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 Preface .

    These are the notes from 6 lectures I gave at Kyoto University 

in the spring of 1967. They deal with the algebraic problems 

which arise in the determination of  various cobordism theories, especially 

Spin, Pin,  Spine, and PL(both oriented and unoriented). The ideas

and results are taken from  my published and unpublished joint work 

with  D. W. Anderson and E. H. Brown, W. Browder and A. Liulevicius, 

D. Sullivan, and  H. Toda.

 F.  P. Peterson 

26 July 1967
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 '5 1 . Introduction,

    First we recall Thom's theory of cobordism. Let 0 be the orthogonal 

group and G  ---* 0 a homomorphism (G(k) 0(k) are suitable 

homomorphisms for each k): for example we consider the cases 

G = 0, SO, U, SU, Spin. There is a map g of the classifying space 

BG(k) into BO(k) such that for the universal vector bundle  yk over 

BO(k),  g*yk is a universal bundle over BG(k). We denote:

MG(k) = Thom space of the bundle  eyk

= one point compactification of the bundle space E

= E  
<  1  E_1  .

Always we assume that the coefficient group is  Z2 and is  omitted.

As is well known we have Thom's isomorphism

 

:  11* (BG(k))  Pk(MG(K)  ).

 Whitney  sum with a trivial line bundle defines a natural  map

SMG(k) MG(k+1), hence (MG(k)) forms a spectrum  ma,  (mG)k  MG(k).

Then the Thom isomorphism becomes

H*(BG)  1-1*(MG)  lim  H*74.k(MG(k)) (spectrum  cohomology). 
 k.*  co

Now Thom's first theorem states 

 G Theorem(Thom) nnLelimar(MG(k))Irn(MG). 
                 k+k 

From now we shall use no  geometry. To study homotopy theory of MG

for various  G0 the main tool is to study the structure of  11*( Mg)
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If G has Whitney sums, that is, there are mappings 

         BG(k)  X BG(2)  ----*  BG(k4.2)

with appropriate properties, then this defines mappings 

 MG(k)AMG(/)  MG(k+2)

and thus a map  MGA MG MG of spectrum. Therefore  H7*(MG) is a 

coalgebra. Here  Q. operates on H*(MG) H*(MG) via the Cartan formula.

Case  1.  G  = 0

    We have the following 

Thom's theorem

 H*(MO) = free  Q  -module
01.1.1

Therefore MO is equivalent to the wedges of  K(Z2,k), the Eilenberg-MacLane

 spectrum. (Thom gave a long calculational proof) 

Case 2. G  = SO

     For this case we have the following 

 Wall's theorem

 H*(MS0) direct sum of  0/  (Sql).4;free  a  -module and further

he proved

 MS0 2—wedges of K(Z,k) and K(Z2,k) 

Before we state the case 3 we give a simpler proof of these theorems.

Proof of Case 1.

Theorem  1. Let M be a connected  coalgebra with unit over  a  , a Hopf 

algebra. Define a homomorphism  0 :  M by  0(a) =  a(1)  . If 

Ker  0 = 0, then M is a free  a  -module.(This is a theorem due to Milnor 

Moore)
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Proof. We denote by  4a the positive dimensional elements of  a 

We set  Pi=  M/(  M, then it is a graded vector space. Let  1r: 

be a projection. Let  671.) be a Z2-basis for  M such that 
dim.  EC. < dim.-i+1.Choose a homomorphism gM such that 

ng m   =  id and  mi =  g(Ed. We define 0  :0„0  --3•M by  e(a  171) =  a•g(M). 
Then this is a map of left  a  -modules. The elements  fm  ) form a generating 

set over  a for M. So it is  obvious that it is  epimorphic. We want to

prove that  e is a  monamorphism. 

Put

g=17471rectorspacespannedbyriTi< n.

We consider the compositions of the following  maps:

 Ce,  M  -±-oM  M  M  1-114-M  0  14017In

(The last one is a natural projection)

              /Let E a,m. eFir  be  in Ker.0 with aO. 
< nn

The elementiEna.0m.is mapped by 0 to E a.mi= 0 in M. And then <

it is mapped  to  E Ea.ti!3 . ® ai"13.13..I'mby  r•(*(a.) = Ea.'  0 a."1I*(m.) 

1 

 -_ 

                                            11 
 =Em°0m .").Then it is mapped to  E a.m.'^74m.1" (note that 

3. 
 -

n,_ 
degm. <  degni.),finally to an(1)P4mnOD Mn.n MHence an(1) = 0 

1

 and  so a  =0 as  Ker.  0  =  O.

This is a contradiction. q. e. d.

    By using the same method (but more complicated) we can prove: 

Theorem 2'. Let M be a connected coalgebra over  a  . Let  0 :  Ct  --+ M. 

Assume Ker  P =  1  (Sq). Then M direct  sum of copies of  0/  a(Sql)49

free.
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    Once we prove this, this implies Wall's theorem. Theorem 2' is 

a bad theorem, because it does not generalize to the case

       a (Steil, -q2 Ker =) (this corresponds to the case MSpin).

We need some notations.

If X is an a  -module, let  Qo =  Sq1  E  a , then  Q02  =  0.

 So  go acts as differential on X. Then we may consider H(X 

    Theorem 2. Assume given  o' : a/  a(Sql)  e  X M  (X is

a graded vector space), a map of left  a  -modules such that 

      01 :  H(O/a(Sq1)0 X  :  Q0)  --4 H(M ;  Q0)
                                                                                            1,, is an  isomorphism. (Mis connectedcoalgebra over(e, Ker =6L(Sq)). 

Then  0 is a monomorphism and  M/  1m  0' is a free  a  -module.

Theorem 2  > Theorem 2'.

Lemma. If N is an  0  -module then there exists  e'  :  0/0(sq1)ox  -0N 

which  is an isomorphism on  H(

(  H(Pa(Sql)  Qo) =  Z2 generated by Sq°. 

 Take a basis for H(N :  Q0) 

      0/0(Sql)  ----* each basis element  . )

We set T =  ia(Sql) X and. let  ir  : M  171 =  .M be the  projection.

We find. Z C M such that  itIZ is a monomorphism and

 171  =7C-(  0'(T))  WIRZ). Let  N= T  (R.®  z) and  e : N  M, 

 e  IT =  9, and  0(Z)  = Z. Extend it to  a  0  Z by  linearity. 

    We prove that  0 is isomorphic. Set  N(n) = sub  amodule generated

by  N.< n. In general we have  0(n)  N(n)  M(n). We prove that
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 0(n) is an  isomorphism by induction on n. As before,  19(n)  is an

epimorphism (it is obvious by the  choice).

 e0):  (1/  Ce(Sql)  MO) is an isomorphism by the assumption 

that Ker =  0(Sql).

Assume that  0(n-1) is an  isomorphism. Consider the homomorphism 

 X  :  N/N(n-1) 

Lemma  X  J  Xn  zn  0  sqlzn is a  monomorphism. 

 X induces an isomorphism on H(  :qo). Here

Hal(N/N(n-1)--           v.440) = 0 for q < n,

 =  Xn for  q  =  n.

