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CHAPTER 1

Introduction

We begin the study of certain less commutative algebraic geometries. In usual algebraic ge-
ometry, spaces are built from certain affine building blocks, i.e., commutative rings. In these less
commutative theories, the role of the affine building blocks is instead assumed by En-rings, that is,
rings whose multiplication is parametrized by configuration spaces of points in Rn. En-rings inter-
polate between the homotopy theories of associative and commutative rings, as n ranges from one
to infinity, and likewise algebraic geometry over En-rings can be thought of as interpolating between
some derived theories of noncommutative and commutative algebraic geomery. As n increases, these
En-geometries converge to the derived algebraic geometry of Toën-Vezzosi [TV2] and Lurie [L5].

Every En-ring has an underlying discrete ring given by the zeroth homotopy (or homology)
group, and this ring is commutative for n ≥ 2. As a consequence, we will see that classical algebraic
geometry underlies algebraic geometry over En-rings, in such a way that En-geometry offers different
derived generalizations of classical geometry.

Preparatory to En-geometry, our major focus will be a treatment of En-algebra suitable for
geometric generalization. We develop the basics of this theory in the next chapter, using the
setting of ∞-categories. This leads to our discussion of the deformation theory of algebras over an
operad. An operadic version of Illusie’s cotangent complex governs this deformation theory, and this
operadic cotangent complex will serve as our avatar through much of this work. We will also consider
certain operadic Hochschild cohomology type constructions in the linear and nonlinear settings. We
compare these constructions with the cotangent complex in the linear setting for En-algebras, and
this establishes a claim made by Kontsevich [Ko].

Of particular interest to us will be both global aspects of deformation theory, the global cotan-
gent complex and Hochschild homology, as well as infinitesimal structures. The two theories have
a different flavor. For instance, the tangent complex of an infinitesimal operadic moduli functor
has a certain algebra structure, and the moduli problem versus its tangent complex is a form of
Koszul duality. Thus, one would expect to reconstruct a formal moduli problem from structure on
its tangent complex, just as for the case of characteristic zero deformation theory in commutative
algebraic geometry. Linear structures associated to global deformation problems, in contrast, have a
different type of structure, generalizing the notion of a Lie (co)algebroid. One might not expect ex-
pect structure on the global cotangent complex to completely determine the global moduli functor,
but rather to serve as a good first-order approximation.

Our treatment of these subjects will be homotopy-theoretic. For instance, a recurring theme
will be that of stabilization, i.e., applying stable homotopy methods (such as analogues of suspension
spectra) to unstable homotopy theory (such as the ∞-category of algebras over an operad). The
notion of the cotangent complex fits perfectly with these ideas, and the mixture allows for the
approximation of many structures by Postnikov tower techniques.

In the final chapter, we globalize our treatment of the homotopy theory of O-algebras and their
deformation theory. This leads to the question: how can one glue O-algebras together? In maximum
generality, one can allow gluings by all O-algebra maps in a certain universal way. The resulting
algebraic geometry of O-algebras in C is essentially the study of moduli functors on O-algebras, i.e,
functors F from O -alg(C) to∞-groupoids or spaces. Such a moduli functor will have an∞-category
of O-quasicoherent sheaves. At this generality, several properties of a moduli functor F may make
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it more geometrically behaved, for instance, if F has a cotangent complex, has affine diagonal, or
commutes with filtered colimits.

However, this theory lacks even such basic notions as that of a (non-affine) scheme, and the
study of these moduli functors is not as geometric as might be wished. Some extra data is necessary
to refine the theory of gluings and to introduce more geometric classes of objects. The extra data
we will use is that of a Grothendieck topology on O -alg(C) and a t-structure on C. These choices
allow a more refined theory of gluings, allowing objects analogous to schemes, Deligne-Mumford
stacks, or general Artin stacks. Further, the t-structure exhibits the derived algebraic geometry
of O-algebras in C as a derived version of a more classical theory of O-algebras in the heart of C.
Under certain hypotheses, a derived scheme in this setting may be expressed as a classical scheme
with a derived enhancement of its structure sheaf.

Additional refinements could be made: for instance, one could enforce a choice of O-algebra
to corepresent the affine line. For instance, the incorporation of such data distinguishes between
algebraic geometry over HZ-algebras, where HZ is the Eilenberg-MacLane spectrum, and algebraic
geometry over simplicial commutative rings. However, we will not pursue this tact and refer to [L5]
and [TV2] for more general treatments of derived algebraic geometry that may incorporate such
features.

The data of a Grothendieck topology and t-structure are available in the case of particular focus
for us, where O is one of the En operads (1 < n ≤ ∞) and C is the ∞-category of spectra or chain
complexes. In particular, one can define versions of the étale, Zariski, and flat topologies on certain
∞-categories of En-algebras. Certain sheaves with respect to this topology can be constructed more
geometrically by an appropriate theory of En-ringed spaces, which we will describe.

Algebraic geometry over En-rings combines certain aspects of commutative algebraic geometry
and noncommutative algebra, and thus has a special flavor. For instance, because for an En-ring
A the underlying π0A is commutative, geometry over En-rings is thus a derived version of usual
commutative algebraic geometry, particularly in the theory of gluings. However, like associative
algebras, there are two different choices of quasicoherent sheaves, which are analogues of left modules
and bimodules. These two notions converge as n tends to infinity, but in the finite case their interplay
provides the noncommutative flavor of the theory. For instance, for a moduli functor X, the ∞-
category of En-quasicoherent sheaves on X acts on the∞-category of quasicoherent sheaves on X in
a universal way: QCEnX is an En version of the Drinfeld center of QCX . This allows for the geometric
description of higher Drinfeld centers of En-categories, explored in work with Ben-Zvi and Nadler
[BFN].

Certain other features of the theory for n < ∞ differ from the case n = ∞. In particular,
colimits in En-algebras are less well behaved than in E∞-algebras, making general non-transverse
intersections of stacks in En-algebras more wildly behaved.

Finally, we offer a brief word on why one might or might not have interest in geometry over
En-rings. The subject is not motivated by applications to classical algebraic geometry, such as the
construction of fundamental classes for moduli spaces (better handled by geometry over simplicial
commutative rings). Rather, our motivation is to offer a geometric counterpart to structures, such
as braided monoidal categories, that have only been considered algebraically. For instance, the
class of spaces obtained by gluing En-rings form a geometric counterpart to En-categories, and these
spaces further provide a geometric language for the deformation theory of general En structures.
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kins. His friendship and mathe- matics have made such an impact on me. I am indebted to Jacob
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CHAPTER 2

Operad Algebras in ∞-Categories

In this chapter, we consider some of the basics of the theory of operads and of algebra over an
operad. We work throughout in the setting of Joyal’s quasi-categories, which following Lurie we
term ∞-categories. This theory is essentially equivalent to the theory of topological categories but
more technically convenient and conceptually appropriate for certain aspects of homotopy theory.
Our primary reference for this theory will be [L].

Our study of operads will take two approaches. In the first, more standard, approach, we define
operads as algebras in symmetric sequences in a symmetric monoidal ∞-category C. Algebras over
an operad O may be defined in one of usual manners, as objects on which the operad acts in an
appropriate fashion (e.g., as a full subcategory of the∞-category of left O-modules). This approach
to the theory is well-known, and it carries over the ∞-categorical setting as one might hope or
expect.

The main difference, perhaps, with the∞-categorical theory of operads is a general feature of the
difference between doing homotopy theory in an ∞-category versus a model category or topological
category: in an ∞-category, one always gets the most homotopy-theoretic answer. For instance,
in a model category one has both ordinary limits and homotopy limits, and one can distinguish
between commutative algebras and E∞-algebras, while in an ∞-category the natural notions of
limit or algebra automatically correspond to the more homotopy-theoretic versions.

A second approach to the theory of operad algebras in an ∞-category is available for operads
that comes from topological spaces. Here, we make use of the fact that ∞-categories are tensored
over spaces, i.e., a space can parametrize a family of functors. Taking advantage of this, one can
articulate the notion of an O-monoidal∞-category for O a topological operad. Roughly speaking, an
O-monoidal structure on an∞-category C is exactly the structure necessary to define O-algebras in
C. When O is the E1 or E∞ operad this recovers notions equivalent to usual monoidal or symmetric
monoidal ∞-category. Other interesting examples are given by the En operads, which interpolate
between these associative and commutative structures. The notion of an E2-monoidal∞-category is
a homotopy-theoretic version of a braided monoidal category, a structure arising from the algebraic
study of conformal field theory (i.e., quantum groups, affine Lie algebras, or chiral algebras).

This second approach may be useful when one want to do algebra in an∞-category C that does
not quite have a symmetric monoidal structure. For instance, to do associative algebra, C need only
be monoidal. More generally, one can ask what structure on C is necessary in order to make sense
of O-algebras. The necessary structure is exactly an O-monoidal structure on C.

1. Operads

In this section, we develop the theory of operads in a symmetric monoidal∞-category C. Many
approaches to this theory are possible. We will define operads as algebras in the ∞-category of
symmetric sequences in C, but it is also possible to consider them as symmetric monoidal functors
from a category of rooted forests into C, or as C-valued sheaves on a poset of rooted trees with gluing
conditions, after [GK]. These approaches should all be equivalent under reasonable conditions, such
as C being presentable (or even compactly generated) and its monoidal structure distributing over
colimits. We will not feel confined in restricting to these conditions, since they apply in the situations
of greatest interest for us, e.g., when C is the ∞-category of spaces, chain complexes, or spectra.
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1.1. Algebras in Symmetric Sequences. The theory of operads is very similar to the the-
ory of monads. See [L2] for a treatment of the theory of monads in the ∞-categorical setting.
Briefly, the ∞-category of functors Fun(C, C) has a monoidal structure ◦ given by the composition
of functors. The ∞-category of monads in C is then defined to be algebras in this monoidal cate-
gory, Monads(C) = Alg(Fun(C, C)). The∞-category of operads in C may be constructed in parallel,
where symmetric sequences play the role of endofunctors.

Definition 1.1. The∞-category of symmetric sequences in C, CΣ, is the∞-category of functors
Fun(Σ, C), where Σ is the∞-category of all finite sets with isomorphisms (including the empty set).

Given the additional structure on C of a symmetric monoidal product ⊗, and such that ⊗
distributes over colimits, we can construct a functor CΣ → Fun(C, C), assigning to a symmetric
sequence M a corresponding split analytic functor whose value on X is M(X) :=

∐
n≥0M(n)⊗Σn

X⊗n. There is a (non-symmetric) monoidal structure ◦ on CΣ making this functor monoidal.

Definition 1.2. The ∞-category of operads in C is the ∞-category of algebras in (CΣ, ◦).

This definition gives the following commutative diagram comparing operads and monads in C.

Operads(C) = Alg(CΣ)

��

// Alg(Fun(C, C)) = Monads(C)

��
CΣ // Fun(C, C)

It will also be convenient for many purposes to consider the ∞-category of monads whose
underlying endofunctors commute with sifted colimits, i.e., with both geometric realizations and
filtered colimits.

Definition 1.3. Let C and D be ∞-categories that admit filtered colimits and geometric re-
alizations. Then Fun′(C,D) is the full subcategory of functors from C to D that commute with
geometric realizations and filtered colimits.

Since the property of preserving particular colimits is evidently closed under composition of
functors, Fun′(C, C) has the structure of a monoidal ∞-category under composition.

Definition 1.4. Monads′(C) is the ∞-category of algebras in Fun′(C, C).

This subcategory of the usual ∞-category of monads has much better technical properties, as
we will see later.

Lemma 1.5. Let M be a symmetric sequence in C, and assume the monoidal structure on C
distributes over sifted colimits. Then the endofunctor of C defined by M commutes with sifted
colimits.

Thus, we obtain the following factorization of the diagram above:

Operads(C)

��

// Monads′(C)

��

// Monads(C)

��
CΣ // Fun′(C, C) // Fun(C, C)

2. Algebras over an Operad

Operads are designed to parametrize multiplications, or operations. An object A in C with
the structure of multiplications parametrized by an operad O is an O-algebra. In this section, we
make this definition precise and explore several basic properties. Throughout we assume that C is
presentable and that its monoidal structure distributes over colimits. The cases where C is any of
spaces, pointed spaces, spectra, or ∞-categories all satisfy these conditions.
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Definition 2.1. For O be an operad in C, then ModlO(CΣ) (respectively, ModrO(CΣ)) is the
∞-category of left O-modules (respectively, right modules) in CΣ with respect to the composition
product.

There is a free module functor F : CΣ → ModlO(C) that is calculated in CΣ by the composition
product O◦X. (This is a very general fact about modules over an algebra in a monoidal∞-category,
see Proposition 2.4.2 of [L2].)

Definition 2.2. The ∞-category of O-algebras in C, O -alg(C), is the full subcategory of

ModlO(CΣ) of objects whose underlying symmetric sequence is concentrated in degree zero.

Remark 2.3. One might also wish to define the category of O-algebras in C when O is an
operad in a symmetric monoidal∞-category A over which C is tensored. Under modest hypotheses,
if C is tensored over A there results an adjunction F : A� C : G, where F is a symmetric monoidal
functor. Thus, F defines a functor from operads in A to operads in C, and O-algebras in C will be
equivalent to FO-algebras in C.

The functor C → CΣ assigns to X ∈ C the symmetric sequence with X(0) = X and X(n) = ∗
for n nonempty. This is a fully faithful functor, and it preserves all limits and colimits. Since the
monoidal structure on C has the property that there are equivalences ∗⊗X ' X⊗∗ ' ∗ for any X,
it is then easy to check that the free module functor F preserves those symmetric sequences that are
concentrated in degree zero. Since O-algebras are a full subcategory of ModlO(CΣ), this implies that
the free module functor F also calculates the left adjoint to the forgetful functor O -alg(C) → C.
The following diagram summarizes the situation,

ModT (C) O -alg(C)'oo

G

��

// ModlO(CΣ)

��

' // ModT̃ (CΣ)

C //

F |C

CC

CΣ

F

DD

where T and T̃ are the monads on C and CΣ obtained from O.
We will be very interested in the general theory of building O-algebras in the sequel, for the

following lemma is useful.

Lemma 2.4. Let D be a monoidal ∞-category, and let A be an algebra in D. If K is a small
∞-category such that the monoidal structure on D distributes over K-indexed colimits, then the
forgetful functor ModA(D)→ D preserves K-indexed colimits.

This has the following corollary.

Corollary 2.5. Let C be a symmetric monoidal ∞-category whose monoidal structure is com-
patible with small colimits. Then the forgetful functor G : O -alg(C) → C preserves sifted colimits,
e.g., filtered colimits and geometric realizations.

Proof. Using the previous lemma, the forgetful functor ModlO(CΣ)→ CΣ from left O-modules
to symmetric sequences preserves sifted colimits since composition monoidal structure on CΣ does.
Since the fully faithful functor C → CΣ preserves sifted colimits, we thus obtain that the composite
functor O -alg(C) → ModlO(CΣ) → CΣ preserves sifted colimits, and therefore G also preserves
them. �

We will make liberal use of the following familiar result.

Lemma 2.6. Let D be a monoidal ∞-category for which the monoidal structure is compatible
with geometric realizations, and let M be an ∞-category left-tensored over D. Let f : A → A′ be
a map of algebras in D, which induces a restriction functor Resf : ModA′(M) → ModA(M) from
A′-modules in M to A-modules in M. Then the induction functor Indf left adjoint to restriction
Resf exists and is computed by the two-sided bar construction Indf M ' A′ ⊗AM .
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Proof. The two functors Indf and A′ ⊗A (−) take the same values on free objects. Further,
both functors are compatible with geometric realizations. Since an arbitrary A-module in M can
be constructed as the geometric realization of free A-modules, the result follows. �

The most obvious instance to apply the above is perhaps for algebras in a stable ∞-category,
such as spectra or chain complexes. We list several other examples of interest.

Example 2.7. Apply the above in the case of D = Fun′(C, C), equipped with the monoidal
structure of composition, and M = C, which is left-tensored over endofunctors in the obvious way.
Then the result says that for a map of monads f : T → T ′, the induction functor Indf : ModT (C)→
ModT ′(C) is calculated as the bar construction T ′ ◦T (−). In this example, it is necessary to assume
T and T ′ preserve geometric realizations, otherwise the functor Indf need not exist.

Example 2.8. In the lemma above, set D as symmetric sequences in C with the composition
monoidal structure, and letM be either C or CΣ. Then the lemma implies that for a map of operads
f : O → O′ in C, both the induction functors Indf : O -alg(C) → O′ -alg(C) and ModlO(CΣ) →
ModlO′(CΣ) are computed by the bar construction O′ ◦O (−).

We now have the following conceptually helpful fact.

Proposition 2.9. Let O → O′ be a map of operads whose underlying map of symmetric se-
quences is a homotopy equivalence, and as usual let C be a symmeric monoidal ∞-category whose
monoidal structure distributes over colimits. Then the ∞-categories of O- and O′-algebras in C are
equivalent.

