppose that G acts on X. If X satisfies the
Grothendieck-Lefschetz trace formula, then so does the stack-theoretic quotient X /G.

Remark 5.1.0.2. In the statement of Proposition 5.1.0.1, the assumption that G is
affine is not needed. However, the affine case will be sufficient for our applications.

Example 5.1.0.3. Let G be a linear algebraic group over Fq. Applying Proposition
5.1.0.1 in the case X = Spec(Fq), we deduce that the classifying stack BG satisfies the
Grothendieck-Lefschetz trace formula. We proved this result in Chapter 4 as Proposi-
tion 4.4.4.1. However, the proof of Proposition 5.1.0.1 that we present in this section
will use Proposition 4.4.4.1.

Corollary 5.1.0.4. Let Y be a smooth Fq-scheme of finite type and let G be a linear
algebraic group over Fq which acts on Y . Then the stack-theoretic quotient Y/G satisfies
the Lefschetz trace formula.

Proof. Since G is affine, there exists an embedding of algebraic groups G ↪→ GLn. Re-
placing Y by (Y ×GLn)/G and G by GLn, we can reduce to the case where G = GLn
and in particular where G is connected. In this case, the desired result follows immedi-
ately from Proposition 5.1.0.1 (together with the classical Grothendieck-Lefschetz trace
formula).
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5.1.1 A Convergence Lemma

Our proof of Proposition 5.1.0.1 will use the following elementary convergence result,
which will appear again in §5.2:

Lemma 5.1.1.1. Let V be an object of the ∞-category ModQ`
which is given as the

inverse limit of a tower

· · · → V (n+ 1)→ V (n)→ V (n− 1)→ · · · → V (0)→ V (−1) ' 0.

Let F be an automorphism of the tower {V (n)}n≥0, and denote also by F the induced
automorphism of V . For each n ≥ 0, let W (n) denote the fiber of the map V (n) →
V (n− 1). Suppose that the following conditions are satisfied:

(a) Each of the pairs (H∗W (n), F ) is convergent, in the sense of Definition 4.3.1.1.

(b) The sum
∑

n≥0 |H
∗(W (n))|F converges absolutely (see Definition 4.3.1.1).

(c) For each d, there exists an integer n0 such that W (n) ∈ (ModQ`
)≤−d for n ≥ n0.

Then the pair (H∗(V ), F ) is convergent. Moreover, we have

|H∗(V )|F ≤
∑
n≥0

|H∗(W (n))|F

Tr(F |H∗(V )) =
∑
n≥0

Tr(F |H∗(W (n))).

Proof. Since each pair (H∗(W (n)), F ) is convergent, the graded vector spaces H∗(W (n))
are finite-dimensional in each degree. It follows by induction on n that the graded vector
spaces H∗(V (n)) are also finite-dimensional in each degree. Assumption (c) implies that
for any fixed d, we have Hd(V ) ' Hd(V (n)) for n� 0, so that the graded vector space
H∗(V ) is also finite-dimensional in each degree.

For each integer d, let |Hd(V )|F denote the sum of the absolute values of the
eigenvalues of F (counted with multiplicity) on the complex vector space Hd(V )⊗Q`

C.

Let C =
∑

n≥0 |H
∗(W (n))|F ; we wish to show that the sum

∑
d∈Z |H

d(V )|F is bounded
by C. To prove this, it suffices to show that for each integer d0, the partial sum∑

d≤d0
|Hd(V )|F is bounded above by C. Using assumption (c), we deduce that there

exists an integer n such that Hd(V ) ' Hd(V (n)) for d ≤ d0. It will therefore suffice to
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show that
∑

d≤d0
|Hd(V (n))|F ≤ C. This is clear: we have

∑
d≤d0

|Hd(V (n))|F ≤
∑
d∈Z

|Hd(V (n))|F

= |H∗(V (n))|F
≤

∑
0≤m≤n

|H∗(W (m))|F

≤
∑
0≤m
|H∗(W (m))|F

= C,

where the second inequality follows from iterated application of Remark 4.3.1.3.

We now complete the proof by verifying the identity

Tr(F |H∗(V )) =
∑
n≥0

Tr(F |H∗(W (n))).

Fix a real number ε > 0; we will show that the difference

|Tr(F |H∗(V ))−
∑
n≥0

Tr(F |H∗(W (n)))|

is bounded by ε. Using assumption (b), we deduce that there exists an integer n0 ≥ 0
for which the sum

∑
n>n0

|H∗(W (n))|F is bounded above by ε
2 . Form a fiber sequence

U → V → V (n0).

Applying the first part of the proof to U , we deduce that (H∗(U), F ) is convergent with

|H∗(U)|F ≤
∑
n>n0

|H∗(W (n))|F ≤
ε

2
.

Using Remark 4.3.1.3, we obtain

Tr(F |H∗(V )) = Tr(F |H∗(U)) + Tr(F |H∗(V (n0))

= Tr(F |H∗(U)) +
∑

0≤n≤n0

Tr(F |H∗(W (n)).

Subtracting
∑

n≥0 Tr(F |H∗(W (n))) from both sides and taking absolute values, we
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obtain

|Tr(F |H∗(V ))−
∑
n≥0

Tr(F |H∗W (n))| = |Tr(F |H∗(U))−
∑
n>n0

Tr(F |H∗W (n))|

≤ |Tr(F |H∗(U))|+
∑
n>n0

|Tr(F |H∗W (n))

≤ |H∗(U)|F +
∑
n>n0

|H∗(W (n))|F

≤ ε

2
+
ε

2
= ε,

as desired.

5.1.2 The Proof of Proposition 5.1.0.1

We now turn to the proof of Proposition 5.1.0.1. Let X be a smooth algebraic stack over
Fq which satisfies the Grothendieck-Lefschetz trace formula and let G be a connected
linear algebraic group over Fq which acts on X. We wish to show that the stack-
theoretic quotient X /G also satisfies the Grothendieck-Lefschetz trace formula. Let
BG denote the classifying stack of G, so that we have a pullback diagram

X //

��

X /G

��
Spec(Fq) // BG .

Applying Proposition 4.4.2.1, we deduce that the induced diagram

C∗gm(X) C∗gm(X /G)oo

C∗gm(Spec(Fq))

OO

C∗gm(BG)

OO

oo

is a pushout square in CAlg(ModQ`
). In other words, we have a canonical equivalence

C∗gm(X) ' C∗gm(X /G)⊗C∗gm(BG) Q` .

Let us regard C∗gm(BG) as an augmented commutative algebra object of ModQ`
. Let

m denote its augmentation ideal, and consider the filtration

· · · → m(3) → m(2) → m(1) → C∗gm(BG)
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introduced in §4.2. We claim that this tower can be regarded as a diagram of C∗gm(BG)-
modules, and that the induced action of C∗gm(BG) on each cofiber

m(n)/m(n+1) = cofib(m(n+1) → m(n))

factors through the augmentation C∗gm(BG) → Q`. This is a general feature of the
constructions described in §4.2, but can easily be deduced in this special case from
the observation that H∗gm(BG) is a polynomial ring on generators of even degrees so
that C∗gm(BG) is equivalent to a symmetric algebra Sym∗(V ) for some chain complex
V concentrated in even degrees (see the proof of Proposition 4.2.3.1), together with the
identifications m(n) ' Sym≥n V supplied by Example 4.2.1.7.

It follows from Proposition 4.2.5.1 that each m(n) is belongs to (ModQ`
)≤−n (in

fact, the preceding argument even shows that m(n) ∈ (ModQ`
)≤−2n). Let BG =

BG×Spec(Fq) Spec(Fq). Then C∗gm(BG) = C∗(BG; Z`)[`
−1]. We therefore have equiva-

lences
m(n) ⊗C∗gm(BG) C

∗
gm(X /G) ' m(n) ⊗C∗(BG;Z`)

C∗gm(X /G).

Applying Lemma 4.4.2.3, we conclude that each tensor product m(n)⊗C∗gm(BG)C
∗
gm(X /G)

belongs to (ModQ`
)≤−n, so that the inverse limit

lim←−
n

m(n) ⊗C∗gm(BG) C
∗
gm(X /G)

vanishes. It follows that we can write C∗gm(X /G) as the limit of the tower

{(C∗gm(BG)/m(n))⊗C∗(BG) C
∗(X /G)}n≥0

whose successive quotients are given by

W (n) = (m(n)/mn+1)⊗C∗gm(BG) C
∗
gm(X /G)

' (m(n)/m(n+1))⊗Q`
(Q`⊗C∗gm(BG)C

∗
gm(X /G)

' (m(n)/m(n+1))⊗Q`
C∗gm(X).

Since X satisfies the Grothendieck-Lefschetz trace formula, the pair (H∗gm(X),Frob−1)

is convergent. It follows that each of the pairs (H∗(W (n)),Frob−1) is convergent with

|H∗(W (n))|Frob−1 = |m(n)/m(n+1)|Frob−1 |H∗gm(X)|Frob−1 .

Since H∗gm(BG) can be identified with the direct sum of the cohomologies of the quo-

tients m(n)/m(n+1), we get∑
n≥0

|H∗(W (n))|Frob−1 = |H∗gm(BG)|Frob−1 |H∗gm(X)|Frob−1 <∞,
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since |H∗gm(BG)|Frob−1 <∞ by virtue of Proposition 4.4.4.1. Using Lemma 5.1.1.1, we

conclude that the pair (H∗gm(X /G),Frob−1) is convergent and we obtain the identity

Tr(Frob−1 |H∗gm(X /G)) =
∑
n≥0

Tr(Frob−1 |W (n))

=
∑
n≥0

Tr(Frob−1 |H∗(m(n)/m(n+1))) Tr(Frob−1 |H∗gm(X))

= Tr(Frob−1 |H∗gm(BG)) Tr(Frob−1 |H∗gm(X)).

Using Proposition 4.4.4.1 and the fact that X satisfies the Grothendieck-Lefschetz trace
formula, we obtain

Tr(Frob−1 |H∗gm(X /G)) =
qdim(G)

|G(Fq)|
|X(Fq)|
qdim(X)

= q− dim(X /G) |X(Fq)|
|G(Fq)|

.

To complete the proof of Proposition 5.1.0.1, it will suffice to verify the identity

|(X /G)(Fq)| =
|X(Fq)|
|G(Fq)|

. (5.1)

For each object η ∈ (X /G)(Fq), let Cη denote the full subcategory of X(Fq) spanned by
those objects C whose image in (X /G)(Fq) is isomorphic to η (where the isomorphism
is not specified), so that we can write X(Fq) as a disjoint union of the groupoids Cη
where η ranges over all isomorphism classes of objects of (X /G)(Fq). To prove (5.1),
it will suffice to show that for each η ∈ (X /G)(Fq), we have an equality

1

|Aut(η)|
=

1

|G(Fq)|
∑
C∈Cη

1

|Aut(C)|
,

where the sum is taken over all isomorphism classes of objects of Cη.

The object η can be regarded as a map Spec(Fq)→ (X /G), so we can consider the
fiber product Y = X×X /G Spec(Fq), which is a torsor for the algebraic group G. The
finite group Aut(η) acts on Y , and therefore acts on the finite set Y (Fq). Unwinding
the definitions, we can identify Cη with the groupoid-theoretic quotient of Y (Fq) by the
action of Aut(η). We may therefore identify the set of isomorphism classes of objects
of Cη with the set of orbits of Aut(η) acting on Y (Fq). For each y ∈ Y (Fq), the
automorphism group of the corresponding object C ∈ Cη can be identified with the
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stabilizer Aut(η)y = {φ ∈ Aut(η) : φ(y) = y}. We therefore have

∑
C∈Cη

1

|Aut(C)|
=

∑
y∈Y (Fq)

1

|Aut(η)/Aut(η)y|
1

|Aut(η)y|

=
∑

y∈Y (Fq)

1

|Aut(η)|

=
|Y (Fq)|
|Aut(η)|

.

To complete the proof, it will suffice to show that the finite sets Y (Fq) and G(Fq) have
the same size. This follows from Lang’s theorem; the Fq-scheme Y is a G-torsor and
is therefore G-equivariantly isomorphic to G (by virtue of our assumption that G is
connected).

5.1.3 Application: Change of Group

Let X be an algebraic curve over Fq and let G be a smooth affine group scheme over X
with connected fibers. If the generic fiber G0 of G is semisimple and simply connected,
then Theorem 4.5.0.1 implies that the Tamagawa number τ(G0) is given by the ratio

q− dim(BunG(X))|BunG(X)(Fq)|
Tr(Frob−1 |H∗gm(BunG(X)))

.

In particular, Weil’s conjecture that τ(G0) = 1 is equivalent to the statement that
BunG(X) satisfies the Grothendieck-Lefschetz trace formula. It follows that the va-
lidity of the Grothendieck-Lefschetz trace formula for BunG(X) depends only on the
generic fiber of G. Our goal in this section is to formulate a slightly weaker form of
this invariance statement (Proposition 5.1.3.10) which follows directly from Proposi-
tion 5.1.0.1, without appealing to the product formula of Chapter 4 or the theory of
Tamagawa measure developed in Chapter 1. This result will be used in §5.6 to reduce
the proof of trace formula to a convenient special case.

We begin by reviewing a general algebro-geometric construction.

Definition 5.1.3.1. Let X be a Dedekind scheme and let D ⊆ X be an effective
divisor. Suppose we are given a flat morphism of schemes π : Y → X equipped with
a section s : X → Y . A dilitation of Y along D is a scheme Y ′ equipped with a map
φ : Y ′ → Y which has the following properties:

(a) The composite map Y ′
φ−→ Y

π−→ X is flat.
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(b) For every flat X-scheme Z, let HomX(Z, Y ) denote the set of X-scheme mor-
phisms from Z to Y and define HomX(Z, Y ′) similarly. Then composition with
φ induces a monomorphism of sets HomX(Z, Y ′) → HomX(Z, Y ), whose image
consists of those maps f : Z → Y for which the diagram of schemes

Z ×X D //

��

Z

f
��

D
s|D // Y

is commutative.

In the situation of Definition 5.1.3.1, it is immediate that if a dilitation of Y along
D exists, then it is unique up to (unique) isomorphism. For existence, we have the
following:

Proposition 5.1.3.2. Let X be a Dedekind scheme, let D ⊆ X be an effective divisor,
and let π : Y → X be a flat morphism equipped with a section s. Then there exists
a map g : Y ′ → Y which exhibits Y ′ as a dilitation of Y along D. Moreover, the
morphism g is affine.

Proof. The assertion is local on X and Y . We may therefore assume that X = Spec(R)
and Y = Spec(A) are affine, so that R is a Dedekind ring and A is a flat R-algebra
equipped with an R-algebra map ε : A → R. Shrinking further if necessary, we may
assume that the divisor D ⊆ X is the vanishing locus of an element t ∈ R. Let B
denote the subalgebra of A[t−1] generated by A together with all elements of the form
a
t , where a ∈ ker(ε). It is now easy to check that Y ′ = Spec(B) satisfies conditions (a)
and (b) of Definition 5.1.3.1.

Notation 5.1.3.3. Let X be a Dedekind scheme, let D ⊆ X be an effective divisor,
and let π : Y → X be a flat morphism equipped with a section s. We let DilD(Y )
denote a dilation of Y along D (whose existence is guaranteed by Proposition 5.1.3.2).
Beware that this notation is slightly abusive: the dilation DilD(Y ) depends also on the
choice of section s. However, we will be primarily interested in the case where Y is a
group scheme over X, in which case we will take s to be the identity section.

Remark 5.1.3.4. The dilitation DilD(Y ) does not depend on the entire section s :
X → Y , only on its restriction to the effective divisor D ⊆ X.

Example 5.1.3.5. In the situation of Definition 5.1.3.1, if π : Y → X is an isomor-
phism, then the identity map id : Y → Y exhibits Y as a dilitation of itself along any
effective divisor D.
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Remark 5.1.3.6. In the situation of Definition 5.1.3.1, the dilitation DilD(Y ) can be
identified with an open subset of the scheme Y given by the blowup of Y along the
closed subscheme s(D) ⊆ Y .

Remark 5.1.3.7. In the situation of Definition 5.1.3.1, suppose that the map π : Y →
X is smooth. Then the composite map DilD(Y )

φ−→ Y → X is also smooth. Moreover,
the relative tangent bundle TDilD(Y )/X can be identified with the pullback φ∗TY/X(−D).

Remark 5.1.3.8. In the situation of Definition 5.1.3.1, assumption (b) guarantees that
the section s : X → Y lifts uniquely to a map s̃ : X → DilD(Y ), which can be regarded
as a section of the composite map DilD(Y )→ Y → X.

Remark 5.1.3.9 (Functoriality). Let X be a Dedekind scheme equipped with an
effective divisor D ⊆ X. Then the construction Y 7→ DilD(Y ) determines a functor
from the category of pointed flat X-schemes (that is, flat X-schemes π : Y → X
equipped with a section s : X → Y ) to itself. It follows immediately from the definition
that this functor preserves finite products. In particular, if G is a flat group scheme over
X, then the dilitation DilD(G) inherits the structure of a group scheme over X (and
the projection map DilD(G)→ G is compatible with the group structures). Moreover,
if G is smooth or affine, then DilD(G) has the same property (see Proposition 5.1.3.2
and Remark 5.1.3.7).

Proposition 5.1.3.10. Let X be a smooth complete geometrically connected curve over
Fq and let G be a smooth affine group scheme over X with connected fibers. Let G′ be
the smooth affine group scheme over X obtained from G by dilitation along an effective
divisor D ⊆ X. If the algebraic stack BunG′(X) satisfies the Grothendieck-Lefschetz
trace formula, then so does BunG(X).

To prove Proposition 5.1.3.10, we will need the following variant of the defining
property of dilitations:

Lemma 5.1.3.11. Let X be a Dedekind scheme, let G be a smooth affine group scheme
over X, and let G′ = DilD(G) be the dilitation of G along an effective divisor D ⊆ X.
For any flat X-scheme Z, the tautological map G′ → G induces an equivalence of
categories TorsG′(Z)→ TorsG(Z,Z×XD); here TorsG(Z,Z×XD) denotes the category
of G-torsors on Z equipped with a trivialization along Z ×X D.

Proof of Proposition 5.1.3.10 from Lemma 5.1.3.11. Let H be the connected algebraic
group obtained from G×XD by Weil restriction along the finite flat map D → Spec(Fq).
Using Lemma 5.1.3.11, we can identify BunG′(X) with the algebraic stack whose R-
valued points are pairs (P, γ), where P is a G-bundle on XR and γ is a trivialization of P
on the divisor DR = D×Spec(Fq) Spec(R). The algebraic group H acts on BunG′(X) by
changing trivializations and we can identify BunG(X) with the stack-theoretic quotient
BunG′(X)/H. The desired result now follows from Proposition 5.1.0.1.
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Proof of Lemma 5.1.3.11. We first show that the functor

θ : TorsG′(Z)→ TorsG(Z,Z ×X D)

is fully faithful. Let P′ and Q′ be G′-torsors on Z, and let P and Q be the associated
G-torsors. We wish to show that the canonical map

HomTorsG′ (Z)(P
′,Q′)→ HomTorsG(Z,Z×XD)(P,Q)

is bijective. This assertion can be tested locally with respect to the étale topology on
Z. We may therefore assume that P′ and Q′ are trivial, in which case the assertion
reduces to the bijectivity of the map

HomX(Z,G′)→ {f : Z → G : f |Z×XD = id},

which is a defining property of the dilitation G′ (Definition 5.1.3.1).

We now argue that θ is essentially surjective. Let P be a G-torsor on Z equipped
with a trivialization sD along ZD = Z ×X D; we wish to show that P belongs to the
essential image of θ. By virtue of the first part of the proof, this assertion is local for
the flat topology on Z. We may therefore assume without loss of generality that Z is
affine and that P admits a trivialization s′ : P ' Z ×X G. In this case, we can identify
sD with a map of X-schemes f : ZD → G. Replacing Z by either the complement of
ZD or its Henselization along ZD (which comprise a flat covering of Z), we can reduce
to the case where f extends to a map f : Z → G. Modifying the trivialization s′ by
f , we can reduce to the case where sD = s′|Z×XD. In this case, P is isomorphic to the
image of the trivial G′-torsor Z ×X G′ under the functor θ.

5.2 The Trace Formula for a Stratified Stack

Let X be a smooth algebraic stack over Fq. According to Corollary 5.1.0.4, if X can be
written as the quotient of a quasi-projective variety by the action of a linear algebraic
group, then X satisfies the Grothendieck-Lefschetz trace formula. Unfortunately, this
observation is not sufficient for our applications: it does not apply to the moduli stack
of bundles BunG(X), because BunG(X) is not quasi-compact (except in trivial cases).
However, it does apply to any quasi-compact locally closed substack of BunG(X). We
therefore encounter the following:

Question 5.2.0.1. Let X be a smooth algebraic stack equipped with a decomposition
into locally closed substacks {Xα}α∈A (see Definition 5.2.1.1). Under what conditions
on the Xα can we conclude that X satisfies the Grothendieck-Lefschetz trace formula?



5.2. THE TRACE FORMULA FOR A STRATIFIED STACK 273

In this section, we will introduce the notion of a convergent stratification of an
algebraic stack over Fq (Definition 5.2.2.1) and show that it provides one answer to
Question 5.2.0.1: if an algebraic stack admits a convergent stratification, then it sat-
isfies the Grothendieck-Lefschetz trace formula (Proposition 5.2.2.3). This allows us
to reduce Theorem 5.0.0.3 to the problem of finding a convergent stratification of the
moduli stack BunG(X), which is the subject of the rest of this chapter.

5.2.1 Stratifications of Algebraic Stacks

We begin by introducing some terminology.