Therefore  XIXn is a monomorphism. So if  X(Xn + Zn) = 0, then  0(X11 +  Zia) 

        Therefore by the choice of Z, we have  Zn =  0, and hence  Xn =  0. 

 FinAlly if  X(Sq1Zn) = 0, then  e(Sq1Zn)  (M(n-1)  )n+1 and therefore 

 H(M(n-1):Q0) = 0 in dimension n + 1 and n.

                                                n- We have  e(Sq1Z ) =  Sql(m) for m  e (M(1))n 

            m =  0(y) for y e  (N1

So  Sq10(Zri + y) = 0, therefore  e(Zn +  y).  mt,  mf  e  m(n-1). By choice of 

Z we obtain  Zn = 0 and hence  Sq1Zn = 0. (This is the same argument as

 before.) 

Conclusion of proof

                            n)/(n- We want to prove thatX on N(/N1) is a monomorphism. 

Let  (v1) be a basis for  X11 Zn  Sq1Zn. Then  v c  N(n)/N(n-1) is

of the form 

                        6



 v  = E  aivi with  ai k (Sq1)

Assume  v 0,  7\(v) =  O. Consider the compositions of the following

 homomorphisms  NiN(n-1)  M/M(n  -1)  MO  M/M(n-1) 

Then v is mapped to 0 in  M/M(n-1) and then to  E  a1(l)  Mvi) 

+ (terms in different dimensions) in  MO  M/M(n-1). 

Therefore  4)(ai) =  a1(l) =  O. Hence  ai  E  /(Sql) for all i. This

is a contradiction.

    Let me state Theorem 3 without proof. One can prove the following 

theorem by a similar but much more complicated method.

Theorem 3. Let M be a connected, coalgebra over  a  . Assume 

Ker  =  0_,(Scj0  Sq2). Let X and Y be graded vector spaces. Assume 

that 0 a / (Sq1,  x  ( a / (?  (S•3) y)   

is  an isomorphism on H( :Q0) and H(  :Q1), then  e, is a  monomorphism 

 and.  M/Im 0 is  free. (Here =Sq3Sq2Sql and  Q12  =  0). 

Its application is for H*(MSpin)  =  M.

This is not the most general theorem, but it works in the application. 

From Theorem  3, one could calculate  v*( MSpin) by  applying the Adams

spectral sequence. 

    That is, one calculates

 Ext  (  gia  (Sql)  Sq2), Z2), 

Ext6ti(sq3),  z2),

 and then show E2 =  E,D (for algebraic reasons). 

   We find a spectrum X whose  cohomology is  (?  /0  (Sql,  Sq2)
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 and another spectrum Y whose  cohomology is  a  /a  (3c1.3) 

               MSpin  -----7VXVYVK(Z21  )

    Let  BO  <n> =  BO(noo..0  co) =  (n  -1)  -connective fibering of  BO. 

have the map p BO  <n> BO. Then

 p*:Ic*(B0  <n> )  ----*  14(B0) is isomorphic if * 

                    is zero if *

 By Bott we have BO  =  n8°°(30). 

One can  find a  5-spectrum BO  <n> with (BO  <n>)0 = BO  <n>. Then

have 

 Theorem(Sto

 B*(BO  <n>) =  a/a  (Sql,  Sq2)  if n  m  0(8), 

 =  (Sq3) if  n  2(8).

 We 

 >  no 

 <  no 

we
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 2. Results  about Spin cobordism.

I want to describe the Spin  cobordism  n*SPin

BSpin BSO is the 2-connective fibering. You take

 y2(B80) ...,--.: Z2 . Kill it, then you get BSpin. Classically,

 Spin(k)  SO(k) is a 2-fold covering space. Then you  have that

MSpin(k) forms spectrum MSpin and  y*(MSpin) =  n*SPin

    The  cohomology  H*(BSpin) is easy to compute from the fibering 

BSpin BSO and we obtain Easy Theorem 

H*(BSpin)  Z2(wi],  i 2r +  1 as algebra 

 Z2[144„w6,w7,w80w10,...]

But w2r+1 is not necessarily zero, only decomposable. For example

 w5  =  0 

 w9 = 0 

 w17 =  wiCw13  w7.v10  wCwil 

 w33 has about 200 polynomial terms.

We have that

 H*(BSpin)Q1P.(BSO)/Ideal generated by w2,  Sqw.2 
                             _r -12r-1  1 

           Sq2Sq1w2,..., Sqe Sq  ..Sq

This is an isomorphism as an algebra over  a
1

(e.g. Sc17w16 = w17 = decomposable)

Before we state the main theorem we need some notations.

Let J =  (j10...,jk) be a partition such that  zji =  n(j) ,k  >  0
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and  ji  >  1.

Let X be

 dim.4n(J) for

Let Y be

in  dim.4n(J)  -2

a graded vector space with one 

each J with n(J) even.

a graded vector space with one 

for each J with n(J) odd.

generator  X in

generator  Y

The Main Theorem

H*(MSpin) (  0/  0  (Sq1, Sq2)  X) (  a  (sq3)  ®  y)  ( z) 

    as an  a  -module

where Z is a graded vector space.

Furthermore there exists elements  it"e  KO(MSpin). (These are images

of the  KO-Thom isomorphism for  Spin  bundles

KO°(BSO) KO°(BSpin)  KO(MSpin)

For reference, see "  SU-cobordisml  KO-characteristic  numbers, 

and the Kervarire invariant  ", Ann. of  Math.(1966).

For

eavhWe

Theorem

such an element 

 J
               = 

another theorem.

Filtration Tel

Therefore  y

J we have

 y  1.  It  2...  Ttjk  a  fO(MSpill)

=  4n(J) if n(J) 

 =  4n(J)  -  2 if

defines a map

even

n(J) odd.
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 : MSpin  BO  <4n(J)>, 

           or  BO  <4n(J) -2>  j

where  B0<n> BO is (n - 1)-connective fibering. We have a map 

              F MSpin  V  BO<4n(J)>VA/  BO  <4n(J)  2>VVIK(Z2,...) 
 n(J)--  n(J)--

even odd

and the map F induces

H*(MSpin)  (Sql, Sq2)  0  X)  0 (  a/a  (5q3)  0 Y)  0 (a®  z).
         F* 

We will not discuss the KO-theory here. But we will discuss the

main  theorem.

                                 Spin From this one reads off Tc*(MSpin)_112=2'n*  • Let me give some examples

of  J. The lowest dimensional J with n(J) even and all integers 

                                                              Spin in  J not even is J = (3, 3), 4n(J) = 24. Milnor, in his study of n*

stopped at 23 because of this  element.

    We can describe the manifold representing each class except for these 

of this type, that is, n(J) even  and  not all integers in J  even. 

There exists a manifold  M2 withw4,m24)  O. We cannot construct  M24                               6'

It would be interesting problem to find this large class of  Spin-manifolds. 

All other representative manifolds of cobordism classes are constructed 

by using Dold's manifold etc.

     Let me now state the corollaries of the main theorem. 

Corollary of the main theorem  

            Spin 1
. Let  [N] en* Then

    [M3 = 0 if and only if all  K0-characteristic  numbers and all 

 Stiefel-Whitney numbers vanish. (This is easy from the second theorem.)