Proof. Under the conditions above, both O-algebras and O′-algebras are modules over a
monad, which we denote T and T ′. The map of operads induces a map of monads f : T → T ′.
The corresponding restriction functor Resf : ModT ′(C) → ModT (C) has a left adjoint computed
by the bar constrution T ′ ◦T (−) as we saw in the previous lemma. To check that this adjunction
gives an equivalence of ∞-categories, we can show the unit and counit of the adjunction are both
equivalences. Or, since the forgetful functor to C is conservative, we can check just one of the maps.
So for any X ∈ ModT (C), we show there is a equivalence X ' Resf Indf X. Since Resf Indf X '
T ′ ◦T X, we consider the map T ◦T X → T ′ ◦T X, which is induce by a map of simplicial objects
Bar(T ;T ;X)→ Bar(T ′;T ;X). Levelwise, this map of simplicial objects is an equivalence, since the
monad map f : T → T ′ is an equivalence of endofunctors. Thus, the map is an equivalence on the
realizations, proving the result. �

Remark 2.10. This result constrasts with the situation for the homotopy theory of O-algebras
in a topological category or a model category. For instance, the proposition above implies that
theory of commutative and E∞-algebras are equivalent in an ∞-category, since the operad map
E∞ → Comm satisfies the hypotheses of the proposition. However, this is true only in very restrictive
circumstances in the setting of monoidal model categories, for instance under the hypothesis of being
freely powered, [L3].

2.1. Abelianizing En-Rings. In this section, we examine some of the behavior of the induc-
tion functor for a map of operads such as En → E∞ in the case of spectra, though our discussion
will apply equally in the case of any symmetric monoidal stable ∞-category with a compatible
t-structure. Recall that the En operad, [Ma], models n-fold commutativity in a way similar to how
the E∞ operad models n-fold commutativity for all n, and that the ith space of the En operad is
homotopy equivalent to the configuration space of i points in Rn. The particular choice of model
for the En operad, e.g., little n-disks or little n-cubes, will not be essential since they give rise to
equivalent ∞-categories of algebras.
En-rings and E∞-rings are both derived generalizations of the same theory of commutative

rings, and the difference between theories an be thought as being purely homotopy-theoretic. Let

us be more precise. The maps of operads E1
g−→ En

f−→ E∞ give rise to forgetful functors, e.g.,
Resf : E∞ -rings → En -rings. From the previous section, we know these functor have left adjoints,
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which is a form of abelianization. Our claim is that this abelianization agrees with the usual
abelianization Ab(π0A) of the classical ring π0A, where Ab(π0A) is equivalent to π0A/[π0A, π0A]
the quotient by the commutator ideal. More precisely, we have the following proposition.

Proposition 2.11. Let A be a En-ring, n ≥ 2, which is further assumed to be connective,
πi<0A = 0. Then there is a natural isomorphism of commutative rings π0A ∼= π0(Indf A). If A is a
connective E1-ring, then there is a natural isomorphism of commutative rings Ab(π0A) ∼= π0Ab(A).

Proof. Let (En -rings)≥0 denote the ∞-category of connective En-rings. The zeroth homotopy
group of an En-ring has the natural structure of a commutative ring, which gives a functor from
En -rings to the discrete ∞-category of classical commutative rings. We first claim that restriction
of this functor to connective En-rings has a right adjoint H, defined by sending a commutative ring
R to the Eilenberg-MacLane spectrum HR, regarded as an En-ring. This can be seen from the

following: there is an adjunction (Spectra)≥0

τ≤1 ..
((Spectra)≥0)≤1

oo , between the ∞-category of

connective spectra and the heart of its t-structure ((Spectra)≥0)≤1. Since the localization functor
τ≤1 preserves products, we obtain an adjunction between the associated∞-categories of En-algebras.
However, the right hand side is equivalent to the discrete category of abelian groups, so that the
functor τ≤1 is just computing the zeroth homotopy group. This leads to the promised adjunction
En -rings � Com. Rings.

We thus obtain the following diagram of adjoint functors

(E1 -rings)≥0

π0

��

Indg
**

(En -rings)≥0

π0

��

Indf
**

Resg

oo (E∞ -rings)≥0

π0

��

oo

Assoc. Rings

H

OO

Ab
))

Com. Rings

H

OO

H

66nnnnnnnnnnnn

forget
oo

in which the right adjoints (denoted by straight arrows) all commute. This implies that their left
adjoints commute, which proves the proposition. �

It is worth noting that the assumption of connectivity in the previous proposition was essential.
More precisely, we have the following.

Lemma 2.12. There exist nonconnective En-rings A such that π0A is not equivalent to π0 Indf A.
I.e., without the assumption of connectivity the conclusion of the previous proposition is false.

Proof. It suffices to consider the case where A is equivalent to FX, the free En-ring on a
spectrum X. The value of the induction functor Indf on FX is exactly the free E∞-ring on X,
i.e., Indf FX ' Sym∗X. So it suffices to check that the values of π0 differ on the respective free
algebas for some choice of nonconnective X. A representative example is a desuspension of the
sphere spectrum, X = S−d = Σ∞S0[−d]. A calculation in the homology of Thom spectra shows
that the map

∐
En(i) ⊗Σi (S−d)⊗i →

∐
(S−d)⊗iΣi

does not induce an isomorphism on π0 for any
choice of positive d.

�

3. Operadic ∞-Categories and Algebras

One motivation for this work is the study of operadic∞-categories, arising from the topological
study of categorical structures in conformal field theory. Several approaches present themselves in
this theory. In the previous section, we gave a relatively conventional treatment of the theory of
operadic algebras adopted to the∞-categorical setting. This treatment suffices for most of our work
on deformation theory and algebraic geometry in the next chapters, and we recommend the reader
who is not already interested in operadic categories to skim the rest of this chapter.
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We now develop operadic algebras from the point of view of fibered categories, analogous to
Lurie’s treatment of monoidal ∞-categories, [L2], [L3]. Intuitively, for any I-collection of objects
Xi ∈ C, an O-algebra category structure on C provides an O(I)-parametrization of possible tensor
products of the Xi. If the O-category structure on C was obtained by restriction from a symmetric
monoidal structure ⊗, then this space of values should be exactly O(I) ⊗

⊗
I Xi. If O was the

commutative or E∞-operad in spaces, then this notion would reproduce a notion equivalent to that
of symmetric monoidal ∞-category as in [L3].

This intuition motivates an alternative candidate for the notion of an O-category, a category
fibered over the spaces in the O-operad in an appropriate way. To make this precise, we first must
formulate how to fiber and what to fiber over.

First, we recall the ∞-categorical analogue of a op-fibration of categories, a coCartesian fi-
bration. Recall that for p : X → S a functor of discrete categories, a morphism f : x → y in
X is coCartesian if for any f ′ : x → y′ such that p(f ′) = p(f), then there exists a unique map
y → y′ making the diagram in X commute. In ∞-category theory, it is instead natural to ask for a
contractible space of diagram fillings, which leads to the following definition.

Definition 3.1. [L]. For p : X → S an inner fibration of ∞-cateogories, then f : x → y a
morphism in X is p-coCartesian if the natural map

Xf/ → Xx/ ×Sp(x)/ Sp(f)/

is a trivial Kan fibration.

Being an inner fibration means, in essence, that the fiber p−1(s) over an object s is an ∞-
category. A morphism f being p-coCartesian over p(f) : s → s′ defines a pushforward functor
f! : p−1(s) → p−1(s′). Finally, being a coCartesian fibration means that for any morphism in the
base, we have a pushforward functor for the fibers of the source and target. That is:

Definition 3.2. A map of∞-categories p : X → S is a coCartesian fibration if every morphism
in S is in the image of a p-coCartesian morphism in X .

This details the manner in which we plan fiber. Returning to our second point, we now describe
the object we wish to fiber over, whose morphism spaces should parametrize monoidal structures in
the source:

Definition 3.3. Given O an operad in spaces, and for any J∗ and I∗ finite pointed sets, then
define a topological category whose objects are finite pointed sets and with morphism spaces defined
by

Hom(J∗, I∗) =
∐

J∗
π−→I∗

∏
I

O(Ji).

Õ denotes the ∞-category obtained as the topological nerve of this topological category.

Note that by construction we have a functor from the groupoid of finite pointed sets into Õ,

Σ∗ → Õ, as well a projection of Õ onto the category of finite pointed sets, Õ → Fin∗.
We are now formulate our main definition.

Definition 3.4. An O-monoidal category consists of a coCartesian fibration of ∞-categories

p : C⊗ → Õ satisfying the additional condition that the natural map C⊗J → (C⊗[1])
J is an equivalence

of ∞-categories.

Remark 3.5. The coCartesian condition gives, for any f : J∗ → I in Õ, f! : p−1(J)→ p−1(I).
By the Segal condition, we may identify p−1(J) with (C)J . Thus, in the case I = [1], we get for
any point f ∈ O(J) a functor f! : CJ → C, and by varying the point we get a family of functors
parametrized by O(J). Thus, intuitively, this gives an O-algebra structure on C.
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Definition 3.6. An O-monoidal structure on an ∞-category C consists of an O-monoidal ∞-
category C⊗ as above together with an identification C ∼= C⊗[1].

Example 3.7. The identity map id : Õ → Õ is a special coCartesian fibration and thus gives

the trivial single-object category, which is the fiber over 〈1〉, the structure of Õ an O-monoidal
∞-category.

Example 3.8. Let O = Comm be the commutative operad in spaces so that O(I) = ∗ for

any I. Then we have an equivalence Õ ∼= Fin∗, and the definition of an O-monoidal ∞-category
becomes verbatim Lurie’s definition of a symmetric monoidal ∞-category in [L3].

Lemma 3.9. Any symmetric monoidal ∞-category C⊗ acquires an O-monoidal ∞-category

structure on the underlying ∞-category C, which is induced from restriction along Õ → Fin∗.

Proof. Let p : C⊗ → Fin∗ present the symmetric monoidal structure on C. We can form the
following Cartesian square of ∞-categories:

C⊗ ×Fin∗ Õ

p′

��

// C⊗

p

��
Õ f

// Fin∗

To prove the proposition, we need to show that p′ is a special coCartesian fibration, but this
property is preserved under pullbacks.

�

3.1. O-Monoidal Functors. To make full use of the notion of an O-category we will need
the notions of O-monoidal and lax O-monoidal functors. This will allow a description of the notion
of an O-algebra in an O-category; in a symmetric monoidal category C, a commutative algebra may
be viewed as a lax symmetric monoidal functor from the trivial category into C. Likewise, we will
see that an O-algebra in an O-category C is given by a lax O-monoidal functor from the trivial
category into C. We will see further that if the O-monoidal structure on C was inherited from a
symmetric monoidal structure, then the theory of O-algeras in the O-category and in symmetric
monoidal category are naturally equivalent.

Definition 3.10. An O-monoidal functor between O-categories p : C⊗ → Õ and q : D⊗ → Õ
consists of a map F of ∞-categories such that the diagram

C⊗
p

  @
@@

@@
@@

@
F // D⊗

q
~~}}

}}
}}

}}

Õ
commutes, and satisfying the additional condition that F takes p-coCartesian morphisms to q-
coCartesian morphisms.

In other words, F is a functor from C toD that sends [X1, . . . , Xi] ∈ C⊗ to [FX1, . . . , FXi] ∈ D⊗,
and F preserves the multiplication maps.

Intuitively, a lax O-monoidal functor should satisfy the first property but not the second. To
formulate this precisely we recall the definition of a collapsing map of finite pointed sets.

Definition 3.11. α : J∗ → I∗ is collapsing if for any i ∈ I the preimage α−1(i) has at most a
single element.

Definition 3.12. A lax O-monoidal functor F is such the diagram commutes and F preserves

coCartesian morphisms whose image in Fin∗ under the composition C⊗ → Õ → Fin∗ is a collapsing
map.
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Previously, we motivated the introduction of lax O-monoidal functors as a means to define
O-algebras in an O-monoidal category. We may now make good on that motivation:

Definition 3.13. Given C an ∞-category with an O-monoidal structure, an O-algebra A in C
consists of a lax O-monoidal functor A : 〈1〉 → C from the trivial 1-object to C. In other words, an
O-monoidal structure on an object A(〈1〉) ∈ C consists of a commutative diagram

〈1〉⊗ = Õ
id

##G
GGGGGGGG
A // C⊗

p
����

��
��

��

Õ

in which A sends collapsing morphisms in Õ to p-coCartesian morphisms in C⊗.

Note that the E∞-operad is homotopy final in the∞-category of operads in spaces, so any other
such operad O has a natural homotopy terminal map to E∞.

Proposition 3.14. Let O topological operads, with p : O → E∞ the natural map to the ho-
motopy final object. Further, let M be a symmetric monoidal ∞-category, and f−1M denote the
corresponding O-category. Then there is an equivalence

O -alg(M) ' O -alg(p−1M) := Funlax(Õ, p−1M⊗)

More generally, all that is required to to make sense of an O-algebra structure on an object in
an ∞-category M is an O′-category structure on M and a map O → O′.

3.2. Straightening and Unstraightening. We might wish to compare the the approach
above, in which an O-category is viewed as a structure fibered over O, with a ‘straightened’ version,
as in the definition below.

Definition 3.15. An O-algebra category C is an O-algebra in the ∞-category of ∞-categories
with the Cartesian symmetric monoidal structure, C ∈ O -alg(Cat∞).

Proposition 3.16. Let O be an operad in the ∞-category of spaces. Then an O-monoidal
structure on an ∞-category C is equivalent to an O-algebra structure on C.

Proof. We may first observe that an O-algebra structure on C as above gives rise to a functor

F : Õ → Cat∞ such that F (I) ' CI . That is, there is a fully-faithful embedding O -alg(Cat∞) →
Fun(Õ,Cat∞), whose essential image is characterized by the Segal-type condition that the natural
map F (I)→ F ([1])I is an equivalence.

Here we apply Lurie’s straightening-unstraightening theorem, [L], which allows the passage
between coCartesian fibrations over an ∞-category X and functors from X to Cat∞.

A coCartesian fibration p : C⊗ → Õ thereby gives rise to a functor p′ : Õ → Cat∞ with several

properties. First, for any I ∈ Õ, the ∞-category that p′ assigns to I is exactly the fiber of p over I,

i.e., p−1(I). Second, for any morphism f : J → I in Õ, the functor p′(f) : p(J)→ p(I) is naturally
equivalent to f! : p−1(J)→ p−1(I), using the identifications p−1(I) ∼= p′(I).

Since the fibration p was subject to the additional property that the natural map p−1(J) →
p−1([1])J was an equivalence, we see that p′(J) ∼= CJ , and so the value of p′([1]) ∼= C acquires an
O-algebra category structure as in the preceding definition. By unstraightening, we may return to
the structure of O-monoidal category.

�

4. Operadic Modules

In this section we discuss the theory of operadic modules for an algebra over an operad. Roughly
speaking, an operadic module for an O-algebra A ∈ C⊗ should be some object equipped with a
space of actions of A parametrized by the operad spaces O. We will use the following terminology
to formulate our definition.
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Definition 4.1. The category Fin+
∗ consists of finite based sets I∗ and (I q {+})∗, and mor-

phisms α of the underlying based sets such that the preimage of + contains +, and either α(+) = +

or α(+) = ∗. The ∞-category Õ+ is the fiber product of ∞-categories defined by the Cartesian
square

Õ+ //

��

Fin+
∗

��
Õ // Fin∗

These categories are variants of the category of doubly based sets. The two objects + and +∗
play very different roles, however. The fiber over the + object will allow the extra data of including
a module object, while the full subcategory of objects that do not include + provide the structure
of an algebra. This allows us to formulate the following definition.

Definition 4.2. An operadically tensored module category consists of a coCartesian fibration

p : M⊗ → Õ+ such that the associated maps p−1(I∗) →
∏
I p
−1(〈1〉∗) and p−1(I+

∗ ) → p−1(+∗) ×∏
I p
−1(〈1〉∗) are equivalences.

In the situation above, the fiber p−1(〈1〉∗) =: C obtains the structure of an O-monoidal ∞-
category, and we will speak of the fiber p−1(+∗) =: M as having the structure of a O-module
category over C. In this setting, we can now define the category of modules objects in M for
O-algebras in C.

Definition 4.3. The ∞-category of operadic module objects in M, ModO(M), is the full

subcategory of sections M̃ of p such that M̃ takes collapsing morphisms in Õ+ to coCartesian
morphisms in M⊗. The subcategory of O-A-modules in M for a fixed O-algebra in C, ModOA(M),

consists of those sections whose restriction to Õ is A.

The ∞-category ModOA(M) can often be described as an ∞-category of left modules over some
other associative algebra, the universal enveloping algebra UA of an O-algebra A. It is convenient
to assume that the O-monoidal structure on C is obtained by restriction from a symmetric monoidal
structure on C. For simplicity, let us further assume that C is a presentable ∞-category whose
monoidal structure is compatible with colimits and further that C is generated under colimits by
the unit 1.

There exists a forgetful functorG : ModOA(C)→ C, andG preserves all limits. Since the monoidal
structure of C is compatible with colimits, G also preserves colimits. We may therefore apply the
adjoint functor theorem to conclude that G has a left adjoint F . Since G is conservative and colimit
preserving, it satisfies Lurie’s∞-categorical Barr-Beck conditions [L2]. There is therefore a diagram

ModOA(C)

G

��

∼ // ModT (C)

C

F

DD

where T is the monad on C associated to the adjunction. Since C is generated under colimits by unit
1, for any X ∈ C there is an equivalence T (X) ' T (1) ⊗ X. The monad structure on T provides
an equivalent structure of an algebra on T (1) ∈ C. We therefore obtain an equivalence between
T -modules and left T (1)-modules.

Definition 4.4. The O-enveloping algebra of A, UA, is the algebra UA := T (1) in Alg(C)
constructed above.

