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Preface

These are the notes from 6 lectures I gave at Kyoto University
in the spring of 1967. They deal with the algebraic problems
which arise in the determination of various cobordism theories, especially
Spin, Pin, Spinc, and PL(both oriented and unoriented). The ideas
and results are taken from my published and unpublished Jjoint work

with D. W. Anderson and E, H. Brown, W. Browder and A. Liulevicius,

D. Sulliven, and H. Toda.

Fs. P. Peterson

26 July 1967
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§ 1. Introduction,

First we recall Thom's theory of cobordism, Let O be the orthogonal
group and G ——> O a homomorphism (G(k) —> O0(k) are suitable
homomorphisms for each k): for example we consider the cases
G= 0, 80, U, SU, Spin. There is a map g of the classifying space
BG(k) into BO(k) such that for the universal vector bundle 7, over
BO(k), g7, 1is a universal bundle over BG(k). We denote:

MG(k) = Thom space of the bundle g%y

i

one point compactification of the bundle space E

Esl/E=l.

Always we assume that the coefficient group is 22 and is omitted.

As is well known we have Thom's isomorphism
¢ E (Be(k)) = H(MA(K)).
Whitney sum with a trivial line bundle defines a natural map
SMG(k) —> MG(k+1l), hence ({MG(k)} forms a spectrum MG, (1_\_11__G__)k = MG(k).
Then the Thom isomorphism becomes

3 H*(MG) = lim H*+k(MG(k)) (spectrum cohomology).

ke 00

H*(BG)
Now Thom's first theorem states

G .. _
Theorem(Thom) a, = llzgm nm_k(MG(k)) = nn(yg).

From now we shall use no geometry. To study homotopy theory of MG

for various G, the main tool is to study the structure of H*(MG)



If G has Whitney sums, that is, there are mappings
BG(k) X BG(f) ==—=a BG(k+s)
with appropriate properties, then this defines mappings
MG(k) A MG(£) =——> MG(k+s)
and thus a map MG A MG —+ MG of spectrum. Therefore H¥(MG) is a
coalgebra. Here (L operates on H*(MG) ® H*¥(MG) via the Cartan formula.
Case 1. G=20
We have the following

Thom®s theorem

m(M0) = free (& -module
Therefore MO is equivalent to the wedges of K(Zz,k), the Eilenberg-MacLane
spectrum. (Thom gave a long calculational proof)
Case 2, G = 80

For this case we have the following

Wallfs theorem

H*(MSO) = direct sum of Q / &,(Sql) ® free [{ -module and further
he proved
MSO 5 wedges of K(Z,k) and g(zz,k) .
Before we state the case 3 we give a simpler proof of these theorems.
Proof of Case l.
Theoren 1, Let M Dbe a connected coalgebra with unit over [[_ , & Hopf
algebra. Define a homomorphism ¢ : (J ~~=» M by o¢(a) = a(l) . If
Ker ¢ = O, then M is a free & -module, (This is a theorem due to Milnor

Moore )



Proof. We denote by (I the positive dimensional elements of éz .

We set M= M/Q'M, then it is a graded vector space. Let x: M ==}l

be a projection. Let {fn-i} be & Ze-basis for M such that

dim., Ei < dim, I-rfi 41+ Choose a homomorphism g : M ==y M such that

ng = id and m, = g(n_li). We define 6 :l® M —» M by o(a®m) = a-g(m).
Then this is a map of left @ -modules. The elements {mi} form a generating
set over (& for M. So it is obvious that it is epimorphic. We want to
prove that 6 1is a monomorphism.

Put

Mn = M/ vector space spanned by Ei’ i<n.

We consider the compositions of the following maps:

d®uM ARV :M@M&M@ﬁ-—-—»M@ﬁn

(The last one is a natural projection)
b - v . o .
Let | z 2 ®m e l® ¥ ve in Ker.o with a, #0

The element , %_na'i ® m, is mapped by 6 to I am, =0 in M. And then
it is mapped to X Za,i'n'fi ® a.i"r-n-i” by ¢ . (\;r(ai) =sa,'® a.i",q;(mi)
=3Tm'® mi"). Then it is mapped to = a.imi'® mi"(note that
deg Ei < deg ﬁn), finally to an(l)®ﬁn in M® ﬁn’ Hence a.n(l) =0
and so a, = O as Ker. ¢ = 0,
This is a contradiction, q. e, d.

By using the same method (but more complicated) we can prove:
Theorem 2'., Let M be a connected coalgebra over (. . Iet ¢ : (I > M.
Assume Ker ¢ = (& (Sql). Then M = direct sum of copies of &/ Q(Sql)e

free.



Once we prove this, this implies Wall's theorem. Theorem 2' is
a bad theorem, because it does not generalize to the case
Ker o = (I (Sql, Sq2) (this corresponds to the case MSpin).
We need some notations.
If X is an (1 -module, let Q = Sq* € X , then Q% =o.
So Q, acts as differential on X. Then we may consider H(X : Q,O).
Theorem 2. Assume given 6' : &/ a(Sql)@) X ey M (X is
a graded vector space), a map of left /[ ~-modules such that
ol . H(a/Q(Sql)tg X : Qo) ~ H(M ; Q,o)
is an isomorphism. (M is connected coalgebra over (f , Ker ¢ = & (Sql)).

Then 6° is a monomorphism and M/ Im 8' is a free ﬁ «module,
Theorem 2 ======2% Theorem 2'.

Lemma. If N is an Q -module then there exists o' : &/ﬁ(Sql) X =N
which is an isomorphism on H( : Q‘o)‘
{ =u( &/Q(Sql) : Q‘o) = Z, generated by 8q°,
Teke & basis for H(N : Qo)

a/Q(Sql) ==y each basis element . )

We set T = &/&(Sql) ®X and let 7 : M =3 M= M/a-_ .M be the projection.
We find ZC M such that =|Z is a monomorphism and
M =T(e'(7)) &fl(z). Let N=T® (AL®Z) and 6 : N ~> N,
o |T=0' and 6(2)= 2. Extend it to (J ® Z by linearity.
We prove that 6 is isomorphic. Set N(n) = sub &-module generated

by Ni, i < n. In general we have e(n) = N(n) ——— M(n). We prove that



G(H) is an isomorphism by induction on n. As before, e(n) is an
epimorphism (it is obvious by the choice).

0(0), Q/ A (s¢t) — M0 g an isomorphism by the assumption
that Ker ¢ = Q (Sql).

Assume that G(n"l) is an isomorphism. Consider the homomorphism

A w/n(e-l) s yyy(n-1),
Lerma A\ | X2 o z% @ Squn is a monomorphism,

A induces an isomorphism on H( :Qy)s Here
Hq(N/N(n'l):Qo) =0 for q < n,
= X2 for q = n.

