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COBORDISM THEORY WITH REALITY

MICHIKAZU FUJII

Introduction

M. F. Atiyah [1] has defined the KR-theory of complex vector bundles
with reality which relates KO-, KSC- and K-theories to each other.
According to A.L. Edelson [8] the classifying bundle in the KR-theory
is the complex universal bundle y, with the reality given by the conju-
gation for each #.

P.S. Landweber [10] discussed the equivariant homotopy groups of
the equivariant spectrum of the Thom spaces T(y,) with reality (n=1, 2,
-+). In this paper we discuss the cobordism theory denoted by MR**( )
based on this spectrum. In this theory, there hold the Thom isomorphism
theorem and the splitting principle for real vector bundles in the sense of
Atiyah. Consequently we can consider the Chern classes for real vector
bundles with values in our cobordism MR*'*( - ).

The layout of this paper is as follows. In §1 we recall some basic
properties on real vector bundles. We introduce the Thom spectrum (2. 4)
with reality in § 2, construct the equivariant cohomology theories (The-
orems 3. 8 and 3. 9) with respect to the Thom spectrum by the fashion of
G. W. Whitehead [12] in § 3, and prove the Thom isomorphism theorem
(Theorem 4. 7) along the line of T.tom Dieck [5,6] in §4. In §5 we
give an exact sequence (Theorem 5. 8) which shows a relation between
our cobordism theory and the usual complex coboridism theory. The
exact sequence is a generalization of the exact sequence of Landweber
([10,(2.1)]1). §6 is devoted to the splitting principle (Theorems 6. 6, 6. 8
and 6. 9) and the Chern classes (Theorem 6. 11) for the real vector bundles.

1. Real vector bundles

In this section we summarize some basic properties of real vector
bundles which owe to M. F. Atiyah [1] and A. L. Edelson [8].

A real space is a Hausdorff space X together with an involution =
tx: X—> X, a real pair is a topological pair (X, A) together with an
involution 7: (X, A) —> (X, A) and a real map is a continuous map f:

(X, A) — (Y, B) which commutes with the involutions. A real open set
is an open set U such that «(U)=U.

A real vector bundle £ over a real space X is a complex vector bundle
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over X such that the total space E is also a real space and

(i) the projection p: E —— X is a real map,

(ii) the map t|E,: E,—> E., is conjugate linear, that is, t(ze)
= gv(e) for any complex number ¢ and ¢€E, =p '(x).

We consider the n-dimensional complex space C” as a real space with
the standard conjugation ¢ as the involution. If V(C%)=U(n)/ Uln—Ek)
denotes the Stiefel manifold of orthonormal k-frames in C®, the conju-
gation in U(n) defines the involution of V,(C") which sends (v,, ---, vs) to
(1, ***, v,). This involution induces the involution © on the Grassmann
manifold G«(C"), that is, if VE G:(C" has basis {,, -, v}, ®(V)=V
is the subspace of C" having basis {o,, ---, 2}. The classifying bundle

EGo={(V,9)€G(CX C"| xE V]

admits the involution = defined by =(V, x)=(V,%). Thus we have a &-
dimensional real vector bundle ;; over the real space G,(C"). We have
the real inclusions

G (CHC GC) T eeeree C U G(C™=G(C=)=BU(k),
k<m
EGHCEGTHCT - cy E(G?)=E(ry),
and y,=(E(y), p, BU(E)) is a k-dimensional real vector bundle over the
real space BU(k).

Two real vector bundles E and E’ over a real space X are.rea! isomor-
phic, if there exists an isomorphism %Z: E —> E' of complex vector
bundles such that % is also a real map. In the category of real vector
bundles, an z-dimensional f7ivie! bundle over a real space X is a real vec-

tor bundle which is real isomorphic to the product bundle X X C" with the
involution vX¢. Then

Proposition 1.1 (cf. [1, p.374]). Any real vector bundle is locally
trivial in the category of real vector bundles.

Let {U;} be a finite covering of a real compact space X by real open
sets and {f;} be a partition of unity with respect to the covering {Ui}.
Then

Lemma 1.2, The family {f;}, defined by fi(x)=(fi(x)+ fi=(x))/2,
is a partition of unity with respect to the covering {U:} and satisfies

fir(x)=fx) for any xEX.