Under the assumptions on C above, there is a natural equivalence ModOA(C) ' ModUA(C).
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CHAPTER 3

The Operadic Cotangent Complex and Deformation Theory

1. The Cotangent Complex

An essential role in the classical study of a commutative ring is played by the module of Kähler
differentials, which detects important properties of ring maps and governs aspects of deformation
theory. Let A be a commutative ring, then the module of Kähler differentials, ΩA, is defined as
I/I2, where I is the kernel of the multiplication A⊗A→ A. It has the property that it corepresents
derivations, i.e., that there is a natural equivalence HomA(ΩA,M) ' Der(A,M). Grothendieck’s
insight was that this situation had a good derived enhancement, the cotangent complex, which
Quillen fitted to a very general model category framework of taking the left derived functor of
abelianization. We will now discuss the appropriate version of the cotangent complex for algebras
over an operad.

1.1. The Absolute Cotangent Complex. In this section, we study the global, or absolute,
cotangent complex of an O-algebra A. In the following, O will be a unital operad and A will be a
unital O-algebra in C. We will first specify our notion of a derivation, phrased in a manner that is
sensible to this level of generality. Recall from the previous chapter that given an O-A-module M ,
one can form an O-algebra A⊕M , the split square-zero extension of A by M , which is augmented
over A.

The following discussion will require that C is a stable ∞-category for which the monoidal
structure distributes over colimits.

Definition 1.1. For M an O-A-module in C, and B → A a map of O-algebras, then the module
of A-derivations of B into M is the mapping object

Der(B,M) := MapO -alg/A
(B,A⊕M).

If the monoidal structure of C is closed, then it is evident from the definition that derivations
defines a bifunctor with values in C

Der : (O -alg(C)/A)op ×ModOA(C) // C

or alternatively with values in whatever ∞-category C is tensored over. Under modest hypotheses
on the ∞-category C, the functor of derivations out of A preserves small limits. Thus, one could
ask that it be corepresented by a specific A-module. This allows us to formulate the definition of
the cotangent complex.

Definition 1.2. The absolute cotangent complex of an O-algebra A ∈ O -alg(C) consists of
an O-A-module LA together with a derivation d : A → A ⊕ LA such that the induced natural
transformation of functors

MapModOA
(LA,−) // Der(A,−)

is an equivalence, where the map MapModOA
(LA,M) → Der(A,M) is defined by sending a map

α : LA →M to the derivation α ◦ d.

In other words, the absolute cotangent complex of A is the module corepresenting the functor
of A-derivations Der(A,−) : ModOA(C) −→ C. From the definition, it is direct that if LA exists, then
it is defined up to a natural equivalence. We now describe this object more explicitly.
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Lemma 1.3. The functor A⊕− that assigns to a module M the corresponding split square-zero
extension A⊕M , ModOA(C)→ O -alg(C)/A, is conservative and preserves small limits.

Proof. As established earlier, the forgetful functor G : O -alg(C) → C preserves limits, and
therefore the functor G : O -alg(C)/A → C/A is also limit preserving. This gives us the following
commutative diagram

ModOA(C)

��

A⊕− // O -alg(C)/A

��
C

A×− // C/A
Since the bottom and vertical arrows are all limit preserving and conservative, therefore the functor
on the top must be limit preserving and conservative. �

Proposition 1.4. If C is presentable and the monoidal structure on C distributes over colimits,

then the functor A⊕− : ModOA(C) // O -alg(C)/A has a left adjoint, which we will denote LA.

Proof. As proved earlier, both ModOA(C) and O -alg(C)/A are presentable ∞-categories under
the hypotheses above. The functor A⊕− is therefore a limit preserving functor between presentable
∞-categories. To apply the ∞-categorical adjoint functor theorem, [L], it suffices to show that
A ⊕ − additionally preserves filtered colimits. However, as proved earlier, the forgetful functor
O -alg(C)→ C preserves filtered colimits, so in both the source and target of A⊕− filtered colimits
are computed in C. �

As a consequence we obtain the existence of the cotangent complex of A as the value of the left
adjoint LA on A. In other words, since there is an equivalence LA ' LA(idA) and the functor LA
exists, therefore the cotangent complex LA exists.

We now consider the following picture that results from an O-algebra map f : B → A.

O -alg(C)/B

f
++

LB

��

O -alg(C)/A
B×A−

oo

LA

��
ModOB(C)

B⊕−

OO

f!
++
ModOA(C)

f !

oo

A⊕−

OO

(Above, the curved arrows are left adjoint and straight arrows are right adjoints.) It is evident that
the compositions of right adjoints commute, i.e., that for any O-A-module M there is an equivalence
B ×A (A⊕M) ' B ⊕ f !M , where f ! denotes the forgetful functor from A-modules to B-modules.

As a consequence, we obtain that the value of the LA on f ∈ O -alg(C)/A can be computed in
terms of the absolute cotangent complex of B and the corresponding induction functor on modules.
That is:

Proposition 1.5. Let f : B → A be an O-algebra over A, as above. Then there is a natural
equivalence of O-A-modules

LA(f) ' f!LB .

Proof. The statement follows from the commutativity of the left adjoints in the above diagram,
which commute because their right adjoints commute. �

We now turn to the question of describing more concretely what the cotangent complex LA
actually looks like. For starters, the functor A ⊕ − : ModOA → O -alg/A factors through the ∞-
category of augmented A-algebra. We thus obtain a corresponding factorization of LA through a
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relative cotangent complex LA|A. We will discuss relative cotangent complexes in more detail in the
next section, but in the meantime it suffices to say that LA|A is a functor from the ∞-category of
O-algebras augmented over A to O-A-modules fitting into the following picture

O -alg(C)/A

LA ++

AqO−
--
O -alg(C)A//Aoo

LA|A

��
ModOA(C).

A⊕−

88qqqqqqqqqq

A⊕−
ffMMMMMMMMMMM

The functor LA|A is closely related to the notion of the indecomposables of a non-unital algebra.
In the case of a discrete commutative non-unital ring J , the indecomposables Indec(J) are defined as
the kernel of the multiplication map of J . Thus, there is a left exact sequence Indec(J)→ J⊗J → J .
In the ∞-categorical setting, it is just as convenient to define the functor of indecomposables in
terms of the cotangent complex. I.e., the O-indecomposables Indec(J) of a non-unital O-A-algebra
J is given as Indec(J) = LA|A(A ⊕ J), where A ⊕ J is the split extension of A by J (and is not
square-zero).

The formula LA ' LA|A(A q A) ' Indec(Ker(A q A → A)), however, is not an especially
convenient description. For instance, the coproduct AqA inO-algebras is potentially wild. Although
the coproduct of E∞-algebras is very well-behaved, since it is just given by the tensor product, the
coproduct of associative or En-algebras is more complicated. Further the indecomposables functor
Indec is similarly inconvenient, since it cannot be computed as just a kernel of a multiplication map
as in the commutative case.

However, in the case of En-algebras we will see that the composition cancels out some of this extra
complication, and that for n finite the En-cotangent complexes have a slightly simpler description
not enjoyed by E∞-cotangent complexes.

We will now give a more explicit description of the cotangent complex in the case of a free
O-algebra A ' FX. Recall that the enveloping algebra UA of an O-algebra A has the property that
the ∞-category of left UA-modules is equivalent to the ∞-category of left UA-modules.

Lemma 1.6. For A a free O-algebra on an object X in C, the cotangent complex of A is equivalent
to UA ⊗X.

Proof. The proof is obtained by tracing adjunctions:

MapO -alg/A
(A,A⊕M) ' MapC/A(X,A⊕M) ' MapC(X,M) ' MapO,A(UA ⊗X,M).

We thus obtain that UA ⊗X naturally corepresents derivations, and thus that UA ⊗X ' LA.
�

This reduces problem the problem of describing the cotangent complex of a free algebra to that
of describing the enveloping algebra of a free algebra. The enveloping algebra of a free algebra has
a very concrete description shown, for instance, in Fresse [Fr]:

Lemma 1.7. Let A be the free O-algebra on X, as above, then the universal enveloping algebra
UA is equivalent to

∐
n≥0O(n+ 1)⊗Σn X

⊗n.

We now specialize to the case of O an En operad, for n < ∞, in which case we have a certain
splitting result further simplifying this description of the enveloping algebra of a free algebra. The
En operads are built from configuration spaces that model mapping spaces. We will make use of
the following result on stable splittings of mapping spaces. It is in large part contained in McDuff
[Mc], but we use a formulation of Bödigheimer’s.

Theorem 1.8. [Bö]. Let Z be a pointed connected space, and let P be a parallelizable n-
manifold that is the interior of a compact manifold with boundary. Then there is a natural homotopy
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equivalence of spectra

Σ∞∗ Map∗(P
+, ΣnZ) ' Σ∞

∨
i≥0

Confi(P )∗ ∧Σi Z
∧i,

where P+ is the one point compactification of P , Confi(P ) is the ordered configuration space of i
disjoint points in P , and ∧ is the usual smash product of pointed spaces.

This result reduces to the Snaith splitting Σ∞(ΩnΣnZ) ' Σ∞
∨
En(i)∗ ∧Σi Z

∧i, in the case
where the manifold P is Rn.

Again, assume C is a stable presentable symmetric monoidal ∞-category, but let us assume
further that C is generated under colimits by the unit 1 of the monoidal structure.. Denote by FE1
the free E1-algebra functor.

Proposition 1.9. Let C be as above and A be the free En-algebra on an object X in C. There
is a natural equivalence

UA ' A⊗ FE1(X[n− 1]).

Proof. We first consider the case where C is the ∞-category of spectra. By the previous
lemma, the enveloping algebra UA is equivalent to

∐
i≥0 En(i + 1) ⊗Σi X

⊗i. All spectra are built
under colimits out of suspension spectra of based spaces, and the construction of the enveloping
algebra UA preserves colimits in X. It therefore follows that checking the result for suspension
spectra will imply it for all spectra. So we assume that X is the suspension spectrum of Z a pointed
connected space, i.e., that X ' Σ∞Z. There is thus an equivalence

UA '
∐
i≥0

En(i+ 1)⊗Σi (Σ∞Z)⊗i ' Σ∞
∨
i≥0

En(i+ 1)∗ ∧Σi Z
∧i,

where the second equivalence follows from the fact that the suspension spectrum functor Σ∞ sends
colimits of based spaces to colimits of spectra. The space En(i+ 1) can be taken to be the ordered
configuration space of i+1 disjoint disks in the unit disk Dn. There is thus a homotopy equivalence
En(i+ 1)→ Confi(Rn − {0}), defined on a configuration x ∈ En(i+ 1) by collapsing each inscribed
little disk to its center and scaling so that the distinguished i + 1 point lies at the origin. This
homotopy equivalence is Σi-equivariant, which allows the expression above to be rewritten as

Σ∞
∨
i≥0

En(i+ 1)∗ ∧Σi Z
∧i ' Σ∞

∨
i≥0

Confi(Rn − {0})∗ ∧Σi Z
∧i.

This expression is now recognizable as a stable model for a mapping space, applying the above
theorem for the case of the parallelizable n-manifold P = Rn−{0}. The one point compactification
of Rn − {0} is homotopy equivalent to the wedge Sn ∨ S1. Thus, we have the following chain of
equivalences

Σ∞
∨
i≥0

Confi(Rn − {0})∗ ∧Σi Z
∧i ' Σ∞∗ Map∗(S

n ∨ S1,ΣnZ)

' Σ∞∗ (ΩnΣnZ ∧ ΩΣnZ) ' Σ∞∗ (ΩnΣnZ)⊗ Σ∞∗ (ΩΣΣn−1Z).

At this point, we have essentially obtained our goal. The suspension spectrum Σ∞∗ (ΩnΣnZ) is
homotopy equivalent to the free En-ring on Σ∞Z, which is A. Likewise, Σ∞∗ (ΩΣΣn−1Z) is equivalent
to the free E1-ring on Σ∞Σn−1Z ' Σ∞X[n− 1]. Thus, tracing through our equivalences, we obtain
the equivalence UA '

∐
i≥0 En(i+ 1)⊗Σi X

⊗i ' A⊗ FE1(X[n− 1]), which proves the result in the
case of spectra. For the case of C subject to the conditions above, C is automatically tensored over
the ∞-category of spectra. In particular, there is an adjunction f : Spectra � C : g, and since C is
generated under colimits by objects in the image of f the result for spectra implies the result for C.

�

This brings us to the main result of this section, which in the stable setting gives a description
of the absolute cotangent complex of an En-algebra.
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Theorem 1.10. Let A be an En-algebra in C, a stable presentable symmetric monoidal ∞-
category whose monoidal structure is compatible with small colimits and such that C is generated
under colimits by the unit. Then there is a cofiber sequence

UA −→ A −→ LA[n]

in the ∞-category of En-A-modules.

Remark 1.11. This result has a more familiar form in the particular case of E1-algebras, where
the enveloping algebra UA is equivalent to A⊗Aop. The statement above then becomes that there
homotopy fiber sequence LA → A ⊗ Aop → A, which is a description of the associative algebra
cotangent complex dating back to Quillen for simplicial rings and Lazarev [La] for A∞-ring spectra.

Proof. We will prove the theorem as a consequence of an equivalent statement formulated
in terms of the ∞-category of all En-algebras and their En-modules, ModEn(C). We first define

the following functors, L, U , and i, from En -alg(C) to ModEn(C): L is the cotangent complex

functor, assigning the pair (A,LA) in ModEn(C) to an En-algebra A. U is the composite En -alg(C)×
{1} → En -alg(C) × C → ModEn(C), where the functor En -alg(C) × C → ModEn(C) sends an object
(A,X) ∈ En -alg(C)× C to (A,UA ⊗X), the free En-A-module generated by X; finally, the functor

i : En -alg(C) → ModEn(C) sends A to the pair (A,A), where A is regarded as an En-A-module in
the canonical way. We will now show that there is a cofiber sequence of functors U → i→ ΣnL.

The first map in the sequence can be defined as follows: For A an algebra over any operad O,
there always exists a naturally defined map of O-A-modules UA → A. This can be expressed in
terms of the adjunction F : C � ModOA(C) : G. The counit of this adjunction, FG → id, applied

to A ∈ ModOA(C), gives the desired map UA ' FG(A) → A. The functoriality of the counit map
thus defines a natural transformation of functors U → i. We will identify ΣnL as the cokernel of
this map. We first prove this in the case that A is the free algebra on an object X, so that we have
A '

∐
En(i)⊗ΣiX

⊗i and UA '
∐
En(i+1)⊗ΣiX

⊗i. The map UA → A defined above is concretely

realized by the operad structure maps En(i + 1)
◦i+1−−−→ En(i) given by plugging the i + 1 input of

En(i+ 1) with the unit of C. The map ◦i+1 is Σi-equivariant, since it respects the permutations of
the first i inputs of En(i+ 1), so this gives an explicit description of the map

UA '
∐
i≥0

En(i+ 1)⊗Σi X
⊗i −→

∐
i≥0

En(i)⊗Σi X
⊗i ' A.

Using the previous result that UA ' A⊗ FreeE1(X[n− 1]), we may rewrite this as∐
j≥0

En(j)⊗Σj X
⊗j ⊗

∐
k≥0

(X[n− 1])⊗k '
∐
i≥0

En(i+ 1)⊗Σi X
⊗i −→

∐
i≥0

En(i)⊗Σi X
⊗i.

The kernel of this map exactly consists of the direct sum of all the terms En(j)⊗ΣjX
⊗j⊗(X[n−1])⊗k

for which k is greater than zero. So we obtain a fiber sequence∐
j≥0

En(j)⊗ΣjX
⊗j⊗

∐
k≥1

(X[n−1])⊗k −→
∐
j≥0

En(j)⊗ΣjX
⊗j⊗

∐
k≥0

(X[n−1])⊗k −→
∐
i≥0

En(i)⊗ΣiX
⊗i

of En-A-modules. It is now convenient to note the equivalence
∐
k≥1(X[n − 1])⊗k ' X[n − 1] ⊗∐

k≥0(X[n− 1])⊗k. That is, the fiber in the sequence above is equivalent to UA ⊗X[n− 1]. Thus,
whenever A is the free En-algebra on an object X of C, we obtain a fiber sequence

UA ⊗X[n− 1] −→ UA −→ A.

However, we can now recognize the appearance of the cotangent complex, since we saw previously
that the cotangent complex of a free algebra A is equivalent to UA ⊗X. Thus, we now obtain the
statement of the theorem, that there is a fiber sequence LA[n − 1] → UA → A, in the special case
where A is a free En-algebra.

We now turn to the general case. Denote the functor J : En -alg(C) → ModEn(C) defined as
objectwise as the cokernel of the map U → i. We will show that the functor J is colimit preserving,
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a property which we will then use to construct a map from L to J . To show a functor preserves
all colimits, it suffices to verify the preservation of geometric realizations and coproducts. Since
geometric realizations commute with taking cokernels, we may show that J preserves geometric
realizations by showing that both the functor U and i preserve them.

First, consider the functor U : The inclusion En -alg(C) → En -alg×C preserves geometric real-

izations; additionally, the free En-A-module functor En -alg×C → ModEn(C) is a left adjoint. U is
thus the composite of a left adjoint and a functor that preserves geometric realizations, hence U
preserves geometric realizations. Secondly, consider the functor i. Given a simplicial object A• in
En -alg(C), the realization of |iA•| is equivalent to (|A•|, |UA ⊗UA• A•|). We now use the general
result: For R• a simplicial algebra, M• an R•-module, and R• → S a algebra map, then there is
an equivalence |S ⊗R• M•| ' S ⊗|R•| |M•|. Applying this in our example gives that |UA ⊗UA• A•|
is equivalent to UA ⊗|UA• | |A•|. The geometric realization |UA• | is equivalent to UA, since by the
description of UA as a left Kan extension it preseves these geometric realizations. Thus, we obtain
that i does preserve geometric realizations and as a consequence J does as well.