Therefore A|X? is a monomorphism. So if A(X, + Z;) = 0, then 0(X, + Z,) ¢
M(n'l). Therefore by the choice of Z, we have Z, = O, and hence X, = O,
Finally if A(SaZ,) = 0, then 6(8q1z;) ¢ (M("1))™*1 ang therefore
H(M(n‘l):Qo) = 0 in dimension n + 1 and n.

We have 0(Sq’z ) = S¢l(m)  for me (ulB-L))m

m = 6(y) for ye (nln-1)yn

So Sqle(Zn + y) = 0, therefore 6(Zy + y)=mn', m' ¢ M(n"l). By choice of
Z we obtain Z, = O and hence Squn = 0, (This is the same argument as

before, )

Conclusion of proof

We want to prove that A on N(n)/N(n'l) is a monomorphism.
Let {vi)} be a basis for X & Z% @ S¢*Z% Then v e N(n)/l\!(n"l) is

of the form



v =271 ajvy with aj * i (sq%)

Assume v # 0, A(v) = O. Consider the compositions of the following

(n=1) (n-1) (n-1)

homomorphisms N/N —> M/M —s> M® M/M

Then v is mapped to O in M/M(n"l) and then to T aj(1) ® A(vy)
+ (terms in different dimensions) in M® M/M(n'l) .
Therefore ¢(a;) = a3(1) = O, Hence a; ¢ Q_ (sqt) for all i, This
is a contradiction.
Let me state Theorem 3 without proof. One can prove the following
theorem by a similar bub much more complicated method.
Theorem 3. Let M be a connected; coalgebra over Q « Assume
Ker ¢ = & (Sq_lg S¢%). Let X and Y be graded vector spaces. Assume
that o' : X/ Qs sP)exe (L/A (3 ey) — n
is an isomorphism on H( :Qg) and H( :Q1), then 6° is a monomorphism
and M/Im 6° is free. (Here Q; = S¢3 * Sg®sql and Q;% = 0).
Its application is for H*(MSpin) = M.
This is not the most general theorem, but it works in the application.
From Theorem 3, one could calculate sty ( _I\@pin) by epplying the Adeams

spectral sequence,

That is, one calculates
mt y (070 (say 542, 22),
Bt 5 (/T (s4%), 2),

and then show E, = E, (for algebraic reasons).

We find a spectrum X whose cohomology is Q /0 (Sql, sq?)



and another spectrum Y whose cohomology is & / a (Sq_3 )

Mspin —> V X V ¥ V K(Z, )
Let BO <n>= BO(nysssy, ©) = (n-l)-connective fibering of BO. We

have the map p : BO<n> ——> BO., Then

pritx(BO <n> ) —> nx(BO) is isomorphic if * > n,

is zero if ¥ < ne

By Bott we have BO = 98°°(BO).
One can find & Q-spectrum BO <n> with (BO <n>), = BO <n>. Then we
have

Theorem(Stong)

QA (sa, s®) it n=o0(8),

X/ Q@ (sa>) if n =2(8).

H*(BO <n>)



§ 2. Results about Spin cobordism.

I want to describe the Spin cobordism Q*Spin .

BSpin —» BSO is the 2-connective fibering. You take
ne(BSO) = 2Z, . Kill it, then you get BSpin. Classically,
Spin(k) —> SO0(k) is a 2-fold covering space. Then you have that
MSpin(k) forms spectrum MSpin and =, (MSpin) = Q*Spin .

The cohomology H*(BSpin) is easy to compute from the fibering
BSpin —> BSO and we obtain Easy Theorem

H*(BSpin) = Z,lw,], i # ¥ 41 as algebra

R

Zeth‘_,W6,W7,W8,WlO, e o0 6] ®

But WoT +1 is not necessarily zero, only decomposable. For example
= 0
Vs
w., =0
9

Wyq = Wy oWyg F WorWy g t WgeWy

.

33 has about 200 polynomial terms.

We have that

H¥(BSpin) < ¥ (BSO)/Ideal generated by Wy, Sqlw2

re-l .r-l
2,1 2 s 2 1
Sq Sqwe,o.o, Sq_ " oosq (W2)’..a
This is an isomorphism as an algebra over ﬁ .

(e.g. Sqlw16 =Wpo = decomposable)

Before we state the main theorem we need some notations.

et J= (jl,...,jk) be a partition such that zj, = n(g) ,k >0



and Jg > 1.

Let X be a graded vector space with one generator XJ in
dim. 4¥n(J) for each J with n(J) even.

Iet Y be a graded vector space with one generator YJ

in dim.4n(J)-2 for each J with n(J) odd.

The Main Theorem
me(mspin) = ( @/ A (sq*, sP)ex) e ( A/ AsB)ev) e (Ao z)
as an & ~module

where Z 1is a graded vector space,

Furthermore there exists elements w'e KO(MSpin). (These are images
of the KO-Thom isomorphism for Spin-bundles

K0° (BSO) —> K0°(BSpin) = KO(MSpin)

For reference, see " SU-cobordism, KO-characteristic numbers,

and the Kerverire invariant ", Ann., of Math.(1966).

For such an element J we have

= 091, 292, 19k eIﬁ)(M@in)

We have another theorem.

Theorem  Filtration > = kn(s) if n(J) even

=kn(s) -2 if n(J) odd.

Therefore er defines a map

10



ﬂJ : MSpin — §_Q_<1+n(J)> )

or BO <kn(J) -2>,
where BO<n> —> BO is (n = 1)-connective fibering. We have a map
F : MSpin \(/)_Bg<4n(J)>VV)_]_3_Q An(3) - 2>vV K(2Z,,...)
n(J n(J

even odd

and the map F induces

H¥ (MSpin) §*( A/R s, s®)ex)e ( A/A (s) @ 1) @ (Us z).

We will not discuss the KO-theory here. But we will discuss the
main theorem.

Spin

From this one reads off , (MSpin) = q; . Let me give some examples

of J. The lowest dimensional J with n(J) even and all integers
in J not even is J = (3, 3), 4n(J) = 24, Milnor, in his study of @, in s
stopped at 23 because of this element.

We can describe the manifold representing each class except for these
of this type, that is, n{J) even and not all integers in J even.
There exists a manifold M2 h with wlg(M2 h) 74 0. We cannot construct M’gug
It would be interesting problem to find this large class of Spin-manifolds.
A1l other representative manifolds of cobordism classes are constructed

by using Dold's manifold etc.

Iet me now state the corollaries of the main theorem.