Let £=(E, p, X) be an n-dimensional real vector tundle over a real
compact space X. Let {U.| 1<{i<(m} be a finite covering of X by real
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open sets giving the local triviality of &, Then we have

Lemma 1.3. Constder the composition
Il.' PZ
gi=pyhi: pU)— UxXC"—> C (A<i<m),
where k; is the real isomorphism and p, s the projection on the second
factor. Then g;is a real map which is a complex isomorphism on each
fibre.

By a real Gauss map of £ we mean a real map g: E—— C™ which is
a complex linear monomorphism on each fibre. By using f; and g; in the
above lemmas, we obtain a real Gauss map
g: E—C'&E---gCr=Cm
by gle)=(f(p(e)) g:i(e), -, fu(p(e)) g.(e)). Thus we have

Proposition 1.4. For any n-dimensional real vector bundle E=
(E, p, X) over a real compact space X, there exists a real Gauss map g:
E——> C™ for sufficiently large m.

The real Gauss map g defines the real bundle map
g: E—EG), g=gl): X—>G.(C™),
by 2(e)=(g(Ew,), gle)), Z(x)=g(E.) for ¢€E, x€X, and we have

Proposition 1.5 (cf. [8, Prop. II. 1]). By corresponding the real
map g(¥) to a real vector bundle &, we have a bijective correspondence

RVect (X)=~[X; BU#n)]x
of the set RVect,(X) of real isomorphism classes of n-dimensional real

vector bundles over the real compact space X onto the set [X; BU#n)]n of
real homotopy classes of real maps X — BU(n).

By this result, y7,=(E("), p, BU(xn)) will be called the n-dimensional
universal real vector bundle.

By a veal Hermitian metric on £ we mean a real map 3: EEDE)
—> Csuch that B|E, ¥ E, is an inner product on E, for each x+=X. By
using the real Gauss map g of Proposition 1. 4 and the inner product {, >
on C™, we obtain a real Hermitian metric 3 on £ by (e, ¢')=<{g(e), g(e")>.
Thus we have

Proposition 1.6. There exists a real Hermitian metric on any n-
dimensional real vector bundle over a veal compact space.

Furthermore, we have
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Proposition 1.7. Let &, be a real subbundle of an n-dimensional real
vector bundle & over a real compact space. Then one can define the real
subbundle £¢ of & by

E(Ed)= [vEE(E) | Ao, e)=0 for any eS E(Eo) )
and it holds the following isomorphism as real vector bundles :

E=E @&y

2. The real Thom spectrum

Let 77 be the category whose objects are real compact Hausdorff
spaces and whose maps are real maps, and %/? the one of pairs in .
Let /7, be the category whose objects are real spaces in % with base
points preserved by the involutions and whose maps are real maps
preserving base points.

For (X, A)E %%, X/ A is an object of #/, which is obtained from X
by collapsing A to the base point of X/A. For X, -, X,& ¢, the
reduced join X;/A\--*AX, is also an object of %,.

Let I be the interval [—1, 1] and let S=S'=171/ I, and consider the
n-fold reduced join S*=S8/\-/\S. Then we obtain the real space

(2.1) Ira=(xr1 T, YE 7,
for any integers p,¢>0, where I™7=S°AS” and the involution T, ,:
I»1 5 371 i given by T, .(a, b)=(a, —b) for e=(a;, -, @&)ES, b=

(by, +++, by)ES".

The real Thom space of a real vector bundle & over a space X in 7,
denoted by T(£), is the real space with base point which is the one-point
compactification of E(£). Let D(£) and S(£) be the associated unit disk and
sphere bundles of £, respectively, for some real Hermitian metric on £.
Then, the real Thom space T() is real homeomorphic to the real space
D(&)/ S().

Let & and 7 be real vector bundles over spaces X and Y in %/, re-
spectively. Then the real Thom space T(£Xy) and the real space T(£)/\
T(y) are real homeomorphic. Especially, the real Thom space T(6"DE)
is real homeomorphic to the real space X" /\ T(£), where 6" is the
n-dimensional trivial real vector bundle over X.

Since a real bundle map f: £ —> » induces a real map T(f): T(&)
—— T(3) of real Thom spaces, we have the real inclusions

TGRS TEE) oo C k\gjm TG™Y=MU(k).