Now, we show that J preserves coproducts. First, if a functor F : En -alg(C) → D preserves
geometric realizations and coproducts of free En-algebras, then F also preserves arbitrary coproducts.
We see this as follows: Let Ai, i ∈ I, be a collection of En-algebras in C, and let C•Ai be the functorial

simplicial resolution of Ai by free En-algebras, where CnAi := Free
◦(n+1)
En (Ai). Since geometric

realizations commute with coproducts, there is a natural equivalence of F (
∐
I Ai) ' F (

∐
I |C•Ai|)

with F (|
∐
I C•Ai|). Applying our assumption that F preserves coproducts of free algebras and

geometric realizations, we thus obtain equivalences

F (|
∐
I

C•Ai|) ' |
∐
I

F (C•Ai)| '
∐
I

F (|C•Ai|) '
∐
I

F (Ai)

where the second equivalence again follows from F preserving geometric realizations. Thus, we
obtain that F preserves arbitrary coproducts given the previous assumption. We now demonstrate
that J preserves coproducts of free En-algebras, which will consequently imply that J preserves
all colimits. Note that the functor L is a left adjoint, hence it preserves all colimits. We showed,
above, that for free algebras A = FreeEn(X), there is an equivalence J(A) ' LA[n]. Let {Ai} be a
collection of free En-algebras; since the coproduct of free algebras is again a free algebra, we obtain
that J(

∐
I Ai) ' L∐

I Ai
[n] '

∐
I LAi [n] '

∐
I J(Ai). Thus, J preserves coproducts of free algebras,

hence J preserves all colimits.
The universal property of the cotangent complex functor L now applies to produce a map from L

to J : The stabilization functor LA : En -alg(C)/A → ModEnA (C), from Theorem 4.2, has the property
that for any colimit preserving functor F from En -alg(C)/A to a stable ∞-category D, there exists

an essentially unique functor F ′ : ModEnA (C) → D factorizing F ′ ◦ LA ' F . Choose F to be the

composite JA : En -alg(C)/A → ModEn(C)/A → ModEnA (C), where the first functor is J and the second

functor sends a pair (B
f−→ A,M), where M is an En-B-module, to the En-A-module UA ⊗UB M .

JA preserves colimits, since it is a composite of two functors each of which preserve colimits. The
universal property now applies to show that there is an equivalence of functors j◦LA ' JA. However,
we have shown there is also an equivalence JA(B) ' LA(B)[n] whenever B is a free En-algebra. Since

cotangent complexes of free algebras generate ModEnA (C) under colimits, we may conclude that the
functor j is therefore the n-fold suspension functor. Thus, we obtain the equivalence of functors
JA ' ΣnLA. Since this equivalence holds for every A, we finally have an equivalence of functors
J ' L[n] and a cofiber sequence of functors U → i→ ΣnL.

�

One may think of the result above as saying that the En-A-module A is very close to being its
own cotangent complex.

Remark 1.12. Let A be an E∞-algebra in C. Then the E∞-cotangent complex of A is equivalent
to the filtered colimit of its En-cotangent complexes, i.e., LA ' lim−→ Ind(LEnA ). One can also see from
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the Goodwillie derivative description of the cotangent complex that LA ' lim−→ΩnAΣnA(A⊗A), where
the loop and suspension functors are calculated in the ∞-category of E∞-algebras augmented over
A. Since ΣnA(A⊗A) ' Sn⊗A, we obtain the equivalence LA ' lim−→(Sn⊗A)[−n], which we can see
coincides with the description of LA as a filtered colimit of En-cotangent complexes.

1.2. The Relative Cotangent Complex. In this section, we will consider the cotangent
complex LB|A in a relative setting for a map f : A → B, in which we might view the O-B-module
LB|A as an approximation to the difference between B and A. This reduces to the case of the
absolute cotangent complex already discussed when A the unit of C.

Definition 1.13. For A an O-algebra over B, the relative cotangent complex LB|A is an O-

B-module corepresenting the functor of derivations ModOB → Spaces sending M to the space of
A-linear B-derivations from B to M , DerB|A(B,M) := MapO -alg

A/

/B

(B,B ⊕M).

As with the absolute cotangent complex, the relative cotangent complex LB|A is a value of a
linearization functor LB|A on the ∞-category of O-algebras over B and under A. LB|A is the left

adjoint to the functor ModOB(C) → O -alg(C)A//B that assigns to an O-B-module the square zero

algebra B ⊕M , equipped with a map from A and a map to B. This obtains the following diagram

O -alg(C)A//BBqA−

��
LB|A

��

O -alg(C)B//B

LB|B --

88qqqqqqqqqq

ModOB(C).

ffNNNNNNNNNNN

B⊕−

OO

So for any C ∈ O -alg(C)A//B , the value of the relative cotangent complex on C is LB|A(C) '
LB|B(B qA C). The O-B-module LB|A is obtained as the value LB|A(B).

Proposition 1.14. There is a cofiber sequence f!LA → LB → LB|A in the ∞-category of
O-B-modules.

Proof. To check that LB|A is the cofiber of the natural map f!LA → LB , it suffices to check, for
anyM inO-B-modules, that MapModOB

(LB|A,M) is the fiber of the natural map MapModOB
(LB ,M)→

MapModOB
(f!LA,M). Note that using that f! is the left adjoint to the forgetful functor ModOB(C)→

ModOA(C), we obtain the equivalence MapModOB
(f!LA,M) ' MapModOA

(LA,M) ' MapO -alg/A
(A,A⊕

M). We have thereby reduced to evaluating the fiber of

MapO -alg/B
(B,B ⊕M)→ MapO -alg/A

(A,A⊕M)

which is exactly MapO -alg
A/

/B

(B,B ⊕M).

�

More generally, we have the following:

Proposition 1.15. There is a natural cofiber sequence f!LA|k → LB|k → LB|A for any sequence

of O-algebras k → A
f−→ B.

A particularly interesting case of the relative cotangent complex functor is that where both A
and B are the unit of C, that is, the relative cotangent complex L1|1 of augmented O-algebras in C.
The value L1|1(D) ' L1|D[−1] of an augmented O-algebra D might also be called the infinitesimal
cotangent complex, and its shift L1|D can be termed the cotangent space of the O-algebra D at the
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point of D given by the augmentation ε : D → 1. This is equivalent to the case of the absolute
cotangent complex of the non-unital O-algebra Ker(ε), which is the O-indecomposables functor.

Remark 1.16. Let X be a topological space with a specified basepoint. The n-fold loop space
of X, ΩnX := Map∗(S

n, X), has the structure of an nonunital En-algebra in the ∞-category of
pointed spaces with respect to the smash product monoidal structure. Thus, Σ∞ΩnX acquires the
structure of an En-algebra in spectra. Let us first examine the case in which X is in fact the n-fold
suspension of some other connected based space Y , i.e., that X ' ΣnY . In this case, we obtain an
instance of the classical Snaith splitting

Σ∞Ωn(ΣnY ) '
∐
n≥1

En(i)⊗Σi Y
⊗i

which expresses the suspension spectrum on this particular n-fold loop space as the free En-ring spec-
trum on Y . Let L denote the infinitesimal cotangent complex functor. Then for A = Σ∞Ωn(ΣnY ),
the for the infinitesimal cotangent complex we have the equivalence L(A) ' Σ∞Y ' Σ∞X[n]. (More
generally, the infinitesimal En-cotangent complex deloops the suspension spectrum of an n-fold loop
space.)

Let us apply the previous analysis of the absolute cotangent complex in the En setting to obtain
a similar description of the infinitesimal cotangent complex of an augmented En-algebra A.

Proposition 1.17. Let A be an augmented En-algebra in C, as above, with augmentation f :
A → 1. Then there exists a cofiber sequence in C, 1 → 1 ⊗UA A → L1|A[n − 1], where L1|A is the
cotangent space of A at f .

Proof. Recall from the previous theorem the cofiber sequence UA → A → LA[n] of En-A-
modules. Given an En-ring map f : A → B, we can apply the induction functor to obtain UB →
f!A → f!LA[n], a cofiber sequence of En-B-modules. Specializing to where f : A → 1 is the
augmentation of A, this cofiber sequence becomes 1 → f!A → f!LA[n]. Note that since there is an
equivalence between En-1-modules and C, the enveloping algebra of the unit is equivalent to 1. So
we have an equivalence f!A ' 1⊗UA A.

Finally, we can specialize the cofiber sequence f!LA|k → LB|k → LB|A to the case of k =
B = 1, to obtain a cofiber sequence f!LA → L1|1 → L1|A. Since L1|1 is contractible, this gives
an equivalence L1|A[−1] ' f!LA. Substituting into 1 → 1 ⊗UA A → f!LA[n], we obtain a cofiber
sequence 1→ 1⊗UA A→ L1|A[n− 1] as desired. �

Remark 1.18. The object 1⊗UA A may be thought as the infinitesimal En-Hochschild homol-
ogy of A, or the En-Hochschild homology with coefficients in the augmentation, i.e., 1 ⊗UA A =

HHEn∗ (A; 1). This result is then saying that, modulo the unit, the infinitesimal cotangent complex
is equivalent to a shift of the infinitesimal En-Hochschild homology.

2. Connectivity, Square-Zero Extensions, and Deformations

We now turn to the of study square-zero extensions of O-algebras, which we first motivate
with a discussion of the following basic question: how can one build O-algebras? In the setting of
classical commutative rings, one can build rings by either of two standard procedures, as a sequence
of quotients of polynomial rings, or as a sequence of square-zero extensions. For instance, the ring
R ∼= Z[t]/tn can be build from the polynomial ring Z[t] by imposing by the relation tn = 0, or it could
be build from the integers Z by a sequence of square-zero extensions Z← Z[t]/t2 ← . . .← Z[t]/tn.
The first procedure is good for studying ring maps out of R; the second procedure is good for
studying ring maps into R. The first procedure is perhaps more obvious and generally available,
but it is often difficult practically to understand even basic properties of a ring from a presentation.
The second procedure, when available, is often more informative because the pieces involved are
simpler and fit together in a more comprehensible manner.

Both of these approaches generalize to homotopy theory. In the first approach, given any O-
algebra A in C, one can realize A as a colimit of free algebras. There is even a canonical way to do
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this: the composite functor C : O -alg(C) G−→ C F−→ O -alg(C) gives rise to a simplicial object C•A
whose geometric realization is equivalent to A. The drawback is that the terms in this resolution
are enormous. Further, even a small presentation of an O-algebra by some diagram of relations
could be difficult to analyze due to the potentially wild behavior of colimits in the ∞-category of
O-algebras.

It is thus appealing look for an analogue of the second procedure and attempt to build an
O-algebra as a limit of “square-zero” extensions rather than as a colimit of free algebras. This
has the advantage that O-algebras with trivial algebra structure might be more manageable than
free O-algebras. Further, limits of O-algebras are simpler to analyze since, unlike colimits, they
are computed in the underlying ∞-category C. This motivation leads us to look for a method to
construct square-zero extensions of O-algebras.

Given an O-algebra A, an initial supply of square-zero extensions of A arise from O-A-modules.
As we saw previously, given an O-A-module M one can form an extension of A by M , denoted
A⊕M . This extension A⊕M → A is square-zero, in that the restriction of the multiplication maps
O(n) ⊗ (A ⊕M)⊗n → A ⊕M from the factors in which M appears with multiplicity greater than
one are equivalent to zero maps. Furthermore, the extension is split, in that there exists a section
of the projection map s : A→ A⊕M .

We are interested in the larger class of square-zero extensions which do not split, just as the
extension Z[t]/t3 → Z[t]/t2 does not split. We will define these as extensions of A that arise from
split extensions by the following construction: let d : A → M be a derivation, i.e., the restriction
of O-algebra map d ∈ MapO -alg/A

(A,A ⊕M) to the factor of M in the target. Then we define an

extension Ã of A by forming the pullback diagram

Ã

��

// A

s

��
A

d // A⊕M

Ã sits in a exact triangle M [−1] → Ã → A → M in C, and thus Ã is a square-zero extension of

A by M [−1]. Further, given any other extension N → Ã → A, we may take the structure of a
derivation on the resulting map A→ N [1] as the definition of the extension being square-zero. I.e.,
the data of a square-zero extension of A by N is exactly an O-A-module map LA → N [1]. We have
the following comparisons:

{split square–zero extensions of A}

��

ModOA(C)

��
{square–zero extensions of A} ModOA(C)LA/

where the functor ModOA(C) → ModOA(C)LA/ equips an O-A-module M with the zero map LA
0−→

M . On the left hand side, this corresponds to forgetting the data of a splitting in the extension

M [−1]→ Ã� A.

Remark 2.1. Unlike in the classical theory of discrete rings and modules, being square-zero
is not a property of an extension but rather an additional structure. For instance, the functor
A ⊕ − : ModOA(C) → O -alg(C)A is not at all a fully faithful functor of ∞-categories, even though
classically it is.

Let us imagine the following scenario: we are provided with an O-algebra map f : A′ → A,
where A is something simple and A′ is something we want to understand in terms of A. First,
the map A′ → A has a relative cotangent complex LA|A′ ∈ ModOA(C), together with a universal
derivation d : A→ LA|A′ . We can thereby make a first approximation to A′ in terms of this linear
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data determined by the map f , and define a square-zero extension A1 of A by the pullback diagram

A′

  B
B

B
B

f

))SSSSSSSSSSSSSSSSSSS

f

��0
00

00
00

00
00

00
00

A1

��

// A

s

��
A

d // A⊕ LA|A′

If A′ was a square-zero extension to begin with, then the resulting map A′ → A1 will be an
equivalence. Otherwise, we can interate this process to produce a sequence A← A1 ← A2 ← . . ., in

which Ai+1 is the square-zero extension of Ai defined by limit of the diagram Ai
d−→ Ai⊕LAi|A′

s←− Ai.
There is a natural map A′ → lim←−Ai, which one might one might think should be an equivalence if

A′ can be obtained from A by square-zero extensions. This will not always be the case, for instance,
if A = 0 is the zero object and A′ is anything nonzero.

Remark 2.2. Some of the discussion of this section may be illuminated by our later treatment
of stabilization and costabilization. The question of what class of O-algebras over A can be realized
by a limit of square-zero extensions of A is like asking for a subcategory of O -alg(C)/A on which
the stabilization functor is conservative. For a general ∞-category X , this is like asking what sub-
category of objects can be realized as the limit of a filtered diagram of extensions of the final object
in which the fibers of the diagram maps are infinite loop objects. Applying these considerations to
the ∞-category of spaces, the process outlined above would converge to the usual Postnikov tower
of a space X if X was 1-connected; more generally, one could apply this process to the ∞-category
of spaces over BG, to obtain the Postnikov tower of a non-simply connected space X with funda-
mental groupoid G. Similar application of these considerations to the ∞-category of ∞-categories
reproduces the obstruction theory of Dwyer-Kan-Smith. That is, for a given ∞-category C, one
can apply the process the ∞-category of ∞-categories over τ≤2C to obtain a Postnikov tower for C.
Over each hom space this reduces to the usual Postnikov tower of a non-simply connected space.

In order to realize A′ as the filtered limit of the Ai, one would like to say in some precise
fashion how the successive Ai better approximate A′, that is, one would like to say that the map
A′ → Ai becomes highly connected. However, the notion of connectedness does not come for free
in an ∞-category: in the stable setting this additional structure is formalized in the definition of a
t-structure [BBD].

Definition 2.3. A t-structure on a stable ∞-category C consists of a two full subcategories,
C≥0 (connective objects) and C≤0 (coconnective objects) such that:

• C≥0 is closed under suspension, and C≤0 is closed under desuspension;
• HomC(X,Y ) ' 0 if X ∈ C≥0 and Y [1] ∈ C≤0, i.e., Y ∈ C≤−1;
• any object X lies in a cofiber sequence X ′ → X → X ′′ with X ′ connective and X ′′

coconnected (i.e., X ′ ∈ C≥0 and X ′′ ∈ C≤−1).

The cofiber sequence above can be constructed functorially in X. That is, for any n the inclusion
C≤n → C admits a left adjoint τ≤n making C≤n a localization of C. Likewise, the inclusion C≥n → C
admits a right adjoint τ≥n making C≥n a colocalization of C.

Remark 2.4. Equivalently, the homotopy category hC of a stable∞-category C has the structure
of a triangulated category, and a t-structure on C is equivalent to a t-structure on the homotopy
category. See [L1] for a fuller treatment of this subject.

In order to better apply some notion of connectedness in studying algebra structures, some
compatibility between the t-structure and the monoidal structure on C is desirable. Let C be a
stable monoidal ∞-category for which the monoidal structure ⊗ is compatible with colimits.
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Definition 2.5. [L2]. A t-structure on C is compatible with the monoidal structure if the
subcategory of connective objects C≥0 contains the unit and is closed under tensor products, i.e.,
the connective objects form a tensor subcategory of C.

Use of the t-structure can often divide some analysis of connective En-algebras into two parts,
the first involving questions of classical commutative rings, and the second involving the higher
homotopy theory of En with fixed underlying classical data, which is controlled by the cotangent
complex. That is, for A a connective En-algebra, there is a map A → τ≤0A, where τ≤0A is a
commutative algebra in the heart of C (e.g., τ≤0A ∼= π0A, if C is chain complexes or spectra). The
approximation of A as the filtered limit of square-zero extensions τ≤0A← τ≤1A← . . . is analogous
to the Postnikov tower of a non-simply connected space.