Corollary of the main theorem

1. Tet [M] eoiP™. Then
[M] = 0 if and only if all KO-characteristic numbers and all

Stiefel-Whitney numbers vanish. (This is easy from the second theorem. )



2, Im (nfgpm———; 7T,) = 811 [M] all of whose Stiefel-Whitney

numbers involving wy or wp, vanish,

(I will discuss the proof in details later)
. Spin ??- Y = . .
Milnor showed that Im(0,” — %) = squares of oriented manifolds
in dim. < 23. In general, Im(Qgplrf—,% x) D squares of oriented manifolds

# in dim. 2k,
fr Spiny -
3. Im(Qn —r o ) = z, n = 1,2 (8),
0 otherwise.,
The representative manifold is [Ms]k X Sl, [M8]k x 8 x 8,
(This is not difficult corollary.)

Cf. Ho = M M = (80,20 »1) sHy T {BU,QL;uk_l}
8.k 1
and By — M 1" x g,

L, (Corollary of 3) The Kervaire-Arf invariant

$: TQK+2

Outline of proof:

(8) —> 2, is zero if k > 1.

Spin
TBk+2 (8) > Ogpsp 7 Za

- %(281!"‘1 X sl)
= §(28k+2) = 0.

Now we discuss the algebra needed in the proof of the main theorem.

Iet M be a left(right) (7 -module ( (: Steenrod algebra).



Then M¥* = Hom(Ml, Z2) is a right(left) & ~module by
(:m'*)a.»ml = m*.a(m ), m +a(m*) = (m,a).m*, The operators of w lower
1 1 1
degrees, & itself is a left and a right Q -module by multiplication.

Therefore KZ* is a right and left Q ~module,

k
By Milnor's notation, let ;k e&*e "1 . Milnor proved that

&*z Zg[}]_’ Ez’“‘] as an algebra.

*
Proposition & is a left and a right algebra over @ , (Cartan formula

holds) and SQ(EK) = §k + Ele(_.l

e

(Ek)(SQ.) = ;1: + %k-l , where 8q -—=i b OSql .
>

Proof  Exercise for the reader.



§ 3. Outline of the proof of the main theorem in § 2.

In order to prove the main theorem we must study & / (f (Sql, Sqe)
and also H( & / @ (Sql,Sqa), QO), a @/ Q (Sql,Sqa), Ql). Consider
1 2
R(sq™) @ R(Sq")
. 1.2
e Q > @ — A/ A (sa5) —>o.

Dualizing

L(sq) ® L(5q°)

Q% o Ax e——— Qxe— ( A/ @ (5q,56°) < o.

Applying ¥
R(S¢") @ R(Sq°)
Q* © @* Q*<__ x( Cz/ 14 (Sql,qu))*e—- 0.
L
et A=2Z,%], gg, 35eeelC Q * .
We have (?k)Sql = 0 unless k=1
(308" = §,=12
(Ek)SQZ =0 unless k =2
2
(§p)84" = }1 .
Also note : (Zi)Sq‘?'—‘ §§=l.

It is easy to prove that
A C Ker.(R(SqY) + R(Sq%))
*
(0 "= free A-module on generators 1, ;l’ ?32-, £os Ei, §l§3’ %ifz .

Therefore the kernel has nothing more that A,

1k



Theorem x( & / &(Sql, qu))* = Zo[ Ei, ES, 23,...].

Theorem
H (/) @(sa*, sa®) : Q1) i=0,1
= H(x( U/ @(sa®, s®))" : @)
Zol § ?_] with respect to
E( ZS, E%, ;ﬁ,...) with respect to

Therefore you can read off

Theorem A basis for H( Q/ Q(Sql, Sq?'), Q) is X(thk)_

Similarly

@
L(5q3)
Q% <— " @*<— (A /@ (53))* «— o.

R(S¢%, Sq1)
D @* <« x( a / @ (893) )% e«

R(Sq>)
< (] @)@ (sa3) —> o.

*

You come up with

Theorem x( @ /(0 (843))* = a free A-module with generators

1, 31: gi %:3.*‘ $ o 5132'

15

Q = Sq3 + ngs

ql



Theorem H( x( @ / (X (S'q3))* Q) =§§_ ’ 22[ %i] .

1 x( @/ @ (s3)"

se

o) =32 . 835,35, .

In order to apply the techniques of the last time we must study
H(H*(MSpin) : Qi) (i =0,1) .
Remember the Thom isomorphism that
¢ : H¥(BSpin) — H*(MSpin)
is a map of Q; and Q, modules, because Q,O(U) = Ql(U) = 0.
Let B =H*(BSpin) for simplicity.

We recall that

-3 ] r
B Zz[‘”'il i #2°+1
Qlips) = Va3 4 4 Qg 4 1) =0
, . ) . . 16,
o1 21
Define X.e B~ by o(X,) = x(5a” )(e(1)) .
Then X, = wy3 + decomp. Furthermore Q,O(Xi) = 0,
Now we have
. ro, r
B=22[Xi,wj] j# 2, i#2 +1.
Furthermore
r
= j 2
Q‘O(Xi) =0

16



We have
2 .
H(B:q)) = Z,[X;, (v)°1, §#2%,
where (Wej )2 = pj is a Pontrjagin class. Similarly for Q‘l =case,

but H(B:Q,l) is more complicated,
Remember the theorem of last time:

If given 6°': &/ X (Sql,qu) ® X ® &/ A (Sq3) ® Y —> H*(MSpin)
such that 6} is isomorphic on H( : Q‘i)’ i=0,1, then @' is

monomorphic and cokernel 6' is free (I -module.

1. To find 6°°

2, To show that 6§ is isomorphic.

Ilet X be a graded vector space over X
We would like to send

G(X ) = P o= P. ¢P. eevesesD,
T T T Ix

2 1
pj = (“w?.j) 3 80 Sq. (pj) = O‘-

8a°(wy ) = Gy, , )% # 00

2j + 1

Qo(pj) = 0, Ql(pj) = 0.,

The results of KO-theory computations show that for n(J) even,

there is an element XJ such that XJ = PJ mod Q‘O , that is,

2
(X;)=CPB;) in H(  :Q), i=01, smd S¢°(x) =0, S (X;) =0,

17



If n(J) is odd, there is a class YJ such that ng(Yj) = P,

(Hence Sq3(YJ) = 0,)

s 1 ' =
Define 6' by 6 (XJ) X,

' =
) (YJ) Y

To show that 6', is isomorphic, we need four more pages of
computation.

From the theorem of the last time we obtain the main theorem.

18



§ 4, The mixed homology.