 11



2.  Im(nSpin  A*) = all  [M]  all of whose  Stiefel  -Whitney 

numbers  involving  wl or w2 vanish. 

(I will discuss the proof in details later)

Milnor showed that  Im  (n*Spin___"  71.*) = squares of oriented manifolds 
                             Spin nr) in dim. < 23. In general, Im0 0C. *) D squares of oriented manifolds 

 V in  dim.  2k-. 

 3.  Im(nfar  n:Pin)  Z2  n  m 1,2 (8),

0 otherwise.

                            r, The representative manifold  isLM8JkxS1, [M8]kxS1xS1.

(This is not difficult corollary.) 

 Cf.  40 =  7-11µl=  (8ap2tpr1)  yvk =  (8a,  2  L14k^l)

and  pa  [NI8]k  X  S1.

 4.  (  Corollary of 3) The  Kervaire-Arf invariant

                 Z,2 is zero if k  > 1.    1(8k+2($)

Outline of proof:

It8k+2(8) ftt 

 T(Uthk  X  S1)  X  51) =  1?(N8k+1 x sl)
     8k71-11 = 9f(E X S) 

 (E8k+2)  = 0.

Now we discuss the algebra needed in the proof of the main theorem.

Let M be a  left(right)  -module ( Steenrod algebra).

12



Then M* =  Hom(MI,Z2) is a right(left)  a  -module by 

 (m*)a•m1 =  m*•a(m1)  m1•a(m*) =  (m1a)•m*. The operators of  6? lower 

degrees. itself is a left and a right  a  -module by multiplication. 
Therefore  a* is a right and left  a  -module.

 *2k 
By  Milnor's notation, let ELK  .  Milnor proved that 

 * 

 z  2  l'  2"*" as an algebra.

Proposition is a left and a right algebra  over , (Cartan formula 

holds) and  Sq( =  1r-1

 (  k)(Sq) =  :k  , where Sq =  E  Sq 
 >  0

Proof  Exercise for the reader.
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§ 3. Outline of the  proof of the main theorem in  §  2

     In order to prove the main theorem we  must 

and also H(  a /  (Sq1,Sq2),  q0), H(  a / a 

 R(Sql)  (39  R(Sq2)

   a (0 0  3. 0. 
Dualizing 

 gsql)  m  gsg2)

   ce* c  Ct. * (

Applying x 

 R(Sql)  R(Sq2)

 *  e    a*  x(

 14-  2 Let  A  =  Z2C  2,  C  az*  . 

 ve  (Idsql  =  0We  have

 (1)scia.  = 

 (h)sq2 = 0 

 (2)sq2  =  1  •

Also note :  (112)&12 = >•2 
                  3o

It is easy to prove that 

 ALC:  Ker.(R(Sql) +  R(Sq2))

 == free  A-module on generators  1,  1, 

Therefore the kernel has nothing more that A.

 5t  study  a/ 

  (Sql,Sq2), 

 Lt  ,  a  (sql,

 a  0  (sql 

 a (Sq

unless k 

unless k

>2 3
1'1"

a (sql,sq2) 

Q1). Consider

Sq2)O. 

'&12      ))*<- 0.

12. 
,Sq0.

 =  1 

 =  2

 3'  3132



Theorem  x(  /  (sql,  sq2))* r2                                      `-2L  1,  2,  _53,•••]• 

Theorem 

 H( /  (sql,  se) :  Qi)  i =  0, 1

=  ii(x(  a(sql,  3q2))* :  Qi) 

 Z2[  .311] with respect to 

  E(g,...) with respect to

Therefore you can read off

Theorem A basis for H(0/ 0(kip se), Q0)  is  x(sqk).

 Similarly

 R(Sq3) , 
 (t/  Q  (Sc13)   ,>  O. 

 1,(Sq3)   
a*  0*</ 6?(Sc13))*0. 

     k 

      R'Sq2,-           sq *  1* 4   
X(  /  (Sq3))*<---

You come up with

Theorem  7C(  (  ($q3))* = a free A-module with generators 

 2,  L.  2*

 Q0 

 Q1 =  Sq3  Se

0.

 Sq1

15



Theorem H( x( /  a  (Sq3))*:  Q,)  •  z2001] 

 H( x(  a  / (Sq3))* QI) 2.2  •  E(e2  .

In order to apply the techniques of the last time  me must study

H(H*(MSpin) :  Qi) (i =  0,1)  .

Remember the Thom isomorphism that 

 0  : H*(BSpin)  H*(MSpin)

is a map of  Q0 and  Qi modules, because  Q0(U)  =  Q1(U) = 0.

Let  B  =-H*(BSpin) for  simplicity.

We recall that

 B  =  Z2[w]  i  2r  +  1 

 Q0(1121)  =  w2i  +  1  Q0(w2i  +  1)  =  o.

                                                      14 .
 4(w16) = 8q— Q.0(w16) = w17 = wVw13(cf. (

 21.     Define!  X.e E21  by  0(Xi)=  xkSq )(00.))  . 

Then X = w21+ decomp. Furthermore  Q0(Xi) = 0. 

  i

Now  we have

B =23 .(X.°w.] j  2r0 j2r + 1.

Furthermore

 r 
 Q.0(w2j)  =  w2J+1  j  2 

 Q0(x1)  0

•

16



We have

                            ,N,  H(B:Qo) = Z2[X1,kw.)2Jj2r, 

where  (w2j)2 =  pj is a Pontrjagin class. Similarly for Q -case, 

                                              1 but H(B:Q1) is more complicated.

Remember the theorem of last  time

If given  O':  a/  6e  (Sql,Sq2)  X  (i)  a/  £ (Sq3)  Y  H*(MSpin) 

such that  e1 is isomorphic on  11(  :  Qi),  i =  0,1, then  6), is 

monomorphic and cokernel  CP is free  a  -module.

1WW J C4.6.1.QG  tolIGLU

 1. To find  8,, 

2. To show that  in. is  isomorphic.

Let X be a graded vector space over  X.

We would like to send

 e(x  )  =  P,  = p. .......pi
k             J1 32 

PjOf2j'122so Sq.1(P.) =

Sq2(w2j)2 =  (w2j +  1)2  o. 

 (p.) = 0,  Q1(Pj) = 0. 

o

    The results of KO-theory computations show that for n(J) even, 

there is an element  Xj such that  Xj  Pj  mod.  Q0Q1, that is, 

 (  Xj ) =  (  P,. ) in H(  :  Qi)„  i = 0,1, and  Sql(Xj) = 0,  Sq2(Xj) =  O.

17



    If n(J) is  odd, there is a class  Y. such that  Se(Id) =  P. 

(Hence  Sq3(Yel) = 0.)

Define  e' by  01(Xj) =  X. 

 ef(yd =  Y.

    To show that  0* is isomorphic, we  need four more pages of 

computation.

From the theorem of the last time we obtain the main theorem.
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 4, The mixed homology.

    Let A = t,sq0,  sql, se,                        jbe the subalgebra ofG. SoQQEa 
 ttl0, 1 l' 

where=  sq34.sesql,                          Q=  Sql. If M is an01-module, we can  '110 

define  H(M;Qi),  i = 0,1.