Assume that C has a t-structure, which allows any object X in C to be described by a sequence
of truncations τ≤nX: there is a map X → τ≤nX and thus a map X → lim←− τ≤nX. Under these
assumptions, we now consider some more technical connectivity results that facilitate the analysis
discussed above for the case of En-algebras.

Proposition 2.6. Let A be a connective En-algebra in C. Then the natural map UA → A is
(n− 2)-connected. I.e., the map τ≤n−2UA → τ≤n−2A is an equivalence.

Proof. We first discuss the case where A is the free En-algebra on a connective object X ∈ C≥0.
By the assumption of compatibility with the t-structure, the free En-algebra on a connective object
will remain connective. Writing out the terms in the map UA → A, we have

∐
j≥0 En(j + 1) ⊗Σj

X⊗j →
∐
j≥0 En(j) ⊗Σj X

⊗j , and we reduce to considering the connectivity of each individual

map En(j + 1) ⊗Σj X
⊗j → En(j) ⊗Σj X

⊗j . All of the spaces En(k) in the En operad are (n − 2)-

connected, and therefore we obtain that the Σj-equivariant map En(j + 1) ⊗X⊗j → En(j) ⊗X⊗j
is (n− 2)-connected. Taking the homotopy orbits of the Σj-action preserves this connectivity, since
the truncation functor τ≥n−2C → C≥n−2 is a localization and preserves colimits. Therefore the map
En(j + 1)⊗Σj X

⊗j → En(j)⊗Σj X
⊗j is (n− 2)-connected, as is the map UA → A.

We now argue for general A. A is equivalent to the geometric realization of the simplicial
En-algebra C•A with terms are given by iterated free algebras, CiA = (FG)i+1A. Further, the
functor U : En -alg(C)→ Alg(C) sending an En-algebra to its enveloping algebra is compatible with
geometric realizations. As before we may then construct UA for general A as the realization of
simplicial algebra whose terms are enveloping algebras of free En-algebras. That is, the natural map
|UC•A| → UA is an equivalence. We now have a map of simplicial objects in C, UC•A → C•A, each
of whose terms is (n− 2)-connected. We thus obtain that the induced map between the geometric
realizations is (n− 2)-connected, again since the functor τ≤n−2 is a localization. �

We can use similar argumentation to address how the connectivity of the relative cotangent
complex of a map f of O-algebras depends on the connectivity of f .

Proposition 2.7. Let f : A→ B be a map of connective O-algebras. If f is i-connected, then
the induced map of cotangent complexes f!LA → LB is i-connected, or, equivalently, the relative
cotangent complex LB|A is (i+ 1)-connected.

Proof. We first consider the special case where A ' FX and B ' FY are free O-algebras on
X, Y ∈ C, and the map f is induced from a map g : X → Y . If g is i-connected then both of the
maps O(i) ⊗Σi X

⊗i → O(i) ⊗Σi Y
⊗i and O(i + 1) ⊗Σi X

⊗i → O(i + 1) ⊗Σi Y
⊗i are i-connected.

As a consequence, therefore the maps FX → FY and UFX → UFY are both i-connected. Since the
absolute cotangent complex of a free algebra FX is given by LFX ' UFX ⊗X, we thus conclude
that the map LFX → LFY is i-connected, since the map UFX ⊗X → UFY ⊗ Y is i-connected on
both terms and the t-structure is compatible with the monoidal structure.

For the case of general i-connected map f : A → B of connective O-algebras, both A and be
B can be constructed as the geometric realizations of simplicial O-algebras C•A and C•B which
are termwise free. The map f is likewise obtained as the realization of a map f• : C•A → C•B,
where f• is i-connected termwise. Similarly, we obtain maps of simplicial objects UC•A → UC•B
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and LC•A → LC•B that are termwise i-connected by the arguments above, and the realizations of
these maps produce the natural maps UA → UB and LA → LB .

We now make use the fact that for a general colimit of a diagram Zα in C, there is a natural
equivalence τ≤i(colimZα) ' τ≤i(colim τ≤iZα), since the truncation functor τ≤i is a localization.
Thus, we can conclude that the maps UA → UB and LA → LB are both i-connected under the
conditions above.

To complete our proof, we consider the map of O-B-modules f!LA → LB adjoint the map
LA → LB . We reapply our trick: the module f!LA is computed by UB ⊗UA LA, which as the
realization of the simplicial bar construction with terms Bar(UB ;UA;LA)j = UB⊗(UA)⊗j⊗LA. The
map f!LA → LB is then realized by a map of simplicial objects Bar(UB ;UA;LA)→ Bar(UB ;UB ;LB)
such that the maps termwise are i-connected. Therefore the induced map on realizations is i-
connected, and the result follows.

�

The result above has the following important special case.

Corollary 2.8. Let A be an O-algebra in C, as above. If A is connective, then its absolute
cotangent complex LA is also connective.

Proof. Apply the above proposition to the case where the map f is the unit of A, f : 1→ A.
This map is at least −1-connective, since by assumption the unit of C is connective. Therefore the
relative cotangent complex LA|1 is 0-connective, but since there is an equivalence LA|1 ' LA, the
result follows. �

3. En-Hochschild Cohomology

We now consider the notion of the operadic Hochschild cohomology of En-algebras. The following
definitions are sensible for general operads, but in this work we will only be concerned with the En-
operads.

Definition 3.1. Let A be an O-algebra in C, and let M be an O-A-module. Then the O-
Hochschild cohomology of A with coefficients in M is

HH∗O(A;M) = HomModOA
(A,M).

When the coefficient moduleM is the algebraA itself, we will abbreviate HH∗O(A;A) to HH∗O(A).

Remark 3.2. The preceding definition does not require that C is stable. A particular case of
interest in when C = Cat∞, the∞-category of∞-categories, in which case this notion of Hochschild
cohomology categories offers derived analogues to the classical theory of Drinfeld centers, a topic
also developed in [BFN].

In the case that C is stable, the En-Hochschild cohomology is closely related to our previously
defined notion of En-derivations and the cotangent complex. We have the following corollary of the
main theorem above.

Corollary 3.3. Let M be an En-A-module in C, with A and C as above. There is then a
natural fiber sequence in C

HH∗En(A,M) −→M −→ Der(A,M)[1− n].

Proof. Mapping the cofiber sequence LA[n− 1]→ UA → A into M , we obtain fiber sequences

HomModEnA
(LA,M)[1− n]

'
��

HomModEnA
(UA,M)oo

'

��

HomModEnA
(A,M)oo

'
��

Der(A,M)[1− n] Moo HH∗En(A;M)oo

which obtains the stated result.
�
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Before proceeding, it is convenient to first provide a definition of the En-tangent complex .

Definition 3.4. The relative tangent complex TB|A of an En-ring map A → B is the dual of
LB|A in ∞-category of En-B-modules.

In other words, TB|A can be computed by the mapping object TB|A ' HomModEnB
(LB|A, B). We

will abbreviate TB|1 by TB , and refer to it simply as the (global) tangent complex of B.

Remark 3.5. A particular case of the corollary above establishes a claim of Kontsevich in [Ko].
Kontsevich suggested that for an En-algebra A in chain complexes, that there was an equivalence
between the quotient of the tangent complex TA quotiented by A[n − 1] and an En-version of
Hochschild cohomology of A shifted by n− 1. This follows from the above by setting M = A, since
the tangent complex of A is equivalent to Der(A,A), we thus obtain

HH∗En(A)[n− 1] // A[n− 1] // Der(A,A) ' TA,

implying the quasi-isomorphism of complexes HH∗En(A)[n] ' TA/(A[n − 1]). This is the statement
of the second claim of [Ko], where Kontsevich refers to what we term the tangent complex as the
deformation complex, denoted Def(A).

We also have an infinitesimal version of the statement above.

Corollary 3.6. Let A be an augmented En-algebra in C. Then there is a cofiber sequence in C
given by T1|A[1− n]→ HH∗En(A; 1)→ 1, where T1|A denotes the tangent space at the augmentation
f : A→ 1.

Proof. As in previous corollary, we obtain this result by dualizing a corresponding result
for the infinitesimal cotangent complex. From a previous proposition, we have a cofiber sequence
1 → f!A → L1|A[n − 1]. We now dualize This produces a fiber sequence HomC(L1|A[n − 1], 1) →
HomC(f!A, 1) → HomC(1, 1). Since C is presentable and the monoidal structure is compatible
with colimits, thus C is closed implying the equivalence 1 ' HomC(1, 1). Also, since f! is the left

adjoint to the functor C → ModEnA (C) given by restriction along the augmentation f , we have an
equivalence HomC(f!A, 1) ' HomModEnA

(A, 1). This is the infinitesimal En-Hochschild cohomology

of A, HH∗En(A; 1), by definition. Thus, we can rewrite our sequence as HomC(L1|A, 1)[1 − n] →
HH∗En(A; 1)→ 1, which proves the result. �

Remark 3.7. The previous corollary directly generalizes a result of Po Hu, [Hu], from the case
where C is chain complexes in characteristic zero. In the terminology of [Hu], the result above says
that the based En-Hochschild cohomology is equivalent to a shift of the based Quillen homology of
augmented En-algebras.

4. Stabilization of O-Algebras

In this section, we will see that the O-algebra cotangent complex is part of a more general
theory of the cotangent complex in the context of stabilization. The theory of stabilization and
costabilization is an ∞-categorical analogue of the study of abelian group and abelian cogroup
objects in ordinary categories.

Definition 4.1. [L1]. Let C be a ∞-category that has finite limits, and let C∗ be the pointed
envelope of C. The stabilization of C is a stable∞-category Stab(C) with a functor Ω∞ : Stab(C)→
C∗ such that Ω∞ is limit preserving and universal among limit preserving functors to C∗ from a
stable ∞-category.

Note that objects in the image of Ω∞ attain the structure of infinite loop objects in C∗, hence
the notation.

The rest of this section will establish the following result on the stabilization of O-algebras. Our
discussion will mirror that of Lurie’s in [L4], where these results are established in the commutative
algebra setting. Similar results were also discussed previously by Basterra and Mandell in [BM].
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Theorem 4.2. Let C be a symmetric monoidal stable ∞-category whose monoidal structure is
compatible with small colimits. For A an O-algebra in C, the stabilization of the ∞-category of
O-algebras over A is equivalent to the ∞-category of O-A-modules in the stabilization of C, i.e.,
there is a natural equivalence

Stab(O -alg(C)/A) ' ModOA(C)
and equivalences of functors Σ∞ ' LA and Ω∞ ' A⊕ (−).

We will require the following lemma from the Goodwillie calculus, which is a familiar fact
concerning derivatives of split analytic functors. For a further discussion of the Goodwillie calculus
see [Go], which is the basic reference.

Lemma 4.3. Let T be a split analytic functor on a stable monoidal ∞-category C defined by
a symmetric sequence T ∈ CΣ with T (0) ' ∗, so that T (X) =

∐
n≥1 T (n) ⊗Σn X

⊗n. The first

Goodwillie derivative DT is equivalent to DT (X) ' T (1)⊗X.

Proof. We calculate the following,

DT (X) ' lim−→ΩiT (ΣiX) ' lim−→Ωi(
∐
n≥1

T (n)⊗Σn (ΣiX)⊗n) '

lim−→Ωi(T (1)⊗ ΣiX) ⊕
∐
n≥2

lim−→Ωi(T (n)⊗Σn (ΣiX)⊗n),

using the commutation of Ω with the infinite coproduct and the commutation of filtered colimits
and infinite coproducts. However, we can now note that the higher terms are n-homogeneous
functors for n > 1, and hence they have trivial first Goodwillie derivative. This obtains that
DT (X) ' lim−→Ωi(T (1)⊗ ΣiX) ' T (1)⊗X. �

We will now prove the theorem above in the special case where A is just 1, the unit of the
monoidal structure on C. In this case, O-algebras over A are literally the same as augmented O-
algebras in C, O -algaug(C) ' O -alg(C)/1. There is an adjunction between augmented and non-unital
O-algebras

O -algnu(C)

1⊕(−)

��
O -algaug(C)

I

OO

where I denotes the augmentation ideal functor, with left adjoint given by adjoining a unit. The
adjunction above is an equivalence of ∞-categories, since the unit and counit of the adjunction are
equivalences when C is stable. We now formulate a special case of the theorem above.

Proposition 4.4. There is a natural equivalence Stab(O -algnu(C)) ' ModO(1)(C).

Proof. Let T denote the monad associated to non-unital O-algebras, so that there is a natural
equivalence O -algnu(C) ' ModT (C). We may thus consider stabilizing this adjunction, to produce
another adjunction:

ModT (C)

��

Σ∞ ..
Stab(ModT C)

g

��

Ω∞
oo // Modgf (C)

C

DD

' // Stab(C).

f

CC

The stabilization of ModT (C) is monadic over C, [L4], since the right adjoint is conservative, pre-
serves split geometric realizations, and hence satisfies the ∞-categorical Barr-Beck theorem. The
resulting monad g ◦ f on C is the first Goodwillie derivative of T , which by the above lemma is
computed by O(1)⊗(−), with the monad structure of g◦f corresponding to the associative algebras
structure on O(1). Thus, the result follows. �
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Note that if the operad O is such that O(1) ' 1, where 1 is the unit of C, then this implies the
equivalence Stab(O -alg) ' C. In particular, the functor Indη of induction along the augmentation
η : O → 1 is equivalent to the stabilization functor Σ∞.

To complete the proof of the main theorem, we will reduce it to the proposition above. Consider
OA, the universal enveloping operad of A, defined by the property that OA -alg(C) is equivalent to
O-algebras under A. Likewise, we have that non-unital O-A-algebras is equivalent to non-unital OA-
algebras. Since the ∞-category of O-algebras augmented over A is again equivalent to O -algnu(C),
we reduce to considering this case.

Thus, we obtain that Stab(OA -algnu(C)) is equivalent to ModOA(1)(C). Since the first term of

the enveloping operad OA(1) is equivalent to the enveloping algebra UA, and ModUA(C) ' ModOA(C),
this implies that the equivalence Stab(OA -algnu(C)) ' ModOA(C).

By definition, the stabilization of an unpointed ∞-category X is the stabilization of its pointed
envelope X∗, the ∞-category of objects of X under ∗, the final object. Thus the pointed envelope
of O-algebras over A is O-algebras augmented over and under A. This is the stabilization we have
computed, which our proof the theorem.

5. Stabilization and Costabilization

In the previous section we studied the stabilization of the∞-category of augmented O-algebras,
and we saw that the answer was highly nontrivial. This might lead us to the question of just how
much the stabilization of an∞-category knows about the original∞-category. This question can be
framed as part of a general question about the extent to which nonabelian structure can be analyzed
as some type of algebra on an underlying abelian structure. We will see that there are two ways of
doing this, from stabilization and costabilization, and the interplay between these leads a type of
duality between coalgebras and algebras.

5.1. Digression: Cohomology Theories. The notion of stabilization is also closely related
to the notion of cohomology theories, which we will briefly elaborate.

Definition 5.1. Let C be a pointed ∞-category. A cohomology theory on C is a contravariant
functor from C to the ∞-category of spectra that sends colimits in C to limits of spectra. The
∞-category of cohomology theories is Funlim(Cop,Spectra), the full subcategory of all contravariant
spectra-valued functors on C. If C is not pointed, an unreduced cohomology theory on C is a
cohomology theory on C∗, the pointed envelope of C.

There exists a functor Stab(C) → Funlim(Cop,Spectra), assigning to a stable object E of C the
corresponding cohomology theory with values E(X) := HomStab C(Σ

∞X,E). The following result
says that this functor is very often an equivalence.

Proposition 5.2. If C is a compactly generated presentable ∞-category, then the functor
Stab(C) → Funlim(Cop,Spectra) is an equivalence of ∞-categories. That is, stable objects in C
are equivalent to cohomology theories on C.

Proof. We have the following natural chain of equivalences:

Funlim(Cop,Spectra) ' Funcolim(C,Spectraop)op ' Funcolim(Stab(C),Spectraop)op.

We now use the universal property of the stabilization of spaces, that a limit preserving functor
from a stable∞-category to spaces can be canonically delooped to obtain a limit preserving functor
to spectra. We thus obtain that

Funcolim(Stab(C),Spectraop)op ' Funlim(Stab(C)op,Spectra) ' Funlim(Stab(C)op,Spaces).

For the final step we use that C is presentable, and hence that Stab(C) is presentable. It is then a gen-
eral result, [L], that for a presentable∞-category X , representable presheaves of spaces on X are ex-

actly those functors X op → Spaces that preserve limits. Thus, we obtain that Funlim(Stab(C)op,Spaces) '
Stab(C), which completes the proof.

�
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5.2. Abelian Groups and Abelian Cogroups. Many methods in mathematics use abelian
structure to study nonabelian structure. The notion of abelianizing provides a certain universal way
of doing this. The homotopy-theoretic version of this accounts for many instances of cohomology,
including the cohomology of spaces or of groups. We will discuss this briefly in such a manner to
setup our discussion of the ∞-categorical analogue.

The notion of stabilization provides an ∞-categorical analogue of abelian group objects in an
ordinary category. Costabilization likewise provides an ∞-categorical analogue of abelian cogroup
objects in ordinary categories.

Let us run through some examples. In the category of sets, abelian group objects are exactly
abelian groups, while there are no nontrivial cogroups in finite sets. Similarly, in the category of
spaces, abelian group objects correspond to the usual notion of topological abelian groups, while
again there are no nontrivial cogroups in spaces.