Let [, = 0%, sqt, $q°) be the subalgebra of (. So Qs e [Fl,

1

3 =8¢, If M is an &l-module, we can

where Q‘l = 8q~ + SqZSql, Q‘O

define H(M;Qi), i= 0,1,

We want to define the mixed homology. I also define:

Y\
(Ker Qy N Ker Q) )/(Im @y N Im Q) —> H(M;Q, ) i=0,1

Definition M has isomorphic homologies if ?i is isomorphism for

i= O,ls

Theorem  (Wall)

£ H(M : Q) =0, then M= free ({ -module,

1

A generalization of this is the following

Theorem If M has isomorphic homologies, then M is isomorphic to the

direct sums of four types of &l-modules, &l’ &l/ &l(SqB),

A,/ R (sa*,88%), 2,

The reason I give this theorem is that it is useful in the KO-theory

computations which show the existence of X; and Y H*(BSO) has

J’

isomorphic homologies, so this gives the @ | -Structure of H*(BSO).

19



Remember
- Y -
E, = (80,Q0,@;) = B@y,e)c &, c .

The following is easy to prove.

Proposition M, an @l-—module, has isomorphic homologies

& M 3. @ free E -module & a trivial E -module.
1

Let me outiline the proof.
Let M(n) = gub & l-module generated by M* » i< n.

The proof is done by induction on n.

0)

For M( , the theorem is true by one page of easy calculation., Consider

(-1)__, o,

the sequence 0 —s> M(n-l)____) M —s M/M

fo. 0=
First we prove that M/M\n-J“) has isomorphic homologies using the

alternative definition of isomorphic homologies as El-modules (the five

lemmea. does not work, because the degrees of the two differentials are

different). Now look at the sequence
0 —s yn1)_, L) M(n)/M(n—l) o,

where M(n)/M(n'l)= (M/M(n'l))(n). Here M(n)/M(n-l) satistfies the
(0) (n-1)

conclusion by the same proof as for M'"/, so does M » and one must
prove that the extension is trivial., (This takes the l-%”— pages of

computation).

20



Let me make one remark : We want the filtration of elements in KOO(BSO).
(KOO(BSO)is known.) One studies the so-called Atiyah-Hirzebruch spectral

sequence from H¥(BSO : KO¥(pt)) to KOO(BSO).

The differentials de, d3, du, dS are all primary operations in (Zl. So
knowing H*(BSO) as an C?l-module and En allows you to compute the
filtrations., (ILater I'll say more of Czl—modules.)

Now I want to discuss the problem related to

m( 0, R ,) = In(r,(uSpin) —> =, (10)).

21



§ 5. General theory on maps of spectra.

et £:X —> Y be a map of spectra.

Assume always that Y =V _I_{_(Zg,.....).

Question is to describe Im(w,(X) .._g_*;_;) (1))
Let G, be a subset of w, (Y) defined by
Go={g:8 —> Y[ g¢u)=0 forall ue B*(Y) with ue Ker £¥},
In general, Im £, C G*.
When is Im £, = G, ?
Definition X has a property P
&> given ue H*(X) such that 0+ ue H¢(X)/ ﬁ»H*(}_(_) then there
exists g e m (X) such that g*(u) £ 0.

(For example, Y has property P.)

Theorem Assume that Tx : m¢(Y) —> ®¢(X) is epimorphic, then Im f, = G,

if and only if X has a property P.

Proof (¢ ) Let g:8 —> ¥ and ge Go-Imf,.
That means there exists wu e H*(Y) such that g*(u) # 0, (g g')*(u) =0
for all g' e n, (X).
Therefore g'*(f*(u)) = 0 for all g'.
So f*(u) e E-H*(}_Q, whence g*¥(u) = a«g¥(v) dim. a >0

for u + av ¢ Ker f*,

22



So g*(u + av) = 0 = g¥(u), This is a contradiction.

(= ) Let 0 FueH(X)/ F (X)) . If (g')*(u) =0
for all g', u= £*(v), v JEH*(X), then there exists g e n, (Y)
such that g*(v) # 0 and g¥(Ker £*x) = 0.

Therefore g € G,- Im £, : contradiction.

-

Below we give some corollaries of this theorem. Before it, we need a

Proposition If g : 8§ —3 MO, g%(U-(ideal generated by w, and wg)) = 0,

then g*(U:(ideal over (§ generated by w, and w2)) = 0.,

Proof let g 3 § —» MO such that g*(erjgw) =0 for j=1, 2. We
want to prove g*(U@a(wj)aw) = 0 for all a and w.
This is done by induction on dim.a.

By the Cartan formula we have

U@a(wj)ew = a(erj W) + le’esﬂ(wj)wwﬁ , where dim.a’ < dim.a .

By induction hynothesis

g*(Uaa(wj)ww) = g*(a(anj W) + 52U af(wj)aw’) = 0,
Now we get

Theorem  Im( Q_)S;Pm_-——v 972 *) = all cobordism classes all of whose

Stiefel-Whitney numbers involving s or w, = 0,

1 2
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Proof The part Im( ooP—s 70 ,) C alle.... is clear.

Let g : 8§ — MO, then g(Ker £*) =0
then ge Gy »
So we must prove that X = MSpin has a property P in order to apply

the theorem.

lerma If E,=E  in the Adams spectral sequence for 1, (X), then X

has a property P.

We have E2 = Eoo in the case X = MSpin .

Therefore G, = Im f*,

24



§ 6. The bordism group.

We also have the bordism " homology " groups.

e.g, %*(K)={ M, £) | £: M —s5 K} J o~
where (Ml, fl) —~ (M2, f2) if and only if there exists a cobordism

W between M, and M, and amap F such that FlM.l=fl and F|M2=f2 .

Then 22 «(point) = 72* .
We have another definition due to G. W. Whitehead

P (%) = n (K" A WO) .

We have characteristic numbers for bordism groups. Let u ¢ Hn‘_k‘(K)

and w € Hk(BO), then we define
<ex(u). v*(w), [M]> e Zye

These are called the characteristic numbers of (M, f). It is easy to prove

that [(M, £)] = 0 if and only if all characteristic numbers are zero.

Theorem  [Im(g, (K) —*’?& »(K)) = all bordism classes all of whose
characteristic numbers (of the map) involving W vanish] holds if and

only if H.(K : Z) has no l-torsion.

The proof depends on the fact that K A MSO has a property P if and

only if H(K : Z) has no b-torsion. (This is easy to prove.)
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Theorem There exists a Pl-manifold M9 such that all characteristic

mmbers if M  involving w,, are zero but M9/7(/orientable PL-manifold.

l,
Spin ?2 — .

Theorem [Im( 0. (K) —* /( (X)) =all bordism classes all of whose

characteristic numbers involving W, or W, venish] holds if and only

if KA MSpin has a property P.