The real space MU(%) will be called the rea! Thom space of the universal
real vector bundle 7.
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Let od: C'—— C*™*™ apnd er: C*"—— C*"** be the real inclu-
sions given by

od(xy, =+, %)=(x1, 0, >, %, 0,0, -, 0)

ev(xy, -+, %.)=(0, %, >+, 0, x,, 0, -+, 0).
Then the real bundle map

aln, m): yaxXyr —> i7"
can be defined by
a(n, m) ((V, z), (W, y))=0d.(V, x)Dev.(W, ),
and this induces the real bundle map
Gt Ve KT > Vet
and the base point preserving real map
2.2) s MU(R) A MUY — MUk D).
Similarly to the complex case, we have the following

Proposition 2.3. The diagrams

1/N Mo
MU(p) /N MU(q) N\ MU(r)————>MU(p) N\MU(q+7)

l Mo, /N1 l o gar
Mpigr
MU(p+q) A MU i >MU(p+q+7)
and
MU(P)/\MU(q) ————SMU(g) AMU(p)
MU(p+q)

are homotopy commutative as base point preserving real maps, where
T(x N\ y)=y/\x.

Now, we consider the base point preserving real map

i/\]' ‘ul.lc
ee=m A1) XN MU —>MUQ) /N MU(E)—>MU(k+1),
where i : X"'=T(y1)—>MU(1) is the real inclusion. The sequence

(2.4) {MU(k), = | REN}

of the real spaces and the real maps will be called the rea! Thom spcirum.
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3. The cohomology theory

For any real spaces X and Y with base points, let [X: Y]z denote
the set of all real homotopy classes of real maps X—>Y preserving base
points. We denote by [ f]x the real homotopy class of f: X——>Y, espe-
cially by [,]x=0 the one of the constant map y, to the base point y,& Y.
As in the usual cases, the set [I*?A X; Y]r has the natural group
structure with the identity element O for ¢4 >> 1 by the multiplication
defined along the first coordinate axis, and this is abelian for 42>2, where
A% is the real space of (2. 1).

For any X& 77,, the real Thom spectrum (2. 4) defines the homomor-
phism

AN PB

V=g XL (XA MU i [ 3571775470 A X 5 Y0 AMU(E)] o

s [yt X MUGR+1)]
Then {[X*""* 9N X; MU(k)]: »i] {orms a direct system, and we can
consider the abelian group
3.1) M'\I’i”"“(X)=Dirk Lim [Y* %A X; MU(k)]x.

Remind the definition of the complex cobordism theory. Then, by
forgetting the reality structure, we obtain the natural homomorphism
(3.2) p: MR™(X) —> MU (X),
where 1@*( ) is the reduced complex cobordism theory.

For any map f: X —> Y in %/, the homomorphisms

AN X2t AN Y MUR)] g —— [YP5 TN X MUK e
commute with »¥, and induce the homomorphism

f*=MR"*(f): MR*"(Y) —> MR”*(X).
Similarly to the usual complex cobordism theory, we have

Proposition 3.3. (i) Iff,, fiE %, are real homotopic maps, then
fo=fi.
(ii) For Xe& 4, and any non-negative integers r, s we have the
suspension tsomorphism
o™ : MR" X)) = ﬁR"*"““(L"" N X).

Let the interval I=[—1, 1] be a trivial real space (i. e. the involu-
tion is the identity) with base point —1. For a space X and amap f: X
—Y of %, the cone CX over X, the reduced suspension X*'X=
XN X of X and the reduced mapping cone C(f)= CXU,Y of f are also
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spaces of %7, Let a(f): Y——>C(f) be the canonical inclusion and b(f):
C(f)—> C(f)] Y= X"'X the projection, which are also real. Then we
have the following lemma (cf. [3]).

Lemma 3.4. For any real space V with base point the following
sequence ts exact :
Yo bfy
e —> [ XY V], — XX V]I — [C(f); VI
a(f)f ft
— [V V], — [X; V.
Now, by applying Lemma 3.4 to V=MU(k) and 1 A\ f: X IAX
—— ME-rk-e AV and by taking the direct limit of (3. 1), we have

Proposition 3.5. The following sequence ts exact .

_ —‘\‘O,lf* . b( )*00.] ~
ver ——> MR™""(Y) ——> MR™""(X) ——— MR"**(C(f))
a(f)* *
—_—_— MR”-Q(Y) —> e,

where o' is the suspension isomorphism of Proposition 3.3 (ii).