We want to define the mixed homology. I also define:

 (Ker Q0  fl Ker  Q1)/(Im  QO  n  a Q1) H(M;Qi)  i=0,1

Definition M has isomorphic homologies if  1, is isomorphism for

 i =  071.

Theorem (Wall) 

    If H(M  Qi)  = 0, then M  = free  qi-module.

A generalization of this is the following 

Theorem If M has isomorphic homologies, then M is isomorphic to the

direct sums of four types of  O1-modules,  el,  gl/  al(Sc0),

01/01(Sq1,Sq3), z2.

The reason I give this theorem is that it is useful in the  KO-theory

computations which show the existence  of  X. and Y" H*(BS0) has 

                                          J isomorphic homologies, so this gives the  al-structure of  Hx.(BS0).

19



Remember

 =  (  Sq.°,  Q0, =  E  (Q0,  Q,)  C  dzic  a.

 The  following is easy to prove.

 Proposition  M„ an  al  module, has isomorphic  homologies 

<  M 5?-;a free E1-module4a trivial E1-module.         E1

Let me outiline the proof.

Let  M(n) = sub 01-module generated byN1,i < n.

The proof is done by induction on n.

For  M(0), the theorem is true by one page of easy calculation. Consider 

the sequence 0 ---> M(n-1)  ---7 Elf .1Y1  O.

 First we prove that  M/M(n1)                                   has isomorphic homologies using the 

alternative definition of isomorphic homologies as  El-modules (the five

lemma does not work, because the degrees of the two differentials are 

different). Now look at the sequence

                           (n)Oft),M(n-1)  0----9p M(n-1)----).M ---,M/___, 0, 

where  M(n  )/m(n  -1)  =  (m/m(n-1))(n).                                Here  M(n)/M(n  -1) satistfies the 

conclusion by the same proof as for  M(o), so does  M(n-1), and one must

                                            1 
prove that the extension is trivial. (This takes the 17- pages of 

computation).

20



Let me make one remark  : We want the filtration of elements

 (KO0(BSO)is known.) One studies the so-called Atiyah-Hirzebruch 

sequence from  H*(BSO  :  K0*(pt)) to  K00(BS0). 

The differentials  d2,  d3,  d1, d5 are all primary operations in 

knowing H*(BSO) as an 11-module and E allows you to compute 
 oo 

filtrations. (Later  Itil say more of  al-modules.)

 Now I want to discuss the problem related to

 Im(cl*spin__,  4  *) =  imbr*(ms-pin)  14(mo».

in KO0(BS0).

spectral 

 a.  So

the
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  5. General theory on maps of spectra. 

Let f : X Y be a map of spectra.

Assume always that Y  = V  K(Z2,.....). 

Question is to describe  Im(v*(X)  g*   Ir*(Y)). 

Let  G* be a subset of  v*(Y) defined  by

 G* = : S Y  I  g*(u)= 0 for all  Ile  H*(Y) with u  c Ker  f*). 

In general, Im  L  G*. 

 When  is  Im  E,  G*  ? 

Definition X has a property P

 4=== given u  E H*(X) such that 0  74 u  E  B*(X)//2.11*(X) then there 

exists g  it(X) such that g*(u)  IL  0. 

(For example, Y has property P.) 

Theorem Assume that  f* H*(Y)  H(0) is epimorphic, then Im  f =  G*

if and only if X has a property P.

Proof ( ) Let g S Y and g  e  G*-Im  f . 

That means there exists u H*(Y) such that g*(u)  0,  (I g')*(u) = 0 

for all g'  E  g*(X).

    Therefore  g'*(f*(u)) = 0 for all g'. 

So  rqu) a  .1.1*(X), whence  f*(u) =  al(v)  dim. a > 0

for  u  +  c  Ker  f*.
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So g*(u + av) = 0 = g*(u). This is a contradiction.

 (  -   ) Let 0 u  E  H*(X)/  jr  H,(x) . If  (g')*(u)  = 0 

for all  g', u =  f*(v), v  ja.H*(Y), then there exists g  E  v*(Y) 

such that g*(v) 0 and g*(Ker f*)  =  O.

Therefore g E  G*- Im  E*: contradiction. 

Below we give some corollaries of this theorem. Before it, we need a

 proposition If g S    112, g*(U.(ideal generated by  w/ and w2)) 

then  g*(11.(ideal over  4! generated by w1 and w2))  =  O. 

Proof Let g S MO such that  g*(U.wrw) = 0 for  j  =l 2. We 

want to prove  g*(U.a(wi).w) = 0 for all a and w.

This is done by induction on  dim.a.

By the Cartan formula we have

                     +  EU.0(w.).10  , where  dim.60 <  dim,a

By induction hynothesis

 g*(U.a(w.).w) =  g*(a(U.w +  EU  a'(w  ).wi) =  O.

Now we get

           ,Spin Theorem link n
*                            *) . all cobordism classes all of whose 

 Stiefel-Whitney numbers  involving  wl, or w2 =  O.
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Proof

Let

So 

the

The part  Im(

g  :  S  ---7

we must prove that 

 theorem.

 nspin_,  *) 

 yo, then g(Ker 

   then  g  e  G*

 X =  lapin has

C 

 f* 

 . 

 a

all  is 

 =  0

clear.

property P in order to apply

 Lemma

has a

 If E= E     2
oo 

property P.

in the Adams spectral sequence for Tc*(x), then X

 We  have E= E       2
oo 

Therefore  G* =

  in 

 im  f*.

the case X = MSpin  .



 § 6. The bordism group. 

We also have the bordism "  homology " groups.

e.g,  4*(K) = ( (M, f)  I f K  3  //,..„„ 
where  (Mil  fl)  (42,  f2) if and only if there exists a  cobordism 

W between  Mi and  N2 and a map F such that  FIMI =  fl  and  F1142 =  f2  . 

Then  7*(point) =  714  .

We have another definition due to G. W. Whitehead

 g72.  *(K)  =  7t*(K+  A  MO)

    We have characteristic numbers for bordism groups. Let u  e  Hn-k(K) 

and w E  Hk(B0), then we define

 <f*(u).))*(w),  [0]).e Z2. 

These are called the characteristic numbers of  (M, f). It is easy to prove 

that  [(M,  f)] = 0 if and only if all characteristic numbers are zero. 

Theorem  [Im(p,*(K)  --,n*(K)) = all bordism classes all of whose 

characteristic numbers (of the map) involving  wl vanish] holds if  and 

only if  H(K  :  Z) has no  4-torsion.

    The proof depends on the fact that  K  A  MSO has a property P if and 

only if H(K :  Z) has no  4-torsion. (This is easy to prove.)
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Theorem There exists a  PL  manifold  M9 such that all characteristic

numbers if  M9  involving  w1, are zero but  M  ,p-orientable  PL-manifold. 

Theorem  [1m(  nSPin(K)  i  22*(K)) bordism classes all of whose 

characteristic numbers involving  wl or w2 vanish] holds if and only 

if  KA MSpin has a property P.

    Later  I will prove that  BSO  A MSpin and el'A MSpin have 

property P. So this is true for K = BSO and K =

                                     Sp, We discuss the methods for computin
gin                                 n*(K),  K0*(K) etc.