Definition 5.2.1.1. Let X be an algebraic stack. A stratification of X consists of the
following data:

(a) A partially ordered set A.

(b) A collection of open substacks {Uα ⊆ X}α∈A satisfying Uα ⊆ Uβ when α ≤ β.

This data is required to satisfy the following conditions:

• For each index α ∈ A, the set {β ∈ A : β ≤ α} is finite.

• For every field k and every map η : Spec(k)→ X, the set

{α ∈ A : η factors through Uα}

has a least element.

Notation 5.2.1.2. Let X be an algebraic stack equipped with a stratification {Uα}α∈A.
For each α ∈ A, we let Xα denote the reduced closed substack of Uα given by the
complement of

⋃
β<αUβ. Each Xα is a locally closed substack of X; we will refer to

these locally closed substacks as the strata of X.

Remark 5.2.1.3. Let X be an algebraic stack. A stratification {Uα}α∈A is determined
by the partially ordered set A together with the collection of locally closed substacks
{Xα}α∈A: each Uα can be characterized by the fact that it is an open substack of X
and that, if k is a field, then a map η : Spec(k) → X factors through Uα if and only
if it factors through Xβ for some β ≤ α. Because of this, we will generally identify
stratification of X with the collection of locally closed substacks {Xα ⊆ X}α∈A (where
the partial ordering of A is understood to be implicitly specified).

Remark 5.2.1.4. Let X be an algebraic stack equipped with a stratification {Xα}α∈A.
If k is a field, then for any map η : Spec(k)→ X there is a unique index α ∈ A such that
η factors through Xα. In other words, X is a set-theoretic union of the locally closed
substacks Xα.
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Remark 5.2.1.5 (Functoriality). Let f : X→ Y be a map of algebraic stacks. Suppose
that Y is equipped with a stratification {Uα ⊆ Y}α∈A. Then {Uα×YX ⊆ X}α∈A is a
stratification of X (indexed by the same partially ordered set A). The corresponding
strata of X are given by the reduced locally closed substacks

Xα = (Yα×YX)red.

We now make some elementary observations about the behavior of stratifications
with respect to the actions of finite groups, which will be useful in §5.6.

Remark 5.2.1.6 (Stratification of Fixed Point Stacks). Let X be an algebraic stack
equipped with an action of a finite group Γ. Suppose that X is equipped with a
stratification {Uα ⊆ X}α∈A which is Γ-equivariant in the following sense: the group Γ
acts on A (by monotone maps) and for each α ∈ A, γ ∈ Γ the open substack Uγ(α) is
the image of Uα under the automorphism of X determined by γ.

Let XΓ denote the (homotopy) fixed point stack for the action of Γ on X, and let
AΓ denote the set of fixed points for the action of Γ on A. For each α ∈ AΓ, the
open substack Uα ⊆ X inherits an action of Γ, and the fixed point stack UΓ

α can be
regarded as an open substack of XΓ. Moreover, the collection {UΓ

α ⊆ XΓ}α∈AΓ is a
stratification of XΓ. For each α ∈ AΓ, the corresponding locally closed substack of XΓ

can be identified with the reduced stack ((Xα)Γ)red.

Remark 5.2.1.7. Let X be an algebraic stack equipped with an action of a finite
group Γ, and suppose we are given a stratification {Uα}α∈A which is Γ-equivariant (as
in Remark 5.2.1.6). Let A/Γ denote the quotient of A by the action of Γ, and for each
α ∈ A let [α] denote its image in A/Γ. We can endow A/Γ with the structure of a
partially ordered set by writing [α] ≤ [α′] if there exists an element γ ∈ Γ such that
α ≤ γ(α′). For each [α] ∈ A/Γ, let U[α] denote the open substack of X given by the
union

⋃
γ∈Γ Uγ(α). Then {U[α]}[α]∈A/Γ is a stratification of X indexed by the partially

ordered set A/Γ. For each [α] ∈ A/Γ, the corresponding stratum X[α] can be identified
with the disjoint union qα′ Xα′ , where α′ ranges over those elements of A having the
form γ(α) for some γ ∈ Γ.

Remark 5.2.1.8. Let X be an algebraic stack equipped with an action of a finite group
Γ. Suppose we are given a stratification {Uα}α∈A, where each Uα is Γ-invariant. Then
each quotient Uα /Γ can be regarded as an open substack of X /Γ, and the collection
of open substacks {Uα /Γ}α∈A determines a stratification of X /Γ whose strata can be
identified with the quotients Xα /Γ.

More generally, suppose that the stratification {Uα}α∈A is merely Γ-equivariant in
the sense of Remark 5.2.1.6. We can then apply the preceding remark to the induced
stratification {U[α]}α∈A/Γ by Γ-invariant open substacks. This yields a stratification of
X /Γ by open substacks {U[α] /Γ}α∈A/Γ, where each stratum (X /Γ)[α] can be identified
with the quotient Xα /Γα, where Γα denotes the subgroup of Γ which stabilizes α.
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5.2.2 Convergent Stratifications

Let X be a smooth algebraic stack over Fq equipped with a stratification {Xα}α∈A,
where each Xα satisfies the Grothendieck-Lefschetz trace formula. Then X need not
satisfy the Grothendieck-Lefschetz trace formula. For example, if A is an infinite set,
then the disjoint union

qα∈A Spec(Fq)

does not satisfy the Grothendieck-Lefschetz trace formula. We now single out a special
class of stratifications for which this problem does not arise.

Definition 5.2.2.1. Let X be an algebraic stack of finite type over Spec(Fq). We will
say that a stratification {Xα}α∈A of X is convergent if there exists a finite collection of
algebraic stacks T1, . . . ,Tn over Spec(Fq) with the following properties:

(1) For each α ∈ A, there exists an integer i ∈ {1, 2, . . . , n} and a diagram of algebraic
stacks

Ti
f−→ X̃α

g−→ Xα

where the map f is a fiber bundle (locally trivial with respect to the étale topol-
ogy) whose fibers are affine spaces of some fixed dimension dα and the map g is
surjective, finite, and radicial.

(2) The nonnegative integers dα appearing in (1) satisfy
∑

α∈A q
−dα <∞.

(3) For 1 ≤ i ≤ n, the algebraic stack Ti can be written as a stack-theoretic quotient
Y/G, where Y is an algebraic space of finite type over Fq and G is a linear
algebraic group over Fq which acts on Y .

Remark 5.2.2.2. In the situation of Definition 5.2.2.1, hypothesis (2) guarantees that
the set A is at most countable.

We can now state the main result of this section:

Proposition 5.2.2.3. Let X be a smooth algebraic stack of dimension d over Spec(Fq).
If X admits a convergent stratification, then X satisfies the Grothendieck-Lefschetz trace
formula.

Remark 5.2.2.4. In the statement of Proposition 5.2.2.3, the hypothesis that X be
smooth is not really important (see Remark 5.0.0.4).

We will deduce Proposition 5.2.2.3 from the following statement, whose proof we
defer to §5.2.3:
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Proposition 5.2.2.5. Let X be a smooth algebraic stack of dimension d over Spec(Fq).
Suppose that there exists a stratification {Xα}α∈A of X and a finite collection of alge-
braic stacks {Ti}1≤i≤n over Spec(Fq) which satisfy conditions (1) and (2) of Definition
5.2.2.1, together with the following variant of (3):

(3′) Each Ti is smooth over Spec(Fq) (of some fixed dimension) and satisfies the
Grothendieck-Lefschetz trace formula.

Then X satisfies the Grothendieck-Lefschetz trace formula.

Corollary 5.2.2.6. Let X be an algebraic space which is smooth (of constant dimen-
sion) and of finite type over Spec(Fq). Then X satisfies the Grothendieck-Lefschetz
trace formula.

Proof. Every reduced closed Y ⊆ X is a quasi-compact, quasi-separated algebraic space
of finite type over Spec(Fq), and therefore contains a nonempty affine open subset
U ⊆ Y . Since the field Fq is perfect, we may assume (shrinking U if necessary) that
U is smooth of constant dimension over Fq. It follows by Noetherian induction that
X admits a finite stratification {Xα}α∈A where each stratum Xα is an affine scheme
which is smooth over Spec(Fq). The desired result now follows from Proposition 5.2.2.5
(taking the algebraic stacks Ti to be the strata Xα).

Proof of Proposition 5.2.2.3 from Proposition 5.2.2.5. Let X be a smooth algebraic stack
equipped with a convergent stratification {Xα}α∈A. To prove that X satisfies the
Grothendieck-Lefschetz trace formula, it will suffice (by virtue of Proposition 5.2.2.5)
to show that X admits another stratification {Yβ}β∈B which satisfies the hypotheses of
Proposition 5.2.2.5.

Since the stratification {Xα}α∈A is convergent, there exists a finite collection of
algebraic stacks {Ti}1≤i≤m of finite type over Spec(Fq) which satisfies conditions (1),
(2), and (3) of Definition 5.2.2.1. In particular, condition (3) implies that we can write
each Ti as a stack-theoretic quotient Yi/Gi, where Yi is an algebraic space of finite type
over Fq and each Gi is a linear algebraic group over Fq. Choose an integer n ≥ 0 such
that each of the algebraic spaces Yi has dimension ≤ n. We define a sequence of locally
closed substacks

Zi,n, Zi,n−1, Zi,n−2, . . . , Zi,0 ⊆ Yi

by descending induction as follows: for 0 ≤ j ≤ n, let Zi,j denote the largest open
subset of (Yi −

⋃
j′>j Zi,j′) which is smooth of dimension j over Spec(Fq) (where we

regard Yi−
⋃
j′>j Zi,j′ as a reduced closed subscheme of Y ). Note that the action of Gi

on Yi preserves each Zi,j , so that we can regard the quotient Yi,j/Gi as a locally closed
substack Ti,j ⊆ Ti which is smooth of dimension j − dim(Gi) over Spec(Fq).
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Condition (1) of Definition 5.2.2.1 implies that for each α ∈ A, there exists an
integer i(α) ∈ {1, . . . ,m} and a pair of maps

Ti(α)
fα−→ X̃α

gα−→ Xα,

where fα is an étale fiber bundle whose fibers are affine spaces of some dimension dα and
the map gα is surjective, finite, and radicial. In particular, the morphism fα is smooth
of constant dimension; it follows that each of the closed substacks Ti(α),j ⊆ Ti(α) can
be realized as a fiber product

Ti(α)×X̃α
X̃α,j ,

where {X̃α,j}0≤j≤n is the collection of locally closed substacks of X̃α defined inductively

by taking X̃α,j to be the largest open substack of (X̃α−
⋃
j′>j X̃α,j′) which is smooth of

dimension j−dα−dim(Gi(α)) over Fq. Since gα is a universal homeomorphism, each of

the (reduced) locally closed substacks X̃α,j is given set-theoretically as the inverse image

of a reduced locally closed substack Xα,j ⊆ Xα, and the projection map X̃α,j → Xα,j is
surjective, finite, and radicial.

Let B = A × {0, . . . , n}. We will regard B as equipped with the lexicographical
ordering (so that (α, j) ≤ (α′, j′) if either α < α′ or α = α′ and j ≤ j′). Then
{Xα,j}(α,j)∈B is a stratification of X. We claim that this stratification satisfies the
hypotheses of Proposition 5.2.2.5. By construction, for each (α, j) ∈ B, we have a
diagram

Tα(i),j → X̃α,j → Xα,j

where the first map is an étale fiber bundle whose fibers are affine spaces of dimension
dα, and the second map is surjective, finite, and radicial. Moreover, we have∑

(α,j)∈B

q−dα = (n+ 1)
∑
α∈A

q−dα <∞.

To complete the proof, it will suffice to verify condition (3′): each of the smooth
algebraic stacks Ti,j satisfies the Grothendieck-Lefschetz trace formula. Choose an
embedding Gi ↪→ GLd, so that we can describe Ti,j as the stack-theoretic quotient of
(Yi,j × GLd)/G by the action of GLd. Using Proposition 5.1.0.1, we are reduced to
showing that (Yi,j ×GLd)/G satisfies the Grothendieck-Lefschetz trace formula, which
follows from Corollary 5.2.2.6.

5.2.3 The Proof of Proposition 5.2.2.5

The proof of Proposition 5.2.2.5 will require some preliminaries.
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Lemma 5.2.3.1 (Gysin Sequence). Let X and Y be smooth quasi-projective varieties
over an algebraically closed field k, let g : Y → X be a finite radicial morphism, and let
U ⊆ X be the complement of the image of g. Then there is a canonical fiber sequence

C∗−2d(Y ; Z`(−d))→ C∗(X; Z`)→ C∗(U ; Z`),

where d denotes the relative dimension dim(X)− dim(Y ).

Proof. If f : Z ′ → Z is a proper morphism of quasi-projective k-schemes, let ωZ′/Z =

f !Z`Z denote the relative dualizing complex of f . Note that if Z and Z ′ are smooth of
constant dimension, we have

ωZ′/Z = f !Z`Z

' f !(ω−1
Z ⊗ ωZ)

' f∗ω−1
Z ⊗ f

!ωZ

' f∗ω−1
Z ⊗ ωZ′

' Σ−2 dimZZ`Z′(−dimZ)⊗ Σ2 dim(Z′)Z`Z′(dimZ ′)

' Σ2(dimZ′−dimZ)Z`Z′(dimZ ′ − dimZ).

In particular, we have ωY/X ' Σ−2dZ`Y (−d).
Let Y0 ⊆ X denote the image of g, regarded as a reduced closed subscheme of Y .

Then g restricts to finite radicial surjection g0 : Y → Y0, and we have ωY/X ' g!
0ωY0/X .

Let j : U ↪→ X and i : Y0 ↪→ X denote the inclusion maps, so that we have a fiber
sequence of sheaves

i∗i
!Z`X → Z`X → j∗j

∗Z`X .

Passing to global sections, we obtain a fiber sequence

C∗(Y0;ωY0/X)→ C∗(X; Z`)→ C∗(U ; Z`).

The map g0 is a finite radicial surjection, and therefore induces an equivalence between
the étale sites of Y and Y0. It follows that the counit map

g0∗g
!
0ωY0/X → ωY0/X

is an equivalence, so we have equivalences

C∗(Y0;ωY0/X) ' C∗(Y0; g0∗g
!
0ωY0/X)

' C∗(Y ; g!
0ωY0/X)

' C∗(Y ;ωY/X)

' C∗−2d(Y ; Z`(−d)).
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Lemma 5.2.3.1 immediately implies a corresponding result for algebraic stacks:

Lemma 5.2.3.2. Let X and Y be smooth algebraic stacks of constant dimension over
an algebraically closed field k, let g : Y → X be a finite radicial morphism, and let
U ⊆ X be the open substack of X complementary to the image of g. Then there is a
canonical fiber sequence

C∗−2d(Y; Z`(−d))→ C∗(X; Z`)→ C∗gm(Y; Z`),

where d denotes the relative dimension dim(X)− dim(Y).

Proof. Let C denote the category whose objects are affine k-schemes X equipped with
a smooth morphism X → X. For each object X ∈ C, let YX = Y×XX and let
UX = U×XX. Lemma 5.2.3.1 then supplies a fiber sequence

C∗−2d(YX ; Z`(−d))→ C∗(X; Z`)→ C∗(UX ; Z`).

The construction of this fiber sequence depends functorially on X. We may therefore
pass to the limit to obtain a fiber sequence

lim←−
X∈C

C∗−2d(YX ; Z`(−d))→ lim←−
X∈C

C∗(X; Z`)→ lim←−
X∈C

C∗(UX ; Z`).

The desired result now follows from the identifications

C∗−2d(Y; Z`(−d)) ' lim←−
X∈C

C∗−2d(YX ; Z`(−d))

C∗(X; Z`) ' lim←−
X∈C

C∗(X; Z`)

C∗(U; Z`) ' lim←−
X∈C

C∗(UX ; Z`).

Lemma 5.2.3.3. Let X be an affine Fq-scheme of finite type which becomes isomorphic
to an affine space Ae after passing to some finite extension of Fq. Then the set X(Fq)
has qe elements.

Proof. By virtue of the Grothendieck-Lefschetz trace formula, it will suffice to show
that Tr(Frob−1 |H∗gm(X)) is equal to 1. Equivalently, we must show that the trace

of Frob−1 on the reduced cohomology H∗red(X ×Spec(Fq) Spec(Fq); Q`) vanishes. But

this reduced cohomology itself vanishes, since X×Spec(Fq) Spec(Fq) is isomorphic to an

affine space over Spec(Fq).
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Proof of Proposition 5.2.2.5. Let d = dim(X) and let {Xα}α∈A be the given stratifi-
cation of X. The set A is at most countable (Remark 5.2.2.2). By adding additional
elements to A and assigning to those additional elements the empty substack of X, we
may assume that A is infinite. Using our assumption that {β ∈ A : β ≤ α} is finite for
each α ∈ A, it follows that we can choose an enumeration

A = {α0, α1, α2, . . .}

where each initial segment {α0, . . . , αn} is a downward-closed subset of A. We can then
write X as the union of an increasing sequence of open substacks

U0 ↪→ U1 ↪→ U2 ↪→ · · ·

where Un is characterized by the requirement that if k is a field, then a map η :
Spec(k) → X factors through Un if and only if it factors through one of the substacks
Xα0 ,Xα1 , . . . ,Xαn .

By hypothesis, there exists a finite collection {Ti}1≤i≤m of smooth algebraic stacks
over Spec(Fq), where each Ti has some fixed dimension di and satisfies the Grothendieck-
Lefschetz trace formula, and for each n ≥ 0 there exists an index i(n) ∈ {1, . . . ,m} and
a diagram

Ti(n)
fn−→ X̃αn

gn−→ Xαn ,

where gn is a finite radicial surjection and fn is an étale fiber bundle whose fibers are
affine spaces of some fixed dimension e(n). Set

X = X×Spec(Fq) Spec(Fq)

Un = Un×Spec(Fq) Spec(Fq)

Ti = Ti×Spec(Fq) Spec(Fq).

The map fn induces an isomorphism on `-adic cohomology. Applying Lemma 5.2.3.2
to the finite radicial map

gn : X̃αn ×Spec(Fq) Spec(Fq)→ Un,

we obtain fiber sequences

C∗−2e′n(T̃i(n); Z`(−e′n))→ C∗(Un; Z`)→ C∗(Un−1; Z`)

where e′n = en + d− di(n) denotes the relative dimension of the map X̃αn → X.
We have a canonical equivalence

θ : C∗(X; Z`) ' lim←−
n

C∗(Un; Z`).
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Our convergence assumption ∑
n≥0

q−en <∞

guarantees that the sequence of integers {en}n≥0 tends to infinity and therefore the
sequence {e′n}n≥0 also tends to infinity. It follows that the restriction maps

H∗(Un; Z`)→ H∗(Un−1; Z`)

are isomorphisms for n� ∗, so that θ also induces an equivalence

C∗(X; Z`)[`
−1] ' lim←−

n

C∗(Un; Z`)[`
−1].

Set V (n) = C∗(Un; Z`)[`
−1] = C∗gm(Un) and let W (n) denote the fiber of the re-

striction map V (n) → V (n − 1) (with the convention that W (0) = V (0)). The above
calculation gives

W (n) = C∗−2e′n
gm (Ti(n))(−e′n).

Since each Ti satisfies the Grothendieck-Lefschetz trace formula, the cohomologies of
W (n) are finite-dimensional in each degree and we have

|H∗(W (n))|Frob−1 = q−e
′
n |H∗gm(Ti(n) |Frob−1 |

Tr(Frob−1 |H∗(W (n))) = q−e
′
n Tr(Frob−1 |H∗gm(Ti(n))) = q−en−d|Ti(n)(Fq)|.

In particular, we have∑
n≥0

|H∗(W (n))|Frob−1 =
∑
n≥0

q−e
′
n |H∗gm(Ti(n) |Frob−1

≤
∑
n≥0

q−en
∑

1≤i≤m
qdi−d|H∗gm(Ti)|Frob−1

< ∞.

Invoking Lemma 5.1.1.1, we conclude that (H∗gm(X),Frob−1) is convergent, with

Tr(Frob−1 |H∗gm(X)) =
∑
n≥0

Tr(Frob−1 |H∗(W (n))

=
∑
n≥0

q−en−d|Ti(n)(Fq)|.

On the other hand, the stratification {Xαn}n≥0 of X gives the identity

|X(Fq)|
qd

=
∑
n≥0

q−d|Xαn(Fq)|.
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It will therefore suffice to prove that for each n ≥ 0, we have

|Ti(n)(Fq)| = qen |Xαn(Fq)|.

Since gn is a finite radicial surjection, it induces an equivalence of categories X̃αn(Fq) '
Xαn(Fq). It will therefore suffice to show that each object of the groupoid X̃αn(Fq) can
be lifted in exactly qen ways to an object of the groupoid Ti(n)(Fq) via the map fn,
which is an immediate consequence of Lemma 5.2.3.3.

5.3 The Harder-Narasimhan Stratification

Let X be a smooth algebraic stack over Fq. In §5.2, we proved that if X admits a con-
vergent stratification (Definition 5.2.2.1), then it satisfies the Grothendieck-Lefschetz
trace formula (Proposition 5.2.2.3). To complete the proof of Theorem 5.0.0.3, it will
suffice to show that the moduli stack X = BunG(X) admits a convergent stratification
{Xα}α∈A, where X is an algebraic curve over Fq and G is a smooth affine group scheme
over X with connected fibers and semisimple generic fiber. If the group scheme G is
split (that is, if it is the pullback of a split semisimple algebraic group over Fq), then
this strategy can be realized by taking {Xα}α∈A to be the Harder-Narasimhan stratifi-
cation of BunG(X) (see Theorem 5.3.2.2). In this section, we will recall the definition
of the Harder-Narasimhan stratification in the case where G is split, and describe an
extension of this definition to the case of inner forms of split groups (see §5.3.5) for
details) which will play an important role in our proof of Theorem 5.0.0.3.