By a real complex we mean a CW-complex X together with a cellular
involution = whose fixed poit set is a subcomplex of X (cf. Bredon [3]).
Let ¥, 9/ and ¥, be the subcategories of %/, 7/% and %, respec-
tively, consisting of real spaces having the real homotopy types of real
finite complexes.

Let X be a real complex, and A a subcomplex invariant under the
involution. Then, for any real space V, X has the real (equivariant)

homotopy extension property with respect to A (cf. [3]). Therefore we
have

Lemma 3.6. If (X, A) is a pair in 77y and i: ACX, then the real
space X| A is of the same real homotopy type as C(i) and the projection
p: CG)—> C(E)/CA=X]/A is a real homotopy equivalence.

Proposition 3. 5 and Lemma 3. 6 show the following

Proposition 3.7. For any pair (X, A) in %7, we have the exact
sequence

— 0 — J — z
v+ —> MR™""'(A) —> MR %X/ A)—> MR**(X)

> MR™ (A)—> -,
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Now, in virtue of Propositions 3.3 and 3. 7, we obtain

Theorem 3.8. For any integer p, Il—ﬂ?”'*( Yof (3.1) is a generalized
cohomology theory on 77,

By the standard argument of the generalized cohomology theory (cf.,
e.g., [7]), we have the following theorems.

Theorem 3.9. For (X, A)E 777, we define
MR"(X, A)=MR>*(X/ A).

Then, for any infeger p, MR™*(,) is a generalized cohomology
theory on 7%

Theorem 3.10. For any triad (X; A, B) in 77 (i.e. (X, A), (X, B)
€ 777?), there exists the Mayer-Vietoris exact sequence

d a
-+ —> MR**"'(A( B) —> MR*(AU B) —> MR*"(A) @® MR*(B)
)
—> MR"(ANB) —> -+,

For any base point preserving real maps f: M »*-¢ N\ X —> MU(k)
and g: X" N Y — MU(), we consider the composition

e/NIN1
ykl-porkilou=s A X AN Y > NE-pR-g N tentt A XANY

IATAL g e ‘
—— TEPE N XN M N Y — MU(R) AN\ MU(D) — MU(k+ 1),

where ¢ is the natural real homeomorphism and t, is the real map of
(2. 2), and define the cross product
N [EPEIA X MUB TR X LI A Y s MUD)],

—— [IFHmrmRms A X AN Y MUED) ]
by [fleN[gla={thi (fAgE)-AANTAL) (e N1A1)]s In virtue of
Proposition 2.3, this cross product commutes with % and induces the
cross product
(3.11) A MR*(X) @ MR™(Y) —> MR"' """ (X Y).

Hence, the cohomology theory MR*** is the multiplicative theory.
Finally, we notice the dual situation of the group of (3.1). For any

Xe 7Z7,, we have also the composition
Al 1

vig= (e A L) X1 [ X240 MUB) A X ] —>

(eeN1),

[Zr+itnktisa, El"/\MU(k)/\X]Rﬁ [2'k+l+p.k+l+’l; MU(k+ DAX]x
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and the direct system {[S**?**¢; MU(E)ANX]1z, 1:s}. Therefore, we can
define the abelian group

(3.12) MR, «(X)=Dit Lim [¥*****¢; MURAXIz.

4., The Thom isomorphism theorem

Denote by
(4.1) £.& MR*¥(3**)
the element represented by the real inclusion I**=T(;%)C MU(k). Then
the definition of the cross product (3. 11) shows the following

Proposition 4.2. The suspension isomorphism
ot s MR (X)) —> MRPHH( 3% A X)

is given by a**(x)=t, /\ x for any x=MR"(X).

Let £ be an n-dimensional real vector bundle over a space X in %/,
In virtue of Proposition 1. 5, there is a real bundle map f: E(§)——E(i),
and f induces the base point preserving real map T(f): T(§) —> MU(n)
of the Thom spaces. The element
. 3) HE)= MR "(T(®))
represented by T(f) is called the Thom class of £. Lets: X" (=X/$)

——> T(£) be the base point preserving real map induced by the O-section
X — E(¥). Then the element

e(&)=s*tE)e MR™"(X)
is called the Euler class of E.

Similarly to the usual case, as for the Thom classes of the real vector
bundles we have

Proposition 4.4. (i) If h: 71— E is a real bundle map, then
1) =T(h)*(#(E)).
(i) Under the identification TEXE)=T(E) /\ T(¥") we have
HEXEN=1(E) /\ t(E.
(iii) The element t. of (4.1) is the Thom class of the trivial real
vector bundle C* over a point.