Recall

     SPin     n(K) =  H(K : MSpin) =  ic*(K+  MSpin). 

One method for computing  H*(K  : M) is the usual spectral sequence :

   E40(.7r(10)  e.         --•- 

                                Sp Another method is to computey
*(KA MSpin) = nin(K) using the

Adams spectral sequence. That is, one must compute  Hx-(K/N  MSpin) as a 

module over  a, and then apply the Adams spectral sequence.

Here we have

 11*(KA MSpin)  f4f-. H*(K) H*(MSpin) 

          H*(K)(E alMsqlpsq2) Ea(sq3) E

So it is enough to study the a-module structure of  Noa/lpsqlpsq2), 

 MO  a/a(Sq3) and  MO  g for some given  FL
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 M  /12i               Sq, Sq)is the tensor product in the category of 

 ( -modules, so by the Cartan formula we have

 a(m b) =  Eatm®  a"b. 

Theorem M  OZ is a free  a  -module. 

Proof We need some notations  :

 A = underlying Z2-vector space of M as trivial 

 -module  :  Sq° = id,  Sqi = 0 for i > 0.

We can form  A  .:,  GE by  defining 

 a(m  b)  =  m  ab for  dim  a  >

Let us define

 2:Ploa   ?Ivioa

by  2  (111 C4 1)  =  m.4 1 and extend as an  a  -map, that is,  2  (m  0 a) 

 =ta(m  1)-  a2  (m  ®  I) = a(m  1)=za?  (m)  a'  I. This is an  (Q-map.

We prove that  2 is an  isomorphism. 

Note that  m.le  Im.2  .  Assume  mAajlm.2  .  with  dim.a minimal.

Then a(m  ̂ ) 1) =  Ea'm =  E0(m)  a"  +m0a 

                  dim  a" < dim  a'

where a(m  0 1),  Ea'  (M)  C4 a"  e  Im.  2  . Hence  mOae  Im.  2  . Therefore 

 2 is an epimorphism. 2 is a monomorphism, since  a and M  0  a

are both vector space and one can count the  basis. Therefore

 2 :  M 0  a  M  GE is an  isomorphism.
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    The  a  -structure of  MO  GP depends on M as graded vector 

(For the other casses,  e.g.,  MO  Pa(Sql,  Sq2), this is not

 M  a is a right  £  -module by 

 (m®  a); =  m  as

Define the right  a  -module structure on  M  ̂•  a via  : 

 (m®  a)g =  1-1((2(me  a))71).

Theorem This right  a  -module structure on  M  ®a is given by

 Cartan formula  :

 (m  a)g =  E(m)gt 0  ag", 

where  (m); =  x(;)(m), x  : the canonical anti-automorphism of 

Steenrod algebra.

    This is the key lemma. 

Proof Consider the diagram  :

 /101/00 Aoa® 00(e idioa® a®  (,
 1®Y'  1  T  1

o 0

By chasing this diagram we have 

                         28

 space. 

true.)

the

the



 m®a0b  --,,m0a0bt0b"  m01:00a0b" 

 x(101  )(m)  0 ab"  —>  ab"(x(bt)m  0 1)

 =  a((b")tX(bt)(111)  (D")") 

 =  a((bt)TX((bt)")(m)  0  b")

 =  a(m  b) 

=  atm®  a"b.

Next consider the other diagram  : 

   MO  at:a  moo.
 0  1  1  0  0

Similarly we have 

 mc a  C4 b  a(m  C4  1) b = a'm  .4  a''  C.• b a' (m)  a"b.

From this we get the following.

Theorem Let  M be an 6e  -module and N be a fixed  63  -module, where 

 (3 is a Hopf subalgebra of  (1'  . Then  PI  0 (  0? 0 N) depends as an  a-module

only on the  8  -module structure of M.

    If f  Mi  M2 is an  isomorphism as  3  -module, then the followings 

are  isomorphisms as  a  -modules
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 -1  0  1

 Ml  ®  ((,C  N)  (M,  0  a  )  r4  N  (K2.  0  a  )  N  63

 f  10  1  2 od 1

   (m2®  a  )•N    (m2  )  N  --,  m2  0  (  ^N)• 
 63 (0' 

Theorem If M and. N  are  -modules, then

 (ivs  )  ®N  a.  (M  N)  as  c -modules.

Proof  m  ̂  a  ^ n  a  ®m n. 

 We  have  to  show  that  m  '•  a  bn and  mb'  ab"  (20  n  have  the

images under this map. 

    We have that 

 mbt  ab"  n  ab"  X(W)m  n

 =  a  (b")8X(13')m  (b")"n 

=  a  •  m bn. 

 m  0 a  ^ bn a  ^ m bn.

Let us write the  corollaries.

Corollary Let M be a left  at-module and N a left  13  -module. 

Let M  D • • • • •nm[i]  be a filtration of N as 43 -module.

30
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Then an  a -filtration of  M ( N) is give by  a  ®  (ME  i]  0 N)
 63 

with quotients isomorphic as  a  -modules to  a 0  (M[i]/14[1.-1]  N). 
                          C3

    Let us write  the corollaries in our applications.  63 = 

N = Z2 or  C  1(Sq3) 

Theorem Assume  M E  / a (a),  Ji C  4!1. 

                   i Then M / 0 (Sql, Sq2 )  E  a/ a(±),
 a1 

Theorem  Assume  M E  / ( Ji ), Ji C  . 
 a i 

Then M a /  ( (  Sq3  ) sum of cyclic  a  -modules, if no Ji are the

following

( SqSq2Sq1)( Sq3, Sq2Sq1)( Sq2Sq1) ,  ( Sq2Sq1, Sq  + SqSq1) ,

    'R 

( Sq-Sq, Sq5 +  Sq4Sq1) ,  ( Sq5 +  SqSq1)  .

Let me give a corollary of this theorem.

Corollauy BSO  A MSpin has property P.
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Proof  H*(BSO) E  al/  01(Se) E  E  Z2)

where  6!1/1(Sq3),  a and Z2 correspond to J = Sq3, J = 0 

and  j=  a1 respectively.

Therefore we have

 Of(BS0)0 H*(MSpin)sum of cyclic  a  -modules.

We have  E2 =  E Adams spectral sequence by inspection. 

    Another important example is  M =  W(RP)°). We will describe

 Thf(RPCO)  ®  (  /a  (Sq1, se.,                     ) itiquix))  0  C  /  (Sq3) and  H*(Rp°°) ®  a. 

because this givesgpin(Rppe)n:ine
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 7. The Pin cobordism.  

Spin is a universal covering group of SO. Pin is a universal covering

group of  0. The component of identity in Pin is Spin.

BPin BO is constructed by killing w2. So a manifold has a Pin

structure if  w(v) = 0, where v is a normal bundle. 

    In the Spin case,  w2(t)  =  0 if and only if  w2(v)== 0, since

 w2 =  W2 (v)  ) •

 PinNote that  n;-- is not a ring, because 

 w2(v1  4'  v2)  w2(v1)  wl(v1)  *  wl(v2)

But it is a cobordism theory. 