Later I will prove that BSO A MSpin and RP A MSpin have

property P. So this is true for K = BSO and K = RPOO.

We discuss the methods for computing Q*Spln(K), KO, (K) ete.
Recall

PP (k) = 1 (X : MSpin) = n, (K" A MSpin).

One method for computing H,(K : M) is the usual spectral sequence :
2 0
B =B (K :T(M) = E.

Another method is to compute =, (K A MSpin) = QSPIH(K) using the
Adems spectral sequence. That is, one must compute H¥(K/\ MSpin) as a
module over Q , and then apply the Adams spectral sequence.

Here we have

N

B*(K) ® H*(MSpin)
(k) ® (= @/ A(sq*,8d°) @ = A/ Q(5d3) @ = Q).

H* (K A MSpin)

s

So it is enough to study the ({ -module structure of M® a / @(Sql, Sqa),

M® &/Q(SqB’) and M® & for some given M,
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M® @ J A Sql, Sq2) is the tensor product in the category of
& -modules, so by the Cartan formula we have

a(m® b) = za'm® a''b.
Theorem M® & is a free a -module,

Proof We need some notations :
M= underlying Zz-vector space of M as trivial
Q -module : Sqo = id, Sqi =0 for 1i>0,
We can form N ® ({ by defining
a(m® b)) =m® ab for dim a > 0.
Let us define
s : M@ —> M @
by £2(m® 1) =m® 1 and extend as an (¢ -map, that is, 2(m® a)
=fa(n® 1) = (m® 1) = a(m® 1) = sa'(n) ® a'', This is an @ -mep.
We prove that £ 1is an isomorphism.
Note thet m® 1 ¢ Im.f . Assume m® a ¢ Im. 2 . with dim.a minimal.
Then a(m® 1) =ram®@ a'' =sa’'(m)®@ af’ +n® a
dim a'' < dim a'
where a(m® 1), sa'(m)® a'* ¢ Im. 4. Hence m® a ¢ Im. 4. Therefore
£ is an epimorphism. £ is a monomorphism, since ﬂ@ Q and MQ® &

are both vector space and one can count the basis, Therefore

£ ﬁ@& —> M® (! is an isomorphism.



The a -structure of M® a depends on M as graded vector space,

(For the other casses, €.g., M® &/&(Sql, Sq_z), this is not true.)

M® (! is a right @ -module by
m® a)a =nQ® aa
Define the right Q -module structure on M ® (Z via g @

@® a)s =4 ((t(n® a))a).

Theorem This right &-module structure on M ® & is given by the

Cartan formula :
(m® a)a =x(m)a' @ aa'’,

where (m)a = x(a)(m), x : the canonical anti-automorphism of the

Steenrod algebra.
This is the key lemma.

Proof Consider the diagram :

ool — ueole feod — nNede le
1Q v 1©T® 1

—>uef — uel .
3® o I

By chasing this diagram we have
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n® a®b — n®a®b'@®b'" — MO b' Q@ a® Db

—s (') (m) ® &b —— ab'' (x(b')m® 1)

a((b?)'x(b!)(m) ® (b**)*?)

]

a((e)"x((")'")(m) ® p'")

a(m® b)
=a'm® a''b,
Next consider the other diagram :

el @@ —> MR — M X.
L ®1 1® 0

Similarly we have

n® a®b —>am®1)®b=am@a’''"®b — a'(n)® a''db.
From this we get the following.

Theorem Let M be an f -module and N be a fixed (B =module, where

(B is a Hopf subalgebra of (f . Then M® ( ! ® N) depends as an [[ -module

only on the B -module structure of M.

If £ : Ml _— M2 is an isomorphism as @ -module, then the followings

are isomorphisms as (} -modules



’ewl

® 1
Ml®(((7§N)—~a(Ml®&)gN — (e Z)en

f® 181 2 @1

)

_— (1, ® &)%N-—? (M2®&)®N«——>M2®(&gl\r).

Theorem If M and N are &3-modules, then

(f’l@&)@Nz CQ ® (M® N) as Q-modu.les.

Proof m® a®n — a®n® n.

We have to show that m® a ®bn and mb'® ab'*'® n have the same

images under this map.

We have that

mb!' ® ab'' ®n —> ab'" @ X(b')m® n

i

a® (o) )m® (b'*)''n

]

a® m® bn.

n® a® bn —> a® n® bn,

Let us write the corollaries.

Corollary Let M be a left (] -module and N a left {3 -module.

Let MDD escee D M[l] D evees be a filtration of N as @ -module.
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Then an [J -filtration of M® ( ) N) is giveby (A ® (M[i] ® N)

with quotients isomorphic as (! -modules to (I & (M[l]/M[:L-l] ® N).

Let us write the corollaries in our applications. 63 = Q 12

n=1z, or (/@ (55

s A/ Q(3), sic é?l.

Theorem  Assume M =
—— @.1
1

Then M® (0 / Q(Sql, sq°)

% (l/ Q(Ji).

=

Theorem Assume M = 3 (1./ @ (71), dic (@..
Lheorenm . IV 1
1

Then M® & / Q(Sq‘?’) = sum of cyclic Q -modules, if no Ji are the

following :

2 2.1 3 2 1 2.1 2.1 L 1
(s¢°, sa°sq’) , (Sa>, Sa°sq} , (Sa°sq’) , (Sa°Sq’,S¢° + Sq'Sq’) ,

.. 3.1 L 1 L 1
{Sqg”8q, Sq5+8q Sq7} , [Sq5+Sq 5q7}.

Iet me give a corcllary of this theorem.

Corollauy  BSO A MSpin has property P.



Proof  w(850) = =z (I;/ (,(s¥)e = A e 5z,
1

where &l/ &l(qu), &l and  Z,

and J = & 1 respectively.

correspond to J = Sq3, Jd=10

Therefore we have

H*(BSO) ® H*(MSpin) sum of eyclic (I -modules.

(E

We have E2 = Eoo in Adams spectral sequence by inspection.

Another important example is M = H¥(RP°). We will describe

() /(@ (sa*, s6°), EF)® @/ @ (sa®) ana BWEF) e A,

because this gives Eipln(RPw) = Q_,I:'L 2,
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§ 7. The Pin cobordism.

Spin is a universal covering group of 8O, Pin is a universal covering
group of O, The component of identity in Pin is Spin.

BPin —>» BO is constructed by killing Woe So a manifold has a Pin

structure if WE(V) = 0, where y 1is a normal bundle.

In the Spin case, we(t) = 0 if and only if WQ(V)': 0, since

= o+ ®
Wy (T) = iy () + 3w (T) - (),
Pin | .
Note that ¢ is not a ring, because
Wz(‘vl S v2) = WQ(V:L) + Wl(vl) . ‘Wl(vg) + W2(Vi)"

But it is a cobordism theory.