Let £ and » be real vector bundles over a space X in %. Letd: X
—> XX X be the diagonal map. Since & P n=d*(£xy), we have the
base point preserving real map

J: TEDy) —> T(EXy)=TE) N T(p),

Produced by The Berkeley Electronic Press, 1975



Mathematical Journal of Okayama University, Vol. 18 [1975], Iss. 2, Art. 10

180 M. FUJl

which satisfies 4*#(€ X 5)=¢(ED7).

Now, we can define the Thom homomorphism
(4.5) w(E): MR™(T(7)) —> MR>*™"™(T(E D))
(¢ is n-dimensional) by

FE(R)=4*EE) N x) for x€MR>(T(y)).
Especially, if » is a 0-dimensional real vector bundle over X, then we
obtain the Thom homomorphism .
7(E): MR"(X)—> MR™™"(T(£).

By a parallel argument to T. tom Dieck [5], [6] we obtain the

following

Proposition 4.6. Let &, 3,  be real vector bundles over a space X
in 72, and let &', 7' be ones over a space X' in % .
(i) If dim é=dim &=n and real bundle maps f: € —> & and g:
7 —> ' induce the same real map ?=§: X—> X! of base spaces, then
the following diagram is commutative:
- rEY _
MR (T (') ———> MR (T (€' D)

lT(g)* j T(fDg)*
rE

MEP(T(5)) ———> MRP"™(TE D7) .

() If dim&=n and dim {=m, then the following diagram is
commutative :

— wEDL
MR™T()) MRP e (TEDEDy)

m(t\ / v (€)

—~

MR *™(T(E D)) .

(iii) For the n-dimensional triviel rveal vector bundie 6™ over X, we
have

l[‘(ﬂ"):o'”'“ . MVRP'Q(T():J)) — ﬁRp+-n,q+n (}:n.n /\ T(v)).

Theorem 4.7. For any real vector bundles £ and v over a space X
in %, the Thom homomorphism 7 (E) of (4.5) s an isomorphism.
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By this theorem and the standard arqument we have

Theorem 4.8. Let £=(E, p, X) be an n-dimensional real vector bundle
over a space X in 72, and S(E) its associated sphere bundle. Then there
exists the Thom-Gysin exact sequence :

@-
see —> MR*(X) T MRP(X) —> MRP(S(E)

> Rp.qH(X) —> e,

where e(£) is the Euler class of & and - is the internal product induced
from the cross product.

5. Exact sequences

In this section, we show that there is an exact sequence containing
the homomorphism p of (3. 2).

For any real spaces X and Y with base points, let RF(X; Y) denote
the set of all real maps X — Y preserving base points. Consider S=
I/1(I=[—1, 1]) and the subsets

DY= {(a,t, ))ES* ANSA S | t >0}

D= {(g,£,5)ES" NS N S* | t L 0}
of S*NSA\S” which is the real space ¥?*"? or ¥*2* of (2.1). We identify
the real set Y§7=D2%?N D> with X" ? by means of the real map e¢: "¢
— YPHLa op 329 defined by e(a, b)=(a, 0, b).

In the sequel we use the arguments of J. Levine [11] in a slightly
generalized form.

Lemma 5.1 (cf. [11, Lemma 3.4]). If f:D%**/\ X —— Y satisfies
FIXPINXERF(X™ N X; Y), then there exists uniquely a map h in
RF(X* MM AN X; Y) which is an extension of f.

Proof. The desired map £ is defined by

RIDYINX=Ff h|D2'N X=1p fo(Tpi1.0/\ Tx),
where 7y and 7, are the involutions of X and Y, respectively. q.e.d.

Lemma 5.2 (cf. [11, Lemma 3.7]). Let X be a CW-complex. If
fofi: 2PN X——Y are homotopic and g;: D> N\ X—> Y (0<s<1)
is a homotopy of go=/folD?"N\X to g,=f|D>'/N\X, then {g:} is
extendible to a homotopy of fy to f..

Now, for any spaces X and Y with base points, we denote by
F(X;Y) the set of all maps X —> Y preserving base points, and by

Produced by The Berkeley Electronic Press, 1975
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[X:; Y] the set of all homotopy classes of maps in F(X; Y).