In the category of augmented commutative rings, abelian group objects exactly correspond to
rings of the form Z⊕ V , split square-zero extensions of Z by an abelian group V . Augmented rings
also have an abundance of cogroup objects. These cogroups arise as free algebras: the diagonal
map of an abelian group V → V ⊕ V gives rise to a cogroup map Sym∗V → Sym∗(V ⊕ V ) ∼=
Sym∗V ⊗ Sym∗V . So, unlike the category of spaces, the category of augmented rings has a good
supply of both group objects and cogroup objects. Let us formulate this more precisely:

Definition 5.3. A category X has enough abelian groups if and only if for any map f : X → Y
in X that is not an isomorphism, there then exists an abelian group A in X such that the map
HomX (Y,A) → HomX (X,A) is not an isomorphism of abelian groups. A category X has enough
abelian cogroups if and only if for every map f : X → Y that is not an isomorphism, there then exists
an abelian cogroup C in X such that the map HomX (C,X)→ HomX (C, Y ) is not an isomorphism
of abelian groups.

In other words, X has enough abelian groups if maps into abelian group objects detect equiv-
alences, and it has enough cogroups if maps out of cogroups detect equivalences. The category of
sets, for instance, has enough abelian groups. The category of augmented algebras has a lot but
not quite enough: abelian group objects cannot detect that the map Z[ε]/ε3 → Z[ε]/ε2 is not an
equivalence. Maps out of free algebras can detect this, however, and thus the category of augmented
algebras does have enough abelian cogroups.

Let us say this in a slightly different fashion. There often exists an abelianization functor
X → Ab(X ), which is left adjoint to the inclusion Ab(X )→ X . Then X has enough abelian groups
if and only if the abelianization functor is conservative. Likewise the inclusion Coab(X ) → X
often has a right adjoint, coabelianization, and X has enough abelian cogroups if and only if the
coabelianization functor is conservative.

Why might it be important whether a category has enough abelian groups or cogroups? If X
does, then we can describe X in terms of abelian data. Any object in X will have an underly-
ing abelian group, the (co)abelianization, and we can describe the additional data of X as being
something like a coalgebra or algebra structure on this abelian group. This might then allow hard
questions about X to be translated into easier algebra, and is thus worth consideration.

Let us consider the the failure of the category of groups to have enough abelian group ob-
jects: the problem is that the natural map G → G/[G,G] cannot be distinguished by maps into
abelian groups. However, the situation improves if treated in homotopy-theory: group cohomology
distinguishes between G and G/[G,G].

5.3. Duality. We now revise the previous discussion for X an ∞-category. Here, the role of
abelian groups is played by infinite loop objects in X , and the role of abelian cogroups is played
by infinite suspension objects. We would like to address the question of how effectively X can be
studied in terms of its stable or costable objects. As we saw before, a stable object E in Stab(X )
defines a cohomology theory on X valued in spectra, so this half of the question can also be expressed
as asking how effectively X can be studied by cohomology theories.

The costabilization is defined by the opposite universal property as stabilization:
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Definition 5.4. Let X be a pointed ∞-category that contains finite limits and colimits. The
costabilization of X is a stable ∞-category Costab(X ) with a functor Σ∞ : Costab(X ) → X that
preserves colimits and is universal among colimit preserving functors from stable ∞-categories to
X .

Thus, is it evident that there is a natural equivalence Costab(X ) ' Stab(X op)op. Just as the
image of the functor Ω∞ consists of infinite loop objects in X , likewise the image of the functor Σ∞
consists of infinite suspension objects in X .

Under these assumptions above, both the stabilization and costabilization of X will exist. If
we further assume that either X or X op is either presentable, in which case the natural functors
Ω∞ : Stab(X ) → X and Σ∞ : Costab(X ) → X will both have adjoints by the adjoint functor
theorem.

Remark 5.5. Let us briefly place some of this discussion in the setting of prespectra, which
may be more familiar to some topologists. Given an object X ∈ X , we can form a prespectrum
with X(n) := ΣnX and X(−n) := ΩnX for n ≥ 0. To form the suspension spectrum, we localize.
If looping commutes with filtered colimits in X , this localization produces a spectrum with terms
(Σ∞X)(n) := lim−→i

ΩiΣi+nX. Likewise, to form the loop spectrum we perform the appropriate

colocalization. If suspension commutes with filtered limits in X , this resulting cospectrum has
terms computed by the formula (Ω∞X)(−n) := lim←−i ΣiΩi+nX. The terms of Σ∞X are infinite loop

objects in X , and the terms of the loop spectrum Ω∞X are infinite suspension objects in X . We
note that even without these commutation assumptions on X the stabilization and costabilization
of X will still exist, but it will not admit as simple a description in the familiar terms of prespectra.

The functors Σ∞ and Ω∞ are analogues of the previously mentioned abelianization and coa-
belianization. As usual, the suspension spectrum functor Σ∞ : X → Stab(X ) is the left adjoint to
the infinite loop functor Ω∞. Likewise, the right adjoint Ω∞ : X → Costab(X ) is the loop spectrum
functor. This obtains the following diagram of adjunctions:

X

Σ∞

((

Ω∞

{{xxxxxxxxxxxxxxxxxx

Costab(X )

Σ∞

44

Σ∞◦Σ∞
,,
Stab(X )

Ω∞◦Ω∞
oo

Ω∞

bbDDDDDDDDDDDDDDDDDD

The compositions above produce an adjunction between the stabilization and costabilization
of a pointed ∞-category X . We now turn to the question of the efficacy of stable or costable
objects in describing X . Previously, we had the notion of whether an ordinary category had enough
abelian groups or cogroups. In the ∞-categorical setting, we can state the corresponding concepts,
of whether an∞-category X has enough infinite loop objects, or enough infinite suspension objects.

Let us consider the case of stabilization first. The adjunction between X and Stab(X ) provides
an automatic approximation to the∞-category X as objects of Stab(X ) equipped with extra struc-
ture: given X ∈ X , we obtain the associated object Σ∞X in Stab(X ), and this object naturally
has the additional structure of a comodule over the comonad C := Σ∞Ω∞. Thus, we obtain a
functor Σ̃∞ : X → ComodC(StabX ). This functor is colimit preserving, and modulo some modest
hypotheses it will have a right adjoint.

We thus obtain two approximations, as algebras and coalgebras, to the ∞-category X in terms
of stable data: one approximation is like a ∞-category of comodules over the comonad C = Σ∞Ω∞

in Stab(X ), the other approximation is the ∞-category of modules over the monad T = Ω∞Σ∞ in
Costab(X ). This leads to the following enhancement our prevous diagram:
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ModT (CostabX )
--

++

��

ComodC(StabX )oo

zztttttttttttttttttttt

��

X

Ω̃∞

ddJJJJJJJJJJJJJJJJJJJJ

Σ̃∞

55

Σ∞

))

Ω∞

zzuuuuuuuuuuuuuuuuuuuuu

Costab(X )

freeT

JJ

Σ∞

33

,,
Stab(X )oo

Ω∞

ddJJJJJJJJJJJJJJJJJJJJ

cofreeC

OO

Lurie’s ∞-categorical Barr-Beck theorem, [L2], says when these two approximations will pro-
duce equivalences. The functor X → ModT (CostabX ) is an equivalence if and only if:

• the functor Ω∞ : X → Costab(X ) is conservative, which is equivalent to X having enough
infinite suspension objects;
• the functor Ω∞ preserves Ω∞-split geometric realizations. E.g., it suffices for Ω∞ to

preserve all geometric realizations.

Likewise, the functor X → ComodC(StabX ) is an equivalence if and only if:

• the functor Σ∞ : X → Stab(X ) is conservative, which is equivalent to X having enough
infinite loop objects (or enough cohomology theories);
• the functor Σ∞ preserves Σ∞-split totalizations. E.g., it suffices for Σ∞ to preserve all

totalizations.

Proposition 5.6. Let C be a stable ∞-category, and let X be the ∞-category of S-modules in

C for a monad S, X := ModS(C). Then the natural functor Ω̃∞ : X → ModT (CostabX ) is an
equivalence.

Proof. The forgetful functor G : ModS(C) → C is a limit preserving functor to a stable ∞-
category. Thus, by the universal property of the functor Ω∞ : ModS(C) → Costab(ModS C), there

exists a natural factorization of G through Costab(ModS C) via a functor G̃ : Costab(ModS C)→ C.
I.e., we have the following structure of a commutative diagram:

ModS(C)
Ω∞

vvnnnnnnnnnnnn
G

##G
GGGGGGGG

Costab(ModS C)
G̃ // C.

To prove the functor Ω̃∞ is an equivalence, as noted above, it suffices to show that Ω∞ satisfies the
monadic Barr-Beck hypotheses. We are assured that the forgetful functor G : ModS(C)→ C is con-
servative and preserves G-split geometric realizations. The factorization above immediately implies
that Ω∞ is thus conservative and preserves G-split geometric realizations. Now we need only note
that any Ω∞-split simplicial object is in particular G-split, and therefore Ω∞ in particular preserves
Ω∞-split geometric realizations. Ω∞ thus satisfies the monadic Barr-Beck criteria, implying the
result. �

We have the following consequence of this result.

Corollary 5.7. Let C be a symmetric monoidal ∞-category which is stable and such that
the monoidal structure distributes over colimits, and let O be an operad. Then natural functor

Ω̃∞ : O -alg(C)→ ModT (Costab(O -alg C)) is an equivalence.
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Proof. Under these hypotheses on C, there is an equivalence O -alg(C) ' ModS(C), where
S is the monad on C defined by the free O-algebra functor. Thus, we may apply the previous
proposition. �

The proposition above is completely self-opposite, i.e., we obtain the following by passing to
opposite ∞-categories.

Proposition 5.8. Let B be a comonad on a stable ∞-category C, and set X to be the ∞-

category of B-comodules in C. Then the naturally defined functor Σ̃∞ : X → ComodC(StabX ) is
an equivalence.

Proof. The argument is identical to that given for the proposition above. �

We finally suggest the following rough interpretation of some of the discussion above. The
adjunction ModT (CostabX ) � ComodC(StabX ) is a natural duality between algebraic and coal-
gebraic approximations to an unstable homotopy theory X . For instance, if X arises as some type
of theory of algebras, then the approximation as X → ModT (CostabX ) should automatically be
an equivalence, and the approximation as ComodC(StabX ) will be some nontrivial coalgebraic ap-
proximation that may or may not be an equivalence. Likewise, if X arises as a theory of coalebras,

the functor Σ̃∞ will automatically be an equivalence, while the functor Ω̃∞ will implement some

nontrivial duality – Ω̃∞ for coalgebras is some variant of the derived functor of primitives valued

in comodules, just as Σ̃∞ for algebras is a variant of the derived functor of indecomposables and
valued in modules.

If however, X arises in some completely different manner, neither Σ̃∞ or Ω̃∞ are guaranteed
to be good approximations. For instance, if X is the ∞-category of groupoids then both functors
are trivial, and more generally this will be true whenever the objects of an ∞-category are both
n-connected and m-coconnected.

For an∞-category of algebrasO -alg(C), although the functor Ω̃∞ : O -alg(C)→ ModT (CostabO -alg(C))
is guaranteed to be an equivalence, it not the case that the costabilization functor Ω∞ : O -alg(C)→
Costab(O -alg(C)) is uninformative. Roughly, one can think that the costabilization Ω∞(A) con-
tains not just the data of the underlying object of A in C, but also the action of an algebra of stable
operations on O-algebras. That is, we have a natural commutative diagram

Costab(O -alg)

G̃
''OOOOOOOOOOOOO
O -alg

G

��

oo

C
Set R := Hom(G,G). R can be thought as an algebra of operations acting on the underlying
object of any O-algebra, i.e., R is a type of O-Dyer-Lashof algebra. Then there is a natural map

Costab(O -alg)→ ModR(C) that factorizes G̃, and this map should be close to an equivalence.

6. Algebra Structures on the Cotangent Complex

In this section, we will specialize the previously discussed duality between algebra and coalgebra
approximations of an ∞-category X to the setting where X arises as O-algebras in a stable ∞-
category C.

This class of examples also has a more classical motivation. In the case of a discrete commutative
ring A, the module of Kähler differentials ΩA has the structure of a Lie A-coalgebroid. After
dualizing ΩA, this gives the perhaps more familiar statement that vector fields on A forms a sheaf
of Lie algebras on SpecA or, more specifically, a Lie A-algebroid. If A is provided an augmentation
A → k, the cotangent space of A has a Lie coalgebra structure, and likewise the tangent space of
A, Tk|A, has the structure of a Lie algebra.

We will study derived analogues of the above statement in the general setting of algebras over
an operad.
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6.1. Bar Constructions. Let us start with following basic construction: let T be an aug-
mented algebra in the monoidal∞-category Fun′(C, C), i.e., an augmented monad. Denote the aug-
mentation η : T → id, where id is the identity functor of C. We assume that the underlying functor of
T commutes with geometric realizations, and therefore the restriction functor Resη : C → ModT (C)
has a left adjoint Indη. The composition Indη ◦Resη has the structure of a comonad on C, with
counit µ : C → id, leading to the following canonical diagram:

ModT (C)

Indη ..

Ĩndη
++
ComodC(C)Resµ

��
C.

Resη
ddHHHHHHHHH Coindµ

99ssssssssss

The above construction is functorial in the augmented monad T , and thus we obtain a functor from
augmented monads to coaugmented comonads

Monads′aug(C) // Comonads′aug(C)

assigning to an augmented monad η : T → id the comonad C associated to adjunction (Indη,Resη)
on C. From our previous discussion, the value of the induction functor Indη(X) is calculated by
the geometric realization of the simplicial bar construction id ◦T X ' |Bar(id;T ;X)|. Since colimits
in Fun′(C, C) are calculated objectwise in the target, there is a natural equivalence id ◦T X '
(id◦T id)(X). Thus, the functor defined above is given by the usual bar construction of an augmented
algebra, which we can rewrite

Algaug(Fun′(C, C)) Bar // Coalgaug(Fun′(C, C)).

Remark 6.1. Again, it is necessary to require the functor underlying the monad T to commute
with geometric realizations. Forgoing this assumption may entail the following interrelated mishaps:
there may be no comonad structure on the bar construction id◦T id; the∞-category ModT (C) might
not have colimits; and the induction functor Indη may fail to exist.

Now let us assume that C is a monoidal ∞-category, and that the monoidal structure ⊗ on
C distributes over filtered colimits. We thus obtain a functor C → Fun′(C, C) sending an object
X to the functor X ⊗ (−). This functor is monoidal, and thus results in a functor Algaug(C) →
Monads′aug(C) sending an algebra A to the monad with underlying functor T = A⊗ (−). Applying
the construction above results in a comonad C ' id ◦T id whose underlying functor is equivalent to
C(X) ' (1⊗A1)⊗X. This results in a coaugmented comonad structure on the functor 1⊗A1⊗(−),
and hence a coaugmented coalgebra structure on 1⊗A 1.

Example 6.2. Let C be the monoidal ∞-category of symmetric sequences in a symmetric
monoidal ∞-category A. Augmented algebras in C are thus the same as augmented operads in
A, and coaugmented coalgebras are likewise the same as augmented cooperads. The construction
above thus gives a functor Operadsaug(C)→ Cooperadsaug(C) computed by the bar construction.

Now let C be a symmetric monoidal ∞-category, not just monoidal as as above, and assume
further that its monoidal structure distributes over colimits. Then there is a sequence of monoidal
functors C → CΣ → Fun′(C, C), where we map an object X of C to the symmetric sequence which
is X concentrated in degree one. Since these are monoidal functors, they induce functors from the
corresponding ∞-categories of algebras. These are compatible with the bar construction in each
case because of the following lemma.

Lemma 6.3. If C is a monoidal ∞-category which is cocomplete and whose monoidal structure
distributes over geometric realizations, then the functors CΣ → Fun′(C, C) → Fun(C, C) commute
with geometric realizations.
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Proof. Colimits in an ∞-category of functors are computed in the target. Thus, the inclusion
Fun′(C, C)→ Fun(C, C) preserves colimits, and it suffices to just consider the functor CΣ → Fun(C, C).
Let X• be a simplicial object in symmetric sequences CΣ and iX• the associated simplicial object
in endofunctors of C. There is a natural map |iX•| → i|X•|. To check the map is an equivalence,
we check their values on an arbitrary test object C in C. The map above can then be expanded as

|
∐
n≥0

X•(n)⊗Σn C
⊗n| −→

∐
n≥0

|X•(n)| ⊗Σn C
⊗n

which is an equivalence because the monoidal structure was assumed to distribute over geometric
realizations (and because coproducts, geometric realizations, and Σn-orbits are all colimits and
hence commute for formal reasons). �

Since the bar construction is computed as a geometric realization, and the functors C → CΣ →
Fun′(C, C) are monoidal and compatible with geometric realizations, we obtain the following com-
mutative diagram:

Monads′aug(C) Bar // Comonads′aug(C)

Operadsaug(C) Bar //

OO

Cooperads′aug(C)

OO

Algaug(C)

OO

Bar // Coalgaug(C)

OO

The induction functor Indη often has a more computable form. Let C be a stable monoidal ∞-
category whose monoidal structure ⊗ is compatible with colimits. Denote the unit of the monoidal
structure by 1, as usual. The ∞-category of augmented algebras Algaug(C) is the equivalent to
ModT (C), where T (X) is the free augmented algebra on X, T (X) =

∐
n≥0X

⊗n. T is an augmented
monad with η : T → id.