Let G = Pin. We have the map

BO(1) x BSG(k) —> BG(K + 1)

This induces the isomorphism on H¥( VA in dim. < k. Taking the

o)
Thom space, we obtain the map
MO(1) A MSpin(k) — MPin(k + 1),
which induces a mod 2 isomorphism.
Note that MO(1) ~ S(RF°). Therefore

~Spin, ¢ Pin
oip (RP7) = 0y .

Wwe will study B*(RF°) ® 1/ @ (sqt, s¢®), BEF)® @/ @ (sq°)

and F*(RF°) ® (I . Let me state the answers first.
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Remember

me(uspin) = (@ /A (s¢4,8)ex)e (/R (s3)ev)e (A ® 2).

Each term H*(RE)® 1/ (@ (Sql, Sq2) contributes the following homotopy to Qg‘zin :

z, i=0,1 (8)
TC* = 0 1 = 3) h‘) 5, 7 (8)
Zg, Zyg Zppg ete. i=2, 6 (8)
where
X 23 Gt T B8 LIl 12

i l 2 6 10 W+ 18 22

For example, it turns out that

gl Y Zg , the representative manifold is the Klein bottle.
Pin

Each term H*(RP?O) ® & / & (Sq3) contributes the following homotopy to g

Q

Z, i=1,2,5,7 (8)
Z, ® Z, i=6 (8)
k1 £3 =
0 i=3 (8)
Zp, 2y, Zgp etc i=h, (8)
where
7y f R P S
i 0 L 8 12 16 20
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For example, QJI%H 2= 2908 © Zg @ Z, and the representative manifold of
Zg 1is Q,}?2 x (Klein bottle).

8 Spin 10 i
There exist manifolds M ¢ @ e and M ¢ QPln such that

M8 x 8! x g represents in Zp in Q%P g &([Mlo]) = [M8 x 81 x 8]
in QP:T_n°
Let us state some theorems about Pin cobordism. Let R: = fit!(REP)

as an Q =module,

Proposition As anr Q 1mmodu1e, R has a filtration

R™ mm e ™ plti+2] - piti=2] S - glal o gL0] ,
where R£ﬂ is an Qﬁmmcdule generated by R s J<i and
. - 1 =) 1 2
riaelyplhical - @ @), )RR < @y @ s, 5O - Ry @)

N 1 5 b1 1
Extension is given by Sqlry;,p) = (8g + 8g8¢)(ry; o), Sglry) =

Proof is straightforward.

So then we have

Theorem R® (I /(1 (Sé_‘, S%) has a filtration as ﬁ =modules
o . o pliiR) pli=2) o memees

with F(+2)pti-2) = @/ Q(ss), 7@)/p(0) = (U @ (s3) ena
F(O) = a / & (Sli)o
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Proof Corollary of the previous theorem,
A little more complicated is the other case:

Theorem R® (1 Yati (Sa) has a filtration as (I, -modules
= S Sali) 5. ,

(hi#2) o hit) _ - (443) fy(hie2) _

where G

i) o (bi43) _ 7/ Q(Siqt), g(#145) g (bink) _

aa ¢/ = g, @ = @ /2 (s3sh).

Proof Corollary of the above theorem (One should calculate

Qe EHAIe R,/ 0,)).

1

We want to study
Ex'b& (R® & /& (S%: S%.): Zz)

by knowing the filtration of R® (A /@ (8§, 7).
Intuitively we assume

re @ /4 (Si]i, Sa) = direct sums of F(ui+2>/F(ui-2).
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: | CTw
’ ' ﬁozw :w :
* el *Rew W :
© AT Clw
hoYy | T 4o, i,
“ﬁ: 20 {1 ol
4 X I, %3 4-3
To obtain the correct Ep put dy :E1a" b 212y need the

following theorem of Adams;

Theorem of Adams

r H(M, Q,O} = Q, then there are no elements of o ~height

;n Ext M, 25).

(This is not difficult to prove)

Note:
2re @ /@ (s§ $9), ) = HR, o) ® 8 & / X (5§, 5B), o),

where H(R, Q) = O.

Hence the Ep-term is

37
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5|
o
ﬁ:ll %:Xz
ﬂlz ﬁoli ﬂﬂz«”
%l ol 12 f~5

because d4(T) = h?(’)x1, dq(w) = h%xZ, ete.

Note that bhy(h3w) # 0. We will show d, =0 for r »2, If

d5(x3) = hgw, Then 0= dg(byxg) = hy(W3W) # 0. This is a contrediction.
So dp =0 for r >2. Therefore the homotopy groups can be read off from
the table.
2 i=0,1 (8)
=% 0 i=3,4 5,7 (8)

Zg, 216, Z128 etc. i=2,6 (8)

Next, we assume R® (] /A (SS) = direct sums of G(i)/G(i"l).

<o 1T
L 4r
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dy 1is similar to the above., Note that E, = E, in the Adams spectral

sequence. Therefore MPin has property P. So we have

Theorem Im(oEi? —s n %) = all cobordism classes all of whose

Stiefel-Whitney numbers involving wy(v) vanish.

§ 8. The Spinc-cobordism.

Let me now state some results about Spinc-acobord.ism.
Spinc = complex spin group.

BSpin® —— BSO is obtained by killing w3, that is,

BSpinc path space
* L
5 o)

BSO > x(z, 3)

where 8*(w2) is the image of the Bockstein operator of wo.

%inc is a nabural theory for K-theory because a bundle is orientable
with respect to K-theory ¢&——3 the bundle has a Spincmstmcturee

The methods for calculating MSpin work for _MSpinC and are much

easier. Let me state the answers. They are

Theorem

1 Mepin®) = (A /A (Qpy @)@ %) @ (Z ® 2)

..C
Theorem Let [M] ¢ o¥P'™, then [M] =0
¢ . B S bl ’

&= all mod 2 and all integral characteristic numbers vanish.
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(One needs no K-theory)

. C ,
Theorem Im(QEpln —_— 2}2 %)= all cobordism classes all of whose

Stiefel-Whitney numbers involving w; and w3 vanish.
One might

. C . . C
Conjecture : ofPin”  is generated as a ring by Im(gﬁpln — Q§P1n )

: nC
and Im(Q) —> ofPin7),

This is true in dim. < 30 Spin ——>  Spin®

but it is false in dim.31. //////)7

U
One could consider PinC and the same methods again work well,
For some pages let p be odd. Let me discuss the structure of BSO
and BU ignoring all primes but p. The main theorem is that BSO is

decomposable in the classical sense, For this we develop some machinery.