5.3.1 Semistable G-Bundles

Throughout this section, we fix an algebraically closed field k, an algebraic curve X
over k, and a reductive algebraic group G over k. Choose a Borel subgroup B ⊆ G and
a maximal torus T ⊆ B. We will say that a parabolic subgroup P ⊆ G is standard if it
contains B.

Notation 5.3.1.1. For every linear algebraic group H over k, we let Hom(H,Gm) de-
note the character group ofH (a finitely generated abelian group). We let Hom(H,Gm)∨

denote the abelian group of homomorphisms from Hom(H,Gm) to Z. Given elements
µ ∈ Hom(H,Gm) and ν ∈ Hom(H,Gm)∨, we let 〈µ, ν〉 ∈ Z denote the integer given
by evaluating ν on µ.

Definition 5.3.1.2. Let H be a linear algebraic group over k and let P be an H-bundle
on X. For every character µ : H → Gm, the H-bundle P determines a Gm-bundle Pµ
on X, which we will identify with the corresponding line bundle. We let deg(P) denote
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the element of Hom(H,Gm)∨ given by µ 7→ deg(Pµ). We will refer to deg(P) as the
degree of P.

Let ν be an element of Hom(H,Gm)∨. We let BunνH(X) denote the substack of
BunH(X) whose R-valued points are H-bundles P on the relative curve XR having
the property that for every k-valued point η : Spec(k) → Spec(R), the fiber Pη =
P×Spec(R) Spec(k) has degree ν. We will refer to BunνH(X) as the moduli stack of
H-bundles of degree ν on X.

Remark 5.3.1.3. In the situation of Definition 5.3.1.2, let R be a finitely generated
k-algebra and let P be an H-bundle on XR. The construction η 7→ deg(Pη) determines
a map from the closed points of Spec(R) to Hom(H,Gm)∨ which is locally constant
for the Zariski topology. It follows that each BunνH(X) is a closed and open substack
of BunH(X); in particular, it is a smooth algebraic stack over k. Moreover, we can
identify BunH(X) with the disjoint union∐

ν∈Hom(H,Gm)∨

BunνH(X)

(taken in the 2-category of algebraic stacks over k).

Notation 5.3.1.4. Let H be a linear algebraic group over k and let h denotes its Lie

algebra. The adjoint action of H on h determines a character H → GL(h)
det−−→ Gm,

which we will denote by 2ρH and regard as an element of Hom(H,Gm).

Remark 5.3.1.5. Specializing to the case where H is the standard Borel subgroup
B ⊆ G, we can identify Hom(B,Gm) with the character lattice of G. In this case, the
element 2ρB ∈ Hom(G,Gm) is the sum of the positive roots of G. Beware that 2ρB
is generally not divisible by 2 in Hom(B,Gm) (however, it is divisible by 2 when G is
semisimple and simply connected: in this case, ρB can be identified with the sum of
the fundamental weights of G).

Definition 5.3.1.6. Let P be a G-bundle on X. We will say that P is semistable if,
for every standard parabolic subgroup P ⊆ G and every reduction of P to a P -bundle
Q, we have 〈2ρP , deg(Q)〉 ≤ 0.

Let us identify BunG(X) with the category of pairs (R,P) where R is a finitely
generated k-algebra and P is a G-bundle on the relative curve XR. We let BunG(X)ss

denote the full subcategory of BunG(X) spanned by those pairs (R,P) with the fol-
lowing property: for every every k-valued point η : Spec(k) → Spec(R) the fiber
Pη = P×Spec(R) Spec(k) is semistable (when viewed as a G-bundle on X). We will
refer to BunG(X)ss as the semistable locus of BunG(X).

Remark 5.3.1.7. It is not immediately obvious that the semistable locus BunG(X)ss is
itself an algebraic stack. However, one can show that it is an open substack of BunG(X)
(and therefore algebraic): this is a special case of Theorem 5.3.2.2.
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Remark 5.3.1.8. Let P ⊆ G be a standard parabolic subgroup and let Q be a G-
bundle on X. Let U denote the unipotent radical of P and let u denote its Lie algebra.
We then have an exact sequence

0→ u→ p→ p/u→ 0

of representations of P . Note that the action of P on p/u factors through the adjoint
quotient of P/U (which is a semisimple algebraic group), and is therefore given by a
map P → SL(p/u). It follows that the character 2ρP ∈ Hom(P,Gm) can be identified
with the character

P → GL(u)
det−−→ Gm.

Remark 5.3.1.9. Let Gad denote the adjoint quotient of G. For every standard
parabolic subgroup P ⊆ G, we let Pad denote the image of P in Gad. If Q is a P -bundle,
we let Qad denote the associated Pad-bundle. Note that the natural map P → Pad in-
duces an isomorphism from the unipotent radical of P to the unipotent radical of Pad.
It follows from Remark 5.3.1.8 the induced map Hom(Pad,Gm)→ Hom(P,Gm) carries
2ρPad

to 2ρP .

Remark 5.3.1.10. Let P be a G-bundle on X. For every standard parabolic subgroup
P ⊆ G, there is a canonical bijection between the set of P -reductions of P to the set of
Pad-reductions of Pad, given (at the level of bundles) by the construction Q 7→ Qad. It
follows from Remark 5.3.1.9 that we have 〈2ρP , deg(Q)〉 = 〈2ρPad

,deg(Q)ad〉, so that P

is semistable if and only if Pad is semistable. Consequently, we have a pullback diagram

BunG(X)ss //

��

BunG(X)

��
BunGad

(X)ss // BunGad
(X).

Variant 5.3.1.11. Let P ⊆ G be a standard parabolic subgroup and let U ⊆ P be
its unipotent radical. Then P/U is a reductive algebraic group over X. We say that a
P -bundle Q on X is semistable if the associated (P/U)-bundle on X is semistable. We
let BunP (X)ss denote the fiber product

BunP (X)×BunP/U (X) BunP/U (X)ss;

we will refer to BunP (X)ss as the moduli stack of semistable P -bundles. For each
element ν ∈ Hom(P,Gm)∨, we let BunνP (X)ss denote the intersection BunνP (X) ∩
BunP (X)ss, which we will refer to as the moduli stack of semistable P -bundles of degree
ν.
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Remark 5.3.1.12. Let G→ G′ be a central isogeny of reductive algebraic groups over
k. We let B′ and T ′ denote the images of B and T in G′, so that B′ is a Borel subgroup
of G′ and T ′ is a maximal torus in B′. For every standard parabolic subgroup P ⊆ G,
let P ′ denote the image of P in G′, so that P ′ is a standard parabolic subgroup of G′.
The natural map P → P ′ induces an injection of finitely generated free abelian groups

Hom(P,Gm)∨ ↪→ Hom(P ′,Gm)∨ ν 7→ ν ′.

For each ν ∈ Hom(P,Gm)∨ we have BunνP (X) ' BunP (X) ×BunP ′ (X) Bunν
′
P ′(X), and

Remark 5.3.1.10 gives BunP (X)ss ' BunP (X)×BunP ′ (X) BunP ′(X)ss.

5.3.2 The Harder-Narasimhan Stratification: Split Case

Throughout this section, we fix an algebraically closed field k, a reductive algebraic
group G over k, a Borel subgroup B ⊆ G, and a maximal torus T ⊆ B. To describe
the Harder-Narasimhan stratification, we will need a bit more terminology:

Notation 5.3.2.1. Let P ⊆ G be a standard parabolic subgroup, let U ⊆ P be its
unipotent radical, and let H ⊆ P be the unique Levi subgroup which contains T . We
have a commutative diagram

Hom(P,Gm)

((
Hom(P/U,Gm)

66

// Hom(H,Gm)

where the bottom map and the left diagonal map are isomorphisms, so the right diag-
onal map is an isomorphism as well.

Let Z(H) denote the center of H, which we regard as a subgroup of T . Since H is
a reductive group, the canonical map

Hom(H,Gm)→ Hom(Z(H),Gm)

is a rational isomorphism. In particular, we have a canonical map

Hom(T,Gm) → Hom(Z(H),Gm)

→ Hom(Z(H),Gm)⊗Q
∼←− Hom(H,Gm)⊗Q
∼←− Hom(P,Gm)⊗Q .

In particular, every character α ∈ Hom(T,Gm) determines a map Hom(P,Gm)∨ → Q,
which we will denote by ν 7→ 〈α, ν〉.
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Let ∆ ⊆ Hom(T,Gm) denote the set of simple roots of G and let ∆P ⊆∆ denote
the subset consisting of those roots α such that −α is not a root of P . We will say that
an element ν ∈ Hom(P,Gm)∨ is dominant if 〈α, ν〉 ≥ 0 for each α ∈∆P , and we will say
that ν is dominant regular if 〈α, ν〉 > 0 for each α ∈∆P . We let Hom(P,Gm)∨≥0 denote
the subset of Hom(P,Gm)∨ spanned by the dominant elements and Hom(P,Gm)∨>0 the
subset consisting of dominant regular elements.

We can now state the main result that we will need. For a proof, we refer the reader
to [4] or [30].

Theorem 5.3.2.2 (The Harder-Narasimhan Stratification). Let X be an algebraic
curve over k. Then:

(a) For each standard parabolic subgroup P ⊆ G, the inclusion

BunP (X)ss ↪→ BunP (X)

is an open immersion. In particular, BunP (X)ss is a smooth algebraic stack over
Spec(k), which can be written as a disjoint union∐

ν∈Hom(P,Gm)∨

BunνP (X)ss.

(b) For each standard parabolic subgroup P ⊆ G and each ν ∈ Hom(P,Gm)∨>0, there
exists a locally closed substack BunG(X)P,ν ⊆ BunG(X) which is characterized
by the following property: the natural map BunP (X) → BunG(X) restricts to a
surjective finite radicial map

BunνP (X)ss → BunG(X)P,ν .

(c) Let A be the collection of all pairs (P, ν), where P is a standard parabolic subgroup
of G and ν is an element of Hom(P,Gm)∨>0. Then, for a suitable partial ordering
of A, the collection of locally closed substacks {BunG(X)P,ν}(P,ν)∈A determines a
stratification of BunG(X) (see Remark 5.2.1.3).

We will refer to the stratification of BunG(X) whose existence is guaranteed by
Theorem 5.3.2.2 as the Harder-Narasimhan stratification.

Remark 5.3.2.3. If the field k has characteristic zero, or if G = GLn, or more gener-
ally if if the characteristic of k does not belong to a finite set of “bad primes” which
may depend on G, then assertion (b) can be strengthened: the maps BunνP (X)ss →
BunG(X)P,ν are equivalences. However, this is not true in general; see [17] for a more
thorough discussion.

Remark 5.3.2.4. Let G→ G′ be a central isogeny of reductive algebraic groups over k.
It follows from Remark 5.3.1.12 that the Harder-Narasimhan stratification of BunG(X)
is the pullback of the Harder-Narasimhan stratification of BunG′(X).
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5.3.3 Rationality Properties of the Harder-Narasimhan Stratification

We now extend the constructions of §5.3.2 to the case of a ground field k which is not
assumed to be algebraically closed. Let G be a split reductive algebraic group over k,
so that we can choose a Borel subgroup B ⊆ G and a maximal torus T ⊆ B (which is
split over k). If k is an algebraic closure of k and X is an algebraic curve over k, then
Theorem 5.3.2.2 determines a stratification of the moduli stack BunG(X).

Remark 5.3.3.1 (Functoriality in X). Let ψ be an automorphism of X as a k-scheme,
so that ψ induces an automorphism ψ0 of the field k = H0(X;OX) which we do not
assume to be the identity. Then σ fits into a commutative diagram

X
ψ //

��

X

��
Spec(k)

ψ0 // Spec(k).

Then ψ induces an automorphism φ of the algebraic stack BunG(X) which fits into a
commutative diagram

BunG(X)
φ //

��

BunG(X)

��
Spec(k)

ψ0 // Spec(k).

Unwinding the definitions, we see that the automorphism φ carries each Harder-Narasimhan
stratum BunG(X)P,ν into itself.

Remark 5.3.3.2. Suppose that X is defined over k: that is, we have an isomorphism
X ' X ×Spec(k) Spec(k), where X is an algebraic curve over k. Let BunG(X) denote
the moduli stack of G-bundles on X, which we regard as a smooth algebraic stack
over k. We then have an equivalence of algebraic stacks BunG(X) ' BunG(X)×Spec(k)

Spec(k). It follows that there is a bijective correspondence between open substacks
of BunG(X) and Gal(k/k)-invariant open substacks of BunG(X). Invoking Remark
5.3.3.1, we see that the Harder-Narasimhan stratification of BunG(X) is defined over
k: that is, there is a stratification of BunG(X) by reduced locally closed substacks
{BunG(X)P,ν} satisfying

BunG(X)P,ν = (BunG(X0)P,ν ×Spec(k) Spec(k))red.

Remark 5.3.3.3 (Functoriality in G). In the situation of Remark 5.3.3.2, the moduli
stack BunG(X) depends functorially on the algebraic group G, and therefore carries an
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action of the automorphism group Aut(G). This action factors through the quotient
group Out(G) = Aut(G)/Gad of outer automorphisms of G. Moreover, the result-
ing action of Out(G) on BunG(X) preserves the Harder-Narasimhan stratification of
BunG(X), but permutes the strata. More precisely, let A = {(P, ν)} be as in the
statement of Theorem 5.3.2.2. The automorphism group Out(G) acts on A by the
construction

(σ ∈ Out(G), (P, ν) ∈ A) 7→ (σ(P ), νσ),

where 〈µ, νσ〉 = 〈µ◦σ, ν〉 for µ ∈ Hom(σ(P ),Gm). For each σ ∈ Out(G), the associated
automorphism ψσ : BunG(X) ' BunG(X) restricts to equivalences BunG(X)P,ν '
BunG(X)σ(P ),νσ .

5.3.4 Digression: Inner Forms

We now introduce some terminology which will be useful for extending the theory of
the Harder-Narasimhan filtration to the setting of bundles over non-split groups. Fix
a field k, a split reductive algebraic group G0 over k, a Borel subgroup B0 ⊆ G0, and
a (k-split) maximal torus T0 ⊆ B0. We let G0 ad denote the adjoint quotient of G0; for
any subgroup H0 ⊆ G0, we let H0 ad denote the image of H0 in Gad.

If X is a k-scheme and G is a group scheme over X, we will say that G is a form of
G0 over X if there exists an étale surjection X̃ → X such that G×X X̃ is isomorphic
to G0 ×Spec(k) X̃ as a group scheme over X. Note that this condition implies that G is
a reductive group scheme over X, and that the adjoint quotient Gad of G is a form of
G0 ad over X.

Notation 5.3.4.1. Let X be a k-scheme and let G be a form of G0 over X. We let
Iso(G,G0) denote the X-scheme parametrizing isomorphisms of G with G0 (so that
the R-valued points of Iso(G,G0) are isomorphisms of G×X Spec(R) with G0 ×Spec(k)

Spec(R) as group schemes over R). Then Iso(G,G0) is an Aut(G0)-torsor over X, where
Aut(G0) denotes the automorphism group of G0. The automorphism group Aut(G0)
fits into an exact sequence

0→ G0 ad → Aut(G0)→ Out(G0)→ 0,

where Out(G0) denotes the (constant) group scheme of outer automorphisms of G0

(if G0 is semisimple, then Out(G0) is finite). Let Out(G,G0) denote the quotient
G0 ad\ Iso(G,G0), which we regard as an Out(G0)-torsor overX. In particular, Out(G,G0)
is a scheme equipped with an étale surjection Out(G,G0)→ X (which is finite étale in
the case where G0 is semisimple).

Definition 5.3.4.2. Let X be a k-scheme and let G be a form of G0 over X. An inner
structure on G is a section of the projection map Out(G,G0) → X. An inner form of
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G0 over X is a pair (G, σ), where G is a form of G0 over X and σ is an inner structure
on G.

Example 5.3.4.3. Let G be a form of G0 over a k-scheme X. Any isomorphism
β : G ' G0 ×Spec(k) X determines an inner structure on G (in particular, the split
form of G0 over X admits a canonical inner structure), and every inner structure on G
arises in this way étale locally on X. Moreover, if β′ is another such isomorphism,
then β′ determines the same inner structure on G if and only if the isomorphism
β′−1 ◦ β : G→ G is given by conjugation by an X-valued point of Gad.

Example 5.3.4.4. Let X be a connected normal k-scheme with fraction field KX and
let G be a form of G0 over X. Then every inner structure on the algebraic group
G×X Spec(KX) extends uniquely to an inner structure on G. In particular, the group
scheme G admits an inner structure whenever the generic fiber of G is split.

In the special case where k is algebraically closed and X is an algebraic curve over
k, the converse holds: since the fraction field KX has dimension ≤ 1, the generic fiber
G is automatically quasi-split, so that G admits an inner structure if and only if the
generic fiber of G is split.

Remark 5.3.4.5. Let G be a form of G0 over a k-scheme X. Then the group Out(G0)
acts on the collection of inner structures on G. If G admits an inner structure and X
is connected, then this action is simply transitive.

Construction 5.3.4.6. Let (G, σ) be an inner form of G0 over a k-scheme X. We
let Isoσ(G,G0) denote the fiber product X ×Out(G,G0) Iso(G,G0). Then Iso(G,G0) is a
bitorsor for the groups Gad and G0 ad: that is, it is equipped with commuting actions
of the X-schemes Gad (on the right) and G0 ad ×Spec(k) X (on the left), each of which
is simply transitive locally for the étale topology. It follows that the construction

P 7→ Iso(G,G0)⊗Gad
P = (Iso(G,G0)×X P)/Gad

induces an equivalence from the category TorsGad
(X) of Gad-torsors on X to the cate-

gory TorsG0 ad
(X) of G0 ad-torsors on X.

In the case where X is an algebraic curve over k, this construction supplies an
equivalence of algebraic stacks εσ : BunGad

(X) ' BunG0 ad
(X).

Warning 5.3.4.7. In the situation of Construction 5.3.4.6, the equivalence

εσ : BunGad
(X) ' BunG0 ad

(X)

depends on the choice of inner structure σ. Note that the group Out(G0) acts simply
transitively on the set of inner structures on G; in particular, any other inner structure
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on G can be written as g(σ) where g ∈ Out(G0). In this case, we have a commutative
diagram

BunGad
(X)

εσ

ww

εg(σ)

''
BunG0 ad

(X) // BunG0 ad
(X)

where the lower horizontal map is the automorphism induced by g.

5.3.5 The Harder-Narasimhan Stratification: The Inner Case

Throughout this section, we fix a field k and an algebraic curve X over k. If G is a split
reductive group scheme over X, then the moduli stack BunG(X) can be equipped with
the Harder-Narasimhan stratification described in Remark 5.3.3.2. In this section, we
generalize the construction to the case where G is an inner form of a split reductive
group.

Construction 5.3.5.1 (The Harder-Narasimhan Stratification). Let G0 be a split
reductive algebraic group over k and let (G, σ) be an inner form of G0 over X (Definition
5.3.4.2). Then σ determines a map

BunG(X)→ BunGad
(X)

εσ−→ BunG0 ad
(X).

Let A denote the set of all pairs (P0, ν), where P0 ⊆ G0 is a standard parabolic subgroup
and ν ∈ Hom(P0 ad,Gm)∨>0. For each element (P0, ν) ∈ A, let BunG0 ad

(X)P0 ad,ν denote
the corresponding stratum of the Harder-Narasimhan stratification of BunG0 ad

(X) (see
Remark 5.3.3.2). We let BunG(X)σP0,ν

denote the reduced locally closed substack of
BunG(X) given by

(BunG(X)×BunG0 ad
(X) BunG0 ad

(X)P0 ad,ν)red.

Then {BunG(X)σP0,ν
}(P0,ν)∈A is a stratification of BunG(X), which we will refer to as

the Harder-Narasimhan stratification.

Warning 5.3.5.2. In the special case where the reductive group scheme G is split,
the Harder-Narasimhan stratification of Construction 5.3.5.1 is not quite the same as
the Harder-Narasimhan stratification of Theorem 5.3.2.2. The former stratification is
indexed by the set

A = {(P0, ν) : P0 ⊆ G0 is a standard parabolic subgroup and ν ∈ Hom(P0 ad,Gm)∨>0 },

while the latter stratification is indexed by the set

B = {P0, ν : P0 ⊆ G0 is a standard parabolic subgroup and ν ∈ Hom(P0,Gm)∨>0}.
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For every standard parabolic subgroup P0 ⊆ G0, there is a canonical map of lattices

φP0 : Hom(P0,Gm)∨ → Hom(P0 ad,Gm)∨,

and for each ν ∈ Hom(P0 ad,Gm)∨ we have

BunG(X)σP0,ν = qφP0
(ν)=ν BunG(X)P0,ν ,

where the left hand side refers to the stratification of Construction 5.3.5.1 (where σ
denotes the inner structure determined by a splitting of G) and the right hand side
refers to the stratification of Theorem 5.3.2.2.

If the group G0 is semisimple, then the map φP0 is injective for every standard
parabolic P0 ⊆ G0. In this case, we can regard B as a subset of A, and we have

BunG(X)σP0,ν =

{
BunG(X)P0,ν if (P0, ν) ∈ B
∅ otherwise.

In other words, the only difference between the stratifications of Construction 5.3.5.1
and Theorem 5.3.2.2 is that the former includes some “superfluous” empty strata (in-
dexed by elements of A that do not belong to B).