Let as[SP*"""' AN X; Y] and 3=[3?* 1 N X; Y]z be given classes.
If geRF" AN X;Y) is a representative of 7, we can choose a
representative fEF(S***!' A X ;Y) of a snch that

FID”* A X=g|D™* A X.
Since F|IP TN X=g|X" " NXERFQ"*NX;Y), Lemma 5.1 shows
that there is a map

RERF(X*" " N X3 Y)
snch that 2|D3* N\ X=f|D%* N X.

Lemma 5.3 (cf. [11, 3.8]). The class [kl [X"""N X ; Y]r de-
pends only on o and S.

By the above lemma we can denote
(5. 4) af=[hle[I"" AN X; Y]

for ac[S**"™" A X; Y], 3€[2""" A X; Y], Then, itis easy to check
that the operation («, ) —> «+;3 satisfies the following properties.

Proposition 5.5. (i) If f:X'—> X is a map in ¥, and g:
Y—— Y is a real map preserving base points, then

(ffa)- (1) =rfHa-3), (gw)-(@9)=gla*?).
(i) The following diagram is commutative :

[SPMAX; YIX[3" A X Y[ 2" A X; Y],

J(SZX}:I'I l il 1

[SJH-QH/\X; Sz/\Y] X [‘\:rﬂl.:{»f-l/\X; f]’l/\Y:JR ) N [;‘"F"]"“"/\X; d\.‘l'l/\Y]R.

Proposition 5.6 (cf. [11, 4.2]). If a), ax=[S"""" A X; Y] and
3, 8., s [X? AN X ; Yy then
oy (e I:"): (alaz) - ﬁ» (alaz) * (431:':"2) ={c," 1) (az 'l:“z):
where a,a, and 3, mean the multiplications in the groups [S"" HAN
X: Y] and [X""M N\ X; Yl respectively.
Now, we prove the next proposition, which is essential to show the
main result of this section.

Proposition 5.7 (cf. [11, Theorem 4. 3]). For X& %, and any
real space Y with base point, the sequence

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 18/iss2/10
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P ¢
e > [IPIANX; Y] —— [P AX Y] — [2PTAX Y e

—> [2™AX; Y] —>

is exact, where the homomorphisms p, ¢ and | are given as follows:

o([f1x)=[f1 (forgetting the reality) for [ f1zE[3"""'"AX; Y]a,
dla)=ca+ 0 (given by (5. 4)) for aE[STIAX; Y,
“"'([g:llf):: [g l :p"'/\X]R for [g]RE [.E‘p+]'q/\X§ Y]R .

Proof. (a) Im p=Ker ¢. We will show that ¢p([f']z)=0 for
any f/ERF(¥'ANX; YY) Let w:(l I —> (I, I) (I=[—1, 1]) be
a map such that ([ —1,0])=—1, w(1)=1 and « is homotopic to the
identity relative I. Then [ f']x is represented by the map FERF(Y™™!
ANX; Y) givenby fla, ¢ b, x)=f'(a, «(t), b, ). Since f(D2IAX)
=y,, the definition of (5. 4) shows that ¢p([ flz)=[f]-0 is represented
by the extension hERF (7"~ X; Y) of f|D%"/AX. Define a homotopy
he: DEAX—> Y (0<s<1) by

ha, t, b, x)=f(a, s+(1—s)t b x) (O<tL1).
Then, this satisfies
hy=F| D2 AX=h|D" AKX, hi=yy h|I*NXERFQ™AX:Y)
Therefore [k],=0 by Lemma 5.1, as desired.

Next, we will show that, if a=[S"™" "' AX; Y] and ¢(x)=0, then
a=Imp. Let a be represented by fe F(S**"!'ANX; Y) such that
FID»*ANX=y, Since ¢(a)=0, there is a homotopy #h.: D2*NX—> Y
(0<s<C1) such that

ho=f1D%N\X, hi=yy, h|X"ANXERFOP"NX; Y).
Now, define f/eRF(X™**'ANX; Y) by
( hfa, 0, b, %) if 081,
flla b bon={ i —1<t<0.
Then we have easily o([ f'1)=[f], as desired.

(b) Im ¢=Ker +. Itis clear that yp(a)=0 for any = [S"" "' X; Y].