Proposition 6.4. Let C be as above, and let I : Algaug(C)→ C denote the functor that assigns
to an augmented algebra A of C the kernel of the counit map 1 ⊗A 1 → 1. Then there is a natural
equivalence Indη(A)[1] ' I(A).

Proof. Note that under the hypothesis above, the induction functor Indη is implementing the
stabilization of the ∞-category of augmented algebras in C, i.e., Indη ' Σ∞. Since the functor
I : Algaug(C) → C is colimit preserving, by the universal property of stabilization there is thus a
natural transformation Indη → I. To verify that a natural transformation between colimit preserving
functors is an equivalence, it suffices to check on a collection of objects that generate the∞-category
under colimits. Thus, we can check on free algebras, which we now do.

Consider A ' T (X) the free augmented algebra on an object X of C. There is a cofiber

sequence Ker(ε) → A
ε−→ 1, and the kernel of the augmentation is equivalent to the following

coproduct calculated in C, Ker(ε) '
∐
n≥1X

⊗n. Since the monoidal structure is compatible with

infinite coproducts, we can deduce formally that Ker(ε) ' X ⊗ A. I.e., there is a cofiber sequence
X⊗A→ A→ 1. Applying the exact functor (−)⊗A1 obtains a new cofiber sequence (X⊗A)⊗A1→
A⊗A1→ 1⊗A1, which can be simplified to X → 1→ 1⊗A1, or 1→ 1⊗A1→ X[1]. The counit map
1⊗A1→ 1 splits this cofiber sequence, and we thus derive the natural equivalence 1⊗A1 ' 1⊕X[1],
i.e., that X[1] ' I(A). Since Indη(A) ' X, this completes the proof. �

Remark 6.5. This result can be interpreted as saying that a shift of the cotangent complex of
an augmented algebra has the structure of a non-unital coalgebra.

In some sense, the essential ingredient in the proof above was the recursive form of the free
algebra functor T (X), that T (X) ' 1 ⊕ X ⊗ T (X). The free algebra functor may have such a
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recursive form, even without the requirement that the monoidal structure distributes over colimits.
The following result is due to Rezk.

Proposition 6.6. [Re] Let C be a monoidal ∞-category which is cocomplete and such that the

functor C ×C ⊗−→ C preserves colimits in the left variable and filtered colimits in each variable. Then
there is a natural equivalence T (X) ' 1qX ⊗ T (X) in C.

A consequence is that the previous proposition holds in greater generality.

Proposition 6.7. Let C be a stable monoidal ∞-category whose monoidal structure preserves
small colimits in the left variable and filtered colimits in each variable. Then there is a natural
equivalence Indη(A)[1] ' I(A), where Indη and I are defined as above.

Proof. The argument above applies verbatim. However, some extra care is required, because
without the assumption that the monoidal structure distributes over coproducts, the equivalence
between augmented and non-unital no longer holds. �

This extra generality allows the inclusion of several very interesting examples into the above
algebra/coalgebra schema.

Example 6.8. For instance, let C be the monoidal ∞-category Fun′(A,A) of sifted colimit
preserving endofunctors of a stable ∞-category A. The composition product ◦ distributes over all
small colimits on the left, and ◦ distributes over sifted colimits in each variable. Then augmented
algebras in C (i.e., augmented monads in A) are equivalent to modules over a certain augmented
monad T in C1.

Algaug(Fun′(A,A))
Bar // Coalgaug(Fun′(A,A))

shift ±1

ModT (Fun′(A,A))
Ĩndη //

Indη ((QQQQQQQQQQQQQ
ComodC

Fun′(A,A)
id/
/id

And a similar thing, once properly formulated, holds for the ∞-category of operads.

6.2. Local Structure on the Cotangent Complex. The upshot of much of the discussion
above is that certain standard dualities between algebras and coalgebras – such as the bar con-
struction from algebras to coalgebras – are implementing in particular cases the previous general
algebra-coalgebra duality obtained by costabilization versus stabilization. This recommends the
general procedure for application to slightly more exotic algebra structures, such as algebras over a
more general operad.

We now address the structure on the cotangent complexes of augmented, or nonunital, O-
algebras. The idea is that the Koszul duality of algebras over operads may be interpreted as assigning
the tangent complex to a formal moduli functor, and can thus be viewed in terms of stabilization.
From our study of stabilization, we know that the stabilization Stab(O -algnu) is equivalent to C.
From the previous section, we know that the value Σ∞A ' L(A) carries the structure of a non-unital
1 ◦O 1-coalgebra.

6.3. Structure on the Global Cotangent Complex. Let A be a unital O-algebra. We
then have the following picture from our previous discussion, specifying that the absolute cotangent
complex of A is a comodule over comonad C = LA ◦ (A⊕−).
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O -alg/A

LA ++

L̃A
,,
ComodC(ModOA)

��
ModOA

A⊕−
ddIIIIIIIII

77ppppppppppp

In the case where the operad O is the commutative, or E∞, operad. The situation above
recovers derived versions of the familiar notions of Lie algebroids and coalgebroids. Let E∞ denote
the commutative operad in pointed spaces, obtained from the commutative operad in spaces by
adjoining for each n a disjoint basepoint to the nth space of the operad.

Definition 6.9. The derived Lie cooperad coLie is the simplicial bar construction of the pointed
commutative operad E∞, i.e., coLie = 1 ◦E∞ 1.

Remark 6.10. Although it is more standard to deal with Lie algebras only in the stable context,
such as chain complexes, the notion of coLie coalgebras is sensible in any pointed∞-category without
the hypothesis of stability.

Let A be a commutative algebra in stable symmetric monoidal∞-category C⊗, and let C denote
the comonad on A-modules given by C(M) = LA(A⊕M). Then the ∞-category of comodules over
the comonad C is describes an ∞-category of coLie-A-coalgebroids:

E∞ -alg/A

LA
33

L̃A
--

A⊗− ++

ComodC(ModA)

��

'// {coLie−A− coalgebroids}

E∞ -algaug
A

ffMMMMMMMMMM

LA|A ,,

L̃A|A
,,

ComodC′(ModA)

OO

��

' // {coLie−A− coalgebras}

ModA

A⊕−
eeLLLLLLLLLL

77oooooooooooo

We will describe in a future treatment of these ideas how, in a similar sense, the global cotangent
complex of a general O-algebra A has the structure of a 1◦O 1-A-coalgebroid, and the global tangent
complex of A has the structure of an (1 ◦O 1)∨-A-algebroid.
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CHAPTER 4

Algebraic Geometry over En-Rings

1. Gluing En-Rings

In this section, we develop an approach to algebraic geometry over En-algebras based on
Grothendieck’s notion of the functor of points, similar to the approaches of [L0] or [TV2]. To
make sense of an algebro-geometric object X defined over a certain category of rings R, we should
specify the data of the object and the property of the geometry: to give the data of object, one
must assign R-points of X, for every R ∈ R, which one may think of the R-valued solutions of
the equations defining X; second, one specifies in what sense solutions glue together. This second
condition may be interpreted as giving a Grothendieck topology on the (opposite) ∞-category R,
which is equivalent to usual notion of a Grothendieck topology on the homotopy category of Rop.

Thus, our first order of business will be to define several topologies on the ∞-category of En-
rings.

1.1. Grothendieck Topologies on En-Rings. The theory of derived algebraic geometry over
connective rings more closely resembles classical algebraic geometry, as opposed to when our En-rings
are allowed to have nonzero homotopy groups in negative dimensions.

We recall the definition of a flat module for an A∞-ring given in [L2].

Definition 1.1. Let A be an A∞-ring, and let M be a left A-module. M is flat if:

• π0M is a flat π0A-module in the classical sense (i.e., (−)⊗π0A π0M is an exact functor);
• The natural maps πnA⊗π0A π0M → πnM are isomorphisms.

We will further say the moduleM is faithfully flat if it is flat and the functor (−)⊗AM is conservative.

Using the above notion of flatness, we now present a notion of an étale map. In the case n =∞,
this is precisely the definition given in [L4] and very similar to the notion presented in [TV1].

Definition 1.2. An En-ring map f : A→ B is étale if:

• B is flat as a left A-module;
• The map π0f : π0A→ π0B is an étale map of discrete commutative rings.

Using this definition of an étale map, we can give a notion of a Zariski open.

Definition 1.3. An En-ring map f : A → B is a Zariski open immersion if it is étale and the
map π0f is a Zariski open immersion of discrete commutative rings.

We are now in a position to define the topologies of interest on En-rings. As described in [TV1]
or [L], a topology on a homotopy theory of rings R will be equivalent to giving a Grothendieck
topology on hRop, the opposite of the homotopy category of R.

Definition 1.4. The étale topology Tét on En -rings has admissible morphisms given by étale
maps A → A′ and covering families consisting of collections {fα : A → Aα : fα étale, α ∈ I} for
which there exists a finite subset I ′ ∈ I such that the map

A→
∏
α∈I′

Aα

is faithfully flat.

The étale topology will our primary focus. We also give a definition of the Zariski topology.
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Definition 1.5. The Zariski topology TZar on En -rings has admissible morphisms f : A→ A′

that are étale and such that π0f is a Zariski open immersion. The covering families are collections
of Zariski admissible maps subject to the same conditions as for the étale topology.

1.2. Localization of En-Rings. An important facet of the classical theory of commutative
rings is the ability to localize, i.e., to invert an element x of a ring A to obtain a ring A[x−1] that
models the original ring A away from x. In this section, we will study such localization procedures for
En-rings. The availability of such features will be important in the study of the algebraic geometry
of En-rings, and we will make immediate use of it in the subsequent section to construct the Zariski
spectrum of an En-ring.

We begin by considering what functorial property a localization should possess. For the def-
inition below, let A be an En-ring, x an element of π0A, and denote by X the functor that A
corepresents, i.e., X(B) = MapEn(A,B).

Definition 1.6. For A, x, and X as above, then X − x is a functor from En -rings to Spaces,
together with a natural transformation of functors X − x → X, such that for any B the map
(X − x)(B)→ X(B) = MapEn(A,B) is a homotopy equivalence between the left hand side and the
subspace of the right hand side consisting of those components for which the image of x is invertible
in π0B.

In other words, this identifies what functor the localization of a ring A at an element x should
corepresent. Our reason for choosing the suggestive notation for X−x will be clear later in discussion
of the related geometry. In the following definition, let A, x, and X − x be as above.

Definition 1.7. The localization of A at x is an En-ring A[x−1] together with a map A →
A[x−1], such that A[x−1] corepresents the functor X − x defined above.

If the En-ring A[x−1] exists, then it is essentially unique by the ∞-categorical Yoneda lemma.

Proposition 1.8. For A an En-ring with x ∈ π0A, the localization A[x−1] exists.

Proof. We will make the following construction, which we will afterward show satisfies the
correct universal property of the localization. Consider the En-ring A q F (S), the coproduct in
En-rings of A with the free En-ring on the sphere spectrum. There exist a natural map of of graded
abelian groups π∗A⊗ π∗S→ π∗(A q F (S)). Thus, the choice of the element x of π0A and 1 ∈ π0S
thus gives an element of π0(AqF (S)), which may be represented by a map of spectra S→ AqF (S).
This map is adjoint to a map of En-rings F (S) → A q F (S). Likewise the identity map S → S of
spectra is adjoint to a map of En-rings F (S) → S. We now define “A[x−1]” to lie in the pushout
square

F (S) //

��

Aq F (S)

��
S // “A[x−1]”.

We now check that “A[x−1]” satisfies the correct mapping property. By definition, for any En-ring
B we have the following homotopy pullback square of spaces

MapEn(“A[x−1]”, B) //

��

MapEn(Aq F (S), B)

��
MapEn(S, B) // MapEn(F (S), B).

We now analyze this diagram. Note first that MapEn(S, B) is homotopy equivalent to a point, since
S is the initial object of En -rings. Second, we have that MapEn(F (S), B) ' Map(S, B). We now
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rewrite the above diagram

MapEn(“A[x−1]”, B) //

��

MapEn(A,B)×Map(S, B)

��
∗ // Map(S, B).

The fiber of the identity map ∗ → Map(S, B) exactly consists of the those maps A→ B and S→ B
such that the product of the right map with x is the identity in B. This thus presents the fiber
MapEn(“A[x−1]”, B) as the space of maps from A to B such that the image of x is invertible. Hence,

we obtain the equivalence “A[x−1]” ' A[x−1], and therefore A[x−1] exists. �

It is worthwhile to note the following property of localizations, which will be relevant to our
later discussion of the cotangent complex of a scheme over En-rings.

Lemma 1.9. Let B be a localization of A, i.e., there is an En-ring map A → B and a map of
spectra V → A such that B is universal among En-rings such that the image of V is invertible. Then
the relative cotangent complex LB|A is contractible.

Proof. From our discussion of stabilization and the cotangent complex previously, the relative
cotangent complex LB|A can be computed by the stabilization of ∞-category of En-A-algebras
over B. That is, there is an equivalence B ⊕ LB|A ' Ω∞B Σ∞B (B qA B). The pair of functors

Σ∞B : En -algB � ModEnB : Ω∞B is an adjunction of pointed ∞-categories, and thus both Σ∞B and
Ω∞B preserve the final objects, providing an equivalence Ω∞B Σ∞B (B) ' B. B qA B is the colimit in
En-rings of the diagram B ← A→ B. Since B is a localization of A, we can see that En-ring maps
out of BqAB satisfy the same universal property that B satisfies, and thus there is an equivalence
B ' B qA B. This then computes that Ω∞B Σ∞B (B qA B) is equivalent to B, implying that LB|A is
contractible.

�

1.3. Derived Schemes and Stacks. In pursuing algebraic geometry over some particular
type of rings, it common to simply define the affine objects as the full subcategory of presheaves
given by representable objects. In the case of algebraic geometry over En-rings, as with usual
commutative algebra, it possible to geometrically describe this full subcategory of affine objects, as
a sheaf of En-algebras on a topological space.

We now present the notion of the Zariski spectrum of an En-ring A. Recall, for a (discrete)
commutative ring A, the Zariski spectrum of A consists of a topological space SpecA together with
a sheaf of commutative rings OSpecA. The space SpecA has as underlying set prime ideals p ⊂ A,
and its topology is generated by specifying open sets for every x ∈ A defined by Ux = {p : x /∈ p}.
The sheaf of rings OSpecA is determined by its values on these generating open sets, on which it is
defined to take values OSpecA(Ux) := A[x−1].

We will make a similar definition for the Zariski spectrum of an En-ring A, which will consist of
a topological space SpecA equipped with a sheaf of En-rings OSpecA. Further, the topological space
SpecA will be equivalent the usual Zariski spectrum of the commutative ring π0A. That this the
correct approach to making the spectrum of a derived ring is far from obvious, but we will see that
constructs an ∞-category equivalent to the opposite ∞-category of En-rings, and that it correctly
models how we might wish to glue En-rings together.

This allows the following construction of Zariski spectra for En-rings.

Definition 1.10. The Zariski spectrum SpecA of an En-ring A consists of a topological space
equipped with a sheaf of En-rings, (Spec(π0A),O). The underlying topological space is the usual
Zariski spectrum of π0A, and the sheaf of En-rings O on Spec(π0A) is determined by the values on
the generating opens O(Ux) := A[x−1], for each x ∈ π0A.
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Let X and Y be the Zariski spectra of En-rings A and B. We define the space of maps from X
to Y to be

Map(X,Y ) :=
∐

π0B
f−→π0A

Map0
En(OY , f∗OX).

Let Aff(En) denote the∞-category of Zariski spectra of En-rings, with objects and maps defined
as above.

Above, we gave a descpription of an affine scheme associated to an En-ring as a topological
space with a sheaf of En-rings. We now adopt a more abstract approach as in [L0], adapted to the
En setting. Here, a scheme will be a Grothendieck topos equipped with a sheaf of En-rings. This
approach is well suited to constructing a large supply of stacks over En-rings that nonetheless have
recognizably geometric behavior. Much of this treatment could be conducted much more generally,
as Toën and Vezzosi do in [TV2] and Lurie does in [L5].

Recall from [L] the notion of an∞-topos: an∞-topos X is a∞-category equivalent to a localiza-
tion of an∞-category of presheaves of spaces on a small∞-category P(A) such that the localization
functor L : P(A) → X preserves finite limits and filtered colimits. Intuitively, there should exist
some Grothendieck topology on P(A) with respect to which the objects of X are sheaves. These
topoi will serve as the underlying “space” in our ringed space approach to geometrically describing
moduli functors for En-rings.

Definition 1.11. An En-ringed∞-topos (X ,O) consists of an∞-topos X together with a sheaf
O valued in En-rings, i.e., a limit preserving functor O : X op → En -rings.

Let T be a topology on En -rings. We now describe the notion of the T -spectrum of an En-ring
A in terms of a universal property of T -locality. For T the Zariski topology, this gives a notion
corresponding to our previous explicit construction of Zariski spectra. For T the étale topology,
this gives appropriate affine building blocks for more general stacks analogous to Deligne-Mumford
stacks.

Definition 1.12. Let X be an ∞-topos with an En-valued sheaf O, and let T be a topology
on En -rings. Then O is T -local if for any U ∈ X and a T -admissible cover {fα : O(U)→ Rα}, the
collection {Sol(fα) → U} forms a cover of U in X , where Sol(fα) is the object of X/U such that
HomO(U)/(Rα,O(U ′)) ' Hom/U (U ′,Sol(fα)).