    Let G = Pin. We have the map 

 B0(1) x BSG(k) BG(K +  1)

This induces the isomorphism on'II*(z2) in dim. < k. Taking the 

Thom space, we obtain the map

 MO(1) A MSpin(k)  Mlin(k + 1), 

which induces a mod 2 isomorphism.

 Note that  M0(1)  —  S(Rep). Therefore 

   —Spin co,Pin 
 n*          (RPC0)=n*.

   We will study  INRP9p)  Ct/  a(Sql„  Sq2),  117*(Re)o  a/  a(Sq3) 

and  flif(RP11)0  • Let me state the answers first.
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Remember

 B*(MSpin)  =  0  /  0  (Sql,  Sq2)  x) (  a/a . (Sq3)  Y)  ((,c. 

Each term  H#  (RE  a/  (Sq1,Sq2) contributes the following homotopy

 Z2  i  0,  1 

0  i  =3,  4 

Z8,  Z16' Z128  etci m 2, 6

where

 27 28 211 212

10  14 18 22

For example, it turns out that

 Pin  D
2  == Z8 , the representative manifold is the Klein bottle.

Each term  H*(R?))0  a /  (Sq3) contributes the following  homotopy 

                                       1, 2, 5, 7 (8) 

      ::,--...CD Z2  i=6  6 (8)
 7f*

0  i  3 (8) 

 Z2,  Z4,  Z32 etc i  m  4, (8)

where

 It*  23  24

 i 2 6

  z) •

to  p; 

(8) 

(8) 

(8)

to

 Pin

Pin
C2*

 It*

 

I 2 22  25 2
6

 29 2
10

 i 0 ii. 8 12 16 20
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                 Pin     For example
, P10  Z128  (4)  Z8  m  Z2 and the representative manifold of 

 Z8 is  QP2 x (Klein bottle).

                                  10 Th
ere exist manifolds M E  PPin                      8ESpinand M                                                 such that

 0  x  S/  X  S/ represents in  Z2 in  PSpin but  64  ([m10])  = -m8                                               l x  S1 x  Sl] 

in     Pin i n

    Let us state some theorems about Pin  cobordism. Let Ri=Ri+1(RP9 

as an  at  -module. 

 .112,E212  As  ar,  a  1-module, R has a filtration

 HID  2[4i+2]  RE4i-2]  .  R[2]  _) R[0] 

 where  R[i] is an  it -module generated by  H3, j <  i and 

R141-+231,411-1--23--- a11(4),  .(2),R[0] =  1/  al  (Sd),  R[1:)]  -- 0a 
                                                                       11 -1

 1  5  4l  1 
 Extension  is  given  by  Sq(r4i4 ,2)  =  (Sq.  Seq)(1^4i-2),  Sq(r2) 

 Scli(ro)

Proof is straightforward. 

So then we have

Theorem  R /  (4, 4) has a filtration as  a  -modules 

 D  p  F(4.i+2)  p  F(4-i-2)  D F(2)  p  F(0)

with  F(41+2)/F(41-2) . a/ a(4),  F(2)/p(0)  .  a/  a(S4) and 

 F(°) =  /  (4).
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Proof Corollary of the previous theorem.

A little more complicated is the other case:

Theorem  R®  a  /0(s4) has a filtration as  / -modules

 D  G(i) 

                            (41.+ where G(41+2)/G(44+1)= aG3)/G(4i+2)=  0

 G(41.4.4)/G(4i+3)  a(s),  G(41.4.5)/Golf4)  .  a 

and  G(1  )/G(0)  a ,  Go)  =  /a 

Proof Corollary of the above theorem (One should calculate

 a  0  (11[1]/P1]  0  al/  66(4))). 

  We want to study

 Ext (R  0a  /a  (44  z2) 
  LE

by  knowing the filtration of  R  0 /  ($.,  s.)).

Intuitively we assume

 R0 Q 61(84, sa)  = direct sums of F(4142)/F(44-2).
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i

 i
 z ' tto

i

 ~o  x,

x,

   gow

•  (A)

AA_LO

LO

 2

 tw

_11t)4_'_

I

 1
,0_13

i

    To obtain the 

following theorem 

Theorem of Adams

If H(M, Qo) 

in  Ekt  04

(This is not

 Note:

 H(R  41

where  H(R, Qo)  =

correct E2 

of Adams;

put
, a

l :E1
 a-1 b+1 E

11 . We

= 0, then there are no elements of  as  -height 

 Z2). 

difficult to prove) 

 si), Qo) = H(R,  Q,0)  ® H(  a  /  a (si, se), 

0. Hence the E2-term is

need the

 Q0),
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S

 

J  1 I   1

 :1 4:12.

 Wo  401

'
, 1 12

-4
1

because  di  (T) = hp1,

   Note that  hl (hl  ) 

 d5  (x3) =  hjyr., Then 0  = 

So  dr  =  0 for  r  >  2m

the  table.

 Z2

 ) 
 iti  = 0 

       Z8, Z16,

 .S

 d1  (w)  =  h0x21 etc. 

 O.  We  will show  dr  =

 d5(h1x3) =  h1(4y) 0.

Therefore the homotopy

 Z128  etc.

 i-5

 0 for 

This

groups

 i 0, 

 3, 

 2,

is r 

  can

 >2 If 

a  contradiction, 

be read off from

Next, we  assume R  a  /  (sa). direct sums of  G(1

 t

 41

1 (8) 

 4,  5,  7 (8) 

6 (8)

 1-s
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    d1 is similar to the above. Note that  E2 =  Eplo in the Adams spectral 

sequence. Therefore  MPin has property P. So we have 

Theorem  Im(din = all cobordism classes all of whose 

 Stiefel-Wbitneynumbers involving  It(v) vanish. 

 8. The  SpinC-cobordism,

                                 C Let me now state some results about Spin-cobordism.

 SpinC = complex spin group.

 BSpin- BSO is obtained by killing  n, that is, 

  BSpinC path space 

 3  ‘72)
BSO  K(Z, 3) 

*   

where6-(w2)is the image of the Bockstein operator of w2. 

       ' 

                     . 

     SpinC is a natural theory for  K.theory because a bundle is orientable

                                               C with respect to  K-theory <7----=> the bundle has a Spin -structure

The methods for calculating  MSpin work for  MSpinC and are much

easier. Let me state the answers. They are

Theorem

Theorem

 e(  mSpinC)  =  (  0,  a  (Q00 

 Let  [PO  e aPinCy then

all mod 2 and all integral

 (11.)  X)  e  (  a  Z)

 [M]  =  0

characteristic
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(One needs no K-theory)

             SninC Theorem Im(n*- ----7  *)::= all cobordism classes all of whose 

Stiefel-Whitney numbers involving  wi and  w3 vanish.

One might

               oia Conjecture :apinC is generated as a ring by Im(pinSpinC) 

and Im(nFi.aPinC).

This is true in dim. < 30 Spin SpinC

but it is false in dim.31. 

 U

One could consider  PinC and the same methods again work well. 

For  some pages let p be  odd. Let me discuss the structure of  BSO

and BU ignoring all primes but p. The main theorem is that BSO is 

decomposable in the classical sense. For this we develop some machinery.

Let  Bp be a space like BSO with 

       0  i  o (4)  lri(Bp) = fz  i  o  (4)
and all k-invariants of order power of p.