Let BP be a space like BSO with

0 if0 ()

(B} - i=0 (&)

and all ke~invariants of order power of p.
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First theorem is

Theorem Let K be a space such that

0 i#o0 ()

n;(K) = . f=o @) mod C’P

i

and Hhi"-l(K:Z) € va Then there exists a map f:X —> K, which is mod p

homotopy equivalence i.e.,, £*¥ is isomorphism on H*( :Zp).

Proof Given a space K we form the Postnikov system

X
K(i) path space
g(i-1) ——ty K(ny (K), 1+1)

point

with k-invariants k( i+1) (x) € Hi+1(K( i-1) 274 (K))o These k-invariants

determine the fibrations.
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Consider the diagram Bp
i

£ K ety K(Z, %)

Inductively we 1ift the map fy.

Assume we have fy_1:K — BE(,%J")

Bl()lb’c )

7
K —— pltt-¥)

fga1

K(Z, 4t+1)

The obstruction to finding £, is £y, (k'**1(8))) e #¥* (k:2).

Since kht"'l(Bp) is of order power of p, f:-l(kht+l(l3p)) = 0,

We set f = f,;i:K —7B,. We must, however, show that f(h’t)* is

isomorphism on H¥( :Zp) for f(b’t):K(ht)ﬁ Bp(ut). If we do this,

f* is also an isomorphism on H*( :Zp).

L2



We have the following diagram:

K(z, 4t) —-—g———-; K(Z, 4t)
1 (4t) l
g(bt) — Bp(ut)
l/ f()""t”"l‘) \,/
g(t-4) —_—s (=) k(z, bt
We assume f(ut"’*)* is an isomorphism on H¥*( :Zp). So we have

Hl‘t"'l(BI()l‘t“u):Z) = Zge (t) with a generator x = kl"t"'l(Bp)e
Therefore

L) 7) 2 7 9(t) which is meppea by £(tt-tx,
The keinvarisnt of K is sx = kro*l(x)
Then we have

s#0 (p) or Hht""l(K, z) GF .

which implies s #0 (p).

For the generator ¢ ¢ Hu‘t(Z, Lt) we have

() = a
By naturality x=a s x. So a # 0 (p)s Therefore g* is isomorphism on
B¥(  :Zp). Hence st e 45 isomorphism on H*( :Zp)u This finishes
the induction.

This argument works for x # O.

(b=l )

If x =0, that is Zg(t) = 0, then Bp(l“‘) = By x K(2Z, 4t),

and we should change :f'(%) and extend to new f, QoEeDo
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Let kK —>K(1"1) ve a fibration with a fibre K(;) such that
‘an-(K(i)) =0 for j<i.

The better and more useful theorem is the following

Theorem Iet K be a space such that

0 i#0 (%)
z i=0 (&) P
and the first k-invariant of K(y4) in Hht+2p-l(Két‘g4)-2p-6):z) =z P

is A @l, A#0 (p)e Then there exists a map
£f:Kk —> ]3.p

which is a mod p homotopy equivalence.

Proof

kK(z, 4) K(z, 4)

o



(Inductive hypo*bhes:.s) Assume fy_; exist such that f(h‘t h) (ht-h)

—_— Bs(,ht_h) is an isomorphism on H¥( :Zp). Therefore H)‘t"'l(K(ut'h):Z)

2y (t) with a generator x.
We will prove that the k-invariant k”"t+l(K) =sx with s # 0 (p)e

For, if s = O (p), then consider the map thz:ggﬂ_z y —> K(ut"h) inducing

the homomorphism Zp6 () — Zp which maps sx to a non-zero element.
Hence s % 0 (p)s Therefore we obtain H 1:"*'l(K :Z) € eF Now we follow

the same proof as of the previous theorem.

Theorem  There exists a space Yp such that

0 i#0 (2p=2)
w;(Y,) =
P
z i=0 (2p-2)
and the first ke-invariant in Hht+2p"l(Y(%t)) zZ) = Zy, is 2B gl,, A £0 (p)e

This is proved next time, Assume this for the moment, then we have

Corollary -1

=
B g“iyp.
=0

BSO ~o
P

P-2 .
B o~ T ¢fly,.
p <=0

These are mod p He-space equivalences.
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This is seen by inspection. This theorem is useful for some calculations

of BSPL.

§ 9, The cobordism with singularities.

Let me start today by describing "Cobordism with singularities".
This is a theory of D. Sullivan.
We start with of. Let C=[Cle f. We fix ( for a while.

Consider a manifold W® such that oWR Lx (. We form

W=1W>\/L X cone @ along boundary.

Y
W

0\ L xC
~——

These are "closed ma.nifcﬁ;f new theory. The bounding menifolds
in new theory are W' ' such that W°r = Lx  \wA along 3L x (
(We also have an identification dA =23L x [ ).

Sullivan proves that one can form a bordism theory gf (K) which is
a generalized homology theory. One can relate the coefficient groups:

xC c C
""‘_7911{-c I—— Qg — Iy — 0'g--c-l —i-* 9'}1]-1—-? -

It is easy to check that this is an exact sequence, We know the
ring Qg = Zley, seveedd, c5 € Qgg. So, if € # 0, then multiplication
x{ is a monomorphism, that is, we have

x€

o———rgg_c——-——r Qg——»gn—-—-—r-o,

whence Qg= z2leg, cennndl /(C).
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Repeating this process on QC fixing d e Qg: » one obtains another

n 2
exact sequence:

C d ¢ ¢d ¢
—- > Mg —> % —> % —> gl —> - .

If we choose X7, Xp,... such that x4y 1is not zero divisor of

QU/(Xl’.ot, Xi), then
Qg(_{l"c" xi'l"l o QU/(Xl,"‘, Xi+l).

Here again one obtains a generalized homology theory.

Example 1 (E = n points. Then one obbtains QE ® Z,.

Example 2  Xjyeeey Xjyees = Cqgecey Cyyeee, then one obtains Hy(  :2)

the ordinery homology theory, because the coefficients are

Zleiseeed [/ (Clpeeees) = 2.

Example 3 X9, Xpyees = Cpy Cgyeece (first choose generators c; such that
Todd genus T(cy) = 0 if i > 1). i.e., you kill off c; except e,

Then one obtains K-theory Ki(pt). Note Ky(pt) = z[c,].

Example 4 Choose xj,.... = C1, C3, Cl, Cgyes.s (leaving out cp) generators
cp; chosen such that index I(epi) =0 (cp = CP?), then one obtains &
theory Vi ( ). Now Vi( )= st*(\_/") = Z[cpl, where V is a spectrum.
Assume V.  is an o-spectrum, OV;4q = V;, then my(Vy) = Z[cp] (cf. Brown
or Whitehead's paper). Using surgery, one can prove Vo -~~~ F/PL for

all primes except 2.