The first example of a En-ringed topos which is local with respect to a topology on En-rings is
given by the Zariski spectrum of an En-ring considered above. It is an observation of Grothendieck
that this notion of locality is a defining property of the spectrum of a commutative ring. Rewinding,
suppose we wanted to describe a commutative ring A a space with a sheaf of rings. The most obvious
way to achieve this is simply to let the space be a single point and the sheaf of rings just be the
constant sheaf with value A. However, this ringed space is not local with respect to the Zariski
topology in the sense of the above definition, so one could ask for one that is. This leads to one
characterization of the classical spectrum of a commutative ring. Of course, one need not have
restricted oneself to the Zariski topology, so we have the definition below.

Definition 1.13. For A ∈ En -rings and T a topology on En -rings, the En-ringed ∞-topos
SpecT A is defined as the universal T -locally En-ringed ∞-topos with a map to (∗, A).

Recall that classically, a scheme is defined as a ringed space that is locally affine with respect
to the Zariski topology. Given a topology on En, we may now give a notion of affine schemes with
respect to this topology.

Definition 1.14. A T -locally affine scheme (i.e., T -scheme) over En -rings consists of an En-
ringed ∞-topos (X ,OX ) such that T -locally X is equivalent to SpecT A, for A ∈ En -rings.

Several topologies are available in the case of En-rings. For the Zariski topology TZar, the
resulting notion of an affine scheme is closest to usual classical schemes. However, a more flexible
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notion results if we use the étale topology Tét and thus allow more gluings. The notion of a Tét-
scheme is very close to the classical notion of a Deligne-Mumford stack, which is typically defined to
be a ringed topos which is étale locally affine that further satisfies the condition that the diagonal
map is separated.

Derived schemes that are étale locally affine obtain many of the good properties of En-rings
which are étale local. For instance, in future work we will show that the relative cotangent complex
of an étale map is contractible, so one may expect statements about the deformation theory of
En-rings to directly transfer to Tét-schemes. We will see an example of this in our later discussion of
the cotangent complex. One might not expect such automatic transfers for a more general class of
stacks which are locally affine with respect to a finer topology, since the relative cotangent complex
of a flat or smooth map will not typically vanish.

We now turn our attention to defining more general classes of stacks over En-rings. First, any
En-ringed ∞-topos X defines a moduli functors on En-rings. For instance, if X is local with respect
to the étale topology Tét, then it defines a moduli functor that is a sheaf with respect to the étale
topology on En -ringsop. To make this precise, we need the notion of an étale local map.

Definition 1.15. Set f : X → Y, f∗OY → OX , a map of En-ringed ∞-topoi. Further, let U
be an object of Y, let ϕ be any étale En-ring map OY(U) → A, and denote by ϕ′ : OX (f∗U) →
OX (f∗U)

∐
OY(U)A the pushout in En-rings of ϕ along the map OY(U)→ OX (U). Then f is étale

local if then the natural map f∗Sol(ϕ)→ Sol(ϕ′) is an equivalence, for any U and ϕ.

Thus, given any En-ringed ∞-topos X which is étale local, we can define a functor X :
En -rings → Spaces with values X(A) := Mapét(SpecA,X ), the space of étale local maps of En-
ringed ∞-topoi from the étale spectrum of A into X . X is a sheaf on En -ringsop with respect to
the étale topology.

Proposition 1.16. The functor that to an étale scheme in En-rings assigns the associated
moduli functor, Tét-Schemes→ Fun(En -rings,Spaces), is fully faithful.

Proof. Maps in both ∞-categories are local in the source, and thus it suffices to check homs
for which the source is affine. This case, however, is then a consequence of the∞-categorical Yoneda
lemma. �

To consider more general analogues of Artin stacks in En-rings, it is just as tractable to focus
on the moduli functor approach, rather than that of the ringed space approach, as in common in
classical algebraic geometry. The following definitions are essentially those of Toën and Vezzosi in
[TV2] and Lurie in [L0] placed in context of En-rings.

First, to work with more general stacks it is standard to relax the condition that a stack have an
étale cover by an affine, to that of having a smooth cover. We thus require a definition of smoothness
in the En-ring setting.

Definition 1.17. A map f : X → Y is smooth if f can be factored étale locally on X as étale
map followed by a projection. I.e., f is smooth if there exists an étale covering {Xα → X} such

that each f |Xα be factorized as a composition f |Xα : Xα
i−→ Y ×W p−→ Y , where i is étale and p is

the projection.

Definition 1.18. A moduli functor X : En -rings → Spaces is an n-geometric stack if it is a
sheaf for the étale topology, there exists a smooth cover U → X where U is a coproduct of affines,
and the fiber product SpecA×X U is an (n− 1)-geometric stack for any affine SpecA → X. X is
0-geometric stack if it is affine.

Remark 1.19. The case of 1-geometric stacks in the above definition is particularly interesting.
These are stacks whose diagonal is affine, i.e., whose diagonal map X → X ×X is a relative affine.
Examples include the classifying stack BG for any affine algebraic group G in En-rings.

We can obtain a different notion of an n-stack by changing the class of 0-stacks with which the
inductive definition starts.
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Definition 1.20. An n-geometric stack X is an Artin n-stack if for any discrete En-ring R the
space X(R) is n-coconnective.

In other words, a moduli functor X is an Artin n-stack if and only if X is an n-geometric stack
and πiX(R) = 0 for any i > n and R discrete.

Remark 1.21. This class of Artin n-stacks should be characterized by conditions as in Artin’s
representability theorem, or Lurie’s version for simplicial commutative rings [L0]. In a future
elaboration of this work, we intend show that if a moduli functor X is an étale sheaf, has a cotangent
complex, preserves filtered colimits, is nilcomplete, infinitesimally cohesive and takes n-coconnective
values on discrete En-rings, then X is represented by an n-stack.

2. Quasicoherent Sheaves

The two notions of modules for En-algebras likewise lead to two notions of sheaves on a stack
in En-algebras. That is, let M be a notion of modules for O-algebras, by which we will mean that
M has at least the structure of a covariant functor M : O -alg → Cat∞, assigning an ∞-category
to every algebra and an induction functor f!M(A) → M(B) for every map f : A → B. We can
thereby prolongM to assign values to moduli functors of spaces P(En -algop). We give the following
definition, replacing En -alg with an arbitrary presentable ∞-category C.

Definition 2.1. LetM : X → Cat∞ be a covariant∞-category valued functor. M is prolonged
to the ∞-category of space-valued functors of X by assigning to X the ∞-category

M(X) := lim
A∈X op

/X

M(A).

This defines a functor M : P(X op)→ Cat∞.

The above admits the following, perhaps more conceptual, reformulation. That is, an object
M ∈ M(X) is a natural transformation of functors M : π∞ ◦ X → M, where the ∞-groupoid
functor π∞ represents the fully faithful embedding of spaces into ∞-categories (as ∞-categories
with invertible 1-morphisms).

Spaces

π∞

$$I
IIIIIIII

X

X

<<xxxxxxxxx

M
// Cat∞

In other words, we can describe the value of M on X as the hom M(X) ' Hom(X,M) taken in
the functor category of X -diagrams, (Cat∞)X .

Remark 2.2. Since we have not made any smallness requirements on X , this prolonged version
version of M may take very large values for an arbitrary moduli functor. That is, the homs in
M(X) are not guaranteed to be small. However, in practice this will not be an issue, as all the
presheaves that we will consider will satisfy an appropriate smallness condition.

The considerations above apply to the particular case where X is O -alg, or more particularly
to En -rings, which is our main focus. However, we have several notions of modules for an En-ring
A, and this leads to several notions of sheaves for a moduli functor. First, we present the notion of
sheaf corresponding to left modules.

Definition 2.3. For X a moduli functor on En -rings, X ∈ Fun(En -rings,Spaces), the ∞-
category of quasicoherent sheaves on X is defined as the above construction applied for the functor
M = Mod, where Mod is the covariant functor of left modules assigning ModA to an En-ring A and
assigning the induction functor B ⊗A − to an En-ring map A→ B. In other words, we have

QCX := lim
A∈Aff/X

ModA ' Hom(X,Mod).
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We also have a notion of En-A-modules, leading to the following notion:

Definition 2.4. For X a moduli functor on En -rings, the ∞-category of Ei-quasicoherent
sheaves on X, 1 ≤ i ≤ n, is the above construction applied for the functor M = ModEi , where
ModEi the covariant functor of Ei-modules, defined by assigning ModEiA to A and the induction
functor f! ' UB ⊗UA − to an En-ring map f : A→ B. More precisely, we have

QCEiX := lim
A∈Aff/X

ModEiA ' Hom(X,ModEi)

The interactions of these two types of sheaves provides the theory of derived algebraic geometry
over En-rings much of the flavor that distinguishes it from the case of En∞-rings.

There exists a natural functor G : ModEnA → ModA, intuitively defined by forgetting the space
of actions of A on a module M except in a single direction. This functor has a left adjoint F , which
can be computed by the bar construction UA ⊗A −, where UEnA denotes the En-enveloping algebra

of A, as previously discussed. For instance, the ∞-category ModE1A is equivalent to A-bimodules, or
A ⊗ Aop-modules, there is a forgetful functor ModA⊗Aop → ModA given by remembering the left
A action with left adjoint (A ⊗ Aop) ⊗A −. The sequence of operad maps E1 → E2 → . . . → En
have an associated sequence of forgetful functors on modules, each with a left adjoint computed by
UEi+1
A ⊗

U
Ei
A

−. This obtains a sequence of induction functors

ModA // ModE1A
// ModE2A

// . . . // ModEnA ,

and for more general X defined over En-algebras, we thus obtain a sequence of functors

QCX // QCE1X
// QCE2X

// . . . // QCEnX .

This composite functor F : QCX → QCEnX will be of particular interest to us.
Recall that for any map of En-rings f : A → B, these induction and restriction functors sit

together in the following diagram of adjunction.

ModEnA

G

��

f!

++
ModEnB

G

��

Resf

oo

ModA

F

DD

B⊗A−
**
ModB

F

DD

Resf

oo

where there is further there is an equivalence ModEnA ' ModGF (ModA) ' ModUA .
The situation is similar for quasicoherent sheaves on stacks over En-rings. There is a natural

adjunction of ∞-categories F : QCX � QCEnX : G, where T = GF is a monad on QCX associated
to the functor G above. We can set UX := FG(OX), where OX is the structure sheaf of X
regarded as an En-quasicoherent sheaf on X, so that UX is an En-quasicoherent sheaf that can
be regarded as a left quasicoherent sheaf of algebras on X. The adjunction above gives a functor
QCEnX → mUX (QCX). Unlike in the affine case, this functor is not guaranteed to be an equivalence,
though it often is in many interesting examples.

Given a map of stacks f : X → Y , we thereby obtain a corresponding diagram of adjunctions

QCEnY

G

��

f∗

**
QCEnX

G

��

f∗

oo

QCY

F

DD

f?

**
QCX .

F

DD

f?

oo
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Remark 2.5. These two notions of quasicoherent sheaves play quite different roles. In some
sense, the∞-category QCX , rather than QCEnX , is a better categorical approximation to the structure
of X. A map f : X → Y give rise to En−1-monoidal functor f? : QCY → QCX , and under good
conditions there should be an equivalence between such functors and such maps, which is a form
of Tannakian duality. No such relation is apparent with QCEnX . However, the ∞-category QCEnX
is more geometric. The cotangent complex is naturally an element of QCEnX , not QCX . Further,

there is a relative spectrum functor SpecX that takes an En-algebra A in QCEnX and produces a
stack SpecX A→ X that is a relative affine over X. We will study these features in more detail in

a future elaboration of this work, where we will see in particular that QCEnX is the En−1-Drinfeld
center of QCX when X is a 1-geometric stack. This last statement is closely related to work with
Ben-Zvi and Nadler in [BFN].

3. The Cotangent Complex

Before stating the relative version of the cotangent construction, it is convenient to first refor-
mulate the previous absolute definition. Let X be a moduli functor on O-algebras, C an O-algebra,
and let x ∈ X(C). For M an O-C-module, we will denote by fiberx(M) the fiber over the point x
of the natural map X(C ⊕M)→ X(C). That is, we have a Cartesian square of spaces below:

fiberx(M)

��

//

��

X(C ⊕M)

��
{x} // X(C)

Definition 3.1. The cotangent complex of X, LX , is the O-quasicoherent sheaf on X defined
by having a natural equivalence

HomModOC
(LX(x),M) ' fiberx(M).

If the quasicoherent sheaf LX exists, it is as usual unique up to a natural equivalence. In the
study of classical Artin stacks, the existence of a cotangent complex is a key factor distinguishing
between general moduli problems and those that may be described more geometrically.

Let f : X → Y now be a map of moduli functors, and let us now define a relative notion of the
cotangent complex. Given a point x in X(C) and M define the relative fiber, fiberx(M ; f), to lie in
a Cartesian square below:

fiberx(M ; f)

��

//

��

X(C ⊕M)

��
{x} // X(C)×Y (C) Y (C ⊕M).

We may now ask for some O-quasicoherent sheaf to corepresent the above functor of M .

Definition 3.2. The relative cotangent complex LX|Y is an O-quasicoherent sheaf on X with
the structure of a natural equivalence for any C and M , of

HomModOC
(LX|Y (x),M) ' fiberx(M ; f).

This construction specializes to one above when Y is Spec k. It is worth rewording the definition
to make the connection with the previous definition of the relative cotangent complex LB|A of a map
of O-algebras A→ B. Let X = SpecB and Y = SpecA, where by SpecR we are just denoting the
moduli functors corepresented by the O-algebra R, i.e., SpecR := MapO -alg(R,−). The Cartesian
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square above can be rewritten as

fiberx(M ; f)

��

//

��

MapO -alg(B,C ⊕M)

��
{x} // MapO -alg(B,C)×MapO -alg(A,C) MapO -alg(A,C ⊕M).

where x the point of X(C) is now a map x : B → C. To pick out the O-B-module that has
this property, i.e., that corepresents this functor, it suffices to specialize to the case where x is the
identity map B → B. In this case, the diagram simplifies to

fiberidB (M ; f)

��

//

��

MapO -alg(B,B ⊕M)

��
{idB} // MapO -alg(B,B)×MapO -alg(A,B) MapO -alg(A,B ⊕M).

from which the fiber can be identified as fiberidB (M ; f) ' MapO -alg
A/

/B

(B,B⊕M), exactly the value

of the cotangent complex defined previously.

Proposition 3.3. Let X
f−→ X ′ → X ′′ be maps of moduli functors of O-algebras, and as-

sume that the relative cotangent complexes exist. Then there is a natural cofiber sequence of O-
quasicoherent sheaves on X given by

f∗LX′|X′′ → LX|X′′ → LX|X′ .

We now explore the means by which the cotangent complex detects properties of maps of moduli
functors.

We now turn to the problem of describing the cotangent complex of a scheme in a similar way
to how we identified the cotangent complex of an En-algebras from the cofiber sequence A→ UA →
LA[n]. We will require the following lemma.

Recall the adjunction F : QCX � QCEnX : G, with UX = FG(OX). We can now globalize our
previous description of the cotangent complex of an En-algebra.

Theorem 3.4. Let X be a scheme over En-rings. Then there is a cofiber sequence UX → OX →
LX [n] in the ∞-category of En-quasicoherent sheaves on X.

Proof. By assumption, X can be described as an En-ringed space with a cover by affine. Let
f :

∐
α SpecAα → X be such a cover. Applying the functor f∗α to the cofiber sequence UX →

OX → Coker gives a map f∗UX → f∗OX of En-A-modules. There is an equivalence f∗UX ' UA,
without any hypotheses on the map f . Using that f is an open embedding, we furthermore have
the equivalence f∗OX ' A. (Note that this is false generally, as for a general map of affine B → B′,
f!B � B′, but this is true for a localization B → B[x−1] since the relative cotangent complex of a
localization vanishes.)

Thus, we obtain that the pullback of the cofiber sequence UX → OX → Coker is equivalent to
the cofiber sequence UA → A→ LA[n]. Thus, there is an equivalence f∗αCoker ' LA[n] ' f∗αLX [n].
Since, the map

∐
α SpecAα → X was a cover, we obtain that the equivalence Coker ' LX [n], and

therefore there is a cofiber sequence UX → OX → LX [n] of sheaves on X.
�

This result also globalizes the relation between derivations and Hochschild cohomology, which
we will see after we formulate the natural definition of En-Hochschild homology for a stack.

Definition 3.5. The En-Hochschild cohomology of a moduli functor X of En-rings with coef-
ficients in an En-quasicoherent sheaf M is

HH∗En(X;M) = HomQCEnX
(OX ,M).
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We thus have the following corollary of the above theorem.

Corollary 3.6. Let X be a scheme over En-rings, and let M be an En-quasicoherent sheaf on
X. Then there is a cofiber sequence of spectra

HomQCEnX
(LX ,M)[−n] // HH∗En(X;M) // ΓM

where ΓM is the global sections of M . In the particular case of M = OX , this cofiber sequence can
be rewritten as ΓTX [−n]→ HH∗En(X)→ ΓOX , where TX is the tangent complex of X. In this case
we obtain a relation between the tangent complex of X, the Hochschild cohomology of X, and the
sheaf cohomology of X.

Remark 3.7. The previous result is true in greater generality. For instance, the result holds if
X is a Tét-scheme, i.e., if X is étale locally affine. However, the proof requires first showing that
the relative cotangent complex of an étale map of En-rings is contractible, which we postpone to to
a future, more detailed, treatment of this subject.
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