If the group G0 is not semisimple, then the maps φP0 fail to be injective. In this case,
the stratification of Theorem 5.3.2.2 is much finer than the stratification of Construction
5.3.5.1. For example, if G0 = Gm, then we can identify BunG(X) = BunG0(X) with the
Picard stack Pic(X) of line bundles on X. The stratification of Construction 5.3.5.1 is
trivial (there is only one stratum, consisting of the entire moduli stack Pic(X)), but the
stratification of Theorem 5.3.2.2 reproduces the decomposition of Pic(X) as a disjoint
union qn∈Z Picn(X), where Picn(X) denotes the moduli stack of line bundles of degree
n on X.

Warning 5.3.5.3. Let (G, σ) be an inner form of G0 over X. If the group scheme G
is split, then the strata BunG(X)σP0,ν

are empty when ν does not belong to the image
of the restriction map φP0 : Hom(P0,Gm)∨ → Hom(P0 ad,Gm)∨. However, this is
generally not true if G is not split.

Warning 5.3.5.4. Let G be a form of G0 over X. Suppose that G admits an inner
structure σ, and let {BunG(X)σP0,ν

}(P0,ν)∈A be the stratification of Construction 5.3.5.1.
The collection of locally closed substacks {BunG(X)σP0,ν

⊆ BunG(X)} does not depend
on the choice of σ. However, the indexing of this collection of locally closed substacks
by the set A does depend on σ. More precisely, for each element g ∈ Out(G0), we have

BunG(X)
g(σ)
g(P0),νg

= BunG(X)σP0,ν

(as locally closed substacks of BunG(X)), where the left hand side is defined as in
Remark 5.3.3.3. This equality follows immediately from Remark 5.3.3.3 together with
Warning 5.3.4.7.
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Remark 5.3.5.5 (Functoriality in X and G). Let ψ be an automorphism of X as an
abstract scheme, so that ψ induces an automorphism ψ0 of the field k = H0(X;OX)
which we do not assume to be the identity. Let G be a form of G0 over X and let
ψ be an automorphism of G which covers the automorphism ψ of X. Then the pair
(ψ,ψ) determines an automorphism φ of the algebraic stack BunG(X), which fits into
a commutative diagram

BunG(X)
φ //

��

BunG(X)

��
Spec(k)

ψ0 // Spec(k).

Suppose that G admits an inner structure σ. The image of σ under ψ determines
another inner structure σ′ on G. Using Remarks 5.3.3.1 and 5.3.3.3, we see that φ
restricts to give equivalences of Harder-Narasimhan strata

BunG(X)σP0,ν ' BunG(X)σ
′
P0,ν = BunσG(X)g(P0),νg

where g ∈ Out(G0) satisfies σ = g(σ′). In other words, the automorphism φ preserves
the decomposition of BunG(X) into locally closed substacks {BunG(X)σP0,ν

}(P0,ν)∈A,
and permutes the strata by means of the action of the group Out(G0) on A.

5.4 Quasi-Compactness Properties of Moduli Spaces of
Bundles

Let X be an algebraic curve over a finite field Fq and let G be a smooth affine group
scheme over X with connected fibers and semisimple generic fiber. In order to prove
that BunG(X) satisfies the Grothendieck-Lefschetz trace formula (Theorem 5.0.0.3),
the main obstacle that we will need to overcome is that the moduli stack BunG(X) is
not quasi-compact. In this section, we collect some facts about the quasi-compactness
of various loci in BunG(X) which will be needed in the proof of Theorem 5.0.0.3. These
results can be summarized as follows:

• Every quasi-compact open substack U ⊆ BunG(X) can be realized as the quo-
tient of an algebraic space by the action of a linear algebraic group (Proposition
5.4.1.3).

• If the group scheme G is split reductive, then every Harder-Narasimhan stratum
of BunG(X) (in the sense of §5.3.2) is quasi-compact (Proposition 5.4.3.1).

• The quasi-compactness properties of BunG(X) are largely insensitive to varying
the algebraic curve X and the group scheme G (Propositions 5.4.2.1, 5.4.2.4, and
5.4.2.5).
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5.4.1 Quasi-Compact Substacks of BunG(X)

We begin by showing that every quasi-compact open substack of BunG(X) can be
realized as a global quotient in a natural way. For this, it is convenient to introduce
some notation.

Definition 5.4.1.1. Let X be an algebraic curve over a field k, let G be a smooth affine
group scheme over X, and let D ⊆ X be an effective divisor. We let BunG(X,D) denote
the moduli stack of G-bundles on X equipped with a trivialization along D. More
precisely, BunG(X,D) is the algebraic stack whose R-valued points can be identified
with the category of pairs (P, γ), where P is a G-bundle on the relative curve XR and
γ is a trivialization of the restriction P |DR , where DR = D ×Spec(k) Spec(R).

Remark 5.4.1.2. In the situation of Definition 5.4.1.1, Lemma 5.1.3.11 supplies an
equivalence of algebraic stacks BunG(X,D) ' BunG′(X), where G′ = DilD(G) is the
smooth affine group scheme over X given by the dilitation of G along D. In particular,
BunG(X,D) is a smooth algebraic stack over k.

Proposition 5.4.1.3. Let X be an algebraic curve over a field k and let G be a smooth
affine group over X. Let U be a quasi-compact open substack of BunG(X). Then there
exists an effective divisor D ⊆ X such that the fiber product BunG(X,D) ×BunG(X) U

is an algebraic space.

Proof. Since U is quasi-compact, we can choose a smooth surjection Spec(R) → U,
corresponding to aG-bundle P on the relative curveXR. Since the diagonal of BunG(X)
is affine, automorphisms of the G-bundle P are parametrized by an affine R-scheme of
finite type Y . The identity automorphism of P determines a closed immersion of R-
schemes s : Spec(R)→ Y ; let us denote the image of this map by Y ′ ⊆ Y .

Fix a closed point x ∈ X. For each n ≥ 0, let Dn ⊆ X denote the divisor given
by the nth multiple of X, and let Yn denote the closed subscheme of Y classifying
automorphisms of P which restrict to the identity over the divisor Dn.

Let Ox denote the complete local ring of x at X, which we can identify with a
formal power series ring k′[[t]] for some finite extension k′ of k. For any Noetherian
R-algebra A, we can identify the formal completion of XA along the closed subscheme
{x} ×Spec(k) Spec(A) with the formal spectrum of the power series ring A′[[t]], where
A′ = A⊗kk′. The map Spec(A′[[t]])→ XA is schematically dense, so any automorphism
of P×XRXA which restricts to the identity on the Spec(A′[[t]]) must coincide with the
identity. In other words, we have

⋂
n≥0 Yn = Y ′ (as closed subschemes of Y ). Since

Y is a Noetherian scheme, we must have Y ′ = Yn for n � 0. It then follows that
BunG(X,Dn)×BunG(X) U is an algebraic space.
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Corollary 5.4.1.4. Let X be an algebraic curve over a field k and let G be a smooth
affine group scheme over X. Suppose we are given a quasi-compact algebraic stack Y

over k equipped with a map f : Y→ BunG(X). Assume that f is representable by quasi-
compact, quasi-separated algebraic spaces (in other words, for every map Spec(R) →
BunG(X), the fiber product Y×BunG(X) Spec(R) is a quasi-compact, quasi-separated
algebraic space). Then Y can be written as a quotient Y/H, where Y is a quasi-compact,
quasi-separated algebraic space over k and H is a linear algebraic group over k.

Proof. Since Y is quasi-compact, the map f factors through a quasi-compact open
substack U ⊆ BunG(X). Using Proposition 5.4.1.3, we can choose an effective divisor
D ⊆ X such that the fiber product

Z = U×BunG(X) BunG(X,D)

is an algebraic space. Since Z is affine over U, it is quasi-compact and quasi-separated.
Set

Y = Y×BunG(X) BunG(X,D) ' Y×BunG(X)Z.

Since f is representable by quasi-compact, quasi-separated algebraic spaces, it follows
that Y is a quasi-compact, quasi-separated algebraic space. Let H denote the Weil re-
striction of G×XD along the finite flat map D → Spec(k). Then H is a linear algebraic
group acting on BunG(X,D), and we can identify BunG(X) with the (stack-theoretic)
quotient BunG(X,D)/H. It follows that H acts on Y = Y×BunG(X) BunG(X,D) (via
its action on the second factor) with quotient

Y/H ' Y×BunG(X) BunG(X,D)/H ' Y .

5.4.2 Varying G and X

We now collect some relative quasi-compactness results for moduli spaces of bundles.

Proposition 5.4.2.1. Let X be an algebraic curve over a field k and let f : G→ G′ be
a morphism of smooth affine group schemes over X. Suppose that f is an isomorphism
at the generic point of X. Then the induced map BunG(X) → BunG′(X) is quasi-
compact.

To prove Proposition 5.4.2.1, we will need a few elementary facts about the dilitation
construction described in §5.1.3.

Lemma 5.4.2.2. Let X be a Dedekind scheme, let π : Y → X be a flat morphism
of schemes equipped with a section s, let U ⊆ X be a nonempty open subscheme, and
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suppose we are given a morphism of X-schemes ψ : Y ×XU → Z, where Z is a separated
scheme of finite type over X. Suppose further that the composition

U
s|U−−→ Y ×X U

ψ−→ Z

extends to a map h : X → Z. Then there exists an effective divisor D ⊆ X satisfying
D ∩ U = ∅ and a map ψ : DilD(Y )→ Z such that the following diagram commutes:

DilD(Y )×X U //

∼
��

DilD(Y )

ψ
��

Y ×X U
ψ // Z.

Proof. The assertion is local on X. We may therefore assume without loss of generality
that X = Spec(R) is affine, that X − U consists of a single point x, and that the
maximal ideal mx ⊆ R defining the point x is generated by a single element t ∈ R.
Choose an affine open subscheme Y0 ⊆ Y containing the point y = s(x). ReplacingX by
s−1Y0, we may assume that h factors through Y0. Note that for every effective divisor
D supported at x, the dilitation DilD(Y ) is covered by the open sets DilD(Y0) and
DilD(Y )×X U ' Y ×X U , which intersect in DilD(Y0)×X U ' Y0×X U . Consequently,
to prove the existence of ψ, we may replace Y by Y0 and thereby reduce to the case
where Y = Spec(A) is affine. We will abuse notation by identifying t ∈ R with its image
in A. Moreover, the section s determines an R-algebra homomorphism ε : A→ R.

Choose an affine open subscheme Z0 ⊆ Z containing the point z = h(x). Replacing
X by h−1Z0, we may assume that h factors through Z0. The fiber product Z0×Z (Y0×X
U) is a quasi-compact open subscheme of Y0 ×X U , complementary to the vanishing
locus of a finitely generated ideal I ⊆ A[t−1]. Choose a finite sequence of elements
f1, . . . , fm ∈ A whose images in A[t−1] generate the ideal I. Since h(X) ⊆ Z0, s(U) is
contained in Z0×Z (Y0×X U), so ε(fi) 6= 0 for some 1 ≤ i ≤ m. We can therefore write
ε(fi) = tnu for some integer n, where u /∈ x. Replacing Y by an appropriate dilitation,
we can reduce to the case where fi− tnu is divisible by tn. In this case, we can replace
fi by t−nfi and thereby reduce to the case where ε(fi) /∈ mx. Replacing A by A[f−1

i ],
we can further assume that fi is invertible in A, so that ψ factors through Z0. We may
therefore replace Z by Z0 and thereby reduce to the case where Z ' Spec(B) is affine.

Because Z is of finite type over X, we can choose a finite set of generators b1, . . . , bm
for B as an R-algebra. Without loss of generality, we may assume that each bj is
annihilated by the R-algebra homomorphism B → R determined by h. The map ψ
determines an R-algebra homomorphism ρ : B → A[t−1]. We can therefore write
ρ(bj) = t−Naj for some N � 0 and some elements aj ∈ A satisfying ε(aj) = 0. It
follows that ρ factors through the subalgebra of A[t−1] generated by t−N ker(ε), and
therefore determines a map of X-schemes DilNx(Y )→ Z.
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Applying Lemma 5.4.2.2 in the case where Y and Z are group schemes over X, we
obtain the following:

Lemma 5.4.2.3. Let X be a Dedekind scheme, let G and G′ be smooth affine group
schemes over X, and let ψ : G ×X U → G′ ×X U be a morphism of group schemes,
where U ⊆ X is a nonempty open subset. Then there exists an effective divisor D ⊆ X
satisfying D ∩ U = ∅ and a morphism of group schemes ψ : DilD(G) → G′ for which
the diagram

G×X U
ψ //

��

G′ ×X U

��
DilD(G)

ψ // G′

commutes.

Proof of Proposition 5.4.2.1. Let X be an algebraic curve over k and let f : G → G′

be a morphism of smooth affine group schemes over X which is an isomorphism over a
nonempty open subset U ⊆ X. Then the inverse of f determines a map g : G′×X U →
G ×X U of group schemes over U . Using Lemma 5.4.2.3, we deduce that there is an
effective divisor D′ ⊆ X (disjoint from U) such that, if G

′
= DilD

′
(G′) is the dilitation

of G′ along D′, then g extends to a map g : G
′ → G of group schemes over X. Applying

the same argument to the map f |U : G×X U → G
′×X U , we conclude that there is an

effective divisor D ⊆ X (again disjoint from U) such that, if G = DilD(G) is obtained

from G by dilitation along D, then f |U extends to a map f : G→ G
′
. Remark 5.4.1.2

supplies equivalences

BunG(X) ' BunG(X,D) Bun
G
′(X) ' BunG′(X,D

′),

so that the maps f , g, and f give a diagram of algebraic stacks

BunG(X,D)→ BunG′(X,D
′)→ BunG(X)→ BunG′(X).

Note that the composite map BunG(X,D) → BunG(X) is surjective (since any G-
bundle on the relative divisor D ×Spec(k) Spec(R) can be trivialized étale locally on
Spec(R)), so the map BunG′(X,D

′) → BunG(X) is also surjective. Consequently, to
prove that the map BunG(X) → BunG′(X) is quasi-compact, it will suffice to show
that the map φ : BunG′(X,D

′) → BunG′(X) is quasi-compact. This is clear, because
φ is an affine morphism (it is a torsor for the affine group scheme over k given by the
Weil restriction of G′ ×X D′ along the finite flat map D′ → Spec(k)).

Proposition 5.4.2.4. Let k be a field, let f : X̃ → X be a non-constant morphism of
algebraic curves over k, and let G be a smooth affine group scheme over X. Then the
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canonical map of algebraic stacks BunG(X)→ BunG(X̃) (given by pullback along f) is
an affine morphism. In particular, it is quasi-compact.

Proof. Fix a map Spec(R) → BunG(X̃), corresponding to a G-bundle P on the rel-
ative curve X̃R. We wish to show the fiber product BunG(X) ×

BunG(X̃)
Spec(R) is

representable by an affine R-scheme. Let Y denote the fiber product X̃R ×XR X̃R and
let

π1, π2 : Y → X̃R

denote the two projection maps. Let Iso(π∗1 P, π
∗
2 P) denote the affine Y -scheme whose

A-valued points are G-bundle isomorphisms of (π∗1 P) ×Y Spec(A) with (π∗2 P) ×Y
Spec(A). Let Z denote the affineR-scheme obtained by Weil restriction of Iso(π∗1 P, π

∗
2 P)

along the proper flat morphism Y → Spec(R). It now suffices to observe that the fiber
product

BunG(X)×
BunG(X̃)

Spec(R)

can be identified with a closed subscheme of Z: the A-valued point of Z correspond to
G-bundle isomorphisms

γ : (π∗1 P×Spec(R) Spec(A)) ' (π∗2 P×Spec(R) Spec(A)),

while the A-valued points of BunG(X)×
BunG(X̃)

Spec(R) correspond to such G-bundle

isomorphisms which satisfy a cocycle condition (since the finite flat morphism X̃A →
XA is of effective descent for G-bundles).

Proposition 5.4.2.5. Let X be an algebraic curve over a field k, let G be a semisimple
group scheme over X, and let Gad denote the adjoint quotient of G. Assume that the
generic fiber of G is split. Then the natural map BunG(X) → BunGad

(X) is quasi-
compact.

Proof. Without loss of generality, we may assume that k is algebraically closed. Let
G0 denote the generic fiber of G. Since G0 is split, we can choose a Borel subgroup
B0 ⊆ G0 and a split maximal torus T0 ⊆ B0. Since G is semisimple, the X-scheme
parametrizing Borel subgroups of G is proper over X; it follows from the valuative
criterion of properness that B0 extends uniquely to a Borel subgroup B ⊆ G (given by
the scheme-theoretic closure of B0 in G). Let U denote the unipotent radical of B, and
let T = B/U . Then T is an algebraic torus over X whose generic fiber is split (since it
is isomorphic to T0); it follows that T itself is a split torus. Let Bad denote the image of
B in the adjoint quotient Gad, and let Tad denote the quotient of Bad by its unipotent
radical.

Let R be a finitely generated k-algebra and suppose we are given a map f :
Spec(R) → BunGad

(X); we wish to prove that the fiber product Spec(R) ×BunGad
(X)
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BunG(X) is quasi-compact. This assertion can be tested locally with respect to the
étale topology on Spec(R). We may therefore assume without loss of generality that f
factors through BunBad

(X): this follows from a theorem of Drinfeld-Simpson (see [12],
or the sequel to this book). Since the diagram of algebraic stacks

BunG(X)

��

BunB(X)oo //

��

BunT (X)

��
BunGad

(X) BunBad
(X)oo // BunTad

(X)

consists of pullback squares, it will suffice to show that the fiber product Spec(R)×BunTad
(X)

BunT (X) is quasi-compact. We are therefore reduced to proving that the map

BunT (X)→ BunTad
(X)

is quasi-compact.
Let Pic(X) = BunGm(X) denote the Picard stack of X; a choice of k-rational point

x ∈ X determines a splitting

Pic(X) = Z× J(X)× B Gm

where J(X) is the Jacobian variety of X. Let Λ = Hom(Gm, T ) denote the cocharacter
lattice of T and let Λad = Hom(Gm, Tad) denote the cocharacter lattice of Tad. We
wish to show that the natural map

BunT (X) ' Λ⊗Z Pic(X)→ Λad ⊗Z Pic(X) ' BunTad
(X)

is quasi-compact. This is clear: the preimage of each connected component of BunTad
(X)

is either empty or isomorphic to a product of finitely many copies of J(X)×B Gm.

5.4.3 Quasi-Compactness of Harder-Narasimhan Strata

We now show that the Harder-Narasimhan stratification of §5.3.2 partitions BunG(X)
into quasi-compact locally closed substacks.

Proposition 5.4.3.1. Let X be an algebraic curve over a field k and let G be a
split reductive group over k. Fix a Borel subgroup B ⊆ G containing a split maxi-
mal torus T ⊆ B. For every standard parabolic subgroup P ⊆ G and every element
ν ∈ Hom(P,Gm)∨, the algebraic stack BunνP (X)ss is quasi-compact.

Proof. Without loss of generality, we may assume that k is algebraically closed. We
proceed in several steps.
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(a) Suppose first that G is a torus, and let Λ = Hom(Gm, G) denote the cocharacter
lattice of G. In this case, the only parabolic subgroup P ⊆ G is the group
G itself, and we have Hom(P,Gm)∨ ' Λ. For each ν ∈ Λ, the moduli stack
BunνP (X)ss = BunνP (X) can be identified (after choosing a k-rational point x ∈ X)
with a product of finitely many copies of Pic0(X) ' J(X)×B Gm (as in the proof
of Proposition 5.4.2.5), and is therefore quasi-compact.

(b) We claim that if Proposition 5.4.3.1 is valid for the quotient G′ = P/ radu(P )
(regarded as a parabolic subgroup of itself), then it is valid for the parabolic
subgroup P . To establish this, it suffices to show that the map BunP (X) →
BunG′(X) is quasi-compact. Note that the unipotent radical radu(P ) is equipped
with a finite filtration by normal subgroups

0 = U0 ⊆ U1 ⊆ · · · ⊆ Um = radu(P ),

where each quotient Ui/Ui−1 is isomorphic to a vector group equipped with a
linear action of P (which necessarily factors through the quotient P/Ui). We
claim that each of the maps BunP/Ui−1

(X)→ BunP/Ui(X) is quasi-compact. To
prove this, fix a map Spec(R) → BunP/Ui(X), given by a P/Ui-torsor P on the
relative curve XR. Via the linear action of P/Ui on Ui/Ui−1, we obtain a vector
bundle Ei on XR. The obstruction to lifting P to a P/Ui−1-bundle is measured
by a cohomology class η ∈ H2(XR;Ei), which automatically vanishes since XR is
a curve over an affine scheme. Choose a lifting of P to a (P/Ui−1)-torsor on XR.
Then the fiber product

Y = Spec(R)×BunP/Ui (X) BunP/Ui−1
(X)

can be identified with the stack whose A-valued points (where A is an R-algebra)
correspond to Ei-torsors on the relative curve XA. We wish to prove that Y is
quasi-compact. If D ⊆ X is an effective divisor, let YD denote the algebraic
stack whose A-valued points are Ei-torsors on XA which are equipped with a
trivialization along the relative divisor D×Spec(k) Spec(A). The evident forgetful
functor YD → Y is surjective, so it will suffice to prove that we can choose D such
that YD is quasi-compact. Note that if deg(D) � 0, then H0(XR;Ei(−D)) ' 0
and H1(XR;Ei(−D)) is a projective R-module M of finite rank; in this case, we
can identify YD with the affine scheme Spec(Sym∗R(M∨)).