Suppose (#)=0 for 3=[gl,S[2""""AX; Y]z Theng|I*AX
is real homotopic to ¥, in RF(X**AX; Y). By the homotopy extension
theorem and Lemma 5. 1, there exists a real map g'=RF(X* A X; Y)
which is real homotopic to y, in RF(X**" "N X; Y) and g'| 37N X=
gl ¥~ X. Define f: ST*""IAX—>Y by

FIDY N\ X=g|D2"~X, FfID"NX=g'|D**NX.
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Then we have [f]1:0=[glz=7 by the definition of (5. 4).
() Im+y=Ker p. Let [f12E[I"*AX; Y]z Then, [flzEKerp
if and only if f is extendible over D} A\ X. By Lemma 5.1, this is

equivalent to [ f]zEIm 4.
These complete the proof of the proposition. q.e.d.

Consider the case of Y=MU(k) in the above proposition. In virtue of
Proposition 5. 5, the homomorphisms p, ¢ and +» commute with the
homomorphisms »} of the direct systems {[I* " *AX; MUz v}
of (3.1) and {[S* A X; MU(k)], »{} with respect to the usual complex
Thom spectrum, and hence we have the following theorem which is a
generalization of the exact sequence of Landweber [10, (2.1)].

Theorem 5.8. For any X& %, we have the exact sequence

_ P - ¢ oo
cer — > MRP (X )—>MU**"(X) —> MR?"%(X)—>MR"(X)—> -,
where p s the homomorphism of (3. 2) forgetiing the reality.

Similarly, consider the case of Y=MU(k) /\ X in Proposition 5. 7.
Then

Theorem 5.9. For any XE %/, we have the exact sequence

- —»Jt’ﬁep.w(x)p—ﬂva (X)—¢> Jtﬁep+l.u(X)iM‘1’e,,.q<X)—>
As for the coefficient ring MR**, we have
MR™~%=MR~~"(3*%)= MR, .(£"*)= MR,.,.
In Theorem 5. 8, put X=23%" The obtained exact sequence is the one of
Landweber. MR** has been partially computed by Landweber [10].
6. The splitting principle and the Chern classes

Let sﬂeﬂﬁJ (S™) be the element represented by the natural inclusion
S"CMU(n). Then MU™(S™) is a free abelian group generated by s,
(cf. [4]).

Lemma 6.1. For any integer n >0, the homomorphism

p: MR™"(Z"") —> MU™(S™)

of (3. 2) is an isomorphism and p(t.)=s. where &, is the element of (4.1).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 18/iss2/10 14



Fujii: Cobordism theory with reality

COBORDISM THEORY WITH REALITY 185

Proof. 1Itis clear that p(¢,)=s,, and hence p is surjective and we
have the exact sequence

—~ —~ e -
MRn—J. n(zn, n) 3 MRn n(:n. n) 5 MUZn(sZn) > 0

by Theorem 5.8. The first term is isomorphic to MR~1%(3*°) by the sus-
pension isomorphism of Proposition 3.3 (ii), and MR **(Z*")=MR, ,=0
by [10, (3.5)]. Thus we obtain the lemma. q.e.d.

We consider the #-dimensional complex projective space CP, as a real
complex with the involution induced by the conjugation ¢ in C**!, which
will be called the standard projective n-space. By the natural manner the
canonical line bundle %, over CP, is a real line bundle over the real
complex CP,, whichis also called the canonical line bundle. We can
check that

T(vn)z CPn+: and CP(OO):MU(].)

as real speces with base points. Furthermore, the inclusion CP,C MU(1)

is a real map preserving base points, and this represents the element x,&
MR“Y(CP,).

Theorem 6.2. The MR**-module MR* *(CP,) of the standard pro-
jective n-space CP, is a free MR**-module with basis 1, z,, -, (x.)"
with the relation (x,)""'=0. In other words,

MR**(CP,)=MR**[x,]/{(.)**)).

Proof. The theorem is obvious for n=0. Suppose inductively that it
is true for n—1, and consider the exact sequence

ok o
2

—_ J
so —> MR** (3"") —> MR**(CP,) —> MR**(CP,_;) —> -+
of the pair (CP,, CP,.;) of the real complexes. By the inductive assump-
tion, 7* is an epimorphism, hence we get the commutative diagram
” -

— J i
0 —> MR** (2™") — MR**(CP,) —> MR**(CP,.;) —> 0

I e I

2k z‘*

—~ J
0 — MU*(§*) —— MU*(CP,) —> MU*(CP,.) —> 0

of the exact sequences, and i*(x,)"=0. Therefore, there exists an

element ¢ = MR™"(2™") such that j*a=(x.)". Let y"EﬁUz(CPn) be
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the canonical generator of MU*(CP.,). Since j*pa=(y,)"= j*s,, we have
pa=s, and so ¢=¢, by Lemma 6.1. Furthermore, (x,)"*'=j* (6 %)
for some b€ MR“'. Therefore (x,)""'=0, because MR''= MR_, ,=0
by [10, p.272]. These show the theorem by the induction on #. q.e.d.