 40



First theorem is

Theorem Let K be a space 

               0 

 Ici(K) 

               Z 

     {. 
    44+1 andIft".4(K:Z) e  er  Then 

homotopy equivalence  i.e., f*

such that

 i  o  (4) 

 i=0 (4)

there exists a map 

is  isomorphism on

f:K 

 H*(

mod  e
 p

 K

 :5).

which is mod p

 Proof spacea 11Give

1)(

 K 

 1 

K

 K(i-1)

point

K we form

with  k-invariants  k(i+1)(K)

determine the  fibrations.

the  Postnikov

path

 L
 K(Ici  (K),

system

space

i+i)

These  k-invariants



Consider the diagram  BP

 

'  
B(4t)

/  '13 

 /

    -p  K(Z)  4t+l)

        f1.Kj K(Z1  4) 

Inductively we lift the map  fl.

                 ( Assume we have ft...1:K   > Bp4t-4) 

 440
      ft 

 K  B(4t-4)

    The obstruction to finding  ft is  4 .1(k4t+1(Bp))  e  H4t-Fl(c:z). 
Since  k4t+1(B  ) is of order power of  p)  =4-1(k4t+1(BP)"^                                                       ./v.

    We set f =  4:400K We  must)  however) show that  f(40* is 

isomorphism on H*( :Zp)for  f(4t):K(4t)Bp(40. If we do  this) 

f* is also an isomorphism on  H*(  :Zp).
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We have the following diagram: 

 g
 K(Z,  4t)  K(Z,  4t) 

 f(4t)
K(4t)  3110(4t)

 f(4t  -4) 
 K(4t  -4)  Bp(i.t  -4)  K(Z,  4t+i)

We assume  f(4t-4)* is an isomorphism on H*(  :Zp). So we have 

  H4t+1(B1()4t-4):z) • Zp0(t)  with a generator x =  k4t+1(B
p).

Therefore

 H4t+1(K(4t-4):z) • Zpo(t) which is mapped by f(4t-4)*.

                                                / The  k-invariant of K is sx=k4t+1kK)

Then we have 

 s  A  0  (P) or  H4t4-1(K,  Z) j  ep  * 

which  implies s  A 0  (p). 

For the generator  t  E  pt( we have

 g*(c)  -  at.

By naturality x = a s  x. So a  A 0  (p). Therefore g* is isomorphism 

H*(  :Zp). Hence  f(40* is isomorphism on H*(  :Zp). This finishes

the  induction.

This argument works for x 0. 

If x = 0, that is  zpo(t) = 0, then  Bp(4t) =  (1t _l) ,                                            x K(Z,  4t),

and we should change  f(40                     and extend to  new f.  Q.E.D.

on
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    Let K  --K(i-1) be a fibration with a fibre K(i) such that 

 iti(K(i)) = 0 for j <

    The better  and more  useful theorem is the following 

Theorem Let K be a space such that

                 0  i  �  0 (4)  Iti(K) =fmod  ei, 
 Z  i  E  0 (4) 

                                        4t+2p-1 1.1.t+2p-6): and the first k-invariant of K(4t) in H (K 4t)z)-LI- 

is  of  1,  ?^ 0  (p)0 Then there exists a map

 f:K  Bp

which is a mod p homotopy  equivalence.

Proof K Bp  ft

 -- ______  B
p(4t) 

                ,,
1 

 i 

' ft-1(4
t-4),(4t4) 

KJ°P 

 1  1 

 1  

, 
 ,

 K(2P-2)  K(z,  4)  X  K(Z, 8)  x  x  K(z,

 K(Z,  4)  K(Z,  4)

 z 

 P

 2p-2  )
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(Inductive hypothesis) Assume  ft_i exist such that ft1.):K(4t-4) 
                                                                   ll. 

    (4t-4)     B
pis an isomorphism on H*( :Zp). Therefored.t+1(K(4t-4):Z) 

 Zpo(t) with a generator x.

    We will prove that the k-invariant  k4t+1(K) = sx with s  A 0 (p). 

 For/ if s 0  (p)0 then consider the map K(4t_o2p4.2) K(4t-4)                                                                  inducing 
                                    t-4) 

the  hamamorphism  Zp.(t) which maps sx to a non-zero element. 

Hence s 0(p). Therefore we obtain 111.t+1(K:Z)  e el,. Now we follow
 P Now we follow

the same proof as of the previous theorem. 

Theorem There exists a space  Yp such that

          11o  i  0  (2p-2)   Ici(yp) 

 Z  i  0 (2p-2) 

and the first k -invariant in4t+2p-1                               (4)bi--)b) :Z)  Zp  is  7\08,1,  7\  A 0 (p).

This is proved next time. Assume this for the  moment/ then we have

Corollary P-1 
                              -7,7 -1 

                                                                  °  

 BS0n n4iY 
 P  t=0

                P-2, 
 BU R  eiY  .

p

These are mod p H-space equivalences.
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    This 

of BSPL.

. The

is seen by inspection. 

cobordism with  singul

 This theorem is 

arities.

    Let me start today by describing "Cobordism 

This is a theory of D. Sullivan.

We start with  a. Let  (C  =  [C]  e We

Consider a manifold Wn such that *Tn.  L  x

 =WN,./Lxcone  C along boundary.

( LxC

    These are "closed manifolds" of new theory. The bounding manifolds 

in new theory are  Wn'1.1 such that  )1431+1 L  x  C  Li  A along  aL  x  (C 

(We also have an identification  )A.  =  aL  X  ).
                               C  S

ullivan proves that one can form a bordism theoryn* (K) which is

a generalized  homology theory. One can relate the coefficient groups:

  oU X  eOV^OV4OV — -n-c"n

It is easy to check that this is an exact sequence. We know the

ring  n* =  Z[ci,  ),  ci  e  n2i. So, if C  5A  0, then multiplication 

 X  C is a monomorphism, that is, we have
 x  C

 0  nInr_c  nrui  nn  0, 

whence  nn =  gel,    /  ).
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 useful for some calculations 

with  Singularities".

fix  C for a while. 

 C. We form



                                        n!Repeating this process onnn , fixingm, one obtains another
exact sequence:

 T  E di  —  Ln-d  "n  On' - - -  •

If we choose  x1,  x21... such that  xi+1 is not zero divisor of

 nu/(x1,..., xi), then 

 xi+1 =x.) 
                      1).1+1

Here again one obtains a generalized homology theory.

Example 1  C= n points. Then one obtains  n*  6.4  Z. 

318TOILE.  xip.00 =  CD.", then one obtains  H*( :Z)

the ordinary homology theory, because the coefficients are 

 Z[c10...]  /  (o10.....) Z.                                  Z. 

Example 3  x1,  x2,... = c2,  c3„.... (first choose generators  ci such that 

Todd genus  T(ci) = 0 if i >  1).  i.e., you kill off  ci except  cl. 

Then one obtains  K-theory  K.(pt). Note  K(pt) =  Z[ci]. 

Example  4 Choose  xl„.... =  c1,  c31  c4,  c5,.... (leaving out c2) generators 

 c2i chosen such that index  I(c21) = 0 (c2 =  CP2), then one obtains a 

theory  V*( ). Now  14( )  Ic*(  V  ) =  Z[c2], where  1r is a spectrum. 