(c) We now prove Proposition 5.4.3.1 in general. By virtue of (b), it will suffice to
treat the case where P = G. Set Λ0 = Hom(G,Gm)∨ and Λ = Hom(B,Gm)∨ '
Hom(Gm, T ). The inclusion B ↪→ G induces a surjective map of lattices χ :
Λ → Λ0. It follows from steps (a) and (b) that for each λ ∈ Λ, the moduli stack
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BunλB(X)ss = BunλB(X) is quasi-compact. It follows that any open substack of
BunλB(X) is also quasi-compact. To complete the proof, it will suffice to show
that for each ν ∈ Λ0, we can find a finite subset S ⊆ χ−1{ν} for which the map

qλ∈S(BunλB(X)×BunG(X) BunG(X)ss)→ BunνG(X)ss

is surjective.

Let g denote the genus of the algebraic curve X, let {α1, . . . , αr} be the set of
simple roots of G (which we identify with elements of Λ∨), and let 2ρ denote the
sum of the positive roots of G. We will show that the set

S = {λ ∈ Λ : χ(λ) = ν, 〈2ρ, λ〉 ≤ 0, 〈αi, λ〉 ≥ min{1− g, 0}}

has the desired property. Note that S can be identified with the set of lattice
points belonging to the locus

SR = {λ ∈ Λ⊗R : χ(λ) = ν, 〈2ρ, λ〉 ≤ 0, 〈αi, λ〉 ≥ min{1− g, 0}}

which is a simplex in the real vector space Λ⊗R; this proves that S is finite. We
will complete the proof by showing that if P is a semistable G-bundle of degree
ν, then there exists λ ∈ S such that P can be reduced to a B-bundle of degree
λ. Note that in this case the conditions χ(λ) = ν and 〈2ρ, λ〉 ≤ 0 are automatic
(if the second condition were violated, then P would not be semistable). It will
therefore suffice to prove the following:

(∗) Let P be a G-bundle on X. Then P can be reduced to a B-bundle Q satisfying

〈deg(Q), αi〉 ≥ min{1− g, 0}

for 1 ≤ i ≤ r.

Let C = {λ ∈ Λ : 〈αi, λ〉 ≥ 0 for 1 ≤ i ≤ r} be the dominant Weyl chamber
in Λ, and let W denote the Weyl group of G. Then W acts on Λ, and every
W -orbit in Λ contains an element of C. Let P be as in (∗). Then P admits a
B-reduction Q (see [12], or the sequel to this book). Write deg(Q) = wλ, where
λ ∈ C and w ∈W . Let us assume that Q and w have been chosen so that w has
minimal length. We will prove (∗) by showing that 〈αi, deg(Q)〉 ≥ min{1− g, 0}
for 1 ≤ i ≤ r. Suppose otherwise: then there exists a simple root α such that
〈deg(Q), αi〉 < 0 and 〈αi,deg(Q)〉 < 1−g. Let wi ∈W denote the simple reflection
corresponding to the root αi. The condition 〈deg(Q), αi〉 < 0 implies that wiw
has smaller length than w. We will obtain a contradiction by showing that P

admits a reduction to a B-bundle having degree wi deg(Q) = (wiw)λ. For this, it
suffices to establish the following:
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(∗′) Let Q be a B-bundle on X and let αi be a simple root of G satisfying
〈αi, deg(Q)〉 < 1− g. Then there exists another B-bundle Q′ on X such that
deg(Q′) = wi deg(Q), and Q and Q′ determine isomorphic G-bundles on X.

To prove (∗′), let P ⊆ G denote the parabolic subgroup generated by B together
with the root subgroup corresponding to −αi, and let QP denote the P -bundle
determined by Q. We will show that QP admits a B-reduction Q′ satisfying
deg(Q′) = wi deg(Q). Note that there is a bijective correspondence between B-
reductions of QP and (B/ radu(P ))-reductions of the induced (P/ radu P )-bundle
QP/ radu P . Replacing G by P/ radu P , we are reduced to the problem of proving
(∗′) in the special case where G has semisimple rank 1 (that is, where αi is the only
root of G). In this case, we will prove that Q can be reduced to a T -bundle Q0.
The element wi ∈ W determines an automorphism of T which becomes inner in
G, and therefore induces an automorphism of the set of isomorphism classes of T -
bundles with itself which does not change the isomorphism class of the associated
G-bundle. This automorphism carries Q0 to the isomorphism class of another T -
bundle Qwi0 , and we can complete the proof of (∗′) by taking Q′ to be the B-bundle
determined by Qwi0 . We conclude by observing that the obstruction to choosing
the reduction Q0 is given by an element of H1(X;L), where L is the line bundle on
X obtained from Q via the (linear) action of B on radu(B) ' Ga. An elementary
calculation shows that the degree of L is given by −〈αi,deg(Q)〉 > g − 1, so that
H1(X;L) vanishes by the Riemann-Roch theorem.

5.5 Comparison of Harder-Narasimhan Strata

Throughout this section, we fix a field k, an algebraic curve X over k, and a split
semisimple algebraic group G0 over k. Fix a Borel subgroup B0 ⊆ G0, a split maximal
torus T0 ⊆ B0, and a parabolic subgroup P0 ⊆ G0 which contains B0. If (G, σ)
is an inner form of G0 over X, then we can regard the moduli stack BunG(X) as
equipped with the Harder-Narasimhan stratification of Construction 5.3.5.1. Using
Proposition 5.4.3.1, it is not difficult to see that each of the Harder-Narasimhan strata
BunσG(X)P0,ν is quasi-compact. However, this observation alone is not sufficient to
prove that BunG(X) satisfies the Grothendieck-Lefschetz trace formula because there
are infinitely many strata (for each standard parabolic P0 ( G0, there are infinitely
many choices fo the dominant regular cocharacter ν). In order to apply Proposition
5.2.2.3, we will need to argue that the collection of Harder-Narasimhan strata can
be broken into finitely many families whose members “look alike.” Our goal in this
section is to articulate this idea more precisely by introducing a twisting construction
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(Definition 5.5.3.1) which can be used to move from one Harder-Narasimhan stratum
to another.

5.5.1 Parabolic Reductions

We begin by introducing some terminology.

Definition 5.5.1.1. Let (G, σ) be an inner form of G0 over a k-scheme Y . We will say
that a parabolic subgroup P ⊆ G is of type P0 if there exists an étale surjection Ỹ and
an isomorphism

β : G×Y Ỹ → G0 ×Spec(k) Ỹ

which is compatible with σ and which restricts to an isomorphism of P ×Y Ỹ with
P0 ×Spec(k) Ỹ . Note that if Y is connected, then every parabolic subgroup P ⊆ G is of
type P0 for a unique standard parabolic subgroup P0 ⊆ G0.

If P is a G-torsor on Y , we let GP denote the group scheme over Y whose R-valued
points are G-bundle automorphisms of P×Y Spec(R). The inner structure σ on G
determines an inner structure σP on GP. We will say that a subgroup P ⊆ GP is a
P0-structure on P if it is a parabolic subgroup of type P0.

Example 5.5.1.2. Let (G, σ) be an inner form of G0 over a k-scheme Y , and let
P ⊆ G be a parabolic subgroup of type P0. Let Q be a P -bundle on Y and let P be
the associated G-bundle. Since any automorphism of Q (as a P -bundle) determines an
automorphism of P (as a G-bundle), there is a canonical map of group schemes PQ →
GP, which exhibits PQ as a parabolic subgroup of GP of type P0. This construction
determines an equivalence of categories

{P -bundles on Y } → {G-bundles P on Y equipped with a P0-structure}.

In particular, if G = G0 ×Spec(k) Y is the split form of G0 over Y , then we obtain
an equivalence

{P0-bundles on Y } → {G-bundles on Y equipped with a P0-structure}.

Remark 5.5.1.3. Suppose that G0 is an adjoint semisimple group. If (G, σ) is an
inner form of G0 over a k-scheme Y , then Construction 5.3.4.6 determines a canonical
equivalence from the category of G-bundles on Y to the category of G0-bundles on
Y , which we will denote by P 7→ P0. By functoriality, we can identify the automor-
phism group scheme GP of P (as a G-bundle) with the automorphism group scheme
(G0 ×Spec(k) Y )P0 of P0 (as a G0-bundle). In particular, there is a canonical bijection
between the set of P0-structures on P and the set of P0-structures on P0. Combining
this observation with Example 5.5.1.2, we obtain an equivalence of categories

{ G-bundles on Y with a P0-structure } ' { P0-bundles on Y }.
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Remark 5.5.1.4. Let (G, σ) be an inner form of G0 over a k-scheme Y , and let Gad

denote the adjoint quotient of G. Then Gad is a form of the adjoint group G0 ad over Y ,
and σ determines an inner structure σad on Gad. For any parabolic subgroup P ⊆ G,
let Pad denote the image of P in Gad. The construction P 7→ Pad determines a bijective
correspondence between parabolic subgroups of G and parabolic subgroups of Gad;
moreover, a parabolic subgroup P ⊆ G has type P0 if and only if Pad ⊆ Gad has type
P0 ad ⊆ G0 ad. It follows that if P is a G-bundle on Y and Pad denotes the associated
Gad-bundle, then there is a canonical bijection from the set of P0-structures on P to
the set of P0 ad structures on Pad.

Definition 5.5.1.5. Let X be an algebraic curve over k and let (G, σ) be an inner form
of G0 over X. For every standard parabolic subgroup P0 ⊆ G0, we let BunG,P0(X)
denote the stack whose R-valued points are pairs (P, P ), where P is a G-bundle on XR

and P ⊆ GP is a parabolic subgroup of type P0. We will refer to BunG,P0(X) as the
moduli stack of G-bundles with a P0-structure.

Warning 5.5.1.6. Though it is not apparent from our notation, the moduli stack
BunG,P0(X) depends on the choice of inner structure σ on G. Modifying σ by an
element g ∈ Out(G0) has the effect of replacing BunG,P0(X) with BunG,g(P0)(X).

Example 5.5.1.7. Let X be an algebraic curve over k and let (G, σ) be an inner form
of G0 over X. If there exists a parabolic subgroup P ⊆ G of type P0, then Example
5.5.1.2 furnishes a canonical equivalence BunP (X) ' BunG,P0(X). Note, however, that
BunG,P0(X) is well-defined even if G does not have a parabolic subgroup of type P0.

Example 5.5.1.8. Suppose that G0 is an adjoint semisimple algebraic group over k,
and let (G, σ) be an inner form of G0 over an algebraic curve X. It follows from
Remark 5.5.1.3 that the bitorsor Isoσ(G,G0) determines an equivalence BunG,P0(X) '
BunG′,P0(X), where G′ denotes the split form of G0 over X. Combining this with
Example 5.5.1.7, we obtain a canonical equivalence BunG,P0(X) ' BunP0(X).

Example 5.5.1.9. Let (G, σ) be an inner form of G0 over an algebraic curve X. Then
Remark 5.5.1.4 furnishes a pullback diagram

BunG,P0(X) //

��

BunG(X)

��
BunGad,P0 ad

(X) // BunGad
(X).

Combining this with Example 5.5.1.8, we obtain an equivalence

BunG,P0(X) ' BunG(X)×BunGad
(X) BunP0 ad

(X).

It follows from this that BunG,P0(X) is an algebraic stack which is locally of finite type
over k, and that the diagonal of BunG,P0(X) is affine.
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Remark 5.5.1.10. If (G, σ) is an inner form of G0 over an algebraic curve X, then
the moduli stack BunG,P0(X) is smooth over Spec(k). We will not need this fact and
therefore omit the proof.

Notation 5.5.1.11. Let (G, σ) be an inner form of G0 over an algebraic curve X. We
let BunG,P0(X)ss denote the fiber product

BunG,P0(X)×BunP0 ad
(X) BunP0 ad

(X)ss.

Then BunG,P0(X)ss is an open substack of BunG,P0(X) which we will refer to as the
semistable locus of BunG,P0(X).

For each element Hom(P0 ad,Gm)∨, we let BunνG,P0
(X) denote the fiber product

BunG,P0(X)×BunP0 ad
(X) BunνP0 ad

(X).

Then each BunνG,P0
(X) is an open substack of BunG,P0(X), and we can identify BunG,P0(X)

with the disjoint union qν∈Hom(P0 ad,Gm)∨ BunνG,P0
(X).

We let BunνG,P0
(X)ss denote the intersection BunνG,P0

(X) ∩ BunG,P0(X)ss. It fol-
lows from Theorem 5.3.2.2 and Example 5.5.1.9 that if ν ∈ Hom(P0 ad,Gm)∨>0, then
the canonical map BunνG,P0

(X)ss → BunG(X) restricts to a finite radicial surjection
BunνG,P0

(X)ss → BunG(X)P0,ν .

5.5.2 Digression: Levi Decompositions

Let G be a reductive group scheme over a k-scheme Y , and let P ⊆ G be a parabolic
subgroup. Let radu(P ) denote the unipotent radical of P , so that we have an exact
sequence

0→ radu(P )→ P
π−→ P/ radu(P )→ 0.

A Levi decomposition of P is a section of the map π (in the category of group schemes),
which determines a semidirect product decomposition P ' radu(P ) o (P/ radu(P )).

Remark 5.5.2.1. Suppose that G is a reductive group scheme over Y and that P ⊆ G
is a parabolic subgroup. Then we always find a Levi decomposition ψ of P locally for
the étale topology: for example, if T ⊆ P is a maximal torus and Z ⊆ T is the preimage
in T of the center of P/ radu(P ), then the centralizer of Z in P is a subgroup H for
which the composite map

H ↪→ P → P/ radu P

is an isomorphism, so the inverse isomorphism P/ radu P ' H ↪→ P is a Levi de-
composition of P . Moreover, if P admits a Levi decomposition ψ : P/ radu P → P ,
then ψ is unique up to conjugation by a Y -valued point of radu P . More precisely, the
collection of Levi decompositions of P can be regarded as a torsor for radu(P ) which
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is locally trivial for the étale topology. Since the unipotent radical radu(P ) admits a
finite filtration whose successive quotients are vector groups, it follows that this torsor
is trivial whenever Y is affine (in particular, it is locally trivial with respect to the
Zariski topology).

Notation 5.5.2.2. Let Z0 denote the center of the reductive algebraic group P0/ radu(P0)
(this is a split diagonalizable group scheme over k), and let Λ = Hom(Gm,Z0) denote
the cocharacter lattice of Z0. There is a canonical bilinear map of abelian groups
Hom(P0,Gm)× Λ→ Z, which carries a pair (µ, λ) to the composite map

Gm
λ−→ Z0 ⊆ P0/ radu(P0)

µ−→ Gm,

regarded as an element of Hom(Gm,Gm) ' Z. This bilinear map determines an
injective map of lattices Λ ↪→ Hom(P0,Gm)∨. In what follows, we will generally abuse
notation by identifying Λ with its image in Hom(P0,Gm)∨. We let Λ≥0 denote the
inverse image of Hom(P,Gm)∨≥0 under this map (in other words, the collection of those
elements λ ∈ Λ having the property that 〈α, λ〉 ≥ 0 for every simple root of G0).

Suppose that (G, σ) is an inner form of G0 over a k-scheme Y , and let P ⊆ G be
a parabolic subgroup of type P0. Then σ determines an isomorphism Z(P/ radu(P )) '
Z0×Spec(k)Y , where Z(P/ radu(P )) denotes the center of P/ radu P . If ψ : P/ radu(P )→
P is a Levi decomposition of P , then ψ restricts to a map of group schemes Z0×Spec(k)Y →
P . In particular, every element λ ∈ Λ determines a map Gm → P of group schemes
over Y , which we will denote by ψ(λ).

5.5.3 Twisting Parabolic Reductions

Let Y be a scheme. Recall that an effective Cartier divisor on Y is a closed subscheme
D ⊆ Y for which the corresponding ideal sheaf ID ⊆ OY is invertible. A local parameter
for D is a global section of ID which generates ID at every point.

Definition 5.5.3.1. Let (G, σ) be an inner form of G0 over a k-scheme Y , let P be
a G-bundle on Y equipped with a P0-structure P ⊆ GP, let D ⊆ Y be an effective
Cartier divisor, and let λ ∈ Λ≥0. A λ-twist of (P, P ) along D is a pair (P′, γ), where P′

is a G-bundle on Y and γ is a G-bundle isomorphism P×Y (Y −D) ' P′×Y (Y −D)
having the following property:

(∗) Let U ⊆ Y be an open subset having the property that P ×Y U admits a Levi
decomposition ψ : (P/ radu P )×Y U → P ×Y U and the Cartier divisor (D∩U) ⊆
U admits a local parameter t. Then the G-bundle isomorphism

P×Y (U − (D ∩ U))
ψ(λ)(t)−1

−−−−−−→ P×Y (U − (D ∩ U))
γ−→ P′×Y (U − (D ∩ U))
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extends to a G-bundle isomorphism γU : P×Y U ' P′×Y U . Here the first map
is given by the action of the element ψ(λ)(t)−1 ∈ P (U) ⊆ GP(U), which acts on
P |U by G-bundle automorphisms. Note that the existence of such an extension
is independent of the choice of Levi decomposition ψ.

Remark 5.5.3.2. In the situation of condition (∗) above, the extension γU is auto-
matically unique (since the inclusion

P×Y (U − (D ∩ U)) ↪→ P×Y U

is complementary to a Cartier divisor, and therefore schematically dense).

Example 5.5.3.3. In the situation of Definition 5.5.3.1, suppose that G = G0 = SL2,
and let P0 ⊆ G0 be the standard Borel subgroup of upper-triangular matrices. Then a
G-bundle with P0-structure (P, P ) on Y can be identified with a vector bundle E of rank
2, together with a line subbundle L ⊆ E together with an isomorphism E /L ' L−1. Let
us identify Λ≥0 with the set of natural numbers. Given (P, P ) as above, an element λ ∈
Λ≥0, and an effective Cartier divisor D ⊆ Y , the pushout E′ = L(λD)qL(−λD) E(−λD)
is another rank 2 vector bundle on Y . Moreover, we have a commutative diagram of
short exact sequences

0 // L(−λD) //

��

E(−λD) //

��

L−1(−λD)

id
��

// 0

0 // L(λD) // E′ // L−1(−λD) // 0,

which determines an isomorphism α : det(E′) ' L(λD) ⊗ L−1(−λD) ' OY . By con-
struction, we have a canonical vector bundle isomorphism γ : E |Y−D ' E′ |Y−D, which
is compatible with the trivializations of det(E) and det(E′) and can therefore (by slight
abuse of terminology) be identified with an isomorphism of G-torsors. It is not difficult
to see that the pair (E′, γ) is a λ-twist of (P, P ) along D, in the sense of Definition
5.5.3.1.

Example 5.5.3.4. In the situation of Definition 5.5.3.1, suppose that G = G0 = GLn,
and let P0 ⊆ G0 be the standard Borel subgroup of upper-triangular matrices. Then a
G-bundle with P0-structure (P, P ) on Y can be identified with a flag of vector bundles

0 = E0 ↪→ E1 ↪→ E2 ⊂ · · · ↪→ En,

where each Em /Em−1 is a line bundle on Y . Under the canonical isomorphism Λ ' Zn,
we can identify Λ≥0 with the collection of sequences ~λ = (λ1, . . . , λn) ∈ Zn satisfying

λ1 ≥ λ2 ≥ · · · ≥ λn. Given (P, P ) as above, a sequence ~λ ∈ Λ≥0, and an effective
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Cartier divisor D ⊆ Y , we let E(~λD) denote the vector bundle on Y given by the
colimit of the diagram

E1(λ2D)

{{ ##

· · ·

~~ ##

En−1(λnD)

xx %%
E1(λ1D) E2(λ2D) · · · Em−1(λn−1D) En(λnD).

We have a canonical vector bundle isomorphism γ : En |Y−D ' E(~λD)|Y−D, and the
pair (E(~λD), γ) is a ~λ-twist of (P, P ) along D in the sense of Definition 5.5.3.1.

5.5.4 Existence of Twists

We now show that a G-bundle with P0 structure can be twisted along any effective
divisor:

Proposition 5.5.4.1. Let (G, σ) be an inner form of G0 over a k-scheme Y , let P be a
G-bundle on X equipped with a P0-structure P ⊆ GP, let D ⊆ Y be an effective Cartier
divisor, and let λ ∈ Λ≥0. Then there exists a G-bundle P′ on Y and an isomorphism

γ : P×Y (Y −D) ' P′×Y (Y −D)

for which the pair (P′, γ) is a λ-twist of (P, P ) along D. Moreover, the pair (P′, γ) is
unique up to unique isomorphism.

Notation 5.5.4.2. Let (G, σ) be an inner form of G0 over a k-scheme Y , let D ⊆ Y be
an effective Cartier divisor, and let λ ∈ Λ≥0. Suppose we are given a G-torsor P on Y
and a P0-structure P ⊆ GP. Proposition 5.5.4.1 implies that there exists an (essentially
unique) λ-twist of P along D; we will denote the underlying G-bundle of this twist by
Twλ,D(P, P ).

Example 5.5.4.3. Let G0 = P0 = Gm and let λ ∈ Λ = Hom(Gm,Gm) be the
identity map. Then G0 has a unique inner form G over any k-scheme Y (given by the
multiplicative group over Y ), and we can identify G-torsors with line bundles on Y .
Any such torsor admits a unique P0-structure. If D ⊆ Y is an effective Cartier divisor
and L is a line bundle on Y , then we have

Twλ,D(L) = L(D) = L⊗OY I−1
D .