Proposition 6.3. Let X be a space in # and let %,=p*x,& MR"!
(X X CP,), where p: X X CP,—> CP, is the projection. Then
MR**(XX CP,) is a free MR**(X)module with basis 1, %., -, (%.)",
and (%,)""' = 0. In other words,

MR**(Xx CP,)= MR**(X) [£]/(Z)"").

Proof. Suppose inductively that MR**(X X CP,_,) is as stated
(this is trivial for #=1). Then, similarly to the above proof, we get the
commutative diagram

. 7* i*
0 —> MR** (¥*") ——> MR*"*(CP,) —> MR**(CP,.,) —0

|5 ) | | »*

z‘*

~ 7
0—> MR**(X*N\3™")—> MR**(XX CP,)—> MR**(XX CP,.,)—>0

of the exact sequences. By Proposition 4.2, MR** (X*AX™") is a free
MR**(X)-module generated by the Thom class #, and p*¢, =1¢, by
Proposition 4. 4. Therefore, MR**(X X CP,) is freely generated by 1,
X, o, (), and (x)*'=p*(x)"" =0. q.e.d.

Now, let £=(E, p, X) be an n-dimensional real vector bundle over
aspace X in %, and consider its associated projective bundle

(6.4) Pt=(PE, =, X).
PE is a real space with the induced involution and = is a real map.
Especially, if X is a finite real complex, then PE is a finite real complex.
Furthermore, let

» = (LE, m;, PE)

be the canonical line bundle over PE. Then this is also a real line bundle,
and its classifying map PE —> MU(1) represents the element

(6.5) x € MR“'(PE).
Applying the standard Mayer-Vietoris argument, we obtain

Theorem 6.6. Let & be an n-dimensional real vector bundle over a
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space X in ¥ . Then MR**(PE) of the projective bundle PE of
(6.4) is a free MR**(X)-module with basis 1, x, -+, % where x is
the element of (6. 5).

-1
)

Corollary 6.7. The induced homomorphism
=*: MR**(X) —> MR**(PE)
of the projection = of (6. 4) is a monomorphism.

Similarly to the usual case, by the standard argument we have the
following theorems.

Theorem 6.8. For any n-dimensional real vector bundle = over a
space X in 7/, there exist a space F and amap =: F—> Xin 7
satisfying the following conditions :

1) «*: MR**(X)—> MR**(F) is a monomorphism.

2) =*E is real isomorphic to the sum of n real line bundles over F.

Theorem 6.9. For any two »n and m-dimensional real vector bundles
£ and % over a space X in /7 respectively, there exist a space F and
amapw: F—> X in # satisfyving the following conditions :

1) #*: MR**(X)—> MR**(F) is a monomorphism.

2) #*(£) and () are real isomorphic to the sums of n and m
real line bundles over F, respectively.

Finally, we can define an analogue of the Chern classes of complex
vector bundles for real vector bundles.

Let £=(E, p, X) be an n-dimensional real vector bundle over a space
Xin 9. Let x=MR"“'(PE) be the element of (6. 5). Then, by Theorem

6.6 x" can be expressed as a linear combination of 1, x, ---, x*~' over
MR**(X) uniquely. Put
(6.10) 2" —c (E)x" " 4 ea(B)a" T — e (—1) e, (B)=0.

Then we obtain MR**-Chern classes
ey E MR*Y(X), 0<lh<n (co(E)=1).
The total Chern class is defined by
c@)=14+c,(E)+ -+ c.(&)

as usual.
By a parallel argument to the usual case we obtain
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Theorem 6.11. The total Chern classes satisfy the following proper-
ties :

1) If a real bundle map f: £E—> 5 covers a real map f: X —Y
of base spaces, then f*c(n)= c(£).

2) If £ and % are real vector bundles over X, then

cEDy) = c()e(y) .
3) If %, is the canonical line bundle over the standard projective
n-space CP,, then c(p.)=1+ x, where xz., is the element in Theorem
6. 2.
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