Assume  V is an a-spectrum,  01.1.1 =  Vi„ then  Tc*(V0) = Z[c2] (cf. Brown 

or  Whitehead's paper). Using surgery, one can prove  V0 F/PL for

all primes except 2.

Example 5 Choose  x10••••  =  , then one obtains 

 VA-(pt) =  Z[cp_1], where dim  cp..1 = 2p - 2 and p is an  odd prime.
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Let  Yp= Vb.  g*(Yp) = Z  [cp_1] . I want to claim that

of period 2p -  2, roughly speaking

 n2p-2  A7/  V

We have a map

 s2p-2A >  V  A  V/  3

and hence the associate map

 AT/  0,2p-2  -\71

Considering the induced  homomorphism on  g*, this sends

(cp.1)t+1. Therefore it is an  isomorphism on  g*,

polynomial ring on one  generator.

    Finally note that the first k-invariant  of  V   /  is n 

                                                   ,r  is to compare with spectrum MU --/  / v  .  (We  know the

of MU and by naturality one can check  it).

Theorem

and the

There exists a space

          Z 

Iti(lp)  = 

 0

first  k  -invariant of

Proof is by the

 Y  P

 V is periodic

 ends  (0p-1 to 

because  IT*(yp) is a

not zero. Proof 

e first k-invariant

 Y such that

 i  = 0  (2P-2) 

  0  (2P-2)

 (1(2p-2)) is  nonzero.

 construction of example 5.

 Corollary

 F/Pl
 3

 BSO.
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 Proof F/PL  V0 =  Y3 BSO
 p 3

where p is any odd prime. 

I state the following theorem without  proof.

Theorem of Sullivan

F/PL BSO for any odd prime.

It seems reasonable to construct  Y directly.

10. The PL-cobordism.

Now we discuss PL-cobordism. There is an important theory of Williamson:

           lim  nn+i(MPLO  = IrnOMPL). 
        ===

So the question is how to compute  this. There is a classifying space  BPLi 

 and some limiting process BPLi  BPL. Moreover we have a diagram

 BPLi BPL

 BOi  BO 

So we have the  homomorphism

 O:H*(BPL:Z2)  ----*  H*(B0:Z2)  r=  Zgwi,  ] 



 By definition of  wil  wEL can be defined in  Hi(BPL:Z2) such that

 19(wfL)  wi. 

Define  0:H*(BO:E2)  ---y  H*(BPL:E2) by  0(wi) =  wIL0 then  0 is a map
of  algebras. One obtains

 (4L)  E  wPL  ®                  1-P3

by the usual  proof. Therefore  0 is a map of  Hopf  algebras.

                   PL PL -1 i Recall the definition of wi :w1 = p Sq(U).

The question is if the equality

i PL PL PL 
Sq(wi )=z ( .w

hold. Using the Cartan formula, the Adem relations and induction, one 

• can prove

 Si  PL  PL  w

 Therefore it is equal to the correct polynomial, because under  9 it goes 

into the correct polynomial.

Lemma is a map of Hopf algebra over  a Define

        C =  H*(BPL)/0(H*(B0).H*(BPL), 

where  n* means the elements of positive degree. Then C is a  Hopf

algebra over  d!"

Applying Milnor-Moore theory one gets
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 Theorem The composition

 t.                                           0 0 It 
 H*(BPL) H*(BPL)  0  H*(BPL) H*(BPL)  o  C, 

where  It is projection, gives an isomorphism of Hopf algebra over  a

Theorem  As an algebra,

 PL

where C is a Hopf algebra as preceding theorem and C* is a dual of  C.

Remember that

    H*(BG)   H*( MG) is an isomorphism of coalgebras for G 0 

 and. PL. One can define a right operation on  H*(B0) by

 (h)a  =  -1x(a)(  (h)). 

We have that  by  A*  11*(  NO) is a monomorphism and that 
 h*:H*(  MO) (  24)* is an  epimorphism with  kernel  d°H*(  MO).

Using the Thom isomorphism, one gets that 

 H*(B0)  --* H*( MO) (  A *)*

is an epimorphism with kernel  H*(B0)*1 and this is a map of coalgebras. 

    I want to consider those  S(W) =  SW such that w has no members

of the form  2i -  1. Let S = vector space spanned by such elements

in  H*(B0). 

Lemma S (  91a  )* is an  isomorphism of  coalgebras.
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Proof The isomorphism is given by  Thom. We have

 )(Sw)  =  E  Sw10  Sw  wlw2 

and note that  wl and w2 are of the above type. Therefore S is closed

under the diagonal  map. 

    The composition

 ()*®c  S  C  —>  H*(B0)  C  =  H*(BPL)  (  21.Pb*

is a map of coalgebras and one can check that it is an  isomorphism as 

vector  space.

    So, dually,ec:*®  C* as algebra. This has some  corollaries. 

Corollary If  Mn  -*  C°°-manifold and N is a  C)o-manifold, N  -241-  0, 

then  M  x  N  e-manifold. The following results are known on the 

structure of C.

Theorem  Ci = 0 for i < 8.

 C8 =  z2. 

 C9 = Z2 Z2. 

 Ci  0 for  i  >  24.

One is also interested in the orientable  case  n*  .
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The  same methods prove that

 H*(BSPL)  H*(BSO)  ®  c

with the same C as unoriented case.

And the same proof shows that 

 11*( MSPL)  acH*(  MS0) C as coalgebra.

From this one can prove that

 ifx-  MSPL) =  E  a  /  (4;  ) free  a  -module as  ce -module.

Technical  lemma  

 If  M  is  a  spectrum  with

 H* (M)  E  a/  a  (si)  ®  E  a

then M V  _K(Z,...)  VI(Z21"...).     --  2 

   (Note:  Hiq  K(z6,  0))  =  /  (L(s)  C/  a  (si)) 

    This means that in  niVL for p  = 2 every manifold can be detected

with characteristic classes with coefficients in Z and  Z2r.

For p:odd, what is the structure of  H*(BSPL:Zp) ? 

Using  H*(BSF:Zp)  2.rZ[q]  E(5qi)0 C (proved recently upstairs)

and direct computation, one can prove

H*(BSPL:Zp)2"-: H*(BSO:Zp) 0 C

in dimensions < (p2 p  +  1)(2p  - 2)  - 1. 

Therefore one can try to compute  H*(  MSPL:Zp) as modules over

Here C is  known explicitly up to 2p(2p-2).
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Some pages later we  see, for example, that

 11*(  MSPL:Z3) =  E  a  /(3)  9 free in dim < 27,

where

 a  A0)  =  a/  (zo,  al,  Q,,....).

                         S The partaO/(0) comes  fromn*and the free part comes from

PL , but not  C0°-.4nanifolds.

Note that  CP2,  CP4, CP6  are generators and new things are 

 11  Z3 

  19  z3 

  22  z3 

    23  z3  (B,  z3  Z3 

    27  Z9  (H*(  MSPLI Z3) is no longer free)

Note, for example, that  Mil x  CP2 =  0, which is different from

The  End,
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