We will deduce Proposition 5.5.4.1 from the following:
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Lemma 5.5.4.4. Let (G, σ) be an inner form of G0 over an affine k-scheme Y =
Spec(R), let P ⊆ G be a parabolic subgroup of type P0, and let ψ : P/ radu P → P be
a Levi decomposition of P . Let λ be an element of Λ, so that λ determines an action

of Gm on P by conjugation (using the homomorphism Gm
λ−→ P/ radu(P )

ψ−→ P ). If
λ ∈ Λ≥0, then this extends to an action of A1 (regarded as a monoid with respect to
multiplication).

Proof. The assertion is local with respect to the étale topology on Spec(R). We may
therefore assume without loss of generality that G = G0 ×Spec(k) Spec(R) and P =
P0 ×Spec(k) Spec(R), and that the image of ψ is H0 ×Spec(k) Spec(R), where H0 ⊆ P0 is
the unique Levi factor which contains the chosen maximal torus T0.

Let {α1, . . . , αm} be an enumeration of the roots of P0 which are not roots of H0.
For 1 ≤ i ≤ m, let fi : Ga → P0 be a parametrization of the corresponding root space.
It follows from the structure theory of reductive groups (and their parabolic subgroups)
that the map

H0 ×Gm
a → P0 (h, y1, . . . , ym) 7→ hf1(a1)f2(a2) . . . fn(an)

is an isomorphism. In particular, for every R-algebra A, the preceding construction
gives a bijection H0(A) × Am → P (A). If t ∈ A is invertible, then conjugation by
ψ(λ)(t) determines an automorphism of P (A) which corresponds (under the preceding
bijection) to the bijection of H0(A)×Am with itself given by

(h, a1, . . . , am) 7→ (h, t〈α1,ψ(λ)〉a1, . . . , t
〈αm,ψ(λ)〉am).

If λ ∈ Λ≥0, then this expression is well-defined even when t is a noninvertible element
of A.

Proof of Proposition 5.5.4.1. The assertion is local on Y with respect to the Zariski
topology. We may therefore assume that Y = Spec(R) is affine and that the Cartier
divisor D ⊆ Y is the vanishing locus of a regular element t ∈ R. Since Y is affine, it
admits a Levi decomposition ψ : P/ radu P → P . In this case, we can take P′ = P and γ
to be the automorphism of P×Y (Y −D) determined by the element ψ(λ)(t). It follows
tautologically that the pair (P, γ) is characterized uniquely up to unique isomorphism
by the requirement that the composite map

P×Y (Y −D)
ψ(λ)(t)−1

−−−−−−→ P×Y (Y −D)
γ−→ P′×Y (Y −D)

extends to an isomorphism of P with P′. To complete the proof, it will suffice to show
that the pair (P′, γ) is a λ-twist of P along D: that is, after replacing Y by any open
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subset U ⊆ Y and choosing a different local parameter t′ for D and a different Levi
decomposition ψ′ : P/ radu P → P , the composite map

P×Y (Y −D)
ψ′(λ)(t′)−1

−−−−−−−→ P×Y (Y −D)
γ−→ P′×Y (Y −D)

also extends to a G-bundle isomorphism of P with P′. In other words, we wish to show
that the difference ψ′(λ)(t′)−1ψ(λ)(t) (which we regard as an element of the group
GP(R[t−1])) belongs to the subgroup GP(R) ⊆ GP(R[t−1]). Note that we can write
t′ = ut, where u ∈ R is a unit, so that

ψ′(λ)(t′)−1ψ(λ)(t) = ψ′(λ)(u)−1ψ′(λ)(t)−1ψ(λ)(t)

where the first factor belongs to GP(R). It will therefore suffice to treat the case where
t′ = t.

Since Levi decompositions of P are unique up to the action of radu(P ), we can
choose an element g ∈ radu(P )(R) ⊆ P (R) such that ψ′(λ)(t) = gψ(λ)(t)g−1. We are
therefore reduced to proving that ψ(λ)(t)−1g−1ψ(λ)(t) belongs to P (R), which follows
from Lemma 5.5.4.4.

In the situation of Notation 5.5.4.2, the twist Twλ,D(P, P ) comes equipped with a
tautological isomorphism

γ : Twλ,D(P, P )×Y (Y −D) ' P×Y (Y −D).

In particular, we obtain an isomorphism of group schemes

GTwλ,D(P,P ) ×Y (Y −D) ' GP ×Y (Y −D).

Under this isomorphism, the parabolic subgroup P ⊆ GP determines a parabolic sub-
group P ◦γ ⊆ GTwλ,D(P,P ) ×Y (Y −D).

Proposition 5.5.4.5. Let (G, σ) be an inner form of G0 over a k-scheme Y , let P

be a G-bundle on X equipped with a P0-structure P ⊆ GP, let D ⊆ Y be an effective
Cartier divisor, and let λ ∈ Λ≥0. Then the subgroup P ◦γ ⊆ GTwλ,D(P,P )×Y (Y −D) can
be extended uniquely to a parabolic subgroup Pγ ⊆ GTwλ,D(P,P ) of type P0.

Remark 5.5.4.6. The uniqueness assertion of Proposition 5.5.4.5 is immediate: if P ◦γ
can be extended to a parabolic subgroup Pγ ⊆ GTwλ,D(P,P ), then Pγ can be character-
ized as the scheme-theoretic closure of P ◦γ in GTwλ,D(P,P ).

Proof of Proposition 5.5.4.5. By virtue of the uniqueness supplied by Remark 5.5.4.6,
the assertion of Proposition 5.5.4.5 is local with respect to the étale topology on Y .
We may therefore assume without loss of generality that the torsor P is trivial (so that
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GP ' G), that P ⊆ G admits a Levi decomposition ψ, that Y = Spec(R) is affine,
and that D is the vanishing locus of a regular element t ∈ R. In this case, the proof
of Proposition 5.5.4.1 shows that we can take the twist Twλ,D(P, P ) to be the trivial
G-torsor and γ to be the map given by right multiplication by ψ(λ)(t). It follows that
the isomorphism

GTwλ,D(P,P ) ×Y (Y −D) ' GP ×Y (Y −D)

corresponds to the automorphism of G given by conjugation by ψ(λ)(t). Since ψ(λ)(t)
belongs to P (R[t−1]), conjugation by ψ(λ)(t) carries P ×Y (Y −D) into itself; we can
therefore identify P ◦γ with the subgroup P ×Y (Y −D) ⊆ G×Y (Y −D), which extends
to the parabolic subgroup P ⊆ G.

5.5.5 Twisting as a Morphism of Moduli Stacks

We now specialize the twisting procedure of Definition 5.5.3.1 to the case of principal
bundles on algebraic curves.

Construction 5.5.5.1. Let X be an algebraic curve over k, let (G, σ) be an inner
form of G0 over X, let D ⊆ X be an effective divisor, and let λ be an element of
Λ≥0. If R is a finitely generated k-algebra, P is a G-bundle on XR, and P ⊆ GP is
a P0-structure on P, then we can regard Twλ,DR(P, P ) as another G-bundle on XR,
equipped with the P0-structure P ′ supplied by Proposition 5.5.4.5. The construction
(P, P ) 7→ (Twλ,DR P, P ′) depends functorially on R and therefore determines a map of
algebraic stacks

Twλ,D : BunG,P0(X)→ BunG,P0(X),

which we will refer to as twisting by λ along D.

Example 5.5.5.2. In the situation of Construction 5.5.5.1, suppose that P0 = G0, so
that BunG,P0(X) ' BunG(X). In this case, the element λ ∈ Λ≥0 = Λ can be regarded
as a cocharacter of the center Z(G), which determines an action

mλ : BunGm(X)×Spec(k) BunG(X)→ BunG(X).

Unwinding the definitions, we see that if D ⊆ X is an effective divisor, then the map
Twλ,D : BunG(X) → BunG(X) is given by P 7→ mλ(OX(D),P). In particular, Twλ,D

is an automorphism of BunG(X) which preserves the semistable locus BunG(X)ss and
restricts to equivalences

Twλ,D : BunνG(X) ' Bun
ν+deg(D)λ
G (X);

here we identify Λ with a sublattice of Hom(G0,Gm)∨ as in Notation 5.5.2.2.



5.5. COMPARISON OF HARDER-NARASIMHAN STRATA 311

Example 5.5.5.3. In the special case where G = G0×Spec(k)X is the split form of G0,
we can regard Construction 5.5.5.1 as giving a map Twλ,D : BunP0(X) → BunP0(X);
see Example 5.5.1.7.

Remark 5.5.5.4. In the situation of Example 5.5.5.3, let us abuse notation by iden-
tifying λ with an element of Hom(P0/ radu P0,Gm)∨. Then the diagram

BunP0(X)
Twλ,D //

��

BunP0(X)

��
BunP0/ radu(P0)(X)

Twλ,D// BunP0/ radu(P0)(X)

commutes up to canonical isomorphism. Combining this observation with Example
5.5.5.2, we deduce that Twλ,D restricts to give maps

Twλ,D : BunP0(X)ss → BunP0(X)ss Twλ,D : BunνP0
(X)→ Bun

ν+deg(D)λ
P0

(X)

which fit into pullback squares

BunP0(X)ss
Twλ,D//

��

BunP0(X)ss

��
BunP0(X)

Twλ,D // BunP0(X)

BunνP0
(X)

Twλ,D//

��

Bun
ν+deg(D)λ
P0

(X)

��
BunP0(X)

Twλ,D // BunP0(X).

Remark 5.5.5.5. In the situation of Construction 5.5.5.1, suppose that the algebraic
group G0 is semisimple and adjoint. Then the diagram

BunG,P0(X)
Twλ,D//

��

BunG,P0(X)

��
BunP0(X)

Twλ,D // BunP0(X)

commutes up to canonical isomorphism, where the vertical maps are the equivalences
of Example 5.5.1.8.



312 CHAPTER 5. THE TRACE FORMULA FOR BUNG(X)

Remark 5.5.5.6. Let (G, σ) be an inner form of G0 over an algebraic curve X, let
D ⊆ X be an effective divisor, and let λ ∈ Λ≥0. Let λad denote the image of λ in the
lattice Λad = Hom(Gm,Z(P0 ad/ radu P0 ad)). Then the diagram

BunG,P0(X)
Twλ,D //

��

BunG,P0(X)

��
BunGad,P0 ad

(X)
Twλad,D// BunGad,P0 ad

(X)

commutes up to canonical isomorphism. Combining this observation with Remarks
5.5.5.4 and 5.5.5.5, we conclude that the Twλ,D restricts to give maps

Twλ,D : BunG,P0(X)ss → BunG,P0(X)ss Twλ,D : BunνG,P0
(X)→ Bun

ν+deg(D)λ
G,P0

(X)

which fit into pullback squares

BunG,P0(X)ss
Twλ,D//

��

BunG,P0(X)ss

��
BunG,P0(X)

Twλ,D // BunG,P0(X)

BunνG,P0
(X)

Twλ,D//

��

Bun
ν+deg(D)λ
G,P0

(X)

��
BunG,P0(X)

Twλ,D // BunG,P0(X).

Remark 5.5.5.7 (Functoriality). Let X be an algebraic curve over k and let ψ be an
automorphism of X as an abstract scheme, so that ψ determines an automorphism ψ0

of the field k = H0(X;OX) fitting into a commutative diagram

X
ψ //

��

X

��
Spec(k)

ψ0 // Spec(k).

Let G be a form of G0 over X equipped with an automorphism ψ compatible with
the automorphism ψ of X. Then ψ determines an automorphism of the set of in-
ner structures on G. In particular, if σ is an inner structure on G, then we can
form a new inner structure ψ(σ) which can be written as gσ for some unique ele-
ment g ∈ Out(G0). The pair (ψ,ψ) determines an automorphism φ of BunG(X)
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which we can lift to an equivalence φ : BunG,P0(X) ' BunG,g(P0)(X) (see Warning
5.5.1.6). Each element λ ∈ Λ = Hom(Gm,Z(P0/ radu(P0)) determines an element
g(λ) ∈ Hom(Gm,Z(g(P0)/ radu g(P0))), and each effective divisor D ⊆ X determines a
divisor φ(D) ⊆ X. It follows immediately from our constructions that the diagram of
algebraic stacks

BunG,P0(X)
Twλ,D //

φ

��

BunG,P0(X)

φ

��
BunG,g(P0)(X)

Twg(λ),φ(D)// BunG,g(P0)(X)

commutes up to canonical isomorphism.

Remark 5.5.5.8 (Group Actions). Let X be an algebraic curve over k and let Γ be
a finite group which acts on X as an abstract scheme. Let G be a form of G0 over X
equipped with a compatible action of Γ, so that the group Γ acts on the moduli stack
BunG(X).

Fix an inner structure σ on X. The collection of all inner structures on G forms
a torsor Σ for the group Out(G0), and the group Γ acts on Σ by Out(G0)-torsor
automorphisms. The choice of element σ ∈ Σ determines an isomorphism Out(G0) ' Σ
of Out(G0)-torsors, so that the action of Γ on Σ determines a group homomorphism
ρ : Γ→ Out(G0). Identifying Out(G0) with the group of pinned automorphisms of G0,
the map ρ determines an action of Γ on G0. Let P0 be a standard parabolic subgroup
of G0 which is invariant under the action of Γ. Then the action of Γ on BunG(X) lifts
canonically to an action of Γ on BunG,P0(X).

The group Γ acts on the lattice Λ = Hom(Gm,Z(P0/ radu(P0)). Suppose that λ
is a Γ-invariant element of λ≥0, and let D ⊆ X be an effective divisor which is Γ-
invariant. Using the canonical isomorphisms of Remark 5.5.5.7, we can promote the
map Twλ,D : BunG,P0(X) → BunG,P0(X) of Construction 5.5.5.1 to a Γ-equivariant
morphism of algebraic stacks.

5.5.6 Classification of Untwists

Let X be an algebraic curve over k. The main property of Construction 5.5.5.1 that
we will need is the following:

Proposition 5.5.6.1. Let Γ be a finite group acting on X via k-scheme automorphisms,
let G be a Γ-equivariant group scheme over X which is a form of G0, and let σ be
an inner structure on G (so that the choice of σ determines a group homomorphism
Γ→ Out(G0)). Let P0 ⊆ G0 be a standard parabolic which is Γ-invariant, let λ ∈ Λ≥0
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be Γ-invariant, and let D ⊆ X be a Γ-invariant effective divisor, so that Twλ,D induces
a map of (homotopy) fixed point stacks

φ : BunG,P0(X)Γ → BunG,P0(X)Γ.

If D is étale over Spec(k) and the action of Γ on D is free, then φ is a fiber bun-
dle (locally trivial in the étale topology) whose fibers are affine spaces of dimension
deg(D)
|Γ| 〈2ρP , λ〉.

Example 5.5.6.2. Let us first consider the special case of Proposition 5.5.6.1 where
the group Γ is trivial, the group G0 is SL2, the parabolic P0 is a Borel subgroup of
SL2, and the group scheme G = G0×Spec(k)X is constant. In this case, we can identify

R-valued points of the stack BunP0(X) = BunG,P0(X)Γ with short exact sequences

0→ L→ E→ L−1 → 0

of vector bundles on XR, where L is a line bundle on XR. Let us identify the weight λ
of Proposition 5.5.6.1 with a nonnegative integer n. In this case, the twisting morphism
Twλ,D carries a short exact sequence 0 → L → E → L−1 → 0 to another short exact
sequence 0→ L(nD)→ E′ → L−1(−nD)→ 0, where E′ is given by the formula

E′ = L(nD)qL (E×L−1 L−1(−nD)).

Let us identify the R-valued points of BunP0(X) with pairs (L,P), where L is
a line bundle on XR and P is a torsor for the line bundle L⊗2 (namely, the torsor
parametrizing splittings of the exact sequence 0 → L → E → L−1 → 0). Under this
identification, the twisting morphism Twλ,D is given by (L,P) 7→ (L(nD),P′), where
P′ is obtained from P by base change along the natural map L⊗2 → L(nD)⊗2. From
this description, it is easy to see that the map Twλ,D : BunP0(X)→ BunP0(X) exhibits
BunP0(X) as a torsor for a vector bundle over itself: namely, the vector bundle given
by the formula (L,P) 7→ Γ(X;L⊗2 /L⊗2(−2nD)) = Γ(2nD;L⊗2 |nD), which has rank
2n deg(D) = deg(D)〈2ρP , λ〉.

To prove Proposition 5.5.6.1, we may assume without loss of generality that the field
k is separably closed. It will be convenient to introduce a local variant of Construction
5.5.5.1. For each point x ∈ D, choose a local coordinate tx for X at the point x, so
that the complete local ring Ox can be identified with the power series ring k[[tx]].

If R is a finitely generated k-algebra, we let X∧R,x denote the formal completion of
XR along the closed subscheme {x}×X Spec(R), which we can identify with the formal
spectrum Spf(R[[tx]]). Let BunG,P0(X∧x ) denote the (non-algebraic) moduli stack of G-
bundles on X∧x equipped with a P0-structure. More precisely, BunG,P0(X∧x ) denotes the
stack whose R-valued points are pairs (P, P ) where P is a G-bundle P on Spec(R[[tx]])
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(or equivalently on the formal scheme Spf(R[[tx]])) equipped with a parabolic subgroup
P ⊆ GP of type P0. If we let DxR ⊆ Spec(R[[tx]]) denote the Cartier divisor given by
the vanishing locus of tx, then a variant of Construction 5.5.5.1 determines a morphism
of stacks Twλ,{x} : BunG,P0(X∧{x})→ BunG,P0(X∧{x}). We have a commutative diagram
of stacks

BunG,P0(X)
Twλ,D //

��

BunG,P0(X)

��∏
x∈D BunG,P0(X∧x )

Twλ,{x}//
∏
x∈D BunG,P0(X∧x ).

which is easily seen to be a pullback square (since the operation of twisting a G-bundle
P by λ along D does not change P over the open set X −D). Passing to Γ-invariants,
we obtain another pullback square

BunG,P0(X)Γ
Twλ,D //

��

BunG,P0(X)Γ

��
(
∏
x∈D BunG,P0(X∧x ))Γ

Twλ,{x}// (
∏
x∈D BunG,P0(X∧x ))Γ.

Let D0 ⊆ D denote a subset consisting of one element from each Γ orbit. Since the
action of Γ on D is free, we obtain a pullback square

BunG,P0(X)Γ
Twλ,D //

��

BunG,P0(X)Γ

��∏
x∈D0

BunG,P0(X∧x )
Twλ,{x}//

∏
x∈D0

BunG,P0(X∧x ).

Consequently, Proposition 5.5.6.1 reduces to the following local assertion (which makes
no reference to the group Γ):

Proposition 5.5.6.3. In the situation above, each of the maps

Twλ,{x} : BunG,P0(X∧x )→ BunG,P0(X∧x )

is a fiber bundle (locally trivial for the étale topology) whose fibers are affine spaces of
dimension 〈2ρP , λ〉.

Proof. Let t be a generator of the maximal ideal in the complete local ring Ox. Since
the power series ring Ox ' k[[tx]] is strictly Henselian, the group scheme G splits over
Ox. Using Example 5.5.1.7, we obtain an identification BunG,P0(X∧x ) ' BunP0(X∧x ),
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where BunP0(X∧x ) denotes the stack whose R-valued points are P0-bundles on X∧R,x '
Spf(R[[t]]). Let H0 ⊆ P0 be the unique subgroup which contains the maximal torus
T0 and which maps isomorphically onto the reductive quotient P0/ radu(P0). We will
identify λ with a cocharacter of the center of H0, so that we can identify λ(t) with an
element of the group H0(Kx).

Since P0 is smooth over k, a P0-bundle on X∧R,x is trivial if and only if its restriction
to the subscheme {x}×Spec(k) Spec(R) ⊆ XR is trivial. In particular, any P0-bundle on
X∧R,x can be trivialized locally with respect to the étale topology on Spec(R). Moreover,
the automorphism group of the trivial P0-bundle on X∧R,x ' Spf(R[[t]]) can be iden-
tified with the group P0(R[[t]]). It follows that BunP (X∧x ) can be identified with the
classifying stack (taken with respect to the étale topology) of the group-valued functor
R 7→ P0(R[[t]]).

For every k-algebra R, let us view P0(R[[t]]) as a subgroup of the larger group
P0(R[[t]][t−1]). It follows from Lemma 5.5.4.4 that conjugation by λ(t) determines a
group homomorphism from P0(R[[t]]) to itself; let us denote the image of this homo-
morphism by P ′0(R[[t]]).

Fix a map η : Spec(R)→ BunP0(X∧x ); we wish to show that the fiber product

Y = BunP0(X∧x )×BunP0
(X∧x ) Spec(R)

is representable by an affine R-scheme which is locally (with respect to the étale topol-
ogy on Spec(R)) isomorphic to A〈2ρP0

,λ〉. The map η classifies some P -bundle on X∧Rx,
which we may assume to be trivial (after passing to an étale cover of Spec(R)). Un-
winding the definitions, we see that Y can be identified with the sheafification (with
respect to the étale topology) of the functor

F : RingR → Set F (A) = P0(A[[t]])/P ′0(A[[t]]).

We will compete the proof by showing that that the functor F is representable by an
affine space of dimension 〈2ρP0 , λ〉 over Spec(R) (and is therefore already a sheaf with
respect to the étale topology).

Let U denote the unipotent radical of P0, so that P0(A[[t]]) factors as a semidirect
product U(A[[t]]) o H0(A[[t]]). This decomposition is invariant under conjugation by
λ(t) and therefore determines an analogous decomposition P ′0(A[[t]]) ' U ′(A[[t]]) o
H ′0(A[[t]]). Since λ(t) is central in H0(A[[t]][t−1

x ]), we have H ′0(A[[t]]) = H0(A[[t]]).
It follows that the functor F : RingR → Set above can be described by the formula
F (A) = U(A[[t]])/U ′(A[[t]]).