Example 5 Choose Xjyeeee = Cyjeee, Gp_l,.... s ‘then one obtains

V&(pt) = Z[cp.1], where dim cp.y =2p -2 and p is an odd prime.
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/
Iet Y= VY ﬂ*(Yp) =2 Ecp_l] . I want to claim that \/  is periodic

of period 2p - 2, roughly speaking

/ /
sz"g '\/T ~ V

We have a map
- ! / / /
PPNV —> VAV — v )
and hence the associate map

Considering the induced homomorphism on 1wy, this sends (cp_l)t to

(cp_l)tﬂ. Therefore it is an isomorphism on mwy, because '.nf*(YP) is a
polynomial ring on one generator.

Finally note that the first k-invariant of Y_/ is not zero. Proof
is to compare with spectrum MU —> Y, « (We know the first k~invariant

of MU and by naturality one can check it).

Theorem There exists a space Yp such that

Z i=0 (2p=2)
ﬂi(Yp) =
0 i#0 (2p=-2)

and the first k-invarient of Yp(i(2p-2)) is nonzero.

Proof is by the construction of example 5,

Corollary
F/PL /5/ BSO.
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Proof F/PL ~_ Vop=73Y3 ~_ BSO ,
P 3

where p 1is any odd prime.

I state the following theorem without proof,

Theorem of Sullivan

F/PL -~~~ BSO for any odd prime.

It seems reasonable to construct Y

o directly.

§ 10, The PL-cobordism.

Now we discuss PLecobordism. There is an important theory of Williamson:
?’ZEL = J_'E,m g (MPLy ) = sty ( __'MPL)"

So the question is how to compute this. There is a classifying space BPL;

and some limiting process BPL;y — BPL. Moreover we have a diagram

BPL4 —— BPL
BO4 — BO

So we have the homomorphism

6 :H*¥(BPL:Zp) ——> H*¥(B0:Zp) = Zplwy,eeceslo
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By definition of wjy, WEL can be defined in Hi(BPL:ZZ) such that

L

G(WE ) = wi.

Define ¢:H*(BO:2Zp) ——> H¥(BFL:Zy) by ¢ (wy) =W§L, then ¢ is a map

of algebras. One obbains
PL PL PL
y (Wi ) =L Wi ® Wi-j

by the usual proof. Therefore ¢ is a mep of Hopf algebras,
Recall the definition of wilnvil = o  S(U).
The question is if the equality
i, PL PL PL
Sq(wj =13 ( W oew
hold. Using the Cartan formula, the Adem relations and induction, one

can prove

PL,

i Se

S:c'i(wgl') = some polynomial in W

Therefore it is equal to the correct polynomial, because under ¢ it goes

into the correct polynomial,

Lemma. ¢ is a map of Hopf algebra over Q « Define
¢ = H*(BPL)/6 (H*(BO). H*(BPL),

where B¥ means the elements of positive degree, Then C 1is a Hopf

algebra over Q °

Applying Milnor-Moore theory one gets
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Theorem  The composition
s

}L

6@ x
H*(BPL) —— H*(BPL) ® H¥(BPL) -——> H¥(BPL) ® C,

where =« is projection, gives an isomorphism of Hopf algebra over Q °

Theorem As an algebra,
NP = Nioo,

where C 1is a Hopf algebra as preceding theorem and C¥ dis a dual of C,

Remember that
@ o
H*(BG) —> H¥( MG) is an isomorphism of coalgebras for G = O

and PL. One can define a right operation on H¥(BO) by

m)a = ¢ L) P ).

We have that h: 72* ——3p I{*( __l\_/I_Q) is a monomorphism and that

h*sE*( MO) ——> ( 22.)* is an epimorphism with kernel (¥:H*( MO).

Using the Thom isomorphism, one gets that

H¥(BO) — H¢( MO) — ( )%

is an epimorphism with kernel H*(BO)* {2 and this is a map of coalgebras.
I want to consider those SW(W) = §, such that w has no members

of the form 2% - 1, Let S = vector space spanned by such elements
in H*(BO).

Letma S —~——p ( 9’2*)* is an isomorphism of coalgebras.
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Proof The isomorphism is given by Thom. We have

Y(s)=2 8, 08,

WlWQ?-‘W‘
and note that Wy and W, are of the above type. Therefore S is closed

under the diagonal map.

The composition
(R )*@¢c —s S®C —> H(BO) ® C = W¢(BPL) —> (ATL)*

is a map of coalgebras and one can check that it is an isomorphism as
vector space,

PL
So, dually, 72 * g?’z* ® C* as algebra. This has some corollaries.

Corollary If M2 ~—»4 (P-manifold and N is a CP-manifold, N -7 0O,
then Mx N ¢ (P-manifold. The following results are known on the

structure of C.

Theorem Cs=0 for i<38.
08 = Zgg

Ci#0 for i> 2k,

One is also interested in the orientable case (Qx .
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The same methods prove that
H*(BSPL) 2= H*(BSO)® C

with the same C as unoriented case.

And the same proof shows that
H*( MSPL) = H*( MSO) ® C as coalgebra.
From this one can prove that
m( MSPL) =z (0 / @ (S&) ® free (§ -module as (f -module.

Technical lemma

Be( M) == s/ A ez .

'thel’l ﬂ /é\-ﬁ" v .‘_I_{(Z,aae) VE(Zer’noa)a

(Note: B*( K(zg, 0)) = 0/ @ (sh) e X/ A(sk))

This means that in Q§PI' for p=2 every manifold can be detected
with characteristic classes with coefficients in Z and ere
For p:odd, what is the structure of H¥( BSPL:ZP) ?

Using H*(BSF:ZP) & prqi] ® E(qu) ® ¢ (proved recently upstairs)

and direct computation, one can prove
H¥(BSFL:Z;,) = H¥(BSO0:2Z,) @ C

in dimensions < (p> + p + 1)(2p = 2) = 1.
Therefore one can try to compute H¥( _M_SPL:ZP) as modules over

Here C is known explicitly up to 2p(2p-2).
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Some pages later we see, for example, that

B¢ ( MSPL:Z3) == (0 /() ® free in dim < 27,

where

Arey= @7 R (2, @ %yeees)

The part a /(B) comes from oS0 and the free part comes from

PL - , but not (®-manifolds.

Note that CP2, CPI’L, CP6..... are generators and new things are

11 Z3

19 Z4

22 Z3

23 Z3 53] Z3 ® 23

27 Zgy (m*( MSPL, Z3) is no longer free)

Note, for example, that M'L x CP® = 0, which is different from &) LL.

The End.
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