Let {α1, . . . , αm} ⊆ Hom(T0,Gm) be the collection of roots of P0 which are not
roots of H0. For 1 ≤ i ≤ m, let fi : Ga → U be a parametrization of the root subgroup
corresponding to αi. For A ∈ RingR, every element of the group U(A[[t]]) has a unique
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representation as a product

f1(a1(t))f2(a2(t)) · · · fm(am(t))

where ai(t) ∈ A[[t]]. As in the proof of Lemma 5.5.4.4, we can identify U ′(A[[t]]) with
the subgroup of U(A[[t]]) spanned by those products where each ai(t) is divisible by
t〈αi,λ〉.

Reordering the roots {α1, . . . , αm} if necessary, we may assume that for 0 ≤ i ≤ m,
the image of the map ∏

1≤i′≤i
fi : Ai → U0

is a normal subgroup Ui ⊆ U . Then every A[[t]]-valued point of the quotient U/Ui has
a unique representation as a product

fi+1(ai+1(t))fi+2(ai+2(t)) · · · fm(am(t))

where aj(t) ∈ A[[t]]. Let Vi(A) denote the subgroup of (U/Ui)(A[[t]]) consisting of
those products where each aj(t) is divisible by t〈αj ,λ〉, and let Fi : RingR → Set be the
functor given by Fi(A) = (U/Ui)(A[[t]])/Vi(A). We will prove the following:

(∗) For 0 ≤ i ≤ n, the functor Fi is representable by an affine space of dimension∑
i<j≤m〈αj , λ〉 over Spec(R).

Note that F0 = F and that
∑

1≤j≤m〈αj , λ〉 = 〈2ρP , λ〉, so that when i = 0 assertion (∗)
asserts that F is representable by an affine space of dimension 〈2ρP , λ〉 over Spec(R).
We will prove (∗) by descending induction on i, the case i = m being trivial. To carry
out the inductive step, we note that for 1 ≤ i ≤ m we have natural exact sequences

0 // t〈αi,λ〉A[[t]]

��

// Vi−1(A) //

��

Vi(A) //

��

0

0 // A[[u]] // (U/Ui−1)(A[[u]]) // (U/Ui)(A[[u]]) // 0,

where the vertical maps are injective and each of the exact sequences is a central
extension. It follows from a diagram chase that we can identify Fi(A) with the quotient
of Fi−1(A) by a free action of the quotient A[[t]]/t〈αi,λ〉A[[t]], and that this identification
depends functorially on A. In other words, the functor Fi−1 can be identified with a

G
〈αi,λ〉
a -torsor over Fi. By the inductive hypothesis, the functor Fi is representable by

an affine scheme, so that any Ga-torsor over Fi is trivial. We therefore obtain

Fi−1 ' G〈αi,λ〉a × Fi
' A〈αi,λ×(A

∑
i<j≤m〈αj ,λ〉×Spec(R))

' A
∑
i≤j≤m〈αj ,λ〉×Spec(R),

as desired.
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5.6 Proof of the Trace Formula

Let X be an algebraic curve over Fq and let G be a smooth affine group scheme over
X, whose fibers are connected and whose generic fiber is semisimple. Our goal in this
section is to prove Theorem 5.0.0.3, which asserts that the moduli stack BunG(X)
satisfies the Grothendieck-Lefschetz trace formula. We begin in §5.6.1 by treating the
special case where the group scheme G is split: in this case, we show that the Harder-
Narasimhan stratification of §5.3 is convergent (in the sense of Definition 5.2.2.1).
The general case is somewhat more technical, since the group scheme G need not
be split even at the generic point of X. Our strategy will be to compare BunG(X)
with BunG(X̃), where X̃ is the algebraic curve associated to a finite Galois extension
L/KX which splits the generic fiber of G. We will deduce Theorem 5.0.0.3 by carefully
analyzing the action of the Galois group Γ = Gal(L/KX) on the Harder-Narasimhan
stratification of BunG0(X̃), where G0 is the split form of the generic fiber of G.

5.6.1 The Case of a Split Group Scheme

In the case of a split group, we can deduce Theorem 5.0.0.3 from the following:

Theorem 5.6.1.1. Let X be an algebraic curve over Fq and let G be a split semisim-
ple group scheme over X. Then the Harder-Narasimhan stratification of BunG(X) is
convergent (in the sense of Definition 5.2.2.1).

Proof of Theorem 5.6.1.1 for G = SL2. Assume that G is the split group SL2, let B ⊆
G denote the standard Borel subgroup of upper triangular matrices, and let us identify
Hom(B,Gm)∨ with the group Z of integers. In this case, Theorem 5.3.2.2 supplies
a stratification of BunG(X) by an open substack BunG(X)ss and locally closed sub-
stacks {BunG(X)B,n}n>0. Fix a closed point x ∈ X for which the residue field κ(x)
has degree s over Fq. For each m > 0, let BunnB(X) denote the moduli stack of B-
bundles on X of degree n. We will show that the finite collection of algebraic stacks
{BunG(X)ss,Bun1

B(X), . . .BunsB(X)} satisfies conditions (1), (2), and (3) of Definition
5.2.2.1:

(1) Let n be a positive integer, and write n = as + b for 1 ≤ b ≤ s. In this case, we
consider the composition

BunbB(X)
Twa,x−−−−→ BunnB(X)

un−→ BunG(X)B,n,

where Twa,x is the twisting morphism of Construction 5.5.5.1 (which is an étale
fiber bundle whose fibers are affine spaces of dimension 2as, by virtue of Propo-
sition 5.5.6.1) and un is the finite radicial surjection of Notation 5.5.1.11.
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(2) For each 0 < b ≤ s, the geometric series
∑

a≥0 q
−2as converges.

(3) Each of the algebraic stacks {BunG(X)ss,Bun1
B(X), . . .BunsB(X)} is quasi-compact

(Proposition 5.4.3.1), and can therefore be realized as a quotient of a quasi-
compact algebraic space by the action of a linear algebraic group. In fact, for any
algebraic group H, a quasi-compact open substack U ⊆ BunH(X) can always be
realized as the quotient (U ×BunH(X) BunH(X,D))/HD, where BunH(X,D) de-
notes the moduli stack of H-bundles on X equipped with a trivialization along an
effective divisionD ⊆ X, andHD denotes the algebraic group of maps fromD into
H; the quasi-compactness of U then guarantees that (U ×BunH(X) BunH(X,D))
is an algebraic space if the divisor D is sufficiently large.

Proof of Theorem 5.6.1.1 in general. Once again, we fix a closed point x ∈ X for which
the residue field κ(x) has degree s over Fq. For each standard parabolic subgroup
P ⊆ G, let Λ≥0 ⊆ Hom(P,Gm)∨≥0 be as in Notation 5.5.2.2. Given a pair of elements
µ, ν ∈ Hom(P,Gm)∨≥0, we write µ ≤ ν if ν = µ + sλ for some λ ∈ Λ≥0. In this
case, we claim that the requirements of Definition 5.2.2.1 are satisfied by the collection
of algebraic stacks {Bunν0

P (X)ss}, where P ranges over the (finite) collection of all
standard parabolic subgroups of G and ν0 ranges over the (finite) collection of all
minimal elements of Hom(P,Gm)∨>0 (with respect to the ordering described above).
To verify (1), we note that each Harder-Narasimhan stratum BunG(X)P,ν admits a
map

Bunν0
P (X)ss Twλ,x−−−−→ BunνP (X)ss u−→ BunG(X)P,ν ,

where ν0 is a minimal element of Hom(P,Gm)∨>0 satisfying ν = ν0 + sλ, Twλ,x is the
twisting morphism Construction 5.5.5.1 (which is an étale fiber bundle whose fibers are
affine spaces of dimension s〈2ρP , λ〉, by Proposition 5.5.6.1), and u is the finite radicial
surjection of Notation 5.5.1.11. Requirement (3) follows by repeating the argument
given in the case G = SL2. To prove (2), it will suffice to show that for each standard
parabolic P ⊆ G, the sum ∑

λ∈Λ≥0

q−s〈2ρP ,λ〉

converges. In fact, this sum is dominated by∑
d1,...,dn≥0

q−s〈2ρP ,d1λ1+···+dnλn〉 =
∏

1≤i≤n

∑
d≥0

q−s〈2ρP ,dλi〉 <∞,

where λ1, . . . , λn is any set of nonzero generators for the monoid Λ≥0.
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5.6.2 Reductive Models

Let k be a field, let X be an algebraic curve over k, and let G be a reductive algebraic
group over the function field KX (which we do not assume to be split). If the field k
is algebraically closed, then the function field KX has dimension ≤ 1, so the algebraic
group G is quasi-split. It follows that there is a finite Galois extension L of KX , a split
reductive group G0 over k on which Gal(L/KX) acts by pinned automorphisms, and a
Gal(L/KX)-equivariant isomorphism

G×Spec(KX) Spec(K) ' G0 ×Spec(k) Spec(L).

In particular, there is a Gal(L/KX)-equivariant isomorphism of G ×Spec(KX) Spec(L)

with the generic fiber of the split reductive group scheme G0 ×Spec(k) X̃, where X̃
denotes the algebraic curve with function field L. Our goal in this section is to establish
an analogous (but weaker) result which does not require the assumption that k is
algebraically closed:

Proposition 5.6.2.1. Let G be a reductive algebraic group over the fraction field KX .
Then there exists a finite Galois extension L of KX , a reductive group scheme H over
the curve X̃ with function field L, an action of Gal(L/KX) on H (compatible with the
tautological action of Gal(L/KX) on X̃), and a Gal(L/KX)-equivariant isomorphism

G×Spec(KX) Spec(L) ' H ×
X̃

Spec(L).

Remark 5.6.2.2. In the situation of Proposition 5.6.2.1, if L is a Galois extension
of KX for which there exists a Gal(L/KX)-equivariant group scheme on the associ-
ated algebraic curve X̃ whose generic fiber is Gal(L/KX)-equivariantly isomorphic to
G ×Spec(KX) Spec(L), then any larger Galois extension L′ has the same property (the

inclusion L ↪→ L′ induces a map of algebraic curves X̃ ′ → X̃, and the pullback H×
X̃
X̃ ′

is a reductive group scheme over X̃ ′ having the desired properties). We are therefore
free to assume that the Galois extension L appearing in Proposition 5.6.2.1 is as large
as we like: in particular, we may assume that the algebraic group G splits over L.

Warning 5.6.2.3. In the situation of Proposition 5.6.2.1, the algebraic curve X̃ is
connected, but need not be geometrically connected (when regarded as a k-scheme).
If we want to guarantee that the generic fiber of H is split reductive (as in Remark
5.6.2.2), this is unavoidable: if k′ is a Galois extension of k and the group scheme G is
obtained by Weil restriction along the field extension KX ↪→ KX⊗k k′, then any Galois
extension L of KX which splits G must contain k′.

Remark 5.6.2.4. There are two main differences between Proposition 5.6.2.1 (which
applies over any ground field k) and the discussion which precedes it (which applies
when the ground field k is algebraically closed):
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• Proposition 5.6.2.1 guarantees the existence of a reductive group scheme H over
X̃, but does not guarantee that this reductive group scheme is constant (though
we can arrange that it is split at the generic point of X̃, by virtue of Remark
5.6.2.2).

• Proposition 5.6.2.1 gives no information about the action of Gal(L/KX) on the
group scheme H: in particular, this action need not preserve a pinning of H, even
at the generic point of X̃.

We will deduce Proposition 5.6.2.1 from the following local assertion:

Lemma 5.6.2.5. Let K be the fraction field of a complete discrete valuation ring
OK and let G be a reductive algebraic group over K. Then there exists a finite Galois
extension L of K, a reductive group scheme H over the ring of integers OL ⊆ L equipped
with an action of Gal(L/K) (compatible with the tautological action of Gal(L/K) over
OL), and a Gal(L/K)-equivariant isomorphism

G×Spec(K) Spec(L) ' H ×Spec(OL) Spec(L).

Proof. Choose a maximal torus T ⊆ G which is defined over K. Let L0 be a finite
Galois extension of K for which the torus T splits over L0. We will show that if L is
a Galois extension of K which contains L0 and whose ramification degree over L0 is
divisible by deg(L0/K), then L has the desired property.

For every Galois extension L of K which contains L0, let M(L) denote the set of
isomorphism classes of pairs (H, γ), where H is a reductive group scheme over OL and
γ is an isomorphism

G×Spec(K) Spec(L) ' H ×Spec(OL) Spec(L)

of reductive algebraic groups over L which has the following additional property: the
scheme-theoretic image of composite map

T ×Spec(K) Spec(L) ↪→ G×Spec(K) Spec(L)
γ−→ H

is a torus T (automatically split, since its generic fiber is split) over Spec(OL). The
group Gal(L/K) acts on the set M(L); to prove Lemma 5.6.2.5, it will suffice to show
that there is an element of M(L) which is fixed by Gal(L/K) (provided that L is
sufficiently large).

Let Gad denote the quotient of G by its center, and let Tad denote the image of T in
Gad. For every element g ∈ Tad(L), conjugation by g determines an automorphism cg
of G×Spec(K) Spec(L) which acts trivially on T . The construction (H, γ) 7→ (H, γ ◦ cg)
determines an action of Tad(L) on the set M(L). The main fact we will need is the
following:
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(∗) The action of Tad(L) on M(L) is transitive.

To prove (∗), we must show that for (H, γ), (H ′, γ′) ∈ M(L), there exists an isomor-
phism β : H ' H ′ such that the composite map

G×Spec(K) Spec(L)
γ−→ H ×Spec(OL) Spec(L)

β−→ H ′
γ′−1

−−−→ G×Spec(K) Spec(L)

is given by conjugation by some element g ∈ Tad(L). To prove this, let T ⊆ H and

T
′ ⊆ H ′ denote the scheme-theoretic images of T ×Spec(K) Spec(L) under γ and γ′,

respectively. Then T and T
′

are split tori over OL, so that the identification between
their generic fibers (supplied by γ and γ′) extends uniquely to an isomorphism β0 : T '
T
′
. Let B be a Borel subgroup of G ×Spec(K) Spec(L) containing T ×Spec(K) Spec(L).

Since T is a maximal split torus in H, there is a unique Borel subgroup B ⊆ H
containing T with γ−1B = B. Similarly, there is a unique Borel subgroup B

′ ⊆ H ′

which contains T
′

satisfying γ′−1B
′

= B. Since the ring of integers OL is a discrete
valuation ring, the pairs (T ,B) and (T

′
, B
′
) can be extended to pinnings of the group

schemes H and H ′, respectively. It follows that there is a unique pinned isomorphism
β : H → H ′ which restricts to the identity on the Dynkin diagram of their common
generic fiber G×Spec(K) Spec(L). By construction, the composition

G×Spec(K) Spec(L)
γ−→ H ×Spec(OL) Spec(L)

β−→ H ′
γ′−1

−−−→ G×Spec(K) Spec(L)

is an automorphism of G×Spec(K) Spec(L) which restricts to the identity on T ×Spec(K)

Spec(L), and is therefore given by conjugation by some element g ∈ Had(L). Since
g centralizes T ×Spec(K) Spec(L), it belongs to the subgroup Tad(L) ⊆ Had(L). This
completes the proof of (∗).

Let Λ = Hom(Gm, Tad ×Spec(K) Spec(L)) denote the cocharacter lattice of the split
torus Tad×Spec(K) Spec(L), so that we can identify Tad(L) with the tensor product Λ⊗
L×. Note that if (H, γ) is any element of M(L), then (H, γ) is isomorphic to (H, γ ◦ cg)
if and only if conjugation by the element g ∈ Tad(L) extends to an automorphism of
the group scheme H. This condition is equivalent to the assertion that for each root
α of the split group G ×Spec(K) Spec(L), the induced map Λ ⊗ L× α−→ L× carries g to

an element of O×L : that is, g belongs to the subgroup Λ ⊗ O×L ⊆ Λ ⊗ L× ' Tad(L). It
follows that we can regard M(L) as a torsor for the quotient group

(Λ⊗ L×)/(Λ⊗ O×L ) ' Λ⊗ ZL,

where ZL = L×/O×L denotes the value group of L. Note that the group ZL is canonically
isomorphic to Z (so Λ⊗ZL is canonically isomorphic to Λ); however, in the arguments
which follow, it will be convenient not to make use of this.
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Let us fix an element x0 ∈ M(L0), which determines an element xL ∈ M(L) for
every finite extension L of L0. The action of Λ ⊗ ZL on M(L) determines a bijective
map

γL : Λ⊗ ZL →M(L) γL(0) = xL.

The set M(L) admits a unique abelian group structure for which γL is an isomorphism
of abelian groups. Note that if L is an extension of L0 having ramification degree d,
then we can identify ZL with 1

dZL0 . It follows that for any element y ∈ M(L0), the
image of y in M(L) is divisible by d.

The action of the Galois group Gal(L/K) on M(L) does not preserve the group
structure on M(L) (because the element xL is not necessarily Gal(L/K)-invariant).
However, the action of Gal(L/K) is affine-linear: that is, for each g ∈ Gal(L/K) we
have the identity g(y + z) = g(y) + g(z) − g(0) in M(L). Suppose that L is a Galois
extension of K having ramification degree divisible by deg(L0/K). Then for each
g ∈ Gal(L0/K), the image of g(x0) in M(L) is divisible by deg(L0/K). It follows that

the average
∑

g∈Gal(L0/K)
g(x0)

deg(L0/K) is a well-defined element of M(L), and this element

is clearly fixed under the action of Gal(L/K).

Proof of Proposition 5.6.2.1. Let G be a reductive algebraic group over KX . Then we
can choose a dense open subset U ⊆ X such that G extends to a reductive group scheme
GU over U . Let S denote the finite set of closed points of X which do not belong to
U . For each x ∈ S, let Ox denote the complete local ring of X at the point x, let Kx

denote its fraction field, and let Gx = G×Spec(KX) Spec(Kx) be the associated reductive
algebraic group over Kx. It follows from Lemma 5.6.2.5 that for each point x ∈ X, there
exists a finite Galois extension Lx of Kx, a reductive algebraic group Hx over the ring of
integers OLx , an action of Gal(Lx/Kx) on Hx (compatible with its action on OLx), and a
Gal(Lx/Kx)-equivariant isomorphism Gx×Spec(Kx) Spec(Lx) ' Hx×Spec(OLx ) Spec(Lx).

Let L be a Galois extension of KX which is large enough that for each x ∈ S, the
tensor product L⊗KX Kx contains an isomorphic copy of Lx. Enlarging the fields Lx if
necessary (see Remark 5.6.2.2), we may assume that each Lx appears as a direct factor
in the tensor product L ⊗KX Kx. Then L is the fraction field of an algebraic curve

X̃ (which is not necessarily geometrically connected over k). Let Ũ denote the inverse
image of U in K̃, so that the pullback of GU determines a Gal(L/KX)-equivariant
reductive group scheme G

Ũ
over Ũ . To complete the proof, it will suffice to show that

G
Ũ

admits a Gal(L/KX)-equivariant extension to a reductive group scheme over X̃.
To construct such an extension, it suffices to show that we can solve the analogous
problem after replacing X by Spec(Ox) for x ∈ S, which is precisely the content of
Lemma 5.6.2.5.
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5.6.3 The Proof of Theorem 5.0.0.3

We now return to the situation of Theorem 5.0.0.3. Let X be an algebraic curve over
Fq and let G be a smooth affine group scheme over X, whose fibers are connected
and whose generic fiber is semisimple. We wish to prove that BunG(X) satisfies the
Grothendieck-Lefschetz trace formula.

Let KX denote the fraction field of X. According to Proposition 5.6.2.1, there is a
finite Galois extension L of KX , where L is the function field of an algebraic curve X̃, a
semisimple group scheme G̃ over X̃ equipped with a compatible action of Gal(L/KX),
and a Gal(L/KX)-equivariant isomorphism

G×X Spec(L) ' G̃×
X̃

Spec(L).

Moreover, we may further assume that the generic fiber of G̃ is split (Remark 5.6.2.2).
Note that the algebraic curve X̃ is not necessarily geometrically connected when re-
garded as an Fq-scheme. The algebraic closure of Fq in L is a finite field Fqd with qd

elements for some d ≥ 0; let us fix an embedding of this field into Fq.

Let X ′ = X ×Spec(Fq) Spec(Fq) and let G′ = G ×X X ′; similarly we define X̃ ′ =

X̃ ×Spec(F
qd

) Spec(Fq) and G̃′ = G̃ ×
X̃
X̃ ′. For each effective divisor Q ⊆ X ′, let

DilQ(G′) denote the group scheme over X ′ obtained by dilitation of G′ along Q (see
§5.1.3). Using Lemma 5.4.2.3, we see that if Q is large enough, then the equivalence
G×X Spec(L) ' G̃×

X̃
Spec(L) extends to a homomorphism β : DilQ(G′)×X′ X̃ ′ → G̃′.

Enlarging Q if necessary, we may assume that Q is invariant under the action of the
Galois group Gal(Fq/Fq), so that the group scheme DilQ(G′) and the map β are defined
over Fq: that is, we have a dilitation DilQ(G) → G and a map of group schemes

DilQ(G)×X X̃ → G̃ which is an isomorphism at the generic point of X̃. According to
Proposition 5.1.3.10, to show that BunG(X) satisfies the Grothendieck-Lefschetz trace
formula, it will suffice to show that BunDilQ(G)(X) satisfies the Grothendieck-Lefschetz

trace formula. We may therefore replace G by DilQ(G) and thereby reduce to the
case where there exists a homomorphism of group schemes β : G ×X X̃ → G̃ which is
an isomorphism at the generic point of X̃. Note that β is automatically Gal(L/KX)-
equivariant (since this can be tested at the generic point of X).

Let G0 denote the split form of G̃, which we regard as a semisimple algebraic
group over Fq. Fix a Borel subgroup B0 ⊆ G0 and a split maximal torus T0 ⊆ B0.

Let Σ denote the set of inner structures on the group scheme G̃ (Definition 5.3.4.2).
Since the generic fiber of G̃ is split, the set Σ is nonempty (Example 5.3.4.4), and is
therefore a torsor for the outer automorphism group Out(G0) (Remark 5.3.4.5). Fix
an element σ ∈ Σ, which supplies an isomorphism Out(G0) ' Σ of Out(G0)-torsors.
The group Gal(L/KX) acts on the pair (X̃, G̃) and therefore acts on the set Σ by
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Out(G0)-torsor automorphisms; let us identify this action with a group homomorphism
ρ : Gal(L/KX)→ Out(G0).

Let Bun
G̃

(X̃) denote the moduli stack of G̃-bundles on X̃, where we regard X̃

as a geometrically connected algebraic curve over Spec(Fqd) (so that Bun
G̃

(X̃) is a
smooth algebraic stack over Fqd). Let A denote the set of all pairs (P0, ν), where
P0 is a parabolic subgroup of G0 which contains B0 and ν ∈ Hom(P0 ad,Gm)∨>0. We

let {Bun
G̃

(X̃)P0,ν}(P0,ν)∈A denote the Harder-Narasimhan stratification of Bun
G̃

(X̃)
determined by the choice of inner structure σ ∈ Σ (Construction 5.3.5.1). The Galois
group Gal(L/KX) acts on the moduli stack Bun

G̃
(X̃). According to Remark 5.3.5.5,

this action permutes the Harder-Narasimhan strata (via the action of Gal(L/KX) on
A determined by the homomorphism ρ).

The Galois group Gal(Fqd/Fq) is canonically isomorphic to the cyclic group Z/dZ
generated by the Frobenius map t 7→ tq, and the Galois group Gal(L/KX) fits into a
short exact sequence

0→ Γ→ Gal(L/KX)→ Z/dZ→ 0

where Γ denotes the Galois group of L over KX ⊗Fq Fqd . Let AΓ denote the set
of fixed points for the action of Γ on A. According to Remark 5.2.1.6, the homo-
topy fixed point stack Bun

G̃
(X̃)Γ inherits a stratification by locally closed substacks

{Bun
G̃

(X̃)Γ
P0,ν
}(P0,ν)∈AΓ , whose strata are defined by the formula

Bun
G̃

(X̃)Γ
P0,ν = ((Bun

G̃
(X̃)P0,ν)Γ)red.

We will regard Bun
G̃

(X̃)Γ as an algebraic stack (not necessarily smooth) over Spec(Fqd).
This algebraic stack inherits a residual action of the group Z/dZ (compatible with the
action of Z/dZ ' Gal(Fqd/Fq) on Spec(Fqd)), so we can consider the stack-theoretic

quotient X = Bun
G̃

(X̃)Γ/(Z/dZ) as an algebraic stack over Fq. Moreover, we have

Bun
G̃

(X̃)Γ ' X×Spec(Fq) Spec(Fqd).

Remark 5.6.3.1. Let X denote the stack-theoretic quotient of X̃ by the action of
Gal(L/KX). Then X is a “stacky curve” over Spec(Fq), and there is a natural map π :
X → X which exhibits X as the coarse moduli space of X ′. The action of Gal(L/KX)
on G̃ allows us to descend G̃ to an affine group scheme G = G̃/Gal(L/KX) over X,
and we can think of X as the moduli stack (defined over Fq) of G-bundles on X.

Let AΓ/(Z/dZ) be the quotient of AΓ by the action of Z/dZ; for each object
(P0, ν) ∈ AΓ, we let [P0, ν] denote the image of (P0, ν) in the quotient AΓ/(Z/dZ).
It follows from Remark 5.2.1.8 that X inherits a stratification by locally closed sub-
stacks {X[P0,ν]}[P0,ν]∈AΓ/(Z/dZ), where each X[P0,ν] can be identified with the quotient

Bun
G̃

(X̃)Γ
P0,ν

/H, where H denotes the subgroup of Z/dZ which stabilizes the element

(P0, ν) ∈ AΓ.
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Let BunG(X)F
qd

be the fiber product BunG(X)×Spec(Fq)Spec(Fqd). The Gal(L/KX)-

equivariant map β : G×X X̃ → G̃ induces a morphism of algebraic stacks

BunG(X)F
qd
→ Bun

G̃
(X̃)Γ

over Fqd , which descends to a morphism BunG(X) → X of algebraic stacks over Fq.
Applying Remark 5.2.1.5, we obtain a stratification of BunG(X) by locally closed sub-
stacks

{BunG(X)[P0,ν]}[P0,ν]∈AΓ/(Z/dZ),

where BunG(X)[P0,ν] = (BunG(X)×X X[P0,ν])red.

Proposition 5.6.3.2. The stratification {BunG(X)[P0,ν]}[P0,ν]∈AΓ/(Z/dZ) is convergent,
in the sense of Definition 5.2.2.1.

Proof of Theorem 5.0.0.3. Combine Propositions 5.6.3.2 and 5.2.2.3.

5.6.4 The Proof of Proposition 5.6.3.2

Throughout this section, we retain the notations of §5.6.3. We begin with a few
remarks about the Harder-Narasimhan stratification of Bun

G̃
(X̃). Recall that for

each (P0, ν) ∈ A, the Harder-Narasimhan stratum Bun
G̃

(X̃)P0,ν is equipped with a

finite surjective radicial map Bunν
G̃,P0

(X̃)ss → Bun
G̃

(X̃)P0,ν (see Notation 5.5.1.11). If

(P0, ν) ∈ AΓ, then the group Γ acts on both Bunν
G̃,P0

(X̃)ss and Bun
G̃

(X̃)P0,ν (via its

action on X̃ as an algebraic curve over Spec(Fqd) together with its action on the group
G0 via the homomorphism ρ), and therefore determines a map of fixed point stacks
Bunν

G̃,P0
(X̃)ss Γ → (Bun

G̃
(X̃)P0,ν)Γ.

Lemma 5.6.4.1. For each (P0, ν) ∈ AΓ, the map Bunν
G̃,P0

(X̃)ss Γ → (Bun
G̃

(X̃)P0,ν)Γ

is a finite radicial surjection.

Proof. Choose a map Spec(R) → (Bun
G̃

(X̃)P0,ν)Γ and set Y = Spec(R) ×
Bun

G̃
(X̃)P0,ν

BunνG,P0
(X̃)ss. Theorem 5.3.2.2 implies that Y is a scheme and the map Y → Spec(R)

is surjective, finite, and radicial (see Notation 5.5.1.11). The group Γ acts on Y , and
we have

Spec(R)×
(Bun

G̃
(X̃)P0,ν

)Γ BunνG,P0
(X̃)ss Γ ' Y Γ.

To prove Lemma 5.6.4.1, we must show that the map Y Γ → Spec(R) is also surjective,
finite, and radicial. Since Y Γ can be identified with a closed subscheme of Y , the only
nontrivial point is to prove surjectivity. Fix an algebraically closed field κ and a map
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η : Spec(κ) → Spec(R). Since the map Y → Spec(R) is a radicial surjection, the map
η lifts uniquely to a map η : Spec(κ) → Y . It follows from the uniqueness that η is
invariant under the action of Γ, and therefore factors through the closed subscheme
Y Γ ⊆ Y .

In order to prove that {BunG(X)[P0,ν]}[P0,ν]∈AΓ/(Z/dZ) is a convergent stratification
of the moduli stack BunG(X), we first need to isolate candidates for the algebraic stacks
Ti which appear in Definition 5.2.2.1.

Construction 5.6.4.2. The stratification of {BunG(X)[P0,ν]}[P0,ν]∈AΓ/(Z/dZ) is ob-

tained by pulling back the Harder-Narasimhan stratification of BunG0(X̃) along a cer-
tain (Z/dZ)-equivariant map BunG(X) ×Spec(Fq) Spec(Fqd) → BunG0(X̃)Γ, and then
taking quotients by the action of Z/dZ.

Let (P0, ν) be an element of AΓ. We let Y[P0,ν] denote the reduced algebraic stack

(BunG(X)F
qd
×

Bun
G̃

(X̃)Γ Bunν
G̃,P0

(X̃)ss Γ)red,

which carries an action of the subgroup C ⊆ Z/dZ which stabilizes (P0, ν) ∈ AΓ.

Note that every stratum of BunG(X) admits a surjective finite radicial morphism
from a quotient stack Y[P0,ν] /C, for some subgroup C ⊆ Z/dZ which stabilizes (P0, ν)
(and no two strata correspond to the same quotient). Moreover, there are only finitely
many choices for the parabolic subgroup P0 and for the subgroup C. Consequently,
to prove Proposition 5.6.3.2, it will suffice to prove that for each Γ-invariant standard
parabolic P0 ⊆ G0 and each subgroup C ⊆ Z/dZ which fixes P0, there exists a finite
collection of algebraic stacks Ti of the form Y/H where Y is an algebraic space of
finite type over Fq and H is a linear algebraic group over Fq, such that for each
ν ∈ Hom(P0 ad,Gm)∨>0 which is fixed by the inverse image of C in Gal(L/KX), there
is a map

Ti → Y[P0,ν] /C

which exhibits Ti as a fiber bundle over Y[P0,ν] /C whose fibers are affine spaces of

dimension dν , and the sum
∑

ν q
−dν converges. We will prove this in two steps:

(i) We first show that each of the algebraic stacks Y[P0,ν] /C can be individually
written as the quotient of a quasi-compact, quasi-separated algebraic space by
the action of a linear algebraic group.

(ii) Applying the twisting procedure of Construction 5.5.5.1 with respect to a suitably
chosen Galois-invariant divisor D̃ ⊆ X̃, we can construct an abundant supply of
Galois-equivariant maps Y[P0,ν] → Y[P0,ν+λ]. Using these maps, we show that
the requirements of Definition 5.2.2.1 can be satisfied by choosing {Ti} to be a
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finite collection of stacks of the form Y[P0,ν] /C, where C ⊆ Z/dZ is a subgroup
stabilizing (P0, ν) (here it is convenient not to require that C is the entire stabilizer
of (P0, ν)).

Steps (i) and (ii) of our strategy can be articulated precisely in the following pair
of results, which immediately imply Proposition 5.6.3.2:

Proposition 5.6.4.3. Let (P0, ν) ∈ AΓ and let C ⊆ Z/dZ be a subgroup which stabilizes
(P0, ν). Then, as an algebraic stack over Fq, the quotient Y[P0,ν] /C can be written as
a stack-theoretic quotient Y/H, where Y is a quasi-compact quasi-separated algebraic
space over Fq and H is a linear algebraic group over Fq.

Proposition 5.6.4.4. Let d′ be a divisor of d, let P0 ⊆ G0 be a standard parabolic
subgroup which is fixed under the action of the subgroup

Γ′ = Gal(L/KX)×Z/dZ (d′Z/dZ) ⊆ Gal(L/KX),

and let S ⊆ Hom(P0 ad,Gm)∨>0 be the subset consisting of those elements ν which are
fixed by Γ′. Then there exists a finite subset S0 ⊆ S with the following properties:

(1) For each ν ∈ S, there exists a ν0 ∈ S0 and a (d′Z/dZ)-equivariant map of algebraic
stacks

Y[P0,ν0] → Y[P0,ν]

which exhibits Y[P0,ν0] as a fiber bundle (locally trivial with respect to the étale
topology) of some rank eν over Y[P0,ν].

(2) For every real number r > 1, the infinite sum
∑

ν∈S r
−eν converges.

Proof of Proposition 5.6.4.3. Let C ′ ⊆ Z/dZ be the stabilizer of (P0, ν) in AΓ. It
follows from Lemma 5.6.4.1 that Y[P0,ν] /C

′ admits a surjective finite radicial map
Y[P0,ν] /C

′ → BunG(X)P0,ν . The projection map Y[P0,ν] /C → Y[P0,ν] /C
′ is finite étale

and the inclusion BunG(X)P0,ν ↪→ BunG(X) is a locally closed immersion. It follows
that the composite map

Y[P0,ν] /C → Y[P0,ν] /C
′ → BunG(X)P0,ν ↪→ BunG(X)

is quasi-finite. By virtue of Corollary 5.4.1.4, Proposition 5.6.4.3 is equivalent to the
statement that the algebraic stack Y[P0,ν] /C is quasi-compact. Since the quotient map
Y[P0,ν] → Y[P0,ν] /C is surjective, it will suffice to show that Y[P0,ν] is quasi-compact.

Using Propositions 5.4.2.4 and 5.4.2.1, we deduce that the composite map

BunG(X)F
qd

g−→ Bun
G̃

(X̃)Γ → Bun
G̃

(X̃)
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is quasi-compact. Since the algebraic stack Bun
G̃

(X̃) has affine diagonal, the map

Bun
G̃

(X̃)Γ → Bun
G̃

(X̃) is affine and, in particular, quasi-separated. It follows that g
is quasi-compact. Consequently, to prove that

Y[P0,ν] = (BunG(X)F
qd
×

Bun
G̃

(X̃)Γ Bunν
G̃,P0

(X̃)ss Γ)red

is quasi-compact, it will suffice to show that Bunν
G̃,P0

(X̃)ss Γ is quasi-compact. Using

the affine morphism Bunν
G̃,P0

(X̃)ss Γ → Bunν
G̃,P0

(X̃)ss, we are reduced to proving that

Bunν
G̃,P0

(X̃)ss is quasi-compact. It now suffices to observe that we have a pullback

diagram

Bunν
G̃,P0

(X̃)ss //

��

BunνP0 ad
(X̃)ss

��
Bun

G̃
(X) // Bun

G̃ad
(X),

where the lower horizontal map is quasi-compact (Proposition 5.4.2.5) and the upper
right hand corner is quasi-compact (Proposition 5.4.3.1).

To prove Proposition 5.6.4.4, we are free to replace X by X×Spec(Fq) Spec(Fqd′ ) and

G by G ×Spec(Fq) Spec(Fqd′ ) (keeping X̃ and G̃ the same), and thereby reduce to the
case where d′ = 1. For the remainder of this section, we will fix a standard parabolic
subgroup P0 ⊆ G0 which is invariant under the action of the Galois group Gal(L/KX);
we will prove that Proposition 5.6.4.4 is valid for P0 (in the case d′ = 1). To simplify
our notation, for ν ∈ S we will denote the algebraic stack Y[P0,ν] simply by Yν .

Let Λ ⊆ Hom(P0 ad,Gm)∨ be as in Notation 5.5.2.2. Let ∆P0 = {α1, . . . , αm} be
the collection of simple roots α of G0 such that −α is not a root of P0. The construction

λ 7→ {〈αi, λ〉}1≤i≤m

determines an injective map Λ ↪→ Zm between finitely generated abelian groups of the
same rank. It follows that we can choose an integer N > 0 such that the image of Λ
contains NZm: in other words, we can find elements λ1, . . . , λm ∈ Λ satisfying

〈αj , λi〉 =

{
N if i = j

0 otherwise.

Every element ν ∈ Hom(P0 ad,Gm)∨ can be written uniquely in the form
∑
ciλi, where

the elements ci are rational numbers. We observe that ν belongs to Hom(P0,Gm)∨>0 if
and only if each of the rational numbers ci is positive, and that ν is fixed by the action
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of Gal(L/K0) if and only if we have ci = cj whenever the roots αi and αj are conjugate
by the action of Gal(L/KX) (which acts on the set ∆P0 via the group homomorphism
ρ : Gal(L/KX)→ Out(G0)).

Since L is a Galois extension of KX , the map π : X̃ → X is generically étale. Choose
a closed point x ∈ X such that π is étale over the point x and the map β : G×X X̃ → G̃
is an isomorphism when restricted to the inverse image of x. Let D ⊆ X̃ be the effective
divisor given by the inverse image of x, and let deg(D) denote the degree of D over
Fqd . Let us say that an element ν =

∑
ciλi ∈ Hom(P0,Gm)∨ is minimal if each of

the coefficients ci satisfies the inequality 0 < ci ≤ deg(D). Note that every element
ν ∈ Hom(P0,Gm)∨ can be written uniquely in the form ν0 +

∑
ci deg(D)λi, where ν0 is

minimal and each ci is an integer. Moreover, ν belongs to Hom(P0,Gm)∨>0 if and only
if each of the integers ci is nonnegative, and ν is fixed by Gal(L/KX) if and only if ν0

and
∑
ciλi are both fixed by Gal(L/KX). We will deduce Proposition 5.6.4.4 from the

following more precise result:

Proposition 5.6.4.5. Let ν ∈ Hom(P0,Gm)∨ be an element which is minimal and
fixed by the action of Gal(L/KX). For every element λ ∈ Λ≥0 which is fixed by the
action of Gal(L/KX), there exists a (Z/dZ)-equivariant map Yν → Yν+deg(D)λ which
exhibits Yν as a fiber bundle (locally trivial with respect to the étale topology) whose

fibers are affine spaces of dimension deg(D)
|Γ| 〈2ρP0 , λ〉.

Proof. For each ν ∈ Hom(P0 ad,Gm)∨>0, let Zν denote the fiber product

BunG(X)F
qd
×

Bun
G̃

(X̃)Γ Bunν
G̃,P0

(X̃)ss Γ.

Let U = X − {x}, which we regard as an open subset of X, and let Ũ denote the
inverse image of U in X̃. Let BunG(U) denote the moduli stack of G-bundles on U :
that is, the (non-algebraic) stack over Fq whose R-valued points are given by G-torsors

on the open curve UR = U ×Spec(Fq) Spec(R), and define Bun
G̃

(Ũ) similarly. Since the

map X̃ → X is étale over the point x and the map G ×X X̃ → G̃ is an isomorphism
over {x}, the diagram

BunG(X)F
qd

//

��

Bun
G̃

(X̃)Γ

��

BunG(U)F
qd

// Bun
G̃

(Ũ)Γ

is a pullback square. It follows that we can identify Zν with the fiber product

BunG(U)F
qd
×

Bun
G̃

(Ũ)Γ Bunν
G̃,P0

(X̃)ss Γ.
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For each λ ∈ Λ≥0, the twisting map

Twλ,D : Bun
G̃,P0

(X̃)→ Bun
G̃,P0

(X̃)

is Gal(L/KX)-equivariant (Remark 5.5.5.8) and therefore induces a (Z/dZ)-equivariant
map

u : Bun
G̃,P0

(X̃)Γ → Bun
G̃,P0

(X̃)Γ.

It follows from Remark 5.5.5.6 that u restricts to a (Z/dZ)-equivariant map

u0 : Bunν
G̃,P0

(X̃)ss Γ → Bun
ν+deg(D)λ

G̃,P0
(X̃)ss Γ.

The map u0 is a pullback of u, and therefore (by virtue of Proposition 5.5.6.1) is an

étale fiber bundle whose fibers are affine spaces of dimension deg(D)
|Γ| 〈2ρP0 , λ〉. Note that

the twisting construction does not modify bundles over the open set Ũ : in other words,
the diagram

Bunν
G̃,P0

(X̃)ss Γ //

u0

��

Bun
G̃

(Ũ)Γ

id

��

Bun
ν+deg(D)λ

G̃,P0
(X̃)ss Γ // Bun

G̃
(Ũ)Γ

commutes up to canonical isomorphism. This isomorphism allows us to lift u0 to a
(Z/dZ)-equivariant map u0 : Zν → Zν+deg(D)λ which is a pullback of u0 and therefore

also an étale fiber bundle whose fibers are affine spaces of dimension deg(D)
|Γ| 〈2ρP0 , λ〉.

By definition, we have Yν = (Zν)red and Yν+deg(D)λ = (Zν+deg(D))red. Consequently,
u0 induces a (Z/dZ)-equivariant map v : Yν → Yν+deg(D)λ which factors as a composi-
tion

Yν
v′−→ Yν+deg(D)λ×Zν+deg(D)λ

Zν
v′′−→ Yν+deg(D)λ .

The map v′′ is a pullback of u0 and is therefore an étale fiber bundle whose fibers are
affine spaces of dimension deg(D)

|Γ| 〈2ρP0 , λ〉. To complete the proof, it will suffice to show

that v′ is an equivalence. It is clear that v′ induces an equivalence of the underlying
reduced substacks. Since Yν is reduced, we only need to show that the fiber product
Yν+deg(D)λ×Zν+deg(D)λ

Zν is also reduced. This follows from the fact that Yν+deg(D)λ is
reduced, since the morphism v′′ is smooth.

Proof of Proposition 5.6.4.4. We will show that the subset

S0 = {ν ∈ S : ν is minimal} ⊆ S
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satisfies the requirements of Proposition 5.6.4.4. The only nontrivial point is to prove
the convergence of the infinite sum

∑
ν∈S r

−eν for r > 1. By virtue of Proposition
5.6.4.5, we can write this sum as

|S0|
∑
λ∈Z

r
−deg(D)

|Γ| 〈2ρP0
,λ〉
,

where the sum is taken over the set of all Gal(L/KX)-invariant elements λ ∈ Λ which
can be written in the form

∑
1≤i≤m ciλi where each ci is a nonnegative integer. Up to

a constant factor of |S0|, this sum is dominated by the larger infinite sum∑
c1,...,cm≥0

r
− N
|Γ| 〈2ρP0

,
∑
ciλi〉 =

∑
c1,...,cm∈Z≥0

(r
−deg(D)

|Γ| )
∑
ci〈2ρP0

,λi〉

=
∏

1≤i≤m
(

rai

rai − 1
)

< ∞,

where ai = deg(D)
|Γ| 〈2ρP0 , λi〉.
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